status
stringclasses
1 value
repo_name
stringclasses
31 values
repo_url
stringclasses
31 values
issue_id
int64
1
104k
title
stringlengths
4
233
body
stringlengths
0
186k
issue_url
stringlengths
38
56
pull_url
stringlengths
37
54
before_fix_sha
stringlengths
40
40
after_fix_sha
stringlengths
40
40
report_datetime
unknown
language
stringclasses
5 values
commit_datetime
unknown
updated_file
stringlengths
7
188
chunk_content
stringlengths
1
1.03M
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
{"question": "What is your name?"}, dict(callbacks=[tracer]) ) == ["baz", "qux"] if sys.version_info >= (3, 9): assert tracer.runs == snapshot @freeze_time("2023-01-01") def test_seq_dict_prompt_llm( mocker: MockerFixture, snapshot: SnapshotAssertion ) -> None: passthrough = mocker.Mock(side_effect=lambda x: x) retriever = FakeRetriever() prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + """Context: {documents} Question: {question}""" ) chat = FakeListChatModel(responses=["foo, bar"]) parser = CommaSeparatedListOutputParser() chain: Runnable = ( { "question": RunnablePassthrough[str]() | passthrough, "documents": passthrough | retriever, "just_to_test_lambda": passthrough, } | prompt | chat | parser ) assert repr(chain) == snapshot
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
assert isinstance(chain, RunnableSequence) assert isinstance(chain.first, RunnableParallel) assert chain.middle == [prompt, chat] assert chain.last == parser assert dumps(chain, pretty=True) == snapshot prompt_spy = mocker.spy(prompt.__class__, "invoke") chat_spy = mocker.spy(chat.__class__, "invoke") parser_spy = mocker.spy(parser.__class__, "invoke") tracer = FakeTracer() assert chain.invoke("What is your name?", dict(callbacks=[tracer])) == [ "foo", "bar", ] assert prompt_spy.call_args.args[1] == { "documents": [Document(page_content="foo"), Document(page_content="bar")], "question": "What is your name?", "just_to_test_lambda": "What is your name?", } assert chat_spy.call_args.args[1] == ChatPromptValue( messages=[ SystemMessage(content="You are a nice assistant."), HumanMessage( content="""Context: [Document(page_content='foo'), Document(page_content='bar')] Question: What is your name?""" ), ] )
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
assert parser_spy.call_args.args[1] == AIMessage(content="foo, bar") assert len([r for r in tracer.runs if r.parent_run_id is None]) == 1 parent_run = next(r for r in tracer.runs if r.parent_run_id is None) assert len(parent_run.child_runs) == 4 map_run = parent_run.child_runs[0] assert map_run.name == "RunnableParallel" assert len(map_run.child_runs) == 3 @freeze_time("2023-01-01") def test_seq_prompt_dict(mocker: MockerFixture, snapshot: SnapshotAssertion) -> None: passthrough = mocker.Mock(side_effect=lambda x: x) prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) chat = FakeListChatModel(responses=["i'm a chatbot"]) llm = FakeListLLM(responses=["i'm a textbot"]) chain = ( prompt | passthrough | { "chat": chat, "llm": llm, } ) assert repr(chain) == snapshot assert isinstance(chain, RunnableSequence) assert chain.first == prompt assert chain.middle == [RunnableLambda(passthrough)] assert isinstance(chain.last, RunnableParallel) assert dumps(chain, pretty=True) == snapshot
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
prompt_spy = mocker.spy(prompt.__class__, "invoke") chat_spy = mocker.spy(chat.__class__, "invoke") llm_spy = mocker.spy(llm.__class__, "invoke") tracer = FakeTracer() assert chain.invoke( {"question": "What is your name?"}, dict(callbacks=[tracer]) ) == { "chat": AIMessage(content="i'm a chatbot"), "llm": "i'm a textbot", } assert prompt_spy.call_args.args[1] == {"question": "What is your name?"} assert chat_spy.call_args.args[1] == ChatPromptValue( messages=[ SystemMessage(content="You are a nice assistant."), HumanMessage(content="What is your name?"), ] ) assert llm_spy.call_args.args[1] == ChatPromptValue( messages=[ SystemMessage(content="You are a nice assistant."), HumanMessage(content="What is your name?"), ] ) assert len([r for r in tracer.runs if r.parent_run_id is None]) == 1 parent_run = next(r for r in tracer.runs if r.parent_run_id is None) assert len(parent_run.child_runs) == 3 map_run = parent_run.child_runs[2] assert map_run.name == "RunnableParallel" assert len(map_run.child_runs) == 2
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
@freeze_time("2023-01-01") async def test_router_runnable( mocker: MockerFixture, snapshot: SnapshotAssertion ) -> None: chain1: Runnable = ChatPromptTemplate.from_template( "You are a math genius. Answer the question: {question}" ) | FakeListLLM(responses=["4"]) chain2: Runnable = ChatPromptTemplate.from_template( "You are an english major. Answer the question: {question}" ) | FakeListLLM(responses=["2"]) router: Runnable = RouterRunnable({"math": chain1, "english": chain2}) chain: Runnable = { "key": lambda x: x["key"], "input": {"question": lambda x: x["question"]}, } | router assert dumps(chain, pretty=True) == snapshot result = chain.invoke({"key": "math", "question": "2 + 2"}) assert result == "4" result2 = chain.batch( [{"key": "math", "question": "2 + 2"}, {"key": "english", "question": "2 + 2"}] ) assert result2 == ["4", "2"] result = await chain.ainvoke({"key": "math", "question": "2 + 2"}) assert result == "4" result2 = await chain.abatch( [{"key": "math", "question": "2 + 2"}, {"key": "english", "question": "2 + 2"}] ) assert result2 == ["4", "2"] router_spy = mocker.spy(router.__class__, "invoke")
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
tracer = FakeTracer() assert ( chain.invoke({"key": "math", "question": "2 + 2"}, dict(callbacks=[tracer])) == "4" ) assert router_spy.call_args.args[1] == { "key": "math", "input": {"question": "2 + 2"}, } assert len([r for r in tracer.runs if r.parent_run_id is None]) == 1 parent_run = next(r for r in tracer.runs if r.parent_run_id is None) assert len(parent_run.child_runs) == 2 router_run = parent_run.child_runs[1] assert router_run.name == "RunnableSequence" assert len(router_run.child_runs) == 2 @freeze_time("2023-01-01") async def test_higher_order_lambda_runnable( mocker: MockerFixture, snapshot: SnapshotAssertion ) -> None: math_chain: Runnable = ChatPromptTemplate.from_template( "You are a math genius. Answer the question: {question}" ) | FakeListLLM(responses=["4"]) english_chain: Runnable = ChatPromptTemplate.from_template( "You are an english major. Answer the question: {question}" ) | FakeListLLM(responses=["2"]) input_map: Runnable = RunnableParallel( key=lambda x: x["key"], input={"question": lambda x: x["question"]}, ) def router(input: Dict[str, Any]) -> Runnable:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
if input["key"] == "math": return itemgetter("input") | math_chain elif input["key"] == "english": return itemgetter("input") | english_chain else: raise ValueError(f"Unknown key: {input['key']}") chain: Runnable = input_map | router if sys.version_info >= (3, 9): assert dumps(chain, pretty=True) == snapshot result = chain.invoke({"key": "math", "question": "2 + 2"}) assert result == "4" result2 = chain.batch( [{"key": "math", "question": "2 + 2"}, {"key": "english", "question": "2 + 2"}]
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
) assert result2 == ["4", "2"] result = await chain.ainvoke({"key": "math", "question": "2 + 2"}) assert result == "4" result2 = await chain.abatch( [{"key": "math", "question": "2 + 2"}, {"key": "english", "question": "2 + 2"}] ) assert result2 == ["4", "2"] math_spy = mocker.spy(math_chain.__class__, "invoke") tracer = FakeTracer() assert ( chain.invoke({"key": "math", "question": "2 + 2"}, dict(callbacks=[tracer])) == "4" ) assert math_spy.call_args.args[1] == { "key": "math", "input": {"question": "2 + 2"}, } assert len([r for r in tracer.runs if r.parent_run_id is None]) == 1 parent_run = next(r for r in tracer.runs if r.parent_run_id is None) assert len(parent_run.child_runs) == 2 router_run = parent_run.child_runs[1] assert router_run.name == "router" assert len(router_run.child_runs) == 1 math_run = router_run.child_runs[0] assert math_run.name == "RunnableSequence" assert len(math_run.child_runs) == 3 async def arouter(input: Dict[str, Any]) -> Runnable:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
if input["key"] == "math": return itemgetter("input") | math_chain elif input["key"] == "english": return itemgetter("input") | english_chain else: raise ValueError(f"Unknown key: {input['key']}") achain: Runnable = input_map | arouter math_spy = mocker.spy(math_chain.__class__, "ainvoke") tracer = FakeTracer() assert ( await achain.ainvoke( {"key": "math", "question": "2 + 2"}, dict(callbacks=[tracer]) ) == "4" ) assert math_spy.call_args.args[1] == { "key": "math", "input": {"question": "2 + 2"}, } assert len([r for r in tracer.runs if r.parent_run_id is None]) == 1 parent_run = next(r for r in tracer.runs if r.parent_run_id is None) assert len(parent_run.child_runs) == 2 router_run = parent_run.child_runs[1] assert router_run.name == "arouter" assert len(router_run.child_runs) == 1 math_run = router_run.child_runs[0] assert math_run.name == "RunnableSequence" assert len(math_run.child_runs) == 3
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
@freeze_time("2023-01-01") def test_seq_prompt_map(mocker: MockerFixture, snapshot: SnapshotAssertion) -> None: passthrough = mocker.Mock(side_effect=lambda x: x) prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) chat = FakeListChatModel(responses=["i'm a chatbot"]) llm = FakeListLLM(responses=["i'm a textbot"]) chain = ( prompt | passthrough | { "chat": chat.bind(stop=["Thought:"]), "llm": llm, "passthrough": passthrough, } ) assert isinstance(chain, RunnableSequence) assert chain.first == prompt assert chain.middle == [RunnableLambda(passthrough)] assert isinstance(chain.last, RunnableParallel) assert dumps(chain, pretty=True) == snapshot prompt_spy = mocker.spy(prompt.__class__, "invoke") chat_spy = mocker.spy(chat.__class__, "invoke") llm_spy = mocker.spy(llm.__class__, "invoke") tracer = FakeTracer() assert chain.invoke( {"question": "What is your name?"}, dict(callbacks=[tracer])
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
) == { "chat": AIMessage(content="i'm a chatbot"), "llm": "i'm a textbot", "passthrough": ChatPromptValue( messages=[ SystemMessage(content="You are a nice assistant."), HumanMessage(content="What is your name?"), ] ), } assert prompt_spy.call_args.args[1] == {"question": "What is your name?"} assert chat_spy.call_args.args[1] == ChatPromptValue( messages=[ SystemMessage(content="You are a nice assistant."), HumanMessage(content="What is your name?"), ] ) assert llm_spy.call_args.args[1] == ChatPromptValue( messages=[ SystemMessage(content="You are a nice assistant."), HumanMessage(content="What is your name?"), ] ) assert len([r for r in tracer.runs if r.parent_run_id is None]) == 1 parent_run = next(r for r in tracer.runs if r.parent_run_id is None) assert len(parent_run.child_runs) == 3 map_run = parent_run.child_runs[2] assert map_run.name == "RunnableParallel" assert len(map_run.child_runs) == 3 def test_map_stream() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) chat_res = "i'm a chatbot" chat = FakeListChatModel(responses=[chat_res], sleep=0.01) llm_res = "i'm a textbot" llm = FakeStreamingListLLM(responses=[llm_res], sleep=0.01) chain: Runnable = prompt | { "chat": chat.bind(stop=["Thought:"]), "llm": llm, "passthrough": RunnablePassthrough(), } stream = chain.stream({"question": "What is your name?"}) final_value = None streamed_chunks = []
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
for chunk in stream: streamed_chunks.append(chunk) if final_value is None: final_value = chunk else: final_value += chunk assert streamed_chunks[0] in [ {"passthrough": prompt.invoke({"question": "What is your name?"})}, {"llm": "i"}, {"chat": AIMessageChunk(content="i")}, ] assert len(streamed_chunks) == len(chat_res) + len(llm_res) + 1 assert all(len(c.keys()) == 1 for c in streamed_chunks) assert final_value is not None assert final_value.get("chat").content == "i'm a chatbot" assert final_value.get("llm") == "i'm a textbot" assert final_value.get("passthrough") == prompt.invoke( {"question": "What is your name?"} ) def test_map_stream_iterator_input() -> None: prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) chat_res = "i'm a chatbot" chat = FakeListChatModel(responses=[chat_res], sleep=0.01) llm_res = "i'm a textbot" llm = FakeStreamingListLLM(responses=[llm_res], sleep=0.01)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
chain: Runnable = ( prompt | llm | { "chat": chat.bind(stop=["Thought:"]), "llm": llm, "passthrough": RunnablePassthrough(), } ) stream = chain.stream({"question": "What is your name?"}) final_value = None streamed_chunks = [] for chunk in stream: streamed_chunks.append(chunk) if final_value is None: final_value = chunk else: final_value += chunk assert streamed_chunks[0] in [ {"passthrough": "i"}, {"llm": "i"}, {"chat": AIMessageChunk(content="i")}, ] assert len(streamed_chunks) == len(chat_res) + len(llm_res) + len(llm_res) assert all(len(c.keys()) == 1 for c in streamed_chunks) assert final_value is not None assert final_value.get("chat").content == "i'm a chatbot" assert final_value.get("llm") == "i'm a textbot" assert final_value.get("passthrough") == "i'm a textbot" async def test_map_astream() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) chat_res = "i'm a chatbot" chat = FakeListChatModel(responses=[chat_res], sleep=0.01) llm_res = "i'm a textbot" llm = FakeStreamingListLLM(responses=[llm_res], sleep=0.01) chain: Runnable = prompt | { "chat": chat.bind(stop=["Thought:"]), "llm": llm, "passthrough": RunnablePassthrough(), } stream = chain.astream({"question": "What is your name?"}) final_value = None streamed_chunks = [] async for chunk in stream: streamed_chunks.append(chunk) if final_value is None: final_value = chunk else: final_value += chunk assert streamed_chunks[0] in [ {"passthrough": prompt.invoke({"question": "What is your name?"})}, {"llm": "i"},
