status
stringclasses 1
value | repo_name
stringclasses 31
values | repo_url
stringclasses 31
values | issue_id
int64 1
104k
| title
stringlengths 4
233
| body
stringlengths 0
186k
⌀ | issue_url
stringlengths 38
56
| pull_url
stringlengths 37
54
| before_fix_sha
stringlengths 40
40
| after_fix_sha
stringlengths 40
40
| report_datetime
unknown | language
stringclasses 5
values | commit_datetime
unknown | updated_file
stringlengths 7
188
| chunk_content
stringlengths 1
1.03M
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 11,814 | Create retriever for Outline to ask questions on knowledge base | ### Feature request
A retriever for documents from [Outline](https://github.com/outline/outline).
The API has a search endpoint which allows this to be possible: https://www.getoutline.com/developers#tag/Documents/paths/~1documents.search/post
The implementation will be similar to the Wikipedia retriever:
https://python.langchain.com/docs/integrations/retrievers/wikipedia
### Motivation
Outline is an open source project that let's you create a knowledge base, like a wiki. Creating a retriever for Outline will let your team interact with your knowledge base using an LLM.
### Your contribution
PR will be coming soon. | https://github.com/langchain-ai/langchain/issues/11814 | https://github.com/langchain-ai/langchain/pull/13889 | f2af82058f4904b20ae95c6d17d2b65666bf882a | 935f78c9449c40473541666a8b0a0dc61873b0eb | "2023-10-15T01:58:24Z" | python | "2023-11-27T02:56:12Z" | libs/langchain/tests/unit_tests/retrievers/test_imports.py | from langchain.retrievers import __all__
EXPECTED_ALL = [
"AmazonKendraRetriever",
"ArceeRetriever",
"ArxivRetriever",
"AzureCognitiveSearchRetriever",
"ChatGPTPluginRetriever",
"ContextualCompressionRetriever",
"ChaindeskRetriever",
"CohereRagRetriever",
"ElasticSearchBM25Retriever",
"EmbedchainRetriever",
"GoogleDocumentAIWarehouseRetriever",
"GoogleCloudEnterpriseSearchRetriever",
"GoogleVertexAIMultiTurnSearchRetriever",
"GoogleVertexAISearchRetriever",
"KayAiRetriever",
"KNNRetriever", |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 11,814 | Create retriever for Outline to ask questions on knowledge base | ### Feature request
A retriever for documents from [Outline](https://github.com/outline/outline).
The API has a search endpoint which allows this to be possible: https://www.getoutline.com/developers#tag/Documents/paths/~1documents.search/post
The implementation will be similar to the Wikipedia retriever:
https://python.langchain.com/docs/integrations/retrievers/wikipedia
### Motivation
Outline is an open source project that let's you create a knowledge base, like a wiki. Creating a retriever for Outline will let your team interact with your knowledge base using an LLM.
### Your contribution
PR will be coming soon. | https://github.com/langchain-ai/langchain/issues/11814 | https://github.com/langchain-ai/langchain/pull/13889 | f2af82058f4904b20ae95c6d17d2b65666bf882a | 935f78c9449c40473541666a8b0a0dc61873b0eb | "2023-10-15T01:58:24Z" | python | "2023-11-27T02:56:12Z" | libs/langchain/tests/unit_tests/retrievers/test_imports.py | "LlamaIndexGraphRetriever",
"LlamaIndexRetriever",
"MergerRetriever",
"MetalRetriever",
"MilvusRetriever",
"MultiQueryRetriever",
"PineconeHybridSearchRetriever",
"PubMedRetriever",
"RemoteLangChainRetriever",
"SVMRetriever",
"SelfQueryRetriever",
"TavilySearchAPIRetriever",
"TFIDFRetriever",
"BM25Retriever",
"TimeWeightedVectorStoreRetriever",
"VespaRetriever",
"WeaviateHybridSearchRetriever",
"WikipediaRetriever",
"ZepRetriever",
"ZillizRetriever",
"DocArrayRetriever",
"RePhraseQueryRetriever",
"WebResearchRetriever",
"EnsembleRetriever",
"ParentDocumentRetriever",
"MultiVectorRetriever",
]
def test_all_imports() -> None:
assert set(__all__) == set(EXPECTED_ALL) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 11,814 | Create retriever for Outline to ask questions on knowledge base | ### Feature request
A retriever for documents from [Outline](https://github.com/outline/outline).
The API has a search endpoint which allows this to be possible: https://www.getoutline.com/developers#tag/Documents/paths/~1documents.search/post
The implementation will be similar to the Wikipedia retriever:
https://python.langchain.com/docs/integrations/retrievers/wikipedia
### Motivation
Outline is an open source project that let's you create a knowledge base, like a wiki. Creating a retriever for Outline will let your team interact with your knowledge base using an LLM.
### Your contribution
PR will be coming soon. | https://github.com/langchain-ai/langchain/issues/11814 | https://github.com/langchain-ai/langchain/pull/13889 | f2af82058f4904b20ae95c6d17d2b65666bf882a | 935f78c9449c40473541666a8b0a0dc61873b0eb | "2023-10-15T01:58:24Z" | python | "2023-11-27T02:56:12Z" | libs/langchain/tests/unit_tests/utilities/test_imports.py | from langchain.utilities import __all__
EXPECTED_ALL = [
"AlphaVantageAPIWrapper",
"ApifyWrapper",
"ArceeWrapper",
"ArxivAPIWrapper",
"BibtexparserWrapper",
"BingSearchAPIWrapper",
"BraveSearchWrapper",
"DuckDuckGoSearchAPIWrapper",
"GoldenQueryAPIWrapper",
"GooglePlacesAPIWrapper",
"GoogleScholarAPIWrapper", |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 11,814 | Create retriever for Outline to ask questions on knowledge base | ### Feature request
A retriever for documents from [Outline](https://github.com/outline/outline).
The API has a search endpoint which allows this to be possible: https://www.getoutline.com/developers#tag/Documents/paths/~1documents.search/post
The implementation will be similar to the Wikipedia retriever:
https://python.langchain.com/docs/integrations/retrievers/wikipedia
### Motivation
Outline is an open source project that let's you create a knowledge base, like a wiki. Creating a retriever for Outline will let your team interact with your knowledge base using an LLM.
### Your contribution
PR will be coming soon. | https://github.com/langchain-ai/langchain/issues/11814 | https://github.com/langchain-ai/langchain/pull/13889 | f2af82058f4904b20ae95c6d17d2b65666bf882a | 935f78c9449c40473541666a8b0a0dc61873b0eb | "2023-10-15T01:58:24Z" | python | "2023-11-27T02:56:12Z" | libs/langchain/tests/unit_tests/utilities/test_imports.py | "GoogleSearchAPIWrapper",
"GoogleSerperAPIWrapper",
"GraphQLAPIWrapper",
"JiraAPIWrapper",
"LambdaWrapper",
"MaxComputeAPIWrapper",
"MetaphorSearchAPIWrapper",
"OpenWeatherMapAPIWrapper",
"Portkey",
"PowerBIDataset",
"PubMedAPIWrapper",
"PythonREPL",
"Requests",
"RequestsWrapper",
"SQLDatabase",
"SceneXplainAPIWrapper",
"SearchApiAPIWrapper",
"SearxSearchWrapper",
"SerpAPIWrapper",
"SparkSQL",
"TensorflowDatasets",
"TextRequestsWrapper",
"TwilioAPIWrapper",
"WikipediaAPIWrapper",
"WolframAlphaAPIWrapper",
"ZapierNLAWrapper",
]
def test_all_imports() -> None:
assert set(__all__) == set(EXPECTED_ALL) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,803 | CypherQueryCorrector cannot validate a correct cypher, some query types are not handled | CypherQueryCorrector does not handle with some query types:
If there is such a query (There is a comma in the match between clauses):
```
MATCH (a:APPLE {apple_id: 123})-[:IN]->(b:BUCKET), (ba:BANANA {name: banana1})
```
Corresponding code section:
- It extract a relation between BUCKET and BANANA, however there is none.
- ELSE case should be divided into cases. (INCOMING relation, OUTGOING relation, BIDIRECTIONAL relation, NO relation etc.)
- IF there is no relation and only a comma between clauses, then it should not try validation.
https://github.com/langchain-ai/langchain/blob/751226e067bc54a70910763c0eebb34544aaf47c/libs/langchain/langchain/chains/graph_qa/cypher_utils.py#L228 | https://github.com/langchain-ai/langchain/issues/13803 | https://github.com/langchain-ai/langchain/pull/13849 | e42e95cc11cc99b8597dc6665a3cfdbb0a0f37e6 | 1ad65f7a982affc9429d10a4919a78ffd54646dc | "2023-11-24T08:39:00Z" | python | "2023-11-27T03:30:11Z" | libs/langchain/langchain/chains/graph_qa/cypher_utils.py | import re
from collections import namedtuple
from typing import Any, Dict, List, Optional, Tuple
Schema = namedtuple("Schema", ["left_node", "relation", "right_node"])
class CypherQueryCorrector:
"""
Used to correct relationship direction in generated Cypher statements.
This code is copied from the winner's submission to the Cypher competition:
https://github.com/sakusaku-rich/cypher-direction-competition
"""
property_pattern = re.compile(r"\{.+?\}")
node_pattern = re.compile(r"\(.+?\)")
path_pattern = re.compile(r"\(.*\).*-.*-.*\(.*\)")
node_relation_node_pattern = re.compile(
r"(\()+(?P<left_node>[^()]*?)\)(?P<relation>.*?)\((?P<right_node>[^()]*?)(\))+"
)
relation_type_pattern = re.compile(r":(?P<relation_type>.+?)?(\{.+\})?]")
def __init__(self, schemas: List[Schema]):
"""
Args:
schemas: list of schemas
"""
self.schemas = schemas
def clean_node(self, node: str) -> str: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,803 | CypherQueryCorrector cannot validate a correct cypher, some query types are not handled | CypherQueryCorrector does not handle with some query types:
If there is such a query (There is a comma in the match between clauses):
```
MATCH (a:APPLE {apple_id: 123})-[:IN]->(b:BUCKET), (ba:BANANA {name: banana1})
```
Corresponding code section:
- It extract a relation between BUCKET and BANANA, however there is none.
- ELSE case should be divided into cases. (INCOMING relation, OUTGOING relation, BIDIRECTIONAL relation, NO relation etc.)
- IF there is no relation and only a comma between clauses, then it should not try validation.
https://github.com/langchain-ai/langchain/blob/751226e067bc54a70910763c0eebb34544aaf47c/libs/langchain/langchain/chains/graph_qa/cypher_utils.py#L228 | https://github.com/langchain-ai/langchain/issues/13803 | https://github.com/langchain-ai/langchain/pull/13849 | e42e95cc11cc99b8597dc6665a3cfdbb0a0f37e6 | 1ad65f7a982affc9429d10a4919a78ffd54646dc | "2023-11-24T08:39:00Z" | python | "2023-11-27T03:30:11Z" | libs/langchain/langchain/chains/graph_qa/cypher_utils.py | """
Args:
node: node in string format
"""
node = re.sub(self.property_pattern, "", node)
node = node.replace("(", "")
node = node.replace(")", "")
node = node.strip()
return node
def detect_node_variables(self, query: str) -> Dict[str, List[str]]:
"""
Args:
query: cypher query
"""
nodes = re.findall(self.node_pattern, query)
nodes = [self.clean_node(node) for node in nodes]
res: Dict[str, Any] = {}
for node in nodes:
parts = node.split(":")
if parts == "":
continue
variable = parts[0]
if variable not in res:
res[variable] = []
res[variable] += parts[1:]
return res
def extract_paths(self, query: str) -> "List[str]": |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,803 | CypherQueryCorrector cannot validate a correct cypher, some query types are not handled | CypherQueryCorrector does not handle with some query types:
If there is such a query (There is a comma in the match between clauses):
```
MATCH (a:APPLE {apple_id: 123})-[:IN]->(b:BUCKET), (ba:BANANA {name: banana1})
```
Corresponding code section:
- It extract a relation between BUCKET and BANANA, however there is none.
- ELSE case should be divided into cases. (INCOMING relation, OUTGOING relation, BIDIRECTIONAL relation, NO relation etc.)
