id
int64
0
458k
file_name
stringlengths
4
119
file_path
stringlengths
14
227
content
stringlengths
24
9.96M
size
int64
24
9.96M
language
stringclasses
1 value
extension
stringclasses
14 values
total_lines
int64
1
219k
avg_line_length
float64
2.52
4.63M
max_line_length
int64
5
9.91M
alphanum_fraction
float64
0
1
repo_name
stringlengths
7
101
repo_stars
int64
100
139k
repo_forks
int64
0
26.4k
repo_open_issues
int64
0
2.27k
repo_license
stringclasses
12 values
repo_extraction_date
stringclasses
433 values
2,286,800
serverperavg.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverperavg.cpython-39.pyc
a f¾`c‚ã@sHddlZddlZddlmZddlmZddlmZGdd„deƒZdS)éN)Ú clientPerAvg)ÚServer)ÚThreadcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)ÚPerAvgcsFtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes©Ú __class__©úu/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/servers/serverperavg.pyr s  zPerAvg.__init__cCsªt|jdƒD]p}| ¡|_| ¡||jdkrRtd|›d�ƒtdƒ| ¡|jD]}| ¡| ¡qX|  ¡|  ¡qtdƒtt |j ƒƒ|  ¡| ¡dS)Nérz -------------Round number: z -------------z+ Evaluate global model with one step updatez Best global accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr Úevaluate_one_stepÚtrainÚreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)r ÚiÚclientrrrrs     z PerAvg.traincCs’g}|jD]}| t |j¡¡| ¡q | ¡}t|jƒD]\}}| |||j¡q<t |dƒdt |dƒ}|j  |¡t d  |¡ƒdS)Négğ?rzAverage Test Accurancy: {:.4f}) ÚclientsÚappendÚcopyÚdeepcopyÚmodelZtrain_one_stepÚ test_metricsÚ enumerateÚ clone_modelÚsumr r Úformat)r Z models_tempÚcÚstatsr#Útest_accrrrr4s   zPerAvg.evaluate_one_step)Ú__name__Ú __module__Ú __qualname__rrrÚ __classcell__rrrrrs !r) r(ÚtorchZflcore.clients.clientperavgrÚflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s    
2,060
Python
.py
22
92.363636
347
0.491417
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,801
serverreppt.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverreppt.cpython-37.pyc
B Ðecýã@shddlmZddlmZddlmZddlZddlZddlZddl Z ddl Z ddlZGdd„deƒZ dS)é)Ú clientREPPT)ÚServer)ÚThreadNcs<eZdZ‡fdd„Zdd„Zdd„Zdd„Zd d „Z‡ZS) Ú PFedRepPTcsntƒ ||¡||_| ¡| |t¡t |jj ¡|_ g|_ g|_ t d|j›d|j›�ƒt dƒg|_dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__ÚargsÚset_slow_clientsÚ set_clientsrÚcopyÚdeepcopyÚmodelÚbaseÚ global_modelÚdiff_proÚclients_divergeÚprintÚ join_ratioÚ num_clientsÚBudget)ÚselfrÚtimes)Ú __class__©úH/root/autodl-tmp/PFL-Non-IID-master/system/flcore/servers/serverreppt.pyr s zPFedRepPT.__init__c CsÌ�xft|jdƒD�]R}t ¡}| ¡|_| ¡||jdkr`td|›d�ƒtdƒ| ¡d}x"|jD]}|  ¡}||  ¡}qlWd}xdt |j dj j ¡|j dj j ¡ƒD]:\}}||} t | dk| t | ¡| ¡} |t | ¡}q´Wtd |  ¡¡ƒ|j |  ¡¡td |¡ƒ|j |¡| ¡| ¡|j t ¡|¡tdd d|jd ƒqWtd ƒtt|jƒƒtd ƒtt|jdd…ƒt|jdd…ƒƒ| ¡| ¡|  ¡dS) Nérz -------------Round number: z -------------z Evaluate global modelz"0 and 1 clients difference: {:.4f}z"Averaged prompr difference: {:.4f}z-------------------------z time costéÿÿÿÿz Best global accuracy.z Average time cost per round.)!ÚrangeÚ global_roundsÚtimeÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gaprÚevaluateÚtrainÚitemÚzipÚclientsr Ú generatorÚ parametersÚtorchÚwhereÚ zeros_likeÚsumÚformatrÚappendrÚreceive_modelsÚaggregate_parametersrÚmaxÚ rs_test_accÚlenÚ save_resultsÚsave_global_modelÚsave_client_model) rÚiÚs_tÚ temp_diff_proÚclientÚtemp_diff_pro_clientÚdiverge_clentsÚ new_paramÚ old_paramrrrrr%s@  0 (zPFedRepPT.traincCsŒt|jƒdkst‚d}x|jD]}||j7}qWg|_g|_g|_xD|jD]:}|j |j|¡|j |j¡|j t   |j j ¡¡qJWdS)Nr) r5r!ÚAssertionErrorÚ train_samplesÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsr0Úidr r r r)rÚactive_train_samplesr<rrrr1Ms  zPFedRepPT.receive_modelscCsÂtj d|jd¡}tj |¡s(t |¡x”t|jƒD]†\}}tj ||jdt |ƒdt |j j ƒdt |j j ƒdt |j j ƒdt |j jƒdt |j jƒd¡}t |j|¡q4WdS)NÚmodelsr<Ú_clientÚ_z.pt)ÚosÚpathÚjoinÚdatasetÚexistsÚmakedirsÚ enumerater(Ú algorithmÚstrrÚ num_promptrrÚ plocal_stepsrr+Úsaver )rÚ model_pathÚc_idxÚcÚmodel_path_saverrrr8[s   pzPFedRepPT.save_client_modelc Cs8|jd|j}d}tj |¡s*t |¡t|jƒ�r4|d|jdt |j ƒdt |j j ƒdt |j j ƒdt |j jƒdt |j jƒdt |j jƒ}|d |¡}td|ƒt |d¡�f}|jd|jd�|jd|jd�|jd |jd�|jd |jd�|jd |jd�|jd |jd�WdQRXdS) NrJz ../results/z{}.h5z File path: Úwr4)ÚdataÚrs_test_acc_stdÚ rs_test_aucÚ rs_train_lossrr)rNrRrKrLrOrPr5r4ÚgoalrSrrrTrrrUrr/rÚh5pyÚFileÚcreate_datasetr]r^r_rr)rÚalgoÚ result_pathÚ file_pathÚhfrrrr6cs   l zPFedRepPT.save_results) Ú__name__Ú __module__Ú __qualname__rr%r1r8r6Ú __classcell__rr)rrr s  0r) Z!system.flcore.clients.clientrepptrÚ system.flcore.servers.serverbaserÚ threadingrrr r+rKrarrrrrÚ<module>s   
4,071
Python
.py
35
115.057143
397
0.461977
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,802
servermtl.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/servermtl.cpython-37.pyc
B ·:cc ã@s@ddlZddlmZddlmZddlmZGdd„deƒZdS)éN)Ú clientMTL)ÚServer)ÚThreadcs4eZdZ‡fdd„Zdd„Zdd„Zdd„Z‡ZS) ÚFedMTLcsÈtƒ ||¡t| |j¡ƒ|_tj|j|jf|j d�|_ |j |_ t  |j|jf¡}t  |jdf¡}|d|j|  |j ¡d}| |j ¡|_| ¡| |t¡td|j›d|j›�ƒtdƒdS)N)Údeviceééz Join clients / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__ÚlenÚflattenÚ global_modelÚdimÚtorchÚzerosÚ join_clientsrÚW_globÚonesÚmmÚTÚtoÚomegaÚset_slow_clientsÚ set_clientsrÚprintÚ num_clients)ÚselfÚargsÚtimesÚIÚir)Ú __class__©úF/root/autodl-tmp/PFL-Non-IID-master/system/flcore/servers/servermtl.pyr s zFedMTL.__init__cCs´xˆt|jdƒD]v}| ¡|_| ¡||jdkrTtd|›d�ƒtdƒ| ¡x0t|jƒD]"\}}|  |j |j |¡|  ¡q`WqWtdƒtt |jƒƒ| ¡| ¡dS)Nrrz -------------Round number: z -------------z Evaluate global modelz Best global accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚaggregate_parametersÚeval_gaprÚevaluateÚ enumerateZreceive_valuesrrÚtrainÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)rr ÚidxÚclientr"r"r#r,s z FedMTL.traincs,| ¡‰ˆ ¡}‡fdd„|Dƒ}t |¡S)Ncsg|]}ˆ| ¡‘qSr")r )Ú.0Úkey)Ú state_dictr"r#ú <listcomp><sz"FedMTL.flatten.<locals>.<listcomp>)r5ÚkeysrÚcat)rÚmodelr7ÚWr")r5r#r 9szFedMTL.flattencCsPtj|j|jf|jd�|_x0t|jƒD]"\}}| |j ¡|jdd…|f<q&WdS)N)r) rrrrrrr+r'r r9)rr1r2r"r"r#r(?szFedMTL.aggregate_parameters)Ú__name__Ú __module__Ú __qualname__r r,r r(Ú __classcell__r"r")r!r#rs r)rZflcore.clients.clientmtlrÚflcore.servers.serverbaserÚ threadingrrr"r"r"r#Ú<module>s   
2,354
Python
.py
15
155.733333
367
0.440598
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,803
serverbase.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverbase.cpython-39.pyc
a ubc‹#ã@sXddlZddlZddlZddlZddlZddlZddlZddlm Z Gdd„de ƒZ dS)éN)Úread_client_datac@s°eZdZdd„Zdd„Zdd„Zdd„Zd d „Zd d „Zd d„Z dd„Z dd„Z dd„Z dd„Z dd„Zdd„Zdd„Zdd„Zdd „Zd!d"„Zd*d$d%„Zd&d'„Zd+d(d)„Zd#S),ÚServercCsô|j|_|j|_|j|_|j|_|j|_|j|_t |j ¡|_ |j |_ |j |_ t |j |j ƒ|_|j|_|j|_|j|_|j|_|j|_d|_g|_g|_g|_g|_g|_g|_g|_g|_g|_g|_||_|j |_ |j!|_!|j"|_"|j#|_#dS)Néd)$ÚdeviceÚdatasetÚ global_roundsÚ local_stepsÚ batch_sizeÚlocal_learning_rateÚ learning_rateÚcopyÚdeepcopyÚmodelÚ global_modelÚ num_clientsÚ join_ratioÚintÚ join_clientsÚ algorithmÚ time_selectÚgoalÚtime_thretholdÚsave_folder_nameÚtop_cntÚclientsÚselected_clientsÚtrain_slow_clientsÚsend_slow_clientsÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsÚ rs_test_accÚ rs_test_aucÚ rs_train_lossÚtimesÚeval_gapÚclient_drop_rateÚtrain_slow_rateÚsend_slow_rate)ÚselfÚargsr$©r+ús/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/servers/serverbase.pyÚ__init__ s>zServer.__init__c Csntt|jƒ|j|jƒD]R\}}}t|j|dd�}t|j|dd�}|||t|ƒt|ƒ||d�}|j  |¡qdS)NT)Úis_trainF)ÚidÚ train_samplesÚ test_samplesÚ train_slowÚ send_slow) ÚzipÚrangerrrrrÚlenrÚappend) r)r*Z clientObjÚir2r3Ú train_dataÚ test_dataÚclientr+r+r,Ú set_clients4s ûzServer.set_clientscCsVdd„t|jƒDƒ}dd„t|jƒDƒ}tj |t||jƒ¡}|D] }d||<qD|S)NcSsg|]}d‘qS)Fr+©Ú.0r8r+r+r,Ú <listcomp>Eóz.Server.select_slow_clients.<locals>.<listcomp>cSsg|]}|‘qSr+r+r=r+r+r,r?Fr@T)r5rÚnpÚrandomÚchoicer)r)Z slow_rateZ slow_clientsÚidxÚidx_r8r+r+r,Úselect_slow_clientsDs  zServer.select_slow_clientscCs | |j¡|_| |j¡|_dS©N)rFr'rr(r)r)r+r+r,Úset_slow_clientsMs ÿÿzServer.set_slow_clientscCsttjj|j|jdd�ƒ}|S)NF)Úreplace)ÚlistrArBrCrr)r)rr+r+r,Úselect_clientsSszServer.select_clientscCs.t|jƒdksJ‚|jD]}| |j¡qdS©Nr)r6rÚset_parametersr)r)r;r+r+r,Ú send_modelsXs zServer.send_modelscCs�t|jƒdksJ‚g|_d}g|_g|_|jD]8}|j |j¡||j7}|j |j¡|j |j¡q.t |jƒD]\}}|||j|<qrdSrL) r6rrrr r7r0r/rÚ enumerate)r)Z tot_samplesr;r8Úwr+r+r,Úreceive_models`s  zServer.receive_modelscCsft|jƒdksJ‚t |jd¡|_|j ¡D]}|j ¡q.t|j |jƒD]\}}|  ||¡qLdSrL) r6r r r rÚ parametersÚdataÚzero_r4rÚadd_parameters)r)ÚparamrPÚ client_modelr+r+r,Úaggregate_parametersos  zServer.aggregate_parameterscCs:t|j ¡| ¡ƒD] \}}|j|j ¡|7_qdSrG)r4rrRrSÚclone)r)rPrWZ server_paramZ client_paramr+r+r,rUyszServer.add_parameterscCsPtj d|j¡}tj |¡s&t |¡tj ||jdd¡}t |j |¡dS©NÚmodelsÚ_serverú.pt) ÚosÚpathÚjoinrÚexistsÚmakedirsrÚtorchÚsaver©r)Z model_pathr+r+r,Úsave_global_model}s   zServer.save_global_modelcCsHtj d|j¡}tj ||jdd¡}tj |¡s8J‚t |¡|_dSrZ) r^r_r`rrrarcÚloadrrer+r+r,Ú load_model„szServer.load_modelcCs4tj d|j¡}tj ||jdd¡}tj |¡SrZ)r^r_r`rrrarer+r+r,Ú model_existsŠszServer.model_existscCsÊ|jd|j}d}tj |¡s*t |¡t|jƒrÆ|d|jdt |j ƒ}|d  |¡}t d|ƒt  |d¡�@}|jd|jd�|jd|jd�|jd |jd�Wdƒn1s¼0YdS) NÚ_z ../results/z{}.h5z File path: rPr!)rSr"r#)rrr^r_rarbr6r!rÚstrr$ÚformatÚprintÚh5pyÚFileZcreate_datasetr"r#)r)ÚalgoÚ result_pathÚ file_pathZhfr+r+r,Ú save_results�s    zServer.save_resultscCs>tj |j¡st |j¡t |tj |jd|d¡¡dS©NZserver_r])r^r_rarrbrcrdr`)r)ÚitemÚ item_namer+r+r,Ú save_itemŸs zServer.save_itemcCst tj |jd|d¡¡Srt)rcrgr^r_r`r)r)rvr+r+r,Ú load_item¤szServer.load_itemc Cshg}g}g}|jD]8}| ¡\}}}| |d¡| ||¡| |¡qdd„|jDƒ}||||fS)Nçğ?cSsg|] }|j‘qSr+©r/©r>Úcr+r+r,r?´r@z'Server.test_metrics.<locals>.<listcomp>)rÚ test_metricsr7) r)Ú num_samplesZ tot_correctZtot_aucr|ÚctÚnsÚaucÚidsr+r+r,r}§s  zServer.test_metricscCsRg}g}|jD](}| ¡\}}| |¡| |d¡qdd„|jDƒ}|||fS)NrycSsg|] }|j‘qSr+rzr{r+r+r,r?Àr@z(Server.train_metrics.<locals>.<listcomp>)rÚ train_metricsr7)r)r~Úlossesr|Úclr€r‚r+r+r,rƒ¸s   zServer.train_metricsNc Cs>| ¡}| ¡}t|dƒdt|dƒ}t|dƒdt|dƒ}t|dƒdt|dƒ}dd„t|d|dƒDƒ}dd„t|d|dƒDƒ} |dkr²|j |¡n | |¡|j |¡|dkrŞ|j |¡n | |¡td  |¡ƒtd   |¡ƒtd   |¡ƒtd   t   |¡¡ƒtd   t   | ¡¡ƒdS) NéryéécSsg|]\}}||‘qSr+r+©r>ÚaÚnr+r+r,r?Ír@z#Server.evaluate.<locals>.<listcomp>cSsg|]\}}||‘qSr+r+r‰r+r+r,r?Îr@zAveraged Train Loss: {:.4f}zAveraged Test Accurancy: {:.4f}zAveraged Test AUC: {:.4f}zStd Test Accurancy: {:.4f}zStd Test AUC: {:.4f}) r}rƒÚsumr4r!r7r"r#rmrlrAÚstd) r)ÚaccÚlossÚstatsZ stats_trainÚtest_accÚtest_aucÚ train_lossZaccsZaucsr+r+r,ÚevaluateÅs&   zServer.evaluatecCs.td |¡ƒtd |¡ƒtd |¡ƒdS)NzAverage Test Accurancy: {:.4f}zAverage Test AUC: {:.4f}zAverage Train Loss: {:.4f})rmrl)r)r‘r’r“r+r+r,Úprint_ász Server.print_cCsğ|D]æ}|dkrr|dkrrt|ƒt t |¡d¡jd|k}t|ƒdko^t || d…¡|k}|rj|rjqêdSq|dkr¬t|ƒt t |¡d¡jd|k}|r¤qêdSq|dkræt|ƒdkoÖt || d…¡|k}|rŞqêdSqt‚qdS)Nr‡rFT)r6rcÚtopkÚtensorÚindicesrAr�ÚNotImplementedError)r)Zacc_lssrÚ div_valueZacc_lsZfind_topZfind_divr+r+r,Ú check_doneæs&$$$$zServer.check_done)NN)NN)Ú__name__Ú __module__Ú __qualname__r-r<rFrHrKrNrQrXrUrfrhrirsrwrxr}rƒr”r•r›r+r+r+r,r s('   r) rcr^ÚnumpyrArnr ÚtimerBÚutils.data_utilsrÚobjectrr+r+r+r,Ú<module>s 
8,366
Python
.py
47
176.787234
760
0.4
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,804
serverbn.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverbn.cpython-39.pyc
a f¾`cãã@sLddlmZddlmZddlmZddlmZddlZGdd„deƒZ dS)é)ÚclientBN)ÚServer)Úread_client_data)ÚThreadNcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚFedBNcsFtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes©Ú __class__©úq/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/servers/serverbn.pyr s  zFedBN.__init__cCs¢t|jdƒD]h}| ¡|_| ¡||jdkrRtd|›d�ƒtdƒ| ¡|jD] }| ¡qX|  ¡|  ¡qtdƒtt |j ƒƒ|  ¡| ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz Best global accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)rÚiÚclientrrrrs    z FedBN.train)Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__rrrrrs r) Zflcore.clients.clientbnrÚflcore.servers.serverbaserÚutils.data_utilsrÚ threadingrÚtimerrrrrÚ<module>s    
1,562
Python
.py
16
96.375
358
0.505495
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,805
serverpfedpt.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverpfedpt.cpython-38.pyc
U Õ şcšã@shddlmZddlmZddlmZddlZddlZddlZddl Z ddl Z ddl Z Gdd„deƒZ dS)é)ÚclientPT)ÚServer)ÚThreadNcsNeZdZ‡fdd„Zdd„Zdd„Zdd„Zd d „Zdd d „Zdd„Z ‡Z S)ÚPFedPTcsntƒ ||¡| ¡||_| |t¡t |jj ¡|_ g|_ g|_ t d|j›d|j›�ƒt dƒg|_dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚargsÚ set_clientsrÚcopyÚdeepcopyÚmodelÚbaseÚ global_modelÚdiff_proÚclients_divergeÚprintÚ join_ratioÚ num_clientsÚBudget)Úselfr Útimes©Ú __class__©õdD:\京东\promot\第二次投稿\å®�验\æœ�务器\native - pro\system\flcore\servers\serverpfedpt.pyr s zPFedPT.__init__c Csúg}t|jdƒD�]n}t ¡}| ¡|_| ¡||jdkr`td|›d�ƒtdƒ| ¡d}|jD]}|  ¡}||  ¡}qjtd  |¡ƒ|j   |¡d}t|jdjj ¡|jdjj ¡ƒD]:\}} || } t | dk| t | ¡| ¡} |t | ¡}qÈtd  |  ¡¡ƒ|j  |  ¡¡||jdk�rJtdƒ|j|d �| ¡| ¡|j  t ¡|¡td d d |jd ƒqtd ƒtt|jƒƒtdƒtt|jdd…ƒt|jdd…ƒƒtdƒtt|ƒƒ| ¡| ¡|  ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz"Averaged prompr difference: {:.4f}z"0 and 1 clients difference: {:.4f}z Evaluate local model)Úaccz-------------------------z time costéÿÿÿÿz Best global accuracy.z Average time cost per round.z Best local accuracy.)!ÚrangeÚ global_roundsÚtimeÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gaprÚevaluateÚtrainÚitemÚformatrÚappendÚzipÚclientsr Ú generatorÚ parametersÚtorchÚwhereÚ zeros_likeÚsumrÚreceive_modelsÚaggregate_parametersrÚmaxÚ rs_test_accÚlenÚ save_resultsÚsave_global_modelÚsave_client_model) rÚ local_accÚiÚs_tÚ temp_diff_proÚclientÚtemp_diff_pro_clientÚdiverge_clentsÚ new_paramÚ old_paramrrrrr'sL   . ( z PFedPT.traincCs„t|jƒdkst‚d}|jD]}||j7}qg|_g|_g|_|jD]:}|j |j|¡|j |j¡|j t   |j j ¡¡qDdS)Nr) r7r#ÚAssertionErrorÚ train_samplesÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsr*Úidr r r r)rÚactive_train_samplesr?rrrr3Ss   zPFedPT.receive_modelscCstj d|jd|jjd|jjd|jjd|jjd|jj d|jj ¡}tj  |¡sjt  |¡t |jƒD]†\}}tj ||jdt|ƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒd¡}t |j|¡qtdS)NÚmodelsr?Ú*Ú_clientÚ_z.pt)ÚosÚpathÚjoinÚdatasetr Úarv1Úarv2Úarv3Úarv4Úarv5Úarv6ÚexistsÚmakedirsÚ enumerater,Ú algorithmÚstrÚ num_promptrrÚ plocal_stepsr r/Úsaver )rÚ model_pathÚc_idxÚcÚmodel_path_saverrrr:as T  pzPFedPT.save_client_modelc Cs€|jd|j}d|jjd|jjd|jjd|jjd|jjd|jjd}t j   |¡srt   |¡t |jƒ�r||d|jdt|jƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒ}|d |¡}td|ƒt |d¡�f}|jd|jd �|jd |jd �|jd |jd �|jd |jd �|jd |jd �|jd|j d �W5QRXdS)NrNz ../results/rLú/z{}.h5z File path: Úwr6)ÚdataÚrs_test_acc_stdÚ rs_test_aucÚ rs_train_lossrr)!rRr\r rSrTrUrVrWrXrOrPrYrZr7r6Úgoalr]rr^rrr_r r)rÚh5pyÚFileÚcreate_datasetrhrirjrr)rÚalgoÚ result_pathÚ file_pathÚhfrrrr8isL   l zPFedPT.save_resultsNc Cs|| ¡}| ¡}t|dƒdt|dƒ}t|dƒdt|dƒ}t|dƒdt|dƒ}t|dƒdt|dƒ}dd„t|d|dƒDƒ} dd„t|d|dƒDƒ} |dkrÎ|j |¡n | |¡|j |¡|j t  | ¡¡|dk�r|j  |¡n | |¡t d   |¡ƒt d   |¡ƒt d   |¡ƒt d   |¡ƒt d   t  | ¡¡ƒt d  t  | ¡¡ƒdS)Néçğ?réécSsg|]\}}||‘qSrr©Ú.0ÚaÚnrrrÚ <listcomp>…sz#PFedPT.evaluate.<locals>.<listcomp>cSsg|]\}}||‘qSrrrwrrrr{†szAveraged Train Loss: {:.4f}zAveraged Test Accurancy: {:.4f}z$Averaged Test oral Accurancy: {:.4f}zAveraged Test AUC: {:.4f}zStd Test Accurancy: {:.4f}zStd Test AUC: {:.4f}) Ú test_metricsÚ train_metricsr2r+r6r*rirhÚnpÚstdrjrr)) rrÚlossÚstatsÚ stats_trainÚtest_accÚ test_acc2Útest_aucÚ train_lossÚaccsÚaucsrrrr&|s,    zPFedPT.evaluatec Cs~g}g}g}g}|jD]H}| ¡\}}}} | |d¡| |d¡| | |¡| |¡qdd„|jDƒ} | ||||fS)NrtcSsg|] }|j‘qSr)rI)rxrcrrrr{¨sz'PFedPT.test_metrics.<locals>.<listcomp>)r,r|r*) rÚ num_samplesÚ tot_correctÚ tot_correct2Útot_aucrcÚctÚct2ÚnsÚaucÚidsrrrr|›s  zPFedPT.test_metrics)NN) Ú__name__Ú __module__Ú __qualname__rr'r3r:r8r&r|Ú __classcell__rrrrr s 4 r)Zflcore.clients.clientptrÚflcore.servers.serverbaserÚ threadingrr!r/rOrlr Únumpyr~rrrrrÚ<module>s   
6,091
Python
.py
58
103.758621
494
0.426086
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,806
serverbabu.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverbabu.cpython-38.pyc
U [Ğıcr ã@s8ddlmZddlmZddlmZGdd„deƒZdS)é)Ú clientBABU)ÚServer)ÚThreadcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)ÚFedBABUcsFtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes©Ú __class__©õXD:\京东\promot\第二次投稿\å®�验\native - pro\system\flcore\servers\serverbabu.pyrs  zFedBABU.__init__cCsg}t|jdƒD]Š}| ¡|_| ¡||jdkrVtd|›d�ƒtdƒ| ¡|jD] }| ¡q\||jdkrŒtdƒ|j|d�|  ¡|  ¡qtdƒtt |j ƒƒtd ƒtt |ƒƒ|j D] }| ¡qÎtd ƒ| ¡| ¡| ¡dS) Nérz -------------Round number: z -------------z Evaluate global modelz Evaluate local model)Úaccz Best global accuracy.z Best local accuracy.z4 -------------Evaluate fine-tuned model-------------)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚclientsZ fine_tuneÚ save_resultsÚsave_global_model)r Ú local_accÚiÚclientrrrrs2        z FedBABU.traincCs�t|jƒdkst‚g|_d}g|_g|_|jD]:}|j |j¡||j7}|j |j¡|j |j j ¡q.t |jƒD]\}}|||j|<qtdS)Nr) ÚlenrÚAssertionErrorÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsÚappendÚ train_samplesÚidÚmodelÚbaseÚ enumerate)r Ú tot_samplesr'r&Úwrrrr;s  zFedBABU.receive_models)Ú__name__Ú __module__Ú __qualname__rrrÚ __classcell__rrrrrs 'rN)Zflcore.clients.clientbaburÚflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s   
2,164
Python
.py
25
85.4
254
0.477103
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,807
serverrep.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverrep.cpython-38.pyc
U ºĞıcí ã@sHddlmZddlmZddlmZddlZddlZGdd„deƒZdS)é)Ú clientRep)ÚServer)ÚThreadNcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)ÚFedRepcsLtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒg|_dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.) ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clientsÚBudget)ÚselfÚargsÚtimes©Ú __class__©õWD:\京东\promot\第二次投稿\å®�验\native - pro\system\flcore\servers\serverrep.pyr s  zFedRep.__init__cCs<g}t|jdƒD]º}t ¡}| ¡|_| ¡||jdkr^td|›d�ƒtdƒ| ¡|jD] }|  ¡qd||jdkr”tdƒ|j|d�|  ¡|  ¡|j   t ¡|¡tdd d|j d ƒqtd ƒtt|jƒƒtd ƒtt|j dd…ƒt|j dd…ƒƒtd ƒtt|ƒƒ| ¡| ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz Evaluate local model)Úaccz-------------------------z time costéÿÿÿÿz Best global accuracy.z Average time cost per round.z Best local accuracy.)ÚrangeÚ global_roundsÚtimeÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersr ÚappendÚmaxÚ rs_test_accÚsumÚlenÚ save_resultsÚsave_global_model)rÚ local_accÚiÚs_tÚclientrrrr s4    ( z FedRep.traincCs„t|jƒdkst‚d}|jD]}||j7}qg|_g|_g|_|jD]:}|j |j|¡|j |j¡|j t   |j j ¡¡qDdS)Nr) r'rÚAssertionErrorÚ train_samplesÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsr#ÚidÚcopyÚdeepcopyÚmodelÚbase)rÚactive_train_samplesr-rrrr!>s   zFedRep.receive_models)Ú__name__Ú __module__Ú __qualname__rr r!Ú __classcell__rrrrrs 'r) Zflcore.clients.clientreprÚflcore.servers.serverbaserÚ threadingrrr4rrrrrÚ<module>s   
2,288
Python
.py
21
107.619048
383
0.472222
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,808
serverrod.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverrod.cpython-39.pyc
a f¾`cçã@sLddlmZddlmZddlmZddlmZddlZGdd„deƒZ dS)é)Ú clientROD)ÚServer)Úread_client_data)ÚThreadNcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚFedRODcsFtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes©Ú __class__©úr/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/servers/serverrod.pyr s  zFedROD.__init__cCs¢t|jdƒD]h}| ¡|_| ¡||jdkrRtd|›d�ƒtdƒ| ¡|jD] }| ¡qX|  ¡|  ¡qtdƒtt |j ƒƒ|  ¡| ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz Best global accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)rÚiÚclientrrrrs    z FedROD.train)Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__rrrrrs r) Zflcore.clients.clientrodrÚflcore.servers.serverbaserÚutils.data_utilsrÚ threadingrÚtimerrrrrÚ<module>s    
1,568
Python
.py
16
96.75
360
0.507405
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,809
serveramp.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serveramp.cpython-38.pyc
U [Ğıc¢ ã@sdddlZddlZddlZddlZddlZddlmZmZddl m Z ddl m Z Gdd„de ƒZ dS)éN)Ú clientAMPÚweight_flatten)ÚServer)ÚThreadcs4eZdZ‡fdd„Zdd„Zdd„Zdd„Z‡ZS) ÚFedAMPcsVtƒ ||¡| ¡| |t¡|j|_|j|_td|j›d|j ›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.) ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚalphaKÚsigmaÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes©Ú __class__©õWD:\京东\promot\第二次投稿\å®�验\native - pro\system\flcore\servers\serveramp.pyr s zFedAMP.__init__cCsÔg}t|jdƒD]‚}| ¡|_| ¡||jdkrVtd|›d�ƒtdƒ| ¡|jD] }| ¡q\||jdkrŒtdƒ|j|d�|  ¡qtdƒtt |j ƒƒtd ƒtt |ƒƒ|  ¡|  ¡dS) Nérz -------------Round number: z -------------z Evaluate global modelz Evaluate local model)Úaccz Best global accuracy.z Best local accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)rÚ local_accÚiÚclientrrrr s(      z FedAMP.trainc CsŒt|jƒdkst‚t|jƒdk�rˆ|jD�]\}t |j¡}| ¡D]}|j   ¡qBt   |j ¡}t|jƒD]b\}}|j|j|krÂt|jƒ}t|ƒ}|| d¡} t  | | ¡} |j| | ¡||<qhd||<qhdt  |¡} t|jƒD]:\}}t| ¡| ¡ƒD]\}} |j ||| 7_ qşqät ¡} |j�rJt dt tj ¡¡¡|  || ¡|j!dd7<|j!ddt ¡| 7<q(dS)Nréÿÿÿÿrgš™™™™™¹?Ú num_roundsÚ total_costé)"ÚlenrÚAssertionErrorÚuploaded_modelsÚclientsÚcopyÚdeepcopyÚ global_modelÚ parametersÚdataÚzero_ÚtorchÚzerosÚ join_clientsÚ enumerateÚidÚ uploaded_idsrÚmodelÚviewÚdotr ÚeÚsumÚzipÚtimeÚ send_slowÚsleepÚnpÚabsÚrandomÚrandÚset_parametersÚsend_time_cost) rÚcÚmuÚparamÚcoefÚjZmwZ weights_iZ weights_jÚsubZ coef_selfZparam_jÚ start_timerrrr;s2         zFedAMP.send_modelscCst | |j¡|jS)N)ÚmathÚexpr )rÚxrrrr@_szFedAMP.e)Ú__name__Ú __module__Ú __qualname__rr rr@Ú __classcell__rrrrr s "$r)r7r1rCÚnumpyrFrSZflcore.clients.clientamprrÚflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s  
2,831
Python
.py
30
93.2
387
0.467523
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,810
serverrodpt.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverrodpt.cpython-38.pyc
