status
stringclasses 1
value | repo_name
stringclasses 31
values | repo_url
stringclasses 31
values | issue_id
int64 1
104k
| title
stringlengths 4
233
| body
stringlengths 0
186k
⌀ | issue_url
stringlengths 38
56
| pull_url
stringlengths 37
54
| before_fix_sha
stringlengths 40
40
| after_fix_sha
stringlengths 40
40
| report_datetime
unknown | language
stringclasses 5
values | commit_datetime
unknown | updated_file
stringlengths 7
188
| chunk_content
stringlengths 1
1.03M
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 5,456 | Tools: Inconsistent callbacks/run_manager parameter | ### System Info
MacOS Ventura 13.3.1 (a)
python = "^3.9"
langchain = "0.0.185"
### Who can help?
@agola11 @vowelparrot
### Related Components
- Agents / Agent Executors
- Tools / Toolkits
- Callbacks/Tracing
### Reproduction
I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as:
```python
def get_list_of_products(
self, profile_description: str, run_manager: CallbackManagerForToolRun
):
```
Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`,
```python
new_argument_supported = signature(self.func).parameters.get("callbacks")
```
So the tool can't run, with the error being:
```bash
TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager'
```
This behavior applies to Structured tool and Tool.
### Expected behavior
Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter. | https://github.com/langchain-ai/langchain/issues/5456 | https://github.com/langchain-ai/langchain/pull/6483 | b4fe7f3a0995cc6a0111a7e71347eddf2d61f132 | 980c8651743b653f994ad6b97a27b0fa31ee92b4 | "2023-05-30T17:09:02Z" | python | "2023-06-23T08:48:27Z" | tests/unit_tests/tools/test_base.py | name = "single_arg_tool"
description = "A single arged tool with kwargs"
def _run(
self,
*args: Any,
run_manager: Optional[CallbackManagerForToolRun] = None,
**kwargs: Any,
) -> str:
return "foo"
async def _arun(
self,
*args: Any,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
**kwargs: Any,
) -> str:
raise NotImplementedError
tool2 = _VarArgToolWithKwargs()
assert tool2.is_single_input
def test_structured_args_decorator_no_infer_schema() -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 5,456 | Tools: Inconsistent callbacks/run_manager parameter | ### System Info
MacOS Ventura 13.3.1 (a)
python = "^3.9"
langchain = "0.0.185"
### Who can help?
@agola11 @vowelparrot
### Related Components
- Agents / Agent Executors
- Tools / Toolkits
- Callbacks/Tracing
### Reproduction
I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as:
```python
def get_list_of_products(
self, profile_description: str, run_manager: CallbackManagerForToolRun
):
```
Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`,
```python
new_argument_supported = signature(self.func).parameters.get("callbacks")
```
So the tool can't run, with the error being:
```bash
TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager'
```
This behavior applies to Structured tool and Tool.
### Expected behavior
Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter. | https://github.com/langchain-ai/langchain/issues/5456 | https://github.com/langchain-ai/langchain/pull/6483 | b4fe7f3a0995cc6a0111a7e71347eddf2d61f132 | 980c8651743b653f994ad6b97a27b0fa31ee92b4 | "2023-05-30T17:09:02Z" | python | "2023-06-23T08:48:27Z" | tests/unit_tests/tools/test_base.py | """Test functionality with structured arguments parsed as a decorator."""
@tool(infer_schema=False)
def structured_tool_input(
arg1: int, arg2: Union[float, datetime], opt_arg: Optional[dict] = None
) -> str:
"""Return the arguments directly."""
return f"{arg1}, {arg2}, {opt_arg}"
assert isinstance(structured_tool_input, BaseTool)
assert structured_tool_input.name == "structured_tool_input"
args = {"arg1": 1, "arg2": 0.001, "opt_arg": {"foo": "bar"}}
with pytest.raises(ToolException):
assert structured_tool_input.run(args)
def test_structured_single_str_decorator_no_infer_schema() -> None:
"""Test functionality with structured arguments parsed as a decorator."""
@tool(infer_schema=False)
def unstructured_tool_input(tool_input: str) -> str:
"""Return the arguments directly."""
assert isinstance(tool_input, str)
return f"{tool_input}"
assert isinstance(unstructured_tool_input, BaseTool)
assert unstructured_tool_input.args_schema is None
assert unstructured_tool_input.run("foo") == "foo"
def test_structured_tool_types_parsed() -> None:
"""Test the non-primitive types are correctly passed to structured tools."""
class SomeEnum(Enum):
A = "a"
B = "b"
class SomeBaseModel(BaseModel): |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 5,456 | Tools: Inconsistent callbacks/run_manager parameter | ### System Info
MacOS Ventura 13.3.1 (a)
python = "^3.9"
langchain = "0.0.185"
### Who can help?
@agola11 @vowelparrot
### Related Components
- Agents / Agent Executors
- Tools / Toolkits
- Callbacks/Tracing
### Reproduction
I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as:
```python
def get_list_of_products(
self, profile_description: str, run_manager: CallbackManagerForToolRun
):
```
Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`,
```python
new_argument_supported = signature(self.func).parameters.get("callbacks")
```
So the tool can't run, with the error being:
```bash
TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager'
```
This behavior applies to Structured tool and Tool.
### Expected behavior
Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter. | https://github.com/langchain-ai/langchain/issues/5456 | https://github.com/langchain-ai/langchain/pull/6483 | b4fe7f3a0995cc6a0111a7e71347eddf2d61f132 | 980c8651743b653f994ad6b97a27b0fa31ee92b4 | "2023-05-30T17:09:02Z" | python | "2023-06-23T08:48:27Z" | tests/unit_tests/tools/test_base.py | foo: str
@tool
def structured_tool(
some_enum: SomeEnum,
some_base_model: SomeBaseModel,
) -> dict:
"""Return the arguments directly."""
return {
"some_enum": some_enum,
"some_base_model": some_base_model,
}
assert isinstance(structured_tool, StructuredTool)
args = {
"some_enum": SomeEnum.A.value,
"some_base_model": SomeBaseModel(foo="bar").dict(),
}
result = structured_tool.run(json.loads(json.dumps(args)))
expected = {
"some_enum": SomeEnum.A,
"some_base_model": SomeBaseModel(foo="bar"),
}
assert result == expected
def test_base_tool_inheritance_base_schema() -> None:
"""Test schema is correctly inferred when inheriting from BaseTool."""
class _MockSimpleTool(BaseTool):
name = "simple_tool"
description = "A Simple Tool"
def _run(self, tool_input: str) -> str: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 5,456 | Tools: Inconsistent callbacks/run_manager parameter | ### System Info
MacOS Ventura 13.3.1 (a)
python = "^3.9"
langchain = "0.0.185"
### Who can help?
@agola11 @vowelparrot
### Related Components
- Agents / Agent Executors
- Tools / Toolkits
- Callbacks/Tracing
### Reproduction
I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as:
```python
def get_list_of_products(
self, profile_description: str, run_manager: CallbackManagerForToolRun
):
```
Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`,
```python
new_argument_supported = signature(self.func).parameters.get("callbacks")
```
So the tool can't run, with the error being:
```bash
TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager'
```
This behavior applies to Structured tool and Tool.
### Expected behavior
Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter. | https://github.com/langchain-ai/langchain/issues/5456 | https://github.com/langchain-ai/langchain/pull/6483 | b4fe7f3a0995cc6a0111a7e71347eddf2d61f132 | 980c8651743b653f994ad6b97a27b0fa31ee92b4 | "2023-05-30T17:09:02Z" | python | "2023-06-23T08:48:27Z" | tests/unit_tests/tools/test_base.py | return f"{tool_input}"
async def _arun(self, tool_input: str) -> str:
raise NotImplementedError
simple_tool = _MockSimpleTool()
assert simple_tool.args_schema is None
expected_args = {"tool_input": {"title": "Tool Input", "type": "string"}}
assert simple_tool.args == expected_args
def test_tool_lambda_args_schema() -> None:
"""Test args schema inference when the tool argument is a lambda function."""
tool = Tool(
name="tool",
description="A tool",
func=lambda tool_input: tool_input,
)
assert tool.args_schema is None
expected_args = {"tool_input": {"type": "string"}}
assert tool.args == expected_args
def test_structured_tool_from_function_docstring() -> None:
"""Test that structured tools can be created from functions."""
def foo(bar: int, baz: str) -> str:
"""Docstring
Args:
bar: int
baz: str
"""
raise NotImplementedError()
structured_tool = StructuredTool.from_function(foo)
assert structured_tool.name == "foo" |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 5,456 | Tools: Inconsistent callbacks/run_manager parameter | ### System Info
MacOS Ventura 13.3.1 (a)
python = "^3.9"
langchain = "0.0.185"
### Who can help?
@agola11 @vowelparrot
### Related Components
- Agents / Agent Executors
- Tools / Toolkits
- Callbacks/Tracing
### Reproduction
I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as:
```python
def get_list_of_products(
self, profile_description: str, run_manager: CallbackManagerForToolRun
):
```
Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`,
```python
new_argument_supported = signature(self.func).parameters.get("callbacks")
```
So the tool can't run, with the error being:
```bash
TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager'
```
This behavior applies to Structured tool and Tool.
### Expected behavior
Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter. | https://github.com/langchain-ai/langchain/issues/5456 | https://github.com/langchain-ai/langchain/pull/6483 | b4fe7f3a0995cc6a0111a7e71347eddf2d61f132 | 980c8651743b653f994ad6b97a27b0fa31ee92b4 | "2023-05-30T17:09:02Z" | python | "2023-06-23T08:48:27Z" | tests/unit_tests/tools/test_base.py | assert structured_tool.args == {
"bar": {"title": "Bar", "type": "integer"},
"baz": {"title": "Baz", "type": "string"},
}
assert structured_tool.args_schema.schema() == {
"properties": {
"bar": {"title": "Bar", "type": "integer"},
"baz": {"title": "Baz", "type": "string"},
},
"title": "fooSchemaSchema",
"type": "object",
"required": ["bar", "baz"],
}
prefix = "foo(bar: int, baz: str) -> str - "
assert foo.__doc__ is not None
assert structured_tool.description == prefix + foo.__doc__.strip()
def test_structured_tool_lambda_multi_args_schema() -> None:
"""Test args schema inference when the tool argument is a lambda function."""
tool = StructuredTool.from_function(
name="tool",
description="A tool",
func=lambda tool_input, other_arg: f"{tool_input}{other_arg}",
)
assert tool.args_schema is not None
expected_args = {
"tool_input": {"title": "Tool Input"},
"other_arg": {"title": "Other Arg"},
}
assert tool.args == expected_args
def test_tool_partial_function_args_schema() -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 5,456 | Tools: Inconsistent callbacks/run_manager parameter | ### System Info
MacOS Ventura 13.3.1 (a)
python = "^3.9"
langchain = "0.0.185"
### Who can help?
@agola11 @vowelparrot
### Related Components
- Agents / Agent Executors
- Tools / Toolkits
- Callbacks/Tracing
### Reproduction
I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as:
```python
def get_list_of_products(
self, profile_description: str, run_manager: CallbackManagerForToolRun
):
```
Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`,
```python
new_argument_supported = signature(self.func).parameters.get("callbacks")
```
So the tool can't run, with the error being:
```bash
TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager'
```
This behavior applies to Structured tool and Tool.
### Expected behavior
Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter. | https://github.com/langchain-ai/langchain/issues/5456 | https://github.com/langchain-ai/langchain/pull/6483 | b4fe7f3a0995cc6a0111a7e71347eddf2d61f132 | 980c8651743b653f994ad6b97a27b0fa31ee92b4 | "2023-05-30T17:09:02Z" | python | "2023-06-23T08:48:27Z" | tests/unit_tests/tools/test_base.py | """Test args schema inference when the tool argument is a partial function."""
def func(tool_input: str, other_arg: str) -> str:
assert isinstance(tool_input, str)
assert isinstance(other_arg, str)
return tool_input + other_arg
tool = Tool(
name="tool",
description="A tool",
func=partial(func, other_arg="foo"),
)
assert tool.run("bar") == "barfoo"
def test_empty_args_decorator() -> None:
"""Test inferred schema of decorated fn with no args."""
@tool
def empty_tool_input() -> str:
"""Return a constant."""
return "the empty result"
assert isinstance(empty_tool_input, BaseTool)
assert empty_tool_input.name == "empty_tool_input"
assert empty_tool_input.args == {}
assert empty_tool_input.run({}) == "the empty result"
def test_named_tool_decorator() -> None:
"""Test functionality when arguments are provided as input to decorator."""
@tool("search")
def search_api(query: str) -> str: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 5,456 | Tools: Inconsistent callbacks/run_manager parameter | ### System Info
MacOS Ventura 13.3.1 (a)
python = "^3.9"
langchain = "0.0.185"
### Who can help?
@agola11 @vowelparrot
### Related Components
- Agents / Agent Executors
- Tools / Toolkits
- Callbacks/Tracing
### Reproduction
I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as:
```python
def get_list_of_products(
self, profile_description: str, run_manager: CallbackManagerForToolRun
):
```
Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`,
```python
new_argument_supported = signature(self.func).parameters.get("callbacks")
```
So the tool can't run, with the error being:
```bash
TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager'
```
This behavior applies to Structured tool and Tool.
### Expected behavior
Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter. | https://github.com/langchain-ai/langchain/issues/5456 | https://github.com/langchain-ai/langchain/pull/6483 | b4fe7f3a0995cc6a0111a7e71347eddf2d61f132 | 980c8651743b653f994ad6b97a27b0fa31ee92b4 | "2023-05-30T17:09:02Z" | python | "2023-06-23T08:48:27Z" | tests/unit_tests/tools/test_base.py | """Search the API for the query."""
assert isinstance(query, str)
return f"API result - {query}"
assert isinstance(search_api, BaseTool)
assert search_api.name == "search"
assert not search_api.return_direct
assert search_api.run({"query": "foo"}) == "API result - foo"
def test_named_tool_decorator_return_direct() -> None:
"""Test functionality when arguments and return direct are provided as input."""
@tool("search", return_direct=True)
def search_api(query: str, *args: Any) -> str:
"""Search the API for the query."""
return "API result"
assert isinstance(search_api, BaseTool)
assert search_api.name == "search"
assert search_api.return_direct
assert search_api.run({"query": "foo"}) == "API result"
def test_unnamed_tool_decorator_return_direct() -> None:
"""Test functionality when only return direct is provided."""
@tool(return_direct=True)
def search_api(query: str) -> str:
"""Search the API for the query."""
assert isinstance(query, str)
return "API result"
assert isinstance(search_api, BaseTool)
assert search_api.name == "search_api"
assert search_api.return_direct
assert search_api.run({"query": "foo"}) == "API result"
def test_tool_with_kwargs() -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 5,456 | Tools: Inconsistent callbacks/run_manager parameter | ### System Info
MacOS Ventura 13.3.1 (a)
python = "^3.9"
langchain = "0.0.185"
### Who can help?
@agola11 @vowelparrot
### Related Components
- Agents / Agent Executors
- Tools / Toolkits
- Callbacks/Tracing
### Reproduction
I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as:
```python
def get_list_of_products(
self, profile_description: str, run_manager: CallbackManagerForToolRun
):
```
Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`,
```python
new_argument_supported = signature(self.func).parameters.get("callbacks")
```
So the tool can't run, with the error being:
```bash
TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager'
```
This behavior applies to Structured tool and Tool.
### Expected behavior
Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter. | https://github.com/langchain-ai/langchain/issues/5456 | https://github.com/langchain-ai/langchain/pull/6483 | b4fe7f3a0995cc6a0111a7e71347eddf2d61f132 | 980c8651743b653f994ad6b97a27b0fa31ee92b4 | "2023-05-30T17:09:02Z" | python | "2023-06-23T08:48:27Z" | tests/unit_tests/tools/test_base.py | """Test functionality when only return direct is provided."""
@tool(return_direct=True)
def search_api(
arg_0: str,
arg_1: float = 4.3,
ping: str = "hi",
) -> str:
"""Search the API for the query."""
return f"arg_0={arg_0}, arg_1={arg_1}, ping={ping}"
assert isinstance(search_api, BaseTool)
result = search_api.run(
tool_input={
"arg_0": "foo",
"arg_1": 3.2,
"ping": "pong",
}
)
assert result == "arg_0=foo, arg_1=3.2, ping=pong"
result = search_api.run(
tool_input={
"arg_0": "foo",
}
)
assert result == "arg_0=foo, arg_1=4.3, ping=hi"
result = search_api.run("foobar")
assert result == "arg_0=foobar, arg_1=4.3, ping=hi"
def test_missing_docstring() -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 5,456 | Tools: Inconsistent callbacks/run_manager parameter | ### System Info
MacOS Ventura 13.3.1 (a)
python = "^3.9"
langchain = "0.0.185"
### Who can help?
@agola11 @vowelparrot
### Related Components
- Agents / Agent Executors
- Tools / Toolkits
- Callbacks/Tracing
### Reproduction
I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as:
```python
def get_list_of_products(
self, profile_description: str, run_manager: CallbackManagerForToolRun
):
```
Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`,
```python
new_argument_supported = signature(self.func).parameters.get("callbacks")
```
So the tool can't run, with the error being:
```bash
TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager'
```
This behavior applies to Structured tool and Tool.
### Expected behavior
Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter. | https://github.com/langchain-ai/langchain/issues/5456 | https://github.com/langchain-ai/langchain/pull/6483 | b4fe7f3a0995cc6a0111a7e71347eddf2d61f132 | 980c8651743b653f994ad6b97a27b0fa31ee92b4 | "2023-05-30T17:09:02Z" | python | "2023-06-23T08:48:27Z" | tests/unit_tests/tools/test_base.py | """Test error is raised when docstring is missing."""
with pytest.raises(AssertionError, match="Function must have a docstring"):
@tool
def search_api(query: str) -> str:
return "API result"
def test_create_tool_positional_args() -> None:
"""Test that positional arguments are allowed."""
test_tool = Tool("test_name", lambda x: x, "test_description")
assert test_tool("foo") == "foo"
assert test_tool.name == "test_name"
assert test_tool.description == "test_description"
assert test_tool.is_single_input
def test_create_tool_keyword_args() -> None:
"""Test that keyword arguments are allowed."""
test_tool = Tool(name="test_name", func=lambda x: x, description="test_description")
assert test_tool.is_single_input
assert test_tool("foo") == "foo"
assert test_tool.name == "test_name"
assert test_tool.description == "test_description"
@pytest.mark.asyncio
async def test_create_async_tool() -> None:
"""Test that async tools are allowed."""
async def _test_func(x: str) -> str: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 5,456 | Tools: Inconsistent callbacks/run_manager parameter | ### System Info
MacOS Ventura 13.3.1 (a)
python = "^3.9"
langchain = "0.0.185"
### Who can help?
@agola11 @vowelparrot
### Related Components
- Agents / Agent Executors
- Tools / Toolkits
- Callbacks/Tracing
### Reproduction
I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as:
```python
def get_list_of_products(
self, profile_description: str, run_manager: CallbackManagerForToolRun
):
```
Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`,
```python
new_argument_supported = signature(self.func).parameters.get("callbacks")
```
So the tool can't run, with the error being:
```bash
TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager'
```
This behavior applies to Structured tool and Tool.
### Expected behavior
Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter. | https://github.com/langchain-ai/langchain/issues/5456 | https://github.com/langchain-ai/langchain/pull/6483 | b4fe7f3a0995cc6a0111a7e71347eddf2d61f132 | 980c8651743b653f994ad6b97a27b0fa31ee92b4 | "2023-05-30T17:09:02Z" | python | "2023-06-23T08:48:27Z" | tests/unit_tests/tools/test_base.py | return x
test_tool = Tool(
name="test_name",
func=lambda x: x,
description="test_description",
coroutine=_test_func,
)
assert test_tool.is_single_input
assert test_tool("foo") == "foo"
assert test_tool.name == "test_name"
assert test_tool.description == "test_description"
assert test_tool.coroutine is not None
assert await test_tool.arun("foo") == "foo"
class _FakeExceptionTool(BaseTool): |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 5,456 | Tools: Inconsistent callbacks/run_manager parameter | ### System Info
MacOS Ventura 13.3.1 (a)
python = "^3.9"
langchain = "0.0.185"
### Who can help?
@agola11 @vowelparrot
### Related Components
- Agents / Agent Executors
- Tools / Toolkits
- Callbacks/Tracing
### Reproduction
I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as:
```python
def get_list_of_products(
self, profile_description: str, run_manager: CallbackManagerForToolRun
):
```
Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`,
```python
new_argument_supported = signature(self.func).parameters.get("callbacks")
```
So the tool can't run, with the error being:
```bash
TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager'
```
This behavior applies to Structured tool and Tool.