- IF there is no relation and only a comma between clauses, then it should not try validation.
https://github.com/langchain-ai/langchain/blob/751226e067bc54a70910763c0eebb34544aaf47c/libs/langchain/langchain/chains/graph_qa/cypher_utils.py#L228 | https://github.com/langchain-ai/langchain/issues/13803 | https://github.com/langchain-ai/langchain/pull/13849 | e42e95cc11cc99b8597dc6665a3cfdbb0a0f37e6 | 1ad65f7a982affc9429d10a4919a78ffd54646dc | "2023-11-24T08:39:00Z" | python | "2023-11-27T03:30:11Z" | libs/langchain/langchain/chains/graph_qa/cypher_utils.py | """
Args:
query: cypher query
"""
return re.findall(self.path_pattern, query)
def judge_direction(self, relation: str) -> str:
"""
Args:
relation: relation in string format
"""
direction = "BIDIRECTIONAL"
if relation[0] == "<":
direction = "INCOMING"
if relation[-1] == ">":
direction = "OUTGOING"
return direction
def extract_node_variable(self, part: str) -> Optional[str]: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,803 | CypherQueryCorrector cannot validate a correct cypher, some query types are not handled | CypherQueryCorrector does not handle with some query types:
If there is such a query (There is a comma in the match between clauses):
```
MATCH (a:APPLE {apple_id: 123})-[:IN]->(b:BUCKET), (ba:BANANA {name: banana1})
```
Corresponding code section:
- It extract a relation between BUCKET and BANANA, however there is none.
- ELSE case should be divided into cases. (INCOMING relation, OUTGOING relation, BIDIRECTIONAL relation, NO relation etc.)
- IF there is no relation and only a comma between clauses, then it should not try validation.
https://github.com/langchain-ai/langchain/blob/751226e067bc54a70910763c0eebb34544aaf47c/libs/langchain/langchain/chains/graph_qa/cypher_utils.py#L228 | https://github.com/langchain-ai/langchain/issues/13803 | https://github.com/langchain-ai/langchain/pull/13849 | e42e95cc11cc99b8597dc6665a3cfdbb0a0f37e6 | 1ad65f7a982affc9429d10a4919a78ffd54646dc | "2023-11-24T08:39:00Z" | python | "2023-11-27T03:30:11Z" | libs/langchain/langchain/chains/graph_qa/cypher_utils.py | """
Args:
part: node in string format
"""
part = part.lstrip("(").rstrip(")")
idx = part.find(":")
if idx != -1:
part = part[:idx]
return None if part == "" else part
def detect_labels(
self, str_node: str, node_variable_dict: Dict[str, Any]
) -> List[str]:
"""
Args:
str_node: node in string format
node_variable_dict: dictionary of node variables
"""
splitted_node = str_node.split(":")
variable = splitted_node[0]
labels = []
if variable in node_variable_dict:
labels = node_variable_dict[variable]
elif variable == "" and len(splitted_node) > 1:
labels = splitted_node[1:]
return labels
def verify_schema( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,803 | CypherQueryCorrector cannot validate a correct cypher, some query types are not handled | CypherQueryCorrector does not handle with some query types:
If there is such a query (There is a comma in the match between clauses):
```
MATCH (a:APPLE {apple_id: 123})-[:IN]->(b:BUCKET), (ba:BANANA {name: banana1})
```
Corresponding code section:
- It extract a relation between BUCKET and BANANA, however there is none.
- ELSE case should be divided into cases. (INCOMING relation, OUTGOING relation, BIDIRECTIONAL relation, NO relation etc.)
- IF there is no relation and only a comma between clauses, then it should not try validation.
https://github.com/langchain-ai/langchain/blob/751226e067bc54a70910763c0eebb34544aaf47c/libs/langchain/langchain/chains/graph_qa/cypher_utils.py#L228 | https://github.com/langchain-ai/langchain/issues/13803 | https://github.com/langchain-ai/langchain/pull/13849 | e42e95cc11cc99b8597dc6665a3cfdbb0a0f37e6 | 1ad65f7a982affc9429d10a4919a78ffd54646dc | "2023-11-24T08:39:00Z" | python | "2023-11-27T03:30:11Z" | libs/langchain/langchain/chains/graph_qa/cypher_utils.py | self,
from_node_labels: List[str],
relation_types: List[str],
to_node_labels: List[str],
) -> bool:
"""
Args:
from_node_labels: labels of the from node
relation_type: type of the relation
to_node_labels: labels of the to node
"""
valid_schemas = self.schemas
if from_node_labels != []:
from_node_labels = [label.strip("`") for label in from_node_labels]
valid_schemas = [
schema for schema in valid_schemas if schema[0] in from_node_labels
]
if to_node_labels != []:
to_node_labels = [label.strip("`") for label in to_node_labels]
valid_schemas = [
schema for schema in valid_schemas if schema[2] in to_node_labels
]
if relation_types != []:
relation_types = [type.strip("`") for type in relation_types]
valid_schemas = [
schema for schema in valid_schemas if schema[1] in relation_types
]
return valid_schemas != []
def detect_relation_types(self, str_relation: str) -> Tuple[str, List[str]]: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,803 | CypherQueryCorrector cannot validate a correct cypher, some query types are not handled | CypherQueryCorrector does not handle with some query types:
If there is such a query (There is a comma in the match between clauses):
```
MATCH (a:APPLE {apple_id: 123})-[:IN]->(b:BUCKET), (ba:BANANA {name: banana1})
```
Corresponding code section:
- It extract a relation between BUCKET and BANANA, however there is none.
- ELSE case should be divided into cases. (INCOMING relation, OUTGOING relation, BIDIRECTIONAL relation, NO relation etc.)
- IF there is no relation and only a comma between clauses, then it should not try validation.
https://github.com/langchain-ai/langchain/blob/751226e067bc54a70910763c0eebb34544aaf47c/libs/langchain/langchain/chains/graph_qa/cypher_utils.py#L228 | https://github.com/langchain-ai/langchain/issues/13803 | https://github.com/langchain-ai/langchain/pull/13849 | e42e95cc11cc99b8597dc6665a3cfdbb0a0f37e6 | 1ad65f7a982affc9429d10a4919a78ffd54646dc | "2023-11-24T08:39:00Z" | python | "2023-11-27T03:30:11Z" | libs/langchain/langchain/chains/graph_qa/cypher_utils.py | """
Args:
str_relation: relation in string format
"""
relation_direction = self.judge_direction(str_relation)
relation_type = self.relation_type_pattern.search(str_relation)
if relation_type is None or relation_type.group("relation_type") is None:
return relation_direction, []
relation_types = [
t.strip().strip("!")
for t in relation_type.group("relation_type").split("|")
]
return relation_direction, relation_types
def correct_query(self, query: str) -> str: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,803 | CypherQueryCorrector cannot validate a correct cypher, some query types are not handled | CypherQueryCorrector does not handle with some query types:
If there is such a query (There is a comma in the match between clauses):
```
MATCH (a:APPLE {apple_id: 123})-[:IN]->(b:BUCKET), (ba:BANANA {name: banana1})
```
Corresponding code section:
- It extract a relation between BUCKET and BANANA, however there is none.
- ELSE case should be divided into cases. (INCOMING relation, OUTGOING relation, BIDIRECTIONAL relation, NO relation etc.)
- IF there is no relation and only a comma between clauses, then it should not try validation.
https://github.com/langchain-ai/langchain/blob/751226e067bc54a70910763c0eebb34544aaf47c/libs/langchain/langchain/chains/graph_qa/cypher_utils.py#L228 | https://github.com/langchain-ai/langchain/issues/13803 | https://github.com/langchain-ai/langchain/pull/13849 | e42e95cc11cc99b8597dc6665a3cfdbb0a0f37e6 | 1ad65f7a982affc9429d10a4919a78ffd54646dc | "2023-11-24T08:39:00Z" | python | "2023-11-27T03:30:11Z" | libs/langchain/langchain/chains/graph_qa/cypher_utils.py | """
Args:
query: cypher query
"""
node_variable_dict = self.detect_node_variables(query)
paths = self.extract_paths(query)
for path in paths:
original_path = path
start_idx = 0
while start_idx < len(path):
match_res = re.match(self.node_relation_node_pattern, path[start_idx:])
if match_res is None:
break
start_idx += match_res.start()
match_dict = match_res.groupdict()
left_node_labels = self.detect_labels(
match_dict["left_node"], node_variable_dict
)
right_node_labels = self.detect_labels(
match_dict["right_node"], node_variable_dict
)
end_idx = (
start_idx
+ 4
+ len(match_dict["left_node"])
+ len(match_dict["relation"])
+ len(match_dict["right_node"]) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,803 | CypherQueryCorrector cannot validate a correct cypher, some query types are not handled | CypherQueryCorrector does not handle with some query types:
If there is such a query (There is a comma in the match between clauses):
```
MATCH (a:APPLE {apple_id: 123})-[:IN]->(b:BUCKET), (ba:BANANA {name: banana1})
```
Corresponding code section:
- It extract a relation between BUCKET and BANANA, however there is none.
- ELSE case should be divided into cases. (INCOMING relation, OUTGOING relation, BIDIRECTIONAL relation, NO relation etc.)
- IF there is no relation and only a comma between clauses, then it should not try validation.
https://github.com/langchain-ai/langchain/blob/751226e067bc54a70910763c0eebb34544aaf47c/libs/langchain/langchain/chains/graph_qa/cypher_utils.py#L228 | https://github.com/langchain-ai/langchain/issues/13803 | https://github.com/langchain-ai/langchain/pull/13849 | e42e95cc11cc99b8597dc6665a3cfdbb0a0f37e6 | 1ad65f7a982affc9429d10a4919a78ffd54646dc | "2023-11-24T08:39:00Z" | python | "2023-11-27T03:30:11Z" | libs/langchain/langchain/chains/graph_qa/cypher_utils.py | )
original_partial_path = original_path[start_idx : end_idx + 1]
relation_direction, relation_types = self.detect_relation_types(
match_dict["relation"]
)
if relation_types != [] and "".join(relation_types).find("*") != -1:
start_idx += (
len(match_dict["left_node"]) + len(match_dict["relation"]) + 2
)
continue
if relation_direction == "OUTGOING":
is_legal = self.verify_schema(
left_node_labels, relation_types, right_node_labels
)
if not is_legal:
is_legal = self.verify_schema(
right_node_labels, relation_types, left_node_labels
)
if is_legal:
corrected_relation = "<" + match_dict["relation"][:-1]
corrected_partial_path = original_partial_path.replace(
match_dict["relation"], corrected_relation
)
query = query.replace(
original_partial_path, corrected_partial_path
)
else:
return ""
elif relation_direction == "INCOMING":
is_legal = self.verify_schema( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,803 | CypherQueryCorrector cannot validate a correct cypher, some query types are not handled | CypherQueryCorrector does not handle with some query types:
If there is such a query (There is a comma in the match between clauses):
```
MATCH (a:APPLE {apple_id: 123})-[:IN]->(b:BUCKET), (ba:BANANA {name: banana1})
```
Corresponding code section:
- It extract a relation between BUCKET and BANANA, however there is none.
- ELSE case should be divided into cases. (INCOMING relation, OUTGOING relation, BIDIRECTIONAL relation, NO relation etc.)
- IF there is no relation and only a comma between clauses, then it should not try validation.
https://github.com/langchain-ai/langchain/blob/751226e067bc54a70910763c0eebb34544aaf47c/libs/langchain/langchain/chains/graph_qa/cypher_utils.py#L228 | https://github.com/langchain-ai/langchain/issues/13803 | https://github.com/langchain-ai/langchain/pull/13849 | e42e95cc11cc99b8597dc6665a3cfdbb0a0f37e6 | 1ad65f7a982affc9429d10a4919a78ffd54646dc | "2023-11-24T08:39:00Z" | python | "2023-11-27T03:30:11Z" | libs/langchain/langchain/chains/graph_qa/cypher_utils.py | right_node_labels, relation_types, left_node_labels
)
if not is_legal:
is_legal = self.verify_schema(
left_node_labels, relation_types, right_node_labels
)
if is_legal:
corrected_relation = match_dict["relation"][1:] + ">"
corrected_partial_path = original_partial_path.replace(
match_dict["relation"], corrected_relation
)
query = query.replace(
original_partial_path, corrected_partial_path
)
else:
return ""
else:
is_legal = self.verify_schema(
left_node_labels, relation_types, right_node_labels
)
is_legal |= self.verify_schema(
right_node_labels, relation_types, left_node_labels
)
if not is_legal:
return ""
start_idx += (
len(match_dict["left_node"]) + len(match_dict["relation"]) + 2
)
return query
def __call__(self, query: str) -> str: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,803 | CypherQueryCorrector cannot validate a correct cypher, some query types are not handled | CypherQueryCorrector does not handle with some query types:
If there is such a query (There is a comma in the match between clauses):
```
MATCH (a:APPLE {apple_id: 123})-[:IN]->(b:BUCKET), (ba:BANANA {name: banana1})
```
Corresponding code section:
- It extract a relation between BUCKET and BANANA, however there is none.