U Õ şcÒã@stddlmZddlmZddlmZddlmZddlZddl Z ddl Z ddl Z ddl Z ddl ZGdd„deƒZdS)é)Ú clientRODPT)ÚServer)Úread_client_data)ÚThreadNcsNeZdZ‡fdd„Zdd„Zdd„Zdd„Zd d „Zdd d „Zdd„Z ‡Z S)ÚFedRODPTcsftƒ ||¡||_| ¡| |t¡g|_t |j ¡|_ g|_ t d|j ›d|j›�ƒt dƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__ÚargsÚset_slow_clientsÚ set_clientsrÚclients_divergeÚcopyÚdeepcopyÚmodelÚ global_modelÚdiff_proÚprintÚ join_ratioÚ num_clients)Úselfr Útimes©Ú __class__©õcD:\京东\promot\第二次投稿\å®�验\æœ�务器\native - pro\system\flcore\servers\serverrodpt.pyr s zFedRODPT.__init__c Csšg}t|jdƒD�]>}| ¡|_| ¡||jdkrXtd|›d�ƒtdƒ| ¡d}|jD]}| ¡}||  ¡}qbtd  |¡ƒ|j   |¡d}t |jdjj ¡|jdjj ¡ƒD]:\}}||} t | dk| t | ¡| ¡} |t | ¡}qÀtd  |  ¡¡ƒ|j  |  ¡¡||jdk�rBtdƒ|j|d �| ¡| ¡qtd ƒtt|jƒƒtd ƒtt|ƒƒ| ¡| ¡| ¡dS) Nérz -------------Round number: z -------------z Evaluate global modelz"Averaged prompr difference: {:.4f}z"0 and 1 clients difference: {:.4f}z Evaluate local model)Úaccz Best global accuracy.z Best local accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gaprÚevaluateÚtrainÚitemÚformatrÚappendÚzipÚclientsrÚ generatorÚ parametersÚtorchÚwhereÚ zeros_likeÚsumr Úreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚ save_resultsÚsave_global_modelÚsave_client_model) rÚ local_accÚiÚ temp_diff_proÚclientÚtemp_diff_pro_clientÚdiverge_clentsÚ new_paramÚ old_paramrrrrr$sF   ÿ    zFedRODPT.traincCs‚t|jƒdkst‚d}|jD]}||j7}qg|_g|_g|_|jD]8}|j |j|¡|j |j¡|j t   |j ¡¡qDdS)Nr) Úlenr ÚAssertionErrorÚ train_samplesÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsr'Úidr rr)rÚactive_train_samplesr:rrrr0Is   zFedRODPT.receive_modelscCstj d|jd|jjd|jjd|jjd|jjd|jj d|jj ¡}tj  |¡sjt  |¡t |jƒD]†\}}tj ||jdt|ƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒd¡}t |j|¡qtdS)NÚmodelsr:Ú*Ú_clientÚ_z.pt)ÚosÚpathÚjoinÚdatasetr Úarv1Úarv2Úarv3Úarv4Úarv5Úarv6ÚexistsÚmakedirsÚ enumerater)Ú algorithmÚstrÚ num_promptrrÚ plocal_stepsrr,Úsaver)rÚ model_pathÚc_idxÚcÚmodel_path_saverrrr6Ws T  pzFedRODPT.save_client_modelc Cs€|jd|j}d|jjd|jjd|jjd|jjd|jjd|jjd}t j   |¡srt   |¡t |jƒ�r||d|jdt|jƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒ}|d |¡}td|ƒt |d¡�f}|jd|jd �|jd |jd �|jd |jd �|jd |jd �|jd |jd �|jd|j d �W5QRXdS)NrJz ../results/rHú/z{}.h5z File path: Úwr3)ÚdataÚrs_test_acc_stdÚ rs_test_aucÚ rs_train_lossrr )!rNrXr rOrPrQrRrSrTrKrLrUrVr?r3ÚgoalrYrrZrrr[rr&rÚh5pyÚFileÚcreate_datasetrdrerfrr )rÚalgoÚ result_pathÚ file_pathÚhfrrrr4_sL   l zFedRODPT.save_resultsNc Cs|| ¡}| ¡}t|dƒdt|dƒ}t|dƒdt|dƒ}t|dƒdt|dƒ}t|dƒdt|dƒ}dd„t|d|dƒDƒ} dd„t|d|dƒDƒ} |dkrÎ|j |¡n | |¡|j |¡|j t  | ¡¡|dk�r|j  |¡n | |¡t d   |¡ƒt d   |¡ƒt d   |¡ƒt d   |¡ƒt d   t  | ¡¡ƒt d  t  | ¡¡ƒdS)Néçğ?réécSsg|]\}}||‘qSrr©Ú.0ÚaÚnrrrÚ <listcomp>{sz%FedRODPT.evaluate.<locals>.<listcomp>cSsg|]\}}||‘qSrrrsrrrrw|szAveraged Train Loss: {:.4f}zAveraged Test Accurancy: {:.4f}z$Averaged Test oral Accurancy: {:.4f}zAveraged Test AUC: {:.4f}zStd Test Accurancy: {:.4f}zStd Test AUC: {:.4f}) Ú test_metricsÚ train_metricsr/r(r3r'rerdÚnpÚstdrfrr&) rrÚlossÚstatsÚ stats_trainÚtest_accÚ test_acc2Útest_aucÚ train_lossÚaccsÚaucsrrrr#rs,    zFedRODPT.evaluatec Cs~g}g}g}g}|jD]H}| ¡\}}}} | |d¡| |d¡| | |¡| |¡qdd„|jDƒ} | ||||fS)NrpcSsg|] }|j‘qSr)rE)rtr_rrrrw�sz)FedRODPT.test_metrics.<locals>.<listcomp>)r)rxr') rÚ num_samplesÚ tot_correctÚ tot_correct2Útot_aucr_ÚctÚct2ÚnsÚaucÚidsrrrrx‘s  zFedRODPT.test_metrics)NN) Ú__name__Ú __module__Ú __qualname__rr$r0r6r4r#rxÚ __classcell__rrrrr s - r)Zflcore.clients.clientrodptrÚflcore.servers.serverbaserÚutils.data_utilsrÚ threadingrÚtimerhr rKr,ÚnumpyrzrrrrrÚ<module>s    
5,946
Python
.py
51
115.333333
496
0.433005
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,811
serverpfedpt.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverpfedpt.cpython-39.pyc
a @=bc_ ã@sXddlmZddlmZddlmZddlZddlZddlZddl Z Gdd„deƒZ dS)é)ÚclientPT)ÚServer)ÚThreadNcs4eZdZ‡fdd„Zdd„Zdd„Zdd„Z‡ZS) ÚPFedPTcs\tƒ ||¡| ¡| |t¡t |jj¡|_ t d|j ›d|j ›�ƒt dƒg|_ dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚcopyÚdeepcopyÚmodelÚbaseÚ global_modelÚprintÚ join_ratioÚ num_clientsÚBudget)ÚselfÚargsÚtimes©Ú __class__©úu/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/servers/serverpfedpt.pyr s zPFedPT.__init__cCs t|jdƒD]˜}t ¡}| ¡|_| ¡||jdkrZtd|›d�ƒtdƒ| ¡|jD] }|  ¡q`|  ¡|  ¡|j   t ¡|¡tddd|j dƒqtd ƒtt|jƒƒtd ƒtt|j dd…ƒt|j dd…ƒƒ| ¡| ¡| ¡dS) Nérz -------------Round number: z -------------z Evaluate global modelz-------------------------z time costéÿÿÿÿz Best global accuracy.z Average time cost per round.)ÚrangeÚ global_roundsÚtimeÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gaprÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersrÚappendÚmaxÚ rs_test_accÚsumÚlenÚ save_resultsÚsave_global_modelÚsave_client_model)rÚiÚs_tÚclientrrrr$s*   (z PFedPT.traincCs„t|jƒdksJ‚d}|jD]}||j7}qg|_g|_g|_|jD]:}|j |j|¡|j |j¡|j t  |j j ¡¡qDdS)Nr) r+r Ú train_samplesÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsr'Úidr r r r )rÚactive_train_samplesr1rrrr%@s   zPFedPT.receive_modelscCsntj d|jd¡}tj |¡s(t |¡t|jƒD]6\}}tj ||jdt |ƒd¡}t   |j |¡q2dS)NÚmodelsr1Ú_serverz.pt) ÚosÚpathÚjoinÚdatasetÚexistsÚmakedirsÚ enumerateÚclientsÚ algorithmÚstrÚtorchÚsaver )rÚ model_pathÚc_idxÚcZmodel_path_saverrrr.Ns    zPFedPT.save_client_model)Ú__name__Ú __module__Ú __qualname__rr$r%r.Ú __classcell__rrrrr s &r) Zsystem.flcore.clients.clientptrÚ system.flcore.servers.serverbaserÚ threadingrrr rDr:rrrrrÚ<module>s   
2,685
Python
.py
27
98.185185
326
0.478751
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,812
servermoon.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/servermoon.cpython-37.pyc
B ¿:cc{ã@sLddlmZddlmZddlmZddlmZddlZGdd„deƒZ dS)é)Ú clientMOON)ÚServer)Úread_client_data)ÚThreadNcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚMOONcsLtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒg|_dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.) ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clientsÚBudget)ÚselfÚargsÚtimes)Ú __class__©úG/root/autodl-tmp/PFL-Non-IID-master/system/flcore/servers/servermoon.pyr s  z MOON.__init__cCs\g}d|_d}xŞ|jsìt ¡}| ¡|_| ¡||jdkr^td|›d�ƒtdƒ| ¡x|jD] }| ¡qfW||jdkr˜tdƒ|j|d�|  ¡|  ¡|j   t ¡|¡td|j d ƒ|j |jg|jd �|_|d 7}qWtd ƒtt|jƒƒtd ƒtt|ƒƒtdƒtt|j d d…ƒt|j d d…ƒƒ| ¡| ¡dS)NFrz -------------Round number: z -------------z Evaluate global modelz Evaluate local model)Úaccz2--------------------------------------------------éÿÿÿÿ)Úacc_lssÚtop_cntéz Best global accuracy.z Best local accuracy.z Averaged time per iteration.)ÚdoneÚtimeÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersrÚappendÚ check_doneÚ rs_test_accrÚmaxÚsumÚlenÚ save_resultsÚsave_global_model)rÚ local_accÚiÚs_tÚclientrrrr!s<      (z MOON.train)Ú__name__Ú __module__Ú __qualname__rr!Ú __classcell__rr)rrrs r) Zflcore.clients.clientmoonrÚflcore.servers.serverbaserÚutils.data_utilsrÚ threadingrrrrrrrÚ<module>s    
1,946
Python
.py
19
101.157895
370
0.475622
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,813
serverapfl.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverapfl.cpython-37.pyc
B ¸:cc®ã@s8ddlmZddlmZddlmZGdd„deƒZdS)é)Ú clientAPFL)ÚServer)ÚThreadcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚAPFLcsFtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes)Ú __class__©úG/root/autodl-tmp/PFL-Non-IID-master/system/flcore/servers/serverapfl.pyrs  z APFL.__init__cCsªx~t|jdƒD]l}| ¡|_| ¡||jdkrTtd|›d�ƒtdƒ| ¡x|jD] }| ¡q\W|  ¡|  ¡qWtdƒtt |j ƒƒ|  ¡| ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz Best global accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)r ÚiÚclientrrrrs    z APFL.train)Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__rr)rrrs rN)Zflcore.clients.clientapflrÚflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s   
1,442
Python
.py
14
101.714286
227
0.492652
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,814
serverbabu.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverbabu.cpython-37.pyc
B ¸:cc•ã@s8ddlmZddlmZddlmZGdd„deƒZdS)é)Ú clientBABU)ÚServer)ÚThreadcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)ÚFedBABUcsFtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes)Ú __class__©úG/root/autodl-tmp/PFL-Non-IID-master/system/flcore/servers/serverbabu.pyrs  zFedBABU.__init__cCsÒx~t|jdƒD]l}| ¡|_| ¡||jdkrTtd|›d�ƒtdƒ| ¡x|jD] }| ¡q\W|  ¡|  ¡qWtdƒtt |j ƒƒx|j D] }| ¡q�Wtdƒ| ¡| ¡| ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz Best global accuracy.z4 -------------Evaluate fine-tuned model-------------)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚclientsZ fine_tuneÚ save_resultsÚsave_global_model)r ÚiÚclientrrrrs&      z FedBABU.traincCs˜t|jƒdkst‚g|_d}g|_g|_xD|jD]:}|j |j¡||j7}|j |j¡|j |j j ¡q0Wx$t |jƒD]\}}|||j|<qzWdS)Nr) ÚlenrÚAssertionErrorÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsÚappendÚ train_samplesÚidÚmodelÚbaseÚ enumerate)r Ú tot_samplesr$r#Úwrrrr7s  zFedBABU.receive_models)Ú__name__Ú __module__Ú __qualname__rrrÚ __classcell__rr)rrrs #rN)Zflcore.clients.clientbaburÚflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s   
2,012
Python
.py
16
124.5
264
0.48022
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,815
serverdyn.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverdyn.cpython-39.pyc
a »¢bcã@sPddlZddlZddlmZddlmZddlmZddlZGdd„deƒZ dS)éN)Ú clientDyn)ÚServer)ÚThreadcs<eZdZ‡fdd„Zdd„Zdd„Zdd„Zd d „Z‡ZS) ÚFedDyncs€tƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒg|_|j |_ t   |j ¡|_ |j  ¡D]}t |j¡|_qhdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clientsÚBudgetÚalphaÚcopyÚdeepcopyÚmodelÚ server_stateÚ parametersÚtorchÚ zeros_likeÚdata)ÚselfÚargsÚtimesÚparam©Ú __class__©úr/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/servers/serverdyn.pyr s zFedDyn.__init__cCshg}d|_d}t|jdƒD]Ü}t ¡}| ¡|_| ¡||jdkrhtd|›d�ƒtdƒ|  ¡|jD] }|  ¡qn||jdkržtdƒ|j |d�|  ¡|  ¡|  ¡|j t ¡|¡td |jd ƒ|j|jg|jd �|_|d7}qtd ƒtt|jƒƒtd ƒtt|ƒƒtdƒtt|jdd…ƒt|jdd…ƒƒ| ¡| ¡dS)NFréz -------------Round number: z -------------z Evaluate global modelz Evaluate local model)Úaccz2--------------------------------------------------éÿÿÿÿ)Úacc_lssÚtop_cntz Best global accuracy.z Best local accuracy.z Averaged time per iteration.)ÚdoneÚrangeÚ global_roundsÚtimeÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚupdate_server_stateÚaggregate_parametersr ÚappendÚ check_doneÚ rs_test_accr#ÚmaxÚsumÚlenÚ save_resultsÚsave_global_model)rZ local_accÚiÚs_tÚclientrrrr-s>      (z FedDyn.traincCs<t|j ¡| ¡ƒD]"\}}|j|j ¡|j7_qdS)N)ÚzipÚ global_modelrrÚcloneÚ join_clients)rÚ client_modelÚ server_paramÚ client_paramrrrÚadd_parametersOszFedDyn.add_parameterscCs”t|jƒdksJ‚t |jd¡|_|j ¡D]}t |j¡|_q.|jD]}|  |¡qHt |j ¡|j  ¡ƒD] \}}|jd|j |8_qndS)Nrr) r6Úuploaded_modelsrrr=rrrrrCr<rr)rrr@rAÚ state_paramrrrr0Ss  zFedDyn.aggregate_parameterscCs¾t|jƒdksJ‚t |jd¡}| ¡D]}t |j¡|_q*|jD]B}t|j  ¡| ¡| ¡ƒD]"\}}}|j|||j 7_qbqDt|j  ¡| ¡ƒD]\}}|j|j |8_qœdS)Nr) r6rDrrrrrrr<r=r rr)rZ model_deltarr@rArBZ delta_paramrErrrr/`s  $zFedDyn.update_server_state) Ú__name__Ú __module__Ú __qualname__rr-rCr0r/Ú __classcell__rrrrr s  1 r) rrZsystem.flcore.clients.clientdynrÚ system.flcore.servers.serverbaserÚ threadingrr'rrrrrÚ<module>s    
3,312
Python
.py
30
109.166667
409
0.439842
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,816
servermoonpt.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/servermoonpt.cpython-38.pyc
U şcÿã@stddlmZddlmZddlmZddlmZddlZddl Z ddl Z ddl Z ddl Z ddl ZGdd„deƒZdS)é)Ú clientMOONPT)ÚServer)Úread_client_data)ÚThreadNcsNeZdZ‡fdd„Zdd„Zdd„Zdd„Zd d „Zdd d „Zdd„Z ‡Z S)ÚMOONPTcsltƒ ||¡||_| ¡| |t¡g|_g|_td|j ›d|j ›�ƒtdƒt   |j ¡|_g|_dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__ÚargsÚset_slow_clientsÚ set_clientsrÚclients_divergeÚdiff_proÚprintÚ join_ratioÚ num_clientsÚcopyÚdeepcopyÚmodelÚ global_modelÚBudget)Úselfr Útimes©Ú __class__©õdD:\京东\promot\第二次投稿\å®�验\æœ�务器\native - pro\system\flcore\servers\servermoonpt.pyr s zMOONPT.__init__c Csg}d|_d}t|jdƒD�]ˆ}t ¡}| ¡|_| ¡||jdkrjtd|›d�ƒtdƒ|  ¡d}|jD]}|  ¡}||  ¡}qttd  |¡ƒ|j  |¡d}t|jdjj ¡|jdjj ¡ƒD]:\}} || } t | dk| t | ¡| ¡} |t | ¡}qÒtd  |  ¡¡ƒ|j |  ¡¡||jdk�rTtd ƒ|j |d �| ¡| ¡|j t ¡|¡td |jd ƒ|j|jg|jd �|_|d7}qtdƒtt|jƒƒtdƒtt|ƒƒtdƒtt|jdd…ƒt |jdd…ƒƒ| !¡| "¡| #¡dS)NFréz -------------Round number: z -------------z Evaluate global modelz"Averaged prompr difference: {:.4f}z"0 and 1 clients difference: {:.4f}z Evaluate local model)Úaccz2--------------------------------------------------éÿÿÿÿ)Úacc_lssÚtop_cntz Best global accuracy.z Best local accuracy.z Averaged time per iteration.)$ÚdoneÚrangeÚ global_roundsÚtimeÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gaprÚevaluateÚtrainÚitemÚformatr ÚappendÚzipÚclientsrÚ generatorÚ parametersÚtorchÚwhereÚ zeros_likeÚsumr Úreceive_modelsÚaggregate_parametersrÚ check_doneÚ rs_test_accr ÚmaxÚlenÚ save_resultsÚsave_global_modelÚsave_client_model) rÚ local_accÚiÚs_tÚ temp_diff_proÚclientÚtemp_diff_pro_clientÚdiverge_clentsÚ new_paramÚ old_paramr rrrr*sX   ÿ    (z MOONPT.traincCs‚t|jƒdkst‚d}|jD]}||j7}qg|_g|_g|_|jD]8}|j |j|¡|j |j¡|j t   |j ¡¡qDdS)Nr) r;r&ÚAssertionErrorÚ train_samplesÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsr-Úidrrr)rÚactive_train_samplesrCrrrr6Ys   zMOONPT.receive_modelscCstj d|jd|jjd|jjd|jjd|jjd|jj d|jj ¡}tj  |¡sjt  |¡t |jƒD]†\}}tj ||jdt|ƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒd¡}t |j|¡qtdS)NÚmodelsrCÚ*Ú_clientÚ_z.pt)ÚosÚpathÚjoinÚdatasetr Úarv1Úarv2Úarv3Úarv4Úarv5Úarv6ÚexistsÚmakedirsÚ enumerater/Ú algorithmÚstrÚ num_promptrrÚ plocal_stepsr#r2Úsaver)rÚ model_pathÚc_idxÚcÚmodel_path_saverrrr>hs<T  ÿÿ ÿÿÿÿş şşÿşızMOONPT.save_client_modelc Cs€|jd|j}d|jjd|jjd|jjd|jjd|jjd|jjd}t j   |¡srt   |¡t |jƒ�r||d|jdt|jƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒ}|d |¡}td|ƒt |d¡�f}|jd|jd �|jd |jd �|jd |jd �|jd |jd �|jd |jd �|jd|j d �W5QRXdS)NrRz ../results/rPú/z{}.h5z File path: Úwr9)ÚdataÚrs_test_acc_stdÚ rs_test_aucÚ rs_train_lossr r )!rVr`r rWrXrYrZr[r\rSrTr]r^r;r9Úgoalrarrbrrrcr#r,rÚh5pyÚFileÚcreate_datasetrlrmrnr r )rÚalgoÚ result_pathÚ file_pathÚhfrrrr<ts>L   0ÿÿ ÿÿÿÿş ş zMOONPT.save_resultsNc Cs|| ¡}| ¡}t|dƒdt|dƒ}t|dƒdt|dƒ}t|dƒdt|dƒ}t|dƒdt|dƒ}dd„t|d|dƒDƒ} dd„t|d|dƒDƒ} |dkrÎ|j |¡n | |¡|j |¡|j t  | ¡¡|dk�r|j  |¡n | |¡t d   |¡ƒt d   |¡ƒt d   |¡ƒt d   |¡ƒt d   t  | ¡¡ƒt d  t  | ¡¡ƒdS)Néçğ?réécSsg|]\}}||‘qSrr©Ú.0ÚaÚnrrrÚ <listcomp>’sz#MOONPT.evaluate.<locals>.<listcomp>cSsg|]\}}||‘qSrrr{rrrr“szAveraged Train Loss: {:.4f}zAveraged Test Accurancy: {:.4f}z$Averaged Test oral Accurancy: {:.4f}zAveraged Test AUC: {:.4f}zStd Test Accurancy: {:.4f}zStd Test AUC: {:.4f}) Ú test_metricsÚ train_metricsr5r.r9r-rmrlÚnpÚstdrnrr,) rrÚlossÚstatsÚ stats_trainÚtest_accÚ test_acc2Útest_aucÚ train_lossÚaccsÚaucsrrrr)‰s,    zMOONPT.evaluatec Cs~g}g}g}g}|jD]H}| ¡\}}}} | |d¡| |d¡| | |¡| |¡qdd„|jDƒ} | ||||fS)NrxcSsg|] }|j‘qSr)rM)r|rgrrrrµsz'MOONPT.test_metrics.<locals>.<listcomp>)r/r€r-) rÚ num_samplesÚ tot_correctÚ tot_correct2Útot_aucrgÚctÚct2ÚnsÚaucÚidsrrrr€¨s  zMOONPT.test_metrics)NN) Ú__name__Ú __module__Ú __qualname__rr*r6r>r<r)r€Ú __classcell__rrrrr s =  r)Zflcore.clients.clientmoonptrÚflcore.servers.serverbaserÚutils.data_utilsrÚ threadingrr$rprrSr2Únumpyr‚rrrrrÚ<module>s    
6,327
Python
.py
62
100.822581
494
0.423715
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,817
serverper.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverper.cpython-39.pyc
a f¾`cîã@s8ddlmZddlmZddlmZGdd„deƒZdS)é)Ú clientPer)ÚServer)ÚThreadcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)ÚFedPercsFtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes©Ú __class__©úr/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/servers/serverper.pyrs  zFedPer.__init__cCs¢t|jdƒD]h}| ¡|_| ¡||jdkrRtd|›d�ƒtdƒ| ¡|jD] }| ¡qX|  ¡|  ¡qtdƒtt |j ƒƒ|  ¡| ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz Best global accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)r ÚiÚclientrrrrs    z FedPer.traincCs�t|jƒdksJ‚g|_d}g|_g|_|jD]:}|j |j¡||j7}|j |j¡|j |jj ¡q.t |jƒD]\}}|||j|<qtdS)Nr) ÚlenrÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsÚappendÚ train_samplesÚidÚmodelÚbaseÚ enumerate)r Ú tot_samplesr$r#Úwrrrr2s  zFedPer.receive_models)Ú__name__Ú __module__Ú __qualname__rrrÚ __classcell__rrrrrs rN)Zflcore.clients.clientperrÚflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s   
1,913
Python
.py
18
105.055556
327
0.484177
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,818
serverapfl.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverapfl.cpython-38.pyc
U ”jfc®ã@s8ddlmZddlmZddlmZGdd„deƒZdS)é)Ú clientAPFL)ÚServer)ÚThreadcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚAPFLcsFtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes©Ú __class__©õLD:\京东\promot\cifar\cifar\Cifar10_iid\system\flcore\servers\serverapfl.pyrs  z APFL.__init__cCs¢t|jdƒD]h}| ¡|_| ¡||jdkrRtd|›d�ƒtdƒ| ¡|jD] }| ¡qX|  ¡|  ¡qtdƒtt |j ƒƒ|  ¡| ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz Best global accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)r ÚiÚclientrrrrs    z APFL.train)Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__rrrrrs rN)Zflcore.clients.clientapflrÚflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s   
1,456
Python
.py
17
84.411765
225
0.488889
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,819
serveravg.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serveravg.cpython-38.pyc
U [Ğıc·ã@sHddlZddlZddlmZddlmZddlmZGdd„deƒZdS)éN)Ú clientAVG)ÚServer)ÚThreadcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚFedAvgcsLtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒg|_dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.) ÚsuperÚ__init__Zset_slow_clientsZ set_clientsrÚprintÚ join_ratioÚ num_clientsÚBudget)ÚselfÚargsÚtimes©Ú __class__©õWD:\京东\promot\第二次投稿\å®�验\native - pro\system\flcore\servers\serveravg.pyr s  zFedAvg.__init__cCs<g}t|jdƒD]º}t ¡}| ¡|_| ¡||jdkr^td|›d�ƒtdƒ| ¡|jD] }|  ¡qd||jdkr”tdƒ|j|d�|  ¡|  ¡|j   t ¡|¡tdd d|j d ƒqtd ƒtt|jƒƒtd ƒtt|ƒƒtd ƒtt|j dd…ƒt|j dd…ƒƒ| ¡| ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz Evaluate local model)Úaccz-------------------------z time costéÿÿÿÿz Best global accuracy.z Best local accuracy.z Average time cost per round.)ÚrangeÚ global_roundsÚtimeZselect_clientsZselected_clientsZ send_modelsZeval_gaprZevaluateÚtrainZreceive_modelsZaggregate_parametersr ÚappendÚmaxZ rs_test_accÚsumÚlenZ save_resultsZsave_global_model)r Z local_accÚiZs_tÚclientrrrrs4     (z FedAvg.train)Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__rrrrrs r) rÚtorchZflcore.clients.clientavgrZflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s    
1,867
Python
.py
17
108.529412
383
0.47866
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,820
serverditto.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverditto.cpython-37.pyc
B ¾:ccüã@sHddlZddlmZddlmZddlmZddlZGdd„deƒZdS)éN)Ú clientDitto)ÚServer)ÚThreadcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚDittocsLtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒg|_dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.) ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clientsÚBudget)ÚselfÚargsÚtimes)Ú __class__©úH/root/autodl-tmp/PFL-Non-IID-master/system/flcore/servers/serverditto.pyr s  zDitto.__init__cCsx¶t|jdƒD]¤}t ¡}| ¡|_| ¡||jdkr\td|›d�ƒtdƒ| ¡x|jD]}|  ¡|  ¡qdW|  ¡|  ¡|j  t ¡|¡tddd|j dƒqWtd ƒtt|jƒƒtd ƒtt|j dd…ƒt|j dd…ƒƒ| ¡| ¡dS) Nérz -------------Round number: z -------------z Evaluate global modelz-------------------------z time costéÿÿÿÿz Best global accuracy.z Average time cost per round.)ÚrangeÚ global_roundsÚtimeÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateZptrainÚtrainÚreceive_modelsÚaggregate_parametersr ÚappendÚmaxÚ rs_test_accÚsumÚlenÚ save_resultsÚsave_global_model)rÚiÚs_tÚclientrrrrs*   (z Ditto.train)Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__rr)rrrs r) ÚcopyZflcore.clients.clientdittorÚflcore.servers.serverbaserÚ threadingrrrrrrrÚ<module>s    
1,727
Python
.py
14
122
331
0.482497
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,821
serverpFedMe.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverpFedMe.cpython-37.pyc
B ¸:ccEã@sPddlZddlZddlZddlmZddlmZddlmZGdd„deƒZ dS)éN)Ú clientpFedMe)ÚServer)ÚThreadcsLeZdZ‡fdd„Zdd„Zdd„Zdd„Zd d „Zd d „Zd d„Z ‡Z S)ÚpFedMecs`tƒ ||¡| ¡| |t¡|j|_g|_g|_g|_t d|j ›d|j ›�ƒt dƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.) ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚbetaÚrs_train_acc_perÚrs_train_loss_perÚrs_test_acc_perÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes)Ú __class__©úI/root/autodl-tmp/PFL-Non-IID-master/system/flcore/servers/serverpFedMe.pyr s zpFedMe.__init__cCsÈxœt|jdƒD]Š}| ¡|_| ¡x|jD] }| ¡q.W||jdkrltd|›d�ƒtdƒ| ¡t   t |j   ¡ƒ¡|_| ¡| ¡| ¡qWtdƒtt|jƒƒ| ¡| ¡dS)Nérz -------------Round number: z -------------z Evaluate personalized modelz Best personalized results.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚtrainÚeval_gaprÚevaluate_personalized_modelÚcopyÚdeepcopyÚlistÚ global_modelÚ parametersÚprevious_global_modelÚreceive_modelsÚaggregate_parametersÚbeta_aggregate_parametersÚmaxr Ú save_resultsÚsave_global_model)rÚiÚclientrrrrs"    z pFedMe.traincCsBx<t|j|j ¡ƒD]&\}}d|j|j|j|j|_qWdS)Nr)Úzipr%r#r$r Údata)rZ pre_paramÚparamrrrr(Dsz pFedMe.beta_aggregate_parameterscCsVg}g}x2|jD](}| ¡\}}| |d¡| |¡qWdd„|jDƒ}|||fS)Ngğ?cSsg|] }|j‘qSr)Úid)Ú.0Úcrrrú <listcomp>Psz4pFedMe.test_metrics_personalized.<locals>.<listcomp>)ÚclientsÚtest_metrics_personalizedÚappend)rÚ num_samplesÚ tot_correctr3ÚctÚnsÚidsrrrr6Is  z pFedMe.test_metrics_personalizedc Cslg}g}g}xB|jD]8}| ¡\}}}| |d¡| |¡| |d¡qWdd„|jDƒ}||||fS)Ngğ?cSsg|] }|j‘qSr)r1)r2r3rrrr4^sz5pFedMe.train_metrics_personalized.<locals>.<listcomp>)r5Útrain_metrics_personalizedr7) rr8r9Úlossesr3r:Úclr;r<rrrr=Ts  z!pFedMe.train_metrics_personalizedcCsB| ¡}t|dƒdt|dƒ}|j |¡td |¡ƒdS)Négğ?rz+Average Personalized Test Accurancy: {:.4f})r6Úsumr r7rÚformat)rÚstatsÚtest_accrrrrbs z"pFedMe.evaluate_personalized_modelc Cs¦|jd|j}d}tj |¡s*t |¡t|jƒr¢|d|jdt |j ƒ}t   |d  |¡d¡�6}|jd|jd�|jd|jd�|jd|jd�WdQRXdS) NÚ_z ../results/z{}.h5ÚwÚ rs_test_acc)r/Z rs_train_accÚ rs_train_loss)ÚdatasetÚ algorithmÚosÚpathÚexistsÚmakedirsÚlenr ÚgoalÚstrrÚh5pyÚFilerBÚcreate_datasetr r )rÚalgoÚ result_pathZalgo2Úhfrrrr*qs  zpFedMe.save_results) Ú__name__Ú __module__Ú __qualname__rrr(r6r=rr*Ú __classcell__rr)rrr s + r) rKr rRZflcore.clients.clientpFedMerZflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s    
3,763
Python
.py
23
162.26087
430
0.466167
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,822
serveravg.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serveravg.cpython-39.pyc
