hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
791c916480d1f29765cfd016642d4bb0b4d0aa31
141
py
Python
tests/regression/diabetes/ws_diabetes_GradientBoostingRegressor_oracle_code_gen.py
antoinecarme/sklearn2sql_heroku
d680db10683daa419324461eeea851dd8b103ad5
[ "BSD-3-Clause" ]
1
2019-07-09T14:45:18.000Z
2019-07-09T14:45:18.000Z
tests/regression/diabetes/ws_diabetes_GradientBoostingRegressor_oracle_code_gen.py
antoinecarme/sklearn2sql_heroku
d680db10683daa419324461eeea851dd8b103ad5
[ "BSD-3-Clause" ]
5
2017-11-13T13:35:37.000Z
2021-11-11T12:57:20.000Z
tests/regression/diabetes/ws_diabetes_GradientBoostingRegressor_oracle_code_gen.py
antoinecarme/sklearn2sql_heroku
d680db10683daa419324461eeea851dd8b103ad5
[ "BSD-3-Clause" ]
1
2021-09-19T15:05:33.000Z
2021-09-19T15:05:33.000Z
from sklearn2sql_heroku.tests.regression import generic as reg_gen reg_gen.test_model("GradientBoostingRegressor" , "diabetes" , "oracle")
28.2
71
0.815603
cba57a828491a4f7d1f33c9519906af64d07ee84
4,546
py
Python
sdk/python/pulumi_kubernetes/policy/v1beta1/PodSecurityPolicy.py
vijayraavi/pulumi-kubernetes
0a18b87fd1b4fa5778542dbb0e82a08a2e91ab88
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_kubernetes/policy/v1beta1/PodSecurityPolicy.py
vijayraavi/pulumi-kubernetes
0a18b87fd1b4fa5778542dbb0e82a08a2e91ab88
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_kubernetes/policy/v1beta1/PodSecurityPolicy.py
vijayraavi/pulumi-kubernetes
0a18b87fd1b4fa5778542dbb0e82a08a2e91ab88
[ "Apache-2.0" ]
null
null
null
# *** WARNING: this file was generated by the Pulumi Kubernetes codegen tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings from typing import Optional import pulumi import pulumi.runtime from pulumi import Input, ResourceOptions from ... import tables, version class PodSecurityPolicy(pulumi.CustomResource): """ PodSecurityPolicy governs the ability to make requests that affect the Security Context that will be applied to a pod and container. """ apiVersion: pulumi.Output[str] """ APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#resources """ kind: pulumi.Output[str] """ Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#types-kinds """ metadata: pulumi.Output[dict] """ Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata """ spec: pulumi.Output[dict] """ spec defines the policy enforced. """ def __init__(self, resource_name, opts=None, metadata=None, spec=None, __name__=None, __opts__=None): """ Create a PodSecurityPolicy resource with the given unique name, arguments, and options. :param str resource_name: The _unique_ name of the resource. :param pulumi.ResourceOptions opts: A bag of options that control this resource's behavior. :param pulumi.Input[dict] metadata: Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata :param pulumi.Input[dict] spec: spec defines the policy enforced. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if not resource_name: raise TypeError('Missing resource name argument (for URN creation)') if not isinstance(resource_name, str): raise TypeError('Expected resource name to be a string') if opts and not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') __props__ = dict() __props__['apiVersion'] = 'policy/v1beta1' __props__['kind'] = 'PodSecurityPolicy' __props__['metadata'] = metadata __props__['spec'] = spec __props__['status'] = None opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions( version=version.get_version(), )) super(PodSecurityPolicy, self).__init__( "kubernetes:policy/v1beta1:PodSecurityPolicy", resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None): """ Get the state of an existing `PodSecurityPolicy` resource, as identified by `id`. The ID is of the form `[namespace]/[name]`; if `[namespace]` is omitted, then (per Kubernetes convention) the ID becomes `default/[name]`. Pulumi will keep track of this resource using `resource_name` as the Pulumi ID. :param str resource_name: _Unique_ name used to register this resource with Pulumi. :param pulumi.Input[str] id: An ID for the Kubernetes resource to retrieve. Takes the form `[namespace]/[name]` or `[name]`. :param Optional[pulumi.ResourceOptions] opts: A bag of options that control this resource's behavior. """ opts = ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) return PodSecurityPolicy(resource_name, opts) def translate_output_property(self, prop: str) -> str: return tables._CASING_FORWARD_TABLE.get(prop) or prop def translate_input_property(self, prop: str) -> str: return tables._CASING_BACKWARD_TABLE.get(prop) or prop
41.327273
107
0.683018
e95a382de6039ff66f7a286f90e8b497cd63a933
18,288
py
Python
examples/cifar/main.py
Lornatang/EfficientNet
1b8718735888aa21fbef78b825af1dacd3c257a2
[ "Apache-2.0" ]
4
2020-01-12T01:02:04.000Z
2020-04-10T00:32:05.000Z
examples/cifar/main.py
Lornatang/EfficientNet
1b8718735888aa21fbef78b825af1dacd3c257a2
[ "Apache-2.0" ]
null
null
null
examples/cifar/main.py
Lornatang/EfficientNet
1b8718735888aa21fbef78b825af1dacd3c257a2
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Lorna Authors. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Evaluate on CIFAR. Note that at the moment, training is not implemented (I am working on it). that being said, evaluation is working. """ import argparse import os import random import shutil import time import warnings import PIL import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim import torch.multiprocessing as mp import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms import torchvision.datasets as datasets import torchvision.models as models from efficientnet import EfficientNet from apex import amp parser = argparse.ArgumentParser(description='PyTorch CIFAR Training') parser.add_argument('data', metavar='DIR', default='data', help='path to dataset') parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18', help='model architecture (default: resnet18)') parser.add_argument('-j', '--workers', default=1, type=int, metavar='N', help='number of data loading workers (default: 1)') parser.add_argument('--epochs', default=90, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256), this is the total ' 'batch size of all GPUs on the current node when ' 'using Data Parallel or Distributed Data Parallel') parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR', help='initial learning rate', dest='lr') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)', dest='weight_decay') parser.add_argument('-p', '--print-freq', default=10, type=int, metavar='N', help='print frequency (default: 10)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--opt_level', default="O1", type=str, help="Choose which accuracy to train. (default: 'O1')") parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set') parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model') parser.add_argument('--world-size', default=-1, type=int, help='number of nodes for distributed training') parser.add_argument('--rank', default=-1, type=int, help='node rank for distributed training') parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str, help='url used to set up distributed training') parser.add_argument('--dist-backend', default='nccl', type=str, help='distributed backend') parser.add_argument('--seed', default=None, type=int, help='seed for initializing training. ') parser.add_argument('--gpu', default=None, type=int, help='GPU id to use.') parser.add_argument('--image_size', default=32, type=int, help='image size') parser.add_argument('--advprop', default=False, action='store_true', help='use advprop or not') parser.add_argument('--multiprocessing-distributed', action='store_true', help='Use multi-processing distributed training to launch ' 'N processes per node, which has N GPUs. This is the ' 'fastest way to use PyTorch for either single node or ' 'multi node data parallel training') best_acc1 = 0 def main(): args = parser.parse_args() if args.seed is not None: random.seed(args.seed) torch.manual_seed(args.seed) cudnn.deterministic = True warnings.warn('You have chosen to seed training. ' 'This will turn on the CUDNN deterministic setting, ' 'which can slow down your training considerably! ' 'You may see unexpected behavior when restarting ' 'from checkpoints.') if args.gpu is not None: warnings.warn('You have chosen a specific GPU. This will completely ' 'disable data parallelism.') if args.dist_url == "env://" and args.world_size == -1: args.world_size = int(os.environ["WORLD_SIZE"]) args.distributed = args.world_size > 1 or args.multiprocessing_distributed ngpus_per_node = torch.cuda.device_count() if args.multiprocessing_distributed: # Since we have ngpus_per_node processes per node, the total world_size # needs to be adjusted accordingly args.world_size = ngpus_per_node * args.world_size # Use torch.multiprocessing.spawn to launch distributed processes: the # main_worker process function mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args)) else: # Simply call main_worker function main_worker(args.gpu, ngpus_per_node, args) def main_worker(gpu, ngpus_per_node, args): global best_acc1 args.gpu = gpu if args.gpu is not None: print("Use GPU: {} for training".format(args.gpu)) if args.distributed: if args.dist_url == "env://" and args.rank == -1: args.rank = int(os.environ["RANK"]) if args.multiprocessing_distributed: # For multiprocessing distributed training, rank needs to be the # global rank among all the processes args.rank = args.rank * ngpus_per_node + gpu dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) # create model if 'efficientnet' in args.arch: # NEW if args.pretrained: model = EfficientNet.from_pretrained(args.arch, advprop=args.advprop, num_classes=args.num_classes) print("=> using pre-trained model '{}'".format(args.arch)) else: print("=> creating model '{}'".format(args.arch)) model = EfficientNet.from_name(args.arch) else: if args.pretrained: print("=> using pre-trained model '{}'".format(args.arch)) model = models.__dict__[args.arch](pretrained=True) else: print("=> creating model '{}'".format(args.arch)) model = models.__dict__[args.arch]() if args.distributed: # For multiprocessing distributed, DistributedDataParallel constructor # should always set the single device scope, otherwise, # DistributedDataParallel will use all available devices. if args.gpu is not None: torch.cuda.set_device(args.gpu) model.cuda(args.gpu) # When using a single GPU per process and per # DistributedDataParallel, we need to divide the batch size # ourselves based on the total number of GPUs we have args.batch_size = int(args.batch_size / ngpus_per_node) args.workers = int(args.workers / ngpus_per_node) model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) else: model.cuda() # DistributedDataParallel will divide and allocate batch_size to all # available GPUs if device_ids are not set model = torch.nn.parallel.DistributedDataParallel(model) elif args.gpu is not None: torch.cuda.set_device(args.gpu) model = model.cuda(args.gpu) else: # DataParallel will divide and allocate batch_size to all available GPUs if args.arch.startswith('alexnet') or args.arch.startswith('vgg'): model.features = torch.nn.DataParallel(model.features) model.cuda() else: model = torch.nn.DataParallel(model).cuda() # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss().cuda(args.gpu) optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay) model, optimizer = amp.initialize(model, optimizer, opt_level=args.opt_level) # optionally resume from a checkpoint if args.resume: if os.path.isfile(args.resume): print(f"=> loading checkpoint '{args.resume}'") checkpoint = torch.load(args.resume) args.start_epoch = checkpoint['epoch'] best_acc1 = checkpoint['best_acc1'] if args.gpu is not None: # best_acc1 may be from a checkpoint from a different GPU best_acc1 = best_acc1.to(args.gpu) model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) print(f"=> loaded checkpoint '{args.resume}' (epoch {checkpoint['epoch']})") else: print(f"=> no checkpoint found at '{args.resume}'") cudnn.benchmark = True # Data loading code traindir = os.path.join(args.data, 'train') valdir = os.path.join(args.data, 'val') if args.advprop: normalize = transforms.Lambda(lambda img: img * 2.0 - 1.0) else: normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_dataset = datasets.ImageFolder( traindir, transforms.Compose([ transforms.RandomResizedCrop(32), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ])) if args.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) else: train_sampler = None train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None), num_workers=args.workers, pin_memory=True, sampler=train_sampler) if 'efficientnet' in args.arch: image_size = 32 val_transforms = transforms.Compose([ transforms.Resize(image_size, interpolation=PIL.Image.BICUBIC), transforms.CenterCrop(image_size), transforms.ToTensor(), normalize, ]) print('Using image size', image_size) else: val_transforms = transforms.Compose([ transforms.Resize(36), transforms.CenterCrop(32), transforms.ToTensor(), normalize, ]) print('Using image size', 32) val_loader = torch.utils.data.DataLoader( datasets.ImageFolder(valdir, val_transforms), batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) if args.evaluate: res = validate(val_loader, model, criterion, args) with open('res.txt', 'w') as f: print(res, file=f) return for epoch in range(args.start_epoch, args.epochs): if args.distributed: train_sampler.set_epoch(epoch) adjust_learning_rate(optimizer, epoch, args) # train for one epoch train(train_loader, model, criterion, optimizer, epoch, args) # evaluate on validation set acc1 = validate(val_loader, model, criterion, args) # remember best acc@1 and save checkpoint is_best = acc1 > best_acc1 best_acc1 = max(acc1, best_acc1) if not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank % ngpus_per_node == 0): save_checkpoint({ 'epoch': epoch + 1, 'arch': args.arch, 'state_dict': model.state_dict(), 'best_acc1': best_acc1, 'optimizer': optimizer.state_dict(), }, is_best) def train(train_loader, model, criterion, optimizer, epoch, args): batch_time = AverageMeter('Time', ':6.3f') data_time = AverageMeter('Data', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') progress = ProgressMeter(len(train_loader), batch_time, data_time, losses, top1, top5, prefix="Epoch: [{}]".format(epoch)) # switch to train mode model.train() end = time.time() for i, (images, target) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) if args.gpu is not None: images = images.cuda(args.gpu, non_blocking=True) target = target.cuda(args.gpu, non_blocking=True) # compute output output = model(images) loss = criterion(output, target) # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), images.size(0)) top1.update(acc1[0], images.size(0)) top5.update(acc5[0], images.size(0)) # compute gradient and do SGD step optimizer.zero_grad() with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: progress.print(i) def validate(val_loader, model, criterion, args): batch_time = AverageMeter('Time', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') progress = ProgressMeter(len(val_loader), batch_time, losses, top1, top5, prefix='Test: ') # switch to evaluate mode model.eval() with torch.no_grad(): end = time.time() for i, (images, target) in enumerate(val_loader): if args.gpu is not None: images = images.cuda(args.gpu, non_blocking=True) target = target.cuda(args.gpu, non_blocking=True) # compute output output = model(images) loss = criterion(output, target) # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), images.size(0)) top1.update(acc1[0], images.size(0)) top5.update(acc5[0], images.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: progress.print(i) # TODO: this should also be done with the ProgressMeter print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}' .format(top1=top1, top5=top5)) return top1.avg def save_checkpoint(state, is_best, filename="checkpoint.pth"): torch.save(state, filename) if is_best: shutil.copyfile(filename, "model_best.pth") class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, name, fmt=':f'): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' return fmtstr.format(**self.__dict__) class ProgressMeter(object): def __init__(self, num_batches, *meters, prefix=""): self.batch_fmtstr = self._get_batch_fmtstr(num_batches) self.meters = meters self.prefix = prefix def print(self, batch): entries = [self.prefix + self.batch_fmtstr.format(batch)] entries += [str(meter) for meter in self.meters] print('\t'.join(entries)) def _get_batch_fmtstr(self, num_batches): num_digits = len(str(num_batches // 1)) fmt = '{:' + str(num_digits) + 'd}' return '[' + fmt + '/' + fmt.format(num_batches) + ']' def adjust_learning_rate(optimizer, epoch, args): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" lr = args.lr * (0.1 ** (epoch // 30)) for param_group in optimizer.param_groups: param_group['lr'] = lr def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res if __name__ == '__main__': main()
38.910638
111
0.611877
f14cecca50c37646ab2f9ff0ec514500a8fad959
2,286
py
Python
tests/specifications/post_test.py
m4rc1e/fontbakery
da4c4b69abdd41314f9bdb58d9e47722e0680816
[ "Apache-2.0" ]
null
null
null
tests/specifications/post_test.py
m4rc1e/fontbakery
da4c4b69abdd41314f9bdb58d9e47722e0680816
[ "Apache-2.0" ]
null
null
null
tests/specifications/post_test.py
m4rc1e/fontbakery
da4c4b69abdd41314f9bdb58d9e47722e0680816
[ "Apache-2.0" ]
null
null
null
import pytest from fontbakery.checkrunner import ( DEBUG , INFO , WARN , ERROR , SKIP , PASS , FAIL ) check_statuses = (ERROR, FAIL, SKIP, PASS, WARN, INFO, DEBUG) from fontTools.ttLib import TTFont mada_fonts = [ "data/test/mada/Mada-Black.ttf", "data/test/mada/Mada-ExtraLight.ttf", "data/test/mada/Mada-Medium.ttf", "data/test/mada/Mada-SemiBold.ttf", "data/test/mada/Mada-Bold.ttf", "data/test/mada/Mada-Light.ttf", "data/test/mada/Mada-Regular.ttf", ] @pytest.fixture def mada_ttFonts(): return [TTFont(path) for path in mada_fonts] def test_check_008(mada_ttFonts): """ Fonts have consistent underline thickness ? """ from fontbakery.specifications.post import com_google_fonts_check_008 as check # We start with our reference Mada font family, # which we know has the same value of post.underlineThickness # accross all of its font files, based on our inspection # of the file contents using TTX. # # So the check should PASS in this case: print('Test PASS with a good family.') status, message = list(check(mada_ttFonts))[-1] assert status == PASS # Then we introduce the issue by setting a # different underlineThickness value in just # one of the font files: value = mada_ttFonts[0]['post'].underlineThickness incorrect_value = value + 1 mada_ttFonts[0]['post'].underlineThickness = incorrect_value # And now re-running the check on the modified # family should result in a FAIL: print('Test FAIL with an inconsistent family.') status, message = list(check(mada_ttFonts))[-1] assert status == FAIL def test_check_015(): """ Font has post table version 2 ? """ from fontbakery.specifications.post import com_google_fonts_check_015 as check print('Test PASS with good font.') # our reference Mada family is know to be good here. ttFont = TTFont("data/test/mada/Mada-Regular.ttf") status, message = list(check(ttFont, 'glyf' in ttFont))[-1] assert status == PASS # modify the post table version ttFont['post'].formatType = 3 print('Test FAIL with fonts that diverge on the fontRevision field value.') status, message = list(check(ttFont, 'glyf' in ttFont))[-1] assert status == FAIL
30.48
80
0.692476
b360ec5333b437a2c22eff10f181ee34e18c9c64
7,021
py
Python
libs/dir_sobel_color_persp_warp_func.py
kavach-feature/Advanced_lane_finding
12e4e330e338734fdb35655c7581b98ba1eb490b
[ "MIT" ]
null
null
null
libs/dir_sobel_color_persp_warp_func.py
kavach-feature/Advanced_lane_finding
12e4e330e338734fdb35655c7581b98ba1eb490b
[ "MIT" ]
null
null
null
libs/dir_sobel_color_persp_warp_func.py
kavach-feature/Advanced_lane_finding
12e4e330e338734fdb35655c7581b98ba1eb490b
[ "MIT" ]
null
null
null
import numpy as np import cv2 import matplotlib.pyplot as plt import matplotlib.image as mpimg import glob objpoints=[] imgpoints=[] objp=np.zeros((6*9,3), np.float32) objp[:,:2]= np.mgrid[0:9,0:6].T.reshape(-1,2) # Defines a function that applies Sobel x and y, # then computes the direction of the gradient # and applies a threshold. def abs_sobel_thresh(img, orient='x', sobel_kernel = 3, thresh=(0,255)): # Grayscale gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Apply cv2.Sobel() if orient == 'x': sobel_orient= cv2.Sobel(gray,cv2.CV_64F,1,0) elif orient == 'y': sobel_orient= cv2.Sobel(gray,cv2.CV_64F,0,1) # Take the absolute value of the output from cv2.Sobel() abs_sobel = np.absolute(sobel_orient) # Scale the result to an 8-bit range (0-255) scaled_sobel= np.uint8(255*abs_sobel/np.max(abs_sobel)) binary_output= np.zeros_like(scaled_sobel) # Apply lower and upper thresholds binary_output [(scaled_sobel >=thresh[0])&(scaled_sobel<=thresh[1])]=1 # Create binary_output return binary_output def mag_thresh(img, sobel_kernel=3, mag_thresh=(0, 255)): # Grayscale # Apply the following steps to img # 1) Convert to grayscale gray=cv2.cvtColor(img,cv2.COLOR_RGB2GRAY) # 2) Take the gradient in x and y separately sobel_orient_x = cv2.Sobel(gray,cv2.CV_64F,1,0,ksize=sobel_kernel) sobel_orient_y = cv2.Sobel(gray,cv2.CV_64F,0,1,ksize=sobel_kernel) # 3) Calculate the magnitude abs_sobel= np.sqrt(sobel_orient_x**2 + sobel_orient_y**2) # 4) Scale to 8-bit (0 - 255) and convert to type = np.uint8 scaled_sobel=np.uint8(255*abs_sobel/np.max(abs_sobel)) # 5) Create a binary mask where mag thresholds are met binary_output=np.zeros_like(scaled_sobel) binary_output[(scaled_sobel>=mag_thresh[0]) & (scaled_sobel<=mag_thresh[1])]=1 # 6) Return this mask as your binary_output image #binary_output = np.copy(img) # Remove this line return binary_output def dir_threshold(img, sobel_kernel=3, thresh=(0, np.pi/2)): # Apply the following steps to img # 1) Convert to grayscale gray=cv2.cvtColor(img,cv2.COLOR_RGB2GRAY) # 2) Take the gradient in x and y separately sobel_orient_x = cv2.Sobel(gray,cv2.CV_64F,1,0,ksize=sobel_kernel) sobel_orient_y= cv2.Sobel(gray,cv2.CV_64F,0,1,ksize=sobel_kernel) # 3) Take the absolute value of the x and y gradients abs_sobelx=np.absolute(sobel_orient_x) abs_sobely=np.absolute(sobel_orient_y) # 4) Use np.arctan2(abs_sobely, abs_sobelx) to calculate the direction of the gradient dir_gradient = np.arctan2(abs_sobely,abs_sobelx) # 5) Create a binary mask where direction thresholds are met binary_output= np.zeros_like(dir_gradient) binary_output[(dir_gradient>= thresh[0])& (dir_gradient<= thresh[1])]=1 # 6) Return this mask as your binary_output image #binary_output = np.copy(img) # Remove this line return binary_output def hls_select(img, thresh=(0, 255)): # 1) Convert to HLS color space hls_image= cv2.cvtColor(img,cv2.COLOR_RGB2HLS) S=hls_image[:,:,2] # 2) Apply a threshold to the S channel threshold=(190,255) # 3) Return a binary image of threshold result #binary_output = np.copy(img) # placeholder line binary_output= np.zeros_like(S) binary_output[(S>=threshold[0])&(S<=threshold[1])]=1 return binary_output def birds_eye_view(image): img_size= (image.shape[1],image.shape[0]) src = np.float32( [[490,480], [810,480], [1250,720], [140,720]]) dst = np.float32( [[0,0], [1280,0], [1250,720], [140,720]]) M = cv2.getPerspectiveTransform(src,dst) Minv = cv2.getPerspectiveTransform(dst, src) warped_image = cv2.warpPerspective(image,M, img_size,flags=cv2.INTER_NEAREST) return warped_image, Minv def create_threshold_binary_image(image,ksize=3): ksize=3 gradx=abs_sobel_thresh(image,orient='x',sobel_kernel=ksize,thresh=(20,100)) grady=abs_sobel_thresh(image,orient='y',sobel_kernel=ksize,thresh=(20,100)) #Applying magnitude threshold mag_binary = mag_thresh(image,sobel_kernel=ksize,mag_thresh=(30,100)) #Applying threshold where the vertical direction of the gradient is met dir_output= dir_threshold(image,sobel_kernel=ksize,thresh=(0.7,1.3)) #Applying HLS color space threshold hls_output = hls_select(image) """Creating a binary image where only non-zero pixels meeting absolute Sobelx threshold, magnitude based threshold (for Sobelx and Sobel y) and direction gradient meets the criteria""" combined = np.zeros_like(dir_output) combined [(gradx==1)&(grady ==1)| (mag_binary ==1)& (dir_output ==1)] =1 combined_with_color_threshold=np.zeros_like(combined) combined_with_color_threshold [(hls_output==1)|(combined==1)]=1 #combined_with_color_threshold [(combined==1)]=1 return combined_with_color_threshold def render_original_combined_transforms_image(image1, image2,image2_title ="Processed Image"): f, (ax1, ax2) = plt.subplots(1, 2, figsize=(17, 9)) f.tight_layout() ax1.imshow(image1,cmap='gray') ax1.set_title("Original Image", fontsize=10) ax2.imshow(image2,cmap='gray') ax2.set_title(image2_title, fontsize=10) plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.5) plt.show() def render_original_plotted_warped_image(image1, image2,image2_title ="Processed Image"): f, (ax1, ax2) = plt.subplots(1, 2, figsize=(17, 9)) f.tight_layout() ax1.imshow(image1,cmap='gray') """ax1.plot([695,1100],[450,700], color='r', linewidth="6") ax1.plot([1100,225],[700,700], color='r', linewidth="6") ax1.plot([225,600],[700,470], color='r', linewidth="6") ax1.plot([600,695],[470,450], color='r', linewidth="6")""" ax1.set_title("Original Image", fontsize=10) ax2.imshow(image2,cmap='gray') """ax2.plot([900,900],[0,700], color='r', linewidth="6") ax2.plot([900,255],[700,700], color='r', linewidth="6") ax2.plot([255,255],[700,0], color='r', linewidth="6") ax2.plot([255,900],[0,0], color='r', linewidth="6")""" ax2.set_title(image2_title, fontsize=10) plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.5) plt.show() image_path = './test_images/straight_lines1.jpg' image = mpimg.imread(image_path) combined_image= create_threshold_binary_image(image,3) render_original_combined_transforms_image(image,combined_image,"Thresholded Binary Image") """ image_path = './test_images/test6.jpg' image = mpimg.imread(image_path) combined_image= create_threshold_binary_image(image,3) warped_image= birds_eye_view(combined_image) render_original_plotted_warped_image(combined_image,warped_image,"Birds Eye view Image")"""
39.44382
100
0.683094
d7e137f11b2e3a56ffbc1e7e0a579c3543ded5a5
1,292
py
Python
projetinhos/ex115/interface/__init__.py
dani-fn/Projetinhos_Python
692ff0a7f57d8f8f2e28f7b2c38bb6401e013bdb
[ "MIT" ]
null
null
null
projetinhos/ex115/interface/__init__.py
dani-fn/Projetinhos_Python
692ff0a7f57d8f8f2e28f7b2c38bb6401e013bdb
[ "MIT" ]
null
null
null
projetinhos/ex115/interface/__init__.py
dani-fn/Projetinhos_Python
692ff0a7f57d8f8f2e28f7b2c38bb6401e013bdb
[ "MIT" ]
null
null
null
def linha(tam=48): return '-' * tam def titulo(msg): print(linha()) print(f'{msg}'.center(48)) print(linha()) def leiaop(msg, a, b): erro = '\033[31m ERRO! Digite uma opção válida!\033[m' while True: try: v = int(input(msg)) except (TypeError, ValueError): print(erro) continue except KeyboardInterrupt: print('\033[31;1mEntrada de dados interrompida pelo usuário\033[m') exit() else: if a <= v < b: return v else: print(erro) def menu(lista): titulo('MENU PRINCIPAL') c = 1 for item in lista: print(f'\033[33m{c}\033[m - \033[34m{item}\033[m') c += 1 print(linha()) return leiaop('\033[32m Sua opção: \033[m', 1, len(lista)+1) def leiaint(prompt): erro = '\033[31m ERRO! Digite uma opção válida!\033[m' while True: try: v = int(input(prompt)) except (TypeError, ValueError): print(erro) continue except KeyboardInterrupt: print('\033[31;1mEntrada de dados interrompida pelo usuário\033[m') exit() else: return v
24.846154
80
0.496904
5144ff2b68f65fe7bc34889af6238ac6e9095f20
303
py
Python
2019/pwn/Time/exp.py
ZJGSIS/ZJGSUCTF-Challenges
460bfaa90f5d13a0958702fa4e479905713738bc
[ "MIT" ]
1
2021-11-20T04:13:07.000Z
2021-11-20T04:13:07.000Z
2019/pwn/Time/exp.py
ZJGSIS/ZJGSUCTF-Challenges
460bfaa90f5d13a0958702fa4e479905713738bc
[ "MIT" ]
null
null
null
2019/pwn/Time/exp.py
ZJGSIS/ZJGSUCTF-Challenges
460bfaa90f5d13a0958702fa4e479905713738bc
[ "MIT" ]
null
null
null
from pwn import * #context.log_level='debug' got=0x000000000601028 #p=process("./main") p=remote("10.21.13.190",2699) #gdb.attach(p) payload="%{}c%8$hn".format(0x2216).ljust(0x10,'\x00')+p64(got) payload=payload[:-5] log.info((payload)) log.info(len(payload)) p.sendafter(".\n",payload) p.interactive()
23.307692
62
0.70297
9f30c64d91f5b7cd62e44cf005989a70748967c6
57,274
py
Python
superset/superset/utils/core.py
mvbvieira/finance_pipeline
48b085aeafda61c82f77de4ae67ceb02ac32f683
[ "Apache-2.0" ]
1
2020-11-03T06:34:21.000Z
2020-11-03T06:34:21.000Z
superset/superset/utils/core.py
mvbvieira/finance_pipeline
48b085aeafda61c82f77de4ae67ceb02ac32f683
[ "Apache-2.0" ]
57
2020-04-20T17:41:41.000Z
2022-03-16T21:38:05.000Z
superset/superset/utils/core.py
mvbvieira/finance_pipeline
48b085aeafda61c82f77de4ae67ceb02ac32f683
[ "Apache-2.0" ]
2
2021-10-12T17:51:34.000Z
2021-10-15T18:55:52.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Utility functions used across Superset""" # pylint: disable=too-many-lines import collections import decimal import errno import json import logging import os import platform import re import signal import smtplib import tempfile import threading import traceback import uuid import zlib from datetime import date, datetime, time, timedelta from distutils.util import strtobool from email.mime.application import MIMEApplication from email.mime.image import MIMEImage from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.utils import formatdate from enum import Enum, IntEnum from timeit import default_timer from types import TracebackType from typing import ( Any, Callable, cast, Dict, Iterable, Iterator, List, NamedTuple, Optional, Sequence, Set, Tuple, Type, TYPE_CHECKING, TypeVar, Union, ) from urllib.parse import unquote_plus import bleach import markdown as md import numpy as np import pandas as pd import sqlalchemy as sa from cryptography import x509 from cryptography.hazmat.backends import default_backend from cryptography.hazmat.backends.openssl.x509 import _Certificate from flask import current_app, flash, g, Markup, render_template, request from flask_appbuilder import SQLA from flask_appbuilder.security.sqla.models import Role, User from flask_babel import gettext as __ from flask_babel.speaklater import LazyString from pandas.api.types import infer_dtype from pandas.core.dtypes.common import is_numeric_dtype from sqlalchemy import event, exc, select, Text from sqlalchemy.dialects.mysql import MEDIUMTEXT from sqlalchemy.engine import Connection, Engine from sqlalchemy.engine.reflection import Inspector from sqlalchemy.sql.elements import TextClause from sqlalchemy.sql.type_api import Variant from sqlalchemy.types import TEXT, TypeDecorator, TypeEngine from typing_extensions import TypedDict, TypeGuard import _thread # pylint: disable=C0411 from superset.constants import ( EXAMPLES_DB_UUID, EXTRA_FORM_DATA_APPEND_KEYS, EXTRA_FORM_DATA_OVERRIDE_EXTRA_KEYS, EXTRA_FORM_DATA_OVERRIDE_REGULAR_MAPPINGS, ) from superset.errors import ErrorLevel, SupersetErrorType from superset.exceptions import ( CertificateException, SupersetException, SupersetTimeoutException, ) from superset.typing import ( AdhocMetric, AdhocMetricColumn, FilterValues, FlaskResponse, FormData, Metric, ) from superset.utils.dates import datetime_to_epoch, EPOCH from superset.utils.hashing import md5_sha_from_dict, md5_sha_from_str try: from pydruid.utils.having import Having except ImportError: pass if TYPE_CHECKING: from superset.connectors.base.models import BaseColumn, BaseDatasource from superset.models.core import Database logging.getLogger("MARKDOWN").setLevel(logging.INFO) logger = logging.getLogger(__name__) DTTM_ALIAS = "__timestamp" NO_TIME_RANGE = "No filter" TIME_COMPARISION = "__" JS_MAX_INTEGER = 9007199254740991 # Largest int Java Script can handle 2^53-1 InputType = TypeVar("InputType") BIND_PARAM_REGEX = TextClause._bind_params_regex # pylint: disable=protected-access class LenientEnum(Enum): """Enums with a `get` method that convert a enum value to `Enum` if it is a valid value.""" @classmethod def get(cls, value: Any) -> Any: try: return super().__new__(cls, value) except ValueError: return None class AdhocMetricExpressionType(str, Enum): SIMPLE = "SIMPLE" SQL = "SQL" class AnnotationType(str, Enum): FORMULA = "FORMULA" INTERVAL = "INTERVAL" EVENT = "EVENT" TIME_SERIES = "TIME_SERIES" class GenericDataType(IntEnum): """ Generic database column type that fits both frontend and backend. """ NUMERIC = 0 STRING = 1 TEMPORAL = 2 BOOLEAN = 3 # ARRAY = 4 # Mapping all the complex data types to STRING for now # JSON = 5 # and leaving these as a reminder. # MAP = 6 # ROW = 7 class ChartDataResultFormat(str, Enum): """ Chart data response format """ CSV = "csv" JSON = "json" class ChartDataResultType(str, Enum): """ Chart data response type """ COLUMNS = "columns" FULL = "full" QUERY = "query" RESULTS = "results" SAMPLES = "samples" TIMEGRAINS = "timegrains" POST_PROCESSED = "post_processed" class DatasourceDict(TypedDict): type: str id: int class AdhocFilterClause(TypedDict, total=False): clause: str expressionType: str filterOptionName: Optional[str] comparator: Optional[FilterValues] operator: str subject: str isExtra: Optional[bool] sqlExpression: Optional[str] class QueryObjectFilterClause(TypedDict, total=False): col: str op: str # pylint: disable=invalid-name val: Optional[FilterValues] grain: Optional[str] isExtra: Optional[bool] class ExtraFiltersTimeColumnType(str, Enum): GRANULARITY = "__granularity" TIME_COL = "__time_col" TIME_GRAIN = "__time_grain" TIME_ORIGIN = "__time_origin" TIME_RANGE = "__time_range" class ExtraFiltersReasonType(str, Enum): NO_TEMPORAL_COLUMN = "no_temporal_column" COL_NOT_IN_DATASOURCE = "not_in_datasource" NOT_DRUID_DATASOURCE = "not_druid_datasource" class FilterOperator(str, Enum): """ Operators used filter controls """ EQUALS = "==" NOT_EQUALS = "!=" GREATER_THAN = ">" LESS_THAN = "<" GREATER_THAN_OR_EQUALS = ">=" LESS_THAN_OR_EQUALS = "<=" LIKE = "LIKE" ILIKE = "ILIKE" IS_NULL = "IS NULL" IS_NOT_NULL = "IS NOT NULL" IN = "IN" NOT_IN = "NOT IN" REGEX = "REGEX" IS_TRUE = "IS TRUE" IS_FALSE = "IS FALSE" class PostProcessingBoxplotWhiskerType(str, Enum): """ Calculate cell contribution to row/column total """ TUKEY = "tukey" MINMAX = "min/max" PERCENTILE = "percentile" class PostProcessingContributionOrientation(str, Enum): """ Calculate cell contribution to row/column total """ ROW = "row" COLUMN = "column" class QueryMode(str, LenientEnum): """ Whether the query runs on aggregate or returns raw records """ RAW = "raw" AGGREGATE = "aggregate" class QuerySource(Enum): """ The source of a SQL query. """ CHART = 0 DASHBOARD = 1 SQL_LAB = 2 class QueryStatus(str, Enum): """Enum-type class for query statuses""" STOPPED: str = "stopped" FAILED: str = "failed" PENDING: str = "pending" RUNNING: str = "running" SCHEDULED: str = "scheduled" SUCCESS: str = "success" FETCHING: str = "fetching" TIMED_OUT: str = "timed_out" class DashboardStatus(str, Enum): """Dashboard status used for frontend filters""" PUBLISHED = "published" DRAFT = "draft" class ReservedUrlParameters(str, Enum): """ Reserved URL parameters that are used internally by Superset. These will not be passed to chart queries, as they control the behavior of the UI. """ STANDALONE = "standalone" EDIT_MODE = "edit" @staticmethod def is_standalone_mode() -> Optional[bool]: standalone_param = request.args.get(ReservedUrlParameters.STANDALONE.value) standalone: Optional[bool] = ( standalone_param and standalone_param != "false" and standalone_param != "0" ) return standalone class RowLevelSecurityFilterType(str, Enum): REGULAR = "Regular" BASE = "Base" class TimeRangeEndpoint(str, Enum): """ The time range endpoint types which represent inclusive, exclusive, or unknown. Unknown represents endpoints which are ill-defined as though the interval may be [start, end] the filter may behave like (start, end] due to mixed data types and lexicographical ordering. :see: https://github.com/apache/superset/issues/6360 """ EXCLUSIVE = "exclusive" INCLUSIVE = "inclusive" UNKNOWN = "unknown" class TemporalType(str, Enum): """ Supported temporal types """ DATE = "DATE" DATETIME = "DATETIME" SMALLDATETIME = "SMALLDATETIME" TEXT = "TEXT" TIME = "TIME" TIMESTAMP = "TIMESTAMP" class ColumnTypeSource(Enum): GET_TABLE = 1 CURSOR_DESCRIPION = 2 class ColumnSpec(NamedTuple): sqla_type: Union[TypeEngine, str] generic_type: GenericDataType is_dttm: bool python_date_format: Optional[str] = None try: # Having might not have been imported. class DimSelector(Having): def __init__(self, **args: Any) -> None: # Just a hack to prevent any exceptions Having.__init__(self, type="equalTo", aggregation=None, value=None) self.having = { "having": { "type": "dimSelector", "dimension": args["dimension"], "value": args["value"], } } except NameError: pass def flasher(msg: str, severity: str = "message") -> None: """Flask's flash if available, logging call if not""" try: flash(msg, severity) except RuntimeError: if severity == "danger": logger.error(msg, exc_info=True) else: logger.info(msg) def parse_js_uri_path_item( item: Optional[str], unquote: bool = True, eval_undefined: bool = False ) -> Optional[str]: """Parse a uri path item made with js. :param item: a uri path component :param unquote: Perform unquoting of string using urllib.parse.unquote_plus() :param eval_undefined: When set to True and item is either 'null' or 'undefined', assume item is undefined and return None. :return: Either None, the original item or unquoted item """ item = None if eval_undefined and item in ("null", "undefined") else item return unquote_plus(item) if unquote and item else item def cast_to_num(value: Optional[Union[float, int, str]]) -> Optional[Union[float, int]]: """Casts a value to an int/float >>> cast_to_num('1 ') 1.0 >>> cast_to_num(' 2') 2.0 >>> cast_to_num('5') 5 >>> cast_to_num('5.2') 5.2 >>> cast_to_num(10) 10 >>> cast_to_num(10.1) 10.1 >>> cast_to_num(None) is None True >>> cast_to_num('this is not a string') is None True :param value: value to be converted to numeric representation :returns: value cast to `int` if value is all digits, `float` if `value` is decimal value and `None`` if it can't be converted """ if value is None: return None if isinstance(value, (int, float)): return value if value.isdigit(): return int(value) try: return float(value) except ValueError: return None def cast_to_boolean(value: Any) -> Optional[bool]: """Casts a value to an int/float >>> cast_to_boolean(1) True >>> cast_to_boolean(0) False >>> cast_to_boolean(0.5) True >>> cast_to_boolean('true') True >>> cast_to_boolean('false') False >>> cast_to_boolean('False') False >>> cast_to_boolean(None) :param value: value to be converted to boolean representation :returns: value cast to `bool`. when value is 'true' or value that are not 0 converted into True. Return `None` if value is `None` """ if value is None: return None if isinstance(value, (int, float)): return value != 0 if isinstance(value, str): return value.strip().lower() == "true" return False def list_minus(l: List[Any], minus: List[Any]) -> List[Any]: """Returns l without what is in minus >>> list_minus([1, 2, 3], [2]) [1, 3] """ return [o for o in l if o not in minus] class DashboardEncoder(json.JSONEncoder): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) self.sort_keys = True def default(self, o: Any) -> Union[Dict[Any, Any], str]: if isinstance(o, uuid.UUID): return str(o) try: vals = {k: v for k, v in o.__dict__.items() if k != "_sa_instance_state"} return {"__{}__".format(o.__class__.__name__): vals} except Exception: # pylint: disable=broad-except if isinstance(o, datetime): return {"__datetime__": o.replace(microsecond=0).isoformat()} return json.JSONEncoder(sort_keys=True).default(o) class JSONEncodedDict(TypeDecorator): # pylint: disable=abstract-method """Represents an immutable structure as a json-encoded string.""" impl = TEXT def process_bind_param( self, value: Optional[Dict[Any, Any]], dialect: str ) -> Optional[str]: return json.dumps(value) if value is not None else None def process_result_value( self, value: Optional[str], dialect: str ) -> Optional[Dict[Any, Any]]: return json.loads(value) if value is not None else None def format_timedelta(time_delta: timedelta) -> str: """ Ensures negative time deltas are easily interpreted by humans >>> td = timedelta(0) - timedelta(days=1, hours=5,minutes=6) >>> str(td) '-2 days, 18:54:00' >>> format_timedelta(td) '-1 day, 5:06:00' """ if time_delta < timedelta(0): return "-" + str(abs(time_delta)) # Change this to format positive time deltas the way you want return str(time_delta) def base_json_conv(obj: Any,) -> Any: # pylint: disable=inconsistent-return-statements if isinstance(obj, memoryview): obj = obj.tobytes() if isinstance(obj, np.int64): return int(obj) if isinstance(obj, np.bool_): return bool(obj) if isinstance(obj, np.ndarray): return obj.tolist() if isinstance(obj, set): return list(obj) if isinstance(obj, decimal.Decimal): return float(obj) if isinstance(obj, uuid.UUID): return str(obj) if isinstance(obj, timedelta): return format_timedelta(obj) if isinstance(obj, bytes): try: return obj.decode("utf-8") except Exception: # pylint: disable=broad-except return "[bytes]" if isinstance(obj, LazyString): return str(obj) def json_iso_dttm_ser(obj: Any, pessimistic: bool = False) -> str: """ json serializer that deals with dates >>> dttm = datetime(1970, 1, 1) >>> json.dumps({'dttm': dttm}, default=json_iso_dttm_ser) '{"dttm": "1970-01-01T00:00:00"}' """ val = base_json_conv(obj) if val is not None: return val if isinstance(obj, (datetime, date, time, pd.Timestamp)): obj = obj.isoformat() else: if pessimistic: return "Unserializable [{}]".format(type(obj)) raise TypeError("Unserializable object {} of type {}".format(obj, type(obj))) return obj def pessimistic_json_iso_dttm_ser(obj: Any) -> str: """Proxy to call json_iso_dttm_ser in a pessimistic way If one of object is not serializable to json, it will still succeed""" return json_iso_dttm_ser(obj, pessimistic=True) def json_int_dttm_ser(obj: Any) -> float: """json serializer that deals with dates""" val = base_json_conv(obj) if val is not None: return val if isinstance(obj, (datetime, pd.Timestamp)): obj = datetime_to_epoch(obj) elif isinstance(obj, date): obj = (obj - EPOCH.date()).total_seconds() * 1000 else: raise TypeError("Unserializable object {} of type {}".format(obj, type(obj))) return obj def json_dumps_w_dates(payload: Dict[Any, Any]) -> str: return json.dumps(payload, default=json_int_dttm_ser) def error_msg_from_exception(ex: Exception) -> str: """Translate exception into error message Database have different ways to handle exception. This function attempts to make sense of the exception object and construct a human readable sentence. TODO(bkyryliuk): parse the Presto error message from the connection created via create_engine. engine = create_engine('presto://localhost:3506/silver') - gives an e.message as the str(dict) presto.connect('localhost', port=3506, catalog='silver') - as a dict. The latter version is parsed correctly by this function. """ msg = "" if hasattr(ex, "message"): if isinstance(ex.message, dict): # type: ignore msg = ex.message.get("message") # type: ignore elif ex.message: # type: ignore msg = ex.message # type: ignore return msg or str(ex) def markdown(raw: str, markup_wrap: Optional[bool] = False) -> str: safe_markdown_tags = [ "h1", "h2", "h3", "h4", "h5", "h6", "b", "i", "strong", "em", "tt", "p", "br", "span", "div", "blockquote", "code", "hr", "ul", "ol", "li", "dd", "dt", "img", "a", ] safe_markdown_attrs = { "img": ["src", "alt", "title"], "a": ["href", "alt", "title"], } safe = md.markdown( raw or "", extensions=[ "markdown.extensions.tables", "markdown.extensions.fenced_code", "markdown.extensions.codehilite", ], ) safe = bleach.clean(safe, safe_markdown_tags, safe_markdown_attrs) if markup_wrap: safe = Markup(safe) return safe def readfile(file_path: str) -> Optional[str]: with open(file_path) as f: content = f.read() return content def generic_find_constraint_name( table: str, columns: Set[str], referenced: str, database: SQLA ) -> Optional[str]: """Utility to find a constraint name in alembic migrations""" tbl = sa.Table( table, database.metadata, autoload=True, autoload_with=database.engine ) for fk in tbl.foreign_key_constraints: if fk.referred_table.name == referenced and set(fk.column_keys) == columns: return fk.name return None def generic_find_fk_constraint_name( table: str, columns: Set[str], referenced: str, insp: Inspector ) -> Optional[str]: """Utility to find a foreign-key constraint name in alembic migrations""" for fk in insp.get_foreign_keys(table): if ( fk["referred_table"] == referenced and set(fk["referred_columns"]) == columns ): return fk["name"] return None def generic_find_fk_constraint_names( # pylint: disable=invalid-name table: str, columns: Set[str], referenced: str, insp: Inspector ) -> Set[str]: """Utility to find foreign-key constraint names in alembic migrations""" names = set() for fk in insp.get_foreign_keys(table): if ( fk["referred_table"] == referenced and set(fk["referred_columns"]) == columns ): names.add(fk["name"]) return names def generic_find_uq_constraint_name( table: str, columns: Set[str], insp: Inspector ) -> Optional[str]: """Utility to find a unique constraint name in alembic migrations""" for uq in insp.get_unique_constraints(table): if columns == set(uq["column_names"]): return uq["name"] return None def get_datasource_full_name( database_name: str, datasource_name: str, schema: Optional[str] = None ) -> str: if not schema: return "[{}].[{}]".format(database_name, datasource_name) return "[{}].[{}].[{}]".format(database_name, schema, datasource_name) def validate_json(obj: Union[bytes, bytearray, str]) -> None: if obj: try: json.loads(obj) except Exception as ex: logger.error("JSON is not valid %s", str(ex), exc_info=True) raise SupersetException("JSON is not valid") from ex class SigalrmTimeout: """ To be used in a ``with`` block and timeout its content. """ def __init__(self, seconds: int = 1, error_message: str = "Timeout") -> None: self.seconds = seconds self.error_message = error_message def handle_timeout( # pylint: disable=unused-argument self, signum: int, frame: Any ) -> None: logger.error("Process timed out", exc_info=True) raise SupersetTimeoutException( error_type=SupersetErrorType.BACKEND_TIMEOUT_ERROR, message=self.error_message, level=ErrorLevel.ERROR, extra={"timeout": self.seconds}, ) def __enter__(self) -> None: try: if threading.current_thread() == threading.main_thread(): signal.signal(signal.SIGALRM, self.handle_timeout) signal.alarm(self.seconds) except ValueError as ex: logger.warning("timeout can't be used in the current context") logger.exception(ex) def __exit__( # pylint: disable=redefined-outer-name,redefined-builtin self, type: Any, value: Any, traceback: TracebackType ) -> None: try: signal.alarm(0) except ValueError as ex: logger.warning("timeout can't be used in the current context") logger.exception(ex) class TimerTimeout: def __init__(self, seconds: int = 1, error_message: str = "Timeout") -> None: self.seconds = seconds self.error_message = error_message self.timer = threading.Timer(seconds, _thread.interrupt_main) def __enter__(self) -> None: self.timer.start() def __exit__( # pylint: disable=redefined-outer-name,redefined-builtin self, type: Any, value: Any, traceback: TracebackType ) -> None: self.timer.cancel() if type is KeyboardInterrupt: # raised by _thread.interrupt_main raise SupersetTimeoutException( error_type=SupersetErrorType.BACKEND_TIMEOUT_ERROR, message=self.error_message, level=ErrorLevel.ERROR, extra={"timeout": self.seconds}, ) # Windows has no support for SIGALRM, so we use the timer based timeout timeout: Union[Type[TimerTimeout], Type[SigalrmTimeout]] = ( TimerTimeout if platform.system() == "Windows" else SigalrmTimeout ) def pessimistic_connection_handling(some_engine: Engine) -> None: @event.listens_for(some_engine, "engine_connect") def ping_connection(connection: Connection, branch: bool) -> None: if branch: # 'branch' refers to a sub-connection of a connection, # we don't want to bother pinging on these. return # turn off 'close with result'. This flag is only used with # 'connectionless' execution, otherwise will be False in any case save_should_close_with_result = connection.should_close_with_result connection.should_close_with_result = False try: # run a SELECT 1. use a core select() so that # the SELECT of a scalar value without a table is # appropriately formatted for the backend connection.scalar(select([1])) except exc.DBAPIError as err: # catch SQLAlchemy's DBAPIError, which is a wrapper # for the DBAPI's exception. It includes a .connection_invalidated # attribute which specifies if this connection is a 'disconnect' # condition, which is based on inspection of the original exception # by the dialect in use. if err.connection_invalidated: # run the same SELECT again - the connection will re-validate # itself and establish a new connection. The disconnect detection # here also causes the whole connection pool to be invalidated # so that all stale connections are discarded. connection.scalar(select([1])) else: raise finally: # restore 'close with result' connection.should_close_with_result = save_should_close_with_result def notify_user_about_perm_udate( # pylint: disable=too-many-arguments granter: User, user: User, role: Role, datasource: "BaseDatasource", tpl_name: str, config: Dict[str, Any], ) -> None: msg = render_template( tpl_name, granter=granter, user=user, role=role, datasource=datasource ) logger.info(msg) subject = __( "[Superset] Access to the datasource %(name)s was granted", name=datasource.full_name, ) send_email_smtp( user.email, subject, msg, config, bcc=granter.email, dryrun=not config["EMAIL_NOTIFICATIONS"], ) def send_email_smtp( # pylint: disable=invalid-name,too-many-arguments,too-many-locals to: str, subject: str, html_content: str, config: Dict[str, Any], files: Optional[List[str]] = None, data: Optional[Dict[str, str]] = None, images: Optional[Dict[str, bytes]] = None, dryrun: bool = False, cc: Optional[str] = None, bcc: Optional[str] = None, mime_subtype: str = "mixed", ) -> None: """ Send an email with html content, eg: send_email_smtp( '[email protected]', 'foo', '<b>Foo</b> bar',['/dev/null'], dryrun=True) """ smtp_mail_from = config["SMTP_MAIL_FROM"] smtp_mail_to = get_email_address_list(to) msg = MIMEMultipart(mime_subtype) msg["Subject"] = subject msg["From"] = smtp_mail_from msg["To"] = ", ".join(smtp_mail_to) msg.preamble = "This is a multi-part message in MIME format." recipients = smtp_mail_to if cc: smtp_mail_cc = get_email_address_list(cc) msg["CC"] = ", ".join(smtp_mail_cc) recipients = recipients + smtp_mail_cc if bcc: # don't add bcc in header smtp_mail_bcc = get_email_address_list(bcc) recipients = recipients + smtp_mail_bcc msg["Date"] = formatdate(localtime=True) mime_text = MIMEText(html_content, "html") msg.attach(mime_text) # Attach files by reading them from disk for fname in files or []: basename = os.path.basename(fname) with open(fname, "rb") as f: msg.attach( MIMEApplication( f.read(), Content_Disposition="attachment; filename='%s'" % basename, Name=basename, ) ) # Attach any files passed directly for name, body in (data or {}).items(): msg.attach( MIMEApplication( body, Content_Disposition="attachment; filename='%s'" % name, Name=name ) ) # Attach any inline images, which may be required for display in # HTML content (inline) for msgid, imgdata in (images or {}).items(): image = MIMEImage(imgdata) image.add_header("Content-ID", "<%s>" % msgid) image.add_header("Content-Disposition", "inline") msg.attach(image) send_mime_email(smtp_mail_from, recipients, msg, config, dryrun=dryrun) def send_mime_email( e_from: str, e_to: List[str], mime_msg: MIMEMultipart, config: Dict[str, Any], dryrun: bool = False, ) -> None: smtp_host = config["SMTP_HOST"] smtp_port = config["SMTP_PORT"] smtp_user = config["SMTP_USER"] smtp_password = config["SMTP_PASSWORD"] smtp_starttls = config["SMTP_STARTTLS"] smtp_ssl = config["SMTP_SSL"] if not dryrun: smtp = ( smtplib.SMTP_SSL(smtp_host, smtp_port) if smtp_ssl else smtplib.SMTP(smtp_host, smtp_port) ) if smtp_starttls: smtp.starttls() if smtp_user and smtp_password: smtp.login(smtp_user, smtp_password) logger.debug("Sent an email to %s", str(e_to)) smtp.sendmail(e_from, e_to, mime_msg.as_string()) smtp.quit() else: logger.info("Dryrun enabled, email notification content is below:") logger.info(mime_msg.as_string()) def get_email_address_list(address_string: str) -> List[str]: address_string_list: List[str] = [] if isinstance(address_string, str): address_string_list = re.split(r",|\s|;", address_string) return [x.strip() for x in address_string_list if x.strip()] def get_email_address_str(address_string: str) -> str: address_list = get_email_address_list(address_string) address_list_str = ", ".join(address_list) return address_list_str def choicify(values: Iterable[Any]) -> List[Tuple[Any, Any]]: """Takes an iterable and makes an iterable of tuples with it""" return [(v, v) for v in values] def zlib_compress(data: Union[bytes, str]) -> bytes: """ Compress things in a py2/3 safe fashion >>> json_str = '{"test": 1}' >>> blob = zlib_compress(json_str) """ if isinstance(data, str): return zlib.compress(bytes(data, "utf-8")) return zlib.compress(data) def zlib_decompress(blob: bytes, decode: Optional[bool] = True) -> Union[bytes, str]: """ Decompress things to a string in a py2/3 safe fashion >>> json_str = '{"test": 1}' >>> blob = zlib_compress(json_str) >>> got_str = zlib_decompress(blob) >>> got_str == json_str True """ if isinstance(blob, bytes): decompressed = zlib.decompress(blob) else: decompressed = zlib.decompress(bytes(blob, "utf-8")) return decompressed.decode("utf-8") if decode else decompressed def simple_filter_to_adhoc( filter_clause: QueryObjectFilterClause, clause: str = "where", ) -> AdhocFilterClause: result: AdhocFilterClause = { "clause": clause.upper(), "expressionType": "SIMPLE", "comparator": filter_clause.get("val"), "operator": filter_clause["op"], "subject": filter_clause["col"], } if filter_clause.get("isExtra"): result["isExtra"] = True result["filterOptionName"] = md5_sha_from_dict(cast(Dict[Any, Any], result)) return result def form_data_to_adhoc(form_data: Dict[str, Any], clause: str) -> AdhocFilterClause: if clause not in ("where", "having"): raise ValueError(__("Unsupported clause type: %(clause)s", clause=clause)) result: AdhocFilterClause = { "clause": clause.upper(), "expressionType": "SQL", "sqlExpression": form_data.get(clause), } result["filterOptionName"] = md5_sha_from_dict(cast(Dict[Any, Any], result)) return result def merge_extra_form_data(form_data: Dict[str, Any]) -> None: """ Merge extra form data (appends and overrides) into the main payload and add applied time extras to the payload. """ filter_keys = ["filters", "adhoc_filters"] extra_form_data = form_data.pop("extra_form_data", {}) append_filters: List[QueryObjectFilterClause] = extra_form_data.get("filters", None) # merge append extras for key in [key for key in EXTRA_FORM_DATA_APPEND_KEYS if key not in filter_keys]: extra_value = getattr(extra_form_data, key, {}) form_value = getattr(form_data, key, {}) form_value.update(extra_value) if form_value: form_data["key"] = extra_value # map regular extras that apply to form data properties for src_key, target_key in EXTRA_FORM_DATA_OVERRIDE_REGULAR_MAPPINGS.items(): value = extra_form_data.get(src_key) if value is not None: form_data[target_key] = value # map extras that apply to form data extra properties extras = form_data.get("extras", {}) for key in EXTRA_FORM_DATA_OVERRIDE_EXTRA_KEYS: value = extra_form_data.get(key) if value is not None: extras[key] = value if extras: form_data["extras"] = extras adhoc_filters: List[AdhocFilterClause] = form_data.get("adhoc_filters", []) form_data["adhoc_filters"] = adhoc_filters append_adhoc_filters: List[AdhocFilterClause] = extra_form_data.get( "adhoc_filters", [] ) adhoc_filters.extend( {"isExtra": True, **fltr} for fltr in append_adhoc_filters # type: ignore ) if append_filters: adhoc_filters.extend( simple_filter_to_adhoc({"isExtra": True, **fltr}) # type: ignore for fltr in append_filters if fltr ) def merge_extra_filters(form_data: Dict[str, Any]) -> None: # extra_filters are temporary/contextual filters (using the legacy constructs) # that are external to the slice definition. We use those for dynamic # interactive filters like the ones emitted by the "Filter Box" visualization. # Note extra_filters only support simple filters. applied_time_extras: Dict[str, str] = {} form_data["applied_time_extras"] = applied_time_extras adhoc_filters = form_data.get("adhoc_filters", []) form_data["adhoc_filters"] = adhoc_filters merge_extra_form_data(form_data) if "extra_filters" in form_data: # __form and __to are special extra_filters that target time # boundaries. The rest of extra_filters are simple # [column_name in list_of_values]. `__` prefix is there to avoid # potential conflicts with column that would be named `from` or `to` date_options = { "__time_range": "time_range", "__time_col": "granularity_sqla", "__time_grain": "time_grain_sqla", "__time_origin": "druid_time_origin", "__granularity": "granularity", } # Grab list of existing filters 'keyed' on the column and operator def get_filter_key(f: Dict[str, Any]) -> str: if "expressionType" in f: return "{}__{}".format(f["subject"], f["operator"]) return "{}__{}".format(f["col"], f["op"]) existing_filters = {} for existing in adhoc_filters: if ( existing["expressionType"] == "SIMPLE" and existing.get("comparator") is not None and existing.get("subject") is not None ): existing_filters[get_filter_key(existing)] = existing["comparator"] for filtr in form_data[ # pylint: disable=too-many-nested-blocks "extra_filters" ]: filtr["isExtra"] = True # Pull out time filters/options and merge into form data filter_column = filtr["col"] time_extra = date_options.get(filter_column) if time_extra: time_extra_value = filtr.get("val") if time_extra_value and time_extra_value != NO_TIME_RANGE: form_data[time_extra] = time_extra_value applied_time_extras[filter_column] = time_extra_value elif filtr["val"]: # Merge column filters filter_key = get_filter_key(filtr) if filter_key in existing_filters: # Check if the filter already exists if isinstance(filtr["val"], list): if isinstance(existing_filters[filter_key], list): # Add filters for unequal lists # order doesn't matter if set(existing_filters[filter_key]) != set(filtr["val"]): adhoc_filters.append(simple_filter_to_adhoc(filtr)) else: adhoc_filters.append(simple_filter_to_adhoc(filtr)) else: # Do not add filter if same value already exists if filtr["val"] != existing_filters[filter_key]: adhoc_filters.append(simple_filter_to_adhoc(filtr)) else: # Filter not found, add it adhoc_filters.append(simple_filter_to_adhoc(filtr)) # Remove extra filters from the form data since no longer needed del form_data["extra_filters"] def merge_request_params(form_data: Dict[str, Any], params: Dict[str, Any]) -> None: """ Merge request parameters to the key `url_params` in form_data. Only updates or appends parameters to `form_data` that are defined in `params; pre-existing parameters not defined in params are left unchanged. :param form_data: object to be updated :param params: request parameters received via query string """ url_params = form_data.get("url_params", {}) for key, value in params.items(): if key in ("form_data", "r"): continue url_params[key] = value form_data["url_params"] = url_params def user_label(user: User) -> Optional[str]: """Given a user ORM FAB object, returns a label""" if user: if user.first_name and user.last_name: return user.first_name + " " + user.last_name return user.username return None def get_or_create_db( database_name: str, sqlalchemy_uri: str, always_create: Optional[bool] = True ) -> "Database": # pylint: disable=import-outside-toplevel from superset import db from superset.models import core as models database = ( db.session.query(models.Database).filter_by(database_name=database_name).first() ) # databases with a fixed UUID uuids = { "examples": EXAMPLES_DB_UUID, } if not database and always_create: logger.info("Creating database reference for %s", database_name) database = models.Database( database_name=database_name, uuid=uuids.get(database_name) ) db.session.add(database) if database: database.set_sqlalchemy_uri(sqlalchemy_uri) db.session.commit() return database def get_example_database() -> "Database": db_uri = ( current_app.config.get("SQLALCHEMY_EXAMPLES_URI") or current_app.config["SQLALCHEMY_DATABASE_URI"] ) return get_or_create_db("examples", db_uri) def get_main_database() -> "Database": db_uri = current_app.config["SQLALCHEMY_DATABASE_URI"] return get_or_create_db("main", db_uri) def backend() -> str: return get_example_database().backend def is_adhoc_metric(metric: Metric) -> TypeGuard[AdhocMetric]: return isinstance(metric, dict) and "expressionType" in metric def get_metric_name(metric: Metric) -> str: """ Extract label from metric :param metric: object to extract label from :return: String representation of metric :raises ValueError: if metric object is invalid """ if is_adhoc_metric(metric): label = metric.get("label") if label: return label expression_type = metric.get("expressionType") if expression_type == "SQL": sql_expression = metric.get("sqlExpression") if sql_expression: return sql_expression elif expression_type == "SIMPLE": column: AdhocMetricColumn = metric.get("column") or {} column_name = column.get("column_name") aggregate = metric.get("aggregate") if column and aggregate: return f"{aggregate}({column_name})" if column_name: return column_name raise ValueError(__("Invalid metric object")) return metric # type: ignore def get_metric_names(metrics: Sequence[Metric]) -> List[str]: return [metric for metric in map(get_metric_name, metrics) if metric] def get_first_metric_name(metrics: Sequence[Metric]) -> Optional[str]: metric_labels = get_metric_names(metrics) return metric_labels[0] if metric_labels else None def ensure_path_exists(path: str) -> None: try: os.makedirs(path) except OSError as ex: if not (os.path.isdir(path) and ex.errno == errno.EEXIST): raise def convert_legacy_filters_into_adhoc( # pylint: disable=invalid-name form_data: FormData, ) -> None: mapping = {"having": "having_filters", "where": "filters"} if not form_data.get("adhoc_filters"): adhoc_filters: List[AdhocFilterClause] = [] form_data["adhoc_filters"] = adhoc_filters for clause, filters in mapping.items(): if clause in form_data and form_data[clause] != "": adhoc_filters.append(form_data_to_adhoc(form_data, clause)) if filters in form_data: for filt in filter(lambda x: x is not None, form_data[filters]): adhoc_filters.append(simple_filter_to_adhoc(filt, clause)) for key in ("filters", "having", "having_filters", "where"): if key in form_data: del form_data[key] def split_adhoc_filters_into_base_filters( # pylint: disable=invalid-name form_data: FormData, ) -> None: """ Mutates form data to restructure the adhoc filters in the form of the four base filters, `where`, `having`, `filters`, and `having_filters` which represent free form where sql, free form having sql, structured where clauses and structured having clauses. """ adhoc_filters = form_data.get("adhoc_filters") if isinstance(adhoc_filters, list): simple_where_filters = [] simple_having_filters = [] sql_where_filters = [] sql_having_filters = [] for adhoc_filter in adhoc_filters: expression_type = adhoc_filter.get("expressionType") clause = adhoc_filter.get("clause") if expression_type == "SIMPLE": if clause == "WHERE": simple_where_filters.append( { "col": adhoc_filter.get("subject"), "op": adhoc_filter.get("operator"), "val": adhoc_filter.get("comparator"), } ) elif clause == "HAVING": simple_having_filters.append( { "col": adhoc_filter.get("subject"), "op": adhoc_filter.get("operator"), "val": adhoc_filter.get("comparator"), } ) elif expression_type == "SQL": if clause == "WHERE": sql_where_filters.append(adhoc_filter.get("sqlExpression")) elif clause == "HAVING": sql_having_filters.append(adhoc_filter.get("sqlExpression")) form_data["where"] = " AND ".join( ["({})".format(sql) for sql in sql_where_filters] ) form_data["having"] = " AND ".join( ["({})".format(sql) for sql in sql_having_filters] ) form_data["having_filters"] = simple_having_filters form_data["filters"] = simple_where_filters def get_username() -> Optional[str]: """Get username if within the flask context, otherwise return noffin'""" try: return g.user.username except Exception: # pylint: disable=broad-except return None def parse_ssl_cert(certificate: str) -> _Certificate: """ Parses the contents of a certificate and returns a valid certificate object if valid. :param certificate: Contents of certificate file :return: Valid certificate instance :raises CertificateException: If certificate is not valid/unparseable """ try: return x509.load_pem_x509_certificate( certificate.encode("utf-8"), default_backend() ) except ValueError as ex: raise CertificateException("Invalid certificate") from ex def create_ssl_cert_file(certificate: str) -> str: """ This creates a certificate file that can be used to validate HTTPS sessions. A certificate is only written to disk once; on subsequent calls, only the path of the existing certificate is returned. :param certificate: The contents of the certificate :return: The path to the certificate file :raises CertificateException: If certificate is not valid/unparseable """ filename = f"{md5_sha_from_str(certificate)}.crt" cert_dir = current_app.config["SSL_CERT_PATH"] path = cert_dir if cert_dir else tempfile.gettempdir() path = os.path.join(path, filename) if not os.path.exists(path): # Validate certificate prior to persisting to temporary directory parse_ssl_cert(certificate) with open(path, "w") as cert_file: cert_file.write(certificate) return path def time_function( func: Callable[..., FlaskResponse], *args: Any, **kwargs: Any ) -> Tuple[float, Any]: """ Measures the amount of time a function takes to execute in ms :param func: The function execution time to measure :param args: args to be passed to the function :param kwargs: kwargs to be passed to the function :return: A tuple with the duration and response from the function """ start = default_timer() response = func(*args, **kwargs) stop = default_timer() return (stop - start) * 1000.0, response def MediumText() -> Variant: # pylint:disable=invalid-name return Text().with_variant(MEDIUMTEXT(), "mysql") def shortid() -> str: return "{}".format(uuid.uuid4())[-12:] class DatasourceName(NamedTuple): table: str schema: str def get_stacktrace() -> Optional[str]: if current_app.config["SHOW_STACKTRACE"]: return traceback.format_exc() return None def split( string: str, delimiter: str = " ", quote: str = '"', escaped_quote: str = r"\"" ) -> Iterator[str]: """ A split function that is aware of quotes and parentheses. :param string: string to split :param delimiter: string defining where to split, usually a comma or space :param quote: string, either a single or a double quote :param escaped_quote: string representing an escaped quote :return: list of strings """ parens = 0 quotes = False i = 0 for j, character in enumerate(string): complete = parens == 0 and not quotes if complete and character == delimiter: yield string[i:j] i = j + len(delimiter) elif character == "(": parens += 1 elif character == ")": parens -= 1 elif character == quote: if quotes and string[j - len(escaped_quote) + 1 : j + 1] != escaped_quote: quotes = False elif not quotes: quotes = True yield string[i:] def get_iterable(x: Any) -> List[Any]: """ Get an iterable (list) representation of the object. :param x: The object :returns: An iterable representation """ return x if isinstance(x, list) else [x] def get_form_data_token(form_data: Dict[str, Any]) -> str: """ Return the token contained within form data or generate a new one. :param form_data: chart form data :return: original token if predefined, otherwise new uuid4 based token """ return form_data.get("token") or "token_" + uuid.uuid4().hex[:8] def get_column_name_from_metric(metric: Metric) -> Optional[str]: """ Extract the column that a metric is referencing. If the metric isn't a simple metric, always returns `None`. :param metric: Ad-hoc metric :return: column name if simple metric, otherwise None """ if is_adhoc_metric(metric): metric = cast(AdhocMetric, metric) if metric["expressionType"] == AdhocMetricExpressionType.SIMPLE: return cast(Dict[str, Any], metric["column"])["column_name"] return None def get_column_names_from_metrics(metrics: List[Metric]) -> List[str]: """ Extract the columns that a list of metrics are referencing. Expcludes all SQL metrics. :param metrics: Ad-hoc metric :return: column name if simple metric, otherwise None """ return [col for col in map(get_column_name_from_metric, metrics) if col] def extract_dataframe_dtypes(df: pd.DataFrame) -> List[GenericDataType]: """Serialize pandas/numpy dtypes to generic types""" # omitting string types as those will be the default type inferred_type_map: Dict[str, GenericDataType] = { "floating": GenericDataType.NUMERIC, "integer": GenericDataType.NUMERIC, "mixed-integer-float": GenericDataType.NUMERIC, "decimal": GenericDataType.NUMERIC, "boolean": GenericDataType.BOOLEAN, "datetime64": GenericDataType.TEMPORAL, "datetime": GenericDataType.TEMPORAL, "date": GenericDataType.TEMPORAL, } generic_types: List[GenericDataType] = [] for column in df.columns: series = df[column] inferred_type = infer_dtype(series) generic_type = inferred_type_map.get(inferred_type, GenericDataType.STRING) generic_types.append(generic_type) return generic_types def extract_column_dtype(col: "BaseColumn") -> GenericDataType: if col.is_temporal: return GenericDataType.TEMPORAL if col.is_numeric: return GenericDataType.NUMERIC # TODO: add check for boolean data type when proper support is added return GenericDataType.STRING def indexed( items: List[Any], key: Union[str, Callable[[Any], Any]] ) -> Dict[Any, List[Any]]: """Build an index for a list of objects""" idx: Dict[Any, Any] = {} for item in items: key_ = getattr(item, key) if isinstance(key, str) else key(item) idx.setdefault(key_, []).append(item) return idx def is_test() -> bool: return strtobool(os.environ.get("SUPERSET_TESTENV", "false")) def get_time_filter_status( datasource: "BaseDatasource", applied_time_extras: Dict[str, str], ) -> Tuple[List[Dict[str, str]], List[Dict[str, str]]]: temporal_columns = {col.column_name for col in datasource.columns if col.is_dttm} applied: List[Dict[str, str]] = [] rejected: List[Dict[str, str]] = [] time_column = applied_time_extras.get(ExtraFiltersTimeColumnType.TIME_COL) if time_column: if time_column in temporal_columns: applied.append({"column": ExtraFiltersTimeColumnType.TIME_COL}) else: rejected.append( { "reason": ExtraFiltersReasonType.COL_NOT_IN_DATASOURCE, "column": ExtraFiltersTimeColumnType.TIME_COL, } ) if ExtraFiltersTimeColumnType.TIME_GRAIN in applied_time_extras: # are there any temporal columns to assign the time grain to? if temporal_columns: applied.append({"column": ExtraFiltersTimeColumnType.TIME_GRAIN}) else: rejected.append( { "reason": ExtraFiltersReasonType.NO_TEMPORAL_COLUMN, "column": ExtraFiltersTimeColumnType.TIME_GRAIN, } ) time_range = applied_time_extras.get(ExtraFiltersTimeColumnType.TIME_RANGE) if time_range: # are there any temporal columns to assign the time grain to? if temporal_columns: applied.append({"column": ExtraFiltersTimeColumnType.TIME_RANGE}) else: rejected.append( { "reason": ExtraFiltersReasonType.NO_TEMPORAL_COLUMN, "column": ExtraFiltersTimeColumnType.TIME_RANGE, } ) if ExtraFiltersTimeColumnType.TIME_ORIGIN in applied_time_extras: if datasource.type == "druid": applied.append({"column": ExtraFiltersTimeColumnType.TIME_ORIGIN}) else: rejected.append( { "reason": ExtraFiltersReasonType.NOT_DRUID_DATASOURCE, "column": ExtraFiltersTimeColumnType.TIME_ORIGIN, } ) if ExtraFiltersTimeColumnType.GRANULARITY in applied_time_extras: if datasource.type == "druid": applied.append({"column": ExtraFiltersTimeColumnType.GRANULARITY}) else: rejected.append( { "reason": ExtraFiltersReasonType.NOT_DRUID_DATASOURCE, "column": ExtraFiltersTimeColumnType.GRANULARITY, } ) return applied, rejected def format_list(items: Sequence[str], sep: str = ", ", quote: str = '"') -> str: quote_escaped = "\\" + quote return sep.join(f"{quote}{x.replace(quote, quote_escaped)}{quote}" for x in items) def find_duplicates(items: Iterable[InputType]) -> List[InputType]: """Find duplicate items in an iterable.""" return [item for item, count in collections.Counter(items).items() if count > 1] def remove_duplicates( items: Iterable[InputType], key: Optional[Callable[[InputType], Any]] = None ) -> List[InputType]: """Remove duplicate items in an iterable.""" if not key: return list(dict.fromkeys(items).keys()) seen = set() result = [] for item in items: item_key = key(item) if item_key not in seen: seen.add(item_key) result.append(item) return result def normalize_dttm_col( df: pd.DataFrame, timestamp_format: Optional[str], offset: int, time_shift: Optional[timedelta], ) -> None: if DTTM_ALIAS not in df.columns: return if timestamp_format in ("epoch_s", "epoch_ms"): dttm_col = df[DTTM_ALIAS] if is_numeric_dtype(dttm_col): # Column is formatted as a numeric value unit = timestamp_format.replace("epoch_", "") df[DTTM_ALIAS] = pd.to_datetime( dttm_col, utc=False, unit=unit, origin="unix" ) else: # Column has already been formatted as a timestamp. df[DTTM_ALIAS] = dttm_col.apply(pd.Timestamp) else: df[DTTM_ALIAS] = pd.to_datetime( df[DTTM_ALIAS], utc=False, format=timestamp_format ) if offset: df[DTTM_ALIAS] += timedelta(hours=offset) if time_shift is not None: df[DTTM_ALIAS] += time_shift def parse_boolean_string(bool_str: Optional[str]) -> bool: """ Convert a string representation of a true/false value into a boolean >>> parse_boolean_string(None) False >>> parse_boolean_string('false') False >>> parse_boolean_string('true') True >>> parse_boolean_string('False') False >>> parse_boolean_string('True') True >>> parse_boolean_string('foo') False >>> parse_boolean_string('0') False >>> parse_boolean_string('1') True :param bool_str: string representation of a value that is assumed to be boolean :return: parsed boolean value """ if bool_str is None: return False try: return bool(strtobool(bool_str.lower())) except ValueError: return False def apply_max_row_limit(limit: int, max_limit: Optional[int] = None,) -> int: """ Override row limit if max global limit is defined :param limit: requested row limit :param max_limit: Maximum allowed row limit :return: Capped row limit >>> apply_max_row_limit(100000, 10) 10 >>> apply_max_row_limit(10, 100000) 10 >>> apply_max_row_limit(0, 10000) 10000 """ if max_limit is None: max_limit = current_app.config["SQL_MAX_ROW"] if limit != 0: return min(max_limit, limit) return max_limit def escape_sqla_query_binds(sql: str) -> str: """ Replace strings in a query that SQLAlchemy would otherwise interpret as bind parameters. :param sql: unescaped query string :return: escaped query string >>> escape_sqla_query_binds("select ':foo'") "select '\\\\:foo'" >>> escape_sqla_query_binds("select 'foo'::TIMESTAMP") "select 'foo'::TIMESTAMP" >>> escape_sqla_query_binds("select ':foo :bar'::TIMESTAMP") "select '\\\\:foo \\\\:bar'::TIMESTAMP" >>> escape_sqla_query_binds("select ':foo :foo :bar'::TIMESTAMP") "select '\\\\:foo \\\\:foo \\\\:bar'::TIMESTAMP" """ matches = BIND_PARAM_REGEX.finditer(sql) processed_binds = set() for match in matches: bind = match.group(0) if bind not in processed_binds: sql = sql.replace(bind, bind.replace(":", "\\:")) processed_binds.add(bind) return sql
31.538546
88
0.636572
007a4dd7c930df4e631e6ced5310c2169b1a75f7
16,488
py
Python
bann/b_test_train_prepare/pytorch/p_train/glw_pretraining.py
arturOnRails/BANN
027af04349304941fb73c2ede502aca4b76f1ad1
[ "MIT" ]
null
null
null
bann/b_test_train_prepare/pytorch/p_train/glw_pretraining.py
arturOnRails/BANN
027af04349304941fb73c2ede502aca4b76f1ad1
[ "MIT" ]
null
null
null
bann/b_test_train_prepare/pytorch/p_train/glw_pretraining.py
arturOnRails/BANN
