status
stringclasses 1
value | repo_name
stringclasses 31
values | repo_url
stringclasses 31
values | issue_id
int64 1
104k
| title
stringlengths 4
233
| body
stringlengths 0
186k
⌀ | issue_url
stringlengths 38
56
| pull_url
stringlengths 37
54
| before_fix_sha
stringlengths 40
40
| after_fix_sha
stringlengths 40
40
| report_datetime
unknown | language
stringclasses 5
values | commit_datetime
unknown | updated_file
stringlengths 7
188
| chunk_content
stringlengths 1
1.03M
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,652 | SQLite LLM cache clear does not take effect | ### System Info
Langchain version: 0.0.231
Python version: 3.10.11
Bug:
There is an issue when clearing LLM cache for SQL Alchemy based caches.
langchain.llm_cache.clear() does not clear the cache for SQLite LLM cache.
Reason: it doesn't commit the deletion database change. The deletion doesn't take effect.
### Who can help?
@hwchase17 @ag
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
- Configure SQLite LLM Cache
- Call an LLM via langchain
- The SQLite database get's populated with an entry
- call langchain.llm_cache.clear()
- Actual Behaviour: Notice that the entry is still in SQLite
### Expected behavior
- Expected Behaviour: The cache database table should be empty | https://github.com/langchain-ai/langchain/issues/7652 | https://github.com/langchain-ai/langchain/pull/7653 | c17a80f11c200e2f7a65b54eb2f2942b8a6ea3bd | 24c165420827305e813f4b6d501f93d18f6d46a4 | "2023-07-13T12:36:48Z" | python | "2023-07-13T13:39:04Z" | tests/unit_tests/test_cache.py | prompt: List[BaseMessage] = [HumanMessage(content="How are you?")]
response = "Test response"
cached_response = "Cached test response"
cached_message = AIMessage(content=cached_response)
llm = FakeListChatModel(responses=[response])
if langchain.llm_cache:
langchain.llm_cache.update(
prompt=dumps(prompt),
llm_string=llm._get_llm_string(functions=[]),
return_val=[ChatGeneration(message=cached_message)],
)
result = llm(prompt, functions=[])
assert isinstance(result, AIMessage)
assert result.content == cached_response
result_no_params = llm(prompt)
assert isinstance(result_no_params, AIMessage)
assert result_no_params.content == response
else:
raise ValueError(
"The cache not set. This should never happen, as the pytest fixture "
"`set_cache_and_teardown` always sets the cache."
)
def create_llm_string(llm: Union[BaseLLM, BaseChatModel]) -> str:
_dict: Dict = llm.dict()
_dict["stop"] = None
return str(sorted([(k, v) for k, v in _dict.items()])) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,198 | Elasticsearch : ElasticKnnSearch.from_texts throws AttributeError | ### System Info
Langchain version : 0.0.199
Python Version: Python 3.9.16
MacOS
@CodeDevNinja @dev2049
PR https://github.com/hwchase17/langchain/pull/5058 introduced a change to ElasticVectorSearch from_texts which broke, kind of coincidentally, ElasticKnnSearch from_texts
I discovered this issue when running docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb . I got to the following cell:
```python
# Test `add_texts` method
texts = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knn_search.add_texts(texts)
# Test `from_texts` method
new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
```
and it said:
```python
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[10], line 7
5 # Test `from_texts` method
6 new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
----> 7 knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:296, in ElasticVectorSearch.from_texts(cls, texts, embedding, metadatas, elasticsearch_url, index_name, refresh_indices, **kwargs)
293 index_name = index_name or uuid.uuid4().hex
294 vectorsearch = cls(
295 elasticsearch_url, index_name, embedding, **kwargs)
--> 296 vectorsearch.add_texts(
297 texts, metadatas=metadatas, refresh_indices=refresh_indices
298 )
299 return vectorsearch
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:183, in ElasticVectorSearch.add_texts(self, texts, metadatas, refresh_indices, **kwargs)
181 requests = []
182 ids = []
--> 183 embeddings = self.embedding.embed_documents(list(texts))
184 dim = len(embeddings[0])
185 mapping = _default_text_mapping(dim)
AttributeError: 'str' object has no attribute 'embed_documents'
```
which is a pretty weird error.
This is because https://github.com/cdiddy77/langchain/blob/e74733ab9e5e307fd828ea600ea929a1cb24320f/langchain/vectorstores/elastic_vector_search.py#L294 invokes the __init__ of the calling class, in this case `ElasticKnnSearch` which takes parameters in a very different order.
This calling of the wrong __init__ was always present, but the PR above added a subsequent called to add_texts, which is where the bogus embedding is referenced, causing the exception.
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to repro:
1. Open docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb
2. Modify as appropriate with elasticsearch_url, and further down, model_id, dims, cloud_id, username,password of elastic cloud deployment
3. Run until cell below "Test adding vectors"
### Expected behavior
Not throw exception | https://github.com/langchain-ai/langchain/issues/6198 | https://github.com/langchain-ai/langchain/pull/6199 | 854f3fe9b1ca1c3e097cb0ccd55d1406e9c04406 | 574698a5fb2adbc4b6eb20ffe11a949a4f3b0371 | "2023-06-15T04:45:12Z" | python | "2023-07-13T23:55:20Z" | langchain/vectorstores/elastic_vector_search.py | """Wrapper around Elasticsearch vector database."""
from __future__ import annotations
import uuid
from abc import ABC
from typing import (
TYPE_CHECKING,
Any,
Dict,
Iterable,
List,
Mapping,
Optional,
Tuple,
Union,
)
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_env
from langchain.vectorstores.base import VectorStore
if TYPE_CHECKING:
from elasticsearch import Elasticsearch
def _default_text_mapping(dim: int) -> Dict: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,198 | Elasticsearch : ElasticKnnSearch.from_texts throws AttributeError | ### System Info
Langchain version : 0.0.199
Python Version: Python 3.9.16
MacOS
@CodeDevNinja @dev2049
PR https://github.com/hwchase17/langchain/pull/5058 introduced a change to ElasticVectorSearch from_texts which broke, kind of coincidentally, ElasticKnnSearch from_texts
I discovered this issue when running docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb . I got to the following cell:
```python
# Test `add_texts` method
texts = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knn_search.add_texts(texts)
# Test `from_texts` method
new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
```
and it said:
```python
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[10], line 7
5 # Test `from_texts` method
6 new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
----> 7 knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:296, in ElasticVectorSearch.from_texts(cls, texts, embedding, metadatas, elasticsearch_url, index_name, refresh_indices, **kwargs)
293 index_name = index_name or uuid.uuid4().hex
294 vectorsearch = cls(
295 elasticsearch_url, index_name, embedding, **kwargs)
--> 296 vectorsearch.add_texts(
297 texts, metadatas=metadatas, refresh_indices=refresh_indices
298 )
299 return vectorsearch
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:183, in ElasticVectorSearch.add_texts(self, texts, metadatas, refresh_indices, **kwargs)
181 requests = []
182 ids = []
--> 183 embeddings = self.embedding.embed_documents(list(texts))
184 dim = len(embeddings[0])
185 mapping = _default_text_mapping(dim)
AttributeError: 'str' object has no attribute 'embed_documents'
```
which is a pretty weird error.
This is because https://github.com/cdiddy77/langchain/blob/e74733ab9e5e307fd828ea600ea929a1cb24320f/langchain/vectorstores/elastic_vector_search.py#L294 invokes the __init__ of the calling class, in this case `ElasticKnnSearch` which takes parameters in a very different order.
This calling of the wrong __init__ was always present, but the PR above added a subsequent called to add_texts, which is where the bogus embedding is referenced, causing the exception.
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to repro:
1. Open docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb
2. Modify as appropriate with elasticsearch_url, and further down, model_id, dims, cloud_id, username,password of elastic cloud deployment
3. Run until cell below "Test adding vectors"
### Expected behavior
Not throw exception | https://github.com/langchain-ai/langchain/issues/6198 | https://github.com/langchain-ai/langchain/pull/6199 | 854f3fe9b1ca1c3e097cb0ccd55d1406e9c04406 | 574698a5fb2adbc4b6eb20ffe11a949a4f3b0371 | "2023-06-15T04:45:12Z" | python | "2023-07-13T23:55:20Z" | langchain/vectorstores/elastic_vector_search.py | return {
"properties": {
"text": {"type": "text"},
"vector": {"type": "dense_vector", "dims": dim},
}
}
def _default_script_query(query_vector: List[float], filter: Optional[dict]) -> Dict:
if filter:
((key, value),) = filter.items()
filter = {"match": {f"metadata.{key}.keyword": f"{value}"}}
else:
filter = {"match_all": {}}
return {
"script_score": {
"query": filter,
"script": {
"source": "cosineSimilarity(params.query_vector, 'vector') + 1.0",
"params": {"query_vector": query_vector},
},
}
}
class ElasticVectorSearch(VectorStore, ABC): |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,198 | Elasticsearch : ElasticKnnSearch.from_texts throws AttributeError | ### System Info
Langchain version : 0.0.199
Python Version: Python 3.9.16
MacOS
@CodeDevNinja @dev2049
PR https://github.com/hwchase17/langchain/pull/5058 introduced a change to ElasticVectorSearch from_texts which broke, kind of coincidentally, ElasticKnnSearch from_texts
I discovered this issue when running docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb . I got to the following cell:
```python
# Test `add_texts` method
texts = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knn_search.add_texts(texts)
# Test `from_texts` method
new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
```
and it said:
```python
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[10], line 7
5 # Test `from_texts` method
6 new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
----> 7 knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:296, in ElasticVectorSearch.from_texts(cls, texts, embedding, metadatas, elasticsearch_url, index_name, refresh_indices, **kwargs)
293 index_name = index_name or uuid.uuid4().hex
294 vectorsearch = cls(
295 elasticsearch_url, index_name, embedding, **kwargs)
--> 296 vectorsearch.add_texts(
297 texts, metadatas=metadatas, refresh_indices=refresh_indices
298 )
299 return vectorsearch
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:183, in ElasticVectorSearch.add_texts(self, texts, metadatas, refresh_indices, **kwargs)
181 requests = []
182 ids = []
--> 183 embeddings = self.embedding.embed_documents(list(texts))
184 dim = len(embeddings[0])
185 mapping = _default_text_mapping(dim)
AttributeError: 'str' object has no attribute 'embed_documents'
```
which is a pretty weird error.
This is because https://github.com/cdiddy77/langchain/blob/e74733ab9e5e307fd828ea600ea929a1cb24320f/langchain/vectorstores/elastic_vector_search.py#L294 invokes the __init__ of the calling class, in this case `ElasticKnnSearch` which takes parameters in a very different order.
This calling of the wrong __init__ was always present, but the PR above added a subsequent called to add_texts, which is where the bogus embedding is referenced, causing the exception.
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to repro:
1. Open docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb
2. Modify as appropriate with elasticsearch_url, and further down, model_id, dims, cloud_id, username,password of elastic cloud deployment
3. Run until cell below "Test adding vectors"
### Expected behavior
Not throw exception | https://github.com/langchain-ai/langchain/issues/6198 | https://github.com/langchain-ai/langchain/pull/6199 | 854f3fe9b1ca1c3e097cb0ccd55d1406e9c04406 | 574698a5fb2adbc4b6eb20ffe11a949a4f3b0371 | "2023-06-15T04:45:12Z" | python | "2023-07-13T23:55:20Z" | langchain/vectorstores/elastic_vector_search.py | """Wrapper around Elasticsearch as a vector database.
To connect to an Elasticsearch instance that does not require
login credentials, pass the Elasticsearch URL and index name along with the
embedding object to the constructor.
Example:
.. code-block:: python
from langchain import ElasticVectorSearch
from langchain.embeddings import OpenAIEmbeddings
embedding = OpenAIEmbeddings()
elastic_vector_search = ElasticVectorSearch(
elasticsearch_url="http://localhost:9200",
index_name="test_index",
embedding=embedding
)
To connect to an Elasticsearch instance that requires login credentials,
including Elastic Cloud, use the Elasticsearch URL format
https://username:password@es_host:9243. For example, to connect to Elastic
Cloud, create the Elasticsearch URL with the required authentication details and
pass it to the ElasticVectorSearch constructor as the named parameter
elasticsearch_url.
You can obtain your Elastic Cloud URL and login credentials by logging in to the
Elastic Cloud console at https://cloud.elastic.co, selecting your deployment, and
navigating to the "Deployments" page. |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,198 | Elasticsearch : ElasticKnnSearch.from_texts throws AttributeError | ### System Info
Langchain version : 0.0.199
Python Version: Python 3.9.16
MacOS
@CodeDevNinja @dev2049
PR https://github.com/hwchase17/langchain/pull/5058 introduced a change to ElasticVectorSearch from_texts which broke, kind of coincidentally, ElasticKnnSearch from_texts
I discovered this issue when running docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb . I got to the following cell:
```python
# Test `add_texts` method
texts = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knn_search.add_texts(texts)
# Test `from_texts` method
new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
```
and it said:
```python
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[10], line 7
5 # Test `from_texts` method
6 new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
----> 7 knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:296, in ElasticVectorSearch.from_texts(cls, texts, embedding, metadatas, elasticsearch_url, index_name, refresh_indices, **kwargs)
293 index_name = index_name or uuid.uuid4().hex
294 vectorsearch = cls(
295 elasticsearch_url, index_name, embedding, **kwargs)
--> 296 vectorsearch.add_texts(
297 texts, metadatas=metadatas, refresh_indices=refresh_indices
298 )
299 return vectorsearch
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:183, in ElasticVectorSearch.add_texts(self, texts, metadatas, refresh_indices, **kwargs)
181 requests = []
182 ids = []
--> 183 embeddings = self.embedding.embed_documents(list(texts))
184 dim = len(embeddings[0])
185 mapping = _default_text_mapping(dim)
AttributeError: 'str' object has no attribute 'embed_documents'
```
which is a pretty weird error.
This is because https://github.com/cdiddy77/langchain/blob/e74733ab9e5e307fd828ea600ea929a1cb24320f/langchain/vectorstores/elastic_vector_search.py#L294 invokes the __init__ of the calling class, in this case `ElasticKnnSearch` which takes parameters in a very different order.
This calling of the wrong __init__ was always present, but the PR above added a subsequent called to add_texts, which is where the bogus embedding is referenced, causing the exception.
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to repro:
1. Open docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb
2. Modify as appropriate with elasticsearch_url, and further down, model_id, dims, cloud_id, username,password of elastic cloud deployment
3. Run until cell below "Test adding vectors"
### Expected behavior
Not throw exception | https://github.com/langchain-ai/langchain/issues/6198 | https://github.com/langchain-ai/langchain/pull/6199 | 854f3fe9b1ca1c3e097cb0ccd55d1406e9c04406 | 574698a5fb2adbc4b6eb20ffe11a949a4f3b0371 | "2023-06-15T04:45:12Z" | python | "2023-07-13T23:55:20Z" | langchain/vectorstores/elastic_vector_search.py | To obtain your Elastic Cloud password for the default "elastic" user:
1. Log in to the Elastic Cloud console at https://cloud.elastic.co
2. Go to "Security" > "Users"
3. Locate the "elastic" user and click "Edit"
4. Click "Reset password"
5. Follow the prompts to reset the password
The format for Elastic Cloud URLs is
https://username:password@cluster_id.region_id.gcp.cloud.es.io:9243.
Example:
.. code-block:: python
from langchain import ElasticVectorSearch
from langchain.embeddings import OpenAIEmbeddings
embedding = OpenAIEmbeddings()
elastic_host = "cluster_id.region_id.gcp.cloud.es.io"
elasticsearch_url = f"https://username:password@{elastic_host}:9243"
elastic_vector_search = ElasticVectorSearch(
elasticsearch_url=elasticsearch_url,
index_name="test_index",
embedding=embedding
)
Args:
elasticsearch_url (str): The URL for the Elasticsearch instance.
index_name (str): The name of the Elasticsearch index for the embeddings.
embedding (Embeddings): An object that provides the ability to embed text.
It should be an instance of a class that subclasses the Embeddings
abstract base class, such as OpenAIEmbeddings()
Raises:
ValueError: If the elasticsearch python package is not installed.
"""
def __init__( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,198 | Elasticsearch : ElasticKnnSearch.from_texts throws AttributeError | ### System Info
Langchain version : 0.0.199
Python Version: Python 3.9.16
MacOS
@CodeDevNinja @dev2049
PR https://github.com/hwchase17/langchain/pull/5058 introduced a change to ElasticVectorSearch from_texts which broke, kind of coincidentally, ElasticKnnSearch from_texts
I discovered this issue when running docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb . I got to the following cell:
```python
# Test `add_texts` method
texts = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knn_search.add_texts(texts)
# Test `from_texts` method
new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
```
and it said:
```python
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[10], line 7
5 # Test `from_texts` method
6 new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
----> 7 knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:296, in ElasticVectorSearch.from_texts(cls, texts, embedding, metadatas, elasticsearch_url, index_name, refresh_indices, **kwargs)
293 index_name = index_name or uuid.uuid4().hex
294 vectorsearch = cls(
295 elasticsearch_url, index_name, embedding, **kwargs)
--> 296 vectorsearch.add_texts(
297 texts, metadatas=metadatas, refresh_indices=refresh_indices
298 )
299 return vectorsearch
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:183, in ElasticVectorSearch.add_texts(self, texts, metadatas, refresh_indices, **kwargs)
181 requests = []
182 ids = []
--> 183 embeddings = self.embedding.embed_documents(list(texts))
184 dim = len(embeddings[0])
185 mapping = _default_text_mapping(dim)
AttributeError: 'str' object has no attribute 'embed_documents'
```
which is a pretty weird error.
This is because https://github.com/cdiddy77/langchain/blob/e74733ab9e5e307fd828ea600ea929a1cb24320f/langchain/vectorstores/elastic_vector_search.py#L294 invokes the __init__ of the calling class, in this case `ElasticKnnSearch` which takes parameters in a very different order.
This calling of the wrong __init__ was always present, but the PR above added a subsequent called to add_texts, which is where the bogus embedding is referenced, causing the exception.
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to repro:
1. Open docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb
2. Modify as appropriate with elasticsearch_url, and further down, model_id, dims, cloud_id, username,password of elastic cloud deployment
3. Run until cell below "Test adding vectors"
### Expected behavior
Not throw exception | https://github.com/langchain-ai/langchain/issues/6198 | https://github.com/langchain-ai/langchain/pull/6199 | 854f3fe9b1ca1c3e097cb0ccd55d1406e9c04406 | 574698a5fb2adbc4b6eb20ffe11a949a4f3b0371 | "2023-06-15T04:45:12Z" | python | "2023-07-13T23:55:20Z" | langchain/vectorstores/elastic_vector_search.py | self,
elasticsearch_url: str,
index_name: str,
embedding: Embeddings,
*,
ssl_verify: Optional[Dict[str, Any]] = None,
):
"""Initialize with necessary components."""
try:
import elasticsearch
except ImportError:
raise ImportError(
"Could not import elasticsearch python package. "
"Please install it with `pip install elasticsearch`."
)
self.embedding = embedding
self.index_name = index_name
_ssl_verify = ssl_verify or {}
try:
self.client = elasticsearch.Elasticsearch(elasticsearch_url, **_ssl_verify)
except ValueError as e:
raise ValueError(
f"Your elasticsearch client string is mis-formatted. Got error: {e} "
)
def add_texts( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,198 | Elasticsearch : ElasticKnnSearch.from_texts throws AttributeError | ### System Info
Langchain version : 0.0.199
Python Version: Python 3.9.16
MacOS
@CodeDevNinja @dev2049
PR https://github.com/hwchase17/langchain/pull/5058 introduced a change to ElasticVectorSearch from_texts which broke, kind of coincidentally, ElasticKnnSearch from_texts
I discovered this issue when running docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb . I got to the following cell:
```python
# Test `add_texts` method
texts = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knn_search.add_texts(texts)
# Test `from_texts` method
new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
```
and it said:
```python
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[10], line 7
5 # Test `from_texts` method
6 new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
----> 7 knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:296, in ElasticVectorSearch.from_texts(cls, texts, embedding, metadatas, elasticsearch_url, index_name, refresh_indices, **kwargs)
293 index_name = index_name or uuid.uuid4().hex
294 vectorsearch = cls(
295 elasticsearch_url, index_name, embedding, **kwargs)
--> 296 vectorsearch.add_texts(
297 texts, metadatas=metadatas, refresh_indices=refresh_indices
298 )
299 return vectorsearch
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:183, in ElasticVectorSearch.add_texts(self, texts, metadatas, refresh_indices, **kwargs)
181 requests = []
182 ids = []
--> 183 embeddings = self.embedding.embed_documents(list(texts))
184 dim = len(embeddings[0])
185 mapping = _default_text_mapping(dim)
AttributeError: 'str' object has no attribute 'embed_documents'
```
which is a pretty weird error.
This is because https://github.com/cdiddy77/langchain/blob/e74733ab9e5e307fd828ea600ea929a1cb24320f/langchain/vectorstores/elastic_vector_search.py#L294 invokes the __init__ of the calling class, in this case `ElasticKnnSearch` which takes parameters in a very different order.
This calling of the wrong __init__ was always present, but the PR above added a subsequent called to add_texts, which is where the bogus embedding is referenced, causing the exception.
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to repro:
1. Open docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb
2. Modify as appropriate with elasticsearch_url, and further down, model_id, dims, cloud_id, username,password of elastic cloud deployment
3. Run until cell below "Test adding vectors"
### Expected behavior
Not throw exception | https://github.com/langchain-ai/langchain/issues/6198 | https://github.com/langchain-ai/langchain/pull/6199 | 854f3fe9b1ca1c3e097cb0ccd55d1406e9c04406 | 574698a5fb2adbc4b6eb20ffe11a949a4f3b0371 | "2023-06-15T04:45:12Z" | python | "2023-07-13T23:55:20Z" | langchain/vectorstores/elastic_vector_search.py | self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
refresh_indices: bool = True,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
ids: Optional list of unique IDs.
refresh_indices: bool to refresh ElasticSearch indices
Returns:
List of ids from adding the texts into the vectorstore.
"""
try:
from elasticsearch.exceptions import NotFoundError
from elasticsearch.helpers import bulk
except ImportError:
raise ImportError(
"Could not import elasticsearch python package. " |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,198 | Elasticsearch : ElasticKnnSearch.from_texts throws AttributeError | ### System Info
Langchain version : 0.0.199
Python Version: Python 3.9.16
MacOS
@CodeDevNinja @dev2049
PR https://github.com/hwchase17/langchain/pull/5058 introduced a change to ElasticVectorSearch from_texts which broke, kind of coincidentally, ElasticKnnSearch from_texts
I discovered this issue when running docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb . I got to the following cell:
```python
# Test `add_texts` method
texts = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knn_search.add_texts(texts)
# Test `from_texts` method
new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
```
and it said:
```python
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[10], line 7
5 # Test `from_texts` method
6 new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
----> 7 knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:296, in ElasticVectorSearch.from_texts(cls, texts, embedding, metadatas, elasticsearch_url, index_name, refresh_indices, **kwargs)
293 index_name = index_name or uuid.uuid4().hex
294 vectorsearch = cls(
295 elasticsearch_url, index_name, embedding, **kwargs)
--> 296 vectorsearch.add_texts(
297 texts, metadatas=metadatas, refresh_indices=refresh_indices
298 )
299 return vectorsearch
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:183, in ElasticVectorSearch.add_texts(self, texts, metadatas, refresh_indices, **kwargs)
181 requests = []
182 ids = []
--> 183 embeddings = self.embedding.embed_documents(list(texts))
184 dim = len(embeddings[0])
185 mapping = _default_text_mapping(dim)
AttributeError: 'str' object has no attribute 'embed_documents'
```
which is a pretty weird error.
This is because https://github.com/cdiddy77/langchain/blob/e74733ab9e5e307fd828ea600ea929a1cb24320f/langchain/vectorstores/elastic_vector_search.py#L294 invokes the __init__ of the calling class, in this case `ElasticKnnSearch` which takes parameters in a very different order.
This calling of the wrong __init__ was always present, but the PR above added a subsequent called to add_texts, which is where the bogus embedding is referenced, causing the exception.
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to repro:
1. Open docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb
2. Modify as appropriate with elasticsearch_url, and further down, model_id, dims, cloud_id, username,password of elastic cloud deployment
3. Run until cell below "Test adding vectors"
### Expected behavior
Not throw exception | https://github.com/langchain-ai/langchain/issues/6198 | https://github.com/langchain-ai/langchain/pull/6199 | 854f3fe9b1ca1c3e097cb0ccd55d1406e9c04406 | 574698a5fb2adbc4b6eb20ffe11a949a4f3b0371 | "2023-06-15T04:45:12Z" | python | "2023-07-13T23:55:20Z" | langchain/vectorstores/elastic_vector_search.py | "Please install it with `pip install elasticsearch`."
)
requests = []
ids = ids or [str(uuid.uuid4()) for _ in texts]
embeddings = self.embedding.embed_documents(list(texts))
dim = len(embeddings[0])
mapping = _default_text_mapping(dim)
try:
self.client.indices.get(index=self.index_name)
except NotFoundError:
self.create_index(self.client, self.index_name, mapping)
for i, text in enumerate(texts):
metadata = metadatas[i] if metadatas else {}
request = {
"_op_type": "index",
"_index": self.index_name,
"vector": embeddings[i],
"text": text,
"metadata": metadata,
"_id": ids[i],
}
requests.append(request)
bulk(self.client, requests)
if refresh_indices:
self.client.indices.refresh(index=self.index_name)
return ids
def similarity_search( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,198 | Elasticsearch : ElasticKnnSearch.from_texts throws AttributeError | ### System Info
Langchain version : 0.0.199
Python Version: Python 3.9.16
MacOS
@CodeDevNinja @dev2049
PR https://github.com/hwchase17/langchain/pull/5058 introduced a change to ElasticVectorSearch from_texts which broke, kind of coincidentally, ElasticKnnSearch from_texts
I discovered this issue when running docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb . I got to the following cell:
```python
# Test `add_texts` method
texts = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knn_search.add_texts(texts)
# Test `from_texts` method
new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
```
and it said:
```python
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[10], line 7
5 # Test `from_texts` method
6 new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
----> 7 knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:296, in ElasticVectorSearch.from_texts(cls, texts, embedding, metadatas, elasticsearch_url, index_name, refresh_indices, **kwargs)
293 index_name = index_name or uuid.uuid4().hex
294 vectorsearch = cls(
295 elasticsearch_url, index_name, embedding, **kwargs)
--> 296 vectorsearch.add_texts(
297 texts, metadatas=metadatas, refresh_indices=refresh_indices
298 )
299 return vectorsearch
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:183, in ElasticVectorSearch.add_texts(self, texts, metadatas, refresh_indices, **kwargs)
181 requests = []
182 ids = []
--> 183 embeddings = self.embedding.embed_documents(list(texts))
184 dim = len(embeddings[0])
185 mapping = _default_text_mapping(dim)
AttributeError: 'str' object has no attribute 'embed_documents'
```
which is a pretty weird error.
This is because https://github.com/cdiddy77/langchain/blob/e74733ab9e5e307fd828ea600ea929a1cb24320f/langchain/vectorstores/elastic_vector_search.py#L294 invokes the __init__ of the calling class, in this case `ElasticKnnSearch` which takes parameters in a very different order.
This calling of the wrong __init__ was always present, but the PR above added a subsequent called to add_texts, which is where the bogus embedding is referenced, causing the exception.
