hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
df71fa9bfc17373d41a19fa97cbd77687725d81b
60,395
py
Python
abstract/tools/address_parser.py
dchaplinsky/ragoogle
dccb3d29334c3220ea12c46c725c443c8bd725c0
[ "MIT" ]
3
2018-06-10T21:20:56.000Z
2021-04-04T11:21:06.000Z
abstract/tools/address_parser.py
dchaplinsky/ragoogle
dccb3d29334c3220ea12c46c725c443c8bd725c0
[ "MIT" ]
7
2018-08-14T20:54:49.000Z
2020-06-05T18:17:30.000Z
abstract/tools/address_parser.py
dchaplinsky/ragoogle
dccb3d29334c3220ea12c46c725c443c8bd725c0
[ "MIT" ]
3
2018-06-27T12:53:13.000Z
2020-09-25T19:41:46.000Z
__all__ = ['addressProcessor'] # (c) Kyrylo Zakharov (@Amice13), 2019 # Don't look below, you will not understand this Python code :) I don't. from js2py.pyjs import * # setting scope var = Scope( JS_BUILTINS ) set_global_object(var) # Code follows: var.registers(['mixedCyrillicLatinPattern', 'spaceAfterPunctuationPattern', 'replaceAllCyrillicToLatin', 'latinToCyrillic', 'otherPhoneNumbersPattern', 'removeSebastopolKyivPattern', 'quoteSpacePatternEnd', 'firstLettersPattern', 'replaceApostrophes', 'quoteSpacePatternStart', 'districtPattern2', 'beforePunctuationPattern', 'removeStreetPattern2', 'removeLocalityPattern', 'zgLettersPattern', 'startSpace', 'linebreakPattern', 'placeholder', 'noSpacesAfterPunctuationPattern', 'firstLetters', 'replaceCarriages', 'postalCodePattern', 'fixStupidTitles', 'getAddress', 'noSpacesBeforePunctuationPattern', 'preprocessingStringWithPunctuation', 'replaceSpaces', 'reverseCommonRegionPattern', 'removeRegionPattern', 'replaceHyphens', 'localityTypes', 'fixApostrophes', 'localityPattern3', 'regions', 'replaceQuotes', 'removeBuilingPattern', 'districtPattern', 'removeApartmentPattern', 'regionPattern', 'addSpacesAfterPunctuation', 'replaceSpacesBeforePunctuation', 'capitalizeFirst', 'removeDistrictPattern3', 'streetPattern', 'removeExtraSpaces', 'wrongQuotePattern', 'removeSlash', 'doublePunctuationPattern', 'apostrophePattern', 'stringPreprocessing', 'numberPattern', '_geonymTypes', 'removeSpaceAfterPunctuationPattern', 'streetPattern2', 'textPreprocessing', 'russianPattern', 'preserveLinebreakPattern', 'zgLetters', 'crimeaPattern', 'districtPattern3', 'listPattern1', 'addStreetSpaces', 'translit', 'latinInCyrillicPattern', 'removeUkrainePattern', 'otherLetters', 'removeDistrictPattern', 'endSpace', 'localityPattern2', 'allLetters', 'numbersToCyrillic', 'replaceWrongQuote', 'addSpacesBeforePunctuation', 'fullPhoneNumbersPattern', 'removeExtraHyphens', 'buildingPattern', 'removeDistrictPattern2', 'reverseStreetPattern', 'spaceAfterPunctuationPattern2', 'latinPattern', 'removeStreetPattern', 'fixLists', 'spacePattern', 'commonRegionPattern', 'removeReverseDistrictPattern', 'replaceEllipsis', 'apartmentPattern', 'geonymTypes', 'replaceDoublePunctuation', 'preprocessingTextWithPunctuation', 'titleCasePattern', 'restoreLinebreakPattern', 'firstLetter', 'stupidTitlePattern', 'sixPhoneNumbersPattern', 'phonePunctuationPattern', 'replaceLinebreaks', 'commonMistakes', 'removeReverseStreetPattern', 'replaceLatinInCyrillic', 'listPattern2', 'sebastopolKyivPattern', 'removeLocalityPattern2', 'reverseDistrictPattern', 'fixApostrophePattern', 'fixCommonMistakes', 'ellipsisPattern', 'carriagePattern', 'cyrillicToLatin', 'russianToUkraine', 'toTitleCase', 'replaceAllNumbers', 'removeStartEndSpaces', 'replaceAllRussian', 'removeInBracesPattern', 'replaceApostrophePattern', 'cyrillicPattern', 'fivePhoneNumbersPattern', 'latinInCyrillicPattern2', 'buildingPattern2', 'removeCommonRegionPattern', 'replaceSmartLatin', 'localityPattern', 'multipleSpacePattern', 'hyphenPattern', 'replaceSpacesAfterPunctuation', 'removeDoubleSpaces', 'quoteSpacePatternMiddle', 'formatPhone', 'spaceBeforePunctuationPattern', 'shortPhoneNumbersPattern', 'removePostalCodePattern', '_defineProperty', 'removeGarbagePattern', 'removeLocalityPattern3', 'fixStupidTitlePattern', 'doubleSpace', 'removeBuilingPattern2', 'replaceAllLatin', 'fixApostrophePattern2']) @Js def PyJsHoisted__defineProperty_(obj, key, value, this, arguments, var=var): var = Scope({'obj':obj, 'key':key, 'value':value, 'this':this, 'arguments':arguments}, var) var.registers(['obj', 'value', 'key']) if var.get('obj').contains(var.get('key')): PyJs_Object_0_ = Js({'value':var.get('value'),'enumerable':Js(True),'configurable':Js(True),'writable':Js(True)}) var.get('Object').callprop('defineProperty', var.get('obj'), var.get('key'), PyJs_Object_0_) else: var.get('obj').put(var.get('key'), var.get('value')) return var.get('obj') PyJsHoisted__defineProperty_.func_name = '_defineProperty' var.put('_defineProperty', PyJsHoisted__defineProperty_) @Js def PyJsHoisted_capitalizeFirst_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) @Js def PyJs_anonymous_1_(letter, this, arguments, var=var): var = Scope({'letter':letter, 'this':this, 'arguments':arguments}, var) var.registers(['letter']) return var.get('letter').callprop('toUpperCase') PyJs_anonymous_1_._set_name('anonymous') var.put('s', var.get('s').callprop('replace', var.get('firstLetter'), PyJs_anonymous_1_)) return var.get('s') PyJsHoisted_capitalizeFirst_.func_name = 'capitalizeFirst' var.put('capitalizeFirst', PyJsHoisted_capitalizeFirst_) @Js def PyJsHoisted_replaceQuotes_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) var.put('s', var.get('s').callprop('replace', var.get('quoteSpacePatternStart'), Js('$1'))) var.put('s', var.get('s').callprop('replace', var.get('quoteSpacePatternEnd'), Js('$1'))) var.put('s', var.get('s').callprop('replace', var.get('quoteSpacePatternMiddle'), Js(' "'))) return var.get('s') PyJsHoisted_replaceQuotes_.func_name = 'replaceQuotes' var.put('replaceQuotes', PyJsHoisted_replaceQuotes_) @Js def PyJsHoisted_replaceApostrophes_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) var.put('s', var.get('s').callprop('replace', var.get('apostrophePattern'), Js("'"))) return var.get('s') PyJsHoisted_replaceApostrophes_.func_name = 'replaceApostrophes' var.put('replaceApostrophes', PyJsHoisted_replaceApostrophes_) @Js def PyJsHoisted_replaceHyphens_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) var.put('s', var.get('s').callprop('replace', var.get('hyphenPattern'), Js('-'))) return var.get('s') PyJsHoisted_replaceHyphens_.func_name = 'replaceHyphens' var.put('replaceHyphens', PyJsHoisted_replaceHyphens_) @Js def PyJsHoisted_replaceSpaces_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) var.put('s', var.get('s').callprop('replace', var.get('spacePattern'), Js(' '))) var.put('s', var.get('s').callprop('replace', var.get('multipleSpacePattern'), Js(' '))) return var.get('s') PyJsHoisted_replaceSpaces_.func_name = 'replaceSpaces' var.put('replaceSpaces', PyJsHoisted_replaceSpaces_) @Js def PyJsHoisted_removeStartEndSpaces_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) var.put('s', var.get('s').callprop('replace', var.get('startSpace'), Js(''))) var.put('s', var.get('s').callprop('replace', var.get('endSpace'), Js(''))) return var.get('s') PyJsHoisted_removeStartEndSpaces_.func_name = 'removeStartEndSpaces' var.put('removeStartEndSpaces', PyJsHoisted_removeStartEndSpaces_) @Js def PyJsHoisted_removeDoubleSpaces_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) var.put('s', var.get('s').callprop('replace', var.get('doubleSpace'), Js(' '))) return var.get('s') PyJsHoisted_removeDoubleSpaces_.func_name = 'removeDoubleSpaces' var.put('removeDoubleSpaces', PyJsHoisted_removeDoubleSpaces_) @Js def PyJsHoisted_replaceAllLatin_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) @Js def PyJs_anonymous_2_(match, this, arguments, var=var): var = Scope({'match':match, 'this':this, 'arguments':arguments}, var) var.registers(['match']) return var.get('latinToCyrillic').get(var.get('match')) PyJs_anonymous_2_._set_name('anonymous') var.put('s', var.get('s').callprop('replace', var.get('latinPattern'), PyJs_anonymous_2_)) return var.get('s') PyJsHoisted_replaceAllLatin_.func_name = 'replaceAllLatin' var.put('replaceAllLatin', PyJsHoisted_replaceAllLatin_) @Js def PyJsHoisted_replaceAllCyrillicToLatin_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) @Js def PyJs_anonymous_3_(match, this, arguments, var=var): var = Scope({'match':match, 'this':this, 'arguments':arguments}, var) var.registers(['match']) return var.get('cyrillicToLatin').get(var.get('match')) PyJs_anonymous_3_._set_name('anonymous') var.put('s', var.get('s').callprop('replace', var.get('cyrillicPattern'), PyJs_anonymous_3_)) return var.get('s') PyJsHoisted_replaceAllCyrillicToLatin_.func_name = 'replaceAllCyrillicToLatin' var.put('replaceAllCyrillicToLatin', PyJsHoisted_replaceAllCyrillicToLatin_) @Js def PyJsHoisted_replaceAllRussian_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) @Js def PyJs_anonymous_4_(match, this, arguments, var=var): var = Scope({'match':match, 'this':this, 'arguments':arguments}, var) var.registers(['match']) return var.get('russianToUkraine').get(var.get('match')) PyJs_anonymous_4_._set_name('anonymous') var.put('s', var.get('s').callprop('replace', var.get('russianPattern'), PyJs_anonymous_4_)) return var.get('s') PyJsHoisted_replaceAllRussian_.func_name = 'replaceAllRussian' var.put('replaceAllRussian', PyJsHoisted_replaceAllRussian_) @Js def PyJsHoisted_fixApostrophes_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) var.put('s', var.get('s').callprop('replace', var.get('fixApostrophePattern'), Js("'"))) var.put('s', var.get('s').callprop('replace', var.get('fixApostrophePattern2'), Js("'"))) return var.get('s') PyJsHoisted_fixApostrophes_.func_name = 'fixApostrophes' var.put('fixApostrophes', PyJsHoisted_fixApostrophes_) @Js def PyJsHoisted_replaceLatinInCyrillic_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) @Js def PyJs_anonymous_5_(match, this, arguments, var=var): var = Scope({'match':match, 'this':this, 'arguments':arguments}, var) var.registers(['match']) @Js def PyJs_anonymous_6_(letter, this, arguments, var=var): var = Scope({'letter':letter, 'this':this, 'arguments':arguments}, var) var.registers(['letter']) return var.get('latinToCyrillic').get(var.get('letter')) PyJs_anonymous_6_._set_name('anonymous') var.put('match', var.get('match').callprop('split', Js('')).callprop('map', PyJs_anonymous_6_).callprop('join', Js(''))) return var.get('match') PyJs_anonymous_5_._set_name('anonymous') var.put('s', var.get('s').callprop('replace', var.get('latinInCyrillicPattern'), PyJs_anonymous_5_)) @Js def PyJs_anonymous_7_(match, this, arguments, var=var): var = Scope({'match':match, 'this':this, 'arguments':arguments}, var) var.registers(['match']) var.put('match', var.get('replaceAllLatin')(var.get('match'))) return var.get('match') PyJs_anonymous_7_._set_name('anonymous') var.put('s', var.get('s').callprop('replace', var.get('latinInCyrillicPattern2'), PyJs_anonymous_7_)) return var.get('s') PyJsHoisted_replaceLatinInCyrillic_.func_name = 'replaceLatinInCyrillic' var.put('replaceLatinInCyrillic', PyJsHoisted_replaceLatinInCyrillic_) @Js def PyJsHoisted_replaceSmartLatin_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) @Js def PyJs_anonymous_8_(match, this, arguments, var=var): var = Scope({'match':match, 'this':this, 'arguments':arguments}, var) var.registers(['countCyrillic', 'countLatin', 'match']) var.put('countLatin', var.get('match').callprop('match', JsRegExp('/[a-z]/gi'))) var.put('countCyrillic', var.get('match').callprop('match', JsRegExp("/[а-яєіїґ\\']/gi"))) if var.get('countLatin').neg(): return var.get('match') if var.get('countCyrillic').neg(): return var.get('match') if (var.get('countCyrillic')>=var.get('countLatin')): return var.get('replaceAllLatin')(var.get('match')) else: return var.get('replaceAllCyrillicToLatin')(var.get('match')) PyJs_anonymous_8_._set_name('anonymous') var.put('s', var.get('s').callprop('replace', var.get('mixedCyrillicLatinPattern'), PyJs_anonymous_8_)) return var.get('s') PyJsHoisted_replaceSmartLatin_.func_name = 'replaceSmartLatin' var.put('replaceSmartLatin', PyJsHoisted_replaceSmartLatin_) @Js def PyJsHoisted_replaceAllNumbers_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) @Js def PyJs_anonymous_9_(match, this, arguments, var=var): var = Scope({'match':match, 'this':this, 'arguments':arguments}, var) var.registers(['match']) return var.get('numbersToCyrillic').get(var.get('match')) PyJs_anonymous_9_._set_name('anonymous') var.put('s', var.get('s').callprop('replace', var.get('numberPattern'), PyJs_anonymous_9_)) return var.get('s') PyJsHoisted_replaceAllNumbers_.func_name = 'replaceAllNumbers' var.put('replaceAllNumbers', PyJsHoisted_replaceAllNumbers_) @Js def PyJsHoisted_replaceCarriages_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) var.put('s', var.get('s').callprop('replace', var.get('carriagePattern'), Js('\n'))) return var.get('s') PyJsHoisted_replaceCarriages_.func_name = 'replaceCarriages' var.put('replaceCarriages', PyJsHoisted_replaceCarriages_) @Js def PyJsHoisted_replaceLinebreaks_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) var.put('s', var.get('s').callprop('replace', var.get('preserveLinebreakPattern'), Js('~linebreak~'))) var.put('s', var.get('s').callprop('replace', var.get('linebreakPattern'), Js(' '))) var.put('s', var.get('s').callprop('replace', var.get('restoreLinebreakPattern'), Js('\n\n'))) return var.get('s') PyJsHoisted_replaceLinebreaks_.func_name = 'replaceLinebreaks' var.put('replaceLinebreaks', PyJsHoisted_replaceLinebreaks_) @Js def PyJsHoisted_replaceSpacesBeforePunctuation_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) var.put('s', var.get('s').callprop('replace', var.get('spaceBeforePunctuationPattern'), Js('$1'))) return var.get('s') PyJsHoisted_replaceSpacesBeforePunctuation_.func_name = 'replaceSpacesBeforePunctuation' var.put('replaceSpacesBeforePunctuation', PyJsHoisted_replaceSpacesBeforePunctuation_) @Js def PyJsHoisted_addSpacesAfterPunctuation_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) var.put('s', var.get('s').callprop('replace', var.get('spaceAfterPunctuationPattern'), Js('$1 '))) var.put('s', var.get('s').callprop('replace', var.get('spaceAfterPunctuationPattern2'), Js('$1 '))) var.put('s', var.get('s').callprop('replace', var.get('removeSpaceAfterPunctuationPattern'), Js('$1$2'))) return var.get('s') PyJsHoisted_addSpacesAfterPunctuation_.func_name = 'addSpacesAfterPunctuation' var.put('addSpacesAfterPunctuation', PyJsHoisted_addSpacesAfterPunctuation_) @Js def PyJsHoisted_replaceSpacesAfterPunctuation_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) var.put('s', var.get('s').callprop('replace', var.get('noSpacesAfterPunctuationPattern'), Js('$1'))) return var.get('s') PyJsHoisted_replaceSpacesAfterPunctuation_.func_name = 'replaceSpacesAfterPunctuation' var.put('replaceSpacesAfterPunctuation', PyJsHoisted_replaceSpacesAfterPunctuation_) @Js def PyJsHoisted_addSpacesBeforePunctuation_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) var.put('s', var.get('s').callprop('replace', var.get('noSpacesBeforePunctuationPattern'), Js('$1 $2'))) return var.get('s') PyJsHoisted_addSpacesBeforePunctuation_.func_name = 'addSpacesBeforePunctuation' var.put('addSpacesBeforePunctuation', PyJsHoisted_addSpacesBeforePunctuation_) @Js def PyJsHoisted_replaceEllipsis_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) var.put('s', var.get('s').callprop('replace', var.get('ellipsisPattern'), Js('...'))) return var.get('s') PyJsHoisted_replaceEllipsis_.func_name = 'replaceEllipsis' var.put('replaceEllipsis', PyJsHoisted_replaceEllipsis_) @Js def PyJsHoisted_replaceWrongQuote_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) var.put('s', var.get('s').callprop('replace', var.get('wrongQuotePattern'), Js("$1'$2"))) return var.get('s') PyJsHoisted_replaceWrongQuote_.func_name = 'replaceWrongQuote' var.put('replaceWrongQuote', PyJsHoisted_replaceWrongQuote_) @Js def PyJsHoisted_replaceDoublePunctuation_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) @Js def PyJs_anonymous_10_(match, this, arguments, var=var): var = Scope({'match':match, 'this':this, 'arguments':arguments}, var) var.registers(['match']) return var.get('match').get('0') PyJs_anonymous_10_._set_name('anonymous') var.put('s', var.get('s').callprop('replace', var.get('doublePunctuationPattern'), PyJs_anonymous_10_)) return var.get('s') PyJsHoisted_replaceDoublePunctuation_.func_name = 'replaceDoublePunctuation' var.put('replaceDoublePunctuation', PyJsHoisted_replaceDoublePunctuation_) @Js def PyJsHoisted_toTitleCase_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) var.put('s', var.get('s').callprop('toLowerCase')) @Js def PyJs_anonymous_11_(match, this, arguments, var=var): var = Scope({'match':match, 'this':this, 'arguments':arguments}, var) var.registers(['match']) return var.get('match').callprop('toUpperCase') PyJs_anonymous_11_._set_name('anonymous') var.put('s', var.get('s').callprop('replace', var.get('titleCasePattern'), PyJs_anonymous_11_)) return var.get('s') PyJsHoisted_toTitleCase_.func_name = 'toTitleCase' var.put('toTitleCase', PyJsHoisted_toTitleCase_) @Js def PyJsHoisted_formatPhone_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) var.put('s', var.get('s').callprop('replace', var.get('phonePunctuationPattern'), Js(''))) while 1: SWITCHED = False CONDITION = (Js(True)) if SWITCHED or PyJsStrictEq(CONDITION, (var.get('s').callprop('match', JsRegExp('/^0/')) and PyJsStrictEq(var.get('s').get('length'),Js(10.0)))): SWITCHED = True var.put('s', var.get('s').callprop('replace', var.get('fullPhoneNumbersPattern'), Js('($1) $2 $3 $4'))) var.put('s', (Js('+38 ')+var.get('s'))) break if SWITCHED or PyJsStrictEq(CONDITION, PyJsStrictEq(var.get('s').get('length'),Js(7.0))): SWITCHED = True var.put('s', var.get('s').callprop('replace', var.get('shortPhoneNumbersPattern'), Js('$1 $2 $3'))) break if SWITCHED or PyJsStrictEq(CONDITION, (var.get('s').callprop('match', JsRegExp('/^8/')) and PyJsStrictEq(var.get('s').get('length'),Js(11.0)))): SWITCHED = True var.put('s', var.get('s').callprop('replace', JsRegExp('/^8/'), Js(''))) var.put('s', var.get('s').callprop('replace', var.get('fullPhoneNumbersPattern'), Js('($1) $2 $3 $4'))) var.put('s', (Js('+38 ')+var.get('s'))) break if SWITCHED or PyJsStrictEq(CONDITION, (var.get('s').callprop('match', JsRegExp('/^3/')) and PyJsStrictEq(var.get('s').get('length'),Js(12.0)))): SWITCHED = True var.put('s', var.get('s').callprop('replace', JsRegExp('/^38/'), Js(''))) var.put('s', var.get('s').callprop('replace', var.get('fullPhoneNumbersPattern'), Js('($1) $2 $3 $4'))) var.put('s', (Js('+38 ')+var.get('s'))) break if SWITCHED or PyJsStrictEq(CONDITION, (var.get('s').get('length')>=Js(11.0))): SWITCHED = True var.put('s', var.get('s').callprop('replace', var.get('otherPhoneNumbersPattern'), Js('($1) $2 $3 $4'))) break if SWITCHED or PyJsStrictEq(CONDITION, PyJsStrictEq(var.get('s').get('length'),Js(8.0))): SWITCHED = True var.put('s', var.get('s').callprop('replace', var.get('fivePhoneNumbersPattern'), Js('($1) $2 $3 $4'))) break if SWITCHED or PyJsStrictEq(CONDITION, PyJsStrictEq(var.get('s').get('length'),Js(9.0))): SWITCHED = True var.put('s', var.get('s').callprop('replace', var.get('sixPhoneNumbersPattern'), Js('($1) $2 $3 $4'))) break if SWITCHED or PyJsStrictEq(CONDITION, PyJsStrictEq(var.get('s').get('length'),Js(6.0))): SWITCHED = True var.put('s', var.get('s').callprop('replace', var.get('sixPhoneNumbersPattern'), Js('$2 $3 $4'))) break if SWITCHED or PyJsStrictEq(CONDITION, PyJsStrictEq(var.get('s').get('length'),Js(5.0))): SWITCHED = True var.put('s', var.get('s').callprop('replace', var.get('fivePhoneNumbersPattern'), Js('$2 $3 $4'))) break if True: SWITCHED = True var.put('s', var.get(u"null")) SWITCHED = True break return var.get('s') PyJsHoisted_formatPhone_.func_name = 'formatPhone' var.put('formatPhone', PyJsHoisted_formatPhone_) @Js def PyJsHoisted_stringPreprocessing_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) var.put('s', var.get('replaceSpaces')(var.get('s'))) var.put('s', var.get('fixApostrophes')(var.get('s'))) var.put('s', var.get('replaceHyphens')(var.get('s'))) var.put('s', var.get('replaceQuotes')(var.get('s'))) var.put('s', var.get('replaceApostrophes')(var.get('s'))) var.put('s', var.get('removeStartEndSpaces')(var.get('s'))) var.put('s', var.get('removeDoubleSpaces')(var.get('s'))) var.put('s', var.get('replaceEllipsis')(var.get('s'))) return var.get('s') PyJsHoisted_stringPreprocessing_.func_name = 'stringPreprocessing' var.put('stringPreprocessing', PyJsHoisted_stringPreprocessing_) @Js def PyJsHoisted_textPreprocessing_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) var.put('s', var.get('stringPreprocessing')(var.get('s'))) var.put('s', var.get('replaceCarriages')(var.get('s'))) var.put('s', var.get('replaceLinebreaks')(var.get('s'))) return var.get('s') PyJsHoisted_textPreprocessing_.func_name = 'textPreprocessing' var.put('textPreprocessing', PyJsHoisted_textPreprocessing_) @Js def PyJsHoisted_fixStupidTitles_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) @Js def PyJs_anonymous_12_(text, this, arguments, var=var): var = Scope({'text':text, 'this':this, 'arguments':arguments}, var) var.registers(['text']) return var.get('replaceLatinInCyrillic')(var.get('text').callprop('replace', var.get('spacePattern'), Js(''))) PyJs_anonymous_12_._set_name('anonymous') var.put('s', var.get('s').callprop('replace', var.get('stupidTitlePattern'), PyJs_anonymous_12_)) var.put('s', var.get('s').callprop('replace', var.get('fixStupidTitlePattern'), Js('$1 '))) return var.get('s') PyJsHoisted_fixStupidTitles_.func_name = 'fixStupidTitles' var.put('fixStupidTitles', PyJsHoisted_fixStupidTitles_) @Js def PyJsHoisted_preprocessingStringWithPunctuation_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) var.put('s', var.get('stringPreprocessing')(var.get('s'))) var.put('s', var.get('replaceSpacesBeforePunctuation')(var.get('s'))) var.put('s', var.get('addSpacesAfterPunctuation')(var.get('s'))) var.put('s', var.get('replaceSpacesAfterPunctuation')(var.get('s'))) var.put('s', var.get('addSpacesBeforePunctuation')(var.get('s'))) var.put('s', var.get('replaceDoublePunctuation')(var.get('s'))) return var.get('s') PyJsHoisted_preprocessingStringWithPunctuation_.func_name = 'preprocessingStringWithPunctuation' var.put('preprocessingStringWithPunctuation', PyJsHoisted_preprocessingStringWithPunctuation_) @Js def PyJsHoisted_preprocessingTextWithPunctuation_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) var.put('s', var.get('textPreprocessing')(var.get('s'))) var.put('s', var.get('replaceDoublePunctuation')(var.get('s'))) var.put('s', var.get('replaceSpacesBeforePunctuation')(var.get('s'))) var.put('s', var.get('addSpacesAfterPunctuation')(var.get('s'))) var.put('s', var.get('replaceSpacesAfterPunctuation')(var.get('s'))) var.put('s', var.get('addSpacesBeforePunctuation')(var.get('s'))) return var.get('s') PyJsHoisted_preprocessingTextWithPunctuation_.func_name = 'preprocessingTextWithPunctuation' var.put('preprocessingTextWithPunctuation', PyJsHoisted_preprocessingTextWithPunctuation_) @Js def PyJsHoisted_fixCommonMistakes_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) for PyJsTemp in var.get('commonMistakes'): var.put('i', PyJsTemp) var.put('s', var.get('s').callprop('replace', var.get('commonMistakes').get(var.get('i')), var.get('i'))) return var.get('s') PyJsHoisted_fixCommonMistakes_.func_name = 'fixCommonMistakes' var.put('fixCommonMistakes', PyJsHoisted_fixCommonMistakes_) @Js def PyJsHoisted_fixLists_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['s']) var.put('s', var.get('s').callprop('replace', var.get('listPattern1'), Js(''))) var.put('s', var.get('s').callprop('replace', var.get('listPattern2'), Js('$1$2 '))) return var.get('s') PyJsHoisted_fixLists_.func_name = 'fixLists' var.put('fixLists', PyJsHoisted_fixLists_) @Js def PyJsHoisted_translit_(s, letterCase, this, arguments, var=var): var = Scope({'s':s, 'letterCase':letterCase, 'this':this, 'arguments':arguments}, var) var.registers(['s', 'letterCase']) @Js def PyJs_anonymous_18_(match, this, arguments, var=var): var = Scope({'match':match, 'this':this, 'arguments':arguments}, var) var.registers(['match']) return var.get('match').callprop('replace', Js("'"), Js('')) PyJs_anonymous_18_._set_name('anonymous') var.put('s', var.get('s').callprop('replace', var.get('replaceApostrophePattern'), PyJs_anonymous_18_)) @Js def PyJs_anonymous_19_(match, this, arguments, var=var): var = Scope({'match':match, 'this':this, 'arguments':arguments}, var) var.registers(['match']) return var.get('zgLetters').get(var.get('match')) PyJs_anonymous_19_._set_name('anonymous') var.put('s', var.get('s').callprop('replace', var.get('zgLettersPattern'), PyJs_anonymous_19_)) @Js def PyJs_anonymous_20_(match, this, arguments, var=var): var = Scope({'match':match, 'this':this, 'arguments':arguments}, var) var.registers(['match']) for PyJsTemp in var.get('firstLetters'): var.put('l', PyJsTemp) var.put('match', var.get('match').callprop('replace', var.get('l'), var.get('firstLetters').get(var.get('l')))) return var.get('match') PyJs_anonymous_20_._set_name('anonymous') var.put('s', var.get('s').callprop('replace', var.get('firstLettersPattern'), PyJs_anonymous_20_)) @Js def PyJs_anonymous_21_(match, this, arguments, var=var): var = Scope({'match':match, 'this':this, 'arguments':arguments}, var) var.registers(['match']) return var.get('otherLetters').get(var.get('match')) PyJs_anonymous_21_._set_name('anonymous') var.put('s', var.get('s').callprop('replace', var.get('allLetters'), PyJs_anonymous_21_)) if (var.get('letterCase') and PyJsStrictEq(var.get('letterCase'),Js('lower'))): var.put('s', var.get('s').callprop('toLowerCase')) else: if (var.get('letterCase') and PyJsStrictEq(var.get('letterCase'),Js('upper'))): var.put('s', var.get('s').callprop('toUpperCase')) else: if (var.get('letterCase') and PyJsStrictEq(var.get('letterCase'),Js('title'))): var.put('s', var.get('s').callprop('toTitleCase')) return var.get('s') PyJsHoisted_translit_.func_name = 'translit' var.put('translit', PyJsHoisted_translit_) @Js def PyJsHoisted_getAddress_(s, this, arguments, var=var): var = Scope({'s':s, 'this':this, 'arguments':arguments}, var) var.registers(['locality', 'postalCodeMatch', 'streetType', 'district', 'localityName', 'address', 'streetMatch', 'districtMatch', 'postalCode', 'streetName', 'source', 'building', 'localityType', 'apartment', 'buildingMatch', 's', 'region', 'street', 'apartmentMatch', 'localityMatch', 'regionMatch']) var.put('source', var.get('s')) var.put('s', var.get('preprocessingStringWithPunctuation')(var.get('s'))) var.put('s', var.get('replaceAllLatin')(var.get('s'))) var.put('s', var.get('replaceAllRussian')(var.get('s'))) var.put('s', var.get('replaceWrongQuote')(var.get('s'))) var.put('s', var.get('s').callprop('replace', var.get('removeExtraSpaces'), Js('-'))) var.put('s', var.get('s').callprop('replace', var.get('removeExtraHyphens'), Js('-'))) var.put('s', var.get('s').callprop('replace', var.get('addStreetSpaces'), Js('$1 '))) var.put('s', var.get('s').callprop('replace', Js('КИІВ'), Js('КИЇВ'))) var.put('s', var.get('s').callprop('replace', var.get('removeInBracesPattern'), Js(''))) var.put('s', var.get('s').callprop('replace', var.get('removeSlash'), Js('м.'))) var.put('postalCodeMatch', var.get('s').callprop('match', var.get('postalCodePattern'))) if var.get('postalCodeMatch'): var.put('postalCode', var.get('postalCodeMatch').get('1')) var.put('s', var.get('s').callprop('replace', var.get('removePostalCodePattern'), Js(''))) var.put('regionMatch', var.get('s').callprop('match', var.get('commonRegionPattern'))) if var.get('regionMatch'): var.put('region', (var.get('toTitleCase')(var.get('regionMatch').get('1'))+Js(' область'))) if var.get('region').callprop('match', var.get('crimeaPattern')): var.put('region', Js('Автономна Республіка Крим')) var.put('s', var.get('s').callprop('replace', var.get('removeCommonRegionPattern'), Js(''))) else: var.put('regionMatch', var.get('s').callprop('match', var.get('regionPattern'))) if var.get('regionMatch'): if var.get('regionMatch').get('1').callprop('match', var.get('crimeaPattern')): var.put('region', Js('Автономна Республіка Крим')) else: if var.get('regionMatch').get('1').callprop('match', var.get('sebastopolKyivPattern')): var.put('region', (Js('місто ')+var.get('toTitleCase')(var.get('regionMatch').get('1')))) var.put('s', var.get('s').callprop('replace', var.get('removeSebastopolKyivPattern'), Js(''))) else: var.put('region', (var.get('toTitleCase')(var.get('regionMatch').get('1'))+Js(' область'))) var.put('s', var.get('s').callprop('replace', var.get('removeRegionPattern'), Js(''))) var.put('s', var.get('s').callprop('replace', var.get('reverseCommonRegionPattern'), Js(''))) var.put('districtMatch', var.get('s').callprop('match', var.get('districtPattern'))) if var.get('districtMatch'): var.put('district', (var.get('toTitleCase')(var.get('districtMatch').get('1'))+Js(' район'))) else: var.put('districtMatch', var.get('s').callprop('match', var.get('reverseDistrictPattern'))) if var.get('districtMatch'): var.put('district', (var.get('toTitleCase')(var.get('districtMatch').get('1'))+Js(' район'))) var.put('s', var.get('s').callprop('replace', var.get('removeDistrictPattern'), Js(''))) var.put('s', var.get('s').callprop('replace', var.get('removeReverseDistrictPattern'), Js(''))) var.put('s', var.get('s').callprop('replace', var.get('removeGarbagePattern'), Js(''))) if (var.get('region')==Js('місто Київ')): var.put('locality', Js('місто Київ')) if (var.get('region')==Js('місто Севастополь')): var.put('locality', Js('місто Севастополь')) if var.get('locality').neg(): var.put('localityMatch', var.get('s').callprop('match', var.get('localityPattern'))) if var.get('localityMatch'): var.put('localityType', var.get('localityTypes').get(var.get('localityMatch').get('1').callprop('toLowerCase'))) var.put('localityName', var.get('toTitleCase')(var.get('localityMatch').get('2'))) var.put('locality', ((var.get('localityType')+Js(' '))+var.get('localityName'))) var.put('s', var.get('s').callprop('replace', var.get('removeLocalityPattern'), Js(''))) var.put('s', var.get('s').callprop('replace', var.get('removeGarbagePattern'), Js(''))) if (((var.get('s').get('length')>Js(1.0)) and var.get('s').callprop('match', var.get('streetPattern')).neg()) and var.get('s').callprop('match', var.get('reverseStreetPattern')).neg()): var.put('s', (Js('вул ')+var.get('s'))) var.put('streetMatch', var.get('s').callprop('match', var.get('streetPattern'))) if var.get('streetMatch'): var.put('streetType', var.get('geonymTypes').get(var.get('streetMatch').get('1').callprop('toLowerCase'))) var.put('streetName', var.get('toTitleCase')(var.get('streetMatch').get('2'))) var.put('street', ((var.get('streetType')+Js(' '))+var.get('streetName'))) else: var.put('streetMatch', var.get('s').callprop('match', var.get('reverseStreetPattern'))) if var.get('streetMatch'): var.put('streetType', var.get('geonymTypes').get(var.get('streetMatch').get('2').callprop('toLowerCase'))) var.put('streetName', var.get('toTitleCase')(var.get('streetMatch').get('1'))) var.put('street', ((var.get('streetType')+Js(' '))+var.get('streetName'))) var.put('s', var.get('s').callprop('replace', var.get('removeStreetPattern'), Js(''))) var.put('s', var.get('s').callprop('replace', var.get('removeReverseStreetPattern'), Js(''))) var.put('s', var.get('s').callprop('replace', var.get('removeGarbagePattern'), Js(''))) var.put('buildingMatch', var.get('s').callprop('match', var.get('buildingPattern'))) if var.get('buildingMatch'): var.put('building', var.get('buildingMatch').get('1')) var.put('s', var.get('s').callprop('replace', var.get('removeBuilingPattern'), Js(''))) var.put('s', var.get('s').callprop('replace', var.get('removeGarbagePattern'), Js(''))) var.put('apartmentMatch', var.get('s').callprop('match', var.get('apartmentPattern'))) if var.get('apartmentMatch'): var.put('apartment', var.get('apartmentMatch').get('1')) var.put('s', var.get('s').callprop('replace', var.get('removeApartmentPattern'), Js(''))) var.put('s', var.get('s').callprop('replace', var.get('removeGarbagePattern'), Js(''))) if var.get('region').neg(): var.put('regionMatch', var.get('s').callprop('match', var.get('regionPattern'))) if var.get('regionMatch'): var.put('region', (var.get('toTitleCase')(var.get('regionMatch').get('1'))+Js(' область'))) var.put('s', var.get('s').callprop('replace', var.get('removeRegionPattern'), Js(''))) if var.get('locality').neg(): var.put('localityMatch', var.get('s').callprop('match', var.get('localityPattern2'))) if var.get('localityMatch'): var.put('locality', (Js('місто ')+var.get('toTitleCase')(var.get('localityMatch').get('1')))) if var.get('localityMatch').get('2'): if var.get('district').neg(): var.put('district', (var.get('toTitleCase')(var.get('localityMatch').get('2'))+Js(' район'))) var.put('s', var.get('s').callprop('replace', var.get('removeLocalityPattern2'), Js(''))) else: var.put('localityMatch', var.get('s').callprop('match', var.get('localityPattern3'))) if var.get('localityMatch'): var.put('locality', (Js('місто ')+var.get('toTitleCase')(var.get('localityMatch').get('1')))) var.put('s', var.get('s').callprop('replace', var.get('removeLocalityPattern3'), Js(''))) if var.get('district').neg(): var.put('districtMatch', var.get('s').callprop('match', var.get('districtPattern2'))) if var.get('districtMatch'): var.put('district', (var.get('toTitleCase')(var.get('districtMatch').get('1'))+Js(' район'))) var.put('s', var.get('s').callprop('replace', var.get('removeDistrictPattern2'), Js(''))) else: var.put('districtMatch', var.get('s').callprop('match', var.get('districtPattern3'))) if var.get('districtMatch'): var.put('district', (var.get('toTitleCase')(var.get('districtMatch').get('1'))+Js(' район'))) var.put('s', var.get('s').callprop('replace', var.get('removeDistrictPattern3'), Js(''))) var.put('s', var.get('s').callprop('replace', var.get('removeUkrainePattern'), Js(''))) if var.get('street').neg(): var.put('streetMatch', var.get('s').callprop('match', var.get('streetPattern2'))) if var.get('streetMatch'): var.put('street', var.get('streetMatch').get('1')) if var.get('streetMatch').get('2').neg(): var.put('apartment', var.get('streetMatch').get('3')) else: var.put('building', var.get('streetMatch').get('2')) var.put('apartment', var.get('streetMatch').get('3')) var.put('s', var.get('s').callprop('replace', var.get('streetPattern2'), Js(''))) if var.get('building').neg(): var.put('buildingMatch', var.get('s').callprop('match', var.get('buildingPattern2'))) if var.get('buildingMatch'): var.put('building', var.get('buildingMatch').get('1')) if var.get('buildingMatch').get('2'): var.put('apartment', var.get('buildingMatch').get('2')) PyJs_Object_26_ = Js({}) var.put('address', PyJs_Object_26_) var.get('address').put('source', var.get('source')) var.get('address').put('countryName', Js('Україна')) if var.get('postalCode'): var.get('address').put('postalCode', var.get('postalCode')) if var.get('region'): var.get('address').put('region', var.get('region').callprop('replace', JsRegExp('/\\s+/'), Js(' '))) if var.get('district'): var.get('address').put('district', var.get('district')) if var.get('locality'): var.get('address').put('locality', var.get('locality')) if var.get('building'): var.get('address').put('streetNumber', var.get('building')) if (var.get('street') and var.get('building')): var.get('address').put('streetAddress', var.get('street')) else: if var.get('street'): var.get('address').put('streetAddress', var.get('street')) if var.get('apartment'): var.get('address').put('apartment', var.get('apartment')) @Js def PyJs_anonymous_27_(n, this, arguments, var=var): var = Scope({'n':n, 'this':this, 'arguments':arguments}, var) var.registers(['n']) return (var.get('n')!=var.get('undefined')) PyJs_anonymous_27_._set_name('anonymous') var.get('address').put('fullAddress', Js([var.get('address').get('postalCode'), var.get('address').get('region'), var.get('address').get('district'), var.get('address').get('locality'), var.get('address').get('streetAddress'), var.get('address').get('streetNumber'), var.get('address').get('apartment')]).callprop('filter', PyJs_anonymous_27_).callprop('join', Js(', '))) return var.get('address') PyJsHoisted_getAddress_.func_name = 'getAddress' var.put('getAddress', PyJsHoisted_getAddress_) Js('use strict') pass pass Js('use strict') pass pass pass pass pass pass pass pass pass pass pass pass pass pass pass pass pass pass pass pass pass pass pass pass pass pass pass pass pass pass pass PyJs_Object_13_ = Js({'A':Js('А'),'B':Js('В'),'C':Js('С'),'E':Js('Е'),'H':Js('Н'),'I':Js('І'),'K':Js('К'),'M':Js('М'),'O':Js('О'),'P':Js('Р'),'T':Js('Т'),'X':Js('Х'),'a':Js('а'),'c':Js('с'),'e':Js('е'),'i':Js('і'),'o':Js('о'),'p':Js('р'),'y':Js('у'),'x':Js('х')}) var.put('latinToCyrillic', PyJs_Object_13_) PyJs_Object_14_ = Js({'А':Js('A'),'В':Js('B'),'С':Js('C'),'Е':Js('E'),'Н':Js('H'),'І':Js('I'),'К':Js('K'),'М':Js('M'),'О':Js('O'),'Р':Js('P'),'Т':Js('T'),'Х':Js('X'),'а':Js('a'),'с':Js('c'),'е':Js('e'),'і':Js('i'),'о':Js('o'),'р':Js('p'),'у':Js('y'),'х':Js('x')}) var.put('cyrillicToLatin', PyJs_Object_14_) PyJs_Object_15_ = Js({'Ы':Js('І'),'Ъ':Js('Ї'),'ы':Js('і'),'ъ':Js('Ї')}) var.put('russianToUkraine', PyJs_Object_15_) PyJs_Object_16_ = Js({'0':Js('О'),'1':Js('І'),'3':Js('З'),'6':Js('б')}) var.put('numbersToCyrillic', PyJs_Object_16_) var.put('firstLetter', JsRegExp('/^./')) var.put('apostrophePattern', JsRegExp('/(’|‘|′|`|´)/g')) var.put('hyphenPattern', JsRegExp('/(‒|–|—|―)/g')) var.put('quoteSpacePatternStart', JsRegExp('/(“|„|«)\\s*/g')) var.put('quoteSpacePatternEnd', JsRegExp('/\\s*(”|»|″)/g')) var.put('quoteSpacePatternMiddle', JsRegExp('/(?<= )" +(?=[А-ЯЄІЇҐ])/g')) var.put('startSpace', JsRegExp('/^[\\t\\v\\f \\u00a0\\u2000-\\u200b\\u2028-\\u2029\\u3000]+/gm')) var.put('endSpace', JsRegExp('/[\\t\\v\\f \\u00a0\\u2000-\\u200b\\u2028-\\u2029\\u3000]+$/gm')) var.put('doubleSpace', JsRegExp('/[\\t\\v\\f \\u00a0\\u2000-\\u200b\\u2028-\\u2029\\u3000]{2,}/g')) var.put('latinPattern', var.get('RegExp').create(((Js('(')+var.get('Object').callprop('keys', var.get('latinToCyrillic')).callprop('join', Js('|')))+Js(')')), Js('g'))) var.put('cyrillicPattern', var.get('RegExp').create(((Js('(')+var.get('Object').callprop('keys', var.get('cyrillicToLatin')).callprop('join', Js('|')))+Js(')')), Js('g'))) var.put('latinInCyrillicPattern', var.get('RegExp').create(((Js('(')+var.get('Object').callprop('keys', var.get('latinToCyrillic')).callprop('join', Js('|')))+Js(')+(?![a-z])')), Js('g'))) var.put('latinInCyrillicPattern2', var.get('RegExp').create(((Js("[а-яєіїґ'](")+var.get('Object').callprop('keys', var.get('latinToCyrillic')).callprop('join', Js('|')))+Js(')+(?!^|[^a-z])')), Js('g'))) var.put('mixedCyrillicLatinPattern', JsRegExp('/(?:^|[^а-яєіїґ\\\'\\-a-z])(?=[^\\s"]*[a-z])(?=[^\\s]*[а-яєіїґ])[а-яєіїґ\\\'\\-a-z]+/gi')) var.put('russianPattern', var.get('RegExp').create(((Js('(')+var.get('Object').callprop('keys', var.get('russianToUkraine')).callprop('join', Js('|')))+Js(')')), Js('g'))) var.put('numberPattern', var.get('RegExp').create(((Js('(')+var.get('Object').callprop('keys', var.get('numbersToCyrillic')).callprop('join', Js('|')))+Js(')')), Js('g'))) var.put('carriagePattern', JsRegExp('/\\r/g')) var.put('preserveLinebreakPattern', JsRegExp('/\\n{2,}/g')) var.put('linebreakPattern', JsRegExp('/\\n/g')) var.put('restoreLinebreakPattern', JsRegExp('/~linebreak~/g')) var.put('spaceBeforePunctuationPattern', JsRegExp('/\\s+([.,:;?!№#\\)\\]])/g')) var.put('spaceAfterPunctuationPattern', JsRegExp('/([;?!])(?!\\s|\\n)/g')) var.put('spaceAfterPunctuationPattern2', JsRegExp('/(?<=[а-я])([.,])(?!\\s|\\n|,|\\d)/g')) var.put('removeSpaceAfterPunctuationPattern', JsRegExp('/(\\d)([.,])\\s(?=\\d)/g')) var.put('noSpacesBeforePunctuationPattern', JsRegExp('/([^\\n ])(\\(|#|№)/g')) var.put('noSpacesAfterPunctuationPattern', JsRegExp('/([\\[\\(])\\s+/g')) var.put('ellipsisPattern', JsRegExp('/…/g')) var.put('spacePattern', JsRegExp('/[\\u0020\\u00A0\\u1680\\u180E\\u2000\\u2001\\u2002\\u2003\\u2004\\u2005\\u2006\\u2007\\u2008\\u2009\\u200A\\u200B\\u202F\\u205F\\u3000\\uFEFF]/g')) var.put('multipleSpacePattern', JsRegExp('/[\\t\\v\\f \\u00a0\\u2000-\\u200b\\u2028-\\u2029\\u3000]{2,}/g')) var.put('titleCasePattern', JsRegExp("/([^a-zа-яєіїґ']|^)([a-zа-яєіїґ])/gi")) var.put('wrongQuotePattern', JsRegExp('/([а-яєіїґ])"([а-яєіїґ])/gi')) var.put('doublePunctuationPattern', JsRegExp('/(,{2,}|:{2,}|;{2,}|\\?{2,}|!{2,}|№{2,}|#{2,})/gi')) var.put('beforePunctuationPattern', JsRegExp('/(^.+?)(?:[,;.\\/]|$)/i')) var.put('phonePunctuationPattern', JsRegExp('/([\\(\\)\\s\\-\\+,\\.]|факс|[мбф])/g')) var.put('fullPhoneNumbersPattern', JsRegExp('/(\\d{3})(\\d{3})(\\d{2})(\\d{2})/')) var.put('shortPhoneNumbersPattern', JsRegExp('/(\\d{3})(\\d{2})(\\d{2})/')) var.put('fivePhoneNumbersPattern', JsRegExp('/(\\d*)(\\d{1})(\\d{2})(\\d{2})$/')) var.put('sixPhoneNumbersPattern', JsRegExp('/(\\d*)(\\d{2})(\\d{2})(\\d{2})$/')) var.put('otherPhoneNumbersPattern', JsRegExp('/(\\d+)(\\d{3})(\\d{2})(\\d{2})/')) var.put('listPattern1', JsRegExp('/^\\s+(?=\\d)/gm')) var.put('listPattern2', JsRegExp('/^(\\d+)([\\.\\)])(?!\\s)(?=[а-яєіїґ])/gmi')) var.put('fixApostrophePattern', JsRegExp('/(?<=[бпвмфгґкхжчшр])[\\*’‘′`´“«»″"](?=[яюєї])/g')) var.put('fixApostrophePattern2', JsRegExp('/(?<= [БПВДМФГҐКХЖЧШРО])[\\*’‘′`´“«»″"](?=[яюєї])/g')) pass var.put('stupidTitlePattern', JsRegExp('/placholder/')) var.put('fixStupidTitlePattern', JsRegExp('/(?<=\\n)(заочно?е|[иі]менем|судовий|судове|судебный|судебное|суть)/gi')) PyJs_Object_17_ = Js({'відкласти':var.get('RegExp').create(Js('в і д к л а с т и'), Js('g')),'відмовити':var.get('RegExp').create(Js('в і д м о в и т и'), Js('g')),'відхилити':var.get('RegExp').create(Js('в і д х и л и т и'), Js('g')),'задовільнити':var.get('RegExp').create(Js('з а д о в і л ь н и т и'), Js('g')),'задоволити':var.get('RegExp').create(Js('з а д о в о л и т и'), Js('g')),'ухвалити':var.get('RegExp').create(Js('у х в а л и т и'), Js('g')),'частково':var.get('RegExp').create(Js('ч а с т к о в о'), Js('g'))}) var.put('commonMistakes', PyJs_Object_17_) pass PyJs_Object_22_ = Js({'Є':Js('Ye'),'Ї':Js('Yi'),'Й':Js('Y'),'Ю':Js('Yu'),'Я':Js('Ya'),'є':Js('ye'),'ї':Js('yi'),'й':Js('y'),'ю':Js('yu'),'я':Js('ya')}) var.put('firstLetters', PyJs_Object_22_) PyJs_Object_23_ = Js({'А':Js('A'),'Б':Js('B'),'В':Js('V'),'Г':Js('H'),'Ґ':Js('G'),'Д':Js('D'),'Е':Js('E'),'Є':Js('Ie'),'Ж':Js('Zh'),'З':Js('Z'),'И':Js('Y'),'І':Js('I'),'Ї':Js('I'),'Й':Js('I'),'К':Js('K'),'Л':Js('L'),'М':Js('M'),'Н':Js('N'),'О':Js('O'),'П':Js('P'),'Р':Js('R'),'С':Js('S'),'Т':Js('T'),'У':Js('U'),'Ф':Js('F'),'Х':Js('Kh'),'Ц':Js('Ts'),'Ч':Js('Ch'),'Ш':Js('Sh'),'Щ':Js('Shch'),'Ь':Js(''),'Ъ':Js(''),'Ы':Js('Y'),'Э':Js('E'),'Ю':Js('Iu'),'Я':Js('Ia'),'а':Js('a'),'б':Js('b'),'в':Js('v'),'г':Js('h'),'ґ':Js('g'),'д':Js('d'),'е':Js('e'),'є':Js('ie'),'ж':Js('zh'),'з':Js('z'),'и':Js('y'),'і':Js('i'),'ї':Js('i'),'й':Js('i'),'к':Js('k'),'л':Js('l'),'м':Js('m'),'н':Js('n'),'о':Js('o'),'п':Js('p'),'р':Js('r'),'с':Js('s'),'т':Js('t'),'у':Js('u'),'ф':Js('f'),'х':Js('kh'),'ц':Js('ts'),'ч':Js('ch'),'ш':Js('sh'),'щ':Js('shch'),'ь':Js(''),'ъ':Js(''),'ы':Js('Y'),'э':Js('E'),'ю':Js('iu'),'я':Js('ia')}) var.put('otherLetters', PyJs_Object_23_) PyJs_Object_24_ = Js({'Зг':Js('Zgh'),'зг':Js('zgh'),'ЗГ':Js('ZgH')}) var.put('zgLetters', PyJs_Object_24_) var.put('firstLettersPattern', JsRegExp("/(^|[^а-яєіїґ\\']|[^а-яєіїґ\\']\\')([єїйюя])/gi")) var.put('allLetters', JsRegExp('/[а-яєіїґ]/gi')) var.put('zgLettersPattern', JsRegExp('/зг/gi')) var.put('replaceApostrophePattern', JsRegExp("/[а-яєіїґ]'[а-яєіїґ]/gi")) PyJs_Object_25_ = Js({'capitalizeFirst':var.get('capitalizeFirst'),'replaceQuotes':var.get('replaceQuotes'),'replaceApostrophes':var.get('replaceApostrophes'),'fixApostrophes':var.get('fixApostrophes'),'replaceHyphens':var.get('replaceHyphens'),'replaceSpaces':var.get('replaceSpaces'),'removeStartEndSpaces':var.get('removeStartEndSpaces'),'removeDoubleSpaces':var.get('removeDoubleSpaces'),'replaceAllLatin':var.get('replaceAllLatin'),'replaceLatinInCyrillic':var.get('replaceLatinInCyrillic'),'replaceAllCyrillicToLatin':var.get('replaceAllCyrillicToLatin'),'replaceSmartLatin':var.get('replaceSmartLatin'),'replaceCarriages':var.get('replaceCarriages'),'replaceLinebreaks':var.get('replaceLinebreaks'),'replaceSpacesBeforePunctuation':var.get('replaceSpacesBeforePunctuation'),'addSpacesAfterPunctuation':var.get('addSpacesAfterPunctuation'),'replaceSpacesAfterPunctuation':var.get('replaceSpacesAfterPunctuation'),'addSpacesBeforePunctuation':var.get('addSpacesBeforePunctuation'),'replaceEllipsis':var.get('replaceEllipsis'),'replaceAllNumbers':var.get('replaceAllNumbers'),'replaceDoublePunctuation':var.get('replaceDoublePunctuation'),'stringPreprocessing':var.get('stringPreprocessing'),'textPreprocessing':var.get('textPreprocessing'),'preprocessingStringWithPunctuation':var.get('preprocessingStringWithPunctuation'),'preprocessingTextWithPunctuation':var.get('preprocessingTextWithPunctuation'),'toTitleCase':var.get('toTitleCase'),'replaceWrongQuote':var.get('replaceWrongQuote'),'replaceAllRussian':var.get('replaceAllRussian'),'beforePunctuationPattern':var.get('beforePunctuationPattern'),'formatPhone':var.get('formatPhone'),'fixLists':var.get('fixLists'),'fixStupidTitles':var.get('fixStupidTitles'),'fixCommonMistakes':var.get('fixCommonMistakes'),'translit':var.get('translit')}) var.put('placeholder', PyJs_Object_25_) pass var.put('regions', Js([Js('Автономна Республіка Крим'), Js('Вінницька'), Js('Волинська'), Js('Дніпропетровська'), Js('Донецька'), Js('Житомирська'), Js('Закарпатська'), Js('Запорізька'), Js('Івано-?Франківська'), Js('Кіровоградська'), Js('Київська'), Js('Луганська'), Js('Львівська'), Js('Миколаївська'), Js('Одеська'), Js('Тернопільська'), Js('Полтавська'), Js('Рівненська'), Js('Сумська'), Js('Харківська'), Js('Чернігівська'), Js('Херсонська'), Js('Хмельницька'), Js('Черкаська'), Js('Чернівецька'), Js('Севастополь'), Js('Київ')])) PyJs_Object_28_ = Js({'м.':Js('місто'),'місто':Js('місто'),'м':Js('місто'),'с.':Js('село'),'с':Js('село'),'с-ще':Js('селище'),'сільрада':Js('село'),'сільська рада':Js('село'),'село':Js('село'),'сел.':Js('селище'),'селище':Js('селище'),'пос.':Js('селище'),'селище міського типу':Js('селище міського типу'),'смт':Js('селище міського типу'),'смт.':Js('селище міського типу')}) var.put('localityTypes', PyJs_Object_28_) def PyJs_LONG_30_(var=var): PyJs_Object_29_ = Js({'балка':Js('балка'),'бул':Js('бульвар'),'бульв':Js('бульвар'),'бульва':Js('бульвар'),'бульвар':Js('бульвар'),'б-р':Js('бульвар'),'булвар':Js('бульвар'),'бул-р':Js('бульвар'),"в'їзд":Js("в'їзд"),'вул':Js('вулиця'),'ву':Js('вулиця'),'вл.':Js('вулиця'),'вулиця':Js('вулиця'),'вулиц':Js('вулиця'),'в.':Js('вулиця'),'ж.м.':Js('житловий масив'),'ж. м. ':Js('житловий масив'),'ж/м':Js('житловий масив'),'житловий масив':Js('житловий масив'),'ж-м':Js('житловий масив'),'житломасив':Js('житловий масив'),'дорога':Js('дорога'),'квартал':Js('квартал'),'кварт':Js('квартал'),'квар':Js('квартал'),'кв':Js('квартал'),'майдан':Js('майдан'),'мкр-н':Js('мікрорайон'),'мкр':Js('мікрорайон'),'мікр.':Js('мікрорайон')}) return PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(PyJsComma(var.put('_geonymTypes', PyJs_Object_29_),var.get('_defineProperty')(var.get('_geonymTypes'), Js('мкр'), Js('мікрорайон'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('м-н'), Js('мікрорайон'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('мис'), Js('мис'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('мікрорайон'), Js('мікрорайон'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('наб.'), Js('набережна'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('набережна'), Js('набережна'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('острів'), Js('острів'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('о.'), Js('острів'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('пл.'), Js('площа'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('площа'), Js('площа'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('провулок'), Js('провулок'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('провул'), Js('провулок'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('пров'), Js('провулок'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('пер.'), Js('провулок'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('переулок'), Js('провулок'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('пров.'), Js('провулок'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('п-к.'), Js('провулок'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('пр.'), Js('проспект'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('прc.'), Js('проспект'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('прcп.'), Js('проспект'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('просп.'), Js('проспект'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('проспект'), Js('проспект'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('пр-т'), Js('проспект'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('пр-кт'), Js('проспект'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('прк'), Js('проспект'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('п-ст'), Js('проспект'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('п-т'), Js('проспект'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('проїзд'), Js('проїзд'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('станція'), Js('станція'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('ст.'), Js('станція'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('станц.'), Js('станція'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('тупік'), Js('тупик'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('тупик'), Js('тупик'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('туп.'), Js('тупик'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('спуск'), Js('узвіз'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('узвіз'), Js('узвіз'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('узв'), Js('узвіз'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('шосе'), Js('шосе'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('урочише'), Js('урочише'))),var.get('_defineProperty')(var.get('_geonymTypes'), Js('ш.'), Js('шосе'))),var.get('_geonymTypes')) var.put('geonymTypes', PyJs_LONG_30_()) var.put('removeInBracesPattern', JsRegExp('/\\(.*?\\)/g')) var.put('removeExtraSpaces', JsRegExp('/\\s*-\\s*/g')) var.put('removeExtraHyphens', JsRegExp('/-{2,}/g')) var.put('removeSlash', JsRegExp('/\\/м\\./gi')) var.put('addStreetSpaces', var.get('RegExp').create(Js('(вулиця|бульвар|площа|проспект|тупик|узвіз|квартал|провулок)(?=[а-яєіїґ0-9])'), Js('gi'))) var.put('postalCodePattern', JsRegExp('/(\\d{5})(?:,\\s?|\\s)/')) var.put('removePostalCodePattern', var.get('RegExp').create(var.get('postalCodePattern').get('source'), Js('gi'))) var.put('commonRegionPattern', JsRegExp("/(?:,\\s|^)([а-яєіїґ'\\-\\s]+)\\s?обл(?:\\.|асть)?(?:,\\s?|$)?/i")) var.put('removeCommonRegionPattern', JsRegExp("/([а-яєіїґ'\\-]+)\\s?обл(?:\\.|[а-яєіїґ]+)?(?:,\\s?|$)?/gi")) var.put('reverseCommonRegionPattern', JsRegExp("/обл(?:\\.|[а-яєіїґ]+)?\\s([а-яєіїґ'\\-]+)(?:,\\s|$)?/i")) var.put('regionPattern', var.get('RegExp').create(((Js('(?:^|,s)(')+var.get('regions').callprop('join', Js('|')))+Js(')(?![а-яєіїґ])(?:,\\s|\\s|$)')), Js('i'))) var.put('removeRegionPattern', var.get('RegExp').create(var.get('regionPattern').get('source'), Js('gi'))) var.put('crimeaPattern', JsRegExp('/(Автономна\\s*Республіка\\s*Крим|АР\\s*Крим|(?<![А-ЯІЇ])АРК(?![А-ЯІЇ]))/i')) var.put('sebastopolKyivPattern', JsRegExp('/(Севастополь|Київ)/i')) var.put('removeSebastopolKyivPattern', JsRegExp('/м(\\.|істо)\\s?(Севастополь|Київ)(,\\s?|$)/gi')) var.put('localityPattern', JsRegExp('/(?:(?:^|,\\s)(м\\.|місто|м|с\\.|с-ще|с|сільрада|сільська рада|село|сел\\.|селище(?:\\sміського\\sтипу)?|смт)\\.?\\s)(.+?)(?=,\\s|\\sвулиця|$)/i')) var.put('removeLocalityPattern', var.get('RegExp').create(var.get('localityPattern').get('source'), Js('gi'))) var.put('localityPattern2', JsRegExp("/(?:,\\s|^)(?!вул)([^0-9\\.,]{4,}),\\s(?:([а-яєіїґ\\s\\-']{4,}?)|-),\\sУкраїна$/i")) var.put('removeLocalityPattern2', var.get('RegExp').create(var.get('localityPattern2').get('source'), Js('gi'))) var.put('localityPattern3', JsRegExp('/(?:,\\s|^)(?!вул)([^0-9\\.,]{4,}),\\sУкраїна$/i')) var.put('removeLocalityPattern3', var.get('RegExp').create(var.get('localityPattern3').get('source'), Js('gi'))) var.put('districtPattern', JsRegExp('/(?:^|,\\s)([^,]+?)\\s(?:р-н|район)\\.?(?=,|\\s|$)/i')) var.put('removeDistrictPattern', var.get('RegExp')(var.get('districtPattern').get('source'), Js('gi'))) var.put('reverseDistrictPattern', JsRegExp('/(?:^|,\\s)(?:р-н|район)\\s([^,]+?)(?=,|$)/i')) var.put('removeReverseDistrictPattern', var.get('RegExp').create(var.get('reverseDistrictPattern').get('source'), Js('gi'))) var.put('districtPattern2', JsRegExp('/(?:,\\s|^)(?!вул)([^0-9,]*?ий),\\sУкраїна$/i')) var.put('removeDistrictPattern2', var.get('RegExp')(var.get('districtPattern2').get('source'), Js('gi'))) var.put('districtPattern3', JsRegExp('/(?:,\\s|^)р\\s([^0-9,]*?ий)(?=,\\s|$)/i')) var.put('removeDistrictPattern3', var.get('RegExp')(var.get('districtPattern3').get('source'), Js('gi'))) var.put('streetPattern', var.get('RegExp').create(((Js('(?:^|,\\s)(?:.{1,4})?(')+var.get('Object').callprop('keys', var.get('geonymTypes')).callprop('join', Js('|')).callprop('replace', JsRegExp('/\\./gi'), Js('\\.')))+Js(')\\.?\\s(.{4,}?)(?=,\\s|$)')), Js('i'))) var.put('removeStreetPattern', var.get('RegExp').create(var.get('streetPattern').get('source'), Js('gi'))) var.put('reverseStreetPattern', var.get('RegExp').create(((Js('(?:^|,\\s)(.{4,}?)\\s(')+var.get('Object').callprop('keys', var.get('geonymTypes')).callprop('join', Js('|')).callprop('replace', JsRegExp('/\\./gi'), Js('\\.')))+Js(')(?=,\\s|$)')), Js('i'))) var.put('removeReverseStreetPattern', var.get('RegExp').create(var.get('reverseStreetPattern').get('source'), Js('gi'))) var.put('streetPattern2', JsRegExp('/(?:^|,\\s)([^0-9,]+)(?:(?:,\\s([^,]+))?(?:,\\s?([^,]+))|$)?/i')) var.put('removeStreetPattern2', var.get('RegExp').create(var.get('streetPattern2').get('source'), Js('gi'))) var.put('buildingPattern', JsRegExp('/(?:^|,\\s)(?:б\\.|буд\\.|будинок|будівля)\\s(.+?)(?=,\\s|$)/i')) var.put('removeBuilingPattern', var.get('RegExp').create(var.get('buildingPattern').get('source'), Js('gi'))) var.put('buildingPattern2', JsRegExp('/(?:^|,\\s)([0-9][^,]+)(?:,\\s?([^,]+)|$)?/i')) var.put('removeBuilingPattern2', var.get('RegExp').create(var.get('buildingPattern2').get('source'), Js('gi'))) var.put('apartmentPattern', JsRegExp('/(?:^|,\\s)(?:кв?\\.|квартира|кімн(?:ата|\\.)|офіс|оф\\.)\\s+(.+?)(?=,|$)/i')) var.put('removeApartmentPattern', var.get('RegExp').create(var.get('apartmentPattern').get('source'), Js('gi'))) var.put('removeGarbagePattern', JsRegExp('/^(,|\\s)+/g')) var.put('removeUkrainePattern', JsRegExp('/(?:^|,\\s)УкраЇна/gi')) pass # Add lib to the module scope addressProcessor = var.to_python()
74.195332
3,721
0.651875
bfd9222c32e39746b0b3b1ff268b4dad09f4d637
6,851
py
Python
cifar/l1-norm-pruning/vggprune.py
dukebw/rethinking-network-pruning
5486af65530f61e6688e542f1f2f13dbebf88e69
[ "MIT" ]
1,410
2018-10-15T01:47:00.000Z
2022-03-31T07:21:13.000Z
cifar/l1-norm-pruning/vggprune.py
dukebw/rethinking-network-pruning
5486af65530f61e6688e542f1f2f13dbebf88e69
[ "MIT" ]
50
2018-10-15T17:15:52.000Z
2021-12-23T21:40:00.000Z
cifar/l1-norm-pruning/vggprune.py
dukebw/rethinking-network-pruning
5486af65530f61e6688e542f1f2f13dbebf88e69
[ "MIT" ]
336
2018-10-15T11:54:35.000Z
2022-03-28T09:22:57.000Z
import argparse import numpy as np import os import torch import torch.nn as nn from torch.autograd import Variable from torchvision import datasets, transforms from models import * # Prune settings parser = argparse.ArgumentParser(description='PyTorch Slimming CIFAR prune') parser.add_argument('--dataset', type=str, default='cifar10', help='training dataset (default: cifar10)') parser.add_argument('--test-batch-size', type=int, default=256, metavar='N', help='input batch size for testing (default: 256)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--depth', type=int, default=16, help='depth of the vgg') parser.add_argument('--model', default='', type=str, metavar='PATH', help='path to the model (default: none)') parser.add_argument('--save', default='.', type=str, metavar='PATH', help='path to save pruned model (default: none)') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() if not os.path.exists(args.save): os.makedirs(args.save) model = vgg(dataset=args.dataset, depth=args.depth) if args.cuda: model.cuda() if args.model: if os.path.isfile(args.model): print("=> loading checkpoint '{}'".format(args.model)) checkpoint = torch.load(args.model) args.start_epoch = checkpoint['epoch'] best_prec1 = checkpoint['best_prec1'] model.load_state_dict(checkpoint['state_dict']) print("=> loaded checkpoint '{}' (epoch {}) Prec1: {:f}" .format(args.model, checkpoint['epoch'], best_prec1)) else: print("=> no checkpoint found at '{}'".format(args.resume)) print('Pre-processing Successful!') # simple test model after Pre-processing prune (simple set BN scales to zeros) def test(model): kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {} if args.dataset == 'cifar10': test_loader = torch.utils.data.DataLoader( datasets.CIFAR10('./data.cifar10', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])), batch_size=args.test_batch_size, shuffle=True, **kwargs) elif args.dataset == 'cifar100': test_loader = torch.utils.data.DataLoader( datasets.CIFAR100('./data.cifar100', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])), batch_size=args.test_batch_size, shuffle=True, **kwargs) else: raise ValueError("No valid dataset is given.") model.eval() correct = 0 for data, target in test_loader: if args.cuda: data, target = data.cuda(), target.cuda() data, target = Variable(data, volatile=True), Variable(target) output = model(data) pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability correct += pred.eq(target.data.view_as(pred)).cpu().sum() print('\nTest set: Accuracy: {}/{} ({:.1f}%)\n'.format( correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) return correct / float(len(test_loader.dataset)) acc = test(model) cfg = [32, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 256, 256, 256, 'M', 256, 256, 256] cfg_mask = [] layer_id = 0 for m in model.modules(): if isinstance(m, nn.Conv2d): out_channels = m.weight.data.shape[0] if out_channels == cfg[layer_id]: cfg_mask.append(torch.ones(out_channels)) layer_id += 1 continue weight_copy = m.weight.data.abs().clone() weight_copy = weight_copy.cpu().numpy() L1_norm = np.sum(weight_copy, axis=(1, 2, 3)) arg_max = np.argsort(L1_norm) arg_max_rev = arg_max[::-1][:cfg[layer_id]] assert arg_max_rev.size == cfg[layer_id], "size of arg_max_rev not correct" mask = torch.zeros(out_channels) mask[arg_max_rev.tolist()] = 1 cfg_mask.append(mask) layer_id += 1 elif isinstance(m, nn.MaxPool2d): layer_id += 1 newmodel = vgg(dataset=args.dataset, cfg=cfg) if args.cuda: newmodel.cuda() start_mask = torch.ones(3) layer_id_in_cfg = 0 end_mask = cfg_mask[layer_id_in_cfg] for [m0, m1] in zip(model.modules(), newmodel.modules()): if isinstance(m0, nn.BatchNorm2d): idx1 = np.squeeze(np.argwhere(np.asarray(end_mask.cpu().numpy()))) if idx1.size == 1: idx1 = np.resize(idx1,(1,)) m1.weight.data = m0.weight.data[idx1.tolist()].clone() m1.bias.data = m0.bias.data[idx1.tolist()].clone() m1.running_mean = m0.running_mean[idx1.tolist()].clone() m1.running_var = m0.running_var[idx1.tolist()].clone() layer_id_in_cfg += 1 start_mask = end_mask if layer_id_in_cfg < len(cfg_mask): # do not change in Final FC end_mask = cfg_mask[layer_id_in_cfg] elif isinstance(m0, nn.Conv2d): idx0 = np.squeeze(np.argwhere(np.asarray(start_mask.cpu().numpy()))) idx1 = np.squeeze(np.argwhere(np.asarray(end_mask.cpu().numpy()))) print('In shape: {:d}, Out shape {:d}.'.format(idx0.size, idx1.size)) if idx0.size == 1: idx0 = np.resize(idx0, (1,)) if idx1.size == 1: idx1 = np.resize(idx1, (1,)) w1 = m0.weight.data[:, idx0.tolist(), :, :].clone() w1 = w1[idx1.tolist(), :, :, :].clone() m1.weight.data = w1.clone() elif isinstance(m0, nn.Linear): if layer_id_in_cfg == len(cfg_mask): idx0 = np.squeeze(np.argwhere(np.asarray(cfg_mask[-1].cpu().numpy()))) if idx0.size == 1: idx0 = np.resize(idx0, (1,)) m1.weight.data = m0.weight.data[:, idx0].clone() m1.bias.data = m0.bias.data.clone() layer_id_in_cfg += 1 continue m1.weight.data = m0.weight.data.clone() m1.bias.data = m0.bias.data.clone() elif isinstance(m0, nn.BatchNorm1d): m1.weight.data = m0.weight.data.clone() m1.bias.data = m0.bias.data.clone() m1.running_mean = m0.running_mean.clone() m1.running_var = m0.running_var.clone() torch.save({'cfg': cfg, 'state_dict': newmodel.state_dict()}, os.path.join(args.save, 'pruned.pth.tar')) print(newmodel) model = newmodel acc = test(model) num_parameters = sum([param.nelement() for param in newmodel.parameters()]) with open(os.path.join(args.save, "prune.txt"), "w") as fp: fp.write("Number of parameters: \n"+str(num_parameters)+"\n") fp.write("Test accuracy: \n"+str(acc)+"\n")
41.521212
104
0.620493
9eb6ce364d336e78abb6d20947f94847a7e7647b
902
py
Python
filemonitor/migrations/0002_auto_20170523_1140.py
imsilence/shadow-hostmonitor
faa28d7f5bb85212d5a64a60f742b807cf8644f7
[ "Apache-2.0" ]
1
2019-11-02T14:25:29.000Z
2019-11-02T14:25:29.000Z
filemonitor/migrations/0002_auto_20170523_1140.py
imsilence/shadow-hostmonitor
faa28d7f5bb85212d5a64a60f742b807cf8644f7
[ "Apache-2.0" ]
null
null
null
filemonitor/migrations/0002_auto_20170523_1140.py
imsilence/shadow-hostmonitor
faa28d7f5bb85212d5a64a60f742b807cf8644f7
[ "Apache-2.0" ]
1
2019-11-02T14:25:19.000Z
2019-11-02T14:25:19.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.1 on 2017-05-23 03:40 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('filemonitor', '0001_initial'), ] operations = [ migrations.CreateModel( name='Config', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('cid', models.CharField(default='', max_length=128)), ('content', models.TextField(default='{}')), ('adtime', models.DateTimeField(auto_now_add=True)), ], ), migrations.AddField( model_name='event', name='cid', field=models.CharField(default='', max_length=128), ), ]
30.066667
115
0.547672
4157b9343eddb28feb975c51a8d64c8ee3aa8619
343
py
Python
shards/manager.py
ReigenAraka/milvus
b2f19ace0e1dcd431a512141f42b748581d4b92d
[ "Apache-2.0" ]
4
2020-07-29T02:59:53.000Z
2021-11-16T11:07:51.000Z
shards/manager.py
liangwlw/milvus
7e7f626b9c7288c1c82f5dafed87d33897f4b64e
[ "Apache-2.0" ]
2
2020-08-20T07:17:50.000Z
2020-08-21T04:21:34.000Z
shards/manager.py
liangwlw/milvus
7e7f626b9c7288c1c82f5dafed87d33897f4b64e
[ "Apache-2.0" ]
2
2021-06-09T23:50:48.000Z
2021-06-17T06:24:29.000Z
import fire from mishards import db, settings class DBHandler: @classmethod def create_all(cls): db.create_all() @classmethod def drop_all(cls): db.drop_all() if __name__ == '__main__': db.init_db(settings.DefaultConfig.SQLALCHEMY_DATABASE_URI) from mishards import models fire.Fire(DBHandler)
18.052632
62
0.693878
c0c62074a3f934ca8226452c3a0871b149e68c78
2,729
py
Python
domain_hole.py
Blue-Giant/COVID_DNN
39c62a25dc78b9feb418ee0474cb06503003d2b4
[ "MIT" ]
1
2020-11-13T11:42:36.000Z
2020-11-13T11:42:36.000Z
domain_hole.py
Blue-Giant/COVID_DNN
39c62a25dc78b9feb418ee0474cb06503003d2b4
[ "MIT" ]
null
null
null
domain_hole.py
Blue-Giant/COVID_DNN
39c62a25dc78b9feb418ee0474cb06503003d2b4
[ "MIT" ]
null
null
null
################################### # coding=utf-8 # !/usr/bin/env python # __author__ = 'LXA' # ctime 2020.10.15 # 矩形区域内绘制椭圆和圆形 ################################### from matplotlib.patches import Ellipse, Circle, Rectangle import matplotlib.patches as patches import matplotlib.pyplot as plt import numpy as np fig = plt.figure() ax = fig.add_subplot(111) rctan = Rectangle((-1, -1), 2, 2, color='y', alpha=1.0) ax.add_patch(rctan) # # 第二个参数是边数,第三个是距离中心的位置 # polygon1 = patches.RegularPolygon((0, 0), 5, 1.25, color= "r") # ax.add_patch(polygon1) # # x1 = np.random.uniform(-1, 1, 3000) # 随机产生300个平均值为2,方差为1.2的浮点数,即第一簇点的x轴坐标 # # y1 = np.random.uniform(-1, 1, 3000) # 随 # # plt.scatter(x1, y1, cmap='rainbow', alpha=0.25) cir1 = Circle(xy=(0.1, 0.1), radius=0.125, color='w', alpha=1.0) cir2 = Circle(xy=(0.3, 0.5), radius=0.075, color='w', alpha=1.0) cir3 = Circle(xy=(0.6, 0.2), radius=0.15, color='w', alpha=1.0) cir4 = Circle(xy=(0.825, 0.5), radius=0.075, color='w', alpha=1.0) cir5 = Circle(xy=(0.1, 0.75), radius=0.1, color='w', alpha=1.0) cir6 = Circle(xy=(-0.1, 0.8), radius=0.075, color='w', alpha=1.0) cir7 = Circle(xy=(-0.4, 0.5), radius=0.075, color='w', alpha=1.0) cir8 = Circle(xy=(-0.6, 0.2), radius=0.075, color='w', alpha=1.0) cir9 = Circle(xy=(-0.8, 0.7), radius=0.075, color='w', alpha=1.0) cir10 = Circle(xy=(-0.9, 0.1), radius=0.1, color='w', alpha=1.0) cir11 = Circle(xy=(-0.1, -0.75), radius=0.1, color='w', alpha=1.0) cir12 = Circle(xy=(-0.4, -0.8), radius=0.075, color='w', alpha=1.0) cir13 = Circle(xy=(-0.3, -0.5), radius=0.075, color='w', alpha=1.0) cir14 = Circle(xy=(-0.6, -0.2), radius=0.125, color='w', alpha=1.0) cir15 = Circle(xy=(-0.825, -0.5), radius=0.075, color='w', alpha=1.0) cir16 = Circle(xy=(0.1, -0.5), radius=0.075, color='w', alpha=1.0) cir17 = Circle(xy=(0.3, -0.2), radius=0.105, color='w', alpha=1.0) cir18 = Circle(xy=(0.5, -0.75), radius=0.125, color='w', alpha=1.0) cir19 = Circle(xy=(0.725, -0.3), radius=0.1, color='w', alpha=1.0) cir20 = Circle(xy=(0.9, -0.9), radius=0.075, color='w', alpha=1.0) ax.add_patch(cir1) ax.add_patch(cir2) ax.add_patch(cir3) ax.add_patch(cir4) ax.add_patch(cir5) ax.add_patch(cir6) ax.add_patch(cir7) ax.add_patch(cir8) ax.add_patch(cir9) ax.add_patch(cir10) ax.add_patch(cir11) ax.add_patch(cir12) ax.add_patch(cir13) ax.add_patch(cir14) ax.add_patch(cir15) ax.add_patch(cir16) ax.add_patch(cir17) ax.add_patch(cir18) ax.add_patch(cir19) ax.add_patch(cir20) # ax.add_patch(ell1) plt.axis('scaled') ax.set_xlim(-1, 1) ax.set_ylim(-1, 1) plt.axis('equal') #changes limits of x or y axis so that equal increments of x and y have the same length plt.show()
36.878378
108
0.621473
2e210339337dea827c94c513ca3893a77d7cbd15
10,843
py
Python
venv/lib/python2.7/site-packages/tinydb/queries.py
betisb/WebProgrammin_I
6e2e4525c8d7766d65785e30bb43234cd7d829ef
[ "MIT" ]
1
2019-04-15T10:28:42.000Z
2019-04-15T10:28:42.000Z
venv/lib/python2.7/site-packages/tinydb/queries.py
betisb/WebProgrammin_I
6e2e4525c8d7766d65785e30bb43234cd7d829ef
[ "MIT" ]
null
null
null
venv/lib/python2.7/site-packages/tinydb/queries.py
betisb/WebProgrammin_I
6e2e4525c8d7766d65785e30bb43234cd7d829ef
[ "MIT" ]
null
null
null
""" Contains the querying interface. Starting with :class:`~tinydb.queries.Query` you can construct complex queries: >>> ((where('f1') == 5) & (where('f2') != 2)) | where('s').matches(r'^\w+$') (('f1' == 5) and ('f2' != 2)) or ('s' ~= ^\w+$ ) Queries are executed by using the ``__call__``: >>> q = where('val') == 5 >>> q({'val': 5}) True >>> q({'val': 1}) False """ import re import sys from .utils import catch_warning, freeze __all__ = ('Query', 'where') def is_sequence(obj): return hasattr(obj, '__iter__') class QueryImpl(object): """ A query implementation. This query implementation wraps a test function which is run when the query is evaluated by calling the object. Queries can be combined with logical and/or and modified with logical not. """ def __init__(self, test, hashval): self._test = test self.hashval = hashval def __call__(self, value): return self._test(value) def __hash__(self): return hash(self.hashval) def __repr__(self): return 'QueryImpl{}'.format(self.hashval) def __eq__(self, other): return self.hashval == other.hashval # --- Query modifiers ----------------------------------------------------- def __and__(self, other): # We use a frozenset for the hash as the AND operation is commutative # (a & b == b & a) return QueryImpl(lambda value: self(value) and other(value), ('and', frozenset([self.hashval, other.hashval]))) def __or__(self, other): # We use a frozenset for the hash as the OR operation is commutative # (a | b == b | a) return QueryImpl(lambda value: self(value) or other(value), ('or', frozenset([self.hashval, other.hashval]))) def __invert__(self): return QueryImpl(lambda value: not self(value), ('not', self.hashval)) class Query(QueryImpl): """ TinyDB Queries. Allows to build queries for TinyDB databases. There are two main ways of using queries: 1) ORM-like usage: >>> User = Query() >>> db.search(User.name == 'John Doe') >>> db.search(User['logged-in'] == True) 2) Classical usage: >>> db.search(where('value') == True) Note that ``where(...)`` is a shorthand for ``Query(...)`` allowing for a more fluent syntax. Besides the methods documented here you can combine queries using the binary AND and OR operators: >>> db.search(where('field1').exists() & where('field2') == 5) # Binary AND >>> db.search(where('field1').exists() | where('field2') == 5) # Binary OR Queries are executed by calling the resulting object. They expect to get the document to test as the first argument and return ``True`` or ``False`` depending on whether the documents matches the query or not. """ def __init__(self): self._path = [] super(Query, self).__init__( self._prepare_test(lambda _: True), ('path', tuple(self._path)) ) def __repr__(self): return '{}()'.format(type(self).__name__) def __hash__(self): return super(Query, self).__hash__() def __getattr__(self, item): query = Query() query._path = self._path + [item] query.hashval = ('path', tuple(query._path)) return query __getitem__ = __getattr__ def _prepare_test(self, test): def runner(value): try: # Resolve the path for part in self._path: value = value[part] except (KeyError, TypeError): return False else: return test(value) return runner def _generate_test(self, test, hashval): """ Generate a query based on a test function. :param test: The test the query executes. :param hashval: The hash of the query. :return: A :class:`~tinydb.queries.QueryImpl` object """ if not self._path: raise ValueError('Query has no path') return QueryImpl(self._prepare_test(test), hashval) def __eq__(self, rhs): """ Test a dict value for equality. >>> Query().f1 == 42 :param rhs: The value to compare against """ if sys.version_info <= (3, 0): # pragma: no cover # Special UTF-8 handling on Python 2 def test(value): with catch_warning(UnicodeWarning): try: return value == rhs except UnicodeWarning: # Dealing with a case, where 'value' or 'rhs' # is unicode and the other is a byte string. if isinstance(value, str): return value.decode('utf-8') == rhs elif isinstance(rhs, str): return value == rhs.decode('utf-8') else: # pragma: no cover def test(value): return value == rhs return self._generate_test( lambda value: test(value), ('==', tuple(self._path), freeze(rhs)) ) def __ne__(self, rhs): """ Test a dict value for inequality. >>> Query().f1 != 42 :param rhs: The value to compare against """ return self._generate_test( lambda value: value != rhs, ('!=', tuple(self._path), freeze(rhs)) ) def __lt__(self, rhs): """ Test a dict value for being lower than another value. >>> Query().f1 < 42 :param rhs: The value to compare against """ return self._generate_test( lambda value: value < rhs, ('<', tuple(self._path), rhs) ) def __le__(self, rhs): """ Test a dict value for being lower than or equal to another value. >>> where('f1') <= 42 :param rhs: The value to compare against """ return self._generate_test( lambda value: value <= rhs, ('<=', tuple(self._path), rhs) ) def __gt__(self, rhs): """ Test a dict value for being greater than another value. >>> Query().f1 > 42 :param rhs: The value to compare against """ return self._generate_test( lambda value: value > rhs, ('>', tuple(self._path), rhs) ) def __ge__(self, rhs): """ Test a dict value for being greater than or equal to another value. >>> Query().f1 >= 42 :param rhs: The value to compare against """ return self._generate_test( lambda value: value >= rhs, ('>=', tuple(self._path), rhs) ) def exists(self): """ Test for a dict where a provided key exists. >>> Query().f1.exists() """ return self._generate_test( lambda _: True, ('exists', tuple(self._path)) ) def matches(self, regex, flags=0): """ Run a regex test against a dict value (whole string has to match). >>> Query().f1.matches(r'^\w+$') :param regex: The regular expression to use for matching """ return self._generate_test( lambda value: re.match(regex, value, flags), ('matches', tuple(self._path), regex) ) def search(self, regex, flags=0): """ Run a regex test against a dict value (only substring string has to match). >>> Query().f1.search(r'^\w+$') :param regex: The regular expression to use for matching """ return self._generate_test( lambda value: re.search(regex, value, flags), ('search', tuple(self._path), regex) ) def test(self, func, *args): """ Run a user-defined test function against a dict value. >>> def test_func(val): ... return val == 42 ... >>> Query().f1.test(test_func) :param func: The function to call, passing the dict as the first argument :param args: Additional arguments to pass to the test function """ return self._generate_test( lambda value: func(value, *args), ('test', tuple(self._path), func, args) ) def any(self, cond): """ Check if a condition is met by any document in a list, where a condition can also be a sequence (e.g. list). >>> Query().f1.any(Query().f2 == 1) Matches:: {'f1': [{'f2': 1}, {'f2': 0}]} >>> Query().f1.any([1, 2, 3]) Matches:: {'f1': [1, 2]} {'f1': [3, 4, 5]} :param cond: Either a query that at least one document has to match or a list of which at least one document has to be contained in the tested document. """ if callable(cond): def _cmp(value): return is_sequence(value) and any(cond(e) for e in value) else: def _cmp(value): return is_sequence(value) and any(e in cond for e in value) return self._generate_test( lambda value: _cmp(value), ('any', tuple(self._path), freeze(cond)) ) def all(self, cond): """ Check if a condition is met by all documents in a list, where a condition can also be a sequence (e.g. list). >>> Query().f1.all(Query().f2 == 1) Matches:: {'f1': [{'f2': 1}, {'f2': 1}]} >>> Query().f1.all([1, 2, 3]) Matches:: {'f1': [1, 2, 3, 4, 5]} :param cond: Either a query that all documents have to match or a list which has to be contained in the tested document. """ if callable(cond): def _cmp(value): return is_sequence(value) and all(cond(e) for e in value) else: def _cmp(value): return is_sequence(value) and all(e in value for e in cond) return self._generate_test( lambda value: _cmp(value), ('all', tuple(self._path), freeze(cond)) ) def one_of(self, items): """ Check if the value is contained in a list or generator. >>> Query().f1.one_of(['value 1', 'value 2']) :param items: The list of items to check with """ return self._generate_test( lambda value: value in items, ('one_of', tuple(self._path), freeze(items)) ) def where(key): return Query()[key]
27.731458
79
0.53048
f8c191809f76425783dab1bc5ede182bdd46ba5e
9,345
py
Python
yt/data_objects/tests/test_sph_data_objects.py
cgyurgyik/yt
9251e7bff9112e0f54c9b24f6a8bbba66869bb9d
[ "BSD-3-Clause-Clear" ]
null
null
null
yt/data_objects/tests/test_sph_data_objects.py
cgyurgyik/yt
9251e7bff9112e0f54c9b24f6a8bbba66869bb9d
[ "BSD-3-Clause-Clear" ]
null
null
null
yt/data_objects/tests/test_sph_data_objects.py
cgyurgyik/yt
9251e7bff9112e0f54c9b24f6a8bbba66869bb9d
[ "BSD-3-Clause-Clear" ]
null
null
null
import numpy as np from yt import SlicePlot from yt.testing import assert_equal, fake_sph_grid_ds, fake_sph_orientation_ds def test_point(): ds = fake_sph_orientation_ds() field_data = ds.stream_handler.fields["stream_file"] ppos = [field_data["io", "particle_position_%s" % d] for d in "xyz"] ppos = np.array(ppos).T for pos in ppos: for i in range(-1, 2): offset = 0.1 * np.array([i, 0, 0]) pt = ds.point(pos + offset) assert_equal(pt["gas", "density"].shape[0], 1) for j in range(-1, 2): offset = 0.1 * np.array([0, j, 0]) pt = ds.point(pos + offset) assert_equal(pt["gas", "density"].shape[0], 1) for k in range(-1, 2): offset = 0.1 * np.array([0, 0, k]) pt = ds.point(pos + offset) assert_equal(pt["gas", "density"].shape[0], 1) # The number of particles along each slice axis at that coordinate SLICE_ANSWERS = { ("x", 0): 6, ("x", 0.5): 0, ("x", 1): 1, ("y", 0): 5, ("y", 1): 1, ("y", 2): 1, ("z", 0): 4, ("z", 1): 1, ("z", 2): 1, ("z", 3): 1, } def test_slice(): ds = fake_sph_orientation_ds() for (ax, coord), answer in SLICE_ANSWERS.items(): # test that we can still select particles even if we offset the slice # within each particle's smoothing volume for i in range(-1, 2): sl = ds.slice(ax, coord + i * 0.1) assert_equal(sl["gas", "density"].shape[0], answer) REGION_ANSWERS = { ((-4, -4, -4), (4, 4, 4)): 7, ((0, 0, 0), (4, 4, 4)): 7, ((1, 0, 0), (4, 4, 4)): 1, ((0, 1, 0), (4, 4, 4)): 2, ((0, 0, 1), (4, 4, 4)): 3, ((0, 0, 0), (4, 4, 2)): 6, ((0, 0, 0), (4, 4, 1)): 5, ((0, 0, 0), (4, 1, 4)): 6, ((0, 0, 0), (1, 1, 4)): 6, } def test_region(): ds = fake_sph_orientation_ds() for (left_edge, right_edge), answer in REGION_ANSWERS.items(): # test that regions enclosing a particle's smoothing region # correctly select SPH particles for i in range(-1, 2): for j in range(-1, 2): le = np.array([le + i * 0.1 for le in left_edge]) re = np.array([re + j * 0.1 for re in right_edge]) # check if we went off the edge of the domain whl = le < ds.domain_left_edge le[whl] = ds.domain_left_edge[whl] whr = re > ds.domain_right_edge re[whr] = ds.domain_right_edge[whr] reg = ds.box(le, re) assert_equal(reg["gas", "density"].shape[0], answer) SPHERE_ANSWERS = { ((0, 0, 0), 4): 7, ((0, 0, 0), 3): 7, ((0, 0, 0), 2): 6, ((0, 0, 0), 1): 4, ((0, 0, 0), 0.5): 1, ((1, 0, 0), 0.5): 1, ((1, 0, 0), 1.0): 2, ((0, 1, 0), 1.0): 3, ((0, 0, 1), 1.0): 3, } def test_sphere(): ds = fake_sph_orientation_ds() for (center, radius), answer in SPHERE_ANSWERS.items(): # test that spheres enclosing a particle's smoothing region # correctly select SPH particles for i in range(-1, 2): for j in range(-1, 2): cent = np.array([c + i * 0.1 for c in center]) rad = radius + 0.1 * j sph = ds.sphere(cent, rad) assert_equal(sph["gas", "density"].shape[0], answer) DISK_ANSWERS = { ((0, 0, 0), (0, 0, 1), 4, 3): 7, ((0, 0, 0), (0, 0, 1), 4, 2): 6, ((0, 0, 0), (0, 0, 1), 4, 1): 5, ((0, 0, 0), (0, 0, 1), 4, 0.5): 4, ((0, 0, 0), (0, 1, 0), 4, 3): 7, ((0, 0, 0), (0, 1, 0), 4, 2): 7, ((0, 0, 0), (0, 1, 0), 4, 1): 6, ((0, 0, 0), (0, 1, 0), 4, 0.5): 5, ((0, 0, 0), (1, 0, 0), 4, 3): 7, ((0, 0, 0), (1, 0, 0), 4, 2): 7, ((0, 0, 0), (1, 0, 0), 4, 1): 7, ((0, 0, 0), (1, 0, 0), 4, 0.5): 6, ((0, 0, 0), (1, 1, 1), 1, 1): 4, ((-0.5, -0.5, -0.5), (1, 1, 1), 4, 4): 7, } def test_disk(): ds = fake_sph_orientation_ds() for (center, normal, radius, height), answer in DISK_ANSWERS.items(): # test that disks enclosing a particle's smoothing region # correctly select SPH particles for i in range(-1, 2): cent = np.array([c + i * 0.1 for c in center]) disk = ds.disk(cent, normal, radius, height) assert_equal(disk["gas", "density"].shape[0], answer) RAY_ANSWERS = { ((0, 0, 0), (3, 0, 0)): 2, ((0, 0, 0), (0, 3, 0)): 3, ((0, 0, 0), (0, 0, 3)): 4, ((0, 1, 0), (0, 2, 0)): 2, ((1, 0, 0), (0, 2, 0)): 2, ((0.5, 0.5, 0.5), (0.5, 0.5, 3.5)): 0, } def test_ray(): ds = fake_sph_orientation_ds() for (start_point, end_point), answer in RAY_ANSWERS.items(): for i in range(-1, 2): start = np.array([s + i * 0.1 for s in start_point]) end = np.array([e + i * 0.1 for e in end_point]) ray = ds.ray(start, end) assert_equal(ray["gas", "density"].shape[0], answer) CUTTING_ANSWERS = { ((1, 0, 0), (0, 0, 0)): 6, ((0, 1, 0), (0, 0, 0)): 5, ((0, 0, 1), (0, 0, 0)): 4, ((1, 1, 1), (1.0 / 3, 1.0 / 3, 1.0 / 3)): 3, ((1, 1, 1), (2.0 / 3, 2.0 / 3, 2.0 / 3)): 2, ((1, 1, 1), (1, 1, 1)): 1, } def test_cutting(): ds = fake_sph_orientation_ds() for (normal, center), answer in CUTTING_ANSWERS.items(): for i in range(-1, 2): cen = [c + 0.1 * i for c in center] cut = ds.cutting(normal, cen) assert_equal(cut["gas", "density"].shape[0], answer) def test_chained_selection(): ds = fake_sph_orientation_ds() for (center, radius), answer in SPHERE_ANSWERS.items(): sph = ds.sphere(center, radius) region = ds.box(ds.domain_left_edge, ds.domain_right_edge, data_source=sph) assert_equal(region["gas", "density"].shape[0], answer) def test_boolean_selection(): ds = fake_sph_orientation_ds() sph = ds.sphere([0, 0, 0], 0.5) sph2 = ds.sphere([1, 0, 0], 0.5) reg = ds.all_data() neg = reg - sph assert_equal(neg["gas", "density"].shape[0], 6) plus = sph + sph2 assert_equal(plus["gas", "density"].shape[0], 2) intersect = sph & sph2 assert_equal(intersect["gas", "density"].shape[0], 0) intersect = reg & sph2 assert_equal(intersect["gas", "density"].shape[0], 1) exclusive = sph ^ sph2 assert_equal(exclusive["gas", "density"].shape[0], 2) exclusive = sph ^ reg assert_equal(exclusive["gas", "density"].shape[0], 6) intersect = ds.intersection([sph, sph2]) assert_equal(intersect["gas", "density"].shape[0], 0) intersect = ds.intersection([reg, sph2]) assert_equal(intersect["gas", "density"].shape[0], 1) union = ds.union([sph, sph2]) assert_equal(union["gas", "density"].shape[0], 2) union = ds.union([sph, reg]) assert_equal(union["gas", "density"].shape[0], 7) def test_arbitrary_grid(): ds = fake_sph_grid_ds() # this loads up some sph data in a test grid agrid = ds.arbitrary_grid([0, 0, 0], [3, 3, 3], dims=[3, 3, 3]) # the field should be equal to the density of a particle in every voxel # which is 1. dens = agrid["gas", "density"] answers = np.ones(shape=(3, 3, 3)) assert_equal(dens, answers) def test_compare_arbitrary_grid_slice(): ds = fake_sph_orientation_ds() c = np.array([0.0, 0.0, 0.0]) width = 1.5 buff_size = 51 field = ("gas", "density") # buffer from arbitrary grid ag = ds.arbitrary_grid(c - width / 2, c + width / 2, [buff_size] * 3) buff_ag = ag[field][:, :, int(np.floor(buff_size / 2))].d.T # buffer from slice p = SlicePlot(ds, "z", field, center=c, width=width) p.set_buff_size(51) buff_slc = p.frb.data[field].d assert_equal(buff_slc, buff_ag) def test_gather_slice(): ds = fake_sph_grid_ds() ds.num_neighbors = 5 field = ("gas", "density") c = np.array([1.5, 1.5, 0.5]) width = 3.0 p = SlicePlot(ds, "z", field, center=c, width=width) p.set_buff_size(3) buff_scatter = p.frb.data[field].d ds.sph_smoothing_style = "gather" p = SlicePlot(ds, "z", field, center=c, width=width) p.set_buff_size(3) buff_gather = p.frb.data[field].d assert_equal(buff_scatter, buff_gather) def test_gather_grid(): ds = fake_sph_grid_ds() ds.num_neighbors = 5 field = ("gas", "density") ag = ds.arbitrary_grid([0, 0, 0], [3, 3, 3], dims=[3, 3, 3]) scatter = ag[field] ds.sph_smoothing_style = "gather" ag = ds.arbitrary_grid([0, 0, 0], [3, 3, 3], dims=[3, 3, 3]) gather = ag[field] assert_equal(gather, scatter) def test_covering_grid_scatter(): ds = fake_sph_grid_ds() field = ("gas", "density") buff_size = 8 ag = ds.arbitrary_grid(0, 3, [buff_size] * 3) ag_dens = ag[field].to("g*cm**-3").d cg = ds.covering_grid(3, 0, 8) cg_dens = cg[field].to("g*cm**-3").d assert_equal(ag_dens, cg_dens) def test_covering_grid_gather(): ds = fake_sph_grid_ds() ds.sph_smoothing_style = "gather" ds.num_neighbors = 5 field = ("gas", "density") buff_size = 8 ag = ds.arbitrary_grid(0, 3, [buff_size] * 3) ag_dens = ag[field].to("g*cm**-3").d cg = ds.covering_grid(3, 0, 8) cg_dens = cg[field].to("g*cm**-3").d assert_equal(ag_dens, cg_dens)
27.895522
83
0.530337
7b1b223af3866568b86ac96175cd05323bd92273
8,486
py
Python
bm/base/tf_model.py
carolinscholl/boltzmann-machines
c6d3f9051b1cb12eca7a9c6ad540e58ee36f7501
[ "MIT" ]
1
2018-05-28T12:32:16.000Z
2018-05-28T12:32:16.000Z
bm/base/tf_model.py
carolinscholl/boltzmann-machines
c6d3f9051b1cb12eca7a9c6ad540e58ee36f7501
[ "MIT" ]
null
null
null
bm/base/tf_model.py
carolinscholl/boltzmann-machines
c6d3f9051b1cb12eca7a9c6ad540e58ee36f7501
[ "MIT" ]
null
null
null
import os import json import tensorflow as tf from functools import wraps from bm.base import (BaseModel, DtypeMixin, is_param_name) def run_in_tf_session(check_initialized=True, update_seed=False): """Decorator function that takes care to load appropriate graph/session, depending on whether model can be loaded from disk or is just created, and to execute `f` inside this session. """ def wrap(f): @wraps(f) # preserve bound method properties def wrapped_f(model, *args, **kwargs): tf.compat.v1.reset_default_graph() model._tf_graph = tf.compat.v1.get_default_graph() if update_seed: tf.compat.v1.set_random_seed(model.make_random_seed()) if model.initialized_: # model should be loaded from disk model._tf_saver = tf.train.import_meta_graph(model._tf_meta_graph_filepath) with model._tf_graph.as_default(): with tf.compat.v1.Session(config=model._tf_session_config) as model._tf_session: model._tf_saver.restore(model._tf_session, model._model_filepath) model._init_tf_writers() res = f(model, *args, **kwargs) elif check_initialized: raise RuntimeError('`fit` or `init` must be called before calling `{0}`'.format(f.__name__)) else: with model._tf_graph.as_default(): with tf.compat.v1.Session(config=model._tf_session_config) as model._tf_session: model._make_tf_model() model._init_tf_ops() model._init_tf_writers() res = f(model, *args, **kwargs) return res return wrapped_f return wrap class TensorFlowModel(BaseModel, DtypeMixin): def __init__(self, model_path='tf_model/', paths=None, tf_session_config=None, tf_saver_params=None, json_params=None, *args, **kwargs): super(TensorFlowModel, self).__init__(*args, **kwargs) self._model_dirpath = None self._model_filepath = None self._params_filepath = None self._random_state_filepath = None self._train_summary_dirpath = None self._val_summary_dirpath = None self._tf_meta_graph_filepath = None self.update_working_paths(model_path=model_path, paths=paths) self._tf_session_config = tf_session_config or tf.compat.v1.ConfigProto() self.tf_saver_params = tf_saver_params or {} self.json_params = json_params or {} self.json_params.setdefault('sort_keys', True) self.json_params.setdefault('indent', 4) self.initialized_ = False self._tf_graph = tf.Graph() self._tf_session = None self._tf_saver = None self._tf_merged_summaries = None self._tf_train_writer = None self._tf_val_writer = None @staticmethod def compute_working_paths(model_path): """ Parameters ---------- model_path : str Model dirpath (should contain slash at the end) or filepath """ head, tail = os.path.split(model_path) if not head: head = '.' if not head.endswith('/'): head += '/' if not tail: tail = 'model' paths = {} paths['model_dirpath'] = head paths['model_filepath'] = os.path.join(paths['model_dirpath'], tail) paths['params_filepath'] = os.path.join(paths['model_dirpath'], 'params.json') paths['random_state_filepath'] = os.path.join(paths['model_dirpath'], 'random_state.json') paths['train_summary_dirpath'] = os.path.join(paths['model_dirpath'], 'logs/train') paths['val_summary_dirpath'] = os.path.join(paths['model_dirpath'], 'logs/val') paths['tf_meta_graph_filepath'] = paths['model_filepath'] + '.meta' return paths def update_working_paths(self, model_path=None, paths=None): paths = paths or {} if not paths: paths = TensorFlowModel.compute_working_paths(model_path=model_path) for k, v in list(paths.items()): setattr(self, '_{0}'.format(k), v) def _make_tf_model(self): raise NotImplementedError('`_make_tf_model` is not implemented') def _init_tf_ops(self): """Initialize all TF variables and Saver""" init_op = tf.compat.v1.global_variables_initializer() self._tf_session.run(init_op) self._tf_saver = tf.compat.v1.train.Saver(**self.tf_saver_params) def _init_tf_writers(self): self._tf_merged_summaries = tf.compat.v1.summary.merge_all() #self._tf_train_writer = tf.compat.v1.summary.FileWriter(self._train_summary_dirpath,self._tf_graph) #self._tf_val_writer = tf.compat.v1.summary.FileWriter(self._val_summary_dirpath,self._tf_graph) def _save_model(self, global_step=None): # (recursively) create all folders needed for dirpath in (self._train_summary_dirpath, self._val_summary_dirpath): if not os.path.exists(dirpath): os.makedirs(dirpath) # save params params = self.get_params(deep=False) params = self._serialize(params) params['__class_name__'] = self.__class__.__name__ with open(self._params_filepath, 'w') as params_file: json.dump(params, params_file, **self.json_params) # dump random state if needed if self.random_seed is not None: random_state = self._rng.get_state() with open(self._random_state_filepath, 'w') as random_state_file: json.dump(random_state, random_state_file) # save tf model self._tf_saver.save(self._tf_session, self._model_filepath, global_step=global_step) @classmethod def load_model(cls, model_path): paths = TensorFlowModel.compute_working_paths(model_path) # load params with open(paths['params_filepath'], 'r') as params_file: params = json.load(params_file) #print(params) class_name = params.pop('__class_name__') if class_name != cls.__name__: raise RuntimeError("attempt to load {0} with class {1}".format(class_name, cls.__name__)) model = cls(paths=paths, **{k: params[k] for k in params if is_param_name(k)}) params = model._deserialize(params) model.set_params(**params) # set attributes and deserialized params # restore random state if needed if os.path.isfile(model._random_state_filepath): with open(model._random_state_filepath, 'r') as random_state_file: random_state = json.load(random_state_file) model._rng.set_state(random_state) # (tf model will be loaded once any computation will be needed) return model def _fit(self, X, X_val=None, *args, **kwargs): """Class-specific `fit` routine.""" raise NotImplementedError('`fit` is not implemented') @run_in_tf_session(check_initialized=False) def init(self): if not self.initialized_: self.initialized_ = True self._save_model() return self @run_in_tf_session(check_initialized=False, update_seed=True) def fit(self, X, X_val=None, *args, **kwargs): """Fit the model according to the given training data.""" self.initialized_ = True self._fit(X, X_val=X_val, *args, **kwargs) self._save_model() return self @run_in_tf_session() def get_tf_params(self, scope=None): """Get tf params of the model. Returns ------- params : dict[str] = np.ndarray Evaluated parameters of the model. """ weights = {} for var in tf.compat.v1.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=scope): key = var.name if scope and scope in key: key = key.replace(scope, '') if key.startswith('/'): key = key[1:] if key.endswith(':0'): key = key[:-2] weights[key] = var.eval() return weights if __name__ == '__main__': # run corresponding tests from bm.utils.testing import run_tests from tests import test_tf_model as t run_tests(__file__, t)
40.602871
108
0.624087
684cfc87bf64fb552ca1caa74a46163ac556af7d
2,093
py
Python
tfx/tools/cli/labels.py
johnPertoft/tfx
c6335684a54651adbcbe50aa52918b9b9948326e
[ "Apache-2.0" ]
null
null
null
tfx/tools/cli/labels.py
johnPertoft/tfx
c6335684a54651adbcbe50aa52918b9b9948326e
[ "Apache-2.0" ]
null
null
null
tfx/tools/cli/labels.py
johnPertoft/tfx
c6335684a54651adbcbe50aa52918b9b9948326e
[ "Apache-2.0" ]
null
null
null