027af04349304941fb73c2ede502aca4b76f1ad1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """.. moduleauthor:: Artur Lissin""" import math import re from copy import deepcopy from dataclasses import dataclass from typing import Optional, Tuple, Iterable, Callable, Dict, List, Pattern, Union, Final, final import torch from torch import nn from torch.utils.data import Dataset, DataLoader from bann.b_container.constants.file_names import TrainSubStrSuf from bann.b_data_functions.pytorch.p_gen_fun import re_copy_model from bann.b_frameworks.pytorch.interfaces.glw_pretraining_interface import \ GLWPNetInterface from bann.b_container.functions.dict_str_repr import dict_string_repr from bann.b_container.states.framework.interface.train_state import TrainState from bann.b_test_train_prepare.pytorch.trainer_interface import TrainerInterfaceArgs, \ TrainerInterface from bann.b_container.states.framework.pytorch.p_train.p_train_glw import GLWPTState from bann.b_test_train_prepare.errors.custom_errors import KnownTrainerError from bann.b_test_train_prepare.pytorch.p_train.functions.p_train_gen_fun import \ t_print_to_logger, PQueueTupleErg, PTrainEpochFunReturn, \ p_pre_train_epoch_gen, PPreTrainEpochFun, p_train_epoch_fun, SimpleSGDOptim from bann.b_container.states.framework.pytorch.lr_scheduler_param import LrSchAlgWr from bann.b_container.states.framework.pytorch.criterion_param import CriterionAlgWr from bann.b_container.states.framework.pytorch.optim_param import OptimAlgWr from pan.public.constants.train_net_stats_constants import TrainNNStatsElementType, \ TrainReturnFiller, TrainNNStatsElementFiller, TrainNNStatsElemInfo, \ create_train_net_stats_function from rewowr.public.functions.syncout_dep_functions import logger_print_to_console from rewowr.public.functions.worker_ctx import get_worker_ctx from rewowr.public.interfaces.logger_interface import SyncStdoutInterface _TRAIN_LOSS_STR: Final[str] = 'Train_Loss' _EVAL_LOSS_STR: Final[str] = 'Eval_Loss' _EVAL_TR_V_STR: Final[str] = 'Eval_Truth' _TRAIN_TR_V_STR: Final[str] = 'Train_Truth' _STR_LOSS_NUM: Final[Pattern[str]] = re.compile(r'(Eval_Loss|Train_Loss)_(\d+)') _STR_TR_V_NUM: Final[Pattern[str]] = re.compile(r'(Eval_Truth)_(\d+)') @final @dataclass class _TrainArgsCon: batch_size: Tuple[int, ...] shuffle: bool input_train: Tuple[Dataset, ...] input_eval: Tuple[Dataset, ...] cuda: bool drop_last: bool num_workers: int epoch_size: int report_size: int model: GLWPNetInterface device: torch.device @final @dataclass class _TrainWrArgs: optimizer: Optional[OptimAlgWr] scheduler: Optional[LrSchAlgWr] criterion: Optional[CriterionAlgWr] model: GLWPNetInterface device: torch.device truth_fun_id: str train_ll: Tuple[str, Optional[int]] test_ll: Tuple[str, Optional[int]] end_criterion: float batch_size: Tuple[int, ...] shuffle: bool input_train: Tuple[Dataset, ...] input_eval: Tuple[Dataset, ...] cuda: bool drop_last: bool num_workers: int epoch_size: int report_size: int @final @dataclass class _ExtraData: use_cuda: bool model: nn.Module tr_size: int def _print_to_logger(sync_out: SyncStdoutInterface, trainer_stats: GLWPTState, args_trainer: TrainerInterfaceArgs, extra_args: _ExtraData, /) -> None: output_string = f"The arguments given to GLW-Pretrainer:\n" output_string += f"Training on data with the size {extra_args.tr_size}\n" output_string += f"The GLW-Pretrainer:" output_string += f"\n\t{dict_string_repr(trainer_stats.get_kwargs().__dict__)}\n" output_string += t_print_to_logger(args_trainer, extra_args.use_cuda, extra_args.model) logger_print_to_console(sync_out, output_string) _TrsT: Final = Callable[ [Tuple[DataLoader, ...], Tuple[DataLoader, ...], nn.Module, Tuple[int, int, int]], PTrainEpochFunReturn ] def _train_stack_fun(epoch_rep_layer: Tuple[int, int, int], tt_loader: Tuple[Tuple[DataLoader, ...], Tuple[DataLoader, ...]], stop_at_loss: float, layer_model: nn.Module, train_epoch: _TrsT, /) \ -> Iterable[Tuple[PQueueTupleErg, ...]]: max_epoch, report_size, layer_cnt = epoch_rep_layer epoch = 1 running_loss: float = float('inf') report_cnt = 0 while epoch < max_epoch + 1: int_max = int(epoch + report_size) int_max = max_epoch + 1 if int_max > max_epoch + 1 else int_max erg_loss: List[PTrainEpochFunReturn] = list( p_pre_train_epoch_gen(tt_loader, (epoch, int_max, layer_cnt), layer_model, train_epoch) ) if erg_loss and not math.isnan(erg_loss[-1].running_loss): running_loss = erg_loss[-1].running_loss last_run = int_max >= max_epoch + 1 or ( 0 < running_loss < stop_at_loss and report_cnt >= 2 ) yield ( PQueueTupleErg( f"{_TRAIN_LOSS_STR}_{layer_cnt}", epoch, [ elem.test_train.test_loss if not (math.isnan(elem.test_train.test_loss) or math.isinf(elem.test_train.test_loss)) else -1.0 for elem in erg_loss ], last_run ), PQueueTupleErg( f"{_EVAL_LOSS_STR}_{layer_cnt}", epoch, [ elem.test_eval.test_loss if not (math.isnan(elem.test_eval.test_loss) or math.isinf(elem.test_eval.test_loss)) else -1.0 for elem in erg_loss ], last_run ), PQueueTupleErg( f"{_TRAIN_TR_V_STR}_{layer_cnt}", epoch, [elem.test_train.truth_v for elem in erg_loss], last_run ), PQueueTupleErg( f"{_EVAL_TR_V_STR}_{layer_cnt}", epoch, [elem.test_eval.truth_v for elem in erg_loss], last_run ) ) epoch = int_max if 0 < running_loss < stop_at_loss and report_cnt >= 2: epoch = max_epoch + 1 report_cnt += 1 def _train_fun(stop_at_loss: float, args_cont: _TrainArgsCon, train_epoch: _TrsT, /) \ -> Iterable[Tuple[PQueueTupleErg, ...]]: train_loader = tuple(DataLoader( tr_in[1], batch_size=args_cont.batch_size[tr_in[0] % len(args_cont.batch_size)], shuffle=args_cont.shuffle, pin_memory=args_cont.cuda, num_workers=args_cont.num_workers, drop_last=args_cont.drop_last ) for tr_in in enumerate(args_cont.input_train)) test_loader = tuple(DataLoader( te_in[1], batch_size=args_cont.batch_size[te_in[0] % len(args_cont.batch_size)], shuffle=False, pin_memory=args_cont.cuda, num_workers=args_cont.num_workers, drop_last=False ) for te_in in enumerate(args_cont.input_eval)) if args_cont.num_workers > 0: for train_test in [test_loader, train_loader]: for tr_te_el in train_test: tr_te_el.multiprocessing_context = get_worker_ctx() max_epoch = args_cont.epoch_size if args_cont.epoch_size > 4 else 4 report_size = args_cont.report_size report_size = int(max_epoch / 2) if report_size >= int(max_epoch / 2) else report_size layer_model: nn.Module for layer_cnt, layer_model in enumerate(args_cont.model.get_stack()): model = layer_model.to(args_cont.device) yield from _train_stack_fun( (max_epoch, report_size, layer_cnt), (train_loader, test_loader), stop_at_loss, model, train_epoch ) re_copy_model(model.state_dict(), layer_model) def _train_wrapper(wr_container: _TrainWrArgs, /) -> Iterable[Tuple[PQueueTupleErg, ...]]: if wr_container.criterion is None: criterion = nn.CrossEntropyLoss() else: criterion = wr_container.criterion.criterion if wr_container.optimizer is None: optimizer: Union[OptimAlgWr, SimpleSGDOptim] \ = SimpleSGDOptim(wr_container.model.get_stack_first) else: optimizer = wr_container.optimizer def train_epoch(data_loader_train: Tuple[DataLoader, ...], data_loader_test: Tuple[DataLoader, ...], model: nn.Module, epoch_layer_batch: Tuple[int, int, int]) \ -> PTrainEpochFunReturn: return p_train_epoch_fun(PPreTrainEpochFun( data_loader_train=data_loader_train, data_loader_test=data_loader_test, epoch=epoch_layer_batch[0], max_batch_cnt=epoch_layer_batch[2], model=model, device=wr_container.device, optimizer=optimizer, criterion=criterion, scheduler_wrapper=wr_container.scheduler, truth_fun_id=wr_container.truth_fun_id, train_ll=wr_container.train_ll, test_ll=wr_container.test_ll, complete_model=wr_container.model, layer_cnt=epoch_layer_batch[1], shuffle=wr_container.shuffle )) yield from _train_fun(wr_container.end_criterion, _TrainArgsCon( batch_size=wr_container.batch_size, shuffle=wr_container.shuffle, input_train=wr_container.input_train, input_eval=wr_container.input_eval, cuda=wr_container.cuda, drop_last=wr_container.drop_last, num_workers=wr_container.num_workers, epoch_size=wr_container.epoch_size, report_size=wr_container.report_size, device=wr_container.device, model=wr_container.model ), train_epoch) @final class GLWPreTrainer(TrainerInterface): def __init__(self) -> None: super().__init__() self.__fitness: Optional[Tuple[float, float]] = None self.__train_state: Optional[GLWPTState] = None self.__log = True self.__state_dict: Optional[Dict] = None @property def tr_state_dict(self) -> Dict: if self.__state_dict is None: raise KnownTrainerError("Training was not finished") return self.__state_dict def deactivate_log(self) -> None: self.__log = False @property def train_state(self) -> GLWPTState: if self.__train_state is None or not isinstance(self.__train_state, GLWPTState): raise KnownTrainerError("Train state was not set properly!") return self.__train_state def set_train_state(self, state: TrainState, /) -> None: if not isinstance(state, GLWPTState): raise KnownTrainerError( f"Expected type {GLWPTState.__name__} got {type(state).__name__}" ) self.__train_state = state @property def fitness(self) -> Tuple[float, float]: if self.__fitness is None: raise KnownTrainerError("The Trainer was not started!") return self.__fitness def _set_fitness(self, eval_loss: float, train_loss: float, eval_truth: float, /) -> None: eval_truth_local = -1.0 eval_loss_local = float('inf') if not math.isnan(eval_truth) and 0 <= eval_truth < float('inf'): eval_truth_local = eval_truth if not math.isnan(eval_loss) and 0 < eval_loss < float('inf'): if not math.isnan(train_loss) and 0 < train_loss < float('inf'): eval_loss_local = eval_loss + abs(eval_loss - train_loss) \ * self.train_state.get_kwargs().over_fit elif self.train_state.get_kwargs().over_fit == 0: eval_loss_local = eval_loss self.__fitness = (eval_loss_local, eval_truth_local) def train(self, sync_out: SyncStdoutInterface, args: TrainerInterfaceArgs, /) -> Iterable[TrainNNStatsElementType]: self.__state_dict = None if not (args.input_train and args.input_eval): raise KnownTrainerError("Received empty dataset!") if self.train_state.get_kwargs().torch_thread: torch.set_num_threads(self.train_state.get_kwargs().torch_thread) logger_print_to_console(sync_out, f"Torch threads set to {torch.get_num_threads()}\n") use_cuda = args.cuda and torch.cuda.is_available() model = args.module.get_net_com if not isinstance(model, GLWPNetInterface): raise KnownTrainerError( f"Expected {GLWPNetInterface.__name__} got {type(model).__name__}" ) if self.__log: _print_to_logger(sync_out, self.train_state, args, _ExtraData( use_cuda=use_cuda, model=args.module.get_net_com, tr_size=sum(len(tr_in) for tr_in in args.input_train) )) net_stats_creator_dict: Dict[str, TrainReturnFiller] = {} result_buffer = [] eval_truth_loss = [-1.0, -1.0, -1.0] for tuple_erg in _train_wrapper( _TrainWrArgs( optimizer=args.optimizer, scheduler=args.scheduler, criterion=args.criterion, device=torch.device("cuda" if use_cuda else "cpu"), truth_fun_id=args.truth_fun_id, train_ll=self.train_state.get_kwargs().train_ll, test_ll=self.train_state.get_kwargs().eval_ll, end_criterion=self.train_state.get_kwargs().end_criterion, batch_size=self.train_state.get_kwargs().batch_size, shuffle=self.train_state.get_kwargs().shuffle, input_train=args.input_train, input_eval=args.input_eval, cuda=use_cuda, drop_last=self.train_state.get_kwargs().drop_last, num_workers=self.train_state.get_kwargs().num_workers, epoch_size=self.train_state.get_kwargs().epoch_size, report_size=self.train_state.get_kwargs().report_size, model=model ) ): for res in tuple_erg: found_str = _STR_LOSS_NUM.search(res.series) if self.train_state.get_kwargs().plot_data \ or self.train_state.get_kwargs().write_data: net_stats_creator = net_stats_creator_dict.setdefault( res.series, create_train_net_stats_function() ) id_ne_file = deepcopy(args.id_file) if found_str is None: id_ne_file.add_modifier(TrainSubStrSuf.TRUTH.value) result = net_stats_creator( TrainNNStatsElemInfo( id_file=id_ne_file, name_series=res.series, type_series='Loss Leg' if found_str is not None else 'Truth Leg', name_sub_series='Loss' if found_str is not None else 'Truth', type_sub_series='Sub', x_label="epoch", y_label='Loss' if found_str is not None else 'Truth', title="GLW-Pretrainer", subtitle="" ), [x_elem + res.epoch for x_elem in range(len(res.y_cords))], res.y_cords, TrainNNStatsElementFiller( last=res.last, plot_data=self.train_state.get_kwargs().plot_data, dump=args.dump, write_data=self.train_state.get_kwargs().write_data, hyper_param=args.hyper_str if found_str is not None else "" ) ) if res.last: result_buffer.append(result) else: yield result if found_str is not None and _EVAL_LOSS_STR == found_str.group(1): eval_truth_loss[1] = res.y_cords[-1] if found_str is not None and _TRAIN_LOSS_STR == found_str.group(1): eval_truth_loss[2] = res.y_cords[-1] found_str = _STR_TR_V_NUM.search(res.series) if found_str is not None and _EVAL_TR_V_STR == found_str.group(1): eval_truth_loss[0] = res.y_cords[-1] self._set_fitness(eval_truth_loss[1], eval_truth_loss[2], eval_truth_loss[0]) if not isinstance(model, nn.Module): raise KnownTrainerError( f"Expected {nn.Module.__name__} got {type(model).__name__}" ) self.__state_dict = deepcopy(model.state_dict()) yield from result_buffer
44.203753
100
0.643741
b2ff5961db747304633158435de402e9a5df46ec
638
py
Python
server/src/db/database.py
Sheerabth/blob-system
808f1591247fecace4cbd121053d79205096ced3
[ "MIT" ]
null
null
null
server/src/db/database.py
Sheerabth/blob-system
808f1591247fecace4cbd121053d79205096ced3
[ "MIT" ]
null
null
null
server/src/db/database.py
Sheerabth/blob-system
808f1591247fecace4cbd121053d79205096ced3
[ "MIT" ]
null
null
null
from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker, Session from src.config import DATABASE_USER, DATABASE_PASSWORD, DATABASE_HOST, DATABASE_PORT, DATABASE_NAME SQLALCHEMY_DATABASE_URL = ( f"postgresql://{DATABASE_USER}:{DATABASE_PASSWORD}@{DATABASE_HOST}:{DATABASE_PORT}/{DATABASE_NAME}" ) engine = create_engine(SQLALCHEMY_DATABASE_URL) SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine) Base = declarative_base() def get_db() -> Session: db = SessionLocal() try: yield db finally: db.close()
30.380952
103
0.775862
9e53f3460dfa9f06fe1c61688c39f68749388d52
11,126
py
Python
code_controller.py
aerialist/on_air_sign
022e351184c86ee24b81105439e6e43025c75f87
[ "MIT" ]
null
null
null
code_controller.py
aerialist/on_air_sign
022e351184c86ee24b81105439e6e43025c75f87
[ "MIT" ]
2
2021-08-10T07:39:00.000Z
2021-08-10T13:04:02.000Z
code_controller.py
aerialist/on_air_sign
022e351184c86ee24b81105439e6e43025c75f87
[ "MIT" ]
null
null
null
def reference(): pass # Raspberry Pi Pico RP2040 #dir(board) #['__class__', 'A0', 'A1', 'A2', 'A3', 'GP0', 'GP1', 'GP10', 'GP11', 'GP12', 'GP13', #'GP14', 'GP15', 'GP16', 'GP17', 'GP18', 'GP19', 'GP2', 'GP20', 'GP21', 'GP22', 'GP23', #'GP24', 'GP25', 'GP26', 'GP26_A0', 'GP27', 'GP27_A1', 'GP28', 'GP28_A2', 'GP3', 'GP4', #'GP5', 'GP6', 'GP7', 'GP8', 'GP9', 'LED', 'SMPS_MODE', 'VBUS_SENSE', 'VOLTAGE_MONITOR'] # ON_AIR_controller v1.0 # GP12: red button # GP13: white button # GP17: Rotary Encoder A # GP16: Rotary Encoder B # GP15: Rotary Encoder LED Red # GP14: Rotary Encoder LED Green # GP18: Rotary Encoder LED Blue # GP19: Rotary Encoder Switch # GP2: AirLift SCK # GP3: AIrLift MOSI # GP4: AirLift MISO # GP5: AirLift CS # GP6: AirLift BUSY # GP7: AirLift !RST # GP8: neopixel # GP10: SDA # GP11: SCL # I2C SSD1306 OLED 128x64 display address 0x3c #>>> help("modules") #__main__ board microcontroller storage #_bleio builtins micropython struct #_eve busio msgpack supervisor #_pixelbuf collections neopixel_write sys #adafruit_bus_device countio os terminalio #analogio digitalio pulseio time #array displayio pwmio touchio #audiobusio errno random ulab #audiocore fontio re usb_hid #audiomp3 framebufferio rgbmatrix usb_midi #audiopwmio gamepad rotaryio vectorio #binascii gc rp2pio watchdog #bitbangio io rtc #bitmaptools json sdcardio #bitops math sharpdisplay #Plus any modules on the filesystem import board import time import rtc import digitalio from digitalio import DigitalInOut from adafruit_debouncer import Debouncer import rotaryio import busio from adafruit_datetime import datetime, timedelta import displayio import adafruit_displayio_ssd1306 import terminalio from adafruit_display_text.label import Label from adafruit_display_shapes.rect import Rect from adafruit_display_shapes.line import Line import neopixel from adafruit_esp32spi import adafruit_esp32spi from adafruit_esp32spi import adafruit_esp32spi_wifimanager import adafruit_esp32spi.adafruit_esp32spi_socket as socket #import adafruit_requests as requests import adafruit_minimqtt.adafruit_minimqtt as MQTT from adafruit_io.adafruit_io import IO_MQTT from secrets import secrets # OLED Display WIDTH = 128 HEIGHT = 64 BORDER = 5 BLACK = 0x000000 WHITE = 0xFFFFFF FEED_ONAIR = "matrix-onair" FEED_TEXT = "matrix-text" tz_offset=9 * 60 * 60 # Time zone offset from UTC in seconds print("ONAIR display controller") led = digitalio.DigitalInOut(board.LED) led.direction = digitalio.Direction.OUTPUT # Rotary Encoder encoder = rotaryio.IncrementalEncoder(board.GP16, board.GP17) led_red = digitalio.DigitalInOut(board.GP15) led_red.direction = digitalio.Direction.OUTPUT led_red.value = True # OFF led_green = digitalio.DigitalInOut(board.GP14) led_green.direction = digitalio.Direction.OUTPUT led_green.value = True # OFF led_blue = digitalio.DigitalInOut(board.GP18) led_blue.direction = digitalio.Direction.OUTPUT led_blue.value = True # OFF btnRotaryPin = digitalio.DigitalInOut(board.GP19) btnRotaryPin.direction = digitalio.Direction.INPUT btnRotaryPin.pull = digitalio.Pull.UP #btnRotary = Debouncer(btnRotaryPin, interval=0.1) btnRotary = Debouncer(btnRotaryPin) btnRedPin = digitalio.DigitalInOut(board.GP12) btnRedPin.direction = digitalio.Direction.INPUT btnRedPin.pull = digitalio.Pull.UP btnRed = Debouncer(btnRedPin) btnWhitePin = digitalio.DigitalInOut(board.GP13) btnWhitePin.direction = digitalio.Direction.INPUT btnWhitePin.pull = digitalio.Pull.UP btnWhite = Debouncer(btnWhitePin) displayio.release_displays() i2c = busio.I2C(board.GP11, board.GP10) display_bus = displayio.I2CDisplay(i2c, device_address=0x3c) display = adafruit_displayio_ssd1306.SSD1306(display_bus, width=WIDTH, height=HEIGHT) splash = displayio.Group(max_size=10) group_on = displayio.Group() splash.append(group_on) group_on.hidden = True group_off = displayio.Group() splash.append(group_off) group_status = displayio.Group() group_status.x = WIDTH-6 group_status.y = HEIGHT-2 splash.append(group_status) rect_on = Rect(0, 0, WIDTH, HEIGHT//2, fill=WHITE) group_on.append(rect_on) label_onair = Label(terminalio.FONT, text="ON AIR", color=BLACK) label_onair.scale=2 label_onair.anchor_point = (0.5, 0.5) label_onair.anchored_position = (WIDTH//2, HEIGHT//4) group_on.append(label_onair) rect_off = Rect(0, 0, WIDTH, HEIGHT//2, fill=BLACK) group_off.append(rect_off) label_off = Label(terminalio.FONT, text="GOOD", color=WHITE) label_off.scale=2 label_off.anchor_point = (0.5, 0.5) label_off.anchored_position = (WIDTH//2, HEIGHT//4) group_off.append(label_off) label_time = Label(terminalio.FONT, text="13:30", color=WHITE) label_time.scale=2 label_time.anchor_point = (0.5, 0.5) label_time.anchored_position = (WIDTH//4, 3*(HEIGHT//4)) splash.append(label_time) label_time.text = "" line_time = Line(2,HEIGHT-2, WIDTH//2-2, HEIGHT-2, color=WHITE) splash.append(line_time) label_time_feed = Label(terminalio.FONT, text="13:30", color=WHITE) label_time_feed.scale=2 label_time_feed.anchor_point = (0.5, 0.5) label_time_feed.anchored_position = (3*WIDTH//4, 3*(HEIGHT//4)) splash.append(label_time_feed) label_time_feed.text = "" rect_status = Rect(0,0,5,5,fill=WHITE) group_status.append(rect_status) def turn_on(): group_on.hidden = False group_off.hidden = True label_time.text = "13:30" def turn_off(): group_on.hidden = True group_off.hidden = False label_time.text = "" display.show(splash) esp32_cs = DigitalInOut(board.GP5) esp32_ready = DigitalInOut(board.GP6) esp32_reset = DigitalInOut(board.GP7) spi = busio.SPI(board.GP2, board.GP3, board.GP4) esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset) # esp._debug = True status_light = neopixel.NeoPixel(board.GP8, 1, brightness=0.2) wifi = adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager(esp, secrets, status_light) #requests.set_socket(socket, esp) def connected(client): # Connected function will be called when the client is connected to Adafruit IO. print("Connected to Adafruit IO! ") group_status.y -= 1 def subscribe(client, userdata, topic, granted_qos): # This method is called when the client subscribes to a new feed. print("Subscribed to {0} with QOS level {1}".format(topic, granted_qos)) def disconnected(client): # Disconnected function will be called when the client disconnects. print("Disconnected from Adafruit IO!") def on_matrix_onair(client, topic, message): # Method called whenever user/feeds/led has a new value print("New message on topic {0}: {1} ".format(topic, message)) if message == "ON": led.value = True group_on.hidden = False group_off.hidden = True elif message == "OFF": led.value = False group_on.hidden = True group_off.hidden = False else: print("Unexpected message on LED feed.") def on_matrix_text(client, topic, message): print("New message on topic {0}: {1} ".format(topic, message)) if message == ".": label_time_feed.text = "" else: label_time_feed.text = message def update_time_area_text(position): dt = datetime.now() + timedelta(minutes=10*position) + timedelta(hours=1) pp = "{:02d}:{:02d}".format(dt.hour, dt.minute//10*10) #print(pp) label_time.text = pp # Connect to WiFi print("Connecting to WiFi...") wifi.connect() print("Connected!") group_status.y -= 1 # Get time from NTP server and set system time while True: # esp get_time fails in first few attemps try: now = esp.get_time() except ValueError as e: print(e) time.sleep(1) else: break print(now) now = time.localtime(now[0] + tz_offset) print(now) rtc.RTC().datetime = now group_status.y -= 1 # Initialize MQTT interface with the esp interface MQTT.set_socket(socket, esp) mqtt_client = MQTT.MQTT( broker="io.adafruit.com", username=secrets["aio_username"], password=secrets["aio_password"], ) io = IO_MQTT(mqtt_client) io.on_connect = connected io.on_disconnect = disconnected io.on_subscribe = subscribe io.add_feed_callback(FEED_ONAIR, on_matrix_onair) io.add_feed_callback(FEED_TEXT, on_matrix_text) print("Connecting to Adafruit IO...") io.connect() # Subscribe to all messages on the led feed io.subscribe(FEED_ONAIR) io.subscribe(FEED_TEXT) def loop(): last_position = None while True: #print(time.monotonic()) btnRotary.update() btnRed.update() btnWhite.update() position = encoder.position if last_position is None or position != last_position: update_time_area_text(position) last_position = position if btnRed.rose == True: print("btnRed is pressed") led_blue.value = False led_green.value = True encoder.position = 0 position = 0 last_position = 0 update_time_area_text(position) io.publish(FEED_ONAIR, "ON") print("Published!") io.publish(FEED_TEXT, ".") print("Published!") if btnWhite.rose == True: print("btnWhite is pressed") led_blue.value = True led_green.value = True io.publish(FEED_ONAIR, "OFF") print("Published!") io.publish(FEED_TEXT, ".") print("Published!") if btnRotary.rose == True: print("btnRotary is pressed") #if group_on.hidden == False: led_green.value = False io.publish(FEED_TEXT, "~"+label_time.text) print("Published!") # Poll for incoming messages try: io.loop(0.1) except (ValueError, RuntimeError, MQTT.MMQTTException) as e: print("Failed to get data, retrying\n", e) try: wifi.reset() wifi.connect() io.reconnect() #Failed to get data, retrying # ESP32 timed out on SPI select #Traceback (most recent call last): # File "code.py", line 190, in <module> # File "code.py", line 189, in <module> # File "adafruit_io/adafruit_io.py", line 101, in reconnect # File "adafruit_io/adafruit_io.py", line 101, in reconnect #AdafruitIO_MQTTError: MQTT Error: Unable to reconnect to Adafruit IO. except Exception as e: print("Still network error... keep trying.") print(e) continue loop()
33.014837
92
0.665558
741f53c230fa684a07e78aee1d3515b89005d4e8
254
py
Python
project/WeiboTest/Logger.py
zhengbomo/python_practice
1bc5c4ff426f806639bbc01249e66747271ec398
[ "MIT" ]
2
2016-10-03T10:20:02.000Z
2018-03-20T00:38:53.000Z
project/WeiboTest/Logger.py
zhengbomo/python_practice
1bc5c4ff426f806639bbc01249e66747271ec398
[ "MIT" ]
2
2019-10-08T07:13:44.000Z
2019-10-08T07:13:46.000Z
project/WeiboTest/Logger.py
zhengbomo/python_practice
1bc5c4ff426f806639bbc01249e66747271ec398
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding:utf-8 -*- class Logger(object): @staticmethod def info(type_, message): pass @staticmethod def warning(type_, message): pass @staticmethod def error(type_, message): pass
14.941176
32
0.582677
a27c28a351371ddf09faf846671de43198a11bc5
4,428
py
Python
2016/11/11-python.py
allengarvin/adventofcode
004719c1721e514e3e8de8e94c25e0f858e96838
[ "BSD-3-Clause" ]
null
null
null
2016/11/11-python.py
allengarvin/adventofcode
004719c1721e514e3e8de8e94c25e0f858e96838
[ "BSD-3-Clause" ]
null
null
null
2016/11/11-python.py
allengarvin/adventofcode
004719c1721e514e3e8de8e94c25e0f858e96838
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/python import sys, re, itertools from operator import and_, or_, xor def mysplit(s): return re.split(", and | and |, ", s) def main(): floors = [0,0,0,0] things = [] for l in map(lambda x: x.strip(), open("../advent-2016/11-input.txt").readlines()): fl, stuff = l.split(" contains ") stuff = stuff.rstrip(".") #print stuff fl_num = { "The first floor" : 0, "The second floor" : 1, "The third floor" : 2, "The fourth floor": 3 }[fl] floors[fl_num] = [] if stuff == "nothing relevant": continue for t in mysplit(stuff): things.append(t) floors[fl_num].append(t) things = sorted(things) def convert_to_binary(contents): n = 0 for i, what in enumerate(things): if what in contents: n |= 1 << i return n << 1 floors = map(convert_to_binary, floors) floors[0] |= 1 def shorten(thing): return "".join(map(lambda x: x[0].upper(), thing.split(" ")[1:])) def display_floor(n): s = "E " if n & 1 else ". " for i, what in enumerate(things): s += shorten(what) if ((2**i)<<1) & n else ". " s += " " return s def display(fl): s = "" print fl for fn in range(4, 0, -1): s += "F" + str(fn) + " " f = fl[fn-1] s += "E " if f & 1 else ". " for i, what in enumerate(things): s += shorten(what) if ((2 ** i)<<1) & f else ". " s += " " s += "\n" print s def current_floor(floors_tmp): for i, w in enumerate(floors_tmp): if w & 1: return i print "NO ELEVATOR EXISTS. BUG. current_floor() call" sys.exit(1) def avail_to_move(floors_tmp): fl = current_floor(floors_tmp) items = [] for i, what in enumerate(things): if floors_tmp[fl] & (1 << (i+1)): items.append(1 << (i+1)) return map(lambda x: x[0] | x[1], itertools.combinations(items, 2)) + items def adjacent_floors(floors_tmp): fl = current_floor(floors_tmp) if fl == 0: return [1] elif fl == 3: return [2] else: return [fl-1, fl+1] def test_valid(fl, new): proposed_floor = fl | new generators = set([]) chips = set([]) for i, x in enumerate(things): if proposed_floor & (1 << (i+1)): if "generator" in x: generators.add(x.split()[1]) else: chips.add(x.split()[1].split("-")[0]) if len(generators - chips) and len(chips - generators): #print "Inval: ", display_floor(proposed_floor) return False else: #print "Valid: ", display_floor(proposed_floor) return True steps = { 0 : set( [tuple(floors) ] ) } #steps = { 0 : set( [(16, 7, 8, 0) ] ) } #steps = { 0 : set( [(21, 0, 10, 0)] ) } step = 1 while True: steps[step] = set() print "====================", step, "==================" for i in steps[step-1]: fl = list(i) for f in adjacent_floors(fl): for m in avail_to_move(fl): if test_valid(fl[f], m) and test_valid(fl[current_floor(fl)] ^ (m), 0): new_fl = fl[:] new_fl[current_floor(fl)] ^= (1 | m) new_fl[f] |= (1 | m) new_fl = tuple(new_fl) for st in range(step): if new_fl in steps[st]: continue if new_fl[3] == 2 ** (len(things) + 1) - 1: display(new_fl) print "WE WON", step sys.exit(1) steps[step].add(new_fl) #display(new_fl) #print steps step += 1 #print step # Answer 2 is easy. Some experimentation found every extra two items on floor add 12 steps. I could optimize this # but this problem has annoyed me long enough. if __name__ == "__main__": main()
29.52
116
0.448961
7454d59253416b1e4146fc587311759e15eaaec6
281
py
Python
sentdex_data_analysis/pandas_building_dataset.py
yull1860outlook/Data-Analysis
b777d9a75eb1acc4c899946d547e5585469a83ae
[ "MIT" ]
4,358
2017-12-29T17:56:07.000Z
2022-03-30T15:14:57.000Z
sentdex_data_analysis/pandas_building_dataset.py
MarwanAmr509/Data-Analysis
34a48f16f6be757ed3f35cb3fc458569023c9bd8
[ "MIT" ]
61
2018-01-18T17:50:46.000Z
2022-03-09T20:16:01.000Z
sentdex_data_analysis/pandas_building_dataset.py
MarwanAmr509/Data-Analysis
34a48f16f6be757ed3f35cb3fc458569023c9bd8
[ "MIT" ]
3,689
2017-12-29T17:57:36.000Z
2022-03-29T12:26:03.000Z
import quandl import pandas as pd api_key = "rFsSehe51RLzREtYhLfo" # df = quandl.get('FMAC/HPI_AK', authtoken = api_key) fifty_states = pd.read_html("https://simple.wikipedia.org/wiki/List_of_U.S._states") for abbv in fifty_states[0][0][1:]: print("FMAC/HPI_" + str(abbv))
23.416667
84
0.72242
36d6dbb1cf9fa3df911ae1417ed5774b8b6b8c6b
2,324
py
Python
aws_lambda_builders/workflows/java_maven/workflow.py
eldritchideen/aws-lambda-builders
8bd869d9c2b83f67b4f37d45883f9436e1cb1179
[ "Apache-2.0" ]
88
2020-09-03T18:51:44.000Z
2022-03-22T23:46:14.000Z
aws_lambda_builders/workflows/java_maven/workflow.py
eldritchideen/aws-lambda-builders
8bd869d9c2b83f67b4f37d45883f9436e1cb1179
[ "Apache-2.0" ]
88
2020-09-01T19:22:28.000Z
2022-03-30T01:55:36.000Z
aws_lambda_builders/workflows/java_maven/workflow.py
eldritchideen/aws-lambda-builders
8bd869d9c2b83f67b4f37d45883f9436e1cb1179
[ "Apache-2.0" ]
40
2020-09-02T17:29:39.000Z
2022-03-31T02:36:17.000Z
""" Java Maven Workflow """ from aws_lambda_builders.workflow import BaseWorkflow, Capability from aws_lambda_builders.actions import CopySourceAction, CleanUpAction from aws_lambda_builders.workflows.java.actions import JavaCopyDependenciesAction, JavaMoveDependenciesAction from aws_lambda_builders.workflows.java.utils import OSUtils from .actions import JavaMavenBuildAction, JavaMavenCopyDependencyAction, JavaMavenCopyArtifactsAction from .maven import SubprocessMaven from .maven_resolver import MavenResolver from .maven_validator import MavenValidator class JavaMavenWorkflow(BaseWorkflow): """ A Lambda builder workflow that knows how to build Java projects using Maven. """ NAME = "JavaMavenWorkflow" CAPABILITY = Capability(language="java", dependency_manager="maven", application_framework=None) EXCLUDED_FILES = (".aws-sam", ".git") def __init__(self, source_dir, artifacts_dir, scratch_dir, manifest_path, **kwargs): super(JavaMavenWorkflow, self).__init__(source_dir, artifacts_dir, scratch_dir, manifest_path, **kwargs) self.os_utils = OSUtils() # Assuming root_dir is the same as source_dir for now root_dir = source_dir subprocess_maven = SubprocessMaven(maven_binary=self.binaries["mvn"], os_utils=self.os_utils) self.actions = [ CopySourceAction(root_dir, scratch_dir, excludes=self.EXCLUDED_FILES), JavaMavenBuildAction(scratch_dir, subprocess_maven), JavaMavenCopyDependencyAction(scratch_dir, subprocess_maven), JavaMavenCopyArtifactsAction(scratch_dir, artifacts_dir, self.os_utils), ] if self.dependencies_dir: # clean up the dependencies first self.actions.append(CleanUpAction(self.dependencies_dir)) if self.combine_dependencies: self.actions.append(JavaCopyDependenciesAction(artifacts_dir, self.dependencies_dir, self.os_utils)) else: self.actions.append(JavaMoveDependenciesAction(artifacts_dir, self.dependencies_dir, self.os_utils)) def get_resolvers(self): return [MavenResolver(executable_search_paths=self.executable_search_paths)] def get_validators(self): return [MavenValidator(self.runtime, self.architecture, self.os_utils)]
42.254545
116
0.75
6bd99c6eba0ca874b896c3c335b28ec78111e901
172
py
Python
v1/items/urls.py
DucPhamTV/MaiTet
44a1465a3239808f6640592ba666d9c5449c0ef4
[ "MIT" ]
null
null
null
v1/items/urls.py
DucPhamTV/MaiTet
44a1465a3239808f6640592ba666d9c5449c0ef4
[ "MIT" ]
15
2021-02-20T12:03:33.000Z
2021-07-26T10:15:03.000Z
v1/items/urls.py
DucPhamTV/MaiTet
44a1465a3239808f6640592ba666d9c5449c0ef4
[ "MIT" ]
null
null
null
from rest_framework.routers import SimpleRouter from v1.items.views import ItemViewSet router = SimpleRouter(trailing_slash=False) router.register('items', ItemViewSet)
21.5
47
0.831395
440b188398b16e3b21a45a5676f2f967ada33693
6,778
py
Python
bindings/python/ensmallen_graph/datasets/string/comamonasaquatica.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
bindings/python/ensmallen_graph/datasets/string/comamonasaquatica.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
bindings/python/ensmallen_graph/datasets/string/comamonasaquatica.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
""" This file offers the methods to automatically retrieve the graph Comamonas aquatica. The graph is automatically retrieved from the STRING repository. Report --------------------- At the time of rendering these methods (please see datetime below), the graph had the following characteristics: Datetime: 2021-02-02 23:22:47.704643 The undirected graph Comamonas aquatica has 3197 nodes and 364326 weighted edges, of which none are self-loops. The graph is dense as it has a density of 0.07131 and has 5 connected components, where the component with most nodes has 3181 nodes and the component with the least nodes has 2 nodes. The graph median node degree is 193, the mean node degree is 227.92, and the node degree mode is 5. The top 5 most central nodes are 1219031.BBJR01000069_gene1085 (degree 1347), 1219031.BBJR01000052_gene1535 (degree 1147), 1219031.BBJR01000036_gene3013 (degree 1129), 1219031.BBJR01000058_gene1943 (degree 1090) and 1219031.BBJR01000031_gene298 (degree 1067). References --------------------- Please cite the following if you use the data: @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } Usage example ---------------------- The usage of this graph is relatively straightforward: .. code:: python # First import the function to retrieve the graph from the datasets from ensmallen_graph.datasets.string import ComamonasAquatica # Then load the graph graph = ComamonasAquatica() # Finally, you can do anything with it, for instance, compute its report: print(graph) # If you need to run a link prediction task with validation, # you can split the graph using a connected holdout as follows: train_graph, validation_graph = graph.connected_holdout( # You can use an 80/20 split the holdout, for example. train_size=0.8, # The random state is used to reproduce the holdout. random_state=42, # Wether to show a loading bar. verbose=True ) # Remember that, if you need, you can enable the memory-time trade-offs: train_graph.enable( vector_sources=True, vector_destinations=True, vector_outbounds=True ) # Consider using the methods made available in the Embiggen package # to run graph embedding or link prediction tasks. """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen_graph import EnsmallenGraph # pylint: disable=import-error def ComamonasAquatica( directed: bool = False, verbose: int = 2, cache_path: str = "graphs/string", **additional_graph_kwargs: Dict ) -> EnsmallenGraph: """Return new instance of the Comamonas aquatica graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False, Wether to load the graph as directed or undirected. By default false. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache_path: str = "graphs", Where to store the downloaded graphs. additional_graph_kwargs: Dict, Additional graph kwargs. Returns ----------------------- Instace of Comamonas aquatica graph. Report --------------------- At the time of rendering these methods (please see datetime below), the graph had the following characteristics: Datetime: 2021-02-02 23:22:47.704643 The undirected graph Comamonas aquatica has 3197 nodes and 364326 weighted edges, of which none are self-loops. The graph is dense as it has a density of 0.07131 and has 5 connected components, where the component with most nodes has 3181 nodes and the component with the least nodes has 2 nodes. The graph median node degree is 193, the mean node degree is 227.92, and the node degree mode is 5. The top 5 most central nodes are 1219031.BBJR01000069_gene1085 (degree 1347), 1219031.BBJR01000052_gene1535 (degree 1147), 1219031.BBJR01000036_gene3013 (degree 1129), 1219031.BBJR01000058_gene1943 (degree 1090) and 1219031.BBJR01000031_gene298 (degree 1067). References --------------------- Please cite the following if you use the data: @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } Usage example ---------------------- The usage of this graph is relatively straightforward: .. code:: python # First import the function to retrieve the graph from the datasets from ensmallen_graph.datasets.string import ComamonasAquatica # Then load the graph graph = ComamonasAquatica() # Finally, you can do anything with it, for instance, compute its report: print(graph) # If you need to run a link prediction task with validation, # you can split the graph using a connected holdout as follows: train_graph, validation_graph = graph.connected_holdout( # You can use an 80/20 split the holdout, for example. train_size=0.8, # The random state is used to reproduce the holdout. random_state=42, # Wether to show a loading bar. verbose=True ) # Remember that, if you need, you can enable the memory-time trade-offs: train_graph.enable( vector_sources=True, vector_destinations=True, vector_outbounds=True ) # Consider using the methods made available in the Embiggen package # to run graph embedding or link prediction tasks. """ return AutomaticallyRetrievedGraph( graph_name="ComamonasAquatica", dataset="string", directed=directed, verbose=verbose, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
35.486911
223
0.707583
7656bd9c717655f42843f8e616fc8b4ef4f25325
8,781
py
Python
framework/TSA/RWD.py
yenili/raven
cc5f10e387d40219213beff05a3f72e9386034d5
[ "Apache-2.0" ]
1
2021-07-12T19:41:52.000Z
2021-07-12T19:41:52.000Z
framework/TSA/RWD.py
yenili/raven
cc5f10e387d40219213beff05a3f72e9386034d5
[ "Apache-2.0" ]
null
null
null
framework/TSA/RWD.py
yenili/raven
cc5f10e387d40219213beff05a3f72e9386034d5
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 Battelle Energy Alliance, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Randomized Window Decomposition """ import collections import numpy as np import scipy as sp import Decorators import string import numpy.linalg as LA import pandas as pd import copy as cp from utils import InputData, InputTypes, randomUtils, xmlUtils, mathUtils, importerUtils statsmodels = importerUtils.importModuleLazy('statsmodels', globals()) import Distributions from .TimeSeriesAnalyzer import TimeSeriesGenerator, TimeSeriesCharacterizer randomUtils.randomSeed(42, engine=None, seedBoth=False) # utility methods class RWD(TimeSeriesCharacterizer): r""" Randomized Window Decomposition """ @classmethod def getInputSpecification(cls): """ Method to get a reference to a class that specifies the input data for class cls. @ Out, inputSpecification, InputData.ParameterInput, class to use for specifying input of cls. """ specs = super(RWD, cls).getInputSpecification() specs.name = 'rwd' specs.description = r"""TimeSeriesAnalysis algorithm for sliding window snapshots to generate features""" specs.addSub(InputData.parameterInputFactory('signatureWindowLength', contentType=InputTypes.IntegerType, descr=r"""the size of signature window, which represents as a snapshot for a certain time step; typically represented as $w$ in literature, or $w_sig$ in the code.""")) specs.addSub(InputData.parameterInputFactory('featureIndex', contentType=InputTypes.IntegerType, descr=r""" Index used for feature selection, which requires pre-analysis for now, will be addresses via other non human work required method """)) specs.addSub(InputData.parameterInputFactory('sampleType', contentType=InputTypes.IntegerType, descr=r"""Indicating the type of sampling.""")) return specs # # API Methods # def __init__(self, *args, **kwargs): """ A constructor that will appropriately intialize a supervised learning object @ In, args, list, an arbitrary list of positional values @ In, kwargs, dict, an arbitrary dictionary of keywords and values @ Out, None """ # general infrastructure super().__init__(*args, **kwargs) self._minBins = 20 # this feels arbitrary; used for empirical distr. of data def handleInput(self, spec): """ Reads user inputs into this object. @ In, inp, InputData.InputParams, input specifsications @ In, sampleType, integer = 0, 1, 2 @ sampleType = 0: Sequentially Sampling @ sampleType = 1: Randomly Sampling @ sampleType = 2: Piecewise Sampling @ Out, settings, dict, initialization settings for this algorithm """ settings = super().handleInput(spec) settings['signatureWindowLength'] = spec.findFirst('signatureWindowLength').value settings['featureIndex'] = spec.findFirst('featureIndex').value settings['sampleType'] = spec.findFirst('sampleType').value return settings def setDefaults(self, settings): """ Fills default values for settings with default values. @ In, settings, dict, existing settings @ Out, settings, dict, modified settings """ settings = super().setDefaults(settings) if 'signatureWindowLength' not in settings: settings['signatureWindowLength'] = None settings['sampleType'] = 1 return settings #### def characterize(self, signal, pivot, targets, settings): """ Determines the charactistics of the signal based on this algorithm. @ In, signal, np.ndarray, time series with dims [time, target] @ In, pivot, np.1darray, time-like parameter values @ In, targets, list(str), names of targets in same order as signal @ In, settings, dict, settings for this ROM @ Out, params, dict of dict: 1st level contains targets/variables; 2nd contains: U vectors and features """ # lazy import statsmodels import statsmodels.api # settings: # signatureWindowLength, int, Signature window length # featureIndex, list of int, The index that contains differentiable params params = {} for tg, target in enumerate(targets): history = signal[:, tg] if settings['signatureWindowLength'] is None: settings['signatureWindowLength'] = len(history)//10 signatureWindowLength = int(settings['signatureWindowLength']) fi = int(settings['featureIndex']) sampleType = settings['sampleType'] allWindowNumber = int(len(history)-signatureWindowLength+1) signatureMatrix = np.zeros((signatureWindowLength, allWindowNumber)) for i in range(allWindowNumber): signatureMatrix[:,i] = np.copy(history[i:i+signatureWindowLength]) # Sequential sampling if sampleType == 0: baseMatrix = np.copy(signatureMatrix) # Randomized sampling elif sampleType == 1: sampleLimit = len(history)-signatureWindowLength windowNumber = sampleLimit//4 baseMatrix = np.zeros((signatureWindowLength, windowNumber)) for i in range(windowNumber): windowIndex = randomIntegers(0, sampleLimit, caller=None, engine=None) baseMatrix[:,i] = np.copy(history[windowIndex:windowIndex+signatureWindowLength]) # Piecewise Sampling else: windowNumber = len(history)//signatureWindowLength baseMatrix = np.zeros((signatureWindowLength, windowNumber)) for i in range(windowNumber-1): baseMatrix[:,i] = np.copy(history[i*signatureWindowLength:(i+1)*signatureWindowLength]) U,s,V = mathUtils.computeTruncatedSingularValueDecomposition(baseMatrix,0) featureMatrix = U.T @ signatureMatrix params[target] = {'uVec' : U[:,0:fi], 'Feature': featureMatrix} return params def getParamNames(self, settings): """ Return list of expected variable names based on the parameters @ In, settings, dict, training parameters for this algorithm @ Out, names, list, string list of names """ names = [] for target in settings['target']: base = f'{self.name}__{target}' sw = int(settings['signatureWindowLength']) fi = int(settings['featureIndex']) for i in range(fi): for j in range(sw): names.append(f'{base}__uVec{i}_{j}') return names def getParamsAsVars(self, params): """ Map characterization parameters into flattened variable format @ In, params, dict, trained parameters (as from characterize) @ Out, rlz, dict, realization-style response """ rlz = {} for target, info in params.items(): base = f'{self.name}__{target}' (k,l) = (info['uVec']).shape for i in range(l): for j in range(k): rlz[f'{base}__uVec{i}_{j}'] = info['uVec'][j,i] return rlz def generate(self, params, pivot, settings): """ Generates a synthetic history from fitted parameters. @ In, params, dict, characterization such as otained from self.characterize() @ In, pivot, np.array(float), pivot parameter values @ In, settings, dict, additional settings specific to algorithm @ Out, synthetic, np.array(float), synthetic estimated model signal """ synthetic = np.zeros((len(pivot), len(params))) for t, (target, _) in enumerate(params.items()): sigMatSynthetic = params[target]['uVec'] @ params[target]['Feature'] synthetic[:, t] = np.hstack((sigMatSynthetic[0,:-1], sigMatSynthetic[:,-1])) return synthetic def writeXML(self, writeTo, params): """ Allows the engine to put whatever it wants into an XML to print to file. @ In, writeTo, xmlUtils.StaticXmlElement, entity to write to @ In, params, dict, params from as from self.characterize @ Out, None """ counter = 0 for target, info in params.items(): base = xmlUtils.newNode(target) writeTo.append(base) (m,n) = info["uVec"].shape for i in range(n): U0 = info["uVec"][:,0] counter +=1 for p, ar in enumerate(U0): base.append(xmlUtils.newNode(f'uVec{i}_{p}', text=f'{float(ar):1.9e}'))
38.178261
116
0.676916
ca29a6e5822ff0c2f2f52dcfb365403314caeb60
46
py
Python
end2you/models/multimodal/fusion.py
mauricege/end2you
0d0c731e210410a1a5b561a747dbea5b0b53639d
[ "BSD-3-Clause" ]
null
null
null
end2you/models/multimodal/fusion.py
mauricege/end2you
0d0c731e210410a1a5b561a747dbea5b0b53639d
[ "BSD-3-Clause" ]
null
null
null
end2you/models/multimodal/fusion.py
mauricege/end2you
0d0c731e210410a1a5b561a747dbea5b0b53639d
[ "BSD-3-Clause" ]
null
null
null
# Fusion methods provided to fuse modalities.
23
45
0.804348
4bd7df19d8266c5bdd9a94c1f1e6994b17d75f6d
756
py
Python
class3/class3_ex1.py
ande0581/pynet
c02572236383231cb5a1a7b2892ab5e7c94238c7
[ "Apache-2.0" ]
null
null
null
class3/class3_ex1.py
ande0581/pynet
c02572236383231cb5a1a7b2892ab5e7c94238c7
[ "Apache-2.0" ]
null
null
null
class3/class3_ex1.py
ande0581/pynet
c02572236383231cb5a1a7b2892ab5e7c94238c7
[ "Apache-2.0" ]
null
null
null
# SNMPwalk on Windows # SnmpWalk.exe -r:10.40.0.1 -t:10 -c:"private" -os:1.3.6.1.2.1.2.2.1 -op:1.3.6.1.2.1.2.2.1.20 import snmp_helper ip = '10.40.0.1' a_user = 'mysnmpuser' auth_key = 'myauthkey' encrypt_key = 'myencryptkey' snmp_user = (a_user, auth_key, encrypt_key) my_router = (ip, 161) systemName = '1.3.6.1.2.1.1.5.0' ccmHistoryRunningLastChanged = '1.3.6.1.4.1.9.9.43.1.1.1.0' ccmHistoryRunningLastSaved = '1.3.6.1.4.1.9.9.43.1.1.2.0' ccmHistoryStartupLastChanged = '1.3.6.1.4.1.9.9.43.1.1.3.0' sysUptime = '1.3.6.1.2.1.1.3.0' oid = ccmHistoryStartupLastChanged snmp_data = snmp_helper.snmp_get_oid_v3(my_router, snmp_user, oid=oid) output = snmp_helper.snmp_extract(snmp_data) print output if __name__ == '__main__': print "hello world"
28
93
0.703704
076cdf162d8ce46f2d17a43b464cfb52165b96b8
3,643
py
Python
pardet/models/par_detectors/strongbaseline.py
wduo/pardet-pytorch
9df9124b013728d9de4d7948d1e5a6f535c9d7e7
[ "Apache-2.0" ]
7
2020-12-06T11:14:58.000Z
2021-03-28T08:48:07.000Z
pardet/models/par_detectors/strongbaseline.py
wduo/pardet-pytorch
9df9124b013728d9de4d7948d1e5a6f535c9d7e7
[ "Apache-2.0" ]
null
null
null
pardet/models/par_detectors/strongbaseline.py
wduo/pardet-pytorch
9df9124b013728d9de4d7948d1e5a6f535c9d7e7
[ "Apache-2.0" ]
3
2020-12-06T14:24:24.000Z
2021-11-25T09:57:53.000Z
from collections import OrderedDict import torch import torch.nn as nn from ..builder import CLASSIFIERS, PARNETS, build_bockbone, build_classifier, build_loss @CLASSIFIERS.register_module() class BaseClassifier(nn.Module): def __init__(self, nattr): super().__init__() self.logits = nn.Sequential( nn.Linear(2048, nattr), nn.BatchNorm1d(nattr) ) self.avg_pool = nn.AdaptiveAvgPool2d(1) def fresh_params(self): return self.parameters() def forward(self, feature): feat = self.avg_pool(feature).view(feature.size(0), -1) x = self.logits(feat) return x @PARNETS.register_module() class StrongBaseline(nn.Module): def __init__(self, backbone, classifier, loss): super(StrongBaseline, self).__init__() self.backbone = build_bockbone(backbone) self.classifier = build_classifier(classifier) self.loss = build_loss(loss) def fresh_params(self): params = self.classifier.fresh_params() return params def finetune_params(self): return self.backbone.parameters() def extract_feat(self, img): x = self.backbone(img) return x def forward_train(self, **kwargs): feat_map = self.extract_feat(kwargs['img'].cuda()) logits = self.classifier(feat_map) losses = dict() loss = self.loss(logits, kwargs['gt_label'].cuda(), kwargs['weights']) losses.update(loss) return losses def forward(self, return_loss=True, **kwargs): if return_loss: return self.forward_train(**kwargs) else: return self.forward_test(**kwargs) def train_step(self, data, optimizer, **kwargs): losses = self(**data, **kwargs) loss, log_vars = self._parse_losses(losses) outputs = dict( loss=loss, log_vars=log_vars, num_samples=len(data['img_name'])) return outputs def val_step(self, data, optimizer, **kwargs): losses = self(**data, **kwargs) loss, log_vars = self._parse_losses(losses) outputs = dict( loss=loss, log_vars=log_vars, num_samples=len(data['img_name'])) return outputs def _parse_losses(self, losses): log_vars = OrderedDict() for loss_name, loss_value in losses.items(): if isinstance(loss_value, torch.Tensor): log_vars[loss_name] = loss_value.mean() elif isinstance(loss_value, list): log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value) else: raise TypeError(f'{loss_name} is not a tensor or list of tensors') loss = sum(_value for _key, _value in log_vars.items() if 'loss' in _key) log_vars['loss'] = loss for loss_name, loss_value in log_vars.items(): log_vars[loss_name] = loss_value.item() return loss, log_vars def forward_test(self, **kwargs): imgs = kwargs.pop('img') num_augs = len(imgs) if num_augs == 1: return self.simple_test(imgs, **kwargs) else: return self.aug_test(imgs, **kwargs) def simple_test(self, img, **kwargs): feat_map = self.extract_feat(img.cuda()) logit = self.classifier(feat_map) prob = torch.sigmoid(logit).detach().cpu().numpy() gt_label = kwargs['gt_label'].detach().cpu().numpy() result = dict(prob=prob, gt_label=gt_label) return result def aug_test(self, imgs, **kwargs): # TODO: support test augmentation for predefined proposals pass
31.136752
88
0.620093
8dc8ff1eaefdaf985e54b1927b1af3abe23572e7
2,168
py
Python
landlab/grid/tests/test_raster_grid/test_fields.py
laijingtao/landlab
871151bff814e672b4f09f091b6347367758c764
[ "MIT" ]
1
2015-08-17T19:29:50.000Z
2015-08-17T19:29:50.000Z
landlab/grid/tests/test_raster_grid/test_fields.py
laijingtao/landlab
871151bff814e672b4f09f091b6347367758c764
[ "MIT" ]
null
null
null
landlab/grid/tests/test_raster_grid/test_fields.py
laijingtao/landlab
871151bff814e672b4f09f091b6347367758c764
[ "MIT" ]
2
2017-07-03T20:21:13.000Z
2018-09-06T23:58:19.000Z
import numpy as np from numpy.testing import assert_array_equal from nose.tools import assert_raises from landlab import RasterModelGrid def test_add_field_at_node(): """Add field at nodes.""" grid = RasterModelGrid((4, 5)) grid.add_field('z', np.arange(20), at='node') assert_array_equal(grid.at_node['z'], np.arange(20)) def test_add_field_without_at_keyword(): """Test default is at nodes.""" grid = RasterModelGrid((4, 5)) grid.add_field('z', np.arange(20)) assert_array_equal(grid.at_node['z'], np.arange(20)) def test_add_field_without_at(): """Test raises error with wrong size array.""" grid = RasterModelGrid((4, 5)) assert_raises(ValueError, grid.add_field, 'z', np.arange(21)) def test_add_field_at_grid_value_error(): """Test raises error with wrong size array for adding a at_grid field both possible ways.""" grid = RasterModelGrid((4, 5)) assert_raises(ValueError, grid.add_field, 'value', [0,1], at='grid') with assert_raises(ValueError): grid.at_grid['new_value']=[2,4] def test_add_field_at_grid(): """Test add field at grid.""" grid = RasterModelGrid((4, 5)) grid.at_grid['value']=1 assert_array_equal(1, grid.at_grid['value'].size) def test_adding_field_at_grid_two_ways(): """Test add field at grid two ways.""" grid = RasterModelGrid((4, 5)) grid.at_grid['value_1']=1 grid.add_field('value_2', 1, at='grid') assert_array_equal(grid.at_grid['value_1'], grid.at_grid['value_2']) def test_add_ones_zeros_empty_to_at_grid(): """Test different add methods for keyword at='grid'""" grid = RasterModelGrid((4, 5)) assert_raises(ValueError, grid.add_zeros, 'value', at='grid') assert_raises(ValueError, grid.add_empty, 'value', at='grid') assert_raises(ValueError, grid.add_ones, 'value', at='grid') def test_ones_zeros_empty_to_at_grid(): """Test get array with field size methods for keyword at='grid'""" grid = RasterModelGrid((4, 5)) assert_raises(ValueError, grid.zeros, at='grid') assert_raises(ValueError, grid.empty, at='grid') assert_raises(ValueError, grid.ones, at='grid')
34.967742
96
0.694649
f6624017b71f6f71b3d4fd4f1d2649cdd1378df3
1,488
py
Python
Day 11/part1.py
MrHarcombe/advent2015
b14b858eef369ed2df230a7c5ebc702eed7ef524
[ "CC0-1.0" ]
null
null
null
Day 11/part1.py
MrHarcombe/advent2015
b14b858eef369ed2df230a7c5ebc702eed7ef524
[ "CC0-1.0" ]
null
null
null
Day 11/part1.py
MrHarcombe/advent2015
b14b858eef369ed2df230a7c5ebc702eed7ef524
[ "CC0-1.0" ]
null
null
null
import re password = "abcdefgh" password = "ghijklmn" password = "vzbxkghb" # part 1 input password = "vzbxxyzz" # part 2 input #sequence = re.compile(r'(?:a(?=b)|b(?=c)|c(?=d)|d(?=e)|e(?=f)|f(?=g)|g(?=h)|h(?=i)|i(?=j)|j(?=k)|k(?=l)|l(?=m)|m(?=n)|n(?=o)|o(?=p)|p(?=q)|q(?=r)|r(?=s)|s(?=t)|t(?=u)|u(?=v)|v(?=w)|w(?=x)|x(?=y)|y(?=z)){3,}') pairs = re.compile(r'([a-z])\1.*([a-z])\2') def is_legal(potential): if True in [c in potential for c in 'iol']: #print(potential,"contains iol") return False #smatches = sequence.search(potential) #if smatches == None: #print(potential,"contains no sequence") #return False sequence = False for p in range(len(potential)-2): if ord(potential[p]) == ord(potential[p+1]) - 1 and ord(potential[p]) == ord(potential[p+2]) - 2: sequence = True if not sequence: #print(potential,"contains no sequence") return False pmatches = pairs.search(potential) if pmatches == None: #print(potential,"contains no pairs") return False return True def inc_password(value): value = value[::-1] keep_going = True column = 0 while keep_going: value = value[0:column] + chr(((ord(value[column]) - 97 + 1) % 26) + 97) + value[column+1:] if value[column] != 'a': keep_going = False else: column += 1 return value[::-1] password = inc_password(password) while not is_legal(password): #print(password,"-> illegal") password = inc_password(password) print(password)
27.054545
209
0.603495
df27071f0bf39237294199481c51c72aa646ad28
782
py
Python
onfido/resources/applicants.py
daaain/onfido-python
62675c97cf7d03de2ab3ed4b07ec0bde9e2b1a5d
[ "MIT" ]
null
null
null
onfido/resources/applicants.py
daaain/onfido-python
62675c97cf7d03de2ab3ed4b07ec0bde9e2b1a5d
[ "MIT" ]
null
null
null
onfido/resources/applicants.py
daaain/onfido-python
62675c97cf7d03de2ab3ed4b07ec0bde9e2b1a5d
[ "MIT" ]
null
null
null
from ..resource import Resource class Applicants(Resource): def create(self, request_body:dict): return self.post("applicants/", **request_body) def update(self, applicant_id:str, request_body:dict): return self.put(f"applicants/{applicant_id}", request_body) def find(self, applicant_id:str): return self.get(f"applicants/{applicant_id}") def delete(self, applicant_id:str): self.delete_request(f"applicants/{applicant_id}") def all(self, **user_payload:dict): payload = {"include_deleted": False, "per_page": 20, "page": 1} payload.update(user_payload) return self.get("applicants", payload=payload) def restore(self, applicant_id:str): self.post(f"applicants/{applicant_id}/restore")
32.583333
71
0.682864
9e76fec151908142195eb38f84582544eeddb7bd
3,806
py
Python
test/perc.py
kariminf/MultiNetSum
b3a66d13049d4501c7e07243af45e8c56512d624
[ "Apache-2.0" ]
1
2019-02-24T22:15:44.000Z
2019-02-24T22:15:44.000Z
test/perc.py
kariminf/MultiNetSum
b3a66d13049d4501c7e07243af45e8c56512d624
[ "Apache-2.0" ]
6
2018-07-24T13:52:45.000Z
2019-08-23T22:10:16.000Z
test/perc.py
kariminf/MultiNetSum
b3a66d13049d4501c7e07243af45e8c56512d624
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2018 Abdelkrime Aries <[email protected]> # # ---- AUTHORS ---- # 2018 Abdelkrime Aries <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # #just a code to learn how to sum a vector then divide it on the sum of another #victor, then multiply by a scalar import tensorflow as tf import numpy as np DATA = [ [[15, 20], [15, 20, 30], 0.5], [[10, 12], [15, 12, 12, 10], .3], [[10, 12], [15, 12, 12, 10], .2], [[2, 12, 13], [20, 13, 2, 12, 25], .1], [[5], [5, 13, 12, 25], .7] ] X = [ [[15.0], [20.0], [0.0]], [[10.0], [12.0], [0.0]], [[10.0], [12.0], [0.0]], [[2.0], [12.0], [13.0]], [[5.0], [0.0], [0.0]] ] X__ = [ [[0.0], [15.0], [20.0]], [[0.0], [10.0], [12.0]], [[0.0], [10.0], [12.0]], [[2.0], [12.0], [13.0]], [[0.0], [0.0], [5.0]] ] Y = [ [[15.0], [20.0], [30.0], [0.0], [0.0]], [[15.0], [12.0], [12.0], [10.0], [0.0]], [[15.0], [12.0], [12.0], [10.0], [0.0]], [[20.0], [13.0], [2.0], [12.0], [25.0]], [[5.0], [13.0], [12.0], [25.0], [0.0]] ] Y__ = [ [[0.0], [0.0], [15.0], [20.0], [30.0]], [[0.0], [15.0], [12.0], [12.0], [10.0]], [[0.0], [15.0], [12.0], [12.0], [10.0]], [[20.0], [13.0], [2.0], [12.0], [25.0]], [[0.0], [5.0], [13.0], [12.0], [25.0]] ] Z = [ [0.5], [0.3], [0.2], [0.1], [0.7] ] RESULT = [ [0.2692307692], [0.1346938776], [0.0897959184], [0.0375], [0.0636363636] ] LEARNING_RATE = 0.05 def get_output(net): batch_size = tf.shape(net)[0] max_length = tf.shape(net)[1] out_size = int(net.get_shape()[2]) index = tf.range(0, batch_size) * max_length flat = tf.reshape(net, [-1, out_size]) return tf.gather(flat, index) if __name__ == '__main__': ############################################################################## x_ = tf.placeholder(tf.float32, shape=[None,None,1], name="x-input") y_ = tf.placeholder(tf.float32, shape=[None,None,1], name="y-input") z_ = tf.placeholder(tf.float32, shape=[None,1], name="z-input") r_ = tf.placeholder(tf.float32, shape=[None ,1], name="result") with tf.variable_scope("lstm1"): sumXCell = tf.contrib.rnn.LSTMCell(2,num_proj=2) outX,_ = tf.nn.dynamic_rnn(sumXCell,x_,dtype=tf.float32) #shape: (None, 12, 2) with tf.variable_scope("lstm2"): sumYCell = tf.contrib.rnn.LSTMCell(2, num_proj=2) outY,_ = tf.nn.dynamic_rnn(sumYCell,y_,dtype=tf.float32) #shape: (None, 12, 2) predXS = tf.reduce_sum(outX) outXY = tf.concat((get_output(outX), get_output(outY), z_), axis=1) output = tf.layers.dense(outXY, units=10, activation=tf.nn.tanh) output = tf.layers.dense(output, units=1, activation=tf.nn.tanh) cost = tf.losses.mean_squared_error(r_, output) train_step = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(cost) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) #saver = tf.train.Saver() for i in range(10000): _, cst, px = sess.run([train_step, cost, predXS], feed_dict={x_: X, y_: Y, z_: Z , r_: RESULT}) print i, cst, px #sess.run(train_step, feed_dict={x_: X, y_: Y, z_: Z, r_: RESULT}) #saver.save(sess, "./aak.ckpt") tX = [[[10.0], [5.0]]] tY = [[[10.0], [5.0], [15.0], [8.0]]] tZ = [[0.8]] tRES = [[0.3157894737]] print("Predicted: ", sess.run(output,feed_dict={x_: tX, y_: tY, z_: tZ}), " Expected: ", tRES)
26.802817
97
0.582764
6f9559d27dc3428c0f2e5d230a21306727376bca
745
py
Python
ai_chan/util.py
kagyuu/ai-chan
1fa5c803ca9fefb1ccf6c9195c8f8015da56bda1
[ "MIT" ]
null
null
null
ai_chan/util.py
kagyuu/ai-chan
1fa5c803ca9fefb1ccf6c9195c8f8015da56bda1
[ "MIT" ]
null
null
null
ai_chan/util.py
kagyuu/ai-chan
1fa5c803ca9fefb1ccf6c9195c8f8015da56bda1
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt def debug(msg, *args): print(msg.format(*args)) def least_square_average(d, y): """ 自乗誤差平均を求めます :param d:教師データ(expected) :param y:予想(actual) :return: 自乗誤差平均 """ return (np.sum(np.square(d - y)) / 2.0) / float(len(d)) def draw_hist(m, label, bins=50, min_max=(-10.0, 10.0)): """ 行列のリストを展開して、matplotlib の histogram を作ります :param m: 行列のリスト :param label: データの名称 :param bins: 区切り数(デフォルト50). Noneを指定すると自動 :param min_max: データの幅(デフォルト-10~10). Noneを指定すると自動 :return: """ flat = [] for idx in range(1, len(m)): flat.extend(m[idx].flatten().tolist()) plt.hist(flat, label=label, bins=bins, range=min_max, alpha=0.5)
23.28125
68
0.620134
3f56f1de768b233583ce4c485e721211d46ae025
1,412
py
Python
url_shortener/views.py
teremterem/django_url_shortener
2da496a9e8287e6291d47227b72e92ee05d4f0b1
[ "MIT" ]
2
2020-09-01T19:05:23.000Z
2020-09-02T13:14:32.000Z
url_shortener/views.py
teremterem/django_url_shortener
2da496a9e8287e6291d47227b72e92ee05d4f0b1
[ "MIT" ]
15
2020-09-02T00:30:38.000Z
2020-09-19T10:06:19.000Z
url_shortener/views.py
teremterem/django_url_shortener
2da496a9e8287e6291d47227b72e92ee05d4f0b1
[ "MIT" ]
null
null
null
import logging from django.conf import settings from django.http import HttpResponseRedirect, Http404 from django.shortcuts import render, redirect from url_shortener.shortener import shortener_storage, shortener_utils log = logging.getLogger(__name__) def index(request): last_short_url = request.session.pop('LAST_URL_HANDLE', '') if last_short_url: last_short_url = settings.DJANGO_URL_SHORTENER_PREFIX + last_short_url return render(request, 'url_shortener/index.html', context={ 'last_short_url': last_short_url, }) def shorten_url(request): long_url = request.POST['long_url'].strip() if long_url: long_url = shortener_utils.normalize_long_url(long_url) url_handle = shortener_storage.shorten_url(long_url) request.session['LAST_URL_HANDLE'] = url_handle return redirect('index', permanent=False) def expand_url(request, url_handle): try: long_url = shortener_storage.expand_url(url_handle) if long_url: return HttpResponseRedirect(long_url) except Exception: # log exception with level debug to avoid log cluttering in hypothetical production - it is easy to provoke # exceptions here by deliberately sending malformed url handles from the client log.debug('Failed to resolve short URL with handle %s', url_handle, exc_info=True) raise Http404('URL not found')
32.837209
115
0.73796
0ab6f6687f2ca137dfb5899725d27acccb505b3e
42,063
py
Python
lib/matplotlib/contour.py
mattfoster/matplotlib
0b47697b19b77226c633ec6a3d74a2199a153315
[ "PSF-2.0", "BSD-3-Clause" ]
1
2016-05-08T18:33:12.000Z
2016-05-08T18:33:12.000Z
lib/matplotlib/contour.py
mattfoster/matplotlib
0b47697b19b77226c633ec6a3d74a2199a153315
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
lib/matplotlib/contour.py
mattfoster/matplotlib
0b47697b19b77226c633ec6a3d74a2199a153315
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
""" These are classes to support contour plotting and labelling for the axes class """ from __future__ import division import warnings import matplotlib as mpl import numpy as np from numpy import ma import matplotlib._cntr as _cntr import matplotlib.path as path import matplotlib.ticker as ticker import matplotlib.cm as cm import matplotlib.colors as colors import matplotlib.collections as collections import matplotlib.font_manager as font_manager import matplotlib.text as text import matplotlib.cbook as cbook import matplotlib.mlab as mlab # Import needed for adding manual selection capability to clabel from matplotlib.blocking_input import BlockingContourLabeler # We can't use a single line collection for contour because a line # collection can have only a single line style, and we want to be able to have # dashed negative contours, for example, and solid positive contours. # We could use a single polygon collection for filled contours, but it # seems better to keep line and filled contours similar, with one collection # per level. class ContourLabeler: '''Mixin to provide labelling capability to ContourSet''' def clabel(self, *args, **kwargs): """ call signature:: clabel(cs, **kwargs) adds labels to line contours in *cs*, where *cs* is a :class:`~matplotlib.contour.ContourSet` object returned by contour. :: clabel(cs, v, **kwargs) only labels contours listed in *v*. Optional keyword arguments: *fontsize*: See http://matplotlib.sf.net/fonts.html *colors*: - if *None*, the color of each label matches the color of the corresponding contour - if one string color, e.g. *colors* = 'r' or *colors* = 'red', all labels will be plotted in this color - if a tuple of matplotlib color args (string, float, rgb, etc), different labels will be plotted in different colors in the order specified *inline*: controls whether the underlying contour is removed or not. Default is *True*. *inline_spacing*: space in pixels to leave on each side of label when placing inline. Defaults to 5. This spacing will be exact for labels at locations where the contour is straight, less so for labels on curved contours. *fmt*: a format string for the label. Default is '%1.3f' Alternatively, this can be a dictionary matching contour levels with arbitrary strings to use for each contour level (i.e., fmt[level]=string) *manual*: if *True*, contour labels will be placed manually using mouse clicks. Click the first button near a contour to add a label, click the second button (or potentially both mouse buttons at once) to finish adding labels. The third button can be used to remove the last label added, but only if labels are not inline. Alternatively, the keyboard can be used to select label locations (enter to end label placement, delete or backspace act like the third mouse button, and any other key will select a label location). .. plot:: mpl_examples/pylab_examples/contour_demo.py """ """ NOTES on how this all works: clabel basically takes the input arguments and uses them to add a list of "label specific" attributes to the ContourSet object. These attributes are all of the form label* and names should be fairly self explanatory. Once these attributes are set, clabel passes control to the labels method (case of automatic label placement) or BlockingContourLabeler (case of manual label placement). """ fontsize = kwargs.get('fontsize', None) inline = kwargs.get('inline', 1) inline_spacing = kwargs.get('inline_spacing', 5) self.labelFmt = kwargs.get('fmt', '%1.3f') _colors = kwargs.get('colors', None) # Detect if manual selection is desired and remove from argument list self.labelManual=kwargs.get('manual',False) if len(args) == 0: levels = self.levels indices = range(len(self.levels)) elif len(args) == 1: levlabs = list(args[0]) indices, levels = [], [] for i, lev in enumerate(self.levels): if lev in levlabs: indices.append(i) levels.append(lev) if len(levels) < len(levlabs): msg = "Specified levels " + str(levlabs) msg += "\n don't match available levels " msg += str(self.levels) raise ValueError(msg) else: raise TypeError("Illegal arguments to clabel, see help(clabel)") self.labelLevelList = levels self.labelIndiceList = indices self.labelFontProps = font_manager.FontProperties() if fontsize == None: font_size = int(self.labelFontProps.get_size_in_points()) else: if type(fontsize) not in [int, float, str]: raise TypeError("Font size must be an integer number.") # Can't it be floating point, as indicated in line above? else: if type(fontsize) == str: font_size = int(self.labelFontProps.get_size_in_points()) else: self.labelFontProps.set_size(fontsize) font_size = fontsize self.labelFontSizeList = [font_size] * len(levels) if _colors == None: self.labelMappable = self self.labelCValueList = np.take(self.cvalues, self.labelIndiceList) else: cmap = colors.ListedColormap(_colors, N=len(self.labelLevelList)) self.labelCValueList = range(len(self.labelLevelList)) self.labelMappable = cm.ScalarMappable(cmap = cmap, norm = colors.NoNorm()) #self.labelTexts = [] # Initialized in ContourSet.__init__ #self.labelCValues = [] # same self.labelXYs = [] if self.labelManual: print 'Select label locations manually using first mouse button.' print 'End manual selection with second mouse button.' if not inline: print 'Remove last label by clicking third mouse button.' blocking_contour_labeler = BlockingContourLabeler(self) blocking_contour_labeler(inline,inline_spacing) else: self.labels(inline,inline_spacing) # Hold on to some old attribute names. These are depricated and will # be removed in the near future (sometime after 2008-08-01), but keeping # for now for backwards compatibility self.cl = self.labelTexts self.cl_xy = self.labelXYs self.cl_cvalues = self.labelCValues self.labelTextsList = cbook.silent_list('text.Text', self.labelTexts) return self.labelTextsList def print_label(self, linecontour,labelwidth): "if contours are too short, don't plot a label" lcsize = len(linecontour) if lcsize > 10 * labelwidth: return 1 xmax = np.amax(linecontour[:,0]) xmin = np.amin(linecontour[:,0]) ymax = np.amax(linecontour[:,1]) ymin = np.amin(linecontour[:,1]) lw = labelwidth if (xmax - xmin) > 1.2* lw or (ymax - ymin) > 1.2 * lw: return 1 else: return 0 def too_close(self, x,y, lw): "if there's a label already nearby, find a better place" if self.labelXYs != []: dist = [np.sqrt((x-loc[0]) ** 2 + (y-loc[1]) ** 2) for loc in self.labelXYs] for d in dist: if d < 1.2*lw: return 1 else: return 0 else: return 0 def get_label_coords(self, distances, XX, YY, ysize, lw): """ labels are ploted at a location with the smallest dispersion of the contour from a straight line unless there's another label nearby, in which case the second best place on the contour is picked up if there's no good place a label isplotted at the beginning of the contour """ hysize = int(ysize/2) adist = np.argsort(distances) for ind in adist: x, y = XX[ind][hysize], YY[ind][hysize] if self.too_close(x,y, lw): continue else: return x,y, ind ind = adist[0] x, y = XX[ind][hysize], YY[ind][hysize] return x,y, ind def get_label_width(self, lev, fmt, fsize): "get the width of the label in points" if cbook.is_string_like(lev): lw = (len(lev)) * fsize else: lw = (len(self.get_text(lev,fmt))) * fsize return lw def get_real_label_width( self, lev, fmt, fsize ): """ This computes actual onscreen label width. This uses some black magic to determine onscreen extent of non-drawn label. This magic may not be very robust. """ # Find middle of axes xx = np.mean( np.asarray(self.ax.axis()).reshape(2,2), axis=1 ) # Temporarily create text object t = text.Text( xx[0], xx[1] ) self.set_label_props( t, self.get_text(lev,fmt), 'k' ) # Some black magic to get onscreen extent # NOTE: This will only work for already drawn figures, as the canvas # does not have a renderer otherwise. This is the reason this function # can't be integrated into the rest of the code. bbox = t.get_window_extent(renderer=self.ax.figure.canvas.renderer) # difference in pixel extent of image lw = np.diff(bbox.corners()[0::2,0])[0] return lw def set_label_props(self, label, text, color): "set the label properties - color, fontsize, text" label.set_text(text) label.set_color(color) label.set_fontproperties(self.labelFontProps) label.set_clip_box(self.ax.bbox) def get_text(self, lev, fmt): "get the text of the label" if cbook.is_string_like(lev): return lev else: if isinstance(fmt,dict): return fmt[lev] else: return fmt%lev def locate_label(self, linecontour, labelwidth): """find a good place to plot a label (relatively flat part of the contour) and the angle of rotation for the text object """ nsize= len(linecontour) if labelwidth > 1: xsize = int(np.ceil(nsize/labelwidth)) else: xsize = 1 if xsize == 1: ysize = nsize else: ysize = labelwidth XX = np.resize(linecontour[:,0],(xsize, ysize)) YY = np.resize(linecontour[:,1],(xsize, ysize)) #I might have fouled up the following: yfirst = YY[:,0].reshape(xsize, 1) ylast = YY[:,-1].reshape(xsize, 1) xfirst = XX[:,0].reshape(xsize, 1) xlast = XX[:,-1].reshape(xsize, 1) s = (yfirst-YY) * (xlast-xfirst) - (xfirst-XX) * (ylast-yfirst) L = np.sqrt((xlast-xfirst)**2+(ylast-yfirst)**2).ravel() dist = np.add.reduce(([(abs(s)[i]/L[i]) for i in range(xsize)]),-1) x,y,ind = self.get_label_coords(dist, XX, YY, ysize, labelwidth) #print 'ind, x, y', ind, x, y # There must be a more efficient way... lc = [tuple(l) for l in linecontour] dind = lc.index((x,y)) #print 'dind', dind #dind = list(linecontour).index((x,y)) return x, y, dind def calc_label_rot_and_inline( self, slc, ind, lw, lc=None, spacing=5 ): """ This function calculates the appropriate label rotation given the linecontour coordinates in screen units, the index of the label location and the label width. It will also break contour and calculate inlining if *lc* is not empty (lc defaults to the empty list if None). *spacing* is the space around the label in pixels to leave empty. Do both of these tasks at once to avoid calling mlab.path_length multiple times, which is relatively costly. The method used here involves calculating the path length along the contour in pixel coordinates and then looking approximately label width / 2 away from central point to determine rotation and then to break contour if desired. """ if lc is None: lc = [] # Half the label width hlw = lw/2.0 # Check if closed and, if so, rotate contour so label is at edge closed = mlab.is_closed_polygon(slc) if closed: slc = np.r_[ slc[ind:-1], slc[:ind+1] ] if len(lc): # Rotate lc also if not empty lc = np.r_[ lc[ind:-1], lc[:ind+1] ] ind = 0 # Path length in pixel space pl = mlab.path_length(slc) pl = pl-pl[ind] # Use linear interpolation to get points around label xi = np.array( [ -hlw, hlw ] ) if closed: # Look at end also for closed contours dp = np.array([pl[-1],0]) else: dp = np.zeros_like(xi) ll = mlab.less_simple_linear_interpolation( pl, slc, dp+xi, extrap=True ) # get vector in pixel space coordinates from one point to other dd = np.diff( ll, axis=0 ).ravel() # Get angle of vector - must be calculated in pixel space for # text rotation to work correctly if np.all(dd==0): # Must deal with case of zero length label rotation = 0.0 else: rotation = np.arctan2(dd[1], dd[0]) * 180.0 / np.pi # Fix angle so text is never upside-down if rotation > 90: rotation = rotation - 180.0 if rotation < -90: rotation = 180.0 + rotation # Break contour if desired nlc = [] if len(lc): # Expand range by spacing xi = dp + xi + np.array([-spacing,spacing]) # Get indices near points of interest I = mlab.less_simple_linear_interpolation( pl, np.arange(len(pl)), xi, extrap=False ) # If those indices aren't beyond contour edge, find x,y if (not np.isnan(I[0])) and int(I[0])<>I[0]: xy1 = mlab.less_simple_linear_interpolation( pl, lc, [ xi[0] ] ) if (not np.isnan(I[1])) and int(I[1])<>I[1]: xy2 = mlab.less_simple_linear_interpolation( pl, lc, [ xi[1] ] ) # Make integer I = [ np.floor(I[0]), np.ceil(I[1]) ] # Actually break contours if closed: # This will remove contour if shorter than label if np.all(~np.isnan(I)): nlc.append( np.r_[ xy2, lc[I[1]:I[0]+1], xy1 ] ) else: # These will remove pieces of contour if they have length zero if not np.isnan(I[0]): nlc.append( np.r_[ lc[:I[0]+1], xy1 ] ) if not np.isnan(I[1]): nlc.append( np.r_[ xy2, lc[I[1]:] ] ) # The current implementation removes contours completely # covered by labels. Uncomment line below to keep # original contour if this is the preferred behavoir. #if not len(nlc): nlc = [ lc ] return (rotation,nlc) def add_label(self,x,y,rotation,lev,cvalue): dx,dy = self.ax.transData.inverted().transform_point((x,y)) t = text.Text(dx, dy, rotation = rotation, horizontalalignment='center', verticalalignment='center') color = self.labelMappable.to_rgba(cvalue,alpha=self.alpha) _text = self.get_text(lev,self.labelFmt) self.set_label_props(t, _text, color) self.labelTexts.append(t) self.labelCValues.append(cvalue) self.labelXYs.append((x,y)) # Add label to plot here - useful for manual mode label selection self.ax.add_artist(t) def pop_label(self,index=-1): '''Defaults to removing last label, but any index can be supplied''' self.labelCValues.pop(index) t = self.labelTexts.pop(index) t.remove() def labels(self, inline, inline_spacing): trans = self.ax.transData # A bit of shorthand for icon, lev, fsize, cvalue in zip( self.labelIndiceList, self.labelLevelList, self.labelFontSizeList, self.labelCValueList ): con = self.collections[icon] lw = self.get_label_width(lev, self.labelFmt, fsize) additions = [] paths = con.get_paths() for segNum, linepath in enumerate(paths): lc = linepath.vertices # Line contour slc0 = trans.transform(lc) # Line contour in screen coords # For closed polygons, add extra point to avoid division by # zero in print_label and locate_label. Other than these # functions, this is not necessary and should probably be # eventually removed. if mlab.is_closed_polygon( lc ): slc = np.r_[ slc0, slc0[1:2,:] ] else: slc = slc0 if self.print_label(slc,lw): # Check if long enough for a label x,y,ind = self.locate_label(slc, lw) if inline: lcarg = lc else: lcarg = None rotation,new=self.calc_label_rot_and_inline( slc0, ind, lw, lcarg, inline_spacing ) # Actually add the label self.add_label(x,y,rotation,lev,cvalue) # If inline, add new contours if inline: for n in new: # Add path if not empty or single point if len(n)>1: additions.append( path.Path(n) ) else: # If not adding label, keep old path additions.append(linepath) # After looping over all segments on a contour, remove old # paths and add new ones if inlining if inline: del paths[:] paths.extend(additions) class ContourSet(cm.ScalarMappable, ContourLabeler): """ Create and store a set of contour lines or filled regions. User-callable method: clabel Useful attributes: ax: the axes object in which the contours are drawn collections: a silent_list of LineCollections or PolyCollections levels: contour levels layers: same as levels for line contours; half-way between levels for filled contours. See _process_colors method. """ def __init__(self, ax, *args, **kwargs): """ Draw contour lines or filled regions, depending on whether keyword arg 'filled' is False (default) or True. The first argument of the initializer must be an axes object. The remaining arguments and keyword arguments are described in ContourSet.contour_doc. """ self.ax = ax self.levels = kwargs.get('levels', None) self.filled = kwargs.get('filled', False) self.linewidths = kwargs.get('linewidths', None) self.linestyles = kwargs.get('linestyles', 'solid') self.alpha = kwargs.get('alpha', 1.0) self.origin = kwargs.get('origin', None) self.extent = kwargs.get('extent', None) cmap = kwargs.get('cmap', None) self.colors = kwargs.get('colors', None) norm = kwargs.get('norm', None) self.extend = kwargs.get('extend', 'neither') self.antialiased = kwargs.get('antialiased', True) self.nchunk = kwargs.get('nchunk', 0) self.locator = kwargs.get('locator', None) if (isinstance(norm, colors.LogNorm) or isinstance(self.locator, ticker.LogLocator)): self.logscale = True if norm is None: norm = colors.LogNorm() if self.extend is not 'neither': raise ValueError('extend kwarg does not work yet with log scale') else: self.logscale = False if self.origin is not None: assert(self.origin in ['lower', 'upper', 'image']) if self.extent is not None: assert(len(self.extent) == 4) if cmap is not None: assert(isinstance(cmap, colors.Colormap)) if self.colors is not None and cmap is not None: raise ValueError('Either colors or cmap must be None') if self.origin == 'image': self.origin = mpl.rcParams['image.origin'] x, y, z = self._contour_args(*args) # also sets self.levels, # self.layers if self.colors is not None: cmap = colors.ListedColormap(self.colors, N=len(self.layers)) if self.filled: self.collections = cbook.silent_list('collections.PolyCollection') else: self.collections = cbook.silent_list('collections.LineCollection') # label lists must be initialized here self.labelTexts = [] self.labelCValues = [] kw = {'cmap': cmap} if norm is not None: kw['norm'] = norm cm.ScalarMappable.__init__(self, **kw) # sets self.cmap; self._process_colors() _mask = ma.getmask(z) if _mask is ma.nomask: _mask = None if self.filled: if self.linewidths is not None: warnings.warn('linewidths is ignored by contourf') C = _cntr.Cntr(x, y, z.filled(), _mask) lowers = self._levels[:-1] uppers = self._levels[1:] for level, level_upper in zip(lowers, uppers): nlist = C.trace(level, level_upper, points = 0, nchunk = self.nchunk) col = collections.PolyCollection(nlist, antialiaseds = (self.antialiased,), edgecolors= 'none', alpha=self.alpha) self.ax.add_collection(col) self.collections.append(col) else: tlinewidths = self._process_linewidths() self.tlinewidths = tlinewidths tlinestyles = self._process_linestyles() C = _cntr.Cntr(x, y, z.filled(), _mask) for level, width, lstyle in zip(self.levels, tlinewidths, tlinestyles): nlist = C.trace(level, points = 0) col = collections.LineCollection(nlist, linewidths = width, linestyle = lstyle, alpha=self.alpha) if level < 0.0 and self.monochrome: ls = mpl.rcParams['contour.negative_linestyle'] col.set_linestyle(ls) col.set_label('_nolegend_') self.ax.add_collection(col, False) self.collections.append(col) self.changed() # set the colors x0 = ma.minimum(x) x1 = ma.maximum(x) y0 = ma.minimum(y) y1 = ma.maximum(y) self.ax.update_datalim([(x0,y0), (x1,y1)]) self.ax.autoscale_view() def changed(self): tcolors = [ (tuple(rgba),) for rgba in self.to_rgba(self.cvalues, alpha=self.alpha)] self.tcolors = tcolors for color, collection in zip(tcolors, self.collections): collection.set_alpha(self.alpha) collection.set_color(color) for label, cv in zip(self.labelTexts, self.labelCValues): label.set_alpha(self.alpha) label.set_color(self.labelMappable.to_rgba(cv)) # add label colors cm.ScalarMappable.changed(self) def _autolev(self, z, N): ''' Select contour levels to span the data. We need two more levels for filled contours than for line contours, because for the latter we need to specify the lower and upper boundary of each range. For example, a single contour boundary, say at z = 0, requires only one contour line, but two filled regions, and therefore three levels to provide boundaries for both regions. ''' if self.locator is None: if self.logscale: self.locator = ticker.LogLocator() else: self.locator = ticker.MaxNLocator(N+1) self.locator.create_dummy_axis() zmax = self.zmax zmin = self.zmin self.locator.set_bounds(zmin, zmax) lev = self.locator() zmargin = (zmax - zmin) * 0.000001 # so z < (zmax + zmargin) if zmax >= lev[-1]: lev[-1] += zmargin if zmin <= lev[0]: if self.logscale: lev[0] = 0.99 * zmin else: lev[0] -= zmargin self._auto = True if self.filled: return lev return lev[1:-1] def _initialize_x_y(self, z): ''' Return X, Y arrays such that contour(Z) will match imshow(Z) if origin is not None. The center of pixel Z[i,j] depends on origin: if origin is None, x = j, y = i; if origin is 'lower', x = j + 0.5, y = i + 0.5; if origin is 'upper', x = j + 0.5, y = Nrows - i - 0.5 If extent is not None, x and y will be scaled to match, as in imshow. If origin is None and extent is not None, then extent will give the minimum and maximum values of x and y. ''' if z.ndim != 2: raise TypeError("Input must be a 2D array.") else: Ny, Nx = z.shape if self.origin is None: # Not for image-matching. if self.extent is None: return np.meshgrid(np.arange(Nx), np.arange(Ny)) else: x0,x1,y0,y1 = self.extent x = np.linspace(x0, x1, Nx) y = np.linspace(y0, y1, Ny) return np.meshgrid(x, y) # Match image behavior: if self.extent is None: x0,x1,y0,y1 = (0, Nx, 0, Ny) else: x0,x1,y0,y1 = self.extent dx = float(x1 - x0)/Nx dy = float(y1 - y0)/Ny x = x0 + (np.arange(Nx) + 0.5) * dx y = y0 + (np.arange(Ny) + 0.5) * dy if self.origin == 'upper': y = y[::-1] return np.meshgrid(x,y) def _check_xyz(self, args): ''' For functions like contour, check that the dimensions of the input arrays match; if x and y are 1D, convert them to 2D using meshgrid. Possible change: I think we should make and use an ArgumentError Exception class (here and elsewhere). ''' # We can strip away the x and y units x = self.ax.convert_xunits( args[0] ) y = self.ax.convert_yunits( args[1] ) x = np.asarray(x, dtype=np.float64) y = np.asarray(y, dtype=np.float64) z = ma.asarray(args[2], dtype=np.float64) if z.ndim != 2: raise TypeError("Input z must be a 2D array.") else: Ny, Nx = z.shape if x.shape == z.shape and y.shape == z.shape: return x,y,z if x.ndim != 1 or y.ndim != 1: raise TypeError("Inputs x and y must be 1D or 2D.") nx, = x.shape ny, = y.shape if nx != Nx or ny != Ny: raise TypeError("Length of x must be number of columns in z,\n" + "and length of y must be number of rows.") x,y = np.meshgrid(x,y) return x,y,z def _contour_args(self, *args): if self.filled: fn = 'contourf' else: fn = 'contour' Nargs = len(args) if Nargs <= 2: z = ma.asarray(args[0], dtype=np.float64) x, y = self._initialize_x_y(z) elif Nargs <=4: x,y,z = self._check_xyz(args[:3]) else: raise TypeError("Too many arguments to %s; see help(%s)" % (fn,fn)) self.zmax = ma.maximum(z) self.zmin = ma.minimum(z) if self.logscale and self.zmin <= 0: z = ma.masked_where(z <= 0, z) warnings.warn('Log scale: values of z <=0 have been masked') self.zmin = z.min() self._auto = False if self.levels is None: if Nargs == 1 or Nargs == 3: lev = self._autolev(z, 7) else: # 2 or 4 args level_arg = args[-1] try: if type(level_arg) == int: lev = self._autolev(z, level_arg) else: lev = np.asarray(level_arg).astype(np.float64) except: raise TypeError( "Last %s arg must give levels; see help(%s)" % (fn,fn)) if self.filled and len(lev) < 2: raise ValueError("Filled contours require at least 2 levels.") # Workaround for cntr.c bug wrt masked interior regions: #if filled: # z = ma.masked_array(z.filled(-1e38)) # It's not clear this is any better than the original bug. self.levels = lev #if self._auto and self.extend in ('both', 'min', 'max'): # raise TypeError("Auto level selection is inconsistent " # + "with use of 'extend' kwarg") self._levels = list(self.levels) if self.extend in ('both', 'min'): self._levels.insert(0, min(self.levels[0],self.zmin) - 1) if self.extend in ('both', 'max'): self._levels.append(max(self.levels[-1],self.zmax) + 1) self._levels = np.asarray(self._levels) self.vmin = np.amin(self.levels) # alternative would be self.layers self.vmax = np.amax(self.levels) if self.extend in ('both', 'min'): self.vmin = 2 * self.levels[0] - self.levels[1] if self.extend in ('both', 'max'): self.vmax = 2 * self.levels[-1] - self.levels[-2] self.layers = self._levels # contour: a line is a thin layer if self.filled: self.layers = 0.5 * (self._levels[:-1] + self._levels[1:]) if self.extend in ('both', 'min'): self.layers[0] = 0.5 * (self.vmin + self._levels[1]) if self.extend in ('both', 'max'): self.layers[-1] = 0.5 * (self.vmax + self._levels[-2]) return (x, y, z) def _process_colors(self): """ Color argument processing for contouring. Note that we base the color mapping on the contour levels, not on the actual range of the Z values. This means we don't have to worry about bad values in Z, and we always have the full dynamic range available for the selected levels. The color is based on the midpoint of the layer, except for an extended end layers. """ self.monochrome = self.cmap.monochrome if self.colors is not None: i0, i1 = 0, len(self.layers) if self.extend in ('both', 'min'): i0 = -1 if self.extend in ('both', 'max'): i1 = i1 + 1 self.cvalues = range(i0, i1) self.set_norm(colors.NoNorm()) else: self.cvalues = self.layers if not self.norm.scaled(): self.set_clim(self.vmin, self.vmax) if self.extend in ('both', 'max', 'min'): self.norm.clip = False self.set_array(self.layers) # self.tcolors are set by the "changed" method def _process_linewidths(self): linewidths = self.linewidths Nlev = len(self.levels) if linewidths is None: tlinewidths = [(mpl.rcParams['lines.linewidth'],)] *Nlev else: if cbook.iterable(linewidths) and len(linewidths) < Nlev: linewidths = list(linewidths) * int(np.ceil(Nlev/len(linewidths))) elif not cbook.iterable(linewidths) and type(linewidths) in [int, float]: linewidths = [linewidths] * Nlev tlinewidths = [(w,) for w in linewidths] return tlinewidths def _process_linestyles(self): linestyles = self.linestyles Nlev = len(self.levels) if linestyles is None: tlinestyles = ['solid'] * Nlev else: if cbook.is_string_like(linestyles): tlinestyles = [linestyles] * Nlev elif cbook.iterable(linestyles) and len(linestyles) <= Nlev: tlinestyles = list(linestyles) * int(np.ceil(Nlev/len(linestyles))) return tlinestyles def get_alpha(self): '''returns alpha to be applied to all ContourSet artists''' return self.alpha def set_alpha(self, alpha): '''sets alpha for all ContourSet artists''' self.alpha = alpha self.changed() contour_doc = """ :func:`~matplotlib.pyplot.contour` and :func:`~matplotlib.pyplot.contourf` draw contour lines and filled contours, respectively. Except as noted, function signatures and return values are the same for both versions. :func:`~matplotlib.pyplot.contourf` differs from the Matlab (TM) version in that it does not draw the polygon edges, because the contouring engine yields simply connected regions with branch cuts. To draw the edges, add line contours with calls to :func:`~matplotlib.pyplot.contour`. call signatures:: contour(Z) make a contour plot of an array *Z*. The level values are chosen automatically. :: contour(X,Y,Z) *X*, *Y* specify the (*x*, *y*) coordinates of the surface :: contour(Z,N) contour(X,Y,Z,N) contour *N* automatically-chosen levels. :: contour(Z,V) contour(X,Y,Z,V) draw contour lines at the values specified in sequence *V* :: contourf(..., V) fill the (len(*V*)-1) regions between the values in *V* :: contour(Z, **kwargs) Use keyword args to control colors, linewidth, origin, cmap ... see below for more details. *X*, *Y*, and *Z* must be arrays with the same dimensions. *Z* may be a masked array, but filled contouring may not handle internal masked regions correctly. ``C = contour(...)`` returns a :class:`~matplotlib.contour.ContourSet` object. Optional keyword arguments: *colors*: [ None | string | (mpl_colors) ] If *None*, the colormap specified by cmap will be used. If a string, like 'r' or 'red', all levels will be plotted in this color. If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted in different colors in the order specified. *alpha*: float The alpha blending value *cmap*: [ None | Colormap ] A cm :class:`~matplotlib.cm.Colormap` instance or *None*. If *cmap* is *None* and *colors* is *None*, a default Colormap is used. *norm*: [ None | Normalize ] A :class:`matplotlib.colors.Normalize` instance for scaling data values to colors. If *norm* is *None* and *colors* is *None*, the default linear scaling is used. *origin*: [ None | 'upper' | 'lower' | 'image' ] If *None*, the first value of *Z* will correspond to the lower left corner, location (0,0). If 'image', the rc value for ``image.origin`` will be used. This keyword is not active if *X* and *Y* are specified in the call to contour. *extent*: [ None | (x0,x1,y0,y1) ] If *origin* is not *None*, then *extent* is interpreted as in :func:`matplotlib.pyplot.imshow`: it gives the outer pixel boundaries. In this case, the position of Z[0,0] is the center of the pixel, not a corner. If *origin* is *None*, then (*x0*, *y0*) is the position of Z[0,0], and (*x1*, *y1*) is the position of Z[-1,-1]. This keyword is not active if *X* and *Y* are specified in the call to contour. *locator*: [ None | ticker.Locator subclass ] If *locator* is None, the default :class:`~matplotlib.ticker.MaxNLocator` is used. The locator is used to determine the contour levels if they are not given explicitly via the *V* argument. *extend*: [ 'neither' | 'both' | 'min' | 'max' ] Unless this is 'neither', contour levels are automatically added to one or both ends of the range so that all data are included. These added ranges are then mapped to the special colormap values which default to the ends of the colormap range, but can be set via :meth:`matplotlib.cm.Colormap.set_under` and :meth:`matplotlib.cm.Colormap.set_over` methods. contour-only keyword arguments: *linewidths*: [ None | number | tuple of numbers ] If *linewidths* is *None*, the default width in ``lines.linewidth`` in ``matplotlibrc`` is used. If a number, all levels will be plotted with this linewidth. If a tuple, different levels will be plotted with different linewidths in the order specified *linestyles*: [None | 'solid' | 'dashed' | 'dashdot' | 'dotted' ] If *linestyles* is *None*, the 'solid' is used. *linestyles* can also be an iterable of the above strings specifying a set of linestyles to be used. If this iterable is shorter than the number of contour levels it will be repeated as necessary. If contour is using a monochrome colormap and the contour level is less than 0, then the linestyle specified in ``contour.negative_linestyle`` in ``matplotlibrc`` will be used. contourf-only keyword arguments: *antialiased*: [ True | False ] enable antialiasing *nchunk*: [ 0 | integer ] If 0, no subdivision of the domain. Specify a positive integer to divide the domain into subdomains of roughly *nchunk* by *nchunk* points. This may never actually be advantageous, so this option may be removed. Chunking introduces artifacts at the chunk boundaries unless *antialiased* is *False*. **Example:** .. plot:: mpl_examples/pylab_examples/contour_demo.py """ def find_nearest_contour( self, x, y, indices=None, pixel=True ): """ Finds contour that is closest to a point. Defaults to measuring distance in pixels (screen space - useful for manual contour labeling), but this can be controlled via a keyword argument. Returns a tuple containing the contour, segment, index of segment, x & y of segment point and distance to minimum point. Call signature:: conmin,segmin,imin,xmin,ymin,dmin = find_nearest_contour( self, x, y, indices=None, pixel=True ) Optional keyword arguments:: *indices*: Indexes of contour levels to consider when looking for nearest point. Defaults to using all levels. *pixel*: If *True*, measure distance in pixel space, if not, measure distance in axes space. Defaults to *True*. """ # This function uses a method that is probably quite # inefficient based on converting each contour segment to # pixel coordinates and then comparing the given point to # those coordinates for each contour. This will probably be # quite slow for complex contours, but for normal use it works # sufficiently well that the time is not noticeable. # Nonetheless, improvements could probably be made. if indices==None: indices = range(len(self.levels)) dmin = 1e10 conmin = None segmin = None xmin = None ymin = None for icon in indices: con = self.collections[icon] paths = con.get_paths() for segNum, linepath in enumerate(paths): lc = linepath.vertices # transfer all data points to screen coordinates if desired if pixel: lc = self.ax.transData.transform(lc) ds = (lc[:,0]-x)**2 + (lc[:,1]-y)**2 d = min( ds ) if d < dmin: dmin = d conmin = icon segmin = segNum imin = mpl.mlab.find( ds == d )[0] xmin = lc[imin,0] ymin = lc[imin,1] return (conmin,segmin,imin,xmin,ymin,dmin)