### Expected behavior
Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter. | https://github.com/langchain-ai/langchain/issues/5456 | https://github.com/langchain-ai/langchain/pull/6483 | b4fe7f3a0995cc6a0111a7e71347eddf2d61f132 | 980c8651743b653f994ad6b97a27b0fa31ee92b4 | "2023-05-30T17:09:02Z" | python | "2023-06-23T08:48:27Z" | tests/unit_tests/tools/test_base.py | name = "exception"
description = "an exception-throwing tool"
exception: Exception = ToolException()
def _run(self) -> str:
raise self.exception
async def _arun(self) -> str:
raise self.exception
def test_exception_handling_bool() -> None:
_tool = _FakeExceptionTool(handle_tool_error=True)
expected = "Tool execution error"
actual = _tool.run({})
assert expected == actual
def test_exception_handling_str() -> None:
expected = "foo bar"
_tool = _FakeExceptionTool(handle_tool_error=expected)
actual = _tool.run({})
assert expected == actual
def test_exception_handling_callable() -> None:
expected = "foo bar"
handling = lambda _: expected
_tool = _FakeExceptionTool(handle_tool_error=handling)
actual = _tool.run({})
assert expected == actual
def test_exception_handling_non_tool_exception() -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 5,456 | Tools: Inconsistent callbacks/run_manager parameter | ### System Info
MacOS Ventura 13.3.1 (a)
python = "^3.9"
langchain = "0.0.185"
### Who can help?
@agola11 @vowelparrot
### Related Components
- Agents / Agent Executors
- Tools / Toolkits
- Callbacks/Tracing
### Reproduction
I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as:
```python
def get_list_of_products(
self, profile_description: str, run_manager: CallbackManagerForToolRun
):
```
Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`,
```python
new_argument_supported = signature(self.func).parameters.get("callbacks")
```
So the tool can't run, with the error being:
```bash
TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager'
```
This behavior applies to Structured tool and Tool.
### Expected behavior
Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter. | https://github.com/langchain-ai/langchain/issues/5456 | https://github.com/langchain-ai/langchain/pull/6483 | b4fe7f3a0995cc6a0111a7e71347eddf2d61f132 | 980c8651743b653f994ad6b97a27b0fa31ee92b4 | "2023-05-30T17:09:02Z" | python | "2023-06-23T08:48:27Z" | tests/unit_tests/tools/test_base.py | _tool = _FakeExceptionTool(exception=ValueError())
with pytest.raises(ValueError):
_tool.run({})
@pytest.mark.asyncio
async def test_async_exception_handling_bool() -> None:
_tool = _FakeExceptionTool(handle_tool_error=True)
expected = "Tool execution error"
actual = await _tool.arun({})
assert expected == actual
@pytest.mark.asyncio
async def test_async_exception_handling_str() -> None:
expected = "foo bar"
_tool = _FakeExceptionTool(handle_tool_error=expected)
actual = await _tool.arun({})
assert expected == actual
@pytest.mark.asyncio
async def test_async_exception_handling_callable() -> None:
expected = "foo bar"
handling = lambda _: expected
_tool = _FakeExceptionTool(handle_tool_error=handling)
actual = await _tool.arun({})
assert expected == actual
@pytest.mark.asyncio
async def test_async_exception_handling_non_tool_exception() -> None:
_tool = _FakeExceptionTool(exception=ValueError())
with pytest.raises(ValueError):
await _tool.arun({})
def test_structured_tool_from_function() -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 5,456 | Tools: Inconsistent callbacks/run_manager parameter | ### System Info
MacOS Ventura 13.3.1 (a)
python = "^3.9"
langchain = "0.0.185"
### Who can help?
@agola11 @vowelparrot
### Related Components
- Agents / Agent Executors
- Tools / Toolkits
- Callbacks/Tracing
### Reproduction
I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as:
```python
def get_list_of_products(
self, profile_description: str, run_manager: CallbackManagerForToolRun
):
```
Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`,
```python
new_argument_supported = signature(self.func).parameters.get("callbacks")
```
So the tool can't run, with the error being:
```bash
TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager'
```
This behavior applies to Structured tool and Tool.
### Expected behavior
Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter. | https://github.com/langchain-ai/langchain/issues/5456 | https://github.com/langchain-ai/langchain/pull/6483 | b4fe7f3a0995cc6a0111a7e71347eddf2d61f132 | 980c8651743b653f994ad6b97a27b0fa31ee92b4 | "2023-05-30T17:09:02Z" | python | "2023-06-23T08:48:27Z" | tests/unit_tests/tools/test_base.py | """Test that structured tools can be created from functions."""
def foo(bar: int, baz: str) -> str:
"""Docstring
Args:
bar: int
baz: str
"""
raise NotImplementedError()
structured_tool = StructuredTool.from_function(foo)
assert structured_tool.name == "foo"
assert structured_tool.args == {
"bar": {"title": "Bar", "type": "integer"},
"baz": {"title": "Baz", "type": "string"},
}
assert structured_tool.args_schema.schema() == {
"title": "fooSchemaSchema",
"type": "object",
"properties": {
"bar": {"title": "Bar", "type": "integer"},
"baz": {"title": "Baz", "type": "string"},
},
"required": ["bar", "baz"],
}
prefix = "foo(bar: int, baz: str) -> str - "
assert foo.__doc__ is not None
assert structured_tool.description == prefix + foo.__doc__.strip() |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,610 | ChatVertexAI Error: _ChatSessionBase.send_message() got an unexpected keyword argument 'context' | ### System Info
langchain version: 0.0.209
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
https://python.langchain.com/docs/modules/model_io/models/chat/integrations/google_vertex_ai_palm
### Expected behavior
I get an error saying "TypeError: _ChatSessionBase.send_message() got an unexpected keyword argument 'context'" when I run `chat(messages)` command mentioned in https://python.langchain.com/docs/modules/model_io/models/chat/integrations/google_vertex_ai_palm.
This is probably because ChatSession.send_message does not have the argument 'context' and ChatVertexAI._generate automatically adds the context argument to params since chat-bison being a non-code model. | https://github.com/langchain-ai/langchain/issues/6610 | https://github.com/langchain-ai/langchain/pull/6652 | c2b25c17c5c8d35a7297f665f2327b9671855898 | 9e52134d30203a9125532621abcd5a102e3f2bfb | "2023-06-22T20:56:38Z" | python | "2023-06-23T20:38:21Z" | langchain/chat_models/vertexai.py | """Wrapper around Google VertexAI chat-based models."""
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional
from pydantic import root_validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.chat_models.base import BaseChatModel
from langchain.llms.vertexai import _VertexAICommon, is_codey_model
from langchain.schema import (
AIMessage,
BaseMessage,
ChatGeneration,
ChatResult,
HumanMessage,
SystemMessage,
)
from langchain.utilities.vertexai import raise_vertex_import_error
@dataclass
class _MessagePair: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,610 | ChatVertexAI Error: _ChatSessionBase.send_message() got an unexpected keyword argument 'context' | ### System Info
langchain version: 0.0.209
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
https://python.langchain.com/docs/modules/model_io/models/chat/integrations/google_vertex_ai_palm
### Expected behavior
I get an error saying "TypeError: _ChatSessionBase.send_message() got an unexpected keyword argument 'context'" when I run `chat(messages)` command mentioned in https://python.langchain.com/docs/modules/model_io/models/chat/integrations/google_vertex_ai_palm.
This is probably because ChatSession.send_message does not have the argument 'context' and ChatVertexAI._generate automatically adds the context argument to params since chat-bison being a non-code model. | https://github.com/langchain-ai/langchain/issues/6610 | https://github.com/langchain-ai/langchain/pull/6652 | c2b25c17c5c8d35a7297f665f2327b9671855898 | 9e52134d30203a9125532621abcd5a102e3f2bfb | "2023-06-22T20:56:38Z" | python | "2023-06-23T20:38:21Z" | langchain/chat_models/vertexai.py | """InputOutputTextPair represents a pair of input and output texts."""
question: HumanMessage
answer: AIMessage
@dataclass
class _ChatHistory:
"""InputOutputTextPair represents a pair of input and output texts."""
history: List[_MessagePair] = field(default_factory=list)
system_message: Optional[SystemMessage] = None
def _parse_chat_history(history: List[BaseMessage]) -> _ChatHistory:
"""Parse a sequence of messages into history.
A sequence should be either (SystemMessage, HumanMessage, AIMessage,
HumanMessage, AIMessage, ...) or (HumanMessage, AIMessage, HumanMessage,
AIMessage, ...). CodeChat does not support SystemMessage.
Args:
history: The list of messages to re-create the history of the chat.
Returns:
A parsed chat history.
Raises:
ValueError: If a sequence of message is odd, or a human message is not followed
by a message from AI (e.g., Human, Human, AI or AI, AI, Human).
"""
if not history:
return _ChatHistory()
first_message = history[0]
system_message = first_message if isinstance(first_message, SystemMessage) else None
chat_history = _ChatHistory(system_message=system_message)
messages_left = history[1:] if system_message else history |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,610 | ChatVertexAI Error: _ChatSessionBase.send_message() got an unexpected keyword argument 'context' | ### System Info
langchain version: 0.0.209
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
https://python.langchain.com/docs/modules/model_io/models/chat/integrations/google_vertex_ai_palm
### Expected behavior
I get an error saying "TypeError: _ChatSessionBase.send_message() got an unexpected keyword argument 'context'" when I run `chat(messages)` command mentioned in https://python.langchain.com/docs/modules/model_io/models/chat/integrations/google_vertex_ai_palm.
This is probably because ChatSession.send_message does not have the argument 'context' and ChatVertexAI._generate automatically adds the context argument to params since chat-bison being a non-code model. | https://github.com/langchain-ai/langchain/issues/6610 | https://github.com/langchain-ai/langchain/pull/6652 | c2b25c17c5c8d35a7297f665f2327b9671855898 | 9e52134d30203a9125532621abcd5a102e3f2bfb | "2023-06-22T20:56:38Z" | python | "2023-06-23T20:38:21Z" | langchain/chat_models/vertexai.py | if len(messages_left) % 2 != 0:
raise ValueError(
f"Amount of messages in history should be even, got {len(messages_left)}!"
)
for question, answer in zip(messages_left[::2], messages_left[1::2]):
if not isinstance(question, HumanMessage) or not isinstance(answer, AIMessage):
raise ValueError(
"A human message should follow a bot one, "
f"got {question.type}, {answer.type}."
)
chat_history.history.append(_MessagePair(question=question, answer=answer))
return chat_history
class ChatVertexAI(_VertexAICommon, BaseChatModel):
"""Wrapper around Vertex AI large language models."""
model_name: str = "chat-bison"
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the python package exists in environment."""
cls._try_init_vertexai(values)
try:
if is_codey_model(values["model_name"]):
from vertexai.preview.language_models import CodeChatModel
values["client"] = CodeChatModel.from_pretrained(values["model_name"])
else:
from vertexai.preview.language_models import ChatModel
values["client"] = ChatModel.from_pretrained(values["model_name"])
except ImportError:
raise_vertex_import_error()
return values
def _generate( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,610 | ChatVertexAI Error: _ChatSessionBase.send_message() got an unexpected keyword argument 'context' | ### System Info
langchain version: 0.0.209
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
https://python.langchain.com/docs/modules/model_io/models/chat/integrations/google_vertex_ai_palm
### Expected behavior
I get an error saying "TypeError: _ChatSessionBase.send_message() got an unexpected keyword argument 'context'" when I run `chat(messages)` command mentioned in https://python.langchain.com/docs/modules/model_io/models/chat/integrations/google_vertex_ai_palm.
This is probably because ChatSession.send_message does not have the argument 'context' and ChatVertexAI._generate automatically adds the context argument to params since chat-bison being a non-code model. | https://github.com/langchain-ai/langchain/issues/6610 | https://github.com/langchain-ai/langchain/pull/6652 | c2b25c17c5c8d35a7297f665f2327b9671855898 | 9e52134d30203a9125532621abcd5a102e3f2bfb | "2023-06-22T20:56:38Z" | python | "2023-06-23T20:38:21Z" | langchain/chat_models/vertexai.py | self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
"""Generate next turn in the conversation.
Args:
messages: The history of the conversation as a list of messages. Code chat
does not support context.
stop: The list of stop words (optional).
run_manager: The CallbackManager for LLM run, it's not used at the moment.
Returns:
The ChatResult that contains outputs generated by the model.
Raises:
ValueError: if the last message in the list is not from human.
"""
if not messages: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,610 | ChatVertexAI Error: _ChatSessionBase.send_message() got an unexpected keyword argument 'context' | ### System Info
langchain version: 0.0.209
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
https://python.langchain.com/docs/modules/model_io/models/chat/integrations/google_vertex_ai_palm
### Expected behavior
I get an error saying "TypeError: _ChatSessionBase.send_message() got an unexpected keyword argument 'context'" when I run `chat(messages)` command mentioned in https://python.langchain.com/docs/modules/model_io/models/chat/integrations/google_vertex_ai_palm.
This is probably because ChatSession.send_message does not have the argument 'context' and ChatVertexAI._generate automatically adds the context argument to params since chat-bison being a non-code model. | https://github.com/langchain-ai/langchain/issues/6610 | https://github.com/langchain-ai/langchain/pull/6652 | c2b25c17c5c8d35a7297f665f2327b9671855898 | 9e52134d30203a9125532621abcd5a102e3f2bfb | "2023-06-22T20:56:38Z" | python | "2023-06-23T20:38:21Z" | langchain/chat_models/vertexai.py | raise ValueError(
"You should provide at least one message to start the chat!"
)
question = messages[-1]
if not isinstance(question, HumanMessage):
raise ValueError(
f"Last message in the list should be from human, got {question.type}."
)
history = _parse_chat_history(messages[:-1])
context = history.system_message.content if history.system_message else None
params = {**self._default_params, **kwargs}
if not self.is_codey_model:
params["context"] = context
chat = self.client.start_chat(**params)
for pair in history.history:
chat._history.append((pair.question.content, pair.answer.content))
response = chat.send_message(question.content, **params)
text = self._enforce_stop_words(response.text, stop)
return ChatResult(generations=[ChatGeneration(message=AIMessage(content=text))])
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
raise NotImplementedError(
"""Vertex AI doesn't support async requests at the moment."""
) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,582 | Typo | ### System Info
latest version
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Typo on :
https://github.com/hwchase17/langchain/blob/d50de2728f95df0ffc59c538bd67e116a8e75a53/langchain/vectorstores/weaviate.py#L49
Instal - > install
### Expected behavior
typo corrected | https://github.com/langchain-ai/langchain/issues/6582 | https://github.com/langchain-ai/langchain/pull/6595 | f6fdabd20b3b14f8728f8c74d9711322400f9369 | ba256b23f241e1669536f7e70c6365ceba7a9cfa | "2023-06-22T09:34:08Z" | python | "2023-06-23T21:56:54Z" | langchain/vectorstores/weaviate.py | """Wrapper around weaviate vector database."""
from __future__ import annotations
import datetime
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Type
from uuid import uuid4
import numpy as np
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
from langchain.vectorstores.base import VectorStore
from langchain.vectorstores.utils import maximal_marginal_relevance
def _default_schema(index_name: str) -> Dict:
return {
"class": index_name,
"properties": [
{
"name": "text",
"dataType": ["text"],
}
],
}
def _create_weaviate_client(**kwargs: Any) -> Any: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,582 | Typo | ### System Info
latest version
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Typo on :
https://github.com/hwchase17/langchain/blob/d50de2728f95df0ffc59c538bd67e116a8e75a53/langchain/vectorstores/weaviate.py#L49
Instal - > install
### Expected behavior
typo corrected | https://github.com/langchain-ai/langchain/issues/6582 | https://github.com/langchain-ai/langchain/pull/6595 | f6fdabd20b3b14f8728f8c74d9711322400f9369 | ba256b23f241e1669536f7e70c6365ceba7a9cfa | "2023-06-22T09:34:08Z" | python | "2023-06-23T21:56:54Z" | langchain/vectorstores/weaviate.py | client = kwargs.get("client")
if client is not None:
return client
weaviate_url = get_from_dict_or_env(kwargs, "weaviate_url", "WEAVIATE_URL")
try:
weaviate_api_key = get_from_dict_or_env(
kwargs, "weaviate_api_key", "WEAVIATE_API_KEY", None
)
except ValueError:
weaviate_api_key = None
try:
import weaviate
except ImportError:
raise ValueError(
"Could not import weaviate python package. "
"Please install it with `pip instal weaviate-client`"
)
auth = (
weaviate.auth.AuthApiKey(api_key=weaviate_api_key)
if weaviate_api_key is not None
else None
)
client = weaviate.Client(weaviate_url, auth_client_secret=auth)
return client
def _default_score_normalizer(val: float) -> float: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,582 | Typo | ### System Info
latest version
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Typo on :
https://github.com/hwchase17/langchain/blob/d50de2728f95df0ffc59c538bd67e116a8e75a53/langchain/vectorstores/weaviate.py#L49
Instal - > install
### Expected behavior
typo corrected | https://github.com/langchain-ai/langchain/issues/6582 | https://github.com/langchain-ai/langchain/pull/6595 | f6fdabd20b3b14f8728f8c74d9711322400f9369 | ba256b23f241e1669536f7e70c6365ceba7a9cfa | "2023-06-22T09:34:08Z" | python | "2023-06-23T21:56:54Z" | langchain/vectorstores/weaviate.py | return 1 - 1 / (1 + np.exp(val))
def _json_serializable(value: Any) -> Any:
if isinstance(value, datetime.datetime):
return value.isoformat()
return value
class Weaviate(VectorStore):
"""Wrapper around Weaviate vector database.
To use, you should have the ``weaviate-client`` python package installed.
Example:
.. code-block:: python
import weaviate
from langchain.vectorstores import Weaviate
client = weaviate.Client(url=os.environ["WEAVIATE_URL"], ...)
weaviate = Weaviate(client, index_name, text_key)
"""
def __init__( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,582 | Typo | ### System Info
latest version
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Typo on :
https://github.com/hwchase17/langchain/blob/d50de2728f95df0ffc59c538bd67e116a8e75a53/langchain/vectorstores/weaviate.py#L49
Instal - > install
### Expected behavior
typo corrected | https://github.com/langchain-ai/langchain/issues/6582 | https://github.com/langchain-ai/langchain/pull/6595 | f6fdabd20b3b14f8728f8c74d9711322400f9369 | ba256b23f241e1669536f7e70c6365ceba7a9cfa | "2023-06-22T09:34:08Z" | python | "2023-06-23T21:56:54Z" | langchain/vectorstores/weaviate.py | self,
client: Any,
index_name: str,
text_key: str,
embedding: Optional[Embeddings] = None,
attributes: Optional[List[str]] = None,
relevance_score_fn: Optional[
Callable[[float], float]
] = _default_score_normalizer,
by_text: bool = True,
):
"""Initialize with Weaviate client."""
try:
import weaviate
except ImportError:
raise ValueError(
"Could not import weaviate python package. "
"Please install it with `pip install weaviate-client`."
