status
stringclasses
1 value
repo_name
stringclasses
31 values
repo_url
stringclasses
31 values
issue_id
int64
1
104k
title
stringlengths
4
233
body
stringlengths
0
186k
issue_url
stringlengths
38
56
pull_url
stringlengths
37
54
before_fix_sha
stringlengths
40
40
after_fix_sha
stringlengths
40
40
report_datetime
unknown
language
stringclasses
5 values
commit_datetime
unknown
updated_file
stringlengths
7
188
chunk_content
stringlengths
1
1.03M
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,131
Azure Cognitive Search Vector Store doesn't apply search_kwargs when performing queries
### System Info Langchain 0.0.199 Python 3.10.11 Windows 11 (but will occur on any platform. ### Who can help? @hwchase17 @ruoccofabrizio ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction To reproduce this issue create an AzureSearch Vector Store and a RetrievalQA with a search_kwargs, like in this sample code: ``` import os cognitive_search_name = os.environ["AZURE_SEARCH_SERVICE_NAME"] vector_store_address: str = f"https://{cognitive_search_name}.search.windows.net/" index_name: str = os.environ["AZURE_SEARCH_SERVICE_INDEX_NAME"] vector_store_password: str = os.environ["AZURE_SEARCH_SERVICE_ADMIN_KEY"] from langchain.vectorstores.azuresearch import AzureSearch embeddings = OpenAIEmbeddings(model="text-embedding-ada-002", chunk_size=1, client=any) vector_store = AzureSearch(azure_search_endpoint=vector_store_address, azure_search_key=vector_store_password, index_name=index_name, embedding_function=embeddings.embed_query) from langchain.chains import RetrievalQA llm = AzureChatOpenAI(deployment_name="gpt35", model_name="gpt-3.5-turbo-0301", openai_api_version="2023-03-15-preview", temperature=temperature, client=None) index = get_vector_store() retriever = index.as_retriever() retriever.search_kwargs = {'filters': "metadata eq 'something'"} qa = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=retriever, ) return qa ``` When you execute this code using ```qa``` the search_kwargs appear in the method ```similarity_search``` in ```azuresearch.py``` but are never passed to the methods ```vector_search```, ```hybrid_search```, and ```semantic_hybrid``` where they actually would be used. ### Expected behavior In my example they should apply a filter to the azure cognitive search index before doing the vector search, but this is not happening because filters will always be empty when it gets to the functions where they are used. (```vector_search```, ```hybrid_search```, and ```semantic_hybrid```)
https://github.com/langchain-ai/langchain/issues/6131
https://github.com/langchain-ai/langchain/pull/6132
395a2a3724507bafc7afe9e04ecbae60a7c66c7e
22862043543e55fa0467c739714230eae3425512
"2023-06-14T02:08:49Z"
python
"2023-06-19T00:39:06Z"
langchain/vectorstores/azuresearch.py
self, query: str, k: int = 4, filters: Optional[str] = None ) -> List[Tuple[Document, float]]: """Return docs most similar to query with an hybrid query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query and score for each """ from azure.search.documents.models import Vector results = self.client.search( search_text=query, vector=Vector( value=np.array( self.embedding_function(query), dtype=np.float32 ).tolist(), k=k, fields=FIELDS_CONTENT_VECTOR, ), select=[f"{FIELDS_ID},{FIELDS_CONTENT},{FIELDS_METADATA}"], filter=filters,
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,131
Azure Cognitive Search Vector Store doesn't apply search_kwargs when performing queries
### System Info Langchain 0.0.199 Python 3.10.11 Windows 11 (but will occur on any platform. ### Who can help? @hwchase17 @ruoccofabrizio ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction To reproduce this issue create an AzureSearch Vector Store and a RetrievalQA with a search_kwargs, like in this sample code: ``` import os cognitive_search_name = os.environ["AZURE_SEARCH_SERVICE_NAME"] vector_store_address: str = f"https://{cognitive_search_name}.search.windows.net/" index_name: str = os.environ["AZURE_SEARCH_SERVICE_INDEX_NAME"] vector_store_password: str = os.environ["AZURE_SEARCH_SERVICE_ADMIN_KEY"] from langchain.vectorstores.azuresearch import AzureSearch embeddings = OpenAIEmbeddings(model="text-embedding-ada-002", chunk_size=1, client=any) vector_store = AzureSearch(azure_search_endpoint=vector_store_address, azure_search_key=vector_store_password, index_name=index_name, embedding_function=embeddings.embed_query) from langchain.chains import RetrievalQA llm = AzureChatOpenAI(deployment_name="gpt35", model_name="gpt-3.5-turbo-0301", openai_api_version="2023-03-15-preview", temperature=temperature, client=None) index = get_vector_store() retriever = index.as_retriever() retriever.search_kwargs = {'filters': "metadata eq 'something'"} qa = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=retriever, ) return qa ``` When you execute this code using ```qa``` the search_kwargs appear in the method ```similarity_search``` in ```azuresearch.py``` but are never passed to the methods ```vector_search```, ```hybrid_search```, and ```semantic_hybrid``` where they actually would be used. ### Expected behavior In my example they should apply a filter to the azure cognitive search index before doing the vector search, but this is not happening because filters will always be empty when it gets to the functions where they are used. (```vector_search```, ```hybrid_search```, and ```semantic_hybrid```)
https://github.com/langchain-ai/langchain/issues/6131
https://github.com/langchain-ai/langchain/pull/6132
395a2a3724507bafc7afe9e04ecbae60a7c66c7e
22862043543e55fa0467c739714230eae3425512
"2023-06-14T02:08:49Z"
python
"2023-06-19T00:39:06Z"
langchain/vectorstores/azuresearch.py
top=k, ) docs = [ ( Document( page_content=result[FIELDS_CONTENT], metadata=json.loads(result[FIELDS_METADATA]), ), float(result["@search.score"]), ) for result in results ] return docs def semantic_hybrid_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """ Returns the most similar indexed documents to the query text. Args: query (str): The query text for which to find similar documents. k (int): The number of documents to return. Default is 4. Returns: List[Document]: A list of documents that are most similar to the query text. """ docs_and_scores = self.semantic_hybrid_search_with_score( query, k=k, filters=kwargs.get("filters", None) ) return [doc for doc, _ in docs_and_scores] def semantic_hybrid_search_with_score(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,131
Azure Cognitive Search Vector Store doesn't apply search_kwargs when performing queries
### System Info Langchain 0.0.199 Python 3.10.11 Windows 11 (but will occur on any platform. ### Who can help? @hwchase17 @ruoccofabrizio ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction To reproduce this issue create an AzureSearch Vector Store and a RetrievalQA with a search_kwargs, like in this sample code: ``` import os cognitive_search_name = os.environ["AZURE_SEARCH_SERVICE_NAME"] vector_store_address: str = f"https://{cognitive_search_name}.search.windows.net/" index_name: str = os.environ["AZURE_SEARCH_SERVICE_INDEX_NAME"] vector_store_password: str = os.environ["AZURE_SEARCH_SERVICE_ADMIN_KEY"] from langchain.vectorstores.azuresearch import AzureSearch embeddings = OpenAIEmbeddings(model="text-embedding-ada-002", chunk_size=1, client=any) vector_store = AzureSearch(azure_search_endpoint=vector_store_address, azure_search_key=vector_store_password, index_name=index_name, embedding_function=embeddings.embed_query) from langchain.chains import RetrievalQA llm = AzureChatOpenAI(deployment_name="gpt35", model_name="gpt-3.5-turbo-0301", openai_api_version="2023-03-15-preview", temperature=temperature, client=None) index = get_vector_store() retriever = index.as_retriever() retriever.search_kwargs = {'filters': "metadata eq 'something'"} qa = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=retriever, ) return qa ``` When you execute this code using ```qa``` the search_kwargs appear in the method ```similarity_search``` in ```azuresearch.py``` but are never passed to the methods ```vector_search```, ```hybrid_search```, and ```semantic_hybrid``` where they actually would be used. ### Expected behavior In my example they should apply a filter to the azure cognitive search index before doing the vector search, but this is not happening because filters will always be empty when it gets to the functions where they are used. (```vector_search```, ```hybrid_search```, and ```semantic_hybrid```)
https://github.com/langchain-ai/langchain/issues/6131
https://github.com/langchain-ai/langchain/pull/6132
395a2a3724507bafc7afe9e04ecbae60a7c66c7e
22862043543e55fa0467c739714230eae3425512
"2023-06-14T02:08:49Z"
python
"2023-06-19T00:39:06Z"
langchain/vectorstores/azuresearch.py
self, query: str, k: int = 4, filters: Optional[str] = None ) -> List[Tuple[Document, float]]: """Return docs most similar to query with an hybrid query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query and score for each """ from azure.search.documents.models import Vector results = self.client.search( search_text=query, vector=Vector( value=np.array( self.embedding_function(query), dtype=np.float32 ).tolist(), k=50, fields=FIELDS_CONTENT_VECTOR, ), select=[f"{FIELDS_ID},{FIELDS_CONTENT},{FIELDS_METADATA}"], filter=filters, query_type="semantic", query_language=self.semantic_query_language, semantic_configuration_name=self.semantic_configuration_name,
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,131
Azure Cognitive Search Vector Store doesn't apply search_kwargs when performing queries
### System Info Langchain 0.0.199 Python 3.10.11 Windows 11 (but will occur on any platform. ### Who can help? @hwchase17 @ruoccofabrizio ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction To reproduce this issue create an AzureSearch Vector Store and a RetrievalQA with a search_kwargs, like in this sample code: ``` import os cognitive_search_name = os.environ["AZURE_SEARCH_SERVICE_NAME"] vector_store_address: str = f"https://{cognitive_search_name}.search.windows.net/" index_name: str = os.environ["AZURE_SEARCH_SERVICE_INDEX_NAME"] vector_store_password: str = os.environ["AZURE_SEARCH_SERVICE_ADMIN_KEY"] from langchain.vectorstores.azuresearch import AzureSearch embeddings = OpenAIEmbeddings(model="text-embedding-ada-002", chunk_size=1, client=any) vector_store = AzureSearch(azure_search_endpoint=vector_store_address, azure_search_key=vector_store_password, index_name=index_name, embedding_function=embeddings.embed_query) from langchain.chains import RetrievalQA llm = AzureChatOpenAI(deployment_name="gpt35", model_name="gpt-3.5-turbo-0301", openai_api_version="2023-03-15-preview", temperature=temperature, client=None) index = get_vector_store() retriever = index.as_retriever() retriever.search_kwargs = {'filters': "metadata eq 'something'"} qa = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=retriever, ) return qa ``` When you execute this code using ```qa``` the search_kwargs appear in the method ```similarity_search``` in ```azuresearch.py``` but are never passed to the methods ```vector_search```, ```hybrid_search```, and ```semantic_hybrid``` where they actually would be used. ### Expected behavior In my example they should apply a filter to the azure cognitive search index before doing the vector search, but this is not happening because filters will always be empty when it gets to the functions where they are used. (```vector_search```, ```hybrid_search```, and ```semantic_hybrid```)
https://github.com/langchain-ai/langchain/issues/6131
https://github.com/langchain-ai/langchain/pull/6132
395a2a3724507bafc7afe9e04ecbae60a7c66c7e
22862043543e55fa0467c739714230eae3425512
"2023-06-14T02:08:49Z"
python
"2023-06-19T00:39:06Z"
langchain/vectorstores/azuresearch.py
query_caption="extractive", query_answer="extractive", top=k, ) semantic_answers = results.get_answers() semantic_answers_dict = {} for semantic_answer in semantic_answers: semantic_answers_dict[semantic_answer.key] = { "text": semantic_answer.text, "highlights": semantic_answer.highlights, } docs = [ ( Document( page_content=result["content"], metadata={ **json.loads(result["metadata"]), **{ "captions": { "text": result.get("@search.captions", [{}])[0].text, "highlights": result.get("@search.captions", [{}])[ 0 ].highlights, } if result.get("@search.captions") else {}, "answers": semantic_answers_dict.get( json.loads(result["metadata"]).get("key"), ""
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,131
Azure Cognitive Search Vector Store doesn't apply search_kwargs when performing queries
### System Info Langchain 0.0.199 Python 3.10.11 Windows 11 (but will occur on any platform. ### Who can help? @hwchase17 @ruoccofabrizio ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction To reproduce this issue create an AzureSearch Vector Store and a RetrievalQA with a search_kwargs, like in this sample code: ``` import os cognitive_search_name = os.environ["AZURE_SEARCH_SERVICE_NAME"] vector_store_address: str = f"https://{cognitive_search_name}.search.windows.net/" index_name: str = os.environ["AZURE_SEARCH_SERVICE_INDEX_NAME"] vector_store_password: str = os.environ["AZURE_SEARCH_SERVICE_ADMIN_KEY"] from langchain.vectorstores.azuresearch import AzureSearch embeddings = OpenAIEmbeddings(model="text-embedding-ada-002", chunk_size=1, client=any) vector_store = AzureSearch(azure_search_endpoint=vector_store_address, azure_search_key=vector_store_password, index_name=index_name, embedding_function=embeddings.embed_query) from langchain.chains import RetrievalQA llm = AzureChatOpenAI(deployment_name="gpt35", model_name="gpt-3.5-turbo-0301", openai_api_version="2023-03-15-preview", temperature=temperature, client=None) index = get_vector_store() retriever = index.as_retriever() retriever.search_kwargs = {'filters': "metadata eq 'something'"} qa = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=retriever, ) return qa ``` When you execute this code using ```qa``` the search_kwargs appear in the method ```similarity_search``` in ```azuresearch.py``` but are never passed to the methods ```vector_search```, ```hybrid_search```, and ```semantic_hybrid``` where they actually would be used. ### Expected behavior In my example they should apply a filter to the azure cognitive search index before doing the vector search, but this is not happening because filters will always be empty when it gets to the functions where they are used. (```vector_search```, ```hybrid_search```, and ```semantic_hybrid```)
https://github.com/langchain-ai/langchain/issues/6131
https://github.com/langchain-ai/langchain/pull/6132
395a2a3724507bafc7afe9e04ecbae60a7c66c7e
22862043543e55fa0467c739714230eae3425512
"2023-06-14T02:08:49Z"
python
"2023-06-19T00:39:06Z"
langchain/vectorstores/azuresearch.py
), }, }, ), float(result["@search.score"]), ) for result in results ] return docs @classmethod def from_texts( cls: Type[AzureSearch], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, azure_search_endpoint: str = "", azure_search_key: str = "", index_name: str = "langchain-index", **kwargs: Any, ) -> AzureSearch: azure_search = cls( azure_search_endpoint, azure_search_key, index_name, embedding.embed_query, ) azure_search.add_texts(texts, metadatas, **kwargs) return azure_search class AzureSearchVectorStoreRetriever(BaseRetriever, BaseModel):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,131
Azure Cognitive Search Vector Store doesn't apply search_kwargs when performing queries
### System Info Langchain 0.0.199 Python 3.10.11 Windows 11 (but will occur on any platform. ### Who can help? @hwchase17 @ruoccofabrizio ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction To reproduce this issue create an AzureSearch Vector Store and a RetrievalQA with a search_kwargs, like in this sample code: ``` import os cognitive_search_name = os.environ["AZURE_SEARCH_SERVICE_NAME"] vector_store_address: str = f"https://{cognitive_search_name}.search.windows.net/" index_name: str = os.environ["AZURE_SEARCH_SERVICE_INDEX_NAME"] vector_store_password: str = os.environ["AZURE_SEARCH_SERVICE_ADMIN_KEY"] from langchain.vectorstores.azuresearch import AzureSearch embeddings = OpenAIEmbeddings(model="text-embedding-ada-002", chunk_size=1, client=any) vector_store = AzureSearch(azure_search_endpoint=vector_store_address, azure_search_key=vector_store_password, index_name=index_name, embedding_function=embeddings.embed_query) from langchain.chains import RetrievalQA llm = AzureChatOpenAI(deployment_name="gpt35", model_name="gpt-3.5-turbo-0301", openai_api_version="2023-03-15-preview", temperature=temperature, client=None) index = get_vector_store() retriever = index.as_retriever() retriever.search_kwargs = {'filters': "metadata eq 'something'"} qa = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=retriever, ) return qa ``` When you execute this code using ```qa``` the search_kwargs appear in the method ```similarity_search``` in ```azuresearch.py``` but are never passed to the methods ```vector_search```, ```hybrid_search```, and ```semantic_hybrid``` where they actually would be used. ### Expected behavior In my example they should apply a filter to the azure cognitive search index before doing the vector search, but this is not happening because filters will always be empty when it gets to the functions where they are used. (```vector_search```, ```hybrid_search```, and ```semantic_hybrid```)
https://github.com/langchain-ai/langchain/issues/6131
https://github.com/langchain-ai/langchain/pull/6132
395a2a3724507bafc7afe9e04ecbae60a7c66c7e
22862043543e55fa0467c739714230eae3425512
"2023-06-14T02:08:49Z"
python
"2023-06-19T00:39:06Z"
langchain/vectorstores/azuresearch.py
vectorstore: AzureSearch search_type: str = "hybrid" k: int = 4 class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True @root_validator() def validate_search_type(cls, values: Dict) -> Dict: """Validate search type.""" if "search_type" in values: search_type = values["search_type"] if search_type not in ("similarity", "hybrid", "semantic_hybrid"): raise ValueError(f"search_type of {search_type} not allowed.") return values def get_relevant_documents(self, query: str) -> List[Document]: if self.search_type == "similarity": docs = self.vectorstore.vector_search(query, k=self.k) elif self.search_type == "hybrid": docs = self.vectorstore.hybrid_search(query, k=self.k) elif self.search_type == "semantic_hybrid": docs = self.vectorstore.semantic_hybrid_search(query, k=self.k) else: raise ValueError(f"search_type of {self.search_type} not allowed.") return docs async def aget_relevant_documents(self, query: str) -> List[Document]: raise NotImplementedError( "AzureSearchVectorStoreRetriever does not support async" )
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,483
[SSL: CERTIFICATE_VERIFY_FAILED] while load from SitemapLoader
### System Info langchain: 0.0.181 platform: windows python: 3.11.3 ### Who can help? @eyurtsev ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```py site_loader = SitemapLoader(web_path="https://help.glueup.com/sitemap_index.xml") docs = site_loader.load() print(docs[0]) # ssl.SSLCertVerificationError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1002) ``` ### Expected behavior print the frist doc
https://github.com/langchain-ai/langchain/issues/5483
https://github.com/langchain-ai/langchain/pull/6256
10bff4ecc420317a86043a8f0287363618be77e6
b2b9ded12facf3ae205eb4b1cbb455eca6af8977
"2023-05-31T07:52:33Z"
python
"2023-06-19T01:34:18Z"
langchain/document_loaders/web_base.py
"""Web base loader class.""" import asyncio import logging import warnings from typing import Any, Dict, List, Optional, Union import aiohttp import requests from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader logger = logging.getLogger(__name__) default_header_template = { "User-Agent": "", "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*" ";q=0.8", "Accept-Language": "en-US,en;q=0.5", "Referer": "https://www.google.com/", "DNT": "1", "Connection": "keep-alive", "Upgrade-Insecure-Requests": "1", } def _build_metadata(soup: Any, url: str) -> dict:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,483
[SSL: CERTIFICATE_VERIFY_FAILED] while load from SitemapLoader
### System Info langchain: 0.0.181 platform: windows python: 3.11.3 ### Who can help? @eyurtsev ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```py site_loader = SitemapLoader(web_path="https://help.glueup.com/sitemap_index.xml") docs = site_loader.load() print(docs[0]) # ssl.SSLCertVerificationError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1002) ``` ### Expected behavior print the frist doc
https://github.com/langchain-ai/langchain/issues/5483
https://github.com/langchain-ai/langchain/pull/6256
10bff4ecc420317a86043a8f0287363618be77e6
b2b9ded12facf3ae205eb4b1cbb455eca6af8977
"2023-05-31T07:52:33Z"
python
"2023-06-19T01:34:18Z"
langchain/document_loaders/web_base.py
"""Build metadata from BeautifulSoup output.""" metadata = {"source": url} if title := soup.find("title"): metadata["title"] = title.get_text() if description := soup.find("meta", attrs={"name": "description"}): metadata["description"] = description.get("content", None) if html := soup.find("html"): metadata["language"] = html.get("lang", None) return metadata class WebBaseLoader(BaseLoader): """Loader that uses urllib and beautiful soup to load webpages.""" web_paths: List[str] requests_per_second: int = 2 """Max number of concurrent requests to make.""" default_parser: str = "html.parser" """Default parser to use for BeautifulSoup.""" requests_kwargs: Dict[str, Any] = {} """kwargs for requests""" def __init__(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,483
[SSL: CERTIFICATE_VERIFY_FAILED] while load from SitemapLoader
### System Info langchain: 0.0.181 platform: windows python: 3.11.3 ### Who can help? @eyurtsev ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```py site_loader = SitemapLoader(web_path="https://help.glueup.com/sitemap_index.xml") docs = site_loader.load() print(docs[0]) # ssl.SSLCertVerificationError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1002) ``` ### Expected behavior print the frist doc
https://github.com/langchain-ai/langchain/issues/5483
https://github.com/langchain-ai/langchain/pull/6256
10bff4ecc420317a86043a8f0287363618be77e6
b2b9ded12facf3ae205eb4b1cbb455eca6af8977
"2023-05-31T07:52:33Z"
python
"2023-06-19T01:34:18Z"
langchain/document_loaders/web_base.py
self, web_path: Union[str, List[str]], header_template: Optional[dict] = None, verify: Optional[bool] = True, ): """Initialize with webpage path.""" if isinstance(web_path, str): self.web_paths = [web_path] elif isinstance(web_path, List): self.web_paths = web_path self.session = requests.Session() try: import bs4 except ImportError: raise ValueError( "bs4 package not found, please install it with " "`pip install bs4`" ) self.verify = verify headers = header_template or default_header_template if not headers.get("User-Agent"): try: from fake_useragent import UserAgent headers["User-Agent"] = UserAgent().random except ImportError: logger.info( "fake_useragent not found, using default user agent."