38.100543
85
0.564035
52ac39d599cc31d8097d3e4f8962cb41a469ed80
11,450
py
Python
mlflow/store/dbmodels/models.py
margaret-databricks/mlflow
25dcf038e6a6a6c4e26ff3f55391eaedeeb25293
[ "Apache-2.0" ]
null
null
null
mlflow/store/dbmodels/models.py
margaret-databricks/mlflow
25dcf038e6a6a6c4e26ff3f55391eaedeeb25293
[ "Apache-2.0" ]
null
null
null
mlflow/store/dbmodels/models.py
margaret-databricks/mlflow
25dcf038e6a6a6c4e26ff3f55391eaedeeb25293
[ "Apache-2.0" ]
null
null
null
import time from sqlalchemy.orm import relationship, backref from sqlalchemy import ( Column, String, Float, ForeignKey, Integer, CheckConstraint, BigInteger, PrimaryKeyConstraint) from sqlalchemy.ext.declarative import declarative_base from mlflow.entities import ( Experiment, RunTag, Metric, Param, RunData, RunInfo, SourceType, RunStatus, Run, ViewType) from mlflow.entities.lifecycle_stage import LifecycleStage Base = declarative_base() SourceTypes = [ SourceType.to_string(SourceType.NOTEBOOK), SourceType.to_string(SourceType.JOB), SourceType.to_string(SourceType.LOCAL), SourceType.to_string(SourceType.UNKNOWN), SourceType.to_string(SourceType.PROJECT) ] RunStatusTypes = [ RunStatus.to_string(RunStatus.SCHEDULED), RunStatus.to_string(RunStatus.FAILED), RunStatus.to_string(RunStatus.FINISHED), RunStatus.to_string(RunStatus.RUNNING) ] def _create_entity(base, model): # create dict of kwargs properties for entity and return the initialized entity config = {} for k in base._properties(): # check if its mlflow entity and build it obj = getattr(model, k) if isinstance(model, SqlRun): if base is RunData: # Run data contains list for metrics, params and tags # so obj will be a list so we need to convert those items if k == 'metrics': # only get latest recorded metrics per key metrics = {} for o in obj: existing_metric = metrics.get(o.key) if (existing_metric is None)\ or ((o.step, o.timestamp, o.value) >= (existing_metric.step, existing_metric.timestamp, existing_metric.value)): metrics[o.key] = Metric(o.key, o.value, o.timestamp, o.step) obj = list(metrics.values()) elif k == 'params': obj = [Param(o.key, o.value) for o in obj] elif k == 'tags': obj = [RunTag(o.key, o.value) for o in obj] elif base is RunInfo: if k == 'source_type': obj = SourceType.from_string(obj) elif k == "status": obj = RunStatus.from_string(obj) elif k == "experiment_id": obj = str(obj) # Our data model defines experiment_ids as ints, but the in-memory representation was # changed to be a string in time for 1.0. if isinstance(model, SqlExperiment) and k == "experiment_id": obj = str(obj) config[k] = obj return base(**config) class SqlExperiment(Base): """ DB model for :py:class:`mlflow.entities.Experiment`. These are recorded in ``experiment`` table. """ __tablename__ = 'experiments' experiment_id = Column(Integer, autoincrement=True) """ Experiment ID: `Integer`. *Primary Key* for ``experiment`` table. """ name = Column(String(256), unique=True, nullable=False) """ Experiment name: `String` (limit 256 characters). Defined as *Unique* and *Non null* in table schema. """ artifact_location = Column(String(256), nullable=True) """ Default artifact location for this experiment: `String` (limit 256 characters). Defined as *Non null* in table schema. """ lifecycle_stage = Column(String(32), default=LifecycleStage.ACTIVE) """ Lifecycle Stage of experiment: `String` (limit 32 characters). Can be either ``active`` (default) or ``deleted``. """ __table_args__ = ( CheckConstraint( lifecycle_stage.in_(LifecycleStage.view_type_to_stages(ViewType.ALL)), name='lifecycle_stage'), PrimaryKeyConstraint('experiment_id', name='experiment_pk') ) def __repr__(self): return '<SqlExperiment ({}, {})>'.format(self.experiment_id, self.name) def to_mlflow_entity(self): """ Convert DB model to corresponding MLflow entity. :return: :py:class:`mlflow.entities.Experiment`. """ return _create_entity(Experiment, self) class SqlRun(Base): """ DB model for :py:class:`mlflow.entities.Run`. These are recorded in ``runs`` table. """ __tablename__ = 'runs' run_uuid = Column(String(32), nullable=False) """ Run UUID: `String` (limit 32 characters). *Primary Key* for ``runs`` table. """ name = Column(String(250)) """ Run name: `String` (limit 250 characters). """ source_type = Column(String(20), default=SourceType.to_string(SourceType.LOCAL)) """ Source Type: `String` (limit 20 characters). Can be one of ``NOTEBOOK``, ``JOB``, ``PROJECT``, ``LOCAL`` (default), or ``UNKNOWN``. """ source_name = Column(String(500)) """ Name of source recording the run: `String` (limit 500 characters). """ entry_point_name = Column(String(50)) """ Entry-point name that launched the run run: `String` (limit 50 characters). """ user_id = Column(String(256), nullable=True, default=None) """ User ID: `String` (limit 256 characters). Defaults to ``null``. """ status = Column(String(20), default=RunStatus.to_string(RunStatus.SCHEDULED)) """ Run Status: `String` (limit 20 characters). Can be one of ``RUNNING``, ``SCHEDULED`` (default), ``FINISHED``, ``FAILED``. """ start_time = Column(BigInteger, default=int(time.time())) """ Run start time: `BigInteger`. Defaults to current system time. """ end_time = Column(BigInteger, nullable=True, default=None) """ Run end time: `BigInteger`. """ source_version = Column(String(50)) """ Source version: `String` (limit 50 characters). """ lifecycle_stage = Column(String(20), default=LifecycleStage.ACTIVE) """ Lifecycle Stage of run: `String` (limit 32 characters). Can be either ``active`` (default) or ``deleted``. """ artifact_uri = Column(String(200), default=None) """ Default artifact location for this run: `String` (limit 200 characters). """ experiment_id = Column(Integer, ForeignKey('experiments.experiment_id')) """ Experiment ID to which this run belongs to: *Foreign Key* into ``experiment`` table. """ experiment = relationship('SqlExperiment', backref=backref('runs', cascade='all')) """ SQLAlchemy relationship (many:one) with :py:class:`mlflow.store.dbmodels.models.SqlExperiment`. """ __table_args__ = ( CheckConstraint(source_type.in_(SourceTypes), name='source_type'), CheckConstraint(status.in_(RunStatusTypes), name='status'), CheckConstraint(lifecycle_stage.in_(LifecycleStage.view_type_to_stages(ViewType.ALL)), name='lifecycle_stage'), PrimaryKeyConstraint('run_uuid', name='run_pk') ) def to_mlflow_entity(self): """ Convert DB model to corresponding MLflow entity. :return: :py:class:`mlflow.entities.Run`. """ # run has diff parameter names in __init__ than in properties_ so we do this manually info = _create_entity(RunInfo, self) data = _create_entity(RunData, self) return Run(run_info=info, run_data=data) class SqlTag(Base): """ DB model for :py:class:`mlflow.entities.RunTag`. These are recorded in ``tags`` table. """ __tablename__ = 'tags' key = Column(String(250)) """ Tag key: `String` (limit 250 characters). *Primary Key* for ``tags`` table. """ value = Column(String(250), nullable=True) """ Value associated with tag: `String` (limit 250 characters). Could be *null*. """ run_uuid = Column(String(32), ForeignKey('runs.run_uuid')) """ Run UUID to which this tag belongs to: *Foreign Key* into ``runs`` table. """ run = relationship('SqlRun', backref=backref('tags', cascade='all')) """ SQLAlchemy relationship (many:one) with :py:class:`mlflow.store.dbmodels.models.SqlRun`. """ __table_args__ = ( PrimaryKeyConstraint('key', 'run_uuid', name='tag_pk'), ) def __repr__(self): return '<SqlRunTag({}, {})>'.format(self.key, self.value) def to_mlflow_entity(self): """ Convert DB model to corresponding MLflow entity. :return: :py:class:`mlflow.entities.RunTag`. """ return _create_entity(RunTag, self) class SqlMetric(Base): __tablename__ = 'metrics' key = Column(String(250)) """ Metric key: `String` (limit 250 characters). Part of *Primary Key* for ``metrics`` table. """ value = Column(Float, nullable=False) """ Metric value: `Float`. Defined as *Non-null* in schema. """ timestamp = Column(BigInteger, default=lambda: int(time.time())) """ Timestamp recorded for this metric entry: `BigInteger`. Part of *Primary Key* for ``metrics`` table. """ step = Column(BigInteger, default=0) """ Step recorded for this metric entry: `BigInteger`. """ run_uuid = Column(String(32), ForeignKey('runs.run_uuid')) """ Run UUID to which this metric belongs to: Part of *Primary Key* for ``metrics`` table. *Foreign Key* into ``runs`` table. """ run = relationship('SqlRun', backref=backref('metrics', cascade='all')) """ SQLAlchemy relationship (many:one) with :py:class:`mlflow.store.dbmodels.models.SqlRun`. """ __table_args__ = ( PrimaryKeyConstraint('key', 'timestamp', 'step', 'run_uuid', 'value', name='metric_pk'), ) def __repr__(self): return '<SqlMetric({}, {}, {}, {})>'.format(self.key, self.value, self.timestamp, self.step) def to_mlflow_entity(self): """ Convert DB model to corresponding MLflow entity. :return: :py:class:`mlflow.entities.Metric`. """ return _create_entity(Metric, self) class SqlParam(Base): __tablename__ = 'params' key = Column(String(250)) """ Param key: `String` (limit 250 characters). Part of *Primary Key* for ``params`` table. """ value = Column(String(250), nullable=False) """ Param value: `String` (limit 250 characters). Defined as *Non-null* in schema. """ run_uuid = Column(String(32), ForeignKey('runs.run_uuid')) """ Run UUID to which this metric belongs to: Part of *Primary Key* for ``params`` table. *Foreign Key* into ``runs`` table. """ run = relationship('SqlRun', backref=backref('params', cascade='all')) """ SQLAlchemy relationship (many:one) with :py:class:`mlflow.store.dbmodels.models.SqlRun`. """ __table_args__ = ( PrimaryKeyConstraint('key', 'run_uuid', name='param_pk'), ) def __repr__(self): return '<SqlParam({}, {})>'.format(self.key, self.value) def to_mlflow_entity(self): """ Convert DB model to corresponding MLflow entity. :return: :py:class:`mlflow.entities.Param`. """ return _create_entity(Param, self)
35.122699
100
0.602795
e749ae0a152fbfbdd73e27d215fc707cb36fb963
1,366
py
Python
ingenico/direct/sdk/domain/fixed_list_validator.py
Ingenico/direct-sdk-python2
1c5c08fe2281aa99bfe8e8e031071600cb3be11d
[ "Apache-2.0" ]
null
null
null
ingenico/direct/sdk/domain/fixed_list_validator.py
Ingenico/direct-sdk-python2
1c5c08fe2281aa99bfe8e8e031071600cb3be11d
[ "Apache-2.0" ]
null
null
null
ingenico/direct/sdk/domain/fixed_list_validator.py
Ingenico/direct-sdk-python2
1c5c08fe2281aa99bfe8e8e031071600cb3be11d
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # This class was auto-generated from the API references found at # https://support.direct.ingenico.com/documentation/api/reference/ # from ingenico.direct.sdk.data_object import DataObject class FixedListValidator(DataObject): __allowed_values = None @property def allowed_values(self): """ Type: list[str] """ return self.__allowed_values @allowed_values.setter def allowed_values(self, value): self.__allowed_values = value def to_dictionary(self): dictionary = super(FixedListValidator, self).to_dictionary() if self.allowed_values is not None: dictionary['allowedValues'] = [] for element in self.allowed_values: if element is not None: dictionary['allowedValues'].append(element) return dictionary def from_dictionary(self, dictionary): super(FixedListValidator, self).from_dictionary(dictionary) if 'allowedValues' in dictionary: if not isinstance(dictionary['allowedValues'], list): raise TypeError('value \'{}\' is not a list'.format(dictionary['allowedValues'])) self.allowed_values = [] for element in dictionary['allowedValues']: self.allowed_values.append(element) return self
32.52381
97
0.644949
662f4208b526f4ac84a3e39af6d0244fbb63218b
1,646
py
Python
jigls/jeditor/operations/nodefactory.py
ironWolf1990/python-jils
87390cf871329e9a47f985b4f0c9fc9506bfdb91
[ "MIT" ]
2
2021-04-08T14:57:58.000Z
2021-07-26T00:57:49.000Z
jigls/jeditor/operations/nodefactory.py
ironWolf1990/python-jils
87390cf871329e9a47f985b4f0c9fc9506bfdb91
[ "MIT" ]
null
null
null
jigls/jeditor/operations/nodefactory.py
ironWolf1990/python-jils
87390cf871329e9a47f985b4f0c9fc9506bfdb91
[ "MIT" ]
3
2021-05-19T18:48:57.000Z
2021-07-26T00:55:23.000Z
# import logging # from typing import Dict, Optional # from jigls.jeditor.base.nodebase import JBaseNode # from jigls.jeditor.constants import JCONSTANTS # from jigls.jeditor.ui.graphicnode import JGraphicsNode # from jigls.logger import logger # logger = logging.getLogger(__name__) # class JNodeFactory: # def __init__(self) -> None: # self._nodeRegistry: Dict[str, object] = {} # pass # @property # def nodeRegistry(self): # return self._nodeRegistry # def RegisterNode(self, name: str, node: object): # if name is self._nodeRegistry: # logger.warning("node with name already registered") # return # self._nodeRegistry[name] = node # def RegisterNodes(self, nodeDict: Dict[str, object]): # for k, v in nodeDict.items(): # self.RegisterNode(k, v) # def CreateRegisteredNode(self, nodeName: str) -> Optional[object]: # if nodeName not in self._nodeRegistry: # logger.error(f"node name {nodeName} not in registry") # return # return self._nodeRegistry[nodeName] # def CreateGenericNode(self, inputMulti, outputMulti, inputs=2, output=1, *args, **kwargs): # base = JBaseNode("base node") # for i in range(inputs): # base.AddInputSocket( # name=f"in{i}", # multiConnection=inputMulti, # ) # for _ in range(output): # base.AddOutputSocket( # name="out1", # multiConnection=outputMulti, # ) # node = JGraphicsNode(base) # return node
30.481481
96
0.597813
84ee68733e5167ff90d0886ff60ca505713d9771
480
py
Python
recipes/tinyply/all/test_package/conanfile.py
rockandsalt/conan-center-index
d739adcec3e4dd4c250eff559ceb738e420673dd
[ "MIT" ]
562
2019-09-04T12:23:43.000Z
2022-03-29T16:41:43.000Z
recipes/tinyply/all/test_package/conanfile.py
rockandsalt/conan-center-index
d739adcec3e4dd4c250eff559ceb738e420673dd
[ "MIT" ]
9,799
2019-09-04T12:02:11.000Z
2022-03-31T23:55:45.000Z
recipes/tinyply/all/test_package/conanfile.py
rockandsalt/conan-center-index
d739adcec3e4dd4c250eff559ceb738e420673dd
[ "MIT" ]
1,126
2019-09-04T11:57:46.000Z
2022-03-31T16:43:38.000Z
import os from conans import ConanFile, CMake, tools class TestPackageConan(ConanFile): settings = "os", "compiler", "build_type", "arch" generators = "cmake", "cmake_find_package_multi" def build(self): cmake = CMake(self) cmake.configure() cmake.build() def test(self): if not tools.cross_building(self.settings): bin_path = os.path.join("bin", "test_package") self.run(bin_path, run_environment=True)
26.666667
58
0.641667
36ec3873f8a1b4a2a578b18b0fe3fb1d4e845fa6
7,218
py
Python
src/olympia/versions/views.py
atiqueahmedziad/addons-server
6e1cc00bf15d245fbcdddf618286bba943731e45
[ "BSD-3-Clause" ]
2
2019-08-18T13:00:40.000Z
2019-11-17T02:18:04.000Z
src/olympia/versions/views.py
atiqueahmedziad/addons-server
6e1cc00bf15d245fbcdddf618286bba943731e45
[ "BSD-3-Clause" ]
null
null
null
src/olympia/versions/views.py
atiqueahmedziad/addons-server
6e1cc00bf15d245fbcdddf618286bba943731e45
[ "BSD-3-Clause" ]
null
null
null
import os from django import http from django.db.transaction import non_atomic_requests from django.shortcuts import get_object_or_404, redirect import olympia.core.logger from olympia import amo from olympia.access import acl from olympia.addons.decorators import ( addon_view_factory, owner_or_unlisted_reviewer) from olympia.addons.models import Addon from olympia.amo.urlresolvers import reverse from olympia.amo.utils import HttpResponseSendFile, render, urlparams from olympia.files.models import File from olympia.versions.models import Version from olympia.lib.cache import cache_get_or_set, make_key # The version detail page redirects to the version within pagination, so we # need to enforce the number of versions per page. PER_PAGE = 30 addon_view = addon_view_factory(Addon.objects.valid) log = olympia.core.logger.getLogger('z.versions') def _version_list_qs(addon): # We only show versions that have files with the right status. if addon.is_unreviewed(): status = amo.STATUS_AWAITING_REVIEW else: status = amo.STATUS_PUBLIC return (addon.versions.filter(channel=amo.RELEASE_CHANNEL_LISTED) .filter(files__status=status) .distinct().order_by('-created')) @addon_view @non_atomic_requests def version_list(request, addon): qs = _version_list_qs(addon) versions = amo.utils.paginate(request, qs, PER_PAGE) versions.object_list = list(versions.object_list) Version.transformer(versions.object_list) return render(request, 'versions/version_list.html', { 'addon': addon, 'versions': versions}) @addon_view @non_atomic_requests def version_detail(request, addon, version_num): # TODO: Does setting this in memcachd even make sense? # This is specific to an add-ons version so the chance of this hitting # the cache and not missing seems quite bad to me (cgrebs) def _fetch(): qs = _version_list_qs(addon) return list(qs.values_list('version', flat=True)) cache_key = make_key( u'version-detail:{}:{}'.format(addon.id, version_num), normalize=True) ids = cache_get_or_set(cache_key, _fetch) url = reverse('addons.versions', args=[addon.slug]) if version_num in ids: page = 1 + ids.index(version_num) / PER_PAGE to = urlparams(url, 'version-%s' % version_num, page=page) return http.HttpResponseRedirect(to) else: raise http.Http404() @addon_view @non_atomic_requests def update_info(request, addon, version_num): version = Version.objects.filter(addon=addon, version=version_num, files__status__in=amo.VALID_FILE_STATUSES, channel=amo.RELEASE_CHANNEL_LISTED).last() if not version: raise http.Http404() return render(request, 'versions/update_info.html', {'version': version}, content_type='application/xhtml+xml') @non_atomic_requests def update_info_redirect(request, version_id): version = get_object_or_404(Version.objects, pk=version_id) return redirect(reverse('addons.versions.update_info', args=(version.addon.id, version.version)), permanent=True) # Should accept junk at the end for filename goodness. @non_atomic_requests def download_file(request, file_id, type=None, file_=None, addon=None): def is_appropriate_reviewer(addon, channel): return (acl.is_reviewer(request, addon) if channel == amo.RELEASE_CHANNEL_LISTED else acl.check_unlisted_addons_reviewer(request)) if not file_: file_ = get_object_or_404(File.objects, pk=file_id) if not addon: addon = get_object_or_404(Addon.objects, pk=file_.version.addon_id) channel = file_.version.channel if addon.is_disabled or file_.status == amo.STATUS_DISABLED: if (is_appropriate_reviewer(addon, channel) or acl.check_addon_ownership( request, addon, dev=True, ignore_disabled=True)): return HttpResponseSendFile( request, file_.guarded_file_path, content_type='application/x-xpinstall') else: log.info( u'download file {file_id}: addon/file disabled and ' u'user {user_id} is not an owner or reviewer.'.format( file_id=file_id, user_id=request.user.pk)) raise http.Http404() # Not owner or admin. if channel == amo.RELEASE_CHANNEL_UNLISTED: if (acl.check_unlisted_addons_reviewer(request) or acl.check_addon_ownership( request, addon, dev=True, ignore_disabled=True)): return HttpResponseSendFile( request, file_.file_path, content_type='application/x-xpinstall') else: log.info( u'download file {file_id}: version is unlisted and ' u'user {user_id} is not an owner or reviewer.'.format( file_id=file_id, user_id=request.user.pk)) raise http.Http404() # Not owner or admin. attachment = bool(type == 'attachment') loc = urlparams(file_.get_file_cdn_url(attachment=attachment), filehash=file_.hash) response = http.HttpResponseRedirect(loc) response['X-Target-Digest'] = file_.hash return response def guard(): return Addon.objects.filter(_current_version__isnull=False) @addon_view_factory(guard) @non_atomic_requests def download_latest(request, addon, type='xpi', platform=None): platforms = [amo.PLATFORM_ALL.id] if platform is not None and int(platform) in amo.PLATFORMS: platforms.append(int(platform)) version = addon._current_version_id files = File.objects.filter(platform__in=platforms, version=version) try: # If there's a file matching our platform, it'll float to the end. file_ = sorted(files, key=lambda f: f.platform == platforms[-1])[-1] except IndexError: raise http.Http404() return download_file(request, file_.id, type=type, file_=file_, addon=addon) @non_atomic_requests def download_source(request, version_id): version = get_object_or_404(Version.objects, pk=version_id) # General case: version is listed. if version.channel == amo.RELEASE_CHANNEL_LISTED: if not (version.source and (acl.check_addon_ownership( request, version.addon, dev=True, ignore_disabled=True))): raise http.Http404() else: if not owner_or_unlisted_reviewer(request, version.addon): raise http.Http404 # Not listed, not owner or unlisted reviewer. res = HttpResponseSendFile(request, version.source.path) path = version.source.path if not isinstance(path, unicode): path = path.decode('utf8') name = os.path.basename(path.replace(u'"', u'')) disposition = u'attachment; filename="{0}"'.format(name).encode('utf8') res['Content-Disposition'] = disposition return res
37.59375
79
0.667636
dcf9d9bcdcf6324de552bc3b65ea9012cfa88f70
7,227
py
Python
image_transfer_learning/image_processing.py
jonathan-smith-1/image_transfer_learning
9020ecfa45e1591b9ad6ed2abe2a2e89a180edd4
[ "MIT" ]
null
null
null
image_transfer_learning/image_processing.py
jonathan-smith-1/image_transfer_learning
9020ecfa45e1591b9ad6ed2abe2a2e89a180edd4
[ "MIT" ]
null
null
null
image_transfer_learning/image_processing.py
jonathan-smith-1/image_transfer_learning
9020ecfa45e1591b9ad6ed2abe2a2e89a180edd4
[ "MIT" ]
null
null
null
"""Image processing functions.""" import os import pickle import numpy as np import tensorflow as tf import tensorflow_hub as hub from skimage.io import imread from skimage.transform import resize from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True # Needed for large images def make_square(img): """ Trim an image to make it square by keeping the centre part. Args: img (Numpy array): Input image with shape (height, width, channels) Returns: Numpy array of trimmed image, with shape (new_height, new_width, channels) """ height, width, _ = img.shape if height >= width: h_max = int(height/2 + width/2) h_min = int(height/2 - width/2) trimmed_image = img[h_min:h_max, :, :].copy() else: w_max = int(width/2 + height/2) w_min = int(width/2 - height/2) trimmed_image = img[:, w_min:w_max, :].copy() return trimmed_image def convert_images(images_path, save_path, lab_to_int=None): """ Convert images into feature vectors and saves them in a pickle file. This function uses transfer learning. A pre-trained network is loaded and used. A dictionary mapping labels to integers can be passed in, or can be generated and returned. This is so it can be reused on other datasets. E.g. the training data may have more classes in than the test data, so this mapping needs to be created using the training data and then reused on the validation and test data. Args: images_path (string): Filepath of the directory containing the training images. The images must be in folders with the category names. A suitable file structure is shown below: |- images_path/ | |- category_1 | |- image_1.jpg | |- image_2.jpg | |- ... | |- category_2 | |- image_3.jpg | |- image_4.jpg | |- ... | |- ... save_path (string): Filepath to a pickle file that will be created by this function. lab_to_int (dict): Mapping from labels (strings) to integers. Optional argument. If provided, this dictionary will be used. If not provided, then this dictionary will be generated. Returns: A dictionary mapping from labels (strings) to integers. """ print('Converting images from: ' + images_path) # Convert each image to a feature vector feature_vectors = [] labels = [] if not lab_to_int: _, lab_to_int = enumerate_labels(images_path) with tf.Graph().as_default(): mod = hub.Module("https://tfhub.dev/google/imagenet/inception_v3/" "feature_vector/1") height, width = hub.get_expected_image_size(mod) # [batch_size, height, width, channels] images = tf.placeholder(tf.float32, shape=[1, height, width, 3], name='Input_images') # Features have shape [batch_size, num_features]. features = mod(images) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.tables_initializer()) for category_dir in os.scandir(images_path): label = os.path.basename(os.path.normpath(category_dir)) for image_path in os.scandir(category_dir): print(image_path.name) # img_num = 0 accounts for images with multiple frames image = imread(os.path.abspath(image_path), img_num=0) image = make_square(image) # Constant argument prevents deprecation warning image = resize(image, (height, width), anti_aliasing=True, mode='constant') image = np.expand_dims(image, axis=0) vec = sess.run(features, feed_dict={images: image}) feature_vectors.append(vec) labels.append(lab_to_int[label]) feature_vectors_array = np.concatenate(feature_vectors, axis=0) labels_array = np.array(labels) data = {'feature_vectors_array': feature_vectors_array, 'labels_array': labels_array, 'label_to_int': lab_to_int} with open(save_path, 'wb') as file: pickle.dump(data, file, pickle.HIGHEST_PROTOCOL) return lab_to_int def get_feature_vector_size(path): """ Get the length of the feature vectors. Feature vectors are assumed to be in a pickle file or npz file (or similar) that loads into a dictionary with key, value pair of 'feature_vectors_array' and a 2D numpy array of feature vectors. The feature vectors array is a 2D numpy array of shape (num_vectors, vector_length). Args: path (string): Path of file containing feature vectors. Returns: Nothing """ data = np.load(path) return data['feature_vectors_array'].shape[1] def get_num_classes(path): """ Get the number of classes in the data. Together with the feature vectors and the labels is a dictionary mapping the labels to integers. The size of this dictionary gives the number of classes. The labels to integers dictionary is assumed to be in a pickle file or npz file (or similar) that loads into a dictionary with key, value pair of 'label_to_int' and this dictionary. Args: path (string): Path of file containing the mapping of labels to integers. Returns: Nothing """ data = np.load(path) return len(data['label_to_int']) def enumerate_labels(path): """ Create dictionaries mapping label to integer and integer to label. Args: path (string): Filepath of the directory folders named after each category. A suitable file structure is shown below: |- images_path/ | |- category_1 | |- image_1.jpg | |- image_2.jpg | |- ... | |- category_2 | |- image_3.jpg | |- image_4.jpg | |- ... | |- ... Returns: Nothing """ labels = set() for category_dir in os.scandir(path): labels.add(os.path.basename(os.path.normpath(category_dir))) int_to_lab = dict(enumerate(sorted(labels))) lab_to_int = {v: k for k, v in int_to_lab.items()} return int_to_lab, lab_to_int
31.697368
78
0.555556
29e41964c1afa023ead9ff36ae2b4a3b278c743f
17,734
py
Python
tccli/services/cloudhsm/cloudhsm_client.py
ws0416/tencentcloud-cli
0a90fa77c8be1efa30b196a3eeb31b8be1f6a325
[ "Apache-2.0" ]
null
null
null
tccli/services/cloudhsm/cloudhsm_client.py
ws0416/tencentcloud-cli
0a90fa77c8be1efa30b196a3eeb31b8be1f6a325
[ "Apache-2.0" ]
null
null
null
tccli/services/cloudhsm/cloudhsm_client.py
ws0416/tencentcloud-cli
0a90fa77c8be1efa30b196a3eeb31b8be1f6a325
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import os import json import tccli.options_define as OptionsDefine import tccli.format_output as FormatOutput from tccli import __version__ from tccli.utils import Utils from tccli.exceptions import ConfigurationError from tencentcloud.common import credential from tencentcloud.common.profile.http_profile import HttpProfile from tencentcloud.common.profile.client_profile import ClientProfile from tencentcloud.cloudhsm.v20191112 import cloudhsm_client as cloudhsm_client_v20191112 from tencentcloud.cloudhsm.v20191112 import models as models_v20191112 def doModifyVsmAttributes(args, parsed_globals): g_param = parse_global_arg(parsed_globals) cred = credential.Credential( g_param[OptionsDefine.SecretId], g_param[OptionsDefine.SecretKey], g_param[OptionsDefine.Token] ) http_profile = HttpProfile( reqTimeout=60 if g_param[OptionsDefine.Timeout] is None else int(g_param[OptionsDefine.Timeout]), reqMethod="POST", endpoint=g_param[OptionsDefine.Endpoint], proxy=g_param[OptionsDefine.HttpsProxy] ) profile = ClientProfile(httpProfile=http_profile, signMethod="HmacSHA256") mod = CLIENT_MAP[g_param[OptionsDefine.Version]] client = mod.CloudhsmClient(cred, g_param[OptionsDefine.Region], profile) client._sdkVersion += ("_CLI_" + __version__) models = MODELS_MAP[g_param[OptionsDefine.Version]] model = models.ModifyVsmAttributesRequest() model.from_json_string(json.dumps(args)) rsp = client.ModifyVsmAttributes(model) result = rsp.to_json_string() try: json_obj = json.loads(result) except TypeError as e: json_obj = json.loads(result.decode('utf-8')) # python3.3 FormatOutput.output("action", json_obj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter]) def doDescribeVsmAttributes(args, parsed_globals): g_param = parse_global_arg(parsed_globals) cred = credential.Credential( g_param[OptionsDefine.SecretId], g_param[OptionsDefine.SecretKey], g_param[OptionsDefine.Token] ) http_profile = HttpProfile( reqTimeout=60 if g_param[OptionsDefine.Timeout] is None else int(g_param[OptionsDefine.Timeout]), reqMethod="POST", endpoint=g_param[OptionsDefine.Endpoint], proxy=g_param[OptionsDefine.HttpsProxy] ) profile = ClientProfile(httpProfile=http_profile, signMethod="HmacSHA256") mod = CLIENT_MAP[g_param[OptionsDefine.Version]] client = mod.CloudhsmClient(cred, g_param[OptionsDefine.Region], profile) client._sdkVersion += ("_CLI_" + __version__) models = MODELS_MAP[g_param[OptionsDefine.Version]] model = models.DescribeVsmAttributesRequest() model.from_json_string(json.dumps(args)) rsp = client.DescribeVsmAttributes(model) result = rsp.to_json_string() try: json_obj = json.loads(result) except TypeError as e: json_obj = json.loads(result.decode('utf-8')) # python3.3 FormatOutput.output("action", json_obj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter]) def doDescribeVsms(args, parsed_globals): g_param = parse_global_arg(parsed_globals) cred = credential.Credential( g_param[OptionsDefine.SecretId], g_param[OptionsDefine.SecretKey], g_param[OptionsDefine.Token] ) http_profile = HttpProfile( reqTimeout=60 if g_param[OptionsDefine.Timeout] is None else int(g_param[OptionsDefine.Timeout]), reqMethod="POST", endpoint=g_param[OptionsDefine.Endpoint], proxy=g_param[OptionsDefine.HttpsProxy] ) profile = ClientProfile(httpProfile=http_profile, signMethod="HmacSHA256") mod = CLIENT_MAP[g_param[OptionsDefine.Version]] client = mod.CloudhsmClient(cred, g_param[OptionsDefine.Region], profile) client._sdkVersion += ("_CLI_" + __version__) models = MODELS_MAP[g_param[OptionsDefine.Version]] model = models.DescribeVsmsRequest() model.from_json_string(json.dumps(args)) rsp = client.DescribeVsms(model) result = rsp.to_json_string() try: json_obj = json.loads(result) except TypeError as e: json_obj = json.loads(result.decode('utf-8')) # python3.3 FormatOutput.output("action", json_obj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter]) def doDescribeVpc(args, parsed_globals): g_param = parse_global_arg(parsed_globals) cred = credential.Credential( g_param[OptionsDefine.SecretId], g_param[OptionsDefine.SecretKey], g_param[OptionsDefine.Token] ) http_profile = HttpProfile( reqTimeout=60 if g_param[OptionsDefine.Timeout] is None else int(g_param[OptionsDefine.Timeout]), reqMethod="POST", endpoint=g_param[OptionsDefine.Endpoint], proxy=g_param[OptionsDefine.HttpsProxy] ) profile = ClientProfile(httpProfile=http_profile, signMethod="HmacSHA256") mod = CLIENT_MAP[g_param[OptionsDefine.Version]] client = mod.CloudhsmClient(cred, g_param[OptionsDefine.Region], profile) client._sdkVersion += ("_CLI_" + __version__) models = MODELS_MAP[g_param[OptionsDefine.Version]] model = models.DescribeVpcRequest() model.from_json_string(json.dumps(args)) rsp = client.DescribeVpc(model) result = rsp.to_json_string() try: json_obj = json.loads(result) except TypeError as e: json_obj = json.loads(result.decode('utf-8')) # python3.3 FormatOutput.output("action", json_obj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter]) def doDescribeHSMByVpcId(args, parsed_globals): g_param = parse_global_arg(parsed_globals) cred = credential.Credential( g_param[OptionsDefine.SecretId], g_param[OptionsDefine.SecretKey], g_param[OptionsDefine.Token] ) http_profile = HttpProfile( reqTimeout=60 if g_param[OptionsDefine.Timeout] is None else int(g_param[OptionsDefine.Timeout]), reqMethod="POST", endpoint=g_param[OptionsDefine.Endpoint], proxy=g_param[OptionsDefine.HttpsProxy] ) profile = ClientProfile(httpProfile=http_profile, signMethod="HmacSHA256") mod = CLIENT_MAP[g_param[OptionsDefine.Version]] client = mod.CloudhsmClient(cred, g_param[OptionsDefine.Region], profile) client._sdkVersion += ("_CLI_" + __version__) models = MODELS_MAP[g_param[OptionsDefine.Version]] model = models.DescribeHSMByVpcIdRequest() model.from_json_string(json.dumps(args)) rsp = client.DescribeHSMByVpcId(model) result = rsp.to_json_string() try: json_obj = json.loads(result) except TypeError as e: json_obj = json.loads(result.decode('utf-8')) # python3.3 FormatOutput.output("action", json_obj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter]) def doDescribeHSMBySubnetId(args, parsed_globals): g_param = parse_global_arg(parsed_globals) cred = credential.Credential( g_param[OptionsDefine.SecretId], g_param[OptionsDefine.SecretKey], g_param[OptionsDefine.Token] ) http_profile = HttpProfile( reqTimeout=60 if g_param[OptionsDefine.Timeout] is None else int(g_param[OptionsDefine.Timeout]), reqMethod="POST", endpoint=g_param[OptionsDefine.Endpoint], proxy=g_param[OptionsDefine.HttpsProxy] ) profile = ClientProfile(httpProfile=http_profile, signMethod="HmacSHA256") mod = CLIENT_MAP[g_param[OptionsDefine.Version]] client = mod.CloudhsmClient(cred, g_param[OptionsDefine.Region], profile) client._sdkVersion += ("_CLI_" + __version__) models = MODELS_MAP[g_param[OptionsDefine.Version]] model = models.DescribeHSMBySubnetIdRequest() model.from_json_string(json.dumps(args)) rsp = client.DescribeHSMBySubnetId(model) result = rsp.to_json_string() try: json_obj = json.loads(result) except TypeError as e: json_obj = json.loads(result.decode('utf-8')) # python3.3 FormatOutput.output("action", json_obj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter]) def doDescribeUsg(args, parsed_globals): g_param = parse_global_arg(parsed_globals) cred = credential.Credential( g_param[OptionsDefine.SecretId], g_param[OptionsDefine.SecretKey], g_param[OptionsDefine.Token] ) http_profile = HttpProfile( reqTimeout=60 if g_param[OptionsDefine.Timeout] is None else int(g_param[OptionsDefine.Timeout]), reqMethod="POST", endpoint=g_param[OptionsDefine.Endpoint], proxy=g_param[OptionsDefine.HttpsProxy] ) profile = ClientProfile(httpProfile=http_profile, signMethod="HmacSHA256") mod = CLIENT_MAP[g_param[OptionsDefine.Version]] client = mod.CloudhsmClient(cred, g_param[OptionsDefine.Region], profile) client._sdkVersion += ("_CLI_" + __version__) models = MODELS_MAP[g_param[OptionsDefine.Version]] model = models.DescribeUsgRequest() model.from_json_string(json.dumps(args)) rsp = client.DescribeUsg(model) result = rsp.to_json_string() try: json_obj = json.loads(result) except TypeError as e: json_obj = json.loads(result.decode('utf-8')) # python3.3 FormatOutput.output("action", json_obj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter]) def doDescribeSubnet(args, parsed_globals): g_param = parse_global_arg(parsed_globals) cred = credential.Credential( g_param[OptionsDefine.SecretId], g_param[OptionsDefine.SecretKey], g_param[OptionsDefine.Token] ) http_profile = HttpProfile( reqTimeout=60 if g_param[OptionsDefine.Timeout] is None else int(g_param[OptionsDefine.Timeout]), reqMethod="POST", endpoint=g_param[OptionsDefine.Endpoint], proxy=g_param[OptionsDefine.HttpsProxy] ) profile = ClientProfile(httpProfile=http_profile, signMethod="HmacSHA256") mod = CLIENT_MAP[g_param[OptionsDefine.Version]] client = mod.CloudhsmClient(cred, g_param[OptionsDefine.Region], profile) client._sdkVersion += ("_CLI_" + __version__) models = MODELS_MAP[g_param[OptionsDefine.Version]] model = models.DescribeSubnetRequest() model.from_json_string(json.dumps(args)) rsp = client.DescribeSubnet(model) result = rsp.to_json_string() try: json_obj = json.loads(result) except TypeError as e: json_obj = json.loads(result.decode('utf-8')) # python3.3 FormatOutput.output("action", json_obj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter]) def doDescribeSupportedHsm(args, parsed_globals): g_param = parse_global_arg(parsed_globals) cred = credential.Credential( g_param[OptionsDefine.SecretId], g_param[OptionsDefine.SecretKey], g_param[OptionsDefine.Token] ) http_profile = HttpProfile( reqTimeout=60 if g_param[OptionsDefine.Timeout] is None else int(g_param[OptionsDefine.Timeout]), reqMethod="POST", endpoint=g_param[OptionsDefine.Endpoint], proxy=g_param[OptionsDefine.HttpsProxy] ) profile = ClientProfile(httpProfile=http_profile, signMethod="HmacSHA256") mod = CLIENT_MAP[g_param[OptionsDefine.Version]] client = mod.CloudhsmClient(cred, g_param[OptionsDefine.Region], profile) client._sdkVersion += ("_CLI_" + __version__) models = MODELS_MAP[g_param[OptionsDefine.Version]] model = models.DescribeSupportedHsmRequest() model.from_json_string(json.dumps(args)) rsp = client.DescribeSupportedHsm(model) result = rsp.to_json_string() try: json_obj = json.loads(result) except TypeError as e: json_obj = json.loads(result.decode('utf-8')) # python3.3 FormatOutput.output("action", json_obj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter]) def doInquiryPriceBuyVsm(args, parsed_globals): g_param = parse_global_arg(parsed_globals) cred = credential.Credential( g_param[OptionsDefine.SecretId], g_param[OptionsDefine.SecretKey], g_param[OptionsDefine.Token] ) http_profile = HttpProfile( reqTimeout=60 if g_param[OptionsDefine.Timeout] is None else int(g_param[OptionsDefine.Timeout]), reqMethod="POST", endpoint=g_param[OptionsDefine.Endpoint], proxy=g_param[OptionsDefine.HttpsProxy] ) profile = ClientProfile(httpProfile=http_profile, signMethod="HmacSHA256") mod = CLIENT_MAP[g_param[OptionsDefine.Version]] client = mod.CloudhsmClient(cred, g_param[OptionsDefine.Region], profile) client._sdkVersion += ("_CLI_" + __version__) models = MODELS_MAP[g_param[OptionsDefine.Version]] model = models.InquiryPriceBuyVsmRequest() model.from_json_string(json.dumps(args)) rsp = client.InquiryPriceBuyVsm(model) result = rsp.to_json_string() try: json_obj = json.loads(result) except TypeError as e: json_obj = json.loads(result.decode('utf-8')) # python3.3 FormatOutput.output("action", json_obj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter]) def doDescribeUsgRule(args, parsed_globals): g_param = parse_global_arg(parsed_globals) cred = credential.Credential( g_param[OptionsDefine.SecretId], g_param[OptionsDefine.SecretKey], g_param[OptionsDefine.Token] ) http_profile = HttpProfile( reqTimeout=60 if g_param[OptionsDefine.Timeout] is None else int(g_param[OptionsDefine.Timeout]), reqMethod="POST", endpoint=g_param[OptionsDefine.Endpoint], proxy=g_param[OptionsDefine.HttpsProxy] ) profile = ClientProfile(httpProfile=http_profile, signMethod="HmacSHA256") mod = CLIENT_MAP[g_param[OptionsDefine.Version]] client = mod.CloudhsmClient(cred, g_param[OptionsDefine.Region], profile) client._sdkVersion += ("_CLI_" + __version__) models = MODELS_MAP[g_param[OptionsDefine.Version]] model = models.DescribeUsgRuleRequest() model.from_json_string(json.dumps(args)) rsp = client.DescribeUsgRule(model) result = rsp.to_json_string() try: json_obj = json.loads(result) except TypeError as e: json_obj = json.loads(result.decode('utf-8')) # python3.3 FormatOutput.output("action", json_obj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter]) CLIENT_MAP = { "v20191112": cloudhsm_client_v20191112, } MODELS_MAP = { "v20191112": models_v20191112, } ACTION_MAP = { "ModifyVsmAttributes": doModifyVsmAttributes, "DescribeVsmAttributes": doDescribeVsmAttributes, "DescribeVsms": doDescribeVsms, "DescribeVpc": doDescribeVpc, "DescribeHSMByVpcId": doDescribeHSMByVpcId, "DescribeHSMBySubnetId": doDescribeHSMBySubnetId, "DescribeUsg": doDescribeUsg, "DescribeSubnet": doDescribeSubnet, "DescribeSupportedHsm": doDescribeSupportedHsm, "InquiryPriceBuyVsm": doInquiryPriceBuyVsm, "DescribeUsgRule": doDescribeUsgRule, } AVAILABLE_VERSION_LIST = [ "v20191112", ] def action_caller(): return ACTION_MAP def parse_global_arg(parsed_globals): g_param = parsed_globals is_exist_profile = True if not parsed_globals["profile"]: is_exist_profile = False g_param["profile"] = "default" configure_path = os.path.join(os.path.expanduser("~"), ".tccli") is_conf_exist, conf_path = Utils.file_existed(configure_path, g_param["profile"] + ".configure") is_cred_exist, cred_path = Utils.file_existed(configure_path, g_param["profile"] + ".credential") conf = {} cred = {} if is_conf_exist: conf = Utils.load_json_msg(conf_path) if is_cred_exist: cred = Utils.load_json_msg(cred_path) if not (isinstance(conf, dict) and isinstance(cred, dict)): raise ConfigurationError( "file: %s or %s is not json format" % (g_param["profile"] + ".configure", g_param["profile"] + ".credential")) if OptionsDefine.Token not in cred: cred[OptionsDefine.Token] = None if not is_exist_profile: if os.environ.get(OptionsDefine.ENV_SECRET_ID) and os.environ.get(OptionsDefine.ENV_SECRET_KEY): cred[OptionsDefine.SecretId] = os.environ.get(OptionsDefine.ENV_SECRET_ID) cred[OptionsDefine.SecretKey] = os.environ.get(OptionsDefine.ENV_SECRET_KEY) cred[OptionsDefine.Token] = os.environ.get(OptionsDefine.ENV_TOKEN) if os.environ.get(OptionsDefine.ENV_REGION): conf[OptionsDefine.Region] = os.environ.get(OptionsDefine.ENV_REGION) for param in g_param.keys(): if g_param[param] is None: if param in [OptionsDefine.SecretKey, OptionsDefine.SecretId, OptionsDefine.Token]: if param in cred: g_param[param] = cred[param] else: raise ConfigurationError("%s is invalid" % param) elif param in [OptionsDefine.Region, OptionsDefine.Output]: if param in conf: g_param[param] = conf[param] else: raise ConfigurationError("%s is invalid" % param) try: if g_param[OptionsDefine.ServiceVersion]: g_param[OptionsDefine.Version] = "v" + g_param[OptionsDefine.ServiceVersion].replace('-', '') else: version = conf["cloudhsm"][OptionsDefine.Version] g_param[OptionsDefine.Version] = "v" + version.replace('-', '') if g_param[OptionsDefine.Endpoint] is None: g_param[OptionsDefine.Endpoint] = conf["cloudhsm"][OptionsDefine.Endpoint] except Exception as err: raise ConfigurationError("config file:%s error, %s" % (conf_path, str(err))) if g_param[OptionsDefine.Version] not in AVAILABLE_VERSION_LIST: raise Exception("available versions: %s" % " ".join(AVAILABLE_VERSION_LIST)) return g_param
41.629108
105
0.71924
497b41d573fe318423e88053194d710303174585
617
py
Python
allauth/socialaccount/providers/pinterest/tests.py
joebos/django-allauth
cb624a2fe659e58ea343b9b16159427ce38aff69
[ "MIT" ]
null
null
null
allauth/socialaccount/providers/pinterest/tests.py
joebos/django-allauth
cb624a2fe659e58ea343b9b16159427ce38aff69
[ "MIT" ]
null
null
null
allauth/socialaccount/providers/pinterest/tests.py
joebos/django-allauth
cb624a2fe659e58ea343b9b16159427ce38aff69
[ "MIT" ]
null
null
null
from allauth.socialaccount.tests import create_oauth2_tests from allauth.tests import MockedResponse from allauth.socialaccount.providers import registry from .provider import PinterestProvider class PinterestTests(create_oauth2_tests( registry.by_id(PinterestProvider.id))): def get_mocked_response(self): return MockedResponse(200, """ { "emailAddress": "[email protected]", "firstName": "Raymond", "id": "ZLARGMFT1M", "lastName": "Penners", "pictureUrl": "http://m.c.lnkd.licdn.com/mpr/mprx/0_e0hbvSLc", "publicProfileUrl": "http://www.pinterest.com/in/intenct" } """)
28.045455
64
0.742301
3ce93d16336e8e5b4da7ab0bb668030f9f2c50ae
7,059
py
Python
build/android/pylib/gtest/local_device_gtest_run.py
kjthegod/chromium
cf940f7f418436b77e15b1ea23e6fa100ca1c91a
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
1
2019-11-28T10:46:52.000Z
2019-11-28T10:46:52.000Z
build/android/pylib/gtest/local_device_gtest_run.py
kjthegod/chromium
cf940f7f418436b77e15b1ea23e6fa100ca1c91a
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
null
null
null
build/android/pylib/gtest/local_device_gtest_run.py
kjthegod/chromium
cf940f7f418436b77e15b1ea23e6fa100ca1c91a
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
2
2015-03-27T11:15:39.000Z
2016-08-17T14:19:56.000Z
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import logging import os from pylib import constants from pylib import ports from pylib.base import test_run from pylib.device import device_errors from pylib.gtest import gtest_test_instance from pylib.local import local_test_server_spawner from pylib.local.device import local_device_environment from pylib.local.device import local_device_test_run from pylib.utils import apk_helper from pylib.utils import device_temp_file _COMMAND_LINE_FLAGS_SUPPORTED = True _EXTRA_COMMAND_LINE_FILE = ( 'org.chromium.native_test.ChromeNativeTestActivity.CommandLineFile') _EXTRA_COMMAND_LINE_FLAGS = ( 'org.chromium.native_test.ChromeNativeTestActivity.CommandLineFlags') _MAX_SHARD_SIZE = 256 # TODO(jbudorick): Move this up to the test instance if the net test server is # handled outside of the APK for the remote_device environment. _SUITE_REQUIRES_TEST_SERVER_SPAWNER = [ 'content_unittests', 'content_browsertests', 'net_unittests', 'unit_tests' ] class _ApkDelegate(object): def __init__(self, apk): self._apk = apk self._package = apk_helper.GetPackageName(self._apk) self._runner = apk_helper.GetInstrumentationName(self._apk) self._component = '%s/%s' % (self._package, self._runner) def Install(self, device): device.Install(self._apk) def RunWithFlags(self, device, flags, **kwargs): with device_temp_file.DeviceTempFile(device.adb) as command_line_file: device.WriteFile(command_line_file.name, '_ %s' % flags) return device.StartInstrumentation( self._component, extras={_EXTRA_COMMAND_LINE_FILE: command_line_file.name}, raw=False, **kwargs) def Clear(self, device): device.ClearApplicationState(self._package) class _ExeDelegate(object): def __init__(self, exe, tr): self._exe_host_path = exe self._exe_file_name = os.path.split(exe)[-1] self._exe_device_path = '%s/%s' % ( constants.TEST_EXECUTABLE_DIR, self._exe_file_name) deps_host_path = self._exe_host_path + '_deps' if os.path.exists(deps_host_path): self._deps_host_path = deps_host_path self._deps_device_path = self._exe_device_path + '_deps' else: self._deps_host_path = None self._test_run = tr def Install(self, device): # TODO(jbudorick): Look into merging this with normal data deps pushing if # executables become supported on nonlocal environments. host_device_tuples = [(self._exe_host_path, self._exe_device_path)] if self._deps_host_path: host_device_tuples.append((self._deps_host_path, self._deps_device_path)) device.PushChangedFiles(host_device_tuples) def RunWithFlags(self, device, flags, **kwargs): cmd = [ self._test_run.GetTool(device).GetTestWrapper(), self._exe_device_path, flags, ] cwd = constants.TEST_EXECUTABLE_DIR env = { 'LD_LIBRARY_PATH': '%s/%s_deps' % (constants.TEST_EXECUTABLE_DIR, self._exe_file_name), } try: gcov_strip_depth = os.environ['NATIVE_COVERAGE_DEPTH_STRIP'] external = device.GetExternalStoragePath() env['GCOV_PREFIX'] = '%s/gcov' % external env['GCOV_PREFIX_STRIP'] = gcov_strip_depth except (device_errors.CommandFailedError, KeyError): pass # TODO(jbudorick): Switch to just RunShellCommand once perezju@'s CL # for long shell commands lands. with device_temp_file.DeviceTempFile(device.adb) as script_file: script_contents = ' '.join(cmd) logging.info('script contents: %r' % script_contents) device.WriteFile(script_file.name, script_contents) output = device.RunShellCommand(['sh', script_file.name], cwd=cwd, env=env, **kwargs) return output def Clear(self, device): try: device.KillAll(self._exe_file_name, blocking=True, timeout=30, retries=0) except device_errors.CommandFailedError: # Raised if there is no process with the given name, which in this case # is all we care about. pass class LocalDeviceGtestRun(local_device_test_run.LocalDeviceTestRun): def __init__(self, env, test_instance): assert isinstance(env, local_device_environment.LocalDeviceEnvironment) assert isinstance(test_instance, gtest_test_instance.GtestTestInstance) super(LocalDeviceGtestRun, self).__init__(env, test_instance) if self._test_instance.apk: self._delegate = _ApkDelegate(self._test_instance.apk) elif self._test_instance.exe: self._delegate = _ExeDelegate(self, self._test_instance.exe) self._servers = {} #override def TestPackage(self): return self._test_instance._suite #override def SetUp(self): def individual_device_set_up(dev, host_device_tuples): # Install test APK. self._delegate.Install(dev) # Push data dependencies. external_storage = dev.GetExternalStoragePath() host_device_tuples = [ (h, d if d is not None else external_storage) for h, d in host_device_tuples] dev.PushChangedFiles(host_device_tuples) self._servers[str(dev)] = [] if self.TestPackage() in _SUITE_REQUIRES_TEST_SERVER_SPAWNER: self._servers[str(dev)].append( local_test_server_spawner.LocalTestServerSpawner( ports.AllocateTestServerPort(), dev, self.GetTool(dev))) for s in self._servers[str(dev)]: s.SetUp() self._env.parallel_devices.pMap(individual_device_set_up, self._test_instance.GetDataDependencies()) #override def _ShouldShard(self): return True #override def _CreateShards(self, tests): device_count = len(self._env.devices) shards = [] for i in xrange(0, device_count): unbounded_shard = tests[i::device_count] shards += [unbounded_shard[j:j+_MAX_SHARD_SIZE] for j in xrange(0, len(unbounded_shard), _MAX_SHARD_SIZE)] return [':'.join(s) for s in shards] #override def _GetTests(self): tests = self._delegate.RunWithFlags( self._env.devices[0], '--gtest_list_tests') tests = gtest_test_instance.ParseGTestListTests(tests) tests = self._test_instance.FilterTests(tests) return tests #override def _RunTest(self, device, test): # Run the test. output = self._delegate.RunWithFlags(device, '--gtest_filter=%s' % test, timeout=900, retries=0) for s in self._servers[str(device)]: s.Reset() self._delegate.Clear(device) # Parse the output. # TODO(jbudorick): Transition test scripts away from parsing stdout. results = self._test_instance.ParseGTestOutput(output) return results #override def TearDown(self): def individual_device_tear_down(dev): for s in self._servers[str(dev)]: s.TearDown() self._env.parallel_devices.pMap(individual_device_tear_down)
33.77512
79
0.710582
3d8dbc633affb92750227abbfd47d9f2008eb4ae
1,325
py
Python
lib/timers_test.py
jakerogerz/glazier
10ee390e79c5fe65933a2699da851e27c03f8c60
[ "Apache-2.0" ]
null
null
null
lib/timers_test.py
jakerogerz/glazier
10ee390e79c5fe65933a2699da851e27c03f8c60
[ "Apache-2.0" ]
null
null
null
lib/timers_test.py
jakerogerz/glazier
10ee390e79c5fe65933a2699da851e27c03f8c60
[ "Apache-2.0" ]
1
2019-11-25T10:56:20.000Z
2019-11-25T10:56:20.000Z
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for glazier.lib.timers.""" import datetime from glazier.lib import timers import mock import unittest class TimersTest(unittest.TestCase): def setUp(self): self.t = timers.Timers() @mock.patch.object(timers.datetime, 'datetime', autospec=True) def testNow(self, dt): now = datetime.datetime.utcnow() dt.utcnow.return_value = now self.assertEqual(self.t.Now(), now) def testGetAll(self): time_2 = datetime.datetime.now() self.t.Set('timer_1') self.t.Set('timer_2', at_time=time_2) self.assertEqual(self.t.Get('timer_2'), time_2) all_t = self.t.GetAll() self.assertIn('timer_1', all_t) self.assertIn('timer_2', all_t) if __name__ == '__main__': unittest.main()
29.444444
74
0.722264
69ee73633de7d6ecb6e3c3d8a417e05a459ec99d
3,516
py
Python
src/fonduer/features/feature_libs/visual_features.py
Prabh06/fonduer
c376dfb31f0595b7fe992e9ae7eaf23397125d65
[ "MIT" ]
null
null
null
src/fonduer/features/feature_libs/visual_features.py
Prabh06/fonduer
c376dfb31f0595b7fe992e9ae7eaf23397125d65
[ "MIT" ]
null
null
null
src/fonduer/features/feature_libs/visual_features.py
Prabh06/fonduer
c376dfb31f0595b7fe992e9ae7eaf23397125d65
[ "MIT" ]
null
null
null
from fonduer.candidates.models import TemporarySpan from fonduer.utils.data_model_utils import ( get_visual_aligned_lemmas, is_horz_aligned, is_vert_aligned, is_vert_aligned_center, is_vert_aligned_left, is_vert_aligned_right, same_page, ) FEAT_PRE = "VIZ_" DEF_VALUE = 1 unary_vizlib_feats = {} binary_vizlib_feats = {} def get_visual_feats(candidates): candidates = candidates if isinstance(candidates, list) else [candidates] for candidate in candidates: args = tuple([arg.span for arg in candidate.get_contexts()]) if not (isinstance(args[0], TemporarySpan)): raise ValueError( "Accepts Span-type arguments, %s-type found." % type(candidate) ) # Unary candidates if len(args) == 1: span = args[0] # Add VisualLib entity features (if applicable) if span.sentence.is_visual(): if span.stable_id not in unary_vizlib_feats: unary_vizlib_feats[span.stable_id] = set() for f, v in vizlib_unary_features(span): unary_vizlib_feats[span.stable_id].add((f, v)) for f, v in unary_vizlib_feats[span.stable_id]: yield candidate.id, FEAT_PRE + f, v # Binary candidates elif len(args) == 2: span1, span2 = args # Add VisualLib entity features (if applicable) if span1.sentence.is_visual() or span2.sentence.is_visual(): for span, pre in [(span1, "e1_"), (span2, "e2_")]: if span.stable_id not in unary_vizlib_feats: unary_vizlib_feats[span.stable_id] = set() for f, v in vizlib_unary_features(span): unary_vizlib_feats[span.stable_id].add((f, v)) for f, v in unary_vizlib_feats[span.stable_id]: yield candidate.id, FEAT_PRE + pre + f, v if candidate.id not in binary_vizlib_feats: binary_vizlib_feats[candidate.id] = set() for f, v in vizlib_binary_features(span1, span2): binary_vizlib_feats[candidate.id].add((f, v)) for f, v in binary_vizlib_feats[candidate.id]: yield candidate.id, FEAT_PRE + f, v else: raise NotImplementedError( "Only handles unary and binary candidates currently" ) def vizlib_unary_features(span): """ Visual-related features for a single span """ if not span.sentence.is_visual(): return for f in get_visual_aligned_lemmas(span): yield "ALIGNED_" + f, DEF_VALUE for page in set(span.get_attrib_tokens("page")): yield "PAGE_[%d]" % page, DEF_VALUE def vizlib_binary_features(span1, span2): """ Visual-related features for a pair of spans """ if same_page((span1, span2)): yield "SAME_PAGE", DEF_VALUE if is_horz_aligned((span1, span2)): yield "HORZ_ALIGNED", DEF_VALUE if is_vert_aligned((span1, span2)): yield "VERT_ALIGNED", DEF_VALUE if is_vert_aligned_left((span1, span2)): yield "VERT_ALIGNED_LEFT", DEF_VALUE if is_vert_aligned_right((span1, span2)): yield "VERT_ALIGNED_RIGHT", DEF_VALUE if is_vert_aligned_center((span1, span2)): yield "VERT_ALIGNED_CENTER", DEF_VALUE
34.135922
79
0.595563
f5a74cfcbf5a3c58f466d9bd1ca84e6a913671e9
600
py
Python
tests/sanic/app.py
messa/graphql-server
f5e8302d1320b013b441844df059e90ae83d04a0
[ "MIT" ]
null
null
null
tests/sanic/app.py
messa/graphql-server
f5e8302d1320b013b441844df059e90ae83d04a0
[ "MIT" ]
2
2019-05-15T20:33:39.000Z
2019-05-15T22:44:22.000Z
tests/sanic/app.py
messa/graphql-server
f5e8302d1320b013b441844df059e90ae83d04a0
[ "MIT" ]
2
2019-05-15T18:58:21.000Z
2019-06-30T09:56:11.000Z
from urllib.parse import urlencode from sanic import Sanic from sanic.testing import SanicTestClient from graphql_server.sanic import GraphQLView from .schema import Schema def create_app(path="/graphql", **kwargs): app = Sanic(__name__) app.debug = True schema = kwargs.pop("schema", None) or Schema app.add_route(GraphQLView.as_view(schema=schema, **kwargs), path) app.client = SanicTestClient(app) return app def url_string(uri="/graphql", **url_params): string = "/graphql" if url_params: string += "?" + urlencode(url_params) return string
20.689655
69
0.705
e422711132c3cb2156f113d5ac2ea1acdeaeb716
36,434
py
Python
costmap_dataset.py
Czworldy/GP_traj
96261f39a5a322092e3a6be98938bb4601f0f746
[ "MIT" ]
1
2021-06-08T06:09:55.000Z
2021-06-08T06:09:55.000Z
costmap_dataset.py
Czworldy/GP_traj
96261f39a5a322092e3a6be98938bb4601f0f746
[ "MIT" ]
null
null
null
costmap_dataset.py
Czworldy/GP_traj
96261f39a5a322092e3a6be98938bb4601f0f746
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import glob import random import numpy as np from PIL import Image import torch from torch.utils.data import Dataset import torchvision.transforms as transforms import copy from scipy.special import comb np.set_printoptions(suppress=True, precision=4, linewidth=65535) import matplotlib.pyplot as plt def expand_control_points(point_array): point_array_expand = copy.deepcopy(point_array) size = point_array.shape[1] assert size >= 3 for i in range(1,size-3): p0, p1, p2 = point_array[:,i], point_array[:,i+1], point_array[:,i+2] norm1, norm2 = np.linalg.norm(p0-p1), np.linalg.norm(p2-p1) pc = p1 - 0.5*np.sqrt(norm1*norm2)*((p0-p1)/norm1 + (p2-p1)/norm2) point_array_expand[:,i+1] = pc return point_array_expand def bernstein(t, i, n): return comb(n,i) * t**i * (1-t)**(n-i) def bezier_curve(t, point_array, bias=0): t = np.clip(t, 0, 1) n = point_array.shape[1]-1 p = np.array([0.,0.]).reshape(2,1) size = len(t) if isinstance(t, np.ndarray) else 1 p = np.zeros((2, size)) new_point_array = np.diff(point_array, n=bias, axis=1) for i in range(n+1-bias): p += new_point_array[:,i][:,np.newaxis] * bernstein(t, i, n-bias) * n**bias return p class Bezier(object): def __init__(self, time_list, x_list, y_list, v0, vf=(0.000001,0.000001)): t0, x0, y0 = time_list[0], x_list[0], y_list[0] t_span = time_list[-1] - time_list[0] time_array = np.array(time_list) x_array, y_array = np.array(x_list), np.array(y_list) time_array -= t0 x_array -= x0 y_array -= y0 time_array /= t_span point_array = np.vstack((x_array, y_array)) n = point_array.shape[1]+1 v0, vf = np.array(v0), np.array(vf) p0 = point_array[:, 0] + v0/n pf = point_array[:,-1] - vf/n point_array = np.insert(point_array, 1, values=p0, axis=1) point_array = np.insert(point_array,-1, values=pf, axis=1) point_array_expand = expand_control_points(point_array) self.t0, self.t_span = t0, t_span self.x0, self.y0 = x0, y0 self.p0 = np.array([x0, y0]).reshape(2,1) self.point_array = point_array self.point_array_expand = point_array_expand def position(self, time, expand=True): time = np.clip(time, self.t0, self.t0+self.t_span) t = (time - self.t0) / self.t_span p = self.point_array_expand if expand else self.point_array position = bezier_curve(t, p, bias=0) return position + self.p0 def velocity(self, time, expand=True): time = np.clip(time, self.t0, self.t0+self.t_span) t = (time - self.t0) / self.t_span p = self.point_array_expand if expand else self.point_array return bezier_curve(t, p, bias=1) def acc(self, time, expand=True): time = np.clip(time, self.t0, self.t0+self.t_span) t = (time - self.t0) / self.t_span p = self.point_array_expand if expand else self.point_array return bezier_curve(t, p, bias=2) def angle_normal(angle): while angle >= np.pi: angle -= 2*np.pi while angle <= -np.pi: angle += 2*np.pi return angle def xy2uv(x, y): pixs_per_meter = 200./25. u = (200-x*pixs_per_meter).astype(int) v = (y*pixs_per_meter+400//2).astype(int) #mask = np.where((u >= 0)&(u < 200))[0] return u, v class CostMapDataset(Dataset): def __init__(self, data_index, opt, dataset_path='/media/wang/DATASET/CARLA/town01/', evalmode=False): self.evalmode = evalmode self.data_index = data_index self.weights = [] self.max_dist = opt.max_dist self.max_t = opt.max_t self.img_step = opt.img_step transforms_ = [ transforms.Resize((200, 400), Image.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.5), (0.5)), ] self.transform = transforms.Compose(transforms_) self.dataset_path = dataset_path self.pose_dict = {} self.vel_dict = {} self.acc_dict = {} self.files_dict = {} self.total_len = 0 self.eval_index = None # eval mode self.eval_cnt = 0 # eval mode for index in self.data_index: self.read_pose(index) self.read_vel(index) self.read_acc(index) self.read_img(index) self.weights.append(len(self.files_dict[index])) def read_pose(self, index): file_path = self.dataset_path+str(index)+'/state/pos.txt' ts_dict = {} with open(file_path, 'r') as file: lines = file.readlines() for line in lines: sp_line = line.split() ts = sp_line[0] x = float(sp_line[1]) y = float(sp_line[2]) z = float(sp_line[3]) yaw = float(sp_line[5]) ts_dict[ts] = [x, y, z, yaw] self.pose_dict[index] = ts_dict def read_vel(self, index): file_path = self.dataset_path+str(index)+'/state/vel.txt' ts_dict = {} with open(file_path, 'r') as file: lines = file.readlines() for line in lines: sp_line = line.split() ts = sp_line[0] vx = float(sp_line[1]) vy = float(sp_line[2]) vz = float(sp_line[3]) ts_dict[ts] = [vx, vy, vz] self.vel_dict[index] = ts_dict def read_acc(self, index): file_path = self.dataset_path+str(index)+'/state/acc.txt' ts_dict = {} with open(file_path, 'r') as file: lines = file.readlines() for line in lines: sp_line = line.split() ts = sp_line[0] ax = float(sp_line[1]) ay = float(sp_line[2]) az = float(sp_line[3]) ts_dict[ts] = [ax, ay, az] self.acc_dict[index] = ts_dict def read_img(self, index): files = glob.glob(self.dataset_path+str(index)+'/ipm/*.png') file_names = [] for file in files: file_name = file.split('/')[-1][:-4] file_names.append(file_name) file_names.sort() self.files_dict[index] = file_names def tf_pose(self, data_index, ts, yaw, x_0, y_0): x_t = self.pose_dict[data_index][ts][0] y_t = self.pose_dict[data_index][ts][1] dx = x_t - x_0 dy = y_t - y_0 x = np.cos(yaw)*dx + np.sin(yaw)*dy y = np.cos(yaw)*dy - np.sin(yaw)*dx return x, y def __getitem__(self, index): while True: if self.evalmode: if self.eval_index == None: self.eval_index = random.sample(self.data_index,1)[0] self.cnt = 300 data_index = self.eval_index file_name = self.files_dict[data_index][self.cnt] self.cnt += 20 if self.cnt > len(self.files_dict[data_index])-50: self.eval_index = random.sample(self.data_index,1)[0] self.cnt = 300 else: data_index = random.choices(self.data_index, self.weights)[0] file_name = random.sample(self.files_dict[data_index][300:-120], 1)[0] ts_index = self.files_dict[data_index].index(file_name) imgs = [] try: for i in range(-9,1): _file_name = self.files_dict[data_index][ts_index + self.img_step*i] image_path = self.dataset_path + str(data_index)+'/ipm/'+_file_name+'.png' img = Image.open(image_path).convert('L') img = self.transform(img) imgs.append(img) except: print('get img error') continue imgs = torch.stack(imgs) x_0 = self.pose_dict[data_index][file_name][0] y_0 = self.pose_dict[data_index][file_name][1] yaw = np.deg2rad(self.pose_dict[data_index][file_name][3]) ts_list = [] relative_t_list = [] x_list = [] y_list = [] vx_list = [] vy_list = [] ax_list = [] ay_list = [] a_list = [] collision_flag = False collision_x = None collision_y = None collision_index = None for i in range(ts_index, len(self.files_dict[data_index])-100): ts = self.files_dict[data_index][i] if float(ts)-float(file_name) > self.max_t: break else: x_, y_ = self.tf_pose(data_index, ts, yaw, x_0, y_0) u, v = xy2uv(x_, y_) if not collision_flag and u >= 0 and u < 200 and v >=0 and v < 400: if imgs[-1][0][u][v] < -0.3: collision_flag = True collision_x = x_ collision_y = y_ collision_index = i #break if collision_flag: x_list.append(collision_x) y_list.append(collision_y) vx = 0. vy = 0. a = 0. a_list.append(0.) vx_list.append(0.) vy_list.append(0.) ax_list.append(0.) ay_list.append(0.) ts_list.append(ts) relative_t_list.append(float(ts)-float(file_name)) else: x_list.append(x_) y_list.append(y_) vx_ = self.vel_dict[data_index][ts][0] vy_ = self.vel_dict[data_index][ts][1] vx = np.cos(yaw)*vx_ + np.sin(yaw)*vy_ vy = np.cos(yaw)*vy_ - np.sin(yaw)*vx_ ax_ = self.acc_dict[data_index][ts][0] ay_ = self.acc_dict[data_index][ts][1] ax = ax_*np.cos(yaw) + ay_*np.sin(yaw) ay = ay_*np.cos(yaw) - ax_*np.sin(yaw) ax_list.append(ax) ay_list.append(ay) theta_a = np.arctan2(ay, ax) theta_v = np.arctan2(vy, vx) sign = np.sign(np.cos(theta_a-theta_v)) a = sign*np.sqrt(ax*ax + ay*ay) a_list.append(a) vx_list.append(vx) vy_list.append(vy) ts_list.append(ts) relative_t_list.append(float(ts)-float(file_name)) #################### if collision_flag: a_brake = 10 start_index = collision_index - ts_index brake_index = 0 for i in range(start_index): x_i = x_list[start_index-i] y_i = y_list[start_index-i] safe_dist = np.sqrt((x_i-collision_x)**2+(y_i-collision_y)**2) vx_i = vx_list[start_index-i] vy_i = vy_list[start_index-i] v2 = vx_i**2+vy_i**2 brake_dist = v2/(2*a_brake) if brake_dist < safe_dist: brake_index = start_index - i break bz_ts = [float(item) for item in ts_list[brake_index:start_index]] if len(bz_ts) > 2: bz_x = [x_list[brake_index], collision_x] bz_y = [y_list[brake_index], collision_y] bz_vx = vx_list[brake_index] bz_vy = vy_list[brake_index] #print(bz_ts) bezier = Bezier(bz_ts, bz_x, bz_y, v0=(bz_vx, bz_vy)) sample_number = len(bz_ts) time_array = np.linspace(bezier.t0, bezier.t0+bezier.t_span, sample_number) #print(time_array) position_array = bezier.position(time_array, expand=True) velocity_array = bezier.velocity(time_array, expand=True) acc_array = bezier.acc(time_array, expand=True) new_x = position_array[0,:] new_y = position_array[1,:] new_vx = velocity_array[0,:] new_vy = velocity_array[1,:] new_ax = acc_array[0,:] new_ay = acc_array[1,:] for i in range(start_index-brake_index): x_list[brake_index+i] = new_x[i] y_list[brake_index+i] = new_y[i] vx_list[brake_index+i] = new_vx[i] vy_list[brake_index+i] = new_vy[i] ax_list[brake_index+i] = new_ax[i] ay_list[brake_index+i] = new_ay[i] a_list[brake_index+i] = -np.sqrt(new_ax[i]**2+new_ay[i]**2) ts_list[brake_index+i] = str(time_array[i]) relative_t_list[brake_index+i] = time_array[i] - float(file_name) #relative_t_list.append(float(ts)-float(file_name)) #################### if len(ts_list) == 0: continue else: ts = random.sample(ts_list, 1)[0] ts_index = ts_list.index(ts) #weights = [np.exp(-0.23*(float(ts)-float(file_name))) for ts in ts_list] #sample_ts = random.choices(ts_list, weights)[0] #print(weights/sum(weights)) break #ts = sample_ts # [0 ~ 1] t = torch.FloatTensor([float(ts)/self.max_t - float(file_name)/self.max_t]) # v0 _vx_0 = self.vel_dict[data_index][file_name][0] _vy_0 = self.vel_dict[data_index][file_name][1] v_0 = np.sqrt(_vx_0*_vx_0 + _vy_0*_vy_0) v_0 = torch.FloatTensor([v_0]) x = x_list[ts_index] y = y_list[ts_index] xy = torch.FloatTensor([x/self.max_dist, y/self.max_dist])# [-1, 1] # vx, vy vx = vx_list[ts_index] vy = vy_list[ts_index] # ax, ay ax = ax_list[ts_index] ay = ax_list[ts_index] a = a_list[ts_index] a = torch.FloatTensor([a]) """ if collision_flag and float(ts) >= float(collision_t): ts = collision_t # x, y x, y = self.tf_pose(data_index, ts, yaw, x_0, y_0) xy = torch.FloatTensor([x/self.max_dist, y/self.max_dist])# [-1, 1] # vx, vy vx = 0 vy = 0 # ax, ay ax = 0 ay = 0 a = 0 a = torch.FloatTensor([a]) else: # x, y x, y = self.tf_pose(data_index, ts, yaw, x_0, y_0) xy = torch.FloatTensor([x/self.max_dist, y/self.max_dist])# [-1, 1] # vx, vy _vx = self.vel_dict[data_index][ts][0] _vy = self.vel_dict[data_index][ts][1] vx = np.cos(yaw)*_vx + np.sin(yaw)*_vy vy = np.cos(yaw)*_vy - np.sin(yaw)*_vx # ax, ay _ax = self.acc_dict[data_index][ts][0] _ay = self.acc_dict[data_index][ts][1] ax = _ax*np.cos(yaw) + _ay*np.sin(yaw) ay = _ay*np.cos(yaw) - _ax*np.sin(yaw) theta_a = np.arctan2(_ay, _ax) theta_v = np.arctan2(_vy, _vx) sign = np.sign(np.cos(theta_a-theta_v)) a = sign*np.sqrt(ax*ax + ay*ay) a = torch.FloatTensor([a]) """ vxy = torch.FloatTensor([vx, vy]) axy = torch.FloatTensor([ax, ay]) x_list = torch.FloatTensor(x_list) y_list = torch.FloatTensor(y_list) vx_list = torch.FloatTensor(vx_list) vy_list = torch.FloatTensor(vy_list) a_list = torch.FloatTensor(a_list) relative_t_list = torch.FloatTensor(relative_t_list) if self.evalmode: return {'img': imgs, 't': t, 'xy':xy, 'vxy':vxy, 'axy':axy, 'a':a, 'v_0':v_0, 'a_list':a_list, 'x_list':x_list, 'y_list':y_list, 'vx_list':vx_list, 'vy_list':vy_list, 'ts_list':relative_t_list} else: return {'img': imgs, 't': t, 'xy':xy, 'vxy':vxy, 'axy':axy, 'a':a, 'v_0':v_0} def __len__(self): return 100000000000 class CostMapDataset2(CostMapDataset): def __init__(self, data_index, opt, dataset_path='/media/wang/DATASET/CARLA/town01/', evalmode=False): self.traj_steps = 8 self.evalmode = evalmode self.data_index = data_index self.weights = [] self.max_dist = opt.max_dist self.max_t = opt.max_t self.img_step = opt.img_step transforms_ = [ transforms.Resize((200, 400), Image.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.5), (0.5)), ] self.transform = transforms.Compose(transforms_) self.dataset_path = dataset_path self.pose_dict = {} self.vel_dict = {} self.acc_dict = {} self.files_dict = {} self.total_len = 0 self.eval_index = None # eval mode self.eval_cnt = 0 # eval mode for index in self.data_index: self.read_pose(index) self.read_vel(index) self.read_acc(index) self.read_img(index) self.weights.append(len(self.files_dict[index])) def __getitem__(self, index): while True: if self.evalmode: if self.eval_index == None: self.eval_index = random.sample(self.data_index,1)[0] self.cnt = 300 data_index = self.eval_index file_name = self.files_dict[data_index][self.cnt] self.cnt += 20 if self.cnt > len(self.files_dict[data_index])-50: self.eval_index = random.sample(self.data_index,1)[0] self.cnt = 300 else: data_index = random.choices(self.data_index, self.weights)[0] file_name = random.sample(self.files_dict[data_index][300:-120], 1)[0] ts_index = self.files_dict[data_index].index(file_name) imgs = [] try: for i in range(-9,1): _file_name = self.files_dict[data_index][ts_index + self.img_step*i] image_path = self.dataset_path + str(data_index)+'/ipm/'+_file_name+'.png' img = Image.open(image_path).convert('L') img = self.transform(img) imgs.append(img) except: print('get img error:', image_path) continue imgs = torch.stack(imgs) x_0 = self.pose_dict[data_index][file_name][0] y_0 = self.pose_dict[data_index][file_name][1] yaw = np.deg2rad(self.pose_dict[data_index][file_name][3]) ts_list = [] relative_t_list = [] x_list = [] y_list = [] vx_list = [] vy_list = [] a_list = [] for i in range(ts_index, len(self.files_dict[data_index])-100): ts = self.files_dict[data_index][i] if float(ts)-float(file_name) > self.max_t: break else: x_, y_ = self.tf_pose(data_index, ts, yaw, x_0, y_0) x_list.append(x_) y_list.append(y_) vx_ = self.vel_dict[data_index][ts][0] vy_ = self.vel_dict[data_index][ts][1] vx = np.cos(yaw)*vx_ + np.sin(yaw)*vy_ vy = np.cos(yaw)*vy_ - np.sin(yaw)*vx_ ax_ = self.acc_dict[data_index][ts][0] ay_ = self.acc_dict[data_index][ts][1] ax = ax_*np.cos(yaw) + ay_*np.sin(yaw) ay = ay_*np.cos(yaw) - ax_*np.sin(yaw) theta_a = np.arctan2(ay, ax) theta_v = np.arctan2(vy, vx) sign = np.sign(np.cos(theta_a-theta_v)) a = sign*np.sqrt(ax*ax + ay*ay) a_list.append(a) vx_list.append(vx) vy_list.append(vy) ts_list.append(ts) relative_t_list.append(float(ts)-float(file_name)) if len(ts_list) == 0: continue else: #ts = random.sample(ts_list, 1)[0] ts_array = random.sample(ts_list, self.traj_steps) #weights = [np.exp(-0.23*(float(ts)-float(file_name))) for ts in ts_list] #sample_ts = random.choices(ts_list, weights)[0] #print(weights/sum(weights)) break #ts = sample_ts # [0 ~ 1] # v0 _vx_0 = self.vel_dict[data_index][file_name][0] _vy_0 = self.vel_dict[data_index][file_name][1] v_0 = np.sqrt(_vx_0*_vx_0 + _vy_0*_vy_0) v_0 = torch.FloatTensor([v_0]) v0_array = [v_0]*self.traj_steps t_array = [] xy_array = [] vxy_array = [] axy_array = [] a_array = [] for ts in ts_array: t = torch.FloatTensor([float(ts)/self.max_t - float(file_name)/self.max_t]) t_array.append(t) # x, y x, y = self.tf_pose(data_index, ts, yaw, x_0, y_0) xy = torch.FloatTensor([x/self.max_dist, y/self.max_dist])# [-1, 1] xy_array.append(xy) # yaw_t #yaw_t = angle_normal(np.deg2rad(self.pose_dict[data_index][ts][3]) - yaw) #yaw_t = torch.FloatTensor([yaw_t/np.pi])# [-1, 1] # vx, vy _vx = self.vel_dict[data_index][ts][0] _vy = self.vel_dict[data_index][ts][1] vx = np.cos(yaw)*_vx + np.sin(yaw)*_vy vy = np.cos(yaw)*_vy - np.sin(yaw)*_vx vxy_array.append(torch.FloatTensor([vx, vy])) # ax, ay _ax = self.acc_dict[data_index][ts][0] _ay = self.acc_dict[data_index][ts][1] ax = _ax*np.cos(yaw) + _ay*np.sin(yaw) ay = _ay*np.cos(yaw) - _ax*np.sin(yaw) axy_array.append(torch.FloatTensor([ax, ay])) theta_a = np.arctan2(_ay, _ax) theta_v = np.arctan2(_vy, _vx) sign = np.sign(np.cos(theta_a-theta_v)) a = sign*np.sqrt(ax*ax + ay*ay) a_array.append(a) t = torch.FloatTensor(t_array) v_0 = torch.FloatTensor(v0_array) xy = torch.stack(xy_array) vxy = torch.stack(vxy_array) axy = torch.stack(axy_array) a = torch.FloatTensor(a_array) #vxy = torch.FloatTensor([vx, vy]) #axy = torch.FloatTensor([ax, ay]) x_list = torch.FloatTensor(x_list) y_list = torch.FloatTensor(y_list) vx_list = torch.FloatTensor(vx_list) vy_list = torch.FloatTensor(vy_list) a_list = torch.FloatTensor(a_list) relative_t_list = torch.FloatTensor(relative_t_list) if self.evalmode: return {'img': imgs, 't': t, 'xy':xy, 'vxy':vxy, 'axy':axy, 'a':a, 'v_0':v_0, 'a_list':a_list, 'x_list':x_list, 'y_list':y_list, 'vx_list':vx_list, 'vy_list':vy_list, 'ts_list':relative_t_list} else: return {'img': imgs, 't': t, 'xy':xy, 'vxy':vxy, 'axy':axy, 'a':a, 'v_0':v_0} class CARLADataset(Dataset): def __init__(self, data_index, dataset_path='/media/wang/DATASET/CARLA/town01/', eval_mode=False): self.data_index = data_index self.eval_mode = eval_mode img_height = 128 img_width = 256 label_transforms = [ transforms.Resize((img_height, img_width), Image.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.5), (0.5)) ] img_transforms = [ transforms.Resize((img_height, img_width), Image.BICUBIC), transforms.ColorJitter(brightness=0.2,contrast=0.2,hue=0.2), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] nav_transforms = [ transforms.Resize((img_height, img_width), Image.BICUBIC), transforms.RandomRotation(15, resample=Image.BICUBIC, expand=False), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] self.label_transforms = transforms.Compose(label_transforms) self.img_transforms = transforms.Compose(img_transforms) self.nav_transforms = transforms.Compose(nav_transforms) self.dataset_path = dataset_path self.files_dict = {} self.total_len = 0 for index in self.data_index: self.read_img(index) def read_img(self, index): files = glob.glob(self.dataset_path+str(index)+'/pm/*.png') file_names = [] for file in files: file_name = file.split('/')[-1][:-4] file_names.append(file_name) file_names.sort() self.files_dict[index] = file_names def __getitem__(self, index): mirror = False#True if random.random() > 0.5 else False data_index = random.sample(self.data_index, 1)[0] while True: try: file_name = random.sample(self.files_dict[data_index], 1)[0] # img img_path = self.dataset_path + str(data_index)+'/img/'+file_name+'.png' img = Image.open(img_path).convert("RGB") # nav nav_path = self.dataset_path + str(data_index)+'/nav/'+file_name+'.png' nav = Image.open(nav_path).convert("RGB") # label label_path = self.dataset_path + str(data_index)+'/pm/'+file_name+'.png' label = Image.open(label_path).convert('L') # mirror the inputs if mirror: img = Image.fromarray(np.array(img)[:, ::-1, :], 'RGB') nav = Image.fromarray(np.array(nav)[:, ::-1, :], 'RGB') label = Image.fromarray(np.array(label)[:, ::-1], 'L') img = self.img_transforms(img) nav = self.nav_transforms(nav) label = self.label_transforms(label) break except: pass if not self.eval_mode: input_img = torch.cat((img, nav), 0) return {'A': input_img, 'B': label} else: return {'A1': img, 'A2': nav, 'B': label, 'file_name':file_name} def __len__(self): return 100000000000 class FakeCostMapDataset(Dataset): def __init__(self, data_index, opt, dataset_path='/media/wang/DATASET/CARLA_HUMAN/town01/', evalmode=False): self.evalmode = evalmode self.data_index = data_index self.max_dist = opt.max_dist self.max_t = opt.max_t img_height = 200 img_width = 400 img_transforms = [ transforms.Resize((img_height, img_width), Image.BICUBIC), transforms.ColorJitter(brightness=0.2,contrast=0.2,hue=0.2), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] self.transform = transforms.Compose(img_transforms) nav_transforms = [ transforms.Resize((img_height, img_width), Image.BICUBIC), transforms.RandomRotation(15, resample=Image.BICUBIC, expand=False), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] self.nav_transforms = transforms.Compose(nav_transforms) self.dataset_path = dataset_path self.pose_dict = {} self.vel_dict = {} self.files_dict = {} self.total_len = 0 for index in self.data_index: self.read_pose(index) self.read_vel(index) self.read_img(index) def read_pose(self, index): file_path = self.dataset_path+str(index)+'/state/pos.txt' ts_dict = {} with open(file_path, 'r') as file: lines = file.readlines() for line in lines: sp_line = line.split() ts = sp_line[0] x = float(sp_line[1]) y = float(sp_line[2]) z = float(sp_line[3]) yaw = float(sp_line[5]) ts_dict[ts] = [x, y, z, yaw] self.pose_dict[index] = ts_dict def read_vel(self, index): file_path = self.dataset_path+str(index)+'/state/vel.txt' ts_dict = {} with open(file_path, 'r') as file: lines = file.readlines() for line in lines: sp_line = line.split() ts = sp_line[0] vx = float(sp_line[1]) vy = float(sp_line[2]) vz = float(sp_line[3]) ts_dict[ts] = [vx, vy, vz] self.vel_dict[index] = ts_dict def read_img(self, index): files = glob.glob(self.dataset_path+str(index)+'/ipm/*.png') file_names = [] for file in files: file_name = file.split('/')[-1][:-4] file_names.append(file_name) file_names.sort() self.files_dict[index] = file_names def tf_pose(self, data_index, ts, yaw, x_0, y_0): x_t = self.pose_dict[data_index][ts][0] y_t = self.pose_dict[data_index][ts][1] dx = x_t - x_0 dy = y_t - y_0 x = np.cos(yaw)*dx + np.sin(yaw)*dy y = np.cos(yaw)*dy - np.sin(yaw)*dx return x, y def __getitem__(self, index): data_index = random.sample(self.data_index, 1)[0] while True: file_name = random.sample(self.files_dict[data_index][:-120], 1)[0] image_path = self.dataset_path + str(data_index)+'/img/'+file_name+'.png' img = Image.open(image_path).convert("RGB") img = self.transform(img) # nav nav_path = self.dataset_path + str(data_index)+'/nav/'+file_name+'.png' nav = Image.open(nav_path).convert("RGB") nav = self.nav_transforms(nav) input_img = torch.cat((img, nav), 0) x_0 = self.pose_dict[data_index][file_name][0] y_0 = self.pose_dict[data_index][file_name][1] yaw = np.deg2rad(self.pose_dict[data_index][file_name][3]) self.files_dict[data_index].sort() ts_index = self.files_dict[data_index].index(file_name) ts_list = [] x_list = [] y_list = [] for i in range(ts_index+1, len(self.files_dict[data_index])-100): ts = self.files_dict[data_index][i] _x_t = self.pose_dict[data_index][ts][0] _y_t = self.pose_dict[data_index][ts][1] distance = np.sqrt((x_0-_x_t)**2+(y_0-_y_t)**2) if distance > self.max_dist or (float(ts)-float(file_name) > self.max_t): break else: if distance < 0.03: pass else: x_, y_ = self.tf_pose(data_index, ts, yaw, x_0, y_0) x_list.append(x_) y_list.append(y_) ts_list.append(ts) if len(ts_list) == 0: continue else: ts = random.sample(ts_list, 1)[0] break # [0 ~ 1] t = torch.FloatTensor([float(ts)/self.max_t - float(file_name)/self.max_t]) _vx_0 = self.vel_dict[data_index][file_name][0] _vy_0 = self.vel_dict[data_index][file_name][1] vx_0 = np.cos(yaw)*_vx_0 + np.sin(yaw)*_vy_0 #vy_0 = np.cos(yaw)*_vy_0 - np.sin(yaw)*_vx_0 v_0 = torch.FloatTensor([vx_0]) x, y = self.tf_pose(data_index, ts, yaw, x_0, y_0) # [-1, 1] xy = torch.FloatTensor([x/self.max_dist, y/self.max_dist]) yaw_t = angle_normal(np.deg2rad(self.pose_dict[data_index][ts][3]) - yaw) # [-1, 1] yaw_t = torch.FloatTensor([yaw_t/np.pi]) _vx = self.vel_dict[data_index][ts][0] _vy = self.vel_dict[data_index][ts][1] vx = np.cos(yaw)*_vx + np.sin(yaw)*_vy vy = np.cos(yaw)*_vy - np.sin(yaw)*_vx vxy = torch.FloatTensor([vx, vy]) x_list = torch.FloatTensor(x_list) y_list = torch.FloatTensor(y_list) if self.evalmode: return {'img': input_img, 't': t, 'xy':xy, 'vxy':vxy, 'v_0':v_0, 'yaw_t': yaw_t, 'x_list':x_list, 'y_list':y_list} else: return {'img': input_img, 't': t, 'xy':xy, 'vxy':vxy, 'v_0':v_0} def __len__(self): return 100000000000 if __name__ == '__main__': import argparse from datetime import datetime from PIL import Image, ImageDraw from torch.utils.data import DataLoader random.seed(datetime.now()) torch.manual_seed(666) parser = argparse.ArgumentParser() parser.add_argument('--dataset_name', type=str, default="mu-log_var-test", help='name of the dataset') parser.add_argument('--width', type=int, default=400, help='image width') parser.add_argument('--height', type=int, default=200, help='image height') parser.add_argument('--scale', type=float, default=25., help='longitudinal length') parser.add_argument('--batch_size', type=int, default=1, help='size of the batches') parser.add_argument('--img_step', type=int, default=3, help='RNN input image step') parser.add_argument('--traj_steps', type=int, default=8, help='traj steps') parser.add_argument('--max_dist', type=float, default=25., help='max distance') parser.add_argument('--max_t', type=float, default=3., help='max time') opt = parser.parse_args() train_loader = DataLoader(CostMapDataset(data_index=[1,2,3,4,5,6,7,9,10], opt=opt, dataset_path='/media/wang/DATASET/CARLA_HUMAN/town01/', evalmode=True), batch_size=1, shuffle=False) cnt = 0 for i, batch in enumerate(train_loader): img = batch['img'][:,-1,:].clone().data.numpy().squeeze()*127+128 img = Image.fromarray(img).convert("RGB") draw =ImageDraw.Draw(img) real_x = batch['x_list'].squeeze().data.numpy() real_y = batch['y_list'].squeeze().data.numpy() real_u, real_v = xy2uv(real_x, real_y) for i in range(len(real_u)-1): draw.line((real_v[i], real_u[i], real_v[i]+1, real_u[i]+1), 'blue') draw.line((real_v[i], real_u[i], real_v[i]-1, real_u[i]-1), 'blue') #draw.line((real_v[i]+1, real_u[i], real_v[i+1]+1, real_u[i+1]), 'blue') #draw.line((real_v[i]-1, real_u[i], real_v[i+1]-1, real_u[i+1]), 'blue') #if cnt % 10 == 0: # img.show() cnt += 1 if cnt > 50: break #break
