hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
dfca4efc48ecc61af82c78e3147819cd10885599
295
py
Python
sortColors/sortColors00.py
tnkteja/notthisagain
85e2b2cbea1298a052986e9dfe5e73d022b537f3
[ "MIT" ]
null
null
null
sortColors/sortColors00.py
tnkteja/notthisagain
85e2b2cbea1298a052986e9dfe5e73d022b537f3
[ "MIT" ]
null
null
null
sortColors/sortColors00.py
tnkteja/notthisagain
85e2b2cbea1298a052986e9dfe5e73d022b537f3
[ "MIT" ]
null
null
null
from random import randint A=[ randint(0,2) for _ in xrange(10000)] print A def Solution(A): def swap(A,i,j): tmp=A[i] A[i]=A[j] A[j]=tmp i=0 k=len(A)-1 j=0 while j<k: if A[j]==0: swap(A,i,j) i+=1 if A[j]==2: swap(A,j,k) k-=1 j+=1 return A Solution(A) print A
10.535714
40
0.545763
084342e7f9ed6a380b11f86ca7eaac8753fe6132
1,900
py
Python
api/serializers/roleplay.py
oil-rope/oil-and-rope
6d59c87d4809f120417a90c1624952085486bb06
[ "MIT" ]
8
2019-08-27T20:08:22.000Z
2021-07-23T22:49:47.000Z
api/serializers/roleplay.py
oil-rope/oil-and-rope
6d59c87d4809f120417a90c1624952085486bb06
[ "MIT" ]
73
2020-03-11T18:07:29.000Z
2022-03-28T18:07:47.000Z
api/serializers/roleplay.py
oil-rope/oil-and-rope
6d59c87d4809f120417a90c1624952085486bb06
[ "MIT" ]
4
2020-02-22T19:44:17.000Z
2022-03-08T09:42:45.000Z
from django.apps import apps from rest_framework import serializers from common.constants import models from .chat import ChatSerializer from .common import MappedSerializerMixin Domain = apps.get_model(models.DOMAIN_MODEL) Place = apps.get_model(models.PLACE_MODEL) Race = apps.get_model(models.RACE_MODEL) Session = apps.get_model(models.SESSION_MODEL) class DomainSerializer(serializers.ModelSerializer): class Meta: model = Domain fields = ( 'id', 'name', 'description', 'domain_type', 'image', 'entry_created_at', 'entry_updated_at', ) class PlaceSerializer(serializers.ModelSerializer): class Meta: model = Place fields = ( 'id', 'name', 'description', 'site_type', 'image', 'parent_site', 'user', 'owner', 'entry_created_at', 'entry_updated_at', ) class RaceSerializer(serializers.ModelSerializer): owners = serializers.SerializerMethodField(method_name='get_owners') def get_owners(self, obj): owners_pk = obj.owners.values_list('pk', flat=True) return list(owners_pk) class Meta: model = Race fields = ( 'id', 'name', 'description', 'strength', 'dexterity', 'constitution', 'intelligence', 'wisdom', 'charisma', 'affected_by_armor', 'image', 'users', 'owners', ) class SessionSerializer(MappedSerializerMixin, serializers.ModelSerializer): serializers_map = { 'chat': ChatSerializer(many=False, read_only=True) } game_masters = serializers.SerializerMethodField(method_name='get_game_masters') def get_game_masters(self, obj): gms_pk = obj.game_masters.values_list('pk', flat=True) return list(gms_pk) class Meta: model = Session fields = ( 'id', 'name', 'players', 'chat', 'next_game', 'system', 'world', 'game_masters', )
28.787879
119
0.661579
5d22ae78c20cfee4c9fff2a379aff924280485b3
143,912
py
Python
fbgemm_gpu/test/split_table_batched_embeddings_test.py
wfanzju/FBGEMM
a58ab65e27da27949ca0125683a6f83e1e464064
[ "BSD-3-Clause" ]
null
null
null
fbgemm_gpu/test/split_table_batched_embeddings_test.py
wfanzju/FBGEMM
a58ab65e27da27949ca0125683a6f83e1e464064
[ "BSD-3-Clause" ]
null
null
null
fbgemm_gpu/test/split_table_batched_embeddings_test.py
wfanzju/FBGEMM
a58ab65e27da27949ca0125683a6f83e1e464064
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # pyre-ignore-all-errors[56] # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import copy import pickle import random import unittest from typing import Callable, List, Optional, Tuple, TypeVar import fbgemm_gpu import fbgemm_gpu.split_table_batched_embeddings_ops as split_table_batched_embeddings_ops import hypothesis.strategies as st import numpy as np import torch from fbgemm_gpu.split_table_batched_embeddings_ops import ( OptimType, SparseType, RecordCacheMetrics, BoundsCheckMode, ) open_source: bool = getattr(fbgemm_gpu, "open_source", False) if open_source: # pyre-ignore[21] from test_utils import gpu_available, gpu_unavailable else: from fbgemm_gpu.test.test_utils import gpu_available, gpu_unavailable from hypothesis import HealthCheck, Verbosity, assume, given, settings from hypothesis.strategies import composite from torch import Tensor MAX_EXAMPLES = 40 # For long running tests reduce the number of iterations to reduce timeout errors. MAX_EXAMPLES_LONG_RUNNING = 15 Deviceable = TypeVar("Deviceable", torch.nn.EmbeddingBag, Tensor) @composite # pyre-ignore def get_nbit_weights_ty(draw) -> Optional[SparseType]: """ Returns None if mixed weights ty should be used, otherwise, returns specific SparseType. """ mixed_weights_ty = draw(st.booleans()) if mixed_weights_ty: return None return draw( st.sampled_from( [ SparseType.FP32, SparseType.FP16, SparseType.INT8, SparseType.INT4, SparseType.INT2, ] ) ) def round_up(a: int, b: int) -> int: return int((a + b - 1) // b) * b def get_offsets_from_dense(indices: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: (B, L) = indices.size() return ( indices.contiguous().view(-1), torch.tensor( np.cumsum(np.asarray([0] + [L for _ in range(B)])[:-1]).astype(np.int64) ), ) def to_device(t: Deviceable, use_cpu: bool) -> Deviceable: # pyre-fixme[7]: Expected `Deviceable` but got `Union[Tensor, # torch.nn.EmbeddingBag]`. return t.cpu() if use_cpu else t.cuda() def b_indices( b: Callable[..., torch.Tensor], x: torch.Tensor, per_sample_weights: Optional[torch.Tensor] = None, use_cpu: bool = False, do_pooling: bool = True, ) -> torch.Tensor: (indices, offsets) = get_offsets_from_dense(x) if do_pooling: return b( to_device(indices, use_cpu), to_device(offsets, use_cpu), per_sample_weights=per_sample_weights, ) else: return b(to_device(indices, use_cpu)) def get_table_batched_offsets_from_dense( merged_indices: torch.Tensor, use_cpu: bool = False ) -> Tuple[torch.Tensor, torch.Tensor]: (T, B, L) = merged_indices.size() lengths = np.ones((T, B)) * L flat_lengths = lengths.flatten() return ( to_device(merged_indices.contiguous().view(-1), use_cpu), to_device( torch.tensor(([0] + np.cumsum(flat_lengths).tolist())).long(), use_cpu, ), ) def generate_requests( iters: int, B: int, T: int, L: int, E: int, # inter-batch indices reuse rate reuse: float = 0.0, # alpha <= 1.0: use uniform distribution # alpha > 1.0: use zjpf distribution alpha: float = 1.0, weights_precision: SparseType = SparseType.FP32, weighted: bool = False, ) -> List[Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]]: if alpha <= 1.0: all_indices = torch.randint( low=0, high=E, size=(iters, T, B * L), device=torch.cuda.current_device(), dtype=torch.int32, ) else: all_indices = ( torch.as_tensor(np.random.zipf(a=alpha, size=(iters, T, B * L))) .to(torch.cuda.current_device()) .int() % E ) for it in range(iters - 1): for t in range(T): reused_indices = torch.randperm(B * L, device=torch.cuda.current_device())[ : int(B * L * reuse) ] all_indices[it + 1, t, reused_indices] = all_indices[it, t, reused_indices] rs = [] for it in range(iters): weight_tensor = ( None if not weighted else torch.randn( T * B * L, device=torch.cuda.current_device(), dtype=torch.float16 if weights_precision else torch.float32, ) ) rs.append( get_table_batched_offsets_from_dense(all_indices[it].view(T, B, L)) + (weight_tensor,) ) return rs def quantize_embs( weight: Tensor, weight_ty: SparseType ) -> Tuple[Tensor, Optional[Tensor]]: if weight_ty == SparseType.FP32: q_weight = weight.float() # FIXME: How to view the PyTorch Tensor as a different type (e.g., uint8) # Here it uses numpy and it will introduce DtoH/HtoD overhead. res_weight = torch.tensor(q_weight.cpu().numpy().view(np.uint8)).contiguous() return (res_weight, None) elif weight_ty == SparseType.FP16: q_weight = weight.half() res_weight = torch.tensor(q_weight.cpu().numpy().view(np.uint8)).contiguous() return (res_weight, None) elif weight_ty == SparseType.INT8: q_weight = torch.ops.fbgemm.FloatToFused8BitRowwiseQuantized(weight) res_weight = torch.tensor(q_weight[:, :-8].cpu().numpy().view(np.uint8)) res_scale_shift = torch.tensor( q_weight[:, -8:] .contiguous() .cpu() .numpy() .view(np.float32) .astype(np.float16) .view(np.uint8) ) # [-4, -2]: scale; [-2:]: bias return (res_weight, res_scale_shift) elif weight_ty == SparseType.INT4 or weight_ty == SparseType.INT2: q_weight = torch.ops.fbgemm.FloatToFusedNBitRowwiseQuantizedSBHalf( weight, bit_rate=weight_ty.bit_rate(), ) res_weight = torch.tensor(q_weight[:, :-4].cpu().numpy().view(np.uint8)) res_scale_shift = torch.tensor( q_weight[:, -4:].contiguous().cpu().numpy().view(np.uint8) ) # [-4, -2]: scale; [-2:]: bias return (res_weight, res_scale_shift) else: raise RuntimeError("Unsupported SparseType: {}".format(weight_ty)) class SplitTableBatchedEmbeddingsTest(unittest.TestCase): def execute_forward_( self, T: int, D: int, B: int, log_E: int, L: int, weights_precision: SparseType, weighted: bool, mixed: bool, use_cache: bool, cache_algorithm: split_table_batched_embeddings_ops.CacheAlgorithm, pooling_mode: split_table_batched_embeddings_ops.PoolingMode, use_cpu: bool, ) -> None: # NOTE: cache is not applicable to CPU version. assume(not use_cpu or not use_cache) # NOTE: limit (T * B * L * D) to avoid timeout for CPU version! assume(not use_cpu or T * B * L * D <= 2048) # NOTE: CPU does not support FP16. assume(not (use_cpu and weights_precision == SparseType.FP16)) # NOTE: weighted operation can be done only for SUM. assume( pooling_mode == split_table_batched_embeddings_ops.PoolingMode.SUM or not weighted ) # NOTE: No bag ops only work on GPUs, no mixed assume( not use_cpu or pooling_mode != split_table_batched_embeddings_ops.PoolingMode.NONE ) assume( not mixed or pooling_mode != split_table_batched_embeddings_ops.PoolingMode.NONE ) emb_op = ( split_table_batched_embeddings_ops.SplitTableBatchedEmbeddingBagsCodegen ) if pooling_mode == split_table_batched_embeddings_ops.PoolingMode.SUM: mode = "sum" do_pooling = True elif pooling_mode == split_table_batched_embeddings_ops.PoolingMode.MEAN: mode = "mean" do_pooling = True elif pooling_mode == split_table_batched_embeddings_ops.PoolingMode.NONE: mode = "sum" do_pooling = False else: # This proves that we have exhaustively checked all PoolingModes raise RuntimeError("Unknown PoolingMode!") E = int(10 ** log_E) if use_cpu: D = (D + 15) // 16 * 4 else: D = D * 4 if not mixed: Ds = [D] * T Es = [int(1e4)] * T else: Ds = [ round_up(np.random.randint(low=int(0.25 * D), high=int(1.0 * D)), 4) for _ in range(T) ] Es = [ np.random.randint(low=int(0.5 * E), high=int(2.0 * E)) for _ in range(T) ] compute_device = split_table_batched_embeddings_ops.ComputeDevice.CUDA if use_cpu: managed = [split_table_batched_embeddings_ops.EmbeddingLocation.HOST] * T compute_device = split_table_batched_embeddings_ops.ComputeDevice.CPU elif use_cache: managed = [ split_table_batched_embeddings_ops.EmbeddingLocation.MANAGED_CACHING ] * T if mixed: average_D = sum(Ds) // T for t, d in enumerate(Ds): managed[t] = ( split_table_batched_embeddings_ops.EmbeddingLocation.DEVICE if d < average_D else managed[t] ) else: managed = [ np.random.choice( [ split_table_batched_embeddings_ops.EmbeddingLocation.DEVICE, split_table_batched_embeddings_ops.EmbeddingLocation.MANAGED, ] ) for _ in range(T) ] if do_pooling: bs = [ to_device(torch.nn.EmbeddingBag(E, D, mode=mode, sparse=True), use_cpu) for (E, D) in zip(Es, Ds) ] else: bs = [ to_device(torch.nn.Embedding(E, D, sparse=True), use_cpu) for (E, D) in zip(Es, Ds) ] if weights_precision == SparseType.INT8: for t in range(T): bs[t].weight.data.copy_( torch.ops.fbgemm.Fused8BitRowwiseQuantizedToFloat( torch.ops.fbgemm.FloatToFused8BitRowwiseQuantized( bs[t].weight.data ) ) ) if weights_precision == SparseType.FP16 and not use_cpu: # NOTE: CPU version of torch.nn.EmbeddingBag doesn't support fp16. bs = [b.half() for b in bs] xs = [to_device(torch.randint(low=0, high=e, size=(B, L)), use_cpu) for e in Es] xws = [to_device(torch.randn(size=(B, L)), use_cpu) for _ in range(T)] xws_acc_type = copy.deepcopy(xws) if weights_precision == SparseType.FP16 and not use_cpu: # NOTE: CPU version of torch.nn.EmbeddingBag doesn't support fp16. xws = [xw.half() for xw in xws] fs = ( [ b_indices(b, x, use_cpu=use_cpu, do_pooling=do_pooling) for (b, x) in zip(bs, xs) ] if not weighted else [ b_indices( b, x, per_sample_weights=xw.view(-1), use_cpu=use_cpu, do_pooling=do_pooling, ) for (b, x, xw) in zip(bs, xs, xws) ] ) if do_pooling: f = torch.cat([f.view(B, -1) for f in fs], dim=1) else: f = torch.cat(fs, dim=0).view(-1, D) cc = emb_op( embedding_specs=[ ( E, D, split_table_batched_embeddings_ops.EmbeddingLocation(M), compute_device, ) for (E, D, M) in zip(Es, Ds, managed) ], weights_precision=weights_precision, optimizer=OptimType.EXACT_SGD, learning_rate=0.05, cache_algorithm=cache_algorithm, pooling_mode=pooling_mode, ) # NOTE: test TorchScript-compatible! cc = torch.jit.script(cc) for t in range(T): cc.split_embedding_weights()[t].data.copy_( bs[t].weight if weights_precision != SparseType.INT8 else torch.ops.fbgemm.FloatToFused8BitRowwiseQuantized(bs[t].weight) ) x = torch.cat([x.view(1, B, L) for x in xs], dim=0) xw = torch.cat([xw.view(1, B, L) for xw in xws_acc_type], dim=0) (indices, offsets) = get_table_batched_offsets_from_dense(x, use_cpu) fc2 = ( cc(indices, offsets) if not weighted else cc(indices, offsets, to_device(xw.contiguous().view(-1), use_cpu)) ) torch.testing.assert_close( fc2.float(), f.float(), atol=8.0e-3 if weights_precision == SparseType.FP16 else 1.0e-5, rtol=8.0e-3 if weights_precision == SparseType.FP16 else 1.0e-5, ) def test_forward_cpu_int8( self, ) -> None: weights_precision = SparseType.INT8 use_cpu = True T = random.randint(1, 10) D = random.randint(2, min(256, int(2048 / T))) B = random.randint(1, min(128, int(2048 / T / D))) L = random.randint(0, min(20, int(2048 / T / D / B))) log_E = random.randint(3, 5) use_cache = False # cache_algorithm is don't care as we don't use cache. cache_algorithm = split_table_batched_embeddings_ops.CacheAlgorithm.LRU pooling_mode = random.choice( [ split_table_batched_embeddings_ops.PoolingMode.SUM, split_table_batched_embeddings_ops.PoolingMode.MEAN, ] ) mixed = False if pooling_mode == split_table_batched_embeddings_ops.PoolingMode.SUM: weighted = random.choice([True, False]) else: weighted = False self.execute_forward_( T, D, B, log_E, L, weights_precision, weighted, mixed, use_cache, cache_algorithm, pooling_mode, use_cpu, ) def test_forward_cpu_fp32( self, ) -> None: weights_precision = SparseType.FP32 use_cpu = True T = random.randint(1, 10) D = random.randint(2, min(256, int(2048 / T))) B = random.randint(1, min(128, int(2048 / T / D))) L = random.randint(0, min(20, int(2048 / T / D / B))) log_E = random.randint(3, 5) use_cache = False # cache_algorithm is don't care as we don't use cache. cache_algorithm = split_table_batched_embeddings_ops.CacheAlgorithm.LRU pooling_mode = random.choice( [ split_table_batched_embeddings_ops.PoolingMode.SUM, split_table_batched_embeddings_ops.PoolingMode.MEAN, ] ) mixed = False if pooling_mode == split_table_batched_embeddings_ops.PoolingMode.SUM: weighted = random.choice([True, False]) else: weighted = False self.execute_forward_( T, D, B, log_E, L, weights_precision, weighted, mixed, use_cache, cache_algorithm, pooling_mode, use_cpu, ) @unittest.skipIf(*gpu_unavailable) def test_forward_gpu_no_cache_int8( self, ) -> None: weights_precision = SparseType.INT8 use_cpu = False T = random.randint(1, 10) D = random.randint(2, 256) B = random.randint(1, 128) L = random.randint(0, 20) log_E = random.randint(3, 5) use_cache = False # cache_algorithm is don't care as we don't use cache. cache_algorithm = split_table_batched_embeddings_ops.CacheAlgorithm.LRU pooling_mode = random.choice( [ split_table_batched_embeddings_ops.PoolingMode.SUM, split_table_batched_embeddings_ops.PoolingMode.MEAN, split_table_batched_embeddings_ops.PoolingMode.NONE, ] ) if pooling_mode == split_table_batched_embeddings_ops.PoolingMode.NONE: mixed = False else: mixed = random.choice([True, False]) if pooling_mode == split_table_batched_embeddings_ops.PoolingMode.SUM: weighted = random.choice([True, False]) else: weighted = False self.execute_forward_( T, D, B, log_E, L, weights_precision, weighted, mixed, use_cache, cache_algorithm, pooling_mode, use_cpu, ) @unittest.skipIf(*gpu_unavailable) def test_forward_gpu_no_cache_fp16( self, ) -> None: weights_precision = SparseType.FP16 use_cpu = False T = random.randint(1, 10) D = random.randint(2, 256) B = random.randint(1, 128) L = random.randint(0, 20) log_E = random.randint(3, 5) use_cache = False # cache_algorithm is don't care as we don't use cache. cache_algorithm = split_table_batched_embeddings_ops.CacheAlgorithm.LRU pooling_mode = random.choice( [ split_table_batched_embeddings_ops.PoolingMode.SUM, split_table_batched_embeddings_ops.PoolingMode.MEAN, split_table_batched_embeddings_ops.PoolingMode.NONE, ] ) if pooling_mode == split_table_batched_embeddings_ops.PoolingMode.NONE: mixed = False else: mixed = random.choice([True, False]) if pooling_mode == split_table_batched_embeddings_ops.PoolingMode.SUM: weighted = random.choice([True, False]) else: weighted = False self.execute_forward_( T, D, B, log_E, L, weights_precision, weighted, mixed, use_cache, cache_algorithm, pooling_mode, use_cpu, ) @unittest.skipIf(*gpu_unavailable) def test_forward_gpu_no_cache_fp32( self, ) -> None: weights_precision = SparseType.FP32 use_cpu = False T = random.randint(1, 10) D = random.randint(2, 256) B = random.randint(1, 128) L = random.randint(0, 20) log_E = random.randint(3, 5) use_cache = False # cache_algorithm is don't care as we don't use cache. cache_algorithm = split_table_batched_embeddings_ops.CacheAlgorithm.LRU pooling_mode = random.choice( [ split_table_batched_embeddings_ops.PoolingMode.SUM, split_table_batched_embeddings_ops.PoolingMode.MEAN, split_table_batched_embeddings_ops.PoolingMode.NONE, ] ) if pooling_mode == split_table_batched_embeddings_ops.PoolingMode.NONE: mixed = False else: mixed = random.choice([True, False]) if pooling_mode == split_table_batched_embeddings_ops.PoolingMode.SUM: weighted = random.choice([True, False]) else: weighted = False self.execute_forward_( T, D, B, log_E, L, weights_precision, weighted, mixed, use_cache, cache_algorithm, pooling_mode, use_cpu, ) @unittest.skipIf(*gpu_unavailable) @given( cache_algorithm=st.sampled_from( split_table_batched_embeddings_ops.CacheAlgorithm ), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) def test_forward_gpu_uvm_cache_int8( self, cache_algorithm: split_table_batched_embeddings_ops.CacheAlgorithm, ) -> None: weights_precision = SparseType.INT8 use_cpu = False T = random.randint(1, 10) D = random.randint(2, 256) B = random.randint(1, 128) L = random.randint(0, 20) log_E = random.randint(3, 5) use_cache = True pooling_mode = random.choice( [ split_table_batched_embeddings_ops.PoolingMode.SUM, split_table_batched_embeddings_ops.PoolingMode.MEAN, split_table_batched_embeddings_ops.PoolingMode.NONE, ] ) if pooling_mode == split_table_batched_embeddings_ops.PoolingMode.NONE: mixed = False else: mixed = random.choice([True, False]) if pooling_mode == split_table_batched_embeddings_ops.PoolingMode.SUM: weighted = random.choice([True, False]) else: weighted = False self.execute_forward_( T, D, B, log_E, L, weights_precision, weighted, mixed, use_cache, cache_algorithm, pooling_mode, use_cpu, ) @unittest.skipIf(*gpu_unavailable) @given( cache_algorithm=st.sampled_from( split_table_batched_embeddings_ops.CacheAlgorithm ), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) def test_forward_gpu_uvm_cache_fp16( self, cache_algorithm: split_table_batched_embeddings_ops.CacheAlgorithm, ) -> None: weights_precision = SparseType.FP16 use_cpu = False T = random.randint(1, 10) D = random.randint(2, 256) B = random.randint(1, 128) L = random.randint(0, 20) log_E = random.randint(3, 5) use_cache = True pooling_mode = random.choice( [ split_table_batched_embeddings_ops.PoolingMode.SUM, split_table_batched_embeddings_ops.PoolingMode.MEAN, split_table_batched_embeddings_ops.PoolingMode.NONE, ] ) if pooling_mode == split_table_batched_embeddings_ops.PoolingMode.NONE: mixed = False else: mixed = random.choice([True, False]) if pooling_mode == split_table_batched_embeddings_ops.PoolingMode.SUM: weighted = random.choice([True, False]) else: weighted = False self.execute_forward_( T, D, B, log_E, L, weights_precision, weighted, mixed, use_cache, cache_algorithm, pooling_mode, use_cpu, ) @unittest.skipIf(*gpu_unavailable) @given( cache_algorithm=st.sampled_from( split_table_batched_embeddings_ops.CacheAlgorithm ), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) def test_forward_gpu_uvm_cache_fp32( self, cache_algorithm: split_table_batched_embeddings_ops.CacheAlgorithm, ) -> None: weights_precision = SparseType.FP32 use_cpu = False T = random.randint(1, 10) D = random.randint(2, 256) B = random.randint(1, 128) L = random.randint(0, 20) log_E = random.randint(3, 5) use_cache = True pooling_mode = random.choice( [ split_table_batched_embeddings_ops.PoolingMode.SUM, split_table_batched_embeddings_ops.PoolingMode.MEAN, split_table_batched_embeddings_ops.PoolingMode.NONE, ] ) if pooling_mode == split_table_batched_embeddings_ops.PoolingMode.NONE: mixed = False else: mixed = random.choice([True, False]) if pooling_mode == split_table_batched_embeddings_ops.PoolingMode.SUM: weighted = random.choice([True, False]) else: weighted = False self.execute_forward_( T, D, B, log_E, L, weights_precision, weighted, mixed, use_cache, cache_algorithm, pooling_mode, use_cpu, ) @unittest.skipIf(*gpu_unavailable) @given( T=st.integers(min_value=1, max_value=10), D=st.integers(min_value=2, max_value=128), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), # FIXME: switch to # output_dtype=st.sampled_from([SparseType.FP16, SparseType.INT8]), # after v0/v2 is landed. output_dtype=st.sampled_from([SparseType.FP32]), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much], ) def test_forward_fused_pooled_emb_quant( self, T: int, D: int, B: int, log_E: int, L: int, output_dtype: SparseType, ) -> None: Ds = [ round_up(np.random.randint(low=int(max(0.25 * D, 1)), high=int(1.0 * D)), 4) for _ in range(T) ] E = int(10 ** log_E) Es = [np.random.randint(low=int(0.5 * E), high=int(2.0 * E)) for _ in range(T)] op = split_table_batched_embeddings_ops.SplitTableBatchedEmbeddingBagsCodegen( embedding_specs=[ ( E, D, split_table_batched_embeddings_ops.EmbeddingLocation.DEVICE, split_table_batched_embeddings_ops.ComputeDevice.CUDA, ) for (E, D) in zip(Es, Ds) ], output_dtype=output_dtype, device=torch.cuda.current_device(), ) op_ref = ( split_table_batched_embeddings_ops.SplitTableBatchedEmbeddingBagsCodegen( embedding_specs=[ ( E, D, split_table_batched_embeddings_ops.EmbeddingLocation.DEVICE, split_table_batched_embeddings_ops.ComputeDevice.CUDA, ) for (E, D) in zip(Es, Ds) ], output_dtype=SparseType.FP32, device=torch.cuda.current_device(), ) ) # sync weights between two ops split_weights = op.split_embedding_weights() ref_split_weights = op_ref.split_embedding_weights() for t in range(T): split_weights[t].data.copy_(ref_split_weights[t]) requests = generate_requests(2, B, T, L, min(Es), reuse=0.1) for indices, offsets, _ in requests: lowp_pooled_output = op( indices=indices, offsets=offsets, ) fp32_pooled_output = op_ref( indices=indices, offsets=offsets, ) lowp_pooled_emb_split = [ d + 8 if output_dtype == SparseType.INT8 else d for d in op.dims ] lowp_pooled_output_per_table = torch.split( lowp_pooled_output, lowp_pooled_emb_split, dim=1 ) deq_lowp_pooled_output_per_table = [ torch.ops.fbgemm.Fused8BitRowwiseQuantizedToFloat(t.contiguous()) if output_dtype == SparseType.INT8 else t.float() for t in lowp_pooled_output_per_table ] fp32_pooled_output_per_table = torch.split( fp32_pooled_output, op.dims, dim=1 ) dq_fp32_pooled_output_per_table = [ torch.ops.fbgemm.Fused8BitRowwiseQuantizedToFloat( torch.ops.fbgemm.FloatToFused8BitRowwiseQuantized( t.contiguous() ).contiguous() ) if output_dtype == SparseType.INT8 else t.half().float() for t in fp32_pooled_output_per_table ] cat_deq_lowp_pooled_output = torch.cat( deq_lowp_pooled_output_per_table, dim=1 ) cat_dq_fp32_pooled_output = torch.cat( dq_fp32_pooled_output_per_table, dim=1 ) torch.testing.assert_close( cat_deq_lowp_pooled_output, cat_dq_fp32_pooled_output ) @unittest.skipIf(*gpu_unavailable) @given( T=st.integers(min_value=1, max_value=10), D=st.integers(min_value=2, max_value=128), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), weights_ty=st.sampled_from( [ SparseType.FP32, SparseType.FP16, SparseType.INT8, SparseType.INT4, # FIXME: INT2 caused big numerical error for this test # SparseType.INT2, ] ), output_dtype=st.sampled_from( [ SparseType.FP16, SparseType.INT8, # SparseType.INT4, ] ), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much], ) def test_nbit_forward_fused_pooled_emb_quant( self, T: int, D: int, B: int, log_E: int, L: int, weights_ty: SparseType, output_dtype: SparseType, ) -> None: D_alignment = max(weights_ty.align_size() for t in range(T)) D_alignment = max(D_alignment, output_dtype.align_size()) D = round_up(D, D_alignment) Ds = [ round_up( np.random.randint(low=int(max(0.25 * D, 1)), high=int(1.0 * D)), D_alignment, ) for _ in range(T) ] Ds = [D] * T E = int(10 ** log_E) Es = [np.random.randint(low=int(0.5 * E), high=int(2.0 * E)) for _ in range(T)] weights_ty_list = [weights_ty] * T managed = [split_table_batched_embeddings_ops.EmbeddingLocation.DEVICE] * T op = split_table_batched_embeddings_ops.IntNBitTableBatchedEmbeddingBagsCodegen( embedding_specs=[ ( "", E, D, W_TY, split_table_batched_embeddings_ops.EmbeddingLocation(M), ) for (E, D, M, W_TY) in zip(Es, Ds, managed, weights_ty_list) ], output_dtype=output_dtype, device=torch.cuda.current_device(), ) # Initilize the random weights for int nbit table split embedding bag op.fill_random_weights() op_ref = ( split_table_batched_embeddings_ops.IntNBitTableBatchedEmbeddingBagsCodegen( embedding_specs=[ ( "", E, D, W_TY, split_table_batched_embeddings_ops.EmbeddingLocation(M), ) for (E, D, M, W_TY) in zip(Es, Ds, managed, weights_ty_list) ], output_dtype=SparseType.FP32, device=torch.cuda.current_device(), ) ) # Initilize the random weights for int nbit table split embedding bag op_ref.fill_random_weights() # sync weights between two ops split_weights = op.split_embedding_weights() ref_split_weights = op_ref.split_embedding_weights() for t in range(T): (weights, scale_shift) = split_weights[t] (ref_weights, ref_scale_shift) = ref_split_weights[t] self.assertEqual(weights.size(), ref_weights.size()) element_size = weights_ty_list[t].bit_rate() / 8.0 rand_tensor = torch.rand( ref_weights.shape[0], int(ref_weights.shape[1] / element_size) ) rand_weights, rand_scale_shift = quantize_embs( rand_tensor, weights_ty_list[t] ) ref_weights.copy_(rand_weights) weights.copy_(ref_weights) if rand_scale_shift is not None: self.assertIsNotNone(scale_shift) self.assertIsNotNone(ref_scale_shift) ref_scale_shift.copy_(rand_scale_shift) scale_shift.copy_(ref_scale_shift) requests = generate_requests(1, B, T, L, min(Es), reuse=0.1) for indices, offsets, _ in requests: lowp_pooled_output = op( indices=indices.int(), offsets=offsets.int(), ) fp32_pooled_output = op_ref( indices=indices.int(), offsets=offsets.int(), ) lowp_pooled_emb_split = [ d + 8 if output_dtype == SparseType.INT8 else d for d in Ds ] lowp_pooled_output_per_table = torch.split( lowp_pooled_output, lowp_pooled_emb_split, dim=1 ) deq_lowp_pooled_output_per_table = [ torch.ops.fbgemm.Fused8BitRowwiseQuantizedToFloat(t.contiguous()) if output_dtype == SparseType.INT8 else t.float() for t in lowp_pooled_output_per_table ] fp32_pooled_output_per_table = torch.split(fp32_pooled_output, Ds, dim=1) dq_fp32_pooled_output_per_table = [ torch.ops.fbgemm.Fused8BitRowwiseQuantizedToFloat( torch.ops.fbgemm.FloatToFused8BitRowwiseQuantized( t.contiguous() ).contiguous() ).contiguous() if output_dtype == SparseType.INT8 else t.half().float() for t in fp32_pooled_output_per_table ] cat_deq_lowp_pooled_output = torch.cat( deq_lowp_pooled_output_per_table, dim=1 ) cat_dq_fp32_pooled_output = torch.cat( dq_fp32_pooled_output_per_table, dim=1 ) torch.testing.assert_close( cat_deq_lowp_pooled_output, cat_dq_fp32_pooled_output, rtol=1e-2, atol=1e-2, equal_nan=True, ) @given( T=st.integers(min_value=1, max_value=3), D=st.integers(min_value=2, max_value=256), B=st.integers(min_value=1, max_value=32), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=10), weights_precision=st.sampled_from([SparseType.FP16, SparseType.FP32]), weighted=st.booleans(), mixed=st.booleans(), long_segments=st.booleans(), pooling_mode=st.sampled_from( [ split_table_batched_embeddings_ops.PoolingMode.SUM, split_table_batched_embeddings_ops.PoolingMode.MEAN, split_table_batched_embeddings_ops.PoolingMode.NONE, ] ), use_cpu=st.booleans() if gpu_available else st.just(True), ) @settings( verbosity=Verbosity.verbose, max_examples=10, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) def test_backward_dense( self, T: int, D: int, B: int, log_E: int, L: int, weights_precision: SparseType, weighted: bool, mixed: bool, long_segments: bool, pooling_mode: split_table_batched_embeddings_ops.PoolingMode, use_cpu: bool, ) -> None: # NOTE: torch.autograd.gradcheck() is too time-consuming for CPU version # so we have to limit (T * B * L * D)! assume(not use_cpu or T * B * L * D <= 2048) assume( pooling_mode == split_table_batched_embeddings_ops.PoolingMode.SUM or not weighted ) assume(not (use_cpu and weights_precision == SparseType.FP16)) # No bag ops only work on GPUs, no mixed, no weighted assume( not use_cpu or pooling_mode != split_table_batched_embeddings_ops.PoolingMode.NONE ) assume( not mixed or pooling_mode != split_table_batched_embeddings_ops.PoolingMode.NONE ) assume( not weighted or pooling_mode != split_table_batched_embeddings_ops.PoolingMode.NONE ) emb_op = ( split_table_batched_embeddings_ops.DenseTableBatchedEmbeddingBagsCodegen ) if pooling_mode == split_table_batched_embeddings_ops.PoolingMode.SUM: mode = "sum" do_pooling = True elif pooling_mode == split_table_batched_embeddings_ops.PoolingMode.MEAN: mode = "mean" do_pooling = True elif pooling_mode == split_table_batched_embeddings_ops.PoolingMode.NONE: mode = "sum" do_pooling = False else: # This proves that we have exhaustively checked all PoolingModes raise RuntimeError("Unknown PoolingMode!") E = int(10 ** log_E) if use_cpu: D = (D + 15) // 16 * 4 else: D = D * 4 if not mixed: Ds = [D] * T Es = [E] * T else: Ds = [ round_up(np.random.randint(low=int(0.25 * D), high=int(1.0 * D)), 4) for _ in range(T) ] Es = [ np.random.randint(low=int(0.5 * E), high=int(2 * E)) for _ in range(T) ] if do_pooling: bs = [ to_device(torch.nn.EmbeddingBag(E, D, mode=mode, sparse=False), use_cpu) for (E, D) in zip(Es, Ds) ] else: bs = [ to_device(torch.nn.Embedding(E, D, sparse=False), use_cpu) for (E, D) in zip(Es, Ds) ] if weights_precision == SparseType.FP16 and not use_cpu: # NOTE: CPU version of torch.nn.EmbeddingBag doesn't support fp16. bs = [b.half() for b in bs] xs = [ to_device( torch.from_numpy( np.random.choice(range(e), size=(B, L), replace=True).astype( np.int64 ) ), use_cpu, ) for e in Es ] if long_segments and L > 0 and weights_precision != SparseType.FP16: for x in xs: x[:, 0] = 0 xws = [to_device(torch.randn(size=(B, L)), use_cpu) for _ in range(T)] xws_acc_type = copy.deepcopy(xws) if weights_precision == SparseType.FP16 and not use_cpu: # NOTE: CPU version of torch.nn.EmbeddingBag doesn't support fp16. xws = [xw.half() for xw in xws] fs = ( [ b_indices(b, x, use_cpu=use_cpu, do_pooling=do_pooling) for (b, x) in zip(bs, xs) ] if not weighted else [ b_indices( b, x, per_sample_weights=xw.view(-1), use_cpu=use_cpu, do_pooling=do_pooling, ) for (b, x, xw) in zip(bs, xs, xws) ] ) gos = [torch.randn_like(f) for f in fs] [f.backward(go) for (f, go) in zip(fs, gos)] grad_weights = torch.cat([b.weight.grad.view(-1) for b in bs]) if weights_precision == SparseType.FP16 and not use_cpu: grad_weights = grad_weights.half() cc = emb_op( embedding_specs=[(E, D) for (E, D) in zip(Es, Ds)], pooling_mode=pooling_mode, use_cpu=use_cpu, ) if weights_precision == SparseType.FP16 and not use_cpu: cc = cc.half() if do_pooling: # NOTE: test TorchScript-compatible! cc = torch.jit.script(cc) for t in range(T): cc.split_embedding_weights()[t].data.copy_(bs[t].weight) x = torch.cat([x.view(1, B, L) for x in xs], dim=0) xw = torch.cat([xw.view(1, B, L) for xw in xws_acc_type], dim=0) (indices, offsets) = get_table_batched_offsets_from_dense(x, use_cpu) fc2 = ( cc(indices, offsets) if not weighted else cc(indices, offsets, to_device(xw.contiguous().view(-1), use_cpu)) ) if do_pooling: f = torch.cat([f.view(B, -1) for f in fs], dim=1) else: f = torch.cat(fs, dim=0).view(-1, D) torch.testing.assert_close( fc2.float(), f.float(), atol=5.0e-3 if weights_precision == SparseType.FP16 else 1.0e-5, rtol=5.0e-3 if weights_precision == SparseType.FP16 else 1.0e-5, ) if do_pooling: goc = torch.cat([go.view(B, -1) for go in gos], dim=1).contiguous() else: goc = torch.cat(gos, dim=0).contiguous() fc2.backward(goc) torch.testing.assert_close( cc.weights.grad, grad_weights, atol=5.0e-3 if weights_precision == SparseType.FP16 else 1.0e-4, rtol=5.0e-3 if weights_precision == SparseType.FP16 else 1.0e-4, ) cc = split_table_batched_embeddings_ops.DenseTableBatchedEmbeddingBagsCodegen( [(E, D) for (E, D) in zip(Es, Ds)], # NOTE: only SUM pooling can work with per_sample_weights! pooling_mode=split_table_batched_embeddings_ops.PoolingMode.SUM, use_cpu=use_cpu, ).double() per_sample_weights = to_device(xw.contiguous().view(-1), use_cpu).double() per_sample_weights.requires_grad = True indices.requires_grad = False offsets.requires_grad = False for param in cc.parameters(): param.requires_grad = False torch.autograd.gradcheck(cc, (indices, offsets, per_sample_weights)) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=256), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), weights_precision=st.sampled_from([SparseType.FP16, SparseType.FP32]), weighted=st.booleans(), mixed=st.booleans(), use_cache=st.booleans(), cache_algorithm=st.sampled_from( split_table_batched_embeddings_ops.CacheAlgorithm ), long_segments=st.booleans(), pooling_mode=st.sampled_from( [ split_table_batched_embeddings_ops.PoolingMode.SUM, split_table_batched_embeddings_ops.PoolingMode.MEAN, split_table_batched_embeddings_ops.PoolingMode.NONE, ] ), use_cpu=st.booleans() if gpu_available else st.just(True), exact=st.booleans(), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) def test_backward_sgd( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, weights_precision: SparseType, weighted: bool, mixed: bool, use_cache: bool, cache_algorithm: split_table_batched_embeddings_ops.CacheAlgorithm, long_segments: bool, pooling_mode: split_table_batched_embeddings_ops.PoolingMode, use_cpu: bool, exact: bool, ) -> None: # NOTE: cache is not applicable to CPU version. assume(not use_cpu or not use_cache) # NOTE: limit (T * B * L * D) to avoid timeout for CPU version! assume(not use_cpu or T * B * L * D <= 2048) assume(not (use_cpu and weights_precision == SparseType.FP16)) # GPU only does exact sgd assume((use_cpu and not long_segments) or exact) # No bag ops only work on GPUs, no mixed, no weighted assume( not use_cpu or pooling_mode != split_table_batched_embeddings_ops.PoolingMode.NONE ) assume( not mixed or pooling_mode != split_table_batched_embeddings_ops.PoolingMode.NONE ) assume( not weighted or pooling_mode != split_table_batched_embeddings_ops.PoolingMode.NONE ) assume( pooling_mode == split_table_batched_embeddings_ops.PoolingMode.SUM or not weighted ) emb_op = ( split_table_batched_embeddings_ops.SplitTableBatchedEmbeddingBagsCodegen ) if pooling_mode == split_table_batched_embeddings_ops.PoolingMode.SUM: mode = "sum" do_pooling = True elif pooling_mode == split_table_batched_embeddings_ops.PoolingMode.MEAN: mode = "mean" do_pooling = True elif pooling_mode == split_table_batched_embeddings_ops.PoolingMode.NONE: mode = "sum" do_pooling = False else: # This proves that we have exhaustively checked all PoolingModes raise RuntimeError("Unknown PoolingMode!") E = int(10 ** log_E) if use_cpu: D = (D + 15) // 16 * 4 else: D = D * 4 if not mixed: Ds = [D] * T Es = [E] * T else: Ds = [ round_up(np.random.randint(low=int(0.25 * D), high=int(1.0 * D)), 4) for _ in range(T) ] Es = [ np.random.randint(low=int(0.5 * E), high=int(2.0 * E)) for _ in range(T) ] compute_device = split_table_batched_embeddings_ops.ComputeDevice.CUDA if use_cpu: managed = [split_table_batched_embeddings_ops.EmbeddingLocation.HOST] * T compute_device = split_table_batched_embeddings_ops.ComputeDevice.CPU elif use_cache: managed = [ split_table_batched_embeddings_ops.EmbeddingLocation.MANAGED_CACHING ] * T if mixed: average_D = sum(Ds) // T for t, d in enumerate(Ds): managed[t] = ( split_table_batched_embeddings_ops.EmbeddingLocation.DEVICE if d < average_D else managed[t] ) else: managed = [ np.random.choice( [ split_table_batched_embeddings_ops.EmbeddingLocation.DEVICE, split_table_batched_embeddings_ops.EmbeddingLocation.MANAGED, ] ) for _ in range(T) ] if do_pooling: bs = [ to_device(torch.nn.EmbeddingBag(E, D, mode=mode, sparse=True), use_cpu) for (E, D) in zip(Es, Ds) ] else: bs = [ to_device(torch.nn.Embedding(E, D, sparse=True), use_cpu) for (E, D) in zip(Es, Ds) ] if weights_precision == SparseType.FP16 and not use_cpu: # NOTE: CPU version of torch.nn.EmbeddingBag doesn't support fp16. bs = [b.half() for b in bs] feature_table_map = list(range(T)) if exact: table_to_replicate = T // 2 bs.insert(table_to_replicate, bs[table_to_replicate]) feature_table_map.insert(table_to_replicate, table_to_replicate) xs = [ to_device( torch.from_numpy( np.random.choice(range(Es[t]), size=(B, L), replace=exact).astype( np.int64 ) ), use_cpu, ) for t in feature_table_map ] if long_segments and L > 0: for x in xs: x[:, 0] = 0 xws = [to_device(torch.randn(size=(B, L)), use_cpu) for _ in range(len(xs))] xws_acc_type = copy.deepcopy(xws) if weights_precision == SparseType.FP16 and not use_cpu: # NOTE: CPU version of torch.nn.EmbeddingBag doesn't support fp16. xws = [xw.half() for xw in xws] fs = ( [ b_indices(b, x, use_cpu=use_cpu, do_pooling=do_pooling) for (b, x) in zip(bs, xs) ] if not weighted else [ b_indices( b, x, per_sample_weights=xw.view(-1), use_cpu=use_cpu, do_pooling=do_pooling, ) for (b, x, xw) in zip(bs, xs, xws) ] ) gos = [torch.randn_like(f) for f in fs] [f.backward(go) for (f, go) in zip(fs, gos)] # do SGD update lr = 0.05 if exact: # pyre-fixme[61]: `table_to_replicate` may not be initialized here. del bs[table_to_replicate] new_weights = [(b.weight - b.weight.grad * lr) for b in bs] cc = emb_op( embedding_specs=[ (E, D, M, compute_device) for (E, D, M) in zip(Es, Ds, managed) ], optimizer=OptimType.EXACT_SGD if exact else OptimType.SGD, feature_table_map=feature_table_map, learning_rate=lr, weights_precision=weights_precision, cache_algorithm=cache_algorithm, pooling_mode=pooling_mode, ) for t in range(T): cc.split_embedding_weights()[t].data.copy_(bs[t].weight) x = torch.cat([x.view(1, B, L) for x in xs], dim=0) xw = torch.cat([xw.view(1, B, L) for xw in xws_acc_type], dim=0) (indices, offsets) = get_table_batched_offsets_from_dense(x, use_cpu) fc2 = ( cc(indices, offsets) if not weighted else cc(indices, offsets, to_device(xw.contiguous().view(-1), use_cpu)) ) if do_pooling: goc = torch.cat([go.view(B, -1) for go in gos], dim=1).contiguous() else: goc = torch.cat(gos, dim=0).contiguous() fc2.backward(goc) if use_cache: cc.flush() for t in range(T): torch.testing.assert_close( cc.split_embedding_weights()[t], # pyre-fixme[16]: `float` has no attribute `half`. new_weights[t].half() if weights_precision == SparseType.FP16 and not use_cpu else new_weights[t], atol=(1.0e-2 if long_segments else 5.0e-3) if weights_precision == SparseType.FP16 else 1.0e-5, rtol=2.0e-2 if weights_precision == SparseType.FP16 else 1.0e-5, ) def execute_backward_adagrad_( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, D_gradcheck: int, weights_precision: SparseType, stochastic_rounding: bool, weighted: bool, row_wise: bool, mixed: bool, use_cache: bool, cache_algorithm: split_table_batched_embeddings_ops.CacheAlgorithm, pooling_mode: split_table_batched_embeddings_ops.PoolingMode, use_cpu: bool, exact: bool, ) -> None: # NOTE: cache is not applicable to CPU version. assume(not use_cpu or not use_cache) # Approx AdaGrad only works with row_wise on CPU assume((use_cpu and row_wise) or exact) # NOTE: torch.autograd.gradcheck() is too time-consuming for CPU version # so we have to limit (T * B * L * D)! assume(not use_cpu or T * B * L * D <= 1024) assume(not (use_cpu and weights_precision == SparseType.FP16)) assume( pooling_mode == split_table_batched_embeddings_ops.PoolingMode.SUM or not weighted ) # No bag ops only work on GPUs, no mixed, no weighted assume( not use_cpu or pooling_mode != split_table_batched_embeddings_ops.PoolingMode.NONE ) assume( not mixed or pooling_mode != split_table_batched_embeddings_ops.PoolingMode.NONE ) assume( not weighted or pooling_mode != split_table_batched_embeddings_ops.PoolingMode.NONE ) emb_op = ( split_table_batched_embeddings_ops.SplitTableBatchedEmbeddingBagsCodegen ) if pooling_mode == split_table_batched_embeddings_ops.PoolingMode.SUM: mode = "sum" do_pooling = True elif pooling_mode == split_table_batched_embeddings_ops.PoolingMode.MEAN: mode = "mean" do_pooling = True elif pooling_mode == split_table_batched_embeddings_ops.PoolingMode.NONE: mode = "sum" do_pooling = False else: # This proves that we have exhaustively checked all PoolingModes raise RuntimeError("Unknown PoolingMode!") # stochastic rounding only implemented for rowwise assume(not stochastic_rounding or row_wise) # need unique indices for non-exact tests assume(exact or int(10 ** log_E) > int(2.1 * B * L)) # only row-wise supports caching assume(row_wise or not use_cache) E = int(10 ** log_E) if use_cpu: D = (D + 15) // 16 * 4 else: D = D * 4 if not mixed: Ds = [D] * T Es = [E] * T else: Ds = [ round_up(np.random.randint(low=int(0.25 * D), high=int(1.0 * D)), 4) for _ in range(T) ] Es = [ np.random.randint(low=int(0.5 * E), high=int(2.0 * E)) for _ in range(T) ] compute_device = split_table_batched_embeddings_ops.ComputeDevice.CUDA if use_cpu: managed = [split_table_batched_embeddings_ops.EmbeddingLocation.HOST] * T compute_device = split_table_batched_embeddings_ops.ComputeDevice.CPU elif use_cache: managed = [ split_table_batched_embeddings_ops.EmbeddingLocation.MANAGED_CACHING ] * T if mixed: average_D = sum(Ds) // T for t, d in enumerate(Ds): managed[t] = ( split_table_batched_embeddings_ops.EmbeddingLocation.DEVICE if d < average_D else managed[t] ) else: managed = [ np.random.choice( [ split_table_batched_embeddings_ops.EmbeddingLocation.DEVICE, split_table_batched_embeddings_ops.EmbeddingLocation.MANAGED, ] ) for _ in range(T) ] if do_pooling: bs = [ to_device(torch.nn.EmbeddingBag(E, D, mode=mode, sparse=True), use_cpu) for (E, D) in zip(Es, Ds) ] else: bs = [ to_device(torch.nn.Embedding(E, D, sparse=True), use_cpu) for (E, D) in zip(Es, Ds) ] if weights_precision == SparseType.FP16 and not use_cpu: # NOTE: CPU version of torch.nn.EmbeddingBag doesn't support fp16. bs = [b.half() for b in bs] feature_table_map = list(range(T)) if exact: # autograd with shared embedding only works for exact table_to_replicate = T // 2 bs.insert(table_to_replicate, bs[table_to_replicate]) feature_table_map.insert(table_to_replicate, table_to_replicate) xs = [ to_device( torch.from_numpy( np.random.choice(range(Es[t]), size=(B, L), replace=exact).astype( np.int64 ) ), use_cpu, ) for t in feature_table_map ] xws = [to_device(torch.randn(size=(B, L)), use_cpu) for _ in range(len(xs))] xws_acc_type = copy.deepcopy(xws) if weights_precision == SparseType.FP16 and not use_cpu: # NOTE: CPU version of torch.nn.EmbeddingBag doesn't support fp16. xws = [xw.half() for xw in xws] fs = ( [ b_indices(b, x, use_cpu=use_cpu, do_pooling=do_pooling) for (b, x) in zip(bs, xs) ] if not weighted else [ b_indices( b, x, per_sample_weights=xw.view(-1), use_cpu=use_cpu, do_pooling=do_pooling, ) for (b, x, xw) in zip(bs, xs, xws) ] ) gos = [torch.randn_like(f) for f in fs] [f.backward(go) for (f, go) in zip(fs, gos)] # do SGD update lr = 0.5 eps = 0.2 optimizer = ( (OptimType.EXACT_ROWWISE_ADAGRAD if exact else OptimType.ROWWISE_ADAGRAD) if row_wise else OptimType.EXACT_ADAGRAD ) cc = emb_op( embedding_specs=[ (E, D, M, compute_device) for (E, D, M) in zip(Es, Ds, managed) ], feature_table_map=feature_table_map, optimizer=optimizer, learning_rate=lr, eps=eps, weights_precision=weights_precision, stochastic_rounding=stochastic_rounding, pooling_mode=pooling_mode, ) if exact: # pyre-fixme[61]: `table_to_replicate` may not be initialized here. del bs[table_to_replicate] for t in range(T): cc.split_embedding_weights()[t].data.copy_(bs[t].weight) x = torch.cat([x.view(1, B, L) for x in xs], dim=0) xw = torch.cat([xw.view(1, B, L) for xw in xws_acc_type], dim=0) (indices, offsets) = get_table_batched_offsets_from_dense(x, use_cpu) fc2 = ( cc(indices, offsets) if not weighted else cc(indices, offsets, to_device(xw.contiguous().view(-1), use_cpu)) ) if do_pooling: goc = torch.cat([go.view(B, -1) for go in gos], dim=1) else: goc = torch.cat(gos, dim=0).contiguous() fc2.backward(goc) cc.flush() split_optimizer_states = [s for (s,) in cc.split_optimizer_states()] for t in range(T): ref_optimizer_state = bs[t].weight.grad.float().cpu().to_dense().pow(2) torch.testing.assert_close( split_optimizer_states[t].float().cpu(), ref_optimizer_state.mean(dim=1) if row_wise else ref_optimizer_state, atol=1.0e-2 if weights_precision == SparseType.FP16 else 1.0e-4, rtol=1.0e-2 if weights_precision == SparseType.FP16 else 1.0e-4, ) for t in range(T): # optimizer_state = squares (no row-wise) or sum squares (row-wise) torch.testing.assert_close( cc.split_embedding_weights()[t].float().cpu(), torch.addcdiv( bs[t].weight.float().cpu(), value=-lr, tensor1=bs[t].weight.grad.float().cpu().to_dense(), tensor2=split_optimizer_states[t] .float() .sqrt_() .add_(eps) .view(Es[t], 1 if row_wise else Ds[t]) .cpu(), ), atol=1.0e-2 if weights_precision == SparseType.FP16 else 1.0e-4, rtol=1.0e-2 if weights_precision == SparseType.FP16 else 1.0e-4, ) if use_cpu: D_gradcheck = (D_gradcheck + 15) // 16 * 4 else: D_gradcheck = D_gradcheck * 4 cc = emb_op( embedding_specs=[ (E, D_gradcheck, M, compute_device) for (E, M) in zip(Es, managed) ], feature_table_map=feature_table_map, optimizer=optimizer, learning_rate=0.0, eps=eps, weights_precision=weights_precision, stochastic_rounding=stochastic_rounding, # NOTE: only SUM pooling can work with per_sample_weights! pooling_mode=split_table_batched_embeddings_ops.PoolingMode.SUM, ) if use_cpu: # NOTE: GPU version of SplitTableBatchedEmbeddingBagsCodegen doesn't support double. cc = cc.double() per_sample_weights = to_device(xw.contiguous().view(-1), use_cpu) if use_cpu: per_sample_weights = per_sample_weights.double() per_sample_weights.requires_grad = True indices.requires_grad = False offsets.requires_grad = False for param in cc.parameters(): param.requires_grad = False torch.autograd.gradcheck(cc, (indices, offsets, per_sample_weights)) per_sample_weights = to_device(xw.contiguous().view(-1), use_cpu) if use_cpu: per_sample_weights = per_sample_weights.double() per_sample_weights.requires_grad = True indices.requires_grad = False offsets.requires_grad = False for param in cc.parameters(): param.requires_grad = False y = cc(indices, offsets, per_sample_weights) y.sum().backward() indice_weight_grad_all = per_sample_weights.grad.clone().cpu() T_ = len(xws) feature_requires_grad = to_device( torch.tensor(np.random.choice([0, 1], replace=True, size=(T_,))).int(), use_cpu, ) per_sample_weights = per_sample_weights.detach().clone() per_sample_weights.requires_grad = True y = cc( indices, offsets, per_sample_weights, feature_requires_grad=feature_requires_grad, ) y.sum().backward() indice_weight_grad_mask = per_sample_weights.grad.clone().cpu() for t in range(T_): if feature_requires_grad[t]: torch.testing.assert_close( indice_weight_grad_mask.view(T_, B, L)[t], indice_weight_grad_all.view(T_, B, L)[t], ) else: torch.testing.assert_close( indice_weight_grad_mask.view(T_, B, L)[t], torch.zeros_like(indice_weight_grad_mask.view(T_, B, L)[t]), ) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=128), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), D_gradcheck=st.integers(min_value=1, max_value=2), weights_precision=st.just(SparseType.FP16), stochastic_rounding=st.booleans(), weighted=st.booleans(), row_wise=st.booleans(), mixed=st.booleans(), use_cache=st.booleans(), cache_algorithm=st.sampled_from( split_table_batched_embeddings_ops.CacheAlgorithm ), use_cpu=st.booleans() if gpu_available else st.just(True), exact=st.booleans(), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) def test_backward_adagrad_fp16_pmSUM( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, D_gradcheck: int, weights_precision: SparseType, stochastic_rounding: bool, weighted: bool, row_wise: bool, mixed: bool, use_cache: bool, cache_algorithm: split_table_batched_embeddings_ops.CacheAlgorithm, use_cpu: bool, exact: bool, ) -> None: self.execute_backward_adagrad_( T, D, B, log_E, L, D_gradcheck, weights_precision, stochastic_rounding, weighted, row_wise, mixed, use_cache, cache_algorithm, split_table_batched_embeddings_ops.PoolingMode.SUM, use_cpu, exact, ) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=128), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), D_gradcheck=st.integers(min_value=1, max_value=2), weights_precision=st.just(SparseType.FP16), stochastic_rounding=st.booleans(), weighted=st.booleans(), row_wise=st.booleans(), mixed=st.booleans(), use_cache=st.booleans(), cache_algorithm=st.sampled_from( split_table_batched_embeddings_ops.CacheAlgorithm ), use_cpu=st.booleans() if gpu_available else st.just(True), exact=st.booleans(), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) def test_backward_adagrad_fp16_pmMEAN( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, D_gradcheck: int, weights_precision: SparseType, stochastic_rounding: bool, weighted: bool, row_wise: bool, mixed: bool, use_cache: bool, cache_algorithm: split_table_batched_embeddings_ops.CacheAlgorithm, use_cpu: bool, exact: bool, ) -> None: self.execute_backward_adagrad_( T, D, B, log_E, L, D_gradcheck, weights_precision, stochastic_rounding, weighted, row_wise, mixed, use_cache, cache_algorithm, split_table_batched_embeddings_ops.PoolingMode.MEAN, use_cpu, exact, ) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=128), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), D_gradcheck=st.integers(min_value=1, max_value=2), weights_precision=st.just(SparseType.FP16), stochastic_rounding=st.booleans(), weighted=st.booleans(), row_wise=st.booleans(), mixed=st.booleans(), use_cache=st.booleans(), cache_algorithm=st.sampled_from( split_table_batched_embeddings_ops.CacheAlgorithm ), use_cpu=st.booleans() if gpu_available else st.just(True), exact=st.booleans(), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) def test_backward_adagrad_fp16_pmNONE( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, D_gradcheck: int, weights_precision: SparseType, stochastic_rounding: bool, weighted: bool, row_wise: bool, mixed: bool, use_cache: bool, cache_algorithm: split_table_batched_embeddings_ops.CacheAlgorithm, use_cpu: bool, exact: bool, ) -> None: self.execute_backward_adagrad_( T, D, B, log_E, L, D_gradcheck, weights_precision, stochastic_rounding, weighted, row_wise, mixed, use_cache, cache_algorithm, split_table_batched_embeddings_ops.PoolingMode.NONE, use_cpu, exact, ) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=128), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), D_gradcheck=st.integers(min_value=1, max_value=2), weights_precision=st.just(SparseType.FP32), stochastic_rounding=st.booleans(), weighted=st.booleans(), row_wise=st.booleans(), mixed=st.booleans(), use_cache=st.booleans(), cache_algorithm=st.sampled_from( split_table_batched_embeddings_ops.CacheAlgorithm ), use_cpu=st.booleans() if gpu_available else st.just(True), exact=st.booleans(), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) def test_backward_adagrad_fp32_pmSUM( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, D_gradcheck: int, weights_precision: SparseType, stochastic_rounding: bool, weighted: bool, row_wise: bool, mixed: bool, use_cache: bool, cache_algorithm: split_table_batched_embeddings_ops.CacheAlgorithm, use_cpu: bool, exact: bool, ) -> None: self.execute_backward_adagrad_( T, D, B, log_E, L, D_gradcheck, weights_precision, stochastic_rounding, weighted, row_wise, mixed, use_cache, cache_algorithm, split_table_batched_embeddings_ops.PoolingMode.SUM, use_cpu, exact, ) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=128), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), D_gradcheck=st.integers(min_value=1, max_value=2), weights_precision=st.just(SparseType.FP32), stochastic_rounding=st.booleans(), weighted=st.booleans(), row_wise=st.booleans(), mixed=st.booleans(), use_cache=st.booleans(), cache_algorithm=st.sampled_from( split_table_batched_embeddings_ops.CacheAlgorithm ), use_cpu=st.booleans() if gpu_available else st.just(True), exact=st.booleans(), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) def test_backward_adagrad_fp32_pmMEAN( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, D_gradcheck: int, weights_precision: SparseType, stochastic_rounding: bool, weighted: bool, row_wise: bool, mixed: bool, use_cache: bool, cache_algorithm: split_table_batched_embeddings_ops.CacheAlgorithm, use_cpu: bool, exact: bool, ) -> None: self.execute_backward_adagrad_( T, D, B, log_E, L, D_gradcheck, weights_precision, stochastic_rounding, weighted, row_wise, mixed, use_cache, cache_algorithm, split_table_batched_embeddings_ops.PoolingMode.MEAN, use_cpu, exact, ) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=128), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), D_gradcheck=st.integers(min_value=1, max_value=2), weights_precision=st.just(SparseType.FP32), stochastic_rounding=st.booleans(), weighted=st.booleans(), row_wise=st.booleans(), mixed=st.booleans(), use_cache=st.booleans(), cache_algorithm=st.sampled_from( split_table_batched_embeddings_ops.CacheAlgorithm ), use_cpu=st.booleans() if gpu_available else st.just(True), exact=st.booleans(), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) def test_backward_adagrad_fp32_pmNONE( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, D_gradcheck: int, weights_precision: SparseType, stochastic_rounding: bool, weighted: bool, row_wise: bool, mixed: bool, use_cache: bool, cache_algorithm: split_table_batched_embeddings_ops.CacheAlgorithm, use_cpu: bool, exact: bool, ) -> None: self.execute_backward_adagrad_( T, D, B, log_E, L, D_gradcheck, weights_precision, stochastic_rounding, weighted, row_wise, mixed, use_cache, cache_algorithm, split_table_batched_embeddings_ops.PoolingMode.NONE, use_cpu, exact, ) @unittest.skipIf(*gpu_unavailable) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=256), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=1, max_value=20), mixed=st.booleans(), cache_algorithm=st.sampled_from( split_table_batched_embeddings_ops.CacheAlgorithm ), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_cache_pipeline( self, T: int, D: int, B: int, log_E: int, L: int, mixed: bool, cache_algorithm: split_table_batched_embeddings_ops.CacheAlgorithm, ) -> None: iters = 3 E = int(10 ** log_E) D = D * 4 if not mixed: Ds = [D] * T Es = [E] * T else: Ds = [ round_up(np.random.randint(low=int(0.25 * D), high=int(1.0 * D)), 4) for _ in range(T) ] Es = [ np.random.randint(low=int(0.5 * E), high=int(2.0 * E)) for _ in range(T) ] managed = [ split_table_batched_embeddings_ops.EmbeddingLocation.MANAGED_CACHING ] * T if mixed: average_D = sum(Ds) // T for t, d in enumerate(Ds): managed[t] = ( split_table_batched_embeddings_ops.EmbeddingLocation.DEVICE if d < average_D else managed[t] ) cc_ref = ( split_table_batched_embeddings_ops.SplitTableBatchedEmbeddingBagsCodegen( [ ( E, D, split_table_batched_embeddings_ops.EmbeddingLocation.DEVICE, split_table_batched_embeddings_ops.ComputeDevice.CUDA, ) for (E, D) in zip(Es, Ds) ], ) ) cc = split_table_batched_embeddings_ops.SplitTableBatchedEmbeddingBagsCodegen( [ (E, D, M, split_table_batched_embeddings_ops.ComputeDevice.CUDA) for (E, D, M) in zip(Es, Ds, managed) ], cache_algorithm=cache_algorithm, ) for t in range(T): self.assertEqual( cc.split_embedding_weights()[t].size(), cc_ref.split_embedding_weights()[t].size(), ) cc.split_embedding_weights()[t].data.copy_( cc_ref.split_embedding_weights()[t] ) requests = generate_requests(iters, B, T, L, min(Es), reuse=0.1) grad_output = torch.randn(B, sum(Ds)).cuda() for indices, offsets, _ in requests: output = cc(indices, offsets) output_ref = cc_ref(indices, offsets) torch.testing.assert_close(output, output_ref) output.backward(grad_output) output_ref.backward(grad_output) cc.flush() for t in range(T): torch.testing.assert_close( cc.split_embedding_weights()[t], cc_ref.split_embedding_weights()[t] ) def execute_backward_optimizers_( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, weighted: bool, mixed: bool, optimizer: OptimType, long_segments: bool, pooling_mode: split_table_batched_embeddings_ops.PoolingMode, use_cpu: bool, ) -> None: # NOTE: limit (T * B * L * D) to avoid timeout for CPU version! assume(not use_cpu or T * B * L * D <= 2048) assume( not use_cpu or optimizer in [ OptimType.EXACT_ADAGRAD, OptimType.EXACT_ROWWISE_ADAGRAD, OptimType.EXACT_SGD, OptimType.SGD, ] ) assume( pooling_mode == split_table_batched_embeddings_ops.PoolingMode.SUM or not weighted ) # No bag ops only work on GPUs, no mixed, no weighted assume( not use_cpu or pooling_mode != split_table_batched_embeddings_ops.PoolingMode.NONE ) assume( not mixed or pooling_mode != split_table_batched_embeddings_ops.PoolingMode.NONE ) assume( not weighted or pooling_mode != split_table_batched_embeddings_ops.PoolingMode.NONE ) emb_op = ( split_table_batched_embeddings_ops.SplitTableBatchedEmbeddingBagsCodegen ) if pooling_mode == split_table_batched_embeddings_ops.PoolingMode.SUM: mode = "sum" do_pooling = True elif pooling_mode == split_table_batched_embeddings_ops.PoolingMode.MEAN: mode = "mean" do_pooling = True elif pooling_mode == split_table_batched_embeddings_ops.PoolingMode.NONE: mode = "sum" do_pooling = False else: # This proves that we have exhaustively checked all PoolingModes raise RuntimeError("Unknown PoolingMode!") E = int(10 ** log_E) if use_cpu: D = (D + 15) // 16 * 4 else: D = D * 4 if not mixed: Ds = [D] * T Es = [E] * T else: Ds = [ round_up(np.random.randint(low=int(0.25 * D), high=int(1.0 * D)), 4) for _ in range(T) ] Es = [ np.random.randint(low=int(0.5 * E), high=int(2.0 * E)) for _ in range(T) ] compute_device = split_table_batched_embeddings_ops.ComputeDevice.CUDA if use_cpu: managed = [split_table_batched_embeddings_ops.EmbeddingLocation.HOST] * T compute_device = split_table_batched_embeddings_ops.ComputeDevice.CPU else: managed = [ np.random.choice( [ split_table_batched_embeddings_ops.EmbeddingLocation.DEVICE, split_table_batched_embeddings_ops.EmbeddingLocation.MANAGED, ] ) for _ in range(T) ] if do_pooling: bs = [ to_device(torch.nn.EmbeddingBag(E, D, mode=mode, sparse=True), use_cpu) for (E, D) in zip(Es, Ds) ] else: bs = [ to_device(torch.nn.Embedding(E, D, sparse=True), use_cpu) for (E, D) in zip(Es, Ds) ] xs = [ to_device( torch.from_numpy( np.random.choice(range(e), size=(B, L), replace=True).astype( np.int64 ) ), use_cpu, ) for e in Es ] if long_segments and L > 0: for x, e in zip(xs, Es): x[:, 0] = np.random.randint(low=0, high=e) xws = [to_device(torch.randn(size=(B, L)), use_cpu) for _ in range(T)] xws_acc_type = copy.deepcopy(xws) fs = ( [ b_indices(b, x, use_cpu=use_cpu, do_pooling=do_pooling) for (b, x) in zip(bs, xs) ] if not weighted else [ b_indices( b, x, per_sample_weights=xw.view(-1), use_cpu=use_cpu, do_pooling=do_pooling, ) for (b, x, xw) in zip(bs, xs, xws) ] ) gos = [torch.randn_like(f) for f in fs] [f.backward(go) for (f, go) in zip(fs, gos)] # do SGD update optimizer_kwargs = {"learning_rate": 0.5} (lr, eps, beta1, beta2, weight_decay, momentum, eta) = ( 0.5, 1e-4, 0.9, 0.99, 0.01, 0.9, 0.01, ) if optimizer in (OptimType.EXACT_ROWWISE_ADAGRAD, OptimType.EXACT_ADAGRAD): optimizer_kwargs["eps"] = eps if optimizer == OptimType.EXACT_ROWWISE_WEIGHTED_ADAGRAD: optimizer_kwargs["eps"] = eps optimizer_kwargs["weight_decay"] = weight_decay if optimizer in (OptimType.PARTIAL_ROWWISE_ADAM, OptimType.ADAM): optimizer_kwargs["eps"] = eps optimizer_kwargs["beta1"] = beta1 optimizer_kwargs["beta2"] = beta2 optimizer_kwargs["weight_decay"] = weight_decay if optimizer in (OptimType.PARTIAL_ROWWISE_LAMB, OptimType.LAMB): optimizer_kwargs["eps"] = eps optimizer_kwargs["beta1"] = beta1 optimizer_kwargs["beta2"] = beta2 optimizer_kwargs["weight_decay"] = weight_decay if optimizer == OptimType.LARS_SGD: optimizer_kwargs["weight_decay"] = weight_decay optimizer_kwargs["momentum"] = momentum optimizer_kwargs["eta"] = eta cc = emb_op( embedding_specs=[ (E, D, M, compute_device) for (E, D, M) in zip(Es, Ds, managed) ], optimizer=optimizer, pooling_mode=pooling_mode, # pyre-fixme[6]: Expected `CacheAlgorithm` for 5th param but got `float`. **optimizer_kwargs, ) for t in range(T): cc.split_embedding_weights()[t].data.copy_(bs[t].weight) x = torch.cat([x.view(1, B, L) for x in xs], dim=0) xw = torch.cat([xw.view(1, B, L) for xw in xws_acc_type], dim=0) (indices, offsets) = get_table_batched_offsets_from_dense(x, use_cpu) fc2 = ( cc(indices, offsets) if not weighted else cc(indices, offsets, to_device(xw.contiguous().view(-1), use_cpu)) ) if do_pooling: goc = torch.cat([go.view(B, -1) for go in gos], dim=1) else: goc = torch.cat(gos, dim=0).contiguous() fc2.backward(goc) cc.flush() split_optimizer_states = cc.split_optimizer_states() self.assertEqual(len(split_optimizer_states), T) split_weights = cc.split_embedding_weights() if optimizer in (OptimType.EXACT_ROWWISE_ADAGRAD, OptimType.EXACT_ADAGRAD): rowwise = optimizer == OptimType.EXACT_ROWWISE_ADAGRAD for t in range(T): (m1,) = split_optimizer_states[t] # to_dense in GPU is non-deterministic due to atmomics used in # coalescing and floating point non-associativity. dense_cpu_grad = bs[t].weight.grad.cpu().to_dense() m1_ref = ( dense_cpu_grad.pow(2) if not rowwise else dense_cpu_grad.pow(2).mean(dim=1) ) torch.testing.assert_close( m1.float().cpu(), m1_ref.float(), atol=1.0e-4, rtol=1.0e-4 ) weights_new = split_weights[t] weights_ref = bs[t].weight.cpu() - lr * dense_cpu_grad / ( torch.sqrt( m1_ref if not rowwise else m1_ref.view(m1_ref.numel(), 1) ) + eps ) # TODO: why is tolerance off here? torch.testing.assert_close( weights_new.float().cpu(), weights_ref.float(), atol=1.0e-2, rtol=1.0e-2, ) if optimizer == OptimType.EXACT_ROWWISE_WEIGHTED_ADAGRAD: for t in range(T): (m1,) = split_optimizer_states[t] # to_dense in GPU is non-deterministic due to atmomics used in # coalescing and floating point non-associativity. dense_cpu_grad = bs[t].weight.grad.cpu().to_dense() dense_cpu_grad += weight_decay * bs[t].weight.cpu() iter_ = cc.iter.item() lambda_ = (iter_ + 1) ** 0.5 m1_ref = dense_cpu_grad.pow(2).mean(dim=1) m1_ref *= lambda_ torch.testing.assert_close( m1.float().index_select(dim=0, index=x[t].view(-1)).cpu(), m1_ref.float().index_select(dim=0, index=x[t].view(-1).cpu()), atol=1.0e-4, rtol=1.0e-4, ) weights_new = split_weights[t] weights_ref = bs[t].weight.cpu() - lr * lambda_ * dense_cpu_grad / ( torch.pow(m1_ref.view(m1_ref.numel(), 1), 1.0 / 3) + eps ) torch.testing.assert_close( weights_new.index_select(dim=0, index=x[t].view(-1)).cpu(), weights_ref.index_select(dim=0, index=x[t].view(-1).cpu()), atol=1.0e-4, rtol=1.0e-4, ) if optimizer in (OptimType.PARTIAL_ROWWISE_ADAM, OptimType.ADAM): rowwise = optimizer == OptimType.PARTIAL_ROWWISE_ADAM for t in range(T): (m1, m2) = split_optimizer_states[t] dense_cpu_grad = bs[t].weight.grad.cpu().to_dense() m2_ref = ( dense_cpu_grad.pow(2) if not rowwise else dense_cpu_grad.pow(2).mean(dim=1) ) * (1.0 - beta2) torch.testing.assert_close(m2.cpu(), m2_ref, atol=1.0e-4, rtol=1.0e-4) m1_ref = dense_cpu_grad * (1.0 - beta1) torch.testing.assert_close(m1.cpu(), m1_ref, atol=1.0e-4, rtol=1.0e-4) iter_ = cc.iter.item() v_hat_t = m2_ref / (1 - beta2 ** iter_) v_hat_t = v_hat_t if not rowwise else v_hat_t.view(v_hat_t.numel(), 1) m_hat_t = m1_ref / (1 - beta1 ** iter_) weights_new = split_weights[t] weights_ref = ( torch.addcdiv( bs[t].weight.cpu(), value=-lr, tensor1=m_hat_t, tensor2=v_hat_t.sqrt_().add_(eps), ) - lr * weight_decay * bs[t].weight.cpu() ) torch.testing.assert_close( weights_new.index_select(dim=0, index=x[t].view(-1)).cpu(), weights_ref.index_select(dim=0, index=x[t].view(-1).cpu()), atol=1.0e-3, rtol=1.0e-3, ) if optimizer in (OptimType.PARTIAL_ROWWISE_LAMB, OptimType.LAMB): rowwise = optimizer == OptimType.PARTIAL_ROWWISE_LAMB for t in range(T): (m1, m2) = split_optimizer_states[t] dense_cpu_grad = bs[t].weight.grad.cpu().to_dense() m2_ref = ( dense_cpu_grad.pow(2) if not rowwise else dense_cpu_grad.pow(2).mean(dim=1) ) * (1.0 - beta2) torch.testing.assert_close(m2.cpu(), m2_ref, atol=1.0e-4, rtol=1.0e-4) m1_ref = dense_cpu_grad * (1.0 - beta1) torch.testing.assert_close(m1.cpu(), m1_ref, atol=1.0e-4, rtol=1.0e-4) iter_ = cc.iter.item() v_hat_t = m2_ref / (1 - beta2 ** iter_) v_hat_t = v_hat_t if not rowwise else v_hat_t.view(v_hat_t.numel(), 1) m_hat_t = m1_ref / (1 - beta1 ** iter_) rtw = (m_hat_t / (torch.sqrt(v_hat_t) + eps)) + weight_decay * bs[ t ].weight.cpu() true_ratio = torch.linalg.norm(bs[t].weight, dim=1, ord=2).view( m1.shape[0], 1 ).cpu() / torch.linalg.norm(rtw, dim=1, ord=2).view(m1.shape[0], 1) weights_new = split_weights[t] weights_ref = bs[t].weight.cpu() - lr * true_ratio * rtw torch.testing.assert_close( weights_new.index_select(dim=0, index=x[t].view(-1)).cpu(), weights_ref.index_select(dim=0, index=x[t].view(-1).cpu()), atol=1.0e-3, rtol=1.0e-3, ) if optimizer == OptimType.LARS_SGD: for t in range(T): (m1,) = split_optimizer_states[t] weight_norm = ( torch.linalg.norm(bs[t].weight, dim=1, ord=2) .view(m1.shape[0], 1) .cpu() ) dense_cpu_grad = bs[t].weight.grad.cpu().to_dense() grad_norm = torch.linalg.norm(dense_cpu_grad, dim=1, ord=2).view( m1.shape[0], 1 ) adjusted_lr = ( lr * eta * weight_norm / (grad_norm + weight_decay * weight_norm) ) m1_ref = adjusted_lr * ( dense_cpu_grad + weight_decay * bs[t].weight.cpu() ) torch.testing.assert_close( m1.index_select(dim=0, index=x[t].view(-1)).cpu(), # pyre-fixme[16]: `float` has no attribute `index_select`. m1_ref.index_select(dim=0, index=x[t].view(-1).cpu()), atol=1.0e-4, rtol=1.0e-4, ) weights_new = split_weights[t] weights_ref = bs[t].weight.cpu() - m1_ref torch.testing.assert_close( weights_new.index_select(dim=0, index=x[t].view(-1)).cpu(), weights_ref.index_select(dim=0, index=x[t].view(-1).cpu()), atol=1.0e-4, rtol=1.0e-4, ) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=256), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), weighted=st.booleans(), mixed=st.booleans(), optimizer=st.sampled_from( [ OptimType.ADAM, OptimType.PARTIAL_ROWWISE_ADAM, ] ), long_segments=st.booleans(), pooling_mode=st.sampled_from( [ split_table_batched_embeddings_ops.PoolingMode.SUM, split_table_batched_embeddings_ops.PoolingMode.MEAN, split_table_batched_embeddings_ops.PoolingMode.NONE, ] ), use_cpu=st.booleans() if gpu_available else st.just(True), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) @unittest.skipIf(*gpu_unavailable) def test_backward_optimizers_adam( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, weighted: bool, mixed: bool, optimizer: OptimType, long_segments: bool, pooling_mode: split_table_batched_embeddings_ops.PoolingMode, use_cpu: bool, ) -> None: self.execute_backward_optimizers_( T, D, B, log_E, L, weighted, mixed, optimizer, long_segments, pooling_mode, use_cpu, ) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=256), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), weighted=st.booleans(), mixed=st.booleans(), optimizer=st.sampled_from( [ OptimType.EXACT_ADAGRAD, OptimType.EXACT_ROWWISE_ADAGRAD, OptimType.EXACT_ROWWISE_WEIGHTED_ADAGRAD, ] ), long_segments=st.booleans(), pooling_mode=st.sampled_from( [ split_table_batched_embeddings_ops.PoolingMode.SUM, split_table_batched_embeddings_ops.PoolingMode.MEAN, split_table_batched_embeddings_ops.PoolingMode.NONE, ] ), use_cpu=st.booleans() if gpu_available else st.just(True), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) @unittest.skipIf(*gpu_unavailable) def test_backward_optimizers_adagrad( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, weighted: bool, mixed: bool, optimizer: OptimType, long_segments: bool, pooling_mode: split_table_batched_embeddings_ops.PoolingMode, use_cpu: bool, ) -> None: self.execute_backward_optimizers_( T, D, B, log_E, L, weighted, mixed, optimizer, long_segments, pooling_mode, use_cpu, ) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=256), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), weighted=st.booleans(), mixed=st.booleans(), optimizer=st.sampled_from( [ OptimType.LAMB, OptimType.PARTIAL_ROWWISE_LAMB, ] ), long_segments=st.booleans(), pooling_mode=st.sampled_from( [ split_table_batched_embeddings_ops.PoolingMode.SUM, split_table_batched_embeddings_ops.PoolingMode.MEAN, split_table_batched_embeddings_ops.PoolingMode.NONE, ] ), use_cpu=st.booleans() if gpu_available else st.just(True), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) @unittest.skipIf(*gpu_unavailable) def test_backward_optimizers_lamb( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, weighted: bool, mixed: bool, optimizer: OptimType, long_segments: bool, pooling_mode: split_table_batched_embeddings_ops.PoolingMode, use_cpu: bool, ) -> None: self.execute_backward_optimizers_( T, D, B, log_E, L, weighted, mixed, optimizer, long_segments, pooling_mode, use_cpu, ) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=256), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), weighted=st.booleans(), mixed=st.booleans(), optimizer=st.just(OptimType.LARS_SGD), long_segments=st.booleans(), pooling_mode=st.sampled_from( [ split_table_batched_embeddings_ops.PoolingMode.SUM, split_table_batched_embeddings_ops.PoolingMode.MEAN, split_table_batched_embeddings_ops.PoolingMode.NONE, ] ), use_cpu=st.booleans() if gpu_available else st.just(True), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) @unittest.skipIf(*gpu_unavailable) def