# Lint as: python2, python3 # Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common Flags.""" ENGINE_FLAG = 'engine' PIPELINE_DSL_PATH = 'pipeline_dsl_path' PIPELINE_NAME = 'pipeline_name' AIRFLOW_PACKAGE_NAME = 'apache-airflow' KUBEFLOW_PACKAGE_NAME = 'kfp' RUN_ID = 'run_id' AIRFLOW_ENGINE = 'airflow' BEAM_ENGINE = 'beam' KUBEFLOW_ENGINE = 'kubeflow' LOCAL_ENGINE = 'local' VERTEX_ENGINE = 'vertex' # Path to root directory of the pipeline. PIPELINE_ROOT = 'pipeline_root' # List of components in the pipeline. PIPELINE_COMPONENTS = 'pipeline_components' # Kubeflow specific labels. # Base container image path. BASE_IMAGE = 'build_base_image' # Client ID for IAP protected endpoint. IAP_CLIENT_ID = 'iap_client_id' # Endpoint of the KFP API service to connect. ENDPOINT = 'endpoint' # Kubernetes namespace to connect to the KFP API. NAMESPACE = 'namespace' # Pipeline id generated when pipeline is uploaded to KFP server. PIPELINE_ID = 'pipeline_id' # Pipeline version id generated when pipeline is created or updated. PIPELINE_VERSION_ID = 'pipeline_version_id' # Experiment id generated when a new experiment is created on KFP server. EXPERIMENT_ID = 'experiment_id' # Flag to decide whether an image build is needed BUILD_IMAGE = 'build_image' # GCP Project ID for GCP API call. GCP_PROJECT_ID = 'gcp_project_id' # GCP Region for GCP API call. GCP_REGION = 'gcp_region' # Template specific labels. # Destination directory path to copy files DESTINATION_PATH = 'destination_path' # Model kind of the copying template MODEL = 'model'
34.311475
74
0.77592
11d28f7be1ad33687f8a7b72261ffd946a0fc5f2
429
py
Python
drf_admin/apps/cmdb/admin.py
guohaihan/myproject
0ec105d0bd48477faddf93bd62a8ede800419ae6
[ "MIT" ]
228
2020-06-20T10:07:03.000Z
2022-03-29T07:11:01.000Z
drf_admin/apps/cmdb/admin.py
guohaihan/myproject
0ec105d0bd48477faddf93bd62a8ede800419ae6
[ "MIT" ]
25
2020-07-16T12:29:04.000Z
2022-02-16T06:31:06.000Z
drf_admin/apps/cmdb/admin.py
guohaihan/myproject
0ec105d0bd48477faddf93bd62a8ede800419ae6
[ "MIT" ]
82
2020-10-26T07:14:15.000Z
2022-03-29T07:53:23.000Z
from django.contrib import admin from cmdb.models import Assets, Servers, SecurityDevices, StorageDevices, NetworkDevices, IDC, Cabinets, Accounts # Register your models here. admin.site.register(Assets) admin.site.register(Servers) admin.site.register(SecurityDevices) admin.site.register(StorageDevices) admin.site.register(NetworkDevices) admin.site.register(IDC) admin.site.register(Cabinets) admin.site.register(Accounts)
30.642857
113
0.829837
16faee1d432c27fee91223052bc1fe526a35bc9f
617
py
Python
tutorial-01/pySimpleGui-0101.py
lungen/pySimpleGui
31c10e481d90a60a82b4036b187d56fe008a96f1
[ "MIT" ]
null
null
null
tutorial-01/pySimpleGui-0101.py
lungen/pySimpleGui
31c10e481d90a60a82b4036b187d56fe008a96f1
[ "MIT" ]
null
null
null
tutorial-01/pySimpleGui-0101.py
lungen/pySimpleGui
31c10e481d90a60a82b4036b187d56fe008a96f1
[ "MIT" ]
null
null
null
import PySimpleGUI as sg sg.theme("DarkAmber") # Add a touch of color # All the stuff inside your window. layout = [ [sg.Text("Some text on Row 1")], [sg.Text("Enter something on Row 2"), sg.InputText()], [sg.Button("Ok"), sg.Button("Cancel")], ] # Create the Window window = sg.Window("Window Title", layout) # Event Loop to process "events" and get the "values" of the inputs while True: event, values = window.read() if ( event == sg.WIN_CLOSED or event == "Cancel" ): # if user closes window or clicks cancel break print("You entered ", values[0]) window.close()
25.708333
67
0.640194
46d56896e86b1d6e826d61c8876888e02c85994a
2,113
py
Python
experiments/exp_20170719_01/main.py
charliezon/deep_stock
bbc7e6ea8498c50459b8e42eeff42d8578b6491d
[ "MIT" ]
7
2017-08-01T04:13:32.000Z
2021-08-17T02:19:51.000Z
experiments/exp_20170719_01/main.py
urantialife/deep_stock
bbc7e6ea8498c50459b8e42eeff42d8578b6491d
[ "MIT" ]
1
2018-01-24T12:02:30.000Z
2018-01-24T12:02:30.000Z
experiments/exp_20170719_01/main.py
urantialife/deep_stock
bbc7e6ea8498c50459b8e42eeff42d8578b6491d
[ "MIT" ]
3
2018-10-03T18:05:16.000Z
2020-07-23T15:55:58.000Z
import sys sys.path.append('../../') import pandas as pd import numpy as np from keras.models import Sequential from keras.models import load_model from keras.layers import Dense, Dropout from keras.optimizers import SGD from keras.layers.advanced_activations import LeakyReLU import matplotlib.pyplot as plt import h5py from utils.metrics import precision # Accuracy, Precision ?? data = pd.read_csv("../../data/data_20170719_01/data.csv", header=None) dataset = data.values feature_len = 100 train_len = int(len(dataset)*0.96) epochs = 1000 num_unit = 128 batch_size = 128 num_layer = 5 dropout = 0.5 x_train = dataset[0:train_len, 0:feature_len].astype(float) y_train = dataset[0:train_len, feature_len] x_test = dataset[train_len:, 0:feature_len].astype(float) y_test = dataset[train_len:, feature_len] #leakyReLU = LeakyReLU(alpha=0.3) model = Sequential() model.add(Dense(num_unit, input_dim=feature_len)) model.add(LeakyReLU(alpha=0.3)) model.add(Dropout(dropout)) for i in range(num_layer): model.add(Dense(num_unit)) model.add(LeakyReLU(alpha=0.3)) model.add(Dropout(dropout)) model.add(Dense(1, activation='sigmoid')) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='binary_crossentropy', optimizer=sgd, metrics=['accuracy', precision]) # model.load_weights('./model_weights.h5') history = model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, verbose=1, validation_split=0.1) model.save_weights('./model_weights.h5') score = model.evaluate(x_test, y_test, batch_size=batch_size, verbose=1) print(score) plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.plot(history.history['precision']) plt.plot(history.history['val_precision']) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model accuracy, precision and loss') plt.ylabel('accuracy, precision or loss') plt.xlabel('epoch') plt.legend(['train_acc', 'val_acc', 'train_precision', 'val_precision', 'train_loss', 'val_loss'], loc='upper left') plt.show()
28.554054
116
0.733554
bf8d5df5ea0d13739a01f2fba7f1d9f7a34deefb
4,588
py
Python
mistos-backend/src/app/api/classes/experiment_result.py
Maddonix/mistos_2
4bd9f45ad9e49f4178c0b8bb1a177d7db5349c34
[ "MIT" ]
1
2021-03-22T10:57:01.000Z
2021-03-22T10:57:01.000Z
mistos-backend/src/app/api/classes/experiment_result.py
Maddonix/mistos_2
4bd9f45ad9e49f4178c0b8bb1a177d7db5349c34
[ "MIT" ]
44
2021-02-17T15:07:17.000Z
2021-04-05T07:07:09.000Z
mistos-backend/src/app/api/classes/experiment_result.py
Maddonix/mistos_2
4bd9f45ad9e49f4178c0b8bb1a177d7db5349c34
[ "MIT" ]
null
null
null
from pathlib import Path from typing import Optional, Any from app import crud from app import fileserver_requests as fsr from app.api.classes_com import ComExperimentResult from app.api.dependencies import check_sess from pandas import DataFrame from pydantic import BaseModel, constr from app.api import cfg_classes class DbExperimentResult(BaseModel): ''' A class to handle database and file storage of ExperimentResults Attributes ---------- uid : int the objects unique identifier name : str the objects name hint : str brief description of the object description : str a detailed description of the experiment result experiment_group_id : int unique identifier of the associated experiment group result_type: str describes type of result layer. Must be one of strings defined in app.api.cfg_classes.result_types path : pathlib.Path, optional path to file storage, will be automatically generated when object is saved to database. Methods ------- to_int_class()->app.api.classes_internal.IntExperimentResult: returns object as int_class. Loads layer array from file path in the process. to_com_class()->app.api.classes_com.ComExperimentResult: returns object as com_class. create_in_db(sess = None): creates object in database, updates objects path and uid attributes accordingly. Uses default session if none is passed. delete(sess = None): deletes object in database and file storage. Uses default session if none is passed. update_hint(new_hint: str, sess = None): updates objects hint in database. Uses default session if none is passed. update_name(new_name: str, sess = None): updates objects name in database. Uses default session if none is passed. ''' uid: int name: str = "" hint: str = "" description: str = "" experiment_group_id: int result_type: constr(regex=cfg_classes.result_type_regex) path: Optional[Path] def to_int_class(self): '''Returns c_int.IntExperimentResult''' kwargs = self.dict() kwargs["data"] = fsr.load_result_df(self.path) return IntExperimentResult(**kwargs) def create_in_db(self, sess=None): ''' Creates object in db. Path and id are generated and updated in object. Parameters: - sess(sqlalchemy.orm.Session): The database session to be used, if no session is passed default session will be used (app.api.dependencies.get_db) ''' sess = check_sess(sess) sql_result = crud.create_experiment_result(self) self.uid = sql_result.id self.path = Path(sql_result.path) def to_com_class(self): '''Returns c_com.ComExperimentResult''' kwargs = self.dict() kwargs["experimentGroups"] = self.experiment_group_id kwargs["resultType"] = self.result_type return ComExperimentResult(**kwargs) class IntExperimentResult(BaseModel): ''' A class to handle calculations and other internal operations with ExperimentResults. Attributes ---------- uid : int the objects unique identifier name : str the objects name hint : str, optional empty string by default. brief description of the object. description : str, optional empty string by default. detailed description of the object. experiment_group_id : int unique identifier of the associated experiment_group result_type: str describes type of result. Must be one of strings defined in app.api.cfg_classes.result_types data : pd.DataFrame, optional DataFrame summarizing the result Methods ------- onInit(): Initializes object. Object is saved in database and file storage to_db_class(): Transforms object to db_class ''' uid: int name: str = "" hint: Optional[str] = "" description: Optional[str] = "" experiment_group_id: int result_type: constr(regex=cfg_classes.result_type_regex) data: Any def on_init(self): # should be called on every creation if self.uid == -1: db_result = self.to_db_class() db_result.create_in_db() self.uid = db_result.uid fsr.save_result_df(self.data, db_result.path) print(f"New Result created with id {self.uid}") def to_db_class(self): kwargs = self.dict() del kwargs["data"] return DbExperimentResult(**kwargs)
34.496241
159
0.67524
0be9c3a6bfe058f259246d3b6626b22816a515c7
8,070
py
Python
src/oci/data_labeling_service/models/work_request_resource.py
ezequielramos/oci-python-sdk
cc4235cf217beaf9feed75760e9ce82610222762
[ "Apache-2.0", "BSD-3-Clause" ]
249
2017-09-11T22:06:05.000Z
2022-03-04T17:09:29.000Z
src/oci/data_labeling_service/models/work_request_resource.py
ezequielramos/oci-python-sdk
cc4235cf217beaf9feed75760e9ce82610222762
[ "Apache-2.0", "BSD-3-Clause" ]
228
2017-09-11T23:07:26.000Z
2022-03-23T10:58:50.000Z
src/oci/data_labeling_service/models/work_request_resource.py
ezequielramos/oci-python-sdk
cc4235cf217beaf9feed75760e9ce82610222762
[ "Apache-2.0", "BSD-3-Clause" ]
224
2017-09-27T07:32:43.000Z
2022-03-25T16:55:42.000Z
# coding: utf-8 # Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class WorkRequestResource(object): """ A resource created or operated on by a work request. """ #: A constant which can be used with the action_type property of a WorkRequestResource. #: This constant has a value of "CREATED" ACTION_TYPE_CREATED = "CREATED" #: A constant which can be used with the action_type property of a WorkRequestResource. #: This constant has a value of "UPDATED" ACTION_TYPE_UPDATED = "UPDATED" #: A constant which can be used with the action_type property of a WorkRequestResource. #: This constant has a value of "DELETED" ACTION_TYPE_DELETED = "DELETED" #: A constant which can be used with the action_type property of a WorkRequestResource. #: This constant has a value of "IN_PROGRESS" ACTION_TYPE_IN_PROGRESS = "IN_PROGRESS" #: A constant which can be used with the action_type property of a WorkRequestResource. #: This constant has a value of "WRITTEN" ACTION_TYPE_WRITTEN = "WRITTEN" #: A constant which can be used with the action_type property of a WorkRequestResource. #: This constant has a value of "RELATED" ACTION_TYPE_RELATED = "RELATED" def __init__(self, **kwargs): """ Initializes a new WorkRequestResource object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param entity_type: The value to assign to the entity_type property of this WorkRequestResource. :type entity_type: str :param action_type: The value to assign to the action_type property of this WorkRequestResource. Allowed values for this property are: "CREATED", "UPDATED", "DELETED", "IN_PROGRESS", "WRITTEN", "RELATED", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :type action_type: str :param identifier: The value to assign to the identifier property of this WorkRequestResource. :type identifier: str :param entity_uri: The value to assign to the entity_uri property of this WorkRequestResource. :type entity_uri: str :param metadata: The value to assign to the metadata property of this WorkRequestResource. :type metadata: dict(str, str) """ self.swagger_types = { 'entity_type': 'str', 'action_type': 'str', 'identifier': 'str', 'entity_uri': 'str', 'metadata': 'dict(str, str)' } self.attribute_map = { 'entity_type': 'entityType', 'action_type': 'actionType', 'identifier': 'identifier', 'entity_uri': 'entityUri', 'metadata': 'metadata' } self._entity_type = None self._action_type = None self._identifier = None self._entity_uri = None self._metadata = None @property def entity_type(self): """ **[Required]** Gets the entity_type of this WorkRequestResource. The resource type the work request affects. :return: The entity_type of this WorkRequestResource. :rtype: str """ return self._entity_type @entity_type.setter def entity_type(self, entity_type): """ Sets the entity_type of this WorkRequestResource. The resource type the work request affects. :param entity_type: The entity_type of this WorkRequestResource. :type: str """ self._entity_type = entity_type @property def action_type(self): """ **[Required]** Gets the action_type of this WorkRequestResource. The way in which this resource is affected by the work tracked in the work request. A resource being created, updated, or deleted will remain in the IN_PROGRESS state until work is complete for that resource at which point it will transition to CREATED, UPDATED, or DELETED, respectively. Allowed values for this property are: "CREATED", "UPDATED", "DELETED", "IN_PROGRESS", "WRITTEN", "RELATED", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :return: The action_type of this WorkRequestResource. :rtype: str """ return self._action_type @action_type.setter def action_type(self, action_type): """ Sets the action_type of this WorkRequestResource. The way in which this resource is affected by the work tracked in the work request. A resource being created, updated, or deleted will remain in the IN_PROGRESS state until work is complete for that resource at which point it will transition to CREATED, UPDATED, or DELETED, respectively. :param action_type: The action_type of this WorkRequestResource. :type: str """ allowed_values = ["CREATED", "UPDATED", "DELETED", "IN_PROGRESS", "WRITTEN", "RELATED"] if not value_allowed_none_or_none_sentinel(action_type, allowed_values): action_type = 'UNKNOWN_ENUM_VALUE' self._action_type = action_type @property def identifier(self): """ **[Required]** Gets the identifier of this WorkRequestResource. The identifier of the resource the work request affects. :return: The identifier of this WorkRequestResource. :rtype: str """ return self._identifier @identifier.setter def identifier(self, identifier): """ Sets the identifier of this WorkRequestResource. The identifier of the resource the work request affects. :param identifier: The identifier of this WorkRequestResource. :type: str """ self._identifier = identifier @property def entity_uri(self): """ Gets the entity_uri of this WorkRequestResource. The URI path that the user can do a GET on to access the resource metadata :return: The entity_uri of this WorkRequestResource. :rtype: str """ return self._entity_uri @entity_uri.setter def entity_uri(self, entity_uri): """ Sets the entity_uri of this WorkRequestResource. The URI path that the user can do a GET on to access the resource metadata :param entity_uri: The entity_uri of this WorkRequestResource. :type: str """ self._entity_uri = entity_uri @property def metadata(self): """ Gets the metadata of this WorkRequestResource. Additional information that helps to explain the resource. :return: The metadata of this WorkRequestResource. :rtype: dict(str, str) """ return self._metadata @metadata.setter def metadata(self, metadata): """ Sets the metadata of this WorkRequestResource. Additional information that helps to explain the resource. :param metadata: The metadata of this WorkRequestResource. :type: dict(str, str) """ self._metadata = metadata def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
34.635193
245
0.658612
e8bb54d83b3a3a5750f9c927125f84c91e66e0f0
524
py
Python
hello-world/python/send.py
jeffryang24/rabbitmq-learning
f014695f02da46557ae82b237ad4b3c600315b2e
[ "MIT" ]
1
2020-09-02T08:32:02.000Z
2020-09-02T08:32:02.000Z
hello-world/python/send.py
jeffryang24/rabbitmq-learning
f014695f02da46557ae82b237ad4b3c600315b2e
[ "MIT" ]
null
null
null
hello-world/python/send.py
jeffryang24/rabbitmq-learning
f014695f02da46557ae82b237ad4b3c600315b2e
[ "MIT" ]
1
2020-04-30T07:03:15.000Z
2020-04-30T07:03:15.000Z
#!/usr/bin/env python import pika # Create connection to rabbitmq server connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost')) channel = connection.channel() # Create queue unless rabbit will drop our message channel.queue_declare(queue='hello') # Use default exchanger (no name) for first hello world # routing_key = queue name channel.basic_publish( exchange='', routing_key='hello', body='Hello World!' ) print(" [x] Sent 'Hello World!'") # Close connection connection.close()
23.818182
81
0.748092
e4818892b3ae982b36464634ff3f30a3328c96b2
6,886
py
Python
vkbottle/types/methods/likes.py
LouisPython217/vkbottle
3541bbdb66f32c2d3567b0047c36b706ac72bb3b
[ "MIT" ]
null
null
null
vkbottle/types/methods/likes.py
LouisPython217/vkbottle
3541bbdb66f32c2d3567b0047c36b706ac72bb3b
[ "MIT" ]
null
null
null
vkbottle/types/methods/likes.py
LouisPython217/vkbottle
3541bbdb66f32c2d3567b0047c36b706ac72bb3b
[ "MIT" ]
null
null
null
# Generated with love from vkbottle.types import responses from .access import APIAccessibility from .method import BaseMethod class LikesAdd(BaseMethod): access_token_type: APIAccessibility = [APIAccessibility.USER] async def __call__( self, type: str, item_id: int, owner_id: int = None, access_key: str = None ) -> responses.likes.Add: """ likes.add From Vk Docs: Adds the specified object to the 'Likes' list of the current user. Access from user token(s) :param type: Object type: 'post' — post on user or community wall, 'comment' — comment on a wall post, 'photo' — photo, 'audio' — audio, 'video' — video, 'note' — note, 'photo_comment' — comment on the photo, 'video_comment' — comment on the video, 'topic_comment' — comment in the discussion, 'sitepage' — page of the site where the [vk.com/dev/Like|Like widget] is installed :param owner_id: ID of the user or community that owns the object. :param item_id: Object ID. :param access_key: Access key required for an object owned by a private entity. """ params = { k if not k.endswith("_") else k[:-1]: v for k, v in locals().items() if k not in ["self"] and v is not None } return await self.request( "likes.add", params, response_model=responses.likes.AddModel ) class LikesDelete(BaseMethod): access_token_type: APIAccessibility = [APIAccessibility.USER] async def __call__( self, type: str, item_id: int, owner_id: int = None ) -> responses.likes.Delete: """ likes.delete From Vk Docs: Deletes the specified object from the 'Likes' list of the current user. Access from user token(s) :param type: Object type: 'post' — post on user or community wall, 'comment' — comment on a wall post, 'photo' — photo, 'audio' — audio, 'video' — video, 'note' — note, 'photo_comment' — comment on the photo, 'video_comment' — comment on the video, 'topic_comment' — comment in the discussion, 'sitepage' — page of the site where the [vk.com/dev/Like|Like widget] is installed :param owner_id: ID of the user or community that owns the object. :param item_id: Object ID. """ params = { k if not k.endswith("_") else k[:-1]: v for k, v in locals().items() if k not in ["self"] and v is not None } return await self.request( "likes.delete", params, response_model=responses.likes.DeleteModel ) class LikesGetList(BaseMethod): access_token_type: APIAccessibility = [ APIAccessibility.USER, APIAccessibility.SERVICE, ] async def __call__( self, type: str, owner_id: int = None, item_id: int = None, page_url: str = None, filter: str = None, friends_only: int = None, extended: bool = None, offset: int = None, count: int = None, skip_own: bool = None, ) -> responses.likes.GetList: """ likes.getList From Vk Docs: Returns a list of IDs of users who added the specified object to their 'Likes' list. Access from user, service token(s) :param type: , Object type: 'post' — post on user or community wall, 'comment' — comment on a wall post, 'photo' — photo, 'audio' — audio, 'video' — video, 'note' — note, 'photo_comment' — comment on the photo, 'video_comment' — comment on the video, 'topic_comment' — comment in the discussion, 'sitepage' — page of the site where the [vk.com/dev/Like|Like widget] is installed :param owner_id: ID of the user, community, or application that owns the object. If the 'type' parameter is set as 'sitepage', the application ID is passed as 'owner_id'. Use negative value for a community id. If the 'type' parameter is not set, the 'owner_id' is assumed to be either the current user or the same application ID as if the 'type' parameter was set to 'sitepage'. :param item_id: Object ID. If 'type' is set as 'sitepage', 'item_id' can include the 'page_id' parameter value used during initialization of the [vk.com/dev/Like|Like widget]. :param page_url: URL of the page where the [vk.com/dev/Like|Like widget] is installed. Used instead of the 'item_id' parameter. :param filter: Filters to apply: 'likes' — returns information about all users who liked the object (default), 'copies' — returns information only about users who told their friends about the object :param friends_only: Specifies which users are returned: '1' — to return only the current user's friends, '0' — to return all users (default) :param extended: Specifies whether extended information will be returned. '1' — to return extended information about users and communities from the 'Likes' list, '0' — to return no additional information (default) :param offset: Offset needed to select a specific subset of users. :param count: Number of user IDs to return (maximum '1000'). Default is '100' if 'friends_only' is set to '0', otherwise, the default is '10' if 'friends_only' is set to '1'. :param skip_own: """ params = { k if not k.endswith("_") else k[:-1]: v for k, v in locals().items() if k not in ["self"] and v is not None } return await self.request( "likes.getList", params, response_model=responses.likes.GetListModel ) class LikesIsLiked(BaseMethod): access_token_type: APIAccessibility = [APIAccessibility.USER] async def __call__( self, type: str, item_id: int, user_id: int = None, owner_id: int = None ) -> responses.likes.IsLiked: """ likes.isLiked From Vk Docs: Checks for the object in the 'Likes' list of the specified user. Access from user token(s) :param user_id: User ID. :param type: Object type: 'post' — post on user or community wall, 'comment' — comment on a wall post, 'photo' — photo, 'audio' — audio, 'video' — video, 'note' — note, 'photo_comment' — comment on the photo, 'video_comment' — comment on the video, 'topic_comment' — comment in the discussion :param owner_id: ID of the user or community that owns the object. :param item_id: Object ID. """ params = { k if not k.endswith("_") else k[:-1]: v for k, v in locals().items() if k not in ["self"] and v is not None } return await self.request( "likes.isLiked", params, response_model=responses.likes.IsLikedModel ) class Likes: def __init__(self, request): self.add = LikesAdd(request) self.delete = LikesDelete(request) self.get_list = LikesGetList(request) self.is_liked = LikesIsLiked(request)
52.564885
386
0.64711
69f968483f8b2c42344bf00434e73216f9906040
8,461
py
Python
maskprop/MiVOS/model/fusion_model.py
qinliuliuqin/iSegFormer
67b634588cc0a1e09fb3e092966eae997eb209fa
[ "MIT" ]
14
2021-12-09T08:33:23.000Z
2022-03-26T13:11:01.000Z
maskprop/MiVOS/model/fusion_model.py
qinliuliuqin/iSegFormer
67b634588cc0a1e09fb3e092966eae997eb209fa
[ "MIT" ]
null
null
null
maskprop/MiVOS/model/fusion_model.py
qinliuliuqin/iSegFormer
67b634588cc0a1e09fb3e092966eae997eb209fa
[ "MIT" ]
null
null
null
import os from os import path import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import time from model.fusion_net import FusionNet from model.attn_network import AttentionReadNetwork from model.aggregate import aggregate_wbg_channel from model.losses import LossComputer, iou_hooks from util.log_integrator import Integrator from util.image_saver import pool_fusion class FusionModel: def __init__(self, para, logger=None, save_path=None, local_rank=0, world_size=1, distributed=True): self.para = para self.local_rank = local_rank if distributed: self.net = nn.parallel.DistributedDataParallel(FusionNet().cuda(), device_ids=[local_rank], output_device=local_rank, broadcast_buffers=False) else: self.net = nn.DataParallel( FusionNet().cuda(), device_ids=[local_rank], output_device=local_rank) self.prop_net = AttentionReadNetwork().eval().cuda() # Setup logger when local_rank=0 self.logger = logger self.save_path = save_path if logger is not None: self.last_time = time.time() self.train_integrator = Integrator(self.logger, distributed=distributed, local_rank=local_rank, world_size=world_size) self.train_integrator.add_hook(iou_hooks) self.val_integrator = Integrator(self.logger, distributed=distributed, local_rank=local_rank, world_size=world_size) self.loss_computer = LossComputer(para) self.train() self.optimizer = optim.Adam(filter( lambda p: p.requires_grad, self.net.parameters()), lr=para['lr'], weight_decay=1e-7) self.scheduler = optim.lr_scheduler.MultiStepLR(self.optimizer, para['steps'], para['gamma']) if para['amp']: self.scaler = torch.cuda.amp.GradScaler() # Logging info self.report_interval = 100 self.save_im_interval = 500 self.save_model_interval = 5000 if para['debug']: self.report_interval = self.save_im_interval = 1 def do_pass(self, data, it=0): # No need to store the gradient outside training torch.set_grad_enabled(self._is_train) for k, v in data.items(): if type(v) != list and type(v) != dict and type(v) != int: data[k] = v.cuda(non_blocking=True) # See fusion_dataset.py for variable definitions im = data['rgb'] seg1 = data['seg1'] seg2 = data['seg2'] src2_ref = data['src2_ref'] src2_ref_gt = data['src2_ref_gt'] seg12 = data['seg12'] seg22 = data['seg22'] src2_ref2 = data['src2_ref2'] src2_ref_gt2 = data['src2_ref_gt2'] src2_ref_im = data['src2_ref_im'] selector = data['selector'] dist = data['dist'] out = {} with torch.cuda.amp.autocast(enabled=self.para['amp']): # Get kernelized memory with torch.no_grad(): attn1, attn2 = self.prop_net(src2_ref_im, src2_ref, src2_ref_gt, src2_ref2, src2_ref_gt2, im) prob1 = torch.sigmoid(self.net(im, seg1, seg2, attn1, dist)) prob2 = torch.sigmoid(self.net(im, seg12, seg22, attn2, dist)) prob = torch.cat([prob1, prob2], 1) * selector.unsqueeze(2).unsqueeze(2) logits, prob = aggregate_wbg_channel(prob, True) out['logits'] = logits out['mask'] = prob out['attn1'] = attn1 out['attn2'] = attn2 if self._do_log or self._is_train: losses = self.loss_computer.compute({**data, **out}, it) # Logging if self._do_log: self.integrator.add_dict(losses) if self._is_train: if it % self.save_im_interval == 0 and it != 0: if self.logger is not None: images = {**data, **out} size = (320, 320) self.logger.log_cv2('train/pairs', pool_fusion(images, size=size), it) else: # Validation save if data['val_iter'] % 10 == 0: if self.logger is not None: images = {**data, **out} size = (320, 320) self.logger.log_cv2('val/pairs', pool_fusion(images, size=size), it) if self._is_train: if (it) % self.report_interval == 0 and it != 0: if self.logger is not None: self.logger.log_scalar('train/lr', self.scheduler.get_last_lr()[0], it) self.logger.log_metrics('train', 'time', (time.time()-self.last_time)/self.report_interval, it) self.last_time = time.time() self.train_integrator.finalize('train', it) self.train_integrator.reset_except_hooks() if it % self.save_model_interval == 0 and it != 0: if self.logger is not None: self.save(it) # Backward pass self.optimizer.zero_grad(set_to_none=True) if self.para['amp']: self.scaler.scale(losses['total_loss']).backward() self.scaler.step(self.optimizer) self.scaler.update() else: losses['total_loss'].backward() self.optimizer.step() self.scheduler.step() def save(self, it): if self.save_path is None: print('Saving has been disabled.') return os.makedirs(os.path.dirname(self.save_path), exist_ok=True) model_path = self.save_path + ('_%s.pth' % it) torch.save(self.net.module.state_dict(), model_path) print('Model saved to %s.' % model_path) self.save_checkpoint(it) def save_checkpoint(self, it): if self.save_path is None: print('Saving has been disabled.') return os.makedirs(os.path.dirname(self.save_path), exist_ok=True) checkpoint_path = self.save_path + '_checkpoint.pth' checkpoint = { 'it': it, 'network': self.net.module.state_dict(), 'optimizer': self.optimizer.state_dict(), 'scheduler': self.scheduler.state_dict()} torch.save(checkpoint, checkpoint_path) print('Checkpoint saved to %s.' % checkpoint_path) def load_model(self, path): map_location = 'cuda:%d' % self.local_rank checkpoint = torch.load(path, map_location={'cuda:0': map_location}) it = checkpoint['it'] network = checkpoint['network'] optimizer = checkpoint['optimizer'] scheduler = checkpoint['scheduler'] map_location = 'cuda:%d' % self.local_rank self.net.module.load_state_dict(network) self.optimizer.load_state_dict(optimizer) self.scheduler.load_state_dict(scheduler) print('Model loaded.') return it def load_network(self, path): map_location = 'cuda:%d' % self.local_rank self.net.module.load_state_dict(torch.load(path, map_location={'cuda:0': map_location})) # self.net.load_state_dict(torch.load(path)) print('Network weight loaded:', path) def load_prop(self, path): map_location = 'cuda:%d' % self.local_rank self.prop_net.load_state_dict(torch.load(path, map_location={'cuda:0': map_location}), strict=False) print('Propagation network weight loaded:', path) def finalize_val(self, it): self.val_integrator.finalize('val', it) self.val_integrator.reset_except_hooks() def train(self): self._is_train = True self._do_log = True self.integrator = self.train_integrator # Also skip BN self.net.eval() self.prop_net.eval() return self def val(self): self._is_train = False self.integrator = self.val_integrator self._do_log = True self.net.eval() self.prop_net.eval() return self def test(self): self._is_train = False self._do_log = False self.net.eval() self.prop_net.eval() return self
37.109649
126
0.58161
a8d8b8f28400d3f10ace1d2e32d86aa10c18f93c
7,571
py
Python
openmdao.util/src/openmdao/util/test/test_parsephoenix.py
MrShoks/OpenMDAO-Framework
412f34ffe31a95631fbe55ca7d75b84669ae8f8c
[ "Apache-2.0" ]
1
2020-06-28T20:38:56.000Z
2020-06-28T20:38:56.000Z
openmdao.util/src/openmdao/util/test/test_parsephoenix.py
MrShoks/OpenMDAO-Framework
412f34ffe31a95631fbe55ca7d75b84669ae8f8c
[ "Apache-2.0" ]
null
null
null
openmdao.util/src/openmdao/util/test/test_parsephoenix.py
MrShoks/OpenMDAO-Framework
412f34ffe31a95631fbe55ca7d75b84669ae8f8c
[ "Apache-2.0" ]
null
null
null
""" Testing the ParsePhoenixWrapper utility. """ import unittest, os from openmdao.util.parse_phoenixwrapper import parse_phoenixwrapper class TestCase(unittest.TestCase): """ Test namelist writer functions. """ def setUp(self): self.infile = 'phx_text_input.txt' self.outfile = 'phx_text_output.txt' def tearDown(self): if os.path.exists(self.infile): os.remove(self.infile) if os.path.exists(self.outfile): os.remove(self.outfile) pass def test_phx(self): phx = [] phx.append("#Comment\n") phx.append("\n") phx.append('variable: int1 integer input description="Description1"\n') phx.append('variable: float double output description="Description2" default=3.14159\n') phx.append('variable: ERROR string input description="Description4" default="ZZZ"\n') phx.append('variable: ERROR2 string output description="Description4"\n') phx.append("variable: units double input description='Description5' units='ft'\n") phx.append("variable: array1 double[] input description='Description5' \n") phx.append('variable: iopt integer input description="Execution Type" enumValues=1,2,3,4 enumAliases="Analysis","Parametric Variation","Optimization","Contour or Thumbprint plot"\n') phx.append("variable: unitignore double input description='Description5' units='dB'\n") phx.append("variable: unitreplace double input description='Description5' units='mph'\n") phx.append("variable: bool boolean input default=false\n") phx.append('variable: stringbadquote string input description="Description4" default="xx\n') phx.append('variable: zfile file output\n') phx.append("variable: unitfullreplace double output description='Description5' units='R'\n") phx.append('variable: floatbadquote double output description="Aa, Bb, Cc\n') phx.append("\n") phx.append('setGroup "input.deep"\n') phx.append('variable: int2 integer input description="Description3" default=5\n') phx.append("####\n") outfile = open(self.infile, 'w') outfile.writelines(phx) outfile.close() parse_phoenixwrapper(self.infile, self.outfile, "TestComp") infile = open(self.outfile, 'r') result = infile.readlines() infile.close() self.assertEqual(result[0], '"""\n') self.assertEqual(result[1], 'OpenMDAO Wrapper for TestComp\n') self.assertEqual(result[2], 'Automatically generated from phx_text_input.txt with parse_phoenixwrapper.\n') self.assertEqual(result[3], '"""\n') self.assertEqual(result[4], '\n') self.assertEqual(result[5], 'from numpy import float32 as numpy_float32\n') self.assertEqual(result[6], '\n') self.assertEqual(result[7], 'from openmdao.main.api import Component, Container\n') self.assertEqual(result[8], 'from openmdao.main.datatypes.api import Int, Float, Str, Array, Enum, Bool, File\n') self.assertEqual(result[9], '\n') self.assertEqual(result[10], 'class TestComp_input_deep(Container):\n') self.assertEqual(result[11], ' """Container for input.deep"""\n') self.assertEqual(result[12], '\n') self.assertEqual(result[13], ' # OpenMDAO Variables\n') self.assertEqual(result[14], " int2 = Int(5, iotype='in', desc='Description3')\n") self.assertEqual(result[15], '\n') self.assertEqual(result[16], 'class TestComp_input(Container):\n') self.assertEqual(result[17], ' """Container for input"""\n') self.assertEqual(result[18], '\n') self.assertEqual(result[19], ' # OpenMDAO Variables\n') self.assertEqual(result[20], '\n') self.assertEqual(result[21], " def __init__(self):\n") self.assertEqual(result[22], ' """Constructor for the TestComp_input component"""\n') self.assertEqual(result[23], '\n') self.assertEqual(result[24], " super(TestComp_input, self).__init__()\n") self.assertEqual(result[25], '\n') self.assertEqual(result[26], " # Variable Containers\n") self.assertEqual(result[27], " self.add('deep', TestComp_input_deep())\n") self.assertEqual(result[28], '\n') self.assertEqual(result[29], '\n') self.assertEqual(result[30], 'class TestComp(Component):\n') self.assertEqual(result[31], ' """Wrapper for TestComp"""\n') self.assertEqual(result[32], '\n') self.assertEqual(result[33], ' # OpenMDAO Variables\n') self.assertEqual(result[34], " int1 = Int(0, iotype='in', desc='Description1')\n") self.assertEqual(result[35], " float = Float(3.14159, iotype='out', desc='Description2')\n") self.assertEqual(result[36], " ERROR = Str('ZZZ', iotype='in', desc='Description4')\n") self.assertEqual(result[37], " ERROR2 = Str('', iotype='out', desc='Description4')\n") self.assertEqual(result[38], " units = Float(0.0, iotype='in', units='ft', desc='Description5')\n") self.assertEqual(result[39], " array1 = Array(iotype='in', dtype=numpy_float32, desc='Description5')\n") self.assertEqual(result[40], " iopt = Enum((1,2,3,4), iotype='in', desc='Execution Type', aliases=('Analysis', 'Parametric Variation', 'Optimization', 'Contour or Thumbprint plot'))\n") self.assertEqual(result[41], " unitignore = Float(0.0, iotype='in', desc='Description5')\n") self.assertEqual(result[42], " unitreplace = Float(0.0, iotype='in', units='mi/h', desc='Description5')\n") self.assertEqual(result[43], " bool = Bool(False, iotype='in')\n") self.assertEqual(result[44], " stringbadquote = Str('xx', iotype='in', desc='Description4')\n") self.assertEqual(result[45], " zfile = File(iotype='out', path='Insert_Filename_Here')\n") self.assertEqual(result[46], " unitfullreplace = Float(0.0, iotype='out', units='degR', desc='Description5')\n") self.assertEqual(result[47], " floatbadquote = Float(0.0, iotype='out', desc='Aa, Bb, Cc')\n") def test_small_phx(self): phx = [] phx.append('variable: int1 integer input description="Description1"\n') outfile = open(self.infile, 'w') outfile.writelines(phx) outfile.close() parse_phoenixwrapper(self.infile, self.outfile, "TestComp") infile = open(self.outfile, 'r') result = infile.readlines() infile.close() self.assertEqual(result[6], 'from openmdao.main.api import Component\n') def test_bad_datatype(self): phx = [] phx.append('variable: int1 badtype input description="Description1"\n') outfile = open(self.infile, 'w') outfile.writelines(phx) outfile.close() try: parse_phoenixwrapper(self.infile, self.outfile, "TestComp") except KeyError, err: msg = "'Unhandled Modelcenter input type - badtype'" self.assertEqual(str(err), msg) else: self.fail('KeyError expected') if __name__ == '__main__': import nose sys.argv.append('--cover-package=openmdao') sys.argv.append('--cover-erase') nose.runmodule()
50.812081
199
0.616167
90ffd93b49b3af4b0b93691554b504a3ed0aff8d
2,407
py
Python
pygpu/basic.py
nondejus/libgpuarray
01909c2f7b99f574e73ab8d0ab4211ea8deb61d2
[ "0BSD" ]
204
2015-02-01T13:59:25.000Z
2021-12-17T14:27:09.000Z
pygpu/basic.py
nondejus/libgpuarray
01909c2f7b99f574e73ab8d0ab4211ea8deb61d2
[ "0BSD" ]
464
2015-01-16T22:02:20.000Z
2022-01-11T16:47:40.000Z
pygpu/basic.py
nondejus/libgpuarray
01909c2f7b99f574e73ab8d0ab4211ea8deb61d2
[ "0BSD" ]
110
2015-01-14T02:26:26.000Z
2022-03-21T19:13:33.000Z
from string import Template from .gpuarray import GpuArray, GpuKernel, SIZE, dtype_to_ctype import numpy def _generate_kernel(ctx, cols, dtype, upper=True): tmpl = Template(""" #include "cluda.h" KERNEL void extract_tri(GLOBAL_MEM ${ctype} *a, ga_size a_off, ga_uint N) { a = (GLOBAL_MEM ${ctype} *)(((GLOBAL_MEM char *)a) + a_off); unsigned int idx = GID_1 * LDIM_0 * GDIM_0 + GID_0 * LDIM_0 + LID_0; unsigned int ix = idx/${cols}; unsigned int iy = idx%${cols}; if (idx < N) { if (ix ${le} iy) a[idx] = 0.0; } } """) if upper: le = '>' else: le = '<' ctype = dtype_to_ctype(dtype) src = tmpl.substitute(cols=cols, ctype=ctype, le=le) spec = [GpuArray, SIZE, 'uint32'] have_small = False have_double = False have_complex = False if dtype.itemsize < 4: have_small = True if dtype in [numpy.float64, numpy.complex128]: have_double = True if dtype in [numpy.complex64, numpy.complex128]: have_complex = True k = GpuKernel(src, "extract_tri", spec, context=ctx, have_double=have_double, have_small=have_small, have_complex=have_complex) return k def triu(A, inplace=True): if A.ndim != 2: raise ValueError("triu only works for 2d arrays") if A.flags.c_contiguous is A.flags.f_contiguous is False: raise ValueError("triu only works for contiguous arrays") if not inplace: A = A.copy() if A.flags['F_CONTIGUOUS']: upper = False cols = A.shape[0] else: upper = True cols = A.shape[1] k = _generate_kernel(A.context, cols, A.dtype, upper) k(A, A.offset, A.shape[0] * A.shape[1], n=A.shape[0] * A.shape[1]) return A def tril(A, inplace=True): if A.ndim != 2: raise ValueError("tril only works for 2d arrays") if A.flags.c_contiguous is A.flags.f_contiguous is False: raise ValueError("tril only works for contiguous arrays") if not inplace: A = A.copy() if A.flags['F_CONTIGUOUS']: upper = True cols = A.shape[0] else: upper = False cols = A.shape[1] k = _generate_kernel(A.context, cols, A.dtype, upper) k(A, A.offset, A.shape[0] * A.shape[1], n=A.shape[0] * A.shape[1]) return A
30.858974
79
0.582883
a5b734f8d2a38d176b9a08f07e5f44c01b6a8de8
263
py
Python
script/model/sklearn_like_model/NetModule/InceptionSructure/Inception_ResnetV2Structure.py
demetoir/MLtools
8c42fcd4cc71728333d9c116ade639fe57d50d37
[ "MIT" ]
null
null
null
script/model/sklearn_like_model/NetModule/InceptionSructure/Inception_ResnetV2Structure.py
demetoir/MLtools
8c42fcd4cc71728333d9c116ade639fe57d50d37
[ "MIT" ]
null
null
null
script/model/sklearn_like_model/NetModule/InceptionSructure/Inception_ResnetV2Structure.py
demetoir/MLtools
8c42fcd4cc71728333d9c116ade639fe57d50d37
[ "MIT" ]
null
null
null
from script.model.sklearn_like_model.NetModule.InceptionSructure.BaseInceptionNetModule import \ BaseInceptionNetModule class Inception_ResnetV2NetModule(BaseInceptionNetModule): def build(self): # TODO raise NotImplementedError
29.222222
97
0.771863
17862c9185d624b4272e7d8063c1a8fe28c2dabd
4,168
py
Python
neutron/tests/unit/sriovnicagent/test_pci_lib.py
gampel/neutron
51a6260266dc59c066072ca890ad9c40b1aad6cf
[ "Apache-2.0" ]
10
2015-09-22T10:22:53.000Z
2016-02-25T06:12:05.000Z
neutron/tests/unit/sriovnicagent/test_pci_lib.py
gampel/neutron
51a6260266dc59c066072ca890ad9c40b1aad6cf
[ "Apache-2.0" ]
12
2015-01-08T18:30:45.000Z
2015-03-13T21:04:15.000Z
neutron/tests/unit/sriovnicagent/test_pci_lib.py
gampel/neutron
51a6260266dc59c066072ca890ad9c40b1aad6cf
[ "Apache-2.0" ]
7
2015-02-05T10:23:52.000Z
2019-05-18T17:11:19.000Z
# Copyright 2014 Mellanox Technologies, Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import mock from neutron.plugins.sriovnicagent.common import exceptions as exc from neutron.plugins.sriovnicagent import pci_lib from neutron.tests import base class TestPciLib(base.BaseTestCase): DEV_NAME = "p7p1" VF_INDEX = 1 VF_INDEX_DISABLE = 0 PF_LINK_SHOW = ('122: p7p1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop' ' state DOWN mode DEFAULT group default qlen 1000') PF_MAC = ' link/ether f4:52:14:2a:3e:c0 brd ff:ff:ff:ff:ff:ff' VF_0_LINK_SHOW = (' vf 0 MAC fa:16:3e:b4:81:ac, vlan 4095, spoof' ' checking off, link-state disable') VF_1_LINK_SHOW = (' vf 1 MAC 00:00:00:00:00:11, vlan 4095, spoof' ' checking off, link-state enable') VF_2_LINK_SHOW = (' vf 2 MAC fa:16:3e:68:4e:79, vlan 4095, spoof' ' checking off, link-state enable') VF_LINK_SHOW = '\n'.join((PF_LINK_SHOW, PF_MAC, VF_0_LINK_SHOW, VF_1_LINK_SHOW, VF_2_LINK_SHOW)) MAC_MAPPING = { 0: "fa:16:3e:b4:81:ac", 1: "00:00:00:00:00:11", 2: "fa:16:3e:68:4e:79", } def setUp(self): super(TestPciLib, self).setUp() self.pci_wrapper = pci_lib.PciDeviceIPWrapper(self.DEV_NAME) def test_get_assigned_macs(self): with mock.patch.object(self.pci_wrapper, "_execute") as mock_exec: mock_exec.return_value = self.VF_LINK_SHOW result = self.pci_wrapper.get_assigned_macs([self.VF_INDEX]) self.assertEqual([self.MAC_MAPPING[self.VF_INDEX]], result) def test_get_assigned_macs_fail(self): with mock.patch.object(self.pci_wrapper, "_execute") as mock_exec: mock_exec.side_effect = Exception() self.assertRaises(exc.IpCommandError, self.pci_wrapper.get_assigned_macs, [self.VF_INDEX]) def test_get_vf_state_enable(self): with mock.patch.object(self.pci_wrapper, "_execute") as mock_exec: mock_exec.return_value = self.VF_LINK_SHOW result = self.pci_wrapper.get_vf_state(self.VF_INDEX) self.assertTrue(result) def test_get_vf_state_disable(self): with mock.patch.object(self.pci_wrapper, "_execute") as mock_exec: mock_exec.return_value = self.VF_LINK_SHOW result = self.pci_wrapper.get_vf_state(self.VF_INDEX_DISABLE) self.assertFalse(result) def test_get_vf_state_fail(self): with mock.patch.object(self.pci_wrapper, "_execute") as mock_exec: mock_exec.side_effect = Exception() self.assertRaises(exc.IpCommandError, self.pci_wrapper.get_vf_state, self.VF_INDEX) def test_set_vf_state(self): with mock.patch.object(self.pci_wrapper, "_execute"): result = self.pci_wrapper.set_vf_state(self.VF_INDEX, True) self.assertIsNone(result) def test_set_vf_state_fail(self): with mock.patch.object(self.pci_wrapper, "_execute") as mock_exec: mock_exec.side_effect = Exception() self.assertRaises(exc.IpCommandError, self.pci_wrapper.set_vf_state, self.VF_INDEX, True)
41.267327
74
0.605086
b5627c7766d52807108a811a712e84b1e9050ec1
66,249
py
Python
notsobot/notsobot.py
fixator10/Trusty-cogs
3d47a63f562cb64eb44da6bb53cfe9f8324026e7
[ "MIT" ]
null
null
null
notsobot/notsobot.py
fixator10/Trusty-cogs
3d47a63f562cb64eb44da6bb53cfe9f8324026e7
[ "MIT" ]
null
null
null
notsobot/notsobot.py
fixator10/Trusty-cogs
3d47a63f562cb64eb44da6bb53cfe9f8324026e7
[ "MIT" ]
null
null
null
# https://github.com/NotSoSuper/NotSoBot import asyncio import logging import random import re import sys import textwrap import uuid from io import BytesIO from typing import List, Optional, Tuple, Union from urllib.parse import quote import aiohttp import discord import jpglitch import numpy as np import PIL import wand import wand.color import wand.drawing from PIL import Image, ImageDraw, ImageFont, ImageOps, ImageSequence from pyfiglet import figlet_format from redbot.core import commands from redbot.core.data_manager import bundled_data_path, cog_data_path from .converter import ImageFinder from .vw import macintoshplus log = logging.getLogger("red.trusty-cogs.NotSoBot") try: import aalib AALIB_INSTALLED = True except Exception: AALIB_INSTALLED = False code = "```py\n{0}\n```" def posnum(num): if num < 0: return -(num) else: return num def find_coeffs(pa, pb): matrix = [] for p1, p2 in zip(pa, pb): matrix.append([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]]) matrix.append([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]]) A = np.matrix(matrix, dtype=np.float) B = np.array(pb).reshape(8) res = np.dot(np.linalg.inv(A.T * A) * A.T, B) return np.array(res).reshape(8) class DataProtocol(asyncio.SubprocessProtocol): def __init__(self, exit_future): self.exit_future = exit_future self.output = bytearray() def pipe_data_received(self, fd, data): self.output.extend(data) def process_exited(self): try: self.exit_future.set_result(True) except Exception: pass def pipe_connection_lost(self, fd, exc): try: self.exit_future.set_result(True) except Exception: pass def connection_made(self, transport): self.transport = transport def connection_lost(self, exc): try: self.exit_future.set_result(True) except Exception: pass class NotSoBot(commands.Cog): """ Rewrite of many NotSoBot commands to work on RedBot V3 """ __author__ = ["NotSoSuper", "TrustyJAID"] __version__ = "2.5.1" def __init__(self, bot): self.bot = bot self.image_cache = {} self.search_cache = {} self.youtube_cache = {} self.twitch_cache = [] self.api_count = 0 self.emoji_map = { "a": "", "b": "", "c": "©", "d": "↩", "e": "", "f": "", "g": "⛽", "h": "♓", "i": "ℹ", "j": "" or "", "k": "", "l": "", "m": "Ⓜ", "n": "♑", "o": "⭕" or "", "p": "", "q": "", "r": "®", "s": "" or "⚡", "t": "", "u": "⛎", "v": "" or "♈", "w": "〰" or "", "x": "❌" or "⚔", "y": "✌", "z": "Ⓩ", "1": "1⃣", "2": "2⃣", "3": "3⃣", "4": "4⃣", "5": "5⃣", "6": "6⃣", "7": "7⃣", "8": "8⃣", "9": "9⃣", "0": "0⃣", "$": "", "!": "❗", "?": "❓", " ": " ", } self.retro_regex = re.compile( r"((https)(\:\/\/|)?u2?\.photofunia\.com\/.\/results\/.\/.\/.*(\.jpg\?download))" ) self.image_mimes = ["image/png", "image/pjpeg", "image/jpeg", "image/x-icon"] self.gif_mimes = ["image/gif"] def format_help_for_context(self, ctx: commands.Context) -> str: """ Thanks Sinbad! """ pre_processed = super().format_help_for_context(ctx) return f"{pre_processed}\n\nCog Version: {self.__version__}" async def red_delete_data_for_user(self, **kwargs): """ Nothing to delete """ return def random(self, image=False, ext: str = "png"): h = str(uuid.uuid4().hex) if image: return "{0}.{1}".format(h, ext) return h async def get_text(self, url: str): try: async with aiohttp.ClientSession() as session: async with session.get(url) as resp: try: text = await resp.text() return text except Exception: return False except asyncio.TimeoutError: return False async def truncate(self, channel, msg): if len(msg) == 0: return split = [msg[i : i + 1999] for i in range(0, len(msg), 1999)] try: for s in split: await channel.send(s) await asyncio.sleep(0.21) except Exception as e: await channel.send(e) async def safe_send(self, ctx, text, file, file_size): if not ctx.channel.permissions_for(ctx.me).send_messages: file.close() return if not ctx.channel.permissions_for(ctx.me).attach_files: await ctx.send("I don't have permission to attach files.") file.close() return BASE_FILESIZE_LIMIT = 8388608 if ctx.guild and file_size < ctx.guild.filesize_limit: await ctx.send(content=text, file=file) elif not ctx.guild and file_size < BASE_FILESIZE_LIMIT: await ctx.send(content=text, file=file) else: await ctx.send("The contents of this command is too large to upload!") file.close() async def bytes_download( self, url: Union[discord.Asset, discord.Attachment, str] ) -> Tuple[Union[BytesIO, bool], Union[str, bool]]: if isinstance(url, discord.Asset) or isinstance(url, discord.Attachment): log.debug("Pulling data from discord") try: b = BytesIO() await url.save(b) mime = getattr(url, "content_type", "None") return b, mime except discord.HTTPException: return False, False try: async with aiohttp.ClientSession() as session: async with session.get(url) as resp: if resp.status == 200: data = await resp.read() mime = resp.headers.get("Content-type", "").lower() b = BytesIO(data) b.seek(0) return b, mime else: return False, False except asyncio.TimeoutError: return False, False except Exception: log.error("Error downloading to bytes", exc_info=True) return False, False def do_magik(self, scale, img): try: list_imgs = [] exif = {} exif_msg = "" count = 0 i = wand.image.Image(file=img) i.format = "png" i.alpha_channel = True if i.size >= (3000, 3000): return ":warning: `Image exceeds maximum resolution >= (3000, 3000).`", None, 0 exif.update( {count: (k[5:], v) for k, v in i.metadata.items() if k.startswith("exif:")} ) count += 1 i.transform(resize="800x800>") i.liquid_rescale( width=int(i.width * 0.5), height=int(i.height * 0.5), delta_x=int(0.5 * scale) if scale else 1, rigidity=0, ) i.liquid_rescale( width=int(i.width * 1.5), height=int(i.height * 1.5), delta_x=scale if scale else 2, rigidity=0, ) magikd = BytesIO() i.save(file=magikd) file_size = magikd.tell() magikd.seek(0) list_imgs.append(magikd) for x in exif: if len(exif[x]) >= 2000: continue exif_msg += "**Exif data for image #{0}**\n".format(str(x + 1)) + code.format( exif[x] ) else: if len(exif_msg) == 0: exif_msg = None file = discord.File(list_imgs[0], filename="magik.png") i.close() for img in list_imgs: img.close() return file, exif_msg, file_size except Exception: log.error("Error processing magik", exc_info=True) @commands.command(aliases=["imagemagic", "imagemagick", "magic", "magick", "cas", "liquid"]) @commands.cooldown(2, 5, commands.BucketType.user) async def magik(self, ctx, urls: ImageFinder = None, scale: int = 2, scale_msg: str = ""): """ Apply magik to Image(s) `[p]magik image_url` or `[p]magik image_url image_url_2` """ if urls is None: urls = await ImageFinder().search_for_images(ctx) msg = await ctx.message.channel.send("ok, processing") async with ctx.typing(): b, mime = await self.bytes_download(urls[0]) if b is False: await ctx.send(":warning: **Command download function failed...**") return await msg.delete() task = self.bot.loop.run_in_executor(None, self.do_magik, scale, b) try: file, content_msg, file_size = await asyncio.wait_for(task, timeout=60) except (asyncio.TimeoutError, TypeError): return await ctx.send( "That image is either too large or given image format is unsupported." ) if type(file) == str: await ctx.send(file) return if content_msg is None: content_msg = scale_msg else: content_msg = scale_msg + content_msg await self.safe_send(ctx, content_msg, file, file_size) def do_gmagik(self, image, frame_delay): final = BytesIO() # if is_gif: is_gif = False with wand.image.Image() as new_image: with wand.image.Image(file=image) as img: if len(getattr(img, "sequence", [])) > 1: is_gif = True if is_gif: log.debug("Is gif") for change in img.sequence: change.transform(resize="512x512>") change.liquid_rescale( width=int(change.width * 0.5), height=int(change.height * 0.5), delta_x=1, rigidity=0, ) change.liquid_rescale( width=int(change.width * 1.5), height=int(change.height * 1.5), delta_x=2, rigidity=0, ) # change.sample(200, 200) # i.save(filename=image) new_image.sequence.append(change) # for i in range(len(img.sequence)): # with img.sequence[i] as change: else: log.debug("Is not gif") for x in range(0, 30): if x == 0: log.debug("Cloning initial image") i = img.clone().convert("gif") else: i = new_image.sequence[-1].clone() i.transform(resize="512x512>") i.liquid_rescale( width=int(i.width * 0.75), height=int(i.height * 0.75), delta_x=1, rigidity=0, ) i.liquid_rescale( width=int(i.width * 1.25), height=int(i.height * 1.25), delta_x=2, rigidity=0, ) i.resize(img.width, img.height) new_image.sequence.append(i) new_image.format = "gif" new_image.dispose = "background" new_image.type = "optimize" new_image.save(file=final) file_size = final.tell() final.seek(0) file = discord.File(final, filename="gmagik.gif") final.close() return file, file_size @commands.command() @commands.cooldown(1, 20, commands.BucketType.guild) @commands.bot_has_permissions(attach_files=True) async def gmagik(self, ctx, urls: ImageFinder = None, frame_delay: int = 1): """Attempt to do magik on a gif""" if urls is None: urls = await ImageFinder().search_for_images(ctx) url = urls[0] x = await ctx.message.channel.send("ok, processing (this might take a while for big gifs)") async with ctx.typing(): if frame_delay > 60: frame_delay = 60 elif frame_delay < 0: frame_delay = 1 b, mime = await self.bytes_download(url) if b is False: await ctx.send(":warning: **Command download function failed...**") return try: task = self.bot.loop.run_in_executor(None, self.do_gmagik, b, frame_delay) file, file_size = await asyncio.wait_for(task, timeout=120) except asyncio.TimeoutError: return await ctx.send("That image is too large.") except Exception: log.exception("Error running gmagik") await ctx.send(":warning: Gmagik failed...") return await self.safe_send(ctx, None, file, file_size) await x.delete() @commands.command() @commands.bot_has_permissions(attach_files=True) async def caption( self, ctx, urls: Optional[ImageFinder] = None, text: str = "Caption", color: str = "white", size: int = 40, x: int = 0, y: int = 0, ): """ Add caption to an image `[urls]` are the image urls or users or previous images in chat to add a caption to. `[text=Caption]` is the text to caption on the image. `[color=white]` is the color of the text. `[size=40]` is the size of the text `[x=0]` is the height the text starts at between 0 and 100% where 0 is the top and 100 is the bottom of the image. `[y=0]` is the width the text starts at between 0 and 100% where 0 is the left and 100 is the right of the image. """ if urls is None: urls = await ImageFinder().search_for_images(ctx) url = urls[0] if url is None: await ctx.send( "Error: Invalid Syntax\n`.caption <image_url> <text>**" " <color>* <size>* <x>* <y>*`\n`* = Optional`\n`** = Wrap text in quotes`" ) return async with ctx.typing(): xx = await ctx.message.channel.send("ok, processing") b, mime = await self.bytes_download(url) if mime not in self.image_mimes and not isinstance(url, discord.Asset): return await ctx.send("That is not a valid image!") if b is False: await ctx.send(":warning: **Command download function failed...**") return is_gif = mime in self.gif_mimes font_path = str(bundled_data_path(self)) + "/arial.ttf" try: color = wand.color.Color(color) except ValueError: await ctx.send(":warning: **That is not a valid color!**") await xx.delete() return font = wand.font.Font(path=font_path, size=size, color=color) if x > 100: x = 100 if x < 0: x = 0 if y > 100: y = 100 if y < 0: y = 0 def make_caption_image(b, text, color, font, x, y, is_gif): final = BytesIO() with wand.image.Image(file=b) as img: i = img.clone() x = int(i.height * (x * 0.01)) y = int(i.width * (y * 0.01)) if not is_gif: i.caption(str(text), left=x, top=y, font=font) else: with wand.image.Image() as new_image: for frame in img.sequence: frame.caption(str(text), left=x, top=y, font=font) new_image.sequence.append(frame) new_image.save(file=final) i.save(file=final) file_size = final.tell() final.seek(0) filename = f"caption.{'png' if not is_gif else 'gif'}" file = discord.File(final, filename=filename) final.close() return file, file_size await xx.delete() task = ctx.bot.loop.run_in_executor( None, make_caption_image, b, text, color, font, x, y, is_gif ) try: file, file_size = await asyncio.wait_for(task, timeout=60) except asyncio.TimeoutError: return await ctx.send("That image is too large.") await ctx.send(file=file) def trigger_image(self, path: BytesIO, t_path: BytesIO) -> Tuple[discord.File, int]: final = BytesIO() with wand.image.Image(width=512, height=680) as img: img.format = "gif" img.dispose = "background" img.type = "optimize" with wand.image.Image(file=path) as top_img: top_img.transform(resize="640x640!") with wand.image.Image(file=t_path) as trigger: with wand.image.Image(width=512, height=660) as temp_img: i = top_img.clone() t = trigger.clone() temp_img.composite(i, -60, -60) temp_img.composite(t, 0, 572) img.composite(temp_img) with wand.image.Image(width=512, height=660) as temp_img: i = top_img.clone() t = trigger.clone() temp_img.composite(i, -45, -50) temp_img.composite(t, 0, 572) img.sequence.append(temp_img) with wand.image.Image(width=512, height=660) as temp_img: i = top_img.clone() t = trigger.clone() temp_img.composite(i, -50, -45) temp_img.composite(t, 0, 572) img.sequence.append(temp_img) with wand.image.Image(width=512, height=660) as temp_img: i = top_img.clone() t = trigger.clone() temp_img.composite(i, -45, -65) temp_img.composite(t, 0, 572) img.sequence.append(temp_img) # img.optimize_layers() # img.optimize_transparency() for frame in img.sequence: frame.delay = 2 img.save(file=final) file_size = final.tell() final.seek(0) file = discord.File(final, filename="triggered.gif") final.close() return file, file_size @commands.command() @commands.cooldown(1, 5) @commands.bot_has_permissions(attach_files=True) async def triggered(self, ctx, urls: ImageFinder = None): """Generate a Triggered Gif for a User or Image""" if urls is None: urls = [ctx.author.avatar_url_as(format="png")] avatar = urls[0] async with ctx.typing(): img, mime = await self.bytes_download(str(avatar)) trig, mime = await self.bytes_download("https://i.imgur.com/zDAY2yo.jpg") if img is False or trig is False: await ctx.send(":warning: **Command download function failed...**") return try: task = ctx.bot.loop.run_in_executor(None, self.trigger_image, img, trig) file, file_size = await asyncio.wait_for(task, timeout=60) except asyncio.TimeoutError: return await ctx.send("Error creating trigger image") await self.safe_send(ctx, None, file, file_size) @commands.command(aliases=["aes"]) @commands.bot_has_permissions(attach_files=True) async def aesthetics(self, ctx, *, text: str): """Returns inputed text in aesthetics""" final = "" pre = " ".join(text) for char in pre: if not ord(char) in range(33, 127): final += char continue final += chr(ord(char) + 65248) await self.truncate(ctx.message.channel, final) def do_ascii(self, text): try: i = Image.new("RGB", (2000, 1000)) img = ImageDraw.Draw(i) txt = figlet_format(text, font="starwars") img.text((20, 20), figlet_format(text, font="starwars"), fill=(0, 255, 0)) text_width, text_height = img.textsize(figlet_format(text, font="starwars")) imgs = Image.new("RGB", (text_width + 30, text_height)) ii = ImageDraw.Draw(imgs) ii.text((20, 20), figlet_format(text, font="starwars"), fill=(0, 255, 0)) text_width, text_height = ii.textsize(figlet_format(text, font="starwars")) final = BytesIO() imgs.save(final, "png") file_size = final.tell() final.seek(0) file = discord.File(final, filename="ascii.png") final.close() imgs.close() return file, txt, file_size except Exception: return False, False @commands.command(aliases=["expand"]) @commands.cooldown(1, 5) @commands.bot_has_permissions(attach_files=True) async def ascii(self, ctx, *, text: str): """Convert text into ASCII""" if len(text) > 1000: await ctx.send("Text is too long!") return if text == "donger" or text == "dong": text = "8====D" async with ctx.typing(): task = self.bot.loop.run_in_executor(None, self.do_ascii, text) try: file, txt, file_size = await asyncio.wait_for(task, timeout=60) except asyncio.TimeoutError: return await ctx.send("That image is too large.") if file is False: await ctx.send(":no_entry: go away with your invalid characters.") return if len(txt) >= 1999: # await self.gist(ctx, text, txt) msg = None elif len(txt) <= 600: msg = "```fix\n{0}```".format(txt) else: msg = None await self.safe_send(ctx, msg, file, file_size) def generate_ascii(self, image): font = ImageFont.truetype(str(cog_data_path(self)) + "/FreeMonoBold.ttf", 15) image_width, image_height = image.size aalib_screen_width = int(image_width / 24.9) * 10 aalib_screen_height = int(image_height / 41.39) * 10 screen = aalib.AsciiScreen(width=aalib_screen_width, height=aalib_screen_height) im = image.convert("L").resize(screen.virtual_size) screen.put_image((0, 0), im) y = 0 how_many_rows = len(screen.render().splitlines()) new_img_width, font_size = font.getsize(screen.render().splitlines()[0]) img = Image.new("RGBA", (new_img_width, how_many_rows * 15), (255, 255, 255)) draw = ImageDraw.Draw(img) for lines in screen.render().splitlines(): draw.text((0, y), lines, (0, 0, 0), font=font) y += 15 imagefit = ImageOps.fit(img, (image_width, image_height), Image.ANTIALIAS) final = BytesIO() img.save(final, "png") file_size = final.tell() final.seek(0) # file = discord.File(final, filename="iascii.png") # final.close() img.close() return final, file_size async def check_font_file(self): try: ImageFont.truetype(cog_data_path(self) / "FreeMonoBold.ttf", 15) except Exception: async with aiohttp.ClientSession() as session: async with session.get( "https://github.com/opensourcedesign/fonts" "/raw/master/gnu-freefont_freemono/FreeMonoBold.ttf" ) as resp: data = await resp.read() with open(cog_data_path(self) / "FreeMonoBold.ttf", "wb") as save_file: save_file.write(data) @commands.command() @commands.cooldown(1, 5, commands.BucketType.user) @commands.check(lambda ctx: AALIB_INSTALLED) @commands.bot_has_permissions(attach_files=True) async def iascii(self, ctx, urls: ImageFinder = None): """Generate an ascii art image of last image in chat or from URL""" if not AALIB_INSTALLED: await ctx.send("aalib couldn't be found on this machine!") return await self.check_font_file() if urls is None: urls = await ImageFinder().search_for_images(ctx) url = urls[0] x = await ctx.send("ok, processing") async with ctx.typing(): b, mime = await self.bytes_download(url) if mime not in self.image_mimes and not isinstance(url, discord.Asset): return await ctx.send("That is not a valid image!") if b is False: await ctx.send(":warning: **Command download function failed...**") return im = Image.open(b) task = self.bot.loop.run_in_executor(None, self.generate_ascii, im) try: temp, file_size = await asyncio.wait_for(task, timeout=60) except (asyncio.TimeoutError, PIL.UnidentifiedImageError): return await ctx.send( "That image is either too large or image filetype is unsupported." ) file = discord.File(temp, "iascii.png") temp.close() await x.delete() await self.safe_send(ctx, None, file, file_size) def do_gascii(self, b): img_list = [] temp = BytesIO() try: image = Image.open(b) gif_list = [frame.copy() for frame in ImageSequence.Iterator(image)] count = 0 for frame in gif_list[:20]: im = frame.copy() new_im, size = self.generate_ascii(im) img = Image.open(new_im) img_list.append(img) count += 1 temp = BytesIO() img.save(temp, format="GIF", save_all=True, append_images=img_list, duration=0, loop=0) file_size = temp.tell() temp.seek(0) file = discord.File(temp, filename="gascii.gif") temp.close() image.close() return file, file_size except Exception: raise @commands.command() @commands.cooldown(1, 10, commands.BucketType.guild) @commands.check(lambda ctx: AALIB_INSTALLED) @commands.bot_has_permissions(attach_files=True) async def gascii(self, ctx, urls: ImageFinder = None): """Gif to ASCII""" if not AALIB_INSTALLED: await ctx.send("aalib couldn't be found on this machine!") return await self.check_font_file() if urls is None: urls = await ImageFinder().search_for_images(ctx) url = urls[0] x = await ctx.message.channel.send("ok, processing") async with ctx.typing(): b, mime = await self.bytes_download(url) if b is False: await ctx.send(":warning: **Command download function failed...**") return result = self.bot.loop.run_in_executor(None, self.do_gascii, b) try: file, file_size = await asyncio.wait_for(result, timeout=60) except asyncio.TimeoutError: return except Exception: log.exception("Error Running gascii") return await ctx.send("There was an error performing gascii.") await x.delete() await self.safe_send(ctx, None, file, file_size) @commands.command() @commands.bot_has_permissions(attach_files=True) async def rip(self, ctx, name: str = None, *, text: str = None): """Generate tombstone image with name and optional text""" if name is None: name = ctx.message.author.name if len(ctx.message.mentions) >= 1: name = ctx.message.mentions[0].name b, mime = await self.bytes_download("https://i.imgur.com/xNWxZHn.jpg") if b is False: await ctx.send(":warning: **Command download function failed...**") return if not text: text = f"{name}'s\n Hopes and dreams" else: text = f"{name}\n{text}" if not b: return def make_rip(image, text): img = Image.open(image).convert("RGB") draw = ImageDraw.Draw(img) font_path = str(bundled_data_path(self)) + "/arial.ttf" font1 = ImageFont.truetype(font_path, 35) text = "\n".join(line for line in textwrap.wrap(text, width=15)) w, h = draw.multiline_textsize(text, font=font1) draw.multiline_text( (((400 - w) / 2) - 1, 50), text, fill=(50, 50, 50), font=font1, align="center" ) draw.multiline_text( (((400 - w) / 2) + 1, 50), text, fill=(50, 50, 50), font=font1, align="center" ) draw.multiline_text( (((400 - w) / 2), 49), text, fill=(50, 50, 50), font=font1, align="center" ) draw.multiline_text( (((400 - w) / 2), 51), text, fill=(50, 50, 50), font=font1, align="center" ) draw.multiline_text( ((400 - w) / 2, 50), text, fill=(105, 105, 105), font=font1, align="center" ) final = BytesIO() img.save(final, "JPEG") file_size = final.tell() final.seek(0) file = discord.File(final, filename="rip.jpg") final.close() img.close() return file, file_size task = ctx.bot.loop.run_in_executor(None, make_rip, b, text) try: file, file_size = await asyncio.wait_for(task, timeout=60) except asyncio.TimeoutError: return await ctx.send("That image is too large.") await self.safe_send(ctx, None, file, file_size) @commands.command() @commands.cooldown(1, 5) @commands.bot_has_permissions(attach_files=True) # ImageFinder consumes rest this is so goat'd async def merge(self, ctx, vertical: Optional[bool] = True, *, urls: Optional[ImageFinder]): """ Merge/Combine Two Photos `[vertical=True]` `true` or `false` to merge vertically. `[urls]` The Image URL's you want to merge together. If not supplied images are searched from message history. """ if urls is None: urls = await ImageFinder().search_for_images(ctx) if not urls: return await ctx.send("No images found.") async with ctx.typing(): if len(urls) == 1: await ctx.send("You need to supply more than 1 image.") return xx = await ctx.message.channel.send("ok, processing") count = 0 list_im = [] for url in urls: log.debug(url) count += 1 b, mime = await self.bytes_download(str(url)) if sys.getsizeof(b) == 215: await ctx.send(":no_entry: Image `{0}` is invalid!".format(str(count))) continue if not b: continue list_im.append(b) def make_merge(list_im): imgs = [Image.open(i).convert("RGBA") for i in list_im] if vertical: # Vertical max_shape = sorted([(np.sum(i.size), i.size) for i in imgs])[1][1] imgs_comb = np.vstack([np.asarray(i.resize(max_shape)) for i in imgs]) else: # Horizontal min_shape = sorted([(np.sum(i.size), i.size) for i in imgs])[0][1] imgs_comb = np.hstack([np.asarray(i.resize(min_shape)) for i in imgs]) imgs_comb = Image.fromarray(imgs_comb) final = BytesIO() imgs_comb.save(final, "png") file_size = final.tell() final.seek(0) file = discord.File(final, filename="merge.png") final.close() for i in imgs: i.close() return file, file_size if len(list_im) < 2: return await ctx.send("You need to supply more than 1 image.") await xx.delete() task = ctx.bot.loop.run_in_executor(None, make_merge, list_im) try: file, file_size = await asyncio.wait_for(task, timeout=60) except (asyncio.TimeoutError, PIL.UnidentifiedImageError): return await ctx.send( "That image is either too large or image filetype is unsupported." ) await self.safe_send(ctx, None, file, file_size) @commands.command() async def emojify(self, ctx, *, txt: str): """Replace characters in text with emojis""" txt = txt.lower() msg = "" for s in txt: if s in self.emoji_map: msg += "{0}".format(self.emoji_map[s]) else: msg += s await ctx.send(msg) async def get_colour(self, channel): try: if await self.bot.db.guild(channel.guild).use_bot_color(): return channel.guild.me.colour else: return await self.bot.db.color() except AttributeError: return await self.bot.get_embed_colour(channel) @commands.command(aliases=["needsmorejpeg", "jpegify", "magik2"]) @commands.cooldown(2, 5, commands.BucketType.user) @commands.bot_has_permissions(attach_files=True) async def jpeg(self, ctx, urls: Optional[ImageFinder] = None, quality: int = 1): """ Add more JPEG to an Image Needs More JPEG! `[urls]` is optional, if not provided will search chat for a valid image. `[quality]` is the quality of the new jpeg image to make """ if urls is None: urls = await ImageFinder().search_for_images(ctx) url = urls[0] if quality > 10: quality = 10 elif quality < 1: quality = 1 async with ctx.typing(): b, mime = await self.bytes_download(url) if b is False: await ctx.send(":warning: **Command download function failed...**") return def make_jpeg(b): img = Image.open(b).convert("RGB") final = BytesIO() img.save(final, "JPEG", quality=quality) file_size = final.tell() final.seek(0) file = discord.File(final, filename="needsmorejpeg.jpg") final.close() return file, file_size task = ctx.bot.loop.run_in_executor(None, make_jpeg, b) try: file, file_size = await asyncio.wait_for(task, timeout=60) except (asyncio.TimeoutError, PIL.UnidentifiedImageError): return await ctx.send( "That image is either too large or image filetype is unsupported." ) await self.safe_send(ctx, None, file, file_size) def do_vw(self, b, txt): im = Image.open(b) k = random.randint(0, 100) im = macintoshplus.draw_method1(k, txt, im) final = BytesIO() im.save(final, "png") file_size = final.tell() final.seek(0) file = discord.File(final, filename="vapewave.png") final.close() return file, file_size @commands.command(aliases=["vaporwave", "vape", "vapewave"]) @commands.cooldown(2, 5) @commands.bot_has_permissions(attach_files=True) async def vw(self, ctx, urls: ImageFinder = None, *, txt: str = None): """Add vaporwave flavours to an image""" if urls is None: urls = await ImageFinder().search_for_images(ctx) url = urls[0] if txt is None: txt = "vapor wave" b, mime = await self.bytes_download(url) if b is False: await ctx.send(":warning: **Command download function failed...**") return try: task = self.bot.loop.run_in_executor(None, self.do_vw, b, txt) file, file_size = await asyncio.wait_for(task, timeout=60) except asyncio.TimeoutError: return await ctx.send("That image is too large.") except Exception: return await ctx.send("That image cannot be vaporwaved.") await self.safe_send(ctx, None, file, file_size) @commands.command(aliases=["achievement"]) @commands.bot_has_permissions(attach_files=True) async def minecraftachievement(self, ctx, *, txt: str): """Generate a Minecraft Achievement""" b, mime = await self.bytes_download("https://i.imgur.com/JtNJFZy.png") if b is False: await ctx.send(":warning: **Command download function failed...**") return if len(txt) > 20: txt = txt[:20] + " ..." def make_mc(b, txt): image = Image.open(b).convert("RGBA") draw = ImageDraw.Draw(image) font_path = str(bundled_data_path(self)) + "/Minecraftia.ttf" font = ImageFont.truetype(font_path, 17) draw.text((60, 30), txt, (255, 255, 255), font=font) final = BytesIO() image.save(final, "png") file_size = final.tell() final.seek(0) file = discord.File(final, filename="achievement.png") final.close() return file, file_size try: task = self.bot.loop.run_in_executor(None, make_mc, b, txt) file, file_size = await asyncio.wait_for(task, timeout=60) except asyncio.TimeoutError: return await ctx.send("That image is too large.") except Exception: return await ctx.send("I cannot make that minecraft achievement.") await self.safe_send(ctx, None, file, file_size) @commands.command(aliases=["wm"]) @commands.bot_has_permissions(attach_files=True) async def watermark( self, ctx, urls: ImageFinder = None, mark: str = None, x: int = 0, y: int = 0, transparency: Union[int, float] = 0, ): """ Add a watermark to an image `[urls]` are the image urls or users or previous images in chat to add a watermark to. `[mark]` is the image to use as the watermark. By default the brazzers icon is used. `[x=0]` is the height the watermark will be at between 0 and 100% where 0 is the top and 100 is the bottom of the image. `[y=0]` is the width the watermark will be at between 0 and 100% where 0 is the left and 100 is the right of the image. `[transparency=0]` is a value from 0 to 100 which determines the percentage the watermark will be transparent. """ if urls is None: urls = await ImageFinder().search_for_images(ctx) url = urls[0] async with ctx.typing(): if x > 100: x = 100 if x < 0: x = 0 if y > 100: y = 100 if y < 0: y = 0 if transparency > 1 and transparency < 100: transparency = transparency * 0.01 if transparency < 0: transparency = 0 if transparency > 100: transparency = 1 b, mime = await self.bytes_download(url) if mime not in self.image_mimes + self.gif_mimes and not isinstance( url, discord.Asset ): return await ctx.send("That is not a valid image.") if mark == "brazzers" or mark is None: wmm, mime = await self.bytes_download("https://i.imgur.com/YAb1RMZ.png") if wmm is False or b is False: await ctx.send(":warning: **Command download function failed...**") return wmm.name = "watermark.png" wm_gif = False else: wmm, mime = await self.bytes_download(mark) wm_gif = mime in self.gif_mimes if wmm is False or b is False: await ctx.send(":warning: **Command download function failed...**") return wmm.name = "watermark.png" if wm_gif: wmm.name = "watermark.gif" def add_watermark(b, wmm, x, y, transparency, wm_gif=False): final = BytesIO() with wand.image.Image(file=b) as img: is_gif = len(getattr(img, "sequence")) > 1 if not is_gif and not wm_gif: log.debug("There are no gifs") with img.clone() as new_img: new_img.transform(resize="65536@") final_x = int(new_img.height * (x * 0.01)) final_y = int(new_img.width * (y * 0.01)) with wand.image.Image(file=wmm) as wm: new_img.watermark( image=wm, left=final_x, top=final_y, transparency=transparency ) new_img.save(file=final) elif is_gif and not wm_gif: log.debug("The base image is a gif") wm = wand.image.Image(file=wmm) with wand.image.Image() as new_image: with img.clone() as new_img: for frame in new_img.sequence: frame.transform(resize="65536@") final_x = int(frame.height * (x * 0.01)) final_y = int(frame.width * (y * 0.01)) frame.watermark( image=wm, left=final_x, top=final_y, transparency=transparency, ) new_image.sequence.append(frame) new_image.save(file=final) else: log.debug("The mark is a gif") with wand.image.Image() as new_image: with wand.image.Image(file=wmm) as new_img: for frame in new_img.sequence: with img.clone() as clone: if is_gif: clone = clone.sequence[0] # we only care about the first frame of the gif in this case else: clone = clone.convert("gif") clone.transform(resize="65536@") final_x = int(clone.height * (x * 0.01)) final_y = int(clone.width * (y * 0.01)) clone.watermark( image=frame, left=final_x, top=final_y, transparency=transparency, ) new_image.sequence.append(clone) new_image.dispose = "background" with new_image.sequence[-1] as new_frame: new_frame.delay = frame.delay new_image.save(file=final) size = final.tell() final.seek(0) filename = f"watermark.{'gif' if is_gif or wm_gif else 'png'}" file = discord.File(final, filename=filename) final.close() return file, size try: task = ctx.bot.loop.run_in_executor( None, add_watermark, b, wmm, x, y, transparency, wm_gif ) file, file_size = await asyncio.wait_for(task, timeout=120) except asyncio.TimeoutError: return await ctx.send("That image is too large.") await self.safe_send(ctx, None, file, file_size) def do_glitch(self, b, amount, seed, iterations): img = Image.open(b) is_gif = img.is_animated if not is_gif: img = img.convert("RGB") b = BytesIO() img.save(b, format="JPEG") b.seek(0) img = jpglitch.Jpeg(bytearray(b.getvalue()), amount, seed, iterations) final = BytesIO() final.name = "glitch.jpg" img.save_image(final) file_size = final.tell() final.seek(0) file = discord.File(final, filename="glitch.jpeg") final.close() # img.close() else: # img.close() b = bytearray(b.getvalue()) for x in range(0, sys.getsizeof(b)): if b[x] == 33: if b[x + 1] == 255: end = x break elif b[x + 1] == 249: end = x break for x in range(13, end): b[x] = random.randint(0, 255) final = BytesIO(b) file_size = final.tell() file = discord.File(final, filename="glitch.jpeg") final.close() return file, file_size @commands.command(aliases=["jpglitch"]) @commands.cooldown(2, 5) @commands.bot_has_permissions(attach_files=True) async def glitch( self, ctx, urls: ImageFinder = None, iterations: int = None, amount: int = None, seed: int = None, ): """Glitch a gif or png""" if urls is None: urls = await ImageFinder().search_for_images(ctx) url = urls[0] async with ctx.typing(): if iterations is None: iterations = random.randint(1, 30) if amount is None: amount = random.randint(1, 20) elif amount > 99: amount = 99 if seed is None: seed = random.randint(1, 20) b, mime = await self.bytes_download(url) gif = mime in self.gif_mimes if b is False: await ctx.send(":warning: **Command download function failed...**") return task = self.bot.loop.run_in_executor(None, self.do_glitch, b, amount, seed, iterations) try: file, file_size = await asyncio.wait_for(task, timeout=60) except (asyncio.TimeoutError, PIL.UnidentifiedImageError): return await ctx.send( "The image is either too large or image filetype is unsupported." ) msg = f"Iterations: `{iterations}` | Amount: `{amount}` | Seed: `{seed}`" await self.safe_send(ctx, msg, file, file_size) @commands.command(aliases=["pixel"]) @commands.bot_has_permissions(attach_files=True) async def pixelate(self, ctx, urls: ImageFinder = None, pixels: int = 9): """Pixelate an image""" if urls is None: urls = await ImageFinder().search_for_images(ctx) url = urls[0] async with ctx.typing(): img_urls = urls[0] b, mime = await self.bytes_download(url) if b is False: if len(img_urls) > 1: await ctx.send(":warning: **Command download function failed...**") return if mime in self.gif_mimes: task = ctx.bot.loop.run_in_executor(None, self.make_pixel_gif, b, pixels) else: task = ctx.bot.loop.run_in_executor(None, self.make_pixel, b, pixels) try: file, file_size = await asyncio.wait_for(task, timeout=60) except asyncio.TimeoutError: return await ctx.send("The image is too large.") await self.safe_send(ctx, None, file, file_size) def make_pixel(self, b: BytesIO, pixels: int) -> Tuple[discord.File, int]: bg = (0, 0, 0) img = Image.open(b) img = img.resize((int(img.size[0] / pixels), int(img.size[1] / pixels)), Image.NEAREST) img = img.resize((int(img.size[0] * pixels), int(img.size[1] * pixels)), Image.NEAREST) load = img.load() for i in range(0, img.size[0], pixels): for j in range(0, img.size[1], pixels): for r in range(pixels): load[i + r, j] = bg load[i, j + r] = bg final = BytesIO() img.save(final, "png") file_size = final.tell() final.seek(0) file = discord.File(final, filename="pixelated.png") final.close() img.close() return file, file_size def make_pixel_gif(self, b, pixels, scale_msg): try: image = Image.open(b) gif_list = [frame.copy() for frame in ImageSequence.Iterator(image)] except IOError: return ":warning: Cannot load gif." bg = (0, 0, 0) img_list = [] for frame in gif_list: img = Image.new("RGBA", frame.size) img.paste(frame, (0, 0)) img = img.resize((int(img.size[0] / pixels), int(img.size[1] / pixels)), Image.NEAREST) img = img.resize((int(img.size[0] * pixels), int(img.size[1] * pixels)), Image.NEAREST) load = img.load() for i in range(0, img.size[0], pixels): for j in range(0, img.size[1], pixels): for r in range(pixels): load[i + r, j] = bg load[i, j + r] = bg img_list.append(img) final = BytesIO() img.save(final, format="GIF", save_all=True, append_images=img_list, duration=0, loop=0) file_size = final.tell() final.seek(0) file = discord.File(final, filename="pixelated.gif") final.close() img.close() return file, file_size def do_waaw(self, b): f = BytesIO() f2 = BytesIO() with wand.image.Image(file=b) as img: h1 = img.clone() width = int(img.width / 2) if int(img.width / 2) > 0 else 1 h1.crop(width=width, height=int(img.height), gravity="east") h2 = h1.clone() h1.rotate(degree=180) h1.flip() h1.save(file=f) h2.save(file=f2) f.seek(0) f2.seek(0) list_im = [f2, f] imgs = [ImageOps.mirror(Image.open(i).convert("RGBA")) for i in list_im] min_shape = sorted([(np.sum(i.size), i.size) for i in imgs])[0][1] imgs_comb = np.hstack([np.asarray(i.resize(min_shape)) for i in imgs]) imgs_comb = Image.fromarray(imgs_comb) final = BytesIO() imgs_comb.save(final, "png") file_size = final.tell() final.seek(0) file = discord.File(final, filename="waaw.png") f.close() f2.close() final.close() return file, file_size # Thanks to Iguniisu#9746 for the idea @commands.command(aliases=["magik3", "mirror"]) @commands.cooldown(2, 5, commands.BucketType.user) @commands.bot_has_permissions(attach_files=True) async def waaw(self, ctx, urls: ImageFinder = None): """Mirror an image vertically right to left""" if urls is None: urls = await ImageFinder().search_for_images(ctx) url = urls[0] async with ctx.typing(): b, mime = await self.bytes_download(url) if b is False: await ctx.send(":warning: **Command download function failed...**") return task = self.bot.loop.run_in_executor(None, self.do_waaw, b) try: file, file_size = await asyncio.wait_for(task, timeout=60) except (asyncio.TimeoutError, wand.exceptions.MissingDelegateError): return await ctx.send( "The image is either too large or you're missing delegates for this image format." ) await self.safe_send(ctx, None, file, file_size) def do_haah(self, b): f = BytesIO() f2 = BytesIO() with wand.image.Image(file=b) as img: h1 = img.clone() h1.transform("50%x100%") h2 = h1.clone() h2.rotate(degree=180) h2.flip() h1.save(file=f) h2.save(file=f2) f.seek(0) f2.seek(0) list_im = [f2, f] imgs = [ImageOps.mirror(Image.open(i).convert("RGBA")) for i in list_im] min_shape = sorted([(np.sum(i.size), i.size) for i in imgs])[0][1] imgs_comb = np.hstack([np.asarray(i.resize(min_shape)) for i in imgs]) imgs_comb = Image.fromarray(imgs_comb) final = BytesIO() imgs_comb.save(final, "png") file_size = final.tell() final.seek(0) file = discord.File(final, filename="haah.png") f.close() f2.close() final.close() return file, file_size @commands.command(aliases=["magik4", "mirror2"]) @commands.cooldown(2, 5, commands.BucketType.user) @commands.bot_has_permissions(attach_files=True) async def haah(self, ctx, urls: ImageFinder = None): """Mirror an image vertically left to right""" if urls is None: urls = await ImageFinder().search_for_images(ctx) url = urls[0] async with ctx.typing(): b, mime = await self.bytes_download(url) if b is False: await ctx.send(":warning: **Command download function failed...**") return task = self.bot.loop.run_in_executor(None, self.do_haah, b) try: file, file_size = await asyncio.wait_for(task, timeout=60) except (asyncio.TimeoutError, wand.exceptions.MissingDelegateError): return await ctx.send( "The image is either too large or you're missing delegates for this image format." ) await self.safe_send(ctx, None, file, file_size) def do_woow(self, b): f = BytesIO() f2 = BytesIO() with wand.image.Image(file=b) as img: h1 = img.clone() width = int(img.width) if int(img.width) > 0 else 1 h1.crop(width=width, height=int(img.height / 2), gravity="north") h2 = h1.clone() h2.rotate(degree=180) h2.flop() h1.save(file=f) h2.save(file=f2) f.seek(0) f2.seek(0) list_im = [f, f2] imgs = [Image.open(i).convert("RGBA") for i in list_im] min_shape = sorted([(np.sum(i.size), i.size) for i in imgs])[0][1] imgs_comb = np.vstack([np.asarray(i.resize(min_shape)) for i in imgs]) imgs_comb = Image.fromarray(imgs_comb) final = BytesIO() imgs_comb.save(final, "png") file_size = final.tell() final.seek(0) file = discord.File(final, filename="woow.png") f.close() f2.close() final.close() return file, file_size @commands.command(aliases=["magik5", "mirror3"]) @commands.cooldown(2, 5, commands.BucketType.user) @commands.bot_has_permissions(attach_files=True) async def woow(self, ctx, urls: ImageFinder = None): """Mirror an image horizontally top to bottom""" if urls is None: urls = await ImageFinder().search_for_images(ctx) url = urls[0] async with ctx.typing(): b, mime = await self.bytes_download(url) if b is False: await ctx.send(":warning: **Command download function failed...**") return task = self.bot.loop.run_in_executor(None, self.do_woow, b) try: file, file_size = await asyncio.wait_for(task, timeout=60) except (asyncio.TimeoutError, wand.exceptions.MissingDelegateError): return await ctx.send( "The image is either too large or you're missing delegates for this image format." ) await self.safe_send(ctx, None, file, file_size) def do_hooh(self, b): f = BytesIO() f2 = BytesIO() with wand.image.Image(file=b) as img: h1 = img.clone() width = int(img.width) if int(img.width) > 0 else 1 h1.crop(width=width, height=int(img.height / 2), gravity="south") h2 = h1.clone() h1.rotate(degree=180) h2.flop() h1.save(file=f) h2.save(file=f2) f.seek(0) f2.seek(0) list_im = [f, f2] imgs = [Image.open(i).convert("RGBA") for i in list_im] min_shape = sorted([(np.sum(i.size), i.size) for i in imgs])[0][1] imgs_comb = np.vstack([np.asarray(i.resize(min_shape)) for i in imgs]) imgs_comb = Image.fromarray(imgs_comb) final = BytesIO() imgs_comb.save(final, "png") file_size = final.tell() final.seek(0) file = discord.File(final, filename="hooh.png") f.close() f2.close() final.close() return file, file_size @commands.command(aliases=["magik6", "mirror4"]) @commands.cooldown(2, 5, commands.BucketType.user) @commands.bot_has_permissions(attach_files=True) async def hooh(self, ctx, urls: ImageFinder = None): """Mirror an image horizontally bottom to top""" if urls is None: urls = await ImageFinder().search_for_images(ctx) url = urls[0] async with ctx.typing(): b, mime = await self.bytes_download(url) if b is False: await ctx.send(":warning: **Command download function failed...**") return task = self.bot.loop.run_in_executor(None, self.do_hooh, b) try: file, file_size = await asyncio.wait_for(task, timeout=60) except (asyncio.TimeoutError, wand.exceptions.MissingDelegateError): return await ctx.send( "The image is either too large or you're missing delegates for this image format." ) await self.safe_send(ctx, None, file, file_size) @commands.command() @commands.bot_has_permissions(attach_files=True) async def flipimg(self, ctx, urls: ImageFinder = None): """Rotate an image 180 degrees""" if urls is None: urls = await ImageFinder().search_for_images(ctx) url = urls[0] async with ctx.typing(): b, mime = await self.bytes_download(url) if b is False: await ctx.send(":warning: **Command download function failed...**") return def flip_img(b): with Image.open(b) as img: img = ImageOps.flip(img) with BytesIO() as final: img.save(final, "png") file_size = final.tell() final.seek(0) file = discord.File(final, filename="flip.png") return file, file_size task = ctx.bot.loop.run_in_executor(None, flip_img, b) try: file, file_size = await asyncio.wait_for(task, timeout=60) except (asyncio.TimeoutError, PIL.UnidentifiedImageError): return await ctx.send( "The image is either too large or image filetype is unsupported." ) await self.safe_send(ctx, None, file, file_size) @commands.command() @commands.bot_has_permissions(attach_files=True) async def flop(self, ctx, urls: ImageFinder = None): """Flip an image""" if urls is None: urls = await ImageFinder().search_for_images(ctx) url = urls[0] async with ctx.typing(): b, mime = await self.bytes_download(url) if mime not in self.image_mimes and not isinstance(url, discord.Asset): return await ctx.send("That is not a valid image!") if b is False: await ctx.send(":warning: **Command download function failed...**") return def flop_img(b): with Image.open(b) as img: img = ImageOps.mirror(img) with BytesIO() as final: img.save(final, "png") file_size = final.tell() final.seek(0) file = discord.File(final, filename="flop.png") return file, file_size task = ctx.bot.loop.run_in_executor(None, flop_img, b) try: file, file_size = await asyncio.wait_for(task, timeout=60) except asyncio.TimeoutError: return await ctx.send("That image is too large.") await self.safe_send(ctx, None, file, file_size) @commands.command(aliases=["inverse", "negate"]) @commands.bot_has_permissions(attach_files=True) async def invert(self, ctx, urls: ImageFinder = None): """Invert the colours of an image""" if urls is None: urls = await ImageFinder().search_for_images(ctx) url = urls[0] async with ctx.typing(): b, mime = await self.bytes_download(url) if b is False: await ctx.send(":warning: **Command download function failed...**") return def invert_img(b): with Image.open(b).convert("RGB") as img: img = ImageOps.invert(img) with BytesIO() as final: img.save(final, "png") file_size = final.tell() final.seek(0) file = discord.File(final, filename="flop.png") return file, file_size task = ctx.bot.loop.run_in_executor(None, invert_img, b) try: file, file_size = await asyncio.wait_for(task, timeout=60) except (asyncio.TimeoutError, PIL.UnidentifiedImageError): return await ctx.send( "That image is either too large or image filetype is unsupported." ) await self.safe_send(ctx, None, file, file_size) @commands.command() @commands.bot_has_permissions(attach_files=True) async def rotate(self, ctx, degrees: int = 90, urls: ImageFinder = None): """Rotate image X degrees""" if urls is None: urls = await ImageFinder().search_for_images(ctx) url = urls[0] async with ctx.typing(): b, mime = await self.bytes_download(url) if not b: return await ctx.send("That's not a valid image to rotate.") def rotate_img(b, degrees): with Image.open(b).convert("RGBA") as img: img = img.rotate(int(degrees)) with BytesIO() as final: img.save(final, "png") file_size = final.tell() final.seek(0) file = discord.File(final, filename="rotate.png") return file, file_size task = ctx.bot.loop.run_in_executor(None, rotate_img, b, degrees) try: file, file_size = await asyncio.wait_for(task, timeout=60) except (asyncio.TimeoutError, PIL.UnidentifiedImageError): return await ctx.send( "That image is either too large or image filetype is unsupported." ) await self.safe_send(ctx, f"Rotated: `{degrees}°`", file, file_size)
40.321972
