Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -1,146 +1,131 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
pretty_name: "Trains and Trams"
|
4 |
-
tags: ["image", "computer-vision", "trains", "trams"]
|
5 |
-
task_categories: ["image-classification"]
|
6 |
-
language: ["en"]
|
7 |
-
configs:
|
8 |
-
- config_name: default
|
9 |
-
data_files: "train/**/*.arrow"
|
10 |
-
features:
|
11 |
-
- name: image
|
12 |
-
dtype: image
|
13 |
-
- name: unique_id
|
14 |
-
dtype: string
|
15 |
-
- name: width
|
16 |
-
dtype: int32
|
17 |
-
- name: height
|
18 |
-
dtype: int32
|
19 |
-
- name: image_mode_on_disk
|
20 |
-
dtype: string
|
21 |
-
- name: original_file_format
|
22 |
-
dtype: string
|
23 |
-
- config_name: preview
|
24 |
-
data_files: "preview/**/*.arrow"
|
25 |
-
features:
|
26 |
-
- name: image
|
27 |
-
dtype: image
|
28 |
-
- name: unique_id
|
29 |
-
dtype: string
|
30 |
-
- name: width
|
31 |
-
dtype: int32
|
32 |
-
- name: height
|
33 |
-
dtype: int32
|
34 |
-
- name: original_file_format
|
35 |
-
dtype: string
|
36 |
-
- name: image_mode_on_disk
|
37 |
-
dtype: string
|
38 |
-
---
|
39 |
-
|
40 |
-
# Trains and Trams
|
41 |
-
|
42 |
-
High resolution image subset from the Aesthetic-Train-V2 dataset containing a mixture of both Trains and Trams. There is some nuanced misalignment with how CLIP perceives the concepts of trains and trams during coarse searches therefor I have included both.
|
43 |
-
|
44 |
-
## Dataset Details
|
45 |
-
|
46 |
-
* **Curator:** Roscosmos
|
47 |
-
* **Version:** 1.0.0
|
48 |
-
* **Total Images:** 650
|
49 |
-
* **Average Image Size (on disk):** ~5.5 MB compressed
|
50 |
-
* **Primary Content:** Trains and Trams
|
51 |
-
* **Standardization:** All images are standardized to RGB mode and saved at 95% quality for consistency.
|
52 |
-
|
53 |
-
## Dataset Creation & Provenance
|
54 |
-
|
55 |
-
### 1. Original Master Dataset
|
56 |
-
This dataset is a subset derived from:
|
57 |
-
**`zhang0jhon/Aesthetic-Train-V2`**
|
58 |
-
* **Link:** https://huggingface.co/datasets/zhang0jhon/Aesthetic-Train-V2
|
59 |
-
* **Providence:** Large-scale, high-resolution image dataset, refer to its original dataset card for full details.
|
60 |
-
* **Original License:** MIT
|
61 |
-
|
62 |
-
### 2. Iterative Curation Methodology
|
63 |
-
|
64 |
-
CLIP retrieval / manual curation.
|
65 |
-
|
66 |
-
## Dataset Structure & Content
|
67 |
-
|
68 |
-
This dataset offers the following configurations/subsets:
|
69 |
-
* **Default (Full `train` data) configuration:** Contains the full, high-resolution image data and associated metadata. This is the recommended configuration for model training and full data analysis. The default split for this configuration is `train`.
|
70 |
-
Each example (row) in the dataset contains the following fields:
|
71 |
-
|
72 |
-
* `image`: The actual image data. In the default (full) configuration, this is full-resolution. In the preview configuration, this is a viewer-compatible version.
|
73 |
-
* `unique_id`: A unique identifier assigned to each image.
|
74 |
-
* `width`: The width of the image in pixels (from the full-resolution image).
|
75 |
-
* `height`: The height of the image in pixels (from the full-resolution image).