a Ú'bcçã@sHddlZddlZddlmZddlmZddlmZGdd„deƒZdS)éN)Ú clientAVG)ÚServer)ÚThreadcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚFedAvgcsLtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒg|_dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.) ÚsuperÚ__init__Zset_slow_clientsZ set_clientsrÚprintÚ join_ratioÚ num_clientsÚBudget)ÚselfÚargsÚtimes©Ú __class__©úr/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/servers/serveravg.pyr s  zFedAvg.__init__cCst|jdƒD]˜}t ¡}| ¡|_| ¡||jdkrZtd|›d�ƒtdƒ| ¡|jD] }|  ¡q`|  ¡|  ¡|j   t ¡|¡tddd|j dƒqtd ƒtt|jƒƒtd ƒtt|j dd…ƒt|j dd…ƒƒ| ¡| ¡dS) Nérz -------------Round number: z -------------z Evaluate global modelz-------------------------z time costéÿÿÿÿz Best global accuracy.z Average time cost per round.)ÚrangeÚ global_roundsÚtimeZselect_clientsZselected_clientsZ send_modelsÚeval_gaprZevaluateÚtrainZreceive_modelsZaggregate_parametersr ÚappendÚmaxZ rs_test_accÚsumÚlenZ save_resultsZsave_global_model)r ÚiZs_tÚclientrrrrs(   (z FedAvg.train)Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__rrrrrs r) rÚtorchZsystem.flcore.clients.clientavgrZ system.flcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s    
1,771
Python
.py
15
116.733333
369
0.491747
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,823
serverphp.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverphp.cpython-38.pyc
U •ic‚ã@sHddlmZddlmZddlmZddlZddlZGdd„deƒZdS)é)Ú clientPHP)ÚServer)ÚThreadNcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)ÚFedPHPcsLtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒg|_dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.) ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clientsÚBudget)ÚselfÚargsÚtimes©Ú __class__©õDD:\京东\promot\cifar\cifar\tiny\system\flcore\servers\serverphp.pyr s  zFedPHP.__init__cCs¤t|jdƒD]j}| ¡|_| |¡||jdkrTtd|›d�ƒtdƒ| ¡|jD] }| ¡qZ|  ¡|  ¡qtdƒtt |j ƒƒ|  ¡| ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz Best global accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)rÚiÚclientrrrrs     z FedPHP.traincCs0t|jƒdkst‚|jD]}| |j|¡qdS)Nr)ÚlenÚclientsÚAssertionErrorÚset_parametersÚ global_model)rÚRr%rrrr5s zFedPHP.send_models)Ú__name__Ú __module__Ú __qualname__rrrÚ __classcell__rrrrrs r) Zflcore.clients.clientphprÚflcore.servers.serverbaserÚ threadingrÚtimeÚcopyrrrrrÚ<module>s   
1,735
Python
.py
17
100.823529
350
0.482257
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,824
serverbn.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverbn.cpython-37.pyc
B ¿:ccãã@sLddlmZddlmZddlmZddlmZddlZGdd„deƒZ dS)é)ÚclientBN)ÚServer)Úread_client_data)ÚThreadNcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚFedBNcsFtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes)Ú __class__©úE/root/autodl-tmp/PFL-Non-IID-master/system/flcore/servers/serverbn.pyr s  zFedBN.__init__cCsªx~t|jdƒD]l}| ¡|_| ¡||jdkrTtd|›d�ƒtdƒ| ¡x|jD] }| ¡q\W|  ¡|  ¡qWtdƒtt |j ƒƒ|  ¡| ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz Best global accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)rÚiÚclientrrrrs    z FedBN.train)Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__rr)rrrs r) Zflcore.clients.clientbnrÚflcore.servers.serverbaserÚutils.data_utilsrÚ threadingrÚtimerrrrrÚ<module>s    
1,512
Python
.py
13
115
346
0.498
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,825
serverrod.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverrod.cpython-37.pyc
B ¸:ccçã@sLddlmZddlmZddlmZddlmZddlZGdd„deƒZ dS)é)Ú clientROD)ÚServer)Úread_client_data)ÚThreadNcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚFedRODcsFtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes)Ú __class__©úF/root/autodl-tmp/PFL-Non-IID-master/system/flcore/servers/serverrod.pyr s  zFedROD.__init__cCsªx~t|jdƒD]l}| ¡|_| ¡||jdkrTtd|›d�ƒtdƒ| ¡x|jD] }| ¡q\W|  ¡|  ¡qWtdƒtt |j ƒƒ|  ¡| ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz Best global accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)rÚiÚclientrrrrs    z FedROD.train)Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__rr)rrrs r) Zflcore.clients.clientrodrÚflcore.servers.serverbaserÚutils.data_utilsrÚ threadingrÚtimerrrrrÚ<module>s    
1,518
Python
.py
13
115.461538
348
0.5
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,826
serveramp.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serveramp.cpython-37.pyc
B ·:ccÍ ã@sdddlZddlZddlZddlZddlZddlmZmZddl m Z ddl m Z Gdd„de ƒZ dS)éN)Ú clientAMPÚweight_flatten)ÚServer)ÚThreadcs4eZdZ‡fdd„Zdd„Zdd„Zdd„Z‡ZS) ÚFedAMPcsVtƒ ||¡| ¡| |t¡|j|_|j|_td|j›d|j ›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.) ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚalphaKÚsigmaÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes)Ú __class__©úF/root/autodl-tmp/PFL-Non-IID-master/system/flcore/servers/serveramp.pyr s zFedAMP.__init__cCs¢xvt|jdƒD]d}| ¡|_| ¡||jdkrTtd|›d�ƒtdƒ| ¡x|jD] }| ¡q\W|  ¡qWtdƒtt |j ƒƒ|  ¡|  ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz Best global accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)rÚiÚclientrrrrs    z FedAMP.trainc Cs¤t|jƒdkst‚t|jƒdk�r �xz|jD�]n}t |j¡}x| ¡D]}|j  ¡qHWt   |j ¡}xpt |jƒD]b\}}|j|j|krÌt|jƒ}t|ƒ}|| d¡} t  | | ¡} |j| | ¡||<qrd||<qrWdt  |¡} xNt |jƒD]@\}}x6t| ¡| ¡ƒD] \}} |j||| 7_�qWqòWt ¡} |j�r`t dt tj ¡¡¡| || ¡|j dd7<|j ddt ¡| 7<q,WdS)Nréÿÿÿÿrgš™™™™™¹?Ú num_roundsÚ total_costé)!ÚlenrÚAssertionErrorÚuploaded_modelsÚcopyÚdeepcopyÚ global_modelÚ parametersÚdataÚzero_ÚtorchÚzerosÚ join_clientsÚ enumerateÚidÚ uploaded_idsrÚmodelÚviewÚdotr ÚeÚsumÚzipÚtimeÚ send_slowÚsleepÚnpÚabsÚrandomÚrandÚset_parametersÚsend_time_cost) rÚcÚmuÚparamÚcoefÚjÚmwZ weights_iZ weights_jÚsubZ coef_selfZparam_jÚ start_timerrrr6s2       zFedAMP.send_modelscCst | |j¡|jS)N)ÚmathÚexpr )rÚxrrrr<ZszFedAMP.e)Ú__name__Ú __module__Ú __qualname__rrrr<Ú __classcell__rr)rrr s $r)r3r-r?ÚnumpyrBrPZflcore.clients.clientamprrÚflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s  
2,678
Python
.py
24
110.291667
333
0.469303
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,827
serverlocal.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverlocal.cpython-37.pyc
B ¿:cc…ã@s8ddlmZddlmZddlmZGdd„deƒZdS)é)Ú clientAVG)ÚServer)ÚThreadcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚLocalcsFtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes)Ú __class__©úH/root/autodl-tmp/PFL-Non-IID-master/system/flcore/servers/serverlocal.pyrs  zLocal.__init__cCsœxpt|jdƒD]^}| ¡|_||jdkrLtd|›d�ƒtdƒ| ¡| ¡|_x|jD] }| ¡q^WqWtdƒtt|j ƒƒ|  ¡|  ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz Best global accuracy.) ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚeval_gapr ÚevaluateÚtrainÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)r ÚiÚclientrrrrs   z Local.train)Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__rr)rrrs rN)Zflcore.clients.clientavgrÚflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s   
1,375
Python
.py
13
104.461538
306
0.48496
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,828
serverperavg.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverperavg.cpython-37.pyc
B ¿:cc‚ã@sHddlZddlZddlmZddlmZddlmZGdd„deƒZdS)éN)Ú clientPerAvg)ÚServer)ÚThreadcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)ÚPerAvgcsFtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes)Ú __class__©úI/root/autodl-tmp/PFL-Non-IID-master/system/flcore/servers/serverperavg.pyr s  zPerAvg.__init__cCs²x†t|jdƒD]t}| ¡|_| ¡||jdkrTtd|›d�ƒtdƒ| ¡x|jD]}| ¡| ¡q\W|  ¡|  ¡qWtdƒtt |j ƒƒ|  ¡| ¡dS)Nérz -------------Round number: z -------------z+ Evaluate global model with one step updatez Best global accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr Úevaluate_one_stepÚtrainÚreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)r ÚiÚclientrrrrs     z PerAvg.traincCsšg}x(|jD]}| t |j¡¡| ¡q W| ¡}x(t|jƒD]\}}| |||j¡qBWt |dƒdt |dƒ}|j  |¡t d  |¡ƒdS)Négğ?rzAverage Test Accurancy: {:.4f}) ÚclientsÚappendÚcopyÚdeepcopyÚmodelZtrain_one_stepÚ test_metricsÚ enumerateÚ clone_modelÚsumrr Úformat)r Z models_tempÚcÚstatsr"Útest_accrrrr4s   zPerAvg.evaluate_one_step)Ú__name__Ú __module__Ú __qualname__rrrÚ __classcell__rr)rrrs !r) r'ÚtorchZflcore.clients.clientperavgrÚflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s    
2,014
Python
.py
16
124.5
335
0.486243
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,829
servermoon.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/servermoon.cpython-38.pyc
U [Ðýc’ã@sLddlmZddlmZddlmZddlmZddlZGdd„deƒZ dS)é)Ú clientMOON)ÚServer)Úread_client_data)ÚThreadNcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚMOONcsLtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒg|_dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.) ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clientsÚBudget)ÚselfÚargsÚtimes©Ú __class__©õXD:\京东\promot\第二次投稿\实验\native - pro\system\flcore\servers\servermoon.pyr s  z MOON.__init__cCsdg}g}d|_d}t|jdƒD]Ô}t ¡}| ¡|_| ¡||jdkrltd|›d�ƒtdƒ|  ¡|jD] }|  ¡qr||jdkr¢tdƒ|j |d�|  ¡|  ¡|j  t ¡|¡td |j d ƒ|j|jg|jd �|_|d7}q td ƒtt|jƒƒtd ƒtt|ƒƒtdƒtt|j dd…ƒt|j dd…ƒƒ| ¡| ¡dS)NFréz -------------Round number: z -------------z Evaluate global modelz Evaluate local model)Úaccz2--------------------------------------------------éÿÿÿÿ)Úacc_lssÚtop_cntz Best global accuracy.z Best local accuracy.z Averaged time per iteration.)ÚdoneÚrangeÚ global_roundsÚtimeÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersrÚappendÚ check_doneÚ rs_test_accrÚmaxÚsumÚlenÚ save_resultsÚsave_global_model)rÚ local_accÚiÚs_tÚclientrrrr$s>      (z MOON.train)Ú__name__Ú __module__Ú __qualname__rr$Ú __classcell__rrrrrs r) Zflcore.clients.clientmoonrÚflcore.servers.serverbaserÚutils.data_utilsrÚ threadingrrrrrrrÚ<module>s    
2,012
Python
.py
22
90.227273
352
0.473631
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,830
serverbase.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverbase.cpython-38.pyc
U ¨ÿcÍ)ã@sXddlZddlZddlZddlZddlZddlZddlZddlm Z Gdd„de ƒZ dS)éN)Úread_client_datac@s°eZdZdd„Zdd„Zdd„Zdd„Zd d „Zd d „Zd d„Z dd„Z dd„Z dd„Z dd„Z dd„Zdd„Zdd„Zdd„Zdd „Zd!d"„Zd*d$d%„Zd&d'„Zd+d(d)„Zd#S),ÚServercCs|j|_|j|_|j|_|j|_|j|_|j|_t |j ¡|_ |j |_ |j |_ t |j |j ƒ|_|j|_|j|_|j|_|j|_|j|_|j|_||_|j|_d|_g|_g|_g|_g|_g|_g|_g|_g|_g|_ g|_!g|_"||_#|j$|_$|j%|_%|j&|_&|j'|_'dS)Néd)(ÚdeviceÚdatasetÚ global_roundsÚ local_stepsÚ batch_sizeÚlocal_learning_rateÚ learning_rateÚcopyÚdeepcopyÚmodelÚ global_modelÚ num_clientsÚ join_ratioÚintÚ join_clientsÚ algorithmÚ time_selectÚgoalÚtime_thretholdÚsave_folder_nameÚ num_promptÚargsÚ plocal_stepsÚtop_cntÚclientsÚselected_clientsÚtrain_slow_clientsÚsend_slow_clientsÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsÚ rs_test_accÚrs_test_acc_stdÚ rs_test_aucÚ rs_train_lossÚtimesÚeval_gapÚclient_drop_rateÚtrain_slow_rateÚsend_slow_rate)Úselfrr(©r.õbD:\京东\promot\第二次投稿\å®�验\æœ�务器\native - pro\system\flcore\servers\serverbase.pyÚ__init__ sFzServer.__init__c Csrtt|jƒ|j|jƒD]V\}}}t|j||dd�}t|j||dd�}|||t|ƒt|ƒ||d�}|j  |¡qdS)NT)Úis_trainF)ÚidÚ train_samplesÚ test_samplesÚ train_slowÚ send_slow) ÚzipÚrangerrr rrÚlenrÚappend) r-rZ clientObjÚir5r6Ú train_dataÚ test_dataÚclientr.r.r/Ú set_clients8s ûzServer.set_clientscCsVdd„t|jƒDƒ}dd„t|jƒDƒ}tj |t||jƒ¡}|D] }d||<qD|S)NcSsg|]}d‘qS)Fr.©Ú.0r;r.r.r/Ú <listcomp>Isz.Server.select_slow_clients.<locals>.<listcomp>cSsg|]}|‘qSr.r.r@r.r.r/rBJsT)r8rÚnpÚrandomÚchoicer)r-Z slow_rateZ slow_clientsÚidxÚidx_r;r.r.r/Úselect_slow_clientsHs  zServer.select_slow_clientscCs | |j¡|_| |j¡|_dS©N)rHr+rr,r )r-r.r.r/Úset_slow_clientsQs ÿÿzServer.set_slow_clientscCsttjj|j|jdd�ƒ}|S)NF)Úreplace)ÚlistrCrDrErr)r-rr.r.r/Úselect_clientsWszServer.select_clientscCs.t|jƒdkst‚|jD]}| |j¡qdS©Nr)r9rÚAssertionErrorÚset_parametersr)r-r>r.r.r/Ú send_models\s zServer.send_modelscCs�t|jƒdkst‚g|_d}g|_g|_|jD]8}|j |j¡||j7}|j |j¡|j |j ¡q.t |jƒD]\}}|||j|<qrdSrN) r9rrOr!r"r#r:r3r2rÚ enumerate)r-Z tot_samplesr>r;Úwr.r.r/Úreceive_modelsds  zServer.receive_modelscCsft|jƒdkst‚t |jd¡|_|j ¡D]}|j ¡q.t |j |jƒD]\}}|  ||¡qLdSrN) r9r#rOr r rÚ parametersÚdataÚzero_r7r!Úadd_parameters)r-ÚparamrSÚ client_modelr.r.r/Úaggregate_parametersss  zServer.aggregate_parameterscCs:t|j ¡| ¡ƒD] \}}|j|j ¡|7_qdSrI)r7rrUrVÚclone)r-rSrZZ server_paramZ client_paramr.r.r/rX}szServer.add_parameterscCsØtj d|j|jjd|jjd|jjd|jjd|jj d|jj ¡}tj  |¡sht  |¡tj ||j ddt|jƒdt|jƒdt|jƒdt|jƒdt|jƒd¡}t |j|¡dS©NÚmodelsÚ*Ú_serverÚ_ú.pt)ÚosÚpathÚjoinrrÚarv1Úarv2Úarv3Úarv4Úarv5Úarv6ÚexistsÚmakedirsrÚstrrrrrrÚtorchÚsaver©r-Z model_pathr.r.r/Úsave_global_model�s R  ^zServer.save_global_modelcCsĞtj d|j|jjd|jjd|jjd|jjd|jj d|jj ¡}tj ||j ddt |j ƒdt |jƒdt |jƒdt |jƒdt |jƒd¡}tj |¡sÀt‚t |¡|_dSr])rcrdrerrrfrgrhrirjrkrrnrrrrrrlrOroÚloadrrqr.r.r/Ú load_modelˆsR^zServer.load_modelcCs¸tj d|j|jjd|jjd|jjd|jjd|jj d|jj ¡}tj ||j dt |j ƒdt |jƒdt |jƒdt |jƒdt |jƒd¡}tj |¡S)Nr^r_rarb)rcrdrerrrfrgrhrirjrkrrnrrrrrrlrqr.r.r/Ú model_exists�sRZzServer.model_existsc CsV|jd|j}d|jjd|jjd|jjd|jjd|jjd|jjd}t j   |¡srt   |¡t |jƒ�rR|d|jdt|jƒdt|jƒdt|jƒdt|jƒdt|jƒdt|jƒ}|d |¡}td|ƒt |d¡�F}|jd|jd �|jd |jd �|jd |jd �|jd |jd �W5QRXdS) Nraz ../results/r_ú/z{}.h5z File path: rSr$)rVr%r&r')rrrrfrgrhrirjrkrcrdrlrmr9r$rrnr(rrrrrÚformatÚprintÚh5pyZFileZcreate_datasetr%r&r')r-ÚalgoÚ result_pathÚ file_pathZhfr.r.r/Ú save_results“sL   b zServer.save_resultsc Cs„tj |j¡st |j¡t |tj |jd|dt|j ƒdt|j ƒdt|j ƒdt|j ƒdt|j ƒd¡¡dS©NZserver_rarb)rcrdrlrrmrorprernrrrrr)r-ÚitemÚ item_namer.r.r/Ú save_item¤s zServer.save_itemcCsdt tj |jd|dt|jƒdt|jƒdt|j ƒdt|j ƒdt|j ƒd¡¡Sr~) rorsrcrdrerrnrrrrr)r-r€r.r.r/Ú load_item©szServer.load_itemc Cshg}g}g}|jD]8}| ¡\}}}| |d¡| ||¡| |¡qdd„|jDƒ}||||fS)Nçğ?cSsg|] }|j‘qSr.©r2©rAÚcr.r.r/rB¹sz'Server.test_metrics.<locals>.<listcomp>)rÚ test_metricsr:) r-Ú num_samplesZ tot_correctZtot_aucr†ÚctÚnsÚaucÚidsr.r.r/r‡¬s  zServer.test_metricscCsRg}g}|jD](}| ¡\}}| |¡| |d¡qdd„|jDƒ}|||fS)NrƒcSsg|] }|j‘qSr.r„r…r.r.r/rBÅsz(Server.train_metrics.<locals>.<listcomp>)rÚ train_metricsr:)r-rˆÚlossesr†ÚclrŠrŒr.r.r/r�½s   zServer.train_metricsNc CsP| ¡}| ¡}t|dƒdt|dƒ}t|dƒdt|dƒ}t|dƒdt|dƒ}dd„t|d|dƒDƒ}dd„t|d|dƒDƒ} |dkr²|j |¡n | |¡|j |¡|j t  |¡¡|dkrğ|j  |¡n | |¡t d  |¡ƒt d   |¡ƒt d   |¡ƒt d   t  |¡¡ƒt d   t  | ¡¡ƒdS) NérƒéécSsg|]\}}||‘qSr.r.©rAÚaÚnr.r.r/rBÒsz#Server.evaluate.<locals>.<listcomp>cSsg|]\}}||‘qSr.r.r“r.r.r/rBÓszAveraged Train Loss: {:.4f}zAveraged Test Accurancy: {:.4f}zAveraged Test AUC: {:.4f}zStd Test Accurancy: {:.4f}zStd Test AUC: {:.4f}) r‡r�Úsumr7r$r:r&r%rCÚstdr'rxrw) r-ÚaccÚlossÚstatsZ stats_trainÚtest_accÚtest_aucÚ train_lossZaccsZaucsr.r.r/ÚevaluateÊs(   zServer.evaluatecCs.td |¡ƒtd |¡ƒtd |¡ƒdS)NzAverage Test Accurancy: {:.4f}zAverage Test AUC: {:.4f}zAverage Train Loss: {:.4f})rxrw)r-r›rœr�r.r.r/Úprint_çsz Server.print_cCsğ|D]æ}|dkrr|dkrrt|ƒt t |¡d¡jd|k}t|ƒdko^t || d…¡|k}|rj|rjqêdSq|dkr¬t|ƒt t |¡d¡jd|k}|r¤qêdSq|dkræt|ƒdkoÖt || d…¡|k}|rŞqêdSqt‚qdS)Nr‘rFT)r9roÚtopkÚtensorÚindicesrCr—ÚNotImplementedError)r-Zacc_lssrÚ div_valueZacc_lsZfind_topZfind_divr.r.r/Ú check_doneìs&$$$$zServer.check_done)NN)NN)Ú__name__Ú __module__Ú __qualname__r0r?rHrJrMrQrTr[rXrrrtrur}r�r‚r‡r�r�rŸr¥r.r.r.r/r s(+   r) rorcÚnumpyrCryr ÚtimerDÚutils.data_utilsrÚobjectrr.r.r.r/Ú<module>s 
9,576
Python
.py
50
190.36
711
0.388055
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,831
serverbase.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverbase.cpython-37.pyc
B vĞecû'ã@sXddlZddlZddlZddlZddlZddlZddlZddlm Z Gdd„de ƒZ dS)éN)Úread_client_datac@s°eZdZdd„Zdd„Zdd„Zdd„Zd d „Zd d „Zd d„Z dd„Z dd„Z dd„Z dd„Z dd„Zdd„Zdd„Zdd„Zdd „Zd!d"„Zd*d$d%„Zd&d'„Zd+d(d)„Zd#S),ÚServercCs |j|_|j|_|j|_|j|_|j|_|j|_t |j ¡|_ |j |_ |j |_ t |j |j ƒ|_|j|_|j|_|j|_|j|_|j|_|j|_|j|_d|_g|_g|_g|_g|_g|_g|_g|_g|_g|_g|_ g|_!||_"|j#|_#|j$|_$|j%|_%|j&|_&dS)Néd)'ÚdeviceÚdatasetÚ global_roundsÚ local_stepsÚ batch_sizeÚlocal_learning_rateÚ learning_rateÚcopyÚdeepcopyÚmodelÚ global_modelÚ num_clientsÚ join_ratioÚintÚ join_clientsÚ algorithmÚ time_selectÚgoalÚtime_thretholdÚsave_folder_nameÚ num_promptÚ plocal_stepsÚtop_cntÚclientsÚselected_clientsÚtrain_slow_clientsÚsend_slow_clientsÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsÚ rs_test_accÚrs_test_acc_stdÚ rs_test_aucÚ rs_train_lossÚtimesÚeval_gapÚclient_drop_rateÚtrain_slow_rateÚsend_slow_rate)ÚselfÚargsr'©r.úG/root/autodl-tmp/PFL-Non-IID-master/system/flcore/servers/serverbase.pyÚ__init__ sDzServer.__init__c Csrxltt|jƒ|j|jƒD]R\}}}t|j|dd�}t|j|dd�}|||t|ƒt|ƒ||d�}|j  |¡qWdS)NT)Úis_trainF)ÚidÚ train_samplesÚ test_samplesÚ train_slowÚ send_slow) ÚzipÚrangerrrrrÚlenrÚappend) r,r-Z clientObjÚir5r6Ú train_dataÚ test_dataÚclientr.r.r/Ú set_clients7s"zServer.set_clientscCsZdd„t|jƒDƒ}dd„t|jƒDƒ}tj |t||jƒ¡}x|D] }d||<qFW|S)NcSsg|]}d‘qS)Fr.)Ú.0r;r.r.r/ú <listcomp>Hsz.Server.select_slow_clients.<locals>.<listcomp>cSsg|]}|‘qSr.r.)r@r;r.r.r/rAIsT)r8rÚnpÚrandomÚchoicer)r,Z slow_rateZ slow_clientsÚidxÚidx_r;r.r.r/Úselect_slow_clientsGs   zServer.select_slow_clientscCs | |j¡|_| |j¡|_dS)N)rGr*rr+r)r,r.r.r/Úset_slow_clientsPs zServer.set_slow_clientscCsttjj|j|jdd�ƒ}|S)NF)Úreplace)ÚlistrBrCrDrr)r,rr.r.r/Úselect_clientsVszServer.select_clientscCs2t|jƒdkst‚x|jD]}| |j¡qWdS)Nr)r9rÚAssertionErrorÚset_parametersr)r,r>r.r.r/Ú send_models[s zServer.send_modelscCs–t|jƒdkst‚g|_d}g|_g|_xB|jD]8}|j |j¡||j7}|j |j¡|j |j ¡q0Wx$t |jƒD]\}}|||j|<qxWdS)Nr) r9rrLr r!r"r:r3r2rÚ enumerate)r,Z tot_samplesr>r;Úwr.r.r/Úreceive_modelscs  zServer.receive_modelscCsnt|jƒdkst‚t |jd¡|_x|j ¡D]}|j ¡q0Wx&t |j |jƒD]\}}|  ||¡qRWdS)Nr) r9r"rLr r rÚ parametersÚdataÚzero_r7r Úadd_parameters)r,ÚparamrPÚ client_modelr.r.r/Úaggregate_parametersrs zServer.aggregate_parameterscCs>x8t|j ¡| ¡ƒD] \}}|j|j ¡|7_qWdS)N)r7rrRrSÚclone)r,rPrWZ server_paramZ client_paramr.r.r/rU|szServer.add_parameterscCs–tj d|j¡}tj |¡s&t |¡tj ||jddt|jƒdt|j ƒdt|j ƒdt|j ƒdt|j ƒd¡}t  |j|¡dS)NÚmodelsÚ_serverÚ_z.pt)ÚosÚpathÚjoinrÚexistsÚmakedirsrÚstrrrrrrÚtorchÚsaver)r,Ú model_pathr.r.r/Úsave_global_model€s   ^zServer.save_global_modelcCs�tj d|j¡}tj ||jddt|jƒdt|jƒdt|jƒdt|j ƒdt|j ƒd¡}tj  |¡s~t ‚t  |¡|_dS)NrZr[r\z.pt)r]r^r_rrrbrrrrrr`rLrcÚloadr)r,rer.r.r/Ú load_model‡s^zServer.load_modelcCsvtj d|j¡}tj ||jdt|jƒdt|jƒdt|jƒdt|j ƒdt|j ƒd¡}tj  |¡S)NrZr\z.pt) r]r^r_rrrbrrrrrr`)r,rer.r.r/Ú model_exists�sZzServer.model_existsc Cs|jd|j}d}tj |¡s*t |¡t|jƒ�r |d|jdt |j ƒdt |j ƒdt |j ƒdt |j ƒdt |jƒdt |jƒ}|d |¡}td|ƒt |d¡�F}|jd|jd�|jd|jd�|jd |jd�|jd |jd�WdQRXdS) Nr\z ../results/z{}.h5z File path: rPr#)rSr$r%r&)rrr]r^r`rar9r#rrbr'rrrrrÚformatÚprintÚh5pyÚFileZcreate_datasetr$r%r&)r,ÚalgoÚ result_pathÚ file_pathZhfr.r.r/Ú save_results’s   b zServer.save_resultsc Cs„tj |j¡st |j¡t |tj |jd|dt|j ƒdt|j ƒdt|j ƒdt|j ƒdt|j ƒd¡¡dS)NÚserver_r\z.pt)r]r^r`rrarcrdr_rbrrrrr)r,ÚitemÚ item_namer.r.r/Ú save_item£s zServer.save_itemcCsdt tj |jd|dt|jƒdt|jƒdt|j ƒdt|j ƒdt|j ƒd¡¡S)Nrrr\z.pt) rcrgr]r^r_rrbrrrrr)r,rtr.r.r/Ú load_item¨szServer.load_itemc Cslg}g}g}xB|jD]8}| ¡\}}}| |d¡| ||¡| |¡qWdd„|jDƒ}||||fS)Ngğ?cSsg|] }|j‘qSr.)r2)r@Úcr.r.r/rA¸sz'Server.test_metrics.<locals>.<listcomp>)rÚ test_metricsr:) r,Ú num_samplesZ tot_correctZtot_aucrwÚctÚnsÚaucÚidsr.r.r/rx«s zServer.test_metricscCsVg}g}x2|jD](}| ¡\}}| |¡| |d¡qWdd„|jDƒ}|||fS)Ngğ?cSsg|] }|j‘qSr.)r2)r@rwr.r.r/rAÄsz(Server.train_metrics.<locals>.<listcomp>)rÚ train_metricsr:)r,ryÚlossesrwÚclr{r}r.r.r/r~¼s   zServer.train_metricsNc CsP| ¡}| ¡}t|dƒdt|dƒ}t|dƒdt|dƒ}t|dƒdt|dƒ}dd„t|d|dƒDƒ}dd„t|d|dƒDƒ} |dkr²|j |¡n | |¡|j |¡|j t  |¡¡|dkrğ|j  |¡n | |¡t d  |¡ƒt d   |¡ƒt d   |¡ƒt d   t  |¡¡ƒt d   t  | ¡¡ƒdS) Négğ?éécSsg|]\}}||‘qSr.r.)r@ÚaÚnr.r.r/rAÑsz#Server.evaluate.<locals>.<listcomp>cSsg|]\}}||‘qSr.r.)r@r„r…r.r.r/rAÒszAveraged Train Loss: {:.4f}zAveraged Test Accurancy: {:.4f}zAveraged Test AUC: {:.4f}zStd Test Accurancy: {:.4f}zStd Test AUC: {:.4f}) rxr~Úsumr7r#r:r%r$rBÚstdr&rkrj) r,ÚaccÚlossÚstatsZ stats_trainÚtest_accÚtest_aucÚ train_lossZaccsZaucsr.r.r/ÚevaluateÉs(   zServer.evaluatecCs.td |¡ƒtd |¡ƒtd |¡ƒdS)NzAverage Test Accurancy: {:.4f}zAverage Test AUC: {:.4f}zAverage Train Loss: {:.4f})rkrj)r,r‹rŒr�r.r.r/Úprint_æsz Server.print_cCsîxè|D]à}|dkrr|dkrrt|ƒt t |¡d¡jd|k}t|ƒdko`t || d…¡|k}|rl|rlqædSq|dkrªt|ƒt t |¡d¡jd|k}|r¤qædSq|dkrât|ƒdkoÔt || d…¡|k}|rÜqædSqt‚qWdS)Nr‚rFT)r9rcÚtopkÚtensorÚindicesrBr‡ÚNotImplementedError)r,Zacc_lssrÚ div_valueZacc_lsZfind_topZfind_divr.r.r/Ú check_doneës& $$$$zServer.check_done)NN)NN)Ú__name__Ú __module__Ú __qualname__r0r?rGrHrKrNrQrXrUrfrhrirqrurvrxr~r�r�r•r.r.r.r/r s(*   r) rcr]ÚnumpyrBrlr ÚtimerCÚutils.data_utilsrÚobjectrr.r.r.r/Ú<module>s 
9,090
Python
.py
50
180.68
695
0.394757
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,832
serverfomo.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverfomo.cpython-38.pyc
U •icWã@s`ddlZddlZddlZddlZddlZddlmZddlm Z ddl m Z Gdd„de ƒZ dS)éN)Ú clientFomo)ÚServer)ÚThreadcs4eZdZ‡fdd„Zdd„Zdd„Zdd„Z‡ZS) ÚFedFomocs€tƒ ||¡| ¡| |t¡t tj|j|j d�¡|_ |j g|_ g|_ t|j|jƒ|_td|j›d|j›�ƒtdƒdS)N)Údevicez Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚtorchÚdiagÚonesÚ num_clientsrÚPÚ global_modelÚuploaded_modelsÚ uploaded_idsÚminÚMÚ join_clientsÚprintÚ join_ratio)ÚselfÚargsÚtimes©Ú __class__©õED:\京东\promot\cifar\cifar\tiny\system\flcore\servers\serverfomo.pyr s  zFedFomo.__init__cCsšt|jdƒD]`}| ¡|_| ¡||jdkrRtd|›d�ƒtdƒ| ¡|jD] }| ¡qX|  ¡qtdƒtt |j ƒƒ|  ¡|  ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz Best global accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gaprÚevaluateÚtrainÚreceive_modelsÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)rÚiÚclientrrrr's    z FedFomo.traincCsøt|jƒdkst‚|jD]Ú}t ¡}|jrDt dt tj  ¡¡¡t|j ƒdkrÂt |j t|j ƒƒ}t |j|j|j |¡j ¡}g}g}|D]$}| |j |¡| |j |¡q�| ||¡|jdd7<|jddt ¡|7<qdS)Nrgš™™™™™¹?Ú num_roundsrÚ total_costé)ÚlenÚclientsÚAssertionErrorÚtimeÚ send_slowÚsleepÚnpÚabsÚrandomÚrandrrrrr ÚtopkrÚidÚindicesÚtolistÚappendr(Úsend_time_cost)rr.Ú start_timeZM_r>rrr-rrrr$9s    zFedFomo.send_modelscCsøt|jƒdkst‚t |jtd|j|jƒ¡}g|_g|_ d}g|_ |D]†}|j d|j d|j d|j d}||j krJ|j |j¡|j  |j¡||j7}|j  t |j¡¡|j|j|j7<qJt|j ƒD]\}}|||j |<qÜdS)Nrrr0r/)r2r#r4r:ÚsampleÚintÚclient_drop_raterrÚuploaded_weightsrÚtrain_time_costrAÚtime_thretholdr@r=Ú train_samplesÚcopyÚdeepcopyÚmodelrZ weight_vectorÚ enumerate)rZactive_clientsÚ tot_samplesr.Zclient_time_costr-Úwrrrr(Ps*ÿÿ  zFedFomo.receive_models)Ú__name__Ú __module__Ú __qualname__rr'r$r(Ú __classcell__rrrrr s r) r r5rJr:Únumpyr8Zflcore.clients.clientfomorÚflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s   
2,998
Python
.py
28
105.928571
428
0.453383
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,833
serverproto.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverproto.cpython-39.pyc