128
0.514529
0447f4da666c2bbe4f03d070932dc204637c1bfb
1,024
py
Python
pilgram/maven.py
akiomik/pilgram
c585ca4f7f08549842befdcd05dd7d9972f7b0a2
[ "Apache-2.0" ]
46
2019-03-21T21:41:36.000Z
2022-01-19T16:01:03.000Z
pilgram/maven.py
akiomik/pilgram
c585ca4f7f08549842befdcd05dd7d9972f7b0a2
[ "Apache-2.0" ]
102
2019-03-21T21:41:05.000Z
2022-03-21T19:04:22.000Z
pilgram/maven.py
akiomik/pilgram
c585ca4f7f08549842befdcd05dd7d9972f7b0a2
[ "Apache-2.0" ]
5
2019-05-28T02:40:38.000Z
2020-10-30T22:22:01.000Z
# Copyright 2019 Akiomi Kamakura # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pilgram import css from pilgram import util def maven(im): """Applies Maven filter. Arguments: im: An input image. Returns: The output image. """ cb = util.or_convert(im, 'RGB') cs = util.fill(cb.size, [3, 230, 26, .2]) cr = css.blending.hue(cb, cs) cr = css.sepia(cr, .25) cr = css.brightness(cr, .95) cr = css.contrast(cr, .95) cr = css.saturate(cr, 1.5) return cr
25.6
74
0.678711
26ee601a4c29ebd60f92b84e793e26b54ec15ab8
6,080
py
Python
align-dlib.py
4Dager/4DFace
aa9dd0d8d028b7ddb77212bc8488984377bb1fdc
[ "Apache-2.0" ]
null
null
null
align-dlib.py
4Dager/4DFace
aa9dd0d8d028b7ddb77212bc8488984377bb1fdc
[ "Apache-2.0" ]
null
null
null
align-dlib.py
4Dager/4DFace
aa9dd0d8d028b7ddb77212bc8488984377bb1fdc
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python2 import argparse import cv2 import numpy as np import os import random import shutil import errno import facelib from facelib.data import iterImgs fileDir = os.path.dirname(os.path.realpath(__file__)) modelDir = os.path.join(fileDir, '..', 'models') dlibModelDir = os.path.join(modelDir, 'dlib') openfaceModelDir = os.path.join(modelDir, 'openface') def write(vals, fName): if os.path.isfile(fName): print("{} exists. Backing up.".format(fName)) os.rename(fName, "{}.bak".format(fName)) with open(fName, 'w') as f: for p in vals: f.write(",".join(str(x) for x in p)) f.write("\n") def computeMeanMain(args): align = facelib.AlignDlib(args.dlibFacePredictor) imgs = list(iterImgs(args.inputDir)) if args.numImages > 0: imgs = random.sample(imgs, args.numImages) facePoints = [] for img in imgs: rgb = img.getRGB() bb = align.getLargestFaceBoundingBox(rgb) alignedPoints = align.align(rgb, bb) if alignedPoints: facePoints.append(alignedPoints) facePointsNp = np.array(facePoints) mean = np.mean(facePointsNp, axis=0) std = np.std(facePointsNp, axis=0) write(mean, "{}/mean.csv".format(args.modelDir)) write(std, "{}/std.csv".format(args.modelDir)) # Only import in this mode. import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt fig, ax = plt.subplots() ax.scatter(mean[:, 0], -mean[:, 1], color='k') ax.axis('equal') for i, p in enumerate(mean): ax.annotate(str(i), (p[0] + 0.005, -p[1] + 0.005), fontsize=8) plt.savefig("{}/mean.png".format(args.modelDir)) def mkdirP(path): assert path is not None try: os.makedirs(path) except OSError as exc: # Python >2.5 if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise def alignMain(args): mkdirP(args.outputDir) imgs = list(iterImgs(args.inputDir)) random.shuffle(imgs) landmarkMap = { 'outerEyesAndNose': facelib.AlignDlib.OUTER_EYES_AND_NOSE, 'innerEyesAndBottomLip': facelib.AlignDlib.INNER_EYES_AND_BOTTOM_LIP } if args.landmarks not in landmarkMap: raise Exception("Landmarks unrecognized: {}".format(args.landmarks)) landmarkIndices = landmarkMap[args.landmarks] align = facelib.AlignDlib(args.dlibFacePredictor) nFallbacks = 0 for imgObject in imgs: print("=== {} ===".format(imgObject.path)) outDir = os.path.join(args.outputDir, imgObject.cls) mkdirP(outDir) outputPrefix = os.path.join(outDir, imgObject.name) imgName = outputPrefix + ".png" if os.path.isfile(imgName): if args.verbose: print(" + Already found, skipping.") else: rgb = imgObject.getRGB() if rgb is None: if args.verbose: print(" + Unable to load.") outRgb = None else: outRgb = align.align(args.size, rgb, landmarkIndices=landmarkIndices, skipMulti=args.skipMulti) if outRgb is None and args.verbose: print(" + Unable to align.") if args.fallbackLfw and outRgb is None: nFallbacks += 1 deepFunneled = "{}/{}.jpg".format(os.path.join(args.fallbackLfw, imgObject.cls), imgObject.name) shutil.copy(deepFunneled, "{}/{}.jpg".format(os.path.join(args.outputDir, imgObject.cls), imgObject.name)) if outRgb is not None: if args.verbose: print(" + Writing aligned file to disk.") outBgr = cv2.cvtColor(outRgb, cv2.COLOR_RGB2BGR) cv2.imwrite(imgName, outBgr) if args.fallbackLfw: print('nFallbacks:', nFallbacks) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('inputDir', type=str, help="Input image directory.") parser.add_argument('--dlibFacePredictor', type=str, help="Path to dlib's face predictor.", default="./models/shape_predictor_68_face_landmarks.dat") subparsers = parser.add_subparsers(dest='mode', help="Mode") computeMeanParser = subparsers.add_parser( 'computeMean', help='Compute the image mean of a directory of images.') computeMeanParser.add_argument('--numImages', type=int, help="The number of images. '0' for all images.", default=0) # <= 0 ===> all imgs alignmentParser = subparsers.add_parser( 'align', help='Align a directory of images.') alignmentParser.add_argument('landmarks', type=str, choices=['outerEyesAndNose', 'innerEyesAndBottomLip', 'eyes_1'], help='The landmarks to align to.') alignmentParser.add_argument( 'outputDir', type=str, help="Output directory of aligned images.") alignmentParser.add_argument('--size', type=int, help="Default image size.", default=96) alignmentParser.add_argument('--fallbackLfw', type=str, help="If alignment doesn't work, fallback to copying the deep funneled version from this directory..") alignmentParser.add_argument( '--skipMulti', action='store_true', help="Skip images with more than one face.") alignmentParser.add_argument('--verbose', action='store_true') args = parser.parse_args() if args.mode == 'computeMean': computeMeanMain(args) else: alignMain(args)
35.976331
135
0.573684
51bab872e320c798ae7f372c1ac1ef8e419f882e
970
py
Python
metriq/config.py
unitaryfund/metriq-client
7d8831d5015baa490ec77a04ea704d2e9aa9d8d0
[ "Apache-2.0" ]
null
null
null
metriq/config.py
unitaryfund/metriq-client
7d8831d5015baa490ec77a04ea704d2e9aa9d8d0
[ "Apache-2.0" ]
null
null
null
metriq/config.py
unitaryfund/metriq-client
7d8831d5015baa490ec77a04ea704d2e9aa9d8d0
[ "Apache-2.0" ]
null
null
null
from pathlib import Path from tea_client.config import TeaClientConfig from tea_console.config import TeaConsoleConfig, ConfigField class Config(TeaConsoleConfig, TeaClientConfig): ENTRIES = { **TeaConsoleConfig.ENTRIES, "server_url": ConfigField(section="server", option="url"), "api_version": ConfigField( section="server", option="api_version", type=int ), "token_access": ConfigField(section="auth", option="token_access"), "token_refresh": ConfigField(section="auth", option="token_refresh"), } def __init__(self): # Path to the configuration file self.config_dir = ( Path("~").expanduser() / ".metriq" ).absolute() TeaClientConfig.__init__( self, server_url="http://18.190.41.255", api_version=1 ) TeaConsoleConfig.__init__( self, config_file=self.config_dir / "metriq.ini" ) config = Config()
30.3125
77
0.635052
315e7f422e1c1f2b118225794bf59cea653deb4f
510
py
Python
test/test_utils.py
vishoo7/TwitterAutoReply
268c7da6176381714a0676602513af1dbaa22078
[ "MIT" ]
2
2016-10-29T14:44:31.000Z
2018-09-10T05:31:04.000Z
test/test_utils.py
vishoo7/TwitterAutoReply
268c7da6176381714a0676602513af1dbaa22078
[ "MIT" ]
1
2016-10-17T19:16:38.000Z
2016-10-17T19:16:38.000Z
test/test_utils.py
vishoo7/TwitterAutoReply
268c7da6176381714a0676602513af1dbaa22078
[ "MIT" ]
null
null
null
from utils import gen_hashtags class TestUtils: def test_gen_hashtags(self): single_hashtag = gen_hashtags(['test']) single_hashtag2 = gen_hashtags(['123']) multiple_hashtags = gen_hashtags(['foo', 'bar', 'baz']) multiple_hashtags2 = gen_hashtags(['quux', '123', 'war&peace']) assert single_hashtag == '#test' assert single_hashtag2 == '#123' assert multiple_hashtags == '#foo #bar #baz' assert multiple_hashtags2 == '#quux #123 #war&peace'
39.230769
71
0.641176
0db82ed617c8d7e0af4e09499898c04187c71cfa
445
py
Python
gui/app.py
ManojG13/OS-Simulator
0a7dc42ffbdf4db6182e6988059b2e9207fac3f4
[ "MIT" ]
null
null
null
gui/app.py
ManojG13/OS-Simulator
0a7dc42ffbdf4db6182e6988059b2e9207fac3f4
[ "MIT" ]
null
null
null
gui/app.py
ManojG13/OS-Simulator
0a7dc42ffbdf4db6182e6988059b2e9207fac3f4
[ "MIT" ]
null
null
null
from flask import Flask , jsonify, render_template, request import json app = Flask(__name__) @app.route('/') @app.route('/index') def index(): print ("Here") return render_template('data.html') @app.route('/api/gateway',methods=['POST']) def gateway(): print("Ha") data = json.loads(request.form['data']) print(data) print(data[0]['arrivaltime']) return render_template('results.html') if __name__ == "__main__": app.run(debug=True)
21.190476
59
0.698876
ce3642c5cfe21f0713409f704477e83f3ddccad2
41,768
py
Python
scikit-learn-weighted_kde/sklearn/ensemble/tests/test_forest.py
RTHMaK/git-squash-master
76c4c8437dd18114968e69a698f4581927fcdabf
[ "BSD-2-Clause" ]
1
2016-10-24T13:36:23.000Z
2016-10-24T13:36:23.000Z
scikit-learn-weighted_kde/sklearn/ensemble/tests/test_forest.py
RTHMaK/git-squash-master
76c4c8437dd18114968e69a698f4581927fcdabf
[ "BSD-2-Clause" ]
null
null
null
scikit-learn-weighted_kde/sklearn/ensemble/tests/test_forest.py
RTHMaK/git-squash-master
76c4c8437dd18114968e69a698f4581927fcdabf
[ "BSD-2-Clause" ]
null
null
null
""" Testing for the forest module (sklearn.ensemble.forest). """ # Authors: Gilles Louppe, # Brian Holt, # Andreas Mueller, # Arnaud Joly # License: BSD 3 clause import pickle from collections import defaultdict from itertools import combinations from itertools import product import numpy as np from scipy.misc import comb from scipy.sparse import csr_matrix from scipy.sparse import csc_matrix from scipy.sparse import coo_matrix from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_less, assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import skip_if_32bit from sklearn import datasets from sklearn.decomposition import TruncatedSVD from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomTreesEmbedding from sklearn.model_selection import GridSearchCV from sklearn.svm import LinearSVC from sklearn.utils.fixes import bincount from sklearn.utils.validation import check_random_state from sklearn.tree.tree import SPARSE_SPLITTERS # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = check_random_state(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] # also make a hastie_10_2 dataset hastie_X, hastie_y = datasets.make_hastie_10_2(n_samples=20, random_state=1) hastie_X = hastie_X.astype(np.float32) FOREST_CLASSIFIERS = { "ExtraTreesClassifier": ExtraTreesClassifier, "RandomForestClassifier": RandomForestClassifier, } FOREST_REGRESSORS = { "ExtraTreesRegressor": ExtraTreesRegressor, "RandomForestRegressor": RandomForestRegressor, } FOREST_TRANSFORMERS = { "RandomTreesEmbedding": RandomTreesEmbedding, } FOREST_ESTIMATORS = dict() FOREST_ESTIMATORS.update(FOREST_CLASSIFIERS) FOREST_ESTIMATORS.update(FOREST_REGRESSORS) FOREST_ESTIMATORS.update(FOREST_TRANSFORMERS) def check_classification_toy(name): """Check classification on a toy dataset.""" ForestClassifier = FOREST_CLASSIFIERS[name] clf = ForestClassifier(n_estimators=10, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf)) clf = ForestClassifier(n_estimators=10, max_features=1, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf)) # also test apply leaf_indices = clf.apply(X) assert_equal(leaf_indices.shape, (len(X), clf.n_estimators)) def test_classification_toy(): for name in FOREST_CLASSIFIERS: yield check_classification_toy, name def check_iris_criterion(name, criterion): # Check consistency on dataset iris. ForestClassifier = FOREST_CLASSIFIERS[name] clf = ForestClassifier(n_estimators=10, criterion=criterion, random_state=1) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert_greater(score, 0.9, "Failed with criterion %s and score = %f" % (criterion, score)) clf = ForestClassifier(n_estimators=10, criterion=criterion, max_features=2, random_state=1) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert_greater(score, 0.5, "Failed with criterion %s and score = %f" % (criterion, score)) def test_iris(): for name, criterion in product(FOREST_CLASSIFIERS, ("gini", "entropy")): yield check_iris_criterion, name, criterion def check_boston_criterion(name, criterion): # Check consistency on dataset boston house prices. ForestRegressor = FOREST_REGRESSORS[name] clf = ForestRegressor(n_estimators=5, criterion=criterion, random_state=1) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert_greater(score, 0.95, "Failed with max_features=None, criterion %s " "and score = %f" % (criterion, score)) clf = ForestRegressor(n_estimators=5, criterion=criterion, max_features=6, random_state=1) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert_greater(score, 0.95, "Failed with max_features=6, criterion %s " "and score = %f" % (criterion, score)) def test_boston(): for name, criterion in product(FOREST_REGRESSORS, ("mse", )): yield check_boston_criterion, name, criterion def check_regressor_attributes(name): # Regression models should not have a classes_ attribute. r = FOREST_REGRESSORS[name](random_state=0) assert_false(hasattr(r, "classes_")) assert_false(hasattr(r, "n_classes_")) r.fit([[1, 2, 3], [4, 5, 6]], [1, 2]) assert_false(hasattr(r, "classes_")) assert_false(hasattr(r, "n_classes_")) def test_regressor_attributes(): for name in FOREST_REGRESSORS: yield check_regressor_attributes, name def check_probability(name): # Predict probabilities. ForestClassifier = FOREST_CLASSIFIERS[name] with np.errstate(divide="ignore"): clf = ForestClassifier(n_estimators=10, random_state=1, max_features=1, max_depth=1) clf.fit(iris.data, iris.target) assert_array_almost_equal(np.sum(clf.predict_proba(iris.data), axis=1), np.ones(iris.data.shape[0])) assert_array_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data))) def test_probability(): for name in FOREST_CLASSIFIERS: yield check_probability, name def check_importances(name, criterion, X, y): ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(n_estimators=20, criterion=criterion, random_state=0) est.fit(X, y) importances = est.feature_importances_ n_important = np.sum(importances > 0.1) assert_equal(importances.shape[0], 10) assert_equal(n_important, 3) # XXX: Remove this test in 0.19 after transform support to estimators # is removed. X_new = assert_warns( DeprecationWarning, est.transform, X, threshold="mean") assert_less(0 < X_new.shape[1], X.shape[1]) # Check with parallel importances = est.feature_importances_ est.set_params(n_jobs=2) importances_parrallel = est.feature_importances_ assert_array_almost_equal(importances, importances_parrallel) # Check with sample weights sample_weight = check_random_state(0).randint(1, 10, len(X)) est = ForestEstimator(n_estimators=20, random_state=0, criterion=criterion) est.fit(X, y, sample_weight=sample_weight) importances = est.feature_importances_ assert_true(np.all(importances >= 0.0)) for scale in [0.5, 10, 100]: est = ForestEstimator(n_estimators=20, random_state=0, criterion=criterion) est.fit(X, y, sample_weight=scale * sample_weight) importances_bis = est.feature_importances_ assert_less(np.abs(importances - importances_bis).mean(), 0.001) @skip_if_32bit def test_importances(): X, y = datasets.make_classification(n_samples=500, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) for name, criterion in product(FOREST_CLASSIFIERS, ["gini", "entropy"]): yield check_importances, name, criterion, X, y for name, criterion in product(FOREST_REGRESSORS, ["mse", "friedman_mse"]): yield check_importances, name, criterion, X, y def test_importances_asymptotic(): # Check whether variable importances of totally randomized trees # converge towards their theoretical values (See Louppe et al, # Understanding variable importances in forests of randomized trees, 2013). def binomial(k, n): return 0 if k < 0 or k > n else comb(int(n), int(k), exact=True) def entropy(samples): n_samples = len(samples) entropy = 0. for count in bincount(samples): p = 1. * count / n_samples if p > 0: entropy -= p * np.log2(p) return entropy def mdi_importance(X_m, X, y): n_samples, n_features = X.shape features = list(range(n_features)) features.pop(X_m) values = [np.unique(X[:, i]) for i in range(n_features)] imp = 0. for k in range(n_features): # Weight of each B of size k coef = 1. / (binomial(k, n_features) * (n_features - k)) # For all B of size k for B in combinations(features, k): # For all values B=b for b in product(*[values[B[j]] for j in range(k)]): mask_b = np.ones(n_samples, dtype=np.bool) for j in range(k): mask_b &= X[:, B[j]] == b[j] X_, y_ = X[mask_b, :], y[mask_b] n_samples_b = len(X_) if n_samples_b > 0: children = [] for xi in values[X_m]: mask_xi = X_[:, X_m] == xi children.append(y_[mask_xi]) imp += (coef * (1. * n_samples_b / n_samples) # P(B=b) * (entropy(y_) - sum([entropy(c) * len(c) / n_samples_b for c in children]))) return imp data = np.array([[0, 0, 1, 0, 0, 1, 0, 1], [1, 0, 1, 1, 1, 0, 1, 2], [1, 0, 1, 1, 0, 1, 1, 3], [0, 1, 1, 1, 0, 1, 0, 4], [1, 1, 0, 1, 0, 1, 1, 5], [1, 1, 0, 1, 1, 1, 1, 6], [1, 0, 1, 0, 0, 1, 0, 7], [1, 1, 1, 1, 1, 1, 1, 8], [1, 1, 1, 1, 0, 1, 1, 9], [1, 1, 1, 0, 1, 1, 1, 0]]) X, y = np.array(data[:, :7], dtype=np.bool), data[:, 7] n_features = X.shape[1] # Compute true importances true_importances = np.zeros(n_features) for i in range(n_features): true_importances[i] = mdi_importance(i, X, y) # Estimate importances with totally randomized trees clf = ExtraTreesClassifier(n_estimators=500, max_features=1, criterion="entropy", random_state=0).fit(X, y) importances = sum(tree.tree_.compute_feature_importances(normalize=False) for tree in clf.estimators_) / clf.n_estimators # Check correctness assert_almost_equal(entropy(y), sum(importances)) assert_less(np.abs(true_importances - importances).mean(), 0.01) def check_unfitted_feature_importances(name): assert_raises(ValueError, getattr, FOREST_ESTIMATORS[name](random_state=0), "feature_importances_") def test_unfitted_feature_importances(): for name in FOREST_ESTIMATORS: yield check_unfitted_feature_importances, name def check_oob_score(name, X, y, n_estimators=20): # Check that oob prediction is a good estimation of the generalization # error. # Proper behavior est = FOREST_ESTIMATORS[name](oob_score=True, random_state=0, n_estimators=n_estimators, bootstrap=True) n_samples = X.shape[0] est.fit(X[:n_samples // 2, :], y[:n_samples // 2]) test_score = est.score(X[n_samples // 2:, :], y[n_samples // 2:]) if name in FOREST_CLASSIFIERS: assert_less(abs(test_score - est.oob_score_), 0.1) else: assert_greater(test_score, est.oob_score_) assert_greater(est.oob_score_, .8) # Check warning if not enough estimators with np.errstate(divide="ignore", invalid="ignore"): est = FOREST_ESTIMATORS[name](oob_score=True, random_state=0, n_estimators=1, bootstrap=True) assert_warns(UserWarning, est.fit, X, y) def test_oob_score(): for name in FOREST_CLASSIFIERS: yield check_oob_score, name, iris.data, iris.target # csc matrix yield check_oob_score, name, csc_matrix(iris.data), iris.target # non-contiguous targets in classification yield check_oob_score, name, iris.data, iris.target * 2 + 1 for name in FOREST_REGRESSORS: yield check_oob_score, name, boston.data, boston.target, 50 # csc matrix yield check_oob_score, name, csc_matrix(boston.data), boston.target, 50 def check_oob_score_raise_error(name): ForestEstimator = FOREST_ESTIMATORS[name] if name in FOREST_TRANSFORMERS: for oob_score in [True, False]: assert_raises(TypeError, ForestEstimator, oob_score=oob_score) assert_raises(NotImplementedError, ForestEstimator()._set_oob_score, X, y) else: # Unfitted / no bootstrap / no oob_score for oob_score, bootstrap in [(True, False), (False, True), (False, False)]: est = ForestEstimator(oob_score=oob_score, bootstrap=bootstrap, random_state=0) assert_false(hasattr(est, "oob_score_")) # No bootstrap assert_raises(ValueError, ForestEstimator(oob_score=True, bootstrap=False).fit, X, y) def test_oob_score_raise_error(): for name in FOREST_ESTIMATORS: yield check_oob_score_raise_error, name def check_gridsearch(name): forest = FOREST_CLASSIFIERS[name]() clf = GridSearchCV(forest, {'n_estimators': (1, 2), 'max_depth': (1, 2)}) clf.fit(iris.data, iris.target) def test_gridsearch(): # Check that base trees can be grid-searched. for name in FOREST_CLASSIFIERS: yield check_gridsearch, name def check_parallel(name, X, y): """Check parallel computations in classification""" ForestEstimator = FOREST_ESTIMATORS[name] forest = ForestEstimator(n_estimators=10, n_jobs=3, random_state=0) forest.fit(X, y) assert_equal(len(forest), 10) forest.set_params(n_jobs=1) y1 = forest.predict(X) forest.set_params(n_jobs=2) y2 = forest.predict(X) assert_array_almost_equal(y1, y2, 3) def test_parallel(): for name in FOREST_CLASSIFIERS: yield check_parallel, name, iris.data, iris.target for name in FOREST_REGRESSORS: yield check_parallel, name, boston.data, boston.target def check_pickle(name, X, y): # Check pickability. ForestEstimator = FOREST_ESTIMATORS[name] obj = ForestEstimator(random_state=0) obj.fit(X, y) score = obj.score(X, y) pickle_object = pickle.dumps(obj) obj2 = pickle.loads(pickle_object) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(X, y) assert_equal(score, score2) def test_pickle(): for name in FOREST_CLASSIFIERS: yield check_pickle, name, iris.data[::2], iris.target[::2] for name in FOREST_REGRESSORS: yield check_pickle, name, boston.data[::2], boston.target[::2] def check_multioutput(name): # Check estimators on multi-output problems. X_train = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-2, 1], [-1, 1], [-1, 2], [2, -1], [1, -1], [1, -2]] y_train = [[-1, 0], [-1, 0], [-1, 0], [1, 1], [1, 1], [1, 1], [-1, 2], [-1, 2], [-1, 2], [1, 3], [1, 3], [1, 3]] X_test = [[-1, -1], [1, 1], [-1, 1], [1, -1]] y_test = [[-1, 0], [1, 1], [-1, 2], [1, 3]] est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False) y_pred = est.fit(X_train, y_train).predict(X_test) assert_array_almost_equal(y_pred, y_test) if name in FOREST_CLASSIFIERS: with np.errstate(divide="ignore"): proba = est.predict_proba(X_test) assert_equal(len(proba), 2) assert_equal(proba[0].shape, (4, 2)) assert_equal(proba[1].shape, (4, 4)) log_proba = est.predict_log_proba(X_test) assert_equal(len(log_proba), 2) assert_equal(log_proba[0].shape, (4, 2)) assert_equal(log_proba[1].shape, (4, 4)) def test_multioutput(): for name in FOREST_CLASSIFIERS: yield check_multioutput, name for name in FOREST_REGRESSORS: yield check_multioutput, name def check_classes_shape(name): # Test that n_classes_ and classes_ have proper shape. ForestClassifier = FOREST_CLASSIFIERS[name] # Classification, single output clf = ForestClassifier(random_state=0).fit(X, y) assert_equal(clf.n_classes_, 2) assert_array_equal(clf.classes_, [-1, 1]) # Classification, multi-output _y = np.vstack((y, np.array(y) * 2)).T clf = ForestClassifier(random_state=0).fit(X, _y) assert_array_equal(clf.n_classes_, [2, 2]) assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]]) def test_classes_shape(): for name in FOREST_CLASSIFIERS: yield check_classes_shape, name def test_random_trees_dense_type(): # Test that the `sparse_output` parameter of RandomTreesEmbedding # works by returning a dense array. # Create the RTE with sparse=False hasher = RandomTreesEmbedding(n_estimators=10, sparse_output=False) X, y = datasets.make_circles(factor=0.5) X_transformed = hasher.fit_transform(X) # Assert that type is ndarray, not scipy.sparse.csr.csr_matrix assert_equal(type(X_transformed), np.ndarray) def test_random_trees_dense_equal(): # Test that the `sparse_output` parameter of RandomTreesEmbedding # works by returning the same array for both argument values. # Create the RTEs hasher_dense = RandomTreesEmbedding(n_estimators=10, sparse_output=False, random_state=0) hasher_sparse = RandomTreesEmbedding(n_estimators=10, sparse_output=True, random_state=0) X, y = datasets.make_circles(factor=0.5) X_transformed_dense = hasher_dense.fit_transform(X) X_transformed_sparse = hasher_sparse.fit_transform(X) # Assert that dense and sparse hashers have same array. assert_array_equal(X_transformed_sparse.toarray(), X_transformed_dense) # Ignore warnings from switching to more power iterations in randomized_svd @ignore_warnings def test_random_hasher(): # test random forest hashing on circles dataset # make sure that it is linearly separable. # even after projected to two SVD dimensions # Note: Not all random_states produce perfect results. hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) X, y = datasets.make_circles(factor=0.5) X_transformed = hasher.fit_transform(X) # test fit and transform: hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) assert_array_equal(hasher.fit(X).transform(X).toarray(), X_transformed.toarray()) # one leaf active per data point per forest assert_equal(X_transformed.shape[0], X.shape[0]) assert_array_equal(X_transformed.sum(axis=1), hasher.n_estimators) svd = TruncatedSVD(n_components=2) X_reduced = svd.fit_transform(X_transformed) linear_clf = LinearSVC() linear_clf.fit(X_reduced, y) assert_equal(linear_clf.score(X_reduced, y), 1.) def test_random_hasher_sparse_data(): X, y = datasets.make_multilabel_classification(random_state=0) hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) X_transformed = hasher.fit_transform(X) X_transformed_sparse = hasher.fit_transform(csc_matrix(X)) assert_array_equal(X_transformed_sparse.toarray(), X_transformed.toarray()) def test_parallel_train(): rng = check_random_state(12321) n_samples, n_features = 80, 30 X_train = rng.randn(n_samples, n_features) y_train = rng.randint(0, 2, n_samples) clfs = [ RandomForestClassifier(n_estimators=20, n_jobs=n_jobs, random_state=12345).fit(X_train, y_train) for n_jobs in [1, 2, 3, 8, 16, 32] ] X_test = rng.randn(n_samples, n_features) probas = [clf.predict_proba(X_test) for clf in clfs] for proba1, proba2 in zip(probas, probas[1:]): assert_array_almost_equal(proba1, proba2) def test_distribution(): rng = check_random_state(12321) # Single variable with 4 values X = rng.randint(0, 4, size=(1000, 1)) y = rng.rand(1000) n_trees = 500 clf = ExtraTreesRegressor(n_estimators=n_trees, random_state=42).fit(X, y) uniques = defaultdict(int) for tree in clf.estimators_: tree = "".join(("%d,%d/" % (f, int(t)) if f >= 0 else "-") for f, t in zip(tree.tree_.feature, tree.tree_.threshold)) uniques[tree] += 1 uniques = sorted([(1. * count / n_trees, tree) for tree, count in uniques.items()]) # On a single variable problem where X_0 has 4 equiprobable values, there # are 5 ways to build a random tree. The more compact (0,1/0,0/--0,2/--) of # them has probability 1/3 while the 4 others have probability 1/6. assert_equal(len(uniques), 5) assert_greater(0.20, uniques[0][0]) # Rough approximation of 1/6. assert_greater(0.20, uniques[1][0]) assert_greater(0.20, uniques[2][0]) assert_greater(0.20, uniques[3][0]) assert_greater(uniques[4][0], 0.3) assert_equal(uniques[4][1], "0,1/0,0/--0,2/--") # Two variables, one with 2 values, one with 3 values X = np.empty((1000, 2)) X[:, 0] = np.random.randint(0, 2, 1000) X[:, 1] = np.random.randint(0, 3, 1000) y = rng.rand(1000) clf = ExtraTreesRegressor(n_estimators=100, max_features=1, random_state=1).fit(X, y) uniques = defaultdict(int) for tree in clf.estimators_: tree = "".join(("%d,%d/" % (f, int(t)) if f >= 0 else "-") for f, t in zip(tree.tree_.feature, tree.tree_.threshold)) uniques[tree] += 1 uniques = [(count, tree) for tree, count in uniques.items()] assert_equal(len(uniques), 8) def check_max_leaf_nodes_max_depth(name): X, y = hastie_X, hastie_y # Test precedence of max_leaf_nodes over max_depth. ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(max_depth=1, max_leaf_nodes=4, n_estimators=1, random_state=0).fit(X, y) assert_greater(est.estimators_[0].tree_.max_depth, 1) est = ForestEstimator(max_depth=1, n_estimators=1, random_state=0).fit(X, y) assert_equal(est.estimators_[0].tree_.max_depth, 1) def test_max_leaf_nodes_max_depth(): for name in FOREST_ESTIMATORS: yield check_max_leaf_nodes_max_depth, name def check_min_samples_split(name): X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] # test boundary value assert_raises(ValueError, ForestEstimator(min_samples_split=-1).fit, X, y) assert_raises(ValueError, ForestEstimator(min_samples_split=0).fit, X, y) assert_raises(ValueError, ForestEstimator(min_samples_split=1.1).fit, X, y) est = ForestEstimator(min_samples_split=10, n_estimators=1, random_state=0) est.fit(X, y) node_idx = est.estimators_[0].tree_.children_left != -1 node_samples = est.estimators_[0].tree_.n_node_samples[node_idx] assert_greater(np.min(node_samples), len(X) * 0.5 - 1, "Failed with {0}".format(name)) est = ForestEstimator(min_samples_split=0.5, n_estimators=1, random_state=0) est.fit(X, y) node_idx = est.estimators_[0].tree_.children_left != -1 node_samples = est.estimators_[0].tree_.n_node_samples[node_idx] assert_greater(np.min(node_samples), len(X) * 0.5 - 1, "Failed with {0}".format(name)) def test_min_samples_split(): for name in FOREST_ESTIMATORS: yield check_min_samples_split, name def check_min_samples_leaf(name): X, y = hastie_X, hastie_y # Test if leaves contain more than leaf_count training examples ForestEstimator = FOREST_ESTIMATORS[name] # test boundary value assert_raises(ValueError, ForestEstimator(min_samples_leaf=-1).fit, X, y) assert_raises(ValueError, ForestEstimator(min_samples_leaf=0).fit, X, y) est = ForestEstimator(min_samples_leaf=5, n_estimators=1, random_state=0) est.fit(X, y) out = est.estimators_[0].tree_.apply(X) node_counts = bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), 4, "Failed with {0}".format(name)) est = ForestEstimator(min_samples_leaf=0.25, n_estimators=1, random_state=0) est.fit(X, y) out = est.estimators_[0].tree_.apply(X) node_counts = np.bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), len(X) * 0.25 - 1, "Failed with {0}".format(name)) def test_min_samples_leaf(): for name in FOREST_ESTIMATORS: yield check_min_samples_leaf, name def check_min_weight_fraction_leaf(name): X, y = hastie_X, hastie_y # Test if leaves contain at least min_weight_fraction_leaf of the # training set ForestEstimator = FOREST_ESTIMATORS[name] rng = np.random.RandomState(0) weights = rng.rand(X.shape[0]) total_weight = np.sum(weights) # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for frac in np.linspace(0, 0.5, 6): est = ForestEstimator(min_weight_fraction_leaf=frac, n_estimators=1, random_state=0) if "RandomForest" in name: est.bootstrap = False est.fit(X, y, sample_weight=weights) out = est.estimators_[0].tree_.apply(X) node_weights = bincount(out, weights=weights) # drop inner nodes leaf_weights = node_weights[node_weights != 0] assert_greater_equal( np.min(leaf_weights), total_weight * est.min_weight_fraction_leaf, "Failed with {0} " "min_weight_fraction_leaf={1}".format( name, est.min_weight_fraction_leaf)) def test_min_weight_fraction_leaf(): for name in FOREST_ESTIMATORS: yield check_min_weight_fraction_leaf, name def check_sparse_input(name, X, X_sparse, y): ForestEstimator = FOREST_ESTIMATORS[name] dense = ForestEstimator(random_state=0, max_depth=2).fit(X, y) sparse = ForestEstimator(random_state=0, max_depth=2).fit(X_sparse, y) assert_array_almost_equal(sparse.apply(X), dense.apply(X)) if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS: assert_array_almost_equal(sparse.predict(X), dense.predict(X)) assert_array_almost_equal(sparse.feature_importances_, dense.feature_importances_) if name in FOREST_CLASSIFIERS: assert_array_almost_equal(sparse.predict_proba(X), dense.predict_proba(X)) assert_array_almost_equal(sparse.predict_log_proba(X), dense.predict_log_proba(X)) if name in FOREST_TRANSFORMERS: assert_array_almost_equal(sparse.transform(X).toarray(), dense.transform(X).toarray()) assert_array_almost_equal(sparse.fit_transform(X).toarray(), dense.fit_transform(X).toarray()) def test_sparse_input(): X, y = datasets.make_multilabel_classification(random_state=0, n_samples=50) for name, sparse_matrix in product(FOREST_ESTIMATORS, (csr_matrix, csc_matrix, coo_matrix)): yield check_sparse_input, name, X, sparse_matrix(X), y def check_memory_layout(name, dtype): # Check that it works no matter the memory layout est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False) # Nothing X = np.asarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # C-order X = np.asarray(iris.data, order="C", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # F-order X = np.asarray(iris.data, order="F", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Contiguous X = np.ascontiguousarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) if est.base_estimator.splitter in SPARSE_SPLITTERS: # csr matrix X = csr_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # csc_matrix X = csc_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # coo_matrix X = coo_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Strided X = np.asarray(iris.data[::3], dtype=dtype) y = iris.target[::3] assert_array_equal(est.fit(X, y).predict(X), y) def test_memory_layout(): for name, dtype in product(FOREST_CLASSIFIERS, [np.float64, np.float32]): yield check_memory_layout, name, dtype for name, dtype in product(FOREST_REGRESSORS, [np.float64, np.float32]): yield check_memory_layout, name, dtype @ignore_warnings def check_1d_input(name, X, X_2d, y): ForestEstimator = FOREST_ESTIMATORS[name] assert_raises(ValueError, ForestEstimator(n_estimators=1, random_state=0).fit, X, y) est = ForestEstimator(random_state=0) est.fit(X_2d, y) if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS: assert_raises(ValueError, est.predict, X) @ignore_warnings def test_1d_input(): X = iris.data[:, 0] X_2d = iris.data[:, 0].reshape((-1, 1)) y = iris.target for name in FOREST_ESTIMATORS: yield check_1d_input, name, X, X_2d, y def check_class_weights(name): # Check class_weights resemble sample_weights behavior. ForestClassifier = FOREST_CLASSIFIERS[name] # Iris is balanced, so no effect expected for using 'balanced' weights clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target) clf2 = ForestClassifier(class_weight='balanced', random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Make a multi-output problem with three copies of Iris iris_multi = np.vstack((iris.target, iris.target, iris.target)).T # Create user-defined weights that should balance over the outputs clf3 = ForestClassifier(class_weight=[{0: 2., 1: 2., 2: 1.}, {0: 2., 1: 1., 2: 2.}, {0: 1., 1: 2., 2: 2.}], random_state=0) clf3.fit(iris.data, iris_multi) assert_almost_equal(clf2.feature_importances_, clf3.feature_importances_) # Check against multi-output "balanced" which should also have no effect clf4 = ForestClassifier(class_weight='balanced', random_state=0) clf4.fit(iris.data, iris_multi) assert_almost_equal(clf3.feature_importances_, clf4.feature_importances_) # Inflate importance of class 1, check against user-defined weights sample_weight = np.ones(iris.target.shape) sample_weight[iris.target == 1] *= 100 class_weight = {0: 1., 1: 100., 2: 1.} clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight) clf2 = ForestClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Check that sample_weight and class_weight are multiplicative clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight ** 2) clf2 = ForestClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target, sample_weight) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) def test_class_weights(): for name in FOREST_CLASSIFIERS: yield check_class_weights, name def check_class_weight_balanced_and_bootstrap_multi_output(name): # Test class_weight works for multi-output""" ForestClassifier = FOREST_CLASSIFIERS[name] _y = np.vstack((y, np.array(y) * 2)).T clf = ForestClassifier(class_weight='balanced', random_state=0) clf.fit(X, _y) clf = ForestClassifier(class_weight=[{-1: 0.5, 1: 1.}, {-2: 1., 2: 1.}], random_state=0) clf.fit(X, _y) # smoke test for subsample and balanced subsample clf = ForestClassifier(class_weight='balanced_subsample', random_state=0) clf.fit(X, _y) clf = ForestClassifier(class_weight='subsample', random_state=0) ignore_warnings(clf.fit)(X, _y) def test_class_weight_balanced_and_bootstrap_multi_output(): for name in FOREST_CLASSIFIERS: yield check_class_weight_balanced_and_bootstrap_multi_output, name def check_class_weight_errors(name): # Test if class_weight raises errors and warnings when expected. ForestClassifier = FOREST_CLASSIFIERS[name] _y = np.vstack((y, np.array(y) * 2)).T # Invalid preset string clf = ForestClassifier(class_weight='the larch', random_state=0) assert_raises(ValueError, clf.fit, X, y) assert_raises(ValueError, clf.fit, X, _y) # Warning warm_start with preset clf = ForestClassifier(class_weight='auto', warm_start=True, random_state=0) assert_warns(UserWarning, clf.fit, X, y) assert_warns(UserWarning, clf.fit, X, _y) # Not a list or preset for multi-output clf = ForestClassifier(class_weight=1, random_state=0) assert_raises(ValueError, clf.fit, X, _y) # Incorrect length list for multi-output clf = ForestClassifier(class_weight=[{-1: 0.5, 1: 1.}], random_state=0) assert_raises(ValueError, clf.fit, X, _y) def test_class_weight_errors(): for name in FOREST_CLASSIFIERS: yield check_class_weight_errors, name def check_warm_start(name, random_state=42): # Test if fitting incrementally with warm start gives a forest of the # right size and the same results as a normal fit. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf_ws = None for n_estimators in [5, 10]: if clf_ws is None: clf_ws = ForestEstimator(n_estimators=n_estimators, random_state=random_state, warm_start=True) else: clf_ws.set_params(n_estimators=n_estimators) clf_ws.fit(X, y) assert_equal(len(clf_ws), n_estimators) clf_no_ws = ForestEstimator(n_estimators=10, random_state=random_state, warm_start=False) clf_no_ws.fit(X, y) assert_equal(set([tree.random_state for tree in clf_ws]), set([tree.random_state for tree in clf_no_ws])) assert_array_equal(clf_ws.apply(X), clf_no_ws.apply(X), err_msg="Failed with {0}".format(name)) def test_warm_start(): for name in FOREST_ESTIMATORS: yield check_warm_start, name def check_warm_start_clear(name): # Test if fit clears state and grows a new forest when warm_start==False. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=1, warm_start=False, random_state=1) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True, random_state=2) clf_2.fit(X, y) # inits state clf_2.set_params(warm_start=False, random_state=1) clf_2.fit(X, y) # clears old state and equals clf assert_array_almost_equal(clf_2.apply(X), clf.apply(X)) def test_warm_start_clear(): for name in FOREST_ESTIMATORS: yield check_warm_start_clear, name def check_warm_start_smaller_n_estimators(name): # Test if warm start second fit with smaller n_estimators raises error. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True) clf.fit(X, y) clf.set_params(n_estimators=4) assert_raises(ValueError, clf.fit, X, y) def test_warm_start_smaller_n_estimators(): for name in FOREST_ESTIMATORS: yield check_warm_start_smaller_n_estimators, name def check_warm_start_equal_n_estimators(name): # Test if warm start with equal n_estimators does nothing and returns the # same forest and raises a warning. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True, random_state=1) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True, random_state=1) clf_2.fit(X, y) # Now clf_2 equals clf. clf_2.set_params(random_state=2) assert_warns(UserWarning, clf_2.fit, X, y) # If we had fit the trees again we would have got a different forest as we # changed the random state. assert_array_equal(clf.apply(X), clf_2.apply(X)) def test_warm_start_equal_n_estimators(): for name in FOREST_ESTIMATORS: yield check_warm_start_equal_n_estimators, name def check_warm_start_oob(name): # Test that the warm start computes oob score when asked. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] # Use 15 estimators to avoid 'some inputs do not have OOB scores' warning. clf = ForestEstimator(n_estimators=15, max_depth=3, warm_start=False, random_state=1, bootstrap=True, oob_score=True) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=3, warm_start=False, random_state=1, bootstrap=True, oob_score=False) clf_2.fit(X, y) clf_2.set_params(warm_start=True, oob_score=True, n_estimators=15) clf_2.fit(X, y) assert_true(hasattr(clf_2, 'oob_score_')) assert_equal(clf.oob_score_, clf_2.oob_score_) # Test that oob_score is computed even if we don't need to train # additional trees. clf_3 = ForestEstimator(n_estimators=15, max_depth=3, warm_start=True, random_state=1, bootstrap=True, oob_score=False) clf_3.fit(X, y) assert_true(not(hasattr(clf_3, 'oob_score_'))) clf_3.set_params(oob_score=True) ignore_warnings(clf_3.fit)(X, y) assert_equal(clf.oob_score_, clf_3.oob_score_) def test_warm_start_oob(): for name in FOREST_CLASSIFIERS: yield check_warm_start_oob, name for name in FOREST_REGRESSORS: yield check_warm_start_oob, name def test_dtype_convert(n_classes=15): classifier = RandomForestClassifier(random_state=0, bootstrap=False) X = np.eye(n_classes) y = [ch for ch in 'ABCDEFGHIJKLMNOPQRSTU'[:n_classes]] result = classifier.fit(X, y).predict(X) assert_array_equal(classifier.classes_, y) assert_array_equal(result, y) def check_decision_path(name): X, y = hastie_X, hastie_y n_samples = X.shape[0] ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(n_estimators=5, max_depth=1, warm_start=False, random_state=1) est.fit(X, y) indicator, n_nodes_ptr = est.decision_path(X) assert_equal(indicator.shape[1], n_nodes_ptr[-1]) assert_equal(indicator.shape[0], n_samples) assert_array_equal(np.diff(n_nodes_ptr), [e.tree_.node_count for e in est.estimators_]) # Assert that leaves index are correct leaves = est.apply(X) for est_id in range(leaves.shape[1]): leave_indicator = [indicator[i, n_nodes_ptr[est_id] + j] for i, j in enumerate(leaves[:, est_id])] assert_array_almost_equal(leave_indicator, np.ones(shape=n_samples)) def test_decision_path(): for name in FOREST_CLASSIFIERS: yield check_decision_path, name for name in FOREST_REGRESSORS: yield check_decision_path, name
35.247257
83
0.655909
efd4fa057c5592bdd043422d383a7d0dc566a2bf
818
py
Python
ifttt-youtubedl.py
pathakamit88/scripts
21f19203eff85c2ee244e48219f761617306280a
[ "MIT" ]
null
null
null
ifttt-youtubedl.py
pathakamit88/scripts
21f19203eff85c2ee244e48219f761617306280a
[ "MIT" ]
null
null
null
ifttt-youtubedl.py
pathakamit88/scripts
21f19203eff85c2ee244e48219f761617306280a
[ "MIT" ]
null
null
null
""" Script to download all the liked youtube videos. This script works in combination with IFTTT applet 'if-new-liked-video-then-append-to-a-text-file-in-dropbox' """ import os import subprocess def main(): filepath = os.path.expanduser('~/Dropbox/IFTTT/YouTube/youtubelikes.txt') output_path = os.path.expanduser('~/Downloads/YouTube/') try: os.makedirs(output_path) except OSError: pass for line in open(filepath, 'rb'): line = line.strip() cmd = 'cd %s && youtube-dl -f 22 --no-playlist %s' % (output_path, line) mp3cmd = 'cd %s && youtube-dl --extract-audio --audio-format mp3 %s' % ( output_path, line) subprocess.Popen(mp3cmd, shell=True) p = subprocess.Popen(cmd, shell=True) p.communicate() os.remove(filepath) if __name__ == '__main__': main()
23.371429
76
0.671149
2128e9e1e9fb1715c5198a6a70dcd5facdfd46b9
2,560
py
Python
process.py
PAULUAPAUL/MasterThesis_AssociationRulesBiodiversity
0855abc5ec4835a28be4aa305e5e45e73297b389
[ "MIT" ]
null
null
null
process.py
PAULUAPAUL/MasterThesis_AssociationRulesBiodiversity
0855abc5ec4835a28be4aa305e5e45e73297b389
[ "MIT" ]
null
null
null
process.py
PAULUAPAUL/MasterThesis_AssociationRulesBiodiversity
0855abc5ec4835a28be4aa305e5e45e73297b389
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np from preprocess import * import time import sys def ProcessData (minSup = 0.3,minConf = 0.5,minInt = 0.1,write_csv= True): print('Minimum Support: ', minSup) print('Minimum Confidence: ', minConf) print('Minimum Interest: ', minInt) print("FP-Growth") start = time.time() freqItemSet,rules = fpgrowth(data_grouped['SPECIES_ID2'].tolist(), minSupRatio=minSup, minConf=minConf) end = time.time() print('FP-growth needed: ',end - start, ' sec') if write_csv: write_csvfile_freq2('data/FPGrowth_minSup_'+ str(minSup) +'_minConf_'+ str(minConf)+'_freq.csv',freqItemSet) write_csvfile_rules('data/FPGrowth_minSup_'+ str(minSup) +'_minConf_'+ str(minConf)+'_rules.csv',rules) print("apriori") start = time.time() freqItemSet,rules = apriori(data_grouped['SPECIES_ID2'].tolist(), minSup=minSup, minConf=minConf) end = time.time() print('apriori needed: ',end - start, ' sec') if write_csv: write_csvfile_freq('data/Apriori_minSup_'+ str(minSup) +'_minConf_'+ str(minConf)+'_freq.csv',freqItemSet) write_csvfile_rules('data/Apriori_minSup_'+ str(minSup) +'_minConf_'+ str(minConf)+'_rules.csv',rules) print("apriori interest") start = time.time() freqItemSet,rules = apriori_interest(data_grouped['SPECIES_ID2'].tolist(), minSup=minSup, minConf=minConf, minInt=minInt) end = time.time() print('apriori int needed: ',end - start, ' sec') if write_csv: write_csvfile_freq('data/AprioriInt_minSup_'+ str(minSup) +'_minConf_'+ str(minConf)+'_freq.csv',freqItemSet) write_csvfile_rules('data/AprioriInt_minSup_'+ str(minSup) +'_minConf_'+ str(minConf)+'_rules.csv',rules) print("apriori tid") start = time.time() freqItemSet,rules = apriori_tid(data_grouped['SPECIES_ID2'].tolist(), minSup=minSup, minConf=minConf) end = time.time() print('apriori tid needed: ',end - start, ' sec') if write_csv: write_csvfile_freq('data/AprioriTid_minSup_'+ str(minSup) +'_minConf_'+ str(minConf)+'_freq.csv',freqItemSet) write_csvfile_rules('data/AprioriTid_minSup_'+ str(minSup) +'_minConf_'+ str(minConf)+'_rules.csv',rules) # main PreprocessData('GBIF',r'C:\Users\Paul\Documents\Studium_PP\Master\Masterarbeit\Gitlab\master-thesis-data-mining\Datasets\GBIF\full records\0079101-200613084148143\occurrence.txt',True) for i in range (1,1,-1): ProcessData(minSup=float(i/10),minConf=0.5,minInt=0.1,True)
44.137931
185
0.687109
f08393ef0817bef46002709c8ee770010800d787
66
py
Python
python/11_built-ins/2_input().py
jaimiles23/hacker_rank
0580eac82e5d0989afabb5c2e66faf09713f891b
[ "Apache-2.0" ]
null
null
null
python/11_built-ins/2_input().py
jaimiles23/hacker_rank
0580eac82e5d0989afabb5c2e66faf09713f891b
[ "Apache-2.0" ]
null
null
null
python/11_built-ins/2_input().py
jaimiles23/hacker_rank
0580eac82e5d0989afabb5c2e66faf09713f891b
[ "Apache-2.0" ]
3
2021-09-22T11:06:58.000Z
2022-01-25T09:29:24.000Z
Solution to [Input()](https://www.hackerrank.com/challenges/input)
66
66
0.772727
3b857406627357515a3ff877809f987017228228
18
py
Python
hhh.py
zhuoya123/Python
64d3ffd39b197dbc35ba025b1b5709fbf6939ef2
[ "Apache-2.0" ]
null
null
null
hhh.py
zhuoya123/Python
64d3ffd39b197dbc35ba025b1b5709fbf6939ef2
[ "Apache-2.0" ]
null
null
null
hhh.py
zhuoya123/Python
64d3ffd39b197dbc35ba025b1b5709fbf6939ef2
[ "Apache-2.0" ]
null
null
null
print ('hello Gi')
18
18
0.666667
f387e7690b349e8e1b07ec21afd965b3c1178260
1,749
py
Python
task_interface.py
kwoodham/sublime
ed3dcd7b0a22938d1d7de2d55db3cc2960ed117f
[ "CC-BY-4.0" ]
1
2015-08-04T11:43:34.000Z
2015-08-04T11:43:34.000Z
task_interface.py
kwoodham/sublime
ed3dcd7b0a22938d1d7de2d55db3cc2960ed117f
[ "CC-BY-4.0" ]
null
null
null
task_interface.py
kwoodham/sublime
ed3dcd7b0a22938d1d7de2d55db3cc2960ed117f
[ "CC-BY-4.0" ]
null
null
null
import sublime_plugin import sublime # 20171211 - read in states via settings file - also use settings to define which states # are considered to be active - so that only those states are displayed for "All Active" # 20171106 - added in capability to choose all (including done) and all-active (not done). # See corresponding way to search for inclusion in the list of states in "show_instances.py" # 20171108 - corrected last line to pass a single element list instead of a text string if # one item selected: self.a[index] --> [self.a[index]] class TaskInterfaceCommand(sublime_plugin.TextCommand): def run(self, edit): settings = sublime.load_settings("Task.sublime-settings") # List of task state keywords keywords = settings.get('keywords') # List of keywords that are considered to be active (including those waiting) self.active = settings.get('active') self.a = [] self.a.append("All-Active") self.a.extend(keywords) # timeout fix at https://github.com/tosher/Mediawiker/blob/master/mediawiker.py sublime.set_timeout(lambda: self.view.window().show_quick_panel(self.a, self.on_done), 1) def on_done(self, index): if index == -1: return if self.a[index] == "All-Active": self.a.remove("All-Active") # If selecting all active, parse out inactive tasks b = [] for x in range(0, (len(self.a) - 1)): if self.active[x]: b.append(self.a[x]) self.a = b self.view.run_command("show_instances", {"args": {'text': self.a}}) else: self.view.run_command("show_instances", {"args": {'text': [self.a[index]]}})
38.866667
97
0.638651
2d64d44c841b9011b233eb180eb8fc3dc202bf6e
25,180
py
Python
ocs_ci/ocs/resources/storage_cluster.py
deepshikhaaa/ocs-ci
5477ee85c395e808589ba45e3db34d4efe54fc97
[ "MIT" ]
null
null
null
ocs_ci/ocs/resources/storage_cluster.py
deepshikhaaa/ocs-ci
5477ee85c395e808589ba45e3db34d4efe54fc97
[ "MIT" ]
null
null
null
ocs_ci/ocs/resources/storage_cluster.py
deepshikhaaa/ocs-ci
5477ee85c395e808589ba45e3db34d4efe54fc97
[ "MIT" ]
null
null
null
""" StorageCluster related functionalities """ import re import logging import tempfile from jsonschema import validate from ocs_ci.framework import config from ocs_ci.ocs import constants, defaults, ocp from ocs_ci.ocs.exceptions import ResourceNotFoundError, UnsupportedFeatureError from ocs_ci.ocs.ocp import get_images, OCP from ocs_ci.ocs.resources.ocs import get_ocs_csv from ocs_ci.ocs.resources.pod import get_pods_having_label, get_osd_pods from ocs_ci.ocs.resources.pvc import get_deviceset_pvcs from ocs_ci.ocs.node import get_osds_per_node from ocs_ci.utility import localstorage, utils, templating, kms as KMS from ocs_ci.utility.rgwutils import get_rgw_count from ocs_ci.utility.utils import run_cmd, get_ocp_version from ocs_ci.ocs.ui.add_replace_device_ui import AddReplaceDeviceUI from ocs_ci.ocs.ui.base_ui import login_ui, close_browser log = logging.getLogger(__name__) class StorageCluster(OCP): """ This class represent StorageCluster and contains all related methods we need to do with StorageCluster. """ _has_phase = True def __init__(self, resource_name="", *args, **kwargs): """ Constructor method for StorageCluster class Args: resource_name (str): Name of StorageCluster """ super(StorageCluster, self).__init__( resource_name=resource_name, kind="StorageCluster", *args, **kwargs ) def ocs_install_verification( timeout=600, skip_osd_distribution_check=False, ocs_registry_image=None, post_upgrade_verification=False, version_before_upgrade=None, ): """ Perform steps necessary to verify a successful OCS installation Args: timeout (int): Number of seconds for timeout which will be used in the checks used in this function. skip_osd_distribution_check (bool): If true skip the check for osd distribution. ocs_registry_image (str): Specific image to check if it was installed properly. post_upgrade_verification (bool): Set to True if this function is called after upgrade. version_before_upgrade (float): Set to OCS version before upgrade """ from ocs_ci.ocs.node import get_nodes from ocs_ci.ocs.resources.pvc import get_deviceset_pvcs from ocs_ci.ocs.resources.pod import get_ceph_tools_pod, get_all_pods from ocs_ci.ocs.cluster import validate_cluster_on_pvc from ocs_ci.ocs.resources.fips import check_fips_enabled number_of_worker_nodes = len(get_nodes()) namespace = config.ENV_DATA["cluster_namespace"] log.info("Verifying OCS installation") # Verify OCS CSV is in Succeeded phase log.info("verifying ocs csv") ocs_csv = get_ocs_csv() # Verify if OCS CSV has proper version. csv_version = ocs_csv.data["spec"]["version"] ocs_version = config.ENV_DATA["ocs_version"] log.info(f"Check if OCS version: {ocs_version} matches with CSV: {csv_version}") assert ( ocs_version in csv_version ), f"OCS version: {ocs_version} mismatch with CSV version {csv_version}" # Verify if OCS CSV has the same version in provided CI build. ocs_registry_image = ocs_registry_image or config.DEPLOYMENT.get( "ocs_registry_image" ) if ocs_registry_image and ocs_registry_image.endswith(".ci"): ocs_registry_image = ocs_registry_image.rsplit(":", 1)[1] log.info( f"Check if OCS registry image: {ocs_registry_image} matches with " f"CSV: {csv_version}" ) ignore_csv_mismatch = config.DEPLOYMENT.get("ignore_csv_mismatch") if ignore_csv_mismatch: log.info( "The possible mismatch will be ignored as you deployed " "the different version than the default version from the CSV" ) else: assert ocs_registry_image in csv_version, ( f"OCS registry image version: {ocs_registry_image} mismatch " f"with CSV version {csv_version}" ) # Verify OCS Cluster Service (ocs-storagecluster) is Ready storage_cluster_name = config.ENV_DATA["storage_cluster_name"] log.info("Verifying status of storage cluster: %s", storage_cluster_name) storage_cluster = StorageCluster( resource_name=storage_cluster_name, namespace=namespace, ) log.info( f"Check if StorageCluster: {storage_cluster_name} is in" f"Succeeded phase" ) storage_cluster.wait_for_phase(phase="Ready", timeout=timeout) # Verify pods in running state and proper counts log.info("Verifying pod states and counts") pod = OCP(kind=constants.POD, namespace=namespace) if not config.DEPLOYMENT["external_mode"]: osd_count = int( storage_cluster.data["spec"]["storageDeviceSets"][0]["count"] ) * int(storage_cluster.data["spec"]["storageDeviceSets"][0]["replica"]) rgw_count = None if config.ENV_DATA.get("platform") in constants.ON_PREM_PLATFORMS: rgw_count = get_rgw_count( ocs_version, post_upgrade_verification, version_before_upgrade ) min_eps = constants.MIN_NB_ENDPOINT_COUNT_POST_DEPLOYMENT max_eps = ( constants.MAX_NB_ENDPOINT_COUNT if float(config.ENV_DATA["ocs_version"]) >= 4.6 else 1 ) if config.ENV_DATA.get("platform") == constants.IBM_POWER_PLATFORM: min_eps = 1 max_eps = 1 nb_db_label = ( constants.NOOBAA_DB_LABEL_46_AND_UNDER if float(config.ENV_DATA["ocs_version"]) < 4.7 else constants.NOOBAA_DB_LABEL_47_AND_ABOVE ) resources_dict = { nb_db_label: 1, constants.OCS_OPERATOR_LABEL: 1, constants.OPERATOR_LABEL: 1, constants.NOOBAA_OPERATOR_POD_LABEL: 1, constants.NOOBAA_CORE_POD_LABEL: 1, constants.NOOBAA_ENDPOINT_POD_LABEL: min_eps, } if not config.DEPLOYMENT["external_mode"]: resources_dict.update( { constants.MON_APP_LABEL: 3, constants.CSI_CEPHFSPLUGIN_LABEL: number_of_worker_nodes, constants.CSI_CEPHFSPLUGIN_PROVISIONER_LABEL: 2, constants.CSI_RBDPLUGIN_LABEL: number_of_worker_nodes, constants.CSI_RBDPLUGIN_PROVISIONER_LABEL: 2, constants.OSD_APP_LABEL: osd_count, constants.MGR_APP_LABEL: 1, constants.MDS_APP_LABEL: 2, constants.RGW_APP_LABEL: rgw_count, } ) for label, count in resources_dict.items(): if label == constants.RGW_APP_LABEL: if not config.ENV_DATA.get("platform") in constants.ON_PREM_PLATFORMS: continue assert pod.wait_for_resource( condition=constants.STATUS_RUNNING, selector=label, resource_count=count, timeout=timeout, ) nb_ep_pods = get_pods_having_label( label=constants.NOOBAA_ENDPOINT_POD_LABEL, namespace=defaults.ROOK_CLUSTER_NAMESPACE, ) assert len(nb_ep_pods) <= max_eps, ( f"The number of running NooBaa endpoint pods ({len(nb_ep_pods)}) " f"is greater than the maximum defined in the NooBaa CR ({max_eps})" ) # Verify StorageClasses (1 ceph-fs, 1 ceph-rbd) log.info("Verifying storage classes") storage_class = OCP(kind=constants.STORAGECLASS, namespace=namespace) storage_cluster_name = config.ENV_DATA["storage_cluster_name"] required_storage_classes = { f"{storage_cluster_name}-cephfs", f"{storage_cluster_name}-ceph-rbd", } if config.DEPLOYMENT["external_mode"]: required_storage_classes.update( { f"{storage_cluster_name}-ceph-rgw", f'{config.ENV_DATA["cluster_namespace"]}.noobaa.io', } ) storage_classes = storage_class.get() storage_class_names = { item["metadata"]["name"] for item in storage_classes["items"] } assert required_storage_classes.issubset(storage_class_names) # Verify OSDs are distributed if not config.DEPLOYMENT["external_mode"]: if not skip_osd_distribution_check: log.info("Verifying OSDs are distributed evenly across worker nodes") ocp_pod_obj = OCP(kind=constants.POD, namespace=namespace) osds = ocp_pod_obj.get(selector=constants.OSD_APP_LABEL)["items"] deviceset_count = get_deviceset_count() node_names = [osd["spec"]["nodeName"] for osd in osds] for node in node_names: assert ( not node_names.count(node) > deviceset_count ), "OSD's are not distributed evenly across worker nodes" # Verify that CSI driver object contains provisioner names log.info("Verifying CSI driver object contains provisioner names.") csi_driver = OCP(kind="CSIDriver") csi_drivers = {item["metadata"]["name"] for item in csi_driver.get()["items"]} assert defaults.CSI_PROVISIONERS.issubset(csi_drivers) # Verify node and provisioner secret names in storage class log.info("Verifying node and provisioner secret names in storage class.") if config.DEPLOYMENT["external_mode"]: sc_rbd = storage_class.get( resource_name=constants.DEFAULT_EXTERNAL_MODE_STORAGECLASS_RBD ) sc_cephfs = storage_class.get( resource_name=(constants.DEFAULT_EXTERNAL_MODE_STORAGECLASS_CEPHFS) ) else: sc_rbd = storage_class.get(resource_name=constants.DEFAULT_STORAGECLASS_RBD) sc_cephfs = storage_class.get( resource_name=constants.DEFAULT_STORAGECLASS_CEPHFS ) assert ( sc_rbd["parameters"]["csi.storage.k8s.io/node-stage-secret-name"] == constants.RBD_NODE_SECRET ) assert ( sc_rbd["parameters"]["csi.storage.k8s.io/provisioner-secret-name"] == constants.RBD_PROVISIONER_SECRET ) assert ( sc_cephfs["parameters"]["csi.storage.k8s.io/node-stage-secret-name"] == constants.CEPHFS_NODE_SECRET ) assert ( sc_cephfs["parameters"]["csi.storage.k8s.io/provisioner-secret-name"] == constants.CEPHFS_PROVISIONER_SECRET ) log.info("Verified node and provisioner secret names in storage class.") ct_pod = get_ceph_tools_pod() # https://github.com/red-hat-storage/ocs-ci/issues/3820 # Verify ceph osd tree output if not ( config.DEPLOYMENT.get("ui_deployment") or config.DEPLOYMENT["external_mode"] ): log.info( "Verifying ceph osd tree output and checking for device set PVC names " "in the output." ) if config.DEPLOYMENT.get("local_storage"): deviceset_pvcs = [osd.get_node() for osd in get_osd_pods()] # removes duplicate hostname deviceset_pvcs = list(set(deviceset_pvcs)) if config.ENV_DATA.get("platform") == constants.BAREMETAL_PLATFORM: deviceset_pvcs = [ deviceset.replace(".", "-") for deviceset in deviceset_pvcs ] else: deviceset_pvcs = [pvc.name for pvc in get_deviceset_pvcs()] osd_tree = ct_pod.exec_ceph_cmd(ceph_cmd="ceph osd tree", format="json") schemas = { "root": constants.OSD_TREE_ROOT, "rack": constants.OSD_TREE_RACK, "host": constants.OSD_TREE_HOST, "osd": constants.OSD_TREE_OSD, "region": constants.OSD_TREE_REGION, "zone": constants.OSD_TREE_ZONE, } schemas["host"]["properties"]["name"] = {"enum": deviceset_pvcs} for item in osd_tree["nodes"]: validate(instance=item, schema=schemas[item["type"]]) if item["type"] == "host": deviceset_pvcs.remove(item["name"]) assert not deviceset_pvcs, ( f"These device set PVCs are not given in ceph osd tree output " f"- {deviceset_pvcs}" ) log.info( "Verified ceph osd tree output. Device set PVC names are given in the " "output." ) # TODO: Verify ceph osd tree output have osd listed as ssd # TODO: Verify ceph osd tree output have zone or rack based on AZ # Verify CSI snapshotter sidecar container is not present # if the OCS version is < 4.6 if float(config.ENV_DATA["ocs_version"]) < 4.6: log.info("Verifying CSI snapshotter is not present.") provisioner_pods = get_all_pods( namespace=defaults.ROOK_CLUSTER_NAMESPACE, selector=[ constants.CSI_CEPHFSPLUGIN_PROVISIONER_LABEL, constants.CSI_RBDPLUGIN_PROVISIONER_LABEL, ], ) for pod_obj in provisioner_pods: pod_info = pod_obj.get() for container, image in get_images(data=pod_info).items(): assert ("snapshot" not in container) and ("snapshot" not in image), ( f"Snapshot container is present in {pod_obj.name} pod. " f"Container {container}. Image {image}" ) deployments = ocs_csv.get()["spec"]["install"]["spec"]["deployments"] rook_ceph_operator_deployment = [ deployment_val for deployment_val in deployments if deployment_val["name"] == "rook-ceph-operator" ] assert {"name": "CSI_ENABLE_SNAPSHOTTER", "value": "false"} in ( rook_ceph_operator_deployment[0]["spec"]["template"]["spec"]["containers"][ 0 ]["env"] ), "CSI_ENABLE_SNAPSHOTTER value is not set to 'false'." log.info("Verified: CSI snapshotter is not present.") # Verify pool crush rule is with "type": "zone" if utils.get_az_count() == 3: log.info("Verifying pool crush rule is with type: zone") crush_dump = ct_pod.exec_ceph_cmd(ceph_cmd="ceph osd crush dump", format="") pool_names = [ constants.METADATA_POOL, constants.DEFAULT_BLOCKPOOL, constants.DATA_POOL, ] crush_rules = [ rule for rule in crush_dump["rules"] if rule["rule_name"] in pool_names ] for crush_rule in crush_rules: assert [ item for item in crush_rule["steps"] if item.get("type") == "zone" ], f"{crush_rule['rule_name']} is not with type as zone" log.info("Verified - pool crush rule is with type: zone") log.info("Validate cluster on PVC") validate_cluster_on_pvc() # Verify ceph health log.info("Verifying ceph health") health_check_tries = 20 health_check_delay = 30 if post_upgrade_verification: # In case of upgrade with FIO we have to wait longer time to see # health OK. See discussion in BZ: # https://bugzilla.redhat.com/show_bug.cgi?id=1817727 health_check_tries = 180 assert utils.ceph_health_check(namespace, health_check_tries, health_check_delay) if config.ENV_DATA.get("fips"): # In case that fips is enabled when deploying, # a verification of the installation of it will run # on all running state pods check_fips_enabled() if config.ENV_DATA.get("encryption_at_rest"): osd_encryption_verification() if config.DEPLOYMENT.get("kms_deployment"): kms = KMS.get_kms_deployment() kms.post_deploy_verification() storage_cluster_obj = get_storage_cluster() is_flexible_scaling = ( storage_cluster_obj.get()["items"][0].get("spec").get("flexibleScaling", False) ) if is_flexible_scaling is True: failure_domain = storage_cluster_obj.data["items"][0]["status"]["failureDomain"] assert failure_domain == "host", ( f"The expected failure domain on cluster with flexible scaling is 'host'," f" the actaul failure domain is {failure_domain}" ) def osd_encryption_verification(): """ Verify if OSD encryption at rest if successfully deployed on OCS Raises: UnsupportedFeatureError: OCS version is smaller than 4.6 EnvironmentError: The OSD is not encrypted """ ocs_version = float(config.ENV_DATA["ocs_version"]) if ocs_version < 4.6: error_message = "Encryption at REST can be enabled only on OCS >= 4.6!" raise UnsupportedFeatureError(error_message) osd_size = get_osd_size() log.info("Get 'lsblk' command output on nodes where osd running") osd_node_names = get_osds_per_node() lsblk_output_list = [] for worker_node in osd_node_names: lsblk_cmd = "oc debug node/" + worker_node + " -- chroot /host lsblk" out = run_cmd(lsblk_cmd) log.info(f"the output from lsblk command is {out}") lsblk_output_list.append((out, len(osd_node_names[worker_node]))) log.info("Verify 'lsblk' command results are as expected") for node_output_lsblk in lsblk_output_list: node_lsb = node_output_lsblk[0].split() log.info("Search 'crypt' in node_lsb list") all_occurrences_crypt = [ index for index, element in enumerate(node_lsb) if element == "crypt" ] log.info("Verify all OSDs encrypted on node") if len(all_occurrences_crypt) != node_output_lsblk[1]: raise EnvironmentError("OSD is not encrypted") log.info("Verify that OSD is encrypted, and not another component like sda") for index_crypt in all_occurrences_crypt: encrypted_component_size = int( (re.findall(r"\d+", node_lsb[index_crypt - 2]))[0] ) if encrypted_component_size != osd_size: raise EnvironmentError( "The OSD is not encrypted, another mount encrypted." ) def add_capacity(osd_size_capacity_requested): """ Add storage capacity to the cluster Args: osd_size_capacity_requested(int): Requested osd size capacity Returns: new storage device set count (int) : Returns True if all OSDs are in Running state Note: "StoragedeviceSets->count" represents the set of 3 OSDs. That is, if there are 3 OSDs in the system then count will be 1. If there are 6 OSDs then count is 2 and so on. By changing this value,we can add extra devices to the cluster. For example, if we want to expand the cluster by 3 more osds in a cluster that already has 3 osds, we can set count as 2. So, with each increase of count by 1, we get 3 OSDs extra added to the cluster. This is how we are going to 'add capacity' via automation. As we know that OCS has 3 way replica. That is, same data is placed in 3 OSDs. Because of this, the total usable capacity for apps from 3 OSDs will be the size of one OSD (all osds are of same size). If we want to add more capacity to the cluster then we need to add 3 OSDs of same size as that of the original OSD. add_capacity needs to accept the 'capacity_to_add' as an argument. From this we need to arrive at storagedeviceSets -> count and then "Patch" this count to get the required capacity to add. To do so, we use following formula: storageDeviceSets->count = (capacity reqested / osd capacity ) + existing count storageDeviceSets """ osd_size_existing = get_osd_size() device_sets_required = int(osd_size_capacity_requested / osd_size_existing) old_storage_devices_sets_count = get_deviceset_count() new_storage_devices_sets_count = int( device_sets_required + old_storage_devices_sets_count ) lvpresent = localstorage.check_local_volume() ocp_version = get_ocp_version() platform = config.ENV_DATA.get("platform", "").lower() is_lso = config.DEPLOYMENT.get("local_storage") if ( ocp_version == "4.7" and ( platform == constants.AWS_PLATFORM or platform == constants.VSPHERE_PLATFORM ) and (not is_lso) ): logging.info("Add capacity via UI") setup_ui = login_ui() add_ui_obj = AddReplaceDeviceUI(setup_ui) add_ui_obj.add_capacity_ui() close_browser(setup_ui) else: if lvpresent: ocp_obj = OCP( kind="localvolume", namespace=config.ENV_DATA["local_storage_namespace"] ) localvolume_data = ocp_obj.get(resource_name="local-block") device_list = localvolume_data["spec"]["storageClassDevices"][0][ "devicePaths" ] final_device_list = localstorage.get_new_device_paths( device_sets_required, osd_size_capacity_requested ) device_list.sort() final_device_list.sort() if device_list == final_device_list: raise ResourceNotFoundError("No Extra device found") param = f"""[{{ "op": "replace", "path": "/spec/storageClassDevices/0/devicePaths", "value": {final_device_list}}}]""" log.info(f"Final device list : {final_device_list}") lvcr = localstorage.get_local_volume_cr() log.info("Patching Local Volume CR...") lvcr.patch( resource_name=lvcr.get()["items"][0]["metadata"]["name"], params=param.strip("\n"), format_type="json", ) localstorage.check_pvs_created( int(len(final_device_list) / new_storage_devices_sets_count) ) sc = get_storage_cluster() # adding the storage capacity to the cluster params = f"""[{{ "op": "replace", "path": "/spec/storageDeviceSets/0/count", "value": {new_storage_devices_sets_count}}}]""" sc.patch( resource_name=sc.get()["items"][0]["metadata"]["name"], params=params.strip("\n"), format_type="json", ) return new_storage_devices_sets_count def get_storage_cluster(namespace=defaults.ROOK_CLUSTER_NAMESPACE): """ Get storage cluster name Args: namespace (str): Namespace of the resource Returns: storage cluster (obj) : Storage cluster object handler """ sc_obj = OCP(kind=constants.STORAGECLUSTER, namespace=namespace) return sc_obj def get_osd_count(): """ Get osd count from Storage cluster Returns: int: osd count """ sc = get_storage_cluster() return int(sc.get().get("items")[0]["spec"]["storageDeviceSets"][0]["count"]) * int( sc.get().get("items")[0]["spec"]["storageDeviceSets"][0]["replica"] ) def get_osd_size(): """ Get osd size from Storage cluster Returns: int: osd size """ sc = get_storage_cluster() size = ( sc.get() .get("items")[0] .get("spec") .get("storageDeviceSets")[0] .get("dataPVCTemplate") .get("spec") .get("resources") .get("requests") .get("storage") ) if size.isdigit or config.DEPLOYMENT.get("local_storage"): # In the case of UI deployment of LSO cluster, the value in StorageCluster CR # is set to 1, so we can not take OSD size from there. For LSO we will return # the size from PVC. pvc = get_deviceset_pvcs()[0] return int(pvc.get()["status"]["capacity"]["storage"][:-2]) else: return int(size[:-2]) def get_deviceset_count(): """ Get storageDeviceSets count from storagecluster Returns: int: storageDeviceSets count """ sc = get_storage_cluster() return int( sc.get().get("items")[0].get("spec").get("storageDeviceSets")[0].get("count") ) def get_all_storageclass(): """ Function for getting all storageclass excluding 'gp2' and 'flex' Returns: list: list of storageclass """ sc_obj = ocp.OCP( kind=constants.STORAGECLASS, namespace=defaults.ROOK_CLUSTER_NAMESPACE ) result = sc_obj.get() sample = result["items"] storageclass = [ item for item in sample if ( item.get("metadata").get("name") not in (constants.IGNORE_SC_GP2, constants.IGNORE_SC_FLEX) ) ] return storageclass def setup_ceph_debug(): """ Set Ceph to run in debug log level using a ConfigMap. This functionality is available starting OCS 4.7. """ ceph_debug_log_configmap_data = templating.load_yaml( constants.CEPH_CONFIG_DEBUG_LOG_LEVEL_CONFIGMAP ) ceph_debug_log_configmap_data["data"]["config"] = ( constants.ROOK_CEPH_CONFIG_VALUES + constants.CEPH_DEBUG_CONFIG_VALUES ) ceph_configmap_yaml = tempfile.NamedTemporaryFile( mode="w+", prefix="config_map", delete=False ) templating.dump_data_to_temp_yaml( ceph_debug_log_configmap_data, ceph_configmap_yaml.name ) log.info("Setting Ceph to work in debug log level using a new ConfigMap resource") run_cmd(f"oc create -f {ceph_configmap_yaml.name}")
38.151515
102
0.647855
316409bcca978335e1f22705d2342e5f34efb493
15,200
py
Python
pylsp_rope/plugin.py
python-rope/pylsp-rope
431415560779881b57048dc563802705f7556bca
[ "MIT" ]
16
2021-10-03T07:18:20.000Z
2022-03-28T00:11:53.000Z
pylsp_rope/plugin.py
python-rope/pylsp-rope
431415560779881b57048dc563802705f7556bca
[ "MIT" ]
7
2021-10-03T06:37:42.000Z
2021-11-02T17:13:27.000Z
pylsp_rope/plugin.py
python-rope/pylsp-rope
431415560779881b57048dc563802705f7556bca
[ "MIT" ]
null
null
null
import ast import logging from typing import List from pylsp import hookimpl from pylsp.lsp import MessageType from rope.refactor import ( extract, inline, method_object, usefunction, localtofield, importutils, introduce_parameter, ) from pylsp_rope import typing, commands from pylsp_rope.project import ( get_project, get_resource, get_resources, apply_rope_changeset, ) from pylsp_rope.typing import DocumentUri, CodeActionKind logger = logging.getLogger(__name__) @hookimpl def pylsp_settings(): logger.info("Initializing pylsp_rope") # Disable default plugins that conflicts with our plugin return { "plugins": { # "autopep8_format": {"enabled": False}, # "definition": {"enabled": False}, # "flake8_lint": {"enabled": False}, # "folding": {"enabled": False}, # "highlight": {"enabled": False}, # "hover": {"enabled": False}, # "jedi_completion": {"enabled": False}, # "jedi_rename": {"enabled": False}, # "mccabe_lint": {"enabled": False}, # "preload_imports": {"enabled": False}, # "pycodestyle_lint": {"enabled": False}, # "pydocstyle_lint": {"enabled": False}, # "pyflakes_lint": {"enabled": False}, # "pylint_lint": {"enabled": False}, # "references": {"enabled": False}, # "rope_completion": {"enabled": False}, # "rope_rename": {"enabled": False}, # "signature": {"enabled": False}, # "symbols": {"enabled": False}, # "yapf_format": {"enabled": False}, }, } @hookimpl def pylsp_commands(config, workspace) -> List[str]: return [getattr(commands, cmd) for cmd in dir(commands) if not cmd.startswith("_")] @hookimpl def pylsp_code_actions( config, workspace, document, range, context ) -> List[typing.CodeAction]: logger.info("textDocument/codeAction: %s %s %s", document, range, context) class info: current_document, resource = get_resource(workspace, document.uri) position = range["start"] start_offset = current_document.offset_at_position(range["start"]) end_offset = current_document.offset_at_position(range["end"]) selected_text = document.source[start_offset:end_offset] project = get_project(workspace) for resource in get_resources(workspace, workspace.documents.keys()): project.pycore._invalidate_resource_cache(resource) commands = {} commands.update( CommandRefactorExtractMethod.get_code_actions( workspace, document=document, range=range, ), ) commands.update( CommandRefactorExtractVariable.get_code_actions( workspace, document=document, range=range, ), ) commands.update( { "Inline method/variable/parameter": CommandRefactorInline( workspace, document_uri=document.uri, position=info.position, ), "Use function": CommandRefactorUseFunction( workspace, document_uri=document.uri, position=info.position, ), "Use function for current file only": CommandRefactorUseFunction( workspace, document_uri=document.uri, position=info.position, documents=[document.uri], ), "To method object": CommandRefactorMethodToMethodObject( workspace, document_uri=document.uri, position=info.position, ), "Convert local variable to field": CommandRefactorLocalToField( workspace, document_uri=document.uri, position=info.position, ), "Organize import": CommandSourceOrganizeImport( workspace, document_uri=document.uri, ), "Introduce parameter": CommandIntroduceParameter( workspace, document_uri=document.uri, position=info.position, ), } ) return [ cmd.get_code_action(title=title) for title, cmd in commands.items() if cmd.is_valid(info) ] @hookimpl def pylsp_execute_command(config, workspace, command, arguments): logger.info("workspace/executeCommand: %s %s", command, arguments) commands = {cmd.name: cmd for cmd in Command.__subclasses__()} try: return commands[command](workspace, **arguments[0])() except Exception as exc: logger.exception( "Exception when doing workspace/executeCommand: %s", str(exc), exc_info=exc, ) workspace.show_message( f"pylsp-rope: {exc}", msg_type=MessageType.Error, ) class Command: name: str title: str kind: CodeActionKind def __init__(self, workspace, **arguments): self.workspace = workspace self.arguments = arguments self.__dict__.update(**arguments) def __call__(self): rope_changeset = self.get_changes() if rope_changeset is not None: apply_rope_changeset(self.workspace, rope_changeset) def get_changes(self): """ Calculate the rope changeset to perform this refactoring. """ def validate(self, info) -> None: """ Override this method to raise an exception if this refactoring command cannot be performed """ def is_valid(self, info): try: self.validate(info) except Exception: return False else: return True return False def get_code_action(self, title: str) -> typing.CodeAction: return { "title": title, "kind": self.kind, "command": { "title": title, "command": self.name, "arguments": [self.arguments], }, } @property # FIXME: backport cached_property def project(self): if not hasattr(self, "_project"): self._project = get_project(self.workspace) return self._project class CommandRefactorExtractMethod(Command): name = commands.COMMAND_REFACTOR_EXTRACT_METHOD kind: CodeActionKind = "refactor.extract" document_uri: DocumentUri range: typing.Range similar: bool global_: bool # FIXME: requires rope.refactor.extract._ExceptionalConditionChecker for proper checking # def _is_valid(self, info): # ... def get_changes(self): current_document, resource = get_resource(self.workspace, self.document_uri) refactoring = extract.ExtractMethod( project=self.project, resource=resource, start_offset=current_document.offset_at_position(self.range["start"]), end_offset=current_document.offset_at_position(self.range["end"]), ) rope_changeset = refactoring.get_changes( extracted_name="extracted_method", similar=self.similar, global_=self.global_, ) return rope_changeset @classmethod def get_code_actions(cls, workspace, document, range): return { "Extract method including similar statements": cls( workspace, document_uri=document.uri, range=range, global_=False, similar=True, ), "Extract method": cls( workspace, document_uri=document.uri, range=range, global_=False, similar=False, ), "Extract global method including similar statements": cls( workspace, document_uri=document.uri, range=range, global_=True, similar=True, ), "Extract global method": cls( workspace, document_uri=document.uri, range=range, global_=True, similar=False, ), } class CommandRefactorExtractVariable(Command): name = commands.COMMAND_REFACTOR_EXTRACT_VARIABLE kind: CodeActionKind = "refactor.extract" document_uri: DocumentUri range: typing.Range similar: bool global_: bool def validate(self, info): # FIXME: requires rope.refactor.extract._ExceptionalConditionChecker for proper checking ast.parse(info.selected_text, mode="eval") def get_changes(self): current_document, resource = get_resource(self.workspace, self.document_uri) refactoring = extract.ExtractVariable( project=self.project, resource=resource, start_offset=current_document.offset_at_position(self.range["start"]), end_offset=current_document.offset_at_position(self.range["end"]), ) rope_changeset = refactoring.get_changes( extracted_name="extracted_variable", similar=self.similar, global_=self.global_, ) return rope_changeset @classmethod def get_code_actions(cls, workspace, document, range): return { "Extract variable including similar statements": cls( workspace, document_uri=document.uri, range=range, global_=False, similar=True, ), "Extract variable": cls( workspace, document_uri=document.uri, range=range, global_=False, similar=False, ), "Extract global variable including similar statements": cls( workspace, document_uri=document.uri, range=range, global_=True, similar=True, ), "Extract global variable": cls( workspace, document_uri=document.uri, range=range, global_=True, similar=False, ), } class CommandRefactorInline(Command): name = commands.COMMAND_REFACTOR_INLINE kind: CodeActionKind = "refactor.inline" document_uri: DocumentUri position: typing.Range def validate(self, info): inline.create_inline( project=self.project, resource=info.resource, offset=info.current_document.offset_at_position(info.position), ) def get_changes(self): current_document, resource = get_resource(self.workspace, self.document_uri) refactoring = inline.create_inline( project=self.project, resource=resource, offset=current_document.offset_at_position(self.position), ) rope_changeset = refactoring.get_changes() return rope_changeset class CommandRefactorUseFunction(Command): name = commands.COMMAND_REFACTOR_USE_FUNCTION kind: CodeActionKind = "refactor" document_uri: DocumentUri position: typing.Range def validate(self, info): usefunction.UseFunction( project=self.project, resource=info.resource, offset=info.current_document.offset_at_position(info.position), ) def get_changes(self): current_document, resource = get_resource(self.workspace, self.document_uri) refactoring = usefunction.UseFunction( project=self.project, resource=resource, offset=current_document.offset_at_position(self.position), ) rope_changeset = refactoring.get_changes( resources=get_resources(self.workspace, getattr(self, "documents", None)), ) return rope_changeset class CommandRefactorMethodToMethodObject(Command): name = commands.COMMAND_REFACTOR_METHOD_TO_METHOD_OBJECT kind: CodeActionKind = "refactor.rewrite" document_uri: DocumentUri position: typing.Range def validate(self, info): method_object.MethodObject( project=self.project, resource=info.resource, offset=info.current_document.offset_at_position(self.position), ) def get_changes(self): current_document, resource = get_resource(self.workspace, self.document_uri) refactoring = method_object.MethodObject( project=self.project, resource=resource, offset=current_document.offset_at_position(self.position), ) rope_changeset = refactoring.get_changes(classname="NewMethodObject") return rope_changeset class CommandRefactorLocalToField(Command): name = commands.COMMAND_REFACTOR_LOCAL_TO_FIELD kind: CodeActionKind = "refactor.rewrite" document_uri: DocumentUri position: typing.Range def validate(self, info): localtofield.LocalToField( project=self.project, resource=info.resource, offset=info.current_document.offset_at_position(self.position), ) def get_changes(self): current_document, resource = get_resource(self.workspace, self.document_uri) refactoring = localtofield.LocalToField( project=self.project, resource=resource, offset=current_document.offset_at_position(self.position), ) rope_changeset = refactoring.get_changes() return rope_changeset class CommandSourceOrganizeImport(Command): name = commands.COMMAND_SOURCE_ORGANIZE_IMPORT kind: CodeActionKind = "source.organizeImports" document_uri: DocumentUri def get_changes(self): current_document, resource = get_resource(self.workspace, self.document_uri) organizer = importutils.ImportOrganizer( project=self.project, ) rope_changeset = organizer.organize_imports( resource=resource, ) return rope_changeset class CommandIntroduceParameter(Command): name = commands.COMMAND_INTRODUCE_PARAMETER kind: CodeActionKind = "refactor" document_uri: DocumentUri position: typing.Range def validate(self, info): introduce_parameter.IntroduceParameter( project=self.project, resource=info.resource, offset=info.current_document.offset_at_position(self.position), ) def get_changes(self): current_document, resource = get_resource(self.workspace, self.document_uri) refactoring = introduce_parameter.IntroduceParameter( project=self.project, resource=resource, offset=current_document.offset_at_position(self.position), ) rope_changeset = refactoring.get_changes( new_parameter="new_parameter", ) return rope_changeset
30.831643
96
0.605329
c648a2a434cbf85b73bf9caa38aa515a7eb985c0
6,509
py
Python
test/test_template_rbac.py
1995chen/python-common-libs
dcf36376ae244426fb8da5b76b96fe8e0c3911af
[ "MIT" ]
null
null
null
test/test_template_rbac.py
1995chen/python-common-libs
dcf36376ae244426fb8da5b76b96fe8e0c3911af
[ "MIT" ]
null
null
null
test/test_template_rbac.py
1995chen/python-common-libs
dcf36376ae244426fb8da5b76b96fe8e0c3911af
[ "MIT" ]
null
null
null
# -*- coding: UTF-8 -*- import os import unittest import inject import template_logging from template_rbac import OAuth2SSO from flask import Flask, make_response # 创建日志目录 os.makedirs('./logs/', exist_ok=True) template_logging.init_logger() logger = template_logging.getLogger(__name__) class TestTemplateRbacMethods(unittest.TestCase): @classmethod def setUpClass(cls): """ 进行该测试用例整体的初始化 """ # 这里以keycloak为例 # keycloak配置查看地址 # https://sso.local.domain/auth/realms/{realm}/.well-known/openid-configuration def my_config(binder): oauth2_instance: OAuth2SSO = OAuth2SSO( client_id="flask_template", client_secret="34ddefb0-4063-40db-9b93-4b12b81cc147", authorization_endpoint="https://sso.local.domain/auth/realms/production/protocol/openid-connect/auth", token_endpoint="https://sso.local.domain/auth/realms/production/protocol/openid-connect/token", userinfo_endpoint="https://sso.local.domain/auth/realms/production/protocol/openid-connect/userinfo", app_root_url="http://127.0.0.1:8080/", api_auth_path="/api/login", api_logout_path="/api/logout", jwt_secret="abcd1234" ) # 设置初始化方法 binder.bind(OAuth2SSO, oauth2_instance) # 将实例绑定到inject inject.configure(my_config) app = Flask(__name__) @app.route('/', methods=['GET']) def info(): return make_response({ 'hello': "hello", }) sso_instance = inject.instance(OAuth2SSO) # 注册 app.register_blueprint(sso_instance.get_resources()) logger.info(f"auth url is {sso_instance.sso_auth_url}") # sso_instance.refresh_token( # "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9." # "eyJpYXQiOjE2NDYwMzQ3MzksImlzcyI6Imh0dHBzOi8vZmxhc2stdGVtcGxhdGUubG9jYWwu" # "ZG9tYWluIiwianRpIjoiOWE2ZWI0NGQtNTBjZi00YmZmLWFkYzUtYjJiYWM1ZDY5ZDdjIiwi" # "ZGF0YSI6eyJhY2Nlc3NfdG9rZW4iOiJleUpoYkdjaU9pSlNVekkxTmlJc0luUjVjQ0lnT2lB" # "aVNsZFVJaXdpYTJsa0lpQTZJQ0pJTUdwdWVXUkRhRzVsVERoSE5HRnJUakZITlZGcE1VMDFV" # "VnB1Ym5Sck5ERktjMWhDU3pSeFRVRnpJbjAuZXlKbGVIQWlPakUyTkRZd016VXdNemtzSW1s" # "aGRDSTZNVFkwTmpBek5EY3pPU3dpWVhWMGFGOTBhVzFsSWpveE5qUTJNRE15T1RRMExDSnFk" # "R2tpT2lJeU4yVTVZVGxqT0Mxa1lqQXpMVFJsWXpRdE9URTRNUzA0WlRCa1lqWmpZakZpTjJV" # "aUxDSnBjM01pT2lKb2RIUndjem92TDNOemJ5NXNiMk5oYkM1a2IyMWhhVzR2WVhWMGFDOXla" # "V0ZzYlhNdmNISnZaSFZqZEdsdmJpSXNJbUYxWkNJNld5SnlaV0ZzYlMxdFlXNWhaMlZ0Wlc1" # "MElpd2ljbUZ1WTJobGNpSXNJbWhoY21KdmNpSXNJbUp5YjJ0bGNpSXNJbUZqWTI5MWJuUWlY" # "U3dpYzNWaUlqb2lOekUyWm1FMk9ESXRaVE5tTUMwMFltTTBMVGc1WmpndFpUSTROV0k1TnpN" # "ME1HUTVJaXdpZEhsd0lqb2lRbVZoY21WeUlpd2lZWHB3SWpvaVpteGhjMnRmZEdWdGNHeGhk" # "R1VpTENKelpYTnphVzl1WDNOMFlYUmxJam9pTVdGak1qUmhaR010TldRM1pDMDBNMkZpTFdJ" # "NU5qZ3RZVEptTmpVNU1HVmlORGd6SWl3aVlXTnlJam9pTUNJc0ltRnNiRzkzWldRdGIzSnBa" # "Mmx1Y3lJNld5SXZLaUpkTENKeVpXRnNiVjloWTJObGMzTWlPbnNpY205c1pYTWlPbHNpYjJa" # "bWJHbHVaVjloWTJObGMzTWlMQ0oxYldGZllYVjBhRzl5YVhwaGRHbHZiaUpkZlN3aWNtVnpi" # "M1Z5WTJWZllXTmpaWE56SWpwN0luSmxZV3h0TFcxaGJtRm5aVzFsYm5RaU9uc2ljbTlzWlhN" # "aU9sc2lkbWxsZHkxcFpHVnVkR2wwZVMxd2NtOTJhV1JsY25NaUxDSjJhV1YzTFhKbFlXeHRJ" # "aXdpYldGdVlXZGxMV2xrWlc1MGFYUjVMWEJ5YjNacFpHVnljeUlzSW1sdGNHVnljMjl1WVhS" # "cGIyNGlMQ0p5WldGc2JTMWhaRzFwYmlJc0ltTnlaV0YwWlMxamJHbGxiblFpTENKdFlXNWha" # "MlV0ZFhObGNuTWlMQ0p4ZFdWeWVTMXlaV0ZzYlhNaUxDSjJhV1YzTFdGMWRHaHZjbWw2WVhS" # "cGIyNGlMQ0p4ZFdWeWVTMWpiR2xsYm5Seklpd2ljWFZsY25rdGRYTmxjbk1pTENKdFlXNWha" # "MlV0WlhabGJuUnpJaXdpYldGdVlXZGxMWEpsWVd4dElpd2lkbWxsZHkxbGRtVnVkSE1pTENK" # "MmFXVjNMWFZ6WlhKeklpd2lkbWxsZHkxamJHbGxiblJ6SWl3aWJXRnVZV2RsTFdGMWRHaHZj" # "bWw2WVhScGIyNGlMQ0p0WVc1aFoyVXRZMnhwWlc1MGN5SXNJbkYxWlhKNUxXZHliM1Z3Y3lK" # "ZGZTd2ljbUZ1WTJobGNpSTZleUp5YjJ4bGN5STZXeUprWVhSaFltRnpaU0lzSW1SbFptRjFi" # "SFFpTENKemVYTjBaVzBpTENKd2NtOWtkV04wYVc5dUlpd2laR1YyWld4dmNDSXNJbVJoYzJo" # "aWIyRnlaQ0pkZlN3aWFHRnlZbTl5SWpwN0luSnZiR1Z6SWpwYkltRmtiV2x1SWwxOUxDSmlj" # "bTlyWlhJaU9uc2ljbTlzWlhNaU9sc2ljbVZoWkMxMGIydGxiaUpkZlN3aVlXTmpiM1Z1ZENJ" # "NmV5SnliMnhsY3lJNld5SnRZVzVoWjJVdFlXTmpiM1Z1ZENJc0luWnBaWGN0WVhCd2JHbGpZ" # "WFJwYjI1eklpd2lkbWxsZHkxamIyNXpaVzUwSWl3aWJXRnVZV2RsTFdGalkyOTFiblF0Ykds" # "dWEzTWlMQ0p0WVc1aFoyVXRZMjl1YzJWdWRDSXNJblpwWlhjdGNISnZabWxzWlNKZGZYMHNJ" # "bk5qYjNCbElqb2laVzFoYVd3Z2NISnZabWxzWlNJc0ltVnRZV2xzWDNabGNtbG1hV1ZrSWpw" # "bVlXeHpaU3dpYm1GdFpTSTZJa3hwWVc1bklFTm9aVzRpTENKd2NtVm1aWEp5WldSZmRYTmxj" # "bTVoYldVaU9pSmphR1Z1YkdsaGJtY2lMQ0puYVhabGJsOXVZVzFsSWpvaVRHbGhibWNpTENK" # "bVlXMXBiSGxmYm1GdFpTSTZJa05vWlc0aUxDSmxiV0ZwYkNJNkltTm9aVzVzTWpRME9ETTJO" # "VEE0T0VCbmJXRnBiQzVqYjIwaWZRLmVtNGpRM2NLMlctaXBzSWpDUkdtZTA3ak5raElmQXdq" # "RmViZ3Q5djY5dHFsaGtKS1VRazNTRnVIcHoycHlUQThuZ2YxZlFaNXRYdHB6S2JnLVBvTlVm" # "WDZJVHg4SXZEN3ZxY3pRQzdqVGVaLTBibHFLM3FjbVhHRnVVTVBMUmN3dVBkZjZuZl9vYU5Z" # "Ym8wQUo0a0ctMmRGMkVqZk9CSzZuX2VvNG5hRFBMRW52ejA2UnZ0eFRuTm94U3FrTk9JSDZS" # "R3dDS2QzSTU5dTVTQVNZT2lhRUE5ZVJsdWM3NWJOeVBrUlpoaTl5RlFhaDhIeXR4YlM0MXVy" # "UVZNREZVdTFGcnVoYVEzbFN5RkpZc3lCcUlQOFRjT2QybVlPY1NXV0JTWEl1TkI0eHBMTHRT" # "RklsUEZ3N0tsMGZUemliSmRYaDNUSkM3X0djdDE5bEt0WTVxS0lYdyIsImV4cGlyZXNfYXQi" # "OjE2NDYwMzQ3MzksInVzZXJuYW1lIjoiY2hlbmxpYW5nIiwiZW1haWwiOiJjaGVubDI0NDgz" # "NjUwODhAZ21haWwuY29tIn0sImV4cCI6MTY0NjEyMTEzOX0.hd0lL4Px61yL9elovMD3A_Ne" # "bgHydLTBxDvK-RBGd5U" # ) # # 该测试用例暂不支持自动化 # app.run("0.0.0.0", 8080) @classmethod def tearDownClass(cls): # 清理 inject.clear() def setUp(self): self.passed: bool = False def tearDown(self): # 打印结果 logger.info( f"func {self.__class__.__name__}.{self._testMethodName}.........{'passed' if self.passed else 'failed'}" ) def test_transaction_decorator(self): """ 测试事务注解 """ self.passed = True if __name__ == '__main__': unittest.main()
47.860294
118
0.727762
175e04698f1d310ba1e2e71266c45c0f85f270cc
1,637
py
Python
SWE573/pulse/helpers/sentiment_helper.py
umutseven92/SWE573
04aaf665fb2bbc54de632bbea9aa0fc93685fe67
[ "MIT" ]
null
null
null
SWE573/pulse/helpers/sentiment_helper.py
umutseven92/SWE573
04aaf665fb2bbc54de632bbea9aa0fc93685fe67
[ "MIT" ]
21
2018-02-12T18:56:14.000Z
2018-04-22T14:59:39.000Z
SWE573/pulse/helpers/sentiment_helper.py
umutseven92/Sentweet
04aaf665fb2bbc54de632bbea9aa0fc93685fe67
[ "MIT" ]
2
2018-03-25T15:20:52.000Z
2018-06-01T14:17:51.000Z
from nltk.sentiment.vader import SentimentIntensityAnalyzer def get_sentiment_scores(body): sid = SentimentIntensityAnalyzer() ss = sid.polarity_scores(body) return ss def get_sentiment_info(tweets): daily_positive, daily_negative, daily_neutral, daily_compound = 0, 0, 0, 0 neg_tweet_count, pos_tweet_count, neu_tweet_count, all_tweet_count, total_comp = 0, 0, 0, 0, 0 for tweet in tweets: ss = get_sentiment_scores(tweet) compound = ss['compound'] daily_compound = daily_compound + compound total_comp += compound if compound == 0.0: neu_tweet_count += 1 elif compound > 0.0: pos_tweet_count += 1 else: neg_tweet_count += 1 daily_positive += ss['pos'] daily_negative += ss['neg'] daily_neutral += ss['neu'] tweet_count = len(tweets) all_tweet_count += tweet_count if tweet_count == 0: average_comp = 0 average_pos = 0 average_neg = 0 average_neu = 0 else: average_comp = daily_compound / tweet_count average_pos = daily_positive / tweet_count average_neg = daily_negative / tweet_count average_neu = daily_neutral / tweet_count result = {'pos': average_pos, 'neg': -1 * average_neg, 'neu': average_neu, 'compound': average_comp, 'count': tweet_count} misc = {'neg_tweet_count': neg_tweet_count, 'pos_tweet_count': pos_tweet_count, 'neu_tweet_count': neu_tweet_count, 'all_tweet_count': all_tweet_count, 'total_comp': total_comp} return result, misc
29.763636
119
0.643861
8a740cfbc64f320a41cc67d9beb28eb5bcde7a39
6,062
py
Python
dashboard/dashboard/auto_bisect.py
PLSV/catapult
88e5b1f40c89c4b80d3dd56a722936d07f222a55
[ "BSD-3-Clause" ]
null
null
null
dashboard/dashboard/auto_bisect.py
PLSV/catapult
88e5b1f40c89c4b80d3dd56a722936d07f222a55
[ "BSD-3-Clause" ]
null
null
null
dashboard/dashboard/auto_bisect.py
PLSV/catapult
88e5b1f40c89c4b80d3dd56a722936d07f222a55
[ "BSD-3-Clause" ]
null
null
null