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
{"chat": AIMessageChunk(content="i")}, ] assert len(streamed_chunks) == len(chat_res) + len(llm_res) + 1 assert all(len(c.keys()) == 1 for c in streamed_chunks) assert final_value is not None assert final_value.get("chat").content == "i'm a chatbot" assert final_value.get("llm") == "i'm a textbot" assert final_value.get("passthrough") == prompt.invoke( {"question": "What is your name?"} ) final_state = None streamed_ops = [] async for chunk in chain.astream_log({"question": "What is your name?"}): streamed_ops.extend(chunk.ops) if final_state is None: final_state = chunk else: final_state += chunk final_state = cast(RunLog, final_state) assert final_state.state["final_output"] == final_value assert len(final_state.state["streamed_output"]) == len(streamed_chunks) assert isinstance(final_state.state["id"], str) assert len(final_state.ops) == len(streamed_ops) assert len(final_state.state["logs"]) == 5 assert ( final_state.state["logs"]["ChatPromptTemplate"]["name"] == "ChatPromptTemplate" ) assert final_state.state["logs"]["ChatPromptTemplate"][ "final_output"
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
] == prompt.invoke({"question": "What is your name?"}) assert final_state.state["logs"]["RunnableParallel"]["name"] == "RunnableParallel" assert sorted(final_state.state["logs"]) == [ "ChatPromptTemplate", "FakeListChatModel", "FakeStreamingListLLM", "RunnableParallel", "RunnablePassthrough", ] final_state = None async for chunk in chain.astream_log( {"question": "What is your name?"}, include_names=["FakeListChatModel"] ): if final_state is None: final_state = chunk else: final_state += chunk final_state = cast(RunLog, final_state) assert final_state.state["final_output"] == final_value assert len(final_state.state["streamed_output"]) == len(streamed_chunks) assert len(final_state.state["logs"]) == 1 assert final_state.state["logs"]["FakeListChatModel"]["name"] == "FakeListChatModel" final_state = None async for chunk in chain.astream_log( {"question": "What is your name?"}, exclude_names=["FakeListChatModel"] ): if final_state is None: final_state = chunk
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
else: final_state += chunk final_state = cast(RunLog, final_state) assert final_state.state["final_output"] == final_value assert len(final_state.state["streamed_output"]) == len(streamed_chunks) assert len(final_state.state["logs"]) == 4 assert ( final_state.state["logs"]["ChatPromptTemplate"]["name"] == "ChatPromptTemplate" ) assert final_state.state["logs"]["ChatPromptTemplate"]["final_output"] == ( prompt.invoke({"question": "What is your name?"}) ) assert final_state.state["logs"]["RunnableParallel"]["name"] == "RunnableParallel" assert sorted(final_state.state["logs"]) == [ "ChatPromptTemplate", "FakeStreamingListLLM", "RunnableParallel", "RunnablePassthrough", ] async def test_map_astream_iterator_input() -> None: prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) chat_res = "i'm a chatbot" chat = FakeListChatModel(responses=[chat_res], sleep=0.01) llm_res = "i'm a textbot" llm = FakeStreamingListLLM(responses=[llm_res], sleep=0.01)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
chain: Runnable = ( prompt | llm | { "chat": chat.bind(stop=["Thought:"]), "llm": llm, "passthrough": RunnablePassthrough(), } ) stream = chain.astream({"question": "What is your name?"}) final_value = None streamed_chunks = [] async for chunk in stream: streamed_chunks.append(chunk) if final_value is None: final_value = chunk else: final_value += chunk assert streamed_chunks[0] in [ {"passthrough": "i"}, {"llm": "i"}, {"chat": AIMessageChunk(content="i")}, ] assert len(streamed_chunks) == len(chat_res) + len(llm_res) + len(llm_res) assert all(len(c.keys()) == 1 for c in streamed_chunks) assert final_value is not None assert final_value.get("chat").content == "i'm a chatbot" assert final_value.get("llm") == "i'm a textbot" assert final_value.get("passthrough") == llm_res def test_with_config_with_config() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
llm = FakeListLLM(responses=["i'm a textbot"]) assert dumpd( llm.with_config({"metadata": {"a": "b"}}).with_config(tags=["a-tag"]) ) == dumpd(llm.with_config({"metadata": {"a": "b"}, "tags": ["a-tag"]})) def test_metadata_is_merged() -> None: """Test metadata and tags defined in with_config and at are merged/concatend.""" foo = RunnableLambda(lambda x: x).with_config({"metadata": {"my_key": "my_value"}}) expected_metadata = { "my_key": "my_value", "my_other_key": "my_other_value", } with collect_runs() as cb: foo.invoke("hi", {"metadata": {"my_other_key": "my_other_value"}}) run = cb.traced_runs[0] assert run.extra is not None assert run.extra["metadata"] == expected_metadata def test_tags_are_appended() -> None: """Test tags from with_config are concatenated with those in invocation.""" foo = RunnableLambda(lambda x: x).with_config({"tags": ["my_key"]}) with collect_runs() as cb: foo.invoke("hi", {"tags": ["invoked_key"]}) run = cb.traced_runs[0] assert isinstance(run.tags, list) assert sorted(run.tags) == sorted(["my_key", "invoked_key"]) def test_bind_bind() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
llm = FakeListLLM(responses=["i'm a textbot"]) assert dumpd( llm.bind(stop=["Thought:"], one="two").bind( stop=["Observation:"], hello="world" ) ) == dumpd(llm.bind(stop=["Observation:"], one="two", hello="world")) def test_deep_stream() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) llm = FakeStreamingListLLM(responses=["foo-lish"]) chain = prompt | llm | StrOutputParser() stream = chain.stream({"question": "What up"}) chunks = [] for chunk in stream: chunks.append(chunk) assert len(chunks) == len("foo-lish") assert "".join(chunks) == "foo-lish" chunks = [] for chunk in (chain | RunnablePassthrough()).stream({"question": "What up"}): chunks.append(chunk) assert len(chunks) == len("foo-lish") assert "".join(chunks) == "foo-lish" def test_deep_stream_assign() -> None: prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) llm = FakeStreamingListLLM(responses=["foo-lish"]) chain: Runnable = prompt | llm | {"str": StrOutputParser()}
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
stream = chain.stream({"question": "What up"}) chunks = [] for chunk in stream: chunks.append(chunk) assert len(chunks) == len("foo-lish") assert add(chunks) == {"str": "foo-lish"} chain_with_assign = chain | RunnablePassthrough.assign( hello=itemgetter("str") | llm ) assert chain_with_assign.input_schema.schema() == { "title": "PromptInput", "type": "object", "properties": {"question": {"title": "Question", "type": "string"}}, } assert chain_with_assign.output_schema.schema() == { "title": "RunnableAssignOutput", "type": "object", "properties": { "str": {"title": "Str"}, "hello": {"title": "Hello", "type": "string"}, }, } chunks = [] for chunk in chain_with_assign.stream({"question": "What up"}): chunks.append(chunk) assert len(chunks) == len("foo-lish") * 2 assert chunks == [ {"str": "f"}, {"str": "o"},
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
{"str": "o"}, {"str": "-"}, {"str": "l"}, {"str": "i"}, {"str": "s"}, {"str": "h"}, {"hello": "f"}, {"hello": "o"}, {"hello": "o"}, {"hello": "-"}, {"hello": "l"}, {"hello": "i"}, {"hello": "s"}, {"hello": "h"}, ] assert add(chunks) == {"str": "foo-lish", "hello": "foo-lish"} assert chain_with_assign.invoke({"question": "What up"}) == { "str": "foo-lish", "hello": "foo-lish", } chain_with_assign_shadow = chain | RunnablePassthrough.assign( str=lambda _: "shadow", hello=itemgetter("str") | llm, ) assert chain_with_assign_shadow.input_schema.schema() == { "title": "PromptInput", "type": "object", "properties": {"question": {"title": "Question", "type": "string"}}, }
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
assert chain_with_assign_shadow.output_schema.schema() == { "title": "RunnableAssignOutput", "type": "object", "properties": { "str": {"title": "Str"}, "hello": {"title": "Hello", "type": "string"}, }, } chunks = [] for chunk in chain_with_assign_shadow.stream({"question": "What up"}): chunks.append(chunk) assert len(chunks) == len("foo-lish") + 1 assert add(chunks) == {"str": "shadow", "hello": "foo-lish"} assert chain_with_assign_shadow.invoke({"question": "What up"}) == { "str": "shadow", "hello": "foo-lish", } async def test_deep_astream() -> None: prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) llm = FakeStreamingListLLM(responses=["foo-lish"]) chain = prompt | llm | StrOutputParser() stream = chain.astream({"question": "What up"}) chunks = [] async for chunk in stream: chunks.append(chunk) assert len(chunks) == len("foo-lish") assert "".join(chunks) == "foo-lish"
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
chunks = [] async for chunk in (chain | RunnablePassthrough()).astream({"question": "What up"}): chunks.append(chunk) assert len(chunks) == len("foo-lish") assert "".join(chunks) == "foo-lish" async def test_deep_astream_assign() -> None: prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) llm = FakeStreamingListLLM(responses=["foo-lish"]) chain: Runnable = prompt | llm | {"str": StrOutputParser()} stream = chain.astream({"question": "What up"}) chunks = [] async for chunk in stream: chunks.append(chunk) assert len(chunks) == len("foo-lish") assert add(chunks) == {"str": "foo-lish"} chain_with_assign = chain | RunnablePassthrough.assign( hello=itemgetter("str") | llm, ) assert chain_with_assign.input_schema.schema() == { "title": "PromptInput", "type": "object", "properties": {"question": {"title": "Question", "type": "string"}}, } assert chain_with_assign.output_schema.schema() == { "title": "RunnableAssignOutput", "type": "object", "properties": {
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
"str": {"title": "Str"}, "hello": {"title": "Hello", "type": "string"}, }, } chunks = [] async for chunk in chain_with_assign.astream({"question": "What up"}): chunks.append(chunk) assert len(chunks) == len("foo-lish") * 2 assert chunks == [ {"str": "f"}, {"str": "o"}, {"str": "o"}, {"str": "-"}, {"str": "l"}, {"str": "i"}, {"str": "s"}, {"str": "h"}, {"hello": "f"}, {"hello": "o"}, {"hello": "o"}, {"hello": "-"}, {"hello": "l"}, {"hello": "i"}, {"hello": "s"}, {"hello": "h"}, ] assert add(chunks) == {"str": "foo-lish", "hello": "foo-lish"} assert await chain_with_assign.ainvoke({"question": "What up"}) == {
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
"str": "foo-lish", "hello": "foo-lish", } chain_with_assign_shadow = chain | RunnablePassthrough.assign( str=lambda _: "shadow", hello=itemgetter("str") | llm, ) assert chain_with_assign_shadow.input_schema.schema() == { "title": "PromptInput", "type": "object", "properties": {"question": {"title": "Question", "type": "string"}}, } assert chain_with_assign_shadow.output_schema.schema() == { "title": "RunnableAssignOutput", "type": "object", "properties": { "str": {"title": "Str"}, "hello": {"title": "Hello", "type": "string"}, }, } chunks = [] async for chunk in chain_with_assign_shadow.astream({"question": "What up"}): chunks.append(chunk) assert len(chunks) == len("foo-lish") + 1 assert add(chunks) == {"str": "shadow", "hello": "foo-lish"} assert await chain_with_assign_shadow.ainvoke({"question": "What up"}) == { "str": "shadow", "hello": "foo-lish", } def test_runnable_sequence_transform() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
llm = FakeStreamingListLLM(responses=["foo-lish"]) chain: Runnable = llm | StrOutputParser() stream = chain.transform(llm.stream("Hi there!")) chunks = [] for chunk in stream: chunks.append(chunk) assert len(chunks) == len("foo-lish") assert "".join(chunks) == "foo-lish" async def test_runnable_sequence_atransform() -> None: llm = FakeStreamingListLLM(responses=["foo-lish"]) chain: Runnable = llm | StrOutputParser() stream = chain.atransform(llm.astream("Hi there!")) chunks = [] async for chunk in stream: chunks.append(chunk) assert len(chunks) == len("foo-lish") assert "".join(chunks) == "foo-lish" @pytest.fixture() def llm_with_fallbacks() -> RunnableWithFallbacks: error_llm = FakeListLLM(responses=["foo"], i=1) pass_llm = FakeListLLM(responses=["bar"]) return error_llm.with_fallbacks([pass_llm]) @pytest.fixture() def llm_with_multi_fallbacks() -> RunnableWithFallbacks:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