)
if not isinstance(client, weaviate.Client):
raise ValueError(
f"client should be an instance of weaviate.Client, got {type(client)}"
)
self._client = client
self._index_name = index_name
self._embedding = embedding
self._text_key = text_key
self._query_attrs = [self._text_key]
self._relevance_score_fn = relevance_score_fn |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,582 | Typo | ### System Info
latest version
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Typo on :
https://github.com/hwchase17/langchain/blob/d50de2728f95df0ffc59c538bd67e116a8e75a53/langchain/vectorstores/weaviate.py#L49
Instal - > install
### Expected behavior
typo corrected | https://github.com/langchain-ai/langchain/issues/6582 | https://github.com/langchain-ai/langchain/pull/6595 | f6fdabd20b3b14f8728f8c74d9711322400f9369 | ba256b23f241e1669536f7e70c6365ceba7a9cfa | "2023-06-22T09:34:08Z" | python | "2023-06-23T21:56:54Z" | langchain/vectorstores/weaviate.py | self._by_text = by_text
if attributes is not None:
self._query_attrs.extend(attributes)
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
"""Upload texts with metadata (properties) to Weaviate."""
from weaviate.util import get_valid_uuid
ids = []
with self._client.batch as batch:
for i, text in enumerate(texts):
data_properties = {self._text_key: text}
if metadatas is not None:
for key, val in metadatas[i].items():
data_properties[key] = _json_serializable(val)
_id = get_valid_uuid(uuid4())
if "uuids" in kwargs:
_id = kwargs["uuids"][i]
elif "ids" in kwargs:
_id = kwargs["ids"][i]
if self._embedding is not None:
vector = self._embedding.embed_documents([text])[0]
else: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,582 | Typo | ### System Info
latest version
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Typo on :
https://github.com/hwchase17/langchain/blob/d50de2728f95df0ffc59c538bd67e116a8e75a53/langchain/vectorstores/weaviate.py#L49
Instal - > install
### Expected behavior
typo corrected | https://github.com/langchain-ai/langchain/issues/6582 | https://github.com/langchain-ai/langchain/pull/6595 | f6fdabd20b3b14f8728f8c74d9711322400f9369 | ba256b23f241e1669536f7e70c6365ceba7a9cfa | "2023-06-22T09:34:08Z" | python | "2023-06-23T21:56:54Z" | langchain/vectorstores/weaviate.py | vector = None
batch.add_data_object(
data_object=data_properties,
class_name=self._index_name,
uuid=_id,
vector=vector,
)
ids.append(_id)
return ids
def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query.
"""
if self._by_text:
return self.similarity_search_by_text(query, k, **kwargs)
else:
if self._embedding is None:
raise ValueError(
"_embedding cannot be None for similarity_search when "
"_by_text=False"
)
embedding = self._embedding.embed_query(query)
return self.similarity_search_by_vector(embedding, k, **kwargs)
def similarity_search_by_text( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,582 | Typo | ### System Info
latest version
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Typo on :
https://github.com/hwchase17/langchain/blob/d50de2728f95df0ffc59c538bd67e116a8e75a53/langchain/vectorstores/weaviate.py#L49
Instal - > install
### Expected behavior
typo corrected | https://github.com/langchain-ai/langchain/issues/6582 | https://github.com/langchain-ai/langchain/pull/6595 | f6fdabd20b3b14f8728f8c74d9711322400f9369 | ba256b23f241e1669536f7e70c6365ceba7a9cfa | "2023-06-22T09:34:08Z" | python | "2023-06-23T21:56:54Z" | langchain/vectorstores/weaviate.py | self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query.
"""
content: Dict[str, Any] = {"concepts": [query]}
if kwargs.get("search_distance"):
content["certainty"] = kwargs.get("search_distance")
query_obj = self._client.query.get(self._index_name, self._query_attrs)
if kwargs.get("where_filter"):
query_obj = query_obj.with_where(kwargs.get("where_filter"))
if kwargs.get("additional"):
query_obj = query_obj.with_additional(kwargs.get("additional"))
result = query_obj.with_near_text(content).with_limit(k).do()
if "errors" in result:
raise ValueError(f"Error during query: {result['errors']}")
docs = []
for res in result["data"]["Get"][self._index_name]:
text = res.pop(self._text_key)
docs.append(Document(page_content=text, metadata=res))
return docs
def similarity_search_by_vector( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,582 | Typo | ### System Info
latest version
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Typo on :
https://github.com/hwchase17/langchain/blob/d50de2728f95df0ffc59c538bd67e116a8e75a53/langchain/vectorstores/weaviate.py#L49
Instal - > install
### Expected behavior
typo corrected | https://github.com/langchain-ai/langchain/issues/6582 | https://github.com/langchain-ai/langchain/pull/6595 | f6fdabd20b3b14f8728f8c74d9711322400f9369 | ba256b23f241e1669536f7e70c6365ceba7a9cfa | "2023-06-22T09:34:08Z" | python | "2023-06-23T21:56:54Z" | langchain/vectorstores/weaviate.py | self, embedding: List[float], k: int = 4, **kwargs: Any
) -> List[Document]:
"""Look up similar documents by embedding vector in Weaviate."""
vector = {"vector": embedding}
query_obj = self._client.query.get(self._index_name, self._query_attrs)
if kwargs.get("where_filter"):
query_obj = query_obj.with_where(kwargs.get("where_filter"))
if kwargs.get("additional"):
query_obj = query_obj.with_additional(kwargs.get("additional"))
result = query_obj.with_near_vector(vector).with_limit(k).do()
if "errors" in result:
raise ValueError(f"Error during query: {result['errors']}")
docs = []
for res in result["data"]["Get"][self._index_name]:
text = res.pop(self._text_key) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,582 | Typo | ### System Info
latest version
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Typo on :
https://github.com/hwchase17/langchain/blob/d50de2728f95df0ffc59c538bd67e116a8e75a53/langchain/vectorstores/weaviate.py#L49
Instal - > install
### Expected behavior
typo corrected | https://github.com/langchain-ai/langchain/issues/6582 | https://github.com/langchain-ai/langchain/pull/6595 | f6fdabd20b3b14f8728f8c74d9711322400f9369 | ba256b23f241e1669536f7e70c6365ceba7a9cfa | "2023-06-22T09:34:08Z" | python | "2023-06-23T21:56:54Z" | langchain/vectorstores/weaviate.py | docs.append(Document(page_content=text, metadata=res))
return docs
def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
if self._embedding is not None:
embedding = self._embedding.embed_query(query)
else:
raise ValueError(
"max_marginal_relevance_search requires a suitable Embeddings object"
) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,582 | Typo | ### System Info
latest version
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Typo on :
https://github.com/hwchase17/langchain/blob/d50de2728f95df0ffc59c538bd67e116a8e75a53/langchain/vectorstores/weaviate.py#L49
Instal - > install
### Expected behavior
typo corrected | https://github.com/langchain-ai/langchain/issues/6582 | https://github.com/langchain-ai/langchain/pull/6595 | f6fdabd20b3b14f8728f8c74d9711322400f9369 | ba256b23f241e1669536f7e70c6365ceba7a9cfa | "2023-06-22T09:34:08Z" | python | "2023-06-23T21:56:54Z" | langchain/vectorstores/weaviate.py | return self.max_marginal_relevance_search_by_vector(
embedding, k=k, fetch_k=fetch_k, lambda_mult=lambda_mult, **kwargs
)
def max_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
vector = {"vector": embedding}
query_obj = self._client.query.get(self._index_name, self._query_attrs)
if kwargs.get("where_filter"):
query_obj = query_obj.with_where(kwargs.get("where_filter"))
results = ( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,582 | Typo | ### System Info
latest version
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Typo on :
https://github.com/hwchase17/langchain/blob/d50de2728f95df0ffc59c538bd67e116a8e75a53/langchain/vectorstores/weaviate.py#L49
Instal - > install
### Expected behavior
typo corrected | https://github.com/langchain-ai/langchain/issues/6582 | https://github.com/langchain-ai/langchain/pull/6595 | f6fdabd20b3b14f8728f8c74d9711322400f9369 | ba256b23f241e1669536f7e70c6365ceba7a9cfa | "2023-06-22T09:34:08Z" | python | "2023-06-23T21:56:54Z" | langchain/vectorstores/weaviate.py | query_obj.with_additional("vector")
.with_near_vector(vector)
.with_limit(fetch_k)
.do()
)
payload = results["data"]["Get"][self._index_name]
embeddings = [result["_additional"]["vector"] for result in payload]
mmr_selected = maximal_marginal_relevance(
np.array(embedding), embeddings, k=k, lambda_mult=lambda_mult
)
docs = []
for idx in mmr_selected:
text = payload[idx].pop(self._text_key)
payload[idx].pop("_additional")
meta = payload[idx]
docs.append(Document(page_content=text, metadata=meta))
return docs
def similarity_search_with_score(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Tuple[Document, float]]:
"""
Return list of documents most similar to the query
text and cosine distance in float for each.
Lower score represents more similarity.
"""
if self._embedding is None:
raise ValueError(
"_embedding cannot be None for similarity_search_with_score"
)
content: Dict[str, Any] = {"concepts": [query]} |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,582 | Typo | ### System Info
latest version
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Typo on :
https://github.com/hwchase17/langchain/blob/d50de2728f95df0ffc59c538bd67e116a8e75a53/langchain/vectorstores/weaviate.py#L49
Instal - > install
### Expected behavior
typo corrected | https://github.com/langchain-ai/langchain/issues/6582 | https://github.com/langchain-ai/langchain/pull/6595 | f6fdabd20b3b14f8728f8c74d9711322400f9369 | ba256b23f241e1669536f7e70c6365ceba7a9cfa | "2023-06-22T09:34:08Z" | python | "2023-06-23T21:56:54Z" | langchain/vectorstores/weaviate.py | if kwargs.get("search_distance"):
content["certainty"] = kwargs.get("search_distance")
query_obj = self._client.query.get(self._index_name, self._query_attrs)
if not self._by_text:
embedding = self._embedding.embed_query(query)
vector = {"vector": embedding}
result = (
query_obj.with_near_vector(vector)
.with_limit(k)
.with_additional("vector")
.do()
)
else:
result = (
query_obj.with_near_text(content)
.with_limit(k)
.with_additional("vector")
.do()
)
if "errors" in result:
raise ValueError(f"Error during query: {result['errors']}")
docs_and_scores = []
for res in result["data"]["Get"][self._index_name]:
text = res.pop(self._text_key)
score = np.dot(
res["_additional"]["vector"], self._embedding.embed_query(query)
)
docs_and_scores.append((Document(page_content=text, metadata=res), score))
return docs_and_scores
def _similarity_search_with_relevance_scores( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,582 | Typo | ### System Info
latest version
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Typo on :
https://github.com/hwchase17/langchain/blob/d50de2728f95df0ffc59c538bd67e116a8e75a53/langchain/vectorstores/weaviate.py#L49
Instal - > install
### Expected behavior
typo corrected | https://github.com/langchain-ai/langchain/issues/6582 | https://github.com/langchain-ai/langchain/pull/6595 | f6fdabd20b3b14f8728f8c74d9711322400f9369 | ba256b23f241e1669536f7e70c6365ceba7a9cfa | "2023-06-22T09:34:08Z" | python | "2023-06-23T21:56:54Z" | langchain/vectorstores/weaviate.py | self,
query: str,
k: int = 4,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return docs and relevance scores, normalized on a scale from 0 to 1.
0 is dissimilar, 1 is most similar.
"""
if self._relevance_score_fn is None:
raise ValueError(
"relevance_score_fn must be provided to"
" Weaviate constructor to normalize scores"
)
docs_and_scores = self.similarity_search_with_score(query, k=k, **kwargs)
return [
(doc, self._relevance_score_fn(score)) for doc, score in docs_and_scores
]
@classmethod
def from_texts( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,582 | Typo | ### System Info
latest version
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Typo on :
https://github.com/hwchase17/langchain/blob/d50de2728f95df0ffc59c538bd67e116a8e75a53/langchain/vectorstores/weaviate.py#L49
Instal - > install
### Expected behavior
typo corrected | https://github.com/langchain-ai/langchain/issues/6582 | https://github.com/langchain-ai/langchain/pull/6595 | f6fdabd20b3b14f8728f8c74d9711322400f9369 | ba256b23f241e1669536f7e70c6365ceba7a9cfa | "2023-06-22T09:34:08Z" | python | "2023-06-23T21:56:54Z" | langchain/vectorstores/weaviate.py | cls: Type[Weaviate],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> Weaviate:
"""Construct Weaviate wrapper from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in the Weaviate instance.
3. Adds the documents to the newly created Weaviate index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain.vectorstores.weaviate import Weaviate
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
weaviate = Weaviate.from_texts(
texts,
embeddings, |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,582 | Typo | ### System Info
latest version
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Typo on :
https://github.com/hwchase17/langchain/blob/d50de2728f95df0ffc59c538bd67e116a8e75a53/langchain/vectorstores/weaviate.py#L49
Instal - > install
### Expected behavior
typo corrected | https://github.com/langchain-ai/langchain/issues/6582 | https://github.com/langchain-ai/langchain/pull/6595 | f6fdabd20b3b14f8728f8c74d9711322400f9369 | ba256b23f241e1669536f7e70c6365ceba7a9cfa | "2023-06-22T09:34:08Z" | python | "2023-06-23T21:56:54Z" | langchain/vectorstores/weaviate.py | weaviate_url="http://localhost:8080"
)
"""
client = _create_weaviate_client(**kwargs)
from weaviate.util import get_valid_uuid
index_name = kwargs.get("index_name", f"LangChain_{uuid4().hex}")
embeddings = embedding.embed_documents(texts) if embedding else None
text_key = "text"
schema = _default_schema(index_name)
attributes = list(metadatas[0].keys()) if metadatas else None
if not client.schema.contains(schema):
client.schema.create_class(schema)
with client.batch as batch:
for i, text in enumerate(texts):
data_properties = {
text_key: text,
}
if metadatas is not None:
for key in metadatas[i].keys():
data_properties[key] = metadatas[i][key]
if "uuids" in kwargs:
_id = kwargs["uuids"][i]
else:
_id = get_valid_uuid(uuid4()) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,582 | Typo | ### System Info
latest version
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [X] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Typo on :
https://github.com/hwchase17/langchain/blob/d50de2728f95df0ffc59c538bd67e116a8e75a53/langchain/vectorstores/weaviate.py#L49
Instal - > install
### Expected behavior
typo corrected | https://github.com/langchain-ai/langchain/issues/6582 | https://github.com/langchain-ai/langchain/pull/6595 | f6fdabd20b3b14f8728f8c74d9711322400f9369 | ba256b23f241e1669536f7e70c6365ceba7a9cfa | "2023-06-22T09:34:08Z" | python | "2023-06-23T21:56:54Z" | langchain/vectorstores/weaviate.py | params = {
"uuid": _id,
"data_object": data_properties,
"class_name": index_name,
}
if embeddings is not None:
params["vector"] = embeddings[i]
batch.add_data_object(**params)
batch.flush()
relevance_score_fn = kwargs.get("relevance_score_fn")
by_text: bool = kwargs.get("by_text", False)
return cls(
client,
index_name,
text_key,
embedding=embedding,
attributes=attributes,
relevance_score_fn=relevance_score_fn,
by_text=by_text,
)
def delete(self, ids: List[str]) -> None:
"""Delete by vector IDs.
Args:
ids: List of ids to delete.
"""
for id in ids:
self._client.data_object.delete(uuid=id) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,472 | DOC: Incorrect type for tags parameter in MLflow callback | ### Issue with current documentation:
In the documentation the tag type is string, but in the code it's a dictionary.
The proposed fix is to change the following two lines "tags (str):" to "tags (dict):".
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L120
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L225
### Idea or request for content:
_No response_ | https://github.com/langchain-ai/langchain/issues/6472 | https://github.com/langchain-ai/langchain/pull/6473 | 9187d2f3a97abc6d89daea9b5abfa652a425e1de | fe941cb54a80976bfc7575ce59a518ae428801ee | "2023-06-20T09:57:57Z" | python | "2023-06-26T09:12:23Z" | langchain/callbacks/mlflow_callback.py | import random
import string
import tempfile
import traceback
from copy import deepcopy
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
from langchain.callbacks.base import BaseCallbackHandler
from langchain.callbacks.utils import (
BaseMetadataCallbackHandler,
flatten_dict,
hash_string,
import_pandas,
import_spacy,
import_textstat,
)
from langchain.schema import AgentAction, AgentFinish, LLMResult
from langchain.utils import get_from_dict_or_env
def import_mlflow() -> Any: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,472 | DOC: Incorrect type for tags parameter in MLflow callback | ### Issue with current documentation:
In the documentation the tag type is string, but in the code it's a dictionary.
The proposed fix is to change the following two lines "tags (str):" to "tags (dict):".
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L120
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L225
### Idea or request for content:
_No response_ | https://github.com/langchain-ai/langchain/issues/6472 | https://github.com/langchain-ai/langchain/pull/6473 | 9187d2f3a97abc6d89daea9b5abfa652a425e1de | fe941cb54a80976bfc7575ce59a518ae428801ee | "2023-06-20T09:57:57Z" | python | "2023-06-26T09:12:23Z" | langchain/callbacks/mlflow_callback.py | """Import the mlflow python package and raise an error if it is not installed."""
try:
import mlflow
except ImportError:
raise ImportError(
"To use the mlflow callback manager you need to have the `mlflow` python "
"package installed. Please install it with `pip install mlflow>=2.3.0`"
)
return mlflow
def analyze_text(
text: str,
nlp: Any = None,
) -> dict:
"""Analyze text using textstat and spacy.
Parameters:
text (str): The text to analyze.
nlp (spacy.lang): The spacy language model to use for visualization.
Returns:
(dict): A dictionary containing the complexity metrics and visualization
files serialized to HTML string.
"""
resp: Dict[str, Any] = {}
textstat = import_textstat()
spacy = import_spacy()
text_complexity_metrics = {
"flesch_reading_ease": textstat.flesch_reading_ease(text),
"flesch_kincaid_grade": textstat.flesch_kincaid_grade(text),
"smog_index": textstat.smog_index(text),
"coleman_liau_index": textstat.coleman_liau_index(text), |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,472 | DOC: Incorrect type for tags parameter in MLflow callback | ### Issue with current documentation:
In the documentation the tag type is string, but in the code it's a dictionary.
The proposed fix is to change the following two lines "tags (str):" to "tags (dict):".
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L120
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L225
### Idea or request for content:
_No response_ | https://github.com/langchain-ai/langchain/issues/6472 | https://github.com/langchain-ai/langchain/pull/6473 | 9187d2f3a97abc6d89daea9b5abfa652a425e1de | fe941cb54a80976bfc7575ce59a518ae428801ee | "2023-06-20T09:57:57Z" | python | "2023-06-26T09:12:23Z" | langchain/callbacks/mlflow_callback.py | "automated_readability_index": textstat.automated_readability_index(text),
"dale_chall_readability_score": textstat.dale_chall_readability_score(text),
"difficult_words": textstat.difficult_words(text),
"linsear_write_formula": textstat.linsear_write_formula(text),
"gunning_fog": textstat.gunning_fog(text),
"fernandez_huerta": textstat.fernandez_huerta(text),
"szigriszt_pazos": textstat.szigriszt_pazos(text),
"gutierrez_polini": textstat.gutierrez_polini(text),
"crawford": textstat.crawford(text),
"gulpease_index": textstat.gulpease_index(text),
"osman": textstat.osman(text),
}
resp.update({"text_complexity_metrics": text_complexity_metrics})
resp.update(text_complexity_metrics)
if nlp is not None:
doc = nlp(text)
dep_out = spacy.displacy.render(
doc, style="dep", jupyter=False, page=True
)
ent_out = spacy.displacy.render(
doc, style="ent", jupyter=False, page=True
)
text_visualizations = {
"dependency_tree": dep_out,
"entities": ent_out,
}
resp.update(text_visualizations)
return resp
def construct_html_from_prompt_and_generation(prompt: str, generation: str) -> Any: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,472 | DOC: Incorrect type for tags parameter in MLflow callback | ### Issue with current documentation:
In the documentation the tag type is string, but in the code it's a dictionary.
The proposed fix is to change the following two lines "tags (str):" to "tags (dict):".
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L120
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L225
### Idea or request for content:
_No response_ | https://github.com/langchain-ai/langchain/issues/6472 | https://github.com/langchain-ai/langchain/pull/6473 | 9187d2f3a97abc6d89daea9b5abfa652a425e1de | fe941cb54a80976bfc7575ce59a518ae428801ee | "2023-06-20T09:57:57Z" | python | "2023-06-26T09:12:23Z" | langchain/callbacks/mlflow_callback.py | """Construct an html element from a prompt and a generation.
Parameters:
prompt (str): The prompt.
generation (str): The generation.