a f¾`cÜã@shddlmZddlmZddlmZddlmZddlZddl Z ddl m Z Gdd„deƒZ d d „ZdS) é)Ú clientProto)ÚServer)Úread_client_data)ÚThreadN)Ú defaultdictcs>eZdZ‡fdd„Zdd„Zdd„Zdd„Zd d d „Z‡ZS) ÚFedProtocsjtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒg|_|j |_ dd„t |j ƒDƒ|_ dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.cSsg|]}d‘qS)N©)Ú.0Ú_rrút/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/servers/serverproto.pyÚ <listcomp>óz%FedProto.__init__.<locals>.<listcomp>) ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clientsÚBudgetÚ num_classesÚrangeÚ global_protos)ÚselfÚargsÚtimes©Ú __class__rr r s zFedProto.__init__cCsd|_d}|jsÔt ¡}| ¡|_||jdkrX|dkrXtd|›d�ƒtdƒ| ¡|jD] }| ¡q^| ¡t |j ƒ|_ |  ¡|j  t ¡|¡td|j dƒ|dkrÊ|j|jg|jd�|_|d 7}q td ƒtt|jƒƒtt|j d d…ƒt|j d d…ƒƒ| ¡dS) NFrz -------------Round number: z -------------z Evaluate global modelz2--------------------------------------------------éÿÿÿÿ)Úacc_lssÚtop_cntéz Best global accuracy.)ÚdoneÚtimeÚselect_clientsÚselected_clientsÚeval_gaprÚevaluateÚtrainÚreceive_protosÚproto_aggregationÚuploaded_protosrÚ send_protosrÚappendÚ check_doneÚ rs_test_accr ÚmaxÚsumÚlenÚ save_results)rÚiÚs_tÚclientrrr r(s.     (zFedProto.traincCs.t|jƒdksJ‚|jD]}| |j¡qdS©Nr)r2r%Z set_protosr©rr6rrr r,Cs zFedProto.send_protoscCsJt|jƒdksJ‚g|_g|_|jD] }|j |j¡|j |j¡q$dSr7)r2r%Ú uploaded_idsr+r-ÚidÚprotosr8rrr r)Is  zFedProto.receive_protosNcCsØ| ¡}| ¡}t|dƒdt|dƒ}t|dƒdt|dƒ}dd„t|d|dƒDƒ}|dkrz|j |¡n | |¡|dkrš|j |¡n | |¡td |¡ƒtd |¡ƒtd t   |¡¡ƒdS) Négğ?r!cSsg|]\}}||‘qSrr)r ÚaÚnrrr r Xr z%FedProto.evaluate.<locals>.<listcomp>zAveraged Train Loss: {:.4f}zAveraged Test Accurancy: {:.4f}zStd Test Accurancy: {:.4f}) Ú test_metricsÚ train_metricsr1Úzipr/r-Ú rs_train_lossrÚformatÚnpÚstd)rÚaccÚlossÚstatsÚ stats_trainÚtest_accÚ train_lossÚaccsrrr r'Rs  zFedProto.evaluate)NN) Ú__name__Ú __module__Ú __qualname__rr(r,r)r'Ú __classcell__rrrr r s  ( rcCs–ttƒ}|D]$}| ¡D]}|| ||¡qq | ¡D]V\}}t|ƒdkr‚d|dj}|D]}||j7}q`|t|ƒ||<q:|dj||<q:|S)Nr!r)rÚlistÚkeysr-Úitemsr2Údata)Zlocal_protos_listZagg_protos_labelZ local_protosÚlabelZ proto_listÚprotor4rrr r*ks   r*)Zflcore.clients.clientprotorÚflcore.servers.serverbaserÚutils.data_utilsrÚ threadingrr#ÚnumpyrDÚ collectionsrrr*rrrr Ú<module>s     a
3,711
Python
.py
33
111.30303
408
0.437075
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,834
serverdynpt-checkpoint.py
hkgdifyu_pFedPT/system/flcore/servers/.ipynb_checkpoints/serverdynpt-checkpoint.py
import copy import torch from system.flcore.clients.clientdynpt import clientDynPT from system.flcore.servers.serverbase import Server from threading import Thread import time import h5py import copy import os class FedDynPT(Server): def __init__(self, args, times): super().__init__(args, times) # select slow clients self.set_slow_clients() self.set_clients(args, clientDynPT) print(f"\nJoin ratio / total clients: {self.join_ratio} / {self.num_clients}") print("Finished creating server and clients.") # self.load_model() self.Budget = [] self.diff_pro = [] self.alpha = args.alpha self.clients_diverge = [] self.server_state = copy.deepcopy(args.model) for param in self.server_state.parameters(): param.data = torch.zeros_like(param.data) def train(self): local_acc = [] self.done = False i = 0 # while not self.done: for i in range(self.global_rounds+1): s_t = time.time() self.selected_clients = self.select_clients() self.send_models() if i % self.eval_gap == 0: print(f"\n-------------Round number: {i}-------------") print("\nEvaluate global model") self.evaluate() temp_diff_pro = 0 for client in self.selected_clients: temp_diff_pro_client = client.train() temp_diff_pro = temp_diff_pro + temp_diff_pro_client.item() print("Averaged prompr difference: {:.4f}".format(temp_diff_pro)) self.diff_pro.append(temp_diff_pro) diverge_clents =0 for new_param, old_param in zip(self.clients[0].model.generator.parameters(), self.clients[1].model.generator.parameters()): diff_pro = new_param - old_param diff_pro = torch.where(diff_pro > 0, diff_pro, torch.zeros_like(diff_pro) - diff_pro) diverge_clents = diverge_clents+torch.sum(diff_pro) print("0 and 1 clients difference: {:.4f}".format(diverge_clents.item())) self.clients_diverge.append(diverge_clents.item()) if i % self.eval_gap == 0: print("\nEvaluate local model") self.evaluate(acc=local_acc) # threads = [Thread(target=client.train) # for client in self.selected_clients] # [t.start() for t in threads] # [t.join() for t in threads] self.receive_models() self.update_server_state() self.aggregate_parameters() self.Budget.append(time.time() - s_t) print('-' * 50, self.Budget[-1]) self.done = self.check_done(acc_lss=[self.rs_test_acc], top_cnt=self.top_cnt) i += 1 print("\nBest global accuracy.") # self.print_(max(self.rs_test_acc), max( # self.rs_train_acc), min(self.rs_train_loss)) print(max(self.rs_test_acc)) print("\nBest local accuracy.") print(max(local_acc)) print("\nAveraged time per iteration.") print(sum(self.Budget[1:]) / len(self.Budget[1:])) self.save_results() self.save_global_model() def add_parameters(self, client_model): for server_param, client_param in zip(self.global_model.parameters(), client_model.parameters()): server_param.data += client_param.data.clone() / self.join_clients def aggregate_parameters(self): assert (len(self.uploaded_models) > 0) self.global_model = copy.deepcopy(self.uploaded_models[0]) for param in self.global_model.parameters(): param.data = torch.zeros_like(param.data) for client_model in self.uploaded_models: self.add_parameters(client_model) for server_param, state_param in zip(self.global_model.parameters(), self.server_state.parameters()): server_param.data -= (1 / self.alpha) * state_param def update_server_state(self): assert (len(self.uploaded_models) > 0) model_delta = copy.deepcopy(self.uploaded_models[0]) for param in model_delta.parameters(): param.data = torch.zeros_like(param.data) for client_model in self.uploaded_models: for server_param, client_param, delta_param in zip(self.global_model.parameters(), client_model.parameters(), model_delta.parameters()): delta_param.data += (client_param - server_param) / self.num_clients for state_param, delta_param in zip(self.server_state.parameters(), model_delta.parameters()): state_param.data -= self.alpha * delta_param def receive_models(self): assert (len(self.selected_clients) > 0) active_train_samples = 0 for client in self.selected_clients: active_train_samples += client.train_samples self.uploaded_weights = [] self.uploaded_ids = [] self.uploaded_models = [] for client in self.selected_clients: self.uploaded_weights.append(client.train_samples / active_train_samples) self.uploaded_ids.append(client.id) self.uploaded_models.append(copy.deepcopy(client.model)) def save_results(self): algo = self.dataset + "_" + self.algorithm result_path = "../results/" if not os.path.exists(result_path): os.makedirs(result_path) if (len(self.rs_test_acc)): algo = algo + "_" + self.goal + "_" + str(self.times) file_path = result_path + "{}.h5".format(algo) print("File path: " + file_path) with h5py.File(file_path, 'w') as hf: hf.create_dataset('rs_test_acc', data=self.rs_test_acc) hf.create_dataset('rs_test_acc_std', data=self.rs_test_acc_std) hf.create_dataset('rs_test_auc', data=self.rs_test_auc) hf.create_dataset('rs_train_loss', data=self.rs_train_loss) hf.create_dataset('diff_pro', data=self.diff_pro)
6,193
Python
.py
125
38.416
136
0.596259
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,835
serverbabu-checkpoint.py
hkgdifyu_pFedPT/system/flcore/servers/.ipynb_checkpoints/serverbabu-checkpoint.py
from flcore.clients.clientbabu import clientBABU from flcore.servers.serverbase import Server from threading import Thread class FedBABU(Server): def __init__(self, args, times): super().__init__(args, times) # select slow clients self.set_slow_clients() self.set_clients(args, clientBABU) print(f"\nJoin ratio / total clients: {self.join_ratio} / {self.num_clients}") print("Finished creating server and clients.") # self.load_model() def train(self): for i in range(self.global_rounds+1): self.selected_clients = self.select_clients() self.send_models() if i%self.eval_gap == 0: print(f"\n-------------Round number: {i}-------------") print("\nEvaluate global model") self.evaluate() for client in self.selected_clients: client.train() # threads = [Thread(target=client.train) # for client in self.selected_clients] # [t.start() for t in threads] # [t.join() for t in threads] self.receive_models() self.aggregate_parameters() print("\nBest global accuracy.") # self.print_(max(self.rs_test_acc), max( # self.rs_train_acc), min(self.rs_train_loss)) print(max(self.rs_test_acc)) for client in self.clients: client.fine_tune() print("\n-------------Evaluate fine-tuned model-------------") self.evaluate() self.save_results() self.save_global_model() def receive_models(self): assert (len(self.selected_clients) > 0) self.uploaded_weights = [] tot_samples = 0 self.uploaded_ids = [] self.uploaded_models = [] for client in self.selected_clients: self.uploaded_weights.append(client.train_samples) tot_samples += client.train_samples self.uploaded_ids.append(client.id) self.uploaded_models.append(client.model.base) for i, w in enumerate(self.uploaded_weights): self.uploaded_weights[i] = w / tot_samples
2,197
Python
.py
51
32.72549
86
0.578675
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,836
serverfedpt-checkpoint.py
hkgdifyu_pFedPT/system/flcore/servers/.ipynb_checkpoints/serverfedpt-checkpoint.py
from system.flcore.clients.clientt import clientT from system.flcore.servers.serverbase import Server from threading import Thread import time import torch import os import h5py import copy class FedPT(Server): def __init__(self, args, times): super().__init__(args, times) # select slow clients self.set_slow_clients() self.set_clients(args, clientT) self.global_model = copy.deepcopy(args.model.base) self.diff_pro = [] self.clients_diverge = [] print(f"\nJoin ratio / total clients: {self.join_ratio} / {self.num_clients}") print("Finished creating server and clients.") # self.load_model() self.Budget = [] def train(self): for i in range(self.global_rounds+1): s_t = time.time() self.selected_clients = self.select_clients() self.send_models() if i%self.eval_gap == 0: print(f"\n-------------Round number: {i}-------------") print("\nEvaluate global model") self.evaluate() temp_diff_pro = 0 for client in self.selected_clients: temp_diff_pro_client = client.train() temp_diff_pro = temp_diff_pro +temp_diff_pro_client.item() diverge_clents =0 for new_param, old_param in zip(self.clients[0].model.generator.parameters(), self.clients[1].model.generator.parameters()): diff_pro = new_param - old_param diff_pro = torch.where(diff_pro > 0, diff_pro, torch.zeros_like(diff_pro) - diff_pro) diverge_clents = diverge_clents+torch.sum(diff_pro) print("Averaged prompr difference: {:.4f}".format(temp_diff_pro)) print("0 and 1 clients difference: {:.4f}".format(diverge_clents.item())) self.diff_pro.append(temp_diff_pro) self.clients_diverge.append(diverge_clents.item()) # threads = [Thread(target=client.train) # for client in self.selected_clients] # [t.start() for t in threads] # [t.join() for t in threads] self.receive_models() self.aggregate_parameters() self.Budget.append(time.time() - s_t) print('-'*25, 'time cost', '-'*25, self.Budget[-1]) print("\nBest global accuracy.") # self.print_(max(self.rs_test_acc), max( # self.rs_train_acc), min(self.rs_train_loss)) print(max(self.rs_test_acc)) print("\nAverage time cost per round.") print(sum(self.Budget[1:])/len(self.Budget[1:])) self.save_results() self.save_global_model() self.save_client_model() def receive_models(self): assert (len(self.selected_clients) > 0) active_train_samples = 0 for client in self.selected_clients: active_train_samples += client.train_samples self.uploaded_weights = [] self.uploaded_ids = [] self.uploaded_models = [] for client in self.selected_clients: self.uploaded_weights.append(client.train_samples / active_train_samples) self.uploaded_ids.append(client.id) self.uploaded_models.append(copy.deepcopy(client.model.base)) def save_client_model(self): model_path = os.path.join("models", self.dataset,"client") if not os.path.exists(model_path): os.makedirs(model_path) for c_idx,c in enumerate(self.clients): model_path_save = os.path.join(model_path, self.algorithm + "_server" +str(c_idx)+ ".pt") torch.save(c.model, model_path_save) def save_results(self): algo = self.dataset + "_" + self.algorithm result_path = "../results/" if not os.path.exists(result_path): os.makedirs(result_path) if (len(self.rs_test_acc)): algo = algo + "_" + self.goal + "_" + str(self.times) file_path = result_path + "{}.h5".format(algo) print("File path: " + file_path) with h5py.File(file_path, 'w') as hf: hf.create_dataset('rs_test_acc', data=self.rs_test_acc) hf.create_dataset('rs_test_acc_std', data=self.rs_test_acc_std) hf.create_dataset('rs_test_auc', data=self.rs_test_auc) hf.create_dataset('rs_train_loss', data=self.rs_train_loss) hf.create_dataset('diff_pro', data=self.diff_pro)
4,505
Python
.py
94
37.212766
136
0.588838
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,837
serverbase-checkpoint.py
hkgdifyu_pFedPT/system/flcore/servers/.ipynb_checkpoints/serverbase-checkpoint.py
import torch import os import numpy as np import h5py import copy import time import random from utils.data_utils import read_client_data class Server(object): def __init__(self, args, times): # Set up the main attributes self.device = args.device self.dataset = args.dataset self.global_rounds = args.global_rounds self.local_steps = args.local_steps self.batch_size = args.batch_size self.learning_rate = args.local_learning_rate self.global_model = copy.deepcopy(args.model) self.num_clients = args.num_clients self.join_ratio = args.join_ratio self.join_clients = int(self.num_clients * self.join_ratio) self.algorithm = args.algorithm self.time_select = args.time_select self.goal = args.goal self.time_threthold = args.time_threthold self.save_folder_name = args.save_folder_name self.num_prompt = args.num_prompt self.plocal_steps = args.plocal_steps self.top_cnt = 100 self.clients = [] self.selected_clients = [] self.train_slow_clients = [] self.send_slow_clients = [] self.uploaded_weights = [] self.uploaded_ids = [] self.uploaded_models = [] self.rs_test_acc = [] self.rs_test_acc_std = [] self.rs_test_auc = [] self.rs_train_loss = [] self.times = times self.eval_gap = args.eval_gap self.client_drop_rate = args.client_drop_rate self.train_slow_rate = args.train_slow_rate self.send_slow_rate = args.send_slow_rate def set_clients(self, args, clientObj): for i, train_slow, send_slow in zip(range(self.num_clients), self.train_slow_clients, self.send_slow_clients): train_data = read_client_data(self.dataset, i, is_train=True) test_data = read_client_data(self.dataset, i, is_train=False) client = clientObj(args, id=i, train_samples=len(train_data), test_samples=len(test_data), train_slow=train_slow, send_slow=send_slow) self.clients.append(client) # random select slow clients def select_slow_clients(self, slow_rate): slow_clients = [False for i in range(self.num_clients)] idx = [i for i in range(self.num_clients)] idx_ = np.random.choice(idx, int(slow_rate * self.num_clients)) for i in idx_: slow_clients[i] = True return slow_clients def set_slow_clients(self): self.train_slow_clients = self.select_slow_clients( self.train_slow_rate) self.send_slow_clients = self.select_slow_clients( self.send_slow_rate) def select_clients(self): selected_clients = list(np.random.choice(self.clients, self.join_clients, replace=False)) return selected_clients def send_models(self): assert (len(self.selected_clients) > 0) for client in self.selected_clients: client.set_parameters(self.global_model) def receive_models(self): assert (len(self.selected_clients) > 0) self.uploaded_weights = [] tot_samples = 0 self.uploaded_ids = [] self.uploaded_models = [] for client in self.selected_clients: self.uploaded_weights.append(client.train_samples) tot_samples += client.train_samples self.uploaded_ids.append(client.id) self.uploaded_models.append(client.model) for i, w in enumerate(self.uploaded_weights): self.uploaded_weights[i] = w / tot_samples def aggregate_parameters(self): assert (len(self.uploaded_models) > 0) self.global_model = copy.deepcopy(self.uploaded_models[0]) for param in self.global_model.parameters(): param.data.zero_() for w, client_model in zip(self.uploaded_weights, self.uploaded_models): self.add_parameters(w, client_model) def add_parameters(self, w, client_model): for server_param, client_param in zip(self.global_model.parameters(), client_model.parameters()): server_param.data += client_param.data.clone() * w def save_global_model(self): model_path = os.path.join("models", self.dataset) if not os.path.exists(model_path): os.makedirs(model_path) model_path = os.path.join(model_path, self.algorithm + "_server"+ "_" + str(self.num_prompt) + "_" + str(self.join_ratio) + "_" + str(self.num_clients)+ "_" + str(self.plocal_steps) + "_" + str(self.global_rounds) + ".pt") torch.save(self.global_model, model_path) def load_model(self): model_path = os.path.join("models", self.dataset) model_path = os.path.join(model_path, self.algorithm + "_server" + "_" + str(self.num_prompt) + "_" + str(self.join_ratio) + "_" + str(self.num_clients)+ "_" + str(self.plocal_steps) + "_" + str(self.global_rounds) +".pt") assert (os.path.exists(model_path)) self.global_model = torch.load(model_path) def model_exists(self): model_path = os.path.join("models", self.dataset) model_path = os.path.join(model_path, self.algorithm + "_" + str(self.num_prompt) + "_" + str(self.join_ratio) + "_" + str(self.num_clients)+ "_" + str(self.plocal_steps) + "_" + str(self.global_rounds)+".pt") return os.path.exists(model_path) def save_results(self): algo = self.dataset + "_" + self.algorithm result_path = "../results/" if not os.path.exists(result_path): os.makedirs(result_path) if (len(self.rs_test_acc)): algo = algo + "_" + self.goal + "_" + str(self.times)+ "_" + str(self.num_prompt) + "_" + str(self.join_ratio) + "_" + str(self.num_clients)+ "_" + str(self.plocal_steps) + "_" + str(self.global_rounds) file_path = result_path + "{}.h5".format(algo) print("File path: " + file_path) with h5py.File(file_path, 'w') as hf: hf.create_dataset('rs_test_acc', data=self.rs_test_acc) hf.create_dataset('rs_test_acc_std', data=self.rs_test_acc_std) hf.create_dataset('rs_test_auc', data=self.rs_test_auc) hf.create_dataset('rs_train_loss', data=self.rs_train_loss) def save_item(self, item, item_name): if not os.path.exists(self.save_folder_name): os.makedirs(self.save_folder_name) torch.save(item, os.path.join(self.save_folder_name, "server_" + item_name + "_" + str(self.num_prompt) + "_" + str(self.join_ratio) + "_" + str(self.num_clients)+ "_" + str(self.plocal_steps) + "_" + str(self.global_rounds) + ".pt")) def load_item(self, item_name): return torch.load(os.path.join(self.save_folder_name, "server_" + item_name + "_" + str(self.num_prompt) + "_" + str(self.join_ratio) + "_" + str(self.num_clients)+ "_" + str(self.plocal_steps) + "_" + str(self.global_rounds) + ".pt")) def test_metrics(self): num_samples = [] tot_correct = [] tot_auc = [] for c in self.clients: ct, ns, auc = c.test_metrics() tot_correct.append(ct*1.0) tot_auc.append(auc*ns) num_samples.append(ns) ids = [c.id for c in self.clients] return ids, num_samples, tot_correct, tot_auc def train_metrics(self): num_samples = [] losses = [] for c in self.clients: cl, ns = c.train_metrics() num_samples.append(ns) losses.append(cl*1.0) ids = [c.id for c in self.clients] return ids, num_samples, losses # evaluate selected clients def evaluate(self, acc=None, loss=None): stats = self.test_metrics() stats_train = self.train_metrics() test_acc = sum(stats[2])*1.0 / sum(stats[1]) test_auc = sum(stats[3])*1.0 / sum(stats[1]) train_loss = sum(stats_train[2])*1.0 / sum(stats_train[1]) accs = [a / n for a, n in zip(stats[2], stats[1])] aucs = [a / n for a, n in zip(stats[3], stats[1])] if acc == None: self.rs_test_acc.append(test_acc) else: acc.append(test_acc) self.rs_test_auc.append(test_auc) self.rs_test_acc_std.append(np.std(accs)) if loss == None: self.rs_train_loss.append(train_loss) else: loss.append(train_loss) print("Averaged Train Loss: {:.4f}".format(train_loss)) print("Averaged Test Accurancy: {:.4f}".format(test_acc)) print("Averaged Test AUC: {:.4f}".format(test_auc)) # self.print_(test_acc, train_acc, train_loss) print("Std Test Accurancy: {:.4f}".format(np.std(accs))) print("Std Test AUC: {:.4f}".format(np.std(aucs))) def print_(self, test_acc, test_auc, train_loss): print("Average Test Accurancy: {:.4f}".format(test_acc)) print("Average Test AUC: {:.4f}".format(test_auc)) print("Average Train Loss: {:.4f}".format(train_loss)) def check_done(self, acc_lss, top_cnt=None, div_value=None): for acc_ls in acc_lss: if top_cnt != None and div_value != None: find_top = len(acc_ls) - torch.topk(torch.tensor(acc_ls), 1).indices[0] > top_cnt find_div = len(acc_ls) > 1 and np.std(acc_ls[-top_cnt:]) < div_value if find_top and find_div: pass else: return False elif top_cnt != None: find_top = len(acc_ls) - torch.topk(torch.tensor(acc_ls), 1).indices[0] > top_cnt if find_top: pass else: return False elif div_value != None: find_div = len(acc_ls) > 1 and np.std(acc_ls[-top_cnt:]) < div_value if find_div: pass else: return False else: raise NotImplementedError return True
10,235
Python
.py
207
38.661836
243
0.584682
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,838
serverpfedpt-checkpoint.py
hkgdifyu_pFedPT/system/flcore/servers/.ipynb_checkpoints/serverpfedpt-checkpoint.py