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """URL endpoint for a cron job to automatically run bisects.""" from __future__ import print_function from __future__ import division from __future__ import absolute_import import json import logging from dashboard import can_bisect from dashboard import pinpoint_request from dashboard.common import namespaced_stored_object from dashboard.common import utils from dashboard.models import anomaly from dashboard.models import graph_data from dashboard.services import pinpoint_service class NotBisectableError(Exception): """An error indicating that a bisect couldn't be automatically started.""" pass def StartNewBisectForBug(bug_id): """Tries to trigger a bisect job for the alerts associated with a bug. Args: bug_id: A bug ID number. Returns: If successful, a dict containing "issue_id" and "issue_url" for the bisect job. Otherwise, a dict containing "error", with some description of the reason why a job wasn't started. """ try: return _StartBisectForBug(bug_id) except NotBisectableError as e: logging.info('New bisect errored out with message: ' + e.message) return {'error': e.message} def _StartBisectForBug(bug_id): anomalies, _, _ = anomaly.Anomaly.QueryAsync( bug_id=bug_id, limit=500).get_result() if not anomalies: raise NotBisectableError('No Anomaly alerts found for this bug.') test_anomaly = _ChooseTest(anomalies) test = None if test_anomaly: test = test_anomaly.GetTestMetadataKey().get() if not test or not can_bisect.IsValidTestForBisect(test.test_path): raise NotBisectableError('Could not select a test.') bot_configurations = namespaced_stored_object.Get('bot_configurations') if test.bot_name not in list(bot_configurations.keys()): raise NotBisectableError( 'Bot: %s has no corresponding Pinpoint bot.' % test.bot_name) return _StartPinpointBisect(bug_id, test_anomaly, test) def _StartPinpointBisect(bug_id, test_anomaly, test): # Convert params to Pinpoint compatible params = { 'test_path': test.test_path, 'start_commit': test_anomaly.start_revision - 1, 'end_commit': test_anomaly.end_revision, 'bug_id': bug_id, 'bisect_mode': 'performance', 'story_filter': test.unescaped_story_name, 'alerts': json.dumps([test_anomaly.key.urlsafe()]) } try: results = pinpoint_service.NewJob( pinpoint_request.PinpointParamsFromBisectParams(params)) except pinpoint_request.InvalidParamsError as e: raise NotBisectableError(e.message) # For compatibility with existing bisect, switch these to issueId/url if 'jobId' in results: results['issue_id'] = results['jobId'] test_anomaly.pinpoint_bisects.append(str(results['jobId'])) test_anomaly.put() del results['jobId'] if 'jobUrl' in results: results['issue_url'] = results['jobUrl'] del results['jobUrl'] return results def _ChooseTest(anomalies): """Chooses a test to use for a bisect job. The particular TestMetadata chosen determines the command and metric name that is chosen. The test to choose could depend on which of the anomalies has the largest regression size. Ideally, the choice of bisect bot to use should be based on bisect bot queue length, and the choice of metric should be based on regression size and noise level. However, we don't choose bisect bot and metric independently, since some regressions only happen for some tests on some platforms; we should generally only bisect with a given bisect bot on a given metric if we know that the regression showed up on that platform for that metric. Args: anomalies: A non-empty list of Anomaly entities. Returns: An Anomaly entity, or None if no valid entity could be chosen. Raises: NotBisectableError: The only matching tests are on domains that have been excluded for automatic bisects on alert triage. """ if not anomalies: return None anomalies.sort(cmp=_CompareAnomalyBisectability) found_excluded_domain = False for anomaly_entity in anomalies: if can_bisect.IsValidTestForBisect( utils.TestPath(anomaly_entity.GetTestMetadataKey())): if can_bisect.DomainIsExcludedFromTriageBisects( anomaly_entity.master_name): found_excluded_domain = True continue return anomaly_entity if found_excluded_domain: raise NotBisectableError( 'Did not kick off bisect because only available domains are ' 'excluded from automatic bisects on triage.') return None def _CompareAnomalyBisectability(a1, a2): """Compares two Anomalies to decide which Anomaly's TestMetadata is better to use. Note: Potentially, this could be made more sophisticated by using more signals: - Bisect bot queue length - Platform - Test run time - Stddev of test Args: a1: The first Anomaly entity. a2: The second Anomaly entity. Returns: Negative integer if a1 is better than a2, positive integer if a2 is better than a1, or zero if they're equally good. """ if a1.percent_changed > a2.percent_changed: return -1 elif a1.percent_changed < a2.percent_changed: return 1 return 0 def GetRevisionForBisect(revision, test_key): """Gets a start or end revision value which can be used when bisecting. Note: This logic is parallel to that in elements/chart-container.html in the method getRevisionForBisect. Args: revision: The ID of a Row, not necessarily an actual revision number. test_key: The ndb.Key for a TestMetadata. Returns: An int or string value which can be used when bisecting. """ row_parent_key = utils.GetTestContainerKey(test_key) row = graph_data.Row.get_by_id(revision, parent=row_parent_key) if row and hasattr(row, 'a_default_rev') and hasattr(row, row.a_default_rev): return getattr(row, row.a_default_rev) return revision
32.417112
80
0.743979
2270d1e7ac5e5f60c4218227b768c90026398ceb
6,904
py
Python
submodular_optimization/algorithms/scaled_single_threshold_greedy.py
smnikolakaki/submodular-linear-cost-maximization
98be3e79c11e4a36c253ed9a4800e6976b4aa3bf
[ "MIT" ]
null
null
null
submodular_optimization/algorithms/scaled_single_threshold_greedy.py
smnikolakaki/submodular-linear-cost-maximization
98be3e79c11e4a36c253ed9a4800e6976b4aa3bf
[ "MIT" ]
null
null
null
submodular_optimization/algorithms/scaled_single_threshold_greedy.py
smnikolakaki/submodular-linear-cost-maximization
98be3e79c11e4a36c253ed9a4800e6976b4aa3bf
[ "MIT" ]
null
null
null
""" This class implements the scaled single-threshold Greedy algorithm 1/2(3 - sqrt(5)) approximation """ import logging import numpy as np import collections import operator import sys class ScaledSingleThresholdGreedy(object): """ Scaled single-threshold Greedy algorithm implementation """ def __init__(self, config, init_submodular_func_coverage, submodular_func, cost_func, E, k): """ Constructor :param config: :param submodular_func: :param cost_func: :param E -- a python set: :param k: :return: """ self.config = config self.logger = logging.getLogger("so_logger") self.submodular_func = submodular_func self.cost_func = cost_func self.init_submodular_func_coverage = init_submodular_func_coverage self.E = E self.k = k self.epsilon = self.config['algorithms']['scaled_single_threshold_greedy_config']['epsilon'] def calc_marginal_gain(self, skills_covered, e): """ Calculates the marginal gain for adding element e to the current solution sol :param sol: :param e: :return marginal_gain: """ prev_val, skills_covered = self.submodular_func(skills_covered, []) # print('Previous value:',prev_val) new_val, skills_covered = self.submodular_func(skills_covered, [e]) # print('New value:',new_val) marginal_gain = new_val - prev_val # print('Marginal gain:',marginal_gain) return marginal_gain def calc_scaled_objective(self, skills_covered, user_id, sol, val): """ Calculates the scaled objective :param sol: :return obj_val: """ # Weight scaling is constant c c = (1/2)*(3 + np.sqrt(5)) submodular_gain, skills_covered = self.submodular_func(skills_covered, user_id) val = val + submodular_gain weighted_cost = c * self.cost_func(sol) obj_val = val - weighted_cost return obj_val def get_set_of_thresholds(self, m): """ Returns the set of thresholds :param m: :return O: """ O = [] lb = m ub = 2 * self.k * m if m == 0 or self.k == 0: li = 0 ui = 1 else: li = np.log(m) / np.log(1 + self.epsilon) ui = np.log(2 * self.k * m) / np.log(1 + self.epsilon) + 1 li = int(np.ceil(li)) # smallest integer greater than li ui = int(np.floor(ui)) # largest integer not greater than ui for i in range(li,ui): v = np.power((1+self.epsilon), i) if lb <= v and v <= ub: O.append(v) if v > ub: break return O def update_set_keys(self, S,O): """ Updates the sets of the thresholds :param S: :param O: :return S: """ # Create empty Sv for v in Oi that are new for v in O: if v not in S: S[v] = {} S[v]['solution'] = list() S[v]['skills_covered'] = self.init_submodular_func_coverage() S[v]['value'] = 0 # Delete sets Sv for v that do not exist in Oi S_vs = set(S.keys()) O_set = set(O) remove_vs = S_vs - O_set for v in remove_vs: del S[v] return S def scaled_greedy_criterion(self, skills_covered, e): """ Calculates the contribution of element e to greedy solution :param sol: :param e: :return greedy_contrib: """ # Weight scaling is constant c c = (1/2)*(3 + np.sqrt(5)) marginal_gain = self.calc_marginal_gain(skills_covered, e) weighted_cost = c * self.cost_func([e]) greedy_contrib = marginal_gain - weighted_cost return greedy_contrib def update_sets_new_element(self, v, e, S): """ Updates the sets with the new element :param v: :param e: :param S: :return : """ Sv_solution = S[v]['solution'] Sv_skills_covered = S[v]['skills_covered'] Sv_value = S[v]['value'] if self.k == 0: return S # Threshold tau wrt the value of the scaled objective - from original paper # denominator = self.k - len(Sv_solution) # if denominator == 0: # return S # nominator = (v/2) - self.calc_scaled_objective(Sv_skills_covered, [], Sv_solution, Sv_value) # tau = nominator / denominator tau = (1/self.k)*((1/2)*(3 - np.sqrt(5))*Sv_value - self.cost_func(Sv_solution)) # Marginal gain wrt scaled objective marg_gain = self.scaled_greedy_criterion(Sv_skills_covered, e) if tau < 0 : tau = 0 if marg_gain >= tau and len(Sv_solution) < self.k: S[v]['solution'].append(e) submodular_gain, skills_covered = self.submodular_func(Sv_skills_covered, [e]) S[v]['skills_covered'] = skills_covered S[v]['value'] = Sv_value + submodular_gain return S def find_max(self, S): max_solution = [] max_value = -float("inf") for v, nested_dict in S.items(): # print('Nested dictionary:',nested_dict['solution']) submodular_value = nested_dict['value']; solution = nested_dict['solution'] value = submodular_value - self.cost_func(solution) if max_value < value: max_value = value max_solution = solution return max_solution, max_value def run(self): """ Execute algorithm :param: :return: """ print(self.epsilon) curr_sol = [] curr_val = 0 S = collections.defaultdict(list) m = 0 # Initialize the submodular function coverage skills self.skills_covered = self.init_submodular_func_coverage() for e_i in self.E: # Thresholds defined over the scaled objective value m = max(m, self.calc_scaled_objective(self.skills_covered,[e_i],[],0)) # Creating set of thresholds Oi = self.get_set_of_thresholds(m) # Update the set Sv keys S = self.update_set_keys(S,Oi) # Update the sets Sv with new element in parallel for v in Oi: S = self.update_sets_new_element(v, e_i, S) if S: # Return the solution that maximizes original objective value curr_sol, curr_val = self.find_max(S) # print(max(S, key=lambda sol: S[sol]['value'] - self.cost_func(S[sol]['solution']))) self.logger.info("Best solution: {}\nBest value: {}".format(curr_sol, curr_val)) return curr_sol
32.413146
102
0.566338
4089b6d5816eaebb48b531389c15005db4d9c707
405
py
Python
__init__.py
YorkSu/deepgo
2f22ad50d2958a4f1c7dfc0af6fcd448f5e7e18d
[ "Apache-2.0" ]
null
null
null
__init__.py
YorkSu/deepgo
2f22ad50d2958a4f1c7dfc0af6fcd448f5e7e18d
[ "Apache-2.0" ]
null
null
null
__init__.py
YorkSu/deepgo
2f22ad50d2958a4f1c7dfc0af6fcd448f5e7e18d
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """Deep Go ====== An framework for Deep Learning Version: Aiur 0.1.0 Author: York Su """ __author__ = "York Su" __version__ = "0.1.0" __codename__ = "Aiur" __release_date__ = "2020-08-16" import os as _os import sys as _sys this_dir = _os.path.dirname(_os.path.abspath(__file__)) if this_dir not in _sys.path: _sys.path.append(this_dir) del _os, _sys
14.464286
55
0.654321
300360d08510daa4752fa2ca27ace2295469c7c2
5,843
py
Python
pytorch_lightning/strategies/dp.py
HabanaAI/pytorch-lightning
07b4452b71dc7397fefb35477f922eff096752ad
[ "Apache-2.0" ]
15,666
2020-01-14T07:16:15.000Z
2022-03-31T23:22:26.000Z
pytorch_lightning/strategies/dp.py
HabanaAI/pytorch-lightning
07b4452b71dc7397fefb35477f922eff096752ad
[ "Apache-2.0" ]
9,140
2020-01-14T03:10:42.000Z
2022-03-31T19:57:09.000Z
pytorch_lightning/strategies/dp.py
HabanaAI/pytorch-lightning
07b4452b71dc7397fefb35477f922eff096752ad
[ "Apache-2.0" ]
2,340
2020-01-14T06:45:32.000Z
2022-03-31T22:57:07.000Z
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, List, Optional import torch from torch.nn import DataParallel, Module import pytorch_lightning as pl from pytorch_lightning.overrides.data_parallel import LightningParallelModule from pytorch_lightning.plugins.io.checkpoint_plugin import CheckpointIO from pytorch_lightning.plugins.precision import PrecisionPlugin from pytorch_lightning.strategies.parallel import ParallelStrategy from pytorch_lightning.utilities.apply_func import apply_to_collection, move_data_to_device from pytorch_lightning.utilities.enums import _StrategyType from pytorch_lightning.utilities.model_helpers import is_overridden from pytorch_lightning.utilities.types import _METRIC_COLLECTION, STEP_OUTPUT class DataParallelStrategy(ParallelStrategy): """Implements data-parallel training in a single process, i.e., the model gets replicated to each device and each gets a split of the data.""" distributed_backend = _StrategyType.DP def __init__( self, accelerator: Optional["pl.accelerators.accelerator.Accelerator"] = None, parallel_devices: Optional[List[torch.device]] = None, checkpoint_io: Optional[CheckpointIO] = None, precision_plugin: Optional[PrecisionPlugin] = None, ): super().__init__( accelerator=accelerator, parallel_devices=parallel_devices, cluster_environment=None, checkpoint_io=checkpoint_io, precision_plugin=precision_plugin, ) @property def global_rank(self) -> int: return 0 @property def local_rank(self) -> int: return 0 @property def node_rank(self) -> int: return 0 @property def world_size(self) -> int: return 1 def setup(self, trainer: "pl.Trainer") -> None: # model needs to be moved to the device before it is wrapped self.model_to_device() self.model = self._setup_model(LightningParallelModule(self.model)) super().setup(trainer) def batch_to_device(self, batch: Any, device: Optional[torch.device] = None, dataloader_idx: int = 0) -> Any: """Moves the batch to the correct device. The input and the output is the same type. Args: batch: The batch of samples to move to the correct device device: The target device dataloader_idx: The index of the dataloader to which the batch belongs. """ return move_data_to_device(batch, device=device or self.root_device) def _setup_model(self, model: Module) -> DataParallel: """Wraps the given model into a :class:`~torch.nn.parallel.DataParallel` module.""" return DataParallel(module=model, device_ids=self.parallel_devices) def reduce(self, collection: _METRIC_COLLECTION, *args, **kwargs) -> _METRIC_COLLECTION: """Reduces a collection of tensors from all processes. It can be applied to just a single tensor. Args: collection: The collection of tensors to sync and reduce. *args: ignored for DP **kwargs: ignored for DP Return: Reduced tensor values or the same value if it was not or did not contain a tensor. """ def mean(t: torch.Tensor) -> torch.Tensor: original_dtype = t.dtype return t.float().mean().to(original_dtype) return apply_to_collection(collection, torch.Tensor, mean) @property def root_device(self): return self.parallel_devices[0] def model_to_device(self) -> None: self.model.to(self.root_device) def barrier(self, *args, **kwargs): pass def broadcast(self, obj: object, src: int = 0) -> object: return obj def reduce_boolean_decision(self, decision: bool) -> bool: return decision def training_step(self, *args, **kwargs) -> STEP_OUTPUT: with self.precision_plugin.train_step_context(): return self.model(*args, **kwargs) def validation_step(self, *args, **kwargs) -> Optional[STEP_OUTPUT]: with self.precision_plugin.val_step_context(): return self.model(*args, **kwargs) def test_step(self, *args, **kwargs) -> Optional[STEP_OUTPUT]: with self.precision_plugin.test_step_context(): return self.model(*args, **kwargs) def predict_step(self, *args, **kwargs) -> STEP_OUTPUT: with self.precision_plugin.predict_step_context(): return self.model(*args, **kwargs) def training_step_end(self, output): if not is_overridden("training_step_end", self.lightning_module): return self.reduce(output) return output def validation_step_end(self, output): if not is_overridden("validation_step_end", self.lightning_module): return self.reduce(output) return output def test_step_end(self, output): if not is_overridden("test_step_end", self.lightning_module): return self.reduce(output) return output def teardown(self) -> None: super().teardown() if self.on_gpu: # GPU teardown self.lightning_module.cpu() # clean up memory torch.cuda.empty_cache()
36.291925
113
0.683553
eb8f924fbfc6afd66b0d7f71527fd6bd71626165
8,780
py
Python
ext/raith21/functionsim.py
edgerun/faas-sim
fe35e70bc0500bc8b7d94e65b9faf478011edebf
[ "MIT" ]
19
2021-03-07T06:24:40.000Z
2022-03-25T11:43:08.000Z
ext/raith21/functionsim.py
edgerun/faas-sim
fe35e70bc0500bc8b7d94e65b9faf478011edebf
[ "MIT" ]
8
2020-11-13T13:21:05.000Z
2021-05-28T19:45:35.000Z
ext/raith21/functionsim.py
edgerun/faas-sim
fe35e70bc0500bc8b7d94e65b9faf478011edebf
[ "MIT" ]
6
2020-09-03T08:58:11.000Z
2022-03-13T00:36:29.000Z
import logging from typing import Callable, Optional, Dict from simpy import Resource from sim.core import Environment from sim.docker import pull as docker_pull from sim.faas import FunctionSimulator, FunctionRequest, FunctionReplica, SimulatorFactory, simulate_data_download, \ simulate_data_upload, FunctionCharacterization, FunctionContainer def linear_queue_fet_increase(current_requests: int, max_requests: int) -> float: return current_requests / max_requests class PythonHTTPSimulator(FunctionSimulator): def __init__(self, queue: Resource, scale: Callable[[int, int], float], fn: FunctionContainer, characterization: FunctionCharacterization): self.worker_threads = queue.capacity self.queue = queue self.scale = scale self.delay = 0 self.fn = fn self.characterization = characterization def invoke(self, env: Environment, replica: FunctionReplica, request: FunctionRequest): token = self.queue.request() yield token # wait for access # because of GIL and Threads, we can easily estimate the additional time caused by concurrent requests to the # same Function factor = max(1, self.scale(self.queue.count, self.queue.capacity)) try: fet = self.characterization.sample_fet(replica.node.name) if fet is None: logging.error(f"FET for node {replica.node.name} for function {self.fn.image} was not found") raise ValueError(f'{replica.node.name}') fet = float(fet) * factor yield env.timeout(fet) except KeyError: pass self.queue.release(token) class PythonHttpSimulatorFactory(SimulatorFactory): def __init__(self, fn_characterizations: Dict[str, FunctionCharacterization]): self.fn_characterizations = fn_characterizations def create(self, env: Environment, fn: FunctionContainer) -> FunctionSimulator: workers = int(fn.labels['workers']) queue = Resource(env=env, capacity=workers) return PythonHTTPSimulator(queue, linear_queue_fet_increase, fn, self.fn_characterizations[fn.image]) class FunctionCall: replica: FunctionReplica request: FunctionRequest start: int end: Optional[int] = None def __init__(self, request, replica, start, end=None): self.request = request self.replica = replica self.start = start self.end = end @property def request_id(self): return self.request.request_id class InterferenceAwarePythonHttpSimulatorFactory(SimulatorFactory): def __init__(self, fn_characterizations: Dict[str, FunctionCharacterization]): self.fn_characterizations = fn_characterizations def create(self, env: Environment, fn: FunctionContainer) -> FunctionSimulator: workers = int(fn.labels['workers']) queue = Resource(env=env, capacity=workers) return InterferenceAwarePythonHttpSimulator(queue, linear_queue_fet_increase, fn, self.fn_characterizations[fn.image]) class AIPythonHTTPSimulatorFactory(SimulatorFactory): def __init__(self, fn_characterizations: Dict[str, FunctionCharacterization]): self.fn_characterizations = fn_characterizations def create(self, env: Environment, fn: FunctionContainer) -> FunctionSimulator: workers = int(fn.labels['workers']) queue = Resource(env=env, capacity=workers) return AIPythonHTTPSimulator(queue, linear_queue_fet_increase, fn, self.fn_characterizations[fn.image]) class AIPythonHTTPSimulator(FunctionSimulator): def __init__(self, queue: Resource, scale: Callable[[int, int], float], fn: FunctionContainer, characterization: FunctionCharacterization): self.worker_threads = queue.capacity self.queue = queue self.scale = scale self.deployment = fn self.delay = 0 self.characterization = characterization def deploy(self, env: Environment, replica: FunctionReplica): yield from docker_pull(env, replica.image, replica.node.ether_node) def setup(self, env: Environment, replica: FunctionReplica): image = replica.pod.spec.containers[0].image if 'inference' in image: yield from simulate_data_download(env, replica) def invoke(self, env: Environment, replica: FunctionReplica, request: FunctionRequest): token = self.queue.request() t_wait_start = env.now yield token # wait for access t_wait_end = env.now t_fet_start = env.now # because of GIL and Threads, we can easily estimate the additional time caused by concurrent requests to the # same Function factor = max(1, self.scale(self.queue.count, self.queue.capacity)) try: fet = self.characterization.sample_fet(replica.node.name) if fet is None: logging.error(f"FET for node {replica.node.name} for function {self.deployment.image} was not found") raise ValueError(f'{replica.node.name}') fet = float(fet) * factor image = replica.pod.spec.containers[0].image if 'preprocessing' in image or 'training' in image: yield from simulate_data_download(env, replica) start = env.now call = FunctionCall(request, replica, start) replica.node.all_requests.append(call) yield env.timeout(fet) if 'preprocessing' in image or 'training' in image: yield from simulate_data_upload(env, replica) t_fet_end = env.now env.metrics.log_fet(request.name, replica.image, replica.node.name, t_fet_start, t_fet_end, id(replica), request.request_id, t_wait_start=t_wait_start, t_wait_end=t_wait_end) replica.node.set_end(request.request_id, t_fet_end) except KeyError: pass self.queue.release(token) class InterferenceAwarePythonHttpSimulator(FunctionSimulator): def __init__(self, queue: Resource, scale: Callable[[int, int], float], fn: FunctionContainer, characterization: FunctionCharacterization): self.worker_threads = queue.capacity self.queue = queue self.scale = scale self.deployment = fn self.delay = 0 self.characterization = characterization def deploy(self, env: Environment, replica: FunctionReplica): yield from docker_pull(env, replica.image, replica.node.ether_node) def setup(self, env: Environment, replica: FunctionReplica): image = replica.pod.spec.containers[0].image if 'inference' in image: yield from simulate_data_download(env, replica) def invoke(self, env: Environment, replica: FunctionReplica, request: FunctionRequest): token = self.queue.request() t_wait_start = env.now yield token # wait for access t_wait_end = env.now t_fet_start = env.now # because of GIL and Threads, we can easily estimate the additional time caused by concurrent requests to the # same Function factor = max(1, self.scale(self.queue.count, self.queue.capacity)) try: fet = self.characterization.sample_fet(replica.node.name) if fet is None: logging.error(f"FET for node {replica.node.name} for function {self.deployment.image} was not found") raise ValueError(f'{replica.node.name}') fet = float(fet) * factor image = replica.pod.spec.containers[0].image if 'preprocessing' in image or 'training' in image: yield from simulate_data_download(env, replica) start = env.now call = FunctionCall(request, replica, start) replica.node.all_requests.append(call) yield env.timeout(fet) # add degradation end = env.now degradation = replica.node.estimate_degradation(self.characterization.resource_oracle, start, end) delay = max(0, (fet * degradation) - fet) yield env.timeout(delay) if 'preprocessing' in image or 'training' in image: yield from simulate_data_upload(env, replica) t_fet_end = env.now env.metrics.log_fet(request.name, replica.image, replica.node.name, t_fet_start, t_fet_end, t_wait_start, t_wait_end, degradation, id(replica)) replica.node.set_end(request.request_id, t_fet_end) except KeyError: pass self.queue.release(token)
41.611374
117
0.661845
e2b1d5196d38654ddbd2a0aee053068505b359f7
2,694
py
Python
video_behavior_tracking/track_behavior.py
droumis/video_behavior_tracking
98b031a4a8dda1c0112f823b661ebad2feeaa43e
[ "MIT" ]
1
2018-10-01T23:33:44.000Z
2018-10-01T23:33:44.000Z
video_behavior_tracking/track_behavior.py
droumis/video_behavior_tracking
98b031a4a8dda1c0112f823b661ebad2feeaa43e
[ "MIT" ]
1
2020-01-07T01:55:30.000Z
2020-01-07T01:55:30.000Z
video_behavior_tracking/track_behavior.py
droumis/video_behavior_tracking
98b031a4a8dda1c0112f823b661ebad2feeaa43e
[ "MIT" ]
2
2018-11-15T00:14:35.000Z
2020-11-16T07:50:09.000Z
import glob import json from argparse import ArgumentParser from logging import getLogger from video_behavior_tracking import (convert_to_loren_frank_data_format, detect_LEDs, extract_position_data, make_video, position_dataframe, save_loren_frank_data, video_filename_to_epoch_key) logger = getLogger(__name__) def main(args=None): parser = ArgumentParser() parser.add_argument('video_filename', type=str, help='Path to file') parser.add_argument('config_file', type=str, help='Path to file') parser.add_argument('--save_path', type=str, help='Path to save file directory') parser.add_argument('--save_video', action='store_true', help='Save video containing extracted position') parser.add_argument('--disable_progressbar', action='store_true', help='Disables the progress bar') args = parser.parse_args(args) with open(args.config_file) as data_file: config = json.load(data_file) for video_filename in glob.glob(args.video_filename): logger.info(f'\nProcessing {video_filename}') logger.info('\t.Detecting LED positions...') centroids, frame_rate, frame_size, n_frames = detect_LEDs( video_filename, disable_progressbar=args.disable_progressbar) logger.info('\tFiltering and smoothing data...') position = extract_position_data( centroids, frame_rate, frame_size, n_frames, config['cm_to_pixels'], disable_progressbar=args.disable_progressbar) logger.info('\tSaving data...') position_info = position_dataframe(position, start_time=0.0) save_data = convert_to_loren_frank_data_format( position_info, config['cm_to_pixels']) epoch_key = video_filename_to_epoch_key( video_filename, config['date_to_day']) save_loren_frank_data(epoch_key, 'pos', save_data, save_path=args.save_path) if args.save_video: logger.info('\tSaving video...') animal, day, epoch = epoch_key output_video_filename = f'{animal}_{day:02}_{epoch:02}_pos.avi' make_video(video_filename, position.centroids, position.head_position_mean, position.head_orientation_mean, output_video_filename=output_video_filename, cm_to_pixels=config['cm_to_pixels'], disable_progressbar=args.disable_progressbar)
44.9
75
0.629176
9c0ec0508501394467f3f067338f5029b07116ab
11,688
py
Python
train.py
FrankCAN/GAPointNet
9fb9fd4577950b29f996baa5135927e13df45408
[ "MIT" ]
29
2019-10-27T07:23:58.000Z
2022-03-12T02:31:32.000Z
train.py
jtpils/ShufflePointNet
30cb1ab1e43ef042b8fbe3d9b6f82312320dd967
[ "MIT" ]
8
2019-10-28T07:02:09.000Z
2021-04-06T04:06:33.000Z
train.py
jtpils/ShufflePointNet
30cb1ab1e43ef042b8fbe3d9b6f82312320dd967
[ "MIT" ]
4
2019-11-12T15:28:58.000Z
2021-03-17T10:42:12.000Z
import argparse import math import h5py import numpy as np import tensorflow as tf import socket import importlib import os import sys BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) sys.path.append(os.path.join(BASE_DIR, 'models')) sys.path.append(os.path.join(BASE_DIR, 'utils')) import provider # import tf_util parser = argparse.ArgumentParser() parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]') parser.add_argument('--model', default='network', help='Model name: dgcnn') parser.add_argument('--log_dir', default='log', help='Log dir [default: log]') parser.add_argument('--num_point', type=int, default=1024, help='Point Number [256/512/1024/2048] [default: 1024]') parser.add_argument('--max_epoch', type=int, default=250, help='Epoch to run [default: 250]') parser.add_argument('--batch_size', type=int, default=32, help='Batch Size during training [default: 32]') parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]') parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]') parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]') parser.add_argument('--decay_step', type=int, default=200000, help='Decay step for lr decay [default: 200000]') parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.8]') FLAGS = parser.parse_args() BATCH_SIZE = FLAGS.batch_size NUM_POINT = FLAGS.num_point MAX_EPOCH = FLAGS.max_epoch BASE_LEARNING_RATE = FLAGS.learning_rate GPU_INDEX = FLAGS.gpu MOMENTUM = FLAGS.momentum OPTIMIZER = FLAGS.optimizer DECAY_STEP = FLAGS.decay_step DECAY_RATE = FLAGS.decay_rate MODEL = importlib.import_module(FLAGS.model) # import network module MODEL_FILE = os.path.join(BASE_DIR, 'models', FLAGS.model+'.py') LOG_DIR = FLAGS.log_dir if not os.path.exists(LOG_DIR): os.makedirs(LOG_DIR) os.system('cp %s %s' % (MODEL_FILE, LOG_DIR)) # bkp of model def os.system('cp train.py %s' % (LOG_DIR)) # bkp of train procedure LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w') LOG_FOUT.write(str(FLAGS)+'\n') MAX_NUM_POINT = 2048 NUM_CLASSES = 40 BN_INIT_DECAY = 0.5 BN_DECAY_DECAY_RATE = 0.5 BN_DECAY_DECAY_STEP = float(DECAY_STEP) BN_DECAY_CLIP = 0.99 accuracy_max = [] HOSTNAME = socket.gethostname() # ModelNet40 official train/test split TRAIN_FILES = provider.getDataFiles( \ os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048/train_files.txt')) TEST_FILES = provider.getDataFiles(\ os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048/test_files.txt')) def log_string(out_str): LOG_FOUT.write(out_str+'\n') LOG_FOUT.flush() print(out_str) def get_learning_rate(batch): learning_rate = tf.train.exponential_decay( BASE_LEARNING_RATE, # Base learning rate. batch * BATCH_SIZE, # Current index into the dataset. DECAY_STEP, # Decay step. DECAY_RATE, # Decay rate. staircase=True) learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE! return learning_rate def get_bn_decay(batch): bn_momentum = tf.train.exponential_decay( BN_INIT_DECAY, batch*BATCH_SIZE, BN_DECAY_DECAY_STEP, BN_DECAY_DECAY_RATE, staircase=True) bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum) return bn_decay def train(): with tf.Graph().as_default(): with tf.device('/gpu:'+str(GPU_INDEX)): pointclouds_pl, labels_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT) is_training_pl = tf.placeholder(tf.bool, shape=()) print(is_training_pl) # Note the global_step=batch parameter to minimize. # That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains. batch = tf.Variable(0) bn_decay = get_bn_decay(batch) tf.summary.scalar('bn_decay', bn_decay) # Get model and loss pred, end_points = MODEL.get_model(pointclouds_pl, is_training_pl, bn_decay=bn_decay) loss = MODEL.get_loss(pred, labels_pl, end_points) tf.summary.scalar('loss', loss) correct = tf.equal(tf.argmax(pred, 1), tf.to_int64(labels_pl)) accuracy = tf.reduce_sum(tf.cast(correct, tf.float32)) / float(BATCH_SIZE) tf.summary.scalar('accuracy', accuracy) # Get training operator learning_rate = get_learning_rate(batch) tf.summary.scalar('learning_rate', learning_rate) if OPTIMIZER == 'momentum': optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM) elif OPTIMIZER == 'adam': optimizer = tf.train.AdamOptimizer(learning_rate) train_op = optimizer.minimize(loss, global_step=batch) # Add ops to save and restore all the variables. saver = tf.train.Saver(max_to_keep=250) # Create a session config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False sess = tf.Session(config=config) # Add summary writers #merged = tf.merge_all_summaries() merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'), sess.graph) test_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'test')) # Init variables init = tf.global_variables_initializer() # To fix the bug introduced in TF 0.12.1 as in # http://stackoverflow.com/questions/41543774/invalidargumenterror-for-tensor-bool-tensorflow-0-12-1 #sess.run(init) sess.run(init, {is_training_pl: True}) ops = {'pointclouds_pl': pointclouds_pl, 'labels_pl': labels_pl, 'is_training_pl': is_training_pl, 'pred': pred, 'loss': loss, 'train_op': train_op, 'merged': merged, 'step': batch} for epoch in range(MAX_EPOCH): log_string('**** EPOCH %03d ****' % (epoch)) sys.stdout.flush() train_one_epoch(sess, ops, train_writer, epoch) avg_accuracy = eval_one_epoch(sess, ops, test_writer) # Save the variables to disk. # save_path = saver.save(sess, os.path.join(LOG_DIR, "epoch_" + str(epoch) + "_model.ckpt")) # log_string("Model saved in file: %s" % save_path) if avg_accuracy > 0.917: save_path = saver.save(sess, os.path.join(LOG_DIR, "epoch_" + str(epoch) + "_model.ckpt")) log_string("Model saved in file: %s" % save_path) def train_one_epoch(sess, ops, train_writer, epoch): """ ops: dict mapping from string to tf ops """ is_training = True # Shuffle train files train_file_idxs = np.arange(0, len(TRAIN_FILES)) np.random.shuffle(train_file_idxs) for fn in range(len(TRAIN_FILES)): log_string('----' + str(fn) + '-----') current_data, current_label = provider.loadDataFile(TRAIN_FILES[train_file_idxs[fn]]) current_data = current_data[:, 0:NUM_POINT, :] current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label)) current_label = np.squeeze(current_label) file_size = current_data.shape[0] num_batches = file_size // BATCH_SIZE total_correct = 0 total_seen = 0 loss_sum = 0 for batch_idx in range(num_batches): start_idx = batch_idx * BATCH_SIZE end_idx = (batch_idx+1) * BATCH_SIZE # Augment batched point clouds by rotation and jittering if epoch < MAX_EPOCH - 49: rotated_data = provider.rotate_point_cloud(current_data[start_idx:end_idx, :, :]) jittered_data = provider.jitter_point_cloud(rotated_data) jittered_data = provider.random_scale_point_cloud(jittered_data) jittered_data = provider.rotate_perturbation_point_cloud(jittered_data) jittered_data = provider.shift_point_cloud(jittered_data) else: jittered_data = current_data[start_idx:end_idx, :, :] feed_dict = {ops['pointclouds_pl']: jittered_data, ops['labels_pl']: current_label[start_idx:end_idx], ops['is_training_pl']: is_training,} summary, step, _, loss_val, pred_val = sess.run([ops['merged'], ops['step'], ops['train_op'], ops['loss'], ops['pred']], feed_dict=feed_dict) train_writer.add_summary(summary, step) pred_val = np.argmax(pred_val, 1) correct = np.sum(pred_val == current_label[start_idx:end_idx]) total_correct += correct total_seen += BATCH_SIZE loss_sum += loss_val log_string('mean loss: %f' % (loss_sum / float(num_batches))) log_string('accuracy: %f' % (total_correct / float(total_seen))) def eval_one_epoch(sess, ops, test_writer): """ ops: dict mapping from string to tf ops """ is_training = False total_correct = 0 total_seen = 0 loss_sum = 0 total_seen_class = [0 for _ in range(NUM_CLASSES)] total_correct_class = [0 for _ in range(NUM_CLASSES)] for fn in range(len(TEST_FILES)): log_string('----' + str(fn) + '-----') current_data, current_label = provider.loadDataFile(TEST_FILES[fn]) current_data = current_data[:,0:NUM_POINT,:] current_label = np.squeeze(current_label) file_size = current_data.shape[0] num_batches = file_size // BATCH_SIZE for batch_idx in range(num_batches): start_idx = batch_idx * BATCH_SIZE end_idx = (batch_idx+1) * BATCH_SIZE feed_dict = {ops['pointclouds_pl']: current_data[start_idx:end_idx, :, :], ops['labels_pl']: current_label[start_idx:end_idx], ops['is_training_pl']: is_training} summary, step, loss_val, pred_val = sess.run([ops['merged'], ops['step'], ops['loss'], ops['pred']], feed_dict=feed_dict) pred_val = np.argmax(pred_val, 1) correct = np.sum(pred_val == current_label[start_idx:end_idx]) total_correct += correct total_seen += BATCH_SIZE loss_sum += (loss_val*BATCH_SIZE) for i in range(start_idx, end_idx): l = current_label[i] total_seen_class[l] += 1 total_correct_class[l] += (pred_val[i-start_idx] == l) log_string('eval mean loss: %f' % (loss_sum / float(total_seen))) log_string('eval accuracy: %f'% (total_correct / float(total_seen))) log_string('eval avg class acc: %f' % (np.mean(np.array(total_correct_class)/np.array(total_seen_class,dtype=np.float)))) accuracy_max.append(total_correct / float(total_seen)) return total_correct / float(total_seen) if __name__ == "__main__": train() log_string('maximum accuracy: %f' % (np.max(accuracy_max))) LOG_FOUT.close()
42.043165
125
0.629363
e3bd827aed69bcbde357b51a8c78960d12ef4ce8
1,059
py
Python
facedetectr.py
vijanipiyawardana/kidsplaymate
5821eb0c6c63661de80a0348aba17d99e5b992f5
[ "MIT" ]
null
null
null
facedetectr.py
vijanipiyawardana/kidsplaymate
5821eb0c6c63661de80a0348aba17d99e5b992f5
[ "MIT" ]
null
null
null
facedetectr.py
vijanipiyawardana/kidsplaymate
5821eb0c6c63661de80a0348aba17d99e5b992f5
[ "MIT" ]
null
null
null
import cv2 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt2.xml') # Defining a function that will do the detections def detect(gray, frame): gray1 = None faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x, y, w, h) in faces: cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2) roi_gray = gray[y:y+h, x:x+w] roi_color = frame[y:y+h, x:x+w] gray1 = roi_gray return gray1 # Doing some Face Recognition with the webcam video_capture = cv2.VideoCapture(0) i = 0 while (i < 300): print('vijani ' + str(i)) _, frame = video_capture.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) face = detect(gray, frame) if face is not None: print('/home/vijani/Desktop/movetopi/images/img'+ str(i) + '.jpg') cv2.imwrite('/home/vijani/Desktop/movetopi/images/img'+ str(i) + '.jpg', face) i = i + 1 ''' cv2.imshow('Video', face) if cv2.waitKey(1) & 0xFF == ord('q'): break video_capture.release() cv2.destroyAllWindows() '''
27.868421
86
0.621341
8666c531d61415e8488993d4b92ddd3aa1a73dde
435
py
Python
py/guess-number-higher-or-lower-ii.py
ckclark/leetcode
844c6f18d06dcb397db76436e5f4b8ddcb1beddc
[ "Apache-2.0" ]
null
null
null
py/guess-number-higher-or-lower-ii.py
ckclark/leetcode
844c6f18d06dcb397db76436e5f4b8ddcb1beddc
[ "Apache-2.0" ]
null
null
null
py/guess-number-higher-or-lower-ii.py
ckclark/leetcode
844c6f18d06dcb397db76436e5f4b8ddcb1beddc
[ "Apache-2.0" ]
null
null
null
class Solution(object): def getMoneyAmount(self, n, table=dict()): """ :type n: int :rtype: int """ def dp(L, U): if (L, U) not in table: if L + 1 >= U: table[L, U] = 0 else: table[L, U] = min(j + max(dp(L, j), dp(j + 1, U)) for j in xrange(L, U)) return table[L, U] return dp(1, n + 1)
29
92
0.37931
181e90a23883297619da8c5bf92fa5f3988bd2e7
6,355
py
Python
utils/data_generator.py
SaverioVad/HAD_Net
67b2dfb6bae5b971c86b42d747975684d96e36b1
[ "Net-SNMP", "Xnet" ]
13
2021-04-01T10:42:21.000Z
2022-03-17T07:47:29.000Z
utils/data_generator.py
SaverioVad/HAD_Net
67b2dfb6bae5b971c86b42d747975684d96e36b1
[ "Net-SNMP", "Xnet" ]
2
2021-07-08T00:49:50.000Z
2021-11-26T00:02:17.000Z
utils/data_generator.py
SaverioVad/HAD_Net
67b2dfb6bae5b971c86b42d747975684d96e36b1
[ "Net-SNMP", "Xnet" ]
1
2021-09-08T13:32:38.000Z
2021-09-08T13:32:38.000Z
from torch.utils.data import Dataset, DataLoader import torch import os import numpy as np # Data generator class class data_generator(Dataset): def __init__(self, list_ids, root_path, semantics): # Store important information. self.list_ids = list_ids self.root_path = root_path self.semantics = semantics def __len__(self): return len(self.list_ids) def __getitem__(self, idx): # Extract semantic info. set_x, set_y, set_z = self.semantics[0] num_teacher_mods = self.semantics[1] num_student_mods = self.semantics[2] # Data folder path. root_path = self.root_path # Get folder path for this sample. sample = (self.list_ids)[idx] sample_path = os.path.join(root_path, sample) # Get the list of modalities/sequences. H_or_L = os.listdir(sample_path) for hl in H_or_L: if "HGG" in hl: full_path = os.path.join(sample_path, "HGG") elif "LGG" in hl: full_path = os.path.join(sample_path, "LGG") else: raise Exception("ERROR: Empty folder.") # Get and sort modalities/sequences. modalities = os.listdir(full_path) modalities = sorted(modalities) # Holds the modalities/sequences. x_teacher = [] x_student = [] ########################################## ############### BRAIN MASK ############### ########################################## # Get the brain mask. mask_path = os.path.join(full_path, "mask.npy") mask = np.load(mask_path) unpadded_mask = np.copy(mask) # Determine the required padding. x_init,y_init,z_init = np.shape(mask) x_diff = set_x - x_init y_diff = set_y - y_init z_diff = set_z - z_init x_start = x_diff//2 x_end = x_diff - x_start y_start = y_diff//2 y_end = y_diff - y_start z_start = z_diff//2 z_end = z_diff - z_start # Pad the brain mask. mask = np.pad(mask,((x_start,x_end),(y_start,y_end),(z_start,z_end))) x_fin, y_fin, z_fin = np.shape(mask) if ((x_fin != set_x) or (y_fin != set_y) or (z_fin != set_z)): raise Exception("Error: Wrong size after padding the brain mask.") # Convert brain mask to tensor. mask = torch.from_numpy(np.int16(mask)) ########################################## ################# SEG MAP ################ ########################################## # Get the segmentation map. seg_path = os.path.join(full_path, "seg.npy") seg = np.load(seg_path) seg[np.where(seg==4)] = 3 # Pad the ground truth segmentation map. seg = np.pad(seg,((x_start,x_end),(y_start,y_end),(z_start,z_end))) x_fin, y_fin, z_fin = np.shape(seg) if ((x_fin != set_x) or (y_fin != set_y) or (z_fin != set_z)): raise Exception("Error: Wrong size after padding the segmentation map.") # Convert the segmentation map to tensor. y = torch.from_numpy(np.int16(seg)) ########################################## ################### MODS ################# ########################################## # Each folder contains 4 modalities/sequences, the brain mask, and the segmentation ground truth. for modality_name in modalities: # We only want the modalities/sequences (i.e., not the brain mask or the segmentation map). if ".npy" in modality_name: if (("mask" not in modality_name) and ("seg" not in modality_name)): # Get modality. mod_path = os.path.join(full_path, modality_name) modality = np.load(mod_path) modality = np.float32(modality) # Normalize the modalities/sequences so that they have 0 mean and unit standard deviation. brain_mask = np.where(unpadded_mask==1) mu = modality[brain_mask].mean() sigma = modality[brain_mask].std() modality = (modality - mu) / sigma modality = np.clip(modality, np.min(modality),3) modality = (modality + (-np.min(modality))) / (3-np.min(modality)) # Pad the modality/sequence. modality = np.pad(modality,((x_start,x_end),(y_start,y_end),(z_start,z_end)), 'constant', constant_values=(0)) x_fin, y_fin, z_fin = np.shape(modality) if ((x_fin != set_x) or (y_fin != set_y) or (z_fin != set_z)): raise Exception("Error: Wrong size after padding the modality.") # Save the modality/sequence as a tensor. modality = torch.from_numpy(modality) modality = modality.unsqueeze(0) # Append the modality/sequence to the list of teacher modalities/sequences. x_teacher.append(modality) # Append the modality/sequence to the list of student modalities/sequences, if it is not post-contrast. if ("t1c" not in modality_name): x_student.append(modality) # Check lengths of the modality/sequence lists. if(len(x_teacher)!=num_teacher_mods): raise Exception("ERROR: length of x_teacher is not", num_teacher_mods,"! It is ", len(x_teacher),"!") if(len(x_student)!=num_student_mods): raise Exception("ERROR: length of x_student is not", num_student_mods,"! It is ", len(x_student),"!") # Concatenate the input modalities. x_cat_teacher = torch.cat((x_teacher[0],x_teacher[1],x_teacher[2],x_teacher[3]), dim=0) x_cat_student = torch.cat((x_student[0],x_student[1],x_student[2]), dim=0) # Return the inputs and target. return(x_cat_teacher, x_cat_student, y, sample)
41.266234
130
0.521951
d9d3c7ddb7f04067a59f2832d3be81864f43b6e7
1,790
py
Python
awesome-python/projects/python-auto-login/core.py
fadhilsaheer/projects
976e4c175bd81563ec82b8445e9735c82146641c
[ "MIT" ]
3
2021-02-08T09:45:54.000Z
2021-09-30T13:33:50.000Z
awesome-python/projects/python-auto-login/core.py
fadhilsaheer/projects
976e4c175bd81563ec82b8445e9735c82146641c
[ "MIT" ]
null
null
null
awesome-python/projects/python-auto-login/core.py
fadhilsaheer/projects
976e4c175bd81563ec82b8445e9735c82146641c
[ "MIT" ]
1
2021-05-15T09:25:52.000Z
2021-05-15T09:25:52.000Z
#importing module import pyfiglet #home page def home_page(): home = pyfiglet.figlet_format("AUTOMATE") print(home) #option page def option_page(): print("") print("Gmail Login : a \n") print("Facebook Login : b\n") print("Instagram Login : c\n") print("Twitter Login : d \n") print("Github Login : e \n\n") print("Exit : 1") print("") #pages class page: def __init__(self): username = self.username password = self.password def google(username, password): import auth auth.google(username, password) def facebook(username, password): import auth auth.facebook(username, password) def instagram(username, password): import auth auth.instagram(username, password) def twitter(username, password): import auth auth.twitter(username, password) def github(username, password): import auth auth.github(username, password) def ask_input(keyword): username = input(f"Enter Your {keyword} :) ") password = input("Enter Your Password :) ") array = [username, password] return array #checking def option(opt): if opt == "1": quit() if opt == "a": data = ask_input("Gmail Id") page.google(data[0], data[1]) if opt == "b": data = ask_input("Facebook Id Or Email") page.facebook(data[0], data[1]) if opt == "c": data = ask_input("Instagram Id Or Email") page.instagram(data[0], data[1]) if opt == "d": data = ask_input("Twitter Id Or Email") page.twitter(data[0], data[1]) if opt == "e": data = ask_input("Githbum Id Or Email") page.github(data[0], data[1]) else: return False
20.340909
49
0.585475
05bfb490cb8a38d8a0b57e33371036d872227ada
14,641
py
Python
homeassistant/components/google/__init__.py
sebr/home-assistant
88ed2f3b3ed5a52ad5c94e170d981520940e977e
[ "Apache-2.0" ]
null
null
null
homeassistant/components/google/__init__.py
sebr/home-assistant
88ed2f3b3ed5a52ad5c94e170d981520940e977e
[ "Apache-2.0" ]
5
2022-03-01T06:32:33.000Z
2022-03-31T07:06:35.000Z
homeassistant/components/google/__init__.py
sebr/home-assistant
88ed2f3b3ed5a52ad5c94e170d981520940e977e
[ "Apache-2.0" ]
null
null
null
"""Support for Google - Calendar Event Devices.""" from datetime import datetime, timedelta, timezone from enum import Enum import logging import os from googleapiclient import discovery as google_discovery import httplib2 from oauth2client.client import ( FlowExchangeError, OAuth2DeviceCodeError, OAuth2WebServerFlow, ) from oauth2client.file import Storage import voluptuous as vol from voluptuous.error import Error as VoluptuousError import yaml from homeassistant.components import persistent_notification from homeassistant.const import ( CONF_CLIENT_ID, CONF_CLIENT_SECRET, CONF_DEVICE_ID, CONF_ENTITIES, CONF_NAME, CONF_OFFSET, Platform, ) from homeassistant.core import HomeAssistant, ServiceCall from homeassistant.helpers import discovery import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import generate_entity_id from homeassistant.helpers.event import track_utc_time_change from homeassistant.helpers.typing import ConfigType from homeassistant.util import convert _LOGGER = logging.getLogger(__name__) DOMAIN = "google" ENTITY_ID_FORMAT = DOMAIN + ".{}" CONF_TRACK_NEW = "track_new_calendar" CONF_CAL_ID = "cal_id" CONF_TRACK = "track" CONF_SEARCH = "search" CONF_IGNORE_AVAILABILITY = "ignore_availability" CONF_MAX_RESULTS = "max_results" CONF_CALENDAR_ACCESS = "calendar_access" DEFAULT_CONF_TRACK_NEW = True DEFAULT_CONF_OFFSET = "!!" EVENT_CALENDAR_ID = "calendar_id" EVENT_DESCRIPTION = "description" EVENT_END_CONF = "end" EVENT_END_DATE = "end_date" EVENT_END_DATETIME = "end_date_time" EVENT_IN = "in" EVENT_IN_DAYS = "days" EVENT_IN_WEEKS = "weeks" EVENT_START_CONF = "start" EVENT_START_DATE = "start_date" EVENT_START_DATETIME = "start_date_time" EVENT_SUMMARY = "summary" EVENT_TYPES_CONF = "event_types" NOTIFICATION_ID = "google_calendar_notification" NOTIFICATION_TITLE = "Google Calendar Setup" GROUP_NAME_ALL_CALENDARS = "Google Calendar Sensors" SERVICE_SCAN_CALENDARS = "scan_for_calendars" SERVICE_FOUND_CALENDARS = "found_calendar" SERVICE_ADD_EVENT = "add_event" DATA_INDEX = "google_calendars" YAML_DEVICES = f"{DOMAIN}_calendars.yaml" TOKEN_FILE = f".{DOMAIN}.token" class FeatureAccess(Enum): """Class to represent different access scopes.""" read_only = "https://www.googleapis.com/auth/calendar.readonly" read_write = "https://www.googleapis.com/auth/calendar" def __init__(self, scope: str) -> None: """Init instance.""" self._scope = scope @property def scope(self) -> str: """Google calendar scope for the feature.""" return self._scope CONFIG_SCHEMA = vol.Schema( { DOMAIN: vol.Schema( { vol.Required(CONF_CLIENT_ID): cv.string, vol.Required(CONF_CLIENT_SECRET): cv.string, vol.Optional(CONF_TRACK_NEW): cv.boolean, vol.Optional(CONF_CALENDAR_ACCESS, default="read_write"): cv.enum( FeatureAccess ), } ) }, extra=vol.ALLOW_EXTRA, ) _SINGLE_CALSEARCH_CONFIG = vol.All( cv.deprecated(CONF_MAX_RESULTS), vol.Schema( { vol.Required(CONF_NAME): cv.string, vol.Required(CONF_DEVICE_ID): cv.string, vol.Optional(CONF_IGNORE_AVAILABILITY, default=True): cv.boolean, vol.Optional(CONF_OFFSET): cv.string, vol.Optional(CONF_SEARCH): cv.string, vol.Optional(CONF_TRACK): cv.boolean, vol.Optional(CONF_MAX_RESULTS): cv.positive_int, # Now unused } ), ) DEVICE_SCHEMA = vol.Schema( { vol.Required(CONF_CAL_ID): cv.string, vol.Required(CONF_ENTITIES, None): vol.All( cv.ensure_list, [_SINGLE_CALSEARCH_CONFIG] ), }, extra=vol.ALLOW_EXTRA, ) _EVENT_IN_TYPES = vol.Schema( { vol.Exclusive(EVENT_IN_DAYS, EVENT_TYPES_CONF): cv.positive_int, vol.Exclusive(EVENT_IN_WEEKS, EVENT_TYPES_CONF): cv.positive_int, } ) ADD_EVENT_SERVICE_SCHEMA = vol.Schema( { vol.Required(EVENT_CALENDAR_ID): cv.string, vol.Required(EVENT_SUMMARY): cv.string, vol.Optional(EVENT_DESCRIPTION, default=""): cv.string, vol.Exclusive(EVENT_START_DATE, EVENT_START_CONF): cv.date, vol.Exclusive(EVENT_END_DATE, EVENT_END_CONF): cv.date, vol.Exclusive(EVENT_START_DATETIME, EVENT_START_CONF): cv.datetime, vol.Exclusive(EVENT_END_DATETIME, EVENT_END_CONF): cv.datetime, vol.Exclusive(EVENT_IN, EVENT_START_CONF, EVENT_END_CONF): _EVENT_IN_TYPES, } ) def do_authentication(hass, hass_config, config): """Notify user of actions and authenticate. Notify user of user_code and verification_url then poll until we have an access token. """ oauth = OAuth2WebServerFlow( client_id=config[CONF_CLIENT_ID], client_secret=config[CONF_CLIENT_SECRET], scope=config[CONF_CALENDAR_ACCESS].scope, redirect_uri="Home-Assistant.io", ) try: dev_flow = oauth.step1_get_device_and_user_codes() except OAuth2DeviceCodeError as err: persistent_notification.create( hass, f"Error: {err}<br />You will need to restart hass after fixing." "", title=NOTIFICATION_TITLE, notification_id=NOTIFICATION_ID, ) return False persistent_notification.create( hass, ( f"In order to authorize Home-Assistant to view your calendars " f'you must visit: <a href="{dev_flow.verification_url}" target="_blank">{dev_flow.verification_url}</a> and enter ' f"code: {dev_flow.user_code}" ), title=NOTIFICATION_TITLE, notification_id=NOTIFICATION_ID, ) def step2_exchange(now): """Keep trying to validate the user_code until it expires.""" _LOGGER.debug("Attempting to validate user code") # For some reason, oauth.step1_get_device_and_user_codes() returns a datetime # object without tzinfo. For the comparison below to work, it needs one. user_code_expiry = dev_flow.user_code_expiry.replace(tzinfo=timezone.utc) if now >= user_code_expiry: persistent_notification.create( hass, "Authentication code expired, please restart " "Home-Assistant and try again", title=NOTIFICATION_TITLE, notification_id=NOTIFICATION_ID, ) listener() return try: credentials = oauth.step2_exchange(device_flow_info=dev_flow) except FlowExchangeError: # not ready yet, call again return storage = Storage(hass.config.path(TOKEN_FILE)) storage.put(credentials) do_setup(hass, hass_config, config) listener() persistent_notification.create( hass, ( f"We are all setup now. Check {YAML_DEVICES} for calendars that have " f"been found" ), title=NOTIFICATION_TITLE, notification_id=NOTIFICATION_ID, ) listener = track_utc_time_change( hass, step2_exchange, second=range(0, 60, dev_flow.interval) ) return True def setup(hass: HomeAssistant, config: ConfigType) -> bool: """Set up the Google platform.""" if DATA_INDEX not in hass.data: hass.data[DATA_INDEX] = {} if not (conf := config.get(DOMAIN, {})): # component is set up by tts platform return True token_file = hass.config.path(TOKEN_FILE) if not os.path.isfile(token_file): _LOGGER.debug("Token file does not exist, authenticating for first time") do_authentication(hass, config, conf) else: if not check_correct_scopes(hass, token_file, conf): _LOGGER.debug("Existing scopes are not sufficient, re-authenticating") do_authentication(hass, config, conf) else: do_setup(hass, config, conf) return True def check_correct_scopes(hass, token_file, config): """Check for the correct scopes in file.""" creds = Storage(token_file).get() if not creds or not creds.scopes: return False target_scope = config[CONF_CALENDAR_ACCESS].scope return target_scope in creds.scopes def setup_services( hass, hass_config, config, track_new_found_calendars, calendar_service ): """Set up the service listeners.""" def _found_calendar(call: ServiceCall) -> None: """Check if we know about a calendar and generate PLATFORM_DISCOVER.""" calendar = get_calendar_info(hass, call.data) if hass.data[DATA_INDEX].get(calendar[CONF_CAL_ID]) is not None: return hass.data[DATA_INDEX].update({calendar[CONF_CAL_ID]: calendar}) update_config( hass.config.path(YAML_DEVICES), hass.data[DATA_INDEX][calendar[CONF_CAL_ID]] ) discovery.load_platform( hass, Platform.CALENDAR, DOMAIN, hass.data[DATA_INDEX][calendar[CONF_CAL_ID]], hass_config, ) hass.services.register(DOMAIN, SERVICE_FOUND_CALENDARS, _found_calendar) def _scan_for_calendars(call: ServiceCall) -> None: """Scan for new calendars.""" service = calendar_service.get() cal_list = service.calendarList() calendars = cal_list.list().execute()["items"] for calendar in calendars: calendar["track"] = track_new_found_calendars hass.services.call(DOMAIN, SERVICE_FOUND_CALENDARS, calendar) hass.services.register(DOMAIN, SERVICE_SCAN_CALENDARS, _scan_for_calendars) def _add_event(call: ServiceCall) -> None: """Add a new event to calendar.""" service = calendar_service.get() start = {} end = {} if EVENT_IN in call.data: if EVENT_IN_DAYS in call.data[EVENT_IN]: now = datetime.now() start_in = now + timedelta(days=call.data[EVENT_IN][EVENT_IN_DAYS]) end_in = start_in + timedelta(days=1) start = {"date": start_in.strftime("%Y-%m-%d")} end = {"date": end_in.strftime("%Y-%m-%d")} elif EVENT_IN_WEEKS in call.data[EVENT_IN]: now = datetime.now() start_in = now + timedelta(weeks=call.data[EVENT_IN][EVENT_IN_WEEKS]) end_in = start_in + timedelta(days=1) start = {"date": start_in.strftime("%Y-%m-%d")} end = {"date": end_in.strftime("%Y-%m-%d")} elif EVENT_START_DATE in call.data: start = {"date": str(call.data[EVENT_START_DATE])} end = {"date": str(call.data[EVENT_END_DATE])} elif EVENT_START_DATETIME in call.data: start_dt = str( call.data[EVENT_START_DATETIME].strftime("%Y-%m-%dT%H:%M:%S") ) end_dt = str(call.data[EVENT_END_DATETIME].strftime("%Y-%m-%dT%H:%M:%S")) start = {"dateTime": start_dt, "timeZone": str(hass.config.time_zone)} end = {"dateTime": end_dt, "timeZone": str(hass.config.time_zone)} event = { "summary": call.data[EVENT_SUMMARY], "description": call.data[EVENT_DESCRIPTION], "start": start, "end": end, } service_data = {"calendarId": call.data[EVENT_CALENDAR_ID], "body": event} event = service.events().insert(**service_data).execute() # Only expose the add event service if we have the correct permissions if config.get(CONF_CALENDAR_ACCESS) is FeatureAccess.read_write: hass.services.register( DOMAIN, SERVICE_ADD_EVENT, _add_event, schema=ADD_EVENT_SERVICE_SCHEMA ) return True def do_setup(hass, hass_config, config): """Run the setup after we have everything configured.""" _LOGGER.debug("Setting up integration") # Load calendars the user has configured hass.data[DATA_INDEX] = load_config(hass.config.path(YAML_DEVICES)) calendar_service = GoogleCalendarService(hass.config.path(TOKEN_FILE)) track_new_found_calendars = convert( config.get(CONF_TRACK_NEW), bool, DEFAULT_CONF_TRACK_NEW ) setup_services( hass, hass_config, config, track_new_found_calendars, calendar_service ) for calendar in hass.data[DATA_INDEX].values(): discovery.load_platform(hass, Platform.CALENDAR, DOMAIN, calendar, hass_config) # Look for any new calendars hass.services.call(DOMAIN, SERVICE_SCAN_CALENDARS, None) return True class GoogleCalendarService: """Calendar service interface to Google.""" def __init__(self, token_file): """Init the Google Calendar service.""" self.token_file = token_file def get(self): """Get the calendar service from the storage file token.""" credentials = Storage(self.token_file).get() http = credentials.authorize(httplib2.Http()) service = google_discovery.build( "calendar", "v3", http=http, cache_discovery=False ) return service def get_calendar_info(hass, calendar): """Convert data from Google into DEVICE_SCHEMA.""" calendar_info = DEVICE_SCHEMA( { CONF_CAL_ID: calendar["id"], CONF_ENTITIES: [ { CONF_TRACK: calendar["track"], CONF_NAME: calendar["summary"], CONF_DEVICE_ID: generate_entity_id( "{}", calendar["summary"], hass=hass ), } ], } ) return calendar_info def load_config(path): """Load the google_calendar_devices.yaml.""" calendars = {} try: with open(path, encoding="utf8") as file: data = yaml.safe_load(file) for calendar in data: try: calendars.update({calendar[CONF_CAL_ID]: DEVICE_SCHEMA(calendar)}) except VoluptuousError as exception: # keep going _LOGGER.warning("Calendar Invalid Data: %s", exception) except FileNotFoundError: # When YAML file could not be loaded/did not contain a dict return {} return calendars def update_config(path, calendar): """Write the google_calendar_devices.yaml.""" with open(path, "a", encoding="utf8") as out: out.write("\n") yaml.dump([calendar], out, default_flow_style=False)
32.753915
127
0.64777
9992fa1e7570a42484e4ceaad027811944f110bf
1,856
py
Python
eth/vm/forks/berlin/computation.py
Peppece/py-evm
db9ae3c1aa617e28525344db159db2a312a03033
[ "MIT" ]
null
null
null
eth/vm/forks/berlin/computation.py
Peppece/py-evm
db9ae3c1aa617e28525344db159db2a312a03033
[ "MIT" ]
null
null
null
eth/vm/forks/berlin/computation.py
Peppece/py-evm
db9ae3c1aa617e28525344db159db2a312a03033
[ "MIT" ]
null
null
null
import math from eth_utils.toolz import ( merge, ) from eth.precompiles.modexp import ( compute_adjusted_exponent_length, extract_lengths, modexp, ) from eth._utils.address import ( force_bytes_to_address, ) from eth._utils.padding import ( zpad_right, ) from eth.vm.forks.berlin import constants from eth.vm.forks.muir_glacier.computation import ( MUIR_GLACIER_PRECOMPILES ) from eth.vm.forks.muir_glacier.computation import ( MuirGlacierComputation, ) from .opcodes import BERLIN_OPCODES def _calculate_multiplication_complexity(base_length: int, modulus_length: int) -> int: max_length = max(base_length, modulus_length) words = math.ceil(max_length / 8) return words**2 def _compute_modexp_gas_fee_eip_2565(data: bytes) -> int: base_length, exponent_length, modulus_length = extract_lengths(data) base_end_idx = 96 + base_length exponent_end_idx = base_end_idx + exponent_length exponent_bytes = zpad_right( data[base_end_idx:exponent_end_idx], to_size=exponent_length, ) multiplication_complexity = _calculate_multiplication_complexity(base_length, modulus_length) iteration_count = compute_adjusted_exponent_length(exponent_length, exponent_bytes) return max(200, multiplication_complexity * iteration_count // constants.GAS_MOD_EXP_QUADRATIC_DENOMINATOR_EIP_2565) BERLIN_PRECOMPILES = merge( MUIR_GLACIER_PRECOMPILES, {force_bytes_to_address(b'\x05'): modexp(gas_calculator=_compute_modexp_gas_fee_eip_2565)}, ) class BerlinComputation(MuirGlacierComputation): """ A class for all execution computations in the ``Berlin`` fork. Inherits from :class:`~eth.vm.forks.muir_glacier.MuirGlacierComputation` """ # Override opcodes = BERLIN_OPCODES _precompiles = BERLIN_PRECOMPILES
26.898551
97
0.757004
a881c6404aa021f00ec38597cc814c4787412315
294
py
Python
easy/693.py
oneTaken/leetcode
f9357d839ac8fa6333b0d7eeb2028ba28a63764c
[ "Apache-2.0" ]
null
null
null
easy/693.py
oneTaken/leetcode
f9357d839ac8fa6333b0d7eeb2028ba28a63764c
[ "Apache-2.0" ]
null
null
null
easy/693.py
oneTaken/leetcode
f9357d839ac8fa6333b0d7eeb2028ba28a63764c
[ "Apache-2.0" ]
null
null
null
class Solution: def hasAlternatingBits(self, n): """ :type n: int :rtype: bool """ num = bin(n)[2:] start = '10' if len(num) % 2 == 1: start = '01' num = '0' + num return start * (len(num) // 2) == num
22.615385
45
0.394558
ca07175b8d5f683d30ea2ad530077ffc50fa9649
1,118
py
Python
danceschool/financial/migrations/0013_auto_20181219_2044.py
benjwrdill/django-danceschool
9ecb2754502e62d0f49aa23d08ca6de6cae3c99a
[ "BSD-3-Clause" ]
32
2017-09-12T04:25:25.000Z
2022-03-21T10:48:07.000Z
danceschool/financial/migrations/0013_auto_20181219_2044.py
benjwrdill/django-danceschool
9ecb2754502e62d0f49aa23d08ca6de6cae3c99a
[ "BSD-3-Clause" ]
97
2017-09-01T02:43:08.000Z
2022-01-03T18:20:34.000Z
danceschool/financial/migrations/0013_auto_20181219_2044.py
benjwrdill/django-danceschool
9ecb2754502e62d0f49aa23d08ca6de6cae3c99a
[ "BSD-3-Clause" ]
19
2017-09-26T13:34:46.000Z
2022-03-21T10:48:10.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.15 on 2018-12-20 01:44 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('financial', '0012_auto_20181216_1615'), ] operations = [ migrations.RemoveField( model_name='expenseitem', name='payToLocation', ), migrations.RemoveField( model_name='expenseitem', name='payToName', ), migrations.RemoveField( model_name='expenseitem', name='payToUser', ), migrations.RemoveField( model_name='genericrepeatedexpense', name='payToLocation', ), migrations.RemoveField( model_name='genericrepeatedexpense', name='payToName', ), migrations.RemoveField( model_name='genericrepeatedexpense', name='payToUser', ), migrations.RemoveField( model_name='revenueitem', name='receivedFromName', ), ]
25.409091
49
0.563506
6f9420d6cf4273b8e0fd7374782585bc16e694d9
924
py
Python
networks/base.py
Jarvis73/DeepCNN
e52723e8d607c8cbf49080ea040bf7c3718c6326
[ "MIT" ]
2
2019-08-21T03:03:07.000Z
2019-08-30T02:50:09.000Z
networks/base.py
Jarvis73/DeepCNN
e52723e8d607c8cbf49080ea040bf7c3718c6326
[ "MIT" ]
null
null
null
networks/base.py
Jarvis73/DeepCNN
e52723e8d607c8cbf49080ea040bf7c3718c6326
[ "MIT" ]
1
2019-08-30T03:53:53.000Z
2019-08-30T03:53:53.000Z
# Copyright 2019 Jianwei Zhang All Right Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ================================================================================= class BaseNet(object): def __init__(self, name=None): self.name = name + "/" if name else "" def __call__(self, inputs, *args, **kwargs): pass def __repr__(self): return self.__class__.__name__ + "()"
34.222222
83
0.646104
994e89e4a4da3efc5679e141a7294aa95d156b02
1,026
py
Python
backend/app/router/auth.py
kentayamada-dev/mercari-clone
37cfa97876ebd4a003c4ca339cb4cdc5e012d502
[ "MIT" ]
6
2022-01-21T06:17:05.000Z
2022-03-27T05:45:23.000Z
backend/app/router/auth.py
kentayamada-dev/mercari-clone
37cfa97876ebd4a003c4ca339cb4cdc5e012d502
[ "MIT" ]
null
null
null
backend/app/router/auth.py
kentayamada-dev/mercari-clone
37cfa97876ebd4a003c4ca339cb4cdc5e012d502
[ "MIT" ]
1
2022-03-27T05:45:31.000Z
2022-03-27T05:45:31.000Z
from app.core.schema.jwt import Secret from app.core.schema.message import Message from app.core.utils.auth import auth from app.crud.seller import authenticate_seller from app.db.database import get_db from fastapi import APIRouter, Depends, HTTPException, status from fastapi.security import OAuth2PasswordRequestForm from sqlalchemy.orm import Session router = APIRouter() @router.post( "/token", response_model=Secret, responses={status.HTTP_401_UNAUTHORIZED: {"model": Message}}, ) def create_token( form_data: OAuth2PasswordRequestForm = Depends(), db: Session = Depends(get_db), ) -> dict[str, str]: user = authenticate_seller(db, form_data.username, form_data.password) if user is None: raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="incorrect email or password", headers={"WWW-Authenticate": "Bearer"}, ) token = auth.create_jwt_token(user.email) return {"access_token": token, "token_type": "Bearer"}
33.096774
74
0.727096
adc7e813298c8320c34e8b3a2461bab897f6c38f
602
py
Python
questions/q317_non_repeating_numbers/code.py
aadhityasw/Competitive-Programs
901a48d35f024a3a87c32a45b7f4531e8004a203
[ "MIT" ]
null
null
null
questions/q317_non_repeating_numbers/code.py
aadhityasw/Competitive-Programs
901a48d35f024a3a87c32a45b7f4531e8004a203
[ "MIT" ]
1
2021-05-15T07:56:51.000Z
2021-05-15T07:56:51.000Z
questions/q317_non_repeating_numbers/code.py
aadhityasw/Competitive-Programs
901a48d35f024a3a87c32a45b7f4531e8004a203
[ "MIT" ]
null
null
null
class Solution: def singleNumber(self, nums): xor = 0 for n in nums : xor = xor ^ n first = 0 second = 0 # Find the two's complement of the overall xor val = xor & (- xor) for n in nums : if n & val : first = first ^ n else : second = second ^ n ans = [first, second] ans.sort() return ans if __name__ == '__main__': T=int(input()) for i in range(T): n = int(input()) v = list(map(int,input().split())) ob = Solution(); ans = ob.singleNumber(v) for i in ans: print(i, end = " ") print()
18.242424
48
0.513289
0e780ea8a125a31824e00c422a3e6c5c9b4a20ab
891
py
Python
h2o-py/tests/testdir_apis/H2O_Module/pyunit_h2oimport_sql_table.py
My-Technical-Architect/h2o-3
d383802fb7f9c3ec9c72b7869fe636059a333d88
[ "Apache-2.0" ]
1
2017-03-28T09:10:12.000Z
2017-03-28T09:10:12.000Z
h2o-py/tests/testdir_apis/H2O_Module/pyunit_h2oimport_sql_table.py
My-Technical-Architect/h2o-3
d383802fb7f9c3ec9c72b7869fe636059a333d88
[ "Apache-2.0" ]
null
null
null
h2o-py/tests/testdir_apis/H2O_Module/pyunit_h2oimport_sql_table.py
My-Technical-Architect/h2o-3
d383802fb7f9c3ec9c72b7869fe636059a333d88
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function import sys, os sys.path.insert(1,"../../../") from tests import pyunit_utils import h2o import inspect def h2oimport_sql_table(): """ Python API test: h2o.import_sql_table(connection_url, table, username, password, columns=None, optimize=True) Not a real test, just make sure arguments are not changed. """ command_list = ['connection_url', 'table', 'username', 'password', 'columns', 'optimize'] try: allargs = inspect.getargspec(h2o.import_sql_table) for arg_name in command_list: assert arg_name in allargs.args, "argument "+arg_name+" is missing from h2o.import_sql_table() command" except Exception as e: assert False, "h2o.import_sql_table() command is not working." if __name__ == "__main__": pyunit_utils.standalone_test(h2oimport_sql_table) else: h2oimport_sql_table()
34.269231
115
0.712682
a65bec2e39e006d2df3ecaac41a96a8bba78a253
9,775
py
Python
diplomacy_research/proto/tensorflow_serving/apis/classification_pb2.py
wwongkamjan/dipnet_press
787263c1b9484698904f525c8d78d0e333e1c0d9
[ "MIT" ]
39
2019-09-06T13:42:24.000Z
2022-03-18T18:38:43.000Z
diplomacy_research/proto/tensorflow_serving/apis/classification_pb2.py
wwongkamjan/dipnet_press
787263c1b9484698904f525c8d78d0e333e1c0d9
[ "MIT" ]
9
2019-09-19T22:35:32.000Z
2022-02-24T18:04:57.000Z
diplomacy_research/proto/tensorflow_serving/apis/classification_pb2.py
wwongkamjan/dipnet_press
787263c1b9484698904f525c8d78d0e333e1c0d9
[ "MIT" ]
8
2019-10-16T21:09:14.000Z
2022-02-23T05:20:37.000Z
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: tensorflow_serving/apis/classification.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from tensorflow_serving.apis import input_pb2 as tensorflow__serving_dot_apis_dot_input__pb2 from tensorflow_serving.apis import model_pb2 as tensorflow__serving_dot_apis_dot_model__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='tensorflow_serving/apis/classification.proto', package='tensorflow.serving', syntax='proto3', serialized_options=_b('\370\001\001'), serialized_pb=_b('\n,tensorflow_serving/apis/classification.proto\x12\x12tensorflow.serving\x1a#tensorflow_serving/apis/input.proto\x1a#tensorflow_serving/apis/model.proto\"%\n\x05\x43lass\x12\r\n\x05label\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\"=\n\x0f\x43lassifications\x12*\n\x07\x63lasses\x18\x01 \x03(\x0b\x32\x19.tensorflow.serving.Class\"T\n\x14\x43lassificationResult\x12<\n\x0f\x63lassifications\x18\x01 \x03(\x0b\x32#.tensorflow.serving.Classifications\"t\n\x15\x43lassificationRequest\x12\x31\n\nmodel_spec\x18\x01 \x01(\x0b\x32\x1d.tensorflow.serving.ModelSpec\x12(\n\x05input\x18\x02 \x01(\x0b\x32\x19.tensorflow.serving.Input\"\x85\x01\n\x16\x43lassificationResponse\x12\x31\n\nmodel_spec\x18\x02 \x01(\x0b\x32\x1d.tensorflow.serving.ModelSpec\x12\x38\n\x06result\x18\x01 \x01(\x0b\x32(.tensorflow.serving.ClassificationResultB\x03\xf8\x01\x01\x62\x06proto3') , dependencies=[tensorflow__serving_dot_apis_dot_input__pb2.DESCRIPTOR,tensorflow__serving_dot_apis_dot_model__pb2.DESCRIPTOR,]) _CLASS = _descriptor.Descriptor( name='Class', full_name='tensorflow.serving.Class', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='label', full_name='tensorflow.serving.Class.label', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='score', full_name='tensorflow.serving.Class.score', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=142, serialized_end=179, ) _CLASSIFICATIONS = _descriptor.Descriptor( name='Classifications', full_name='tensorflow.serving.Classifications', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='classes', full_name='tensorflow.serving.Classifications.classes', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=181, serialized_end=242, ) _CLASSIFICATIONRESULT = _descriptor.Descriptor( name='ClassificationResult', full_name='tensorflow.serving.ClassificationResult', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='classifications', full_name='tensorflow.serving.ClassificationResult.classifications', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=244, serialized_end=328, ) _CLASSIFICATIONREQUEST = _descriptor.Descriptor( name='ClassificationRequest', full_name='tensorflow.serving.ClassificationRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='model_spec', full_name='tensorflow.serving.ClassificationRequest.model_spec', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='input', full_name='tensorflow.serving.ClassificationRequest.input', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=330, serialized_end=446, ) _CLASSIFICATIONRESPONSE = _descriptor.Descriptor( name='ClassificationResponse', full_name='tensorflow.serving.ClassificationResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='model_spec', full_name='tensorflow.serving.ClassificationResponse.model_spec', index=0, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='result', full_name='tensorflow.serving.ClassificationResponse.result', index=1, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=449, serialized_end=582, ) _CLASSIFICATIONS.fields_by_name['classes'].message_type = _CLASS _CLASSIFICATIONRESULT.fields_by_name['classifications'].message_type = _CLASSIFICATIONS _CLASSIFICATIONREQUEST.fields_by_name['model_spec'].message_type = tensorflow__serving_dot_apis_dot_model__pb2._MODELSPEC _CLASSIFICATIONREQUEST.fields_by_name['input'].message_type = tensorflow__serving_dot_apis_dot_input__pb2._INPUT _CLASSIFICATIONRESPONSE.fields_by_name['model_spec'].message_type = tensorflow__serving_dot_apis_dot_model__pb2._MODELSPEC _CLASSIFICATIONRESPONSE.fields_by_name['result'].message_type = _CLASSIFICATIONRESULT DESCRIPTOR.message_types_by_name['Class'] = _CLASS DESCRIPTOR.message_types_by_name['Classifications'] = _CLASSIFICATIONS DESCRIPTOR.message_types_by_name['ClassificationResult'] = _CLASSIFICATIONRESULT DESCRIPTOR.message_types_by_name['ClassificationRequest'] = _CLASSIFICATIONREQUEST DESCRIPTOR.message_types_by_name['ClassificationResponse'] = _CLASSIFICATIONRESPONSE _sym_db.RegisterFileDescriptor(DESCRIPTOR) Class = _reflection.GeneratedProtocolMessageType('Class', (_message.Message,), dict( DESCRIPTOR = _CLASS, __module__ = 'tensorflow_serving.apis.classification_pb2' # @@protoc_insertion_point(class_scope:tensorflow.serving.Class) )) _sym_db.RegisterMessage(Class) Classifications = _reflection.GeneratedProtocolMessageType('Classifications', (_message.Message,), dict( DESCRIPTOR = _CLASSIFICATIONS, __module__ = 'tensorflow_serving.apis.classification_pb2' # @@protoc_insertion_point(class_scope:tensorflow.serving.Classifications) )) _sym_db.RegisterMessage(Classifications) ClassificationResult = _reflection.GeneratedProtocolMessageType('ClassificationResult', (_message.Message,), dict( DESCRIPTOR = _CLASSIFICATIONRESULT, __module__ = 'tensorflow_serving.apis.classification_pb2' # @@protoc_insertion_point(class_scope:tensorflow.serving.ClassificationResult) )) _sym_db.RegisterMessage(ClassificationResult) ClassificationRequest = _reflection.GeneratedProtocolMessageType('ClassificationRequest', (_message.Message,), dict( DESCRIPTOR = _CLASSIFICATIONREQUEST, __module__ = 'tensorflow_serving.apis.classification_pb2' # @@protoc_insertion_point(class_scope:tensorflow.serving.ClassificationRequest) )) _sym_db.RegisterMessage(ClassificationRequest) ClassificationResponse = _reflection.GeneratedProtocolMessageType('ClassificationResponse', (_message.Message,), dict( DESCRIPTOR = _CLASSIFICATIONRESPONSE, __module__ = 'tensorflow_serving.apis.classification_pb2' # @@protoc_insertion_point(class_scope:tensorflow.serving.ClassificationResponse) )) _sym_db.RegisterMessage(ClassificationResponse) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
38.035019
887
0.778312
6afcb7e7336e38c7a77be68995f715883c901e56
13,533
py
Python
boardfarm/lib/bft_logging.py
nickberry17/boardfarm
80f24fc97eff9a987250a6334b76eff08e001189
[ "BSD-3-Clause-Clear" ]
17
2018-04-19T08:35:47.000Z
2021-11-01T01:38:33.000Z
boardfarm/lib/bft_logging.py
nickberry17/boardfarm
80f24fc97eff9a987250a6334b76eff08e001189
[ "BSD-3-Clause-Clear" ]
190
2018-04-19T07:00:18.000Z
2022-02-11T01:42:51.000Z
boardfarm/lib/bft_logging.py
nickberry17/boardfarm
80f24fc97eff9a987250a6334b76eff08e001189
[ "BSD-3-Clause-Clear" ]
30
2018-04-12T01:49:21.000Z
2022-02-11T14:53:19.000Z
"""Global functions related to logging messages.""" # Copyright (c) 2015 # # All rights reserved. # # This file is distributed under the Clear BSD license. # The full text can be found in LICENSE in the root directory. import inspect import logging import os import re import sys import time import types from functools import wraps import debtcollector from termcolor import colored from boardfarm.lib.ConfigHelper import ConfigHelper logger = logging.getLogger("bft") def now_short(_format="%Y%m%d-%H%M%S"): """Get current date and time string. :param _format: time stamp format, defaults to "%Y%m%d-%H%M%S" :type _format: string, optional :return: timestamp in YYYYMMDD-hhmmss :rtype: string """ timeString = time.strftime(_format, time.localtime()) + "\t" return timeString def logfile_assert_message(s, condition, message): """Log and assert based on condition. If condition True, log message as PASS to testcase log file. If condition False, Assert and Print message with status FAIL. :param s: Instance of the class :type s: Class :param condition: condition to validate :type condition: Condition :param message: Message to log and print :type message: String :raise assertion: Assert on condition is FALSE """ if not condition: s.log_to_file += now_short() + message + ": FAIL\r\n" assert 0, message + ": FAIL\r\n" else: log_message(s, message + ": PASS") def write_test_log(t, output_dir): """Write detailed log file for given test.""" if t.log_to_file is not None and hasattr(t, "stop_time"): filename = type(t).__name__ + "-" + time.strftime("%Y%m%d-%H%M%S") + ".txt" testtime = t.stop_time - t.start_time with open(os.path.join(output_dir, filename), "w") as log: log.write("\t=======================================================") log.write("\n\tTest case ID: %s" % (type(t).__name__)) log.write("\n\tTest case Description: %s" % (type(t).__doc__)) log.write("\n\t=======================================================\n") log.write(t.log_to_file) log.write("\n\t=======================================================") log.write("\n\t%s test result: %s" % (type(t).__name__, t.result_grade)) log.write("\n\tTotal test time: %s seconds" % testtime) log.write("\n\t=======================================================") class LoggerMeta(type): """To wrap functions with logging messages.""" def __new__(cls, name, bases, attrs): """Magic method to create instance object reference. Using this method you can customize the instance creation. :param cls: Class to be instantiated(LoggerMeta) :type cls: Class :param name: name of the new Class instantiated :type name: Class :param bases: Tuple of base parent classes :type bases: Class :param attrs: Class attributes :type attrs: Arguments(args) :return: Return the instance object created :rtype: Object """ if "model" in attrs: cls.check_signature(name, bases, attrs) for attr_name, attr_value in attrs.items(): if isinstance(attr_value, types.FunctionType): attrs[attr_name] = cls.deco(attr_value) return super(LoggerMeta, cls).__new__(cls, name, bases, attrs) @classmethod def deco(cls, func): """Write functions calls to log file with time. :param cls: Instance of the class LoggerMeta :type cls: Class :param func: function called this method :type func: Object :return: Return of the called function :rtype: string """ @wraps(func) def wrapper(*args, **kwargs): """Parse the calling function arguments and send to logs with date time. :param args: any number of extra arguments :type args: Arguments(args) :param kwargs: arguments, where you provide a name to the variable as you pass it into the function :type kwargs: Arguments(args) :return: String with parent class, calling/returning of function :rtype: string """ if "pytest" in sys.modules: # if in pytest bypass all this return func(*args, **kwargs) func_args_str = "%s %s" % (repr(args), repr(kwargs)) to_log = "%s.%s ( %s )" % (func.__module__, func.__name__, func_args_str) args[0].log_calls += "[%.6f]calling %s\r\n" % (time.process_time(), to_log) clsname = args[0].__class__.__name__ err_injection_dict = ConfigHelper().get("err_injection_dict", None) if ( err_injection_dict and clsname in err_injection_dict and func.__name__ in err_injection_dict[clsname] ): ret = err_injection_dict[clsname][func.__name__] args[0].log_calls += "[%.6f]injecting %s = %s\r\n" % ( time.process_time(), to_log, repr(ret), ) else: ret = func(*args, **kwargs) args[0].log_calls += "[%.6f]returned %s = %s\r\n" % ( time.process_time(), to_log, repr(ret), ) return ret return wrapper @classmethod def check_signature(cls, name, bases, attr): """function to check signatures with reference to parent class. :param cls: Instance of the class LoggerMeta :type cls: Class :param name: name of the new Class instantiated :type name: Class :param bases: Tuple of base parent classes :type bases: Class :param attrs: Class attributes :type attrs: Arguments(args) :return: Return None """ check_bases = [] for base in bases: all_bases = base.__mro__ for i in all_bases: if ( i is not object and "sign_check" in i.__dict__ and i not in check_bases ): check_bases.append(i) for methodName in attr: f = attr[methodName] if not isinstance(f, types.FunctionType): continue for baseClass in check_bases: try: fBase = getattr(baseClass, methodName) if isinstance(fBase, types.FunctionType): if not inspect.signature(f) == inspect.signature(fBase): debtcollector.deprecate( "{}.{} Method signature are not identical with base class {}".format( name, methodName, baseClass ), category=UserWarning, ) break else: debtcollector.deprecate( "{}.{} Method is not FunctionType in base class {}".format( name, methodName, baseClass ), category=UserWarning, ) break except AttributeError: # This method was not defined in this base class, # So just go to the next base class. continue def log_message(s, msg, header=False): """Write log messages to console and to log file(with timestamp). :param s: Instance of the class :type s: Class :param msg: Message to log and print :type msg: String :param header: True or False, defaults to False. To display message as header :type header: Boolean, Optional """ if s.log_to_file is None: s.log_to_file = "" line_sep = "=" * min(len(msg), 80) full_msg = "\n\t\t" + line_sep + "\n\t\t" + msg + "\n\t\t" + line_sep + "\n" if header: logger.debug("\n\n\t\t\t***" + msg + "***\n\n") s.log_to_file += now_short() + full_msg + "\r\n" else: logger.debug(full_msg) s.log_to_file += now_short() + msg + "\r\n" class o_helper(object): """Class to handle output logging.""" def __init__(self, parent, out, color): """Instance initialisation to handle the output logging. :param parent: Parent class :type parent: Class :param out: Output stream (stdout) :type out: Streams :param color: text colour for the device(provided in Json) :type color: String """ self.color = color self.out = out self.parent = parent self.first_write = True def write(self, string): """Write or stdout input messages in colored(if defined). Create the file if not already present. For example: <Testcase>.txt file creation :param string: Message to write in the output file :type string: String """ if self.out is not None: if self.first_write: self.first_write = False string = "\r\n" + string if self.color is not None: self.out.write(colored(string, self.color)) else: self.out.write(string) # check for the split case if ( len(self.parent.log) > 1 and self.parent.log[-1] == "\r" and string[0] == "\n" ): tmp = "\n[%.6f]" % time.process_time() tmp += string[1:] string = tmp to_log = re.sub("\r\n", "\r\n[%.6f]" % time.process_time(), string) self.parent.log += to_log if hasattr(self.parent, "test_to_log"): self.parent.test_to_log.log += re.sub( r"\r\n\[", "\r\n%s: [" % self.parent.test_prefix, to_log ) def extra_log(self, string): """Add process time with the log messages.""" if hasattr(self.parent, "log"): self.parent.log += "\r\n[%s] " % time.process_time() self.parent.log += string + "\r\n" def flush(self): """Flushes the buffer storage in console before pexpect.""" if self.out is not None: self.out.flush() def create_file_logs(config, board, tests_to_run, logger): """Add and write log messages to a combined list.""" combined_list = [] def add_to_combined_list(log, name, combined_list=combined_list): for line in log.split("\r\n"): try: if line == "": continue if line.startswith("\n"): line = line[1:] if line.startswith(" ["): line = line[1:] ts, text = line.split("]", 1) timestamp = float(ts[1:-1]) else: text = line timestamp = 0.0 combined_list.append( {"time": timestamp, "text": str(text), "name": name} ) except Exception as error: logger.error(error) logger.debug("Failed to parse log line = %s" % repr(line)) idx = 1 console_combined = [] for console in board.consoles: with open(os.path.join(config.output_dir, "console-%s.log" % idx), "w") as clog: clog.write(console.log) add_to_combined_list(console.log, "console-%s" % idx) add_to_combined_list(console.log_calls, "console-%s" % idx) add_to_combined_list(console.log, "", console_combined) idx = idx + 1 def write_combined_log(combined_list, fname): with open(os.path.join(config.output_dir, fname), "w") as clog: for e in combined_list: try: if e["name"] == "": clog.write("[%s]%s\r\n" % (e["time"], repr(e["text"]))) else: clog.write( "%s: [%s] %s\n" % (e["name"], e["time"], repr(e["text"])) ) except Exception as error: logger.error(error) logger.debug("failed to parse line: %s" % repr(e)) import operator console_combined.sort(key=operator.itemgetter("time")) write_combined_log(console_combined, "console-combined.log") for device in config.devices: with open(os.path.join(config.output_dir, device + ".log"), "w") as clog: d = getattr(config, device) if hasattr(d, "log"): clog.write(d.log) add_to_combined_list(d.log, device) add_to_combined_list(d.log_calls, device) for test in tests_to_run: if hasattr(test, "log") and test.log != "": with open( os.path.join(config.output_dir, "%s.log" % test.__class__.__name__), "w" ) as clog: clog.write(test.log) if hasattr(test, "log_calls"): add_to_combined_list(test.log_calls, test.__class__.__name__) combined_list.sort(key=operator.itemgetter("time")) write_combined_log(combined_list, "all.log")
35.613158
111
0.532624
73b0bd3cfaf7edd518616d936627b95c93b563bb
1,551
py
Python
data_prep/01_billtags/tag_extraction.py
LegibleLegislation/CongressChallenge
43ce79cbbba42208f7062eb95435444de750214d
[ "CC0-1.0" ]
null
null
null
data_prep/01_billtags/tag_extraction.py
LegibleLegislation/CongressChallenge
43ce79cbbba42208f7062eb95435444de750214d
[ "CC0-1.0" ]
null
null
null
data_prep/01_billtags/tag_extraction.py
LegibleLegislation/CongressChallenge
43ce79cbbba42208f7062eb95435444de750214d
[ "CC0-1.0" ]
null
null
null
import json import sqlalchemy import requests import os # Connect to local PostgreSQL user = 'ubuntu' password = '' dbname = 'congress' host = 'localhost' local_port = '5432' es = "postgresql+psycopg2://"+user+":"+password+"@/"+dbname+"?host="+host+"&port="+local_port engine = sqlalchemy.create_engine(es) print(engine) # NOTE: CHANGE THESE PARAMETERS # AFTER TESTING. IN_TABLE = 'congress_intelligent_tags_test' OUT_TABLE = 'congress_tagging_test' LIMIT = 1 OFFSET = 0 with engine.connect() as conn: rows = conn.execute("SELECT data_id,bill_id,data::jsonb FROM {0} LIMIT {1} OFFSET {2};".format(IN_TABLE,LIMIT,OFFSET)) print(rows.keys()) query = '''DROP TABLE IF EXISTS {0}'''.format(OUT_TABLE) print(query) conn.execute(query) query = '''CREATE TABLE {0} (bill_id TEXT, social_tags TEXT, relevance INT); '''.format(OUT_TABLE) print(query) conn.execute(query) for row in rows: first = row[1] for t in list(row[2]): if 'SocialTag' in t: name = row[2][t][u'name'] name = name.replace("'", '') query = '''INSERT INTO {0} (bill_id, social_tags, relevance) VALUES ('{1}', '{2}','{3}');'''.format(OUT_TABLE,str(first),name,str(row[2][t][u'importance'])) print(query) # NOTE toggle for debugging try: conn.execute(query) except: print(query) raise
25.42623
122
0.568665
9af869489c8c736c52ee5f961357df47b20078d7
839
py
Python
core/security_interface.py
alpha19/StockAnalysis
011b8392c1623c61233db6d08a2ff72010c51bb9
[ "MIT" ]
2
2020-05-11T02:04:02.000Z
2020-05-11T02:04:08.000Z
core/security_interface.py
Spich9215/StockAnalysis
5679415cd4bc306b7ef7d06c3cccd18842a29f09
[ "MIT" ]
9
2019-06-01T23:29:08.000Z
2021-12-13T20:49:46.000Z
core/security_interface.py
Spich9215/StockAnalysis
5679415cd4bc306b7ef7d06c3cccd18842a29f09
[ "MIT" ]
1
2019-12-26T18:53:57.000Z
2019-12-26T18:53:57.000Z
from abc import ABCMeta, abstractmethod import time __author__ = 'kdedow' class SecurityInterface(object): """ Interface for different types of securities """ __metaclass__ = ABCMeta @abstractmethod def __init__(self, secTarget=""): """ :param secTarget: :return: """ self.target = secTarget self.dateStr = time.strftime("%m/%d/%Y") self.timeStr = time.strftime("%H:%M") @abstractmethod def queryAPI(self): """ All subclasses must run some type of analysis :return: """ pass @abstractmethod def getInfo(self): """ Return formatted info about security (to be printed to console) :return: """ pass @abstractmethod def updateInfo(self): pass
19.511628
71
0.567342
58c52a655be763974cfdfe23b0b277212b677cda
372
py
Python
den/helpers/color.py
MonliH/Den
9c2e69744dcf26ae01154eac32aa4ea8ff2adee3
[ "MIT" ]
null
null
null
den/helpers/color.py
MonliH/Den
9c2e69744dcf26ae01154eac32aa4ea8ff2adee3
[ "MIT" ]
null
null
null
den/helpers/color.py
MonliH/Den
9c2e69744dcf26ae01154eac32aa4ea8ff2adee3
[ "MIT" ]
null
null
null
def init_color(): import os, sys if sys.platform.lower() == "win32": os.system("color") class Color: BLACK = "\033[30m" BOLD = "\033[1m" RED = "\033[31m" GREEN = "\033[32m" YELLOW = "\033[33m" BLUE = "\033[34m" MAGENTA = "\033[35m" CYAN = "\033[36m" WHITE = "\033[37m" UNDERLINE = "\033[4m" RESET = "\033[0m"
18.6
39
0.510753
454eef314ede3e47c98335fb76e79d440918f047
8,619
py
Python
src/python/pants/backend/project_info/tasks/idea_plugin_gen.py
mpopenko-exos/pants
47d27037c8b13291fc9023e56ddd1b1defdf1b8e
[ "Apache-2.0" ]
null
null
null
src/python/pants/backend/project_info/tasks/idea_plugin_gen.py
mpopenko-exos/pants
47d27037c8b13291fc9023e56ddd1b1defdf1b8e
[ "Apache-2.0" ]
1
2018-09-04T17:37:34.000Z
2018-09-04T19:42:58.000Z
src/python/pants/backend/project_info/tasks/idea_plugin_gen.py
mpopenko-exos/pants
47d27037c8b13291fc9023e56ddd1b1defdf1b8e