Returns:
(str): The html string."""
formatted_prompt = prompt.replace("\n", "<br>")
formatted_generation = generation.replace("\n", "<br>")
return f"""
<p style="color:black;">{formatted_prompt}:</p>
<blockquote>
<p style="color:green;">
{formatted_generation}
</p>
</blockquote>
"""
class MlflowLogger: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,472 | DOC: Incorrect type for tags parameter in MLflow callback | ### Issue with current documentation:
In the documentation the tag type is string, but in the code it's a dictionary.
The proposed fix is to change the following two lines "tags (str):" to "tags (dict):".
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L120
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L225
### Idea or request for content:
_No response_ | https://github.com/langchain-ai/langchain/issues/6472 | https://github.com/langchain-ai/langchain/pull/6473 | 9187d2f3a97abc6d89daea9b5abfa652a425e1de | fe941cb54a80976bfc7575ce59a518ae428801ee | "2023-06-20T09:57:57Z" | python | "2023-06-26T09:12:23Z" | langchain/callbacks/mlflow_callback.py | """Callback Handler that logs metrics and artifacts to mlflow server.
Parameters:
name (str): Name of the run.
experiment (str): Name of the experiment.
tags (str): Tags to be attached for the run.
tracking_uri (str): MLflow tracking server uri.
This handler implements the helper functions to initialize,
log metrics and artifacts to the mlflow server.
"""
def __init__(self, **kwargs: Any):
self.mlflow = import_mlflow()
tracking_uri = get_from_dict_or_env(
kwargs, "tracking_uri", "MLFLOW_TRACKING_URI", ""
)
self.mlflow.set_tracking_uri(tracking_uri)
experiment_name = get_from_dict_or_env(
kwargs, "experiment_name", "MLFLOW_EXPERIMENT_NAME"
)
self.mlf_exp = self.mlflow.get_experiment_by_name(experiment_name)
if self.mlf_exp is not None:
self.mlf_expid = self.mlf_exp.experiment_id
else:
self.mlf_expid = self.mlflow.create_experiment(experiment_name)
self.start_run(kwargs["run_name"], kwargs["run_tags"])
def start_run(self, name: str, tags: Dict[str, str]) -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,472 | DOC: Incorrect type for tags parameter in MLflow callback | ### Issue with current documentation:
In the documentation the tag type is string, but in the code it's a dictionary.
The proposed fix is to change the following two lines "tags (str):" to "tags (dict):".
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L120
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L225
### Idea or request for content:
_No response_ | https://github.com/langchain-ai/langchain/issues/6472 | https://github.com/langchain-ai/langchain/pull/6473 | 9187d2f3a97abc6d89daea9b5abfa652a425e1de | fe941cb54a80976bfc7575ce59a518ae428801ee | "2023-06-20T09:57:57Z" | python | "2023-06-26T09:12:23Z" | langchain/callbacks/mlflow_callback.py | """To start a new run, auto generates the random suffix for name"""
if name.endswith("-%"):
rname = "".join(random.choices(string.ascii_uppercase + string.digits, k=7))
name = name.replace("%", rname)
self.run = self.mlflow.MlflowClient().create_run(
self.mlf_expid, run_name=name, tags=tags
)
def finish_run(self) -> None:
"""To finish the run."""
with self.mlflow.start_run(
run_id=self.run.info.run_id, experiment_id=self.mlf_expid
):
self.mlflow.end_run()
def metric(self, key: str, value: float) -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,472 | DOC: Incorrect type for tags parameter in MLflow callback | ### Issue with current documentation:
In the documentation the tag type is string, but in the code it's a dictionary.
The proposed fix is to change the following two lines "tags (str):" to "tags (dict):".
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L120
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L225
### Idea or request for content:
_No response_ | https://github.com/langchain-ai/langchain/issues/6472 | https://github.com/langchain-ai/langchain/pull/6473 | 9187d2f3a97abc6d89daea9b5abfa652a425e1de | fe941cb54a80976bfc7575ce59a518ae428801ee | "2023-06-20T09:57:57Z" | python | "2023-06-26T09:12:23Z" | langchain/callbacks/mlflow_callback.py | """To log metric to mlflow server."""
with self.mlflow.start_run(
run_id=self.run.info.run_id, experiment_id=self.mlf_expid
):
self.mlflow.log_metric(key, value)
def metrics(
self, data: Union[Dict[str, float], Dict[str, int]], step: Optional[int] = 0
) -> None:
"""To log all metrics in the input dict."""
with self.mlflow.start_run(
run_id=self.run.info.run_id, experiment_id=self.mlf_expid
):
self.mlflow.log_metrics(data)
def jsonf(self, data: Dict[str, Any], filename: str) -> None:
"""To log the input data as json file artifact."""
with self.mlflow.start_run(
run_id=self.run.info.run_id, experiment_id=self.mlf_expid
):
self.mlflow.log_dict(data, f"{filename}.json")
def table(self, name: str, dataframe) -> None:
"""To log the input pandas dataframe as a html table"""
self.html(dataframe.to_html(), f"table_{name}")
def html(self, html: str, filename: str) -> None:
"""To log the input html string as html file artifact."""
with self.mlflow.start_run(
run_id=self.run.info.run_id, experiment_id=self.mlf_expid
):
self.mlflow.log_text(html, f"{filename}.html")
def text(self, text: str, filename: str) -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,472 | DOC: Incorrect type for tags parameter in MLflow callback | ### Issue with current documentation:
In the documentation the tag type is string, but in the code it's a dictionary.
The proposed fix is to change the following two lines "tags (str):" to "tags (dict):".
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L120
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L225
### Idea or request for content:
_No response_ | https://github.com/langchain-ai/langchain/issues/6472 | https://github.com/langchain-ai/langchain/pull/6473 | 9187d2f3a97abc6d89daea9b5abfa652a425e1de | fe941cb54a80976bfc7575ce59a518ae428801ee | "2023-06-20T09:57:57Z" | python | "2023-06-26T09:12:23Z" | langchain/callbacks/mlflow_callback.py | """To log the input text as text file artifact."""
with self.mlflow.start_run(
run_id=self.run.info.run_id, experiment_id=self.mlf_expid
):
self.mlflow.log_text(text, f"{filename}.txt")
def artifact(self, path: str) -> None:
"""To upload the file from given path as artifact."""
with self.mlflow.start_run(
run_id=self.run.info.run_id, experiment_id=self.mlf_expid
):
self.mlflow.log_artifact(path)
def langchain_artifact(self, chain: Any) -> None:
with self.mlflow.start_run(
run_id=self.run.info.run_id, experiment_id=self.mlf_expid
):
self.mlflow.langchain.log_model(chain, "langchain-model")
class MlflowCallbackHandler(BaseMetadataCallbackHandler, BaseCallbackHandler):
"""Callback Handler that logs metrics and artifacts to mlflow server.
Parameters:
name (str): Name of the run.
experiment (str): Name of the experiment.
tags (str): Tags to be attached for the run.
tracking_uri (str): MLflow tracking server uri.
This handler will utilize the associated callback method called and formats
the input of each callback function with metadata regarding the state of LLM run,
and adds the response to the list of records for both the {method}_records and
action. It then logs the response to mlflow server.
"""
def __init__( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,472 | DOC: Incorrect type for tags parameter in MLflow callback | ### Issue with current documentation:
In the documentation the tag type is string, but in the code it's a dictionary.
The proposed fix is to change the following two lines "tags (str):" to "tags (dict):".
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L120
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L225
### Idea or request for content:
_No response_ | https://github.com/langchain-ai/langchain/issues/6472 | https://github.com/langchain-ai/langchain/pull/6473 | 9187d2f3a97abc6d89daea9b5abfa652a425e1de | fe941cb54a80976bfc7575ce59a518ae428801ee | "2023-06-20T09:57:57Z" | python | "2023-06-26T09:12:23Z" | langchain/callbacks/mlflow_callback.py | self,
name: Optional[str] = "langchainrun-%",
experiment: Optional[str] = "langchain",
tags: Optional[Dict] = {},
tracking_uri: Optional[str] = None,
) -> None:
"""Initialize callback handler."""
import_pandas()
import_textstat()
import_mlflow()
spacy = import_spacy()
super().__init__()
self.name = name
self.experiment = experiment
self.tags = tags
self.tracking_uri = tracking_uri
self.temp_dir = tempfile.TemporaryDirectory()
self.mlflg = MlflowLogger(
tracking_uri=self.tracking_uri,
experiment_name=self.experiment,
run_name=self.name,
run_tags=self.tags,
)
self.action_records: list = [] |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,472 | DOC: Incorrect type for tags parameter in MLflow callback | ### Issue with current documentation:
In the documentation the tag type is string, but in the code it's a dictionary.
The proposed fix is to change the following two lines "tags (str):" to "tags (dict):".
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L120
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L225
### Idea or request for content:
_No response_ | https://github.com/langchain-ai/langchain/issues/6472 | https://github.com/langchain-ai/langchain/pull/6473 | 9187d2f3a97abc6d89daea9b5abfa652a425e1de | fe941cb54a80976bfc7575ce59a518ae428801ee | "2023-06-20T09:57:57Z" | python | "2023-06-26T09:12:23Z" | langchain/callbacks/mlflow_callback.py | self.nlp = spacy.load("en_core_web_sm")
self.metrics = {
"step": 0,
"starts": 0,
"ends": 0,
"errors": 0,
"text_ctr": 0,
"chain_starts": 0,
"chain_ends": 0,
"llm_starts": 0,
"llm_ends": 0,
"llm_streams": 0,
"tool_starts": 0,
"tool_ends": 0,
"agent_ends": 0,
}
self.records: Dict[str, Any] = {
"on_llm_start_records": [],
"on_llm_token_records": [],
"on_llm_end_records": [],
"on_chain_start_records": [],
"on_chain_end_records": [],
"on_tool_start_records": [],
"on_tool_end_records": [],
"on_text_records": [],
"on_agent_finish_records": [],
"on_agent_action_records": [],
"action_records": [],
}
def _reset(self) -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,472 | DOC: Incorrect type for tags parameter in MLflow callback | ### Issue with current documentation:
In the documentation the tag type is string, but in the code it's a dictionary.
The proposed fix is to change the following two lines "tags (str):" to "tags (dict):".
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L120
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L225
### Idea or request for content:
_No response_ | https://github.com/langchain-ai/langchain/issues/6472 | https://github.com/langchain-ai/langchain/pull/6473 | 9187d2f3a97abc6d89daea9b5abfa652a425e1de | fe941cb54a80976bfc7575ce59a518ae428801ee | "2023-06-20T09:57:57Z" | python | "2023-06-26T09:12:23Z" | langchain/callbacks/mlflow_callback.py | for k, v in self.metrics.items():
self.metrics[k] = 0
for k, v in self.records.items():
self.records[k] = []
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
"""Run when LLM starts."""
self.metrics["step"] += 1
self.metrics["llm_starts"] += 1
self.metrics["starts"] += 1
llm_starts = self.metrics["llm_starts"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_llm_start"})
resp.update(flatten_dict(serialized))
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
for idx, prompt in enumerate(prompts):
prompt_resp = deepcopy(resp)
prompt_resp["prompt"] = prompt
self.records["on_llm_start_records"].append(prompt_resp)
self.records["action_records"].append(prompt_resp)
self.mlflg.jsonf(prompt_resp, f"llm_start_{llm_starts}_prompt_{idx}")
def on_llm_new_token(self, token: str, **kwargs: Any) -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,472 | DOC: Incorrect type for tags parameter in MLflow callback | ### Issue with current documentation:
In the documentation the tag type is string, but in the code it's a dictionary.
The proposed fix is to change the following two lines "tags (str):" to "tags (dict):".
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L120
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L225
### Idea or request for content:
_No response_ | https://github.com/langchain-ai/langchain/issues/6472 | https://github.com/langchain-ai/langchain/pull/6473 | 9187d2f3a97abc6d89daea9b5abfa652a425e1de | fe941cb54a80976bfc7575ce59a518ae428801ee | "2023-06-20T09:57:57Z" | python | "2023-06-26T09:12:23Z" | langchain/callbacks/mlflow_callback.py | """Run when LLM generates a new token."""
self.metrics["step"] += 1
self.metrics["llm_streams"] += 1
llm_streams = self.metrics["llm_streams"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_llm_new_token", "token": token})
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_llm_token_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"llm_new_tokens_{llm_streams}")
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,472 | DOC: Incorrect type for tags parameter in MLflow callback | ### Issue with current documentation:
In the documentation the tag type is string, but in the code it's a dictionary.
The proposed fix is to change the following two lines "tags (str):" to "tags (dict):".
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L120
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L225
### Idea or request for content:
_No response_ | https://github.com/langchain-ai/langchain/issues/6472 | https://github.com/langchain-ai/langchain/pull/6473 | 9187d2f3a97abc6d89daea9b5abfa652a425e1de | fe941cb54a80976bfc7575ce59a518ae428801ee | "2023-06-20T09:57:57Z" | python | "2023-06-26T09:12:23Z" | langchain/callbacks/mlflow_callback.py | """Run when LLM ends running."""
self.metrics["step"] += 1
self.metrics["llm_ends"] += 1
self.metrics["ends"] += 1
llm_ends = self.metrics["llm_ends"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_llm_end"})
resp.update(flatten_dict(response.llm_output or {}))
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
for generations in response.generations:
for idx, generation in enumerate(generations):
generation_resp = deepcopy(resp)
generation_resp.update(flatten_dict(generation.dict()))
generation_resp.update(
analyze_text(
generation.text,
nlp=self.nlp,
)
)
complexity_metrics: Dict[str, float] = generation_resp.pop("text_complexity_metrics")
self.mlflg.metrics(
complexity_metrics,
step=self.metrics["step"],
)
self.records["on_llm_end_records"].append(generation_resp)
self.records["action_records"].append(generation_resp)
self.mlflg.jsonf(resp, f"llm_end_{llm_ends}_generation_{idx}") |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,472 | DOC: Incorrect type for tags parameter in MLflow callback | ### Issue with current documentation:
In the documentation the tag type is string, but in the code it's a dictionary.
The proposed fix is to change the following two lines "tags (str):" to "tags (dict):".
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L120
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L225
### Idea or request for content:
_No response_ | https://github.com/langchain-ai/langchain/issues/6472 | https://github.com/langchain-ai/langchain/pull/6473 | 9187d2f3a97abc6d89daea9b5abfa652a425e1de | fe941cb54a80976bfc7575ce59a518ae428801ee | "2023-06-20T09:57:57Z" | python | "2023-06-26T09:12:23Z" | langchain/callbacks/mlflow_callback.py | dependency_tree = generation_resp["dependency_tree"]
entities = generation_resp["entities"]
self.mlflg.html(dependency_tree, "dep-" + hash_string(generation.text))
self.mlflg.html(entities, "ent-" + hash_string(generation.text))
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Run when LLM errors."""
self.metrics["step"] += 1
self.metrics["errors"] += 1
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
"""Run when chain starts running."""
self.metrics["step"] += 1
self.metrics["chain_starts"] += 1
self.metrics["starts"] += 1
chain_starts = self.metrics["chain_starts"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_chain_start"})
resp.update(flatten_dict(serialized))
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
chain_input = ",".join([f"{k}={v}" for k, v in inputs.items()])
input_resp = deepcopy(resp)
input_resp["inputs"] = chain_input
self.records["on_chain_start_records"].append(input_resp)
self.records["action_records"].append(input_resp)
self.mlflg.jsonf(input_resp, f"chain_start_{chain_starts}")
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,472 | DOC: Incorrect type for tags parameter in MLflow callback | ### Issue with current documentation:
In the documentation the tag type is string, but in the code it's a dictionary.
The proposed fix is to change the following two lines "tags (str):" to "tags (dict):".
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L120
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L225
### Idea or request for content:
_No response_ | https://github.com/langchain-ai/langchain/issues/6472 | https://github.com/langchain-ai/langchain/pull/6473 | 9187d2f3a97abc6d89daea9b5abfa652a425e1de | fe941cb54a80976bfc7575ce59a518ae428801ee | "2023-06-20T09:57:57Z" | python | "2023-06-26T09:12:23Z" | langchain/callbacks/mlflow_callback.py | """Run when chain ends running."""
self.metrics["step"] += 1
self.metrics["chain_ends"] += 1
self.metrics["ends"] += 1
chain_ends = self.metrics["chain_ends"]
resp: Dict[str, Any] = {}
chain_output = ",".join([f"{k}={v}" for k, v in outputs.items()])
resp.update({"action": "on_chain_end", "outputs": chain_output})
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_chain_end_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"chain_end_{chain_ends}")
def on_chain_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Run when chain errors."""
self.metrics["step"] += 1
self.metrics["errors"] += 1
def on_tool_start( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,472 | DOC: Incorrect type for tags parameter in MLflow callback | ### Issue with current documentation:
In the documentation the tag type is string, but in the code it's a dictionary.
The proposed fix is to change the following two lines "tags (str):" to "tags (dict):".
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L120
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L225
### Idea or request for content:
_No response_ | https://github.com/langchain-ai/langchain/issues/6472 | https://github.com/langchain-ai/langchain/pull/6473 | 9187d2f3a97abc6d89daea9b5abfa652a425e1de | fe941cb54a80976bfc7575ce59a518ae428801ee | "2023-06-20T09:57:57Z" | python | "2023-06-26T09:12:23Z" | langchain/callbacks/mlflow_callback.py | self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
) -> None:
"""Run when tool starts running."""
self.metrics["step"] += 1
self.metrics["tool_starts"] += 1
self.metrics["starts"] += 1
tool_starts = self.metrics["tool_starts"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_tool_start", "input_str": input_str})
resp.update(flatten_dict(serialized))
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_tool_start_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"tool_start_{tool_starts}")
def on_tool_end(self, output: str, **kwargs: Any) -> None:
"""Run when tool ends running."""
self.metrics["step"] += 1
self.metrics["tool_ends"] += 1
self.metrics["ends"] += 1
tool_ends = self.metrics["tool_ends"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_tool_end", "output": output})
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_tool_end_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"tool_end_{tool_ends}")
def on_tool_error( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,472 | DOC: Incorrect type for tags parameter in MLflow callback | ### Issue with current documentation:
In the documentation the tag type is string, but in the code it's a dictionary.
The proposed fix is to change the following two lines "tags (str):" to "tags (dict):".
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L120
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L225
### Idea or request for content:
_No response_ | https://github.com/langchain-ai/langchain/issues/6472 | https://github.com/langchain-ai/langchain/pull/6473 | 9187d2f3a97abc6d89daea9b5abfa652a425e1de | fe941cb54a80976bfc7575ce59a518ae428801ee | "2023-06-20T09:57:57Z" | python | "2023-06-26T09:12:23Z" | langchain/callbacks/mlflow_callback.py | self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Run when tool errors."""
self.metrics["step"] += 1
self.metrics["errors"] += 1
def on_text(self, text: str, **kwargs: Any) -> None:
"""
Run when agent is ending.
"""
self.metrics["step"] += 1
self.metrics["text_ctr"] += 1
text_ctr = self.metrics["text_ctr"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_text", "text": text})
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_text_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"on_text_{text_ctr}")
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,472 | DOC: Incorrect type for tags parameter in MLflow callback | ### Issue with current documentation:
In the documentation the tag type is string, but in the code it's a dictionary.
The proposed fix is to change the following two lines "tags (str):" to "tags (dict):".
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L120
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L225
### Idea or request for content:
_No response_ | https://github.com/langchain-ai/langchain/issues/6472 | https://github.com/langchain-ai/langchain/pull/6473 | 9187d2f3a97abc6d89daea9b5abfa652a425e1de | fe941cb54a80976bfc7575ce59a518ae428801ee | "2023-06-20T09:57:57Z" | python | "2023-06-26T09:12:23Z" | langchain/callbacks/mlflow_callback.py | """Run when agent ends running."""
self.metrics["step"] += 1
self.metrics["agent_ends"] += 1
self.metrics["ends"] += 1
agent_ends = self.metrics["agent_ends"]
resp: Dict[str, Any] = {}
resp.update(
{
"action": "on_agent_finish",
"output": finish.return_values["output"],
"log": finish.log,
}
)
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_agent_finish_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"agent_finish_{agent_ends}")
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,472 | DOC: Incorrect type for tags parameter in MLflow callback | ### Issue with current documentation:
In the documentation the tag type is string, but in the code it's a dictionary.