error_llm = FakeListLLM(responses=["foo"], i=1) error_llm_2 = FakeListLLM(responses=["baz"], i=1) pass_llm = FakeListLLM(responses=["bar"]) return error_llm.with_fallbacks([error_llm_2, pass_llm]) @pytest.fixture() def llm_chain_with_fallbacks() -> Runnable: error_llm = FakeListLLM(responses=["foo"], i=1) pass_llm = FakeListLLM(responses=["bar"]) prompt = PromptTemplate.from_template("what did baz say to {buz}") return RunnableParallel({"buz": lambda x: x}) | (prompt | error_llm).with_fallbacks( [prompt | pass_llm] ) @pytest.mark.parametrize( "runnable", ["llm_with_fallbacks", "llm_with_multi_fallbacks", "llm_chain_with_fallbacks"], ) async def test_llm_with_fallbacks( runnable: RunnableWithFallbacks, request: Any, snapshot: SnapshotAssertion ) -> None: runnable = request.getfixturevalue(runnable) assert runnable.invoke("hello") == "bar" assert runnable.batch(["hi", "hey", "bye"]) == ["bar"] * 3 assert list(runnable.stream("hello")) == ["bar"] assert await runnable.ainvoke("hello") == "bar" assert await runnable.abatch(["hi", "hey", "bye"]) == ["bar"] * 3 assert list(await runnable.ainvoke("hello")) == list("bar") if sys.version_info >= (3, 9): assert dumps(runnable, pretty=True) == snapshot class FakeSplitIntoListParser(BaseOutputParser[List[str]]):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
"""Parse the output of an LLM call to a comma-separated list.""" @classmethod def is_lc_serializable(cls) -> bool: """Return whether or not the class is serializable.""" return True def get_format_instructions(self) -> str: return ( "Your response should be a list of comma separated values, " "eg: `foo, bar, baz`" ) def parse(self, text: str) -> List[str]: """Parse the output of an LLM call.""" return text.strip().split(", ") def test_each_simple() -> None: """Test that each() works with a simple runnable.""" parser = FakeSplitIntoListParser() assert parser.invoke("first item, second item") == ["first item", "second item"] assert parser.map().invoke(["a, b", "c"]) == [["a", "b"], ["c"]] assert parser.map().map().invoke([["a, b", "c"], ["c, e"]]) == [ [["a", "b"], ["c"]], [["c", "e"]], ] def test_each(snapshot: SnapshotAssertion) -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) first_llm = FakeStreamingListLLM(responses=["first item, second item, third item"]) parser = FakeSplitIntoListParser() second_llm = FakeStreamingListLLM(responses=["this", "is", "a", "test"]) chain = prompt | first_llm | parser | second_llm.map() assert dumps(chain, pretty=True) == snapshot output = chain.invoke({"question": "What up"}) assert output == ["this", "is", "a"] assert (parser | second_llm.map()).invoke("first item, second item") == [ "test", "this", ] def test_recursive_lambda() -> None: def _simple_recursion(x: int) -> Union[int, Runnable]: if x < 10: return RunnableLambda(lambda *args: _simple_recursion(x + 1)) else: return x runnable = RunnableLambda(_simple_recursion) assert runnable.invoke(5) == 10 with pytest.raises(RecursionError): runnable.invoke(0, {"recursion_limit": 9}) def test_retrying(mocker: MockerFixture) -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
def _lambda(x: int) -> Union[int, Runnable]: if x == 1: raise ValueError("x is 1") elif x == 2: raise RuntimeError("x is 2") else: return x _lambda_mock = mocker.Mock(side_effect=_lambda) runnable = RunnableLambda(_lambda_mock) with pytest.raises(ValueError): runnable.invoke(1) assert _lambda_mock.call_count == 1 _lambda_mock.reset_mock() with pytest.raises(ValueError): runnable.with_retry( stop_after_attempt=2, retry_if_exception_type=(ValueError,), ).invoke(1) assert _lambda_mock.call_count == 2 _lambda_mock.reset_mock() with pytest.raises(RuntimeError): runnable.with_retry( stop_after_attempt=2, wait_exponential_jitter=False, retry_if_exception_type=(ValueError,), ).invoke(2) assert _lambda_mock.call_count == 1 _lambda_mock.reset_mock() with pytest.raises(ValueError): runnable.with_retry(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
stop_after_attempt=2, wait_exponential_jitter=False, retry_if_exception_type=(ValueError,), ).batch([1, 2, 0]) assert _lambda_mock.call_count == 3 + 2 _lambda_mock.reset_mock() output = runnable.with_retry( stop_after_attempt=2, wait_exponential_jitter=False, retry_if_exception_type=(ValueError,), ).batch([1, 2, 0], return_exceptions=True) assert _lambda_mock.call_count == 3 + 2 assert len(output) == 3 assert isinstance(output[0], ValueError) assert isinstance(output[1], RuntimeError) assert output[2] == 0 _lambda_mock.reset_mock() async def test_async_retrying(mocker: MockerFixture) -> None: def _lambda(x: int) -> Union[int, Runnable]: if x == 1: raise ValueError("x is 1") elif x == 2: raise RuntimeError("x is 2") else: return x _lambda_mock = mocker.Mock(side_effect=_lambda) runnable = RunnableLambda(_lambda_mock) with pytest.raises(ValueError):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
await runnable.ainvoke(1) assert _lambda_mock.call_count == 1 _lambda_mock.reset_mock() with pytest.raises(ValueError): await runnable.with_retry( stop_after_attempt=2, wait_exponential_jitter=False, retry_if_exception_type=(ValueError, KeyError), ).ainvoke(1) assert _lambda_mock.call_count == 2 _lambda_mock.reset_mock() with pytest.raises(RuntimeError): await runnable.with_retry( stop_after_attempt=2, wait_exponential_jitter=False, retry_if_exception_type=(ValueError,), ).ainvoke(2) assert _lambda_mock.call_count == 1 _lambda_mock.reset_mock() with pytest.raises(ValueError): await runnable.with_retry( stop_after_attempt=2, wait_exponential_jitter=False, retry_if_exception_type=(ValueError,), ).abatch([1, 2, 0]) assert _lambda_mock.call_count == 3 + 2 _lambda_mock.reset_mock() output = await runnable.with_retry( stop_after_attempt=2,
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
wait_exponential_jitter=False, retry_if_exception_type=(ValueError,), ).abatch([1, 2, 0], return_exceptions=True) assert _lambda_mock.call_count == 3 + 2 assert len(output) == 3 assert isinstance(output[0], ValueError) assert isinstance(output[1], RuntimeError) assert output[2] == 0 _lambda_mock.reset_mock() @freeze_time("2023-01-01") def test_seq_batch_return_exceptions(mocker: MockerFixture) -> None: class ControlledExceptionRunnable(Runnable[str, str]): def __init__(self, fail_starts_with: str) -> None: self.fail_starts_with = fail_starts_with def invoke(self, input: Any, config: Optional[RunnableConfig] = None) -> Any: raise NotImplementedError() def _batch( self, inputs: List[str], ) -> List: outputs: List[Any] = [] for input in inputs: if input.startswith(self.fail_starts_with): outputs.append(ValueError()) else: outputs.append(input + "a") return outputs def batch( self,
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
inputs: List[str], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any, ) -> List[str]: return self._batch_with_config( self._batch, inputs, config, return_exceptions=return_exceptions, **kwargs, ) chain = ( ControlledExceptionRunnable("bux") | ControlledExceptionRunnable("bar") | ControlledExceptionRunnable("baz") | ControlledExceptionRunnable("foo") ) assert isinstance(chain, RunnableSequence) with pytest.raises(ValueError): chain.batch(["foo", "bar", "baz", "qux"]) spy = mocker.spy(ControlledExceptionRunnable, "batch") tracer = FakeTracer() inputs = ["foo", "bar", "baz", "qux"] outputs = chain.batch(inputs, dict(callbacks=[tracer]), return_exceptions=True) assert len(outputs) == 4 assert isinstance(outputs[0], ValueError) assert isinstance(outputs[1], ValueError)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
assert isinstance(outputs[2], ValueError) assert outputs[3] == "quxaaaa" assert spy.call_count == 4 inputs_to_batch = [c[0][1] for c in spy.call_args_list] assert inputs_to_batch == [ ["foo", "bar", "baz", "qux"], ["fooa", "bara", "baza", "quxa"], ["fooaa", "bazaa", "quxaa"], ["fooaaa", "quxaaa"], ] parent_runs = sorted( (r for r in tracer.runs if r.parent_run_id is None), key=lambda run: inputs.index(run.inputs["input"]), ) assert len(parent_runs) == 4 parent_run_foo = parent_runs[0] assert parent_run_foo.inputs["input"] == "foo" assert parent_run_foo.error == repr(ValueError()) assert len(parent_run_foo.child_runs) == 4 assert [r.error for r in parent_run_foo.child_runs] == [ None, None,
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
None, repr(ValueError()), ] parent_run_bar = parent_runs[1] assert parent_run_bar.inputs["input"] == "bar" assert parent_run_bar.error == repr(ValueError()) assert len(parent_run_bar.child_runs) == 2 assert [r.error for r in parent_run_bar.child_runs] == [ None, repr(ValueError()), ] parent_run_baz = parent_runs[2] assert parent_run_baz.inputs["input"] == "baz" assert parent_run_baz.error == repr(ValueError()) assert len(parent_run_baz.child_runs) == 3 assert [r.error for r in parent_run_baz.child_runs] == [ None, None, repr(ValueError()), ] parent_run_qux = parent_runs[3] assert parent_run_qux.inputs["input"] == "qux" assert parent_run_qux.error is None assert parent_run_qux.outputs is not None assert parent_run_qux.outputs["output"] == "quxaaaa" assert len(parent_run_qux.child_runs) == 4 assert [r.error for r in parent_run_qux.child_runs] == [None, None, None, None] @freeze_time("2023-01-01") async def test_seq_abatch_return_exceptions(mocker: MockerFixture) -> None: class ControlledExceptionRunnable(Runnable[str, str]):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
def __init__(self, fail_starts_with: str) -> None: self.fail_starts_with = fail_starts_with def invoke(self, input: Any, config: Optional[RunnableConfig] = None) -> Any: raise NotImplementedError() async def _abatch( self, inputs: List[str], ) -> List: outputs: List[Any] = [] for input in inputs: if input.startswith(self.fail_starts_with): outputs.append(ValueError()) else: outputs.append(input + "a") return outputs async def abatch(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
self, inputs: List[str], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any, ) -> List[str]: return await self._abatch_with_config( self._abatch, inputs, config, return_exceptions=return_exceptions, **kwargs, ) chain = ( ControlledExceptionRunnable("bux") | ControlledExceptionRunnable("bar") | ControlledExceptionRunnable("baz") | ControlledExceptionRunnable("foo") ) assert isinstance(chain, RunnableSequence) with pytest.raises(ValueError): await chain.abatch(["foo", "bar", "baz", "qux"]) spy = mocker.spy(ControlledExceptionRunnable, "abatch") tracer = FakeTracer() inputs = ["foo", "bar", "baz", "qux"] outputs = await chain.abatch( inputs, dict(callbacks=[tracer]), return_exceptions=True )
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
assert len(outputs) == 4 assert isinstance(outputs[0], ValueError) assert isinstance(outputs[1], ValueError) assert isinstance(outputs[2], ValueError) assert outputs[3] == "quxaaaa" assert spy.call_count == 4 inputs_to_batch = [c[0][1] for c in spy.call_args_list] assert inputs_to_batch == [ ["foo", "bar", "baz", "qux"], ["fooa", "bara", "baza", "quxa"], ["fooaa", "bazaa", "quxaa"], ["fooaaa", "quxaaa"], ] parent_runs = sorted( (r for r in tracer.runs if r.parent_run_id is None), key=lambda run: inputs.index(run.inputs["input"]), ) assert len(parent_runs) == 4 parent_run_foo = parent_runs[0] assert parent_run_foo.inputs["input"] == "foo" assert parent_run_foo.error == repr(ValueError()) assert len(parent_run_foo.child_runs) == 4
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
assert [r.error for r in parent_run_foo.child_runs] == [ None, None, None, repr(ValueError()), ] parent_run_bar = parent_runs[1] assert parent_run_bar.inputs["input"] == "bar" assert parent_run_bar.error == repr(ValueError()) assert len(parent_run_bar.child_runs) == 2 assert [r.error for r in parent_run_bar.child_runs] == [ None, repr(ValueError()), ] parent_run_baz = parent_runs[2] assert parent_run_baz.inputs["input"] == "baz" assert parent_run_baz.error == repr(ValueError()) assert len(parent_run_baz.child_runs) == 3 assert [r.error for r in parent_run_baz.child_runs] == [ None, None, repr(ValueError()), ] parent_run_qux = parent_runs[3] assert parent_run_qux.inputs["input"] == "qux" assert parent_run_qux.error is None assert parent_run_qux.outputs is not None assert parent_run_qux.outputs["output"] == "quxaaaa" assert len(parent_run_qux.child_runs) == 4 assert [r.error for r in parent_run_qux.child_runs] == [None, None, None, None]
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
def test_runnable_branch_init() -> None: """Verify that runnable branch gets initialized properly.""" add = RunnableLambda(lambda x: x + 1) condition = RunnableLambda(lambda x: x > 0) with pytest.raises(ValueError): RunnableBranch((condition, add)) with pytest.raises(ValueError): RunnableBranch(condition) @pytest.mark.parametrize( "branches", [ [ (RunnableLambda(lambda x: x > 0), RunnableLambda(lambda x: x + 1)), RunnableLambda(lambda x: x - 1), ], [ (RunnableLambda(lambda x: x > 0), RunnableLambda(lambda x: x + 1)), (RunnableLambda(lambda x: x > 5), RunnableLambda(lambda x: x + 1)), RunnableLambda(lambda x: x - 1), ], [ (lambda x: x > 0, lambda x: x + 1), (lambda x: x > 5, lambda x: x + 1), lambda x: x - 1, ], ], ) def test_runnable_branch_init_coercion(branches: Sequence[Any]) -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
"""Verify that runnable branch gets initialized properly.""" runnable = RunnableBranch[int, int](*branches) for branch in runnable.branches: condition, body = branch assert isinstance(condition, Runnable) assert isinstance(body, Runnable) assert isinstance(runnable.default, Runnable) assert runnable.input_schema.schema() == {"title": "RunnableBranchInput"} def test_runnable_branch_invoke_call_counts(mocker: MockerFixture) -> None: """Verify that runnables are invoked only when necessary."""