from system.flcore.clients.clientpt import clientPT from system.flcore.servers.serverbase import Server from threading import Thread import time import torch import os import h5py import copy class PFedPT(Server): def __init__(self, args, times): super().__init__(args, times) # select slow clients self.set_slow_clients() self.set_clients(args, clientPT) self.global_model = copy.deepcopy(args.model.base) self.diff_pro = [] self.clients_diverge = [] print(f"\nJoin ratio / total clients: {self.join_ratio} / {self.num_clients}") print("Finished creating server and clients.") # self.load_model() self.Budget = [] def train(self): for i in range(self.global_rounds+1): s_t = time.time() self.selected_clients = self.select_clients() self.send_models() if i%self.eval_gap == 0: print(f"\n-------------Round number: {i}-------------") print("\nEvaluate global model") self.evaluate() temp_diff_pro = 0 for client in self.selected_clients: temp_diff_pro_client = client.train() temp_diff_pro = temp_diff_pro +temp_diff_pro_client.item() print("Averaged prompr difference: {:.4f}".format(temp_diff_pro)) self.diff_pro.append(temp_diff_pro) diverge_clents =0 for new_param, old_param in zip(self.clients[0].model.generator.parameters(), self.clients[1].model.generator.parameters()): diff_pro = new_param - old_param diff_pro = torch.where(diff_pro > 0, diff_pro, torch.zeros_like(diff_pro) - diff_pro) diverge_clents = diverge_clents+torch.sum(diff_pro) print("0 and 1 clients difference: {:.4f}".format(diverge_clents.item())) self.clients_diverge.append(diverge_clents.item()) # threads = [Thread(target=client.train) # for client in self.selected_clients] # [t.start() for t in threads] # [t.join() for t in threads] self.receive_models() self.aggregate_parameters() self.Budget.append(time.time() - s_t) print('-'*25, 'time cost', '-'*25, self.Budget[-1]) print("\nBest global accuracy.") # self.print_(max(self.rs_test_acc), max( # self.rs_train_acc), min(self.rs_train_loss)) print(max(self.rs_test_acc)) print("\nAverage time cost per round.") print(sum(self.Budget[1:])/len(self.Budget[1:])) self.save_results() self.save_global_model() self.save_client_model() def receive_models(self): assert (len(self.selected_clients) > 0) active_train_samples = 0 for client in self.selected_clients: active_train_samples += client.train_samples self.uploaded_weights = [] self.uploaded_ids = [] self.uploaded_models = [] for client in self.selected_clients: self.uploaded_weights.append(client.train_samples / active_train_samples) self.uploaded_ids.append(client.id) self.uploaded_models.append(copy.deepcopy(client.model.base)) def save_client_model(self): model_path = os.path.join("models", self.dataset,"client") if not os.path.exists(model_path): os.makedirs(model_path) for c_idx,c in enumerate(self.clients): model_path_save = os.path.join(model_path, self.algorithm + "_client" +str(c_idx)+ "_" + str(self.num_prompt) + "_" + str(self.join_ratio) + "_" + str(self.num_clients)+ "_" + str(self.plocal_steps) + "_" + str(self.global_rounds)+ ".pt") torch.save(c.model, model_path_save) def save_results(self): algo = self.dataset + "_" + self.algorithm result_path = "../results/" if not os.path.exists(result_path): os.makedirs(result_path) if (len(self.rs_test_acc)): algo = algo + "_" + self.goal + "_" + str(self.times)+ "_" + str(self.num_prompt) + "_" + str(self.join_ratio) + "_" + str(self.num_clients)+ "_" + str(self.plocal_steps) + "_" + str(self.global_rounds) file_path = result_path + "{}.h5".format(algo) print("File path: " + file_path) with h5py.File(file_path, 'w') as hf: hf.create_dataset('rs_test_acc', data=self.rs_test_acc) hf.create_dataset('rs_test_acc_std', data=self.rs_test_acc_std) hf.create_dataset('rs_test_auc', data=self.rs_test_auc) hf.create_dataset('rs_train_loss', data=self.rs_train_loss) hf.create_dataset('diff_pro', data=self.diff_pro) hf.create_dataset('clients_diverge', data=self.clients_diverge)
4,886
Python
.py
95
40.663158
250
0.589394
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,839
serverreppt-checkpoint.py
hkgdifyu_pFedPT/system/flcore/servers/.ipynb_checkpoints/serverreppt-checkpoint.py
from system.flcore.clients.clientreppt import clientREPPT from system.flcore.servers.serverbase import Server from threading import Thread import time import copy import torch import os import h5py import copy class PFedRepPT(Server): def __init__(self, args, times): super().__init__(args, times) # select slow clients self.set_slow_clients() self.set_clients(args, clientREPPT) self.global_model = copy.deepcopy(args.model.base) self.diff_pro = [] print(f"\nJoin ratio / total clients: {self.join_ratio} / {self.num_clients}") print("Finished creating server and clients.") # self.load_model() self.Budget = [] def train(self): for i in range(self.global_rounds+1): s_t = time.time() self.selected_clients = self.select_clients() self.send_models() if i%self.eval_gap == 0: print(f"\n-------------Round number: {i}-------------") print("\nEvaluate global model") self.evaluate() temp_diff_pro = 0 for client in self.selected_clients: temp_diff_pro_client = client.train() temp_diff_pro = temp_diff_pro + temp_diff_pro_client.item() print("Averaged prompr difference: {:.4f}".format(temp_diff_pro)) self.diff_pro.append(temp_diff_pro) # threads = [Thread(target=client.train) # for client in self.selected_clients] # [t.start() for t in threads] # [t.join() for t in threads] self.receive_models() self.aggregate_parameters() self.Budget.append(time.time() - s_t) print('-'*25, 'time cost', '-'*25, self.Budget[-1]) print("\nBest global accuracy.") # self.print_(max(self.rs_test_acc), max( # self.rs_train_acc), min(self.rs_train_loss)) print(max(self.rs_test_acc)) print("\nAverage time cost per round.") print(sum(self.Budget[1:])/len(self.Budget[1:])) self.save_results() self.save_global_model() self.save_client_model() def receive_models(self): assert (len(self.selected_clients) > 0) active_train_samples = 0 for client in self.selected_clients: active_train_samples += client.train_samples self.uploaded_weights = [] self.uploaded_ids = [] self.uploaded_models = [] for client in self.selected_clients: self.uploaded_weights.append(client.train_samples / active_train_samples) self.uploaded_ids.append(client.id) self.uploaded_models.append(copy.deepcopy(client.model.base)) def save_client_model(self): model_path = os.path.join("models", self.dataset,"client") if not os.path.exists(model_path): os.makedirs(model_path) for c_idx,c in enumerate(self.clients): model_path_save = os.path.join(model_path, self.algorithm + "_server" +str(c_idx)+ ".pt") torch.save(c.model, model_path_save) def save_results(self): algo = self.dataset + "_" + self.algorithm result_path = "../results/" if not os.path.exists(result_path): os.makedirs(result_path) if (len(self.rs_test_acc)): algo = algo + "_" + self.goal + "_" + str(self.times) file_path = result_path + "{}.h5".format(algo) print("File path: " + file_path) with h5py.File(file_path, 'w') as hf: hf.create_dataset('rs_test_acc', data=self.rs_test_acc) hf.create_dataset('rs_test_acc_std', data=self.rs_test_acc_std) hf.create_dataset('rs_test_auc', data=self.rs_test_auc) hf.create_dataset('rs_train_loss', data=self.rs_train_loss) hf.create_dataset('diff_pro', data=self.diff_pro)
3,962
Python
.py
87
35.275862
101
0.587503
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,840
serverrep-checkpoint.py
hkgdifyu_pFedPT/system/flcore/servers/.ipynb_checkpoints/serverrep-checkpoint.py
from system.flcore.clients.clientrep import clientRep from system.flcore.servers.serverbase import Server from threading import Thread import time import copy class FedRep(Server): def __init__(self, args, times): super().__init__(args, times) # select slow clients self.set_slow_clients() self.set_clients(args, clientRep) print(f"\nJoin ratio / total clients: {self.join_ratio} / {self.num_clients}") print("Finished creating server and clients.") # self.load_model() self.Budget = [] def train(self): for i in range(self.global_rounds+1): s_t = time.time() self.selected_clients = self.select_clients() self.send_models() if i%self.eval_gap == 0: print(f"\n-------------Round number: {i}-------------") print("\nEvaluate global model") self.evaluate() for client in self.selected_clients: client.train() # threads = [Thread(target=client.train) # for client in self.selected_clients] # [t.start() for t in threads] # [t.join() for t in threads] self.receive_models() self.aggregate_parameters() self.Budget.append(time.time() - s_t) print('-'*25, 'time cost', '-'*25, self.Budget[-1]) print("\nBest global accuracy.") # self.print_(max(self.rs_test_acc), max( # self.rs_train_acc), min(self.rs_train_loss)) print(max(self.rs_test_acc)) print("\nAverage time cost per round.") print(sum(self.Budget[1:])/len(self.Budget[1:])) self.save_results() self.save_global_model() def receive_models(self): assert (len(self.selected_clients) > 0) active_train_samples = 0 for client in self.selected_clients: active_train_samples += client.train_samples self.uploaded_weights = [] self.uploaded_ids = [] self.uploaded_models = [] for client in self.selected_clients: self.uploaded_weights.append(client.train_samples / active_train_samples) self.uploaded_ids.append(client.id) self.uploaded_models.append(copy.deepcopy(client.model.base))
2,334
Python
.py
54
33.185185
86
0.587456
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,841
data_utils.py
hkgdifyu_pFedPT/system/utils/data_utils.py
import ujson import numpy as np import os import torch # IMAGE_SIZE = 28 # IMAGE_PIXELS = IMAGE_SIZE * IMAGE_SIZE # NUM_CHANNELS = 1 # IMAGE_SIZE_CIFAR = 32 # NUM_CHANNELS_CIFAR = 3 def batch_data(data, batch_size): ''' data is a dict := {'x': [numpy array], 'y': [numpy array]} (on one client) returns x, y, which are both numpy array of length: batch_size ''' data_x = data['x'] data_y = data['y'] # randomly shuffle data ran_state = np.random.get_state() np.random.shuffle(data_x) np.random.set_state(ran_state) np.random.shuffle(data_y) # loop through mini-batches for i in range(0, len(data_x), batch_size): batched_x = data_x[i:i+batch_size] batched_y = data_y[i:i+batch_size] yield (batched_x, batched_y) def get_random_batch_sample(data_x, data_y, batch_size): num_parts = len(data_x)//batch_size + 1 if(len(data_x) > batch_size): batch_idx = np.random.choice(list(range(num_parts + 1))) sample_index = batch_idx*batch_size if(sample_index + batch_size > len(data_x)): return (data_x[sample_index:], data_y[sample_index:]) else: return (data_x[sample_index: sample_index+batch_size], data_y[sample_index: sample_index+batch_size]) else: return (data_x, data_y) def get_batch_sample(data, batch_size): data_x = data['x'] data_y = data['y'] # np.random.seed(100) ran_state = np.random.get_state() np.random.shuffle(data_x) np.random.set_state(ran_state) np.random.shuffle(data_y) batched_x = data_x[0:batch_size] batched_y = data_y[0:batch_size] return (batched_x, batched_y) def read_data(dataset, idx, args,is_train=True): if is_train: train_data_dir = os.path.join('../dataset', dataset, args.arv1+"*"+args.arv2+"*"+args.arv3+"*"+args.arv4+"*"+args.arv5+"*"+args.arv6,'train/') train_file = train_data_dir + str(idx) + '.npz' with open(train_file, 'rb') as f: train_data = np.load(f, allow_pickle=True)['data'].tolist() return train_data else: test_data_dir = os.path.join('../dataset', dataset, args.arv1+"*"+args.arv2+"*"+args.arv3+"*"+args.arv4+"*"+args.arv5+"*"+args.arv6,'test/') test_file = test_data_dir + str(idx) + '.npz' with open(test_file, 'rb') as f: test_data = np.load(f, allow_pickle=True)['data'].tolist() return test_data def read_client_data(dataset, idx, args,is_train=True): if dataset[:2] == "ag" or dataset[:2] == "SS": return read_client_data_text(dataset, idx) if is_train: train_data = read_data(dataset, idx, args,is_train) X_train = torch.Tensor(train_data['x']).type(torch.float32) y_train = torch.Tensor(train_data['y']).type(torch.int64) train_data = [(x, y) for x, y in zip(X_train, y_train)] return train_data else: test_data = read_data(dataset, idx, args,is_train) X_test = torch.Tensor(test_data['x']).type(torch.float32) y_test = torch.Tensor(test_data['y']).type(torch.int64) test_data = [(x, y) for x, y in zip(X_test, y_test)] return test_data def read_client_data_text(dataset, idx, is_train=True): if is_train: train_data = read_data(dataset, idx, is_train) X_train, X_train_lens = list(zip(*train_data['x'])) y_train = train_data['y'] X_train = torch.Tensor(X_train).type(torch.int64) X_train_lens = torch.Tensor(X_train_lens).type(torch.int64) y_train = torch.Tensor(train_data['y']).type(torch.int64) train_data = [((x, lens), y) for x, lens, y in zip(X_train, X_train_lens, y_train)] return train_data else: test_data = read_data(dataset, idx, is_train) X_test, X_test_lens = list(zip(*test_data['x'])) y_test = test_data['y'] X_test = torch.Tensor(X_test).type(torch.int64) X_test_lens = torch.Tensor(X_test_lens).type(torch.int64) y_test = torch.Tensor(test_data['y']).type(torch.int64) test_data = [((x, lens), y) for x, lens, y in zip(X_test, X_test_lens, y_test)] return test_data
4,194
Python
.py
95
37.326316
150
0.614742
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,842
mem_utils.py
hkgdifyu_pFedPT/system/utils/mem_utils.py
import math import gc from collections import defaultdict from typing import Optional, Tuple, List import torch from math import isnan from calmsize import size as calmsize def readable_size(num_bytes: int) -> str: return '' if isnan(num_bytes) else '{:.2f}'.format(calmsize(num_bytes)) LEN = 79 # some pytorch low-level memory management constant # the minimal allocate memory size (Byte) PYTORCH_MIN_ALLOCATE = 2 ** 9 # the minimal cache memory size (Byte) PYTORCH_MIN_CACHE = 2 ** 20 class MemReporter(): """A memory reporter that collects tensors and memory usages Parameters: - model: an extra nn.Module can be passed to infer the name of Tensors """ def __init__(self, model: Optional[torch.nn.Module] = None): self.tensor_name = {} self.device_mapping = defaultdict(list) self.device_tensor_stat = {} # to numbering the unknown tensors self.name_idx = 0 tensor_names = defaultdict(list) if model is not None: assert isinstance(model, torch.nn.Module) # for model with tying weight, multiple parameters may share # the same underlying tensor for name, param in model.named_parameters(): tensor_names[param].append(name) for param, name in tensor_names.items(): self.tensor_name[id(param)] = '+'.join(name) def _get_tensor_name(self, tensor: torch.Tensor) -> str: tensor_id = id(tensor) if tensor_id in self.tensor_name: name = self.tensor_name[tensor_id] # use numbering if no name can be inferred else: name = type(tensor).__name__ + str(self.name_idx) self.tensor_name[tensor_id] = name self.name_idx += 1 return name def collect_tensor(self): """Collect all tensor objects tracked by python NOTICE: - the buffers for backward which is implemented in C++ are not tracked by python's reference counting. - the gradients(.grad) of Parameters is not collected, and I don't know why. """ #FIXME: make the grad tensor collected by gc objects = gc.get_objects() tensors = [obj for obj in objects if isinstance(obj, torch.Tensor)] for t in tensors: self.device_mapping[t.device].append(t) def get_stats(self): """Get the memory stat of tensors and then release them As a memory profiler, we cannot hold the reference to any tensors, which causes possibly inaccurate memory usage stats, so we delete the tensors after getting required stats""" visited_data = {} self.device_tensor_stat.clear() def get_tensor_stat(tensor: torch.Tensor) -> List[Tuple[str, int, int, int]]: """Get the stat of a single tensor Returns: - stat: a tuple containing (tensor_name, tensor_size, tensor_numel, tensor_memory) """ assert isinstance(tensor, torch.Tensor) name = self._get_tensor_name(tensor) if tensor.is_sparse: indices_stat = get_tensor_stat(tensor._indices()) values_stat = get_tensor_stat(tensor._values()) return indices_stat + values_stat numel = tensor.numel() element_size = tensor.element_size() fact_numel = tensor.storage().size() fact_memory_size = fact_numel * element_size # since pytorch allocate at least 512 Bytes for any tensor, round # up to a multiple of 512 memory_size = math.ceil(fact_memory_size / PYTORCH_MIN_ALLOCATE) \ * PYTORCH_MIN_ALLOCATE # tensor.storage should be the actual object related to memory # allocation data_ptr = tensor.storage().data_ptr() if data_ptr in visited_data: name = '{}(->{})'.format( name, visited_data[data_ptr], ) # don't count the memory for reusing same underlying storage memory_size = 0 else: visited_data[data_ptr] = name size = tuple(tensor.size()) # torch scalar has empty size if not size: size = (1,) return [(name, size, numel, memory_size)] for device, tensors in self.device_mapping.items(): tensor_stats = [] for tensor in tensors: if tensor.numel() == 0: continue stat = get_tensor_stat(tensor) # (name, shape, numel, memory_size) tensor_stats += stat if isinstance(tensor, torch.nn.Parameter): if tensor.grad is not None: # manually specify the name of gradient tensor self.tensor_name[id(tensor.grad)] = '{}.grad'.format( self._get_tensor_name(tensor) ) stat = get_tensor_stat(tensor.grad) tensor_stats += stat self.device_tensor_stat[device] = tensor_stats self.device_mapping.clear() def print_stats(self, verbose: bool = False, target_device: Optional[torch.device] = None) -> None: # header # show_reuse = verbose # template_format = '{:<40s}{:>20s}{:>10s}' # print(template_format.format('Element type', 'Size', 'Used MEM') ) for device, tensor_stats in self.device_tensor_stat.items(): # By default, if the target_device is not specified, # print tensors on all devices if target_device is not None and device != target_device: continue # print('-' * LEN) print('\nStorage on {}'.format(device)) total_mem = 0 total_numel = 0 for stat in tensor_stats: name, size, numel, mem = stat # if not show_reuse: # name = name.split('(')[0] # print(template_format.format( # str(name), # str(size), # readable_size(mem), # )) total_mem += mem total_numel += numel print('-'*LEN) print('Total Tensors: {} \tUsed Memory: {}'.format( total_numel, readable_size(total_mem), )) if device != torch.device('cpu'): with torch.cuda.device(device): memory_allocated = torch.cuda.memory_allocated() print('The allocated memory on {}: {}'.format( device, readable_size(memory_allocated), )) if memory_allocated != total_mem: print('Memory differs due to the matrix alignment or' ' invisible gradient buffer tensors') print('-'*LEN) def report(self, verbose: bool = False, device: Optional[torch.device] = None) -> None: """Interface for end-users to directly print the memory usage args: - verbose: flag to show tensor.storage reuse information - device: `torch.device` object, specify the target device to report detailed memory usage. It will print memory usage on all devices if not specified. Usually we only want to print the memory usage on CUDA devices. """ self.collect_tensor() self.get_stats() self.print_stats(verbose, target_device=device)
7,749
Python
.py
171
33
103
0.565805
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,843
privacy.py
hkgdifyu_pFedPT/system/utils/privacy.py
from opacus import PrivacyEngine from opacus.dp_model_inspector import DPModelInspector MAX_GRAD_NORM = 1.0 EPSILON = 50.0 DELTA = 1e-7 EPOCHS = 1 * 100 N_ACCUMULATION_STEPS = 4 def initialize_dp(model, optimizer, sample_rate, dp_sigma): privacy_engine = PrivacyEngine( model, sample_rate = sample_rate * N_ACCUMULATION_STEPS, # epochs = EPOCHS, # target_epsilon = EPSILON, target_delta = DELTA, noise_multiplier = dp_sigma, max_grad_norm = MAX_GRAD_NORM, ) privacy_engine.attach(optimizer) def get_dp_params(optimizer): return optimizer.privacy_engine.get_privacy_spent(DELTA), DELTA def check_dp(model): inspector = DPModelInspector() inspector.validate(model) def dp_step(optimizer, i, len_train_loader): # take a real optimizer step after N_VIRTUAL_STEP steps t if ((i + 1) % N_ACCUMULATION_STEPS == 0) or ((i + 1) == len_train_loader): optimizer.step() else: optimizer.virtual_step() # take a virtual step
1,027
Python
.py
29
30.413793
78
0.688194
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,844
result_utils.py
hkgdifyu_pFedPT/system/utils/result_utils.py
import h5py import numpy as np import os def average_data(algorithm="", dataset="", goal="", times=10, length=800): test_acc = get_all_results_for_one_algo( algorithm, dataset, goal, times, int(length)) test_acc_data = np.average(test_acc, axis=0) max_accurancy = [] for i in range(times): max_accurancy.append(test_acc[i].max()) print("std for best accurancy:", np.std(max_accurancy)) print("mean for best accurancy:", np.mean(max_accurancy)) def get_all_results_for_one_algo(algorithm="", dataset="", goal="", times=10, length=800): test_acc = np.zeros((times, length)) algorithms_list = [algorithm] * times for i in range(times): file_name = dataset + "_" + \ algorithms_list[i] + "_" + goal + "_" + str(i) test_acc[i, :] = np.array( read_data_then_delete(file_name, delete=False))[:length] return test_acc def read_data_then_delete(file_name, delete=False): file_path = "../results/" + file_name + ".h5" with h5py.File(file_path, 'r') as hf: rs_test_acc = np.array(hf.get('rs_test_acc')) if delete: os.remove(file_path) print("Length: ", len(rs_test_acc)) return rs_test_acc
1,224
Python
.py
29
36.206897
90
0.62775
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,845
data_utils.cpython-38.pyc
hkgdifyu_pFedPT/system/utils/__pycache__/data_utils.cpython-38.pyc
U ?şcbã@sZddlZddlZddlZddlZdd„Zdd„Zdd„Zdd d „Zdd d „Z dd d„Z dS)éNccs‚|d}|d}tj ¡}tj |¡tj |¡tj |¡tdt|ƒ|ƒD].}||||…}||||…}||fVqNdS)z— data is a dict := {'x': [numpy array], 'y': [numpy array]} (on one client) returns x, y, which are both numpy array of length: batch_size ÚxÚyrN)ÚnpÚrandomÚ get_stateÚshuffleÚ set_stateÚrangeÚlen)ÚdataÚ batch_sizeÚdata_xÚdata_yÚ ran_stateÚiÚ batched_xÚ batched_y©rõYD:\京东\promot\第二次投稿\å®�验\æœ�务器\native - pro\system\utils\data_utils.pyÚ batch_datas    rcCs’t|ƒ|d}t|ƒ|kr†tj tt|dƒƒ¡}||}||t|ƒkrd||d…||d…fS||||…||||…fSn||fSdS)Né)r rrÚchoiceÚlistr )r rr Z num_partsÚ batch_idxÚ sample_indexrrrÚget_random_batch_sample#s "rcCs^|d}|d}tj ¡}tj |¡tj |¡tj |¡|d|…}|d|…}||fS)Nrrr)rrrrr)r r r rrrrrrrÚget_batch_sample0s      rTc Cs|rŠtj d||jd|jd|jd|jd|jd|jd¡}|t |ƒd}t |dƒ�}t j |dd�d  ¡}W5QRX|Stj d||jd|jd|jd|jd|jd|jd ¡}|t |ƒd} t | dƒ�}t j |dd�d  ¡} W5QRX| SdS) Nz ../datasetÚ*ztrain/z.npzÚrbT)Ú allow_pickler ztest/)ÚosÚpathÚjoinZarv1Zarv2Zarv3Zarv4Zarv5Zarv6ÚstrÚopenrÚloadÚtolist) ÚdatasetÚidxÚargsÚis_trainZtrain_data_dirZ train_fileÚfÚ train_dataZ test_data_dirÚ test_fileÚ test_datarrrÚ read_data?sF  F  r/c CsÖ|dd…dks |dd…dkr*t||ƒS|r€t||||ƒ}t |d¡ tj¡}t |d¡ tj¡}dd„t||ƒDƒ}|St||||ƒ}t |d¡ tj¡}t |d¡ tj¡} dd„t|| ƒDƒ}|SdS) NéÚagZSSrrcSsg|]\}}||f‘qSrr©Ú.0rrrrrÚ <listcomp>\sz$read_client_data.<locals>.<listcomp>cSsg|]\}}||f‘qSrrr2rrrr4bs)Úread_client_data_textr/ÚtorchÚTensorÚtypeÚfloat32Úint64Úzip) r'r(r)r*r,ÚX_trainÚy_trainr.ÚX_testÚy_testrrrÚread_client_dataSs  r@c Cs|r€t|||ƒ}tt|d�ƒ\}}|d}t |¡ tj¡}t |¡ tj¡}t |d¡ tj¡}dd„t|||ƒDƒ}|St|||ƒ}tt|d�ƒ\}} |d} t |¡ tj¡}t | ¡ tj¡} t |d¡ tj¡} dd„t|| | ƒDƒ}|SdS)NrrcSsg|]\}}}||f|f‘qSrr©r3rÚlensrrrrr4psz)read_client_data_text.<locals>.<listcomp>cSsg|]\}}}||f|f‘qSrrrArrrr4{s)r/rr;r6r7r8r:) r'r(r*r,r<Z X_train_lensr=r.r>Z X_test_lensr?rrrr5fs"  r5)T)T)T) ZujsonÚnumpyrr r6rrrr/r@r5rrrrÚ<module>s    
3,614
Python
.py
30
119.033333
601
0.35258
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,846
data_utils.cpython-37.pyc
hkgdifyu_pFedPT/system/utils/__pycache__/data_utils.cpython-37.pyc
B Ê:cc®ã@sZddlZddlZddlZddlZdd„Zdd„Zdd„Zdd d „Zdd d „Z dd d„Z dS)éNccs†|d}|d}tj ¡}tj |¡tj |¡tj |¡xBtdt|ƒ|ƒD].}||||…}||||…}||fVqPWdS)z— data is a dict := {'x': [numpy array], 'y': [numpy array]} (on one client) returns x, y, which are both numpy array of length: batch_size ÚxÚyrN)ÚnpÚrandomÚ get_stateÚshuffleÚ set_stateÚrangeÚlen)ÚdataÚ batch_sizeÚdata_xÚdata_yÚ ran_stateÚiÚ batched_xÚ batched_y©rú>/root/autodl-tmp/PFL-Non-IID-master/system/utils/data_utils.pyÚ batch_datas    rcCs’t|ƒ|d}t|ƒ|kr†tj tt|dƒƒ¡}||}||t|ƒkrd||d…||d…fS||||…||||…fSn||fSdS)Né)r rrÚchoiceÚlistr )r rr Z num_partsÚ batch_idxÚ sample_indexrrrÚget_random_batch_sample#s "rcCs^|d}|d}tj ¡}tj |¡tj |¡tj |¡|d|…}|d|…}||fS)Nrrr)rrrrr)r r r rrrrrrrÚget_batch_sample0s      rTc Cs¨|rTtj d|d¡}|t|ƒd}t|dƒ�}tj|dd�d ¡}WdQRX|Stj d|d¡}|t|ƒd}t|dƒ�}tj|dd�d ¡} WdQRX| SdS) Nz ../datasetztrain/z.npzÚrbT)Ú allow_pickler ztest/)ÚosÚpathÚjoinÚstrÚopenrÚloadÚtolist) ÚdatasetÚidxÚis_trainZtrain_data_dirZ train_fileÚfÚ train_dataZ test_data_dirÚ test_fileÚ test_datarrrÚ read_data?s    r-c CsÒ|dd…dks |dd…dkr*t||ƒS|r~t|||ƒ}t |d¡ tj¡}t |d¡ tj¡}dd„t||ƒDƒ}|St|||ƒ}t |d¡ tj¡}t |d¡ tj¡}dd„t||ƒDƒ}|SdS) NéÚagZSSrrcSsg|]\}}||f‘qSrr)Ú.0rrrrrú <listcomp>\sz$read_client_data.<locals>.<listcomp>cSsg|]\}}||f‘qSrr)r0rrrrrr1bs)Úread_client_data_textr-ÚtorchÚTensorÚtypeÚfloat32Úint64Úzip) r&r'r(r*ÚX_trainÚy_trainr,ÚX_testÚy_testrrrÚread_client_dataSs    r=c Cs|r€t|||ƒ}tt|d�ƒ\}}|d}t |¡ tj¡}t |¡ tj¡}t |d¡ tj¡}dd„t|||ƒDƒ}|St|||ƒ}tt|d�ƒ\}} |d} t |¡ tj¡}t | ¡ tj¡} t |d¡ tj¡} dd„t|| | ƒDƒ}|SdS)NrrcSsg|]\}}}||f|f‘qSrr)r0rÚlensrrrrr1psz)read_client_data_text.<locals>.<listcomp>cSsg|]\}}}||f|f‘qSrr)r0rr>rrrrr1{s)r-rr8r3r4r5r7) r&r'r(r*r9Z X_train_lensr:r,r;Z X_test_lensr<rrrr2fs"  r2)T)T)T) ZujsonÚnumpyrrr3rrrr-r=r2rrrrÚ<module>s    
3,403
Python
.py
25
134.6
606
0.356318
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,847
mem_utils.cpython-37.pyc
hkgdifyu_pFedPT/system/utils/__pycache__/mem_utils.cpython-37.pyc
B Ë:ccEã@s~ddlZddlZddlmZddlmZmZmZddlZddlm Z ddl m Z e e dœdd„Zd Zd Zd ZGd d „d ƒZdS)éN)Ú defaultdict)ÚOptionalÚTupleÚList)Úisnan)Úsize)Ú num_bytesÚreturncCst|ƒr dSd t|ƒ¡S)NÚz{:.2f})rÚformatÚcalmsize)r©r ú=/root/autodl-tmp/PFL-Non-IID-master/system/utils/mem_utils.pyÚ readable_size sréOiic@s~eZdZdZdeejjdœdd„Zej e dœdd„Z d d „Z d d „Z deeejddœdd„Zdeeejddœdd„ZdS)Ú MemReporterz§A memory reporter that collects tensors and memory usages Parameters: - model: an extra nn.Module can be passed to infer the name of Tensors N)ÚmodelcCs�i|_ttƒ|_i|_d|_ttƒ}|dk rbt|tjj ƒs>t ‚x"|  ¡D]\}}||  |¡qHWx(|  ¡D]\}}d |¡|jt|ƒ<qlWdS)Nrú+)Ú tensor_namerÚlistÚdevice_mappingÚdevice_tensor_statÚname_idxÚ isinstanceÚtorchÚnnÚModuleÚAssertionErrorÚnamed_parametersÚappendÚitemsÚjoinÚid)ÚselfrÚ tensor_namesÚnameÚparamr r rÚ__init__s zMemReporter.__init__)Útensorr cCsNt|ƒ}||jkr|j|}n,t|ƒjt|jƒ}||j|<|jd7_|S)Né)r"rÚtypeÚ__name__Ústrr)r#r(Z tensor_idr%r r rÚ_get_tensor_name0s   zMemReporter._get_tensor_namecCs:t ¡}dd„|Dƒ}x|D]}|j|j |¡qWdS)a*Collect all tensor objects tracked by python NOTICE: - the buffers for backward which is implemented in C++ are not tracked by python's reference counting. - the gradients(.grad) of Parameters is not collected, and I don't know why. cSsg|]}t|tjƒr|‘qSr )rrÚTensor)Ú.0Úobjr r rú <listcomp>Fsz.MemReporter.collect_tensor.<locals>.<listcomp>N)ÚgcÚ get_objectsrÚdevicer)r#ÚobjectsÚtensorsÚtr r rÚcollect_tensor;s  zMemReporter.collect_tensorcsÞi‰ˆj ¡tjttttttfdœ‡‡‡fdd„ ‰x–ˆj  ¡D]ˆ\}}g}xp|D]h}|  ¡dkrhqVˆ|ƒ}||7}t |tj j ƒrV|jdk rVd ˆ |¡¡ˆjt|jƒ<ˆ|jƒ}||7}qVW|ˆj|<qDWˆj ¡dS)zûGet the memory stat of tensors and then release them As a memory profiler, we cannot hold the reference to any tensors, which causes possibly inaccurate memory usage stats, so we delete the tensors after getting required stats)r(r c sÊt|tjƒst‚ˆ |¡}|jr@ˆ| ¡ƒ}ˆ| ¡ƒ}||S| ¡}|  ¡}|  ¡  ¡}||}t   |t¡t}|  ¡ ¡} | ˆkr d |ˆ| ¡}d}n|ˆ| <t|  ¡ƒ} | s¼d} || ||fgS)z±Get the stat of a single tensor Returns: - stat: a tuple containing (tensor_name, tensor_size, tensor_numel, tensor_memory) z{}(->{})r)r))rrr.rr-Ú is_sparseÚ_indicesÚ_valuesÚnumelÚ element_sizeÚstoragerÚmathÚceilÚPYTORCH_MIN_ALLOCATEÚdata_ptrr Útuple) r(r%Z indices_statZ values_statr<r=Z fact_numelZfact_memory_sizeZ memory_sizerBr)Úget_tensor_statr#Ú visited_datar rrDSs.        z.MemReporter.get_stats.<locals>.get_tensor_statrNz{}.grad)rÚclearrr.rrr,Úintrr r<rrÚ ParameterÚgradr r-rr")r#r4r6Ú tensor_statsr(Ústatr )rDr#rErÚ get_statsJs$ *,     zMemReporter.get_statsF)ÚverboseÚ target_devicer c Csîxè|j ¡D]Ú\}}|dk r&||kr&q td |¡ƒd}d}x(|D] }|\}} } } || 7}|| 7}qBWtdtƒtd |t|ƒ¡ƒ|t d¡krÚtj |¡�tj  ¡} WdQRXtd |t| ƒ¡ƒ| |krÚtdƒtdtƒq WdS)Nz Storage on {}rú-z"Total Tensors: {} Used Memory: {}ÚcpuzThe allocated memory on {}: {}zOMemory differs due to the matrix alignment or invisible gradient buffer tensors) rr Úprintr ÚLENrrr4ÚcudaÚmemory_allocated) r#rMrNr4rJZ total_memÚ total_numelrKr%rr<ÚmemrTr r rÚ print_stats”s*    zMemReporter.print_stats)rMr4r cCs"| ¡| ¡|j||d�dS)a Interface for end-users to directly print the memory usage args: - verbose: flag to show tensor.storage reuse information - device: `torch.device` object, specify the target device to report detailed memory usage. It will print memory usage on all devices if not specified. Usually we only want to print the memory usage on CUDA devices. )rNN)r8rLrW)r#rMr4r r rÚreport¾s zMemReporter.report)N)FN)FN)r+Ú __module__Ú __qualname__Ú__doc__rrrrr'r.r,r-r8rLÚboolr4rWrXr r r rrs J*r)r?r2Ú collectionsrÚtypingrrrrrr rrGr,rrRrAZPYTORCH_MIN_CACHErr r r rÚ<module>s   
5,571
Python
.py
60
87.666667
390
0.482107
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,848
data_utils.cpython-39.pyc
hkgdifyu_pFedPT/system/utils/__pycache__/data_utils.cpython-39.pyc
a f¾`c®ã@sZddlZddlZddlZddlZdd„Zdd„Zdd„Zdd d „Zdd d „Z dd d„Z dS)éNccs‚|d}|d}tj ¡}tj |¡tj |¡tj |¡tdt|ƒ|ƒD].}||||…}||||…}||fVqNdS)z— data is a dict := {'x': [numpy array], 'y': [numpy array]} (on one client) returns x, y, which are both numpy array of length: batch_size ÚxÚyrN)ÚnpÚrandomÚ get_stateÚshuffleÚ set_stateÚrangeÚlen)ÚdataÚ batch_sizeÚdata_xÚdata_yÚ ran_stateÚiÚ batched_xÚ batched_y©rúj/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/utils/data_utils.pyÚ batch_datas    rcCs’t|ƒ|d}t|ƒ|kr†tj tt|dƒƒ¡}||}||t|ƒkrd||d…||d…fS||||…||||…fSn||fSdS)Né)r rrÚchoiceÚlistr )r rr Z num_partsÚ batch_idxÚ sample_indexrrrÚget_random_batch_sample#s "rcCs^|d}|d}tj ¡}tj |¡tj |¡tj |¡|d|…}|d|…}||fS)Nrrr)rrrrr)r r r rrrrrrrÚget_batch_sample0s      rTc CsĞ|rhtj d|d¡}|t|ƒd}t|dƒ�&}tj|dd�d ¡}Wdƒn1sZ0Y|Stj d|d¡}|t|ƒd}t|dƒ�&}tj|dd�d ¡} Wdƒn1s¾0Y| SdS) Nz ../datasetztrain/z.npzÚrbT)Ú allow_pickler ztest/)ÚosÚpathÚjoinÚstrÚopenrÚloadÚtolist) ÚdatasetÚidxÚis_trainZtrain_data_dirZ train_fileÚfÚ train_dataZ test_data_dirÚ test_fileÚ test_datarrrÚ read_data?s 4 4r-c CsÒ|dd…dks |dd…dkr*t||ƒS|r~t|||ƒ}t |d¡ tj¡}t |d¡ tj¡}dd„t||ƒDƒ}|St|||ƒ}t |d¡ tj¡}t |d¡ tj¡}dd„t||ƒDƒ}|SdS) NéÚagZSSrrcSsg|]\}}||f‘qSrr©Ú.0rrrrrÚ <listcomp>\óz$read_client_data.<locals>.<listcomp>cSsg|]\}}||f‘qSrrr0rrrr2br3)Úread_client_data_textr-ÚtorchÚTensorÚtypeÚfloat32Úint64Úzip) r&r'r(r*ÚX_trainÚy_trainr,ÚX_testÚy_testrrrÚread_client_dataSs    r?c Cs|r€t|||ƒ}tt|d�ƒ\}}|d}t |¡ tj¡}t |¡ tj¡}t |d¡ tj¡}dd„t|||ƒDƒ}|St|||ƒ}tt|d�ƒ\}} |d} t |¡ tj¡}t | ¡ tj¡} t |d¡ tj¡} dd„t|| | ƒDƒ}|SdS)NrrcSsg|]\}}}||f|f‘qSrr©r1rÚlensrrrrr2pr3z)read_client_data_text.<locals>.<listcomp>cSsg|]\}}}||f|f‘qSrrr@rrrr2{r3)r-rr:r5r6r7r9) r&r'r(r*r;Z X_train_lensr<r,r=Z X_test_lensr>rrrr4fs"  r4)T)T)T) ZujsonÚnumpyrrr5rrrr-r?r4rrrrÚ<module>s    
3,490
Python
.py
25
138.08
593
0.359492
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,849
result_utils.cpython-37.pyc
hkgdifyu_pFedPT/system/utils/__pycache__/result_utils.cpython-37.pyc
B Ë:ccÇã@s:ddlZddlZddlZd dd„Zd dd„Zdd d „ZdS)éNÚé é c Csnt||||t|ƒƒ}tj|dd�}g}x"t|ƒD]}| || ¡¡q0Wtdt |¡ƒtdt  |¡ƒdS)Nr)Úaxiszstd for best accurancy:zmean for best accurancy:) Úget_all_results_for_one_algoÚintÚnpÚaverageÚrangeÚappendÚmaxÚprintÚstdÚmean) Ú algorithmÚdatasetÚgoalÚtimesÚlengthÚtest_accZ test_acc_dataZ max_accurancyÚi©rú@/root/autodl-tmp/PFL-Non-IID-master/system/utils/result_utils.pyÚ average_datasrc Csxt ||f¡}|g|}xZt|ƒD]N}|d||d|dt|ƒ}t t|dd�¡d|…||dd…f<q"W|S)NÚ_F)Údelete)rÚzerosr ÚstrÚarrayÚread_data_then_delete) rrrrrrZalgorithms_listrÚ file_namerrrrs $&rFc CsTd|d}t |d¡�}t | d¡¡}WdQRX|rBt |¡tdt|ƒƒ|S)Nz ../results/z.h5ÚrÚ rs_test_acczLength: ) Úh5pyÚFilerrÚgetÚosÚremover Úlen)r rÚ file_pathÚhfr"rrrr s  r)rrrrr)rrrrr)F)r#Únumpyrr&rrrrrrrÚ<module>s  
1,378
Python
.py
10
136.5
467
0.42575
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,850
result_utils.cpython-38.pyc
hkgdifyu_pFedPT/system/utils/__pycache__/result_utils.cpython-38.pyc
U çYgcÈã@s:ddlZddlZddlZd dd„Zd dd„Zdd d „ZdS)éNÚé é c Csjt||||t|ƒƒ}tj|dd�}g}t|ƒD]}| || ¡¡q.tdt |¡ƒtdt  |¡ƒdS)Nr)Úaxiszstd for best accurancy:zmean for best accurancy:) Úget_all_results_for_one_algoÚintÚnpÚaverageÚrangeÚappendÚmaxÚprintÚstdÚmean) Ú algorithmÚdatasetÚgoalÚtimesÚlengthÚtest_accZ test_acc_dataZ max_accurancyÚi©rõQD:\京东\promot\第二次投稿\å®�验\native - pro\system\utils\result_utils.pyÚ average_datasÿ rc Cstt ||f¡}|g|}t|ƒD]N}|d||d|dt|ƒ}t t|dd�¡d|…||dd…f<q |S)NÚ_F)Údelete)rÚzerosr ÚstrÚarrayÚread_data_then_delete) rrrrrrZalgorithms_listrÚ file_namerrrrs(  ÿÿÿÿÿ ÿÿrFc CsTd|d}t |d¡�}t | d¡¡}W5QRX|rBt |¡tdt|ƒƒ|S)Nz ../results/z.h5ÚrÚ rs_test_acczLength: ) Úh5pyÚFilerrÚgetÚosÚremover Úlen)r rÚ file_pathÚhfr"rrrr!s  r)rrrrr)rrrrr)F)r#Únumpyrr&rrrrrrrÚ<module>s  
1,442
Python
.py
11
129.818182
497
0.412587
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,851
privacy.cpython-38.pyc
hkgdifyu_pFedPT/system/utils/__pycache__/privacy.cpython-38.pyc
U e¾`cã@sPddlmZddlmZdZdZdZdZdZdd „Z d d „Z d d „Z dd„Z dS)é)Ú PrivacyEngine)ÚDPModelInspectorgğ?gI@gH¯¼šò×z>édécCs$t||tt|td�}| |¡dS)N)Ú sample_rateZ target_deltaZnoise_multiplierZ max_grad_norm)rÚN_ACCUMULATION_STEPSÚDELTAÚ MAX_GRAD_NORMÚattach)ÚmodelÚ optimizerrÚdp_sigmaÚprivacy_engine©rõND:\京东\promot\PFL-Non-IID-master\PFL-Non-IID-master\system\utils\privacy.pyÚ initialize_dp sù rcCs|j t¡tfS©N)rZget_privacy_spentr)r rrrÚ get_dp_paramssrcCstƒ}| |¡dSr)rÚvalidate)r Z inspectorrrrÚcheck_dpsrcCs2|dtdks|d|kr&| ¡n| ¡dS)Nér)rÚstepZ virtual_step)r ÚiZlen_train_loaderrrrÚdp_step s rN) ZopacusrZopacus.dp_model_inspectorrr ZEPSILONrZEPOCHSrrrrrrrrrÚ<module>s   
1,200
Python
.py
6
198.833333
480
0.445188
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,852
mem_utils.cpython-38.pyc
hkgdifyu_pFedPT/system/utils/__pycache__/mem_utils.cpython-38.pyc
U –jfcEã@s~ddlZddlZddlmZddlmZmZmZddlZddlm Z ddl m Z e e dœdd„Zd Zd Zd ZGd d „d ƒZdS)éN)Ú defaultdict)ÚOptionalÚTupleÚList)Úisnan)Úsize)Ú num_bytesÚreturncCst|ƒr dSd t|ƒ¡S)NÚz{:.2f})rÚformatÚcalmsize)r©r õBD:\京东\promot\cifar\cifar\Cifar10_iid\system\utils\mem_utils.pyÚ readable_size sréOiic@s~eZdZdZdeejjdœdd„Zej e dœdd„Z d d „Z d d „Z deeejddœdd„Zdeeejddœdd„ZdS)Ú MemReporterz§A memory reporter that collects tensors and memory usages Parameters: - model: an extra nn.Module can be passed to infer the name of Tensors N)ÚmodelcCsˆi|_ttƒ|_i|_d|_ttƒ}|dk r^t|tjj ƒs>t ‚|  ¡D]\}}||  |¡qF|  ¡D]\}}d |¡|jt|ƒ<qfdS)Nrú+)Ú tensor_namerÚlistÚdevice_mappingÚdevice_tensor_statÚname_idxÚ isinstanceÚtorchÚnnÚModuleÚAssertionErrorÚnamed_parametersÚappendÚitemsÚjoinÚid)ÚselfrÚ tensor_namesÚnameÚparamr r rÚ__init__s zMemReporter.__init__©Útensorr cCsNt|ƒ}||jkr|j|}n,t|ƒjt|jƒ}||j|<|jd7_|S)Né)r"rÚtypeÚ__name__Ústrr)r#r)Z tensor_idr%r r rÚ_get_tensor_name0s   zMemReporter._get_tensor_namecCs6t ¡}dd„|Dƒ}|D]}|j|j |¡qdS)a*Collect all tensor objects tracked by python NOTICE: - the buffers for backward which is implemented in C++ are not tracked by python's reference counting. - the gradients(.grad) of Parameters is not collected, and I don't know why. cSsg|]}t|tjƒr|‘qSr )rrÚTensor)Ú.0Úobjr r rÚ <listcomp>Fs z.MemReporter.collect_tensor.<locals>.<listcomp>N)ÚgcÚ get_objectsrÚdevicer)r#ÚobjectsÚtensorsÚtr r rÚcollect_tensor;s zMemReporter.collect_tensorcsÖi‰ˆj ¡tjttttttfdœ‡‡‡fdd„ ‰ˆj  ¡D]„\}}g}|D]h}|  ¡dkrdqRˆ|ƒ}||7}t |tj j ƒrR|jdk rRd ˆ |¡¡ˆjt|jƒ<ˆ|jƒ}||7}qR|ˆj|<qBˆj ¡dS)zûGet the memory stat of tensors and then release them As a memory profiler, we cannot hold the reference to any tensors, which causes possibly inaccurate memory usage stats, so we delete the tensors after getting required statsr(c sÊt|tjƒst‚ˆ |¡}|jr@ˆ| ¡ƒ}ˆ| ¡ƒ}||S| ¡}|  ¡}|  ¡  ¡}||}t   |t¡t}|  ¡ ¡} | ˆkr d |ˆ| ¡}d}n|ˆ| <t|  ¡ƒ} | s¼d} || ||fgS)z±Get the stat of a single tensor Returns: - stat: a tuple containing (tensor_name, tensor_size, tensor_numel, tensor_memory) z{}(->{})r)r*)rrr/rr.Ú is_sparseÚ_indicesÚ_valuesÚnumelÚ element_sizeÚstoragerÚmathÚceilÚPYTORCH_MIN_ALLOCATEÚdata_ptrr Útuple) r)r%Z indices_statZ values_statr=r>Z fact_numelZfact_memory_sizeZ memory_sizerCr©Úget_tensor_statr#Z visited_datar rrFSs2     ÿ ş z.MemReporter.get_stats.<locals>.get_tensor_statrNz{}.grad)rÚclearrr/rrr-Úintrr r=rrÚ ParameterÚgradr r.rr")r#r5r7Ú tensor_statsr)Ústatr rErÚ get_statsJs& *,  ÿ   zMemReporter.get_statsF)ÚverboseÚ target_devicer c Csæ|j ¡D]Ö\}}|dk r$||kr$q td |¡ƒd}d}|D] }|\}} } } || 7}|| 7}q>tdtƒtd |t|ƒ¡ƒ|t d¡krÔtj |¡�tj  ¡} W5QRXtd |t| ƒ¡ƒ| |krÔtdƒtdtƒq dS)Nz Storage on {}rú-z"Total Tensors: {} Used Memory: {}ÚcpuzThe allocated memory on {}: {}zOMemory differs due to the matrix alignment or invisible gradient buffer tensors) rr Úprintr ÚLENrrr5ÚcudaÚmemory_allocated) r#rNrOr5rKZ total_memÚ total_numelrLr%rr=ÚmemrUr r rÚ print_stats”s2   ÿÿzMemReporter.print_stats)rNr5r cCs"| ¡| ¡|j||d�dS)a Interface for end-users to directly print the memory usage args: - verbose: flag to show tensor.storage reuse information - device: `torch.device` object, specify the target device to report detailed memory usage. It will print memory usage on all devices if not specified. Usually we only want to print the memory usage on CUDA devices. )rON)r9rMrX)r#rNr5r r rÚreport¾s zMemReporter.report)N)FN)FN)r,Ú __module__Ú __qualname__Ú__doc__rrrrr'r/r-r.r9rMÚboolr5rXrYr r r rrs J*r)r@r3Ú collectionsrÚtypingrrrrrr rrHr-rrSrBZPYTORCH_MIN_CACHErr r r rÚ<module>s   
5,594
Python
.py
60
88.05
406
0.478292
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,853
generate_tiny_imagenet.py
hkgdifyu_pFedPT/dataset/generate_tiny_imagenet.py
import numpy as np import os import sys import random import torch import torchvision import torchvision.transforms as transforms from utils.dataset_utils import check, separate_data, split_data, save_file from torchvision.datasets import ImageFolder, DatasetFolder random.seed(1) np.random.seed(1) num_clients = int(sys.argv[4]) num_classes = 200 dir_path = "Tiny-imagenet/"+sys.argv[1]+"*"+sys.argv[2]+"*"+sys.argv[3]+"*"+sys.argv[4]+"*"+sys.argv[5]+"*"+sys.argv[6]+"/" dir_path2 = "Tiny-imagenet/" # http://cs231n.stanford.edu/tiny-imagenet-200.zip # https://github.com/QinbinLi/MOON/blob/6c7a4ed1b1a8c0724fa2976292a667a828e3ff5d/datasets.py#L148 class ImageFolder_custom(DatasetFolder): def __init__(self, root, dataidxs=None, train=True, transform=None, target_transform=None): self.root = root self.dataidxs = dataidxs self.train = train self.transform = transform self.target_transform = target_transform imagefolder_obj = ImageFolder(self.root, self.transform, self.target_transform) self.loader = imagefolder_obj.loader if self.dataidxs is not None: self.samples = np.array(imagefolder_obj.samples)[self.dataidxs] else: self.samples = np.array(imagefolder_obj.samples) def __getitem__(self, index): path = self.samples[index][0] target = self.samples[index][1] target = int(target) sample = self.loader(path) if self.transform is not None: sample = self.transform(sample) if self.target_transform is not None: target = self.target_transform(target) return sample, target def __len__(self): if self.dataidxs is None: return len(self.samples) else: return len(self.dataidxs) # Allocate data to users def generate_dataset(dir_path, num_clients, num_classes, niid, balance, partition,class_per_client,alpha): if not os.path.exists(dir_path): os.makedirs(dir_path) # Setup directory for train/test data config_path = dir_path + "config.json" train_path = dir_path + "train/" test_path = dir_path + "test/" if check(config_path, train_path, test_path, num_clients, num_classes, niid, balance, partition,alpha): return # Get data transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = ImageFolder_custom(root=dir_path2+'rawdata/tiny-imagenet-200/train/', transform=transform) testset = ImageFolder_custom(root=dir_path2+'rawdata/tiny-imagenet-200/val/', transform=transform) trainloader = torch.utils.data.DataLoader( trainset, batch_size=len(trainset), shuffle=False) testloader = torch.utils.data.DataLoader( testset, batch_size=len(testset), shuffle=False) for _, train_data in enumerate(trainloader, 0): trainset.data, trainset.targets = train_data for _, test_data in enumerate(testloader, 0): testset.data, testset.targets = test_data dataset_image = [] dataset_label = [] dataset_image.extend(trainset.data.cpu().detach().numpy()) dataset_image.extend(testset.data.cpu().detach().numpy()) dataset_label.extend(trainset.targets.cpu().detach().numpy()) dataset_label.extend(testset.targets.cpu().detach().numpy()) dataset_image = np.array(dataset_image) dataset_label = np.array(dataset_label) # dataset = [] # for i in range(num_classes): # idx = dataset_label == i # dataset.append(dataset_image[idx]) X, y, statistic = separate_data((dataset_image, dataset_label), num_clients, num_classes, niid, balance, partition, class_per_client=class_per_client,alpha = alpha) train_data, test_data = split_data(X, y) save_file(config_path, train_path, test_path, train_data, test_data, num_clients, num_classes, statistic, niid, balance, partition,alpha) if __name__ == "__main__": niid = True if sys.argv[1] == "noniid" else False balance = True if sys.argv[2] == "balance" else False partition = sys.argv[3] if sys.argv[3] != "-" else None alpha = float(sys.argv[5]) class_per_client = int(sys.argv[6]) generate_dataset(dir_path, num_clients, num_classes, niid, balance, partition,class_per_client,alpha)
4,382
Python
.py
92
41.217391
123
0.680432
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,854
generate_cifar10.py
hkgdifyu_pFedPT/dataset/generate_cifar10.py
import numpy as np import os import sys import random import torch import torchvision import torchvision.transforms as transforms from utils.dataset_utils import check, separate_data, split_data, save_file random.seed(1) np.random.seed(1) num_clients = int(sys.argv[4]) num_classes = 10 dir_path = "Cifar10/"+sys.argv[1]+"*"+sys.argv[2]+"*"+sys.argv[3]+"*"+sys.argv[4]+"*"+sys.argv[5]+"*"+sys.argv[6]+"/" dir_path2 = "Cifar10/" # Allocate data to users def generate_cifar10(dir_path, num_clients, num_classes, niid, balance, partition,class_per_client,alpha): if not os.path.exists(dir_path): os.makedirs(dir_path) # Setup directory for train/test data config_path = dir_path + "config.json" train_path = dir_path + "train/" test_path = dir_path + "test/" if check(config_path, train_path, test_path, num_clients, num_classes, niid, balance, partition,alpha): return # Get Cifar10 data transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) # transform = transforms.Compose( # [transforms.ToTensor()]) trainset = torchvision.datasets.CIFAR10( root=dir_path2+"rawdata", train=True, download=True, transform=transform) testset = torchvision.datasets.CIFAR10( root=dir_path2+"rawdata", train=False, download=True, transform=transform) trainloader = torch.utils.data.DataLoader( trainset, batch_size=len(trainset.data), shuffle=False) testloader = torch.utils.data.DataLoader( testset, batch_size=len(testset.data), shuffle=False) for _, train_data in enumerate(trainloader, 0): trainset.data, trainset.targets = train_data for _, test_data in enumerate(testloader, 0): testset.data, testset.targets = test_data dataset_image = [] dataset_label = [] dataset_image.extend(trainset.data.cpu().detach().numpy()) dataset_image.extend(testset.data.cpu().detach().numpy()) dataset_label.extend(trainset.targets.cpu().detach().numpy()) dataset_label.extend(testset.targets.cpu().detach().numpy()) dataset_image = np.array(dataset_image) dataset_label = np.array(dataset_label) # dataset = [] # for i in range(num_classes): # idx = dataset_label == i # dataset.append(dataset_image[idx]) X, y, statistic = separate_data((dataset_image, dataset_label), num_clients, num_classes, niid, balance, partition, class_per_client=class_per_client,alpha = alpha) train_data, test_data = split_data(X, y) save_file(config_path, train_path, test_path, train_data, test_data, num_clients, num_classes, statistic, niid, balance, partition,alpha) if __name__ == "__main__": niid = True if sys.argv[1] == "noniid" else False balance = True if sys.argv[2] == "balance" else False partition = sys.argv[3] if sys.argv[3] != "-" else None alpha = float(sys.argv[5]) class_per_client = int(sys.argv[6]) # niid = True # balance = True # partition = 'dir' generate_cifar10(dir_path, num_clients, num_classes, niid, balance, partition,class_per_client,alpha)
3,202
Python
.py
68
41.544118
117
0.679343
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,855
generate_cifar100.py
hkgdifyu_pFedPT/dataset/generate_cifar100.py
