ROSCOSMOS commited on
Commit
f652298
·
verified ·
1 Parent(s): 87807c8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +131 -146
README.md CHANGED
@@ -1,146 +1,131 @@
1
- ---
2
- license: mit
3
- pretty_name: "Trains and Trams"
4
- tags: ["image", "computer-vision", "trains", "trams"]
5
- task_categories: ["image-classification"]
6
- language: ["en"]
7
- configs:
8
- - config_name: default
9
- data_files: "train/**/*.arrow"
10
- features:
11
- - name: image
12
- dtype: image
13
- - name: unique_id
14
- dtype: string
15
- - name: width
16
- dtype: int32
17
- - name: height
18
- dtype: int32
19
- - name: image_mode_on_disk
20
- dtype: string
21
- - name: original_file_format
22
- dtype: string
23
- - config_name: preview
24
- data_files: "preview/**/*.arrow"
25
- features:
26
- - name: image
27
- dtype: image
28
- - name: unique_id
29
- dtype: string
30
- - name: width
31
- dtype: int32
32
- - name: height
33
- dtype: int32
34
- - name: original_file_format
35
- dtype: string
36
- - name: image_mode_on_disk
37
- dtype: string
38
- ---
39
-
40
- # Trains and Trams
41
-
42
- High resolution image subset from the Aesthetic-Train-V2 dataset containing a mixture of both Trains and Trams. There is some nuanced misalignment with how CLIP perceives the concepts of trains and trams during coarse searches therefor I have included both.
43
-
44
- ## Dataset Details
45
-
46
- * **Curator:** Roscosmos
47
- * **Version:** 1.0.0
48
- * **Total Images:** 650
49
- * **Average Image Size (on disk):** ~5.5 MB compressed
50
- * **Primary Content:** Trains and Trams
51
- * **Standardization:** All images are standardized to RGB mode and saved at 95% quality for consistency.
52
-
53
- ## Dataset Creation & Provenance
54
-
55
- ### 1. Original Master Dataset
56
- This dataset is a subset derived from:
57
- **`zhang0jhon/Aesthetic-Train-V2`**
58
- * **Link:** https://huggingface.co/datasets/zhang0jhon/Aesthetic-Train-V2
59
- * **Providence:** Large-scale, high-resolution image dataset, refer to its original dataset card for full details.
60
- * **Original License:** MIT
61
-
62
- ### 2. Iterative Curation Methodology
63
-
64
- CLIP retrieval / manual curation.
65
-
66
- ## Dataset Structure & Content
67
-
68
- This dataset offers the following configurations/subsets:
69
- * **Default (Full `train` data) configuration:** Contains the full, high-resolution image data and associated metadata. This is the recommended configuration for model training and full data analysis. The default split for this configuration is `train`.
70
- Each example (row) in the dataset contains the following fields:
71
-
72
- * `image`: The actual image data. In the default (full) configuration, this is full-resolution. In the preview configuration, this is a viewer-compatible version.
73
- * `unique_id`: A unique identifier assigned to each image.
74
- * `width`: The width of the image in pixels (from the full-resolution image).
75
- * `height`: The height of the image in pixels (from the full-resolution image).
76
-
77
- ## Usage
78
-
79
- To download and load this dataset from the Hugging Face Hub:
80
-
81
- ```python
82
-
83
- from datasets import load_dataset, Dataset, DatasetDict
84
-
85
- # Login using e.g. `huggingface-cli login` to access this dataset
86
-
87
- # To load the full, high-resolution dataset (recommended for training):
88
- # This will load the 'default' configuration's 'train' split.
89
- ds_main = load_dataset("ROSCOSMOS/Trains_and_Trams", "default")
90
-
91
- print("Main Dataset (default config) loaded successfully!")
92
- print(ds_main)
93
- print(f"Type of loaded object: {type(ds_main)}")
94
-
95
- if isinstance(ds_main, Dataset):
96
- print(f"Number of samples: {len(ds_main)}")
97
- print(f"Features: {ds_main.features}")
98
- elif isinstance(ds_main, DatasetDict):
99
- print(f"Available splits: {list(ds_main.keys())}")
100
- for split_name, dataset_obj in ds_main.items():
101
- print(f" Split '{split_name}': {len(dataset_obj)} samples")
102
- print(f" Features of '{split_name}': {dataset_obj.features}")
103
-
104
- # To load the smaller, viewer-compatible preview data (if available):
105
- # This will load the 'preview' configuration's default split (often also 'train').
106
- # Check your dataset card for exact config and split names.
107
- # try:
108
- # ds_preview = load_dataset("{push_to_hub_id}", "preview")
109
- # print("\nPreview Dataset (preview config):")
110
- # print(ds_preview)
111
- # print(f"Number of samples in the preview dataset: {len(ds_preview) if isinstance(ds_preview, Dataset) else 'N/A'}")
112
- # except ValueError as e:
113
- # print(f"\nPreview config not found or failed to load: {e}")
114
-
115
- # To access specific splits from a DatasetDict:
116
- # my_train_data = ds_main['train']
117
- # my_preview_data = ds_preview['train'] # if preview loads as DatasetDict
118
-
119
- # The 'image' column will contain PIL Image objects.
120
-
121
- ```
122
-
123
- ## Citation
124
-
125
- ```bibtex
126
- @inproceedings{zhang2025diffusion4k,
127
- title={Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models},
128
- author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
129
- year={2025},
130
- booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
131
- }
132
- @misc{zhang2025ultrahighresolutionimagesynthesis,
133
- title={Ultra-High-Resolution Image Synthesis: Data, Method and Evaluation},
134
- author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
135
- year={2025},
136
- note={arXiv:2506.01331},
137
- }
138
- ```
139
-
140
- ## Disclaimer and Bias Considerations
141
-
142
- Please consider any inherent biases from the original dataset and those potentially introduced by the automated filtering (e.g., CLIP's biases) and manual curation process.