40.037363
187
0.512433
17cfa0bbbc59e69720514191fc68640d906b0bb1
821
py
Python
{{cookiecutter.repo_name}}/{{cookiecutter.repo_name}}/settings/local.py
uhuramedia/cookiecutter-django
8d21b960661aea42bb9e447193321b574b1a1e9f
[ "BSD-3-Clause" ]
2
2015-04-17T22:00:02.000Z
2015-08-14T03:53:33.000Z
{{cookiecutter.repo_name}}/{{cookiecutter.repo_name}}/settings/local.py
uhuramedia/cookiecutter-django
8d21b960661aea42bb9e447193321b574b1a1e9f
[ "BSD-3-Clause" ]
38
2015-01-13T13:20:49.000Z
2017-02-08T13:04:34.000Z
{{cookiecutter.repo_name}}/{{cookiecutter.repo_name}}/settings/local.py
uhuramedia/cookiecutter-django
8d21b960661aea42bb9e447193321b574b1a1e9f
[ "BSD-3-Clause" ]
8
2015-03-31T09:32:38.000Z
2018-06-29T02:58:53.000Z
# -*- coding: utf-8 -*- from base import * DEBUG = True TEMPLATE_DEBUG = DEBUG DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': '{{cookiecutter.project_name}}', 'HOST': 'localhost', 'USER': 'root', 'PASSWORD': '', 'CONN_MAX_AGE': 600, } } DEBUG_TOOLBAR_CONFIG = { 'INTERCEPT_REDIRECTS': False, } MIDDLEWARE_CLASSES += ('debug_toolbar.middleware.DebugToolbarMiddleware',) TEMPLATE_CONTEXT_PROCESSORS += ('django.core.context_processors.debug',) INTERNAL_IPS = ('127.0.0.1',) INSTALLED_APPS += ( 'debug_toolbar', ) CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION': 'unique-snowflake', } } EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'
19.547619
74
0.628502
6af6d8c9b85c91ea3df80d2c4cdaac9c10cfc6a4
5,530
py
Python
networking_odl/ml2/port_status_update.py
gokarslan/networking-odl2
6a6967832b2c02dfcff6a9f0ab6e36472b849ce8
[ "Apache-2.0" ]
null
null
null
networking_odl/ml2/port_status_update.py
gokarslan/networking-odl2
6a6967832b2c02dfcff6a9f0ab6e36472b849ce8
[ "Apache-2.0" ]
null
null
null
networking_odl/ml2/port_status_update.py
gokarslan/networking-odl2
6a6967832b2c02dfcff6a9f0ab6e36472b849ce8
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2017 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import threading from neutron.db import provisioning_blocks from neutron_lib.callbacks import resources from neutron_lib import constants as n_const from neutron_lib import context from neutron_lib.plugins import directory from neutron_lib import worker from oslo_log import log from networking_odl.common import client as odl_client from networking_odl.common import odl_features from networking_odl.common import utils from networking_odl.common import websocket_client as odl_ws_client LOG = log.getLogger(__name__) class OdlPortStatusUpdate(worker.BaseWorker): """Class to register and handle port status update""" PORT_PATH = "restconf/operational/neutron:neutron/ports/port" def __init__(self): super(OdlPortStatusUpdate, self).__init__() self.odl_websocket_client = None def start(self): super(OdlPortStatusUpdate, self).start() LOG.debug('OdlPortStatusUpdate worker running') if odl_features.has(odl_features.OPERATIONAL_PORT_STATUS): self.run_websocket() def stop(self): if self.odl_websocket_client: self.odl_websocket_client.set_exit_flag() def wait(self): """Wait for service to complete.""" @staticmethod def reset(): pass def run_websocket(self): # OpenDaylight path to recieve websocket notifications on neutron_ports_path = "/neutron:neutron/neutron:ports" self.path_uri = utils.get_odl_url() self.odl_websocket_client = ( odl_ws_client.OpenDaylightWebsocketClient.odl_create_websocket( self.path_uri, neutron_ports_path, odl_ws_client.ODL_OPERATIONAL_DATASTORE, odl_ws_client.ODL_NOTIFICATION_SCOPE_SUBTREE, self._process_websocket_recv, self._process_websocket_reconnect, True )) def _process_websocket_recv(self, payload, reconnect): # Callback for websocket notification LOG.debug("Websocket notification for port status update") for event in odl_ws_client.EventDataParser.get_item(payload): operation, path, data = event.get_fields() if ((operation in [event.OPERATION_UPDATE, event.OPERATION_CREATE])): port_id = event.extract_field(path, "neutron:uuid") port_id = str(port_id).strip("'") status_field = data.get('status') if status_field is not None: status = status_field.get('content') LOG.debug("Update port for port id %s %s", port_id, status) # for now we only support transition from DOWN->ACTIVE # https://bugs.launchpad.net/networking-odl/+bug/1686023 if status == n_const.PORT_STATUS_ACTIVE: provisioning_blocks.provisioning_complete( context.get_admin_context(), port_id, resources.PORT, provisioning_blocks.L2_AGENT_ENTITY) if operation == event.OPERATION_DELETE: LOG.debug("PortStatus: Ignoring delete operation") def _process_websocket_reconnect(self, status): if status == odl_ws_client.ODL_WEBSOCKET_CONNECTED: # Get port data using restconf LOG.debug("Websocket notification on reconnection") reconn_thread = threading.Thread( name='websocket', target=self._pull_missed_statuses) reconn_thread.start() def _pull_missed_statuses(self): LOG.debug("starting to pull pending statuses...") plugin = directory.get_plugin() filter = {"status": [n_const.PORT_STATUS_DOWN], "vif_type": ["unbound"]} ports = plugin.get_ports(context.get_admin_context(), filter) if not ports: LOG.debug("no down ports found, done") return port_fetch_url = utils.get_odl_url(self.PORT_PATH) client = odl_client.OpenDaylightRestClient.create_client( url=port_fetch_url) for port in ports: id = port["id"] response = client.get(id) if response.status_code != 200: LOG.warning("Non-200 response code %s", str(response)) continue odl_status = response.json()['port'][0]['status'] if odl_status == n_const.PORT_STATUS_ACTIVE: # for now we only support transition from DOWN->ACTIVE # See https://bugs.launchpad.net/networking-odl/+bug/1686023 provisioning_blocks.provisioning_complete( context.get_admin_context(), id, resources.PORT, provisioning_blocks.L2_AGENT_ENTITY) LOG.debug("done pulling pending statuses")
40.661765
79
0.647197
77cbf83eb057b9552ea77d2175a56e8593060943
6,122
py
Python
examples/inverted_pendulum/simulate.py
ashander/opty
85f8c5d75c924d393edcbc07324088c3266bca31
[ "BSD-2-Clause-FreeBSD" ]
63
2015-03-07T19:38:10.000Z
2022-03-31T17:17:53.000Z
examples/inverted_pendulum/simulate.py
ashander/opty
85f8c5d75c924d393edcbc07324088c3266bca31
[ "BSD-2-Clause-FreeBSD" ]
52
2015-02-15T17:24:03.000Z
2021-06-18T16:43:45.000Z
examples/inverted_pendulum/simulate.py
ashander/opty
85f8c5d75c924d393edcbc07324088c3266bca31
[ "BSD-2-Clause-FreeBSD" ]
22
2015-05-25T21:28:16.000Z
2022-03-14T03:55:57.000Z
#!/usr/bin/env/python # standard lib from collections import OrderedDict # external import numpy as np from scipy.interpolate import interp1d from scipy.linalg import solve_continuous_are from pydy.codegen.ode_function_generators import generate_ode_function from opty.utils import controllable, sum_of_sines # local from model import n_link_pendulum_on_cart def constants_dict(constants): """Returns an ordered dictionary which maps the system constant symbols to numerical values. The cart spring is set to 10.0 N/m, the cart damper to 5.0 Ns/m and gravity is set to 9.81 m/s and the masses and lengths of the pendulums are all set to make the human sized.""" return OrderedDict(zip(constants, [10.0, 5.0, 9.81] + (len(constants) - 1) * [1.0])) def choose_initial_conditions(typ, x, gains): free_states = x.T.flatten() free_gains = gains.flatten() if typ == 'known': initial_guess = np.hstack((free_states, free_gains)) elif typ == 'zero': initial_guess = np.hstack((free_states, 0.1 * np.ones_like(free_gains))) elif typ == 'ones': initial_guess = np.hstack((free_states, np.ones_like(free_gains))) elif typ == 'close': gain_mod = 0.5 * np.abs(free_gains) * np.random.randn(len(free_gains)) initial_guess = np.hstack((free_states, free_gains + gain_mod)) elif typ == 'random': initial_guess = np.hstack((x.T.flatten(), 100.0 * np.random.randn(len(free_gains)))) return initial_guess def input_force(typ, time): magnitude = 8.0 # Newtons if typ == 'sine': lateral_force = magnitude * np.sin(3.0 * 2.0 * np.pi * time) elif typ == 'random': lateral_force = 2.0 * magnitude * np.random.random(len(time)) lateral_force -= lateral_force.mean() elif typ == 'zero': lateral_force = np.zeros_like(time) elif typ == 'sumsines': # I took these frequencies from a sum of sines Ron designed for a # pilot control problem. nums = [7, 11, 16, 25, 38, 61, 103, 131, 151, 181, 313, 523] freq = 2.0 * np.pi * np.array(nums, dtype=float) / 240.0 lateral_force = sum_of_sines(magnitude, freq, time)[0] else: raise ValueError('{} is not a valid force type.'.format(typ)) return lateral_force def compute_controller_gains(num_links): """Returns a numerical gain matrix that can be multiplied by the error in the states of the n link pendulum on a cart to generate the joint torques needed to stabilize the pendulum. The controller follows this pattern: u(t) = K * [x_eq - x(t)] Parameters ---------- n Returns ------- K : ndarray, shape(2, n) The gains needed to compute joint torques. """ res = n_link_pendulum_on_cart(num_links, cart_force=False, joint_torques=True, spring_damper=True) mass_matrix = res[0] forcing_vector = res[1] constants = res[2] coordinates = res[3] speeds = res[4] specified = res[5] states = coordinates + speeds equilibrium_point = np.zeros(len(coordinates) + len(speeds)) equilibrium_dict = dict(zip(states, equilibrium_point)) F_A = forcing_vector.jacobian(states) F_A = F_A.subs(equilibrium_dict).subs(constants_dict(constants)) F_A = np.array(F_A.tolist(), dtype=float) F_B = forcing_vector.jacobian(specified) F_B = F_B.subs(equilibrium_dict).subs(constants_dict(constants)) F_B = np.array(F_B.tolist(), dtype=float) M = mass_matrix.subs(equilibrium_dict).subs(constants_dict(constants)) M = np.array(M.tolist(), dtype=float) invM = np.linalg.inv(M) A = np.dot(invM, F_A) B = np.dot(invM, F_B) assert controllable(A, B) Q = np.eye(len(states)) R = np.eye(len(specified)) S = solve_continuous_are(A, B, Q, R) K = np.dot(np.dot(np.linalg.inv(R), B.T), S) return K def closed_loop_ode_func(system, time, set_point, gain_matrix, lateral_force): """Returns a function that evaluates the continous closed loop system first order ODEs. Parameters ---------- system : tuple, len(6) The output of the symbolic EoM generator. time : ndarray, shape(M,) The monotonically increasing time values that set_point : ndarray, shape(n,) The set point for the controller. gain_matrix : ndarray, shape((n - 1) / 2, n) The gain matrix that computes the optimal joint torques given the system state. lateral_force : ndarray, shape(M,) The applied lateral force at each time point. This will be linearly interpolated for time points other than those in time. Returns ------- rhs : function A function that evaluates the right hand side of the first order ODEs in a form easily used with odeint. args : dictionary A dictionary containing the model constant values and the controller function. """ # TODO : It will likely be useful to allow more inputs: noise on the # equilibrium point (i.e. sensor noise) and noise on the joint torques. # 10 cycles /sec * 2 pi rad / cycle interp_func = interp1d(time, lateral_force) def controller(x, t): joint_torques = np.dot(gain_matrix, set_point - x) if t > time[-1]: lateral_force = interp_func(time[-1]) else: lateral_force = interp_func(t) return np.hstack((joint_torques, lateral_force)) mass_matrix = system[0] forcing = system[1] constants = system[2] coordinates = system[3] speeds = system[4] specifieds = system[5] rhs = generate_ode_function(forcing, coordinates, speeds, constants, mass_matrix=mass_matrix, specifieds=specifieds, generator='cython') args = (controller, constants_dict(constants)) return rhs, args
31.720207
80
0.63084
81636fbcec24e44944d4e59569cfa3b8194ff0f9
11,736
py
Python
train_and_test.py
apardyl/ProtoPNet
b2bbd7284bfc84a37385c0e975408c68cdf64205
[ "MIT" ]
1
2021-03-20T13:57:03.000Z
2021-03-20T13:57:03.000Z
train_and_test.py
apardyl/ProtoPNet
b2bbd7284bfc84a37385c0e975408c68cdf64205
[ "MIT" ]
null
null
null
train_and_test.py
apardyl/ProtoPNet
b2bbd7284bfc84a37385c0e975408c68cdf64205
[ "MIT" ]
null
null
null
from enum import Enum import numpy as np import torch from matplotlib import pyplot as plt from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, roc_auc_score, precision_score, recall_score, \ f1_score, roc_curve from torch.utils.tensorboard import SummaryWriter import torch.nn.functional as func from tqdm import tqdm from focalloss import FocalLoss from helpers import list_of_distances from settings import Settings from weight_loss import WeightCrossEntropyLoss class TrainMode(Enum): WARM = 'warm' JOINT = 'joint' PUSH = 'push' LAST_ONLY = 'last_only' def _train_or_test(model, dataloader, config: Settings, optimizer=None, use_l1_mask=True, log_writer: SummaryWriter = None, step: int = 0, weighting_attention=False, is_valid=False): ''' model: the multi-gpu model dataloader: optimizer: if None, will be test evaluation ''' is_train = optimizer is not None n_examples = 0 n_correct = 0 n_batches = 0 total_cross_entropy = 0 total_cluster_cost = 0 # separation cost is meaningful only for class_specific total_separation_cost = 0 total_avg_separation_cost = 0 total_loss = 0 conf_matrix = np.zeros((2, 2), dtype='int32') preds = [] targets = [] if config.loss_function == 'cross_entropy': loss_fn = torch.nn.CrossEntropyLoss() elif config.loss_function == 'focal': loss_fn = FocalLoss(alpha=0.5, gamma=2) else: raise NotImplementedError('unknown loss function: ' + config.loss_function) with tqdm(total=len(dataloader.dataset), unit='bag') as pbar: for i, (image, label) in enumerate(dataloader): input = image.cuda() # if param all_labels=True in dataloader, set label to positive if at least one in the list if len(label) > 1: label = label.max().unsqueeze(0) target = label.cuda() # torch.enable_grad() has no effect outside of no_grad() grad_req = torch.enable_grad() if is_train else torch.no_grad() with grad_req: output, min_distances, attention, _ = model.forward_(input) cross_entropy = loss_fn(output, target) if config.mil_pooling == 'loss_attention': instance_labels = target * torch.ones(input.size(0), dtype=torch.long, device=input.device) loss_2 = WeightCrossEntropyLoss()(model.out_c, instance_labels, model.A) cross_entropy += 2.0 * loss_2 if config.class_specific: max_dist = (model.prototype_shape[1] * model.prototype_shape[2] * model.prototype_shape[3]) # prototypes_of_correct_class is a tensor of shape batch_size * num_prototypes attention_detached = attention.detach().cpu() weight = np.interp(attention_detached, (attention_detached.min(), attention_detached.max()), (0.001, 1)) if weighting_attention: tensor_weight = torch.tensor(weight).cuda() else: tensor_weight = torch.tensor(1).cuda() # calculate cluster cost prototypes_of_correct_class = torch.t(model.prototype_class_identity[:, label]).cuda() inverted_distances, _ = torch.max( (max_dist - (min_distances * tensor_weight.T)) * prototypes_of_correct_class, dim=1) cluster_cost = torch.mean(max_dist - inverted_distances) # calculate separation cost prototypes_of_wrong_class = 1 - prototypes_of_correct_class inverted_distances_to_nontarget_prototypes, _ = \ torch.max((max_dist - (min_distances * tensor_weight.T)) * prototypes_of_wrong_class, dim=1) separation_cost = torch.mean(max_dist - inverted_distances_to_nontarget_prototypes) # calculate avg cluster cost avg_separation_cost = \ torch.sum((min_distances * tensor_weight.T) * prototypes_of_wrong_class, dim=1) / torch.sum( prototypes_of_wrong_class, dim=1) avg_separation_cost = torch.mean(avg_separation_cost) if use_l1_mask: l1_mask = 1 - torch.t(model.prototype_class_identity).cuda() l1 = (model.last_layer.weight * l1_mask).norm(p=1) else: l1 = model.last_layer.weight.norm(p=1) else: min_distance, _ = torch.min(min_distances, dim=1) cluster_cost = torch.mean(min_distance) l1 = model.last_layer.weight.norm(p=1) # evaluation statistics _, predicted = torch.max(output.data, 1) n_examples += target.size(0) n_correct += (predicted == target).sum().item() pred_s = func.softmax(output, dim=-1) preds.append(pred_s.data.cpu().numpy()) targets.append(target.cpu().numpy()) conf_matrix += confusion_matrix(target.cpu().numpy(), predicted.cpu().numpy(), labels=[0, 1]) n_batches += 1 total_cross_entropy += cross_entropy.item() total_cluster_cost += cluster_cost.item() total_separation_cost += separation_cost.item() total_avg_separation_cost += avg_separation_cost.item() # compute gradient and do SGD step if config.class_specific: loss = (config.coef_crs_ent * cross_entropy + config.coef_clst * cluster_cost + config.coef_sep * separation_cost + config.coef_l1 * l1) else: loss = (config.coef_crs_ent * cross_entropy + config.coef_clst * cluster_cost + config.coef_l1 * l1) total_loss += loss.item() if is_train: optimizer.zero_grad() loss.backward() # torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) # gradient clipping optimizer.step() del input del target del output del predicted del min_distances pbar.update(1) total_cross_entropy /= n_batches total_cluster_cost /= n_batches total_separation_cost /= n_batches total_loss /= n_batches preds = np.concatenate(preds) targets = np.concatenate(targets) auc = roc_auc_score(targets, preds[..., 1]) pred_y = preds.argmax(1) precision = precision_score(targets, pred_y, zero_division=0) recall = recall_score(targets, pred_y, zero_division=0) f1 = f1_score(targets, pred_y, zero_division=0) fpr, tpr, threshold = roc_curve(targets, preds[..., 1]) print('\t\taccuracy:', n_correct / n_examples) print('\t\tauc:', auc) print('\t\ttotal_loss:', total_loss) if is_train: suffix = '/train' else: if is_valid: suffix = '/valid' else: suffix = '/test' if log_writer: log_writer.add_scalar('total_loss' + suffix, total_loss, global_step=step) log_writer.add_scalar('cross_entropy' + suffix, total_cross_entropy, global_step=step) log_writer.add_scalar('cluster_cost' + suffix, total_cluster_cost, global_step=step) if config.class_specific: log_writer.add_scalar('separation_cost' + suffix, total_separation_cost, global_step=step) log_writer.add_scalar('avg_separation_cost' + suffix, total_avg_separation_cost / n_batches, global_step=step) log_writer.add_scalar('accuracy' + suffix, n_correct / n_examples, global_step=step) log_writer.add_scalar('auc' + suffix, auc, global_step=step) log_writer.add_scalar('precision' + suffix, precision, global_step=step) log_writer.add_scalar('recall' + suffix, recall, global_step=step) log_writer.add_scalar('f-score' + suffix, f1, global_step=step) log_writer.add_scalar('l1' + suffix, model.last_layer.weight.norm(p=1).item(), global_step=step) conf_plot = ConfusionMatrixDisplay(confusion_matrix=conf_matrix).plot(cmap='Blues', values_format='d') log_writer.add_figure('confusion_matrix' + suffix, conf_plot.figure_, global_step=step, close=True) plt.figure() plt.title('Receiver Operating Characteristic') plt.plot(fpr, tpr, 'b', label='AUC = %0.2f' % auc) plt.legend(loc='lower right') plt.plot([0, 1], [0, 1], 'r--') plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') log_writer.add_figure('roc' + suffix, plt.gcf(), global_step=step, close=True) p = model.prototype_vectors.view(model.num_prototypes, -1).cpu() with torch.no_grad(): p_avg_pair_dist = torch.mean(list_of_distances(p, p)) if log_writer: log_writer.add_scalar('p_avg_pair_dist' + suffix, p_avg_pair_dist, global_step=step) return auc def train(model, dataloader, optimizer, config: Settings, log_writer: SummaryWriter = None, step: int = 0, weighting_attention=False): assert (optimizer is not None) print('\ttrain') model.train() return _train_or_test(model=model, dataloader=dataloader, config=config, optimizer=optimizer, log_writer=log_writer, step=step, weighting_attention=weighting_attention) def valid(model, dataloader, config: Settings, log_writer: SummaryWriter = None, step: int = 0, weighting_attention=False): print('\tvalid') model.eval() return _train_or_test(model=model, dataloader=dataloader, config=config, optimizer=None, log_writer=log_writer, step=step, weighting_attention=weighting_attention, is_valid=True) def test(model, dataloader, config: Settings, log_writer: SummaryWriter = None, step: int = 0, weighting_attention=False): print('\ttest') model.eval() return _train_or_test(model=model, dataloader=dataloader, config=config, optimizer=None, log_writer=log_writer, step=step, weighting_attention=weighting_attention) def _freeze_layer(layer): for p in layer.parameters(): p.requires_grad = False def _unfreeze_layer(layer): for p in layer.parameters(): p.requires_grad = True def last_only(model): _freeze_layer(model.features) _freeze_layer(model.add_on_layers) model.prototype_vectors.requires_grad = False _unfreeze_layer(model.attention_V) _unfreeze_layer(model.attention_U) _unfreeze_layer(model.attention_weights) _unfreeze_layer(model.last_layer) def warm_only(model): _unfreeze_layer(model.features) _unfreeze_layer(model.add_on_layers) _unfreeze_layer(model.attention_V) _unfreeze_layer(model.attention_U) _unfreeze_layer(model.attention_weights) model.prototype_vectors.requires_grad = True _unfreeze_layer(model.last_layer) def joint(model): _unfreeze_layer(model.features) _unfreeze_layer(model.add_on_layers) model.prototype_vectors.requires_grad = True _freeze_layer(model.attention_V) _freeze_layer(model.attention_U) _freeze_layer(model.attention_weights) _freeze_layer(model.last_layer)
39.250836
124
0.628323
e7e9e8e05037a0d368709d20745c3d3e79794f66
933
py
Python
test/record/parser/test_response_whois_jprs_jp_jp_property_status_suspended.py
huyphan/pyyawhois
77fb2f73a9c67989f1d41d98f37037406a69d136
[ "MIT" ]
null
null
null
test/record/parser/test_response_whois_jprs_jp_jp_property_status_suspended.py
huyphan/pyyawhois
77fb2f73a9c67989f1d41d98f37037406a69d136
[ "MIT" ]
null
null
null
test/record/parser/test_response_whois_jprs_jp_jp_property_status_suspended.py
huyphan/pyyawhois
77fb2f73a9c67989f1d41d98f37037406a69d136
[ "MIT" ]
null
null
null
# This file is autogenerated. Do not edit it manually. # If you want change the content of this file, edit # # spec/fixtures/responses/whois.jprs.jp/jp/property_status_suspended # # and regenerate the tests with the following script # # $ scripts/generate_tests.py # from nose.tools import * from dateutil.parser import parse as time_parse import yawhois class TestWhoisJprsJpJpPropertyStatusSuspended(object): def setUp(self): fixture_path = "spec/fixtures/responses/whois.jprs.jp/jp/property_status_suspended.txt" host = "whois.jprs.jp" part = yawhois.record.Part(open(fixture_path, "r").read(), host) self.record = yawhois.record.Record(None, [part]) def test_status(self): eq_(self.record.status, 'expired') def test_available(self): eq_(self.record.available, False) def test_registered(self): eq_(self.record.registered, True)
29.15625
95
0.702036
2c59ee67d4a8e9ae49bf7eadec2d1b1e9d1e7fce
10,349
py
Python
python/paddle/hapi/dynamic_flops.py
wwqgtxx/Paddle
109ca9d250e37e723e364366e8402c307b110169
[ "Apache-2.0" ]
17,085
2016-11-18T06:40:52.000Z
2022-03-31T22:52:32.000Z
python/paddle/hapi/dynamic_flops.py
betterpig/paddle_npu
74ad4b6a700795d5edce8dd49d6c2df6f15e8935
[ "Apache-2.0" ]
29,769
2016-11-18T06:35:22.000Z
2022-03-31T16:46:15.000Z
python/paddle/hapi/dynamic_flops.py
betterpig/paddle_npu
74ad4b6a700795d5edce8dd49d6c2df6f15e8935
[ "Apache-2.0" ]
4,641
2016-11-18T07:43:33.000Z
2022-03-31T15:15:02.000Z
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import warnings import paddle.nn as nn import numpy as np from .static_flops import static_flops, Table __all__ = [] def flops(net, input_size, custom_ops=None, print_detail=False): """Print a table about the FLOPs of network. Args: net (paddle.nn.Layer||paddle.static.Program): The network which could be a instance of paddle.nn.Layer in dygraph or paddle.static.Program in static graph. input_size (list): size of input tensor. Note that the batch_size in argument 'input_size' only support 1. custom_ops (A dict of function, optional): A dictionary which key is the class of specific operation such as paddle.nn.Conv2D and the value is the function used to count the FLOPs of this operation. This argument only work when argument 'net' is an instance of paddle.nn.Layer. The details could be found in following example code. Default is None. print_detail (bool, optional): Whether to print the detail information, like FLOPs per layer, about the net FLOPs. Default is False. Returns: Int: A number about the FLOPs of total network. Examples: .. code-block:: python import paddle import paddle.nn as nn class LeNet(nn.Layer): def __init__(self, num_classes=10): super(LeNet, self).__init__() self.num_classes = num_classes self.features = nn.Sequential( nn.Conv2D( 1, 6, 3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2D(2, 2), nn.Conv2D( 6, 16, 5, stride=1, padding=0), nn.ReLU(), nn.MaxPool2D(2, 2)) if num_classes > 0: self.fc = nn.Sequential( nn.Linear(400, 120), nn.Linear(120, 84), nn.Linear( 84, 10)) def forward(self, inputs): x = self.features(inputs) if self.num_classes > 0: x = paddle.flatten(x, 1) x = self.fc(x) return x lenet = LeNet() # m is the instance of nn.Layer, x is the intput of layer, y is the output of layer. def count_leaky_relu(m, x, y): x = x[0] nelements = x.numel() m.total_ops += int(nelements) FLOPs = paddle.flops(lenet, [1, 1, 28, 28], custom_ops= {nn.LeakyReLU: count_leaky_relu}, print_detail=True) print(FLOPs) #+--------------+-----------------+-----------------+--------+--------+ #| Layer Name | Input Shape | Output Shape | Params | Flops | #+--------------+-----------------+-----------------+--------+--------+ #| conv2d_2 | [1, 1, 28, 28] | [1, 6, 28, 28] | 60 | 47040 | #| re_lu_2 | [1, 6, 28, 28] | [1, 6, 28, 28] | 0 | 0 | #| max_pool2d_2 | [1, 6, 28, 28] | [1, 6, 14, 14] | 0 | 0 | #| conv2d_3 | [1, 6, 14, 14] | [1, 16, 10, 10] | 2416 | 241600 | #| re_lu_3 | [1, 16, 10, 10] | [1, 16, 10, 10] | 0 | 0 | #| max_pool2d_3 | [1, 16, 10, 10] | [1, 16, 5, 5] | 0 | 0 | #| linear_0 | [1, 400] | [1, 120] | 48120 | 48000 | #| linear_1 | [1, 120] | [1, 84] | 10164 | 10080 | #| linear_2 | [1, 84] | [1, 10] | 850 | 840 | #+--------------+-----------------+-----------------+--------+--------+ #Total Flops: 347560 Total Params: 61610 """ if isinstance(net, nn.Layer): inputs = paddle.randn(input_size) return dynamic_flops( net, inputs=inputs, custom_ops=custom_ops, print_detail=print_detail) elif isinstance(net, paddle.static.Program): return static_flops(net, print_detail=print_detail) else: warnings.warn( "Your model must be an instance of paddle.nn.Layer or paddle.static.Program." ) return -1 def count_convNd(m, x, y): x = x[0] kernel_ops = np.product(m.weight.shape[2:]) bias_ops = 1 if m.bias is not None else 0 total_ops = int(y.numel()) * ( x.shape[1] / m._groups * kernel_ops + bias_ops) m.total_ops += abs(int(total_ops)) def count_leaky_relu(m, x, y): x = x[0] nelements = x.numel() m.total_ops += int(nelements) def count_bn(m, x, y): x = x[0] nelements = x.numel() if not m.training: total_ops = 2 * nelements m.total_ops += abs(int(total_ops)) def count_linear(m, x, y): total_mul = m.weight.shape[0] num_elements = y.numel() total_ops = total_mul * num_elements m.total_ops += abs(int(total_ops)) def count_avgpool(m, x, y): kernel_ops = 1 num_elements = y.numel() total_ops = kernel_ops * num_elements m.total_ops += int(total_ops) def count_adap_avgpool(m, x, y): kernel = np.array(x[0].shape[2:]) // np.array(y.shape[2:]) total_add = np.product(kernel) total_div = 1 kernel_ops = total_add + total_div num_elements = y.numel() total_ops = kernel_ops * num_elements m.total_ops += abs(int(total_ops)) def count_zero_ops(m, x, y): m.total_ops += int(0) def count_parameters(m, x, y): total_params = 0 for p in m.parameters(): total_params += p.numel() m.total_params[0] = abs(int(total_params)) def count_io_info(m, x, y): m.register_buffer('input_shape', paddle.to_tensor(x[0].shape)) m.register_buffer('output_shape', paddle.to_tensor(y.shape)) register_hooks = { nn.Conv1D: count_convNd, nn.Conv2D: count_convNd, nn.Conv3D: count_convNd, nn.Conv1DTranspose: count_convNd, nn.Conv2DTranspose: count_convNd, nn.Conv3DTranspose: count_convNd, nn.layer.norm.BatchNorm2D: count_bn, nn.BatchNorm: count_bn, nn.ReLU: count_zero_ops, nn.ReLU6: count_zero_ops, nn.LeakyReLU: count_leaky_relu, nn.Linear: count_linear, nn.Dropout: count_zero_ops, nn.AvgPool1D: count_avgpool, nn.AvgPool2D: count_avgpool, nn.AvgPool3D: count_avgpool, nn.AdaptiveAvgPool1D: count_adap_avgpool, nn.AdaptiveAvgPool2D: count_adap_avgpool, nn.AdaptiveAvgPool3D: count_adap_avgpool } def dynamic_flops(model, inputs, custom_ops=None, print_detail=False): handler_collection = [] types_collection = set() if custom_ops is None: custom_ops = {} def add_hooks(m): if len(list(m.children())) > 0: return m.register_buffer('total_ops', paddle.zeros([1], dtype='int64')) m.register_buffer('total_params', paddle.zeros([1], dtype='int64')) m_type = type(m) flops_fn = None if m_type in custom_ops: flops_fn = custom_ops[m_type] if m_type not in types_collection: print("Customize Function has been applied to {}".format( m_type)) elif m_type in register_hooks: flops_fn = register_hooks[m_type] if m_type not in types_collection: print("{}'s flops has been counted".format(m_type)) else: if m_type not in types_collection: print( "Cannot find suitable count function for {}. Treat it as zero FLOPs.". format(m_type)) if flops_fn is not None: flops_handler = m.register_forward_post_hook(flops_fn) handler_collection.append(flops_handler) params_handler = m.register_forward_post_hook(count_parameters) io_handler = m.register_forward_post_hook(count_io_info) handler_collection.append(params_handler) handler_collection.append(io_handler) types_collection.add(m_type) training = model.training model.eval() model.apply(add_hooks) with paddle.framework.no_grad(): model(inputs) total_ops = 0 total_params = 0 for m in model.sublayers(): if len(list(m.children())) > 0: continue if set(['total_ops', 'total_params', 'input_shape', 'output_shape']).issubset(set(list(m._buffers.keys()))): total_ops += m.total_ops total_params += m.total_params if training: model.train() for handler in handler_collection: handler.remove() table = Table( ["Layer Name", "Input Shape", "Output Shape", "Params", "Flops"]) for n, m in model.named_sublayers(): if len(list(m.children())) > 0: continue if set(['total_ops', 'total_params', 'input_shape', 'output_shape']).issubset(set(list(m._buffers.keys()))): table.add_row([ m.full_name(), list(m.input_shape.numpy()), list(m.output_shape.numpy()), int(m.total_params), int(m.total_ops) ]) m._buffers.pop("total_ops") m._buffers.pop("total_params") m._buffers.pop('input_shape') m._buffers.pop('output_shape') if print_detail: table.print_table() print('Total Flops: {} Total Params: {}'.format( int(total_ops), int(total_params))) return int(total_ops)
35.934028
122
0.555996
5e091d2b5ed8ce4184e6fcd07c64e73d85976f17
5,313
py
Python
tests/core/test_results.py
ameliatqy/pytorch-lightning
ca18e11f6efe822098c79e7d9124b08a55bcd908
[ "Apache-2.0" ]
null
null
null
tests/core/test_results.py
ameliatqy/pytorch-lightning
ca18e11f6efe822098c79e7d9124b08a55bcd908
[ "Apache-2.0" ]
null
null
null
tests/core/test_results.py
ameliatqy/pytorch-lightning
ca18e11f6efe822098c79e7d9124b08a55bcd908
[ "Apache-2.0" ]
null
null
null
import sys from pathlib import Path import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp from pytorch_lightning import Trainer, seed_everything from pytorch_lightning.core.step_result import Result, TrainResult, EvalResult import tests.base.develop_utils as tutils from tests.base import EvalModelTemplate from tests.base.datamodules import TrialMNISTDataModule def _setup_ddp(rank, worldsize): import os os.environ["MASTER_ADDR"] = "localhost" # initialize the process group dist.init_process_group("gloo", rank=rank, world_size=worldsize) def _ddp_test_fn(rank, worldsize, result_cls: Result): _setup_ddp(rank, worldsize) tensor = torch.tensor([1.0]) res = result_cls() res.log("test_tensor", tensor, sync_dist=True, sync_dist_op=torch.distributed.ReduceOp.SUM) assert res["test_tensor"].item() == dist.get_world_size(), "Result-Log does not work properly with DDP and Tensors" @pytest.mark.parametrize("result_cls", [Result, TrainResult, EvalResult]) @pytest.mark.skipif(sys.platform == "win32", reason="DDP not available on windows") def test_result_reduce_ddp(result_cls): """Make sure result logging works with DDP""" tutils.reset_seed() tutils.set_random_master_port() worldsize = 2 mp.spawn(_ddp_test_fn, args=(worldsize, result_cls), nprocs=worldsize) @pytest.mark.parametrize( "test_option,do_train,gpus", [ pytest.param( 0, True, 0, id='full_loop' ), pytest.param( 0, False, 0, id='test_only' ), pytest.param( 1, False, 0, id='test_only_mismatching_tensor', marks=pytest.mark.xfail(raises=ValueError, match="Mism.*") ), pytest.param( 2, False, 0, id='mix_of_tensor_dims' ), pytest.param( 3, False, 0, id='string_list_predictions' ), pytest.param( 4, False, 0, id='int_list_predictions' ), pytest.param( 5, False, 0, id='nested_list_predictions' ), pytest.param( 6, False, 0, id='dict_list_predictions' ), pytest.param( 0, True, 1, id='full_loop_single_gpu', marks=pytest.mark.skipif(torch.cuda.device_count() < 1, reason="test requires single-GPU machine") ) ] ) def test_result_obj_predictions(tmpdir, test_option, do_train, gpus): tutils.reset_seed() dm = TrialMNISTDataModule(tmpdir) prediction_file = Path('predictions.pt') model = EvalModelTemplate() model.test_option = test_option model.prediction_file = prediction_file.as_posix() model.test_step = model.test_step_result_preds model.test_step_end = None model.test_epoch_end = None model.test_end = None if prediction_file.exists(): prediction_file.unlink() trainer = Trainer( default_root_dir=tmpdir, max_epochs=3, weights_summary=None, deterministic=True, gpus=gpus ) # Prediction file shouldn't exist yet because we haven't done anything assert not prediction_file.exists() if do_train: result = trainer.fit(model, dm) assert result == 1 result = trainer.test(datamodule=dm) result = result[0] assert result['test_loss'] < 0.6 assert result['test_acc'] > 0.8 else: result = trainer.test(model, datamodule=dm) # check prediction file now exists and is of expected length assert prediction_file.exists() predictions = torch.load(prediction_file) assert len(predictions) == len(dm.mnist_test) @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") def test_result_obj_predictions_ddp_spawn(tmpdir): distributed_backend = 'ddp_spawn' option = 0 import os os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' seed_everything(4321) dm = TrialMNISTDataModule(tmpdir) prediction_file = Path('predictions.pt') model = EvalModelTemplate() model.test_option = option model.prediction_file = prediction_file.as_posix() model.test_step = model.test_step_result_preds model.test_step_end = None model.test_epoch_end = None model.test_end = None prediction_files = [Path('predictions_rank_0.pt'), Path('predictions_rank_1.pt')] for prediction_file in prediction_files: if prediction_file.exists(): prediction_file.unlink() trainer = Trainer( default_root_dir=tmpdir, max_epochs=3, weights_summary=None, deterministic=True, distributed_backend=distributed_backend, gpus=[0, 1] ) # Prediction file shouldn't exist yet because we haven't done anything # assert not model.prediction_file.exists() result = trainer.fit(model, dm) assert result == 1 result = trainer.test(datamodule=dm) result = result[0] assert result['test_loss'] < 0.6 assert result['test_acc'] > 0.8 dm.setup('test') # check prediction file now exists and is of expected length size = 0 for prediction_file in prediction_files: assert prediction_file.exists() predictions = torch.load(prediction_file) size += len(predictions) assert size == len(dm.mnist_test)
30.016949
149
0.675325
919f7c3181b654b66f6876d0e9177ea641dfb488
3,554
py
Python
api/stops.py
TiltShiftNL/tourbuzz-geo-api
133cd723e1885d763247b42876b58c58735be820
[ "MIT" ]
null
null
null
api/stops.py
TiltShiftNL/tourbuzz-geo-api
133cd723e1885d763247b42876b58c58735be820
[ "MIT" ]
1
2020-07-28T09:14:01.000Z
2020-07-28T10:14:55.000Z
api/stops.py
TiltShiftNL/tourbuzz-geo-api
133cd723e1885d763247b42876b58c58735be820
[ "MIT" ]
null
null
null
import json from .models import DbStop from .database import SessionLocal, engine from .settings import settings from geoalchemy2 import func def get_base_query(): db = SessionLocal() return db.query( DbStop.id, DbStop.source_url, DbStop.source_name, DbStop.source_id, DbStop.link_url, DbStop.link_title, DbStop.name, DbStop.title, DbStop.description, DbStop.spots_text, DbStop.spots, DbStop.point.ST_Transform(4326).ST_AsGeoJson()) def construct_geojson(result): feature_collection = { "type": "FeatureCollection", "name": "stops", "crs": { "type": "name", "properties": { "name": "urn:ogc:def:crs:OGC:1.3:CRS84" } }, "features": [] } for entry in result: out = { "type": "Feature", "id": entry[0], "properties": { "title": entry[7], "name": entry[6], "description": entry[8], "spots_text": entry[9], "spots": entry[10], "source": { "name": entry[2], "url": entry[1], "id": entry[3] } }, "geometry": json.loads(entry[11]) } feature_collection["features"].append(out) return feature_collection def legacy(): result_set = { "haltes": {} } try: result = get_base_query().all() except: DbStop.__table__.create(engine) result = get_base_query().all() for entry in result: point = json.loads(entry[11]) out = { "haltenummer": entry[3], "straat": entry[6], "locatie": entry[8], "capaciteit": entry[10], "location": { "lat": point["coordinates"][1], "lng": point["coordinates"][0] }, "mapsImageUrl": "https://maps.googleapis.com/maps/api/staticmap?center=" + \ str(point["coordinates"][1]) + "," + str(point["coordinates"][0]) + \ "&zoom=16&size=600x300&maptype=roadmap&markers=" + \ str(point["coordinates"][1]) + "," + str(point["coordinates"][0]) + \ "&key=" + settings.GOOGLE_MAPS_KEY, "mapsUrl": "https://www.google.com/maps/?q=loc:" + \ str(point["coordinates"][1]) + "," + str(point["coordinates"][0]), "beschikbaar": True, "_origineel": { "title": entry[7], "Lokatie": entry[11], "Bijzonderheden": entry[8], "Busplaatsen": entry[9] } } result_set["haltes"][entry[3]] = out return result_set def geojson_bbox(bounds): bounds_parts = bounds.split(',') result = get_base_query().filter( func.ST_Intersects( func.ST_MakeEnvelope( bounds_parts[0], bounds_parts[1], bounds_parts[2], bounds_parts[3], 4326 ), DbStop.point.ST_Transform(4326), ) ).all() return construct_geojson(result) def geojson_all(): try: result = get_base_query().all() except: DbStop.__table__.create(engine) result = get_base_query().all() return construct_geojson(result)
28.206349
88
0.481711
c14a644baea3af34d73c8492fc38398c340e8c86
166
py
Python
info/urls.py
ycy-tw/python-django-stock
263a926ae6aa8248fd4c4e8d767c5dc9d522e4c0
[ "MIT" ]
2
2021-04-25T07:01:01.000Z
2021-05-07T10:17:26.000Z
info/urls.py
ycy-tw/python-django-stock
263a926ae6aa8248fd4c4e8d767c5dc9d522e4c0
[ "MIT" ]
null
null
null
info/urls.py
ycy-tw/python-django-stock
263a926ae6aa8248fd4c4e8d767c5dc9d522e4c0
[ "MIT" ]
null
null
null
from django.urls import path, include from .views import ( basic_variable_view, ) urlpatterns = [ path('<int:symbol>/', basic_variable_view, name='info'), ]
18.444444
60
0.698795
72cc7e4d231809b3f0c8ae9421cd941f2c6054d5
15,979
py
Python
src/aleph/chains/common.py
aleph-im/py-aleph
a18beb8b4eba36887ca85054ed2471c3680bdfde
[ "MIT" ]
null
null
null
src/aleph/chains/common.py
aleph-im/py-aleph
a18beb8b4eba36887ca85054ed2471c3680bdfde
[ "MIT" ]
null
null
null
src/aleph/chains/common.py
aleph-im/py-aleph
a18beb8b4eba36887ca85054ed2471c3680bdfde
[ "MIT" ]
null
null
null
import asyncio import json import logging from dataclasses import asdict from enum import IntEnum from typing import Dict, Optional, Tuple, List from aleph_message.models import MessageType, ItemType from bson import ObjectId from pymongo import UpdateOne from aleph.config import get_config from aleph.exceptions import ( AlephStorageException, InvalidContent, ContentCurrentlyUnavailable, UnknownHashError, InvalidMessageError, ) from aleph.handlers.forget import handle_forget_message from aleph.handlers.storage import handle_new_storage from aleph.model.db_bulk_operation import DbBulkOperation from aleph.model.filepin import PermanentPin from aleph.model.messages import CappedMessage, Message from aleph.model.pending import PendingMessage, PendingTX from aleph.network import check_message as check_message_fn from aleph.permissions import check_sender_authorization from aleph.storage import get_json, pin_hash, add_json, get_message_content from .tx_context import TxContext from ..schemas.pending_messages import BasePendingMessage from ..utils import item_type_from_hash LOGGER = logging.getLogger("chains.common") async def get_verification_buffer(message: BasePendingMessage) -> bytes: """Returns a serialized string to verify the message integrity (this is was it signed) """ buffer = f"{message.chain}\n{message.sender}\n{message.type}\n{message.item_hash}" return buffer.encode("utf-8") async def mark_confirmed_data(chain_name, tx_hash, height): """Returns data required to mark a particular hash as confirmed in underlying chain. """ return { "confirmed": True, "confirmations": [ # TODO: we should add the current one there # and not replace it. {"chain": chain_name, "height": height, "hash": tx_hash} ], } async def delayed_incoming(message, chain_name=None, tx_hash=None, height=None): if message is None: return await PendingMessage.collection.insert_one( { "message": message, "source": dict( chain_name=chain_name, tx_hash=tx_hash, height=height, check_message=True, # should we store this? ), } ) class IncomingStatus(IntEnum): FAILED_PERMANENTLY = -1 RETRYING_LATER = 0 MESSAGE_HANDLED = 1 async def mark_message_for_retry( message: Dict, chain_name: Optional[str], tx_hash: Optional[str], height: Optional[int], check_message: bool, retrying: bool, existing_id, ): if not retrying: await PendingMessage.collection.insert_one( { "message": message, "source": dict( chain_name=chain_name, tx_hash=tx_hash, height=height, check_message=check_message, # should we store this? ), } ) else: LOGGER.debug(f"Incrementing for {existing_id}") result = await PendingMessage.collection.update_one( filter={"_id": ObjectId(existing_id)}, update={"$inc": {"retries": 1}} ) LOGGER.debug(f"Update result {result}") def update_message_item_type(message_dict: Dict) -> Dict: """ Ensures that the item_type field of a message is present. Sets it to the default value if the field is not specified. """ if "item_type" in message_dict: return message_dict if "item_content" in message_dict: item_type = ItemType.inline else: item_type = item_type_from_hash(message_dict["item_hash"]) message_dict["item_type"] = item_type return message_dict async def incoming( message: Dict, chain_name: Optional[str] = None, tx_hash: Optional[str] = None, height: Optional[int] = None, seen_ids: Optional[Dict[Tuple, int]] = None, check_message: bool = False, retrying: bool = False, existing_id: Optional[ObjectId] = None, ) -> Tuple[IncomingStatus, List[DbBulkOperation]]: """New incoming message from underlying chain. For regular messages it will be marked as confirmed if existing in database, created if not. """ # TODO: this is a temporary fix to set the item_type of the message to the correct # value. This should be replaced by a full use of Pydantic models. message = update_message_item_type(message) item_hash = message["item_hash"] sender = message["sender"] ids_key = (item_hash, sender, chain_name) if chain_name and tx_hash and height and seen_ids is not None: if ids_key in seen_ids.keys(): if height > seen_ids[ids_key]: return IncomingStatus.MESSAGE_HANDLED, [] filters = { "item_hash": item_hash, "chain": message["chain"], "sender": message["sender"], "type": message["type"], } existing = await Message.collection.find_one( filters, projection={"confirmed": 1, "confirmations": 1, "time": 1, "signature": 1}, ) if check_message: if existing is None or (existing["signature"] != message["signature"]): # check/sanitize the message if needed try: message = await check_message_fn( message, from_chain=(chain_name is not None) ) except InvalidMessageError: return IncomingStatus.FAILED_PERMANENTLY, [] if message is None: return IncomingStatus.MESSAGE_HANDLED, [] if retrying: LOGGER.debug("(Re)trying %s." % item_hash) else: LOGGER.info("Incoming %s." % item_hash) # we set the incoming chain as default for signature message["chain"] = message.get("chain", chain_name) # if existing is None: # # TODO: verify if search key is ok. do we need an unique key for messages? # existing = await Message.collection.find_one( # filters, projection={'confirmed': 1, 'confirmations': 1, 'time': 1}) if chain_name and tx_hash and height: # We are getting a confirmation here new_values = await mark_confirmed_data(chain_name, tx_hash, height) updates = { "$set": { "confirmed": True, }, "$min": {"time": message["time"]}, "$addToSet": {"confirmations": new_values["confirmations"][0]}, } else: updates = { "$max": { "confirmed": False, }, "$min": {"time": message["time"]}, } # new_values = {'confirmed': False} # this should be our default. should_commit = False if existing: if seen_ids is not None and height is not None: if ids_key in seen_ids.keys(): if height > seen_ids[ids_key]: return IncomingStatus.MESSAGE_HANDLED, [] else: seen_ids[ids_key] = height else: seen_ids[ids_key] = height # THIS CODE SHOULD BE HERE... # But, if a race condition appeared, we might have the message twice. # if (existing['confirmed'] and # chain_name in [c['chain'] for c in existing['confirmations']]): # return LOGGER.debug("Updating %s." % item_hash) if chain_name and tx_hash and height: # we need to update messages adding the confirmation # await Message.collection.update_many(filters, updates) should_commit = True else: # if not (chain_name and tx_hash and height): # new_values = {'confirmed': False} # this should be our default. try: content = await get_message_content(message) except InvalidContent: LOGGER.warning("Can't get content of object %r, won't retry." % item_hash) return IncomingStatus.FAILED_PERMANENTLY, [] except (ContentCurrentlyUnavailable, Exception) as e: if not isinstance(e, ContentCurrentlyUnavailable): LOGGER.exception("Can't get content of object %r" % item_hash) await mark_message_for_retry( message=message, chain_name=chain_name, tx_hash=tx_hash, height=height, check_message=check_message, retrying=retrying, existing_id=existing_id, ) return IncomingStatus.RETRYING_LATER, [] json_content = content.value if json_content.get("address", None) is None: json_content["address"] = message["sender"] if json_content.get("time", None) is None: json_content["time"] = message["time"] # warning: those handlers can modify message and content in place # and return a status. None has to be retried, -1 is discarded, True is # handled and kept. # TODO: change this, it's messy. try: if message["type"] == MessageType.store: handling_result = await handle_new_storage(message, json_content) elif message["type"] == MessageType.forget: # Handling it here means that there we ensure that the message # has been forgotten before it is saved on the node. # We may want the opposite instead: ensure that the message has # been saved before it is forgotten. handling_result = await handle_forget_message(message, json_content) else: handling_result = True except UnknownHashError: LOGGER.warning(f"Invalid IPFS hash for message {item_hash}, won't retry.") return IncomingStatus.FAILED_PERMANENTLY, [] except Exception: LOGGER.exception("Error using the message type handler") handling_result = None if handling_result is None: LOGGER.debug("Message type handler has failed, retrying later.") await mark_message_for_retry( message=message, chain_name=chain_name, tx_hash=tx_hash, height=height, check_message=check_message, retrying=retrying, existing_id=existing_id, ) return IncomingStatus.RETRYING_LATER, [] if not handling_result: LOGGER.warning( "Message type handler has failed permanently for " "%r, won't retry." % item_hash ) return IncomingStatus.FAILED_PERMANENTLY, [] if not await check_sender_authorization(message, json_content): LOGGER.warning("Invalid sender for %s" % item_hash) return IncomingStatus.MESSAGE_HANDLED, [] if seen_ids is not None and height is not None: if ids_key in seen_ids.keys(): if height > seen_ids[ids_key]: return IncomingStatus.MESSAGE_HANDLED, [] else: seen_ids[ids_key] = height else: seen_ids[ids_key] = height LOGGER.debug("New message to store for %s." % item_hash) # message.update(new_values) updates["$set"] = { "content": json_content, "size": len(content.raw_value), "item_content": message.get("item_content"), "item_type": message.get("item_type"), "channel": message.get("channel"), "signature": message.get("signature"), **updates.get("$set", {}), } should_commit = True if should_commit: update_op = UpdateOne(filters, updates, upsert=True) bulk_ops = [DbBulkOperation(Message, update_op)] # Capped collections do not accept updates that increase the size, so # we must ignore confirmations. if existing is None: bulk_ops.append(DbBulkOperation(CappedMessage, update_op)) return IncomingStatus.MESSAGE_HANDLED, bulk_ops return IncomingStatus.MESSAGE_HANDLED, [] async def process_one_message(message: Dict, *args, **kwargs): """ Helper function to process a message on the spot. """ status, ops = await incoming(message, *args, **kwargs) for op in ops: await op.collection.collection.bulk_write([op.operation]) async def get_chaindata(messages, bulk_threshold=2000): """Returns content ready to be broadcasted on-chain (aka chaindata). If message length is over bulk_threshold (default 2000 chars), store list in IPFS and store the object hash instead of raw list. """ chaindata = {"protocol": "aleph", "version": 1, "content": {"messages": messages}} content = json.dumps(chaindata) if len(content) > bulk_threshold: ipfs_id = await add_json(chaindata) return json.dumps( {"protocol": "aleph-offchain", "version": 1, "content": ipfs_id} ) else: return content async def get_chaindata_messages( chaindata: Dict, context: TxContext, seen_ids: Optional[List] = None ): config = get_config() protocol = chaindata.get("protocol", None) version = chaindata.get("version", None) if protocol == "aleph" and version == 1: messages = chaindata["content"]["messages"] if not isinstance(messages, list): error_msg = f"Got bad data in tx {context!r}" raise InvalidContent(error_msg) return messages if protocol == "aleph-offchain" and version == 1: assert isinstance(chaindata.get("content"), str) if seen_ids is not None: if chaindata["content"] in seen_ids: # is it really what we want here? LOGGER.debug("Already seen") return None else: LOGGER.debug("Adding to seen_ids") seen_ids.append(chaindata["content"]) try: content = await get_json(chaindata["content"], timeout=10) except AlephStorageException: # Let the caller handle unavailable/invalid content raise except Exception as e: error_msg = f"Can't get content of offchain object {chaindata['content']!r}" LOGGER.exception("%s", error_msg) raise ContentCurrentlyUnavailable(error_msg) from e try: messages = await get_chaindata_messages(content.value, context) except AlephStorageException: LOGGER.debug("Got no message") raise LOGGER.info("Got bulk data with %d items" % len(messages)) if config.ipfs.enabled.value: try: LOGGER.info(f"chaindata {chaindata}") await PermanentPin.register( multihash=chaindata["content"], reason={ "source": "chaindata", "protocol": chaindata["protocol"], "version": chaindata["version"], }, ) # Some IPFS fetches can take a while, hence the large timeout. await asyncio.wait_for(pin_hash(chaindata["content"]), timeout=120) except asyncio.TimeoutError: LOGGER.warning(f"Can't pin hash {chaindata['content']}") return messages else: error_msg = f"Got unknown protocol/version object in tx {context!r}" LOGGER.info("%s", error_msg) raise InvalidContent(error_msg) async def incoming_chaindata(content: Dict, context: TxContext): """Incoming data from a chain. Content can be inline of "offchain" through an ipfs hash. For now we only add it to the database, it will be processed later. """ await PendingTX.collection.insert_one( {"content": content, "context": asdict(context)} )
35.827354
88
0.610489
ae031947aa305d704ac5713b165fe51ba01c3a70
1,870
py
Python
app/models.py
andyhoang7/flaskFBlogin
773b85842eb0e4ab6c0671402058a3cc808b3063
[ "MIT" ]
null
null
null
app/models.py
andyhoang7/flaskFBlogin
773b85842eb0e4ab6c0671402058a3cc808b3063
[ "MIT" ]
null
null
null
app/models.py
andyhoang7/flaskFBlogin
773b85842eb0e4ab6c0671402058a3cc808b3063
[ "MIT" ]
null
null
null
from flask_sqlalchemy import SQLAlchemy from flask_login import LoginManager, UserMixin from flask_dance.consumer.storage.sqla import OAuthConsumerMixin db = SQLAlchemy() class User(UserMixin, db.Model): __tablename__="users" id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(256), unique=True) class OAuth(OAuthConsumerMixin, db.Model): provider_user_id = db.Column(db.String(256), unique=True, nullable=False) user_id = db.Column(db.Integer, db.ForeignKey(User.id), nullable=False) user = db.relationship(User) class Token(db.Model): id = db.Column(db.Integer, primary_key=True) uuid = db.Column(db.String, unique=True) user_id = db.Column(db.Integer, db.ForeignKey(User.id), nullable=False) user = db.relationship(User) class Scores(db.Model): id = db.Column(db.Integer, primary_key=True) wpm = db.Column(db.String) time = db.Column(db.String) error = db.Column(db.String) user_id = db.Column(db.Integer, db.ForeignKey(User.id), nullable=False) user = db.relationship(User) excerp_id = db.Column(db.Integer, db.ForeignKey('excerpts.id'), nullable=False) excerp = db.relationship('Excerpts') class Excerpts(db.Model): id = db.Column(db.Integer, primary_key=True) body = db.Column(db.String) # setup login manager login_manager = LoginManager() # login_manager.login_view = "facebook.login" @login_manager.user_loader def load_user(user_id): return User.query.get(int(user_id)) @login_manager.request_loader def load_user_from_request(request): # Login Using our Custom Header api_key = request.headers.get('Authorization') if api_key: api_key = api_key.replace('Token ', '', 1) token = Token.query.filter_by(uuid=api_key).first() if token: return token.user return None
28.333333
83
0.703743
920441c303dc0b3ebd8084397e67015bde2180cb
6,286
py
Python
kubernetes/client/models/v1beta1_role_list.py
anemerovsky-essextec/python
6e40b9169b27c3f1f9422c0f6dd1cd9caef8d57c
[ "Apache-2.0" ]
null
null
null
kubernetes/client/models/v1beta1_role_list.py
anemerovsky-essextec/python
6e40b9169b27c3f1f9422c0f6dd1cd9caef8d57c
[ "Apache-2.0" ]
null
null
null
kubernetes/client/models/v1beta1_role_list.py
anemerovsky-essextec/python
6e40b9169b27c3f1f9422c0f6dd1cd9caef8d57c
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.12.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class V1beta1RoleList(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'api_version': 'str', 'items': 'list[V1beta1Role]', 'kind': 'str', 'metadata': 'V1ListMeta' } attribute_map = { 'api_version': 'apiVersion', 'items': 'items', 'kind': 'kind', 'metadata': 'metadata' } def __init__(self, api_version=None, items=None, kind=None, metadata=None): """ V1beta1RoleList - a model defined in Swagger """ self._api_version = None self._items = None self._kind = None self._metadata = None self.discriminator = None if api_version is not None: self.api_version = api_version self.items = items if kind is not None: self.kind = kind if metadata is not None: self.metadata = metadata @property def api_version(self): """ Gets the api_version of this V1beta1RoleList. APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#resources :return: The api_version of this V1beta1RoleList. :rtype: str """ return self._api_version @api_version.setter def api_version(self, api_version): """ Sets the api_version of this V1beta1RoleList. APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#resources :param api_version: The api_version of this V1beta1RoleList. :type: str """ self._api_version = api_version @property def items(self): """ Gets the items of this V1beta1RoleList. Items is a list of Roles :return: The items of this V1beta1RoleList. :rtype: list[V1beta1Role] """ return self._items @items.setter def items(self, items): """ Sets the items of this V1beta1RoleList. Items is a list of Roles :param items: The items of this V1beta1RoleList. :type: list[V1beta1Role] """ if items is None: raise ValueError("Invalid value for `items`, must not be `None`") self._items = items @property def kind(self): """ Gets the kind of this V1beta1RoleList. Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#types-kinds :return: The kind of this V1beta1RoleList. :rtype: str """ return self._kind @kind.setter def kind(self, kind): """ Sets the kind of this V1beta1RoleList. Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#types-kinds :param kind: The kind of this V1beta1RoleList. :type: str """ self._kind = kind @property def metadata(self): """ Gets the metadata of this V1beta1RoleList. Standard object's metadata. :return: The metadata of this V1beta1RoleList. :rtype: V1ListMeta """ return self._metadata @metadata.setter def metadata(self, metadata): """ Sets the metadata of this V1beta1RoleList. Standard object's metadata. :param metadata: The metadata of this V1beta1RoleList. :type: V1ListMeta """ self._metadata = metadata def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, V1beta1RoleList): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
29.650943
281
0.596246
75b5a85adfc584b7fe8b7f8b95d1161720cefce9
1,047
py
Python
Testing/urls.py
DudaEugen/JustTesting
7b62c7f5d1d918c3fe82bf00aff4009212427a6f
[ "MIT" ]
null
null
null
Testing/urls.py
DudaEugen/JustTesting
7b62c7f5d1d918c3fe82bf00aff4009212427a6f
[ "MIT" ]
null
null
null
Testing/urls.py
DudaEugen/JustTesting
7b62c7f5d1d918c3fe82bf00aff4009212427a6f
[ "MIT" ]
null
null
null
from django.conf.urls import url from .views import * urlpatterns = [ url(r'^start(?:=(?P<test_pk>\d+))?$', TestingSessionCreateView.as_view(), name='create testing session'), url(r'^session=(?P<pk>\d+)$', TestingView.as_view(), name='testing'), url(r'^session=(?P<pk>\d+)/close$', CloseTestingSessionView.as_view(), name='close testing session'), url(r'^session=(?P<session_pk>\d+)/solution=(?P<solution_pk>\d+)/correct$', RightSolutionView.as_view(), name='right solution'), url(r'^session=(?P<session_pk>\d+)/skip_task$', SkipTaskView.as_view(), name='skip task'), url(r'^session=(?P<pk>\d+)/result$', TestingResultView.as_view(), name='testing result'), url(r'^sessions$', ActiveTestingSessions.as_view(), name='active testing sessions'), url(r'^results$', ResultsDispatcherView.as_view(), name='results dispatcher'), url(r'^results/test=(?P<test_pk>\d+)&dates=(?P<from>[0-9]{2}.[0-9]{2}.[0-9]{4})-' r'(?P<to>[0-9]{2}.[0-9]{2}.[0-9]{4})$', ResultsView.as_view(), name='testing results') ]
58.166667
109
0.646609
ac2c781e3e7704031454966ab93612199d134b7d
194
py
Python
empyror/config.py
GoogleGenius/empyror
c0a2db376e1e21eaa42ffda52b38ff5308e70c59
[ "Apache-2.0" ]
null
null
null
empyror/config.py
GoogleGenius/empyror
c0a2db376e1e21eaa42ffda52b38ff5308e70c59
[ "Apache-2.0" ]
null
null
null
empyror/config.py
GoogleGenius/empyror
c0a2db376e1e21eaa42ffda52b38ff5308e70c59
[ "Apache-2.0" ]
null
null
null
import os from dotenv import load_dotenv # type: ignore import hikari load_dotenv() TOKEN: str = os.environ["TOKEN"] GUILD_ID: hikari.Snowflake = hikari.Snowflake(os.environ["GUILD_ID"])
14.923077
69
0.747423
61622c0fa73510da21a8f448d471b45a079a17b1
46,877
py
Python
test_ghstack.py
pietern/ghstack
c524683caaa525a084a9f980868ce003213ed5e9
[ "MIT" ]
1
2020-06-07T02:30:21.000Z
2020-06-07T02:30:21.000Z
test_ghstack.py
pietern/ghstack
c524683caaa525a084a9f980868ce003213ed5e9
[ "MIT" ]
null
null
null
test_ghstack.py
pietern/ghstack
c524683caaa525a084a9f980868ce003213ed5e9
[ "MIT" ]
null
null
null
from __future__ import print_function import unittest import subprocess import os import shutil import tempfile import re import logging import sys import contextlib import io from typing import ClassVar, Dict, NewType, List, Tuple, Iterator import ghstack.expecttest as expecttest import ghstack.submit import ghstack.land import ghstack.shell import ghstack.github import ghstack.unlink import ghstack.github_fake from ghstack.submit import GitCommitHash @contextlib.contextmanager def captured_output() -> Iterator[Tuple[io.StringIO, io.StringIO]]: new_out, new_err = io.StringIO(), io.StringIO() old_out, old_err = sys.stdout, sys.stderr try: sys.stdout, sys.stderr = new_out, new_err yield sys.stdout, sys.stderr finally: sys.stdout, sys.stderr = old_out, old_err # TODO: Figure out how to make all git stuff in memory, so it runs # faster. Need to work on OSX. GH_KEEP_TMP = os.getenv('GH_KEEP_TMP') SubstituteRev = NewType('SubstituteRev', str) def strip_trailing_whitespace(text: str) -> str: return re.sub(r' +$', '', text, flags=re.MULTILINE) def indent(text: str, prefix: str) -> str: return ''.join(prefix + line if line.strip() else line for line in text.splitlines(True)) class TestGh(expecttest.TestCase): proc: ClassVar[subprocess.Popen] github: ghstack.github.GitHubEndpoint rev_map: Dict[SubstituteRev, GitCommitHash] upstream_sh: ghstack.shell.Shell sh: ghstack.shell.Shell def setUp(self) -> None: # Set up a "parent" repository with an empty initial commit that we'll operate on upstream_dir = tempfile.mkdtemp() if GH_KEEP_TMP: self.addCleanup(lambda: print("upstream_dir preserved at: {}".format(upstream_dir))) else: self.addCleanup(lambda: shutil.rmtree(upstream_dir)) self.upstream_sh = ghstack.shell.Shell(cwd=upstream_dir, testing=True) # I plan to fix this type error soon self.github = ghstack.github_fake.FakeGitHubEndpoint(self.upstream_sh) local_dir = tempfile.mkdtemp() if GH_KEEP_TMP: self.addCleanup(lambda: print("local_dir preserved at: {}".format(local_dir))) else: self.addCleanup(lambda: shutil.rmtree(local_dir)) self.sh = ghstack.shell.Shell(cwd=local_dir, testing=True) self.sh.git("clone", upstream_dir, ".") self.rev_map = {} self.substituteRev(GitCommitHash("HEAD"), SubstituteRev("rINI0")) def writeFileAndAdd(self, filename: str, contents: str) -> None: with self.sh.open(filename, "w") as f: f.write(contents) self.sh.git("add", filename) def lookupRev(self, substitute: str) -> GitCommitHash: return self.rev_map[SubstituteRev(substitute)] def substituteRev(self, rev: str, substitute: str) -> None: # short doesn't really have to be here if we do substituteRev h = GitCommitHash(self.sh.git("rev-parse", "--short", rev)) self.rev_map[SubstituteRev(substitute)] = h print("substituteRev: {} = {}".format(substitute, h)) self.substituteExpected(h, substitute) def gh(self, msg: str = 'Update', update_fields: bool = False, short: bool = False, no_skip: bool = False) -> List[ghstack.submit.DiffMeta]: return ghstack.submit.main( msg=msg, username='ezyang', github=self.github, sh=self.sh, update_fields=update_fields, stack_header='Stack', repo_owner='pytorch', repo_name='pytorch', short=short, no_skip=no_skip) def gh_land(self) -> None: return ghstack.land.main( sh=self.sh ) # TODO: pass arguments def gh_unlink(self) -> None: ghstack.unlink.main( sh=self.sh ) def dump_github(self) -> str: r = self.github.graphql(""" query { repository(name: "pytorch", owner: "pytorch") { pullRequests { nodes { number baseRefName headRefName title body } } } } """) prs = [] refs = "" for pr in r['data']['repository']['pullRequests']['nodes']: pr['body'] = indent(pr['body'].replace('\r', ''), ' ') pr['commits'] = self.upstream_sh.git("log", "--reverse", "--pretty=format:%h %s", pr["baseRefName"] + ".." + pr["headRefName"]) pr['commits'] = indent(pr['commits'], ' * ') prs.append("#{number} {title} ({headRefName} -> {baseRefName})\n\n" "{body}\n\n{commits}\n\n".format(**pr)) # TODO: Use of git --graph here is a bit of a loaded # footgun, because git doesn't really give any guarantees # about what the graph should look like. So there isn't # really any assurance that this will output the same thing # on multiple test runs. We'll have to reimplement this # ourselves to do it right. refs = self.upstream_sh.git("log", "--graph", "--oneline", "--branches=gh/*/*/head", "--decorate") return "".join(prs) + "Repository state:\n\n" + indent(strip_trailing_whitespace(refs), ' ') + "\n\n" # ------------------------------------------------------------------------- # def test_simple(self) -> None: print("####################") print("### test_simple") print("###") print("### First commit") self.writeFileAndAdd("a", "asdf") self.sh.git("commit", "-m", "Commit 1\n\nThis is my first commit") self.sh.test_tick() self.gh('Initial 1') self.substituteRev("HEAD", "rCOM1") self.substituteRev("origin/gh/ezyang/1/head", "rMRG1") self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * **#500 Commit 1** This is my first commit * rMRG1 Commit 1 Repository state: * rMRG1 (gh/ezyang/1/head) Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') # Just to test what happens if we use those branches self.sh.git("checkout", "gh/ezyang/1/orig") print("###") print("### Second commit") self.writeFileAndAdd("b", "asdf") self.sh.git("commit", "-m", "Commit 2\n\nThis is my second commit") self.sh.test_tick() self.gh('Initial 2') self.substituteRev("HEAD", "rCOM2") self.substituteRev("origin/gh/ezyang/2/head", "rMRG2") self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * #501 Commit 2 * **#500 Commit 1** This is my first commit * rMRG1 Commit 1 #501 Commit 2 (gh/ezyang/2/head -> gh/ezyang/2/base) Stack: * **#501 Commit 2** * #500 Commit 1 This is my second commit * rMRG2 Commit 2 Repository state: * rMRG2 (gh/ezyang/2/head) Commit 2 * rMRG1 (gh/ezyang/2/base, gh/ezyang/1/head) Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') # ------------------------------------------------------------------------- # def test_empty_commit(self) -> None: print("####################") print("### test_empty_commit") print("###") print("### Empty commit") self.sh.git("commit", "--allow-empty", "-m", "Commit 1\n\nThis is my first commit") self.writeFileAndAdd("bar", "baz") self.sh.git("commit", "-m", "Commit 2") self.sh.test_tick() self.gh('Initial') self.substituteRev("HEAD", "rCOM1") self.substituteRev("origin/gh/ezyang/1/head", "rMRG1") self.assertExpected(self.dump_github(), '''\ #500 Commit 2 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * **#500 Commit 2** * rMRG1 Commit 2 Repository state: * rMRG1 (gh/ezyang/1/head) Commit 2 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') # ------------------------------------------------------------------------- # def test_commit_amended_to_empty(self) -> None: print("####################") print("### test_empty_commit") print("###") self.writeFileAndAdd("bar", "baz") self.sh.git("commit", "-m", "Commit 1\n\nThis is my first commit") self.sh.test_tick() self.gh('Initial') self.substituteRev("HEAD", "rCOM1") self.substituteRev("origin/gh/ezyang/1/head", "rMRG1") self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * **#500 Commit 1** This is my first commit * rMRG1 Commit 1 Repository state: * rMRG1 (gh/ezyang/1/head) Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') self.sh.git('rm', 'bar') self.sh.git("commit", "--amend", "--allow-empty") self.sh.test_tick() self.gh('Update') self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * **#500 Commit 1** This is my first commit * rMRG1 Commit 1 Repository state: * rMRG1 (gh/ezyang/1/head) Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') # ------------------------------------------------------------------------- # def test_amend(self) -> None: print("####################") print("### test_amend") print("###") print("### First commit") with self.sh.open("file1.txt", "w") as f: f.write("A") self.sh.git("add", "file1.txt") self.sh.git("commit", "-m", "Commit 1\n\nA commit with an A") self.sh.test_tick() self.gh('Initial 1') self.substituteRev("HEAD", "rCOM1") self.substituteRev("origin/gh/ezyang/1/head", "rMRG1") self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * **#500 Commit 1** A commit with an A * rMRG1 Commit 1 Repository state: * rMRG1 (gh/ezyang/1/head) Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') print("###") print("### Amend the commit") with self.sh.open("file1.txt", "w") as f: f.write("ABBA") self.sh.git("add", "file1.txt") # Can't use -m here, it will clobber the metadata self.sh.git("commit", "--amend") self.substituteRev("HEAD", "rCOM2") self.sh.test_tick() self.gh('Update A') self.substituteRev("origin/gh/ezyang/1/head", "rMRG2") self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * **#500 Commit 1** A commit with an A * rMRG1 Commit 1 * rMRG2 Update A on "Commit 1" Repository state: * rMRG2 (gh/ezyang/1/head) Update A on "Commit 1" * rMRG1 Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') # ------------------------------------------------------------------------- # def test_amend_message_only(self) -> None: print("####################") print("### test_amend") print("###") print("### First commit") with self.sh.open("file1.txt", "w") as f: f.write("A") self.sh.git("add", "file1.txt") self.sh.git("commit", "-m", "Commit 1\n\nA commit with an A") self.sh.test_tick() self.gh('Initial 1') self.substituteRev("HEAD", "rCOM1") self.substituteRev("origin/gh/ezyang/1/head", "rMRG1") self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * **#500 Commit 1** A commit with an A * rMRG1 Commit 1 Repository state: * rMRG1 (gh/ezyang/1/head) Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') print("###") print("### Amend the commit") # Can't use -m here, it will clobber the metadata self.sh.git("filter-branch", "-f", "--msg-filter", "cat && echo 'blargle'", "HEAD~..HEAD") self.substituteRev("HEAD", "rCOM2") self.sh.test_tick() self.gh('Update A', no_skip=True) self.substituteRev("origin/gh/ezyang/1/head", "rMRG2") self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * **#500 Commit 1** A commit with an A * rMRG1 Commit 1 * rMRG2 Update A on "Commit 1" Repository state: * rMRG2 (gh/ezyang/1/head) Update A on "Commit 1" * rMRG1 Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') # ------------------------------------------------------------------------- # def test_amend_out_of_date(self) -> None: print("####################") print("### test_amend_out_of_date") print("###") print("### First commit") with self.sh.open("file1.txt", "w") as f: f.write("A") self.sh.git("add", "file1.txt") self.sh.git("commit", "-m", "Commit 1\n\nA commit with an A") self.sh.test_tick() self.gh('Initial 1') old_head = self.sh.git("rev-parse", "HEAD") print("###") print("### Amend the commit") with self.sh.open("file1.txt", "w") as f: f.write("ABBA") self.sh.git("add", "file1.txt") # Can't use -m here, it will clobber the metadata self.sh.git("commit", "--amend") self.sh.test_tick() self.gh('Update A') # Reset to the old version self.sh.git("reset", "--hard", old_head) with self.sh.open("file1.txt", "w") as f: f.write("BAAB") self.sh.git("add", "file1.txt") # Can't use -m here, it will clobber the metadata self.sh.git("commit", "--amend") self.sh.test_tick() self.assertRaises(RuntimeError, lambda: self.gh('Update B')) # ------------------------------------------------------------------------- # def test_multi(self) -> None: print("####################") print("### test_multi") print("###") print("### First commit") with self.sh.open("file1.txt", "w") as f: f.write("A") self.sh.git("add", "file1.txt") self.sh.git("commit", "-m", "Commit 1\n\nA commit with an A") self.sh.test_tick() print("###") print("### Second commit") with self.sh.open("file2.txt", "w") as f: f.write("B") self.sh.git("add", "file2.txt") self.sh.git("commit", "-m", "Commit 2\n\nA commit with a B") self.sh.test_tick() self.gh('Initial 1 and 2') self.substituteRev("HEAD~", "rCOM1") self.substituteRev("HEAD", "rCOM2") self.substituteRev("origin/gh/ezyang/1/head", "rMRG1") self.substituteRev("origin/gh/ezyang/2/head", "rMRG2") self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * #501 Commit 2 * **#500 Commit 1** A commit with an A * rMRG1 Commit 1 #501 Commit 2 (gh/ezyang/2/head -> gh/ezyang/2/base) Stack: * **#501 Commit 2** * #500 Commit 1 A commit with a B * rMRG2 Commit 2 Repository state: * rMRG2 (gh/ezyang/2/head) Commit 2 * rMRG1 (gh/ezyang/2/base, gh/ezyang/1/head) Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') # ------------------------------------------------------------------------- # def