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,483
[SSL: CERTIFICATE_VERIFY_FAILED] while load from SitemapLoader
### System Info langchain: 0.0.181 platform: windows python: 3.11.3 ### Who can help? @eyurtsev ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```py site_loader = SitemapLoader(web_path="https://help.glueup.com/sitemap_index.xml") docs = site_loader.load() print(docs[0]) # ssl.SSLCertVerificationError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1002) ``` ### Expected behavior print the frist doc
https://github.com/langchain-ai/langchain/issues/5483
https://github.com/langchain-ai/langchain/pull/6256
10bff4ecc420317a86043a8f0287363618be77e6
b2b9ded12facf3ae205eb4b1cbb455eca6af8977
"2023-05-31T07:52:33Z"
python
"2023-06-19T01:34:18Z"
langchain/document_loaders/web_base.py
"To get a realistic header for requests, " "`pip install fake_useragent`." ) self.session.headers = dict(headers) @property def web_path(self) -> str: if len(self.web_paths) > 1: raise ValueError("Multiple webpaths found.") return self.web_paths[0] async def _fetch( self, url: str, retries: int = 3, cooldown: int = 2, backoff: float = 1.5 ) -> str: async with aiohttp.ClientSession() as session: for i in range(retries): try: async with session.get( url, headers=self.session.headers, verify=self.verify ) as response: return await response.text() except aiohttp.ClientConnectionError as e: if i == retries - 1: raise else: logger.warning( f"Error fetching {url} with attempt " f"{i + 1}/{retries}: {e}. Retrying..." ) await asyncio.sleep(cooldown * backoff**i) raise ValueError("retry count exceeded") async def _fetch_with_rate_limit(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,483
[SSL: CERTIFICATE_VERIFY_FAILED] while load from SitemapLoader
### System Info langchain: 0.0.181 platform: windows python: 3.11.3 ### Who can help? @eyurtsev ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```py site_loader = SitemapLoader(web_path="https://help.glueup.com/sitemap_index.xml") docs = site_loader.load() print(docs[0]) # ssl.SSLCertVerificationError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1002) ``` ### Expected behavior print the frist doc
https://github.com/langchain-ai/langchain/issues/5483
https://github.com/langchain-ai/langchain/pull/6256
10bff4ecc420317a86043a8f0287363618be77e6
b2b9ded12facf3ae205eb4b1cbb455eca6af8977
"2023-05-31T07:52:33Z"
python
"2023-06-19T01:34:18Z"
langchain/document_loaders/web_base.py
self, url: str, semaphore: asyncio.Semaphore ) -> str: async with semaphore: return await self._fetch(url) async def fetch_all(self, urls: List[str]) -> Any: """Fetch all urls concurrently with rate limiting.""" semaphore = asyncio.Semaphore(self.requests_per_second) tasks = [] for url in urls: task = asyncio.ensure_future(self._fetch_with_rate_limit(url, semaphore)) tasks.append(task) try: from tqdm.asyncio import tqdm_asyncio return await tqdm_asyncio.gather( *tasks, desc="Fetching pages", ascii=True, mininterval=1 ) except ImportError: warnings.warn("For better logging of progress, `pip install tqdm`") return await asyncio.gather(*tasks) @staticmethod def _check_parser(parser: str) -> None: """Check that parser is valid for bs4.""" valid_parsers = ["html.parser", "lxml", "xml", "lxml-xml", "html5lib"] if parser not in valid_parsers: raise ValueError( "`parser` must be one of " + ", ".join(valid_parsers) + "." ) def scrape_all(self, urls: List[str], parser: Union[str, None] = None) -> List[Any]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,483
[SSL: CERTIFICATE_VERIFY_FAILED] while load from SitemapLoader
### System Info langchain: 0.0.181 platform: windows python: 3.11.3 ### Who can help? @eyurtsev ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```py site_loader = SitemapLoader(web_path="https://help.glueup.com/sitemap_index.xml") docs = site_loader.load() print(docs[0]) # ssl.SSLCertVerificationError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1002) ``` ### Expected behavior print the frist doc
https://github.com/langchain-ai/langchain/issues/5483
https://github.com/langchain-ai/langchain/pull/6256
10bff4ecc420317a86043a8f0287363618be77e6
b2b9ded12facf3ae205eb4b1cbb455eca6af8977
"2023-05-31T07:52:33Z"
python
"2023-06-19T01:34:18Z"
langchain/document_loaders/web_base.py
"""Fetch all urls, then return soups for all results.""" from bs4 import BeautifulSoup results = asyncio.run(self.fetch_all(urls)) final_results = [] for i, result in enumerate(results): url = urls[i] if parser is None: if url.endswith(".xml"): parser = "xml" else: parser = self.default_parser self._check_parser(parser) final_results.append(BeautifulSoup(result, parser)) return final_results def _scrape(self, url: str, parser: Union[str, None] = None) -> Any: from bs4 import BeautifulSoup if parser is None: if url.endswith(".xml"): parser = "xml" else: parser = self.default_parser self._check_parser(parser) html_doc = self.session.get(url, verify=self.verify, **self.requests_kwargs) html_doc.encoding = html_doc.apparent_encoding return BeautifulSoup(html_doc.text, parser) def scrape(self, parser: Union[str, None] = None) -> Any:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,483
[SSL: CERTIFICATE_VERIFY_FAILED] while load from SitemapLoader
### System Info langchain: 0.0.181 platform: windows python: 3.11.3 ### Who can help? @eyurtsev ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```py site_loader = SitemapLoader(web_path="https://help.glueup.com/sitemap_index.xml") docs = site_loader.load() print(docs[0]) # ssl.SSLCertVerificationError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1002) ``` ### Expected behavior print the frist doc
https://github.com/langchain-ai/langchain/issues/5483
https://github.com/langchain-ai/langchain/pull/6256
10bff4ecc420317a86043a8f0287363618be77e6
b2b9ded12facf3ae205eb4b1cbb455eca6af8977
"2023-05-31T07:52:33Z"
python
"2023-06-19T01:34:18Z"
langchain/document_loaders/web_base.py
"""Scrape data from webpage and return it in BeautifulSoup format.""" if parser is None: parser = self.default_parser return self._scrape(self.web_path, parser) def load(self) -> List[Document]: """Load text from the url(s) in web_path.""" docs = [] for path in self.web_paths: soup = self._scrape(path) text = soup.get_text() metadata = _build_metadata(soup, path) docs.append(Document(page_content=text, metadata=metadata)) return docs def aload(self) -> List[Document]: """Load text from the urls in web_path async into Documents.""" results = self.scrape_all(self.web_paths) docs = [] for i in range(len(results)): soup = results[i] text = soup.get_text() metadata = _build_metadata(soup, self.web_paths[i]) docs.append(Document(page_content=text, metadata=metadata)) return docs
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,431
ChatPromptTemplate with partial variables is giving validation error
### System Info langchain-0.0.205, python3.10 ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Write this into Notebook cell 2. `from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate chat_prompt = ChatPromptTemplate( messages=[ HumanMessagePromptTemplate.from_template("Do something with {question} using {context} giving it like {formatins}") ], input_variables=["question", "context"], partial_variables={"formatins": "some structure"} ) ` 3. It it throwing following error: `Error: ValidationError: 1 validation error for ChatPromptTemplate __root__ Got mismatched input_variables. Expected: {'formatins', 'question', 'context'}. Got: ['question', 'context'] (type=value_error)` 4. This was working until 24 hours ago. Potentially related to recent commit to langchain/prompts/chat.py. ### Expected behavior The chat_prompt should get created with the partial variables injected. If this is expected change, can you please help with suggesting what should be the new way to use partial_variables? Thanks
https://github.com/langchain-ai/langchain/issues/6431
https://github.com/langchain-ai/langchain/pull/6456
02c0a1e77eb9636850c8c29da33885a32b4cc2eb
6efd5fa2b9d46c7b4db6ad638097f010b745f0cc
"2023-06-19T16:15:49Z"
python
"2023-06-20T05:08:15Z"
langchain/prompts/chat.py
"""Chat prompt template.""" from __future__ import annotations from abc import ABC, abstractmethod from pathlib import Path from typing import Any, Callable, List, Sequence, Tuple, Type, TypeVar, Union from pydantic import Field, root_validator from langchain.load.serializable import Serializable from langchain.memory.buffer import get_buffer_string from langchain.prompts.base import BasePromptTemplate, StringPromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain.schema import ( AIMessage, BaseMessage, ChatMessage, HumanMessage, PromptValue, SystemMessage, ) class BaseMessagePromptTemplate(Serializable, ABC): @property def lc_serializable(self) -> bool: return True @abstractmethod def format_messages(self, **kwargs: Any) -> List[BaseMessage]: """To messages.""" @property @abstractmethod def input_variables(self) -> List[str]: """Input variables for this prompt template.""" class MessagesPlaceholder(BaseMessagePromptTemplate):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,431
ChatPromptTemplate with partial variables is giving validation error
### System Info langchain-0.0.205, python3.10 ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Write this into Notebook cell 2. `from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate chat_prompt = ChatPromptTemplate( messages=[ HumanMessagePromptTemplate.from_template("Do something with {question} using {context} giving it like {formatins}") ], input_variables=["question", "context"], partial_variables={"formatins": "some structure"} ) ` 3. It it throwing following error: `Error: ValidationError: 1 validation error for ChatPromptTemplate __root__ Got mismatched input_variables. Expected: {'formatins', 'question', 'context'}. Got: ['question', 'context'] (type=value_error)` 4. This was working until 24 hours ago. Potentially related to recent commit to langchain/prompts/chat.py. ### Expected behavior The chat_prompt should get created with the partial variables injected. If this is expected change, can you please help with suggesting what should be the new way to use partial_variables? Thanks
https://github.com/langchain-ai/langchain/issues/6431
https://github.com/langchain-ai/langchain/pull/6456
02c0a1e77eb9636850c8c29da33885a32b4cc2eb
6efd5fa2b9d46c7b4db6ad638097f010b745f0cc
"2023-06-19T16:15:49Z"
python
"2023-06-20T05:08:15Z"
langchain/prompts/chat.py
"""Prompt template that assumes variable is already list of messages.""" variable_name: str def format_messages(self, **kwargs: Any) -> List[BaseMessage]: """To a BaseMessage.""" value = kwargs[self.variable_name] if not isinstance(value, list): raise ValueError( f"variable {self.variable_name} should be a list of base messages, " f"got {value}" ) for v in value: if not isinstance(v, BaseMessage): raise ValueError( f"variable {self.variable_name} should be a list of base messages," f" got {value}" ) return value @property def input_variables(self) -> List[str]: """Input variables for this prompt template.""" return [self.variable_name] MessagePromptTemplateT = TypeVar( "MessagePromptTemplateT", bound="BaseStringMessagePromptTemplate" ) class BaseStringMessagePromptTemplate(BaseMessagePromptTemplate, ABC):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,431
ChatPromptTemplate with partial variables is giving validation error
### System Info langchain-0.0.205, python3.10 ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Write this into Notebook cell 2. `from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate chat_prompt = ChatPromptTemplate( messages=[ HumanMessagePromptTemplate.from_template("Do something with {question} using {context} giving it like {formatins}") ], input_variables=["question", "context"], partial_variables={"formatins": "some structure"} ) ` 3. It it throwing following error: `Error: ValidationError: 1 validation error for ChatPromptTemplate __root__ Got mismatched input_variables. Expected: {'formatins', 'question', 'context'}. Got: ['question', 'context'] (type=value_error)` 4. This was working until 24 hours ago. Potentially related to recent commit to langchain/prompts/chat.py. ### Expected behavior The chat_prompt should get created with the partial variables injected. If this is expected change, can you please help with suggesting what should be the new way to use partial_variables? Thanks
https://github.com/langchain-ai/langchain/issues/6431
https://github.com/langchain-ai/langchain/pull/6456
02c0a1e77eb9636850c8c29da33885a32b4cc2eb
6efd5fa2b9d46c7b4db6ad638097f010b745f0cc
"2023-06-19T16:15:49Z"
python
"2023-06-20T05:08:15Z"
langchain/prompts/chat.py
prompt: StringPromptTemplate additional_kwargs: dict = Field(default_factory=dict) @classmethod def from_template( cls: Type[MessagePromptTemplateT], template: str, template_format: str = "f-string", **kwargs: Any, ) -> MessagePromptTemplateT: prompt = PromptTemplate.from_template(template, template_format=template_format) return cls(prompt=prompt, **kwargs) @classmethod def from_template_file( cls: Type[MessagePromptTemplateT], template_file: Union[str, Path], input_variables: List[str], **kwargs: Any, ) -> MessagePromptTemplateT: prompt = PromptTemplate.from_file(template_file, input_variables) return cls(prompt=prompt, **kwargs) @abstractmethod def format(self, **kwargs: Any) -> BaseMessage: """To a BaseMessage.""" def format_messages(self, **kwargs: Any) -> List[BaseMessage]: return [self.format(**kwargs)] @property def input_variables(self) -> List[str]: return self.prompt.input_variables class ChatMessagePromptTemplate(BaseStringMessagePromptTemplate):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,431
ChatPromptTemplate with partial variables is giving validation error
### System Info langchain-0.0.205, python3.10 ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Write this into Notebook cell 2. `from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate chat_prompt = ChatPromptTemplate( messages=[ HumanMessagePromptTemplate.from_template("Do something with {question} using {context} giving it like {formatins}") ], input_variables=["question", "context"], partial_variables={"formatins": "some structure"} ) ` 3. It it throwing following error: `Error: ValidationError: 1 validation error for ChatPromptTemplate __root__ Got mismatched input_variables. Expected: {'formatins', 'question', 'context'}. Got: ['question', 'context'] (type=value_error)` 4. This was working until 24 hours ago. Potentially related to recent commit to langchain/prompts/chat.py. ### Expected behavior The chat_prompt should get created with the partial variables injected. If this is expected change, can you please help with suggesting what should be the new way to use partial_variables? Thanks
https://github.com/langchain-ai/langchain/issues/6431
https://github.com/langchain-ai/langchain/pull/6456
02c0a1e77eb9636850c8c29da33885a32b4cc2eb
6efd5fa2b9d46c7b4db6ad638097f010b745f0cc
"2023-06-19T16:15:49Z"
python
"2023-06-20T05:08:15Z"
langchain/prompts/chat.py
role: str def format(self, **kwargs: Any) -> BaseMessage: text = self.prompt.format(**kwargs) return ChatMessage( content=text, role=self.role, additional_kwargs=self.additional_kwargs ) class HumanMessagePromptTemplate(BaseStringMessagePromptTemplate):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,431
ChatPromptTemplate with partial variables is giving validation error
### System Info langchain-0.0.205, python3.10 ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Write this into Notebook cell 2. `from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate chat_prompt = ChatPromptTemplate( messages=[ HumanMessagePromptTemplate.from_template("Do something with {question} using {context} giving it like {formatins}") ], input_variables=["question", "context"], partial_variables={"formatins": "some structure"} ) ` 3. It it throwing following error: `Error: ValidationError: 1 validation error for ChatPromptTemplate __root__ Got mismatched input_variables. Expected: {'formatins', 'question', 'context'}. Got: ['question', 'context'] (type=value_error)` 4. This was working until 24 hours ago. Potentially related to recent commit to langchain/prompts/chat.py. ### Expected behavior The chat_prompt should get created with the partial variables injected. If this is expected change, can you please help with suggesting what should be the new way to use partial_variables? Thanks
https://github.com/langchain-ai/langchain/issues/6431
https://github.com/langchain-ai/langchain/pull/6456
02c0a1e77eb9636850c8c29da33885a32b4cc2eb
6efd5fa2b9d46c7b4db6ad638097f010b745f0cc
"2023-06-19T16:15:49Z"
python
"2023-06-20T05:08:15Z"
langchain/prompts/chat.py