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to repro:
1. Open docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb
2. Modify as appropriate with elasticsearch_url, and further down, model_id, dims, cloud_id, username,password of elastic cloud deployment
3. Run until cell below "Test adding vectors"
### Expected behavior
Not throw exception | https://github.com/langchain-ai/langchain/issues/6198 | https://github.com/langchain-ai/langchain/pull/6199 | 854f3fe9b1ca1c3e097cb0ccd55d1406e9c04406 | 574698a5fb2adbc4b6eb20ffe11a949a4f3b0371 | "2023-06-15T04:45:12Z" | python | "2023-07-13T23:55:20Z" | langchain/vectorstores/elastic_vector_search.py | self, query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query.
"""
docs_and_scores = self.similarity_search_with_score(query, k, filter=filter)
documents = [d[0] for d in docs_and_scores]
return documents
def similarity_search_with_score( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,198 | Elasticsearch : ElasticKnnSearch.from_texts throws AttributeError | ### System Info
Langchain version : 0.0.199
Python Version: Python 3.9.16
MacOS
@CodeDevNinja @dev2049
PR https://github.com/hwchase17/langchain/pull/5058 introduced a change to ElasticVectorSearch from_texts which broke, kind of coincidentally, ElasticKnnSearch from_texts
I discovered this issue when running docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb . I got to the following cell:
```python
# Test `add_texts` method
texts = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knn_search.add_texts(texts)
# Test `from_texts` method
new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
```
and it said:
```python
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[10], line 7
5 # Test `from_texts` method
6 new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
----> 7 knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:296, in ElasticVectorSearch.from_texts(cls, texts, embedding, metadatas, elasticsearch_url, index_name, refresh_indices, **kwargs)
293 index_name = index_name or uuid.uuid4().hex
294 vectorsearch = cls(
295 elasticsearch_url, index_name, embedding, **kwargs)
--> 296 vectorsearch.add_texts(
297 texts, metadatas=metadatas, refresh_indices=refresh_indices
298 )
299 return vectorsearch
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:183, in ElasticVectorSearch.add_texts(self, texts, metadatas, refresh_indices, **kwargs)
181 requests = []
182 ids = []
--> 183 embeddings = self.embedding.embed_documents(list(texts))
184 dim = len(embeddings[0])
185 mapping = _default_text_mapping(dim)
AttributeError: 'str' object has no attribute 'embed_documents'
```
which is a pretty weird error.
This is because https://github.com/cdiddy77/langchain/blob/e74733ab9e5e307fd828ea600ea929a1cb24320f/langchain/vectorstores/elastic_vector_search.py#L294 invokes the __init__ of the calling class, in this case `ElasticKnnSearch` which takes parameters in a very different order.
This calling of the wrong __init__ was always present, but the PR above added a subsequent called to add_texts, which is where the bogus embedding is referenced, causing the exception.
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to repro:
1. Open docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb
2. Modify as appropriate with elasticsearch_url, and further down, model_id, dims, cloud_id, username,password of elastic cloud deployment
3. Run until cell below "Test adding vectors"
### Expected behavior
Not throw exception | https://github.com/langchain-ai/langchain/issues/6198 | https://github.com/langchain-ai/langchain/pull/6199 | 854f3fe9b1ca1c3e097cb0ccd55d1406e9c04406 | 574698a5fb2adbc4b6eb20ffe11a949a4f3b0371 | "2023-06-15T04:45:12Z" | python | "2023-07-13T23:55:20Z" | langchain/vectorstores/elastic_vector_search.py | self, query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query.
"""
embedding = self.embedding.embed_query(query)
script_query = _default_script_query(embedding, filter)
response = self.client_search(
self.client, self.index_name, script_query, size=k
)
hits = [hit for hit in response["hits"]["hits"]]
docs_and_scores = [
(
Document(
page_content=hit["_source"]["text"],
metadata=hit["_source"]["metadata"],
),
hit["_score"],
)
for hit in hits
]
return docs_and_scores
@classmethod
def from_texts( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,198 | Elasticsearch : ElasticKnnSearch.from_texts throws AttributeError | ### System Info
Langchain version : 0.0.199
Python Version: Python 3.9.16
MacOS
@CodeDevNinja @dev2049
PR https://github.com/hwchase17/langchain/pull/5058 introduced a change to ElasticVectorSearch from_texts which broke, kind of coincidentally, ElasticKnnSearch from_texts
I discovered this issue when running docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb . I got to the following cell:
```python
# Test `add_texts` method
texts = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knn_search.add_texts(texts)
# Test `from_texts` method
new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
```
and it said:
```python
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[10], line 7
5 # Test `from_texts` method
6 new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
----> 7 knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:296, in ElasticVectorSearch.from_texts(cls, texts, embedding, metadatas, elasticsearch_url, index_name, refresh_indices, **kwargs)
293 index_name = index_name or uuid.uuid4().hex
294 vectorsearch = cls(
295 elasticsearch_url, index_name, embedding, **kwargs)
--> 296 vectorsearch.add_texts(
297 texts, metadatas=metadatas, refresh_indices=refresh_indices
298 )
299 return vectorsearch
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:183, in ElasticVectorSearch.add_texts(self, texts, metadatas, refresh_indices, **kwargs)
181 requests = []
182 ids = []
--> 183 embeddings = self.embedding.embed_documents(list(texts))
184 dim = len(embeddings[0])
185 mapping = _default_text_mapping(dim)
AttributeError: 'str' object has no attribute 'embed_documents'
```
which is a pretty weird error.
This is because https://github.com/cdiddy77/langchain/blob/e74733ab9e5e307fd828ea600ea929a1cb24320f/langchain/vectorstores/elastic_vector_search.py#L294 invokes the __init__ of the calling class, in this case `ElasticKnnSearch` which takes parameters in a very different order.
This calling of the wrong __init__ was always present, but the PR above added a subsequent called to add_texts, which is where the bogus embedding is referenced, causing the exception.
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to repro:
1. Open docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb
2. Modify as appropriate with elasticsearch_url, and further down, model_id, dims, cloud_id, username,password of elastic cloud deployment
3. Run until cell below "Test adding vectors"
### Expected behavior
Not throw exception | https://github.com/langchain-ai/langchain/issues/6198 | https://github.com/langchain-ai/langchain/pull/6199 | 854f3fe9b1ca1c3e097cb0ccd55d1406e9c04406 | 574698a5fb2adbc4b6eb20ffe11a949a4f3b0371 | "2023-06-15T04:45:12Z" | python | "2023-07-13T23:55:20Z" | langchain/vectorstores/elastic_vector_search.py | cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
elasticsearch_url: Optional[str] = None,
index_name: Optional[str] = None, |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,198 | Elasticsearch : ElasticKnnSearch.from_texts throws AttributeError | ### System Info
Langchain version : 0.0.199
Python Version: Python 3.9.16
MacOS
@CodeDevNinja @dev2049
PR https://github.com/hwchase17/langchain/pull/5058 introduced a change to ElasticVectorSearch from_texts which broke, kind of coincidentally, ElasticKnnSearch from_texts
I discovered this issue when running docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb . I got to the following cell:
```python
# Test `add_texts` method
texts = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knn_search.add_texts(texts)
# Test `from_texts` method
new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
```
and it said:
```python
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[10], line 7
5 # Test `from_texts` method
6 new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
----> 7 knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:296, in ElasticVectorSearch.from_texts(cls, texts, embedding, metadatas, elasticsearch_url, index_name, refresh_indices, **kwargs)
293 index_name = index_name or uuid.uuid4().hex
294 vectorsearch = cls(
295 elasticsearch_url, index_name, embedding, **kwargs)
--> 296 vectorsearch.add_texts(
297 texts, metadatas=metadatas, refresh_indices=refresh_indices
298 )
299 return vectorsearch
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:183, in ElasticVectorSearch.add_texts(self, texts, metadatas, refresh_indices, **kwargs)
181 requests = []
182 ids = []
--> 183 embeddings = self.embedding.embed_documents(list(texts))
184 dim = len(embeddings[0])
185 mapping = _default_text_mapping(dim)
AttributeError: 'str' object has no attribute 'embed_documents'
```
which is a pretty weird error.
This is because https://github.com/cdiddy77/langchain/blob/e74733ab9e5e307fd828ea600ea929a1cb24320f/langchain/vectorstores/elastic_vector_search.py#L294 invokes the __init__ of the calling class, in this case `ElasticKnnSearch` which takes parameters in a very different order.
This calling of the wrong __init__ was always present, but the PR above added a subsequent called to add_texts, which is where the bogus embedding is referenced, causing the exception.
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to repro:
1. Open docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb
2. Modify as appropriate with elasticsearch_url, and further down, model_id, dims, cloud_id, username,password of elastic cloud deployment
3. Run until cell below "Test adding vectors"
### Expected behavior
Not throw exception | https://github.com/langchain-ai/langchain/issues/6198 | https://github.com/langchain-ai/langchain/pull/6199 | 854f3fe9b1ca1c3e097cb0ccd55d1406e9c04406 | 574698a5fb2adbc4b6eb20ffe11a949a4f3b0371 | "2023-06-15T04:45:12Z" | python | "2023-07-13T23:55:20Z" | langchain/vectorstores/elastic_vector_search.py | refresh_indices: bool = True,
**kwargs: Any,
) -> ElasticVectorSearch:
"""Construct ElasticVectorSearch wrapper from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in the Elasticsearch instance.
3. Adds the documents to the newly created Elasticsearch index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain import ElasticVectorSearch
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
elastic_vector_search = ElasticVectorSearch.from_texts(
texts,
embeddings,
elasticsearch_url="http://localhost:9200"
)
"""
elasticsearch_url = elasticsearch_url or get_from_env(
"elasticsearch_url", "ELASTICSEARCH_URL"
)
index_name = index_name or uuid.uuid4().hex
vectorsearch = cls(elasticsearch_url, index_name, embedding, **kwargs)
vectorsearch.add_texts(
texts, metadatas=metadatas, ids=ids, refresh_indices=refresh_indices
)
return vectorsearch
def create_index(self, client: Any, index_name: str, mapping: Dict) -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,198 | Elasticsearch : ElasticKnnSearch.from_texts throws AttributeError | ### System Info
Langchain version : 0.0.199
Python Version: Python 3.9.16
MacOS
@CodeDevNinja @dev2049
PR https://github.com/hwchase17/langchain/pull/5058 introduced a change to ElasticVectorSearch from_texts which broke, kind of coincidentally, ElasticKnnSearch from_texts
I discovered this issue when running docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb . I got to the following cell:
```python
# Test `add_texts` method
texts = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knn_search.add_texts(texts)
# Test `from_texts` method
new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
```
and it said:
```python
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[10], line 7
5 # Test `from_texts` method
6 new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
----> 7 knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:296, in ElasticVectorSearch.from_texts(cls, texts, embedding, metadatas, elasticsearch_url, index_name, refresh_indices, **kwargs)
293 index_name = index_name or uuid.uuid4().hex
294 vectorsearch = cls(
295 elasticsearch_url, index_name, embedding, **kwargs)
--> 296 vectorsearch.add_texts(
297 texts, metadatas=metadatas, refresh_indices=refresh_indices
298 )
299 return vectorsearch
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:183, in ElasticVectorSearch.add_texts(self, texts, metadatas, refresh_indices, **kwargs)
181 requests = []
182 ids = []
--> 183 embeddings = self.embedding.embed_documents(list(texts))
184 dim = len(embeddings[0])
185 mapping = _default_text_mapping(dim)
AttributeError: 'str' object has no attribute 'embed_documents'
```
which is a pretty weird error.
This is because https://github.com/cdiddy77/langchain/blob/e74733ab9e5e307fd828ea600ea929a1cb24320f/langchain/vectorstores/elastic_vector_search.py#L294 invokes the __init__ of the calling class, in this case `ElasticKnnSearch` which takes parameters in a very different order.
This calling of the wrong __init__ was always present, but the PR above added a subsequent called to add_texts, which is where the bogus embedding is referenced, causing the exception.
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to repro:
1. Open docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb
2. Modify as appropriate with elasticsearch_url, and further down, model_id, dims, cloud_id, username,password of elastic cloud deployment
3. Run until cell below "Test adding vectors"
### Expected behavior
Not throw exception | https://github.com/langchain-ai/langchain/issues/6198 | https://github.com/langchain-ai/langchain/pull/6199 | 854f3fe9b1ca1c3e097cb0ccd55d1406e9c04406 | 574698a5fb2adbc4b6eb20ffe11a949a4f3b0371 | "2023-06-15T04:45:12Z" | python | "2023-07-13T23:55:20Z" | langchain/vectorstores/elastic_vector_search.py | version_num = client.info()["version"]["number"][0]
version_num = int(version_num)
if version_num >= 8:
client.indices.create(index=index_name, mappings=mapping)
else:
client.indices.create(index=index_name, body={"mappings": mapping})
def client_search(
self, client: Any, index_name: str, script_query: Dict, size: int
) -> Any:
version_num = client.info()["version"]["number"][0]
version_num = int(version_num)
if version_num >= 8:
response = client.search(index=index_name, query=script_query, size=size)
else:
response = client.search(
index=index_name, body={"query": script_query, "size": size}
)
return response
def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> None:
"""Delete by vector IDs.
Args:
ids: List of ids to delete.
"""
if ids is None:
raise ValueError("No ids provided to delete.")
for id in ids:
self.client.delete(index=self.index_name, id=id)
class ElasticKnnSearch(ElasticVectorSearch): |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,198 | Elasticsearch : ElasticKnnSearch.from_texts throws AttributeError | ### System Info
Langchain version : 0.0.199
Python Version: Python 3.9.16
MacOS
@CodeDevNinja @dev2049
PR https://github.com/hwchase17/langchain/pull/5058 introduced a change to ElasticVectorSearch from_texts which broke, kind of coincidentally, ElasticKnnSearch from_texts
I discovered this issue when running docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb . I got to the following cell:
```python
# Test `add_texts` method
texts = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knn_search.add_texts(texts)
# Test `from_texts` method
new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
```
and it said:
```python
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[10], line 7
5 # Test `from_texts` method
6 new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
----> 7 knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:296, in ElasticVectorSearch.from_texts(cls, texts, embedding, metadatas, elasticsearch_url, index_name, refresh_indices, **kwargs)
293 index_name = index_name or uuid.uuid4().hex
294 vectorsearch = cls(
295 elasticsearch_url, index_name, embedding, **kwargs)
--> 296 vectorsearch.add_texts(
297 texts, metadatas=metadatas, refresh_indices=refresh_indices
298 )
299 return vectorsearch
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:183, in ElasticVectorSearch.add_texts(self, texts, metadatas, refresh_indices, **kwargs)
181 requests = []
182 ids = []
--> 183 embeddings = self.embedding.embed_documents(list(texts))
184 dim = len(embeddings[0])
185 mapping = _default_text_mapping(dim)
AttributeError: 'str' object has no attribute 'embed_documents'
```
which is a pretty weird error.
This is because https://github.com/cdiddy77/langchain/blob/e74733ab9e5e307fd828ea600ea929a1cb24320f/langchain/vectorstores/elastic_vector_search.py#L294 invokes the __init__ of the calling class, in this case `ElasticKnnSearch` which takes parameters in a very different order.
This calling of the wrong __init__ was always present, but the PR above added a subsequent called to add_texts, which is where the bogus embedding is referenced, causing the exception.
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to repro:
1. Open docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb
2. Modify as appropriate with elasticsearch_url, and further down, model_id, dims, cloud_id, username,password of elastic cloud deployment
3. Run until cell below "Test adding vectors"
### Expected behavior
Not throw exception | https://github.com/langchain-ai/langchain/issues/6198 | https://github.com/langchain-ai/langchain/pull/6199 | 854f3fe9b1ca1c3e097cb0ccd55d1406e9c04406 | 574698a5fb2adbc4b6eb20ffe11a949a4f3b0371 | "2023-06-15T04:45:12Z" | python | "2023-07-13T23:55:20Z" | langchain/vectorstores/elastic_vector_search.py | """
A class for performing k-Nearest Neighbors (k-NN) search on an Elasticsearch index.
The class is designed for a text search scenario where documents are text strings
and their embeddings are vector representations of those strings.
"""
def __init__(
self,
index_name: str,
embedding: Embeddings,
es_connection: Optional["Elasticsearch"] = None,
es_cloud_id: Optional[str] = None,
es_user: Optional[str] = None,
es_password: Optional[str] = None,
vector_query_field: Optional[str] = "vector",
query_field: Optional[str] = "text",
):
"""
Initializes an instance of the ElasticKnnSearch class and sets up the
Elasticsearch client.
Args:
index_name: The name of the Elasticsearch index.
embedding: An instance of the Embeddings class, used to generate vector
representations of text strings.
es_connection: An existing Elasticsearch connection.
es_cloud_id: The Cloud ID of the Elasticsearch instance. Required if
creating a new connection.
es_user: The username for the Elasticsearch instance. Required if
creating a new connection.
es_password: The password for the Elasticsearch instance. Required if |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,198 | Elasticsearch : ElasticKnnSearch.from_texts throws AttributeError | ### System Info
Langchain version : 0.0.199
Python Version: Python 3.9.16
MacOS
@CodeDevNinja @dev2049
PR https://github.com/hwchase17/langchain/pull/5058 introduced a change to ElasticVectorSearch from_texts which broke, kind of coincidentally, ElasticKnnSearch from_texts
I discovered this issue when running docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb . I got to the following cell:
```python
# Test `add_texts` method
texts = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knn_search.add_texts(texts)
# Test `from_texts` method
new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
```
and it said:
```python
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[10], line 7
5 # Test `from_texts` method
6 new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
----> 7 knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:296, in ElasticVectorSearch.from_texts(cls, texts, embedding, metadatas, elasticsearch_url, index_name, refresh_indices, **kwargs)
293 index_name = index_name or uuid.uuid4().hex
294 vectorsearch = cls(
295 elasticsearch_url, index_name, embedding, **kwargs)
--> 296 vectorsearch.add_texts(
297 texts, metadatas=metadatas, refresh_indices=refresh_indices
298 )
299 return vectorsearch
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:183, in ElasticVectorSearch.add_texts(self, texts, metadatas, refresh_indices, **kwargs)
181 requests = []
182 ids = []
--> 183 embeddings = self.embedding.embed_documents(list(texts))
184 dim = len(embeddings[0])
185 mapping = _default_text_mapping(dim)
AttributeError: 'str' object has no attribute 'embed_documents'
```
which is a pretty weird error.
This is because https://github.com/cdiddy77/langchain/blob/e74733ab9e5e307fd828ea600ea929a1cb24320f/langchain/vectorstores/elastic_vector_search.py#L294 invokes the __init__ of the calling class, in this case `ElasticKnnSearch` which takes parameters in a very different order.
This calling of the wrong __init__ was always present, but the PR above added a subsequent called to add_texts, which is where the bogus embedding is referenced, causing the exception.
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to repro:
1. Open docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb
2. Modify as appropriate with elasticsearch_url, and further down, model_id, dims, cloud_id, username,password of elastic cloud deployment
3. Run until cell below "Test adding vectors"
### Expected behavior
Not throw exception | https://github.com/langchain-ai/langchain/issues/6198 | https://github.com/langchain-ai/langchain/pull/6199 | 854f3fe9b1ca1c3e097cb0ccd55d1406e9c04406 | 574698a5fb2adbc4b6eb20ffe11a949a4f3b0371 | "2023-06-15T04:45:12Z" | python | "2023-07-13T23:55:20Z" | langchain/vectorstores/elastic_vector_search.py | creating a new connection.
"""
try:
import elasticsearch
except ImportError:
raise ImportError(
"Could not import elasticsearch python package. "
"Please install it with `pip install elasticsearch`."
)
self.embedding = embedding
self.index_name = index_name
self.query_field = query_field
self.vector_query_field = vector_query_field
if es_connection is not None:
self.client = es_connection
else:
if es_cloud_id and es_user and es_password:
self.client = elasticsearch.Elasticsearch(
cloud_id=es_cloud_id, basic_auth=(es_user, es_password)
)
else:
raise ValueError(
"""Either provide a pre-existing Elasticsearch connection, \
or valid credentials for creating a new connection."""
)
@staticmethod
def _default_knn_mapping(dims: int) -> Dict: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,198 | Elasticsearch : ElasticKnnSearch.from_texts throws AttributeError | ### System Info
Langchain version : 0.0.199
Python Version: Python 3.9.16
MacOS
@CodeDevNinja @dev2049
PR https://github.com/hwchase17/langchain/pull/5058 introduced a change to ElasticVectorSearch from_texts which broke, kind of coincidentally, ElasticKnnSearch from_texts
I discovered this issue when running docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb . I got to the following cell:
```python
# Test `add_texts` method
texts = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knn_search.add_texts(texts)
# Test `from_texts` method
new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
```
and it said:
```python
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[10], line 7
5 # Test `from_texts` method
6 new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
----> 7 knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:296, in ElasticVectorSearch.from_texts(cls, texts, embedding, metadatas, elasticsearch_url, index_name, refresh_indices, **kwargs)
293 index_name = index_name or uuid.uuid4().hex
294 vectorsearch = cls(
295 elasticsearch_url, index_name, embedding, **kwargs)
--> 296 vectorsearch.add_texts(
297 texts, metadatas=metadatas, refresh_indices=refresh_indices
298 )
299 return vectorsearch
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:183, in ElasticVectorSearch.add_texts(self, texts, metadatas, refresh_indices, **kwargs)
181 requests = []
182 ids = []
--> 183 embeddings = self.embedding.embed_documents(list(texts))
184 dim = len(embeddings[0])
185 mapping = _default_text_mapping(dim)
AttributeError: 'str' object has no attribute 'embed_documents'
```
which is a pretty weird error.
This is because https://github.com/cdiddy77/langchain/blob/e74733ab9e5e307fd828ea600ea929a1cb24320f/langchain/vectorstores/elastic_vector_search.py#L294 invokes the __init__ of the calling class, in this case `ElasticKnnSearch` which takes parameters in a very different order.
This calling of the wrong __init__ was always present, but the PR above added a subsequent called to add_texts, which is where the bogus embedding is referenced, causing the exception.
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to repro:
1. Open docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb
2. Modify as appropriate with elasticsearch_url, and further down, model_id, dims, cloud_id, username,password of elastic cloud deployment
3. Run until cell below "Test adding vectors"
### Expected behavior
Not throw exception | https://github.com/langchain-ai/langchain/issues/6198 | https://github.com/langchain-ai/langchain/pull/6199 | 854f3fe9b1ca1c3e097cb0ccd55d1406e9c04406 | 574698a5fb2adbc4b6eb20ffe11a949a4f3b0371 | "2023-06-15T04:45:12Z" | python | "2023-07-13T23:55:20Z" | langchain/vectorstores/elastic_vector_search.py | """Generates a default index mapping for kNN search."""
return {
"properties": {
"text": {"type": "text"},
"vector": {
"type": "dense_vector",
"dims": dims,
"index": True,
"similarity": "dot_product",
},
}
}
def _default_knn_query( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,198 | Elasticsearch : ElasticKnnSearch.from_texts throws AttributeError | ### System Info
Langchain version : 0.0.199
Python Version: Python 3.9.16
MacOS
@CodeDevNinja @dev2049
PR https://github.com/hwchase17/langchain/pull/5058 introduced a change to ElasticVectorSearch from_texts which broke, kind of coincidentally, ElasticKnnSearch from_texts
I discovered this issue when running docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb . I got to the following cell:
```python
# Test `add_texts` method
texts = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knn_search.add_texts(texts)
# Test `from_texts` method
new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
```
and it said:
```python
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[10], line 7
5 # Test `from_texts` method
6 new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
----> 7 knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:296, in ElasticVectorSearch.from_texts(cls, texts, embedding, metadatas, elasticsearch_url, index_name, refresh_indices, **kwargs)
293 index_name = index_name or uuid.uuid4().hex
294 vectorsearch = cls(
295 elasticsearch_url, index_name, embedding, **kwargs)
--> 296 vectorsearch.add_texts(
297 texts, metadatas=metadatas, refresh_indices=refresh_indices
298 )
299 return vectorsearch
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:183, in ElasticVectorSearch.add_texts(self, texts, metadatas, refresh_indices, **kwargs)
181 requests = []
182 ids = []
--> 183 embeddings = self.embedding.embed_documents(list(texts))
184 dim = len(embeddings[0])
185 mapping = _default_text_mapping(dim)
AttributeError: 'str' object has no attribute 'embed_documents'
```
which is a pretty weird error.
This is because https://github.com/cdiddy77/langchain/blob/e74733ab9e5e307fd828ea600ea929a1cb24320f/langchain/vectorstores/elastic_vector_search.py#L294 invokes the __init__ of the calling class, in this case `ElasticKnnSearch` which takes parameters in a very different order.
This calling of the wrong __init__ was always present, but the PR above added a subsequent called to add_texts, which is where the bogus embedding is referenced, causing the exception.
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to repro:
1. Open docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb
2. Modify as appropriate with elasticsearch_url, and further down, model_id, dims, cloud_id, username,password of elastic cloud deployment
3. Run until cell below "Test adding vectors"
### Expected behavior
Not throw exception | https://github.com/langchain-ai/langchain/issues/6198 | https://github.com/langchain-ai/langchain/pull/6199 | 854f3fe9b1ca1c3e097cb0ccd55d1406e9c04406 | 574698a5fb2adbc4b6eb20ffe11a949a4f3b0371 | "2023-06-15T04:45:12Z" | python | "2023-07-13T23:55:20Z" | langchain/vectorstores/elastic_vector_search.py | self,
query_vector: Optional[List[float]] = None,
query: Optional[str] = None,
model_id: Optional[str] = None,
k: Optional[int] = 10,
num_candidates: Optional[int] = 10,
) -> Dict:
knn: Dict = {
"field": self.vector_query_field,
"k": k,
"num_candidates": num_candidates,
}
if query_vector and not model_id:
knn["query_vector"] = query_vector
elif query and model_id:
knn["query_vector_builder"] = {
"text_embedding": {
"model_id": model_id,
"model_text": query,
}
}
else:
raise ValueError(
"Either `query_vector` or `model_id` must be provided, but not both."
)
return knn
def knn_search( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,198 | Elasticsearch : ElasticKnnSearch.from_texts throws AttributeError | ### System Info
Langchain version : 0.0.199
Python Version: Python 3.9.16
MacOS
@CodeDevNinja @dev2049
PR https://github.com/hwchase17/langchain/pull/5058 introduced a change to ElasticVectorSearch from_texts which broke, kind of coincidentally, ElasticKnnSearch from_texts
I discovered this issue when running docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb . I got to the following cell:
```python
# Test `add_texts` method
texts = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knn_search.add_texts(texts)
# Test `from_texts` method
new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
```
and it said:
```python
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[10], line 7
5 # Test `from_texts` method
6 new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
----> 7 knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:296, in ElasticVectorSearch.from_texts(cls, texts, embedding, metadatas, elasticsearch_url, index_name, refresh_indices, **kwargs)
293 index_name = index_name or uuid.uuid4().hex
294 vectorsearch = cls(
295 elasticsearch_url, index_name, embedding, **kwargs)
--> 296 vectorsearch.add_texts(
297 texts, metadatas=metadatas, refresh_indices=refresh_indices
298 )
299 return vectorsearch
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:183, in ElasticVectorSearch.add_texts(self, texts, metadatas, refresh_indices, **kwargs)
181 requests = []
182 ids = []
--> 183 embeddings = self.embedding.embed_documents(list(texts))
184 dim = len(embeddings[0])
185 mapping = _default_text_mapping(dim)
AttributeError: 'str' object has no attribute 'embed_documents'
```
which is a pretty weird error.