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). import json import logging import os import pkgutil import re import shutil import subprocess from pants.backend.jvm.targets.jvm_target import JvmTarget from pants.backend.python.targets.python_target import PythonTarget from pants.base.build_environment import get_buildroot, get_scm from pants.base.exceptions import TaskError from pants.base.generator import Generator, TemplateData from pants.task.console_task import ConsoleTask from pants.util import desktop from pants.util.contextutil import temporary_dir, temporary_file from pants.util.dirutil import safe_mkdir _TEMPLATE_BASEDIR = 'templates/idea' # Follow `export.py` for versioning strategy. IDEA_PLUGIN_VERSION = '0.0.4' class IdeaPluginGen(ConsoleTask): """Invoke IntelliJ Pants plugin (installation required) to create a project. The ideal workflow is to programmatically open idea -> select import -> import as pants project -> select project path, but IDEA does not have CLI support for "select import" and "import as pants project" once it is opened. Therefore, this task takes another approach to embed the target specs into a `iws` workspace file along with an skeleton `ipr` project file. Sample `iws`: ******************************************************** <?xml version="1.0"?> <project version="4"> <component name="PropertiesComponent"> <property name="targets" value="[&quot;/Users/me/workspace/pants/testprojects/tests/scala/org/pantsbuild/testproject/cp-directories/::&quot;]" /> <property name="project_path" value="/Users/me/workspace/pants/testprojects/tests/scala/org/pantsbuild/testproject/cp-directories/" /> </component> </project> ******************************************************** Once pants plugin sees `targets` and `project_path`, it will simulate the import process on and populate the existing skeleton project into a Pants project as if user is importing these targets. """ PROJECT_NAME_LIMIT = 200 @classmethod def register_options(cls, register): super().register_options(register) # TODO: https://github.com/pantsbuild/pants/issues/3198 # scala/java-language level should use what Pants already knows. register('--open', type=bool, default=True, help='Attempts to open the generated project in IDEA.') register('--incremental-import', type=int, default=None, help='Enable incremental import of targets with the given graph depth. Supported ' 'by IntelliJ Pants plugin versions `>= 1.9.2`.') register('--dep-as-jar', type=bool, default=False, help='If true, treat source dependencies as 3rdparty jars.') register('--java-encoding', default='UTF-8', help='Sets the file encoding for java files in this project.') register('--open-with', type=str, default=None, recursive=True, help='Program used to open the generated IntelliJ project.') register('--debug_port', type=int, default=5005, help='Port to use for launching tasks under the debugger.') register('--java-jdk-name', default=None, help='Sets the jdk used to compile the project\'s java sources. If unset the default ' 'jdk name for the --java-language-level is used') register('--java-language-level', type=int, default=8, help='Sets the java language and jdk used to compile the project\'s java sources.') def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.open = self.get_options().open self.java_encoding = self.get_options().java_encoding self.project_template = os.path.join(_TEMPLATE_BASEDIR, 'project-12.mustache') self.workspace_template = os.path.join(_TEMPLATE_BASEDIR, 'workspace-12.mustache') self.rootmodule_template = os.path.join(_TEMPLATE_BASEDIR, 'rootmodule-12.mustache') self.java_language_level = self.get_options().java_language_level if self.get_options().java_jdk_name: self.java_jdk = self.get_options().java_jdk_name else: self.java_jdk = '1.{}'.format(self.java_language_level) output_dir = os.path.join(get_buildroot(), ".idea", self.__class__.__name__) safe_mkdir(output_dir) with temporary_dir(root_dir=output_dir, cleanup=False) as output_project_dir: project_name = self.get_project_name(self.context.options.specs) self.gen_project_workdir = output_project_dir self.project_filename = os.path.join(self.gen_project_workdir, '{}.ipr'.format(project_name)) self.workspace_filename = os.path.join(self.gen_project_workdir, '{}.iws'.format(project_name)) self.rootmodule_filename = os.path.join(self.gen_project_workdir, 'rootmodule.iml') self.intellij_output_dir = os.path.join(self.gen_project_workdir, 'out') @classmethod def get_project_name(cls, target_specs): escaped_name = re.sub('[^0-9a-zA-Z:_]+', '.', '__'.join(target_specs)) # take up to PROJECT_NAME_LIMIT chars as project file name due to filesystem constraint. return escaped_name[:cls.PROJECT_NAME_LIMIT] # TODO: https://github.com/pantsbuild/pants/issues/3198 def generate_project(self): outdir = os.path.abspath(self.intellij_output_dir) if not os.path.exists(outdir): os.makedirs(outdir) scm = get_scm() configured_project = TemplateData( root_dir=get_buildroot(), outdir=outdir, git_root=scm.worktree if scm else None, java=TemplateData( encoding=self.java_encoding, jdk=self.java_jdk, language_level='JDK_1_{}'.format(self.java_language_level) ), debug_port=self.get_options().debug_port, ) abs_target_specs = [os.path.join(get_buildroot(), spec) for spec in self.context.options.specs] configured_workspace = TemplateData( targets=json.dumps(abs_target_specs), project_path=os.path.join(get_buildroot(), abs_target_specs[0].split(':')[0]), idea_plugin_version=IDEA_PLUGIN_VERSION, incremental_import=self.get_options().incremental_import, dep_as_jar=self.get_options().dep_as_jar, ) # Generate (without merging in any extra components). safe_mkdir(os.path.abspath(self.intellij_output_dir)) def gen_file(template_file_name, **mustache_kwargs): return self._generate_to_tempfile( Generator(pkgutil.get_data(__name__, template_file_name).decode(), **mustache_kwargs) ) ipr = gen_file(self.project_template, project=configured_project) iws = gen_file(self.workspace_template, workspace=configured_workspace) iml_root = gen_file(self.workspace_template) shutil.move(ipr, self.project_filename) shutil.move(iws, self.workspace_filename) shutil.move(iml_root, self.rootmodule_filename) return self.project_filename def _generate_to_tempfile(self, generator): """Applies the specified generator to a temp file and returns the path to that file. We generate into a temp file so that we don't lose any manual customizations on error.""" with temporary_file(cleanup=False, binary_mode=False) as output: generator.write(output) return output.name def console_output(self, _targets): if not self.context.options.specs: raise TaskError("No targets specified.") # Heuristics to guess whether user tries to load a python project, # in which case intellij project sdk has to be set up manually. jvm_target_num = len([x for x in self.context.target_roots if isinstance(x, JvmTarget)]) python_target_num = len([x for x in self.context.target_roots if isinstance(x, PythonTarget)]) if python_target_num > jvm_target_num: logging.warn('This is likely a python project. Please make sure to ' 'select the proper python interpreter as Project SDK in IntelliJ.') ide_file = self.generate_project() yield self.gen_project_workdir if ide_file and self.get_options().open: open_with = self.get_options().open_with if open_with: null = open(os.devnull, 'wb') subprocess.Popen([open_with, ide_file], stdout=null, stderr=null) else: try: desktop.ui_open(ide_file) except desktop.OpenError as e: raise TaskError(e)
43.751269
153
0.69138
6033e4992f526791f441fc59f0ec335f4e4343e2
2,485
py
Python
tests/configs/realview64-switcheroo-full.py
mandaltj/gem5_chips
b9c0c602241ffda7851c1afb32fa01f295bb98fd
[ "BSD-3-Clause" ]
30
2019-07-12T02:35:33.000Z
2022-02-22T03:34:35.000Z
tests/configs/realview64-switcheroo-full.py
mandaltj/gem5_chips
b9c0c602241ffda7851c1afb32fa01f295bb98fd
[ "BSD-3-Clause" ]
8
2020-02-05T17:47:10.000Z
2021-09-06T03:58:56.000Z
tests/configs/realview64-switcheroo-full.py
mandaltj/gem5_chips
b9c0c602241ffda7851c1afb32fa01f295bb98fd
[ "BSD-3-Clause" ]
25
2017-12-02T00:46:04.000Z
2022-02-18T19:28:53.000Z
# Copyright (c) 2012 ARM Limited # All rights reserved. # # The license below extends only to copyright in the software and shall # not be construed as granting a license to any other intellectual # property including but not limited to intellectual property relating # to a hardware implementation of the functionality of the software # licensed hereunder. You may use the software subject to the license # terms below provided that you ensure that this notice is replicated # unmodified and in its entirety in all distributions of the software, # modified or unmodified, in source code or in binary form. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Andreas Sandberg from m5.objects import * from arm_generic import * import switcheroo root = LinuxArmFSSwitcheroo( machine_type='VExpress_EMM64', mem_class=DDR3_1600_8x8, cpu_classes=(AtomicSimpleCPU, TimingSimpleCPU, MinorCPU, DerivO3CPU) ).create_root() # Setup a custom test method that uses the switcheroo tester that # switches between CPU models. run_test = switcheroo.run_test
48.72549
72
0.794769
dc575b2da59f73be75f86c4d83f82021c85633c4
369
py
Python
Cartwheel/lib/Python26/Lib/site-packages/OpenGL/GL/MESA/pack_invert.py
MontyThibault/centre-of-mass-awareness
58778f148e65749e1dfc443043e9fc054ca3ff4d
[ "MIT" ]
null
null
null
Cartwheel/lib/Python26/Lib/site-packages/OpenGL/GL/MESA/pack_invert.py
MontyThibault/centre-of-mass-awareness
58778f148e65749e1dfc443043e9fc054ca3ff4d
[ "MIT" ]
null
null
null
Cartwheel/lib/Python26/Lib/site-packages/OpenGL/GL/MESA/pack_invert.py
MontyThibault/centre-of-mass-awareness
58778f148e65749e1dfc443043e9fc054ca3ff4d
[ "MIT" ]
null
null
null
'''OpenGL extension MESA.pack_invert This module customises the behaviour of the OpenGL.raw.GL.MESA.pack_invert to provide a more Python-friendly API ''' from OpenGL import platform, constants, constant, arrays from OpenGL import extensions, wrapper from OpenGL.GL import glget import ctypes from OpenGL.raw.GL.MESA.pack_invert import * ### END AUTOGENERATED SECTION
30.75
56
0.807588
120317bb5bebfa3d7a949e8e8b445d3db4e63bf1
6,936
py
Python
autotest/osr/osr_metacrs.py
Esri/gdal
8d9af5086ddb96f707ed281786a1cd278066a7f2
[ "MIT" ]
9
2019-05-30T17:01:56.000Z
2021-01-30T01:06:41.000Z
autotest/osr/osr_metacrs.py
Esri/gdal
8d9af5086ddb96f707ed281786a1cd278066a7f2
[ "MIT" ]
4
2018-10-23T18:43:35.000Z
2019-07-01T19:29:49.000Z
autotest/osr/osr_metacrs.py
Esri/gdal
8d9af5086ddb96f707ed281786a1cd278066a7f2
[ "MIT" ]
6
2019-02-03T14:19:32.000Z
2021-12-19T06:36:49.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- ############################################################################### # $Id$ # # Project: GDAL/OGR Test Suite # Purpose: Test with MetaCRS TestSuite # Author: Frank Warmerdam, [email protected] # ############################################################################### # Copyright (c) 2009, Frank Warmerdam <[email protected]> # Copyright (c) 2009-2013, Even Rouault <even dot rouault at mines-paris dot org> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ############################################################################### import sys import csv sys.path.append('../pymod') import gdaltest from osgeo import osr, gdal ############################################################################### # Class to perform the tests. class MetaCRSTest: def __init__(self, test_line): self.test_line = test_line def parse_line(self): test_line = self.test_line self.src_srs = self.build_srs(test_line['srcCrsAuth'], test_line['srcCrs']) try: self.dst_srs = self.build_srs(test_line['tgtCrsAuth'], test_line['tgtCrs']) except: # Old style self.dst_srs = self.build_srs(test_line['tgtCrsType'], test_line['tgtCrs']) if self.src_srs is None or self.dst_srs is None: return 'fail' try: self.src_xyz = (float(test_line['srcOrd1']), float(test_line['srcOrd2']), float(test_line['srcOrd3'])) except: self.src_xyz = (float(test_line['srcOrd1']), float(test_line['srcOrd2']), 0.0) try: self.dst_xyz = (float(test_line['tgtOrd1']), float(test_line['tgtOrd2']), float(test_line['tgtOrd3'])) except: self.dst_xyz = (float(test_line['tgtOrd1']), float(test_line['tgtOrd2']), 0.0) try: self.dst_error = max(float(test_line['tolOrd1']), float(test_line['tolOrd2']), float(test_line['tolOrd3'])) except: self.dst_error = max(float(test_line['tolOrd1']), float(test_line['tolOrd2'])) return 'success' def build_srs(self, type, crstext): if type == 'EPSG': srs = osr.SpatialReference() if srs.ImportFromEPSGA(int(crstext)) == 0: return srs else: gdaltest.post_reason('failed to translate EPSG:' + crstext) return None else: gdaltest.post_reason('unsupported srs type: ' + type) return None def testMetaCRS(self): result = self.parse_line() if result != 'success': return result try: gdal.PushErrorHandler('CPLQuietErrorHandler') ct = osr.CoordinateTransformation(self.src_srs, self.dst_srs) gdal.PopErrorHandler() if gdal.GetLastErrorMsg().find('Unable to load PROJ.4') != -1: gdaltest.post_reason('PROJ.4 missing, transforms not available.') return 'skip' except ValueError: gdal.PopErrorHandler() if gdal.GetLastErrorMsg().find('Unable to load PROJ.4') != -1: gdaltest.post_reason('PROJ.4 missing, transforms not available.') return 'skip' else: gdaltest.post_reason('failed to create coordinate transformation. %s' % gdal.GetLastErrorMsg()) return 'fail' except: gdal.PopErrorHandler() gdaltest.post_reason('failed to create coordinate transformation. %s' % gdal.GetLastErrorMsg()) return 'fail' ###################################################################### # Transform source point to destination SRS, swapping EPSG GEOGCS # axes if needed. if self.src_srs.EPSGTreatsAsLatLong(): self.src_xyz = (self.src_xyz[1], self.src_xyz[0], self.src_xyz[2]) result = ct.TransformPoint(self.src_xyz[0], self.src_xyz[1], self.src_xyz[2]) if self.src_srs.EPSGTreatsAsLatLong(): result = (result[1], result[0], result[2]) ###################################################################### # Check results. error = abs(result[0] - self.dst_xyz[0]) \ + abs(result[1] - self.dst_xyz[1]) \ + abs(result[2] - self.dst_xyz[2]) if error > self.dst_error: err_msg = 'Dest error is %g, src=%g,%g,%g, dst=%g,%g,%g, exp=%g,%g,%g' \ % (error, self.src_xyz[0], self.src_xyz[1], self.src_xyz[2], result[0], result[1], result[2], self.dst_xyz[0], self.dst_xyz[1], self.dst_xyz[2]) gdaltest.post_reason(err_msg) gdal.Debug('OSR', 'Src SRS:\n%s\n\nDst SRS:\n%s\n' % (self.src_srs.ExportToPrettyWkt(), self.dst_srs.ExportToPrettyWkt())) return 'fail' return 'success' ############################################################################### # When imported build a list of units based on the files available. gdaltest_list = [] csv_reader = csv.DictReader(open('data/Test_Data_File.csv', 'rt')) for test in csv_reader: ut = MetaCRSTest(test) gdaltest_list.append((ut.testMetaCRS, test['testName'])) if __name__ == '__main__': gdaltest.setup_run('osr_metacrs') gdaltest.run_tests(gdaltest_list) gdaltest.summarize()
37.901639
111
0.531574
1d446032e39cabfb02a069ce376b6a0a0fe79e4a
3,776
py
Python
GSF2App/GSF2App_data.py
rmca16/GSF2App
171a4a388e1f0e59cc11a709c2774826317a6f62
[ "MIT" ]
null
null
null
GSF2App/GSF2App_data.py
rmca16/GSF2App
171a4a388e1f0e59cc11a709c2774826317a6f62
[ "MIT" ]
null
null
null
GSF2App/GSF2App_data.py
rmca16/GSF2App
171a4a388e1f0e59cc11a709c2774826317a6f62
[ "MIT" ]
null
null
null
################################################################################### # Author: Ricardo Pereira # Date: 06-06-2021 # Last Modified data: 10-09-2021 # Abstract: GSF2App: Dataset management file ################################################################################### import numpy as np import time import glob import cv2 import os import torch from torch.utils import data from torch.autograd import Variable import torch.nn.functional as F import torchvision.transforms as transforms from YOLOv3.models import * from YOLOv3.utils import * class Dataset(data.Dataset): def __init__(self, data_path): 'Initialization' self.training_stage = 1 self.imgs_path = glob.glob(data_path+'*.png') if not self.imgs_path: print("No png images available") sys.exit() self.yolo = YOLOv3() def __len__(self): 'Denotes the total number of samples' return len(self.imgs_path) def __getitem__(self, index): 'Generates one sample of data' # Select sample img_path = self.imgs_path[index] img = cv2.imread(img_path, cv2.IMREAD_COLOR) img = cv2.resize(img, (224, 224), fx = 1, fy = 1, interpolation = cv2.INTER_LINEAR) # Load data and get label X = torch.from_numpy(img).float() X_data = X.permute(2,0,1) y = (np.long(0)) print("PLEASE, ADD SOME CODE TO READ LABELS FROM DE DATASET") if self.training_stage == 1: return X_data, y elif self.training_stage == 2: yolo_img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) sfv = self.yolo.get_semantic_features(yolo_img) sfv = sfv.astype(np.float16) sfv = torch.from_numpy(sfv).float() return X_data, sfv, y class YOLOv3(object): def __init__(self): self.model_def = os.path.join('YOLOv3','config','yolov3.cfg') self.weights_path = os.path.join('YOLOv3','weights','yolov3.weights') self.class_path = os.path.join('YOLOv3','weights','coco.names') self.conf_thres = 0.2 self.nms_thres = 0.45 self.img_size = 416 self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Set up model self.model = Darknet(self.model_def, img_size = self.img_size).to(self.device) if self.weights_path.endswith(".weights"): self.model.load_darknet_weights(self.weights_path) else: self.model.load_state_dict(torch.load(self.weights_path)) self.model.eval() # Set in evaluation mode self.Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor self.yolo_classes = load_classes(self.class_path) def get_semantic_features(self, image): img_shape = image.shape # Extract image as PyTorch tensor img = transforms.ToTensor()(image) # Pad to square resolution img, _ = pad_to_square(img, 0) # Resize img = resize(img, self.img_size) # Configure input input_img = Variable(img.type(self.Tensor)) # Get detections with torch.no_grad(): #print(input_img.unsqueeze(0).shape) detections = self.model(input_img.unsqueeze(0)) detections = non_max_suppression(detections, self.conf_thres, self.nms_thres) sfv = np.zeros((len(self.yolo_classes)), dtype = np.int8) for idx, img_detections in enumerate(detections): if img_detections is not None: # Rescale boxes to original image img_detections = rescale_boxes(img_detections, self.img_size, img_shape[:2]) unique_labels = img_detections[:, -1].cpu().unique() for x1, y1, x2, y2, conf, cls_conf, cls_pred in img_detections: sfv[int(cls_pred)] += 1 return sfv
30.95082
92
0.626324
848a57fc25a23118245585d7ad15faa4c36b3262
6,457
py
Python
controllers/contacts_helper.py
qwc-services/sogis-agdi
f278612c42f648da07448905f2b8021b279e66bc
[ "MIT" ]
null
null
null
controllers/contacts_helper.py
qwc-services/sogis-agdi
f278612c42f648da07448905f2b8021b279e66bc
[ "MIT" ]
null
null
null
controllers/contacts_helper.py
qwc-services/sogis-agdi
f278612c42f648da07448905f2b8021b279e66bc
[ "MIT" ]
null
null
null
from sqlalchemy.orm import joinedload class ContactsHelper: """Helper class for querying contacts""" ROLE_RESPONSIBLE = "Verantwortlicher" ROLE_DATA_OWNER = "Datenherr" ROLE_SUPPLIER = "Lieferant" def __init__(self, config_models, logger): """Constructor :param ConfigModels config_models: Helper for ORM models :param Logger logger: Application logger """ self.config_models = config_models self.logger = logger self.Contact = self.config_models.model('contact') self.Person = self.config_models.model('person') self.Organisation = self.config_models.model('organisation') self.ContactRole = self.config_models.model('contact_role') self.ResourceContact = self.config_models.model('resource_contact') def contact_choices(self): """Return choices for a contact select field.""" choices = [] session = self.config_models.session() # get contacts, organisations first query = session.query(self.Contact).order_by(self.Contact.type.desc()) # order by organisation name then contact name query = query.outerjoin(self.Contact.organisation) \ .order_by(self.Organisation.name, self.Contact.name) # eager load relations query = query.options(joinedload(self.Contact.organisation)) # collect person IDs and names for contact in query.all(): name = contact.name organisation = contact.organisation if organisation: name = "%s / %s" % ( contact.name, organisation.abbreviation or organisation.name ) choices.append((contact.id, name)) session.close() return choices def person_choices(self): """Return choices for a person select field.""" choices = [] session = self.config_models.session() # get persons query = session.query(self.Person) # order by organisation name then person name query = query.outerjoin(self.Person.organisation) \ .order_by(self.Organisation.name, self.Person.name) # eager load relations query = query.options(joinedload(self.Person.organisation)) # collect person IDs and names for person in query.all(): name = person.name organisation = person.organisation if organisation: name = "%s / %s" % ( person.name, organisation.abbreviation or organisation.name ) choices.append((person.id, name)) session.close() return choices def resource_contact_id(self, gdi_resource_id, role_type): """Return assigned contact ID for a GDI resource and role. :param int gdi_resource_id: GDI resource ID :param str role_type: Contact role type """ contact_id = None # find resource_contact session = self.config_models.session() resource_contact = self.resource_contact( gdi_resource_id, role_type, session ) if resource_contact is not None: # get contact ID contact_id = resource_contact.id_contact session.close() return contact_id def resource_contact(self, gdi_resource_id, role_type, session): """Return resource_contact for a GDI resource and role. :param int gdi_resource_id: GDI resource ID :param str role_type: Contact role type :param Session session: DB session """ resource_contact = None # find contact role role = self.role(role_type, session) if role is not None: # find resource_contact query = session.query(self.ResourceContact).filter_by( id_contact_role=role.id, gdi_oid_resource=gdi_resource_id ) resource_contact = query.first() return resource_contact def update_resource_contact(self, gdi_resource_id, role_type, contact_id, session): """Update resource_contact for a GDI resource NOTE: Creates new contact role if missing :param int gdi_resource_id: GDI resource ID :param str role_type: Contact role type :param int contact_id: Contact ID (set 0 to remove) :param Session session: DB session """ # find existing resource_contact resource_contact = self.resource_contact( gdi_resource_id, role_type, session ) if resource_contact is None: if contact_id > 0: # find contact role role = self.role(role_type, session) if role is None: # create new contact role if missing self.logger.info( "Creating new contact role '%s'" % role_type ) role = self.ContactRole(type=role_type) session.add(role) session.flush() # create new resource_contact resource_contact = self.ResourceContact( id_contact_role=role.id, id_contact=contact_id, gdi_oid_resource=gdi_resource_id ) session.add(resource_contact) else: if contact_id > 0: # update existing resource_contact resource_contact.id_contact = contact_id else: # remove existing resource_contact session.delete(resource_contact) def remove_resource_contacts(self, gdi_resource_id, session): """Remove all resource_contacts for a GDI resource. :param int gdi_resource_id: GDI resource ID :param Session session: DB session """ query = session.query(self.ResourceContact).filter_by( gdi_oid_resource=gdi_resource_id ) query.delete() def role(self, role_type, session): """Return contact_role by role type. :param str role_type: Contact role type :param Session session: DB session """ # get contact_role from DB query = session.query(self.ContactRole).filter_by(type=role_type) role = query.first() return role
33.984211
80
0.599659
0491101ed10e2ff22c342edfa26e81e7ca17547b
1,852
py
Python
tests/sklearn/test_SklearnTfidfVectorizerConverter.py
yuhonghong66/onnxmltools
a7cab9fe950fece6fcc1a84d1a60f3f99a68c22c
[ "MIT" ]
null
null
null
tests/sklearn/test_SklearnTfidfVectorizerConverter.py
yuhonghong66/onnxmltools
a7cab9fe950fece6fcc1a84d1a60f3f99a68c22c
[ "MIT" ]
null
null
null
tests/sklearn/test_SklearnTfidfVectorizerConverter.py
yuhonghong66/onnxmltools
a7cab9fe950fece6fcc1a84d1a60f3f99a68c22c
[ "MIT" ]
null
null
null
""" Tests scikit-learn's binarizer converter. """ import unittest import numpy from sklearn.feature_extraction.text import TfidfVectorizer from onnxmltools import convert_sklearn from onnxmltools.convert.common.data_types import StringTensorType from onnxmltools.utils import dump_data_and_model class TestSklearnTfidfVectorizer(unittest.TestCase): def test_model_tfidf_vectorizer11(self): corpus = [ 'This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first document?', ] vect = TfidfVectorizer(ngram_range=(1, 1)) vect.fit(corpus) pred = vect.transform(corpus) model_onnx = convert_sklearn(vect, 'scikit-learn count vectorizer', [('input', StringTensorType([1, 1]))]) self.assertTrue(model_onnx is not None) # REVIEW: enable the test when the runtime implements the primitives. # dump_data_and_model(corpus, vect, model_onnx, basename="SklearnTfidfVectorizer") def test_model_tfidf_vectorizer13(self): corpus = [ 'This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first document?', ] vect = TfidfVectorizer(ngram_range=(1, 3)) vect.fit(corpus) pred = vect.transform(corpus) model_onnx = convert_sklearn(vect, 'scikit-learn count vectorizer', [('input', StringTensorType([1, 1]))]) self.assertTrue(model_onnx is not None) # REVIEW: enable the test when the runtime implements the primitives. # dump_data_and_model(corpus, vect, model_onnx, basename="SklearnTfidfVectorizer") if __name__ == "__main__": unittest.main()
39.404255
114
0.655508
3906ad6156ef40bfe5aa32808ab9c479332bbbf7
3,610
py
Python
cms/forms/utils.py
jinktv/django-cms
d8c689957f0d098a106829e896e0c91d0c1abd86
[ "BSD-3-Clause" ]
1
2015-09-28T10:07:38.000Z
2015-09-28T10:07:38.000Z
cms/forms/utils.py
jinktv/django-cms
d8c689957f0d098a106829e896e0c91d0c1abd86
[ "BSD-3-Clause" ]
1
2021-03-19T15:46:42.000Z
2021-03-19T15:46:42.000Z
cms/forms/utils.py
jinktv/django-cms
d8c689957f0d098a106829e896e0c91d0c1abd86
[ "BSD-3-Clause" ]
1
2016-11-07T01:42:14.000Z
2016-11-07T01:42:14.000Z
# -*- coding: utf-8 -*- from cms.models import Page from cms.models.titlemodels import Title from cms.utils import i18n from collections import defaultdict from cms.utils.conf import get_cms_setting from django.conf import settings from django.contrib.sites.models import Site from django.core.cache import cache from django.db.models.signals import post_save, post_delete from django.utils import translation from django.utils.datastructures import SortedDict from django.utils.safestring import mark_safe def update_site_and_page_choices(lang=None): lang = lang or translation.get_language() SITE_CHOICES_KEY = get_site_cache_key(lang) PAGE_CHOICES_KEY = get_page_cache_key(lang) title_queryset = (Title.objects.drafts() .select_related('page', 'page__site') .order_by('page__tree_id', 'page__lft', 'page__rght')) pages = defaultdict(SortedDict) sites = {} for title in title_queryset: page = pages[title.page.site.pk].get(title.page.pk, {}) page[title.language] = title pages[title.page.site.pk][title.page.pk] = page sites[title.page.site.pk] = title.page.site.name site_choices = [] page_choices = [('', '----')] language_order = [lang] + i18n.get_fallback_languages(lang) for sitepk, sitename in sites.items(): site_choices.append((sitepk, sitename)) site_page_choices = [] for titles in pages[sitepk].values(): title = None for language in language_order: title = titles.get(language) if title: break if not title: continue indent = u"&nbsp;&nbsp;" * title.page.level page_title = mark_safe(u"%s%s" % (indent, title.title)) site_page_choices.append((title.page.pk, page_title)) page_choices.append((sitename, site_page_choices)) # We set it to 1 day here because we actively invalidate this cache. cache.set(SITE_CHOICES_KEY, site_choices, 86400) cache.set(PAGE_CHOICES_KEY, page_choices, 86400) return site_choices, page_choices def get_site_choices(lang=None): lang = lang or translation.get_language() site_choices = cache.get(get_site_cache_key(lang)) if site_choices is None: site_choices, page_choices = update_site_and_page_choices(lang) return site_choices def get_page_choices(lang=None): lang = lang or translation.get_language() page_choices = cache.get(get_page_cache_key(lang)) if page_choices is None: site_choices, page_choices = update_site_and_page_choices(lang) return page_choices def _get_key(prefix, lang): return "%s-%s" % (prefix, lang) def get_site_cache_key(lang): return _get_key(get_cms_setting('SITE_CHOICES_CACHE_KEY'), lang) def get_page_cache_key(lang): return _get_key(get_cms_setting('PAGE_CHOICES_CACHE_KEY'), lang) def _clean_many(prefix): keys = [] for lang in [language[0] for language in settings.LANGUAGES]: keys.append(_get_key(prefix, lang)) cache.delete_many(keys) def clean_site_choices_cache(sender, **kwargs): _clean_many(get_cms_setting('SITE_CHOICES_CACHE_KEY')) def clean_page_choices_cache(sender, **kwargs): _clean_many(get_cms_setting('PAGE_CHOICES_CACHE_KEY')) post_save.connect(clean_page_choices_cache, sender=Page) post_save.connect(clean_site_choices_cache, sender=Site) post_delete.connect(clean_page_choices_cache, sender=Page) post_delete.connect(clean_site_choices_cache, sender=Site)
36.464646
76
0.701385
b065f3be95cae0c74446d0d180ef9ba1431f24ad
3,957
py
Python
keymint_keymake/authorities.py
keymint/keymint_keymake
adc38e07ce5f16d6ba4b36294d7d2e8a361153f0
[ "Apache-2.0" ]
null
null
null
keymint_keymake/authorities.py
keymint/keymint_keymake
adc38e07ce5f16d6ba4b36294d7d2e8a361153f0
[ "Apache-2.0" ]
null
null
null
keymint_keymake/authorities.py
keymint/keymint_keymake
adc38e07ce5f16d6ba4b36294d7d2e8a361153f0
[ "Apache-2.0" ]
null
null
null
# Copyright 2014 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os # import datetime from copy import deepcopy # from xml.etree import cElementTree as ElementTree # import xmlschema # from .exceptions import InvalidPermissionsXML # from .namespace import DDSNamespaceHelper # from .schemas import get_dds_schema_path from keymint_keymake.pki.asymmetric import AsymmetricHelper from keymint_keymake.pki.certificate import CertificateHelper from keymint_keymake.pki.certificate import get_ca_csr, get_ca_key # from cryptography import x509 # from cryptography.hazmat.backends import default_backend # from cryptography.hazmat.primitives import serialization class AuthoritiesHelper: """Help build authorities into artifacts.""" def __init__(self): pass def init(self, context): raise NotImplementedError class DDSAuthoritiesHelper(AuthoritiesHelper): """Help build authorities into artifacts.""" def __init__(self): self.dds_asymmetric_helper = AsymmetricHelper() self.dds_certificate_helper = CertificateHelper() def _build_key(self, context, key): asymmetric_types = key.find('asymmetric_type') asymmetric_type = asymmetric_types.getchildren()[0] generator = getattr(self.dds_asymmetric_helper, asymmetric_type.tag) dds_key = generator(context, asymmetric_type) return dds_key def _build_csr(self, context, authority, csr, dds_key): dds_csr = self.dds_certificate_helper.build_csr(context, authority, csr, dds_key) return dds_csr def _build_authority(self, context, authority): dds_authority = {} dds_authority['name'] = authority.get('name') key = authority.find('key') dds_key = self._build_key(context, key) dds_key_bytes = self.dds_asymmetric_helper.serialize(context, key, dds_key) csr = authority.find('cert') dds_csr = self._build_csr(context, authority, csr, dds_key) dds_csr_bytes = self.dds_certificate_helper.serialize(context, csr, dds_csr) dds_authority['dds_key'] = {'object': dds_key, 'bytes': dds_key_bytes} dds_authority['dds_csr'] = {'object': dds_csr, 'bytes': dds_csr_bytes} return dds_authority def build_iter(self, context): authorities = deepcopy(context.profile_manifest.authorities) for authority in authorities.findall('authority'): dds_authority = self._build_authority(context, authority) yield dds_authority return def _install_authority(self, context, authority): dds_authority = {} dds_authority['name'] = authority.get('name') cert = authority.find('cert') dds_csr = get_ca_csr(context, dds_authority['name']) dds_key = get_ca_key(context, dds_authority['name']) dds_cert = self.dds_certificate_helper.install_cert(context, cert, dds_csr, dds_key) dds_cert_bytes = self.dds_certificate_helper.serialize(context, cert, dds_cert) dds_authority['dds_cert'] = {'object': dds_cert, 'bytes': dds_cert_bytes} return dds_authority def install_iter(self, context): authorities = deepcopy(context.profile_manifest.authorities) for authority in authorities.findall('authority'): dds_authority = self._install_authority(context, authority) yield dds_authority return
33.533898
92
0.718979
37ee61417eeab3011f317c865efb982d6b6e214b
72,020
py
Python
pandas/tests/computation/test_eval.py
HQDragon/pandas
8713f2d1237a471a4f42f3fb547887bc022a5b94
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "MIT-0", "ECL-2.0", "BSD-3-Clause" ]
2
2022-02-02T02:05:28.000Z
2022-02-02T02:09:37.000Z
pandas/tests/computation/test_eval.py
HQDragon/pandas
8713f2d1237a471a4f42f3fb547887bc022a5b94
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "MIT-0", "ECL-2.0", "BSD-3-Clause" ]
2
2021-02-16T06:43:48.000Z
2021-03-19T00:07:02.000Z
pandas/tests/computation/test_eval.py
HQDragon/pandas
8713f2d1237a471a4f42f3fb547887bc022a5b94
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "MIT-0", "ECL-2.0", "BSD-3-Clause" ]
1
2020-10-28T03:32:40.000Z
2020-10-28T03:32:40.000Z
from distutils.version import LooseVersion from functools import reduce from itertools import product import operator from typing import Dict, List, Type import warnings import numpy as np import pytest from pandas.compat import is_platform_windows, np_version_under1p17 from pandas.errors import PerformanceWarning import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_bool, is_list_like, is_scalar import pandas as pd from pandas import DataFrame, Series, compat, date_range import pandas._testing as tm from pandas.core.computation import pytables from pandas.core.computation.check import NUMEXPR_VERSION from pandas.core.computation.engines import ENGINES, NumExprClobberingError import pandas.core.computation.expr as expr from pandas.core.computation.expr import ( BaseExprVisitor, PandasExprVisitor, PythonExprVisitor, ) from pandas.core.computation.expressions import NUMEXPR_INSTALLED, USE_NUMEXPR from pandas.core.computation.ops import ( ARITH_OPS_SYMS, SPECIAL_CASE_ARITH_OPS_SYMS, _binary_math_ops, _binary_ops_dict, _unary_math_ops, ) @pytest.fixture( params=( pytest.param( engine, marks=pytest.mark.skipif( engine == "numexpr" and not USE_NUMEXPR, reason=f"numexpr enabled->{USE_NUMEXPR}, " f"installed->{NUMEXPR_INSTALLED}", ), ) for engine in ENGINES ) ) def engine(request): return request.param @pytest.fixture(params=expr.PARSERS) def parser(request): return request.param @pytest.fixture def ne_lt_2_6_9(): if NUMEXPR_INSTALLED and NUMEXPR_VERSION >= LooseVersion("2.6.9"): pytest.skip("numexpr is >= 2.6.9") return "numexpr" def _get_unary_fns_for_ne(): if NUMEXPR_INSTALLED: if NUMEXPR_VERSION >= LooseVersion("2.6.9"): return list(_unary_math_ops) else: return [x for x in _unary_math_ops if x not in ["floor", "ceil"]] return [] @pytest.fixture(params=_get_unary_fns_for_ne()) def unary_fns_for_ne(request): return request.param def engine_has_neg_frac(engine): return ENGINES[engine].has_neg_frac def _eval_single_bin(lhs, cmp1, rhs, engine): c = _binary_ops_dict[cmp1] if engine_has_neg_frac(engine): try: return c(lhs, rhs) except ValueError as e: if str(e).startswith( "negative number cannot be raised to a fractional power" ): return np.nan raise return c(lhs, rhs) def _series_and_2d_ndarray(lhs, rhs): return ( isinstance(lhs, Series) and isinstance(rhs, np.ndarray) and rhs.ndim > 1 ) or (isinstance(rhs, Series) and isinstance(lhs, np.ndarray) and lhs.ndim > 1) def _series_and_frame(lhs, rhs): return (isinstance(lhs, Series) and isinstance(rhs, DataFrame)) or ( isinstance(rhs, Series) and isinstance(lhs, DataFrame) ) def _bool_and_frame(lhs, rhs): return isinstance(lhs, bool) and isinstance(rhs, pd.core.generic.NDFrame) def _is_py3_complex_incompat(result, expected): return isinstance(expected, (complex, np.complexfloating)) and np.isnan(result) _good_arith_ops = sorted(set(ARITH_OPS_SYMS).difference(SPECIAL_CASE_ARITH_OPS_SYMS)) # TODO: using range(5) here is a kludge @pytest.fixture(params=list(range(5))) def lhs(request): nan_df1 = DataFrame(np.random.rand(10, 5)) nan_df1[nan_df1 > 0.5] = np.nan opts = ( DataFrame(np.random.randn(10, 5)), Series(np.random.randn(5)), Series([1, 2, np.nan, np.nan, 5]), nan_df1, np.random.randn(), ) return opts[request.param] rhs = lhs midhs = lhs @td.skip_if_no_ne class TestEvalNumexprPandas: exclude_cmp: List[str] = [] exclude_bool: List[str] = [] engine = "numexpr" parser = "pandas" @classmethod def setup_class(cls): import numexpr as ne cls.ne = ne @property def current_engines(self): return (engine for engine in ENGINES if engine != self.engine) @pytest.mark.parametrize( "cmp1", ["!=", "==", "<=", ">=", "<", ">"], ids=["ne", "eq", "le", "ge", "lt", "gt"], ) @pytest.mark.parametrize("cmp2", [">", "<"], ids=["gt", "lt"]) @pytest.mark.parametrize("binop", expr.BOOL_OPS_SYMS) def test_complex_cmp_ops(self, cmp1, cmp2, binop, lhs, rhs): if binop in self.exclude_bool: pytest.skip() lhs_new = _eval_single_bin(lhs, cmp1, rhs, self.engine) rhs_new = _eval_single_bin(lhs, cmp2, rhs, self.engine) expected = _eval_single_bin(lhs_new, binop, rhs_new, self.engine) ex = f"(lhs {cmp1} rhs) {binop} (lhs {cmp2} rhs)" result = pd.eval(ex, engine=self.engine, parser=self.parser) self.check_equal(result, expected) @pytest.mark.parametrize("cmp_op", expr.CMP_OPS_SYMS) def test_simple_cmp_ops(self, cmp_op): if cmp_op in self.exclude_cmp: pytest.skip() bool_lhses = ( DataFrame(tm.randbool(size=(10, 5))), Series(tm.randbool((5,))), tm.randbool(), ) bool_rhses = ( DataFrame(tm.randbool(size=(10, 5))), Series(tm.randbool((5,))), tm.randbool(), ) for lhs, rhs in product(bool_lhses, bool_rhses): self.check_simple_cmp_op(lhs, cmp_op, rhs) @pytest.mark.parametrize("op", _good_arith_ops) def test_binary_arith_ops(self, op, lhs, rhs, request): if ( op == "/" and isinstance(lhs, DataFrame) and isinstance(rhs, DataFrame) and not lhs.isna().any().any() and rhs.shape == (10, 5) and np_version_under1p17 and is_platform_windows() and compat.PY38 ): mark = pytest.mark.xfail( reason="GH#37328 floating point precision on Windows builds" ) request.node.add_marker(mark) self.check_binary_arith_op(lhs, op, rhs) def test_modulus(self, lhs, rhs): self.check_modulus(lhs, "%", rhs) def test_floor_division(self, lhs, rhs): self.check_floor_division(lhs, "//", rhs) @td.skip_if_windows def test_pow(self, lhs, rhs): # odd failure on win32 platform, so skip self.check_pow(lhs, "**", rhs) @pytest.mark.parametrize("op", expr.CMP_OPS_SYMS) def test_single_invert_op(self, op, lhs): if op in self.exclude_cmp: pytest.skip() self.check_single_invert_op(lhs, op) @pytest.mark.parametrize("op", expr.CMP_OPS_SYMS) def test_compound_invert_op(self, op, lhs, rhs): if op in self.exclude_cmp: pytest.skip() self.check_compound_invert_op(lhs, op, rhs) @pytest.mark.parametrize("cmp1", ["<", ">"]) @pytest.mark.parametrize("cmp2", ["<", ">"]) def test_chained_cmp_op(self, cmp1, cmp2, lhs, midhs, rhs): self.check_chained_cmp_op(lhs, cmp1, midhs, cmp2, rhs) def check_equal(self, result, expected): if isinstance(result, DataFrame): tm.assert_frame_equal(result, expected) elif isinstance(result, Series): tm.assert_series_equal(result, expected) elif isinstance(result, np.ndarray): tm.assert_numpy_array_equal(result, expected) else: assert result == expected def check_chained_cmp_op(self, lhs, cmp1, mid, cmp2, rhs): def check_operands(left, right, cmp_op): return _eval_single_bin(left, cmp_op, right, self.engine) lhs_new = check_operands(lhs, mid, cmp1) rhs_new = check_operands(mid, rhs, cmp2) if lhs_new is not None and rhs_new is not None: ex1 = f"lhs {cmp1} mid {cmp2} rhs" ex2 = f"lhs {cmp1} mid and mid {cmp2} rhs" ex3 = f"(lhs {cmp1} mid) & (mid {cmp2} rhs)" expected = _eval_single_bin(lhs_new, "&", rhs_new, self.engine) for ex in (ex1, ex2, ex3): result = pd.eval(ex, engine=self.engine, parser=self.parser) tm.assert_almost_equal(result, expected) def check_simple_cmp_op(self, lhs, cmp1, rhs): ex = f"lhs {cmp1} rhs" msg = ( r"only list-like( or dict-like)? objects are allowed to be " r"passed to (DataFrame\.)?isin\(\), you passed a " r"(\[|')bool(\]|')|" "argument of type 'bool' is not iterable" ) if cmp1 in ("in", "not in") and not is_list_like(rhs): with pytest.raises(TypeError, match=msg): pd.eval( ex, engine=self.engine, parser=self.parser, local_dict={"lhs": lhs, "rhs": rhs}, ) else: expected = _eval_single_bin(lhs, cmp1, rhs, self.engine) result = pd.eval(ex, engine=self.engine, parser=self.parser) self.check_equal(result, expected) def check_binary_arith_op(self, lhs, arith1, rhs): ex = f"lhs {arith1} rhs" result = pd.eval(ex, engine=self.engine, parser=self.parser) expected = _eval_single_bin(lhs, arith1, rhs, self.engine) tm.assert_almost_equal(result, expected) ex = f"lhs {arith1} rhs {arith1} rhs" result = pd.eval(ex, engine=self.engine, parser=self.parser) nlhs = _eval_single_bin(lhs, arith1, rhs, self.engine) self.check_alignment(result, nlhs, rhs, arith1) def check_alignment(self, result, nlhs, ghs, op): try: nlhs, ghs = nlhs.align(ghs) except (ValueError, TypeError, AttributeError): # ValueError: series frame or frame series align # TypeError, AttributeError: series or frame with scalar align pass else: # direct numpy comparison expected = self.ne.evaluate(f"nlhs {op} ghs") # Update assert statement due to unreliable numerical # precision component (GH37328) # TODO: update testing code so that assert_almost_equal statement # can be replaced again by the assert_numpy_array_equal statement tm.assert_almost_equal(result.values, expected) # modulus, pow, and floor division require special casing def check_modulus(self, lhs, arith1, rhs): ex = f"lhs {arith1} rhs" result = pd.eval(ex, engine=self.engine, parser=self.parser) expected = lhs % rhs tm.assert_almost_equal(result, expected) expected = self.ne.evaluate(f"expected {arith1} rhs") if isinstance(result, (DataFrame, Series)): tm.assert_almost_equal(result.values, expected) else: tm.assert_almost_equal(result, expected.item()) def check_floor_division(self, lhs, arith1, rhs): ex = f"lhs {arith1} rhs" if self.engine == "python": res = pd.eval(ex, engine=self.engine, parser=self.parser) expected = lhs // rhs self.check_equal(res, expected) else: msg = ( r"unsupported operand type\(s\) for //: 'VariableNode' and " "'VariableNode'" ) with pytest.raises(TypeError, match=msg): pd.eval( ex, local_dict={"lhs": lhs, "rhs": rhs}, engine=self.engine, parser=self.parser, ) def get_expected_pow_result(self, lhs, rhs): try: expected = _eval_single_bin(lhs, "**", rhs, self.engine) except ValueError as e: if str(e).startswith( "negative number cannot be raised to a fractional power" ): if self.engine == "python": pytest.skip(str(e)) else: expected = np.nan else: raise return expected def check_pow(self, lhs, arith1, rhs): ex = f"lhs {arith1} rhs" expected = self.get_expected_pow_result(lhs, rhs) result = pd.eval(ex, engine=self.engine, parser=self.parser) if ( is_scalar(lhs) and is_scalar(rhs) and _is_py3_complex_incompat(result, expected) ): msg = "(DataFrame.columns|numpy array) are different" with pytest.raises(AssertionError, match=msg): tm.assert_numpy_array_equal(result, expected) else: tm.assert_almost_equal(result, expected) ex = f"(lhs {arith1} rhs) {arith1} rhs" result = pd.eval(ex, engine=self.engine, parser=self.parser) expected = self.get_expected_pow_result( self.get_expected_pow_result(lhs, rhs), rhs ) tm.assert_almost_equal(result, expected) def check_single_invert_op(self, elem, cmp1): # simple try: elb = elem.astype(bool) except AttributeError: elb = np.array([bool(elem)]) expected = ~elb result = pd.eval("~elb", engine=self.engine, parser=self.parser) tm.assert_almost_equal(expected, result) for engine in self.current_engines: tm.assert_almost_equal( result, pd.eval("~elb", engine=engine, parser=self.parser) ) def check_compound_invert_op(self, lhs, cmp1, rhs): skip_these = ["in", "not in"] ex = f"~(lhs {cmp1} rhs)" msg = ( r"only list-like( or dict-like)? objects are allowed to be " r"passed to (DataFrame\.)?isin\(\), you passed a " r"(\[|')float(\]|')|" "argument of type 'float' is not iterable" ) if is_scalar(rhs) and cmp1 in skip_these: with pytest.raises(TypeError, match=msg): pd.eval( ex, engine=self.engine, parser=self.parser, local_dict={"lhs": lhs, "rhs": rhs}, ) else: # compound if is_scalar(lhs) and is_scalar(rhs): lhs, rhs = map(lambda x: np.array([x]), (lhs, rhs)) expected = _eval_single_bin(lhs, cmp1, rhs, self.engine) if is_scalar(expected): expected = not expected else: expected = ~expected result = pd.eval(ex, engine=self.engine, parser=self.parser) tm.assert_almost_equal(expected, result) # make sure the other engines work the same as this one for engine in self.current_engines: ev = pd.eval(ex, engine=self.engine, parser=self.parser) tm.assert_almost_equal(ev, result) def ex(self, op, var_name="lhs"): return f"{op}{var_name}" def test_frame_invert(self): expr = self.ex("~") # ~ ## # frame # float always raises lhs = DataFrame(np.random.randn(5, 2)) if self.engine == "numexpr": msg = "couldn't find matching opcode for 'invert_dd'" with pytest.raises(NotImplementedError, match=msg): result = pd.eval(expr, engine=self.engine, parser=self.parser) else: msg = "ufunc 'invert' not supported for the input types" with pytest.raises(TypeError, match=msg): result = pd.eval(expr, engine=self.engine, parser=self.parser) # int raises on numexpr lhs = DataFrame(np.random.randint(5, size=(5, 2))) if self.engine == "numexpr": msg = "couldn't find matching opcode for 'invert" with pytest.raises(NotImplementedError, match=msg): result = pd.eval(expr, engine=self.engine, parser=self.parser) else: expect = ~lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) tm.assert_frame_equal(expect, result) # bool always works lhs = DataFrame(np.random.rand(5, 2) > 0.5) expect = ~lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) tm.assert_frame_equal(expect, result) # object raises lhs = DataFrame({"b": ["a", 1, 2.0], "c": np.random.rand(3) > 0.5}) if self.engine == "numexpr": with pytest.raises(ValueError, match="unknown type object"): result = pd.eval(expr, engine=self.engine, parser=self.parser) else: msg = "bad operand type for unary ~: 'str'" with pytest.raises(TypeError, match=msg): result = pd.eval(expr, engine=self.engine, parser=self.parser) def test_series_invert(self): # ~ #### expr = self.ex("~") # series # float raises lhs = Series(np.random.randn(5)) if self.engine == "numexpr": msg = "couldn't find matching opcode for 'invert_dd'" with pytest.raises(NotImplementedError, match=msg): result = pd.eval(expr, engine=self.engine, parser=self.parser) else: msg = "ufunc 'invert' not supported for the input types" with pytest.raises(TypeError, match=msg): result = pd.eval(expr, engine=self.engine, parser=self.parser) # int raises on numexpr lhs = Series(np.random.randint(5, size=5)) if self.engine == "numexpr": msg = "couldn't find matching opcode for 'invert" with pytest.raises(NotImplementedError, match=msg): result = pd.eval(expr, engine=self.engine, parser=self.parser) else: expect = ~lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) tm.assert_series_equal(expect, result) # bool lhs = Series(np.random.rand(5) > 0.5) expect = ~lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) tm.assert_series_equal(expect, result) # float # int # bool # object lhs = Series(["a", 1, 2.0]) if self.engine == "numexpr": with pytest.raises(ValueError, match="unknown type object"): result = pd.eval(expr, engine=self.engine, parser=self.parser) else: msg = "bad operand type for unary ~: 'str'" with pytest.raises(TypeError, match=msg): result = pd.eval(expr, engine=self.engine, parser=self.parser) def test_frame_negate(self): expr = self.ex("-") # float lhs = DataFrame(np.random.randn(5, 2)) expect = -lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) tm.assert_frame_equal(expect, result) # int lhs = DataFrame(np.random.randint(5, size=(5, 2))) expect = -lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) tm.assert_frame_equal(expect, result) # bool doesn't work with numexpr but works elsewhere lhs = DataFrame(np.random.rand(5, 2) > 0.5) if self.engine == "numexpr": msg = "couldn't find matching opcode for 'neg_bb'" with pytest.raises(NotImplementedError, match=msg): result = pd.eval(expr, engine=self.engine, parser=self.parser) else: expect = -lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) tm.assert_frame_equal(expect, result) def test_series_negate(self): expr = self.ex("-") # float lhs = Series(np.random.randn(5)) expect = -lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) tm.assert_series_equal(expect, result) # int lhs = Series(np.random.randint(5, size=5)) expect = -lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) tm.assert_series_equal(expect, result) # bool doesn't work with numexpr but works elsewhere lhs = Series(np.random.rand(5) > 0.5) if self.engine == "numexpr": msg = "couldn't find matching opcode for 'neg_bb'" with pytest.raises(NotImplementedError, match=msg): result = pd.eval(expr, engine=self.engine, parser=self.parser) else: expect = -lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) tm.assert_series_equal(expect, result) @pytest.mark.parametrize( "lhs", [ # Float DataFrame(np.random.randn(5, 2)), # Int DataFrame(np.random.randint(5, size=(5, 2))), # bool doesn't work with numexpr but works elsewhere DataFrame(np.random.rand(5, 2) > 0.5), ], ) def test_frame_pos(self, lhs): expr = self.ex("+") expect = lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) tm.assert_frame_equal(expect, result) @pytest.mark.parametrize( "lhs", [ # Float Series(np.random.randn(5)), # Int Series(np.random.randint(5, size=5)), # bool doesn't work with numexpr but works elsewhere Series(np.random.rand(5) > 0.5), ], ) def test_series_pos(self, lhs): expr = self.ex("+") expect = lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) tm.assert_series_equal(expect, result) def test_scalar_unary(self): msg = "bad operand type for unary ~: 'float'" with pytest.raises(TypeError, match=msg): pd.eval("~1.0", engine=self.engine, parser=self.parser) assert pd.eval("-1.0", parser=self.parser, engine=self.engine) == -1.0 assert pd.eval("+1.0", parser=self.parser, engine=self.engine) == +1.0 assert pd.eval("~1", parser=self.parser, engine=self.engine) == ~1 assert pd.eval("-1", parser=self.parser, engine=self.engine) == -1 assert pd.eval("+1", parser=self.parser, engine=self.engine) == +1 assert pd.eval("~True", parser=self.parser, engine=self.engine) == ~True assert pd.eval("~False", parser=self.parser, engine=self.engine) == ~False assert pd.eval("-True", parser=self.parser, engine=self.engine) == -True assert pd.eval("-False", parser=self.parser, engine=self.engine) == -False assert pd.eval("+True", parser=self.parser, engine=self.engine) == +True assert pd.eval("+False", parser=self.parser, engine=self.engine) == +False def test_unary_in_array(self): # GH 11235 tm.assert_numpy_array_equal( pd.eval( "[-True, True, ~True, +True," "-False, False, ~False, +False," "-37, 37, ~37, +37]" ), np.array( [ -True, True, ~True, +True, -False, False, ~False, +False, -37, 37, ~37, +37, ], dtype=np.object_, ), ) @pytest.mark.parametrize("dtype", [np.float32, np.float64]) def test_float_comparison_bin_op(self, dtype): # GH 16363 df = DataFrame({"x": np.array([0], dtype=dtype)}) res = df.eval("x < -0.1") assert res.values == np.array([False]) res = df.eval("-5 > x") assert res.values == np.array([False]) def test_disallow_scalar_bool_ops(self): exprs = "1 or 2", "1 and 2" exprs += "a and b", "a or b" exprs += ("1 or 2 and (3 + 2) > 3",) exprs += ("2 * x > 2 or 1 and 2",) exprs += ("2 * df > 3 and 1 or a",) x, a, b, df = np.random.randn(3), 1, 2, DataFrame(np.random.randn(3, 2)) # noqa for ex in exprs: msg = "cannot evaluate scalar only bool ops|'BoolOp' nodes are not" with pytest.raises(NotImplementedError, match=msg): pd.eval(ex, engine=self.engine, parser=self.parser) def test_identical(self): # see gh-10546 x = 1 result = pd.eval("x", engine=self.engine, parser=self.parser) assert result == 1 assert is_scalar(result) x = 1.5 result = pd.eval("x", engine=self.engine, parser=self.parser) assert result == 1.5 assert is_scalar(result) x = False result = pd.eval("x", engine=self.engine, parser=self.parser) assert not result assert is_bool(result) assert is_scalar(result) x = np.array([1]) result = pd.eval("x", engine=self.engine, parser=self.parser) tm.assert_numpy_array_equal(result, np.array([1])) assert result.shape == (1,) x = np.array([1.5]) result = pd.eval("x", engine=self.engine, parser=self.parser) tm.assert_numpy_array_equal(result, np.array([1.5])) assert result.shape == (1,) x = np.array([False]) # noqa result = pd.eval("x", engine=self.engine, parser=self.parser) tm.assert_numpy_array_equal(result, np.array([False])) assert result.shape == (1,) def test_line_continuation(self): # GH 11149 exp = """1 + 2 * \ 5 - 1 + 2 """ result = pd.eval(exp, engine=self.engine, parser=self.parser) assert result == 12 def test_float_truncation(self): # GH 14241 exp = "1000000000.006" result = pd.eval(exp, engine=self.engine, parser=self.parser) expected = np.float64(exp) assert result == expected df = DataFrame({"A": [1000000000.0009, 1000000000.0011, 1000000000.0015]}) cutoff = 1000000000.0006 result = df.query(f"A < {cutoff:.4f}") assert result.empty cutoff = 1000000000.0010 result = df.query(f"A > {cutoff:.4f}") expected = df.loc[[1, 2], :] tm.assert_frame_equal(expected, result) exact = 1000000000.0011 result = df.query(f"A == {exact:.4f}") expected = df.loc[[1], :] tm.assert_frame_equal(expected, result) def test_disallow_python_keywords(self): # GH 18221 df = DataFrame([[0, 0, 0]], columns=["foo", "bar", "class"]) msg = "Python keyword not valid identifier in numexpr query" with pytest.raises(SyntaxError, match=msg): df.query("class == 0") df = DataFrame() df.index.name = "lambda" with pytest.raises(SyntaxError, match=msg): df.query("lambda == 0") @td.skip_if_no_ne class TestEvalNumexprPython(TestEvalNumexprPandas): exclude_cmp = ["in", "not in"] exclude_bool = ["and", "or"] engine = "numexpr" parser = "python" @classmethod def setup_class(cls): super().setup_class() import numexpr as ne cls.ne = ne def check_chained_cmp_op(self, lhs, cmp1, mid, cmp2, rhs): ex1 = f"lhs {cmp1} mid {cmp2} rhs" msg = "'BoolOp' nodes are not implemented" with pytest.raises(NotImplementedError, match=msg): pd.eval(ex1, engine=self.engine, parser=self.parser) class TestEvalPythonPython(TestEvalNumexprPython): engine = "python" parser = "python" def check_modulus(self, lhs, arith1, rhs): ex = f"lhs {arith1} rhs" result = pd.eval(ex, engine=self.engine, parser=self.parser) expected = lhs % rhs tm.assert_almost_equal(result, expected) expected = _eval_single_bin(expected, arith1, rhs, self.engine) tm.assert_almost_equal(result, expected) def check_alignment(self, result, nlhs, ghs, op): try: nlhs, ghs = nlhs.align(ghs) except (ValueError, TypeError, AttributeError): # ValueError: series frame or frame series align # TypeError, AttributeError: series or frame with scalar align pass else: expected = eval(f"nlhs {op} ghs") tm.assert_almost_equal(result, expected) class TestEvalPythonPandas(TestEvalPythonPython): engine = "python" parser = "pandas" def check_chained_cmp_op(self, lhs, cmp1, mid, cmp2, rhs): TestEvalNumexprPandas.check_chained_cmp_op(self, lhs, cmp1, mid, cmp2, rhs) f = lambda *args, **kwargs: np.random.randn() # ------------------------------------- # gh-12388: Typecasting rules consistency with python class TestTypeCasting: @pytest.mark.parametrize("op", ["+", "-", "*", "**", "/"]) # maybe someday... numexpr has too many upcasting rules now # chain(*(np.sctypes[x] for x in ['uint', 'int', 'float'])) @pytest.mark.parametrize("dt", [np.float32, np.float64]) def test_binop_typecasting(self, engine, parser, op, dt): df = tm.makeCustomDataframe(5, 3, data_gen_f=f, dtype=dt) s = f"df {op} 3" res = pd.eval(s, engine=engine, parser=parser) assert df.values.dtype == dt assert res.values.dtype == dt tm.assert_frame_equal(res, eval(s)) s = f"3 {op} df" res = pd.eval(s, engine=engine, parser=parser) assert df.values.dtype == dt assert res.values.dtype == dt tm.assert_frame_equal(res, eval(s)) # ------------------------------------- # Basic and complex alignment def _is_datetime(x): return issubclass(x.dtype.type, np.datetime64) def should_warn(*args): not_mono = not any(map(operator.attrgetter("is_monotonic"), args)) only_one_dt = reduce(operator.xor, map(_is_datetime, args)) return not_mono and only_one_dt class TestAlignment: index_types = ["i", "u", "dt"] lhs_index_types = index_types + ["s"] # 'p' def test_align_nested_unary_op(self, engine, parser): s = "df * ~2" df = tm.makeCustomDataframe(5, 3, data_gen_f=f) res = pd.eval(s, engine=engine, parser=parser) tm.assert_frame_equal(res, df * ~2) @pytest.mark.parametrize("lr_idx_type", lhs_index_types) @pytest.mark.parametrize("rr_idx_type", index_types) @pytest.mark.parametrize("c_idx_type", index_types) def test_basic_frame_alignment( self, engine, parser, lr_idx_type, rr_idx_type, c_idx_type ): with warnings.catch_warnings(record=True): warnings.simplefilter("always", RuntimeWarning) df = tm.makeCustomDataframe( 10, 10, data_gen_f=f, r_idx_type=lr_idx_type, c_idx_type=c_idx_type ) df2 = tm.makeCustomDataframe( 20, 10, data_gen_f=f, r_idx_type=rr_idx_type, c_idx_type=c_idx_type ) # only warns if not monotonic and not sortable if should_warn(df.index, df2.index): with tm.assert_produces_warning(RuntimeWarning): res = pd.eval("df + df2", engine=engine, parser=parser) else: res = pd.eval("df + df2", engine=engine, parser=parser) tm.assert_frame_equal(res, df + df2) @pytest.mark.parametrize("r_idx_type", lhs_index_types) @pytest.mark.parametrize("c_idx_type", lhs_index_types) def test_frame_comparison(self, engine, parser, r_idx_type, c_idx_type): df = tm.makeCustomDataframe( 10, 10, data_gen_f=f, r_idx_type=r_idx_type, c_idx_type=c_idx_type ) res = pd.eval("df < 2", engine=engine, parser=parser) tm.assert_frame_equal(res, df < 2) df3 = DataFrame(np.random.randn(*df.shape), index=df.index, columns=df.columns) res = pd.eval("df < df3", engine=engine, parser=parser) tm.assert_frame_equal(res, df < df3) @pytest.mark.parametrize("r1", lhs_index_types) @pytest.mark.parametrize("c1", index_types) @pytest.mark.parametrize("r2", index_types) @pytest.mark.parametrize("c2", index_types) def test_medium_complex_frame_alignment(self, engine, parser, r1, c1, r2, c2): with warnings.catch_warnings(record=True): warnings.simplefilter("always", RuntimeWarning) df = tm.makeCustomDataframe( 3, 2, data_gen_f=f, r_idx_type=r1, c_idx_type=c1 ) df2 = tm.makeCustomDataframe( 4, 2, data_gen_f=f, r_idx_type=r2, c_idx_type=c2 ) df3 = tm.makeCustomDataframe( 5, 2, data_gen_f=f, r_idx_type=r2, c_idx_type=c2 ) if should_warn(df.index, df2.index, df3.index): with tm.assert_produces_warning(RuntimeWarning): res = pd.eval("df + df2 + df3", engine=engine, parser=parser) else: res = pd.eval("df + df2 + df3", engine=engine, parser=parser) tm.assert_frame_equal(res, df + df2 + df3) @pytest.mark.parametrize("index_name", ["index", "columns"]) @pytest.mark.parametrize("c_idx_type", index_types) @pytest.mark.parametrize("r_idx_type", lhs_index_types) def test_basic_frame_series_alignment( self, engine, parser, index_name, r_idx_type, c_idx_type ): def testit(r_idx_type, c_idx_type, index_name): df = tm.makeCustomDataframe( 10, 10, data_gen_f=f, r_idx_type=r_idx_type, c_idx_type=c_idx_type ) index = getattr(df, index_name) s = Series(np.random.randn(5), index[:5]) if should_warn(df.index, s.index): with tm.assert_produces_warning(RuntimeWarning): res = pd.eval("df + s", engine=engine, parser=parser) else: res = pd.eval("df + s", engine=engine, parser=parser) if r_idx_type == "dt" or c_idx_type == "dt": expected = df.add(s) if engine == "numexpr" else df + s else: expected = df + s tm.assert_frame_equal(res, expected) with warnings.catch_warnings(record=True): warnings.simplefilter("always", RuntimeWarning) testit(r_idx_type, c_idx_type, index_name) @pytest.mark.parametrize("index_name", ["index", "columns"]) def test_basic_series_frame_alignment(self, engine, parser, index_name): def testit(r_idx_type, c_idx_type, index_name): df = tm.makeCustomDataframe( 10, 7, data_gen_f=f, r_idx_type=r_idx_type, c_idx_type=c_idx_type ) index = getattr(df, index_name) s = Series(np.random.randn(5), index[:5]) if should_warn(s.index, df.index): with tm.assert_produces_warning(RuntimeWarning): res = pd.eval("s + df", engine=engine, parser=parser) else: res = pd.eval("s + df", engine=engine, parser=parser) if r_idx_type == "dt" or c_idx_type == "dt": expected = df.add(s) if engine == "numexpr" else s + df else: expected = s + df tm.assert_frame_equal(res, expected) # only test dt with dt, otherwise weird joins result args = product(["i", "u", "s"], ["i", "u", "s"]) with warnings.catch_warnings(record=True): # avoid warning about comparing strings and ints warnings.simplefilter("ignore", RuntimeWarning) for r_idx_type, c_idx_type in args: testit(r_idx_type, c_idx_type, index_name) # dt with dt args = product(["dt"], ["dt"]) with warnings.catch_warnings(record=True): # avoid warning about comparing strings and ints warnings.simplefilter("ignore", RuntimeWarning) for r_idx_type, c_idx_type in args: testit(r_idx_type, c_idx_type, index_name) @pytest.mark.parametrize("c_idx_type", index_types) @pytest.mark.parametrize("r_idx_type", lhs_index_types) @pytest.mark.parametrize("index_name", ["index", "columns"]) @pytest.mark.parametrize("op", ["+", "*"]) def test_series_frame_commutativity( self, engine, parser, index_name, op, r_idx_type, c_idx_type ): with warnings.catch_warnings(record=True): warnings.simplefilter("always", RuntimeWarning) df = tm.makeCustomDataframe( 10, 10, data_gen_f=f, r_idx_type=r_idx_type, c_idx_type=c_idx_type ) index = getattr(df, index_name) s = Series(np.random.randn(5), index[:5]) lhs = f"s {op} df" rhs = f"df {op} s" if should_warn(df.index, s.index): with tm.assert_produces_warning(RuntimeWarning): a = pd.eval(lhs, engine=engine, parser=parser) with tm.assert_produces_warning(RuntimeWarning): b = pd.eval(rhs, engine=engine, parser=parser) else: a = pd.eval(lhs, engine=engine, parser=parser) b = pd.eval(rhs, engine=engine, parser=parser) if r_idx_type != "dt" and c_idx_type != "dt": if engine == "numexpr": tm.assert_frame_equal(a, b) @pytest.mark.parametrize("r1", lhs_index_types) @pytest.mark.parametrize("c1", index_types) @pytest.mark.parametrize("r2", index_types) @pytest.mark.parametrize("c2", index_types) def test_complex_series_frame_alignment(self, engine, parser, r1, c1, r2, c2): import random n = 3 m1 = 5 m2 = 2 * m1 with warnings.catch_warnings(record=True): warnings.simplefilter("always", RuntimeWarning) index_name = random.choice(["index", "columns"]) obj_name = random.choice(["df", "df2"]) df = tm.makeCustomDataframe( m1, n, data_gen_f=f, r_idx_type=r1, c_idx_type=c1 ) df2 = tm.makeCustomDataframe( m2, n, data_gen_f=f, r_idx_type=r2, c_idx_type=c2 ) index = getattr(locals().get(obj_name), index_name) ser = Series(np.random.randn(n), index[:n]) if r2 == "dt" or c2 == "dt": if engine == "numexpr": expected2 = df2.add(ser) else: expected2 = df2 + ser else: expected2 = df2 + ser if r1 == "dt" or c1 == "dt": if engine == "numexpr": expected = expected2.add(df) else: expected = expected2 + df else: expected = expected2 + df if should_warn(df2.index, ser.index, df.index): with tm.assert_produces_warning(RuntimeWarning): res = pd.eval("df2 + ser + df", engine=engine, parser=parser) else: res = pd.eval("df2 + ser + df", engine=engine, parser=parser) assert res.shape == expected.shape tm.assert_frame_equal(res, expected) def test_performance_warning_for_poor_alignment(self, engine, parser): df = DataFrame(np.random.randn(1000, 10)) s = Series(np.random.randn(10000)) if engine == "numexpr": seen = PerformanceWarning else: seen = False with tm.assert_produces_warning(seen): pd.eval("df + s", engine=engine, parser=parser) s = Series(np.random.randn(1000)) with tm.assert_produces_warning(False): pd.eval("df + s", engine=engine, parser=parser) df = DataFrame(np.random.randn(10, 10000)) s = Series(np.random.randn(10000)) with tm.assert_produces_warning(False): pd.eval("df + s", engine=engine, parser=parser) df = DataFrame(np.random.randn(10, 10)) s = Series(np.random.randn(10000)) is_python_engine = engine == "python" if not is_python_engine: wrn = PerformanceWarning else: wrn = False with tm.assert_produces_warning(wrn) as w: pd.eval("df + s", engine=engine, parser=parser) if not is_python_engine: assert len(w) == 1 msg = str(w[0].message) loged = np.log10(s.size - df.shape[1]) expected = ( f"Alignment difference on axis 1 is larger " f"than an order of magnitude on term 'df', " f"by more than {loged:.4g}; performance may suffer" ) assert msg == expected # ------------------------------------ # Slightly more complex ops @td.skip_if_no_ne class TestOperationsNumExprPandas: exclude_arith: List[str] = [] engine = "numexpr" parser = "pandas" @classmethod def setup_class(cls): cls.arith_ops = [ op for op in expr.ARITH_OPS_SYMS + expr.CMP_OPS_SYMS if op not in cls.exclude_arith ] def eval(self, *args, **kwargs): kwargs["engine"] = self.engine kwargs["parser"] = self.parser kwargs["level"] = kwargs.pop("level", 0) + 1 return pd.eval(*args, **kwargs) def test_simple_arith_ops(self): ops = (op for op in self.arith_ops if op != "//") for op in ops: ex = f"1 {op} 1" ex2 = f"x {op} 1" ex3 = f"1 {op} (x + 1)" if op in ("in", "not in"): msg = "argument of type 'int' is not iterable" with pytest.raises(TypeError, match=msg): pd.eval(ex, engine=self.engine, parser=self.parser) else: expec = _eval_single_bin(1, op, 1, self.engine) x = self.eval(ex, engine=self.engine, parser=self.parser) assert x == expec expec = _eval_single_bin(x, op, 1, self.engine) y = self.eval( ex2, local_dict={"x": x}, engine=self.engine, parser=self.parser ) assert y == expec expec = _eval_single_bin(1, op, x + 1, self.engine) y = self.eval( ex3, local_dict={"x": x}, engine=self.engine, parser=self.parser ) assert y == expec @pytest.mark.parametrize("rhs", [True, False]) @pytest.mark.parametrize("lhs", [True, False]) @pytest.mark.parametrize("op", expr.BOOL_OPS_SYMS) def test_simple_bool_ops(self, rhs, lhs, op): ex = f"{lhs} {op} {rhs}" res = self.eval(ex) exp = eval(ex) assert res == exp @pytest.mark.parametrize("rhs", [True, False]) @pytest.mark.parametrize("lhs", [True, False]) @pytest.mark.parametrize("op", expr.BOOL_OPS_SYMS) def test_bool_ops_with_constants(self, rhs, lhs, op): ex = f"{lhs} {op} {rhs}" res = self.eval(ex) exp = eval(ex) assert res == exp def test_4d_ndarray_fails(self): x = np.random.randn(3, 4, 5, 6) y = Series(np.random.randn(10)) msg = "N-dimensional objects, where N > 2, are not supported with eval" with pytest.raises(NotImplementedError, match=msg): self.eval("x + y", local_dict={"x": x, "y": y}) def test_constant(self): x = self.eval("1") assert x == 1 def test_single_variable(self): df = DataFrame(np.random.randn(10, 2)) df2 = self.eval("df", local_dict={"df": df}) tm.assert_frame_equal(df, df2) def test_truediv(self): s = np.array([1]) ex = "s / 1" d = {"s": s} # noqa # FutureWarning: The `truediv` parameter in pd.eval is deprecated and will be # removed in a future version. with tm.assert_produces_warning(FutureWarning): res = self.eval(ex, truediv=False) tm.assert_numpy_array_equal(res, np.array([1.0])) with tm.assert_produces_warning(FutureWarning): res = self.eval(ex, truediv=True) tm.assert_numpy_array_equal(res, np.array([1.0])) with tm.assert_produces_warning(FutureWarning): res = self.eval("1 / 2", truediv=True) expec = 0.5 assert res == expec with tm.assert_produces_warning(FutureWarning): res = self.eval("1 / 2", truediv=False) expec = 0.5 assert res == expec with tm.assert_produces_warning(FutureWarning): res = self.eval("s / 2", truediv=False) expec = 0.5 assert res == expec with tm.assert_produces_warning(FutureWarning): res = self.eval("s / 2", truediv=True) expec = 0.5 assert res == expec def test_failing_subscript_with_name_error(self): df = DataFrame(np.random.randn(5, 3)) # noqa with pytest.raises(NameError, match="name 'x' is not defined"): self.eval("df[x > 2] > 2") def test_lhs_expression_subscript(self): df = DataFrame(np.random.randn(5, 3)) result = self.eval("(df + 1)[df > 2]", local_dict={"df": df}) expected = (df + 1)[df > 2] tm.assert_frame_equal(result, expected) def test_attr_expression(self): df = DataFrame(np.random.randn(5, 3), columns=list("abc")) expr1 = "df.a < df.b" expec1 = df.a < df.b expr2 = "df.a + df.b + df.c" expec2 = df.a + df.b + df.c expr3 = "df.a + df.b + df.c[df.b < 0]" expec3 = df.a + df.b + df.c[df.b < 0] exprs = expr1, expr2, expr3 expecs = expec1, expec2, expec3 for e, expec in zip(exprs, expecs): tm.assert_series_equal(expec, self.eval(e, local_dict={"df": df})) def test_assignment_fails(self): df = DataFrame(np.random.randn(5, 3), columns=list("abc")) df2 = DataFrame(np.random.randn(5, 3)) expr1 = "df = df2" msg = "cannot assign without a target object" with pytest.raises(ValueError, match=msg): self.eval(expr1, local_dict={"df": df, "df2": df2}) def test_assignment_column(self): df = DataFrame(np.random.randn(5, 2), columns=list("ab")) orig_df = df.copy() # multiple assignees with pytest.raises(SyntaxError, match="invalid syntax"): df.eval("d c = a + b") # invalid assignees msg = "left hand side of an assignment must be a single name" with pytest.raises(SyntaxError, match=msg): df.eval("d,c = a + b") if compat.PY38: msg = "cannot assign to function call" else: msg = "can't assign to function call" with pytest.raises(SyntaxError, match=msg): df.eval('Timestamp("20131001") = a + b') # single assignment - existing variable expected = orig_df.copy() expected["a"] = expected["a"] + expected["b"] df = orig_df.copy() df.eval("a = a + b", inplace=True) tm.assert_frame_equal(df, expected) # single assignment - new variable expected = orig_df.copy() expected["c"] = expected["a"] + expected["b"] df = orig_df.copy() df.eval("c = a + b", inplace=True) tm.assert_frame_equal(df, expected) # with a local name overlap def f(): df = orig_df.copy() a = 1 # noqa df.eval("a = 1 + b", inplace=True) return df df = f() expected = orig_df.copy() expected["a"] = 1 + expected["b"] tm.assert_frame_equal(df, expected) df = orig_df.copy() def f(): a = 1 # noqa old_a = df.a.copy() df.eval("a = a + b", inplace=True) result = old_a + df.b tm.assert_series_equal(result, df.a, check_names=False) assert result.name is None f() # multiple assignment df = orig_df.copy() df.eval("c = a + b", inplace=True) msg = "can only assign a single expression" with pytest.raises(SyntaxError, match=msg): df.eval("c = a = b") # explicit targets df = orig_df.copy() self.eval("c = df.a + df.b", local_dict={"df": df}, target=df, inplace=True) expected = orig_df.copy() expected["c"] = expected["a"] + expected["b"] tm.assert_frame_equal(df, expected) def test_column_in(self): # GH 11235 df = DataFrame({"a": [11], "b": [-32]}) result = df.eval("a in [11, -32]") expected = Series([True]) tm.assert_series_equal(result, expected) def assignment_not_inplace(self): # see gh-9297 df = DataFrame(np.random.randn(5, 2), columns=list("ab")) actual = df.eval("c = a + b", inplace=False) assert actual is not None expected = df.copy() expected["c"] = expected["a"] + expected["b"] tm.assert_frame_equal(df, expected) def test_multi_line_expression(self): # GH 11149 df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) expected = df.copy() expected["c"] = expected["a"] + expected["b"] expected["d"] = expected["c"] + expected["b"] ans = df.eval( """ c = a + b d = c + b""", inplace=True, ) tm.assert_frame_equal(expected, df) assert ans is None expected["a"] = expected["a"] - 1 expected["e"] = expected["a"] + 2 ans = df.eval( """ a = a - 1 e = a + 2""", inplace=True, ) tm.assert_frame_equal(expected, df) assert ans is None # multi-line not valid if not all assignments msg = "Multi-line expressions are only valid if all expressions contain" with pytest.raises(ValueError, match=msg): df.eval( """ a = b + 2 b - 2""", inplace=False, ) def test_multi_line_expression_not_inplace(self): # GH 11149 df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) expected = df.copy() expected["c"] = expected["a"] + expected["b"] expected["d"] = expected["c"] + expected["b"] df = df.eval( """ c = a + b d = c + b""", inplace=False, ) tm.assert_frame_equal(expected, df) expected["a"] = expected["a"] - 1 expected["e"] = expected["a"] + 2 df = df.eval( """ a = a - 1 e = a + 2""", inplace=False, ) tm.assert_frame_equal(expected, df) def test_multi_line_expression_local_variable(self): # GH 15342 df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) expected = df.copy() local_var = 7 expected["c"] = expected["a"] * local_var expected["d"] = expected["c"] + local_var ans = df.eval( """ c = a * @local_var d = c + @local_var """, inplace=True, ) tm.assert_frame_equal(expected, df) assert ans is None def test_multi_line_expression_callable_local_variable(self): # 26426 df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) def local_func(a, b): return b expected = df.copy() expected["c"] = expected["a"] * local_func(1, 7) expected["d"] = expected["c"] + local_func(1, 7) ans = df.eval( """ c = a * @local_func(1, 7) d = c + @local_func(1, 7) """, inplace=True, ) tm.assert_frame_equal(expected, df) assert ans is None def test_multi_line_expression_callable_local_variable_with_kwargs(self): # 26426 df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) def local_func(a, b): return b expected = df.copy() expected["c"] = expected["a"] * local_func(b=7, a=1) expected["d"] = expected["c"] + local_func(b=7, a=1) ans = df.eval( """ c = a * @local_func(b=7, a=1) d = c + @local_func(b=7, a=1) """, inplace=True, ) tm.assert_frame_equal(expected, df) assert ans is None def test_assignment_in_query(self): # GH 8664 df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) df_orig = df.copy() msg = "cannot assign without a target object" with pytest.raises(ValueError, match=msg): df.query("a = 1") tm.assert_frame_equal(df, df_orig) def test_query_inplace(self): # see gh-11149 df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) expected = df.copy() expected = expected[expected["a"] == 2] df.query("a == 2", inplace=True) tm.assert_frame_equal(expected, df) df = {} expected = {"a": 3} self.eval("a = 1 + 2", target=df, inplace=True) tm.assert_dict_equal(df, expected) @pytest.mark.parametrize("invalid_target", [1, "cat", [1, 2], np.array([]), (1, 3)]) @pytest.mark.filterwarnings("ignore::FutureWarning") def test_cannot_item_assign(self, invalid_target): msg = "Cannot assign expression output to target" expression = "a = 1 + 2" with pytest.raises(ValueError, match=msg): self.eval(expression, target=invalid_target, inplace=True) if hasattr(invalid_target, "copy"): with pytest.raises(ValueError, match=msg): self.eval(expression, target=invalid_target, inplace=False) @pytest.mark.parametrize("invalid_target", [1, "cat", (1, 3)]) def test_cannot_copy_item(self, invalid_target): msg = "Cannot return a copy of the target" expression = "a = 1 + 2" with pytest.raises(ValueError, match=msg): self.eval(expression, target=invalid_target, inplace=False) @pytest.mark.parametrize("target", [1, "cat", [1, 2], np.array([]), (1, 3), {1: 2}]) def test_inplace_no_assignment(self, target): expression = "1 + 2" assert self.eval(expression, target=target, inplace=False) == 3 msg = "Cannot operate inplace if there is no assignment" with pytest.raises(ValueError, match=msg): self.eval(expression, target=target, inplace=True) def test_basic_period_index_boolean_expression(self): df = tm.makeCustomDataframe(2, 2, data_gen_f=f, c_idx_type="p", r_idx_type="i") e = df < 2 r = self.eval("df < 2", local_dict={"df": df}) x = df < 2 tm.assert_frame_equal(r, e) tm.assert_frame_equal(x, e) def test_basic_period_index_subscript_expression(self): df = tm.makeCustomDataframe(2, 2, data_gen_f=f, c_idx_type="p", r_idx_type="i") r = self.eval("df[df < 2 + 3]", local_dict={"df": df}) e = df[df < 2 + 3] tm.assert_frame_equal(r, e) def test_nested_period_index_subscript_expression(self): df = tm.makeCustomDataframe(2, 2, data_gen_f=f, c_idx_type="p", r_idx_type="i") r = self.eval("df[df[df < 2] < 2] + df * 2", local_dict={"df": df}) e = df[df[df < 2] < 2] + df * 2 tm.assert_frame_equal(r, e) def test_date_boolean(self): df = DataFrame(np.random.randn(5, 3)) df["dates1"] = date_range("1/1/2012", periods=5) res = self.eval( "df.dates1 < 20130101", local_dict={"df": df}, engine=self.engine, parser=self.parser, ) expec = df.dates1 < "20130101" tm.assert_series_equal(res, expec, check_names=False) def test_simple_in_ops(self): if self.parser != "python": res = pd.eval("1 in [1, 2]", engine=self.engine, parser=self.parser) assert res res = pd.eval("2 in (1, 2)", engine=self.engine, parser=self.parser) assert res res = pd.eval("3 in (1, 2)", engine=self.engine, parser=self.parser) assert not res res = pd.eval("3 not in (1, 2)", engine=self.engine, parser=self.parser) assert res res = pd.eval("[3] not in (1, 2)", engine=self.engine, parser=self.parser) assert res res = pd.eval("[3] in ([3], 2)", engine=self.engine, parser=self.parser) assert res res = pd.eval("[[3]] in [[[3]], 2]", engine=self.engine, parser=self.parser) assert res res = pd.eval("(3,) in [(3,), 2]", engine=self.engine, parser=self.parser) assert res res = pd.eval( "(3,) not in [(3,), 2]", engine=self.engine, parser=self.parser ) assert not res res = pd.eval( "[(3,)] in [[(3,)], 2]", engine=self.engine, parser=self.parser ) assert res else: msg = "'In' nodes are not implemented" with pytest.raises(NotImplementedError, match=msg): pd.eval("1 in [1, 2]", engine=self.engine, parser=self.parser) with pytest.raises(NotImplementedError, match=msg): pd.eval("2 in (1, 2)", engine=self.engine, parser=self.parser) with pytest.raises(NotImplementedError, match=msg): pd.eval("3 in (1, 2)", engine=self.engine, parser=self.parser) with pytest.raises(NotImplementedError, match=msg): pd.eval( "[(3,)] in (1, 2, [(3,)])", engine=self.engine, parser=self.parser ) msg = "'NotIn' nodes are not implemented" with pytest.raises(NotImplementedError, match=msg): pd.eval("3 not in (1, 2)", engine=self.engine, parser=self.parser) with pytest.raises(NotImplementedError, match=msg): pd.eval( "[3] not in (1, 2, [[3]])", engine=self.engine, parser=self.parser ) @td.skip_if_no_ne class TestOperationsNumExprPython(TestOperationsNumExprPandas): exclude_arith: List[str] = ["in", "not in"] engine = "numexpr" parser = "python" def test_check_many_exprs(self): a = 1 # noqa expr = " * ".join("a" * 33) expected = 1 res = pd.eval(expr, engine=self.engine, parser=self.parser) assert res == expected def test_fails_and(self): df = DataFrame(np.random.randn(5, 3)) msg = "'BoolOp' nodes are not implemented" with pytest.raises(NotImplementedError, match=msg): pd.eval( "df > 2 and df > 3", local_dict={"df": df}, parser=self.parser, engine=self.engine, ) def test_fails_or(self): df = DataFrame(np.random.randn(5, 3)) msg = "'BoolOp' nodes are not implemented" with pytest.raises(NotImplementedError, match=msg): pd.eval( "df > 2 or df > 3", local_dict={"df": df}, parser=self.parser, engine=self.engine, ) def test_fails_not(self): df = DataFrame(np.random.randn(5, 3)) msg = "'Not' nodes are not implemented" with pytest.raises(NotImplementedError, match=msg): pd.eval( "not df > 2", local_dict={"df": df}, parser=self.parser, engine=self.engine, ) def test_fails_ampersand(self): df = DataFrame(np.random.randn(5, 3)) # noqa ex = "(df + 2)[df > 1] > 0 & (df > 0)" msg = "cannot evaluate scalar only bool ops" with pytest.raises(NotImplementedError, match=msg): pd.eval(ex, parser=self.parser, engine=self.engine) def test_fails_pipe(self): df = DataFrame(np.random.randn(5, 3)) # noqa ex = "(df + 2)[df > 1] > 0 | (df > 0)" msg = "cannot evaluate scalar only bool ops" with pytest.raises(NotImplementedError, match=msg): pd.eval(ex, parser=self.parser, engine=self.engine) @pytest.mark.parametrize("rhs", [True, False]) @pytest.mark.parametrize("lhs", [True, False]) @pytest.mark.parametrize("op", expr.BOOL_OPS_SYMS) def test_bool_ops_with_constants(self, lhs, rhs, op): ex = f"{lhs} {op} {rhs}" if op in ("and", "or"): msg = "'BoolOp' nodes are not implemented" with pytest.raises(NotImplementedError, match=msg): self.eval(ex) else: res = self.eval(ex) exp = eval(ex) assert res == exp @pytest.mark.parametrize("rhs", [True, False]) @pytest.mark.parametrize("lhs", [True, False]) @pytest.mark.parametrize("op", expr.BOOL_OPS_SYMS) def test_simple_bool_ops(self, lhs, rhs, op): ex = f"lhs {op} rhs" if op in ("and", "or"): msg = "'BoolOp' nodes are not implemented" with pytest.raises(NotImplementedError, match=msg): pd.eval(ex, engine=self.engine, parser=self.parser) else: res = pd.eval(ex, engine=self.engine, parser=self.parser) exp = eval(ex) assert res == exp class TestOperationsPythonPython(TestOperationsNumExprPython): engine = "python" parser = "python" class TestOperationsPythonPandas(TestOperationsNumExprPandas): exclude_arith: List[str] = [] engine = "python" parser = "pandas" @td.skip_if_no_ne class TestMathPythonPython: engine = "python" parser = "pandas" def eval(self, *args, **kwargs): kwargs["engine"] = self.engine kwargs["parser"] = self.parser kwargs["level"] = kwargs.pop("level", 0) + 1 return pd.eval(*args, **kwargs) def test_unary_functions(self, unary_fns_for_ne): df = DataFrame({"a": np.random.randn(10)}) a = df.a fn = unary_fns_for_ne expr = f"{fn}(a)" got = self.eval(expr) with np.errstate(all="ignore"): expect = getattr(np, fn)(a) tm.assert_series_equal(got, expect, check_names=False) @pytest.mark.parametrize("fn", ["floor", "ceil"]) def test_floor_and_ceil_functions_raise_error(self, ne_lt_2_6_9, fn): msg = f'"{fn}" is not a supported function' with pytest.raises(ValueError, match=msg): expr = f"{fn}(100)" self.eval(expr) @pytest.mark.parametrize("fn", _binary_math_ops) def test_binary_functions(self, fn): df = DataFrame({"a": np.random.randn(10), "b": np.random.randn(10)}) a = df.a b = df.b expr = f"{fn}(a, b)" got = self.eval(expr) with np.errstate(all="ignore"): expect = getattr(np, fn)(a, b) tm.assert_almost_equal(got, expect, check_names=False) def test_df_use_case(self): df = DataFrame({"a": np.random.randn(10), "b": np.random.randn(10)}) df.eval( "e = arctan2(sin(a), b)", engine=self.engine, parser=self.parser, inplace=True, ) got = df.e expect = np.arctan2(np.sin(df.a), df.b) tm.assert_series_equal(got, expect, check_names=False) def test_df_arithmetic_subexpression(self): df = DataFrame({"a": np.random.randn(10), "b": np.random.randn(10)}) df.eval("e = sin(a + b)", engine=self.engine, parser=self.parser, inplace=True) got = df.e expect = np.sin(df.a + df.b) tm.assert_series_equal(got, expect, check_names=False) def check_result_type(self, dtype, expect_dtype): df = DataFrame({"a": np.random.randn(10).astype(dtype)}) assert df.a.dtype == dtype df.eval("b = sin(a)", engine=self.engine, parser=self.parser, inplace=True) got = df.b expect = np.sin(df.a) assert expect.dtype == got.dtype assert expect_dtype == got.dtype tm.assert_series_equal(got, expect, check_names=False) def test_result_types(self): self.check_result_type(np.int32, np.float64) self.check_result_type(np.int64, np.float64) self.check_result_type(np.float32, np.float32) self.check_result_type(np.float64, np.float64) @td.skip_if_windows def test_result_complex128(self): # xref https://github.com/pandas-dev/pandas/issues/12293 # this fails on Windows, apparently a floating point precision issue # Did not test complex64 because DataFrame is converting it to # complex128. Due to https://github.com/pandas-dev/pandas/issues/10952 self.check_result_type(np.complex128, np.complex128) def test_undefined_func(self): df = DataFrame({"a": np.random.randn(10)}) msg = '"mysin" is not a supported function' with pytest.raises(ValueError, match=msg): df.eval("mysin(a)", engine=self.engine, parser=self.parser) def test_keyword_arg(self): df = DataFrame({"a": np.random.randn(10)}) msg = 'Function "sin" does not support keyword arguments' with pytest.raises(TypeError, match=msg): df.eval("sin(x=a)", engine=self.engine, parser=self.parser) class TestMathPythonPandas(TestMathPythonPython): engine = "python" parser = "pandas" class TestMathNumExprPandas(TestMathPythonPython): engine = "numexpr" parser = "pandas" class TestMathNumExprPython(TestMathPythonPython): engine = "numexpr" parser = "python" _var_s = np.random.randn(10) class TestScope: def test_global_scope(self, engine, parser): e = "_var_s * 2" tm.assert_numpy_array_equal( _var_s * 2, pd.eval(e, engine=engine, parser=parser) ) def test_no_new_locals(self, engine, parser): x = 1 lcls = locals().copy() pd.eval("x + 1", local_dict=lcls, engine=engine, parser=parser) lcls2 = locals().copy() lcls2.pop("lcls") assert lcls == lcls2 def test_no_new_globals(self, engine, parser): x = 1 # noqa gbls = globals().copy() pd.eval("x + 1", engine=engine, parser=parser) gbls2 = globals().copy() assert gbls == gbls2 @td.skip_if_no_ne def test_invalid_engine(): msg = "Invalid engine 'asdf' passed" with pytest.raises(KeyError, match=msg): pd.eval("x + y", local_dict={"x": 1, "y": 2}, engine="asdf") @td.skip_if_no_ne def test_invalid_parser(): msg = "Invalid parser 'asdf' passed" with pytest.raises(KeyError, match=msg): pd.eval("x + y", local_dict={"x": 1, "y": 2}, parser="asdf") _parsers: Dict[str, Type[BaseExprVisitor]] = { "python": PythonExprVisitor, "pytables": pytables.PyTablesExprVisitor, "pandas": PandasExprVisitor, } @pytest.mark.parametrize("engine", ENGINES) @pytest.mark.parametrize("parser", _parsers) def test_disallowed_nodes(engine, parser): VisitorClass = _parsers[parser] inst = VisitorClass("x + 1", engine, parser) for ops in VisitorClass.unsupported_nodes: msg = "nodes are not implemented" with pytest.raises(NotImplementedError, match=msg): getattr(inst, ops)() def test_syntax_error_exprs(engine, parser): e = "s +" with pytest.raises(SyntaxError, match="invalid syntax"): pd.eval(e, engine=engine, parser=parser) def test_name_error_exprs(engine, parser): e = "s + t" msg = "name 's' is not defined" with pytest.raises(NameError, match=msg): pd.eval(e, engine=engine, parser=parser) @pytest.mark.parametrize("express", ["a + @b", "@a + b", "@a + @b"]) def test_invalid_local_variable_reference(engine, parser, express): a, b = 1, 2 # noqa if parser != "pandas": with pytest.raises(SyntaxError, match="The '@' prefix is only"): pd.eval(express, engine=engine, parser=parser) else: with pytest.raises(SyntaxError, match="The '@' prefix is not"): pd.eval(express, engine=engine, parser=parser) def test_numexpr_builtin_raises(engine, parser): sin, dotted_line = 1, 2 if engine == "numexpr": msg = "Variables in expression .+" with pytest.raises(NumExprClobberingError, match=msg): pd.eval("sin + dotted_line", engine=engine, parser=parser) else: res = pd.eval("sin + dotted_line", engine=engine, parser=parser) assert res == sin + dotted_line def test_bad_resolver_raises(engine, parser): cannot_resolve = 42, 3.0 with pytest.raises(TypeError, match="Resolver of type .+"): pd.eval("1 + 2", resolvers=cannot_resolve, engine=engine, parser=parser) def test_empty_string_raises(engine, parser): # GH 13139 with pytest.raises(ValueError, match="expr cannot be an empty string"): pd.eval("", engine=engine, parser=parser) def test_more_than_one_expression_raises(engine, parser): with pytest.raises(SyntaxError, match=("only a single expression is allowed")): pd.eval("1 + 1; 2 + 2", engine=engine, parser=parser) @pytest.mark.parametrize("cmp", ("and", "or")) @pytest.mark.parametrize("lhs", (int, float)) @pytest.mark.parametrize("rhs", (int, float)) def test_bool_ops_fails_on_scalars(lhs, cmp, rhs, engine, parser): gen = {int: lambda: np.random.randint(10), float: np.random.randn} mid = gen[lhs]() # noqa lhs = gen[lhs]() rhs = gen[rhs]() ex1 = f"lhs {cmp} mid {cmp} rhs" ex2 = f"lhs {cmp} mid and mid {cmp} rhs" ex3 = f"(lhs {cmp} mid) & (mid {cmp} rhs)" for ex in (ex1, ex2, ex3): msg = "cannot evaluate scalar only bool ops|'BoolOp' nodes are not" with pytest.raises(NotImplementedError, match=msg): pd.eval(ex, engine=engine, parser=parser) @pytest.mark.parametrize( "other", [ "'x'", pytest.param( "...", marks=pytest.mark.xfail(not compat.PY38, reason="GH-28116") ), ], ) def test_equals_various(other): df = DataFrame({"A": ["a", "b", "c"]}) result = df.eval(f"A == {other}") expected = Series([False, False, False], name="A") if USE_NUMEXPR: # https://github.com/pandas-dev/pandas/issues/10239 # lose name with numexpr engine. Remove when that's fixed. expected.name = None tm.assert_series_equal(result, expected) def test_inf(engine, parser): s = "inf + 1" expected = np.inf result = pd.eval(s, engine=engine, parser=parser) assert result == expected def test_truediv_deprecated(engine, parser): # GH#29182 match = "The `truediv` parameter in pd.eval is deprecated" with tm.assert_produces_warning(FutureWarning) as m: pd.eval("1+1", engine=engine, parser=parser, truediv=True) assert len(m) == 1 assert match in str(m[0].message) with tm.assert_produces_warning(FutureWarning) as m: pd.eval("1+1", engine=engine, parser=parser, truediv=False) assert len(m) == 1 assert match in str(m[0].message) def test_negate_lt_eq_le(engine, parser): df = DataFrame([[0, 10], [1, 20]], columns=["cat", "count"]) expected = df[~(df.cat > 0)] result = df.query("~(cat > 0)", engine=engine, parser=parser) tm.assert_frame_equal(result, expected) if parser == "python": msg = "'Not' nodes are not implemented" with pytest.raises(NotImplementedError, match=msg): df.query("not (cat > 0)", engine=engine, parser=parser) else: result = df.query("not (cat > 0)", engine=engine, parser=parser) tm.assert_frame_equal(result, expected) class TestValidate: @pytest.mark.parametrize("value", [1, "True", [1, 2, 3], 5.0]) def test_validate_bool_args(self, value): msg = 'For argument "inplace" expected type bool, received type' with pytest.raises(ValueError, match=msg): pd.eval("2+2", inplace=value)
34.978145
88
0.574285
7d3642b524c3a214c44cd18481d0dd5cb11e9ca5
23,593
py
Python
vmtp/sshutils.py
schoksey/vmtp
5c2a5187c20953fd055cd7e56e72bcc342780153
[ "Apache-2.0" ]
null
null
null
vmtp/sshutils.py
schoksey/vmtp
5c2a5187c20953fd055cd7e56e72bcc342780153
[ "Apache-2.0" ]
null
null
null
vmtp/sshutils.py
schoksey/vmtp
5c2a5187c20953fd055cd7e56e72bcc342780153
[ "Apache-2.0" ]
null
null
null