test_backward_optimizers_lars( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, weighted: bool, mixed: bool, optimizer: OptimType, long_segments: bool, pooling_mode: split_table_batched_embeddings_ops.PoolingMode, use_cpu: bool, ) -> None: self.execute_backward_optimizers_( T, D, B, log_E, L, weighted, mixed, optimizer, long_segments, pooling_mode, use_cpu, ) def execute_nbit_forward_( self, T: int, D: int, B: int, log_E: int, L: int, weighted: bool, mixed: bool, pooling_mode: split_table_batched_embeddings_ops.PoolingMode, weights_ty: SparseType, use_cache: bool, cache_algorithm: split_table_batched_embeddings_ops.CacheAlgorithm, use_cpu: bool, use_array_for_index_remapping: bool, mixed_weights_ty: bool, output_dtype: SparseType, ) -> None: # NOTE: weighted operation can be done only for SUM. assume( pooling_mode == split_table_batched_embeddings_ops.PoolingMode.SUM or not weighted ) # NOTE: No bag ops only work on GPUs, no mixed assume( not use_cpu or pooling_mode != split_table_batched_embeddings_ops.PoolingMode.NONE ) assume( not mixed or pooling_mode != split_table_batched_embeddings_ops.PoolingMode.NONE ) mode = "sum" do_pooling = True if pooling_mode == split_table_batched_embeddings_ops.PoolingMode.SUM: mode = "sum" elif pooling_mode == split_table_batched_embeddings_ops.PoolingMode.MEAN: mode = "mean" else: mode = "sum" do_pooling = False E = int(10 ** log_E) if not mixed_weights_ty: weights_ty_list = [weights_ty] * T else: weights_ty_list = [ np.random.choice( [ SparseType.FP32, SparseType.FP16, SparseType.INT8, SparseType.INT4, SparseType.INT2, ] ) for _ in range(T) ] D_alignment = max( 1 if ty.bit_rate() % 8 == 0 else int(8 / ty.bit_rate()) for ty in weights_ty_list ) D = round_up(D, D_alignment) if not mixed: Ds = [D] * T Es = [E] * T else: Ds = [ round_up( np.random.randint(low=int(max(0.25 * D, 1)), high=int(1.0 * D)), D_alignment, ) for _ in range(T) ] Ds = [min(D, 128) for D in Ds] Es = [ np.random.randint(low=int(0.5 * E), high=int(2.0 * E)) for _ in range(T) ] if do_pooling: bs = [ to_device(torch.nn.EmbeddingBag(E, D, mode=mode, sparse=True), use_cpu) for (E, D) in zip(Es, Ds) ] else: bs = [ to_device(torch.nn.Embedding(E, D, sparse=True), use_cpu) for (E, D) in zip(Es, Ds) ] if use_cpu: managed = [split_table_batched_embeddings_ops.EmbeddingLocation.HOST] * T elif use_cache: managed = [ split_table_batched_embeddings_ops.EmbeddingLocation.MANAGED_CACHING, ] * T if mixed: average_D = sum(Ds) // T for t, d in enumerate(Ds): managed[t] = ( split_table_batched_embeddings_ops.EmbeddingLocation.DEVICE if d < average_D else managed[t] ) else: managed = [ np.random.choice( [ split_table_batched_embeddings_ops.EmbeddingLocation.DEVICE, split_table_batched_embeddings_ops.EmbeddingLocation.MANAGED, ] ) for _ in range(T) ] xs = [to_device(torch.randint(low=0, high=e, size=(B, L)), use_cpu) for e in Es] xws = [to_device(torch.randn(size=(B, L)), use_cpu) for _ in range(T)] xws_acc_type = copy.deepcopy(xws) cc = split_table_batched_embeddings_ops.IntNBitTableBatchedEmbeddingBagsCodegen( embedding_specs=[ ( "", E, D, W_TY, split_table_batched_embeddings_ops.EmbeddingLocation(M), ) for (E, D, M, W_TY) in zip(Es, Ds, managed, weights_ty_list) ], pooling_mode=pooling_mode, index_remapping=[torch.arange(E, dtype=torch.int32) for E in Es] if B != 0 else None, device="cpu" if use_cpu else torch.cuda.current_device(), cache_algorithm=cache_algorithm, use_array_for_index_remapping=use_array_for_index_remapping, output_dtype=output_dtype, ) # Initilize the random weights for int nbit table split embedding bag cc.fill_random_weights() # NOTE: test TorchScript-compatible! cc = torch.jit.script(cc) for t in range(T): (weights, scale_shift) = cc.split_embedding_weights()[t] if scale_shift is not None: (E, R) = scale_shift.shape self.assertEqual(R, 4) if weights_ty_list[t] == SparseType.INT2: scales = np.random.uniform(0.1, 1, size=(E,)).astype(np.float16) shifts = np.random.uniform(-2, 2, size=(E,)).astype(np.float16) if weights_ty_list[t] == SparseType.INT4: scales = np.random.uniform(0.01, 0.1, size=(E,)).astype(np.float16) shifts = np.random.uniform(-2, 2, size=(E,)).astype(np.float16) if weights_ty_list[t] == SparseType.INT8: scales = np.random.uniform(0.001, 0.01, size=(E,)).astype( np.float16 ) shifts = np.random.uniform(-2, 2, size=(E,)).astype(np.float16) scale_shift[:, :] = torch.tensor( np.stack([scales, shifts], axis=1).astype(np.float16).view(np.uint8) ) for t in range(T): (weights, scale_shift) = cc.split_embedding_weights()[t] np_weights = weights.contiguous().cpu().numpy() if scale_shift is not None: scale_shift: np.ndarray = ( scale_shift.cpu() .contiguous() .numpy() .view(np.float16) .astype(np.float32) ) if weights_ty_list[t] == SparseType.INT4: (E, D_2) = np_weights.shape D = D_2 * 2 def comp(i: int) -> np.ndarray: subs = np_weights.view(np.uint8) >> (i * 4) sub_mask = subs & 0xF result = sub_mask.astype(np.float32) * scale_shift[:, 0].reshape( -1, 1 ).astype(np.float32) + scale_shift[:, 1].reshape(-1, 1).astype( np.float32 ) return result.astype(np.float32) comps = [comp(i) for i in range(2)] comps = np.stack(comps) comps = comps.transpose(1, 2, 0) comps = comps.reshape(E, D) bs[t].weight.detach().copy_(to_device(torch.tensor(comps), use_cpu)) elif weights_ty_list[t] == SparseType.INT2: (E, D_4) = np_weights.shape D = D_4 * 4 # pyre-fixme[53]: Captured variable `scale_shift` is not annotated. # pyre-fixme[53]: Captured variable `weights` is not annotated. def comp(i: int) -> np.ndarray: subs = np_weights.view(np.uint8) >> (i * 2) sub_mask = subs & 0x3 result = sub_mask.astype(np.float32) * scale_shift[:, 0].reshape( -1, 1 ).astype(np.float32) + scale_shift[:, 1].reshape(-1, 1).astype( np.float32 ) return result.astype(np.float32) comps = [comp(i) for i in range(4)] comps = np.stack(comps) comps = comps.transpose(1, 2, 0) comps = comps.reshape(E, D) bs[t].weight.detach().copy_(to_device(torch.tensor(comps), use_cpu)) elif weights_ty_list[t] == SparseType.INT8: (E, D) = np_weights.shape # pyre-fixme[16]: `Optional` has no attribute `__getitem__`. comps = np_weights.astype(np.float32) * scale_shift[:, 0].reshape( -1, 1 ).astype(np.float32) + scale_shift[:, 1].reshape(-1, 1).astype( np.float32 ) bs[t].weight.detach().copy_(to_device(torch.tensor(comps), use_cpu)) elif weights_ty_list[t] == SparseType.FP16: comps = bs[t].weight.detach().half().cpu().numpy().view(np.uint8) weights.copy_(torch.tensor(comps)) elif weights_ty_list[t] == SparseType.FP32: comps = bs[t].weight.detach().float().cpu().numpy().view(np.uint8) weights.copy_(torch.tensor(comps)) x = torch.cat([x.view(1, B, L) for x in xs], dim=0) xw = torch.cat([xw.view(1, B, L) for xw in xws_acc_type], dim=0) (indices, offsets) = get_table_batched_offsets_from_dense(x, use_cpu) if not use_cpu: fc2 = ( cc(indices.int(), offsets.int()) if not weighted else cc(indices.int(), offsets.int(), xw.contiguous().view(-1)) ) else: cc = cc.cpu() indices, offsets = indices.cpu(), offsets.cpu() fc2 = ( cc(indices.int(), offsets.int()) if not weighted else cc(indices.int(), offsets.int(), xw.contiguous().view(-1).cpu()) ) if do_pooling and B == 0: self.assertEqual(fc2.size(), (0, cc.total_D)) return fs = ( [ b_indices(b, x, use_cpu=use_cpu, do_pooling=do_pooling) for (b, x) in zip(bs, xs) ] if not weighted else [ b_indices( b, x, per_sample_weights=xw.view(-1), use_cpu=use_cpu, do_pooling=do_pooling, ) for (b, x, xw) in zip(bs, xs, xws) ] ) if do_pooling: f = torch.cat([f.view(B, -1) for f in fs], dim=1) else: f = torch.cat(fs, dim=0).view(-1, D) torch.testing.assert_close( fc2.float().cpu(), f.float().cpu(), atol=1.0e-2, rtol=1.0e-2, ) @given( nbit_weights_ty=get_nbit_weights_ty(), use_array_for_index_remapping=st.booleans(), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, ) def test_nbit_forward_cpu( self, nbit_weights_ty: Optional[SparseType], use_array_for_index_remapping: bool, ) -> None: use_cpu = True T = random.randint(1, 50) B = random.randint(0, 128) L = random.randint(0, 32) D = random.randint(2, 1024) log_E = random.randint(2, 4) use_cache = False # cache_algorithm is don't care as we don't use cache. cache_algorithm = split_table_batched_embeddings_ops.CacheAlgorithm.LRU pooling_mode = random.choice( [ split_table_batched_embeddings_ops.PoolingMode.SUM, split_table_batched_embeddings_ops.PoolingMode.MEAN, ] ) mixed = random.choice([True, False]) if pooling_mode == split_table_batched_embeddings_ops.PoolingMode.SUM: weighted = random.choice([True, False]) else: weighted = False if nbit_weights_ty is None: # don't care when mixed type is used. weights_ty: SparseType = SparseType.INT8 mixed_weights_ty = True else: weights_ty: SparseType = nbit_weights_ty mixed_weights_ty = False output_dtype = random.choice([SparseType.FP32, SparseType.FP16]) self.execute_nbit_forward_( T, D, B, log_E, L, weighted, mixed, pooling_mode, weights_ty, use_cache, cache_algorithm, use_cpu, use_array_for_index_remapping, mixed_weights_ty, output_dtype, ) @unittest.skipIf(*gpu_unavailable) @given( nbit_weights_ty=get_nbit_weights_ty(), use_array_for_index_remapping=st.booleans(), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, ) def test_nbit_forward_gpu_no_cache( self, nbit_weights_ty: Optional[SparseType], use_array_for_index_remapping: bool, ) -> None: use_cpu = False T = random.randint(1, 50) B = random.randint(0, 128) L = random.randint(0, 32) D = random.randint(2, 1024) log_E = random.randint(2, 4) use_cache = False # cache_algorithm is don't care as we don't use cache. cache_algorithm = split_table_batched_embeddings_ops.CacheAlgorithm.LRU pooling_mode = random.choice( [ split_table_batched_embeddings_ops.PoolingMode.SUM, split_table_batched_embeddings_ops.PoolingMode.MEAN, split_table_batched_embeddings_ops.PoolingMode.NONE, ] ) if pooling_mode == split_table_batched_embeddings_ops.PoolingMode.NONE: mixed = False else: mixed = random.choice([True, False]) if pooling_mode == split_table_batched_embeddings_ops.PoolingMode.SUM: weighted = random.choice([True, False]) else: weighted = False if nbit_weights_ty is None: # don't care when mixed type is used. weights_ty: SparseType = SparseType.INT8 mixed_weights_ty = True else: weights_ty: SparseType = nbit_weights_ty mixed_weights_ty = False output_dtype = random.choice([SparseType.FP32, SparseType.FP16]) self.execute_nbit_forward_( T, D, B, log_E, L, weighted, mixed, pooling_mode, weights_ty, use_cache, cache_algorithm, use_cpu, use_array_for_index_remapping, mixed_weights_ty, output_dtype, ) @unittest.skipIf(*gpu_unavailable) @given( weights_ty=st.sampled_from( [ SparseType.FP32, SparseType.FP16, SparseType.INT8, SparseType.INT4, SparseType.INT2, ] ), cache_algorithm=st.sampled_from( split_table_batched_embeddings_ops.CacheAlgorithm ), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_nbit_forward_uvm_cache( self, weights_ty: SparseType, cache_algorithm: split_table_batched_embeddings_ops.CacheAlgorithm, ) -> None: T = random.randint(1, 5) B = random.randint(1, 128) L = random.randint(1, 20) D = random.randint(2, 256) log_E = random.randint(3, 5) mixed = random.choice([True, False]) iters = 3 E = int(10 ** log_E) D_alignment = ( 1 if weights_ty.bit_rate() % 8 == 0 else int(8 / weights_ty.bit_rate()) ) D = round_up(D, D_alignment) if not mixed: Ds = [D] * T Es = [E] * T else: Ds = [ round_up( np.random.randint(low=int(max(0.25 * D, 1)), high=int(1.0 * D)), D_alignment, ) for _ in range(T) ] Es = [ np.random.randint(low=int(0.5 * E), high=int(2.0 * E)) for _ in range(T) ] managed = [ split_table_batched_embeddings_ops.EmbeddingLocation.MANAGED_CACHING ] * T if mixed: average_D = sum(Ds) // T for t, d in enumerate(Ds): managed[t] = ( split_table_batched_embeddings_ops.EmbeddingLocation.DEVICE if d < average_D else managed[t] ) cc_ref = ( split_table_batched_embeddings_ops.IntNBitTableBatchedEmbeddingBagsCodegen( [ ( "", E, D, weights_ty, split_table_batched_embeddings_ops.EmbeddingLocation.DEVICE, ) for (E, D) in zip(Es, Ds) ], ) ) cc_ref.fill_random_weights() cc = split_table_batched_embeddings_ops.IntNBitTableBatchedEmbeddingBagsCodegen( [("", E, D, weights_ty, M) for (E, D, M) in zip(Es, Ds, managed)], cache_algorithm=cache_algorithm, ) cc.fill_random_weights() split_weights = cc.split_embedding_weights() ref_split_weights = cc_ref.split_embedding_weights() for t in range(T): (weights, scale_shift) = split_weights[t] (ref_weights, ref_scale_shift) = ref_split_weights[t] self.assertEqual(weights.size(), ref_weights.size()) weights.copy_(ref_weights) if ref_scale_shift is not None: scale_shift.copy_(ref_scale_shift) requests = generate_requests(iters, B, T, L, min(Es), reuse=0.1) for indices, offsets, _ in requests: indices = indices.int() offsets = offsets.int() output = cc(indices, offsets) output_ref = cc_ref(indices, offsets) torch.testing.assert_close(output, output_ref, equal_nan=True) @given( T=st.integers(min_value=1, max_value=5), B=st.integers(min_value=1, max_value=8), L=st.integers(min_value=0, max_value=8), use_cpu=st.booleans() if gpu_available else st.just(True), use_cpu_hashtable=st.booleans(), use_array_for_index_remapping=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_pruning( self, T: int, B: int, L: int, use_cpu: bool, use_cpu_hashtable: bool, use_array_for_index_remapping: bool, ) -> None: E = int(1000) LOAD_FACTOR = 0.8 pruning_ratio = 0.5 capacities = [int(B * L / LOAD_FACTOR) + 1 for _ in range(T)] original_E = int(E / (1.0 - pruning_ratio)) # Enforce the size of original_E/B/L to get the unique indices assume(original_E > B * L) current_device = "cpu" if use_cpu else torch.cuda.current_device() if use_cpu_hashtable: assume(use_cpu) indices = torch.randint(low=0, high=original_E, size=(T, B, L)) for t in range(T): while ( torch.unique( indices[t], return_counts=False, return_inverse=False ).numel() != indices[t].numel() ): indices[t] = torch.randint(low=0, high=original_E, size=(B, L)) indices = indices.view(-1).int() dense_indices = torch.randint(low=0, high=E, size=(T, B, L)).view(-1).int() offsets = torch.tensor([L * b_t for b_t in range(B * T + 1)]).int() # Initialize and insert Hashmap index remapping based data structure hash_table = torch.empty( (sum(capacities), 2), dtype=torch.int32, ) hash_table[:, :] = -1 hash_table_offsets = torch.tensor([0] + np.cumsum(capacities).tolist()).long() torch.ops.fbgemm.pruned_hashmap_insert( indices, dense_indices, offsets, hash_table, hash_table_offsets ) if use_cpu_hashtable: ht = torch.classes.fb.PrunedMapCPU() ht.insert(indices, dense_indices, offsets, T) # Initialize and insert Array index remapping based data structure index_remappings_array = torch.tensor( [-1] * original_E * T, dtype=torch.int32, device=current_device ) index_remappings_array_offsets = torch.empty( T + 1, dtype=torch.int64, device=current_device ) index_remappings_array_offsets[0] = 0 for t in range(T): indice_t = (indices.view(T, B, L))[t].long().view(-1).to(current_device) dense_indice_t = ( (dense_indices.view(T, B, L))[t].view(-1).to(current_device) ) selected_indices = torch.add(indice_t, t * original_E)[:E] index_remappings_array[selected_indices] = dense_indice_t index_remappings_array_offsets[t + 1] = ( index_remappings_array_offsets[t] + original_E ) # Move data when using device if not use_cpu: ( indices, dense_indices, offsets, hash_table, hash_table_offsets, index_remappings_array, index_remappings_array_offsets, ) = ( indices.to(current_device), dense_indices.to(current_device), offsets.to(current_device), hash_table.to(current_device), hash_table_offsets.to(current_device), index_remappings_array.to(current_device), index_remappings_array_offsets.to(current_device), ) # Lookup if use_cpu_hashtable: dense_indices_ = ht.lookup(indices, offsets) elif not use_array_for_index_remapping: # hashmap based pruning dense_indices_ = torch.ops.fbgemm.pruned_hashmap_lookup( indices, offsets, hash_table, hash_table_offsets ) else: # array based pruning dense_indices_ = torch.ops.fbgemm.pruned_array_lookup( indices, offsets, index_remappings_array, index_remappings_array_offsets, ) # Validate the lookup result torch.testing.assert_close(dense_indices, dense_indices_) # For array based pruning, it will be out-of-boundary for arbitrarily # large indices. We will rely on bound checker to make sure indices # are within the boundary. if not use_array_for_index_remapping: # now, use a value that does not exist in the original set of indices # and so should be pruned out. indices[:] = np.iinfo(np.int32).max if use_cpu_hashtable: dense_indices_ = ht.lookup(indices, offsets) elif not use_array_for_index_remapping: # hashmap based pruning dense_indices_ = torch.ops.fbgemm.pruned_hashmap_lookup( indices, offsets, hash_table, hash_table_offsets ) else: # array based pruning dense_indices_ = torch.ops.fbgemm.pruned_array_lookup( indices, offsets, index_remappings_array, index_remappings_array_offsets, ) torch.testing.assert_close(dense_indices.clone().fill_(-1), dense_indices_) @given( L=st.integers(min_value=0, max_value=16), H=st.integers(min_value=512, max_value=1024), S=st.integers(min_value=0, max_value=128), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_cache_update_function(self, L: int, H: int, S: int) -> None: # Generate synthetic data linear_cache_indices_cpu = torch.randint(L, H, (S,)) lxu_cache_locations_cpu = torch.clone(linear_cache_indices_cpu) indices = [True if np.random.rand() < 0.5 else False for _ in range(S)] lxu_cache_locations_cpu[indices] = -1 cache_miss_ids = torch.clone(linear_cache_indices_cpu) cache_miss_ids[lxu_cache_locations_cpu != -1] = -2 # Calculate the correct output unique_cache_miss_ids = torch.unique(cache_miss_ids) expect_out = sum(unique_cache_miss_ids >= 0) linear_cache_indices = to_device( torch.tensor(linear_cache_indices_cpu, dtype=torch.int64), use_cpu=False ) lxu_cache_locations = to_device( torch.tensor(lxu_cache_locations_cpu, dtype=torch.int32), use_cpu=False ) # Create an abstract split table D = 8 T = 2 E = 10 ** 3 Ds = [D] * T Es = [E] * T emb_op = ( split_table_batched_embeddings_ops.SplitTableBatchedEmbeddingBagsCodegen ) cc = emb_op( embedding_specs=[ ( E, D, split_table_batched_embeddings_ops.EmbeddingLocation.MANAGED_CACHING, split_table_batched_embeddings_ops.ComputeDevice.CUDA, ) for (E, D) in zip(Es, Ds) ], record_cache_metrics=RecordCacheMetrics(True, False), ) cc._update_cache_miss_counter(lxu_cache_locations, linear_cache_indices) ( cache_miss_forward_count, unique_cache_miss_count, ) = cc.get_cache_miss_counter().cpu() self.assertEqual(unique_cache_miss_count, expect_out) self.assertLessEqual(cache_miss_forward_count, unique_cache_miss_count) @given(N=st.integers(min_value=1, max_value=8)) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_cache_miss_counter(self, N: int) -> None: # Create an abstract split table D = 8 T = 2 E = 10 ** 3 Ds = [D] * T Es = [E] * T emb_op = ( split_table_batched_embeddings_ops.SplitTableBatchedEmbeddingBagsCodegen ) cc = emb_op( embedding_specs=[ ( E, D, split_table_batched_embeddings_ops.EmbeddingLocation.MANAGED_CACHING, split_table_batched_embeddings_ops.ComputeDevice.CUDA, ) for (E, D) in zip(Es, Ds) ], record_cache_metrics=RecordCacheMetrics(True, True), ) # Create fake input data and the target output xs = [] x1 = torch.Tensor([[[1], [1]], [[3], [4]]]) x1 = to_device(torch.tensor(x1, dtype=torch.int64), use_cpu=False) x2 = torch.Tensor([[[2], [1]], [[3], [4]]]) x2 = to_device(torch.tensor(x2, dtype=torch.int64), use_cpu=False) x3 = torch.Tensor([[[5], [6]], [[7], [8]]]) x3 = to_device(torch.tensor(x3, dtype=torch.int64), use_cpu=False) xs.append(x1) xs.append(x2) xs.append(x3) target_counter_list = [[1, 3], [2, 4], [3, 8]] target_tablewise_cache_miss_list = [[1, 2], [2, 2], [4, 4]] for x, t_counter, t_tablewise_cache_miss in zip( xs, target_counter_list, target_tablewise_cache_miss_list ): (indices, offsets) = get_table_batched_offsets_from_dense(x, use_cpu=False) for _ in range(N): cc(indices, offsets) ( cache_miss_forward_count, unique_cache_miss_count, ) = cc.get_cache_miss_counter().cpu() tablewise_cache_miss = cc.get_table_wise_cache_miss().cpu() self.assertEqual(cache_miss_forward_count, t_counter[0]) self.assertEqual(unique_cache_miss_count, t_counter[1]) for i in range(len(tablewise_cache_miss)): self.assertEqual(tablewise_cache_miss[i], t_tablewise_cache_miss[i]) @unittest.skipIf(*gpu_unavailable) @given( L=st.integers(min_value=0, max_value=16), H=st.integers(min_value=512, max_value=1024), S=st.integers(min_value=0, max_value=128), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_nbit_cache_update_function(self, L: int, H: int, S: int) -> None: # Generate synthetic data linear_cache_indices_cpu = torch.randint(L, H, (S,)) lxu_cache_locations_cpu = torch.clone(linear_cache_indices_cpu) indices = [True if np.random.rand() < 0.5 else False for _ in range(S)] lxu_cache_locations_cpu[indices] = -1 cache_miss_ids = torch.clone(linear_cache_indices_cpu) cache_miss_ids[lxu_cache_locations_cpu != -1] = -2 # Calculate the correct output unique_cache_miss_ids = torch.unique(cache_miss_ids) expect_out = sum(unique_cache_miss_ids >= 0) linear_cache_indices = linear_cache_indices_cpu.to(torch.int32).cuda() lxu_cache_locations = lxu_cache_locations_cpu.to(torch.int32).cuda() # Create an abstract split table D = 8 T = 2 E = 10 ** 3 Ds = [D] * T Es = [E] * T cc = split_table_batched_embeddings_ops.IntNBitTableBatchedEmbeddingBagsCodegen( embedding_specs=[ ( "", E, D, SparseType.INT8, split_table_batched_embeddings_ops.EmbeddingLocation.MANAGED_CACHING, ) for (E, D) in zip(Es, Ds) ], device=torch.cuda.current_device(), record_cache_metrics=RecordCacheMetrics(True, False), ) cc.fill_random_weights() cc._update_cache_miss_counter(lxu_cache_locations, linear_cache_indices) ( cache_miss_forward_count, unique_cache_miss_count, ) = cc.get_cache_miss_counter().cpu() self.assertEqual(unique_cache_miss_count, expect_out) self.assertLessEqual(cache_miss_forward_count, unique_cache_miss_count) @unittest.skipIf(*gpu_unavailable) @given(N=st.integers(min_value=1, max_value=8)) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_nbit_cache_miss_counter(self, N: int) -> None: # Create an abstract split table D = 8 T = 2 E = 10 ** 3 Ds = [D] * T Es = [E] * T cc = split_table_batched_embeddings_ops.IntNBitTableBatchedEmbeddingBagsCodegen( embedding_specs=[ ( "", E, D, SparseType.INT8, split_table_batched_embeddings_ops.EmbeddingLocation.MANAGED_CACHING, ) for (E, D) in zip(Es, Ds) ], device=torch.cuda.current_device(), record_cache_metrics=RecordCacheMetrics(True, True), ) cc.fill_random_weights() # Create fake input data and the target output x1 = torch.Tensor([[[1], [1]], [[3], [4]]]).cuda() x2 = torch.Tensor([[[2], [1]], [[3], [4]]]).cuda() x3 = torch.Tensor([[[5], [6]], [[7], [8]]]).cuda() xs = [x1, x2, x3] target_counter_list = [[1, 3], [2, 4], [3, 8]] target_tablewise_cache_miss_list = [[1, 2], [2, 2], [4, 4]] for x, t_counter, t_tablewise_cache_miss in zip( xs, target_counter_list, target_tablewise_cache_miss_list ): (indices, offsets) = get_table_batched_offsets_from_dense(x, use_cpu=False) for _ in range(N): cc(indices.int(), offsets.int()) ( cache_miss_forward_count, unique_cache_miss_count, ) = cc.get_cache_miss_counter().cpu() tablewise_cache_miss = cc.get_table_wise_cache_miss().cpu() self.assertEqual(cache_miss_forward_count, t_counter[0]) self.assertEqual(unique_cache_miss_count, t_counter[1]) for i in range(len(tablewise_cache_miss)): self.assertEqual(tablewise_cache_miss[i], t_tablewise_cache_miss[i]) @given( T=st.integers(min_value=1, max_value=64), B=st.integers(min_value=1, max_value=64), max_L=st.integers(min_value=1, max_value=64), bounds_check_mode=st.sampled_from( [ BoundsCheckMode.FATAL, BoundsCheckMode.WARNING, BoundsCheckMode.IGNORE, ] ), use_cpu=st.booleans() if gpu_available else st.just(True), dtype=st.sampled_from( [ torch.int64, torch.int32, ] ), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_bounds_check( self, T: int, B: int, max_L: int, bounds_check_mode: BoundsCheckMode, use_cpu: bool, dtype: torch.dtype, ) -> None: rows_per_table = torch.tensor( np.random.randint(low=1, high=1000, size=(T,)) ).long() Ls = np.random.randint(low=0, high=max_L, size=(T, B)) indices = [ np.random.randint(low=0, high=rows_per_table[t], size=Ls[t, b]) for t in range(T) for b in range(B) ] indices = torch.tensor(np.concatenate(indices, axis=0)).to(dtype) offsets = torch.tensor([0] + np.cumsum(Ls.flatten()).tolist()).to(dtype) warning = torch.tensor([0]).long() self.assertEqual(indices.numel(), np.sum(Ls).item()) self.assertEqual(offsets[-1], np.sum(Ls).item()) if not use_cpu: indices, offsets, rows_per_table, warning = ( indices.cuda(), offsets.cuda(), rows_per_table.cuda(), warning.cuda(), ) indices_copy = indices.clone() torch.ops.fbgemm.bounds_check_indices( rows_per_table, indices, offsets, bounds_check_mode, warning ) # we don't modify when we are in-bounds. torch.testing.assert_close(indices_copy, indices) indices[:] = torch.iinfo(dtype).max if bounds_check_mode != BoundsCheckMode.FATAL: torch.ops.fbgemm.bounds_check_indices( rows_per_table, indices, offsets, bounds_check_mode, warning ) torch.testing.assert_close(indices, torch.zeros_like(indices)) if bounds_check_mode == BoundsCheckMode.WARNING: self.assertEqual(warning.item(), indices.numel()) else: if use_cpu and indices.numel(): with self.assertRaises(RuntimeError): torch.ops.fbgemm.bounds_check_indices( rows_per_table, indices, offsets, bounds_check_mode, warning ) # It would be nice to test the CUDA implementation of BoundsCheckMode==FATAL, # but the device assert kills the CUDA context and requires a process restart, # which is a bit inconvenient. # test offsets bound errors indices = indices_copy.clone() if offsets.numel() > 0: offsets[0] = -100 if offsets.numel() > 1: offsets[-1] += 100 if bounds_check_mode != BoundsCheckMode.FATAL: torch.ops.fbgemm.bounds_check_indices( rows_per_table, indices, offsets, bounds_check_mode, warning ) if offsets.numel() > 0: self.assertEqual(offsets[0].item(), 0) if offsets.numel() > 1: self.assertEqual(offsets[-1].item(), indices.numel()) if bounds_check_mode == BoundsCheckMode.WARNING: # -1 because when we have 2 elements in offsets, we have only 1 # warning for the pair. self.assertGreaterEqual(warning.item(), min(2, offsets.numel() - 1)) else: if use_cpu and indices.numel(): with self.assertRaises(RuntimeError): torch.ops.fbgemm.bounds_check_indices( rows_per_table, indices, offsets, bounds_check_mode, warning ) def test_pickle(self) -> None: tensor_queue = torch.classes.fbgemm.TensorQueue(torch.empty(0)) pickled = pickle.dumps(tensor_queue) unpickled = pickle.loads(pickled) @unittest.skipIf(*gpu_unavailable) def test_linearize_cache_indices(self) -> None: indices = torch.tensor( [10, 2, 3, 7, 1, 4, 5, 9, 2, 7, 6, 8, 5, 1, 0, 4], dtype=torch.int, device="cuda", ) equal_offsets = torch.tensor([0, 4, 8, 12, 16], dtype=torch.int, device="cuda") varying_offsets = torch.tensor( [0, 1, 3, 6, 8, 10, 14, 15, 16], dtype=torch.int, device="cuda" ) # Testing equal sized tables. cache_hash_size_cumsum_0 = torch.tensor([0, 12, 24, 36, 48]).cuda() linear_cache_indices_0 = torch.ops.fbgemm.linearize_cache_indices( cache_hash_size_cumsum_0, indices, equal_offsets ) self.assertTrue( torch.equal( linear_cache_indices_0.cpu(), torch.tensor( [10, 2, 3, 7, 13, 16, 17, 21, 26, 31, 30, 32, 41, 37, 36, 40], dtype=torch.int, ), ) ) # Testing partially cached tables. cache_hash_size_cumsum_1 = torch.tensor([0, 12, -1, 24, 36]).cuda() linear_cache_indices_1 = torch.ops.fbgemm.linearize_cache_indices( cache_hash_size_cumsum_1, indices, equal_offsets ) self.assertTrue( torch.equal( linear_cache_indices_1.cpu(), torch.tensor( [10, 2, 3, 7, 13, 16, 17, 21, 36, 36, 36, 36, 29, 25, 24, 28], dtype=torch.int, ), ) ) # Testing batched with varying pooling factor. cache_hash_size_cumsum_2 = torch.tensor([0, 12, -1, 24, 36]).cuda() linear_cache_indices_2 = torch.ops.fbgemm.linearize_cache_indices( cache_hash_size_cumsum_2, indices, varying_offsets ) self.assertTrue( torch.equal( linear_cache_indices_2.cpu(), torch.tensor( [10, 2, 3, 19, 13, 16, 17, 21, 36, 36, 36, 36, 36, 36, 24, 28], dtype=torch.int, ), ) ) # Testing when multiple features share the same table. cache_hash_size_cumsum_3 = torch.tensor([0, 0, 12, 12, 24]).cuda() linear_cache_indices_3 = torch.ops.fbgemm.linearize_cache_indices( cache_hash_size_cumsum_3, indices, varying_offsets ) self.assertTrue( torch.equal( linear_cache_indices_3.cpu(), torch.tensor( [10, 2, 3, 7, 1, 4, 5, 9, 14, 19, 18, 20, 17, 13, 12, 16], dtype=torch.int, ), ) ) @unittest.skipIf(*gpu_unavailable) def test_lxu_cache_lookup(self) -> None: ASSOC: int = split_table_batched_embeddings_ops.ASSOC max_index: int = 8000 # Use single cache set to avoid dealing with cache set hash algorithm. lxu_cache_state_gpu = torch.arange(ASSOC, dtype=torch.int64).unsqueeze(0).cuda() # Testing all miss. linear_cache_indices_0 = torch.tensor( [32, 33, 34, 35, 36, 100, 1000, 1725] ).cuda() lxu_locations = torch.ops.fbgemm.lxu_cache_lookup( linear_cache_indices_0, lxu_cache_state_gpu, max_index ) self.assertTrue( torch.equal( lxu_locations.cpu(), torch.tensor( [-1, -1, -1, -1, -1, -1, -1, -1], dtype=torch.int, ), ) ) # Testing all hits. cache_indices_1 = torch.randint(0, ASSOC, (ASSOC,)) linear_cache_indices_1 = cache_indices_1.cuda() lxu_locations = torch.ops.fbgemm.lxu_cache_lookup( linear_cache_indices_1, lxu_cache_state_gpu, max_index ) self.assertTrue( torch.equal( lxu_locations.cpu(), cache_indices_1.int(), ) ) # Testing mixture. miss_cache_indices_0 = torch.randint(ASSOC, max_index, (10,)) hit_cache_indices_0 = torch.randint(0, ASSOC, (8,)) miss_cache_indices_1 = torch.randint(ASSOC, max_index, (16,)) hit_cache_indices_1 = torch.randint(0, ASSOC, (8,)) linear_cache_indices_2 = torch.cat( [ miss_cache_indices_0, hit_cache_indices_0, miss_cache_indices_1, hit_cache_indices_1, ] ).cuda() lxu_locations = torch.ops.fbgemm.lxu_cache_lookup( linear_cache_indices_2, lxu_cache_state_gpu, max_index ) expected_result = torch.cat( [ torch.full_like(miss_cache_indices_0, -1), hit_cache_indices_0, torch.full_like(miss_cache_indices_1, -1), hit_cache_indices_1, ] ).int() self.assertTrue( torch.equal( lxu_locations.cpu(), expected_result, ) ) if __name__ == "__main__": unittest.main()
35.560168
96
0.543131
efcf839b959ddd8c3aff12ec1e709c1f0a57aba0
10,401
py
Python
day_08/main.py
tusharsadhwani/aoc2021
8780760208e40eb6bc64f0726b5b9c2559df0633
[ "MIT" ]
null
null
null
day_08/main.py
tusharsadhwani/aoc2021
8780760208e40eb6bc64f0726b5b9c2559df0633
[ "MIT" ]
null
null
null
day_08/main.py
tusharsadhwani/aoc2021
8780760208e40eb6bc64f0726b5b9c2559df0633
[ "MIT" ]
null
null
null
""" --- Day 8: Seven Segment Search --- You barely reach the safety of the cave when the whale smashes into the cave mouth, collapsing it. Sensors indicate another exit to this cave at a much greater depth, so you have no choice but to press on. As your submarine slowly makes its way through the cave system, you notice that the four-digit seven-segment displays in your submarine are malfunctioning; they must have been damaged during the escape. You'll be in a lot of trouble without them, so you'd better figure out what's wrong. Each digit of a seven-segment display is rendered by turning on or off any of seven segments named a through g: 0: 1: 2: 3: 4: aaaa .... aaaa aaaa .... b c . c . c . c b c b c . c . c . c b c .... .... dddd dddd dddd e f . f e . . f . f e f . f e . . f . f gggg .... gggg gggg .... 5: 6: 7: 8: 9: aaaa aaaa aaaa aaaa aaaa b . b . . c b c b c b . b . . c b c b c dddd dddd .... dddd dddd . f e f . f e f . f . f e f . f e f . f gggg gggg .... gggg gggg So, to render a 1, only segments c and f would be turned on; the rest would be off. To render a 7, only segments a, c, and f would be turned on. The problem is that the signals which control the segments have been mixed up on each display. The submarine is still trying to display numbers by producing output on signal wires a through g, but those wires are connected to segments randomly. Worse, the wire/segment connections are mixed up separately for each four-digit display! (All of the digits within a display use the same connections, though.) So, you might know that only signal wires b and g are turned on, but that doesn't mean segments b and g are turned on: the only digit that uses two segments is 1, so it must mean segments c and f are meant to be on. With just that information, you still can't tell which wire (b/g) goes to which segment (c/f). For that, you'll need to collect more information. For each display, you watch the changing signals for a while, make a note of all ten unique signal patterns you see, and then write down a single four digit output value (your puzzle input). Using the signal patterns, you should be able to work out which pattern corresponds to which digit. For example, here is what you might see in a single entry in your notes: acedgfb cdfbe gcdfa fbcad dab cefabd cdfgeb eafb cagedb ab | cdfeb fcadb cdfeb cdbaf (The entry is wrapped here to two lines so it fits; in your notes, it will all be on a single line.) Each entry consists of ten unique signal patterns, a | delimiter, and finally the four digit output value. Within an entry, the same wire/segment connections are used (but you don't know what the connections actually are). The unique signal patterns correspond to the ten different ways the submarine tries to render a digit using the current wire/segment connections. Because 7 is the only digit that uses three segments, dab in the above example means that to render a 7, signal lines d, a, and b are on. Because 4 is the only digit that uses four segments, eafb means that to render a 4, signal lines e, a, f, and b are on. Using this information, you should be able to work out which combination of signal wires corresponds to each of the ten digits. Then, you can decode the four digit output value. Unfortunately, in the above example, all of the digits in the output value (cdfeb fcadb cdfeb cdbaf) use five segments and are more difficult to deduce. For now, focus on the easy digits. Consider this larger example: be cfbegad cbdgef fgaecd cgeb fdcge agebfd fecdb fabcd edb | fdgacbe cefdb cefbgd gcbe edbfga begcd cbg gc gcadebf fbgde acbgfd abcde gfcbed gfec | fcgedb cgb dgebacf gc fgaebd cg bdaec gdafb agbcfd gdcbef bgcad gfac gcb cdgabef | cg cg fdcagb cbg fbegcd cbd adcefb dageb afcb bc aefdc ecdab fgdeca fcdbega | efabcd cedba gadfec cb aecbfdg fbg gf bafeg dbefa fcge gcbea fcaegb dgceab fcbdga | gecf egdcabf bgf bfgea fgeab ca afcebg bdacfeg cfaedg gcfdb baec bfadeg bafgc acf | gebdcfa ecba ca fadegcb dbcfg fgd bdegcaf fgec aegbdf ecdfab fbedc dacgb gdcebf gf | cefg dcbef fcge gbcadfe bdfegc cbegaf gecbf dfcage bdacg ed bedf ced adcbefg gebcd | ed bcgafe cdgba cbgef egadfb cdbfeg cegd fecab cgb gbdefca cg fgcdab egfdb bfceg | gbdfcae bgc cg cgb gcafb gcf dcaebfg ecagb gf abcdeg gaef cafbge fdbac fegbdc | fgae cfgab fg bagce Because the digits 1, 4, 7, and 8 each use a unique number of segments, you should be able to tell which combinations of signals correspond to those digits. Counting only digits in the output values (the part after | on each line), in the above example, there are 26 instances of digits that use a unique number of segments. In the output values, how many times do digits 1, 4, 7, or 8 appear? --- Part Two --- Through a little deduction, you should now be able to determine the remaining digits. Consider again the first example above: acedgfb cdfbe gcdfa fbcad dab cefabd cdfgeb eafb cagedb ab | cdfeb fcadb cdfeb cdbaf After some careful analysis, the mapping between signal wires and segments only make sense in the following configuration: dddd e a e a ffff g b g b cccc So, the unique signal patterns would correspond to the following digits: - acedgfb: 8 - cdfbe: 5 - gcdfa: 2 - fbcad: 3 - dab: 7 - cefabd: 9 - cdfgeb: 6 - eafb: 4 - cagedb: 0 - ab: 1 Then, the four digits of the output value can be decoded: - cdfeb: 5 - fcadb: 3 - cdfeb: 5 - cdbaf: 3 Therefore, the output value for this entry is 5353. Following this same process for each entry in the second, larger example above, the output value of each entry can be determined: - fdgacbe cefdb cefbgd gcbe: 8394 - fcgedb cgb dgebacf gc: 9781 - cg cg fdcagb cbg: 1197 - efabcd cedba gadfec cb: 9361 - gecf egdcabf bgf bfgea: 4873 - gebdcfa ecba ca fadegcb: 8418 - cefg dcbef fcge gbcadfe: 4548 - ed bcgafe cdgba cbgef: 1625 - gbdfcae bgc cg cgb: 8717 - fgae cfgab fg bagce: 4315 Adding all of the output values in this larger example produces 61229. For each entry, determine all of the wire/segment connections and decode the four-digit output values. What do you get if you add up all of the output values? """ import os from itertools import permutations from typing import Sequence Digit = frozenset[str] def parse_input(data: str) -> tuple[list[list[Digit]], list[list[Digit]]]: all_digits: list[list[Digit]] = [] input_digits: list[list[Digit]] = [] for line in data.splitlines(): digits_text, input_text = line.split("|") all_digits.append([frozenset(segments) for segments in digits_text.split()]) input_digits.append([frozenset(segments) for segments in input_text.split()]) return all_digits, input_digits def part1(data: str) -> int: _, input_digits = parse_input(data) count_1478 = 0 for row in input_digits: for digits in row: if len(digits) not in (5, 6): count_1478 += 1 return count_1478 def get_set_from_word(permutation: Sequence[int], digit: Digit) -> set[int]: """ Returns a digit set from a given digit word, based on the current permutation. i.e. if: permutation = [6, 5, 4, 3, 2, 1, 0] digit = 'abcd' then output = {6, 5, 4, 3} """ return {permutation[ord(char) - ord("a")] for char in digit} def part2(data: str) -> int: """ Assuming the seven segment display in this order: 0000 1 2 1 2 3333 4 5 4 5 6666 The digits are defined by the activated segments. The idea is to generate all possible permutations of a to g mappings between these 1-7 values, and then vlalidate the words against them until we find one in which none of the given words generate an invalid number. """ digit_sets = ( {0, 1, 2, 4, 5, 6}, # Zero {2, 5}, # One {0, 2, 3, 4, 6}, # Two {0, 2, 3, 5, 6}, # Three {1, 2, 3, 5}, # Four {0, 1, 3, 5, 6}, # Five {0, 1, 3, 4, 5, 6}, # Six {0, 2, 5}, # Seven {0, 1, 2, 3, 4, 5, 6}, # Eight {0, 1, 2, 3, 5, 6}, # Nine ) total = 0 all_digits, input_digits = parse_input(data) for all_digit_row, input_row in zip(all_digits, input_digits): for permutation in permutations(range(7), 7): for digit_word in all_digit_row: digit_set = get_set_from_word(permutation, digit_word) if digit_set not in digit_sets: # Invalid digit found. On to the next permutation. break else: number = 0 for digit_word in input_row: digit_set = get_set_from_word(permutation, digit_word) digit = digit_sets.index(digit_set) number = number * 10 + digit total += number break # Found the number. Onto the next row. return total test_data = """\ be cfbegad cbdgef fgaecd cgeb fdcge agebfd fecdb fabcd edb | fdgacbe cefdb cefbgd gcbe edbfga begcd cbg gc gcadebf fbgde acbgfd abcde gfcbed gfec | fcgedb cgb dgebacf gc fgaebd cg bdaec gdafb agbcfd gdcbef bgcad gfac gcb cdgabef | cg cg fdcagb cbg fbegcd cbd adcefb dageb afcb bc aefdc ecdab fgdeca fcdbega | efabcd cedba gadfec cb aecbfdg fbg gf bafeg dbefa fcge gcbea fcaegb dgceab fcbdga | gecf egdcabf bgf bfgea fgeab ca afcebg bdacfeg cfaedg gcfdb baec bfadeg bafgc acf | gebdcfa ecba ca fadegcb dbcfg fgd bdegcaf fgec aegbdf ecdfab fbedc dacgb gdcebf gf | cefg dcbef fcge gbcadfe bdfegc cbegaf gecbf dfcage bdacg ed bedf ced adcbefg gebcd | ed bcgafe cdgba cbgef egadfb cdbfeg cegd fecab cgb gbdefca cg fgcdab egfdb bfceg | gbdfcae bgc cg cgb gcafb gcf dcaebfg ecagb gf abcdeg gaef cafbge fdbac fegbdc | fgae cfgab fg bagce """ def test_part1() -> None: assert part1(test_data) == 26 def test_part2() -> None: assert part2(test_data) == 61229 def main() -> None: with open(os.path.join(os.path.dirname(__file__), "input")) as file: data = file.read() print(part1(data)) print(part2(data)) if __name__ == "__main__": main()
34.213816
86
0.680511
f7a579f1ca176702a9824450d79c0bd2e1cbde6e
853
py
Python
score_following_game/agents/optim_utils.py
CPJKU/score_following_game
f04e977b09cceb49588dcf8e216909d815a54519
[ "MIT" ]
43
2018-07-18T14:00:04.000Z
2022-01-10T07:34:35.000Z
score_following_game/agents/optim_utils.py
CPJKU/score_following_game
f04e977b09cceb49588dcf8e216909d815a54519
[ "MIT" ]
10
2019-05-08T07:38:26.000Z
2022-01-13T15:06:16.000Z
score_following_game/agents/optim_utils.py
CPJKU/score_following_game
f04e977b09cceb49588dcf8e216909d815a54519
[ "MIT" ]
12
2018-10-10T09:58:49.000Z
2021-12-02T16:45:44.000Z
import numpy as np import torch.optim as optim from ast import literal_eval as make_tuple def cast_optim_params(optim_params): """ :param optim_params: :return: """ for k in optim_params.keys(): # check if argument is a parameter tuple if isinstance(optim_params[k], str) and '(' in optim_params[k]: optim_params[k] = make_tuple(optim_params[k]) else: try: optim_params[k] = np.float(optim_params[k]) except: pass return optim_params def get_optimizer(optimizer_name, params, **kwargs): """ Compile pytorch optimizer :param optimizer_name: :param params: :param kwargs: :return: """ constructor = getattr(optim, optimizer_name) optimizer = constructor(params, **kwargs) return optimizer
21.325
71
0.621336
b3ea6c8d4ab1549c4efb2f076ba0578bbbe33d0f
15,640
py
Python
avwx/service/scrape.py
avwx-rest/avwx-engine
af0ec16630d1d79bca19f2610b5d2b84a782333f
[ "MIT" ]
25
2019-11-27T05:33:04.000Z
2022-02-05T04:04:44.000Z
avwx/service/scrape.py
avwx-rest/avwx-engine
af0ec16630d1d79bca19f2610b5d2b84a782333f
[ "MIT" ]
13
2019-11-18T17:03:54.000Z
2021-09-04T03:53:55.000Z
avwx/service/scrape.py
avwx-rest/avwx-engine
af0ec16630d1d79bca19f2610b5d2b84a782333f
[ "MIT" ]
16
2019-11-18T01:55:49.000Z
2021-09-20T03:22:58.000Z
""" Classes for retrieving raw report strings via web scraping """ # pylint: disable=arguments-differ,invalid-name # stdlib import asyncio as aio import json import random from typing import Any, List, Optional, Tuple, Union # library from xmltodict import parse as parsexml # type: ignore # module from avwx.parsing.core import dedupe from avwx.exceptions import InvalidRequest from avwx.station import valid_station from avwx.service.base import CallsHTTP, Service USER_AGENTS = [ "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.3 Safari/605.1.15" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_5) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/13.1.1 Safari/605.1.15", "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:77.0) Gecko/20100101 Firefox/77.0", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.97 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:77.0) Gecko/20100101 Firefox/77.0", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.97 Safari/537.36", ] class ScrapeService(Service, CallsHTTP): # pylint: disable=too-few-public-methods """Service class for fetching reports via direct web requests""" _valid_types: Tuple[str, ...] = ("metar", "taf") _strip_whitespace: bool = True def _make_err(self, body: str, key: str = "report path") -> InvalidRequest: """Returns an InvalidRequest exception with formatted error message""" msg = f"Could not find {key} in {self.__class__.__name__} response\n" return InvalidRequest(msg + body) @staticmethod def _make_headers() -> dict: """Returns request headers""" return {} def _post_data( # pylint: disable=no-self-use self, station: str # pylint: disable=unused-argument ) -> dict: """Returns the POST form/data payload""" return {} def _clean_report(self, report: Any) -> Any: """Replaces all *whitespace elements with a single space if enabled""" if not self._strip_whitespace: return report if isinstance(report, list): return dedupe(" ".join(r.split()) for r in report) if isinstance(report, str): return " ".join(report.split()) return report class StationScrape(ScrapeService): """Service class fetching reports from a station ICAO""" def _make_url(self, station: str) -> Tuple[str, dict]: """Returns a formatted URL and parameters""" raise NotImplementedError() def _extract(self, raw: str, station: str) -> str: """Extracts the report string from the service response""" raise NotImplementedError() def _simple_extract(self, raw: str, starts: Union[str, List[str]], end: str) -> str: """Simple extract by cutting at sequential start and end points""" if isinstance(starts, str): targets = [starts] else: targets = starts for target in targets: index = raw.find(target) if index == -1: raise self._make_err("The station might not exist") raw = raw[index:] report = raw[: raw.find(end)].strip() return " ".join(dedupe(report.split())) async def _fetch(self, station: str, url: str, params: dict, timeout: int) -> str: headers = self._make_headers() data = self._post_data(station) if self.method.lower() == "post" else None text = await self._call( url, params=params, headers=headers, data=data, timeout=timeout ) report = self._extract(text, station) return self._clean_report(report) def fetch( self, station: str, timeout: int = 10, ) -> str: """Fetches a report string from the service""" return aio.run(self.async_fetch(station, timeout)) async def async_fetch(self, station: str, timeout: int = 10) -> str: """Asynchronously fetch a report string from the service""" valid_station(station) url, params = self._make_url(station) return await self._fetch(station, url, params, timeout) # Multiple sources for NOAA data class NOAA_ADDS(ScrapeService): """Requests data from NOAA ADDS""" url = "https://aviationweather.gov/adds/dataserver_current/httpparam" _valid_types = ("metar", "taf", "aircraftreport") _rtype_map = {"airep": "aircraftreport"} _targets = {"metar": "METAR", "taf": "TAF", "aircraftreport": "AircraftReport"} _coallate = ("aircraftreport",) def __init__(self, request_type: str): super().__init__(self._rtype_map.get(request_type, request_type)) def _make_url( self, station: Optional[str], lat: Optional[float], lon: Optional[float] ) -> Tuple[str, dict]: """Returns a formatted URL and parameters""" # Base request params params = { "requestType": "retrieve", "format": "XML", "hoursBeforeNow": 2, "dataSource": self.report_type + "s", } if self.report_type == "aircraftreport": params["radialDistance"] = f"200;{lon},{lat}" else: params["stationString"] = station return self.url, params def _extract(self, raw: str) -> Union[str, List[str]]: """Extracts the raw_report element from XML response""" resp = parsexml(raw) try: data = resp["response"]["data"] if data["@num_results"] == "0": return "" reports = data[self._targets[self.report_type]] except KeyError as key_error: raise self._make_err(raw) from key_error # Only one report exists if isinstance(reports, dict): ret = reports["raw_text"] if self.report_type in self._coallate: ret = [ret] # Multiple reports exist elif isinstance(reports, list) and reports: if self.report_type in self._coallate: ret = [r["raw_text"] for r in reports] else: ret = reports[0]["raw_text"] # Something went wrong else: raise self._make_err(raw, '"raw_text"') return ret def fetch( self, station: str = None, lat: float = None, lon: float = None, timeout: int = 10, ) -> Union[str, List[str]]: """Fetches a report string from the service""" return aio.run(self.async_fetch(station, lat, lon, timeout)) async def async_fetch( self, station: str = None, lat: float = None, lon: float = None, timeout: int = 10, ) -> Union[str, List[str]]: """Asynchronously fetch a report string from the service""" if station: valid_station(station) elif lat is None or lon is None: raise ValueError("No valid fetch parameters") url, params = self._make_url(station, lat, lon) text = await self._call(url, params=params, timeout=timeout) report = self._extract(text) return self._clean_report(report) class NOAA_FTP(StationScrape): """Requests data from NOAA via FTP""" url = "https://tgftp.nws.noaa.gov/data/{}/{}/stations/{}.TXT" def _make_url(self, station: str) -> Tuple[str, dict]: """Returns a formatted URL and parameters""" root = "forecasts" if self.report_type == "taf" else "observations" return self.url.format(root, self.report_type, station), {} def _extract(self, raw: str, station: str) -> str: """Extracts the report using string finding""" raw = raw[raw.find(station) :] return raw[: raw.find('"')] class NOAA_Scrape(StationScrape): """Requests data from NOAA via site scraping""" url = "https://aviationweather.gov/{}/data" def _make_url(self, station: str) -> Tuple[str, dict]: """Returns a formatted URL and parameters""" hours = 7 if self.report_type == "taf" else 2 return ( self.url.format(self.report_type), {"ids": station, "format": "raw", "hours": hours}, ) def _extract(self, raw: str, station: str) -> str: """Extracts the report using string finding""" raw = raw[raw.find("<code>") :] raw = raw[raw.find(station) :] raw = raw[: raw.find("</code>")] for char in ("<br/>", "&nbsp;"): raw = raw.replace(char, " ") return raw NOAA = NOAA_Scrape # Regional data sources class AMO(StationScrape): """Requests data from AMO KMA for Korean stations""" url = "http://amoapi.kma.go.kr/amoApi/{}" def _make_url(self, station: str) -> Tuple[str, dict]: """Returns a formatted URL and parameters""" return self.url.format(self.report_type), {"icao": station} def _extract(self, raw: str, station: str) -> str: """Extracts the report message from XML response""" resp = parsexml(raw) try: report = resp["response"]["body"]["items"]["item"][ self.report_type.lower() + "Msg" ] except KeyError as key_error: raise self._make_err(raw) from key_error if not report: raise self._make_err("The station might not exist") # Replace line breaks report = report.replace("\n", "") # Remove excess leading and trailing data for item in (self.report_type.upper(), "SPECI"): if report.startswith(item + " "): report = report[len(item) + 1 :] report = report.rstrip("=") # Make every element single-spaced and stripped return " ".join(report.split()) class MAC(StationScrape): """Requests data from Meteorologia Aeronautica Civil for Columbian stations""" url = "http://meteorologia.aerocivil.gov.co/expert_text_query/parse" method = "POST" def _make_url(self, station: str) -> Tuple[str, dict]: """Returns a formatted URL and parameters""" return self.url, {"query": f"{self.report_type} {station}"} def _extract(self, raw: str, station: str) -> str: """Extracts the report message using string finding""" return self._simple_extract(raw, station.upper() + " ", "=") class AUBOM(StationScrape): """Requests data from the Australian Bureau of Meteorology""" url = "http://www.bom.gov.au/aviation/php/process.php" method = "POST" def _make_url(self, _) -> Tuple[str, dict]: """Returns a formatted URL and empty parameters""" return self.url, {} @staticmethod def _make_headers() -> dict: """Returns request headers""" return { "Content-Type": "application/x-www-form-urlencoded", "Accept": "*/*", "Accept-Language": "en-us", "Accept-Encoding": "gzip, deflate", "Host": "www.bom.gov.au", "Origin": "http://www.bom.gov.au", "User-Agent": random.choice(USER_AGENTS), "Connection": "keep-alive", } def _post_data(self, station: str) -> dict: """Returns the POST form""" return {"keyword": station, "type": "search", "page": "TAF"} def _extract(self, raw: str, station: str) -> str: """Extracts the reports from HTML response""" index = 1 if self.report_type == "taf" else 2 try: report = raw.split("<p")[index] report = report[report.find(">") + 1 :] except IndexError as index_error: raise self._make_err("The station might not exist") from index_error if report.startswith("<"): return "" report = report[: report.find("</p>")] return report.replace("<br />", " ") class OLBS(StationScrape): """Requests data from India OLBS flight briefing""" # url = "https://olbs.amsschennai.gov.in/nsweb/FlightBriefing/showopmetquery.php" # method = "POST" # Temp redirect url = "https://avbrief3.el.r.appspot.com/" def _make_url(self, station: str) -> Tuple[str, dict]: """Returns a formatted URL and empty parameters""" return self.url, {"icao": station} def _post_data(self, station: str) -> dict: """Returns the POST form""" # Can set icaos to "V*" to return all results return {"icaos": station, "type": self.report_type} @staticmethod def _make_headers() -> dict: """Returns request headers""" return { # "Content-Type": "application/x-www-form-urlencoded", # "Accept": "text/html, */*; q=0.01", # "Accept-Language": "en-us", "Accept-Encoding": "gzip, deflate, br", # "Host": "olbs.amsschennai.gov.in", "User-Agent": random.choice(USER_AGENTS), "Connection": "keep-alive", # "Referer": "https://olbs.amsschennai.gov.in/nsweb/FlightBriefing/", # "X-Requested-With": "XMLHttpRequest", "Accept-Language": "en-US,en;q=0.9", "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8", "Referer": "https://avbrief3.el.r.appspot.com/", "Host": "avbrief3.el.r.appspot.com", } def _extract(self, raw: str, station: str) -> str: """Extracts the reports from HTML response""" # start = raw.find(f"{self.report_type.upper()} {station} ") return self._simple_extract( raw, [f">{self.report_type.upper()}</div>", station], "=" ) class NAM(StationScrape): """Requests data from NorthAviMet for North Atlantic and Nordic countries""" url = "https://www.northavimet.com/NamConWS/rest/opmet/command/0/" def _make_url(self, station: str) -> Tuple[str, dict]: """Returns a formatted URL and empty parameters""" return self.url + station, {} def _extract(self, raw: str, station: str) -> str: """Extracts the reports from HTML response""" starts = [f"<b>{self.report_type.upper()} <", f">{station.upper()}<", "<b> "] report = self._simple_extract(raw, starts, "=") return station + report[3:] class AVT(StationScrape): """Requests data from AVT/XiamenAir for China NOTE: This should be replaced later with a gov+https source """ url = "http://www.avt7.com/Home/AirportMetarInfo?airport4Code=" def _make_url(self, station: str) -> Tuple[str, dict]: """Returns a formatted URL and empty parameters""" return self.url + station, {} def _extract(self, raw: str, station: str) -> str: """Extracts the reports from HTML response""" try: data = json.loads(raw) key = self.report_type.lower() + "ContentList" return data[key]["rows"][0]["content"] except (TypeError, json.decoder.JSONDecodeError, KeyError, IndexError): return "" PREFERRED = { "RK": AMO, # "SK": MAC, } BY_COUNTRY = { "AU": AUBOM, "CN": AVT, "DK": NAM, "EE": NAM, "FI": NAM, "FO": NAM, "GL": NAM, "IN": OLBS, "IS": NAM, "LV": NAM, "NO": NAM, "SE": NAM, } def get_service(station: str, country_code: str) -> ScrapeService: """Returns the preferred service for a given station""" for prefix, service in PREFERRED.items(): if station.startswith(prefix): return service # type: ignore return BY_COUNTRY.get(country_code, NOAA) # type: ignore
35.30474
127
0.598146
9784f4fb0a748801f41e4829e067a2a2232dc788
1,158
py
Python
salt/_states/metalk8s_sysctl.py
SaintLoong/metalk8s
06fa3a731f35ab0f9ad8d3443fd8f8c4e7037432
[ "Apache-2.0" ]
255
2018-08-03T17:32:53.000Z
2022-03-25T21:51:00.000Z
salt/_states/metalk8s_sysctl.py
SaintLoong/metalk8s
06fa3a731f35ab0f9ad8d3443fd8f8c4e7037432
[ "Apache-2.0" ]
3,259
2018-08-03T00:25:56.000Z
2022-03-31T15:23:11.000Z
salt/_states/metalk8s_sysctl.py
SaintLoong/metalk8s
06fa3a731f35ab0f9ad8d3443fd8f8c4e7037432
[ "Apache-2.0" ]
43
2018-08-08T01:47:22.000Z
2022-03-12T17:49:41.000Z
# -*- coding: utf-8 -*- """ Custom state to handle MetalK8s sysctl. """ from salt.exceptions import CommandExecutionError __virtualname__ = "metalk8s_sysctl" def __virtual__(): if "sysctl.present" not in __states__: return (False, "sysctl state module could not be loaded") return __virtualname__ def present(name, value, config=None, check_priority=True, strict=False): """ Wrapper around `sysctl.present` state module adding a check of the sysctl parameter priority if `check_priority` is `True`. If `strict` is set to `True`, check that the passed `config` is the last file to define this `value`. """ if config is None: config = __salt__["sysctl.default_config"]() if check_priority: try: __salt__["metalk8s_sysctl.has_precedence"](name, value, config, strict) except CommandExecutionError as exc: return { "name": name, "result": False, "changes": {}, "comment": "Unable to set sysctl value: {0}".format(exc), } return __states__["sysctl.present"](name, value, config)
29.692308
83
0.629534
1fcae82d2d853c8a3b17a3d00de7e0951a9718ff
92
py
Python
TexDBook/src/python/core/static_gzip.py
kkysen/TexDBook
61d9db5f00f04b00fd45ef50d0c8df417548d324
[ "MIT" ]
null
null
null
TexDBook/src/python/core/static_gzip.py
kkysen/TexDBook
61d9db5f00f04b00fd45ef50d0c8df417548d324
[ "MIT" ]
9
2018-05-18T16:19:27.000Z
2022-02-26T03:48:31.000Z
TexDBook/src/python/core/static_gzip.py
kkysen/TexDBook
61d9db5f00f04b00fd45ef50d0c8df417548d324
[ "MIT" ]
1
2018-06-14T04:06:14.000Z
2018-06-14T04:06:14.000Z
from TexDBook.src.python.core.init_app import default_init_app init_app = default_init_app
23
62
0.858696
5435df3090ba3f164d1685ab1d81a1d72ec1b0a5
10,065
py
Python
client-py/SessionTest.py
ljn55966005/iotdb
2788f4aa5450c207f6982d41d2377fcbf5b6f147
[ "Apache-2.0" ]
null
null
null
client-py/SessionTest.py
ljn55966005/iotdb
2788f4aa5450c207f6982d41d2377fcbf5b6f147
[ "Apache-2.0" ]
null
null
null
client-py/SessionTest.py
ljn55966005/iotdb
2788f4aa5450c207f6982d41d2377fcbf5b6f147
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # Uncomment the following line to use apache-iotdb module installed by pip3 import numpy as np from iotdb.Session import Session from iotdb.utils.IoTDBConstants import TSDataType, TSEncoding, Compressor from iotdb.utils.NumpyTablet import NumpyTablet from iotdb.utils.Tablet import Tablet # whether the test has passed final_flag = True failed_count = 0 def test_fail(): global failed_count global final_flag final_flag = False failed_count += 1 def print_message(message): print("*********") print(message) print("*********") # creating session connection. ip = "127.0.0.1" port_ = "6667" username_ = "root" password_ = "root" session = Session(ip, port_, username_, password_, fetch_size=1024, zone_id="UTC+8") session.open(False) if not session.is_open(): print("can't open session") exit(1) # set and delete storage groups session.set_storage_group("root.sg_test_01") session.set_storage_group("root.sg_test_02") session.set_storage_group("root.sg_test_03") session.set_storage_group("root.sg_test_04") if session.delete_storage_group("root.sg_test_02") < 0: test_fail() print_message("delete storage group failed") if session.delete_storage_groups(["root.sg_test_03", "root.sg_test_04"]) < 0: test_fail() print_message("delete storage groups failed") # setting time series. session.create_time_series( "root.sg_test_01.d_01.s_01", TSDataType.BOOLEAN, TSEncoding.PLAIN, Compressor.SNAPPY ) session.create_time_series( "root.sg_test_01.d_01.s_02", TSDataType.INT32, TSEncoding.PLAIN, Compressor.SNAPPY ) session.create_time_series( "root.sg_test_01.d_01.s_03", TSDataType.INT64, TSEncoding.PLAIN, Compressor.SNAPPY ) session.create_time_series( "root.sg_test_01.d_02.s_01", TSDataType.BOOLEAN, TSEncoding.PLAIN, Compressor.SNAPPY, None, {"tag1": "v1"}, {"description": "v1"}, "temperature" ) # setting multiple time series once. ts_path_lst_ = [ "root.sg_test_01.d_01.s_04", "root.sg_test_01.d_01.s_05", "root.sg_test_01.d_01.s_06", "root.sg_test_01.d_01.s_07", "root.sg_test_01.d_01.s_08", "root.sg_test_01.d_01.s_09", ] data_type_lst_ = [ TSDataType.FLOAT, TSDataType.DOUBLE, TSDataType.TEXT, TSDataType.FLOAT, TSDataType.DOUBLE, TSDataType.TEXT, ] encoding_lst_ = [TSEncoding.PLAIN for _ in range(len(data_type_lst_))] compressor_lst_ = [Compressor.SNAPPY for _ in range(len(data_type_lst_))] session.create_multi_time_series( ts_path_lst_, data_type_lst_, encoding_lst_, compressor_lst_ ) ts_path_lst_ = [ "root.sg_test_01.d_02.s_04", "root.sg_test_01.d_02.s_05", "root.sg_test_01.d_02.s_06", "root.sg_test_01.d_02.s_07", "root.sg_test_01.d_02.s_08", "root.sg_test_01.d_02.s_09", ] data_type_lst_ = [ TSDataType.FLOAT, TSDataType.DOUBLE, TSDataType.TEXT, TSDataType.FLOAT, TSDataType.DOUBLE, TSDataType.TEXT, ] encoding_lst_ = [TSEncoding.PLAIN for _ in range(len(data_type_lst_))] compressor_lst_ = [Compressor.SNAPPY for _ in range(len(data_type_lst_))] tags_lst_ = [{"tag2": "v2"} for _ in range(len(data_type_lst_))] attributes_lst_ = [{"description": "v2"} for _ in range(len(data_type_lst_))] session.create_multi_time_series( ts_path_lst_, data_type_lst_, encoding_lst_, compressor_lst_, None, tags_lst_, attributes_lst_, None ) # delete time series if ( session.delete_time_series( [ "root.sg_test_01.d_01.s_07", "root.sg_test_01.d_01.s_08", "root.sg_test_01.d_01.s_09", ] ) < 0 ): test_fail() print_message("delete time series failed") # checking time series # s_07 expecting False if session.check_time_series_exists("root.sg_test_01.d_01.s_07"): test_fail() print_message("root.sg_test_01.d_01.s_07 shouldn't exist") # s_03 expecting True if not session.check_time_series_exists("root.sg_test_01.d_01.s_03"): test_fail() print_message("root.sg_test_01.d_01.s_03 should exist") # d_02.s_01 expecting True if not session.check_time_series_exists("root.sg_test_01.d_02.s_01"): test_fail() print_message("root.sg_test_01.d_02.s_01 should exist") # d_02.s_06 expecting True if not session.check_time_series_exists("root.sg_test_01.d_02.s_06"): test_fail() print_message("root.sg_test_01.d_02.s_06 should exist") # insert one record into the database. measurements_ = ["s_01", "s_02", "s_03", "s_04", "s_05", "s_06"] values_ = [False, 10, 11, 1.1, 10011.1, "test_record"] data_types_ = [ TSDataType.BOOLEAN, TSDataType.INT32, TSDataType.INT64, TSDataType.FLOAT, TSDataType.DOUBLE, TSDataType.TEXT, ] if ( session.insert_record( "root.sg_test_01.d_01", 1, measurements_, data_types_, values_ ) < 0 ): test_fail() print_message("insert record failed") # insert multiple records into database measurements_list_ = [ ["s_01", "s_02", "s_03", "s_04", "s_05", "s_06"], ["s_01", "s_02", "s_03", "s_04", "s_05", "s_06"], ] values_list_ = [ [False, 22, 33, 4.4, 55.1, "test_records01"], [True, 77, 88, 1.25, 8.125, "test_records02"], ] data_type_list_ = [data_types_, data_types_] device_ids_ = ["root.sg_test_01.d_01", "root.sg_test_01.d_01"] if ( session.insert_records( device_ids_, [2, 3], measurements_list_, data_type_list_, values_list_ ) < 0 ): test_fail() print_message("insert records failed") # insert one tablet into the database. values_ = [ [False, 10, 11, 1.1, 10011.1, "test01"], [True, 100, 11111, 1.25, 101.0, "test02"], [False, 100, 1, 188.1, 688.25, "test03"], [True, 0, 0, 0, 6.25, "test04"], ] # Non-ASCII text will cause error since bytes can only hold 0-128 nums. timestamps_ = [4, 5, 6, 7] tablet_ = Tablet( "root.sg_test_01.d_01", measurements_, data_types_, values_, timestamps_ ) if session.insert_tablet(tablet_) < 0: test_fail() print_message("insert tablet failed") # insert one numpy tablet into the database. np_values_ = [ np.array([False, True, False, True], np.dtype('>?')), np.array([10, 100, 100, 0], np.dtype('>i4')), np.array([11, 11111, 1, 0], np.dtype('>i8')), np.array([1.1, 1.25, 188.1, 0], np.dtype('>f4')), np.array([10011.1, 101.0, 688.25, 6.25], np.dtype('>f8')), ["test01", "test02", "test03", "test04"], ] np_timestamps_ = np.array([1, 2, 3, 4], np.dtype('>i8')) np_tablet_ = NumpyTablet( "root.sg_test_01.d_02", measurements_, data_types_, np_values_, np_timestamps_ ) if session.insert_tablet(np_tablet_) < 0: test_fail() print_message("insert numpy tablet failed") # insert multiple tablets into database tablet_01 = Tablet( "root.sg_test_01.d_01", measurements_, data_types_, values_, [8, 9, 10, 11] ) tablet_02 = Tablet( "root.sg_test_01.d_01", measurements_, data_types_, values_, [12, 13, 14, 15] ) if session.insert_tablets([tablet_01, tablet_02]) < 0: test_fail() print_message("insert tablets failed") # insert one tablet with empty cells into the database. values_ = [ [None, 10, 11, 1.1, 10011.1, "test01"], [True, None, 11111, 1.25, 101.0, "test02"], [False, 100, 1, None, 688.25, "test03"], [True, 0, 0, 0, None, None], ] # Non-ASCII text will cause error since bytes can only hold 0-128 nums. timestamps_ = [20, 21, 22, 23] tablet_ = Tablet( "root.sg_test_01.d_01", measurements_, data_types_, values_, timestamps_ ) if session.insert_tablet(tablet_) < 0: test_fail() print_message("insert tablet with empty cells failed") # insert records of one device time_list = [1, 2, 3] measurements_list = [ ["s_01", "s_02", "s_03"], ["s_01", "s_02", "s_03"], ["s_01", "s_02", "s_03"], ] data_types_list = [ [TSDataType.BOOLEAN, TSDataType.INT32, TSDataType.INT64], [TSDataType.BOOLEAN, TSDataType.INT32, TSDataType.INT64], [TSDataType.BOOLEAN, TSDataType.INT32, TSDataType.INT64], ] values_list = [[False, 22, 33], [True, 1, 23], [False, 15, 26]] if ( session.insert_records_of_one_device( "root.sg_test_01.d_01", time_list, measurements_list, data_types_list, values_list, ) < 0 ): test_fail() print_message("insert records of one device failed") # execute non-query sql statement if ( session.execute_non_query_statement( "insert into root.sg_test_01.d_01(timestamp, s_02) values(16, 188)" ) < 0 ): test_fail() print_message( "execute 'insert into root.sg_test_01.d_01(timestamp, s_02) values(16, 188)' failed" ) # execute sql query statement session_data_set = session.execute_query_statement("select * from root.sg_test_01.d_01") session_data_set.set_fetch_size(1024) expect_count = 20 actual_count = 0 while session_data_set.has_next(): print(session_data_set.next()) actual_count += 1 session_data_set.close_operation_handle() if actual_count != expect_count: test_fail() print_message( "query count mismatch: expect count: " + str(expect_count) + " actual count: " + str(actual_count) ) # close session connection. session.close() if final_flag: print("All executions done!!") else: print("Some test failed, please have a check") print("failed count: ", failed_count) exit(1)
29.866469
104
0.695678
f95f89599bfd5570ee14d5db093a8966caff7673
10,874
py
Python
libcloud/compute/drivers/dummy.py
rgharris/libcloud
90971e17bfd7b6bb97b2489986472c531cc8e140
[ "Apache-2.0" ]
null
null
null
libcloud/compute/drivers/dummy.py
rgharris/libcloud
90971e17bfd7b6bb97b2489986472c531cc8e140
[ "Apache-2.0" ]
1
2021-12-06T12:29:13.000Z
2021-12-06T12:29:13.000Z
libcloud/compute/drivers/dummy.py
rgharris/libcloud
90971e17bfd7b6bb97b2489986472c531cc8e140
[ "Apache-2.0" ]
1
2019-08-05T10:12:02.000Z
2019-08-05T10:12:02.000Z
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Dummy Driver @note: This driver is out of date """ import uuid import socket import struct from libcloud.common.base import ConnectionKey from libcloud.compute.base import NodeImage, NodeSize, Node from libcloud.compute.base import NodeDriver, NodeLocation from libcloud.compute.base import KeyPair from libcloud.compute.types import Provider, NodeState class DummyConnection(ConnectionKey): """ Dummy connection class """ def connect(self, host=None, port=None): pass class DummyNodeDriver(NodeDriver): """ Dummy node driver This is a fake driver which appears to always create or destroy nodes successfully. >>> from libcloud.compute.drivers.dummy import DummyNodeDriver >>> driver = DummyNodeDriver(0) >>> node=driver.create_node() >>> node.public_ips[0] '127.0.0.3' >>> node.name 'dummy-3' If the credentials you give convert to an integer then the next node to be created will be one higher. Each time you create a node you will get a different IP address. >>> driver = DummyNodeDriver(22) >>> node=driver.create_node() >>> node.name 'dummy-23' """ name = "Dummy Node Provider" website = "http://example.com" type = Provider.DUMMY def __init__(self, creds): """ :param creds: Credentials :type creds: ``str`` :rtype: ``None`` """ self.creds = creds try: num = int(creds) except ValueError: num = None if num: self.nl = [] startip = _ip_to_int("127.0.0.1") for i in range(num): ip = _int_to_ip(startip + i) self.nl.append( Node( id=i, name="dummy-%d" % (i), state=NodeState.RUNNING, public_ips=[ip], private_ips=[], driver=self, extra={"foo": "bar"}, ) ) else: self.nl = [ Node( id=1, name="dummy-1", state=NodeState.RUNNING, public_ips=["127.0.0.1"], private_ips=[], driver=self, extra={"foo": "bar"}, ), Node( id=2, name="dummy-2", state=NodeState.RUNNING, public_ips=["127.0.0.1"], private_ips=[], driver=self, extra={"foo": "bar"}, ), ] self.connection = DummyConnection(self.creds) def get_uuid(self, unique_field=None): """ :param unique_field: Unique field :type unique_field: ``bool`` :rtype: :class:`UUID` """ return str(uuid.uuid4()) def list_nodes(self): """ List the nodes known to a particular driver; There are two default nodes created at the beginning >>> from libcloud.compute.drivers.dummy import DummyNodeDriver >>> driver = DummyNodeDriver(0) >>> node_list=driver.list_nodes() >>> sorted([node.name for node in node_list ]) ['dummy-1', 'dummy-2'] each item in the list returned is a node object from which you can carry out any node actions you wish >>> node_list[0].reboot() True As more nodes are added, list_nodes will return them >>> node=driver.create_node() >>> node.size.id 's1' >>> node.image.id 'i2' >>> sorted([n.name for n in driver.list_nodes()]) ['dummy-1', 'dummy-2', 'dummy-3'] @inherits: :class:`NodeDriver.list_nodes` """ return self.nl def reboot_node(self, node): """ Sets the node state to rebooting; in this dummy driver always returns True as if the reboot had been successful. >>> from libcloud.compute.drivers.dummy import DummyNodeDriver >>> driver = DummyNodeDriver(0) >>> node=driver.create_node() >>> from libcloud.compute.types import NodeState >>> node.state == NodeState.RUNNING True >>> node.state == NodeState.REBOOTING False >>> driver.reboot_node(node) True >>> node.state == NodeState.REBOOTING True Please note, dummy nodes never recover from the reboot. @inherits: :class:`NodeDriver.reboot_node` """ node.state = NodeState.REBOOTING return True def destroy_node(self, node): """ Sets the node state to terminated and removes it from the node list >>> from libcloud.compute.drivers.dummy import DummyNodeDriver >>> driver = DummyNodeDriver(0) >>> from libcloud.compute.types import NodeState >>> node = [node for node in driver.list_nodes() if ... node.name == 'dummy-1'][0] >>> node.state == NodeState.RUNNING True >>> driver.destroy_node(node) True >>> node.state == NodeState.RUNNING False >>> [n for n in driver.list_nodes() if n.name == 'dummy-1'] [] @inherits: :class:`NodeDriver.destroy_node` """ node.state = NodeState.TERMINATED self.nl.remove(node) return True def list_images(self, location=None): """ Returns a list of images as a cloud provider might have >>> from libcloud.compute.drivers.dummy import DummyNodeDriver >>> driver = DummyNodeDriver(0) >>> sorted([image.name for image in driver.list_images()]) ['Slackware 4', 'Ubuntu 9.04', 'Ubuntu 9.10'] @inherits: :class:`NodeDriver.list_images` """ return [ NodeImage(id=1, name="Ubuntu 9.10", driver=self), NodeImage(id=2, name="Ubuntu 9.04", driver=self), NodeImage(id=3, name="Slackware 4", driver=self), ] def list_sizes(self, location=None): """ Returns a list of node sizes as a cloud provider might have >>> from libcloud.compute.drivers.dummy import DummyNodeDriver >>> driver = DummyNodeDriver(0) >>> sorted([size.ram for size in driver.list_sizes()]) [128, 512, 4096, 8192] @inherits: :class:`NodeDriver.list_images` """ return [ NodeSize( id=1, name="Small", ram=128, disk=4, bandwidth=500, price=4, driver=self ), NodeSize( id=2, name="Medium", ram=512, disk=16, bandwidth=1500, price=8, driver=self, ), NodeSize( id=3, name="Big", ram=4096, disk=32, bandwidth=2500, price=32, driver=self, ), NodeSize( id=4, name="XXL Big", ram=4096 * 2, disk=32 * 4, bandwidth=2500 * 3, price=32 * 2, driver=self, ), ] def list_locations(self): """ Returns a list of locations of nodes >>> from libcloud.compute.drivers.dummy import DummyNodeDriver >>> driver = DummyNodeDriver(0) >>> sorted([loc.name + " in " + loc.country for loc in ... driver.list_locations()]) ['Island Datacenter in FJ', 'London Loft in GB', "Paul's Room in US"] @inherits: :class:`NodeDriver.list_locations` """ return [ NodeLocation(id=1, name="Paul's Room", country="US", driver=self), NodeLocation(id=2, name="London Loft", country="GB", driver=self), NodeLocation(id=3, name="Island Datacenter", country="FJ", driver=self), ] def create_node(self, name, size, image): """ Creates a dummy node; the node id is equal to the number of nodes in the node list >>> from libcloud.compute.drivers.dummy import DummyNodeDriver >>> driver = DummyNodeDriver(0) >>> sorted([node.name for node in driver.list_nodes()]) ['dummy-1', 'dummy-2'] >>> nodeA = driver.create_node() >>> sorted([node.name for node in driver.list_nodes()]) ['dummy-1', 'dummy-2', 'dummy-3'] >>> driver.create_node().name 'dummy-4' >>> driver.destroy_node(nodeA) True >>> sorted([node.name for node in driver.list_nodes()]) ['dummy-1', 'dummy-2', 'dummy-4'] @inherits: :class:`NodeDriver.create_node` """ num = len(self.nl) + 1 n = Node( id=num, name="dummy-%d" % (num), state=NodeState.RUNNING, public_ips=["127.0.0.%d" % (num)], private_ips=[], driver=self, size=NodeSize( id="s1", name="foo", ram=2048, disk=160, bandwidth=None, price=0.0, driver=self, ), image=NodeImage(id="i2", name="image", driver=self), extra={"foo": "bar"}, ) self.nl.append(n) return n def import_key_pair_from_string(self, name, key_material): key_pair = KeyPair( name=name, public_key=key_material, fingerprint="fingerprint", private_key="private_key", driver=self, ) return key_pair def _ip_to_int(ip): return socket.htonl(struct.unpack("I", socket.inet_aton(ip))[0]) def _int_to_ip(ip): return socket.inet_ntoa(struct.pack("I", socket.ntohl(ip))) if __name__ == "__main__": import doctest doctest.testmod()