- ELSE case should be divided into cases. (INCOMING relation, OUTGOING relation, BIDIRECTIONAL relation, NO relation etc.)
- IF there is no relation and only a comma between clauses, then it should not try validation.
https://github.com/langchain-ai/langchain/blob/751226e067bc54a70910763c0eebb34544aaf47c/libs/langchain/langchain/chains/graph_qa/cypher_utils.py#L228 | https://github.com/langchain-ai/langchain/issues/13803 | https://github.com/langchain-ai/langchain/pull/13849 | e42e95cc11cc99b8597dc6665a3cfdbb0a0f37e6 | 1ad65f7a982affc9429d10a4919a78ffd54646dc | "2023-11-24T08:39:00Z" | python | "2023-11-27T03:30:11Z" | libs/langchain/langchain/chains/graph_qa/cypher_utils.py | """Correct the query to make it valid. If
Args:
query: cypher query
"""
return self.correct_query(query) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,667 | Can not load chain with ChatPromptTemplate | ### System Info
LangChain version: `0.0.339`
Python version: `3.10`
### Who can help?
@hwchase17
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [X] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
When serializing the `ChatPromptTemplate`, it saves it in a JSON/YAML format like this:
```
{'input_variables': ['question', 'context'],
'output_parser': None,
'partial_variables': {},
'messages': [{'prompt': {'input_variables': ['context', 'question'],
'output_parser': None,
'partial_variables': {},
'template': "...",
'template_format': 'f-string',
'validate_template': True,
'_type': 'prompt'},
'additional_kwargs': {}}],
'_type': 'chat'}
```
Note that the `_type` is "chat".
However, LangChain's `load_prompt_from_config` [does not recognize "chat" as the supported prompt type](https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/prompts/loading.py#L19).
Here is a minimal example to reproduce the issue:
```python
from langchain.prompts import ChatPromptTemplate
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
from langchain.chains.loading import load_chain
TEMPLATE = """Answer the question based on the context:
{context}
Question: {question}
Answer:
"""
chat_prompt = ChatPromptTemplate.from_template(TEMPLATE)
llm = OpenAI()
def get_retriever(persist_dir = None):
vectorstore = FAISS.from_texts(
["harrison worked at kensho"], embedding=OpenAIEmbeddings()
)
return vectorstore.as_retriever()
chain_with_chat_prompt = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=get_retriever(),
chain_type_kwargs={"prompt": chat_prompt},
)
chain_with_prompt_saved_path = "./chain_with_prompt.yaml"
chain_with_prompt.save(chain_with_prompt_saved_path)
loaded_chain = load_chain(chain_with_prompt_saved_path, retriever=get_retriever())
```
The above script failed with the error:
`ValueError: Loading chat prompt not supported`
### Expected behavior
Load a chain that contains `ChatPromptTemplate` should work. | https://github.com/langchain-ai/langchain/issues/13667 | https://github.com/langchain-ai/langchain/pull/13818 | 8a3e0c9afa59487b191e411a4acae55e39db7fa9 | b3e08f9239d5587fa61adfa9c58dafdf6b740a38 | "2023-11-21T17:40:19Z" | python | "2023-11-27T16:39:50Z" | libs/core/langchain_core/prompts/loading.py | """Load prompts."""
import json
import logging
from pathlib import Path
from typing import Callable, Dict, Union
import yaml
from langchain_core.output_parsers.string import StrOutputParser
from langchain_core.prompts.base import BasePromptTemplate
from langchain_core.prompts.few_shot import FewShotPromptTemplate
from langchain_core.prompts.prompt import PromptTemplate
from langchain_core.utils import try_load_from_hub
URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/prompts/"
logger = logging.getLogger(__name__)
def load_prompt_from_config(config: dict) -> BasePromptTemplate: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,667 | Can not load chain with ChatPromptTemplate | ### System Info
LangChain version: `0.0.339`
Python version: `3.10`
### Who can help?
@hwchase17
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [X] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
When serializing the `ChatPromptTemplate`, it saves it in a JSON/YAML format like this:
```
{'input_variables': ['question', 'context'],
'output_parser': None,
'partial_variables': {},
'messages': [{'prompt': {'input_variables': ['context', 'question'],
'output_parser': None,
'partial_variables': {},
'template': "...",
'template_format': 'f-string',
'validate_template': True,
'_type': 'prompt'},
'additional_kwargs': {}}],
'_type': 'chat'}
```
Note that the `_type` is "chat".
However, LangChain's `load_prompt_from_config` [does not recognize "chat" as the supported prompt type](https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/prompts/loading.py#L19).
Here is a minimal example to reproduce the issue:
```python
from langchain.prompts import ChatPromptTemplate
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
from langchain.chains.loading import load_chain
TEMPLATE = """Answer the question based on the context:
{context}
Question: {question}
Answer:
"""
chat_prompt = ChatPromptTemplate.from_template(TEMPLATE)
llm = OpenAI()
def get_retriever(persist_dir = None):
vectorstore = FAISS.from_texts(
["harrison worked at kensho"], embedding=OpenAIEmbeddings()
)
return vectorstore.as_retriever()
chain_with_chat_prompt = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=get_retriever(),
chain_type_kwargs={"prompt": chat_prompt},
)
chain_with_prompt_saved_path = "./chain_with_prompt.yaml"
chain_with_prompt.save(chain_with_prompt_saved_path)
loaded_chain = load_chain(chain_with_prompt_saved_path, retriever=get_retriever())
```
The above script failed with the error:
`ValueError: Loading chat prompt not supported`
### Expected behavior
Load a chain that contains `ChatPromptTemplate` should work. | https://github.com/langchain-ai/langchain/issues/13667 | https://github.com/langchain-ai/langchain/pull/13818 | 8a3e0c9afa59487b191e411a4acae55e39db7fa9 | b3e08f9239d5587fa61adfa9c58dafdf6b740a38 | "2023-11-21T17:40:19Z" | python | "2023-11-27T16:39:50Z" | libs/core/langchain_core/prompts/loading.py | """Load prompt from Config Dict."""
if "_type" not in config:
logger.warning("No `_type` key found, defaulting to `prompt`.")
config_type = config.pop("_type", "prompt")
if config_type not in type_to_loader_dict:
raise ValueError(f"Loading {config_type} prompt not supported")
prompt_loader = type_to_loader_dict[config_type]
return prompt_loader(config)
def _load_template(var_name: str, config: dict) -> dict:
"""Load template from the path if applicable."""
if f"{var_name}_path" in config:
if var_name in config:
raise ValueError(
f"Both `{var_name}_path` and `{var_name}` cannot be provided."
)
template_path = Path(config.pop(f"{var_name}_path"))
if template_path.suffix == ".txt":
with open(template_path) as f:
template = f.read()
else:
raise ValueError
config[var_name] = template
return config
def _load_examples(config: dict) -> dict: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,667 | Can not load chain with ChatPromptTemplate | ### System Info
LangChain version: `0.0.339`
Python version: `3.10`
### Who can help?
@hwchase17
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [X] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
When serializing the `ChatPromptTemplate`, it saves it in a JSON/YAML format like this:
```
{'input_variables': ['question', 'context'],
'output_parser': None,
'partial_variables': {},
'messages': [{'prompt': {'input_variables': ['context', 'question'],
'output_parser': None,
'partial_variables': {},
'template': "...",
'template_format': 'f-string',
'validate_template': True,
'_type': 'prompt'},
'additional_kwargs': {}}],
'_type': 'chat'}
```
Note that the `_type` is "chat".
However, LangChain's `load_prompt_from_config` [does not recognize "chat" as the supported prompt type](https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/prompts/loading.py#L19).
Here is a minimal example to reproduce the issue:
```python
from langchain.prompts import ChatPromptTemplate
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
from langchain.chains.loading import load_chain
TEMPLATE = """Answer the question based on the context:
{context}
Question: {question}
Answer:
"""
chat_prompt = ChatPromptTemplate.from_template(TEMPLATE)
llm = OpenAI()
def get_retriever(persist_dir = None):
vectorstore = FAISS.from_texts(
["harrison worked at kensho"], embedding=OpenAIEmbeddings()
)
return vectorstore.as_retriever()
chain_with_chat_prompt = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=get_retriever(),
chain_type_kwargs={"prompt": chat_prompt},
)
chain_with_prompt_saved_path = "./chain_with_prompt.yaml"
chain_with_prompt.save(chain_with_prompt_saved_path)
loaded_chain = load_chain(chain_with_prompt_saved_path, retriever=get_retriever())
```
The above script failed with the error:
`ValueError: Loading chat prompt not supported`
### Expected behavior
Load a chain that contains `ChatPromptTemplate` should work. | https://github.com/langchain-ai/langchain/issues/13667 | https://github.com/langchain-ai/langchain/pull/13818 | 8a3e0c9afa59487b191e411a4acae55e39db7fa9 | b3e08f9239d5587fa61adfa9c58dafdf6b740a38 | "2023-11-21T17:40:19Z" | python | "2023-11-27T16:39:50Z" | libs/core/langchain_core/prompts/loading.py | """Load examples if necessary."""
if isinstance(config["examples"], list):
pass
elif isinstance(config["examples"], str):
with open(config["examples"]) as f:
if config["examples"].endswith(".json"):
examples = json.load(f)
elif config["examples"].endswith((".yaml", ".yml")):
examples = yaml.safe_load(f)
else:
raise ValueError(
"Invalid file format. Only json or yaml formats are supported."
)
config["examples"] = examples
else:
raise ValueError("Invalid examples format. Only list or string are supported.")
return config
def _load_output_parser(config: dict) -> dict: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,667 | Can not load chain with ChatPromptTemplate | ### System Info
LangChain version: `0.0.339`
Python version: `3.10`
### Who can help?
@hwchase17
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [X] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
When serializing the `ChatPromptTemplate`, it saves it in a JSON/YAML format like this:
```
{'input_variables': ['question', 'context'],
'output_parser': None,
'partial_variables': {},
'messages': [{'prompt': {'input_variables': ['context', 'question'],
'output_parser': None,
'partial_variables': {},
'template': "...",
'template_format': 'f-string',
'validate_template': True,
'_type': 'prompt'},
'additional_kwargs': {}}],
'_type': 'chat'}
```
Note that the `_type` is "chat".
However, LangChain's `load_prompt_from_config` [does not recognize "chat" as the supported prompt type](https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/prompts/loading.py#L19).
Here is a minimal example to reproduce the issue:
```python
from langchain.prompts import ChatPromptTemplate
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
from langchain.chains.loading import load_chain
TEMPLATE = """Answer the question based on the context:
{context}
Question: {question}
Answer:
"""
chat_prompt = ChatPromptTemplate.from_template(TEMPLATE)
llm = OpenAI()
def get_retriever(persist_dir = None):
vectorstore = FAISS.from_texts(
["harrison worked at kensho"], embedding=OpenAIEmbeddings()
)
return vectorstore.as_retriever()
chain_with_chat_prompt = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=get_retriever(),
chain_type_kwargs={"prompt": chat_prompt},
)
chain_with_prompt_saved_path = "./chain_with_prompt.yaml"
chain_with_prompt.save(chain_with_prompt_saved_path)
loaded_chain = load_chain(chain_with_prompt_saved_path, retriever=get_retriever())
```
The above script failed with the error:
`ValueError: Loading chat prompt not supported`
### Expected behavior
Load a chain that contains `ChatPromptTemplate` should work. | https://github.com/langchain-ai/langchain/issues/13667 | https://github.com/langchain-ai/langchain/pull/13818 | 8a3e0c9afa59487b191e411a4acae55e39db7fa9 | b3e08f9239d5587fa61adfa9c58dafdf6b740a38 | "2023-11-21T17:40:19Z" | python | "2023-11-27T16:39:50Z" | libs/core/langchain_core/prompts/loading.py | """Load output parser."""
if "output_parser" in config and config["output_parser"]:
_config = config.pop("output_parser")
output_parser_type = _config.pop("_type")
if output_parser_type == "default":
output_parser = StrOutputParser(**_config)
else:
raise ValueError(f"Unsupported output parser {output_parser_type}")
config["output_parser"] = output_parser
return config
def _load_few_shot_prompt(config: dict) -> FewShotPromptTemplate:
"""Load the "few shot" prompt from the config."""
config = _load_template("suffix", config)
config = _load_template("prefix", config)
if "example_prompt_path" in config:
if "example_prompt" in config:
raise ValueError(
"Only one of example_prompt and example_prompt_path should "
"be specified."