def format(self, **kwargs: Any) -> BaseMessage: text = self.prompt.format(**kwargs) return HumanMessage(content=text, additional_kwargs=self.additional_kwargs) class AIMessagePromptTemplate(BaseStringMessagePromptTemplate): def format(self, **kwargs: Any) -> BaseMessage: text = self.prompt.format(**kwargs) return AIMessage(content=text, additional_kwargs=self.additional_kwargs) class SystemMessagePromptTemplate(BaseStringMessagePromptTemplate): def format(self, **kwargs: Any) -> BaseMessage: text = self.prompt.format(**kwargs) return SystemMessage(content=text, additional_kwargs=self.additional_kwargs) class ChatPromptValue(PromptValue): messages: List[BaseMessage] def to_string(self) -> str: """Return prompt as string.""" return get_buffer_string(self.messages) def to_messages(self) -> List[BaseMessage]: """Return prompt as messages.""" return self.messages class BaseChatPromptTemplate(BasePromptTemplate, ABC): def format(self, **kwargs: Any) -> str: return self.format_prompt(**kwargs).to_string() def format_prompt(self, **kwargs: Any) -> PromptValue: messages = self.format_messages(**kwargs) return ChatPromptValue(messages=messages) @abstractmethod def format_messages(self, **kwargs: Any) -> List[BaseMessage]: """Format kwargs into a list of messages.""" class ChatPromptTemplate(BaseChatPromptTemplate, ABC):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,431
ChatPromptTemplate with partial variables is giving validation error
### System Info langchain-0.0.205, python3.10 ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Write this into Notebook cell 2. `from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate chat_prompt = ChatPromptTemplate( messages=[ HumanMessagePromptTemplate.from_template("Do something with {question} using {context} giving it like {formatins}") ], input_variables=["question", "context"], partial_variables={"formatins": "some structure"} ) ` 3. It it throwing following error: `Error: ValidationError: 1 validation error for ChatPromptTemplate __root__ Got mismatched input_variables. Expected: {'formatins', 'question', 'context'}. Got: ['question', 'context'] (type=value_error)` 4. This was working until 24 hours ago. Potentially related to recent commit to langchain/prompts/chat.py. ### Expected behavior The chat_prompt should get created with the partial variables injected. If this is expected change, can you please help with suggesting what should be the new way to use partial_variables? Thanks
https://github.com/langchain-ai/langchain/issues/6431
https://github.com/langchain-ai/langchain/pull/6456
02c0a1e77eb9636850c8c29da33885a32b4cc2eb
6efd5fa2b9d46c7b4db6ad638097f010b745f0cc
"2023-06-19T16:15:49Z"
python
"2023-06-20T05:08:15Z"
langchain/prompts/chat.py
input_variables: List[str] messages: List[Union[BaseMessagePromptTemplate, BaseMessage]] @root_validator(pre=True) def validate_input_variables(cls, values: dict) -> dict: messages = values["messages"] input_vars = set() for message in messages: if isinstance(message, BaseMessagePromptTemplate): input_vars.update(message.input_variables) if "input_variables" in values: if input_vars != set(values["input_variables"]): raise ValueError( "Got mismatched input_variables. " f"Expected: {input_vars}. " f"Got: {values['input_variables']}" ) else: values["input_variables"] = list(input_vars) return values @classmethod def from_template(cls, template: str, **kwargs: Any) -> ChatPromptTemplate: prompt_template = PromptTemplate.from_template(template, **kwargs) message = HumanMessagePromptTemplate(prompt=prompt_template) return cls.from_messages([message]) @classmethod def from_role_strings(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,431
ChatPromptTemplate with partial variables is giving validation error
### System Info langchain-0.0.205, python3.10 ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Write this into Notebook cell 2. `from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate chat_prompt = ChatPromptTemplate( messages=[ HumanMessagePromptTemplate.from_template("Do something with {question} using {context} giving it like {formatins}") ], input_variables=["question", "context"], partial_variables={"formatins": "some structure"} ) ` 3. It it throwing following error: `Error: ValidationError: 1 validation error for ChatPromptTemplate __root__ Got mismatched input_variables. Expected: {'formatins', 'question', 'context'}. Got: ['question', 'context'] (type=value_error)` 4. This was working until 24 hours ago. Potentially related to recent commit to langchain/prompts/chat.py. ### Expected behavior The chat_prompt should get created with the partial variables injected. If this is expected change, can you please help with suggesting what should be the new way to use partial_variables? Thanks
https://github.com/langchain-ai/langchain/issues/6431
https://github.com/langchain-ai/langchain/pull/6456
02c0a1e77eb9636850c8c29da33885a32b4cc2eb
6efd5fa2b9d46c7b4db6ad638097f010b745f0cc
"2023-06-19T16:15:49Z"
python
"2023-06-20T05:08:15Z"
langchain/prompts/chat.py
cls, string_messages: List[Tuple[str, str]] ) -> ChatPromptTemplate: messages = [ ChatMessagePromptTemplate( prompt=PromptTemplate.from_template(template), role=role ) for role, template in string_messages ] return cls.from_messages(messages) @classmethod def from_strings( cls, string_messages: List[Tuple[Type[BaseMessagePromptTemplate], str]] ) -> ChatPromptTemplate: messages = [ role(prompt=PromptTemplate.from_template(template)) for role, template in string_messages ] return cls.from_messages(messages) @classmethod def from_messages( cls, messages: Sequence[Union[BaseMessagePromptTemplate, BaseMessage]] ) -> ChatPromptTemplate: input_vars = set() for message in messages: if isinstance(message, BaseMessagePromptTemplate): input_vars.update(message.input_variables) return cls(input_variables=list(input_vars), messages=messages) def format(self, **kwargs: Any) -> str:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,431
ChatPromptTemplate with partial variables is giving validation error
### System Info langchain-0.0.205, python3.10 ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Write this into Notebook cell 2. `from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate chat_prompt = ChatPromptTemplate( messages=[ HumanMessagePromptTemplate.from_template("Do something with {question} using {context} giving it like {formatins}") ], input_variables=["question", "context"], partial_variables={"formatins": "some structure"} ) ` 3. It it throwing following error: `Error: ValidationError: 1 validation error for ChatPromptTemplate __root__ Got mismatched input_variables. Expected: {'formatins', 'question', 'context'}. Got: ['question', 'context'] (type=value_error)` 4. This was working until 24 hours ago. Potentially related to recent commit to langchain/prompts/chat.py. ### Expected behavior The chat_prompt should get created with the partial variables injected. If this is expected change, can you please help with suggesting what should be the new way to use partial_variables? Thanks
https://github.com/langchain-ai/langchain/issues/6431
https://github.com/langchain-ai/langchain/pull/6456
02c0a1e77eb9636850c8c29da33885a32b4cc2eb
6efd5fa2b9d46c7b4db6ad638097f010b745f0cc
"2023-06-19T16:15:49Z"
python
"2023-06-20T05:08:15Z"
langchain/prompts/chat.py
return self.format_prompt(**kwargs).to_string() def format_messages(self, **kwargs: Any) -> List[BaseMessage]: kwargs = self._merge_partial_and_user_variables(**kwargs) result = [] for message_template in self.messages: if isinstance(message_template, BaseMessage): result.extend([message_template]) elif isinstance(message_template, BaseMessagePromptTemplate): rel_params = { k: v for k, v in kwargs.items() if k in message_template.input_variables } message = message_template.format_messages(**rel_params) result.extend(message) else: raise ValueError(f"Unexpected input: {message_template}") return result def partial(self, **kwargs: Union[str, Callable[[], str]]) -> BasePromptTemplate: raise NotImplementedError @property def _prompt_type(self) -> str: return "chat" def save(self, file_path: Union[Path, str]) -> None: raise NotImplementedError
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,431
ChatPromptTemplate with partial variables is giving validation error
### System Info langchain-0.0.205, python3.10 ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Write this into Notebook cell 2. `from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate chat_prompt = ChatPromptTemplate( messages=[ HumanMessagePromptTemplate.from_template("Do something with {question} using {context} giving it like {formatins}") ], input_variables=["question", "context"], partial_variables={"formatins": "some structure"} ) ` 3. It it throwing following error: `Error: ValidationError: 1 validation error for ChatPromptTemplate __root__ Got mismatched input_variables. Expected: {'formatins', 'question', 'context'}. Got: ['question', 'context'] (type=value_error)` 4. This was working until 24 hours ago. Potentially related to recent commit to langchain/prompts/chat.py. ### Expected behavior The chat_prompt should get created with the partial variables injected. If this is expected change, can you please help with suggesting what should be the new way to use partial_variables? Thanks
https://github.com/langchain-ai/langchain/issues/6431
https://github.com/langchain-ai/langchain/pull/6456
02c0a1e77eb9636850c8c29da33885a32b4cc2eb
6efd5fa2b9d46c7b4db6ad638097f010b745f0cc
"2023-06-19T16:15:49Z"
python
"2023-06-20T05:08:15Z"
tests/unit_tests/prompts/test_chat.py
from pathlib import Path from typing import List import pytest from langchain.prompts import PromptTemplate from langchain.prompts.chat import ( AIMessagePromptTemplate, BaseMessagePromptTemplate, ChatMessagePromptTemplate, ChatPromptTemplate, ChatPromptValue, HumanMessagePromptTemplate, SystemMessagePromptTemplate, ) from langchain.schema import HumanMessage def create_messages() -> List[BaseMessagePromptTemplate]: """Create messages.""" system_message_prompt = SystemMessagePromptTemplate( prompt=PromptTemplate( template="Here's some context: {context}", input_variables=["context"], ) ) human_message_prompt = HumanMessagePromptTemplate( prompt=PromptTemplate( template="Hello {foo}, I'm {bar}. Thanks for the {context}", input_variables=["foo", "bar", "context"], ) ) ai_message_prompt = AIMessagePromptTemplate( prompt=PromptTemplate(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,431
ChatPromptTemplate with partial variables is giving validation error
### System Info langchain-0.0.205, python3.10 ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Write this into Notebook cell 2. `from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate chat_prompt = ChatPromptTemplate( messages=[ HumanMessagePromptTemplate.from_template("Do something with {question} using {context} giving it like {formatins}") ], input_variables=["question", "context"], partial_variables={"formatins": "some structure"} ) ` 3. It it throwing following error: `Error: ValidationError: 1 validation error for ChatPromptTemplate __root__ Got mismatched input_variables. Expected: {'formatins', 'question', 'context'}. Got: ['question', 'context'] (type=value_error)` 4. This was working until 24 hours ago. Potentially related to recent commit to langchain/prompts/chat.py. ### Expected behavior The chat_prompt should get created with the partial variables injected. If this is expected change, can you please help with suggesting what should be the new way to use partial_variables? Thanks
https://github.com/langchain-ai/langchain/issues/6431
https://github.com/langchain-ai/langchain/pull/6456
02c0a1e77eb9636850c8c29da33885a32b4cc2eb
6efd5fa2b9d46c7b4db6ad638097f010b745f0cc
"2023-06-19T16:15:49Z"
python
"2023-06-20T05:08:15Z"
tests/unit_tests/prompts/test_chat.py
template="I'm an AI. I'm {foo}. I'm {bar}.", input_variables=["foo", "bar"], ) ) chat_message_prompt = ChatMessagePromptTemplate( role="test", prompt=PromptTemplate( template="I'm a generic message. I'm {foo}. I'm {bar}.", input_variables=["foo", "bar"], ), ) return [ system_message_prompt, human_message_prompt, ai_message_prompt, chat_message_prompt, ] def create_chat_prompt_template() -> ChatPromptTemplate: """Create a chat prompt template.""" return ChatPromptTemplate( input_variables=["foo", "bar", "context"], messages=create_messages(), ) def test_create_chat_prompt_template_from_template() -> None: """Create a chat prompt template.""" prompt = ChatPromptTemplate.from_template("hi {foo} {bar}") assert prompt.messages == [ HumanMessagePromptTemplate.from_template("hi {foo} {bar}") ] def test_create_chat_prompt_template_from_template_partial() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,431
ChatPromptTemplate with partial variables is giving validation error
### System Info langchain-0.0.205, python3.10 ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Write this into Notebook cell 2. `from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate chat_prompt = ChatPromptTemplate( messages=[ HumanMessagePromptTemplate.from_template("Do something with {question} using {context} giving it like {formatins}") ], input_variables=["question", "context"], partial_variables={"formatins": "some structure"} ) ` 3. It it throwing following error: `Error: ValidationError: 1 validation error for ChatPromptTemplate __root__ Got mismatched input_variables. Expected: {'formatins', 'question', 'context'}. Got: ['question', 'context'] (type=value_error)` 4. This was working until 24 hours ago. Potentially related to recent commit to langchain/prompts/chat.py. ### Expected behavior The chat_prompt should get created with the partial variables injected. If this is expected change, can you please help with suggesting what should be the new way to use partial_variables? Thanks
https://github.com/langchain-ai/langchain/issues/6431
https://github.com/langchain-ai/langchain/pull/6456
02c0a1e77eb9636850c8c29da33885a32b4cc2eb
6efd5fa2b9d46c7b4db6ad638097f010b745f0cc
"2023-06-19T16:15:49Z"
python
"2023-06-20T05:08:15Z"
tests/unit_tests/prompts/test_chat.py
"""Create a chat prompt template with partials.""" prompt = ChatPromptTemplate.from_template( "hi {foo} {bar}", partial_variables={"foo": "jim"} ) expected_prompt = PromptTemplate( template="hi {foo} {bar}", input_variables=["bar"], partial_variables={"foo": "jim"}, ) assert len(prompt.messages) == 1 output_prompt = prompt.messages[0] assert isinstance(output_prompt, HumanMessagePromptTemplate) assert output_prompt.prompt == expected_prompt def test_message_prompt_template_from_template_file() -> None: expected = ChatMessagePromptTemplate( prompt=PromptTemplate( template="Question: {question}\nAnswer:", input_variables=["question"] ), role="human", ) actual = ChatMessagePromptTemplate.from_template_file( Path(__file__).parent.parent / "data" / "prompt_file.txt", ["question"], role="human", ) assert expected == actual def test_chat_prompt_template() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,431
ChatPromptTemplate with partial variables is giving validation error
### System Info langchain-0.0.205, python3.10 ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Write this into Notebook cell 2. `from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate chat_prompt = ChatPromptTemplate( messages=[ HumanMessagePromptTemplate.from_template("Do something with {question} using {context} giving it like {formatins}") ], input_variables=["question", "context"], partial_variables={"formatins": "some structure"} ) ` 3. It it throwing following error: `Error: ValidationError: 1 validation error for ChatPromptTemplate __root__ Got mismatched input_variables. Expected: {'formatins', 'question', 'context'}. Got: ['question', 'context'] (type=value_error)` 4. This was working until 24 hours ago. Potentially related to recent commit to langchain/prompts/chat.py. ### Expected behavior The chat_prompt should get created with the partial variables injected. If this is expected change, can you please help with suggesting what should be the new way to use partial_variables? Thanks
https://github.com/langchain-ai/langchain/issues/6431
https://github.com/langchain-ai/langchain/pull/6456
02c0a1e77eb9636850c8c29da33885a32b4cc2eb
6efd5fa2b9d46c7b4db6ad638097f010b745f0cc
"2023-06-19T16:15:49Z"
python
"2023-06-20T05:08:15Z"
tests/unit_tests/prompts/test_chat.py