test_amend_top(self) -> None: print("####################") print("### test_amend_top") print("###") print("### First commit") with self.sh.open("file1.txt", "w") as f: f.write("A") self.sh.git("add", "file1.txt") self.sh.git("commit", "-m", "Commit 1\n\nA commit with an A") self.sh.test_tick() self.gh('Initial 1') self.substituteRev("HEAD", "rCOM1") self.substituteRev("origin/gh/ezyang/1/head", "rMRG1") print("###") print("### Second commit") with self.sh.open("file2.txt", "w") as f: f.write("B") self.sh.git("add", "file2.txt") self.sh.git("commit", "-m", "Commit 2\n\nA commit with a B") self.sh.test_tick() self.gh('Initial 2') self.substituteRev("HEAD", "rCOM2") self.substituteRev("origin/gh/ezyang/2/head", "rMRG2") self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * #501 Commit 2 * **#500 Commit 1** A commit with an A * rMRG1 Commit 1 #501 Commit 2 (gh/ezyang/2/head -> gh/ezyang/2/base) Stack: * **#501 Commit 2** * #500 Commit 1 A commit with a B * rMRG2 Commit 2 Repository state: * rMRG2 (gh/ezyang/2/head) Commit 2 * rMRG1 (gh/ezyang/2/base, gh/ezyang/1/head) Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') print("###") print("### Amend the top commit") with self.sh.open("file2.txt", "w") as f: f.write("BAAB") self.sh.git("add", "file2.txt") # Can't use -m here, it will clobber the metadata self.sh.git("commit", "--amend") self.substituteRev("HEAD", "rCOM2A") self.sh.test_tick() self.gh('Update A') self.substituteRev("origin/gh/ezyang/2/head", "rMRG2A") self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * #501 Commit 2 * **#500 Commit 1** A commit with an A * rMRG1 Commit 1 #501 Commit 2 (gh/ezyang/2/head -> gh/ezyang/2/base) Stack: * **#501 Commit 2** * #500 Commit 1 A commit with a B * rMRG2 Commit 2 * rMRG2A Update A on "Commit 2" Repository state: * rMRG2A (gh/ezyang/2/head) Update A on "Commit 2" * rMRG2 Commit 2 * rMRG1 (gh/ezyang/2/base, gh/ezyang/1/head) Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') # ------------------------------------------------------------------------- # def test_amend_bottom(self) -> None: print("####################") print("### test_amend_bottom") print("###") print("### First commit") with self.sh.open("file1.txt", "w") as f: f.write("A") self.sh.git("add", "file1.txt") self.sh.git("commit", "-m", "Commit 1\n\nA commit with an A") self.sh.test_tick() self.gh('Initial 1') self.substituteRev("HEAD", "rCOM1") self.substituteRev("origin/gh/ezyang/1/head", "rMRG1") print("###") print("### Second commit") with self.sh.open("file2.txt", "w") as f: f.write("B") self.sh.git("add", "file2.txt") self.sh.git("commit", "-m", "Commit 2\n\nA commit with a B") self.sh.test_tick() self.gh('Initial 2') self.substituteRev("HEAD", "rCOM2") self.substituteRev("origin/gh/ezyang/2/head", "rMRG2") self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * #501 Commit 2 * **#500 Commit 1** A commit with an A * rMRG1 Commit 1 #501 Commit 2 (gh/ezyang/2/head -> gh/ezyang/2/base) Stack: * **#501 Commit 2** * #500 Commit 1 A commit with a B * rMRG2 Commit 2 Repository state: * rMRG2 (gh/ezyang/2/head) Commit 2 * rMRG1 (gh/ezyang/2/base, gh/ezyang/1/head) Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') print("###") print("### Amend the bottom commit") self.sh.git("checkout", "HEAD~") with self.sh.open("file1.txt", "w") as f: f.write("ABBA") self.sh.git("add", "file1.txt") # Can't use -m here, it will clobber the metadata self.sh.git("commit", "--amend") self.substituteRev("HEAD", "rCOM1A") self.sh.test_tick() self.gh('Update A') self.substituteRev("origin/gh/ezyang/1/head", "rMRG1A") self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * **#500 Commit 1** A commit with an A * rMRG1 Commit 1 * rMRG1A Update A on "Commit 1" #501 Commit 2 (gh/ezyang/2/head -> gh/ezyang/2/base) Stack: * **#501 Commit 2** * #500 Commit 1 A commit with a B * rMRG2 Commit 2 Repository state: * rMRG1A (gh/ezyang/1/head) Update A on "Commit 1" | * rMRG2 (gh/ezyang/2/head) Commit 2 |/ * rMRG1 (gh/ezyang/2/base) Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') print("###") print("### Restack the top commit") self.sh.git("cherry-pick", self.lookupRev("rCOM2")) self.sh.test_tick() self.gh('Update B') self.substituteRev("HEAD", "rCOM2A") self.substituteRev("origin/gh/ezyang/2/head", "rMRG2A") self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * #501 Commit 2 * **#500 Commit 1** A commit with an A * rMRG1 Commit 1 * rMRG1A Update A on "Commit 1" #501 Commit 2 (gh/ezyang/2/head -> gh/ezyang/2/base) Stack: * **#501 Commit 2** * #500 Commit 1 A commit with a B * rMRG2 Commit 2 * rMRG2A Update B on "Commit 2" Repository state: * rMRG2A (gh/ezyang/2/head) Update B on "Commit 2" |\\ | * rMRG1A (gh/ezyang/2/base, gh/ezyang/1/head) Update A on "Commit 1" * | rMRG2 Commit 2 |/ * rMRG1 Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') # ------------------------------------------------------------------------- # def test_amend_all(self) -> None: print("####################") print("### test_amend_all") print("###") print("### First commit") with self.sh.open("file1.txt", "w") as f: f.write("A") self.sh.git("add", "file1.txt") self.sh.git("commit", "-m", "Commit 1\n\nA commit with an A") self.sh.test_tick() self.gh('Initial 1') self.substituteRev("HEAD", "rCOM1") self.substituteRev("origin/gh/ezyang/1/head", "rMRG1") print("###") print("### Second commit") with self.sh.open("file2.txt", "w") as f: f.write("B") self.sh.git("add", "file2.txt") self.sh.git("commit", "-m", "Commit 2\n\nA commit with a B") self.sh.test_tick() self.gh('Initial 2') self.substituteRev("HEAD", "rCOM2") self.substituteRev("origin/gh/ezyang/2/head", "rMRG2") self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * #501 Commit 2 * **#500 Commit 1** A commit with an A * rMRG1 Commit 1 #501 Commit 2 (gh/ezyang/2/head -> gh/ezyang/2/base) Stack: * **#501 Commit 2** * #500 Commit 1 A commit with a B * rMRG2 Commit 2 Repository state: * rMRG2 (gh/ezyang/2/head) Commit 2 * rMRG1 (gh/ezyang/2/base, gh/ezyang/1/head) Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') print("###") print("### Amend the commits") self.sh.git("checkout", "HEAD~") with self.sh.open("file1.txt", "w") as f: f.write("ABBA") self.sh.git("add", "file1.txt") # Can't use -m here, it will clobber the metadata self.sh.git("commit", "--amend") self.substituteRev("HEAD", "rCOM1A") self.sh.test_tick() self.sh.git("cherry-pick", self.lookupRev("rCOM2")) self.substituteRev("HEAD", "rCOM2A") self.sh.test_tick() self.gh('Update A') self.substituteRev("origin/gh/ezyang/1/head", "rMRG1A") self.substituteRev("origin/gh/ezyang/2/head", "rMRG2A") self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * #501 Commit 2 * **#500 Commit 1** A commit with an A * rMRG1 Commit 1 * rMRG1A Update A on "Commit 1" #501 Commit 2 (gh/ezyang/2/head -> gh/ezyang/2/base) Stack: * **#501 Commit 2** * #500 Commit 1 A commit with a B * rMRG2 Commit 2 * rMRG2A Update A on "Commit 2" Repository state: * rMRG2A (gh/ezyang/2/head) Update A on "Commit 2" |\\ | * rMRG1A (gh/ezyang/2/base, gh/ezyang/1/head) Update A on "Commit 1" * | rMRG2 Commit 2 |/ * rMRG1 Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') # ------------------------------------------------------------------------- # def test_rebase(self) -> None: print("####################") print("### test_rebase") self.sh.git("checkout", "-b", "feature") print("###") print("### First commit") with self.sh.open("file1.txt", "w") as f: f.write("A") self.sh.git("add", "file1.txt") self.sh.git("commit", "-m", "Commit 1\n\nA commit with an A") self.sh.test_tick() self.gh('Initial 1') self.substituteRev("HEAD", "rCOM1") self.substituteRev("origin/gh/ezyang/1/head", "rMRG1") print("###") print("### Second commit") with self.sh.open("file2.txt", "w") as f: f.write("B") self.sh.git("add", "file2.txt") self.sh.git("commit", "-m", "Commit 2\n\nA commit with a B") self.sh.test_tick() self.gh('Initial 2') self.substituteRev("HEAD", "rCOM2") self.substituteRev("origin/gh/ezyang/2/head", "rMRG2") self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * #501 Commit 2 * **#500 Commit 1** A commit with an A * rMRG1 Commit 1 #501 Commit 2 (gh/ezyang/2/head -> gh/ezyang/2/base) Stack: * **#501 Commit 2** * #500 Commit 1 A commit with a B * rMRG2 Commit 2 Repository state: * rMRG2 (gh/ezyang/2/head) Commit 2 * rMRG1 (gh/ezyang/2/base, gh/ezyang/1/head) Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') print("###") print("### Push master forward") self.sh.git("checkout", "master") with self.sh.open("master.txt", "w") as f: f.write("M") self.sh.git("add", "master.txt") self.sh.git("commit", "-m", "Master commit 1\n\nA commit with a M") self.substituteRev("HEAD", "rINI2") self.sh.test_tick() self.sh.git("push", "origin", "master") print("###") print("### Rebase the commits") self.sh.git("checkout", "feature") self.sh.git("rebase", "origin/master") self.substituteRev("HEAD", "rCOM2A") self.substituteRev("HEAD~", "rCOM1A") self.gh('Rebase') self.substituteRev("origin/gh/ezyang/1/head", "rMRG1A") self.substituteRev("origin/gh/ezyang/2/head", "rMRG2A") self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * #501 Commit 2 * **#500 Commit 1** A commit with an A * rMRG1 Commit 1 * rMRG1A Rebase on "Commit 1" #501 Commit 2 (gh/ezyang/2/head -> gh/ezyang/2/base) Stack: * **#501 Commit 2** * #500 Commit 1 A commit with a B * rMRG2 Commit 2 * rMRG2A Rebase on "Commit 2" Repository state: * rMRG2A (gh/ezyang/2/head) Rebase on "Commit 2" |\\ | * rMRG1A (gh/ezyang/2/base, gh/ezyang/1/head) Rebase on "Commit 1" | |\\ | | * rINI2 (HEAD -> master, gh/ezyang/1/base) Master commit 1 * | | rMRG2 Commit 2 |/ / * | rMRG1 Commit 1 |/ * rINI0 Initial commit ''') # ------------------------------------------------------------------------- # def test_cherry_pick(self) -> None: print("####################") print("### test_cherry_pick") self.sh.git("checkout", "-b", "feature") print("###") print("### First commit") with self.sh.open("file1.txt", "w") as f: f.write("A") self.sh.git("add", "file1.txt") self.sh.git("commit", "-m", "Commit 1\n\nA commit with an A") self.sh.test_tick() self.gh('Initial 1') self.substituteRev("HEAD", "rCOM1") self.substituteRev("origin/gh/ezyang/1/head", "rMRG1") print("###") print("### Second commit") with self.sh.open("file2.txt", "w") as f: f.write("B") self.sh.git("add", "file2.txt") self.sh.git("commit", "-m", "Commit 2\n\nA commit with a B") self.sh.test_tick() self.gh('Initial 2') self.substituteRev("HEAD", "rCOM2") self.substituteRev("origin/gh/ezyang/2/head", "rMRG2") self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * #501 Commit 2 * **#500 Commit 1** A commit with an A * rMRG1 Commit 1 #501 Commit 2 (gh/ezyang/2/head -> gh/ezyang/2/base) Stack: * **#501 Commit 2** * #500 Commit 1 A commit with a B * rMRG2 Commit 2 Repository state: * rMRG2 (gh/ezyang/2/head) Commit 2 * rMRG1 (gh/ezyang/2/base, gh/ezyang/1/head) Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') print("###") print("### Push master forward") self.sh.git("checkout", "master") with self.sh.open("master.txt", "w") as f: f.write("M") self.sh.git("add", "master.txt") self.sh.git("commit", "-m", "Master commit 1\n\nA commit with a M") self.substituteRev("HEAD", "rINI2") self.sh.test_tick() self.sh.git("push", "origin", "master") print("###") print("### Cherry-pick the second commit") self.sh.git("cherry-pick", "feature") self.substituteRev("HEAD", "rCOM2A") self.gh('Cherry pick') self.substituteRev("origin/gh/ezyang/2/base", "rINI2A") self.substituteRev("origin/gh/ezyang/2/head", "rMRG2A") self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * #501 Commit 2 * **#500 Commit 1** A commit with an A * rMRG1 Commit 1 #501 Commit 2 (gh/ezyang/2/head -> gh/ezyang/2/base) Stack: * **#501 Commit 2** A commit with a B * rMRG2 Commit 2 * rMRG2A Cherry pick on "Commit 2" Repository state: * rMRG2A (gh/ezyang/2/head) Cherry pick on "Commit 2" |\\ | * rINI2A (gh/ezyang/2/base) Update base for Cherry pick on "Commit 2" | |\\ | | * rINI2 (HEAD -> master) Master commit 1 * | | rMRG2 Commit 2 |/ / * | rMRG1 (gh/ezyang/1/head) Commit 1 |/ * rINI0 (gh/ezyang/1/base) Initial commit ''') # ------------------------------------------------------------------------- # def test_no_clobber(self) -> None: # Check that we don't clobber changes to PR description or title print("####################") print("### test_no_clobber") self.writeFileAndAdd("b", "asdf") self.sh.git("commit", "-m", "Commit 1\n\nOriginal message") self.sh.test_tick() self.gh('Initial 1') self.sh.test_tick() self.substituteRev("HEAD", "rCOM1") self.substituteRev("origin/gh/ezyang/1/head", "rMRG1") self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * **#500 Commit 1** Original message * rMRG1 Commit 1 Repository state: * rMRG1 (gh/ezyang/1/head) Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') print("###") print("### Amend the PR") self.github.patch("repos/pytorch/pytorch/pulls/500", body="""\ Stack: * **#500 Commit 1** Directly updated message body""", title="Directly updated title") self.assertExpected(self.dump_github(), '''\ #500 Directly updated title (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * **#500 Commit 1** Directly updated message body * rMRG1 Commit 1 Repository state: * rMRG1 (gh/ezyang/1/head) Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') print("###") print("### Submit an update") with self.sh.open("file1.txt", "w") as f: f.write("A") self.sh.git("add", "file1.txt") self.sh.git("commit", "--amend") self.sh.test_tick() self.gh('Update 1') self.sh.test_tick() self.substituteRev("HEAD", "rCOM2") self.substituteRev("origin/gh/ezyang/1/head", "rMRG2") self.assertExpected(self.dump_github(), '''\ #500 Directly updated title (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * **#500 Directly updated title** Directly updated message body * rMRG1 Commit 1 * rMRG2 Update 1 on "Directly updated title" Repository state: * rMRG2 (gh/ezyang/1/head) Update 1 on "Directly updated title" * rMRG1 Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') # ------------------------------------------------------------------------- # def test_no_clobber_carriage_returns(self) -> None: # In some situations, GitHub will replace your newlines with # \r\n. Check we handle this correctly. print("####################") print("### test_no_clobber_carriage_returns") self.writeFileAndAdd("b", "asdf") self.sh.git("commit", "-m", "Commit 1\n\nOriginal message") self.sh.test_tick() self.gh('Initial 1') self.sh.test_tick() self.substituteRev("HEAD", "rCOM1") self.substituteRev("origin/gh/ezyang/1/head", "rMRG1") self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * **#500 Commit 1** Original message * rMRG1 Commit 1 Repository state: * rMRG1 (gh/ezyang/1/head) Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') print("###") print("### Amend the PR") self.github.patch("repos/pytorch/pytorch/pulls/500", body="""\ Stack: * **#500 Commit 1** Directly updated message body""".replace('\n', '\r\n'), title="Directly updated title") print("###") print("### Submit a new commit") with self.sh.open("file1.txt", "w") as f: f.write("A") self.sh.git("add", "file1.txt") self.sh.git("commit", "-m", "Commit 2") self.sh.test_tick() self.gh('Initial 2') self.sh.test_tick() self.substituteRev("HEAD", "rCOM2") self.substituteRev("origin/gh/ezyang/2/head", "rMRG2") self.assertExpected(self.dump_github(), '''\ #500 Directly updated title (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * #501 Commit 2 * **#500 Directly updated title** Directly updated message body * rMRG1 Commit 1 #501 Commit 2 (gh/ezyang/2/head -> gh/ezyang/2/base) Stack: * **#501 Commit 2** * #500 Directly updated title * rMRG2 Commit 2 Repository state: * rMRG2 (gh/ezyang/2/head) Commit 2 * rMRG1 (gh/ezyang/2/base, gh/ezyang/1/head) Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') # ------------------------------------------------------------------------- # def test_update_fields(self) -> None: # Check that we do clobber fields when explicitly asked print("####################") print("### test_update_fields") self.writeFileAndAdd("b", "asdf") self.sh.git("commit", "-m", "Commit 1\n\nOriginal message") self.sh.test_tick() self.gh('Initial 1') self.sh.test_tick() self.substituteRev("HEAD", "rCOM1") self.substituteRev("origin/gh/ezyang/1/head", "rMRG1") self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * **#500 Commit 1** Original message * rMRG1 Commit 1 Repository state: * rMRG1 (gh/ezyang/1/head) Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') print("###") print("### Amend the PR") self.github.patch("repos/pytorch/pytorch/pulls/500", body="Directly updated message body", title="Directly updated title") self.assertExpected(self.dump_github(), '''\ #500 Directly updated title (gh/ezyang/1/head -> gh/ezyang/1/base) Directly updated message body * rMRG1 Commit 1 Repository state: * rMRG1 (gh/ezyang/1/head) Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') print("###") print("### Force update fields") self.gh('Update 1', update_fields=True) self.sh.test_tick() self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * **#500 Commit 1** Original message * rMRG1 Commit 1 Repository state: * rMRG1 (gh/ezyang/1/head) Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') # ------------------------------------------------------------------------- # def test_update_fields_preserve_differential_revision(self) -> None: # Check that Differential Revision is preserved logging.info("### test_update_fields_preserve_differential_revision") self.writeFileAndAdd("b", "asdf") self.sh.git("commit", "-m", "Commit 1\n\nOriginal message") self.sh.test_tick() self.gh('Initial 1') self.sh.test_tick() self.substituteRev("HEAD", "rCOM1") self.substituteRev("origin/gh/ezyang/1/head", "rMRG1") self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * **#500 Commit 1** Original message * rMRG1 Commit 1 Repository state: * rMRG1 (gh/ezyang/1/head) Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') logging.info("### Amend the PR") body = """\n Directly updated message body Differential Revision: [D14778507](https://our.internmc.facebook.com/intern/diff/D14778507) """ self.github.patch("repos/pytorch/pytorch/pulls/500", body=body, title="Directly updated title") self.assertExpected(self.dump_github(), '''\ #500 Directly updated title (gh/ezyang/1/head -> gh/ezyang/1/base) Directly updated message body Differential Revision: [D14778507](https://our.internmc.facebook.com/intern/diff/D14778507) * rMRG1 Commit 1 Repository state: * rMRG1 (gh/ezyang/1/head) Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') logging.info("### Force update fields") self.gh('Update 1', update_fields=True) self.sh.test_tick() self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * **#500 Commit 1** Original message Differential Revision: [D14778507](https://our.internmc.facebook.com/intern/diff/D14778507) * rMRG1 Commit 1 Repository state: * rMRG1 (gh/ezyang/1/head) Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') # ------------------------------------------------------------------------- # def test_remove_bottom_commit(self) -> None: # This is to test a bug where we decided not to update base, # but this was wrong self.sh.git("checkout", "-b", "feature") print("###") print("### First commit") with self.sh.open("file1.txt", "w") as f: f.write("A") self.sh.git("add", "file1.txt") self.sh.git("commit", "-m", "Commit 1\n\nA commit with an A") self.sh.test_tick() self.gh('Initial 1') self.substituteRev("HEAD", "rCOM1") self.substituteRev("origin/gh/ezyang/1/head", "rMRG1") print("###") print("### Second commit") with self.sh.open("file2.txt", "w") as f: f.write("B") self.sh.git("add", "file2.txt") self.sh.git("commit", "-m", "Commit 2\n\nA commit with a B") self.sh.test_tick() self.gh('Initial 2') self.substituteRev("HEAD", "rCOM2") self.substituteRev("origin/gh/ezyang/2/head", "rMRG2") self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * #501 Commit 2 * **#500 Commit 1** A commit with an A * rMRG1 Commit 1 #501 Commit 2 (gh/ezyang/2/head -> gh/ezyang/2/base) Stack: * **#501 Commit 2** * #500 Commit 1 A commit with a B * rMRG2 Commit 2 Repository state: * rMRG2 (gh/ezyang/2/head) Commit 2 * rMRG1 (gh/ezyang/2/base, gh/ezyang/1/head) Commit 1 * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') print("###") print("### Delete first commit") self.sh.git("checkout", "master") print("###") print("### Cherry-pick the second commit") self.sh.git("cherry-pick", "feature") self.substituteRev("HEAD", "rCOM2A") self.gh('Cherry pick') self.substituteRev("origin/gh/ezyang/2/base", "rINI2A") self.substituteRev("origin/gh/ezyang/2/head", "rMRG2A") self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * #501 Commit 2 * **#500 Commit 1** A commit with an A * rMRG1 Commit 1 #501 Commit 2 (gh/ezyang/2/head -> gh/ezyang/2/base) Stack: * **#501 Commit 2** A commit with a B * rMRG2 Commit 2 * rMRG2A Cherry pick on "Commit 2" Repository state: * rMRG2A (gh/ezyang/2/head) Cherry pick on "Commit 2" |\\ | * rINI2A (gh/ezyang/2/base) Update base for Cherry pick on "Commit 2" | |\\ * | | rMRG2 Commit 2 |/ / * | rMRG1 (gh/ezyang/1/head) Commit 1 |/ * rINI0 (HEAD -> master, gh/ezyang/1/base) Initial commit ''') # ------------------------------------------------------------------------- # def test_short(self) -> None: self.writeFileAndAdd("b", "asdf") self.sh.git("commit", "-m", "Commit 1\n\nThis is my first commit") self.sh.test_tick() with captured_output() as (out, err): self.gh('Initial', short=True) self.assertEqual(out.getvalue(), "https://github.com/pytorch/pytorch/pull/500\n") # ------------------------------------------------------------------------- # """ def test_land_ff(self) -> None: with self.sh.open("file1.txt", "w") as f: f.write("A") self.sh.git("add", "file1.txt") self.sh.git("commit", "-m", "Commit 1\n\nThis is my first commit") self.sh.test_tick() self.gh('Initial') self.substituteRev("HEAD", "rCOM1") self.gh_land() self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * **#500 Commit 1** This is my first commit * 3f14b96 Commit 1 Repository state: * 3f14b96 (gh/ezyang/1/head) Commit 1 * rINI0 (gh/ezyang/1/base) Initial commit ''') # ------------------------------------------------------------------------- # def test_land_non_ff(self) -> None: with self.sh.open("file1.txt", "w") as f: f.write("A") self.sh.git("add", "file1.txt") self.sh.git("commit", "-m", "Commit 1\n\nThis is my first commit") self.sh.test_tick() self.gh('Initial') self.substituteRev("HEAD", "rCOM1") self.sh.git("reset", "--hard", "origin/master") with self.sh.open("file2.txt", "w") as f: f.write("B") self.sh.git("add", "file2.txt") self.sh.git("commit", "-m", "Upstream commit") self.substituteRev("HEAD", "rUP1") self.sh.git("push") self.sh.git("checkout", "gh/ezyang/1/orig") self.gh_land() self.substituteRev("origin/master", "rUP2") self.assertExpected(self.upstream_sh.git("log", "--oneline", "master"), '''\ rUP2 Commit 1 rUP1 Upstream commit rINI0 Initial commit''') """ # ------------------------------------------------------------------------- # def test_unlink(self) -> None: print("###") print("### First commit") self.writeFileAndAdd("file1.txt", "A") self.sh.git("commit", "-m", "Commit 1\n\nA commit with an A") self.sh.test_tick() self.writeFileAndAdd("file2.txt", "B") self.sh.git("commit", "-m", "Commit 1\n\nA commit with an B") self.sh.test_tick() self.gh('Initial 1') self.substituteRev("HEAD", "rCOM1") self.substituteRev("origin/gh/ezyang/1/head", "rMRG1") # Unlink self.gh_unlink() self.gh('Initial 2') self.assertExpected(self.dump_github(), '''\ #500 Commit 1 (gh/ezyang/1/head -> gh/ezyang/1/base) Stack: * #501 Commit 1 * **#500 Commit 1** A commit with an A * rMRG1 Commit 1 #501 Commit 1 (gh/ezyang/2/head -> gh/ezyang/2/base) Stack: * **#501 Commit 1** * #500 Commit 1 A commit with an B * db38c32 Commit 1 #502 Commit 1 (gh/ezyang/3/head -> gh/ezyang/3/base) Stack: * #503 Commit 1 * **#502 Commit 1** A commit with an A * rMRG1 Commit 1 #503 Commit 1 (gh/ezyang/4/head -> gh/ezyang/4/base) Stack: * **#503 Commit 1** * #502 Commit 1 A commit with an B * db38c32 Commit 1 Repository state: * db38c32 (gh/ezyang/4/head, gh/ezyang/2/head) Commit 1 * rMRG1 (gh/ezyang/4/base, gh/ezyang/3/head, gh/ezyang/2/base, gh/ezyang/1/head) Commit 1 * rINI0 (HEAD -> master, gh/ezyang/3/base, gh/ezyang/1/base) Initial commit ''') # def load_tests(loader, tests, ignore): # tests.addTests(doctest.DocTestSuite(gh)) # return tests if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG, format='%(message)s') unittest.main()
27.607185
139
0.545022
d3a5607495bef8529749795e700e48b7bb9b6cd9
1,920
py
Python
billboard/app.py
setrofim/billboard
acb7d3e0a26c1c42def85a96ec33cd895c8a7ead
[ "BSD-3-Clause" ]
1
2018-08-01T13:03:22.000Z
2018-08-01T13:03:22.000Z
billboard/app.py
setrofim/billboard
acb7d3e0a26c1c42def85a96ec33cd895c8a7ead
[ "BSD-3-Clause" ]
2
2016-04-21T14:11:28.000Z
2018-06-28T15:05:59.000Z
billboard/app.py
setrofim/billboard
acb7d3e0a26c1c42def85a96ec33cd895c8a7ead
[ "BSD-3-Clause" ]
2
2017-02-26T17:30:11.000Z
2018-06-29T15:35:14.000Z
import os import sys import argparse import signal import tempfile import logging from PyQt4.QtGui import QApplication from billboard.billboard import Billboard from billboard.display import BillboardDisplay from billboard.server import Server from billboard.sources.reddit import RedditSource def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('-p', '--period', type=int, default=60*15, help=''' Period for switching billboard display in seconds. Defaults to 15 minutes. ''') parser.add_argument('-d', '--working-directory', help=''' Working directory used by billboard. If not specified, a temporary directory will be created. ''') parser.add_argument('-P', '--port', type=int, default=5555, help=''' Port to be used by the server. ''') parser.add_argument('--debug', action='store_true') return parser.parse_args(sys.argv[1:]) def main(): signal.signal(signal.SIGINT, signal.SIG_DFL) args = parse_args() level = logging.DEBUG if args.debug else logging.INFO logging.basicConfig(format='%(asctime)s %(levelname)-8s %(name)s: %(message)s', level=level) app = QApplication(sys.argv) workdir = os.path.abspath(args.working_directory or tempfile.mktemp()) if not os.path.isdir(workdir): logging.debug('Creating {}'.format(workdir)) os.makedirs(workdir) server = Server(workdir, args.port) display = BillboardDisplay(workdir=workdir) sources = [RedditSource()] billboard = Billboard(display, sources, args.period) billboard.start() display.showFullScreen() server.start() app.exec_() if __name__ == '__main__': main()
29.538462
96
0.614063
e45c50cb815c85c6891c49a5bb267e0b6f87628d
352
py
Python
configs/deeplabv3/deeplabv3_r50a-d8_512x512_20k_sn6_sar_pro.py
yoyoyoohh/spacenet6
57829afb6a642d96c30c42434929080b6d927fb4
[ "Apache-2.0" ]
null
null
null
configs/deeplabv3/deeplabv3_r50a-d8_512x512_20k_sn6_sar_pro.py
yoyoyoohh/spacenet6
57829afb6a642d96c30c42434929080b6d927fb4
[ "Apache-2.0" ]
null
null
null
configs/deeplabv3/deeplabv3_r50a-d8_512x512_20k_sn6_sar_pro.py
yoyoyoohh/spacenet6
57829afb6a642d96c30c42434929080b6d927fb4
[ "Apache-2.0" ]
null
null
null
''' Author: Shuailin Chen Created Date: 2021-09-14 Last Modified: 2021-09-25 content: ''' _base_ = [ '../_base_/models/deeplabv3_r50a-d8.py', '../_base_/datasets/sn6_sar_pro.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_20k.py' ] model = dict( decode_head=dict(num_classes=2), auxiliary_head=dict(num_classes=2))
25.142857
72
0.696023
0e179db186b5c9e67e4de1145e642ef8f6563b9c
8,632
py
Python
chainer/functions/normalization/batch_renormalization.py
takeratta/chainer
02686e98cd6dc8f20979a1f3a79130f076cbfc6c
[ "MIT" ]
2
2018-02-05T07:25:48.000Z
2018-08-28T20:29:45.000Z
chainer/functions/normalization/batch_renormalization.py
takeratta/chainer
02686e98cd6dc8f20979a1f3a79130f076cbfc6c
[ "MIT" ]
null
null
null
chainer/functions/normalization/batch_renormalization.py
takeratta/chainer
02686e98cd6dc8f20979a1f3a79130f076cbfc6c
[ "MIT" ]
1
2018-08-23T01:34:57.000Z
2018-08-23T01:34:57.000Z
import numpy from chainer import configuration from chainer import cuda from chainer import function from chainer.utils import type_check def _as4darray(arr): if arr.ndim == 0: return arr.reshape(1, 1, 1, 1) elif arr.ndim == 4: return arr else: return arr.reshape(arr.shape[0], -1, 1, 1) def _xhat(x, mean, std, expander): x_mu = x - mean[expander] x_mu /= std[expander] return x_mu class BatchRenormalizationFunction(function.Function): def __init__(self, eps=2e-5, mean=None, var=None, decay=0.9, rmax=1, dmax=0, freeze_running_statistics=False): self.running_mean = mean self.running_var = var self.rmax = rmax self.dmax = dmax self.r = None self.d = None self.freeze_running_statistics = freeze_running_statistics self.eps = eps self.mean_cache = None self.decay = decay def check_type_forward(self, in_types): n_in = type_check.eval(in_types.size()) if n_in != 3 and n_in != 5: raise type_check.InvalidType( '%s or %s' % (in_types.size() == 3, in_types.size() == 5), '%s == %s' % (in_types.size(), n_in)) x_type, gamma_type, beta_type = in_types[:3] M = type_check.eval(gamma_type.ndim) type_check.expect( x_type.dtype.kind == 'f', x_type.ndim >= gamma_type.ndim + 1, x_type.shape[1:1 + M] == gamma_type.shape, # TODO(tkerola): Check shape gamma_type.dtype == x_type.dtype, beta_type.dtype == x_type.dtype, gamma_type.shape == beta_type.shape, ) if len(in_types) == 5: mean_type, var_type = in_types[3:] type_check.expect( mean_type.dtype == x_type.dtype, mean_type.shape == gamma_type.shape, var_type.dtype == x_type.dtype, var_type.shape == gamma_type.shape, ) def forward(self, inputs): xp = cuda.get_array_module(*inputs) x, gamma, beta = inputs[:3] # Note: If length of inputs is not 5, we must be in train mode. if len(inputs) != 5: assert configuration.config.train if configuration.config.train: if self.running_mean is None: self.running_mean = xp.zeros_like(gamma) self.running_var = xp.zeros_like(gamma) else: self.running_mean = xp.array(self.running_mean) self.running_var = xp.array(self.running_var) elif len(inputs) == 5: fixed_mean = inputs[3] fixed_var = inputs[4] head_ndim = gamma.ndim + 1 expander = (None, Ellipsis) + (None,) * (x.ndim - head_ndim) # NOTE(tommi): cuDNN is not used since it does not support # batch renormalization if configuration.config.train: axis = (0,) + tuple(range(head_ndim, x.ndim)) mean = x.mean(axis=axis) var = x.var(axis=axis) + self.eps else: mean = fixed_mean var = fixed_var + self.eps self.std = xp.sqrt(var, dtype=var.dtype) if not self.freeze_running_statistics or self.r is None: if configuration.config.train: running_sigma = xp.sqrt(self.running_var + self.eps, dtype=self.running_mean.dtype) self.r = xp.clip(self.std / running_sigma, 1.0 / self.rmax, self.rmax) self.d = xp.clip((mean - self.running_mean) / running_sigma, -self.dmax, self.dmax) # Update running statistics: m = x.size // gamma[expander].size self.running_mean *= self.decay adjust = m / max(m - 1., 1.) # unbiased estimation temp_ar = xp.array(mean) temp_ar *= (1 - self.decay) self.running_mean += temp_ar del temp_ar self.running_var *= self.decay temp_ar = xp.array(var) temp_ar *= (1 - self.decay) * adjust self.running_var += temp_ar del temp_ar else: self.r = xp.ones_like(gamma) self.d = xp.zeros_like(gamma) if self.freeze_running_statistics: # Need to explicitly cast during gradient check, as r and d are # not updated during finite differences self.r = self.r.astype(gamma.dtype) self.d = self.d.astype(gamma.dtype) gamma = gamma[expander] beta = beta[expander] if xp is numpy: self.x_hat = _xhat(x, mean, self.std, expander) self.x_hat_renorm = self.x_hat * self.r[expander] + \ self.d[expander] y = gamma * self.x_hat_renorm y += beta else: self.x_hat, self.x_hat_renorm, y = cuda.elementwise( 'T x, T mean, T std, T gamma, T beta, T r, T d', 'T x_hat, T x_hat_renorm, T y', ''' x_hat = (x - mean) / std; x_hat_renorm = x_hat * r + d; y = gamma * x_hat_renorm + beta; ''', 'bn_fwd')(x, mean[expander], self.std[expander], gamma, beta, self.r[expander], self.d[expander]) return y, def backward(self, inputs, grad_outputs): x, gamma = inputs[:2] gy = grad_outputs[0] head_ndim = gamma.ndim + 1 expander = (None, Ellipsis) + (None,) * (x.ndim - head_ndim) m = gamma.dtype.type(x.size // gamma.size) axis = (0,) + tuple(range(head_ndim, x.ndim)) xp = cuda.get_array_module(x) if len(inputs) == 5: # This case is unlikely to be used in practice and so does not # need to be optimized for performance. mean = inputs[3] var = inputs[4] std = xp.sqrt(var, dtype=var.dtype) gs = gamma / std gbeta = gy.sum(axis=axis) x_hat = _xhat(x, mean, std, expander) ggamma = (gy * x_hat).sum(axis=axis) gmean = -gs * gbeta gvar = -0.5 * gamma / var * ggamma gx = gs[expander] * gy return gx, ggamma, gbeta, gmean, gvar # Note: If length of inputs is not 5, we must be in train mode. assert configuration.config.train # NOTE(tommi): cuDNN is not used since it does not support # batch renormalization gbeta = gy.sum(axis=axis) ggamma = (gy * self.x_hat_renorm).sum(axis=axis) gsigma_batch = (gy * self.x_hat).sum(axis=axis) if xp is numpy: scale = (self.r * gamma / self.std)[expander] gx = scale * (gy - (self.x_hat * gsigma_batch[expander] + gbeta[expander]) / m) else: inv_m = numpy.float32(1) / m gx = cuda.elementwise( 'T gy, T x_hat, T gamma, T std, T gsigma_batch, T gbeta, \ T inv_m, T r', 'T gx', 'gx = (r * gamma / std) * (gy - (x_hat * gsigma_batch + gbeta) * \ inv_m)', 'bn_bwd')(gy, self.x_hat, gamma[expander], self.std[expander], gsigma_batch[expander], gbeta[expander], inv_m, self.r[expander]) return gx, ggamma, gbeta def batch_renormalization(x, gamma, beta, rmax, dmax, eps=2e-5, running_mean=None, running_var=None, decay=0.9): """Batch renormalization function. This is an extension of batch normalization, which ensures that the training and inference models generate the same outputs that depend on individual examples rather than the entire minibatch. See: `Batch Renormalization: Towards Reducing Minibatch Dependence in \ Batch-Normalized Models <https://arxiv.org/abs/1702.03275>`_ .. seealso:: :class:`links.BatchRenormalization` .. seealso:: :func:`functions.BatchNormalization` """ return BatchRenormalizationFunction(eps, running_mean, running_var, decay, rmax, dmax)(x, gamma, beta) def fixed_batch_renormalization(x, gamma, beta, mean, var, eps=2e-5): with configuration.using_config('train', False): return BatchRenormalizationFunction(eps, None, None, 0.0)( x, gamma, beta, mean, var)
38.19469
82
0.542632
2b18cdeebcb568cfd90558ce253bf78195162f62
4,450
py
Python
branches/g3d-8.0-64ffmpeg-win/bin/ice/copyifnewer.py
brown-ccv/VRG3D
0854348453ac150b27a8ae89024ef57360f15d45
[ "BSD-3-Clause" ]
null
null
null
branches/g3d-8.0-64ffmpeg-win/bin/ice/copyifnewer.py
brown-ccv/VRG3D
0854348453ac150b27a8ae89024ef57360f15d45
[ "BSD-3-Clause" ]
null
null
null
branches/g3d-8.0-64ffmpeg-win/bin/ice/copyifnewer.py
brown-ccv/VRG3D
0854348453ac150b27a8ae89024ef57360f15d45
[ "BSD-3-Clause" ]
null
null
null
# copyifnewer.py # # import re, string from utils import * _excludeDirPatterns = \ ['^\.',\ '^#',\ '~$',\ '^\.svn$',\ '^\.git$',\ '^CVS$', \ '^Debug$', \ '^Release$', \ '^graveyard$', \ '^tmp$', \ '^temp$', \ '^\.icompile-temp$', \ '^\.ice-tmp$', \ '^build$'] """ Regular expression patterns that will be excluded from copying by copyIfNewer. """ _excludeFromCopyingPatterns =\ ['\.ncb$', \ '\.opt$', \ '\.ilk$', \ '\.cvsignore$', \ '^\.\#', \ '\.pdb$', \ '\.bsc$', \ '^\.DS_store$', \ '\.o$', \ '\.pyc$', \ '\.obj$', \ '\.pyc$', \ '\.plg$', \ '^#.*#$', \ '^ice-stats\.csv$'\ '~$', \ '\.old$' \ '^log.txt$', \ '^stderr.txt$', \ '^stdout.txt$', \ '\.log$', \ '\^.cvsignore$'] + _excludeDirPatterns """ Regular expression patterns (i.e., directory and filename patterns) that are excluded from the search for cpp files """ _cppExcludePatterns = ['^test$', '^tests$', '^#.*#$', '~$', '^old$'] + _excludeFromCopyingPatterns """ A regular expression matching files that should be excluded from copying. """ excludeFromCopying = re.compile(string.join(_excludeFromCopyingPatterns, '|')) """ Linked list of the source names that were copied """ _copyIfNewerCopiedAnything = None """ Recursively copies all contents of source to dest (including source itself) that are out of date. Does not copy files matching the excludeFromCopying patterns. Returns a list of the files (if any were copied) If actuallyCopy is false, doesn't actually copy the files, but still prints. """ def copyIfNewer(source, dest, echoCommands = True, echoFilenames = True, actuallyCopy = True): global _copyIfNewerCopiedAnything _copyIfNewerCopiedAnything = [] if source == dest: # Copying in place return False dest = removeTrailingSlash(dest) if (not os.path.exists(source)): # Source does not exist return False if (not os.path.isdir(source) and newer(source, dest)): if echoCommands: colorPrint('cp ' + source + ' ' + dest, COMMAND_COLOR) elif echoFilenames: print source if actuallyCopy: shutil.copyfile(source, dest) _copyIfNewerCopiedAnything += [source] else: # Walk is a special iterator that visits all of the # children and executes the 2nd argument on them. os.path.walk(source, _copyIfNewerVisit, [len(source), dest, echoCommands, echoFilenames, actuallyCopy]) if len(_copyIfNewerCopiedAnything) == 0 and echoCommands: print dest + ' is up to date with ' + source return _copyIfNewerCopiedAnything ######################################################################### """Helper for copyIfNewer. args is a list of: [length of the source prefix in sourceDirname, rootDir of the destination tree, echo commands echo filenames] """ def _copyIfNewerVisit(args, sourceDirname, names): global _copyIfNewerCopiedAnything prefixLen = args[0] # Construct the destination directory name # by concatenating the root dir and source dir destDirname = pathConcat(args[1], sourceDirname[prefixLen:]) dirName = betterbasename(destDirname) echoCommands = args[2] echoFilenames = args[3] actuallyCopy = args[4] if (excludeFromCopying.search(dirName) != None): # Don't recurse into subdirectories of excluded directories del names[:] return # Create the corresponding destination dir if necessary if actuallyCopy: mkdir(destDirname, echoCommands) # Iterate through the contents of this directory for name in names: source = pathConcat(sourceDirname, name) if ((excludeFromCopying.search(name) == None) and (not os.path.isdir(source))): # Copy files if newer dest = pathConcat(destDirname, name) if (newer(source, dest)): if echoCommands: colorPrint('cp ' + source + ' ' + dest, COMMAND_COLOR) elif echoFilenames: print name _copyIfNewerCopiedAnything += [source] if actuallyCopy: shutil.copy(source, dest)
26.807229
98
0.577079
7ce9bb2076104e2c919ca2bace341dc0e69a68b0
1,059
py
Python
ppci/arch/target_list.py
rakati/ppci-mirror
8f5b0282fd1122d7c389b39c86fcf5d9352b7bb2
[ "BSD-2-Clause" ]
null
null
null
ppci/arch/target_list.py
rakati/ppci-mirror
8f5b0282fd1122d7c389b39c86fcf5d9352b7bb2
[ "BSD-2-Clause" ]
null
null
null
ppci/arch/target_list.py
rakati/ppci-mirror
8f5b0282fd1122d7c389b39c86fcf5d9352b7bb2
[ "BSD-2-Clause" ]
1
2021-11-23T14:23:04.000Z
2021-11-23T14:23:04.000Z
""" Contains a list of instantiated targets. """ from functools import lru_cache from .arm import ArmArch from .avr import AvrArch from .example import ExampleArch from .msp430 import Msp430Arch from .x86_64 import X86_64Arch from .m68k import M68kArch from .mcs6500 import Mcs6500Arch from .mips import MipsArch from .microblaze import MicroBlazeArch from .or1k import Or1kArch from .riscv import RiscvArch from .stm8 import Stm8Arch from .xtensa import XtensaArch target_classes = [ ArmArch, AvrArch, ExampleArch, M68kArch, Mcs6500Arch, MicroBlazeArch, MipsArch, Msp430Arch, Or1kArch, RiscvArch, Stm8Arch, X86_64Arch, XtensaArch, ] target_class_map = {t.name: t for t in target_classes} target_names = tuple(sorted(target_class_map.keys())) @lru_cache(maxsize=30) def create_arch(name, options=None): """ Get a target architecture by its name. Possibly arch options can be given. """ # Create the instance! target = target_class_map[name](options=options) return target
22.0625
75
0.734655
b1a623842a392ffea61905da6c2dfa2e9ab44fbb
7,439
py
Python
leo/modes/makefile.py
ATikhonov2/leo-editor
225aac990a9b2804aaa9dea29574d6e072e30474
[ "MIT" ]
1,550
2015-01-14T16:30:37.000Z
2022-03-31T08:55:58.000Z
leo/modes/makefile.py
ATikhonov2/leo-editor
225aac990a9b2804aaa9dea29574d6e072e30474
[ "MIT" ]
2,009
2015-01-13T16:28:52.000Z
2022-03-31T18:21:48.000Z
leo/modes/makefile.py
ATikhonov2/leo-editor
225aac990a9b2804aaa9dea29574d6e072e30474
[ "MIT" ]
200
2015-01-05T15:07:41.000Z
2022-03-07T17:05:01.000Z
# Leo colorizer control file for makefile mode. # This file is in the public domain. # Properties for makefile mode. properties = { "lineComment": "#", } # Attributes dict for makefile_main ruleset. makefile_main_attributes_dict = { "default": "null", "digit_re": "", "escape": "\\", "highlight_digits": "true", "ignore_case": "false", "no_word_sep": "", } # Attributes dict for makefile_variable ruleset. makefile_variable_attributes_dict = { "default": "KEYWORD2", "digit_re": "", "escape": "\\", "highlight_digits": "true", "ignore_case": "false", "no_word_sep": "", } # Dictionary of attributes dictionaries for makefile mode. attributesDictDict = { "makefile_main": makefile_main_attributes_dict, "makefile_variable": makefile_variable_attributes_dict, } # Keywords dict for makefile_main ruleset. makefile_main_keywords_dict = { "addprefix": "keyword1", "addsuffix": "keyword1", "basename": "keyword1", "dir": "keyword1", "filter": "keyword1", "filter-out": "keyword1", "findstring": "keyword1", "firstword": "keyword1", "foreach": "keyword1", "join": "keyword1", "notdir": "keyword1", "origin": "keyword1", "patsubst": "keyword1", "shell": "keyword1", "sort": "keyword1", "strip": "keyword1", "subst": "keyword1", "suffix": "keyword1", "wildcard": "keyword1", "word": "keyword1", "words": "keyword1", } # Keywords dict for makefile_variable ruleset. makefile_variable_keywords_dict = {} # Dictionary of keywords dictionaries for makefile mode. keywordsDictDict = { "makefile_main": makefile_main_keywords_dict, "makefile_variable": makefile_variable_keywords_dict, } # Rules for makefile_main ruleset. def makefile_rule0(colorer, s, i): return colorer.match_eol_span(s, i, kind="comment1", seq="#", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="", exclude_match=False) def makefile_rule1(colorer, s, i): return colorer.match_span(s, i, kind="keyword2", begin="$(", end=")", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="makefile::variable",exclude_match=False, no_escape=False, no_line_break=True, no_word_break=False) def makefile_rule2(colorer, s, i): return colorer.match_span(s, i, kind="keyword2", begin="${", end="}", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="makefile::variable",exclude_match=False, no_escape=False, no_line_break=True, no_word_break=False) def makefile_rule3(colorer, s, i): return colorer.match_mark_following(s, i, kind="keyword2", pattern="$", at_line_start=False, at_whitespace_end=False, at_word_start=False, exclude_match=False) def makefile_rule4(colorer, s, i): return colorer.match_span(s, i, kind="literal1", begin="\"", end="\"", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="",exclude_match=False, no_escape=False, no_line_break=True, no_word_break=False) def makefile_rule5(colorer, s, i): return colorer.match_span(s, i, kind="literal1", begin="'", end="'", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="",exclude_match=False, no_escape=False, no_line_break=True, no_word_break=False) def makefile_rule6(colorer, s, i): return colorer.match_span(s, i, kind="literal1", begin="`", end="`", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="",exclude_match=False, no_escape=False, no_line_break=True, no_word_break=False) def makefile_rule7(colorer, s, i): return colorer.match_mark_previous(s, i, kind="label", pattern=":", at_line_start=False, at_whitespace_end=False, at_word_start=False, exclude_match=False) def makefile_rule8(colorer, s, i): return colorer.match_keywords(s, i) # Rules dict for makefile_main ruleset. rulesDict1 = { "\"": [makefile_rule4,], "#": [makefile_rule0,], "$": [makefile_rule1,makefile_rule2,makefile_rule3,], "'": [makefile_rule5,], "-": [makefile_rule8,], "0": [makefile_rule8,], "1": [makefile_rule8,], "2": [makefile_rule8,], "3": [makefile_rule8,], "4": [makefile_rule8,], "5": [makefile_rule8,], "6": [makefile_rule8,], "7": [makefile_rule8,], "8": [makefile_rule8,], "9": [makefile_rule8,], ":": [makefile_rule7,], "@": [makefile_rule8,], "A": [makefile_rule8,], "B": [makefile_rule8,], "C": [makefile_rule8,], "D": [makefile_rule8,], "E": [makefile_rule8,], "F": [makefile_rule8,], "G": [makefile_rule8,], "H": [makefile_rule8,], "I": [makefile_rule8,], "J": [makefile_rule8,], "K": [makefile_rule8,], "L": [makefile_rule8,], "M": [makefile_rule8,], "N": [makefile_rule8,], "O": [makefile_rule8,], "P": [makefile_rule8,], "Q": [makefile_rule8,], "R": [makefile_rule8,], "S": [makefile_rule8,], "T": [makefile_rule8,], "U": [makefile_rule8,], "V": [makefile_rule8,], "W": [makefile_rule8,], "X": [makefile_rule8,], "Y": [makefile_rule8,], "Z": [makefile_rule8,], "`": [makefile_rule6,], "a": [makefile_rule8,], "b": [makefile_rule8,], "c": [makefile_rule8,], "d": [makefile_rule8,], "e": [makefile_rule8,], "f": [makefile_rule8,], "g": [makefile_rule8,], "h": [makefile_rule8,], "i": [makefile_rule8,], "j": [makefile_rule8,], "k": [makefile_rule8,], "l": [makefile_rule8,], "m": [makefile_rule8,], "n": [makefile_rule8,], "o": [makefile_rule8,], "p": [makefile_rule8,], "q": [makefile_rule8,], "r": [makefile_rule8,], "s": [makefile_rule8,], "t": [makefile_rule8,], "u": [makefile_rule8,], "v": [makefile_rule8,], "w": [makefile_rule8,], "x": [makefile_rule8,], "y": [makefile_rule8,], "z": [makefile_rule8,], } # Rules for makefile_variable ruleset. def makefile_rule9(colorer, s, i): return colorer.match_eol_span(s, i, kind="comment1", seq="#", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="", exclude_match=False) def makefile_rule10(colorer, s, i): return colorer.match_span(s, i, kind="keyword2", begin="$(", end=")", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="makefile::variable",exclude_match=False, no_escape=False, no_line_break=True, no_word_break=False) def makefile_rule11(colorer, s, i): return colorer.match_span(s, i, kind="keyword2", begin="${", end="}", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="makefile::variable",exclude_match=False, no_escape=False, no_line_break=True, no_word_break=False) # Rules dict for makefile_variable ruleset. rulesDict2 = { "#": [makefile_rule9,], "$": [makefile_rule10,makefile_rule11,], } # x.rulesDictDict for makefile mode. rulesDictDict = { "makefile_main": rulesDict1, "makefile_variable": rulesDict2, } # Import dict for makefile mode. importDict = {}
33.062222
96
0.631671
3955122092b4512cdfa321095167ee5998bf67a7
152
py
Python
biosiglive/__init__.py
Fiverdug/biosiglive
72c3c2873fa483aeb4c782cfb1c7e4c339e2ee82
[ "MIT" ]
null
null
null
biosiglive/__init__.py
Fiverdug/biosiglive
72c3c2873fa483aeb4c782cfb1c7e4c339e2ee82
[ "MIT" ]
null
null
null
biosiglive/__init__.py
Fiverdug/biosiglive
72c3c2873fa483aeb4c782cfb1c7e4c339e2ee82
[ "MIT" ]
null
null
null
from . import client from . import data_plot from . import data_processing from . import live_data_pytrigno from . import live_mvc from . import server
21.714286
32
0.802632
4cf43c134cd4576ec677dbe72e9a1597f8853db4
25,049
py
Python
ambari-server/src/test/python/stacks/2.0.6/FLUME/test_flume.py
hmcl/ambari-apache
87423d64f54d896c62d1a9245eb03a97763e35a4
[ "Apache-2.0" ]
3
2019-06-20T11:49:36.000Z
2020-12-11T10:44:29.000Z
ambari-server/src/test/python/stacks/2.0.6/FLUME/test_flume.py
cas-packone/ambari-chs
68033fbd4b810b6642853f2ad9128cbbd4e0cb7b
[ "Apache-2.0" ]
null
null
null
ambari-server/src/test/python/stacks/2.0.6/FLUME/test_flume.py
cas-packone/ambari-chs
68033fbd4b810b6642853f2ad9128cbbd4e0cb7b
[ "Apache-2.0" ]
1
2019-03-20T08:36:17.000Z
2019-03-20T08:36:17.000Z
#!/usr/bin/env python ''' Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' from mock.mock import MagicMock, call, patch from stacks.utils.RMFTestCase import * import resource_management.core.source import os class TestFlumeHandler(RMFTestCase): COMMON_SERVICES_PACKAGE_DIR = "FLUME/1.4.0.2.0/package" STACK_VERSION = "2.0.6" def test_configure_default(self): self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/flume_handler.py", classname = "FlumeHandler", command = "configure", config_file="default.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES) self.assert_configure_default() self.assertNoMoreResources() @patch("os.path.isfile") @patch("flume.cmd_target_names") @patch("flume._set_desired_state") def test_start_default(self, set_desired_mock, cmd_target_names_mock, os_path_isfile_mock): # 1st call is to check if the conf file is there - that should be True # 2nd call is to check if the process is live - that should be False os_path_isfile_mock.side_effect = [True, False] cmd_target_names_mock.return_value = ["a1"] self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/flume_handler.py", classname = "FlumeHandler", command = "start", config_file="default.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES) self.assert_configure_default() self.assertTrue(set_desired_mock.called) self.assertTrue(set_desired_mock.call_args[0][0] == 'STARTED') self.assertResourceCalled('Execute', "ambari-sudo.sh su flume -l -s /bin/bash -c 'export PATH=/bin JAVA_HOME=/usr/jdk64/jdk1.7.0_45 ; /usr/bin/flume-ng agent --name a1 --conf /etc/flume/conf/a1 --conf-file /etc/flume/conf/a1/flume.conf -Dflume.monitoring.type=org.apache.hadoop.metrics2.sink.flume.FlumeTimelineMetricsSink -Dflume.monitoring.node=c6402.ambari.apache.org:6189 > /var/log/flume/a1.out 2>&1' &", environment = {'JAVA_HOME': u'/usr/jdk64/jdk1.7.0_45'}, wait_for_finish = False, ) self.assertResourceCalled('Execute', "ambari-sudo.sh [RMF_ENV_PLACEHOLDER] -H -E pgrep -o -u flume -f '^/usr/jdk64/jdk1.7.0_45.*a1.*' | ambari-sudo.sh [RMF_ENV_PLACEHOLDER] -H -E tee /var/run/flume/a1.pid && test ${PIPESTATUS[0]} -eq 0", logoutput = True, tries = 20, try_sleep = 10, ) self.assertNoMoreResources() @patch("os.path.isfile") @patch("flume.cmd_target_names") @patch("flume._set_desired_state") def test_start_flume_only(self, set_desired_mock, cmd_target_names_mock, os_path_isfile_mock): # 1st call is to check if the conf file is there - that should be True # 2nd call is to check if the process is live - that should be False os_path_isfile_mock.side_effect = [True, False] cmd_target_names_mock.return_value = ["a1"] self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/flume_handler.py", classname = "FlumeHandler", command = "start", config_file="flume_only.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES) self.assert_configure_default(check_mc=False) self.assertTrue(set_desired_mock.called) self.assertTrue(set_desired_mock.call_args[0][0] == 'STARTED') self.assertResourceCalled('Execute', "ambari-sudo.sh su flume -l -s /bin/bash -c 'export PATH=/bin JAVA_HOME=/usr/jdk64/jdk1.7.0_45 ; /usr/bin/flume-ng agent --name a1 --conf /etc/flume/conf/a1 --conf-file /etc/flume/conf/a1/flume.conf > /var/log/flume/a1.out 2>&1' &", environment = {'JAVA_HOME': u'/usr/jdk64/jdk1.7.0_45'}, wait_for_finish = False, ) self.assertResourceCalled('Execute', "ambari-sudo.sh [RMF_ENV_PLACEHOLDER] -H -E pgrep -o -u flume -f '^/usr/jdk64/jdk1.7.0_45.*a1.*' | ambari-sudo.sh [RMF_ENV_PLACEHOLDER] -H -E tee /var/run/flume/a1.pid && test ${PIPESTATUS[0]} -eq 0", logoutput = True, tries = 20, try_sleep = 10, ) self.assertNoMoreResources() @patch("glob.glob") @patch("flume._set_desired_state") @patch("flume.await_flume_process_termination") def test_stop_default(self, await_flume_process_termination_mock, set_desired_mock, glob_mock): glob_mock.side_effect = [['/var/run/flume/a1/pid'], ['/etc/flume/conf/a1/ambari-meta.json']] await_flume_process_termination_mock.return_value = True self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/flume_handler.py", classname = "FlumeHandler", command = "stop", config_file="default.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES) self.assertTrue(glob_mock.called) await_flume_process_termination_mock.assert_called_with('/var/run/flume/a1.pid') self.assertTrue(set_desired_mock.called) self.assertTrue(set_desired_mock.call_args[0][0] == 'INSTALLED') self.assertResourceCalled('File', '/var/run/flume/a1.pid', action = ['delete']) self.assertNoMoreResources() @patch("resource_management.libraries.script.Script.put_structured_out") @patch("sys.exit") def test_status_default(self, sys_exit_mock, structured_out_mock): try: self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/flume_handler.py", classname = "FlumeHandler", command = "status", config_file="default.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES) except: # expected since ComponentIsNotRunning gets raised pass # test that the method was called with empty processes self.assertTrue(structured_out_mock.called) structured_out_mock.assert_called_with({'processes': []}) self.assertNoMoreResources() def test_struct_out(self): from resource_management.libraries.script import Script configs_path = os.path.join(RMFTestCase.get_src_folder(), "test/python/stacks", self.STACK_VERSION, "configs") script = Script() script.stroutfile = os.path.join(configs_path, "structured-out-status.json") script.load_structured_out() self.assertFalse("version" in script.structuredOut) def test_bad_struct_out(self): from resource_management.libraries.script import Script from resource_management.core.logger import Logger configs_path = os.path.join(RMFTestCase.get_src_folder(), "test/python/stacks", self.STACK_VERSION, "configs") Logger.initialize_logger() script = Script() script.stroutfile = os.path.join(configs_path, "structured-out-status-bad.json") script.load_structured_out() self.assertTrue(script.structuredOut == {}) @patch("resource_management.libraries.script.Script.put_structured_out") @patch("glob.glob") @patch("sys.exit") def test_status_with_result(self, sys_exit_mock, glob_mock, structured_out_mock): glob_mock.return_value = ['/etc/flume/conf/a1/ambari-meta.json'] try: self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/flume_handler.py", classname = "FlumeHandler", command = "status", config_file="default.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES) except: # expected since ComponentIsNotRunning gets raised pass self.assertTrue(structured_out_mock.called) # call_args[0] is a tuple, whose first element is the actual call argument struct_out = structured_out_mock.call_args[0][0] self.assertTrue(struct_out.has_key('processes')) self.assertNoMoreResources() @patch("resource_management.libraries.script.Script.put_structured_out") @patch("glob.glob") @patch("sys.exit") def test_status_no_agents(self, sys_exit_mock, glob_mock, structured_out_mock): glob_mock.return_value = [] try: self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/flume_handler.py", classname = "FlumeHandler", command = "status", config_file="default.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES) except: # expected since ComponentIsNotRunning gets raised pass self.assertTrue(structured_out_mock.called) # call_args[0] is a tuple, whose first element is the actual call argument struct_out = structured_out_mock.call_args[0][0] self.assertTrue(struct_out.has_key('processes')) self.assertNoMoreResources() def assert_configure_default(self, check_mc=True): self.assertResourceCalled('Directory', '/var/run/flume', owner = 'flume', group = 'hadoop') self.assertResourceCalled('Directory', '/etc/flume/conf', owner='flume', create_parents = True) self.assertResourceCalled('Directory', '/var/log/flume', owner = 'flume', group = 'hadoop', create_parents = True, cd_access = 'a', mode=0755 ) self.assertResourceCalled('Directory', '/etc/flume/conf/a1', owner='flume') self.assertResourceCalled('PropertiesFile', '/etc/flume/conf/a1/flume.conf', owner='flume', mode = 0644, properties = build_flume( self.getConfig()['configurations']['flume-conf']['content'])['a1']) self.assertResourceCalled('File', '/etc/flume/conf/a1/log4j.properties', content = Template('log4j.properties.j2', agent_name = 'a1'), owner='flume', mode = 0644) self.assertResourceCalled('File', '/etc/flume/conf/a1/ambari-meta.json', owner='flume', content='{"channels_count": 1, "sinks_count": 1, "sources_count": 1}', mode = 0644) self.assertResourceCalled('File', "/etc/flume/conf/a1/flume-env.sh", owner="flume", content=InlineTemplate(self.getConfig()['configurations']['flume-env']['content']) ) if check_mc: self.assertResourceCalled('File', "/etc/flume/conf/a1/flume-metrics2.properties", owner="flume", content=Template("flume-metrics2.properties.j2") ) def assert_configure_many(self): self.assertResourceCalled('Directory', '/var/run/flume', owner='flume', group = 'hadoop' ) self.assertResourceCalled('Directory', '/etc/flume/conf', owner='flume', create_parents = True) self.assertResourceCalled('Directory', '/var/log/flume', owner = 'flume', group = 'hadoop', create_parents = True, cd_access = 'a', mode=0755) top = build_flume(self.getConfig()['configurations']['flume-conf']['content']) # a1 self.assertResourceCalled('Directory', '/etc/flume/conf/a1', owner='flume') self.assertResourceCalled('PropertiesFile', '/etc/flume/conf/a1/flume.conf', owner='flume', mode = 0644, properties = top['a1']) self.assertResourceCalled('File', '/etc/flume/conf/a1/log4j.properties', owner='flume', content = Template('log4j.properties.j2', agent_name = 'a1'), mode = 0644) self.assertResourceCalled('File', '/etc/flume/conf/a1/ambari-meta.json', owner='flume', content='{"channels_count": 1, "sinks_count": 1, "sources_count": 1}', mode = 0644) self.assertResourceCalled('File', "/etc/flume/conf/a1/flume-env.sh", owner="flume", content=InlineTemplate(self.getConfig()['configurations']['flume-env']['content']) ) # b1 self.assertResourceCalled('Directory', '/etc/flume/conf/b1', owner='flume') self.assertResourceCalled('PropertiesFile', '/etc/flume/conf/b1/flume.conf', mode = 0644, owner='flume', properties = top['b1']) self.assertResourceCalled('File', '/etc/flume/conf/b1/log4j.properties', owner='flume', content = Template('log4j.properties.j2', agent_name = 'b1'), mode = 0644) self.assertResourceCalled('File', '/etc/flume/conf/b1/ambari-meta.json', owner='flume', content='{"channels_count": 1, "sinks_count": 1, "sources_count": 1}', mode = 0644) self.assertResourceCalled('File', "/etc/flume/conf/b1/flume-env.sh", owner="flume", content=InlineTemplate(self.getConfig()['configurations']['flume-env']['content']) ) @patch("os.path.isfile") def test_start_single(self, os_path_isfile_mock): # 1st call is to check if the conf file is there - that should be True # 2nd call is to check if the process is live - that should be False os_path_isfile_mock.side_effect = [True, False] self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/flume_handler.py", classname = "FlumeHandler", command = "start", config_file="flume_target.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES) self.assert_configure_many() self.assertResourceCalled('Execute', format('su -s /bin/bash flume -c "export JAVA_HOME=/usr/jdk64/jdk1.7.0_45; /usr/bin/flume-ng agent ' '--name b1 ' '--conf /etc/flume/conf/b1 ' '--conf-file /etc/flume/conf/b1/flume.conf ' '-Dflume.monitoring.type=ganglia ' '-Dflume.monitoring.hosts=c6401.ambari.apache.org:8655"'), wait_for_finish = False) self.assertResourceCalled('Execute', 'pgrep -o -u flume -f ^/usr/jdk64/jdk1.7.0_45.*b1.* > /var/run/flume/b1.pid', logoutput = True, tries = 10, try_sleep = 6) self.assertNoMoreResources() @patch("os.path.isfile") def test_start_single(self, os_path_isfile_mock): # 1st call is to check if the conf file is there - that should be True # 2nd call is to check if the process is live - that should be False os_path_isfile_mock.side_effect = [True, False] self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/flume_handler.py", classname = "FlumeHandler", command = "start", config_file="flume_target.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES) self.assert_configure_many() self.assertResourceCalled('Execute', "ambari-sudo.sh su flume -l -s /bin/bash -c 'export PATH=/bin JAVA_HOME=/usr/jdk64/jdk1.7.0_45 ; /usr/bin/flume-ng agent --name b1 --conf /etc/flume/conf/b1 --conf-file /etc/flume/conf/b1/flume.conf -Dflume.monitoring.type=ganglia -Dflume.monitoring.hosts=c6401.ambari.apache.org:8655 > /var/log/flume/b1.out 2>&1' &", environment = {'JAVA_HOME': u'/usr/jdk64/jdk1.7.0_45'}, wait_for_finish = False, ) self.assertResourceCalled('Execute', "ambari-sudo.sh [RMF_ENV_PLACEHOLDER] -H -E pgrep -o -u flume -f '^/usr/jdk64/jdk1.7.0_45.*b1.*' | ambari-sudo.sh [RMF_ENV_PLACEHOLDER] -H -E tee /var/run/flume/b1.pid && test ${PIPESTATUS[0]} -eq 0", logoutput = True, tries = 20, try_sleep = 10, ) self.assertNoMoreResources() @patch("glob.glob") @patch("flume.await_flume_process_termination") def test_stop_single(self, await_flume_process_termination_mock, glob_mock): glob_mock.return_value = ['/var/run/flume/b1.pid'] await_flume_process_termination_mock.return_value = True self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/flume_handler.py", classname = "FlumeHandler", command = "stop", config_file="flume_target.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES) self.assertTrue(glob_mock.called) await_flume_process_termination_mock.assert_called_with('/var/run/flume/b1.pid') self.assertResourceCalled('File', '/var/run/flume/b1.pid', action = ['delete']) self.assertNoMoreResources() @patch("flume.find_expected_agent_names") def test_configure_with_existing(self, expected_names_mock): expected_names_mock.return_value = ["x1"] self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/flume_handler.py", classname = "FlumeHandler", command = "configure", config_file="default.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES) self.assertResourceCalled('File', '/etc/flume/conf/x1/ambari-meta.json', action = ['delete'], ) self.assert_configure_default() self.assertNoMoreResources() def test_flume_env_not_22(self): self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/flume_handler.py", classname = "FlumeHandler", command = "configure", config_file="default.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES) self.assertResourceCalled('Directory', '/var/run/flume', group = 'hadoop', owner='flume',) self.assertResourceCalled('Directory', '/etc/flume/conf', owner='flume', create_parents = True) self.assertResourceCalled('Directory', '/var/log/flume', owner = 'flume', cd_access = 'a', group = 'hadoop', create_parents = True, mode=0755) self.assertResourceCalled('Directory', '/etc/flume/conf/a1', owner='flume') self.assertResourceCalled('PropertiesFile', '/etc/flume/conf/a1/flume.conf', owner='flume', mode = 0644, properties = build_flume( self.getConfig()['configurations']['flume-conf']['content'])['a1']) self.assertResourceCalled('File', '/etc/flume/conf/a1/log4j.properties', owner='flume', content = Template('log4j.properties.j2', agent_name = 'a1'), mode = 0644) self.assertResourceCalled('File', '/etc/flume/conf/a1/ambari-meta.json', owner='flume', content='{"channels_count": 1, "sinks_count": 1, "sources_count": 1}', mode = 0644) content = InlineTemplate(self.getConfig()['configurations']['flume-env']['content']) self.assertTrue(content.get_content().find('/usr/lib/hive') > -1) self.assertResourceCalled('File', "/etc/flume/conf/a1/flume-env.sh", owner="flume", content=content) def test_flume_env_with_22(self): self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/flume_handler.py", classname = "FlumeHandler", command = "configure", config_file="flume_22.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES) self.assertResourceCalled('Directory', '/var/run/flume', group = 'hadoop', owner='flume') self.assertResourceCalled('Directory', '/usr/hdp/current/flume-server/conf', owner='flume', create_parents = True) self.assertResourceCalled('Directory', '/var/log/flume', owner = 'flume', group = 'hadoop', create_parents = True, cd_access = 'a', mode=0755) self.assertResourceCalled('Directory', '/usr/hdp/current/flume-server/conf/a1', owner='flume') self.assertResourceCalled('PropertiesFile', '/usr/hdp/current/flume-server/conf/a1/flume.conf', owner='flume', mode = 0644, properties = build_flume( self.getConfig()['configurations']['flume-conf']['content'])['a1']) self.assertResourceCalled('File', '/usr/hdp/current/flume-server/conf/a1/log4j.properties', content = Template('log4j.properties.j2', agent_name = 'a1'), owner='flume', mode = 0644) self.assertResourceCalled('File', '/usr/hdp/current/flume-server/conf/a1/ambari-meta.json', content='{"channels_count": 1, "sinks_count": 1, "sources_count": 1}', owner='flume', mode = 0644) content = InlineTemplate(self.getConfig()['configurations']['flume-env']['content']) self.assertTrue(content.get_content().find('/usr/hdp/current/hive-metastore') > -1) self.assertResourceCalled('File', "/usr/hdp/current/flume-server/conf/a1/flume-env.sh", owner="flume", content=content) def test_pre_upgrade_restart(self): self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/flume_handler.py", classname = "FlumeHandler", command = "pre_upgrade_restart", config_file="flume_22.json", stack_version = self.STACK_VERSION, target = RMFTestCase.TARGET_COMMON_SERVICES) self.assertResourceCalled("Execute", ('ambari-python-wrap', '/usr/bin/hdp-select', 'set', 'flume-server', '2.2.1.0-2067'), sudo=True) def build_flume(content): result = {} agent_names = [] for line in content.split('\n'): rline = line.strip() if 0 != len(rline) and not rline.startswith('#'): pair = rline.split('=') lhs = pair[0].strip() rhs = pair[1].strip() part0 = lhs.split('.')[0] if lhs.endswith(".sources"): agent_names.append(part0) if not result.has_key(part0): result[part0] = {} result[part0][lhs] = rhs # trim out non-agents for k in result.keys(): if not k in agent_names: del result[k] return result
41.958124
414
0.590802
0d0908f4e9c040ec3221f0a55794e2592868cfb1
12,225
py
Python
tfhub_dev/tools/validator_test.py
tsadr/hub
5186d911de9bce0adee28993fa396e7392fb1c18
[ "Apache-2.0" ]
null
null
null
tfhub_dev/tools/validator_test.py
tsadr/hub
5186d911de9bce0adee28993fa396e7392fb1c18
[ "Apache-2.0" ]
null
null
null
tfhub_dev/tools/validator_test.py
tsadr/hub
5186d911de9bce0adee28993fa396e7392fb1c18
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 The TensorFlow Hub Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow_hub.tfhub_dev.tools.validator.""" import os import shutil import tempfile import tensorflow as tf from tfhub_dev.tools import validator class MockFilesystem(validator.Filesystem): """Returns a Mock Filesystem storing files in a dictionary.""" def __init__(self): self._files = dict() def get_contents(self, filename): return self._files[filename] def set_contents(self, filename, contents): self._files[filename] = contents def recursive_list_dir(self, root_dir): return [ f for f in self._files.keys() if f.startswith(root_dir + os.path.sep) ] MINIMAL_MARKDOWN_TEMPLATE = """# Module google/text-embedding-model/1 Simple description spanning multiple lines. <!-- asset-path: %s --> <!-- module-type: text-embedding --> <!-- fine-tunable: true --> <!-- format: saved_model_2 --> ## Overview """ MINIMAL_MARKDOWN_WITH_ALLOWED_LICENSE = """# Module google/model/1 Simple description. <!-- asset-path: %s --> <!-- module-type: text-embedding --> <!-- fine-tunable: true --> <!-- format: saved_model_2 --> <!-- license: BSD-3-Clause --> ## Overview """ MINIMAL_MARKDOWN_WITH_UNKNOWN_LICENSE = """# Module google/model/1 Simple description. <!-- asset-path: %s --> <!-- module-type: text-embedding --> <!-- fine-tunable: true --> <!-- format: saved_model_2 --> <!-- license: my_license --> ## Overview """ MARKDOWN_WITHOUT_DESCRIPTION = """# Module google/text-embedding-model/1 <!-- asset-path: https://path/to/text-embedding-model/model.tar.gz --> <!-- format: saved_model_2 --> ## Overview """ MARKDOWN_WITH_MISSING_METADATA = """# Module google/text-embedding-model/1 One line description. <!-- asset-path: https://path/to/text-embedding-model/model.tar.gz --> <!-- format: saved_model_2 --> ## Overview """ MARKDOWN_WITH_DUPLICATE_METADATA = """# Module google/text-embedding-model/1 One line description. <!-- asset-path: https://path/to/text-embedding-model/model.tar.gz --> <!-- asset-path: https://path/to/text-embedding-model/model2.tar.gz --> <!-- module-type: text-embedding --> <!-- fine-tunable: true --> <!-- format: saved_model_2 --> ## Overview """ MARKDOWN_WITH_UNEXPECTED_LINES = """# Module google/text-embedding-model/1 One line description. <!-- module-type: text-embedding --> This should not be here. <!-- format: saved_model_2 --> ## Overview """ MINIMAL_COLLECTION_MARKDOWN = """# Collection google/text-embedding-collection/1 Simple description spanning multiple lines. <!-- module-type: text-embedding --> ## Overview """ MINIMAL_PUBLISHER_MARKDOWN = """# Publisher some-publisher Simple description spanning one line. [![Icon URL]](https://path/to/icon.png) ## Overview """ class ValidatorTest(tf.test.TestCase): def setUp(self): super(tf.test.TestCase, self).setUp() self.tmp_dir = tempfile.mkdtemp() self.model_path = os.path.join(self.tmp_dir, "model_1") self.not_a_model_path = os.path.join(self.tmp_dir, "not_a_model") self.save_dummy_model(self.model_path) self.minimal_markdown = MINIMAL_MARKDOWN_TEMPLATE % self.model_path self.minimal_markdown_with_bad_model = ( MINIMAL_MARKDOWN_TEMPLATE % self.not_a_model_path) def tearDown(self): super(tf.test.TestCase, self).tearDown() shutil.rmtree(self.tmp_dir) def save_dummy_model(self, path): class MultiplyTimesTwoModel(tf.train.Checkpoint): """Callable model that multiplies by two.""" @tf.function( input_signature=[tf.TensorSpec(shape=None, dtype=tf.float32)]) def __call__(self, x): return x * 2 model = MultiplyTimesTwoModel() tf.saved_model.save(model, path) def test_filesystem(self): tmp_dir = self.get_temp_dir() tmp_file_path = tempfile.mktemp(dir=tmp_dir) file_contents = "CONTENTS" with tf.io.gfile.GFile(tmp_file_path, "w") as output_file: output_file.write(file_contents) filesystem = validator.Filesystem() self.assertEqual(file_contents, filesystem.get_contents(tmp_file_path)) self.assertAllEqual([tmp_file_path], list(filesystem.recursive_list_dir(tmp_dir))) def test_minimal_markdown_parsed(self): filesystem = MockFilesystem() filesystem.set_contents("root/google/models/text-embedding-model/1.md", self.minimal_markdown) validator.validate_documentation_files( documentation_dir="root", filesystem=filesystem) def test_minimal_markdown_parsed_with_selected_files(self): filesystem = MockFilesystem() filesystem.set_contents("root/google/models/text-embedding-model/1.md", self.minimal_markdown) num_validated = validator.validate_documentation_files( documentation_dir="root", files_to_validate=["google/models/text-embedding-model/1.md"], filesystem=filesystem) self.assertEqual(1, num_validated) def test_minimal_collection_markdown_parsed(self): filesystem = MockFilesystem() filesystem.set_contents( "root/google/collections/text-embedding-collection/1.md", MINIMAL_COLLECTION_MARKDOWN) validator.validate_documentation_files( documentation_dir="root", filesystem=filesystem) def test_minimal_publisher_markdown_parsed(self): filesystem = MockFilesystem() filesystem.set_contents("root/some-publisher/some-publisher.md", MINIMAL_PUBLISHER_MARKDOWN) validator.validate_documentation_files( documentation_dir="root", filesystem=filesystem) def test_invalid_markdown_fails(self): filesystem = MockFilesystem() filesystem.set_contents("root/publisher/model/1.md", "INVALID MARKDOWN") with self.assertRaisesRegexp(validator.MarkdownDocumentationError, ".*First line.*"): validator.validate_documentation_files( documentation_dir="root", filesystem=filesystem) def test_minimal_markdown_not_in_publisher_dir(self): filesystem = MockFilesystem() filesystem.set_contents("root/gooogle/models/wrong-location/1.md", self.minimal_markdown) with self.assertRaisesRegexp(validator.MarkdownDocumentationError, ".*placed in the publisher directory.*"): validator.validate_documentation_files( documentation_dir="root", filesystem=filesystem) def test_minimal_markdown_does_not_end_with_md_fails(self): filesystem = MockFilesystem() filesystem.set_contents("root/google/models/wrong-extension/1.mdz", self.minimal_markdown) with self.assertRaisesRegexp(validator.MarkdownDocumentationError, r".*end with \"\.md.\"*"): validator.validate_documentation_files( documentation_dir="root", filesystem=filesystem) def test_publisher_markdown_at_incorrect_location_fails(self): filesystem = MockFilesystem() filesystem.set_contents("root/google/publisher.md", MINIMAL_PUBLISHER_MARKDOWN) with self.assertRaisesRegexp(validator.MarkdownDocumentationError, r".*some-publisher\.md.*"): validator.validate_documentation_files( documentation_dir="root", filesystem=filesystem) def test_publisher_markdown_at_correct_location(self): filesystem = MockFilesystem() filesystem.set_contents("root/some-publisher/some-publisher.md", MINIMAL_PUBLISHER_MARKDOWN) validator.validate_documentation_files( documentation_dir="root", filesystem=filesystem) def test_markdown_without_description(self): filesystem = MockFilesystem() filesystem.set_contents("root/google/models/text-embedding-model/1.md", MARKDOWN_WITHOUT_DESCRIPTION) with self.assertRaisesRegexp(validator.MarkdownDocumentationError, ".*has to contain a short description.*"): validator.validate_documentation_files( documentation_dir="root", filesystem=filesystem) def test_markdown_with_missing_metadata(self): filesystem = MockFilesystem() filesystem.set_contents("root/google/models/text-embedding-model/1.md", MARKDOWN_WITH_MISSING_METADATA) with self.assertRaisesRegexp(validator.MarkdownDocumentationError, ".*missing.*fine-tunable.*module-type.*"): validator.validate_documentation_files( documentation_dir="root", filesystem=filesystem) def test_markdown_with_duplicate_metadata(self): filesystem = MockFilesystem() filesystem.set_contents("root/google/models/text-embedding-model/1.md", MARKDOWN_WITH_DUPLICATE_METADATA) with self.assertRaisesRegexp(validator.MarkdownDocumentationError, ".*duplicate.*asset-path.*"): validator.validate_documentation_files( documentation_dir="root", filesystem=filesystem) def test_markdown_with_unexpected_lines(self): filesystem = MockFilesystem() filesystem.set_contents("root/google/models/text-embedding-model/1.md", MARKDOWN_WITH_UNEXPECTED_LINES) with self.assertRaisesRegexp(validator.MarkdownDocumentationError, ".*Unexpected line.*"): validator.validate_documentation_files( documentation_dir="root", filesystem=filesystem) def test_minimal_markdown_parsed_full(self): documentation_parser = validator.DocumentationParser("root") documentation_parser.validate( file_path="root/google/models/text-embedding-model/1.md", documentation_content=self.minimal_markdown, do_smoke_test=True) self.assertEqual("Simple description spanning multiple lines.", documentation_parser.parsed_description) expected_metadata = { "asset-path": {self.model_path}, "module-type": {"text-embedding"}, "fine-tunable": {"true"}, "format": {"saved_model_2"}, } self.assertAllEqual(expected_metadata, documentation_parser.parsed_metadata) def test_bad_model_does_not_pass_smoke_test(self): filesystem = MockFilesystem() filesystem.set_contents("root/google/models/text-embedding-model/1.md", self.minimal_markdown_with_bad_model) with self.assertRaisesRegexp(validator.MarkdownDocumentationError, ".*failed to parse.*"): validator.validate_documentation_files( documentation_dir="root", files_to_validate=["google/models/text-embedding-model/1.md"], filesystem=filesystem) def test_markdown_with_allowed_license(self): filesystem = MockFilesystem() filesystem.set_contents("root/google/models/model/1.md", MINIMAL_MARKDOWN_WITH_ALLOWED_LICENSE) validator.validate_documentation_files( documentation_dir="root", filesystem=filesystem) def test_markdown_with_unknown_license(self): filesystem = MockFilesystem() filesystem.set_contents("root/google/models/model/1.md", MINIMAL_MARKDOWN_WITH_UNKNOWN_LICENSE) with self.assertRaisesRegexp(validator.MarkdownDocumentationError, ".*specify a license id from list.*"): validator.validate_documentation_files( documentation_dir="root", filesystem=filesystem) if __name__ == "__main__": tf.compat.v1.enable_v2_behavior() tf.test.main()
36.933535
80
0.695051
1adf83d4ac3d58a455126167c9630c8a1f95e402
2,400
py
Python
models/patchnce.py
bronemos/contrastive-unpaired-translation-focal
50b9008d08a86439ede081a910d02df5da8e32df
[ "BSD-3-Clause" ]
null
null
null
models/patchnce.py
bronemos/contrastive-unpaired-translation-focal
50b9008d08a86439ede081a910d02df5da8e32df
[ "BSD-3-Clause" ]
null
null
null
models/patchnce.py
bronemos/contrastive-unpaired-translation-focal
50b9008d08a86439ede081a910d02df5da8e32df
[ "BSD-3-Clause" ]
null
null
null
from packaging import version import torch from torch import nn from .focal_loss import FocalLoss class PatchNCELoss(nn.Module): def __init__(self, opt): super().__init__() self.opt = opt self.cross_entropy_loss = torch.nn.CrossEntropyLoss(reduction="none") self.focal_loss = FocalLoss() self.mask_dtype = ( torch.uint8 if version.parse(torch.__version__) < version.parse("1.2.0") else torch.bool ) def forward(self, feat_q, feat_k): batchSize = feat_q.shape[0] dim = feat_q.shape[1] feat_k = feat_k.detach() # pos logit l_pos = torch.bmm(feat_q.view(batchSize, 1, -1), feat_k.view(batchSize, -1, 1)) l_pos = l_pos.view(batchSize, 1) # neg logit # Should the negatives from the other samples of a minibatch be utilized? # In CUT and FastCUT, we found that it's best to only include negatives # from the same image. Therefore, we set # --nce_includes_all_negatives_from_minibatch as False # However, for single-image translation, the minibatch consists of # crops from the "same" high-resolution image. # Therefore, we will include the negatives from the entire minibatch. if self.opt.nce_includes_all_negatives_from_minibatch: # reshape features as if they are all negatives of minibatch of size 1. batch_dim_for_bmm = 1 else: batch_dim_for_bmm = self.opt.batch_size # reshape features to batch size feat_q = feat_q.view(batch_dim_for_bmm, -1, dim) feat_k = feat_k.view(batch_dim_for_bmm, -1, dim) npatches = feat_q.size(1) l_neg_curbatch = torch.bmm(feat_q, feat_k.transpose(2, 1)) # diagonal entries are similarity between same features, and hence meaningless. # just fill the diagonal with very small number, which is exp(-10) and almost zero diagonal = torch.eye(npatches, device=feat_q.device, dtype=self.mask_dtype)[ None, :, : ] l_neg_curbatch.masked_fill_(diagonal, -10.0) l_neg = l_neg_curbatch.view(-1, npatches) out = torch.cat((l_pos, l_neg), dim=1) / self.opt.nce_T loss = self.focal_loss( out, torch.zeros(out.size(0), dtype=torch.long, device=feat_q.device) ) return loss
36.363636
90
0.637917
c3d53838dee8952fb86cf031499d958cbd07cfb5
1,918
py
Python
chinilla/types/peer_info.py
Chinilla/chinilla-blockchain
59bebcf94e65b74fbb53ad4929bbd79cb28be619
[ "Apache-2.0" ]
null
null
null
chinilla/types/peer_info.py
Chinilla/chinilla-blockchain
59bebcf94e65b74fbb53ad4929bbd79cb28be619
[ "Apache-2.0" ]
null
null
null
chinilla/types/peer_info.py
Chinilla/chinilla-blockchain
59bebcf94e65b74fbb53ad4929bbd79cb28be619
[ "Apache-2.0" ]
null
null
null
import ipaddress from dataclasses import dataclass from typing import Optional, Union from chinilla.util.ints import uint16, uint64 from chinilla.util.streamable import Streamable, streamable @streamable @dataclass(frozen=True) class PeerInfo(Streamable): host: str port: uint16 def is_valid(self, allow_private_subnets=False) -> bool: ip: Optional[Union[ipaddress.IPv6Address, ipaddress.IPv4Address]] = None try: ip = ipaddress.IPv6Address(self.host) except ValueError: ip = None if ip is not None: if ip.is_private and not allow_private_subnets: return False return True try: ip = ipaddress.IPv4Address(self.host) except ValueError: ip = None if ip is not None: if ip.is_private and not allow_private_subnets: return False return True return False # Functions related to peer bucketing in new/tried tables. def get_key(self): try: ip = ipaddress.IPv6Address(self.host) except ValueError: ip_v4 = ipaddress.IPv4Address(self.host) ip = ipaddress.IPv6Address(int(ipaddress.IPv6Address("2002::")) | (int(ip_v4) << 80)) key = ip.packed key += bytes([self.port // 0x100, self.port & 0x0FF]) return key def get_group(self): # TODO: Port everything from Bitcoin. ipv4 = 1 try: ip = ipaddress.IPv4Address(self.host) except ValueError: ip = ipaddress.IPv6Address(self.host) ipv4 = 0 if ipv4: group = bytes([1]) + ip.packed[:2] else: group = bytes([0]) + ip.packed[:4] return group @streamable @dataclass(frozen=True) class TimestampedPeerInfo(Streamable): host: str port: uint16 timestamp: uint64
28.205882
97
0.601668
c3e005bb70b3a30b736192894faf8abfa0cc1c7f
3,205
py
Python
StockAnalysisSystem/interface/interface_rest.py
SleepySoft/StockAnalysisSystem
75f95738831614f7946f85d09118e447f7ac6dc7
[ "Apache-2.0" ]
138
2018-01-03T03:32:49.000Z
2022-03-12T02:57:46.000Z
StockAnalysisSystem/interface/interface_rest.py
SleepySoft/StockAnalysisSystem
75f95738831614f7946f85d09118e447f7ac6dc7
[ "Apache-2.0" ]
9
2018-01-01T03:16:24.000Z
2021-05-27T09:57:24.000Z
StockAnalysisSystem/interface/interface_rest.py
SleepySoft/StockAnalysisSystem
75f95738831614f7946f85d09118e447f7ac6dc7
[ "Apache-2.0" ]
50
2019-08-05T01:02:30.000Z
2022-03-07T00:52:14.000Z