)
config["example_prompt"] = load_prompt(config.pop("example_prompt_path"))
else:
config["example_prompt"] = load_prompt_from_config(config["example_prompt"])
config = _load_examples(config)
config = _load_output_parser(config)
return FewShotPromptTemplate(**config)
def _load_prompt(config: dict) -> PromptTemplate: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,667 | Can not load chain with ChatPromptTemplate | ### System Info
LangChain version: `0.0.339`
Python version: `3.10`
### Who can help?
@hwchase17
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [X] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
When serializing the `ChatPromptTemplate`, it saves it in a JSON/YAML format like this:
```
{'input_variables': ['question', 'context'],
'output_parser': None,
'partial_variables': {},
'messages': [{'prompt': {'input_variables': ['context', 'question'],
'output_parser': None,
'partial_variables': {},
'template': "...",
'template_format': 'f-string',
'validate_template': True,
'_type': 'prompt'},
'additional_kwargs': {}}],
'_type': 'chat'}
```
Note that the `_type` is "chat".
However, LangChain's `load_prompt_from_config` [does not recognize "chat" as the supported prompt type](https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/prompts/loading.py#L19).
Here is a minimal example to reproduce the issue:
```python
from langchain.prompts import ChatPromptTemplate
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
from langchain.chains.loading import load_chain
TEMPLATE = """Answer the question based on the context:
{context}
Question: {question}
Answer:
"""
chat_prompt = ChatPromptTemplate.from_template(TEMPLATE)
llm = OpenAI()
def get_retriever(persist_dir = None):
vectorstore = FAISS.from_texts(
["harrison worked at kensho"], embedding=OpenAIEmbeddings()
)
return vectorstore.as_retriever()
chain_with_chat_prompt = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=get_retriever(),
chain_type_kwargs={"prompt": chat_prompt},
)
chain_with_prompt_saved_path = "./chain_with_prompt.yaml"
chain_with_prompt.save(chain_with_prompt_saved_path)
loaded_chain = load_chain(chain_with_prompt_saved_path, retriever=get_retriever())
```
The above script failed with the error:
`ValueError: Loading chat prompt not supported`
### Expected behavior
Load a chain that contains `ChatPromptTemplate` should work. | https://github.com/langchain-ai/langchain/issues/13667 | https://github.com/langchain-ai/langchain/pull/13818 | 8a3e0c9afa59487b191e411a4acae55e39db7fa9 | b3e08f9239d5587fa61adfa9c58dafdf6b740a38 | "2023-11-21T17:40:19Z" | python | "2023-11-27T16:39:50Z" | libs/core/langchain_core/prompts/loading.py | """Load the prompt template from config."""
config = _load_template("template", config)
config = _load_output_parser(config)
template_format = config.get("template_format", "f-string")
if template_format == "jinja2":
raise ValueError(
f"Loading templates with '{template_format}' format is no longer supported "
f"since it can lead to arbitrary code execution. Please migrate to using "
f"the 'f-string' template format, which does not suffer from this issue."
)
return PromptTemplate(**config)
def load_prompt(path: Union[str, Path]) -> BasePromptTemplate: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,667 | Can not load chain with ChatPromptTemplate | ### System Info
LangChain version: `0.0.339`
Python version: `3.10`
### Who can help?
@hwchase17
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [X] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [ ] Chains
- [ ] Callbacks/Tracing
- [ ] Async
### Reproduction
When serializing the `ChatPromptTemplate`, it saves it in a JSON/YAML format like this:
```
{'input_variables': ['question', 'context'],
'output_parser': None,
'partial_variables': {},
'messages': [{'prompt': {'input_variables': ['context', 'question'],
'output_parser': None,
'partial_variables': {},
'template': "...",
'template_format': 'f-string',
'validate_template': True,
'_type': 'prompt'},
'additional_kwargs': {}}],
'_type': 'chat'}
```
Note that the `_type` is "chat".
However, LangChain's `load_prompt_from_config` [does not recognize "chat" as the supported prompt type](https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/prompts/loading.py#L19).
Here is a minimal example to reproduce the issue:
```python
from langchain.prompts import ChatPromptTemplate
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
from langchain.chains.loading import load_chain
TEMPLATE = """Answer the question based on the context:
{context}
Question: {question}
Answer:
"""
chat_prompt = ChatPromptTemplate.from_template(TEMPLATE)
llm = OpenAI()
def get_retriever(persist_dir = None):
vectorstore = FAISS.from_texts(
["harrison worked at kensho"], embedding=OpenAIEmbeddings()
)
return vectorstore.as_retriever()
chain_with_chat_prompt = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=get_retriever(),
chain_type_kwargs={"prompt": chat_prompt},
)
chain_with_prompt_saved_path = "./chain_with_prompt.yaml"
chain_with_prompt.save(chain_with_prompt_saved_path)
loaded_chain = load_chain(chain_with_prompt_saved_path, retriever=get_retriever())
```
The above script failed with the error:
`ValueError: Loading chat prompt not supported`
### Expected behavior
Load a chain that contains `ChatPromptTemplate` should work. | https://github.com/langchain-ai/langchain/issues/13667 | https://github.com/langchain-ai/langchain/pull/13818 | 8a3e0c9afa59487b191e411a4acae55e39db7fa9 | b3e08f9239d5587fa61adfa9c58dafdf6b740a38 | "2023-11-21T17:40:19Z" | python | "2023-11-27T16:39:50Z" | libs/core/langchain_core/prompts/loading.py | """Unified method for loading a prompt from LangChainHub or local fs."""
if hub_result := try_load_from_hub(
path, _load_prompt_from_file, "prompts", {"py", "json", "yaml"}
):
return hub_result
else:
return _load_prompt_from_file(path)
def _load_prompt_from_file(file: Union[str, Path]) -> BasePromptTemplate:
"""Load prompt from file."""
if isinstance(file, str):
file_path = Path(file)
else:
file_path = file
if file_path.suffix == ".json":
with open(file_path) as f:
config = json.load(f)
elif file_path.suffix == ".yaml":
with open(file_path, "r") as f:
config = yaml.safe_load(f)
else:
raise ValueError(f"Got unsupported file type {file_path.suffix}")
return load_prompt_from_config(config)
type_to_loader_dict: Dict[str, Callable[[dict], BasePromptTemplate]] = {
"prompt": _load_prompt,
"few_shot": _load_few_shot_prompt,
} |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | from __future__ import annotations
import asyncio
import inspect
import threading
from abc import ABC, abstractmethod
from concurrent.futures import FIRST_COMPLETED, wait
from functools import partial
from itertools import tee
from operator import itemgetter
from typing import (
TYPE_CHECKING,
Any,
AsyncIterator, |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | Awaitable,
Callable,
Dict,
Generic,
Iterator,
List,
Mapping,
Optional,
Sequence,
Tuple,
Type,
TypeVar,
Union,
cast,
overload,
)
from typing_extensions import Literal, get_args
from langchain_core.load.dump import dumpd
from langchain_core.load.serializable import Serializable
from langchain_core.pydantic_v1 import BaseModel, Field, create_model
from langchain_core.runnables.config import (
RunnableConfig,
acall_func_with_variable_args,
call_func_with_variable_args,
ensure_config,
get_async_callback_manager_for_config,
get_callback_manager_for_config,
get_config_list,
get_executor_for_config,
merge_configs, |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | patch_config,
)
from langchain_core.runnables.utils import (
AddableDict,
AnyConfigurableField,
ConfigurableField,
ConfigurableFieldSpec,
Input,
Output,
accepts_config,
accepts_run_manager,
gather_with_concurrency,
get_function_first_arg_dict_keys,
get_lambda_source,
get_unique_config_specs,
indent_lines_after_first,
)
from langchain_core.utils.aiter import atee, py_anext
from langchain_core.utils.iter import safetee
if TYPE_CHECKING:
from langchain_core.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
from langchain_core.runnables.fallbacks import (
RunnableWithFallbacks as RunnableWithFallbacksT,
)
from langchain_core.tracers.log_stream import RunLog, RunLogPatch
from langchain_core.tracers.root_listeners import Listener
Other = TypeVar("Other") |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | class Runnable(Generic[Input, Output], ABC):
"""A unit of work that can be invoked, batched, streamed, transformed and composed.
Key Methods
===========
* invoke/ainvoke: Transforms a single input into an output.
* batch/abatch: Efficiently transforms multiple inputs into outputs.
* stream/astream: Streams output from a single input as it's produced.
* astream_log: Streams output and selected intermediate results from an input.
Built-in optimizations:
* Batch: By default, batch runs invoke() in parallel using a thread pool executor.
Override to optimize batching.
* Async: Methods with "a" suffix are asynchronous. By default, they execute
the sync counterpart using asyncio's thread pool.
Override for native async.
All methods accept an optional config argument, which can be used to configure
execution, add tags and metadata for tracing and debugging etc.
Runnables expose schematic information about their input, output and config via
the input_schema property, the output_schema property and config_schema method.
LCEL and Composition
====================
The LangChain Expression Language (LCEL) is a declarative way to compose Runnables
into chains. Any chain constructed this way will automatically have sync, async,
batch, and streaming support.
The main composition primitives are RunnableSequence and RunnableParallel.
RunnableSequence invokes a series of runnables sequentially, with one runnable's
output serving as the next's input. Construct using the `|` operator or by
passing a list of runnables to RunnableSequence.
RunnableParallel invokes runnables concurrently, providing the same input
to each. Construct it using a dict literal within a sequence or by passing a
dict to RunnableParallel. |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | For example,
.. code-block:: python
from langchain_core.runnables import RunnableLambda
# A RunnableSequence constructed using the `|` operator
sequence = RunnableLambda(lambda x: x + 1) | RunnableLambda(lambda x: x * 2)
sequence.invoke(1) # 4
sequence.batch([1, 2, 3]) # [4, 6, 8]
# A sequence that contains a RunnableParallel constructed using a dict literal
sequence = RunnableLambda(lambda x: x + 1) | {
'mul_2': RunnableLambda(lambda x: x * 2),
'mul_5': RunnableLambda(lambda x: x * 5)
}
sequence.invoke(1) # {'mul_2': 4, 'mul_5': 10}
Standard Methods
================
All Runnables expose additional methods that can be used to modify their behavior
(e.g., add a retry policy, add lifecycle listeners, make them configurable, etc.).
These methods will work on any Runnable, including Runnable chains constructed
by composing other Runnables. See the individual methods for details.
For example,
.. code-block:: python
from langchain_core.runnables import RunnableLambda
import random
def add_one(x: int) -> int:
return x + 1
def buggy_double(y: int) -> int:
'''Buggy code that will fail 70% of the time'''
if random.random() > 0.3:
print('This code failed, and will probably be retried!')
raise ValueError('Triggered buggy code') |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | return y * 2
sequence = (
RunnableLambda(add_one) |
RunnableLambda(buggy_double).with_retry( # Retry on failure
stop_after_attempt=10,
wait_exponential_jitter=False
)
)
print(sequence.input_schema.schema()) # Show inferred input schema
print(sequence.output_schema.schema()) # Show inferred output schema
print(sequence.invoke(2)) the sequence (note the retry above!!)
Debugging and tracing
=====================
As the chains get longer, it can be useful to be able to see intermediate results
to debug and trace the chain.
You can set the global debug flag to True to enable debug output for all chains:
.. code-block:: python
from langchain_core.globals import set_debug
set_debug(True)
Alternatively, you can pass existing or custom callbacks to any given chain:
.. code-block:: python
from langchain_core.tracers import ConsoleCallbackHandler
chain.invoke(
...,
config={'callbacks': [ConsoleCallbackHandler()]}
)
For a UI (and much more) checkout LangSmith: https://docs.smith.langchain.com/
"""
@property
def InputType(self) -> Type[Input]: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | """The type of input this runnable accepts specified as a type annotation."""
for cls in self.__class__.__orig_bases__:
type_args = get_args(cls)
if type_args and len(type_args) == 2:
return type_args[0]
raise TypeError(
f"Runnable {self.__class__.__name__} doesn't have an inferable InputType. "
"Override the InputType property to specify the input type."
)
@property
def OutputType(self) -> Type[Output]:
"""The type of output this runnable produces specified as a type annotation."""
for cls in self.__class__.__orig_bases__:
type_args = get_args(cls)
if type_args and len(type_args) == 2:
return type_args[1]
raise TypeError(
f"Runnable {self.__class__.__name__} doesn't have an inferable OutputType. "
"Override the OutputType property to specify the output type."