This is because https://github.com/cdiddy77/langchain/blob/e74733ab9e5e307fd828ea600ea929a1cb24320f/langchain/vectorstores/elastic_vector_search.py#L294 invokes the __init__ of the calling class, in this case `ElasticKnnSearch` which takes parameters in a very different order.
This calling of the wrong __init__ was always present, but the PR above added a subsequent called to add_texts, which is where the bogus embedding is referenced, causing the exception.
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to repro:
1. Open docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb
2. Modify as appropriate with elasticsearch_url, and further down, model_id, dims, cloud_id, username,password of elastic cloud deployment
3. Run until cell below "Test adding vectors"
### Expected behavior
Not throw exception | https://github.com/langchain-ai/langchain/issues/6198 | https://github.com/langchain-ai/langchain/pull/6199 | 854f3fe9b1ca1c3e097cb0ccd55d1406e9c04406 | 574698a5fb2adbc4b6eb20ffe11a949a4f3b0371 | "2023-06-15T04:45:12Z" | python | "2023-07-13T23:55:20Z" | langchain/vectorstores/elastic_vector_search.py | self,
query: Optional[str] = None,
k: Optional[int] = 10,
query_vector: Optional[List[float]] = None,
model_id: Optional[str] = None,
size: Optional[int] = 10,
source: Optional[bool] = True,
fields: Optional[
Union[List[Mapping[str, Any]], Tuple[Mapping[str, Any], ...], None]
] = None,
) -> Dict:
"""
Performs a k-nearest neighbor (k-NN) search on the Elasticsearch index.
The search can be conducted using either a raw query vector or a model ID.
The method first generates
the body of the search query, which can be interpreted by Elasticsearch.
It then performs the k-NN
search on the Elasticsearch index and returns the results.
Args:
query: The query or queries to be used for the search. Required if
`query_vector` is not provided.
k: The number of nearest neighbors to return. Defaults to 10.
query_vector: The query vector to be used for the search. Required if
`query` is not provided. |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,198 | Elasticsearch : ElasticKnnSearch.from_texts throws AttributeError | ### System Info
Langchain version : 0.0.199
Python Version: Python 3.9.16
MacOS
@CodeDevNinja @dev2049
PR https://github.com/hwchase17/langchain/pull/5058 introduced a change to ElasticVectorSearch from_texts which broke, kind of coincidentally, ElasticKnnSearch from_texts
I discovered this issue when running docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb . I got to the following cell:
```python
# Test `add_texts` method
texts = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knn_search.add_texts(texts)
# Test `from_texts` method
new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
```
and it said:
```python
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[10], line 7
5 # Test `from_texts` method
6 new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
----> 7 knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:296, in ElasticVectorSearch.from_texts(cls, texts, embedding, metadatas, elasticsearch_url, index_name, refresh_indices, **kwargs)
293 index_name = index_name or uuid.uuid4().hex
294 vectorsearch = cls(
295 elasticsearch_url, index_name, embedding, **kwargs)
--> 296 vectorsearch.add_texts(
297 texts, metadatas=metadatas, refresh_indices=refresh_indices
298 )
299 return vectorsearch
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:183, in ElasticVectorSearch.add_texts(self, texts, metadatas, refresh_indices, **kwargs)
181 requests = []
182 ids = []
--> 183 embeddings = self.embedding.embed_documents(list(texts))
184 dim = len(embeddings[0])
185 mapping = _default_text_mapping(dim)
AttributeError: 'str' object has no attribute 'embed_documents'
```
which is a pretty weird error.
This is because https://github.com/cdiddy77/langchain/blob/e74733ab9e5e307fd828ea600ea929a1cb24320f/langchain/vectorstores/elastic_vector_search.py#L294 invokes the __init__ of the calling class, in this case `ElasticKnnSearch` which takes parameters in a very different order.
This calling of the wrong __init__ was always present, but the PR above added a subsequent called to add_texts, which is where the bogus embedding is referenced, causing the exception.
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to repro:
1. Open docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb
2. Modify as appropriate with elasticsearch_url, and further down, model_id, dims, cloud_id, username,password of elastic cloud deployment
3. Run until cell below "Test adding vectors"
### Expected behavior
Not throw exception | https://github.com/langchain-ai/langchain/issues/6198 | https://github.com/langchain-ai/langchain/pull/6199 | 854f3fe9b1ca1c3e097cb0ccd55d1406e9c04406 | 574698a5fb2adbc4b6eb20ffe11a949a4f3b0371 | "2023-06-15T04:45:12Z" | python | "2023-07-13T23:55:20Z" | langchain/vectorstores/elastic_vector_search.py | model_id: The ID of the model to use for generating the query vector, if
`query` is provided.
size: The number of search hits to return. Defaults to 10.
source: Whether to include the source of each hit in the results.
fields: The fields to include in the source of each hit. If None, all
fields are included.
vector_query_field: Field name to use in knn search if not default 'vector'
Returns:
The search results.
Raises:
ValueError: If neither `query_vector` nor `model_id` is provided, or if
both are provided.
"""
knn_query_body = self._default_knn_query(
query_vector=query_vector, query=query, model_id=model_id, k=k
)
res = self.client.search(
index=self.index_name,
knn=knn_query_body,
size=size,
source=source,
fields=fields,
)
return dict(res)
def knn_hybrid_search(
self,
query: Optional[str] = None,
k: Optional[int] = 10,
query_vector: Optional[List[float]] = None, |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,198 | Elasticsearch : ElasticKnnSearch.from_texts throws AttributeError | ### System Info
Langchain version : 0.0.199
Python Version: Python 3.9.16
MacOS
@CodeDevNinja @dev2049
PR https://github.com/hwchase17/langchain/pull/5058 introduced a change to ElasticVectorSearch from_texts which broke, kind of coincidentally, ElasticKnnSearch from_texts
I discovered this issue when running docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb . I got to the following cell:
```python
# Test `add_texts` method
texts = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knn_search.add_texts(texts)
# Test `from_texts` method
new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
```
and it said:
```python
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[10], line 7
5 # Test `from_texts` method
6 new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
----> 7 knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:296, in ElasticVectorSearch.from_texts(cls, texts, embedding, metadatas, elasticsearch_url, index_name, refresh_indices, **kwargs)
293 index_name = index_name or uuid.uuid4().hex
294 vectorsearch = cls(
295 elasticsearch_url, index_name, embedding, **kwargs)
--> 296 vectorsearch.add_texts(
297 texts, metadatas=metadatas, refresh_indices=refresh_indices
298 )
299 return vectorsearch
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:183, in ElasticVectorSearch.add_texts(self, texts, metadatas, refresh_indices, **kwargs)
181 requests = []
182 ids = []
--> 183 embeddings = self.embedding.embed_documents(list(texts))
184 dim = len(embeddings[0])
185 mapping = _default_text_mapping(dim)
AttributeError: 'str' object has no attribute 'embed_documents'
```
which is a pretty weird error.
This is because https://github.com/cdiddy77/langchain/blob/e74733ab9e5e307fd828ea600ea929a1cb24320f/langchain/vectorstores/elastic_vector_search.py#L294 invokes the __init__ of the calling class, in this case `ElasticKnnSearch` which takes parameters in a very different order.
This calling of the wrong __init__ was always present, but the PR above added a subsequent called to add_texts, which is where the bogus embedding is referenced, causing the exception.
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to repro:
1. Open docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb
2. Modify as appropriate with elasticsearch_url, and further down, model_id, dims, cloud_id, username,password of elastic cloud deployment
3. Run until cell below "Test adding vectors"
### Expected behavior
Not throw exception | https://github.com/langchain-ai/langchain/issues/6198 | https://github.com/langchain-ai/langchain/pull/6199 | 854f3fe9b1ca1c3e097cb0ccd55d1406e9c04406 | 574698a5fb2adbc4b6eb20ffe11a949a4f3b0371 | "2023-06-15T04:45:12Z" | python | "2023-07-13T23:55:20Z" | langchain/vectorstores/elastic_vector_search.py | model_id: Optional[str] = None,
size: Optional[int] = 10,
source: Optional[bool] = True,
knn_boost: Optional[float] = 0.9,
query_boost: Optional[float] = 0.1,
fields: Optional[
Union[List[Mapping[str, Any]], Tuple[Mapping[str, Any], ...], None]
] = None,
) -> Dict[Any, Any]:
"""Performs a hybrid k-nearest neighbor (k-NN) and text-based search on the
Elasticsearch index.
The search can be conducted using either a raw query vector or a model ID.
The method first generates
the body of the k-NN search query and the text-based query, which can be
interpreted by Elasticsearch.
It then performs the hybrid search on the Elasticsearch index and returns the
results.
Args:
query: The query or queries to be used for the search. Required if
`query_vector` is not provided.
k: The number of nearest neighbors to return. Defaults to 10.
query_vector: The query vector to be used for the search. Required if
`query` is not provided.
model_id: The ID of the model to use for generating the query vector, if
`query` is provided.
size: The number of search hits to return. Defaults to 10.
source: Whether to include the source of each hit in the results.
knn_boost: The boost factor for the k-NN part of the search.
query_boost: The boost factor for the text-based part of the search.
fields |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,198 | Elasticsearch : ElasticKnnSearch.from_texts throws AttributeError | ### System Info
Langchain version : 0.0.199
Python Version: Python 3.9.16
MacOS
@CodeDevNinja @dev2049
PR https://github.com/hwchase17/langchain/pull/5058 introduced a change to ElasticVectorSearch from_texts which broke, kind of coincidentally, ElasticKnnSearch from_texts
I discovered this issue when running docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb . I got to the following cell:
```python
# Test `add_texts` method
texts = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knn_search.add_texts(texts)
# Test `from_texts` method
new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
```
and it said:
```python
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[10], line 7
5 # Test `from_texts` method
6 new_texts = ["This is a new text.", "Elasticsearch is powerful.", "Python is great for data analysis."]
----> 7 knn_search.from_texts(new_texts, embeddings, elasticsearch_url=elasticsearch_url)
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:296, in ElasticVectorSearch.from_texts(cls, texts, embedding, metadatas, elasticsearch_url, index_name, refresh_indices, **kwargs)
293 index_name = index_name or uuid.uuid4().hex
294 vectorsearch = cls(
295 elasticsearch_url, index_name, embedding, **kwargs)
--> 296 vectorsearch.add_texts(
297 texts, metadatas=metadatas, refresh_indices=refresh_indices
298 )
299 return vectorsearch
File ~/dev/github/langchain/langchain/vectorstores/elastic_vector_search.py:183, in ElasticVectorSearch.add_texts(self, texts, metadatas, refresh_indices, **kwargs)
181 requests = []
182 ids = []
--> 183 embeddings = self.embedding.embed_documents(list(texts))
184 dim = len(embeddings[0])
185 mapping = _default_text_mapping(dim)
AttributeError: 'str' object has no attribute 'embed_documents'
```
which is a pretty weird error.
This is because https://github.com/cdiddy77/langchain/blob/e74733ab9e5e307fd828ea600ea929a1cb24320f/langchain/vectorstores/elastic_vector_search.py#L294 invokes the __init__ of the calling class, in this case `ElasticKnnSearch` which takes parameters in a very different order.
This calling of the wrong __init__ was always present, but the PR above added a subsequent called to add_texts, which is where the bogus embedding is referenced, causing the exception.
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to repro:
1. Open docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb
2. Modify as appropriate with elasticsearch_url, and further down, model_id, dims, cloud_id, username,password of elastic cloud deployment
3. Run until cell below "Test adding vectors"
### Expected behavior
Not throw exception | https://github.com/langchain-ai/langchain/issues/6198 | https://github.com/langchain-ai/langchain/pull/6199 | 854f3fe9b1ca1c3e097cb0ccd55d1406e9c04406 | 574698a5fb2adbc4b6eb20ffe11a949a4f3b0371 | "2023-06-15T04:45:12Z" | python | "2023-07-13T23:55:20Z" | langchain/vectorstores/elastic_vector_search.py | The fields to include in the source of each hit. If None, all fields are
included. Defaults to None.
vector_query_field: Field name to use in knn search if not default 'vector'
query_field: Field name to use in search if not default 'text'
Returns:
The search results.
Raises:
ValueError: If neither `query_vector` nor `model_id` is provided, or if
both are provided.
"""
knn_query_body = self._default_knn_query(
query_vector=query_vector, query=query, model_id=model_id, k=k
)
knn_query_body["boost"] = knn_boost
match_query_body = {
"match": {self.query_field: {"query": query, "boost": query_boost}}
}
res = self.client.search(
index=self.index_name,
query=match_query_body,
knn=knn_query_body,
fields=fields,
size=size,
source=source,
)
return dict(res) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,524 | Specific name of the current chain is not displayed | ### System Info
LangChain v0.0.229, Python v3.10.12, Ubuntu 20.04.2 LTS
### Who can help?
@hwchase17 @agola11
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [X] Callbacks/Tracing
- [ ] Async
### Reproduction
I am encountering an issue where the specific name of the current chain is not being displayed in the console output, even though I have set 'verbose=True' in the MultiPromptChain and other Chains. When the program enters a new chain, it only prints 'Entering new chain...' without specifying the name of the chain. This makes it difficult to debug and understand which chain is currently being used. Could you please look into this issue and provide a way to display the name of the current chain in the console output? Thank you.
The output could be
```
> Entering new chain...
> Entering new chain...
lib/python3.10/site-packages/langchain/chains/llm.py:275: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.
warnings.warn(
> Finished chain.
math: {'input': 'What is the derivative of a function?'}
> Entering new chain...
Prompt after formatting:
You are a very good mathematician. You are great at answering math questions. \nYou are so good because you are able to break down hard problems into their component parts, \nanswer the component parts, and then put them together to answer the broader question.
Here is a question:
What is the derivative of a function?
> Finished chain.
> Finished chain.
```
### Expected behavior
```
> Entering new MultiPromptChain chain...
> Entering new LLMRouterChain chain...
lib/python3.10/site-packages/langchain/chains/llm.py:275: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.
warnings.warn(
> Finished chain.
math: {'input': 'What is the derivative of a function?'}
> Entering new LLMChain[math] chain...
Prompt after formatting:
You are a very good mathematician. You are great at answering math questions. \nYou are so good because you are able to break down hard problems into their component parts, \nanswer the component parts, and then put them together to answer the broader question.
Here is a question:
What is the derivative of a function?
> Finished chain.
> Finished chain.
``` | https://github.com/langchain-ai/langchain/issues/7524 | https://github.com/langchain-ai/langchain/pull/7687 | 3874bb256e09d377032ae54b1592ca3dd7cf9e4d | af6d333147db0af7d558a4a66d6c2752b6027204 | "2023-07-11T08:28:40Z" | python | "2023-07-14T02:39:21Z" | langchain/callbacks/file.py | """Callback Handler that writes to a file."""
from typing import Any, Dict, Optional, TextIO, cast
from langchain.callbacks.base import BaseCallbackHandler
from langchain.input import print_text
from langchain.schema import AgentAction, AgentFinish
class FileCallbackHandler(BaseCallbackHandler):
"""Callback Handler that writes to a file."""
def __init__(
self, filename: str, mode: str = "a", color: Optional[str] = None
) -> None:
"""Initialize callback handler."""
self.file = cast(TextIO, open(filename, mode))
self.color = color
def __del__(self) -> None:
"""Destructor to cleanup when done."""
self.file.close()
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
"""Print out that we are entering a chain."""
class_name = serialized["name"]
print_text(
f"\n\n\033[1m> Entering new {class_name} chain...\033[0m",
end="\n",
file=self.file,
)
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
"""Print out that we finished a chain."""
print_text("\n\033[1m> Finished chain.\033[0m", end="\n", file=self.file)
def on_agent_action( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,524 | Specific name of the current chain is not displayed | ### System Info
LangChain v0.0.229, Python v3.10.12, Ubuntu 20.04.2 LTS
### Who can help?
@hwchase17 @agola11
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [X] Callbacks/Tracing
- [ ] Async
### Reproduction
I am encountering an issue where the specific name of the current chain is not being displayed in the console output, even though I have set 'verbose=True' in the MultiPromptChain and other Chains. When the program enters a new chain, it only prints 'Entering new chain...' without specifying the name of the chain. This makes it difficult to debug and understand which chain is currently being used. Could you please look into this issue and provide a way to display the name of the current chain in the console output? Thank you.
The output could be
```
> Entering new chain...
> Entering new chain...
lib/python3.10/site-packages/langchain/chains/llm.py:275: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.
warnings.warn(
> Finished chain.
math: {'input': 'What is the derivative of a function?'}
> Entering new chain...
Prompt after formatting:
You are a very good mathematician. You are great at answering math questions. \nYou are so good because you are able to break down hard problems into their component parts, \nanswer the component parts, and then put them together to answer the broader question.
Here is a question:
What is the derivative of a function?
> Finished chain.
> Finished chain.
```
### Expected behavior
```
> Entering new MultiPromptChain chain...
> Entering new LLMRouterChain chain...
lib/python3.10/site-packages/langchain/chains/llm.py:275: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.
warnings.warn(
> Finished chain.
math: {'input': 'What is the derivative of a function?'}
> Entering new LLMChain[math] chain...
Prompt after formatting:
You are a very good mathematician. You are great at answering math questions. \nYou are so good because you are able to break down hard problems into their component parts, \nanswer the component parts, and then put them together to answer the broader question.
Here is a question:
What is the derivative of a function?
> Finished chain.
> Finished chain.
``` | https://github.com/langchain-ai/langchain/issues/7524 | https://github.com/langchain-ai/langchain/pull/7687 | 3874bb256e09d377032ae54b1592ca3dd7cf9e4d | af6d333147db0af7d558a4a66d6c2752b6027204 | "2023-07-11T08:28:40Z" | python | "2023-07-14T02:39:21Z" | langchain/callbacks/file.py | self, action: AgentAction, color: Optional[str] = None, **kwargs: Any
) -> Any:
"""Run on agent action."""
print_text(action.log, color=color or self.color, file=self.file)
def on_tool_end(
self,
output: str,
color: Optional[str] = None,
observation_prefix: Optional[str] = None,
llm_prefix: Optional[str] = None,
**kwargs: Any,
) -> None:
"""If not the final action, print out observation."""
if observation_prefix is not None:
print_text(f"\n{observation_prefix}", file=self.file)
print_text(output, color=color or self.color, file=self.file)
if llm_prefix is not None:
print_text(f"\n{llm_prefix}", file=self.file)
def on_text(
self, text: str, color: Optional[str] = None, end: str = "", **kwargs: Any
) -> None:
"""Run when agent ends."""
print_text(text, color=color or self.color, end=end, file=self.file)
def on_agent_finish(
self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any
) -> None:
"""Run on agent end."""
print_text(finish.log, color=color or self.color, end="\n", file=self.file) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,542 | Issue: Passing auth object to LLMRequestsChain | ### Issue you'd like to raise.
Accessing many corporate resources requires special authentication, e.g. Kerberos.
The `requests` library supports passing an auth object, e.g.
`requests.get(url, auth=HttpNegotiateAuth(), verify=False)` to use SSPI.
We're able to pass a `requests_wrapper `to `LLMRequestsChain`, but it only allows changing headers, not the actual get method that is used.
### Suggestion:
Allow for more generic generic wrappers to be passed? Allow passing a requests-compatible auth object? | https://github.com/langchain-ai/langchain/issues/7542 | https://github.com/langchain-ai/langchain/pull/7701 | 1e40427755f3034c5c411c1d0a921cdb3e13849d | 663b0933e488383e6a9bc2a04b4b1cf866a8ea94 | "2023-07-11T13:59:38Z" | python | "2023-07-14T12:38:24Z" | langchain/requests.py | """Lightweight wrapper around requests library, with async support."""
from contextlib import asynccontextmanager
from typing import Any, AsyncGenerator, Dict, Optional
import aiohttp
import requests
from pydantic import BaseModel, Extra
class Requests(BaseModel):
"""Wrapper around requests to handle auth and async.
The main purpose of this wrapper is to handle authentication (by saving
headers) and enable easy async methods on the same base object.
"""
headers: Optional[Dict[str, str]] = None
aiosession: Optional[aiohttp.ClientSession] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
def get(self, url: str, **kwargs: Any) -> requests.Response:
"""GET the URL and return the text."""
return requests.get(url, headers=self.headers, **kwargs)
def post(self, url: str, data: Dict[str, Any], **kwargs: Any) -> requests.Response:
"""POST to the URL and return the text."""
return requests.post(url, json=data, headers=self.headers, **kwargs)
def patch(self, url: str, data: Dict[str, Any], **kwargs: Any) -> requests.Response:
"""PATCH the URL and return the text."""
return requests.patch(url, json=data, headers=self.headers, **kwargs)
def put(self, url: str, data: Dict[str, Any], **kwargs: Any) -> requests.Response: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,542 | Issue: Passing auth object to LLMRequestsChain | ### Issue you'd like to raise.
Accessing many corporate resources requires special authentication, e.g. Kerberos.
The `requests` library supports passing an auth object, e.g.
`requests.get(url, auth=HttpNegotiateAuth(), verify=False)` to use SSPI.
We're able to pass a `requests_wrapper `to `LLMRequestsChain`, but it only allows changing headers, not the actual get method that is used.
### Suggestion:
Allow for more generic generic wrappers to be passed? Allow passing a requests-compatible auth object? | https://github.com/langchain-ai/langchain/issues/7542 | https://github.com/langchain-ai/langchain/pull/7701 | 1e40427755f3034c5c411c1d0a921cdb3e13849d | 663b0933e488383e6a9bc2a04b4b1cf866a8ea94 | "2023-07-11T13:59:38Z" | python | "2023-07-14T12:38:24Z" | langchain/requests.py | """PUT the URL and return the text."""
return requests.put(url, json=data, headers=self.headers, **kwargs)
def delete(self, url: str, **kwargs: Any) -> requests.Response:
"""DELETE the URL and return the text."""
return requests.delete(url, headers=self.headers, **kwargs)
@asynccontextmanager
async def _arequest(
self, method: str, url: str, **kwargs: Any
) -> AsyncGenerator[aiohttp.ClientResponse, None]:
"""Make an async request."""
if not self.aiosession:
async with aiohttp.ClientSession() as session:
async with session.request(
method, url, headers=self.headers, **kwargs
) as response:
yield response
else:
async with self.aiosession.request(
method, url, headers=self.headers, **kwargs
) as response:
yield response
@asynccontextmanager
async def aget(
self, url: str, **kwargs: Any
) -> AsyncGenerator[aiohttp.ClientResponse, None]:
"""GET the URL and return the text asynchronously."""
async with self._arequest("GET", url, **kwargs) as response:
yield response
@asynccontextmanager
async def apost( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,542 | Issue: Passing auth object to LLMRequestsChain | ### Issue you'd like to raise.
Accessing many corporate resources requires special authentication, e.g. Kerberos.
The `requests` library supports passing an auth object, e.g.
`requests.get(url, auth=HttpNegotiateAuth(), verify=False)` to use SSPI.
We're able to pass a `requests_wrapper `to `LLMRequestsChain`, but it only allows changing headers, not the actual get method that is used.
### Suggestion:
Allow for more generic generic wrappers to be passed? Allow passing a requests-compatible auth object? | https://github.com/langchain-ai/langchain/issues/7542 | https://github.com/langchain-ai/langchain/pull/7701 | 1e40427755f3034c5c411c1d0a921cdb3e13849d | 663b0933e488383e6a9bc2a04b4b1cf866a8ea94 | "2023-07-11T13:59:38Z" | python | "2023-07-14T12:38:24Z" | langchain/requests.py | self, url: str, data: Dict[str, Any], **kwargs: Any
) -> AsyncGenerator[aiohttp.ClientResponse, None]:
"""POST to the URL and return the text asynchronously."""
async with self._arequest("POST", url, json=data, **kwargs) as response:
yield response
@asynccontextmanager
async def apatch(
self, url: str, data: Dict[str, Any], **kwargs: Any
) -> AsyncGenerator[aiohttp.ClientResponse, None]:
"""PATCH the URL and return the text asynchronously."""
async with self._arequest("PATCH", url, json=data, **kwargs) as response:
yield response
@asynccontextmanager
async def aput(
self, url: str, data: Dict[str, Any], **kwargs: Any
) -> AsyncGenerator[aiohttp.ClientResponse, None]:
"""PUT the URL and return the text asynchronously."""
async with self._arequest("PUT", url, json=data, **kwargs) as response:
yield response
@asynccontextmanager
async def adelete(
self, url: str, **kwargs: Any
) -> AsyncGenerator[aiohttp.ClientResponse, None]:
"""DELETE the URL and return the text asynchronously."""
async with self._arequest("DELETE", url, **kwargs) as response:
yield response
class TextRequestsWrapper(BaseModel): |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,542 | Issue: Passing auth object to LLMRequestsChain | ### Issue you'd like to raise.
Accessing many corporate resources requires special authentication, e.g. Kerberos.
The `requests` library supports passing an auth object, e.g.
`requests.get(url, auth=HttpNegotiateAuth(), verify=False)` to use SSPI.
We're able to pass a `requests_wrapper `to `LLMRequestsChain`, but it only allows changing headers, not the actual get method that is used.
### Suggestion:
Allow for more generic generic wrappers to be passed? Allow passing a requests-compatible auth object? | https://github.com/langchain-ai/langchain/issues/7542 | https://github.com/langchain-ai/langchain/pull/7701 | 1e40427755f3034c5c411c1d0a921cdb3e13849d | 663b0933e488383e6a9bc2a04b4b1cf866a8ea94 | "2023-07-11T13:59:38Z" | python | "2023-07-14T12:38:24Z" | langchain/requests.py | """Lightweight wrapper around requests library.
The main purpose of this wrapper is to always return a text output.
"""
headers: Optional[Dict[str, str]] = None
aiosession: Optional[aiohttp.ClientSession] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def requests(self) -> Requests:
return Requests(headers=self.headers, aiosession=self.aiosession)
def get(self, url: str, **kwargs: Any) -> str:
"""GET the URL and return the text."""
return self.requests.get(url, **kwargs).text
def post(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str:
"""POST to the URL and return the text."""
return self.requests.post(url, data, **kwargs).text
def patch(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,542 | Issue: Passing auth object to LLMRequestsChain | ### Issue you'd like to raise.
Accessing many corporate resources requires special authentication, e.g. Kerberos.
The `requests` library supports passing an auth object, e.g.
`requests.get(url, auth=HttpNegotiateAuth(), verify=False)` to use SSPI.
We're able to pass a `requests_wrapper `to `LLMRequestsChain`, but it only allows changing headers, not the actual get method that is used.
### Suggestion:
Allow for more generic generic wrappers to be passed? Allow passing a requests-compatible auth object? | https://github.com/langchain-ai/langchain/issues/7542 | https://github.com/langchain-ai/langchain/pull/7701 | 1e40427755f3034c5c411c1d0a921cdb3e13849d | 663b0933e488383e6a9bc2a04b4b1cf866a8ea94 | "2023-07-11T13:59:38Z" | python | "2023-07-14T12:38:24Z" | langchain/requests.py | """PATCH the URL and return the text."""
return self.requests.patch(url, data, **kwargs).text
def put(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str:
"""PUT the URL and return the text."""
return self.requests.put(url, data, **kwargs).text
def delete(self, url: str, **kwargs: Any) -> str:
"""DELETE the URL and return the text."""
return self.requests.delete(url, **kwargs).text
async def aget(self, url: str, **kwargs: Any) -> str:
"""GET the URL and return the text asynchronously."""
async with self.requests.aget(url, **kwargs) as response:
return await response.text()
async def apost(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str:
"""POST to the URL and return the text asynchronously."""
async with self.requests.apost(url, data, **kwargs) as response:
return await response.text()
async def apatch(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str:
"""PATCH the URL and return the text asynchronously."""
async with self.requests.apatch(url, data, **kwargs) as response:
return await response.text()
async def aput(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str:
"""PUT the URL and return the text asynchronously."""
async with self.requests.aput(url, data, **kwargs) as response:
return await response.text()
async def adelete(self, url: str, **kwargs: Any) -> str:
"""DELETE the URL and return the text asynchronously."""
async with self.requests.adelete(url, **kwargs) as response:
return await response.text()
RequestsWrapper = TextRequestsWrapper |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,982 | TypeError: create_extraction_chain() got an unexpected keyword argument 'verbose' | ### Feature request
Almost all the chains offered in langchain framework support Verbose option which helps the developers understand what prompt is being applied under the hood and plan their work accordingly. It immensely help while debugging. create_extraction_chain is a very helpful one and I found this is not accepting verbose attribute.