The proposed fix is to change the following two lines "tags (str):" to "tags (dict):".
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L120
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L225
### Idea or request for content:
_No response_ | https://github.com/langchain-ai/langchain/issues/6472 | https://github.com/langchain-ai/langchain/pull/6473 | 9187d2f3a97abc6d89daea9b5abfa652a425e1de | fe941cb54a80976bfc7575ce59a518ae428801ee | "2023-06-20T09:57:57Z" | python | "2023-06-26T09:12:23Z" | langchain/callbacks/mlflow_callback.py | """Run on agent action."""
self.metrics["step"] += 1
self.metrics["tool_starts"] += 1
self.metrics["starts"] += 1
tool_starts = self.metrics["tool_starts"]
resp: Dict[str, Any] = {}
resp.update(
{
"action": "on_agent_action",
"tool": action.tool,
"tool_input": action.tool_input,
"log": action.log,
}
)
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_agent_action_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"agent_action_{tool_starts}")
def _create_session_analysis_df(self) -> Any:
"""Create a dataframe with all the information from the session."""
pd = import_pandas()
on_llm_start_records_df = pd.DataFrame(self.records["on_llm_start_records"]) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,472 | DOC: Incorrect type for tags parameter in MLflow callback | ### Issue with current documentation:
In the documentation the tag type is string, but in the code it's a dictionary.
The proposed fix is to change the following two lines "tags (str):" to "tags (dict):".
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L120
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L225
### Idea or request for content:
_No response_ | https://github.com/langchain-ai/langchain/issues/6472 | https://github.com/langchain-ai/langchain/pull/6473 | 9187d2f3a97abc6d89daea9b5abfa652a425e1de | fe941cb54a80976bfc7575ce59a518ae428801ee | "2023-06-20T09:57:57Z" | python | "2023-06-26T09:12:23Z" | langchain/callbacks/mlflow_callback.py | on_llm_end_records_df = pd.DataFrame(self.records["on_llm_end_records"])
llm_input_prompts_df = (
on_llm_start_records_df[["step", "prompt", "name"]]
.dropna(axis=1)
.rename({"step": "prompt_step"}, axis=1)
)
complexity_metrics_columns = []
visualizations_columns = []
complexity_metrics_columns = [
"flesch_reading_ease",
"flesch_kincaid_grade",
"smog_index",
"coleman_liau_index",
"automated_readability_index",
"dale_chall_readability_score",
"difficult_words",
"linsear_write_formula",
"gunning_fog",
"fernandez_huerta",
"szigriszt_pazos",
"gutierrez_polini",
"crawford",
"gulpease_index",
"osman",
]
visualizations_columns = ["dependency_tree", "entities"]
llm_outputs_df = (
on_llm_end_records_df[
[ |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,472 | DOC: Incorrect type for tags parameter in MLflow callback | ### Issue with current documentation:
In the documentation the tag type is string, but in the code it's a dictionary.
The proposed fix is to change the following two lines "tags (str):" to "tags (dict):".
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L120
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L225
### Idea or request for content:
_No response_ | https://github.com/langchain-ai/langchain/issues/6472 | https://github.com/langchain-ai/langchain/pull/6473 | 9187d2f3a97abc6d89daea9b5abfa652a425e1de | fe941cb54a80976bfc7575ce59a518ae428801ee | "2023-06-20T09:57:57Z" | python | "2023-06-26T09:12:23Z" | langchain/callbacks/mlflow_callback.py | "step",
"text",
"token_usage_total_tokens",
"token_usage_prompt_tokens",
"token_usage_completion_tokens",
]
+ complexity_metrics_columns
+ visualizations_columns
]
.dropna(axis=1)
.rename({"step": "output_step", "text": "output"}, axis=1)
)
session_analysis_df = pd.concat([llm_input_prompts_df, llm_outputs_df], axis=1)
session_analysis_df["chat_html"] = session_analysis_df[
["prompt", "output"]
].apply(
lambda row: construct_html_from_prompt_and_generation(
row["prompt"], row["output"]
),
axis=1,
)
return session_analysis_df
def flush_tracker(self, langchain_asset: Any = None, finish: bool = False) -> None:
pd = import_pandas()
self.mlflg.table("action_records", pd.DataFrame(self.records["action_records"]))
session_analysis_df = self._create_session_analysis_df()
chat_html = session_analysis_df.pop("chat_html")
chat_html = chat_html.replace("\n", "", regex=True)
self.mlflg.table("session_analysis", pd.DataFrame(session_analysis_df))
self.mlflg.html("".join(chat_html.tolist()), "chat_html") |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,472 | DOC: Incorrect type for tags parameter in MLflow callback | ### Issue with current documentation:
In the documentation the tag type is string, but in the code it's a dictionary.
The proposed fix is to change the following two lines "tags (str):" to "tags (dict):".
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L120
https://github.com/hwchase17/langchain/blob/7414e9d19603c962063dd337cdcf3c3168d4b8be/langchain/callbacks/mlflow_callback.py#L225
### Idea or request for content:
_No response_ | https://github.com/langchain-ai/langchain/issues/6472 | https://github.com/langchain-ai/langchain/pull/6473 | 9187d2f3a97abc6d89daea9b5abfa652a425e1de | fe941cb54a80976bfc7575ce59a518ae428801ee | "2023-06-20T09:57:57Z" | python | "2023-06-26T09:12:23Z" | langchain/callbacks/mlflow_callback.py | if langchain_asset:
if "langchain.chains.llm.LLMChain" in str(type(langchain_asset)):
self.mlflg.langchain_artifact(langchain_asset)
else:
langchain_asset_path = str(Path(self.temp_dir.name, "model.json"))
try:
langchain_asset.save(langchain_asset_path)
self.mlflg.artifact(langchain_asset_path)
except ValueError:
try:
langchain_asset.save_agent(langchain_asset_path)
self.mlflg.artifact(langchain_asset_path)
except AttributeError:
print("Could not save model.")
traceback.print_exc()
pass
except NotImplementedError:
print("Could not save model.")
traceback.print_exc()
pass
except NotImplementedError:
print("Could not save model.")
traceback.print_exc()
pass
if finish:
self.mlflg.finish_run()
self._reset() |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,756 | Recent tags change causes AttributeError: 'str' object has no attribute 'value' on initialize_agent call | ### System Info
- Langchain: 0.0.215
- Platform: ubuntu
- Python 3.10.12
### Who can help?
@vowelparrot
https://github.com/hwchase17/langchain/blob/d84a3bcf7ab3edf8fe1d49083e066d51c9b5f621/langchain/agents/initialize.py#L54
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [X] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Fails if agent initialized as follows:
```python
agent = initialize_agent(
agent='zero-shot-react-description',
tools=tools,
llm=llm,
verbose=True,
max_iterations=30,
memory=ConversationBufferMemory(),
handle_parsing_errors=True)
```
With
```
...
lib/python3.10/site-packages/langchain/agents/initialize.py", line 54, in initialize_agent
tags_.append(agent.value)
AttributeError: 'str' object has no attribute 'value'
````
### Expected behavior
Expected to work as before where agent is specified as a string (or if this is highlighting that agent should actually be an object, it should indicate that instead of the error being shown). | https://github.com/langchain-ai/langchain/issues/6756 | https://github.com/langchain-ai/langchain/pull/6765 | ba622764cb7ccf4667878289f959857348ef8c19 | 6d30acffcbea5807835839585132d3946bb81661 | "2023-06-26T11:00:29Z" | python | "2023-06-26T16:28:11Z" | langchain/agents/initialize.py | """Load agent."""
from typing import Any, Optional, Sequence
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_types import AgentType
from langchain.agents.loading import AGENT_TO_CLASS, load_agent
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.tools.base import BaseTool
def initialize_agent(
tools: Sequence[BaseTool],
llm: BaseLanguageModel,
agent: Optional[AgentType] = None,
callback_manager: Optional[BaseCallbackManager] = None,
agent_path: Optional[str] = None,
agent_kwargs: Optional[dict] = None,
*, |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,756 | Recent tags change causes AttributeError: 'str' object has no attribute 'value' on initialize_agent call | ### System Info
- Langchain: 0.0.215
- Platform: ubuntu
- Python 3.10.12
### Who can help?
@vowelparrot
https://github.com/hwchase17/langchain/blob/d84a3bcf7ab3edf8fe1d49083e066d51c9b5f621/langchain/agents/initialize.py#L54
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [X] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Fails if agent initialized as follows:
```python
agent = initialize_agent(
agent='zero-shot-react-description',
tools=tools,
llm=llm,
verbose=True,
max_iterations=30,
memory=ConversationBufferMemory(),
handle_parsing_errors=True)
```
With
```
...
lib/python3.10/site-packages/langchain/agents/initialize.py", line 54, in initialize_agent
tags_.append(agent.value)
AttributeError: 'str' object has no attribute 'value'
````
### Expected behavior
Expected to work as before where agent is specified as a string (or if this is highlighting that agent should actually be an object, it should indicate that instead of the error being shown). | https://github.com/langchain-ai/langchain/issues/6756 | https://github.com/langchain-ai/langchain/pull/6765 | ba622764cb7ccf4667878289f959857348ef8c19 | 6d30acffcbea5807835839585132d3946bb81661 | "2023-06-26T11:00:29Z" | python | "2023-06-26T16:28:11Z" | langchain/agents/initialize.py | tags: Optional[Sequence[str]] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Load an agent executor given tools and LLM.
Args:
tools: List of tools this agent has access to.
llm: Language model to use as the agent.
agent: Agent type to use. If None and agent_path is also None, will default to
AgentType.ZERO_SHOT_REACT_DESCRIPTION.
callback_manager: CallbackManager to use. Global callback manager is used if
not provided. Defaults to None.
agent_path: Path to serialized agent to use.
agent_kwargs: Additional key word arguments to pass to the underlying agent
tags: Tags to apply to the traced runs.
**kwargs: Additional key word arguments passed to the agent executor
Returns:
An agent executor
"""
tags_ = list(tags) if tags else []
if agent is None and agent_path is None:
agent = AgentType.ZERO_SHOT_REACT_DESCRIPTION
if agent is not None and agent_path is not None:
raise ValueError(
"Both `agent` and `agent_path` are specified, "
"but at most only one should be."
)
if agent is not None:
if agent not in AGENT_TO_CLASS:
raise ValueError(
f"Got unknown agent type: {agent}. " |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,756 | Recent tags change causes AttributeError: 'str' object has no attribute 'value' on initialize_agent call | ### System Info
- Langchain: 0.0.215
- Platform: ubuntu
- Python 3.10.12
### Who can help?
@vowelparrot
https://github.com/hwchase17/langchain/blob/d84a3bcf7ab3edf8fe1d49083e066d51c9b5f621/langchain/agents/initialize.py#L54
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [X] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Fails if agent initialized as follows:
```python
agent = initialize_agent(
agent='zero-shot-react-description',
tools=tools,
llm=llm,
verbose=True,
max_iterations=30,
memory=ConversationBufferMemory(),
handle_parsing_errors=True)
```
With
```
...
lib/python3.10/site-packages/langchain/agents/initialize.py", line 54, in initialize_agent
tags_.append(agent.value)
AttributeError: 'str' object has no attribute 'value'
````
### Expected behavior
Expected to work as before where agent is specified as a string (or if this is highlighting that agent should actually be an object, it should indicate that instead of the error being shown). | https://github.com/langchain-ai/langchain/issues/6756 | https://github.com/langchain-ai/langchain/pull/6765 | ba622764cb7ccf4667878289f959857348ef8c19 | 6d30acffcbea5807835839585132d3946bb81661 | "2023-06-26T11:00:29Z" | python | "2023-06-26T16:28:11Z" | langchain/agents/initialize.py | f"Valid types are: {AGENT_TO_CLASS.keys()}."
)
tags_.append(agent.value)
agent_cls = AGENT_TO_CLASS[agent]
agent_kwargs = agent_kwargs or {}
agent_obj = agent_cls.from_llm_and_tools(
llm, tools, callback_manager=callback_manager, **agent_kwargs
)
elif agent_path is not None:
agent_obj = load_agent(
agent_path, llm=llm, tools=tools, callback_manager=callback_manager
)
try:
tags_.append(agent_obj._agent_type)
except NotImplementedError:
pass
else:
raise ValueError(
"Somehow both `agent` and `agent_path` are None, "
"this should never happen."
)
return AgentExecutor.from_agent_and_tools(
agent=agent_obj,
tools=tools,
callback_manager=callback_manager,
tags=tags_,
**kwargs,
) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,833 | Arbitrary code execution in JiraAPIWrapper | ### System Info
LangChain version:0.0.171
windows 10
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [X] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
1. Set the environment variables for jira and openai
```python
import os
from langchain.utilities.jira import JiraAPIWrapper
os.environ["JIRA_API_TOKEN"] = "your jira api token"
os.environ["JIRA_USERNAME"] = "your username"
os.environ["JIRA_INSTANCE_URL"] = "your url"
os.environ["OPENAI_API_KEY"] = "your openai key"
```
2. Run jira
```python
jira = JiraAPIWrapper()
output = jira.run('other',"exec(\"import os;print(os.popen('id').read())\")")
```
3. The `id` command will be executed.
Commands can be change to others and attackers can execute arbitrary code.
### Expected behavior
The code can be executed without any check. | https://github.com/langchain-ai/langchain/issues/4833 | https://github.com/langchain-ai/langchain/pull/6992 | 61938a02a1e76fa6c6e8203c98a9344a179c810d | a2f191a32229256dd41deadf97786fe41ce04cbb | "2023-05-17T04:11:40Z" | python | "2023-07-05T19:56:01Z" | langchain/tools/jira/prompt.py | JIRA_ISSUE_CREATE_PROMPT = """
This tool is a wrapper around atlassian-python-api's Jira issue_create API, useful when you need to create a Jira issue.
The input to this tool is a dictionary specifying the fields of the Jira issue, and will be passed into atlassian-python-api's Jira `issue_create` function.
For example, to create a low priority task called "test issue" with description "test description", you would pass in the following dictionary:
{{"summary": "test issue", "description": "test description", "issuetype": {{"name": "Task"}}, "priority": {{"name": "Low"}}}}
"""
JIRA_GET_ALL_PROJECTS_PROMPT = """ |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,833 | Arbitrary code execution in JiraAPIWrapper | ### System Info
LangChain version:0.0.171
windows 10
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [X] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
1. Set the environment variables for jira and openai
```python
import os
from langchain.utilities.jira import JiraAPIWrapper
os.environ["JIRA_API_TOKEN"] = "your jira api token"
os.environ["JIRA_USERNAME"] = "your username"
os.environ["JIRA_INSTANCE_URL"] = "your url"
os.environ["OPENAI_API_KEY"] = "your openai key"
```
2. Run jira
```python
jira = JiraAPIWrapper()
output = jira.run('other',"exec(\"import os;print(os.popen('id').read())\")")
```
3. The `id` command will be executed.
Commands can be change to others and attackers can execute arbitrary code.
### Expected behavior
The code can be executed without any check. | https://github.com/langchain-ai/langchain/issues/4833 | https://github.com/langchain-ai/langchain/pull/6992 | 61938a02a1e76fa6c6e8203c98a9344a179c810d | a2f191a32229256dd41deadf97786fe41ce04cbb | "2023-05-17T04:11:40Z" | python | "2023-07-05T19:56:01Z" | langchain/tools/jira/prompt.py | This tool is a wrapper around atlassian-python-api's Jira project API,
useful when you need to fetch all the projects the user has access to, find out how many projects there are, or as an intermediary step that involv searching by projects.
there is no input to this tool.
"""
JIRA_JQL_PROMPT = """
This tool is a wrapper around atlassian-python-api's Jira jql API, useful when you need to search for Jira issues.
The input to this tool is a JQL query string, and will be passed into atlassian-python-api's Jira `jql` function,
For example, to find all the issues in project "Test" assigned to the me, you would pass in the following string:
project = Test AND assignee = currentUser()
or to find issues with summaries that contain the word "test", you would pass in the following string:
summary ~ 'test'
"""
JIRA_CATCH_ALL_PROMPT = """
This tool is a wrapper around atlassian-python-api's Jira API.
There are other dedicated tools for fetching all projects, and creating and searching for issues,
use this tool if you need to perform any other actions allowed by the atlassian-python-api Jira API.
The input to this tool is line of python code that calls a function from atlassian-python-api's Jira API
For example, to update the summary field of an issue, you would pass in the following string:
self.jira.update_issue_field(key, {{"summary": "New summary"}})
or to find out how many projects are in the Jira instance, you would pass in the following string:
self.jira.projects()
For more information on the Jira API, refer to https://atlassian-python-api.readthedocs.io/jira.html
"""
JIRA_CONFLUENCE_PAGE_CREATE_PROMPT = """This tool is a wrapper around atlassian-python-api's Confluence
atlassian-python-api API, useful when you need to create a Confluence page. The input to this tool is a dictionary
specifying the fields of the Confluence page, and will be passed into atlassian-python-api's Confluence `create_page`
function. For example, to create a page in the DEMO space titled "This is the title" with body "This is the body. You can use
<strong>HTML tags</strong>!", you would pass in the following dictionary: {{"space": "DEMO", "title":"This is the
title","body":"This is the body. You can use <strong>HTML tags</strong>!"}} """ |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,833 | Arbitrary code execution in JiraAPIWrapper | ### System Info
LangChain version:0.0.171
windows 10
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [X] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
1. Set the environment variables for jira and openai
```python
import os
from langchain.utilities.jira import JiraAPIWrapper
os.environ["JIRA_API_TOKEN"] = "your jira api token"
os.environ["JIRA_USERNAME"] = "your username"
os.environ["JIRA_INSTANCE_URL"] = "your url"
os.environ["OPENAI_API_KEY"] = "your openai key"
```
2. Run jira
```python
jira = JiraAPIWrapper()
output = jira.run('other',"exec(\"import os;print(os.popen('id').read())\")")
```
3. The `id` command will be executed.
Commands can be change to others and attackers can execute arbitrary code.
### Expected behavior
The code can be executed without any check. | https://github.com/langchain-ai/langchain/issues/4833 | https://github.com/langchain-ai/langchain/pull/6992 | 61938a02a1e76fa6c6e8203c98a9344a179c810d | a2f191a32229256dd41deadf97786fe41ce04cbb | "2023-05-17T04:11:40Z" | python | "2023-07-05T19:56:01Z" | langchain/utilities/jira.py | """Util that calls Jira."""
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Extra, root_validator
from langchain.tools.jira.prompt import (
JIRA_CATCH_ALL_PROMPT,
JIRA_CONFLUENCE_PAGE_CREATE_PROMPT,
JIRA_GET_ALL_PROJECTS_PROMPT,
JIRA_ISSUE_CREATE_PROMPT,
JIRA_JQL_PROMPT,
)
from langchain.utils import get_from_dict_or_env
class JiraAPIWrapper(BaseModel):
"""Wrapper for Jira API."""
jira: Any
confluence: Any
jira_username: Optional[str] = None |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,833 | Arbitrary code execution in JiraAPIWrapper | ### System Info
LangChain version:0.0.171
windows 10
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [X] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
1. Set the environment variables for jira and openai
```python
import os
from langchain.utilities.jira import JiraAPIWrapper
os.environ["JIRA_API_TOKEN"] = "your jira api token"
os.environ["JIRA_USERNAME"] = "your username"
os.environ["JIRA_INSTANCE_URL"] = "your url"
os.environ["OPENAI_API_KEY"] = "your openai key"
```
2. Run jira
```python
jira = JiraAPIWrapper()
output = jira.run('other',"exec(\"import os;print(os.popen('id').read())\")")
```
3. The `id` command will be executed.
Commands can be change to others and attackers can execute arbitrary code.