|
76 |
-
|
77 |
-
## Usage
|
78 |
-
|
79 |
-
To download and load this dataset from the Hugging Face Hub:
|
80 |
-
|
81 |
-
```python
|
82 |
-
|
83 |
-
from datasets import load_dataset, Dataset, DatasetDict
|
84 |
-
|
85 |
-
# Login using e.g. `huggingface-cli login` to access this dataset
|
86 |
-
|
87 |
-
# To load the full, high-resolution dataset (recommended for training):
|
88 |
-
# This will load the 'default' configuration's 'train' split.
|
89 |
-
ds_main = load_dataset("ROSCOSMOS/Trains_and_Trams", "default")
|
90 |
-
|
91 |
-
print("Main Dataset (default config) loaded successfully!")
|
92 |
-
print(ds_main)
|
93 |
-
print(f"Type of loaded object: {type(ds_main)}")
|
94 |
-
|
95 |
-
if isinstance(ds_main, Dataset):
|
96 |
-
print(f"Number of samples: {len(ds_main)}")
|
97 |
-
print(f"Features: {ds_main.features}")
|
98 |
-
elif isinstance(ds_main, DatasetDict):
|
99 |
-
print(f"Available splits: {list(ds_main.keys())}")
|
100 |
-
for split_name, dataset_obj in ds_main.items():
|
101 |
-
print(f" Split '{split_name}': {len(dataset_obj)} samples")
|
102 |
-
print(f" Features of '{split_name}': {dataset_obj.features}")
|
103 |
-
|
104 |
-
#
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
@misc{zhang2025ultrahighresolutionimagesynthesis,
|
133 |
-
title={Ultra-High-Resolution Image Synthesis: Data, Method and Evaluation},
|
134 |
-
author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
|
135 |
-
year={2025},
|
136 |
-
note={arXiv:2506.01331},
|
137 |
-
}
|
138 |
-
```
|
139 |
-
|
140 |
-
## Disclaimer and Bias Considerations
|
141 |
-
|
142 |
-
Please consider any inherent biases from the original dataset and those potentially introduced by the automated filtering (e.g., CLIP's biases) and manual curation process.
|
143 |
-
|
144 |
-
## Contact
|
145 |
-
|
146 |
-
N/A
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
pretty_name: "Trains and Trams"
|
4 |
+
tags: ["image", "computer-vision", "trains", "trams"]
|
5 |
+
task_categories: ["image-classification"]
|
6 |
+
language: ["en"]
|
7 |
+
configs:
|
8 |
+
- config_name: default
|
9 |
+
data_files: "train/**/*.arrow"
|
10 |
+
features:
|
11 |
+
- name: image
|
12 |
+
dtype: image
|
13 |
+
- name: unique_id
|
14 |
+
dtype: string
|
15 |
+
- name: width
|
16 |
+
dtype: int32
|
17 |
+
- name: height
|
18 |
+
dtype: int32
|
19 |
+
- name: image_mode_on_disk
|
20 |
+
dtype: string
|
21 |
+
- name: original_file_format
|
22 |
+
dtype: string
|
23 |
+
- config_name: preview
|
24 |
+
data_files: "preview/**/*.arrow"
|
25 |
+
features:
|
26 |
+
- name: image
|
27 |
+
dtype: image
|
28 |
+
- name: unique_id
|
29 |
+
dtype: string
|
30 |
+
- name: width
|
31 |
+
dtype: int32
|
32 |
+
- name: height
|
33 |
+
dtype: int32
|
34 |
+
- name: original_file_format
|
35 |
+
dtype: string
|
36 |
+
- name: image_mode_on_disk
|
37 |
+
dtype: string
|
38 |
+
---
|
39 |
+
|
40 |
+
# Trains and Trams
|
41 |
+
|
42 |
+
High resolution image subset from the Aesthetic-Train-V2 dataset containing a mixture of both Trains and Trams. There is some nuanced misalignment with how CLIP perceives the concepts of trains and trams during coarse searches therefor I have included both.
|
43 |
+
|
44 |
+
## Dataset Details
|
45 |
+
|
46 |
+
* **Curator:** Roscosmos
|
47 |
+
* **Version:** 1.0.0
|
48 |
+
* **Total Images:** 650
|
49 |
+
* **Average Image Size (on disk):** ~5.5 MB compressed
|
50 |
+
* **Primary Content:** Trains and Trams
|
51 |
+
* **Standardization:** All images are standardized to RGB mode and saved at 95% quality for consistency.