### Motivation
For many developers who are just following the langchain official documentation and not looking at the code used under the hood, this error will sound odd. Supporting this attribute will help in keeping things consistent and improve debugging feature of this chain
### Your contribution
I can raise the PR for this

| https://github.com/langchain-ai/langchain/issues/7982 | https://github.com/langchain-ai/langchain/pull/7984 | 812a1643db9daac573f77f7cdbce3fea90ba0507 | d6493590da3977b5077c13ff3aaad591f71637d6 | "2023-07-20T06:39:12Z" | python | "2023-07-20T13:52:13Z" | langchain/chains/openai_functions/extraction.py | from typing import Any, List
from pydantic import BaseModel
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.openai_functions.utils import (
_convert_schema,
_resolve_schema_references,
get_llm_kwargs,
)
from langchain.output_parsers.openai_functions import (
JsonKeyOutputFunctionsParser,
PydanticAttrOutputFunctionsParser,
)
from langchain.prompts import ChatPromptTemplate
from langchain.schema.language_model import BaseLanguageModel
def _get_extraction_function(entity_schema: dict) -> dict: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,982 | TypeError: create_extraction_chain() got an unexpected keyword argument 'verbose' | ### Feature request
Almost all the chains offered in langchain framework support Verbose option which helps the developers understand what prompt is being applied under the hood and plan their work accordingly. It immensely help while debugging. create_extraction_chain is a very helpful one and I found this is not accepting verbose attribute.
### Motivation
For many developers who are just following the langchain official documentation and not looking at the code used under the hood, this error will sound odd. Supporting this attribute will help in keeping things consistent and improve debugging feature of this chain
### Your contribution
I can raise the PR for this

| https://github.com/langchain-ai/langchain/issues/7982 | https://github.com/langchain-ai/langchain/pull/7984 | 812a1643db9daac573f77f7cdbce3fea90ba0507 | d6493590da3977b5077c13ff3aaad591f71637d6 | "2023-07-20T06:39:12Z" | python | "2023-07-20T13:52:13Z" | langchain/chains/openai_functions/extraction.py | return {
"name": "information_extraction",
"description": "Extracts the relevant information from the passage.",
"parameters": {
"type": "object",
"properties": {
"info": {"type": "array", "items": _convert_schema(entity_schema)}
},
"required": ["info"],
},
}
_EXTRACTION_TEMPLATE = """Extract and save the relevant entities mentioned\
in the following passage together with their properties.
Only extract the properties mentioned in the 'information_extraction' function.
If a property is not present and is not required in the function parameters, do not include it in the output.
Passage:
{input}
"""
def create_extraction_chain(schema: dict, llm: BaseLanguageModel) -> Chain: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,982 | TypeError: create_extraction_chain() got an unexpected keyword argument 'verbose' | ### Feature request
Almost all the chains offered in langchain framework support Verbose option which helps the developers understand what prompt is being applied under the hood and plan their work accordingly. It immensely help while debugging. create_extraction_chain is a very helpful one and I found this is not accepting verbose attribute.
### Motivation
For many developers who are just following the langchain official documentation and not looking at the code used under the hood, this error will sound odd. Supporting this attribute will help in keeping things consistent and improve debugging feature of this chain
### Your contribution
I can raise the PR for this

| https://github.com/langchain-ai/langchain/issues/7982 | https://github.com/langchain-ai/langchain/pull/7984 | 812a1643db9daac573f77f7cdbce3fea90ba0507 | d6493590da3977b5077c13ff3aaad591f71637d6 | "2023-07-20T06:39:12Z" | python | "2023-07-20T13:52:13Z" | langchain/chains/openai_functions/extraction.py | """Creates a chain that extracts information from a passage.
Args:
schema: The schema of the entities to extract.
llm: The language model to use.
Returns:
Chain that can be used to extract information from a passage.
"""
function = _get_extraction_function(schema)
prompt = ChatPromptTemplate.from_template(_EXTRACTION_TEMPLATE)
output_parser = JsonKeyOutputFunctionsParser(key_name="info")
llm_kwargs = get_llm_kwargs(function)
chain = LLMChain(
llm=llm,
prompt=prompt,
llm_kwargs=llm_kwargs,
output_parser=output_parser,
)
return chain
def create_extraction_chain_pydantic(
pydantic_schema: Any, llm: BaseLanguageModel
) -> Chain:
"""Creates a chain that extracts information from a passage using pydantic schema.
Args:
pydantic_schema: The pydantic schema of the entities to extract.
llm: The language model to use.
Returns:
Chain that can be used to extract information from a passage.
"""
class PydanticSchema(BaseModel): |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,982 | TypeError: create_extraction_chain() got an unexpected keyword argument 'verbose' | ### Feature request
Almost all the chains offered in langchain framework support Verbose option which helps the developers understand what prompt is being applied under the hood and plan their work accordingly. It immensely help while debugging. create_extraction_chain is a very helpful one and I found this is not accepting verbose attribute.
### Motivation
For many developers who are just following the langchain official documentation and not looking at the code used under the hood, this error will sound odd. Supporting this attribute will help in keeping things consistent and improve debugging feature of this chain
### Your contribution
I can raise the PR for this

| https://github.com/langchain-ai/langchain/issues/7982 | https://github.com/langchain-ai/langchain/pull/7984 | 812a1643db9daac573f77f7cdbce3fea90ba0507 | d6493590da3977b5077c13ff3aaad591f71637d6 | "2023-07-20T06:39:12Z" | python | "2023-07-20T13:52:13Z" | langchain/chains/openai_functions/extraction.py | info: List[pydantic_schema]
openai_schema = pydantic_schema.schema()
openai_schema = _resolve_schema_references(
openai_schema, openai_schema.get("definitions", {})
)
function = _get_extraction_function(openai_schema)
prompt = ChatPromptTemplate.from_template(_EXTRACTION_TEMPLATE)
output_parser = PydanticAttrOutputFunctionsParser(
pydantic_schema=PydanticSchema, attr_name="info"
)
llm_kwargs = get_llm_kwargs(function)
chain = LLMChain(
llm=llm,
prompt=prompt,
llm_kwargs=llm_kwargs,
output_parser=output_parser,
)
return chain |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,462 | AzureChatOpenAI Streaming causes IndexError: list index out of range | ### System Info
langchain-0.0.205-py3, macos ventura, python 3.11
### Who can help?
@hwchase17 / @agola11
### Information
- [x] The official example notebooks/scripts
https://python.langchain.com/docs/modules/model_io/models/chat/how_to/streaming
### Related Components
- [X] LLMs/Chat Models
### Reproduction
### Reproduction code
```python
# test.py
from langchain.chat_models import AzureChatOpenAI
from langchain.chat_models import ChatOpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import (
HumanMessage,
)
chat_1 = ChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_key="SOME-KEY",
model='gpt-3.5-turbo',
temperature=0.7,
request_timeout=60,
max_retries=1)
chat_2 = AzureChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_base="https://some-org-openai.openai.azure.com/",
openai_api_version="2023-06-01-preview",
openai_api_key="SOME-KEY",
deployment_name='gpt-3_5',
temperature=0.7,
request_timeout=60,
max_retries=1)
resp_1 = chat_1([HumanMessage(content="Write me a song about sparkling water.")])
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
```
```shell
python test.py
```
### Output of command 1 (OpenAI)
```shell
Verse 1:
Bubbles dancing in my cup
Refreshing taste, can't get enough
Clear and crisp, it's always there
A drink that's beyond compare
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Verse 2:
A drink that's light and calorie-free
A healthier choice, it's plain to see
A perfect thirst quencher, day or night
With sparkling water, everything's right
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Bridge:
From the fizzy sensation to the bubbles popping
You're the drink I never want to stop sipping
Whether at a party or on my own
Sparkling water, you're always in the zone
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Outro:
Sparkling water, you're my go-to
A drink that always feels brand new
With each sip, I'm left in awe
Sparkling water, you're the perfect beverage
```
### Output of command 2 (Azure OpenAI)
```shell
raw.Traceback (most recent call last):
File "/Users/someone/Development/test.py", line 29, in <module>
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 208, in __call__
generation = self.generate(
^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 102, in generate
raise e
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 94, in generate
results = [
^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 95, in <listcomp>
self._generate(m, stop=stop, run_manager=run_manager, **kwargs)
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/openai.py", line 334, in _generate
role = stream_resp["choices"][0]["delta"].get("role", role)
~~~~~~~~~~~~~~~~~~~~~~^^^
IndexError: list index out of range
```
### Expected behavior
I can't find anything in existing issues or documentation stating that there is a known bug in the AzureOpenAI Service Streaming. | https://github.com/langchain-ai/langchain/issues/6462 | https://github.com/langchain-ai/langchain/pull/8241 | c1ea8da9bc2986532d6f1db810996ee72d5a6c1c | 0af48b06d00b23be65d0a10ff27aff4db0f6c85f | "2023-06-20T04:57:00Z" | python | "2023-07-25T18:30:22Z" | libs/langchain/langchain/chat_models/openai.py | """OpenAI chat wrapper."""
from __future__ import annotations
import logging
import sys
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
List,
Mapping,
Optional,
Tuple,
Union,
) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,462 | AzureChatOpenAI Streaming causes IndexError: list index out of range | ### System Info
langchain-0.0.205-py3, macos ventura, python 3.11
### Who can help?
@hwchase17 / @agola11
### Information
- [x] The official example notebooks/scripts
https://python.langchain.com/docs/modules/model_io/models/chat/how_to/streaming
### Related Components
- [X] LLMs/Chat Models
### Reproduction
### Reproduction code
```python
# test.py
from langchain.chat_models import AzureChatOpenAI
from langchain.chat_models import ChatOpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import (
HumanMessage,
)
chat_1 = ChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_key="SOME-KEY",
model='gpt-3.5-turbo',
temperature=0.7,
request_timeout=60,
max_retries=1)
chat_2 = AzureChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_base="https://some-org-openai.openai.azure.com/",
openai_api_version="2023-06-01-preview",
openai_api_key="SOME-KEY",
deployment_name='gpt-3_5',
temperature=0.7,
request_timeout=60,
max_retries=1)
resp_1 = chat_1([HumanMessage(content="Write me a song about sparkling water.")])
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
```
```shell
python test.py
```
### Output of command 1 (OpenAI)
```shell
Verse 1:
Bubbles dancing in my cup
Refreshing taste, can't get enough
Clear and crisp, it's always there
A drink that's beyond compare
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Verse 2:
A drink that's light and calorie-free
A healthier choice, it's plain to see
A perfect thirst quencher, day or night
With sparkling water, everything's right
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Bridge:
From the fizzy sensation to the bubbles popping
You're the drink I never want to stop sipping
Whether at a party or on my own
Sparkling water, you're always in the zone
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Outro:
Sparkling water, you're my go-to
A drink that always feels brand new
With each sip, I'm left in awe
Sparkling water, you're the perfect beverage
```
### Output of command 2 (Azure OpenAI)
```shell
raw.Traceback (most recent call last):
File "/Users/someone/Development/test.py", line 29, in <module>
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 208, in __call__
generation = self.generate(
^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 102, in generate
raise e
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 94, in generate
results = [
^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 95, in <listcomp>
self._generate(m, stop=stop, run_manager=run_manager, **kwargs)
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/openai.py", line 334, in _generate
role = stream_resp["choices"][0]["delta"].get("role", role)
~~~~~~~~~~~~~~~~~~~~~~^^^
IndexError: list index out of range
```
### Expected behavior
I can't find anything in existing issues or documentation stating that there is a known bug in the AzureOpenAI Service Streaming. | https://github.com/langchain-ai/langchain/issues/6462 | https://github.com/langchain-ai/langchain/pull/8241 | c1ea8da9bc2986532d6f1db810996ee72d5a6c1c | 0af48b06d00b23be65d0a10ff27aff4db0f6c85f | "2023-06-20T04:57:00Z" | python | "2023-07-25T18:30:22Z" | libs/langchain/langchain/chat_models/openai.py | from pydantic import Field, root_validator
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.chat_models.base import BaseChatModel
from langchain.schema import (
ChatGeneration,
ChatResult,
)
from langchain.schema.messages import (
AIMessage,
BaseMessage,
ChatMessage,
FunctionMessage,
HumanMessage,
SystemMessage,
)
from langchain.utils import get_from_dict_or_env, get_pydantic_field_names
if TYPE_CHECKING:
import tiktoken
logger = logging.getLogger(__name__)
def _import_tiktoken() -> Any: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,462 | AzureChatOpenAI Streaming causes IndexError: list index out of range | ### System Info
langchain-0.0.205-py3, macos ventura, python 3.11
### Who can help?
@hwchase17 / @agola11
### Information
- [x] The official example notebooks/scripts
https://python.langchain.com/docs/modules/model_io/models/chat/how_to/streaming
### Related Components
- [X] LLMs/Chat Models
### Reproduction
### Reproduction code
```python
# test.py
from langchain.chat_models import AzureChatOpenAI
from langchain.chat_models import ChatOpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import (
HumanMessage,
)
chat_1 = ChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_key="SOME-KEY",
model='gpt-3.5-turbo',
temperature=0.7,
request_timeout=60,
max_retries=1)
chat_2 = AzureChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_base="https://some-org-openai.openai.azure.com/",
openai_api_version="2023-06-01-preview",
openai_api_key="SOME-KEY",
deployment_name='gpt-3_5',
temperature=0.7,
request_timeout=60,
max_retries=1)
resp_1 = chat_1([HumanMessage(content="Write me a song about sparkling water.")])
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
```
```shell
python test.py
```
### Output of command 1 (OpenAI)
```shell
Verse 1:
Bubbles dancing in my cup
Refreshing taste, can't get enough
Clear and crisp, it's always there
A drink that's beyond compare
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Verse 2:
A drink that's light and calorie-free
A healthier choice, it's plain to see
A perfect thirst quencher, day or night
With sparkling water, everything's right
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Bridge:
From the fizzy sensation to the bubbles popping
You're the drink I never want to stop sipping
Whether at a party or on my own
Sparkling water, you're always in the zone
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Outro:
Sparkling water, you're my go-to
A drink that always feels brand new
With each sip, I'm left in awe
Sparkling water, you're the perfect beverage
```
### Output of command 2 (Azure OpenAI)
```shell
raw.Traceback (most recent call last):
File "/Users/someone/Development/test.py", line 29, in <module>
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 208, in __call__
generation = self.generate(
^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 102, in generate
raise e
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 94, in generate
results = [
^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 95, in <listcomp>
self._generate(m, stop=stop, run_manager=run_manager, **kwargs)
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/openai.py", line 334, in _generate
role = stream_resp["choices"][0]["delta"].get("role", role)
~~~~~~~~~~~~~~~~~~~~~~^^^
IndexError: list index out of range
```
### Expected behavior
I can't find anything in existing issues or documentation stating that there is a known bug in the AzureOpenAI Service Streaming. | https://github.com/langchain-ai/langchain/issues/6462 | https://github.com/langchain-ai/langchain/pull/8241 | c1ea8da9bc2986532d6f1db810996ee72d5a6c1c | 0af48b06d00b23be65d0a10ff27aff4db0f6c85f | "2023-06-20T04:57:00Z" | python | "2023-07-25T18:30:22Z" | libs/langchain/langchain/chat_models/openai.py | try:
import tiktoken
except ImportError:
raise ValueError(
"Could not import tiktoken python package. "
"This is needed in order to calculate get_token_ids. "
"Please install it with `pip install tiktoken`."
)
return tiktoken
def _create_retry_decorator(llm: ChatOpenAI) -> Callable[[Any], Any]:
import openai
min_seconds = 1
max_seconds = 60
return retry(
reraise=True,
stop=stop_after_attempt(llm.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(openai.error.Timeout)
| retry_if_exception_type(openai.error.APIError)
| retry_if_exception_type(openai.error.APIConnectionError)
| retry_if_exception_type(openai.error.RateLimitError)
| retry_if_exception_type(openai.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
async def acompletion_with_retry(llm: ChatOpenAI, **kwargs: Any) -> Any: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,462 | AzureChatOpenAI Streaming causes IndexError: list index out of range | ### System Info
langchain-0.0.205-py3, macos ventura, python 3.11
### Who can help?
@hwchase17 / @agola11
### Information
- [x] The official example notebooks/scripts
https://python.langchain.com/docs/modules/model_io/models/chat/how_to/streaming
### Related Components
- [X] LLMs/Chat Models
### Reproduction
### Reproduction code
```python
# test.py
from langchain.chat_models import AzureChatOpenAI
from langchain.chat_models import ChatOpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import (
HumanMessage,
)
chat_1 = ChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_key="SOME-KEY",
model='gpt-3.5-turbo',
temperature=0.7,
request_timeout=60,
max_retries=1)
chat_2 = AzureChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_base="https://some-org-openai.openai.azure.com/",
openai_api_version="2023-06-01-preview",
openai_api_key="SOME-KEY",
deployment_name='gpt-3_5',
temperature=0.7,
request_timeout=60,
max_retries=1)
resp_1 = chat_1([HumanMessage(content="Write me a song about sparkling water.")])
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
```
```shell
python test.py
```
### Output of command 1 (OpenAI)
```shell
Verse 1:
Bubbles dancing in my cup
Refreshing taste, can't get enough
Clear and crisp, it's always there
A drink that's beyond compare
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Verse 2:
A drink that's light and calorie-free
A healthier choice, it's plain to see
A perfect thirst quencher, day or night
With sparkling water, everything's right
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Bridge:
From the fizzy sensation to the bubbles popping
You're the drink I never want to stop sipping
Whether at a party or on my own
Sparkling water, you're always in the zone
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Outro:
Sparkling water, you're my go-to
A drink that always feels brand new
With each sip, I'm left in awe
Sparkling water, you're the perfect beverage
```
### Output of command 2 (Azure OpenAI)
```shell
raw.Traceback (most recent call last):
File "/Users/someone/Development/test.py", line 29, in <module>
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 208, in __call__
generation = self.generate(
^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 102, in generate
raise e
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 94, in generate
results = [
^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 95, in <listcomp>
self._generate(m, stop=stop, run_manager=run_manager, **kwargs)
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/openai.py", line 334, in _generate
role = stream_resp["choices"][0]["delta"].get("role", role)
~~~~~~~~~~~~~~~~~~~~~~^^^
IndexError: list index out of range
```
### Expected behavior
I can't find anything in existing issues or documentation stating that there is a known bug in the AzureOpenAI Service Streaming. | https://github.com/langchain-ai/langchain/issues/6462 | https://github.com/langchain-ai/langchain/pull/8241 | c1ea8da9bc2986532d6f1db810996ee72d5a6c1c | 0af48b06d00b23be65d0a10ff27aff4db0f6c85f | "2023-06-20T04:57:00Z" | python | "2023-07-25T18:30:22Z" | libs/langchain/langchain/chat_models/openai.py | """Use tenacity to retry the async completion call."""
retry_decorator = _create_retry_decorator(llm)
@retry_decorator
async def _completion_with_retry(**kwargs: Any) -> Any:
return await llm.client.acreate(**kwargs)
return await _completion_with_retry(**kwargs)
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
role = _dict["role"]
if role == "user":
return HumanMessage(content=_dict["content"])
elif role == "assistant":
content = _dict.get("content", "") or ""
if _dict.get("function_call"):
additional_kwargs = {"function_call": dict(_dict["function_call"])}
else:
additional_kwargs = {}
return AIMessage(content=content, additional_kwargs=additional_kwargs)
elif role == "system":
return SystemMessage(content=_dict["content"])
elif role == "function":
return FunctionMessage(content=_dict["content"], name=_dict["name"])
else:
return ChatMessage(content=_dict["content"], role=role)
def _convert_message_to_dict(message: BaseMessage) -> dict: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,462 | AzureChatOpenAI Streaming causes IndexError: list index out of range | ### System Info
langchain-0.0.205-py3, macos ventura, python 3.11
### Who can help?
@hwchase17 / @agola11
### Information
- [x] The official example notebooks/scripts
https://python.langchain.com/docs/modules/model_io/models/chat/how_to/streaming
### Related Components
- [X] LLMs/Chat Models
### Reproduction
### Reproduction code
```python
# test.py
from langchain.chat_models import AzureChatOpenAI
from langchain.chat_models import ChatOpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import (
HumanMessage,
)
chat_1 = ChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_key="SOME-KEY",
model='gpt-3.5-turbo',
temperature=0.7,
request_timeout=60,
max_retries=1)
chat_2 = AzureChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_base="https://some-org-openai.openai.azure.com/",
openai_api_version="2023-06-01-preview",
openai_api_key="SOME-KEY",
deployment_name='gpt-3_5',
temperature=0.7,
request_timeout=60,
max_retries=1)
resp_1 = chat_1([HumanMessage(content="Write me a song about sparkling water.")])
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
```
```shell
python test.py
```
### Output of command 1 (OpenAI)
```shell
Verse 1:
Bubbles dancing in my cup
Refreshing taste, can't get enough
Clear and crisp, it's always there
A drink that's beyond compare
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Verse 2:
A drink that's light and calorie-free
A healthier choice, it's plain to see
A perfect thirst quencher, day or night
With sparkling water, everything's right
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Bridge:
From the fizzy sensation to the bubbles popping
You're the drink I never want to stop sipping
Whether at a party or on my own
Sparkling water, you're always in the zone
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Outro:
Sparkling water, you're my go-to
A drink that always feels brand new
With each sip, I'm left in awe
Sparkling water, you're the perfect beverage
```
### Output of command 2 (Azure OpenAI)
```shell
raw.Traceback (most recent call last):
File "/Users/someone/Development/test.py", line 29, in <module>
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 208, in __call__
generation = self.generate(
^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 102, in generate
raise e
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 94, in generate
results = [
^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 95, in <listcomp>
self._generate(m, stop=stop, run_manager=run_manager, **kwargs)
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/openai.py", line 334, in _generate
role = stream_resp["choices"][0]["delta"].get("role", role)
~~~~~~~~~~~~~~~~~~~~~~^^^
IndexError: list index out of range
```
### Expected behavior
I can't find anything in existing issues or documentation stating that there is a known bug in the AzureOpenAI Service Streaming. | https://github.com/langchain-ai/langchain/issues/6462 | https://github.com/langchain-ai/langchain/pull/8241 | c1ea8da9bc2986532d6f1db810996ee72d5a6c1c | 0af48b06d00b23be65d0a10ff27aff4db0f6c85f | "2023-06-20T04:57:00Z" | python | "2023-07-25T18:30:22Z" | libs/langchain/langchain/chat_models/openai.py | if isinstance(message, ChatMessage):
message_dict = {"role": message.role, "content": message.content}
elif isinstance(message, HumanMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, AIMessage):
message_dict = {"role": "assistant", "content": message.content}
if "function_call" in message.additional_kwargs:
message_dict["function_call"] = message.additional_kwargs["function_call"]
elif isinstance(message, SystemMessage):
message_dict = {"role": "system", "content": message.content}
elif isinstance(message, FunctionMessage):
message_dict = {
"role": "function",
"content": message.content,
"name": message.name,
}
else:
raise ValueError(f"Got unknown type {message}")
if "name" in message.additional_kwargs:
message_dict["name"] = message.additional_kwargs["name"]
return message_dict
class ChatOpenAI(BaseChatModel): |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,462 | AzureChatOpenAI Streaming causes IndexError: list index out of range | ### System Info
langchain-0.0.205-py3, macos ventura, python 3.11
### Who can help?
@hwchase17 / @agola11
### Information
- [x] The official example notebooks/scripts
https://python.langchain.com/docs/modules/model_io/models/chat/how_to/streaming
### Related Components
- [X] LLMs/Chat Models
### Reproduction
### Reproduction code
```python
# test.py
from langchain.chat_models import AzureChatOpenAI
from langchain.chat_models import ChatOpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import (
HumanMessage,
)
chat_1 = ChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_key="SOME-KEY",
model='gpt-3.5-turbo',
temperature=0.7,
request_timeout=60,
max_retries=1)
chat_2 = AzureChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_base="https://some-org-openai.openai.azure.com/",
openai_api_version="2023-06-01-preview",
openai_api_key="SOME-KEY",
deployment_name='gpt-3_5',
temperature=0.7,
request_timeout=60,
max_retries=1)
resp_1 = chat_1([HumanMessage(content="Write me a song about sparkling water.")])
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
```
```shell
python test.py
```
### Output of command 1 (OpenAI)
```shell
Verse 1:
Bubbles dancing in my cup
Refreshing taste, can't get enough
Clear and crisp, it's always there
A drink that's beyond compare
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Verse 2:
A drink that's light and calorie-free
A healthier choice, it's plain to see
A perfect thirst quencher, day or night
With sparkling water, everything's right
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Bridge:
From the fizzy sensation to the bubbles popping
You're the drink I never want to stop sipping
Whether at a party or on my own
Sparkling water, you're always in the zone
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Outro:
Sparkling water, you're my go-to
A drink that always feels brand new
With each sip, I'm left in awe
Sparkling water, you're the perfect beverage
```
### Output of command 2 (Azure OpenAI)
```shell
raw.Traceback (most recent call last):
File "/Users/someone/Development/test.py", line 29, in <module>
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 208, in __call__
generation = self.generate(
^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 102, in generate
raise e
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 94, in generate
results = [
^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 95, in <listcomp>
self._generate(m, stop=stop, run_manager=run_manager, **kwargs)
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/openai.py", line 334, in _generate
role = stream_resp["choices"][0]["delta"].get("role", role)
~~~~~~~~~~~~~~~~~~~~~~^^^
IndexError: list index out of range
```
### Expected behavior
I can't find anything in existing issues or documentation stating that there is a known bug in the AzureOpenAI Service Streaming. | https://github.com/langchain-ai/langchain/issues/6462 | https://github.com/langchain-ai/langchain/pull/8241 | c1ea8da9bc2986532d6f1db810996ee72d5a6c1c | 0af48b06d00b23be65d0a10ff27aff4db0f6c85f | "2023-06-20T04:57:00Z" | python | "2023-07-25T18:30:22Z" | libs/langchain/langchain/chat_models/openai.py | """Wrapper around OpenAI Chat large language models.