143
-
144
- ## Contact
145
-
146
- N/A
 
1
+ ---
2
+ license: mit
3
+ pretty_name: "Trains and Trams"
4
+ tags: ["image", "computer-vision", "trains", "trams"]
5
+ task_categories: ["image-classification"]
6
+ language: ["en"]
7
+ configs:
8
+ - config_name: default
9
+ data_files: "train/**/*.arrow"
10
+ features:
11
+ - name: image
12
+ dtype: image
13
+ - name: unique_id
14
+ dtype: string
15
+ - name: width
16
+ dtype: int32
17
+ - name: height
18
+ dtype: int32
19
+ - name: image_mode_on_disk
20
+ dtype: string
21
+ - name: original_file_format
22
+ dtype: string
23
+ - config_name: preview
24
+ data_files: "preview/**/*.arrow"
25
+ features:
26
+ - name: image
27
+ dtype: image
28
+ - name: unique_id
29
+ dtype: string
30
+ - name: width
31
+ dtype: int32
32
+ - name: height
33
+ dtype: int32
34
+ - name: original_file_format
35
+ dtype: string
36
+ - name: image_mode_on_disk
37
+ dtype: string
38
+ ---
39
+
40
+ # Trains and Trams
41
+
42
+ High resolution image subset from the Aesthetic-Train-V2 dataset containing a mixture of both Trains and Trams. There is some nuanced misalignment with how CLIP perceives the concepts of trains and trams during coarse searches therefor I have included both.
43
+
44
+ ## Dataset Details
45
+
46
+ * **Curator:** Roscosmos
47
+ * **Version:** 1.0.0
48
+ * **Total Images:** 650
49
+ * **Average Image Size (on disk):** ~5.5 MB compressed
50
+ * **Primary Content:** Trains and Trams
51
+ * **Standardization:** All images are standardized to RGB mode and saved at 95% quality for consistency.
52
+
53
+ ## Dataset Creation & Provenance
54
+
55
+ ### 1. Original Master Dataset
56
+ This dataset is a subset derived from:
57
+ **`zhang0jhon/Aesthetic-Train-V2`**
58
+ * **Link:** https://huggingface.co/datasets/zhang0jhon/Aesthetic-Train-V2
59
+ * **Providence:** Large-scale, high-resolution image dataset, refer to its original dataset card for full details.
60
+ * **Original License:** MIT
61
+
62
+ ### 2. Iterative Curation Methodology
63
+
64
+ CLIP retrieval / manual curation.
65
+
66
+ ## Dataset Structure & Content
67
+
68
+ This dataset offers the following configurations/subsets:
69
+ * **Default (Full `train` data) configuration:** Contains the full, high-resolution image data and associated metadata. This is the recommended configuration for model training and full data analysis. The default split for this configuration is `train`.
70
+ Each example (row) in the dataset contains the following fields:
71
+
72
+ * `image`: The actual image data. In the default (full) configuration, this is full-resolution. In the preview configuration, this is a viewer-compatible version.
73
+ * `unique_id`: A unique identifier assigned to each image.
74
+ * `width`: The width of the image in pixels (from the full-resolution image).
75
+ * `height`: The height of the image in pixels (from the full-resolution image).
76
+
77
+ ## Usage
78
+
79
+ To download and load this dataset from the Hugging Face Hub:
80
+
81
+ ```python
82
+
83
+ from datasets import load_dataset, Dataset, DatasetDict
84
+
85
+ # Login using e.g. `huggingface-cli login` to access this dataset
86
+
87
+ # To load the full, high-resolution dataset (recommended for training):
88
+ # This will load the 'default' configuration's 'train' split.
89
+ ds_main = load_dataset("ROSCOSMOS/Trains_and_Trams", "default")
90
+
91
+ print("Main Dataset (default config) loaded successfully!")
92
+ print(ds_main)
93
+ print(f"Type of loaded object: {type(ds_main)}")
94
+
95
+ if isinstance(ds_main, Dataset):
96
+ print(f"Number of samples: {len(ds_main)}")
97
+ print(f"Features: {ds_main.features}")
98
+ elif isinstance(ds_main, DatasetDict):
99
+ print(f"Available splits: {list(ds_main.keys())}")
100
+ for split_name, dataset_obj in ds_main.items():
101
+ print(f" Split '{split_name}': {len(dataset_obj)} samples")
102
+ print(f" Features of '{split_name}': {dataset_obj.features}")
103
+
104
+ # The 'image' column will contain PIL Image objects.
105
+
106
+ ```
107
+
108
+ ## Citation
109
+
110
+ ```bibtex
111
+ @inproceedings{zhang2025diffusion4k,
112
+ title={Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models},
113
+ author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
114
+ year={2025},
115
+ booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
116
+ }
117
+ @misc{zhang2025ultrahighresolutionimagesynthesis,
118
+ title={Ultra-High-Resolution Image Synthesis: Data, Method and Evaluation},
119
+ author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
120
+ year={2025},
121
+ note={arXiv:2506.01331},
122
+ }
123
+ ```
124
+
125
+ ## Disclaimer and Bias Considerations
126
+
127
+ Please consider any inherent biases from the original dataset and those potentially introduced by the automated filtering (e.g., CLIP's biases) and manual curation process.
128
+
129
+ ## Contact
130
+
131
+ N/A