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
add = RunnableLambda(lambda x: x + 1) sub = RunnableLambda(lambda x: x - 1) condition = RunnableLambda(lambda x: x > 0) spy = mocker.spy(condition, "invoke") add_spy = mocker.spy(add, "invoke") branch = RunnableBranch[int, int]((condition, add), (condition, add), sub) assert spy.call_count == 0 assert add_spy.call_count == 0 assert branch.invoke(1) == 2 assert add_spy.call_count == 1 assert spy.call_count == 1 assert branch.invoke(2) == 3 assert spy.call_count == 2 assert add_spy.call_count == 2 assert branch.invoke(-3) == -4 assert spy.call_count == 4 assert add_spy.call_count == 2 def test_runnable_branch_invoke() -> None: def raise_value_error(x: int) -> int: """Raise a value error.""" raise ValueError("x is too large") branch = RunnableBranch[int, int]( (lambda x: x > 100, raise_value_error), (lambda x: x > 0 and x < 5, lambda x: x + 1), (lambda x: x > 5, lambda x: x * 10), lambda x: x - 1,
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
) assert branch.invoke(1) == 2 assert branch.invoke(10) == 100 assert branch.invoke(0) == -1 with pytest.raises(ValueError): branch.invoke(1000) def test_runnable_branch_batch() -> None: """Test batch variant.""" branch = RunnableBranch[int, int]( (lambda x: x > 0 and x < 5, lambda x: x + 1), (lambda x: x > 5, lambda x: x * 10), lambda x: x - 1, ) assert branch.batch([1, 10, 0]) == [2, 100, -1] async def test_runnable_branch_ainvoke() -> None: """Test async variant of invoke.""" branch = RunnableBranch[int, int]( (lambda x: x > 0 and x < 5, lambda x: x + 1), (lambda x: x > 5, lambda x: x * 10), lambda x: x - 1, ) assert await branch.ainvoke(1) == 2 assert await branch.ainvoke(10) == 100 assert await branch.ainvoke(0) == -1 async def condition(x: int) -> bool: return x > 0 async def add(x: int) -> int:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
return x + 1 async def sub(x: int) -> int: return x - 1 branch = RunnableBranch[int, int]((condition, add), sub) assert await branch.ainvoke(1) == 2 assert await branch.ainvoke(-10) == -11 def test_runnable_branch_invoke_callbacks() -> None: """Verify that callbacks are correctly used in invoke.""" tracer = FakeTracer() def raise_value_error(x: int) -> int: """Raise a value error.""" raise ValueError("x is too large") branch = RunnableBranch[int, int]( (lambda x: x > 100, raise_value_error), lambda x: x - 1, ) assert branch.invoke(1, config={"callbacks": [tracer]}) == 0 assert len(tracer.runs) == 1 assert tracer.runs[0].error is None assert tracer.runs[0].outputs == {"output": 0} with pytest.raises(ValueError): branch.invoke(1000, config={"callbacks": [tracer]}) assert len(tracer.runs) == 2 assert tracer.runs[1].error == "ValueError('x is too large')" assert tracer.runs[1].outputs is None async def test_runnable_branch_ainvoke_callbacks() -> None: """Verify that callbacks are invoked correctly in ainvoke.""" tracer = FakeTracer() async def raise_value_error(x: int) -> int:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
"""Raise a value error.""" raise ValueError("x is too large") branch = RunnableBranch[int, int]( (lambda x: x > 100, raise_value_error), lambda x: x - 1, ) assert await branch.ainvoke(1, config={"callbacks": [tracer]}) == 0 assert len(tracer.runs) == 1 assert tracer.runs[0].error is None assert tracer.runs[0].outputs == {"output": 0} with pytest.raises(ValueError): await branch.ainvoke(1000, config={"callbacks": [tracer]}) assert len(tracer.runs) == 2 assert tracer.runs[1].error == "ValueError('x is too large')" assert tracer.runs[1].outputs is None async def test_runnable_branch_abatch() -> None: """Test async variant of invoke.""" branch = RunnableBranch[int, int]( (lambda x: x > 0 and x < 5, lambda x: x + 1), (lambda x: x > 5, lambda x: x * 10), lambda x: x - 1, )
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
assert await branch.abatch([1, 10, 0]) == [2, 100, -1] @pytest.mark.skipif( sys.version_info < (3, 9), reason="Requires python version >= 3.9 to run." ) def test_representation_of_runnables() -> None: """Test representation of runnables.""" runnable = RunnableLambda(lambda x: x * 2) assert repr(runnable) == "RunnableLambda(lambda x: x * 2)" def f(x: int) -> int: """Return 2.""" return 2 assert repr(RunnableLambda(func=f)) == "RunnableLambda(...)" async def af(x: int) -> int: """Return 2.""" return 2 assert repr(RunnableLambda(func=f, afunc=af)) == "RunnableLambda(...)" assert repr( RunnableLambda(lambda x: x + 2) | { "a": RunnableLambda(lambda x: x * 2), "b": RunnableLambda(lambda x: x * 3), } ) == ( "RunnableLambda(...)\n" "| {\n" " a: RunnableLambda(...),\n" " b: RunnableLambda(...)\n" " }" ), "repr where code string contains multiple lambdas gives up" async def test_tool_from_runnable() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) llm = FakeStreamingListLLM(responses=["foo-lish"]) chain = prompt | llm | StrOutputParser() chain_tool = tool("chain_tool", chain) assert isinstance(chain_tool, BaseTool) assert chain_tool.name == "chain_tool" assert chain_tool.run({"question": "What up"}) == chain.invoke( {"question": "What up"} ) assert await chain_tool.arun({"question": "What up"}) == await chain.ainvoke( {"question": "What up"} ) assert chain_tool.description.endswith(repr(chain)) assert chain_tool.args_schema.schema() == chain.input_schema.schema() assert chain_tool.args_schema.schema() == { "properties": {"question": {"title": "Question", "type": "string"}}, "title": "PromptInput", "type": "object", } async def test_runnable_gen() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
"""Test that a generator can be used as a runnable.""" def gen(input: Iterator[Any]) -> Iterator[int]: yield 1 yield 2 yield 3 runnable = RunnableGenerator(gen) assert runnable.input_schema.schema() == {"title": "RunnableGeneratorInput"} assert runnable.output_schema.schema() == { "title": "RunnableGeneratorOutput", "type": "integer", } assert runnable.invoke(None) == 6 assert list(runnable.stream(None)) == [1, 2, 3] assert runnable.batch([None, None]) == [6, 6] async def agen(input: AsyncIterator[Any]) -> AsyncIterator[int]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
yield 1 yield 2 yield 3 arunnable = RunnableGenerator(agen) assert await arunnable.ainvoke(None) == 6 assert [p async for p in arunnable.astream(None)] == [1, 2, 3] assert await arunnable.abatch([None, None]) == [6, 6] async def test_runnable_gen_transform() -> None: """Test that a generator can be used as a runnable.""" def gen_indexes(length_iter: Iterator[int]) -> Iterator[int]: for i in range(next(length_iter)): yield i async def agen_indexes(length_iter: AsyncIterator[int]) -> AsyncIterator[int]: async for length in length_iter: for i in range(length): yield i def plus_one(input: Iterator[int]) -> Iterator[int]: for i in input: yield i + 1 async def aplus_one(input: AsyncIterator[int]) -> AsyncIterator[int]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,407
RunnableLambda: returned runnable called synchronously when using ainvoke
### System Info langchain on master branch ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from langchain.schema.runnable import RunnableLambda import asyncio def idchain_sync(__input): print(f'sync chain call: {__input}') return __input async def idchain_async(__input): print(f'async chain call: {__input}') return __input idchain = RunnableLambda(func=idchain_sync,afunc=idchain_async) def func(__input): return idchain asyncio.run(RunnableLambda(func).ainvoke('toto')) #printss 'sync chain call: toto' instead of 'async chain call: toto' ``` ### Expected behavior LCEL's route can cause chains to be silently run synchronously, while the user uses ainvoke... When calling a RunnableLambda A returning a chain B with ainvoke, we would expect the new chain B to be called with ainvoke; However, if the function provided to RunnableLambda A is not async, then the chain B will be called with invoke, silently causing all the rest of the chain to be called synchronously.
https://github.com/langchain-ai/langchain/issues/13407
https://github.com/langchain-ai/langchain/pull/13408
391f200eaab9af587eea902b264f2d3af929b268
e17edc4d0b1dccc98df2a7d1db86bfcc0eb66ca5
"2023-11-15T17:27:49Z"
python
"2023-11-28T11:18:26Z"
libs/core/tests/unit_tests/runnables/test_runnable.py
async for i in input: yield i + 1 chain: Runnable = RunnableGenerator(gen_indexes, agen_indexes) | plus_one achain = RunnableGenerator(gen_indexes, agen_indexes) | aplus_one assert chain.input_schema.schema() == { "title": "RunnableGeneratorInput", "type": "integer", } assert chain.output_schema.schema() == { "title": "RunnableGeneratorOutput", "type": "integer", } assert achain.input_schema.schema() == { "title": "RunnableGeneratorInput", "type": "integer", } assert achain.output_schema.schema() == { "title": "RunnableGeneratorOutput", "type": "integer", } assert list(chain.stream(3)) == [1, 2, 3] assert [p async for p in achain.astream(4)] == [1, 2, 3, 4] def test_with_config_callbacks() -> None: result = RunnableLambda(lambda x: x).with_config({"callbacks": []}) assert isinstance(result, RunnableBinding)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,326
Enhancing iMessageChatLoader to prevent skipping messages with extractable content
### Feature request Implement extraction of message content whenever iMessageChatLoader skips messages with null `text` field even though the content is present in other fields. ### Motivation Due to iMessage's database schema change in its new MacOS Ventura, newer messages now have content encoded in the `attributedBody` body, with the `text` field being null. This issue was originally raised by @idvorkin in Issue #10680. ### Your contribution We intend to submit a pull request for this issue close to the end of November.
https://github.com/langchain-ai/langchain/issues/13326
https://github.com/langchain-ai/langchain/pull/13634
e5256bcb69bde036cd02ca4871333451efc11833
32d794f5a3dac334d258f11a1b4b7d727a3549a4
"2023-11-14T04:08:46Z"
python
"2023-11-28T20:45:43Z"
libs/langchain/langchain/chat_loaders/imessage.py
from __future__ import annotations from pathlib import Path from typing import TYPE_CHECKING, Iterator, List, Optional, Union from langchain_core.chat_sessions import ChatSession from langchain_core.messages import HumanMessage from langchain.chat_loaders.base import BaseChatLoader if TYPE_CHECKING: import sqlite3 class IMessageChatLoader(BaseChatLoader): """Load chat sessions from the `iMessage` chat.db SQLite file. It only works on macOS when you have iMessage enabled and have the chat.db file. The chat.db file is likely located at ~/Library/Messages/chat.db. However, your terminal may not have permission to access this file. To resolve this, you can copy the file to a different location, change the permissions of the file, or grant full disk access for your terminal emulator in System Settings > Security and Privacy > Full Disk Access. """ def __init__(self, path: Optional[Union[str, Path]] = None):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,326
Enhancing iMessageChatLoader to prevent skipping messages with extractable content
### Feature request Implement extraction of message content whenever iMessageChatLoader skips messages with null `text` field even though the content is present in other fields. ### Motivation Due to iMessage's database schema change in its new MacOS Ventura, newer messages now have content encoded in the `attributedBody` body, with the `text` field being null. This issue was originally raised by @idvorkin in Issue #10680. ### Your contribution We intend to submit a pull request for this issue close to the end of November.
https://github.com/langchain-ai/langchain/issues/13326
https://github.com/langchain-ai/langchain/pull/13634
e5256bcb69bde036cd02ca4871333451efc11833
32d794f5a3dac334d258f11a1b4b7d727a3549a4
"2023-11-14T04:08:46Z"
python
"2023-11-28T20:45:43Z"
libs/langchain/langchain/chat_loaders/imessage.py
""" Initialize the IMessageChatLoader. Args: path (str or Path, optional): Path to the chat.db SQLite file. Defaults to None, in which case the default path ~/Library/Messages/chat.db will be used. """ if path is None: path = Path.home() / "Library" / "Messages" / "chat.db" self.db_path = path if isinstance(path, Path) else Path(path) if not self.db_path.exists(): raise FileNotFoundError(f"File {self.db_path} not found") try: import sqlite3 except ImportError as e: raise ImportError( "The sqlite3 module is required to load iMessage chats.\n" "Please install it with `pip install pysqlite3`" ) from e def _load_single_chat_session( self, cursor: "sqlite3.Cursor", chat_id: int ) -> ChatSession: """ Load a single chat session from the iMessage chat.db. Args: cursor: SQLite cursor object.