# Copyright 2013: Mirantis Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """High level ssh library. Usage examples: Execute command and get output: ssh = sshclient.SSH('root', 'example.com', port=33) status, stdout, stderr = ssh.execute('ps ax') if status: raise Exception('Command failed with non-zero status.') print stdout.splitlines() Execute command with huge output: class PseudoFile(object): def write(chunk): if 'error' in chunk: email_admin(chunk) ssh = sshclient.SSH('root', 'example.com') ssh.run('tail -f /var/log/syslog', stdout=PseudoFile(), timeout=False) Execute local script on remote side: ssh = sshclient.SSH('user', 'example.com') status, out, err = ssh.execute('/bin/sh -s arg1 arg2', stdin=open('~/myscript.sh', 'r')) Upload file: ssh = sshclient.SSH('user', 'example.com') ssh.run('cat > ~/upload/file.gz', stdin=open('/store/file.gz', 'rb')) Eventlet: eventlet.monkey_patch(select=True, time=True) or eventlet.monkey_patch() or sshclient = eventlet.import_patched("opentstack.common.sshclient") """ import re import select import socket import StringIO import sys import time from log import LOG import paramiko import scp # from rally.openstack.common.gettextutils import _ class SSHError(Exception): pass class SSHTimeout(SSHError): pass # Check IPv4 address syntax - not completely fool proof but will catch # some invalid formats def is_ipv4(address): try: socket.inet_aton(address) except socket.error: return False return True class SSHAccess(object): ''' A class to contain all the information needed to access a host (native or virtual) using SSH ''' def __init__(self, arg_value=None): ''' decode user@host[:pwd] '[email protected]:secret' -> ('hugo', '1.1.1.1', 'secret', None) '[email protected]' -> ('huggy', '2.2.2.2', None, None) None ->(None, None, None, None) Examples of fatal errors (will call exit): '[email protected]' (invalid IP) '@3.3.3.3' (missing username) 'hiro@' or 'buggy' (missing host IP) The error field will be None in case of success or will contain a string describing the error ''' self.username = None self.host = None self.password = None # name of the file that contains the private key self.private_key_file = None # this is the private key itself (a long string starting with # -----BEGIN RSA PRIVATE KEY----- # used when the private key is not saved in any file self.private_key = None self.public_key_file = None self.port = 22 self.error = None if not arg_value: return match = re.search(r'^([^@]+)@([0-9\.]+):?(.*)$', arg_value) if not match: self.error = 'Invalid argument: ' + arg_value return if not is_ipv4(match.group(2)): self.error = 'Invalid IPv4 address ' + match.group(2) return (self.username, self.host, self.password) = match.groups() def copy_from(self, ssh_access): self.username = ssh_access.username self.host = ssh_access.host self.port = ssh_access.port self.password = ssh_access.password self.private_key = ssh_access.private_key self.public_key_file = ssh_access.public_key_file self.private_key_file = ssh_access.private_key_file class SSH(object): """Represent ssh connection.""" def __init__(self, ssh_access, connect_timeout=60, connect_retry_count=30, connect_retry_wait_sec=2): """Initialize SSH client. :param user: ssh username :param host: hostname or ip address of remote ssh server :param port: remote ssh port :param pkey: RSA or DSS private key string or file object :param key_filename: private key filename :param password: password :param connect_timeout: timeout when connecting ssh :param connect_retry_count: how many times to retry connecting :param connect_retry_wait_sec: seconds to wait between retries """ self.ssh_access = ssh_access if ssh_access.private_key: self.pkey = self._get_pkey(ssh_access.private_key) else: self.pkey = None self._client = False self.connect_timeout = connect_timeout self.connect_retry_count = connect_retry_count self.connect_retry_wait_sec = connect_retry_wait_sec self.distro_id = None self.distro_id_like = None self.distro_version = None self.__get_distro() def _get_pkey(self, key): '''Get the binary form of the private key from the text form ''' if isinstance(key, basestring): key = StringIO.StringIO(key) errors = [] for key_class in (paramiko.rsakey.RSAKey, paramiko.dsskey.DSSKey): try: return key_class.from_private_key(key) except paramiko.SSHException as exc: errors.append(exc) raise SSHError('Invalid pkey: %s' % (errors)) def _get_client(self): if self._client: return self._client self._client = paramiko.SSHClient() self._client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) for _ in range(self.connect_retry_count): try: self._client.connect(self.ssh_access.host, username=self.ssh_access.username, port=self.ssh_access.port, pkey=self.pkey, key_filename=self.ssh_access.private_key_file, password=self.ssh_access.password, timeout=self.connect_timeout) return self._client except (paramiko.AuthenticationException, paramiko.BadHostKeyException, paramiko.SSHException, socket.error, Exception): time.sleep(self.connect_retry_wait_sec) self._client = None msg = '[%s] SSH Connection failed after %s attempts' % (self.ssh_access.host, self.connect_retry_count) raise SSHError(msg) def close(self): self._client.close() self._client = False def run(self, cmd, stdin=None, stdout=None, stderr=None, raise_on_error=True, timeout=3600): """Execute specified command on the server. :param cmd: Command to be executed. :param stdin: Open file or string to pass to stdin. :param stdout: Open file to connect to stdout. :param stderr: Open file to connect to stderr. :param raise_on_error: If False then exit code will be return. If True then exception will be raized if non-zero code. :param timeout: Timeout in seconds for command execution. Default 1 hour. No timeout if set to 0. """ client = self._get_client() if isinstance(stdin, basestring): stdin = StringIO.StringIO(stdin) return self._run(client, cmd, stdin=stdin, stdout=stdout, stderr=stderr, raise_on_error=raise_on_error, timeout=timeout) def _run(self, client, cmd, stdin=None, stdout=None, stderr=None, raise_on_error=True, timeout=3600): transport = client.get_transport() session = transport.open_session() session.exec_command(cmd) start_time = time.time() data_to_send = '' stderr_data = None # If we have data to be sent to stdin then `select' should also # check for stdin availability. if stdin and not stdin.closed: writes = [session] else: writes = [] while True: # Block until data can be read/write. select.select([session], writes, [session], 1) if session.recv_ready(): data = session.recv(4096) if stdout is not None: stdout.write(data) continue if session.recv_stderr_ready(): stderr_data = session.recv_stderr(4096) if stderr is not None: stderr.write(stderr_data) continue if session.send_ready(): if stdin is not None and not stdin.closed: if not data_to_send: data_to_send = stdin.read(4096) if not data_to_send: stdin.close() session.shutdown_write() writes = [] continue sent_bytes = session.send(data_to_send) data_to_send = data_to_send[sent_bytes:] if session.exit_status_ready(): break if timeout and (time.time() - timeout) > start_time: args = {'cmd': cmd, 'host': self.ssh_access.host} raise SSHTimeout(('Timeout executing command ' '"%(cmd)s" on host %(host)s') % args) # if e: # raise SSHError('Socket error.') exit_status = session.recv_exit_status() if 0 != exit_status and raise_on_error: fmt = ('Command "%(cmd)s" failed with exit_status %(status)d.') details = fmt % {'cmd': cmd, 'status': exit_status} if stderr_data: details += (' Last stderr data: "%s".') % stderr_data raise SSHError(details) return exit_status def execute(self, cmd, stdin=None, timeout=3600): """Execute the specified command on the server. :param cmd: Command to be executed. :param stdin: Open file to be sent on process stdin. :param timeout: Timeout for execution of the command. Return tuple (exit_status, stdout, stderr) """ stdout = StringIO.StringIO() stderr = StringIO.StringIO() exit_status = self.run(cmd, stderr=stderr, stdout=stdout, stdin=stdin, timeout=timeout, raise_on_error=False) stdout.seek(0) stderr.seek(0) return (exit_status, stdout.read(), stderr.read()) def wait(self, timeout=120, interval=1): """Wait for the host will be available via ssh.""" start_time = time.time() while True: try: return self.execute('uname') except (socket.error, SSHError): time.sleep(interval) if time.time() > (start_time + timeout): raise SSHTimeout(('Timeout waiting for "%s"') % self.ssh_access.host) def __extract_property(self, name, input_str): expr = name + r'="?([\w\.]*)"?' match = re.search(expr, input_str) if match: return match.group(1) return 'Unknown' # Get the linux distro def __get_distro(self): '''cat /etc/*-release | grep ID Ubuntu: DISTRIB_ID=Ubuntu ID=ubuntu ID_LIKE=debian VERSION_ID="14.04" RHEL: ID="rhel" ID_LIKE="fedora" VERSION_ID="7.0" ''' distro_cmd = "grep ID /etc/*-release" (status, distro_out, _) = self.execute(distro_cmd) if status: distro_out = '' self.distro_id = self.__extract_property('ID', distro_out) self.distro_id_like = self.__extract_property('ID_LIKE', distro_out) self.distro_version = self.__extract_property('VERSION_ID', distro_out) def pidof(self, proc_name): ''' Return a list containing the pids of all processes of a given name the list is empty if there is no pid ''' # the path update is necessary for RHEL cmd = "PATH=$PATH:/usr/sbin pidof " + proc_name (status, cmd_output, _) = self.execute(cmd) if status: return [] cmd_output = cmd_output.strip() result = cmd_output.split() return result # kill pids in the given list of pids def kill_proc(self, pid_list): cmd = "kill -9 " + ' '.join(pid_list) self.execute(cmd) # check stats for a given path def stat(self, path): (status, cmd_output, _) = self.execute('stat ' + path) if status: return None return cmd_output def ping_check(self, target_ip, ping_count=2, pass_threshold=80): '''helper function to ping from one host to an IP address, for a given count and pass_threshold; Steps: ssh to the host and then ping to the target IP then match the output and verify that the loss% is less than the pass_threshold% Return 1 if the criteria passes Return 0, if it fails ''' cmd = "ping -c " + str(ping_count) + " " + str(target_ip) (_, cmd_output, _) = self.execute(cmd) match = re.search(r'(\d*)% packet loss', cmd_output) pkt_loss = match.group(1) if int(pkt_loss) < int(pass_threshold): return 1 else: LOG.error('Ping to %s failed: %s', target_ip, cmd_output) return 0 def get_file_from_host(self, from_path, to_path): ''' A wrapper api on top of paramiko scp module, to scp a remote file to the local. ''' sshcon = self._get_client() scpcon = scp.SCPClient(sshcon.get_transport()) try: scpcon.get(from_path, to_path) except scp.SCPException as exp: LOG.error("Receive failed: [%s]", exp) return 0 return 1 def put_file_to_host(self, from_path, to_path): ''' A wrapper api on top of paramiko scp module, to scp a local file to the remote. ''' sshcon = self._get_client() scpcon = scp.SCPClient(sshcon.get_transport()) try: scpcon.put(from_path, remote_path=to_path) except scp.SCPException as exp: LOG.error("Send failed: [%s]", exp) return 0 return 1 def read_remote_file(self, from_path): ''' Read a remote file and save it to a buffer. ''' cmd = "cat " + from_path (status, cmd_output, _) = self.execute(cmd) if status: return None return cmd_output def get_host_os_version(self): ''' Identify the host distribution/relase. ''' os_release_file = "/etc/os-release" sys_release_file = "/etc/system-release" name = "" version = "" if self.stat(os_release_file): data = self.read_remote_file(os_release_file) if data is None: LOG.error("Failed to read file %s", os_release_file) return None for line in data.splitlines(): mobj = re.match(r'NAME=(.*)', line) if mobj: name = mobj.group(1).strip("\"") mobj = re.match(r'VERSION_ID=(.*)', line) if mobj: version = mobj.group(1).strip("\"") os_name = name + " " + version return os_name if self.stat(sys_release_file): data = self.read_remote_file(sys_release_file) if data is None: LOG.error("Failed to read file %s", sys_release_file) return None for line in data.splitlines(): mobj = re.match(r'Red Hat.*', line) if mobj: return mobj.group(0) return None def check_rpm_package_installed(self, rpm_pkg): ''' Given a host and a package name, check if it is installed on the system. ''' check_pkg_cmd = "rpm -qa | grep " + rpm_pkg (status, cmd_output, _) = self.execute(check_pkg_cmd) if status: return None pkg_pattern = ".*" + rpm_pkg + ".*" rpm_pattern = re.compile(pkg_pattern, re.IGNORECASE) for line in cmd_output.splitlines(): mobj = rpm_pattern.match(line) if mobj: return mobj.group(0) LOG.info("%s pkg installed ", rpm_pkg) return None def get_openstack_release(self, ver_str): ''' Get the release series name from the package version Refer to here for release tables: https://wiki.openstack.org/wiki/Releases ''' ver_table = {"2015.1": "Kilo", "2014.2": "Juno", "2014.1": "Icehouse", "2013.2": "Havana", "2013.1": "Grizzly", "2012.2": "Folsom", "2012.1": "Essex", "2011.3": "Diablo", "2011.2": "Cactus", "2011.1": "Bexar", "2010.1": "Austin"} ver_prefix = re.search(r"20\d\d\.\d", ver_str).group(0) if ver_prefix in ver_table: return ver_table[ver_prefix] else: return "Unknown" def check_openstack_version(self): ''' Identify the openstack version running on the controller. ''' nova_cmd = "nova-manage --version" (status, _, err_output) = self.execute(nova_cmd) if status: return "Unknown" ver_str = err_output.strip() release_str = self.get_openstack_release(err_output) return release_str + " (" + ver_str + ")" def get_cpu_info(self): ''' Get the CPU info of the controller. Note: Here we are assuming the controller node has the exact hardware as the compute nodes. ''' cmd = 'cat /proc/cpuinfo | grep -m1 "model name"' (status, std_output, _) = self.execute(cmd) if status: return "Unknown" model_name = re.search(r":\s(.*)", std_output).group(1) cmd = 'cat /proc/cpuinfo | grep "model name" | wc -l' (status, std_output, _) = self.execute(cmd) if status: return "Unknown" cores = std_output.strip() return (cores + " * " + model_name) def get_nic_name(self, agent_type, encap, internal_iface_dict): ''' Get the NIC info of the controller. Note: Here we are assuming the controller node has the exact hardware as the compute nodes. ''' # The internal_ifac_dict is a dictionary contains the mapping between # hostname and the internal interface name like below: # {u'hh23-4': u'eth1', u'hh23-5': u'eth1', u'hh23-6': u'eth1'} cmd = "hostname" (status, std_output, _) = self.execute(cmd) if status: return "Unknown" hostname = std_output.strip() if hostname in internal_iface_dict: iface = internal_iface_dict[hostname] else: return "Unknown" # Figure out which interface is for internal traffic if 'Linux bridge' in agent_type: ifname = iface elif 'Open vSwitch' in agent_type: if encap == 'vlan': # [root@hh23-10 ~]# ovs-vsctl list-ports br-inst # eth1 # phy-br-inst cmd = 'ovs-vsctl list-ports ' + iface + ' | grep -E "^[^phy].*"' (status, std_output, _) = self.execute(cmd) if status: return "Unknown" ifname = std_output.strip() elif encap == 'vxlan' or encap == 'gre': # This is complicated. We need to first get the local IP address on # br-tun, then do a reverse lookup to get the physical interface. # # [root@hh23-4 ~]# ip addr show to "23.23.2.14" # 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP qlen 1000 # inet 23.23.2.14/24 brd 23.23.2.255 scope global eth1 # valid_lft forever preferred_lft forever cmd = "ip addr show to " + iface + " | awk -F: '{print $2}'" (status, std_output, _) = self.execute(cmd) if status: return "Unknown" ifname = std_output.strip() else: return "Unknown" cmd = 'ethtool -i ' + ifname + ' | grep bus-info' (status, std_output, _) = self.execute(cmd) if status: return "Unknown" bus_info = re.search(r":\s(.*)", std_output).group(1) cmd = 'lspci -s ' + bus_info (status, std_output, _) = self.execute(cmd) if status: return "Unknown" nic_name = re.search(r"Ethernet controller:\s(.*)", std_output).group(1) return (nic_name) def get_l2agent_version(self, agent_type): ''' Get the L2 agent version of the controller. Note: Here we are assuming the controller node has the exact hardware as the compute nodes. ''' if 'Linux bridge' in agent_type: cmd = "brctl --version | awk -F',' '{print $2}'" ver_string = "Linux Bridge " elif 'Open vSwitch' in agent_type: cmd = "ovs-vsctl --version | awk -F')' '{print $2}'" ver_string = "OVS " else: return "Unknown" (status, std_output, _) = self.execute(cmd) if status: return "Unknown" return ver_string + std_output.strip() ################################################## # Only invoke the module directly for test purposes. Should be # invoked from pns script. ################################################## def main(): # As argument pass the SSH access string, e.g. "[email protected]:secret" test_ssh = SSH(SSHAccess(sys.argv[1])) print 'ID=' + test_ssh.distro_id print 'ID_LIKE=' + test_ssh.distro_id_like print 'VERSION_ID=' + test_ssh.distro_version # ssh.wait() # print ssh.pidof('bash') # print ssh.stat('/tmp') print test_ssh.check_openstack_version() print test_ssh.get_cpu_info() print test_ssh.get_l2agent_version("Open vSwitch agent") if __name__ == "__main__": main()
34.442336
97
0.554698
583a186a132ddb239cb45e6b268c36d1d4633f9c
361
py
Python
receivers.py
HectorTa1989/MIMO-PHY-security-with-Eavesdropper
8a0b248f5e1324d1055ead6ed0a4ea38fc2df011
[ "MIT" ]
1
2021-10-30T23:55:55.000Z
2021-10-30T23:55:55.000Z
receivers.py
HectorTa1989/MIMO-PHY-security-with-Eavesdropper
8a0b248f5e1324d1055ead6ed0a4ea38fc2df011
[ "MIT" ]
1
2021-10-30T15:00:26.000Z
2021-10-30T15:00:26.000Z
receivers.py
HectorTa1989/MIMO-PHY-security-analysis-with-Eavesdropper
8a0b248f5e1324d1055ead6ed0a4ea38fc2df011
[ "MIT" ]
null
null
null
import numpy as np class Receiver: def receive(self): pass class MMRC(Receiver): def __init__(self, nr, channel): self.Channel = channel self.ChannelMatrix = channel.getChannel() def receive(self, x): self.s = np.multiply(x,np.conj(self.ChannelMatrix)) self.ssum = sum(self.s) return self.ssum
22.5625
59
0.617729
9063b110b91abce7864f14e325fd50d0330b515f
219
py
Python
flaskio.py
ricklon/audioplayer
407bc3858676ac638603fe941b946b91480a60b2
[ "Apache-2.0" ]
null
null
null
flaskio.py
ricklon/audioplayer
407bc3858676ac638603fe941b946b91480a60b2
[ "Apache-2.0" ]
null
null
null
flaskio.py
ricklon/audioplayer
407bc3858676ac638603fe941b946b91480a60b2
[ "Apache-2.0" ]
null
null
null
from flask import Flask, render_template from flask_socketio import SocketIO app = Flask(__name__) app.config['SECRET_KEY'] = 'secret!' socketio = SocketIO(app) if __name__ == '__main__': socketio.run(app)
16.846154
40
0.726027
3236f4093e1953cf7e9ea0dc7b8d31fa75069d99
21,138
py
Python
commands/iam_report.py
andrewkrug/cloudmapper
79a7d526331ed40c8eac43fb285cee03b3b94fbe
[ "BSD-3-Clause" ]
null
null
null
commands/iam_report.py
andrewkrug/cloudmapper
79a7d526331ed40c8eac43fb285cee03b3b94fbe
[ "BSD-3-Clause" ]
null
null
null
commands/iam_report.py
andrewkrug/cloudmapper
79a7d526331ed40c8eac43fb285cee03b3b94fbe
[ "BSD-3-Clause" ]
null
null
null
from __future__ import print_function import argparse import json import datetime import os.path from abc import ABCMeta from six import add_metaclass from jinja2 import Template from enum import Enum from policyuniverse.policy import Policy from shared.common import parse_arguments, get_regions from shared.query import query_aws, get_parameter_file from shared.nodes import Account, Region __description__ = "Create IAM report" class OutputFormat(Enum): json = "json" html = "html" REPORT_OUTPUT_FILE = os.path.join("web", "account-data", "iam_report") def tolink(s): # TODO sanitize return s def load_credential_report(): users = [] json_blob = query_aws(region.account, "iam-get-credential-report", region) csv_lines = json_blob["Content"].split("\n") # Skip header csv_lines.pop(0) # Header: # user,arn,user_creation_time,password_enabled,password_last_used,password_last_changed, # password_next_rotation,mfa_active,access_key_1_active,access_key_1_last_rotated, # access_key_1_last_used_date,access_key_1_last_used_region,access_key_1_last_used_service, # access_key_2_active,access_key_2_last_rotated,access_key_2_last_used_date, # access_key_2_last_used_region,access_key_2_last_used_service,cert_1_active,cert_1_last_rotated, # cert_2_active,cert_2_last_rotated for line in csv_lines: parts = line.split(",") user = { "user": parts[0], "arn": parts[1], "user_creation_time": parts[2], "password_enabled": parts[3], "password_last_used": parts[4], "password_last_changed": parts[5], "password_next_rotation": parts[6], "mfa_active": parts[7], "access_key_1_active": parts[8], "access_key_1_last_rotated": parts[9], "access_key_1_last_used_date": parts[10], "access_key_1_last_used_region": parts[11], "access_key_1_last_used_service": parts[12], "access_key_2_active": parts[13], "access_key_2_last_rotated": parts[14], "access_key_2_last_used_date": parts[15], "access_key_2_last_used_region": parts[16], "access_key_2_last_used_service": parts[17], "cert_1_active": parts[18], "cert_1_last_rotated": parts[19], "cert_2_active": parts[20], "cert_2_last_rotated": parts[21], } users.append[user] return users def get_access_advisor(region, principal_stats, json_account_auth_details, args): for principal_auth in [ *json_account_auth_details["UserDetailList"], *json_account_auth_details["RoleDetailList"], ]: stats = {} stats["auth"] = principal_auth job_id = get_parameter_file( region, "iam", "generate-service-last-accessed-details", principal_auth["Arn"], )["JobId"] json_last_access_details = get_parameter_file( region, "iam", "get-service-last-accessed-details", job_id ) stats["last_access"] = json_last_access_details stats["is_inactive"] = True job_completion_date = datetime.datetime.strptime( json_last_access_details["JobCompletionDate"][0:10], "%Y-%m-%d" ) for service in json_last_access_details["ServicesLastAccessed"]: if "LastAuthenticated" in service: last_access_date = datetime.datetime.strptime( service["LastAuthenticated"][0:10], "%Y-%m-%d" ) service["days_since_last_use"] = ( job_completion_date - last_access_date ).days if service["days_since_last_use"] < args.max_age: stats["is_inactive"] = False break principal_stats[principal_auth["Arn"]] = stats def get_service_count_and_used(service_last_accessed): service_count = 0 service_used_count = 0 for service_last_access in service_last_accessed: service_count += 1 if service_last_access["TotalAuthenticatedEntities"] > 0: service_used_count += 1 return {"service_count": service_count, "service_used_count": service_used_count} def html_service_chart(principal, services_used, services_granted): chartid = "serviceChart" + principal return ( '<div style="width:30%"><canvas id="{}" width="100" height="15"></canvas></div>' + '<script>makeServiceUnusedChart("{}", {}, {});</script>' ).format(chartid, chartid, services_used, services_granted - services_used) @add_metaclass(ABCMeta) class graph_node(object): __key = "" __children = None __parents = None __name = "" def cytoscape_data(self): response = { "data": {"id": self.key(), "name": self.name(), "type": self.get_type()} } return response def key(self): return self.__key def set_key(self, key): self.__key = key def set_name(self, name): self.__name = name def name(self): if self.__name == "": return self.key() return self.__name def is_principal(self): pass def get_type(self): pass def add_child(self, node): self.__children.append(node) def add_parent(self, node): self.__parents.append(node) def children(self): return self.__children def parents(self): return self.__parents def get_services_allowed(self): services = {} for child in self.children(): for service, source in child.get_services_allowed().items(): source_list = services.get(service, []) if self.is_principal(): source_path = source else: source_path = [] for s in source: source_path.append("{}.{}".format(self.name(), s)) source_list.extend(source_path) services[service] = source_list return services def __init__(self): self.__children = [] self.__parents = [] class user_node(graph_node): __auth = None def is_principal(self): return True def get_type(self): return "user" def __init__(self, auth, auth_graph): super().__init__() self.set_key(auth["Arn"]) self.set_name(auth["UserName"]) self.__auth = auth for policy in auth["AttachedManagedPolicies"]: policy_node = auth_graph[policy["PolicyArn"]] self.add_child(policy_node) policy_node.add_parent(self) for policy in auth.get("UserPolicyList", []): policy_node = inline_policy_node(self, policy) auth_graph[policy_node.key()] = policy_node for group_name in auth.get("GroupList", []): group_key = self.key()[0:26] + "group" + auth['Path'] + group_name group_node = auth_graph[group_key] group_node.add_parent(self) self.add_child(group_node) class role_node(graph_node): def is_principal(self): return True def get_type(self): return "role" def __init__(self, auth, auth_graph): super().__init__() self.set_key(auth["Arn"]) self.set_name(auth["RoleName"]) for policy in auth["AttachedManagedPolicies"]: policy_node = auth_graph[policy["PolicyArn"]] self.add_child(policy_node) policy_node.add_parent(self) for policy in auth.get("RolePolicyList", []): policy_node = inline_policy_node(self, policy) auth_graph[policy_node.key()] = policy_node class group_node(graph_node): def is_principal(self): return False def get_type(self): return "group" def __init__(self, auth, auth_graph): super().__init__() self.set_key(auth["Arn"]) self.set_name(auth["GroupName"]) for policy in auth["AttachedManagedPolicies"]: policy_node = auth_graph[policy["PolicyArn"]] self.add_child(policy_node) policy_node.add_parent(self) for policy in auth.get("GroupPolicyList", []): policy_node = inline_policy_node(self, policy) auth_graph[policy_node.key()] = policy_node class policy_node(graph_node): __policy_document = {} __policy_summary = None def is_principal(self): return False def get_services_allowed(self): response = {} services = self.__policy_summary.action_summary().keys() for service in services: response[service] = [self.name()] return response def set_policy_document(self, doc): self.__policy_document = doc self.__policy_summary = Policy(doc) class managed_policy_node(policy_node): def get_type(self): return "managed policy" def __init__(self, auth): super().__init__() self.set_key(auth["Arn"]) self.set_name(auth["PolicyName"]) for policy_doc in auth["PolicyVersionList"]: if policy_doc["IsDefaultVersion"]: self.set_policy_document(policy_doc["Document"]) class inline_policy_node(policy_node): def get_type(self): return "inline policy" def __init__(self, parent, auth): super().__init__() self.set_key(parent.key() + "/policy/" + auth["PolicyName"]) self.set_key(auth["PolicyName"]) parent.add_child(self) self.add_parent(parent) self.set_policy_document(auth["PolicyDocument"]) def get_iam_graph(auth): iam_graph = {} for policy in auth["Policies"]: iam_graph[policy["Arn"]] = managed_policy_node(policy) for policy_version in policy["PolicyVersionList"]: if policy_version["IsDefaultVersion"]: iam_graph[policy["Arn"]].set_policy_document(policy_version["Document"]) for group in auth["GroupDetailList"]: iam_graph[group["Arn"]] = group_node(group, iam_graph) for user in auth["UserDetailList"]: iam_graph[user["Arn"]] = user_node(user, iam_graph) for role in auth["RoleDetailList"]: iam_graph[role["Arn"]] = role_node(role, iam_graph) return iam_graph def build_cytoscape_graph(iam_graph): cytoscape_json = [] for k in iam_graph: node = iam_graph[k] if len(node.children()) > 0 or len(node.parents()) > 0: cytoscape_json.append(iam_graph[k].cytoscape_data()) for k in iam_graph: node = iam_graph[k] for child in node.children(): edge = { "data": {"source": node.key(), "target": child.key(), "type": "edge"} } cytoscape_json.append(edge) return cytoscape_json def iam_report(accounts, config, args): """Create IAM report""" principal_stats = {} json_account_auth_details = None # Ensure only one account is given if len(accounts) > 1: raise Exception("This command only works with one account at a time") account = accounts.pop() # Create directory for output file if it doesn't already exists try: os.mkdir(os.path.dirname(REPORT_OUTPUT_FILE)) except OSError: # Already exists pass # Read template with open(os.path.join("templates", "iam_report.html"), "r") as report_template: template = Template(report_template.read()) # Data to be passed to the template t = {} account = Account(None, account) principal_stats = {} print("Creating IAM report for: {}".format(account.name)) t["account_name"] = account.name t["account_id"] = account.local_id t["report_generated_time"] = datetime.datetime.now().strftime("%Y-%m-%d") t["graph"] = "" if args.show_graph: t["graph"] = '<br><iframe width=700 height=700 src="./map.html"></iframe>' for region_json in get_regions(account): region = Region(account, region_json) if region.name == "us-east-1": json_account_auth_details = query_aws( region.account, "iam-get-account-authorization-details", region ) get_access_advisor(region, principal_stats, json_account_auth_details, args) users = [] roles = [] inactive_principals = [] for principal, stats in principal_stats.items(): if "RoleName" in stats["auth"]: stats["short_name"] = stats["auth"]["RoleName"] stats["type"] = "role" if stats["is_inactive"]: inactive_principals.append(principal) continue roles.append(principal) else: stats["short_name"] = stats["auth"]["UserName"] stats["type"] = "user" if stats["is_inactive"]: inactive_principals.append(principal) continue users.append(principal) print("* Generating IAM graph") # This needs to be generated even if we don't show the graph, # because this data is needed for other functionality in this command iam_graph = get_iam_graph(json_account_auth_details) cytoscape_json = build_cytoscape_graph(iam_graph) with open(os.path.join("web", "account-data", "data.json"), "w") as outfile: json.dump(cytoscape_json, outfile, indent=4) print("* Generating the rest of the report") t["users"] = [] for principal in sorted(users): service_counts = get_service_count_and_used( principal_stats[principal]["last_access"]["ServicesLastAccessed"] ) t["users"].append( { "arn": principal, "name": principal_stats[principal]["auth"]["UserName"], "services_used": service_counts["service_used_count"], "services_granted": service_counts["service_count"], } ) t["roles"] = [] for principal in sorted(roles): service_counts = get_service_count_and_used( principal_stats[principal]["last_access"]["ServicesLastAccessed"] ) t["roles"].append( { "arn": principal, "name": principal_stats[principal]["auth"]["RoleName"], "services_used": service_counts["service_used_count"], "services_granted": service_counts["service_count"], } ) t["inactive_principals"] = [] for principal in sorted(inactive_principals): # Choose icon icon = '<i class="fas fa-user-astronaut"></i>' if principal_stats[principal]["type"] == "user": icon = '<i class="fas fa-user"></i>' t["inactive_principals"].append( { "arn": principal, "icon": icon, "name": principal_stats[principal]["short_name"], } ) t["principals"] = [] for principal, stats in principal_stats.items(): if stats["is_inactive"]: continue p = {} p["arn"] = principal if "RoleName" in stats["auth"]: p["icon"] = '<i class="fas fa-user-astronaut"></i>' p["arn"] = stats["auth"]["Arn"] p["name"] = stats["auth"]["RoleName"] if "UserName" in stats["auth"]: p["icon"] = '<i class="fas fa-user"></i>' p["arn"] = stats["auth"]["Arn"] p["name"] = stats["auth"]["UserName"] principal_node = iam_graph[stats["auth"]["Arn"]] privilege_sources = principal_node.get_services_allowed() # Show access advisor info # Get collection date report_date = datetime.datetime.strptime( stats["last_access"]["JobCompletionDate"][0:10], "%Y-%m-%d" ) # Show services p["services"] = [] for service in stats["last_access"]["ServicesLastAccessed"]: last_use = "-" if service.get("LastAuthenticated", "-") != "-": last_use = ( report_date - datetime.datetime.strptime( service["LastAuthenticated"][0:10], "%Y-%m-%d" ) ).days style = "" if last_use == "-" or last_use > 90: style = "bad" source = privilege_sources.get(service["ServiceNamespace"], ["unknown"]) source = ";".join(source) p["services"].append( { "style": style, "name": service["ServiceName"], "last_use": last_use, "source": source, } ) # List groups groups = stats["auth"].get("GroupList", []) p["groups"] = [] arn_prefix = stats["auth"]["Arn"][0:26] for group in groups: p["groups"].append( {"link_id": tolink(arn_prefix + "group/" + group), "name": group} ) # List attached policies policies = stats["auth"]["AttachedManagedPolicies"] p["managed_policies"] = [] for policy in policies: p["managed_policies"].append( {"link_id": tolink(policy["PolicyArn"]), "name": policy["PolicyName"]} ) # Show inline policies policies = stats["auth"].get("UserPolicyList", []) policies.extend(stats["auth"].get("RolePolicyList", [])) p["inline_policies"] = [] for policy in policies: p["inline_policies"].append( { "name": policy["PolicyName"], "document": json.dumps(policy["PolicyDocument"], indent=4), } ) # Show AssumeRolePolicyDocument if "RoleName" in stats["auth"]: p["assume_role"] = json.dumps( stats["auth"]["AssumeRolePolicyDocument"], indent=4 ) t["principals"].append(p) t["groups"] = [] for group in json_account_auth_details["GroupDetailList"]: g = {"link_id": tolink(group["Arn"]), "name": group["GroupName"]} # List members group_node = iam_graph[group["Arn"]] g["members"] = [] for parent in group_node.parents(): g["members"].append( {"link_id": tolink(parent.key()), "name": parent.name()} ) g["managed_policies"] = [] for policy in group["AttachedManagedPolicies"]: g["managed_policies"].append( {"link_id": tolink(policy["PolicyArn"]), "name": policy["PolicyName"]} ) g["inline_policies"] = [] for policy in group["GroupPolicyList"]: g["inline_policies"].append( { "name": policy["PolicyName"], "document": json.dumps(policy["PolicyDocument"], indent=4), } ) t["groups"].append(g) t["policies"] = [] for policy in json_account_auth_details["Policies"]: p = { "link_id": tolink(policy["Arn"]), "name": policy["PolicyName"], "managed": "", } if "arn:aws:iam::aws:policy" in policy["Arn"]: p["managed"] = '<i class="fab fa-amazon"></i>AWS managed policy<br>' # Attachments policy_node = iam_graph[policy["Arn"]] p["attachments"] = [] for parent in policy_node.parents(): p["attachments"].append( {"link_id": tolink(parent.key()), "name": parent.name()} ) for version in policy["PolicyVersionList"]: if version["IsDefaultVersion"]: p["document"] = json.dumps(version["Document"], indent=4) t["policies"].append(p) # Generate report from template if args.requested_output == OutputFormat.html: with open("{}.html".format(REPORT_OUTPUT_FILE), "w") as f: f.write(template.render(t=t)) elif args.requested_output == OutputFormat.json: with open("{}.json".format(REPORT_OUTPUT_FILE), "w") as f: json.dump(t, f) print("Report written to {}.{}".format(REPORT_OUTPUT_FILE, args.requested_output.value)) def run(arguments): parser = argparse.ArgumentParser() parser.add_argument( "--max-age", help="Number of days a user or role hasn't been used before it's marked dead", default=90, type=int, ) parser.add_argument( "--graph", help="Do not create and display a graph", dest="show_graph", action="store_true", ) parser.add_argument( "--output", help="Set the output type for the report", default=OutputFormat.html, type=OutputFormat, dest="requested_output" ) parser.set_defaults(show_graph=False) args, accounts, config = parse_arguments(arguments, parser) iam_report(accounts, config, args)
32.027273
101
0.584587
d196ee5724ce9ff0230d58f26569b5b29f807d32
430
py
Python
Components/Component.py
RuoxiQin/Unmanned-Aerial-Vehicle-Tracking
49a0a32abcce42fc6bf9e71f5b098ec708373153
[ "Apache-2.0" ]
13
2018-06-16T12:52:18.000Z
2021-08-14T02:43:24.000Z
Components/Component.py
RuoxiQin/Unmanned-Aerial-Vehicle-Tracking
49a0a32abcce42fc6bf9e71f5b098ec708373153
[ "Apache-2.0" ]
null
null
null
Components/Component.py
RuoxiQin/Unmanned-Aerial-Vehicle-Tracking
49a0a32abcce42fc6bf9e71f5b098ec708373153
[ "Apache-2.0" ]
6
2019-06-20T21:06:01.000Z
2021-08-14T02:43:28.000Z
#!/usr/bin/python #-*-coding:utf-8-*- class Component(object): '''This is the component in the game.''' _name = 'Component' def __init__(self,position,num,region_size): self.position = position self.num = num self._region_size = region_size return super(Component, self).__init__() def __str__(self): return str(self._name)+ str(self.num) + ' position' +str(self.position)
30.714286
79
0.637209
70bf5d5135bfa9ea0752360374ef61b675b581a3
21,619
py
Python
tests/integration/shell/test_call.py
ContextLogic/salt
f98839c72df2294cdd1670835d10904b12089622
[ "Apache-2.0" ]
null
null
null
tests/integration/shell/test_call.py
ContextLogic/salt
f98839c72df2294cdd1670835d10904b12089622
[ "Apache-2.0" ]
null
null
null
tests/integration/shell/test_call.py
ContextLogic/salt
f98839c72df2294cdd1670835d10904b12089622
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- ''' :codeauthor: Pedro Algarvio ([email protected]) tests.integration.shell.call ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ''' # Import python libs from __future__ import absolute_import import os import sys import re import shutil from datetime import datetime import logging # Import Salt Testing libs from tests.support.case import ShellCase from tests.support.unit import skipIf from tests.support.paths import FILES, TMP from tests.support.mixins import ShellCaseCommonTestsMixin from tests.support.helpers import ( destructiveTest, flaky, skip_if_not_root, ) from tests.integration.utils import testprogram from tests.integration.states.test_pkg import _PKG_TARGETS # Import salt libs import salt.utils.files import salt.utils.json import salt.utils.platform import salt.utils.yaml from salt.ext import six log = logging.getLogger(__name__) class CallTest(ShellCase, testprogram.TestProgramCase, ShellCaseCommonTestsMixin): _call_binary_ = 'salt-call' def test_default_output(self): out = self.run_call('-l quiet test.fib 3') expect = ['local:', ' - 2'] self.assertEqual(expect, out[:-1]) def test_text_output(self): out = self.run_call('-l quiet --out txt test.fib 3') expect = [ 'local: (2' ] self.assertEqual(''.join(expect), ''.join(out).rsplit(",", 1)[0]) def test_json_out_indent(self): out = self.run_call('test.ping -l quiet --out=json --out-indent=-1') self.assertIn('"local": true', ''.join(out)) out = self.run_call('test.ping -l quiet --out=json --out-indent=0') self.assertIn('"local": true', ''.join(out)) out = self.run_call('test.ping -l quiet --out=json --out-indent=1') self.assertIn('"local": true', ''.join(out)) def test_local_sls_call(self): fileroot = os.path.join(FILES, 'file', 'base') out = self.run_call('--file-root {0} --local state.sls saltcalllocal'.format(fileroot)) self.assertIn('Name: test.echo', ''.join(out)) self.assertIn('Result: True', ''.join(out)) self.assertIn('hello', ''.join(out)) self.assertIn('Succeeded: 1', ''.join(out)) @destructiveTest @skip_if_not_root @skipIf(salt.utils.platform.is_windows(), 'This test does not apply on Windows') def test_local_pkg_install(self): ''' Test to ensure correct output when installing package This also tests to make sure that salt call does not execute the function twice, see https://github.com/saltstack/salt/pull/49552 ''' def _run_call(cmd): cmd = '--out=json --local ' + cmd return salt.utils.json.loads(''.join(self.run_call(cmd)))['local'] os_family = _run_call('grains.get os_family') if os_family == 'RedHat': # This test errors in odd ways on some distros (namely Fedora, CentOS). # There is a bug somewhere either in the test suite or Python versions # that causes a SyntaxError. This test was skipped entirely long ago, # likely due to this same issue. For now, let's skip the test for these # distros and let the other OSes catch regressions here. # The actual commands work fine, it's the test suite that has problems. # See https://github.com/saltstack/salt-jenkins/issues/1122 and also see # https://github.com/saltstack/salt/pull/49552 for more info. self.skipTest('Test throws SyntaxErrors due to deep bug. Skipping until ' 'issue can be resolved.') try: target = _PKG_TARGETS.get(os_family, [])[0] except IndexError: self.skipTest( 'No package targets for os_family {0}'.format(os_family)) cur_pkgs = _run_call('pkg.list_pkgs') if target in cur_pkgs: self.fail('Target package \'{0}\' already installed'.format(target)) out = ''.join(self.run_call('--local pkg.install {0}'.format(target))) self.assertIn('local: ----------', out) self.assertIn('{0}: ----------'.format(target), out) self.assertIn('new:', out) self.assertIn('old:', out) @skipIf(sys.platform.startswith('win'), 'This test does not apply on Win') @flaky def test_user_delete_kw_output(self): ret = self.run_call('-l quiet -d user.delete') assert 'salt \'*\' user.delete name remove=True force=True' in ''.join(ret) def test_salt_documentation_too_many_arguments(self): ''' Test to see if passing additional arguments shows an error ''' data = self.run_call('-d virtualenv.create /tmp/ve', catch_stderr=True) self.assertIn('You can only get documentation for one method at one time', '\n'.join(data[1])) def test_issue_6973_state_highstate_exit_code(self): ''' If there is no tops/master_tops or state file matches for this minion, salt-call should exit non-zero if invoked with option --retcode-passthrough ''' src = os.path.join(FILES, 'file/base/top.sls') dst = os.path.join(FILES, 'file/base/top.sls.bak') shutil.move(src, dst) expected_comment = 'No states found for this minion' try: stdout, retcode = self.run_call( '-l quiet --retcode-passthrough state.highstate', with_retcode=True ) finally: shutil.move(dst, src) self.assertIn(expected_comment, ''.join(stdout)) self.assertNotEqual(0, retcode) @skipIf(sys.platform.startswith('win'), 'This test does not apply on Win') @skipIf(True, 'to be re-enabled when #23623 is merged') def test_return(self): self.run_call('cmd.run "echo returnTOmaster"') jobs = [a for a in self.run_run('jobs.list_jobs')] self.assertTrue(True in ['returnTOmaster' in j for j in jobs]) # lookback jid first_match = [(i, j) for i, j in enumerate(jobs) if 'returnTOmaster' in j][0] jid, idx = None, first_match[0] while idx > 0: jid = re.match("([0-9]+):", jobs[idx]) if jid: jid = jid.group(1) break idx -= 1 assert idx > 0 assert jid master_out = [ a for a in self.run_run('jobs.lookup_jid {0}'.format(jid)) ] self.assertTrue(True in ['returnTOmaster' in a for a in master_out]) @skipIf(sys.platform.startswith('win'), 'This test does not apply on Win') @flaky def test_issue_2731_masterless(self): root_dir = os.path.join(TMP, 'issue-2731') config_dir = os.path.join(root_dir, 'conf') minion_config_file = os.path.join(config_dir, 'minion') logfile = os.path.join(root_dir, 'minion_test_issue_2731') if not os.path.isdir(config_dir): os.makedirs(config_dir) with salt.utils.files.fopen(self.get_config_file_path('master')) as fhr: master_config = salt.utils.yaml.safe_load(fhr) master_root_dir = master_config['root_dir'] this_minion_key = os.path.join( master_root_dir, 'pki', 'master', 'minions', 'minion_test_issue_2731' ) minion_config = { 'id': 'minion_test_issue_2731', 'master': 'localhost', 'master_port': 64506, 'root_dir': master_root_dir, 'pki_dir': 'pki', 'cachedir': 'cachedir', 'sock_dir': 'minion_sock', 'open_mode': True, 'log_file': logfile, 'log_level': 'quiet', 'log_level_logfile': 'info', 'transport': self.master_opts['transport'], } try: # Remove existing logfile if os.path.isfile(logfile): os.unlink(logfile) start = datetime.now() # Let's first test with a master running with salt.utils.files.fopen(minion_config_file, 'w') as fh_: salt.utils.yaml.safe_dump(minion_config, fh_, default_flow_style=False) ret = self.run_script( 'salt-call', '--config-dir {0} cmd.run "echo foo"'.format( config_dir ) ) try: self.assertIn('local:', ret) except AssertionError: if os.path.isfile(minion_config_file): os.unlink(minion_config_file) # Let's remove our key from the master if os.path.isfile(this_minion_key): os.unlink(this_minion_key) raise # Calculate the required timeout, since next will fail. # I needed this because after many attempts, I was unable to catch: # WARNING: Master hostname: salt not found. Retrying in 30 seconds ellapsed = datetime.now() - start timeout = ellapsed.seconds + 3 # Now let's remove the master configuration minion_config.pop('master') minion_config.pop('master_port') with salt.utils.files.fopen(minion_config_file, 'w') as fh_: salt.utils.yaml.safe_dump(minion_config, fh_, default_flow_style=False) _, timed_out = self.run_script( 'salt-call', '--config-dir {0} cmd.run "echo foo"'.format( config_dir ), timeout=timeout, catch_timeout=True, ) try: self.assertTrue(timed_out) except AssertionError: if os.path.isfile(minion_config_file): os.unlink(minion_config_file) # Let's remove our key from the master if os.path.isfile(this_minion_key): os.unlink(this_minion_key) raise # Should work with --local ret = self.run_script( 'salt-call', '--config-dir {0} --local cmd.run "echo foo"'.format( config_dir ), timeout=60 ) try: self.assertIn('local:', ret) except AssertionError: if os.path.isfile(minion_config_file): os.unlink(minion_config_file) # Let's remove our key from the master if os.path.isfile(this_minion_key): os.unlink(this_minion_key) raise # Should work with local file client minion_config['file_client'] = 'local' with salt.utils.files.fopen(minion_config_file, 'w') as fh_: salt.utils.yaml.safe_dump(minion_config, fh_, default_flow_style=False) ret = self.run_script( 'salt-call', '--config-dir {0} cmd.run "echo foo"'.format( config_dir ), timeout=60 ) self.assertIn('local:', ret) finally: if os.path.isfile(minion_config_file): os.unlink(minion_config_file) # Let's remove our key from the master if os.path.isfile(this_minion_key): os.unlink(this_minion_key) def test_issue_7754(self): old_cwd = os.getcwd() config_dir = os.path.join(TMP, 'issue-7754') if not os.path.isdir(config_dir): os.makedirs(config_dir) os.chdir(config_dir) with salt.utils.files.fopen(self.get_config_file_path('minion'), 'r') as fh_: minion_config = salt.utils.yaml.safe_load(fh_) minion_config['log_file'] = 'file:///dev/log/LOG_LOCAL3' with salt.utils.files.fopen(os.path.join(config_dir, 'minion'), 'w') as fh_: salt.utils.yaml.safe_dump(minion_config, fh_, default_flow_style=False) ret = self.run_script( 'salt-call', '--config-dir {0} cmd.run "echo foo"'.format( config_dir ), timeout=60, catch_stderr=True, with_retcode=True ) try: self.assertIn('local:', ret[0]) self.assertFalse(os.path.isdir(os.path.join(config_dir, 'file:'))) except AssertionError: # We now fail when we're unable to properly set the syslog logger self.assertIn( 'Failed to setup the Syslog logging handler', '\n'.join(ret[1]) ) self.assertEqual(ret[2], 2) finally: self.chdir(old_cwd) if os.path.isdir(config_dir): shutil.rmtree(config_dir) def test_syslog_file_not_found(self): ''' test when log_file is set to a syslog file that does not exist ''' old_cwd = os.getcwd() config_dir = os.path.join(TMP, 'log_file_incorrect') if not os.path.isdir(config_dir): os.makedirs(config_dir) os.chdir(config_dir) with salt.utils.files.fopen(self.get_config_file_path('minion'), 'r') as fh_: minion_config = salt.utils.yaml.load(fh_.read()) minion_config['log_file'] = 'file:///dev/doesnotexist' with salt.utils.files.fopen(os.path.join(config_dir, 'minion'), 'w') as fh_: fh_.write( salt.utils.yaml.dump(minion_config, default_flow_style=False) ) ret = self.run_script( 'salt-call', '--config-dir {0} cmd.run "echo foo"'.format( config_dir ), timeout=60, catch_stderr=True, with_retcode=True ) try: if sys.version_info >= (3, 5, 4): self.assertIn('local:', ret[0]) self.assertIn('[WARNING ] The log_file does not exist. Logging not setup correctly or syslog service not started.', ret[1]) self.assertEqual(ret[2], 0) else: self.assertIn( 'Failed to setup the Syslog logging handler', '\n'.join(ret[1]) ) self.assertEqual(ret[2], 2) finally: self.chdir(old_cwd) if os.path.isdir(config_dir): shutil.rmtree(config_dir) @skipIf(True, 'This test is unreliable. Need to investigate why more deeply.') @flaky def test_issue_15074_output_file_append(self): output_file_append = os.path.join(TMP, 'issue-15074') try: # Let's create an initial output file with some data _ = self.run_script( 'salt-call', '-c {0} --output-file={1} test.versions'.format( self.config_dir, output_file_append ), catch_stderr=True, with_retcode=True ) with salt.utils.files.fopen(output_file_append) as ofa: output = ofa.read() self.run_script( 'salt-call', '-c {0} --output-file={1} --output-file-append test.versions'.format( self.config_dir, output_file_append ), catch_stderr=True, with_retcode=True ) with salt.utils.files.fopen(output_file_append) as ofa: self.assertEqual(ofa.read(), output + output) finally: if os.path.exists(output_file_append): os.unlink(output_file_append) @skipIf(True, 'This test is unreliable. Need to investigate why more deeply.') @flaky def test_issue_14979_output_file_permissions(self): output_file = os.path.join(TMP, 'issue-14979') with salt.utils.files.set_umask(0o077): try: # Let's create an initial output file with some data self.run_script( 'salt-call', '-c {0} --output-file={1} -l trace -g'.format( self.config_dir, output_file ), catch_stderr=True, with_retcode=True ) try: stat1 = os.stat(output_file) except OSError: self.fail('Failed to generate output file, see log for details') # Let's change umask os.umask(0o777) # pylint: disable=blacklisted-function self.run_script( 'salt-call', '-c {0} --output-file={1} --output-file-append -g'.format( self.config_dir, output_file ), catch_stderr=True, with_retcode=True ) try: stat2 = os.stat(output_file) except OSError: self.fail('Failed to generate output file, see log for details') self.assertEqual(stat1.st_mode, stat2.st_mode) # Data was appeneded to file self.assertTrue(stat1.st_size < stat2.st_size) # Let's remove the output file os.unlink(output_file) # Not appending data self.run_script( 'salt-call', '-c {0} --output-file={1} -g'.format( self.config_dir, output_file ), catch_stderr=True, with_retcode=True ) try: stat3 = os.stat(output_file) except OSError: self.fail('Failed to generate output file, see log for details') # Mode must have changed since we're creating a new log file self.assertNotEqual(stat1.st_mode, stat3.st_mode) finally: if os.path.exists(output_file): os.unlink(output_file) @skipIf(sys.platform.startswith('win'), 'This test does not apply on Win') def test_42116_cli_pillar_override(self): ret = self.run_call( 'state.apply issue-42116-cli-pillar-override ' 'pillar=\'{"myhost": "localhost"}\'' ) for line in ret: line = line.lstrip() if line == 'Comment: Command "ping -c 2 localhost" run': # Successful test break else: log.debug('salt-call output:\n\n%s', '\n'.join(ret)) self.fail('CLI pillar override not found in pillar data') def test_pillar_items_masterless(self): ''' Test to ensure we get expected output from pillar.items with salt-call ''' get_items = self.run_call('pillar.items', local=True) exp_out = [' - Lancelot', ' - Galahad', ' - Bedevere', ' monty:', ' python'] for out in exp_out: self.assertIn(out, get_items) def tearDown(self): ''' Teardown method to remove installed packages ''' user = '' user_info = self.run_call('--local grains.get username') if user_info and isinstance(user_info, (list, tuple)) and isinstance(user_info[-1], six.string_types): user = user_info[-1].strip() super(CallTest, self).tearDown() # pylint: disable=invalid-name def test_exit_status_unknown_argument(self): ''' Ensure correct exit status when an unknown argument is passed to salt-call. ''' call = testprogram.TestProgramSaltCall( name='unknown_argument', parent_dir=self._test_dir, ) # Call setup here to ensure config and script exist call.setup() stdout, stderr, status = call.run( args=['--unknown-argument'], catch_stderr=True, with_retcode=True, ) self.assert_exit_status( status, 'EX_USAGE', message='unknown argument', stdout=stdout, stderr=stderr ) def test_masterless_highstate(self): ''' test state.highstate in masterless mode ''' ret = self.run_call('state.highstate', local=True) destpath = os.path.join(TMP, 'testfile') exp_out = [' Function: file.managed', ' Result: True', ' ID: {0}'.format(destpath)] for out in exp_out: self.assertIn(out, ret) self.assertTrue(os.path.exists(destpath)) def test_exit_status_correct_usage(self): ''' Ensure correct exit status when salt-call starts correctly. ''' call = testprogram.TestProgramSaltCall( name='correct_usage', parent_dir=self._test_dir, ) # Call setup here to ensure config and script exist call.setup() stdout, stderr, status = call.run( args=['--local', 'test.true'], catch_stderr=True, with_retcode=True, ) self.assert_exit_status( status, 'EX_OK', message='correct usage', stdout=stdout, stderr=stderr )
37.209983
139
0.548915
26ae75649b4bb25740b65f3df177015e217bdf68
884
py
Python
venv/lib/python3.6/site-packages/django_otp/plugins/otp_static/lib.py
ostar0816/mc-crypto
80ad9896aed1dc952f819a404a458ccfad207d8e
[ "MIT" ]
4
2018-10-19T04:36:20.000Z
2020-02-13T16:14:09.000Z
venv/lib/python3.6/site-packages/django_otp/plugins/otp_static/lib.py
ostar0816/mc-crypto
80ad9896aed1dc952f819a404a458ccfad207d8e
[ "MIT" ]
null
null
null
venv/lib/python3.6/site-packages/django_otp/plugins/otp_static/lib.py
ostar0816/mc-crypto
80ad9896aed1dc952f819a404a458ccfad207d8e
[ "MIT" ]
null
null
null
from __future__ import absolute_import, division, print_function, unicode_literals try: from django.contrib.auth import get_user_model except ImportError: from django.contrib.auth.models import User get_user_model = lambda: User from .models import StaticDevice, StaticToken def add_static_token(username, token=None): """ Adds a random static token to the identified user. This is the implementation for the management command of a similar name. Returns the StaticToken object created. """ user = get_user_model().objects.get_by_natural_key(username) device = next(StaticDevice.objects.filter(user=user).iterator(), None) if device is None: device = StaticDevice.objects.create(user=user, name='Backup Code') if token is None: token = StaticToken.random_token() return device.token_set.create(token=token)
29.466667
82
0.742081
8b679c9f87635974f180b2c84c93dc6d1ead216d
1,860
py
Python
src/models/text_pipeline.py
Honeyfy/semi-supervised-text-classification
b3f5b29be9fec4dc19807bc394be7251bbbee18c
[ "BSD-3-Clause" ]
null
null
null
src/models/text_pipeline.py
Honeyfy/semi-supervised-text-classification
b3f5b29be9fec4dc19807bc394be7251bbbee18c
[ "BSD-3-Clause" ]
null
null
null
src/models/text_pipeline.py
Honeyfy/semi-supervised-text-classification
b3f5b29be9fec4dc19807bc394be7251bbbee18c
[ "BSD-3-Clause" ]
null
null
null
import dill from src.models.processing_functions import proc_name_mapping class TextPipeline: def __init__(self, pipeline, language_processor=None): self.language_processor = language_processor # processing functions to apply for feature creation self.pipeline = pipeline self.transform_params = None def fit_transform(self, X): transform_params = {} for name, fit_params in self.pipeline: if name in proc_name_mapping.keys(): proc = proc_name_mapping[name] else: raise ValueError('unknown data transform %s' % name) X, params = proc(X, fit=True, **fit_params) transform_params[name] = params self.transform_params = transform_params return X def transform(self, X): for name, _ in self.pipeline: transform_params = self.transform_params[name] if name in proc_name_mapping.keys(): proc = proc_name_mapping[name] else: raise ValueError('unknown data transform %s' % name) X, _ = proc(X, fit=False, **transform_params) return X def __getstate__(self): """Return state values to be pickled.""" odict = self.__dict__.copy() if 'vector_model' in odict: del odict['vector_model'] return odict def __setstate__(self, state): self.__dict__.update(state) def save(self, filename, append=False): file_mode = 'ab' if append else 'wb' with open(filename, file_mode) as f: dill.dump(self, f) @staticmethod def load(filename, offset=0): with open(filename, 'rb') as f: f.seek(offset) text_pipeline = dill.load(f) return text_pipeline
29.52381
68
0.594086
4e7ed4095bddcf178926ce64489d50523aae7ba5
114
py
Python
Codewars/Even_or _Odd - (7 kyu) .py
maxcohen31/A-bored-math-student
007beb4dabf7b4406f48e9a3a967c29d032eab89
[ "MIT" ]
null
null
null
Codewars/Even_or _Odd - (7 kyu) .py
maxcohen31/A-bored-math-student
007beb4dabf7b4406f48e9a3a967c29d032eab89
[ "MIT" ]
null
null
null
Codewars/Even_or _Odd - (7 kyu) .py
maxcohen31/A-bored-math-student
007beb4dabf7b4406f48e9a3a967c29d032eab89
[ "MIT" ]
null
null
null
def even_or_odd(n): if n % 2 == 0: return 'Even' else: return 'Odd' print(even_or_odd(7))
16.285714
21
0.526316
e65c8ade0cfc8dc4760f9ebc75cb582341c46586
2,122
py
Python
scripts/cross_validate/hd_cnn.py
ysenarath/hate-detection-icsc-2020
9bd802209c7df982d63179e53628a89b14915446
[ "MIT" ]
2
2020-06-25T05:13:22.000Z
2020-06-25T05:54:10.000Z
scripts/cross_validate/hd_cnn.py
ysenarath/hate-detection-icsc-2020
9bd802209c7df982d63179e53628a89b14915446
[ "MIT" ]
null
null
null
scripts/cross_validate/hd_cnn.py
ysenarath/hate-detection-icsc-2020
9bd802209c7df982d63179e53628a89b14915446
[ "MIT" ]
null
null
null
# CNN CrossValidator import numpy as np from nltk import TweetTokenizer from scripts.utils import scratch_path from tklearn.datasets import load_fdcl18, load_dwmw17 from tklearn.model_selection import CrossValidator from tklearn.neural_network import NeuralNetClassifier from tklearn.neural_network.model import TextCNN from tklearn.preprocessing.tweet import TweetPreprocessor from tklearn.text.word_vec import load_word2vec from tklearn.utils import pprint DATASET = 'FDCL18' if __name__ == '__main__': # Load Dataset and Extract Features if DATASET.lower().startswith('f'): df = load_fdcl18(num_classes=2) pprint({'dataset': 'FDCL18(num_classes=2)'}) else: df = load_dwmw17(num_classes=2) pprint({'dataset': 'DWMW17(num_classes=2)'}) df['clean_tweets'] = df.tweet.apply(TweetPreprocessor(normalize=['link', 'mention']).preprocess) df['tokens'] = df.clean_tweets.apply(TweetTokenizer().tokenize) # Load Resources word2vec = load_word2vec() # Hyperparameters kwargs = { 'model': 'multichannel', 'epoch': 100, 'learning_rate': 0.01, 'max_sent_len': 50, 'batch_size': 50, # 'word_dim': 300, 'filters': [3, 4, 5], 'filter_num': [100, 100, 100], 'dropout_prob': 0.5, 'norm_limit': 3, } pprint(kwargs) # """ # Additional Parameters kwargs['module'] = TextCNN kwargs['corpus'] = df.tokens kwargs['word_vectors'] = word2vec # """ # Cross-validate and save predictions scorers = ['accuracy', 'precision', 'recall', 'f1'] estimator = NeuralNetClassifier(**kwargs) cv = CrossValidator(NeuralNetClassifier, kwargs, n_splits=5, scoring=scorers) df['predictions'], cv_results = cv.cross_val_predict(df.tokens, df.label, return_scores=True) # """ Print Scores pprint(cv_results) scores = {} for scorer in scorers: scores[scorer] = ['%.2f' % (np.average(cv_results[scorer]) * 100) + ','] pprint(scores, type='table') # """ Save Predictions # df.to_excel(scratch_path('cnn_predictions.xlsx')) # """ #
34.786885
100
0.666352
8ff5ddc49c13e0e16b9bcf18d0c4b7f24aaf6dc8
604
py
Python
app/config/urls.py
MMartynamajchrzak/recipe-restAPI
54ca39f7e7ff19f8cba902895ce69504a2fcaf99
[ "MIT" ]
1
2021-12-10T08:43:54.000Z
2021-12-10T08:43:54.000Z
app/config/urls.py
MMartynamajchrzak/recipe-restAPI
54ca39f7e7ff19f8cba902895ce69504a2fcaf99
[ "MIT" ]
null
null
null
app/config/urls.py
MMartynamajchrzak/recipe-restAPI
54ca39f7e7ff19f8cba902895ce69504a2fcaf99
[ "MIT" ]
null
null
null
from django.contrib import admin from django.urls import path, include from drf_spectacular.views import SpectacularAPIView, SpectacularSwaggerView from django.conf.urls.static import static from django.conf import settings urlpatterns = [ path('admin/', admin.site.urls), path('api/user/', include('apps.user.urls')), path('api/recipe/', include('apps.recipe.urls')), path('docs/schema/', SpectacularAPIView.as_view(), name='docs'), path('docs/', SpectacularSwaggerView.as_view(url_name='docs'), name='swagger-ui'), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
43.142857
86
0.75
dbcb66ff3d94c4eaef6fa48345344bea7c94f3c3
4,950
py
Python
tclambda/function.py
trustcruit/tclambda
4413944243257d36088805d8e2f97b0d8b56b87d
[ "MIT" ]
null
null
null
tclambda/function.py
trustcruit/tclambda
4413944243257d36088805d8e2f97b0d8b56b87d
[ "MIT" ]
613
2019-06-05T10:49:01.000Z
2021-08-03T03:23:18.000Z
tclambda/function.py
trustcruit/tclambda
4413944243257d36088805d8e2f97b0d8b56b87d
[ "MIT" ]
null
null
null
# https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html from __future__ import annotations import asyncio import json import logging import os import time from dataclasses import dataclass from datetime import datetime from uuid import uuid4 import boto3 from botocore.exceptions import ClientError from .extras import timeme s3client = boto3.client("s3") sqsclient = boto3.client("sqs") TC_QUEUE = os.getenv("TC_THIS_QUEUE") TC_BUCKET = os.getenv("TC_THIS_BUCKET") class LambdaFunction: def __init__(self, queue_url=TC_QUEUE, s3_bucket=TC_BUCKET): self.queue_url = queue_url self.s3_bucket = s3_bucket def __getattr__(self, function_name): return LambdaWrapperFunction(self.queue_url, self.s3_bucket, function_name) @dataclass class Message: result_store: str message_body: str def build_message( function_name: str, args: tuple, kwargs: dict, s3_bucket: str, force_upload=False ) -> Message: logger = logging.getLogger("tclambda.function.build_message") key = f"{function_name}/{datetime.utcnow():%Y/%m/%d/%H%M%S}/{uuid4()}.json" result_store = f"results/{key}" proxy_store = f"proxy/{key}" message_body = json.dumps( { "function": function_name, "args": args, "kwargs": kwargs, "result_store": result_store, } ) logger.info( f'Function "{function_name}", ' f'result_store: "{result_store}", ' f"message_body size: {sizeof_fmt(len(message_body))}" ) if len(message_body) > 250000 or force_upload: # current maximum is 262144 bytes logger.info("Uploading proxy for {function_name}") with timeme() as dt: s3client.put_object(Bucket=s3_bucket, Key=proxy_store, Body=message_body) logger.info(f"Uploaded proxy for {function_name} in {dt.value}s") message_body = json.dumps({"proxy": proxy_store}) return Message(result_store=result_store, message_body=message_body) class LambdaWrapperFunction: def __init__(self, queue_url, s3_bucket, function_name): self.logger = logging.getLogger("tclambda.function.LambdaFunction") self.queue_url = queue_url self.s3_bucket = s3_bucket self.function_name = function_name def __call__(self, *args, **kwargs) -> LambdaResult: message = build_message( function_name=self.function_name, args=args, kwargs=kwargs, s3_bucket=self.s3_bucket, ) sqsclient.send_message( QueueUrl=self.queue_url, MessageBody=message.message_body ) return LambdaResult(s3_bucket=self.s3_bucket, key=message.result_store) class LambdaResult: def __init__(self, s3_bucket, key): self.logger = logging.getLogger("tclambda.function.LambdaFunction") self.s3_bucket = s3_bucket self.key = key self.waited = False self._result = {} def _iter_wait(self, delay: float, max_attempts: int): if self.waited: return obj = None start_time = time.monotonic() for i in range(max_attempts): try: obj = s3client.get_object(Bucket=self.s3_bucket, Key=self.key) end_time = time.monotonic() self.logger.debug( f"Found key {self.key} on {i+1} attempts and {end_time - start_time} seconds" ) break except ClientError as e: if e.response["Error"]["Code"] == "NoSuchKey": yield i continue raise if not obj: raise TimeoutError( f"Result {self.key} not found within {delay*max_attempts} seconds" ) self._result = json.load(obj["Body"]) self.waited = True def wait(self, delay: int = 5, max_attempts=20): for _ in self._iter_wait(delay, max_attempts): time.sleep(delay) async def async_wait(self, delay=5, max_attempts: int = 20): for _ in self._iter_wait(delay, max_attempts): await asyncio.sleep(delay) def result(self, delay: int = 5, max_attempts: int = 20): self.wait(delay, max_attempts) try: return self._result["result"] except KeyError: raise Exception(self._result["exception"]) from None async def async_result(self, delay: int = 5, max_attempts: int = 20): await self.async_wait(delay, max_attempts) try: return self._result["result"] except KeyError: raise Exception(self._result["exception"]) from None def sizeof_fmt(num, suffix="B"): for unit in ["", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei", "Zi"]: if abs(num) < 1024.0: return "%3.1f%s%s" % (num, unit, suffix) num /= 1024.0 return "%.1f%s%s" % (num, "Yi", suffix)
31.935484
97
0.622626
3d441009ff32914387b2b57e4f4a012260b91d70
8,338
py
Python
utils/converters.py
zomatree/yert
bde7fb3db4501da9849bf4a11b611b5090cfca3b
[ "MIT" ]
null
null
null
utils/converters.py
zomatree/yert
bde7fb3db4501da9849bf4a11b611b5090cfca3b
[ "MIT" ]
null
null
null
utils/converters.py
zomatree/yert
bde7fb3db4501da9849bf4a11b611b5090cfca3b
[ "MIT" ]
null
null
null
""" MIT License Copyright (c) 2020 - µYert Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from typing import Any import re from contextlib import suppress from collections import namedtuple from io import BytesIO import discord from discord.ext import commands BetterUser = namedtuple('BetterUser', ['obj', 'http_dict']) u_conv = commands.UserConverter() m_conv = commands.MemberConverter() emoji_regex = "(?:\U0001f1e6[\U0001f1e8-\U0001f1ec\U0001f1ee\U0001f1f1\U0001f1f2\U0001f1f4\U0001f1f6-\U0001f1fa\U0001f1fc\U0001f1fd\U0001f1ff])|(?:\U0001f1e7[\U0001f1e6\U0001f1e7\U0001f1e9-\U0001f1ef\U0001f1f1-\U0001f1f4\U0001f1f6-\U0001f1f9\U0001f1fb\U0001f1fc\U0001f1fe\U0001f1ff])|(?:\U0001f1e8[\U0001f1e6\U0001f1e8\U0001f1e9\U0001f1eb-\U0001f1ee\U0001f1f0-\U0001f1f5\U0001f1f7\U0001f1fa-\U0001f1ff])|(?:\U0001f1e9[\U0001f1ea\U0001f1ec\U0001f1ef\U0001f1f0\U0001f1f2\U0001f1f4\U0001f1ff])|(?:\U0001f1ea[\U0001f1e6\U0001f1e8\U0001f1ea\U0001f1ec\U0001f1ed\U0001f1f7-\U0001f1fa])|(?:\U0001f1eb[\U0001f1ee-\U0001f1f0\U0001f1f2\U0001f1f4\U0001f1f7])|(?:\U0001f1ec[\U0001f1e6\U0001f1e7\U0001f1e9-\U0001f1ee\U0001f1f1-\U0001f1f3\U0001f1f5-\U0001f1fa\U0001f1fc\U0001f1fe])|(?:\U0001f1ed[\U0001f1f0\U0001f1f2\U0001f1f3\U0001f1f7\U0001f1f9\U0001f1fa])|(?:\U0001f1ee[\U0001f1e8-\U0001f1ea\U0001f1f1-\U0001f1f4\U0001f1f6-\U0001f1f9])|(?:\U0001f1ef[\U0001f1ea\U0001f1f2\U0001f1f4\U0001f1f5])|(?:\U0001f1f0[\U0001f1ea\U0001f1ec-\U0001f1ee\U0001f1f2\U0001f1f3\U0001f1f5\U0001f1f7\U0001f1fc\U0001f1fe\U0001f1ff])|(?:\U0001f1f1[\U0001f1e6-\U0001f1e8\U0001f1ee\U0001f1f0\U0001f1f7-\U0001f1fb\U0001f1fe])|(?:\U0001f1f2[\U0001f1e6\U0001f1e8-\U0001f1ed\U0001f1f0-\U0001f1ff])|(?:\U0001f1f3[\U0001f1e6\U0001f1e8\U0001f1ea-\U0001f1ec\U0001f1ee\U0001f1f1\U0001f1f4\U0001f1f5\U0001f1f7\U0001f1fa\U0001f1ff])|\U0001f1f4\U0001f1f2|(?:\U0001f1f4[\U0001f1f2])|(?:\U0001f1f5[\U0001f1e6\U0001f1ea-\U0001f1ed\U0001f1f0-\U0001f1f3\U0001f1f7-\U0001f1f9\U0001f1fc\U0001f1fe])|\U0001f1f6\U0001f1e6|(?:\U0001f1f6[\U0001f1e6])|(?:\U0001f1f7[\U0001f1ea\U0001f1f4\U0001f1f8\U0001f1fa\U0001f1fc])|(?:\U0001f1f8[\U0001f1e6-\U0001f1ea\U0001f1ec-\U0001f1f4\U0001f1f7-\U0001f1f9\U0001f1fb\U0001f1fd-\U0001f1ff])|(?:\U0001f1f9[\U0001f1e6\U0001f1e8\U0001f1e9\U0001f1eb-\U0001f1ed\U0001f1ef-\U0001f1f4\U0001f1f7\U0001f1f9\U0001f1fb\U0001f1fc\U0001f1ff])|(?:\U0001f1fa[\U0001f1e6\U0001f1ec\U0001f1f2\U0001f1f8\U0001f1fe\U0001f1ff])|(?:\U0001f1fb[\U0001f1e6\U0001f1e8\U0001f1ea\U0001f1ec\U0001f1ee\U0001f1f3\U0001f1fa])|(?:\U0001f1fc[\U0001f1eb\U0001f1f8])|\U0001f1fd\U0001f1f0|(?:\U0001f1fd[\U0001f1f0])|(?:\U0001f1fe[\U0001f1ea\U0001f1f9])|(?:\U0001f1ff[\U0001f1e6\U0001f1f2\U0001f1fc])|(?:\U0001f3f3\ufe0f\u200d\U0001f308)|(?:\U0001f441\u200d\U0001f5e8)|(?:[\U0001f468\U0001f469]\u200d\u2764\ufe0f\u200d(?:\U0001f48b\u200d)?[\U0001f468\U0001f469])|(?:(?:(?:\U0001f468\u200d[\U0001f468\U0001f469])|(?:\U0001f469\u200d\U0001f469))(?:(?:\u200d\U0001f467(?:\u200d[\U0001f467\U0001f466])?)|(?:\u200d\U0001f466\u200d\U0001f466)))|(?:(?:(?:\U0001f468\u200d\U0001f468)|(?:\U0001f469\u200d\U0001f469))\u200d\U0001f466)|[\u2194-\u2199]|[\u23e9-\u23f3]|[\u23f8-\u23fa]|[\u25fb-\u25fe]|[\u2600-\u2604]|[\u2638-\u263a]|[\u2648-\u2653]|[\u2692-\u2694]|[\u26f0-\u26f5]|[\u26f7-\u26fa]|[\u2708-\u270d]|[\u2753-\u2755]|[\u2795-\u2797]|[\u2b05-\u2b07]|[\U0001f191-\U0001f19a]|[\U0001f1e6-\U0001f1ff]|[\U0001f232-\U0001f23a]|[\U0001f300-\U0001f321]|[\U0001f324-\U0001f393]|[\U0001f399-\U0001f39b]|[\U0001f39e-\U0001f3f0]|[\U0001f3f3-\U0001f3f5]|[\U0001f3f7-\U0001f3fa]|[\U0001f400-\U0001f4fd]|[\U0001f4ff-\U0001f53d]|[\U0001f549-\U0001f54e]|[\U0001f550-\U0001f567]|[\U0001f573-\U0001f57a]|[\U0001f58a-\U0001f58d]|[\U0001f5c2-\U0001f5c4]|[\U0001f5d1-\U0001f5d3]|[\U0001f5dc-\U0001f5de]|[\U0001f5fa-\U0001f64f]|[\U0001f680-\U0001f6c5]|[\U0001f6cb-\U0001f6d2]|[\U0001f6e0-\U0001f6e5]|[\U0001f6f3-\U0001f6f6]|[\U0001f910-\U0001f91e]|[\U0001f920-\U0001f927]|[\U0001f933-\U0001f93a]|[\U0001f93c-\U0001f93e]|[\U0001f940-\U0001f945]|[\U0001f947-\U0001f94b]|[\U0001f950-\U0001f95e]|[\U0001f980-\U0001f991]|\u00a9|\u00ae|\u203c|\u2049|\u2122|\u2139|\u21a9|\u21aa|\u231a|\u231b|\u2328|\u23cf|\u24c2|\u25aa|\u25ab|\u25b6|\u25c0|\u260e|\u2611|\u2614|\u2615|\u2618|\u261d|\u2620|\u2622|\u2623|\u2626|\u262a|\u262e|\u262f|\u2660|\u2663|\u2665|\u2666|\u2668|\u267b|\u267f|\u2696|\u2697|\u2699|\u269b|\u269c|\u26a0|\u26a1|\u26aa|\u26ab|\u26b0|\u26b1|\u26bd|\u26be|\u26c4|\u26c5|\u26c8|\u26ce|\u26cf|\u26d1|\u26d3|\u26d4|\u26e9|\u26ea|\u26fd|\u2702|\u2705|\u270f|\u2712|\u2714|\u2716|\u271d|\u2721|\u2728|\u2733|\u2734|\u2744|\u2747|\u274c|\u274e|\u2757|\u2763|\u2764|\u27a1|\u27b0|\u27bf|\u2934|\u2935|\u2b1b|\u2b1c|\u2b50|\u2b55|\u3030|\u303d|\u3297|\u3299|\U0001f004|\U0001f0cf|\U0001f170|\U0001f171|\U0001f17e|\U0001f17f|\U0001f18e|\U0001f201|\U0001f202|\U0001f21a|\U0001f22f|\U0001f250|\U0001f251|\U0001f396|\U0001f397|\U0001f56f|\U0001f570|\U0001f587|\U0001f590|\U0001f595|\U0001f596|\U0001f5a4|\U0001f5a5|\U0001f5a8|\U0001f5b1|\U0001f5b2|\U0001f5bc|\U0001f5e1|\U0001f5e3|\U0001f5e8|\U0001f5ef|\U0001f5f3|\U0001f6e9|\U0001f6eb|\U0001f6ec|\U0001f6f0|\U0001f930|\U0001f9c0|[#|0-9]\u20e3" class BetterUserConverter(commands.Converter): async def convert(self, ctx, argument): out = ctx.author if not argument else None for converter in (m_conv, u_conv): if out: break with suppress(Exception): out = await converter.convert(ctx, argument) if out is None: try: out = await ctx.bot.fetch_user(argument) except discord.HTTPException: raise commands.CommandError("Invalid user provided") http_dict = await ctx.bot.http.get_user(out.id) return BetterUser(obj=out, http_dict=http_dict) def maybe_url(url: Any, /) -> str: """Returns an hyperlink version of an url if one is found, else the text""" url = str(url) if match := re.findall(r'//([^/]+)', url): # we get full urls, no need to go too overkill return f"[{match[0]}]({url})" else: return url class LinkConverter(commands.PartialEmojiConverter): def __init__(self): self.png_header = b'\x89PNG\r\n\x1a\n' self.jpg_header = b'\xff\xd8\xff' async def convert(self, ctx, argument: str) -> BytesIO: try: return BytesIO(await (await super().convert(ctx, argument)).url.read()) except commands.BadArgument: if re.match(emoji_regex, argument): unicode = "-".join(map(lambda x: x[2:], map(str, map(hex, map(ord, argument))))) url = f"https://github.com/twitter/twemoji/blob/master/assets/72x72/{unicode}.png?raw=true" async with ctx.bot.session.get(url) as res: return BytesIO(await res.read()) argument = argument.replace('>', '').replace('<', '') async with ctx.bot.session.get(argument, headers=ctx.bot._headers) as response: raw_bytes = await response.read() if raw_bytes.startswith(self.jpg_header) or raw_bytes.startswith(self.png_header): async with ctx.bot.session.get(argument) as res: img_bytes = BytesIO(await res.read()) return img_bytes else: raise commands.BadArgument("Unable to verify the link was an png or jpg")
88.702128
4,709
0.726313
541b4a601e160393635d10142dcf2df5d7e90ce3
987
py
Python
scripts/generate_test_ship_file.py
Oasixer/drive-and-survive
134ca725efed16fdd31df0bb76c520cd15d7b1ed
[ "MIT" ]
1
2019-02-24T23:37:34.000Z
2019-02-24T23:37:34.000Z
scripts/generate_test_ship_file.py
Oasixer/drive-and-survive
134ca725efed16fdd31df0bb76c520cd15d7b1ed
[ "MIT" ]
null
null
null
scripts/generate_test_ship_file.py
Oasixer/drive-and-survive
134ca725efed16fdd31df0bb76c520cd15d7b1ed
[ "MIT" ]
null
null
null
import sys, os # ok this is a little janky but I couldnt get it to import this shit because its not technically in a package. # should probably just make this whole game into a package but im too lazy today # someone remind me to do that <3 sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'src')) from entities.modules.cabin import CabinModule from entities.modules.iron import IronModule from entities.modules.module_base import ModSize from entities.modules.shield import ShieldModule from entities.vehicles.player_ship import PlayerShip from utils.load_dump_data import generate_ship_file def generate(shipNum=0): if shipNum == 0: modules = [ CabinModule((87, 177)), ShieldModule(ModSize.medium, (187, 177)), ] #IronModule(ModSize.small, (0, 140)) test_ship = PlayerShip(modules) test_ship.cabin = modules[0] # Temp generate_ship_file(test_ship) if __name__ == '__main__': generate(0)
35.25
110
0.716312
152d6511712d6c4fa3a23b0ec22780349b575d0a
40,308
py
Python
sdk/python/kfp/v2/compiler/pipeline_spec_builder.py
rahulsmehta/pipelines
a0a8f1da8cb7ca53cde7717aa78e666b634fec75
[ "Apache-2.0" ]
1
2022-01-28T23:27:52.000Z
2022-01-28T23:27:52.000Z
sdk/python/kfp/v2/compiler/pipeline_spec_builder.py
rahulsmehta/pipelines
a0a8f1da8cb7ca53cde7717aa78e666b634fec75
[ "Apache-2.0" ]
null
null
null
sdk/python/kfp/v2/compiler/pipeline_spec_builder.py
rahulsmehta/pipelines
a0a8f1da8cb7ca53cde7717aa78e666b634fec75
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions for creating PipelineSpec proto objects.""" import json from typing import List, Mapping, Optional, Tuple, Union from google.protobuf import struct_pb2 from kfp.pipeline_spec import pipeline_spec_pb2 from kfp.v2.components import utils as component_utils from kfp.v2.components import for_loop from kfp.v2.components import pipeline_channel from kfp.v2.components import pipeline_task from kfp.v2.components import placeholders from kfp.v2.components import tasks_group from kfp.v2.components.types import artifact_types from kfp.v2.components.types import type_utils _GroupOrTask = Union[tasks_group.TasksGroup, pipeline_task.PipelineTask] def _additional_input_name_for_pipeline_channel( channel_or_name: Union[pipeline_channel.PipelineChannel, str]) -> str: """Gets the name for an additional (compiler-injected) input.""" # Adding a prefix to avoid (reduce chance of) name collision between the # original component inputs and the injected input. return 'pipelinechannel--' + ( channel_or_name.full_name if isinstance( channel_or_name, pipeline_channel.PipelineChannel) else channel_or_name) def _to_protobuf_value(value: type_utils.PARAMETER_TYPES) -> struct_pb2.Value: """Creates a google.protobuf.struct_pb2.Value message out of a provide value. Args: value: The value to be converted to Value message. Returns: A google.protobuf.struct_pb2.Value message. Raises: ValueError if the given value is not one of the parameter types. """ if isinstance(value, str): return struct_pb2.Value(string_value=value) elif isinstance(value, (int, float)): return struct_pb2.Value(number_value=value) elif isinstance(value, bool): return struct_pb2.Value(bool_value=value) elif isinstance(value, dict): return struct_pb2.Value( struct_value=struct_pb2.Struct( fields={k: _to_protobuf_value(v) for k, v in value.items()})) elif isinstance(value, list): return struct_pb2.Value( list_value=struct_pb2.ListValue( values=[_to_protobuf_value(v) for v in value])) else: raise ValueError('Value must be one of the following types: ' 'str, int, float, bool, dict, and list. Got: ' f'"{value}" of type "{type(value)}".') def build_task_spec_for_task( task: pipeline_task.PipelineTask, parent_component_inputs: pipeline_spec_pb2.ComponentInputsSpec, tasks_in_current_dag: List[str], input_parameters_in_current_dag: List[str], input_artifacts_in_current_dag: List[str], ) -> pipeline_spec_pb2.PipelineTaskSpec: """Builds PipelineTaskSpec for a pipeline task. A task input may reference an output outside its immediate DAG. For instance:: random_num = random_num_op(...) with dsl.Condition(random_num.output > 5): print_op('%s > 5' % random_num.output) In this example, `dsl.Condition` forms a subDAG with one task from `print_op` inside the subDAG. The task of `print_op` references output from `random_num` task, which is outside the sub-DAG. When compiling to IR, such cross DAG reference is disallowed. So we need to "punch a hole" in the sub-DAG to make the input available in the subDAG component inputs if it's not already there, Next, we can call this method to fix the tasks inside the subDAG to make them reference the component inputs instead of directly referencing the original producer task. Args: task: The task to build a PipelineTaskSpec for. parent_component_inputs: The task's parent component's input specs. tasks_in_current_dag: The list of tasks names for tasks in the same dag. input_parameters_in_current_dag: The list of input parameters in the DAG component. input_artifacts_in_current_dag: The list of input artifacts in the DAG component. Returns: A PipelineTaskSpec object representing the task. """ pipeline_task_spec = pipeline_spec_pb2.PipelineTaskSpec() pipeline_task_spec.task_info.name = ( task.task_spec.display_name or task.name) # Use task.name for component_ref.name because we may customize component # spec for individual tasks to work around the lack of optional inputs # support in IR. pipeline_task_spec.component_ref.name = ( component_utils.sanitize_component_name(task.name)) pipeline_task_spec.caching_options.enable_cache = ( task.task_spec.enable_caching) for input_name, input_value in task.inputs.items(): input_type = task.component_spec.inputs[input_name].type if isinstance(input_value, pipeline_channel.PipelineArtifactChannel): if input_value.task_name: # Value is produced by an upstream task. if input_value.task_name in tasks_in_current_dag: # Dependent task within the same DAG. pipeline_task_spec.inputs.artifacts[ input_name].task_output_artifact.producer_task = ( component_utils.sanitize_task_name( input_value.task_name)) pipeline_task_spec.inputs.artifacts[ input_name].task_output_artifact.output_artifact_key = ( input_value.name) else: # Dependent task not from the same DAG. component_input_artifact = ( _additional_input_name_for_pipeline_channel(input_value) ) assert component_input_artifact in parent_component_inputs.artifacts, \ 'component_input_artifact: {} not found. All inputs: {}'.format( component_input_artifact, parent_component_inputs) pipeline_task_spec.inputs.artifacts[ input_name].component_input_artifact = ( component_input_artifact) else: raise RuntimeError( f'Artifacts must be produced by a task. Got {input_value}.') elif isinstance(input_value, pipeline_channel.PipelineParameterChannel): if input_value.task_name: # Value is produced by an upstream task. if input_value.task_name in tasks_in_current_dag: # Dependent task within the same DAG. pipeline_task_spec.inputs.parameters[ input_name].task_output_parameter.producer_task = ( component_utils.sanitize_task_name( input_value.task_name)) pipeline_task_spec.inputs.parameters[ input_name].task_output_parameter.output_parameter_key = ( input_value.name) else: # Dependent task not from the same DAG. component_input_parameter = ( _additional_input_name_for_pipeline_channel(input_value) ) assert component_input_parameter in parent_component_inputs.parameters, \ 'component_input_parameter: {} not found. All inputs: {}'.format( component_input_parameter, parent_component_inputs) pipeline_task_spec.inputs.parameters[ input_name].component_input_parameter = ( component_input_parameter) else: # Value is from pipeline input. component_input_parameter = input_value.full_name if component_input_parameter not in parent_component_inputs.parameters: component_input_parameter = ( _additional_input_name_for_pipeline_channel(input_value) ) pipeline_task_spec.inputs.parameters[ input_name].component_input_parameter = ( component_input_parameter) elif isinstance(input_value, for_loop.LoopArgument): component_input_parameter = ( _additional_input_name_for_pipeline_channel(input_value)) assert component_input_parameter in parent_component_inputs.parameters, \ 'component_input_parameter: {} not found. All inputs: {}'.format( component_input_parameter, parent_component_inputs) pipeline_task_spec.inputs.parameters[ input_name].component_input_parameter = ( component_input_parameter) elif isinstance(input_value, for_loop.LoopArgumentVariable): component_input_parameter = ( _additional_input_name_for_pipeline_channel( input_value.loop_argument)) assert component_input_parameter in parent_component_inputs.parameters, \ 'component_input_parameter: {} not found. All inputs: {}'.format( component_input_parameter, parent_component_inputs) pipeline_task_spec.inputs.parameters[ input_name].component_input_parameter = ( component_input_parameter) pipeline_task_spec.inputs.parameters[ input_name].parameter_expression_selector = ( 'parseJson(string_value)["{}"]'.format( input_value.subvar_name)) elif isinstance(input_value, str): # Handle extra input due to string concat pipeline_channels = ( pipeline_channel.extract_pipeline_channels_from_any(input_value) ) for channel in pipeline_channels: # value contains PipelineChannel placeholders which needs to be # replaced. And the input needs to be added to the task spec. # Form the name for the compiler injected input, and make sure it # doesn't collide with any existing input names. additional_input_name = ( _additional_input_name_for_pipeline_channel(channel)) # We don't expect collision to happen because we prefix the name # of additional input with 'pipelinechannel--'. But just in case # collision did happend, throw a RuntimeError so that we don't # get surprise at runtime. for existing_input_name, _ in task.inputs.items(): if existing_input_name == additional_input_name: raise RuntimeError( 'Name collision between existing input name ' '{} and compiler injected input name {}'.format( existing_input_name, additional_input_name)) additional_input_placeholder = ( placeholders.input_parameter_placeholder( additional_input_name)) input_value = input_value.replace(channel.pattern, additional_input_placeholder) if channel.task_name: # Value is produced by an upstream task. if channel.task_name in tasks_in_current_dag: # Dependent task within the same DAG. pipeline_task_spec.inputs.parameters[ additional_input_name].task_output_parameter.producer_task = ( component_utils.sanitize_task_name( channel.task_name)) pipeline_task_spec.inputs.parameters[ input_name].task_output_parameter.output_parameter_key = ( channel.name) else: # Dependent task not from the same DAG. component_input_parameter = ( _additional_input_name_for_pipeline_channel(channel) ) assert component_input_parameter in parent_component_inputs.parameters, \ 'component_input_parameter: {} not found. All inputs: {}'.format( component_input_parameter, parent_component_inputs) pipeline_task_spec.inputs.parameters[ additional_input_name].component_input_parameter = ( component_input_parameter) else: # Value is from pipeline input. (or loop?) component_input_parameter = channel.full_name if component_input_parameter not in parent_component_inputs.parameters: component_input_parameter = ( _additional_input_name_for_pipeline_channel(channel) ) pipeline_task_spec.inputs.parameters[ additional_input_name].component_input_parameter = ( component_input_parameter) pipeline_task_spec.inputs.parameters[ input_name].runtime_value.constant.string_value = input_value elif isinstance(input_value, (str, int, float, bool, dict, list)): pipeline_task_spec.inputs.parameters[ input_name].runtime_value.constant.CopyFrom( _to_protobuf_value(input_value)) else: raise ValueError( 'Input argument supports only the following types: ' 'str, int, float, bool, dict, and list.' f'Got {input_value} of type {type(input_value)}.') return pipeline_task_spec def build_component_spec_for_task( task: pipeline_task.PipelineTask) -> pipeline_spec_pb2.ComponentSpec: """Builds ComponentSpec for a pipeline task. Args: task: The task to build a ComponentSpec for. Returns: A ComponentSpec object for the task. """ component_spec = pipeline_spec_pb2.ComponentSpec() component_spec.executor_label = component_utils.sanitize_executor_label( task.name) for input_name, input_spec in (task.component_spec.inputs or {}).items(): # skip inputs not present, as a workaround to support optional inputs. if input_name not in task.inputs: continue if type_utils.is_parameter_type(input_spec.type): component_spec.input_definitions.parameters[ input_name].parameter_type = type_utils.get_parameter_type( input_spec.type) else: component_spec.input_definitions.artifacts[ input_name].artifact_type.CopyFrom( type_utils.get_artifact_type_schema(input_spec.type)) for output_name, output_spec in (task.component_spec.outputs or {}).items(): if type_utils.is_parameter_type(output_spec.type): component_spec.output_definitions.parameters[ output_name].parameter_type = type_utils.get_parameter_type( output_spec.type) else: component_spec.output_definitions.artifacts[ output_name].artifact_type.CopyFrom( type_utils.get_artifact_type_schema(output_spec.type)) return component_spec def build_importer_spec_for_task( task: pipeline_task.PipelineTask ) -> pipeline_spec_pb2.PipelineDeploymentConfig.ImporterSpec: """Builds ImporterSpec for a pipeline task. Args: task: The task to build a ComponentSpec for. Returns: A ImporterSpec object for the task. """ type_schema = type_utils.get_artifact_type_schema(task.importer_spec.type_schema) importer_spec = pipeline_spec_pb2.PipelineDeploymentConfig.ImporterSpec( type_schema=type_schema, reimport=task.importer_spec.reimport) if task.importer_spec.metadata: metadata_protobuf_struct = struct_pb2.Struct() metadata_protobuf_struct.update(task.importer_spec.metadata) importer_spec.metadata.CopyFrom(metadata_protobuf_struct) if isinstance(task.importer_spec.artifact_uri, pipeline_channel.PipelineParameterChannel): importer_spec.artifact_uri.runtime_parameter = 'uri' elif isinstance(task.importer_spec.artifact_uri, str): importer_spec.artifact_uri.constant.string_value = task.importer_spec.artifact_uri return importer_spec def build_container_spec_for_task( task: pipeline_task.PipelineTask ) -> pipeline_spec_pb2.PipelineDeploymentConfig.PipelineContainerSpec: """Builds PipelineContainerSpec for a pipeline task. Args: task: The task to build a ComponentSpec for. Returns: A PipelineContainerSpec object for the task. """ container_spec = ( pipeline_spec_pb2.PipelineDeploymentConfig.PipelineContainerSpec( image=task.container_spec.image, command=task.container_spec.commands, args=task.container_spec.arguments, env=[ pipeline_spec_pb2.PipelineDeploymentConfig.PipelineContainerSpec .EnvVar(name=name, value=value) for name, value in (task.container_spec.env or {}).items() ] )) if task.container_spec.resources is not None: container_spec.resources.cpu_limit = ( task.container_spec.resources.cpu_limit) container_spec.resources.memory_limit = ( task.container_spec.resources.memory_limit) if task.container_spec.resources.accelerator_count is not None: container_spec.resources.accelerator.CopyFrom( pipeline_spec_pb2.PipelineDeploymentConfig.PipelineContainerSpec .ResourceSpec.AcceleratorConfig( type=task.container_spec.resources.accelerator_type, count=task.container_spec.resources.accelerator_count, )) return container_spec def _fill_in_component_input_default_value( component_spec: pipeline_spec_pb2.ComponentSpec, input_name: str, default_value: Optional[type_utils.PARAMETER_TYPES], ) -> None: """Fills in the default of component input parameter. Args: component_spec: The ComponentSpec to update in place. input_name: The name of the input parameter. default_value: The default value of the input parameter. """ if default_value is None: return parameter_type = component_spec.input_definitions.parameters[ input_name].parameter_type if pipeline_spec_pb2.ParameterType.NUMBER_INTEGER == parameter_type: component_spec.input_definitions.parameters[ input_name].default_value.number_value = default_value elif pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE == parameter_type: component_spec.input_definitions.parameters[ input_name].default_value.number_value = default_value elif pipeline_spec_pb2.ParameterType.STRING == parameter_type: component_spec.input_definitions.parameters[ input_name].default_value.string_value = default_value elif pipeline_spec_pb2.ParameterType.BOOLEAN == parameter_type: component_spec.input_definitions.parameters[ input_name].default_value.bool_value = default_value elif pipeline_spec_pb2.ParameterType.STRUCT == parameter_type: component_spec.input_definitions.parameters[ input_name].default_value.CopyFrom( _to_protobuf_value(default_value)) elif pipeline_spec_pb2.ParameterType.LIST == parameter_type: component_spec.input_definitions.parameters[ input_name].default_value.CopyFrom( _to_protobuf_value(default_value)) def build_component_spec_for_group( pipeline_channels: List[pipeline_channel.PipelineChannel], is_root_group: bool, ) -> pipeline_spec_pb2.ComponentSpec: """Builds ComponentSpec for a TasksGroup. Args: group: The group to build a ComponentSpec for. pipeline_channels: The list of pipeline channels referenced by the group. Returns: A PipelineTaskSpec object representing the loop group. """ component_spec = pipeline_spec_pb2.ComponentSpec() for channel in pipeline_channels: input_name = ( channel.name if is_root_group else _additional_input_name_for_pipeline_channel(channel)) if isinstance(channel, pipeline_channel.PipelineArtifactChannel): component_spec.input_definitions.artifacts[ input_name].artifact_type.CopyFrom( type_utils.get_artifact_type_schema(channel.channel_type)) else: # channel is one of PipelineParameterChannel, LoopArgument, or # LoopArgumentVariable. component_spec.input_definitions.parameters[ input_name].parameter_type = type_utils.get_parameter_type( channel.channel_type) # TODO: should we fill in default value for all groups and tasks? if is_root_group: _fill_in_component_input_default_value( component_spec=component_spec, input_name=input_name, default_value=channel.value, ) return component_spec def _pop_input_from_task_spec( task_spec: pipeline_spec_pb2.PipelineTaskSpec, input_name: str, ) -> None: """Removes an input from task spec inputs. Args: task_spec: The pipeline task spec to update in place. input_name: The name of the input, which could be an artifact or paremeter. """ task_spec.inputs.artifacts.pop(input_name) task_spec.inputs.parameters.pop(input_name) if task_spec.inputs == pipeline_spec_pb2.TaskInputsSpec(): task_spec.ClearField('inputs') def _update_task_spec_for_loop_group( group: tasks_group.ParallelFor, pipeline_task_spec: pipeline_spec_pb2.PipelineTaskSpec, ) -> None: """Updates PipelineTaskSpec for loop group. Args: group: The loop group to update task spec for. pipeline_task_spec: The pipeline task spec to update in place. """ if group.items_is_pipeline_channel: loop_items_channel = group.loop_argument.items_or_pipeline_channel input_parameter_name = _additional_input_name_for_pipeline_channel( loop_items_channel) loop_argument_item_name = _additional_input_name_for_pipeline_channel( group.loop_argument.full_name) loop_arguments_item = '{}-{}'.format( input_parameter_name, for_loop.LoopArgument.LOOP_ITEM_NAME_BASE) assert loop_arguments_item == loop_argument_item_name pipeline_task_spec.parameter_iterator.items.input_parameter = ( input_parameter_name) pipeline_task_spec.parameter_iterator.item_input = ( loop_argument_item_name) # If the loop items itself is a loop arguments variable, handle the # subvar name. if isinstance(loop_items_channel, for_loop.LoopArgumentVariable): pipeline_task_spec.inputs.parameters[ input_parameter_name].parameter_expression_selector = ( 'parseJson(string_value)["{}"]'.format( loop_items_channel.subvar_name)) pipeline_task_spec.inputs.parameters[ input_parameter_name].component_input_parameter = ( _additional_input_name_for_pipeline_channel( loop_items_channel.loop_argument)) remove_input_name = loop_argument_item_name else: input_parameter_name = _additional_input_name_for_pipeline_channel( group.loop_argument) raw_values = group.loop_argument.items_or_pipeline_channel pipeline_task_spec.parameter_iterator.items.raw = json.dumps( raw_values, sort_keys=True) pipeline_task_spec.parameter_iterator.item_input = ( input_parameter_name) _pop_input_from_task_spec( task_spec=pipeline_task_spec, input_name=pipeline_task_spec.parameter_iterator.item_input) def _resolve_condition_operands( left_operand: Union[str, pipeline_channel.PipelineChannel], right_operand: Union[str, pipeline_channel.PipelineChannel], ) -> Tuple[str, str]: """Resolves values and PipelineChannels for condition operands. Args: left_operand: The left operand of a condition expression. right_operand: The right operand of a condition expression. Returns: A tuple of the resolved operands values: (left_operand_value, right_operand_value). """ # Pre-scan the operand to get the type of constant value if there's any. # The value_type can be used to backfill missing PipelineChannel.channel_type. value_type = None for value_or_reference in [left_operand, right_operand]: if isinstance(value_or_reference, pipeline_channel.PipelineChannel): parameter_type = type_utils.get_parameter_type( value_or_reference.channel_type) if parameter_type in [ pipeline_spec_pb2.ParameterType.STRUCT, pipeline_spec_pb2.ParameterType.LIST, pipeline_spec_pb2.ParameterType .PARAMETER_TYPE_ENUM_UNSPECIFIED, ]: input_name = _additional_input_name_for_pipeline_channel( value_or_reference) raise ValueError('Conditional requires scalar parameter values' ' for comparison. Found input "{}" of type {}' ' in pipeline definition instead.'.format( input_name, value_or_reference.channel_type)) parameter_types = set() for value_or_reference in [left_operand, right_operand]: if isinstance(value_or_reference, pipeline_channel.PipelineChannel): parameter_type = type_utils.get_parameter_type( value_or_reference.channel_type) else: parameter_type = type_utils.get_parameter_type( type(value_or_reference).__name__) parameter_types.add(parameter_type) if len(parameter_types) == 2: # Two different types being compared. The only possible types are # String, Boolean, Double and Integer. We'll promote the other type # using the following precedence: # String > Boolean > Double > Integer if pipeline_spec_pb2.ParameterType.STRING in parameter_types: canonical_parameter_type = pipeline_spec_pb2.ParameterType.STRING elif pipeline_spec_pb2.ParameterType.BOOLEAN in parameter_types: canonical_parameter_type = pipeline_spec_pb2.ParameterType.BOOLEAN else: # Must be a double and int, promote to double. assert pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE in parameter_types, \ 'Types: {} [{} {}]'.format( parameter_types, left_operand, right_operand) assert pipeline_spec_pb2.ParameterType.NUMBER_INTEGER in parameter_types, \ 'Types: {} [{} {}]'.format( parameter_types, left_operand, right_operand) canonical_parameter_type = pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE elif len(parameter_types) == 1: # Both operands are the same type. canonical_parameter_type = parameter_types.pop() else: # Probably shouldn't happen. raise ValueError('Unable to determine operand types for' ' "{}" and "{}"'.format(left_operand, right_operand)) operand_values = [] for value_or_reference in [left_operand, right_operand]: if isinstance(value_or_reference, pipeline_channel.PipelineChannel): input_name = _additional_input_name_for_pipeline_channel( value_or_reference) operand_value = "inputs.parameter_values['{input_name}']".format( input_name=input_name) parameter_type = type_utils.get_parameter_type( value_or_reference.channel_type) if parameter_type == pipeline_spec_pb2.ParameterType.NUMBER_INTEGER: operand_value = 'int({})'.format(operand_value) elif isinstance(value_or_reference, str): operand_value = "'{}'".format(value_or_reference) parameter_type = pipeline_spec_pb2.ParameterType.STRING elif isinstance(value_or_reference, bool): # Booleans need to be compared as 'true' or 'false' in CEL. operand_value = str(value_or_reference).lower() parameter_type = pipeline_spec_pb2.ParameterType.BOOLEAN elif isinstance(value_or_reference, int): operand_value = str(value_or_reference) parameter_type = pipeline_spec_pb2.ParameterType.NUMBER_INTEGER else: assert isinstance(value_or_reference, float), value_or_reference operand_value = str(value_or_reference) parameter_type = pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE if parameter_type != canonical_parameter_type: # Type-cast to so CEL does not complain. if canonical_parameter_type == pipeline_spec_pb2.ParameterType.STRING: assert parameter_type in [ pipeline_spec_pb2.ParameterType.BOOLEAN, pipeline_spec_pb2.ParameterType.NUMBER_INTEGER, pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE, ] operand_value = "'{}'".format(operand_value) elif canonical_parameter_type == pipeline_spec_pb2.ParameterType.BOOLEAN: assert parameter_type in [ pipeline_spec_pb2.ParameterType.NUMBER_INTEGER, pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE, ] operand_value = 'true' if int(operand_value) == 0 else 'false' else: assert canonical_parameter_type == pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE assert parameter_type == pipeline_spec_pb2.ParameterType.NUMBER_INTEGER operand_value = 'double({})'.format(operand_value) operand_values.append(operand_value) return tuple(operand_values) def _update_task_spec_for_condition_group( group: tasks_group.Condition, pipeline_task_spec: pipeline_spec_pb2.PipelineTaskSpec, ) -> None: """Updates PipelineTaskSpec for condition group. Args: group: The condition group to update task spec for. pipeline_task_spec: The pipeline task spec to update in place. """ left_operand_value, right_operand_value = _resolve_condition_operands( group.condition.left_operand, group.condition.right_operand) condition_string = ( f'{left_operand_value} {group.condition.operator} {right_operand_value}' ) pipeline_task_spec.trigger_policy.CopyFrom( pipeline_spec_pb2.PipelineTaskSpec.TriggerPolicy( condition=condition_string)) def build_task_spec_for_exit_task( task: pipeline_task.PipelineTask, dependent_task: str, pipeline_inputs: pipeline_spec_pb2.ComponentInputsSpec, ) -> pipeline_spec_pb2.PipelineTaskSpec: """Builds PipelineTaskSpec for an exit handler's exit task. Args: tasks: The exit handler's exit task to build task spec for. dependent_task: The dependent task name for the exit task, i.e. the name of the exit handler group. pipeline_inputs: The pipeline level input definitions. Returns: A PipelineTaskSpec object representing the exit task. """ pipeline_task_spec = build_task_spec_for_task( task=task, parent_component_inputs=pipeline_inputs, tasks_in_current_dag=[], # Does not matter for exit task input_parameters_in_current_dag=pipeline_inputs.parameters.keys(), input_artifacts_in_current_dag=[], ) pipeline_task_spec.dependent_tasks.extend([dependent_task]) pipeline_task_spec.trigger_policy.strategy = ( pipeline_spec_pb2.PipelineTaskSpec.TriggerPolicy.TriggerStrategy .ALL_UPSTREAM_TASKS_COMPLETED) return pipeline_task_spec def build_task_spec_for_group( group: tasks_group.TasksGroup, pipeline_channels: List[pipeline_channel.PipelineChannel], tasks_in_current_dag: List[str], is_parent_component_root: bool, ) -> pipeline_spec_pb2.PipelineTaskSpec: """Builds PipelineTaskSpec for a group. Args: group: The group to build PipelineTaskSpec for. pipeline_channels: The list of pipeline channels referenced by the group. tasks_in_current_dag: The list of tasks names for tasks in the same dag. is_parent_component_root: Whether the parent component is the pipeline's root dag. Returns: A PipelineTaskSpec object representing the group. """ pipeline_task_spec = pipeline_spec_pb2.PipelineTaskSpec() pipeline_task_spec.task_info.name = group.display_name or group.name pipeline_task_spec.component_ref.name = ( component_utils.sanitize_component_name(group.name)) for channel in pipeline_channels: channel_full_name = channel.full_name subvar_name = None if isinstance(channel, for_loop.LoopArgumentVariable): channel_full_name = channel.loop_argument.full_name subvar_name = channel.subvar_name input_name = _additional_input_name_for_pipeline_channel(channel) channel_name = channel.name if subvar_name: pipeline_task_spec.inputs.parameters[ input_name].parameter_expression_selector = ( 'parseJson(string_value)["{}"]'.format(subvar_name)) if not channel.is_with_items_loop_argument: channel_name = channel.items_or_pipeline_channel.name if isinstance(channel, pipeline_channel.PipelineArtifactChannel): if channel.task_name and channel.task_name in tasks_in_current_dag: pipeline_task_spec.inputs.artifacts[ input_name].task_output_artifact.producer_task = ( component_utils.sanitize_task_name(channel.task_name)) pipeline_task_spec.inputs.artifacts[ input_name].task_output_artifact.output_artifact_key = ( channel_name) else: pipeline_task_spec.inputs.artifacts[ input_name].component_input_artifact = ( channel_full_name if is_parent_component_root else input_name) else: # channel is one of PipelineParameterChannel, LoopArgument, or # LoopArgumentVariable if channel.task_name and channel.task_name in tasks_in_current_dag: pipeline_task_spec.inputs.parameters[ input_name].task_output_parameter.producer_task = ( component_utils.sanitize_task_name(channel.task_name)) pipeline_task_spec.inputs.parameters[ input_name].task_output_parameter.output_parameter_key = ( channel_name) else: pipeline_task_spec.inputs.parameters[ input_name].component_input_parameter = ( channel_full_name if is_parent_component_root else _additional_input_name_for_pipeline_channel( channel_full_name)) if isinstance(group, tasks_group.ParallelFor): _update_task_spec_for_loop_group( group=group, pipeline_task_spec=pipeline_task_spec, ) elif isinstance(group, tasks_group.Condition): _update_task_spec_for_condition_group( group=group, pipeline_task_spec=pipeline_task_spec, ) return pipeline_task_spec def populate_metrics_in_dag_outputs( tasks: List[pipeline_task.PipelineTask], task_name_to_parent_groups: Mapping[str, List[_GroupOrTask]], task_name_to_task_spec: Mapping[str, pipeline_spec_pb2.PipelineTaskSpec], task_name_to_component_spec: Mapping[str, pipeline_spec_pb2.ComponentSpec], pipeline_spec: pipeline_spec_pb2.PipelineSpec, ) -> None: """Populates metrics artifacts in DAG outputs. Args: tasks: The list of tasks that may produce metrics outputs. task_name_to_parent_groups: The dict of task name to parent groups. Key is the task's name. Value is a list of ancestor groups including the task itself. The list of a given op is sorted in a way that the farthest group is the first and the task itself is the last. task_name_to_task_spec: The dict of task name to PipelineTaskSpec. task_name_to_component_spec: The dict of task name to ComponentSpec. pipeline_spec: The pipeline_spec to update in-place. """ for task in tasks: task_spec = task_name_to_task_spec[task.name] component_spec = task_name_to_component_spec[task.name] # Get the tuple of (component_name, task_name) of all its parent groups. parent_components_and_tasks = [('_root', '')] # skip the op itself and the root group which cannot be retrived via name. for group_name in task_name_to_parent_groups[task.name][1:-1]: parent_components_and_tasks.append( (component_utils.sanitize_component_name(group_name), component_utils.sanitize_task_name(group_name))) # Reverse the order to make the farthest group in the end. parent_components_and_tasks.reverse() for output_name, artifact_spec in \ component_spec.output_definitions.artifacts.items(): if artifact_spec.artifact_type.WhichOneof( 'kind' ) == 'schema_title' and artifact_spec.artifact_type.schema_title in [ artifact_types.Metrics.TYPE_NAME, artifact_types.ClassificationMetrics.TYPE_NAME, ]: unique_output_name = '{}-{}'.format(task.name, output_name) sub_task_name = task.name sub_task_output = output_name for component_name, task_name in parent_components_and_tasks: group_component_spec = ( pipeline_spec.root if component_name == '_root' else pipeline_spec.components[component_name]) group_component_spec.output_definitions.artifacts[ unique_output_name].CopyFrom(artifact_spec) group_component_spec.dag.outputs.artifacts[ unique_output_name].artifact_selectors.append( pipeline_spec_pb2.DagOutputsSpec .ArtifactSelectorSpec( producer_subtask=sub_task_name, output_artifact_key=sub_task_output, )) sub_task_name = task_name sub_task_output = unique_output_name