)
@property
def input_schema(self) -> Type[BaseModel]: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | """The type of input this runnable accepts specified as a pydantic model."""
return self.get_input_schema()
def get_input_schema(
self, config: Optional[RunnableConfig] = None
) -> Type[BaseModel]:
"""Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Args:
config: A config to use when generating the schema.
Returns:
A pydantic model that can be used to validate input.
"""
root_type = self.InputType
if inspect.isclass(root_type) and issubclass(root_type, BaseModel):
return root_type
return create_model(
self.__class__.__name__ + "Input", __root__=(root_type, None)
)
@property
def output_schema(self) -> Type[BaseModel]: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | """The type of output this runnable produces specified as a pydantic model."""
return self.get_output_schema()
def get_output_schema(
self, config: Optional[RunnableConfig] = None
) -> Type[BaseModel]:
"""Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Args:
config: A config to use when generating the schema.
Returns:
A pydantic model that can be used to validate output.
"""
root_type = self.OutputType
if inspect.isclass(root_type) and issubclass(root_type, BaseModel):
return root_type
return create_model(
self.__class__.__name__ + "Output", __root__=(root_type, None)
)
@property
def config_specs(self) -> List[ConfigurableFieldSpec]: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | """List configurable fields for this runnable."""
return []
def config_schema(
self, *, include: Optional[Sequence[str]] = None
) -> Type[BaseModel]:
"""The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the `configurable_fields`
and `configurable_alternatives` methods.
Args:
include: A list of fields to include in the config schema.
Returns:
A pydantic model that can be used to validate config.
"""
class _Config: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | arbitrary_types_allowed = True
include = include or []
config_specs = self.config_specs
configurable = (
create_model(
"Configurable",
**{
spec.id: (
spec.annotation,
Field(
spec.default, title=spec.name, description=spec.description
),
)
for spec in config_specs
},
)
if config_specs
else None
)
return create_model(
self.__class__.__name__ + "Config",
__config__=_Config,
**({"configurable": (configurable, None)} if configurable else {}),
**{
field_name: (field_type, None)
for field_name, field_type in RunnableConfig.__annotations__.items()
if field_name in [i for i in include if i != "configurable"]
},
)
def __or__( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self,
other: Union[
Runnable[Any, Other],
Callable[[Any], Other],
Callable[[Iterator[Any]], Iterator[Other]],
Mapping[str, Union[Runnable[Any, Other], Callable[[Any], Other], Any]],
],
) -> RunnableSerializable[Input, Other]:
"""Compose this runnable with another object to create a RunnableSequence."""
return RunnableSequence(first=self, last=coerce_to_runnable(other))
def __ror__( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self,
other: Union[
Runnable[Other, Any],
Callable[[Other], Any],
Callable[[Iterator[Other]], Iterator[Any]],
Mapping[str, Union[Runnable[Other, Any], Callable[[Other], Any], Any]],
],
) -> RunnableSerializable[Other, Output]:
"""Compose this runnable with another object to create a RunnableSequence."""
return RunnableSequence(first=coerce_to_runnable(other), last=self)
""" --- Public API --- """
@abstractmethod
def invoke(self, input: Input, config: Optional[RunnableConfig] = None) -> Output:
"""Transform a single input into an output. Override to implement.
Args:
input: The input to the runnable.
config: A config to use when invoking the runnable.
The config supports standard keys like 'tags', 'metadata' for tracing
purposes, 'max_concurrency' for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns:
The output of the runnable.
"""
async def ainvoke( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any
) -> Output:
"""Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
"""
return await asyncio.get_running_loop().run_in_executor(
None, partial(self.invoke, **kwargs), input, config
)
def batch(
self,
inputs: List[Input],
config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None,
*,
return_exceptions: bool = False,
**kwargs: Optional[Any],
) -> List[Output]:
"""Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
"""
if not inputs:
return []
configs = get_config_list(config, len(inputs))
def invoke(input: Input, config: RunnableConfig) -> Union[Output, Exception]: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | if return_exceptions:
try:
return self.invoke(input, config, **kwargs)
except Exception as e:
return e
else:
return self.invoke(input, config, **kwargs)
if len(inputs) == 1:
return cast(List[Output], [invoke(inputs[0], configs[0])])
with get_executor_for_config(configs[0]) as executor:
return cast(List[Output], list(executor.map(invoke, inputs, configs)))
async def abatch(
self,
inputs: List[Input],
config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None,
*,
return_exceptions: bool = False,
**kwargs: Optional[Any],
) -> List[Output]:
"""Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
"""
if not inputs:
return []
configs = get_config_list(config, len(inputs))
async def ainvoke( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | input: Input, config: RunnableConfig
) -> Union[Output, Exception]:
if return_exceptions:
try:
return await self.ainvoke(input, config, **kwargs)
except Exception as e:
return e
else:
return await self.ainvoke(input, config, **kwargs)
coros = map(ainvoke, inputs, configs)
return await gather_with_concurrency(configs[0].get("max_concurrency"), *coros)
def stream(
self,
input: Input,
config: Optional[RunnableConfig] = None,
**kwargs: Optional[Any],
) -> Iterator[Output]:
"""
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
"""
yield self.invoke(input, config, **kwargs)
async def astream( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self,
input: Input,
config: Optional[RunnableConfig] = None,
**kwargs: Optional[Any],
) -> AsyncIterator[Output]:
"""
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
"""
yield await self.ainvoke(input, config, **kwargs)
@overload
def astream_log(
self,
input: Any,
config: Optional[RunnableConfig] = None,
*,
diff: Literal[True] = True,
include_names: Optional[Sequence[str]] = None,
include_types: Optional[Sequence[str]] = None,
include_tags: Optional[Sequence[str]] = None,
exclude_names: Optional[Sequence[str]] = None,
exclude_types: Optional[Sequence[str]] = None,
exclude_tags: Optional[Sequence[str]] = None,
**kwargs: Optional[Any],
) -> AsyncIterator[RunLogPatch]:
...
@overload
def astream_log( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self,
input: Any,
config: Optional[RunnableConfig] = None,
*,
diff: Literal[False],
include_names: Optional[Sequence[str]] = None,
include_types: Optional[Sequence[str]] = None,
include_tags: Optional[Sequence[str]] = None,
exclude_names: Optional[Sequence[str]] = None,
exclude_types: Optional[Sequence[str]] = None,
exclude_tags: Optional[Sequence[str]] = None,
**kwargs: Optional[Any],
) -> AsyncIterator[RunLog]:
...
async def astream_log( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self,
input: Any,
config: Optional[RunnableConfig] = None,
*,
diff: bool = True,
include_names: Optional[Sequence[str]] = None,
include_types: Optional[Sequence[str]] = None,
include_tags: Optional[Sequence[str]] = None,
exclude_names: Optional[Sequence[str]] = None,
exclude_types: Optional[Sequence[str]] = None,
exclude_tags: Optional[Sequence[str]] = None,
**kwargs: Optional[Any],
) -> Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]:
"""
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
"""
from langchain_core.callbacks.base import BaseCallbackManager
from langchain_core.tracers.log_stream import (
LogStreamCallbackHandler,
RunLog,
RunLogPatch, |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | )
stream = LogStreamCallbackHandler(
auto_close=False,
include_names=include_names,
include_types=include_types,
include_tags=include_tags,
exclude_names=exclude_names,
exclude_types=exclude_types,
exclude_tags=exclude_tags,
)
config = config or {}
callbacks = config.get("callbacks")
if callbacks is None:
config["callbacks"] = [stream]
elif isinstance(callbacks, list):
config["callbacks"] = callbacks + [stream]
elif isinstance(callbacks, BaseCallbackManager):
callbacks = callbacks.copy()
callbacks.add_handler(stream, inherit=True)
config["callbacks"] = callbacks
else:
raise ValueError(
f"Unexpected type for callbacks: {callbacks}."
"Expected None, list or AsyncCallbackManager."
)
async def consume_astream() -> None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | try:
async for chunk in self.astream(input, config, **kwargs):
await stream.send_stream.send(
RunLogPatch(
{
"op": "add",
"path": "/streamed_output/-",
"value": chunk,
}
)
)
finally:
await stream.send_stream.aclose()
task = asyncio.create_task(consume_astream())
try:
if diff:
async for log in stream:
yield log
else:
state = RunLog(state=None)
async for log in stream:
state = state + log
yield state |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | finally:
try:
await task
except asyncio.CancelledError:
pass
def transform(
self,
input: Iterator[Input],
config: Optional[RunnableConfig] = None,
**kwargs: Optional[Any],
) -> Iterator[Output]:
"""
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
"""
final: Input
got_first_val = False
for chunk in input:
if not got_first_val:
final = chunk
got_first_val = True
else:
final = final + chunk
if got_first_val:
yield from self.stream(final, config, **kwargs)
async def atransform( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self,
input: AsyncIterator[Input],
config: Optional[RunnableConfig] = None,
**kwargs: Optional[Any],
) -> AsyncIterator[Output]:
"""
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
"""
final: Input
got_first_val = False
async for chunk in input:
if not got_first_val:
final = chunk
got_first_val = True
else:
final = final + chunk
if got_first_val:
async for output in self.astream(final, config, **kwargs):
yield output
def bind(self, **kwargs: Any) -> Runnable[Input, Output]: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | """
Bind arguments to a Runnable, returning a new Runnable.
"""
return RunnableBinding(bound=self, kwargs=kwargs, config={})
def with_config(
self,
config: Optional[RunnableConfig] = None,
**kwargs: Any,
) -> Runnable[Input, Output]:
"""
Bind config to a Runnable, returning a new Runnable.
"""
return RunnableBinding(
bound=self,
config=cast(
RunnableConfig,
{**(config or {}), **kwargs},
),
kwargs={},
)
def with_listeners(
self,
*, |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | on_start: Optional[Listener] = None,
on_end: Optional[Listener] = None,
on_error: Optional[Listener] = None,
) -> Runnable[Input, Output]:
"""
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
"""
from langchain_core.tracers.root_listeners import RootListenersTracer
return RunnableBinding(
bound=self,
config_factories=[
lambda config: {
"callbacks": [
RootListenersTracer(
config=config,
on_start=on_start,
on_end=on_end,
on_error=on_error,
)
],
}
],
)
def with_types( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self,
*,
input_type: Optional[Type[Input]] = None,
output_type: Optional[Type[Output]] = None,
) -> Runnable[Input, Output]:
"""
Bind input and output types to a Runnable, returning a new Runnable.
"""
return RunnableBinding(
bound=self,
custom_input_type=input_type,
custom_output_type=output_type,
kwargs={},
)
def with_retry( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self,
*,
retry_if_exception_type: Tuple[Type[BaseException], ...] = (Exception,),
wait_exponential_jitter: bool = True,
stop_after_attempt: int = 3,
) -> Runnable[Input, Output]:
"""Create a new Runnable that retries the original runnable on exceptions.
Args:
retry_if_exception_type: A tuple of exception types to retry on
wait_exponential_jitter: Whether to add jitter to the wait time
between retries
stop_after_attempt: The maximum number of attempts to make before giving up
Returns:
A new Runnable that retries the original runnable on exceptions.
"""
from langchain_core.runnables.retry import RunnableRetry
return RunnableRetry(
bound=self,
kwargs={},
config={},
retry_exception_types=retry_if_exception_type,
wait_exponential_jitter=wait_exponential_jitter,
max_attempt_number=stop_after_attempt,
)
def map(self) -> Runnable[List[Input], List[Output]]: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | """
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
"""
return RunnableEach(bound=self)
def with_fallbacks(
self,
fallbacks: Sequence[Runnable[Input, Output]],
*,
exceptions_to_handle: Tuple[Type[BaseException], ...] = (Exception,),
) -> RunnableWithFallbacksT[Input, Output]:
"""Add fallbacks to a runnable, returning a new Runnable.
Args:
fallbacks: A sequence of runnables to try if the original runnable fails.
exceptions_to_handle: A tuple of exception types to handle.