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,326
Enhancing iMessageChatLoader to prevent skipping messages with extractable content
### Feature request Implement extraction of message content whenever iMessageChatLoader skips messages with null `text` field even though the content is present in other fields. ### Motivation Due to iMessage's database schema change in its new MacOS Ventura, newer messages now have content encoded in the `attributedBody` body, with the `text` field being null. This issue was originally raised by @idvorkin in Issue #10680. ### Your contribution We intend to submit a pull request for this issue close to the end of November.
https://github.com/langchain-ai/langchain/issues/13326
https://github.com/langchain-ai/langchain/pull/13634
e5256bcb69bde036cd02ca4871333451efc11833
32d794f5a3dac334d258f11a1b4b7d727a3549a4
"2023-11-14T04:08:46Z"
python
"2023-11-28T20:45:43Z"
libs/langchain/langchain/chat_loaders/imessage.py
chat_id (int): ID of the chat session to load. Returns: ChatSession: Loaded chat session. """ results: List[HumanMessage] = [] query = """ SELECT message.date, handle.id, message.text FROM message JOIN chat_message_join ON message.ROWID = chat_message_join.message_id JOIN handle ON message.handle_id = handle.ROWID WHERE chat_message_join.chat_id = ? ORDER BY message.date ASC; """ cursor.execute(query, (chat_id,)) messages = cursor.fetchall() for date, sender, text in messages: if text: results.append( HumanMessage( role=sender, content=text, additional_kwargs={ "message_time": date, "sender": sender, }, ) ) return ChatSession(messages=results) def lazy_load(self) -> Iterator[ChatSession]: """
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
13,326
Enhancing iMessageChatLoader to prevent skipping messages with extractable content
### Feature request Implement extraction of message content whenever iMessageChatLoader skips messages with null `text` field even though the content is present in other fields. ### Motivation Due to iMessage's database schema change in its new MacOS Ventura, newer messages now have content encoded in the `attributedBody` body, with the `text` field being null. This issue was originally raised by @idvorkin in Issue #10680. ### Your contribution We intend to submit a pull request for this issue close to the end of November.
https://github.com/langchain-ai/langchain/issues/13326
https://github.com/langchain-ai/langchain/pull/13634
e5256bcb69bde036cd02ca4871333451efc11833
32d794f5a3dac334d258f11a1b4b7d727a3549a4
"2023-11-14T04:08:46Z"
python
"2023-11-28T20:45:43Z"
libs/langchain/langchain/chat_loaders/imessage.py
Lazy load the chat sessions from the iMessage chat.db and yield them in the required format. Yields: ChatSession: Loaded chat session. """ import sqlite3 try: conn = sqlite3.connect(self.db_path) except sqlite3.OperationalError as e: raise ValueError( f"Could not open iMessage DB file {self.db_path}.\n" "Make sure your terminal emulator has disk access to this file.\n" " You can either copy the DB file to an accessible location" " or grant full disk access for your terminal emulator." " You can grant full disk access for your terminal emulator" " in System Settings > Security and Privacy > Full Disk Access." ) from e cursor = conn.cursor() query = """SELECT chat_id FROM message JOIN chat_message_join ON message.ROWID = chat_message_join.message_id GROUP BY chat_id ORDER BY MAX(date) DESC;""" cursor.execute(query) chat_ids = [row[0] for row in cursor.fetchall()] for chat_id in chat_ids: yield self._load_single_chat_session(cursor, chat_id) conn.close()
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
10,674
HuggingFace Data Loader fails when context is not str
### System Info langchain 0.0.285 python 3.11.4 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Try to load https://huggingface.co/datasets/hotpot_qa/viewer/fullwiki/validation from langchain.document_loaders import HuggingFaceDatasetLoader dataset_name = "hotpot_qa" page_content_column = "context" name = "fullwiki" loader = HuggingFaceDatasetLoader(dataset_name, page_content_column, name) docs = loader.load() --------------------------------------------------------------------------- ValidationError Traceback (most recent call last) [/Users/deanchanter/Documents/GitHub/comma-chameleons/hello_doc_read.ipynb](https://file+.vscode-resource.vscode-cdn.net/Users/deanchanter/Documents/GitHub/comma-chameleons/hello_doc_read.ipynb) Cell 1 line 8 [4](vscode-notebook-cell:/Users/deanchanter/Documents/GitHub/comma-chameleons/hello_doc_read.ipynb#Y125sZmlsZQ%3D%3D?line=3) name = "fullwiki" [7](vscode-notebook-cell:/Users/deanchanter/Documents/GitHub/comma-chameleons/hello_doc_read.ipynb#Y125sZmlsZQ%3D%3D?line=6) loader = HuggingFaceDatasetLoader(dataset_name, page_content_column, name) ----> [8](vscode-notebook-cell:/Users/deanchanter/Documents/GitHub/comma-chameleons/hello_doc_read.ipynb#Y125sZmlsZQ%3D%3D?line=7) docs = loader.load() File [~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/document_loaders/hugging_face_dataset.py:87](https://file+.vscode-resource.vscode-cdn.net/Users/deanchanter/Documents/GitHub/comma-chameleons/~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/document_loaders/hugging_face_dataset.py:87), in HuggingFaceDatasetLoader.load(self) 85 def load(self) -> List[Document]: 86 """Load documents.""" ---> 87 return list(self.lazy_load()) File [~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/document_loaders/hugging_face_dataset.py:76](https://file+.vscode-resource.vscode-cdn.net/Users/deanchanter/Documents/GitHub/comma-chameleons/~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/document_loaders/hugging_face_dataset.py:76), in HuggingFaceDatasetLoader.lazy_load(self) 59 raise ImportError( 60 "Could not import datasets python package. " 61 "Please install it with `pip install datasets`." 62 ) 64 dataset = load_dataset( 65 path=self.path, 66 name=self.name, (...) 73 num_proc=self.num_proc, 74 ) ---> 76 yield from ( 77 Document( 78 page_content=row.pop(self.page_content_column), 79 metadata=row, 80 ) 81 for key in dataset.keys() 82 for row in dataset[key] 83 ) File [~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/document_loaders/hugging_face_dataset.py:77](https://file+.vscode-resource.vscode-cdn.net/Users/deanchanter/Documents/GitHub/comma-chameleons/~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/document_loaders/hugging_face_dataset.py:77), in <genexpr>(.0) 59 raise ImportError( 60 "Could not import datasets python package. " 61 "Please install it with `pip install datasets`." 62 ) 64 dataset = load_dataset( 65 path=self.path, 66 name=self.name, (...) 73 num_proc=self.num_proc, 74 ) 76 yield from ( ---> 77 Document( 78 page_content=row.pop(self.page_content_column), 79 metadata=row, 80 ) 81 for key in dataset.keys() 82 for row in dataset[key] 83 ) File [~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/load/serializable.py:75](https://file+.vscode-resource.vscode-cdn.net/Users/deanchanter/Documents/GitHub/comma-chameleons/~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/load/serializable.py:75), in Serializable.__init__(self, **kwargs) 74 def __init__(self, **kwargs: Any) -> None: ---> 75 super().__init__(**kwargs) 76 self._lc_kwargs = kwargs File [~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/pydantic/main.py:341](https://file+.vscode-resource.vscode-cdn.net/Users/deanchanter/Documents/GitHub/comma-chameleons/~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/pydantic/main.py:341), in pydantic.main.BaseModel.__init__() ValidationError: 1 validation error for Document page_content str type expected (type=type_error.str) ### Expected behavior Either extend class to handle more types of data or update docs. Will to do a PR to extend if your open.
https://github.com/langchain-ai/langchain/issues/10674
https://github.com/langchain-ai/langchain/pull/13864
981f78f920d4e0514b7e627d9f3266afcccc9859
750485eaa8d6ca364f00454df4602abe2a8c9ba1
"2023-09-16T10:49:37Z"
python
"2023-11-29T03:33:16Z"
libs/langchain/langchain/document_loaders/hugging_face_dataset.py
from typing import Iterator, List, Mapping, Optional, Sequence, Union from langchain_core.documents import Document from langchain.document_loaders.base import BaseLoader class HuggingFaceDatasetLoader(BaseLoader): """Load from `Hugging Face Hub` datasets.""" def __init__( self, path: str, page_content_column: str = "text", name: Optional[str] = None, data_dir: Optional[str] = None, data_files: Optional[ Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]] ] = None, cache_dir: Optional[str] = None, keep_in_memory: Optional[bool] = None, save_infos: bool = False, use_auth_token: Optional[Union[bool, str]] = None, num_proc: Optional[int] = None,
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
10,674
HuggingFace Data Loader fails when context is not str
### System Info langchain 0.0.285 python 3.11.4 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Try to load https://huggingface.co/datasets/hotpot_qa/viewer/fullwiki/validation from langchain.document_loaders import HuggingFaceDatasetLoader dataset_name = "hotpot_qa" page_content_column = "context" name = "fullwiki" loader = HuggingFaceDatasetLoader(dataset_name, page_content_column, name) docs = loader.load() --------------------------------------------------------------------------- ValidationError Traceback (most recent call last) [/Users/deanchanter/Documents/GitHub/comma-chameleons/hello_doc_read.ipynb](https://file+.vscode-resource.vscode-cdn.net/Users/deanchanter/Documents/GitHub/comma-chameleons/hello_doc_read.ipynb) Cell 1 line 8 [4](vscode-notebook-cell:/Users/deanchanter/Documents/GitHub/comma-chameleons/hello_doc_read.ipynb#Y125sZmlsZQ%3D%3D?line=3) name = "fullwiki" [7](vscode-notebook-cell:/Users/deanchanter/Documents/GitHub/comma-chameleons/hello_doc_read.ipynb#Y125sZmlsZQ%3D%3D?line=6) loader = HuggingFaceDatasetLoader(dataset_name, page_content_column, name) ----> [8](vscode-notebook-cell:/Users/deanchanter/Documents/GitHub/comma-chameleons/hello_doc_read.ipynb#Y125sZmlsZQ%3D%3D?line=7) docs = loader.load() File [~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/document_loaders/hugging_face_dataset.py:87](https://file+.vscode-resource.vscode-cdn.net/Users/deanchanter/Documents/GitHub/comma-chameleons/~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/document_loaders/hugging_face_dataset.py:87), in HuggingFaceDatasetLoader.load(self) 85 def load(self) -> List[Document]: 86 """Load documents.""" ---> 87 return list(self.lazy_load()) File [~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/document_loaders/hugging_face_dataset.py:76](https://file+.vscode-resource.vscode-cdn.net/Users/deanchanter/Documents/GitHub/comma-chameleons/~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/document_loaders/hugging_face_dataset.py:76), in HuggingFaceDatasetLoader.lazy_load(self) 59 raise ImportError( 60 "Could not import datasets python package. " 61 "Please install it with `pip install datasets`." 62 ) 64 dataset = load_dataset( 65 path=self.path, 66 name=self.name, (...) 73 num_proc=self.num_proc, 74 ) ---> 76 yield from ( 77 Document( 78 page_content=row.pop(self.page_content_column), 79 metadata=row, 80 ) 81 for key in dataset.keys() 82 for row in dataset[key] 83 ) File [~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/document_loaders/hugging_face_dataset.py:77](https://file+.vscode-resource.vscode-cdn.net/Users/deanchanter/Documents/GitHub/comma-chameleons/~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/document_loaders/hugging_face_dataset.py:77), in <genexpr>(.0) 59 raise ImportError( 60 "Could not import datasets python package. " 61 "Please install it with `pip install datasets`." 62 ) 64 dataset = load_dataset( 65 path=self.path, 66 name=self.name, (...) 73 num_proc=self.num_proc, 74 ) 76 yield from ( ---> 77 Document( 78 page_content=row.pop(self.page_content_column), 79 metadata=row, 80 ) 81 for key in dataset.keys() 82 for row in dataset[key] 83 ) File [~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/load/serializable.py:75](https://file+.vscode-resource.vscode-cdn.net/Users/deanchanter/Documents/GitHub/comma-chameleons/~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/load/serializable.py:75), in Serializable.__init__(self, **kwargs) 74 def __init__(self, **kwargs: Any) -> None: ---> 75 super().__init__(**kwargs) 76 self._lc_kwargs = kwargs File [~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/pydantic/main.py:341](https://file+.vscode-resource.vscode-cdn.net/Users/deanchanter/Documents/GitHub/comma-chameleons/~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/pydantic/main.py:341), in pydantic.main.BaseModel.__init__() ValidationError: 1 validation error for Document page_content str type expected (type=type_error.str) ### Expected behavior Either extend class to handle more types of data or update docs. Will to do a PR to extend if your open.