import numpy as np import os import sys import random import torch import torchvision import torchvision.transforms as transforms from utils.dataset_utils import check, separate_data, split_data, save_file random.seed(1) np.random.seed(1) num_clients = int(sys.argv[4]) num_classes = 100 dir_path = "Cifar100/"+sys.argv[1]+"*"+sys.argv[2]+"*"+sys.argv[3]+"*"+sys.argv[4]+"*"+sys.argv[5]+"*"+sys.argv[6]+"/" dir_path2 = "Cifar100/" # Allocate data to users def generate_cifar100(dir_path, num_clients, num_classes, niid, balance, partition,class_per_client,alpha): if not os.path.exists(dir_path): os.makedirs(dir_path) # Setup directory for train/test data config_path = dir_path + "config.json" train_path = dir_path + "train/" test_path = dir_path + "test/" if check(config_path, train_path, test_path, num_clients, num_classes, niid, balance, partition,alpha): return # Get Cifar100 data transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR100( root=dir_path2+"rawdata", train=True, download=True, transform=transform) testset = torchvision.datasets.CIFAR100( root=dir_path2+"rawdata", train=False, download=True, transform=transform) trainloader = torch.utils.data.DataLoader( trainset, batch_size=len(trainset.data), shuffle=False) testloader = torch.utils.data.DataLoader( testset, batch_size=len(testset.data), shuffle=False) for _, train_data in enumerate(trainloader, 0): trainset.data, trainset.targets = train_data for _, test_data in enumerate(testloader, 0): testset.data, testset.targets = test_data dataset_image = [] dataset_label = [] dataset_image.extend(trainset.data.cpu().detach().numpy()) dataset_image.extend(testset.data.cpu().detach().numpy()) dataset_label.extend(trainset.targets.cpu().detach().numpy()) dataset_label.extend(testset.targets.cpu().detach().numpy()) dataset_image = np.array(dataset_image) dataset_label = np.array(dataset_label) # dataset = [] # for i in range(num_classes): # idx = dataset_label == i # dataset.append(dataset_image[idx]) X, y, statistic = separate_data((dataset_image, dataset_label), num_clients, num_classes, niid, balance, partition, class_per_client=class_per_client,alpha = alpha) train_data, test_data = split_data(X, y) save_file(config_path, train_path, test_path, train_data, test_data, num_clients, num_classes, statistic, niid, balance, partition,alpha) if __name__ == "__main__": niid = True if sys.argv[1] == "noniid" else False balance = True if sys.argv[2] == "balance" else False partition = sys.argv[3] if sys.argv[3] != "-" else None alpha = float(sys.argv[5]) class_per_client = int(sys.argv[6]) generate_cifar100(dir_path, num_clients, num_classes, niid, balance, partition,class_per_client,alpha)
3,074
Python
.py
63
43.206349
118
0.684899
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,856
dataset_utils.py
hkgdifyu_pFedPT/dataset/utils/dataset_utils.py
import os import ujson import numpy as np import gc from sklearn.model_selection import train_test_split batch_size = 2 train_size = 0.75 # merge original training set and test set, then split it manually. least_samples = batch_size / (1-train_size) # least samples for each client # for Dirichlet distribution def check(config_path, train_path, test_path, num_clients, num_classes, niid=False, balance=True, partition=None,alpha = 0.1): # check existing dataset if os.path.exists(config_path): with open(config_path, 'r') as f: config = ujson.load(f) if config['num_clients'] == num_clients and \ config['num_classes'] == num_classes and \ config['non_iid'] == niid and \ config['balance'] == balance and \ config['partition'] == partition and \ config['alpha'] == alpha and \ config['batch_size'] == batch_size: print("\nDataset already generated.\n") return True dir_path = os.path.dirname(train_path) if not os.path.exists(dir_path): os.makedirs(dir_path) dir_path = os.path.dirname(test_path) if not os.path.exists(dir_path): os.makedirs(dir_path) return False def separate_data(data, num_clients, num_classes, niid=False, balance=False, partition=None, class_per_client=2,alpha = 0.1): X = [[] for _ in range(num_clients)] y = [[] for _ in range(num_clients)] statistic = [[] for _ in range(num_clients)] dataset_content, dataset_label = data dataidx_map = {} if not niid: partition = 'pat' class_per_client = num_classes if partition == 'pat': idxs = np.array(range(len(dataset_label))) idx_for_each_class = [] for i in range(num_classes): idx_for_each_class.append(idxs[dataset_label == i]) class_num_per_client = [class_per_client for _ in range(num_clients)] for i in range(num_classes): selected_clients = [] for client in range(num_clients): if class_num_per_client[client] > 0: selected_clients.append(client) selected_clients = selected_clients[:int(num_clients/num_classes*class_per_client)] num_all_samples = len(idx_for_each_class[i]) num_selected_clients = len(selected_clients) num_per = num_all_samples / num_selected_clients if balance: num_samples = [int(num_per) for _ in range(num_selected_clients-1)] else: num_samples = np.random.randint(max(num_per/10, least_samples/num_classes), num_per, num_selected_clients-1).tolist() num_samples.append(num_all_samples-sum(num_samples)) idx = 0 for client, num_sample in zip(selected_clients, num_samples): if client not in dataidx_map.keys(): dataidx_map[client] = idx_for_each_class[i][idx:idx+num_sample] else: dataidx_map[client] = np.append(dataidx_map[client], idx_for_each_class[i][idx:idx+num_sample], axis=0) idx += num_sample class_num_per_client[client] -= 1 elif partition == "dir": # https://github.com/IBM/probabilistic-federated-neural-matching/blob/master/experiment.py min_size = 0 K = num_classes N = len(dataset_label) while min_size < least_samples: idx_batch = [[] for _ in range(num_clients)] for k in range(K): idx_k = np.where(dataset_label == k)[0] np.random.shuffle(idx_k) proportions = np.random.dirichlet(np.repeat(alpha, num_clients)) proportions = np.array([p*(len(idx_j)<N/num_clients) for p,idx_j in zip(proportions,idx_batch)]) proportions = proportions/proportions.sum() proportions = (np.cumsum(proportions)*len(idx_k)).astype(int)[:-1] idx_batch = [idx_j + idx.tolist() for idx_j,idx in zip(idx_batch,np.split(idx_k,proportions))] min_size = min([len(idx_j) for idx_j in idx_batch]) for j in range(num_clients): dataidx_map[j] = idx_batch[j] else: raise NotImplementedError # assign data for client in range(num_clients): idxs = dataidx_map[client] X[client] = dataset_content[idxs] y[client] = dataset_label[idxs] for i in np.unique(y[client]): statistic[client].append((int(i), int(sum(y[client]==i)))) del data # gc.collect() for client in range(num_clients): print(f"Client {client}\t Size of data: {len(X[client])}\t Labels: ", np.unique(y[client])) print(f"\t\t Samples of labels: ", [i for i in statistic[client]]) print("-" * 50) return X, y, statistic def split_data(X, y): # Split dataset train_data, test_data = [], [] num_samples = {'train':[], 'test':[]} for i in range(len(y)): unique, count = np.unique(y[i], return_counts=True) if min(count) > 1: X_train, X_test, y_train, y_test = train_test_split( X[i], y[i], train_size=train_size, shuffle=True) else: X_train, X_test, y_train, y_test = train_test_split( X[i], y[i], train_size=train_size, shuffle=True) train_data.append({'x': X_train, 'y': y_train}) num_samples['train'].append(len(y_train)) test_data.append({'x': X_test, 'y': y_test}) num_samples['test'].append(len(y_test)) print("Total number of samples:", sum(num_samples['train'] + num_samples['test'])) print("The number of train samples:", num_samples['train']) print("The number of test samples:", num_samples['test']) print() del X, y # gc.collect() return train_data, test_data def save_file(config_path, train_path, test_path, train_data, test_data, num_clients, num_classes, statistic, niid=False, balance=True, partition=None,alpha = 0.1): config = { 'num_clients': num_clients, 'num_classes': num_classes, 'non_iid': niid, 'balance': balance, 'partition': partition, 'Size of samples for labels in clients': statistic, 'alpha': alpha, 'batch_size': batch_size, } # gc.collect() print("Saving to disk.\n") for idx, train_dict in enumerate(train_data): with open(train_path + str(idx) + '.npz', 'wb') as f: np.savez_compressed(f, data=train_dict) for idx, test_dict in enumerate(test_data): with open(test_path + str(idx) + '.npz', 'wb') as f: np.savez_compressed(f, data=test_dict) with open(config_path, 'w') as f: ujson.dump(config, f) print("Finish generating dataset.\n")
6,882
Python
.py
148
36.925676
133
0.596533
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,857
dataset_utils.cpython-38.pyc
hkgdifyu_pFedPT/dataset/utils/__pycache__/dataset_utils.cpython-38.pyc
U )Qgcâã@sjddlZddlZddlZddlZddlmZdZdZedeZ dd d „Z dd d „Z d d„Z ddd„Z dS)éN)Útrain_test_splitégè?éFTçš™™™™™¹?c CsÔtj |¡rŒt|dƒ�} t | ¡} W5QRX| d|krŒ| d|krŒ| d|krŒ| d|krŒ| d|krŒ| d|krŒ| dtkrŒtd ƒd Stj |¡} tj | ¡s®t  | ¡tj |¡} tj | ¡sĞt  | ¡d S) NÚrÚ num_clientsÚ num_classesÚnon_iidÚbalanceÚ partitionÚalphaÚ batch_sizez Dataset already generated. TF) ÚosÚpathÚexistsÚopenÚujsonÚloadr ÚprintÚdirnameÚmakedirs) Ú config_pathÚ train_pathÚ test_pathrrÚniidr r r ÚfÚconfigÚdir_path©rõMD:\京东\promot\第二次投稿\å®�验\native\dataset\utils\dataset_utils.pyÚcheck s2    ÿ ş ı ü û ú      r c sÚdd„tˆƒDƒ}dd„tˆƒDƒ} dd„tˆƒDƒ} |\} } i} |sNd}|‰|dk�rğt tt| ƒƒ¡}g}t|ƒD]}| || |k¡qv‡fdd„tˆƒDƒ}t|ƒD�]<}g}tˆƒD]2}||dkrØ| |¡|dtˆ|ˆƒ…}q¾t||ƒ}t|ƒ}||‰|�r0‡fdd„t|d ƒDƒ}n&tj tˆd t |ƒˆ|d ¡  ¡}| |t |ƒ¡d}t ||ƒD]r\}}||   ¡k�r¦|||||…| |<n(tj| ||||||…dd �| |<||7}||d 8<�qvq¬�n|d k�rd}|}t| ƒ‰|t k�ræd d„tˆƒDƒ}t|ƒD]²}t | |k¡d}tj |¡tj t |ˆ¡¡}t ‡‡fdd„t ||ƒDƒ¡}||  ¡}t |¡t|ƒ t¡dd…}dd„t |t ||¡ƒDƒ}tdd„|Dƒƒ}�q.�q tˆƒD]}||| |<�qînt‚tˆƒD]b}| |}| |||<| || |<t | |¡D],}| | t|ƒtt | ||kƒƒf¡�qB�q~tˆƒD]P}td|›dt||ƒ›d�t | |¡ƒtddd„| |Dƒƒtdƒ�q~|| | fS)NcSsg|]}g‘qSrr©Ú.0Ú_rrrÚ <listcomp>&sz!separate_data.<locals>.<listcomp>cSsg|]}g‘qSrrr!rrrr$'scSsg|]}g‘qSrrr!rrrr$(sÚpatcsg|]}ˆ‘qSrrr!)Úclass_per_clientrrr$8srcsg|] }tˆƒ‘qSr)Úintr!)Únum_perrrr$Dsré )ÚaxisÚdircSsg|]}g‘qSrrr!rrrr$Yscs$g|]\}}|t|ƒˆˆk‘qSr©Úlen)r"ÚpÚidx_j)ÚNrrrr$^séÿÿÿÿcSsg|]\}}|| ¡‘qSr)Útolist)r"r/Úidxrrrr$ascSsg|] }t|ƒ‘qSrr,)r"r/rrrr$bszClient z Size of data: z Labels: z Samples of labels: cSsg|]}|‘qSrr)r"Úirrrr$xsz2--------------------------------------------------)ÚrangeÚnpÚarrayr-Úappendr'ÚrandomÚrandintÚmaxÚ least_samplesr2ÚsumÚzipÚkeysÚwhereÚshuffleÚ dirichletÚrepeatÚcumsumÚastypeÚsplitÚminÚNotImplementedErrorÚuniquer) Údatarrrr r r&r ÚXÚyÚ statisticZdataset_contentÚ dataset_labelZ dataidx_mapÚidxsZidx_for_each_classr4Zclass_num_per_clientZselected_clientsÚclientZnum_all_samplesZnum_selected_clientsÚ num_samplesr3Z num_sampleÚmin_sizeÚKZ idx_batchÚkZidx_kZ proportionsÚjr)r0r&rr(rÚ separate_data%s€      &(           . * rVc Csgg}}ggdœ}tt|ƒƒD]¬}tj||dd�\}}t|ƒdkrht||||tdd�\}} } } n t||||tdd�\}} } } | || dœ¡|d t| ƒ¡| | | dœ¡|d t| ƒ¡q td t |d|dƒƒtd |dƒtd |dƒtƒ~~||fS) N)ÚtrainÚtestT)Ú return_countsr)Ú train_sizerA)ÚxrLrWrXzTotal number of samples:zThe number of train samples:zThe number of test samples:) r5r-r6rIrGrrZr8rr=) rKrLÚ train_dataÚ test_datarQr4rIÚcountZX_trainZX_testZy_trainZy_testrrrÚ split_data~s6   ÿÿr_c  CsĞ|||| | || tdœ} tdƒt|ƒD]8\} }t|t| ƒddƒ�}tj||d�W5QRXq&t|ƒD]8\} }t|t| ƒddƒ�}tj||d�W5QRXqht|dƒ�}t | |¡W5QRXtdƒdS)N)rrr r r z%Size of samples for labels in clientsr r zSaving to disk. z.npzÚwb)rJÚwzFinish generating dataset. ) r rÚ enumeraterÚstrr6Úsavez_compressedrÚdump)rrrr\r]rrrMrr r r rr3Z train_dictrZ test_dictrrrÚ save_filešs&ø  rf)FTNr)FFNrr)FTNr)rrÚnumpyr6ÚgcZsklearn.model_selectionrr rZr<r rVr_rfrrrrÚ<module>s&  ÿ  Yÿ
5,383
Python
.py
63
84.365079
504
0.367224
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,858
dataset_utils.cpython-37.pyc
hkgdifyu_pFedPT/dataset/utils/__pycache__/dataset_utils.cpython-37.pyc
B 4ØccÊã@snddlZddlZddlZddlZddlmZdZdZedeZ dZ dd d „Z dd d „Z d d„Z ddd„ZdS)éN)Útrain_test_splitégè?égš™™™™™¹?FTc CsÔtj |¡rŒt|dƒ�}t |¡} WdQRX| d|krŒ| d|krŒ| d|krŒ| d|krŒ| d|krŒ| dtkrŒ| dtkrŒtd ƒd Stj  |¡} tj | ¡s®t  | ¡tj  |¡} tj | ¡sĞt  | ¡d S) NÚrÚ num_clientsÚ num_classesÚnon_iidÚbalanceÚ partitionÚalphaÚ batch_sizez Dataset already generated. TF) ÚosÚpathÚexistsÚopenÚujsonÚloadr r ÚprintÚdirnameÚmakedirs) Ú config_pathÚ train_pathÚ test_pathrrÚniidr r ÚfÚconfigÚdir_path©rúB/root/autodl-tmp/PFL-Non-IID-master/dataset/utils/dataset_utils.pyÚcheck s&               rc sdd„tˆƒDƒ}dd„tˆƒDƒ}dd„tˆƒDƒ} |\} } i} |sNd}|‰|dk�rt tt| ƒƒ¡} g}x"t|ƒD]}| | | |k¡qxW‡fdd„tˆƒDƒ}�xzt|ƒD�]D}g}x>tˆƒD]2}||dkrâ| |¡|dtˆ|ˆƒ…}qÈWt||ƒ}t|ƒ}||‰|�r<‡fdd„t|d ƒDƒ}n&tj tˆd t |ƒˆ|d ¡  ¡}| |t |ƒ¡d}x€t ||ƒD]r\}}||   ¡k�r´|||||…| |<n(tj| ||||||…dd �| |<||7}||d 8<�q„Wq´W�n$|d k�r"d}|}t| ƒ‰xâ|t k�rşd d„tˆƒDƒ}x¾t|ƒD]²}t | |k¡d}tj |¡tj t tˆ¡¡}t ‡‡fdd„t ||ƒDƒ¡}||  ¡}t |¡t|ƒ t¡dd…}dd„t |t ||¡ƒDƒ}tdd„|Dƒƒ}�qDW�qWx$tˆƒD]}||| |<�q Wnt‚xrtˆƒD]f}| |} | | ||<| | ||<x>t ||¡D],}| | t|ƒtt |||kƒƒf¡�qdW�q0W~x\tˆƒD]P}td|›dt||ƒ›d�t ||¡ƒtddd„| |Dƒƒtdƒ�q¦W||| fS)NcSsg|]}g‘qSrr)Ú.0Ú_rrrú <listcomp>&sz!separate_data.<locals>.<listcomp>cSsg|]}g‘qSrr)r r!rrrr"'scSsg|]}g‘qSrr)r r!rrrr"(sÚpatcsg|]}ˆ‘qSrr)r r!)Úclass_per_clientrrr"8srcsg|] }tˆƒ‘qSr)Úint)r r!)Únum_perrrr"Dsré )ÚaxisÚdircSsg|]}g‘qSrr)r r!rrrr"Yscs$g|]\}}|t|ƒˆˆk‘qSr)Úlen)r ÚpÚidx_j)ÚNrrrr"^séÿÿÿÿcSsg|]\}}|| ¡‘qSr)Útolist)r r,Úidxrrrr"ascSsg|] }t|ƒ‘qSr)r*)r r,rrrr"bszClient z Size of data: z Labels: z Samples of labels: cSsg|]}|‘qSrr)r Úirrrr"xsz2--------------------------------------------------)ÚrangeÚnpÚarrayr*Úappendr%ÚrandomÚrandintÚmaxÚ least_samplesr/ÚsumÚzipÚkeysÚwhereÚshuffleÚ dirichletÚrepeatr ÚcumsumÚastypeÚsplitÚminÚNotImplementedErrorÚuniquer)Údatarrrr r r$ÚXÚyÚ statisticZdataset_contentÚ dataset_labelZ dataidx_mapÚidxsZidx_for_each_classr1Zclass_num_per_clientZselected_clientsÚclientZnum_all_samplesZnum_selected_clientsÚ num_samplesr0Z num_sampleÚmin_sizeÚKZ idx_batchÚkZidx_kZ proportionsÚjr)r-r$rr&rÚ separate_data%s€    &(        2*rSc Csgg}}ggdœ}x¼tt|ƒƒD]¬}tj||dd�\}}t|ƒdkrjt||||tdd�\}} } } n t||||tdd�\}} } } | || dœ¡|d t| ƒ¡| | | dœ¡|d t| ƒ¡q"Wtd t |d|dƒƒtd |dƒtd |dƒtƒ~~||fS) N)ÚtrainÚtestT)Ú return_countsr)Ú train_sizer>)ÚxrIrTrUzTotal number of samples:zThe number of train samples:zThe number of test samples:) r2r*r3rFrDrrWr5rr:) rHrIÚ train_dataÚ test_datarNr1rFÚcountZX_trainZX_testZy_trainZy_testrrrÚ split_data~s&    r\c  CsØ|||| | |ttdœ} tdƒxDt|ƒD]8\} } t|t| ƒddƒ�}tj|| d�WdQRXq(WxDt|ƒD]8\} }t|t| ƒddƒ�}tj||d�WdQRXqnWt|dƒ�}t  | |¡WdQRXtdƒdS)N)rrrr r z%Size of samples for labels in clientsr r zSaving to disk. z.npzÚwb)rGÚwzFinish generating dataset. ) r r rÚ enumeraterÚstrr3Úsavez_compressedrÚdump)rrrrYrZrrrJrr r rr0Z train_dictrZ test_dictrrrÚ save_filešs$ rc)FTN)FFNr)FTN)r rÚnumpyr3ÚgcZsklearn.model_selectionrr rWr9r rrSr\rcrrrrÚ<module>s    Y
5,332
Python
.py
54
97.592593
489
0.37526
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,859
dataset_utils-checkpoint.py
hkgdifyu_pFedPT/dataset/utils/.ipynb_checkpoints/dataset_utils-checkpoint.py
import os import ujson import numpy as np import gc from sklearn.model_selection import train_test_split batch_size = 2 train_size = 0.75 # merge original training set and test set, then split it manually. least_samples = batch_size / (1-train_size) # least samples for each client alpha = 0.1 # for Dirichlet distribution def check(config_path, train_path, test_path, num_clients, num_classes, niid=False, balance=True, partition=None): # check existing dataset if os.path.exists(config_path): with open(config_path, 'r') as f: config = ujson.load(f) if config['num_clients'] == num_clients and \ config['num_classes'] == num_classes and \ config['non_iid'] == niid and \ config['balance'] == balance and \ config['partition'] == partition and \ config['alpha'] == alpha and \ config['batch_size'] == batch_size: print("\nDataset already generated.\n") return True dir_path = os.path.dirname(train_path) if not os.path.exists(dir_path): os.makedirs(dir_path) dir_path = os.path.dirname(test_path) if not os.path.exists(dir_path): os.makedirs(dir_path) return False def separate_data(data, num_clients, num_classes, niid=False, balance=False, partition=None, class_per_client=2): X = [[] for _ in range(num_clients)] y = [[] for _ in range(num_clients)] statistic = [[] for _ in range(num_clients)] dataset_content, dataset_label = data dataidx_map = {} if not niid: partition = 'pat' class_per_client = num_classes if partition == 'pat': idxs = np.array(range(len(dataset_label))) idx_for_each_class = [] for i in range(num_classes): idx_for_each_class.append(idxs[dataset_label == i]) class_num_per_client = [class_per_client for _ in range(num_clients)] for i in range(num_classes): selected_clients = [] for client in range(num_clients): if class_num_per_client[client] > 0: selected_clients.append(client) selected_clients = selected_clients[:int(num_clients/num_classes*class_per_client)] num_all_samples = len(idx_for_each_class[i]) num_selected_clients = len(selected_clients) num_per = num_all_samples / num_selected_clients if balance: num_samples = [int(num_per) for _ in range(num_selected_clients-1)] else: num_samples = np.random.randint(max(num_per/10, least_samples/num_classes), num_per, num_selected_clients-1).tolist() num_samples.append(num_all_samples-sum(num_samples)) idx = 0 for client, num_sample in zip(selected_clients, num_samples): if client not in dataidx_map.keys(): dataidx_map[client] = idx_for_each_class[i][idx:idx+num_sample] else: dataidx_map[client] = np.append(dataidx_map[client], idx_for_each_class[i][idx:idx+num_sample], axis=0) idx += num_sample class_num_per_client[client] -= 1 elif partition == "dir": # https://github.com/IBM/probabilistic-federated-neural-matching/blob/master/experiment.py min_size = 0 K = num_classes N = len(dataset_label) while min_size < least_samples: idx_batch = [[] for _ in range(num_clients)] for k in range(K): idx_k = np.where(dataset_label == k)[0] np.random.shuffle(idx_k) proportions = np.random.dirichlet(np.repeat(alpha, num_clients)) proportions = np.array([p*(len(idx_j)<N/num_clients) for p,idx_j in zip(proportions,idx_batch)]) proportions = proportions/proportions.sum() proportions = (np.cumsum(proportions)*len(idx_k)).astype(int)[:-1] idx_batch = [idx_j + idx.tolist() for idx_j,idx in zip(idx_batch,np.split(idx_k,proportions))] min_size = min([len(idx_j) for idx_j in idx_batch]) for j in range(num_clients): dataidx_map[j] = idx_batch[j] else: raise NotImplementedError # assign data for client in range(num_clients): idxs = dataidx_map[client] X[client] = dataset_content[idxs] y[client] = dataset_label[idxs] for i in np.unique(y[client]): statistic[client].append((int(i), int(sum(y[client]==i)))) del data # gc.collect() for client in range(num_clients): print(f"Client {client}\t Size of data: {len(X[client])}\t Labels: ", np.unique(y[client])) print(f"\t\t Samples of labels: ", [i for i in statistic[client]]) print("-" * 50) return X, y, statistic def split_data(X, y): # Split dataset train_data, test_data = [], [] num_samples = {'train':[], 'test':[]} for i in range(len(y)): unique, count = np.unique(y[i], return_counts=True) if min(count) > 1: X_train, X_test, y_train, y_test = train_test_split( X[i], y[i], train_size=train_size, shuffle=True) else: X_train, X_test, y_train, y_test = train_test_split( X[i], y[i], train_size=train_size, shuffle=True) train_data.append({'x': X_train, 'y': y_train}) num_samples['train'].append(len(y_train)) test_data.append({'x': X_test, 'y': y_test}) num_samples['test'].append(len(y_test)) print("Total number of samples:", sum(num_samples['train'] + num_samples['test'])) print("The number of train samples:", num_samples['train']) print("The number of test samples:", num_samples['test']) print() del X, y # gc.collect() return train_data, test_data def save_file(config_path, train_path, test_path, train_data, test_data, num_clients, num_classes, statistic, niid=False, balance=True, partition=None): config = { 'num_clients': num_clients, 'num_classes': num_classes, 'non_iid': niid, 'balance': balance, 'partition': partition, 'Size of samples for labels in clients': statistic, 'alpha': alpha, 'batch_size': batch_size, } # gc.collect() print("Saving to disk.\n") for idx, train_dict in enumerate(train_data): with open(train_path + str(idx) + '.npz', 'wb') as f: np.savez_compressed(f, data=train_dict) for idx, test_dict in enumerate(test_data): with open(test_path + str(idx) + '.npz', 'wb') as f: np.savez_compressed(f, data=test_dict) with open(config_path, 'w') as f: ujson.dump(config, f) print("Finish generating dataset.\n")
6,858
Python
.py
148
36.763514
133
0.596581
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,860
generate_cifar10-checkpoint.py
hkgdifyu_pFedPT/dataset/.ipynb_checkpoints/generate_cifar10-checkpoint.py
import numpy as np import os import sys import random import torch import torchvision import torchvision.transforms as transforms from utils.dataset_utils import check, separate_data, split_data, save_file random.seed(1) np.random.seed(1) num_clients = 200 num_classes = 10 dir_path = "Cifar10/" # Allocate data to users def generate_cifar10(dir_path, num_clients, num_classes, niid, balance, partition): if not os.path.exists(dir_path): os.makedirs(dir_path) # Setup directory for train/test data config_path = dir_path + "config.json" train_path = dir_path + "train/" test_path = dir_path + "test/" if check(config_path, train_path, test_path, num_clients, num_classes, niid, balance, partition): return # Get Cifar10 data transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR10( root=dir_path+"rawdata", train=True, download=True, transform=transform) testset = torchvision.datasets.CIFAR10( root=dir_path+"rawdata", train=False, download=True, transform=transform) trainloader = torch.utils.data.DataLoader( trainset, batch_size=len(trainset.data), shuffle=False) testloader = torch.utils.data.DataLoader( testset, batch_size=len(testset.data), shuffle=False) for _, train_data in enumerate(trainloader, 0): trainset.data, trainset.targets = train_data for _, test_data in enumerate(testloader, 0): testset.data, testset.targets = test_data dataset_image = [] dataset_label = [] dataset_image.extend(trainset.data.cpu().detach().numpy()) dataset_image.extend(testset.data.cpu().detach().numpy()) dataset_label.extend(trainset.targets.cpu().detach().numpy()) dataset_label.extend(testset.targets.cpu().detach().numpy()) dataset_image = np.array(dataset_image) dataset_label = np.array(dataset_label) # dataset = [] # for i in range(num_classes): # idx = dataset_label == i # dataset.append(dataset_image[idx]) X, y, statistic = separate_data((dataset_image, dataset_label), num_clients, num_classes, niid, balance, partition) train_data, test_data = split_data(X, y) save_file(config_path, train_path, test_path, train_data, test_data, num_clients, num_classes, statistic, niid, balance, partition) if __name__ == "__main__": # niid = True if sys.argv[1] == "noniid" else False # balance = True if sys.argv[2] == "balance" else False # partition = sys.argv[3] if sys.argv[3] != "-" else None niid = True balance = True partition = 'dir' generate_cifar10(dir_path, num_clients, num_classes, niid, balance, partition)
