Datasets:
File size: 4,539 Bytes
f652298 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
---
license: mit
pretty_name: "Trains and Trams"
tags: ["image", "computer-vision", "trains", "trams"]
task_categories: ["image-classification"]
language: ["en"]
configs:
- config_name: default
data_files: "train/**/*.arrow"
features:
- name: image
dtype: image
- name: unique_id
dtype: string
- name: width
dtype: int32
- name: height
dtype: int32
- name: image_mode_on_disk
dtype: string
- name: original_file_format
dtype: string
- config_name: preview
data_files: "preview/**/*.arrow"
features:
- name: image
dtype: image
- name: unique_id
dtype: string
- name: width
dtype: int32
- name: height
dtype: int32
- name: original_file_format
dtype: string
- name: image_mode_on_disk
dtype: string
---
# Trains and Trams
High resolution image subset from the Aesthetic-Train-V2 dataset containing a mixture of both Trains and Trams. There is some nuanced misalignment with how CLIP perceives the concepts of trains and trams during coarse searches therefor I have included both.
## Dataset Details
* **Curator:** Roscosmos
* **Version:** 1.0.0
* **Total Images:** 650
* **Average Image Size (on disk):** ~5.5 MB compressed
* **Primary Content:** Trains and Trams
* **Standardization:** All images are standardized to RGB mode and saved at 95% quality for consistency.
## Dataset Creation & Provenance
### 1. Original Master Dataset
This dataset is a subset derived from:
**`zhang0jhon/Aesthetic-Train-V2`**
* **Link:** https://huggingface.co/datasets/zhang0jhon/Aesthetic-Train-V2
* **Providence:** Large-scale, high-resolution image dataset, refer to its original dataset card for full details.
* **Original License:** MIT
### 2. Iterative Curation Methodology
CLIP retrieval / manual curation.
## Dataset Structure & Content
This dataset offers the following configurations/subsets:
* **Default (Full `train` data) configuration:** Contains the full, high-resolution image data and associated metadata. This is the recommended configuration for model training and full data analysis. The default split for this configuration is `train`.
Each example (row) in the dataset contains the following fields:
* `image`: The actual image data. In the default (full) configuration, this is full-resolution. In the preview configuration, this is a viewer-compatible version.
* `unique_id`: A unique identifier assigned to each image.
* `width`: The width of the image in pixels (from the full-resolution image).
* `height`: The height of the image in pixels (from the full-resolution image).
## Usage
To download and load this dataset from the Hugging Face Hub:
```python
from datasets import load_dataset, Dataset, DatasetDict
# Login using e.g. `huggingface-cli login` to access this dataset
# To load the full, high-resolution dataset (recommended for training):
# This will load the 'default' configuration's 'train' split.
ds_main = load_dataset("ROSCOSMOS/Trains_and_Trams", "default")
print("Main Dataset (default config) loaded successfully!")
print(ds_main)
print(f"Type of loaded object: {type(ds_main)}")
if isinstance(ds_main, Dataset):
print(f"Number of samples: {len(ds_main)}")
print(f"Features: {ds_main.features}")
elif isinstance(ds_main, DatasetDict):
print(f"Available splits: {list(ds_main.keys())}")
for split_name, dataset_obj in ds_main.items():
print(f" Split '{split_name}': {len(dataset_obj)} samples")
print(f" Features of '{split_name}': {dataset_obj.features}")
# The 'image' column will contain PIL Image objects.
```
## Citation
```bibtex
@inproceedings{zhang2025diffusion4k,
title={Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models},
author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
year={2025},
booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
}
@misc{zhang2025ultrahighresolutionimagesynthesis,
title={Ultra-High-Resolution Image Synthesis: Data, Method and Evaluation},
author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
year={2025},
note={arXiv:2506.01331},
}
```
## Disclaimer and Bias Considerations
Please consider any inherent biases from the original dataset and those potentially introduced by the automated filtering (e.g., CLIP's biases) and manual curation process.
## Contact
N/A
|