https://github.com/langchain-ai/langchain/issues/10674
https://github.com/langchain-ai/langchain/pull/13864
981f78f920d4e0514b7e627d9f3266afcccc9859
750485eaa8d6ca364f00454df4602abe2a8c9ba1
"2023-09-16T10:49:37Z"
python
"2023-11-29T03:33:16Z"
libs/langchain/langchain/document_loaders/hugging_face_dataset.py
): """Initialize the HuggingFaceDatasetLoader. Args: path: Path or name of the dataset. page_content_column: Page content column name. Default is "text". Note: Currently the function assumes the content is a string. If it is not download the dataset using huggingface library and convert using the json or pandas loaders. https://github.com/langchain-ai/langchain/issues/10674 name: Name of the dataset configuration. data_dir: Data directory of the dataset configuration. data_files: Path(s) to source data file(s). cache_dir: Directory to read/write data. keep_in_memory: Whether to copy the dataset in-memory. save_infos: Save the dataset information (checksums/size/splits/...). Default is False. use_auth_token: Bearer token for remote files on the Dataset Hub. num_proc: Number of processes. """ self.path = path self.page_content_column = page_content_column self.name = name self.data_dir = data_dir self.data_files = data_files self.cache_dir = cache_dir self.keep_in_memory = keep_in_memory self.save_infos = save_infos self.use_auth_token = use_auth_token self.num_proc = num_proc def lazy_load(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
10,674
HuggingFace Data Loader fails when context is not str
### System Info langchain 0.0.285 python 3.11.4 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Try to load https://huggingface.co/datasets/hotpot_qa/viewer/fullwiki/validation from langchain.document_loaders import HuggingFaceDatasetLoader dataset_name = "hotpot_qa" page_content_column = "context" name = "fullwiki" loader = HuggingFaceDatasetLoader(dataset_name, page_content_column, name) docs = loader.load() --------------------------------------------------------------------------- ValidationError Traceback (most recent call last) [/Users/deanchanter/Documents/GitHub/comma-chameleons/hello_doc_read.ipynb](https://file+.vscode-resource.vscode-cdn.net/Users/deanchanter/Documents/GitHub/comma-chameleons/hello_doc_read.ipynb) Cell 1 line 8 [4](vscode-notebook-cell:/Users/deanchanter/Documents/GitHub/comma-chameleons/hello_doc_read.ipynb#Y125sZmlsZQ%3D%3D?line=3) name = "fullwiki" [7](vscode-notebook-cell:/Users/deanchanter/Documents/GitHub/comma-chameleons/hello_doc_read.ipynb#Y125sZmlsZQ%3D%3D?line=6) loader = HuggingFaceDatasetLoader(dataset_name, page_content_column, name) ----> [8](vscode-notebook-cell:/Users/deanchanter/Documents/GitHub/comma-chameleons/hello_doc_read.ipynb#Y125sZmlsZQ%3D%3D?line=7) docs = loader.load() File [~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/document_loaders/hugging_face_dataset.py:87](https://file+.vscode-resource.vscode-cdn.net/Users/deanchanter/Documents/GitHub/comma-chameleons/~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/document_loaders/hugging_face_dataset.py:87), in HuggingFaceDatasetLoader.load(self) 85 def load(self) -> List[Document]: 86 """Load documents.""" ---> 87 return list(self.lazy_load()) File [~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/document_loaders/hugging_face_dataset.py:76](https://file+.vscode-resource.vscode-cdn.net/Users/deanchanter/Documents/GitHub/comma-chameleons/~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/document_loaders/hugging_face_dataset.py:76), in HuggingFaceDatasetLoader.lazy_load(self) 59 raise ImportError( 60 "Could not import datasets python package. " 61 "Please install it with `pip install datasets`." 62 ) 64 dataset = load_dataset( 65 path=self.path, 66 name=self.name, (...) 73 num_proc=self.num_proc, 74 ) ---> 76 yield from ( 77 Document( 78 page_content=row.pop(self.page_content_column), 79 metadata=row, 80 ) 81 for key in dataset.keys() 82 for row in dataset[key] 83 ) File [~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/document_loaders/hugging_face_dataset.py:77](https://file+.vscode-resource.vscode-cdn.net/Users/deanchanter/Documents/GitHub/comma-chameleons/~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/document_loaders/hugging_face_dataset.py:77), in <genexpr>(.0) 59 raise ImportError( 60 "Could not import datasets python package. " 61 "Please install it with `pip install datasets`." 62 ) 64 dataset = load_dataset( 65 path=self.path, 66 name=self.name, (...) 73 num_proc=self.num_proc, 74 ) 76 yield from ( ---> 77 Document( 78 page_content=row.pop(self.page_content_column), 79 metadata=row, 80 ) 81 for key in dataset.keys() 82 for row in dataset[key] 83 ) File [~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/load/serializable.py:75](https://file+.vscode-resource.vscode-cdn.net/Users/deanchanter/Documents/GitHub/comma-chameleons/~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/load/serializable.py:75), in Serializable.__init__(self, **kwargs) 74 def __init__(self, **kwargs: Any) -> None: ---> 75 super().__init__(**kwargs) 76 self._lc_kwargs = kwargs File [~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/pydantic/main.py:341](https://file+.vscode-resource.vscode-cdn.net/Users/deanchanter/Documents/GitHub/comma-chameleons/~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/pydantic/main.py:341), in pydantic.main.BaseModel.__init__() ValidationError: 1 validation error for Document page_content str type expected (type=type_error.str) ### Expected behavior Either extend class to handle more types of data or update docs. Will to do a PR to extend if your open.
https://github.com/langchain-ai/langchain/issues/10674
https://github.com/langchain-ai/langchain/pull/13864
981f78f920d4e0514b7e627d9f3266afcccc9859
750485eaa8d6ca364f00454df4602abe2a8c9ba1
"2023-09-16T10:49:37Z"
python
"2023-11-29T03:33:16Z"
libs/langchain/langchain/document_loaders/hugging_face_dataset.py
self, ) -> Iterator[Document]: """Load documents lazily.""" try: from datasets import load_dataset except ImportError: raise ImportError( "Could not import datasets python package. " "Please install it with `pip install datasets`." ) dataset = load_dataset( path=self.path, name=self.name, data_dir=self.data_dir, data_files=self.data_files, cache_dir=self.cache_dir, keep_in_memory=self.keep_in_memory, save_infos=self.save_infos, use_auth_token=self.use_auth_token, num_proc=self.num_proc, ) yield from ( Document( page_content=row.pop(self.page_content_column), metadata=row, ) for key in dataset.keys() for row in dataset[key] ) def load(self) -> List[Document]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
10,674
HuggingFace Data Loader fails when context is not str
### System Info langchain 0.0.285 python 3.11.4 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Try to load https://huggingface.co/datasets/hotpot_qa/viewer/fullwiki/validation from langchain.document_loaders import HuggingFaceDatasetLoader dataset_name = "hotpot_qa" page_content_column = "context" name = "fullwiki" loader = HuggingFaceDatasetLoader(dataset_name, page_content_column, name) docs = loader.load() --------------------------------------------------------------------------- ValidationError Traceback (most recent call last) [/Users/deanchanter/Documents/GitHub/comma-chameleons/hello_doc_read.ipynb](https://file+.vscode-resource.vscode-cdn.net/Users/deanchanter/Documents/GitHub/comma-chameleons/hello_doc_read.ipynb) Cell 1 line 8 [4](vscode-notebook-cell:/Users/deanchanter/Documents/GitHub/comma-chameleons/hello_doc_read.ipynb#Y125sZmlsZQ%3D%3D?line=3) name = "fullwiki" [7](vscode-notebook-cell:/Users/deanchanter/Documents/GitHub/comma-chameleons/hello_doc_read.ipynb#Y125sZmlsZQ%3D%3D?line=6) loader = HuggingFaceDatasetLoader(dataset_name, page_content_column, name) ----> [8](vscode-notebook-cell:/Users/deanchanter/Documents/GitHub/comma-chameleons/hello_doc_read.ipynb#Y125sZmlsZQ%3D%3D?line=7) docs = loader.load() File [~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/document_loaders/hugging_face_dataset.py:87](https://file+.vscode-resource.vscode-cdn.net/Users/deanchanter/Documents/GitHub/comma-chameleons/~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/document_loaders/hugging_face_dataset.py:87), in HuggingFaceDatasetLoader.load(self) 85 def load(self) -> List[Document]: 86 """Load documents.""" ---> 87 return list(self.lazy_load()) File [~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/document_loaders/hugging_face_dataset.py:76](https://file+.vscode-resource.vscode-cdn.net/Users/deanchanter/Documents/GitHub/comma-chameleons/~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/document_loaders/hugging_face_dataset.py:76), in HuggingFaceDatasetLoader.lazy_load(self) 59 raise ImportError( 60 "Could not import datasets python package. " 61 "Please install it with `pip install datasets`." 62 ) 64 dataset = load_dataset( 65 path=self.path, 66 name=self.name, (...) 73 num_proc=self.num_proc, 74 ) ---> 76 yield from ( 77 Document( 78 page_content=row.pop(self.page_content_column), 79 metadata=row, 80 ) 81 for key in dataset.keys() 82 for row in dataset[key] 83 ) File [~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/document_loaders/hugging_face_dataset.py:77](https://file+.vscode-resource.vscode-cdn.net/Users/deanchanter/Documents/GitHub/comma-chameleons/~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/document_loaders/hugging_face_dataset.py:77), in <genexpr>(.0) 59 raise ImportError( 60 "Could not import datasets python package. " 61 "Please install it with `pip install datasets`." 62 ) 64 dataset = load_dataset( 65 path=self.path, 66 name=self.name, (...) 73 num_proc=self.num_proc, 74 ) 76 yield from ( ---> 77 Document( 78 page_content=row.pop(self.page_content_column), 79 metadata=row, 80 ) 81 for key in dataset.keys() 82 for row in dataset[key] 83 ) File [~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/load/serializable.py:75](https://file+.vscode-resource.vscode-cdn.net/Users/deanchanter/Documents/GitHub/comma-chameleons/~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/langchain/load/serializable.py:75), in Serializable.__init__(self, **kwargs) 74 def __init__(self, **kwargs: Any) -> None: ---> 75 super().__init__(**kwargs) 76 self._lc_kwargs = kwargs File [~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/pydantic/main.py:341](https://file+.vscode-resource.vscode-cdn.net/Users/deanchanter/Documents/GitHub/comma-chameleons/~/Documents/GitHub/comma-chameleons/env/lib/python3.11/site-packages/pydantic/main.py:341), in pydantic.main.BaseModel.__init__() ValidationError: 1 validation error for Document page_content str type expected (type=type_error.str) ### Expected behavior Either extend class to handle more types of data or update docs. Will to do a PR to extend if your open.