import requests import datetime import traceback import pandas as pd from functools import partial from StockAnalysisSystem.core.Utility.JsonSerializer import serialize, deserialize import StockAnalysisSystem.core.Utility.JsonSerializerImpl # -------------------------------------------------------------------------------------- # Just porting THIS FILE and JsonSerializerImpl.py, JsonSerializer.py into your project. # Then you can access StockAnalysisSystem (sas) data by REST interface # without porting the whole sas project into your code. # -------------------------------------------------------------------------------------- class RestInterface: def __init__(self): self.__token = None self.__timeout = 9999 # Blocking in request for debug self.__api_url = 'http://127.0.0.1:80/api' def if_init(self, api_uri: str = None, token: str = None, timeout=None) -> bool: if token is not None: self.__token = token if timeout is not None: self.__timeout = timeout if api_uri is not None: self.__api_url = api_uri return True def if_prob(self) -> dict: return { 'name': 'Rest Interface', 'version': '1.0.0', } # ------------------------------------------------------------------------------------ def __getattr__(self, attr): return partial(self.rest_interface_proxy, attr) def rest_interface_proxy(self, api: str, *args, **kwargs) -> any: """ Cooperate with WebApiInterface.rest_interface_stub :param api: The function name of interface that you want to call :param args: The list args (which will be ignored in server side) :param kwargs: The key-value args :return: The response of server """ payload = { 'api': api, 'token': self.__token, 'args': serialize(args), 'kwargs': serialize(kwargs), } headers = { } try: resp = requests.post(self.__api_url, json=payload, headers=headers, timeout=self.__timeout) return self.deserialize_response(resp.text) if (resp.text is not None and resp.text != '') else None except Exception as e: print('Parse result fail: ' + str(e)) print(traceback.format_exc()) finally: pass @staticmethod def deserialize_response(resp_text: str) -> any: result = deserialize(resp_text) return result # ---------------------------------------------------------------------------------------------------------------------- def main(): caller = RestInterface() caller.if_init(api_uri='http://127.0.0.1:80/api', token='xxxxxx') df = caller.sas_query('Market.SecuritiesInfo', '000001.SZSE') print(df) df = caller.sas_query('Finance.IncomeStatement', '000001.SZSE', ('2000-01-01', '2020-12-31'), readable=True) print(df) if __name__ == '__main__': try: main() except Exception as e: print('Error =>', e) print('Error =>', traceback.format_exc()) exit() finally: pass
32.373737
120
0.541966
916edc55c2630f6dbc930027460c0392b3c1f30f
2,219
py
Python
prettyqt/custom_widgets/elidedlabel.py
phil65/PrettyQt
26327670c46caa039c9bd15cb17a35ef5ad72e6c
[ "MIT" ]
7
2019-05-01T01:34:36.000Z
2022-03-08T02:24:14.000Z
prettyqt/custom_widgets/elidedlabel.py
phil65/PrettyQt
26327670c46caa039c9bd15cb17a35ef5ad72e6c
[ "MIT" ]
141
2019-04-16T11:22:01.000Z
2021-04-14T15:12:36.000Z
prettyqt/custom_widgets/elidedlabel.py
phil65/PrettyQt
26327670c46caa039c9bd15cb17a35ef5ad72e6c
[ "MIT" ]
5
2019-04-17T11:48:19.000Z
2021-11-21T10:30:19.000Z
from __future__ import annotations from prettyqt import core, gui, widgets from prettyqt.qt import QtWidgets class ElidedLabel(widgets.Frame): elision_changed = core.Signal(bool) def __init__( self, text: str = "", parent: QtWidgets.QWidget | None = None, ): super().__init__(parent=parent) self.elided = False self.content = text self.set_size_policy("expanding", "preferred") def __repr__(self): return f"{type(self).__name__}({self.text()!r})" def set_text(self, text: str): self.content = text self.update() def paintEvent(self, event): super().paintEvent(event) painter = gui.Painter(self) metrics = painter.get_font_metrics() did_elide = False line_spacing = metrics.lineSpacing() y = 0 layout = gui.TextLayout(self.content, painter.font()) with layout.process_layout(): while True: line = layout.createLine() if not line.isValid(): break line.setLineWidth(self.width()) next_line_y = y + line_spacing if self.height() >= next_line_y + line_spacing: line.draw(painter, core.Point(0, y)) y = next_line_y else: last_line = self.content[line.textStart() :] elided_line = metrics.elided_text(last_line, "right", self.width()) painter.drawText(0, y + metrics.ascent(), elided_line) line = layout.createLine() did_elide = line.isValid() break if did_elide != self.elided: self.elided = did_elide self.elision_changed.emit(did_elide) # def paintEvent(self, event): # painter = gui.Painter(self) # metrics = gui.FontMetrics(self.font()) # elided = metrics.elided_text(self.text(), "right", self.width()) # painter.drawText(self.rect(), self.alignment(), elided) if __name__ == "__main__": app = widgets.app() widget = ElidedLabel("test") widget.show() app.main_loop()
31.253521
87
0.560613
babef387c83b5edd6d41a2fbc4731b10d41016d5
333
py
Python
src/interface_py/h2o4gpu/solvers/daal_solver/utils/helper_module.py
pnijhara/h2o4gpu
6257112c134136471420b68241f57190a445b67d
[ "Apache-2.0" ]
458
2017-09-20T08:32:10.000Z
2022-02-28T18:40:57.000Z
src/interface_py/h2o4gpu/solvers/daal_solver/utils/helper_module.py
Jun-NIBS/h2o4gpu
9885416deb3285f5d0f33023d6c07373ac4fc0b7
[ "Apache-2.0" ]
461
2017-09-20T11:39:04.000Z
2021-11-21T15:51:42.000Z
src/interface_py/h2o4gpu/solvers/daal_solver/utils/helper_module.py
Jun-NIBS/h2o4gpu
9885416deb3285f5d0f33023d6c07373ac4fc0b7
[ "Apache-2.0" ]
114
2017-09-20T12:08:07.000Z
2021-11-29T14:15:40.000Z
# -*- encoding: utf-8 -*- """ :copyright: 2017-2018 H2O.ai, Inc. :license: Apache License Version 2.0 (see LICENSE for details) """ from functools import wraps def print_name(func): @wraps(func) def full(*args, **kwargs): print("**-> {}".format(func.__name__)) return func(*args, **kwargs) return full
23.785714
64
0.618619
24ce653bbe6a608abfa4cf571516b19725b550ec
40,747
py
Python
model/DFSegX11.py
Ethan-ye/Efficient-Segmentation-Networks
27272e43126a507a6d93b21cd2372f5432f61237
[ "MIT" ]
null
null
null
model/DFSegX11.py
Ethan-ye/Efficient-Segmentation-Networks
27272e43126a507a6d93b21cd2372f5432f61237
[ "MIT" ]
null
null
null
model/DFSegX11.py
Ethan-ye/Efficient-Segmentation-Networks
27272e43126a507a6d93b21cd2372f5432f61237
[ "MIT" ]
null
null
null
# *- coding: utf-8 -* ########################################################################### # Partial order pruning: for best speed/accuracy trade-off in neural architecture search # https://github.com/lixincn2015/Partial-Order-Pruning ########################################################################### import numpy as np import torch import torch.nn as nn from torch.nn import functional as F from torchsummary import summary from utils.activations import NON_LINEARITY from fvcore.nn.flop_count import flop_count # https://github.com/facebookresearch/fvcore from tools.flops_counter.ptflops import get_model_complexity_info from thop import profile # https://github.com/Lyken17/pytorch-OpCounter __all__ = ['DF1SegX11'] # https://github.com/shelhamer/fcn.berkeleyvision.org/blob/master/surgery.py def get_upsampling_weight(in_channels, out_channels, kernel_size): """Make a 2D bilinear kernel suitable for upsampling""" factor = (kernel_size + 1) // 2 if kernel_size % 2 == 1: center = factor - 1 else: center = factor - 0.5 og = np.ogrid[:kernel_size, :kernel_size] filt = (1 - abs(og[0] - center) / factor) * \ (1 - abs(og[1] - center) / factor) weight = np.zeros((in_channels, out_channels, kernel_size, kernel_size), dtype=np.float64) weight[range(in_channels), range(out_channels), :, :] = filt return torch.from_numpy(weight).float() class ResBlock(nn.Module): def __init__(self, inplanes, planes, stride=1, downsample=None): super(ResBlock, self).__init__() self.conv00 = nn.Conv2d(inplanes, inplanes, kernel_size=3, stride=1, padding=1, bias=False) self.bn00 = nn.BatchNorm2d(inplanes) self.conv01 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=2, padding=1, bias=False) self.bn01 = nn.BatchNorm2d(planes) self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): if self.stride == 2: out = self.conv00(x) out = self.bn00(out) out = self.relu(out) out = self.conv01(out) out = self.bn01(out) out = self.relu(out) else: out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) else: residual = x out += residual out = self.relu(out) return out # self.decoder4 = nn.Sequential( # nn.Conv2d(128, 32, kernel_size=1, bias=False), # nn.BatchNorm2d(32), # nn.ReLU(inplace=True), # nn.ConvTranspose2d(32, 32, 4, stride=2, padding=1, groups=32, bias=False) # lr=0, bilinear # ) class FuseBlock(nn.Module): def __init__(self, inplanes, planes): super(FuseBlock, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.dconv = nn.ConvTranspose2d(planes, planes, kernel_size=4, stride=2, padding=1, groups=planes, bias=False) # lr=0, bilinear self.conv2 = nn.Conv2d(planes * 2, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) # self.stride = stride def forward(self, deep, shallow): deep = self.conv1(deep) deep = self.bn1(deep) deep = self.relu(deep) # with torch.no_grad(): deep = self.dconv(deep) fuse = torch.cat([deep, shallow], 1) fuse = self.conv2(fuse) fuse = self.bn2(fuse) fuse = self.relu(fuse) return fuse # https://github.com/Lextal/pspnet-pytorch/blob/master/pspnet.py class PSPModule(nn.Module): def __init__(self, features=512, out_features=512, sizes=(1, 2, 3, 6)): super(PSPModule, self).__init__() n = len(sizes) self.stages = [] self.stages = nn.ModuleList([self._make_stage(features, size, n) for size in sizes]) self.bottleneck = nn.Conv2d(features + features // n * n, out_features, kernel_size=3, padding=1, bias=False) self.bn = nn.BatchNorm2d(out_features) self.relu = nn.ReLU(inplace=True) def _make_stage(self, features, size, n): prior = nn.AdaptiveAvgPool2d(output_size=(size, size)) conv = nn.Conv2d(features, features // n, kernel_size=1, bias=False) bn = nn.BatchNorm2d(features // n) relu = nn.ReLU(inplace=True) return nn.Sequential(prior, conv, bn, relu) def forward(self, x): h, w = x.size(2), x.size(3) priors = [F.upsample(input=stage(x), size=(h, w), mode='bilinear') for stage in self.stages] + [x] out = self.bottleneck(torch.cat(priors, 1)) out = self.bn(out) return self.relu(out) class DF1SegX11(nn.Module): def __init__(self, classes=19): super(DF1SegX11, self).__init__() # encode self.conv1 = nn.Sequential( nn.Conv2d(3, 3, kernel_size=3, padding=1, stride=1, bias=False), nn.BatchNorm2d(3), nn.ReLU(inplace=True), nn.Conv2d(3, 32, kernel_size=3, padding=1, stride=2, bias=False), nn.BatchNorm2d(32), nn.ReLU(inplace=True) ) self.conv2 = nn.Sequential( nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1, bias=False), nn.BatchNorm2d(32), nn.ReLU(inplace=True), nn.Conv2d(32, 64, kernel_size=3, padding=1, stride=2, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True) ) self.inplanes = 64 self.res2 = self._make_layer(64, 3, stride=2) self.res3 = self._make_layer(128, 3, stride=2) self.res4_1 = self._make_layer(256, 3, stride=2) self.res4_2 = self._make_layer(512, 1, stride=1) self.psp = PSPModule(512, 512, (1, 2, 4, 8)) self.wc3 = nn.Sequential( nn.Conv2d(64, classes, kernel_size=1, bias=False), nn.BatchNorm2d(classes), nn.ReLU(inplace=True) ) self.wc4 = nn.Sequential( nn.Conv2d(128, 32, kernel_size=1, bias=False), nn.BatchNorm2d(32), nn.ReLU(inplace=True) ) self.wc5 = nn.Sequential( nn.Conv2d(512, 128, kernel_size=1, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), ) self.dec4 = FuseBlock(128, 32) # fuse wc5 wc4 self.dec3 = FuseBlock(32, classes) # fuse wc4 wc3 self.score = nn.Sequential( nn.Conv2d(classes, classes, kernel_size=3, padding=1, stride=1, bias=False), nn.BatchNorm2d(classes), nn.ReLU(inplace=True) ) self.score_u8 = nn.ConvTranspose2d(classes, classes, kernel_size=16, padding=4, stride=8, groups=classes, bias=False) self._initialize_weights() # decode # for m in self.modules(): # if isinstance(m, nn.Conv2d): # n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels # m.weight.data.normal_(0, math.sqrt(2. / n)) # elif isinstance(m, nn.BatchNorm2d): # m.weight.data.fill_(1) # m.bias.data.zero_() def _make_layer(self, planes, blocks, stride=1): if stride != 1 or self.inplanes != planes: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes, kernel_size=stride, stride=stride, bias=False), nn.BatchNorm2d(planes), ) else: downsample = None layers = list() layers.append(ResBlock(self.inplanes, planes, stride, downsample)) self.inplanes = planes for i in range(1, blocks): layers.append(ResBlock(self.inplanes, planes)) return nn.Sequential(*layers) def _initialize_weights(self): for m in self.modules(): # if isinstance(m, nn.Conv2d): # m.weight.data.zero_() # if m.bias is not None: # m.bias.data.zero_() if isinstance(m, nn.ConvTranspose2d): assert m.kernel_size[0] == m.kernel_size[1] initial_weight = get_upsampling_weight( m.in_channels, m.out_channels//m.groups, m.kernel_size[0]) m.weight.data.copy_(initial_weight) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x_res2 = self.res2(x) x_res3 = self.res3(x_res2) x = self.res4_1(x_res3) x = self.res4_2(x) x = self.psp(x) x_wc3 = self.wc3(x_res2) x_wc4 = self.wc4(x_res3) x = self.wc5(x) x = self.dec4(x, x_wc4) x = self.dec3(x, x_wc3) x = self.score(x) # with torch.no_grad(): x = self.score_u8(x) return x if __name__ == "__main__": device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = DF1SegX11(classes=19).to(device) summary(model, (3, 352, 480)) x = torch.randn(2, 3, 512, 1024).to(device) from fvcore.nn.jit_handles import batchnorm_flop_jit from fvcore.nn.jit_handles import generic_activation_jit supported_ops = { "aten::batch_norm": batchnorm_flop_jit, } flop_dict, _ = flop_count(model, (x,), supported_ops) flops_count, params_count = get_model_complexity_info(model, (3, 512, 1024), as_strings=False, print_per_layer_stat=True) input = x macs, params = profile(model, inputs=(input,)) print(flop_dict) print(flops_count, params_count) print(macs, params) ''' /home/ethan/anaconda3/envs/py36_cuda101/bin/python /home/ethan/codes/Efficient-Segmentation-Networks/model/DFSegX11.py /home/ethan/anaconda3/envs/py36_cuda101/lib/python3.6/site-packages/torch/nn/functional.py:2941: UserWarning: nn.functional.upsample is deprecated. Use nn.functional.interpolate instead. warnings.warn("nn.functional.upsample is deprecated. Use nn.functional.interpolate instead.") /home/ethan/anaconda3/envs/py36_cuda101/lib/python3.6/site-packages/torch/nn/functional.py:3121: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. "See the documentation of nn.Upsample for details.".format(mode)) ---------------------------------------------------------------- Layer (type) Output Shape Param # ================================================================ Conv2d-1 [-1, 3, 352, 480] 81 BatchNorm2d-2 [-1, 3, 352, 480] 6 ReLU-3 [-1, 3, 352, 480] 0 Conv2d-4 [-1, 32, 176, 240] 864 BatchNorm2d-5 [-1, 32, 176, 240] 64 ReLU-6 [-1, 32, 176, 240] 0 Conv2d-7 [-1, 32, 176, 240] 9,216 BatchNorm2d-8 [-1, 32, 176, 240] 64 ReLU-9 [-1, 32, 176, 240] 0 Conv2d-10 [-1, 64, 88, 120] 18,432 BatchNorm2d-11 [-1, 64, 88, 120] 128 ReLU-12 [-1, 64, 88, 120] 0 Conv2d-13 [-1, 64, 88, 120] 36,864 BatchNorm2d-14 [-1, 64, 88, 120] 128 ReLU-15 [-1, 64, 88, 120] 0 Conv2d-16 [-1, 64, 44, 60] 36,864 BatchNorm2d-17 [-1, 64, 44, 60] 128 ReLU-18 [-1, 64, 44, 60] 0 Conv2d-19 [-1, 64, 44, 60] 36,864 BatchNorm2d-20 [-1, 64, 44, 60] 128 Conv2d-21 [-1, 64, 44, 60] 16,384 BatchNorm2d-22 [-1, 64, 44, 60] 128 ReLU-23 [-1, 64, 44, 60] 0 ResBlock-24 [-1, 64, 44, 60] 0 Conv2d-25 [-1, 64, 44, 60] 36,864 BatchNorm2d-26 [-1, 64, 44, 60] 128 ReLU-27 [-1, 64, 44, 60] 0 Conv2d-28 [-1, 64, 44, 60] 36,864 BatchNorm2d-29 [-1, 64, 44, 60] 128 ReLU-30 [-1, 64, 44, 60] 0 ResBlock-31 [-1, 64, 44, 60] 0 Conv2d-32 [-1, 64, 44, 60] 36,864 BatchNorm2d-33 [-1, 64, 44, 60] 128 ReLU-34 [-1, 64, 44, 60] 0 Conv2d-35 [-1, 64, 44, 60] 36,864 BatchNorm2d-36 [-1, 64, 44, 60] 128 ReLU-37 [-1, 64, 44, 60] 0 ResBlock-38 [-1, 64, 44, 60] 0 Conv2d-39 [-1, 64, 44, 60] 36,864 BatchNorm2d-40 [-1, 64, 44, 60] 128 ReLU-41 [-1, 64, 44, 60] 0 Conv2d-42 [-1, 128, 22, 30] 73,728 BatchNorm2d-43 [-1, 128, 22, 30] 256 ReLU-44 [-1, 128, 22, 30] 0 Conv2d-45 [-1, 128, 22, 30] 147,456 BatchNorm2d-46 [-1, 128, 22, 30] 256 Conv2d-47 [-1, 128, 22, 30] 32,768 BatchNorm2d-48 [-1, 128, 22, 30] 256 ReLU-49 [-1, 128, 22, 30] 0 ResBlock-50 [-1, 128, 22, 30] 0 Conv2d-51 [-1, 128, 22, 30] 147,456 BatchNorm2d-52 [-1, 128, 22, 30] 256 ReLU-53 [-1, 128, 22, 30] 0 Conv2d-54 [-1, 128, 22, 30] 147,456 BatchNorm2d-55 [-1, 128, 22, 30] 256 ReLU-56 [-1, 128, 22, 30] 0 ResBlock-57 [-1, 128, 22, 30] 0 Conv2d-58 [-1, 128, 22, 30] 147,456 BatchNorm2d-59 [-1, 128, 22, 30] 256 ReLU-60 [-1, 128, 22, 30] 0 Conv2d-61 [-1, 128, 22, 30] 147,456 BatchNorm2d-62 [-1, 128, 22, 30] 256 ReLU-63 [-1, 128, 22, 30] 0 ResBlock-64 [-1, 128, 22, 30] 0 Conv2d-65 [-1, 128, 22, 30] 147,456 BatchNorm2d-66 [-1, 128, 22, 30] 256 ReLU-67 [-1, 128, 22, 30] 0 Conv2d-68 [-1, 256, 11, 15] 294,912 BatchNorm2d-69 [-1, 256, 11, 15] 512 ReLU-70 [-1, 256, 11, 15] 0 Conv2d-71 [-1, 256, 11, 15] 589,824 BatchNorm2d-72 [-1, 256, 11, 15] 512 Conv2d-73 [-1, 256, 11, 15] 131,072 BatchNorm2d-74 [-1, 256, 11, 15] 512 ReLU-75 [-1, 256, 11, 15] 0 ResBlock-76 [-1, 256, 11, 15] 0 Conv2d-77 [-1, 256, 11, 15] 589,824 BatchNorm2d-78 [-1, 256, 11, 15] 512 ReLU-79 [-1, 256, 11, 15] 0 Conv2d-80 [-1, 256, 11, 15] 589,824 BatchNorm2d-81 [-1, 256, 11, 15] 512 ReLU-82 [-1, 256, 11, 15] 0 ResBlock-83 [-1, 256, 11, 15] 0 Conv2d-84 [-1, 256, 11, 15] 589,824 BatchNorm2d-85 [-1, 256, 11, 15] 512 ReLU-86 [-1, 256, 11, 15] 0 Conv2d-87 [-1, 256, 11, 15] 589,824 BatchNorm2d-88 [-1, 256, 11, 15] 512 ReLU-89 [-1, 256, 11, 15] 0 ResBlock-90 [-1, 256, 11, 15] 0 Conv2d-91 [-1, 512, 11, 15] 1,179,648 BatchNorm2d-92 [-1, 512, 11, 15] 1,024 ReLU-93 [-1, 512, 11, 15] 0 Conv2d-94 [-1, 512, 11, 15] 2,359,296 BatchNorm2d-95 [-1, 512, 11, 15] 1,024 Conv2d-96 [-1, 512, 11, 15] 131,072 BatchNorm2d-97 [-1, 512, 11, 15] 1,024 ReLU-98 [-1, 512, 11, 15] 0 ResBlock-99 [-1, 512, 11, 15] 0 AdaptiveAvgPool2d-100 [-1, 512, 1, 1] 0 Conv2d-101 [-1, 128, 1, 1] 65,536 BatchNorm2d-102 [-1, 128, 1, 1] 256 ReLU-103 [-1, 128, 1, 1] 0 AdaptiveAvgPool2d-104 [-1, 512, 2, 2] 0 Conv2d-105 [-1, 128, 2, 2] 65,536 BatchNorm2d-106 [-1, 128, 2, 2] 256 ReLU-107 [-1, 128, 2, 2] 0 AdaptiveAvgPool2d-108 [-1, 512, 4, 4] 0 Conv2d-109 [-1, 128, 4, 4] 65,536 BatchNorm2d-110 [-1, 128, 4, 4] 256 ReLU-111 [-1, 128, 4, 4] 0 AdaptiveAvgPool2d-112 [-1, 512, 8, 8] 0 Conv2d-113 [-1, 128, 8, 8] 65,536 BatchNorm2d-114 [-1, 128, 8, 8] 256 ReLU-115 [-1, 128, 8, 8] 0 Conv2d-116 [-1, 512, 11, 15] 4,718,592 BatchNorm2d-117 [-1, 512, 11, 15] 1,024 ReLU-118 [-1, 512, 11, 15] 0 PSPModule-119 [-1, 512, 11, 15] 0 Conv2d-120 [-1, 19, 44, 60] 1,216 BatchNorm2d-121 [-1, 19, 44, 60] 38 ReLU-122 [-1, 19, 44, 60] 0 Conv2d-123 [-1, 32, 22, 30] 4,096 BatchNorm2d-124 [-1, 32, 22, 30] 64 ReLU-125 [-1, 32, 22, 30] 0 Conv2d-126 [-1, 128, 11, 15] 65,536 BatchNorm2d-127 [-1, 128, 11, 15] 256 ReLU-128 [-1, 128, 11, 15] 0 Conv2d-129 [-1, 32, 11, 15] 4,096 BatchNorm2d-130 [-1, 32, 11, 15] 64 ReLU-131 [-1, 32, 11, 15] 0 ConvTranspose2d-132 [-1, 32, 22, 30] 512 Conv2d-133 [-1, 32, 22, 30] 18,432 BatchNorm2d-134 [-1, 32, 22, 30] 64 ReLU-135 [-1, 32, 22, 30] 0 FuseBlock-136 [-1, 32, 22, 30] 0 Conv2d-137 [-1, 19, 22, 30] 608 BatchNorm2d-138 [-1, 19, 22, 30] 38 ReLU-139 [-1, 19, 22, 30] 0 ConvTranspose2d-140 [-1, 19, 44, 60] 304 Conv2d-141 [-1, 19, 44, 60] 6,498 BatchNorm2d-142 [-1, 19, 44, 60] 38 ReLU-143 [-1, 19, 44, 60] 0 FuseBlock-144 [-1, 19, 44, 60] 0 Conv2d-145 [-1, 19, 44, 60] 3,249 BatchNorm2d-146 [-1, 19, 44, 60] 38 ReLU-147 [-1, 19, 44, 60] 0 ConvTranspose2d-148 [-1, 19, 352, 480] 4,864 ================================================================ Total params: 13,479,154 Trainable params: 13,479,154 Non-trainable params: 0 ---------------------------------------------------------------- Input size (MB): 1.93 Forward/backward pass size (MB): 201.94 Params size (MB): 51.42 Estimated Total Size (MB): 255.29 ---------------------------------------------------------------- Skipped operation aten::relu_ 40 time(s) Skipped operation aten::add_ 10 time(s) Skipped operation aten::adaptive_avg_pool2d 4 time(s) Skipped operation aten::upsample_bilinear2d 4 time(s) DF1SegX11( 13.765 GMac, 100.000% MACs, (conv1): Sequential( 0.173 GMac, 1.257% MACs, (0): Conv2d(0.042 GMac, 0.309% MACs, 3, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(0.003 GMac, 0.023% MACs, 3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.002 GMac, 0.011% MACs, inplace=True) (3): Conv2d(0.113 GMac, 0.823% MACs, 3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (4): BatchNorm2d(0.008 GMac, 0.061% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(0.004 GMac, 0.030% MACs, inplace=True) ) (conv2): Sequential( 1.831 GMac, 13.300% MACs, (0): Conv2d(1.208 GMac, 8.775% MACs, 32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(0.008 GMac, 0.061% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.004 GMac, 0.030% MACs, inplace=True) (3): Conv2d(0.604 GMac, 4.388% MACs, 32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (4): BatchNorm2d(0.004 GMac, 0.030% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(0.002 GMac, 0.015% MACs, inplace=True) ) (res2): Sequential( 3.171 GMac, 23.035% MACs, (0): ResBlock( 1.957 GMac, 14.214% MACs, (conv00): Conv2d(1.208 GMac, 8.775% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn00): BatchNorm2d(0.004 GMac, 0.030% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv01): Conv2d(0.302 GMac, 2.194% MACs, 64, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn01): BatchNorm2d(0.001 GMac, 0.008% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv1): Conv2d(0.0 GMac, 0.000% MACs, 64, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn1): BatchNorm2d(0.0 GMac, 0.000% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.003 GMac, 0.023% MACs, inplace=True) (conv2): Conv2d(0.302 GMac, 2.194% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(0.001 GMac, 0.008% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (downsample): Sequential( 0.135 GMac, 0.983% MACs, (0): Conv2d(0.134 GMac, 0.975% MACs, 64, 64, kernel_size=(2, 2), stride=(2, 2), bias=False) (1): BatchNorm2d(0.001 GMac, 0.008% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): ResBlock( 0.607 GMac, 4.411% MACs, (conv00): Conv2d(0.0 GMac, 0.000% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn00): BatchNorm2d(0.0 GMac, 0.000% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv01): Conv2d(0.0 GMac, 0.000% MACs, 64, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn01): BatchNorm2d(0.0 GMac, 0.000% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv1): Conv2d(0.302 GMac, 2.194% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(0.001 GMac, 0.008% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.001 GMac, 0.008% MACs, inplace=True) (conv2): Conv2d(0.302 GMac, 2.194% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(0.001 GMac, 0.008% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (2): ResBlock( 0.607 GMac, 4.411% MACs, (conv00): Conv2d(0.0 GMac, 0.000% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn00): BatchNorm2d(0.0 GMac, 0.000% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv01): Conv2d(0.0 GMac, 0.000% MACs, 64, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn01): BatchNorm2d(0.0 GMac, 0.000% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv1): Conv2d(0.302 GMac, 2.194% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(0.001 GMac, 0.008% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.001 GMac, 0.008% MACs, inplace=True) (conv2): Conv2d(0.302 GMac, 2.194% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(0.001 GMac, 0.008% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (res3): Sequential( 2.037 GMac, 14.797% MACs, (0): ResBlock( 0.826 GMac, 5.999% MACs, (conv00): Conv2d(0.302 GMac, 2.194% MACs, 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn00): BatchNorm2d(0.001 GMac, 0.008% MACs, 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv01): Conv2d(0.151 GMac, 1.097% MACs, 64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn01): BatchNorm2d(0.001 GMac, 0.004% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv1): Conv2d(0.0 GMac, 0.000% MACs, 64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn1): BatchNorm2d(0.0 GMac, 0.000% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.001 GMac, 0.008% MACs, inplace=True) (conv2): Conv2d(0.302 GMac, 2.194% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(0.001 GMac, 0.004% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (downsample): Sequential( 0.068 GMac, 0.491% MACs, (0): Conv2d(0.067 GMac, 0.488% MACs, 64, 128, kernel_size=(2, 2), stride=(2, 2), bias=False) (1): BatchNorm2d(0.001 GMac, 0.004% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): ResBlock( 0.606 GMac, 4.399% MACs, (conv00): Conv2d(0.0 GMac, 0.000% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn00): BatchNorm2d(0.0 GMac, 0.000% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv01): Conv2d(0.0 GMac, 0.000% MACs, 128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn01): BatchNorm2d(0.0 GMac, 0.000% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv1): Conv2d(0.302 GMac, 2.194% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(0.001 GMac, 0.004% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.001 GMac, 0.004% MACs, inplace=True) (conv2): Conv2d(0.302 GMac, 2.194% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(0.001 GMac, 0.004% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (2): ResBlock( 0.606 GMac, 4.399% MACs, (conv00): Conv2d(0.0 GMac, 0.000% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn00): BatchNorm2d(0.0 GMac, 0.000% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv01): Conv2d(0.0 GMac, 0.000% MACs, 128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn01): BatchNorm2d(0.0 GMac, 0.000% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv1): Conv2d(0.302 GMac, 2.194% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(0.001 GMac, 0.004% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.001 GMac, 0.004% MACs, inplace=True) (conv2): Conv2d(0.302 GMac, 2.194% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(0.001 GMac, 0.004% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (res4_1): Sequential( 2.033 GMac, 14.772% MACs, (0): ResBlock( 0.824 GMac, 5.985% MACs, (conv00): Conv2d(0.302 GMac, 2.194% MACs, 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn00): BatchNorm2d(0.001 GMac, 0.004% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv01): Conv2d(0.151 GMac, 1.097% MACs, 128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn01): BatchNorm2d(0.0 GMac, 0.002% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv1): Conv2d(0.0 GMac, 0.000% MACs, 128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn1): BatchNorm2d(0.0 GMac, 0.000% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.001 GMac, 0.004% MACs, inplace=True) (conv2): Conv2d(0.302 GMac, 2.194% MACs, 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(0.0 GMac, 0.002% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (downsample): Sequential( 0.067 GMac, 0.489% MACs, (0): Conv2d(0.067 GMac, 0.488% MACs, 128, 256, kernel_size=(2, 2), stride=(2, 2), bias=False) (1): BatchNorm2d(0.0 GMac, 0.002% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): ResBlock( 0.605 GMac, 4.393% MACs, (conv00): Conv2d(0.0 GMac, 0.000% MACs, 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn00): BatchNorm2d(0.0 GMac, 0.000% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv01): Conv2d(0.0 GMac, 0.000% MACs, 256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn01): BatchNorm2d(0.0 GMac, 0.000% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv1): Conv2d(0.302 GMac, 2.194% MACs, 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(0.0 GMac, 0.002% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.002% MACs, inplace=True) (conv2): Conv2d(0.302 GMac, 2.194% MACs, 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(0.0 GMac, 0.002% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (2): ResBlock( 0.605 GMac, 4.393% MACs, (conv00): Conv2d(0.0 GMac, 0.000% MACs, 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn00): BatchNorm2d(0.0 GMac, 0.000% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv01): Conv2d(0.0 GMac, 0.000% MACs, 256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn01): BatchNorm2d(0.0 GMac, 0.000% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv1): Conv2d(0.302 GMac, 2.194% MACs, 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(0.0 GMac, 0.002% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.002% MACs, inplace=True) (conv2): Conv2d(0.302 GMac, 2.194% MACs, 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(0.0 GMac, 0.002% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (res4_2): Sequential( 1.881 GMac, 13.666% MACs, (0): ResBlock( 1.881 GMac, 13.666% MACs, (conv00): Conv2d(0.0 GMac, 0.000% MACs, 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn00): BatchNorm2d(0.0 GMac, 0.000% MACs, 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv01): Conv2d(0.0 GMac, 0.000% MACs, 256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn01): BatchNorm2d(0.0 GMac, 0.000% MACs, 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv1): Conv2d(0.604 GMac, 4.388% MACs, 256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(0.001 GMac, 0.004% MACs, 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.001 GMac, 0.004% MACs, inplace=True) (conv2): Conv2d(1.208 GMac, 8.775% MACs, 512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(0.001 GMac, 0.004% MACs, 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (downsample): Sequential( 0.068 GMac, 0.491% MACs, (0): Conv2d(0.067 GMac, 0.488% MACs, 256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.001 GMac, 0.004% MACs, 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) ) (psp): PSPModule( 2.423 GMac, 17.605% MACs, (stages): ModuleList( 0.007 GMac, 0.048% MACs, (0): Sequential( 0.0 GMac, 0.002% MACs, (0): AdaptiveAvgPool2d(0.0 GMac, 0.002% MACs, output_size=(1, 1)) (1): Conv2d(0.0 GMac, 0.000% MACs, 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (2): BatchNorm2d(0.0 GMac, 0.000% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (1): Sequential( 0.001 GMac, 0.004% MACs, (0): AdaptiveAvgPool2d(0.0 GMac, 0.002% MACs, output_size=(2, 2)) (1): Conv2d(0.0 GMac, 0.002% MACs, 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (2): BatchNorm2d(0.0 GMac, 0.000% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (2): Sequential( 0.001 GMac, 0.010% MACs, (0): AdaptiveAvgPool2d(0.0 GMac, 0.002% MACs, output_size=(4, 4)) (1): Conv2d(0.001 GMac, 0.008% MACs, 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (2): BatchNorm2d(0.0 GMac, 0.000% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (3): Sequential( 0.004 GMac, 0.033% MACs, (0): AdaptiveAvgPool2d(0.0 GMac, 0.002% MACs, output_size=(8, 8)) (1): Conv2d(0.004 GMac, 0.030% MACs, 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (2): BatchNorm2d(0.0 GMac, 0.000% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) ) (bottleneck): Conv2d(2.416 GMac, 17.551% MACs, 1024, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(0.001 GMac, 0.004% MACs, 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.002% MACs, inplace=True) ) (wc3): Sequential( 0.01 GMac, 0.076% MACs, (0): Conv2d(0.01 GMac, 0.072% MACs, 64, 19, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.0 GMac, 0.002% MACs, 19, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.001% MACs, inplace=True) ) (wc4): Sequential( 0.009 GMac, 0.062% MACs, (0): Conv2d(0.008 GMac, 0.061% MACs, 128, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.0 GMac, 0.001% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (wc5): Sequential( 0.034 GMac, 0.245% MACs, (0): Conv2d(0.034 GMac, 0.244% MACs, 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(0.0 GMac, 0.001% MACs, 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.000% MACs, inplace=True) ) (dec4): FuseBlock( 0.04 GMac, 0.293% MACs, (conv1): Conv2d(0.002 GMac, 0.015% MACs, 128, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(0.0 GMac, 0.000% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.001% MACs, inplace=True) (dconv): ConvTranspose2d(0.0 GMac, 0.002% MACs, 32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), groups=32, bias=False) (conv2): Conv2d(0.038 GMac, 0.274% MACs, 64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(0.0 GMac, 0.001% MACs, 32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (dec3): FuseBlock( 0.056 GMac, 0.405% MACs, (conv1): Conv2d(0.001 GMac, 0.009% MACs, 32, 19, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(0.0 GMac, 0.001% MACs, 19, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(0.0 GMac, 0.001% MACs, inplace=True) (dconv): ConvTranspose2d(0.001 GMac, 0.005% MACs, 19, 19, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), groups=19, bias=False) (conv2): Conv2d(0.053 GMac, 0.387% MACs, 38, 19, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(0.0 GMac, 0.002% MACs, 19, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (score): Sequential( 0.027 GMac, 0.197% MACs, (0): Conv2d(0.027 GMac, 0.193% MACs, 19, 19, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(0.0 GMac, 0.002% MACs, 19, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(0.0 GMac, 0.001% MACs, inplace=True) ) (score_u8): ConvTranspose2d(0.04 GMac, 0.289% MACs, 19, 19, kernel_size=(16, 16), stride=(8, 8), padding=(4, 4), groups=19, bias=False) ) [INFO] Register count_convNd() for <class 'torch.nn.modules.conv.Conv2d'>. [INFO] Register count_bn() for <class 'torch.nn.modules.batchnorm.BatchNorm2d'>. [INFO] Register zero_ops() for <class 'torch.nn.modules.activation.ReLU'>. [WARN] Cannot find rule for <class 'torch.nn.modules.container.Sequential'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__.ResBlock'>. Treat it as zero Macs and zero Params. [INFO] Register count_adap_avgpool() for <class 'torch.nn.modules.pooling.AdaptiveAvgPool2d'>. [WARN] Cannot find rule for <class 'torch.nn.modules.container.ModuleList'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__.PSPModule'>. Treat it as zero Macs and zero Params. [INFO] Register count_convNd() for <class 'torch.nn.modules.conv.ConvTranspose2d'>. [WARN] Cannot find rule for <class '__main__.FuseBlock'>. Treat it as zero Macs and zero Params. [WARN] Cannot find rule for <class '__main__.DF1SegX11'>. Treat it as zero Macs and zero Params. defaultdict(<class 'float'>, {'conv': 32.417824768, 'batchnorm': 0.18514432}) 13765265280.0 18756722 32512581120.0 13479154.0 Process finished with exit code 0 '''
56.829847
319
0.543206
6fadf40ca22ddda121c1109e8ec358c31fb3506f
18,443
py
Python
lib/blockchain.py
quietnan/electrum-ftc
5f72cadd777d80a7235e4860589c425287a67fe9
[ "MIT" ]
null
null
null
lib/blockchain.py
quietnan/electrum-ftc
5f72cadd777d80a7235e4860589c425287a67fe9
[ "MIT" ]
null
null
null
lib/blockchain.py
quietnan/electrum-ftc
5f72cadd777d80a7235e4860589c425287a67fe9
[ "MIT" ]
null
null
null
# Electrum - lightweight Bitcoin client # Copyright (C) 2012 [email protected] # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import os import threading from . import util from . import bitcoin from . import constants from .bitcoin import * MAX_TARGET = 0x00000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF MAX_TARGET_NEOSCRYPT = 0x0000003FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF SEVEN_DAYS = 7 * 24 * 60 * 60 HEIGHT_FORK_ONE = 33000 HEIGHT_FORK_TWO = 87948 HEIGHT_FORK_THREE = 204639 HEIGHT_FORK_FOUR = 432000 def serialize_header(res): s = int_to_hex(res.get('version'), 4) \ + rev_hex(res.get('prev_block_hash')) \ + rev_hex(res.get('merkle_root')) \ + int_to_hex(int(res.get('timestamp')), 4) \ + int_to_hex(int(res.get('bits')), 4) \ + int_to_hex(int(res.get('nonce')), 4) return s def deserialize_header(s, height): if not s: raise Exception('Invalid header: {}'.format(s)) if len(s) != 80: raise Exception('Invalid header length: {}'.format(len(s))) hex_to_int = lambda s: int('0x' + bh2u(s[::-1]), 16) h = {} h['version'] = hex_to_int(s[0:4]) h['prev_block_hash'] = hash_encode(s[4:36]) h['merkle_root'] = hash_encode(s[36:68]) h['timestamp'] = hex_to_int(s[68:72]) h['bits'] = hex_to_int(s[72:76]) h['nonce'] = hex_to_int(s[76:80]) h['block_height'] = height return h def pow_hash_header(header): if header is None: return '0' * 64 if header.get('prev_block_hash') is None: header['prev_block_hash'] = '00'*32 hashAlg = PoWNeoScryptHash if header.get('timestamp') < 1414346265: hashAlg = PoWHash return hash_encode(hashAlg(bfh(serialize_header(header)))) def hash_header(header): if header is None: return '0' * 64 if header.get('prev_block_hash') is None: header['prev_block_hash'] = '00'*32 return hash_encode(Hash(bfh(serialize_header(header)))) blockchains = {} def read_blockchains(config): blockchains[0] = Blockchain(config, 0, None) fdir = os.path.join(util.get_headers_dir(config), 'forks') if not os.path.exists(fdir): os.mkdir(fdir) l = filter(lambda x: x.startswith('fork_'), os.listdir(fdir)) l = sorted(l, key = lambda x: int(x.split('_')[1])) for filename in l: checkpoint = int(filename.split('_')[2]) parent_id = int(filename.split('_')[1]) b = Blockchain(config, checkpoint, parent_id) h = b.read_header(b.checkpoint) if b.parent().can_connect(h, check_height=False): blockchains[b.checkpoint] = b else: util.print_error("cannot connect", filename) return blockchains def check_header(header): if type(header) is not dict: return False for b in blockchains.values(): if b.check_header(header): return b return False def can_connect(header): for b in blockchains.values(): if b.can_connect(header): return b return False class Blockchain(util.PrintError): """ Manages blockchain headers and their verification """ def __init__(self, config, checkpoint, parent_id): self.config = config self.catch_up = None # interface catching up self.checkpoint = checkpoint self.checkpoints = constants.net.CHECKPOINTS self.target_bridge = constants.read_json('target_bridge.json', None) self.parent_id = parent_id self.lock = threading.Lock() with self.lock: self.update_size() def parent(self): return blockchains[self.parent_id] def get_max_child(self): children = list(filter(lambda y: y.parent_id==self.checkpoint, blockchains.values())) return max([x.checkpoint for x in children]) if children else None def get_checkpoint(self): mc = self.get_max_child() return mc if mc is not None else self.checkpoint def get_branch_size(self): return self.height() - self.get_checkpoint() + 1 def get_name(self): return self.get_hash(self.get_checkpoint()).lstrip('00')[0:10] def check_header(self, header): header_hash = hash_header(header) height = header.get('block_height') return header_hash == self.get_hash(height) def fork(parent, header): checkpoint = header.get('block_height') self = Blockchain(parent.config, checkpoint, parent.checkpoint) open(self.path(), 'w+').close() self.save_header(header) return self def height(self): return self.checkpoint + self.size() - 1 def size(self): with self.lock: return self._size def update_size(self): p = self.path() self._size = os.path.getsize(p)//80 if os.path.exists(p) else 0 def verify_header(self, header, prev_hash, target): _hash = pow_hash_header(header) if prev_hash != header.get('prev_block_hash'): raise Exception("prev hash mismatch: %s vs %s" % (prev_hash, header.get('prev_block_hash'))) if constants.net.TESTNET: return if header.get('block_height') >= len(self.checkpoints) * 2016: bits = self.target_to_bits(target) if bits != header.get('bits'): raise Exception("bits mismatch: %s vs %s" % (bits, header.get('bits'))) if int('0x' + _hash, 16) > target: raise Exception("insufficient proof of work: %s vs target %s" % (int('0x' + _hash, 16), target)) def verify_chunk(self, index, data): num = len(data) // 80 prev_hash = self.get_hash(index * 2016 - 1) headers = [] for i in range(num): raw_header = data[i*80:(i+1) * 80] headers.append(deserialize_header(raw_header, index*2016 + i)) for i, header in enumerate(headers): target = self.get_target(index*2016 + i, headers) self.verify_header(header, prev_hash, target) prev_hash = hash_header(header) def path(self): d = util.get_headers_dir(self.config) filename = 'blockchain_headers' if self.parent_id is None else os.path.join('forks', 'fork_%d_%d'%(self.parent_id, self.checkpoint)) return os.path.join(d, filename) def save_chunk(self, index, chunk): filename = self.path() d = (index * 2016 - self.checkpoint) * 80 if d < 0: chunk = chunk[-d:] d = 0 truncate = index >= len(self.checkpoints) self.write(chunk, d, truncate) self.swap_with_parent() def swap_with_parent(self): if self.parent_id is None: return parent_branch_size = self.parent().height() - self.checkpoint + 1 if parent_branch_size >= self.size(): return self.print_error("swap", self.checkpoint, self.parent_id) parent_id = self.parent_id checkpoint = self.checkpoint parent = self.parent() with open(self.path(), 'rb') as f: my_data = f.read() with open(parent.path(), 'rb') as f: f.seek((checkpoint - parent.checkpoint)*80) parent_data = f.read(parent_branch_size*80) self.write(parent_data, 0) parent.write(my_data, (checkpoint - parent.checkpoint)*80) # store file path for b in blockchains.values(): b.old_path = b.path() # swap parameters self.parent_id = parent.parent_id; parent.parent_id = parent_id self.checkpoint = parent.checkpoint; parent.checkpoint = checkpoint self._size = parent._size; parent._size = parent_branch_size # move files for b in blockchains.values(): if b in [self, parent]: continue if b.old_path != b.path(): self.print_error("renaming", b.old_path, b.path()) os.rename(b.old_path, b.path()) # update pointers blockchains[self.checkpoint] = self blockchains[parent.checkpoint] = parent def write(self, data, offset, truncate=True): filename = self.path() with self.lock: with open(filename, 'rb+') as f: if truncate and offset != self._size*80: f.seek(offset) f.truncate() f.seek(offset) f.write(data) f.flush() os.fsync(f.fileno()) self.update_size() def save_header(self, header): delta = header.get('block_height') - self.checkpoint data = bfh(serialize_header(header)) assert delta == self.size() assert len(data) == 80 self.write(data, delta*80) self.swap_with_parent() def read_header(self, height): assert self.parent_id != self.checkpoint if height < 0: return if height < self.checkpoint: return self.parent().read_header(height) if height > self.height(): return delta = height - self.checkpoint name = self.path() if os.path.exists(name): with open(name, 'rb') as f: f.seek(delta * 80) h = f.read(80) if len(h) < 80: raise Exception('Expected to read a full header. This was only {} bytes'.format(len(h))) elif not os.path.exists(util.get_headers_dir(self.config)): raise Exception('Electrum datadir does not exist. Was it deleted while running?') else: raise Exception('Cannot find headers file but datadir is there. Should be at {}'.format(name)) if h == bytes([0])*80: return None return deserialize_header(h, height) def get_hash(self, height): if height == -1: return '0000000000000000000000000000000000000000000000000000000000000000' elif height == 0: return constants.net.GENESIS elif height < len(self.checkpoints) * 2016: assert (height+1) % 2016 == 0, height index = height // 2016 return self.checkpoints[index] else: return hash_header(self.read_header(height)) def get_target(self, height, headers): if constants.net.TESTNET: return 0 if height == 0: return MAX_TARGET if height < len(self.checkpoints) * 2016: # return pessimistic value to detect if check is unintentionally performed return 0 bridge_index = height - len(self.checkpoints) * 2016 if bridge_index >= 0 and bridge_index < len(self.target_bridge): # The block headers are not fetched by default for headers with # height less than len(self.checkpoints) * 2016. To bridge into # on-the-fly target computation the target from previous headers # must be known. Therefore, the necessary target values from local # storage are used here. return self.target_bridge[bridge_index] elif height == HEIGHT_FORK_FOUR: return MAX_TARGET_NEOSCRYPT elif height >= HEIGHT_FORK_THREE: return self.__fork_three_target(height, headers) elif height >= HEIGHT_FORK_TWO: return self.__fork_two_target(height, headers) elif height >= HEIGHT_FORK_ONE: return self.__fork_one_target(height, headers) else: return self.__vanilla_target(height, headers) @staticmethod def __damp(nActualTimespan, nTargetTimespan): return int((nActualTimespan + 3 * nTargetTimespan) / 4) def __fork_three_target(self, height, headers): last_height = height - 1 last = self.get_header(last_height, height, headers) target = self.bits_to_target(last.get('bits')) first = self.get_header(last_height - 15, height, headers) nActualTimespanShort = int((last.get('timestamp') - first.get('timestamp')) / 15) first = self.get_header(last_height - 120, height, headers) nActualTimespanMedium = int((last.get('timestamp') - first.get('timestamp')) / 120) first = self.get_header(last_height - 480, height, headers) nActualTimespanLong = int((last.get('timestamp') - first.get('timestamp')) / 480) nActualTimespan = (nActualTimespanShort + nActualTimespanMedium + nActualTimespanLong) // 3 nTargetTimespan = 60 nActualTimespan = Blockchain.__damp(nActualTimespan, nTargetTimespan) return Blockchain.__get_target(target, nActualTimespan, nTargetTimespan, 453, 494) def __fork_two_target(self, height, headers): interval = 126 last_height = height - 1 last = self.get_header(last_height, height, headers) target = self.bits_to_target(last.get('bits')) if height % interval != 0 and height != HEIGHT_FORK_TWO: return target first = self.get_header(last_height - interval, height, headers) nActualTimespanShort = last.get('timestamp') - first.get('timestamp') first = self.get_header(last_height - interval * 4, height, headers) nActualTimespanLong = (last.get('timestamp') - first.get('timestamp')) // 4 nActualTimespan = (nActualTimespanShort + nActualTimespanLong) // 2 nTargetTimespan = SEVEN_DAYS // 32 nActualTimespan = Blockchain.__damp(nActualTimespan, nTargetTimespan) return Blockchain.__get_target(target, nActualTimespan, nTargetTimespan, 453, 494) def __fork_one_target(self, height, headers): interval = 504 last_height = height - 1 last = self.get_header(last_height, height, headers) target = self.bits_to_target(last.get('bits')) if height % interval != 0 and height != HEIGHT_FORK_ONE: return target first = self.get_header(last_height - interval, height, headers) nActualTimespan = last.get('timestamp') - first.get('timestamp') return Blockchain.__get_target(target, nActualTimespan, SEVEN_DAYS // 8, 70, 99) def __vanilla_target(self, height, headers): interval = 2016 last_height = height - 1 last = self.get_header(last_height, height, headers) bits = last.get('bits') target = self.bits_to_target(bits) if height % interval != 0: return target first = self.get_header(max(0, last_height - interval), height, headers) nActualTimespan = last.get('timestamp') - first.get('timestamp') return Blockchain.__get_target(target, nActualTimespan, SEVEN_DAYS // 2, 1, 4) @staticmethod def __get_target(target, nActualTimespan, nTargetTimespan, numerator, denominator): nActualTimespan = max(nActualTimespan, int(nTargetTimespan * numerator / denominator)) nActualTimespan = min(nActualTimespan, int(nTargetTimespan * denominator / numerator)) new_target = min(MAX_TARGET, int(target * nActualTimespan / nTargetTimespan)) return new_target def get_header(self, height, ref_height, headers): delta = ref_height % 2016 if height < ref_height - delta or headers is None: return self.read_header(height) return headers[delta - (ref_height - height)] def bits_to_target(self, bits): bitsN = (bits >> 24) & 0xff if not (bitsN >= 0x03 and bitsN <= 0x1e): raise Exception("First part of bits should be in [0x03, 0x1e]") bitsBase = bits & 0xffffff if not (bitsBase >= 0x8000 and bitsBase <= 0x7fffff): raise Exception("Second part of bits should be in [0x8000, 0x7fffff]") return bitsBase << (8 * (bitsN-3)) def target_to_bits(self, target): c = ("%064x" % target)[2:] while c[:2] == '00' and len(c) > 6: c = c[2:] bitsN, bitsBase = len(c) // 2, int('0x' + c[:6], 16) if bitsBase >= 0x800000: bitsN += 1 bitsBase >>= 8 return bitsN << 24 | bitsBase def can_connect(self, header, check_height=True): if header is None: return False height = header['block_height'] if check_height and self.height() != height - 1: #self.print_error("cannot connect at height", height) return False if height == 0: return hash_header(header) == constants.net.GENESIS try: prev_hash = self.get_hash(height - 1) except: return False if prev_hash != header.get('prev_block_hash'): return False target = self.get_target(height, None) try: self.verify_header(header, prev_hash, target) except BaseException as e: return False return True def connect_chunk(self, idx, hexdata): try: data = bfh(hexdata) self.verify_chunk(idx, data) #self.print_error("validated chunk %d" % idx) self.save_chunk(idx, data) return True except BaseException as e: self.print_error('verify_chunk %d failed'%idx, str(e)) return False def get_checkpoints(self): # for each chunk, store the hash of the last block and the target after the chunk n = self.height() // 2016 return [self.get_hash((i+1) * 2016 -1) for i in range(n)]
40.180828
140
0.626091
4cf50e7ee87edb0a771dd0ba8b4947406c912d59
54,440
py
Python
salvia/wallet/wallet_state_manager.py
mikando/salvia-blockchain
02181d0b5a063374f01eea951570dbc661bddc34
[ "Apache-2.0" ]
null
null
null
salvia/wallet/wallet_state_manager.py
mikando/salvia-blockchain
02181d0b5a063374f01eea951570dbc661bddc34
[ "Apache-2.0" ]
null
null
null
salvia/wallet/wallet_state_manager.py
mikando/salvia-blockchain
02181d0b5a063374f01eea951570dbc661bddc34
[ "Apache-2.0" ]
null
null
null
import asyncio import base64 import json import logging import time from collections import defaultdict from pathlib import Path from typing import Any, Callable, Dict, List, Optional, Set, Tuple import aiosqlite from blspy import AugSchemeMPL, G1Element, PrivateKey from chiabip158 import PyBIP158 from cryptography.fernet import Fernet from salvia import __version__ from salvia.consensus.block_record import BlockRecord from salvia.consensus.coinbase import pool_parent_id, farmer_parent_id from salvia.consensus.constants import ConsensusConstants from salvia.consensus.find_fork_point import find_fork_point_in_chain from salvia.full_node.weight_proof import WeightProofHandler from salvia.pools.pool_puzzles import SINGLETON_LAUNCHER_HASH, solution_to_pool_state from salvia.pools.pool_wallet import PoolWallet from salvia.protocols.wallet_protocol import PuzzleSolutionResponse, RespondPuzzleSolution from salvia.types.blockchain_format.coin import Coin from salvia.types.blockchain_format.program import Program from salvia.types.blockchain_format.sized_bytes import bytes32 from salvia.types.coin_spend import CoinSpend from salvia.types.full_block import FullBlock from salvia.types.header_block import HeaderBlock from salvia.types.mempool_inclusion_status import MempoolInclusionStatus from salvia.util.byte_types import hexstr_to_bytes from salvia.util.db_wrapper import DBWrapper from salvia.util.errors import Err from salvia.util.hash import std_hash from salvia.util.ints import uint32, uint64, uint128 from salvia.util.db_synchronous import db_synchronous_on from salvia.wallet.block_record import HeaderBlockRecord from salvia.wallet.cc_wallet.cc_wallet import CCWallet from salvia.wallet.derivation_record import DerivationRecord from salvia.wallet.derive_keys import master_sk_to_backup_sk, master_sk_to_wallet_sk from salvia.wallet.key_val_store import KeyValStore from salvia.wallet.rl_wallet.rl_wallet import RLWallet from salvia.wallet.settings.user_settings import UserSettings from salvia.wallet.trade_manager import TradeManager from salvia.wallet.transaction_record import TransactionRecord from salvia.wallet.util.backup_utils import open_backup_file from salvia.wallet.util.transaction_type import TransactionType from salvia.wallet.util.wallet_types import WalletType from salvia.wallet.wallet import Wallet from salvia.wallet.wallet_action import WalletAction from salvia.wallet.wallet_action_store import WalletActionStore from salvia.wallet.wallet_block_store import WalletBlockStore from salvia.wallet.wallet_blockchain import WalletBlockchain from salvia.wallet.wallet_coin_record import WalletCoinRecord from salvia.wallet.wallet_coin_store import WalletCoinStore from salvia.wallet.wallet_info import WalletInfo, WalletInfoBackup from salvia.wallet.wallet_interested_store import WalletInterestedStore from salvia.wallet.wallet_pool_store import WalletPoolStore from salvia.wallet.wallet_puzzle_store import WalletPuzzleStore from salvia.wallet.wallet_sync_store import WalletSyncStore from salvia.wallet.wallet_transaction_store import WalletTransactionStore from salvia.wallet.wallet_user_store import WalletUserStore from salvia.server.server import SalviaServer from salvia.wallet.did_wallet.did_wallet import DIDWallet def get_balance_from_coin_records(coin_records: Set[WalletCoinRecord]) -> uint128: amount: uint128 = uint128(0) for record in coin_records: amount = uint128(amount + record.coin.amount) return uint128(amount) class WalletStateManager: constants: ConsensusConstants config: Dict tx_store: WalletTransactionStore puzzle_store: WalletPuzzleStore user_store: WalletUserStore action_store: WalletActionStore basic_store: KeyValStore start_index: int # Makes sure only one asyncio thread is changing the blockchain state at one time lock: asyncio.Lock tx_lock: asyncio.Lock log: logging.Logger # TODO Don't allow user to send tx until wallet is synced sync_mode: bool genesis: FullBlock state_changed_callback: Optional[Callable] pending_tx_callback: Optional[Callable] puzzle_hash_created_callbacks: Dict = defaultdict(lambda *x: None) new_peak_callbacks: Dict = defaultdict(lambda *x: None) db_path: Path db_connection: aiosqlite.Connection db_wrapper: DBWrapper main_wallet: Wallet wallets: Dict[uint32, Any] private_key: PrivateKey trade_manager: TradeManager new_wallet: bool user_settings: UserSettings blockchain: Any block_store: WalletBlockStore coin_store: WalletCoinStore sync_store: WalletSyncStore interested_store: WalletInterestedStore pool_store: WalletPoolStore weight_proof_handler: Any server: SalviaServer root_path: Path @staticmethod async def create( private_key: PrivateKey, config: Dict, db_path: Path, constants: ConsensusConstants, server: SalviaServer, root_path: Path, name: str = None, ): self = WalletStateManager() self.new_wallet = False self.config = config self.constants = constants self.server = server self.root_path = root_path self.log = logging.getLogger(name if name else __name__) self.lock = asyncio.Lock() self.log.debug(f"Starting in db path: {db_path}") self.db_connection = await aiosqlite.connect(db_path) await self.db_connection.execute("pragma journal_mode=wal") await self.db_connection.execute( "pragma synchronous={}".format(db_synchronous_on(self.config.get("db_sync", "auto"), db_path)) ) self.db_wrapper = DBWrapper(self.db_connection) self.coin_store = await WalletCoinStore.create(self.db_wrapper) self.tx_store = await WalletTransactionStore.create(self.db_wrapper) self.puzzle_store = await WalletPuzzleStore.create(self.db_wrapper) self.user_store = await WalletUserStore.create(self.db_wrapper) self.action_store = await WalletActionStore.create(self.db_wrapper) self.basic_store = await KeyValStore.create(self.db_wrapper) self.trade_manager = await TradeManager.create(self, self.db_wrapper) self.user_settings = await UserSettings.create(self.basic_store) self.block_store = await WalletBlockStore.create(self.db_wrapper) self.interested_store = await WalletInterestedStore.create(self.db_wrapper) self.pool_store = await WalletPoolStore.create(self.db_wrapper) self.blockchain = await WalletBlockchain.create( self.block_store, self.coin_store, self.tx_store, self.pool_store, self.constants, self.new_transaction_block_callback, self.reorg_rollback, self.lock, ) self.weight_proof_handler = WeightProofHandler(self.constants, self.blockchain) self.sync_mode = False self.sync_store = await WalletSyncStore.create() self.state_changed_callback = None self.pending_tx_callback = None self.db_path = db_path main_wallet_info = await self.user_store.get_wallet_by_id(1) assert main_wallet_info is not None self.private_key = private_key self.main_wallet = await Wallet.create(self, main_wallet_info) self.wallets = {main_wallet_info.id: self.main_wallet} wallet = None for wallet_info in await self.get_all_wallet_info_entries(): if wallet_info.type == WalletType.STANDARD_WALLET: if wallet_info.id == 1: continue wallet = await Wallet.create(config, wallet_info) elif wallet_info.type == WalletType.COLOURED_COIN: wallet = await CCWallet.create( self, self.main_wallet, wallet_info, ) elif wallet_info.type == WalletType.RATE_LIMITED: wallet = await RLWallet.create(self, wallet_info) elif wallet_info.type == WalletType.DISTRIBUTED_ID: wallet = await DIDWallet.create( self, self.main_wallet, wallet_info, ) elif wallet_info.type == WalletType.POOLING_WALLET: wallet = await PoolWallet.create_from_db( self, self.main_wallet, wallet_info, ) if wallet is not None: self.wallets[wallet_info.id] = wallet async with self.puzzle_store.lock: index = await self.puzzle_store.get_last_derivation_path() if index is None or index < self.config["initial_num_public_keys"] - 1: await self.create_more_puzzle_hashes(from_zero=True) return self @property def peak(self) -> Optional[BlockRecord]: peak = self.blockchain.get_peak() return peak def get_derivation_index(self, pubkey: G1Element, max_depth: int = 1000) -> int: for i in range(0, max_depth): derived = self.get_public_key(uint32(i)) if derived == pubkey: return i return -1 def get_public_key(self, index: uint32) -> G1Element: return master_sk_to_wallet_sk(self.private_key, index).get_g1() async def load_wallets(self): for wallet_info in await self.get_all_wallet_info_entries(): if wallet_info.id in self.wallets: continue if wallet_info.type == WalletType.STANDARD_WALLET: if wallet_info.id == 1: continue wallet = await Wallet.create(self.config, wallet_info) self.wallets[wallet_info.id] = wallet # TODO add RL AND DiD WALLETS HERE elif wallet_info.type == WalletType.COLOURED_COIN: wallet = await CCWallet.create( self, self.main_wallet, wallet_info, ) self.wallets[wallet_info.id] = wallet elif wallet_info.type == WalletType.DISTRIBUTED_ID: wallet = await DIDWallet.create( self, self.main_wallet, wallet_info, ) self.wallets[wallet_info.id] = wallet async def get_keys(self, puzzle_hash: bytes32) -> Optional[Tuple[G1Element, PrivateKey]]: index_for_puzzlehash = await self.puzzle_store.index_for_puzzle_hash(puzzle_hash) if index_for_puzzlehash is None: raise ValueError(f"No key for this puzzlehash {puzzle_hash})") private = master_sk_to_wallet_sk(self.private_key, index_for_puzzlehash) pubkey = private.get_g1() return pubkey, private async def create_more_puzzle_hashes(self, from_zero: bool = False, in_transaction=False): """ For all wallets in the user store, generates the first few puzzle hashes so that we can restore the wallet from only the private keys. """ targets = list(self.wallets.keys()) unused: Optional[uint32] = await self.puzzle_store.get_unused_derivation_path() if unused is None: # This handles the case where the database has entries but they have all been used unused = await self.puzzle_store.get_last_derivation_path() if unused is None: # This handles the case where the database is empty unused = uint32(0) if self.new_wallet: to_generate = self.config["initial_num_public_keys_new_wallet"] else: to_generate = self.config["initial_num_public_keys"] for wallet_id in targets: target_wallet = self.wallets[wallet_id] last: Optional[uint32] = await self.puzzle_store.get_last_derivation_path_for_wallet(wallet_id) start_index = 0 derivation_paths: List[DerivationRecord] = [] if last is not None: start_index = last + 1 # If the key was replaced (from_zero=True), we should generate the puzzle hashes for the new key if from_zero: start_index = 0 for index in range(start_index, unused + to_generate): if WalletType(target_wallet.type()) == WalletType.POOLING_WALLET: continue if WalletType(target_wallet.type()) == WalletType.RATE_LIMITED: if target_wallet.rl_info.initialized is False: break wallet_type = target_wallet.rl_info.type if wallet_type == "user": rl_pubkey = G1Element.from_bytes(target_wallet.rl_info.user_pubkey) else: rl_pubkey = G1Element.from_bytes(target_wallet.rl_info.admin_pubkey) rl_puzzle: Program = target_wallet.puzzle_for_pk(rl_pubkey) puzzle_hash: bytes32 = rl_puzzle.get_tree_hash() rl_index = self.get_derivation_index(rl_pubkey) if rl_index == -1: break derivation_paths.append( DerivationRecord( uint32(rl_index), puzzle_hash, rl_pubkey, target_wallet.type(), uint32(target_wallet.id()), ) ) break pubkey: G1Element = self.get_public_key(uint32(index)) puzzle: Program = target_wallet.puzzle_for_pk(bytes(pubkey)) if puzzle is None: self.log.warning(f"Unable to create puzzles with wallet {target_wallet}") break puzzlehash: bytes32 = puzzle.get_tree_hash() self.log.info(f"Puzzle at index {index} wallet ID {wallet_id} puzzle hash {puzzlehash.hex()}") derivation_paths.append( DerivationRecord( uint32(index), puzzlehash, pubkey, target_wallet.type(), uint32(target_wallet.id()), ) ) await self.puzzle_store.add_derivation_paths(derivation_paths, in_transaction) if unused > 0: await self.puzzle_store.set_used_up_to(uint32(unused - 1), in_transaction) async def update_wallet_puzzle_hashes(self, wallet_id): derivation_paths: List[DerivationRecord] = [] target_wallet = self.wallets[wallet_id] last: Optional[uint32] = await self.puzzle_store.get_last_derivation_path_for_wallet(wallet_id) unused: Optional[uint32] = await self.puzzle_store.get_unused_derivation_path() if unused is None: # This handles the case where the database has entries but they have all been used unused = await self.puzzle_store.get_last_derivation_path() if unused is None: # This handles the case where the database is empty unused = uint32(0) for index in range(unused, last): pubkey: G1Element = self.get_public_key(uint32(index)) puzzle: Program = target_wallet.puzzle_for_pk(bytes(pubkey)) puzzlehash: bytes32 = puzzle.get_tree_hash() self.log.info(f"Generating public key at index {index} puzzle hash {puzzlehash.hex()}") derivation_paths.append( DerivationRecord( uint32(index), puzzlehash, pubkey, target_wallet.wallet_info.type, uint32(target_wallet.wallet_info.id), ) ) await self.puzzle_store.add_derivation_paths(derivation_paths) async def get_unused_derivation_record(self, wallet_id: uint32, in_transaction=False) -> DerivationRecord: """ Creates a puzzle hash for the given wallet, and then makes more puzzle hashes for every wallet to ensure we always have more in the database. Never reusue the same public key more than once (for privacy). """ async with self.puzzle_store.lock: # If we have no unused public keys, we will create new ones unused: Optional[uint32] = await self.puzzle_store.get_unused_derivation_path() if unused is None: await self.create_more_puzzle_hashes() # Now we must have unused public keys unused = await self.puzzle_store.get_unused_derivation_path() assert unused is not None record: Optional[DerivationRecord] = await self.puzzle_store.get_derivation_record(unused, wallet_id) assert record is not None # Set this key to used so we never use it again await self.puzzle_store.set_used_up_to(record.index, in_transaction=in_transaction) # Create more puzzle hashes / keys await self.create_more_puzzle_hashes(in_transaction=in_transaction) return record async def get_current_derivation_record_for_wallet(self, wallet_id: uint32) -> Optional[DerivationRecord]: async with self.puzzle_store.lock: # If we have no unused public keys, we will create new ones current: Optional[DerivationRecord] = await self.puzzle_store.get_current_derivation_record_for_wallet( wallet_id ) return current def set_callback(self, callback: Callable): """ Callback to be called when the state of the wallet changes. """ self.state_changed_callback = callback def set_pending_callback(self, callback: Callable): """ Callback to be called when new pending transaction enters the store """ self.pending_tx_callback = callback def set_coin_with_puzzlehash_created_callback(self, puzzlehash: bytes32, callback: Callable): """ Callback to be called when new coin is seen with specified puzzlehash """ self.puzzle_hash_created_callbacks[puzzlehash] = callback def set_new_peak_callback(self, wallet_id: int, callback: Callable): """ Callback to be called when blockchain adds new peak """ self.new_peak_callbacks[wallet_id] = callback async def puzzle_hash_created(self, coin: Coin): callback = self.puzzle_hash_created_callbacks[coin.puzzle_hash] if callback is None: return None await callback(coin) def state_changed(self, state: str, wallet_id: int = None, data_object=None): """ Calls the callback if it's present. """ if data_object is None: data_object = {} if self.state_changed_callback is None: return None self.state_changed_callback(state, wallet_id, data_object) def tx_pending_changed(self) -> None: """ Notifies the wallet node that there's new tx pending """ if self.pending_tx_callback is None: return None self.pending_tx_callback() async def synced(self): if self.sync_mode is True: return False peak: Optional[BlockRecord] = self.blockchain.get_peak() if peak is None: return False curr = peak while not curr.is_transaction_block and not curr.height == 0: curr = self.blockchain.try_block_record(curr.prev_hash) if curr is None: return False if curr.is_transaction_block and curr.timestamp > int(time.time()) - 7 * 60: return True return False def set_sync_mode(self, mode: bool): """ Sets the sync mode. This changes the behavior of the wallet node. """ self.sync_mode = mode self.state_changed("sync_changed") async def get_confirmed_spendable_balance_for_wallet(self, wallet_id: int, unspent_records=None) -> uint128: """ Returns the balance amount of all coins that are spendable. """ spendable: Set[WalletCoinRecord] = await self.get_spendable_coins_for_wallet(wallet_id, unspent_records) spendable_amount: uint128 = uint128(0) for record in spendable: spendable_amount = uint128(spendable_amount + record.coin.amount) return spendable_amount async def does_coin_belong_to_wallet(self, coin: Coin, wallet_id: int) -> bool: """ Returns true if we have the key for this coin. """ info = await self.puzzle_store.wallet_info_for_puzzle_hash(coin.puzzle_hash) if info is None: return False coin_wallet_id, wallet_type = info if wallet_id == coin_wallet_id: return True return False async def get_confirmed_balance_for_wallet_already_locked(self, wallet_id: int) -> uint128: # This is a workaround to be able to call la locking operation when already locked # for example, in the create method of DID wallet if self.lock.locked() is False: raise AssertionError("expected wallet_state_manager to be locked") unspent_coin_records = await self.coin_store.get_unspent_coins_for_wallet(wallet_id) return get_balance_from_coin_records(unspent_coin_records) async def get_confirmed_balance_for_wallet( self, wallet_id: int, unspent_coin_records: Optional[Set[WalletCoinRecord]] = None, ) -> uint128: """ Returns the confirmed balance, including coinbase rewards that are not spendable. """ # lock only if unspent_coin_records is None. # This API should change so that get_balance_from_coin_records is called for Set[WalletCoinRecord] # and this method is called only for the unspent_coin_records==None case. if unspent_coin_records is None: unspent_coin_records = await self.get_confirmed_balance_for_wallet_with_lock(wallet_id) return get_balance_from_coin_records(unspent_coin_records) async def get_confirmed_balance_for_wallet_with_lock(self, wallet_id: int) -> Set[WalletCoinRecord]: if self.lock.locked() is True: # raise AssertionError("expected wallet_state_manager to be unlocked") pass async with self.lock: return await self.coin_store.get_unspent_coins_for_wallet(wallet_id) async def get_unconfirmed_balance( self, wallet_id, unspent_coin_records: Optional[Set[WalletCoinRecord]] = None ) -> uint128: """ Returns the balance, including coinbase rewards that are not spendable, and unconfirmed transactions. """ # This API should change so that get_balance_from_coin_records is called for Set[WalletCoinRecord] # and this method is called only for the unspent_coin_records==None case. confirmed_amount = await self.get_confirmed_balance_for_wallet(wallet_id, unspent_coin_records) return await self._get_unconfirmed_balance(wallet_id, confirmed_amount) async def get_unconfirmed_balance_already_locked(self, wallet_id) -> uint128: confirmed_amount = await self.get_confirmed_balance_for_wallet_already_locked(wallet_id) return await self._get_unconfirmed_balance(wallet_id, confirmed_amount) async def _get_unconfirmed_balance(self, wallet_id, confirmed: uint128) -> uint128: unconfirmed_tx: List[TransactionRecord] = await self.tx_store.get_unconfirmed_for_wallet(wallet_id) removal_amount: int = 0 addition_amount: int = 0 for record in unconfirmed_tx: for removal in record.removals: if await self.does_coin_belong_to_wallet(removal, wallet_id): removal_amount += removal.amount for addition in record.additions: # This change or a self transaction if await self.does_coin_belong_to_wallet(addition, wallet_id): addition_amount += addition.amount result = (confirmed + addition_amount) - removal_amount return uint128(result) async def unconfirmed_additions_for_wallet(self, wallet_id: int) -> Dict[bytes32, Coin]: """ Returns change coins for the wallet_id. (Unconfirmed addition transactions that have not been confirmed yet.) """ additions: Dict[bytes32, Coin] = {} unconfirmed_tx = await self.tx_store.get_unconfirmed_for_wallet(wallet_id) for record in unconfirmed_tx: for coin in record.additions: if await self.is_addition_relevant(coin): additions[coin.name()] = coin return additions async def unconfirmed_removals_for_wallet(self, wallet_id: int) -> Dict[bytes32, Coin]: """ Returns new removals transactions that have not been confirmed yet. """ removals: Dict[bytes32, Coin] = {} unconfirmed_tx = await self.tx_store.get_unconfirmed_for_wallet(wallet_id) for record in unconfirmed_tx: for coin in record.removals: removals[coin.name()] = coin return removals async def new_transaction_block_callback( self, removals: List[Coin], additions: List[Coin], block: BlockRecord, additional_coin_spends: List[CoinSpend], ): height: uint32 = block.height for coin in additions: await self.puzzle_hash_created(coin) trade_additions, added = await self.coins_of_interest_added(additions, block) trade_removals, removed = await self.coins_of_interest_removed(removals, height) if len(trade_additions) > 0 or len(trade_removals) > 0: await self.trade_manager.coins_of_interest_farmed(trade_removals, trade_additions, height) if len(additional_coin_spends) > 0: created_pool_wallet_ids: List[int] = [] for cs in additional_coin_spends: if cs.coin.puzzle_hash == SINGLETON_LAUNCHER_HASH: already_have = False pool_state = None for wallet_id, wallet in self.wallets.items(): if ( wallet.type() == WalletType.POOLING_WALLET and (await wallet.get_current_state()).launcher_id == cs.coin.name() ): self.log.warning("Already have, not recreating") already_have = True if not already_have: try: pool_state = solution_to_pool_state(cs) except Exception as e: self.log.debug(f"Not a pool wallet launcher {e}") continue if pool_state is None: self.log.debug("Not a pool wallet launcher") continue self.log.info("Found created launcher. Creating pool wallet") pool_wallet = await PoolWallet.create( self, self.main_wallet, cs.coin.name(), additional_coin_spends, height, True, "pool_wallet" ) created_pool_wallet_ids.append(pool_wallet.wallet_id) for wallet_id, wallet in self.wallets.items(): if wallet.type() == WalletType.POOLING_WALLET: await wallet.apply_state_transitions(additional_coin_spends, height) added_notified = set() removed_notified = set() for coin_record in added: if coin_record.wallet_id in added_notified: continue added_notified.add(coin_record.wallet_id) self.state_changed("coin_added", coin_record.wallet_id) for coin_record in removed: if coin_record.wallet_id in removed_notified: continue removed_notified.add(coin_record.wallet_id) self.state_changed("coin_removed", coin_record.wallet_id) self.tx_pending_changed() async def coins_of_interest_added( self, coins: List[Coin], block: BlockRecord ) -> Tuple[List[Coin], List[WalletCoinRecord]]: ( trade_removals, trade_additions, ) = await self.trade_manager.get_coins_of_interest() trade_adds: List[Coin] = [] height = block.height pool_rewards = set() farmer_rewards = set() added = [] prev = await self.blockchain.get_block_record_from_db(block.prev_hash) # [block 1] [block 2] [tx block 3] [block 4] [block 5] [tx block 6] # [tx block 6] will contain rewards for [block 1] [block 2] [tx block 3] while prev is not None: # step 1 find previous block if prev.is_transaction_block: break prev = await self.blockchain.get_block_record_from_db(prev.prev_hash) if prev is not None: # include last block pool_parent = pool_parent_id(uint32(prev.height), self.constants.GENESIS_CHALLENGE) farmer_parent = farmer_parent_id(uint32(prev.height), self.constants.GENESIS_CHALLENGE) pool_rewards.add(pool_parent) farmer_rewards.add(farmer_parent) prev = await self.blockchain.get_block_record_from_db(prev.prev_hash) while prev is not None: # step 2 traverse from previous block to the block before it pool_parent = pool_parent_id(uint32(prev.height), self.constants.GENESIS_CHALLENGE) farmer_parent = farmer_parent_id(uint32(prev.height), self.constants.GENESIS_CHALLENGE) pool_rewards.add(pool_parent) farmer_rewards.add(farmer_parent) if prev.is_transaction_block: break prev = await self.blockchain.get_block_record_from_db(prev.prev_hash) wallet_ids: Set[int] = set() for coin in coins: info = await self.puzzle_store.wallet_info_for_puzzle_hash(coin.puzzle_hash) if info is not None: wallet_ids.add(info[0]) all_outgoing_tx: Dict[int, List[TransactionRecord]] = {} for wallet_id in wallet_ids: all_outgoing_tx[wallet_id] = await self.tx_store.get_all_transactions_for_wallet( wallet_id, TransactionType.OUTGOING_TX ) for coin in coins: if coin.name() in trade_additions: trade_adds.append(coin) is_coinbase = False is_fee_reward = False if coin.parent_coin_info in pool_rewards: is_coinbase = True if coin.parent_coin_info in farmer_rewards: is_fee_reward = True info = await self.puzzle_store.wallet_info_for_puzzle_hash(coin.puzzle_hash) if info is not None: wallet_id, wallet_type = info added_coin_record = await self.coin_added( coin, is_coinbase, is_fee_reward, uint32(wallet_id), wallet_type, height, all_outgoing_tx.get(wallet_id, []), ) added.append(added_coin_record) else: interested_wallet_id = await self.interested_store.get_interested_puzzle_hash_wallet_id( puzzle_hash=coin.puzzle_hash ) if interested_wallet_id is not None: wallet_type = self.wallets[uint32(interested_wallet_id)].type() added_coin_record = await self.coin_added( coin, is_coinbase, is_fee_reward, uint32(interested_wallet_id), wallet_type, height, all_outgoing_tx.get(interested_wallet_id, []), ) added.append(added_coin_record) derivation_index = await self.puzzle_store.index_for_puzzle_hash(coin.puzzle_hash) if derivation_index is not None: await self.puzzle_store.set_used_up_to(derivation_index, True) return trade_adds, added async def coins_of_interest_removed( self, coins: List[Coin], height: uint32 ) -> Tuple[List[Coin], List[WalletCoinRecord]]: # This gets called when coins of our interest are spent on chain if len(coins) > 0: self.log.info(f"Coins removed {coins} at height: {height}") ( trade_removals, trade_additions, ) = await self.trade_manager.get_coins_of_interest() # Keep track of trade coins that are removed trade_coin_removed: List[Coin] = [] removed = [] all_unconfirmed: List[TransactionRecord] = await self.tx_store.get_all_unconfirmed() for coin in coins: record = await self.coin_store.get_coin_record(coin.name()) if coin.name() in trade_removals: trade_coin_removed.append(coin) if record is None: self.log.info(f"Record for removed coin {coin.name()} is None. (ephemeral)") else: await self.coin_store.set_spent(coin.name(), height) for unconfirmed_record in all_unconfirmed: for rem_coin in unconfirmed_record.removals: if rem_coin.name() == coin.name(): self.log.info(f"Setting tx_id: {unconfirmed_record.name} to confirmed") await self.tx_store.set_confirmed(unconfirmed_record.name, height) if record is not None: removed.append(record) return trade_coin_removed, removed async def coin_added( self, coin: Coin, coinbase: bool, fee_reward: bool, wallet_id: uint32, wallet_type: WalletType, height: uint32, all_outgoing_transaction_records: List[TransactionRecord], ) -> WalletCoinRecord: """ Adding coin to DB """ self.log.info(f"Adding coin: {coin} at {height}") farm_reward = False if coinbase or fee_reward: farm_reward = True now = uint64(int(time.time())) if coinbase: tx_type: int = TransactionType.COINBASE_REWARD.value else: tx_type = TransactionType.FEE_REWARD.value tx_record = TransactionRecord( confirmed_at_height=uint32(height), created_at_time=now, to_puzzle_hash=coin.puzzle_hash, amount=coin.amount, fee_amount=uint64(0), confirmed=True, sent=uint32(0), spend_bundle=None, additions=[coin], removals=[], wallet_id=wallet_id, sent_to=[], trade_id=None, type=uint32(tx_type), name=coin.name(), ) await self.tx_store.add_transaction_record(tx_record, True) else: records: List[TransactionRecord] = [] for record in all_outgoing_transaction_records: for add_coin in record.additions: if add_coin.name() == coin.name(): records.append(record) if len(records) > 0: # This is the change from this transaction for record in records: if record.confirmed is False: await self.tx_store.set_confirmed(record.name, height) else: now = uint64(int(time.time())) tx_record = TransactionRecord( confirmed_at_height=uint32(height), created_at_time=now, to_puzzle_hash=coin.puzzle_hash, amount=coin.amount, fee_amount=uint64(0), confirmed=True, sent=uint32(0), spend_bundle=None, additions=[coin], removals=[], wallet_id=wallet_id, sent_to=[], trade_id=None, type=uint32(TransactionType.INCOMING_TX.value), name=coin.name(), ) if coin.amount > 0: await self.tx_store.add_transaction_record(tx_record, True) coin_record: WalletCoinRecord = WalletCoinRecord( coin, height, uint32(0), False, farm_reward, wallet_type, wallet_id ) await self.coin_store.add_coin_record(coin_record) if wallet_type == WalletType.COLOURED_COIN or wallet_type == WalletType.DISTRIBUTED_ID: wallet = self.wallets[wallet_id] await wallet.coin_added(coin, height) return coin_record async def add_pending_transaction(self, tx_record: TransactionRecord): """ Called from wallet before new transaction is sent to the full_node """ # Wallet node will use this queue to retry sending this transaction until full nodes receives it await self.tx_store.add_transaction_record(tx_record, False) self.tx_pending_changed() self.state_changed("pending_transaction", tx_record.wallet_id) async def add_transaction(self, tx_record: TransactionRecord): """ Called from wallet to add transaction that is not being set to full_node """ await self.tx_store.add_transaction_record(tx_record, False) self.state_changed("pending_transaction", tx_record.wallet_id) async def remove_from_queue( self, spendbundle_id: bytes32, name: str, send_status: MempoolInclusionStatus, error: Optional[Err], ): """ Full node received our transaction, no need to keep it in queue anymore """ updated = await self.tx_store.increment_sent(spendbundle_id, name, send_status, error) if updated: tx: Optional[TransactionRecord] = await self.get_transaction(spendbundle_id) if tx is not None: self.state_changed("tx_update", tx.wallet_id, {"transaction": tx}) async def get_all_transactions(self, wallet_id: int) -> List[TransactionRecord]: """ Retrieves all confirmed and pending transactions """ records = await self.tx_store.get_all_transactions_for_wallet(wallet_id) return records async def get_transaction(self, tx_id: bytes32) -> Optional[TransactionRecord]: return await self.tx_store.get_transaction_record(tx_id) async def get_filter_additions_removals( self, new_block: HeaderBlock, transactions_filter: bytes, fork_point_with_peak: Optional[uint32] ) -> Tuple[List[bytes32], List[bytes32]]: """Returns a list of our coin ids, and a list of puzzle_hashes that positively match with provided filter.""" # assert new_block.prev_header_hash in self.blockchain.blocks tx_filter = PyBIP158([b for b in transactions_filter]) # Find fork point if fork_point_with_peak is not None: fork_h: int = fork_point_with_peak elif new_block.prev_header_hash != self.constants.GENESIS_CHALLENGE and self.peak is not None: block_record = await self.blockchain.get_block_record_from_db(self.peak.header_hash) # this may return -1, in case there is no shared ancestor block fork_h = find_fork_point_in_chain( self.blockchain, block_record, new_block, ) else: fork_h = 0 # Get all unspent coins my_coin_records: Set[WalletCoinRecord] = await self.coin_store.get_unspent_coins_at_height( uint32(fork_h) if fork_h >= 0 else None ) # Filter coins up to and including fork point unspent_coin_names: Set[bytes32] = set() for coin in my_coin_records: if coin.confirmed_block_height <= fork_h: unspent_coin_names.add(coin.name()) # Get all blocks after fork point up to but not including this block if new_block.height > 0: curr: BlockRecord = self.blockchain.block_record(new_block.prev_hash) reorg_blocks: List[HeaderBlockRecord] = [] while curr.height > fork_h: header_block_record = await self.block_store.get_header_block_record(curr.header_hash) assert header_block_record is not None reorg_blocks.append(header_block_record) if curr.height == 0: break curr = await self.blockchain.get_block_record_from_db(curr.prev_hash) reorg_blocks.reverse() # For each block, process additions to get all Coins, then process removals to get unspent coins for reorg_block in reorg_blocks: for addition in reorg_block.additions: unspent_coin_names.add(addition.name()) for removal in reorg_block.removals: record = await self.puzzle_store.get_derivation_record_for_puzzle_hash(removal.puzzle_hash) if record is None: continue unspent_coin_names.remove(removal.name()) my_puzzle_hashes = self.puzzle_store.all_puzzle_hashes removals_of_interest: bytes32 = [] additions_of_interest: bytes32 = [] ( trade_removals, trade_additions, ) = await self.trade_manager.get_coins_of_interest() for name, trade_coin in trade_removals.items(): if tx_filter.Match(bytearray(trade_coin.name())): removals_of_interest.append(trade_coin.name()) for name, trade_coin in trade_additions.items(): if tx_filter.Match(bytearray(trade_coin.puzzle_hash)): additions_of_interest.append(trade_coin.puzzle_hash) for coin_name in unspent_coin_names: if tx_filter.Match(bytearray(coin_name)): removals_of_interest.append(coin_name) for puzzle_hash in my_puzzle_hashes: if tx_filter.Match(bytearray(puzzle_hash)): additions_of_interest.append(puzzle_hash) for coin_id in await self.interested_store.get_interested_coin_ids(): if tx_filter.Match(bytearray(coin_id)): removals_of_interest.append(coin_id) for puzzle_hash, _ in await self.interested_store.get_interested_puzzle_hashes(): if tx_filter.Match(bytearray(puzzle_hash)): additions_of_interest.append(puzzle_hash) return additions_of_interest, removals_of_interest async def is_addition_relevant(self, addition: Coin): """ Check whether we care about a new addition (puzzle_hash). Returns true if we control this puzzle hash. """ result = await self.puzzle_store.puzzle_hash_exists(addition.puzzle_hash) return result async def get_wallet_for_coin(self, coin_id: bytes32) -> Any: coin_record = await self.coin_store.get_coin_record(coin_id) if coin_record is None: return None wallet_id = uint32(coin_record.wallet_id) wallet = self.wallets[wallet_id] return wallet async def reorg_rollback(self, height: int): """ Rolls back and updates the coin_store and transaction store. It's possible this height is the tip, or even beyond the tip. """ await self.coin_store.rollback_to_block(height) reorged: List[TransactionRecord] = await self.tx_store.get_transaction_above(height) await self.tx_store.rollback_to_block(height) for record in reorged: if record.type in [ TransactionType.OUTGOING_TX, TransactionType.OUTGOING_TRADE, TransactionType.INCOMING_TRADE, ]: await self.tx_store.tx_reorged(record) # Removes wallets that were created from a blockchain transaction which got reorged. remove_ids = [] for wallet_id, wallet in self.wallets.items(): if wallet.type() == WalletType.POOLING_WALLET.value: remove: bool = await wallet.rewind(height) if remove: remove_ids.append(wallet_id) for wallet_id in remove_ids: await self.user_store.delete_wallet(wallet_id, in_transaction=True) self.wallets.pop(wallet_id) self.new_peak_callbacks.pop(wallet_id) async def close_all_stores(self) -> None: if self.blockchain is not None: self.blockchain.shut_down() await self.db_connection.close() async def clear_all_stores(self): await self.coin_store._clear_database() await self.tx_store._clear_database() await self.puzzle_store._clear_database() await self.user_store._clear_database() await self.basic_store._clear_database() def unlink_db(self): Path(self.db_path).unlink() async def get_all_wallet_info_entries(self) -> List[WalletInfo]: return await self.user_store.get_all_wallet_info_entries() async def get_start_height(self): """ If we have coin use that as starting height next time, otherwise use the peak """ first_coin_height = await self.coin_store.get_first_coin_height() if first_coin_height is None: start_height = self.blockchain.get_peak() else: start_height = first_coin_height return start_height async def create_wallet_backup(self, file_path: Path): all_wallets = await self.get_all_wallet_info_entries() for wallet in all_wallets: if wallet.id == 1: all_wallets.remove(wallet) break backup_pk = master_sk_to_backup_sk(self.private_key) now = uint64(int(time.time())) wallet_backup = WalletInfoBackup(all_wallets) backup: Dict[str, Any] = {} data = wallet_backup.to_json_dict() data["version"] = __version__ data["fingerprint"] = self.private_key.get_g1().get_fingerprint() data["timestamp"] = now data["start_height"] = await self.get_start_height() key_base_64 = base64.b64encode(bytes(backup_pk)) f = Fernet(key_base_64) data_bytes = json.dumps(data).encode() encrypted = f.encrypt(data_bytes) meta_data: Dict[str, Any] = {"timestamp": now, "pubkey": bytes(backup_pk.get_g1()).hex()} meta_data_bytes = json.dumps(meta_data).encode() signature = bytes(AugSchemeMPL.sign(backup_pk, std_hash(encrypted) + std_hash(meta_data_bytes))).hex() backup["data"] = encrypted.decode() backup["meta_data"] = meta_data backup["signature"] = signature backup_file_text = json.dumps(backup) file_path.write_text(backup_file_text) async def import_backup_info(self, file_path) -> None: json_dict = open_backup_file(file_path, self.private_key) wallet_list_json = json_dict["data"]["wallet_list"] for wallet_info in wallet_list_json: await self.user_store.create_wallet( wallet_info["name"], wallet_info["type"], wallet_info["data"], wallet_info["id"], ) await self.load_wallets() await self.user_settings.user_imported_backup() await self.create_more_puzzle_hashes(from_zero=True) async def get_wallet_for_colour(self, colour): for wallet_id in self.wallets: wallet = self.wallets[wallet_id] if wallet.type() == WalletType.COLOURED_COIN: if bytes(wallet.cc_info.my_genesis_checker).hex() == colour: return wallet return None async def add_new_wallet(self, wallet: Any, wallet_id: int, create_puzzle_hashes=True): self.wallets[uint32(wallet_id)] = wallet if create_puzzle_hashes: await self.create_more_puzzle_hashes() # search through the blockrecords and return the most recent coin to use a given puzzlehash async def search_blockrecords_for_puzzlehash(self, puzzlehash: bytes32): header_hash_of_interest = None highest_block_height = 0 peak: Optional[BlockRecord] = self.blockchain.get_peak() if peak is None: return None, None peak_block: Optional[HeaderBlockRecord] = await self.blockchain.block_store.get_header_block_record( peak.header_hash ) while peak_block is not None: tx_filter = PyBIP158([b for b in peak_block.header.transactions_filter]) if tx_filter.Match(bytearray(puzzlehash)) and peak_block.height > highest_block_height: header_hash_of_interest = peak_block.header_hash highest_block_height = peak_block.height break else: peak_block = await self.blockchain.block_store.get_header_block_record( peak_block.header.prev_header_hash ) return highest_block_height, header_hash_of_interest async def get_spendable_coins_for_wallet(self, wallet_id: int, records=None) -> Set[WalletCoinRecord]: if self.peak is None: return set() if records is None: records = await self.coin_store.get_unspent_coins_for_wallet(wallet_id) # Coins that are currently part of a transaction unconfirmed_tx: List[TransactionRecord] = await self.tx_store.get_unconfirmed_for_wallet(wallet_id) removal_dict: Dict[bytes32, Coin] = {} for tx in unconfirmed_tx: for coin in tx.removals: # TODO, "if" might not be necessary once unconfirmed tx doesn't contain coins for other wallets if await self.does_coin_belong_to_wallet(coin, wallet_id): removal_dict[coin.name()] = coin # Coins that are part of the trade offer_locked_coins: Dict[bytes32, WalletCoinRecord] = await self.trade_manager.get_locked_coins() filtered = set() for record in records: if record.coin.name() in offer_locked_coins: continue if record.coin.name() in removal_dict: continue filtered.add(record) return filtered async def create_action( self, name: str, wallet_id: int, wallet_type: int, callback: str, done: bool, data: str, in_transaction: bool ): await self.action_store.create_action(name, wallet_id, wallet_type, callback, done, data, in_transaction) self.tx_pending_changed() async def set_action_done(self, action_id: int): await self.action_store.action_done(action_id) async def generator_received(self, height: uint32, header_hash: uint32, program: Program): actions: List[WalletAction] = await self.action_store.get_all_pending_actions() for action in actions: data = json.loads(action.data) action_data = data["data"]["action_data"] if action.name == "request_generator": stored_header_hash = bytes32(hexstr_to_bytes(action_data["header_hash"])) stored_height = uint32(action_data["height"]) if stored_header_hash == header_hash and stored_height == height: if action.done: return None wallet = self.wallets[uint32(action.wallet_id)] callback_str = action.wallet_callback if callback_str is not None: callback = getattr(wallet, callback_str) await callback(height, header_hash, program, action.id) async def puzzle_solution_received(self, response: RespondPuzzleSolution): unwrapped: PuzzleSolutionResponse = response.response actions: List[WalletAction] = await self.action_store.get_all_pending_actions() for action in actions: data = json.loads(action.data) action_data = data["data"]["action_data"] if action.name == "request_puzzle_solution": stored_coin_name = bytes32(hexstr_to_bytes(action_data["coin_name"])) height = uint32(action_data["height"]) if stored_coin_name == unwrapped.coin_name and height == unwrapped.height: if action.done: return None wallet = self.wallets[uint32(action.wallet_id)] callback_str = action.wallet_callback if callback_str is not None: callback = getattr(wallet, callback_str) await callback(unwrapped, action.id) def get_peak(self) -> Optional[BlockRecord]: return self.blockchain.get_peak() async def get_next_interesting_coin_ids(self, spend: CoinSpend, in_transaction: bool) -> List[bytes32]: pool_wallet_interested: List[bytes32] = PoolWallet.get_next_interesting_coin_ids(spend) for coin_id in pool_wallet_interested: await self.interested_store.add_interested_coin_id(coin_id, in_transaction) return pool_wallet_interested async def new_peak(self): peak: Optional[BlockRecord] = self.get_peak() if peak is None: return for wallet_id, callback in self.new_peak_callbacks.items(): await callback(peak)