### Expected behavior
The code can be executed without any check. | https://github.com/langchain-ai/langchain/issues/4833 | https://github.com/langchain-ai/langchain/pull/6992 | 61938a02a1e76fa6c6e8203c98a9344a179c810d | a2f191a32229256dd41deadf97786fe41ce04cbb | "2023-05-17T04:11:40Z" | python | "2023-07-05T19:56:01Z" | langchain/utilities/jira.py | jira_api_token: Optional[str] = None
jira_instance_url: Optional[str] = None
operations: List[Dict] = [
{
"mode": "jql",
"name": "JQL Query",
"description": JIRA_JQL_PROMPT,
},
{
"mode": "get_projects",
"name": "Get Projects",
"description": JIRA_GET_ALL_PROJECTS_PROMPT,
},
{
"mode": "create_issue",
"name": "Create Issue",
"description": JIRA_ISSUE_CREATE_PROMPT,
},
{
"mode": "other",
"name": "Catch all Jira API call",
"description": JIRA_CATCH_ALL_PROMPT,
},
{
"mode": "create_page",
"name": "Create confluence page",
"description": JIRA_CONFLUENCE_PAGE_CREATE_PROMPT,
},
]
class Config: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,833 | Arbitrary code execution in JiraAPIWrapper | ### System Info
LangChain version:0.0.171
windows 10
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [X] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
1. Set the environment variables for jira and openai
```python
import os
from langchain.utilities.jira import JiraAPIWrapper
os.environ["JIRA_API_TOKEN"] = "your jira api token"
os.environ["JIRA_USERNAME"] = "your username"
os.environ["JIRA_INSTANCE_URL"] = "your url"
os.environ["OPENAI_API_KEY"] = "your openai key"
```
2. Run jira
```python
jira = JiraAPIWrapper()
output = jira.run('other',"exec(\"import os;print(os.popen('id').read())\")")
```
3. The `id` command will be executed.
Commands can be change to others and attackers can execute arbitrary code.
### Expected behavior
The code can be executed without any check. | https://github.com/langchain-ai/langchain/issues/4833 | https://github.com/langchain-ai/langchain/pull/6992 | 61938a02a1e76fa6c6e8203c98a9344a179c810d | a2f191a32229256dd41deadf97786fe41ce04cbb | "2023-05-17T04:11:40Z" | python | "2023-07-05T19:56:01Z" | langchain/utilities/jira.py | """Configuration for this pydantic object."""
extra = Extra.forbid
def list(self) -> List[Dict]:
return self.operations
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
jira_username = get_from_dict_or_env(values, "jira_username", "JIRA_USERNAME")
values["jira_username"] = jira_username
jira_api_token = get_from_dict_or_env(
values, "jira_api_token", "JIRA_API_TOKEN"
)
values["jira_api_token"] = jira_api_token
jira_instance_url = get_from_dict_or_env(
values, "jira_instance_url", "JIRA_INSTANCE_URL"
)
values["jira_instance_url"] = jira_instance_url
try:
from atlassian import Confluence, Jira
except ImportError:
raise ImportError(
"atlassian-python-api is not installed. "
"Please install it with `pip install atlassian-python-api`"
)
jira = Jira(
url=jira_instance_url,
username=jira_username, |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,833 | Arbitrary code execution in JiraAPIWrapper | ### System Info
LangChain version:0.0.171
windows 10
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [X] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
1. Set the environment variables for jira and openai
```python
import os
from langchain.utilities.jira import JiraAPIWrapper
os.environ["JIRA_API_TOKEN"] = "your jira api token"
os.environ["JIRA_USERNAME"] = "your username"
os.environ["JIRA_INSTANCE_URL"] = "your url"
os.environ["OPENAI_API_KEY"] = "your openai key"
```
2. Run jira
```python
jira = JiraAPIWrapper()
output = jira.run('other',"exec(\"import os;print(os.popen('id').read())\")")
```
3. The `id` command will be executed.
Commands can be change to others and attackers can execute arbitrary code.
### Expected behavior
The code can be executed without any check. | https://github.com/langchain-ai/langchain/issues/4833 | https://github.com/langchain-ai/langchain/pull/6992 | 61938a02a1e76fa6c6e8203c98a9344a179c810d | a2f191a32229256dd41deadf97786fe41ce04cbb | "2023-05-17T04:11:40Z" | python | "2023-07-05T19:56:01Z" | langchain/utilities/jira.py | password=jira_api_token,
cloud=True,
)
confluence = Confluence(
url=jira_instance_url,
username=jira_username,
password=jira_api_token,
cloud=True,
)
values["jira"] = jira
values["confluence"] = confluence
return values
def parse_issues(self, issues: Dict) -> List[dict]:
parsed = []
for issue in issues["issues"]:
key = issue["key"]
summary = issue["fields"]["summary"]
created = issue["fields"]["created"][0:10]
priority = issue["fields"]["priority"]["name"]
status = issue["fields"]["status"]["name"]
try:
assignee = issue["fields"]["assignee"]["displayName"]
except Exception:
assignee = "None"
rel_issues = {}
for related_issue in issue["fields"]["issuelinks"]:
if "inwardIssue" in related_issue.keys():
rel_type = related_issue["type"]["inward"]
rel_key = related_issue["inwardIssue"]["key"]
rel_summary = related_issue["inwardIssue"]["fields"]["summary"] |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,833 | Arbitrary code execution in JiraAPIWrapper | ### System Info
LangChain version:0.0.171
windows 10
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [X] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
1. Set the environment variables for jira and openai
```python
import os
from langchain.utilities.jira import JiraAPIWrapper
os.environ["JIRA_API_TOKEN"] = "your jira api token"
os.environ["JIRA_USERNAME"] = "your username"
os.environ["JIRA_INSTANCE_URL"] = "your url"
os.environ["OPENAI_API_KEY"] = "your openai key"
```
2. Run jira
```python
jira = JiraAPIWrapper()
output = jira.run('other',"exec(\"import os;print(os.popen('id').read())\")")
```
3. The `id` command will be executed.
Commands can be change to others and attackers can execute arbitrary code.
### Expected behavior
The code can be executed without any check. | https://github.com/langchain-ai/langchain/issues/4833 | https://github.com/langchain-ai/langchain/pull/6992 | 61938a02a1e76fa6c6e8203c98a9344a179c810d | a2f191a32229256dd41deadf97786fe41ce04cbb | "2023-05-17T04:11:40Z" | python | "2023-07-05T19:56:01Z" | langchain/utilities/jira.py | if "outwardIssue" in related_issue.keys():
rel_type = related_issue["type"]["outward"]
rel_key = related_issue["outwardIssue"]["key"]
rel_summary = related_issue["outwardIssue"]["fields"]["summary"]
rel_issues = {"type": rel_type, "key": rel_key, "summary": rel_summary}
parsed.append(
{
"key": key,
"summary": summary,
"created": created,
"assignee": assignee,
"priority": priority,
"status": status,
"related_issues": rel_issues,
}
)
return parsed
def parse_projects(self, projects: List[dict]) -> List[dict]:
parsed = []
for project in projects:
id = project["id"]
key = project["key"]
name = project["name"]
type = project["projectTypeKey"]
style = project["style"]
parsed.append(
{"id": id, "key": key, "name": name, "type": type, "style": style}
)
return parsed
def search(self, query: str) -> str: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,833 | Arbitrary code execution in JiraAPIWrapper | ### System Info
LangChain version:0.0.171
windows 10
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [X] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
1. Set the environment variables for jira and openai
```python
import os
from langchain.utilities.jira import JiraAPIWrapper
os.environ["JIRA_API_TOKEN"] = "your jira api token"
os.environ["JIRA_USERNAME"] = "your username"
os.environ["JIRA_INSTANCE_URL"] = "your url"
os.environ["OPENAI_API_KEY"] = "your openai key"
```
2. Run jira
```python
jira = JiraAPIWrapper()
output = jira.run('other',"exec(\"import os;print(os.popen('id').read())\")")
```
3. The `id` command will be executed.
Commands can be change to others and attackers can execute arbitrary code.
### Expected behavior
The code can be executed without any check. | https://github.com/langchain-ai/langchain/issues/4833 | https://github.com/langchain-ai/langchain/pull/6992 | 61938a02a1e76fa6c6e8203c98a9344a179c810d | a2f191a32229256dd41deadf97786fe41ce04cbb | "2023-05-17T04:11:40Z" | python | "2023-07-05T19:56:01Z" | langchain/utilities/jira.py | issues = self.jira.jql(query)
parsed_issues = self.parse_issues(issues)
parsed_issues_str = (
"Found " + str(len(parsed_issues)) + " issues:\n" + str(parsed_issues)
)
return parsed_issues_str
def project(self) -> str:
projects = self.jira.projects()
parsed_projects = self.parse_projects(projects)
parsed_projects_str = (
"Found " + str(len(parsed_projects)) + " projects:\n" + str(parsed_projects)
)
return parsed_projects_str
def issue_create(self, query: str) -> str:
try:
import json
except ImportError:
raise ImportError(
"json is not installed. Please install it with `pip install json`"
)
params = json.loads(query)
return self.jira.issue_create(fields=dict(params))
def page_create(self, query: str) -> str: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,833 | Arbitrary code execution in JiraAPIWrapper | ### System Info
LangChain version:0.0.171
windows 10
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [X] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
1. Set the environment variables for jira and openai
```python
import os
from langchain.utilities.jira import JiraAPIWrapper
os.environ["JIRA_API_TOKEN"] = "your jira api token"
os.environ["JIRA_USERNAME"] = "your username"
os.environ["JIRA_INSTANCE_URL"] = "your url"
os.environ["OPENAI_API_KEY"] = "your openai key"
```
2. Run jira
```python
jira = JiraAPIWrapper()
output = jira.run('other',"exec(\"import os;print(os.popen('id').read())\")")
```
3. The `id` command will be executed.
Commands can be change to others and attackers can execute arbitrary code.
### Expected behavior
The code can be executed without any check. | https://github.com/langchain-ai/langchain/issues/4833 | https://github.com/langchain-ai/langchain/pull/6992 | 61938a02a1e76fa6c6e8203c98a9344a179c810d | a2f191a32229256dd41deadf97786fe41ce04cbb | "2023-05-17T04:11:40Z" | python | "2023-07-05T19:56:01Z" | langchain/utilities/jira.py | try:
import json
except ImportError:
raise ImportError(
"json is not installed. Please install it with `pip install json`"
)
params = json.loads(query)
return self.confluence.create_page(**dict(params))
def other(self, query: str) -> str:
context = {"self": self}
exec(f"result = {query}", context)
result = context["result"]
return str(result)
def run(self, mode: str, query: str) -> str:
if mode == "jql":
return self.search(query)
elif mode == "get_projects":
return self.project()
elif mode == "create_issue":
return self.issue_create(query)
elif mode == "other":
return self.other(query)
elif mode == "create_page":
return self.page_create(query)
else:
raise ValueError(f"Got unexpected mode {mode}") |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,833 | Arbitrary code execution in JiraAPIWrapper | ### System Info
LangChain version:0.0.171
windows 10
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [X] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
1. Set the environment variables for jira and openai
```python
import os
from langchain.utilities.jira import JiraAPIWrapper
os.environ["JIRA_API_TOKEN"] = "your jira api token"
os.environ["JIRA_USERNAME"] = "your username"
os.environ["JIRA_INSTANCE_URL"] = "your url"
os.environ["OPENAI_API_KEY"] = "your openai key"
```
2. Run jira
```python
jira = JiraAPIWrapper()
output = jira.run('other',"exec(\"import os;print(os.popen('id').read())\")")
```
3. The `id` command will be executed.
Commands can be change to others and attackers can execute arbitrary code.
### Expected behavior
The code can be executed without any check. | https://github.com/langchain-ai/langchain/issues/4833 | https://github.com/langchain-ai/langchain/pull/6992 | 61938a02a1e76fa6c6e8203c98a9344a179c810d | a2f191a32229256dd41deadf97786fe41ce04cbb | "2023-05-17T04:11:40Z" | python | "2023-07-05T19:56:01Z" | tests/integration_tests/utilities/test_jira_api.py | """Integration test for JIRA API Wrapper."""
from langchain.utilities.jira import JiraAPIWrapper
def test_search() -> None:
"""Test for Searching issues on JIRA"""
jql = "project = TP"
jira = JiraAPIWrapper()
output = jira.run("jql", jql)
assert "issues" in output
def test_getprojects() -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 4,833 | Arbitrary code execution in JiraAPIWrapper | ### System Info
LangChain version:0.0.171
windows 10
### Who can help?
_No response_
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [X] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
1. Set the environment variables for jira and openai
```python
import os
from langchain.utilities.jira import JiraAPIWrapper
os.environ["JIRA_API_TOKEN"] = "your jira api token"
os.environ["JIRA_USERNAME"] = "your username"
os.environ["JIRA_INSTANCE_URL"] = "your url"
os.environ["OPENAI_API_KEY"] = "your openai key"
```
2. Run jira
```python
jira = JiraAPIWrapper()
output = jira.run('other',"exec(\"import os;print(os.popen('id').read())\")")
```
3. The `id` command will be executed.
Commands can be change to others and attackers can execute arbitrary code.
### Expected behavior
The code can be executed without any check. | https://github.com/langchain-ai/langchain/issues/4833 | https://github.com/langchain-ai/langchain/pull/6992 | 61938a02a1e76fa6c6e8203c98a9344a179c810d | a2f191a32229256dd41deadf97786fe41ce04cbb | "2023-05-17T04:11:40Z" | python | "2023-07-05T19:56:01Z" | tests/integration_tests/utilities/test_jira_api.py | """Test for getting projects on JIRA"""
jira = JiraAPIWrapper()
output = jira.run("get_projects", "")
assert "projects" in output
def test_create_ticket() -> None:
"""Test the Create Ticket Call that Creates a Issue/Ticket on JIRA."""
issue_string = (
'{"summary": "Test Summary", "description": "Test Description",'
' "issuetype": {"name": "Bug"}, "project": {"key": "TP"}}'
)
jira = JiraAPIWrapper()
output = jira.run("create_issue", issue_string)
assert "id" in output
assert "key" in output
def test_create_confluence_page() -> None:
"""Test for getting projects on JIRA"""
jira = JiraAPIWrapper()
create_page_dict = (
'{"space": "ROC", "title":"This is the title",'
'"body":"This is the body. You can use '
'<strong>HTML tags</strong>!"}'
)
output = jira.run("create_page", create_page_dict)
assert "type" in output
assert "page" in output |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,365 | PromptLayerChatOpenAI does not support the newest function calling feature | ### System Info
Python Version: 3.11
Langchain Version: 0.0.209
### Who can help?
@hwchase17 @agola11
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to reproduce:
```
llm = PromptLayerChatOpenAI(model="gpt-3.5-turbo-0613", pl_tags=tags, return_pl_id=True)
predicted_message = self.llm.predict_messages(messages, functions=self.functions, callbacks=callbacks)
```
`predicted_message.additional_kwargs` attribute appears to have a empty dict, because the `functions` kwarg not even passed to the parent class.
### Expected behavior
Predicted AI Message should have a `function_call` key on `additional_kwargs` attribute. | https://github.com/langchain-ai/langchain/issues/6365 | https://github.com/langchain-ai/langchain/pull/6366 | e0cb3ea90c1f8ec26957ffca65c6e451d444c69d | 09acbb84101bc6df373ca5a1d6c8d212bd3f577f | "2023-06-18T13:00:32Z" | python | "2023-07-06T17:16:04Z" | langchain/chat_models/promptlayer_openai.py | """PromptLayer wrapper."""
import datetime
from typing import Any, List, Mapping, Optional
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.chat_models import ChatOpenAI
from langchain.schema import ChatResult
from langchain.schema.messages import BaseMessage
class PromptLayerChatOpenAI(ChatOpenAI): |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,365 | PromptLayerChatOpenAI does not support the newest function calling feature | ### System Info
Python Version: 3.11
Langchain Version: 0.0.209
### Who can help?
@hwchase17 @agola11
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to reproduce:
```
llm = PromptLayerChatOpenAI(model="gpt-3.5-turbo-0613", pl_tags=tags, return_pl_id=True)
predicted_message = self.llm.predict_messages(messages, functions=self.functions, callbacks=callbacks)
```
`predicted_message.additional_kwargs` attribute appears to have a empty dict, because the `functions` kwarg not even passed to the parent class.
### Expected behavior
Predicted AI Message should have a `function_call` key on `additional_kwargs` attribute. | https://github.com/langchain-ai/langchain/issues/6365 | https://github.com/langchain-ai/langchain/pull/6366 | e0cb3ea90c1f8ec26957ffca65c6e451d444c69d | 09acbb84101bc6df373ca5a1d6c8d212bd3f577f | "2023-06-18T13:00:32Z" | python | "2023-07-06T17:16:04Z" | langchain/chat_models/promptlayer_openai.py | """Wrapper around OpenAI Chat large language models and PromptLayer.
To use, you should have the ``openai`` and ``promptlayer`` python
package installed, and the environment variable ``OPENAI_API_KEY``
and ``PROMPTLAYER_API_KEY`` set with your openAI API key and
promptlayer key respectively.
All parameters that can be passed to the OpenAI LLM can also
be passed here. The PromptLayerChatOpenAI adds to optional
parameters:
``pl_tags``: List of strings to tag the request with.
``return_pl_id``: If True, the PromptLayer request ID will be
returned in the ``generation_info`` field of the
``Generation`` object.
Example:
.. code-block:: python
from langchain.chat_models import PromptLayerChatOpenAI
openai = PromptLayerChatOpenAI(model_name="gpt-3.5-turbo")
"""
pl_tags: Optional[List[str]]
return_pl_id: Optional[bool] = False
def _generate( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,365 | PromptLayerChatOpenAI does not support the newest function calling feature | ### System Info
Python Version: 3.11
Langchain Version: 0.0.209
### Who can help?
@hwchase17 @agola11
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to reproduce:
```
llm = PromptLayerChatOpenAI(model="gpt-3.5-turbo-0613", pl_tags=tags, return_pl_id=True)
predicted_message = self.llm.predict_messages(messages, functions=self.functions, callbacks=callbacks)
```
`predicted_message.additional_kwargs` attribute appears to have a empty dict, because the `functions` kwarg not even passed to the parent class.
### Expected behavior
Predicted AI Message should have a `function_call` key on `additional_kwargs` attribute. | https://github.com/langchain-ai/langchain/issues/6365 | https://github.com/langchain-ai/langchain/pull/6366 | e0cb3ea90c1f8ec26957ffca65c6e451d444c69d | 09acbb84101bc6df373ca5a1d6c8d212bd3f577f | "2023-06-18T13:00:32Z" | python | "2023-07-06T17:16:04Z" | langchain/chat_models/promptlayer_openai.py | self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any
) -> ChatResult:
"""Call ChatOpenAI generate and then call PromptLayer API to log the request."""
from promptlayer.utils import get_api_key, promptlayer_api_request
request_start_time = datetime.datetime.now().timestamp()
generated_responses = super()._generate(messages, stop, run_manager)
request_end_time = datetime.datetime.now().timestamp()
message_dicts, params = super()._create_message_dicts(messages, stop)
for i, generation in enumerate(generated_responses.generations):
response_dict, params = super()._create_message_dicts(
[generation.message], stop
)
params = {**params, **kwargs}
pl_request_id = promptlayer_api_request(
"langchain.PromptLayerChatOpenAI",
"langchain",
message_dicts,
params,
self.pl_tags,
response_dict, |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,365 | PromptLayerChatOpenAI does not support the newest function calling feature | ### System Info
Python Version: 3.11
Langchain Version: 0.0.209
### Who can help?
@hwchase17 @agola11
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to reproduce:
```
llm = PromptLayerChatOpenAI(model="gpt-3.5-turbo-0613", pl_tags=tags, return_pl_id=True)
predicted_message = self.llm.predict_messages(messages, functions=self.functions, callbacks=callbacks)
```
`predicted_message.additional_kwargs` attribute appears to have a empty dict, because the `functions` kwarg not even passed to the parent class.