https://github.com/langchain-ai/langchain/issues/10674
https://github.com/langchain-ai/langchain/pull/13864
981f78f920d4e0514b7e627d9f3266afcccc9859
750485eaa8d6ca364f00454df4602abe2a8c9ba1
"2023-09-16T10:49:37Z"
python
"2023-11-29T03:33:16Z"
libs/langchain/langchain/document_loaders/hugging_face_dataset.py
"""Load documents.""" return list(self.lazy_load())
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/parsers/pdf.py
"""Module contains common parsers for PDFs.""" from __future__ import annotations import warnings from typing import ( TYPE_CHECKING, Any, Iterable, Iterator, Mapping, Optional, Sequence,
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/parsers/pdf.py
Union, ) from urllib.parse import urlparse import numpy as np from langchain_core.documents import Document from langchain.document_loaders.base import BaseBlobParser from langchain.document_loaders.blob_loaders import Blob if TYPE_CHECKING: import fitz.fitz import pdfminer.layout import pdfplumber.page import pypdf._page import pypdfium2._helpers.page _PDF_FILTER_WITH_LOSS = ["DCTDecode", "DCT", "JPXDecode"] _PDF_FILTER_WITHOUT_LOSS = [ "LZWDecode", "LZW", "FlateDecode", "Fl", "ASCII85Decode", "A85", "ASCIIHexDecode", "AHx", "RunLengthDecode", "RL", "CCITTFaxDecode", "CCF", "JBIG2Decode", ] def extract_from_images_with_rapidocr(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/parsers/pdf.py
images: Sequence[Union[Iterable[np.ndarray], bytes]] ) -> str: """Extract text from images with RapidOCR. Args: images: Images to extract text from. Returns: Text extracted from images. Raises: ImportError: If `rapidocr-onnxruntime` package is not installed. """ try: from rapidocr_onnxruntime import RapidOCR except ImportError: raise ImportError( "`rapidocr-onnxruntime` package not found, please install it with " "`pip install rapidocr-onnxruntime`" ) ocr = RapidOCR() text = "" for img in images: result, _ = ocr(img) if result: result = [text[1] for text in result] text += "\n".join(result) return text class PyPDFParser(BaseBlobParser):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/parsers/pdf.py
"""Load `PDF` using `pypdf`""" def __init__( self, password: Optional[Union[str, bytes]] = None, extract_images: bool = False ): self.password = password self.extract_images = extract_images def lazy_parse(self, blob: Blob) -> Iterator[Document]: """Lazily parse the blob.""" import pypdf with blob.as_bytes_io() as pdf_file_obj: pdf_reader = pypdf.PdfReader(pdf_file_obj, password=self.password) yield from [ Document( page_content=page.extract_text() + self._extract_images_from_page(page), metadata={"source": blob.source, "page": page_number}, ) for page_number, page in enumerate(pdf_reader.pages) ] def _extract_images_from_page(self, page: pypdf._page.PageObject) -> str:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/parsers/pdf.py
"""Extract images from page and get the text with RapidOCR.""" if not self.extract_images or "/XObject" not in page["/Resources"].keys(): return "" xObject = page["/Resources"]["/XObject"].get_object() images = [] for obj in xObject: if xObject[obj]["/Subtype"] == "/Image": if xObject[obj]["/Filter"][1:] in _PDF_FILTER_WITHOUT_LOSS: height, width = xObject[obj]["/Height"], xObject[obj]["/Width"] images.append( np.frombuffer(xObject[obj].get_data(), dtype=np.uint8).reshape( height, width, -1 ) ) elif xObject[obj]["/Filter"][1:] in _PDF_FILTER_WITH_LOSS: images.append(xObject[obj].get_data()) else: warnings.warn("Unknown PDF Filter!") return extract_from_images_with_rapidocr(images) class PDFMinerParser(BaseBlobParser):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/parsers/pdf.py
"""Parse `PDF` using `PDFMiner`.""" def __init__(self, extract_images: bool = False, *, concatenate_pages: bool = True): """Initialize a parser based on PDFMiner. Args: extract_images: Whether to extract images from PDF. concatenate_pages: If True, concatenate all PDF pages into one a single document. Otherwise, return one document per page. """ self.extract_images = extract_images self.concatenate_pages = concatenate_pages def lazy_parse(self, blob: Blob) -> Iterator[Document]: """Lazily parse the blob.""" if not self.extract_images: from pdfminer.high_level import extract_text with blob.as_bytes_io() as pdf_file_obj: if self.concatenate_pages: text = extract_text(pdf_file_obj) metadata = {"source": blob.source} yield Document(page_content=text, metadata=metadata) else: from pdfminer.pdfpage import PDFPage
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/parsers/pdf.py
pages = PDFPage.get_pages(pdf_file_obj) for i, _ in enumerate(pages): text = extract_text(pdf_file_obj, page_numbers=[i]) metadata = {"source": blob.source, "page": str(i)} yield Document(page_content=text, metadata=metadata) else: import io from pdfminer.converter import PDFPageAggregator, TextConverter from pdfminer.layout import LAParams from pdfminer.pdfinterp import PDFPageInterpreter, PDFResourceManager from pdfminer.pdfpage import PDFPage text_io = io.StringIO() with blob.as_bytes_io() as pdf_file_obj: pages = PDFPage.get_pages(pdf_file_obj) rsrcmgr = PDFResourceManager() device_for_text = TextConverter(rsrcmgr, text_io, laparams=LAParams()) device_for_image = PDFPageAggregator(rsrcmgr, laparams=LAParams()) interpreter_for_text = PDFPageInterpreter(rsrcmgr, device_for_text) interpreter_for_image = PDFPageInterpreter(rsrcmgr, device_for_image) for i, page in enumerate(pages): interpreter_for_text.process_page(page) interpreter_for_image.process_page(page) content = text_io.getvalue() + self._extract_images_from_page( device_for_image.get_result() ) text_io.truncate(0) text_io.seek(0) metadata = {"source": blob.source, "page": str(i)} yield Document(page_content=content, metadata=metadata) def _extract_images_from_page(self, page: pdfminer.layout.LTPage) -> str:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/parsers/pdf.py
"""Extract images from page and get the text with RapidOCR.""" import pdfminer def get_image(layout_object: Any) -> Any: if isinstance(layout_object, pdfminer.layout.LTImage): return layout_object if isinstance(layout_object, pdfminer.layout.LTContainer): for child in layout_object: return get_image(child) else: return None images = [] for img in list(filter(bool, map(get_image, page))): if img.stream["Filter"].name in _PDF_FILTER_WITHOUT_LOSS: images.append( np.frombuffer(img.stream.get_data(), dtype=np.uint8).reshape( img.stream["Height"], img.stream["Width"], -1 ) ) elif img.stream["Filter"].name in _PDF_FILTER_WITH_LOSS: images.append(img.stream.get_data()) else: warnings.warn("Unknown PDF Filter!") return extract_from_images_with_rapidocr(images) class PyMuPDFParser(BaseBlobParser):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/parsers/pdf.py
"""Parse `PDF` using `PyMuPDF`.""" def __init__( self, text_kwargs: Optional[Mapping[str, Any]] = None, extract_images: bool = False, ) -> None: """Initialize the parser. Args: text_kwargs: Keyword arguments to pass to ``fitz.Page.get_text()``. """ self.text_kwargs = text_kwargs or {} self.extract_images = extract_images def lazy_parse(self, blob: Blob) -> Iterator[Document]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/parsers/pdf.py
"""Lazily parse the blob.""" import fitz with blob.as_bytes_io() as file_path: doc = fitz.open(file_path) yield from [ Document( page_content=page.get_text(**self.text_kwargs) + self._extract_images_from_page(doc, page), metadata=dict( { "source": blob.source, "file_path": blob.source, "page": page.number, "total_pages": len(doc), }, **{ k: doc.metadata[k] for k in doc.metadata if type(doc.metadata[k]) in [str, int] }, ), ) for page in doc ] def _extract_images_from_page(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/parsers/pdf.py
self, doc: fitz.fitz.Document, page: fitz.fitz.Page ) -> str: """Extract images from page and get the text with RapidOCR.""" if not self.extract_images: return "" import fitz img_list = page.get_images() imgs = [] for img in img_list: xref = img[0] pix = fitz.Pixmap(doc, xref) imgs.append( np.frombuffer(pix.samples, dtype=np.uint8).reshape( pix.height, pix.width, -1 ) ) return extract_from_images_with_rapidocr(imgs) class PyPDFium2Parser(BaseBlobParser): """Parse `PDF` with `PyPDFium2`.""" def __init__(self, extract_images: bool = False) -> None: """Initialize the parser.""" try: import pypdfium2 except ImportError: raise ImportError( "pypdfium2 package not found, please install it with" " `pip install pypdfium2`" ) self.extract_images = extract_images def lazy_parse(self, blob: Blob) -> Iterator[Document]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/parsers/pdf.py
"""Lazily parse the blob.""" import pypdfium2 with blob.as_bytes_io() as file_path: pdf_reader = pypdfium2.PdfDocument(file_path, autoclose=True) try: for page_number, page in enumerate(pdf_reader): text_page = page.get_textpage() content = text_page.get_text_range() text_page.close() content += "\n" + self._extract_images_from_page(page) page.close() metadata = {"source": blob.source, "page": page_number} yield Document(page_content=content, metadata=metadata) finally: pdf_reader.close() def _extract_images_from_page(self, page: pypdfium2._helpers.page.PdfPage) -> str: """Extract images from page and get the text with RapidOCR.""" if not self.extract_images: return "" import pypdfium2.raw as pdfium_c images = list(page.get_objects(filter=(pdfium_c.FPDF_PAGEOBJ_IMAGE,))) images = list(map(lambda x: x.get_bitmap().to_numpy(), images)) return extract_from_images_with_rapidocr(images) class PDFPlumberParser(BaseBlobParser):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/parsers/pdf.py
"""Parse `PDF` with `PDFPlumber`.""" def __init__( self, text_kwargs: Optional[Mapping[str, Any]] = None, dedupe: bool = False, extract_images: bool = False, ) -> None: """Initialize the parser. Args: text_kwargs: Keyword arguments to pass to ``pdfplumber.Page.extract_text()`` dedupe: Avoiding the error of duplicate characters if `dedupe=True`. """ self.text_kwargs = text_kwargs or {} self.dedupe = dedupe self.extract_images = extract_images def lazy_parse(self, blob: Blob) -> Iterator[Document]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/parsers/pdf.py
"""Lazily parse the blob.""" import pdfplumber with blob.as_bytes_io() as file_path: doc = pdfplumber.open(file_path) yield from [ Document( page_content=self._process_page_content(page) + "\n" + self._extract_images_from_page(page), metadata=dict( { "source": blob.source, "file_path": blob.source, "page": page.page_number - 1, "total_pages": len(doc.pages), }, **{ k: doc.metadata[k] for k in doc.metadata if type(doc.metadata[k]) in [str, int] }, ), ) for page in doc.pages ] def _process_page_content(self, page: pdfplumber.page.Page) -> str:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/parsers/pdf.py
"""Process the page content based on dedupe.""" if self.dedupe: return page.dedupe_chars().extract_text(**self.text_kwargs) return page.extract_text(**self.text_kwargs) def _extract_images_from_page(self, page: pdfplumber.page.Page) -> str: """Extract images from page and get the text with RapidOCR.""" if not self.extract_images: return "" images = [] for img in page.images: if img["stream"]["Filter"].name in _PDF_FILTER_WITHOUT_LOSS: images.append( np.frombuffer(img["stream"].get_data(), dtype=np.uint8).reshape( img["stream"]["Height"], img["stream"]["Width"], -1 ) ) elif img["stream"]["Filter"].name in _PDF_FILTER_WITH_LOSS: images.append(img["stream"].get_data()) else: warnings.warn("Unknown PDF Filter!") return extract_from_images_with_rapidocr(images) class AmazonTextractPDFParser(BaseBlobParser):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/parsers/pdf.py
"""Send `PDF` files to `Amazon Textract` and parse them. For parsing multi-page PDFs, they have to reside on S3. The AmazonTextractPDFLoader calls the [Amazon Textract Service](https://aws.amazon.com/textract/) to convert PDFs into a Document structure. Single and multi-page documents are supported with up to 3000 pages and 512 MB of size. For the call to be successful an AWS account is required, similar to the [AWS CLI](https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html) requirements. Besides the AWS configuration, it is very similar to the other PDF loaders, while also supporting JPEG, PNG and TIFF and non-native PDF formats. ```python from langchain.document_loaders import AmazonTextractPDFLoader loader=AmazonTextractPDFLoader("example_data/alejandro_rosalez_sample-small.jpeg") documents = loader.load() ``` One feature is the linearization of the output. When using the features LAYOUT, FORMS or TABLES together with Textract ```python from langchain.document_loaders import AmazonTextractPDFLoader # you can mix and match each of the features
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/parsers/pdf.py
loader=AmazonTextractPDFLoader( "example_data/alejandro_rosalez_sample-small.jpeg", textract_features=["TABLES", "LAYOUT"]) documents = loader.load() ``` it will generate output that formats the text in reading order and try to output the information in a tabular structure or output the key/value pairs with a colon (key: value). This helps most LLMs to achieve better accuracy when processing these texts. """ def __init__( self, textract_features: Optional[Sequence[int]] = None, client: Optional[Any] = None, ) -> None: """Initializes the parser. Args: textract_features: Features to be used for extraction, each feature should be passed as an int that conforms to the enum `Textract_Features`, see `amazon-textract-caller` pkg client: boto3 textract client """ try: import textractcaller as tc import textractor.entities.document as textractor self.tc = tc self.textractor = textractor if textract_features is not None: self.textract_features = [
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/parsers/pdf.py
tc.Textract_Features(f) for f in textract_features ] else: self.textract_features = [] except ImportError: raise ImportError( "Could not import amazon-textract-caller or " "amazon-textract-textractor python package. Please install it " "with `pip install amazon-textract-caller` & " "`pip install amazon-textract-textractor`." ) if not client: try: import boto3 self.boto3_textract_client = boto3.client("textract") except ImportError: raise ImportError( "Could not import boto3 python package. " "Please install it with `pip install boto3`." ) else: self.boto3_textract_client = client def lazy_parse(self, blob: Blob) -> Iterator[Document]: """Iterates over the Blob pages and returns an Iterator with a Document for each page, like the other parsers If multi-page document, blob.path has to be set to the S3 URI and for single page docs the blob.data is taken """ url_parse_result = urlparse(str(blob.path)) if blob.path else None
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/parsers/pdf.py
if ( url_parse_result and url_parse_result.scheme == "s3" and url_parse_result.netloc ): textract_response_json = self.tc.call_textract( input_document=str(blob.path), features=self.textract_features, boto3_textract_client=self.boto3_textract_client, ) else: textract_response_json = self.tc.call_textract( input_document=blob.as_bytes(), features=self.textract_features, call_mode=self.tc.Textract_Call_Mode.FORCE_SYNC, boto3_textract_client=self.boto3_textract_client, ) document = self.textractor.Document.open(textract_response_json) linearizer_config = self.textractor.TextLinearizationConfig( hide_figure_layout=True, title_prefix="# ", section_header_prefix="## ", list_element_prefix="*", ) for idx, page in enumerate(document.pages): yield Document( page_content=page.get_text(config=linearizer_config), metadata={"source": blob.source, "page": idx + 1}, ) class DocumentIntelligenceParser(BaseBlobParser):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/parsers/pdf.py