42.899921
119
0.636536
a493eeac430bf5d7292a96035c3bdc9679c43550
36,327
py
Python
trac/wiki/tests/wikisyntax.py
clubturbo/Trac-1.4.2
254ce54a3c2fb86b4f31810ddeabbd4ff8b54a78
[ "BSD-3-Clause" ]
null
null
null
trac/wiki/tests/wikisyntax.py
clubturbo/Trac-1.4.2
254ce54a3c2fb86b4f31810ddeabbd4ff8b54a78
[ "BSD-3-Clause" ]
null
null
null
trac/wiki/tests/wikisyntax.py
clubturbo/Trac-1.4.2
254ce54a3c2fb86b4f31810ddeabbd4ff8b54a78
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (C) 2006-2020 Edgewall Software # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. The terms # are also available at https://trac.edgewall.org/wiki/TracLicense. # # This software consists of voluntary contributions made by many # individuals. For the exact contribution history, see the revision # history and logs, available at https://trac.edgewall.org/log/. import unittest from trac.util.datefmt import datetime_now, utc from trac.wiki.model import WikiPage from trac.wiki.tests import formatter TEST_CASES = u""" ============================== wiki: link resolver wiki:TestPage wiki:TestPage/ wiki:/TestPage [wiki:/TestPage] [wiki:/TestPage ] [wiki:/TestPage\u200B] [wiki:/TestPage /TestPage] wiki:"Space 1 23" wiki:"C'est l'\xe9t\xe9" wiki:MissingPage wiki:12 wiki:abc ------------------------------ <p> <a class="wiki" href="/wiki/TestPage">wiki:TestPage</a> <a class="wiki" href="/wiki/TestPage">wiki:TestPage/</a> <a class="wiki" href="/wiki/TestPage">wiki:/TestPage</a> <a class="wiki" href="/wiki/TestPage">TestPage</a> <a class="wiki" href="/wiki/TestPage">TestPage</a> <a class="wiki" href="/wiki/TestPage">TestPage</a> <a class="wiki" href="/wiki/TestPage">/TestPage</a> <a class="wiki" href="/wiki/Space%201%2023">wiki:"Space 1 23"</a> <a class="wiki" href="/wiki/C'est%20l'%C3%A9t%C3%A9">wiki:"C'est l'\xe9t\xe9"</a> <a class="missing wiki" href="/wiki/MissingPage" rel="nofollow">wiki:MissingPage</a> <a class="missing wiki" href="/wiki/12" rel="nofollow">wiki:12</a> <a class="missing wiki" href="/wiki/abc" rel="nofollow">wiki:abc</a> </p> ------------------------------ ============================== wiki: link resolver + query and fragment wiki:TestPage?format=txt wiki:TestPage/?version=12 wiki:TestPage/?action=diff&version=12 wiki:"Space 1 23#heading" ------------------------------ <p> <a class="wiki" href="/wiki/TestPage?format=txt">wiki:TestPage?format=txt</a> <a class="wiki" href="/wiki/TestPage?version=12">wiki:TestPage/?version=12</a> <a class="wiki" href="/wiki/TestPage?action=diff&amp;version=12">wiki:TestPage/?action=diff&amp;version=12</a> <a class="wiki" href="/wiki/Space%201%2023#heading">wiki:"Space 1 23#heading"</a> </p> ------------------------------ ============================== WikiPageNames conformance CamelCase AlabamA ABc AlaBamA FooBar ------------------------------ <p> <a class="missing wiki" href="/wiki/CamelCase" rel="nofollow">CamelCase</a> AlabamA ABc AlaBamA <a class="missing wiki" href="/wiki/FooBar" rel="nofollow">FooBar</a> </p> ------------------------------ ============================== WikiPageNames conformance (unicode) SmÅogstore should produce a link and so should wiki:ÜberflüssigkeitsTheorie ------------------------------ <p> <a class="missing wiki" href="/wiki/Sm%C3%85ogstore" rel="nofollow">SmÅogstore</a> should produce a link and so should <a class="missing wiki" href="/wiki/%C3%9Cberfl%C3%BCssigkeitsTheorie" rel="nofollow">wiki:ÜberflüssigkeitsTheorie</a> </p> ------------------------------ ============================== More WikiPageNames conformance CamelCase,CamelCase.CamelCase: CamelCase But not CamelCase2 nor CamelCase_ ------------------------------ <p> <a class="missing wiki" href="/wiki/CamelCase" rel="nofollow">CamelCase</a>,<a class="missing wiki" href="/wiki/CamelCase" rel="nofollow">CamelCase</a>.<a class="missing wiki" href="/wiki/CamelCase" rel="nofollow">CamelCase</a>: <a class="missing wiki" href="/wiki/CamelCase" rel="nofollow">CamelCase</a> But not CamelCase2 nor CamelCase_ </p> ------------------------------ ============================== Escaping WikiPageNames !CamelCase ------------------------------ <p> CamelCase </p> ------------------------------ ============================== WikiPageNames endings foo (FooBar ) foo FooBar: something foo FooBar. FooBar, foo foo FooBar; foo FooBar! foo FooBar? foo (FooBar) foo {FooBar} foo 'FooBar' foo "FooBar" foo [FooBar] ------------------------------ <p> foo (<a class="missing wiki" href="/wiki/FooBar" rel="nofollow">FooBar</a> ) foo <a class="missing wiki" href="/wiki/FooBar" rel="nofollow">FooBar</a>: something foo <a class="missing wiki" href="/wiki/FooBar" rel="nofollow">FooBar</a>. <a class="missing wiki" href="/wiki/FooBar" rel="nofollow">FooBar</a>, foo foo <a class="missing wiki" href="/wiki/FooBar" rel="nofollow">FooBar</a>; foo <a class="missing wiki" href="/wiki/FooBar" rel="nofollow">FooBar</a>! foo <a class="missing wiki" href="/wiki/FooBar" rel="nofollow">FooBar</a>? foo (<a class="missing wiki" href="/wiki/FooBar" rel="nofollow">FooBar</a>) foo {<a class="missing wiki" href="/wiki/FooBar" rel="nofollow">FooBar</a>} foo '<a class="missing wiki" href="/wiki/FooBar" rel="nofollow">FooBar</a>' foo "<a class="missing wiki" href="/wiki/FooBar" rel="nofollow">FooBar</a>" foo [<a class="missing wiki" href="/wiki/FooBar" rel="nofollow">FooBar</a>] </p> ------------------------------ ============================== WikiPageNames counter examples A0B1, ST62T53C6, IR32V1H000 ------------------------------ <p> A0B1, ST62T53C6, IR32V1H000 </p> ------------------------------ ============================== WikiPageNames with fragment identifier SandBox#heading-fixed-id wiki:TracSubversion#TracandSubversion1.3.1. etc. TracSubversion#TracandSubversion1.3.1. etc. ------------------------------ <p> <a class="missing wiki" href="/wiki/SandBox#heading-fixed-id" rel="nofollow">SandBox#heading-fixed-id</a> </p> <p> <a class="missing wiki" href="/wiki/TracSubversion#TracandSubversion1.3.1" rel="nofollow">wiki:TracSubversion#TracandSubversion1.3.1</a>. etc. <a class="missing wiki" href="/wiki/TracSubversion#TracandSubversion1.3.1" rel="nofollow">TracSubversion#TracandSubversion1.3.1</a>. etc. </p> ------------------------------ ============================== WikiPageNames with fragment id (performance test) BillOfMaterials#get_bill_of_materials_from_room_xml(fpxml=nil) [BillOfMaterials#get_bill_of_materials_from_room_xml(fpxml=nil)] [BillOfMaterials#get_bill_of_materials_from_room_xml(fpxml=nil) speed] ------------------------------ <p> <a class="missing wiki" href="/wiki/BillOfMaterials#get_bill_of_materials_from_room_xml" rel="nofollow">BillOfMaterials#get_bill_of_materials_from_room_xml</a>(fpxml=nil) </p> <p> [<a class="missing wiki" href="/wiki/BillOfMaterials#get_bill_of_materials_from_room_xml" rel="nofollow">BillOfMaterials#get_bill_of_materials_from_room_xml</a>(fpxml=nil)] </p> <p> [<a class="missing wiki" href="/wiki/BillOfMaterials#get_bill_of_materials_from_room_xml" rel="nofollow">BillOfMaterials#get_bill_of_materials_from_room_xml</a>(fpxml=nil) speed] </p> ------------------------------ ============================== WikiPageNames counter examples (paths) /absolute/path/is/NotWiki and relative/path/is/NotWiki and ../higher/is/NotWiki but ThisIs/SubWiki and now This/Also and ../Relative/Camel or /Absolute/Camel as well ------------------------------ <p> /absolute/path/is/NotWiki and relative/path/is/NotWiki and ../higher/is/NotWiki but <a class="missing wiki" href="/wiki/ThisIs/SubWiki" rel="nofollow">ThisIs/SubWiki</a> and now <a class="missing wiki" href="/wiki/This/Also" rel="nofollow">This/Also</a> and <a class="missing wiki" href="/wiki/Relative/Camel" rel="nofollow">../Relative/Camel</a> or <a class="missing wiki" href="/wiki/Absolute/Camel" rel="nofollow">/Absolute/Camel</a> as well </p> ------------------------------ ============================== WikiPageNames counter examples (numbers) 8FjBpOmy anotherWikiPageName ------------------------------ <p> 8FjBpOmy anotherWikiPageName </p> ------------------------------ 8FjBpOmy anotherWikiPageName ============================== WikiPageNames counter examples (unicode) Småbokstaver should not produce a link neither should AbAbÅ nor AbAbÅÅb ------------------------------ <p> Småbokstaver should not produce a link neither should AbAbÅ nor AbAbÅÅb </p> ------------------------------ Småbokstaver should not produce a link neither should AbAbÅ nor AbAbÅÅb ============================== not a WikiPageNames at all (#9025 regression) [ሀሁሂሃሄህሆለሉሊላሌልሎሏሐሑሒሓሔሕሖመሙሚማሜምሞሟሠሡሢሣሤሥሦረሩሪራሬርሮሯሰሱሲሳሴስሶሷሸሹሺሻሼሽሾሿቀቁቂቃቄቅቆቈቊቋቌቍቐቑቒቓቔቕቖቘቚቛቜቝበቡቢባቤብቦቧቨቩቪቫቬቭቮቯተቱቲታቴትቶቷቸቹቺቻቼችቾቿኀኁኂኃኄኅኆኈኊኋኌኍነኑኒናኔንኖኗኘኙኚኛኜኝኞኟአኡኢኣኤእኦኧከኩኪካኬክኮኰኲኳኴኵኸኹኺኻኼኽኾወዉዊዋዌውዎዐዑዒዓዔዕዖዘዙዚዛዜዝዞዟዠዡዢዣዤዥዦዧየዩዪያዬይዮደዱዲዳዴድዶዷጀጁጂጃጄጅጆጇገጉጊጋጌግጎጐጒጓጔጕጠጡጢጣጤጥጦጧጨጩጪጫጬጭጮጯጰጱጲጳጴጵጶጷጸጹጺጻጼጽጾጿፀፁፂፃፄፅፆፈፉፊፋፌፍፎፏፐፑፒፓፔፕፖፗፘፙፚ፩፪፫፬፭፮፯፰፱፲፳፴፵፶፷፸፹፺፻]------------------------------ <p> [ሀሁሂሃሄህሆለሉሊላሌልሎሏሐሑሒሓሔሕሖመሙሚማሜምሞሟሠሡሢሣሤሥሦረሩሪራሬርሮሯሰሱሲሳሴስሶሷሸሹሺሻሼሽሾሿቀቁቂቃቄቅቆቈቊቋቌቍቐቑቒቓቔቕቖቘቚቛቜቝበቡቢባቤብቦቧቨቩቪቫቬቭቮቯተቱቲታቴትቶቷቸቹቺቻቼችቾቿኀኁኂኃኄኅኆኈኊኋኌኍነኑኒናኔንኖኗኘኙኚኛኜኝኞኟአኡኢኣኤእኦኧከኩኪካኬክኮኰኲኳኴኵኸኹኺኻኼኽኾወዉዊዋዌውዎዐዑዒዓዔዕዖዘዙዚዛዜዝዞዟዠዡዢዣዤዥዦዧየዩዪያዬይዮደዱዲዳዴድዶዷጀጁጂጃጄጅጆጇገጉጊጋጌግጎጐጒጓጔጕጠጡጢጣጤጥጦጧጨጩጪጫጬጭጮጯጰጱጲጳጴጵጶጷጸጹጺጻጼጽጾጿፀፁፂፃፄፅፆፈፉፊፋፌፍፎፏፐፑፒፓፔፕፖፗፘፙፚ፩፪፫፬፭፮፯፰፱፲፳፴፵፶፷፸፹፺፻] </p> ------------------------------ [ሀሁሂሃሄህሆለሉሊላሌልሎሏሐሑሒሓሔሕሖመሙሚማሜምሞሟሠሡሢሣሤሥሦረሩሪራሬርሮሯሰሱሲሳሴስሶሷሸሹሺሻሼሽሾሿቀቁቂቃቄቅቆቈቊቋቌቍቐቑቒቓቔቕቖቘቚቛቜቝበቡቢባቤብቦቧቨቩቪቫቬቭቮቯተቱቲታቴትቶቷቸቹቺቻቼችቾቿኀኁኂኃኄኅኆኈኊኋኌኍነኑኒናኔንኖኗኘኙኚኛኜኝኞኟአኡኢኣኤእኦኧከኩኪካኬክኮኰኲኳኴኵኸኹኺኻኼኽኾወዉዊዋዌውዎዐዑዒዓዔዕዖዘዙዚዛዜዝዞዟዠዡዢዣዤዥዦዧየዩዪያዬይዮደዱዲዳዴድዶዷጀጁጂጃጄጅጆጇገጉጊጋጌግጎጐጒጓጔጕጠጡጢጣጤጥጦጧጨጩጪጫጬጭጮጯጰጱጲጳጴጵጶጷጸጹጺጻጼጽጾጿፀፁፂፃፄፅፆፈፉፊፋፌፍፎፏፐፑፒፓፔፕፖፗፘፙፚ፩፪፫፬፭፮፯፰፱፲፳፴፵፶፷፸፹፺፻] ============================== MoinMoin style forced links This is a ["Wiki"] page link. This is a ["Wiki" wiki page] link with label. This is a ["Wiki?param=1#fragment"] page link with query and fragment. ------------------------------ <p> This is a <a class="missing wiki" href="/wiki/Wiki" rel="nofollow">Wiki</a> page link. This is a <a class="missing wiki" href="/wiki/Wiki" rel="nofollow">wiki page</a> link with label. This is a <a class="missing wiki" href="/wiki/Wiki?param=1#fragment" rel="nofollow">Wiki</a> page link with query and fragment. </p> ------------------------------ ============================== Wiki links with @version wiki:page@12 WikiStart@12 WikiStart@12#heading [WikiStart@12] [WikiStart@12#heading] This is a ["Wiki@12"] page link. [wiki:WikiStart@12?format=txt v12 as text] ------------------------------ <p> <a class="missing wiki" href="/wiki/page?version=12" rel="nofollow">wiki:page@12</a> <a class="wiki" href="/wiki/WikiStart?version=12">WikiStart@12</a> <a class="wiki" href="/wiki/WikiStart?version=12#heading">WikiStart@12#heading</a> [<a class="wiki" href="/wiki/WikiStart?version=12">WikiStart@12</a>] [<a class="wiki" href="/wiki/WikiStart?version=12#heading">WikiStart@12#heading</a>] This is a <a class="missing wiki" href="/wiki/Wiki?version=12" rel="nofollow">Wiki@12</a> page link. <a class="wiki" href="/wiki/WikiStart?version=12&amp;format=txt">v12 as text</a> </p> ------------------------------ ============================== WikiPageName with label See details of the [WikiPageNames wiki page name] syntax. Here's a [BadExample\fbad] example with special whitespace. We can also [WikiLabels '"use [quotes]"'] or [WikiLabels "'use [quotes]'"] ------------------------------ <p> See details of the <a class="missing wiki" href="/wiki/WikiPageNames" rel="nofollow">wiki page name</a> syntax. Here's a <a class="missing wiki" href="/wiki/BadExample" rel="nofollow">bad</a> example with special whitespace. We can also <a class="missing wiki" href="/wiki/WikiLabels" rel="nofollow">"use [quotes]"</a> or <a class="missing wiki" href="/wiki/WikiLabels" rel="nofollow">'use [quotes]'</a> </p> ------------------------------ ============================== WikiPageName with label should be strict... new_channel_name [, '''integer''' handle [, '''boolean''' test]] ------------------------------ <p> new_channel_name [, <strong>integer</strong> handle [, <strong>boolean</strong> test]] </p> ------------------------------ ============================== InterTrac for wiki t:wiki:InterTrac trac:wiki:InterTrac TRAC:wiki:InterTrac [t:wiki:InterTrac intertrac] [trac:wiki:InterTrac intertrac] [trac:wiki:JonasBorgström jonas] [TRAC:wiki:JonasBorgström jonas] ------------------------------ <p> <a class="ext-link" href="https://trac.edgewall.org/intertrac/wiki%3AInterTrac" title="wiki:InterTrac in The Trac Project"><span class="icon"></span>t:wiki:InterTrac</a> <a class="ext-link" href="https://trac.edgewall.org/intertrac/wiki%3AInterTrac" title="wiki:InterTrac in The Trac Project"><span class="icon"></span>trac:wiki:InterTrac</a> <a class="ext-link" href="https://trac.edgewall.org/intertrac/wiki%3AInterTrac" title="wiki:InterTrac in The Trac Project"><span class="icon"></span>TRAC:wiki:InterTrac</a> <a class="ext-link" href="https://trac.edgewall.org/intertrac/wiki%3AInterTrac" title="wiki:InterTrac in The Trac Project"><span class="icon"></span>intertrac</a> <a class="ext-link" href="https://trac.edgewall.org/intertrac/wiki%3AInterTrac" title="wiki:InterTrac in The Trac Project"><span class="icon"></span>intertrac</a> <a class="ext-link" href="https://trac.edgewall.org/intertrac/wiki%3AJonasBorgstr%C3%B6m" title="wiki:JonasBorgström in The Trac Project"><span class="icon"></span>jonas</a> <a class="ext-link" href="https://trac.edgewall.org/intertrac/wiki%3AJonasBorgstr%C3%B6m" title="wiki:JonasBorgström in The Trac Project"><span class="icon"></span>jonas</a> </p> ------------------------------ ============================== Wiki InterTrac shorthands t:InterTrac trac:InterTrac TRAC:InterTrac [t:InterTrac intertrac] [trac:InterTrac intertrac] [trac:JonasBorgström jonas] ------------------------------ <p> <a class="ext-link" href="https://trac.edgewall.org/intertrac/InterTrac" title="InterTrac in The Trac Project"><span class="icon"></span>t:InterTrac</a> <a class="ext-link" href="https://trac.edgewall.org/intertrac/InterTrac" title="InterTrac in The Trac Project"><span class="icon"></span>trac:InterTrac</a> <a class="ext-link" href="https://trac.edgewall.org/intertrac/InterTrac" title="InterTrac in The Trac Project"><span class="icon"></span>TRAC:InterTrac</a> <a class="ext-link" href="https://trac.edgewall.org/intertrac/InterTrac" title="InterTrac in The Trac Project"><span class="icon"></span>intertrac</a> <a class="ext-link" href="https://trac.edgewall.org/intertrac/InterTrac" title="InterTrac in The Trac Project"><span class="icon"></span>intertrac</a> <a class="ext-link" href="https://trac.edgewall.org/intertrac/JonasBorgstr%C3%B6m" title="JonasBorgström in The Trac Project"><span class="icon"></span>jonas</a> </p> ------------------------------ ============================== InterWiki links This is the original MeatBall:InterMapTxt wiki page. Checkout the [tsvn:http://svn.edgewall.com/repos/trac Trac Repository]. complex link complex:a:test with positional arguments complex link complex:a (not enough arguments) complex link complex:a:test:more (too many arguments) in trac.ini inter:b:resource in trac.ini over:c:something overrides wiki NoLink:ignored NoLink: NoLink: ... ------------------------------ <p> This is the original <a class="ext-link" href="http://www.usemod.com/cgi-bin/mb.pl?InterMapTxt" title="InterMapTxt in MeatBall..."><span class="icon"></span>MeatBall:InterMapTxt</a> wiki page. Checkout the <a class="ext-link" href="tsvn:http://svn.edgewall.com/repos/trac" title="http://svn.edgewall.com/repos/trac in tsvn"><span class="icon"></span>Trac Repository</a>. </p> <p> complex link <a class="ext-link" href="http://server/a/page/test?format=txt" title="resource test in a"><span class="icon"></span>complex:a:test</a> with positional arguments complex link <a class="ext-link" href="http://server/a/page/?format=txt" title="resource in a"><span class="icon"></span>complex:a</a> (not enough arguments) complex link <a class="ext-link" href="http://server/a/page/test:more?format=txt" title="resource test:more in a"><span class="icon"></span>complex:a:test:more</a> (too many arguments) </p> <p> in trac.ini <a class="ext-link" href="http://inter/b/page/resource" title="Resource resource in b"><span class="icon"></span>inter:b:resource</a> in trac.ini <a class="ext-link" href="http://over/c/page/something" title="c:something in over"><span class="icon"></span>over:c:something</a> overrides wiki </p> <p> NoLink:ignored <a class="missing wiki" href="/wiki/NoLink" rel="nofollow">NoLink</a>: <a class="missing wiki" href="/wiki/NoLink" rel="nofollow">NoLink</a>: ... </p> ------------------------------ ============================== InterWiki links with parameters and fragment See also MeatBall:InterMapTxt#there wiki page and MeatBall:InterMapTxt?format=txt#there wiki page. complex link complex:a:test?go#there with positional arguments ------------------------------ <p> See also <a class="ext-link" href="http://www.usemod.com/cgi-bin/mb.pl?InterMapTxt#there" title="InterMapTxt in MeatBall..."><span class="icon"></span>MeatBall:InterMapTxt#there</a> wiki page and <a class="ext-link" href="http://www.usemod.com/cgi-bin/mb.pl?InterMapTxt&amp;format=txt#there" title="InterMapTxt in MeatBall..."><span class="icon"></span>MeatBall:InterMapTxt?format=txt#there</a> wiki page. </p> <p> complex link <a class="ext-link" href="http://server/a/page/test?format=txt&amp;go#there" title="resource test in a"><span class="icon"></span>complex:a:test?go#there</a> with positional arguments </p> ------------------------------ ============================== Regression for #9712 This is not a link: x,://localhost ------------------------------ <p> This is not a link: x,:<em>localhost </em></p> ------------------------------ ============================== Wiki links with @version using unicode digits WikiStart@₄₂ WikiStart@₄₂#heading [WikiStart@₄₂] [WikiStart@₄₂#heading] ------------------------------ <p> <a class="wiki" href="/wiki/WikiStart">WikiStart</a>@₄₂ <a class="wiki" href="/wiki/WikiStart">WikiStart</a>@₄₂#heading [<a class="wiki" href="/wiki/WikiStart">WikiStart</a>@₄₂] [<a class="wiki" href="/wiki/WikiStart">WikiStart</a>@₄₂#heading] </p> ------------------------------ """ #" Emacs likes it that way better RELATIVE_LINKS_TESTS = u""" ============================== Relative to the project url [//docs Documentation] [//docs?param=1#fragment Documentation] [//docs] [//docs //docs] [//docs?param=1#fragment] [// Home] [//] [//?param=1#fragment] ------------------------------ <p> <a href="/docs">Documentation</a> <a href="/docs?param=1#fragment">Documentation</a> <a href="/docs">docs</a> <a href="/docs">//docs</a> <a href="/docs?param=1#fragment">docs</a> <a href="/">Home</a> <a href="/">//</a> <a href="/?param=1#fragment">//</a> </p> ------------------------------ ============================== Relative to the base url [/newticket?priority=high#fragment bug] [/newticket?priority=high#fragment] [/newticket] [/newticket /newticket] [/ Project] [/] [/?param=1#fragment] ------------------------------ <p> <a href="/newticket?priority=high#fragment">bug</a> <a href="/newticket?priority=high#fragment">newticket</a> <a href="/newticket">newticket</a> <a href="/newticket">/newticket</a> <a href="/">Project</a> <a href="/">/</a> <a href="/?param=1#fragment">/</a> </p> ------------------------------ ============================== Relative to the current page [.] [./] [..] [../] [./../.] [. this page] [./Detail see detail] [./Detail] [./Detail ./Detail] [.. see parent] [../Other see other] [../Other] [../Other ../Other] [.././../Other] ------------------------------ <p> <a class="wiki" href="/wiki/Main/Sub">.</a> <a class="wiki" href="/wiki/Main/Sub">./</a> <a class="missing wiki" href="/wiki/Main" rel="nofollow">..</a> <a class="missing wiki" href="/wiki/Main" rel="nofollow">../</a> <a class="missing wiki" href="/wiki/Main" rel="nofollow">./../.</a> <a class="wiki" href="/wiki/Main/Sub">this page</a> <a class="missing wiki" href="/wiki/Main/Sub/Detail" rel="nofollow">see detail</a> <a class="missing wiki" href="/wiki/Main/Sub/Detail" rel="nofollow">Detail</a> <a class="missing wiki" href="/wiki/Main/Sub/Detail" rel="nofollow">./Detail</a> <a class="missing wiki" href="/wiki/Main" rel="nofollow">see parent</a> <a class="missing wiki" href="/wiki/Main/Other" rel="nofollow">see other</a> <a class="missing wiki" href="/wiki/Main/Other" rel="nofollow">Other</a> <a class="missing wiki" href="/wiki/Main/Other" rel="nofollow">../Other</a> <a class="missing wiki" href="/wiki/Other" rel="nofollow">Other</a> </p> ------------------------------ ============================== Relative to the current page, in wiki realm [wiki:. this page] [wiki:./Detail] [wiki:"./Detail"] [wiki:./Detail ./Detail] [wiki:./Detail see detail] [wiki:.. see parent] [wiki:../Other see other] [wiki:.././../Other] ["."] [".?param=1#fragment"] ["./Detail"] ["./Detail?param=1#fragment"] [".."] ["..?param=1#fragment"] ["../Other"] ["../Other?param=1#fragment"] [".././../Other"] ------------------------------ <p> <a class="wiki" href="/wiki/Main/Sub">this page</a> <a class="missing wiki" href="/wiki/Main/Sub/Detail" rel="nofollow">Detail</a> <a class="missing wiki" href="/wiki/Main/Sub/Detail" rel="nofollow">Detail</a> <a class="missing wiki" href="/wiki/Main/Sub/Detail" rel="nofollow">./Detail</a> <a class="missing wiki" href="/wiki/Main/Sub/Detail" rel="nofollow">see detail</a> <a class="missing wiki" href="/wiki/Main" rel="nofollow">see parent</a> <a class="missing wiki" href="/wiki/Main/Other" rel="nofollow">see other</a> <a class="missing wiki" href="/wiki/Other" rel="nofollow">Other</a> <a class="wiki" href="/wiki/Main/Sub">.</a> <a class="wiki" href="/wiki/Main/Sub?param=1#fragment">.</a> <a class="missing wiki" href="/wiki/Main/Sub/Detail" rel="nofollow">Detail</a> <a class="missing wiki" href="/wiki/Main/Sub/Detail?param=1#fragment" rel="nofollow">Detail</a> <a class="missing wiki" href="/wiki/Main" rel="nofollow">..</a> <a class="missing wiki" href="/wiki/Main?param=1#fragment" rel="nofollow">..</a> <a class="missing wiki" href="/wiki/Main/Other" rel="nofollow">Other</a> <a class="missing wiki" href="/wiki/Main/Other?param=1#fragment" rel="nofollow">Other</a> <a class="missing wiki" href="/wiki/Other" rel="nofollow">Other</a> </p> ------------------------------ ============================== Relative to the current page, as CamelCase OnePage/SubPage ./SubPage ../SiblingPage .././../HigherPage /TopPage ------------------------------ <p> <a class="missing wiki" href="/wiki/Main/OnePage/SubPage" rel="nofollow">OnePage/SubPage</a> <a class="missing wiki" href="/wiki/Main/Sub/SubPage" rel="nofollow">./SubPage</a> <a class="missing wiki" href="/wiki/Main/SiblingPage" rel="nofollow">../SiblingPage</a> <a class="missing wiki" href="/wiki/HigherPage" rel="nofollow">.././../HigherPage</a> <a class="missing wiki" href="/wiki/TopPage" rel="nofollow">/TopPage</a> </p> ------------------------------ ============================== Relative to the current page with query strings and fragments [#topic see topic] [?param=1#topic see topic] [.#topic see topic] [.?param=1#topic see topic] [./#topic see topic] [./?param=1#topic see topic] [./Detail#topic see detail] [./Detail?param=1#topic see detail] [./Detail?param=1#topic] [..#topic see parent] [..?param=1#topic see parent] [../#topic see parent] [../?param=1#topic see parent] [../Other#topic see other] [../Other?param=1#topic see other] [../Other?param=1#topic] [../Other/#topic see other] [../Other/?param=1#topic see other] ------------------------------ <p> <a class="wiki" href="/wiki/Main/Sub#topic">see topic</a> <a class="wiki" href="/wiki/Main/Sub?param=1#topic">see topic</a> <a class="wiki" href="/wiki/Main/Sub#topic">see topic</a> <a class="wiki" href="/wiki/Main/Sub?param=1#topic">see topic</a> <a class="wiki" href="/wiki/Main/Sub#topic">see topic</a> <a class="wiki" href="/wiki/Main/Sub?param=1#topic">see topic</a> <a class="missing wiki" href="/wiki/Main/Sub/Detail#topic" rel="nofollow">see detail</a> <a class="missing wiki" href="/wiki/Main/Sub/Detail?param=1#topic" rel="nofollow">see detail</a> <a class="missing wiki" href="/wiki/Main/Sub/Detail?param=1#topic" rel="nofollow">Detail</a> <a class="missing wiki" href="/wiki/Main#topic" rel="nofollow">see parent</a> <a class="missing wiki" href="/wiki/Main?param=1#topic" rel="nofollow">see parent</a> <a class="missing wiki" href="/wiki/Main#topic" rel="nofollow">see parent</a> <a class="missing wiki" href="/wiki/Main?param=1#topic" rel="nofollow">see parent</a> <a class="missing wiki" href="/wiki/Main/Other#topic" rel="nofollow">see other</a> <a class="missing wiki" href="/wiki/Main/Other?param=1#topic" rel="nofollow">see other</a> <a class="missing wiki" href="/wiki/Main/Other?param=1#topic" rel="nofollow">Other</a> <a class="missing wiki" href="/wiki/Main/Other#topic" rel="nofollow">see other</a> <a class="missing wiki" href="/wiki/Main/Other?param=1#topic" rel="nofollow">see other</a> </p> ------------------------------ """ # " SPLIT_PAGE_NAMES_TESTS = u""" ============================== Splitting relative links [//WikiPage] [/WikiPage] [./WikiPage] [../WikiPage] [//WikiPage?param=1#fragment] [/WikiPage?param=1#fragment] [./WikiPage?param=1#fragment] [../WikiPage?param=1#fragment] But not [./wiki_page] And not [../WikiPage WikiPage] ------------------------------ <p> <a href="/WikiPage">Wiki Page</a> <a href="/WikiPage">Wiki Page</a> <a class="missing wiki" href="/wiki/Main/Sub/WikiPage" rel="nofollow">Wiki Page</a> <a class="missing wiki" href="/wiki/Main/WikiPage" rel="nofollow">Wiki Page</a> <a href="/WikiPage?param=1#fragment">Wiki Page</a> <a href="/WikiPage?param=1#fragment">Wiki Page</a> <a class="missing wiki" href="/wiki/Main/Sub/WikiPage?param=1#fragment" rel="nofollow">Wiki Page</a> <a class="missing wiki" href="/wiki/Main/WikiPage?param=1#fragment" rel="nofollow">Wiki Page</a> But not <a class="missing wiki" href="/wiki/Main/Sub/wiki_page" rel="nofollow">wiki_page</a> And not <a class="missing wiki" href="/wiki/Main/WikiPage" rel="nofollow">WikiPage</a> </p> ------------------------------ ============================== Splitting scoped links [wiki:WikiPage] [wiki:./WikiPage] [wiki:../WikiPage] [wiki:./.././WikiPage] [wiki:"./.././WikiPage"] [wiki:WikiPage?param=1#fragment] [wiki:./WikiPage?param=1#fragment] [wiki:../WikiPage?param=1#fragment] But not [wiki:./wiki_page] And not [wiki:../WikiPage WikiPage] ------------------------------ <p> <a class="missing wiki" href="/wiki/Main/WikiPage" rel="nofollow">Wiki Page</a> <a class="missing wiki" href="/wiki/Main/Sub/WikiPage" rel="nofollow">Wiki Page</a> <a class="missing wiki" href="/wiki/Main/WikiPage" rel="nofollow">Wiki Page</a> <a class="missing wiki" href="/wiki/Main/WikiPage" rel="nofollow">Wiki Page</a> <a class="missing wiki" href="/wiki/Main/WikiPage" rel="nofollow">Wiki Page</a> <a class="missing wiki" href="/wiki/Main/WikiPage?param=1#fragment" rel="nofollow">Wiki Page</a> <a class="missing wiki" href="/wiki/Main/Sub/WikiPage?param=1#fragment" rel="nofollow">Wiki Page</a> <a class="missing wiki" href="/wiki/Main/WikiPage?param=1#fragment" rel="nofollow">Wiki Page</a> But not <a class="missing wiki" href="/wiki/Main/Sub/wiki_page" rel="nofollow">wiki_page</a> And not <a class="missing wiki" href="/wiki/Main/WikiPage" rel="nofollow">WikiPage</a> </p> ------------------------------ ============================== Splitting internal free links ["WikiPage"] ["./WikiPage"] ["../WikiPage"] ["./.././WikiPage"] ["WikiPage?param=1#fragment"] ["./WikiPage?param=1#fragment"] ["../WikiPage?param=1#fragment"] But not ["./wiki_page"] And not ["../WikiPage" WikiPage] ------------------------------ <p> <a class="missing wiki" href="/wiki/Main/WikiPage" rel="nofollow">Wiki Page</a> <a class="missing wiki" href="/wiki/Main/Sub/WikiPage" rel="nofollow">Wiki Page</a> <a class="missing wiki" href="/wiki/Main/WikiPage" rel="nofollow">Wiki Page</a> <a class="missing wiki" href="/wiki/Main/WikiPage" rel="nofollow">Wiki Page</a> <a class="missing wiki" href="/wiki/Main/WikiPage?param=1#fragment" rel="nofollow">Wiki Page</a> <a class="missing wiki" href="/wiki/Main/Sub/WikiPage?param=1#fragment" rel="nofollow">Wiki Page</a> <a class="missing wiki" href="/wiki/Main/WikiPage?param=1#fragment" rel="nofollow">Wiki Page</a> But not <a class="missing wiki" href="/wiki/Main/Sub/wiki_page" rel="nofollow">wiki_page</a> And not <a class="missing wiki" href="/wiki/Main/WikiPage" rel="nofollow">WikiPage</a> </p> ------------------------------ """ # " SCOPED_LINKS_TESTS = u""" ============================== Scoped links for hierarchical pages ThirdLevel [wiki:ThirdLevel] OtherThirdLevel [wiki:OtherThirdLevel] SecondLevel/OtherThirdLevel [wiki:SecondLevel/OtherThirdLevel] SecondLevel [wiki:SecondLevel] FirstLevel [wiki:FirstLevel] TestPage [wiki:TestPage] MissingPage [wiki:MissingPage] FirstLevel/MissingPage [wiki:FirstLevel/MissingPage] SecondLevel/MissingPage [wiki:SecondLevel/MissingPage] MissingFirstLevel/MissingPage [wiki:MissingFirstLevel/MissingPage] ["/OtherThirdLevel"] [wiki:/OtherThirdLevel] [wiki:/OtherThirdLevel /OtherThirdLevel] ------------------------------ <p> <a class="wiki" href="/wiki/FirstLevel/SecondLevel/ThirdLevel">ThirdLevel</a> <a class="wiki" href="/wiki/FirstLevel/SecondLevel/ThirdLevel">ThirdLevel</a> <a class="wiki" href="/wiki/FirstLevel/SecondLevel/OtherThirdLevel">OtherThirdLevel</a> <a class="wiki" href="/wiki/FirstLevel/SecondLevel/OtherThirdLevel">OtherThirdLevel</a> <a class="wiki" href="/wiki/FirstLevel/SecondLevel/OtherThirdLevel">SecondLevel/OtherThirdLevel</a> <a class="wiki" href="/wiki/FirstLevel/SecondLevel/OtherThirdLevel">SecondLevel/OtherThirdLevel</a> <a class="wiki" href="/wiki/FirstLevel/SecondLevel">SecondLevel</a> <a class="wiki" href="/wiki/FirstLevel/SecondLevel">SecondLevel</a> <a class="wiki" href="/wiki/FirstLevel">FirstLevel</a> <a class="wiki" href="/wiki/FirstLevel">FirstLevel</a> <a class="wiki" href="/wiki/TestPage">TestPage</a> <a class="wiki" href="/wiki/TestPage">TestPage</a> <a class="missing wiki" href="/wiki/FirstLevel/SecondLevel/MissingPage" rel="nofollow">MissingPage</a> <a class="missing wiki" href="/wiki/FirstLevel/SecondLevel/MissingPage" rel="nofollow">MissingPage</a> <a class="missing wiki" href="/wiki/FirstLevel/MissingPage" rel="nofollow">FirstLevel/MissingPage</a> <a class="missing wiki" href="/wiki/FirstLevel/MissingPage" rel="nofollow">FirstLevel/MissingPage</a> <a class="missing wiki" href="/wiki/FirstLevel/SecondLevel/MissingPage" rel="nofollow">SecondLevel/MissingPage</a> <a class="missing wiki" href="/wiki/FirstLevel/SecondLevel/MissingPage" rel="nofollow">SecondLevel/MissingPage</a> <a class="missing wiki" href="/wiki/FirstLevel/SecondLevel/MissingFirstLevel/MissingPage" rel="nofollow">MissingFirstLevel/MissingPage</a> <a class="missing wiki" href="/wiki/FirstLevel/SecondLevel/MissingFirstLevel/MissingPage" rel="nofollow">MissingFirstLevel/MissingPage</a> <a class="missing wiki" href="/wiki/OtherThirdLevel" rel="nofollow">OtherThirdLevel</a> <a class="missing wiki" href="/wiki/OtherThirdLevel" rel="nofollow">OtherThirdLevel</a> <a class="missing wiki" href="/wiki/OtherThirdLevel" rel="nofollow">/OtherThirdLevel</a> </p> ------------------------------ """ # " SAFE_INTERWIKI_TESTS = u""" ============================== InterWiki with safe_schemes This is the original MeatBall:InterMapTxt wiki page. Checkout the [tsvn:http://svn.edgewall.com/repos/trac Trac Repository]. complex link complex:a:test with positional arguments. js:"alert(1)" javasc:"ript:alert(1)" ------------------------------ <p> This is the original <a class="ext-link" href="http://www.usemod.com/cgi-bin/mb.pl?InterMapTxt" title="InterMapTxt in MeatBall..."><span class="icon"></span>MeatBall:InterMapTxt</a> wiki page. </p> <p> Checkout the <a class="ext-link" href="tsvn:http://svn.edgewall.com/repos/trac" title="http://svn.edgewall.com/repos/trac in tsvn"><span class="icon"></span>Trac Repository</a>. </p> <p> complex link <a class="ext-link" href="http://server/a/page/test?format=txt" title="resource test in a"><span class="icon"></span>complex:a:test</a> with positional arguments. </p> <p> js:&#34;alert(1)&#34; javasc:&#34;ript:alert(1)&#34; </p> ------------------------------ """ # " def wiki_setup(tc): tc.env.config.set('wiki', 'render_unsafe_content', True) # for #9712 now = datetime_now(utc) wiki0 = WikiPage(tc.env) wiki0.name = 'Main/Sub' wiki0.text = '--' wiki0.save('joe', 'subpage', now) wiki1 = WikiPage(tc.env) wiki1.name = 'TestPage' wiki1.text = '--' wiki1.save('joe', 'normal WikiPageNames', now) wiki2 = WikiPage(tc.env) wiki2.name = 'Space 1 23' wiki2.text = '--' wiki2.save('joe', 'not a WikiPageNames', now) wiki3 = WikiPage(tc.env) wiki3.name = u"C'est l'\xe9t\xe9" wiki3.text = '--' wiki3.save('joe', 'unicode WikiPageNames', now) imt = WikiPage(tc.env) imt.name = u"InterMapTxt" imt.text = """ This is the InterMapTxt ---- {{{ MeatBall http://www.usemod.com/cgi-bin/mb.pl? # $1 in MeatBall... tsvn tsvn: complex http://server/$1/page/$2?format=txt # resource $2 in $1 over http://unused/? # Overridden in trac.ini js javascript: javasc javasc }}} ---- {{{ nolink http://noweb }}} """ imt.save('joe', 'test InterWiki links', now) tc.env.config.set('interwiki', 'inter', 'http://inter/$1/page/$2 Resource $2 in $1') tc.env.config.set('interwiki', 'over', 'http://over/$1/page/$2') w = WikiPage(tc.env) w.name = 'FirstLevel' w.text = '--' w.save('joe', 'first level of hierarchy', now) w = WikiPage(tc.env) w.name = 'FirstLevel/SecondLevel' w.text = '--' w.save('joe', 'second level of hierarchy', now) w = WikiPage(tc.env) w.name = 'FirstLevel/SecondLevel/ThirdLevel' w.text = '--' w.save('joe', 'third level of hierarchy', now) w = WikiPage(tc.env) w.name = 'FirstLevel/SecondLevel/OtherThirdLevel' w.text = '--' w.save('joe', 'other third level of hierarchy', now) tc.env.db_transaction("INSERT INTO ticket (id) VALUES ('123')") def wiki_teardown(tc): tc.env.reset_db() def wiki_setup_split(tc): tc.env.config.set('wiki', 'split_page_names', 'true') wiki_setup(tc) def wiki_setup_safe_interwiki(tc): wiki_setup(tc) tc.env.config.set('wiki', 'render_unsafe_content', 'false') tc.env.config.set('wiki', 'safe_schemes', 'file,ftp,git,irc,http,https,ssh,svn,tsvn') def test_suite(): suite = unittest.TestSuite() suite.addTest(formatter.test_suite(TEST_CASES, wiki_setup, __file__, wiki_teardown)) suite.addTest(formatter.test_suite(RELATIVE_LINKS_TESTS, wiki_setup, __file__, wiki_teardown, context=('wiki', 'Main/Sub'))) suite.addTest(formatter.test_suite(SPLIT_PAGE_NAMES_TESTS, wiki_setup_split, __file__, wiki_teardown, context=('wiki', 'Main/Sub'))) suite.addTest(formatter.test_suite(SCOPED_LINKS_TESTS, wiki_setup, __file__, wiki_teardown, context=('wiki', 'FirstLevel/Second' 'Level/ThirdLevel'))) suite.addTest(formatter.test_suite(SAFE_INTERWIKI_TESTS, wiki_setup_safe_interwiki, __file__, wiki_teardown)) return suite if __name__ == '__main__': unittest.main(defaultTest='test_suite')
45.35206
347
0.633936
734529ea0b7a3abd2db8e2192f628ba6a86ecfb1
6,858
py
Python
examples/qaoa/parse_raw_sat.py
sourcery-ai-bot/professional-services
0dd87e18560894bc68c05b580c6c9f2322eabc47
[ "Apache-2.0" ]
null
null
null
examples/qaoa/parse_raw_sat.py
sourcery-ai-bot/professional-services
0dd87e18560894bc68c05b580c6c9f2322eabc47
[ "Apache-2.0" ]
null
null
null
examples/qaoa/parse_raw_sat.py
sourcery-ai-bot/professional-services
0dd87e18560894bc68c05b580c6c9f2322eabc47
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A module to parse maxSAT problems from files.""" import argparse from collections import namedtuple import os import re import numpy as np from qubo import QuboProblem # constrains are in form like 'R4:-X3+X6-X0+X5>=-1' _CONSTRAINT_RE = re.compile(r'R[0-9]+:(-?(?:X[0-9]+[+-])*X[0-9]+)>=(-?[0-9]+)') _VARIABLE_RE = re.compile(r'[+-]?X[0-9]+') class Sat(namedtuple('_Sat', ['clauses', 'num_vars', 'source_filename'])): """A named tuple that represents a max-SAT problem. Attributes: clauses: list of Clauses num_vars: amount of variables source_filame: the path to the source file (Daimler's format) """ def _check_clause(self, clause, solution): for el in clause: s = solution[abs(el) - 1] if el > 0 and s == 1: return True if el < 0 and s == 0: return True return False def check(self, solution): """Check a given solution for this SAT problem. Returns: Amount of correc clauses. """ return sum(self._check_clause(x, solution) for x in self.clauses) class Clause(list): """A list that represents one clause in CNF form. A Clause consits of nonzero ints, every int represents a variable. Negative ints represent negation. A variable can't be both in a positive and negative form in one clause. """ def __init__(self, *args, **kwargs): super(Clause, self).__init__(*args, **kwargs) self._check() def _check(self): abs_vars = [abs(el) for el in self] if len(set(abs_vars)) != len(self): raise ValueError('No duplicates in vars are allowed!') if 0 in self: raise ValueError('Variable with 0 index is not allowed!') def append(self, *args, **kwargs): super(Clause, self).append(*args, **kwargs) self._check() def _parse_clause(line): """Parse a string that represents a clause. Args: line: a string, e.g. 'X0+X1-X2>=-1' Returns: A list of non-zero ints representing variables in the clause (e.g., [1, 2, -3]) """ line = line.replace(' ', '') match = re.match(_CONSTRAINT_RE, line) if not match: raise ValueError('The input line doesn\'t match the expected format') raw, c = match.groups() raw = re.findall(_VARIABLE_RE, raw) vs = [int(x.replace('X', '')) for x in raw] # to avoid 0 index (0->1, 1->2, -2->-3) vs = [x + 1 if x >= 0 else x - 1 for x in vs] if '-X0' in raw: vs.remove(1) vs.append(-1) if int(c) != 1 - len([x for x in vs if x < 0]): raise ValueError('') return vs def _parse_lines_iterator(lines): """Parses a Daimler proprietary format. Args: lines: iterator of lines Returns: clauses - a list of Clauses of CNF problem num_vars - amount of variables in a CNF problem """ clauses = [] if next(lines).strip() != 'Minimize': raise ValueError('Wrong file format') if next(lines).strip() != '0': raise ValueError('Wrong file format') if next(lines).strip() != 'Subject To': raise ValueError('Wrong file format') while True: line = next(lines).strip() if line == 'Bounds': break p = _parse_clause(line) clauses.append(Clause(p)) if next(lines).strip() != 'Binaries': raise ValueError('Wrong file format') num_vars = len(next(lines).strip().split()) max_ind = max(max(abs(ind) for ind in c) for c in clauses) if not num_vars >= max_ind: raise ValueError('Wrong file format') if next(lines).strip() != 'End': raise ValueError('Wrong file format') return clauses, num_vars def parse_file(file_name): """Parse a proprietary Daimler's format. Args: file_name: a full path to a file Returns: a SAT instance of a problem """ with open(file_name, 'r') as f: c, n = _parse_lines_iterator(f) return Sat(c, n, file_name) def _parse_args(): parser = argparse.ArgumentParser() parser.add_argument( '--dir', help='Dir to process all files', type=str) parser.add_argument( '--dwave', help='Dir to process all files', default=False, type=bool) args = parser.parse_args() return vars(args) def _proccess_all(path, transform=False): """Proccess all files and converts problems to QUBO.""" files = [os.path.join(path, f) for f in os.listdir(path) if f.endswith('.lp')] problems = [] def _check_stat(file_stat, value, file_name): if ((file_stat['eq'] == 'gt' and value > file_stat['value']) or (file_stat['eq'] == 'lt' and value < file_stat['value'])): file_stat['value'] = value file_stat['filename'] = file_name stats = { 'max_totat_bits': {'value': 0, 'filename': '', 'eq': 'gt'}, 'max_initial_bits': {'value': 0, 'filename': '', 'eq': 'gt'}, 'max_anc_bits': {'value': 0, 'filename': '', 'eq': 'gt'}, 'min_total_bits': {'value': np.inf, 'filename': '', 'eq': 'lt'}} for f in files: sat = parse_file(f) qubo = QuboProblem(sat) initial_bits = sat.num_vars total_bits = len(qubo.var_names) if transform: outputname = '{0}/dwave/{1}.qubo'.format( os.path.dirname(os.path.realpath(f)), os.path.basename(f).split('.')[0]) with open(outputname, 'w') as f1: for line in qubo.to_qwave_format(): f1.write(line) anc_bits = total_bits - initial_bits _check_stat(stats['max_initial_bits'], initial_bits, f) _check_stat(stats['max_totat_bits'], total_bits, f) _check_stat(stats['min_total_bits'], total_bits, f) _check_stat(stats['max_anc_bits'], anc_bits, f) problems.append(sat) for k, v in stats.items(): print('%s: %s in %s' % (k, v['value'], v['filename'])) print('Success!') def main(): args = _parse_args() if 'dir' in args: _proccess_all(args['dir'], args['dwave']) if __name__ == '__main__': main()
31.315068
79
0.595071
a688898f4a43b33fd3f07cda12144b84829e451f
23,545
py
Python
src/finn/custom_op/fpgadataflow/__init__.py
vision-agh/finn_fork_pp_lidar
a40bd59d3f42a246b0d06329208b84bcc7be8a3e
[ "BSD-3-Clause" ]
1
2021-01-29T14:39:48.000Z
2021-01-29T14:39:48.000Z
src/finn/custom_op/fpgadataflow/__init__.py
vision-agh/finn_fork_pp_lidar
a40bd59d3f42a246b0d06329208b84bcc7be8a3e
[ "BSD-3-Clause" ]
null
null
null
src/finn/custom_op/fpgadataflow/__init__.py
vision-agh/finn_fork_pp_lidar
a40bd59d3f42a246b0d06329208b84bcc7be8a3e
[ "BSD-3-Clause" ]
1
2022-03-07T02:57:55.000Z
2022-03-07T02:57:55.000Z
# Copyright (c) 2020, Xilinx # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of FINN nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from abc import abstractmethod import numpy as np import os import subprocess from finn.custom_op import CustomOp from finn.util.basic import ( CppBuilder, make_build_dir, roundup_to_integer_multiple, get_rtlsim_trace_depth, ) from finn.util.fpgadataflow import ( IPGenBuilder, pyverilate_get_liveness_threshold_cycles, rtlsim_multi_io, ) from . import templates try: from pyverilator import PyVerilator except ModuleNotFoundError: PyVerilator = None class HLSCustomOp(CustomOp): """HLSCustomOp class all custom ops that correspond to a finn-hlslib function are based on. Contains different functions every fpgadataflow custom node should have. Some as abstract methods, these have to be filled when writing a new fpgadataflow custom op node.""" def __init__(self, onnx_node): super().__init__(onnx_node) self.code_gen_dict = {} # getting templates from templates.py # template for single node execution self.docompute_template = templates.docompute_template # templates for single node ip generation # cpp file self.ipgen_template = templates.ipgen_template # tcl script self.ipgentcl_template = templates.ipgentcl_template def get_nodeattr_types(self): return { "backend": ("s", True, "fpgadataflow"), "code_gen_dir_cppsim": ("s", False, ""), "code_gen_dir_ipgen": ("s", False, ""), "executable_path": ("s", False, ""), "ipgen_path": ("s", False, ""), "ip_path": ("s", False, ""), "ip_vlnv": ("s", False, ""), "exec_mode": ("s", False, ""), "sim_cycles": ("i", False, 0), "rtlsim_trace": ("s", False, ""), "res_estimate": ("s", False, ""), "res_hls": ("s", False, ""), "res_synth": ("s", False, ""), "rtlsim_so": ("s", False, ""), # input and output FIFO depths "inFIFODepth": ("i", False, 2), "outFIFODepth": ("i", False, 2), } def get_verilog_top_module_name(self): "Return the Verilog top module name for this node." node = self.onnx_node prefixed_top_name = "%s_%s" % (node.name, node.name) return prefixed_top_name def get_verilog_top_filename(self): "Return the Verilog top module filename for this node." verilog_file = "{}/project_{}/sol1/impl/verilog/{}.v".format( self.get_nodeattr("code_gen_dir_ipgen"), self.onnx_node.name, self.get_verilog_top_module_name(), ) return verilog_file def get_all_verilog_paths(self): "Return list of all folders containing Verilog code for this node." code_gen_dir = self.get_nodeattr("code_gen_dir_ipgen") assert ( code_gen_dir != "" ), """Node attribute "code_gen_dir_ipgen" is not set. Please run HLSSynthIP first.""" verilog_path = "{}/project_{}/sol1/impl/verilog/".format( code_gen_dir, self.onnx_node.name ) # default impl only returns the HLS verilog codegen dir return [verilog_path] def get_all_verilog_filenames(self): "Return list of all Verilog files used for this node." verilog_files = [] verilog_paths = self.get_all_verilog_paths() for verilog_path in verilog_paths: for f in os.listdir(verilog_path): if f.endswith(".v"): verilog_files += [f] return verilog_files def prepare_rtlsim(self): """Creates a Verilator emulation library for the RTL code generated for this node, sets the rtlsim_so attribute to its path and returns a PyVerilator wrapper around it.""" if PyVerilator is None: raise ImportError("Installation of PyVerilator is required.") verilog_paths = self.get_all_verilog_paths() verilog_files = self.get_all_verilog_filenames() # build the Verilator emu library sim = PyVerilator.build( verilog_files, build_dir=make_build_dir("pyverilator_" + self.onnx_node.name + "_"), verilog_path=verilog_paths, trace_depth=get_rtlsim_trace_depth(), top_module_name=self.get_verilog_top_module_name(), ) # save generated lib filename in attribute self.set_nodeattr("rtlsim_so", sim.lib._name) return sim def get_rtlsim(self): """Return a PyVerilator wrapper for the Verilator emulation library for this node.""" rtlsim_so = self.get_nodeattr("rtlsim_so") assert os.path.isfile(rtlsim_so), "Cannot find rtlsim library." # create PyVerilator wrapper sim = PyVerilator(rtlsim_so) return sim def node_res_estimation(self): """Returns summarized resource estimation of BRAMs and LUTs of the node as a dictionary.""" ret = dict() ret["BRAM_18K"] = self.bram_estimation() ret["LUT"] = self.lut_estimation() return ret def bram_estimation(self): """Function for BRAM resource estimation, is member function of HLSCustomOp class but has to be filled by every node""" return 0 def lut_estimation(self): """Function for LUT resource estimation, is member function of HLSCustomOp class but has to be filled by every node""" return 0 def code_generation_ipgen(self, model, fpgapart, clk): """Generates c++ code and tcl script for ip generation.""" node = self.onnx_node # generate top cpp file for ip generation path = self.get_nodeattr("code_gen_dir_ipgen") self.code_gen_dict["$AP_INT_MAX_W$"] = [str(self.get_ap_int_max_w())] self.generate_params(model, path) self.global_includes() self.defines("ipgen") self.blackboxfunction() self.pragmas() self.docompute() template = self.ipgen_template for key in self.code_gen_dict: # transform list into long string separated by '\n' code_gen_line = "\n".join(self.code_gen_dict[key]) template = template.replace(key, code_gen_line) code_gen_dir = self.get_nodeattr("code_gen_dir_ipgen") f = open(os.path.join(code_gen_dir, "top_{}.cpp".format(node.name)), "w") f.write(template) f.close() self.code_gen_dict.clear() # generate tcl script for ip generation self.code_gen_dict["$PROJECTNAME$"] = ["project_{}".format(node.name)] self.code_gen_dict["$HWSRCDIR$"] = [code_gen_dir] self.code_gen_dict["$FPGAPART$"] = [fpgapart] self.code_gen_dict["$FINNHLSLIBDIR$"] = ["/workspace/finn-hlslib"] self.code_gen_dict["$TOPFXN$"] = [node.name] self.code_gen_dict["$CLKPERIOD$"] = [str(clk)] self.code_gen_dict["$EXTRA_DIRECTIVES$"] = self.ipgen_extra_directives() template = self.ipgentcl_template for key in self.code_gen_dict: # transform list into long string separated by '\n' code_gen_line = "\n".join(self.code_gen_dict[key]) template = template.replace(key, code_gen_line) code_gen_dir = self.get_nodeattr("code_gen_dir_ipgen") f = open(os.path.join(code_gen_dir, "hls_syn_{}.tcl".format(node.name)), "w") f.write(template) f.close() self.code_gen_dict.clear() def ipgen_extra_directives(self): "Return a list of extra tcl directives for HLS synthesis." return [] def ipgen_singlenode_code(self): """Builds the bash script for ip generation using the IPGenBuilder from finn.util.fpgadataflow.""" node = self.onnx_node code_gen_dir = self.get_nodeattr("code_gen_dir_ipgen") builder = IPGenBuilder() builder.append_tcl(code_gen_dir + "/hls_syn_{}.tcl".format(node.name)) builder.set_ipgen_path(code_gen_dir + "/project_{}".format(node.name)) builder.build(code_gen_dir) self.set_nodeattr("ipgen_path", builder.ipgen_path) self.set_nodeattr("ip_path", builder.ipgen_path + "/sol1/impl/ip") vlnv = "xilinx.com:hls:%s:1.0" % node.name self.set_nodeattr("ip_vlnv", vlnv) def code_generation_cppsim(self, model): """Generates c++ code for simulation (cppsim).""" node = self.onnx_node path = self.get_nodeattr("code_gen_dir_cppsim") self.code_gen_dict["$AP_INT_MAX_W$"] = [str(self.get_ap_int_max_w())] self.generate_params(model, path) self.global_includes() self.defines("cppsim") self.read_npy_data() self.strm_decl() self.pragmas() self.docompute() self.dataoutstrm() self.save_as_npy() template = self.docompute_template for key in self.code_gen_dict: # transform list into long string separated by '\n' code_gen_line = "\n".join(self.code_gen_dict[key]) template = template.replace(key, code_gen_line) code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") f = open(os.path.join(code_gen_dir, "execute_{}.cpp".format(node.op_type)), "w") f.write(template) f.close() self.code_gen_dict.clear() def compile_singlenode_code(self): """Builds the bash script for compilation using the CppBuilder from finn.util.basic and executes the script to produce the executable.""" code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") builder = CppBuilder() # to enable additional debug features please uncommand the next line # builder.append_includes("-DDEBUG") builder.append_includes("-I/workspace/finn/src/finn/data/cpp") builder.append_includes("-I/workspace/cnpy/") builder.append_includes("-I/workspace/finn-hlslib") builder.append_includes("-I{}/include".format(os.environ["VIVADO_PATH"])) builder.append_includes("--std=c++11") builder.append_includes("-O3") builder.append_sources(code_gen_dir + "/*.cpp") builder.append_sources("/workspace/cnpy/cnpy.cpp") builder.append_includes("-lz") builder.set_executable_path(code_gen_dir + "/node_model") builder.build(code_gen_dir) self.set_nodeattr("executable_path", builder.executable_path) def dynamic_input_to_npy(self, context, count): """Saves input (given context) into .npy files. Count indicates the number of inputs that have to be saved.""" node = self.onnx_node code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") if code_gen_dir == "": raise Exception( """ Found no codegen dir for this node, did you run the prepare_cppsim transformation? """ ) # create a npy file for each input of the node (in_ind is input index) # assuming dynamic inputs start from 0 for in_ind in range(count): current_input_name = node.input[in_ind] # make copy before saving array input_array = context[current_input_name].copy() np.save( os.path.join(code_gen_dir, "input_{}.npy".format(in_ind)), input_array ) def npy_to_dynamic_output(self, context): """Reads the output from an output.npy file generated from cppsim and places its content into the context dictionary.""" node = self.onnx_node code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") output = np.load("{}/output.npy".format(code_gen_dir)) context[node.output[0]] = output def npy_to_dynamic_outputs(self, context, npy_list): """Reads the output from .npy files generated from cppsim and places their content into the context dictionary. npy_list is a list specifying which files to read, and its order must match the order of node outputs.""" node = self.onnx_node code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") for i in range(len(npy_list)): output = np.load("{}/{}".format(code_gen_dir, npy_list[i])) context[node.output[i]] = output def exec_precompiled_singlenode_model(self): """Executes precompiled executable.""" executable_path = self.get_nodeattr("executable_path") if executable_path == "": raise Exception( """ Found no executable for this node, did you run the codegen and compilation transformations? """ ) process_execute = subprocess.Popen(executable_path, stdout=subprocess.PIPE) process_execute.communicate() def reset_rtlsim(self, sim): """Sets reset input in pyverilator to zero, toggles the clock and set it back to one""" sim.io.ap_rst_n = 0 sim.io.ap_clk = 1 sim.io.ap_clk = 0 sim.io.ap_rst_n = 1 def toggle_clk(self, sim): """Toggles the clock input in pyverilator once.""" sim.io.ap_clk = 1 sim.io.ap_clk = 0 def rtlsim(self, sim, inp, inp2=None): """Runs the pyverilator simulation by passing the input values to the simulation, toggle the clock and observing the execution time. Function contains also an observation loop that can abort the simulation if no output value is produced after 100 cycles.""" trace_file = self.get_nodeattr("rtlsim_trace") if trace_file != "": if trace_file == "default": trace_file = self.onnx_node.name + ".vcd" sim.start_vcd_trace(trace_file) inputs = inp outputs = [] sim.io.out_V_V_TREADY = 1 # observe if output is completely calculated # observation_count will contain the number of cycles the calculation ran num_out_values = self.get_number_output_values() output_observed = False observation_count = 0 # avoid infinite looping of simulation by aborting when there is no change in # output values after 100 cycles no_change_count = 0 old_outputs = outputs liveness_threshold = pyverilate_get_liveness_threshold_cycles() while not (output_observed): sim.io.in0_V_V_TVALID = 1 if len(inputs) > 0 else 0 sim.io.in0_V_V_TDATA = inputs[0] if len(inputs) > 0 else 0 if sim.io.in0_V_V_TREADY == 1 and sim.io.in0_V_V_TVALID == 1: inputs = inputs[1:] if inp2 is not None: sim.io.in1_V_V_TVALID = 1 if len(inp2) > 0 else 0 sim.io.in1_V_V_TDATA = inp2[0] if len(inp2) > 0 else 0 if sim.io.in1_V_V_TREADY == 1 and sim.io.in1_V_V_TVALID == 1: inp2 = inp2[1:] if sim.io.out_V_V_TVALID == 1 and sim.io.out_V_V_TREADY == 1: outputs = outputs + [sim.io.out_V_V_TDATA] sim.io.ap_clk = 1 sim.io.ap_clk = 0 observation_count = observation_count + 1 no_change_count = no_change_count + 1 if len(outputs) == num_out_values: self.set_nodeattr("sim_cycles", observation_count) output_observed = True if no_change_count == liveness_threshold: if old_outputs == outputs: if trace_file != "": sim.flush_vcd_trace() sim.stop_vcd_trace() raise Exception( "Error in simulation! Takes too long to produce output. " "Consider setting the LIVENESS_THRESHOLD env.var. to a " "larger value." ) else: no_change_count = 0 old_outputs = outputs if trace_file != "": sim.flush_vcd_trace() sim.stop_vcd_trace() return outputs def rtlsim_multi_io(self, sim, io_dict): "Run rtlsim for this node, supports multiple i/o streams." trace_file = self.get_nodeattr("rtlsim_trace") if trace_file == "default": trace_file = self.onnx_node.name + ".vcd" num_out_values = self.get_number_output_values() total_cycle_count = rtlsim_multi_io(sim, io_dict, num_out_values, trace_file) self.set_nodeattr("sim_cycles", total_cycle_count) def execute_node(self, context, graph): """Executes single node using cppsim or rtlsim.""" mode = self.get_nodeattr("exec_mode") if mode == "cppsim": # save input(s) self.dynamic_input_to_npy(context, 1) # execute the precompiled model self.exec_precompiled_singlenode_model() # load output npy file self.npy_to_dynamic_output(context) elif mode == "rtlsim": pass else: raise Exception( """Invalid value for attribute exec_mode! Is currently set to: {} has to be set to one of the following value ("cppsim", "rtlsim")""".format( mode ) ) def generate_params(self, model, path): """Function to generate parameters (i.e. weights and thresholds), is member function of HLSCustomOp class but has to be filled by every node.""" pass @abstractmethod def get_number_output_values(self): """Function to get the number of expected output values, is member function of HLSCustomOp class but has to be filled by every node.""" pass @abstractmethod def global_includes(self): """Function to set the global includes for c++ code that has to be generated for cppsim or rtlsim, is member function of HLSCustomOp class but has to be filled by every node.""" pass @abstractmethod def defines(self, var): """Function to set the define commands for c++ code that has to be generated for cppsim or rtlsim, is member function of HLSCustomOp class but has to be filled by every node. var: makes it possible to reuse the function for different c++ code generation. I.e. if set to "ipgen" in StreamingFCLayer_Batch additional PRAGMA defines are added.""" pass @abstractmethod def read_npy_data(self): """Function to generate the commands for reading data from .npy file in c++, is member function of HLSCustomOp class but has to be filled by every node.""" pass @abstractmethod def strm_decl(self): """Function to generate the commands for the stream declaration in c++, is member function of HLSCustomOp class but has to be filled by every node.""" pass @abstractmethod def docompute(self): """Function to generate the commands for the computational part of the c++ code, is member function of HLSCustomOp class but has to be filled by every node.""" pass @abstractmethod def dataoutstrm(self): """Function to generate the commands for reading out data from c++ and convert into npy format, is member function of HLSCustomOp class but has to be filled by every node.""" pass @abstractmethod def save_as_npy(self): """Function to generate the commands for saving data in .npy file in c++, is member function of HLSCustomOp class but has to be filled by every node.""" pass @abstractmethod def blackboxfunction(self): """Function to generate a blackbock function in c++ from which an IP block will be generated, is member function of HLSCustomOp class but has to be filled by every node.""" pass @abstractmethod def pragmas(self): """Function to generate the pragma commands in c++, is member function of HLSCustomOp class but has to be filled by every node.""" pass def get_normal_input_shape(self): """Returns normal input shape if implemented.""" raise Exception("get_normal_input_shape not implemented for this op") def get_normal_output_shape(self): """Returns folded output shape if implemented.""" raise Exception("get_normal_output_shape not implemented for this op") def get_folded_input_shape(self): """Returns folded input shape (according to synapse folding), if implemented.""" raise Exception("get_folded_input_shape not implemented for this op") def get_folded_output_shape(self): """Returns folded output shape (according to neuron folding), if implemented.""" raise Exception("get_folded_output_shape not implemented for this op") def get_instream_width(self): """Returns input stream width, if implemented.""" raise Exception("get_instream_width not implemented for this op") def get_outstream_width(self): """Returns output stream width, if implemented.""" raise Exception("get_outstream_width not implemented for this op") def get_instream_width_padded(self): """Returns input stream width padded to a multiple of 8. This is required by the AXI Stream spec.""" in_width = self.get_instream_width() return roundup_to_integer_multiple(in_width, 8) def get_outstream_width_padded(self): """Returns output stream width padded to a multiple of 8. This is required by the AXI Stream spec.""" out_width = self.get_outstream_width() return roundup_to_integer_multiple(out_width, 8) def get_ap_int_max_w(self): "Return the maximum width of any ap_int used in this module." instream = self.get_instream_width() outstream = self.get_outstream_width() return max([instream, outstream])
40.247863
89
0.640136
5c5cce6d9adaa4bcb55dbe5ec319111ae9b1ef18
2,940
py
Python
pymanopt/tools/autodiff/_tensorflow.py
Nehoroshiy/pymanopt
e0d45b6299c9e5fee21b2780954db6045afb878b
[ "BSD-3-Clause" ]
1
2021-11-08T11:30:49.000Z
2021-11-08T11:30:49.000Z
pymanopt/tools/autodiff/_tensorflow.py
thatdeep/pymanopt
e0d45b6299c9e5fee21b2780954db6045afb878b
[ "BSD-3-Clause" ]
null
null
null
pymanopt/tools/autodiff/_tensorflow.py
thatdeep/pymanopt
e0d45b6299c9e5fee21b2780954db6045afb878b
[ "BSD-3-Clause" ]
null
null
null
""" Module containing functions to differentiate functions using tensorflow. """ try: import tensorflow as tf from tensorflow.python.ops.gradients import _hessian_vector_product except ImportError: tf = None from warnings import warn from ._backend import Backend, assert_backend_available class TensorflowBackend(Backend): def __init__(self): if tf is not None: self._session = tf.Session() def __str__(self): return "tensorflow" def is_available(self): return tf is not None @assert_backend_available def is_compatible(self, objective, argument): if isinstance(objective, tf.Tensor): if (argument is None or not isinstance(argument, tf.Variable) and not all([isinstance(arg, tf.Variable) for arg in argument])): raise ValueError( "Tensorflow backend requires an argument (or sequence of " "arguments) with respect to which compilation is to be " "carried out") return True return False @assert_backend_available def compile_function(self, objective, argument): if not isinstance(argument, list): def func(x): feed_dict = {argument: x} return self._session.run(objective, feed_dict) else: def func(x): feed_dict = {i: d for i, d in zip(argument, x)} return self._session.run(objective, feed_dict) return func @assert_backend_available def compute_gradient(self, objective, argument): """ Compute the gradient of 'objective' and return as a function. """ tfgrad = tf.gradients(objective, argument) if not isinstance(argument, list): def grad(x): feed_dict = {argument: x} return self._session.run(tfgrad[0], feed_dict) else: def grad(x): feed_dict = {i: d for i, d in zip(argument, x)} return self._session.run(tfgrad, feed_dict) return grad @assert_backend_available def compute_hessian(self, objective, argument): if not isinstance(argument, list): argA = tf.Variable(tf.zeros(tf.shape(argument))) tfhess = _hessian_vector_product(objective, [argument], [argA]) def hess(x, a): feed_dict = {argument: x, argA: a} return self._session.run(tfhess[0], feed_dict) else: argA = [tf.Variable(tf.zeros(tf.shape(arg))) for arg in argument] tfhess = _hessian_vector_product(objective, argument, argA) def hess(x, a): feed_dict = {i: d for i, d in zip(argument+argA, x+a)} return self._session.run(tfhess, feed_dict) return hess
30.625
78
0.584354
5581cd3dd132efe9cc3a64ad838cd98d5d601143
461
py
Python
data/scripts/templates/object/weapon/melee/polearm/shared_lance_lightsaber_01.py
obi-two/GameServer
7d37024e2291a97d49522610cd8f1dbe5666afc2
[ "MIT" ]
20
2015-02-23T15:11:56.000Z
2022-03-18T20:56:48.000Z
data/scripts/templates/object/weapon/melee/polearm/shared_lance_lightsaber_01.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
null
null
null
data/scripts/templates/object/weapon/melee/polearm/shared_lance_lightsaber_01.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
20
2015-04-04T16:35:59.000Z
2022-03-24T14:54:37.000Z
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Weapon() result.template = "object/weapon/melee/polearm/shared_lance_lightsaber_01.iff" result.attribute_template_id = 10 result.stfName("weapon_name","lance_lightsaber") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
27.117647
79
0.735358
5caaa49ed3c941c1fa8c44b84c358ec2f1b92d4b
882
py
Python
BuildSimHubAPI/measures/__init__.py
mostaphaRoudsari/buildsimhub_python_api
4a562a678fc2f9671f9fc62faae46b79c448a922
[ "MIT" ]
null
null
null
BuildSimHubAPI/measures/__init__.py
mostaphaRoudsari/buildsimhub_python_api
4a562a678fc2f9671f9fc62faae46b79c448a922
[ "MIT" ]
null
null
null
BuildSimHubAPI/measures/__init__.py
mostaphaRoudsari/buildsimhub_python_api
4a562a678fc2f9671f9fc62faae46b79c448a922
[ "MIT" ]
null
null
null
# not needed to import this module - hide it from the public # from BuildSimHubAPI.actions import ModelAction from .window_uvalue import WindowUValue from .window_shgc import WindowSHGC from .window_wall_ratio import WindowWallRatio from .wall_rvalue import WallRValue from .roof_rvalue import RoofRValue from .light_lpd import LightLPD from .infiltration import Infiltration from .occupancy_sensor import OccupancySensor from .daylit_sensor import DaylightingSensor from .cooling_all_cop import CoolingCOP from .cooling_coil_cop import CoolingCoilCOP from .cooling_chiller_cop import CoolingChillerCOP from .heating_efficiency import HeatingEfficiency from .window_wall_ratio_south import WindowWallRatioSouth from .window_wall_ratio_west import WindowWallRatioWest from .window_wall_ratio_east import WindowWallRatioEast from .window_wall_ratio_north import WindowWallRatioNorth
42
60
0.877551
c6b4d06d651a50061aae3c78a2f4d1b256b0dbfc
2,313
py
Python
utils/data_generator.py
nodamu/Car-Ticketing-Project
a1e38d6d0c844b03b62b6ed07aabc18934cc83f5
[ "Linux-OpenIB" ]
29
2019-07-22T01:57:42.000Z
2022-03-31T15:51:42.000Z
utils/data_generator.py
nodamu/Car-Ticketing-Project
a1e38d6d0c844b03b62b6ed07aabc18934cc83f5
[ "Linux-OpenIB" ]
6
2020-02-13T06:11:55.000Z
2021-06-17T18:13:08.000Z
utils/data_generator.py
nodamu/Car-Ticketing-Project
a1e38d6d0c844b03b62b6ed07aabc18934cc83f5
[ "Linux-OpenIB" ]
17
2019-09-19T09:56:16.000Z
2021-06-12T22:42:30.000Z
import numpy as np from threading import Semaphore, Thread from time import sleep from random import choice, randint from pdb import set_trace as pause class DataGenerator(object): def __init__( self, data, process_data_item_func, xshape, yshape, \ data_item_selector = choice, \ nthreads = 2, \ pool_size = 1000, \ min_nsamples = 1, \ dtype = 'single' ): assert pool_size >= min_nsamples, \ 'Min. samples must be equal or less than pool_size' assert min_nsamples > 0 and pool_size > 0, \ 'Min. samples and pool size must be positive non-zero numbers' self._data = data self._process_data_item = process_data_item_func self._data_item_selector = data_item_selector self._xshape = xshape self._yshape = yshape self._nthreads = nthreads self._pool_size = pool_size self._min_nsamples = min_nsamples self._dtype = dtype self._count = 0 self._stop = False self._threads = [] self._sem = Semaphore() self._X, self._Y = self._get_buffers(self._pool_size) def _get_buffers(self,N): X = np.empty((N,) + self._xshape, dtype=self._dtype) Y = np.empty((N,) + self._yshape, dtype=self._dtype) return X,Y def _compute_sample(self): d = self._data_item_selector(self._data) return self._process_data_item(d) def _insert_data(self,x,y): self._sem.acquire() if self._count < self._pool_size: self._X[self._count] = x self._Y[self._count] = y self._count += 1 else: idx = randint(0,self._pool_size-1) self._X[idx] = x self._Y[idx] = y self._sem.release() def _run(self): while True: x,y = self._compute_sample() self._insert_data(x,y) if self._stop: break def stop(self): self._stop = True for thread in self._threads: thread.join() def start(self): self._stop = False self._threads = [Thread(target=self._run) for n in range(self._nthreads)] for thread in self._threads: thread.setDaemon(True) thread.start() def get_batch(self,N): # Wait until the buffer was filled with the minimum # number of samples while self._count < self._min_nsamples: sleep(.1) X,Y = self._get_buffers(N) self._sem.acquire() for i in range(N): idx = randint(0,self._count-1) X[i] = self._X[idx] Y[i] = self._Y[idx] self._sem.release() return X,Y
22.90099
75
0.68396
744823f4de74587e3be2b669095496c9f29d0169
315
py
Python
tests/test_linear/test_variational_regression.py
ctgk/bayesian_playground
70c63910472a29e15a4fb98e30a34b9ee155152e
[ "MIT" ]
1
2020-10-17T19:09:32.000Z
2020-10-17T19:09:32.000Z
tests/test_linear/test_variational_regression.py
ctgk/bayesian
70c63910472a29e15a4fb98e30a34b9ee155152e
[ "MIT" ]
null
null
null
tests/test_linear/test_variational_regression.py
ctgk/bayesian
70c63910472a29e15a4fb98e30a34b9ee155152e
[ "MIT" ]
null
null
null
import numpy as np import pytest from bayesian.linear import VariationalRegression def test_fit(): model = VariationalRegression(1, 1, 100) model.fit([-1, 1], [-1, 1]) assert np.allclose(model.predict([-1, 1])[0], [-1, 1], rtol=0., atol=1e-2) if __name__ == "__main__": pytest.main([__file__])
21
78
0.657143
5a1802a406647a3627f8e217b02765c64fb0fdd1
336
py
Python
python3.7/app/main.py
brdhunga/uvicorn-gunicorn-fastapi-docker
a7ff8f5fd3e5b9a8a76ce74a7b1c03071a7dc8b1
[ "MIT" ]
null
null
null
python3.7/app/main.py
brdhunga/uvicorn-gunicorn-fastapi-docker
a7ff8f5fd3e5b9a8a76ce74a7b1c03071a7dc8b1
[ "MIT" ]
null
null
null
python3.7/app/main.py
brdhunga/uvicorn-gunicorn-fastapi-docker
a7ff8f5fd3e5b9a8a76ce74a7b1c03071a7dc8b1
[ "MIT" ]
null
null
null
import sys import asyncio from fastapi import FastAPI version = f"{sys.version_info.major}.{sys.version_info.minor}" app = FastAPI() @app.get("/") async def read_root(): await asyncio.sleep(7) message = f"Hello world! From FastAPI running on Uvicorn with Gunicorn. Using Python {version}" return {"message": message}
18.666667
99
0.714286
86c0dd855cdc44058c3fbd7d4b0289900fa9f117
5,514
py
Python
ocdskingfisher/store.py
odscjames/rhs-alpha
3ad01aea09e4768210d16dea5afdec45adb80d89
[ "BSD-3-Clause" ]
null
null
null
ocdskingfisher/store.py
odscjames/rhs-alpha
3ad01aea09e4768210d16dea5afdec45adb80d89
[ "BSD-3-Clause" ]
null
null
null
ocdskingfisher/store.py
odscjames/rhs-alpha
3ad01aea09e4768210d16dea5afdec45adb80d89
[ "BSD-3-Clause" ]
null
null
null
import json from ocdskingfisher.database import DatabaseStore class Store: def __init__(self, config, database): self.config = config self.collection_id = None self.database = database def load_collection(self, collection_source, collection_data_version, collection_sample): self.collection_id = self.database.get_or_create_collection_id(collection_source, collection_data_version, collection_sample) def store_file_from_local(self, filename, url, data_type, encoding, local_filename): if data_type == 'release_package_json_lines' or data_type == 'record_package_json_lines': try: with open(local_filename, encoding=encoding) as f: number = 0 raw_data = f.readline() while raw_data: self.store_file_item(filename, url, data_type, json.loads(raw_data), number) raw_data = f.readline() number += 1 except Exception as e: raise e # TODO Store error in database and make nice HTTP response! else: try: with open(local_filename, encoding=encoding) as f: data = json.load(f) except Exception as e: raise e # TODO Store error in database and make nice HTTP response! objects_list = [] if data_type == 'record_package_list_in_results': objects_list.extend(data['results']) elif data_type == 'release_package_list_in_results': objects_list.extend(data['results']) elif data_type == 'record_package_list' or data_type == 'release_package_list': objects_list.extend(data) else: objects_list.append(data) number = 0 for item_data in objects_list: try: self.store_file_item(filename, url, data_type, item_data, number) number += 1 except Exception as e: raise e # TODO Store error in database and make nice HTTP response! self.database.mark_collection_file_store_done(self.collection_id, filename) def store_file_item_from_local(self, filename, url, data_type, encoding, number, local_filename): try: with open(local_filename, encoding=encoding) as f: data = json.load(f) except Exception as e: raise e # TODO Store error in database and make nice HTTP response! try: self.store_file_item(filename, url, data_type, data, number) except Exception as e: raise e # TODO Store error in database and make nice HTTP response! def store_file_item(self, filename, url, data_type, json_data, number): if not isinstance(json_data, dict): raise Exception("Can not process data as JSON is not an object") with DatabaseStore(database=self.database, collection_id=self.collection_id, file_name=filename, number=number) as store: if data_type == 'release' or data_type == 'record': data_list = [json_data] elif data_type == 'release_package' or \ data_type == 'release_package_json_lines' or \ data_type == 'release_package_list_in_results' or \ data_type == 'release_package_list': if 'releases' not in json_data: if data_type == 'release_package_json_lines' and \ self.ignore_release_package_json_lines_missing_releases_error: return raise Exception("Release list not found") elif not isinstance(json_data['releases'], list): raise Exception("Release list which is not a list found") data_list = json_data['releases'] elif data_type == 'record_package' or \ data_type == 'record_package_json_lines' or \ data_type == 'record_package_list_in_results' or \ data_type == 'record_package_list': if 'records' not in json_data: raise Exception("Record list not found") elif not isinstance(json_data['records'], list): raise Exception("Record list which is not a list found") data_list = json_data['records'] else: raise Exception("data_type not a known type") package_data = {} if not data_type == 'release': for key, value in json_data.items(): if key not in ('releases', 'records'): package_data[key] = value for row in data_list: if not isinstance(row, dict): raise Exception("Row in data is not a object") if data_type == 'record' or \ data_type == 'record_package' or \ data_type == 'record_package_json_lines' or \ data_type == 'record_package_list_in_results' or \ data_type == 'record_package_list': store.insert_record(row, package_data) else: store.insert_release(row, package_data)