|
52 |
+
|
53 |
+
## Dataset Creation & Provenance
|
54 |
+
|
55 |
+
### 1. Original Master Dataset
|
56 |
+
This dataset is a subset derived from:
|
57 |
+
**`zhang0jhon/Aesthetic-Train-V2`**
|
58 |
+
* **Link:** https://huggingface.co/datasets/zhang0jhon/Aesthetic-Train-V2
|
59 |
+
* **Providence:** Large-scale, high-resolution image dataset, refer to its original dataset card for full details.
|
60 |
+
* **Original License:** MIT
|
61 |
+
|
62 |
+
### 2. Iterative Curation Methodology
|
63 |
+
|
64 |
+
CLIP retrieval / manual curation.
|
65 |
+
|
66 |
+
## Dataset Structure & Content
|
67 |
+
|
68 |
+
This dataset offers the following configurations/subsets:
|
69 |
+
* **Default (Full `train` data) configuration:** Contains the full, high-resolution image data and associated metadata. This is the recommended configuration for model training and full data analysis. The default split for this configuration is `train`.
|
70 |
+
Each example (row) in the dataset contains the following fields:
|
71 |
+
|
72 |
+
* `image`: The actual image data. In the default (full) configuration, this is full-resolution. In the preview configuration, this is a viewer-compatible version.
|
73 |
+
* `unique_id`: A unique identifier assigned to each image.
|
74 |
+
* `width`: The width of the image in pixels (from the full-resolution image).
|
75 |
+
* `height`: The height of the image in pixels (from the full-resolution image).
|
76 |
+
|
77 |
+
## Usage
|
78 |
+
|
79 |
+
To download and load this dataset from the Hugging Face Hub:
|
80 |
+
|
81 |
+
```python
|
82 |
+
|
83 |
+
from datasets import load_dataset, Dataset, DatasetDict
|
84 |
+
|
85 |
+
# Login using e.g. `huggingface-cli login` to access this dataset
|
86 |
+
|
87 |
+
# To load the full, high-resolution dataset (recommended for training):
|
88 |
+
# This will load the 'default' configuration's 'train' split.
|
89 |
+
ds_main = load_dataset("ROSCOSMOS/Trains_and_Trams", "default")
|
90 |
+
|
91 |
+
print("Main Dataset (default config) loaded successfully!")
|
92 |
+
print(ds_main)
|
93 |
+
print(f"Type of loaded object: {type(ds_main)}")
|
94 |
+
|
95 |
+
if isinstance(ds_main, Dataset):
|
96 |
+
print(f"Number of samples: {len(ds_main)}")
|
97 |
+
print(f"Features: {ds_main.features}")
|
98 |
+
elif isinstance(ds_main, DatasetDict):
|
99 |
+
print(f"Available splits: {list(ds_main.keys())}")
|
100 |
+
for split_name, dataset_obj in ds_main.items():
|
101 |
+
print(f" Split '{split_name}': {len(dataset_obj)} samples")
|
102 |
+
print(f" Features of '{split_name}': {dataset_obj.features}")
|
103 |
+
|
104 |
+
# The 'image' column will contain PIL Image objects.
|
105 |
+
|
106 |
+
```
|
107 |
+
|
108 |
+
## Citation
|
109 |
+
|
110 |
+
```bibtex
|
111 |
+
@inproceedings{zhang2025diffusion4k,
|
112 |
+
title={Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models},
|
113 |
+
author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
|
114 |
+
year={2025},
|
115 |
+
booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
|
116 |
+
}
|
117 |
+
@misc{zhang2025ultrahighresolutionimagesynthesis,
|
118 |
+
title={Ultra-High-Resolution Image Synthesis: Data, Method and Evaluation},
|
119 |
+
author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
|
120 |
+
year={2025},
|
121 |
+
note={arXiv:2506.01331},
|
122 |
+
}
|
123 |
+
```
|
124 |
+
|
125 |
+
## Disclaimer and Bias Considerations
|
126 |
+
|
127 |
+
Please consider any inherent biases from the original dataset and those potentially introduced by the automated filtering (e.g., CLIP's biases) and manual curation process.
|
128 |
+
|
129 |
+
## Contact
|
130 |
+
|
131 |
+
N/A
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|