Returns:
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
"""
from langchain_core.runnables.fallbacks import RunnableWithFallbacks
return RunnableWithFallbacks(
runnable=self,
fallbacks=fallbacks,
exceptions_to_handle=exceptions_to_handle,
)
""" --- Helper methods for Subclasses --- """
def _call_with_config( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self,
func: Union[
Callable[[Input], Output],
Callable[[Input, CallbackManagerForChainRun], Output],
Callable[[Input, CallbackManagerForChainRun, RunnableConfig], Output],
],
input: Input,
config: Optional[RunnableConfig],
run_type: Optional[str] = None,
**kwargs: Optional[Any],
) -> Output:
"""Helper method to transform an Input value to an Output value,
with callbacks. Use this method to implement invoke() in subclasses."""
config = ensure_config(config)
callback_manager = get_callback_manager_for_config(config)
run_manager = callback_manager.on_chain_start(
dumpd(self),
input,
run_type=run_type,
name=config.get("run_name"),
)
try:
output = call_func_with_variable_args(
func, input, config, run_manager, **kwargs
)
except BaseException as e: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | run_manager.on_chain_error(e)
raise
else:
run_manager.on_chain_end(dumpd(output))
return output
async def _acall_with_config(
self,
func: Union[
Callable[[Input], Awaitable[Output]],
Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]],
Callable[
[Input, AsyncCallbackManagerForChainRun, RunnableConfig],
Awaitable[Output],
],
],
input: Input,
config: Optional[RunnableConfig],
run_type: Optional[str] = None,
**kwargs: Optional[Any],
) -> Output:
"""Helper method to transform an Input value to an Output value,
with callbacks. Use this method to implement ainvoke() in subclasses."""
config = ensure_config(config)
callback_manager = get_async_callback_manager_for_config(config)
run_manager = await callback_manager.on_chain_start(
dumpd(self),
input,
run_type=run_type,
name=config.get("run_name"),
) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | try:
output = await acall_func_with_variable_args(
func, input, config, run_manager, **kwargs
)
except BaseException as e:
await run_manager.on_chain_error(e)
raise
else:
await run_manager.on_chain_end(dumpd(output))
return output
def _batch_with_config(
self,
func: Union[
Callable[[List[Input]], List[Union[Exception, Output]]],
Callable[
[List[Input], List[CallbackManagerForChainRun]],
List[Union[Exception, Output]],
],
Callable[
[List[Input], List[CallbackManagerForChainRun], List[RunnableConfig]],
List[Union[Exception, Output]],
],
],
input: List[Input],
config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None,
*,
return_exceptions: bool = False,
run_type: Optional[str] = None,
**kwargs: Optional[Any],
) -> List[Output]: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | """Helper method to transform an Input value to an Output value,
with callbacks. Use this method to implement invoke() in subclasses."""
if not input:
return []
configs = get_config_list(config, len(input))
callback_managers = [get_callback_manager_for_config(c) for c in configs]
run_managers = [
callback_manager.on_chain_start(
dumpd(self),
input,
run_type=run_type,
name=config.get("run_name"),
)
for callback_manager, input, config in zip(
callback_managers, input, configs
)
]
try:
if accepts_config(func):
kwargs["config"] = [
patch_config(c, callbacks=rm.get_child())
for c, rm in zip(configs, run_managers)
]
if accepts_run_manager(func):
kwargs["run_manager"] = run_managers
output = func(input, **kwargs)
except BaseException as e:
for run_manager in run_managers:
run_manager.on_chain_error(e)
if return_exceptions: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | return cast(List[Output], [e for _ in input])
else:
raise
else:
first_exception: Optional[Exception] = None
for run_manager, out in zip(run_managers, output):
if isinstance(out, Exception):
first_exception = first_exception or out
run_manager.on_chain_error(out)
else:
run_manager.on_chain_end(dumpd(out))
if return_exceptions or first_exception is None:
return cast(List[Output], output)
else:
raise first_exception
async def _abatch_with_config(
self,
func: Union[
Callable[[List[Input]], Awaitable[List[Union[Exception, Output]]]],
Callable[
[List[Input], List[AsyncCallbackManagerForChainRun]],
Awaitable[List[Union[Exception, Output]]],
],
Callable[
[
List[Input],
List[AsyncCallbackManagerForChainRun],
List[RunnableConfig],
],
Awaitable[List[Union[Exception, Output]]], |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | ],
],
input: List[Input],
config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None,
*,
return_exceptions: bool = False,
run_type: Optional[str] = None,
**kwargs: Optional[Any],
) -> List[Output]:
"""Helper method to transform an Input value to an Output value,
with callbacks. Use this method to implement invoke() in subclasses."""
if not input:
return []
configs = get_config_list(config, len(input))
callback_managers = [get_async_callback_manager_for_config(c) for c in configs]
run_managers: List[AsyncCallbackManagerForChainRun] = await asyncio.gather(
*(
callback_manager.on_chain_start(
dumpd(self),
input,
run_type=run_type,
name=config.get("run_name"),
)
for callback_manager, input, config in zip(
callback_managers, input, configs
)
)
)
try:
if accepts_config(func): |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | kwargs["config"] = [
patch_config(c, callbacks=rm.get_child())
for c, rm in zip(configs, run_managers)
]
if accepts_run_manager(func):
kwargs["run_manager"] = run_managers
output = await func(input, **kwargs)
except BaseException as e:
await asyncio.gather(
*(run_manager.on_chain_error(e) for run_manager in run_managers)
)
if return_exceptions:
return cast(List[Output], [e for _ in input])
else:
raise
else:
first_exception: Optional[Exception] = None
coros: List[Awaitable[None]] = []
for run_manager, out in zip(run_managers, output):
if isinstance(out, Exception):
first_exception = first_exception or out
coros.append(run_manager.on_chain_error(out))
else:
coros.append(run_manager.on_chain_end(dumpd(out)))
await asyncio.gather(*coros)
if return_exceptions or first_exception is None:
return cast(List[Output], output)
else:
raise first_exception
def _transform_stream_with_config( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self,
input: Iterator[Input],
transformer: Union[
Callable[[Iterator[Input]], Iterator[Output]],
Callable[[Iterator[Input], CallbackManagerForChainRun], Iterator[Output]],
Callable[
[
Iterator[Input],
CallbackManagerForChainRun,
RunnableConfig,
],
Iterator[Output],
],
],
config: Optional[RunnableConfig],
run_type: Optional[str] = None,
**kwargs: Optional[Any],
) -> Iterator[Output]:
"""Helper method to transform an Iterator of Input values into an Iterator of
Output values, with callbacks.
Use this to implement `stream()` or `transform()` in Runnable subclasses."""
input_for_tracing, input_for_transform = tee(input, 2)
final_input: Optional[Input] = next(input_for_tracing, None)
final_input_supported = True
final_output: Optional[Output] = None |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | final_output_supported = True
config = ensure_config(config)
callback_manager = get_callback_manager_for_config(config)
run_manager = callback_manager.on_chain_start(
dumpd(self),
{"input": ""},
run_type=run_type,
name=config.get("run_name"),
)
try:
if accepts_config(transformer):
kwargs["config"] = patch_config(
config, callbacks=run_manager.get_child()
)
if accepts_run_manager(transformer):
kwargs["run_manager"] = run_manager
iterator = transformer(input_for_transform, **kwargs)
for chunk in iterator:
yield chunk
if final_output_supported:
if final_output is None:
final_output = chunk
else:
try:
final_output = final_output + chunk
except TypeError:
final_output = None
final_output_supported = False
for ichunk in input_for_tracing:
if final_input_supported: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | if final_input is None:
final_input = ichunk
else:
try:
final_input = final_input + ichunk
except TypeError:
final_input = None
final_input_supported = False
except BaseException as e:
run_manager.on_chain_error(e, inputs=final_input)
raise
else:
run_manager.on_chain_end(final_output, inputs=final_input)
async def _atransform_stream_with_config(
self,
input: AsyncIterator[Input],
transformer: Union[
Callable[[AsyncIterator[Input]], AsyncIterator[Output]],
Callable[
[AsyncIterator[Input], AsyncCallbackManagerForChainRun],
AsyncIterator[Output],
],
Callable[
[
AsyncIterator[Input],
AsyncCallbackManagerForChainRun,
RunnableConfig,
],
AsyncIterator[Output],
], |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | ],
config: Optional[RunnableConfig],
run_type: Optional[str] = None,
**kwargs: Optional[Any],
) -> AsyncIterator[Output]:
"""Helper method to transform an Async Iterator of Input values into an Async
Iterator of Output values, with callbacks.
Use this to implement `astream()` or `atransform()` in Runnable subclasses."""
input_for_tracing, input_for_transform = atee(input, 2)
final_input: Optional[Input] = await py_anext(input_for_tracing, None)
final_input_supported = True
final_output: Optional[Output] = None
final_output_supported = True
config = ensure_config(config)
callback_manager = get_async_callback_manager_for_config(config)
run_manager = await callback_manager.on_chain_start(
dumpd(self),
{"input": ""},
run_type=run_type,
name=config.get("run_name"),
)
try:
if accepts_config(transformer):
kwargs["config"] = patch_config(
config, callbacks=run_manager.get_child()
)
if accepts_run_manager(transformer):
kwargs["run_manager"] = run_manager |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | iterator = transformer(input_for_transform, **kwargs)
async for chunk in iterator:
yield chunk
if final_output_supported:
if final_output is None:
final_output = chunk
else:
try:
final_output = final_output + chunk
except TypeError:
final_output = None
final_output_supported = False
async for ichunk in input_for_tracing:
if final_input_supported:
if final_input is None:
final_input = ichunk
else:
try:
final_input = final_input + ichunk
except TypeError:
final_input = None
final_input_supported = False
except BaseException as e:
await run_manager.on_chain_error(e, inputs=final_input)
raise
else:
await run_manager.on_chain_end(final_output, inputs=final_input)
class RunnableSerializable(Serializable, Runnable[Input, Output]):
"""A Runnable that can be serialized to JSON."""
def configurable_fields( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self, **kwargs: AnyConfigurableField
) -> RunnableSerializable[Input, Output]:
from langchain_core.runnables.configurable import RunnableConfigurableFields
for key in kwargs:
if key not in self.__fields__:
raise ValueError(
f"Configuration key {key} not found in {self}: "
"available keys are {self.__fields__.keys()}"
)
return RunnableConfigurableFields(default=self, fields=kwargs)
def configurable_alternatives(
self,
which: ConfigurableField,
*,
default_key: str = "default",
prefix_keys: bool = False,
**kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]],
) -> RunnableSerializable[Input, Output]:
from langchain_core.runnables.configurable import (
RunnableConfigurableAlternatives,
)
return RunnableConfigurableAlternatives(
which=which,
default=self,
alternatives=kwargs,
default_key=default_key,
prefix_keys=prefix_keys,
)
class RunnableSequence(RunnableSerializable[Input, Output]): |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | """A sequence of runnables, where the output of each is the input of the next.
RunnableSequence is the most important composition operator in LangChain as it is
used in virtually every chain.
A RunnableSequence can be instantiated directly or more commonly by using the `|`
operator where either the left or right operands (or both) must be a Runnable.
Any RunnableSequence automatically supports sync, async, batch.
The default implementations of `batch` and `abatch` utilize threadpools and
asyncio gather and will be faster than naive invocation of invoke or ainvoke
for IO bound runnables.
Batching is implemented by invoking the batch method on each component of the
RunnableSequence in order.
A RunnableSequence preserves the streaming properties of its components, so if all
components of the sequence implement a `transform` method -- which
is the method that implements the logic to map a streaming input to a streaming
output -- then the sequence will be able to stream input to output!
If any component of the sequence does not implement transform then the
streaming will only begin after this component is run. If there are
multiple blocking components, streaming begins after the last one. |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | Please note: RunnableLambdas do not support `transform` by default! So if
you need to use a RunnableLambdas be careful about where you place them in a
RunnableSequence (if you need to use the .stream()/.astream() methods).
If you need arbitrary logic and need streaming, you can subclass
Runnable, and implement `transform` for whatever logic you need.
Here is a simple example that uses simple functions to illustrate the use of
RunnableSequence:
.. code-block:: python
from langchain_core.runnables import RunnableLambda
def add_one(x: int) -> int:
return x + 1
def mul_two(x: int) -> int:
return x * 2
runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1 | runnable_2
# Or equivalently:
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await runnable.ainvoke(1)
sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
Here's an example that uses streams JSON output generated by an LLM:
.. code-block:: python
from langchain_core.output_parsers.json import SimpleJsonOutputParser
from langchain_core.chat_models.openai import ChatOpenAI
prompt = PromptTemplate.from_template(
'In JSON format, give me a list of {topic} and their '
'corresponding names in French, Spanish and in a '
'Cat Language.' |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | )
model = ChatOpenAI()
chain = prompt | model | SimpleJsonOutputParser()
async for chunk in chain.astream({'topic': 'colors'}):
print('-')
print(chunk, sep='', flush=True)
"""
first: Runnable[Input, Any]
"""The first runnable in the sequence."""
middle: List[Runnable[Any, Any]] = Field(default_factory=list)
"""The middle runnables in the sequence."""
last: Runnable[Any, Output]
"""The last runnable in the sequence."""