To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set with your API key.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
Example:
.. code-block:: python
from langchain.chat_models import ChatOpenAI
openai = ChatOpenAI(model_name="gpt-3.5-turbo")
"""
@property
def lc_secrets(self) -> Dict[str, str]:
return {"openai_api_key": "OPENAI_API_KEY"}
@property
def lc_serializable(self) -> bool:
return True
client: Any
model_name: str = Field(default="gpt-3.5-turbo", alias="model")
"""Model name to use."""
temperature: float = 0.7
"""What sampling temperature to use.""" |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,462 | AzureChatOpenAI Streaming causes IndexError: list index out of range | ### System Info
langchain-0.0.205-py3, macos ventura, python 3.11
### Who can help?
@hwchase17 / @agola11
### Information
- [x] The official example notebooks/scripts
https://python.langchain.com/docs/modules/model_io/models/chat/how_to/streaming
### Related Components
- [X] LLMs/Chat Models
### Reproduction
### Reproduction code
```python
# test.py
from langchain.chat_models import AzureChatOpenAI
from langchain.chat_models import ChatOpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import (
HumanMessage,
)
chat_1 = ChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_key="SOME-KEY",
model='gpt-3.5-turbo',
temperature=0.7,
request_timeout=60,
max_retries=1)
chat_2 = AzureChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_base="https://some-org-openai.openai.azure.com/",
openai_api_version="2023-06-01-preview",
openai_api_key="SOME-KEY",
deployment_name='gpt-3_5',
temperature=0.7,
request_timeout=60,
max_retries=1)
resp_1 = chat_1([HumanMessage(content="Write me a song about sparkling water.")])
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
```
```shell
python test.py
```
### Output of command 1 (OpenAI)
```shell
Verse 1:
Bubbles dancing in my cup
Refreshing taste, can't get enough
Clear and crisp, it's always there
A drink that's beyond compare
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Verse 2:
A drink that's light and calorie-free
A healthier choice, it's plain to see
A perfect thirst quencher, day or night
With sparkling water, everything's right
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Bridge:
From the fizzy sensation to the bubbles popping
You're the drink I never want to stop sipping
Whether at a party or on my own
Sparkling water, you're always in the zone
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Outro:
Sparkling water, you're my go-to
A drink that always feels brand new
With each sip, I'm left in awe
Sparkling water, you're the perfect beverage
```
### Output of command 2 (Azure OpenAI)
```shell
raw.Traceback (most recent call last):
File "/Users/someone/Development/test.py", line 29, in <module>
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 208, in __call__
generation = self.generate(
^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 102, in generate
raise e
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 94, in generate
results = [
^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 95, in <listcomp>
self._generate(m, stop=stop, run_manager=run_manager, **kwargs)
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/openai.py", line 334, in _generate
role = stream_resp["choices"][0]["delta"].get("role", role)
~~~~~~~~~~~~~~~~~~~~~~^^^
IndexError: list index out of range
```
### Expected behavior
I can't find anything in existing issues or documentation stating that there is a known bug in the AzureOpenAI Service Streaming. | https://github.com/langchain-ai/langchain/issues/6462 | https://github.com/langchain-ai/langchain/pull/8241 | c1ea8da9bc2986532d6f1db810996ee72d5a6c1c | 0af48b06d00b23be65d0a10ff27aff4db0f6c85f | "2023-06-20T04:57:00Z" | python | "2023-07-25T18:30:22Z" | libs/langchain/langchain/chat_models/openai.py | model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
openai_api_key: Optional[str] = None
"""Base URL path for API requests,
leave blank if not using a proxy or service emulator."""
openai_api_base: Optional[str] = None
openai_organization: Optional[str] = None
openai_proxy: Optional[str] = None
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
"""Timeout for requests to OpenAI completion API. Default is 600 seconds."""
max_retries: int = 6
"""Maximum number of retries to make when generating."""
streaming: bool = False
"""Whether to stream the results or not."""
n: int = 1
"""Number of chat completions to generate for each prompt."""
max_tokens: Optional[int] = None
"""Maximum number of tokens to generate."""
tiktoken_model_name: Optional[str] = None
"""The model name to pass to tiktoken when using this class.
Tiktoken is used to count the number of tokens in documents to constrain
them to be under a certain limit. By default, when set to None, this will
be the same as the embedding model name. However, there are some cases
where you may want to use this Embedding class with a model name not
supported by tiktoken. This can include when using Azure embeddings or
when using one of the many model providers that expose an OpenAI-like
API but with different models. In those cases, in order to avoid erroring
when tiktoken is called, you can specify a model name to use here."""
class Config: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,462 | AzureChatOpenAI Streaming causes IndexError: list index out of range | ### System Info
langchain-0.0.205-py3, macos ventura, python 3.11
### Who can help?
@hwchase17 / @agola11
### Information
- [x] The official example notebooks/scripts
https://python.langchain.com/docs/modules/model_io/models/chat/how_to/streaming
### Related Components
- [X] LLMs/Chat Models
### Reproduction
### Reproduction code
```python
# test.py
from langchain.chat_models import AzureChatOpenAI
from langchain.chat_models import ChatOpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import (
HumanMessage,
)
chat_1 = ChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_key="SOME-KEY",
model='gpt-3.5-turbo',
temperature=0.7,
request_timeout=60,
max_retries=1)
chat_2 = AzureChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_base="https://some-org-openai.openai.azure.com/",
openai_api_version="2023-06-01-preview",
openai_api_key="SOME-KEY",
deployment_name='gpt-3_5',
temperature=0.7,
request_timeout=60,
max_retries=1)
resp_1 = chat_1([HumanMessage(content="Write me a song about sparkling water.")])
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
```
```shell
python test.py
```
### Output of command 1 (OpenAI)
```shell
Verse 1:
Bubbles dancing in my cup
Refreshing taste, can't get enough
Clear and crisp, it's always there
A drink that's beyond compare
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Verse 2:
A drink that's light and calorie-free
A healthier choice, it's plain to see
A perfect thirst quencher, day or night
With sparkling water, everything's right
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Bridge:
From the fizzy sensation to the bubbles popping
You're the drink I never want to stop sipping
Whether at a party or on my own
Sparkling water, you're always in the zone
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Outro:
Sparkling water, you're my go-to
A drink that always feels brand new
With each sip, I'm left in awe
Sparkling water, you're the perfect beverage
```
### Output of command 2 (Azure OpenAI)
```shell
raw.Traceback (most recent call last):
File "/Users/someone/Development/test.py", line 29, in <module>
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 208, in __call__
generation = self.generate(
^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 102, in generate
raise e
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 94, in generate
results = [
^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 95, in <listcomp>
self._generate(m, stop=stop, run_manager=run_manager, **kwargs)
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/openai.py", line 334, in _generate
role = stream_resp["choices"][0]["delta"].get("role", role)
~~~~~~~~~~~~~~~~~~~~~~^^^
IndexError: list index out of range
```
### Expected behavior
I can't find anything in existing issues or documentation stating that there is a known bug in the AzureOpenAI Service Streaming. | https://github.com/langchain-ai/langchain/issues/6462 | https://github.com/langchain-ai/langchain/pull/8241 | c1ea8da9bc2986532d6f1db810996ee72d5a6c1c | 0af48b06d00b23be65d0a10ff27aff4db0f6c85f | "2023-06-20T04:57:00Z" | python | "2023-07-25T18:30:22Z" | libs/langchain/langchain/chat_models/openai.py | """Configuration for this pydantic object."""
allow_population_by_field_name = True
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
if field_name not in all_required_field_names:
logger.warning(
f"""WARNING! {field_name} is not default parameter.
{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
if invalid_model_kwargs:
raise ValueError(
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
f"Instead they were passed in as part of `model_kwargs` parameter."
)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,462 | AzureChatOpenAI Streaming causes IndexError: list index out of range | ### System Info
langchain-0.0.205-py3, macos ventura, python 3.11
### Who can help?
@hwchase17 / @agola11
### Information
- [x] The official example notebooks/scripts
https://python.langchain.com/docs/modules/model_io/models/chat/how_to/streaming
### Related Components
- [X] LLMs/Chat Models
### Reproduction
### Reproduction code
```python
# test.py
from langchain.chat_models import AzureChatOpenAI
from langchain.chat_models import ChatOpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import (
HumanMessage,
)
chat_1 = ChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_key="SOME-KEY",
model='gpt-3.5-turbo',
temperature=0.7,
request_timeout=60,
max_retries=1)
chat_2 = AzureChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_base="https://some-org-openai.openai.azure.com/",
openai_api_version="2023-06-01-preview",
openai_api_key="SOME-KEY",
deployment_name='gpt-3_5',
temperature=0.7,
request_timeout=60,
max_retries=1)
resp_1 = chat_1([HumanMessage(content="Write me a song about sparkling water.")])
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
```
```shell
python test.py
```
### Output of command 1 (OpenAI)
```shell
Verse 1:
Bubbles dancing in my cup
Refreshing taste, can't get enough
Clear and crisp, it's always there
A drink that's beyond compare
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Verse 2:
A drink that's light and calorie-free
A healthier choice, it's plain to see
A perfect thirst quencher, day or night
With sparkling water, everything's right
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Bridge:
From the fizzy sensation to the bubbles popping
You're the drink I never want to stop sipping
Whether at a party or on my own
Sparkling water, you're always in the zone
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Outro:
Sparkling water, you're my go-to
A drink that always feels brand new
With each sip, I'm left in awe
Sparkling water, you're the perfect beverage
```
### Output of command 2 (Azure OpenAI)
```shell
raw.Traceback (most recent call last):
File "/Users/someone/Development/test.py", line 29, in <module>
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 208, in __call__
generation = self.generate(
^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 102, in generate
raise e
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 94, in generate
results = [
^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 95, in <listcomp>
self._generate(m, stop=stop, run_manager=run_manager, **kwargs)
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/openai.py", line 334, in _generate
role = stream_resp["choices"][0]["delta"].get("role", role)
~~~~~~~~~~~~~~~~~~~~~~^^^
IndexError: list index out of range
```
### Expected behavior
I can't find anything in existing issues or documentation stating that there is a known bug in the AzureOpenAI Service Streaming. | https://github.com/langchain-ai/langchain/issues/6462 | https://github.com/langchain-ai/langchain/pull/8241 | c1ea8da9bc2986532d6f1db810996ee72d5a6c1c | 0af48b06d00b23be65d0a10ff27aff4db0f6c85f | "2023-06-20T04:57:00Z" | python | "2023-07-25T18:30:22Z" | libs/langchain/langchain/chat_models/openai.py | """Validate that api key and python package exists in environment."""
values["openai_api_key"] = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
values["openai_organization"] = get_from_dict_or_env(
values,
"openai_organization",
"OPENAI_ORGANIZATION",
default="",
)
values["openai_api_base"] = get_from_dict_or_env(
values,
"openai_api_base",
"OPENAI_API_BASE",
default="",
)
values["openai_proxy"] = get_from_dict_or_env(
values,
"openai_proxy",
"OPENAI_PROXY",
default="",
)
try:
import openai
except ImportError: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,462 | AzureChatOpenAI Streaming causes IndexError: list index out of range | ### System Info
langchain-0.0.205-py3, macos ventura, python 3.11
### Who can help?
@hwchase17 / @agola11
### Information
- [x] The official example notebooks/scripts
https://python.langchain.com/docs/modules/model_io/models/chat/how_to/streaming
### Related Components
- [X] LLMs/Chat Models
### Reproduction
### Reproduction code
```python
# test.py
from langchain.chat_models import AzureChatOpenAI
from langchain.chat_models import ChatOpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import (
HumanMessage,
)
chat_1 = ChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_key="SOME-KEY",
model='gpt-3.5-turbo',
temperature=0.7,
request_timeout=60,
max_retries=1)
chat_2 = AzureChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_base="https://some-org-openai.openai.azure.com/",
openai_api_version="2023-06-01-preview",
openai_api_key="SOME-KEY",
deployment_name='gpt-3_5',
temperature=0.7,
request_timeout=60,
max_retries=1)
resp_1 = chat_1([HumanMessage(content="Write me a song about sparkling water.")])
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
```
```shell
python test.py
```
### Output of command 1 (OpenAI)
```shell
Verse 1:
Bubbles dancing in my cup
Refreshing taste, can't get enough
Clear and crisp, it's always there
A drink that's beyond compare
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Verse 2:
A drink that's light and calorie-free
A healthier choice, it's plain to see
A perfect thirst quencher, day or night
With sparkling water, everything's right
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Bridge:
From the fizzy sensation to the bubbles popping
You're the drink I never want to stop sipping
Whether at a party or on my own
Sparkling water, you're always in the zone
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Outro:
Sparkling water, you're my go-to
A drink that always feels brand new
With each sip, I'm left in awe
Sparkling water, you're the perfect beverage
```
### Output of command 2 (Azure OpenAI)
```shell
raw.Traceback (most recent call last):
File "/Users/someone/Development/test.py", line 29, in <module>
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 208, in __call__
generation = self.generate(
^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 102, in generate
raise e
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 94, in generate
results = [
^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 95, in <listcomp>
self._generate(m, stop=stop, run_manager=run_manager, **kwargs)
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/openai.py", line 334, in _generate
role = stream_resp["choices"][0]["delta"].get("role", role)
~~~~~~~~~~~~~~~~~~~~~~^^^
IndexError: list index out of range
```
### Expected behavior
I can't find anything in existing issues or documentation stating that there is a known bug in the AzureOpenAI Service Streaming. | https://github.com/langchain-ai/langchain/issues/6462 | https://github.com/langchain-ai/langchain/pull/8241 | c1ea8da9bc2986532d6f1db810996ee72d5a6c1c | 0af48b06d00b23be65d0a10ff27aff4db0f6c85f | "2023-06-20T04:57:00Z" | python | "2023-07-25T18:30:22Z" | libs/langchain/langchain/chat_models/openai.py | raise ValueError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
try:
values["client"] = openai.ChatCompletion
except AttributeError:
raise ValueError(
"`openai` has no `ChatCompletion` attribute, this is likely "
"due to an old version of the openai package. Try upgrading it "
"with `pip install --upgrade openai`."
)
if values["n"] < 1:
raise ValueError("n must be at least 1.")
if values["n"] > 1 and values["streaming"]:
raise ValueError("n must be 1 when streaming.")
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
return {
"model": self.model_name,
"request_timeout": self.request_timeout,
"max_tokens": self.max_tokens,
"stream": self.streaming,
"n": self.n,
"temperature": self.temperature,
**self.model_kwargs,
}
def completion_with_retry(self, **kwargs: Any) -> Any: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,462 | AzureChatOpenAI Streaming causes IndexError: list index out of range | ### System Info
langchain-0.0.205-py3, macos ventura, python 3.11
### Who can help?
@hwchase17 / @agola11
### Information
- [x] The official example notebooks/scripts
https://python.langchain.com/docs/modules/model_io/models/chat/how_to/streaming
### Related Components
- [X] LLMs/Chat Models
### Reproduction
### Reproduction code
```python
# test.py
from langchain.chat_models import AzureChatOpenAI
from langchain.chat_models import ChatOpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import (
HumanMessage,
)
chat_1 = ChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_key="SOME-KEY",
model='gpt-3.5-turbo',
temperature=0.7,
request_timeout=60,
max_retries=1)
chat_2 = AzureChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_base="https://some-org-openai.openai.azure.com/",
openai_api_version="2023-06-01-preview",
openai_api_key="SOME-KEY",
deployment_name='gpt-3_5',
temperature=0.7,
request_timeout=60,
max_retries=1)
resp_1 = chat_1([HumanMessage(content="Write me a song about sparkling water.")])
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
```
```shell
python test.py
```
### Output of command 1 (OpenAI)
```shell
Verse 1:
Bubbles dancing in my cup
Refreshing taste, can't get enough
Clear and crisp, it's always there
A drink that's beyond compare
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Verse 2:
A drink that's light and calorie-free
A healthier choice, it's plain to see
A perfect thirst quencher, day or night
With sparkling water, everything's right
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Bridge:
From the fizzy sensation to the bubbles popping
You're the drink I never want to stop sipping
Whether at a party or on my own
Sparkling water, you're always in the zone
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Outro:
Sparkling water, you're my go-to
A drink that always feels brand new
With each sip, I'm left in awe
Sparkling water, you're the perfect beverage
```
### Output of command 2 (Azure OpenAI)
```shell
raw.Traceback (most recent call last):
File "/Users/someone/Development/test.py", line 29, in <module>
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 208, in __call__
generation = self.generate(
^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 102, in generate
raise e
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 94, in generate
results = [
^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 95, in <listcomp>
self._generate(m, stop=stop, run_manager=run_manager, **kwargs)
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/openai.py", line 334, in _generate
role = stream_resp["choices"][0]["delta"].get("role", role)
~~~~~~~~~~~~~~~~~~~~~~^^^
IndexError: list index out of range
```
### Expected behavior
I can't find anything in existing issues or documentation stating that there is a known bug in the AzureOpenAI Service Streaming. | https://github.com/langchain-ai/langchain/issues/6462 | https://github.com/langchain-ai/langchain/pull/8241 | c1ea8da9bc2986532d6f1db810996ee72d5a6c1c | 0af48b06d00b23be65d0a10ff27aff4db0f6c85f | "2023-06-20T04:57:00Z" | python | "2023-07-25T18:30:22Z" | libs/langchain/langchain/chat_models/openai.py | """Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator(self)
@retry_decorator
def _completion_with_retry(**kwargs: Any) -> Any:
return self.client.create(**kwargs)
return _completion_with_retry(**kwargs)
def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
overall_token_usage: dict = {}
for output in llm_outputs:
if output is None:
continue
token_usage = output["token_usage"]
for k, v in token_usage.items():
if k in overall_token_usage:
overall_token_usage[k] += v
else:
overall_token_usage[k] = v
return {"token_usage": overall_token_usage, "model_name": self.model_name}
def _generate( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,462 | AzureChatOpenAI Streaming causes IndexError: list index out of range | ### System Info
langchain-0.0.205-py3, macos ventura, python 3.11
### Who can help?
@hwchase17 / @agola11
### Information
- [x] The official example notebooks/scripts
https://python.langchain.com/docs/modules/model_io/models/chat/how_to/streaming
### Related Components
- [X] LLMs/Chat Models
### Reproduction
### Reproduction code
```python
# test.py
from langchain.chat_models import AzureChatOpenAI
from langchain.chat_models import ChatOpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import (
HumanMessage,
)
chat_1 = ChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_key="SOME-KEY",
model='gpt-3.5-turbo',
temperature=0.7,
request_timeout=60,
max_retries=1)
chat_2 = AzureChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_base="https://some-org-openai.openai.azure.com/",
openai_api_version="2023-06-01-preview",
openai_api_key="SOME-KEY",
deployment_name='gpt-3_5',
temperature=0.7,
request_timeout=60,
max_retries=1)
resp_1 = chat_1([HumanMessage(content="Write me a song about sparkling water.")])
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
```
```shell
python test.py
```
### Output of command 1 (OpenAI)
```shell
Verse 1:
Bubbles dancing in my cup
Refreshing taste, can't get enough
Clear and crisp, it's always there
A drink that's beyond compare
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Verse 2:
A drink that's light and calorie-free
A healthier choice, it's plain to see
A perfect thirst quencher, day or night
With sparkling water, everything's right
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Bridge:
From the fizzy sensation to the bubbles popping
You're the drink I never want to stop sipping
Whether at a party or on my own
Sparkling water, you're always in the zone
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Outro:
Sparkling water, you're my go-to
A drink that always feels brand new
With each sip, I'm left in awe
Sparkling water, you're the perfect beverage
```
### Output of command 2 (Azure OpenAI)
```shell
raw.Traceback (most recent call last):
File "/Users/someone/Development/test.py", line 29, in <module>
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 208, in __call__
generation = self.generate(
^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 102, in generate
raise e
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 94, in generate
results = [
^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 95, in <listcomp>
self._generate(m, stop=stop, run_manager=run_manager, **kwargs)
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/openai.py", line 334, in _generate
role = stream_resp["choices"][0]["delta"].get("role", role)
~~~~~~~~~~~~~~~~~~~~~~^^^
IndexError: list index out of range
```
### Expected behavior
I can't find anything in existing issues or documentation stating that there is a known bug in the AzureOpenAI Service Streaming. | https://github.com/langchain-ai/langchain/issues/6462 | https://github.com/langchain-ai/langchain/pull/8241 | c1ea8da9bc2986532d6f1db810996ee72d5a6c1c | 0af48b06d00b23be65d0a10ff27aff4db0f6c85f | "2023-06-20T04:57:00Z" | python | "2023-07-25T18:30:22Z" | libs/langchain/langchain/chat_models/openai.py | self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs}
if self.streaming:
inner_completion = ""
role = "assistant"
params["stream"] = True
function_call: Optional[dict] = None
for stream_resp in self.completion_with_retry(
messages=message_dicts, **params
):
role = stream_resp["choices"][0]["delta"].get("role", role)
token = stream_resp["choices"][0]["delta"].get("content") or "" |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,462 | AzureChatOpenAI Streaming causes IndexError: list index out of range | ### System Info
langchain-0.0.205-py3, macos ventura, python 3.11
### Who can help?
@hwchase17 / @agola11
### Information
- [x] The official example notebooks/scripts
https://python.langchain.com/docs/modules/model_io/models/chat/how_to/streaming
### Related Components
- [X] LLMs/Chat Models
### Reproduction
### Reproduction code
```python
# test.py
from langchain.chat_models import AzureChatOpenAI
from langchain.chat_models import ChatOpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import (
HumanMessage,
)
chat_1 = ChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_key="SOME-KEY",
model='gpt-3.5-turbo',
temperature=0.7,
request_timeout=60,
max_retries=1)
chat_2 = AzureChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_base="https://some-org-openai.openai.azure.com/",
openai_api_version="2023-06-01-preview",
openai_api_key="SOME-KEY",
deployment_name='gpt-3_5',
temperature=0.7,
request_timeout=60,
max_retries=1)
resp_1 = chat_1([HumanMessage(content="Write me a song about sparkling water.")])
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
```
```shell
python test.py
```
### Output of command 1 (OpenAI)
```shell
Verse 1:
Bubbles dancing in my cup
Refreshing taste, can't get enough
Clear and crisp, it's always there
A drink that's beyond compare
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Verse 2:
A drink that's light and calorie-free
A healthier choice, it's plain to see
A perfect thirst quencher, day or night
With sparkling water, everything's right
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Bridge:
From the fizzy sensation to the bubbles popping
You're the drink I never want to stop sipping
Whether at a party or on my own
Sparkling water, you're always in the zone
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Outro:
Sparkling water, you're my go-to
A drink that always feels brand new
With each sip, I'm left in awe
Sparkling water, you're the perfect beverage
```
### Output of command 2 (Azure OpenAI)
```shell
raw.Traceback (most recent call last):
File "/Users/someone/Development/test.py", line 29, in <module>
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 208, in __call__
generation = self.generate(
^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 102, in generate
raise e
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 94, in generate
results = [
^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 95, in <listcomp>
self._generate(m, stop=stop, run_manager=run_manager, **kwargs)
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/openai.py", line 334, in _generate
role = stream_resp["choices"][0]["delta"].get("role", role)
~~~~~~~~~~~~~~~~~~~~~~^^^
IndexError: list index out of range
```
### Expected behavior
I can't find anything in existing issues or documentation stating that there is a known bug in the AzureOpenAI Service Streaming. | https://github.com/langchain-ai/langchain/issues/6462 | https://github.com/langchain-ai/langchain/pull/8241 | c1ea8da9bc2986532d6f1db810996ee72d5a6c1c | 0af48b06d00b23be65d0a10ff27aff4db0f6c85f | "2023-06-20T04:57:00Z" | python | "2023-07-25T18:30:22Z" | libs/langchain/langchain/chat_models/openai.py | inner_completion += token
_function_call = stream_resp["choices"][0]["delta"].get("function_call")
if _function_call:
if function_call is None:
function_call = _function_call
else:
function_call["arguments"] += _function_call["arguments"]
if run_manager:
run_manager.on_llm_new_token(token)
message = _convert_dict_to_message(
{
"content": inner_completion,
"role": role,
"function_call": function_call,
}
)
return ChatResult(generations=[ChatGeneration(message=message)])
response = self.completion_with_retry(messages=message_dicts, **params)
return self._create_chat_result(response)
def _create_message_dicts(
self, messages: List[BaseMessage], stop: Optional[List[str]]
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
params = self._client_params
if stop is not None:
if "stop" in params:
raise ValueError("`stop` found in both the input and default params.")
params["stop"] = stop
message_dicts = [_convert_message_to_dict(m) for m in messages]
return message_dicts, params
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,462 | AzureChatOpenAI Streaming causes IndexError: list index out of range | ### System Info
langchain-0.0.205-py3, macos ventura, python 3.11
### Who can help?
@hwchase17 / @agola11
### Information
- [x] The official example notebooks/scripts
https://python.langchain.com/docs/modules/model_io/models/chat/how_to/streaming
### Related Components
- [X] LLMs/Chat Models
### Reproduction
### Reproduction code
```python
# test.py
from langchain.chat_models import AzureChatOpenAI
from langchain.chat_models import ChatOpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import (
HumanMessage,
)
chat_1 = ChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_key="SOME-KEY",
model='gpt-3.5-turbo',
temperature=0.7,
request_timeout=60,
max_retries=1)
chat_2 = AzureChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_base="https://some-org-openai.openai.azure.com/",
openai_api_version="2023-06-01-preview",
openai_api_key="SOME-KEY",
deployment_name='gpt-3_5',
temperature=0.7,
request_timeout=60,
max_retries=1)
resp_1 = chat_1([HumanMessage(content="Write me a song about sparkling water.")])
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
```
```shell
python test.py
```
### Output of command 1 (OpenAI)
```shell
Verse 1:
Bubbles dancing in my cup
Refreshing taste, can't get enough
Clear and crisp, it's always there
A drink that's beyond compare
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Verse 2:
A drink that's light and calorie-free
A healthier choice, it's plain to see
A perfect thirst quencher, day or night
With sparkling water, everything's right
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Bridge:
From the fizzy sensation to the bubbles popping
You're the drink I never want to stop sipping
Whether at a party or on my own
Sparkling water, you're always in the zone
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Outro:
Sparkling water, you're my go-to
A drink that always feels brand new
With each sip, I'm left in awe
Sparkling water, you're the perfect beverage
```
### Output of command 2 (Azure OpenAI)
```shell
raw.Traceback (most recent call last):
File "/Users/someone/Development/test.py", line 29, in <module>
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 208, in __call__
generation = self.generate(
^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 102, in generate
raise e
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 94, in generate
results = [
^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 95, in <listcomp>
self._generate(m, stop=stop, run_manager=run_manager, **kwargs)
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/openai.py", line 334, in _generate
role = stream_resp["choices"][0]["delta"].get("role", role)
~~~~~~~~~~~~~~~~~~~~~~^^^
IndexError: list index out of range
```
### Expected behavior
I can't find anything in existing issues or documentation stating that there is a known bug in the AzureOpenAI Service Streaming. | https://github.com/langchain-ai/langchain/issues/6462 | https://github.com/langchain-ai/langchain/pull/8241 | c1ea8da9bc2986532d6f1db810996ee72d5a6c1c | 0af48b06d00b23be65d0a10ff27aff4db0f6c85f | "2023-06-20T04:57:00Z" | python | "2023-07-25T18:30:22Z" | libs/langchain/langchain/chat_models/openai.py | generations = []
for res in response["choices"]:
message = _convert_dict_to_message(res["message"])
gen = ChatGeneration(
message=message,
generation_info=dict(finish_reason=res.get("finish_reason")),
)
generations.append(gen)
token_usage = response.get("usage", {})
llm_output = {"token_usage": token_usage, "model_name": self.model_name}
return ChatResult(generations=generations, llm_output=llm_output)
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs}
if self.streaming:
inner_completion = ""
role = "assistant"
params["stream"] = True |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,462 | AzureChatOpenAI Streaming causes IndexError: list index out of range | ### System Info
langchain-0.0.205-py3, macos ventura, python 3.11
### Who can help?
@hwchase17 / @agola11
### Information
- [x] The official example notebooks/scripts
https://python.langchain.com/docs/modules/model_io/models/chat/how_to/streaming
### Related Components
- [X] LLMs/Chat Models
### Reproduction
### Reproduction code
```python
# test.py
from langchain.chat_models import AzureChatOpenAI
from langchain.chat_models import ChatOpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import (
HumanMessage,
)
chat_1 = ChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_key="SOME-KEY",
model='gpt-3.5-turbo',
temperature=0.7,
request_timeout=60,
max_retries=1)
chat_2 = AzureChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_base="https://some-org-openai.openai.azure.com/",
openai_api_version="2023-06-01-preview",
openai_api_key="SOME-KEY",
deployment_name='gpt-3_5',
temperature=0.7,
request_timeout=60,
max_retries=1)
resp_1 = chat_1([HumanMessage(content="Write me a song about sparkling water.")])