30.205556
88
0.536233
abadae2800484f587f23c8acbfd7ec0cc0f42800
15,389
py
Python
pepper/libpepper.py
bloomberg/pepper
c0cbfa6385c0bd6b36f4a352eb482bce87d817c5
[ "Apache-2.0" ]
1
2021-11-09T05:48:51.000Z
2021-11-09T05:48:51.000Z
pepper/libpepper.py
bloomberg/pepper
c0cbfa6385c0bd6b36f4a352eb482bce87d817c5
[ "Apache-2.0" ]
null
null
null
pepper/libpepper.py
bloomberg/pepper
c0cbfa6385c0bd6b36f4a352eb482bce87d817c5
[ "Apache-2.0" ]
2
2018-12-26T18:30:13.000Z
2021-11-09T05:48:29.000Z
''' A Python library for working with Salt's REST API (Specifically the rest_cherrypy netapi module.) ''' import json import logging import re import ssl from pepper.exceptions import PepperException try: ssl._create_default_https_context = ssl._create_stdlib_context except Exception: pass try: from urllib.request import HTTPHandler, HTTPSHandler, Request, urlopen, \ install_opener, build_opener from urllib.error import HTTPError, URLError import urllib.parse as urlparse except ImportError: from urllib2 import HTTPHandler, HTTPSHandler, Request, urlopen, install_opener, build_opener, \ HTTPError, URLError import urlparse logger = logging.getLogger(__name__) class Pepper(object): ''' A thin wrapper for making HTTP calls to the salt-api rest_cherrpy REST interface >>> api = Pepper('https://localhost:8000') >>> api.login('saltdev', 'saltdev', 'pam') {"return": [ { "eauth": "pam", "expire": 1370434219.714091, "perms": [ "test.*" ], "start": 1370391019.71409, "token": "c02a6f4397b5496ba06b70ae5fd1f2ab75de9237", "user": "saltdev" } ] } >>> api.low([{'client': 'local', 'tgt': '*', 'fun': 'test.ping'}]) {u'return': [{u'ms-0': True, u'ms-1': True, u'ms-2': True, u'ms-3': True, u'ms-4': True}]} ''' def __init__(self, api_url='https://localhost:8000', debug_http=False, ignore_ssl_errors=False, timeout=None): ''' Initialize the class with the URL of the API :param api_url: Host or IP address of the salt-api URL; include the port number :param debug_http: Add a flag to urllib2 to output the HTTP exchange :param ignore_ssl_errors: Add a flag to urllib2 to ignore invalid SSL certificates :raises PepperException: if the api_url is misformed ''' split = urlparse.urlsplit(api_url) if split.scheme not in ['http', 'https']: raise PepperException("salt-api URL missing HTTP(s) protocol: {0}" .format(api_url)) self.api_url = api_url self.debug_http = int(debug_http) self._ssl_verify = not ignore_ssl_errors self.auth = {} self.salt_version = None self.timeout = timeout def req_stream(self, path): ''' A thin wrapper to get a response from saltstack api. The body of the response will not be downloaded immediately. Make sure to close the connection after use. api = Pepper('http://ipaddress/api/') print(api.login('salt','salt','pam')) response = api.req_stream('/events') :param path: The path to the salt api resource :return: :class:`Response <Response>` object :rtype: requests.Response ''' import requests headers = { 'Accept': 'application/json', 'Content-Type': 'application/json', 'X-Requested-With': 'XMLHttpRequest', } if self.auth and 'token' in self.auth and self.auth['token']: headers.setdefault('X-Auth-Token', self.auth['token']) else: raise PepperException('Authentication required') return params = {'url': self._construct_url(path), 'headers': headers, 'verify': self._ssl_verify is True, 'stream': True } try: resp = requests.get(**params) if resp.status_code == 401: raise PepperException(str(resp.status_code) + ':Authentication denied') return if resp.status_code == 500: raise PepperException(str(resp.status_code) + ':Server error.') return if resp.status_code == 404: raise PepperException(str(resp.status_code) + ' :This request returns nothing.') return except PepperException as e: print(e) return return resp def req_get(self, path): ''' A thin wrapper from get http method of saltstack api api = Pepper('http://ipaddress/api/') print(api.login('salt','salt','pam')) print(api.req_get('/keys')) ''' import requests headers = { 'Accept': 'application/json', 'Content-Type': 'application/json', 'X-Requested-With': 'XMLHttpRequest', } if self.auth and 'token' in self.auth and self.auth['token']: headers.setdefault('X-Auth-Token', self.auth['token']) else: raise PepperException('Authentication required') return params = {'url': self._construct_url(path), 'headers': headers, 'verify': self._ssl_verify is True, } try: resp = requests.get(**params) if resp.status_code == 401: raise PepperException(str(resp.status_code) + ':Authentication denied') return if resp.status_code == 500: raise PepperException(str(resp.status_code) + ':Server error.') return if resp.status_code == 404: raise PepperException(str(resp.status_code) + ' :This request returns nothing.') return except PepperException as e: print(e) return return resp.json() def req(self, path, data=None): ''' A thin wrapper around urllib2 to send requests and return the response If the current instance contains an authentication token it will be attached to the request as a custom header. :rtype: dictionary ''' if ((hasattr(data, 'get') and data.get('eauth') == 'kerberos') or self.auth.get('eauth') == 'kerberos'): return self.req_requests(path, data) headers = { 'Accept': 'application/json', 'Content-Type': 'application/json', 'X-Requested-With': 'XMLHttpRequest', } opener = build_opener() for handler in opener.handlers: if isinstance(handler, HTTPHandler): handler.set_http_debuglevel(self.debug_http) if isinstance(handler, HTTPSHandler): handler.set_http_debuglevel(self.debug_http) install_opener(opener) # Build POST data if data is not None: postdata = json.dumps(data).encode() clen = len(postdata) else: postdata = None # Create request object url = self._construct_url(path) req = Request(url, postdata, headers) # Add POST data to request if data is not None: req.add_header('Content-Length', clen) # Add auth header to request if path != '/run' and self.auth and 'token' in self.auth and self.auth['token']: req.add_header('X-Auth-Token', self.auth['token']) # Send request try: con_kwargs = {} if not (self._ssl_verify): con = ssl.SSLContext(ssl.PROTOCOL_SSLv23) con_kwargs['context'] = con #if self.timeout: # con_kwargs['timeout'] = self.timeout + 5 # throw a bit of buffer for upstream lag f = urlopen(req, **con_kwargs) content = f.read().decode('utf-8') if (self.debug_http): logger.debug('Response: %s', content) ret = json.loads(content) if not self.salt_version and 'x-salt-version' in f.headers: self._parse_salt_version(f.headers['x-salt-version']) except (HTTPError, URLError) as exc: logger.debug('Error with request', exc_info=True) status = getattr(exc, 'code', None) if status == 401: raise PepperException('Authentication denied') if status == 500: raise PepperException('Server error.') logger.error('Error with request: {0}'.format(exc)) raise except AttributeError: logger.debug('Error converting response from JSON', exc_info=True) raise PepperException('Unable to parse the server response.') return ret def req_requests(self, path, data=None): ''' A thin wrapper around request and request_kerberos to send requests and return the response If the current instance contains an authentication token it will be attached to the request as a custom header. :rtype: dictionary ''' import requests from requests_kerberos import HTTPKerberosAuth, OPTIONAL auth = HTTPKerberosAuth(mutual_authentication=OPTIONAL) headers = { 'Accept': 'application/json', 'Content-Type': 'application/json', 'X-Requested-With': 'XMLHttpRequest', } if self.auth and 'token' in self.auth and self.auth['token']: headers.setdefault('X-Auth-Token', self.auth['token']) # Optionally toggle SSL verification params = {'url': self._construct_url(path), 'headers': headers, 'verify': self._ssl_verify is True, 'auth': auth, 'data': json.dumps(data), } #if self.timeout: # params['timeout'] = self.timeout + 5 logger.debug('postdata {0}'.format(params)) resp = requests.post(**params) if resp.status_code == 401: # TODO should be resp.raise_from_status raise PepperException('Authentication denied') if resp.status_code == 500: # TODO should be resp.raise_from_status raise PepperException('Server error.') if not self.salt_version and 'x-salt-version' in resp.headers: self._parse_salt_version(resp.headers['x-salt-version']) return resp.json() def low(self, lowstate, path='/'): ''' Execute a command through salt-api and return the response :param string path: URL path to be joined with the API hostname :param list lowstate: a list of lowstate dictionaries ''' return self.req(path, lowstate) def local(self, tgt, fun, arg=None, kwarg=None, expr_form='glob', timeout=None, ret=None): ''' Run a single command using the ``local`` client Wraps :meth:`low`. ''' low = { 'client': 'local', 'tgt': tgt, 'fun': fun, } if arg: low['arg'] = arg if kwarg: low['kwarg'] = kwarg if expr_form: low['expr_form'] = expr_form if timeout: low['timeout'] = timeout if ret: low['ret'] = ret return self.low([low]) def local_async(self, tgt, fun, arg=None, kwarg=None, expr_form='glob', timeout=None, ret=None): ''' Run a single command using the ``local_async`` client Wraps :meth:`low`. ''' low = { 'client': 'local_async', 'tgt': tgt, 'fun': fun, } if arg: low['arg'] = arg if kwarg: low['kwarg'] = kwarg if expr_form: low['expr_form'] = expr_form if timeout: low['timeout'] = timeout if ret: low['ret'] = ret return self.low([low]) def local_batch(self, tgt, fun, arg=None, kwarg=None, expr_form='glob', batch='50%', ret=None): ''' Run a single command using the ``local_batch`` client Wraps :meth:`low`. ''' low = { 'client': 'local_batch', 'tgt': tgt, 'fun': fun, } if arg: low['arg'] = arg if kwarg: low['kwarg'] = kwarg if expr_form: low['expr_form'] = expr_form if batch: low['batch'] = batch if ret: low['ret'] = ret return self.low([low]) def lookup_jid(self, jid): ''' Get job results Wraps :meth:`runner`. ''' return self.runner('jobs.lookup_jid', jid='{0}'.format(jid)) def runner(self, fun, arg=None, **kwargs): ''' Run a single command using the ``runner`` client Usage:: runner('jobs.lookup_jid', jid=12345) ''' low = { 'client': 'runner', 'fun': fun, } if arg: low['arg'] = arg low.update(kwargs) return self.low([low]) def wheel(self, fun, arg=None, kwarg=None, **kwargs): ''' Run a single command using the ``wheel`` client Usage:: wheel('key.accept', match='myminion') ''' low = { 'client': 'wheel', 'fun': fun, } if arg: low['arg'] = arg if kwarg: low['kwarg'] = kwarg low.update(kwargs) return self.low([low]) def _send_auth(self, path, **kwargs): return self.req(path, kwargs) def login(self, username=None, password=None, eauth=None, **kwargs): ''' Authenticate with salt-api and return the user permissions and authentication token or an empty dict ''' local = locals() kwargs.update( dict( (key, local[key]) for key in ( 'username', 'password', 'eauth' ) if local.get(key, None) is not None ) ) self.auth = self._send_auth('/login', **kwargs).get('return', [{}])[0] return self.auth def token(self, **kwargs): ''' Get an eauth token from Salt for use with the /run URL ''' self.auth = self._send_auth('/token', **kwargs)[0] return self.auth def _construct_url(self, path): ''' Construct the url to salt-api for the given path Args: path: the path to the salt-api resource >>> api = Pepper('https://localhost:8000/salt-api/') >>> api._construct_url('/login') 'https://localhost:8000/salt-api/login' ''' relative_path = path.lstrip('/') return urlparse.urljoin(self.api_url, relative_path) def _parse_salt_version(self, version): # borrow from salt.version git_describe_regex = re.compile( r'(?:[^\d]+)?(?P<major>[\d]{1,4})' r'\.(?P<minor>[\d]{1,2})' r'(?:\.(?P<bugfix>[\d]{0,2}))?' r'(?:\.(?P<mbugfix>[\d]{0,2}))?' r'(?:(?P<pre_type>rc|a|b|alpha|beta|nb)(?P<pre_num>[\d]{1}))?' r'(?:(?:.*)-(?P<noc>(?:[\d]+|n/a))-(?P<sha>[a-z0-9]{8}))?' ) match = git_describe_regex.match(version) if match: self.salt_version = match.groups()
30.11546
114
0.533303
e956da3f927a9b071dd35764c95c0b81bf8dec0d
4,039
py
Python
project/experiments/exp_017_generate_random_bodies/src/common/utils.py
liusida/thesis-bodies
dceb8a36efd2cefc611f6749a52b56b9d3572f7a
[ "MIT" ]
null
null
null
project/experiments/exp_017_generate_random_bodies/src/common/utils.py
liusida/thesis-bodies
dceb8a36efd2cefc611f6749a52b56b9d3572f7a
[ "MIT" ]
null
null
null
project/experiments/exp_017_generate_random_bodies/src/common/utils.py
liusida/thesis-bodies
dceb8a36efd2cefc611f6749a52b56b9d3572f7a
[ "MIT" ]
null
null
null
import os import pathlib import yaml import torch.nn as nn import numpy as np def get_exp_name(): """Return current experiment folder, such as exp0.""" _full_path = str(pathlib.Path().absolute()) _paths = _full_path.split('/') assert _paths[-1] == "src", f"Project structure has been changed. utils.get_exp_folder() should be changed accordingly.\n{_paths}" assert len(_paths) > 2, "Why path is so short?" _folder_name = _paths[-2] return _folder_name def get_output_data_folder(init=False): # Create output folder is not exist yet. _path = pathlib.Path("../../../output_data") if not _path.is_dir(): print("Starting a new project? Congratulations! \n\nCreating output data path for the first time.") print(f"mkdir {_path.resolve()}") _path.mkdir() output_data_folder = _path / get_exp_name() output_data_folder.mkdir(exist_ok=True) _subs = ["tensorboard", "plots", "models", "saved_images", "videos", "checkpoints", "tmp", "bodies"] for _sub in _subs: (output_data_folder / _sub).mkdir(exist_ok=True) if init: # Create a symlink to output_data _sym_link = pathlib.Path("output_data") if _sym_link.is_symlink(): _sym_link.unlink() _sym_link.symlink_to(output_data_folder, target_is_directory=True) return output_data_folder def get_input_data_folder(): _path = pathlib.Path("../input_data") assert _path.exists() return _path def get_current_folder(): return pathlib.Path() def check_exp_folder(): """Make sure .exp_folder contains the right folder name""" _exp_folder = pathlib.Path(".exp_folder") _folder = get_exp_name() if _exp_folder.exists(): _str = _exp_folder.read_text() if _folder == _str: return _exp_folder.write_text(_folder) return def build_model_filename(args): filename = "model-" filename += args.train_bodies_str.replace(",", "-") if args.with_bodyinfo: filename += "-body" if args.vec_normalize: filename += "-vnorm" if args.stack_frames>1: filename += f"-stack{args.stack_frames}" if args.threshold_threshold!=0: filename += f"-thr{args.threshold_threshold}" if len(args.initialize_weights_from) > 0: filename += f"-initw" if args.topology_wrapper=="same": if args.realign_method!="": filename += f"-realign{args.realign_method}" elif args.topology_wrapper=="diff": if args.wrapper_case!="": filename += f"-case{args.wrapper_case}" elif args.topology_wrapper=="MutantWrapper": filename += "-MutantWrapper" else: pass # if args.misalign_obs: # filename += f"-mis" # if args.random_align_obs: # filename += f"-ra" # if args.preserve_header: # filename += f"-ph" # if args.random_even_same_body: # filename += f"-resb" # if args.preserve_feet_contact: # filename += f"-pfc" filename += f"-sd{args.seed}" return filename def mean_and_error(_data): """A helper for creating error bar""" _data = np.array(_data) _two_sigma = 2*np.std(_data) _mean = np.mean(_data) print(f"{_mean:.0f} +- {_two_sigma:.0f}") return _mean, _two_sigma def linux_fullscreen(): """A helper for entering Full Screen mode in Linux. Faking a mouse click and a key press (Ctrl+F11). """ from pymouse import PyMouse from pykeyboard import PyKeyboard m = PyMouse() k = PyKeyboard() x_dim, y_dim = m.screen_size() m.click(int(x_dim/3), int(y_dim/2), 1) k.press_key(k.control_key) k.tap_key(k.function_keys[11]) k.release_key(k.control_key) def load_hyperparameters(conf_name="MyWalkerEnv"): with (get_input_data_folder() / "hyperparameters.yml").open() as f: hp = yaml.load(f, Loader=yaml.SafeLoader) hyperparams = hp[conf_name] hyperparams["policy_kwargs"] = eval(hyperparams["policy_kwargs"]) return hyperparams
31.069231
134
0.649913
1d54d3159ceac8afcea6f64b58228dd0371c5710
4,282
py
Python
datagen.py
r-or/cnn-eyetrack
93a09f209aa8d34defc82c8734d35d5ce56b9060
[ "MIT" ]
null
null
null
datagen.py
r-or/cnn-eyetrack
93a09f209aa8d34defc82c8734d35d5ce56b9060
[ "MIT" ]
null
null
null
datagen.py
r-or/cnn-eyetrack
93a09f209aa8d34defc82c8734d35d5ce56b9060
[ "MIT" ]
null
null
null
#!/usr/bin/python3 import sys import os import shutil import argparse from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img import random from multiprocessing import Pool import cv2 import json aparser = argparse.ArgumentParser() aparser.add_argument('-tSet', help='Choose source training set (inside capture-output)') aparser.add_argument('-name', help='Output name of augmentation') aparser.add_argument('-valPart', help='The percentage of data to use for validation (]0 < valPart < 1[)', default=.12) aparser.add_argument('-copy', help='Only copy, do NOT modify training set', action='store_true') aparser.add_argument('-subSetNum', help='Choose an absolute number of samples to use', default = -1) aparser.add_argument('-pathCap', help='Specify path to capture-output', nargs=1) aparser.add_argument('-pathAug', help='Specify path to augmentation-output', nargs=1) aparser.add_argument('-save', help='Save config into cfg.json', action='store_true') args = aparser.parse_args() if os.path.exists('cfg.json'): with open('cfg.json', 'r') as cfgfile: cfg = json.load(cfgfile) else: cfg = {} if args.pathCap or 'capturepath' not in cfg: cfg['capturepath'] = args.pathCap if args.pathAug or 'augpath' not in cfg: cfg['augpath'] = args.pathAug if args.tSet or 'tSet' not in cfg: cfg['tSet'] = args.tSet if args.name or 'nameOfRun' not in cfg: cfg['nameOfRun'] = args.name if args.save: with open('cfg.json', 'w') as cfgfile: cfgfile.write(json.dumps(cfg, sort_keys=True, indent=2)) dataSet = cfg['tSet'] valPart = float(args.valPart) subSetNum = int(args.subSetNum) srcDirBare = os.path.join(cfg['capturepath'], dataSet) srcDirTrain = os.path.join(cfg['augpath'], cfg['nameOfRun'] + '-train', 'images') srcDirValidate = os.path.join(cfg['augpath'], cfg['nameOfRun'] + '-validate', 'images') if os.path.exists(srcDirTrain): shutil.rmtree(srcDirTrain) if os.path.exists(srcDirValidate): shutil.rmtree(srcDirValidate) os.makedirs(srcDirTrain) os.makedirs(srcDirValidate) def randomBrightness(image): hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) rand = random.uniform(.3, 1.0) hsv[:, :, 2] = rand*hsv[:, :, 2] img = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB) return img datagen = ImageDataGenerator(rotation_range = 0, width_shift_range = .05, height_shift_range = .05, brightness_range = (.005, 3), horizontal_flip = False, fill_mode = 'nearest') files = [f for f in os.listdir(srcDirBare) if f.endswith('.jpeg') or f.endswith('.jpg')] random.shuffle(files) if args.subSetNum != -1: files = files[:int(args.subSetNum)] filesTrain = files[:int(len(files) * (1 - valPart))] filesValidate = files[int(len(files) * (1 - valPart)):] if not args.copy: # gen data with first part def genImg(imgFile): img = load_img(os.path.join(srcDirBare, imgFile)) x = img_to_array(img) x = x.reshape((1,) + x.shape) i = 0 for batch in datagen.flow(x, batch_size = 1, save_to_dir = srcDirTrain, save_prefix = imgFile.split('.')[0], shuffle = True, save_format = 'jpeg'): i += 1 if i > 20: break sys.stdout.write('Processing {} files... '.format(len(filesTrain))) try: pool = Pool(os.cpu_count()) for idx, _ in enumerate(pool.imap_unordered(genImg, filesTrain), 1): sys.stdout.write('\b' * 6 + '{:5.2f}%'.format(100 * float(idx) / len(filesTrain))) sys.stdout.flush() print(' done!') finally: pool.close() pool.join() else: sys.stdout.write('Copying {} files...'.format(len(filesTrain))) for imgFile in filesTrain: shutil.copy2(os.path.join(srcDirBare, imgFile), srcDirTrain) print(' done!') # copy rest sys.stdout.write('Copying {} files...'.format(len(filesValidate))) for imgFile in filesValidate: shutil.copy2(os.path.join(srcDirBare, imgFile), srcDirValidate) print(' done!')
36.598291
118
0.629379
4af45ccb01dd89136ca52d9a90c9fb9a3e45dac9
2,081
py
Python
metro_spider/middlewares.py
xujl930/crawl_metro
99c52f183fbf52a43847d98c2d0e666197a73287
[ "MIT" ]
null
null
null
metro_spider/middlewares.py
xujl930/crawl_metro
99c52f183fbf52a43847d98c2d0e666197a73287
[ "MIT" ]
null
null
null
metro_spider/middlewares.py
xujl930/crawl_metro
99c52f183fbf52a43847d98c2d0e666197a73287
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Define here the models for your spider middleware # # See documentation in: # http://doc.scrapy.org/en/latest/topics/spider-middleware.html from scrapy import signals class SeleniumMiddleware(object): pass class ProxyMiddleware(object): def process_request(self, request, spider): request.meta['proxy'] = '127.0.0.1:1080' class MetroSpiderSpiderMiddleware(object): # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the spider middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_spider_input(self, response, spider): # Called for each response that goes through the spider # middleware and into the spider. # Should return None or raise an exception. return None def process_spider_output(self, response, result, spider): # Called with the results returned from the Spider, after # it has processed the response. # Must return an iterable of Request, dict or Item objects. for i in result: yield i def process_spider_exception(self, response, exception, spider): # Called when a spider or process_spider_input() method # (from other spider middleware) raises an exception. # Should return either None or an iterable of Response, dict # or Item objects. pass def process_start_requests(self, start_requests, spider): # Called with the start requests of the spider, and works # similarly to the process_spider_output() method, except # that it doesn’t have a response associated. # Must return only requests (not items). for r in start_requests: yield r def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name)
32.015385
78
0.675156
c306bd1ceb02abb80fd505d65bc08f9ef261fea5
2,307
py
Python
examples/time_frequency/plot_source_space_time_frequency.py
fmamashli/mne-python
52f064415e7c9fa8fe243d22108dcdf3d86505b9
[ "BSD-3-Clause" ]
3
2021-01-04T08:45:56.000Z
2021-05-19T12:25:59.000Z
examples/time_frequency/plot_source_space_time_frequency.py
fmamashli/mne-python
52f064415e7c9fa8fe243d22108dcdf3d86505b9
[ "BSD-3-Clause" ]
28
2020-05-07T00:58:34.000Z
2020-08-29T23:02:17.000Z
examples/time_frequency/plot_source_space_time_frequency.py
fmamashli/mne-python
52f064415e7c9fa8fe243d22108dcdf3d86505b9
[ "BSD-3-Clause" ]
3
2019-01-28T13:48:00.000Z
2019-07-10T16:02:11.000Z
""" =================================================== Compute induced power in the source space with dSPM =================================================== Returns STC files ie source estimates of induced power for different bands in the source space. The inverse method is linear based on dSPM inverse operator. """ # Authors: Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) import matplotlib.pyplot as plt import mne from mne import io from mne.datasets import sample from mne.minimum_norm import read_inverse_operator, source_band_induced_power print(__doc__) ############################################################################### # Set parameters data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif' tmin, tmax, event_id = -0.2, 0.5, 1 # Setup for reading the raw data raw = io.read_raw_fif(raw_fname) events = mne.find_events(raw, stim_channel='STI 014') inverse_operator = read_inverse_operator(fname_inv) include = [] raw.info['bads'] += ['MEG 2443', 'EEG 053'] # bads + 2 more # picks MEG gradiometers picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=True, stim=False, include=include, exclude='bads') # Load condition 1 event_id = 1 events = events[:10] # take 10 events to keep the computation time low # Use linear detrend to reduce any edge artifacts epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=dict(grad=4000e-13, eog=150e-6), preload=True, detrend=1) # Compute a source estimate per frequency band bands = dict(alpha=[9, 11], beta=[18, 22]) stcs = source_band_induced_power(epochs, inverse_operator, bands, n_cycles=2, use_fft=False, n_jobs=1) for b, stc in stcs.items(): stc.save('induced_power_%s' % b) ############################################################################### # plot mean power plt.plot(stcs['alpha'].times, stcs['alpha'].data.mean(axis=0), label='Alpha') plt.plot(stcs['beta'].times, stcs['beta'].data.mean(axis=0), label='Beta') plt.xlabel('Time (ms)') plt.ylabel('Power') plt.legend() plt.title('Mean source induced power') plt.show()
33.434783
79
0.625921
575d9e2fad526589921e6daa001d766b9256fb20
2,446
py
Python
setup.py
praveshtora/setup.py
2575104a3132355db74c35224571c00fe660b77e
[ "MIT" ]
null
null
null
setup.py
praveshtora/setup.py
2575104a3132355db74c35224571c00fe660b77e
[ "MIT" ]
1
2019-07-18T16:34:50.000Z
2019-07-18T16:34:50.000Z
setup.py
praveshtora/setup.py
2575104a3132355db74c35224571c00fe660b77e
[ "MIT" ]
null
null
null
try: from setuptools import setup except ImportError: from distutils.core import setup setup( author='Simon Davy', author_email='[email protected]', classifiers=[ 'License :: OSI Approved :: Apache Software License', 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Natural Language :: English', 'Topic :: Internet :: WWW/HTTP :: WSGI', 'Topic :: Internet :: WWW/HTTP :: WSGI :: Middleware', 'Topic :: System :: Logging', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: Implementation :: CPython', ], description='A common WSGI stack', entry_points=dict( console_scripts=[ 'talisker=talisker:run_gunicorn', 'talisker.run=talisker:run', 'talisker.gunicorn=talisker:run_gunicorn', 'talisker.gunicorn.eventlet=talisker:run_gunicorn_eventlet', 'talisker.gunicorn.gevent=talisker:run_gunicorn_gevent', 'talisker.celery=talisker:run_celery', ], ), extras_require=dict( celery=[ 'celery>=3.1.13.0,<5.0', ], dev=[ 'logging_tree>=1.7', 'pygments>=2.2', 'psutil>=5.0', 'objgraph>=3.0', ], django=[ 'django>=1.10, <2.3', ], flask=[ 'flask>=0.11,<2.0', 'blinker>=1.4,<2.0', ], pg=[ 'sqlparse', 'psycopg2', ], prometheus=[ 'prometheus-client>=0.2.0,<0.5.0' + ',!=0.4.0,!=0.4.1', ], ), include_package_data=True, install_requires=['pycryptodome==3.7.3','gunicorn>=19.7.0,<20.0', 'Werkzeug>=0.11.5,<0.15', 'statsd>=3.2.1,<4.0', 'requests>=2.10.0,<3.0', 'raven>=5.27.1,<7.0','future>=0.15.2,<0.17','ipaddress>=1.0.16,<2.0;python_version<"3.3"',], keywords=[ 'talisker', ], name='talisker', package_data=dict( talisker=[ 'logstash/*', ], ), package_dir=dict( talisker='talisker', ), packages=[ 'talisker', ], test_suite='tests', url='https://github.com/canonical-ols/talisker', version='0.9.16', zip_safe=False, )
29.829268
235
0.52453
9f1d35be0bf43fc73d090e84f418ac6bc9d8f663
2,253
py
Python
tutorials_for_myself/oop_python/simple_super.py
pestun/ultimate-utils
676002e80422067256c43172a78825ed12954bcb
[ "MIT" ]
5
2021-03-13T16:07:26.000Z
2021-09-09T17:00:36.000Z
tutorials_for_myself/oop_python/simple_super.py
pestun/ultimate-utils
676002e80422067256c43172a78825ed12954bcb
[ "MIT" ]
8
2021-03-09T21:52:09.000Z
2021-12-02T17:23:33.000Z
tutorials_for_myself/oop_python/simple_super.py
pestun/ultimate-utils
676002e80422067256c43172a78825ed12954bcb
[ "MIT" ]
5
2021-03-24T20:38:43.000Z
2022-03-17T07:54:12.000Z
#%% """ super: https://stackoverflow.com/questions/222877/what-does-super-do-in-python-difference-between-super-init-and-expl, https://realpython.com/python-super/#an-overview-of-pythons-super-function subclass = if Child is a subclass of SomeBaseClass then the code from SomeBaseClass will be given to Child. e.g. a Square (more specific) is a subclass of a Rectangle (usually more general). https://www.codesdope.com/course/python-subclass-of-a-class/ super - basics with single inheritance: https://realpython.com/python-super/#a-super-deep-dive - super(ChildClassName, self[instance of ChildClass]) can take two inputs the first the subclass & the second a specific instance of the subclass. - By including an instantiated object, super() returns a bound method: a method that is bound to the object, which gives the method the object’s context such as any instance attributes.  In Python 3, the super(Square, self) call is equivalent to the parameterless super() call. Goal: understand super(_BatchNorm, self).__init__(...) """ class Square: def __init__(self, side: float): self.side = side def area(self) -> float: return self.side**2 class Cube(Square): def surface_area(self) -> float: # same as super(Square, self) in python3 area_one_face: float = super().area() return area_one_face * 6 def volume(self): # face_area = super(Square, self).area() face_area = super().area() return face_area * self.length def _update_side(self, side: int) -> None: # super(Cube, self).__init__(side=side) # for python 2 super().__init__(side=side) assert(self.side == side), f'Should have updated the side to {side} but it\s: {self.side}' c1: Cube = Cube(3) print(c1.side) c1._update_side(4) print(c1.side) #%% class Rectangle: def __init__(self, length, width): self.length = length self.width = width def area(self): return self.length * self.width def perimeter(self): return 2 * self.length + 2 * self.width # Here we declare that the Square class inherits from the Rectangle class class Square(Rectangle): def __init__(self, length): super().__init__(length, length)
35.203125
251
0.691966
2d27ad7534a22939c1e34421115867179093f82b
848
py
Python
setup.py
NalbertLeal/pyloading
dd9f9788c961abb1d669dade8603a08be18053d9
[ "Apache-2.0" ]
1
2022-03-23T15:17:07.000Z
2022-03-23T15:17:07.000Z
setup.py
NalbertLeal/pyloading
dd9f9788c961abb1d669dade8603a08be18053d9
[ "Apache-2.0" ]
2
2022-03-23T15:27:36.000Z
2022-03-23T15:47:13.000Z
setup.py
NalbertLeal/pyloading
dd9f9788c961abb1d669dade8603a08be18053d9
[ "Apache-2.0" ]
1
2022-03-23T15:35:16.000Z
2022-03-23T15:35:16.000Z
import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name="pyloading_bar", packages=['pyloading_bar'], version="0.0.2", author="Nalbert Gabriel Melo Leal", author_email="[email protected]", description="A python loading bar to use in terminal applications", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/NalbertLeal/pyloading_bar", project_urls={ "Bug Tracker": "https://github.com/NalbertLeal/pyloading_bar/issues", }, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Development Status :: 3 - Alpha", "Intended Audience :: Developers", ], python_requires=">=3.8", )
31.407407
73
0.704009
51647238d25382bd642264723a4136102b0d9e79
1,109
py
Python
admin_resumable/conf.py
fdemmer/django-admin-resumable-js
8a99bd6c1757647d453df08b0391270b0007bb92
[ "MIT" ]
null
null
null
admin_resumable/conf.py
fdemmer/django-admin-resumable-js
8a99bd6c1757647d453df08b0391270b0007bb92
[ "MIT" ]
null
null
null
admin_resumable/conf.py
fdemmer/django-admin-resumable-js
8a99bd6c1757647d453df08b0391270b0007bb92
[ "MIT" ]
1
2019-01-28T18:50:42.000Z
2019-01-28T18:50:42.000Z
# -*- coding: utf-8 -*- from django.conf import settings # resumable.js settings # chunkSize ADMIN_RESUMABLE_CHUNKSIZE = getattr( settings, 'ADMIN_RESUMABLE_CHUNKSIZE', '1*1024*1024' ) # simultaneousUploads ADMIN_RESUMABLE_PARALLEL = getattr( settings, 'ADMIN_RESUMABLE_PARALLEL', 3 ) # prioritizeFirstAndLastChunk ADMIN_RESUMABLE_FIRSTLAST = getattr( settings, 'ADMIN_RESUMABLE_FIRSTLAST', False ) # maxChunkRetries ADMIN_RESUMABLE_RETRIES = getattr( settings, 'ADMIN_RESUMABLE_RETRIES', None ) # widget settings ADMIN_RESUMABLE_SHOW_THUMB = getattr( settings, 'ADMIN_RESUMABLE_SHOW_THUMB', False ) # others ADMIN_RESUMABLE_CHUNKSUFFIX = getattr( settings, 'ADMIN_RESUMABLE_CHUNKSUFFIX', '_part_' ) # put final filesize as prefix in filename ADMIN_RESUMABLE_SIZE_PREFIX = getattr( settings, 'ADMIN_RESUMABLE_SIZE_PREFIX', True ) # default storage class for ModelAdminResumableFileField ADMIN_RESUMABLE_STORAGE = getattr( settings, 'ADMIN_RESUMABLE_STORAGE', 'django.core.files.storage.FileSystemStorage' )
19.12069
56
0.743012
63959a844e63ec3f482799fcf7318a38acaba918
6,041
py
Python
nltk/classify/scikitlearn.py
dreamhost/nltk
7f1fad731d1bbaa9334a665221d68b86d8164dce
[ "Apache-2.0" ]
8
2015-10-09T03:37:18.000Z
2019-06-02T19:32:40.000Z
nltk/classify/scikitlearn.py
dreamhost/nltk
7f1fad731d1bbaa9334a665221d68b86d8164dce
[ "Apache-2.0" ]
null
null
null
nltk/classify/scikitlearn.py
dreamhost/nltk
7f1fad731d1bbaa9334a665221d68b86d8164dce
[ "Apache-2.0" ]
2
2017-06-02T12:07:23.000Z
2020-05-20T11:36:09.000Z
# Natural Language Toolkit: Interface to scikit-learn classifiers # # Author: Lars Buitinck <[email protected]> # URL: <http://www.nltk.org/> # For license information, see LICENSE.TXT """ scikit-learn (http://scikit-learn.org) is a machine learning library for Python, supporting most of the basic classification algorithms, including SVMs, Naive Bayes, logistic regression and decision trees. This package implement a wrapper around scikit-learn classifiers. To use this wrapper, construct a scikit-learn classifier, then use that to construct a SklearnClassifier. E.g., to wrap a linear SVM classifier with default settings, do >>> from sklearn.svm.sparse import LinearSVC >>> from nltk.classify.scikitlearn import SklearnClassifier >>> classif = SklearnClassifier(LinearSVC()) The scikit-learn classifier may be arbitrarily complex. E.g., the following constructs and wraps a Naive Bayes estimator with tf-idf weighting and chi-square feature selection: >>> from sklearn.feature_extraction.text import TfidfTransformer >>> from sklearn.feature_selection import SelectKBest, chi2 >>> from sklearn.naive_bayes import MultinomialNB >>> from sklearn.pipeline import Pipeline >>> pipeline = Pipeline([('tfidf', TfidfTransformer()), ... ('chi2', SelectKBest(chi2, k=1000)), ... ('nb', MultinomialNB())]) >>> classif = SklearnClassifier(pipeline) (Such a classifier could be trained on word counts for text classification.) """ from nltk.classify.api import ClassifierI from nltk.probability import DictionaryProbDist import numpy as np from scipy.sparse import coo_matrix class SklearnClassifier(ClassifierI): """Wrapper for scikit-learn classifiers.""" def __init__(self, estimator, dtype=float, sparse=True): """ :param estimator: scikit-learn classifier object. :param dtype: data type used when building feature array. scikit-learn estimators work exclusively on numeric data; use bool when all features are binary. :param sparse: Whether to use sparse matrices. The estimator must support these; not all scikit-learn classifiers do. The default value is True, since most NLP problems involve sparse feature sets. :type sparse: boolean. """ self._clf = estimator self._dtype = dtype self._sparse = sparse def __repr__(self): return "<SklearnClassifier(%r)>" % self._clf def batch_classify(self, featuresets): X = self._convert(featuresets) y = self._clf.predict(X) return [self._index_label[int(yi)] for yi in y] def batch_prob_classify(self, featuresets): X = self._convert(featuresets) y_proba = self._clf.predict_proba(X) return [self._make_probdist(y_proba[i]) for i in xrange(len(y_proba))] def labels(self): return self._label_index.keys() def train(self, labeled_featuresets): """ Train (fit) the scikit-learn estimator. :param labeled_featuresets: A list of classified featuresets, i.e., a list of tuples ``(featureset, label)``. """ self._feature_index = {} self._index_label = [] self._label_index = {} for fs, label in labeled_featuresets: for f in fs.iterkeys(): if f not in self._feature_index: self._feature_index[f] = len(self._feature_index) if label not in self._label_index: self._index_label.append(label) self._label_index[label] = len(self._label_index) featuresets, labels = zip(*labeled_featuresets) X = self._convert(featuresets) y = np.array([self._label_index[l] for l in labels]) self._clf.fit(X, y) return self def _convert(self, featuresets): if self._sparse: return self._featuresets_to_coo(featuresets) else: return self._featuresets_to_array(featuresets) def _featuresets_to_coo(self, featuresets): """Convert featuresets to sparse matrix (COO format).""" i_ind = [] j_ind = [] values = [] for i, fs in enumerate(featuresets): for f, v in fs.iteritems(): try: j = self._feature_index[f] i_ind.append(i) j_ind.append(j) values.append(self._dtype(v)) except KeyError: pass shape = (i + 1, len(self._feature_index)) return coo_matrix((values, (i_ind, j_ind)), shape=shape, dtype=self._dtype) def _featuresets_to_array(self, featuresets): """Convert featureset to Numpy array.""" X = np.zeros((len(featuresets), len(self._feature_index)), dtype=self._dtype) for i, fs in enumerate(featuresets): for f, v in fs.iteritems(): try: X[i, self._feature_index[f]] = self._dtype(v) except KeyError: # feature not seen in training pass return X def _make_probdist(self, y_proba): return DictionaryProbDist(dict((self._index_label[i], p) for i, p in enumerate(y_proba))) if __name__ == "__main__": from nltk.classify.util import names_demo, binary_names_demo_features try: from sklearn.linear_model.sparse import LogisticRegression except ImportError: # separate sparse LR to be removed in 0.12 from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import BernoulliNB print("scikit-learn Naive Bayes:") names_demo(SklearnClassifier(BernoulliNB(binarize=False), dtype=bool).train, features=binary_names_demo_features) print("scikit-learn logistic regression:") names_demo(SklearnClassifier(LogisticRegression(), dtype=np.float64).train, features=binary_names_demo_features)
36.173653
83
0.648734
66ba492b520dcc520efaf310c157c0fba6d559c7
985
py
Python
recurce_13/p_part_sort.py
master-cim/algorithm
a57f473ceb32b96240989e31ac33154e55c00724
[ "MIT" ]
1
2022-03-31T07:30:53.000Z
2022-03-31T07:30:53.000Z
recurce_13/p_part_sort.py
master-cim/algorithm
a57f473ceb32b96240989e31ac33154e55c00724
[ "MIT" ]
null
null
null
recurce_13/p_part_sort.py
master-cim/algorithm
a57f473ceb32b96240989e31ac33154e55c00724
[ "MIT" ]
2
2022-03-04T09:42:03.000Z
2022-03-30T14:51:32.000Z
# P. Частичная сортировка # ID успешной посылки def subtraction_items(square): while square != []: i = square.pop() for item in square: yield item - i def partial_sorting(numb, arr): pr_less_bf = 0 pr_big_bf = 0 step = len(arr) - 1 zerr_ar = 1 print(arr) print(sorted(arr)) print(arr[0], arr[1], arr[2], arr[3]) while arr[step] != 0: if arr[step] < arr[step-1] and arr[step-1] == 0: pr_less_bf += 1 step -= 1 elif arr[step] > arr[step-1]: pr_big_bf += 1 step -= 1 elif arr[step] == 0: zerr_ar = 0 else: break # print(pr_less_bf, pr_big_bf, zerr_ar) # print(pr_less_bf+pr_big_bf+zerr_ar) def read_input(): numb = int(input()) arr = [int(element) for element in input().strip().split()] return numb, arr if __name__ == '__main__': numb, arr = read_input() partial_sorting(numb, arr)
22.386364
63
0.543147
ead2b7fa59348effa8ed51f4b676af53e1b3afe9
1,056
py
Python
demo/admin.py
peopledoc/django-agnocomplete
54cf0d2e63be31fef8d3220815d6e7c4d8594896
[ "MIT" ]
10
2017-12-11T23:33:00.000Z
2022-01-24T05:28:48.000Z
demo/admin.py
peopledoc/django-agnocomplete
54cf0d2e63be31fef8d3220815d6e7c4d8594896
[ "MIT" ]
26
2017-11-21T08:55:29.000Z
2022-02-04T13:44:27.000Z
demo/admin.py
peopledoc/django-agnocomplete
54cf0d2e63be31fef8d3220815d6e7c4d8594896
[ "MIT" ]
2
2018-01-10T09:06:49.000Z
2021-07-11T10:24:23.000Z
from django.contrib import admin from django import forms from agnocomplete import fields from .models import Person, FavoriteColor, Tag, PersonTag # Below, importing unused class from autocomplete.py to trigger # the registering of agnocomplete models from .autocomplete import logger __all__ = ['logger'] class PersonAdmin(admin.ModelAdmin): pass # Autocomplete for FavoriteColor admin class FavoriteColorModelForm(forms.ModelForm): person = fields.AgnocompleteModelField('AutocompletePerson') class Meta: fields = ('color', 'person') model = FavoriteColor class FavoriteColorAdmin(admin.ModelAdmin): form = FavoriteColorModelForm class Media: css = { 'screen': ('css/admin.css', 'css/selectize.css',) } js = ( 'js/jquery.js', 'js/selectize.js', 'js/demo/selectize.js', ) admin.site.register(Person, PersonAdmin) admin.site.register(FavoriteColor, FavoriteColorAdmin) admin.site.register(Tag) admin.site.register(PersonTag)
22.956522
64
0.696023
8868bc582e7ba866584143c55579d7fea66793de
2,193
py
Python
Gradient_descent/gradient.py
sadeedbari/DeepLearningNanodegreeU
f0808de900a2141bd1c181cb511c2e909b2ca959
[ "MIT" ]
null
null
null
Gradient_descent/gradient.py
sadeedbari/DeepLearningNanodegreeU
f0808de900a2141bd1c181cb511c2e909b2ca959
[ "MIT" ]
null
null
null
Gradient_descent/gradient.py
sadeedbari/DeepLearningNanodegreeU
f0808de900a2141bd1c181cb511c2e909b2ca959
[ "MIT" ]
null
null
null
import numpy as np from data_prep import features, targets, features_test, targets_test def sigmoid(x): """ Calculate sigmoid """ return 1 / (1 + np.exp(-x)) # TODO: We haven't provided the sigmoid_prime function like we did in # the previous lesson to encourage you to come up with a more # efficient solution. If you need a hint, check out the comments # in solution.py from the previous lecture. # Use to same seed to make debugging easier np.random.seed(42) n_records, n_features = features.shape last_loss = None # Initialize weights weights = np.random.normal(scale=1 / n_features**.5, size=n_features) # Neural Network hyperparameters epochs = 1000 learnrate = 0.5 for e in range(epochs): del_w = np.zeros(weights.shape) for x, y in zip(features.values, targets): # Loop through all records, x is the input, y is the target # Note: We haven't included the h variable from the previous # lesson. You can add it if you want, or you can calculate # the h together with the output # TODO: Calculate the output output = sigmoid(np.dot(x, weights)) # TODO: Calculate the error error = y - output # TODO: Calculate the error term error_term = error * (output*(1-output)) # TODO: Calculate the change in weights for this sample # and add it to the total weight change del_w += error_term*x # TODO: Update weights using the learning rate and the average change in weights weights += learnrate * del_w / n_records # Printing out the mean square error on the training set if e % (epochs / 10) == 0: out = sigmoid(np.dot(features, weights)) loss = np.mean((out - targets) ** 2) if last_loss and last_loss < loss: print("Train loss: ", loss, " WARNING - Loss Increasing") else: print("Train loss: ", loss) last_loss = loss # Calculate accuracy on test data tes_out = sigmoid(np.dot(features_test, weights)) predictions = tes_out > 0.5 accuracy = np.mean(predictions == targets_test) print("Prediction accuracy: {:.3f}".format(accuracy))
31.328571
84
0.653899
92033d18a9390ed1e090f18483603009a3c5eb69
1,341
py
Python
ads/type_discovery/unknown_detector.py
oracle/accelerated-data-science
d594ed0c8c1365daf4cf9e860daebc760fa9a24b
[ "UPL-1.0", "Apache-2.0" ]
20
2022-02-22T19:07:09.000Z
2022-03-16T17:21:42.000Z
ads/type_discovery/unknown_detector.py
oracle/accelerated-data-science
d594ed0c8c1365daf4cf9e860daebc760fa9a24b
[ "UPL-1.0", "Apache-2.0" ]
null
null
null
ads/type_discovery/unknown_detector.py
oracle/accelerated-data-science
d594ed0c8c1365daf4cf9e860daebc760fa9a24b
[ "UPL-1.0", "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8; -*- # Copyright (c) 2020, 2022 Oracle and/or its affiliates. # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/ from __future__ import print_function, absolute_import, division import pandas as pd from ads.type_discovery import logger from ads.type_discovery.abstract_detector import AbstractTypeDiscoveryDetector from ads.type_discovery.typed_feature import ( UnknownTypedFeature, CategoricalTypedFeature, ) class UnknownDetector(AbstractTypeDiscoveryDetector): def discover(self, name, series): candidate = series.loc[~series.isnull()].iloc[0] if series.dtype == "object": # # if we got all through all the other detectors and it's a string type of feature then we # just call it a high dimensional categorical # return CategoricalTypedFeature.build(name, series) else: logger.debug( "type discovery on column [{}]/[{}] result is Unknown".format( name, series.dtype ) ) return UnknownTypedFeature.build(name, series) if __name__ == "__main__": dd = UnknownDetector() print(dd.discover("unknown", pd.Series([None, "94065", "90210", None])))
31.928571
104
0.658464
4fc8dd12a56ed039f4beffc8bc385b6f213179fa
606
py
Python
djangoum3/usuarios/forms.py
souluanf/django-essencial
95d4d6d85bbe590ae95c3b26fb9577b97c2f5e7c
[ "MIT" ]
null
null
null
djangoum3/usuarios/forms.py
souluanf/django-essencial
95d4d6d85bbe590ae95c3b26fb9577b97c2f5e7c
[ "MIT" ]
33
2020-08-04T00:46:16.000Z
2022-03-12T00:45:43.000Z
djangoum3/usuarios/forms.py
souluanf/django-essencial
95d4d6d85bbe590ae95c3b26fb9577b97c2f5e7c
[ "MIT" ]
null
null
null
from django.contrib.auth.forms import UserCreationForm, UserChangeForm from .models import CustomUsuario class CustomUsuarioCreateForm(UserCreationForm): model = CustomUsuario fields = ('first_name', 'last_name', 'fone') labels = {'username': 'Username/E-amil'} def save(self, commit=True): user = super().save(commit=True) user.set_password(self.cleaned_data['password']) user.email = self.cleaned_data['username'] if commit: user.save() return user class CustomUsuarioChangeForm(UserChangeForm): class Meta: model = CustomUsuario fields = ('first_name', 'last_name', 'fone')
24.24
70
0.742574
2c57b7c23a0afe384195e7aad85cf5f32eec72db
11,421
py
Python
src/icemac/addressbook/browser/search/result/handler/export/test_xls.py
icemac/icemac.addressbook
6197e6e01da922feb100dd0943576523050cd703
[ "BSD-2-Clause" ]
1
2020-03-26T20:16:44.000Z
2020-03-26T20:16:44.000Z
src/icemac/addressbook/browser/search/result/handler/export/test_xls.py
icemac/icemac.addressbook
6197e6e01da922feb100dd0943576523050cd703
[ "BSD-2-Clause" ]
2
2020-02-21T13:04:23.000Z
2020-02-21T13:06:10.000Z
src/icemac/addressbook/browser/search/result/handler/export/test_xls.py
icemac/icemac.addressbook
6197e6e01da922feb100dd0943576523050cd703
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- import xlrd from icemac.addressbook.interfaces import IPerson def create_person( field_title, keyword_title, address_book, FieldFactory, FullPersonFactory, PostalAddressFactory): """Create a person in the address book as needed by the tests.""" field_name = FieldFactory( address_book, IPerson, u'Bool', field_title).__name__ person = FullPersonFactory( address_book, u'Liebig', postal__city=u'Testhausen', keywords=[keyword_title], **{field_name: True}) # Let's create an additional postal address which does not show up in # the defaults export but in complete export: PostalAddressFactory(person, zip=u'00001') def test_xls__DefaultsExport__1(search_data, browser): """`DefaultsExport` can export the values of the default data as XLS.""" browser.login('visitor') browser.keyword_search('church', 'XLS export main') assert 'application/vnd.ms-excel' == browser.headers['Content-Type'] assert ('attachment; filename=addressbook_export.xls' == browser.headers['Content-Disposition']) xls_workbook = xlrd.open_workbook(file_contents=browser.contents) assert [u'Address book - Export'] == xls_workbook.sheet_names() work_sheet_0 = xls_workbook.sheet_by_index(0) assert (5, 13) == (work_sheet_0.nrows, work_sheet_0.ncols) assert [ [u'person', '', '', '', '', u'postal address', '', '', '', '', u'phone number', u'e-mail address', u'home page address'], [u'first name', u'last name', u'birth date', u'keywords', u'notes', u'address prefix', u'street', u'city', u'zip', u'country', u'number', u'e-mail address', u'URL'], ['', u'Koch', 19017.0, u'family, church', u'father-in-law', '', '', '', '', u'Germany', '', '', ''], ['', u'Liebig', '', u'church', u'family', '', '', '', '', u'Germany', '', '', ''], ['', u'Velleuer', '', u'family, church', '', '', '', '', '', u'Germany', '', '', '']] == [work_sheet_0.row_values(rx) for rx in range(work_sheet_0.nrows)] def test_xls__DefaultsExport__2(search_data, browser): """`DefaultsExport` only exports the selected persons.""" browser.login('visitor') browser.keyword_search('church') browser.getControl('Apply on selected persons').displayValue = [ 'XLS export main'] browser.getControl( name='persons:list').getControl(value="Person-2").selected = False browser.getControl(name='form.buttons.apply').click() xls_workbook = xlrd.open_workbook(file_contents=browser.contents) work_sheet_0 = xls_workbook.sheet_by_index(0) assert (4, 13) == (work_sheet_0.nrows, work_sheet_0.ncols) assert [ [u'person', '', '', '', '', u'postal address', '', '', '', '', u'phone number', u'e-mail address', u'home page address'], [u'first name', u'last name', u'birth date', u'keywords', u'notes', u'address prefix', u'street', u'city', u'zip', u'country', u'number', u'e-mail address', u'URL'], ['', u'Liebig', '', u'church', u'family', '', '', '', '', u'Germany', '', '', ''], ['', u'Velleuer', '', u'family, church', '', '', '', '', '', u'Germany', '', '', '']] == [work_sheet_0.row_values(rx) for rx in range(work_sheet_0.nrows)] def test_xls__DefaultsExport__3( address_book, FieldFactory, FullPersonFactory, PostalAddressFactory, browser): """`DefaultsExport` exports user defined fields like other fields.""" create_person(u'photo permission?', u'church', address_book, FieldFactory, FullPersonFactory, PostalAddressFactory) browser.login('visitor') browser.open(browser.SEARCH_URL) # We choose the keyword search as it has export abilities: browser.getLink('Keyword search').click() browser.getControl('keywords').displayValue = ['church'] browser.getControl('Search').click() # The export produces an XLS file: browser.getControl('Apply on selected persons').displayValue = [ 'XLS export main'] browser.getControl(name='form.buttons.apply').click() assert 'application/vnd.ms-excel' == browser.headers['Content-Type'] xls_workbook = xlrd.open_workbook(file_contents=browser.contents) work_sheet_0 = xls_workbook.sheet_by_index(0) assert (3, 14) == (work_sheet_0.nrows, work_sheet_0.ncols) assert [ [u'person', '', '', '', '', '', u'postal address', '', '', '', '', u'phone number', u'e-mail address', u'home page address'], [u'first name', u'last name', u'birth date', u'keywords', u'notes', u'photo permission?', u'address prefix', u'street', u'city', u'zip', u'country', u'number', u'e-mail address', u'URL'], ['', u'Liebig', '', u'church', '', True, '', '', u'Testhausen', '', u'Germany', '', '', '']] == [work_sheet_0.row_values(rx) for rx in range(work_sheet_0.nrows)] def test_xls__DefaultsExport__4( translated_address_book, FieldFactory, FullPersonFactory, PostalAddressFactory, browser): """`DefaultsExport` translates field names into user's language.""" create_person(u'Fotoerlaubnis?', u'Kirche', translated_address_book, FieldFactory, FullPersonFactory, PostalAddressFactory) # As visitors are allowed to search and export, so we log in as a # visitor, to enable translation, we also send an accept-language # header: browser.login('visitor') browser.lang('de-DE') browser.open(browser.SEARCH_BY_KEYWORD_URL) browser.getControl('Schlagwörter').displayValue = ['Kirche'] browser.getControl('Suchen').click() browser.getControl('Auf ausgewählte Personen anwenden').displayValue = [ 'bevorzugte'] browser.getControl(name='form.buttons.apply').click() assert 'application/vnd.ms-excel' == browser.headers['Content-Type'] xls_workbook = xlrd.open_workbook(file_contents=browser.contents) work_sheet_0 = xls_workbook.sheet_by_index(0) assert (3, 14) == (work_sheet_0.nrows, work_sheet_0.ncols) assert [ [u'Person', '', '', '', '', '', u'Anschrift', '', '', '', '', u'Telefonnummer', u'E-Mail-Adresse', u'Homepage-Adresse'], [u'Vorname', u'Familienname', u'Geburtsdatum', u'Schlagwörter', u'Anmerkungen', u'Fotoerlaubnis?', u'Adresszusatz', u'Straße', u'Ort', u'PLZ', u'Land', u'Nummer', u'E-Mail-Adresse', u'URL'], ['', u'Liebig', '', u'Kirche', '', 1, '', '', u'Testhausen', '', u'Deutschland', '', '', '']] == [work_sheet_0.row_values(rx) for rx in range(work_sheet_0.nrows)] def test_xls__CompleteExport__1( translated_address_book, FieldFactory, FullPersonFactory, PostalAddressFactory, browser): """`CompleteExport` translates field names into user's language.""" create_person(u'Fotoerlaubnis?', u'Kirche', translated_address_book, FieldFactory, FullPersonFactory, PostalAddressFactory) # The complete export is not really different from the main one: browser.login('visitor') browser.lang('de-DE') browser.open(browser.SEARCH_BY_KEYWORD_URL) browser.getControl('Schlagwörter').displayValue = ['Kirche'] browser.getControl('Suchen').click() browser.getControl('Auf ausgewählte Personen anwenden').displayValue = [ 'vollständig'] browser.getControl(name='form.buttons.apply').click() assert 'application/vnd.ms-excel' == browser.headers['Content-Type'] xls_workbook = xlrd.open_workbook(file_contents=browser.contents) work_sheet_0 = xls_workbook.sheet_by_index(0) assert (3, 19) == (work_sheet_0.nrows, work_sheet_0.ncols) assert [ [u'Person', '', '', '', '', '', u'bevorzugte Anschrift', '', '', '', '', u'weitere Anschrift', '', '', '', '', u'bevorzugte Telefonnummer', u'bevorzugte E-Mail-Adresse', u'bevorzugte Homepage-Adresse'], [u'Vorname', u'Familienname', u'Geburtsdatum', u'Schlagwörter', u'Anmerkungen', u'Fotoerlaubnis?', u'Adresszusatz', u'Straße', u'Ort', u'PLZ', u'Land', u'Adresszusatz', u'Straße', u'Ort', u'PLZ', u'Land', u'Nummer', u'E-Mail-Adresse', u'URL'], ['', u'Liebig', '', u'Kirche', '', 1, '', '', u'Testhausen', '', u'Deutschland', '', '', '', u'00001', u'Deutschland', '', '', '']] == [work_sheet_0.row_values(rx) for rx in range(work_sheet_0.nrows)] def test_xls__CompleteExport__2(search_data, browser): """`CompleteExport` does not fail if no person is selected.""" browser.login('visitor') browser.keyword_search('friends') browser.getControl('Apply on selected persons').displayValue = [ 'XLS export complete'] browser.getControl( name='persons:list').getControl(value="Person").selected = False browser.getControl(name='form.buttons.apply').click() # When the user chooses no person for export a nearly empty sheet gets # exported. xls_workbook = xlrd.open_workbook(file_contents=browser.contents) work_sheet_0 = xls_workbook.sheet_by_index(0) assert (2, 5) == (work_sheet_0.nrows, work_sheet_0.ncols) assert [ [u'person', '', '', '', ''], [u'first name', u'last name', u'birth date', u'keywords', u'notes']] == [work_sheet_0.row_values(rx) for rx in range(work_sheet_0.nrows)]
28.33995
78
0.52456
9b062ee31ce7ce79c8035ca0bfec69b40d8fe30a
2,954
py
Python
tools/nntool/graph/matches/matchers/concat_split.py
mfkiwl/gap_sdk
642b798dfdc7b85ccabe6baba295033f0eadfcd4
[ "Apache-2.0" ]
null
null
null
tools/nntool/graph/matches/matchers/concat_split.py
mfkiwl/gap_sdk
642b798dfdc7b85ccabe6baba295033f0eadfcd4
[ "Apache-2.0" ]
null
null
null
tools/nntool/graph/matches/matchers/concat_split.py
mfkiwl/gap_sdk
642b798dfdc7b85ccabe6baba295033f0eadfcd4
[ "Apache-2.0" ]
1
2021-11-11T02:12:25.000Z
2021-11-11T02:12:25.000Z
# Copyright (C) 2020 GreenWaves Technologies, SAS # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. import logging from graph.types import ConcatParameters, NNEdge, SplitParameters from utils.graph import GraphView from ..matcher import Matcher, groups, match_name, description LOG = logging.getLogger("nntool." + __name__) @groups('*') @match_name("concat_split") @description("removes concat/split pair where all in edges on the concat match the out edges on the split") class ConcatSplitMatch(Matcher): def _match(self, G: GraphView, set_identity: bool = True, **kwargs) -> bool: has_modified_graph = False for split_node in set([node for node in G.nodes() if isinstance(node, SplitParameters)]): in_edges = G.in_edges(split_node.name) if len(in_edges) > 1: continue in_edge = in_edges[0] if not isinstance(in_edge.from_node, ConcatParameters): continue concat_node = in_edge.from_node if len(G.out_edges(concat_node.name)) > 1: continue if concat_node.transpose_out or split_node.transpose_in: continue if concat_node.axis != split_node.axis: continue axis = concat_node.axis split_out_sizes = [out_shape[axis] for out_shape in split_node.out_shapes] if len(split_out_sizes) != len(concat_node.in_dims): continue if not all(split_out_sizes[idx] == in_dim.shape[axis] for idx, in_dim in enumerate(concat_node.in_dims)): continue has_modified_graph = True LOG.info("removing unnecessary concat/split pair %s/%s", concat_node.name, split_node.name) concat_in_edges = G.indexed_in_edges(concat_node.name) split_out_edges = G.indexed_out_edges(split_node.name) G.remove(split_node) G.remove(concat_node) for idx, in_edge in enumerate(concat_in_edges): for out_edge in split_out_edges[idx]: G.add_edge(NNEdge(from_node=in_edge.from_node, from_idx=in_edge.from_idx, to_node=out_edge.to_node, to_idx=out_edge.to_idx)) if set_identity: self.set_identity(G) return has_modified_graph
44.089552
117
0.667569
970c5688b87800c968cdb10be770fa14220d07ad
13,880
py
Python
src/SFA.py
wangshansong1/SFA
5a838096ee33d9dc97269aba2fd95295b83ad4d8
[ "MIT" ]
10
2016-12-01T08:11:41.000Z
2022-01-03T11:59:29.000Z
src/SFA.py
wangshansong1/SFA
5a838096ee33d9dc97269aba2fd95295b83ad4d8
[ "MIT" ]
1
2018-10-29T04:03:11.000Z
2018-10-29T04:03:11.000Z
src/SFA.py
Bollegala/SFA
5a838096ee33d9dc97269aba2fd95295b83ad4d8
[ "MIT" ]
1
2018-11-01T01:36:51.000Z
2018-11-01T01:36:51.000Z
""" Peform Spectral Feature Alignment for Cross-Domain Sentiment Classification. @inproceedings{Pan:WWW:2010, Author = {Sinno Jialin Pan and Xiaochuan Ni and Jian-Tao Sun and Qiang Yang and Zheng Chen}, Booktitle = {WWW 2010}, Title = {Cross-Domain Sentiment Classification via Spectral Feature Alignment}, Year = {2010}} Danushka Bollegala. 2013/09/25 """ import sys import math import numpy as np import scipy.io as sio import scipy.sparse as sp from sparsesvd import sparsesvd import subprocess import features def trainLBFGS(train_file, model_file): """ Train lbfgs on train file. and evaluate on test file. Read the output file and return the classification accuracy. """ retcode = subprocess.call( "classias-train -tb -a lbfgs.logistic -pc1=0 -pc2=1 -m %s %s > /dev/null" %\ (model_file, train_file), shell=True) return retcode def testLBFGS(test_file, model_file): """ Evaluate on the test file. Read the output file and return the classification accuracy. """ output = "../work/output" retcode = subprocess.call("cat %s | classias-tag -m %s -t > %s" %\ (test_file, model_file, output), shell=True) F = open(output) accuracy = 0 correct = 0 total = 0 for line in F: if line.startswith("Accuracy"): p = line.strip().split() accuracy = float(p[1]) F.close() return accuracy def generateFeatureVectors(domain): """ Create feature vectors for each review in the domain. """ FeatGen = features.FEATURE_GENERATOR() for (mode, label) in [("train", "positive"), ("train", "negative"), ("train", "unlabeled"), ("test", "positive"), ("test", "negative")]: fname = "../reviews/%s-data/%s/%s.tagged" % (mode, domain, label) fvects = FeatGen.process_file(fname, label) writeFeatureVectorsToFile(fvects, "../work/%s/%s.%s" % (domain, mode, label)) pass def writeFeatureVectorsToFile(fvects, fname): """ Write each feature vector in fvects in a single line in fname. """ F = open(fname, 'w') for e in fvects: for w in e[1].keys(): F.write("%s " % w) F.write("\n") F.close() pass def getCounts(S, M, fname): """ Get the feature co-occurrences in the file fname and append those to the dictionary M. We only consider features in S. """ count = 0 F = open(fname) for line in F: count += 1 #if count > 1000: # break allP = line.strip().split() p = [] for w in allP: if w in S: p.append(w) n = len(p) for i in range(0,n): for j in range(i + 1, n): pair = (p[i], p[j]) rpair = (p[j], p[i]) if pair in M: M[pair] += 1 elif rpair in M: M[rpair] += 1 else: M[pair] = 1 F.close() pass def getVocab(S, fname): """ Get the frequency of each feature in the file named fname. """ F = open(fname) for line in F: p = line.strip().split() for w in p: S[w] = S.get(w, 0) + 1 F.close() pass def selectTh(h, t): """ Select all elements of the dictionary h with frequency greater than t. """ p = {} for (key, val) in h.iteritems(): if val > t: p[key] = val del(h) return p def getVal(x, y, M): """ Returns the value of the element (x,y) in M. """ if (x,y) in M: return M[(x,y)] elif (y,x) in M: return M[(y,x)] else: return 0 pass def createMatrix(source, target): """ Read the unlabeled data (test and train) for both source and the target domains. Compute the full co-occurrence matrix. Drop co-occurrence pairs with a specified minimum threshold. For a feature w, compute its score(w), score(w) = {\sum_{x \in S} pmi(w, x)} + {\sum_{y \in T} pmi(w, y)} and sort the features in the descending order of their scores. Write the co-occurrence matrix to a file with name source-target.cooc (fid, fid, cooc) and the scores to a file with name source-target.pmi (feat, fid, score). """ # Parameters domainTh = {'books':20, 'dvd':100, 'kitchen':20, 'electronics':20} SourceFreqTh = domainTh[source] TargetFreqTh = domainTh[target] coocTh = 5 noPivots = 500 print "Source = %s, Target = %s" % (source, target) # Get the set of source domain features. S = {} getVocab(S, "../work/%s/train.positive" % source) getVocab(S, "../work/%s/train.negative" % source) getVocab(S, "../work/%s/train.unlabeled" % source) print "Total source features =", len(S) # Remove source domain features with total frequency less than SourceFreqTh S = selectTh(S, SourceFreqTh) print "After thresholding at %d we have = %d" % (SourceFreqTh, len(S)) # Get the set of target domain features. T = {} getVocab(T, "../work/%s/train.positive" % target) # labels not used. getVocab(T, "../work/%s/train.negative" % target) # labels not used. getVocab(T, "../work/%s/train.unlabeled" % target) print "Total target features =", len(T) # Remove target domain features with total frequency less than TargetFreqTh T = selectTh(T, TargetFreqTh) print "After thresholding at %d we have = %d" % (TargetFreqTh, len(T)) # Get the union (and total frequency in both domains) for all features. V = S.copy() for w in T: V[w] = S.get(w, 0) + T[w] # Compute the co-occurrences of features in reviews M = {} print "Vocabulary size =", len(V) getCounts(V, M, "../work/%s/train.positive" % source) print "%s positive %d" % (source, len(M)) getCounts(V, M, "../work/%s/train.negative" % source) print "%s negative %d" % (source, len(M)) getCounts(V, M, "../work/%s/train.unlabeled" % source) print "%s unlabeled %d" % (source, len(M)) getCounts(V, M, "../work/%s/train.positive" % target) print "%s positive %d" % (target, len(M)) getCounts(V, M, "../work/%s/train.negative" % target) print "%s negative %d" % (target, len(M)) getCounts(V, M, "../work/%s/train.unlabeled" % target) print "%s unlabeled %d" % (target, len(M)) # Remove co-occurrence less than the coocTh M = selectTh(M, coocTh) # Compute the intersection of source and target domain features. pivots = set(S.keys()).intersection(set(T.keys())) print "Total no. of pivots =", len(pivots) # Compute PMI scores for pivots. C = {} N = sum(V.values()) i = 0 for pivot in pivots: C[pivot] = 0.0 i += 1 for w in S: val = getVal(pivot, w, M) C[pivot] += 0 if (val < coocTh) else getPMI(val, V[w], V[pivot], N) for w in T: val = getVal(pivot, w, M) C[pivot] += 0 if (val < coocTh) else getPMI(val, V[w], V[pivot], N) if i % 500 == 0: print "%d: pivot = %s, MI = %.4g" % (i, pivot, C[pivot]) pivotList = C.items() pivotList.sort(lambda x, y: -1 if x[1] > y[1] else 1) # write pivots to a file. pivotsFile = open("../work/%s-%s/DI_list" % (source, target), 'w') DI = [] for (i, (w, v)) in enumerate(pivotList[:noPivots]): pivotsFile.write("%d %s P %s\n" % (i+1, w, str(v))) DI.append(w) pivotsFile.close() DSwords = set(S.keys()).union(set(T.keys())) - pivots DSList = list(DSwords) print "Total no. of domain specific features =", len(DSList) # Domain specific feature list. DSFile = open("../work/%s-%s/DS_list" % (source, target), 'w') count = 0 for w in DSList: count += 1 DSFile.write("%d %s\n" % (count, w)) DSFile.close() nDS = len(DSList) nDI = len(DI) # Compute matrix DSxSI and save it. R = np.zeros((nDS, nDI), dtype=np.float) for i in range(0, nDS): for j in range(0, nDI): val = getVal(DSList[i], DI[j], M) if val > coocTh: R[i,j] = val print "Writing DSxDI.mat...", sio.savemat("../work/%s-%s/DSxDI.mat" % (source, target), {'DSxDI':R}) print "Done" pass def getPMI(n, x, y, N): """ Compute the weighted PMI value. """ pmi = math.log((float(n) * float(N)) / (float(x) * float(y))) res = pmi * (float(n) / float(N)) return 0 if res < 0 else res def generateAll(): """ Generate matrices for all pairs of domains. """ domains = ["books", "electronics", "dvd", "kitchen"] for source in domains: for target in domains: if source == target: continue createMatrix(source, target) pass def learnProjection(sourceDomain, targetDomain): """ Learn the projection matrix and store it to a file. """ h = 50 # no. of latent dimensions. print "Loading the bipartite matrix...", coocData = sio.loadmat("../work/%s-%s/DSxDI.mat" % (sourceDomain, targetDomain)) M = sp.lil_matrix(coocData['DSxDI']) (nDS, nDI) = M.shape print "Done." print "Computing the Laplacian...", D1 = sp.lil_matrix((nDS, nDS), dtype=np.float64) D2 = sp.lil_matrix((nDI, nDI), dtype=np.float64) for i in range(0, nDS): D1[i,i] = 1.0 / np.sqrt(np.sum(M[i,:].data[0])) for i in range(0, nDI): D2[i,i] = 1.0 / np.sqrt(np.sum(M[:,i].T.data[0])) B = (D1.tocsr().dot(M.tocsr())).dot(D2.tocsr()) print "Done." print "Computing SVD...", ut, s, vt = sparsesvd(B.tocsc(), h) sio.savemat("../work/%s-%s/proj.mat" % (sourceDomain, targetDomain), {'proj':ut.T}) print "Done." pass def evaluate_SA(source, target, project): """ Report the cross-domain sentiment classification accuracy. """ gamma = 1.0 print "Source Domain", source print "Target Domain", target if project: print "Projection ON", "Gamma = %f" % gamma else: print "Projection OFF" # Load the projection matrix. M = sp.csr_matrix(sio.loadmat("../work/%s-%s/proj.mat" % (source, target))['proj']) (nDS, h) = M.shape # Load the domain specific features. DSfeat = {} DSFile = open("../work/%s-%s/DS_list" % (source, target)) for line in DSFile: p = line.strip().split() DSfeat[p[1].strip()] = int(p[0]) DSFile.close() # write train feature vectors. trainFileName = "../work/%s-%s/trainVects.SFA" % (source, target) testFileName = "../work/%s-%s/testVects.SFA" % (source, target) featFile = open(trainFileName, 'w') count = 0 for (label, fname) in [(1, 'train.positive'), (-1, 'train.negative')]: F = open("../work/%s/%s" % (source, fname)) for line in F: count += 1 #print "Train ", count words = set(line.strip().split()) # write the original features. featFile.write("%d " % label) x = sp.lil_matrix((1, nDS), dtype=np.float64) for w in words: #featFile.write("%s:1 " % w) if w in DSfeat: x[0, DSfeat[w] - 1] = 1 # write projected features. if project: y = x.tocsr().dot(M) for i in range(0, h): featFile.write("proj_%d:%f " % (i, gamma * y[0,i])) featFile.write("\n") F.close() featFile.close() # write test feature vectors. featFile = open(testFileName, 'w') count = 0 for (label, fname) in [(1, 'test.positive'), (-1, 'test.negative')]: F = open("../work/%s/%s" % (target, fname)) for line in F: count += 1 #print "Test ", count words = set(line.strip().split()) # write the original features. featFile.write("%d " % label) x = sp.lil_matrix((1, nDS), dtype=np.float64) for w in words: #featFile.write("%s:1 " % w) if w in DSfeat: x[0, DSfeat[w] - 1] = 1 # write projected features. if project: y = x.dot(M) for i in range(0, h): featFile.write("proj_%d:%f " % (i, gamma * y[0,i])) featFile.write("\n") F.close() featFile.close() # Train using classias. modelFileName = "../work/%s-%s/model.SFA" % (source, target) trainLBFGS(trainFileName, modelFileName) # Test using classias. acc = testLBFGS(testFileName, modelFileName) print "Accuracy =", acc print "###########################################\n\n" return acc def batchEval(): """ Evaluate on all 12 domain pairs. """ resFile = open("../work/batchSFA.csv", "w") domains = ["books", "electronics", "dvd", "kitchen"] resFile.write("Source, Target, NoProj, Proj\n") for source in domains: for target in domains: if source == target: continue createMatrix(source, target) learnProjection(source, target) resFile.write("%s, %s, %f, %f\n" % (source, target, evaluate_SA(source, target, False), evaluate_SA(source, target, True))) resFile.flush() resFile.close() pass if __name__ == "__main__": source = "books" target = "dvd" #generateFeatureVectors("books") #generateFeatureVectors("dvd") #generateFeatureVectors("electronics") #generateFeatureVectors("kitchen") #generateAll() #createMatrix(source, target) #learnProjection(source, target) #evaluate_SA(source, target, False) #evaluate_SA(source, target, True) batchEval()