42.415385
133
0.566739
5c9af6a2a5eca3c4b85b521e56c4bc47addeefae
3,703
py
Python
{{cookiecutter.project_slug}}/{{cookiecutter.project_slug}}/handlers/auth/recovery.py
thecoderstudio/cookiecutter-pyramid-api
b3122c0d98be7179bcf726c6527096c0327d7bb7
[ "MIT" ]
null
null
null
{{cookiecutter.project_slug}}/{{cookiecutter.project_slug}}/handlers/auth/recovery.py
thecoderstudio/cookiecutter-pyramid-api
b3122c0d98be7179bcf726c6527096c0327d7bb7
[ "MIT" ]
1
2021-12-17T15:10:21.000Z
2021-12-17T15:10:21.000Z
{{cookiecutter.project_slug}}/{{cookiecutter.project_slug}}/handlers/auth/recovery.py
thecoderstudio/cookiecutter-pyramid-api
b3122c0d98be7179bcf726c6527096c0327d7bb7
[ "MIT" ]
1
2021-03-01T14:27:10.000Z
2021-03-01T14:27:10.000Z
import random import time from secrets import token_hex from pyramid.httpexceptions import HTTPCreated from pyramid.view import view_defaults from sqlalchemy.orm.exc import NoResultFound from {{cookiecutter.project_slug}}.handlers import view_config from {{cookiecutter.project_slug}}.handlers.auth import LoginHandler from {{cookiecutter.project_slug}}.lib.decorators import validate from {{cookiecutter.project_slug}}.lib.factories.auth.recovery import AccountRecoveryFactory from {{cookiecutter.project_slug}}.lib.hash import hash_plaintext from {{cookiecutter.project_slug}}.lib.middleware.sendgrid import SendGridClient from {{cookiecutter.project_slug}}.lib.schemas.auth import (AccountRecoveryLoginSchema, AccountRecoverySchema) from {{cookiecutter.project_slug}}.lib.security.auth import AuthWithRecoveryTokenManager from {{cookiecutter.project_slug}}.models import save from {{cookiecutter.project_slug}}.models.security.recovery_token import RecoveryToken from {{cookiecutter.project_slug}}.models.user import get_one_user_by_email_address, User NUMBER_OF_TOKEN_BYTES = 3 TOKEN_TTL_IN_SECONDS = 7200 MIN_TIME_PADDING_IN_DECISECONDS = 2 MAX_TIME_PADDING_IN_DECISECONDS = 8 @view_defaults( containment=AccountRecoveryFactory, context=AccountRecoveryFactory, renderer='json' ) class AccountRecoveryHandler(LoginHandler): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.auth_manager = AuthWithRecoveryTokenManager(self.request) @validate(AccountRecoverySchema()) @view_config( path_hints=['/auth/recover-account'], request_schema_class=AccountRecoverySchema, permission='recovery.request_token', tags=['authentication', 'account recovery'], request_method='POST', public_hint=True ) def request_account_recovery_token(self, request_data): response = HTTPCreated() token = token_hex(NUMBER_OF_TOKEN_BYTES) email_address = request_data['email_address'] self._prevent_user_enumeration() try: recipient = get_one_user_by_email_address(email_address) self._invalidate_any_current_recovery_token(recipient) self._save_recovery_token(recipient, token) SendGridClient().send_account_recovery_email(email_address, token) except NoResultFound: # To avoid user enumeration we don't indicate failure. pass raise response @staticmethod def _prevent_user_enumeration(): time.sleep(random.randint( MIN_TIME_PADDING_IN_DECISECONDS, MAX_TIME_PADDING_IN_DECISECONDS ) / 10) @staticmethod def _invalidate_any_current_recovery_token(user): try: user.active_recovery_token.invalidate() except AttributeError: pass @staticmethod def _save_recovery_token(for_user: User, token: str): token_hash, token_salt = hash_plaintext(token) recovery_token = RecoveryToken( token_hash=token_hash, token_salt=token_salt, for_user=for_user ) save(recovery_token) @validate(AccountRecoveryLoginSchema()) @view_config( path_hints=['/auth/recover-account/login'], request_schema_class=AccountRecoveryLoginSchema, permission='recovery.login', request_method='POST', successful_response_code=200, tags=['authentication', 'account recovery'], name='login', public_hint=True ) def login(self, login_data): self.auth_manager.login(login_data) raise self.request.response
35.951456
92
0.719147
c4f2528af9c2d70ff5fd86fa2bfab554e730e0d0
236
py
Python
pysrc/__init__.py
uuosio/uuosk
505d93ebac9e158bf96c2420a7dc7ca84c73eea4
[ "MIT" ]
5
2021-03-01T10:46:32.000Z
2022-02-25T05:28:15.000Z
pysrc/__init__.py
uuosio/uuoskit
505d93ebac9e158bf96c2420a7dc7ca84c73eea4
[ "MIT" ]
2
2021-06-13T18:12:52.000Z
2022-02-26T02:59:26.000Z
pysrc/__init__.py
uuosio/uuoskit
505d93ebac9e158bf96c2420a7dc7ca84c73eea4
[ "MIT" ]
null
null
null
import os import sys from .http_client import HttpClient from .rpc_interface import RPCInterface, WalletClient from .chainapi_sync import ChainApi from uuoskit import _uuoskit __version__='1.0.4' _uuoskit.init() uuosapi = ChainApi()
18.153846
53
0.813559
69105b40ac3431c58d9711f315cf55dd4f4b8a35
29
py
Python
moyu_engine/config/__init__.py
MoYuStudio/MoYuEngine
7d9ab5c9cb268de0071e798a3288f0bbb651795e
[ "Apache-2.0" ]
2
2022-03-22T02:32:34.000Z
2022-03-22T02:32:43.000Z
moyu_engine/config/__init__.py
MoYuStudio/MoYuEngine
7d9ab5c9cb268de0071e798a3288f0bbb651795e
[ "Apache-2.0" ]
null
null
null
moyu_engine/config/__init__.py
MoYuStudio/MoYuEngine
7d9ab5c9cb268de0071e798a3288f0bbb651795e
[ "Apache-2.0" ]
null
null
null
from .global_config import *
14.5
28
0.793103
bf906b708f2a907d0ce4a0405ee3587df52b5352
2,431
py
Python
runner/ws_ingest/subscribe.py
abhid/helix
127d445a7a79ffc0c8a2a882784078bfa2b43e72
[ "BSD-3-Clause-Clear" ]
null
null
null
runner/ws_ingest/subscribe.py
abhid/helix
127d445a7a79ffc0c8a2a882784078bfa2b43e72
[ "BSD-3-Clause-Clear" ]
13
2020-02-29T06:07:34.000Z
2022-02-26T20:15:48.000Z
runner/ws_ingest/subscribe.py
abhid/helix
127d445a7a79ffc0c8a2a882784078bfa2b43e72
[ "BSD-3-Clause-Clear" ]
null
null
null
import asyncio from asyncio.tasks import FIRST_COMPLETED import ssl import json import sys import time from websockets import ConnectionClosed from ws_stomp import WebSocketStomp import redis import argparse def key_enter_callback(event): sys.stdin.readline() event.set() async def future_read_message(ws, future): try: message = await ws.stomp_read_message() future.set_result(message) except ConnectionClosed: print('Websocket connection closed') async def subscribe_loop(nodename, secret, ws_url, pubsub_node, topic): ws = WebSocketStomp(ws_url, nodename, secret, ssl._create_unverified_context()) r = redis.Redis(host='localhost', port=6379, db=0) await ws.connect() await ws.stomp_connect(pubsub_node) await ws.stomp_subscribe(topic) # setup keyboard callback stop_event = asyncio.Event() asyncio.get_event_loop().add_reader(sys.stdin, key_enter_callback, stop_event) print("press <enter> to disconnect...") while True: future = asyncio.Future() future_read = future_read_message(ws, future) await asyncio.wait([stop_event.wait(), future_read], return_when=FIRST_COMPLETED) if not stop_event.is_set(): message = json.loads(future.result()) r.rpush("stomp:"+topic, json.dumps(message)) # [print(i["state"] + " | " + i["userName"]) for i in message["sessions"]] else: await ws.stomp_disconnect('123') # wait for receipt await asyncio.sleep(3) await ws.disconnect() break if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-n', '--nodename', help='pxGrid controller node name') parser.add_argument('-w', '--webservice', help='pxGrid webservice path') parser.add_argument('-t', '--topic', help='webservice topic') parser.add_argument('-u', '--username', help='Client node name') parser.add_argument('-p', '--password', help='Password (optional)') config = parser.parse_args() asyncio.get_event_loop().run_until_complete(subscribe_loop(config.username, config.password, config.webservice, config.nodename, config.topic)) # asyncio.get_event_loop().run_until_complete(subscribe_loop("isebox", "MDDqnieTIgzwAoq8", "wss://e-tddc-ise2-psn4.medcampus.org:8910/pxgrid/ise/pubsub", "e-tddc-ise2-psn4.medcampus.org", "/topic/com.cisco.ise.session"))
41.20339
224
0.69313
0f5c21d2ac525e624337db26a330bed69c73e03b
1,279
py
Python
makelink.py
murattatar/Steemit-Manuel-Search-Tool
13d856fa175f4388d6a06d4666ebcb715d7745ff
[ "MIT" ]
null
null
null
makelink.py
murattatar/Steemit-Manuel-Search-Tool
13d856fa175f4388d6a06d4666ebcb715d7745ff
[ "MIT" ]
null
null
null
makelink.py
murattatar/Steemit-Manuel-Search-Tool
13d856fa175f4388d6a06d4666ebcb715d7745ff
[ "MIT" ]
null
null
null
######################################## ## Month names, November 2017 by Murat Tatar ## Baglanti fonksiyonu: https://forum.ubuntu-tr.net/index.php?topic=37782.msg453829#msg453829 ######################################## def MakeLink(word): list = {"ı": "i", "I": "i", "Ç": "c", "ç": "c", " ": "-", "ş": "s", "Ş": "s", "Ğ": "g", "ğ": "g", "Ü": "u", "ü": "u", "Ö": "o", "ö": "o"} word = word.encode('utf8', 'replace') for ltr in list: word = word.replace(ltr, list[ltr]) return word.lower() def TurkceAy(ingAy): if ingAy == "January": trAy=u"Ocak" elif ingAy == "February": trAy=u"Şubat" elif ingAy == "March": trAy=u"Mart" elif ingAy == "April": trAy=u"Nisan" elif ingAy == "May": trAy=u"Mayıs" elif ingAy == "June": trAy=u"Haziran" elif ingAy == "July": trAy=u"Temmuz" elif ingAy == "August": trAy=u"Ağustos" elif ingAy == "September": trAy=u"Eylül" elif ingAy == "October": trAy=u"Ekim" elif ingAy == "November": trAy=u"Kasım" elif ingAy == "December": trAy=u"Aralık" return trAy
26.102041
94
0.436278
0c51dcf3fdb890eda3cc107a0acbbbc652b1ebc0
6,051
py
Python
gluoncv/model_zoo/faster_rcnn/resnet50_v2a.py
leezu/gluon-cv
03ec37c7813da1845f7f287bba0452a7b95a3fa4
[ "Apache-2.0" ]
1
2019-01-26T23:55:59.000Z
2019-01-26T23:55:59.000Z
gluoncv/model_zoo/faster_rcnn/resnet50_v2a.py
leezu/gluon-cv
03ec37c7813da1845f7f287bba0452a7b95a3fa4
[ "Apache-2.0" ]
null
null
null
gluoncv/model_zoo/faster_rcnn/resnet50_v2a.py
leezu/gluon-cv
03ec37c7813da1845f7f287bba0452a7b95a3fa4
[ "Apache-2.0" ]
null
null
null
# pylint: disable=arguments-differ """Resnet50 v2a model which take original image with zero mean and uniform std.""" import mxnet as mx from mxnet.gluon import nn, HybridBlock __all__ = ['resnet50_v2a'] def _conv3x3(channels, stride, in_channels): """add conv 3x3 block.""" return nn.Conv2D(channels, kernel_size=3, strides=stride, padding=1, use_bias=False, in_channels=in_channels) class BottleneckV2(HybridBlock): """Bottleneck V2 for internal use.""" def __init__(self, channels, stride, downsample=False, in_channels=0, **kwargs): super(BottleneckV2, self).__init__(**kwargs) self.bn1 = nn.BatchNorm(epsilon=2e-5, use_global_stats=True) self.conv1 = nn.Conv2D(channels // 4, kernel_size=1, strides=1, use_bias=False) self.bn2 = nn.BatchNorm(epsilon=2e-5, use_global_stats=True) self.conv2 = _conv3x3(channels // 4, stride, channels // 4) self.bn3 = nn.BatchNorm(epsilon=2e-5, use_global_stats=True) self.conv3 = nn.Conv2D(channels, kernel_size=1, strides=1, use_bias=False) if downsample: self.downsample = nn.Conv2D(channels, 1, stride, use_bias=False, in_channels=in_channels) else: self.downsample = None def hybrid_forward(self, F, x): """Custom forward.""" residual = x x = self.bn1(x) x = F.Activation(x, act_type='relu') if self.downsample: residual = self.downsample(x) x = self.conv1(x) x = self.bn2(x) x = F.Activation(x, act_type='relu') x = self.conv2(x) x = self.bn3(x) x = F.Activation(x, act_type='relu') x = self.conv3(x) return x + residual class Rescale(HybridBlock): """Rescale layer/block that restore the original by the default mean [0.485, 0.456, 0.406] and std [0.229, 0.224, 0.225]. """ def __init__(self, **kwargs): super(Rescale, self).__init__(**kwargs) with self.name_scope(): init_scale = mx.nd.array([0.229, 0.224, 0.225]).reshape((1, 3, 1, 1)) * 255 self.init_scale = self.params.get_constant('init_scale', init_scale) init_mean = mx.nd.array([0.485, 0.456, 0.406]).reshape((1, 3, 1, 1)) * 255 self.init_mean = self.params.get_constant('init_mean', init_mean) def hybrid_forward(self, F, x, init_scale, init_mean): """Restore original image scale.""" x = F.broadcast_mul(x, init_scale) # restore std x = F.broadcast_add(x, init_mean) # restore mean return x class ResNet50V2(HybridBlock): """Resnet v2(a) for Faster-RCNN. Please ignore this if you are looking for model for other tasks. """ def __init__(self, **kwargs): super(ResNet50V2, self).__init__(**kwargs) with self.name_scope(): self.rescale = nn.HybridSequential(prefix='') self.rescale.add(Rescale(prefix='')) self.layer0 = nn.HybridSequential(prefix='') self.layer0.add(nn.BatchNorm(scale=False, epsilon=2e-5, use_global_stats=True)) self.layer0.add(nn.Conv2D(64, 7, 2, 3, use_bias=False)) self.layer0.add(nn.BatchNorm(epsilon=2e-5, use_global_stats=True)) self.layer0.add(nn.Activation('relu')) self.layer0.add(nn.MaxPool2D(3, 2, 1)) self.layer1 = self._make_layer(stage_index=1, layers=3, in_channels=64, channels=256, stride=1) self.layer2 = self._make_layer(stage_index=2, layers=4, in_channels=256, channels=512, stride=2) self.layer3 = self._make_layer(stage_index=3, layers=6, in_channels=512, channels=1024, stride=2) self.layer4 = self._make_layer(stage_index=4, layers=3, in_channels=1024, channels=2048, stride=2) self.layer4.add(nn.BatchNorm(epsilon=2e-5, use_global_stats=True)) self.layer4.add(nn.Activation('relu')) # self.layer4.add(nn.GlobalAvgPool2D()) # self.layer4.add(nn.Flatten()) def _make_layer(self, stage_index, layers, channels, stride, in_channels=0): layer = nn.HybridSequential(prefix='stage%d_' % stage_index) with layer.name_scope(): layer.add(BottleneckV2(channels, stride, channels != in_channels, in_channels=in_channels, prefix='')) for _ in range(layers - 1): layer.add(BottleneckV2(channels, 1, False, in_channels=channels, prefix='')) return layer # pylint: disable=unused-argument def hybrid_forward(self, F, x): """Custom forward.""" x = self.rescale(x) x = self.layer0(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x def resnet50_v2a(pretrained=False, root='~/.mxnet/models', ctx=mx.cpu(0), **kwargs): """Constructs a ResNet50-v2a model. Please ignore this if you are looking for model for other tasks. Parameters ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.mxnet/models' Location for keeping the model parameters. ctx : Context, default mx.cpu(0) The context in which to load the pretrained weights. norm_layer : object Normalization layer used in backbone network (default: :class:`mxnet.gluon.nn.BatchNorm`; """ model = ResNet50V2(prefix='', **kwargs) if pretrained: from ..model_store import get_model_file model.load_params(get_model_file('resnet%d_v%da'%(50, 2), root=root), ctx=ctx, allow_missing=True) for v in model.collect_params(select='init_scale|init_mean').values(): v.initialize(force_reinit=True, ctx=ctx) return model
42.020833
97
0.603867
0a58f62a5b300a4a0785b7579f3dade4c6724d5f
14,144
py
Python
delta_cli.py
Yashwanthdantanoor1/SER516_Project-1
ca6213c20d5eb219b745eded4fa6e5ac54412826
[ "MIT" ]
1
2021-02-24T14:14:28.000Z
2021-02-24T14:14:28.000Z
delta_cli.py
Yashwanthdantanoor1/SER516_Project-1
ca6213c20d5eb219b745eded4fa6e5ac54412826
[ "MIT" ]
3
2022-02-25T05:02:59.000Z
2022-03-06T06:02:40.000Z
delta_cli.py
Yashwanthdantanoor1/SER516_Project-1
ca6213c20d5eb219b745eded4fa6e5ac54412826
[ "MIT" ]
2
2021-03-04T10:29:58.000Z
2022-01-31T06:33:19.000Z
import argparse import json import requests import time from cmd import Cmd from fastapi import status from pathlib import Path class MyPrompt(Cmd): prompt = 'planning_poker> ' intro = "Welcome to a nice game of Planning Poker!\nType ? to list commands" default_config_params = {"max_retries": 5, "show_timeout": 1, "url": "http://localhost:8000"} default_keys_set = set(default_config_params.keys()) def __init__(self, **config_params): super().__init__() self.username = None keys_set = set(config_params.keys()) common_config_keys = self.default_keys_set.intersection(keys_set) difference_config_keys = self.default_keys_set.difference(keys_set) if len(difference_config_keys) == 0: for config_key, config_value in config_params.items(): setattr(self, config_key, config_value) else: if len(difference_config_keys) < len(self.default_keys_set): print("Not all parameters found in configuration file.") for config_key in common_config_keys: setattr(self, config_key, config_params[config_key]) print(f"Using default value for {difference_config_keys}") for config_key in difference_config_keys: setattr(self, config_key, self.default_config_params[config_key]) def default(self, inp): """ You can also use x or q to exit the game. All commands that are not implemented will just be printed with a notification message. """ if inp == 'x' or inp == 'q': return self.do_exit() print(f"Haven't found this command: {inp}") @staticmethod def print_error_response(response): if response.status_code == status.HTTP_400_BAD_REQUEST: print(f"{json.loads(response.text)['detail']}") elif response.status_code == status.HTTP_412_PRECONDITION_FAILED: print(f"{json.loads(response.text)['detail']}") elif response.status_code == status.HTTP_422_UNPROCESSABLE_ENTITY: message = json.loads(response.text)['detail'][0]['msg'] print(f"{message.capitalize()}") else: print(f"{response.text}") @staticmethod def print_issue(response): crt_issue_title = response['result_message']['title'] crt_issue_description = response['result_message']['description'] print(f"'{crt_issue_title}' is the current issue.") if len(crt_issue_description) > 0: print(f"{crt_issue_description}") @staticmethod def parse_report(report): for vote_value, vote_details in report.items(): print(f"{vote_details['vote_count']} voted for {vote_value} " f"story points.\n" f"{json.dumps(vote_details['voters'], indent=4)}\n") def get_report(self, inp): current_status = 'pending' retry_count = 0 while current_status == 'pending' and retry_count < self.max_retries: response = self.send_request(method='get', route='/issue/show_results') if response.status_code == status.HTTP_200_OK: response_message = json.loads(response.text)['result_message'] current_status = response_message['status'] if current_status == 'done': self.parse_report(response_message['report']) else: current_status = 'error' self.print_error_response(response) retry_count += 1 time.sleep(self.show_timeout) def send_request(self, method, route, params=None, data=None): full_uri = ''.join([self.url, route]) response = requests.request(method=method, url=full_uri, params=params, json=data) return response def do_add_player(self, username): """ Add a player to the current game """ current_players = [] response = self.send_request(method='get', route='/user/show_all') if response.status_code == status.HTTP_200_OK: response_dict = json.loads(response.text) current_players = response_dict['result_message']['current_users'] else: self.print_error_response(response) if self.username and self.username in current_players: print(f"You already have a username in the current game: " f"{self.username}") else: crt_dict = { 'name': username } response = self.send_request(method='post', route='/user/add', data=crt_dict) if response.status_code == status.HTTP_200_OK: self.username = username print(f"Player {self.username} has been added to the current " f"game") else: self.print_error_response(response) def do_current_dealer(self, inp): """ Show current dealer """ response = self.send_request(method='get', route='/game/get_dealer') if response.status_code == status.HTTP_200_OK: response_dict = json.loads(response.text) print(f"Current dealer is " f"{response_dict['result_message']['current_dealer']}") else: self.print_error_response(response) def do_current_issue(self, inp): """ Show issue that players are voting on now """ response = self.send_request(method='get', route='/issue/current') if response.status_code == status.HTTP_200_OK: response_dict = json.loads(response.text) self.print_issue(response_dict) else: self.print_error_response(response) def do_current_players(self, inp): """ Show players that are registered for the current game """ response = self.send_request(method='get', route='/user/show_all') if response.status_code == status.HTTP_200_OK: response_dict = json.loads(response.text) current_users = response_dict['result_message']['current_users'] if len(current_users) == 0: print("Please add players to the game") else: print(f"Currently playing Planning Poker: " f"{json.dumps(current_users)}") else: self.print_error_response(response) def do_current_votes(self, inp): """ Show if all players voted or who still has to vote """ response = self.send_request(method='get', route='/issue/vote_status') if response.status_code == status.HTTP_200_OK: response_dict = json.loads(response.text) print(f"{response_dict['result_message']}") else: self.print_error_response(response) def do_exit(self): """ Command for exiting planning poker game """ crt_dict = { 'name': self.username } response = self.send_request(method='post', route='/user/exit', data=crt_dict) if response.status_code == status.HTTP_200_OK: response_dict = json.loads(response.text) print(f"{response_dict['result_message']['user_exit_status']}") else: self.print_error_response(response) print(f"Buh-bye, {self.username}! And in case I don't see you again, " f"good afternoon, good evening and good night!") return True def do_new_game(self, inp): """ Start new game """ crt_dict = { 'name': self.username } response = self.send_request(method='post', route='/game/new', data=crt_dict) if response.status_code == status.HTTP_200_OK: response_dict = json.loads(response.text) print(f"{response_dict['result_message']}") else: self.print_error_response(response) def do_next_issue(self, inp): """ Jump to next issue, if there is one (i.e. the current issue is the last one and we can go back to programming) """ crt_dict = { 'name': self.username } response = self.send_request(method='post', route='/issue/next', data=crt_dict) if response.status_code == status.HTTP_200_OK: response_dict = json.loads(response.text) self.print_issue(response_dict) else: self.print_error_response(response) def do_previous_issue(self, inp): """ Jump to previous issue, if there is one (i.e. we are not on the first issue) """ crt_dict = { 'name': self.username } response = self.send_request(method='post', route='/issue/previous', data=crt_dict) if response.status_code == status.HTTP_200_OK: response_dict = json.loads(response.text) self.print_issue(response_dict) else: self.print_error_response(response) def do_remove_player(self, username): """ Remove a player from the current game """ if len(username) < 4: print("Please use a more meaningful name") else: params_dict = { 'username': username } data_dict = { 'name': self.username } response = self.send_request(method='post', route='/user/remove', params=params_dict, data=data_dict) if response.status_code == status.HTTP_200_OK: response_dict = json.loads(response.text) print(f"{response_dict['result_message']}") else: self.print_error_response(response) def do_reset_votes(self, inp): """ Reset votes on current issue """ crt_dict = { 'name': self.username } response = self.send_request(method='post', route='/issue/votes_reset', data=crt_dict) if response.status_code == status.HTTP_200_OK: response_dict = json.loads(response.text) print(f"{response_dict['result_message']}") else: self.print_error_response(response) def do_show_report(self, inp): """ Show vote report for current issue """ self.get_report(inp) def do_user_count(self, inp): """ Show how many users are registered for the current game """ response = self.send_request(method='get', route='/user/count') if response.status_code == status.HTTP_200_OK: response_dict = json.loads(response.text) user_count = response_dict['result_message']['user_count'] if user_count == 1: verb = 'is' else: verb = 'are' print(f"Currently, there {verb} {user_count} registered " f"players") else: self.print_error_response(response) def do_vote_issue(self, vote_value): """ Vote on the current issue with the registered user here """ crt_dict = { 'name': self.username, 'vote_value': vote_value } response = self.send_request(method='put', route='/issue/vote', data=crt_dict) if response.status_code == status.HTTP_200_OK: response_dict = json.loads(response.text) print(f"{response_dict['result_message']}") else: self.print_error_response(response) def do_voting_system(self, inp): """ Show voting system for the current game """ response = self.send_request(method='get', route='/game/voting_system') if response.status_code == status.HTTP_200_OK: response_dict = json.loads(response.text) print(f"{response_dict['result_message']}") else: self.print_error_response(response) do_EOF = do_exit if __name__ == '__main__': crt_config_params = {} config_path = Path('./configs/cli_config.json') parser = argparse.ArgumentParser() parser.add_argument("-c", "--config", type=str, help="Configuration file name") args = parser.parse_args() if args.config: config_path = Path(args.config) if config_path.exists(): with open(config_path) as f: try: crt_config_params = json.load(f) except json.decoder.JSONDecodeError as je: print(f"Please make sure config file contains a dict in json " f"format. An example can be found in " f"'./configs/cli_config.json'. {je} was raised.") else: print(f"Please make sure the path {config_path} is correct and that " f"the file exists. Will use default configuration parameters " f"this time.") MyPrompt(**crt_config_params).cmdloop()
36.737662
80
0.548713
af2e9b756a7ec250aefdf90c42c7fddcfa3ad298
4,666
py
Python
tests/layers/test_merge_layers.py
vishalbelsare/neupy
684313cdaddcad326f2169384fb15ec3aa29d991
[ "MIT" ]
null
null
null
tests/layers/test_merge_layers.py
vishalbelsare/neupy
684313cdaddcad326f2169384fb15ec3aa29d991
[ "MIT" ]
null
null
null
tests/layers/test_merge_layers.py
vishalbelsare/neupy
684313cdaddcad326f2169384fb15ec3aa29d991
[ "MIT" ]
null
null
null
import theano import theano.tensor as T import numpy as np from neupy import layers, init from neupy.utils import asfloat from neupy.exceptions import LayerConnectionError from base import BaseTestCase class ElementwiseTestCase(BaseTestCase): def test_elementwise_basic(self): elem_layer = layers.Elementwise(merge_function=T.add) x1 = T.matrix() x2 = T.matrix() y = theano.function([x1, x2], elem_layer.output(x1, x2)) x1_matrix = asfloat(np.random.random((10, 2))) x2_matrix = asfloat(np.random.random((10, 2))) expected_output = x1_matrix + x2_matrix actual_output = y(x1_matrix, x2_matrix) np.testing.assert_array_almost_equal(expected_output, actual_output) def test_elementwise_initialize(self): # Suppose not to fail if you initialize # it without connection elem_layer = layers.Elementwise() elem_layer.initialize() def test_elementwise_single_input(self): elem_layer = layers.Elementwise() output = elem_layer.output(None) self.assertEqual(output, None) def test_elementwise_init_error(self): input_layer_1 = layers.Input(10) input_layer_2 = layers.Input(20) elem_layer = layers.Elementwise() layers.join(input_layer_1, elem_layer) with self.assertRaises(LayerConnectionError): layers.join(input_layer_2, elem_layer) def test_elementwise_not_function(self): with self.assertRaises(ValueError): not_callable_object = (1, 2, 3) layers.Elementwise(merge_function=not_callable_object) def test_elementwise_output_shape_no_connection(self): elem_layer = layers.Elementwise() self.assertEqual(elem_layer.output_shape, None) def test_elementwise_in_connections(self): input_layer = layers.Input(2) hidden_layer_1 = layers.Relu(1, weight=init.Constant(1), bias=init.Constant(0)) hidden_layer_2 = layers.Relu(1, weight=init.Constant(2), bias=init.Constant(0)) elem_layer = layers.Elementwise(merge_function=T.add) connection = layers.join(input_layer, hidden_layer_1, elem_layer) connection = layers.join(input_layer, hidden_layer_2, elem_layer) connection.initialize() self.assertEqual(elem_layer.output_shape, (1,)) x = T.matrix() y = theano.function([x], connection.output(x)) test_input = asfloat(np.array([ [0, 1], [-1, -1], ])) actual_output = y(test_input) expected_output = np.array([ [3], [0], ]) np.testing.assert_array_almost_equal(expected_output, actual_output) class ConcatenateTestCase(BaseTestCase): def test_concatenate_basic(self): concat_layer = layers.Concatenate(axis=1) x1 = T.tensor4() x2 = T.tensor4() y = theano.function([x1, x2], concat_layer.output(x1, x2)) x1_tensor4 = asfloat(np.random.random((1, 2, 3, 4))) x2_tensor4 = asfloat(np.random.random((1, 8, 3, 4))) output = y(x1_tensor4, x2_tensor4) self.assertEqual((1, 10, 3, 4), output.shape) def test_concatenate_init_error(self): input_layer_1 = layers.Input((3, 28, 28)) input_layer_2 = layers.Input((1, 28, 28)) concat_layer = layers.Concatenate(axis=2) layers.join(input_layer_1, concat_layer) with self.assertRaises(LayerConnectionError): layers.join(input_layer_2, concat_layer) def test_concatenate_conv_layers(self): input_layer = layers.Input((3, 28, 28)) hidden_layer_1 = layers.Convolution((7, 5, 5)) hidden_layer_21 = layers.Convolution((1, 3, 3)) hidden_layer_22 = layers.Convolution((4, 3, 3)) concat_layer = layers.Concatenate(axis=1) connection = layers.join(input_layer, hidden_layer_1, concat_layer) connection = layers.join(input_layer, hidden_layer_21, hidden_layer_22, concat_layer) connection.initialize() self.assertEqual((11, 24, 24), concat_layer.output_shape) x = T.tensor4() y = theano.function([x], connection.output(x)) x_tensor4 = asfloat(np.random.random((5, 3, 28, 28))) actual_output = y(x_tensor4) self.assertEqual((5, 11, 24, 24), actual_output.shape) def test_elementwise_concatenate(self): # Suppose not to fail if you initialize # it without connection layer = layers.Concatenate() layer.initialize()
34.562963
76
0.644664
08881f915ef2d23f3256e3e3ce81006be77c4780
14,126
py
Python
pandas/core/indexes/numeric.py
zeitlinv/pandas
08d296f1278e08b407448c95086589e1d10285f9
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
2
2021-08-18T11:17:41.000Z
2021-08-18T11:17:53.000Z
pandas/core/indexes/numeric.py
zeitlinv/pandas
08d296f1278e08b407448c95086589e1d10285f9
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
1
2021-08-30T15:10:57.000Z
2021-08-30T15:10:57.000Z
pandas/core/indexes/numeric.py
zeitlinv/pandas
08d296f1278e08b407448c95086589e1d10285f9
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
1
2021-08-30T14:37:26.000Z
2021-08-30T14:37:26.000Z
from __future__ import annotations from typing import ( Callable, Hashable, ) import warnings import numpy as np from pandas._libs import ( index as libindex, lib, ) from pandas._typing import ( Dtype, DtypeObj, ) from pandas.util._decorators import ( cache_readonly, doc, ) from pandas.core.dtypes.cast import astype_nansafe from pandas.core.dtypes.common import ( is_dtype_equal, is_extension_array_dtype, is_float, is_float_dtype, is_integer_dtype, is_numeric_dtype, is_scalar, is_signed_integer_dtype, is_unsigned_integer_dtype, needs_i8_conversion, pandas_dtype, ) from pandas.core.dtypes.generic import ABCSeries from pandas.core.indexes.base import ( Index, maybe_extract_name, ) _num_index_shared_docs = {} _num_index_shared_docs[ "class_descr" ] = """ Immutable sequence used for indexing and alignment. The basic object storing axis labels for all pandas objects. %(klass)s is a special case of `Index` with purely %(ltype)s labels. %(extra)s. Parameters ---------- data : array-like (1-dimensional) dtype : NumPy dtype (default: %(dtype)s) copy : bool Make a copy of input ndarray. name : object Name to be stored in the index. Attributes ---------- None Methods ------- None See Also -------- Index : The base pandas Index type. Notes ----- An Index instance can **only** contain hashable objects. """ class NumericIndex(Index): _index_descr_args = { "klass": "NumericIndex", "ltype": "integer or float", "dtype": "inferred", "extra": "", } __doc__ = _num_index_shared_docs["class_descr"] % _index_descr_args _typ = "numericindex" _values: np.ndarray _default_dtype: np.dtype | None = None _dtype_validation_metadata: tuple[Callable[..., bool], str] = ( is_numeric_dtype, "numeric type", ) _is_numeric_dtype = True _can_hold_strings = False _is_backward_compat_public_numeric_index: bool = True @cache_readonly def _can_hold_na(self) -> bool: if is_float_dtype(self.dtype): return True else: return False _engine_types: dict[np.dtype, type[libindex.IndexEngine]] = { np.dtype(np.int8): libindex.Int8Engine, np.dtype(np.int16): libindex.Int16Engine, np.dtype(np.int32): libindex.Int32Engine, np.dtype(np.int64): libindex.Int64Engine, np.dtype(np.uint8): libindex.UInt8Engine, np.dtype(np.uint16): libindex.UInt16Engine, np.dtype(np.uint32): libindex.UInt32Engine, np.dtype(np.uint64): libindex.UInt64Engine, np.dtype(np.float32): libindex.Float32Engine, np.dtype(np.float64): libindex.Float64Engine, } @property def _engine_type(self): return self._engine_types[self.dtype] @cache_readonly def inferred_type(self) -> str: return { "i": "integer", "u": "integer", "f": "floating", }[self.dtype.kind] def __new__(cls, data=None, dtype: Dtype | None = None, copy=False, name=None): name = maybe_extract_name(name, data, cls) subarr = cls._ensure_array(data, dtype, copy) return cls._simple_new(subarr, name=name) @classmethod def _ensure_array(cls, data, dtype, copy: bool): """ Ensure we have a valid array to pass to _simple_new. """ cls._validate_dtype(dtype) if not isinstance(data, (np.ndarray, Index)): # Coerce to ndarray if not already ndarray or Index if is_scalar(data): raise cls._scalar_data_error(data) # other iterable of some kind if not isinstance(data, (ABCSeries, list, tuple)): data = list(data) orig = data data = np.asarray(data, dtype=dtype) if dtype is None and data.dtype.kind == "f": if cls is UInt64Index and (data >= 0).all(): # https://github.com/numpy/numpy/issues/19146 data = np.asarray(orig, dtype=np.uint64) if issubclass(data.dtype.type, str): cls._string_data_error(data) dtype = cls._ensure_dtype(dtype) if copy or not is_dtype_equal(data.dtype, dtype): # TODO: the try/except below is because it's difficult to predict the error # and/or error message from different combinations of data and dtype. # Efforts to avoid this try/except welcome. # See https://github.com/pandas-dev/pandas/pull/41153#discussion_r676206222 try: subarr = np.array(data, dtype=dtype, copy=copy) cls._validate_dtype(subarr.dtype) except (TypeError, ValueError): raise ValueError(f"data is not compatible with {cls.__name__}") cls._assert_safe_casting(data, subarr) else: subarr = data if subarr.ndim > 1: # GH#13601, GH#20285, GH#27125 raise ValueError("Index data must be 1-dimensional") subarr = np.asarray(subarr) return subarr @classmethod def _validate_dtype(cls, dtype: Dtype | None) -> None: if dtype is None: return validation_func, expected = cls._dtype_validation_metadata if not validation_func(dtype): raise ValueError( f"Incorrect `dtype` passed: expected {expected}, received {dtype}" ) @classmethod def _ensure_dtype(cls, dtype: Dtype | None) -> np.dtype | None: """ Ensure int64 dtype for Int64Index etc. but allow int32 etc. for NumericIndex. Assumes dtype has already been validated. """ if dtype is None: return cls._default_dtype dtype = pandas_dtype(dtype) assert isinstance(dtype, np.dtype) if cls._is_backward_compat_public_numeric_index: # dtype for NumericIndex return dtype else: # dtype for Int64Index, UInt64Index etc. Needed for backwards compat. return cls._default_dtype def __contains__(self, key) -> bool: """ Check if key is a float and has a decimal. If it has, return False. """ if not is_integer_dtype(self.dtype): return super().__contains__(key) hash(key) try: if is_float(key) and int(key) != key: # otherwise the `key in self._engine` check casts e.g. 1.1 -> 1 return False return key in self._engine except (OverflowError, TypeError, ValueError): return False @doc(Index.astype) def astype(self, dtype, copy=True): dtype = pandas_dtype(dtype) if is_float_dtype(self.dtype): if needs_i8_conversion(dtype): raise TypeError( f"Cannot convert Float64Index to dtype {dtype}; integer " "values are required for conversion" ) elif is_integer_dtype(dtype) and not is_extension_array_dtype(dtype): # TODO(jreback); this can change once we have an EA Index type # GH 13149 arr = astype_nansafe(self._values, dtype=dtype) if isinstance(self, Float64Index): return Int64Index(arr, name=self.name) else: return NumericIndex(arr, name=self.name, dtype=dtype) elif self._is_backward_compat_public_numeric_index: # this block is needed so e.g. NumericIndex[int8].astype("int32") returns # NumericIndex[int32] and not Int64Index with dtype int64. # When Int64Index etc. are removed from the code base, removed this also. if not is_extension_array_dtype(dtype) and is_numeric_dtype(dtype): return self._constructor(self, dtype=dtype, copy=copy) return super().astype(dtype, copy=copy) # ---------------------------------------------------------------- # Indexing Methods @cache_readonly @doc(Index._should_fallback_to_positional) def _should_fallback_to_positional(self) -> bool: return False @doc(Index._convert_slice_indexer) def _convert_slice_indexer(self, key: slice, kind: str): if is_float_dtype(self.dtype): assert kind in ["loc", "getitem"] # We always treat __getitem__ slicing as label-based # translate to locations return self.slice_indexer(key.start, key.stop, key.step) return super()._convert_slice_indexer(key, kind=kind) @doc(Index._maybe_cast_slice_bound) def _maybe_cast_slice_bound(self, label, side: str, kind=lib.no_default): assert kind in ["loc", "getitem", None, lib.no_default] self._deprecated_arg(kind, "kind", "_maybe_cast_slice_bound") # we will try to coerce to integers return self._maybe_cast_indexer(label) # ---------------------------------------------------------------- @doc(Index._shallow_copy) def _shallow_copy(self, values, name: Hashable = lib.no_default): if not self._can_hold_na and values.dtype.kind == "f": name = self._name if name is lib.no_default else name # Ensure we are not returning an Int64Index with float data: return Float64Index._simple_new(values, name=name) return super()._shallow_copy(values=values, name=name) def _convert_tolerance(self, tolerance, target): tolerance = super()._convert_tolerance(tolerance, target) if not np.issubdtype(tolerance.dtype, np.number): if tolerance.ndim > 0: raise ValueError( f"tolerance argument for {type(self).__name__} must contain " "numeric elements if it is list type" ) else: raise ValueError( f"tolerance argument for {type(self).__name__} must be numeric " f"if it is a scalar: {repr(tolerance)}" ) return tolerance def _is_comparable_dtype(self, dtype: DtypeObj) -> bool: # If we ever have BoolIndex or ComplexIndex, this may need to be tightened return is_numeric_dtype(dtype) @classmethod def _assert_safe_casting(cls, data: np.ndarray, subarr: np.ndarray) -> None: """ Ensure incoming data can be represented with matching signed-ness. Needed if the process of casting data from some accepted dtype to the internal dtype(s) bears the risk of truncation (e.g. float to int). """ if is_integer_dtype(subarr.dtype): if not np.array_equal(data, subarr): raise TypeError("Unsafe NumPy casting, you must explicitly cast") @property def _is_all_dates(self) -> bool: """ Checks that all the labels are datetime objects. """ return False def _format_native_types( self, na_rep="", float_format=None, decimal=".", quoting=None, **kwargs ): from pandas.io.formats.format import FloatArrayFormatter if is_float_dtype(self.dtype): formatter = FloatArrayFormatter( self._values, na_rep=na_rep, float_format=float_format, decimal=decimal, quoting=quoting, fixed_width=False, ) return formatter.get_result_as_array() return super()._format_native_types( na_rep=na_rep, float_format=float_format, decimal=decimal, quoting=quoting, **kwargs, ) class IntegerIndex(NumericIndex): """ This is an abstract class for Int64Index, UInt64Index. """ _is_backward_compat_public_numeric_index: bool = False @property def asi8(self) -> np.ndarray: # do not cache or you'll create a memory leak warnings.warn( "Index.asi8 is deprecated and will be removed in a future version", FutureWarning, stacklevel=2, ) return self._values.view(self._default_dtype) class Int64Index(IntegerIndex): _index_descr_args = { "klass": "Int64Index", "ltype": "integer", "dtype": "int64", "extra": "", } __doc__ = _num_index_shared_docs["class_descr"] % _index_descr_args _typ = "int64index" _engine_type = libindex.Int64Engine _default_dtype = np.dtype(np.int64) _dtype_validation_metadata = (is_signed_integer_dtype, "signed integer") class UInt64Index(IntegerIndex): _index_descr_args = { "klass": "UInt64Index", "ltype": "unsigned integer", "dtype": "uint64", "extra": "", } __doc__ = _num_index_shared_docs["class_descr"] % _index_descr_args _typ = "uint64index" _engine_type = libindex.UInt64Engine _default_dtype = np.dtype(np.uint64) _dtype_validation_metadata = (is_unsigned_integer_dtype, "unsigned integer") def _validate_fill_value(self, value): # e.g. np.array([1]) we want np.array([1], dtype=np.uint64) # see test_where_uin64 super()._validate_fill_value(value) if hasattr(value, "dtype") and is_signed_integer_dtype(value.dtype): if (value >= 0).all(): return value.astype(self.dtype) raise TypeError return value class Float64Index(NumericIndex): _index_descr_args = { "klass": "Float64Index", "dtype": "float64", "ltype": "float", "extra": "", } __doc__ = _num_index_shared_docs["class_descr"] % _index_descr_args _typ = "float64index" _engine_type = libindex.Float64Engine _default_dtype = np.dtype(np.float64) _dtype_validation_metadata = (is_float_dtype, "float") _is_backward_compat_public_numeric_index: bool = False
32.473563
87
0.609514
fecb699e11482b5370595411b7fe70f921e358b4
339
py
Python
packages/PIPS/validation/Terapix/alphablending.py
DVSR1966/par4all
86b33ca9da736e832b568c5637a2381f360f1996
[ "MIT" ]
51
2015-01-31T01:51:39.000Z
2022-02-18T02:01:50.000Z
packages/PIPS/validation/Terapix/alphablending.py
DVSR1966/par4all
86b33ca9da736e832b568c5637a2381f360f1996
[ "MIT" ]
7
2017-05-29T09:29:00.000Z
2019-03-11T16:01:39.000Z
packages/PIPS/validation/Terapix/alphablending.py
DVSR1966/par4all
86b33ca9da736e832b568c5637a2381f360f1996
[ "MIT" ]
12
2015-03-26T08:05:38.000Z
2022-02-18T02:01:51.000Z
from __future__ import with_statement # this is to work with python2.5 import terapyps from pyps import workspace workspace.delete("alphablending") with terapyps.workspace("alphablending.c", name="alphablending", deleteOnClose=False) as w: for f in w.fun: f.terapix_code_generation(debug=True) # w.compile(terapyps.Maker())
37.666667
91
0.766962
dd2cf44203c6b4a0c3d6a9e9e5ac39716d3a1aaf
4,258
py
Python
djstripe/management/commands/djstripe_process_events.py
omidraha/dj-stripe
5785513e88de7e4648e52723d219ed82ce82cfe2
[ "MIT" ]
null
null
null
djstripe/management/commands/djstripe_process_events.py
omidraha/dj-stripe
5785513e88de7e4648e52723d219ed82ce82cfe2
[ "MIT" ]
null
null
null
djstripe/management/commands/djstripe_process_events.py
omidraha/dj-stripe
5785513e88de7e4648e52723d219ed82ce82cfe2
[ "MIT" ]
null
null
null
from django.core.management.base import BaseCommand from ... import models from ...mixins import VerbosityAwareOutputMixin from ...settings import djstripe_settings class Command(VerbosityAwareOutputMixin, BaseCommand): """Command to process all Events. Optional arguments are provided to limit the number of Events processed. Note: this is only guaranteed go back at most 30 days based on the current limitation of stripe's events API. See: https://stripe.com/docs/api/events """ help = ( "Process all Events. Use optional arguments to limit the Events to process. " "Note: this is only guaranteed go back at most 30 days based on the current " "limitation of stripe's events API. See: https://stripe.com/docs/api/events" ) def add_arguments(self, parser): """Add optional arugments to filter Events by.""" # Use a mutually exclusive group to prevent multiple arguments being # specified together. group = parser.add_mutually_exclusive_group() group.add_argument( "--ids", nargs="*", help="An optional space separated list of specific Event IDs to sync.", ) group.add_argument( "--failed", action="store_true", help="Syncs and processes only the events that have failed webhooks.", ) group.add_argument( "--type", help=( "A string containing a specific event name," " or group of events using * as a wildcard." " The list will be filtered to include only" " events with a matching event property." ), ) def handle(self, *args, **options): """Try to process Events listed from the API.""" # Set the verbosity to determine how much we output, if at all. self.set_verbosity(options) event_ids = options["ids"] failed = options["failed"] type_filter = options["type"] # Args are mutually exclusive, # so output what we are doing based on that assumption. if failed: self.output("Processing all failed events") elif type_filter: self.output( "Processing all events that match {filter}".format(filter=type_filter) ) elif event_ids: self.output("Processing specific events {events}".format(events=event_ids)) else: self.output("Processing all available events") # Either use the specific event IDs to retrieve data, or use the api_list # if no specific event IDs are specified. if event_ids: listed_events = ( models.Event.stripe_class.retrieve( id=event_id, api_key=djstripe_settings.STRIPE_SECRET_KEY ) for event_id in event_ids ) else: list_kwargs = {} if failed: list_kwargs["delivery_success"] = False if type_filter: list_kwargs["type"] = type_filter listed_events = models.Event.api_list(**list_kwargs) self.process_events(listed_events) def process_events(self, listed_events): # Process each listed event. Capture failures and continue, # outputting debug information as verbosity dictates. count = 0 total = 0 for event_data in listed_events: try: total += 1 event = models.Event.process(data=event_data) count += 1 self.verbose_output(" Synced Event {id}".format(id=event.id)) except Exception as exception: self.verbose_output( " Failed processing Event {id}".format(id=event_data["id"]) ) self.output(" {exception}".format(exception=exception)) self.verbose_traceback() if total == 0: self.output(" (no results)") else: self.output( " Processed {count} out of {total} Events".format( count=count, total=total ) )
36.393162
87
0.581259
995d2e612ca2ece917f6f767aab82e839eaf62a0
24,448
py
Python
research/object_detection/protos/faster_rcnn_pb2.py
janzkyle23/models
a8ae09e23d309f8893619387a7133bcc4db3d8a9
[ "Apache-2.0" ]
5
2020-01-22T15:53:06.000Z
2021-10-05T02:45:26.000Z
research/object_detection/protos/faster_rcnn_pb2.py
janzkyle23/models
a8ae09e23d309f8893619387a7133bcc4db3d8a9
[ "Apache-2.0" ]
6
2020-06-08T14:35:41.000Z
2022-02-10T01:52:40.000Z
research/object_detection/protos/faster_rcnn_pb2.py
janzkyle23/models
a8ae09e23d309f8893619387a7133bcc4db3d8a9
[ "Apache-2.0" ]
7
2020-03-30T12:22:11.000Z
2021-09-18T14:06:22.000Z
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: object_detection/protos/faster_rcnn.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from object_detection.protos import anchor_generator_pb2 as object__detection_dot_protos_dot_anchor__generator__pb2 from object_detection.protos import box_predictor_pb2 as object__detection_dot_protos_dot_box__predictor__pb2 from object_detection.protos import hyperparams_pb2 as object__detection_dot_protos_dot_hyperparams__pb2 from object_detection.protos import image_resizer_pb2 as object__detection_dot_protos_dot_image__resizer__pb2 from object_detection.protos import losses_pb2 as object__detection_dot_protos_dot_losses__pb2 from object_detection.protos import post_processing_pb2 as object__detection_dot_protos_dot_post__processing__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='object_detection/protos/faster_rcnn.proto', package='object_detection.protos', syntax='proto2', serialized_pb=_b('\n)object_detection/protos/faster_rcnn.proto\x12\x17object_detection.protos\x1a.object_detection/protos/anchor_generator.proto\x1a+object_detection/protos/box_predictor.proto\x1a)object_detection/protos/hyperparams.proto\x1a+object_detection/protos/image_resizer.proto\x1a$object_detection/protos/losses.proto\x1a-object_detection/protos/post_processing.proto\"\x85\x0f\n\nFasterRcnn\x12\x1b\n\x10number_of_stages\x18\x01 \x01(\x05:\x01\x32\x12\x13\n\x0bnum_classes\x18\x03 \x01(\x05\x12<\n\rimage_resizer\x18\x04 \x01(\x0b\x32%.object_detection.protos.ImageResizer\x12N\n\x11\x66\x65\x61ture_extractor\x18\x05 \x01(\x0b\x32\x33.object_detection.protos.FasterRcnnFeatureExtractor\x12N\n\x1c\x66irst_stage_anchor_generator\x18\x06 \x01(\x0b\x32(.object_detection.protos.AnchorGenerator\x12\"\n\x17\x66irst_stage_atrous_rate\x18\x07 \x01(\x05:\x01\x31\x12X\n*first_stage_box_predictor_conv_hyperparams\x18\x08 \x01(\x0b\x32$.object_detection.protos.Hyperparams\x12\x30\n%first_stage_box_predictor_kernel_size\x18\t \x01(\x05:\x01\x33\x12,\n\x1f\x66irst_stage_box_predictor_depth\x18\n \x01(\x05:\x03\x35\x31\x32\x12\'\n\x1a\x66irst_stage_minibatch_size\x18\x0b \x01(\x05:\x03\x32\x35\x36\x12\x32\n%first_stage_positive_balance_fraction\x18\x0c \x01(\x02:\x03\x30.5\x12*\n\x1f\x66irst_stage_nms_score_threshold\x18\r \x01(\x02:\x01\x30\x12*\n\x1d\x66irst_stage_nms_iou_threshold\x18\x0e \x01(\x02:\x03\x30.7\x12&\n\x19\x66irst_stage_max_proposals\x18\x0f \x01(\x05:\x03\x33\x30\x30\x12/\n$first_stage_localization_loss_weight\x18\x10 \x01(\x02:\x01\x31\x12-\n\"first_stage_objectness_loss_weight\x18\x11 \x01(\x02:\x01\x31\x12\x19\n\x11initial_crop_size\x18\x12 \x01(\x05\x12\x1b\n\x13maxpool_kernel_size\x18\x13 \x01(\x05\x12\x16\n\x0emaxpool_stride\x18\x14 \x01(\x05\x12I\n\x1asecond_stage_box_predictor\x18\x15 \x01(\x0b\x32%.object_detection.protos.BoxPredictor\x12#\n\x17second_stage_batch_size\x18\x16 \x01(\x05:\x02\x36\x34\x12+\n\x1dsecond_stage_balance_fraction\x18\x17 \x01(\x02:\x04\x30.25\x12M\n\x1csecond_stage_post_processing\x18\x18 \x01(\x0b\x32\'.object_detection.protos.PostProcessing\x12\x30\n%second_stage_localization_loss_weight\x18\x19 \x01(\x02:\x01\x31\x12\x32\n\'second_stage_classification_loss_weight\x18\x1a \x01(\x02:\x01\x31\x12\x33\n(second_stage_mask_prediction_loss_weight\x18\x1b \x01(\x02:\x01\x31\x12\x45\n\x12hard_example_miner\x18\x1c \x01(\x0b\x32).object_detection.protos.HardExampleMiner\x12U\n second_stage_classification_loss\x18\x1d \x01(\x0b\x32+.object_detection.protos.ClassificationLoss\x12\'\n\x18inplace_batchnorm_update\x18\x1e \x01(\x08:\x05\x66\x61lse\x12)\n\x1ause_matmul_crop_and_resize\x18\x1f \x01(\x08:\x05\x66\x61lse\x12$\n\x15\x63lip_anchors_to_image\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1cuse_matmul_gather_in_matcher\x18! \x01(\x08:\x05\x66\x61lse\x12\x30\n!use_static_balanced_label_sampler\x18\" \x01(\x08:\x05\x66\x61lse\x12 \n\x11use_static_shapes\x18# \x01(\x08:\x05\x66\x61lse\x12\x1a\n\x0cresize_masks\x18$ \x01(\x08:\x04true\x12)\n\x1ause_static_shapes_for_eval\x18% \x01(\x08:\x05\x66\x61lse\x12\x30\n\"use_partitioned_nms_in_first_stage\x18& \x01(\x08:\x04true\x12\x33\n$return_raw_detections_during_predict\x18\' \x01(\x08:\x05\x66\x61lse\x12.\n\x1fuse_combined_nms_in_first_stage\x18( \x01(\x08:\x05\x66\x61lse\"x\n\x1a\x46\x61sterRcnnFeatureExtractor\x12\x0c\n\x04type\x18\x01 \x01(\t\x12\'\n\x1b\x66irst_stage_features_stride\x18\x02 \x01(\x05:\x02\x31\x36\x12#\n\x14\x62\x61tch_norm_trainable\x18\x03 \x01(\x08:\x05\x66\x61lse') , dependencies=[object__detection_dot_protos_dot_anchor__generator__pb2.DESCRIPTOR,object__detection_dot_protos_dot_box__predictor__pb2.DESCRIPTOR,object__detection_dot_protos_dot_hyperparams__pb2.DESCRIPTOR,object__detection_dot_protos_dot_image__resizer__pb2.DESCRIPTOR,object__detection_dot_protos_dot_losses__pb2.DESCRIPTOR,object__detection_dot_protos_dot_post__processing__pb2.DESCRIPTOR,]) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _FASTERRCNN = _descriptor.Descriptor( name='FasterRcnn', full_name='object_detection.protos.FasterRcnn', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='number_of_stages', full_name='object_detection.protos.FasterRcnn.number_of_stages', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=True, default_value=2, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='num_classes', full_name='object_detection.protos.FasterRcnn.num_classes', index=1, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='image_resizer', full_name='object_detection.protos.FasterRcnn.image_resizer', index=2, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='feature_extractor', full_name='object_detection.protos.FasterRcnn.feature_extractor', index=3, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='first_stage_anchor_generator', full_name='object_detection.protos.FasterRcnn.first_stage_anchor_generator', index=4, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='first_stage_atrous_rate', full_name='object_detection.protos.FasterRcnn.first_stage_atrous_rate', index=5, number=7, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='first_stage_box_predictor_conv_hyperparams', full_name='object_detection.protos.FasterRcnn.first_stage_box_predictor_conv_hyperparams', index=6, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='first_stage_box_predictor_kernel_size', full_name='object_detection.protos.FasterRcnn.first_stage_box_predictor_kernel_size', index=7, number=9, type=5, cpp_type=1, label=1, has_default_value=True, default_value=3, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='first_stage_box_predictor_depth', full_name='object_detection.protos.FasterRcnn.first_stage_box_predictor_depth', index=8, number=10, type=5, cpp_type=1, label=1, has_default_value=True, default_value=512, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='first_stage_minibatch_size', full_name='object_detection.protos.FasterRcnn.first_stage_minibatch_size', index=9, number=11, type=5, cpp_type=1, label=1, has_default_value=True, default_value=256, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='first_stage_positive_balance_fraction', full_name='object_detection.protos.FasterRcnn.first_stage_positive_balance_fraction', index=10, number=12, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0.5), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='first_stage_nms_score_threshold', full_name='object_detection.protos.FasterRcnn.first_stage_nms_score_threshold', index=11, number=13, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='first_stage_nms_iou_threshold', full_name='object_detection.protos.FasterRcnn.first_stage_nms_iou_threshold', index=12, number=14, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0.7), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='first_stage_max_proposals', full_name='object_detection.protos.FasterRcnn.first_stage_max_proposals', index=13, number=15, type=5, cpp_type=1, label=1, has_default_value=True, default_value=300, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='first_stage_localization_loss_weight', full_name='object_detection.protos.FasterRcnn.first_stage_localization_loss_weight', index=14, number=16, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='first_stage_objectness_loss_weight', full_name='object_detection.protos.FasterRcnn.first_stage_objectness_loss_weight', index=15, number=17, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='initial_crop_size', full_name='object_detection.protos.FasterRcnn.initial_crop_size', index=16, number=18, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='maxpool_kernel_size', full_name='object_detection.protos.FasterRcnn.maxpool_kernel_size', index=17, number=19, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='maxpool_stride', full_name='object_detection.protos.FasterRcnn.maxpool_stride', index=18, number=20, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='second_stage_box_predictor', full_name='object_detection.protos.FasterRcnn.second_stage_box_predictor', index=19, number=21, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='second_stage_batch_size', full_name='object_detection.protos.FasterRcnn.second_stage_batch_size', index=20, number=22, type=5, cpp_type=1, label=1, has_default_value=True, default_value=64, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='second_stage_balance_fraction', full_name='object_detection.protos.FasterRcnn.second_stage_balance_fraction', index=21, number=23, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0.25), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='second_stage_post_processing', full_name='object_detection.protos.FasterRcnn.second_stage_post_processing', index=22, number=24, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='second_stage_localization_loss_weight', full_name='object_detection.protos.FasterRcnn.second_stage_localization_loss_weight', index=23, number=25, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='second_stage_classification_loss_weight', full_name='object_detection.protos.FasterRcnn.second_stage_classification_loss_weight', index=24, number=26, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='second_stage_mask_prediction_loss_weight', full_name='object_detection.protos.FasterRcnn.second_stage_mask_prediction_loss_weight', index=25, number=27, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(1), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='hard_example_miner', full_name='object_detection.protos.FasterRcnn.hard_example_miner', index=26, number=28, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='second_stage_classification_loss', full_name='object_detection.protos.FasterRcnn.second_stage_classification_loss', index=27, number=29, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='inplace_batchnorm_update', full_name='object_detection.protos.FasterRcnn.inplace_batchnorm_update', index=28, number=30, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='use_matmul_crop_and_resize', full_name='object_detection.protos.FasterRcnn.use_matmul_crop_and_resize', index=29, number=31, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='clip_anchors_to_image', full_name='object_detection.protos.FasterRcnn.clip_anchors_to_image', index=30, number=32, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='use_matmul_gather_in_matcher', full_name='object_detection.protos.FasterRcnn.use_matmul_gather_in_matcher', index=31, number=33, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='use_static_balanced_label_sampler', full_name='object_detection.protos.FasterRcnn.use_static_balanced_label_sampler', index=32, number=34, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='use_static_shapes', full_name='object_detection.protos.FasterRcnn.use_static_shapes', index=33, number=35, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='resize_masks', full_name='object_detection.protos.FasterRcnn.resize_masks', index=34, number=36, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='use_static_shapes_for_eval', full_name='object_detection.protos.FasterRcnn.use_static_shapes_for_eval', index=35, number=37, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='use_partitioned_nms_in_first_stage', full_name='object_detection.protos.FasterRcnn.use_partitioned_nms_in_first_stage', index=36, number=38, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='return_raw_detections_during_predict', full_name='object_detection.protos.FasterRcnn.return_raw_detections_during_predict', index=37, number=39, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='use_combined_nms_in_first_stage', full_name='object_detection.protos.FasterRcnn.use_combined_nms_in_first_stage', index=38, number=40, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=337, serialized_end=2262, ) _FASTERRCNNFEATUREEXTRACTOR = _descriptor.Descriptor( name='FasterRcnnFeatureExtractor', full_name='object_detection.protos.FasterRcnnFeatureExtractor', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='type', full_name='object_detection.protos.FasterRcnnFeatureExtractor.type', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='first_stage_features_stride', full_name='object_detection.protos.FasterRcnnFeatureExtractor.first_stage_features_stride', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=True, default_value=16, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='batch_norm_trainable', full_name='object_detection.protos.FasterRcnnFeatureExtractor.batch_norm_trainable', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=2264, serialized_end=2384, ) _FASTERRCNN.fields_by_name['image_resizer'].message_type = object__detection_dot_protos_dot_image__resizer__pb2._IMAGERESIZER _FASTERRCNN.fields_by_name['feature_extractor'].message_type = _FASTERRCNNFEATUREEXTRACTOR _FASTERRCNN.fields_by_name['first_stage_anchor_generator'].message_type = object__detection_dot_protos_dot_anchor__generator__pb2._ANCHORGENERATOR _FASTERRCNN.fields_by_name['first_stage_box_predictor_conv_hyperparams'].message_type = object__detection_dot_protos_dot_hyperparams__pb2._HYPERPARAMS _FASTERRCNN.fields_by_name['second_stage_box_predictor'].message_type = object__detection_dot_protos_dot_box__predictor__pb2._BOXPREDICTOR _FASTERRCNN.fields_by_name['second_stage_post_processing'].message_type = object__detection_dot_protos_dot_post__processing__pb2._POSTPROCESSING _FASTERRCNN.fields_by_name['hard_example_miner'].message_type = object__detection_dot_protos_dot_losses__pb2._HARDEXAMPLEMINER _FASTERRCNN.fields_by_name['second_stage_classification_loss'].message_type = object__detection_dot_protos_dot_losses__pb2._CLASSIFICATIONLOSS DESCRIPTOR.message_types_by_name['FasterRcnn'] = _FASTERRCNN DESCRIPTOR.message_types_by_name['FasterRcnnFeatureExtractor'] = _FASTERRCNNFEATUREEXTRACTOR FasterRcnn = _reflection.GeneratedProtocolMessageType('FasterRcnn', (_message.Message,), dict( DESCRIPTOR = _FASTERRCNN, __module__ = 'object_detection.protos.faster_rcnn_pb2' # @@protoc_insertion_point(class_scope:object_detection.protos.FasterRcnn) )) _sym_db.RegisterMessage(FasterRcnn) FasterRcnnFeatureExtractor = _reflection.GeneratedProtocolMessageType('FasterRcnnFeatureExtractor', (_message.Message,), dict( DESCRIPTOR = _FASTERRCNNFEATUREEXTRACTOR, __module__ = 'object_detection.protos.faster_rcnn_pb2' # @@protoc_insertion_point(class_scope:object_detection.protos.FasterRcnnFeatureExtractor) )) _sym_db.RegisterMessage(FasterRcnnFeatureExtractor) # @@protoc_insertion_point(module_scope)
60.514851
3,525
0.780023
ab33c48fcc05959299f6199a080330f336eb5098
917
py
Python
lec5.py
A-Glavin/ia241-github
c8371d2cdcceac0fa146b798caafc4d2db9c7e74
[ "MIT" ]
null
null
null
lec5.py
A-Glavin/ia241-github
c8371d2cdcceac0fa146b798caafc4d2db9c7e74
[ "MIT" ]
null
null
null
lec5.py
A-Glavin/ia241-github
c8371d2cdcceac0fa146b798caafc4d2db9c7e74
[ "MIT" ]
null
null
null
''' lec5 if statement ''' import this print( 2+ 1) print([1,2,3, 4,5,6]) m = 1+\ 2 print(m) a= [1,2,3] b= [1,2,3,] print(id([1, 2, 3])) print(id(a)) print(id(b)) print(a is b) print(a==b) x = None print(id(x)) print(id(None)) print(x is None) print(x == None) y = [] print(y == None) print(y is None) print( True and False ) print( True or False ) print(not True) print(not False) print(not None) print(not '0') print(() and []) print([] and ()) print(-1 or 0) print(0 or -1) print(y == None) print(y is None) print( True and False) print(not True) print(not False) print(not None) print(not '0') if 2>1 : print('2>1') if 3>1: print('3>1') if 2<1: print('2<1') print('not in the if block') if 2<=1: print('2<=1') else: print('2>2') if 2<1: print('2<1') elif 2<=2: print('2<=2') else: print('2>1')
10.54023
28
0.522356
68946bc037eb655c8a3a25dd801402047731c7cb
2,932
py
Python
ivy/functional/backends/numpy/__init__.py
RitujaPawas/ivy
595788507aca609e868cb3d17edd815463af28e4
[ "Apache-2.0" ]
null
null
null
ivy/functional/backends/numpy/__init__.py
RitujaPawas/ivy
595788507aca609e868cb3d17edd815463af28e4
[ "Apache-2.0" ]
null
null
null
ivy/functional/backends/numpy/__init__.py
RitujaPawas/ivy
595788507aca609e868cb3d17edd815463af28e4
[ "Apache-2.0" ]
null
null
null
# global import sys import numpy as np # local import ivy # noinspection PyUnresolvedReferences use = ivy.backend_handler.ContextManager(sys.modules[__name__]) NativeArray = np.ndarray NativeVariable = np.ndarray NativeDevice = str NativeDtype = np.dtype # data types int8 = ivy.IntDtype("int8") int16 = ivy.IntDtype("int16") int32 = ivy.IntDtype("int32") int64 = ivy.IntDtype("int64") uint8 = ivy.IntDtype("uint8") uint16 = ivy.IntDtype("uint16") uint32 = ivy.IntDtype("uint32") uint64 = ivy.IntDtype("uint64") bfloat16 = ivy.FloatDtype("bfloat16") float16 = ivy.FloatDtype("float16") float32 = ivy.FloatDtype("float32") float64 = ivy.FloatDtype("float64") # noinspection PyShadowingBuiltins bool = "bool" nan = float("nan") inf = float("inf") # native data types native_int8 = np.dtype("int8") native_int16 = np.dtype("int16") native_int32 = np.dtype("int32") native_int64 = np.dtype("int64") native_uint8 = np.dtype("uint8") native_uint16 = np.dtype("uint16") native_uint32 = np.dtype("uint32") native_uint64 = np.dtype("uint64") native_float16 = np.dtype("float16") native_float32 = np.dtype("float32") native_float64 = np.dtype("float64") # noinspection PyShadowingBuiltins native_bool = np.dtype("bool") valid_dtypes = ( int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, bool, ) valid_numeric_dtypes = ( int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, ) valid_int_dtypes = (int8, int16, int32, int64, uint8, uint16, uint32, uint64) valid_float_dtypes = (float16, float32, float64) # invalid invalid_dtypes = (bfloat16,) invalid_numeric_dtypes = (bfloat16,) invalid_int_dtypes = () invalid_float_dtypes = (bfloat16,) def closest_valid_dtype(type): if type is None: return ivy.default_dtype() type_str = ivy.as_ivy_dtype(type) if type_str in invalid_dtypes: return {"bfloat16": float16}[type_str] return type backend = "numpy" # local sub-modules from . import activations from .activations import * from . import compilation from .compilation import * from . import creation from .creation import * from . import data_type from .data_type import * from . import device from .device import * from . import elementwise from .elementwise import * from . import general from .general import * from . import gradients from .gradients import * from . import image from .image import * from . import layers from .layers import * from . import linear_algebra as linalg from .linear_algebra import * from . import manipulation from .manipulation import * from . import random from .random import * from . import searching from .searching import * from . import set from .set import * from . import sorting from .sorting import * from . import statistical from .statistical import * from . import utility from .utility import *
21.718519
77
0.723738
d4dc12b31063b67d34473c2f2db4240f9785ddf0
8,198
py
Python
QCA4020_SDK/target/sectools/qdn/sectools.py
r8d8/lastlock
78c02e5fbb129b1bc4147bd55eec2882267d7e87
[ "Apache-2.0" ]
null
null
null
QCA4020_SDK/target/sectools/qdn/sectools.py
r8d8/lastlock
78c02e5fbb129b1bc4147bd55eec2882267d7e87
[ "Apache-2.0" ]
null
null
null
QCA4020_SDK/target/sectools/qdn/sectools.py
r8d8/lastlock
78c02e5fbb129b1bc4147bd55eec2882267d7e87
[ "Apache-2.0" ]
null
null
null
# =============================================================================== # # Copyright (c) 2013-2018 Qualcomm Technologies, Inc. # All Rights Reserved. # Copyright (c) 2018 Qualcomm Technologies, Inc. # All rights reserved. # Redistribution and use in source and binary forms, with or without modification, are permitted (subject to the limitations in the disclaimer below) # provided that the following conditions are met: # Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. # Neither the name of Qualcomm Technologies, Inc. nor the names of its contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, # BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, # OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Provides a command line interface to the services provided by sectools .. data:: SECTOOLS_TOOL_NAME Name of the tool .. data:: SECTOOLS_TOOL_VERSION Version of the tool """ import os import sys import optparse import traceback from sectools import SECTOOLS_TOOL_NAME from sectools import SECTOOLS_TOOL_VERSION from sectools.common.utils.c_logging import logger # List of features FEATURES_LIST = [] sectools_features_package_name = "sectools.features" sectools_features_path = os.path.join( os.path.realpath(os.path.dirname(__file__)), *(sectools_features_package_name.split("."))) for module_name in os.listdir(sectools_features_path): def import_features(module_path): """ Import all features under the module path recursively. :param module_path: Python module path, such as sectools.features.isc. It is already imported, and all its attributes are visible. The __init__.py file of a module to be imported could have only either or both attributes, the singular __sectools_feature__, and the plural __sectools_features__. The former is a string referring to a potential feature Python module file, while the latter is a list of strings referring to their respective potential feature Python module files or packages. Again, they are candidates. The logic implemented here determines whether the feature candidate is actually imported as a sectools feature. If neither attributes is present, then no feature is imported. """ if hasattr(sys.modules[module_path], "__sectools_features__"): for feature_package in getattr( sys.modules[module_path], "__sectools_features__"): feature_module_path = ".".join([module_path, feature_package]) try: __import__(feature_module_path) except ImportError: continue import_features(feature_module_path) if hasattr(sys.modules[module_path], "__sectools_feature__"): feature_name = getattr(sys.modules[module_path], "__sectools_feature__") __import__(".".join([module_path, feature_name])) feature = getattr(sys.modules[module_path], feature_name) FEATURES_LIST.append(feature) if not os.path.isdir(os.path.join(sectools_features_path, module_name)): continue if hasattr(sectools_features_package_name, module_name): continue module_path = ".".join([sectools_features_package_name, module_name]) try: __import__(module_path) except ImportError: continue import_features(module_path) if not FEATURES_LIST: raise RuntimeError('Sectools could not find any packaged features') __version__ = SECTOOLS_TOOL_NAME + ' ' + SECTOOLS_TOOL_VERSION class SectoolsParser(optparse.OptionParser): """Parser for command line arguments supported by Sectools.""" def __init__(self): # Initialize the base parser optparse.OptionParser.__init__(self, usage=self.c_usage, description=self.c_description, version=self.c_version, epilog=self.c_epilog) self.c_add_options() self.opt_args, self.pos_args = self.parse_args(args=sys.argv[:2]) if len(self.pos_args) == 1: self.print_help(sys.stdout) @property def c_usage(self): """(str) Returns the usage of the program. """ return self.c_prog + ' [feature]' @property def c_prog(self): """(str) Returns the name of the program. By default this is the name of the python file being executed. """ return os.path.basename(sys.argv[0]) @property def c_description(self): """(str) Returns the description of the program.""" return 'This program provides an interface to the sectools features' @property def c_version(self): """(str) Returns the version of the program.""" return __version__ @property def c_epilog(self): """(str) Returns the epilog for the program.""" feature_command_names = sorted( [f.CMD_ARG_TOOL_NAME for f in FEATURES_LIST]) features = "\n".join(' %d. %s' % (idx, feature_name) for idx, feature_name in enumerate(feature_command_names, start=1)) example = self.c_prog + ' ' + feature_command_names[-1] + ' -h' return """ Features available for sectools are: {features} Example usage: {example} """.format(features=features, example=example) def format_epilog(self, formatter): """This method is implemented to override the OptionParser's formatting of the epilog""" return self.epilog def c_add_options(self): """Adds the command line args supported by sectools.""" pass def main(args): """Parses the command line arguments, performs any basic operations based on the parsed arguments and starts processing using the isc module. """ # Print the tool's launch command logger.debug2('\n\n Sectools launched as: "' + ' '.join(sys.argv) + '"\n') if len(args) > 1: feature = args[1] for supported_feature in FEATURES_LIST: if feature == supported_feature.CMD_ARG_TOOL_NAME: supported_feature.main(supported_feature.parse_args(sys.argv[1:])) break else: raise RuntimeError( 'Feature provided from command line: "' + feature + '" is invalid.' + '\n' ' ' + 'Please choose from : ' + str([f.CMD_ARG_TOOL_NAME for f in FEATURES_LIST])) if __name__ == '__main__': try: # Check that the command line are valid and are normalized. args = SectoolsParser().pos_args main(args) except Exception: logger.error(traceback.format_exc()) logger.error(sys.exc_info()[1]) sys.exit(1) except KeyboardInterrupt: print logger.error('Keyboard Interrupt Received. Exiting!') sys.exit(1) sys.exit(0)
38.130233
149
0.664064
a4e74801f0e174743bf232e97dbdd268a0b10de0
6,422
py
Python
spec_pythonizer/minimal_ssz.py
hwwhww/research
4bde287aae017cd93fa936f587f21cddcc7c4129
[ "MIT" ]
1
2020-07-22T14:50:53.000Z
2020-07-22T14:50:53.000Z
spec_pythonizer/minimal_ssz.py
hwwhww/research
4bde287aae017cd93fa936f587f21cddcc7c4129
[ "MIT" ]
null
null
null
spec_pythonizer/minimal_ssz.py
hwwhww/research
4bde287aae017cd93fa936f587f21cddcc7c4129
[ "MIT" ]
null
null
null
from hashlib import sha256 def hash(x): return sha256(x).digest() BYTES_PER_CHUNK = 32 BYTES_PER_LENGTH_PREFIX = 4 ZERO_CHUNK = b'\x00' * BYTES_PER_CHUNK def SSZType(fields): class SSZObject(): def __init__(self, **kwargs): for f in fields: if f not in kwargs: raise Exception("Missing constructor argument: %s" % f) setattr(self, f, kwargs[f]) def __eq__(self, other): return ( self.fields == other.fields and self.serialize() == other.serialize() ) def __hash__(self): return int.from_bytes(self.hash_tree_root(), byteorder="little") def __str__(self): output = [] for field in self.fields: output.append(f'{field}: {getattr(self, field)}') return "\n".join(output) def serialize(self): return serialize(self, self.__class__) def hash_tree_root(self): return hash_tree_root(self, self.__class__) SSZObject.fields = fields return SSZObject def is_basic(typ): return isinstance(typ, str) and typ[:4] in ('uint', 'bool') def is_constant_sized(typ): if is_basic(typ): return True elif isinstance(typ, list) and len(typ) == 1: return is_constant_sized(typ[0]) elif isinstance(typ, list) and len(typ) == 2: return False elif isinstance(typ, str) and typ[:5] == 'bytes': return len(typ) > 5 elif hasattr(typ, 'fields'): for subtype in typ.fields.values(): if not is_constant_sized(subtype): return False return True else: raise Exception("Type not recognized") def coerce_to_bytes(x): if isinstance(x, str): o = x.encode('utf-8') assert len(o) == len(x) return o elif isinstance(x, bytes): return x else: raise Exception("Expecting bytes") def serialize(value, typ): if isinstance(typ, str) and typ[:4] == 'uint': length = int(typ[4:]) assert length in (8, 16, 32, 64, 128, 256) return value.to_bytes(length, 'little') elif typ == 'bool': assert value in (True, False) return b'\x01' if value is True else b'\x00' elif (isinstance(typ, list) and len(typ) == 1) or typ == 'bytes': serialized_bytes = coerce_to_bytes(value) if typ == 'bytes' else b''.join([serialize(element, typ[0]) for element in value]) assert len(serialized_bytes) < 2**(8 * BYTES_PER_LENGTH_PREFIX) serialized_length = len(serialized_bytes).to_bytes(BYTES_PER_LENGTH_PREFIX, 'little') return serialized_length + serialized_bytes elif isinstance(typ, list) and len(typ) == 2: return ''.join([serialize(element, typ[0]) for element in value]) elif isinstance(typ, str) and len(typ) > 5 and typ[:5] == 'bytes': assert len(value) == int(typ[5:]), (value, int(typ[5:])) return coerce_to_bytes(value) elif hasattr(typ, 'fields'): serialized_bytes = b''.join([serialize(getattr(value, field), subtype) for field, subtype in typ.fields.items()]) if is_constant_sized(typ): return serialized_bytes else: assert len(serialized_bytes) < 2**(8 * BYTES_PER_LENGTH_PREFIX) serialized_length = len(serialized_bytes).to_bytes(BYTES_PER_LENGTH_PREFIX, 'little') return serialized_length + serialized_bytes else: print(value, typ) raise Exception("Type not recognized") def chunkify(bytez): bytez += b'\x00' * (len(bytez) % BYTES_PER_CHUNK) return [bytez[i:i+32] for i in range(0, len(bytez), 32)] def pack(values, subtype): return chunkify(b''.join([serialize(value, subtype) for value in values])) def is_power_of_two(x): return x > 0 and x & (x-1) == 0 def merkleize(chunks): tree = chunks[::] while not is_power_of_two(len(tree)): tree.append(ZERO_CHUNK) tree = [ZERO_CHUNK] * len(tree) + tree for i in range(len(tree)//2-1, 0, -1): tree[i] = hash(tree[i*2] + tree[i*2+1]) return tree[1] def mix_in_length(root, length): return hash(root + length.to_bytes(32, 'little')) def infer_type(value): if hasattr(value.__class__, 'fields'): return value.__class__ elif isinstance(value, list): return [infer_type(value[0])] if len(value) > 0 else ['uint64'] elif isinstance(value, (bytes, str)): return 'bytes' elif isinstance(value, int): return 'uint64' else: raise Exception("Failed to infer type") def hash_tree_root(value, typ=None): if typ is None: typ = infer_type(value) if is_basic(typ): return merkleize(pack([value], typ)) elif isinstance(typ, list) and len(typ) == 1 and is_basic(typ[0]): return mix_in_length(merkleize(pack(value, typ[0])), len(value)) elif isinstance(typ, list) and len(typ) == 1 and not is_basic(typ[0]): return mix_in_length(merkleize([hash_tree_root(element, typ[0]) for element in value]), len(value)) elif isinstance(typ, list) and len(typ) == 2 and is_basic(typ[0]): return merkleize(pack(value, typ[0])) elif typ == 'bytes': return mix_in_length(merkleize(chunkify(coerce_to_bytes(value))), len(value)) elif isinstance(typ, str) and typ[:5] == 'bytes' and len(typ) > 5: assert len(value) == int(typ[5:]) return merkleize(chunkify(coerce_to_bytes(value))) elif isinstance(typ, list) and len(typ) == 2 and not is_basic(typ[0]): return merkleize([hash_tree_root(getattr(value, field), subtype) for field, subtype in typ.fields.items()]) elif hasattr(typ, 'fields'): return merkleize([hash_tree_root(getattr(value, field), subtype) for field, subtype in typ.fields.items()]) else: raise Exception("Type not recognized") def truncate(container, field_name): field_keys = list(container.fields.keys()) index = field_keys.index(field_name) truncated_fields = { key: container.fields[key] for key in field_keys[:index] } truncated_class = SSZType(truncated_fields) kwargs = { field: getattr(container, field) for field in field_keys[:index] } return truncated_class(**kwargs) def signed_root(container, field_name): return hash_tree_root(truncate(container, field_name))
36.908046
132
0.625195
53299ea2815ea7f31b7a726384972e5c0bd0017a
1,376
py
Python
neutron/plugins/vmware/extensions/nvp_networkgw.py
yagosys/neutron
005fec677c3bf8b2aa0df68c4aedc2b708ec7caf
[ "Apache-2.0" ]
1
2016-01-13T14:29:07.000Z
2016-01-13T14:29:07.000Z
neutron/plugins/vmware/extensions/nvp_networkgw.py
yagosys/neutron
005fec677c3bf8b2aa0df68c4aedc2b708ec7caf
[ "Apache-2.0" ]
null
null
null
neutron/plugins/vmware/extensions/nvp_networkgw.py
yagosys/neutron
005fec677c3bf8b2aa0df68c4aedc2b708ec7caf
[ "Apache-2.0" ]
3
2015-04-03T08:47:02.000Z
2020-02-05T10:40:45.000Z
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2013 VMware, Inc. # All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # TODO(armando-migliaccio): This is deprecated in Icehouse, and # to be removed in Juno. from neutron.plugins.vmware.extensions import networkgw class Nvp_networkgw(networkgw.Networkgw): """(Deprecated) API extension for Layer-2 Gateway support.""" @classmethod def get_name(cls): return "Neutron-NVP Network Gateway" @classmethod def get_alias(cls): return "network-gateway" @classmethod def get_description(cls): return ("Connects Neutron networks with external " "networks at layer 2 (deprecated).") @classmethod def get_namespace(cls): return "http://docs.openstack.org/ext/neutron/network-gateway/api/v1.0"
32
79
0.706395