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
```
```shell
python test.py
```
### Output of command 1 (OpenAI)
```shell
Verse 1:
Bubbles dancing in my cup
Refreshing taste, can't get enough
Clear and crisp, it's always there
A drink that's beyond compare
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Verse 2:
A drink that's light and calorie-free
A healthier choice, it's plain to see
A perfect thirst quencher, day or night
With sparkling water, everything's right
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Bridge:
From the fizzy sensation to the bubbles popping
You're the drink I never want to stop sipping
Whether at a party or on my own
Sparkling water, you're always in the zone
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Outro:
Sparkling water, you're my go-to
A drink that always feels brand new
With each sip, I'm left in awe
Sparkling water, you're the perfect beverage
```
### Output of command 2 (Azure OpenAI)
```shell
raw.Traceback (most recent call last):
File "/Users/someone/Development/test.py", line 29, in <module>
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 208, in __call__
generation = self.generate(
^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 102, in generate
raise e
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 94, in generate
results = [
^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 95, in <listcomp>
self._generate(m, stop=stop, run_manager=run_manager, **kwargs)
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/openai.py", line 334, in _generate
role = stream_resp["choices"][0]["delta"].get("role", role)
~~~~~~~~~~~~~~~~~~~~~~^^^
IndexError: list index out of range
```
### Expected behavior
I can't find anything in existing issues or documentation stating that there is a known bug in the AzureOpenAI Service Streaming. | https://github.com/langchain-ai/langchain/issues/6462 | https://github.com/langchain-ai/langchain/pull/8241 | c1ea8da9bc2986532d6f1db810996ee72d5a6c1c | 0af48b06d00b23be65d0a10ff27aff4db0f6c85f | "2023-06-20T04:57:00Z" | python | "2023-07-25T18:30:22Z" | libs/langchain/langchain/chat_models/openai.py | function_call: Optional[dict] = None
async for stream_resp in await acompletion_with_retry(
self, messages=message_dicts, **params
):
role = stream_resp["choices"][0]["delta"].get("role", role)
token = stream_resp["choices"][0]["delta"].get("content", "")
inner_completion += token or ""
_function_call = stream_resp["choices"][0]["delta"].get("function_call")
if _function_call:
if function_call is None:
function_call = _function_call
else:
function_call["arguments"] += _function_call["arguments"]
if run_manager:
await run_manager.on_llm_new_token(token)
message = _convert_dict_to_message(
{
"content": inner_completion,
"role": role,
"function_call": function_call,
}
)
return ChatResult(generations=[ChatGeneration(message=message)])
else:
response = await acompletion_with_retry(
self, messages=message_dicts, **params
)
return self._create_chat_result(response)
@property
def _identifying_params(self) -> Dict[str, Any]: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,462 | AzureChatOpenAI Streaming causes IndexError: list index out of range | ### System Info
langchain-0.0.205-py3, macos ventura, python 3.11
### Who can help?
@hwchase17 / @agola11
### Information
- [x] The official example notebooks/scripts
https://python.langchain.com/docs/modules/model_io/models/chat/how_to/streaming
### Related Components
- [X] LLMs/Chat Models
### Reproduction
### Reproduction code
```python
# test.py
from langchain.chat_models import AzureChatOpenAI
from langchain.chat_models import ChatOpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import (
HumanMessage,
)
chat_1 = ChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_key="SOME-KEY",
model='gpt-3.5-turbo',
temperature=0.7,
request_timeout=60,
max_retries=1)
chat_2 = AzureChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_base="https://some-org-openai.openai.azure.com/",
openai_api_version="2023-06-01-preview",
openai_api_key="SOME-KEY",
deployment_name='gpt-3_5',
temperature=0.7,
request_timeout=60,
max_retries=1)
resp_1 = chat_1([HumanMessage(content="Write me a song about sparkling water.")])
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
```
```shell
python test.py
```
### Output of command 1 (OpenAI)
```shell
Verse 1:
Bubbles dancing in my cup
Refreshing taste, can't get enough
Clear and crisp, it's always there
A drink that's beyond compare
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Verse 2:
A drink that's light and calorie-free
A healthier choice, it's plain to see
A perfect thirst quencher, day or night
With sparkling water, everything's right
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Bridge:
From the fizzy sensation to the bubbles popping
You're the drink I never want to stop sipping
Whether at a party or on my own
Sparkling water, you're always in the zone
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Outro:
Sparkling water, you're my go-to
A drink that always feels brand new
With each sip, I'm left in awe
Sparkling water, you're the perfect beverage
```
### Output of command 2 (Azure OpenAI)
```shell
raw.Traceback (most recent call last):
File "/Users/someone/Development/test.py", line 29, in <module>
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 208, in __call__
generation = self.generate(
^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 102, in generate
raise e
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 94, in generate
results = [
^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 95, in <listcomp>
self._generate(m, stop=stop, run_manager=run_manager, **kwargs)
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/openai.py", line 334, in _generate
role = stream_resp["choices"][0]["delta"].get("role", role)
~~~~~~~~~~~~~~~~~~~~~~^^^
IndexError: list index out of range
```
### Expected behavior
I can't find anything in existing issues or documentation stating that there is a known bug in the AzureOpenAI Service Streaming. | https://github.com/langchain-ai/langchain/issues/6462 | https://github.com/langchain-ai/langchain/pull/8241 | c1ea8da9bc2986532d6f1db810996ee72d5a6c1c | 0af48b06d00b23be65d0a10ff27aff4db0f6c85f | "2023-06-20T04:57:00Z" | python | "2023-07-25T18:30:22Z" | libs/langchain/langchain/chat_models/openai.py | """Get the identifying parameters."""
return {**{"model_name": self.model_name}, **self._default_params}
@property
def _client_params(self) -> Dict[str, Any]:
"""Get the parameters used for the openai client."""
openai_creds: Dict[str, Any] = {
"api_key": self.openai_api_key,
"api_base": self.openai_api_base,
"organization": self.openai_organization,
"model": self.model_name,
}
if self.openai_proxy:
import openai
openai.proxy = {"http": self.openai_proxy, "https": self.openai_proxy}
return {**self._default_params, **openai_creds}
def _get_invocation_params(
self, stop: Optional[List[str]] = None, **kwargs: Any
) -> Dict[str, Any]:
"""Get the parameters used to invoke the model."""
return {
"model": self.model_name,
**super()._get_invocation_params(stop=stop),
**self._default_params,
**kwargs,
}
@property
def _llm_type(self) -> str: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,462 | AzureChatOpenAI Streaming causes IndexError: list index out of range | ### System Info
langchain-0.0.205-py3, macos ventura, python 3.11
### Who can help?
@hwchase17 / @agola11
### Information
- [x] The official example notebooks/scripts
https://python.langchain.com/docs/modules/model_io/models/chat/how_to/streaming
### Related Components
- [X] LLMs/Chat Models
### Reproduction
### Reproduction code
```python
# test.py
from langchain.chat_models import AzureChatOpenAI
from langchain.chat_models import ChatOpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import (
HumanMessage,
)
chat_1 = ChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_key="SOME-KEY",
model='gpt-3.5-turbo',
temperature=0.7,
request_timeout=60,
max_retries=1)
chat_2 = AzureChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_base="https://some-org-openai.openai.azure.com/",
openai_api_version="2023-06-01-preview",
openai_api_key="SOME-KEY",
deployment_name='gpt-3_5',
temperature=0.7,
request_timeout=60,
max_retries=1)
resp_1 = chat_1([HumanMessage(content="Write me a song about sparkling water.")])
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
```
```shell
python test.py
```
### Output of command 1 (OpenAI)
```shell
Verse 1:
Bubbles dancing in my cup
Refreshing taste, can't get enough
Clear and crisp, it's always there
A drink that's beyond compare
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Verse 2:
A drink that's light and calorie-free
A healthier choice, it's plain to see
A perfect thirst quencher, day or night
With sparkling water, everything's right
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Bridge:
From the fizzy sensation to the bubbles popping
You're the drink I never want to stop sipping
Whether at a party or on my own
Sparkling water, you're always in the zone
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Outro:
Sparkling water, you're my go-to
A drink that always feels brand new
With each sip, I'm left in awe
Sparkling water, you're the perfect beverage
```
### Output of command 2 (Azure OpenAI)
```shell
raw.Traceback (most recent call last):
File "/Users/someone/Development/test.py", line 29, in <module>
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 208, in __call__
generation = self.generate(
^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 102, in generate
raise e
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 94, in generate
results = [
^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 95, in <listcomp>
self._generate(m, stop=stop, run_manager=run_manager, **kwargs)
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/openai.py", line 334, in _generate
role = stream_resp["choices"][0]["delta"].get("role", role)
~~~~~~~~~~~~~~~~~~~~~~^^^
IndexError: list index out of range
```
### Expected behavior
I can't find anything in existing issues or documentation stating that there is a known bug in the AzureOpenAI Service Streaming. | https://github.com/langchain-ai/langchain/issues/6462 | https://github.com/langchain-ai/langchain/pull/8241 | c1ea8da9bc2986532d6f1db810996ee72d5a6c1c | 0af48b06d00b23be65d0a10ff27aff4db0f6c85f | "2023-06-20T04:57:00Z" | python | "2023-07-25T18:30:22Z" | libs/langchain/langchain/chat_models/openai.py | """Return type of chat model."""
return "openai-chat"
def _get_encoding_model(self) -> Tuple[str, tiktoken.Encoding]:
tiktoken_ = _import_tiktoken()
if self.tiktoken_model_name is not None:
model = self.tiktoken_model_name
else:
model = self.model_name
if model == "gpt-3.5-turbo":
model = "gpt-3.5-turbo-0301"
elif model == "gpt-4":
model = "gpt-4-0314"
try:
encoding = tiktoken_.encoding_for_model(model)
except KeyError:
logger.warning("Warning: model not found. Using cl100k_base encoding.")
model = "cl100k_base"
encoding = tiktoken_.get_encoding(model)
return model, encoding
def get_token_ids(self, text: str) -> List[int]: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,462 | AzureChatOpenAI Streaming causes IndexError: list index out of range | ### System Info
langchain-0.0.205-py3, macos ventura, python 3.11
### Who can help?
@hwchase17 / @agola11
### Information
- [x] The official example notebooks/scripts
https://python.langchain.com/docs/modules/model_io/models/chat/how_to/streaming
### Related Components
- [X] LLMs/Chat Models
### Reproduction
### Reproduction code
```python
# test.py
from langchain.chat_models import AzureChatOpenAI
from langchain.chat_models import ChatOpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import (
HumanMessage,
)
chat_1 = ChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_key="SOME-KEY",
model='gpt-3.5-turbo',
temperature=0.7,
request_timeout=60,
max_retries=1)
chat_2 = AzureChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_base="https://some-org-openai.openai.azure.com/",
openai_api_version="2023-06-01-preview",
openai_api_key="SOME-KEY",
deployment_name='gpt-3_5',
temperature=0.7,
request_timeout=60,
max_retries=1)
resp_1 = chat_1([HumanMessage(content="Write me a song about sparkling water.")])
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
```
```shell
python test.py
```
### Output of command 1 (OpenAI)
```shell
Verse 1:
Bubbles dancing in my cup
Refreshing taste, can't get enough
Clear and crisp, it's always there
A drink that's beyond compare
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Verse 2:
A drink that's light and calorie-free
A healthier choice, it's plain to see
A perfect thirst quencher, day or night
With sparkling water, everything's right
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Bridge:
From the fizzy sensation to the bubbles popping
You're the drink I never want to stop sipping
Whether at a party or on my own
Sparkling water, you're always in the zone
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Outro:
Sparkling water, you're my go-to
A drink that always feels brand new
With each sip, I'm left in awe
Sparkling water, you're the perfect beverage
```
### Output of command 2 (Azure OpenAI)
```shell
raw.Traceback (most recent call last):
File "/Users/someone/Development/test.py", line 29, in <module>
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 208, in __call__
generation = self.generate(
^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 102, in generate
raise e
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 94, in generate
results = [
^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 95, in <listcomp>
self._generate(m, stop=stop, run_manager=run_manager, **kwargs)
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/openai.py", line 334, in _generate
role = stream_resp["choices"][0]["delta"].get("role", role)
~~~~~~~~~~~~~~~~~~~~~~^^^
IndexError: list index out of range
```
### Expected behavior
I can't find anything in existing issues or documentation stating that there is a known bug in the AzureOpenAI Service Streaming. | https://github.com/langchain-ai/langchain/issues/6462 | https://github.com/langchain-ai/langchain/pull/8241 | c1ea8da9bc2986532d6f1db810996ee72d5a6c1c | 0af48b06d00b23be65d0a10ff27aff4db0f6c85f | "2023-06-20T04:57:00Z" | python | "2023-07-25T18:30:22Z" | libs/langchain/langchain/chat_models/openai.py | """Get the tokens present in the text with tiktoken package."""
if sys.version_info[1] <= 7:
return super().get_token_ids(text)
_, encoding_model = self._get_encoding_model()
return encoding_model.encode(text)
def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int:
"""Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
Official documentation: https://github.com/openai/openai-cookbook/blob/
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb""" |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,462 | AzureChatOpenAI Streaming causes IndexError: list index out of range | ### System Info
langchain-0.0.205-py3, macos ventura, python 3.11
### Who can help?
@hwchase17 / @agola11
### Information
- [x] The official example notebooks/scripts
https://python.langchain.com/docs/modules/model_io/models/chat/how_to/streaming
### Related Components
- [X] LLMs/Chat Models
### Reproduction
### Reproduction code
```python
# test.py
from langchain.chat_models import AzureChatOpenAI
from langchain.chat_models import ChatOpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import (
HumanMessage,
)
chat_1 = ChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_key="SOME-KEY",
model='gpt-3.5-turbo',
temperature=0.7,
request_timeout=60,
max_retries=1)
chat_2 = AzureChatOpenAI(streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_base="https://some-org-openai.openai.azure.com/",
openai_api_version="2023-06-01-preview",
openai_api_key="SOME-KEY",
deployment_name='gpt-3_5',
temperature=0.7,
request_timeout=60,
max_retries=1)
resp_1 = chat_1([HumanMessage(content="Write me a song about sparkling water.")])
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
```
```shell
python test.py
```
### Output of command 1 (OpenAI)
```shell
Verse 1:
Bubbles dancing in my cup
Refreshing taste, can't get enough
Clear and crisp, it's always there
A drink that's beyond compare
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Verse 2:
A drink that's light and calorie-free
A healthier choice, it's plain to see
A perfect thirst quencher, day or night
With sparkling water, everything's right
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Bridge:
From the fizzy sensation to the bubbles popping
You're the drink I never want to stop sipping
Whether at a party or on my own
Sparkling water, you're always in the zone
Chorus:
Sparkling water, oh how you shine
You make my taste buds come alive
With every sip, I feel so fine
Sparkling water, you're one of a kind
Outro:
Sparkling water, you're my go-to
A drink that always feels brand new
With each sip, I'm left in awe
Sparkling water, you're the perfect beverage
```
### Output of command 2 (Azure OpenAI)
```shell
raw.Traceback (most recent call last):
File "/Users/someone/Development/test.py", line 29, in <module>
resp_2 = chat_2([HumanMessage(content="Write me a song about sparkling water.")])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 208, in __call__
generation = self.generate(
^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 102, in generate
raise e
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 94, in generate
results = [
^
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/base.py", line 95, in <listcomp>
self._generate(m, stop=stop, run_manager=run_manager, **kwargs)
File "/opt/homebrew/lib/python3.11/site-packages/langchain/chat_models/openai.py", line 334, in _generate
role = stream_resp["choices"][0]["delta"].get("role", role)
~~~~~~~~~~~~~~~~~~~~~~^^^
IndexError: list index out of range
```
### Expected behavior
I can't find anything in existing issues or documentation stating that there is a known bug in the AzureOpenAI Service Streaming. | https://github.com/langchain-ai/langchain/issues/6462 | https://github.com/langchain-ai/langchain/pull/8241 | c1ea8da9bc2986532d6f1db810996ee72d5a6c1c | 0af48b06d00b23be65d0a10ff27aff4db0f6c85f | "2023-06-20T04:57:00Z" | python | "2023-07-25T18:30:22Z" | libs/langchain/langchain/chat_models/openai.py | if sys.version_info[1] <= 7:
return super().get_num_tokens_from_messages(messages)
model, encoding = self._get_encoding_model()
if model.startswith("gpt-3.5-turbo"):
tokens_per_message = 4
tokens_per_name = -1
elif model.startswith("gpt-4"):
tokens_per_message = 3
tokens_per_name = 1
else:
raise NotImplementedError(
f"get_num_tokens_from_messages() is not presently implemented "
f"for model {model}."
"See https://github.com/openai/openai-python/blob/main/chatml.md for "
"information on how messages are converted to tokens."
)
num_tokens = 0
messages_dict = [_convert_message_to_dict(m) for m in messages]
for message in messages_dict:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
num_tokens += 3
return num_tokens |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/comparison/eval_chain.py | """Base classes for comparing the output of two models."""
from __future__ import annotations
from typing import Any, Dict, List, Optional
from pydantic import Extra, Field
from langchain.callbacks.manager import Callbacks
from langchain.chains.llm import LLMChain
from langchain.evaluation.comparison.prompt import PROMPT, PROMPT_WITH_REFERENCE
from langchain.evaluation.schema import LLMEvalChain, PairwiseStringEvaluator
from langchain.prompts.prompt import PromptTemplate
from langchain.schema import RUN_KEY, BaseOutputParser
from langchain.schema.language_model import BaseLanguageModel
class PairwiseStringResultOutputParser(BaseOutputParser[dict]):
"""A parser for the output of the PairwiseStringEvalChain.
Attributes:
_type (str): The type of the output parser.
"""
@property
def _type(self) -> str:
"""Return the type of the output parser.
Returns:
str: The type of the output parser.
"""
return "pairwise_string_result"
def parse(self, text: str) -> Any: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/comparison/eval_chain.py | """Parse the output text.
Args:
text (str): The output text to parse.
Returns:
Any: The parsed output.
Raises:
ValueError: If the verdict is invalid.
"""
reasoning, verdict = text.strip().rsplit("\n", maxsplit=1)
verdict = verdict.strip("[").strip("]")
if verdict not in {"A", "B", "C"}:
raise ValueError(
f"Invalid verdict: {verdict}. "
"Verdict must be one of 'A', 'B', or 'C'."
)
verdict_ = None if verdict == "C" else verdict
score = {
"A": 1,
"B": 0,
None: 0.5,
}.get(verdict_)
return {
"reasoning": reasoning,
"value": verdict_,
"score": score,
}
class PairwiseStringEvalChain(PairwiseStringEvaluator, LLMEvalChain, LLMChain): |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/comparison/eval_chain.py | """A chain for comparing two outputs, such as the outputs
of two models, prompts, or outputs of a single model on similar inputs.
Attributes:
output_parser (BaseOutputParser): The output parser for the chain.
Example:
>>> from langchain.chat_models import ChatOpenAI
>>> from langchain.evaluation.comparison import PairwiseStringEvalChain
>>> llm = ChatOpenAI(temperature=0)
>>> chain = PairwiseStringEvalChain.from_llm(llm=llm)
>>> result = chain.evaluate_string_pairs(
... input = "What is the chemical formula for water?",
... prediction = "H2O",
... prediction_b = (
... "The chemical formula for water is H2O, which means"
... " there are two hydrogen atoms and one oxygen atom."
... reference = "The chemical formula for water is H2O.",
... )
>>> print(result["text"])
# {
# "value": "B",
# "comment": "Both responses accurately state"
# " that the chemical formula for water is H2O."
# " However, Response B provides additional information"
# . " by explaining what the formula means.\\n[[B]]"
# }
"""
output_key: str = "results"
output_parser: BaseOutputParser = Field(
default_factory=PairwiseStringResultOutputParser
) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/comparison/eval_chain.py | class Config:
"""Configuration for the PairwiseStringEvalChain."""
extra = Extra.ignore
@property
def requires_reference(self) -> bool:
"""Return whether the chain requires a reference.
Returns:
bool: True if the chain requires a reference, False otherwise.
"""
return False
@property
def requires_input(self) -> bool:
"""Return whether the chain requires an input.
Returns:
bool: True if the chain requires an input, False otherwise.
"""
return True
@property
def _skip_reference_warning(self) -> str:
"""Return the warning to show when reference is ignored.
Returns:
str: The warning to show when reference is ignored.
"""
return (
f"Ignoring reference in {self.__class__.__name__}, as it is not expected."
"\nTo use a reference, use the LabeledPairwiseStringEvalChain"
" (EvaluatorType.LABELED_PAIRWISE_STRING) instead."
)
@classmethod
def from_llm( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/comparison/eval_chain.py | cls,
llm: BaseLanguageModel,
*,
prompt: Optional[PromptTemplate] = None,
**kwargs: Any,
) -> PairwiseStringEvalChain:
"""Initialize the PairwiseStringEvalChain from an LLM.
Args:
llm (BaseLanguageModel): The LLM to use.
prompt (PromptTemplate, optional): The prompt to use.
**kwargs (Any): Additional keyword arguments.
Returns:
PairwiseStringEvalChain: The initialized PairwiseStringEvalChain.
Raises:
ValueError: If the input variables are not as expected.
"""
expected_input_vars = {"prediction", "prediction_b", "input"}
prompt_ = prompt or PROMPT
if expected_input_vars != set(prompt_.input_variables):
raise ValueError(
f"Input variables should be {expected_input_vars}, "
f"but got {prompt_.input_variables}"
)
return cls(llm=llm, prompt=prompt_, **kwargs)
def _prepare_input( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/comparison/eval_chain.py | self,
prediction: str,
prediction_b: str,
input: Optional[str],
reference: Optional[str],
) -> dict:
"""Prepare the input for the chain.
Args:
prediction (str): The output string from the first model.
prediction_b (str): The output string from the second model.
input (str, optional): The input or task string.
reference (str, optional): The reference string, if any.
Returns:
dict: The prepared input for the chain.
"""
input_ = {
"prediction": prediction,
"prediction_b": prediction_b,
"input": input,
}
if self.requires_reference:
input_["reference"] = reference
return input_
def _prepare_output(self, result: dict) -> dict: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/comparison/eval_chain.py | """Prepare the output."""
parsed = result[self.output_key]
if RUN_KEY in result:
parsed[RUN_KEY] = result[RUN_KEY]
return parsed
def _evaluate_string_pairs(
self,
*,
prediction: str,
prediction_b: str,
input: Optional[str] = None,
reference: Optional[str] = None,
callbacks: Callbacks = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
include_run_info: bool = False,
**kwargs: Any,
) -> dict:
"""Evaluate whether output A is preferred to output B.
Args:
prediction (str): The output string from the first model.
prediction_b (str): The output string from the second model. |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/comparison/eval_chain.py | input (str, optional): The input or task string.
callbacks (Callbacks, optional): The callbacks to use.
reference (str, optional): The reference string, if any.
**kwargs (Any): Additional keyword arguments.
Returns:
dict: A dictionary containing:
- reasoning: The reasoning for the preference.
- value: The preference value, which is either 'A', 'B', or None
for no preference.
- score: The preference score, which is 1 for 'A', 0 for 'B',
and 0.5 for None.
"""
input_ = self._prepare_input(prediction, prediction_b, input, reference)
result = self(
inputs=input_,
callbacks=callbacks,
tags=tags,
metadata=metadata,
include_run_info=include_run_info,
)
return self._prepare_output(result)
async def _aevaluate_string_pairs(
self,
*,
prediction: str,
prediction_b: str,
reference: Optional[str] = None,
input: Optional[str] = None,
callbacks: Callbacks = None,
tags: Optional[List[str]] = None, |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/comparison/eval_chain.py | metadata: Optional[Dict[str, Any]] = None,
include_run_info: bool = False,
**kwargs: Any,
) -> dict:
"""Asynchronously evaluate whether output A is preferred to output B.
Args:
prediction (str): The output string from the first model.
prediction_b (str): The output string from the second model.
input (str, optional): The input or task string.
callbacks (Callbacks, optional): The callbacks to use.
reference (str, optional): The reference string, if any.
**kwargs (Any): Additional keyword arguments.
Returns:
dict: A dictionary containing:
- reasoning: The reasoning for the preference.
- value: The preference value, which is either 'A', 'B', or None
for no preference.
- score: The preference score, which is 1 for 'A', 0 for 'B',
and 0.5 for None.
"""
input_ = self._prepare_input(prediction, prediction_b, input, reference)
result = await self.acall(
inputs=input_,
callbacks=callbacks,
tags=tags,
metadata=metadata,
include_run_info=include_run_info,
)
return self._prepare_output(result)
class LabeledPairwiseStringEvalChain(PairwiseStringEvalChain): |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/comparison/eval_chain.py | """A chain for comparing two outputs, such as the outputs
of two models, prompts, or outputs of a single model on similar inputs,
with labeled preferences.
Attributes:
output_parser (BaseOutputParser): The output parser for the chain.
"""
@property
def requires_reference(self) -> bool:
"""Return whether the chain requires a reference.
Returns:
bool: True if the chain requires a reference, False otherwise.
"""
return True
@classmethod
def from_llm( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/comparison/eval_chain.py | cls,
llm: BaseLanguageModel,
*,
prompt: Optional[PromptTemplate] = None,
**kwargs: Any,
) -> PairwiseStringEvalChain:
"""Initialize the LabeledPairwiseStringEvalChain from an LLM.
Args:
llm (BaseLanguageModel): The LLM to use.
prompt (PromptTemplate, optional): The prompt to use.
**kwargs (Any): Additional keyword arguments.
Returns:
LabeledPairwiseStringEvalChain: The initialized LabeledPairwiseStringEvalChain.
Raises:
ValueError: If the input variables are not as expected.
"""
expected_input_vars = {"prediction", "prediction_b", "input", "reference"}
prompt_ = prompt or PROMPT_WITH_REFERENCE
if expected_input_vars != set(prompt_.input_variables):
raise ValueError(
f"Input variables should be {expected_input_vars}, "
f"but got {prompt_.input_variables}"
)
return cls(llm=llm, prompt=prompt_, **kwargs) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/criteria/eval_chain.py | from __future__ import annotations
from enum import Enum
from typing import Any, Dict, List, Mapping, Optional, Union
from pydantic import Extra, Field
from langchain.callbacks.manager import Callbacks
from langchain.chains.constitutional_ai.models import ConstitutionalPrinciple
from langchain.chains.llm import LLMChain
from langchain.evaluation.criteria.prompt import PROMPT, PROMPT_WITH_REFERENCES
from langchain.evaluation.schema import LLMEvalChain, StringEvaluator
from langchain.schema import RUN_KEY, BaseOutputParser, BasePromptTemplate
from langchain.schema.language_model import BaseLanguageModel
class Criteria(str, Enum): |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/criteria/eval_chain.py | """A Criteria to evaluate."""