"""Test chat prompt template.""" prompt_template = create_chat_prompt_template() prompt = prompt_template.format_prompt(foo="foo", bar="bar", context="context") assert isinstance(prompt, ChatPromptValue) messages = prompt.to_messages() assert len(messages) == 4 assert messages[0].content == "Here's some context: context" assert messages[1].content == "Hello foo, I'm bar. Thanks for the context" assert messages[2].content == "I'm an AI. I'm foo. I'm bar." assert messages[3].content == "I'm a generic message. I'm foo. I'm bar." string = prompt.to_string() expected = ( "System: Here's some context: context\n" "Human: Hello foo, I'm bar. Thanks for the context\n" "AI: I'm an AI. I'm foo. I'm bar.\n" "test: I'm a generic message. I'm foo. I'm bar." ) assert string == expected string = prompt_template.format(foo="foo", bar="bar", context="context") assert string == expected def test_chat_prompt_template_from_messages() -> None: """Test creating a chat prompt template from messages.""" chat_prompt_template = ChatPromptTemplate.from_messages(create_messages()) assert sorted(chat_prompt_template.input_variables) == sorted( ["context", "foo", "bar"] ) assert len(chat_prompt_template.messages) == 4 def test_chat_prompt_template_with_messages() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,431
ChatPromptTemplate with partial variables is giving validation error
### System Info langchain-0.0.205, python3.10 ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Write this into Notebook cell 2. `from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate chat_prompt = ChatPromptTemplate( messages=[ HumanMessagePromptTemplate.from_template("Do something with {question} using {context} giving it like {formatins}") ], input_variables=["question", "context"], partial_variables={"formatins": "some structure"} ) ` 3. It it throwing following error: `Error: ValidationError: 1 validation error for ChatPromptTemplate __root__ Got mismatched input_variables. Expected: {'formatins', 'question', 'context'}. Got: ['question', 'context'] (type=value_error)` 4. This was working until 24 hours ago. Potentially related to recent commit to langchain/prompts/chat.py. ### Expected behavior The chat_prompt should get created with the partial variables injected. If this is expected change, can you please help with suggesting what should be the new way to use partial_variables? Thanks
https://github.com/langchain-ai/langchain/issues/6431
https://github.com/langchain-ai/langchain/pull/6456
02c0a1e77eb9636850c8c29da33885a32b4cc2eb
6efd5fa2b9d46c7b4db6ad638097f010b745f0cc
"2023-06-19T16:15:49Z"
python
"2023-06-20T05:08:15Z"
tests/unit_tests/prompts/test_chat.py
messages = create_messages() + [HumanMessage(content="foo")] chat_prompt_template = ChatPromptTemplate.from_messages(messages) assert sorted(chat_prompt_template.input_variables) == sorted( ["context", "foo", "bar"] ) assert len(chat_prompt_template.messages) == 5 prompt_value = chat_prompt_template.format_prompt( context="see", foo="this", bar="magic" ) prompt_value_messages = prompt_value.to_messages() assert prompt_value_messages[-1] == HumanMessage(content="foo") def test_chat_invalid_input_variables_extra() -> None: messages = [HumanMessage(content="foo")] with pytest.raises(ValueError): ChatPromptTemplate(messages=messages, input_variables=["foo"]) def test_chat_invalid_input_variables_missing() -> None: messages = [HumanMessagePromptTemplate.from_template("{foo}")] with pytest.raises(ValueError): ChatPromptTemplate(messages=messages, input_variables=[]) def test_infer_variables() -> None: messages = [HumanMessagePromptTemplate.from_template("{foo}")] prompt = ChatPromptTemplate(messages=messages) assert prompt.input_variables == ["foo"]
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,380
Neo4J schema not inferred correctly by Neo4JGraph Object
### System Info langchain=0.0.2 ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps to reproduce behaviors: 1. Push the following dataset to neo4J (say in neo4J browser) ``` CREATE (la:LabelA {property_a: 'a'}) CREATE (lb:LabelB {property_b1: 123, property_b2: 'b2'}) CREATE (lc:LabelC) MERGE (la)-[:REL_TYPE]-> (lb) MERGE (la)-[:REL_TYPE {rel_prop: 'abc'}]-> (lc) ``` 2. Instantiate a Neo4JGraphObject, connect and refresh schema ``` from langchain.graphs import Neo4jGraph graph = Neo4jGraph( url=NEO4J_URL, username=NEO4J_USERNAME, password=NEO4J_PASSWORD, ) graph.refresh_schema() print(graph.get_schema) ``` You will obtain ``` Node properties are the following: [{'properties': [{'property': 'property_a', 'type': 'STRING'}], 'labels': 'LabelA'}, {'properties': [{'property': 'property_b2', 'type': 'STRING'}, {'property': 'property_b1', 'type': 'INTEGER'}], 'labels': 'LabelB'}] Relationship properties are the following: [{'type': 'REL_TYPE', 'properties': [{'property': 'rel_prop', 'type': 'STRING'}]}] The relationships are the following: ['(:LabelA)-[:REL_TYPE]->(:LabelB)'] ``` ### Expected behavior ``` Node properties are the following: [{'properties': [{'property': 'property_a', 'type': 'STRING'}], 'labels': 'LabelA'}, {'properties': [{'property': 'property_b2', 'type': 'STRING'}, {'property': 'property_b1', 'type': 'INTEGER'}], 'labels': 'LabelB'}] Relationship properties are the following: [{'type': 'REL_TYPE', 'properties': [{'property': 'rel_prop', 'type': 'STRING'}]}] The relationships are the following: ['(:LabelA)-[:REL_TYPE]->(:LabelB)', '(:LabelA)-[:REL_TYPE]->(:LabelC)'] ```
https://github.com/langchain-ai/langchain/issues/6380
https://github.com/langchain-ai/langchain/pull/6381
b0d80c4b3e128f27bd1b9df48ed4afbe17950fec
22601b0b6323e6465f78ca9bc16152062a2b65ba
"2023-06-18T19:19:04Z"
python
"2023-06-20T05:48:35Z"
langchain/graphs/neo4j_graph.py
from typing import Any, Dict, List node_properties_query = """ CALL apoc.meta.data() YIELD label, other, elementType, type, property WHERE NOT type = "RELATIONSHIP" AND elementType = "node" WITH label AS nodeLabels, collect({property:property, type:type}) AS properties RETURN {labels: nodeLabels, properties: properties} AS output """ rel_properties_query = """ CALL apoc.meta.data() YIELD label, other, elementType, type, property WHERE NOT type = "RELATIONSHIP" AND elementType = "relationship" WITH label AS nodeLabels, collect({property:property, type:type}) AS properties RETURN {type: nodeLabels, properties: properties} AS output """ rel_query = """ CALL apoc.meta.data() YIELD label, other, elementType, type, property WHERE type = "RELATIONSHIP" AND elementType = "node" RETURN "(:" + label + ")-[:" + property + "]->(:" + toString(other[0]) + ")" AS output """ class Neo4jGraph:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,380
Neo4J schema not inferred correctly by Neo4JGraph Object
### System Info langchain=0.0.2 ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps to reproduce behaviors: 1. Push the following dataset to neo4J (say in neo4J browser) ``` CREATE (la:LabelA {property_a: 'a'}) CREATE (lb:LabelB {property_b1: 123, property_b2: 'b2'}) CREATE (lc:LabelC) MERGE (la)-[:REL_TYPE]-> (lb) MERGE (la)-[:REL_TYPE {rel_prop: 'abc'}]-> (lc) ``` 2. Instantiate a Neo4JGraphObject, connect and refresh schema ``` from langchain.graphs import Neo4jGraph graph = Neo4jGraph( url=NEO4J_URL, username=NEO4J_USERNAME, password=NEO4J_PASSWORD, ) graph.refresh_schema() print(graph.get_schema) ``` You will obtain ``` Node properties are the following: [{'properties': [{'property': 'property_a', 'type': 'STRING'}], 'labels': 'LabelA'}, {'properties': [{'property': 'property_b2', 'type': 'STRING'}, {'property': 'property_b1', 'type': 'INTEGER'}], 'labels': 'LabelB'}] Relationship properties are the following: [{'type': 'REL_TYPE', 'properties': [{'property': 'rel_prop', 'type': 'STRING'}]}] The relationships are the following: ['(:LabelA)-[:REL_TYPE]->(:LabelB)'] ``` ### Expected behavior ``` Node properties are the following: [{'properties': [{'property': 'property_a', 'type': 'STRING'}], 'labels': 'LabelA'}, {'properties': [{'property': 'property_b2', 'type': 'STRING'}, {'property': 'property_b1', 'type': 'INTEGER'}], 'labels': 'LabelB'}] Relationship properties are the following: [{'type': 'REL_TYPE', 'properties': [{'property': 'rel_prop', 'type': 'STRING'}]}] The relationships are the following: ['(:LabelA)-[:REL_TYPE]->(:LabelB)', '(:LabelA)-[:REL_TYPE]->(:LabelC)'] ```
https://github.com/langchain-ai/langchain/issues/6380
https://github.com/langchain-ai/langchain/pull/6381
b0d80c4b3e128f27bd1b9df48ed4afbe17950fec
22601b0b6323e6465f78ca9bc16152062a2b65ba
"2023-06-18T19:19:04Z"
python
"2023-06-20T05:48:35Z"
langchain/graphs/neo4j_graph.py
"""Neo4j wrapper for graph operations.""" def __init__( self, url: str, username: str, password: str, database: str = "neo4j" ) -> None: """Create a new Neo4j graph wrapper instance.""" try: import neo4j except ImportError: raise ValueError(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,380
Neo4J schema not inferred correctly by Neo4JGraph Object
### System Info langchain=0.0.2 ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps to reproduce behaviors: 1. Push the following dataset to neo4J (say in neo4J browser) ``` CREATE (la:LabelA {property_a: 'a'}) CREATE (lb:LabelB {property_b1: 123, property_b2: 'b2'}) CREATE (lc:LabelC) MERGE (la)-[:REL_TYPE]-> (lb) MERGE (la)-[:REL_TYPE {rel_prop: 'abc'}]-> (lc) ``` 2. Instantiate a Neo4JGraphObject, connect and refresh schema ``` from langchain.graphs import Neo4jGraph graph = Neo4jGraph( url=NEO4J_URL, username=NEO4J_USERNAME, password=NEO4J_PASSWORD, ) graph.refresh_schema() print(graph.get_schema) ``` You will obtain ``` Node properties are the following: [{'properties': [{'property': 'property_a', 'type': 'STRING'}], 'labels': 'LabelA'}, {'properties': [{'property': 'property_b2', 'type': 'STRING'}, {'property': 'property_b1', 'type': 'INTEGER'}], 'labels': 'LabelB'}] Relationship properties are the following: [{'type': 'REL_TYPE', 'properties': [{'property': 'rel_prop', 'type': 'STRING'}]}] The relationships are the following: ['(:LabelA)-[:REL_TYPE]->(:LabelB)'] ``` ### Expected behavior ``` Node properties are the following: [{'properties': [{'property': 'property_a', 'type': 'STRING'}], 'labels': 'LabelA'}, {'properties': [{'property': 'property_b2', 'type': 'STRING'}, {'property': 'property_b1', 'type': 'INTEGER'}], 'labels': 'LabelB'}] Relationship properties are the following: [{'type': 'REL_TYPE', 'properties': [{'property': 'rel_prop', 'type': 'STRING'}]}] The relationships are the following: ['(:LabelA)-[:REL_TYPE]->(:LabelB)', '(:LabelA)-[:REL_TYPE]->(:LabelC)'] ```
https://github.com/langchain-ai/langchain/issues/6380
https://github.com/langchain-ai/langchain/pull/6381
b0d80c4b3e128f27bd1b9df48ed4afbe17950fec
22601b0b6323e6465f78ca9bc16152062a2b65ba
"2023-06-18T19:19:04Z"
python
"2023-06-20T05:48:35Z"
langchain/graphs/neo4j_graph.py
"Could not import neo4j python package. " "Please install it with `pip install neo4j`." ) self._driver = neo4j.GraphDatabase.driver(url, auth=(username, password)) self._database = database self.schema = "" try: self._driver.verify_connectivity() except neo4j.exceptions.ServiceUnavailable: raise ValueError( "Could not connect to Neo4j database. " "Please ensure that the url is correct" ) except neo4j.exceptions.AuthError: raise ValueError( "Could not connect to Neo4j database. " "Please ensure that the username and password are correct" ) try: self.refresh_schema() except neo4j.exceptions.ClientError: raise ValueError( "Could not use APOC procedures. " "Please ensure the APOC plugin is installed in Neo4j and that " "'apoc.meta.data()' is allowed in Neo4j configuration " ) @property def get_schema(self) -> str:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,380
Neo4J schema not inferred correctly by Neo4JGraph Object
### System Info langchain=0.0.2 ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps to reproduce behaviors: 1. Push the following dataset to neo4J (say in neo4J browser) ``` CREATE (la:LabelA {property_a: 'a'}) CREATE (lb:LabelB {property_b1: 123, property_b2: 'b2'}) CREATE (lc:LabelC) MERGE (la)-[:REL_TYPE]-> (lb) MERGE (la)-[:REL_TYPE {rel_prop: 'abc'}]-> (lc) ``` 2. Instantiate a Neo4JGraphObject, connect and refresh schema ``` from langchain.graphs import Neo4jGraph graph = Neo4jGraph( url=NEO4J_URL, username=NEO4J_USERNAME, password=NEO4J_PASSWORD, ) graph.refresh_schema() print(graph.get_schema) ``` You will obtain ``` Node properties are the following: [{'properties': [{'property': 'property_a', 'type': 'STRING'}], 'labels': 'LabelA'}, {'properties': [{'property': 'property_b2', 'type': 'STRING'}, {'property': 'property_b1', 'type': 'INTEGER'}], 'labels': 'LabelB'}] Relationship properties are the following: [{'type': 'REL_TYPE', 'properties': [{'property': 'rel_prop', 'type': 'STRING'}]}] The relationships are the following: ['(:LabelA)-[:REL_TYPE]->(:LabelB)'] ``` ### Expected behavior ``` Node properties are the following: [{'properties': [{'property': 'property_a', 'type': 'STRING'}], 'labels': 'LabelA'}, {'properties': [{'property': 'property_b2', 'type': 'STRING'}, {'property': 'property_b1', 'type': 'INTEGER'}], 'labels': 'LabelB'}] Relationship properties are the following: [{'type': 'REL_TYPE', 'properties': [{'property': 'rel_prop', 'type': 'STRING'}]}] The relationships are the following: ['(:LabelA)-[:REL_TYPE]->(:LabelB)', '(:LabelA)-[:REL_TYPE]->(:LabelC)'] ```
https://github.com/langchain-ai/langchain/issues/6380
https://github.com/langchain-ai/langchain/pull/6381
b0d80c4b3e128f27bd1b9df48ed4afbe17950fec
22601b0b6323e6465f78ca9bc16152062a2b65ba
"2023-06-18T19:19:04Z"
python
"2023-06-20T05:48:35Z"
langchain/graphs/neo4j_graph.py
"""Returns the schema of the Neo4j database""" return self.schema def query(self, query: str, params: dict = {}) -> List[Dict[str, Any]]: """Query Neo4j database.""" from neo4j.exceptions import CypherSyntaxError with self._driver.session(database=self._database) as session: try: data = session.run(query, params) return [r.data() for r in data] except CypherSyntaxError as e: raise ValueError("Generated Cypher Statement is not valid\n" f"{e}") def refresh_schema(self) -> None: """ Refreshes the Neo4j graph schema information. """ node_properties = self.query(node_properties_query) relationships_properties = self.query(rel_properties_query) relationships = self.query(rel_query) self.schema = f""" Node properties are the following: {[el['output'] for el in node_properties]} Relationship properties are the following: {[el['output'] for el in relationships_properties]} The relationships are the following: {[el['output'] for el in relationships]} """
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,380
Neo4J schema not inferred correctly by Neo4JGraph Object
### System Info langchain=0.0.2 ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps to reproduce behaviors: 1. Push the following dataset to neo4J (say in neo4J browser) ``` CREATE (la:LabelA {property_a: 'a'}) CREATE (lb:LabelB {property_b1: 123, property_b2: 'b2'}) CREATE (lc:LabelC) MERGE (la)-[:REL_TYPE]-> (lb) MERGE (la)-[:REL_TYPE {rel_prop: 'abc'}]-> (lc) ``` 2. Instantiate a Neo4JGraphObject, connect and refresh schema ``` from langchain.graphs import Neo4jGraph graph = Neo4jGraph( url=NEO4J_URL, username=NEO4J_USERNAME, password=NEO4J_PASSWORD, ) graph.refresh_schema() print(graph.get_schema) ``` You will obtain ``` Node properties are the following: [{'properties': [{'property': 'property_a', 'type': 'STRING'}], 'labels': 'LabelA'}, {'properties': [{'property': 'property_b2', 'type': 'STRING'}, {'property': 'property_b1', 'type': 'INTEGER'}], 'labels': 'LabelB'}] Relationship properties are the following: [{'type': 'REL_TYPE', 'properties': [{'property': 'rel_prop', 'type': 'STRING'}]}] The relationships are the following: ['(:LabelA)-[:REL_TYPE]->(:LabelB)'] ``` ### Expected behavior ``` Node properties are the following: [{'properties': [{'property': 'property_a', 'type': 'STRING'}], 'labels': 'LabelA'}, {'properties': [{'property': 'property_b2', 'type': 'STRING'}, {'property': 'property_b1', 'type': 'INTEGER'}], 'labels': 'LabelB'}] Relationship properties are the following: [{'type': 'REL_TYPE', 'properties': [{'property': 'rel_prop', 'type': 'STRING'}]}] The relationships are the following: ['(:LabelA)-[:REL_TYPE]->(:LabelB)', '(:LabelA)-[:REL_TYPE]->(:LabelC)'] ```
https://github.com/langchain-ai/langchain/issues/6380
https://github.com/langchain-ai/langchain/pull/6381
b0d80c4b3e128f27bd1b9df48ed4afbe17950fec
22601b0b6323e6465f78ca9bc16152062a2b65ba
"2023-06-18T19:19:04Z"
python
"2023-06-20T05:48:35Z"
tests/integration_tests/chains/test_graph_database.py
"""Test Graph Database Chain.""" import os from langchain.chains.graph_qa.cypher import GraphCypherQAChain from langchain.chains.loading import load_chain from langchain.graphs import Neo4jGraph from langchain.llms.openai import OpenAI def test_connect_neo4j() -> None: """Test that Neo4j database is correctly instantiated and connected.""" url = os.environ.get("NEO4J_URL") username = os.environ.get("NEO4J_USERNAME") password = os.environ.get("NEO4J_PASSWORD") assert url is not None assert username is not None assert password is not None graph = Neo4jGraph( url=url, username=username, password=password, ) output = graph.query( """ RETURN "test" AS output """ ) expected_output = [{"output": "test"}] assert output == expected_output def test_cypher_generating_run() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,380