45.597285
97
0.65838
ca52f03b6db804092857015ac60e10e14d83ba92
3,559
py
Python
lib/wx/ogllib.py
tacaswell/pyepics
de865c9cbdfdaf9826165de2b5ba9f45d0939355
[ "OML" ]
null
null
null
lib/wx/ogllib.py
tacaswell/pyepics
de865c9cbdfdaf9826165de2b5ba9f45d0939355
[ "OML" ]
null
null
null
lib/wx/ogllib.py
tacaswell/pyepics
de865c9cbdfdaf9826165de2b5ba9f45d0939355
[ "OML" ]
null
null
null
""" wx OGL (2d graphics library) utility functions for Epics and wxPython interaction OGL is a (somewhat old-fashioned) 2D drawing library included with wxPython. There are probably newer/better drawing libraries, but OGL works quite well for drawing simple shapes or bitmaps. """ import wx.lib.ogl as ogl from wxlib import PVMixin class PVShapeMixin(PVMixin): """ Mixin for any Shape that has PV callback support """ def __init__(self, pv=None, pvname=None): PVMixin.__init__(self, pv, pvname) self.brushTranslations = {} self.penTranslations = {} self.shownTranslations = {} def SetBrushTranslations(self, translations): """ Set a dictionary of value->brush translations that will be set automatically when the PV value changes. The brush is used to paint the shape foreground The argument should be a dictionary with keys as PV values (string if available), and values as wx.Brush instances. """ self.brushTranslations = translations def SetPenTranslations(self, translations): """ Set a dictionary of value->bpen translations that will be set automatically when the PV value changes. The pen is used to paint the shape outline. The argument should be a dictionary with keys as PV values (string if available), and values as wx.Brush instances. """ self.penTranslations = translations def SetShownTranslations(self, translations): """ Set a dictionary of value->boolean 'Shown' translations that will be set automatically when the PV value changes. The value is used to show/hide the shape. """ self.shownTranslations = translations def OnPVChange(self, raw_value): """ Do not override this method, override PVChanged if you would like to do any custom callback behaviour """ if raw_value in self.brushTranslations: self.SetBrush(self.brushTranslations[raw_value]) if raw_value in self.penTranslations: self.SetPen(self.penTranslations[raw_value]) if raw_value in self.shownTranslations: self.Show(self.shownTranslations[raw_value]) self.PVChanged(raw_value) self.Invalidate() def PVChanged(self, raw_value): """ Override this method if you want your shape to do any special processing when the PV changes Note that the shape will be automatically invalidated (redrawn) after this method is called. """ pass def Invalidate(self): """ Invalidate the shape's area on the parent shape canvas to cause a redraw (convenience method) """ (w, h) = self.GetBoundingBoxMax() x = self.GetX() y = self.GetY() self.GetCanvas().RefreshRect((x-w/2, y-h/2, w, h)) class PVRectangle(ogl.RectangleShape, PVShapeMixin): """ A RectangleShape which is associated with a particular PV value """ def __init__(self, w, h, pv=None, pvname=None): ogl.RectangleShape.__init__(self, w, h) PVShapeMixin.__init__(self, pv, pvname) class PVCircle(ogl.CircleShape, PVShapeMixin): """ A CircleShape which is associated with a particular PV value """ def __init__(self, diameter, pv=None, pvname=None): ogl.CircleShape.__init__(self, diameter) PVShapeMixin.__init__(self, pv, pvname)
31.776786
100
0.64934
1a3137073d8f07d24e2551a07bd100679fdf6451
2,103
py
Python
Eager/github-scraper/python/ghanalysis.py
UCSB-CS-RACELab/eager-appscale
d58fe64bb867ef58af19c1d84a5e1ec68ecddd3d
[ "Apache-2.0" ]
3
2016-06-12T01:18:49.000Z
2018-07-16T18:20:23.000Z
Eager/github-scraper/python/ghanalysis.py
UCSB-CS-RACELab/eager-appscale
d58fe64bb867ef58af19c1d84a5e1ec68ecddd3d
[ "Apache-2.0" ]
null
null
null
Eager/github-scraper/python/ghanalysis.py
UCSB-CS-RACELab/eager-appscale
d58fe64bb867ef58af19c1d84a5e1ec68ecddd3d
[ "Apache-2.0" ]
1
2020-05-25T02:59:15.000Z
2020-05-25T02:59:15.000Z
from time import sleep import datetime import getpass import keyring import traceback from github import Github DEBUG = False earliest = datetime.datetime(2012,1,1) def getAERepos(username): count = 0 try: g = Github(username, getGithubPassword(username)) for repo in g.legacy_search_repos('app engine'): count += 1 try: #if repo.updated_at > earliest or repo.pushed_at > earliest: if repo.pushed_at > earliest: try: print '{0};{1};{2};{3};{4};{5};{6};{7};{8}'.format( repo.name, repo.created_at.date(), repo.updated_at.date(), repo.pushed_at.date(), repo.owner.login, repo.language, repo.forks, repo.watchers, repo.description) except: print 'ERROR unable to print description of repo {0}'.format(repo.name) if DEBUG and count > 10: break if 'appscale' in repo.name.lower(): print '\tFound AppScale!' except: print 'ERROR1 unable to get repo' sleep(2) except: print 'ERROR2 unable to get anything' def printRepository(username): g = Github(username, getGithubPassword(username)) user = g.get_user() repositories = user.get_repos() for repository in repositories: print repository.name printBranches(repository) def printBranches(repository): for branch in repository.get_branches(): print ' ', branch.name tree = branch.commit.commit.tree printTree(repository, tree, ' ') def printTree(repository, tree, indent): for element in tree.tree: print indent, element.path if element.type == 'tree': printTree(repository, repository.get_git_tree(element.sha), indent + ' ') def getGithubPassword(username): service = 'github' password = keyring.get_password(service, username) if password == None: print "Enter password for user", username password = getpass.getpass() keyring.set_password(service, username, password) return password # Pass your Github username as a parameter #printRepository('ckrintz') # step through the repos with keyword 'app engine' getAERepos('ckrintz')
26.2875
77
0.681883
a6df70ee0b1530dad9e21d21e1f79cdd1911e91d
2,100
py
Python
datalad/core/local/repo.py
ypid/datalad
d50e6135a35edca9406faa44953a7c8ba61ee8c0
[ "MIT" ]
298
2015-01-25T17:36:29.000Z
2022-03-20T03:38:47.000Z
datalad/core/local/repo.py
ypid/datalad
d50e6135a35edca9406faa44953a7c8ba61ee8c0
[ "MIT" ]
6,387
2015-01-02T18:15:01.000Z
2022-03-31T20:58:58.000Z
datalad/core/local/repo.py
ypid/datalad
d50e6135a35edca9406faa44953a7c8ba61ee8c0
[ "MIT" ]
109
2015-01-25T17:49:40.000Z
2022-03-06T06:54:54.000Z
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 noet: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ Core repository-related functionality """ from datalad.support.exceptions import ( InvalidGitRepositoryError, InvalidAnnexRepositoryError, NoSuchPathError, ) import logging lgr = logging.getLogger('datalad.core.local.repo') __all__ = ["repo_from_path"] def repo_from_path(path): """Get a Repo instance from a path. Parameters ---------- path : path-like Root path of the repository. Returns ------- Repo Repo instance matching the type of the repository at path. Raises ------ ValueError If no repository could be found at the path, or if its type could not be determined. """ # keep the imports local for now until it is clearer what the module setup # will be from datalad.support.gitrepo import GitRepo from datalad.support.annexrepo import AnnexRepo repo = None for cls, ckw, kw in ( # Non-initialized is okay. We want to figure the correct instance # to represent what's there - that's it. (AnnexRepo, {'allow_noninitialized': True}, {'init': False}), (GitRepo, {}, {}) ): if not cls.is_valid_repo(path, **ckw): continue try: lgr.log(5, "Detected %s at %s", cls, path) repo = cls(path, create=False, **kw) break except (InvalidGitRepositoryError, NoSuchPathError, InvalidAnnexRepositoryError) as exc: lgr.log( 5, "Ignore exception after inappropriate repository type guess: " "%s", exc) if repo is None: raise ValueError('No repository at {}'.format(path)) return repo
28.378378
87
0.565238
b5e892caf0a0e81c866a6a3c22893dd0a4da1e19
2,138
gyp
Python
common_video/common_video_unittests.gyp
mostynb/webrtc
24a16656da7249c0d836247bc77dbc475f71f0af
[ "DOC", "BSD-3-Clause" ]
27
2016-04-27T01:02:03.000Z
2021-12-13T08:53:19.000Z
common_video/common_video_unittests.gyp
mostynb/webrtc
24a16656da7249c0d836247bc77dbc475f71f0af
[ "DOC", "BSD-3-Clause" ]
2
2017-03-09T09:00:50.000Z
2017-09-21T15:48:20.000Z
common_video/common_video_unittests.gyp
mostynb/webrtc
24a16656da7249c0d836247bc77dbc475f71f0af
[ "DOC", "BSD-3-Clause" ]
17
2016-04-27T02:06:39.000Z
2019-12-18T08:07:00.000Z
# Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. # # Use of this source code is governed by a BSD-style license # that can be found in the LICENSE file in the root of the source # tree. An additional intellectual property rights grant can be found # in the file PATENTS. All contributing project authors may # be found in the AUTHORS file in the root of the source tree. { 'includes': ['../build/common.gypi'], 'targets': [ { 'target_name': 'common_video_unittests', 'type': '<(gtest_target_type)', 'dependencies': [ '<(webrtc_root)/common_video/common_video.gyp:common_video', '<(DEPTH)/testing/gtest.gyp:gtest', '<(webrtc_root)/system_wrappers/system_wrappers.gyp:system_wrappers', '<(webrtc_root)/test/test.gyp:test_support_main', '<(webrtc_root)/test/test.gyp:fake_video_frames', ], 'sources': [ 'i420_buffer_pool_unittest.cc', 'i420_video_frame_unittest.cc', 'libyuv/libyuv_unittest.cc', 'libyuv/scaler_unittest.cc', ], # Disable warnings to enable Win64 build, issue 1323. 'msvs_disabled_warnings': [ 4267, # size_t to int truncation. ], 'conditions': [ ['OS=="android"', { 'dependencies': [ '<(DEPTH)/testing/android/native_test.gyp:native_test_native_code', ], }], ], }, ], # targets 'conditions': [ ['OS=="android"', { 'targets': [ { 'target_name': 'common_video_unittests_apk_target', 'type': 'none', 'dependencies': [ '<(apk_tests_path):common_video_unittests_apk', ], }, ], }], ['test_isolation_mode != "noop"', { 'targets': [ { 'target_name': 'common_video_unittests_run', 'type': 'none', 'dependencies': [ 'common_video_unittests', ], 'includes': [ '../build/isolate.gypi', ], 'sources': [ 'common_video_unittests.isolate', ], }, ], }], ], }
29.694444
79
0.561272
d36c7b83a5d28c23c66e10d2f59a8d5356d5d313
1,003
py
Python
tests/Python/OWASP_a1/cwe_78/safe/cwe_78__I_hardcoded_string_input__F_no_filtering__S_ls__1-4.7_File1.py
usnistgov/VTSG
f4477a78ec19f7e9757da0321cb5a69428e358cf
[ "MIT" ]
null
null
null
tests/Python/OWASP_a1/cwe_78/safe/cwe_78__I_hardcoded_string_input__F_no_filtering__S_ls__1-4.7_File1.py
usnistgov/VTSG
f4477a78ec19f7e9757da0321cb5a69428e358cf
[ "MIT" ]
1
2022-01-31T22:22:55.000Z
2022-01-31T22:22:55.000Z
tests/Python/OWASP_a1/cwe_78/safe/cwe_78__I_hardcoded_string_input__F_no_filtering__S_ls__1-4.7_File1.py
usnistgov/VTSG
f4477a78ec19f7e9757da0321cb5a69428e358cf
[ "MIT" ]
null
null
null
''' Hardcoded string input no filtering sink: run ls in a dir ''' ''' Created by Paul E. Black and William Mentzer 2020 This software was developed at the National Institute of Standards and Technology by employees of the Federal Government in the course of their official duties. Pursuant to title 17 Section 105 of the United States Code the software is not subject to copyright protection and are in the public domain. We would appreciate acknowledgment if the software is used. Paul E. Black [email protected] William Mentzer [email protected] ''' import math import os import sys def main(): tainted_2 = None tainted_3 = None tainted_2 = "hardcoded" tainted_3 = tainted_2 if((math.sqrt(42)<=42)): # No filtering (sanitization) tainted_3 = tainted_2 elif(not (math.sqrt(42)<=42)): {} os.system('ls ' + tainted_3); if __name__ == '__main__': main()
21.804348
81
0.656032
fd062110b6d9e963b2ad5e616c732b8751442b18
3,966
py
Python
2/src/ParamLearner.py
Trinkle23897/dip2018
c8a29f1d6dcc165906165caebd41389e1be23062
[ "MIT" ]
4
2018-04-20T11:35:39.000Z
2019-04-10T02:43:18.000Z
2/src/ParamLearner.py
Trinkle23897/dip2018
c8a29f1d6dcc165906165caebd41389e1be23062
[ "MIT" ]
null
null
null
2/src/ParamLearner.py
Trinkle23897/dip2018
c8a29f1d6dcc165906165caebd41389e1be23062
[ "MIT" ]
3
2019-04-16T05:11:33.000Z
2019-05-01T13:22:52.000Z
#!/usr/bin/env python import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler import numpy as np import torchvision from torchvision import datasets, models, transforms import torch.utils.model_zoo as model_zoo import random model_urls = { 'alexnet': 'https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth', } class ParamLearner(models.AlexNet): def __init__(self, hidden_size=4096, drop_rate=0.5): super(ParamLearner, self).__init__() self.drop_rate = drop_rate self.load_state_dict(model_zoo.load_url(model_urls['alexnet'])) for param in self.parameters(): param.requires_grad = False # Delete last fc layer self.classifier.__delitem__(6) # Define param learner self.param_learner = nn.Linear(hidden_size, hidden_size) # Initialized with identity matrix self.param_learner.weight.data.copy_(torch.eye(hidden_size)) def forward(self, x, R): x = self.features(x) x = x.view(x.size(0), 256 * 6 * 6) x = self.classifier(x) # R is a (num_class, hidden_size) matrix, w is a (num_class, hidden_size) matrix w = self.param_learner(R) dr = torch.nn.Dropout(p=self.drop_rate) x = torch.matmul(x, w.transpose(0, 1)) return x def get_r(self, x): x = self.features(x) x = x.view(x.size(0), 256 * 6 * 6) x = self.classifier(x) return x def forward_test(self, x, Rs): x = self.features(x) x = x.view(x.size(0), 256 * 6 * 6) x = self.classifier(x) logits = [] for i in range(x.shape[0]): i_logits = [] for class_Rs in Rs: # class_Rs is a (n, hidden_size) matrix, in which n is the number of training pictures of this class. class_w = self.param_learner(class_Rs) class_logit = torch.matmul(class_w, x[i]) i_logits.append(class_logit.max()) logits.append(torch.stack(i_logits)) return torch.stack(logits) class ParamLearnerDataLoader(object): def __init__(self, data_folder, num_classes): self.data_folder = data_folder self.data = [] self.num_classes = num_classes for i in range(num_classes): self.data.append([]) for i in range(data_folder.__len__()): img, label = data_folder.__getitem__(i) self.data[label].append(i) self.max_batch = 1e9 for i in range(num_classes): self.max_batch = min(self.max_batch, len(self.data[i])) self.index = 0 def __next__(self): if self.index >= self.max_batch: self.index = 0 for i in range(self.num_classes): random.shuffle(self.data[i]) raise StopIteration inputs = [] labels = [] for i in range(self.num_classes): image, label = self.data_folder.__getitem__(self.data[i][index]) inputs.append(image) labels.append(label) inputs = torch.stack(inputs) labels = torch.stack(labels) index += 1 return inputs, labels def next(self): if self.index >= self.max_batch: self.index = 0 for i in range(self.num_classes): random.shuffle(self.data[i]) raise StopIteration inputs = [] labels = [] for i in range(self.num_classes): image, label = self.data_folder.__getitem__(self.data[i][self.index]) inputs.append(image) labels.append(label) inputs = torch.stack(inputs) labels = torch.tensor(labels, dtype=torch.long) self.index += 1 return inputs, labels def __len__(self): return self.max_batch def __iter__(self): return self
30.507692
117
0.587242
cc3031827fcd72aaf5fb21ef42f173f9701de4b2
194
py
Python
scripts/item/consume_2435456.py
G00dBye/YYMS
1de816fc842b6598d5b4b7896b6ab0ee8f7cdcfb
[ "MIT" ]
54
2019-04-16T23:24:48.000Z
2021-12-18T11:41:50.000Z
scripts/item/consume_2435456.py
G00dBye/YYMS
1de816fc842b6598d5b4b7896b6ab0ee8f7cdcfb
[ "MIT" ]
3
2019-05-19T15:19:41.000Z
2020-04-27T16:29:16.000Z
scripts/item/consume_2435456.py
G00dBye/YYMS
1de816fc842b6598d5b4b7896b6ab0ee8f7cdcfb
[ "MIT" ]
49
2020-11-25T23:29:16.000Z
2022-03-26T16:20:24.000Z
# Lovely Damage Skin success = sm.addDamageSkin(2435456) if success: sm.chat("The Lovely Damage Skin has been added to your account's damage skin collection.") # sm.consumeItem(2435456)
32.333333
94
0.747423
6debe17b2778038801a630bc60e22f357f5769be
140,286
py
Python
isi_sdk_8_2_1/isi_sdk_8_2_1/models/target_report.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
24
2018-06-22T14:13:23.000Z
2022-03-23T01:21:26.000Z
isi_sdk_8_2_1/isi_sdk_8_2_1/models/target_report.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
46
2018-04-30T13:28:22.000Z
2022-03-21T21:11:07.000Z
isi_sdk_8_2_1/isi_sdk_8_2_1/models/target_report.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
29
2018-06-19T00:14:04.000Z
2022-02-08T17:51:19.000Z
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 8 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from isi_sdk_8_2_1.models.sync_job_phase import SyncJobPhase # noqa: F401,E501 from isi_sdk_8_2_1.models.sync_job_service_report_item import SyncJobServiceReportItem # noqa: F401,E501 class TargetReport(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'action': 'str', 'ads_streams_replicated': 'int', 'block_specs_replicated': 'int', 'bytes_recoverable': 'int', 'bytes_transferred': 'int', 'char_specs_replicated': 'int', 'committed_files': 'int', 'corrected_lins': 'int', 'dead_node': 'bool', 'directories_replicated': 'int', 'dirs_changed': 'int', 'dirs_deleted': 'int', 'dirs_moved': 'int', 'dirs_new': 'int', 'duration': 'int', 'encrypted': 'bool', 'end_time': 'int', 'error': 'str', 'error_checksum_files_skipped': 'int', 'error_io_files_skipped': 'int', 'error_net_files_skipped': 'int', 'errors': 'list[str]', 'failed_chunks': 'int', 'fifos_replicated': 'int', 'file_data_bytes': 'int', 'files_changed': 'int', 'files_linked': 'int', 'files_new': 'int', 'files_selected': 'int', 'files_transferred': 'int', 'files_unlinked': 'int', 'files_with_ads_replicated': 'int', 'flipped_lins': 'int', 'hard_links_replicated': 'int', 'hash_exceptions_fixed': 'int', 'hash_exceptions_found': 'int', 'id': 'str', 'job_id': 'int', 'lins_total': 'int', 'network_bytes_to_source': 'int', 'network_bytes_to_target': 'int', 'new_files_replicated': 'int', 'num_retransmitted_files': 'int', 'phases': 'list[SyncJobPhase]', 'policy_id': 'str', 'policy_name': 'str', 'quotas_deleted': 'int', 'regular_files_replicated': 'int', 'resynced_lins': 'int', 'retransmitted_files': 'list[str]', 'retry': 'int', 'running_chunks': 'int', 'service_report': 'list[SyncJobServiceReportItem]', 'sockets_replicated': 'int', 'source_bytes_recovered': 'int', 'source_directories_created': 'int', 'source_directories_deleted': 'int', 'source_directories_linked': 'int', 'source_directories_unlinked': 'int', 'source_directories_visited': 'int', 'source_files_deleted': 'int', 'source_files_linked': 'int', 'source_files_unlinked': 'int', 'source_host': 'str', 'sparse_data_bytes': 'int', 'start_time': 'int', 'state': 'str', 'subreport_count': 'int', 'succeeded_chunks': 'int', 'symlinks_replicated': 'int', 'sync_type': 'str', 'target_bytes_recovered': 'int', 'target_directories_created': 'int', 'target_directories_deleted': 'int', 'target_directories_linked': 'int', 'target_directories_unlinked': 'int', 'target_files_deleted': 'int', 'target_files_linked': 'int', 'target_files_unlinked': 'int', 'target_path': 'str', 'target_snapshots': 'list[str]', 'total_chunks': 'int', 'total_data_bytes': 'int', 'total_exported_services': 'int', 'total_files': 'int', 'total_network_bytes': 'int', 'total_phases': 'int', 'unchanged_data_bytes': 'int', 'up_to_date_files_skipped': 'int', 'updated_files_replicated': 'int', 'user_conflict_files_skipped': 'int', 'warnings': 'list[str]', 'worm_committed_file_conflicts': 'int' } attribute_map = { 'action': 'action', 'ads_streams_replicated': 'ads_streams_replicated', 'block_specs_replicated': 'block_specs_replicated', 'bytes_recoverable': 'bytes_recoverable', 'bytes_transferred': 'bytes_transferred', 'char_specs_replicated': 'char_specs_replicated', 'committed_files': 'committed_files', 'corrected_lins': 'corrected_lins', 'dead_node': 'dead_node', 'directories_replicated': 'directories_replicated', 'dirs_changed': 'dirs_changed', 'dirs_deleted': 'dirs_deleted', 'dirs_moved': 'dirs_moved', 'dirs_new': 'dirs_new', 'duration': 'duration', 'encrypted': 'encrypted', 'end_time': 'end_time', 'error': 'error', 'error_checksum_files_skipped': 'error_checksum_files_skipped', 'error_io_files_skipped': 'error_io_files_skipped', 'error_net_files_skipped': 'error_net_files_skipped', 'errors': 'errors', 'failed_chunks': 'failed_chunks', 'fifos_replicated': 'fifos_replicated', 'file_data_bytes': 'file_data_bytes', 'files_changed': 'files_changed', 'files_linked': 'files_linked', 'files_new': 'files_new', 'files_selected': 'files_selected', 'files_transferred': 'files_transferred', 'files_unlinked': 'files_unlinked', 'files_with_ads_replicated': 'files_with_ads_replicated', 'flipped_lins': 'flipped_lins', 'hard_links_replicated': 'hard_links_replicated', 'hash_exceptions_fixed': 'hash_exceptions_fixed', 'hash_exceptions_found': 'hash_exceptions_found', 'id': 'id', 'job_id': 'job_id', 'lins_total': 'lins_total', 'network_bytes_to_source': 'network_bytes_to_source', 'network_bytes_to_target': 'network_bytes_to_target', 'new_files_replicated': 'new_files_replicated', 'num_retransmitted_files': 'num_retransmitted_files', 'phases': 'phases', 'policy_id': 'policy_id', 'policy_name': 'policy_name', 'quotas_deleted': 'quotas_deleted', 'regular_files_replicated': 'regular_files_replicated', 'resynced_lins': 'resynced_lins', 'retransmitted_files': 'retransmitted_files', 'retry': 'retry', 'running_chunks': 'running_chunks', 'service_report': 'service_report', 'sockets_replicated': 'sockets_replicated', 'source_bytes_recovered': 'source_bytes_recovered', 'source_directories_created': 'source_directories_created', 'source_directories_deleted': 'source_directories_deleted', 'source_directories_linked': 'source_directories_linked', 'source_directories_unlinked': 'source_directories_unlinked', 'source_directories_visited': 'source_directories_visited', 'source_files_deleted': 'source_files_deleted', 'source_files_linked': 'source_files_linked', 'source_files_unlinked': 'source_files_unlinked', 'source_host': 'source_host', 'sparse_data_bytes': 'sparse_data_bytes', 'start_time': 'start_time', 'state': 'state', 'subreport_count': 'subreport_count', 'succeeded_chunks': 'succeeded_chunks', 'symlinks_replicated': 'symlinks_replicated', 'sync_type': 'sync_type', 'target_bytes_recovered': 'target_bytes_recovered', 'target_directories_created': 'target_directories_created', 'target_directories_deleted': 'target_directories_deleted', 'target_directories_linked': 'target_directories_linked', 'target_directories_unlinked': 'target_directories_unlinked', 'target_files_deleted': 'target_files_deleted', 'target_files_linked': 'target_files_linked', 'target_files_unlinked': 'target_files_unlinked', 'target_path': 'target_path', 'target_snapshots': 'target_snapshots', 'total_chunks': 'total_chunks', 'total_data_bytes': 'total_data_bytes', 'total_exported_services': 'total_exported_services', 'total_files': 'total_files', 'total_network_bytes': 'total_network_bytes', 'total_phases': 'total_phases', 'unchanged_data_bytes': 'unchanged_data_bytes', 'up_to_date_files_skipped': 'up_to_date_files_skipped', 'updated_files_replicated': 'updated_files_replicated', 'user_conflict_files_skipped': 'user_conflict_files_skipped', 'warnings': 'warnings', 'worm_committed_file_conflicts': 'worm_committed_file_conflicts' } def __init__(self, action=None, ads_streams_replicated=None, block_specs_replicated=None, bytes_recoverable=None, bytes_transferred=None, char_specs_replicated=None, committed_files=None, corrected_lins=None, dead_node=None, directories_replicated=None, dirs_changed=None, dirs_deleted=None, dirs_moved=None, dirs_new=None, duration=None, encrypted=None, end_time=None, error=None, error_checksum_files_skipped=None, error_io_files_skipped=None, error_net_files_skipped=None, errors=None, failed_chunks=None, fifos_replicated=None, file_data_bytes=None, files_changed=None, files_linked=None, files_new=None, files_selected=None, files_transferred=None, files_unlinked=None, files_with_ads_replicated=None, flipped_lins=None, hard_links_replicated=None, hash_exceptions_fixed=None, hash_exceptions_found=None, id=None, job_id=None, lins_total=None, network_bytes_to_source=None, network_bytes_to_target=None, new_files_replicated=None, num_retransmitted_files=None, phases=None, policy_id=None, policy_name=None, quotas_deleted=None, regular_files_replicated=None, resynced_lins=None, retransmitted_files=None, retry=None, running_chunks=None, service_report=None, sockets_replicated=None, source_bytes_recovered=None, source_directories_created=None, source_directories_deleted=None, source_directories_linked=None, source_directories_unlinked=None, source_directories_visited=None, source_files_deleted=None, source_files_linked=None, source_files_unlinked=None, source_host=None, sparse_data_bytes=None, start_time=None, state=None, subreport_count=None, succeeded_chunks=None, symlinks_replicated=None, sync_type=None, target_bytes_recovered=None, target_directories_created=None, target_directories_deleted=None, target_directories_linked=None, target_directories_unlinked=None, target_files_deleted=None, target_files_linked=None, target_files_unlinked=None, target_path=None, target_snapshots=None, total_chunks=None, total_data_bytes=None, total_exported_services=None, total_files=None, total_network_bytes=None, total_phases=None, unchanged_data_bytes=None, up_to_date_files_skipped=None, updated_files_replicated=None, user_conflict_files_skipped=None, warnings=None, worm_committed_file_conflicts=None): # noqa: E501 """TargetReport - a model defined in Swagger""" # noqa: E501 self._action = None self._ads_streams_replicated = None self._block_specs_replicated = None self._bytes_recoverable = None self._bytes_transferred = None self._char_specs_replicated = None self._committed_files = None self._corrected_lins = None self._dead_node = None self._directories_replicated = None self._dirs_changed = None self._dirs_deleted = None self._dirs_moved = None self._dirs_new = None self._duration = None self._encrypted = None self._end_time = None self._error = None self._error_checksum_files_skipped = None self._error_io_files_skipped = None self._error_net_files_skipped = None self._errors = None self._failed_chunks = None self._fifos_replicated = None self._file_data_bytes = None self._files_changed = None self._files_linked = None self._files_new = None self._files_selected = None self._files_transferred = None self._files_unlinked = None self._files_with_ads_replicated = None self._flipped_lins = None self._hard_links_replicated = None self._hash_exceptions_fixed = None self._hash_exceptions_found = None self._id = None self._job_id = None self._lins_total = None self._network_bytes_to_source = None self._network_bytes_to_target = None self._new_files_replicated = None self._num_retransmitted_files = None self._phases = None self._policy_id = None self._policy_name = None self._quotas_deleted = None self._regular_files_replicated = None self._resynced_lins = None self._retransmitted_files = None self._retry = None self._running_chunks = None self._service_report = None self._sockets_replicated = None self._source_bytes_recovered = None self._source_directories_created = None self._source_directories_deleted = None self._source_directories_linked = None self._source_directories_unlinked = None self._source_directories_visited = None self._source_files_deleted = None self._source_files_linked = None self._source_files_unlinked = None self._source_host = None self._sparse_data_bytes = None self._start_time = None self._state = None self._subreport_count = None self._succeeded_chunks = None self._symlinks_replicated = None self._sync_type = None self._target_bytes_recovered = None self._target_directories_created = None self._target_directories_deleted = None self._target_directories_linked = None self._target_directories_unlinked = None self._target_files_deleted = None self._target_files_linked = None self._target_files_unlinked = None self._target_path = None self._target_snapshots = None self._total_chunks = None self._total_data_bytes = None self._total_exported_services = None self._total_files = None self._total_network_bytes = None self._total_phases = None self._unchanged_data_bytes = None self._up_to_date_files_skipped = None self._updated_files_replicated = None self._user_conflict_files_skipped = None self._warnings = None self._worm_committed_file_conflicts = None self.discriminator = None self.action = action self.ads_streams_replicated = ads_streams_replicated self.block_specs_replicated = block_specs_replicated self.bytes_recoverable = bytes_recoverable self.bytes_transferred = bytes_transferred self.char_specs_replicated = char_specs_replicated self.committed_files = committed_files self.corrected_lins = corrected_lins self.dead_node = dead_node self.directories_replicated = directories_replicated self.dirs_changed = dirs_changed self.dirs_deleted = dirs_deleted self.dirs_moved = dirs_moved self.dirs_new = dirs_new if duration is not None: self.duration = duration self.encrypted = encrypted if end_time is not None: self.end_time = end_time self.error = error self.error_checksum_files_skipped = error_checksum_files_skipped self.error_io_files_skipped = error_io_files_skipped self.error_net_files_skipped = error_net_files_skipped self.errors = errors self.failed_chunks = failed_chunks self.fifos_replicated = fifos_replicated self.file_data_bytes = file_data_bytes self.files_changed = files_changed self.files_linked = files_linked self.files_new = files_new self.files_selected = files_selected self.files_transferred = files_transferred self.files_unlinked = files_unlinked self.files_with_ads_replicated = files_with_ads_replicated self.flipped_lins = flipped_lins self.hard_links_replicated = hard_links_replicated self.hash_exceptions_fixed = hash_exceptions_fixed self.hash_exceptions_found = hash_exceptions_found self.id = id if job_id is not None: self.job_id = job_id self.lins_total = lins_total self.network_bytes_to_source = network_bytes_to_source self.network_bytes_to_target = network_bytes_to_target self.new_files_replicated = new_files_replicated self.num_retransmitted_files = num_retransmitted_files self.phases = phases self.policy_id = policy_id self.policy_name = policy_name self.quotas_deleted = quotas_deleted self.regular_files_replicated = regular_files_replicated self.resynced_lins = resynced_lins self.retransmitted_files = retransmitted_files self.retry = retry self.running_chunks = running_chunks if service_report is not None: self.service_report = service_report self.sockets_replicated = sockets_replicated self.source_bytes_recovered = source_bytes_recovered self.source_directories_created = source_directories_created self.source_directories_deleted = source_directories_deleted self.source_directories_linked = source_directories_linked self.source_directories_unlinked = source_directories_unlinked self.source_directories_visited = source_directories_visited self.source_files_deleted = source_files_deleted self.source_files_linked = source_files_linked self.source_files_unlinked = source_files_unlinked self.source_host = source_host self.sparse_data_bytes = sparse_data_bytes if start_time is not None: self.start_time = start_time self.state = state self.subreport_count = subreport_count self.succeeded_chunks = succeeded_chunks self.symlinks_replicated = symlinks_replicated self.sync_type = sync_type self.target_bytes_recovered = target_bytes_recovered self.target_directories_created = target_directories_created self.target_directories_deleted = target_directories_deleted self.target_directories_linked = target_directories_linked self.target_directories_unlinked = target_directories_unlinked self.target_files_deleted = target_files_deleted self.target_files_linked = target_files_linked self.target_files_unlinked = target_files_unlinked self.target_path = target_path self.target_snapshots = target_snapshots self.total_chunks = total_chunks self.total_data_bytes = total_data_bytes if total_exported_services is not None: self.total_exported_services = total_exported_services self.total_files = total_files self.total_network_bytes = total_network_bytes self.total_phases = total_phases self.unchanged_data_bytes = unchanged_data_bytes self.up_to_date_files_skipped = up_to_date_files_skipped self.updated_files_replicated = updated_files_replicated self.user_conflict_files_skipped = user_conflict_files_skipped self.warnings = warnings self.worm_committed_file_conflicts = worm_committed_file_conflicts @property def action(self): """Gets the action of this TargetReport. # noqa: E501 The action to be taken by this job. # noqa: E501 :return: The action of this TargetReport. # noqa: E501 :rtype: str """ return self._action @action.setter def action(self, action): """Sets the action of this TargetReport. The action to be taken by this job. # noqa: E501 :param action: The action of this TargetReport. # noqa: E501 :type: str """ if action is None: raise ValueError("Invalid value for `action`, must not be `None`") # noqa: E501 allowed_values = ["resync_prep", "allow_write", "allow_write_revert", "test", "run", "none"] # noqa: E501 if action not in allowed_values: raise ValueError( "Invalid value for `action` ({0}), must be one of {1}" # noqa: E501 .format(action, allowed_values) ) self._action = action @property def ads_streams_replicated(self): """Gets the ads_streams_replicated of this TargetReport. # noqa: E501 The number of ads streams replicated by this job. # noqa: E501 :return: The ads_streams_replicated of this TargetReport. # noqa: E501 :rtype: int """ return self._ads_streams_replicated @ads_streams_replicated.setter def ads_streams_replicated(self, ads_streams_replicated): """Sets the ads_streams_replicated of this TargetReport. The number of ads streams replicated by this job. # noqa: E501 :param ads_streams_replicated: The ads_streams_replicated of this TargetReport. # noqa: E501 :type: int """ if ads_streams_replicated is None: raise ValueError("Invalid value for `ads_streams_replicated`, must not be `None`") # noqa: E501 if ads_streams_replicated is not None and ads_streams_replicated > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `ads_streams_replicated`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if ads_streams_replicated is not None and ads_streams_replicated < 0: # noqa: E501 raise ValueError("Invalid value for `ads_streams_replicated`, must be a value greater than or equal to `0`") # noqa: E501 self._ads_streams_replicated = ads_streams_replicated @property def block_specs_replicated(self): """Gets the block_specs_replicated of this TargetReport. # noqa: E501 The number of block specs replicated by this job. # noqa: E501 :return: The block_specs_replicated of this TargetReport. # noqa: E501 :rtype: int """ return self._block_specs_replicated @block_specs_replicated.setter def block_specs_replicated(self, block_specs_replicated): """Sets the block_specs_replicated of this TargetReport. The number of block specs replicated by this job. # noqa: E501 :param block_specs_replicated: The block_specs_replicated of this TargetReport. # noqa: E501 :type: int """ if block_specs_replicated is None: raise ValueError("Invalid value for `block_specs_replicated`, must not be `None`") # noqa: E501 if block_specs_replicated is not None and block_specs_replicated > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `block_specs_replicated`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if block_specs_replicated is not None and block_specs_replicated < 0: # noqa: E501 raise ValueError("Invalid value for `block_specs_replicated`, must be a value greater than or equal to `0`") # noqa: E501 self._block_specs_replicated = block_specs_replicated @property def bytes_recoverable(self): """Gets the bytes_recoverable of this TargetReport. # noqa: E501 The number of bytes recoverable by this job. # noqa: E501 :return: The bytes_recoverable of this TargetReport. # noqa: E501 :rtype: int """ return self._bytes_recoverable @bytes_recoverable.setter def bytes_recoverable(self, bytes_recoverable): """Sets the bytes_recoverable of this TargetReport. The number of bytes recoverable by this job. # noqa: E501 :param bytes_recoverable: The bytes_recoverable of this TargetReport. # noqa: E501 :type: int """ if bytes_recoverable is None: raise ValueError("Invalid value for `bytes_recoverable`, must not be `None`") # noqa: E501 if bytes_recoverable is not None and bytes_recoverable > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `bytes_recoverable`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if bytes_recoverable is not None and bytes_recoverable < 0: # noqa: E501 raise ValueError("Invalid value for `bytes_recoverable`, must be a value greater than or equal to `0`") # noqa: E501 self._bytes_recoverable = bytes_recoverable @property def bytes_transferred(self): """Gets the bytes_transferred of this TargetReport. # noqa: E501 The number of bytes that have been transferred by this job. # noqa: E501 :return: The bytes_transferred of this TargetReport. # noqa: E501 :rtype: int """ return self._bytes_transferred @bytes_transferred.setter def bytes_transferred(self, bytes_transferred): """Sets the bytes_transferred of this TargetReport. The number of bytes that have been transferred by this job. # noqa: E501 :param bytes_transferred: The bytes_transferred of this TargetReport. # noqa: E501 :type: int """ if bytes_transferred is None: raise ValueError("Invalid value for `bytes_transferred`, must not be `None`") # noqa: E501 if bytes_transferred is not None and bytes_transferred > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `bytes_transferred`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if bytes_transferred is not None and bytes_transferred < 0: # noqa: E501 raise ValueError("Invalid value for `bytes_transferred`, must be a value greater than or equal to `0`") # noqa: E501 self._bytes_transferred = bytes_transferred @property def char_specs_replicated(self): """Gets the char_specs_replicated of this TargetReport. # noqa: E501 The number of char specs replicated by this job. # noqa: E501 :return: The char_specs_replicated of this TargetReport. # noqa: E501 :rtype: int """ return self._char_specs_replicated @char_specs_replicated.setter def char_specs_replicated(self, char_specs_replicated): """Sets the char_specs_replicated of this TargetReport. The number of char specs replicated by this job. # noqa: E501 :param char_specs_replicated: The char_specs_replicated of this TargetReport. # noqa: E501 :type: int """ if char_specs_replicated is None: raise ValueError("Invalid value for `char_specs_replicated`, must not be `None`") # noqa: E501 if char_specs_replicated is not None and char_specs_replicated > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `char_specs_replicated`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if char_specs_replicated is not None and char_specs_replicated < 0: # noqa: E501 raise ValueError("Invalid value for `char_specs_replicated`, must be a value greater than or equal to `0`") # noqa: E501 self._char_specs_replicated = char_specs_replicated @property def committed_files(self): """Gets the committed_files of this TargetReport. # noqa: E501 The number of WORM committed files. # noqa: E501 :return: The committed_files of this TargetReport. # noqa: E501 :rtype: int """ return self._committed_files @committed_files.setter def committed_files(self, committed_files): """Sets the committed_files of this TargetReport. The number of WORM committed files. # noqa: E501 :param committed_files: The committed_files of this TargetReport. # noqa: E501 :type: int """ if committed_files is None: raise ValueError("Invalid value for `committed_files`, must not be `None`") # noqa: E501 if committed_files is not None and committed_files > 4294967295: # noqa: E501 raise ValueError("Invalid value for `committed_files`, must be a value less than or equal to `4294967295`") # noqa: E501 if committed_files is not None and committed_files < 0: # noqa: E501 raise ValueError("Invalid value for `committed_files`, must be a value greater than or equal to `0`") # noqa: E501 self._committed_files = committed_files @property def corrected_lins(self): """Gets the corrected_lins of this TargetReport. # noqa: E501 The number of LINs corrected by this job. # noqa: E501 :return: The corrected_lins of this TargetReport. # noqa: E501 :rtype: int """ return self._corrected_lins @corrected_lins.setter def corrected_lins(self, corrected_lins): """Sets the corrected_lins of this TargetReport. The number of LINs corrected by this job. # noqa: E501 :param corrected_lins: The corrected_lins of this TargetReport. # noqa: E501 :type: int """ if corrected_lins is None: raise ValueError("Invalid value for `corrected_lins`, must not be `None`") # noqa: E501 if corrected_lins is not None and corrected_lins > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `corrected_lins`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if corrected_lins is not None and corrected_lins < 0: # noqa: E501 raise ValueError("Invalid value for `corrected_lins`, must be a value greater than or equal to `0`") # noqa: E501 self._corrected_lins = corrected_lins @property def dead_node(self): """Gets the dead_node of this TargetReport. # noqa: E501 This field is true if the node running this job is dead. # noqa: E501 :return: The dead_node of this TargetReport. # noqa: E501 :rtype: bool """ return self._dead_node @dead_node.setter def dead_node(self, dead_node): """Sets the dead_node of this TargetReport. This field is true if the node running this job is dead. # noqa: E501 :param dead_node: The dead_node of this TargetReport. # noqa: E501 :type: bool """ if dead_node is None: raise ValueError("Invalid value for `dead_node`, must not be `None`") # noqa: E501 self._dead_node = dead_node @property def directories_replicated(self): """Gets the directories_replicated of this TargetReport. # noqa: E501 The number of directories replicated. # noqa: E501 :return: The directories_replicated of this TargetReport. # noqa: E501 :rtype: int """ return self._directories_replicated @directories_replicated.setter def directories_replicated(self, directories_replicated): """Sets the directories_replicated of this TargetReport. The number of directories replicated. # noqa: E501 :param directories_replicated: The directories_replicated of this TargetReport. # noqa: E501 :type: int """ if directories_replicated is None: raise ValueError("Invalid value for `directories_replicated`, must not be `None`") # noqa: E501 if directories_replicated is not None and directories_replicated > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `directories_replicated`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if directories_replicated is not None and directories_replicated < 0: # noqa: E501 raise ValueError("Invalid value for `directories_replicated`, must be a value greater than or equal to `0`") # noqa: E501 self._directories_replicated = directories_replicated @property def dirs_changed(self): """Gets the dirs_changed of this TargetReport. # noqa: E501 The number of directories changed by this job. # noqa: E501 :return: The dirs_changed of this TargetReport. # noqa: E501 :rtype: int """ return self._dirs_changed @dirs_changed.setter def dirs_changed(self, dirs_changed): """Sets the dirs_changed of this TargetReport. The number of directories changed by this job. # noqa: E501 :param dirs_changed: The dirs_changed of this TargetReport. # noqa: E501 :type: int """ if dirs_changed is None: raise ValueError("Invalid value for `dirs_changed`, must not be `None`") # noqa: E501 if dirs_changed is not None and dirs_changed > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `dirs_changed`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if dirs_changed is not None and dirs_changed < 0: # noqa: E501 raise ValueError("Invalid value for `dirs_changed`, must be a value greater than or equal to `0`") # noqa: E501 self._dirs_changed = dirs_changed @property def dirs_deleted(self): """Gets the dirs_deleted of this TargetReport. # noqa: E501 The number of directories deleted by this job. # noqa: E501 :return: The dirs_deleted of this TargetReport. # noqa: E501 :rtype: int """ return self._dirs_deleted @dirs_deleted.setter def dirs_deleted(self, dirs_deleted): """Sets the dirs_deleted of this TargetReport. The number of directories deleted by this job. # noqa: E501 :param dirs_deleted: The dirs_deleted of this TargetReport. # noqa: E501 :type: int """ if dirs_deleted is None: raise ValueError("Invalid value for `dirs_deleted`, must not be `None`") # noqa: E501 if dirs_deleted is not None and dirs_deleted > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `dirs_deleted`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if dirs_deleted is not None and dirs_deleted < 0: # noqa: E501 raise ValueError("Invalid value for `dirs_deleted`, must be a value greater than or equal to `0`") # noqa: E501 self._dirs_deleted = dirs_deleted @property def dirs_moved(self): """Gets the dirs_moved of this TargetReport. # noqa: E501 The number of directories moved by this job. # noqa: E501 :return: The dirs_moved of this TargetReport. # noqa: E501 :rtype: int """ return self._dirs_moved @dirs_moved.setter def dirs_moved(self, dirs_moved): """Sets the dirs_moved of this TargetReport. The number of directories moved by this job. # noqa: E501 :param dirs_moved: The dirs_moved of this TargetReport. # noqa: E501 :type: int """ if dirs_moved is None: raise ValueError("Invalid value for `dirs_moved`, must not be `None`") # noqa: E501 if dirs_moved is not None and dirs_moved > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `dirs_moved`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if dirs_moved is not None and dirs_moved < 0: # noqa: E501 raise ValueError("Invalid value for `dirs_moved`, must be a value greater than or equal to `0`") # noqa: E501 self._dirs_moved = dirs_moved @property def dirs_new(self): """Gets the dirs_new of this TargetReport. # noqa: E501 The number of directories created by this job. # noqa: E501 :return: The dirs_new of this TargetReport. # noqa: E501 :rtype: int """ return self._dirs_new @dirs_new.setter def dirs_new(self, dirs_new): """Sets the dirs_new of this TargetReport. The number of directories created by this job. # noqa: E501 :param dirs_new: The dirs_new of this TargetReport. # noqa: E501 :type: int """ if dirs_new is None: raise ValueError("Invalid value for `dirs_new`, must not be `None`") # noqa: E501 if dirs_new is not None and dirs_new > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `dirs_new`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if dirs_new is not None and dirs_new < 0: # noqa: E501 raise ValueError("Invalid value for `dirs_new`, must be a value greater than or equal to `0`") # noqa: E501 self._dirs_new = dirs_new @property def duration(self): """Gets the duration of this TargetReport. # noqa: E501 The amount of time in seconds between when the job was started and when it ended. If the job has not yet ended, this is the amount of time since the job started. This field is null if the job has not yet started. # noqa: E501 :return: The duration of this TargetReport. # noqa: E501 :rtype: int """ return self._duration @duration.setter def duration(self, duration): """Sets the duration of this TargetReport. The amount of time in seconds between when the job was started and when it ended. If the job has not yet ended, this is the amount of time since the job started. This field is null if the job has not yet started. # noqa: E501 :param duration: The duration of this TargetReport. # noqa: E501 :type: int """ if duration is not None and duration > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `duration`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if duration is not None and duration < 0: # noqa: E501 raise ValueError("Invalid value for `duration`, must be a value greater than or equal to `0`") # noqa: E501 self._duration = duration @property def encrypted(self): """Gets the encrypted of this TargetReport. # noqa: E501 If true, syncs will be encrypted. # noqa: E501 :return: The encrypted of this TargetReport. # noqa: E501 :rtype: bool """ return self._encrypted @encrypted.setter def encrypted(self, encrypted): """Sets the encrypted of this TargetReport. If true, syncs will be encrypted. # noqa: E501 :param encrypted: The encrypted of this TargetReport. # noqa: E501 :type: bool """ if encrypted is None: raise ValueError("Invalid value for `encrypted`, must not be `None`") # noqa: E501 self._encrypted = encrypted @property def end_time(self): """Gets the end_time of this TargetReport. # noqa: E501 The time the job ended in unix epoch seconds. The field is null if the job hasn't ended. # noqa: E501 :return: The end_time of this TargetReport. # noqa: E501 :rtype: int """ return self._end_time @end_time.setter def end_time(self, end_time): """Sets the end_time of this TargetReport. The time the job ended in unix epoch seconds. The field is null if the job hasn't ended. # noqa: E501 :param end_time: The end_time of this TargetReport. # noqa: E501 :type: int """ if end_time is not None and end_time > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `end_time`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if end_time is not None and end_time < 0: # noqa: E501 raise ValueError("Invalid value for `end_time`, must be a value greater than or equal to `0`") # noqa: E501 self._end_time = end_time @property def error(self): """Gets the error of this TargetReport. # noqa: E501 The primary error message for this job. # noqa: E501 :return: The error of this TargetReport. # noqa: E501 :rtype: str """ return self._error @error.setter def error(self, error): """Sets the error of this TargetReport. The primary error message for this job. # noqa: E501 :param error: The error of this TargetReport. # noqa: E501 :type: str """ if error is None: raise ValueError("Invalid value for `error`, must not be `None`") # noqa: E501 if error is not None and len(error) > 255: raise ValueError("Invalid value for `error`, length must be less than or equal to `255`") # noqa: E501 if error is not None and len(error) < 0: raise ValueError("Invalid value for `error`, length must be greater than or equal to `0`") # noqa: E501 self._error = error @property def error_checksum_files_skipped(self): """Gets the error_checksum_files_skipped of this TargetReport. # noqa: E501 The number of files with checksum errors skipped by this job. # noqa: E501 :return: The error_checksum_files_skipped of this TargetReport. # noqa: E501 :rtype: int """ return self._error_checksum_files_skipped @error_checksum_files_skipped.setter def error_checksum_files_skipped(self, error_checksum_files_skipped): """Sets the error_checksum_files_skipped of this TargetReport. The number of files with checksum errors skipped by this job. # noqa: E501 :param error_checksum_files_skipped: The error_checksum_files_skipped of this TargetReport. # noqa: E501 :type: int """ if error_checksum_files_skipped is None: raise ValueError("Invalid value for `error_checksum_files_skipped`, must not be `None`") # noqa: E501 if error_checksum_files_skipped is not None and error_checksum_files_skipped > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `error_checksum_files_skipped`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if error_checksum_files_skipped is not None and error_checksum_files_skipped < 0: # noqa: E501 raise ValueError("Invalid value for `error_checksum_files_skipped`, must be a value greater than or equal to `0`") # noqa: E501 self._error_checksum_files_skipped = error_checksum_files_skipped @property def error_io_files_skipped(self): """Gets the error_io_files_skipped of this TargetReport. # noqa: E501 The number of files with io errors skipped by this job. # noqa: E501 :return: The error_io_files_skipped of this TargetReport. # noqa: E501 :rtype: int """ return self._error_io_files_skipped @error_io_files_skipped.setter def error_io_files_skipped(self, error_io_files_skipped): """Sets the error_io_files_skipped of this TargetReport. The number of files with io errors skipped by this job. # noqa: E501 :param error_io_files_skipped: The error_io_files_skipped of this TargetReport. # noqa: E501 :type: int """ if error_io_files_skipped is None: raise ValueError("Invalid value for `error_io_files_skipped`, must not be `None`") # noqa: E501 if error_io_files_skipped is not None and error_io_files_skipped > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `error_io_files_skipped`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if error_io_files_skipped is not None and error_io_files_skipped < 0: # noqa: E501 raise ValueError("Invalid value for `error_io_files_skipped`, must be a value greater than or equal to `0`") # noqa: E501 self._error_io_files_skipped = error_io_files_skipped @property def error_net_files_skipped(self): """Gets the error_net_files_skipped of this TargetReport. # noqa: E501 The number of files with network errors skipped by this job. # noqa: E501 :return: The error_net_files_skipped of this TargetReport. # noqa: E501 :rtype: int """ return self._error_net_files_skipped @error_net_files_skipped.setter def error_net_files_skipped(self, error_net_files_skipped): """Sets the error_net_files_skipped of this TargetReport. The number of files with network errors skipped by this job. # noqa: E501 :param error_net_files_skipped: The error_net_files_skipped of this TargetReport. # noqa: E501 :type: int """ if error_net_files_skipped is None: raise ValueError("Invalid value for `error_net_files_skipped`, must not be `None`") # noqa: E501 if error_net_files_skipped is not None and error_net_files_skipped > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `error_net_files_skipped`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if error_net_files_skipped is not None and error_net_files_skipped < 0: # noqa: E501 raise ValueError("Invalid value for `error_net_files_skipped`, must be a value greater than or equal to `0`") # noqa: E501 self._error_net_files_skipped = error_net_files_skipped @property def errors(self): """Gets the errors of this TargetReport. # noqa: E501 A list of error messages for this job. # noqa: E501 :return: The errors of this TargetReport. # noqa: E501 :rtype: list[str] """ return self._errors @errors.setter def errors(self, errors): """Sets the errors of this TargetReport. A list of error messages for this job. # noqa: E501 :param errors: The errors of this TargetReport. # noqa: E501 :type: list[str] """ if errors is None: raise ValueError("Invalid value for `errors`, must not be `None`") # noqa: E501 self._errors = errors @property def failed_chunks(self): """Gets the failed_chunks of this TargetReport. # noqa: E501 Tyhe number of data chunks that failed transmission. # noqa: E501 :return: The failed_chunks of this TargetReport. # noqa: E501 :rtype: int """ return self._failed_chunks @failed_chunks.setter def failed_chunks(self, failed_chunks): """Sets the failed_chunks of this TargetReport. Tyhe number of data chunks that failed transmission. # noqa: E501 :param failed_chunks: The failed_chunks of this TargetReport. # noqa: E501 :type: int """ if failed_chunks is None: raise ValueError("Invalid value for `failed_chunks`, must not be `None`") # noqa: E501 if failed_chunks is not None and failed_chunks > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `failed_chunks`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if failed_chunks is not None and failed_chunks < 0: # noqa: E501 raise ValueError("Invalid value for `failed_chunks`, must be a value greater than or equal to `0`") # noqa: E501 self._failed_chunks = failed_chunks @property def fifos_replicated(self): """Gets the fifos_replicated of this TargetReport. # noqa: E501 The number of fifos replicated by this job. # noqa: E501 :return: The fifos_replicated of this TargetReport. # noqa: E501 :rtype: int """ return self._fifos_replicated @fifos_replicated.setter def fifos_replicated(self, fifos_replicated): """Sets the fifos_replicated of this TargetReport. The number of fifos replicated by this job. # noqa: E501 :param fifos_replicated: The fifos_replicated of this TargetReport. # noqa: E501 :type: int """ if fifos_replicated is None: raise ValueError("Invalid value for `fifos_replicated`, must not be `None`") # noqa: E501 if fifos_replicated is not None and fifos_replicated > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `fifos_replicated`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if fifos_replicated is not None and fifos_replicated < 0: # noqa: E501 raise ValueError("Invalid value for `fifos_replicated`, must be a value greater than or equal to `0`") # noqa: E501 self._fifos_replicated = fifos_replicated @property def file_data_bytes(self): """Gets the file_data_bytes of this TargetReport. # noqa: E501 The number of bytes transferred that belong to files. # noqa: E501 :return: The file_data_bytes of this TargetReport. # noqa: E501 :rtype: int """ return self._file_data_bytes @file_data_bytes.setter def file_data_bytes(self, file_data_bytes): """Sets the file_data_bytes of this TargetReport. The number of bytes transferred that belong to files. # noqa: E501 :param file_data_bytes: The file_data_bytes of this TargetReport. # noqa: E501 :type: int """ if file_data_bytes is None: raise ValueError("Invalid value for `file_data_bytes`, must not be `None`") # noqa: E501 if file_data_bytes is not None and file_data_bytes > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `file_data_bytes`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if file_data_bytes is not None and file_data_bytes < 0: # noqa: E501 raise ValueError("Invalid value for `file_data_bytes`, must be a value greater than or equal to `0`") # noqa: E501 self._file_data_bytes = file_data_bytes @property def files_changed(self): """Gets the files_changed of this TargetReport. # noqa: E501 The number of files changed by this job. # noqa: E501 :return: The files_changed of this TargetReport. # noqa: E501 :rtype: int """ return self._files_changed @files_changed.setter def files_changed(self, files_changed): """Sets the files_changed of this TargetReport. The number of files changed by this job. # noqa: E501 :param files_changed: The files_changed of this TargetReport. # noqa: E501 :type: int """ if files_changed is None: raise ValueError("Invalid value for `files_changed`, must not be `None`") # noqa: E501 if files_changed is not None and files_changed > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `files_changed`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if files_changed is not None and files_changed < 0: # noqa: E501 raise ValueError("Invalid value for `files_changed`, must be a value greater than or equal to `0`") # noqa: E501 self._files_changed = files_changed @property def files_linked(self): """Gets the files_linked of this TargetReport. # noqa: E501 The number of files linked by this job. # noqa: E501 :return: The files_linked of this TargetReport. # noqa: E501 :rtype: int """ return self._files_linked @files_linked.setter def files_linked(self, files_linked): """Sets the files_linked of this TargetReport. The number of files linked by this job. # noqa: E501 :param files_linked: The files_linked of this TargetReport. # noqa: E501 :type: int """ if files_linked is None: raise ValueError("Invalid value for `files_linked`, must not be `None`") # noqa: E501 if files_linked is not None and files_linked > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `files_linked`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if files_linked is not None and files_linked < 0: # noqa: E501 raise ValueError("Invalid value for `files_linked`, must be a value greater than or equal to `0`") # noqa: E501 self._files_linked = files_linked @property def files_new(self): """Gets the files_new of this TargetReport. # noqa: E501 The number of files created by this job. # noqa: E501 :return: The files_new of this TargetReport. # noqa: E501 :rtype: int """ return self._files_new @files_new.setter def files_new(self, files_new): """Sets the files_new of this TargetReport. The number of files created by this job. # noqa: E501 :param files_new: The files_new of this TargetReport. # noqa: E501 :type: int """ if files_new is None: raise ValueError("Invalid value for `files_new`, must not be `None`") # noqa: E501 if files_new is not None and files_new > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `files_new`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if files_new is not None and files_new < 0: # noqa: E501 raise ValueError("Invalid value for `files_new`, must be a value greater than or equal to `0`") # noqa: E501 self._files_new = files_new @property def files_selected(self): """Gets the files_selected of this TargetReport. # noqa: E501 The number of files selected by this job. # noqa: E501 :return: The files_selected of this TargetReport. # noqa: E501 :rtype: int """ return self._files_selected @files_selected.setter def files_selected(self, files_selected): """Sets the files_selected of this TargetReport. The number of files selected by this job. # noqa: E501 :param files_selected: The files_selected of this TargetReport. # noqa: E501 :type: int """ if files_selected is None: raise ValueError("Invalid value for `files_selected`, must not be `None`") # noqa: E501 if files_selected is not None and files_selected > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `files_selected`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if files_selected is not None and files_selected < 0: # noqa: E501 raise ValueError("Invalid value for `files_selected`, must be a value greater than or equal to `0`") # noqa: E501 self._files_selected = files_selected @property def files_transferred(self): """Gets the files_transferred of this TargetReport. # noqa: E501 The number of files transferred by this job. # noqa: E501 :return: The files_transferred of this TargetReport. # noqa: E501 :rtype: int """ return self._files_transferred @files_transferred.setter def files_transferred(self, files_transferred): """Sets the files_transferred of this TargetReport. The number of files transferred by this job. # noqa: E501 :param files_transferred: The files_transferred of this TargetReport. # noqa: E501 :type: int """ if files_transferred is None: raise ValueError("Invalid value for `files_transferred`, must not be `None`") # noqa: E501 if files_transferred is not None and files_transferred > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `files_transferred`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if files_transferred is not None and files_transferred < 0: # noqa: E501 raise ValueError("Invalid value for `files_transferred`, must be a value greater than or equal to `0`") # noqa: E501 self._files_transferred = files_transferred @property def files_unlinked(self): """Gets the files_unlinked of this TargetReport. # noqa: E501 The number of files unlinked by this job. # noqa: E501 :return: The files_unlinked of this TargetReport. # noqa: E501 :rtype: int """ return self._files_unlinked @files_unlinked.setter def files_unlinked(self, files_unlinked): """Sets the files_unlinked of this TargetReport. The number of files unlinked by this job. # noqa: E501 :param files_unlinked: The files_unlinked of this TargetReport. # noqa: E501 :type: int """ if files_unlinked is None: raise ValueError("Invalid value for `files_unlinked`, must not be `None`") # noqa: E501 if files_unlinked is not None and files_unlinked > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `files_unlinked`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if files_unlinked is not None and files_unlinked < 0: # noqa: E501 raise ValueError("Invalid value for `files_unlinked`, must be a value greater than or equal to `0`") # noqa: E501 self._files_unlinked = files_unlinked @property def files_with_ads_replicated(self): """Gets the files_with_ads_replicated of this TargetReport. # noqa: E501 The number of files with ads replicated by this job. # noqa: E501 :return: The files_with_ads_replicated of this TargetReport. # noqa: E501 :rtype: int """ return self._files_with_ads_replicated @files_with_ads_replicated.setter def files_with_ads_replicated(self, files_with_ads_replicated): """Sets the files_with_ads_replicated of this TargetReport. The number of files with ads replicated by this job. # noqa: E501 :param files_with_ads_replicated: The files_with_ads_replicated of this TargetReport. # noqa: E501 :type: int """ if files_with_ads_replicated is None: raise ValueError("Invalid value for `files_with_ads_replicated`, must not be `None`") # noqa: E501 if files_with_ads_replicated is not None and files_with_ads_replicated > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `files_with_ads_replicated`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if files_with_ads_replicated is not None and files_with_ads_replicated < 0: # noqa: E501 raise ValueError("Invalid value for `files_with_ads_replicated`, must be a value greater than or equal to `0`") # noqa: E501 self._files_with_ads_replicated = files_with_ads_replicated @property def flipped_lins(self): """Gets the flipped_lins of this TargetReport. # noqa: E501 The number of LINs flipped by this job. # noqa: E501 :return: The flipped_lins of this TargetReport. # noqa: E501 :rtype: int """ return self._flipped_lins @flipped_lins.setter def flipped_lins(self, flipped_lins): """Sets the flipped_lins of this TargetReport. The number of LINs flipped by this job. # noqa: E501 :param flipped_lins: The flipped_lins of this TargetReport. # noqa: E501 :type: int """ if flipped_lins is None: raise ValueError("Invalid value for `flipped_lins`, must not be `None`") # noqa: E501 if flipped_lins is not None and flipped_lins > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `flipped_lins`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if flipped_lins is not None and flipped_lins < 0: # noqa: E501 raise ValueError("Invalid value for `flipped_lins`, must be a value greater than or equal to `0`") # noqa: E501 self._flipped_lins = flipped_lins @property def hard_links_replicated(self): """Gets the hard_links_replicated of this TargetReport. # noqa: E501 The number of hard links replicated by this job. # noqa: E501 :return: The hard_links_replicated of this TargetReport. # noqa: E501 :rtype: int """ return self._hard_links_replicated @hard_links_replicated.setter def hard_links_replicated(self, hard_links_replicated): """Sets the hard_links_replicated of this TargetReport. The number of hard links replicated by this job. # noqa: E501 :param hard_links_replicated: The hard_links_replicated of this TargetReport. # noqa: E501 :type: int """ if hard_links_replicated is None: raise ValueError("Invalid value for `hard_links_replicated`, must not be `None`") # noqa: E501 if hard_links_replicated is not None and hard_links_replicated > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `hard_links_replicated`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if hard_links_replicated is not None and hard_links_replicated < 0: # noqa: E501 raise ValueError("Invalid value for `hard_links_replicated`, must be a value greater than or equal to `0`") # noqa: E501 self._hard_links_replicated = hard_links_replicated @property def hash_exceptions_fixed(self): """Gets the hash_exceptions_fixed of this TargetReport. # noqa: E501 The number of hash exceptions fixed by this job. # noqa: E501 :return: The hash_exceptions_fixed of this TargetReport. # noqa: E501 :rtype: int """ return self._hash_exceptions_fixed @hash_exceptions_fixed.setter def hash_exceptions_fixed(self, hash_exceptions_fixed): """Sets the hash_exceptions_fixed of this TargetReport. The number of hash exceptions fixed by this job. # noqa: E501 :param hash_exceptions_fixed: The hash_exceptions_fixed of this TargetReport. # noqa: E501 :type: int """ if hash_exceptions_fixed is None: raise ValueError("Invalid value for `hash_exceptions_fixed`, must not be `None`") # noqa: E501 if hash_exceptions_fixed is not None and hash_exceptions_fixed > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `hash_exceptions_fixed`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if hash_exceptions_fixed is not None and hash_exceptions_fixed < 0: # noqa: E501 raise ValueError("Invalid value for `hash_exceptions_fixed`, must be a value greater than or equal to `0`") # noqa: E501 self._hash_exceptions_fixed = hash_exceptions_fixed @property def hash_exceptions_found(self): """Gets the hash_exceptions_found of this TargetReport. # noqa: E501 The number of hash exceptions found by this job. # noqa: E501 :return: The hash_exceptions_found of this TargetReport. # noqa: E501 :rtype: int """ return self._hash_exceptions_found @hash_exceptions_found.setter def hash_exceptions_found(self, hash_exceptions_found): """Sets the hash_exceptions_found of this TargetReport. The number of hash exceptions found by this job. # noqa: E501 :param hash_exceptions_found: The hash_exceptions_found of this TargetReport. # noqa: E501 :type: int """ if hash_exceptions_found is None: raise ValueError("Invalid value for `hash_exceptions_found`, must not be `None`") # noqa: E501 if hash_exceptions_found is not None and hash_exceptions_found > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `hash_exceptions_found`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if hash_exceptions_found is not None and hash_exceptions_found < 0: # noqa: E501 raise ValueError("Invalid value for `hash_exceptions_found`, must be a value greater than or equal to `0`") # noqa: E501 self._hash_exceptions_found = hash_exceptions_found @property def id(self): """Gets the id of this TargetReport. # noqa: E501 A unique identifier for this object. # noqa: E501 :return: The id of this TargetReport. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this TargetReport. A unique identifier for this object. # noqa: E501 :param id: The id of this TargetReport. # noqa: E501 :type: str """ if id is None: raise ValueError("Invalid value for `id`, must not be `None`") # noqa: E501 if id is not None and len(id) > 255: raise ValueError("Invalid value for `id`, length must be less than or equal to `255`") # noqa: E501 if id is not None and len(id) < 0: raise ValueError("Invalid value for `id`, length must be greater than or equal to `0`") # noqa: E501 self._id = id @property def job_id(self): """Gets the job_id of this TargetReport. # noqa: E501 The ID of the job. # noqa: E501 :return: The job_id of this TargetReport. # noqa: E501 :rtype: int """ return self._job_id @job_id.setter def job_id(self, job_id): """Sets the job_id of this TargetReport. The ID of the job. # noqa: E501 :param job_id: The job_id of this TargetReport. # noqa: E501 :type: int """ if job_id is not None and job_id > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `job_id`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if job_id is not None and job_id < 0: # noqa: E501 raise ValueError("Invalid value for `job_id`, must be a value greater than or equal to `0`") # noqa: E501 self._job_id = job_id @property def lins_total(self): """Gets the lins_total of this TargetReport. # noqa: E501 The number of LINs transferred by this job. # noqa: E501 :return: The lins_total of this TargetReport. # noqa: E501 :rtype: int """ return self._lins_total @lins_total.setter def lins_total(self, lins_total): """Sets the lins_total of this TargetReport. The number of LINs transferred by this job. # noqa: E501 :param lins_total: The lins_total of this TargetReport. # noqa: E501 :type: int """ if lins_total is None: raise ValueError("Invalid value for `lins_total`, must not be `None`") # noqa: E501 if lins_total is not None and lins_total > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `lins_total`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if lins_total is not None and lins_total < 0: # noqa: E501 raise ValueError("Invalid value for `lins_total`, must be a value greater than or equal to `0`") # noqa: E501 self._lins_total = lins_total @property def network_bytes_to_source(self): """Gets the network_bytes_to_source of this TargetReport. # noqa: E501 The total number of bytes sent to the source by this job. # noqa: E501 :return: The network_bytes_to_source of this TargetReport. # noqa: E501 :rtype: int """ return self._network_bytes_to_source @network_bytes_to_source.setter def network_bytes_to_source(self, network_bytes_to_source): """Sets the network_bytes_to_source of this TargetReport. The total number of bytes sent to the source by this job. # noqa: E501 :param network_bytes_to_source: The network_bytes_to_source of this TargetReport. # noqa: E501 :type: int """ if network_bytes_to_source is None: raise ValueError("Invalid value for `network_bytes_to_source`, must not be `None`") # noqa: E501 if network_bytes_to_source is not None and network_bytes_to_source > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `network_bytes_to_source`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if network_bytes_to_source is not None and network_bytes_to_source < 0: # noqa: E501 raise ValueError("Invalid value for `network_bytes_to_source`, must be a value greater than or equal to `0`") # noqa: E501 self._network_bytes_to_source = network_bytes_to_source @property def network_bytes_to_target(self): """Gets the network_bytes_to_target of this TargetReport. # noqa: E501 The total number of bytes sent to the target by this job. # noqa: E501 :return: The network_bytes_to_target of this TargetReport. # noqa: E501 :rtype: int """ return self._network_bytes_to_target @network_bytes_to_target.setter def network_bytes_to_target(self, network_bytes_to_target): """Sets the network_bytes_to_target of this TargetReport. The total number of bytes sent to the target by this job. # noqa: E501 :param network_bytes_to_target: The network_bytes_to_target of this TargetReport. # noqa: E501 :type: int """ if network_bytes_to_target is None: raise ValueError("Invalid value for `network_bytes_to_target`, must not be `None`") # noqa: E501 if network_bytes_to_target is not None and network_bytes_to_target > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `network_bytes_to_target`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if network_bytes_to_target is not None and network_bytes_to_target < 0: # noqa: E501 raise ValueError("Invalid value for `network_bytes_to_target`, must be a value greater than or equal to `0`") # noqa: E501 self._network_bytes_to_target = network_bytes_to_target @property def new_files_replicated(self): """Gets the new_files_replicated of this TargetReport. # noqa: E501 The number of new files replicated by this job. # noqa: E501 :return: The new_files_replicated of this TargetReport. # noqa: E501 :rtype: int """ return self._new_files_replicated @new_files_replicated.setter def new_files_replicated(self, new_files_replicated): """Sets the new_files_replicated of this TargetReport. The number of new files replicated by this job. # noqa: E501 :param new_files_replicated: The new_files_replicated of this TargetReport. # noqa: E501 :type: int """ if new_files_replicated is None: raise ValueError("Invalid value for `new_files_replicated`, must not be `None`") # noqa: E501 if new_files_replicated is not None and new_files_replicated > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `new_files_replicated`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if new_files_replicated is not None and new_files_replicated < 0: # noqa: E501 raise ValueError("Invalid value for `new_files_replicated`, must be a value greater than or equal to `0`") # noqa: E501 self._new_files_replicated = new_files_replicated @property def num_retransmitted_files(self): """Gets the num_retransmitted_files of this TargetReport. # noqa: E501 The number of files that have been retransmitted by this job. # noqa: E501 :return: The num_retransmitted_files of this TargetReport. # noqa: E501 :rtype: int """ return self._num_retransmitted_files @num_retransmitted_files.setter def num_retransmitted_files(self, num_retransmitted_files): """Sets the num_retransmitted_files of this TargetReport. The number of files that have been retransmitted by this job. # noqa: E501 :param num_retransmitted_files: The num_retransmitted_files of this TargetReport. # noqa: E501 :type: int """ if num_retransmitted_files is None: raise ValueError("Invalid value for `num_retransmitted_files`, must not be `None`") # noqa: E501 if num_retransmitted_files is not None and num_retransmitted_files > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `num_retransmitted_files`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if num_retransmitted_files is not None and num_retransmitted_files < 0: # noqa: E501 raise ValueError("Invalid value for `num_retransmitted_files`, must be a value greater than or equal to `0`") # noqa: E501 self._num_retransmitted_files = num_retransmitted_files @property def phases(self): """Gets the phases of this TargetReport. # noqa: E501 Data for each phase of this job. # noqa: E501 :return: The phases of this TargetReport. # noqa: E501 :rtype: list[SyncJobPhase] """ return self._phases @phases.setter def phases(self, phases): """Sets the phases of this TargetReport. Data for each phase of this job. # noqa: E501 :param phases: The phases of this TargetReport. # noqa: E501 :type: list[SyncJobPhase] """ if phases is None: raise ValueError("Invalid value for `phases`, must not be `None`") # noqa: E501 self._phases = phases @property def policy_id(self): """Gets the policy_id of this TargetReport. # noqa: E501 The ID of the policy. # noqa: E501 :return: The policy_id of this TargetReport. # noqa: E501 :rtype: str """ return self._policy_id @policy_id.setter def policy_id(self, policy_id): """Sets the policy_id of this TargetReport. The ID of the policy. # noqa: E501 :param policy_id: The policy_id of this TargetReport. # noqa: E501 :type: str """ if policy_id is None: raise ValueError("Invalid value for `policy_id`, must not be `None`") # noqa: E501 if policy_id is not None and len(policy_id) > 255: raise ValueError("Invalid value for `policy_id`, length must be less than or equal to `255`") # noqa: E501 if policy_id is not None and len(policy_id) < 0: raise ValueError("Invalid value for `policy_id`, length must be greater than or equal to `0`") # noqa: E501 self._policy_id = policy_id @property def policy_name(self): """Gets the policy_name of this TargetReport. # noqa: E501 The name of the policy. # noqa: E501 :return: The policy_name of this TargetReport. # noqa: E501 :rtype: str """ return self._policy_name @policy_name.setter def policy_name(self, policy_name): """Sets the policy_name of this TargetReport. The name of the policy. # noqa: E501 :param policy_name: The policy_name of this TargetReport. # noqa: E501 :type: str """ if policy_name is None: raise ValueError("Invalid value for `policy_name`, must not be `None`") # noqa: E501 if policy_name is not None and len(policy_name) > 255: raise ValueError("Invalid value for `policy_name`, length must be less than or equal to `255`") # noqa: E501 if policy_name is not None and len(policy_name) < 0: raise ValueError("Invalid value for `policy_name`, length must be greater than or equal to `0`") # noqa: E501 self._policy_name = policy_name @property def quotas_deleted(self): """Gets the quotas_deleted of this TargetReport. # noqa: E501 The number of quotas removed from the target. # noqa: E501 :return: The quotas_deleted of this TargetReport. # noqa: E501 :rtype: int """ return self._quotas_deleted @quotas_deleted.setter def quotas_deleted(self, quotas_deleted): """Sets the quotas_deleted of this TargetReport. The number of quotas removed from the target. # noqa: E501 :param quotas_deleted: The quotas_deleted of this TargetReport. # noqa: E501 :type: int """ if quotas_deleted is None: raise ValueError("Invalid value for `quotas_deleted`, must not be `None`") # noqa: E501 if quotas_deleted is not None and quotas_deleted > 4294967295: # noqa: E501 raise ValueError("Invalid value for `quotas_deleted`, must be a value less than or equal to `4294967295`") # noqa: E501 if quotas_deleted is not None and quotas_deleted < 0: # noqa: E501 raise ValueError("Invalid value for `quotas_deleted`, must be a value greater than or equal to `0`") # noqa: E501 self._quotas_deleted = quotas_deleted @property def regular_files_replicated(self): """Gets the regular_files_replicated of this TargetReport. # noqa: E501 The number of regular files replicated by this job. # noqa: E501 :return: The regular_files_replicated of this TargetReport. # noqa: E501 :rtype: int """ return self._regular_files_replicated @regular_files_replicated.setter def regular_files_replicated(self, regular_files_replicated): """Sets the regular_files_replicated of this TargetReport. The number of regular files replicated by this job. # noqa: E501 :param regular_files_replicated: The regular_files_replicated of this TargetReport. # noqa: E501 :type: int """ if regular_files_replicated is None: raise ValueError("Invalid value for `regular_files_replicated`, must not be `None`") # noqa: E501 if regular_files_replicated is not None and regular_files_replicated > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `regular_files_replicated`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if regular_files_replicated is not None and regular_files_replicated < 0: # noqa: E501 raise ValueError("Invalid value for `regular_files_replicated`, must be a value greater than or equal to `0`") # noqa: E501 self._regular_files_replicated = regular_files_replicated @property def resynced_lins(self): """Gets the resynced_lins of this TargetReport. # noqa: E501 The number of LINs resynched by this job. # noqa: E501 :return: The resynced_lins of this TargetReport. # noqa: E501 :rtype: int """ return self._resynced_lins @resynced_lins.setter def resynced_lins(self, resynced_lins): """Sets the resynced_lins of this TargetReport. The number of LINs resynched by this job. # noqa: E501 :param resynced_lins: The resynced_lins of this TargetReport. # noqa: E501 :type: int """ if resynced_lins is None: raise ValueError("Invalid value for `resynced_lins`, must not be `None`") # noqa: E501 if resynced_lins is not None and resynced_lins > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `resynced_lins`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if resynced_lins is not None and resynced_lins < 0: # noqa: E501 raise ValueError("Invalid value for `resynced_lins`, must be a value greater than or equal to `0`") # noqa: E501 self._resynced_lins = resynced_lins @property def retransmitted_files(self): """Gets the retransmitted_files of this TargetReport. # noqa: E501 The files that have been retransmitted by this job. # noqa: E501 :return: The retransmitted_files of this TargetReport. # noqa: E501 :rtype: list[str] """ return self._retransmitted_files @retransmitted_files.setter def retransmitted_files(self, retransmitted_files): """Sets the retransmitted_files of this TargetReport. The files that have been retransmitted by this job. # noqa: E501 :param retransmitted_files: The retransmitted_files of this TargetReport. # noqa: E501 :type: list[str] """ if retransmitted_files is None: raise ValueError("Invalid value for `retransmitted_files`, must not be `None`") # noqa: E501 self._retransmitted_files = retransmitted_files @property def retry(self): """Gets the retry of this TargetReport. # noqa: E501 The number of times the job has been retried. # noqa: E501 :return: The retry of this TargetReport. # noqa: E501 :rtype: int """ return self._retry @retry.setter def retry(self, retry): """Sets the retry of this TargetReport. The number of times the job has been retried. # noqa: E501 :param retry: The retry of this TargetReport. # noqa: E501 :type: int """ if retry is None: raise ValueError("Invalid value for `retry`, must not be `None`") # noqa: E501 if retry is not None and retry > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `retry`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if retry is not None and retry < 0: # noqa: E501 raise ValueError("Invalid value for `retry`, must be a value greater than or equal to `0`") # noqa: E501 self._retry = retry @property def running_chunks(self): """Gets the running_chunks of this TargetReport. # noqa: E501 The number of data chunks currently being transmitted. # noqa: E501 :return: The running_chunks of this TargetReport. # noqa: E501 :rtype: int """ return self._running_chunks @running_chunks.setter def running_chunks(self, running_chunks): """Sets the running_chunks of this TargetReport. The number of data chunks currently being transmitted. # noqa: E501 :param running_chunks: The running_chunks of this TargetReport. # noqa: E501 :type: int """ if running_chunks is None: raise ValueError("Invalid value for `running_chunks`, must not be `None`") # noqa: E501 if running_chunks is not None and running_chunks > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `running_chunks`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if running_chunks is not None and running_chunks < 0: # noqa: E501 raise ValueError("Invalid value for `running_chunks`, must be a value greater than or equal to `0`") # noqa: E501 self._running_chunks = running_chunks @property def service_report(self): """Gets the service_report of this TargetReport. # noqa: E501 Data for each component exported as part of service replication. # noqa: E501 :return: The service_report of this TargetReport. # noqa: E501 :rtype: list[SyncJobServiceReportItem] """ return self._service_report @service_report.setter def service_report(self, service_report): """Sets the service_report of this TargetReport. Data for each component exported as part of service replication. # noqa: E501 :param service_report: The service_report of this TargetReport. # noqa: E501 :type: list[SyncJobServiceReportItem] """ self._service_report = service_report @property def sockets_replicated(self): """Gets the sockets_replicated of this TargetReport. # noqa: E501 The number of sockets replicated by this job. # noqa: E501 :return: The sockets_replicated of this TargetReport. # noqa: E501 :rtype: int """ return self._sockets_replicated @sockets_replicated.setter def sockets_replicated(self, sockets_replicated): """Sets the sockets_replicated of this TargetReport. The number of sockets replicated by this job. # noqa: E501 :param sockets_replicated: The sockets_replicated of this TargetReport. # noqa: E501 :type: int """ if sockets_replicated is None: raise ValueError("Invalid value for `sockets_replicated`, must not be `None`") # noqa: E501 if sockets_replicated is not None and sockets_replicated > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `sockets_replicated`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if sockets_replicated is not None and sockets_replicated < 0: # noqa: E501 raise ValueError("Invalid value for `sockets_replicated`, must be a value greater than or equal to `0`") # noqa: E501 self._sockets_replicated = sockets_replicated @property def source_bytes_recovered(self): """Gets the source_bytes_recovered of this TargetReport. # noqa: E501 The number of bytes recovered on the source. # noqa: E501 :return: The source_bytes_recovered of this TargetReport. # noqa: E501 :rtype: int """ return self._source_bytes_recovered @source_bytes_recovered.setter def source_bytes_recovered(self, source_bytes_recovered): """Sets the source_bytes_recovered of this TargetReport. The number of bytes recovered on the source. # noqa: E501 :param source_bytes_recovered: The source_bytes_recovered of this TargetReport. # noqa: E501 :type: int """ if source_bytes_recovered is None: raise ValueError("Invalid value for `source_bytes_recovered`, must not be `None`") # noqa: E501 if source_bytes_recovered is not None and source_bytes_recovered > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `source_bytes_recovered`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if source_bytes_recovered is not None and source_bytes_recovered < 0: # noqa: E501 raise ValueError("Invalid value for `source_bytes_recovered`, must be a value greater than or equal to `0`") # noqa: E501 self._source_bytes_recovered = source_bytes_recovered @property def source_directories_created(self): """Gets the source_directories_created of this TargetReport. # noqa: E501 The number of directories created on the source. # noqa: E501 :return: The source_directories_created of this TargetReport. # noqa: E501 :rtype: int """ return self._source_directories_created @source_directories_created.setter def source_directories_created(self, source_directories_created): """Sets the source_directories_created of this TargetReport. The number of directories created on the source. # noqa: E501 :param source_directories_created: The source_directories_created of this TargetReport. # noqa: E501 :type: int """ if source_directories_created is None: raise ValueError("Invalid value for `source_directories_created`, must not be `None`") # noqa: E501 if source_directories_created is not None and source_directories_created > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `source_directories_created`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if source_directories_created is not None and source_directories_created < 0: # noqa: E501 raise ValueError("Invalid value for `source_directories_created`, must be a value greater than or equal to `0`") # noqa: E501 self._source_directories_created = source_directories_created @property def source_directories_deleted(self): """Gets the source_directories_deleted of this TargetReport. # noqa: E501 The number of directories deleted on the source. # noqa: E501 :return: The source_directories_deleted of this TargetReport. # noqa: E501 :rtype: int """ return self._source_directories_deleted @source_directories_deleted.setter def source_directories_deleted(self, source_directories_deleted): """Sets the source_directories_deleted of this TargetReport. The number of directories deleted on the source. # noqa: E501 :param source_directories_deleted: The source_directories_deleted of this TargetReport. # noqa: E501 :type: int """ if source_directories_deleted is None: raise ValueError("Invalid value for `source_directories_deleted`, must not be `None`") # noqa: E501 if source_directories_deleted is not None and source_directories_deleted > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `source_directories_deleted`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if source_directories_deleted is not None and source_directories_deleted < 0: # noqa: E501 raise ValueError("Invalid value for `source_directories_deleted`, must be a value greater than or equal to `0`") # noqa: E501 self._source_directories_deleted = source_directories_deleted @property def source_directories_linked(self): """Gets the source_directories_linked of this TargetReport. # noqa: E501 The number of directories linked on the source. # noqa: E501 :return: The source_directories_linked of this TargetReport. # noqa: E501 :rtype: int """ return self._source_directories_linked @source_directories_linked.setter def source_directories_linked(self, source_directories_linked): """Sets the source_directories_linked of this TargetReport. The number of directories linked on the source. # noqa: E501 :param source_directories_linked: The source_directories_linked of this TargetReport. # noqa: E501 :type: int """ if source_directories_linked is None: raise ValueError("Invalid value for `source_directories_linked`, must not be `None`") # noqa: E501 if source_directories_linked is not None and source_directories_linked > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `source_directories_linked`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if source_directories_linked is not None and source_directories_linked < 0: # noqa: E501 raise ValueError("Invalid value for `source_directories_linked`, must be a value greater than or equal to `0`") # noqa: E501 self._source_directories_linked = source_directories_linked @property def source_directories_unlinked(self): """Gets the source_directories_unlinked of this TargetReport. # noqa: E501 The number of directories unlinked on the source. # noqa: E501 :return: The source_directories_unlinked of this TargetReport. # noqa: E501 :rtype: int """ return self._source_directories_unlinked @source_directories_unlinked.setter def source_directories_unlinked(self, source_directories_unlinked): """Sets the source_directories_unlinked of this TargetReport. The number of directories unlinked on the source. # noqa: E501 :param source_directories_unlinked: The source_directories_unlinked of this TargetReport. # noqa: E501 :type: int """ if source_directories_unlinked is None: raise ValueError("Invalid value for `source_directories_unlinked`, must not be `None`") # noqa: E501 if source_directories_unlinked is not None and source_directories_unlinked > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `source_directories_unlinked`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if source_directories_unlinked is not None and source_directories_unlinked < 0: # noqa: E501 raise ValueError("Invalid value for `source_directories_unlinked`, must be a value greater than or equal to `0`") # noqa: E501 self._source_directories_unlinked = source_directories_unlinked @property def source_directories_visited(self): """Gets the source_directories_visited of this TargetReport. # noqa: E501 The number of directories visited on the source. # noqa: E501 :return: The source_directories_visited of this TargetReport. # noqa: E501 :rtype: int """ return self._source_directories_visited @source_directories_visited.setter def source_directories_visited(self, source_directories_visited): """Sets the source_directories_visited of this TargetReport. The number of directories visited on the source. # noqa: E501 :param source_directories_visited: The source_directories_visited of this TargetReport. # noqa: E501 :type: int """ if source_directories_visited is None: raise ValueError("Invalid value for `source_directories_visited`, must not be `None`") # noqa: E501 if source_directories_visited is not None and source_directories_visited > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `source_directories_visited`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if source_directories_visited is not None and source_directories_visited < 0: # noqa: E501 raise ValueError("Invalid value for `source_directories_visited`, must be a value greater than or equal to `0`") # noqa: E501 self._source_directories_visited = source_directories_visited @property def source_files_deleted(self): """Gets the source_files_deleted of this TargetReport. # noqa: E501 The number of files deleted on the source. # noqa: E501 :return: The source_files_deleted of this TargetReport. # noqa: E501 :rtype: int """ return self._source_files_deleted @source_files_deleted.setter def source_files_deleted(self, source_files_deleted): """Sets the source_files_deleted of this TargetReport. The number of files deleted on the source. # noqa: E501 :param source_files_deleted: The source_files_deleted of this TargetReport. # noqa: E501 :type: int """ if source_files_deleted is None: raise ValueError("Invalid value for `source_files_deleted`, must not be `None`") # noqa: E501 if source_files_deleted is not None and source_files_deleted > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `source_files_deleted`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if source_files_deleted is not None and source_files_deleted < 0: # noqa: E501 raise ValueError("Invalid value for `source_files_deleted`, must be a value greater than or equal to `0`") # noqa: E501 self._source_files_deleted = source_files_deleted @property def source_files_linked(self): """Gets the source_files_linked of this TargetReport. # noqa: E501 The number of files linked on the source. # noqa: E501 :return: The source_files_linked of this TargetReport. # noqa: E501 :rtype: int """ return self._source_files_linked @source_files_linked.setter def source_files_linked(self, source_files_linked): """Sets the source_files_linked of this TargetReport. The number of files linked on the source. # noqa: E501 :param source_files_linked: The source_files_linked of this TargetReport. # noqa: E501 :type: int """ if source_files_linked is None: raise ValueError("Invalid value for `source_files_linked`, must not be `None`") # noqa: E501 if source_files_linked is not None and source_files_linked > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `source_files_linked`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if source_files_linked is not None and source_files_linked < 0: # noqa: E501 raise ValueError("Invalid value for `source_files_linked`, must be a value greater than or equal to `0`") # noqa: E501 self._source_files_linked = source_files_linked @property def source_files_unlinked(self): """Gets the source_files_unlinked of this TargetReport. # noqa: E501 The number of files unlinked on the source. # noqa: E501 :return: The source_files_unlinked of this TargetReport. # noqa: E501 :rtype: int """ return self._source_files_unlinked @source_files_unlinked.setter def source_files_unlinked(self, source_files_unlinked): """Sets the source_files_unlinked of this TargetReport. The number of files unlinked on the source. # noqa: E501 :param source_files_unlinked: The source_files_unlinked of this TargetReport. # noqa: E501 :type: int """ if source_files_unlinked is None: raise ValueError("Invalid value for `source_files_unlinked`, must not be `None`") # noqa: E501 if source_files_unlinked is not None and source_files_unlinked > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `source_files_unlinked`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if source_files_unlinked is not None and source_files_unlinked < 0: # noqa: E501 raise ValueError("Invalid value for `source_files_unlinked`, must be a value greater than or equal to `0`") # noqa: E501 self._source_files_unlinked = source_files_unlinked @property def source_host(self): """Gets the source_host of this TargetReport. # noqa: E501 Hostname or IP address of sync source cluster. # noqa: E501 :return: The source_host of this TargetReport. # noqa: E501 :rtype: str """ return self._source_host @source_host.setter def source_host(self, source_host): """Sets the source_host of this TargetReport. Hostname or IP address of sync source cluster. # noqa: E501 :param source_host: The source_host of this TargetReport. # noqa: E501 :type: str """ if source_host is None: raise ValueError("Invalid value for `source_host`, must not be `None`") # noqa: E501 if source_host is not None and len(source_host) > 255: raise ValueError("Invalid value for `source_host`, length must be less than or equal to `255`") # noqa: E501 if source_host is not None and len(source_host) < 0: raise ValueError("Invalid value for `source_host`, length must be greater than or equal to `0`") # noqa: E501 self._source_host = source_host @property def sparse_data_bytes(self): """Gets the sparse_data_bytes of this TargetReport. # noqa: E501 The number of sparse data bytes transferred by this job. # noqa: E501 :return: The sparse_data_bytes of this TargetReport. # noqa: E501 :rtype: int """ return self._sparse_data_bytes @sparse_data_bytes.setter def sparse_data_bytes(self, sparse_data_bytes): """Sets the sparse_data_bytes of this TargetReport. The number of sparse data bytes transferred by this job. # noqa: E501 :param sparse_data_bytes: The sparse_data_bytes of this TargetReport. # noqa: E501 :type: int """ if sparse_data_bytes is None: raise ValueError("Invalid value for `sparse_data_bytes`, must not be `None`") # noqa: E501 if sparse_data_bytes is not None and sparse_data_bytes > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `sparse_data_bytes`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if sparse_data_bytes is not None and sparse_data_bytes < 0: # noqa: E501 raise ValueError("Invalid value for `sparse_data_bytes`, must be a value greater than or equal to `0`") # noqa: E501 self._sparse_data_bytes = sparse_data_bytes @property def start_time(self): """Gets the start_time of this TargetReport. # noqa: E501 The time the job started in unix epoch seconds. The field is null if the job hasn't started. # noqa: E501 :return: The start_time of this TargetReport. # noqa: E501 :rtype: int """ return self._start_time @start_time.setter def start_time(self, start_time): """Sets the start_time of this TargetReport. The time the job started in unix epoch seconds. The field is null if the job hasn't started. # noqa: E501 :param start_time: The start_time of this TargetReport. # noqa: E501 :type: int """ if start_time is not None and start_time > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `start_time`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if start_time is not None and start_time < 0: # noqa: E501 raise ValueError("Invalid value for `start_time`, must be a value greater than or equal to `0`") # noqa: E501 self._start_time = start_time @property def state(self): """Gets the state of this TargetReport. # noqa: E501 The state of the job. # noqa: E501 :return: The state of this TargetReport. # noqa: E501 :rtype: str """ return self._state @state.setter def state(self, state): """Sets the state of this TargetReport. The state of the job. # noqa: E501 :param state: The state of this TargetReport. # noqa: E501 :type: str """ if state is None: raise ValueError("Invalid value for `state`, must not be `None`") # noqa: E501 allowed_values = ["scheduled", "running", "paused", "finished", "failed", "canceled", "needs_attention", "skipped", "pending", "unknown"] # noqa: E501 if state not in allowed_values: raise ValueError( "Invalid value for `state` ({0}), must be one of {1}" # noqa: E501 .format(state, allowed_values) ) self._state = state @property def subreport_count(self): """Gets the subreport_count of this TargetReport. # noqa: E501 The number of subreports that are available for this job report. # noqa: E501 :return: The subreport_count of this TargetReport. # noqa: E501 :rtype: int """ return self._subreport_count @subreport_count.setter def subreport_count(self, subreport_count): """Sets the subreport_count of this TargetReport. The number of subreports that are available for this job report. # noqa: E501 :param subreport_count: The subreport_count of this TargetReport. # noqa: E501 :type: int """ if subreport_count is None: raise ValueError("Invalid value for `subreport_count`, must not be `None`") # noqa: E501 if subreport_count is not None and subreport_count > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `subreport_count`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if subreport_count is not None and subreport_count < 0: # noqa: E501 raise ValueError("Invalid value for `subreport_count`, must be a value greater than or equal to `0`") # noqa: E501 self._subreport_count = subreport_count @property def succeeded_chunks(self): """Gets the succeeded_chunks of this TargetReport. # noqa: E501 The number of data chunks that have been transmitted successfully. # noqa: E501 :return: The succeeded_chunks of this TargetReport. # noqa: E501 :rtype: int """ return self._succeeded_chunks @succeeded_chunks.setter def succeeded_chunks(self, succeeded_chunks): """Sets the succeeded_chunks of this TargetReport. The number of data chunks that have been transmitted successfully. # noqa: E501 :param succeeded_chunks: The succeeded_chunks of this TargetReport. # noqa: E501 :type: int """ if succeeded_chunks is None: raise ValueError("Invalid value for `succeeded_chunks`, must not be `None`") # noqa: E501 if succeeded_chunks is not None and succeeded_chunks > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `succeeded_chunks`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if succeeded_chunks is not None and succeeded_chunks < 0: # noqa: E501 raise ValueError("Invalid value for `succeeded_chunks`, must be a value greater than or equal to `0`") # noqa: E501 self._succeeded_chunks = succeeded_chunks @property def symlinks_replicated(self): """Gets the symlinks_replicated of this TargetReport. # noqa: E501 The number of symlinks replicated by this job. # noqa: E501 :return: The symlinks_replicated of this TargetReport. # noqa: E501 :rtype: int """ return self._symlinks_replicated @symlinks_replicated.setter def symlinks_replicated(self, symlinks_replicated): """Sets the symlinks_replicated of this TargetReport. The number of symlinks replicated by this job. # noqa: E501 :param symlinks_replicated: The symlinks_replicated of this TargetReport. # noqa: E501 :type: int """ if symlinks_replicated is None: raise ValueError("Invalid value for `symlinks_replicated`, must not be `None`") # noqa: E501 if symlinks_replicated is not None and symlinks_replicated > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `symlinks_replicated`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if symlinks_replicated is not None and symlinks_replicated < 0: # noqa: E501 raise ValueError("Invalid value for `symlinks_replicated`, must be a value greater than or equal to `0`") # noqa: E501 self._symlinks_replicated = symlinks_replicated @property def sync_type(self): """Gets the sync_type of this TargetReport. # noqa: E501 The type of sync being performed by this job. # noqa: E501 :return: The sync_type of this TargetReport. # noqa: E501 :rtype: str """ return self._sync_type @sync_type.setter def sync_type(self, sync_type): """Sets the sync_type of this TargetReport. The type of sync being performed by this job. # noqa: E501 :param sync_type: The sync_type of this TargetReport. # noqa: E501 :type: str """ if sync_type is None: raise ValueError("Invalid value for `sync_type`, must not be `None`") # noqa: E501 allowed_values = ["invalid", "legacy", "initial", "incremental", "upgrade", "fofb", "domainmark"] # noqa: E501 if sync_type not in allowed_values: raise ValueError( "Invalid value for `sync_type` ({0}), must be one of {1}" # noqa: E501 .format(sync_type, allowed_values) ) self._sync_type = sync_type @property def target_bytes_recovered(self): """Gets the target_bytes_recovered of this TargetReport. # noqa: E501 The number of bytes recovered on the target. # noqa: E501 :return: The target_bytes_recovered of this TargetReport. # noqa: E501 :rtype: int """ return self._target_bytes_recovered @target_bytes_recovered.setter def target_bytes_recovered(self, target_bytes_recovered): """Sets the target_bytes_recovered of this TargetReport. The number of bytes recovered on the target. # noqa: E501 :param target_bytes_recovered: The target_bytes_recovered of this TargetReport. # noqa: E501 :type: int """ if target_bytes_recovered is None: raise ValueError("Invalid value for `target_bytes_recovered`, must not be `None`") # noqa: E501 if target_bytes_recovered is not None and target_bytes_recovered > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `target_bytes_recovered`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if target_bytes_recovered is not None and target_bytes_recovered < 0: # noqa: E501 raise ValueError("Invalid value for `target_bytes_recovered`, must be a value greater than or equal to `0`") # noqa: E501 self._target_bytes_recovered = target_bytes_recovered @property def target_directories_created(self): """Gets the target_directories_created of this TargetReport. # noqa: E501 The number of directories created on the target. # noqa: E501 :return: The target_directories_created of this TargetReport. # noqa: E501 :rtype: int """ return self._target_directories_created @target_directories_created.setter def target_directories_created(self, target_directories_created): """Sets the target_directories_created of this TargetReport. The number of directories created on the target. # noqa: E501 :param target_directories_created: The target_directories_created of this TargetReport. # noqa: E501 :type: int """ if target_directories_created is None: raise ValueError("Invalid value for `target_directories_created`, must not be `None`") # noqa: E501 if target_directories_created is not None and target_directories_created > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `target_directories_created`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if target_directories_created is not None and target_directories_created < 0: # noqa: E501 raise ValueError("Invalid value for `target_directories_created`, must be a value greater than or equal to `0`") # noqa: E501 self._target_directories_created = target_directories_created @property def target_directories_deleted(self): """Gets the target_directories_deleted of this TargetReport. # noqa: E501 The number of directories deleted on the target. # noqa: E501 :return: The target_directories_deleted of this TargetReport. # noqa: E501 :rtype: int """ return self._target_directories_deleted @target_directories_deleted.setter def target_directories_deleted(self, target_directories_deleted): """Sets the target_directories_deleted of this TargetReport. The number of directories deleted on the target. # noqa: E501 :param target_directories_deleted: The target_directories_deleted of this TargetReport. # noqa: E501 :type: int """ if target_directories_deleted is None: raise ValueError("Invalid value for `target_directories_deleted`, must not be `None`") # noqa: E501 if target_directories_deleted is not None and target_directories_deleted > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `target_directories_deleted`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if target_directories_deleted is not None and target_directories_deleted < 0: # noqa: E501 raise ValueError("Invalid value for `target_directories_deleted`, must be a value greater than or equal to `0`") # noqa: E501 self._target_directories_deleted = target_directories_deleted @property def target_directories_linked(self): """Gets the target_directories_linked of this TargetReport. # noqa: E501 The number of directories linked on the target. # noqa: E501 :return: The target_directories_linked of this TargetReport. # noqa: E501 :rtype: int """ return self._target_directories_linked @target_directories_linked.setter def target_directories_linked(self, target_directories_linked): """Sets the target_directories_linked of this TargetReport. The number of directories linked on the target. # noqa: E501 :param target_directories_linked: The target_directories_linked of this TargetReport. # noqa: E501 :type: int """ if target_directories_linked is None: raise ValueError("Invalid value for `target_directories_linked`, must not be `None`") # noqa: E501 if target_directories_linked is not None and target_directories_linked > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `target_directories_linked`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if target_directories_linked is not None and target_directories_linked < 0: # noqa: E501 raise ValueError("Invalid value for `target_directories_linked`, must be a value greater than or equal to `0`") # noqa: E501 self._target_directories_linked = target_directories_linked @property def target_directories_unlinked(self): """Gets the target_directories_unlinked of this TargetReport. # noqa: E501 The number of directories unlinked on the target. # noqa: E501 :return: The target_directories_unlinked of this TargetReport. # noqa: E501 :rtype: int """ return self._target_directories_unlinked @target_directories_unlinked.setter def target_directories_unlinked(self, target_directories_unlinked): """Sets the target_directories_unlinked of this TargetReport. The number of directories unlinked on the target. # noqa: E501 :param target_directories_unlinked: The target_directories_unlinked of this TargetReport. # noqa: E501 :type: int """ if target_directories_unlinked is None: raise ValueError("Invalid value for `target_directories_unlinked`, must not be `None`") # noqa: E501 if target_directories_unlinked is not None and target_directories_unlinked > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `target_directories_unlinked`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if target_directories_unlinked is not None and target_directories_unlinked < 0: # noqa: E501 raise ValueError("Invalid value for `target_directories_unlinked`, must be a value greater than or equal to `0`") # noqa: E501 self._target_directories_unlinked = target_directories_unlinked @property def target_files_deleted(self): """Gets the target_files_deleted of this TargetReport. # noqa: E501 The number of files deleted on the target. # noqa: E501 :return: The target_files_deleted of this TargetReport. # noqa: E501 :rtype: int """ return self._target_files_deleted @target_files_deleted.setter def target_files_deleted(self, target_files_deleted): """Sets the target_files_deleted of this TargetReport. The number of files deleted on the target. # noqa: E501 :param target_files_deleted: The target_files_deleted of this TargetReport. # noqa: E501 :type: int """ if target_files_deleted is None: raise ValueError("Invalid value for `target_files_deleted`, must not be `None`") # noqa: E501 if target_files_deleted is not None and target_files_deleted > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `target_files_deleted`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if target_files_deleted is not None and target_files_deleted < 0: # noqa: E501 raise ValueError("Invalid value for `target_files_deleted`, must be a value greater than or equal to `0`") # noqa: E501 self._target_files_deleted = target_files_deleted @property def target_files_linked(self): """Gets the target_files_linked of this TargetReport. # noqa: E501 The number of files linked on the target. # noqa: E501 :return: The target_files_linked of this TargetReport. # noqa: E501 :rtype: int """ return self._target_files_linked @target_files_linked.setter def target_files_linked(self, target_files_linked): """Sets the target_files_linked of this TargetReport. The number of files linked on the target. # noqa: E501 :param target_files_linked: The target_files_linked of this TargetReport. # noqa: E501 :type: int """ if target_files_linked is None: raise ValueError("Invalid value for `target_files_linked`, must not be `None`") # noqa: E501 if target_files_linked is not None and target_files_linked > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `target_files_linked`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if target_files_linked is not None and target_files_linked < 0: # noqa: E501 raise ValueError("Invalid value for `target_files_linked`, must be a value greater than or equal to `0`") # noqa: E501 self._target_files_linked = target_files_linked @property def target_files_unlinked(self): """Gets the target_files_unlinked of this TargetReport. # noqa: E501 The number of files unlinked on the target. # noqa: E501 :return: The target_files_unlinked of this TargetReport. # noqa: E501 :rtype: int """ return self._target_files_unlinked @target_files_unlinked.setter def target_files_unlinked(self, target_files_unlinked): """Sets the target_files_unlinked of this TargetReport. The number of files unlinked on the target. # noqa: E501 :param target_files_unlinked: The target_files_unlinked of this TargetReport. # noqa: E501 :type: int """ if target_files_unlinked is None: raise ValueError("Invalid value for `target_files_unlinked`, must not be `None`") # noqa: E501 if target_files_unlinked is not None and target_files_unlinked > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `target_files_unlinked`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if target_files_unlinked is not None and target_files_unlinked < 0: # noqa: E501 raise ValueError("Invalid value for `target_files_unlinked`, must be a value greater than or equal to `0`") # noqa: E501 self._target_files_unlinked = target_files_unlinked @property def target_path(self): """Gets the target_path of this TargetReport. # noqa: E501 Absolute filesystem path on the target cluster for the sync destination. # noqa: E501 :return: The target_path of this TargetReport. # noqa: E501 :rtype: str """ return self._target_path @target_path.setter def target_path(self, target_path): """Sets the target_path of this TargetReport. Absolute filesystem path on the target cluster for the sync destination. # noqa: E501 :param target_path: The target_path of this TargetReport. # noqa: E501 :type: str """ if target_path is None: raise ValueError("Invalid value for `target_path`, must not be `None`") # noqa: E501 if target_path is not None and len(target_path) > 255: raise ValueError("Invalid value for `target_path`, length must be less than or equal to `255`") # noqa: E501 if target_path is not None and len(target_path) < 0: raise ValueError("Invalid value for `target_path`, length must be greater than or equal to `0`") # noqa: E501 self._target_path = target_path @property def target_snapshots(self): """Gets the target_snapshots of this TargetReport. # noqa: E501 The target snapshots created by this job. # noqa: E501 :return: The target_snapshots of this TargetReport. # noqa: E501 :rtype: list[str] """ return self._target_snapshots @target_snapshots.setter def target_snapshots(self, target_snapshots): """Sets the target_snapshots of this TargetReport. The target snapshots created by this job. # noqa: E501 :param target_snapshots: The target_snapshots of this TargetReport. # noqa: E501 :type: list[str] """ if target_snapshots is None: raise ValueError("Invalid value for `target_snapshots`, must not be `None`") # noqa: E501 self._target_snapshots = target_snapshots @property def total_chunks(self): """Gets the total_chunks of this TargetReport. # noqa: E501 The total number of data chunks transmitted by this job. # noqa: E501 :return: The total_chunks of this TargetReport. # noqa: E501 :rtype: int """ return self._total_chunks @total_chunks.setter def total_chunks(self, total_chunks): """Sets the total_chunks of this TargetReport. The total number of data chunks transmitted by this job. # noqa: E501 :param total_chunks: The total_chunks of this TargetReport. # noqa: E501 :type: int """ if total_chunks is None: raise ValueError("Invalid value for `total_chunks`, must not be `None`") # noqa: E501 if total_chunks is not None and total_chunks > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `total_chunks`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if total_chunks is not None and total_chunks < 0: # noqa: E501 raise ValueError("Invalid value for `total_chunks`, must be a value greater than or equal to `0`") # noqa: E501 self._total_chunks = total_chunks @property def total_data_bytes(self): """Gets the total_data_bytes of this TargetReport. # noqa: E501 The total number of bytes transferred by this job. # noqa: E501 :return: The total_data_bytes of this TargetReport. # noqa: E501 :rtype: int """ return self._total_data_bytes @total_data_bytes.setter def total_data_bytes(self, total_data_bytes): """Sets the total_data_bytes of this TargetReport. The total number of bytes transferred by this job. # noqa: E501 :param total_data_bytes: The total_data_bytes of this TargetReport. # noqa: E501 :type: int """ if total_data_bytes is None: raise ValueError("Invalid value for `total_data_bytes`, must not be `None`") # noqa: E501 if total_data_bytes is not None and total_data_bytes > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `total_data_bytes`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if total_data_bytes is not None and total_data_bytes < 0: # noqa: E501 raise ValueError("Invalid value for `total_data_bytes`, must be a value greater than or equal to `0`") # noqa: E501 self._total_data_bytes = total_data_bytes @property def total_exported_services(self): """Gets the total_exported_services of this TargetReport. # noqa: E501 The total number of components exported as part of service replication. # noqa: E501 :return: The total_exported_services of this TargetReport. # noqa: E501 :rtype: int """ return self._total_exported_services @total_exported_services.setter def total_exported_services(self, total_exported_services): """Sets the total_exported_services of this TargetReport. The total number of components exported as part of service replication. # noqa: E501 :param total_exported_services: The total_exported_services of this TargetReport. # noqa: E501 :type: int """ if total_exported_services is not None and total_exported_services > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `total_exported_services`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if total_exported_services is not None and total_exported_services < 0: # noqa: E501 raise ValueError("Invalid value for `total_exported_services`, must be a value greater than or equal to `0`") # noqa: E501 self._total_exported_services = total_exported_services @property def total_files(self): """Gets the total_files of this TargetReport. # noqa: E501 The number of files affected by this job. # noqa: E501 :return: The total_files of this TargetReport. # noqa: E501 :rtype: int """ return self._total_files @total_files.setter def total_files(self, total_files): """Sets the total_files of this TargetReport. The number of files affected by this job. # noqa: E501 :param total_files: The total_files of this TargetReport. # noqa: E501 :type: int """ if total_files is None: raise ValueError("Invalid value for `total_files`, must not be `None`") # noqa: E501 if total_files is not None and total_files > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `total_files`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if total_files is not None and total_files < 0: # noqa: E501 raise ValueError("Invalid value for `total_files`, must be a value greater than or equal to `0`") # noqa: E501 self._total_files = total_files @property def total_network_bytes(self): """Gets the total_network_bytes of this TargetReport. # noqa: E501 The total number of bytes sent over the network by this job. # noqa: E501 :return: The total_network_bytes of this TargetReport. # noqa: E501 :rtype: int """ return self._total_network_bytes @total_network_bytes.setter def total_network_bytes(self, total_network_bytes): """Sets the total_network_bytes of this TargetReport. The total number of bytes sent over the network by this job. # noqa: E501 :param total_network_bytes: The total_network_bytes of this TargetReport. # noqa: E501 :type: int """ if total_network_bytes is None: raise ValueError("Invalid value for `total_network_bytes`, must not be `None`") # noqa: E501 if total_network_bytes is not None and total_network_bytes > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `total_network_bytes`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if total_network_bytes is not None and total_network_bytes < 0: # noqa: E501 raise ValueError("Invalid value for `total_network_bytes`, must be a value greater than or equal to `0`") # noqa: E501 self._total_network_bytes = total_network_bytes @property def total_phases(self): """Gets the total_phases of this TargetReport. # noqa: E501 The total number of phases for this job. # noqa: E501 :return: The total_phases of this TargetReport. # noqa: E501 :rtype: int """ return self._total_phases @total_phases.setter def total_phases(self, total_phases): """Sets the total_phases of this TargetReport. The total number of phases for this job. # noqa: E501 :param total_phases: The total_phases of this TargetReport. # noqa: E501 :type: int """ if total_phases is None: raise ValueError("Invalid value for `total_phases`, must not be `None`") # noqa: E501 if total_phases is not None and total_phases > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `total_phases`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if total_phases is not None and total_phases < 0: # noqa: E501 raise ValueError("Invalid value for `total_phases`, must be a value greater than or equal to `0`") # noqa: E501 self._total_phases = total_phases @property def unchanged_data_bytes(self): """Gets the unchanged_data_bytes of this TargetReport. # noqa: E501 The number of bytes unchanged by this job. # noqa: E501 :return: The unchanged_data_bytes of this TargetReport. # noqa: E501 :rtype: int """ return self._unchanged_data_bytes @unchanged_data_bytes.setter def unchanged_data_bytes(self, unchanged_data_bytes): """Sets the unchanged_data_bytes of this TargetReport. The number of bytes unchanged by this job. # noqa: E501 :param unchanged_data_bytes: The unchanged_data_bytes of this TargetReport. # noqa: E501 :type: int """ if unchanged_data_bytes is None: raise ValueError("Invalid value for `unchanged_data_bytes`, must not be `None`") # noqa: E501 if unchanged_data_bytes is not None and unchanged_data_bytes > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `unchanged_data_bytes`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if unchanged_data_bytes is not None and unchanged_data_bytes < 0: # noqa: E501 raise ValueError("Invalid value for `unchanged_data_bytes`, must be a value greater than or equal to `0`") # noqa: E501 self._unchanged_data_bytes = unchanged_data_bytes @property def up_to_date_files_skipped(self): """Gets the up_to_date_files_skipped of this TargetReport. # noqa: E501 The number of up-to-date files skipped by this job. # noqa: E501 :return: The up_to_date_files_skipped of this TargetReport. # noqa: E501 :rtype: int """ return self._up_to_date_files_skipped @up_to_date_files_skipped.setter def up_to_date_files_skipped(self, up_to_date_files_skipped): """Sets the up_to_date_files_skipped of this TargetReport. The number of up-to-date files skipped by this job. # noqa: E501 :param up_to_date_files_skipped: The up_to_date_files_skipped of this TargetReport. # noqa: E501 :type: int """ if up_to_date_files_skipped is None: raise ValueError("Invalid value for `up_to_date_files_skipped`, must not be `None`") # noqa: E501 if up_to_date_files_skipped is not None and up_to_date_files_skipped > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `up_to_date_files_skipped`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if up_to_date_files_skipped is not None and up_to_date_files_skipped < 0: # noqa: E501 raise ValueError("Invalid value for `up_to_date_files_skipped`, must be a value greater than or equal to `0`") # noqa: E501 self._up_to_date_files_skipped = up_to_date_files_skipped @property def updated_files_replicated(self): """Gets the updated_files_replicated of this TargetReport. # noqa: E501 The number of updated files replicated by this job. # noqa: E501 :return: The updated_files_replicated of this TargetReport. # noqa: E501 :rtype: int """ return self._updated_files_replicated @updated_files_replicated.setter def updated_files_replicated(self, updated_files_replicated): """Sets the updated_files_replicated of this TargetReport. The number of updated files replicated by this job. # noqa: E501 :param updated_files_replicated: The updated_files_replicated of this TargetReport. # noqa: E501 :type: int """ if updated_files_replicated is None: raise ValueError("Invalid value for `updated_files_replicated`, must not be `None`") # noqa: E501 if updated_files_replicated is not None and updated_files_replicated > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `updated_files_replicated`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if updated_files_replicated is not None and updated_files_replicated < 0: # noqa: E501 raise ValueError("Invalid value for `updated_files_replicated`, must be a value greater than or equal to `0`") # noqa: E501 self._updated_files_replicated = updated_files_replicated @property def user_conflict_files_skipped(self): """Gets the user_conflict_files_skipped of this TargetReport. # noqa: E501 The number of files with user conflicts skipped by this job. # noqa: E501 :return: The user_conflict_files_skipped of this TargetReport. # noqa: E501 :rtype: int """ return self._user_conflict_files_skipped @user_conflict_files_skipped.setter def user_conflict_files_skipped(self, user_conflict_files_skipped): """Sets the user_conflict_files_skipped of this TargetReport. The number of files with user conflicts skipped by this job. # noqa: E501 :param user_conflict_files_skipped: The user_conflict_files_skipped of this TargetReport. # noqa: E501 :type: int """ if user_conflict_files_skipped is None: raise ValueError("Invalid value for `user_conflict_files_skipped`, must not be `None`") # noqa: E501 if user_conflict_files_skipped is not None and user_conflict_files_skipped > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `user_conflict_files_skipped`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if user_conflict_files_skipped is not None and user_conflict_files_skipped < 0: # noqa: E501 raise ValueError("Invalid value for `user_conflict_files_skipped`, must be a value greater than or equal to `0`") # noqa: E501 self._user_conflict_files_skipped = user_conflict_files_skipped @property def warnings(self): """Gets the warnings of this TargetReport. # noqa: E501 A list of warning messages for this job. # noqa: E501 :return: The warnings of this TargetReport. # noqa: E501 :rtype: list[str] """ return self._warnings @warnings.setter def warnings(self, warnings): """Sets the warnings of this TargetReport. A list of warning messages for this job. # noqa: E501 :param warnings: The warnings of this TargetReport. # noqa: E501 :type: list[str] """ if warnings is None: raise ValueError("Invalid value for `warnings`, must not be `None`") # noqa: E501 self._warnings = warnings @property def worm_committed_file_conflicts(self): """Gets the worm_committed_file_conflicts of this TargetReport. # noqa: E501 The number of WORM committed files which needed to be reverted. Since WORM committed files cannot be reverted, this is the number of files that were preserved in the compliance store. # noqa: E501 :return: The worm_committed_file_conflicts of this TargetReport. # noqa: E501 :rtype: int """ return self._worm_committed_file_conflicts @worm_committed_file_conflicts.setter def worm_committed_file_conflicts(self, worm_committed_file_conflicts): """Sets the worm_committed_file_conflicts of this TargetReport. The number of WORM committed files which needed to be reverted. Since WORM committed files cannot be reverted, this is the number of files that were preserved in the compliance store. # noqa: E501 :param worm_committed_file_conflicts: The worm_committed_file_conflicts of this TargetReport. # noqa: E501 :type: int """ if worm_committed_file_conflicts is None: raise ValueError("Invalid value for `worm_committed_file_conflicts`, must not be `None`") # noqa: E501 if worm_committed_file_conflicts is not None and worm_committed_file_conflicts > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `worm_committed_file_conflicts`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if worm_committed_file_conflicts is not None and worm_committed_file_conflicts < 0: # noqa: E501 raise ValueError("Invalid value for `worm_committed_file_conflicts`, must be a value greater than or equal to `0`") # noqa: E501 self._worm_committed_file_conflicts = worm_committed_file_conflicts def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, TargetReport): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
44.862808
2,233
0.673667
3cf8b38a4f7f92e3858644586f8a992ef9769cfc
9,847
py
Python
tests/app/celery/test_contact_information_tasks.py
department-of-veterans-affairs/notification-api
698bc98d8e78a13a0b2cfc432cfc718ff1016b06
[ "MIT" ]
10
2020-05-04T14:11:06.000Z
2022-02-22T19:06:36.000Z
tests/app/celery/test_contact_information_tasks.py
department-of-veterans-affairs/notification-api
698bc98d8e78a13a0b2cfc432cfc718ff1016b06
[ "MIT" ]
554
2020-05-07T21:56:24.000Z
2022-03-31T23:04:51.000Z
tests/app/celery/test_contact_information_tasks.py
department-of-veterans-affairs/notification-api
698bc98d8e78a13a0b2cfc432cfc718ff1016b06
[ "MIT" ]
4
2020-08-27T16:43:29.000Z
2021-02-17T22:17:27.000Z
import uuid import pytest from app.celery.contact_information_tasks import lookup_contact_info from app.exceptions import NotificationTechnicalFailureException, NotificationPermanentFailureException from app.models import Notification, RecipientIdentifier, NOTIFICATION_TECHNICAL_FAILURE, \ NOTIFICATION_PERMANENT_FAILURE, LETTER_TYPE, EMAIL_TYPE, SMS_TYPE from app.va.identifier import IdentifierType from app.va.va_profile import VAProfileClient, VAProfileNonRetryableException, \ VAProfileRetryableException, NoContactInfoException EXAMPLE_VA_PROFILE_ID = '135' notification_id = str(uuid.uuid4()) @pytest.fixture(scope='function') def notification(): recipient_identifier = RecipientIdentifier( notification_id=notification_id, id_type=IdentifierType.VA_PROFILE_ID.value, id_value=EXAMPLE_VA_PROFILE_ID ) notification = Notification(id=notification_id) notification.recipient_identifiers.set(recipient_identifier) notification.notification_type = LETTER_TYPE return notification def test_should_get_email_address_and_update_notification(client, mocker, notification): notification.notification_type = EMAIL_TYPE mocked_get_notification_by_id = mocker.patch( 'app.celery.contact_information_tasks.get_notification_by_id', return_value=notification ) mocked_va_profile_client = mocker.Mock(VAProfileClient) mocked_va_profile_client.get_email = mocker.Mock(return_value='[email protected]') mocker.patch( 'app.celery.contact_information_tasks.va_profile_client', new=mocked_va_profile_client ) mocked_update_notification = mocker.patch( 'app.celery.contact_information_tasks.dao_update_notification' ) lookup_contact_info(notification.id) mocked_get_notification_by_id.assert_called() mocked_va_profile_client.get_email.assert_called_with(EXAMPLE_VA_PROFILE_ID) mocked_update_notification.assert_called_with(notification) assert notification.to == '[email protected]' def test_should_get_phone_number_and_update_notification(client, mocker, notification): notification.notification_type = SMS_TYPE mocked_get_notification_by_id = mocker.patch( 'app.celery.contact_information_tasks.get_notification_by_id', return_value=notification ) mocked_va_profile_client = mocker.Mock(VAProfileClient) mocked_va_profile_client.get_telephone = mocker.Mock(return_value='+15555555555') mocker.patch( 'app.celery.contact_information_tasks.va_profile_client', new=mocked_va_profile_client ) mocked_update_notification = mocker.patch( 'app.celery.contact_information_tasks.dao_update_notification' ) lookup_contact_info(notification.id) mocked_get_notification_by_id.assert_called() mocked_va_profile_client.get_telephone.assert_called_with(EXAMPLE_VA_PROFILE_ID) mocked_update_notification.assert_called_with(notification) assert notification.to == '+15555555555' def test_should_not_retry_on_non_retryable_exception(client, mocker, notification): notification.notification_type = EMAIL_TYPE mocker.patch( 'app.celery.contact_information_tasks.get_notification_by_id', return_value=notification ) mocked_va_profile_client = mocker.Mock(VAProfileClient) exception = VAProfileNonRetryableException mocked_va_profile_client.get_email = mocker.Mock(side_effect=exception) mocker.patch( 'app.celery.contact_information_tasks.va_profile_client', new=mocked_va_profile_client ) mocked_update_notification_status_by_id = mocker.patch( 'app.celery.contact_information_tasks.update_notification_status_by_id' ) mocked_retry = mocker.patch('app.celery.contact_information_tasks.lookup_contact_info.retry') with pytest.raises(NotificationPermanentFailureException): lookup_contact_info(notification.id) mocked_va_profile_client.get_email.assert_called_with(EXAMPLE_VA_PROFILE_ID) mocked_update_notification_status_by_id.assert_called_with( notification.id, NOTIFICATION_PERMANENT_FAILURE, status_reason=exception.failure_reason ) mocked_retry.assert_not_called() def test_should_retry_on_retryable_exception(client, mocker, notification): notification.notification_type = EMAIL_TYPE mocker.patch( 'app.celery.contact_information_tasks.get_notification_by_id', return_value=notification ) mocked_va_profile_client = mocker.Mock(VAProfileClient) mocked_va_profile_client.get_email = mocker.Mock(side_effect=VAProfileRetryableException('some error')) mocker.patch( 'app.celery.contact_information_tasks.va_profile_client', new=mocked_va_profile_client ) mocked_retry = mocker.patch('app.celery.contact_information_tasks.lookup_contact_info.retry') lookup_contact_info(notification.id) mocked_va_profile_client.get_email.assert_called_with(EXAMPLE_VA_PROFILE_ID) mocked_retry.assert_called() def test_should_update_notification_to_technical_failure_on_max_retries(client, mocker, notification): notification.notification_type = EMAIL_TYPE mocker.patch( 'app.celery.contact_information_tasks.get_notification_by_id', return_value=notification ) mocked_va_profile_client = mocker.Mock(VAProfileClient) exception = VAProfileRetryableException( 'RETRY FAILED: Max retries reached. ' f'The task lookup_contact_info failed for notification {notification_id}. ' 'Notification has been updated to technical-failure' ) mocked_va_profile_client.get_email = mocker.Mock(side_effect=exception) mocker.patch( 'app.celery.contact_information_tasks.va_profile_client', new=mocked_va_profile_client ) mocked_update_notification_status_by_id = mocker.patch( 'app.celery.contact_information_tasks.update_notification_status_by_id' ) mocker.patch( 'app.celery.contact_information_tasks.lookup_contact_info.retry', side_effect=lookup_contact_info.MaxRetriesExceededError ) with pytest.raises(NotificationTechnicalFailureException): lookup_contact_info(notification.id) mocked_va_profile_client.get_email.assert_called_with(EXAMPLE_VA_PROFILE_ID) mocked_update_notification_status_by_id.assert_called_with( notification.id, NOTIFICATION_TECHNICAL_FAILURE, status_reason=exception.failure_reason ) def test_should_update_notification_to_permanent_failure_on_no_contact_info_exception(client, mocker, notification): notification.notification_type = EMAIL_TYPE mocker.patch( 'app.celery.contact_information_tasks.get_notification_by_id', return_value=notification ) mocked_va_profile_client = mocker.Mock(VAProfileClient) exception = NoContactInfoException mocked_va_profile_client.get_email = mocker.Mock(side_effect=exception) mocker.patch( 'app.celery.contact_information_tasks.va_profile_client', new=mocked_va_profile_client ) mocked_update_notification_status_by_id = mocker.patch( 'app.celery.contact_information_tasks.update_notification_status_by_id' ) mocked_request = mocker.Mock() mocked_chain = mocker.PropertyMock() mocked_chain.return_value = ['some-task-to-be-executed-next'] type(mocked_request).chain = mocked_chain mocker.patch( 'celery.app.task.Task.request', new=mocked_request ) lookup_contact_info(notification.id) mocked_va_profile_client.get_email.assert_called_with(EXAMPLE_VA_PROFILE_ID) mocked_update_notification_status_by_id.assert_called_with( notification.id, NOTIFICATION_PERMANENT_FAILURE, status_reason=exception.failure_reason ) mocked_chain.assert_called_with(None) @pytest.mark.parametrize( 'exception, throws_additional_exception, notification_status, exception_reason', [ ( VAProfileRetryableException, NotificationTechnicalFailureException, NOTIFICATION_TECHNICAL_FAILURE, VAProfileRetryableException.failure_reason ), ( NoContactInfoException, False, NOTIFICATION_PERMANENT_FAILURE, NoContactInfoException.failure_reason ), ( VAProfileNonRetryableException, NotificationPermanentFailureException, NOTIFICATION_PERMANENT_FAILURE, VAProfileNonRetryableException.failure_reason ) ] ) def test_exception_sets_failure_reason_if_thrown( client, mocker, notification, exception, throws_additional_exception, notification_status, exception_reason ): notification.notification_type = EMAIL_TYPE mocker.patch( 'app.celery.contact_information_tasks.get_notification_by_id', return_value=notification ) mocked_va_profile_client = mocker.Mock(VAProfileClient) mocked_va_profile_client.get_email = mocker.Mock(side_effect=exception) mocker.patch( 'app.celery.contact_information_tasks.va_profile_client', new=mocked_va_profile_client ) mocked_update_notification_status_by_id = mocker.patch( 'app.celery.contact_information_tasks.update_notification_status_by_id' ) mocker.patch( 'app.celery.contact_information_tasks.lookup_contact_info.retry', side_effect=lookup_contact_info.MaxRetriesExceededError ) if throws_additional_exception: with pytest.raises(throws_additional_exception): lookup_contact_info(notification.id) else: lookup_contact_info(notification.id) mocked_update_notification_status_by_id.assert_called_once_with( notification.id, notification_status, status_reason=exception_reason )
35.807273
116
0.774855
ca3207fb330836415b01e5759bdfa6fe9bfc96e5
3,924
py
Python
opennre/dataset/preprocess_dataset.py
igorvlnascimento/DeepREF
0fed8120571e44e12ee3d1861289bc101c0a275f
[ "MIT" ]
null
null
null
opennre/dataset/preprocess_dataset.py
igorvlnascimento/DeepREF
0fed8120571e44e12ee3d1861289bc101c0a275f
[ "MIT" ]
null
null
null
opennre/dataset/preprocess_dataset.py
igorvlnascimento/DeepREF
0fed8120571e44e12ee3d1861289bc101c0a275f
[ "MIT" ]
null
null
null
import os import json import argparse import subprocess from opennre import config from opennre.dataset.preprocess import Preprocess class PreprocessDataset(): def __init__(self, dataset_name, preprocessing_type): self.dataset_name = dataset_name self.preprocessing_type = [] if len(preprocessing_type): self.preprocessing_type = sorted(preprocessing_type) self.preprocessing_type_str = "_".join(self.preprocessing_type) self.output_path = os.path.join('benchmark', dataset_name, self.preprocessing_type_str) def out(self, path): return os.path.join(self.output_path, path) def makedir(self): if not os.path.exists(os.path.join(self.output_path)): os.makedirs(os.path.join(self.output_path)) def output_file_length(self, filename_path): return len(open(filename_path).readlines()) def preprocess_dataset(self): preprocessing_types = { "entity_blinding": False, "digit": False, "punct": False, "stopword": False, "brackets": False, "ner_blinding": False } if self.preprocessing_type is not None: if "nb" in self.preprocessing_type: preprocessing_types["ner_blinding"] = True elif "eb" in self.preprocessing_type: preprocessing_types["entity_blinding"] = True if "d" in self.preprocessing_type: preprocessing_types["digit"] = True if "p" in self.preprocessing_type: preprocessing_types["punct"] = True if "sw" in self.preprocessing_type: preprocessing_types["stopword"] = True if "b" in self.preprocessing_type: preprocessing_types["brackets"] = True preprocess = Preprocess(self.dataset_name, preprocessing_types) original_dataframe_names = [self.dataset_name + '_train', self.dataset_name + '_val', self.dataset_name + '_test'] self.makedir() for original_df_name in original_dataframe_names: ds_path = os.path.join('benchmark', self.dataset_name, 'original', original_df_name) if not os.path.exists(os.path.join(ds_path + '_original.txt')) or \ not os.path.exists(os.path.join(ds_path + '_original.csv')): print("preprocessing_type_str:",self.preprocessing_type_str) subprocess.call(['bash', 'benchmark/download_{}.sh'.format(self.dataset_name)]) if not os.path.exists(self.out(original_df_name + '_{}.txt'.format(self.preprocessing_type_str))): print("Preprocessing...") original_ds = preprocess.preprocess(os.path.join(ds_path + '_original.csv')) preprocess.write_into_txt(original_ds, self.out(original_df_name + '_{}.txt'.format(self.preprocessing_type_str))) for original_df_name in original_dataframe_names: print(self.output_file_length(os.path.join('benchmark', self.dataset_name, 'original', '{}_original.txt'.format(original_df_name)))) print(self.output_file_length(self.out('{}_{}.txt'.format(original_df_name, self.preprocessing_type_str)))) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-d', '--dataset', type=str, required=True, choices=config.DATASETS, help='Dataset name') parser.add_argument('-p', '--preprocessing', type=list, required=True, choices=config.PREPROCESSING_COMBINATION, nargs='+', help='Preprocessing types') args = parser.parse_args() with open(config.BEST_HPARAMS_FILE_PATH.format(args.dataset), 'r') as f: best_hparams = json.load(f) preprocess_dataset = PreprocessDataset(args.dataset, args.preprocessing) preprocess_dataset.preprocess_dataset()
44.089888
144
0.649847
ce8add9288ce475f24d8c47e019be1390a85bfee
512
py
Python
vsch/helpers/handling.py
msmukowski/vision-system-counting-holes
9e154f50e5bc9d8df6d4a3cacdb84db218a9b522
[ "MIT" ]
null
null
null
vsch/helpers/handling.py
msmukowski/vision-system-counting-holes
9e154f50e5bc9d8df6d4a3cacdb84db218a9b522
[ "MIT" ]
null
null
null
vsch/helpers/handling.py
msmukowski/vision-system-counting-holes
9e154f50e5bc9d8df6d4a3cacdb84db218a9b522
[ "MIT" ]
null
null
null
import json def loadData(path): data = {} image_list = [] with open(path,"r") as read_file: data = json.load(read_file) for scene, frame in enumerate(data): image_list.append(frame) return data, image_list def saveData(path,data): with open(path, 'w', encoding='utf8') as outfile: str_ = json.dumps(data, indent=4, sort_keys=True, separators=(',', ': '), ensure_ascii=False) outfile.write(str_)
30.117647
69
0.558594
90dbb0ce15224bdc7aa19a76effd887eca8cb8ae
15,871
py
Python
tests/test_build_epub.py
danieleades/sphinx
1c98aea126919b218766371e1fdf308a1167e95f
[ "BSD-2-Clause" ]
null
null
null
tests/test_build_epub.py
danieleades/sphinx
1c98aea126919b218766371e1fdf308a1167e95f
[ "BSD-2-Clause" ]
1,662
2015-01-02T11:45:27.000Z
2015-01-03T12:21:29.000Z
tests/test_build_epub.py
danieleades/sphinx
1c98aea126919b218766371e1fdf308a1167e95f
[ "BSD-2-Clause" ]
null
null
null
"""Test the HTML builder and check output against XPath.""" import os import subprocess from subprocess import PIPE, CalledProcessError from xml.etree import ElementTree import pytest # check given command is runnable def runnable(command): try: subprocess.run(command, stdout=PIPE, stderr=PIPE, check=True) return True except (OSError, CalledProcessError): return False # command not found or exit with non-zero class EPUBElementTree: """Test helper for content.opf and toc.ncx""" namespaces = { 'idpf': 'http://www.idpf.org/2007/opf', 'dc': 'http://purl.org/dc/elements/1.1/', 'ibooks': 'http://vocabulary.itunes.apple.com/rdf/ibooks/vocabulary-extensions-1.0/', 'ncx': 'http://www.daisy.org/z3986/2005/ncx/', 'xhtml': 'http://www.w3.org/1999/xhtml', 'epub': 'http://www.idpf.org/2007/ops' } def __init__(self, tree): self.tree = tree @classmethod def fromstring(cls, string): return cls(ElementTree.fromstring(string)) def find(self, match): ret = self.tree.find(match, namespaces=self.namespaces) if ret is not None: return self.__class__(ret) else: return ret def findall(self, match): ret = self.tree.findall(match, namespaces=self.namespaces) return [self.__class__(e) for e in ret] def __getattr__(self, name): return getattr(self.tree, name) def __iter__(self): for child in self.tree: yield self.__class__(child) @pytest.mark.sphinx('epub', testroot='basic') def test_build_epub(app): app.build() assert (app.outdir / 'mimetype').read_text(encoding='utf8') == 'application/epub+zip' assert (app.outdir / 'META-INF' / 'container.xml').exists() # toc.ncx toc = EPUBElementTree.fromstring((app.outdir / 'toc.ncx').read_text(encoding='utf8')) assert toc.find("./ncx:docTitle/ncx:text").text == 'Python' # toc.ncx / head meta = list(toc.find("./ncx:head")) assert meta[0].attrib == {'name': 'dtb:uid', 'content': 'unknown'} assert meta[1].attrib == {'name': 'dtb:depth', 'content': '1'} assert meta[2].attrib == {'name': 'dtb:totalPageCount', 'content': '0'} assert meta[3].attrib == {'name': 'dtb:maxPageNumber', 'content': '0'} # toc.ncx / navMap navpoints = toc.findall("./ncx:navMap/ncx:navPoint") assert len(navpoints) == 1 assert navpoints[0].attrib == {'id': 'navPoint1', 'playOrder': '1'} assert navpoints[0].find("./ncx:content").attrib == {'src': 'index.xhtml'} navlabel = navpoints[0].find("./ncx:navLabel/ncx:text") assert navlabel.text == 'The basic Sphinx documentation for testing' # content.opf opf = EPUBElementTree.fromstring((app.outdir / 'content.opf').read_text(encoding='utf8')) # content.opf / metadata metadata = opf.find("./idpf:metadata") assert metadata.find("./dc:language").text == 'en' assert metadata.find("./dc:title").text == 'Python' assert metadata.find("./dc:description").text == 'unknown' assert metadata.find("./dc:creator").text == 'unknown' assert metadata.find("./dc:contributor").text == 'unknown' assert metadata.find("./dc:publisher").text == 'unknown' assert metadata.find("./dc:rights").text is None assert metadata.find("./idpf:meta[@property='ibooks:version']").text is None assert metadata.find("./idpf:meta[@property='ibooks:specified-fonts']").text == 'true' assert metadata.find("./idpf:meta[@property='ibooks:binding']").text == 'true' assert metadata.find("./idpf:meta[@property='ibooks:scroll-axis']").text == 'vertical' # content.opf / manifest manifest = opf.find("./idpf:manifest") items = list(manifest) assert items[0].attrib == {'id': 'ncx', 'href': 'toc.ncx', 'media-type': 'application/x-dtbncx+xml'} assert items[1].attrib == {'id': 'nav', 'href': 'nav.xhtml', 'media-type': 'application/xhtml+xml', 'properties': 'nav'} assert items[2].attrib == {'id': 'epub-0', 'href': 'genindex.xhtml', 'media-type': 'application/xhtml+xml'} assert items[3].attrib == {'id': 'epub-1', 'href': 'index.xhtml', 'media-type': 'application/xhtml+xml'} for i, item in enumerate(items[2:]): # items are named as epub-NN assert item.get('id') == 'epub-%d' % i # content.opf / spine spine = opf.find("./idpf:spine") itemrefs = list(spine) assert spine.get('toc') == 'ncx' assert spine.get('page-progression-direction') == 'ltr' assert itemrefs[0].get('idref') == 'epub-1' assert itemrefs[1].get('idref') == 'epub-0' # content.opf / guide reference = opf.find("./idpf:guide/idpf:reference") assert reference.get('type') == 'toc' assert reference.get('title') == 'Table of Contents' assert reference.get('href') == 'index.xhtml' # nav.xhtml nav = EPUBElementTree.fromstring((app.outdir / 'nav.xhtml').read_text(encoding='utf8')) assert nav.attrib == {'lang': 'en', '{http://www.w3.org/XML/1998/namespace}lang': 'en'} assert nav.find("./xhtml:head/xhtml:title").text == 'Table of Contents' # nav.xhtml / nav navlist = nav.find("./xhtml:body/xhtml:nav") toc = navlist.findall("./xhtml:ol/xhtml:li") assert navlist.find("./xhtml:h1").text == 'Table of Contents' assert len(toc) == 1 assert toc[0].find("./xhtml:a").get("href") == 'index.xhtml' assert toc[0].find("./xhtml:a").text == 'The basic Sphinx documentation for testing' @pytest.mark.sphinx('epub', testroot='footnotes', confoverrides={'epub_cover': ('_images/rimg.png', None)}) def test_epub_cover(app): app.build() # content.opf / metadata opf = EPUBElementTree.fromstring((app.outdir / 'content.opf').read_text(encoding='utf8')) cover_image = opf.find("./idpf:manifest/idpf:item[@href='%s']" % app.config.epub_cover[0]) cover = opf.find("./idpf:metadata/idpf:meta[@name='cover']") assert cover assert cover.get('content') == cover_image.get('id') @pytest.mark.sphinx('epub', testroot='toctree') def test_nested_toc(app): app.build() # toc.ncx toc = EPUBElementTree.fromstring((app.outdir / 'toc.ncx').read_bytes()) assert toc.find("./ncx:docTitle/ncx:text").text == 'Python' # toc.ncx / navPoint def navinfo(elem): label = elem.find("./ncx:navLabel/ncx:text") content = elem.find("./ncx:content") return (elem.get('id'), elem.get('playOrder'), content.get('src'), label.text) navpoints = toc.findall("./ncx:navMap/ncx:navPoint") assert len(navpoints) == 4 assert navinfo(navpoints[0]) == ('navPoint1', '1', 'index.xhtml', "Welcome to Sphinx Tests’s documentation!") assert navpoints[0].findall("./ncx:navPoint") == [] # toc.ncx / nested navPoints assert navinfo(navpoints[1]) == ('navPoint2', '2', 'foo.xhtml', 'foo') navchildren = navpoints[1].findall("./ncx:navPoint") assert len(navchildren) == 4 assert navinfo(navchildren[0]) == ('navPoint3', '2', 'foo.xhtml', 'foo') assert navinfo(navchildren[1]) == ('navPoint4', '3', 'quux.xhtml', 'quux') assert navinfo(navchildren[2]) == ('navPoint5', '4', 'foo.xhtml#foo-1', 'foo.1') assert navinfo(navchildren[3]) == ('navPoint8', '6', 'foo.xhtml#foo-2', 'foo.2') # nav.xhtml / nav def navinfo(elem): anchor = elem.find("./xhtml:a") return (anchor.get('href'), anchor.text) nav = EPUBElementTree.fromstring((app.outdir / 'nav.xhtml').read_bytes()) toc = nav.findall("./xhtml:body/xhtml:nav/xhtml:ol/xhtml:li") assert len(toc) == 4 assert navinfo(toc[0]) == ('index.xhtml', "Welcome to Sphinx Tests’s documentation!") assert toc[0].findall("./xhtml:ol") == [] # nav.xhtml / nested toc assert navinfo(toc[1]) == ('foo.xhtml', 'foo') tocchildren = toc[1].findall("./xhtml:ol/xhtml:li") assert len(tocchildren) == 3 assert navinfo(tocchildren[0]) == ('quux.xhtml', 'quux') assert navinfo(tocchildren[1]) == ('foo.xhtml#foo-1', 'foo.1') assert navinfo(tocchildren[2]) == ('foo.xhtml#foo-2', 'foo.2') grandchild = tocchildren[1].findall("./xhtml:ol/xhtml:li") assert len(grandchild) == 1 assert navinfo(grandchild[0]) == ('foo.xhtml#foo-1-1', 'foo.1-1') @pytest.mark.sphinx('epub', testroot='need-escaped') def test_escaped_toc(app): app.build() # toc.ncx toc = EPUBElementTree.fromstring((app.outdir / 'toc.ncx').read_bytes()) assert toc.find("./ncx:docTitle/ncx:text").text == 'need <b>"escaped"</b> project' # toc.ncx / navPoint def navinfo(elem): label = elem.find("./ncx:navLabel/ncx:text") content = elem.find("./ncx:content") return (elem.get('id'), elem.get('playOrder'), content.get('src'), label.text) navpoints = toc.findall("./ncx:navMap/ncx:navPoint") assert len(navpoints) == 4 assert navinfo(navpoints[0]) == ('navPoint1', '1', 'index.xhtml', "Welcome to Sphinx Tests's documentation!") assert navpoints[0].findall("./ncx:navPoint") == [] # toc.ncx / nested navPoints assert navinfo(navpoints[1]) == ('navPoint2', '2', 'foo.xhtml', '<foo>') navchildren = navpoints[1].findall("./ncx:navPoint") assert len(navchildren) == 4 assert navinfo(navchildren[0]) == ('navPoint3', '2', 'foo.xhtml', '<foo>') assert navinfo(navchildren[1]) == ('navPoint4', '3', 'quux.xhtml', 'quux') assert navinfo(navchildren[2]) == ('navPoint5', '4', 'foo.xhtml#foo-1', 'foo “1”') assert navinfo(navchildren[3]) == ('navPoint8', '6', 'foo.xhtml#foo-2', 'foo.2') # nav.xhtml / nav def navinfo(elem): anchor = elem.find("./xhtml:a") return (anchor.get('href'), anchor.text) nav = EPUBElementTree.fromstring((app.outdir / 'nav.xhtml').read_bytes()) toc = nav.findall("./xhtml:body/xhtml:nav/xhtml:ol/xhtml:li") assert len(toc) == 4 assert navinfo(toc[0]) == ('index.xhtml', "Welcome to Sphinx Tests's documentation!") assert toc[0].findall("./xhtml:ol") == [] # nav.xhtml / nested toc assert navinfo(toc[1]) == ('foo.xhtml', '<foo>') tocchildren = toc[1].findall("./xhtml:ol/xhtml:li") assert len(tocchildren) == 3 assert navinfo(tocchildren[0]) == ('quux.xhtml', 'quux') assert navinfo(tocchildren[1]) == ('foo.xhtml#foo-1', 'foo “1”') assert navinfo(tocchildren[2]) == ('foo.xhtml#foo-2', 'foo.2') grandchild = tocchildren[1].findall("./xhtml:ol/xhtml:li") assert len(grandchild) == 1 assert navinfo(grandchild[0]) == ('foo.xhtml#foo-1-1', 'foo.1-1') @pytest.mark.sphinx('epub', testroot='basic') def test_epub_writing_mode(app): # horizontal (default) app.build() # horizontal / page-progression-direction opf = EPUBElementTree.fromstring((app.outdir / 'content.opf').read_text(encoding='utf8')) assert opf.find("./idpf:spine").get('page-progression-direction') == 'ltr' # horizontal / ibooks:scroll-axis metadata = opf.find("./idpf:metadata") assert metadata.find("./idpf:meta[@property='ibooks:scroll-axis']").text == 'vertical' # horizontal / writing-mode (CSS) css = (app.outdir / '_static' / 'epub.css').read_text(encoding='utf8') assert 'writing-mode: horizontal-tb;' in css # vertical app.config.epub_writing_mode = 'vertical' (app.outdir / 'index.xhtml').unlink() # forcely rebuild app.build() # vertical / page-progression-direction opf = EPUBElementTree.fromstring((app.outdir / 'content.opf').read_text(encoding='utf8')) assert opf.find("./idpf:spine").get('page-progression-direction') == 'rtl' # vertical / ibooks:scroll-axis metadata = opf.find("./idpf:metadata") assert metadata.find("./idpf:meta[@property='ibooks:scroll-axis']").text == 'horizontal' # vertical / writing-mode (CSS) css = (app.outdir / '_static' / 'epub.css').read_text(encoding='utf8') assert 'writing-mode: vertical-rl;' in css @pytest.mark.sphinx('epub', testroot='epub-anchor-id') def test_epub_anchor_id(app): app.build() html = (app.outdir / 'index.xhtml').read_text(encoding='utf8') assert ('<p id="std-setting-STATICFILES_FINDERS">' 'blah blah blah</p>' in html) assert ('<span id="std-setting-STATICFILES_SECTION"></span>' '<h1>blah blah blah</h1>' in html) assert 'see <a class="reference internal" href="#std-setting-STATICFILES_FINDERS">' in html @pytest.mark.sphinx('epub', testroot='html_assets') def test_epub_assets(app): app.builder.build_all() # epub_sytlesheets (same as html_css_files) content = (app.outdir / 'index.xhtml').read_text(encoding='utf8') assert ('<link rel="stylesheet" type="text/css" href="_static/css/style.css" />' in content) assert ('<link media="print" rel="stylesheet" title="title" type="text/css" ' 'href="https://example.com/custom.css" />' in content) @pytest.mark.sphinx('epub', testroot='html_assets', confoverrides={'epub_css_files': ['css/epub.css']}) def test_epub_css_files(app): app.builder.build_all() # epub_css_files content = (app.outdir / 'index.xhtml').read_text(encoding='utf8') assert '<link rel="stylesheet" type="text/css" href="_static/css/epub.css" />' in content # files in html_css_files are not outputted assert ('<link rel="stylesheet" type="text/css" href="_static/css/style.css" />' not in content) assert ('<link media="print" rel="stylesheet" title="title" type="text/css" ' 'href="https://example.com/custom.css" />' not in content) @pytest.mark.sphinx('epub', testroot='roles-download') def test_html_download_role(app, status, warning): app.build() assert not (app.outdir / '_downloads' / 'dummy.dat').exists() content = (app.outdir / 'index.xhtml').read_text(encoding='utf8') assert ('<li><p><code class="xref download docutils literal notranslate">' '<span class="pre">dummy.dat</span></code></p></li>' in content) assert ('<li><p><code class="xref download docutils literal notranslate">' '<span class="pre">not_found.dat</span></code></p></li>' in content) assert ('<li><p><code class="xref download docutils literal notranslate">' '<span class="pre">Sphinx</span> <span class="pre">logo</span></code>' '<span class="link-target"> [http://www.sphinx-doc.org/en/master' '/_static/sphinxheader.png]</span></p></li>' in content) @pytest.mark.sphinx('epub', testroot='toctree-duplicated') def test_duplicated_toctree_entry(app, status, warning): app.build() assert 'WARNING: duplicated ToC entry found: foo.xhtml' in warning.getvalue() @pytest.mark.skipif('DO_EPUBCHECK' not in os.environ, reason='Skipped because DO_EPUBCHECK is not set') @pytest.mark.sphinx('epub') def test_run_epubcheck(app): app.build() epubcheck = os.environ.get('EPUBCHECK_PATH', '/usr/share/java/epubcheck.jar') if runnable(['java', '-version']) and os.path.exists(epubcheck): try: subprocess.run(['java', '-jar', epubcheck, app.outdir / 'SphinxTests.epub'], stdout=PIPE, stderr=PIPE, check=True) except CalledProcessError as exc: print(exc.stdout.decode('utf-8')) print(exc.stderr.decode('utf-8')) assert False, 'epubcheck exited with return code %s' % exc.returncode
41.223377
95
0.617289
4a2ebacd83ba003a299b2c453488a92ea04ff5e4
11,846
py
Python
moronbot.py
Heufneutje/PyMoronBot
055abf0e685f3d2fc02863517952dc7fad9050f3
[ "MIT" ]
null
null
null
moronbot.py
Heufneutje/PyMoronBot
055abf0e685f3d2fc02863517952dc7fad9050f3
[ "MIT" ]
null
null
null
moronbot.py
Heufneutje/PyMoronBot
055abf0e685f3d2fc02863517952dc7fad9050f3
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import os import shelve import sys import platform import datetime import argparse from twisted.words.protocols import irc from twisted.internet import reactor, protocol from IRCMessage import IRCMessage, IRCChannel, IRCUser from IRCResponse import IRCResponse import ModuleHandler import GlobalVars import ServerInfo parser = argparse.ArgumentParser(description='An IRC bot written in Python.') parser.add_argument('-s', '--server', help='the IRC server to connect to (required)', type=str, required=True) parser.add_argument('-p', '--port', help='the port on the server to connect to (default 6667)', type=int, default=6667) parser.add_argument('-c', '--channels', help='channels to join after connecting (default none)', type=str, nargs='+', default=[]) parser.add_argument('-n', '--nick', help='the nick the bot should use (default PyMoronBot)', type=str, default='PyMoronBot') cmdArgs = parser.parse_args() restarting = False startTime = datetime.datetime.utcnow() class MoronBot(irc.IRCClient): def __init__(self): self.nickname = cmdArgs.nick self.commandChar = '.' self.realname = self.nickname self.username = self.nickname self.channels = {} self.userModes = {} self.fingerReply = GlobalVars.finger self.versionName = self.nickname self.versionNum = GlobalVars.version self.versionEnv = platform.platform() self.sourceURL = GlobalVars.source # dataStore has to be before moduleHandler dataStorePath = os.path.join('Data', cmdArgs.server) if not os.path.exists(dataStorePath): os.makedirs(dataStorePath) self.dataStore = shelve.open(os.path.join(dataStorePath, 'shelve.db'), protocol=2, writeback=True) self.moduleHandler = ModuleHandler.ModuleHandler(self) self.moduleHandler.loadAll() def quit(self, message=''): self.dataStore.close() irc.IRCClient.quit(self, message) def signedOn(self): for channel in cmdArgs.channels: self.join(channel) global startTime startTime = datetime.datetime.utcnow() def privmsg(self, user, channel, msg): chan = self.getChannel(channel) message = IRCMessage('PRIVMSG', user, chan, msg, self) self.handleMessage(message) def action(self, user, channel, msg): chan = self.getChannel(channel) message = IRCMessage('ACTION', user, chan, msg, self) self.handleMessage(message) def noticed(self, user, channel, msg): chan = self.getChannel(channel) message = IRCMessage('NOTICE', user, chan, msg, self) self.handleMessage(message) def irc_NICK(self, prefix, params): userArray = prefix.split('!') oldnick = userArray[0] newnick = params[0] for key in self.channels: channel = self.channels[key] for userKey in channel.Users: user = channel.Users[userKey] if userKey == oldnick: channel.Users[newnick] = IRCUser('{0}!{1}@{2}'.format(newnick, user.User, user.Hostmask)) del channel.Users[oldnick] if oldnick in channel.Ranks: channel.Ranks[newnick] = channel.Ranks[oldnick] del channel.Ranks[oldnick] message = IRCMessage('NICK', prefix, channel, newnick, self) self.handleMessage(message) def nickChanged(self, nick): self.nickname = nick def irc_JOIN(self, prefix, params): if params[0] in self.channels: channel = self.channels[params[0]] else: channel = IRCChannel(params[0]) message = IRCMessage('JOIN', prefix, channel, u'', self) if message.User.Name == self.nickname: self.channels[message.ReplyTo] = channel self.sendLine('WHO ' + message.ReplyTo) self.sendLine('MODE ' + message.ReplyTo) else: channel.Users[message.User.Name] = message.User self.handleMessage(message) def irc_PART(self, prefix, params): partMessage = u'' if len(params) > 1: partMessage = u', message: ' + u' '.join(params[1:]) channel = self.channels[params[0]] message = IRCMessage('PART', prefix, channel, partMessage, self) if message.User.Name == self.nickname: del self.channels[message.ReplyTo] else: del channel.Users[message.User.Name] if message.User.Name in channel.Ranks: del channel.Ranks[message.User.Name] self.handleMessage(message) def irc_KICK(self, prefix, params): kickMessage = u'' if len(params) > 2: kickMessage = u', message: ' + u' '.join(params[2:]) channel = self.channels[params[0]] message = IRCMessage('KICK', prefix, channel, kickMessage, self) message.Kickee = params[1] if message.Kickee == self.nickname: del self.channels[message.ReplyTo] else: del channel.Users[message.Kickee] if message.Kickee in channel.Ranks: del channel.Ranks[message.Kickee] self.handleMessage(message) def irc_QUIT(self, prefix, params): quitMessage = u'' if len(params) > 0: quitMessage = u', message: ' + u' '.join(params[0:]) for key in self.channels: channel = self.channels[key] message = IRCMessage('QUIT', prefix, channel, quitMessage, self) if message.User.Name in channel.Users: del channel.Users[message.User.Name] if message.User.Name in channel.Ranks: del channel.Ranks[message.User.Name] self.handleMessage(message) def irc_RPL_WHOREPLY(self, _, params): user = IRCUser('{0}!{1}@{2}'.format(params[5], params[2], params[3])) channel = self.channels[params[1]] flags = params[6][2:] if '*' in params[6] else params[6][1:] statusModes = '' for flag in flags: statusModes = statusModes + ServerInfo.StatusesReverse[flag] channel.Users[user.Name] = user channel.Ranks[user.Name] = statusModes def irc_RPL_CHANNELMODEIS(self, _, params): channel = self.channels[params[1]] modestring = params[2][1:] modeparams = params[3:] for mode in modestring: if mode in ServerInfo.ChannelSetArgsModes or mode in ServerInfo.ChannelSetUnsetArgsModes: # Mode takes an argument channel.Modes[mode] = modeparams[0] del modeparams[0] else: channel.Modes[mode] = None def irc_RPL_MYINFO(self, prefix, params): ServerInfo.UserModes = params[3] def isupport(self, options): for item in options: if '=' in item: option = item.split('=') if option[0] == 'CHANTYPES': ServerInfo.ChannelTypes = option[1] elif option[0] == 'CHANMODES': modes = option[1].split(',') ServerInfo.ChannelListModes = modes[0] ServerInfo.ChannelSetUnsetArgsModes = modes[1] ServerInfo.ChannelSetArgsModes = modes[2] ServerInfo.ChannelNormalModes = modes[3] elif option[0] == 'PREFIX': prefixes = option[1] statusChars = prefixes[:prefixes.find(')')] statusSymbols = prefixes[prefixes.find(')'):] ServerInfo.StatusOrder = statusChars for i in range(1, len(statusChars)): ServerInfo.Statuses[statusChars[i]] = statusSymbols[i] ServerInfo.StatusesReverse[statusSymbols[i]] = statusChars[i] def modeChanged(self, user, channel, set, modes, args): message = IRCMessage('MODE', user, self.getChannel(channel), u'', self) if not message.Channel: # Setting a usermode for mode, arg in zip(modes, args): if set: self.userModes[mode] = arg else: del self.userModes[mode] else: # Setting a chanmode for mode, arg in zip(modes, args): if mode in ServerInfo.Statuses: # Setting a status mode if set: if arg not in self.channels[channel].Ranks: self.channels[channel].Ranks[arg] = mode else: self.channels[channel].Ranks[arg] = self.channels[channel].Ranks[arg] + mode else: self.channels[channel].Ranks[arg] = self.channels[channel].Rank[arg].replace(mode, '') else: # Setting a normal chanmode if set: self.channels[channel].Modes[mode] = arg else: del self.channels[channel].Modes[mode] message.ModeArgs = [arg for arg in args if arg is not None] message.Modes = modes message.ModeOperator = '+' if set else '-' message.ReplyTo = message.ReplyTo if message.Channel else '' self.handleMessage(message) def getChannel(self, name): if name in self.channels: return self.channels[name] else: # This is a PM return None def topicUpdated(self, user, channel, newTopic): self.channels[channel].Topic = newTopic self.channels[channel].TopicSetBy = user message = IRCMessage('TOPIC', user, self.getChannel(channel), newTopic, self) self.handleMessage(message) def handleMessage(self, message): """ @type message: IRCMessage """ # restart command, can't restart within 1 minute of starting (avoids chanhistory triggering another restart) if (message.Command == 'restart' and datetime.datetime.utcnow() > startTime + datetime.timedelta(seconds=10) and message.User.Name in GlobalVars.admins): global restarting restarting = True self.dataStore.close() self.quit(message='restarting') return self.moduleHandler.handleMessage(message) def sendResponse(self, response): """ @type response: IRCResponse """ self.moduleHandler.sendResponse(response) class MoronBotFactory(protocol.ReconnectingClientFactory): def __init__(self): self.protocol = MoronBot def startedConnecting(self, connector): print '-#- Started to connect.' def buildProtocol(self, addr): print '-#- Connected.' print '-#- Resetting reconnection delay' self.resetDelay() return MoronBot() def clientConnectionLost(self, connector, reason): print '-!- Lost connection. Reason:', reason if restarting: python = sys.executable os.execl(python, python, *sys.argv) # nothing beyond here will be executed if the bot is restarting, as the process itself is replaced protocol.ReconnectingClientFactory.clientConnectionLost(self, connector, reason) def clientConnectionFailed(self, connector, reason): print '-!- Connection failed. Reason:', reason protocol.ReconnectingClientFactory.clientConnectionFailed(self, connector, reason) if __name__ == '__main__': moronbot = MoronBotFactory() reactor.connectTCP(cmdArgs.server, cmdArgs.port, moronbot) reactor.run()
36.561728
129
0.592183
40f1739a246d3458fc5d84495830dd0b0006f590
3,750
py
Python
oteapi/strategies/parse/application_vnd_sqlite.py
EMMC-ASBL/oteapi-core
5a034c7610c300b21e585f563debb43383375af0
[ "MIT" ]
3
2022-01-24T15:18:08.000Z
2022-03-16T14:01:51.000Z
oteapi/strategies/parse/application_vnd_sqlite.py
EMMC-ASBL/oteapi-core
5a034c7610c300b21e585f563debb43383375af0
[ "MIT" ]
117
2022-01-13T17:26:38.000Z
2022-03-30T16:12:06.000Z
oteapi/strategies/parse/application_vnd_sqlite.py
EMMC-ASBL/oteapi-core
5a034c7610c300b21e585f563debb43383375af0
[ "MIT" ]
3
2022-01-17T20:57:57.000Z
2022-01-25T08:16:14.000Z
"""Strategy class for application/vnd.sqlite3.""" # pylint: disable=unused-argument import sqlite3 from pathlib import Path from typing import TYPE_CHECKING, Optional from pydantic import Field from pydantic.dataclasses import dataclass from oteapi.datacache import DataCache from oteapi.models import AttrDict, DataCacheConfig, ResourceConfig, SessionUpdate from oteapi.plugins import create_strategy if TYPE_CHECKING: # pragma: no cover from typing import Any, Dict class SqliteParseConfig(AttrDict): """Configuration data model for [`SqliteParseStrategy`][oteapi.strategies.parse.application_vnd_sqlite.SqliteParseStrategy].""" sqlquery: str = Field("", description="A SQL query string.") datacache_config: Optional[DataCacheConfig] = Field( None, description="Configuration options for the local data cache.", ) class SqliteParserResourceConfig(ResourceConfig): """SQLite parse strategy resource config.""" mediaType: str = Field( "application/vnd.sqlite3", const=True, description=ResourceConfig.__fields__["mediaType"].field_info.description, ) configuration: SqliteParseConfig = Field( SqliteParseConfig(), description="SQLite parse strategy-specific configuration." ) def create_connection(db_file: Path) -> sqlite3.Connection: """Create a database connection to SQLite database. Parameters: db_file: Full path to SQLite database file. Raises: sqlite3.Error: If a DB connection cannot be made. Returns: Connection object. """ try: return sqlite3.connect(db_file) except sqlite3.Error as exc: raise sqlite3.Error("Could not connect to given SQLite DB.") from exc class SessionUpdateSqLiteParse(SessionUpdate): """Configuration model for SqLiteParse.""" result: list = Field(..., description="List of results from the query.") @dataclass class SqliteParseStrategy: """Parse strategy for SQLite. **Registers strategies**: - `("mediaType", "application/vnd.sqlite3")` Purpose of this strategy: Download a SQLite database using `downloadUrl` and run a SQL query on the database to return all relevant rows. """ parse_config: SqliteParserResourceConfig def initialize(self, session: "Optional[Dict[str, Any]]" = None) -> SessionUpdate: """Initialize strategy.""" return SessionUpdate() def get( self, session: "Optional[Dict[str, Any]]" = None ) -> SessionUpdateSqLiteParse: """Parse SQLite query responses.""" if session: self._use_filters(session) session = session if session else {} # Retrieve SQLite file download_config = self.parse_config.copy() del download_config.configuration downloader = create_strategy("download", download_config) session.update(downloader.initialize(session)) cache_key = downloader.get(session).get("key", "") cache = DataCache(self.parse_config.configuration.datacache_config) with cache.getfile(cache_key, suffix="db") as filename: connection = create_connection(filename) cursor = connection.cursor() result = cursor.execute(self.parse_config.configuration.sqlquery).fetchall() connection.close() return SessionUpdateSqLiteParse(result=result) def _use_filters(self, session: "Dict[str, Any]") -> None: """Update `config` according to filter values found in the session.""" if "sqlquery" in session and not self.parse_config.configuration.sqlquery: # Use SQL query available in session self.parse_config.configuration.sqlquery = session["sqlquery"]
32.894737
99
0.6968