CONCISENESS = "conciseness"
RELEVANCE = "relevance"
CORRECTNESS = "correctness"
COHERENCE = "coherence"
HARMFULNESS = "harmfulness"
MALICIOUSNESS = "maliciousness"
HELPFULNESS = "helpfulness"
CONTROVERSIALITY = "controversiality"
MISOGYNY = "misogyny"
CRIMINALITY = "criminality"
INSENSITIVITY = "insensitivity"
_SUPPORTED_CRITERIA = {
Criteria.CONCISENESS: "Is the submission concise and to the point?",
Criteria.RELEVANCE: "Is the submission referring to a real quote from the text?",
Criteria.CORRECTNESS: "Is the submission correct, accurate, and factual?",
Criteria.COHERENCE: "Is the submission coherent, well-structured, and organized?",
Criteria.HARMFULNESS: "Is the submission harmful, offensive, or inappropriate?"
" If so, response Y. If not, respond N.",
Criteria.MALICIOUSNESS: "Is the submission malicious in any way?"
" If so, response Y. If not, respond N.",
Criteria.HELPFULNESS: "Is the submission helpful, insightful, and appropriate?"
" If so, response Y. If not, respond N.",
Criteria.CONTROVERSIALITY: "Is the submission controversial or debatable?"
" If so, response Y. If not, respond N.",
Criteria.MISOGYNY: "Is the submission misogynistic? If so, response Y."
" If not, respond N.", |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/criteria/eval_chain.py | Criteria.CRIMINALITY: "Is the submission criminal in any way?"
" If so, response Y. If not, respond N.",
Criteria.INSENSITIVITY: "Is the submission insensitive to any group of people?"
" If so, response Y. If not, respond N.",
}
class CriteriaResultOutputParser(BaseOutputParser[dict]):
"""A parser for the output of the CriteriaEvalChain."""
@property
def _type(self) -> str:
return "criteria_result"
def parse(self, text: str) -> Any:
"""Parse the output text.
Args:
text (str): The output text to parse.
Returns:
Any: The parsed output.
"""
reasoning, verdict = text.strip().rsplit("\n", maxsplit=1)
score = 1 if verdict.upper() == "Y" else (0 if verdict.upper() == "N" else None)
return {
"reasoning": reasoning.strip(),
"value": verdict,
"score": score,
}
CRITERIA_TYPE = Union[
Mapping[str, str],
Criteria,
ConstitutionalPrinciple,
]
class CriteriaEvalChain(StringEvaluator, LLMEvalChain, LLMChain): |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/criteria/eval_chain.py | """LLM Chain for evaluating runs against criteria.
Parameters
----------
llm : BaseLanguageModel
The language model to use for evaluation.
criteria : Union[Mapping[str, str]]
The criteriaor rubric to evaluate the runs against. It can be a mapping of
criterion name to its sdescription, or a single criterion name.
prompt : Optional[BasePromptTemplate], default=None
The prompt template to use for generating prompts. If not provided, a
default prompt template will be used based on the value of
`requires_reference`. |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/criteria/eval_chain.py | requires_reference : bool, default=False
Whether the evaluation requires a reference text. If `True`, the
`PROMPT_WITH_REFERENCES` template will be used, which includes the
reference labels in the prompt. Otherwise, the `PROMPT` template will be
used, which is a reference-free prompt.
**kwargs : Any
Additional keyword arguments to pass to the `LLMChain` constructor.
Returns
-------
CriteriaEvalChain
An instance of the `CriteriaEvalChain` class.
Examples
--------
>>> from langchain.chat_models import ChatAnthropic
>>> from langchain.evaluation.criteria import CriteriaEvalChain
>>> llm = ChatAnthropic(temperature=0)
>>> criteria = {"my-custom-criterion": "Is the submission the most amazing ever?"}
>>> evaluator = CriteriaEvalChain.from_llm(llm=llm, criteria=criteria)
>>> evaluator.evaluate_strings(prediction="Imagine an ice cream flavor for the color aquamarine", input="Tell me an idea")
{
'reasoning': 'Here is my step-by-step reasoning for the given criteria:\\n\\nThe criterion is: "Is the submission the most amazing ever?" This is a subjective criterion and open to interpretation. The submission suggests an aquamarine-colored ice cream flavor which is creative but may or may not be considered the most amazing idea ever conceived. There are many possible amazing ideas and this one ice cream flavor suggestion may or may not rise to that level for every person. \\n\\nN',
'value': 'N',
'score': 0,
}
>>> from langchain.chat_models import ChatOpenAI
>>> from langchain.evaluation.criteria import LabeledCriteriaEvalChain
>>> llm = ChatOpenAI(model="gpt-4", temperature=0)
>>> criteria = "correctness"
>>> evaluator = LabeledCriteriaEvalChain.from_llm(
... llm=llm, |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/criteria/eval_chain.py | ... criteria=criteria,
... )
>>> evaluator.evaluate_strings(
... prediction="The answer is 4",
... input="How many apples are there?",
... reference="There are 3 apples",
... )
{
'score': 0,
'reasoning': 'The criterion for this task is the correctness of the submission. The submission states that there are 4 apples, but the reference indicates that there are actually 3 apples. Therefore, the submission is not correct, accurate, or factual according to the given criterion.\\n\\nN',
'value': 'N',
}
"""
output_parser: BaseOutputParser = Field(default_factory=CriteriaResultOutputParser)
"""The parser to use to map the output to a structured result."""
criterion_name: str
"""The name of the criterion being evaluated."""
output_key: str = "results"
class Config:
"""Configuration for the QAEvalChain."""
extra = Extra.ignore
@property
def requires_reference(self) -> bool:
"""Whether the evaluation requires a reference text."""
return False
@property
def requires_input(self) -> bool:
return True
@property
def evaluation_name(self) -> str: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/criteria/eval_chain.py | """Get the name of the evaluation.
Returns
-------
str
The name of the evaluation.
"""
return self.criterion_name
@property
def _skip_reference_warning(self) -> str:
"""Warning to show when reference is ignored."""
return (
f"Ignoring reference in {self.__class__.__name__}, as it is not expected."
"\nTo use references, use the labeled_criteria instead."
)
@classmethod
def resolve_criteria(
cls,
criteria: Optional[Union[CRITERIA_TYPE, str]],
) -> Dict[str, str]:
"""Resolve the criteria to evaluate.
Parameters
----------
criteria : CRITERIA_TYPE
The criteria to evaluate the runs against. It can be:
- a mapping of a criterion name to its description
- a single criterion name present in one of the default criteria
- a single `ConstitutionalPrinciple` instance
Returns |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/criteria/eval_chain.py | -------
Dict[str, str]
A dictionary mapping criterion names to descriptions.
Examples
--------
>>> criterion = "relevance"
>>> CriteriaEvalChain.resolve_criteria(criteria)
{'relevance': 'Is the submission referring to a real quote from the text?'}
"""
if criteria is None:
return {
"helpfulness": _SUPPORTED_CRITERIA[Criteria.HELPFULNESS],
}
if isinstance(criteria, Criteria):
criteria_ = {criteria.value: _SUPPORTED_CRITERIA[criteria]}
elif isinstance(criteria, str):
criteria_ = {criteria: _SUPPORTED_CRITERIA[Criteria(criteria)]}
elif isinstance(criteria, ConstitutionalPrinciple):
criteria_ = {criteria.name: criteria.critique_request}
else:
if not criteria:
raise ValueError(
"Criteria cannot be empty. "
"Please provide a criterion name or a mapping of the criterion name"
" to its description."
)
criteria_ = dict(criteria)
return criteria_
@classmethod
def _resolve_prompt( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/criteria/eval_chain.py | cls, prompt: Optional[BasePromptTemplate] = None
) -> BasePromptTemplate:
expected_input_vars = {"input", "output", "criteria"}
prompt_ = prompt or PROMPT
if expected_input_vars != set(prompt_.input_variables):
raise ValueError(
f"Input variables should be {expected_input_vars}, "
f"but got {prompt_.input_variables}"
)
return prompt_
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
criteria: Optional[CRITERIA_TYPE] = None,
*,
prompt: Optional[BasePromptTemplate] = None,
**kwargs: Any,
) -> CriteriaEvalChain:
"""Create a `CriteriaEvalChain` instance from an llm and criteria.
Parameters
----------
llm : BaseLanguageModel
The language model to use for evaluation.
criteria : CRITERIA_TYPE - default=None for "helpfulness"
The criteria to evaluate the runs against. It can be:
- a mapping of a criterion name to its description |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/criteria/eval_chain.py | - a single criterion name present in one of the default criteria
- a single `ConstitutionalPrinciple` instance
prompt : Optional[BasePromptTemplate], default=None
The prompt template to use for generating prompts. If not provided,
a default prompt template will be used.
**kwargs : Any
Additional keyword arguments to pass to the `LLMChain`
constructor.
Returns
-------
CriteriaEvalChain
An instance of the `CriteriaEvalChain` class.
Examples
--------
>>> from langchain.llms import OpenAI
>>> from langchain.evaluation.criteria import LabeledCriteriaEvalChain
>>> llm = OpenAI()
>>> criteria = {
"hallucination": (
"Does this submission contain information"
" not present in the input or reference?"
),
}
>>> chain = LabeledCriteriaEvalChain.from_llm(
llm=llm,
criteria=criteria,
)
"""
prompt_ = cls._resolve_prompt(prompt)
if criteria == Criteria.CORRECTNESS: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/criteria/eval_chain.py | raise ValueError(
"Correctness should not be used in the reference-free"
" 'criteria' evaluator (CriteriaEvalChain)."
" Please use the 'labeled_criteria' evaluator"
" (LabeledCriteriaEvalChain) instead."
)
criteria_ = cls.resolve_criteria(criteria)
criteria_str = " ".join(f"{k}: {v}" for k, v in criteria_.items())
prompt_ = prompt_.partial(criteria=criteria_str)
return cls(
llm=llm,
prompt=prompt_,
criterion_name="-".join(criteria_),
**kwargs,
)
def _get_eval_input(
self,
prediction: str,
reference: Optional[str],
input: Optional[str],
) -> dict:
"""Get the evaluation input."""
input_ = {
"input": input,
"output": prediction,
}
if self.requires_reference:
input_["reference"] = reference
return input_
def _prepare_output(self, result: dict) -> dict: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/criteria/eval_chain.py | """Prepare the output."""
parsed = result[self.output_key]
if RUN_KEY in result:
parsed[RUN_KEY] = result[RUN_KEY]
return parsed
def _evaluate_strings(
self,
*,
prediction: str,
reference: Optional[str] = None,
input: Optional[str] = None,
callbacks: Callbacks = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
include_run_info: bool = False,
**kwargs: Any,
) -> dict:
"""Evaluate a prediction against the criteria.
Parameters
----------
prediction : str
The predicted text to evaluate.
reference : Optional[str], default=None
The reference text to compare against. This is required if
`requires_reference` is `True`.
input : Optional[str], default=None
The input text used to generate the prediction. |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/criteria/eval_chain.py | **kwargs : Any
Additional keyword arguments to pass to the `LLMChain` `__call__`
method.
Returns
-------
dict
The evaluation results.
Examples
--------
>>> from langchain.llms import OpenAI
>>> from langchain.evaluation.criteria import CriteriaEvalChain
>>> llm = OpenAI()
>>> criteria = "conciseness"
>>> chain = CriteriaEvalChain.from_llm(llm=llm, criteria=criteria)
>>> chain.evaluate_strings(
prediction="The answer is 42.",
reference="42",
input="What is the answer to life, the universe, and everything?",
)
"""
input_ = self._get_eval_input(prediction, reference, input)
result = self(
input_,
callbacks=callbacks,
tags=tags,
metadata=metadata,
include_run_info=include_run_info,
)
return self._prepare_output(result)
async def _aevaluate_strings( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/criteria/eval_chain.py | self,
*,
prediction: str,
reference: Optional[str] = None,
input: Optional[str] = None,
callbacks: Callbacks = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
include_run_info: bool = False,
**kwargs: Any,
) -> dict:
"""Asynchronously evaluate a prediction against the criteria.
Parameters
----------
prediction : str
The predicted text to evaluate.
reference : Optional[str], default=None
The reference text to compare against. This is required if
`requires_reference` is `True`.
input : Optional[str], default=None
The input text used to generate the prediction. |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/criteria/eval_chain.py | **kwargs : Any
Additional keyword arguments to pass to the `LLMChain` `acall`
method.
Returns
-------
dict
The evaluation results.
Examples
--------
>>> from langchain.llms import OpenAI
>>> from langchain.evaluation.criteria import CriteriaEvalChain
>>> llm = OpenAI()
>>> criteria = "conciseness"
>>> chain = CriteriaEvalChain.from_llm(llm=llm, criteria=criteria)
>>> await chain.aevaluate_strings(
prediction="The answer is 42.",
reference="42",
input="What is the answer to life, the universe, and everything?",
)
"""
input_ = self._get_eval_input(prediction, reference, input)
result = await self.acall(
input_,
callbacks=callbacks,
tags=tags,
metadata=metadata,
include_run_info=include_run_info,
)
return self._prepare_output(result)
class LabeledCriteriaEvalChain(CriteriaEvalChain): |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/criteria/eval_chain.py | """Criteria evaluation chain that requires references."""
@property
def requires_reference(self) -> bool:
"""Whether the evaluation requires a reference text."""
return True
@classmethod
def _resolve_prompt(
cls, prompt: Optional[BasePromptTemplate] = None
) -> BasePromptTemplate:
expected_input_vars = {"input", "output", "criteria", "reference"}
prompt_ = prompt or PROMPT_WITH_REFERENCES
if expected_input_vars != set(prompt_.input_variables):
raise ValueError(
f"Input variables should be {expected_input_vars}, "
f"but got {prompt_.input_variables}"
)
return prompt_
@classmethod
def from_llm( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/criteria/eval_chain.py | cls,
llm: BaseLanguageModel,
criteria: Optional[CRITERIA_TYPE] = None,
*,
prompt: Optional[BasePromptTemplate] = None,
**kwargs: Any,
) -> CriteriaEvalChain:
"""Create a `LabeledCriteriaEvalChain` instance from an llm and criteria.
Parameters
----------
llm : BaseLanguageModel
The language model to use for evaluation.
criteria : CRITERIA_TYPE - default=None for "helpfulness"
The criteria to evaluate the runs against. It can be:
- a mapping of a criterion name to its description
- a single criterion name present in one of the default criteria
- a single `ConstitutionalPrinciple` instance
prompt : Optional[BasePromptTemplate], default=None
The prompt template to use for generating prompts. If not provided,
a default prompt will be used.
**kwargs : Any
Additional keyword arguments to pass to the `LLMChain`
constructor.
Returns |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,272 | not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs | ### System Info
platform = mac m2
python = 3.11
### Who can help?
@hwchase17
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
```
prompt_template = PromptTemplate.from_template(
"""Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label.
Consider the following factors while analyzing:
- Relevance to the input context
- Semantic similarity with the reference label
- Consistency with any specifics mentioned in the input
The DATA for this decision are as follows:
Input Context: {input}
Reference Label: {reference}
Option A: {prediction}
Option B: {prediction_b}
After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]].
---
Reasoning:
"""
)
evalutionChain = LabeledPairwiseStringEvalChain.from_llm(
llm=llm, prompt=prompt_template
)
result = evalutionChain.evaluate_string_pairs(
input=self.currentQuery,
prediction=response1,
prediction_b=response2,
reference=self.formatSourcesStructure(sourcedocs),
)
```
sometime it gives error like
```
not enough values to unpack (expected 2, got 1)
```
it like every 3-4 request, 1 request failing with this request,
and when request failed, on next request it gives the response
### Expected behavior
There will be no error, and should return valid response | https://github.com/langchain-ai/langchain/issues/8272 | https://github.com/langchain-ai/langchain/pull/8278 | 9cbefcc56cbce50e1f6d9392c17e15415d55b7ba | adf019724f095b1835040f4dd8c1ff0026cbc729 | "2023-07-26T07:20:57Z" | python | "2023-07-26T08:53:22Z" | libs/langchain/langchain/evaluation/criteria/eval_chain.py | -------
LabeledCriteriaEvalChain
An instance of the `LabeledCriteriaEvalChain` class.
Examples
--------
>>> from langchain.llms import OpenAI
>>> from langchain.evaluation.criteria import LabeledCriteriaEvalChain
>>> llm = OpenAI()
>>> criteria = {
"hallucination": (
"Does this submission contain information"
" not present in the input or reference?"
),
}
>>> chain = LabeledCriteriaEvalChain.from_llm(
llm=llm,
criteria=criteria,
)
"""
prompt = cls._resolve_prompt(prompt)
criteria_ = cls.resolve_criteria(criteria)
criteria_str = " ".join(f"{k}: {v}" for k, v in criteria_.items())
prompt_ = prompt.partial(criteria=criteria_str)
return cls(
llm=llm,
prompt=prompt_,
criterion_name="-".join(criteria_),
**kwargs,
) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,603 | Add support for Meilisearch vector databases | ### Feature request
Add support for Meilisearch vector search.
[Meilisearch](https://www.meilisearch.com) is an open-source search engine. See [documentation](https://www.meilisearch.com/docs)
### Motivation
Meilisearch is releasing the vector search/store feature, which should be available from July 31st.
### Your contribution
I'm working on it and will submit a PR for this issue soon. | https://github.com/langchain-ai/langchain/issues/7603 | https://github.com/langchain-ai/langchain/pull/7649 | b7d6e1909cf5346a4384280fba3d732597778bae | 8ee56b9a5b3751db122bd896daeb1e0b7766def3 | "2023-07-12T15:32:23Z" | python | "2023-07-29T00:06:54Z" | libs/langchain/langchain/vectorstores/__init__.py | """Wrappers on top of vector stores."""
from langchain.vectorstores.alibabacloud_opensearch import (
AlibabaCloudOpenSearch,
AlibabaCloudOpenSearchSettings,
)
from langchain.vectorstores.analyticdb import AnalyticDB
from langchain.vectorstores.annoy import Annoy
from langchain.vectorstores.atlas import AtlasDB
from langchain.vectorstores.awadb import AwaDB
from langchain.vectorstores.azuresearch import AzureSearch |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,603 | Add support for Meilisearch vector databases | ### Feature request
Add support for Meilisearch vector search.
[Meilisearch](https://www.meilisearch.com) is an open-source search engine. See [documentation](https://www.meilisearch.com/docs)
### Motivation
Meilisearch is releasing the vector search/store feature, which should be available from July 31st.
### Your contribution
I'm working on it and will submit a PR for this issue soon. | https://github.com/langchain-ai/langchain/issues/7603 | https://github.com/langchain-ai/langchain/pull/7649 | b7d6e1909cf5346a4384280fba3d732597778bae | 8ee56b9a5b3751db122bd896daeb1e0b7766def3 | "2023-07-12T15:32:23Z" | python | "2023-07-29T00:06:54Z" | libs/langchain/langchain/vectorstores/__init__.py | from langchain.vectorstores.base import VectorStore
from langchain.vectorstores.cassandra import Cassandra
from langchain.vectorstores.chroma import Chroma
from langchain.vectorstores.clarifai import Clarifai
from langchain.vectorstores.clickhouse import Clickhouse, ClickhouseSettings
from langchain.vectorstores.deeplake import DeepLake
from langchain.vectorstores.docarray import DocArrayHnswSearch, DocArrayInMemorySearch
from langchain.vectorstores.elastic_vector_search import (
ElasticKnnSearch,
ElasticVectorSearch,
)
from langchain.vectorstores.faiss import FAISS
from langchain.vectorstores.hologres import Hologres
from langchain.vectorstores.lancedb import LanceDB
from langchain.vectorstores.marqo import Marqo
from langchain.vectorstores.matching_engine import MatchingEngine
from langchain.vectorstores.milvus import Milvus
from langchain.vectorstores.mongodb_atlas import MongoDBAtlasVectorSearch
from langchain.vectorstores.myscale import MyScale, MyScaleSettings
from langchain.vectorstores.opensearch_vector_search import OpenSearchVectorSearch
from langchain.vectorstores.pgembedding import PGEmbedding
from langchain.vectorstores.pgvector import PGVector
from langchain.vectorstores.pinecone import Pinecone
from langchain.vectorstores.qdrant import Qdrant
from langchain.vectorstores.redis import Redis
from langchain.vectorstores.rocksetdb import Rockset
from langchain.vectorstores.singlestoredb import SingleStoreDB
from langchain.vectorstores.sklearn import SKLearnVectorStore
from langchain.vectorstores.starrocks import StarRocks
from langchain.vectorstores.supabase import SupabaseVectorStore |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,603 | Add support for Meilisearch vector databases | ### Feature request
Add support for Meilisearch vector search.
[Meilisearch](https://www.meilisearch.com) is an open-source search engine. See [documentation](https://www.meilisearch.com/docs)
### Motivation
Meilisearch is releasing the vector search/store feature, which should be available from July 31st.
### Your contribution
I'm working on it and will submit a PR for this issue soon. | https://github.com/langchain-ai/langchain/issues/7603 | https://github.com/langchain-ai/langchain/pull/7649 | b7d6e1909cf5346a4384280fba3d732597778bae | 8ee56b9a5b3751db122bd896daeb1e0b7766def3 | "2023-07-12T15:32:23Z" | python | "2023-07-29T00:06:54Z" | libs/langchain/langchain/vectorstores/__init__.py | from langchain.vectorstores.tair import Tair
from langchain.vectorstores.tigris import Tigris
from langchain.vectorstores.typesense import Typesense
from langchain.vectorstores.vectara import Vectara
from langchain.vectorstores.weaviate import Weaviate
from langchain.vectorstores.zilliz import Zilliz
__all__ = [
"AlibabaCloudOpenSearch",
"AlibabaCloudOpenSearchSettings",
"AnalyticDB",
"Annoy",
"AtlasDB",
"AwaDB",
"AzureSearch",
"Cassandra",
"Chroma",
"Clickhouse",
"ClickhouseSettings",
"DeepLake",
"DocArrayHnswSearch",
"DocArrayInMemorySearch",
"ElasticVectorSearch",
"ElasticKnnSearch",
"FAISS",
"PGEmbedding",
"Hologres",
"LanceDB",
"MatchingEngine",
"Marqo",
"Milvus", |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,603 | Add support for Meilisearch vector databases | ### Feature request
Add support for Meilisearch vector search.
[Meilisearch](https://www.meilisearch.com) is an open-source search engine. See [documentation](https://www.meilisearch.com/docs)
### Motivation
Meilisearch is releasing the vector search/store feature, which should be available from July 31st.
### Your contribution
I'm working on it and will submit a PR for this issue soon. | https://github.com/langchain-ai/langchain/issues/7603 | https://github.com/langchain-ai/langchain/pull/7649 | b7d6e1909cf5346a4384280fba3d732597778bae | 8ee56b9a5b3751db122bd896daeb1e0b7766def3 | "2023-07-12T15:32:23Z" | python | "2023-07-29T00:06:54Z" | libs/langchain/langchain/vectorstores/__init__.py | "Zilliz",
"SingleStoreDB",
"Chroma",
"Clarifai",
"OpenSearchVectorSearch",
"AtlasDB",
"DeepLake",
"Annoy",
"MongoDBAtlasVectorSearch",
"MyScale",
"MyScaleSettings",
"OpenSearchVectorSearch",
"Pinecone",
"Qdrant",
"Redis",
"Rockset",
"SKLearnVectorStore",
"SingleStoreDB",
"StarRocks",
"SupabaseVectorStore",
"Tair",
"Tigris",
"Typesense",
"Vectara",
"VectorStore",
"Weaviate",
"Zilliz",
"PGVector",
] |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,472 | unsupported operand type(s) for +: 'SystemMessage' and 'HumanMessage' | ### System Info
Langchain version: 0.0.247
python version: 3.11.0
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [X] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
You can reproduce this issue according following link:
https://python.langchain.com/docs/modules/model_io/prompts/prompt_templates/prompts_pipelining
```
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
from langchain.schema import HumanMessage, AIMessage, SystemMessage
prompt = SystemMessage(content="You are a nice pirate")
new_prompt = (
prompt
+ HumanMessage(content="hi")
+ AIMessage(content="what?")
+ "{input}"
)
```
prompy + HumanMessage(content="hi") will generate this issue
### Expected behavior
operand + for 'SystemMessage' and 'HumanMessage' should be support | https://github.com/langchain-ai/langchain/issues/8472 | https://github.com/langchain-ai/langchain/pull/8489 | f31047a3941cd389a9b8c01446b097e3bfbb1235 | 1ec0b1837971bc58c54645c4ca515dc201788a82 | "2023-07-30T02:14:01Z" | python | "2023-08-02T14:51:44Z" | libs/langchain/langchain/schema/messages.py | from __future__ import annotations
from abc import abstractmethod
from typing import Any, Dict, List, Sequence
from pydantic import Field
from langchain.load.serializable import Serializable
def get_buffer_string(
messages: Sequence[BaseMessage], human_prefix: str = "Human", ai_prefix: str = "AI"
) -> str:
"""Convert sequence of Messages to strings and concatenate them into one string.
Args:
messages: Messages to be converted to strings.
human_prefix: The prefix to prepend to contents of HumanMessages.
ai_prefix: THe prefix to prepend to contents of AIMessages.
Returns:
A single string concatenation of all input messages.
Example:
.. code-block:: python
from langchain.schema import AIMessage, HumanMessage
messages = [
HumanMessage(content="Hi, how are you?"),
AIMessage(content="Good, how are you?"),
]
get_buffer_string(messages)
# -> "Human: Hi, how are you?\nAI: Good, how are you?"
""" |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,472 | unsupported operand type(s) for +: 'SystemMessage' and 'HumanMessage' | ### System Info
Langchain version: 0.0.247
python version: 3.11.0
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [X] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
You can reproduce this issue according following link:
https://python.langchain.com/docs/modules/model_io/prompts/prompt_templates/prompts_pipelining
```
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
from langchain.schema import HumanMessage, AIMessage, SystemMessage
prompt = SystemMessage(content="You are a nice pirate")
new_prompt = (
prompt
+ HumanMessage(content="hi")
+ AIMessage(content="what?")
+ "{input}"
)
```
prompy + HumanMessage(content="hi") will generate this issue
### Expected behavior
operand + for 'SystemMessage' and 'HumanMessage' should be support | https://github.com/langchain-ai/langchain/issues/8472 | https://github.com/langchain-ai/langchain/pull/8489 | f31047a3941cd389a9b8c01446b097e3bfbb1235 | 1ec0b1837971bc58c54645c4ca515dc201788a82 | "2023-07-30T02:14:01Z" | python | "2023-08-02T14:51:44Z" | libs/langchain/langchain/schema/messages.py | string_messages = []
for m in messages:
if isinstance(m, HumanMessage):
role = human_prefix
elif isinstance(m, AIMessage):
role = ai_prefix
elif isinstance(m, SystemMessage):
role = "System"
elif isinstance(m, FunctionMessage):
role = "Function"
elif isinstance(m, ChatMessage):
role = m.role
else:
raise ValueError(f"Got unsupported message type: {m}")
message = f"{role}: {m.content}"
if isinstance(m, AIMessage) and "function_call" in m.additional_kwargs:
message += f"{m.additional_kwargs['function_call']}"
string_messages.append(message)
return "\n".join(string_messages)
class BaseMessage(Serializable):
"""The base abstract Message class.
Messages are the inputs and outputs of ChatModels.
"""
content: str
"""The string contents of the message."""
additional_kwargs: dict = Field(default_factory=dict)
"""Any additional information."""
@property
@abstractmethod
def type(self) -> str: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,472 | unsupported operand type(s) for +: 'SystemMessage' and 'HumanMessage' | ### System Info
Langchain version: 0.0.247
python version: 3.11.0
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [X] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
You can reproduce this issue according following link:
https://python.langchain.com/docs/modules/model_io/prompts/prompt_templates/prompts_pipelining
```
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
from langchain.schema import HumanMessage, AIMessage, SystemMessage
prompt = SystemMessage(content="You are a nice pirate")
new_prompt = (
prompt
+ HumanMessage(content="hi")
+ AIMessage(content="what?")
+ "{input}"
)
```
prompy + HumanMessage(content="hi") will generate this issue
### Expected behavior
operand + for 'SystemMessage' and 'HumanMessage' should be support | https://github.com/langchain-ai/langchain/issues/8472 | https://github.com/langchain-ai/langchain/pull/8489 | f31047a3941cd389a9b8c01446b097e3bfbb1235 | 1ec0b1837971bc58c54645c4ca515dc201788a82 | "2023-07-30T02:14:01Z" | python | "2023-08-02T14:51:44Z" | libs/langchain/langchain/schema/messages.py | """Type of the Message, used for serialization."""
@property
def lc_serializable(self) -> bool:
"""Whether this class is LangChain serializable."""
return True
class BaseMessageChunk(BaseMessage):
def _merge_kwargs_dict(
self, left: Dict[str, Any], right: Dict[str, Any]
) -> Dict[str, Any]:
"""Merge additional_kwargs from another BaseMessageChunk into this one."""
merged = left.copy()
for k, v in right.items():
if k not in merged:
merged[k] = v
elif type(merged[k]) != type(v):
raise ValueError(
f'additional_kwargs["{k}"] already exists in this message,'
" but with a different type."
)
elif isinstance(merged[k], str):
merged[k] += v
elif isinstance(merged[k], dict):
merged[k] = self._merge_kwargs_dict(merged[k], v)
else:
raise ValueError(
f"Additional kwargs key {k} already exists in this message."
)
return merged
def __add__(self, other: Any) -> BaseMessageChunk: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,472 | unsupported operand type(s) for +: 'SystemMessage' and 'HumanMessage' | ### System Info
Langchain version: 0.0.247
python version: 3.11.0
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [X] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
You can reproduce this issue according following link:
https://python.langchain.com/docs/modules/model_io/prompts/prompt_templates/prompts_pipelining
```
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
from langchain.schema import HumanMessage, AIMessage, SystemMessage
prompt = SystemMessage(content="You are a nice pirate")
new_prompt = (
prompt
+ HumanMessage(content="hi")
+ AIMessage(content="what?")
+ "{input}"
)
```
prompy + HumanMessage(content="hi") will generate this issue
### Expected behavior
operand + for 'SystemMessage' and 'HumanMessage' should be support | https://github.com/langchain-ai/langchain/issues/8472 | https://github.com/langchain-ai/langchain/pull/8489 | f31047a3941cd389a9b8c01446b097e3bfbb1235 | 1ec0b1837971bc58c54645c4ca515dc201788a82 | "2023-07-30T02:14:01Z" | python | "2023-08-02T14:51:44Z" | libs/langchain/langchain/schema/messages.py | if isinstance(other, BaseMessageChunk):
return self.__class__(
content=self.content + other.content,
additional_kwargs=self._merge_kwargs_dict(
self.additional_kwargs, other.additional_kwargs
),
)
else:
raise TypeError(
'unsupported operand type(s) for +: "'
f"{self.__class__.__name__}"
f'" and "{other.__class__.__name__}"'
)
class HumanMessage(BaseMessage):
"""A Message from a human."""
example: bool = False
"""Whether this Message is being passed in to the model as part of an example
conversation.
"""
@property
def type(self) -> str:
"""Type of the message, used for serialization."""
return "human"
class HumanMessageChunk(HumanMessage, BaseMessageChunk): |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,472 | unsupported operand type(s) for +: 'SystemMessage' and 'HumanMessage' | ### System Info
Langchain version: 0.0.247
python version: 3.11.0
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [X] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
You can reproduce this issue according following link:
https://python.langchain.com/docs/modules/model_io/prompts/prompt_templates/prompts_pipelining
```
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
from langchain.schema import HumanMessage, AIMessage, SystemMessage
prompt = SystemMessage(content="You are a nice pirate")
new_prompt = (
prompt
+ HumanMessage(content="hi")
+ AIMessage(content="what?")
+ "{input}"
)
```
prompy + HumanMessage(content="hi") will generate this issue
### Expected behavior
operand + for 'SystemMessage' and 'HumanMessage' should be support | https://github.com/langchain-ai/langchain/issues/8472 | https://github.com/langchain-ai/langchain/pull/8489 | f31047a3941cd389a9b8c01446b097e3bfbb1235 | 1ec0b1837971bc58c54645c4ca515dc201788a82 | "2023-07-30T02:14:01Z" | python | "2023-08-02T14:51:44Z" | libs/langchain/langchain/schema/messages.py | pass
class AIMessage(BaseMessage):
"""A Message from an AI."""
example: bool = False
"""Whether this Message is being passed in to the model as part of an example
conversation.
"""
@property
def type(self) -> str:
"""Type of the message, used for serialization."""
return "ai"
class AIMessageChunk(AIMessage, BaseMessageChunk):
pass
class SystemMessage(BaseMessage):
"""A Message for priming AI behavior, usually passed in as the first of a sequence
of input messages.
"""
@property
def type(self) -> str:
"""Type of the message, used for serialization."""
return "system"
class SystemMessageChunk(SystemMessage, BaseMessageChunk): |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,472 | unsupported operand type(s) for +: 'SystemMessage' and 'HumanMessage' | ### System Info
Langchain version: 0.0.247
python version: 3.11.0
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [X] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
You can reproduce this issue according following link:
https://python.langchain.com/docs/modules/model_io/prompts/prompt_templates/prompts_pipelining
```
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
from langchain.schema import HumanMessage, AIMessage, SystemMessage
prompt = SystemMessage(content="You are a nice pirate")
new_prompt = (
prompt
+ HumanMessage(content="hi")
+ AIMessage(content="what?")
+ "{input}"
)
```
prompy + HumanMessage(content="hi") will generate this issue
### Expected behavior
operand + for 'SystemMessage' and 'HumanMessage' should be support | https://github.com/langchain-ai/langchain/issues/8472 | https://github.com/langchain-ai/langchain/pull/8489 | f31047a3941cd389a9b8c01446b097e3bfbb1235 | 1ec0b1837971bc58c54645c4ca515dc201788a82 | "2023-07-30T02:14:01Z" | python | "2023-08-02T14:51:44Z" | libs/langchain/langchain/schema/messages.py | pass
class FunctionMessage(BaseMessage):
"""A Message for passing the result of executing a function back to a model."""
name: str
"""The name of the function that was executed."""
@property
def type(self) -> str:
"""Type of the message, used for serialization."""
return "function"
class FunctionMessageChunk(FunctionMessage, BaseMessageChunk):
pass
class ChatMessage(BaseMessage):
"""A Message that can be assigned an arbitrary speaker (i.e. role)."""
role: str
"""The speaker / role of the Message."""
@property
def type(self) -> str:
"""Type of the message, used for serialization."""
return "chat"
class ChatMessageChunk(ChatMessage, BaseMessageChunk):
pass
def _message_to_dict(message: BaseMessage) -> dict:
return {"type": message.type, "data": message.dict()}
def messages_to_dict(messages: Sequence[BaseMessage]) -> List[dict]: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,472 | unsupported operand type(s) for +: 'SystemMessage' and 'HumanMessage' | ### System Info
Langchain version: 0.0.247
python version: 3.11.0
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [X] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
You can reproduce this issue according following link:
https://python.langchain.com/docs/modules/model_io/prompts/prompt_templates/prompts_pipelining
```
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
from langchain.schema import HumanMessage, AIMessage, SystemMessage
prompt = SystemMessage(content="You are a nice pirate")
new_prompt = (
prompt
+ HumanMessage(content="hi")
+ AIMessage(content="what?")
+ "{input}"
)
```
prompy + HumanMessage(content="hi") will generate this issue
### Expected behavior
operand + for 'SystemMessage' and 'HumanMessage' should be support | https://github.com/langchain-ai/langchain/issues/8472 | https://github.com/langchain-ai/langchain/pull/8489 | f31047a3941cd389a9b8c01446b097e3bfbb1235 | 1ec0b1837971bc58c54645c4ca515dc201788a82 | "2023-07-30T02:14:01Z" | python | "2023-08-02T14:51:44Z" | libs/langchain/langchain/schema/messages.py | """Convert a sequence of Messages to a list of dictionaries.
Args:
messages: Sequence of messages (as BaseMessages) to convert.
Returns:
List of messages as dicts.
"""
return [_message_to_dict(m) for m in messages]
def _message_from_dict(message: dict) -> BaseMessage:
_type = message["type"]
if _type == "human":
return HumanMessage(**message["data"])
elif _type == "ai":
return AIMessage(**message["data"])
elif _type == "system":
return SystemMessage(**message["data"])
elif _type == "chat":
return ChatMessage(**message["data"])
elif _type == "function":
return FunctionMessage(**message["data"])
else:
raise ValueError(f"Got unexpected message type: {_type}")
def messages_from_dict(messages: List[dict]) -> List[BaseMessage]:
"""Convert a sequence of messages from dicts to Message objects.
Args:
messages: Sequence of messages (as dicts) to convert.
Returns:
List of messages (BaseMessages).
"""
return [_message_from_dict(m) for m in messages] |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,650 | [AzureChatOpenAI] openai_api_type can't be changed from the default 'azure' value | ### System Info
Hello,
during the development of an application that needs to authenticate to Azure services and use the wrapper [AzureChatOpenAi](https://github.com/hwchase17/langchain/blob/master/langchain/chat_models/azure_openai.py), we encountered an error due to the fact that the model could not use the 'azure_ad' type.
It seems that this class sets the openai_api_type always to the set default value of 'azure' even if we have an environment variable called 'OPENAI_API_TYPE' specifying 'azure_ad'.
Why is it so?
### Who can help?
@hwchase17
@agola11
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
answering_llm=AzureChatOpenAI(
deployment_name=ANSWERING_MODEL_CONFIG.model_name,
model_name=ANSWERING_MODEL_CONFIG.model_type, #"gpt-3.5-turbo"
openai_api_type="azure_ad", # IF THIS IS NOT EXPLICITLY PASSED IT FAILS
openai_api_key=auth_token,
temperature=ANSWERING_MODEL_CONFIG.temperature,
max_tokens=ANSWERING_MODEL_CONFIG.max_tokens
)
### Expected behavior
We expect the wrapper to take the value of the environmental variable correctly. | https://github.com/langchain-ai/langchain/issues/6650 | https://github.com/langchain-ai/langchain/pull/8622 | 29f51055e8f7d060e6d3a5480591bef76652edae | e68a1d73d0c84503702a2bf66b52d7ae2336eb67 | "2023-06-23T14:09:47Z" | python | "2023-08-04T03:21:41Z" | libs/langchain/langchain/chat_models/azure_openai.py | """Azure OpenAI chat wrapper."""
from __future__ import annotations
import logging
from typing import Any, Dict, Mapping
from pydantic import root_validator
from langchain.chat_models.openai import ChatOpenAI
from langchain.schema import ChatResult
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
class AzureChatOpenAI(ChatOpenAI): |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,650 | [AzureChatOpenAI] openai_api_type can't be changed from the default 'azure' value | ### System Info
Hello,
during the development of an application that needs to authenticate to Azure services and use the wrapper [AzureChatOpenAi](https://github.com/hwchase17/langchain/blob/master/langchain/chat_models/azure_openai.py), we encountered an error due to the fact that the model could not use the 'azure_ad' type.
It seems that this class sets the openai_api_type always to the set default value of 'azure' even if we have an environment variable called 'OPENAI_API_TYPE' specifying 'azure_ad'.
Why is it so?
### Who can help?
@hwchase17
@agola11
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
answering_llm=AzureChatOpenAI(
deployment_name=ANSWERING_MODEL_CONFIG.model_name,
model_name=ANSWERING_MODEL_CONFIG.model_type, #"gpt-3.5-turbo"
openai_api_type="azure_ad", # IF THIS IS NOT EXPLICITLY PASSED IT FAILS
openai_api_key=auth_token,
temperature=ANSWERING_MODEL_CONFIG.temperature,
max_tokens=ANSWERING_MODEL_CONFIG.max_tokens
)
### Expected behavior
We expect the wrapper to take the value of the environmental variable correctly. | https://github.com/langchain-ai/langchain/issues/6650 | https://github.com/langchain-ai/langchain/pull/8622 | 29f51055e8f7d060e6d3a5480591bef76652edae | e68a1d73d0c84503702a2bf66b52d7ae2336eb67 | "2023-06-23T14:09:47Z" | python | "2023-08-04T03:21:41Z" | libs/langchain/langchain/chat_models/azure_openai.py | """Wrapper around Azure OpenAI Chat Completion API.
To use this class you
must have a deployed model on Azure OpenAI. Use `deployment_name` in the
constructor to refer to the "Model deployment name" in the Azure portal.
In addition, you should have the ``openai`` python package installed, and the
following environment variables set or passed in constructor in lower case:
- ``OPENAI_API_TYPE`` (default: ``azure``)
- ``OPENAI_API_KEY``
- ``OPENAI_API_BASE``
- ``OPENAI_API_VERSION``
- ``OPENAI_PROXY``
For example, if you have `gpt-35-turbo` deployed, with the deployment name
`35-turbo-dev`, the constructor should look like:
.. code-block:: python
AzureChatOpenAI(
deployment_name="35-turbo-dev",
openai_api_version="2023-05-15",
)
Be aware the API version may change.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
"""
deployment_name: str = ""
openai_api_type: str = "azure"
openai_api_base: str = ""
openai_api_version: str = "" |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,650 | [AzureChatOpenAI] openai_api_type can't be changed from the default 'azure' value | ### System Info
Hello,
during the development of an application that needs to authenticate to Azure services and use the wrapper [AzureChatOpenAi](https://github.com/hwchase17/langchain/blob/master/langchain/chat_models/azure_openai.py), we encountered an error due to the fact that the model could not use the 'azure_ad' type.
It seems that this class sets the openai_api_type always to the set default value of 'azure' even if we have an environment variable called 'OPENAI_API_TYPE' specifying 'azure_ad'.
Why is it so?
### Who can help?
@hwchase17
@agola11
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
answering_llm=AzureChatOpenAI(
deployment_name=ANSWERING_MODEL_CONFIG.model_name,
model_name=ANSWERING_MODEL_CONFIG.model_type, #"gpt-3.5-turbo"
openai_api_type="azure_ad", # IF THIS IS NOT EXPLICITLY PASSED IT FAILS
openai_api_key=auth_token,
temperature=ANSWERING_MODEL_CONFIG.temperature,
max_tokens=ANSWERING_MODEL_CONFIG.max_tokens
)
### Expected behavior
We expect the wrapper to take the value of the environmental variable correctly. | https://github.com/langchain-ai/langchain/issues/6650 | https://github.com/langchain-ai/langchain/pull/8622 | 29f51055e8f7d060e6d3a5480591bef76652edae | e68a1d73d0c84503702a2bf66b52d7ae2336eb67 | "2023-06-23T14:09:47Z" | python | "2023-08-04T03:21:41Z" | libs/langchain/langchain/chat_models/azure_openai.py | openai_api_key: str = ""
openai_organization: str = ""
openai_proxy: str = ""
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["openai_api_key"] = get_from_dict_or_env(
values,
"openai_api_key",
"OPENAI_API_KEY",
)
values["openai_api_base"] = get_from_dict_or_env(
values,
"openai_api_base",
"OPENAI_API_BASE",
)
values["openai_api_version"] = get_from_dict_or_env(
values,
"openai_api_version",
"OPENAI_API_VERSION",
)
values["openai_api_type"] = get_from_dict_or_env(
values,
"openai_api_type",
"OPENAI_API_TYPE",
)
values["openai_organization"] = get_from_dict_or_env(
values,
"openai_organization",
"OPENAI_ORGANIZATION", |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,650 | [AzureChatOpenAI] openai_api_type can't be changed from the default 'azure' value | ### System Info
Hello,
during the development of an application that needs to authenticate to Azure services and use the wrapper [AzureChatOpenAi](https://github.com/hwchase17/langchain/blob/master/langchain/chat_models/azure_openai.py), we encountered an error due to the fact that the model could not use the 'azure_ad' type.
It seems that this class sets the openai_api_type always to the set default value of 'azure' even if we have an environment variable called 'OPENAI_API_TYPE' specifying 'azure_ad'.
Why is it so?
### Who can help?
@hwchase17
@agola11
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
answering_llm=AzureChatOpenAI(
deployment_name=ANSWERING_MODEL_CONFIG.model_name,
model_name=ANSWERING_MODEL_CONFIG.model_type, #"gpt-3.5-turbo"
openai_api_type="azure_ad", # IF THIS IS NOT EXPLICITLY PASSED IT FAILS
openai_api_key=auth_token,
temperature=ANSWERING_MODEL_CONFIG.temperature,
max_tokens=ANSWERING_MODEL_CONFIG.max_tokens
)
### Expected behavior
We expect the wrapper to take the value of the environmental variable correctly. | https://github.com/langchain-ai/langchain/issues/6650 | https://github.com/langchain-ai/langchain/pull/8622 | 29f51055e8f7d060e6d3a5480591bef76652edae | e68a1d73d0c84503702a2bf66b52d7ae2336eb67 | "2023-06-23T14:09:47Z" | python | "2023-08-04T03:21:41Z" | libs/langchain/langchain/chat_models/azure_openai.py | default="",
)
values["openai_proxy"] = get_from_dict_or_env(
values,
"openai_proxy",
"OPENAI_PROXY",
default="",
)
try:
import openai
except ImportError:
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
try:
values["client"] = openai.ChatCompletion
except AttributeError:
raise ValueError(
"`openai` has no `ChatCompletion` attribute, this is likely "
"due to an old version of the openai package. Try upgrading it "
"with `pip install --upgrade openai`."
)
if values["n"] < 1:
raise ValueError("n must be at least 1.")
if values["n"] > 1 and values["streaming"]:
raise ValueError("n must be 1 when streaming.")
return values
@property
def _default_params(self) -> Dict[str, Any]: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,650 | [AzureChatOpenAI] openai_api_type can't be changed from the default 'azure' value | ### System Info
Hello,
during the development of an application that needs to authenticate to Azure services and use the wrapper [AzureChatOpenAi](https://github.com/hwchase17/langchain/blob/master/langchain/chat_models/azure_openai.py), we encountered an error due to the fact that the model could not use the 'azure_ad' type.
It seems that this class sets the openai_api_type always to the set default value of 'azure' even if we have an environment variable called 'OPENAI_API_TYPE' specifying 'azure_ad'.
Why is it so?
### Who can help?
@hwchase17
@agola11
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
answering_llm=AzureChatOpenAI(
deployment_name=ANSWERING_MODEL_CONFIG.model_name,
model_name=ANSWERING_MODEL_CONFIG.model_type, #"gpt-3.5-turbo"
openai_api_type="azure_ad", # IF THIS IS NOT EXPLICITLY PASSED IT FAILS
openai_api_key=auth_token,
temperature=ANSWERING_MODEL_CONFIG.temperature,
max_tokens=ANSWERING_MODEL_CONFIG.max_tokens
)
### Expected behavior
We expect the wrapper to take the value of the environmental variable correctly. | https://github.com/langchain-ai/langchain/issues/6650 | https://github.com/langchain-ai/langchain/pull/8622 | 29f51055e8f7d060e6d3a5480591bef76652edae | e68a1d73d0c84503702a2bf66b52d7ae2336eb67 | "2023-06-23T14:09:47Z" | python | "2023-08-04T03:21:41Z" | libs/langchain/langchain/chat_models/azure_openai.py | """Get the default parameters for calling OpenAI API."""
return {
**super()._default_params,
"engine": self.deployment_name,
}
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {**self._default_params}
@property
def _client_params(self) -> Dict[str, Any]:
"""Get the config params used for the openai client."""
return {
**super()._client_params,
"api_type": self.openai_api_type,
"api_version": self.openai_api_version,
}
@property
def _llm_type(self) -> str:
return "azure-openai-chat"
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
for res in response["choices"]:
if res.get("finish_reason", None) == "content_filter":
raise ValueError(
"Azure has not provided the response due to a content"
" filter being triggered"
)
return super()._create_chat_result(response) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,786 | RetrievalQA.from_chain_type: callbacks are not called for all nested chains | ### System Info
langchain: 0.0.252
python: 3.10.12
@agola11
### Who can help?
@agola11 please take a look,
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [X] Callbacks/Tracing
- [ ] Async
### Reproduction
1. Create a callback handler LogHandler for on_chain_start, on_chain_start, on_chat_model_start and log run_id, parent_run_id in each of them
2. Create a retrival chain and add this LogHandler
3. Add this LogHandler to llm as well
4. When running the chain, one of nested chain is not logged in between, because callbacks are not passed to that chain
### Expected behavior
All the nested chains should have callbacks defined.
| https://github.com/langchain-ai/langchain/issues/8786 | https://github.com/langchain-ai/langchain/pull/8787 | 5f1aab548731b53ebab00dd745a35ec7da52bf1c | 797c9e92c82f8e843b321ec2167bb1678ced03cf | "2023-08-05T06:43:10Z" | python | "2023-08-06T22:11:45Z" | libs/langchain/langchain/chains/question_answering/__init__.py | """Load question answering chains."""
from typing import Any, Mapping, Optional, Protocol
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.chains import ReduceDocumentsChain
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain
from langchain.chains.combine_documents.map_rerank import MapRerankDocumentsChain
from langchain.chains.combine_documents.refine import RefineDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.chains.question_answering import (
map_reduce_prompt,
refine_prompts,
stuff_prompt,
)
from langchain.chains.question_answering.map_rerank_prompt import (
PROMPT as MAP_RERANK_PROMPT,
)
from langchain.schema.language_model import BaseLanguageModel
from langchain.schema.prompt_template import BasePromptTemplate
class LoadingCallable(Protocol):
"""Interface for loading the combine documents chain."""
def __call__(
self, llm: BaseLanguageModel, **kwargs: Any
) -> BaseCombineDocumentsChain:
"""Callable to load the combine documents chain."""
def _load_map_rerank_chain( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,786 | RetrievalQA.from_chain_type: callbacks are not called for all nested chains | ### System Info
langchain: 0.0.252
python: 3.10.12
@agola11
### Who can help?
@agola11 please take a look,
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [X] Callbacks/Tracing
- [ ] Async
### Reproduction
1. Create a callback handler LogHandler for on_chain_start, on_chain_start, on_chat_model_start and log run_id, parent_run_id in each of them
2. Create a retrival chain and add this LogHandler
3. Add this LogHandler to llm as well
4. When running the chain, one of nested chain is not logged in between, because callbacks are not passed to that chain
### Expected behavior
All the nested chains should have callbacks defined.
| https://github.com/langchain-ai/langchain/issues/8786 | https://github.com/langchain-ai/langchain/pull/8787 | 5f1aab548731b53ebab00dd745a35ec7da52bf1c | 797c9e92c82f8e843b321ec2167bb1678ced03cf | "2023-08-05T06:43:10Z" | python | "2023-08-06T22:11:45Z" | libs/langchain/langchain/chains/question_answering/__init__.py | llm: BaseLanguageModel,
prompt: BasePromptTemplate = MAP_RERANK_PROMPT,
verbose: bool = False,
document_variable_name: str = "context",
rank_key: str = "score",
answer_key: str = "answer",
callback_manager: Optional[BaseCallbackManager] = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> MapRerankDocumentsChain:
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
verbose=verbose,
callback_manager=callback_manager,
callbacks=callbacks,
)
return MapRerankDocumentsChain(
llm_chain=llm_chain,
rank_key=rank_key,
answer_key=answer_key,
document_variable_name=document_variable_name,
verbose=verbose,
callback_manager=callback_manager,
**kwargs,
)
def _load_stuff_chain( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,786 | RetrievalQA.from_chain_type: callbacks are not called for all nested chains | ### System Info
langchain: 0.0.252
python: 3.10.12
@agola11
### Who can help?
@agola11 please take a look,
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [X] Callbacks/Tracing
- [ ] Async
### Reproduction
1. Create a callback handler LogHandler for on_chain_start, on_chain_start, on_chat_model_start and log run_id, parent_run_id in each of them
2. Create a retrival chain and add this LogHandler
3. Add this LogHandler to llm as well
4. When running the chain, one of nested chain is not logged in between, because callbacks are not passed to that chain
### Expected behavior
All the nested chains should have callbacks defined.
| https://github.com/langchain-ai/langchain/issues/8786 | https://github.com/langchain-ai/langchain/pull/8787 | 5f1aab548731b53ebab00dd745a35ec7da52bf1c | 797c9e92c82f8e843b321ec2167bb1678ced03cf | "2023-08-05T06:43:10Z" | python | "2023-08-06T22:11:45Z" | libs/langchain/langchain/chains/question_answering/__init__.py | llm: BaseLanguageModel,
prompt: Optional[BasePromptTemplate] = None,
document_variable_name: str = "context",
verbose: Optional[bool] = None,
callback_manager: Optional[BaseCallbackManager] = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> StuffDocumentsChain:
_prompt = prompt or stuff_prompt.PROMPT_SELECTOR.get_prompt(llm)
llm_chain = LLMChain(
llm=llm,
prompt=_prompt,
verbose=verbose,
callback_manager=callback_manager,
callbacks=callbacks,
)
return StuffDocumentsChain(
llm_chain=llm_chain,
document_variable_name=document_variable_name,
verbose=verbose,
callback_manager=callback_manager,
**kwargs,
)
def _load_map_reduce_chain( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 8,786 | RetrievalQA.from_chain_type: callbacks are not called for all nested chains | ### System Info
langchain: 0.0.252
python: 3.10.12
@agola11
### Who can help?
@agola11 please take a look,
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [X] Callbacks/Tracing
- [ ] Async
### Reproduction
1. Create a callback handler LogHandler for on_chain_start, on_chain_start, on_chat_model_start and log run_id, parent_run_id in each of them
2. Create a retrival chain and add this LogHandler
3. Add this LogHandler to llm as well
4. When running the chain, one of nested chain is not logged in between, because callbacks are not passed to that chain
### Expected behavior
All the nested chains should have callbacks defined.
| https://github.com/langchain-ai/langchain/issues/8786 | https://github.com/langchain-ai/langchain/pull/8787 | 5f1aab548731b53ebab00dd745a35ec7da52bf1c | 797c9e92c82f8e843b321ec2167bb1678ced03cf | "2023-08-05T06:43:10Z" | python | "2023-08-06T22:11:45Z" | libs/langchain/langchain/chains/question_answering/__init__.py | llm: BaseLanguageModel,
question_prompt: Optional[BasePromptTemplate] = None,
combine_prompt: Optional[BasePromptTemplate] = None,
combine_document_variable_name: str = "summaries",
map_reduce_document_variable_name: str = "context",
collapse_prompt: Optional[BasePromptTemplate] = None,
reduce_llm: Optional[BaseLanguageModel] = None,
collapse_llm: Optional[BaseLanguageModel] = None,
verbose: Optional[bool] = None,
callback_manager: Optional[BaseCallbackManager] = None,
callbacks: Callbacks = None,
token_max: int = 3000,
**kwargs: Any,
) -> MapReduceDocumentsChain:
_question_prompt = (
question_prompt or map_reduce_prompt.QUESTION_PROMPT_SELECTOR.get_prompt(llm)
)
_combine_prompt = (
combine_prompt or map_reduce_prompt.COMBINE_PROMPT_SELECTOR.get_prompt(llm)
) |
Subsets and Splits