Neo4J schema not inferred correctly by Neo4JGraph Object
### System Info langchain=0.0.2 ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps to reproduce behaviors: 1. Push the following dataset to neo4J (say in neo4J browser) ``` CREATE (la:LabelA {property_a: 'a'}) CREATE (lb:LabelB {property_b1: 123, property_b2: 'b2'}) CREATE (lc:LabelC) MERGE (la)-[:REL_TYPE]-> (lb) MERGE (la)-[:REL_TYPE {rel_prop: 'abc'}]-> (lc) ``` 2. Instantiate a Neo4JGraphObject, connect and refresh schema ``` from langchain.graphs import Neo4jGraph graph = Neo4jGraph( url=NEO4J_URL, username=NEO4J_USERNAME, password=NEO4J_PASSWORD, ) graph.refresh_schema() print(graph.get_schema) ``` You will obtain ``` Node properties are the following: [{'properties': [{'property': 'property_a', 'type': 'STRING'}], 'labels': 'LabelA'}, {'properties': [{'property': 'property_b2', 'type': 'STRING'}, {'property': 'property_b1', 'type': 'INTEGER'}], 'labels': 'LabelB'}] Relationship properties are the following: [{'type': 'REL_TYPE', 'properties': [{'property': 'rel_prop', 'type': 'STRING'}]}] The relationships are the following: ['(:LabelA)-[:REL_TYPE]->(:LabelB)'] ``` ### Expected behavior ``` Node properties are the following: [{'properties': [{'property': 'property_a', 'type': 'STRING'}], 'labels': 'LabelA'}, {'properties': [{'property': 'property_b2', 'type': 'STRING'}, {'property': 'property_b1', 'type': 'INTEGER'}], 'labels': 'LabelB'}] Relationship properties are the following: [{'type': 'REL_TYPE', 'properties': [{'property': 'rel_prop', 'type': 'STRING'}]}] The relationships are the following: ['(:LabelA)-[:REL_TYPE]->(:LabelB)', '(:LabelA)-[:REL_TYPE]->(:LabelC)'] ```
https://github.com/langchain-ai/langchain/issues/6380
https://github.com/langchain-ai/langchain/pull/6381
b0d80c4b3e128f27bd1b9df48ed4afbe17950fec
22601b0b6323e6465f78ca9bc16152062a2b65ba
"2023-06-18T19:19:04Z"
python
"2023-06-20T05:48:35Z"
tests/integration_tests/chains/test_graph_database.py
"""Test that Cypher statement is correctly generated and executed.""" url = os.environ.get("NEO4J_URL") username = os.environ.get("NEO4J_USERNAME") password = os.environ.get("NEO4J_PASSWORD") assert url is not None assert username is not None assert password is not None graph = Neo4jGraph( url=url, username=username, password=password, ) graph.query("MATCH (n) DETACH DELETE n") graph.query( "CREATE (a:Actor {name:'Bruce Willis'})" "-[:ACTED_IN]->(:Movie {title: 'Pulp Fiction'})" ) graph.refresh_schema() chain = GraphCypherQAChain.from_llm(OpenAI(temperature=0), graph=graph) output = chain.run("Who played in Pulp Fiction?") expected_output = " Bruce Willis played in Pulp Fiction." assert output == expected_output def test_cypher_top_k() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,380
Neo4J schema not inferred correctly by Neo4JGraph Object
### System Info langchain=0.0.2 ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps to reproduce behaviors: 1. Push the following dataset to neo4J (say in neo4J browser) ``` CREATE (la:LabelA {property_a: 'a'}) CREATE (lb:LabelB {property_b1: 123, property_b2: 'b2'}) CREATE (lc:LabelC) MERGE (la)-[:REL_TYPE]-> (lb) MERGE (la)-[:REL_TYPE {rel_prop: 'abc'}]-> (lc) ``` 2. Instantiate a Neo4JGraphObject, connect and refresh schema ``` from langchain.graphs import Neo4jGraph graph = Neo4jGraph( url=NEO4J_URL, username=NEO4J_USERNAME, password=NEO4J_PASSWORD, ) graph.refresh_schema() print(graph.get_schema) ``` You will obtain ``` Node properties are the following: [{'properties': [{'property': 'property_a', 'type': 'STRING'}], 'labels': 'LabelA'}, {'properties': [{'property': 'property_b2', 'type': 'STRING'}, {'property': 'property_b1', 'type': 'INTEGER'}], 'labels': 'LabelB'}] Relationship properties are the following: [{'type': 'REL_TYPE', 'properties': [{'property': 'rel_prop', 'type': 'STRING'}]}] The relationships are the following: ['(:LabelA)-[:REL_TYPE]->(:LabelB)'] ``` ### Expected behavior ``` Node properties are the following: [{'properties': [{'property': 'property_a', 'type': 'STRING'}], 'labels': 'LabelA'}, {'properties': [{'property': 'property_b2', 'type': 'STRING'}, {'property': 'property_b1', 'type': 'INTEGER'}], 'labels': 'LabelB'}] Relationship properties are the following: [{'type': 'REL_TYPE', 'properties': [{'property': 'rel_prop', 'type': 'STRING'}]}] The relationships are the following: ['(:LabelA)-[:REL_TYPE]->(:LabelB)', '(:LabelA)-[:REL_TYPE]->(:LabelC)'] ```
https://github.com/langchain-ai/langchain/issues/6380
https://github.com/langchain-ai/langchain/pull/6381
b0d80c4b3e128f27bd1b9df48ed4afbe17950fec
22601b0b6323e6465f78ca9bc16152062a2b65ba
"2023-06-18T19:19:04Z"
python
"2023-06-20T05:48:35Z"
tests/integration_tests/chains/test_graph_database.py
"""Test top_k parameter correctly limits the number of results in the context.""" url = os.environ.get("NEO4J_URL") username = os.environ.get("NEO4J_USERNAME") password = os.environ.get("NEO4J_PASSWORD") assert url is not None assert username is not None assert password is not None TOP_K = 1 graph = Neo4jGraph( url=url, username=username, password=password, ) graph.query("MATCH (n) DETACH DELETE n") graph.query( "CREATE (a:Actor {name:'Bruce Willis'})" "-[:ACTED_IN]->(:Movie {title: 'Pulp Fiction'})" "<-[:ACTED_IN]-(:Actor {name:'Foo'})" ) graph.refresh_schema() chain = GraphCypherQAChain.from_llm( OpenAI(temperature=0), graph=graph, return_direct=True, top_k=TOP_K ) output = chain.run("Who played in Pulp Fiction?") assert len(output) == TOP_K def test_cypher_intermediate_steps() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,380
Neo4J schema not inferred correctly by Neo4JGraph Object
### System Info langchain=0.0.2 ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps to reproduce behaviors: 1. Push the following dataset to neo4J (say in neo4J browser) ``` CREATE (la:LabelA {property_a: 'a'}) CREATE (lb:LabelB {property_b1: 123, property_b2: 'b2'}) CREATE (lc:LabelC) MERGE (la)-[:REL_TYPE]-> (lb) MERGE (la)-[:REL_TYPE {rel_prop: 'abc'}]-> (lc) ``` 2. Instantiate a Neo4JGraphObject, connect and refresh schema ``` from langchain.graphs import Neo4jGraph graph = Neo4jGraph( url=NEO4J_URL, username=NEO4J_USERNAME, password=NEO4J_PASSWORD, ) graph.refresh_schema() print(graph.get_schema) ``` You will obtain ``` Node properties are the following: [{'properties': [{'property': 'property_a', 'type': 'STRING'}], 'labels': 'LabelA'}, {'properties': [{'property': 'property_b2', 'type': 'STRING'}, {'property': 'property_b1', 'type': 'INTEGER'}], 'labels': 'LabelB'}] Relationship properties are the following: [{'type': 'REL_TYPE', 'properties': [{'property': 'rel_prop', 'type': 'STRING'}]}] The relationships are the following: ['(:LabelA)-[:REL_TYPE]->(:LabelB)'] ``` ### Expected behavior ``` Node properties are the following: [{'properties': [{'property': 'property_a', 'type': 'STRING'}], 'labels': 'LabelA'}, {'properties': [{'property': 'property_b2', 'type': 'STRING'}, {'property': 'property_b1', 'type': 'INTEGER'}], 'labels': 'LabelB'}] Relationship properties are the following: [{'type': 'REL_TYPE', 'properties': [{'property': 'rel_prop', 'type': 'STRING'}]}] The relationships are the following: ['(:LabelA)-[:REL_TYPE]->(:LabelB)', '(:LabelA)-[:REL_TYPE]->(:LabelC)'] ```
https://github.com/langchain-ai/langchain/issues/6380
https://github.com/langchain-ai/langchain/pull/6381
b0d80c4b3e128f27bd1b9df48ed4afbe17950fec
22601b0b6323e6465f78ca9bc16152062a2b65ba
"2023-06-18T19:19:04Z"
python
"2023-06-20T05:48:35Z"
tests/integration_tests/chains/test_graph_database.py
"""Test the returning of the intermediate steps.""" url = os.environ.get("NEO4J_URL") username = os.environ.get("NEO4J_USERNAME") password = os.environ.get("NEO4J_PASSWORD") assert url is not None assert username is not None assert password is not None
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,380
Neo4J schema not inferred correctly by Neo4JGraph Object
### System Info langchain=0.0.2 ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps to reproduce behaviors: 1. Push the following dataset to neo4J (say in neo4J browser) ``` CREATE (la:LabelA {property_a: 'a'}) CREATE (lb:LabelB {property_b1: 123, property_b2: 'b2'}) CREATE (lc:LabelC) MERGE (la)-[:REL_TYPE]-> (lb) MERGE (la)-[:REL_TYPE {rel_prop: 'abc'}]-> (lc) ``` 2. Instantiate a Neo4JGraphObject, connect and refresh schema ``` from langchain.graphs import Neo4jGraph graph = Neo4jGraph( url=NEO4J_URL, username=NEO4J_USERNAME, password=NEO4J_PASSWORD, ) graph.refresh_schema() print(graph.get_schema) ``` You will obtain ``` Node properties are the following: [{'properties': [{'property': 'property_a', 'type': 'STRING'}], 'labels': 'LabelA'}, {'properties': [{'property': 'property_b2', 'type': 'STRING'}, {'property': 'property_b1', 'type': 'INTEGER'}], 'labels': 'LabelB'}] Relationship properties are the following: [{'type': 'REL_TYPE', 'properties': [{'property': 'rel_prop', 'type': 'STRING'}]}] The relationships are the following: ['(:LabelA)-[:REL_TYPE]->(:LabelB)'] ``` ### Expected behavior ``` Node properties are the following: [{'properties': [{'property': 'property_a', 'type': 'STRING'}], 'labels': 'LabelA'}, {'properties': [{'property': 'property_b2', 'type': 'STRING'}, {'property': 'property_b1', 'type': 'INTEGER'}], 'labels': 'LabelB'}] Relationship properties are the following: [{'type': 'REL_TYPE', 'properties': [{'property': 'rel_prop', 'type': 'STRING'}]}] The relationships are the following: ['(:LabelA)-[:REL_TYPE]->(:LabelB)', '(:LabelA)-[:REL_TYPE]->(:LabelC)'] ```
https://github.com/langchain-ai/langchain/issues/6380
https://github.com/langchain-ai/langchain/pull/6381
b0d80c4b3e128f27bd1b9df48ed4afbe17950fec
22601b0b6323e6465f78ca9bc16152062a2b65ba
"2023-06-18T19:19:04Z"
python
"2023-06-20T05:48:35Z"
tests/integration_tests/chains/test_graph_database.py
graph = Neo4jGraph( url=url, username=username, password=password, ) graph.query("MATCH (n) DETACH DELETE n") graph.query( "CREATE (a:Actor {name:'Bruce Willis'})" "-[:ACTED_IN]->(:Movie {title: 'Pulp Fiction'})" ) graph.refresh_schema() chain = GraphCypherQAChain.from_llm( OpenAI(temperature=0), graph=graph, return_intermediate_steps=True ) output = chain("Who played in Pulp Fiction?") expected_output = " Bruce Willis played in Pulp Fiction." assert output["result"] == expected_output query = output["intermediate_steps"][0]["query"] expected_query = ( "\n\nMATCH (a:Actor)-[:ACTED_IN]->" "(m:Movie {title: 'Pulp Fiction'}) RETURN a.name" ) assert query == expected_query context = output["intermediate_steps"][1]["context"] expected_context = [{"a.name": "Bruce Willis"}] assert context == expected_context def test_cypher_return_direct() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,380
Neo4J schema not inferred correctly by Neo4JGraph Object
### System Info langchain=0.0.2 ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps to reproduce behaviors: 1. Push the following dataset to neo4J (say in neo4J browser) ``` CREATE (la:LabelA {property_a: 'a'}) CREATE (lb:LabelB {property_b1: 123, property_b2: 'b2'}) CREATE (lc:LabelC) MERGE (la)-[:REL_TYPE]-> (lb) MERGE (la)-[:REL_TYPE {rel_prop: 'abc'}]-> (lc) ``` 2. Instantiate a Neo4JGraphObject, connect and refresh schema ``` from langchain.graphs import Neo4jGraph graph = Neo4jGraph( url=NEO4J_URL, username=NEO4J_USERNAME, password=NEO4J_PASSWORD, ) graph.refresh_schema() print(graph.get_schema) ``` You will obtain ``` Node properties are the following: [{'properties': [{'property': 'property_a', 'type': 'STRING'}], 'labels': 'LabelA'}, {'properties': [{'property': 'property_b2', 'type': 'STRING'}, {'property': 'property_b1', 'type': 'INTEGER'}], 'labels': 'LabelB'}] Relationship properties are the following: [{'type': 'REL_TYPE', 'properties': [{'property': 'rel_prop', 'type': 'STRING'}]}] The relationships are the following: ['(:LabelA)-[:REL_TYPE]->(:LabelB)'] ``` ### Expected behavior ``` Node properties are the following: [{'properties': [{'property': 'property_a', 'type': 'STRING'}], 'labels': 'LabelA'}, {'properties': [{'property': 'property_b2', 'type': 'STRING'}, {'property': 'property_b1', 'type': 'INTEGER'}], 'labels': 'LabelB'}] Relationship properties are the following: [{'type': 'REL_TYPE', 'properties': [{'property': 'rel_prop', 'type': 'STRING'}]}] The relationships are the following: ['(:LabelA)-[:REL_TYPE]->(:LabelB)', '(:LabelA)-[:REL_TYPE]->(:LabelC)'] ```
https://github.com/langchain-ai/langchain/issues/6380
https://github.com/langchain-ai/langchain/pull/6381
b0d80c4b3e128f27bd1b9df48ed4afbe17950fec
22601b0b6323e6465f78ca9bc16152062a2b65ba
"2023-06-18T19:19:04Z"
python
"2023-06-20T05:48:35Z"
tests/integration_tests/chains/test_graph_database.py
"""Test that chain returns direct results.""" url = os.environ.get("NEO4J_URL") username = os.environ.get("NEO4J_USERNAME") password = os.environ.get("NEO4J_PASSWORD") assert url is not None assert username is not None assert password is not None graph = Neo4jGraph( url=url, username=username, password=password, ) graph.query("MATCH (n) DETACH DELETE n") graph.query( "CREATE (a:Actor {name:'Bruce Willis'})" "-[:ACTED_IN]->(:Movie {title: 'Pulp Fiction'})" ) graph.refresh_schema() chain = GraphCypherQAChain.from_llm( OpenAI(temperature=0), graph=graph, return_direct=True ) output = chain.run("Who played in Pulp Fiction?") expected_output = [{"a.name": "Bruce Willis"}] assert output == expected_output def test_cypher_save_load() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,380
Neo4J schema not inferred correctly by Neo4JGraph Object
### System Info langchain=0.0.2 ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps to reproduce behaviors: 1. Push the following dataset to neo4J (say in neo4J browser) ``` CREATE (la:LabelA {property_a: 'a'}) CREATE (lb:LabelB {property_b1: 123, property_b2: 'b2'}) CREATE (lc:LabelC) MERGE (la)-[:REL_TYPE]-> (lb) MERGE (la)-[:REL_TYPE {rel_prop: 'abc'}]-> (lc) ``` 2. Instantiate a Neo4JGraphObject, connect and refresh schema ``` from langchain.graphs import Neo4jGraph graph = Neo4jGraph( url=NEO4J_URL, username=NEO4J_USERNAME, password=NEO4J_PASSWORD, ) graph.refresh_schema() print(graph.get_schema) ``` You will obtain ``` Node properties are the following: [{'properties': [{'property': 'property_a', 'type': 'STRING'}], 'labels': 'LabelA'}, {'properties': [{'property': 'property_b2', 'type': 'STRING'}, {'property': 'property_b1', 'type': 'INTEGER'}], 'labels': 'LabelB'}] Relationship properties are the following: [{'type': 'REL_TYPE', 'properties': [{'property': 'rel_prop', 'type': 'STRING'}]}] The relationships are the following: ['(:LabelA)-[:REL_TYPE]->(:LabelB)'] ``` ### Expected behavior ``` Node properties are the following: [{'properties': [{'property': 'property_a', 'type': 'STRING'}], 'labels': 'LabelA'}, {'properties': [{'property': 'property_b2', 'type': 'STRING'}, {'property': 'property_b1', 'type': 'INTEGER'}], 'labels': 'LabelB'}] Relationship properties are the following: [{'type': 'REL_TYPE', 'properties': [{'property': 'rel_prop', 'type': 'STRING'}]}] The relationships are the following: ['(:LabelA)-[:REL_TYPE]->(:LabelB)', '(:LabelA)-[:REL_TYPE]->(:LabelC)'] ```
https://github.com/langchain-ai/langchain/issues/6380
https://github.com/langchain-ai/langchain/pull/6381
b0d80c4b3e128f27bd1b9df48ed4afbe17950fec
22601b0b6323e6465f78ca9bc16152062a2b65ba
"2023-06-18T19:19:04Z"
python
"2023-06-20T05:48:35Z"
tests/integration_tests/chains/test_graph_database.py
"""Test saving and loading.""" FILE_PATH = "cypher.yaml" url = os.environ.get("NEO4J_URL") username = os.environ.get("NEO4J_USERNAME") password = os.environ.get("NEO4J_PASSWORD") assert url is not None assert username is not None assert password is not None graph = Neo4jGraph( url=url, username=username, password=password, ) chain = GraphCypherQAChain.from_llm( OpenAI(temperature=0), graph=graph, return_direct=True ) chain.save(file_path=FILE_PATH) qa_loaded = load_chain(FILE_PATH, graph=graph) assert qa_loaded == chain
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,234
Gmail toolkit cannot handle sending email to one person correctly
### System Info Gmail toolkit cannot handle sending email to one person correctly - if I want to send email to one person it doesn't consider that `action_input` should look like: ``` { ... to: ["[email protected]"] ... } ``` Instead it look like: ``` { ... to: "[email protected]" ... } ``` It causes error with `To` header - it provides list of letters to Gmail API - ["e", "m", ...]. Error: ``` <HttpError 400 when requesting https://gmail.googleapis.com/gmail/v1/users/me/messages/send?alt=json returned "Invalid To header". Details: "[{'message': 'Invalid To header', 'domain': 'global', 'reason': 'invalidArgument'}]"> ``` ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Ask agent to send email to person using GmailToolkit tools. ### Expected behavior To always use list of emails in `To` header.