@property
def steps(self) -> List[Runnable[Any, Any]]:
"""All the runnables that make up the sequence in order."""
return [self.first] + self.middle + [self.last]
@classmethod
def is_lc_serializable(cls) -> bool:
return True
@classmethod
def get_lc_namespace(cls) -> List[str]:
return cls.__module__.split(".")[:-1]
class Config:
arbitrary_types_allowed = True
@property
def InputType(self) -> Type[Input]: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | return self.first.InputType
@property
def OutputType(self) -> Type[Output]:
return self.last.OutputType
def get_input_schema(
self, config: Optional[RunnableConfig] = None
) -> Type[BaseModel]:
from langchain_core.runnables.passthrough import RunnableAssign
if isinstance(self.first, RunnableAssign):
first = cast(RunnableAssign, self.first)
next_ = self.middle[0] if self.middle else self.last
next_input_schema = next_.get_input_schema(config)
if not next_input_schema.__custom_root_type__:
return create_model(
"RunnableSequenceInput",
**{
k: (v.annotation, v.default)
for k, v in next_input_schema.__fields__.items()
if k not in first.mapper.steps
},
)
return self.first.get_input_schema(config)
def get_output_schema(
self, config: Optional[RunnableConfig] = None
) -> Type[BaseModel]:
return self.last.get_output_schema(config)
@property
def config_specs(self) -> List[ConfigurableFieldSpec]: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | return get_unique_config_specs(
spec for step in self.steps for spec in step.config_specs
)
def __repr__(self) -> str:
return "\n| ".join(
repr(s) if i == 0 else indent_lines_after_first(repr(s), "| ")
for i, s in enumerate(self.steps)
)
def __or__(
self,
other: Union[
Runnable[Any, Other],
Callable[[Any], Other],
Callable[[Iterator[Any]], Iterator[Other]],
Mapping[str, Union[Runnable[Any, Other], Callable[[Any], Other], Any]],
],
) -> RunnableSerializable[Input, Other]:
if isinstance(other, RunnableSequence):
return RunnableSequence(
first=self.first,
middle=self.middle + [self.last] + [other.first] + other.middle,
last=other.last,
)
else:
return RunnableSequence(
first=self.first,
middle=self.middle + [self.last],
last=coerce_to_runnable(other),
)
def __ror__( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self,
other: Union[
Runnable[Other, Any],
Callable[[Other], Any],
Callable[[Iterator[Other]], Iterator[Any]],
Mapping[str, Union[Runnable[Other, Any], Callable[[Other], Any], Any]],
],
) -> RunnableSerializable[Other, Output]:
if isinstance(other, RunnableSequence):
return RunnableSequence(
first=other.first,
middle=other.middle + [other.last] + [self.first] + self.middle,
last=self.last,
)
else:
return RunnableSequence(
first=coerce_to_runnable(other),
middle=[self.first] + self.middle,
last=self.last,
)
def invoke(self, input: Input, config: Optional[RunnableConfig] = None) -> Output: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | config = ensure_config(config)
callback_manager = get_callback_manager_for_config(config)
run_manager = callback_manager.on_chain_start(
dumpd(self), input, name=config.get("run_name")
)
try:
for i, step in enumerate(self.steps):
input = step.invoke(
input,
patch_config(
config, callbacks=run_manager.get_child(f"seq:step:{i+1}")
),
)
except BaseException as e:
run_manager.on_chain_error(e)
raise
else:
run_manager.on_chain_end(input)
return cast(Output, input)
async def ainvoke( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self,
input: Input,
config: Optional[RunnableConfig] = None,
**kwargs: Optional[Any],
) -> Output:
config = ensure_config(config)
callback_manager = get_async_callback_manager_for_config(config)
run_manager = await callback_manager.on_chain_start(
dumpd(self), input, name=config.get("run_name")
)
try:
for i, step in enumerate(self.steps):
input = await step.ainvoke(
input,
patch_config(
config, callbacks=run_manager.get_child(f"seq:step:{i+1}")
),
)
except BaseException as e:
await run_manager.on_chain_error(e)
raise
else:
await run_manager.on_chain_end(input)
return cast(Output, input)
def batch( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self,
inputs: List[Input],
config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None,
*,
return_exceptions: bool = False,
**kwargs: Optional[Any],
) -> List[Output]:
from langchain_core.callbacks.manager import CallbackManager
if not inputs:
return []
configs = get_config_list(config, len(inputs))
callback_managers = [
CallbackManager.configure(
inheritable_callbacks=config.get("callbacks"),
local_callbacks=None,
verbose=False,
inheritable_tags=config.get("tags"),
local_tags=None,
inheritable_metadata=config.get("metadata"),
local_metadata=None,
)
for config in configs |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | ]
run_managers = [
cm.on_chain_start(
dumpd(self),
input,
name=config.get("run_name"),
)
for cm, input, config in zip(callback_managers, inputs, configs)
]
try:
if return_exceptions:
failed_inputs_map: Dict[int, Exception] = {}
for stepidx, step in enumerate(self.steps):
remaining_idxs = [
i for i in range(len(configs)) if i not in failed_inputs_map
]
inputs = step.batch(
[
inp
for i, inp in zip(remaining_idxs, inputs)
if i not in failed_inputs_map
], |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | [
patch_config(
config, callbacks=rm.get_child(f"seq:step:{stepidx+1}")
)
for i, (rm, config) in enumerate(zip(run_managers, configs))
if i not in failed_inputs_map
],
return_exceptions=return_exceptions,
**kwargs,
)
for i, inp in zip(remaining_idxs, inputs):
if isinstance(inp, Exception):
failed_inputs_map[i] = inp
inputs = [inp for inp in inputs if not isinstance(inp, Exception)]
if len(failed_inputs_map) == len(configs):
break
inputs_copy = inputs.copy()
inputs = []
for i in range(len(configs)):
if i in failed_inputs_map:
inputs.append(cast(Input, failed_inputs_map[i]))
else:
inputs.append(inputs_copy.pop(0))
else:
for i, step in enumerate(self.steps):
inputs = step.batch( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | inputs,
[
patch_config(
config, callbacks=rm.get_child(f"seq:step:{i+1}")
)
for rm, config in zip(run_managers, configs)
],
)
except BaseException as e:
for rm in run_managers:
rm.on_chain_error(e)
if return_exceptions:
return cast(List[Output], [e for _ in inputs])
else:
raise
else:
first_exception: Optional[Exception] = None
for run_manager, out in zip(run_managers, inputs):
if isinstance(out, Exception):
first_exception = first_exception or out
run_manager.on_chain_error(out)
else:
run_manager.on_chain_end(dumpd(out))
if return_exceptions or first_exception is None:
return cast(List[Output], inputs)
else:
raise first_exception
async def abatch( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self,
inputs: List[Input],
config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None,
*,
return_exceptions: bool = False,
**kwargs: Optional[Any],
) -> List[Output]:
from langchain_core.callbacks.manager import (
AsyncCallbackManager,
)
if not inputs:
return []
configs = get_config_list(config, len(inputs))
callback_managers = [
AsyncCallbackManager.configure(
inheritable_callbacks=config.get("callbacks"),
local_callbacks=None,
verbose=False,
inheritable_tags=config.get("tags"),
local_tags=None,
inheritable_metadata=config.get("metadata"),
local_metadata=None,
)
for config in configs
]
run_managers: List[AsyncCallbackManagerForChainRun] = await asyncio.gather(
*( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | cm.on_chain_start(
dumpd(self),
input,
name=config.get("run_name"),
)
for cm, input, config in zip(callback_managers, inputs, configs)
)
)
try:
if return_exceptions:
failed_inputs_map: Dict[int, Exception] = {}
for stepidx, step in enumerate(self.steps):
remaining_idxs = [
i for i in range(len(configs)) if i not in failed_inputs_map
]
inputs = await step.abatch(
[
inp
for i, inp in zip(remaining_idxs, inputs)
if i not in failed_inputs_map
],
[ |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | patch_config(
config, callbacks=rm.get_child(f"seq:step:{stepidx+1}")
)
for i, (rm, config) in enumerate(zip(run_managers, configs))
if i not in failed_inputs_map
],
return_exceptions=return_exceptions,
**kwargs,
)
for i, inp in zip(remaining_idxs, inputs):
if isinstance(inp, Exception):
failed_inputs_map[i] = inp
inputs = [inp for inp in inputs if not isinstance(inp, Exception)]
if len(failed_inputs_map) == len(configs):
break
inputs_copy = inputs.copy()
inputs = []
for i in range(len(configs)):
if i in failed_inputs_map:
inputs.append(cast(Input, failed_inputs_map[i]))
else:
inputs.append(inputs_copy.pop(0))
else:
for i, step in enumerate(self.steps):
inputs = await step.abatch(
inputs, |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | [
patch_config(
config, callbacks=rm.get_child(f"seq:step:{i+1}")
)
for rm, config in zip(run_managers, configs)
],
)
except BaseException as e:
await asyncio.gather(*(rm.on_chain_error(e) for rm in run_managers))
if return_exceptions:
return cast(List[Output], [e for _ in inputs])
else:
raise
else:
first_exception: Optional[Exception] = None
coros: List[Awaitable[None]] = []
for run_manager, out in zip(run_managers, inputs):
if isinstance(out, Exception):
first_exception = first_exception or out
coros.append(run_manager.on_chain_error(out))
else:
coros.append(run_manager.on_chain_end(dumpd(out)))
await asyncio.gather(*coros)
if return_exceptions or first_exception is None:
return cast(List[Output], inputs)
else:
raise first_exception
def _transform( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self,
input: Iterator[Input],
run_manager: CallbackManagerForChainRun,
config: RunnableConfig,
) -> Iterator[Output]:
steps = [self.first] + self.middle + [self.last]
final_pipeline = cast(Iterator[Output], input)
for step in steps:
final_pipeline = step.transform(
final_pipeline,
patch_config(
config,
callbacks=run_manager.get_child(f"seq:step:{steps.index(step)+1}"),
),
)
for output in final_pipeline:
yield output
async def _atransform( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self,
input: AsyncIterator[Input],
run_manager: AsyncCallbackManagerForChainRun,
config: RunnableConfig,
) -> AsyncIterator[Output]:
steps = [self.first] + self.middle + [self.last]
final_pipeline = cast(AsyncIterator[Output], input)
for step in steps:
final_pipeline = step.atransform(
final_pipeline,
patch_config(
config,
callbacks=run_manager.get_child(f"seq:step:{steps.index(step)+1}"),
),
)
async for output in final_pipeline:
yield output
def transform( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self,
input: Iterator[Input],
config: Optional[RunnableConfig] = None,
**kwargs: Optional[Any],
) -> Iterator[Output]:
yield from self._transform_stream_with_config(
input, self._transform, config, **kwargs
)
def stream( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self,
input: Input,
config: Optional[RunnableConfig] = None,
**kwargs: Optional[Any],
) -> Iterator[Output]:
yield from self.transform(iter([input]), config, **kwargs)
async def atransform(
self,
input: AsyncIterator[Input],
config: Optional[RunnableConfig] = None,
**kwargs: Optional[Any],
) -> AsyncIterator[Output]:
async for chunk in self._atransform_stream_with_config(
input, self._atransform, config, **kwargs
):
yield chunk
async def astream(
self,
input: Input,
config: Optional[RunnableConfig] = None,
**kwargs: Optional[Any],
) -> AsyncIterator[Output]:
async def input_aiter() -> AsyncIterator[Input]:
yield input
async for chunk in self.atransform(input_aiter(), config, **kwargs):
yield chunk
class RunnableParallel(RunnableSerializable[Input, Dict[str, Any]]): |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | """
A runnable that runs a mapping of runnables in parallel,
and returns a mapping of their outputs.