32.429907
99
0.555908
9997540152d31940f55fa2c17dae9fbc9020b34f
1,030
py
Python
project_test/tests/conftest.py
xbello/crispy-forms-foundation
b66e7bf516f158539430b988ba22f2d2e0cb261d
[ "MIT" ]
null
null
null
project_test/tests/conftest.py
xbello/crispy-forms-foundation
b66e7bf516f158539430b988ba22f2d2e0cb261d
[ "MIT" ]
null
null
null
project_test/tests/conftest.py
xbello/crispy-forms-foundation
b66e7bf516f158539430b988ba22f2d2e0cb261d
[ "MIT" ]
null
null
null
""" Some fixture methods """ import os import pytest from crispy_forms.helper import FormHelper from project_test.tests.utils import (get_rendered_template, render_attempted_output) @pytest.fixture(scope='session') def output_test_path(pytestconfig): """Return absolute path to test outputs directory""" return os.path.join(pytestconfig.rootdir.strpath, 'tests', 'output') @pytest.fixture(scope='session') def rendered_template(): """ Return callable function to render form template """ return get_rendered_template @pytest.fixture(scope='session') def render_output(): """ Return callable function to render output template """ return render_attempted_output @pytest.fixture(scope='function', params=[ "foundation-5", "foundation-6" ]) def helper(request): """ Parametrized fixture to return helper configured for a template pack """ helper = FormHelper() helper.template_pack = request.param return helper
21.914894
72
0.696117
697934777bce20535c7e719c6b4c0540c24b2b8d
12,016
py
Python
watcher/tests/api/base.py
mail2nsrajesh/watcher
5f179609d0ee145fc7957972c83593cce242884d
[ "Apache-2.0" ]
null
null
null
watcher/tests/api/base.py
mail2nsrajesh/watcher
5f179609d0ee145fc7957972c83593cce242884d
[ "Apache-2.0" ]
null
null
null
watcher/tests/api/base.py
mail2nsrajesh/watcher
5f179609d0ee145fc7957972c83593cce242884d
[ "Apache-2.0" ]
null
null
null
# -*- encoding: utf-8 -*- # # Copyright 2013 Hewlett-Packard Development Company, L.P. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Base classes for API tests.""" # NOTE: Ported from ceilometer/tests/api.py (subsequently moved to # ceilometer/tests/api/__init__.py). This should be oslo'ified: # https://bugs.launchpad.net/watcher/+bug/1255115. # NOTE(deva): import auth_token so we can override a config option import copy import mock from oslo_config import cfg import pecan import pecan.testing from six.moves.urllib import parse as urlparse from watcher.api import hooks from watcher.common import context as watcher_context from watcher.notifications import service as n_service from watcher.tests.db import base PATH_PREFIX = '/v1' class FunctionalTest(base.DbTestCase): """Pecan controller functional testing class. Used for functional tests of Pecan controllers where you need to test your literal application and its integration with the framework. """ SOURCE_DATA = {'test_source': {'somekey': '666'}} def setUp(self): super(FunctionalTest, self).setUp() cfg.CONF.set_override("auth_version", "v2.0", group='keystone_authtoken') cfg.CONF.set_override("admin_user", "admin", group='keystone_authtoken') p_services = mock.patch.object(n_service, "send_service_update", new_callable=mock.PropertyMock) self.m_services = p_services.start() self.addCleanup(p_services.stop) self.app = self._make_app() def reset_pecan(): pecan.set_config({}, overwrite=True) self.addCleanup(reset_pecan) def _make_app(self, enable_acl=False): # Determine where we are so we can set up paths in the config root_dir = self.get_path() self.config = { 'app': { 'root': 'watcher.api.controllers.root.RootController', 'modules': ['watcher.api'], 'hooks': [ hooks.ContextHook(), hooks.NoExceptionTracebackHook() ], 'static_root': '%s/public' % root_dir, 'template_path': '%s/api/templates' % root_dir, 'enable_acl': enable_acl, 'acl_public_routes': ['/', '/v1'], }, } return pecan.testing.load_test_app(self.config) def _request_json(self, path, params, expect_errors=False, headers=None, method="post", extra_environ=None, status=None, path_prefix=PATH_PREFIX): """Sends simulated HTTP request to Pecan test app. :param path: url path of target service :param params: content for wsgi.input of request :param expect_errors: Boolean value; whether an error is expected based on request :param headers: a dictionary of headers to send along with the request :param method: Request method type. Appropriate method function call should be used rather than passing attribute in. :param extra_environ: a dictionary of environ variables to send along with the request :param status: expected status code of response :param path_prefix: prefix of the url path """ full_path = path_prefix + path print('%s: %s %s' % (method.upper(), full_path, params)) response = getattr(self.app, "%s_json" % method)( str(full_path), params=params, headers=headers, status=status, extra_environ=extra_environ, expect_errors=expect_errors ) print('GOT:%s' % response) return response def put_json(self, path, params, expect_errors=False, headers=None, extra_environ=None, status=None): """Sends simulated HTTP PUT request to Pecan test app. :param path: url path of target service :param params: content for wsgi.input of request :param expect_errors: Boolean value; whether an error is expected based on request :param headers: a dictionary of headers to send along with the request :param extra_environ: a dictionary of environ variables to send along with the request :param status: expected status code of response """ return self._request_json(path=path, params=params, expect_errors=expect_errors, headers=headers, extra_environ=extra_environ, status=status, method="put") def post_json(self, path, params, expect_errors=False, headers=None, extra_environ=None, status=None): """Sends simulated HTTP POST request to Pecan test app. :param path: url path of target service :param params: content for wsgi.input of request :param expect_errors: Boolean value; whether an error is expected based on request :param headers: a dictionary of headers to send along with the request :param extra_environ: a dictionary of environ variables to send along with the request :param status: expected status code of response """ return self._request_json(path=path, params=params, expect_errors=expect_errors, headers=headers, extra_environ=extra_environ, status=status, method="post") def patch_json(self, path, params, expect_errors=False, headers=None, extra_environ=None, status=None): """Sends simulated HTTP PATCH request to Pecan test app. :param path: url path of target service :param params: content for wsgi.input of request :param expect_errors: Boolean value; whether an error is expected based on request :param headers: a dictionary of headers to send along with the request :param extra_environ: a dictionary of environ variables to send along with the request :param status: expected status code of response """ return self._request_json(path=path, params=params, expect_errors=expect_errors, headers=headers, extra_environ=extra_environ, status=status, method="patch") def delete(self, path, expect_errors=False, headers=None, extra_environ=None, status=None, path_prefix=PATH_PREFIX): """Sends simulated HTTP DELETE request to Pecan test app. :param path: url path of target service :param expect_errors: Boolean value; whether an error is expected based on request :param headers: a dictionary of headers to send along with the request :param extra_environ: a dictionary of environ variables to send along with the request :param status: expected status code of response :param path_prefix: prefix of the url path """ full_path = path_prefix + path print('DELETE: %s' % (full_path)) response = self.app.delete(str(full_path), headers=headers, status=status, extra_environ=extra_environ, expect_errors=expect_errors) print('GOT:%s' % response) return response def get_json(self, path, expect_errors=False, headers=None, extra_environ=None, q=[], path_prefix=PATH_PREFIX, **params): """Sends simulated HTTP GET request to Pecan test app. :param path: url path of target service :param expect_errors: Boolean value;whether an error is expected based on request :param headers: a dictionary of headers to send along with the request :param extra_environ: a dictionary of environ variables to send along with the request :param q: list of queries consisting of: field, value, op, and type keys :param path_prefix: prefix of the url path :param params: content for wsgi.input of request """ full_path = path_prefix + path query_params = {'q.field': [], 'q.value': [], 'q.op': [], } for query in q: for name in ['field', 'op', 'value']: query_params['q.%s' % name].append(query.get(name, '')) all_params = {} all_params.update(params) if q: all_params.update(query_params) print('GET: %s %r' % (full_path, all_params)) response = self.app.get(full_path, params=all_params, headers=headers, extra_environ=extra_environ, expect_errors=expect_errors) if not expect_errors: response = response.json print('GOT:%s' % response) return response def validate_link(self, link, bookmark=False): """Checks if the given link can get correct data.""" # removes the scheme and net location parts of the link url_parts = list(urlparse.urlparse(link)) url_parts[0] = url_parts[1] = '' # bookmark link should not have the version in the URL if bookmark and url_parts[2].startswith(PATH_PREFIX): return False full_path = urlparse.urlunparse(url_parts) try: self.get_json(full_path, path_prefix='') return True except Exception: return False class AdminRoleTest(base.DbTestCase): def setUp(self): super(AdminRoleTest, self).setUp() token_info = { 'token': { 'project': { 'id': 'admin' }, 'user': { 'id': 'admin' } } } self.context = watcher_context.RequestContext( auth_token_info=token_info, project_id='admin', user_id='admin') def make_context(*args, **kwargs): # If context hasn't been constructed with token_info if not kwargs.get('auth_token_info'): kwargs['auth_token_info'] = copy.deepcopy(token_info) if not kwargs.get('project_id'): kwargs['project_id'] = 'admin' if not kwargs.get('user_id'): kwargs['user_id'] = 'admin' if not kwargs.get('roles'): kwargs['roles'] = ['admin'] context = watcher_context.RequestContext(*args, **kwargs) return watcher_context.RequestContext.from_dict(context.to_dict()) p = mock.patch.object(watcher_context, 'make_context', side_effect=make_context) self.mock_make_context = p.start() self.addCleanup(p.stop)
41.150685
79
0.58264
21c8e0712145ce1edeaaf4267daa60c90d077e35
1,566
py
Python
tests/test_complex.py
SkyTruth/gpsdio-vector
fe0472d2304bb625a0a926810c014a01d0bc1b59
[ "Apache-2.0" ]
null
null
null
tests/test_complex.py
SkyTruth/gpsdio-vector
fe0472d2304bb625a0a926810c014a01d0bc1b59
[ "Apache-2.0" ]
2
2015-06-12T21:25:40.000Z
2015-06-15T20:20:15.000Z
tests/test_complex.py
SkyTruth/gpsdio-vector
fe0472d2304bb625a0a926810c014a01d0bc1b59
[ "Apache-2.0" ]
null
null
null
""" More complex tests """ from click.testing import CliRunner import fiona as fio import gpsdio.cli.main from gpsdio_vector_driver.core import Vector def test_additional_fields(tmpdir): p = tmpdir.mkdir('testfiles') testfile = str(p.join('out.shp')) result = CliRunner().invoke(gpsdio.cli.main.main_group, [ '--o-drv', 'Vector', '--o-drv-opt', 'driver=ESRI Shapefile', '--o-drv-opt', 'fields=new_field:str:40,oth_n_fld:float:25.1', 'etl', 'tests/data/points.json', testfile ]) assert result.exit_code == 0 with fio.open(testfile) as src: for f in list(Vector.default_fields) + ['new_field', 'oth_n_fld']: assert f in src.schema['properties'] assert 'str' in src.schema['properties']['new_field'] assert 'float' in src.schema['properties']['oth_n_fld'] def test_complex_via_api(tmpdir): # Make sure we can give `fields` as a dict and `driver` via the API. p = tmpdir.mkdir('testfiles') testfile = str(p.join('out.geojson')) do = { 'fields': { 'new_field': 'str' }, 'driver': 'GeoJSON' } with gpsdio.open('tests/data/points.json') as src: with gpsdio.open(testfile, 'w', driver='Vector', do=do) as dst: for idx, msg in enumerate(src): dst.write(msg) num_msgs = idx + 1 with fio.open(testfile) as src: assert src.driver == 'GeoJSON' assert 'str' in src.schema['properties']['new_field'] assert num_msgs == len(src)
25.672131
74
0.601533
01cf7e14f3b8f525f047842ca8f587466c5c04a2
59
py
Python
earlier-2020/python_mod_tutorials/mlutiprocess/rpc.py
transcendentsky/py_tutorials
fed8e6c8d79f854a1cebcfd5c37297a163846208
[ "Apache-2.0" ]
1
2018-06-18T12:09:33.000Z
2018-06-18T12:09:33.000Z
earlier-2020/python_mod_tutorials/mlutiprocess/rpc.py
transcendentsky/py_tutorials
fed8e6c8d79f854a1cebcfd5c37297a163846208
[ "Apache-2.0" ]
null
null
null
earlier-2020/python_mod_tutorials/mlutiprocess/rpc.py
transcendentsky/py_tutorials
fed8e6c8d79f854a1cebcfd5c37297a163846208
[ "Apache-2.0" ]
1
2018-06-18T12:13:21.000Z
2018-06-18T12:13:21.000Z
# -*- coding:utf-8 -*- # rpc 一般俗称,远程过程调用,把本地的函数,放到远端去调用。
11.8
33
0.610169
6bc751457c9fd5b3371759d642d9293d8aa78e3e
6,621
py
Python
geocachingapi/geocachingapi.py
Sholofly/geocachingapi-python
759d4da202975b5adda8a968eed10681f4c3d371
[ "MIT" ]
1
2021-04-21T19:24:41.000Z
2021-04-21T19:24:41.000Z
geocachingapi/geocachingapi.py
Sholofly/geocachingapi-python
759d4da202975b5adda8a968eed10681f4c3d371
[ "MIT" ]
1
2021-06-05T11:03:46.000Z
2021-06-05T11:03:46.000Z
geocachingapi/geocachingapi.py
Sholofly/geocachingapi-python
759d4da202975b5adda8a968eed10681f4c3d371
[ "MIT" ]
1
2021-06-05T09:34:25.000Z
2021-06-05T09:34:25.000Z
"""Class for managing one Geocaching API integration.""" from __future__ import annotations import asyncio import json import logging import socket import async_timeout import backoff from yarl import URL from aiohttp import ClientResponse, ClientSession, ClientError from typing import Any, Awaitable, Callable, Dict, List, Optional from .const import ( GEOCACHING_API_BASE_PATH, GEOCACHING_API_HOST, GEOCACHING_API_PORT, GEOCACHING_API_SCHEME, GEOCACHING_API_VERSION, ) from .exceptions import ( GeocachingApiConnectionError, GeocachingApiConnectionTimeoutError, GeocachingApiError, GeocachingApiRateLimitError, ) from .models import ( GeocachingStatus, GeocachingSettings ) _LOGGER = logging.getLogger(__name__) class GeocachingApi: """ Main class to control the Geocaching API""" _close_session: bool = False _status: GeocachingStatus = None _settings: GeocachingSettings = None def __init__( self, *, token: str, settings: GeocachingSettings = None, request_timeout: int = 8, session: Optional[ClientSession] = None, token_refresh_method: Optional[Callable[[], Awaitable[str]]] = None ) -> None: """Initialize connection with the Geocaching API.""" self._status = GeocachingStatus() self._settings = settings or GeocachingSettings(False) self._session = session self.request_timeout = request_timeout self.token = token self.token_refresh_method = token_refresh_method @backoff.on_exception(backoff.expo, GeocachingApiConnectionError, max_tries=3, logger=_LOGGER) @backoff.on_exception( backoff.expo, GeocachingApiRateLimitError, base=60, max_tries=6, logger=_LOGGER ) async def _request(self, method, uri, **kwargs) -> ClientResponse: """Make a request.""" if self.token_refresh_method is not None: self.token = await self.token_refresh_method() _LOGGER.debug(f'Token refresh method called.') url = URL.build( scheme=GEOCACHING_API_SCHEME, host=GEOCACHING_API_HOST, port=GEOCACHING_API_PORT, path=GEOCACHING_API_BASE_PATH, ).join(URL(uri)) _LOGGER.debug(f'Executing {method} API request to {url}.') headers = kwargs.get("headers") if headers is None: headers = {} else: headers = dict(headers) headers["Authorization"] = f"Bearer {self.token}" _LOGGER.debug(f'With headers:') _LOGGER.debug(f'{str(headers)}') if self._session is None: self._session = ClientSession() _LOGGER.debug(f'New session created.') self._close_session = True try: with async_timeout.timeout(self.request_timeout): response = await self._session.request( method, f"{url}", **kwargs, headers=headers, ) except asyncio.TimeoutError as exception: raise GeocachingApiConnectionTimeoutError( "Timeout occurred while connecting to the Geocaching API" ) from exception except (ClientError, socket.gaierror) as exception: raise GeocachingApiConnectionError( "Error occurred while communicating with the Geocaching API" ) from exception content_type = response.headers.get("Content-Type", "") # Error handling if (response.status // 100) in [4, 5]: contents = await response.read() response.close() if response.status == 429: raise GeocachingApiRateLimitError( "Rate limit error has occurred with the Geocaching API" ) if content_type == "application/json": raise GeocachingApiError(response.status, json.loads(contents.decode("utf8"))) raise GeocachingApiError(response.status, {"message": contents.decode("utf8")}) # Handle empty response if response.status == 204: _LOGGER.warning(f'Request to {url} resulted in status 204. Your dataset could be out of date.') return if "application/json" in content_type: result = await response.json() _LOGGER.debug(f'Response:') _LOGGER.debug(f'{str(result)}') return result result = await response.text() _LOGGER.debug(f'Response:') _LOGGER.debug(f'{str(result)}') return result async def update(self) -> GeocachingStatus: await self._update_user(None) if self._settings.fetch_trackables: await self._update_trackables() _LOGGER.info(f'Status updated.') return self._status async def _update_user(self, data: Dict[str, Any] = None) -> None: assert self._status if data is None: fields = ",".join([ "username", "referenceCode", "findCount", "hideCount", "favoritePoints", "souvenirCount", "awardedFavoritePoints", "membershipLevelId" ]) data = await self._request("GET", f"/{GEOCACHING_API_VERSION}/users/me?fields={fields}") self._status.update_user_from_dict(data) _LOGGER.debug(f'User updated.') async def _update_trackables(self, data: Dict[str, Any] = None) -> None: assert self._status if data is None: fields = ",".join([ "referenceCode", "name", "holder", "trackingNumber", "kilometersTraveled", "currentGeocacheCode", "currentGeocacheName" ]) data = await self._request("GET", f"/{GEOCACHING_API_VERSION}/trackables?fields={fields}&type=3") self._status.update_trackables_from_dict(data) _LOGGER.debug(f'Trackables updated.') async def close(self) -> None: """Close open client session.""" if self._session and self._close_session: await self._session.close() _LOGGER.debug(f'Session closed.') async def __aenter__(self) -> GeocachingApi: """Async enter.""" return self async def __aexit__(self, *exc_info) -> None: """Async exit.""" await self.close()
34.664921
109
0.599456
b192b004899e795b2f14f34fe215be5496650975
8,490
py
Python
mythril/leveldb/client.py
LoCorVin/mythril
3cdc86d4f91dc746632a74c3b662fdcd6cef8033
[ "MIT" ]
1
2018-09-07T10:17:35.000Z
2018-09-07T10:17:35.000Z
mythril/leveldb/client.py
LoCorVin/mythril
3cdc86d4f91dc746632a74c3b662fdcd6cef8033
[ "MIT" ]
null
null
null
mythril/leveldb/client.py
LoCorVin/mythril
3cdc86d4f91dc746632a74c3b662fdcd6cef8033
[ "MIT" ]
1
2018-06-14T08:36:03.000Z
2018-06-14T08:36:03.000Z
import binascii import rlp from mythril.leveldb.accountindexing import CountableList from mythril.leveldb.accountindexing import ReceiptForStorage, AccountIndexer import logging from ethereum import utils from ethereum.block import BlockHeader, Block from mythril.leveldb.state import State from mythril.leveldb.eth_db import ETH_DB from mythril.ether.ethcontract import ETHContract from mythril.exceptions import AddressNotFoundError # Per https://github.com/ethereum/go-ethereum/blob/master/core/rawdb/schema.go # prefixes and suffixes for keys in geth header_prefix = b'h' # header_prefix + num (uint64 big endian) + hash -> header body_prefix = b'b' # body_prefix + num (uint64 big endian) + hash -> block body num_suffix = b'n' # header_prefix + num (uint64 big endian) + num_suffix -> hash block_hash_prefix = b'H' # block_hash_prefix + hash -> num (uint64 big endian) block_receipts_prefix = b'r' # block_receipts_prefix + num (uint64 big endian) + hash -> block receipts # known geth keys head_header_key = b'LastBlock' # head (latest) header hash # custom prefixes address_prefix = b'AM' # address_prefix + hash -> address # custom keys address_mapping_head_key = b'accountMapping' # head (latest) number of indexed block def _format_block_number(number): ''' formats block number to uint64 big endian ''' return utils.zpad(utils.int_to_big_endian(number), 8) def _encode_hex(v): ''' encodes hash as hex ''' return '0x' + utils.encode_hex(v) class LevelDBReader(object): ''' level db reading interface, can be used with snapshot ''' def __init__(self, db): self.db = db self.head_block_header = None self.head_state = None def _get_head_state(self): ''' gets head state ''' if not self.head_state: root = self._get_head_block().state_root self.head_state = State(self.db, root) return self.head_state def _get_account(self, address): ''' gets account by address ''' state = self._get_head_state() account_address = binascii.a2b_hex(utils.remove_0x_head(address)) return state.get_and_cache_account(account_address) def _get_block_hash(self, number): ''' gets block hash by block number ''' num = _format_block_number(number) hash_key = header_prefix + num + num_suffix return self.db.get(hash_key) def _get_head_block(self): ''' gets head block header ''' if not self.head_block_header: hash = self.db.get(head_header_key) num = self._get_block_number(hash) self.head_block_header = self._get_block_header(hash, num) # find header with valid state while not self.db.get(self.head_block_header.state_root) and self.head_block_header.prevhash is not None: hash = self.head_block_header.prevhash num = self._get_block_number(hash) self.head_block_header = self._get_block_header(hash, num) return self.head_block_header def _get_block_number(self, hash): ''' gets block number by hash ''' number_key = block_hash_prefix + hash return self.db.get(number_key) def _get_block_header(self, hash, num): ''' get block header by block header hash & number ''' header_key = header_prefix + num + hash block_header_data = self.db.get(header_key) header = rlp.decode(block_header_data, sedes=BlockHeader) return header def _get_address_by_hash(self, hash): ''' get mapped address by its hash ''' address_key = address_prefix + hash return self.db.get(address_key) def _get_last_indexed_number(self): ''' latest indexed block number ''' return self.db.get(address_mapping_head_key) def _get_block_receipts(self, hash, num): ''' get block transaction receipts by block header hash & number ''' number = _format_block_number(num) receipts_key = block_receipts_prefix + number + hash receipts_data = self.db.get(receipts_key) receipts = rlp.decode(receipts_data, sedes=CountableList(ReceiptForStorage)) return receipts class LevelDBWriter(object): ''' level db writing interface ''' def __init__(self, db): self.db = db self.wb = None def _set_last_indexed_number(self, number): ''' sets latest indexed block number ''' return self.db.put(address_mapping_head_key, _format_block_number(number)) def _start_writing(self): ''' start writing a batch ''' self.wb = self.db.write_batch() def _commit_batch(self): ''' commit batch ''' self.wb.write() def _store_account_address(self, address): ''' get block transaction receipts by block header hash & number ''' address_key = address_prefix + utils.sha3(address) self.wb.put(address_key, address) class EthLevelDB(object): ''' Go-Ethereum LevelDB client class ''' def __init__(self, path): self.path = path self.db = ETH_DB(path) self.reader = LevelDBReader(self.db) self.writer = LevelDBWriter(self.db) def get_contracts(self): ''' iterate through all contracts ''' for account in self.reader._get_head_state().get_all_accounts(): if account.code is not None: code = _encode_hex(account.code) contract = ETHContract(code, enable_online_lookup=False) yield contract, account.address, account.balance def search(self, expression, callback_func): ''' searches through all contract accounts ''' cnt = 0 indexer = AccountIndexer(self) for contract, address_hash, balance in self.get_contracts(): if contract.matches_expression(expression): try: address = _encode_hex(indexer.get_contract_by_hash(address_hash)) except AddressNotFoundError: ''' The hash->address mapping does not exist in our index. If the index is up-to-date, this likely means that the contract was created by an internal transaction. Skip this contract as right now we don't have a good solution for this. ''' continue callback_func(contract, address, balance) cnt += 1 if not cnt % 1000: logging.info("Searched %d contracts" % cnt) def contract_hash_to_address(self, hash): ''' tries to find corresponding account address ''' address_hash = binascii.a2b_hex(utils.remove_0x_head(hash)) indexer = AccountIndexer(self) return _encode_hex(indexer.get_contract_by_hash(address_hash)) def eth_getBlockHeaderByNumber(self, number): ''' gets block header by block number ''' hash = self.reader._get_block_hash(number) block_number = _format_block_number(number) return self.reader._get_block_header(hash, block_number) def eth_getBlockByNumber(self, number): ''' gets block body by block number ''' block_hash = self.reader._get_block_hash(number) block_number = _format_block_number(number) body_key = body_prefix + block_number + block_hash block_data = self.db.get(body_key) body = rlp.decode(block_data, sedes=Block) return body def eth_getCode(self, address): ''' gets account code ''' account = self.reader._get_account(address) return _encode_hex(account.code) def eth_getBalance(self, address): ''' gets account balance ''' account = self.reader._get_account(address) return account.balance def eth_getStorageAt(self, address, position): ''' gets account storage data at position ''' account = self.reader._get_account(address) return _encode_hex(utils.zpad(utils.encode_int(account.get_storage_data(position)), 32))
31.679104
120
0.629918
793209c33cac5fdd6dfa29d3f9e9fff496d39815
897
py
Python
share/qt/clean_mac_info_plist.py
zebbra2014/lootcoin
a6bf4df4ce0e7df32e13b06ee19706fdf3c276a3
[ "MIT" ]
null
null
null
share/qt/clean_mac_info_plist.py
zebbra2014/lootcoin
a6bf4df4ce0e7df32e13b06ee19706fdf3c276a3
[ "MIT" ]
null
null
null
share/qt/clean_mac_info_plist.py
zebbra2014/lootcoin
a6bf4df4ce0e7df32e13b06ee19706fdf3c276a3
[ "MIT" ]
null
null
null
#!/usr/bin/env python # Jonas Schnelli, 2013 # make sure the LootCoin-Qt.app contains the right plist (including the right version) # fix made because of serval bugs in Qt mac deployment (https://bugreports.qt-project.org/browse/QTBUG-21267) from string import Template from datetime import date bitcoinDir = "./"; inFile = bitcoinDir+"/share/qt/Info.plist" outFile = "LootCoin-Qt.app/Contents/Info.plist" version = "unknown"; fileForGrabbingVersion = bitcoinDir+"bitcoin-qt.pro" for line in open(fileForGrabbingVersion): lineArr = line.replace(" ", "").split("="); if lineArr[0].startswith("VERSION"): version = lineArr[1].replace("\n", ""); fIn = open(inFile, "r") fileContent = fIn.read() s = Template(fileContent) newFileContent = s.substitute(VERSION=version,YEAR=date.today().year) fOut = open(outFile, "w"); fOut.write(newFileContent); print "Info.plist fresh created"
29.9
109
0.725753
2a3c585734cb1118f529718f1ddef64d25f52832
5,246
py
Python
neutron/services/l3_router/l3_router_plugin.py
brandonlogan/neutron
57364544aa8b0e7cd9d73550f287bcad574ba08c
[ "Apache-2.0" ]
1
2017-09-10T09:57:35.000Z
2017-09-10T09:57:35.000Z
neutron/services/l3_router/l3_router_plugin.py
brandonlogan/neutron
57364544aa8b0e7cd9d73550f287bcad574ba08c
[ "Apache-2.0" ]
null
null
null
neutron/services/l3_router/l3_router_plugin.py
brandonlogan/neutron
57364544aa8b0e7cd9d73550f287bcad574ba08c
[ "Apache-2.0" ]
1
2015-05-05T14:41:11.000Z
2015-05-05T14:41:11.000Z
# Copyright (c) 2013 OpenStack Foundation. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from neutron_lib import constants as n_const from oslo_config import cfg from oslo_log import helpers as log_helpers from oslo_utils import importutils from neutron.api.rpc.agentnotifiers import l3_rpc_agent_api from neutron.api.rpc.handlers import l3_rpc from neutron.common import rpc as n_rpc from neutron.common import topics from neutron.db import common_db_mixin from neutron.db import dns_db from neutron.db import extraroute_db from neutron.db import l3_dvr_ha_scheduler_db from neutron.db import l3_dvrscheduler_db from neutron.db import l3_gwmode_db from neutron.db import l3_hamode_db from neutron.db import l3_hascheduler_db from neutron.db.models import l3 as l3_models from neutron.extensions import l3 from neutron.plugins.common import constants from neutron.quota import resource_registry from neutron import service from neutron.services.l3_router.service_providers import driver_controller from neutron.services import service_base class L3RouterPlugin(service_base.ServicePluginBase, common_db_mixin.CommonDbMixin, extraroute_db.ExtraRoute_db_mixin, l3_hamode_db.L3_HA_NAT_db_mixin, l3_gwmode_db.L3_NAT_db_mixin, l3_dvr_ha_scheduler_db.L3_DVR_HA_scheduler_db_mixin, dns_db.DNSDbMixin): """Implementation of the Neutron L3 Router Service Plugin. This class implements a L3 service plugin that provides router and floatingip resources and manages associated request/response. All DB related work is implemented in classes l3_db.L3_NAT_db_mixin, l3_hamode_db.L3_HA_NAT_db_mixin, l3_dvr_db.L3_NAT_with_dvr_db_mixin, and extraroute_db.ExtraRoute_db_mixin. """ supported_extension_aliases = ["dvr", "router", "ext-gw-mode", "extraroute", "l3_agent_scheduler", "l3-ha", "router_availability_zone", "l3-flavors"] __native_pagination_support = True __native_sorting_support = True @resource_registry.tracked_resources(router=l3_models.Router, floatingip=l3_models.FloatingIP) def __init__(self): self.router_scheduler = importutils.import_object( cfg.CONF.router_scheduler_driver) self.add_periodic_l3_agent_status_check() super(L3RouterPlugin, self).__init__() if 'dvr' in self.supported_extension_aliases: l3_dvrscheduler_db.subscribe() if 'l3-ha' in self.supported_extension_aliases: l3_hascheduler_db.subscribe() self.agent_notifiers.update( {n_const.AGENT_TYPE_L3: l3_rpc_agent_api.L3AgentNotifyAPI()}) rpc_worker = service.RpcWorker([self], worker_process_count=0) self.add_worker(rpc_worker) self.l3_driver_controller = driver_controller.DriverController(self) @log_helpers.log_method_call def start_rpc_listeners(self): # RPC support self.topic = topics.L3PLUGIN self.conn = n_rpc.create_connection() self.endpoints = [l3_rpc.L3RpcCallback()] self.conn.create_consumer(self.topic, self.endpoints, fanout=False) return self.conn.consume_in_threads() @classmethod def get_plugin_type(cls): return constants.L3_ROUTER_NAT def get_plugin_description(self): """returns string description of the plugin.""" return ("L3 Router Service Plugin for basic L3 forwarding" " between (L2) Neutron networks and access to external" " networks via a NAT gateway.") def router_supports_scheduling(self, context, router_id): return self.l3_driver_controller.uses_scheduler(context, router_id) def create_floatingip(self, context, floatingip): """Create floating IP. :param context: Neutron request context :param floatingip: data for the floating IP being created :returns: A floating IP object on success As the l3 router plugin asynchronously creates floating IPs leveraging the l3 agent, the initial status for the floating IP object will be DOWN. """ return super(L3RouterPlugin, self).create_floatingip( context, floatingip, initial_status=n_const.FLOATINGIP_STATUS_DOWN) def add_flavor_id(plugin, router_res, router_db): router_res['flavor_id'] = router_db['flavor_id'] common_db_mixin.CommonDbMixin.register_dict_extend_funcs( l3.ROUTERS, [add_flavor_id])
40.045802
78
0.70873
3dd5c2f247549877d77d66260769542b58f56fd9
22,022
py
Python
tortoise/models.py
ITgladiator/tortoise-orm
9a2bd0edd078ae12e5837c22f88c19f8cc84e7d7
[ "Apache-2.0" ]
null
null
null
tortoise/models.py
ITgladiator/tortoise-orm
9a2bd0edd078ae12e5837c22f88c19f8cc84e7d7
[ "Apache-2.0" ]
null
null
null
tortoise/models.py
ITgladiator/tortoise-orm
9a2bd0edd078ae12e5837c22f88c19f8cc84e7d7
[ "Apache-2.0" ]
null
null
null
from copy import copy, deepcopy from typing import Any, Dict, List, Optional, Set, Tuple, Type, TypeVar, Union from pypika import Query from tortoise import fields from tortoise.backends.base.client import BaseDBAsyncClient # noqa from tortoise.exceptions import ConfigurationError, OperationalError from tortoise.fields import ( Field, ManyToManyField, ManyToManyRelationManager, RelationQueryContainer, ) from tortoise.filters import get_filters_for_field from tortoise.queryset import QuerySet from tortoise.transactions import current_transaction_map MODEL_TYPE = TypeVar("MODEL_TYPE", bound="Model") # TODO: Define Filter type object. Possibly tuple? def get_unique_together(meta) -> Tuple[Tuple[str, ...], ...]: unique_together = getattr(meta, "unique_together", None) if isinstance(unique_together, (list, tuple)): if unique_together and isinstance(unique_together[0], str): unique_together = (unique_together,) # return without validation, validation will be done further in the code return unique_together class MetaInfo: __slots__ = ( "abstract", "table", "app", "_fields", "_db_fields", "m2m_fields", "fk_fields", "backward_fk_fields", "_fetch_fields", "fields_db_projection", "_inited", "_fields_db_projection_reverse", "filters", "fields_map", "default_connection", "basequery", "basequery_all_fields", "_filters", "unique_together", "pk_attr", "_generated_db_fields", "_model", ) def __init__(self, meta) -> None: self.abstract = getattr(meta, "abstract", False) # type: bool self.table = getattr(meta, "table", "") # type: str self.app = getattr(meta, "app", None) # type: Optional[str] self.unique_together = get_unique_together(meta) # type: Optional[Union[Tuple, List]] self._fields = None # type: Optional[Set[str]] self._db_fields = None # type: Optional[Set[str]] self.m2m_fields = set() # type: Set[str] self.fk_fields = set() # type: Set[str] self.backward_fk_fields = set() # type: Set[str] self._fetch_fields = None # type: Optional[Set[str]] self.fields_db_projection = {} # type: Dict[str,str] self._fields_db_projection_reverse = None # type: Optional[Dict[str,str]] self._filters = {} # type: Dict[str, Dict[str, dict]] self.filters = {} # type: Dict[str, dict] self.fields_map = {} # type: Dict[str, fields.Field] self._inited = False # type: bool self.default_connection = None # type: Optional[str] self.basequery = Query() # type: Query self.basequery_all_fields = Query() # type: Query self.pk_attr = getattr(meta, "pk_attr", "") # type: str self._generated_db_fields = None # type: Optional[Tuple[str]] self._model = None # type: "Model" # type: ignore def add_field(self, name: str, value: Field): if name in self.fields_map: raise ConfigurationError("Field {} already present in meta".format(name)) setattr(self._model, name, value) value.model = self._model self.fields_map[name] = value self._fields = None if value.has_db_field: self.fields_db_projection[name] = value.source_field or name self._fields_db_projection_reverse = None if isinstance(value, fields.ManyToManyField): self.m2m_fields.add(name) self._fetch_fields = None elif isinstance(value, fields.BackwardFKRelation): self.backward_fk_fields.add(name) self._fetch_fields = None field_filters = get_filters_for_field( field_name=name, field=value, source_field=value.source_field or name ) self._filters.update(field_filters) self.generate_filters() @property def fields_db_projection_reverse(self) -> Dict[str, str]: if self._fields_db_projection_reverse is None: self._fields_db_projection_reverse = { value: key for key, value in self.fields_db_projection.items() } return self._fields_db_projection_reverse @property def fields(self) -> Set[str]: if self._fields is None: self._fields = set(self.fields_map.keys()) return self._fields @property def db_fields(self) -> Set[str]: if self._db_fields is None: self._db_fields = set(self.fields_db_projection.values()) return self._db_fields @property def fetch_fields(self): if self._fetch_fields is None: self._fetch_fields = self.m2m_fields | self.backward_fk_fields | self.fk_fields return self._fetch_fields @property def pk(self): return self.fields_map[self.pk_attr] @property def db_pk_field(self) -> str: field_object = self.fields_map[self.pk_attr] return field_object.source_field or self.pk_attr @property def is_pk_generated(self) -> bool: field_object = self.fields_map[self.pk_attr] return field_object.generated @property def generated_db_fields(self) -> Tuple[str]: """Return list of names of db fields that are generated on db side""" if self._generated_db_fields is None: generated_fields = [] for field in self.fields_map.values(): if not field.generated: continue generated_fields.append(field.source_field or field.model_field_name) self._generated_db_fields = tuple(generated_fields) # type: ignore return self._generated_db_fields # type: ignore @property def db(self) -> BaseDBAsyncClient: try: return current_transaction_map[self.default_connection].get() except KeyError: raise ConfigurationError("No DB associated to model") def get_filter(self, key: str) -> dict: return self.filters[key] def generate_filters(self) -> None: get_overridden_filter_func = self.db.executor_class.get_overridden_filter_func for key, filter_info in self._filters.items(): overridden_operator = get_overridden_filter_func( # type: ignore filter_func=filter_info["operator"] ) if overridden_operator: filter_info = copy(filter_info) filter_info["operator"] = overridden_operator # type: ignore self.filters[key] = filter_info class ModelMeta(type): __slots__ = () def __new__(mcs, name: str, bases, attrs: dict, *args, **kwargs): fields_db_projection = {} # type: Dict[str,str] fields_map = {} # type: Dict[str, fields.Field] filters = {} # type: Dict[str, Dict[str, dict]] fk_fields = set() # type: Set[str] m2m_fields = set() # type: Set[str] meta_class = attrs.get("Meta", type("Meta", (), {})) pk_attr = "id" # ---------- 自定义:继承父类的字段 ------------- for base in bases: if hasattr(base, '_meta') and hasattr(base._meta, 'fields_map'): attrs.update(base._meta.fields_map) # ----------- end ----------------- if name != "Model": custom_pk_present = False for key, value in attrs.items(): if isinstance(value, fields.Field): if value.pk: if custom_pk_present: raise ConfigurationError( "Can't create model {} with two primary keys, " "only single pk are supported".format(name) ) elif value.generated and not isinstance( value, (fields.IntField, fields.BigIntField) ): raise ConfigurationError( "Generated primary key allowed only for IntField and BigIntField" ) custom_pk_present = True pk_attr = key if not custom_pk_present: if "id" not in attrs: attrs["id"] = fields.IntField(pk=True) if not isinstance(attrs["id"], fields.Field) or not attrs["id"].pk: raise ConfigurationError( "Can't create model {} without explicit primary key " "if field 'id' already present".format(name) ) for key, value in attrs.items(): if isinstance(value, fields.Field): if getattr(meta_class, "abstract", None): value = deepcopy(value) fields_map[key] = value value.model_field_name = key if isinstance(value, fields.ForeignKeyField): fk_fields.add(key) elif isinstance(value, fields.ManyToManyField): m2m_fields.add(key) else: fields_db_projection[key] = value.source_field or key filters.update( get_filters_for_field( field_name=key, field=fields_map[key], source_field=fields_db_projection[key], ) ) if value.pk: filters.update( get_filters_for_field( field_name="pk", field=fields_map[key], source_field=fields_db_projection[key], ) ) attrs["_meta"] = meta = MetaInfo(meta_class) meta.fields_map = fields_map meta.fields_db_projection = fields_db_projection meta._filters = filters meta.fk_fields = fk_fields meta.backward_fk_fields = set() meta.m2m_fields = m2m_fields meta.default_connection = None meta.pk_attr = pk_attr meta._inited = False if not fields_map: meta.abstract = True new_class = super().__new__(mcs, name, bases, attrs) # type: "Model" # type: ignore for field in meta.fields_map.values(): field.model = new_class meta._model = new_class return new_class class Model(metaclass=ModelMeta): # I don' like this here, but it makes autocompletion and static analysis much happier _meta = MetaInfo(None) def __init__(self, *args, _from_db: bool = False, **kwargs) -> None: # self._meta is a very common attribute lookup, lets cache it. meta = self._meta self._saved_in_db = _from_db or (meta.pk_attr in kwargs and meta.is_pk_generated) # Create lazy fk/m2m objects for key in meta.backward_fk_fields: field_object = meta.fields_map[key] setattr( self, key, RelationQueryContainer( field_object.type, field_object.relation_field, self # type: ignore ), ) for key in meta.m2m_fields: field_object = meta.fields_map[key] setattr( self, key, ManyToManyRelationManager( # type: ignore field_object.type, self, field_object ), ) # Assign values and do type conversions passed_fields = set(kwargs.keys()) passed_fields.update(meta.fetch_fields) passed_fields |= self._set_field_values(kwargs) # Assign defaults for missing fields for key in meta.fields.difference(passed_fields): field_object = meta.fields_map[key] if callable(field_object.default): setattr(self, key, field_object.default()) else: setattr(self, key, field_object.default) def _set_field_values(self, values_map: Dict[str, Any]) -> Set[str]: """ Sets values for fields honoring type transformations and return list of fields that were set additionally """ meta = self._meta passed_fields = set() for key, value in values_map.items(): if key in meta.fk_fields: if hasattr(value, "pk") and not value.pk: raise OperationalError( "You should first call .save() on {} before referring to it".format(value) ) relation_field = "{}_id".format(key) setattr(self, relation_field, value.pk) passed_fields.add(relation_field) elif key in meta.fields: field_object = meta.fields_map[key] if value is None and not field_object.null: raise ValueError("{} is non nullable field, but null was passed".format(key)) setattr(self, key, field_object.to_python_value(value)) elif key in meta.db_fields: field_object = meta.fields_map[meta.fields_db_projection_reverse[key]] if value is None and not field_object.null: raise ValueError("{} is non nullable field, but null was passed".format(key)) setattr(self, key, field_object.to_python_value(value)) elif key in meta.backward_fk_fields: raise ConfigurationError( "You can't set backward relations through init, change related model instead" ) elif key in meta.m2m_fields: raise ConfigurationError( "You can't set m2m relations through init, use m2m_manager instead" ) return passed_fields def __str__(self) -> str: return "<{}>".format(self.__class__.__name__) def __repr__(self) -> str: if self.pk: return "<{}: {}>".format(self.__class__.__name__, self.pk) return "<{}>".format(self.__class__.__name__) def __hash__(self) -> int: if not self.pk: raise TypeError("Model instances without id are unhashable") return hash(self.pk) def __eq__(self, other) -> bool: # pylint: disable=C0123 if type(self) == type(other) and self.pk == other.pk: return True return False def _get_pk_val(self): return getattr(self, self._meta.pk_attr) def _set_pk_val(self, value): setattr(self, self._meta.pk_attr, value) pk = property(_get_pk_val, _set_pk_val) """ Alias to the models Primary Key. Can be used as a field name when doing filtering e.g. ``.filter(pk=...)`` etc... """ async def save(self, using_db=None) -> None: """ Creates/Updates the current model object. """ db = using_db or self._meta.db executor = db.executor_class(model=self.__class__, db=db) if self._saved_in_db: await executor.execute_update(self) else: await executor.execute_insert(self) self._saved_in_db = True async def delete(self, using_db=None) -> None: """ Deletes the current model object. :raises OperationalError: If object has never been persisted. """ db = using_db or self._meta.db if not self._saved_in_db: raise OperationalError("Can't delete unpersisted record") await db.executor_class(model=self.__class__, db=db).execute_delete(self) async def fetch_related(self, *args, using_db=None) -> None: """ Fetch related fields. .. code-block:: python3 User.fetch_related("emails", "manager") :param args: The related fields that should be fetched. """ db = using_db or self._meta.db await db.executor_class(model=self.__class__, db=db).fetch_for_list([self], *args) @classmethod async def get_or_create( cls: Type[MODEL_TYPE], using_db=None, defaults=None, **kwargs ) -> Tuple[MODEL_TYPE, bool]: """ Fetches the object if exists (filtering on the provided parameters), else creates an instance with any unspecified parameters as default values. """ if not defaults: defaults = {} instance = await cls.filter(**kwargs).first() if instance: return instance, False return await cls.create(**defaults, **kwargs, using_db=using_db), True @classmethod async def create(cls: Type[MODEL_TYPE], **kwargs) -> MODEL_TYPE: """ Create a record in the DB and returns the object. .. code-block:: python3 user = await User.create(name="...", email="...") Equivalent to: .. code-block:: python3 user = User(name="...", email="...") await user.save() """ instance = cls(**kwargs) db = kwargs.get("using_db") or cls._meta.db await db.executor_class(model=cls, db=db).execute_insert(instance) instance._saved_in_db = True return instance @classmethod async def bulk_create(cls: Type[MODEL_TYPE], objects: List[MODEL_TYPE], using_db=None) -> None: """ Bulk insert operation: .. note:: The bulk insert operation will do the minimum to ensure that the object created in the DB has all the defaults and generated fields set, but may be incomplete reference in Python. e.g. ``IntField`` primary keys will not be poplulated. This is recommend only for throw away inserts where you want to ensure optimal insert performance. .. code-block:: python3 User.bulk_create([ User(name="...", email="..."), User(name="...", email="...") ]) :param objects: List of objects to bulk create """ db = using_db or cls._meta.db await db.executor_class(model=cls, db=db).execute_bulk_insert(objects) @classmethod def first(cls) -> QuerySet: """ Generates a QuerySet that returns the first record. """ return QuerySet(cls).first() @classmethod def filter(cls, *args, **kwargs) -> QuerySet: """ Generates a QuerySet with the filter applied. """ return QuerySet(cls).filter(*args, **kwargs) @classmethod def exclude(cls, *args, **kwargs) -> QuerySet: """ Generates a QuerySet with the exclude applied. """ return QuerySet(cls).exclude(*args, **kwargs) @classmethod def annotate(cls, **kwargs) -> QuerySet: return QuerySet(cls).annotate(**kwargs) @classmethod def all(cls) -> QuerySet: """ Returns the complete QuerySet. """ return QuerySet(cls) @classmethod def get(cls, *args, **kwargs) -> QuerySet: """ Fetches a single record for a Model type using the provided filter parameters. .. code-block:: python3 user = await User.get(username="foo") :raises MultipleObjectsReturned: If provided search returned more than one object. :raises DoesNotExist: If object can not be found. """ return QuerySet(cls).get(*args, **kwargs) @classmethod async def fetch_for_list(cls, instance_list, *args, using_db=None): db = using_db or cls._meta.db await db.executor_class(model=cls, db=db).fetch_for_list(instance_list, *args) @classmethod def check(cls) -> None: """ Calls various checks to validate the model. :raises ConfigurationError: If the model has not been configured correctly. """ cls._check_unique_together() @classmethod def _check_unique_together(cls) -> None: """Check the value of "unique_together" option.""" if cls._meta.unique_together is None: return if not isinstance(cls._meta.unique_together, (tuple, list)): raise ConfigurationError( "'{}.unique_together' must be a list or tuple.".format(cls.__name__) ) elif any( not isinstance(unique_fields, (tuple, list)) for unique_fields in cls._meta.unique_together ): raise ConfigurationError( "All '{}.unique_together' elements must be lists or tuples.".format(cls.__name__) ) else: for fields_tuple in cls._meta.unique_together: for field_name in fields_tuple: field = cls._meta.fields_map.get(field_name) if not field: raise ConfigurationError( "'{}.unique_together' has no '{}' " "field.".format(cls.__name__, field_name) ) if isinstance(field, ManyToManyField): raise ConfigurationError( "'{}.unique_together' '{}' field refers " "to ManyToMany field.".format(cls.__name__, field_name) ) class Meta: """ The ``Meta`` class is used to configure metadate for the Model. Usage: .. code-block:: python3 class Foo(Model): ... class Meta: table="custom_table" unique_together=(("field_a", "field_b"), ) """ pass
36.280066
99
0.572382
27f7f096092aefcd4db539903c33b89718e74563
1,996
py
Python
sscanss/core/math/misc.py
jfkcooper/SScanSS-2
ae50c1d065732a7742eaf1a7b9a9349907c29f8a
[ "BSD-3-Clause" ]
null
null
null
sscanss/core/math/misc.py
jfkcooper/SScanSS-2
ae50c1d065732a7742eaf1a7b9a9349907c29f8a
[ "BSD-3-Clause" ]
null
null
null
sscanss/core/math/misc.py
jfkcooper/SScanSS-2
ae50c1d065732a7742eaf1a7b9a9349907c29f8a
[ "BSD-3-Clause" ]
null
null
null
""" A collection of miscellaneous functions """ import math import numpy as np from .constants import VECTOR_EPS def clamp(value, min_value=0.0, max_value=1.0): """Clamps a value between a minimum and maximum value. Similar to ``numpy.clip`` but is faster for non-array :param value: number to clamp :type value: float :param min_value: maximum value :type min_value: float :param max_value: minimum value :type max_value: float :return: number clamped between the specified range :rtype: float """ return max(min(value, max_value), min_value) def map_range(old_min, old_max, new_min, new_max, value): """Maps a given value from the initial (first) range to a another (second) range. :param old_min: minimum of first range :type old_min: float :param old_max: maximum of first range :type old_max: float :param new_min: minimum of second range :type new_min: float :param new_max: maximum of second range :type new_max: float :param value: real number to remap :type value: float :return: remapped value :rtype: float """ return new_min + ((value - old_min) * (new_max - new_min) / (old_max - old_min)) def trunc(value, decimals=0): """Truncates values after a number of decimal points :param value: number to truncate :type value: float :param decimals: number of decimals points to keep :type decimals: int :return: truncated float :rtype: float """ step = 10**decimals return math.trunc(value * step) / step def is_close(a, b, tol=VECTOR_EPS): """Checks that two values are close by comparing absolute difference with tolerance :param a: first value :type a: array_like :param b: second value :type b: array_like :param tol: tolerance :type tol: float :return: indicates if values are close :rtype: bool """ if np.all(np.abs(np.subtract(a, b)) < tol): return True return False
27.342466
87
0.673347
d11f8be96301f2df52cf1eb085feb90e39e14161
1,002
py
Python
api/kubeops_api/models/credential.py
liqiang-fit2cloud/KubeOperator
cb9346b95d29919570cefa6bea1ce4e5c3f0ee6d
[ "Apache-2.0" ]
3
2019-11-29T03:49:08.000Z
2020-07-29T02:52:51.000Z
api/kubeops_api/models/credential.py
liqiang-fit2cloud/KubeOperator
cb9346b95d29919570cefa6bea1ce4e5c3f0ee6d
[ "Apache-2.0" ]
1
2019-09-09T07:27:51.000Z
2019-09-09T07:27:51.000Z
api/kubeops_api/models/credential.py
liqiang-fit2cloud/KubeOperator
cb9346b95d29919570cefa6bea1ce4e5c3f0ee6d
[ "Apache-2.0" ]
1
2020-03-04T00:29:29.000Z
2020-03-04T00:29:29.000Z
import uuid from django.db import models from django.utils.translation import ugettext_lazy as _ from common import models as common_models __all__ = ["Credential"] class Credential(models.Model): CREDENTIAL_TYPE_PASSWORD = "password" CREDENTIAL_TYPE_PRIVATE_KEY = "privateKey" CREDENTIAL_TYPE_CHOICES = ( (CREDENTIAL_TYPE_PASSWORD, "password"), (CREDENTIAL_TYPE_PRIVATE_KEY, "privateKey") ) id = models.UUIDField(default=uuid.uuid4, primary_key=True) name = models.SlugField(max_length=128, allow_unicode=True, unique=True, verbose_name=_('Name')) username = models.CharField(max_length=256, default='root') password = common_models.EncryptCharField(max_length=4096, blank=True, null=True) private_key = common_models.EncryptCharField(max_length=8192, blank=True, null=True) type = models.CharField(max_length=128, choices=CREDENTIAL_TYPE_CHOICES, default=CREDENTIAL_TYPE_PASSWORD) date_created = models.DateTimeField(auto_now_add=True)
41.75
110
0.771457
741c8f4c5fd6199dbc7495862bdc07f926b62bf6
2,699
py
Python
src/testServer2.py
cyberjacob/caveman
4ee3ff557a6325d305f3ce44822042787f648e3b
[ "MIT" ]
null
null
null
src/testServer2.py
cyberjacob/caveman
4ee3ff557a6325d305f3ce44822042787f648e3b
[ "MIT" ]
null
null
null
src/testServer2.py
cyberjacob/caveman
4ee3ff557a6325d305f3ce44822042787f648e3b
[ "MIT" ]
null
null
null
import socket import threading def start(): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # listen for upto 50 cnxns on port 8000 sock.bind(('', 1337)) sock.listen(50) print '[L] Socket Opened, listening for connections' while True: csock,caddr = sock.accept() print '[N] new connection from '+caddr[0]+':'+str(caddr[1]) # Start a thread to service each cnxn t = threading.Thread(target=handle_cnxn, args=(csock,caddr,)) t.start() def handle_cnxn(csock, caddr): shake1 = csock.recv(1024) print caddr[0]+'-> '+shake1 shakelist = shake1.split("\r\n") print 'Got handshake' # Extract key1 and key2 for elem in shakelist: if elem.startswith("Sec-WebSocket-Key:"): client64Key = elem[19:] # Sec-WebSocket-Key1: is 20 chars #print 'got key '+client64Key elif elem.startswith("Origin:"): ws_origin = elem[8:] elif elem.startswith("Host:"): ws_host = elem[6:] elif elem.startswith("GET "): ws_path = elem[4:-9] else: continue # Concat key1, key2, and the the body of the client handshake and take the md5 sum of it print 'got client key '+client64Key key = client64Key + "258EAFA5-E914-47DA-95CA-C5AB0DC85B11" print 'got joint key '+key import hashlib, base64 m = hashlib.sha1() m.update(key) d = base64.b64encode(m.digest()) print 'got base64 hash '+d # Send 'headers' # Modified to automatically adhere to the Same-Origin Policy. # DO NOT USE IN PRODUCTION CODE!!! csock.send("HTTP/1.1 101 WebSocket Protocol Handshake\r\n") csock.send("Upgrade: WebSocket\r\n") csock.send("Connection: Upgrade\r\n") csock.send("Sec-WebSocket-Accept: " + d + "\r\n") csock.send("Sec-WebSocket-Origin: " + ws_origin + "\r\n") csock.send("Sec-WebSocket-Location: ws://" + ws_host + ws_path + "\r\n") #csock.send("Sec-WebSocket-Protocol: chat\r\n") csock.send("\r\n") #Send digest csock.send(d) # Message framing - 0x00 utf-8-encoded-body 0xFF def send(data): first_byte = chr(0x00) payload = data.encode('utf-8') pl = first_byte + payload + chr(0xFF) csock.send(pl) from time import sleep # This is dependent on you - what you wish to send to the browser i = 0 while True: send(str(i)) print caddr[0]+'-> '+str(i) shake1 = csock.recv(1024) print caddr[0]+'<- '+shake1 i += 1 sleep(1) if __name__ == "__main__": start()
29.988889
92
0.601704
600b3789d3e479a43cbfd1ea40eb0e340aefacc2
7,792
py
Python
trestle/core/validator_helper.py
PritamDutt/compliance-trestle
7edadde2bd2949e73a085bd78ef57995250fc9cb
[ "Apache-2.0" ]
null
null
null
trestle/core/validator_helper.py
PritamDutt/compliance-trestle
7edadde2bd2949e73a085bd78ef57995250fc9cb
[ "Apache-2.0" ]
null
null
null
trestle/core/validator_helper.py
PritamDutt/compliance-trestle
7edadde2bd2949e73a085bd78ef57995250fc9cb
[ "Apache-2.0" ]
null
null
null
# -*- mode:python; coding:utf-8 -*- # Copyright (c) 2020 IBM Corp. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for dealing with models.""" import logging import uuid from typing import Any, Dict, List, Tuple, TypeVar import pydantic from trestle.oscal import common logger = logging.getLogger(__name__) # Generic type var TG = TypeVar('TG') def find_values_by_name(object_of_interest: Any, name_of_interest: str) -> List[Any]: """Traverse object and return list of values of specified name.""" loe = [] if isinstance(object_of_interest, pydantic.BaseModel): value = getattr(object_of_interest, name_of_interest, None) if value is not None: loe.append(value) fields = getattr(object_of_interest, '__fields_set__', None) if fields is not None: for field in fields: loe.extend(find_values_by_name(getattr(object_of_interest, field, None), name_of_interest)) elif type(object_of_interest) is list: for item in object_of_interest: loe.extend(find_values_by_name(item, name_of_interest)) elif type(object_of_interest) is dict: if name_of_interest in object_of_interest: loe.append(object_of_interest[name_of_interest]) for item in object_of_interest.values(): loe.extend(find_values_by_name(item, name_of_interest)) return loe def has_no_duplicate_values_by_name(object_of_interest: Any, name_of_interest: str) -> bool: """Determine if duplicate values of type exist in object.""" loe = find_values_by_name(object_of_interest, name_of_interest) set_loe = set(loe) if len(loe) == len(set_loe): return True items = {} for item in loe: items[item] = items.get(item, 0) + 1 # now print items for item, instances in items.items(): if instances > 1: logger.info(f'Duplicate detected of item {item} with {instances} instances.') return False def _regenerate_uuids_in_place(object_of_interest: Any, uuid_lut: Dict[str, str]) -> Tuple[Any, Dict[str, str]]: """Update all uuids in model that require updating. Go through the model and replace all dicts with key == 'uuid' and replace the value with a new uuid4. Build a lookup table of the updates that were made. This function does not update the corresponding refs to those uuid's. That is done by update_uuid_refs Note that this function needs to be started off with uuid_lut == {}, i.e. an empty dict. After that it recurses and grows the lut. Args: object_of_interest: pydantic.BaseModel, list, dict or str will be updated uuid_lut: dict of the growing lut of old:new uuid's. First call must be made with value {} Returns: The updated object_of_interest with new uuid's (but refs to them are not updated) The final lookup table of old:new uuid's """ uuid_str = 'uuid' # Certain types are known not to need updating and should not change # Resources are identified by uuid, and the corresponding href will have # in front of the uuid string # Neither of these should change # If other similar types are found they should be added to the FixedUuidModel typevar to prevent updating if isinstance(object_of_interest, common.Resource): pass elif isinstance(object_of_interest, pydantic.BaseModel): # fields_set has names of fields set when model was initialized fields = getattr(object_of_interest, '__fields_set__', None) for field in fields: new_object = None if field == uuid_str: new_object = str(uuid.uuid4()) uuid_lut[object_of_interest.__dict__[field]] = new_object else: new_object, uuid_lut = _regenerate_uuids_in_place(object_of_interest.__dict__[field], uuid_lut) object_of_interest.__dict__[field] = new_object elif type(object_of_interest) is list: new_list = [] for item in object_of_interest: new_item, uuid_lut = _regenerate_uuids_in_place(item, uuid_lut) new_list.append(new_item) object_of_interest = new_list elif type(object_of_interest) is dict: new_dict = {} for key, value in object_of_interest.items(): if key == uuid_str: new_val = str(uuid.uuid4()) new_dict[uuid_str] = new_val uuid_lut[value] = new_val else: new_value, uuid_lut = _regenerate_uuids_in_place(value, uuid_lut) new_dict[key] = new_value object_of_interest = new_dict return object_of_interest, uuid_lut def _update_new_uuid_refs(object_of_interest: Any, uuid_lut: Dict[str, str]) -> Tuple[Any, int]: """Update all refs to uuids that were changed.""" n_refs_updated = 0 if isinstance(object_of_interest, pydantic.BaseModel): fields = getattr(object_of_interest, '__fields_set__', None) for field in fields: new_object, n_new_updates = _update_new_uuid_refs(object_of_interest.__dict__[field], uuid_lut) n_refs_updated += n_new_updates object_of_interest.__dict__[field] = new_object elif type(object_of_interest) is list: new_list = [] for item in object_of_interest: new_item, n_new_updates = _update_new_uuid_refs(item, uuid_lut) n_refs_updated += n_new_updates new_list.append(new_item) object_of_interest = new_list elif type(object_of_interest) is dict: new_dict = {} for key, value in object_of_interest.items(): if isinstance(value, str): if value in uuid_lut: new_dict[key] = uuid_lut[value] n_refs_updated += 1 else: new_dict[key] = value else: new_value, n_new_updates = _update_new_uuid_refs(value, uuid_lut) n_refs_updated += n_new_updates new_dict[key] = new_value object_of_interest = new_dict elif isinstance(object_of_interest, str): if object_of_interest in uuid_lut: n_refs_updated += 1 object_of_interest = uuid_lut[object_of_interest] return object_of_interest, n_refs_updated def regenerate_uuids(object_of_interest: Any) -> Tuple[Any, Dict[str, str], int]: """Regenerate all uuids in object and update corresponding references. Find all dicts with key == 'uuid' and replace the value with a new uuid4. Build a corresponding lookup table as you go, of old:new uuid values. Then make a second pass through the object and replace all string values present in the lookup table with the new value. Args: object_of_interest: pydantic.BaseModel, list, dict or str will be updated Returns: The updated object with new uuid's and refs The final lookup table of old:new uuid's A count of the number of refs that were updated """ new_object, uuid_lut = _regenerate_uuids_in_place(object_of_interest, {}) new_object, n_refs_updated = _update_new_uuid_refs(new_object, uuid_lut) return new_object, uuid_lut, n_refs_updated
43.049724
112
0.681083
cb50e81555b89c6d1c894c64edfccfda6a6106cd
3,262
py
Python
jaseci_core/jaseci/tests/test_ll_proto.py
panikingginoo12/jaseci
6659ab3a3edde865e2ff9a8dc6f2c0f98588d05b
[ "MIT" ]
null
null
null
jaseci_core/jaseci/tests/test_ll_proto.py
panikingginoo12/jaseci
6659ab3a3edde865e2ff9a8dc6f2c0f98588d05b
[ "MIT" ]
null
null
null
jaseci_core/jaseci/tests/test_ll_proto.py
panikingginoo12/jaseci
6659ab3a3edde865e2ff9a8dc6f2c0f98588d05b
[ "MIT" ]
null
null
null
from jaseci.utils.mem_hook import mem_hook from jaseci.actor.sentinel import sentinel from jaseci.graph.graph import graph from jaseci.utils.utils import TestCaseHelper from unittest import TestCase import jaseci.tests.jac_test_code as jtc import uuid class jac_tests(TestCaseHelper, TestCase): """Unit tests for Jac language""" def setUp(self): super().setUp() self.gph = graph(m_id='anon', h=mem_hook()) self.sent = sentinel(m_id='anon', h=self.gph._h) def tearDown(self): super().tearDown() def test_ll_proto_load(self): """Test loading/parsing ll prototype""" self.sent.register_code(jtc.ll_proto) self.assertTrue(self.sent.is_active) def test_rand_generation(self): """Test loading/parsing ll prototype""" self.sent.register_code(jtc.ll_proto) gen_walker = self.sent.walker_ids.get_obj_by_name('init') gen_walker.prime(self.gph) gen_walker.run() gen_walker = self.sent.walker_ids.get_obj_by_name( 'gen_rand_life', kind='walker') gen_walker.prime(self.gph.outbound_nodes()[0]) gen_walker.run() self.assertGreater(len(self.gph._h.mem.keys()), 70) def test_objects_created(self): """Test loading/parsing ll prototype""" self.sent.register_code(jtc.ll_proto) gen_walker = self.sent.walker_ids.get_obj_by_name('init') gen_walker.prime(self.gph) gen_walker.run() gen_walker = self.sent.walker_ids.get_obj_by_name( 'gen_rand_life', kind='walker') gen_walker.prime(self.gph.outbound_nodes()[0]) gen_walker.run() for i in self.gph._h.mem.keys(): if(i == 'global'): continue self.gph._h.mem[i].json() def test_get_latest_day(self): """Test loading/parsing ll prototype""" self.sent.register_code(jtc.ll_proto) gen_walker = self.sent.walker_ids.get_obj_by_name('init') gen_walker.prime(self.gph) gen_walker.run() gen_walker = self.sent.walker_ids.get_obj_by_name( 'gen_rand_life', kind='walker') gen_walker.prime(self.gph.outbound_nodes()[0]) gen_walker.run() lday_walk = self.sent.walker_ids.get_obj_by_name( 'get_latest_day') lday_walk.prime(self.gph.outbound_nodes()[0]) lday_walk.run() ret = lday_walk.context['latest_day'] self.assertEqual(self.gph._h.get_obj( self.gph._m_id, uuid.UUID(ret)).name, 'day') def test_carry_forward(self): """Test loading/parsing ll prototype""" self.sent.register_code(jtc.ll_proto) gen_walker = self.sent.walker_ids.get_obj_by_name('init') gen_walker.prime(self.gph) gen_walker.run() gen_walker = self.sent.walker_ids.get_obj_by_name( 'gen_rand_life', kind='walker') gen_walker.prime(self.gph) gen_walker.run() lday_walk = self.sent.walker_ids.get_obj_by_name( 'get_gen_day') lday_walk.prime(self.gph) lday_walk.run() day = self.gph._h.get_obj( self.gph._m_id, uuid.UUID(lday_walk.context['day_node'])) self.assertGreater(len(day.edge_ids), 3)
36.244444
69
0.643777
d2b6a9f7dd79c655a9660652c362663a58f9580a
4,277
py
Python
homeassistant/components/axis/binary_sensor.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
30,023
2016-04-13T10:17:53.000Z
2020-03-02T12:56:31.000Z
homeassistant/components/axis/binary_sensor.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
24,710
2016-04-13T08:27:26.000Z
2020-03-02T12:59:13.000Z
homeassistant/components/axis/binary_sensor.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
11,956
2016-04-13T18:42:31.000Z
2020-03-02T09:32:12.000Z
"""Support for Axis binary sensors.""" from datetime import timedelta from axis.event_stream import ( CLASS_INPUT, CLASS_LIGHT, CLASS_MOTION, CLASS_OUTPUT, CLASS_PTZ, CLASS_SOUND, FenceGuard, LoiteringGuard, MotionGuard, ObjectAnalytics, Vmd4, ) from homeassistant.components.binary_sensor import ( BinarySensorDeviceClass, BinarySensorEntity, ) from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant, callback from homeassistant.helpers.dispatcher import async_dispatcher_connect from homeassistant.helpers.entity_platform import AddEntitiesCallback from homeassistant.helpers.event import async_track_point_in_utc_time from homeassistant.util.dt import utcnow from .axis_base import AxisEventBase from .const import DOMAIN as AXIS_DOMAIN DEVICE_CLASS = { CLASS_INPUT: BinarySensorDeviceClass.CONNECTIVITY, CLASS_LIGHT: BinarySensorDeviceClass.LIGHT, CLASS_MOTION: BinarySensorDeviceClass.MOTION, CLASS_SOUND: BinarySensorDeviceClass.SOUND, } async def async_setup_entry( hass: HomeAssistant, config_entry: ConfigEntry, async_add_entities: AddEntitiesCallback, ) -> None: """Set up a Axis binary sensor.""" device = hass.data[AXIS_DOMAIN][config_entry.unique_id] @callback def async_add_sensor(event_id): """Add binary sensor from Axis device.""" event = device.api.event[event_id] if event.CLASS not in (CLASS_OUTPUT, CLASS_PTZ) and not ( event.CLASS == CLASS_LIGHT and event.TYPE == "Light" ): async_add_entities([AxisBinarySensor(event, device)]) config_entry.async_on_unload( async_dispatcher_connect(hass, device.signal_new_event, async_add_sensor) ) class AxisBinarySensor(AxisEventBase, BinarySensorEntity): """Representation of a binary Axis event.""" def __init__(self, event, device): """Initialize the Axis binary sensor.""" super().__init__(event, device) self.cancel_scheduled_update = None self._attr_device_class = DEVICE_CLASS.get(self.event.CLASS) @callback def update_callback(self, no_delay=False): """Update the sensor's state, if needed. Parameter no_delay is True when device_event_reachable is sent. """ @callback def scheduled_update(now): """Timer callback for sensor update.""" self.cancel_scheduled_update = None self.async_write_ha_state() if self.cancel_scheduled_update is not None: self.cancel_scheduled_update() self.cancel_scheduled_update = None if self.is_on or self.device.option_trigger_time == 0 or no_delay: self.async_write_ha_state() return self.cancel_scheduled_update = async_track_point_in_utc_time( self.hass, scheduled_update, utcnow() + timedelta(seconds=self.device.option_trigger_time), ) @property def is_on(self): """Return true if event is active.""" return self.event.is_tripped @property def name(self): """Return the name of the event.""" if ( self.event.CLASS == CLASS_INPUT and self.event.id in self.device.api.vapix.ports and self.device.api.vapix.ports[self.event.id].name ): return ( f"{self.device.name} {self.device.api.vapix.ports[self.event.id].name}" ) if self.event.CLASS == CLASS_MOTION: for event_class, event_data in ( (FenceGuard, self.device.api.vapix.fence_guard), (LoiteringGuard, self.device.api.vapix.loitering_guard), (MotionGuard, self.device.api.vapix.motion_guard), (ObjectAnalytics, self.device.api.vapix.object_analytics), (Vmd4, self.device.api.vapix.vmd4), ): if ( isinstance(self.event, event_class) and event_data and self.event.id in event_data ): return f"{self.device.name} {self.event.TYPE} {event_data[self.event.id].name}" return self._attr_name
31.91791
99
0.658639
ab93b2085547833b423cda098819eb107c821fc8
1,055
py
Python
hacker/qqpy/bin/pilfont.py
sanyueyuxincao/web-crawling
dc134bd6e23572a3ebfd851d0ffb6dd84cb16c1f
[ "MIT" ]
null
null
null
hacker/qqpy/bin/pilfont.py
sanyueyuxincao/web-crawling
dc134bd6e23572a3ebfd851d0ffb6dd84cb16c1f
[ "MIT" ]
null
null
null
hacker/qqpy/bin/pilfont.py
sanyueyuxincao/web-crawling
dc134bd6e23572a3ebfd851d0ffb6dd84cb16c1f
[ "MIT" ]
2
2019-05-19T08:12:45.000Z
2021-08-28T07:16:42.000Z
#!/Users/het/Desktop/hacker/qqpy/bin/python3.6 # # The Python Imaging Library # $Id$ # # PIL raster font compiler # # history: # 1997-08-25 fl created # 2002-03-10 fl use "from PIL import" # from __future__ import print_function import glob import sys # drivers from PIL import BdfFontFile from PIL import PcfFontFile VERSION = "0.4" if len(sys.argv) <= 1: print("PILFONT", VERSION, "-- PIL font compiler.") print() print("Usage: pilfont fontfiles...") print() print("Convert given font files to the PIL raster font format.") print("This version of pilfont supports X BDF and PCF fonts.") sys.exit(1) files = [] for f in sys.argv[1:]: files = files + glob.glob(f) for f in files: print(f + "...", end=' ') try: fp = open(f, "rb") try: p = PcfFontFile.PcfFontFile(fp) except SyntaxError: fp.seek(0) p = BdfFontFile.BdfFontFile(fp) p.save(f) except (SyntaxError, IOError): print("failed") else: print("OK")
18.189655
68
0.603791
749f7a9d598282af633a0652fad7442d75c78cea
1,522
py
Python
data/train/python/749f7a9d598282af633a0652fad7442d75c78ceaurls.py
harshp8l/deep-learning-lang-detection
2a54293181c1c2b1a2b840ddee4d4d80177efb33
[ "MIT" ]
84
2017-10-25T15:49:21.000Z
2021-11-28T21:25:54.000Z
data/train/python/749f7a9d598282af633a0652fad7442d75c78ceaurls.py
vassalos/deep-learning-lang-detection
cbb00b3e81bed3a64553f9c6aa6138b2511e544e
[ "MIT" ]
5
2018-03-29T11:50:46.000Z
2021-04-26T13:33:18.000Z
data/train/python/749f7a9d598282af633a0652fad7442d75c78ceaurls.py
vassalos/deep-learning-lang-detection
cbb00b3e81bed3a64553f9c6aa6138b2511e544e
[ "MIT" ]
24
2017-11-22T08:31:00.000Z
2022-03-27T01:22:31.000Z
from django.conf.urls import patterns, include, url from django.contrib import admin from django.conf import settings from django.conf.urls.static import static from uploadFile.views import upload_file, search_file, my_reports, report_view from userAccount.views import create_account, auth_view, user_home, logout, manage_user, manage_group, my_groups, \ manage_reports, change_password urlpatterns = patterns('', # Examples: # url(r'^$', 'Demo.views.home', name='home'), # url(r'^blog/', include('blog.urls')), url(r'^admin/', include(admin.site.urls)), url(r'^upload/$', upload_file), url(r'^search/$', search_file), url(r'^view_report/(?P<id>[0-9]+)/$', report_view), url(r'^create_account/$', create_account), url(r'^auth/$', auth_view), url(r'^user_home/$', user_home), url(r'^logout/$', logout), url(r'^manage_user/$', manage_user), url(r'^manage_group/$', manage_group), url(r'^manage_reports/$', manage_reports), url(r'^my_reports/$', my_reports), url(r'^my_groups/$', my_groups), url(r'^change_password/$', change_password), ) + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
50.733333
115
0.532852
ea5374754678fb3f9d0949ba9f4625f1b130479a
9,271
py
Python
sysinv/sysinv/sysinv/sysinv/puppet/openstack.py
MarioCarrilloA/config
06a6f142d154970ce658e979822cd84ce447f612
[ "Apache-2.0" ]
null
null
null
sysinv/sysinv/sysinv/sysinv/puppet/openstack.py
MarioCarrilloA/config
06a6f142d154970ce658e979822cd84ce447f612
[ "Apache-2.0" ]
null
null
null
sysinv/sysinv/sysinv/sysinv/puppet/openstack.py
MarioCarrilloA/config
06a6f142d154970ce658e979822cd84ce447f612
[ "Apache-2.0" ]
null
null
null
# # Copyright (c) 2017 Wind River Systems, Inc. # # SPDX-License-Identifier: Apache-2.0 # import abc import keyring from sysinv.common import constants from sysinv.puppet import base from sysinv.helm import common class OpenstackBasePuppet(base.BasePuppet): def _get_service_config(self, service): configs = self.context.setdefault('_service_configs', {}) if service not in configs: configs[service] = self._get_service(service) return configs[service] def _get_service_parameter_configs(self, service): configs = self.context.setdefault('_service_params', {}) if service not in configs: params = self._get_service_parameters(service) if params: configs[service] = params else: return None return configs[service] def _get_admin_user_name(self): return self._operator.keystone.get_admin_user_name() def _get_service_password(self, service): passwords = self.context.setdefault('_service_passwords', {}) if service not in passwords: passwords[service] = self._get_keyring_password( service, self.DEFAULT_SERVICE_PROJECT_NAME) return passwords[service] def _get_service_user_name(self, service): if self._region_config(): service_config = self._get_service_config(service) if (service_config is not None and 'user_name' in service_config.capabilities): return service_config.capabilities.get('user_name') return '%s' % service def _to_create_services(self): if self._region_config(): service_config = self._get_service_config( self._operator.keystone.SERVICE_NAME) if (service_config is not None and 'region_services_create' in service_config.capabilities): return service_config.capabilities.get('region_services_create') return True # Once we no longer create duplicated endpoints for shared services # on secondary region, this function can be removed. def _get_public_url_from_service_config(self, service): url = '' service_config = self._get_service_config(service) if (service_config is not None and 'public_uri' in service_config.capabilities): url = service_config.capabilities.get('public_uri') if url: protocol = self._get_public_protocol() old_protocol = url.split(':')[0] url = url.replace(old_protocol, protocol, 1) return url def _get_admin_url_from_service_config(self, service): url = '' service_config = self._get_service_config(service) if (service_config is not None and 'admin_uri' in service_config.capabilities): url = service_config.capabilities.get('admin_uri') return url def _get_internal_url_from_service_config(self, service): url = '' service_config = self._get_service_config(service) if (service_config is not None and 'internal_uri' in service_config.capabilities): url = service_config.capabilities.get('internal_uri') return url def _get_database_password(self, service): passwords = self.context.setdefault('_database_passwords', {}) if service not in passwords: passwords[service] = self._get_keyring_password(service, 'database') return passwords[service] def _get_database_username(self, service): return 'admin-%s' % service def _get_keyring_password(self, service, user): password = keyring.get_password(service, user) if not password: password = self._generate_random_password() keyring.set_password(service, user, password) return password def _get_public_protocol(self): return 'https' if self._https_enabled() else 'http' def _get_service_default_dns_name(self, service): return "{}.{}.svc.{}".format(service, common.HELM_NS_OPENSTACK, constants.DEFAULT_DNS_SERVICE_DOMAIN) def _get_private_protocol(self): return 'http' def _format_public_endpoint(self, port, address=None, path=None): protocol = self._get_public_protocol() if address is None: address = self._format_url_address(self._get_oam_address()) return self._format_keystone_endpoint(protocol, port, address, path) def _format_private_endpoint(self, port, address=None, path=None): protocol = self._get_private_protocol() if address is None: address = self._format_url_address(self._get_management_address()) return self._format_keystone_endpoint(protocol, port, address, path) def _keystone_auth_address(self): return self._operator.keystone.get_auth_address() def _keystone_auth_host(self): return self._operator.keystone.get_auth_host() def _keystone_auth_port(self): return self._operator.keystone.get_auth_port() def _keystone_auth_uri(self): return self._operator.keystone.get_auth_uri() def _keystone_identity_uri(self): return self._operator.keystone.get_identity_uri() def _keystone_region_name(self): return self._operator.keystone._identity_specific_region_name() def _get_service_region_name(self, service): if self._region_config(): service_config = self._get_service_config(service) if (service_config is not None and service_config.region_name is not None): return service_config.region_name if (self._distributed_cloud_role() == constants.DISTRIBUTED_CLOUD_ROLE_SYSTEMCONTROLLER and service in self.SYSTEM_CONTROLLER_SERVICES): return constants.SYSTEM_CONTROLLER_REGION return self._region_name() def _get_swift_service_tenant_name(self): return self._get_swift_service_project_name() def _get_service_tenant_name(self): return self._get_service_project_name() def _get_configured_service_name(self, service, version=None): if self._region_config(): service_config = self._get_service_config(service) if service_config is not None: name = 'service_name' if version is not None: name = version + '_' + name service_name = service_config.capabilities.get(name) if service_name is not None: return service_name elif version is not None: return service + version else: return service def _get_configured_service_type(self, service, version=None): if self._region_config(): service_config = self._get_service_config(service) if service_config is not None: stype = 'service_type' if version is not None: stype = version + '_' + stype return service_config.capabilities.get(stype) return None def _get_swift_service_user_domain_name(self): return self._operator.keystone.get_swift_service_user_domain() def _get_service_user_domain_name(self): return self._operator.keystone.get_service_user_domain() def _get_service_project_domain_name(self): return self._operator.keystone.get_service_project_domain() # Get SystemController's address of DistributedCloud. def _get_system_controller_addr(self): sys_controller_network = self.dbapi.network_get_by_type( constants.NETWORK_TYPE_SYSTEM_CONTROLLER) sys_controller_network_addr_pool = self.dbapi.address_pool_get( sys_controller_network.pool_uuid) addr = sys_controller_network_addr_pool.floating_address return addr @staticmethod def _format_keystone_endpoint(protocol, port, address, path): url = "%s://%s:%s" % (protocol, str(address), str(port)) if path is None: return url else: return "%s/%s" % (url, path) def _format_database_connection(self, service, address=None, database=None): if not address: address = self._get_management_address() if not database: database = service return "postgresql://%s:%s@%s/%s" % ( self._get_database_username(service), self._get_database_password(service), self._format_url_address(address), database) @abc.abstractmethod def get_public_url(self): """Return the public endpoint URL for the service""" raise NotImplementedError() @abc.abstractmethod def get_internal_url(self): """Return the internal endpoint URL for the service""" raise NotImplementedError() @abc.abstractmethod def get_admin_url(self): """Return the admin endpoint URL for the service""" raise NotImplementedError()
37.383065
80
0.653328
97c2e0e9f5b016e2f11bf7b13558595494c840ad
2,219
py
Python
IPython/html/widgets/widget_int.py
ptone/ipython
b91d6a658d4526746dcbfb62e653d71c5d84eee9
[ "BSD-3-Clause-Clear" ]
null
null
null
IPython/html/widgets/widget_int.py
ptone/ipython
b91d6a658d4526746dcbfb62e653d71c5d84eee9
[ "BSD-3-Clause-Clear" ]
null
null
null
IPython/html/widgets/widget_int.py
ptone/ipython
b91d6a658d4526746dcbfb62e653d71c5d84eee9
[ "BSD-3-Clause-Clear" ]
null
null
null
"""IntWidget class. Represents an unbounded int using a widget. """ #----------------------------------------------------------------------------- # Copyright (c) 2013, the IPython Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from .widget import DOMWidget from IPython.utils.traitlets import Unicode, CInt, Bool, List, Enum #----------------------------------------------------------------------------- # Classes #----------------------------------------------------------------------------- class _IntWidget(DOMWidget): value = CInt(0, help="Int value", sync=True) disabled = Bool(False, help="Enable or disable user changes", sync=True) description = Unicode(help="Description of the value this widget represents", sync=True) class _BoundedIntWidget(_IntWidget): step = CInt(1, help="Minimum step that the value can take (ignored by some views)", sync=True) max = CInt(100, help="Max value", sync=True) min = CInt(0, help="Min value", sync=True) def __init__(self, *pargs, **kwargs): """Constructor""" DOMWidget.__init__(self, *pargs, **kwargs) self.on_trait_change(self._validate, ['value', 'min', 'max']) def _validate(self, name, old, new): """Validate value, max, min.""" if self.min > new or new > self.max: self.value = min(max(new, self.min), self.max) class IntTextWidget(_IntWidget): _view_name = Unicode('IntTextView', sync=True) class BoundedIntTextWidget(_BoundedIntWidget): _view_name = Unicode('IntTextView', sync=True) class IntSliderWidget(_BoundedIntWidget): _view_name = Unicode('IntSliderView', sync=True) orientation = Enum([u'horizontal', u'vertical'], u'horizontal', help="Vertical or horizontal.", sync=True) class IntProgressWidget(_BoundedIntWidget): _view_name = Unicode('ProgressView', sync=True)
36.983333
98
0.547093
58b9876cad961b1de557b34b2cc972c55d636091
14,053
py
Python
SpoTwillio/lib/python3.6/site-packages/twilio/rest/api/v2010/account/transcription.py
Natfan/funlittlethings
80d5378b45b5c0ead725942ee50403bd057514a6
[ "MIT" ]
3
2019-11-12T07:55:51.000Z
2020-04-01T11:19:18.000Z
SpoTwillio/lib/python3.6/site-packages/twilio/rest/api/v2010/account/transcription.py
Natfan/funlittlethings
80d5378b45b5c0ead725942ee50403bd057514a6
[ "MIT" ]
7
2020-06-06T01:06:19.000Z
2022-02-10T11:15:14.000Z
SpoTwillio/lib/python3.6/site-packages/twilio/rest/api/v2010/account/transcription.py
Natfan/funlittlethings
80d5378b45b5c0ead725942ee50403bd057514a6
[ "MIT" ]
2
2019-10-20T14:54:47.000Z
2020-06-11T07:29:37.000Z
# coding=utf-8 """ This code was generated by \ / _ _ _| _ _ | (_)\/(_)(_|\/| |(/_ v1.0.0 / / """ from twilio.base import deserialize from twilio.base import values from twilio.base.instance_context import InstanceContext from twilio.base.instance_resource import InstanceResource from twilio.base.list_resource import ListResource from twilio.base.page import Page class TranscriptionList(ListResource): def __init__(self, version, account_sid): """ Initialize the TranscriptionList :param Version version: Version that contains the resource :param account_sid: The unique sid that identifies this account :returns: twilio.rest.api.v2010.account.transcription.TranscriptionList :rtype: twilio.rest.api.v2010.account.transcription.TranscriptionList """ super(TranscriptionList, self).__init__(version) # Path Solution self._solution = { 'account_sid': account_sid, } self._uri = '/Accounts/{account_sid}/Transcriptions.json'.format(**self._solution) def stream(self, limit=None, page_size=None): """ Streams TranscriptionInstance records from the API as a generator stream. This operation lazily loads records as efficiently as possible until the limit is reached. The results are returned as a generator, so this operation is memory efficient. :param int limit: Upper limit for the number of records to return. stream() guarantees to never return more than limit. Default is no limit :param int page_size: Number of records to fetch per request, when not set will use the default value of 50 records. If no page_size is defined but a limit is defined, stream() will attempt to read the limit with the most efficient page size, i.e. min(limit, 1000) :returns: Generator that will yield up to limit results :rtype: list[twilio.rest.api.v2010.account.transcription.TranscriptionInstance] """ limits = self._version.read_limits(limit, page_size) page = self.page( page_size=limits['page_size'], ) return self._version.stream(page, limits['limit'], limits['page_limit']) def list(self, limit=None, page_size=None): """ Lists TranscriptionInstance records from the API as a list. Unlike stream(), this operation is eager and will load `limit` records into memory before returning. :param int limit: Upper limit for the number of records to return. list() guarantees never to return more than limit. Default is no limit :param int page_size: Number of records to fetch per request, when not set will use the default value of 50 records. If no page_size is defined but a limit is defined, list() will attempt to read the limit with the most efficient page size, i.e. min(limit, 1000) :returns: Generator that will yield up to limit results :rtype: list[twilio.rest.api.v2010.account.transcription.TranscriptionInstance] """ return list(self.stream( limit=limit, page_size=page_size, )) def page(self, page_token=values.unset, page_number=values.unset, page_size=values.unset): """ Retrieve a single page of TranscriptionInstance records from the API. Request is executed immediately :param str page_token: PageToken provided by the API :param int page_number: Page Number, this value is simply for client state :param int page_size: Number of records to return, defaults to 50 :returns: Page of TranscriptionInstance :rtype: twilio.rest.api.v2010.account.transcription.TranscriptionPage """ params = values.of({ 'PageToken': page_token, 'Page': page_number, 'PageSize': page_size, }) response = self._version.page( 'GET', self._uri, params=params, ) return TranscriptionPage(self._version, response, self._solution) def get(self, sid): """ Constructs a TranscriptionContext :param sid: Fetch by unique transcription Sid :returns: twilio.rest.api.v2010.account.transcription.TranscriptionContext :rtype: twilio.rest.api.v2010.account.transcription.TranscriptionContext """ return TranscriptionContext( self._version, account_sid=self._solution['account_sid'], sid=sid, ) def __call__(self, sid): """ Constructs a TranscriptionContext :param sid: Fetch by unique transcription Sid :returns: twilio.rest.api.v2010.account.transcription.TranscriptionContext :rtype: twilio.rest.api.v2010.account.transcription.TranscriptionContext """ return TranscriptionContext( self._version, account_sid=self._solution['account_sid'], sid=sid, ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ return '<Twilio.Api.V2010.TranscriptionList>' class TranscriptionPage(Page): def __init__(self, version, response, solution): """ Initialize the TranscriptionPage :param Version version: Version that contains the resource :param Response response: Response from the API :param account_sid: The unique sid that identifies this account :returns: twilio.rest.api.v2010.account.transcription.TranscriptionPage :rtype: twilio.rest.api.v2010.account.transcription.TranscriptionPage """ super(TranscriptionPage, self).__init__(version, response) # Path Solution self._solution = solution def get_instance(self, payload): """ Build an instance of TranscriptionInstance :param dict payload: Payload response from the API :returns: twilio.rest.api.v2010.account.transcription.TranscriptionInstance :rtype: twilio.rest.api.v2010.account.transcription.TranscriptionInstance """ return TranscriptionInstance( self._version, payload, account_sid=self._solution['account_sid'], ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ return '<Twilio.Api.V2010.TranscriptionPage>' class TranscriptionContext(InstanceContext): def __init__(self, version, account_sid, sid): """ Initialize the TranscriptionContext :param Version version: Version that contains the resource :param account_sid: The account_sid :param sid: Fetch by unique transcription Sid :returns: twilio.rest.api.v2010.account.transcription.TranscriptionContext :rtype: twilio.rest.api.v2010.account.transcription.TranscriptionContext """ super(TranscriptionContext, self).__init__(version) # Path Solution self._solution = { 'account_sid': account_sid, 'sid': sid, } self._uri = '/Accounts/{account_sid}/Transcriptions/{sid}.json'.format(**self._solution) def fetch(self): """ Fetch a TranscriptionInstance :returns: Fetched TranscriptionInstance :rtype: twilio.rest.api.v2010.account.transcription.TranscriptionInstance """ params = values.of({}) payload = self._version.fetch( 'GET', self._uri, params=params, ) return TranscriptionInstance( self._version, payload, account_sid=self._solution['account_sid'], sid=self._solution['sid'], ) def delete(self): """ Deletes the TranscriptionInstance :returns: True if delete succeeds, False otherwise :rtype: bool """ return self._version.delete('delete', self._uri) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ context = ' '.join('{}={}'.format(k, v) for k, v in self._solution.items()) return '<Twilio.Api.V2010.TranscriptionContext {}>'.format(context) class TranscriptionInstance(InstanceResource): class Status(object): IN_PROGRESS = "in-progress" COMPLETED = "completed" FAILED = "failed" def __init__(self, version, payload, account_sid, sid=None): """ Initialize the TranscriptionInstance :returns: twilio.rest.api.v2010.account.transcription.TranscriptionInstance :rtype: twilio.rest.api.v2010.account.transcription.TranscriptionInstance """ super(TranscriptionInstance, self).__init__(version) # Marshaled Properties self._properties = { 'account_sid': payload['account_sid'], 'api_version': payload['api_version'], 'date_created': deserialize.rfc2822_datetime(payload['date_created']), 'date_updated': deserialize.rfc2822_datetime(payload['date_updated']), 'duration': payload['duration'], 'price': deserialize.decimal(payload['price']), 'price_unit': payload['price_unit'], 'recording_sid': payload['recording_sid'], 'sid': payload['sid'], 'status': payload['status'], 'transcription_text': payload['transcription_text'], 'type': payload['type'], 'uri': payload['uri'], } # Context self._context = None self._solution = { 'account_sid': account_sid, 'sid': sid or self._properties['sid'], } @property def _proxy(self): """ Generate an instance context for the instance, the context is capable of performing various actions. All instance actions are proxied to the context :returns: TranscriptionContext for this TranscriptionInstance :rtype: twilio.rest.api.v2010.account.transcription.TranscriptionContext """ if self._context is None: self._context = TranscriptionContext( self._version, account_sid=self._solution['account_sid'], sid=self._solution['sid'], ) return self._context @property def account_sid(self): """ :returns: The unique sid that identifies this account :rtype: unicode """ return self._properties['account_sid'] @property def api_version(self): """ :returns: The api_version :rtype: unicode """ return self._properties['api_version'] @property def date_created(self): """ :returns: The date this resource was created :rtype: datetime """ return self._properties['date_created'] @property def date_updated(self): """ :returns: The date this resource was last updated :rtype: datetime """ return self._properties['date_updated'] @property def duration(self): """ :returns: The duration of the transcribed audio, in seconds. :rtype: unicode """ return self._properties['duration'] @property def price(self): """ :returns: The charge for this transcription :rtype: unicode """ return self._properties['price'] @property def price_unit(self): """ :returns: The currency in which Price is measured :rtype: unicode """ return self._properties['price_unit'] @property def recording_sid(self): """ :returns: The string that uniquely identifies the recording :rtype: unicode """ return self._properties['recording_sid'] @property def sid(self): """ :returns: A string that uniquely identifies this transcription :rtype: unicode """ return self._properties['sid'] @property def status(self): """ :returns: The status of the transcription :rtype: TranscriptionInstance.Status """ return self._properties['status'] @property def transcription_text(self): """ :returns: The text content of the transcription. :rtype: unicode """ return self._properties['transcription_text'] @property def type(self): """ :returns: The type :rtype: unicode """ return self._properties['type'] @property def uri(self): """ :returns: The URI for this resource :rtype: unicode """ return self._properties['uri'] def fetch(self): """ Fetch a TranscriptionInstance :returns: Fetched TranscriptionInstance :rtype: twilio.rest.api.v2010.account.transcription.TranscriptionInstance """ return self._proxy.fetch() def delete(self): """ Deletes the TranscriptionInstance :returns: True if delete succeeds, False otherwise :rtype: bool """ return self._proxy.delete() def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ context = ' '.join('{}={}'.format(k, v) for k, v in self._solution.items()) return '<Twilio.Api.V2010.TranscriptionInstance {}>'.format(context)
31.579775
96
0.611186
63d3491390bafef125136c3a96eb9b6a26127b0f
1,317
py
Python
flow/utils/runningstat.py
mepear/flow
4fc6ceaf64ca522b5a5c4104a3098b20cf207dd4
[ "MIT" ]
1
2021-03-05T07:39:51.000Z
2021-03-05T07:39:51.000Z
flow/utils/runningstat.py
mepear/flow
4fc6ceaf64ca522b5a5c4104a3098b20cf207dd4
[ "MIT" ]
1
2021-09-13T02:16:02.000Z
2021-09-13T02:16:02.000Z
flow/utils/runningstat.py
mepear/flow
4fc6ceaf64ca522b5a5c4104a3098b20cf207dd4
[ "MIT" ]
1
2021-08-21T13:58:30.000Z
2021-08-21T13:58:30.000Z
import numpy as np class RunningStat(object): ''' Keeps track of first and second moments (mean and variance) of a streaming time series. Taken from https://github.com/joschu/modular_rl Math in http://www.johndcook.com/blog/standard_deviation/ ''' def __init__(self, shape): self._n = 0 self._M = np.zeros(shape) # self._S = np.zeros(shape) self._STD = np.zeros(shape) def push(self, x): x = np.asarray(x) assert x.shape == self._M.shape self._n += 1 if self._n == 1: self._M[...] = x else: oldM = self._M.copy() self._M[...] = oldM + (x - oldM) / self._n # self._S[...] = self._S + (x - oldM) * (x - self._M) old_std = self._STD.copy() self._STD[...] = np.sqrt(np.square(self._STD) + ((x - oldM) * (x - self._M) - np.square(old_std)) / (self._n - 1)) @property def n(self): return self._n @property def mean(self): return self._M # @property # def var(self): # return self._S / (self._n - 1) if self._n > 1 else np.square(self._M) @property def std(self): # return np.sqrt(self.var) return self._STD @property def shape(self): return self._M.shape
29.931818
126
0.53303
d0b48b9b14b2fb44169bbe77948eefda93dfbc5b
5,062
py
Python
src/spaceone/inventory/libs/schema/metadata/dynamic_layout.py
jihyungSong/plugin-aws-personal-health-dashboard
5bef4e79d1ee7c27b9231bbe79389218951929c9
[ "Apache-2.0" ]
1
2020-11-16T10:52:02.000Z
2020-11-16T10:52:02.000Z
src/spaceone/inventory/libs/schema/metadata/dynamic_layout.py
jihyungSong/plugin-aws-personal-health-dashboard
5bef4e79d1ee7c27b9231bbe79389218951929c9
[ "Apache-2.0" ]
2
2022-03-24T05:09:23.000Z
2022-03-28T06:33:01.000Z
src/spaceone/inventory/libs/schema/metadata/dynamic_layout.py
jihyungSong/plugin-aws-personal-health-dashboard
5bef4e79d1ee7c27b9231bbe79389218951929c9
[ "Apache-2.0" ]
2
2021-02-18T07:56:17.000Z
2021-03-23T01:53:40.000Z
from schematics import Model from schematics.types import StringType, PolyModelType, ListType from spaceone.inventory.libs.schema.metadata.dynamic_field import BaseDynamicField, TextDyField class LayoutOptions(Model): class Options: serialize_when_none = False root_path = StringType(serialize_when_none=False) class BaseLayoutField(Model): @staticmethod def _set_fields(fields=[], **kwargs): _options = {'fields': fields} for k, v in kwargs.items(): if v is not None: _options[k] = v return _options name = StringType(default='') type = StringType(default="item", choices=("item", "table", "query-search-table", "simple-table", "list", "raw", "html")) options = PolyModelType(LayoutOptions, serialize_when_none=False) class ItemLayoutOption(LayoutOptions): fields = ListType(PolyModelType(BaseDynamicField)) class SimpleTableLayoutOption(LayoutOptions): fields = ListType(PolyModelType(BaseDynamicField)) class TableLayoutOption(LayoutOptions): fields = ListType(PolyModelType(BaseDynamicField)) class QuerySearchTableLayoutOption(LayoutOptions): fields = ListType(PolyModelType(BaseDynamicField)) class RawLayoutOption(LayoutOptions): class Options: serialize_when_none = False class HTMLLayoutOption(LayoutOptions): class Options: serialize_when_none = False class ListLayoutOption(LayoutOptions): layouts = ListType(PolyModelType(BaseLayoutField)) class ItemDynamicLayout(BaseLayoutField): type = StringType(default='item') options = PolyModelType(ItemLayoutOption) @classmethod def set(cls, name='', root_path=''): return cls({'name': name, 'options': ItemLayoutOption({'root_path': root_path})}) @classmethod def set_fields(cls, name='', root_path=None, fields=[]): _options = cls._set_fields(fields, root_path=root_path) return cls({'name': name, 'options': ItemLayoutOption(_options)}) class TableDynamicLayout(BaseLayoutField): type = StringType(default='table') options = PolyModelType(TableLayoutOption) @classmethod def set(cls, name='', root_path=''): return cls(name=name, root_path=root_path, options=TableLayoutOption({'root_path': root_path})) @classmethod def set_fields(cls, name='', root_path=None, fields=[]): _options = cls._set_fields(fields, root_path=root_path) return cls({'name': name, 'options': TableLayoutOption(_options)}) class QuerySearchTableDynamicLayout(BaseLayoutField): type = StringType(default='query-search-table') options = PolyModelType(QuerySearchTableLayoutOption) @classmethod def set(cls, name=''): return cls(name=name, options=QuerySearchTableLayoutOption()) @classmethod def set_fields(cls, name='', fields=[]): _options = cls._set_fields(fields) return cls({'name': name, 'options': QuerySearchTableLayoutOption(_options)}) class SimpleTableDynamicLayout(BaseLayoutField): type = StringType(default='simple-table') options = PolyModelType(SimpleTableLayoutOption) @classmethod def set(cls, name='', root_path=''): return cls({'name': name, 'options': SimpleTableLayoutOption({'root_path': root_path})}) @classmethod def set_fields(cls, name='', root_path=None, fields=[]): _options = cls._set_fields(fields, root_path=root_path) return cls({'name': name, 'options': SimpleTableLayoutOption(_options)}) @classmethod def set_tags(cls, name='Tags', root_path='data.tags', fields=None): if fields is None: fields = [ TextDyField.data_source('Key', 'key'), TextDyField.data_source('Value', 'value'), ] return cls.set_fields(name, root_path, fields) class ListDynamicLayout(BaseLayoutField): type = StringType(default='list') options = PolyModelType(ListLayoutOption) @classmethod def set(cls, name='', layouts=[]): return cls(name=name, options=ListLayoutOption({'layouts': layouts})) @classmethod def set_layouts(cls, name='', layouts=[]): return cls({'name': name, 'options': ListLayoutOption({'layouts': layouts})}) class RawDynamicLayout(BaseLayoutField): type = StringType(default='raw') options = PolyModelType(RawLayoutOption) @classmethod def set(cls, name='', root_path=None): if root_path is None: _options = RawLayoutOption() else: _options = RawLayoutOption({'root_path': root_path}) return cls({'name': name, 'options': _options}) class HTMLDynamicLayout(BaseLayoutField): type = StringType(default='html') options = PolyModelType(HTMLLayoutOption) @classmethod def set(cls, name='', root_path=None): if root_path is None: _options = HTMLLayoutOption() else: _options = HTMLLayoutOption({'root_path': root_path}) return cls({'name': name, 'options': _options})
31.440994
109
0.682537
718cfae0263f8452733b81f0338d1bc44555bfd9
5,642
py
Python
core/ycheck/bugs.py
aserdean/hotsos
a0f17a7ee2f08a4da0a269d478dec7ebb8f12493
[ "Apache-2.0" ]
null
null
null
core/ycheck/bugs.py
aserdean/hotsos
a0f17a7ee2f08a4da0a269d478dec7ebb8f12493
[ "Apache-2.0" ]
null
null
null
core/ycheck/bugs.py
aserdean/hotsos
a0f17a7ee2f08a4da0a269d478dec7ebb8f12493
[ "Apache-2.0" ]
null
null
null
from core import constants from core.log import log from core.checks import DPKGVersionCompare from core.known_bugs_utils import add_known_bug from core.ycheck import ( YDefsLoader, YDefsSection, AutoChecksBase, ) from core.searchtools import FileSearcher, SearchDef class YBugChecker(AutoChecksBase): """ Class used to identify bugs by matching content from files or commands. Searches are defined in defs/bugs.yaml per plugin and run automatically. """ def __init__(self, *args, **kwargs): super().__init__(*args, searchobj=FileSearcher(), **kwargs) self._bug_defs = None def _load_bug_definitions(self): """ Load bug search definitions from yaml """ plugin_bugs = YDefsLoader('bugs').load_plugin_defs() if not plugin_bugs: return ybugchecks = YDefsSection(constants.PLUGIN_NAME, plugin_bugs) log.debug("loaded plugin '%s' bugs - sections=%s, events=%s", ybugchecks.name, len(ybugchecks.branch_sections), len(ybugchecks.leaf_sections)) if ybugchecks.requires and not ybugchecks.requires.passes: log.debug("plugin not runnable - skipping bug checks") return bug_defs = [] for bug in ybugchecks.leaf_sections: bdef = {'bug_id': str(bug.name), 'context': bug.context, 'settings': bug.settings, 'message': bug.raises.message, 'message_format_result_groups': bug.raises.format_groups} if bug.expr: pattern = bug.expr.value datasource = bug.input.path searchdef = SearchDef(pattern, tag=bdef['bug_id'], hint=bug.hint.value) bdef['searchdef'] = searchdef bdef['datasource'] = datasource log.debug("bug=%s path=%s", bdef['bug_id'], bdef.get('datasource')) bug_defs.append(bdef) self._bug_defs = bug_defs @property def bug_definitions(self): """ @return: dict of SearchDef objects and datasource for all entries in bugs.yaml under _yaml_defs_group. """ if self._bug_defs is not None: return self._bug_defs self._load_bug_definitions() return self._bug_defs def load(self): if not self.bug_definitions: return for bugsearch in self.bug_definitions: if 'searchdef' in bugsearch: self.searchobj.add_search_term(bugsearch['searchdef'], bugsearch['datasource']) def package_has_bugfix(self, pkg_version, versions_affected): for item in sorted(versions_affected, key=lambda i: i['min-fixed'], reverse=True): min_fixed = item['min-fixed'] min_broken = item['min-broken'] lt_fixed = pkg_version < DPKGVersionCompare(min_fixed) if min_broken: lt_broken = pkg_version < DPKGVersionCompare(min_broken) else: lt_broken = None if lt_broken: continue if lt_fixed: return False else: return True return True def get_format_list(self, result_group_indexes, search_result): values = [] for idx in result_group_indexes: values.append(search_result.get(idx)) return values def run(self, results): if not self.bug_definitions: return for bugsearch in self.bug_definitions: format_dict = {} format_list = [] bug_id = bugsearch['bug_id'] settings = bugsearch['settings'] if settings and settings.versions_affected and settings.package: pkg = settings.package pkg_ver = bugsearch['context'].apt_all.get(pkg) if pkg_ver: if self.package_has_bugfix(pkg_ver, settings.versions_affected): # No need to search since the bug is fixed. log.debug('bug %s already fixed in package %s version ' '%s - skipping check', bug_id, pkg, pkg_ver) continue format_dict = {'package_name': pkg, 'version_current': pkg_ver} else: log.debug("package %s not installed - skipping check", pkg) continue message = bugsearch['message'] if 'searchdef' in bugsearch: bug_matches = results.find_by_tag(bug_id) if not bug_matches: continue indexes = bugsearch['message_format_result_groups'] if indexes: # we only use the first result first_match = bug_matches[0] format_list = self.get_format_list(indexes, first_match) log.debug("bug %s identified", bug_id) if format_list: add_known_bug(bug_id, message.format(*format_list)) elif format_dict: log.debug(message.format(**format_dict)) add_known_bug(bug_id, message.format(**format_dict)) else: add_known_bug(bug_id, message)
36.636364
79
0.546083
c39cb6a07546dd686e33bc6d24a298c2cde6bec0
2,620
py
Python
openpeerpower/components/epsonworkforce/sensor.py
pcaston/core
e74d946cef7a9d4e232ae9e0ba150d18018cfe33
[ "Apache-2.0" ]
1
2021-07-08T20:09:55.000Z
2021-07-08T20:09:55.000Z
openpeerpower/components/epsonworkforce/sensor.py
pcaston/core
e74d946cef7a9d4e232ae9e0ba150d18018cfe33
[ "Apache-2.0" ]
47
2021-02-21T23:43:07.000Z
2022-03-31T06:07:10.000Z
openpeerpower/components/epsonworkforce/sensor.py
OpenPeerPower/core
f673dfac9f2d0c48fa30af37b0a99df9dd6640ee
[ "Apache-2.0" ]
null
null
null
"""Support for Epson Workforce Printer.""" from datetime import timedelta from epsonprinter_pkg.epsonprinterapi import EpsonPrinterAPI import voluptuous as vol from openpeerpower.components.sensor import PLATFORM_SCHEMA, SensorEntity from openpeerpower.const import CONF_HOST, CONF_MONITORED_CONDITIONS, PERCENTAGE from openpeerpower.exceptions import PlatformNotReady import openpeerpower.helpers.config_validation as cv MONITORED_CONDITIONS = { "black": ["Ink level Black", PERCENTAGE, "mdi:water"], "photoblack": ["Ink level Photoblack", PERCENTAGE, "mdi:water"], "magenta": ["Ink level Magenta", PERCENTAGE, "mdi:water"], "cyan": ["Ink level Cyan", PERCENTAGE, "mdi:water"], "yellow": ["Ink level Yellow", PERCENTAGE, "mdi:water"], "clean": ["Cleaning level", PERCENTAGE, "mdi:water"], } PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_HOST): cv.string, vol.Required(CONF_MONITORED_CONDITIONS): vol.All( cv.ensure_list, [vol.In(MONITORED_CONDITIONS)] ), } ) SCAN_INTERVAL = timedelta(minutes=60) def setup_platform(opp, config, add_devices, discovery_info=None): """Set up the cartridge sensor.""" host = config.get(CONF_HOST) api = EpsonPrinterAPI(host) if not api.available: raise PlatformNotReady() sensors = [ EpsonPrinterCartridge(api, condition) for condition in config[CONF_MONITORED_CONDITIONS] ] add_devices(sensors, True) class EpsonPrinterCartridge(SensorEntity): """Representation of a cartridge sensor.""" def __init__(self, api, cartridgeidx): """Initialize a cartridge sensor.""" self._api = api self._id = cartridgeidx self._name = MONITORED_CONDITIONS[self._id][0] self._unit = MONITORED_CONDITIONS[self._id][1] self._icon = MONITORED_CONDITIONS[self._id][2] @property def name(self): """Return the name of the sensor.""" return self._name @property def icon(self): """Icon to use in the frontend, if any.""" return self._icon @property def unit_of_measurement(self): """Return the unit the value is expressed in.""" return self._unit @property def state(self): """Return the state of the device.""" return self._api.getSensorValue(self._id) @property def available(self): """Could the device be accessed during the last update call.""" return self._api.available def update(self): """Get the latest data from the Epson printer.""" self._api.update()
30.114943
80
0.674046
b01f4ded78db9a6b7ea6f76cc6ce4fd8e3006101
2,626
py
Python
uctt_cli/__init__.py
james-nesbitt/uc
6bbbdae03c523081e3c70e9514aa45ab539e49fe
[ "MIT" ]
1
2021-02-07T18:47:50.000Z
2021-02-07T18:47:50.000Z
uctt_cli/__init__.py
james-nesbitt/uctt
6bbbdae03c523081e3c70e9514aa45ab539e49fe
[ "MIT" ]
null
null
null
uctt_cli/__init__.py
james-nesbitt/uctt
6bbbdae03c523081e3c70e9514aa45ab539e49fe
[ "MIT" ]
null
null
null
""" UCTT Cli package """ import logging from uctt.plugin import Type, Factory from uctt.environment import Environment from .info import InfoCliPlugin from .config import ConfigCliPlugin from .environment import EnvironmentCliPlugin from .fixtures import FixturesCliPlugin from .output import OutputCliPlugin from .provisioner import ProvisionerCliPlugin logger = logging.getLogger('uctt.cli') UCTT_PLUGIN_ID_CLI_INFO = 'info' """ cli plugin_id for the info plugin """ @Factory(type=Type.CLI, plugin_id=UCTT_PLUGIN_ID_CLI_INFO) def uctt_plugin_factory_cli_info( environment: Environment, instance_id: str = ''): """ create an info cli plugin """ return InfoCliPlugin(environment, instance_id) UCTT_PLUGIN_ID_CLI_CONFIG = 'config' """ cli plugin_id for the config plugin """ @Factory(type=Type.CLI, plugin_id=UCTT_PLUGIN_ID_CLI_CONFIG) def uctt_plugin_factory_cli_config( environment: Environment, instance_id: str = ''): """ create a config cli plugin """ return ConfigCliPlugin(environment, instance_id) UCTT_PLUGIN_ID_CLI_ENVIRONMENT = 'environment' """ cli plugin_id for the environment plugin """ @Factory(type=Type.CLI, plugin_id=UCTT_PLUGIN_ID_CLI_ENVIRONMENT) def uctt_plugin_factory_cli_environment( environment: Environment, instance_id: str = ''): """ create an environment cli plugin """ return EnvironmentCliPlugin(environment, instance_id) UCTT_PLUGIN_ID_CLI_FIXTURES = 'fixtures' """ cli plugin_id for the fixtures plugin """ @Factory(type=Type.CLI, plugin_id=UCTT_PLUGIN_ID_CLI_FIXTURES) def uctt_plugin_factory_cli_fixtures( environment: Environment, instance_id: str = ''): """ create a fixtures cli plugin """ return FixturesCliPlugin(environment, instance_id) UCTT_PLUGIN_ID_CLI_OUTPUT = 'output' """ cli plugin_id for the output plugin """ @Factory(type=Type.CLI, plugin_id=UCTT_PLUGIN_ID_CLI_OUTPUT) def uctt_plugin_factory_output_config( environment: Environment, instance_id: str = ''): """ create a output cli plugin """ return OutputCliPlugin(environment, instance_id) UCTT_PLUGIN_ID_CLI_PROVISIONER = 'provisioner' """ cli plugin_id for the provisioner plugin """ @Factory(type=Type.CLI, plugin_id=UCTT_PLUGIN_ID_CLI_PROVISIONER) def uctt_plugin_factory_provisioner_config( environment: Environment, instance_id: str = ''): """ create a provisioner cli plugin """ return ProvisionerCliPlugin(environment, instance_id) """ SetupTools EntryPoint BootStrapping """ def bootstrap(environment: Environment): """ UCTT Bootstrapper - don't actually do anything """ pass
28.236559
65
0.760853
4d5496e966038e533f6f785c3c07d826424834fa
19,796
py
Python
sed_config.py
python-enthusiasm/c3po
d3cee842170659526c7a8463e17105d63af479a6
[ "MIT" ]
null
null
null
sed_config.py
python-enthusiasm/c3po
d3cee842170659526c7a8463e17105d63af479a6
[ "MIT" ]
null
null
null
sed_config.py
python-enthusiasm/c3po
d3cee842170659526c7a8463e17105d63af479a6
[ "MIT" ]
null
null
null
# Functions for SED fitting import os import pickle from time import time from string import ascii_uppercase as UPPERS import numpy as np from scipy import integrate from scipy import constants from scipy.interpolate import interp1d as interp from scipy.interpolate import UnivariateSpline as uni_spline import matplotlib.pyplot as plt from astropy.io import ascii ################################################################################ #### BEGIN OPTIONS ################################################################################ # These should be the only directories you have to change. HOME_DIR = '/Users/lacc/Documents/Justin/c3po/' FPATH = HOME_DIR + 'Temperatures/' ARR_DIR = HOME_DIR + 'Arrays/' GRAINSIZES = np.loadtxt(ARR_DIR+'GrainSizes.dat') WAVELENGTHS = np.loadtxt(ARR_DIR+'Wavelengths.dat') STAR_TEMPS = np.linspace(2000, 15000, 14) DISK_RADII = np.logspace(-1, 3, 121) WAVES = np.logspace(-1, 3, 1000) grainComps = ['AstroSil', 'DirtyIceAstroSil'] GRAIN_TEMPS_TOTAL = dict() EMISSIVITIES_TOTAL = dict() for grain in grainComps: GRAIN_TEMPS_TOTAL[grain] = np.load(ARR_DIR+grain+'GrainTemps.npy') EMISSIVITIES_TOTAL[grain] = np.load(ARR_DIR+grain+'Emissivities.npy') ################################################################################ #### END OPTIONS ################################################################################ # Find nearest value in an array def find_nearest(array, value): array = np.asarray(array) idx = (np.abs(array - value)).argmin() return array[idx] def find_nearest_ind(array, value): array = np.asarray(array) idx = (np.abs(array - value)).argmin() return idx # Convolution function for calibrating the IRS data def convolve(filterwaves, filterresponse, datawaves, dataflux): top = integrate.simps( np.interp(filterwaves, datawaves, dataflux)*filterresponse, filterwaves) bottom = integrate.simps(filterresponse, filterwaves) return top/bottom def stitch_trim_lr(sData, spitzFlags, spitzNames): wa = 'wavelength' fx = 'flux' er = 'error' sl2f, sl1f, ll2f, ll1f = spitzFlags sl2, sl1, ll2, ll1 = spitzNames # Before stitching, we trim spitzer data to <35 microns if ll1f and 0: index = np.where(sData[ll1][wa]<35.0) sData[ll1][fx] = sData[ll1][fx][index] sData[ll1][er] = sData[ll1][er][index] sData[ll1][wa] = sData[ll1][wa][index] k=3 lastvalue = -2 firstvalue = 1 if sl1f and sl2f: sl1half = sData[sl1][wa].size/2 sl2half = sData[sl2][wa].size/2 SL1_fit = uni_spline(sData[sl1][wa][:sl1half], sData[sl1][fx][:sl1half],k=k) SL2_fit = uni_spline(sData[sl2][wa][sl2half:], sData[sl2][fx][sl2half:],k=k) SL2_SL1 = np.linspace(sData[sl2][wa][lastvalue], sData[sl1][wa][firstvalue], 3) SL2_N = np.nanmean(SL2_fit(SL2_SL1)) SL1_N = np.nanmean(SL1_fit(SL2_SL1)) SL1_norm = SL2_N / SL1_N sData[sl1][fx] *= SL1_norm if ll2f and sl1f: ll2half = sData[ll2][wa].size/2 sl1half = sData[sl1][wa].size/2 LL2_fit = uni_spline(sData[ll2][wa][:ll2half], sData[ll2][fx][:ll2half],k=k) SL1_fit = uni_spline(sData[sl1][wa][sl1half:], sData[sl1][fx][sl1half:],k=k) SL1_LL2 = np.linspace(sData[sl1][wa][lastvalue], sData[ll2][wa][firstvalue], 3) LL2_N = np.nanmean(LL2_fit(SL1_LL2)) SL1_N = np.nanmean(SL1_fit(SL1_LL2)) LL2_norm = SL1_N / LL2_N sData[ll2][fx] *= LL2_norm if ll1f and ll2f: ll1half = sData[ll1][wa].size/2 ll2half = sData[ll2][wa].size/2 LL2_fit = uni_spline(sData[ll2][wa][ll2half:], sData[ll2][fx][ll2half:],k=k) LL1_fit = uni_spline(sData[ll1][wa][:ll1half], sData[ll1][fx][:ll1half],k=k) LL2_LL1 = np.linspace(sData[ll2][wa][lastvalue], sData[ll1][wa][firstvalue], 3) LL2_N = np.nanmean(LL2_fit(LL2_LL1)) LL1_N = np.nanmean(LL1_fit(LL2_LL1)) LL1_norm = LL2_N / LL1_N sData[ll1][fx] *= LL1_norm return sData def stitch_lr(sData, spitzFlags, spitzNames): wa = 'wavelength' fx = 'flux' sl2f, sl1f, ll2f, ll1f = spitzFlags sl2, sl1, ll2, ll1 = spitzNames lastvalue = -5 firstvalue = 4 if sl1f and sl2f: sl1half = sData[sl1][wa].size/2 sl2half = sData[sl2][wa].size/2 SL1_fit = uni_spline(sData[sl1][wa][:sl1half], sData[sl1][fx][:sl1half]) SL2_fit = uni_spline(sData[sl2][wa][sl2half:], sData[sl2][fx][sl2half:]) # SL1_fit = uni_spline(sData[sl1][wa], # sData[sl1][fx]) # SL2_fit = uni_spline(sData[sl2][wa], # sData[sl2][fx]) mid = np.nanmean([sData[sl1][wa][firstvalue], sData[sl2][wa][lastvalue]]) SL2_N = SL2_fit(mid) SL1_N = SL1_fit(mid) SL1_norm = SL2_N/SL1_N sData[sl1][fx] *= SL1_norm if ll2f and sl1f: ll2half = sData[ll2][wa].size/2 sl1half = sData[sl1][wa].size/2 LL2_fit = uni_spline(sData[ll2][wa][:ll2half], sData[ll2][fx][:ll2half]) SL1_fit = uni_spline(sData[sl1][wa][sl1half:], sData[sl1][fx][sl1half:]) # LL2_fit = uni_spline(sData[ll2][wa], # sData[ll2][fx]) # SL1_fit = uni_spline(sData[sl1][wa], # sData[sl1][fx]) mid = np.nanmean([sData[sl1][wa][firstvalue], sData[sl2][wa][lastvalue]]) LL2_N = LL2_fit(mid) SL1_N = SL1_fit(mid) LL2_norm = SL1_N/LL2_N sData[ll2][fx] *= LL2_norm if ll1f and ll2f: ll1half = sData[ll1][wa].size/2 ll2half = sData[ll2][wa].size/2 LL2_fit = uni_spline(sData[ll2][wa][ll2half:], sData[ll2][fx][ll2half:]) LL1_fit = uni_spline(sData[ll1][wa][:ll1half], sData[ll1][fx][:ll1half]) # LL2_fit = uni_spline(sData[ll2][wa], # sData[ll2][fx]) # LL1_fit = uni_spline(sData[ll1][wa], # sData[ll1][fx]) mid = np.nanmean([sData[ll2][wa][firstvalue], sData[ll1][wa][lastvalue]]) LL2_N = LL2_fit(mid) LL1_N = LL1_fit(mid) LL1_norm = LL2_N/LL1_N sData[ll1][fx] *= LL1_norm return sData def stitch_trim_rl(sData, spitzFlags, spitzNames): wa = 'wavelength' fx = 'flux' er = 'error' sl2f, sl1f, ll2f, ll1f = spitzFlags sl2, sl1, ll2, ll1 = spitzNames # Before stitching, we trim spitzer data to <35 microns if ll1f: index = np.where(sData[ll1][wa]<35.0) sData[ll1][fx] = sData[ll1][fx][index] sData[ll1][er] = sData[ll1][er][index] sData[ll1][wa] = sData[ll1][wa][index] lastvalue = -4 firstvalue = 3 if ll2f and ll1f: ll1half = sData[ll1][wa].size/2 ll2half = sData[ll2][wa].size/2 LL2_fit = uni_spline(sData[ll2][wa][ll2half:], sData[ll2][fx][ll2half:]) LL1_fit = uni_spline(sData[ll1][wa][:ll1half], sData[ll1][fx][:ll1half]) LL2_LL1 = np.linspace(sData[ll2][wa][lastvalue], sData[ll1][wa][firstvalue], 100) LL2_N = np.nanmean(LL2_fit(LL2_LL1)) LL1_N = np.nanmean(LL1_fit(LL2_LL1)) LL2_norm = LL1_N/LL2_N sData[ll2][fx] *= LL2_norm if sl1f and ll2f: ll2half = sData[ll2][wa].size/2 sl1half = sData[sl1][wa].size/2 LL2_fit = uni_spline(sData[ll2][wa][:ll2half], sData[ll2][fx][:ll2half]) SL1_fit = uni_spline(sData[sl1][wa][sl1half:], sData[sl1][fx][sl1half:]) SL1_LL2 = np.linspace(sData[sl1][wa][lastvalue], sData[ll2][wa][firstvalue], 100) LL2_N = np.nanmean(LL2_fit(SL1_LL2)) SL1_N = np.nanmean(SL1_fit(SL1_LL2)) SL1_norm = LL2_N/SL1_N sData[sl1][fx] *= SL1_norm if sl2f and sl1f: sl1half = sData[sl1][wa].size/2 sl2half = sData[sl2][wa].size/2 SL1_fit = uni_spline(sData[sl1][wa][:sl1half], sData[sl1][fx][:sl1half]) SL2_fit = uni_spline(sData[sl2][wa][sl2half:], sData[sl2][fx][sl2half:]) SL2_SL1 = np.linspace(sData[sl2][wa][lastvalue], sData[sl1][wa][firstvalue], 100) SL2_N = np.nanmean(SL2_fit(SL2_SL1)) SL1_N = np.nanmean(SL1_fit(SL2_SL1)) SL2_norm = SL1_N/SL2_N sData[sl2][fx] *= SL2_norm return sData def norm_blackbodies(sData, fitWaves, nWarm, nCold, t_1, t_2): wa = 'wavelength' fx = 'flux' er = 'error' w4 = 'WISE4' mp24, mp70 = 'MIPS24', 'MIPS70' h70, h100 = 'HerschelPACS70', 'HerschelPACS100' h160 = 'HerschelPACS160' ll1 = 'SpitzerIRS-LL1' # Which values are present in the data? mp24f, ll1f, w4f = nWarm mp70f, h70f, h100f, h160f = nCold # Initial guesses for the black bodies # fitWaves = [23.68, 22.194] # fitWaves += [i+1 for i in range(160)] # fitWaves = sorted(fitWaves) # bb1 = b_lam(fitWaves, t_1) # bb2 = b_lam(fitWaves, t_2) wav = np.logspace(-1, 2.3, 1000) bb1 = b_lam(wav, t_1) bb2 = b_lam(wav, t_2) # Normalize warm dust if mp24f: n_1 = np.nanmean(sData[mp24][fx]) / bb1.max() elif ll1f: index2 = np.where(np.logical_and(sData[ll1][wa]>20, sData[ll1][wa]<25)) n_1 = np.nanmean(sData[ll1][fx][index2]) / bb1.max() elif w4f: n_1 = np.nanmean(sData[w4][fx]) / bb1.max() else: n_1 = 1 # Normalize cold dust if mp70f: n_2 = np.nanmean(sData[mp70][fx]) / bb2.max() elif h70f: n_2 = np.nanmean(sData[h70][fx]) / bb2.max() elif h100f: n_2 = np.nanmean(sData[h100][fx]) / bb2.max() elif h160f: n_2 = np.nanmean(sData[h160][fx]) / bb2.max() else: n_2 = n_1 # # Normalize warm dust # if mp24f: # # index1 = np.where(fitWaves==23.68) # index1 = np.where(np.logical_and(wav>=23, wav<=24)) # n_1 = np.nanmean(sData[mp24][fx]) / np.nanmean(bb1[index1]) # elif ll1f: # # index1 = np.where(np.logical_and(fitWaves>=20, fitWaves<=25)) # index1 = np.where(np.logical_and(wav>=20, wav<=25)) # index2 = np.where(np.logical_and(sData[ll1][wa]>20, sData[ll1][wa]<25)) # n_1 = np.nanmean(sData[ll1][fx][index2]) / np.nanmean(bb1[index1]) # elif w4f: # # index1 = np.where(fitWaves==22.194) # index1 = np.where(np.logical_and(wav>=21, wav<=23)) # n_1 = np.nanmean(sData[w4][fx]) / np.nanmean(bb1[index1]) # else: # n_1 = 1 # # Normalize cold dust # if mp70f: # # index1 = np.where(fitWaves==71.42) # index1 = np.where(np.logical_and(wav>=70.0, wav<=73.0)) # n_2 = np.nanmean(sData[mp70][fx]) / np.nanmean(bb2[index1]) # elif h70f: # # index1 = np.where(fitWaves==70.0) # index1 = np.where(np.logical_and(wav>=69.0, wav<=71.0)) # n_2 = np.nanmean(sData[h70][fx]) / np.nanmean(bb2[index1]) # elif h100f: # # index1 = np.where(fitWaves==100.0) # index1 = np.where(np.logical_and(wav>=98.0, wav<=102.0)) # n_2 = np.nanmean(sData[h100][fx]) / np.nanmean(bb2[index1]) # elif h160f: # # index1 = np.where(fitWaves==160.0) # index1 = np.where(np.logical_and(wav>=150.0, wav<=170.0)) # n_2 = np.nanmean(sData[h160][fx]) / np.nanmean(bb2[index1]) # else: # n_2 = n_1 return n_1, n_2 # Blackbody radiation function, in terms of lambda. Returns FNu in janskies def b_lam(waves, temp): # Constants H = constants.h C = constants.c K = constants.k waves_m = waves/1e6 return (2*(C**2)*H)/((np.exp((H*C)/(waves_m*K*temp))-1.0)*(waves_m**5)) \ * (waves_m**2/C) * 1.0e19 # Blackbody radiation function, in terms of nu. Returns FNu in janskies def b_nu(wavelengths, temperature): H = constants.h C = constants.c K = constants.k wavelengths_m = wavelengths/1.0e6 nu = C/wavelengths_m top = 2 * H * (nu**3) bottom = C**2 * (np.exp((H*nu)/(K*temperature)) - 1) return top/bottom def blowout_size(grainDensity, starL=1., starM=1., qRad=0.9): if starL is np.nan: starL = 1 if starM is np.nan: starM = 1 G = constants.G C = constants.c # Calculate blowout grain size grainDensity = grainDensity / 1000 / (0.01**3) # Density converted to SI nume = 3 * starL * 3.826e26 * qRad deno = 8 * np.pi * starM * 1.989e30 * G * C * grainDensity return nume/deno * 1e6 # Separates data according to instrument. Input: dict of IPAC Tables def sort_by_instrument(data): wa = 'wavelength' fx = 'flux' er = 'error' unique_insts = list() for i in range(data['instrument'].size): if not data['instrument'][i] in unique_insts: unique_insts.append(data['instrument'][i]) separatedStarData = dict() for inst in unique_insts: index = np.where(data['instrument']==inst) separatedStarData[inst] = dict() separatedStarData[inst][wa] = np.array(data[wa][index]) separatedStarData[inst][fx] = np.array(data[fx][index]) separatedStarData[inst][er] = np.array(data[er][index]) return unique_insts, separatedStarData # Remove .DS_Store file in directory def pull_file_names(dirPath): filenames = os.listdir(dirPath) if '.DS_Store' in filenames: os.remove(dirPath+'.DS_Store') ind = filenames.index('.DS_Store') filenames.pop(ind) return filenames # Create 1000 radii arrays for given star temp. Used in realistic fitting. # Takes dictionary of grain temps and list of grain comps. def interpTemps(starTemp, oldGrainTemps, grainComps): STAR_TEMPS = np.linspace(2000, 15000, 14) DISK_RADII = np.logspace(-1, 3, 121) radii = np.logspace(-1, 3, 1000) GRAINSIZES = np.loadtxt(HOME_DIR+'Arrays/GrainSizes.dat') for grainComp in grainComps: abr = '' for letter in grainComp: if letter in UPPERS: abr += letter starIndices = np.where(np.logical_and( STAR_TEMPS<starTemp+3000, STAR_TEMPS>starTemp-3000 )) newStarTempGrainTemps = np.empty(( DISK_RADII.size, GRAINSIZES.size )) for r in range(DISK_RADII.size): for g in range(GRAINSIZES.size): newStarTempGrainTemps[r][g] = np.interp( starTemp, STAR_TEMPS[starIndices], oldGrainTemps[grainComp][starIndices][:,r][:,g] ) newGrainTemps = np.empty((radii.size,GRAINSIZES.size)) for r in range(radii.size): for g in range(GRAINSIZES.size): newGrainTemps[r][g] = np.interp( radii[r], DISK_RADII, newStarTempGrainTemps[:,g] ) np.save(HOME_DIR+'Arrays/InterpGrainTemps/'+'%.0fK_%s.npy'% (starTemp,grainComp), newGrainTemps, allow_pickle=False) class StarObject: def __init__(self, starD, starL, grainComp, grainTemps, blowoutSize, emis, grains): self.starD = starD self.starL = starL self.grainComp = grainComp self.grainTemps = grainTemps self.blowoutSize = blowoutSize self.emis = emis self.grains = grains self.G = constants.G # Universal gravitation constant self.C = constants.c # Speed of light in vacuum self.S = constants.sigma # Stephan-Boltzman constant self.K = constants.k # Boltzman constant self.H = constants.h # Planck's constant self.AS_DENSITY = 3.0 # g/cm3 self.H2O_DENSITY = 1.0 # g/cm3 LATER: use vlfr to calc grain density self.AC_DENSITY = 2.095 # g/cm3 self.radii = np.logspace(-1, 3, 1000) def calcFlux(self, waves, r0, T_0=1): wavelengths_m = waves / 1.0e6 # Create radii/grains arrays sigma = 0.10 # Use 0.10 for the deviation r0 /= np.sqrt(self.starL) rindex = np.where(np.logical_and(self.radii<1.4*r0, self.radii>0.6*r0))[0] radii = self.radii[rindex] radii *= 1.4959787066e11 r0 *= 1.4959787066e11 grainTemps = self.grainTemps[rindex] grains = self.grains/1.0e6 # Calculate CA # T_0 = 1 blS = self.blowoutSize/1e6 q = -3.5 exponent = -0.5 * ((radii - r0) / (sigma*r0))**2 ca = T_0*np.exp(exponent)*np.abs(3+q) \ / (np.pi*(np.power(blS,3+q)-np.power(.001,3+q))) ca *= 1e6 # Integral loop da = np.diff(grains) da = np.append(da, da[-1]) dr = np.diff(radii) dr = np.append(dr, dr[-1]) fw = np.empty(waves.size) fr = np.empty(radii.size) flux = np.empty(grains.size) for w in range(waves.size): for r in range(radii.size): B_nu = b_nu(waves[w], grainTemps[r]) grainflux = (grains**2/(4*((self.starD*3.08568025e16)**2))) \ * self.emis[:,w] * B_nu * ca[r] * (grains**-3.5) * da \ * 2 * np.pi * radii[r] * dr[r] fr[r] = grainflux.sum() fw[w] = fr.sum()*1e26 return fw if __name__ == '__main__': before = time() densities = { 'AstroSil': 3.0, 'DirtyIceAstroSil': 1.12 } asdf = ascii.read(HOME_DIR+'stars final sorted/star_HD 32977.txt') WAVES = np.array(sorted(asdf['wavelength'])) starD = asdf.meta['keywords']['DIST_pc']['value'] if starD is np.nan: starD = 1 starT = asdf.meta['keywords']['TEMP']['value'] if starT is np.nan: starT = 5800 WAVES = np.logspace(-1,3, 901) starL = 1 r0 = 0.5 T_0 = 1 grainComp = 'AstroSil' blowoutSize = blowout_size(densities[grainComp]) try: grainTemps = np.load(HOME_DIR+'Arrays/InterpGrainTemps/'+'%.0fK_%s.npy'%( starT, grainComp)) except: from sed_config import GRAIN_TEMPS_TOTAL interpTemps(starT, GRAIN_TEMPS_TOTAL, [grainComp]) del GRAIN_TEMPS_TOTAL grainTemps = np.load(HOME_DIR+'Arrays/InterpGrainTemps/'+'%.0fK_%s.npy'%( starT, grainComp)) graindex = np.where(GRAINSIZES>=blowoutSize)[0] grains = GRAINSIZES[graindex] grainTemps = grainTemps[:,graindex] # Interp emissivities to wavelengths emis = np.empty((grains.size, WAVES.size)) for g in range(grains.size): emis[g] = np.interp(WAVES,WAVELENGTHS,EMISSIVITIES_TOTAL[grainComp][g]) # (waves, r0, starD, grainComp, grainTemps, blowoutSize, emis, grains) star = StarObject(starD, grainComp, grainTemps, blowoutSize, emis, grains) before = time() flux1 = star.calcFlux(WAVES, r0, blowoutSize) plt.plot(WAVES, flux1, label = 0.5) print time()-before flux2 = star.calcFlux(WAVES, 1., blowoutSize) plt.plot(WAVES, flux2, label = 1.) flux3 = star.calcFlux(WAVES, 5., blowoutSize) plt.plot(WAVES, flux3, label = 5.) flux4 = star.calcFlux(WAVES, 50., blowoutSize) plt.plot(WAVES, flux4, label = 50.) flux5 = star.calcFlux(WAVES, 200., blowoutSize) plt.plot(WAVES, flux5, label = 200.) bb1 = b_lam(WAVES, 200) index = np.where(np.logical_and(WAVES>=25., WAVES<=35.)) bb1 *= np.nanmean(flux1[index])/np.nanmean(bb1[index]) plt.plot(WAVES, bb1, '-.', label='BB') plt.legend() plt.ylim(1, 1e4) # plt.xlim(2, 200) # plt.xlim(0.1, 1000) # plt.ylim(1e-8, 1e16) plt.xlim(2, 1000) plt.semilogx() plt.semilogy() plt.show()
34.669002
87
0.577793
d79afe41e717c3d0bdbf260100e55afe23054ca9
23,952
py
Python
src/lava/lib/dl/slayer/neuron/adrf.py
valmat07/lava-dl
bc91ffbd8caa946afe0db6753ede4daf2bdeda2c
[ "BSD-3-Clause" ]
null
null
null
src/lava/lib/dl/slayer/neuron/adrf.py
valmat07/lava-dl
bc91ffbd8caa946afe0db6753ede4daf2bdeda2c
[ "BSD-3-Clause" ]
null
null
null
src/lava/lib/dl/slayer/neuron/adrf.py
valmat07/lava-dl
bc91ffbd8caa946afe0db6753ede4daf2bdeda2c
[ "BSD-3-Clause" ]
null
null
null
# Copyright (C) 2021 Intel Corporation # SPDX-License-Identifier: BSD-3-Clause """Adaptive RF Izhikevich neuron.""" import numpy as np import torch from . import base from .dynamics import resonator, adaptive_phase_th from ..spike import complex from ..utils import quantize # These are tuned heuristically so that scale_grad=1 and tau_grad=1 serves as # a good starting point # SCALE_RHO_MULT = 10 # TAU_RHO_MULT = 0.2 # SCALE_RHO_MULT = 10 # TAU_RHO_MULT = 0.5 SCALE_RHO_MULT = 0.1 TAU_RHO_MULT = 100 class Neuron(base.Neuron): """This is the implementation of RF neuron. .. math:: \\mathfrak{Re}(z[t]) &= (1-\\alpha)(\\cos\\phi\\ \\mathfrak{Re}(z[t-1]) - \\sin\\phi\\ \\mathfrak{Im}(z[t-1])) + \\mathfrak{Re}(x[t]) + \\text{real bias}\\ \\mathfrak{Im}(z[t]) &= (1-\\alpha)(\\sin\\phi\\ \\mathfrak{Re}(z[t-1]) + \\cos\\phi\\ \\mathfrak{Im}(z[t-1])) + \\mathfrak{Im}(x[t]) + \\text{imag bias} \\ \\vartheta[t] &= (1-\\alpha_{\\vartheta})\\, (\\vartheta[t-1] - \\vartheta_0) + \\vartheta_0 \\ r[t] &= (1-\\alpha_r)\\,r[t-1] \\ s[t] &= |z[t]| \\geq (\\vartheta[t] + r[t]) \\text{ and } \\arg(z[t])=0 The internal state representations are scaled down compared to the actual hardware implementation. This allows for a natural range of synaptic weight values as well as the gradient parameters. The neuron parameters like threshold, decays are represented as real values. They internally get converted to fixed precision representation of the hardware. It also provides properties to access the neuron parameters in fixed precision states. The parameters are internally clamped to the valid range. Parameters ---------- threshold : float neuron threshold. threshold_step : float the increase in threshold after spike. period : float or tuple period of the neuron. If ``shared_param`` is False, then it can be specified as a tuple (min_period, max_period). decay : float or tuple decay factor of the neuron. If ``shared_param`` is False, then it can be specified as a tuple (min_decay, max_decay). threshold_decay : float or tuple the fraction of threshold decay per time step. If ``shared_param`` is False, then it can be specified as a tuple : min_decay, max_decay). refractory_decay : float or tuple the fraction of refractory decay per time step. If ``shared_param`` is False, then it can be specified as a tuple : min_decay, max_decay). tau_grad : float, optional time constant of spike function derivative. Defaults to 1. scale_grad : float, optional scale of spike function derivative. Defaults to 1. scale : int, optional scale of the internal state. ``scale=1`` will result in values in the range expected from the of Loihi hardware. Defaults to 1 << 6. norm : fx-ptr or lambda, optional normalization function on the dendrite output. None means no normalization. Defaults to None. dropout : fx-ptr or lambda, optional neuron dropout method. None means no normalization. Defaults to None. shared_param : bool, optional flag to enable/disable shared parameter neuron group. If it is False, individual parameters are assigned on a per-channel basis. Defaults to True. persistent_state : bool, optional flag to enable/disable persistent state between iterations. Defaults to False. requires_grad : bool, optional flag to enable/disable learning on neuron parameter. Defaults to False. graded_spike : bool, optional flag to enable/disable graded spike output. Defaults to False. log_init : bool, optional if True, initialized the natural frequency in log spaced range. Default is True. """ def __init__( self, threshold, threshold_step, period, decay, threshold_decay, refractory_decay, tau_grad=1, scale_grad=1, scale=1 << 6, norm=None, dropout=None, shared_param=True, persistent_state=False, requires_grad=False, graded_spike=False, log_init=True, ): super(Neuron, self).__init__( threshold=threshold, tau_grad=tau_grad, scale_grad=scale_grad, p_scale=1 << 12, w_scale=scale, s_scale=scale * (1 << 6), norm=norm, dropout=dropout, persistent_state=persistent_state, shared_param=shared_param, requires_grad=requires_grad, complex=True ) self.threshold_step = int(threshold_step * self.w_scale) / self.w_scale self.graded_spike = graded_spike self.log_init = log_init # sin_decay and cos_decay are restricted to be inside the unit circle # in first quadrant. This means that the oscillation step can only # between 0 and 90 degrees, i.e. period >= 4 # It makes sense to have period >= 4 because we would not get proper # oscillation at all in a discrete in time system for period < 4. # It is possible to set period < 4, but it will get quantized. # So the result might not be as desired for period = 2 and 3. if self.shared_param is True: if np.isscalar(decay) is False: raise AssertionError( f'Expected decay to be a scalar when shared_param is True.' f' Found {decay=}.' ) if np.isscalar(period) is False: raise AssertionError( f'Expected period to be a scalar when shared_param is' f' True. Found {period=}.' ) if period < 4: raise AssertionError( f'Neuron period less than 4 does not make sense. ' f'Found {period=}.' ) sin_decay = np.sin(2 * np.pi / period) * (1 - decay) cos_decay = np.cos(2 * np.pi / period) * (1 - decay) self.register_parameter( 'sin_decay', torch.nn.Parameter( torch.FloatTensor([self.p_scale * sin_decay]), requires_grad=self.requires_grad, ) ) self.register_parameter( 'cos_decay', torch.nn.Parameter( torch.FloatTensor([self.p_scale * cos_decay]), requires_grad=self.requires_grad, ) ) self.register_parameter( 'threshold_decay', torch.nn.Parameter( torch.FloatTensor([self.p_scale * threshold_decay]), requires_grad=self.requires_grad, ) ) self.register_parameter( 'refractory_decay', torch.nn.Parameter( torch.FloatTensor([self.p_scale * refractory_decay]), requires_grad=self.requires_grad, ) ) else: if np.isscalar(period) is True: # 1% jitter for now if period < 4: raise AssertionError( f'Neuron period less than 4 does not make sense. ' f'Found {period=}.' ) self.period_min = period * 0.99 self.period_max = period * 1.01 else: if len(period) != 2: raise AssertionError( f'Expected period to be of length 2 i.e. [min, max]. ' f'Found {period=}.' ) if min(period) < 4: raise AssertionError( f'Neuron period less than 4 does not make sense. ' f'Found {period=}.' ) self.period_min = period[0] self.period_max = period[1] if np.isscalar(decay) is True: self.decay_min = decay * 0.99 self.decay_max = decay * 1.01 else: if len(decay) != 2: raise AssertionError( f'Expected decay to be of length 2 i.e. [min, max]. ' f'Found {decay=}.' ) self.decay_min = decay[0] self.decay_max = decay[1] if np.isscalar(threshold_decay) is True: self.threshold_decay_min = threshold_decay self.threshold_decay_max = threshold_decay else: if len(threshold_decay) != 2: raise AssertionError( f'Expected threshold decay to be of length 2 i.e. ' f'[min, max]. Found {threshold_decay=}.' ) self.threshold_decay_min = threshold_decay[0] self.threshold_decay_max = threshold_decay[1] if np.isscalar(refractory_decay) is True: self.refractory_decay_min = refractory_decay self.refractory_decay_max = refractory_decay else: if len(refractory_decay) != 2: raise AssertionError( f'Expected refractory decay to be of length 2 i.e. ' f'[min, max]. Found {refractory_decay=}.' ) self.refractory_decay_min = refractory_decay[0] self.refractory_decay_max = refractory_decay[1] self.register_parameter( 'sin_decay', torch.nn.Parameter( torch.FloatTensor([0]), requires_grad=self.requires_grad, ) ) self.register_parameter( 'cos_decay', torch.nn.Parameter( torch.FloatTensor([0]), requires_grad=self.requires_grad, ) ) self.register_parameter( 'threshold_decay', torch.nn.Parameter( torch.FloatTensor([ self.p_scale * self.threshold_decay_min ]), requires_grad=self.requires_grad, ) ) self.register_parameter( 'refractory_decay', torch.nn.Parameter( torch.FloatTensor([ self.p_scale * self.refractory_decay_min ]), requires_grad=self.requires_grad, ) ) self.register_buffer( 'real_state', torch.zeros(1, dtype=torch.float), persistent=False ) self.register_buffer( 'imag_state', torch.zeros(1, dtype=torch.float), persistent=False ) self.register_buffer( 'threshold_state', torch.tensor([self.threshold], dtype=torch.float), persistent=False ) self.register_buffer( 'refractory_state', torch.zeros(1, dtype=torch.float), persistent=False ) self.clamp() def clamp(self): """A function to clamp the sin decay and cosine decay parameters to be within valid range. The user will generally not need to call this function. """ # the dynamics parameters must be positive within the allowable range # they must be inside the unit circle with torch.no_grad(): gain = torch.sqrt(self.sin_decay**2 + self.cos_decay**2) clamped_gain = gain.clamp(0, self.p_scale - 1) self.sin_decay.data *= clamped_gain / gain self.cos_decay.data *= clamped_gain / gain # this should not be clamped to 0 because # 0 would mean no oscillation self.sin_decay.data.clamp_(1) self.cos_decay.data.clamp_(0) @property def decay(self): """The decay parameter of the neuron.""" self.clamp() return 1 - np.sqrt( (quantize(self.sin_decay).cpu().data.numpy() / self.p_scale)**2 + (quantize(self.cos_decay).cpu().data.numpy() / self.p_scale)**2 ) @property def lam(self): """The lambda parameter of the neuron.""" return -np.log(1 - self.decay) @property def period(self): """The period of the neuron oscillation.""" return 1 / self.frequency @property def frequency(self): """The frequency of neuron oscillation.""" self.clamp() return np.arctan2( quantize(self.sin_decay).cpu().data.numpy(), quantize(self.cos_decay).cpu().data.numpy() ) / 2 / np.pi @property def device(self): """The device memory (cpu/cuda) where the object lives.""" return self.sin_decay.device @property def cx_sin_decay(self): """The compartment sin decay parameter to be used for configuration.""" self.clamp() val = quantize(self.sin_decay).cpu().data.numpy().astype(int) if len(val) == 1: return val[0] return val @property def cx_cos_decay(self): """The compartment cos decay parameter to be used for configuration.""" self.clamp() val = quantize(self.cos_decay).cpu().data.numpy().astype(int) if len(val) == 1: return val[0] return val @property def cx_threshold_decay(self): """The compartment threshold decay parameter to be used for configuring Loihi hardware.""" self.clamp() val = quantize(self.threshold_decay).cpu().data.numpy().astype(int) if len(val) == 1: return val[0] return val @property def cx_refractory_decay(self): """The compartment refractory decay parameter to be used for configuring Loihi hardware.""" self.clamp() val = quantize(self.refractory_decay).cpu().data.numpy().astype(int) if len(val) == 1: return val[0] return val @property def scale(self): """Scale difference between slayer representation and hardware representation of the variable states.""" return self.w_scale def dynamics(self, input): """Computes the dynamics (without spiking behavior) of the neuron instance to a complex input tuple. The input shape must match with the neuron shape. For the first time, the neuron shape is determined from the input automatically. It is essentially a resonator dynamics with adaptive threshold and refractory response. Parameters ---------- input : tuple of torch tensors Complex input tuple of tensor, i.e. (real_input, imag_input). Returns ------- torch tensor real response of the neuron. torch tensor imaginary response of the neuron. torch tensor adaptive threshold of the neuron. torch tensor refractory response of the neuorn. """ real_input, imag_input = input if self.shape is None: self.shape = real_input.shape[1:-1] if len(self.shape) == 0: raise AssertionError( f"Expected input to have at least 3 dimensions: " f"[Batch, Spatial dims ..., Time]. " f"It's shape is {real_input.shape}." ) self.num_neurons = np.prod(self.shape) if self.shared_param is False: if self.log_init is False: frequency = ( (1 / self.period_max) + (1 / self.period_min - 1 / self.period_max) * torch.rand( self.shape[0], dtype=torch.float ).to(self.device) ) else: frequency = torch.logspace( -np.log10(self.period_max), -np.log10(self.period_min), steps=self.shape[0] ).to(self.device) decay = self.decay_min \ + (self.decay_max - self.decay_min) * torch.rand( self.shape[0], dtype=torch.float ).to(self.device) sin_decay = torch.sin(2 * np.pi * frequency) * (1 - decay) cos_decay = torch.cos(2 * np.pi * frequency) * (1 - decay) threshold_decay = self.threshold_decay_min \ + (self.threshold_decay_max - self.threshold_decay_min)\ * torch.rand( self.shape[0], dtype=torch.float ).to(self.device) refractory_decay = self.refractory_decay_min \ + (self.refractory_decay_max - self.refractory_decay_min)\ * torch.rand( self.shape[0], dtype=torch.float ).to(self.device) self.sin_decay.data = self.p_scale * sin_decay self.cos_decay.data = self.p_scale * cos_decay self.threshold_decay.data = self.p_scale * threshold_decay self.refractory_decay.data = self.p_scale * refractory_decay del self.period_min del self.period_max del self.decay_min del self.decay_max del self.threshold_decay_min del self.threshold_decay_max del self.refractory_decay_min del self.refractory_decay_max else: if real_input.shape[1:-1] != self.shape: raise AssertionError( f'Real input tensor shape ({real_input.shape}) ' f'does not match with Neuron shape ({self.shape}).' ) if real_input.shape != imag_input.shape: raise AssertionError( f'Real input tensor shape ({imag_input.shape}) does not match ' f'with imaginary input shape ({imag_input.shape}).' ) dtype = self.real_state.dtype device = self.real_state.device if self.real_state.shape[0] != real_input.shape[0]: # persistent state cannot proceed due to change in batch dimension. # this likely indicates change from training to testing set self.real_state = torch.zeros( real_input.shape[:-1] ).to(dtype).to(device) self.imag_state = torch.zeros( real_input.shape[:-1] ).to(dtype).to(device) self.threshold_state = self.threshold * torch.ones( real_input.shape[:-1] ).to(dtype).to(device) self.refractory_state = torch.zeros( real_input.shape[:-1] ).to(dtype).to(device) if self.real_state.shape[1:] != self.shape: # this means real_state and imag_state are not initialized properly self.real_state = self.real_state * torch.ones( real_input.shape[:-1] ).to(dtype).to(device) self.imag_state = self.imag_state * torch.ones( real_input.shape[:-1] ).to(dtype).to(device) self.threshold_state = self.threshold_state * torch.ones( real_input.shape[:-1] ).to(dtype).to(device) self.refractory_state = self.refractory_state * torch.ones( real_input.shape[:-1] ).to(dtype).to(device) # clamp the values only when learning is enabled # This means we don't need to clamp the values after gradient update. # It is done in runtime now. Might be slow, but overhead is negligible. if self.requires_grad is True: self.clamp() if self.real_norm is not None: real_input = self.real_norm(real_input) if self.imag_norm is not None: imag_input = self.imag_norm(imag_input) real, imag = resonator.dynamics( real_input, imag_input, quantize(self.sin_decay), quantize(self.cos_decay), self.real_state, self.imag_state, self.s_scale, debug=self.debug ) threshold, refractory = adaptive_phase_th.dynamics( real, imag, self.imag_state, self.refractory_state, quantize(self.refractory_decay), self.threshold_state, quantize(self.threshold_decay), self.threshold_step, self.threshold, self.s_scale, debug=self.debug ) if self.persistent_state is True: with torch.no_grad(): self.real_state = real[..., -1].clone() # self.imag_state = imag[..., -1].clone() # this should be done post spike self.threshold_state = threshold[..., -1].clone() self.refractory_state = refractory[..., -1].clone() return real, imag, threshold, refractory def spike(self, real, imag, threshold, refractory): """Extracts spike points from the real and imaginary states. Parameters ---------- real : torch tensor real dynamics of the neuron. imag : torch tensor imaginary dynamics of the neuron. threshold :torch tensor threshold dynamics of the neuron. refractory :torch tensor refractory dynamics of the neuron. Returns ------- torch tensor spike output """ # print( # real[..., -1].item() * self.s_scale, # imag[..., -1].item() * self.s_scale, # self.imag_state.item() * self.s_scale # ) spike = complex.Spike.apply( real, imag, threshold + refractory, self.tau_rho * TAU_RHO_MULT, self.scale_rho * SCALE_RHO_MULT, self.graded_spike, self.imag_state, # self.s_scale, 1, ) if self.persistent_state is True: with torch.no_grad(): # self.real_state *= (1 - spike[..., -1]).detach().clone() self.imag_state = imag[..., -1].clone() self.refractory_state = adaptive_phase_th.persistent_ref_state( self.refractory_state, spike[..., -1], self.threshold_state ).detach().clone() self.threshold_state = adaptive_phase_th.persistent_th_state( self.threshold_state, spike[..., -1], self.threshold_step ).detach().clone() if self.drop is not None: spike = self.drop(spike) return spike def forward(self, input): """omputes the full response of the neuron instance to a complex input tuple. The input shape must match with the neuron shape. For the first time, the neuron shape is determined from the input automatically. Parameters ---------- input : Complex input tuple of tensor, i.e. (real_input, imag_input). Returns ------- torch tensor spike response of the neuron. """ real, imag, threshold, refractory = self.dynamics(input) return self.spike(real, imag, threshold + refractory)
38.261981
79
0.545633
2b612f600c443bc49f88406adfda0bb11e44a1f7
14,711
py
Python
aries_cloudagent/wallet/routes.py
ldej/aries-cloudagent-python
25b7a9c08921e67b0962c434102489884ac403b2
[ "Apache-2.0" ]
null
null
null
aries_cloudagent/wallet/routes.py
ldej/aries-cloudagent-python
25b7a9c08921e67b0962c434102489884ac403b2
[ "Apache-2.0" ]
1
2020-03-06T12:11:29.000Z
2020-03-06T12:11:29.000Z
aries_cloudagent/wallet/routes.py
ldej/aries-cloudagent-python
25b7a9c08921e67b0962c434102489884ac403b2
[ "Apache-2.0" ]
1
2020-04-30T08:22:22.000Z
2020-04-30T08:22:22.000Z
"""Wallet admin routes.""" from aiohttp import web from aiohttp_apispec import ( docs, # match_info_schema, querystring_schema, request_schema, response_schema, ) from marshmallow import fields from ..ledger.base import BaseLedger from ..ledger.endpoint_type import EndpointType from ..ledger.error import LedgerConfigError, LedgerError from ..messaging.models.openapi import OpenAPISchema from ..messaging.valid import ( DID_POSTURE, ENDPOINT, ENDPOINT_TYPE, INDY_CRED_DEF_ID, INDY_DID, INDY_RAW_PUBLIC_KEY, ) from .base import DIDInfo, BaseWallet from .did_posture import DIDPosture from .error import WalletError, WalletNotFoundError class DIDSchema(OpenAPISchema): """Result schema for a DID.""" did = fields.Str(description="DID of interest", **INDY_DID) verkey = fields.Str(description="Public verification key", **INDY_RAW_PUBLIC_KEY) posture = fields.Str( description=( "Whether DID is current public DID, " "posted to ledger but not current public DID, " "or local to the wallet" ), **DID_POSTURE, ) class DIDResultSchema(OpenAPISchema): """Result schema for a DID.""" result = fields.Nested(DIDSchema()) class DIDListSchema(OpenAPISchema): """Result schema for connection list.""" results = fields.List(fields.Nested(DIDSchema()), description="DID list") class DIDEndpointWithTypeSchema(OpenAPISchema): """Request schema to set DID endpoint of particular type.""" did = fields.Str(description="DID of interest", required=True, **INDY_DID) endpoint = fields.Str( description="Endpoint to set (omit to delete)", required=False, **ENDPOINT ) endpoint_type = fields.Str( description=( f"Endpoint type to set (default '{EndpointType.ENDPOINT.w3c}'); " "affects only public or posted DIDs" ), required=False, **ENDPOINT_TYPE, ) class DIDEndpointSchema(OpenAPISchema): """Request schema to set DID endpoint; response schema to get DID endpoint.""" did = fields.Str(description="DID of interest", required=True, **INDY_DID) endpoint = fields.Str( description="Endpoint to set (omit to delete)", required=False, **ENDPOINT ) class DIDListQueryStringSchema(OpenAPISchema): """Parameters and validators for DID list request query string.""" did = fields.Str(description="DID of interest", required=False, **INDY_DID) verkey = fields.Str( description="Verification key of interest", required=False, **INDY_RAW_PUBLIC_KEY, ) posture = fields.Str( description=( "Whether DID is current public DID, " "posted to ledger but current public DID, " "or local to the wallet" ), required=False, **DID_POSTURE, ) class DIDQueryStringSchema(OpenAPISchema): """Parameters and validators for set public DID request query string.""" did = fields.Str(description="DID of interest", required=True, **INDY_DID) class CredDefIdMatchInfoSchema(OpenAPISchema): """Path parameters and validators for request taking credential definition id.""" cred_def_id = fields.Str( description="Credential identifier", required=True, **INDY_CRED_DEF_ID ) def format_did_info(info: DIDInfo): """Serialize a DIDInfo object.""" if info: return { "did": info.did, "verkey": info.verkey, "posture": DIDPosture.get(info.metadata).moniker, } @docs(tags=["wallet"], summary="List wallet DIDs") @querystring_schema(DIDListQueryStringSchema()) @response_schema(DIDListSchema, 200) async def wallet_did_list(request: web.BaseRequest): """ Request handler for searching wallet DIDs. Args: request: aiohttp request object Returns: The DID list response """ context = request.app["request_context"] wallet: BaseWallet = await context.inject(BaseWallet, required=False) if not wallet: raise web.HTTPForbidden(reason="No wallet available") filter_did = request.query.get("did") filter_verkey = request.query.get("verkey") filter_posture = DIDPosture.get(request.query.get("posture")) results = [] public_did_info = await wallet.get_public_did() posted_did_infos = await wallet.get_posted_dids() if filter_posture is DIDPosture.PUBLIC: if ( public_did_info and (not filter_verkey or public_did_info.verkey == filter_verkey) and (not filter_did or public_did_info.did == filter_did) ): results.append(format_did_info(public_did_info)) elif filter_posture is DIDPosture.POSTED: results = [] for info in posted_did_infos: if (not filter_verkey or info.verkey == filter_verkey) and ( not filter_did or info.did == filter_did ): results.append(format_did_info(info)) elif filter_did: try: info = await wallet.get_local_did(filter_did) except WalletError: # badly formatted DID or record not found info = None if ( info and (not filter_verkey or info.verkey == filter_verkey) and ( filter_posture is None or ( filter_posture is DIDPosture.WALLET_ONLY and not info.metadata.get("posted") ) ) ): results.append(format_did_info(info)) elif filter_verkey: try: info = await wallet.get_local_did_for_verkey(filter_verkey) except WalletError: info = None if info and ( filter_posture is None or ( filter_posture is DID_POSTURE.WALLET_ONLY and not info.metadata.get("posted") ) ): results.append(format_did_info(info)) else: dids = await wallet.get_local_dids() results = [ format_did_info(info) for info in dids if filter_posture is None or DIDPosture.get(info.metadata) is DIDPosture.WALLET_ONLY ] results.sort( key=lambda info: (DIDPosture.get(info["posture"]).ordinal, info["did"]) ) return web.json_response({"results": results}) @docs(tags=["wallet"], summary="Create a local DID") @response_schema(DIDResultSchema, 200) async def wallet_create_did(request: web.BaseRequest): """ Request handler for creating a new local DID in the wallet. Args: request: aiohttp request object Returns: The DID info """ context = request.app["request_context"] wallet: BaseWallet = await context.inject(BaseWallet, required=False) if not wallet: raise web.HTTPForbidden(reason="No wallet available") try: info = await wallet.create_local_did() except WalletError as err: raise web.HTTPBadRequest(reason=err.roll_up) from err return web.json_response({"result": format_did_info(info)}) @docs(tags=["wallet"], summary="Fetch the current public DID") @response_schema(DIDResultSchema, 200) async def wallet_get_public_did(request: web.BaseRequest): """ Request handler for fetching the current public DID. Args: request: aiohttp request object Returns: The DID info """ context = request.app["request_context"] wallet: BaseWallet = await context.inject(BaseWallet, required=False) if not wallet: raise web.HTTPForbidden(reason="No wallet available") try: info = await wallet.get_public_did() except WalletError as err: raise web.HTTPBadRequest(reason=err.roll_up) from err return web.json_response({"result": format_did_info(info)}) @docs(tags=["wallet"], summary="Assign the current public DID") @querystring_schema(DIDQueryStringSchema()) @response_schema(DIDResultSchema, 200) async def wallet_set_public_did(request: web.BaseRequest): """ Request handler for setting the current public DID. Args: request: aiohttp request object Returns: The updated DID info """ context = request.app["request_context"] wallet: BaseWallet = await context.inject(BaseWallet, required=False) if not wallet: raise web.HTTPForbidden(reason="No wallet available") did = request.query.get("did") if not did: raise web.HTTPBadRequest(reason="Request query must include DID") try: ledger = await context.inject(BaseLedger, required=False) if not ledger: reason = f"No ledger available" if not context.settings.get_value("wallet.type"): reason += ": missing wallet-type?" raise web.HTTPForbidden(reason=reason) async with ledger: if not await ledger.get_key_for_did(did): raise web.HTTPNotFound(reason=f"DID {did} is not posted to the ledger") did_info = await wallet.get_local_did(did) info = await wallet.set_public_did(did) if info: # Publish endpoint if necessary endpoint = did_info.metadata.get( "endpoint", context.settings.get("default_endpoint") ) async with ledger: await ledger.update_endpoint_for_did(info.did, endpoint) except WalletNotFoundError as err: raise web.HTTPNotFound(reason=err.roll_up) from err except (LedgerError, WalletError) as err: raise web.HTTPBadRequest(reason=err.roll_up) from err return web.json_response({"result": format_did_info(info)}) @docs( tags=["wallet"], summary="Update endpoint in wallet and on ledger if posted to it" ) @request_schema(DIDEndpointWithTypeSchema) async def wallet_set_did_endpoint(request: web.BaseRequest): """ Request handler for setting an endpoint for a DID. Args: request: aiohttp request object """ context = request.app["request_context"] wallet: BaseWallet = await context.inject(BaseWallet, required=False) if not wallet: raise web.HTTPForbidden(reason="No wallet available") body = await request.json() did = body["did"] endpoint = body.get("endpoint") endpoint_type = EndpointType.get( body.get("endpoint_type", EndpointType.ENDPOINT.w3c) ) try: ledger: BaseLedger = await context.inject(BaseLedger, required=False) await wallet.set_did_endpoint(did, endpoint, ledger, endpoint_type) except WalletNotFoundError as err: raise web.HTTPNotFound(reason=err.roll_up) from err except LedgerConfigError as err: raise web.HTTPForbidden(reason=err.roll_up) from err except (LedgerError, WalletError) as err: raise web.HTTPBadRequest(reason=err.roll_up) from err return web.json_response({}) @docs(tags=["wallet"], summary="Query DID endpoint in wallet") @querystring_schema(DIDQueryStringSchema()) @response_schema(DIDEndpointSchema, 200) async def wallet_get_did_endpoint(request: web.BaseRequest): """ Request handler for getting the current DID endpoint from the wallet. Args: request: aiohttp request object Returns: The updated DID info """ context = request.app["request_context"] wallet: BaseWallet = await context.inject(BaseWallet, required=False) if not wallet: raise web.HTTPForbidden(reason="No wallet available") did = request.query.get("did") if not did: raise web.HTTPBadRequest(reason="Request query must include DID") try: did_info = await wallet.get_local_did(did) endpoint = did_info.metadata.get("endpoint") except WalletNotFoundError as err: raise web.HTTPNotFound(reason=err.roll_up) from err except WalletError as err: raise web.HTTPBadRequest(reason=err.roll_up) from err return web.json_response({"did": did, "endpoint": endpoint}) @docs(tags=["wallet"], summary="Rotate keypair for a DID not posted to the ledger") @querystring_schema(DIDQueryStringSchema()) async def wallet_rotate_did_keypair(request: web.BaseRequest): """ Request handler for rotating local DID keypair. Args: request: aiohttp request object Returns: An empty JSON response """ context = request.app["request_context"] wallet: BaseWallet = await context.inject(BaseWallet, required=False) if not wallet: raise web.HTTPForbidden(reason="No wallet available") did = request.query.get("did") if not did: raise web.HTTPBadRequest(reason="Request query must include DID") try: did_info = await wallet.get_local_did(did) if did_info.metadata.get("posted", False): # call from ledger API instead to propagate through ledger NYM transaction raise web.HTTPBadRequest(reason=f"DID {did} is posted to the ledger") await wallet.rotate_did_keypair_start(did) # do not take seed over the wire await wallet.rotate_did_keypair_apply(did) except WalletNotFoundError as err: raise web.HTTPNotFound(reason=err.roll_up) from err except WalletError as err: raise web.HTTPBadRequest(reason=err.roll_up) from err return web.json_response({}) async def register(app: web.Application): """Register routes.""" app.add_routes( [ web.get("/wallet/did", wallet_did_list, allow_head=False), web.post("/wallet/did/create", wallet_create_did), web.get("/wallet/did/public", wallet_get_public_did, allow_head=False), web.post("/wallet/did/public", wallet_set_public_did), web.post("/wallet/set-did-endpoint", wallet_set_did_endpoint), web.get( "/wallet/get-did-endpoint", wallet_get_did_endpoint, allow_head=False ), web.patch("/wallet/did/local/rotate-keypair", wallet_rotate_did_keypair), ] ) def post_process_routes(app: web.Application): """Amend swagger API.""" # Add top-level tags description if "tags" not in app._state["swagger_dict"]: app._state["swagger_dict"]["tags"] = [] app._state["swagger_dict"]["tags"].append( { "name": "wallet", "description": "DID and tag policy management", "externalDocs": { "description": "Design", "url": ( "https://github.com/hyperledger/indy-sdk/tree/" "master/docs/design/003-wallet-storage" ), }, } )
32.331868
87
0.653864
18fa58dd610ccbb4d20566e11d309b317b29cb93
3,692
py
Python
configs/top_down/resnet/jhmdb/res50_jhmdb_sub1_256x256.py
irvingzhang0512/mmpose
17557522ce3e41f830973079c5b4321935c41439
[ "Apache-2.0" ]
null
null
null
configs/top_down/resnet/jhmdb/res50_jhmdb_sub1_256x256.py
irvingzhang0512/mmpose
17557522ce3e41f830973079c5b4321935c41439
[ "Apache-2.0" ]
null
null
null
configs/top_down/resnet/jhmdb/res50_jhmdb_sub1_256x256.py
irvingzhang0512/mmpose
17557522ce3e41f830973079c5b4321935c41439
[ "Apache-2.0" ]
null
null
null
log_level = 'INFO' load_from = 'https://download.openmmlab.com/mmpose/top_down/resnet/res50_mpii_256x256-418ffc88_20200812.pth' # noqa: E501 resume_from = None dist_params = dict(backend='nccl') workflow = [('train', 1)] checkpoint_config = dict(interval=1) evaluation = dict(interval=1, metric=['PCK', 'tPCK'], key_indicator='Mean PCK') optimizer = dict( type='Adam', lr=5e-4, ) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[8, 15]) total_epochs = 20 log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) channel_cfg = dict( num_output_channels=15, dataset_joints=15, dataset_channel=[ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], ], inference_channel=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) # model settings model = dict( type='TopDown', pretrained=None, backbone=dict(type='ResNet', depth=50), keypoint_head=dict( type='TopDownSimpleHead', in_channels=2048, out_channels=channel_cfg['num_output_channels'], ), train_cfg=dict(), test_cfg=dict( flip_test=True, post_process='default', shift_heatmap=True, modulate_kernel=11), loss_pose=dict(type='JointsMSELoss', use_target_weight=True)) data_cfg = dict( image_size=[256, 256], heatmap_size=[64, 64], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel'], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=True, det_bbox_thr=0.0, bbox_file='', ) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownGetRandomScaleRotation', rot_factor=30, scale_factor=0.25), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox', 'flip_pairs' ]), ] val_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=[ 'img', ], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox', 'flip_pairs' ]), ] test_pipeline = val_pipeline data_root = 'data/jhmdb' data = dict( samples_per_gpu=64, workers_per_gpu=2, train=dict( type='TopDownJhmdbDataset', ann_file=f'{data_root}/annotations/Sub1_train.json', img_prefix=f'{data_root}/', data_cfg=data_cfg, pipeline=train_pipeline), val=dict( type='TopDownJhmdbDataset', ann_file=f'{data_root}/annotations/Sub1_test.json', img_prefix=f'{data_root}/', data_cfg=data_cfg, pipeline=val_pipeline), test=dict( type='TopDownJhmdbDataset', ann_file=f'{data_root}/annotations/Sub1_test.json', img_prefix=f'{data_root}/', data_cfg=data_cfg, pipeline=val_pipeline), )
27.147059
122
0.618364
795e9e4f2493c0c3db5247271e0247273b09c0e8
428
py
Python
tests/integrationTests/tests/json/__init__.py
hifiadi/Submitty
62a8239313cff7e3f841ff66aeda6b0557e9c15b
[ "BSD-3-Clause" ]
null
null
null
tests/integrationTests/tests/json/__init__.py
hifiadi/Submitty
62a8239313cff7e3f841ff66aeda6b0557e9c15b
[ "BSD-3-Clause" ]
null
null
null
tests/integrationTests/tests/json/__init__.py
hifiadi/Submitty
62a8239313cff7e3f841ff66aeda6b0557e9c15b
[ "BSD-3-Clause" ]
null
null
null
# Necessary imports. Provides library functions to ease writing tests. from lib import testcase @testcase def correct_json_output(test): test.run_validator() # Runs validator.out with default arguments # Check differences on output files. Files within the data directory are compared with # their counterparts in the validation directory. test.json_diff("test02_0_diff.json") test.json_diff("results.json")
38.909091
90
0.775701
9772dc66e1e665bee12a41cd09ece76252d51502
511
py
Python
pycritty/commands/__init__.py
binRick/pycritty
ae27e61fe597c22e6830d62533e11d64bf06a3ae
[ "MIT" ]
null
null
null
pycritty/commands/__init__.py
binRick/pycritty
ae27e61fe597c22e6830d62533e11d64bf06a3ae
[ "MIT" ]
null
null
null
pycritty/commands/__init__.py
binRick/pycritty
ae27e61fe597c22e6830d62533e11d64bf06a3ae
[ "MIT" ]
null
null
null
from .pycritty import Pycritty from .ls import ListResource from .save import SaveConfig from .profile import LoadProfile from .create import CreateBinary from .run import RunConfig from .ssh import SSH from .load import LoadConfig from .install import Install from .rm import Remove subcommands = { 'ls': ListResource, 'save': SaveConfig, 'run': RunConfig, 'ssh': SSH, 'binary': CreateBinary, 'load': LoadConfig, 'install': Install, 'rm': Remove, 'profile': LoadProfile, }
22.217391
32
0.710372
694e5d10fde04e63c1766cf32d4e51d618737be8
25,614
py
Python
airflow/providers/google/cloud/operators/compute.py
ChaseKnowlden/airflow
6b71eac1997a7c0db3b8e3aed6b4e65d01871440
[ "Apache-2.0" ]
3
2021-01-29T20:33:56.000Z
2021-08-06T17:35:16.000Z
airflow/providers/google/cloud/operators/compute.py
ChaseKnowlden/airflow
6b71eac1997a7c0db3b8e3aed6b4e65d01871440
[ "Apache-2.0" ]
210
2021-07-17T00:25:52.000Z
2021-12-29T00:44:48.000Z
airflow/providers/google/cloud/operators/compute.py
ChaseKnowlden/airflow
6b71eac1997a7c0db3b8e3aed6b4e65d01871440
[ "Apache-2.0" ]
3
2020-06-30T02:38:17.000Z
2022-01-19T06:14:08.000Z
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """This module contains Google Compute Engine operators.""" from copy import deepcopy from typing import Any, Dict, List, Optional, Sequence, Union from googleapiclient.errors import HttpError from json_merge_patch import merge from airflow.exceptions import AirflowException from airflow.models import BaseOperator from airflow.providers.google.cloud.hooks.compute import ComputeEngineHook from airflow.providers.google.cloud.utils.field_sanitizer import GcpBodyFieldSanitizer from airflow.providers.google.cloud.utils.field_validator import GcpBodyFieldValidator class ComputeEngineBaseOperator(BaseOperator): """Abstract base operator for Google Compute Engine operators to inherit from.""" def __init__( self, *, zone: str, resource_id: str, project_id: Optional[str] = None, gcp_conn_id: str = 'google_cloud_default', api_version: str = 'v1', impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs, ) -> None: self.project_id = project_id self.zone = zone self.resource_id = resource_id self.gcp_conn_id = gcp_conn_id self.api_version = api_version self.impersonation_chain = impersonation_chain self._validate_inputs() super().__init__(**kwargs) def _validate_inputs(self) -> None: if self.project_id == '': raise AirflowException("The required parameter 'project_id' is missing") if not self.zone: raise AirflowException("The required parameter 'zone' is missing") if not self.resource_id: raise AirflowException("The required parameter 'resource_id' is missing") def execute(self, context): pass class ComputeEngineStartInstanceOperator(ComputeEngineBaseOperator): """ Starts an instance in Google Compute Engine. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:ComputeEngineStartInstanceOperator` :param zone: Google Cloud zone where the instance exists. :type zone: str :param resource_id: Name of the Compute Engine instance resource. :type resource_id: str :param project_id: Optional, Google Cloud Project ID where the Compute Engine Instance exists. If set to None or missing, the default project_id from the Google Cloud connection is used. :type project_id: str :param gcp_conn_id: Optional, The connection ID used to connect to Google Cloud. Defaults to 'google_cloud_default'. :type gcp_conn_id: str :param api_version: Optional, API version used (for example v1 - or beta). Defaults to v1. :type api_version: str :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). :type impersonation_chain: Union[str, Sequence[str]] """ # [START gce_instance_start_template_fields] template_fields = ( 'project_id', 'zone', 'resource_id', 'gcp_conn_id', 'api_version', 'impersonation_chain', ) # [END gce_instance_start_template_fields] def execute(self, context) -> None: hook = ComputeEngineHook( gcp_conn_id=self.gcp_conn_id, api_version=self.api_version, impersonation_chain=self.impersonation_chain, ) return hook.start_instance(zone=self.zone, resource_id=self.resource_id, project_id=self.project_id) class ComputeEngineStopInstanceOperator(ComputeEngineBaseOperator): """ Stops an instance in Google Compute Engine. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:ComputeEngineStopInstanceOperator` :param zone: Google Cloud zone where the instance exists. :type zone: str :param resource_id: Name of the Compute Engine instance resource. :type resource_id: str :param project_id: Optional, Google Cloud Project ID where the Compute Engine Instance exists. If set to None or missing, the default project_id from the Google Cloud connection is used. :type project_id: str :param gcp_conn_id: Optional, The connection ID used to connect to Google Cloud. Defaults to 'google_cloud_default'. :type gcp_conn_id: str :param api_version: Optional, API version used (for example v1 - or beta). Defaults to v1. :type api_version: str :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). :type impersonation_chain: Union[str, Sequence[str]] """ # [START gce_instance_stop_template_fields] template_fields = ( 'project_id', 'zone', 'resource_id', 'gcp_conn_id', 'api_version', 'impersonation_chain', ) # [END gce_instance_stop_template_fields] def execute(self, context) -> None: hook = ComputeEngineHook( gcp_conn_id=self.gcp_conn_id, api_version=self.api_version, impersonation_chain=self.impersonation_chain, ) hook.stop_instance(zone=self.zone, resource_id=self.resource_id, project_id=self.project_id) SET_MACHINE_TYPE_VALIDATION_SPECIFICATION = [ dict(name="machineType", regexp="^.+$"), ] class ComputeEngineSetMachineTypeOperator(ComputeEngineBaseOperator): """ Changes the machine type for a stopped instance to the machine type specified in the request. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:ComputeEngineSetMachineTypeOperator` :param zone: Google Cloud zone where the instance exists. :type zone: str :param resource_id: Name of the Compute Engine instance resource. :type resource_id: str :param body: Body required by the Compute Engine setMachineType API, as described in https://cloud.google.com/compute/docs/reference/rest/v1/instances/setMachineType#request-body :type body: dict :param project_id: Optional, Google Cloud Project ID where the Compute Engine Instance exists. If set to None or missing, the default project_id from the Google Cloud connection is used. :type project_id: str :param gcp_conn_id: Optional, The connection ID used to connect to Google Cloud. Defaults to 'google_cloud_default'. :type gcp_conn_id: str :param api_version: Optional, API version used (for example v1 - or beta). Defaults to v1. :type api_version: str :param validate_body: Optional, If set to False, body validation is not performed. Defaults to False. :type validate_body: bool :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). :type impersonation_chain: Union[str, Sequence[str]] """ # [START gce_instance_set_machine_type_template_fields] template_fields = ( 'project_id', 'zone', 'resource_id', 'body', 'gcp_conn_id', 'api_version', 'impersonation_chain', ) # [END gce_instance_set_machine_type_template_fields] def __init__( self, *, zone: str, resource_id: str, body: dict, project_id: Optional[str] = None, gcp_conn_id: str = 'google_cloud_default', api_version: str = 'v1', validate_body: bool = True, impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs, ) -> None: self.body = body self._field_validator = None # type: Optional[GcpBodyFieldValidator] if validate_body: self._field_validator = GcpBodyFieldValidator( SET_MACHINE_TYPE_VALIDATION_SPECIFICATION, api_version=api_version ) super().__init__( project_id=project_id, zone=zone, resource_id=resource_id, gcp_conn_id=gcp_conn_id, api_version=api_version, impersonation_chain=impersonation_chain, **kwargs, ) def _validate_all_body_fields(self) -> None: if self._field_validator: self._field_validator.validate(self.body) def execute(self, context) -> None: hook = ComputeEngineHook( gcp_conn_id=self.gcp_conn_id, api_version=self.api_version, impersonation_chain=self.impersonation_chain, ) self._validate_all_body_fields() return hook.set_machine_type( zone=self.zone, resource_id=self.resource_id, body=self.body, project_id=self.project_id ) GCE_INSTANCE_TEMPLATE_VALIDATION_PATCH_SPECIFICATION = [ dict(name="name", regexp="^.+$"), dict(name="description", optional=True), dict( name="properties", type='dict', optional=True, fields=[ dict(name="description", optional=True), dict(name="tags", optional=True, fields=[dict(name="items", optional=True)]), dict(name="machineType", optional=True), dict(name="canIpForward", optional=True), dict(name="networkInterfaces", optional=True), # not validating deeper dict(name="disks", optional=True), # not validating the array deeper dict( name="metadata", optional=True, fields=[ dict(name="fingerprint", optional=True), dict(name="items", optional=True), dict(name="kind", optional=True), ], ), dict(name="serviceAccounts", optional=True), # not validating deeper dict( name="scheduling", optional=True, fields=[ dict(name="onHostMaintenance", optional=True), dict(name="automaticRestart", optional=True), dict(name="preemptible", optional=True), dict(name="nodeAffinities", optional=True), # not validating deeper ], ), dict(name="labels", optional=True), dict(name="guestAccelerators", optional=True), # not validating deeper dict(name="minCpuPlatform", optional=True), ], ), ] # type: List[Dict[str, Any]] GCE_INSTANCE_TEMPLATE_FIELDS_TO_SANITIZE = [ "kind", "id", "name", "creationTimestamp", "properties.disks.sha256", "properties.disks.kind", "properties.disks.sourceImageEncryptionKey.sha256", "properties.disks.index", "properties.disks.licenses", "properties.networkInterfaces.kind", "properties.networkInterfaces.accessConfigs.kind", "properties.networkInterfaces.name", "properties.metadata.kind", "selfLink", ] class ComputeEngineCopyInstanceTemplateOperator(ComputeEngineBaseOperator): """ Copies the instance template, applying specified changes. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:ComputeEngineCopyInstanceTemplateOperator` :param resource_id: Name of the Instance Template :type resource_id: str :param body_patch: Patch to the body of instanceTemplates object following rfc7386 PATCH semantics. The body_patch content follows https://cloud.google.com/compute/docs/reference/rest/v1/instanceTemplates Name field is required as we need to rename the template, all the other fields are optional. It is important to follow PATCH semantics - arrays are replaced fully, so if you need to update an array you should provide the whole target array as patch element. :type body_patch: dict :param project_id: Optional, Google Cloud Project ID where the Compute Engine Instance exists. If set to None or missing, the default project_id from the Google Cloud connection is used. :type project_id: str :param request_id: Optional, unique request_id that you might add to achieve full idempotence (for example when client call times out repeating the request with the same request id will not create a new instance template again). It should be in UUID format as defined in RFC 4122. :type request_id: str :param gcp_conn_id: Optional, The connection ID used to connect to Google Cloud. Defaults to 'google_cloud_default'. :type gcp_conn_id: str :param api_version: Optional, API version used (for example v1 - or beta). Defaults to v1. :type api_version: str :param validate_body: Optional, If set to False, body validation is not performed. Defaults to False. :type validate_body: bool :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). :type impersonation_chain: Union[str, Sequence[str]] """ # [START gce_instance_template_copy_operator_template_fields] template_fields = ( 'project_id', 'resource_id', 'request_id', 'gcp_conn_id', 'api_version', 'impersonation_chain', ) # [END gce_instance_template_copy_operator_template_fields] def __init__( self, *, resource_id: str, body_patch: dict, project_id: Optional[str] = None, request_id: Optional[str] = None, gcp_conn_id: str = 'google_cloud_default', api_version: str = 'v1', validate_body: bool = True, impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs, ) -> None: self.body_patch = body_patch self.request_id = request_id self._field_validator = None # Optional[GcpBodyFieldValidator] if 'name' not in self.body_patch: raise AirflowException( "The body '{}' should contain at least " "name for the new operator in the 'name' field".format(body_patch) ) if validate_body: self._field_validator = GcpBodyFieldValidator( GCE_INSTANCE_TEMPLATE_VALIDATION_PATCH_SPECIFICATION, api_version=api_version ) self._field_sanitizer = GcpBodyFieldSanitizer(GCE_INSTANCE_TEMPLATE_FIELDS_TO_SANITIZE) super().__init__( project_id=project_id, zone='global', resource_id=resource_id, gcp_conn_id=gcp_conn_id, api_version=api_version, impersonation_chain=impersonation_chain, **kwargs, ) def _validate_all_body_fields(self) -> None: if self._field_validator: self._field_validator.validate(self.body_patch) def execute(self, context) -> dict: hook = ComputeEngineHook( gcp_conn_id=self.gcp_conn_id, api_version=self.api_version, impersonation_chain=self.impersonation_chain, ) self._validate_all_body_fields() try: # Idempotence check (sort of) - we want to check if the new template # is already created and if is, then we assume it was created by previous run # of CopyTemplate operator - we do not check if content of the template # is as expected. Templates are immutable so we cannot update it anyway # and deleting/recreating is not worth the hassle especially # that we cannot delete template if it is already used in some Instance # Group Manager. We assume success if the template is simply present existing_template = hook.get_instance_template( resource_id=self.body_patch['name'], project_id=self.project_id ) self.log.info( "The %s template already existed. It was likely created by previous run of the operator. " "Assuming success.", existing_template, ) return existing_template except HttpError as e: # We actually expect to get 404 / Not Found here as the template should # not yet exist if not e.resp.status == 404: raise e old_body = hook.get_instance_template(resource_id=self.resource_id, project_id=self.project_id) new_body = deepcopy(old_body) self._field_sanitizer.sanitize(new_body) new_body = merge(new_body, self.body_patch) self.log.info("Calling insert instance template with updated body: %s", new_body) hook.insert_instance_template(body=new_body, request_id=self.request_id, project_id=self.project_id) return hook.get_instance_template(resource_id=self.body_patch['name'], project_id=self.project_id) class ComputeEngineInstanceGroupUpdateManagerTemplateOperator(ComputeEngineBaseOperator): """ Patches the Instance Group Manager, replacing source template URL with the destination one. API V1 does not have update/patch operations for Instance Group Manager, so you must use beta or newer API version. Beta is the default. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:ComputeEngineInstanceGroupUpdateManagerTemplateOperator` :param resource_id: Name of the Instance Group Manager :type resource_id: str :param zone: Google Cloud zone where the Instance Group Manager exists. :type zone: str :param source_template: URL of the template to replace. :type source_template: str :param destination_template: URL of the target template. :type destination_template: str :param project_id: Optional, Google Cloud Project ID where the Compute Engine Instance exists. If set to None or missing, the default project_id from the Google Cloud connection is used. :type project_id: str :param request_id: Optional, unique request_id that you might add to achieve full idempotence (for example when client call times out repeating the request with the same request id will not create a new instance template again). It should be in UUID format as defined in RFC 4122. :type request_id: str :param gcp_conn_id: Optional, The connection ID used to connect to Google Cloud. Defaults to 'google_cloud_default'. :type gcp_conn_id: str :param api_version: Optional, API version used (for example v1 - or beta). Defaults to v1. :type api_version: str :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). :type impersonation_chain: Union[str, Sequence[str]] """ # [START gce_igm_update_template_operator_template_fields] template_fields = ( 'project_id', 'resource_id', 'zone', 'request_id', 'source_template', 'destination_template', 'gcp_conn_id', 'api_version', 'impersonation_chain', ) # [END gce_igm_update_template_operator_template_fields] def __init__( self, *, resource_id: str, zone: str, source_template: str, destination_template: str, project_id: Optional[str] = None, update_policy: Optional[Dict[str, Any]] = None, request_id: Optional[str] = None, gcp_conn_id: str = 'google_cloud_default', api_version='beta', impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs, ) -> None: self.zone = zone self.source_template = source_template self.destination_template = destination_template self.request_id = request_id self.update_policy = update_policy self._change_performed = False if api_version == 'v1': raise AirflowException( "Api version v1 does not have update/patch " "operations for Instance Group Managers. Use beta" " api version or above" ) super().__init__( project_id=project_id, zone=self.zone, resource_id=resource_id, gcp_conn_id=gcp_conn_id, api_version=api_version, impersonation_chain=impersonation_chain, **kwargs, ) def _possibly_replace_template(self, dictionary: dict) -> None: if dictionary.get('instanceTemplate') == self.source_template: dictionary['instanceTemplate'] = self.destination_template self._change_performed = True def execute(self, context) -> Optional[bool]: hook = ComputeEngineHook( gcp_conn_id=self.gcp_conn_id, api_version=self.api_version, impersonation_chain=self.impersonation_chain, ) old_instance_group_manager = hook.get_instance_group_manager( zone=self.zone, resource_id=self.resource_id, project_id=self.project_id ) patch_body = {} if 'versions' in old_instance_group_manager: patch_body['versions'] = old_instance_group_manager['versions'] if 'instanceTemplate' in old_instance_group_manager: patch_body['instanceTemplate'] = old_instance_group_manager['instanceTemplate'] if self.update_policy: patch_body['updatePolicy'] = self.update_policy self._possibly_replace_template(patch_body) if 'versions' in patch_body: for version in patch_body['versions']: self._possibly_replace_template(version) if self._change_performed or self.update_policy: self.log.info("Calling patch instance template with updated body: %s", patch_body) return hook.patch_instance_group_manager( zone=self.zone, resource_id=self.resource_id, body=patch_body, request_id=self.request_id, project_id=self.project_id, ) else: # Idempotence achieved return True
42.477612
108
0.671274
6bfa7f2aaf82556910573e9d2d8ec775743def5f
634
py
Python
examples/open-floating-on-ws.py
Hi-Angel/i3ipc-python
93a8f0c39e5082751824b40b51680bcbc16bfce2
[ "BSD-3-Clause" ]
null
null
null
examples/open-floating-on-ws.py
Hi-Angel/i3ipc-python
93a8f0c39e5082751824b40b51680bcbc16bfce2
[ "BSD-3-Clause" ]
null
null
null
examples/open-floating-on-ws.py
Hi-Angel/i3ipc-python
93a8f0c39e5082751824b40b51680bcbc16bfce2
[ "BSD-3-Clause" ]
1
2020-04-24T04:23:12.000Z
2020-04-24T04:23:12.000Z
#!/usr/bin/env python3 # This example shows how to make any window that opens on a workspace floating # All workspaces that start with a string in this list will have their windows # open floating FLOATING_WORKSPACES = [ '3' ] def is_ws_floating(name): for floating_ws in FLOATING_WORKSPACES: if name.startswith(floating_ws): return True return False import i3ipc i3 = i3ipc.Connection() def on_window_open(i3, e): ws = i3.get_tree().find_focused().workspace() if is_ws_floating(ws.props.name): e.container.command('floating toggle') i3.on('window::new', on_window_open) i3.main()
22.642857
78
0.709779
afe5a0a4d26a3cc5584f0a93bcfb36e2e990cdec
999
py
Python
tests/test_logger.py
huykingsofm/hks_pylib
d73a896a395df301ef8082a358ec8e23f7bc708a
[ "MIT" ]
2
2021-04-06T07:01:27.000Z
2021-07-30T11:08:59.000Z
tests/test_logger.py
huykingsofm/hks_pylib
d73a896a395df301ef8082a358ec8e23f7bc708a
[ "MIT" ]
null
null
null
tests/test_logger.py
huykingsofm/hks_pylib
d73a896a395df301ef8082a358ec8e23f7bc708a
[ "MIT" ]
null
null
null
import threading from hks_pylib.logger.logger_generator import InvisibleLoggerGenerator, StandardLoggerGenerator from hks_pylib.logger.logger import Display, console_output from hks_pylib.logger.standard import StdLevels, StdUsers from hks_pylib.logger import acprint def test_logger(): invisible_logger_generator = InvisibleLoggerGenerator() standard_logger_generator = StandardLoggerGenerator("tests/test_logger.log") log = invisible_logger_generator.generate( "Name", {StdUsers.USER: [StdLevels.INFO], StdUsers.DEV: Display.ALL}) log(StdUsers.USER, StdLevels.INFO, "hks_pylib") log(StdUsers.DEV, StdLevels.DEBUG, "huykingsofm") log = standard_logger_generator.generate( "Name", {StdUsers.USER: [StdLevels.INFO], StdUsers.DEV: Display.ALL}) log(StdUsers.USER, StdLevels.INFO, "hks_pylib") log(StdUsers.DEV, StdLevels.DEBUG, "huykingsofm") acprint("huythongminh", end="\n") if __name__ == "__main__": test_logger()
41.625
96
0.745746
176b55eae40006394d2987e0a8a8c45b8ca74988
2,522
py
Python
src/clustaar/webhook/middlewares/validate_signature_middleware.py
Clustaar/clustaar.webhook
81756ea7168e3281e17844829e6d98d89d372e54
[ "MIT" ]
4
2018-06-08T13:20:33.000Z
2022-01-03T17:00:13.000Z
src/clustaar/webhook/middlewares/validate_signature_middleware.py
Clustaar/clustaar.webhook
81756ea7168e3281e17844829e6d98d89d372e54
[ "MIT" ]
1
2020-08-18T16:10:04.000Z
2020-08-18T16:10:04.000Z
src/clustaar/webhook/middlewares/validate_signature_middleware.py
Clustaar/clustaar.webhook
81756ea7168e3281e17844829e6d98d89d372e54
[ "MIT" ]
2
2018-06-12T06:06:05.000Z
2021-03-04T16:55:37.000Z
import falcon import hashlib import hmac SIGNATURE_HEADER = "X-Hub-Signature" class ValidateSignatureMiddleware(object): """Middleware validating the request signature to prevent request forgery. If signature is invalid a HTTP 400 status code is returned. """ def __init__(self, private_key): """ Args: private_key (str): private used for validating payload signature """ self._private_key = private_key.encode() self._hash_functions = {"sha1": hashlib.sha1} def process_resource(self, req, resp, resource, params): """Falcon callback. Raise error if signature is invalid. Args: req: the HTTP request resp: the HTTP response """ signature = req.get_header(SIGNATURE_HEADER) if signature: hash_and_value = signature.split("=") if len(hash_and_value) != 2: self._raise("The request's signature format is invalid.") hash_function, value = hash_and_value self._validate_signature(req, value, hash_function) else: self._raise("The request's signature is missing.") def _validate_signature(self, req, signature, hash_function_name): """Validates that signature is correct. If signature is invalid it raises an HTTPInvalidHeader error. Args: req: the HTTP request signature (str): signature to validate hash_function_name (str): hash algorithm used to hash payload """ hash_function = self._hash_functions.get(hash_function_name) if not hash_function: self._raise( "The request's signature hash function is invalid " "(should be one of %s)." % list(self._hash_functions.keys()) ) signed_headers = ("date",) buffer = "\n".join( ["%s=%s" % (header, req.get_header(header)) for header in signed_headers] ) buffer += "\n" + req.body.decode("utf-8") expected_signature = hmac.new(self._private_key, buffer.encode(), hash_function).hexdigest() if expected_signature != signature: self._raise("The request's signature is invalid.") def _raise(self, description): """Raises a HTTPInvalidHeader exception with descrition. Args: descrition (str): error descrition """ raise falcon.HTTPInvalidHeader(description, SIGNATURE_HEADER)
34.081081
100
0.619746
77358bad2ba634d05fa0cd9a53c42dff3de53077
1,216
py
Python
tests/test_merge_v4.py
mrtolkien/riotwatcher_dto
777455c45159f177d3a7ba3956043ff26f625c30
[ "MIT" ]
8
2020-10-01T18:01:15.000Z
2022-02-22T22:51:30.000Z
tests/test_merge_v4.py
mrtolkien/riotwatcher_dto
777455c45159f177d3a7ba3956043ff26f625c30
[ "MIT" ]
2
2021-12-15T23:02:02.000Z
2022-01-25T06:07:53.000Z
tests/test_merge_v4.py
mrtolkien/riotwatcher_dto
777455c45159f177d3a7ba3956043ff26f625c30
[ "MIT" ]
4
2020-07-30T23:24:06.000Z
2022-02-21T19:26:01.000Z
import os import lol_dto import roleml from riot_transmute import match_to_game, match_timeline_to_game from riot_transmute.merge_match_and_timeline import ( merge_games_from_riot_match_and_timeline, ) def test_full(match_v4_dto, timeline_game_id_platform_id): timeline, game_id, platform_id = timeline_game_id_platform_id match_dto, timeline = roleml.fix_game( match_v4_dto, timeline, True, ) game_match = match_to_game(match_dto) game_timeline = match_timeline_to_game(timeline, game_id, platform_id) game_full = merge_games_from_riot_match_and_timeline(game_match, game_timeline) lol_dto.utilities.dump_json(game_full, os.path.join("examples", "game_merged.json")) assert game_full.sources.riotLolApi.gameId == game_id assert game_full.teams.BLUE.players[0].snapshots.__len__() > 0 assert game_full.duration assert game_full.patch return game_full def test_custom_game(custom_match_and_timeline): match, timeline = custom_match_and_timeline game = match_to_game(match) game_timeline = match_timeline_to_game(timeline, 4676184349, "EUW1") assert merge_games_from_riot_match_and_timeline(game, game_timeline)
28.27907
88
0.780428
73d3c78fc5fe15c84e1042aa75a2c23381f1743f
381
py
Python
Prime Genterator.py
cjw0621/Growing-Python
50d754ab0a9d32f2284b3732df046f1ce849eca4
[ "Unlicense" ]
1
2021-11-21T01:51:30.000Z
2021-11-21T01:51:30.000Z
Prime Genterator.py
cjw0621/Growing-Python
50d754ab0a9d32f2284b3732df046f1ce849eca4
[ "Unlicense" ]
null
null
null
Prime Genterator.py
cjw0621/Growing-Python
50d754ab0a9d32f2284b3732df046f1ce849eca4
[ "Unlicense" ]
null
null
null
def isPrime(x): if x < 2: return False elif x == 2: return True for n in range(2, x): if x % n ==0: return return True def primeGenerator(a, b): #your code goes here for i in range(a, b): if isPrime(i): yield i f = int(input()) t = int(input()) print(list(primeGenerator(f, t)))
19.05
33
0.480315
92252568c48360eeea114393f2168a63e0c79d6d
1,280
py
Python
python/tHome/sma/test/dcPower.py
ZigmundRat/T-Home
5dc8689f52d87dac890051e540b338b009293ced
[ "BSD-2-Clause" ]
18
2016-04-17T19:39:28.000Z
2020-11-19T06:55:20.000Z
python/tHome/sma/test/dcPower.py
ZigmundRat/T-Home
5dc8689f52d87dac890051e540b338b009293ced
[ "BSD-2-Clause" ]
6
2016-10-31T13:53:45.000Z
2019-03-20T20:47:03.000Z
python/tHome/sma/test/dcPower.py
ZigmundRat/T-Home
5dc8689f52d87dac890051e540b338b009293ced
[ "BSD-2-Clause" ]
12
2016-10-31T12:29:08.000Z
2021-12-28T12:18:28.000Z
import unittest from FakeSocket import FakeSocket import tHome as T #=========================================================================== #=========================================================================== class TestDcPower ( T.util.test.Case ) : def test_dcPower( self ): reply = """ 53 4D 41 00 00 04 02 A0 00 00 00 01 00 5E 00 10 60 65 17 90 7D 00 AB 94 40 3B 00 A0 F7 00 E0 27 06 72 00 00 00 00 00 00 0E 80 01 02 80 53 00 00 00 00 01 00 00 00 01 1E 25 40 85 22 AF 53 13 08 00 00 13 08 00 00 13 08 00 00 13 08 00 00 01 00 00 00 02 1E 25 40 85 22 AF 53 21 08 00 00 21 08 00 00 21 08 00 00 21 08 00 00 01 00 00 00 00 00 00 00 """ l = T.sma.Link( "fake", connect=False ) try: l.socket = FakeSocket( T.util.hex.toBytes( reply ) ) o1 = l.dcPower() l.decode = False buf, decoder = l.dcPower() o2 = decoder( buf ) finally: l.socket = None right = T.util.Data( dcPower1 = 2067.0, dcPower2 = 2081.0, ) print o1 for k in right.keys(): r = right[k] self.eq( getattr( o1, k ), r, k ) self.eq( getattr( o2, k ), r, k ) #===========================================================================
26.666667
76
0.452344
9b855f9637487340a666d4bfa656574793bcc8c9
5,906
py
Python
bahai_writings/documentengine.py
jlbradley1844/python-stuff
8cc65115600f15f11577b3392161b18aedafc663
[ "Apache-2.0" ]
null
null
null
bahai_writings/documentengine.py
jlbradley1844/python-stuff
8cc65115600f15f11577b3392161b18aedafc663
[ "Apache-2.0" ]
null
null
null
bahai_writings/documentengine.py
jlbradley1844/python-stuff
8cc65115600f15f11577b3392161b18aedafc663
[ "Apache-2.0" ]
null
null
null
from docmetadata import DOCUMENT_INDEX, CATEGORIES from documentcollection import DocumentCollection from docutility import DocUtility class DocumentEngine(object): """ The "engine" in the search framework. This is a management object that is used to dispatch searches and retrieve document information from those searches. """ def __init__(self, nlp_engine = None): """ sets up the document management objects. :param nlp_engine: if passed in, passes this instance of the NLP document engine to doc_collection upon creation. This is used so that multiple DocumentCollection objects can share the same large NLP object. """ self.doc_collection = DocumentCollection(DOCUMENT_INDEX, nlp_engine) self.session_track = {} def get_categories(self): """ Returns the category metadata array """ return CATEGORIES def get_document_tags(self, category=None): """ Returns an array of tags, associated with the category each is associated with :param optional. If supplied, returns only those tags that match the category """ if category is None: tag_coll = [{ "tag": key, "category": DOCUMENT_INDEX[key]["category"] } for key in DOCUMENT_INDEX] else: tag_coll = [{ "tag": key, "category": category } for key in DOCUMENT_INDEX if DOCUMENT_INDEX[key]["category"] == category] return tag_coll def get_metadata(self, tag): """ Returns the document metadata associated with a tag. Returns the hardcoded lookup values from DOC_METADATA """ return DOC_METADATA[tag] def simple_search(self, tokens, document_tags=None, category=None): """ Returns a document and a reference inside the document with those matches. :param tokens: array of tokens to match. N.B. inital implemenation to be just ONE SINGLE WORD. ADDITIONAL TOKENS WILL BE IGNORED. :param documen_ttags: optional. If specified, indicates the set of documents the search is applied to. If not specified, matches all. :param category: optional. If specified, indicates the category of documents the search is applied to. Only used if documenttags=None :returns array of json-style objects; each object consisting of "tag" - which document it was found in "selection" - sentence within which the token(s) found "scope" - the scope of selection, which is always "sent" "section" - section of document "para" - paragraph number """ match_token = tokens[0] if category is not None and document_tags is None: document_tags = [key for key in DOCUMENT_INDEX if DOCUMENT_INDEX[key]["category"] == category] raw_results = self.doc_collection.simple_search(match_token, document_tags) results = [] # return array of text references, consisting of tag, sentence and scope for doc_tag in raw_results: doc = self.doc_collection.extract_doc(doc_tag)["nlpdoc"] index = self.doc_collection.extract_doc(doc_tag)["index"] for ref in raw_results[doc_tag]: found_ref = {} found_ref["tag"] = doc_tag begin = ref[2] end = ref[3] found_ref["selection"] = str(doc[begin:end].sent) found_ref["scope"] = "sent" lookup_info = index.lookup(begin) found_ref["section"] = lookup_info["section"] found_ref["para"] = lookup_info["paragraph"] results.append(found_ref) return results def expand_selection(self, tag, token_ref, current_scope="sent", is_override=False): """ Given a document tag and a reference into it, get the text associated with the next-bigger scope and returns the next bigger scope. - If the next-bigger scope is identical, increase the current_scope until you get something different - If the value to be returned is greater than MAX_SELECTION_SIZE tokens and is_override is false, then instead of returning something, an error object will be returned indicating that the expand cannot be made because it is too big. (In practice, this is used to prompt the user whether they really want that much document text.) :param tag - document tag :param token_ref - numerical index into document, by token # :param current_scope - SCOPE value indicating scope of text selection that has already been returned to the client. :param is_override - if false, will return error if section is above MAX_SECTION_SIZE. If true, will ignore warning and return as much text as is requested. :returns - dictionary object indicating the following "tag" - tag of document "token_ref" - token_ref passed in "selection" - text of new selection "scope" - scope of new selection passed back """ txt = self.doc_collection.extract_doc(tag)["raw"] index = self.doc_collection.extract_doc(tag)["index"] doc_selector = DocUtility(index, txt) span = self.doc_collection.extract_doc(tag)["nlpdoc"][token_ref:token_ref+1] (text, scope) = doc_selector.get_next_scoped_selection(span, current_scope, is_override) return { "tag": tag, "token_ref": token_ref, "selection": text, "scope": scope }
41.886525
94
0.620894
b8be835c63b2fbd63c488bfb431e557843d49d69
321
py
Python
devices/api/views.py
ggidofalvy-tc/peering-manager
0c358b108494f51936264f3ec5d600c20827a745
[ "Apache-2.0" ]
173
2020-08-08T15:38:08.000Z
2022-03-21T11:35:25.000Z
devices/api/views.py
ggidofalvy-tc/peering-manager
0c358b108494f51936264f3ec5d600c20827a745
[ "Apache-2.0" ]
192
2020-08-08T22:03:45.000Z
2022-03-31T04:20:44.000Z
devices/api/views.py
ggidofalvy-tc/peering-manager
0c358b108494f51936264f3ec5d600c20827a745
[ "Apache-2.0" ]
33
2020-08-14T21:24:38.000Z
2022-03-06T14:55:13.000Z
from devices.filters import PlatformFilterSet from devices.models import Platform from utils.api import ModelViewSet from .serializers import PlatformSerializer class PlatformViewSet(ModelViewSet): queryset = Platform.objects.all() serializer_class = PlatformSerializer filterset_class = PlatformFilterSet
26.75
45
0.825545
b00911ba6f15f4db9f06ab3f3a6b12d4bc67f2ce
97
py
Python
tinyq/constants.py
mozillazg/tinyq
fd9ecc593931c9b315c4aeb9150389b3e4ae670e
[ "MIT" ]
14
2017-08-02T23:30:16.000Z
2021-05-31T19:58:29.000Z
tinyq/constants.py
mozillazg/tinyq
fd9ecc593931c9b315c4aeb9150389b3e4ae670e
[ "MIT" ]
null
null
null
tinyq/constants.py
mozillazg/tinyq
fd9ecc593931c9b315c4aeb9150389b3e4ae670e
[ "MIT" ]
2
2017-03-13T09:36:05.000Z
2017-10-27T14:33:48.000Z
# -*- coding: utf-8 -*- DEFAULT_SCHEDULE_QUEUE_KEY = 'schedules' DEFAULT_JOB_QUEUE_KEY = 'jobs'
19.4
40
0.721649
b637e64b98840de93a7fe0a67583d8e680179b5e
2,365
py
Python
f5/bigip/tm/gtm/test/unit/test_topology.py
nghia-tran/f5-common-python
acb23a6e5830a119b460c19a578654113419f5c3
[ "Apache-2.0" ]
272
2016-02-23T06:05:44.000Z
2022-02-20T02:09:32.000Z
f5/bigip/tm/gtm/test/unit/test_topology.py
nghia-tran/f5-common-python
acb23a6e5830a119b460c19a578654113419f5c3
[ "Apache-2.0" ]
1,103
2016-02-11T17:48:03.000Z
2022-02-15T17:13:37.000Z
f5/bigip/tm/gtm/test/unit/test_topology.py
nghia-tran/f5-common-python
acb23a6e5830a119b460c19a578654113419f5c3
[ "Apache-2.0" ]
167
2016-02-11T17:48:21.000Z
2022-01-17T20:13:05.000Z
# Copyright 2014-2017 F5 Networks Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pytest from f5.bigip import ManagementRoot from f5.bigip.tm import Gtm from f5.bigip.tm.gtm.topology import Topology from f5.sdk_exception import InvalidName from f5.sdk_exception import MissingRequiredCreationParameter from f5.sdk_exception import UnsupportedOperation @pytest.fixture def FakeTopology(fakeicontrolsession): mr = ManagementRoot('192.168.1.1', 'admin', 'admin') fake_gtm = Gtm(mr.tm) fake_top = Topology(fake_gtm) return fake_top class TestCreate(object): def test_create_two(self, fakeicontrolsession): b = ManagementRoot('192.168.1.1', 'admin', 'admin') r1 = b.tm.gtm.topology_s.topology r2 = b.tm.gtm.topology_s.topology assert r1 is not r2 def test_create_no_args(self, FakeTopology): with pytest.raises(MissingRequiredCreationParameter): FakeTopology.create() def test_invalid_name_no_keywords(self, FakeTopology): with pytest.raises(InvalidName): FakeTopology.create(name='fake_stuff') def test_invalid_name_no_ldns(self, FakeTopology): with pytest.raises(InvalidName): FakeTopology.create(name='server: fake_stuff') def test_invalid_name_no_server(self, FakeTopology): with pytest.raises(InvalidName): FakeTopology.create(name='ldns: fake_stuff') class Test_Refresh_Modify_Update(object): def test_refresh_raises(self, FakeTopology): with pytest.raises(UnsupportedOperation): FakeTopology.refresh() def test_modify_raises(self, FakeTopology): with pytest.raises(UnsupportedOperation): FakeTopology.modify() def test_update_raises(self, FakeTopology): with pytest.raises(UnsupportedOperation): FakeTopology.update()
33.785714
74
0.728964
32d086de6b59c03cd1d45dc1f7ba72ec776da397
1,296
py
Python
djsniper/users/tests/test_admin.py
justdjango/django-nft-sniper
75306fa223493ec60cf621489c264b43110970c8
[ "MIT" ]
18
2021-12-24T05:45:35.000Z
2022-03-30T05:18:53.000Z
djsniper/users/tests/test_admin.py
zevcc-gh/nft-sniper
7ba41adffe7b5157b98a162aa72272a89fb9bda2
[ "MIT" ]
1
2022-03-05T05:58:27.000Z
2022-03-05T05:58:27.000Z
djsniper/users/tests/test_admin.py
zevcc-gh/nft-sniper
7ba41adffe7b5157b98a162aa72272a89fb9bda2
[ "MIT" ]
3
2022-01-09T16:58:02.000Z
2022-02-23T11:53:46.000Z
import pytest from django.urls import reverse from djsniper.users.models import User pytestmark = pytest.mark.django_db class TestUserAdmin: def test_changelist(self, admin_client): url = reverse("admin:users_user_changelist") response = admin_client.get(url) assert response.status_code == 200 def test_search(self, admin_client): url = reverse("admin:users_user_changelist") response = admin_client.get(url, data={"q": "test"}) assert response.status_code == 200 def test_add(self, admin_client): url = reverse("admin:users_user_add") response = admin_client.get(url) assert response.status_code == 200 response = admin_client.post( url, data={ "username": "test", "password1": "My_R@ndom-P@ssw0rd", "password2": "My_R@ndom-P@ssw0rd", }, ) assert response.status_code == 302 assert User.objects.filter(username="test").exists() def test_view_user(self, admin_client): user = User.objects.get(username="admin") url = reverse("admin:users_user_change", kwargs={"object_id": user.pk}) response = admin_client.get(url) assert response.status_code == 200
31.609756
79
0.627315
92344056812b06fc0e60d6715c64a2ff100f3231
10,247
py
Python
src/conan_app_launcher/ui/views/conan_search/conan_search.py
goszpeti/app_grid_conan
bd76c8528e6c6b839abd7a4d26d7194428faed7d
[ "MIT" ]
null
null
null
src/conan_app_launcher/ui/views/conan_search/conan_search.py
goszpeti/app_grid_conan
bd76c8528e6c6b839abd7a4d26d7194428faed7d
[ "MIT" ]
null
null
null
src/conan_app_launcher/ui/views/conan_search/conan_search.py
goszpeti/app_grid_conan
bd76c8528e6c6b839abd7a4d26d7194428faed7d
[ "MIT" ]
null
null
null
import pprint from typing import List, Optional import conan_app_launcher.app as app # using global module pattern from conan_app_launcher.core import open_file from conan_app_launcher.ui.common import AsyncLoader, get_themed_asset_image from conan_app_launcher.ui.dialogs import ConanInstallDialog from conan_app_launcher.ui.fluent_window import FluentWindow from conan_app_launcher.ui.views import LocalConanPackageExplorer from conan_app_launcher.ui.widgets import RoundedMenu from conans.model.ref import ConanFileReference from PyQt5.QtCore import QPoint, Qt, pyqtBoundSignal, pyqtSlot from PyQt5.QtGui import QIcon, QKeySequence from PyQt5.QtWidgets import (QAction, QApplication, QDialog, QListWidgetItem, QWidget) from .conan_search_ui import Ui_Form from .model import PROFILE_TYPE, PkgSearchModel, SearchedPackageTreeItem class ConanSearchDialog(QDialog): def __init__(self, parent: Optional[QWidget], conan_pkg_installed: Optional[pyqtBoundSignal] = None, conan_pkg_removed: Optional[pyqtBoundSignal] = None, page_widgets: Optional[FluentWindow.PageStore] = None): # Add minimize and maximize buttons super().__init__(parent, Qt.WindowSystemMenuHint | Qt.WindowMaximizeButtonHint | Qt.WindowCloseButtonHint) self.page_widgets = page_widgets self.conan_pkg_installed = conan_pkg_installed self.conan_pkg_removed = conan_pkg_removed self._ui = Ui_Form() self._ui.setupUi(self) # init search bar icon = QIcon(str(app.asset_path / "icons/icon.ico")) self.setWindowIcon(icon) self._ui.search_button.clicked.connect(self.on_search) self._ui.search_button.setEnabled(False) self._ui.search_line.validator_enabled = False self._ui.search_line.textChanged.connect(self._enable_search_button) self._ui.search_button.setShortcut(QKeySequence(Qt.Key_Return)) # init remotes list remotes = app.conan_api.get_remotes() for remote in remotes: item = QListWidgetItem(remote.name, self._ui.remote_list) item.setFlags(item.flags() | Qt.ItemIsUserCheckable) item.setCheckState(Qt.Checked) item.checkState # sets height to the height of the items, but max 120 items_height = self._ui.remote_list.sizeHintForRow( 0) * self._ui.remote_list.count() + 2 * self._ui.remote_list.frameWidth() self._ui.remote_list.setFixedHeight(min(items_height, 120)) self._pkg_result_model = PkgSearchModel() self._pkg_result_loader = AsyncLoader(self) self._ui.search_results_tree_view.setContextMenuPolicy(Qt.CustomContextMenu) self._ui.search_results_tree_view.customContextMenuRequested.connect(self.on_pkg_context_menu_requested) self.apply_theme() def apply_theme(self): icon = QIcon(get_themed_asset_image("icons/search_packages.png")) self._init_pkg_context_menu() self._ui.search_icon.setPixmap(icon.pixmap(20, 20)) def load(self): # TODO define interface for views pass def _enable_search_button(self): """ Enable search button from minimum 3 characters onwards""" if len(self._ui.search_line.text()) > 2: self._ui.search_button.setEnabled(True) else: self._ui.search_button.setEnabled(False) def _init_pkg_context_menu(self): """ Initalize context menu with all actions """ self.select_cntx_menu = RoundedMenu() self.copy_ref_action = QAction("Copy reference", self) self.copy_ref_action.setIcon(QIcon(get_themed_asset_image("icons/copy_link.png"))) self.select_cntx_menu.addAction(self.copy_ref_action) self.copy_ref_action.triggered.connect(self.on_copy_ref_requested) self.show_conanfile_action = QAction("Show conanfile", self) self.show_conanfile_action.setIcon(QIcon(get_themed_asset_image("icons/file_preview.png"))) self.select_cntx_menu.addAction(self.show_conanfile_action) self.show_conanfile_action.triggered.connect(self.on_show_conanfile_requested) self.install_pkg_action = QAction("Install package", self) self.install_pkg_action.setIcon(QIcon(get_themed_asset_image("icons/download_pkg.png"))) self.select_cntx_menu.addAction(self.install_pkg_action) self.install_pkg_action.triggered.connect(self.on_install_pkg_requested) self.show_in_pkg_exp_action = QAction("Show in Package Explorer", self) self.show_in_pkg_exp_action.setIcon(QIcon( get_themed_asset_image("icons/search_packages.png"))) self.select_cntx_menu.addAction(self.show_in_pkg_exp_action) self.show_in_pkg_exp_action.triggered.connect(self.on_show_in_pkg_exp) @pyqtSlot(QPoint) def on_pkg_context_menu_requested(self, position: QPoint): """ Executes, when context menu is requested. This is done to dynamically grey out some options depending on the item type. """ item = self.get_selected_source_item(self._ui.search_results_tree_view) if not item: return if item.empty: return if item.is_installed: self.show_in_pkg_exp_action.setEnabled(True) else: self.show_in_pkg_exp_action.setEnabled(False) self.select_cntx_menu.exec_(self._ui.search_results_tree_view.mapToGlobal(position)) @pyqtSlot() def on_search(self): """ Search for the user entered text by re-initing the model""" # IMPORTANT! if put in async loading, the pyqt signal of the model will be created in another Qt thread # and not be able to emit to the GUI thread. if not self._ui.search_button.isEnabled(): return self._pkg_result_model = PkgSearchModel(self.conan_pkg_installed, self.conan_pkg_removed) self._pkg_result_loader.async_loading( self, self._load_search_model, (), self._finish_load_search_model, "Searching for packages...") # reset info text self._ui.package_info_text.setText("") @pyqtSlot() def on_show_in_pkg_exp(self): """ Switch to the main gui and select the item (ref or pkg) in the Local Package Explorer. """ item = self.get_selected_source_item(self._ui.search_results_tree_view) if not item: return if not self.page_widgets: return self.page_widgets.get_page_by_type(LocalConanPackageExplorer).select_local_package_from_ref( item.get_conan_ref(), refresh=True) def _load_search_model(self): """ Initialize tree view model by searching in conan """ self._pkg_result_model.setup_model_data(self._ui.search_line.text(), self.get_selected_remotes()) def _finish_load_search_model(self): """ After conan search adjust the view """ self._ui.search_results_tree_view.setModel(self._pkg_result_model.proxy_model) self._ui.search_results_tree_view.setColumnWidth(0, 320) self._ui.search_results_tree_view.sortByColumn(1, Qt.AscendingOrder) # sort by remote at default self._ui.search_results_tree_view.selectionModel().selectionChanged.connect(self.on_package_selected) @pyqtSlot() def on_package_selected(self): """ Display package info only for pkg ref""" item = self.get_selected_source_item(self._ui.search_results_tree_view) if not item: return if item.type != PROFILE_TYPE: return pkg_info = pprint.pformat(item.pkg_data).translate( {ord("{"): None, ord("}"): None, ord(","): None, ord("'"): None}) self._ui.package_info_text.setText(pkg_info) @pyqtSlot() def on_copy_ref_requested(self): """ Copy the selected reference to the clipboard """ combined_ref = self.get_selected_combined_ref() QApplication.clipboard().setText(combined_ref) @pyqtSlot() def on_show_conanfile_requested(self): """ Show the conanfile by downloading and opening with the associated program """ combined_ref = self.get_selected_combined_ref() conan_ref = combined_ref.split(":")[0] conanfile = app.conan_api.get_conanfile_path(ConanFileReference.loads(conan_ref)) open_file(conanfile) @pyqtSlot() def on_install_pkg_requested(self): """ Spawn the Conan install dialog """ combined_ref = self.get_selected_combined_ref() dialog = ConanInstallDialog(self, combined_ref, self.conan_pkg_installed) dialog.show() def get_selected_remotes(self) -> List[str]: """ Returns the user selected remotes """ selected_remotes = [] for i in range(self._ui.remote_list.count()): item = self._ui.remote_list.item(i) if item.checkState() == Qt.Checked: selected_remotes.append(item.text()) return selected_remotes def get_selected_combined_ref(self) -> str: """ Returns the user selected ref in <ref>:<id> format """ # no need to map from postition, since rightclick selects a single item source_item = self.get_selected_source_item(self._ui.search_results_tree_view) if not source_item: return "" conan_ref_item = source_item id_str = "" if source_item.type == PROFILE_TYPE: conan_ref_item = source_item.parent() id_str = ":" + source_item.pkg_data.get("id", "") if not conan_ref_item: return "" return conan_ref_item.item_data[0] + id_str def get_selected_source_item(self, view) -> Optional[SearchedPackageTreeItem]: """ Gets the selected item from a view """ indexes = view.selectedIndexes() if not indexes: return None view_index = view.selectedIndexes()[0] source_item = view_index.model().mapToSource(view_index).internalPointer() return source_item
46.577273
126
0.684005
327f9d2937c86cfdd5e4bc7284870257183ce69a
16,477
py
Python
flask_unchained/commands/new.py
briancappello/flask-unchained
bff296b5c808f5b1db10f7dddb81054600545749
[ "MIT" ]
69
2018-10-10T01:59:11.000Z
2022-03-29T17:29:30.000Z
flask_unchained/commands/new.py
briancappello/flask-unchained
bff296b5c808f5b1db10f7dddb81054600545749
[ "MIT" ]
18
2018-11-17T12:42:02.000Z
2021-05-22T18:45:27.000Z
flask_unchained/commands/new.py
briancappello/flask-unchained
bff296b5c808f5b1db10f7dddb81054600545749
[ "MIT" ]
7
2018-10-12T16:20:25.000Z
2021-10-06T12:18:21.000Z
import os import re import shutil import sys from flask_unchained.cli import click from flask_unchained.click import default, should_prompt from flask_unchained.string_utils import right_replace from jinja2 import Environment from typing import * JINJA_START_STR = '{#!' JINJA_END_STR = '#}' OTHER_START_STR = '#! ' OTHER_INLINE_START_STR = '#!(' OTHER_INLINE_END_STR = ')' env = Environment() # skipcq: BAN-B701 _excluded = object() MODULE_NAME_RE = re.compile(r'^[a-zA-Z_][a-zA-Z0-9_]*$') IF_RE = re.compile(r'^if (?P<condition>.+): ?(?P<statement>.+)?$') ELIF_RE = re.compile(r'^elif (?P<condition>.+): ?(?P<statement>.+)?$') ELSE_RE = re.compile(r'^else: ?(?P<statement>.+)?$') TEMPLATES_ROOT = os.path.abspath( os.path.join(os.path.dirname(__file__), os.pardir, '_code_templates')) PROJECT_TEMPLATE = os.path.join(TEMPLATES_ROOT, 'project') def _validate_module_name(ctx, param, value): # skipcq: PYL-W0613 (unused arg) if not MODULE_NAME_RE.match(value): raise click.BadParameter('must be a valid python module name ' '(letters, numbers, and underscore characters only)') return value class Token: def __init__(self, line_num=0, token=None): self._line_num = line_num self.tokens = [] if token is not None: self.tokens.append(token) @property def line_num(self): return self._line_num + 1 @line_num.setter def line_num(self, line_num): self._line_num = line_num - 1 def render(self, ctx=None, *, _debug=False): if len(self.tokens) == 1: token = self.tokens[0] if isinstance(token, str): return token if not _debug else f'{self.line_num}: {token}' return token.render(ctx, _debug=_debug) lines = [] for t in self.tokens: result = t.render(ctx, _debug=_debug) if result is not _excluded: lines.append(result) return '\n'.join(lines) def __repr__(self): return f'{self.__class__.__name__}(tokens=\n{self.tokens!r})' class InlineToken(Token): def __init__(self, line_num, parts): super().__init__(line_num) self.tokens = parts def render(self, ctx=None, *, _debug=False): if len(self.tokens) == 1: if isinstance(self.tokens[0], (str, InlineToken)): return env.from_string(self.tokens[0]).render(**ctx) return super().render(ctx, _debug=_debug) parts = [] for t in self.tokens: if isinstance(t, str): parts.append(t) continue result = t.render(ctx, _debug=_debug) if result is not _excluded: parts.append(result) return ('' if not _debug else f'{self.line_num}: ') + ''.join(parts) def __str__(self): if len(self.tokens) > 1: return ''.join(str(t) for t in self.tokens) return self.tokens[0] class IfToken(Token): def __init__(self, line_num, condition, statement): super().__init__(line_num) self.condition = condition self.statement = statement self.next = None def render(self, ctx=None, *, _debug=False): condition = (self.condition if isinstance(self.condition, (str, bytes)) else repr(self.condition)) if not eval(condition, env.globals, ctx): # skipcq: PYL-W0123 if self.next: return self.next.render(ctx, _debug=_debug) return _excluded if self.statement: result = env.from_string(self.statement).render(**ctx) return result if not _debug else f'{self.line_num}: {result}' else: return super().render(ctx, _debug=_debug) def __repr__(self): return f'IfToken(cond={self.condition!r}, token={self.tokens[0]!r}, next={self.next!r})' @click.group() def new(): """ Generate new code for your Flask Unchained projects. """ @new.command() @click.argument('dest', type=click.Path(resolve_path=True), help='The project folder.') @click.option('-a', '--app-bundle', default='app', help='The module name to use for your app bundle.', callback=_validate_module_name) @click.option('--force/--no-force', default=False, show_default=True, help='Whether or not to force creation if project folder is not empty.') @click.option('--prompt/--no-prompt', is_eager=True, is_flag=True, expose_value=False, help='Whether or not to skip prompting and just use the defaults.', default=False, show_default=True, callback=should_prompt) @click.option('--dev/--no-dev', prompt='Development Mode', help='Whether or not to install development dependencies.', default=lambda: default(True), show_default=True) @click.option('--admin/--no-admin', prompt='Admin Bundle', help='Whether or not to install the Admin Bundle.', default=lambda: default(False), show_default=True) @click.option('--api/--no-api', prompt='API Bundle', help='Whether or not to install the API Bundle.', default=lambda: default(False), show_default=True) @click.option('--celery/--no-celery', prompt='Celery Bundle', help='Whether or not to install the Celery Bundle.', default=lambda: default(False), show_default=True) @click.option('--graphene/--no-graphene', prompt='Graphene Bundle', help='Whether or not to install the Graphene Bundle.', default=lambda: default(False), show_default=True) @click.option('--mail/--no-mail', prompt='Mail Bundle', help='Whether or not to install the Mail Bundle.', default=lambda: default(False), show_default=True) @click.option('--oauth/--no-oauth', prompt='OAuth Bundle', help='Whether or not to install the OAuth Bundle.', default=lambda: default(False), show_default=True) @click.option('--security/--no-security', prompt='Security Bundle', help='Whether or not to install the Security Bundle.', default=lambda: default(False), show_default=True) @click.option('--session/--no-session', prompt='Session Bundle', help='Whether or not to install the Session Bundle.', default=lambda: default(False), show_default=True) @click.option('--sqlalchemy/--no-sqlalchemy', prompt='SQLAlchemy Bundle', help='Whether or not to install the SQLAlchemy Bundle.', default=lambda: default(False), show_default=True) @click.option('--webpack/--no-webpack', prompt='Webpack Bundle', help='Whether or not to install the Webpack Bundle.', default=lambda: default(False), show_default=True) def project(dest, app_bundle, force, dev, admin, api, celery, graphene, mail, oauth, security, session, sqlalchemy, webpack): """ Create a new Flask Unchained project. """ if os.path.exists(dest) and os.listdir(dest) and not force: if not click.confirm(f'WARNING: Project directory {dest!r} exists and is ' f'not empty. It will be DELETED!!! Continue?'): click.echo(f'Exiting.') sys.exit(1) # build up a list of dependencies # IMPORTANT: keys here must match setup.py's `extra_requires` keys ctx = dict(dev=dev, admin=admin, api=api, celery=celery, graphene=graphene, mail=mail, oauth=oauth, security=security or oauth, session=security or session, sqlalchemy=security or sqlalchemy, webpack=webpack) ctx['requirements'] = [k for k, v in ctx.items() if v] # remaining ctx vars ctx['app_bundle_module_name'] = app_bundle # copy the project template into place copy_file_tree(PROJECT_TEMPLATE, dest, ctx, [ (option, files) for option, files in [('api', ['app/serializers']), ('celery', ['app/tasks', 'celery_app.py']), ('graphene', ['app/graphql']), ('mail', ['templates/email']), ('security', ['app/models/role.py', 'app/models/user.py', 'db/fixtures/Role.yaml', 'db/fixtures/User.yaml']), ('sqlalchemy', ['app/models', 'app/managers', 'db']), ('webpack', ['assets', 'package.json', 'webpack']), ] if not ctx[option] ]) click.echo(f'Successfully created a new project at: {dest}') click.echo('To get started, run the following commands:\n') click.echo(f'cd {dest}') click.echo('pip install -r requirements-dev.txt') if ctx["sqlalchemy"]: click.echo("flask db init") click.echo("flask db migrate -m 'create models'") click.echo("flask db upgrade") click.echo("flask run") def copy_file_tree(src: str, dest: str, ctx: Optional[Dict[str, Any]] = None, option_locations: Optional[List[Tuple[str, List[str]]]] = None): """ Copy the file tree under the :param:`src` directory to the :param:`dest` directory. Pass :param:`ctx` to support rendering the files, and pass :param:`option_locations` to support deleting optional files/folders. """ if os.path.exists(dest): shutil.rmtree(dest, ignore_errors=True) shutil.copytree(src, dest) if option_locations: for _, paths in option_locations: for path in paths: path = os.path.join(dest, path) if os.path.isfile(path): os.remove(path) else: shutil.rmtree(path, ignore_errors=True) if 'app_bundle_module_name' in ctx: shutil.move(os.path.join(dest, 'app'), os.path.join(dest, ctx['app_bundle_module_name'])) shutil.move(os.path.join(dest, 'tests', 'app'), os.path.join(dest, 'tests', ctx['app_bundle_module_name'])) _render_file_tree(dest, ctx) def _render_file_tree(root_dir: str, ctx: Optional[Dict[str, Any]] = None): if not ctx: return for dirpath, _, filenames in os.walk(root_dir): for filename in filenames: path = os.path.join(dirpath, filename) if ('__pycache__' in path or path.endswith('.pyc') or path.endswith('.pyo')): # absolutely no idea how this happens but whenever Flask Unchained # gets installed via pip, this cache crap happens os.remove(path) continue root_token = Token() try: with open(path) as f: lines = f.read().split('\n') root_token, _ = _process_tokens(lines, root_token, is_jinja=path.endswith('.html')) except UnicodeDecodeError as e: raise Exception(f'UnicodeDecodeError: {path} ({str(e)})') with open(path, 'w') as f: f.write(root_token.render(ctx)) def _process_tokens(lines: List[str], token: Token, *, is_jinja: bool = False, _depth: int = 0, _real_start_i: int = 0): start_str = JINJA_START_STR if is_jinja else OTHER_START_STR end_str = JINJA_END_STR if is_jinja else None i: int = 0 resume_from_real_i: int = 0 for i, line in enumerate(lines): if (_real_start_i + i) < resume_from_real_i: continue stripped = line.strip() if not stripped.startswith(start_str): token.tokens.append( _extract_inline_token(line, _real_start_i + i, is_jinja)) continue stripped = stripped[len(start_str):].strip() if end_str: stripped = right_replace(stripped, end_str, '').strip() if stripped == 'endif' and _depth > 0: return token, _real_start_i + i if_m = IF_RE.match(stripped) elif_m = ELIF_RE.match(stripped) else_m = ELSE_RE.match(stripped) if not any([if_m, elif_m, else_m]) and stripped != 'endif': token.tokens.append(InlineToken(_real_start_i + i, [ line[:line.find(start_str)] + stripped, ])) continue next_start_i = _real_start_i + i + 1 if if_m is not None: condition = if_m.groupdict()['condition'] statement = if_m.groupdict()['statement'] if_token = IfToken(_real_start_i + i, condition, line[:line.find(start_str):] + statement if statement else None) if not statement: if_token, resume_from_real_i = _process_tokens(lines[i + 1:], if_token, is_jinja=is_jinja, _depth=_depth + 1, _real_start_i=next_start_i) token.tokens.append(if_token) elif elif_m is not None: condition = elif_m.groupdict()['condition'] statement = elif_m.groupdict()['statement'] if_token = IfToken(_real_start_i + i, condition, line[:line.find(start_str):] + statement if statement else None) if not statement: if_token, resume_from_real_i = _process_tokens(lines[i + 1:], if_token, is_jinja=is_jinja, _depth=_depth, _real_start_i=next_start_i) token.next = if_token elif else_m is not None: statement = else_m.groupdict()['statement'] if_token = IfToken(_real_start_i + i, True, line[:line.find(start_str):] + statement if statement else None) if not statement: if_token, resume_from_real_i = _process_tokens(lines[i + 1:], if_token, is_jinja=is_jinja, _depth=_depth, _real_start_i=next_start_i) token.next = if_token continue return token, _real_start_i + i def _extract_inline_token(line: str, line_num: int, is_jinja: bool = False): start_str = JINJA_START_STR if is_jinja else OTHER_INLINE_START_STR end_str = JINJA_END_STR if is_jinja else OTHER_INLINE_END_STR if start_str not in line: return Token(line_num, line) def _clean_end(part): if part.startswith(end_str): return part[len(end_str):] return part end_i = 0 parts = [] while True: start_i = line.find(start_str, end_i) if start_i == -1: remaining = _clean_end(line[end_i:]) if remaining: parts.append(remaining) break parts.append(_clean_end(line[end_i:start_i])) if is_jinja: end_i = line.find(end_str, start_i) part = line[start_i+len(start_str):end_i] else: start_i, end_i = _find_inline_start_end_indexes(line, start_i) part = line[start_i:end_i].strip() parts.append(InlineToken(line_num, [part])) return InlineToken(line_num, parts) def _find_inline_start_end_indexes(line, start_idx=0): s = OTHER_INLINE_START_STR.strip()[-1] e = OTHER_INLINE_END_STR stack = 0 last_e = len(line) for i, char in enumerate(line[start_idx:]): if char == s: stack += 1 elif char == e: stack -= 1 if stack == 0: last_e = start_idx + i break return line.find(s, start_idx) + len(s), last_e
38.769412
96
0.562906
4256068cff63730a9dd0cd8201382db87631f133
4,701
py
Python
src/cli.py
erick-dsnk/Electric
7e8aad1f792321d7839717ed97b641bee7a4a64e
[ "Apache-2.0" ]
null
null
null
src/cli.py
erick-dsnk/Electric
7e8aad1f792321d7839717ed97b641bee7a4a64e
[ "Apache-2.0" ]
null
null
null
src/cli.py
erick-dsnk/Electric
7e8aad1f792321d7839717ed97b641bee7a4a64e
[ "Apache-2.0" ]
null
null
null
###################################################################### # SUPERCHARGECLI (EXTENSIONS) # ###################################################################### # -*- coding: utf-8 -*- """ Extension for the python ``click`` module to provide a group with a git-like *did-you-mean* feature. """ import click import difflib __version__ = "0.0.3" _click7 = click.__version__[0] >= '7' class DYMMixin(object): # pylint: disable=too-few-public-methods """ Mixin class for click MultiCommand inherited classes to provide git-like *did-you-mean* functionality when a certain command is not registered. """ def __init__(self, *args, **kwargs): self.max_suggestions = kwargs.pop("max_suggestions", 3) self.cutoff = kwargs.pop("cutoff", 0.5) super(DYMMixin, self).__init__(*args, **kwargs) self._commands = {} self._aliases = {} def resolve_command(self, ctx, args): """ Overrides clicks ``resolve_command`` method and appends *Did you mean ...* suggestions to the raised exception message. """ original_cmd_name = click.utils.make_str(args[0]) try: return super(DYMMixin, self).resolve_command(ctx, args) except click.exceptions.UsageError as error: error_msg = str(error) matches = difflib.get_close_matches(original_cmd_name, self.list_commands(ctx), self.max_suggestions, self.cutoff) if matches: error_msg += '\n\nDid you mean one of these?\n %s' % '\n '.join(matches) # pylint: disable=line-too-long raise click.exceptions.UsageError(error_msg, error.ctx) def command(self, *args, **kwargs): aliases = kwargs.pop('aliases', []) decorator = super(DYMMixin, self).command(*args, **kwargs) if not aliases: return decorator def _decorator(f): cmd = decorator(f) if aliases: self._commands[cmd.name] = aliases for alias in aliases: self._aliases[alias] = cmd.name return cmd return _decorator def group(self, *args, **kwargs): aliases = kwargs.pop('aliases', []) decorator = super(DYMMixin, self).group(*args, **kwargs) if not aliases: return decorator def _decorator(f): cmd = decorator(f) if aliases: self._commands[cmd.name] = aliases for alias in aliases: self._aliases[alias] = cmd.name return cmd return _decorator def resolve_alias(self, cmd_name): if cmd_name in self._aliases: return self._aliases[cmd_name] return cmd_name def get_command(self, ctx, cmd_name): cmd_name = self.resolve_alias(cmd_name) command = super(DYMMixin, self).get_command(ctx, cmd_name) if command: return command def format_commands(self, ctx, formatter): rows = [] sub_commands = self.list_commands(ctx) max_len = max(len(cmd) for cmd in sub_commands) limit = formatter.width - 6 - max_len for sub_command in sub_commands: cmd = self.get_command(ctx, sub_command) if cmd is None: continue if hasattr(cmd, 'hidden') and cmd.hidden: continue if sub_command in self._commands: aliases = ','.join(sorted(self._commands[sub_command])) sub_command = '{0} ({1})'.format(sub_command, aliases) if _click7: cmd_help = cmd.get_short_help_str(limit) else: cmd_help = cmd.short_help or '' rows.append((sub_command, cmd_help)) if rows: with formatter.section('Commands'): formatter.write_dl(rows) class SuperChargeCLI(DYMMixin, click.Group): # pylint: disable=too-many-public-methods """ click Group to provide git-like *did-you-mean* functionality when a certain command is not found in the group. """ # def format_help(self, ctx, formatter): # # Custom Help Message => # click.echo(click.style('Commands :', fg='green')) # click.echo('Next Line') class DYMCommandCollection(DYMMixin, click.CommandCollection): # pylint: disable=too-many-public-methods """ click CommandCollection to provide git-like *did-you-mean* functionality when a certain command is not found in the group. """
33.340426
127
0.563923
4c68e7e7bf9cc99e90ebe001029982a4c9edd544
10,450
py
Python
adminapp/models.py
utkuerol/ifs
1bd25ecabceeca58776eb3ff82aaaa370e5e157e
[ "MIT" ]
1
2021-09-27T10:56:25.000Z
2021-09-27T10:56:25.000Z
adminapp/models.py
utkuerol/ifs
1bd25ecabceeca58776eb3ff82aaaa370e5e157e
[ "MIT" ]
null
null
null
adminapp/models.py
utkuerol/ifs
1bd25ecabceeca58776eb3ff82aaaa370e5e157e
[ "MIT" ]
null
null
null
from datetime import datetime from django.contrib.auth.models import User from django.core.validators import MinValueValidator from django.db import models from django.urls import reverse from .validators import validate_files import django.utils.timezone as timezone class Dataset(models.Model): """ Model for Dataset object in database. Fields: -name: name (models.CharField) -description: description (models.CharField) -date: creation date (models.DateTimeField) -type: type of dataset {MNIST or HIPE} (models.ChoiceField) -feature_file: feature file (models.FileField) -normalized_feature_json: feature file with normalized values (models.CharField) -raw_file = raw file (models.FileField) """ TYPE_CHOICES = ( ("HIPE", "HIPE"), ("MNIST", "MNIST") ) name = models.CharField(max_length=10000, null=False, unique=True) description = models.CharField(max_length=10000, null=False) date = models.DateTimeField(default=timezone.now, blank=True, null=False) type = models.CharField(max_length=10000, null=False, choices=TYPE_CHOICES) feature_file = models.FileField(upload_to='documents/%Y/%m/%d', null=False) normalized_feature_JSON = models.CharField(max_length=10000000, default=None, blank=True, null=True) raw_file = models.FileField(upload_to='documents/%Y/%m/%d', null=False) def get_absolute_url(self): return reverse('dataset-detail', kwargs={'pk': self.pk}) def get_update_url(self): return reverse('dataset-update', kwargs={'pk': self.pk}) def get_delete_url(self): return reverse('dataset-delete', kwargs={'pk': self.pk}) def clean(self): """ override the method to validate feature and raw data files. """ feature_file = self.feature_file raw_file = self.raw_file type = self.type if feature_file and raw_file and type: validate_files(feature_file, raw_file, type) class Setup(models.Model): """ Model for Setup object in database. Fields: -dataset_id: id of the dataset for the experiment (models.ForeignKey) -name: name (models.CharField) -description: description (models.CharField) -classifier: selection of the classifier type {VanillaSVDD, SVDDNeg, SSAD (for further info: https://github.com/englhardt/OcalAPI.jl)} {required input for OcalAPI} (models.ChoiceField) -query_strategy: selection of the query strategy {MinimumMarginQs, ExpectedMinimumMarginQs, MaximumEntropyQs, MaximumEntropyQs, MaximumLossQs, HighConfidenceQs, DecisionBoundaryQs, NeighborhoodBasedQs, BoundaryNeighborCombination, RandomQs, RandomOutlierQs} {required input for OcalAPI} (models.ChoiceField) -parameters: gamma value for the classifier (models.FloatField) -cost-function: cost value for the classifier (models.FloatField) -feedback_mode: selection of feedback mode {User, OcalAPI or Hybrid} (models.ChoiceField) -number_of_iterations: permitted number Of Iterations (models.IntegerField) -status: status {draft, final} (models.ChoiceField) -unknown_allowed: if true user can choose "Unknown" as an answer (models.BooleanField) -raw_data_visible: if true user can see raw data (models.BooleanField) -feature_data_visible: if true user can see all columns from the feature data (models.BooleanField) -date: creation date (models.DateTimeField) -subspace_gridpoints_JSON: JSON File for the calculated gridpoints for each subspace (models.CharField) """ YN_CHOICES = ( ("Yes", "Yes"), ("No", "No") ) CLASSIFIER_CHOICES = ( ("VanillaSVDD", "Vanilla Support Vector Data Description"), ("SVDDneg", "SVDD with negative examples"), ("SSAD", "Semi-supervised Anomaly Detection") ) QS_CHOICES = ( ("MinimumMarginQs", "MinimumMarginQs"), ("ExpectedMinimumMarginQs", "ExpectedMinimumMarginQs"), ("MaximumLossQs", "MaximumLossQs"), ("MaximumEntropyQs", "MaximumEntropyQs"), ("HighConfidenceQs", "HighConfidenceQs"), ("DecisionBoundaryQs", "DecisionBoundaryQs"), ("NeighborhoodBasedQs", "NeighborhoodBasedQs"), ("BoundaryNeighborCombination", "BoundaryNeighborCombination"), ("RandomQs", "RandomQs"), ("RandomOutlierQs", "RandomOutlierQs") ) FM_CHOICES = ( ("user", "User"), ("system", "System"), ("hybrid", "Hybrid") ) SETUP_STATUS_CHOICES = ( ("draft", "draft"), ("final", "final") ) dataset_id = models.ForeignKey(Dataset, on_delete=models.CASCADE, null=False) name = models.CharField(max_length=10000, null=False, unique=True) description = models.CharField(max_length=10000, null=False) classifier = models.CharField(max_length=100, null=True, choices=CLASSIFIER_CHOICES) gamma = models.FloatField(null=True, validators=[MinValueValidator(0.01)]) cost_function = models.FloatField(null=True, validators=[MinValueValidator(0.01)]) query_strategy = models.CharField(max_length=100, null=True, choices=QS_CHOICES) feedback_mode = models.CharField(null=False, max_length=100, choices=FM_CHOICES) number_of_iterations = models.IntegerField(null=True, validators=[MinValueValidator(1)]) status = models.CharField(null=False, max_length=100, default="draft", choices=SETUP_STATUS_CHOICES) unknown_allowed = models.CharField(max_length=100, null=True, choices=YN_CHOICES) raw_data_visible = models.CharField(max_length=100, null=True, choices=YN_CHOICES) feature_data_visible = models.CharField(max_length=100, null=True, choices=YN_CHOICES) date = models.DateTimeField(default=timezone.now, blank=True, null=False) subspaces_gridpoints_JSON = models.CharField(max_length=100000000, default=None, blank=True, null=True) def get_absolute_url(self): return reverse('setup-detail', kwargs={'pk': self.pk}) def get_update_url(self): return reverse('setup-update', kwargs={'pk': self.pk}) def get_delete_url(self): return reverse('setup-delete', kwargs={'pk': self.pk}) class Session(models.Model): """ Model for Session object in database. Fields: -setup_id: id of the setup that session belongs to (models.ForeignKey) -user_id: id of the user participating to the session (models.ForeignKey) -status: status {inactive, ongoing, finished, accepted} (models.ChoiceField) -date: creation date (models.DateTimeField) """ SESSION_STATUS_CHOICES = ( ("inactive", "inactive"), ("ongoing", "ongoing"), ("finished", "finished"), ("accepted", "accepted"), ("not_completed", "not_completed") ) setup_id = models.ForeignKey(Setup, on_delete=models.CASCADE, null=False) user_id = models.ForeignKey(User, on_delete=models.CASCADE, default=None, blank=False) status = models.CharField(null=False, max_length=100, choices=SESSION_STATUS_CHOICES) date = models.DateTimeField(default=timezone.now, blank=True, null=False) def get_absolute_url(self): return reverse('session-detail', kwargs={'pk': self.pk}) class Iteration(models.Model): """ Model for Iteration object in database. Fields: -session_id: id of the session that iteration belongs to (models.ForeignKey) -duration: time spent by user on the iteration (models.TimeField) -iteration_order: order of the iteration (models.IntegerField) -ocal_query_id: chosen object by OcalAPI for the feedback (models.IntegerField) -ocal_prediction: predicted labeling of OcalAPI (models.CharField) -user_feedback: feedback of the user for the object {Inlier, Outlier, Unknown} (models.ChoiceField) -ocal_output: calculation of OcalAPI after getting the user feedback (models.FileField) """ session_id = models.ForeignKey(Session, on_delete=models.CASCADE, null=False) duration = models.IntegerField(default=0, blank=True, null=True) iteration_order = models.IntegerField(null=False) ocal_query_id = models.IntegerField(null=True) ocal_prediction = models.CharField(max_length=100, null=True) user_feedback = models.CharField(max_length=100, null=True) ocal_output = models.CharField(max_length=100000, null=True) class Meta: index_together = [ ("session_id", "iteration_order") ] class Subspace(models.Model): """ Model for Subspace object in database. Fields: -setup_id: id of the setup that subspace belongs to (models.ForeignKey) -feature_x_id: id of the feature to be used in x-Axis of the subspace (models.IntegerField) -feature_y_id: id of the feature to be used in y-Axis of the subspace (models.IntegerField) -gridpoints_x: amount of points in each row in the gridpoints layout (models.IntegerField) -gridpoints_y: amount of points in each column in the gridpoints layout (models.IntegerField) """ setup_id = models.ForeignKey(Setup, on_delete=models.CASCADE, null=False) feature_x_id = models.IntegerField(null=False) feature_y_id = models.IntegerField(null=False) gridpoints_x = models.IntegerField(null=True) gridpoints_y = models.IntegerField(null=True) class Meta: index_together = [ ("setup_id", "feature_x_id", "feature_y_id") ] class SubspaceUserInteractionStats(models.Model): """ Model for SubspaceUserInteractionStats object in database. Fields: -subspace_id: id of subspace that the statistics belongs to (models.ForeignKey) -iteration_id: id of iteration that subspace belongs to (models.ForeignKey) -duration: time spent by user on observing the subspace (models.TimeField) """ subspace_id = models.ForeignKey(Subspace, on_delete=models.CASCADE, null=False) iteration_id = models.ForeignKey(Iteration, on_delete=models.CASCADE, null=False) duration = models.IntegerField(default=0, blank=True, null=True) class Meta: index_together = [ ("subspace_id", "iteration_id") ]
46.035242
236
0.685455
1fc93a89f7883fce3d1a129472c7b324f1443e3a
77
py
Python
20170102_7.py
JaeGyu/PythonEx_1
e67053db6ca7431c3dd66351c190c53229e3f141
[ "MIT" ]
null
null
null
20170102_7.py
JaeGyu/PythonEx_1
e67053db6ca7431c3dd66351c190c53229e3f141
[ "MIT" ]
null
null
null
20170102_7.py
JaeGyu/PythonEx_1
e67053db6ca7431c3dd66351c190c53229e3f141
[ "MIT" ]
null
null
null
def func(a): return a() def func2(): print("test") func(func2)
6.416667
17
0.532468
495bd34d2028cf07547cf287f953b514ef0fa83a
331
py
Python
example/multi_process.py
nlp4faith/transformers-as-service
d47e8ab2a809623834d5aefb90c9339f6ea08541
[ "MIT" ]
1
2020-12-15T10:37:40.000Z
2020-12-15T10:37:40.000Z
example/multi_process.py
nlp4faith/transformers-as-service
d47e8ab2a809623834d5aefb90c9339f6ea08541
[ "MIT" ]
null
null
null
example/multi_process.py
nlp4faith/transformers-as-service
d47e8ab2a809623834d5aefb90c9339f6ea08541
[ "MIT" ]
null
null
null
from multiprocessing import Pool import time def f(x): return x*x if __name__ == '__main__': dicts = {'max_position_embeddings': 512} print(dicts) # with Pool(2) as pool: # # print(p.map(f, [1, 2, 3])) # time.sleep(1) # ret = pool.apply(f, (10,)) # print(ret) # print('hello')
20.6875
44
0.549849
a4842b2eae755bfa6dbca319f98197003a7e810e
5,254
py
Python
volume/bin/pythonpath/deprecated/classic.py
mottosso/docker
87c2870ed0fba482d3afe67034cd5baabae97dcc
[ "MIT" ]
5
2018-05-24T23:15:02.000Z
2020-01-02T06:53:15.000Z
volume/bin/pythonpath/deprecated/classic.py
mottosso/docker
87c2870ed0fba482d3afe67034cd5baabae97dcc
[ "MIT" ]
42
2018-05-25T15:57:08.000Z
2021-01-17T18:39:59.000Z
volume/bin/pythonpath/deprecated/classic.py
mottosso/docker
87c2870ed0fba482d3afe67034cd5baabae97dcc
[ "MIT" ]
2
2018-05-25T14:42:04.000Z
2018-06-28T10:10:40.000Z
# -*- coding: utf-8 -*- """ Classic deprecation warning =========================== Classic ``@deprecated`` decorator to deprecate old python classes, functions or methods. """ import functools import inspect import warnings import wrapt string_types = (type(b''), type(u'')) class ClassicAdapter(wrapt.AdapterFactory): """ Classic adapter -- *for advanced usage only* This adapter is used to get the deprecation message according to the wrapped object type: class, function, standard method, static method, or class method. This is the base class of the :class:`deprecated.sphinx.SphinxAdapter` class which is used to update the wrapped object docstring. You can also inherit this class to change the deprecation message. In the following example, we change the message into "The ... is deprecated.": .. code-block:: python import inspect from deprecated.classic import ClassicAdapter from deprecated.classic import deprecated class MyClassicAdapter(ClassicAdapter): def get_deprecated_msg(self, wrapped, instance): if instance is None: if inspect.isclass(wrapped): fmt = "The class {name} is deprecated." else: fmt = "The function {name} is deprecated." else: if inspect.isclass(instance): fmt = "The class method {name} is deprecated." else: fmt = "The method {name} is deprecated." if self.reason: fmt += " ({reason})" if self.version: fmt += " -- Deprecated since version {version}." return fmt.format(name=wrapped.__name__, reason=self.reason or "", version=self.version or "") Then, you can use your ``MyClassicAdapter`` class like this in your source code: .. code-block:: python @deprecated(reason="use another function", adapter_cls=MyClassicAdapter) def some_old_function(x, y): return x + y """ # todo: add docstring def __init__(self, reason="", version=""): self.reason = reason or "" self.version = version or "" super(ClassicAdapter, self).__init__() def get_deprecated_msg(self, wrapped, instance): if instance is None: if inspect.isclass(wrapped): fmt = "Call to deprecated class {name}." else: fmt = "Call to deprecated function (or staticmethod) {name}." else: if inspect.isclass(instance): fmt = "Call to deprecated class method {name}." else: fmt = "Call to deprecated method {name}." if self.reason: fmt += " ({reason})" if self.version: fmt += " -- Deprecated since version {version}." return fmt.format(name=wrapped.__name__, reason=self.reason or "", version=self.version or "") def __call__(self, wrapped): return wrapped def deprecated(*args, **kwargs): """ This is a decorator which can be used to mark functions as deprecated. It will result in a warning being emitted when the function is used. **Classic usage:** To use this, decorate your deprecated function with **@deprecated** decorator: .. code-block:: python from deprecated import deprecated @deprecated def some_old_function(x, y): return x + y You can also decorate a class or a method: .. code-block:: python from deprecated import deprecated class SomeClass(object): @deprecated def some_old_method(self, x, y): return x + y @deprecated class SomeOldClass(object): pass You can give a "reason" message to help the developer to choose another function/class, and a "version" number to specify the starting version number of the deprecation. .. code-block:: python from deprecated import deprecated @deprecated(reason="use another function", version='1.2.0') def some_old_function(x, y): return x + y """ if args and isinstance(args[0], string_types): kwargs['reason'] = args[0] args = args[1:] if args and not callable(args[0]): raise TypeError(repr(type(args[0]))) if args: action = kwargs.pop('action', 'always') category = kwargs.pop('category', DeprecationWarning) adapter_cls = kwargs.pop('adapter_cls', ClassicAdapter) adapter = adapter_cls(**kwargs) @wrapt.decorator(adapter=adapter) def wrapper(wrapped_, instance_, args_, kwargs_): msg = adapter.get_deprecated_msg(wrapped_, instance_) with warnings.catch_warnings(): warnings.simplefilter(action, category) warnings.warn(msg, category=category, stacklevel=2) return wrapped_(*args_, **kwargs_) return wrapper(args[0]) return functools.partial(deprecated, **kwargs)
30.905882
93
0.589265
43e22a4ad79e0f6f39bea750d69f48e7aff40dbe
989
py
Python
examples/calculate_compound_interest.py
mengguo2/accy
d99d9bbcaa80265f90101ce6bd20ad5788556def
[ "MIT" ]
null
null
null
examples/calculate_compound_interest.py
mengguo2/accy
d99d9bbcaa80265f90101ce6bd20ad5788556def
[ "MIT" ]
null
null
null
examples/calculate_compound_interest.py
mengguo2/accy
d99d9bbcaa80265f90101ce6bd20ad5788556def
[ "MIT" ]
1
2018-06-17T23:43:29.000Z
2018-06-17T23:43:29.000Z
from accy.accy_functions import cpd_int """ A. If a 15-year-old student deposits $500 to an online savings account, which offers a constant monthly interest rate of 1.6%, what would his savings be by the time he is 30 years old, assuming he does not add put in any extra money? """ initial_dep = 500 interest_rate = 0.016 nyears = 30 - 15 total_savings = cpd_int(initial_dep, interest_rate, nyears) print('A. The student would have ${0:.2f}!'.format(total_savings)) """ B. What would the total amount be if the interest rate was halved to 0.8%? """ """ C. Again assuming the interest rate is 1.6%, how much money would have accrued by the time he is 50 years old? """ """ D. What if the student deposited the $500 when he was 20 instead of 15? How much money would he have by the time he is 30 years old? """ """ E. Again assuming the student starts depositing at 15 years old, what is his total if he adds an extra 100$ every year until he is 30? """
30.90625
76
0.704752
80f389626a351c33407f350cd0c7784145e8539b
26,921
py
Python
wavefront_api_client/__init__.py
httpsgithu/python-client
f85a530367cdabe458a11919ad35609b9bc0606b
[ "Apache-2.0" ]
null
null
null
wavefront_api_client/__init__.py
httpsgithu/python-client
f85a530367cdabe458a11919ad35609b9bc0606b
[ "Apache-2.0" ]
null
null
null
wavefront_api_client/__init__.py
httpsgithu/python-client
f85a530367cdabe458a11919ad35609b9bc0606b
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # flake8: noqa """ Wavefront REST API Documentation <p>The Wavefront REST API enables you to interact with Wavefront servers using standard REST API tools. You can use the REST API to automate commonly executed operations such as automatically tagging sources.</p><p>When you make REST API calls outside the Wavefront REST API documentation you must add the header \"Authorization: Bearer &lt;&lt;API-TOKEN&gt;&gt;\" to your HTTP requests.</p> # noqa: E501 OpenAPI spec version: v2 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import # import apis into sdk package from wavefront_api_client.api.access_policy_api import AccessPolicyApi from wavefront_api_client.api.account__user_and_service_account_api import AccountUserAndServiceAccountApi from wavefront_api_client.api.alert_api import AlertApi from wavefront_api_client.api.api_token_api import ApiTokenApi from wavefront_api_client.api.cloud_integration_api import CloudIntegrationApi from wavefront_api_client.api.dashboard_api import DashboardApi from wavefront_api_client.api.derived_metric_api import DerivedMetricApi from wavefront_api_client.api.direct_ingestion_api import DirectIngestionApi from wavefront_api_client.api.event_api import EventApi from wavefront_api_client.api.external_link_api import ExternalLinkApi from wavefront_api_client.api.ingestion_spy_api import IngestionSpyApi from wavefront_api_client.api.integration_api import IntegrationApi from wavefront_api_client.api.maintenance_window_api import MaintenanceWindowApi from wavefront_api_client.api.message_api import MessageApi from wavefront_api_client.api.metric_api import MetricApi from wavefront_api_client.api.metrics_policy_api import MetricsPolicyApi from wavefront_api_client.api.monitored_application_api import MonitoredApplicationApi from wavefront_api_client.api.monitored_service_api import MonitoredServiceApi from wavefront_api_client.api.notificant_api import NotificantApi from wavefront_api_client.api.proxy_api import ProxyApi from wavefront_api_client.api.query_api import QueryApi from wavefront_api_client.api.recent_app_map_search_api import RecentAppMapSearchApi from wavefront_api_client.api.recent_traces_search_api import RecentTracesSearchApi from wavefront_api_client.api.role_api import RoleApi from wavefront_api_client.api.saved_app_map_search_api import SavedAppMapSearchApi from wavefront_api_client.api.saved_app_map_search_group_api import SavedAppMapSearchGroupApi from wavefront_api_client.api.saved_search_api import SavedSearchApi from wavefront_api_client.api.saved_traces_search_api import SavedTracesSearchApi from wavefront_api_client.api.saved_traces_search_group_api import SavedTracesSearchGroupApi from wavefront_api_client.api.search_api import SearchApi from wavefront_api_client.api.source_api import SourceApi from wavefront_api_client.api.span_sampling_policy_api import SpanSamplingPolicyApi from wavefront_api_client.api.usage_api import UsageApi from wavefront_api_client.api.user_api import UserApi from wavefront_api_client.api.user_group_api import UserGroupApi from wavefront_api_client.api.webhook_api import WebhookApi # import ApiClient from wavefront_api_client.api_client import ApiClient from wavefront_api_client.configuration import Configuration # import models into sdk package from wavefront_api_client.models.aws_base_credentials import AWSBaseCredentials from wavefront_api_client.models.access_control_element import AccessControlElement from wavefront_api_client.models.access_control_list_read_dto import AccessControlListReadDTO from wavefront_api_client.models.access_control_list_simple import AccessControlListSimple from wavefront_api_client.models.access_control_list_write_dto import AccessControlListWriteDTO from wavefront_api_client.models.access_policy import AccessPolicy from wavefront_api_client.models.access_policy_rule_dto import AccessPolicyRuleDTO from wavefront_api_client.models.account import Account from wavefront_api_client.models.alert import Alert from wavefront_api_client.models.alert_dashboard import AlertDashboard from wavefront_api_client.models.alert_min import AlertMin from wavefront_api_client.models.alert_route import AlertRoute from wavefront_api_client.models.alert_source import AlertSource from wavefront_api_client.models.annotation import Annotation from wavefront_api_client.models.anomaly import Anomaly from wavefront_api_client.models.app_dynamics_configuration import AppDynamicsConfiguration from wavefront_api_client.models.app_search_filter import AppSearchFilter from wavefront_api_client.models.app_search_filter_value import AppSearchFilterValue from wavefront_api_client.models.app_search_filters import AppSearchFilters from wavefront_api_client.models.azure_activity_log_configuration import AzureActivityLogConfiguration from wavefront_api_client.models.azure_base_credentials import AzureBaseCredentials from wavefront_api_client.models.azure_configuration import AzureConfiguration from wavefront_api_client.models.chart import Chart from wavefront_api_client.models.chart_settings import ChartSettings from wavefront_api_client.models.chart_source_query import ChartSourceQuery from wavefront_api_client.models.class_loader import ClassLoader from wavefront_api_client.models.cloud_integration import CloudIntegration from wavefront_api_client.models.cloud_trail_configuration import CloudTrailConfiguration from wavefront_api_client.models.cloud_watch_configuration import CloudWatchConfiguration from wavefront_api_client.models.conversion import Conversion from wavefront_api_client.models.conversion_object import ConversionObject from wavefront_api_client.models.customer_facing_user_object import CustomerFacingUserObject from wavefront_api_client.models.dashboard import Dashboard from wavefront_api_client.models.dashboard_min import DashboardMin from wavefront_api_client.models.dashboard_parameter_value import DashboardParameterValue from wavefront_api_client.models.dashboard_section import DashboardSection from wavefront_api_client.models.dashboard_section_row import DashboardSectionRow from wavefront_api_client.models.derived_metric_definition import DerivedMetricDefinition from wavefront_api_client.models.dynatrace_configuration import DynatraceConfiguration from wavefront_api_client.models.ec2_configuration import EC2Configuration from wavefront_api_client.models.event import Event from wavefront_api_client.models.event_search_request import EventSearchRequest from wavefront_api_client.models.event_time_range import EventTimeRange from wavefront_api_client.models.external_link import ExternalLink from wavefront_api_client.models.facet_response import FacetResponse from wavefront_api_client.models.facet_search_request_container import FacetSearchRequestContainer from wavefront_api_client.models.facets_response_container import FacetsResponseContainer from wavefront_api_client.models.facets_search_request_container import FacetsSearchRequestContainer from wavefront_api_client.models.fast_reader_builder import FastReaderBuilder from wavefront_api_client.models.field import Field from wavefront_api_client.models.gcp_billing_configuration import GCPBillingConfiguration from wavefront_api_client.models.gcp_configuration import GCPConfiguration from wavefront_api_client.models.history_entry import HistoryEntry from wavefront_api_client.models.history_response import HistoryResponse from wavefront_api_client.models.ingestion_policy import IngestionPolicy from wavefront_api_client.models.ingestion_policy_mapping import IngestionPolicyMapping from wavefront_api_client.models.install_alerts import InstallAlerts from wavefront_api_client.models.integration import Integration from wavefront_api_client.models.integration_alert import IntegrationAlert from wavefront_api_client.models.integration_alias import IntegrationAlias from wavefront_api_client.models.integration_dashboard import IntegrationDashboard from wavefront_api_client.models.integration_manifest_group import IntegrationManifestGroup from wavefront_api_client.models.integration_metrics import IntegrationMetrics from wavefront_api_client.models.integration_status import IntegrationStatus from wavefront_api_client.models.json_node import JsonNode from wavefront_api_client.models.kubernetes_component import KubernetesComponent from wavefront_api_client.models.kubernetes_component_status import KubernetesComponentStatus from wavefront_api_client.models.logical_type import LogicalType from wavefront_api_client.models.maintenance_window import MaintenanceWindow from wavefront_api_client.models.message import Message from wavefront_api_client.models.metric_details import MetricDetails from wavefront_api_client.models.metric_details_response import MetricDetailsResponse from wavefront_api_client.models.metric_status import MetricStatus from wavefront_api_client.models.metrics_policy_read_model import MetricsPolicyReadModel from wavefront_api_client.models.metrics_policy_write_model import MetricsPolicyWriteModel from wavefront_api_client.models.module import Module from wavefront_api_client.models.module_descriptor import ModuleDescriptor from wavefront_api_client.models.module_layer import ModuleLayer from wavefront_api_client.models.monitored_application_dto import MonitoredApplicationDTO from wavefront_api_client.models.monitored_cluster import MonitoredCluster from wavefront_api_client.models.monitored_service_dto import MonitoredServiceDTO from wavefront_api_client.models.new_relic_configuration import NewRelicConfiguration from wavefront_api_client.models.new_relic_metric_filters import NewRelicMetricFilters from wavefront_api_client.models.notificant import Notificant from wavefront_api_client.models.notification_messages import NotificationMessages from wavefront_api_client.models.package import Package from wavefront_api_client.models.paged import Paged from wavefront_api_client.models.paged_account import PagedAccount from wavefront_api_client.models.paged_alert import PagedAlert from wavefront_api_client.models.paged_alert_with_stats import PagedAlertWithStats from wavefront_api_client.models.paged_anomaly import PagedAnomaly from wavefront_api_client.models.paged_cloud_integration import PagedCloudIntegration from wavefront_api_client.models.paged_customer_facing_user_object import PagedCustomerFacingUserObject from wavefront_api_client.models.paged_dashboard import PagedDashboard from wavefront_api_client.models.paged_derived_metric_definition import PagedDerivedMetricDefinition from wavefront_api_client.models.paged_derived_metric_definition_with_stats import PagedDerivedMetricDefinitionWithStats from wavefront_api_client.models.paged_event import PagedEvent from wavefront_api_client.models.paged_external_link import PagedExternalLink from wavefront_api_client.models.paged_ingestion_policy import PagedIngestionPolicy from wavefront_api_client.models.paged_integration import PagedIntegration from wavefront_api_client.models.paged_maintenance_window import PagedMaintenanceWindow from wavefront_api_client.models.paged_message import PagedMessage from wavefront_api_client.models.paged_monitored_application_dto import PagedMonitoredApplicationDTO from wavefront_api_client.models.paged_monitored_cluster import PagedMonitoredCluster from wavefront_api_client.models.paged_monitored_service_dto import PagedMonitoredServiceDTO from wavefront_api_client.models.paged_notificant import PagedNotificant from wavefront_api_client.models.paged_proxy import PagedProxy from wavefront_api_client.models.paged_recent_app_map_search import PagedRecentAppMapSearch from wavefront_api_client.models.paged_recent_traces_search import PagedRecentTracesSearch from wavefront_api_client.models.paged_related_event import PagedRelatedEvent from wavefront_api_client.models.paged_report_event_anomaly_dto import PagedReportEventAnomalyDTO from wavefront_api_client.models.paged_role_dto import PagedRoleDTO from wavefront_api_client.models.paged_saved_app_map_search import PagedSavedAppMapSearch from wavefront_api_client.models.paged_saved_app_map_search_group import PagedSavedAppMapSearchGroup from wavefront_api_client.models.paged_saved_search import PagedSavedSearch from wavefront_api_client.models.paged_saved_traces_search import PagedSavedTracesSearch from wavefront_api_client.models.paged_saved_traces_search_group import PagedSavedTracesSearchGroup from wavefront_api_client.models.paged_service_account import PagedServiceAccount from wavefront_api_client.models.paged_source import PagedSource from wavefront_api_client.models.paged_span_sampling_policy import PagedSpanSamplingPolicy from wavefront_api_client.models.paged_user_group_model import PagedUserGroupModel from wavefront_api_client.models.point import Point from wavefront_api_client.models.policy_rule_read_model import PolicyRuleReadModel from wavefront_api_client.models.policy_rule_write_model import PolicyRuleWriteModel from wavefront_api_client.models.proxy import Proxy from wavefront_api_client.models.query_event import QueryEvent from wavefront_api_client.models.query_result import QueryResult from wavefront_api_client.models.query_type_dto import QueryTypeDTO from wavefront_api_client.models.raw_timeseries import RawTimeseries from wavefront_api_client.models.recent_app_map_search import RecentAppMapSearch from wavefront_api_client.models.recent_traces_search import RecentTracesSearch from wavefront_api_client.models.related_anomaly import RelatedAnomaly from wavefront_api_client.models.related_data import RelatedData from wavefront_api_client.models.related_event import RelatedEvent from wavefront_api_client.models.related_event_time_range import RelatedEventTimeRange from wavefront_api_client.models.report_event_anomaly_dto import ReportEventAnomalyDTO from wavefront_api_client.models.response_container import ResponseContainer from wavefront_api_client.models.response_container_access_policy import ResponseContainerAccessPolicy from wavefront_api_client.models.response_container_access_policy_action import ResponseContainerAccessPolicyAction from wavefront_api_client.models.response_container_account import ResponseContainerAccount from wavefront_api_client.models.response_container_alert import ResponseContainerAlert from wavefront_api_client.models.response_container_cloud_integration import ResponseContainerCloudIntegration from wavefront_api_client.models.response_container_dashboard import ResponseContainerDashboard from wavefront_api_client.models.response_container_derived_metric_definition import ResponseContainerDerivedMetricDefinition from wavefront_api_client.models.response_container_event import ResponseContainerEvent from wavefront_api_client.models.response_container_external_link import ResponseContainerExternalLink from wavefront_api_client.models.response_container_facet_response import ResponseContainerFacetResponse from wavefront_api_client.models.response_container_facets_response_container import ResponseContainerFacetsResponseContainer from wavefront_api_client.models.response_container_history_response import ResponseContainerHistoryResponse from wavefront_api_client.models.response_container_ingestion_policy import ResponseContainerIngestionPolicy from wavefront_api_client.models.response_container_integration import ResponseContainerIntegration from wavefront_api_client.models.response_container_integration_status import ResponseContainerIntegrationStatus from wavefront_api_client.models.response_container_list_access_control_list_read_dto import ResponseContainerListAccessControlListReadDTO from wavefront_api_client.models.response_container_list_integration import ResponseContainerListIntegration from wavefront_api_client.models.response_container_list_integration_manifest_group import ResponseContainerListIntegrationManifestGroup from wavefront_api_client.models.response_container_list_notification_messages import ResponseContainerListNotificationMessages from wavefront_api_client.models.response_container_list_service_account import ResponseContainerListServiceAccount from wavefront_api_client.models.response_container_list_string import ResponseContainerListString from wavefront_api_client.models.response_container_list_user_api_token import ResponseContainerListUserApiToken from wavefront_api_client.models.response_container_maintenance_window import ResponseContainerMaintenanceWindow from wavefront_api_client.models.response_container_map_string_integer import ResponseContainerMapStringInteger from wavefront_api_client.models.response_container_map_string_integration_status import ResponseContainerMapStringIntegrationStatus from wavefront_api_client.models.response_container_message import ResponseContainerMessage from wavefront_api_client.models.response_container_metrics_policy_read_model import ResponseContainerMetricsPolicyReadModel from wavefront_api_client.models.response_container_monitored_application_dto import ResponseContainerMonitoredApplicationDTO from wavefront_api_client.models.response_container_monitored_cluster import ResponseContainerMonitoredCluster from wavefront_api_client.models.response_container_monitored_service_dto import ResponseContainerMonitoredServiceDTO from wavefront_api_client.models.response_container_notificant import ResponseContainerNotificant from wavefront_api_client.models.response_container_paged_account import ResponseContainerPagedAccount from wavefront_api_client.models.response_container_paged_alert import ResponseContainerPagedAlert from wavefront_api_client.models.response_container_paged_alert_with_stats import ResponseContainerPagedAlertWithStats from wavefront_api_client.models.response_container_paged_anomaly import ResponseContainerPagedAnomaly from wavefront_api_client.models.response_container_paged_cloud_integration import ResponseContainerPagedCloudIntegration from wavefront_api_client.models.response_container_paged_customer_facing_user_object import ResponseContainerPagedCustomerFacingUserObject from wavefront_api_client.models.response_container_paged_dashboard import ResponseContainerPagedDashboard from wavefront_api_client.models.response_container_paged_derived_metric_definition import ResponseContainerPagedDerivedMetricDefinition from wavefront_api_client.models.response_container_paged_derived_metric_definition_with_stats import ResponseContainerPagedDerivedMetricDefinitionWithStats from wavefront_api_client.models.response_container_paged_event import ResponseContainerPagedEvent from wavefront_api_client.models.response_container_paged_external_link import ResponseContainerPagedExternalLink from wavefront_api_client.models.response_container_paged_ingestion_policy import ResponseContainerPagedIngestionPolicy from wavefront_api_client.models.response_container_paged_integration import ResponseContainerPagedIntegration from wavefront_api_client.models.response_container_paged_maintenance_window import ResponseContainerPagedMaintenanceWindow from wavefront_api_client.models.response_container_paged_message import ResponseContainerPagedMessage from wavefront_api_client.models.response_container_paged_monitored_application_dto import ResponseContainerPagedMonitoredApplicationDTO from wavefront_api_client.models.response_container_paged_monitored_cluster import ResponseContainerPagedMonitoredCluster from wavefront_api_client.models.response_container_paged_monitored_service_dto import ResponseContainerPagedMonitoredServiceDTO from wavefront_api_client.models.response_container_paged_notificant import ResponseContainerPagedNotificant from wavefront_api_client.models.response_container_paged_proxy import ResponseContainerPagedProxy from wavefront_api_client.models.response_container_paged_recent_app_map_search import ResponseContainerPagedRecentAppMapSearch from wavefront_api_client.models.response_container_paged_recent_traces_search import ResponseContainerPagedRecentTracesSearch from wavefront_api_client.models.response_container_paged_related_event import ResponseContainerPagedRelatedEvent from wavefront_api_client.models.response_container_paged_report_event_anomaly_dto import ResponseContainerPagedReportEventAnomalyDTO from wavefront_api_client.models.response_container_paged_role_dto import ResponseContainerPagedRoleDTO from wavefront_api_client.models.response_container_paged_saved_app_map_search import ResponseContainerPagedSavedAppMapSearch from wavefront_api_client.models.response_container_paged_saved_app_map_search_group import ResponseContainerPagedSavedAppMapSearchGroup from wavefront_api_client.models.response_container_paged_saved_search import ResponseContainerPagedSavedSearch from wavefront_api_client.models.response_container_paged_saved_traces_search import ResponseContainerPagedSavedTracesSearch from wavefront_api_client.models.response_container_paged_saved_traces_search_group import ResponseContainerPagedSavedTracesSearchGroup from wavefront_api_client.models.response_container_paged_service_account import ResponseContainerPagedServiceAccount from wavefront_api_client.models.response_container_paged_source import ResponseContainerPagedSource from wavefront_api_client.models.response_container_paged_span_sampling_policy import ResponseContainerPagedSpanSamplingPolicy from wavefront_api_client.models.response_container_paged_user_group_model import ResponseContainerPagedUserGroupModel from wavefront_api_client.models.response_container_proxy import ResponseContainerProxy from wavefront_api_client.models.response_container_query_type_dto import ResponseContainerQueryTypeDTO from wavefront_api_client.models.response_container_recent_app_map_search import ResponseContainerRecentAppMapSearch from wavefront_api_client.models.response_container_recent_traces_search import ResponseContainerRecentTracesSearch from wavefront_api_client.models.response_container_role_dto import ResponseContainerRoleDTO from wavefront_api_client.models.response_container_saved_app_map_search import ResponseContainerSavedAppMapSearch from wavefront_api_client.models.response_container_saved_app_map_search_group import ResponseContainerSavedAppMapSearchGroup from wavefront_api_client.models.response_container_saved_search import ResponseContainerSavedSearch from wavefront_api_client.models.response_container_saved_traces_search import ResponseContainerSavedTracesSearch from wavefront_api_client.models.response_container_saved_traces_search_group import ResponseContainerSavedTracesSearchGroup from wavefront_api_client.models.response_container_service_account import ResponseContainerServiceAccount from wavefront_api_client.models.response_container_set_business_function import ResponseContainerSetBusinessFunction from wavefront_api_client.models.response_container_set_source_label_pair import ResponseContainerSetSourceLabelPair from wavefront_api_client.models.response_container_source import ResponseContainerSource from wavefront_api_client.models.response_container_span_sampling_policy import ResponseContainerSpanSamplingPolicy from wavefront_api_client.models.response_container_string import ResponseContainerString from wavefront_api_client.models.response_container_tags_response import ResponseContainerTagsResponse from wavefront_api_client.models.response_container_user_api_token import ResponseContainerUserApiToken from wavefront_api_client.models.response_container_user_dto import ResponseContainerUserDTO from wavefront_api_client.models.response_container_user_group_model import ResponseContainerUserGroupModel from wavefront_api_client.models.response_container_validated_users_dto import ResponseContainerValidatedUsersDTO from wavefront_api_client.models.response_container_void import ResponseContainerVoid from wavefront_api_client.models.response_status import ResponseStatus from wavefront_api_client.models.role_dto import RoleDTO from wavefront_api_client.models.saved_app_map_search import SavedAppMapSearch from wavefront_api_client.models.saved_app_map_search_group import SavedAppMapSearchGroup from wavefront_api_client.models.saved_search import SavedSearch from wavefront_api_client.models.saved_traces_search import SavedTracesSearch from wavefront_api_client.models.saved_traces_search_group import SavedTracesSearchGroup from wavefront_api_client.models.schema import Schema from wavefront_api_client.models.search_query import SearchQuery from wavefront_api_client.models.service_account import ServiceAccount from wavefront_api_client.models.service_account_write import ServiceAccountWrite from wavefront_api_client.models.snowflake_configuration import SnowflakeConfiguration from wavefront_api_client.models.sortable_search_request import SortableSearchRequest from wavefront_api_client.models.sorting import Sorting from wavefront_api_client.models.source import Source from wavefront_api_client.models.source_label_pair import SourceLabelPair from wavefront_api_client.models.source_search_request_container import SourceSearchRequestContainer from wavefront_api_client.models.span import Span from wavefront_api_client.models.span_sampling_policy import SpanSamplingPolicy from wavefront_api_client.models.specific_data import SpecificData from wavefront_api_client.models.stats_model_internal_use import StatsModelInternalUse from wavefront_api_client.models.stripe import Stripe from wavefront_api_client.models.tags_response import TagsResponse from wavefront_api_client.models.target_info import TargetInfo from wavefront_api_client.models.tesla_configuration import TeslaConfiguration from wavefront_api_client.models.timeseries import Timeseries from wavefront_api_client.models.trace import Trace from wavefront_api_client.models.triage_dashboard import TriageDashboard from wavefront_api_client.models.tuple import Tuple from wavefront_api_client.models.tuple_result import TupleResult from wavefront_api_client.models.tuple_value_result import TupleValueResult from wavefront_api_client.models.user_api_token import UserApiToken from wavefront_api_client.models.user_dto import UserDTO from wavefront_api_client.models.user_group import UserGroup from wavefront_api_client.models.user_group_model import UserGroupModel from wavefront_api_client.models.user_group_properties_dto import UserGroupPropertiesDTO from wavefront_api_client.models.user_group_write import UserGroupWrite from wavefront_api_client.models.user_model import UserModel from wavefront_api_client.models.user_request_dto import UserRequestDTO from wavefront_api_client.models.user_to_create import UserToCreate from wavefront_api_client.models.validated_users_dto import ValidatedUsersDTO from wavefront_api_client.models.void import Void from wavefront_api_client.models.vrops_configuration import VropsConfiguration from wavefront_api_client.models.wf_tags import WFTags
82.07622
409
0.92504
701ab26dfe1e09245bf8832de7cb95b228e4ecaf
6,274
py
Python
sktime/tests/_config.py
khrapovs/sktime
1589d007ef5dbcdc1f42f2c8278919ebed516358
[ "BSD-3-Clause" ]
null
null
null
sktime/tests/_config.py
khrapovs/sktime
1589d007ef5dbcdc1f42f2c8278919ebed516358
[ "BSD-3-Clause" ]
null
null
null
sktime/tests/_config.py
khrapovs/sktime
1589d007ef5dbcdc1f42f2c8278919ebed516358
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- __author__ = ["mloning"] __all__ = ["ESTIMATOR_TEST_PARAMS", "EXCLUDE_ESTIMATORS", "EXCLUDED_TESTS"] import numpy as np from pyod.models.knn import KNN from sklearn.preprocessing import FunctionTransformer, StandardScaler from sktime.annotation.adapters import PyODAnnotator from sktime.annotation.clasp import ClaSPSegmentation from sktime.base import BaseEstimator from sktime.forecasting.exp_smoothing import ExponentialSmoothing from sktime.forecasting.structural import UnobservedComponents from sktime.registry import ( BASE_CLASS_LIST, BASE_CLASS_LOOKUP, ESTIMATOR_TAG_LIST, TRANSFORMER_MIXIN_LIST, ) from sktime.regression.compose import ComposableTimeSeriesForestRegressor from sktime.transformations.base import BaseTransformer from sktime.transformations.panel.compose import ( ColumnTransformer, SeriesToPrimitivesRowTransformer, SeriesToSeriesRowTransformer, ) from sktime.transformations.panel.random_intervals import RandomIntervals from sktime.transformations.panel.shapelet_transform import RandomShapeletTransform from sktime.transformations.panel.summarize import FittedParamExtractor # The following estimators currently do not pass all unit tests # https://github.com/alan-turing-institute/sktime/issues/1627 EXCLUDE_ESTIMATORS = [ # ConditionalDeseasonalizer and STLtransformer still need refactoring # (see PR 1773, blocked through open discussion) escaping until then "ConditionalDeseasonalizer", "STLTransformer", # SFA is non-compliant with any transformer interfaces, #2064 "SFA", # requires y in fit, this is incompatible with the old testing framework # unless it inherits from the old mixins, which hard coded the y # should be removed once test_all_transformers has been refactored to scenarios "TSFreshRelevantFeatureExtractor", # PlateauFinder seems to be broken, see #2259 "PlateauFinder", ] EXCLUDED_TESTS = { # known issue when X is passed, wrong time indices are returned, #1364 "StackingForecaster": ["test_predict_time_index_with_X"], # known side effects on multivariate arguments, #2072 "WindowSummarizer": ["test_methods_have_no_side_effects"], # test fails in the Panel case for Differencer, see #2522 "Differencer": ["test_transform_inverse_transform_equivalent"], # tagged in issue #2490 "SignatureClassifier": [ "test_classifier_on_unit_test_data", "test_classifier_on_basic_motions", ], # test fail with deep problem with pickling inside tensorflow. "CNNClassifier": [ "test_fit_idempotent", "test_persistence_via_pickle", ], # pickling problem with local method see #2490 "ProximityStump": [ "test_persistence_via_pickle", "test_fit_does_not_overwrite_hyper_params", ], "ProximityTree": [ "test_persistence_via_pickle", "test_fit_does_not_overwrite_hyper_params", ], "ProximityForest": [ "test_persistence_via_pickle", "test_fit_does_not_overwrite_hyper_params", ], # sth is not quite right with the RowTransformer-s changing state, # but these are anyway on their path to deprecation, see #2370 "SeriesToPrimitivesRowTransformer": ["test_methods_do_not_change_state"], "SeriesToSeriesRowTransformer": ["test_methods_do_not_change_state"], # ColumnTransformer still needs to be refactored, see #2537 "ColumnTransformer": ["test_methods_do_not_change_state"], } # We here configure estimators for basic unit testing, including setting of # required hyper-parameters and setting of hyper-parameters for faster training. SERIES_TO_SERIES_TRANSFORMER = StandardScaler() SERIES_TO_PRIMITIVES_TRANSFORMER = FunctionTransformer( np.mean, kw_args={"axis": 0}, check_inverse=False ) TRANSFORMERS = [ ( "transformer1", SeriesToSeriesRowTransformer( SERIES_TO_SERIES_TRANSFORMER, check_transformer=False ), ), ( "transformer2", SeriesToSeriesRowTransformer( SERIES_TO_SERIES_TRANSFORMER, check_transformer=False ), ), ] ANOMALY_DETECTOR = KNN() ESTIMATOR_TEST_PARAMS = { FittedParamExtractor: { "forecaster": ExponentialSmoothing(), "param_names": ["initial_level"], }, SeriesToPrimitivesRowTransformer: { "transformer": SERIES_TO_PRIMITIVES_TRANSFORMER, "check_transformer": False, }, SeriesToSeriesRowTransformer: { "transformer": SERIES_TO_SERIES_TRANSFORMER, "check_transformer": False, }, ColumnTransformer: { "transformers": [(name, estimator, [0]) for name, estimator in TRANSFORMERS] }, RandomShapeletTransform: { "max_shapelets": 5, "n_shapelet_samples": 50, "batch_size": 20, }, RandomIntervals: { "n_intervals": 3, }, ComposableTimeSeriesForestRegressor: {"n_estimators": 3}, UnobservedComponents: {"level": "local level"}, PyODAnnotator: {"estimator": ANOMALY_DETECTOR}, ClaSPSegmentation: {"period_length": 5, "n_cps": 1}, } # We use estimator tags in addition to class hierarchies to further distinguish # estimators into different categories. This is useful for defining and running # common tests for estimators with the same tags. VALID_ESTIMATOR_TAGS = tuple(ESTIMATOR_TAG_LIST) # These methods should not change the state of the estimator, that is, they should # not change fitted parameters or hyper-parameters. They are also the methods that # "apply" the fitted estimator to data and useful for checking results. NON_STATE_CHANGING_METHODS = ( "predict", "predict_var", "predict_proba", "decision_function", "transform", # todo: add this back # escaping this, since for some estimators # the input format of inverse_transform assumes special col names # "inverse_transform", ) # The following gives a list of valid estimator base classes. VALID_TRANSFORMER_TYPES = tuple(TRANSFORMER_MIXIN_LIST) + (BaseTransformer,) VALID_ESTIMATOR_BASE_TYPES = tuple(BASE_CLASS_LIST) VALID_ESTIMATOR_TYPES = ( BaseEstimator, *VALID_ESTIMATOR_BASE_TYPES, *VALID_TRANSFORMER_TYPES, ) VALID_ESTIMATOR_BASE_TYPE_LOOKUP = BASE_CLASS_LOOKUP
36.690058
86
0.741792
a7e33c7b147a183b5c598f9eb3ee46a21886a9ea
889
py
Python
marketvalue.py
plooploops/rosterrun
3ee19392e358a6ee465dca36be7c4d903a64c36c
[ "Apache-2.0" ]
null
null
null
marketvalue.py
plooploops/rosterrun
3ee19392e358a6ee465dca36be7c4d903a64c36c
[ "Apache-2.0" ]
null
null
null
marketvalue.py
plooploops/rosterrun
3ee19392e358a6ee465dca36be7c4d903a64c36c
[ "Apache-2.0" ]
null
null
null
from mathutility import median, min, max def median_values(items = {}): if len(items) == 0: return None results = {} for k in items.keys(): results[k] = median(items[k]) return results def min_values(items = {}): if len(items) == 0: return None results = {} for k in items.keys(): results[k] = min(items[k]) return results def max_values(items = {}): if len(items) == 0: return None results = {} for k in items.keys(): results[k] = max(items[k]) return results def merge_market_values(current_items = {}, recent_items = {}): if len(recent_items) == 0: return current_items if len(current_items) == 0: return recent_items merged_items = dict({ k : v for (k, v) in recent_items.items() if v > 0 }.items() + { k : v for (k, v) in current_items.items() if v > 0 }.items()) return merged_items
20.204545
149
0.605174
d2a231d343bb69f42dc7042696ed0f00569273e7
21,101
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2019_09_01/aio/operations/_express_route_circuit_authorizations_operations.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
8
2021-01-13T23:44:08.000Z
2021-03-17T10:13:36.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2019_09_01/aio/operations/_express_route_circuit_authorizations_operations.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
null
null
null
sdk/network/azure-mgmt-network/azure/mgmt/network/v2019_09_01/aio/operations/_express_route_circuit_authorizations_operations.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class ExpressRouteCircuitAuthorizationsOperations: """ExpressRouteCircuitAuthorizationsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2019_09_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _delete_initial( self, resource_group_name: str, circuit_name: str, authorization_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-09-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'authorizationName': self._serialize.url("authorization_name", authorization_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/authorizations/{authorizationName}'} # type: ignore async def begin_delete( self, resource_group_name: str, circuit_name: str, authorization_name: str, **kwargs ) -> AsyncLROPoller[None]: """Deletes the specified authorization from the specified express route circuit. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param circuit_name: The name of the express route circuit. :type circuit_name: str :param authorization_name: The name of the authorization. :type authorization_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, circuit_name=circuit_name, authorization_name=authorization_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/authorizations/{authorizationName}'} # type: ignore async def get( self, resource_group_name: str, circuit_name: str, authorization_name: str, **kwargs ) -> "models.ExpressRouteCircuitAuthorization": """Gets the specified authorization from the specified express route circuit. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param circuit_name: The name of the express route circuit. :type circuit_name: str :param authorization_name: The name of the authorization. :type authorization_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ExpressRouteCircuitAuthorization, or the result of cls(response) :rtype: ~azure.mgmt.network.v2019_09_01.models.ExpressRouteCircuitAuthorization :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.ExpressRouteCircuitAuthorization"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-09-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'authorizationName': self._serialize.url("authorization_name", authorization_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ExpressRouteCircuitAuthorization', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/authorizations/{authorizationName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, circuit_name: str, authorization_name: str, authorization_parameters: "models.ExpressRouteCircuitAuthorization", **kwargs ) -> "models.ExpressRouteCircuitAuthorization": cls = kwargs.pop('cls', None) # type: ClsType["models.ExpressRouteCircuitAuthorization"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-09-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'authorizationName': self._serialize.url("authorization_name", authorization_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(authorization_parameters, 'ExpressRouteCircuitAuthorization') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('ExpressRouteCircuitAuthorization', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('ExpressRouteCircuitAuthorization', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/authorizations/{authorizationName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, circuit_name: str, authorization_name: str, authorization_parameters: "models.ExpressRouteCircuitAuthorization", **kwargs ) -> AsyncLROPoller["models.ExpressRouteCircuitAuthorization"]: """Creates or updates an authorization in the specified express route circuit. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param circuit_name: The name of the express route circuit. :type circuit_name: str :param authorization_name: The name of the authorization. :type authorization_name: str :param authorization_parameters: Parameters supplied to the create or update express route circuit authorization operation. :type authorization_parameters: ~azure.mgmt.network.v2019_09_01.models.ExpressRouteCircuitAuthorization :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either ExpressRouteCircuitAuthorization or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2019_09_01.models.ExpressRouteCircuitAuthorization] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.ExpressRouteCircuitAuthorization"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, circuit_name=circuit_name, authorization_name=authorization_name, authorization_parameters=authorization_parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ExpressRouteCircuitAuthorization', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/authorizations/{authorizationName}'} # type: ignore def list( self, resource_group_name: str, circuit_name: str, **kwargs ) -> AsyncIterable["models.AuthorizationListResult"]: """Gets all authorizations in an express route circuit. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param circuit_name: The name of the circuit. :type circuit_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either AuthorizationListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2019_09_01.models.AuthorizationListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.AuthorizationListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-09-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('AuthorizationListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/authorizations'} # type: ignore
50.480861
232
0.678262
d197ae6c9d70e33cbdb00cc12f2fa324440ac59c
300
py
Python
pulsar/managers/util/__init__.py
jmchilton/pulsar
783b90cf0bce893a11c347fcaf6778b98e0bb062
[ "Apache-2.0" ]
6
2018-11-03T22:43:35.000Z
2022-02-15T17:51:33.000Z
pulsar/managers/util/__init__.py
jmchilton/pulsar
783b90cf0bce893a11c347fcaf6778b98e0bb062
[ "Apache-2.0" ]
3
2015-06-06T22:16:03.000Z
2015-11-12T00:22:45.000Z
pulsar/managers/util/__init__.py
jmchilton/pulsar
783b90cf0bce893a11c347fcaf6778b98e0bb062
[ "Apache-2.0" ]
10
2017-04-10T21:40:22.000Z
2022-02-21T16:50:10.000Z
""" This module and its submodules contains utilities for running external processes and interfacing with job managers. This module should contain functionality shared between Galaxy and the Pulsar. """ from galaxy.util.bunch import Bunch from .kill import kill_pid __all__ = ['kill_pid', 'Bunch']
27.272727
71
0.793333
37281bb7461981ccfbb3d459fcf0c95240fd0a1c
9,868
py
Python
ambari-agent/src/test/python/resource_management/TestContentSources.py
samyzh/ambari
ff73620da41697ed2ca9ece676f71ec9ba28a7d5
[ "Apache-2.0" ]
1,664
2015-01-03T09:35:21.000Z
2022-03-31T04:55:24.000Z
ambari-agent/src/test/python/resource_management/TestContentSources.py
samyzh/ambari
ff73620da41697ed2ca9ece676f71ec9ba28a7d5
[ "Apache-2.0" ]
3,018
2015-02-19T20:16:10.000Z
2021-11-13T20:47:48.000Z
ambari-agent/src/test/python/resource_management/TestContentSources.py
samyzh/ambari
ff73620da41697ed2ca9ece676f71ec9ba28a7d5
[ "Apache-2.0" ]
1,673
2015-01-06T14:14:42.000Z
2022-03-31T07:22:30.000Z
''' Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' from unittest import TestCase from mock.mock import patch, MagicMock from only_for_platform import get_platform, not_for_platform, os_distro_value, PLATFORM_WINDOWS import os if get_platform() != PLATFORM_WINDOWS: with patch.object(os, "geteuid", return_value=0): from resource_management.core import sudo reload(sudo) from ambari_commons.os_check import OSCheck from resource_management.core import Environment from resource_management.core.system import System from resource_management.core.source import StaticFile from resource_management.core.source import DownloadSource from resource_management.core.source import Template from resource_management.core.source import InlineTemplate from ambari_jinja2 import UndefinedError, TemplateNotFound import urllib2 @patch.object(OSCheck, "os_distribution", new = MagicMock(return_value = os_distro_value)) class TestContentSources(TestCase): @patch.object(os.path, "isfile") @patch.object(os.path, "join") def test_static_file_absolute_path(self, join_mock, is_file_mock): """ Testing StaticFile source with absolute path """ sudo.read_file = lambda path: 'content' is_file_mock.return_value = True with Environment("/base") as env: static_file = StaticFile("/absolute/path/file") content = static_file.get_content() self.assertEqual('content', content) self.assertEqual(is_file_mock.call_count, 1) self.assertEqual(join_mock.call_count, 0) @patch.object(os.path, "isfile") @patch.object(os.path, "join") def test_static_file_relative_path(self, join_mock, is_file_mock): """ Testing StaticFile source with relative path """ sudo.read_file = lambda path: 'content' is_file_mock.return_value = True with Environment("/base") as env: static_file = StaticFile("relative/path/file") content = static_file.get_content() self.assertEqual('content', content) self.assertEqual(is_file_mock.call_count, 1) self.assertEqual(join_mock.call_count, 1) join_mock.assert_called_with('/base', 'files', 'relative/path/file') @patch.object(urllib2, "build_opener") @patch.object(urllib2, "Request") @patch.object(os.path, "exists") def test_download_source_get_content_nocache(self, exists_mock, request_mock, opener_mock): """ Testing DownloadSource.get_content without cache """ exists_mock.return_value = True web_file_mock = MagicMock() web_file_mock.read.return_value = 'web_content' opener_mock.return_value.open = MagicMock(return_value=web_file_mock) with Environment("/base", tmp_dir='/var/tmp/downloads') as env: download_source = DownloadSource("http://download/source", redownload_files=True) content = download_source.get_content() self.assertEqual('web_content', content) self.assertEqual(opener_mock.call_count, 1) request_mock.assert_called_with('http://download/source') self.assertEqual(web_file_mock.read.call_count, 1) @patch("__builtin__.open") @patch.object(urllib2, "Request") @patch.object(urllib2, "build_opener") @patch.object(os, "makedirs") @patch.object(os.path, "exists") @patch("resource_management.core.sudo.create_file") def test_download_source_get_content_cache_new(self, create_mock, exists_mock, makedirs_mock, opener_mock, request_mock, open_mock): """ Testing DownloadSource.get_content with cache on non-cached resource """ exists_mock.side_effect = [True, False] web_file_mock = MagicMock() web_file_mock.read.return_value = 'web_content' opener_mock.return_value.open = MagicMock(return_value=web_file_mock) file_mock = MagicMock(name = 'file_mock') file_mock.__enter__.return_value = file_mock file_mock.read.return_value = 'content' open_mock.return_value = file_mock with Environment("/base", tmp_dir='/var/tmp/downloads') as env: download_source = DownloadSource("http://download/source", redownload_files=False) content = download_source.get_content() self.assertEqual('web_content', content) self.assertEqual(opener_mock.call_count, 1) request_mock.assert_called_with('http://download/source') self.assertEqual(web_file_mock.read.call_count, 1) @patch("__builtin__.open") @patch.object(os.path, "exists") def test_download_source_get_content_cache_existent(self, exists_mock, open_mock): """ Testing DownloadSource.get_content with cache on cached resource """ exists_mock.side_effect = [True, True] file_mock = MagicMock(name = 'file_mock') file_mock.__enter__.return_value = file_mock file_mock.read.return_value = 'cached_content' open_mock.return_value = file_mock with Environment("/base", tmp_dir='/var/tmp/downloads') as env: download_source = DownloadSource("http://download/source", redownload_files=False) content = download_source.get_content() self.assertEqual('cached_content', content) self.assertEqual(open_mock.call_count, 1) self.assertEqual(file_mock.read.call_count, 1) @patch("__builtin__.open") @patch.object(os.path, "getmtime") @patch.object(os.path, "exists") def test_template_loader(self, exists_mock, getmtime_mock, open_mock): """ Testing template loader on existent file """ exists_mock.return_value = True getmtime_mock.return_value = 10 file_mock = MagicMock(name = 'file_mock') file_mock.__enter__.return_value = file_mock file_mock.read.return_value = 'template content' open_mock.return_value = file_mock with Environment("/base") as env: template = Template("test.j2") self.assertEqual(open_mock.call_count, 1) open_mock.assert_called_with('/base/templates/test.j2', 'rb') self.assertEqual(getmtime_mock.call_count, 1) getmtime_mock.assert_called_with('/base/templates/test.j2') @patch.object(os.path, "exists") def test_template_loader_fail(self, exists_mock): """ Testing template loader on non-existent file """ exists_mock.return_value = False try: with Environment("/base") as env: template = Template("test.j2") self.fail("Template should fail with nonexistent template file") except TemplateNotFound: pass @patch("__builtin__.open") @patch.object(os.path, "getmtime") @patch.object(os.path, "exists") def test_template_loader_absolute_path(self, exists_mock, getmtime_mock, open_mock): """ Testing template loader with absolute file-path """ exists_mock.return_value = True getmtime_mock.return_value = 10 file_mock = MagicMock(name = 'file_mock') file_mock.__enter__.return_value = file_mock file_mock.read.return_value = 'template content' open_mock.return_value = file_mock with Environment("/base") as env: template = Template("/absolute/path/test.j2") self.assertEqual(open_mock.call_count, 1) open_mock.assert_called_with('/absolute/path/test.j2', 'rb') self.assertEqual(getmtime_mock.call_count, 1) getmtime_mock.assert_called_with('/absolute/path/test.j2') @patch("__builtin__.open") @patch.object(os.path, "getmtime") @patch.object(os.path, "exists") def test_template_loader_arguments(self, exists_mock, getmtime_mock, open_mock): """ Testing template loader additional arguments in template and absolute file-path """ exists_mock.return_value = True getmtime_mock.return_value = 10 file_mock = MagicMock(name = 'file_mock') file_mock.__enter__.return_value = file_mock file_mock.read.return_value = '{{test_arg1}} template content' open_mock.return_value = file_mock with Environment("/base") as env: template = Template("/absolute/path/test.j2", [], test_arg1 = "test") content = template.get_content() self.assertEqual(open_mock.call_count, 1) self.assertEqual(u'test template content', content) open_mock.assert_called_with('/absolute/path/test.j2', 'rb') self.assertEqual(getmtime_mock.call_count, 1) getmtime_mock.assert_called_with('/absolute/path/test.j2') def test_inline_template(self): """ Testing InlineTemplate """ with Environment("/base") as env: template = InlineTemplate("{{test_arg1}} template content", [], test_arg1 = "test") content = template.get_content() self.assertEqual(u'test template content', content) def test_template_imports(self): """ Testing Template additional imports """ try: with Environment("/base") as env: template = InlineTemplate("{{test_arg1}} template content {{os.path.join(path[0],path[1])}}", [], test_arg1 = "test", path = ["/one","two"]) content = template.get_content() self.fail("Template.get_content should fail when evaluating unknown import") except UndefinedError: pass with Environment("/base") as env: template = InlineTemplate("{{test_arg1}} template content {{os.path.join(path[0],path[1])}}", [os], test_arg1 = "test", path = ["/one","two"]) content = template.get_content() self.assertEqual(u'test template content /one/two', content)
37.520913
148
0.733178
7ec73347d16bf59c0a32b51f0e6dd8e7a0d82751
23,097
py
Python
dev/run-tests.py
CS490-Knush/spark
1b6755756cf831b7d90e5516899ccd78bc338eb6
[ "PSF-2.0", "BSD-2-Clause", "Apache-2.0", "CC0-1.0", "MIT", "MIT-0", "ECL-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
3
2018-11-17T07:51:24.000Z
2018-11-17T08:09:19.000Z
dev/run-tests.py
CS490-Knush/spark
1b6755756cf831b7d90e5516899ccd78bc338eb6
[ "PSF-2.0", "BSD-2-Clause", "Apache-2.0", "CC0-1.0", "MIT", "MIT-0", "ECL-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
4
2018-12-11T13:53:39.000Z
2021-09-07T14:48:26.000Z
dev/run-tests.py
CS490-Knush/spark
1b6755756cf831b7d90e5516899ccd78bc338eb6
[ "PSF-2.0", "BSD-2-Clause", "Apache-2.0", "CC0-1.0", "MIT", "MIT-0", "ECL-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
1
2018-10-19T23:50:20.000Z
2018-10-19T23:50:20.000Z
#!/usr/bin/env python2 # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function import itertools from optparse import OptionParser import os import random import re import sys import subprocess from collections import namedtuple from sparktestsupport import SPARK_HOME, USER_HOME, ERROR_CODES from sparktestsupport.shellutils import exit_from_command_with_retcode, run_cmd, rm_r, which from sparktestsupport.toposort import toposort_flatten, toposort import sparktestsupport.modules as modules # ------------------------------------------------------------------------------------------------- # Functions for traversing module dependency graph # ------------------------------------------------------------------------------------------------- def determine_modules_for_files(filenames): """ Given a list of filenames, return the set of modules that contain those files. If a file is not associated with a more specific submodule, then this method will consider that file to belong to the 'root' module. >>> sorted(x.name for x in determine_modules_for_files(["python/pyspark/a.py", "sql/core/foo"])) ['pyspark-core', 'sql'] >>> [x.name for x in determine_modules_for_files(["file_not_matched_by_any_subproject"])] ['root'] """ changed_modules = set() for filename in filenames: matched_at_least_one_module = False for module in modules.all_modules: if module.contains_file(filename): changed_modules.add(module) matched_at_least_one_module = True if not matched_at_least_one_module: changed_modules.add(modules.root) return changed_modules def identify_changed_files_from_git_commits(patch_sha, target_branch=None, target_ref=None): """ Given a git commit and target ref, use the set of files changed in the diff in order to determine which modules' tests should be run. >>> [x.name for x in determine_modules_for_files( \ identify_changed_files_from_git_commits("fc0a1475ef", target_ref="5da21f07"))] ['graphx'] >>> 'root' in [x.name for x in determine_modules_for_files( \ identify_changed_files_from_git_commits("50a0496a43", target_ref="6765ef9"))] True """ if target_branch is None and target_ref is None: raise AttributeError("must specify either target_branch or target_ref") elif target_branch is not None and target_ref is not None: raise AttributeError("must specify either target_branch or target_ref, not both") if target_branch is not None: diff_target = target_branch run_cmd(['git', 'fetch', 'origin', str(target_branch+':'+target_branch)]) else: diff_target = target_ref raw_output = subprocess.check_output(['git', 'diff', '--name-only', patch_sha, diff_target], universal_newlines=True) # Remove any empty strings return [f for f in raw_output.split('\n') if f] def setup_test_environ(environ): print("[info] Setup the following environment variables for tests: ") for (k, v) in environ.items(): print("%s=%s" % (k, v)) os.environ[k] = v def determine_modules_to_test(changed_modules): """ Given a set of modules that have changed, compute the transitive closure of those modules' dependent modules in order to determine the set of modules that should be tested. Returns a topologically-sorted list of modules (ties are broken by sorting on module names). >>> [x.name for x in determine_modules_to_test([modules.root])] ['root'] >>> [x.name for x in determine_modules_to_test([modules.build])] ['root'] >>> [x.name for x in determine_modules_to_test([modules.graphx])] ['graphx', 'examples'] >>> x = [x.name for x in determine_modules_to_test([modules.sql])] >>> x # doctest: +NORMALIZE_WHITESPACE ['sql', 'avro', 'hive', 'mllib', 'sql-kafka-0-10', 'examples', 'hive-thriftserver', 'pyspark-sql', 'repl', 'sparkr', 'pyspark-mllib', 'pyspark-ml'] """ modules_to_test = set() for module in changed_modules: modules_to_test = modules_to_test.union(determine_modules_to_test(module.dependent_modules)) modules_to_test = modules_to_test.union(set(changed_modules)) # If we need to run all of the tests, then we should short-circuit and return 'root' if modules.root in modules_to_test: return [modules.root] return toposort_flatten( {m: set(m.dependencies).intersection(modules_to_test) for m in modules_to_test}, sort=True) def determine_tags_to_exclude(changed_modules): tags = [] for m in modules.all_modules: if m not in changed_modules: tags += m.test_tags return tags # ------------------------------------------------------------------------------------------------- # Functions for working with subprocesses and shell tools # ------------------------------------------------------------------------------------------------- def determine_java_executable(): """Will return the path of the java executable that will be used by Spark's tests or `None`""" # Any changes in the way that Spark's build detects java must be reflected # here. Currently the build looks for $JAVA_HOME/bin/java then falls back to # the `java` executable on the path java_home = os.environ.get("JAVA_HOME") # check if there is an executable at $JAVA_HOME/bin/java java_exe = which(os.path.join(java_home, "bin", "java")) if java_home else None # if the java_exe wasn't set, check for a `java` version on the $PATH return java_exe if java_exe else which("java") JavaVersion = namedtuple('JavaVersion', ['major', 'minor', 'patch']) def determine_java_version(java_exe): """Given a valid java executable will return its version in named tuple format with accessors '.major', '.minor', '.patch', '.update'""" raw_output = subprocess.check_output([java_exe, "-version"], stderr=subprocess.STDOUT, universal_newlines=True) raw_output_lines = raw_output.split('\n') # find raw version string, eg 'java version "1.8.0_25"' raw_version_str = next(x for x in raw_output_lines if " version " in x) match = re.search(r'(\d+)\.(\d+)\.(\d+)', raw_version_str) major = int(match.group(1)) minor = int(match.group(2)) patch = int(match.group(3)) return JavaVersion(major, minor, patch) # ------------------------------------------------------------------------------------------------- # Functions for running the other build and test scripts # ------------------------------------------------------------------------------------------------- def set_title_and_block(title, err_block): os.environ["CURRENT_BLOCK"] = str(ERROR_CODES[err_block]) line_str = '=' * 72 print('') print(line_str) print(title) print(line_str) def run_apache_rat_checks(): set_title_and_block("Running Apache RAT checks", "BLOCK_RAT") run_cmd([os.path.join(SPARK_HOME, "dev", "check-license")]) def run_scala_style_checks(): set_title_and_block("Running Scala style checks", "BLOCK_SCALA_STYLE") run_cmd([os.path.join(SPARK_HOME, "dev", "lint-scala")]) def run_java_style_checks(): set_title_and_block("Running Java style checks", "BLOCK_JAVA_STYLE") run_cmd([os.path.join(SPARK_HOME, "dev", "sbt-checkstyle")]) def run_python_style_checks(): set_title_and_block("Running Python style checks", "BLOCK_PYTHON_STYLE") run_cmd([os.path.join(SPARK_HOME, "dev", "lint-python")]) def run_sparkr_style_checks(): set_title_and_block("Running R style checks", "BLOCK_R_STYLE") if which("R"): # R style check should be executed after `install-dev.sh`. # Since warnings about `no visible global function definition` appear # without the installation. SEE ALSO: SPARK-9121. run_cmd([os.path.join(SPARK_HOME, "dev", "lint-r")]) else: print("Ignoring SparkR style check as R was not found in PATH") def build_spark_documentation(): set_title_and_block("Building Spark Documentation", "BLOCK_DOCUMENTATION") os.environ["PRODUCTION"] = "1 jekyll build" os.chdir(os.path.join(SPARK_HOME, "docs")) jekyll_bin = which("jekyll") if not jekyll_bin: print("[error] Cannot find a version of `jekyll` on the system; please", " install one and retry to build documentation.") sys.exit(int(os.environ.get("CURRENT_BLOCK", 255))) else: run_cmd([jekyll_bin, "build"]) os.chdir(SPARK_HOME) def get_zinc_port(): """ Get a randomized port on which to start Zinc """ return random.randrange(3030, 4030) def exec_maven(mvn_args=()): """Will call Maven in the current directory with the list of mvn_args passed in and returns the subprocess for any further processing""" zinc_port = get_zinc_port() os.environ["ZINC_PORT"] = "%s" % zinc_port zinc_flag = "-DzincPort=%s" % zinc_port flags = [os.path.join(SPARK_HOME, "build", "mvn"), "--force", zinc_flag] run_cmd(flags + mvn_args) def exec_sbt(sbt_args=()): """Will call SBT in the current directory with the list of mvn_args passed in and returns the subprocess for any further processing""" sbt_cmd = [os.path.join(SPARK_HOME, "build", "sbt")] + sbt_args sbt_output_filter = re.compile(b"^.*[info].*Resolving" + b"|" + b"^.*[warn].*Merging" + b"|" + b"^.*[info].*Including") # NOTE: echo "q" is needed because sbt on encountering a build file # with failure (either resolution or compilation) prompts the user for # input either q, r, etc to quit or retry. This echo is there to make it # not block. echo_proc = subprocess.Popen(["echo", "\"q\n\""], stdout=subprocess.PIPE) sbt_proc = subprocess.Popen(sbt_cmd, stdin=echo_proc.stdout, stdout=subprocess.PIPE) echo_proc.wait() for line in iter(sbt_proc.stdout.readline, b''): if not sbt_output_filter.match(line): print(line, end='') retcode = sbt_proc.wait() if retcode != 0: exit_from_command_with_retcode(sbt_cmd, retcode) def get_hadoop_profiles(hadoop_version): """ For the given Hadoop version tag, return a list of Maven/SBT profile flags for building and testing against that Hadoop version. """ sbt_maven_hadoop_profiles = { "hadoop2.7": ["-Phadoop-2.7"], } if hadoop_version in sbt_maven_hadoop_profiles: return sbt_maven_hadoop_profiles[hadoop_version] else: print("[error] Could not find", hadoop_version, "in the list. Valid options", " are", sbt_maven_hadoop_profiles.keys()) sys.exit(int(os.environ.get("CURRENT_BLOCK", 255))) def build_spark_maven(hadoop_version): # Enable all of the profiles for the build: build_profiles = get_hadoop_profiles(hadoop_version) + modules.root.build_profile_flags mvn_goals = ["clean", "package", "-DskipTests"] profiles_and_goals = build_profiles + mvn_goals print("[info] Building Spark (w/Hive 1.2.1) using Maven with these arguments: ", " ".join(profiles_and_goals)) exec_maven(profiles_and_goals) def build_spark_sbt(hadoop_version): # Enable all of the profiles for the build: build_profiles = get_hadoop_profiles(hadoop_version) + modules.root.build_profile_flags sbt_goals = ["test:package", # Build test jars as some tests depend on them "streaming-kinesis-asl-assembly/assembly"] profiles_and_goals = build_profiles + sbt_goals print("[info] Building Spark (w/Hive 1.2.1) using SBT with these arguments: ", " ".join(profiles_and_goals)) exec_sbt(profiles_and_goals) def build_spark_unidoc_sbt(hadoop_version): set_title_and_block("Building Unidoc API Documentation", "BLOCK_DOCUMENTATION") # Enable all of the profiles for the build: build_profiles = get_hadoop_profiles(hadoop_version) + modules.root.build_profile_flags sbt_goals = ["unidoc"] profiles_and_goals = build_profiles + sbt_goals print("[info] Building Spark unidoc (w/Hive 1.2.1) using SBT with these arguments: ", " ".join(profiles_and_goals)) exec_sbt(profiles_and_goals) def build_spark_assembly_sbt(hadoop_version, checkstyle=False): # Enable all of the profiles for the build: build_profiles = get_hadoop_profiles(hadoop_version) + modules.root.build_profile_flags sbt_goals = ["assembly/package"] profiles_and_goals = build_profiles + sbt_goals print("[info] Building Spark assembly (w/Hive 1.2.1) using SBT with these arguments: ", " ".join(profiles_and_goals)) exec_sbt(profiles_and_goals) if checkstyle: run_java_style_checks() build_spark_unidoc_sbt(hadoop_version) def build_apache_spark(build_tool, hadoop_version): """Will build Spark against Hive v1.2.1 given the passed in build tool (either `sbt` or `maven`). Defaults to using `sbt`.""" set_title_and_block("Building Spark", "BLOCK_BUILD") rm_r("lib_managed") if build_tool == "maven": build_spark_maven(hadoop_version) else: build_spark_sbt(hadoop_version) def detect_binary_inop_with_mima(hadoop_version): build_profiles = get_hadoop_profiles(hadoop_version) + modules.root.build_profile_flags set_title_and_block("Detecting binary incompatibilities with MiMa", "BLOCK_MIMA") run_cmd([os.path.join(SPARK_HOME, "dev", "mima")] + build_profiles) def run_scala_tests_maven(test_profiles): mvn_test_goals = ["test", "--fail-at-end"] profiles_and_goals = test_profiles + mvn_test_goals print("[info] Running Spark tests using Maven with these arguments: ", " ".join(profiles_and_goals)) exec_maven(profiles_and_goals) def run_scala_tests_sbt(test_modules, test_profiles): sbt_test_goals = list(itertools.chain.from_iterable(m.sbt_test_goals for m in test_modules)) if not sbt_test_goals: return profiles_and_goals = test_profiles + sbt_test_goals print("[info] Running Spark tests using SBT with these arguments: ", " ".join(profiles_and_goals)) exec_sbt(profiles_and_goals) def run_scala_tests(build_tool, hadoop_version, test_modules, excluded_tags): """Function to properly execute all tests passed in as a set from the `determine_test_suites` function""" set_title_and_block("Running Spark unit tests", "BLOCK_SPARK_UNIT_TESTS") test_modules = set(test_modules) test_profiles = get_hadoop_profiles(hadoop_version) + \ list(set(itertools.chain.from_iterable(m.build_profile_flags for m in test_modules))) if excluded_tags: test_profiles += ['-Dtest.exclude.tags=' + ",".join(excluded_tags)] if build_tool == "maven": run_scala_tests_maven(test_profiles) else: run_scala_tests_sbt(test_modules, test_profiles) def run_python_tests(test_modules, parallelism): set_title_and_block("Running PySpark tests", "BLOCK_PYSPARK_UNIT_TESTS") command = [os.path.join(SPARK_HOME, "python", "run-tests")] if test_modules != [modules.root]: command.append("--modules=%s" % ','.join(m.name for m in test_modules)) command.append("--parallelism=%i" % parallelism) run_cmd(command) def run_python_packaging_tests(): set_title_and_block("Running PySpark packaging tests", "BLOCK_PYSPARK_PIP_TESTS") command = [os.path.join(SPARK_HOME, "dev", "run-pip-tests")] run_cmd(command) def run_build_tests(): set_title_and_block("Running build tests", "BLOCK_BUILD_TESTS") run_cmd([os.path.join(SPARK_HOME, "dev", "test-dependencies.sh")]) pass def run_sparkr_tests(): set_title_and_block("Running SparkR tests", "BLOCK_SPARKR_UNIT_TESTS") if which("R"): run_cmd([os.path.join(SPARK_HOME, "R", "run-tests.sh")]) else: print("Ignoring SparkR tests as R was not found in PATH") def parse_opts(): parser = OptionParser( prog="run-tests" ) parser.add_option( "-p", "--parallelism", type="int", default=4, help="The number of suites to test in parallel (default %default)" ) (opts, args) = parser.parse_args() if args: parser.error("Unsupported arguments: %s" % ' '.join(args)) if opts.parallelism < 1: parser.error("Parallelism cannot be less than 1") return opts def main(): opts = parse_opts() # Ensure the user home directory (HOME) is valid and is an absolute directory if not USER_HOME or not os.path.isabs(USER_HOME): print("[error] Cannot determine your home directory as an absolute path;", " ensure the $HOME environment variable is set properly.") sys.exit(1) os.chdir(SPARK_HOME) rm_r(os.path.join(SPARK_HOME, "work")) rm_r(os.path.join(USER_HOME, ".ivy2", "local", "org.apache.spark")) rm_r(os.path.join(USER_HOME, ".ivy2", "cache", "org.apache.spark")) os.environ["CURRENT_BLOCK"] = str(ERROR_CODES["BLOCK_GENERAL"]) java_exe = determine_java_executable() if not java_exe: print("[error] Cannot find a version of `java` on the system; please", " install one and retry.") sys.exit(2) java_version = determine_java_version(java_exe) # install SparkR if which("R"): run_cmd([os.path.join(SPARK_HOME, "R", "install-dev.sh")]) else: print("Cannot install SparkR as R was not found in PATH") if os.environ.get("AMPLAB_JENKINS"): # if we're on the Amplab Jenkins build servers setup variables # to reflect the environment settings build_tool = os.environ.get("AMPLAB_JENKINS_BUILD_TOOL", "sbt") hadoop_version = os.environ.get("AMPLAB_JENKINS_BUILD_PROFILE", "hadoop2.7") test_env = "amplab_jenkins" # add path for Python3 in Jenkins if we're calling from a Jenkins machine os.environ["PATH"] = "/home/anaconda/envs/py3k/bin:" + os.environ.get("PATH") else: # else we're running locally and can use local settings build_tool = "sbt" hadoop_version = os.environ.get("HADOOP_PROFILE", "hadoop2.7") test_env = "local" print("[info] Using build tool", build_tool, "with Hadoop profile", hadoop_version, "under environment", test_env) changed_modules = None changed_files = None if test_env == "amplab_jenkins" and os.environ.get("AMP_JENKINS_PRB"): target_branch = os.environ["ghprbTargetBranch"] changed_files = identify_changed_files_from_git_commits("HEAD", target_branch=target_branch) changed_modules = determine_modules_for_files(changed_files) excluded_tags = determine_tags_to_exclude(changed_modules) if not changed_modules: changed_modules = [modules.root] excluded_tags = [] print("[info] Found the following changed modules:", ", ".join(x.name for x in changed_modules)) # setup environment variables # note - the 'root' module doesn't collect environment variables for all modules. Because the # environment variables should not be set if a module is not changed, even if running the 'root' # module. So here we should use changed_modules rather than test_modules. test_environ = {} for m in changed_modules: test_environ.update(m.environ) setup_test_environ(test_environ) test_modules = determine_modules_to_test(changed_modules) # license checks run_apache_rat_checks() # style checks if not changed_files or any(f.endswith(".scala") or f.endswith("scalastyle-config.xml") for f in changed_files): run_scala_style_checks() should_run_java_style_checks = False if not changed_files or any(f.endswith(".java") or f.endswith("checkstyle.xml") or f.endswith("checkstyle-suppressions.xml") for f in changed_files): # Run SBT Checkstyle after the build to prevent a side-effect to the build. should_run_java_style_checks = True if not changed_files or any(f.endswith("lint-python") or f.endswith("tox.ini") or f.endswith(".py") for f in changed_files): run_python_style_checks() if not changed_files or any(f.endswith(".R") or f.endswith("lint-r") or f.endswith(".lintr") for f in changed_files): run_sparkr_style_checks() # determine if docs were changed and if we're inside the amplab environment # note - the below commented out until *all* Jenkins workers can get `jekyll` installed # if "DOCS" in changed_modules and test_env == "amplab_jenkins": # build_spark_documentation() if any(m.should_run_build_tests for m in test_modules): run_build_tests() # spark build build_apache_spark(build_tool, hadoop_version) # backwards compatibility checks if build_tool == "sbt": # Note: compatibility tests only supported in sbt for now detect_binary_inop_with_mima(hadoop_version) # Since we did not build assembly/package before running dev/mima, we need to # do it here because the tests still rely on it; see SPARK-13294 for details. build_spark_assembly_sbt(hadoop_version, should_run_java_style_checks) # run the test suites run_scala_tests(build_tool, hadoop_version, test_modules, excluded_tags) modules_with_python_tests = [m for m in test_modules if m.python_test_goals] if modules_with_python_tests: run_python_tests(modules_with_python_tests, opts.parallelism) run_python_packaging_tests() if any(m.should_run_r_tests for m in test_modules): run_sparkr_tests() def _test(): import doctest failure_count = doctest.testmod()[0] if failure_count: sys.exit(-1) if __name__ == "__main__": _test() main()
37.740196
100
0.665714
588f8103e5e4f32c7219b611157b3898aae5a6a4
2,890
py
Python
examples/baremetal/nlp/sst2/distilbert_base_uncased/run_engine.py
intel/neural-compressor
16a4a12045fcb468da4d33769aff2c1a5e2ba6ba
[ "Apache-2.0" ]
172
2021-09-14T18:34:17.000Z
2022-03-30T06:49:53.000Z
examples/baremetal/nlp/sst2/distilbert_base_uncased/run_engine.py
intel/lp-opt-tool
130eefa3586b38df6c0ff78cc8807ae273f6a63f
[ "Apache-2.0" ]
40
2021-09-14T02:26:12.000Z
2022-03-29T08:34:04.000Z
examples/baremetal/nlp/sst2/distilbert_base_uncased/run_engine.py
intel/neural-compressor
16a4a12045fcb468da4d33769aff2c1a5e2ba6ba
[ "Apache-2.0" ]
33
2021-09-15T07:27:25.000Z
2022-03-25T08:30:57.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import multiprocessing import threading import subprocess import time import os import sys import argparse import array import logging import numpy as np import time from utils import SST2DataSet logging.basicConfig(level=logging.INFO) log = logging.getLogger("DISTILBERT") def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--batch_size", default=8, type=int, help="Batch size") parser.add_argument("--input_model", default="distilbert_base_uncased_sst2.onnx", type=str, help="input_model_path") parser.add_argument("--output_model", default="./ir/", type=str, help="output_model_path") parser.add_argument("--data_dir", default="./data", type=str, help="The input data dir.") parser.add_argument("--tokenizer_dir", default= \ "distilbert-base-uncased-finetuned-sst-2-english", type=str, help="pre-trained model tokenizer name or path") parser.add_argument("--config", default="./bert_static.yaml", type=str, help="yaml path") parser.add_argument('--benchmark', action='store_true', default=False) parser.add_argument('--tune', action='store_true', default=False, help="whether quantize the model") parser.add_argument('--mode', type=str, help="benchmark mode of performance or accuracy") args = parser.parse_args() return args def main(): args = get_args() if args.benchmark: from neural_compressor.experimental import Benchmark, common ds = SST2DataSet(args.data_dir, args.tokenizer_dir) evaluator = Benchmark(args.config) evaluator.model = common.Model(args.input_model) evaluator.b_dataloader = common.DataLoader(ds, args.batch_size) evaluator(args.mode) if args.tune: from neural_compressor.experimental import Quantization, common ds = SST2DataSet(args.data_dir, args.tokenizer_dir) quantizer = Quantization(args.config) quantizer.model = common.Model(args.input_model) quantizer.eval_dataloader = common.DataLoader(ds, args.batch_size) quantizer.calib_dataloader = common.DataLoader(ds, args.batch_size) q_model = quantizer.fit() q_model.save(args.output_model) if __name__ == '__main__': main()
38.026316
120
0.716609
49cf7cb76f095a47b81c234c8342c2dbc094e726
1,872
py
Python
tools/harness-automation/cases_R140/sed_9_2_8.py
tpmanley/openthread
bc02c6c05cf52884bc6cd9fad8dc8fc16364a147
[ "BSD-3-Clause" ]
2
2018-08-24T05:14:27.000Z
2018-09-25T03:02:36.000Z
tools/harness-automation/cases_R140/sed_9_2_8.py
tpmanley/openthread
bc02c6c05cf52884bc6cd9fad8dc8fc16364a147
[ "BSD-3-Clause" ]
4
2016-09-09T17:10:04.000Z
2016-09-29T05:18:09.000Z
tools/harness-automation/cases_R140/sed_9_2_8.py
tpmanley/openthread
bc02c6c05cf52884bc6cd9fad8dc8fc16364a147
[ "BSD-3-Clause" ]
1
2020-10-22T16:33:36.000Z
2020-10-22T16:33:36.000Z
#!/usr/bin/env python # # Copyright (c) 2016, The OpenThread Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import unittest from autothreadharness.harness_case import HarnessCase class SED_9_2_8(HarnessCase): role = HarnessCase.ROLE_SED case = '9 2 8' golden_devices_required = 2 def on_dialog(self, dialog, title): pass if __name__ == '__main__': unittest.main()
39.829787
77
0.769231
eb26f10337fd057e39d85b41734e9abc4be885ae
5,289
py
Python
source/tests/graph_test.py
staujd02/python-tsp
39047d17a8bd3f9bd2590ab40a0a3861646b76b9
[ "Apache-2.0" ]
null
null
null
source/tests/graph_test.py
staujd02/python-tsp
39047d17a8bd3f9bd2590ab40a0a3861646b76b9
[ "Apache-2.0" ]
null
null
null
source/tests/graph_test.py
staujd02/python-tsp
39047d17a8bd3f9bd2590ab40a0a3861646b76b9
[ "Apache-2.0" ]
null
null
null
from array import array from source.utilities.graphStringMuxer import GraphStringMuxer import unittest from source.utilities.solver import Solver from source.utilities.graph import Graph from source.utilities.graph import BranchingGraphError from source.dataStructures import Vector class Graph_test(unittest.TestCase): V = { "D->E": Vector('D', 'E', 5), "A->D": Vector('A', 'D', 25), "C->D": Vector('C', 'D', 25), "E->D": Vector('E', 'D', 30), "A->B": Vector('A', 'B', 50), "B->D": Vector('B', 'D', 75), "D->C": Vector('D', 'C', 75), "E->C": Vector('E', 'C', 75), "B->E": Vector('B', 'E', 100), "D->B": Vector('D', 'B', 100), "C->A": Vector('C', 'A', 125), "A->C": Vector('A', 'C', 150), "E->B": Vector('E', 'B', 150), "C->B": Vector('C', 'B', 175), "B->C": Vector('B', 'C', 200), "B->A": Vector('B', 'A', 0), "C->E": Vector('C', 'E', 0), "D->A": Vector('D', 'A', 0), "E->A": Vector('E', 'A', 0), } def test_a_graph_can_copy_itself(self): V = self.V graph = Graph(['A->B', 'B->D', 'C->B', 'D->A'], V) self.assertTrue(graph is not graph.copy()) self.assertEqual(str(graph), str(graph.copy())) self.assertEqual(graph.lastChange, graph.copy().lastChange) def disabled_test_a_graph_can_fill_out_its_trajectory_register(self): V = self.V graph = Graph(['A->B', 'B->D', 'C->B', 'D->A'], V) self.assertEqual(graph.trajectoryRegister, array('i', [1, 2, 0, 1])) def test_a_graph_can_translate_an_ascii_key_to_an_index(self): V = self.V graph = Graph(['A->B', 'B->D', 'C->B', 'D->A'], V) self.assertEqual(GraphStringMuxer.translate('A'), 0) self.assertEqual(GraphStringMuxer.translate('C'), 2) def test_a_graph_can_go_deeper(self): V = self.V graph = Graph(['A->B', 'B->D', 'C->B', 'D->A'], V) # self.assertEqual(graph.trajectoryRegister, array('i', [1, 2, 0, 1])) w = graph.getWeight() newWeight = graph.goDeeper(V['D->B'], w) self.assertEqual(newWeight, w + V['D->B'][2]) self.assertEqual(graph.graphData[3], 'D->B') self.assertEqual(graph.lastChange, 'D->A') # self.assertEqual(graph.trajectoryRegister, array('i', [0, 3, 0, 1])) def test_a_graph_can_go_across(self): V = self.V vList = ['A->B', 'B->D', 'C->B', 'D->A', 'E->A'] graph = Graph(vList, V) graph.replace(V['D->C']) newWeight = graph.goAcross(V['E->C'], V['D->C'][2]) expectedNewWeight = V['E->C'][2] self.assertEqual(graph.graphData[4], 'E->C') self.assertEqual(graph.graphData[3], 'D->A') self.assertEqual(graph.lastChange, 'E->A') self.assertEqual(newWeight, expectedNewWeight) def test_a_graph_returns_none_when_constructed_with_duplicate_origin_vectors(self): V = self.V caughtError = False try: Graph(['A->B', 'B->D', 'B->C', 'D->A'], V) except BranchingGraphError: caughtError = True self.assertTrue(caughtError) def test_a_graph_can_check_for_difficult_incorrectness(self): V = self.V vList = ['A->B', 'B->A', 'C->E', 'D->C', 'E->D'] graph = Graph(vList, V) self.assertEqual(graph.isValid(), False) def test_a_can_output_a_list_of_its_vectors(self): V = self.V vList = ['A->B', 'B->A', 'C->E', 'D->C', 'E->D'] graph = Graph(vList, V) self.assertEqual(graph.toVectorListString(), "{<A->B:50><B->A:0><C->E:0><D->C:75><E->D:30>}") def test_a_graph_can_check_for_incorrectness(self): V = self.V vList = ['A->B', 'B->D', 'C->B', 'D->A'] graph = Graph(vList, V) self.assertEqual(graph.isValid(), False) def test_a_graph_can_check_for_correctness(self): V = self.V vList = ['A->C', 'B->A', 'C->B'] graph = Graph(vList, V) self.assertEqual(graph.isValid(), True) def test_graph_has_a_weight(self): V = self.V vList = ['A->B', 'B->C', 'C->A'] graph = Graph(vList, V) self.assertEqual(graph.getWeight(), 375) def test_graph_can_output_a_sensible_string(self): V = self.V vList = ['A->B', 'B->C', 'C->A'] graph = Graph(vList, V) self.assertEqual(str(graph), "(A->B->C->A): 375") def test_graph_tracks_its_modifications(self): V = self.V vList = ['A->B', 'B->C', 'C->E', 'D->A', 'E->D'] graph = Graph(vList, V) self.assertEqual(None, graph.lastChange) graph.replace(V['D->C']) self.assertEqual('D->A', str(graph.lastChange)) def test_integrator_can_integrate_modifications_into_a_graph(self): V = self.V vList = ['A->B', 'B->C', 'C->E', 'D->A', 'E->D'] newList = ['A->B', 'B->A', 'C->E', 'D->C', 'E->D'] graph = Graph(vList, V) graph.replace(V['D->C']) graph.replace(V['B->D']) graph.replace(V['B->A']) self.assertEqual(str(Graph(newList, V)), str(graph)) def vectorCompare(self, v1, v2): self.assertEqual(str(v1), str(v2))
37.778571
101
0.536964
439e05a4da9dd2b08b9248018fcdf8a5f00c9188
1,309
py
Python
deploy-agent/deployd/download/download_helper.py
brennentsmith/teletraan
55d05c6352591ed847e1f9edf63c9483897f2187
[ "Apache-2.0" ]
2,449
2016-02-11T23:53:25.000Z
2022-03-27T08:43:56.000Z
deploy-agent/deployd/download/download_helper.py
brennentsmith/teletraan
55d05c6352591ed847e1f9edf63c9483897f2187
[ "Apache-2.0" ]
360
2016-01-21T23:52:39.000Z
2022-03-25T01:24:54.000Z
deploy-agent/deployd/download/download_helper.py
brennentsmith/teletraan
55d05c6352591ed847e1f9edf63c9483897f2187
[ "Apache-2.0" ]
322
2016-01-21T16:50:59.000Z
2022-02-23T00:56:18.000Z
# Copyright 2016 Pinterest, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import hashlib import logging log = logging.getLogger(__name__) class DownloadHelper(object): def __init__(self, url): self._url = url @staticmethod def hash_file(file_path): sha = hashlib.sha1() with open(file_path, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): sha.update(chunk) return sha.hexdigest() @staticmethod def md5_file(file_path): md5 = hashlib.md5() with open(file_path, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): md5.update(chunk) return md5.hexdigest() @abc.abstractproperty def download(self, local_full_fn): pass
28.456522
74
0.663102
f4ce0abd0d11c20ca4dfad78402642888f91641e
1,750
py
Python
watson_endpoint.py
jtizon001/ideahub
a2ff57192db22033089a8add423a2fe35dcf0101
[ "MIT" ]
null
null
null
watson_endpoint.py
jtizon001/ideahub
a2ff57192db22033089a8add423a2fe35dcf0101
[ "MIT" ]
null
null
null
watson_endpoint.py
jtizon001/ideahub
a2ff57192db22033089a8add423a2fe35dcf0101
[ "MIT" ]
3
2018-03-08T15:28:07.000Z
2018-03-21T16:24:23.000Z
import json from watson_developer_cloud import NaturalLanguageUnderstandingV1,WatsonException from watson_developer_cloud.natural_language_understanding_v1 import Features, EntitiesOptions, KeywordsOptions, SentimentOptions, EmotionOptions from csv_manipulator import TweetCsv import codecs # Communicates with Watson NLU API def post(tweet): natural_language_understanding = NaturalLanguageUnderstandingV1( username='912e28dd-f8ff-4ab5-9645-557ff6b7c597', password='N7vecbexz7gQ', version='2017-02-27') response = natural_language_understanding.analyze( text=tweet, features=Features( entities=EntitiesOptions( emotion=True, sentiment=True, limit=5), sentiment=SentimentOptions( document=True), keywords=KeywordsOptions( emotion=True, sentiment=True, limit=5), emotion=EmotionOptions( document=True))) return response # Handler for stripping tweets, posting, and storing def watson(path): data = TweetCsv(path) tweet = data.isolate_tweets() print('Stripped tweet') # resp = post(tweet) try: resp = post(tweet) except (UnicodeDecodeError, WatsonException) as err: resp='WATSON_ERROR_HEADER' #print('Sent analysis complete: "%s"' % resp) if resp!='WATSON_ERROR_HEADER': store_file('output_got_sent', resp) return resp # Stores file in output files def store_file(name, data): output = codecs.open('./outputfiles/' + name + '.txt', "w+", "utf-8") output.write(repr(data)) print('Sent analysis complete: "%s"' % json.dumps(data, sort_keys=True, indent=4)) output.close() print('Sent analysis stored...')
31.25
145
0.684
baccd48017cbeb3e6aae0700b9104bb0a056b775
1,749
py
Python
explainaboard/utils/typing_utils.py
hwidjaja/ExplainaBoard
0e670ad2df9326eb6b4ad99ba435fd7b6806557a
[ "MIT" ]
null
null
null
explainaboard/utils/typing_utils.py
hwidjaja/ExplainaBoard
0e670ad2df9326eb6b4ad99ba435fd7b6806557a
[ "MIT" ]
null
null
null
explainaboard/utils/typing_utils.py
hwidjaja/ExplainaBoard
0e670ad2df9326eb6b4ad99ba435fd7b6806557a
[ "MIT" ]
null
null
null
"""Generic functions to manipulate type hints.""" from __future__ import annotations from collections.abc import Generator, Iterable from typing import Any, Optional, TypeVar T = TypeVar('T') def unwrap(obj: Optional[T]) -> T: '''Unwrap the ``Optional`` type hint. This function takes an object wrapped with the ``Optional``, and returns itself if the object is not ``None``. Otherwise this funciton raises ValueError. :param obj: The object to unwrap. :type obj: ``Optional[T]`` :return: ``obj`` itself. :rtype: The underlying type ``T``. :raises ValueError: ``obj`` is None. ''' if obj is None: raise ValueError('Attempted to unwrap None.') return obj def unwrap_generator(obj: Optional[Iterable[T]]) -> Generator[T, None, None]: '''Unwrap the ``Optional`` ``Iterable``s and provides its generator. This function takes an ``Iterable`` object wrapped by the ``Optional``, and provides an iterator over the underlying object. If the object is ``None``, this function yields nothing and returns immediately. If raising ``ValueError`` when ``None`` is perferred, use ``unwrap()`` instead. :param obj: The object to unwrap. :type obj: ``Optional[Iterable[T]]`` :return: A generator over the underlying object. :rtype: ``Generator[T, None, None]`` ''' if obj is not None: yield from obj NarrowType = TypeVar("NarrowType") def narrow(obj: Any, narrow_type: type[NarrowType]) -> NarrowType: """returns the object with the narrowed type or raises a TypeError (obj: Any, new_type: type[T]) -> T""" if isinstance(obj, narrow_type): return obj else: raise TypeError(f"{obj} is expected to be {narrow_type}")
31.8
88
0.66781
cc41b8b81cbcfa8901e18363d778d033c4c77e16
5,621
py
Python
m_theory/m_theory_lib/tf_cexpm.py
rmitra/google-research
ddc22300c4cb3223654c9a981f892dc0f6286e35
[ "Apache-2.0" ]
1
2020-03-05T09:34:44.000Z
2020-03-05T09:34:44.000Z
m_theory/m_theory_lib/tf_cexpm.py
robot-ai-machinelearning/google-research
88481d10a87947ffb9305dc7665682e008b27391
[ "Apache-2.0" ]
null
null
null
m_theory/m_theory_lib/tf_cexpm.py
robot-ai-machinelearning/google-research
88481d10a87947ffb9305dc7665682e008b27391
[ "Apache-2.0" ]
1
2020-03-05T09:24:01.000Z
2020-03-05T09:24:01.000Z
# coding=utf-8 # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Alternative complex matrix exponentiation. Provides a basic complex matrix exponentiation function `cexpm` for TensorFlow. Complex Matrix Exponentiation that allows holomorphic backpropagation. We need this here because TensorFlow <=1.13's tf.linalg.expm() does not support taking Hessians. (In newer versions, it does support taking gradients.) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy import operator import tensorflow.compat.v1 as tf def _get_taylor_strategy(n_max, eye, m, prod=operator.mul): """Finds out how to build x**N with low depth, given all the lower powers.""" depth_and_tensor_power_by_exponent = [None] * (n_max + 1) depth_and_tensor_power_by_exponent[0] = (0, eye) depth_and_tensor_power_by_exponent[1] = (0, m) for n in range(2, n_max + 1): best_depth, best_k = min( (1 + max(depth_and_tensor_power_by_exponent[k][0], depth_and_tensor_power_by_exponent[n - k][0]), k) for k in range(1, n)) depth_and_tensor_power_by_exponent[n] = ( best_depth, prod(depth_and_tensor_power_by_exponent[best_k][1], depth_and_tensor_power_by_exponent[n - best_k][1])) return depth_and_tensor_power_by_exponent def _complex_matmul(p, q): """Implements complex matrix multiplication using 'C = R + R' embedding.""" return tf.stack([ # {real1} * {real2} - {imag1} * {imag2} tf.matmul(p[0, :, :], q[0, :, :]) - tf.matmul(p[1, :, :], q[1, :, :]), # {real1} * {imag2} + {imag1} * {real2} tf.matmul(p[0, :, :], q[1, :, :]) + tf.matmul(p[1, :, :], q[0, :, :])]) def tf_shallow_expm_taylor(t_m, n_max=40, name_scope='expm'): """Computes Taylor polynomial for matrix exponentiation via shallow graph.""" shape = t_m.shape.as_list() dim = shape[-1] if len(shape) == 3: if shape[0] != 2 or shape[1] != shape[2]: # Leading index must be for choosing between real/imaginary coefficients. raise ValueError( 'Complex matrix must be shape [2, N, N], observed: {}'.format(shape)) eye = numpy.stack([numpy.eye(dim, dtype=numpy.float64), numpy.zeros([dim, dim], dtype=numpy.float64)]) fn_product = _complex_matmul else: eye = numpy.eye(dim, dtype=numpy.float64) fn_product = tf.matmul # factorials = [1] * (n_max + 1) for n in range(2, n_max + 1): factorials[n] = n * factorials[n - 1] with tf.name_scope(name='', values=[t_m]) as scope: factorials_factors = tf.constant([1.0 / v for v in factorials], dtype=tf.float64) taylor_strategy = _get_taylor_strategy(n_max, tf.constant(eye), t_m, prod=fn_product) return tf.einsum('c,cimn->imn' if len(shape) == 3 else 'c,cmn->mn', factorials_factors, tf.stack([m for _, m in taylor_strategy])) def _c64(x): """Wraps up a float64 constant-array as a TF constant.""" return tf.constant(x, tf.float64) def _get_num_squarings(t_m): """Computes the number of squarings to use for exponentiating a tensor.""" shape = t_m.shape.as_list() dim = shape[0] t_l2 = (tf.einsum('iab,iab->', t_m, t_m) # Complex t_m. if len(shape) == 3 else tf.einsum('ab,ab->', t_m, t_m)) # Real t_m. return tf.maximum( _c64(0.0), tf.math.ceil(tf.math.log(t_l2) / numpy.log(2))) def _get_squaring_cascade(t_num_squarings, t_m, prod=operator.mul, max_squarings=100): """Gets the TF graph cascade of squaring operations.""" def get_cascade_tail(t_m_squared_n_times, n): if n == max_squarings: return t_m_squared_n_times def false_fn(): t_m_squared_n_plus_one_times = prod(t_m_squared_n_times, t_m_squared_n_times) return get_cascade_tail(t_m_squared_n_plus_one_times, n + 1) # return tf.cond(tf.equal(_c64(n), t_num_squarings), true_fn=lambda: t_m_squared_n_times, false_fn=false_fn) return get_cascade_tail(t_m, 0) def cexpm(t_m_complex, max_squarings=20, taylor_n_max=20, complex_arg=True): """Drop-in replacement for tf.linalg.expm(), optionally for complex arg.""" if complex_arg: t_m = tf.stack([tf.math.real(t_m_complex), tf.math.imag(t_m_complex)]) else: t_m = t_m_complex fn_product = _complex_matmul if complex_arg else tf.matmul t_num_squarings = tf.minimum(_c64(max_squarings), _get_num_squarings(t_m)) t_m_scaled = t_m * tf.pow(_c64(0.5), t_num_squarings) exp_t_m_scaled = tf_shallow_expm_taylor(t_m_scaled, n_max=taylor_n_max) ret = _get_squaring_cascade(t_num_squarings, exp_t_m_scaled, prod=fn_product, max_squarings=max_squarings) if complex_arg: return tf.complex(ret[0], ret[1]) else: return ret
39.865248
79
0.652731
f9e00895bf7301daacbeb80b6103c41960823bc8
3,667
py
Python
circuits/core/helpers.py
spaceone/circuits
ed6d5464f1f83034109ed3d23d126c715450cfd2
[ "MIT" ]
null
null
null
circuits/core/helpers.py
spaceone/circuits
ed6d5464f1f83034109ed3d23d126c715450cfd2
[ "MIT" ]
null
null
null
circuits/core/helpers.py
spaceone/circuits
ed6d5464f1f83034109ed3d23d126c715450cfd2
[ "MIT" ]
null
null
null
""" .. codeauthor: mnl """ from signal import SIGINT, SIGTERM from sys import stderr from threading import Event from traceback import format_exception_only from circuits.core.handlers import reprhandler from .components import BaseComponent from .handlers import handler class FallBackGenerator(BaseComponent): def __init__(self, *args, **kwargs): super(FallBackGenerator, self).__init__(*args, **kwargs) self._continue = Event() @handler("generate_events", priority=-100) def _on_generate_events(self, event): """ Fall back handler for the :class:`~.events.GenerateEvents` event. When the queue is empty a GenerateEvents event is fired, here we sleep for as long as possible to avoid using extra cpu cycles. A poller would override this with a higher priority handler. e.g: ``@handler("generate_events", priority=0)`` and provide a different way to idle when the queue is empty. """ with event.lock: if event.time_left == 0: event.stop() self._continue.clear() if event.time_left > 0: # If we get here, there is no component with work to be # done and no new event. But some component has requested # to be checked again after a certain timeout. self._continue.wait(event.time_left) # Either time is over or _continue has been set, which # implies resume has been called, which means that # reduce_time_left(0) has been called. So calling this # here is OK in any case. event.reduce_time_left(0) event.stop() while event.time_left < 0: # If we get here, there was no work left to do when creating # the GenerateEvents event and there is no other handler that # is prepared to supply new events within a limited time. The # application will continue only if some other Thread fires # an event. # # Python ignores signals when waiting without timeout. self._continue.wait(10000) event.stop() def resume(self): """ Implements the resume method as required from components that handle :class:`~.events.GenerateEvents`. """ self._continue.set() class FallBackExceptionHandler(BaseComponent): """ If there is no handler for error events in the component hierarchy, this component's handler is added automatically. It simply prints the error information on stderr. """ @handler("exception", channel="*") def _on_exception(self, error_type, value, traceback, handler=None, fevent=None): s = [] if handler is None: handler = "" else: handler = reprhandler(handler) msg = "ERROR {0:s} ({1:s}) ({2:s}): {3:s}\n".format( handler, repr(fevent), repr(error_type), repr(value) ) s.append(msg) s.append('Traceback (most recent call last):\n') s.extend(traceback) s.extend(format_exception_only(error_type, value)) s.append("\n") stderr.write("".join(s)) class FallBackSignalHandler(BaseComponent): """ If there is no handler for signal events in the component hierarchy, this component's handler is added automatically. It simply terminates the system if the signal is SIGINT or SIGTERM. """ @handler("signal", channel="*") def _on_signal(self, signo, stack): if signo in [SIGINT, SIGTERM]: raise SystemExit(0)
32.451327
77
0.623943
d145fdacde9ed462eb818d6d28af9a79a394ef78
135
py
Python
python_100/Level1/18.del_ele.py
relax-space/python-cy
eaf4650756e7ece5ec97894b65a7495b5c964eb3
[ "Apache-2.0" ]
1
2020-04-27T03:31:23.000Z
2020-04-27T03:31:23.000Z
python_100/Level1/18.del_ele.py
relax-space/python-cy
eaf4650756e7ece5ec97894b65a7495b5c964eb3
[ "Apache-2.0" ]
1
2020-04-14T23:55:19.000Z
2020-04-15T03:29:37.000Z
python_100/Level1/18.del_ele.py
relax-space/python-cy
eaf4650756e7ece5ec97894b65a7495b5c964eb3
[ "Apache-2.0" ]
null
null
null
# 18.Python-遍历列表时删除元素的正确做法 a = [1,2,3,4,5,6,7,8,9] # 删除元素5和8 for i in (a[:]): if i == 5 or i == 8: a.remove(i) print(a)
13.5
26
0.503704
f4214a6c32f25c0ed4b0e47231f76902eb60f8c8
3,564
py
Python
glance/async_/utils.py
bwLehrpool/glance
d4119be0543bdaefe78fc11e16c3a01b55aa9e3a
[ "Apache-2.0" ]
null
null
null
glance/async_/utils.py
bwLehrpool/glance
d4119be0543bdaefe78fc11e16c3a01b55aa9e3a
[ "Apache-2.0" ]
null
null
null
glance/async_/utils.py
bwLehrpool/glance
d4119be0543bdaefe78fc11e16c3a01b55aa9e3a
[ "Apache-2.0" ]
null
null
null
# Copyright 2015 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_concurrency import processutils as putils from oslo_log import log as logging from oslo_utils import encodeutils from oslo_utils import units from taskflow import task from glance.i18n import _LW LOG = logging.getLogger(__name__) # NOTE(hemanthm): As reported in the bug #1449062, "qemu-img info" calls can # be exploited to craft DoS attacks by providing malicious input. The process # limits defined here are protections against such attacks. This essentially # limits the CPU time and address space used by the process that executes # "qemu-img info" command to 2 seconds and 1 GB respectively. QEMU_IMG_PROC_LIMITS = putils.ProcessLimits(cpu_time=2, address_space=1 * units.Gi) class OptionalTask(task.Task): def __init__(self, *args, **kwargs): super(OptionalTask, self).__init__(*args, **kwargs) self.execute = self._catch_all(self.execute) def _catch_all(self, func): # NOTE(flaper87): Read this comment before calling the MI6 # Here's the thing, there's no nice way to define "optional" # tasks. That is, tasks whose failure shouldn't affect the execution # of the flow. The only current "sane" way to do this, is by catching # everything and logging. This seems harmless from a taskflow # perspective but it is not. There are some issues related to this # "workaround": # # - Task's states will shamelessly lie to us saying the task succeeded. # # - No revert procedure will be triggered, which means optional tasks, # for now, mustn't cause any side-effects because they won't be able to # clean them up. If these tasks depend on other task that do cause side # effects, a task that cleans those side effects most be registered as # well. For example, _ImportToFS, _MyDumbTask, _DeleteFromFS. # # - Ideally, optional tasks shouldn't `provide` new values unless they # are part of an optional flow. Due to the decoration of the execute # method, these tasks will need to define the provided methods at # class level using `default_provides`. # # # The taskflow team is working on improving this and on something that # will provide the ability of defining optional tasks. For now, to lie # ourselves we must. # # NOTE(harlowja): The upstream change that is hopefully going to make # this easier/built-in is at: https://review.opendev.org/#/c/271116/ def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except Exception as exc: msg = (_LW("An optional task has failed, " "the failure was: %s") % encodeutils.exception_to_unicode(exc)) LOG.warning(msg) return wrapper
44.55
79
0.667508
5ff3ad3bc04b36a0f6eb9d1dd40515b3c783c362
246
py
Python
python/min-val-get-positive-step-by-step-sum.py
alirezaghey/leetcode-solutions
676b71b4790c64d21af91dce02e97ee47e78d523
[ "MIT" ]
3
2020-10-10T00:14:23.000Z
2022-03-02T21:16:29.000Z
python/min-val-get-positive-step-by-step-sum.py
alirezaghey/leetcode-solutions
676b71b4790c64d21af91dce02e97ee47e78d523
[ "MIT" ]
null
null
null
python/min-val-get-positive-step-by-step-sum.py
alirezaghey/leetcode-solutions
676b71b4790c64d21af91dce02e97ee47e78d523
[ "MIT" ]
1
2021-09-14T05:16:54.000Z
2021-09-14T05:16:54.000Z
class Solution: def minStartValue(self, nums: List[int]) -> int: best = 1 curr = 0 for el in nums: curr += el if curr < 1: best = max(best, 1 - curr) return best
24.6
52
0.434959
4a0044af266cdd63c6169e023bf5c41c440685a0
8,091
py
Python
ICLR_2022/Cubic_10D/PI3NN/PI3NN_OOD.py
streeve/PI3NN
f7f08a195096e0388bb9230bc67c6acd6f41581a
[ "Apache-2.0" ]
11
2021-11-08T20:38:50.000Z
2022-01-30T02:46:39.000Z
ICLR_2022/Cubic_10D/PI3NN/PI3NN_OOD.py
streeve/PI3NN
f7f08a195096e0388bb9230bc67c6acd6f41581a
[ "Apache-2.0" ]
1
2022-01-13T19:46:32.000Z
2022-02-09T16:23:56.000Z
ICLR_2022/Cubic_10D/PI3NN/PI3NN_OOD.py
streeve/PI3NN
f7f08a195096e0388bb9230bc67c6acd6f41581a
[ "Apache-2.0" ]
1
2021-12-17T18:38:26.000Z
2021-12-17T18:38:26.000Z
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import torch.optim as optim # from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler, StandardScaler from scipy import stats # torch.set_default_tensor_type(torch.DoubleTensor) torch.set_default_tensor_type(torch.FloatTensor) # device = 'cuda' if torch.cuda.is_available() else 'cpu' device = 'cpu' print('device', device) # ==== fix random seed for reproducibility ===== np.random.seed(12345) torch.manual_seed(12345) #------------------------------------------------------ # ------- Define the three NNs ------------ #------------------------------------------------------ # ==== define the function ===== def target_fun(x): y = x**3 y = (torch.sum(y, dim=1, keepdim=True)/10.0) + 1.0*torch.randn(x.size(0), device=device).unsqueeze(1) return y # ==== define the mean network ===== class UQ_Net_mean(nn.Module): def __init__(self, nd): super(UQ_Net_mean, self).__init__() self.fc1 = nn.Linear(nd, 200) self.fc2 = nn.Linear(200, 1) def forward(self, x): x = torch.tanh(self.fc1(x)) x = self.fc2(x) return x def UQ_loss(self, x, output, ydata): loss = torch.mean((output[:, 0]-ydata[:, 0])**2) return loss # ==== define the upper and lower bound network ===== class UQ_Net_std(nn.Module): def __init__(self, nd): super(UQ_Net_std, self).__init__() self.fc1 = nn.Linear(nd, 200) self.fc2 = nn.Linear(200, 1) # self.fc2.bias = torch.nn.Parameter(torch.tensor([25.0])) ## assign a large bias value of the output layer for OOD identification def forward(self, x): x = torch.tanh(self.fc1(x)) x = torch.sqrt(torch.square(self.fc2(x)) + 0.1) return x def UQ_loss(self, x, output, ydata): loss = torch.mean((output[:, 0] - ydata[:, 0])**2) return loss #------------------------------------------------------ # ------- Generate the data ------------ #------------------------------------------------------ Npar = 10 Ntrain = 5000 Nout = 1 xtrain = (torch.randn(Ntrain, Npar)*1.0).to(device) ytrain = target_fun(xtrain).to(device) # normalize data x_mean = torch.mean(xtrain, axis=0) x_std = torch.std(xtrain, axis=0) xtrain_normal = (xtrain - x_mean)/x_std y_mean = torch.mean(ytrain, axis=0) y_std = torch.std(ytrain, axis=0) ytrain_normal = (ytrain - y_mean)/y_std Nvalid = 1000 xvalid = (torch.randn(Nvalid, Npar)+2.0).to(device) # xvalid[:,1] = xvalid[:,1] + 4.0 yvalid = target_fun(xvalid).to(device) xvalid_normal = (xvalid - x_mean) / x_std yvalid_normal = (yvalid - y_mean) / y_std #------------------------------------------------------ # ------- Train the three NNs ------------ #------------------------------------------------------ criterion = nn.MSELoss() # ====== Train the mean network for estimating mean net = UQ_Net_mean(Npar).to(device) net.zero_grad() optimizer = optim.SGD(net.parameters(), lr=0.01) Max_iter = 3000 fig = plt.figure(figsize=(6, 6)) ax = fig.add_axes() for i in range(Max_iter): optimizer.zero_grad() output = net(xtrain_normal) loss = criterion(output, ytrain_normal) if i % 1000 == 0: print(i, loss) loss.backward() optimizer.step() ## ==== Calculate the difference to get training data of U and V network diff = (ytrain_normal - net(xtrain_normal)).detach() mask = diff > 0 # print(mask.size()) y_up_data = diff[diff > 0].unsqueeze(1) # x_up_data = xtrain_normal[diff>0].unsqueeze(1) x_up_data = xtrain_normal[mask[:, 0], :]#.unsqueeze(1) mask = diff < 0 y_down_data = -1.0 * diff[diff < 0].unsqueeze(1) x_down_data = xtrain_normal[mask[:, 0], :]#.unsqueeze(1) # ====== Train the U and V network for estimating upper and lower bound ==== net_up = UQ_Net_std(Npar).to(device) net_up.zero_grad() optimizer = optim.SGD(net_up.parameters(), lr=0.01) for i in range(Max_iter): optimizer.zero_grad() output = net_up(x_up_data) loss = criterion(output, y_up_data) if torch.isnan(loss): print(output, y_up_data) exit() if i % 1000 == 0: print(i, loss) loss.backward() optimizer.step() net_down = UQ_Net_std(Npar).to(device) net_down.zero_grad() optimizer = optim.SGD(net_down.parameters(), lr=0.01) for i in range(Max_iter): optimizer.zero_grad() output = net_down(x_down_data) # loss = net_up.UQ_loss(x_down_data, output, y_down_data) loss = criterion(output, y_down_data) if torch.isnan(loss): print(output, y_down_data) exit() if i % 1000 == 0: print(i, loss) loss.backward() optimizer.step() #-------------------------------------------------------------------- # ------- Root-finding to determine alpha and beta ------------ #-------------------------------------------------------------------- quantile = 0.9 num_outlier = int(Ntrain * (1-quantile)/2) output = net(xtrain_normal) output_up = net_up(xtrain_normal) output_down = net_down(xtrain_normal) ##===== find alpha ======= c_up0 = 0.0 c_up1 = 200.0 f0 = (ytrain_normal >= output + c_up0 * output_up).sum() - num_outlier f1 = (ytrain_normal >= output + c_up1 * output_up).sum() - num_outlier n_iter = 1000 iter = 0 while iter <= n_iter and f0*f1<0: ##f0 != 0 and f1 != 0: c_up2 = (c_up0 + c_up1)/2.0 f2 = (ytrain_normal >= output + c_up2 * output_up).sum() - num_outlier if f2 == 0: break elif f2 > 0: c_up0 = c_up2 f0 = f2 else: c_up1 = c_up2 f1 = f2 # print('{}, f0: {}, f1: {}, f2: {}'.format(iter, f0, f1, f2)) c_up = c_up2 ##===== find beta ======= c_down0 = 0.0 c_down1 = 200.0 f0 = (ytrain_normal <= output - c_down0 * output_down).sum() - num_outlier f1 = (ytrain_normal <= output - c_down1 * output_down).sum() - num_outlier n_iter = 1000 iter = 0 while iter <= n_iter and f0*f1<0: ##f0 != 0 and f1 != 0: c_down2 = (c_down0 + c_down1)/2.0 f2 = (ytrain_normal <= output - c_down2 * output_down).sum() - num_outlier if f2 == 0: break elif f2 > 0: c_down0 = c_down2 f0 = f2 else: c_down1 = c_down2 f1 = f2 # print('{}, f0: {}, f1: {}, f2: {}'.format(iter, f0, f1, f2)) c_down = c_down2 print('optimal alpha and beta: ', c_up, c_down) #-------------------------------------------------------------------- # ------- Save and analysis results ------------ #-------------------------------------------------------------------- ##--- 1. run PIVEN, QD, SQR, DER for this 10-Cubic function; ##--- 2. for each method, save two files 'PIW_train.dat', 'PIW_test.dat' ##--- 3. Calculate confidence score for the flight delay data. output = net(xvalid_normal) output_up = net_up(xvalid_normal) output_down = net_down(xvalid_normal) PI1 = net_up(xtrain_normal) * c_up + net_down(xtrain_normal) * c_down MPIW_array_train = (PI1 * y_std).detach().numpy() MPIW_array_test = (output_up * c_up * y_std + c_down * output_down * y_std).detach().numpy() MPIW_array_train = MPIW_array_train[~np.isnan(MPIW_array_train)] MPIW_array_test = MPIW_array_test[~np.isnan(MPIW_array_test)] print(np.shape(MPIW_array_train), np.shape(MPIW_array_test)) np.savetxt('PI3NN_MPIW_train.dat', MPIW_array_train) np.savetxt('PI3NN_MPIW_test.dat', MPIW_array_test) kde_train = stats.gaussian_kde(MPIW_array_train) kde_test = stats.gaussian_kde(MPIW_array_test) x1 = np.linspace(MPIW_array_train.min(), MPIW_array_train.max(), 100) p1 = kde_train(x1) x2 = np.linspace(MPIW_array_test.min(), MPIW_array_test.max(), 100) p2 = kde_test(x2) plt.plot(x1,p1, label='train') plt.plot(x2,p2, label='test') plt.legend() plt.savefig('PI3NN_cubic10D_bias.png') plt.show() # print('P1 (train) mean: {}, STD: {}'.format(np.mean(p1), np.std(p1))) # print('P2 (test) mean: {}, STD: {}'.format(np.mean(p2), np.std(p2))) ###------- Option I: calculate confidence interval conf_score = kde_train(MPIW_array_test)/p1.max() print(np.mean(conf_score), np.std(conf_score))
26.880399
138
0.597701
47d1d091c9e3724e32d9327734d800975a6349dc
3,932
py
Python
tests/modules/encounters/resources/test_delete_encounter.py
WildMeOrg/houston
8102229421388e44234c07ee6cb73bf705b6fba0
[ "Apache-2.0" ]
6
2021-04-06T19:50:52.000Z
2022-01-19T17:42:33.000Z
tests/modules/encounters/resources/test_delete_encounter.py
WildMeOrg/houston
8102229421388e44234c07ee6cb73bf705b6fba0
[ "Apache-2.0" ]
491
2021-01-20T01:10:00.000Z
2022-03-31T19:30:48.000Z
tests/modules/encounters/resources/test_delete_encounter.py
WildMeOrg/houston
8102229421388e44234c07ee6cb73bf705b6fba0
[ "Apache-2.0" ]
2
2021-03-12T02:33:55.000Z
2021-03-16T20:18:43.000Z
# -*- coding: utf-8 -*- # pylint: disable=missing-docstring from tests.modules.sightings.resources import utils as sighting_utils from tests.modules.encounters.resources import utils as enc_utils from tests.modules.individuals.resources import utils as indiv_utils from tests import utils as test_utils import datetime import pytest from tests.utils import module_unavailable timestamp = datetime.datetime.now().isoformat() + 'Z' @pytest.mark.skipif(module_unavailable('encounters'), reason='Encounters module disabled') def test_delete_method( db, flask_app_client, researcher_1, test_root, staff_user, request ): from app.modules.sightings.models import Sighting # we should end up with these same counts (which _should be_ all zeros!) orig_ct = test_utils.all_count(db) data_in = { 'startTime': timestamp, 'locationId': 'test_delete_method', 'encounters': [ {}, {'locationId': 'test2'}, ], } uuids = sighting_utils.create_sighting( flask_app_client, researcher_1, request, test_root, data_in ) sighting_id = uuids['sighting'] sighting = Sighting.query.get(sighting_id) assert sighting is not None assert len(uuids['encounters']) == 2 enc0_id = uuids['encounters'][0] enc1_id = uuids['encounters'][1] assert enc0_id is not None assert enc1_id is not None # assign indiv to both encounters to test cascade-delete of individual as well indiv_enc_json = {'encounters': [{'id': enc0_id}, {'id': enc1_id}]} response = indiv_utils.create_individual( flask_app_client, staff_user, data_in=indiv_enc_json, ) individual_guid = response.json['result']['id'] assert individual_guid is not None ct = test_utils.all_count(db) assert ct['Sighting'] == orig_ct['Sighting'] + 1 # one more sighting assert ct['Encounter'] == orig_ct['Encounter'] + 2 # two more encounters assert ct['Individual'] == orig_ct['Individual'] + 1 # one more individual # this should be ok, cuz one enc remains (no cascade effects) enc_utils.delete_encounter(flask_app_client, staff_user, enc0_id) ct = test_utils.all_count(db) assert ct['Encounter'] == orig_ct['Encounter'] + 1 assert ( ct['Individual'] == orig_ct['Individual'] + 1 ) # just to confirm indiv is still there # test that sighting is correct, with single encounter remaining get_resp = sighting_utils.read_sighting(flask_app_client, researcher_1, sighting_id) assert len(get_resp.json['encounters']) == 1 # but this should then fail, cuz its the last enc and will take the sighting with it response = enc_utils.delete_encounter( flask_app_client, staff_user, enc1_id, expected_status_code=400 ) ct = test_utils.all_count(db) assert ct['Encounter'] == orig_ct['Encounter'] + 1 assert response.json['edm_status_code'] == 604 # this will fail cuz it *only* allows sighting-cascade and we need individual also headers = (('x-allow-delete-cascade-sighting', True),) response = enc_utils.delete_encounter( flask_app_client, staff_user, enc1_id, headers=headers, expected_status_code=400 ) assert response.json['edm_status_code'] == 605 # now this should work but take the sighting and individual with it as well headers = ( ('x-allow-delete-cascade-individual', True), ('x-allow-delete-cascade-sighting', True), ) response = enc_utils.delete_encounter( flask_app_client, staff_user, enc1_id, headers=headers ) assert ( response.headers['x-deletedSighting-guid'] == sighting_id ) # header tells us sighting cascade-deleted ct = test_utils.all_count(db) # back where we started assert ct['Sighting'] == orig_ct['Sighting'] assert ct['Encounter'] == orig_ct['Encounter'] assert ct['Individual'] == orig_ct['Individual']
37.807692
90
0.694049
34e67e146e674aae93d1baaf31e8c124c840eaef
803
py
Python
python_script/pokemon_fact_writer.py
ReiiYuki/PokemonWeakDetector
ecf160ec660f518b150d0d09be8a5031c4f0d0aa
[ "MIT" ]
4
2016-10-18T15:15:50.000Z
2022-01-13T23:42:37.000Z
python_script/pokemon_fact_writer.py
ReiiYuki/PokemonWeakDetector
ecf160ec660f518b150d0d09be8a5031c4f0d0aa
[ "MIT" ]
1
2016-10-14T10:46:25.000Z
2016-10-14T10:46:25.000Z
python_script/pokemon_fact_writer.py
ReiiYuki/PokemonWeakDetector
ecf160ec660f518b150d0d09be8a5031c4f0d0aa
[ "MIT" ]
2
2018-11-27T02:18:29.000Z
2019-11-25T20:10:41.000Z
import json with open('pokemon_data.json') as poke_data: d = json.load(poke_data) pokemon_list = [] type_list = [] move_list = [] for i in d : name = i['name'] pokemon_fact = 'pokemon('+name.lower()+').' pokemon_list.append(pokemon_fact) moves = i['moves'] for m in moves : move = m['name'] move_list.append('have('+name.lower()+','+move.lower()+').') types = i['types'] for t in types : type = t['name'] type_list.append('type('+name.lower()+','+type.lower()+').') out = open('pokefactrule.pl','w+') for i in pokemon_list : out.write(i+'\n') for i in type_list : out.write(i+'\n') for i in move_list : out.write(i+'\n') out.close()
28.678571
72
0.511831