"""Loads a PDF with Azure Document Intelligence (formerly Forms Recognizer) and chunks at character level.""" def __init__(self, client: Any, model: str): self.client = client self.model = model def _generate_docs(self, blob: Blob, result: Any) -> Iterator[Document]: for p in result.pages: content = " ".join([line.content for line in p.lines]) d = Document( page_content=content, metadata={ "source": blob.source, "page": p.page_number, }, ) yield d def lazy_parse(self, blob: Blob) -> Iterator[Document]: """Lazily parse the blob.""" with blob.as_bytes_io() as file_obj: poller = self.client.begin_analyze_document(self.model, file_obj) result = poller.result() docs = self._generate_docs(blob, result) yield from docs
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/pdf.py
import json import logging import os import tempfile import time from abc import ABC from io import StringIO from pathlib import Path from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Union from urllib.parse import urlparse import requests from langchain_core.documents import Document from langchain.document_loaders.base import BaseLoader from langchain.document_loaders.blob_loaders import Blob from langchain.document_loaders.parsers.pdf import ( AmazonTextractPDFParser, DocumentIntelligenceParser, PDFMinerParser, PDFPlumberParser, PyMuPDFParser, PyPDFium2Parser, PyPDFParser, ) from langchain.document_loaders.unstructured import UnstructuredFileLoader from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__file__) class UnstructuredPDFLoader(UnstructuredFileLoader):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/pdf.py
"""Load `PDF` files using `Unstructured`. You can run the loader in one of two modes: "single" and "elements". If you use "single" mode, the document will be returned as a single langchain Document object. If you use "elements" mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples -------- from langchain.document_loaders import UnstructuredPDFLoader loader = UnstructuredPDFLoader( "example.pdf", mode="elements", strategy="fast", ) docs = loader.load() References ---------- https://unstructured-io.github.io/unstructured/bricks.html#partition-pdf """ def _get_elements(self) -> List: from unstructured.partition.pdf import partition_pdf return partition_pdf(filename=self.file_path, **self.unstructured_kwargs) class BasePDFLoader(BaseLoader, ABC): """Base Loader class for `PDF` files. If the file is a web path, it will download it to a temporary file, use it, then clean up the temporary file after completion. """ def __init__(self, file_path: str, *, headers: Optional[Dict] = None):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/pdf.py
"""Initialize with a file path. Args: file_path: Either a local, S3 or web path to a PDF file. headers: Headers to use for GET request to download a file from a web path. """ self.file_path = file_path self.web_path = None self.headers = headers if "~" in self.file_path: self.file_path = os.path.expanduser(self.file_path) if not os.path.isfile(self.file_path) and self._is_valid_url(self.file_path): self.temp_dir = tempfile.TemporaryDirectory() _, suffix = os.path.splitext(self.file_path) temp_pdf = os.path.join(self.temp_dir.name, f"tmp{suffix}") self.web_path = self.file_path if not self._is_s3_url(self.file_path): r = requests.get(self.file_path, headers=self.headers) if r.status_code != 200: raise ValueError( "Check the url of your file; returned status code %s" % r.status_code ) with open(temp_pdf, mode="wb") as f: f.write(r.content) self.file_path = str(temp_pdf) elif not os.path.isfile(self.file_path): raise ValueError("File path %s is not a valid file or url" % self.file_path) def __del__(self) -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/pdf.py
if hasattr(self, "temp_dir"): self.temp_dir.cleanup() @staticmethod def _is_valid_url(url: str) -> bool: """Check if the url is valid.""" parsed = urlparse(url) return bool(parsed.netloc) and bool(parsed.scheme) @staticmethod def _is_s3_url(url: str) -> bool: """check if the url is S3""" try: result = urlparse(url) if result.scheme == "s3" and result.netloc: return True return False except ValueError: return False @property def source(self) -> str: return self.web_path if self.web_path is not None else self.file_path class OnlinePDFLoader(BasePDFLoader):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/pdf.py
"""Load online `PDF`.""" def load(self) -> List[Document]: """Load documents.""" loader = UnstructuredPDFLoader(str(self.file_path)) return loader.load() class PyPDFLoader(BasePDFLoader): """Load PDF using pypdf into list of documents. Loader chunks by page and stores page numbers in metadata. """ def __init__( self, file_path: str, password: Optional[Union[str, bytes]] = None, headers: Optional[Dict] = None, extract_images: bool = False, ) -> None: """Initialize with a file path.""" try: import pypdf except ImportError: raise ImportError( "pypdf package not found, please install it with " "`pip install pypdf`" ) super().__init__(file_path, headers=headers) self.parser = PyPDFParser(password=password, extract_images=extract_images) def load(self) -> List[Document]: """Load given path as pages.""" return list(self.lazy_load()) def lazy_load(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/pdf.py
self, ) -> Iterator[Document]: """Lazy load given path as pages.""" if self.web_path: blob = Blob.from_data(open(self.file_path, "rb").read(), path=self.web_path) else: blob = Blob.from_path(self.file_path) yield from self.parser.parse(blob) class PyPDFium2Loader(BasePDFLoader): """Load `PDF` using `pypdfium2` and chunks at character level.""" def __init__( self, file_path: str, *, headers: Optional[Dict] = None, extract_images: bool = False, ): """Initialize with a file path.""" super().__init__(file_path, headers=headers) self.parser = PyPDFium2Parser(extract_images=extract_images) def load(self) -> List[Document]: """Load given path as pages.""" return list(self.lazy_load()) def lazy_load( self, ) -> Iterator[Document]: """Lazy load given path as pages.""" blob = Blob.from_path(self.file_path) yield from self.parser.parse(blob) class PyPDFDirectoryLoader(BaseLoader):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/pdf.py
"""Load a directory with `PDF` files using `pypdf` and chunks at character level. Loader also stores page numbers in metadata. """ def __init__( self, path: str, glob: str = "**/[!.]*.pdf", silent_errors: bool = False, load_hidden: bool = False, recursive: bool = False, extract_images: bool = False, ): self.path = path self.glob = glob self.load_hidden = load_hidden self.recursive = recursive self.silent_errors = silent_errors self.extract_images = extract_images @staticmethod def _is_visible(path: Path) -> bool:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/pdf.py
return not any(part.startswith(".") for part in path.parts) def load(self) -> List[Document]: p = Path(self.path) docs = [] items = p.rglob(self.glob) if self.recursive else p.glob(self.glob) for i in items: if i.is_file(): if self._is_visible(i.relative_to(p)) or self.load_hidden: try: loader = PyPDFLoader(str(i), extract_images=self.extract_images) sub_docs = loader.load() for doc in sub_docs: doc.metadata["source"] = str(i) docs.extend(sub_docs) except Exception as e: if self.silent_errors: logger.warning(e) else: raise e return docs class PDFMinerLoader(BasePDFLoader):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/pdf.py
"""Load `PDF` files using `PDFMiner`.""" def __init__( self, file_path: str, *, headers: Optional[Dict] = None, extract_images: bool = False, concatenate_pages: bool = True, ) -> None: """Initialize with file path. Args: extract_images: Whether to extract images from PDF. concatenate_pages: If True, concatenate all PDF pages into one a single document. Otherwise, return one document per page. """ try: from pdfminer.high_level import extract_text except ImportError: raise ImportError( "`pdfminer` package not found, please install it with " "`pip install pdfminer.six`" ) super().__init__(file_path, headers=headers) self.parser = PDFMinerParser( extract_images=extract_images, concatenate_pages=concatenate_pages ) def load(self) -> List[Document]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/pdf.py
"""Eagerly load the content.""" return list(self.lazy_load()) def lazy_load( self, ) -> Iterator[Document]: """Lazily load documents.""" blob = Blob.from_path(self.file_path) yield from self.parser.parse(blob) class PDFMinerPDFasHTMLLoader(BasePDFLoader):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/pdf.py
"""Load `PDF` files as HTML content using `PDFMiner`.""" def __init__(self, file_path: str, *, headers: Optional[Dict] = None): """Initialize with a file path.""" try: from pdfminer.high_level import extract_text_to_fp except ImportError: raise ImportError( "`pdfminer` package not found, please install it with " "`pip install pdfminer.six`" ) super().__init__(file_path, headers=headers) def load(self) -> List[Document]: """Load file.""" from pdfminer.high_level import extract_text_to_fp from pdfminer.layout import LAParams from pdfminer.utils import open_filename output_string = StringIO() with open_filename(self.file_path, "rb") as fp: extract_text_to_fp( fp, output_string, codec="", laparams=LAParams(), output_type="html", ) metadata = {"source": self.file_path} return [Document(page_content=output_string.getvalue(), metadata=metadata)] class PyMuPDFLoader(BasePDFLoader):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/pdf.py
"""Load `PDF` files using `PyMuPDF`.""" def __init__( self, file_path: str, *, headers: Optional[Dict] = None, extract_images: bool = False, **kwargs: Any, ) -> None: """Initialize with a file path.""" try: import fitz except ImportError: raise ImportError( "`PyMuPDF` package not found, please install it with " "`pip install pymupdf`" ) super().__init__(file_path, headers=headers) self.extract_images = extract_images self.text_kwargs = kwargs def load(self, **kwargs: Any) -> List[Document]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/pdf.py
"""Load file.""" if kwargs: logger.warning( f"Received runtime arguments {kwargs}. Passing runtime args to `load`" f" is deprecated. Please pass arguments during initialization instead." ) text_kwargs = {**self.text_kwargs, **kwargs} parser = PyMuPDFParser( text_kwargs=text_kwargs, extract_images=self.extract_images ) blob = Blob.from_path(self.file_path) return parser.parse(blob) class MathpixPDFLoader(BasePDFLoader):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/pdf.py
"""Load `PDF` files using `Mathpix` service.""" def __init__( self, file_path: str, processed_file_format: str = "md", max_wait_time_seconds: int = 500, should_clean_pdf: bool = False, extra_request_data: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> None: """Initialize with a file path. Args: file_path: a file for loading. processed_file_format: a format of the processed file. Default is "md". max_wait_time_seconds: a maximum time to wait for the response from the server. Default is 500. should_clean_pdf: a flag to clean the PDF file. Default is False. extra_request_data: Additional request data. **kwargs: additional keyword arguments. """ self.mathpix_api_key = get_from_dict_or_env( kwargs, "mathpix_api_key", "MATHPIX_API_KEY" ) self.mathpix_api_id = get_from_dict_or_env( kwargs, "mathpix_api_id", "MATHPIX_API_ID" ) super().__init__(file_path, **kwargs) self.processed_file_format = processed_file_format self.extra_request_data = (
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/pdf.py
extra_request_data if extra_request_data is not None else {} ) self.max_wait_time_seconds = max_wait_time_seconds self.should_clean_pdf = should_clean_pdf @property def _mathpix_headers(self) -> Dict[str, str]: return {"app_id": self.mathpix_api_id, "app_key": self.mathpix_api_key} @property def url(self) -> str: return "https://api.mathpix.com/v3/pdf" @property def data(self) -> dict: options = { "conversion_formats": {self.processed_file_format: True}, **self.extra_request_data, } return {"options_json": json.dumps(options)} def send_pdf(self) -> str: with open(self.file_path, "rb") as f: files = {"file": f} response = requests.post( self.url, headers=self._mathpix_headers, files=files, data=self.data ) response_data = response.json() if "pdf_id" in response_data: pdf_id = response_data["pdf_id"] return pdf_id else: raise ValueError("Unable to send PDF to Mathpix.") def wait_for_processing(self, pdf_id: str) -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/pdf.py
"""Wait for processing to complete. Args: pdf_id: a PDF id. Returns: None """ url = self.url + "/" + pdf_id for _ in range(0, self.max_wait_time_seconds, 5): response = requests.get(url, headers=self.headers) response_data = response.json() status = response_data.get("status", None) if status == "completed": return elif status == "error": raise ValueError("Unable to retrieve PDF from Mathpix") else: print(f"Status: {status}, waiting for processing to complete") time.sleep(5) raise TimeoutError def get_processed_pdf(self, pdf_id: str) -> str: self.wait_for_processing(pdf_id) url = f"{self.url}/{pdf_id}.{self.processed_file_format}" response = requests.get(url, headers=self.headers) return response.content.decode("utf-8") def clean_pdf(self, contents: str) -> str:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/pdf.py
"""Clean the PDF file. Args: contents: a PDF file contents. Returns: """ contents = "\n".join( [line for line in contents.split("\n") if not line.startswith("![]")] ) contents = contents.replace("\\section{", "# ").replace("}", "") contents = ( contents.replace(r"\$", "$") .replace(r"\%", "%") .replace(r"\(", "(") .replace(r"\)", ")") ) return contents def load(self) -> List[Document]: pdf_id = self.send_pdf() contents = self.get_processed_pdf(pdf_id) if self.should_clean_pdf: contents = self.clean_pdf(contents) metadata = {"source": self.source, "file_path": self.source} return [Document(page_content=contents, metadata=metadata)] class PDFPlumberLoader(BasePDFLoader):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,034
Loading online PDFs gives temporary file path as source in metadata
Hi, first up, thank you for making langchain! I was playing around a little and found a minor issue with loading online PDFs, and would like to start contributing to langchain maybe by fixing this. ### System Info langchain 0.0.220, google collab, python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader('https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') pages = loader.load() pages[0].metadata ``` <img width="977" alt="image" src="https://github.com/hwchase17/langchain/assets/21276922/4ededc60-bb03-4502-a8c8-3c221ab109c4"> ### Expected behavior Instead of giving the temporary file path, which is not useful and deleted shortly after, it could be more helpful if the source is set to be the URL passed to it. This would require some fixes in the `langchain/document_loaders/pdf.py` file.
https://github.com/langchain-ai/langchain/issues/7034
https://github.com/langchain-ai/langchain/pull/13274
6f64cb5078bb71007d25fff847541fd8f7713c0c
9bd6e9df365e966938979511237c035a02fb4fa9
"2023-07-01T23:24:53Z"
python
"2023-11-29T20:07:46Z"
libs/langchain/langchain/document_loaders/pdf.py
"""Load `PDF` files using `pdfplumber`.""" def __init__( self, file_path: str, text_kwargs: Optional[Mapping[str, Any]] = None, dedupe: bool = False, headers: Optional[Dict] = None, extract_images: bool = False, ) -> None: """Initialize with a file path.""" try: import pdfplumber except ImportError: raise ImportError( "pdfplumber package not found, please install it with " "`pip install pdfplumber`" ) super().__init__(file_path, headers=headers) self.text_kwargs = text_kwargs or {} self.dedupe = dedupe self.extract_images = extract_images def load(self) -> List[Document]: