stsb_multi_mt / README.md
albertvillanova's picture
Add de data files
3c73f12
|
raw
history blame
10.2 kB
metadata
annotations_creators:
  - crowdsourced
language_creators:
  - crowdsourced
  - found
  - machine-generated
language:
  - de
  - en
  - es
  - fr
  - it
  - nl
  - pl
  - pt
  - ru
  - zh
license:
  - other
multilinguality:
  - multilingual
size_categories:
  - 10K<n<100K
source_datasets:
  - extended|other-sts-b
task_categories:
  - text-classification
task_ids:
  - text-scoring
  - semantic-similarity-scoring
pretty_name: STSb Multi MT
dataset_info:
  - config_name: de
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: similarity_score
        dtype: float32
    splits:
      - name: train
        num_bytes: 867465
        num_examples: 5749
      - name: test
        num_bytes: 193325
        num_examples: 1379
      - name: dev
        num_bytes: 247069
        num_examples: 1500
    download_size: 823156
    dataset_size: 1307859
  - config_name: en
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: similarity_score
        dtype: float32
    splits:
      - name: train
        num_bytes: 731795
        num_examples: 5749
      - name: test
        num_bytes: 164458
        num_examples: 1379
      - name: dev
        num_bytes: 210064
        num_examples: 1500
    download_size: 720594
    dataset_size: 1106317
  - config_name: es
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: similarity_score
        dtype: float32
    splits:
      - name: train
        num_bytes: 887101
        num_examples: 5749
      - name: test
        num_bytes: 194616
        num_examples: 1379
      - name: dev
        num_bytes: 245250
        num_examples: 1500
    download_size: 1294160
    dataset_size: 1326967
  - config_name: fr
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: similarity_score
        dtype: float32
    splits:
      - name: train
        num_bytes: 910195
        num_examples: 5749
      - name: test
        num_bytes: 200446
        num_examples: 1379
      - name: dev
        num_bytes: 254083
        num_examples: 1500
    download_size: 1332515
    dataset_size: 1364724
  - config_name: it
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: similarity_score
        dtype: float32
    splits:
      - name: train
        num_bytes: 871526
        num_examples: 5749
      - name: test
        num_bytes: 191647
        num_examples: 1379
      - name: dev
        num_bytes: 243144
        num_examples: 1500
    download_size: 1273630
    dataset_size: 1306317
  - config_name: nl
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: similarity_score
        dtype: float32
    splits:
      - name: train
        num_bytes: 833667
        num_examples: 5749
      - name: test
        num_bytes: 182904
        num_examples: 1379
      - name: dev
        num_bytes: 234887
        num_examples: 1500
    download_size: 1217753
    dataset_size: 1251458
  - config_name: pl
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: similarity_score
        dtype: float32
    splits:
      - name: train
        num_bytes: 828433
        num_examples: 5749
      - name: test
        num_bytes: 181266
        num_examples: 1379
      - name: dev
        num_bytes: 231758
        num_examples: 1500
    download_size: 1212336
    dataset_size: 1241457
  - config_name: pt
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: similarity_score
        dtype: float32
    splits:
      - name: train
        num_bytes: 854356
        num_examples: 5749
      - name: test
        num_bytes: 189163
        num_examples: 1379
      - name: dev
        num_bytes: 240559
        num_examples: 1500
    download_size: 1251508
    dataset_size: 1284078
  - config_name: ru
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: similarity_score
        dtype: float32
    splits:
      - name: train
        num_bytes: 1391674
        num_examples: 5749
      - name: test
        num_bytes: 300007
        num_examples: 1379
      - name: dev
        num_bytes: 386268
        num_examples: 1500
    download_size: 2051645
    dataset_size: 2077949
  - config_name: zh
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: similarity_score
        dtype: float32
    splits:
      - name: train
        num_bytes: 694424
        num_examples: 5749
      - name: test
        num_bytes: 154834
        num_examples: 1379
      - name: dev
        num_bytes: 195821
        num_examples: 1500
    download_size: 1006892
    dataset_size: 1045079
configs:
  - config_name: de
    data_files:
      - split: train
        path: de/train-*
      - split: test
        path: de/test-*
      - split: dev
        path: de/dev-*
  - config_name: en
    data_files:
      - split: train
        path: en/train-*
      - split: test
        path: en/test-*
      - split: dev
        path: en/dev-*

Dataset Card for STSb Multi MT

Table of Contents

Dataset Description

Dataset Summary

STS Benchmark comprises a selection of the English datasets used in the STS tasks organized in the context of SemEval between 2012 and 2017. The selection of datasets include text from image captions, news headlines and user forums. (source)

These are different multilingual translations and the English original of the STSbenchmark dataset. Translation has been done with deepl.com. It can be used to train sentence embeddings like T-Systems-onsite/cross-en-de-roberta-sentence-transformer.

Examples of Use

Load German dev Dataset:

from datasets import load_dataset
dataset = load_dataset("stsb_multi_mt", name="de", split="dev")

Load English train Dataset:

from datasets import load_dataset
dataset = load_dataset("stsb_multi_mt", name="en", split="train")

Supported Tasks and Leaderboards

[More Information Needed]

Languages

Available languages are: de, en, es, fr, it, nl, pl, pt, ru, zh

Dataset Structure

Data Instances

This dataset provides pairs of sentences and a score of their similarity.

score 2 example sentences explanation
5 The bird is bathing in the sink.
Birdie is washing itself in the water basin.
The two sentences are completely equivalent, as they mean the same thing.
4 Two boys on a couch are playing video games.
Two boys are playing a video game.
The two sentences are mostly equivalent, but some unimportant details differ.
3 John said he is considered a witness but not a suspect.
“He is not a suspect anymore.” John said.
The two sentences are roughly equivalent, but some important information differs/missing.
2 They flew out of the nest in groups.
They flew into the nest together.
The two sentences are not equivalent, but share some details.
1 The woman is playing the violin.
The young lady enjoys listening to the guitar.
The two sentences are not equivalent, but are on the same topic.
0 The black dog is running through the snow.
A race car driver is driving his car through the mud.
The two sentences are completely dissimilar.

An example:

{
    "sentence1": "A man is playing a large flute.",
    "sentence2": "A man is playing a flute.",
    "similarity_score": 3.8
}

Data Fields

  • sentence1: The 1st sentence as a str.
  • sentence2: The 2nd sentence as a str.
  • similarity_score: The similarity score as a float which is <= 5.0 and >= 0.0.

Data Splits

  • train with 5749 samples
  • dev with 1500 samples
  • test with 1379 sampples

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

See LICENSE and download at original dataset.

Citation Information

@InProceedings{huggingface:dataset:stsb_multi_mt,
title = {Machine translated multilingual STS benchmark dataset.},
author={Philip May},
year={2021},
url={https://github.com/PhilipMay/stsb-multi-mt}
}

Contributions

Thanks to @PhilipMay for adding this dataset.