https://github.com/langchain-ai/langchain/issues/6234
https://github.com/langchain-ai/langchain/pull/6242
94c789925798053c08ad8cc262b23f2683abd4d2
5d149e4d50325d2821263e59bac667f781c48f7a
"2023-06-15T15:30:50Z"
python
"2023-06-21T08:25:49Z"
langchain/tools/gmail/send_message.py
"""Send Gmail messages.""" import base64 from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from typing import Any, Dict, List, Optional from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.gmail.base import GmailBaseTool class SendMessageSchema(BaseModel):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,234
Gmail toolkit cannot handle sending email to one person correctly
### System Info Gmail toolkit cannot handle sending email to one person correctly - if I want to send email to one person it doesn't consider that `action_input` should look like: ``` { ... to: ["[email protected]"] ... } ``` Instead it look like: ``` { ... to: "[email protected]" ... } ``` It causes error with `To` header - it provides list of letters to Gmail API - ["e", "m", ...]. Error: ``` <HttpError 400 when requesting https://gmail.googleapis.com/gmail/v1/users/me/messages/send?alt=json returned "Invalid To header". Details: "[{'message': 'Invalid To header', 'domain': 'global', 'reason': 'invalidArgument'}]"> ``` ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Ask agent to send email to person using GmailToolkit tools. ### Expected behavior To always use list of emails in `To` header.
https://github.com/langchain-ai/langchain/issues/6234
https://github.com/langchain-ai/langchain/pull/6242
94c789925798053c08ad8cc262b23f2683abd4d2
5d149e4d50325d2821263e59bac667f781c48f7a
"2023-06-15T15:30:50Z"
python
"2023-06-21T08:25:49Z"
langchain/tools/gmail/send_message.py
message: str = Field( ..., description="The message to send.", ) to: List[str] = Field( ..., description="The list of recipients.", ) subject: str = Field( ..., description="The subject of the message.", ) cc: Optional[List[str]] = Field( None, description="The list of CC recipients.", ) bcc: Optional[List[str]] = Field( None, description="The list of BCC recipients.", ) class GmailSendMessage(GmailBaseTool):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,234
Gmail toolkit cannot handle sending email to one person correctly
### System Info Gmail toolkit cannot handle sending email to one person correctly - if I want to send email to one person it doesn't consider that `action_input` should look like: ``` { ... to: ["[email protected]"] ... } ``` Instead it look like: ``` { ... to: "[email protected]" ... } ``` It causes error with `To` header - it provides list of letters to Gmail API - ["e", "m", ...]. Error: ``` <HttpError 400 when requesting https://gmail.googleapis.com/gmail/v1/users/me/messages/send?alt=json returned "Invalid To header". Details: "[{'message': 'Invalid To header', 'domain': 'global', 'reason': 'invalidArgument'}]"> ``` ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Ask agent to send email to person using GmailToolkit tools. ### Expected behavior To always use list of emails in `To` header.
https://github.com/langchain-ai/langchain/issues/6234
https://github.com/langchain-ai/langchain/pull/6242
94c789925798053c08ad8cc262b23f2683abd4d2
5d149e4d50325d2821263e59bac667f781c48f7a
"2023-06-15T15:30:50Z"
python
"2023-06-21T08:25:49Z"
langchain/tools/gmail/send_message.py
name: str = "send_gmail_message" description: str = ( "Use this tool to send email messages." " The input is the message, recipents" ) def _prepare_message( self, message: str, to: List[str], subject: str, cc: Optional[List[str]] = None, bcc: Optional[List[str]] = None, ) -> Dict[str, Any]: """Create a message for an email.""" mime_message = MIMEMultipart() mime_message.attach(MIMEText(message, "html")) mime_message["To"] = ", ".join(to) mime_message["Subject"] = subject if cc is not None: mime_message["Cc"] = ", ".join(cc) if bcc is not None: mime_message["Bcc"] = ", ".join(bcc) encoded_message = base64.urlsafe_b64encode(mime_message.as_bytes()).decode() return {"raw": encoded_message} def _run(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,234
Gmail toolkit cannot handle sending email to one person correctly
### System Info Gmail toolkit cannot handle sending email to one person correctly - if I want to send email to one person it doesn't consider that `action_input` should look like: ``` { ... to: ["[email protected]"] ... } ``` Instead it look like: ``` { ... to: "[email protected]" ... } ``` It causes error with `To` header - it provides list of letters to Gmail API - ["e", "m", ...]. Error: ``` <HttpError 400 when requesting https://gmail.googleapis.com/gmail/v1/users/me/messages/send?alt=json returned "Invalid To header". Details: "[{'message': 'Invalid To header', 'domain': 'global', 'reason': 'invalidArgument'}]"> ``` ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Ask agent to send email to person using GmailToolkit tools. ### Expected behavior To always use list of emails in `To` header.
https://github.com/langchain-ai/langchain/issues/6234
https://github.com/langchain-ai/langchain/pull/6242
94c789925798053c08ad8cc262b23f2683abd4d2
5d149e4d50325d2821263e59bac667f781c48f7a
"2023-06-15T15:30:50Z"
python
"2023-06-21T08:25:49Z"
langchain/tools/gmail/send_message.py
self, message: str, to: List[str], subject: str, cc: Optional[List[str]] = None, bcc: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Run the tool.""" try: create_message = self._prepare_message(message, to, subject, cc=cc, bcc=bcc) send_message = ( self.api_resource.users() .messages() .send(userId="me", body=create_message) ) sent_message = send_message.execute() return f'Message sent. Message Id: {sent_message["id"]}' except Exception as error: raise Exception(f"An error occurred: {error}") async def _arun(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,234
Gmail toolkit cannot handle sending email to one person correctly
### System Info Gmail toolkit cannot handle sending email to one person correctly - if I want to send email to one person it doesn't consider that `action_input` should look like: ``` { ... to: ["[email protected]"] ... } ``` Instead it look like: ``` { ... to: "[email protected]" ... } ``` It causes error with `To` header - it provides list of letters to Gmail API - ["e", "m", ...]. Error: ``` <HttpError 400 when requesting https://gmail.googleapis.com/gmail/v1/users/me/messages/send?alt=json returned "Invalid To header". Details: "[{'message': 'Invalid To header', 'domain': 'global', 'reason': 'invalidArgument'}]"> ``` ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Ask agent to send email to person using GmailToolkit tools. ### Expected behavior To always use list of emails in `To` header.
https://github.com/langchain-ai/langchain/issues/6234
https://github.com/langchain-ai/langchain/pull/6242
94c789925798053c08ad8cc262b23f2683abd4d2
5d149e4d50325d2821263e59bac667f781c48f7a
"2023-06-15T15:30:50Z"
python
"2023-06-21T08:25:49Z"
langchain/tools/gmail/send_message.py
self, message: str, to: List[str], subject: str, cc: Optional[List[str]] = None, bcc: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Run the tool asynchronously.""" raise NotImplementedError(f"The tool {self.name} does not support async yet.")
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
"""Wrapper around OpenAI APIs.""" from __future__ import annotations import logging import sys import warnings from typing import ( AbstractSet, Any, Callable, Collection, Dict, Generator, List, Literal, Mapping, Optional, Set, Tuple, Union, ) from pydantic import Field, root_validator from tenacity import ( before_sleep_log, retry,
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
retry_if_exception_type, stop_after_attempt, wait_exponential, ) from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.llms.base import BaseLLM from langchain.schema import Generation, LLMResult from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) def update_token_usage( keys: Set[str], response: Dict[str, Any], token_usage: Dict[str, Any] ) -> None: """Update token usage.""" _keys_to_use = keys.intersection(response["usage"]) for _key in _keys_to_use: if _key not in token_usage: token_usage[_key] = response["usage"][_key] else: token_usage[_key] += response["usage"][_key] def _update_response(response: Dict[str, Any], stream_response: Dict[str, Any]) -> None: """Update response from the stream response.""" response["choices"][0]["text"] += stream_response["choices"][0]["text"] response["choices"][0]["finish_reason"] = stream_response["choices"][0][ "finish_reason" ] response["choices"][0]["logprobs"] = stream_response["choices"][0]["logprobs"] def _streaming_response_template() -> Dict[str, Any]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
return { "choices": [ { "text": "", "finish_reason": None, "logprobs": None, } ] } def _create_retry_decorator(llm: Union[BaseOpenAI, OpenAIChat]) -> Callable[[Any], Any]: import openai min_seconds = 4 max_seconds = 10 return retry( reraise=True, stop=stop_after_attempt(llm.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), retry=( retry_if_exception_type(openai.error.Timeout) | retry_if_exception_type(openai.error.APIError) | retry_if_exception_type(openai.error.APIConnectionError) | retry_if_exception_type(openai.error.RateLimitError) | retry_if_exception_type(openai.error.ServiceUnavailableError) ), before_sleep=before_sleep_log(logger, logging.WARNING), ) def completion_with_retry(llm: Union[BaseOpenAI, OpenAIChat], **kwargs: Any) -> Any:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
"""Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator(llm) @retry_decorator def _completion_with_retry(**kwargs: Any) -> Any: return llm.client.create(**kwargs) return _completion_with_retry(**kwargs) async def acompletion_with_retry( llm: Union[BaseOpenAI, OpenAIChat], **kwargs: Any ) -> Any: """Use tenacity to retry the async completion call.""" retry_decorator = _create_retry_decorator(llm) @retry_decorator async def _completion_with_retry(**kwargs: Any) -> Any: return await llm.client.acreate(**kwargs) return await _completion_with_retry(**kwargs) class BaseOpenAI(BaseLLM):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
"""Wrapper around OpenAI large language models.""" @property def lc_secrets(self) -> Dict[str, str]: return {"openai_api_key": "OPENAI_API_KEY"} @property def lc_serializable(self) -> bool: return True client: Any model_name: str = Field("text-davinci-003", alias="model") """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" max_tokens: int = 256 """The maximum number of tokens to generate in the completion. -1 returns as many tokens as possible given the prompt and the models maximal context size.""" top_p: float = 1 """Total probability mass of tokens to consider at each step.""" frequency_penalty: float = 0 """Penalizes repeated tokens according to frequency.""" presence_penalty: float = 0 """Penalizes repeated tokens.""" n: int = 1 """How many completions to generate for each prompt.""" best_of: int = 1 """Generates best_of completions server-side and returns the "best".""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" openai_api_key: Optional[str] = None
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
openai_api_base: Optional[str] = None openai_organization: Optional[str] = None openai_proxy: Optional[str] = None batch_size: int = 20 """Batch size to use when passing multiple documents to generate.""" request_timeout: Optional[Union[float, Tuple[float, float]]] = None """Timeout for requests to OpenAI completion API. Default is 600 seconds.""" logit_bias: Optional[Dict[str, float]] = Field(default_factory=dict) """Adjust the probability of specific tokens being generated.""" max_retries: int = 6 """Maximum number of retries to make when generating.""" streaming: bool = False """Whether to stream the results or not.""" allowed_special: Union[Literal["all"], AbstractSet[str]] = set() """Set of special tokens that are allowed。""" disallowed_special: Union[Literal["all"], Collection[str]] = "all" """Set of special tokens that are not allowed。""" def __new__(cls, **data: Any) -> Union[OpenAIChat, BaseOpenAI]: # ty """Initialize the OpenAI object.""" model_name = data.get("model_name", "") if model_name.startswith("gpt-3.5-turbo") or model_name.startswith("gpt-4"): warnings.warn( "You are trying to use a chat model. This way of initializing it is " "no longer supported. Instead, please use: " "`from langchain.chat_models import ChatOpenAI`" ) return OpenAIChat(**data) return super().__new__(cls) class Config:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
"""Configuration for this pydantic object.""" allow_population_by_field_name = True @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = cls.all_required_field_names() extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") if field_name not in all_required_field_names: logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) if invalid_model_kwargs: raise ValueError( f"Parameters {invalid_model_kwargs} should be specified explicitly. " f"Instead they were passed in as part of `model_kwargs` parameter." ) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
"""Validate that api key and python package exists in environment.""" values["openai_api_key"] = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) values["openai_api_base"] = get_from_dict_or_env( values, "openai_api_base", "OPENAI_API_BASE", default="", ) values["openai_proxy"] = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) values["openai_organization"] = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="", ) try: import openai
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
values["client"] = openai.Completion except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) if values["streaming"] and values["n"] > 1: raise ValueError("Cannot stream results when n > 1.") if values["streaming"] and values["best_of"] > 1: raise ValueError("Cannot stream results when best_of > 1.") return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" normal_params = { "temperature": self.temperature, "max_tokens": self.max_tokens, "top_p": self.top_p, "frequency_penalty": self.frequency_penalty, "presence_penalty": self.presence_penalty, "n": self.n, "request_timeout": self.request_timeout, "logit_bias": self.logit_bias, } # Az # do if self.best_of > 1: normal_params["best_of"] = self.best_of return {**normal_params, **self.model_kwargs} def _generate(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: """Call out to OpenAI's endpoint with k unique prompts. Args: prompts: The prompts to pass into the model. stop: Optional list of stop words to use when generating. Returns: The full LLM output. Example: .. code-block:: python response = openai.generate(["Tell me a joke."]) """ # TO params = self._invocation_params params = {**params, **kwargs} sub_prompts = self.get_sub_prompts(params, prompts, stop) choices = [] token_usage: Dict[str, int] = {} # Ge # In _keys = {"completion_tokens", "prompt_tokens", "total_tokens"} for _prompts in sub_prompts: if self.streaming: if len(_prompts) > 1: raise ValueError("Cannot stream results with multiple prompts.") params["stream"] = True
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
response = _streaming_response_template() for stream_resp in completion_with_retry( self, prompt=_prompts, **params ): if run_manager: run_manager.on_llm_new_token( stream_resp["choices"][0]["text"], verbose=self.verbose, logprobs=stream_resp["choices"][0]["logprobs"], ) _update_response(response, stream_resp) choices.extend(response["choices"]) else: response = completion_with_retry(self, prompt=_prompts, **params) choices.extend(response["choices"]) if not self.streaming: # Ca update_token_usage(_keys, response, token_usage) return self.create_llm_result(choices, prompts, token_usage) async def _agenerate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: """Call out to OpenAI's endpoint async with k unique prompts.""" params = self._invocation_params params = {**params, **kwargs} sub_prompts = self.get_sub_prompts(params, prompts, stop)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
choices = [] token_usage: Dict[str, int] = {} # Ge # In _keys = {"completion_tokens", "prompt_tokens", "total_tokens"} for _prompts in sub_prompts: if self.streaming: if len(_prompts) > 1: raise ValueError("Cannot stream results with multiple prompts.") params["stream"] = True response = _streaming_response_template() async for stream_resp in await acompletion_with_retry( self, prompt=_prompts, **params ): if run_manager: await run_manager.on_llm_new_token( stream_resp["choices"][0]["text"], verbose=self.verbose, logprobs=stream_resp["choices"][0]["logprobs"], ) _update_response(response, stream_resp) choices.extend(response["choices"]) else: response = await acompletion_with_retry(self, prompt=_prompts, **params) choices.extend(response["choices"]) if not self.streaming: # Ca update_token_usage(_keys, response, token_usage) return self.create_llm_result(choices, prompts, token_usage) def get_sub_prompts(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
self, params: Dict[str, Any], prompts: List[str], stop: Optional[List[str]] = None, ) -> List[List[str]]: """Get the sub prompts for llm call.""" if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop if params["max_tokens"] == -1: if len(prompts) != 1: raise ValueError( "max_tokens set to -1 not supported for multiple inputs." ) params["max_tokens"] = self.max_tokens_for_prompt(prompts[0]) sub_prompts = [ prompts[i : i + self.batch_size] for i in range(0, len(prompts), self.batch_size) ] return sub_prompts def create_llm_result(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
self, choices: Any, prompts: List[str], token_usage: Dict[str, int] ) -> LLMResult: """Create the LLMResult from the choices and prompts.""" generations = [] for i, _ in enumerate(prompts): sub_choices = choices[i * self.n : (i + 1) * self.n] generations.append( [ Generation( text=choice["text"], generation_info=dict( finish_reason=choice.get("finish_reason"), logprobs=choice.get("logprobs"), ), ) for choice in sub_choices ] ) llm_output = {"token_usage": token_usage, "model_name": self.model_name} return LLMResult(generations=generations, llm_output=llm_output) def stream(self, prompt: str, stop: Optional[List[str]] = None) -> Generator:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