### Expected behavior
Predicted AI Message should have a `function_call` key on `additional_kwargs` attribute. | https://github.com/langchain-ai/langchain/issues/6365 | https://github.com/langchain-ai/langchain/pull/6366 | e0cb3ea90c1f8ec26957ffca65c6e451d444c69d | 09acbb84101bc6df373ca5a1d6c8d212bd3f577f | "2023-06-18T13:00:32Z" | python | "2023-07-06T17:16:04Z" | langchain/chat_models/promptlayer_openai.py | request_start_time,
request_end_time,
get_api_key(),
return_pl_id=self.return_pl_id,
)
if self.return_pl_id:
if generation.generation_info is None or not isinstance(
generation.generation_info, dict
):
generation.generation_info = {}
generation.generation_info["pl_request_id"] = pl_request_id
return generated_responses
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any
) -> ChatResult:
"""Call ChatOpenAI agenerate and then call PromptLayer to log."""
from promptlayer.utils import get_api_key, promptlayer_api_request_async
request_start_time = datetime.datetime.now().timestamp()
generated_responses = await super()._agenerate(messages, stop, run_manager)
request_end_time = datetime.datetime.now().timestamp()
message_dicts, params = super()._create_message_dicts(messages, stop)
for i, generation in enumerate(generated_responses.generations):
response_dict, params = super()._create_message_dicts(
[generation.message], stop
)
params = {**params, **kwargs} |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 6,365 | PromptLayerChatOpenAI does not support the newest function calling feature | ### System Info
Python Version: 3.11
Langchain Version: 0.0.209
### Who can help?
@hwchase17 @agola11
### Information
- [X] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
Steps to reproduce:
```
llm = PromptLayerChatOpenAI(model="gpt-3.5-turbo-0613", pl_tags=tags, return_pl_id=True)
predicted_message = self.llm.predict_messages(messages, functions=self.functions, callbacks=callbacks)
```
`predicted_message.additional_kwargs` attribute appears to have a empty dict, because the `functions` kwarg not even passed to the parent class.
### Expected behavior
Predicted AI Message should have a `function_call` key on `additional_kwargs` attribute. | https://github.com/langchain-ai/langchain/issues/6365 | https://github.com/langchain-ai/langchain/pull/6366 | e0cb3ea90c1f8ec26957ffca65c6e451d444c69d | 09acbb84101bc6df373ca5a1d6c8d212bd3f577f | "2023-06-18T13:00:32Z" | python | "2023-07-06T17:16:04Z" | langchain/chat_models/promptlayer_openai.py | pl_request_id = await promptlayer_api_request_async(
"langchain.PromptLayerChatOpenAI.async",
"langchain",
message_dicts,
params,
self.pl_tags,
response_dict,
request_start_time,
request_end_time,
get_api_key(),
return_pl_id=self.return_pl_id,
)
if self.return_pl_id:
if generation.generation_info is None or not isinstance(
generation.generation_info, dict
):
generation.generation_info = {}
generation.generation_info["pl_request_id"] = pl_request_id
return generated_responses
@property
def _llm_type(self) -> str:
return "promptlayer-openai-chat"
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {
**super()._identifying_params,
"pl_tags": self.pl_tags,
"return_pl_id": self.return_pl_id,
} |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,283 | anthropic_version = packaging.version.parse(version("anthropic")) AttributeError: module 'packaging' has no attribute 'version' | ### System Info
When I initialise ChatAnthropic(), it got the error:
anthropic_version = packaging.version.parse(version("anthropic"))
AttributeError: module 'packaging' has no attribute 'version'
### Who can help?
@hwchase17 @agola11
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
from langchain.chat_models import ChatOpenAI, ChatAnthropic
llm = ChatAnthropic()
### Expected behavior
As shown above. | https://github.com/langchain-ai/langchain/issues/7283 | https://github.com/langchain-ai/langchain/pull/7306 | d642609a23219b1037f84492c2bc56777e90397a | bac56618b43912acf4970d72d2497507eb14ceb1 | "2023-07-06T15:35:39Z" | python | "2023-07-06T23:35:42Z" | langchain/llms/anthropic.py | """Wrapper around Anthropic APIs."""
import re
import warnings
from importlib.metadata import version
from typing import Any, Callable, Dict, Generator, List, Mapping, Optional
import packaging
from pydantic import BaseModel, root_validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.llms.base import LLM
from langchain.utils import get_from_dict_or_env
class _AnthropicCommon(BaseModel): |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,283 | anthropic_version = packaging.version.parse(version("anthropic")) AttributeError: module 'packaging' has no attribute 'version' | ### System Info
When I initialise ChatAnthropic(), it got the error:
anthropic_version = packaging.version.parse(version("anthropic"))
AttributeError: module 'packaging' has no attribute 'version'
### Who can help?
@hwchase17 @agola11
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
from langchain.chat_models import ChatOpenAI, ChatAnthropic
llm = ChatAnthropic()
### Expected behavior
As shown above. | https://github.com/langchain-ai/langchain/issues/7283 | https://github.com/langchain-ai/langchain/pull/7306 | d642609a23219b1037f84492c2bc56777e90397a | bac56618b43912acf4970d72d2497507eb14ceb1 | "2023-07-06T15:35:39Z" | python | "2023-07-06T23:35:42Z" | langchain/llms/anthropic.py | client: Any = None
async_client: Any = None
model: str = "claude-v1"
"""Model name to use."""
max_tokens_to_sample: int = 256
"""Denotes the number of tokens to predict per generation."""
temperature: Optional[float] = None
"""A non-negative float that tunes the degree of randomness in generation."""
top_k: Optional[int] = None
"""Number of most likely tokens to consider at each step."""
top_p: Optional[float] = None
"""Total probability mass of tokens to consider at each step."""
streaming: bool = False
"""Whether to stream the results."""
default_request_timeout: Optional[float] = None
"""Timeout for requests to Anthropic Completion API. Default is 600 seconds."""
anthropic_api_url: Optional[str] = None
anthropic_api_key: Optional[str] = None
HUMAN_PROMPT: Optional[str] = None
AI_PROMPT: Optional[str] = None
count_tokens: Optional[Callable[[str], int]] = None
@root_validator()
def validate_environment(cls, values: Dict) -> Dict: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,283 | anthropic_version = packaging.version.parse(version("anthropic")) AttributeError: module 'packaging' has no attribute 'version' | ### System Info
When I initialise ChatAnthropic(), it got the error:
anthropic_version = packaging.version.parse(version("anthropic"))
AttributeError: module 'packaging' has no attribute 'version'
### Who can help?
@hwchase17 @agola11
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
from langchain.chat_models import ChatOpenAI, ChatAnthropic
llm = ChatAnthropic()
### Expected behavior
As shown above. | https://github.com/langchain-ai/langchain/issues/7283 | https://github.com/langchain-ai/langchain/pull/7306 | d642609a23219b1037f84492c2bc56777e90397a | bac56618b43912acf4970d72d2497507eb14ceb1 | "2023-07-06T15:35:39Z" | python | "2023-07-06T23:35:42Z" | langchain/llms/anthropic.py | """Validate that api key and python package exists in environment."""
values["anthropic_api_key"] = get_from_dict_or_env(
values, "anthropic_api_key", "ANTHROPIC_API_KEY"
)
values["anthropic_api_url"] = get_from_dict_or_env(
values,
"anthropic_api_url",
"ANTHROPIC_API_URL",
default="https://api.anthropic.com",
) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,283 | anthropic_version = packaging.version.parse(version("anthropic")) AttributeError: module 'packaging' has no attribute 'version' | ### System Info
When I initialise ChatAnthropic(), it got the error:
anthropic_version = packaging.version.parse(version("anthropic"))
AttributeError: module 'packaging' has no attribute 'version'
### Who can help?
@hwchase17 @agola11
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
from langchain.chat_models import ChatOpenAI, ChatAnthropic
llm = ChatAnthropic()
### Expected behavior
As shown above. | https://github.com/langchain-ai/langchain/issues/7283 | https://github.com/langchain-ai/langchain/pull/7306 | d642609a23219b1037f84492c2bc56777e90397a | bac56618b43912acf4970d72d2497507eb14ceb1 | "2023-07-06T15:35:39Z" | python | "2023-07-06T23:35:42Z" | langchain/llms/anthropic.py | try:
import anthropic
anthropic_version = packaging.version.parse(version("anthropic"))
if anthropic_version < packaging.version.parse("0.3"):
raise ValueError(
f"Anthropic client version must be > 0.3, got {anthropic_version}. "
f"To update the client, please run "
f"`pip install -U anthropic`"
)
values["client"] = anthropic.Anthropic(
base_url=values["anthropic_api_url"],
api_key=values["anthropic_api_key"],
timeout=values["default_request_timeout"],
)
values["async_client"] = anthropic.AsyncAnthropic(
base_url=values["anthropic_api_url"],
api_key=values["anthropic_api_key"],
timeout=values["default_request_timeout"],
)
values["HUMAN_PROMPT"] = anthropic.HUMAN_PROMPT
values["AI_PROMPT"] = anthropic.AI_PROMPT
values["count_tokens"] = values["client"].count_tokens
except ImportError:
raise ImportError(
"Could not import anthropic python package. "
"Please it install it with `pip install anthropic`."
)
return values
@property
def _default_params(self) -> Mapping[str, Any]: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,283 | anthropic_version = packaging.version.parse(version("anthropic")) AttributeError: module 'packaging' has no attribute 'version' | ### System Info
When I initialise ChatAnthropic(), it got the error:
anthropic_version = packaging.version.parse(version("anthropic"))
AttributeError: module 'packaging' has no attribute 'version'
### Who can help?
@hwchase17 @agola11
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
from langchain.chat_models import ChatOpenAI, ChatAnthropic
llm = ChatAnthropic()
### Expected behavior
As shown above. | https://github.com/langchain-ai/langchain/issues/7283 | https://github.com/langchain-ai/langchain/pull/7306 | d642609a23219b1037f84492c2bc56777e90397a | bac56618b43912acf4970d72d2497507eb14ceb1 | "2023-07-06T15:35:39Z" | python | "2023-07-06T23:35:42Z" | langchain/llms/anthropic.py | """Get the default parameters for calling Anthropic API."""
d = {
"max_tokens_to_sample": self.max_tokens_to_sample,
"model": self.model,
}
if self.temperature is not None:
d["temperature"] = self.temperature
if self.top_k is not None:
d["top_k"] = self.top_k
if self.top_p is not None:
d["top_p"] = self.top_p
return d
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {**{}, **self._default_params}
def _get_anthropic_stop(self, stop: Optional[List[str]] = None) -> List[str]:
if not self.HUMAN_PROMPT or not self.AI_PROMPT:
raise NameError("Please ensure the anthropic package is loaded")
if stop is None:
stop = []
stop.extend([self.HUMAN_PROMPT])
return stop
class Anthropic(LLM, _AnthropicCommon): |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,283 | anthropic_version = packaging.version.parse(version("anthropic")) AttributeError: module 'packaging' has no attribute 'version' | ### System Info
When I initialise ChatAnthropic(), it got the error:
anthropic_version = packaging.version.parse(version("anthropic"))
AttributeError: module 'packaging' has no attribute 'version'
### Who can help?
@hwchase17 @agola11
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
from langchain.chat_models import ChatOpenAI, ChatAnthropic
llm = ChatAnthropic()
### Expected behavior
As shown above. | https://github.com/langchain-ai/langchain/issues/7283 | https://github.com/langchain-ai/langchain/pull/7306 | d642609a23219b1037f84492c2bc56777e90397a | bac56618b43912acf4970d72d2497507eb14ceb1 | "2023-07-06T15:35:39Z" | python | "2023-07-06T23:35:42Z" | langchain/llms/anthropic.py | r"""Wrapper around Anthropic's large language models.
To use, you should have the ``anthropic`` python package installed, and the
environment variable ``ANTHROPIC_API_KEY`` set with your API key, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
import anthropic
from langchain.llms import Anthropic
model = Anthropic(model="<model_name>", anthropic_api_key="my-api-key")
# Simplest invocation, automatically wrapped with HUMAN_PROMPT
# and AI_PROMPT.
response = model("What are the biggest risks facing humanity?")
# Or if you want to use the chat mode, build a few-shot-prompt, or
# put words in the Assistant's mouth, use HUMAN_PROMPT and AI_PROMPT:
raw_prompt = "What are the biggest risks facing humanity?"
prompt = f"{anthropic.HUMAN_PROMPT} {prompt}{anthropic.AI_PROMPT}"
response = model(prompt)
"""
@root_validator()
def raise_warning(cls, values: Dict) -> Dict:
"""Raise warning that this class is deprecated."""
warnings.warn(
"This Anthropic LLM is deprecated. "
"Please use `from langchain.chat_models import ChatAnthropic` instead"
)
return values
@property
def _llm_type(self) -> str: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,283 | anthropic_version = packaging.version.parse(version("anthropic")) AttributeError: module 'packaging' has no attribute 'version' | ### System Info
When I initialise ChatAnthropic(), it got the error:
anthropic_version = packaging.version.parse(version("anthropic"))
AttributeError: module 'packaging' has no attribute 'version'
### Who can help?
@hwchase17 @agola11
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
from langchain.chat_models import ChatOpenAI, ChatAnthropic
llm = ChatAnthropic()
### Expected behavior
As shown above. | https://github.com/langchain-ai/langchain/issues/7283 | https://github.com/langchain-ai/langchain/pull/7306 | d642609a23219b1037f84492c2bc56777e90397a | bac56618b43912acf4970d72d2497507eb14ceb1 | "2023-07-06T15:35:39Z" | python | "2023-07-06T23:35:42Z" | langchain/llms/anthropic.py | """Return type of llm."""
return "anthropic-llm"
def _wrap_prompt(self, prompt: str) -> str:
if not self.HUMAN_PROMPT or not self.AI_PROMPT:
raise NameError("Please ensure the anthropic package is loaded")
if prompt.startswith(self.HUMAN_PROMPT):
return prompt
corrected_prompt, n_subs = re.subn(r"^\n*Human:", self.HUMAN_PROMPT, prompt)
if n_subs == 1:
return corrected_prompt
return f"{self.HUMAN_PROMPT} {prompt}{self.AI_PROMPT} Sure, here you go:\n"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
r"""Call out to Anthropic's completion endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,283 | anthropic_version = packaging.version.parse(version("anthropic")) AttributeError: module 'packaging' has no attribute 'version' | ### System Info
When I initialise ChatAnthropic(), it got the error:
anthropic_version = packaging.version.parse(version("anthropic"))
AttributeError: module 'packaging' has no attribute 'version'
### Who can help?
@hwchase17 @agola11
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
from langchain.chat_models import ChatOpenAI, ChatAnthropic
llm = ChatAnthropic()
### Expected behavior
As shown above. | https://github.com/langchain-ai/langchain/issues/7283 | https://github.com/langchain-ai/langchain/pull/7306 | d642609a23219b1037f84492c2bc56777e90397a | bac56618b43912acf4970d72d2497507eb14ceb1 | "2023-07-06T15:35:39Z" | python | "2023-07-06T23:35:42Z" | langchain/llms/anthropic.py | .. code-block:: python
prompt = "What are the biggest risks facing humanity?"
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
response = model(prompt)
"""
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
if self.streaming:
stream_resp = self.client.completions.create(
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
stream=True,
**params,
)
current_completion = ""
for data in stream_resp:
delta = data.completion
current_completion += delta
if run_manager:
run_manager.on_llm_new_token(
delta,
)
return current_completion
response = self.client.completions.create(
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
**params,
)
return response.completion
async def _acall( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,283 | anthropic_version = packaging.version.parse(version("anthropic")) AttributeError: module 'packaging' has no attribute 'version' | ### System Info
When I initialise ChatAnthropic(), it got the error:
anthropic_version = packaging.version.parse(version("anthropic"))
AttributeError: module 'packaging' has no attribute 'version'
### Who can help?
@hwchase17 @agola11
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
from langchain.chat_models import ChatOpenAI, ChatAnthropic
llm = ChatAnthropic()
### Expected behavior
As shown above. | https://github.com/langchain-ai/langchain/issues/7283 | https://github.com/langchain-ai/langchain/pull/7306 | d642609a23219b1037f84492c2bc56777e90397a | bac56618b43912acf4970d72d2497507eb14ceb1 | "2023-07-06T15:35:39Z" | python | "2023-07-06T23:35:42Z" | langchain/llms/anthropic.py | self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to Anthropic's completion endpoint asynchronously."""
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
if self.streaming:
stream_resp = await self.async_client.completions.create(
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
stream=True,
**params,
)
current_completion = ""
async for data in stream_resp:
delta = data.completion
current_completion += delta
if run_manager:
await run_manager.on_llm_new_token(delta)
return current_completion
response = await self.async_client.completions.create(
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
**params,
)
return response.completion
def stream(self, prompt: str, stop: Optional[List[str]] = None) -> Generator: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,283 | anthropic_version = packaging.version.parse(version("anthropic")) AttributeError: module 'packaging' has no attribute 'version' | ### System Info
When I initialise ChatAnthropic(), it got the error:
anthropic_version = packaging.version.parse(version("anthropic"))
AttributeError: module 'packaging' has no attribute 'version'
### Who can help?
@hwchase17 @agola11
### Information
- [ ] The official example notebooks/scripts
- [ ] My own modified scripts
### Related Components
- [X] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
from langchain.chat_models import ChatOpenAI, ChatAnthropic
llm = ChatAnthropic()
### Expected behavior
As shown above. | https://github.com/langchain-ai/langchain/issues/7283 | https://github.com/langchain-ai/langchain/pull/7306 | d642609a23219b1037f84492c2bc56777e90397a | bac56618b43912acf4970d72d2497507eb14ceb1 | "2023-07-06T15:35:39Z" | python | "2023-07-06T23:35:42Z" | langchain/llms/anthropic.py | r"""Call Anthropic completion_stream and return the resulting generator.
BETA: this is a beta feature while we figure out the right abstraction.
Once that happens, this interface could change.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
A generator representing the stream of tokens from Anthropic.
Example:
.. code-block:: python
prompt = "Write a poem about a stream."
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
generator = anthropic.stream(prompt)
for token in generator:
yield token
"""
stop = self._get_anthropic_stop(stop)
return self.client.completions.create(
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
stream=True,
**self._default_params,
)
def get_num_tokens(self, text: str) -> int:
"""Calculate number of tokens."""
if not self.count_tokens:
raise NameError("Please ensure the anthropic package is loaded")
return self.count_tokens(text) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,472 | Pinecone: Support starter tier | ### Feature request
Adapt the pinecone vectorstore to support upcoming starter tier. The changes are related to removing namespaces and `delete by metadata` feature.
### Motivation
Indexes in upcoming Pinecone V4 won't support:
* namespaces
* `configure_index()`
* delete by metadata
* `describe_index()` with metadata filtering
* `metadata_config` parameter to `create_index()`
* `delete()` with the `deleteAll` parameter
### Your contribution
I'll do it. | https://github.com/langchain-ai/langchain/issues/7472 | https://github.com/langchain-ai/langchain/pull/7473 | 5debd5043e61d29efea661c20818b48a0f39e5a6 | 9d13dcd17c2dfab8f087bcc37e99f1181dfe5c63 | "2023-07-10T10:19:16Z" | python | "2023-07-10T15:39:47Z" | langchain/vectorstores/pinecone.py | """Wrapper around Pinecone vector database."""
from __future__ import annotations
import logging
import uuid
from typing import Any, Callable, Iterable, List, Optional, Tuple
import numpy as np
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.base import VectorStore
from langchain.vectorstores.utils import maximal_marginal_relevance
logger = logging.getLogger(__name__)
class Pinecone(VectorStore):
"""Wrapper around Pinecone vector database.
To use, you should have the ``pinecone-client`` python package installed.
Example:
.. code-block:: python
from langchain.vectorstores import Pinecone
from langchain.embeddings.openai import OpenAIEmbeddings
import pinecone
# The environment should be the one specified next to the API key
# in your Pinecone console
pinecone.init(api_key="***", environment="...")
index = pinecone.Index("langchain-demo")
embeddings = OpenAIEmbeddings()
vectorstore = Pinecone(index, embeddings.embed_query, "text")
"""
def __init__( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,472 | Pinecone: Support starter tier | ### Feature request
Adapt the pinecone vectorstore to support upcoming starter tier. The changes are related to removing namespaces and `delete by metadata` feature.