"""
steps: Mapping[str, Runnable[Input, Any]]
def __init__(
self,
__steps: Optional[
Mapping[
str,
Union[
Runnable[Input, Any],
Callable[[Input], Any],
Mapping[str, Union[Runnable[Input, Any], Callable[[Input], Any]]],
],
]
] = None,
**kwargs: Union[
Runnable[Input, Any],
Callable[[Input], Any],
Mapping[str, Union[Runnable[Input, Any], Callable[[Input], Any]]],
],
) -> None:
merged = {**__steps} if __steps is not None else {}
merged.update(kwargs)
super().__init__(
steps={key: coerce_to_runnable(r) for key, r in merged.items()}
)
@classmethod
def is_lc_serializable(cls) -> bool: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | return True
@classmethod
def get_lc_namespace(cls) -> List[str]:
return cls.__module__.split(".")[:-1]
class Config:
arbitrary_types_allowed = True
@property
def InputType(self) -> Any:
for step in self.steps.values():
if step.InputType:
return step.InputType
return Any
def get_input_schema( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self, config: Optional[RunnableConfig] = None
) -> Type[BaseModel]:
if all(
s.get_input_schema(config).schema().get("type", "object") == "object"
for s in self.steps.values()
):
return create_model(
"RunnableParallelInput",
**{
k: (v.annotation, v.default)
for step in self.steps.values()
for k, v in step.get_input_schema(config).__fields__.items()
if k != "__root__"
},
)
return super().get_input_schema(config)
def get_output_schema(
self, config: Optional[RunnableConfig] = None
) -> Type[BaseModel]:
return create_model(
"RunnableParallelOutput",
**{k: (v.OutputType, None) for k, v in self.steps.items()},
)
@property
def config_specs(self) -> List[ConfigurableFieldSpec]: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | return get_unique_config_specs(
spec for step in self.steps.values() for spec in step.config_specs
)
def __repr__(self) -> str:
map_for_repr = ",\n ".join(
f"{k}: {indent_lines_after_first(repr(v), ' ' + k + ': ')}"
for k, v in self.steps.items()
)
return "{\n " + map_for_repr + "\n}"
def invoke(
self, input: Input, config: Optional[RunnableConfig] = None
) -> Dict[str, Any]:
from langchain_core.callbacks.manager import CallbackManager
config = ensure_config(config)
callback_manager = CallbackManager.configure(
inheritable_callbacks=config.get("callbacks"),
local_callbacks=None,
verbose=False,
inheritable_tags=config.get("tags"),
local_tags=None,
inheritable_metadata=config.get("metadata"),
local_metadata=None,
) |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | run_manager = callback_manager.on_chain_start(
dumpd(self), input, name=config.get("run_name")
)
try:
steps = dict(self.steps)
with get_executor_for_config(config) as executor:
futures = [
executor.submit(
step.invoke,
input,
patch_config(
config,
callbacks=run_manager.get_child(f"map:key:{key}"),
),
)
for key, step in steps.items()
]
output = {key: future.result() for key, future in zip(steps, futures)}
except BaseException as e:
run_manager.on_chain_error(e)
raise
else:
run_manager.on_chain_end(output)
return output
async def ainvoke( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self,
input: Input,
config: Optional[RunnableConfig] = None,
**kwargs: Optional[Any],
) -> Dict[str, Any]:
config = ensure_config(config)
callback_manager = get_async_callback_manager_for_config(config)
run_manager = await callback_manager.on_chain_start(
dumpd(self), input, name=config.get("run_name")
)
try:
steps = dict(self.steps)
results = await asyncio.gather(
*(
step.ainvoke(
input,
patch_config(
config, callbacks=run_manager.get_child(f"map:key:{key}") |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | ),
)
for key, step in steps.items()
)
)
output = {key: value for key, value in zip(steps, results)}
except BaseException as e:
await run_manager.on_chain_error(e)
raise
else:
await run_manager.on_chain_end(output)
return output
def _transform(
self,
input: Iterator[Input],
run_manager: CallbackManagerForChainRun,
config: RunnableConfig,
) -> Iterator[AddableDict]:
steps = dict(self.steps)
input_copies = list(safetee(input, len(steps), lock=threading.Lock()))
with get_executor_for_config(config) as executor:
named_generators = [
(
name,
step.transform( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | input_copies.pop(),
patch_config(
config, callbacks=run_manager.get_child(f"map:key:{name}")
),
),
)
for name, step in steps.items()
]
futures = {
executor.submit(next, generator): (step_name, generator)
for step_name, generator in named_generators
}
while futures:
completed_futures, _ = wait(futures, return_when=FIRST_COMPLETED)
for future in completed_futures:
(step_name, generator) = futures.pop(future)
try:
chunk = AddableDict({step_name: future.result()})
yield chunk
futures[executor.submit(next, generator)] = (
step_name,
generator,
)
except StopIteration:
pass
def transform( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self,
input: Iterator[Input],
config: Optional[RunnableConfig] = None,
**kwargs: Any,
) -> Iterator[Dict[str, Any]]:
yield from self._transform_stream_with_config(
input, self._transform, config, **kwargs
)
def stream(
self,
input: Input,
config: Optional[RunnableConfig] = None,
**kwargs: Optional[Any],
) -> Iterator[Dict[str, Any]]:
yield from self.transform(iter([input]), config)
async def _atransform( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self,
input: AsyncIterator[Input],
run_manager: AsyncCallbackManagerForChainRun,
config: RunnableConfig,
) -> AsyncIterator[AddableDict]:
steps = dict(self.steps)
input_copies = list(atee(input, len(steps), lock=asyncio.Lock()))
named_generators = [
(
name,
step.atransform(
input_copies.pop(),
patch_config(
config, callbacks=run_manager.get_child(f"map:key:{name}")
),
),
)
for name, step in steps.items()
]
async def get_next_chunk(generator: AsyncIterator) -> Optional[Output]: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | return await py_anext(generator)
tasks = {
asyncio.create_task(get_next_chunk(generator)): (step_name, generator)
for step_name, generator in named_generators
}
while tasks:
completed_tasks, _ = await asyncio.wait(
tasks, return_when=asyncio.FIRST_COMPLETED
)
for task in completed_tasks:
(step_name, generator) = tasks.pop(task)
try:
chunk = AddableDict({step_name: task.result()})
yield chunk
new_task = asyncio.create_task(get_next_chunk(generator))
tasks[new_task] = (step_name, generator)
except StopAsyncIteration:
pass
async def atransform( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self,
input: AsyncIterator[Input],
config: Optional[RunnableConfig] = None,
**kwargs: Any,
) -> AsyncIterator[Dict[str, Any]]:
async for chunk in self._atransform_stream_with_config(
input, self._atransform, config, **kwargs
):
yield chunk
async def astream(
self,
input: Input,
config: Optional[RunnableConfig] = None,
**kwargs: Optional[Any],
) -> AsyncIterator[Dict[str, Any]]:
async def input_aiter() -> AsyncIterator[Input]:
yield input
async for chunk in self.atransform(input_aiter(), config):
yield chunk
RunnableMap = RunnableParallel
class RunnableGenerator(Runnable[Input, Output]): |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | """
A runnable that runs a generator function.
"""
def __init__(
self,
transform: Union[
Callable[[Iterator[Input]], Iterator[Output]],
Callable[[AsyncIterator[Input]], AsyncIterator[Output]],
],
atransform: Optional[
Callable[[AsyncIterator[Input]], AsyncIterator[Output]]
] = None,
) -> None:
if atransform is not None:
self._atransform = atransform
if inspect.isasyncgenfunction(transform):
self._atransform = transform
elif inspect.isgeneratorfunction(transform):
self._transform = transform
else:
raise TypeError(
"Expected a generator function type for `transform`."
f"Instead got an unsupported type: {type(transform)}"
)
@property
def InputType(self) -> Any: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | func = getattr(self, "_transform", None) or getattr(self, "_atransform")
try:
params = inspect.signature(func).parameters
first_param = next(iter(params.values()), None)
if first_param and first_param.annotation != inspect.Parameter.empty:
return getattr(first_param.annotation, "__args__", (Any,))[0]
else:
return Any
except ValueError:
return Any
@property
def OutputType(self) -> Any: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | func = getattr(self, "_transform", None) or getattr(self, "_atransform")
try:
sig = inspect.signature(func)
return (
getattr(sig.return_annotation, "__args__", (Any,))[0]
if sig.return_annotation != inspect.Signature.empty
else Any
)
except ValueError:
return Any
def __eq__(self, other: Any) -> bool:
if isinstance(other, RunnableGenerator):
if hasattr(self, "_transform") and hasattr(other, "_transform"):
return self._transform == other._transform
elif hasattr(self, "_atransform") and hasattr(other, "_atransform"):
return self._atransform == other._atransform
else:
return False
else:
return False
def __repr__(self) -> str: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | return "RunnableGenerator(...)"
def transform(
self,
input: Iterator[Input],
config: Optional[RunnableConfig] = None,
**kwargs: Any,
) -> Iterator[Output]:
return self._transform_stream_with_config(
input, self._transform, config, **kwargs
)
def stream(
self,
input: Input,
config: Optional[RunnableConfig] = None,
**kwargs: Any,
) -> Iterator[Output]:
return self.transform(iter([input]), config, **kwargs)
def invoke(
self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any
) -> Output:
final = None
for output in self.stream(input, config, **kwargs):
if final is None:
final = output
else:
final = final + output
return cast(Output, final)
def atransform( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self,
input: AsyncIterator[Input],
config: Optional[RunnableConfig] = None,
**kwargs: Any,
) -> AsyncIterator[Output]:
if not hasattr(self, "_atransform"):
raise NotImplementedError("This runnable does not support async methods.")
return self._atransform_stream_with_config(
input, self._atransform, config, **kwargs
)
def astream(
self,
input: Input,
config: Optional[RunnableConfig] = None,
**kwargs: Any,
) -> AsyncIterator[Output]:
async def input_aiter() -> AsyncIterator[Input]:
yield input
return self.atransform(input_aiter(), config, **kwargs)
async def ainvoke(
self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any
) -> Output:
final = None
async for output in self.astream(input, config, **kwargs):
if final is None: |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | final = output
else:
final = final + output
return cast(Output, final)
class RunnableLambda(Runnable[Input, Output]):
"""RunnableLambda converts a python callable into a Runnable.
Wrapping a callable in a RunnableLambda makes the callable usable
within either a sync or async context.
RunnableLambda can be composed as any other Runnable and provides
seamless integration with LangChain tracing.
Examples:
.. code-block:: python
# This is a RunnableLambda
from langchain_core.runnables import RunnableLambda
def add_one(x: int) -> int:
return x + 1
runnable = RunnableLambda(add_one)
runnable.invoke(1) # returns 2
runnable.batch([1, 2, 3]) # returns [2, 3, 4]
# Async is supported by default by delegating to the sync implementation
await runnable.ainvoke(1) # returns 2
await runnable.abatch([1, 2, 3]) # returns [2, 3, 4]
# Alternatively, can provide both synd and sync implementations
async def add_one_async(x: int) -> int:
return x + 1
runnable = RunnableLambda(add_one, afunc=add_one_async)
runnable.invoke(1) # Uses add_one
await runnable.ainvoke(1) # Uses add_one_async
"""
def __init__( |
closed | langchain-ai/langchain | https://github.com/langchain-ai/langchain | 13,407 | RunnableLambda: returned runnable called synchronously when using ainvoke | ### System Info
langchain on master branch
### Who can help?
_No response_
### Information
- [ ] The official example notebooks/scripts
- [X] My own modified scripts
### Related Components
- [ ] LLMs/Chat Models
- [ ] Embedding Models
- [ ] Prompts / Prompt Templates / Prompt Selectors
- [ ] Output Parsers
- [ ] Document Loaders
- [ ] Vector Stores / Retrievers
- [ ] Memory
- [ ] Agents / Agent Executors
- [ ] Tools / Toolkits
- [X] Chains
- [ ] Callbacks/Tracing
- [X] Async
### Reproduction
```
from langchain.schema.runnable import RunnableLambda
import asyncio
def idchain_sync(__input):
print(f'sync chain call: {__input}')
return __input
async def idchain_async(__input):
print(f'async chain call: {__input}')
return __input
idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async)
def func(__input):
return idchain
asyncio.run(RunnableLambda(func).ainvoke('toto'))
#printss 'sync chain call: toto' instead of 'async chain call: toto'
```
### Expected behavior
LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke...
When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke;
However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
| https://github.com/langchain-ai/langchain/issues/13407 | https://github.com/langchain-ai/langchain/pull/13408 | 391f200eaab9af587eea902b264f2d3af929b268 | e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5 | "2023-11-15T17:27:49Z" | python | "2023-11-28T11:18:26Z" | libs/core/langchain_core/runnables/base.py | self,
func: Union[
Union[
Callable[[Input], Output],
Callable[[Input, RunnableConfig], Output],
Callable[[Input, CallbackManagerForChainRun], Output],
Callable[[Input, CallbackManagerForChainRun, RunnableConfig], Output],
],
Union[
Callable[[Input], Awaitable[Output]],
Callable[[Input, RunnableConfig], Awaitable[Output]],
Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]],
Callable[
[Input, AsyncCallbackManagerForChainRun, RunnableConfig],
Awaitable[Output],
],
],
],
afunc: Optional[
Union[
Callable[[Input], Awaitable[Output]],
Callable[[Input, RunnableConfig], Awaitable[Output]],
Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]],
Callable[
[Input, AsyncCallbackManagerForChainRun, RunnableConfig],
Awaitable[Output], |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.