"""Call OpenAI with streaming flag and return the resulting generator. BETA: this is a beta feature while we figure out the right abstraction. Once that happens, this interface could change. Args: prompt: The prompts to pass into the model. stop: Optional list of stop words to use when generating. Returns: A generator representing the stream of tokens from OpenAI. Example: .. code-block:: python generator = openai.stream("Tell me a joke.") for token in generator: yield token """ params = self.prep_streaming_params(stop) generator = self.client.create(prompt=prompt, **params) return generator def prep_streaming_params(self, stop: Optional[List[str]] = None) -> Dict[str, Any]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
"""Prepare the params for streaming.""" params = self._invocation_params if "best_of" in params and params["best_of"] != 1: raise ValueError("OpenAI only supports best_of == 1 for streaming") if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop params["stream"] = True return params @property def _invocation_params(self) -> Dict[str, Any]: """Get the parameters used to invoke the model.""" openai_creds: Dict[str, Any] = { "api_key": self.openai_api_key, "api_base": self.openai_api_base, "organization": self.openai_organization, } if self.openai_proxy: import openai openai.proxy = {"http": self.openai_proxy, "https": self.openai_proxy} # ty return {**openai_creds, **self._default_params} @property def _identifying_params(self) -> Mapping[str, Any]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
"""Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "openai" def get_token_ids(self, text: str) -> List[int]: """Get the token IDs using the tiktoken package.""" # ti if sys.version_info[1] < 8: return super().get_num_tokens(text) try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. " "This is needed in order to calculate get_num_tokens. " "Please install it with `pip install tiktoken`." ) enc = tiktoken.encoding_for_model(self.model_name) return enc.encode( text, allowed_special=self.allowed_special, disallowed_special=self.disallowed_special, ) @staticmethod def modelname_to_contextsize(modelname: str) -> int:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
"""Calculate the maximum number of tokens possible to generate for a model. Args: modelname: The modelname we want to know the context size for. Returns: The maximum context size Example: .. code-block:: python max_tokens = openai.modelname_to_contextsize("text-davinci-003") """ model_token_mapping = { "gpt-4": 8192, "gpt-4-0314": 8192, "gpt-4-32k": 32768, "gpt-4-32k-0314": 32768, "gpt-3.5-turbo": 4096, "gpt-3.5-turbo-0301": 4096, "text-ada-001": 2049, "ada": 2049, "text-babbage-001": 2040, "babbage": 2049, "text-curie-001": 2049, "curie": 2049, "davinci": 2049, "text-davinci-003": 4097, "text-davinci-002": 4097, "code-davinci-002": 8001, "code-davinci-001": 8001,
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
"code-cushman-002": 2048, "code-cushman-001": 2048, } # ha if "ft-" in modelname: modelname = modelname.split(":")[0] context_size = model_token_mapping.get(modelname, None) if context_size is None: raise ValueError( f"Unknown model: {modelname}. Please provide a valid OpenAI model name." "Known models are: " + ", ".join(model_token_mapping.keys()) ) return context_size @property def max_context_size(self) -> int: """Get max context size for this model.""" return self.modelname_to_contextsize(self.model_name) def max_tokens_for_prompt(self, prompt: str) -> int: """Calculate the maximum number of tokens possible to generate for a prompt. Args: prompt: The prompt to pass into the model. Returns: The maximum number of tokens to generate for a prompt. Example: .. code-block:: python max_tokens = openai.max_token_for_prompt("Tell me a joke.") """ num_tokens = self.get_num_tokens(prompt) return self.max_context_size - num_tokens class OpenAI(BaseOpenAI):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
"""Wrapper around OpenAI large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.llms import OpenAI openai = OpenAI(model_name="text-davinci-003") """ @property def _invocation_params(self) -> Dict[str, Any]: return {**{"model": self.model_name}, **super()._invocation_params} class AzureOpenAI(BaseOpenAI):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
"""Wrapper around Azure-specific OpenAI large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.llms import AzureOpenAI openai = AzureOpenAI(model_name="text-davinci-003") """ deployment_name: str = "" """Deployment name to use.""" openai_api_type: str = "azure" openai_api_version: str = "" @root_validator() def validate_azure_settings(cls, values: Dict) -> Dict: values["openai_api_version"] = get_from_dict_or_env( values, "openai_api_version", "OPENAI_API_VERSION", ) values["openai_api_type"] = get_from_dict_or_env( values, "openai_api_type", "OPENAI_API_TYPE", ) return values @property def _identifying_params(self) -> Mapping[str, Any]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
return { **{"deployment_name": self.deployment_name}, **super()._identifying_params, } @property def _invocation_params(self) -> Dict[str, Any]: openai_params = { "engine": self.deployment_name, "api_type": self.openai_api_type, "api_version": self.openai_api_version, } return {**openai_params, **super()._invocation_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "azure" class OpenAIChat(BaseLLM): """Wrapper around OpenAI Chat large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.llms import OpenAIChat openaichat = OpenAIChat(model_name="gpt-3.5-turbo") """ client: Any model_name: str = "gpt-3.5-turbo" """Model name to use."""
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" openai_api_key: Optional[str] = None openai_api_base: Optional[str] = None openai_proxy: Optional[str] = None max_retries: int = 6 """Maximum number of retries to make when generating.""" prefix_messages: List = Field(default_factory=list) """Series of messages for Chat input.""" streaming: bool = False """Whether to stream the results or not.""" allowed_special: Union[Literal["all"], AbstractSet[str]] = set() """Set of special tokens that are allowed。""" disallowed_special: Union[Literal["all"], Collection[str]] = "all" """Set of special tokens that are not allowed。""" @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
"""Validate that api key and python package exists in environment.""" openai_api_key = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) openai_api_base = get_from_dict_or_env( values, "openai_api_base", "OPENAI_API_BASE", default="", ) openai_proxy = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) openai_organization = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="" ) try: import openai openai.api_key = openai_api_key
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
if openai_api_base: openai.api_base = openai_api_base if openai_organization: openai.organization = openai_organization if openai_proxy: openai.proxy = {"http": openai_proxy, "https": openai_proxy} # ty except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) try: values["client"] = openai.ChatCompletion except AttributeError: raise ValueError( "`openai` has no `ChatCompletion` attribute, this is likely " "due to an old version of the openai package. Try upgrading it " "with `pip install --upgrade openai`." ) warnings.warn( "You are trying to use a chat model. This way of initializing it is " "no longer supported. Instead, please use: " "`from langchain.chat_models import ChatOpenAI`" ) return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" return self.model_kwargs def _get_chat_params(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
self, prompts: List[str], stop: Optional[List[str]] = None ) -> Tuple: if len(prompts) > 1: raise ValueError( f"OpenAIChat currently only supports single prompt, got {prompts}" ) messages = self.prefix_messages + [{"role": "user", "content": prompts[0]}] params: Dict[str, Any] = {**{"model": self.model_name}, **self._default_params} if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop if params.get("max_tokens") == -1: # for Ch del params["max_tokens"] return messages, params def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: messages, params = self._get_chat_params(prompts, stop) params = {**params, **kwargs} if self.streaming: response = "" params["stream"] = True for stream_resp in completion_with_retry(self, messages=messages, **params): token = stream_resp["choices"][0]["delta"].get("content", "")
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
response += token if run_manager: run_manager.on_llm_new_token( token, ) return LLMResult( generations=[[Generation(text=response)]], ) else: full_response = completion_with_retry(self, messages=messages, **params) llm_output = { "token_usage": full_response["usage"], "model_name": self.model_name, } return LLMResult( generations=[ [Generation(text=full_response["choices"][0]["message"]["content"])] ], llm_output=llm_output, ) async def _agenerate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: messages, params = self._get_chat_params(prompts, stop) params = {**params, **kwargs} if self.streaming:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
response = "" params["stream"] = True async for stream_resp in await acompletion_with_retry( self, messages=messages, **params ): token = stream_resp["choices"][0]["delta"].get("content", "") response += token if run_manager: await run_manager.on_llm_new_token( token, ) return LLMResult( generations=[[Generation(text=response)]], ) else: full_response = await acompletion_with_retry( self, messages=messages, **params ) llm_output = { "token_usage": full_response["usage"], "model_name": self.model_name, } return LLMResult( generations=[ [Generation(text=full_response["choices"][0]["message"]["content"])] ], llm_output=llm_output, ) @property def _identifying_params(self) -> Mapping[str, Any]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
6,118
Issue: Update OpenAI model token mapping to reflect new API update 2023-06-13
### Issue you'd like to raise. The blog post here https://openai.com/blog/function-calling-and-other-api-updates specifies > - new 16k context version of gpt-3.5-turbo (vs the standard 4k version) The `langchain/llms/openai.py` `model_token_mapping` should be changed to reflect this. ### Suggestion: Add `gpt-3.5-turbo-16k` property to `model_token_mapping` with value 16k
https://github.com/langchain-ai/langchain/issues/6118
https://github.com/langchain-ai/langchain/pull/6122
5d149e4d50325d2821263e59bac667f781c48f7a
e0f468f6c1f7f07bb3987f0887d53ce9af92bb29
"2023-06-13T21:22:21Z"
python
"2023-06-21T08:37:16Z"
langchain/llms/openai.py
"""Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "openai-chat" def get_token_ids(self, text: str) -> List[int]: """Get the token IDs using the tiktoken package.""" # ti if sys.version_info[1] < 8: return super().get_token_ids(text) try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. " "This is needed in order to calculate get_num_tokens. " "Please install it with `pip install tiktoken`." ) enc = tiktoken.encoding_for_model(self.model_name) return enc.encode( text, allowed_special=self.allowed_special, disallowed_special=self.disallowed_special, )
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
langchain/tools/base.py
"""Base implementation for tools or skills.""" from __future__ import annotations import warnings from abc import ABC, abstractmethod from inspect import signature from typing import Any, Awaitable, Callable, Dict, Optional, Tuple, Type, Union from pydantic import ( BaseModel, Extra, Field, create_model, root_validator, validate_arguments, ) from pydantic.main import ModelMetaclass from langchain.callbacks.base import BaseCallbackManager from langchain.callbacks.manager import ( AsyncCallbackManager, AsyncCallbackManagerForToolRun, CallbackManager, CallbackManagerForToolRun, Callbacks, ) class SchemaAnnotationError(TypeError): """Raised when 'args_schema' is missing or has an incorrect type annotation.""" class ToolMetaclass(ModelMetaclass):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
langchain/tools/base.py
"""Metaclass for BaseTool to ensure the provided args_schema doesn't silently ignored.""" def __new__( cls: Type[ToolMetaclass], name: str, bases: Tuple[Type, ...], dct: dict ) -> ToolMetaclass: """Create the definition of the new tool class.""" schema_type: Optional[Type[BaseModel]] = dct.get("args_schema") if schema_type is not None: schema_annotations = dct.get("__annotations__", {}) args_schema_type = schema_annotations.get("args_schema", None) if args_schema_type is None or args_schema_type == BaseModel: typehint_mandate = """ class ChildTool(BaseTool): ... args_schema: Type[BaseModel] = SchemaClass ...""" raise SchemaAnnotationError( f"Tool definition for {name} must include valid type annotations" f" for argument 'args_schema' to behave as expected.\n" f"Expected annotation of 'Type[BaseModel]'" f" but got '{args_schema_type}'.\n" f"Expected class looks like:\n" f"{typehint_mandate}" ) return super().__new__(cls, name, bases, dct) def _create_subset_model(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
langchain/tools/base.py
name: str, model: BaseModel, field_names: list ) -> Type[BaseModel]: """Create a pydantic model with only a subset of model's fields.""" fields = {} for field_name in field_names: field = model.__fields__[field_name] fields[field_name] = (field.type_, field.field_info) return create_model(name, **fields) def _get_filtered_args( inferred_model: Type[BaseModel], func: Callable, ) -> dict: """Get the arguments from a function's signature.""" schema = inferred_model.schema()["properties"] valid_keys = signature(func).parameters return {k: schema[k] for k in valid_keys if k != "run_manager"} class _SchemaConfig: """Configuration for the pydantic model.""" extra = Extra.forbid arbitrary_types_allowed = True def create_schema_from_function(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
langchain/tools/base.py
model_name: str, func: Callable, ) -> Type[BaseModel]: """Create a pydantic schema from a function's signature. Args: model_name: Name to assign to the generated pydandic schema func: Function to generate the schema from Returns: A pydantic model with the same arguments as the function """ validated = validate_arguments(func, config=_SchemaConfig) inferred_model = validated.model if "run_manager" in inferred_model.__fields__: del inferred_model.__fields__["run_manager"] valid_properties = _get_filtered_args(inferred_model, func) return _create_subset_model( f"{model_name}Schema", inferred_model, list(valid_properties) ) class ToolException(Exception): """An optional exception that tool throws when execution error occurs. When this exception is thrown, the agent will not stop working, but will handle the exception according to the handle_tool_error variable of the tool, and the processing result will be returned to the agent as observation, and printed in red on the console. """ pass class BaseTool(ABC, BaseModel, metaclass=ToolMetaclass):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
langchain/tools/base.py
"""Interface LangChain tools must implement.""" name: str """The unique name of the tool that clearly communicates its purpose.""" description: str """Used to tell the model how/when/why to use the tool. You can provide few-shot examples as a part of the description. """ args_schema: Optional[Type[BaseModel]] = None """Pydantic model class to validate and parse the tool's input arguments.""" return_direct: bool = False """Whether to return the tool's output directly. Setting this to True means that after the tool is called, the AgentExecutor will stop looping. """ verbose: bool = False """Whether to log the tool's progress.""" callbacks: Callbacks = Field(default=None, exclude=True) """Callbacks to be called during tool execution.""" callback_manager: Optional[BaseCallbackManager] = Field(default=None, exclude=True) """Deprecated. Please use callbacks instead.""" handle_tool_error: Optional[ Union[bool, str, Callable[[ToolException], str]] ] = False """Handle the content of the ToolException thrown.""" class Config:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
langchain/tools/base.py
"""Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def is_single_input(self) -> bool: """Whether the tool only accepts a single input.""" keys = {k for k in self.args if k != "kwargs"} return len(keys) == 1 @property def args(self) -> dict: if self.args_schema is not None: return self.args_schema.schema()["properties"] else: schema = create_schema_from_function(self.name, self._run) return schema.schema()["properties"] def _parse_input(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
langchain/tools/base.py
self, tool_input: Union[str, Dict], ) -> Union[str, Dict[str, Any]]: """Convert tool input to pydantic model.""" input_args = self.args_schema if isinstance(tool_input, str): if input_args is not None: key_ = next(iter(input_args.__fields__.keys())) input_args.validate({key_: tool_input}) return tool_input else: if input_args is not None: result = input_args.parse_obj(tool_input) return {k: v for k, v in result.dict().items() if k in tool_input} return tool_input @root_validator() def raise_deprecation(cls, values: Dict) -> Dict: """Raise deprecation warning if callback_manager is used.""" if values.get("callback_manager") is not None: warnings.warn( "callback_manager is deprecated. Please use callbacks instead.", DeprecationWarning, ) values["callbacks"] = values.pop("callback_manager", None) return values @abstractmethod def _run(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
langchain/tools/base.py
self, *args: Any, **kwargs: Any, ) -> Any: """Use the tool. Add run_manager: Optional[CallbackManagerForToolRun] = None to child implementations to enable tracing, """ @abstractmethod async def _arun( self, *args: Any, **kwargs: Any, ) -> Any: """Use the tool asynchronously. Add run_manager: Optional[AsyncCallbackManagerForToolRun] = None to child implementations to enable tracing, """ def _to_args_and_kwargs(self, tool_input: Union[str, Dict]) -> Tuple[Tuple, Dict]: if isinstance(tool_input, str): return (tool_input,), {} else: return (), tool_input def run(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
langchain/tools/base.py
self, tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = "green", color: Optional[str] = "green", callbacks: Callbacks = None, **kwargs: Any, ) -> Any: """Run the tool.""" parsed_input = self._parse_input(tool_input) if not self.verbose and verbose is not None: verbose_ = verbose else: verbose_ = self.verbose callback_manager = CallbackManager.configure( callbacks, self.callbacks, verbose=verbose_ ) new_arg_supported = signature(self._run).parameters.get("run_manager") run_manager = callback_manager.on_tool_start( {"name": self.name, "description": self.description}, tool_input if isinstance(tool_input, str) else str(tool_input), color=start_color, **kwargs,
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
langchain/tools/base.py
) try: tool_args, tool_kwargs = self._to_args_and_kwargs(parsed_input) observation = ( self._run(*tool_args, run_manager=run_manager, **tool_kwargs) if new_arg_supported else self._run(*tool_args, **tool_kwargs) ) except ToolException as e: if not self.handle_tool_error: run_manager.on_tool_error(e) raise e elif isinstance(self.handle_tool_error, bool): if e.args: observation = e.args[0] else: observation = "Tool execution error" elif isinstance(self.handle_tool_error, str): observation = self.handle_tool_error elif callable(self.handle_tool_error): observation = self.handle_tool_error(e) else: raise ValueError( f"Got unexpected type of `handle_tool_error`. Expected bool, str " f"or callable. Received: {self.handle_tool_error}" ) run_manager.on_tool_end( str(observation), color="red", name=self.name, **kwargs ) return observation
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
langchain/tools/base.py
except (Exception, KeyboardInterrupt) as e: run_manager.on_tool_error(e) raise e else: run_manager.on_tool_end( str(observation), color=color, name=self.name, **kwargs ) return observation async def arun( self, tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = "green", color: Optional[str] = "green", callbacks: Callbacks = None, **kwargs: Any, ) -> Any: """Run the tool asynchronously.""" parsed_input = self._parse_input(tool_input) if not self.verbose and verbose is not None: verbose_ = verbose else: verbose_ = self.verbose callback_manager = AsyncCallbackManager.configure( callbacks, self.callbacks, verbose=verbose_ ) new_arg_supported = signature(self._arun).parameters.get("run_manager") run_manager = await callback_manager.on_tool_start( {"name": self.name, "description": self.description}, tool_input if isinstance(tool_input, str) else str(tool_input),
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
langchain/tools/base.py
color=start_color, **kwargs, ) try: tool_args, tool_kwargs = self._to_args_and_kwargs(parsed_input) observation = ( await self._arun(*tool_args, run_manager=run_manager, **tool_kwargs) if new_arg_supported else await self._arun(*tool_args, **tool_kwargs) ) except ToolException as e: if not self.handle_tool_error: await run_manager.on_tool_error(e) raise e elif isinstance(self.handle_tool_error, bool): if e.args: observation = e.args[0] else: observation = "Tool execution error" elif isinstance(self.handle_tool_error, str): observation = self.handle_tool_error elif callable(self.handle_tool_error): observation = self.handle_tool_error(e) else: raise ValueError( f"Got unexpected type of `handle_tool_error`. Expected bool, str " f"or callable. Received: {self.handle_tool_error}" ) await run_manager.on_tool_end(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
langchain/tools/base.py
str(observation), color="red", name=self.name, **kwargs ) return observation except (Exception, KeyboardInterrupt) as e: await run_manager.on_tool_error(e) raise e else: await run_manager.on_tool_end( str(observation), color=color, name=self.name, **kwargs ) return observation def __call__(self, tool_input: str, callbacks: Callbacks = None) -> str: """Make tool callable.""" return self.run(tool_input, callbacks=callbacks) class Tool(BaseTool): """Tool that takes in function or coroutine directly.""" description: str = "" func: Callable[..., str] """The function to run when the tool is called.""" coroutine: Optional[Callable[..., Awaitable[str]]] = None """The asynchronous version of the function.""" @property def args(self) -> dict: """The tool's input arguments.""" if self.args_schema is not None: return self.args_schema.schema()["properties"] return {"tool_input": {"type": "string"}} def _to_args_and_kwargs(self, tool_input: Union[str, Dict]) -> Tuple[Tuple, Dict]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
langchain/tools/base.py
"""Convert tool input to pydantic model.""" args, kwargs = super()._to_args_and_kwargs(tool_input) all_args = list(args) + list(kwargs.values()) if len(all_args) != 1: raise ToolException( f"Too many arguments to single-input tool {self.name}." f" Args: {all_args}" ) return tuple(all_args), {} def _run( self, *args: Any, run_manager: Optional[CallbackManagerForToolRun] = None, **kwargs: Any, ) -> Any: """Use the tool.""" new_argument_supported = signature(self.func).parameters.get("callbacks") return ( self.func( *args, callbacks=run_manager.get_child() if run_manager else None, **kwargs, ) if new_argument_supported else self.func(*args, **kwargs) ) async def _arun(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
langchain/tools/base.py
self, *args: Any, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, **kwargs: Any, ) -> Any: """Use the tool asynchronously.""" if self.coroutine: new_argument_supported = signature(self.coroutine).parameters.get( "callbacks" ) return ( await self.coroutine( *args, callbacks=run_manager.get_child() if run_manager else None, **kwargs, ) if new_argument_supported else await self.coroutine(*args, **kwargs) ) raise NotImplementedError("Tool does not support async") def __init__(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
langchain/tools/base.py
self, name: str, func: Callable, description: str, **kwargs: Any ) -> None: """Initialize tool.""" super(Tool, self).__init__( name=name, func=func, description=description, **kwargs ) @classmethod def from_function( cls, func: Callable, name: str, description: str, return_direct: bool = False, args_schema: Optional[Type[BaseModel]] = None, **kwargs: Any, ) -> Tool: """Initialize tool from a function.""" return cls( name=name, func=func, description=description, return_direct=return_direct, args_schema=args_schema, **kwargs, ) class StructuredTool(BaseTool):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
langchain/tools/base.py
"""Tool that can operate on any number of inputs.""" description: str = "" args_schema: Type[BaseModel] = Field(..., description="The tool schema.") """The input arguments' schema.""" func: Callable[..., Any] """The function to run when the tool is called.""" coroutine: Optional[Callable[..., Awaitable[Any]]] = None """The asynchronous version of the function.""" @property def args(self) -> dict: """The tool's input arguments.""" return self.args_schema.schema()["properties"] def _run( self, *args: Any, run_manager: Optional[CallbackManagerForToolRun] = None, **kwargs: Any, ) -> Any: """Use the tool.""" new_argument_supported = signature(self.func).parameters.get("callbacks") return ( self.func( *args, callbacks=run_manager.get_child() if run_manager else None, **kwargs, ) if new_argument_supported else self.func(*args, **kwargs) ) async def _arun(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
langchain/tools/base.py
self, *args: Any, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, **kwargs: Any, ) -> str: """Use the tool asynchronously.""" if self.coroutine: new_argument_supported = signature(self.coroutine).parameters.get( "callbacks" ) return ( await self.coroutine( *args, callbacks=run_manager.get_child() if run_manager else None, **kwargs, ) if new_argument_supported else await self.coroutine(*args, **kwargs) ) raise NotImplementedError("Tool does not support async") @classmethod def from_function(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
langchain/tools/base.py
cls, func: Callable, name: Optional[str] = None, description: Optional[str] = None, return_direct: bool = False, args_schema: Optional[Type[BaseModel]] = None, infer_schema: bool = True, **kwargs: Any, ) -> StructuredTool: """Create tool from a given function. A classmethod that helps to create a tool from a function. Args: func: The function from which to create a tool name: The name of the tool. Defaults to the function name description: The description of the tool. Defaults to the function docstring return_direct: Whether to return the result directly or as a callback args_schema: The schema of the tool's input arguments infer_schema: Whether to infer the schema from the function's signature **kwargs: Additional arguments to pass to the tool
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
langchain/tools/base.py
Returns: The tool Examples: ... code-block:: python def add(a: int, b: int) -> int: \"\"\"Add two numbers\"\"\" return a + b tool = StructuredTool.from_function(add) tool.run(1, 2) # 3 """ name = name or func.__name__ description = description or func.__doc__ assert ( description is not None ), "Function must have a docstring if description not provided." description = f"{name}{signature(func)} - {description.strip()}" _args_schema = args_schema if _args_schema is None and infer_schema: _args_schema = create_schema_from_function(f"{name}Schema", func) return cls( name=name, func=func, args_schema=_args_schema, description=description, return_direct=return_direct, **kwargs, ) def tool(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
langchain/tools/base.py
*args: Union[str, Callable], return_direct: bool = False, args_schema: Optional[Type[BaseModel]] = None, infer_schema: bool = True, ) -> Callable: """Make tools out of functions, can be used with or without arguments. Args: *args: The arguments to the tool. return_direct: Whether to return directly from the tool rather than continuing the agent loop. args_schema: optional argument schema for user to specify infer_schema: Whether to infer the schema of the arguments from the function's signature. This also makes the resultant tool accept a dictionary input to its `run()` function. Requires: - Function must be of type (str) -> str - Function must have a docstring Examples: .. code-block:: python @tool def search_api(query: str) -> str: # Searches the API for the query. return @tool("search", return_direct=True) def search_api(query: str) -> str: # Searches the API for the query. return """ def _make_with_name(tool_name: str) -> Callable: def _make_tool(func: Callable) -> BaseTool:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
langchain/tools/base.py
if infer_schema or args_schema is not None: return StructuredTool.from_function( func, name=tool_name, return_direct=return_direct, args_schema=args_schema, infer_schema=infer_schema, ) assert func.__doc__ is not None, "Function must have a docstring" return Tool( name=tool_name, func=func, description=f"{tool_name} tool", return_direct=return_direct, ) return _make_tool if len(args) == 1 and isinstance(args[0], str): return _make_with_name(args[0]) elif len(args) == 1 and callable(args[0]): return _make_with_name(args[0].__name__)(args[0]) elif len(args) == 0: def _partial(func: Callable[[str], str]) -> BaseTool:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
langchain/tools/base.py
return _make_with_name(func.__name__)(func) return _partial else: raise ValueError("Too many arguments for tool decorator")
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
tests/unit_tests/tools/test_base.py
"""Test the base tool implementation.""" import json from datetime import datetime from enum import Enum from functools import partial from typing import Any, Optional, Type, Union import pytest from pydantic import BaseModel from langchain.agents.tools import Tool, tool from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import ( BaseTool, SchemaAnnotationError, StructuredTool, ToolException, ) def test_unnamed_decorator() -> None: """Test functionality with unnamed decorator.""" @tool def search_api(query: str) -> str: """Search the API for the query.""" return "API result" assert isinstance(search_api, BaseTool) assert search_api.name == "search_api" assert not search_api.return_direct assert search_api("test") == "API result" class _MockSchema(BaseModel):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
tests/unit_tests/tools/test_base.py
arg1: int arg2: bool arg3: Optional[dict] = None class _MockStructuredTool(BaseTool): name = "structured_api" args_schema: Type[BaseModel] = _MockSchema description = "A Structured Tool" def _run(self, arg1: int, arg2: bool, arg3: Optional[dict] = None) -> str: return f"{arg1} {arg2} {arg3}" async def _arun(self, arg1: int, arg2: bool, arg3: Optional[dict] = None) -> str: raise NotImplementedError def test_structured_args() -> None: """Test functionality with structured arguments.""" structured_api = _MockStructuredTool() assert isinstance(structured_api, BaseTool) assert structured_api.name == "structured_api" expected_result = "1 True {'foo': 'bar'}" args = {"arg1": 1, "arg2": True, "arg3": {"foo": "bar"}} assert structured_api.run(args) == expected_result def test_unannotated_base_tool_raises_error() -> None: """Test that a BaseTool without type hints raises an exception.""" "" with pytest.raises(SchemaAnnotationError): class _UnAnnotatedTool(BaseTool):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
tests/unit_tests/tools/test_base.py
name = "structured_api" args_schema = _MockSchema description = "A Structured Tool" def _run(self, arg1: int, arg2: bool, arg3: Optional[dict] = None) -> str: return f"{arg1} {arg2} {arg3}" async def _arun( self, arg1: int, arg2: bool, arg3: Optional[dict] = None ) -> str: raise NotImplementedError def test_misannotated_base_tool_raises_error() -> None: """Test that a BaseTool with the incorrrect typehint raises an exception.""" "" with pytest.raises(SchemaAnnotationError): class _MisAnnotatedTool(BaseTool): name = "structured_api" args_schema: BaseModel = _MockSchema description = "A Structured Tool" def _run(self, arg1: int, arg2: bool, arg3: Optional[dict] = None) -> str: return f"{arg1} {arg2} {arg3}" async def _arun( self, arg1: int, arg2: bool, arg3: Optional[dict] = None ) -> str: raise NotImplementedError def test_forward_ref_annotated_base_tool_accepted() -> None: """Test that a using forward ref annotation syntax is accepted.""" "" class _ForwardRefAnnotatedTool(BaseTool):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
tests/unit_tests/tools/test_base.py
name = "structured_api" args_schema: "Type[BaseModel]" = _MockSchema description = "A Structured Tool" def _run(self, arg1: int, arg2: bool, arg3: Optional[dict] = None) -> str: return f"{arg1} {arg2} {arg3}" async def _arun( self, arg1: int, arg2: bool, arg3: Optional[dict] = None ) -> str: raise NotImplementedError def test_subclass_annotated_base_tool_accepted() -> None: """Test BaseTool child w/ custom schema isn't overwritten.""" class _ForwardRefAnnotatedTool(BaseTool): name = "structured_api" args_schema: Type[_MockSchema] = _MockSchema description = "A Structured Tool" def _run(self, arg1: int, arg2: bool, arg3: Optional[dict] = None) -> str: return f"{arg1} {arg2} {arg3}" async def _arun( self, arg1: int, arg2: bool, arg3: Optional[dict] = None ) -> str: raise NotImplementedError assert issubclass(_ForwardRefAnnotatedTool, BaseTool) tool = _ForwardRefAnnotatedTool() assert tool.args_schema == _MockSchema def test_decorator_with_specified_schema() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
tests/unit_tests/tools/test_base.py
"""Test that manually specified schemata are passed through to the tool.""" @tool(args_schema=_MockSchema) def tool_func(arg1: int, arg2: bool, arg3: Optional[dict] = None) -> str: """Return the arguments directly.""" return f"{arg1} {arg2} {arg3}" assert isinstance(tool_func, BaseTool) assert tool_func.args_schema == _MockSchema def test_decorated_function_schema_equivalent() -> None: """Test that a BaseTool without a schema meets expectations.""" @tool def structured_tool_input( arg1: int, arg2: bool, arg3: Optional[dict] = None ) -> str: """Return the arguments directly.""" return f"{arg1} {arg2} {arg3}" assert isinstance(structured_tool_input, BaseTool) assert structured_tool_input.args_schema is not None assert ( structured_tool_input.args_schema.schema()["properties"] == _MockSchema.schema()["properties"] == structured_tool_input.args ) def test_args_kwargs_filtered() -> None: class _SingleArgToolWithKwargs(BaseTool):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,456
Tools: Inconsistent callbacks/run_manager parameter
### System Info MacOS Ventura 13.3.1 (a) python = "^3.9" langchain = "0.0.185" ### Who can help? @agola11 @vowelparrot ### Related Components - Agents / Agent Executors - Tools / Toolkits - Callbacks/Tracing ### Reproduction I want to use the CallbackManager to save some info within a tool. So, as per the [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) that is used to create the tool schema, I define the function as: ```python def get_list_of_products( self, profile_description: str, run_manager: CallbackManagerForToolRun ): ``` Nonetheless, once the tool is run the[ expected parameter](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L493) in the function's signature is `callbacks`, ```python new_argument_supported = signature(self.func).parameters.get("callbacks") ``` So the tool can't run, with the error being: ```bash TypeError: get_list_of_products() missing 1 required positional argument: 'run_manager' ``` This behavior applies to Structured tool and Tool. ### Expected behavior Either the expected function parameter is set to `run_manager` to replicate the behavior of the [`run` function](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L256) from the `BaseTool` or a different function is used instead of [`create_schema_from_function`](https://github.com/hwchase17/langchain/blob/64b4165c8d9b8374295d4629ef57d4d58e9af7c8/langchain/tools/base.py#L99) to create a tool's schema expecting the `callbacks` parameter.
https://github.com/langchain-ai/langchain/issues/5456
https://github.com/langchain-ai/langchain/pull/6483
b4fe7f3a0995cc6a0111a7e71347eddf2d61f132
980c8651743b653f994ad6b97a27b0fa31ee92b4
"2023-05-30T17:09:02Z"
python
"2023-06-23T08:48:27Z"
tests/unit_tests/tools/test_base.py
name = "single_arg_tool" description = "A single arged tool with kwargs" def _run( self, some_arg: str, run_manager: Optional[CallbackManagerForToolRun] = None, **kwargs: Any, ) -> str: return "foo" async def _arun( self, some_arg: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, **kwargs: Any, ) -> str: raise NotImplementedError tool = _SingleArgToolWithKwargs() assert tool.is_single_input class _VarArgToolWithKwargs(BaseTool):