### Motivation
Indexes in upcoming Pinecone V4 won't support:
* namespaces
* `configure_index()`
* delete by metadata
* `describe_index()` with metadata filtering
* `metadata_config` parameter to `create_index()`
* `delete()` with the `deleteAll` parameter
### Your contribution
I'll do it. | https://github.com/langchain-ai/langchain/issues/7472 | https://github.com/langchain-ai/langchain/pull/7473 | 5debd5043e61d29efea661c20818b48a0f39e5a6 | 9d13dcd17c2dfab8f087bcc37e99f1181dfe5c63 | "2023-07-10T10:19:16Z" | python | "2023-07-10T15:39:47Z" | langchain/vectorstores/pinecone.py | self,
index: Any,
embedding_function: Callable,
text_key: str,
namespace: Optional[str] = None,
):
"""Initialize with Pinecone client."""
try:
import pinecone
except ImportError:
raise ValueError(
"Could not import pinecone python package. "
"Please install it with `pip install pinecone-client`."
)
if not isinstance(index, pinecone.index.Index):
raise ValueError(
f"client should be an instance of pinecone.index.Index, "
f"got {type(index)}"
)
self._index = index
self._embedding_function = embedding_function
self._text_key = text_key
self._namespace = namespace
def add_texts( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,472 | Pinecone: Support starter tier | ### Feature request
Adapt the pinecone vectorstore to support upcoming starter tier. The changes are related to removing namespaces and `delete by metadata` feature.
### Motivation
Indexes in upcoming Pinecone V4 won't support:
* namespaces
* `configure_index()`
* delete by metadata
* `describe_index()` with metadata filtering
* `metadata_config` parameter to `create_index()`
* `delete()` with the `deleteAll` parameter
### Your contribution
I'll do it. | https://github.com/langchain-ai/langchain/issues/7472 | https://github.com/langchain-ai/langchain/pull/7473 | 5debd5043e61d29efea661c20818b48a0f39e5a6 | 9d13dcd17c2dfab8f087bcc37e99f1181dfe5c63 | "2023-07-10T10:19:16Z" | python | "2023-07-10T15:39:47Z" | langchain/vectorstores/pinecone.py | self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
namespace: Optional[str] = None,
batch_size: int = 32,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
ids: Optional list of ids to associate with the texts.
namespace: Optional pinecone namespace to add the texts to.
Returns:
List of ids from adding the texts into the vectorstore.
"""
if namespace is None:
namespace = self._namespace
docs = []
ids = ids or [str(uuid.uuid4()) for _ in texts]
for i, text in enumerate(texts):
embedding = self._embedding_function(text)
metadata = metadatas[i] if metadatas else {}
metadata[self._text_key] = text
docs.append((ids[i], embedding, metadata))
self._index.upsert(vectors=docs, namespace=namespace, batch_size=batch_size)
return ids |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,472 | Pinecone: Support starter tier | ### Feature request
Adapt the pinecone vectorstore to support upcoming starter tier. The changes are related to removing namespaces and `delete by metadata` feature.
### Motivation
Indexes in upcoming Pinecone V4 won't support:
* namespaces
* `configure_index()`
* delete by metadata
* `describe_index()` with metadata filtering
* `metadata_config` parameter to `create_index()`
* `delete()` with the `deleteAll` parameter
### Your contribution
I'll do it. | https://github.com/langchain-ai/langchain/issues/7472 | https://github.com/langchain-ai/langchain/pull/7473 | 5debd5043e61d29efea661c20818b48a0f39e5a6 | 9d13dcd17c2dfab8f087bcc37e99f1181dfe5c63 | "2023-07-10T10:19:16Z" | python | "2023-07-10T15:39:47Z" | langchain/vectorstores/pinecone.py | def similarity_search_with_score(
self,
query: str,
k: int = 4,
filter: Optional[dict] = None,
namespace: Optional[str] = None,
) -> List[Tuple[Document, float]]:
"""Return pinecone documents most similar to query, along with scores.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Dictionary of argument(s) to filter on metadata
namespace: Namespace to search in. Default will search in '' namespace.
Returns:
List of Documents most similar to the query and score for each
"""
if namespace is None:
namespace = self._namespace
query_obj = self._embedding_function(query)
docs = []
results = self._index.query(
[query_obj],
top_k=k,
include_metadata=True,
namespace=namespace,
filter=filter,
)
for res in results["matches"]:
metadata = res["metadata"]
if self._text_key in metadata: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,472 | Pinecone: Support starter tier | ### Feature request
Adapt the pinecone vectorstore to support upcoming starter tier. The changes are related to removing namespaces and `delete by metadata` feature.
### Motivation
Indexes in upcoming Pinecone V4 won't support:
* namespaces
* `configure_index()`
* delete by metadata
* `describe_index()` with metadata filtering
* `metadata_config` parameter to `create_index()`
* `delete()` with the `deleteAll` parameter
### Your contribution
I'll do it. | https://github.com/langchain-ai/langchain/issues/7472 | https://github.com/langchain-ai/langchain/pull/7473 | 5debd5043e61d29efea661c20818b48a0f39e5a6 | 9d13dcd17c2dfab8f087bcc37e99f1181dfe5c63 | "2023-07-10T10:19:16Z" | python | "2023-07-10T15:39:47Z" | langchain/vectorstores/pinecone.py | text = metadata.pop(self._text_key)
score = res["score"]
docs.append((Document(page_content=text, metadata=metadata), score))
else:
logger.warning(
f"Found document with no `{self._text_key}` key. Skipping."
)
return docs
def similarity_search(
self,
query: str,
k: int = 4,
filter: Optional[dict] = None,
namespace: Optional[str] = None,
**kwargs: Any,
) -> List[Document]:
"""Return pinecone documents most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Dictionary of argument(s) to filter on metadata
namespace: Namespace to search in. Default will search in '' namespace.
Returns:
List of Documents most similar to the query and score for each
"""
docs_and_scores = self.similarity_search_with_score(
query, k=k, filter=filter, namespace=namespace, **kwargs
)
return [doc for doc, _ in docs_and_scores]
def _similarity_search_with_relevance_scores( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,472 | Pinecone: Support starter tier | ### Feature request
Adapt the pinecone vectorstore to support upcoming starter tier. The changes are related to removing namespaces and `delete by metadata` feature.
### Motivation
Indexes in upcoming Pinecone V4 won't support:
* namespaces
* `configure_index()`
* delete by metadata
* `describe_index()` with metadata filtering
* `metadata_config` parameter to `create_index()`
* `delete()` with the `deleteAll` parameter
### Your contribution
I'll do it. | https://github.com/langchain-ai/langchain/issues/7472 | https://github.com/langchain-ai/langchain/pull/7473 | 5debd5043e61d29efea661c20818b48a0f39e5a6 | 9d13dcd17c2dfab8f087bcc37e99f1181dfe5c63 | "2023-07-10T10:19:16Z" | python | "2023-07-10T15:39:47Z" | langchain/vectorstores/pinecone.py | self,
query: str,
k: int = 4,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
kwargs.pop("score_threshold", None)
return self.similarity_search_with_score(query, k, **kwargs)
def max_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[dict] = None,
namespace: Optional[str] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
embedding: Embedding to look up documents similar to. |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,472 | Pinecone: Support starter tier | ### Feature request
Adapt the pinecone vectorstore to support upcoming starter tier. The changes are related to removing namespaces and `delete by metadata` feature.
### Motivation
Indexes in upcoming Pinecone V4 won't support:
* namespaces
* `configure_index()`
* delete by metadata
* `describe_index()` with metadata filtering
* `metadata_config` parameter to `create_index()`
* `delete()` with the `deleteAll` parameter
### Your contribution
I'll do it. | https://github.com/langchain-ai/langchain/issues/7472 | https://github.com/langchain-ai/langchain/pull/7473 | 5debd5043e61d29efea661c20818b48a0f39e5a6 | 9d13dcd17c2dfab8f087bcc37e99f1181dfe5c63 | "2023-07-10T10:19:16Z" | python | "2023-07-10T15:39:47Z" | langchain/vectorstores/pinecone.py | k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
if namespace is None:
namespace = self._namespace
results = self._index.query(
[embedding],
top_k=fetch_k,
include_values=True,
include_metadata=True,
namespace=namespace,
filter=filter,
)
mmr_selected = maximal_marginal_relevance(
np.array([embedding], dtype=np.float32),
[item["values"] for item in results["matches"]],
k=k,
lambda_mult=lambda_mult,
)
selected = [results["matches"][i]["metadata"] for i in mmr_selected]
return [
Document(page_content=metadata.pop((self._text_key)), metadata=metadata)
for metadata in selected
] |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,472 | Pinecone: Support starter tier | ### Feature request
Adapt the pinecone vectorstore to support upcoming starter tier. The changes are related to removing namespaces and `delete by metadata` feature.
### Motivation
Indexes in upcoming Pinecone V4 won't support:
* namespaces
* `configure_index()`
* delete by metadata
* `describe_index()` with metadata filtering
* `metadata_config` parameter to `create_index()`
* `delete()` with the `deleteAll` parameter
### Your contribution
I'll do it. | https://github.com/langchain-ai/langchain/issues/7472 | https://github.com/langchain-ai/langchain/pull/7473 | 5debd5043e61d29efea661c20818b48a0f39e5a6 | 9d13dcd17c2dfab8f087bcc37e99f1181dfe5c63 | "2023-07-10T10:19:16Z" | python | "2023-07-10T15:39:47Z" | langchain/vectorstores/pinecone.py | def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[dict] = None,
namespace: Optional[str] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
embedding = self._embedding_function(query)
return self.max_marginal_relevance_search_by_vector(
embedding, k, fetch_k, lambda_mult, filter, namespace
)
@classmethod
def from_texts( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,472 | Pinecone: Support starter tier | ### Feature request
Adapt the pinecone vectorstore to support upcoming starter tier. The changes are related to removing namespaces and `delete by metadata` feature.
### Motivation
Indexes in upcoming Pinecone V4 won't support:
* namespaces
* `configure_index()`
* delete by metadata
* `describe_index()` with metadata filtering
* `metadata_config` parameter to `create_index()`
* `delete()` with the `deleteAll` parameter
### Your contribution
I'll do it. | https://github.com/langchain-ai/langchain/issues/7472 | https://github.com/langchain-ai/langchain/pull/7473 | 5debd5043e61d29efea661c20818b48a0f39e5a6 | 9d13dcd17c2dfab8f087bcc37e99f1181dfe5c63 | "2023-07-10T10:19:16Z" | python | "2023-07-10T15:39:47Z" | langchain/vectorstores/pinecone.py | cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
batch_size: int = 32,
text_key: str = "text",
index_name: Optional[str] = None,
namespace: Optional[str] = None,
**kwargs: Any,
) -> Pinecone:
"""Construct Pinecone wrapper from raw documents.
This is a user friendly interface that:
1. Embeds documents.
2. Adds the documents to a provided Pinecone index
This is intended to be a quick way to get started. |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,472 | Pinecone: Support starter tier | ### Feature request
Adapt the pinecone vectorstore to support upcoming starter tier. The changes are related to removing namespaces and `delete by metadata` feature.
### Motivation
Indexes in upcoming Pinecone V4 won't support:
* namespaces
* `configure_index()`
* delete by metadata
* `describe_index()` with metadata filtering
* `metadata_config` parameter to `create_index()`
* `delete()` with the `deleteAll` parameter
### Your contribution
I'll do it. | https://github.com/langchain-ai/langchain/issues/7472 | https://github.com/langchain-ai/langchain/pull/7473 | 5debd5043e61d29efea661c20818b48a0f39e5a6 | 9d13dcd17c2dfab8f087bcc37e99f1181dfe5c63 | "2023-07-10T10:19:16Z" | python | "2023-07-10T15:39:47Z" | langchain/vectorstores/pinecone.py | Example:
.. code-block:: python
from langchain import Pinecone
from langchain.embeddings import OpenAIEmbeddings
import pinecone
# The environment should be the one specified next to the API key
# in your Pinecone console
pinecone.init(api_key="***", environment="...")
embeddings = OpenAIEmbeddings()
pinecone = Pinecone.from_texts(
texts,
embeddings,
index_name="langchain-demo"
)
"""
try:
import pinecone
except ImportError:
raise ValueError(
"Could not import pinecone python package. "
"Please install it with `pip install pinecone-client`."
)
indexes = pinecone.list_indexes()
if index_name in indexes:
index = pinecone.Index(index_name)
elif len(indexes) == 0:
raise ValueError(
"No active indexes found in your Pinecone project, "
"are you sure you're using the right API key and environment?"
) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,472 | Pinecone: Support starter tier | ### Feature request
Adapt the pinecone vectorstore to support upcoming starter tier. The changes are related to removing namespaces and `delete by metadata` feature.
### Motivation
Indexes in upcoming Pinecone V4 won't support:
* namespaces
* `configure_index()`
* delete by metadata
* `describe_index()` with metadata filtering
* `metadata_config` parameter to `create_index()`
* `delete()` with the `deleteAll` parameter
### Your contribution
I'll do it. | https://github.com/langchain-ai/langchain/issues/7472 | https://github.com/langchain-ai/langchain/pull/7473 | 5debd5043e61d29efea661c20818b48a0f39e5a6 | 9d13dcd17c2dfab8f087bcc37e99f1181dfe5c63 | "2023-07-10T10:19:16Z" | python | "2023-07-10T15:39:47Z" | langchain/vectorstores/pinecone.py | else:
raise ValueError(
f"Index '{index_name}' not found in your Pinecone project. "
f"Did you mean one of the following indexes: {', '.join(indexes)}"
)
for i in range(0, len(texts), batch_size):
i_end = min(i + batch_size, len(texts))
lines_batch = texts[i:i_end]
if ids:
ids_batch = ids[i:i_end]
else:
ids_batch = [str(uuid.uuid4()) for n in range(i, i_end)]
embeds = embedding.embed_documents(lines_batch)
if metadatas:
metadata = metadatas[i:i_end]
else:
metadata = [{} for _ in range(i, i_end)]
for j, line in enumerate(lines_batch):
metadata[j][text_key] = line
to_upsert = zip(ids_batch, embeds, metadata)
index.upsert(vectors=list(to_upsert), namespace=namespace)
return cls(index, embedding.embed_query, text_key, namespace)
@classmethod
def from_existing_index( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,472 | Pinecone: Support starter tier | ### Feature request
Adapt the pinecone vectorstore to support upcoming starter tier. The changes are related to removing namespaces and `delete by metadata` feature.
### Motivation
Indexes in upcoming Pinecone V4 won't support:
* namespaces
* `configure_index()`
* delete by metadata
* `describe_index()` with metadata filtering
* `metadata_config` parameter to `create_index()`
* `delete()` with the `deleteAll` parameter
### Your contribution
I'll do it. | https://github.com/langchain-ai/langchain/issues/7472 | https://github.com/langchain-ai/langchain/pull/7473 | 5debd5043e61d29efea661c20818b48a0f39e5a6 | 9d13dcd17c2dfab8f087bcc37e99f1181dfe5c63 | "2023-07-10T10:19:16Z" | python | "2023-07-10T15:39:47Z" | langchain/vectorstores/pinecone.py | cls,
index_name: str,
embedding: Embeddings,
text_key: str = "text",
namespace: Optional[str] = None,
) -> Pinecone:
"""Load pinecone vectorstore from index name."""
try:
import pinecone
except ImportError:
raise ValueError(
"Could not import pinecone python package. "
"Please install it with `pip install pinecone-client`."
)
return cls(
pinecone.Index(index_name), embedding.embed_query, text_key, namespace
)
def delete( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,472 | Pinecone: Support starter tier | ### Feature request
Adapt the pinecone vectorstore to support upcoming starter tier. The changes are related to removing namespaces and `delete by metadata` feature.
### Motivation
Indexes in upcoming Pinecone V4 won't support:
* namespaces
* `configure_index()`
* delete by metadata
* `describe_index()` with metadata filtering
* `metadata_config` parameter to `create_index()`
* `delete()` with the `deleteAll` parameter
### Your contribution
I'll do it. | https://github.com/langchain-ai/langchain/issues/7472 | https://github.com/langchain-ai/langchain/pull/7473 | 5debd5043e61d29efea661c20818b48a0f39e5a6 | 9d13dcd17c2dfab8f087bcc37e99f1181dfe5c63 | "2023-07-10T10:19:16Z" | python | "2023-07-10T15:39:47Z" | langchain/vectorstores/pinecone.py | self,
ids: Optional[List[str]] = None,
delete_all: Optional[bool] = None,
namespace: Optional[str] = None,
filter: Optional[dict] = None,
**kwargs: Any,
) -> None:
"""Delete by vector IDs or filter.
Args:
ids: List of ids to delete.
filter: Dictionary of conditions to filter vectors to delete.
"""
if namespace is None:
namespace = self._namespace
if delete_all:
self._index.delete(delete_all=True, namespace=namespace, **kwargs)
elif ids is not None:
chunk_size = 1000
for i in range(0, len(ids), chunk_size):
chunk = ids[i : i + chunk_size]
self._index.delete(ids=chunk, namespace=namespace, **kwargs)
elif filter is not None:
self._index.delete(filter=filter, namespace=namespace, **kwargs)
else:
raise ValueError("Either ids, delete_all, or filter must be provided.")
return None |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,472 | Pinecone: Support starter tier | ### Feature request
Adapt the pinecone vectorstore to support upcoming starter tier. The changes are related to removing namespaces and `delete by metadata` feature.
### Motivation
Indexes in upcoming Pinecone V4 won't support:
* namespaces
* `configure_index()`
* delete by metadata
* `describe_index()` with metadata filtering
* `metadata_config` parameter to `create_index()`
* `delete()` with the `deleteAll` parameter
### Your contribution
I'll do it. | https://github.com/langchain-ai/langchain/issues/7472 | https://github.com/langchain-ai/langchain/pull/7473 | 5debd5043e61d29efea661c20818b48a0f39e5a6 | 9d13dcd17c2dfab8f087bcc37e99f1181dfe5c63 | "2023-07-10T10:19:16Z" | python | "2023-07-10T15:39:47Z" | tests/integration_tests/vectorstores/test_pinecone.py | import importlib
import os
import uuid
from typing import List
import pinecone
import pytest
from langchain.docstore.document import Document
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores.pinecone import Pinecone
index_name = "langchain-test-index"
namespace_name = "langchain-test-namespace"
dimension = 1536
def reset_pinecone() -> None:
assert os.environ.get("PINECONE_API_KEY") is not None
assert os.environ.get("PINECONE_ENVIRONMENT") is not None
import pinecone
importlib.reload(pinecone)
pinecone.init(
api_key=os.environ.get("PINECONE_API_KEY"),
environment=os.environ.get("PINECONE_ENVIRONMENT"),
)
class TestPinecone:
index: pinecone.Index
@classmethod
def setup_class(cls) -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 7,472 | Pinecone: Support starter tier | ### Feature request
Adapt the pinecone vectorstore to support upcoming starter tier. The changes are related to removing namespaces and `delete by metadata` feature.
### Motivation
Indexes in upcoming Pinecone V4 won't support:
* namespaces
* `configure_index()`
* delete by metadata
* `describe_index()` with metadata filtering
* `metadata_config` parameter to `create_index()`
* `delete()` with the `deleteAll` parameter
### Your contribution
I'll do it. | https://github.com/langchain-ai/langchain/issues/7472 | https://github.com/langchain-ai/langchain/pull/7473 | 5debd5043e61d29efea661c20818b48a0f39e5a6 | 9d13dcd17c2dfab8f087bcc37e99f1181dfe5c63 | "2023-07-10T10:19:16Z" | python | "2023-07-10T15:39:47Z" | tests/integration_tests/vectorstores/test_pinecone.py | reset_pinecone()
cls.index = pinecone.Index(index_name)
if index_name in pinecone.list_indexes():
index_stats = cls.index.describe_index_stats()
if index_stats["dimension"] == dimension:
index_stats = cls.index.describe_index_stats()
for _namespace_name in index_stats["namespaces"].keys():
cls.index.delete(delete_all=True, namespace=_namespace_name)
else:
pinecone.delete_index(index_name)
pinecone.create_index(name=index_name, dimension=dimension)
else:
pinecone.create_index(name=index_name, dimension=dimension)
index_stats = cls.index.describe_index_stats()
assert index_stats["dimension"] == dimension
if index_stats["namespaces"].get(namespace_name) is not None:
assert index_stats["namespaces"][namespace_name]["vector_count"] == 0
@classmethod
def teardown_class(cls) -> None: |
Subsets and Splits