2,816
Python
.py
63
39.063492
101
0.683805
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,861
generate_agnews-checkpoint.py
hkgdifyu_pFedPT/dataset/.ipynb_checkpoints/generate_agnews-checkpoint.py
import numpy as np import os import sys import random import torchtext from utils.dataset_utils import check, separate_data, split_data, save_file from torchtext.data.utils import get_tokenizer from torchtext.vocab import build_vocab_from_iterator random.seed(1) np.random.seed(1) num_clients = 20 num_classes = 4 max_len = 200 dir_path = "agnews/" # Allocate data to users def generate_agnews(dir_path, num_clients, num_classes, niid, balance, partition): if not os.path.exists(dir_path): os.makedirs(dir_path) # Setup directory for train/test data config_path = dir_path + "config.json" train_path = dir_path + "train/" test_path = dir_path + "test/" if check(config_path, train_path, test_path, num_clients, num_classes, niid, balance, partition): return # Get AG_News data trainset, testset = torchtext.datasets.AG_NEWS(root=dir_path+"rawdata") trainlabel, traintext = list(zip(*trainset)) testlabel, testtext = list(zip(*testset)) dataset_text = [] dataset_label = [] dataset_text.extend(traintext) dataset_text.extend(testtext) dataset_label.extend(trainlabel) dataset_label.extend(testlabel) tokenizer = get_tokenizer('basic_english') vocab = build_vocab_from_iterator(map(tokenizer, iter(dataset_text)), specials=["<unk>"]) vocab.set_default_index(vocab["<unk>"]) text_pipeline = lambda x: vocab(tokenizer(x)) label_pipeline = lambda x: int(x) - 1 def text_transform(text, label, max_len=0): label_list, text_list = [], [] for _text, _label in zip(text, label): label_list.append(label_pipeline(_label)) text_ = text_pipeline(_text) padding = [0 for i in range(max_len-len(text_))] text_.extend(padding) text_list.append(text_[:max_len]) return label_list, text_list label_list, text_list = text_transform(dataset_text, dataset_label, max_len) text_lens = [len(text) for text in text_list] # max_len = max(text_lens) # label_list, text_list = text_transform(dataset_text, dataset_label, max_len) text_list = [(text, l) for text, l in zip(text_list, text_lens)] text_list = np.array(text_list, dtype=object) label_list = np.array(label_list) # dataset = [] # for i in range(num_classes): # idx = label_list == i # dataset.append(text_list[idx]) X, y, statistic = separate_data((text_list, label_list), num_clients, num_classes, niid, balance, partition) train_data, test_data = split_data(X, y) save_file(config_path, train_path, test_path, train_data, test_data, num_clients, num_classes, statistic, niid, balance, partition) print("The size of vocabulary:", len(vocab)) if __name__ == "__main__": niid = True if sys.argv[1] == "noniid" else False balance = True if sys.argv[2] == "balance" else False partition = sys.argv[3] if sys.argv[3] != "-" else None generate_agnews(dir_path, num_clients, num_classes, niid, balance, partition)
3,059
Python
.py
69
38.884058
112
0.675
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,862
generate_cifar100-checkpoint.py
hkgdifyu_pFedPT/dataset/.ipynb_checkpoints/generate_cifar100-checkpoint.py
import numpy as np import os import sys import random import torch import torchvision import torchvision.transforms as transforms from utils.dataset_utils import check, separate_data, split_data, save_file random.seed(1) np.random.seed(1) num_clients = 20 num_classes = 100 dir_path = "Cifar100/" # Allocate data to users def generate_cifar100(dir_path, num_clients, num_classes, niid, balance, partition): if not os.path.exists(dir_path): os.makedirs(dir_path) # Setup directory for train/test data config_path = dir_path + "config.json" train_path = dir_path + "train/" test_path = dir_path + "test/" if check(config_path, train_path, test_path, num_clients, num_classes, niid, balance, partition): return # Get Cifar100 data transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR100( root=dir_path+"rawdata", train=True, download=True, transform=transform) testset = torchvision.datasets.CIFAR100( root=dir_path+"rawdata", train=False, download=True, transform=transform) trainloader = torch.utils.data.DataLoader( trainset, batch_size=len(trainset.data), shuffle=False) testloader = torch.utils.data.DataLoader( testset, batch_size=len(testset.data), shuffle=False) for _, train_data in enumerate(trainloader, 0): trainset.data, trainset.targets = train_data for _, test_data in enumerate(testloader, 0): testset.data, testset.targets = test_data dataset_image = [] dataset_label = [] dataset_image.extend(trainset.data.cpu().detach().numpy()) dataset_image.extend(testset.data.cpu().detach().numpy()) dataset_label.extend(trainset.targets.cpu().detach().numpy()) dataset_label.extend(testset.targets.cpu().detach().numpy()) dataset_image = np.array(dataset_image) dataset_label = np.array(dataset_label) # dataset = [] # for i in range(num_classes): # idx = dataset_label == i # dataset.append(dataset_image[idx]) X, y, statistic = separate_data((dataset_image, dataset_label), num_clients, num_classes, niid, balance, partition, class_per_client=20) train_data, test_data = split_data(X, y) save_file(config_path, train_path, test_path, train_data, test_data, num_clients, num_classes, statistic, niid, balance, partition) if __name__ == "__main__": niid = True if sys.argv[1] == "noniid" else False balance = True if sys.argv[2] == "balance" else False partition = sys.argv[3] if sys.argv[3] != "-" else None generate_cifar100(dir_path, num_clients, num_classes, niid, balance, partition)
2,781
Python
.py
60
40.666667
101
0.688848
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,863
fedoptimizer.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/optimizers/__pycache__/fedoptimizer.cpython-39.pyc
a fæ`c¸„@shddlZddlmZGddÑdeÉZGddÑdeÉZGddÑdeÉZGd d Ñd eÉZGd d Ñd eÉZdS) ÈN)⁄ Optimizercs&eZdZáfddÑZdddÑZáZS)⁄PerAvgOptimizercs t|dç}tt|Ɇ||°dS©N)⁄lr)⁄dict⁄superr⁄__init__©⁄self⁄paramsr⁄defaults©⁄ __class__©˙x/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/optimizers/fedoptimizer.pyrs zPerAvgOptimizer.__init__rcCsd|jD]X}|dD]J}|jdur"q|jj}|dkrF|jj|| dçq|jj||d dçqqdS)Nr r)⁄other⁄alphar©⁄ param_groups⁄grad⁄data⁄add_)r ⁄beta⁄group⁄p⁄d_prrr⁄step s   zPerAvgOptimizer.step)r©⁄__name__⁄ __module__⁄ __qualname__rr⁄ __classcell__rrr rrs rcs&eZdZdáfddÑ ZddÑZáZS) ⁄ FEDLOptimizerÁ{ÆG·zÑ?NÁöôôôôôπ?csD||_||_|dkr"td†|°ÉÇt||dç}tt|Ɇ||°dS)NÁ˙Invalid learning rate: {})r⁄eta)⁄ server_grads⁄ pre_grads⁄ ValueError⁄formatrrr"r)r r rr(r)r'r r rrrs  zFEDLOptimizer.__init__c Cs`|jD]T}d}|dD]B}|j†|d |jj|d|j||j|°|d7}qqdS)Nrr rr'È)rrrrr(r))r r⁄irrrrrs  ˇˇzFEDLOptimizer.step)r#NNr$rrrr rr"sr"cs&eZdZdáfddÑ ZddÑZáZS) ⁄pFedMeOptimizerr#r$Á¸©Ò“MbP?cs:|dkrtd†|°ÉÇt|||dç}tt|Ɇ||°dS)Nr%r&)r⁄lamda⁄mu)r*r+rrr.r)r r rr0r1r r rrr)szpFedMeOptimizer.__init__cCs|d}|†°}|jD]`}t|d|ÉD]L\}}|†|°}|j|d|jj|d|j|j|d|j|_q$q|dS)Nr rr0r1)⁄copyr⁄zip⁄torr)r Z local_model⁄devicerZ weight_updater⁄ localweightrrrr/s  >zpFedMeOptimizer.step)r#r$r/rrrr rr.(sr.cs&eZdZáfddÑZdddÑZáZS)⁄ APFLOptimizercs t|dç}tt|Ɇ||°dSr)rrr7rr r rrrZs zAPFLOptimizer.__init__r,cCsN|jD]B}|dD]4}|jdur"q|||jj}|j†|d |°qqdS)Nr rr)r r⁄n_krrrrrrr^s    zAPFLOptimizer.step)r,r,rrrr rr7Ys r7cs.eZdZdáfddÑ Ze†°ddÑÉZáZS)⁄PerturbedGradientDescentr#r%cs4|dkrtd|õùÉÇt||dç}tɆ||°dS)Nr%zInvalid learning rate: )rr1)r*rrr)r r rr1⁄defaultr rrrhs z!PerturbedGradientDescent.__init__cCsd|jD]X}t|d|ÉD]D\}}|†|°}|jj|d|j|j}|jj||d dçqqdS)Nr r1r)r)rr3r4rrr)r Z global_paramsr5rr⁄grrrrrps   zPerturbedGradientDescent.step)r#r%)rrr r⁄torch⁄no_gradrr!rrr rr9gsr9)r<Z torch.optimrrr"r.r7r9rrrr⁄<module>s  1
3,891
Python
.pyt
27
143.074074
419
0.346701
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,864
fedoptimizer.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/optimizers/__pycache__/fedoptimizer.cpython-38.pyc
U îjfc¸„@shddlZddlmZGddÑdeÉZGddÑdeÉZGddÑdeÉZGd d Ñd eÉZGd d Ñd eÉZdS) ÈN)⁄ Optimizercs&eZdZáfddÑZdddÑZáZS)⁄PerAvgOptimizercs t|dç}tt|Ɇ||°dS©N)⁄lr)⁄dict⁄superr⁄__init__©⁄self⁄paramsr⁄defaults©⁄ __class__©ıQD:\‰∫¨‰∏ú\promot\cifar\cifar\Cifar10_iid\system\flcore\optimizers\fedoptimizer.pyrs zPerAvgOptimizer.__init__rcCsd|jD]X}|dD]J}|jdkr"q|jj}|dkrF|jj|| dçq|jj||d dçqqdS)Nr r)⁄other⁄alphar©⁄ param_groups⁄grad⁄data⁄add_)r ⁄beta⁄group⁄p⁄d_prrr⁄step s   zPerAvgOptimizer.step)r©⁄__name__⁄ __module__⁄ __qualname__rr⁄ __classcell__rrr rrs rcs&eZdZdáfddÑ ZddÑZáZS) ⁄ FEDLOptimizerÁ{ÆG·zÑ?NÁöôôôôôπ?csD||_||_|dkr"td†|°ÉÇt||dç}tt|Ɇ||°dS)NÁ˙Invalid learning rate: {})r⁄eta)⁄ server_grads⁄ pre_grads⁄ ValueError⁄formatrrr"r)r r rr(r)r'r r rrrs  zFEDLOptimizer.__init__c Cs`|jD]T}d}|dD]B}|j†|d |jj|d|j||j|°|d7}qqdS)Nrr rr'È)rrrrr(r))r r⁄irrrrrs  ˇˇzFEDLOptimizer.step)r#NNr$rrrr rr"sr"cs&eZdZdáfddÑ ZddÑZáZS) ⁄pFedMeOptimizerr#r$Á¸©Ò“MbP?cs:|dkrtd†|°ÉÇt|||dç}tt|Ɇ||°dS)Nr%r&)r⁄lamda⁄mu)r*r+rrr.r)r r rr0r1r r rrr)szpFedMeOptimizer.__init__cCs|d}|†°}|jD]`}t|d|ÉD]L\}}|†|°}|j|d|jj|d|j|j|d|j|_q$q|dS)Nr rr0r1)⁄copyr⁄zip⁄torr)r Z local_model⁄devicerZ weight_updater⁄ localweightrrrr/s  >zpFedMeOptimizer.step)r#r$r/rrrr rr.(sr.cs&eZdZáfddÑZdddÑZáZS)⁄ APFLOptimizercs t|dç}tt|Ɇ||°dSr)rrr7rr r rrrZs zAPFLOptimizer.__init__r,cCsN|jD]B}|dD]4}|jdkr"q|||jj}|j†|d |°qqdS)Nr rr)r r⁄n_krrrrrrr^s    zAPFLOptimizer.step)r,r,rrrr rr7Ys r7cs.eZdZdáfddÑ Ze†°ddÑÉZáZS)⁄PerturbedGradientDescentr#r%cs4|dkrtd|õùÉÇt||dç}tɆ||°dS)Nr%zInvalid learning rate: )rr1)r*rrr)r r rr1⁄defaultr rrrhs z!PerturbedGradientDescent.__init__cCsd|jD]X}t|d|ÉD]D\}}|†|°}|jj|d|j|j}|jj||d dçqqdS)Nr r1r)r)rr3r4rrr)r Z global_paramsr5rr⁄grrrrrps   zPerturbedGradientDescent.step)r#r%)rrr r⁄torch⁄no_gradrr!rrr rr9gsr9)r<Z torch.optimrrr"r.r7r9rrrr⁄<module>s  1
3,855
Python
.pyt
27
141.740741
383
0.340559
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,865
fedoptimizer.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/optimizers/__pycache__/fedoptimizer.cpython-37.pyc
B À:ccüã@shddlZddlmZGdd„deƒZGdd„deƒZGdd„deƒZGd d „d eƒZGd d „d eƒZdS) éN)Ú Optimizercs&eZdZ‡fdd„Zddd„Z‡ZS)ÚPerAvgOptimizercs t|d�}tt|ƒ ||¡dS)N)Úlr)ÚdictÚsuperrÚ__init__)ÚselfÚparamsrÚdefaults)Ú __class__©úL/root/autodl-tmp/PFL-Non-IID-master/system/flcore/optimizers/fedoptimizer.pyrs zPerAvgOptimizer.__init__rcCslxf|jD]\}xV|dD]J}|jdkr&q|jj}|dkrJ|jj|| d�q|jj||d d�qWqWdS)Nr r)ÚotherÚalphar)Ú param_groupsÚgradÚdataÚadd_)rÚbetaÚgroupÚpÚd_pr r r Ústep s  zPerAvgOptimizer.step)r)Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__r r )r r rs rcs&eZdZd‡fdd„ Zdd„Z‡ZS) Ú FEDLOptimizerç{®Gáz„?Nçš™™™™™¹?csD||_||_|dkr"td |¡ƒ‚t||d�}tt|ƒ ||¡dS)NgzInvalid learning rate: {})rÚeta)Ú server_gradsÚ pre_gradsÚ ValueErrorÚformatrrrr)rr rr!r"r r )r r r rs  zFEDLOptimizer.__init__c Cshxb|jD]X}d}xN|dD]B}|j |d |jj|d|j||j|¡|d7}qWqWdS)Nrr rr é)rrrrr!r")rrÚirr r r rs  (zFEDLOptimizer.step)rNNr)rrrrrrr r )r r rsrcs&eZdZd‡fdd„ Zdd„Z‡ZS) ÚpFedMeOptimizerç{®Gáz„?çš™™™™™¹?çü©ñÒMbP?cs:|dkrtd |¡ƒ‚t|||d�}tt|ƒ ||¡dS)NgzInvalid learning rate: {})rÚlamdaÚmu)r#r$rrr'r)rr rr+r,r )r r r r)szpFedMeOptimizer.__init__cCs„d}| ¡}xn|jD]d}x^t|d|ƒD]L\}}| |¡}|j|d|jj|d|j|j|d|j|_q(WqW|dS)Nr rr+r,)ÚcopyrÚzipÚtorr)rZ local_modelÚdevicerZ weight_updaterÚ localweightr r r r/s  BzpFedMeOptimizer.step)r(r)r*)rrrrrrr r )r r r'(sr'cs&eZdZ‡fdd„Zddd„Z‡ZS)Ú APFLOptimizercs t|d�}tt|ƒ ||¡dS)N)r)rrr2r)rr rr )r r r rZs zAPFLOptimizer.__init__r%cCsVxP|jD]F}x@|dD]4}|jdkr&q|||jj}|j |d |¡qWqWdS)Nr r)rrrr)rrÚn_krrrr r r r^s   zAPFLOptimizer.step)r%r%)rrrrrrr r )r r r2Ys r2cs.eZdZd‡fdd„ Ze ¡dd„ƒZ‡ZS)ÚPerturbedGradientDescentç{®Gáz„?çcs4|dkrtd|›�ƒ‚t||d�}tƒ ||¡dS)NgzInvalid learning rate: )rr,)r#rrr)rr rr,Údefault)r r r rhs z!PerturbedGradientDescent.__init__cCslxf|jD]\}xVt|d|ƒD]D\}}| |¡}|jj|d|j|j}|jj||d d�qWqWdS)Nr r,r)r)rr.r/rrr)rZ global_paramsr0rrÚgrr r r rps   zPerturbedGradientDescent.step)r5r6)rrrrÚtorchÚno_gradrrr r )r r r4gsr4)r9Z torch.optimrrrr'r2r4r r r r Ú<module>s  1
3,999
Python
.pyt
17
234.176471
747
0.346975
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,866
clientamp.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientamp.cpython-38.pyc
U ”jfc ã@sTddlZddlmZddlmZddlZddlZddlZGdd„deƒZ dd„Z dS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientAMPc s\tƒj||||f|�|j|_|j|_t |j¡|_t  ¡|_ t j j |j ¡|jd�|_dS)N)Úlr)ÚsuperÚ__init__ÚalphaKÚlamdaÚcopyÚdeepcopyÚmodelÚclient_uÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚ parametersÚ learning_rateÚ optimizer)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©õKD:\京东\promot\cifar\cifar\Cifar10_iid\system\flcore\clients\clientamp.pyr s  zclientAMP.__init__c Cs‚| ¡}t ¡}|j |j¡|j |j¡|j ¡|j}|jrTt j   d|d¡}t |ƒD]Ş}|D]Ô\}}t |ƒt gƒkr’|d |j¡|d<n | |j¡}| |j¡}|jrÊt dt  t j  ¡¡¡|j ¡| |¡}| ||¡}t|jƒ} t|jƒ} | | } ||j|jdt | | ¡7}| ¡|j ¡qdq\|j ¡|j ¡~|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?Ú num_roundsÚ total_cost)Úload_train_dataÚtimer ÚtoÚdevicer ÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚtypeÚsleepÚabsÚrandrÚ zero_gradrÚweight_flattenrrrÚdotÚbackwardÚstepÚcpuÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr7ÚxÚyÚoutputrÚparamsZparams_Úsubrrrr(s<             zclientAMP.traincCs8t| ¡|j ¡ƒD]\}}|j||j ¡|_qdS)N)Úziprr ÚdataÚclone)rr Ú coef_selfÚ new_paramÚ old_paramrrrÚset_parameters?szclientAMP.set_parameters)Ú__name__Ú __module__Ú __qualname__rr(rHÚ __classcell__rrrrr s +rcCs0g}| ¡D]}| | d¡¡q t |¡}|S)Néÿÿÿÿ)rÚappendÚviewrÚcat)r r@Úurrrr4Ds   r4) rÚtorch.nnr Úflcore.clients.clientbaserÚnumpyr+r%r rr4rrrrÚ<module>s  ;
2,270
Python
.pyt
26
86.115385
269
0.429844
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,867
clientdyn.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientdyn.cpython-38.pyc
U ”jfc ã@sTddlZddlZddlmZddlZddlZddlmZGdd„deƒZ dd„Z dS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientDync sltƒj||||f|�t ¡|_tjj|j  ¡|j d�|_ |j |_ d|_ t |j¡}t|ƒ}t |¡|_dS)N)Úlr)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizerÚalphaÚglobal_model_vectorÚcopyÚdeepcopyÚmodel_parameter_vectorÚ zeros_likeÚold_grad)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargsr©Ú __class__©õKD:\京东\promot\cifar\cifar\Cifar10_iid\system\flcore\clients\clientdyn.pyr s  zclientDyn.__init__c Csæ| ¡}t ¡}|j |j¡|j |j¡|_|j |j¡|_|j ¡|j}|j rft j   d|d¡}t |ƒD]ò}t|ƒD]ä\}\}}t|ƒtgƒkr¬|d |j¡|d<n | |j¡}| |j¡}|j rät dt  t j  ¡¡¡|j ¡| |¡}| ||¡} |jdk�rLt|jƒ} | |jdt | |jd¡7} | t | |j¡8} |  ¡|j ¡qzqn|jdk�r”t|jƒ ¡} |j|j| |j|_|j ¡|j ¡|_|j ¡|_|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?Ú num_roundsÚ total_cost) Úload_train_dataÚtimer ÚtoÚdevicerrÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚsleepÚabsÚrandrÚ zero_gradr rrr ÚnormÚdotÚbackwardÚstepÚdetachÚcpuÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr:ÚiÚxÚyÚoutputr Úv1r r r!r*sD              zclientDyn.traincCs@t| ¡|j ¡ƒD]\}}|j ¡|_qt|ƒ ¡ ¡|_dS)N)Úziprr ÚdataÚclonerr;r)rr Ú new_paramÚ old_paramr r r!Úset_parametersOszclientDyn.set_parameters)Ú__name__Ú __module__Ú __qualname__rr*rKÚ __classcell__r r rr!r s 1rcCs dd„| ¡Dƒ}tj|dd�S)NcSsg|]}| d¡‘qS)éÿÿÿÿ)Úview)Ú.0Úpr r r!Ú <listcomp>Wsz*model_parameter_vector.<locals>.<listcomp>r)Údim)rr Úcat)r Úparamr r r!rVsr) rr Útorch.nnrÚnumpyr-r'Úflcore.clients.clientbaserrrr r r r!Ú<module>s  L
2,595
Python
.pyt
30
85.433333
285
0.424006
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,868
clientmoon.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientmoon.cpython-39.pyc
a ç`cE ã@s^ddlZddlZddlmZddlZddlZddlmmZ ddl m Z Gdd„de ƒZ dS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientMOONc sftƒj||||fi|¤�t ¡|_tjj|j  ¡|j d�|_ |j |_ |j |_ d|_t |j¡|_dS)N)Úlr)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizerÚtauÚmuÚ global_modelÚcopyÚdeepcopyÚ old_model)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©ús/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/clients/clientmoon.pyr s zclientMOON.__init__c CsÜ| ¡}t ¡}|j ¡|j}|jr8tj d|d¡}t |ƒD�]Z}t |ƒD�]J\}\}}t |ƒt gƒkr‚|d  |j ¡|d<n |  |j ¡}|  |j ¡}|jrºt dt tj ¡¡¡|j ¡|j |¡}|j |¡} | | |¡} |j |¡ ¡} |j |¡ ¡} t t t || ¡|j¡t t || ¡|j¡t t || ¡|j¡¡ } | |jt  | ¡7} |  !¡|j"�r�t#|j|t$|ƒƒqN|j %¡qNq@t& '|j¡|_|j(dd7<|j(dt ¡|7<dS)Néérgš™™™™™¹?Ú num_roundsÚ total_cost))Úload_train_dataÚtimer ÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚtoÚdeviceÚsleepÚabsÚrandrÚ zero_gradÚbaseÚ predictorr rÚdetachrr ÚlogÚexpÚFÚcosine_similarityrrÚmeanÚbackwardÚprivacyÚdp_stepÚlenÚsteprrÚtrain_time_cost)rÚ trainloaderÚ start_timeÚmax_local_stepsrBÚiÚxÚyÚrepÚoutputr Zrep_oldZ rep_globalZloss_conrrr r's:       PzclientMOON.traincCs4t| ¡|j ¡ƒD]\}}|j ¡|_q||_dS)N)Úziprr ÚdataÚcloner)rr Ú new_paramÚ old_paramrrr Úset_parametersKszclientMOON.set_parameters)Ú__name__Ú __module__Ú __qualname__rr'rQÚ __classcell__rrrr r s .r) rr Útorch.nnrÚnumpyr*r&Útorch.nn.functionalÚ functionalr;Úflcore.clients.clientbaserrrrrr Ú<module>s  
2,382
Python
.pyt
23
102.478261
291
0.458475
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,869
clientmtl.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientmtl.cpython-38.pyc
U ”jfcª ã@s\ddlZddlmZddlmZddlZddlZddlZddl Z Gdd„deƒZ dd„Z dS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientMTLc s`tƒj||||f|�d|_d|_d|_|j|_d|_t ¡|_ t j j |j  ¡|jdd�|_dS)Nrg-Cëâ6?gà?)ÚlrÚmomentum)ÚsuperÚ__init__ÚomegaÚW_globÚidxZitkZlambaÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizer)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©õKD:\京东\promot\cifar\cifar\Cifar10_iid\system\flcore\clients\clientmtl.pyr s zclientMTL.__init__c CsÂ| ¡}t ¡}|j |j¡|j ¡|j}|jrFtj   d|d¡}t |ƒD�]*}|D�]\}}t |ƒt gƒkrˆ|d |j¡|d<n | |j¡}| |j¡}|jrÀt  dt tj  ¡¡¡|j ¡| |¡}| ||¡}t|jƒ|jdd…|jf<d} | |j ¡d7} | t t |j|jd¡d¡7} tt |jjd¡dƒd} | d| 9} || 7}| ¡|j ¡qXqN|j  ¡d|_d|_|j!dd7<|j!dt ¡|7<dS)Néérgš™™™™™¹?é Ú num_roundsÚ total_cost)"Úload_train_dataÚtimerÚtoÚdeviceÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚtypeÚsleepÚabsÚrandrÚ zero_gradr Úflattenr r ÚnormrÚsumrÚintÚmathÚlog10ÚshapeÚbackwardÚstepÚcpuÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr<ÚxÚyÚoutputr Zloss_regularizerÚfrrrr(s@      " zclientMTL.traincCs*t |dd¡|_t |¡|_||_dS)Nr)rÚsqrtrÚcopyÚdeepcopyr r )rr rr rrrÚreceive_valuesHs zclientMTL.receive_values)Ú__name__Ú __module__Ú __qualname__rr(rIÚ __classcell__rrrrr s 1rcs,| ¡‰ˆ ¡}‡fdd„|Dƒ}t |¡S)Ncsg|]}ˆ| ¡‘qSr)r4)Ú.0Úkey©Ú state_dictrrÚ <listcomp>Qszflatten.<locals>.<listcomp>)rQÚkeysrÚcat)rrSÚWrrPrr4Nsr4) rÚtorch.nnr Úflcore.clients.clientbaserÚnumpyr+r%r8rGrr4rrrrÚ<module>s  D
2,533
Python
.pyt
26
96.269231
278
0.419856
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,870
clientrodpt.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientrodpt.cpython-38.pyc
U Åìıcû!ã@s ddlZddlZddlmZddlZddlZddlmZddl mm Z ddl m Z ddlmZddlZddl m Z ddlmZGdd„deƒZd dd „ZdS) éN)ÚClient)Úlabel_binarize)Úmetricscs>eZdZ‡fdd„Zdd„Zd dd„Zdd „Zd d„Z‡ZS) Ú clientRODPTc  stƒj||||f|�t ¡|_tj |jj   ¡|j dœ|jj   ¡|j dœg¡|_ |j|_tjj|jj  ¡|j|jd�|_tjjj|j|j|jd�|_t |jj ¡|_tjj|j  ¡|j d�|_t |j¡|_| ¡}|D](\}}|D]} |j|  ¡d7<qæqÚdS)N)ÚparamsÚlr)rÚmomentum)Ú step_sizeÚgamma)ré) ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚbaseÚ parametersÚ learning_rateÚ predictorÚ optimizerÚ plocal_stepsÚ generatorÚpt_learning_raterÚ poptimizerÚ lr_schedulerÚStepLRÚlearning_decayÚ schedulerÚcopyÚdeepcopyÚpredÚopt_predÚzerosÚ num_classesÚsample_per_classÚload_train_dataÚitem) ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargsÚ trainloaderÚxÚyÚyy©Ú __class__©õYD:\京东\promot\第二次投稿\å®�验\native - pro\system\flcore\clients\clientrodpt.pyr s( şÿÿ zclientRODPT.__init__c CsR| ¡}t ¡}t |jj¡}|j |j¡|j |j¡|j  ¡|jj   ¡D] }d|_ qP|jj  ¡D] }d|_ qh|jj   ¡D] }d|_ q€t|jƒD]¶}t|ƒD]¨\}\}}t|ƒtgƒkrÔ|d |j¡|d<n | |j¡}| |j¡}|j�rt dt tj ¡¡¡|j ¡| |¡} | | |¡} |  ¡|j ¡|j ¡q¢q–|j} |j�rntj d| d¡} |jj   ¡D] }d|_ �qz|jj  ¡D] }d|_ �q”|jj   ¡D] }d|_ �q®t| ƒD]æ}t|ƒD]Ö\}\}}t|ƒtgƒk�r|d |j¡|d<n | |j¡}| |j¡}|j  |j |¡¡} |j  | ¡} t || |j!ƒ}|j" ¡| ¡|j" ¡| |  #¡¡}| |  #¡||¡} |j$ ¡|  ¡|j$ ¡�qĞ�qÄ|j %¡|j %¡t |jj¡}d}t&|  ¡|  ¡ƒD]<\}}||}t' (|dk|t' )|¡|¡}|t' *|¡}�qä|j+dd7<|j+dt ¡|7<|S) NFTrgš™™™™™¹?r éÚ num_roundsÚ total_cost),r)Útimer"r#rrÚtoÚdevicer$ÚtrainrrÚ requires_gradrÚrangerÚ enumerateÚtypeÚ train_slowÚsleepÚnpÚabsÚrandomÚrandrÚ zero_gradrÚbackwardÚstepr!Ú local_stepsÚrandintÚbalanced_softmax_lossr(rÚdetachr%ÚcpuÚziprÚwhereÚ zeros_likeÚsumÚtrain_time_cost)r+r1Ú start_timeÚ old_promptÚparamrLÚir2r3ÚoutputrÚmax_local_stepsÚrepÚout_gÚloss_bsmÚout_pÚ new_promptÚ diff_provalueÚ new_paramÚ old_paramÚdiff_pror7r7r8r?(s~                   zclientRODPT.trainNc CsŞ| ¡}|dkr|j}|j |j¡|j |j¡| ¡d}d}g}g}t ¡��:|D�],\}}t|ƒtgƒkrŠ|d |j¡|d<n | |j¡}| |j¡}|j  |j  |¡¡} |j  | ¡} | |   ¡¡} |   ¡| } |t  tj| dd�|k¡ ¡7}||jd7}| t | ¡  ¡ ¡ ¡¡|j} |jdk�r@| d7} t|  ¡ ¡ ¡t | ¡d�}|jdk�r~|dd…dd…f}| |¡qZW5QRX|j ¡|j ¡tj|dd�}tj|dd�}tj||dd�}|||fS) Nrr ©Údimr9©Úclasses©ÚaxisÚmicro©Úaverage)Úload_test_datarr=r>r$ÚevalrÚno_gradrCrrrrPrUÚargmaxr*ÚshapeÚappendÚFÚsoftmaxrQÚnumpyr'rrFÚarangeÚ concatenaterÚ roc_auc_score)r+rÚ testloaderÚtest_accÚtest_numÚy_probÚy_truer2r3r]r^r`r[ÚncÚlbÚaucr7r7r8Ú test_metricstsH          zclientRODPT.test_metricscCs`t|j ¡|jj ¡ƒD]\}}|j ¡|_qt|j ¡|jj ¡ƒD]\}}|j ¡|_qFdS)N)rRrrrÚdataÚcloner)r+rrcrdr7r7r8Úset_parameters s  zclientRODPT.set_parametersc Cs~| ¡}|j |j¡|j ¡d}d}d}g}g}t ¡�ú|D]î\}}t|ƒtgƒkrp|d |j¡|d<n | |j¡}| |j¡}| |¡} |j |j  |¡¡} |t  tj | dd�|k¡  ¡7}|t  tj | dd�|k¡  ¡7}||j d7}| |  ¡ ¡ ¡¡| t| ¡ ¡ ¡t |j¡d�¡qBW5QRX|j ¡tj|dd�}tj|dd�}tj||dd�} |||| fS)Nrr rfrhrjrlrm)rorr=r>rprrqrCrrrUrrr*rsrtrPrQrwrrFrxr'ryrrz) r+Útestloaderfullr|Ú test_acc2r}r~rr2r3r[Úoutput2r‚r7r7r8rƒ¦s4        2 )N)Ú__name__Ú __module__Ú __qualname__r r?rƒr†Ú __classcell__r7r7r5r8rs  L ,rÚmeancCsB| |¡}| d¡ |jdd¡}|| ¡}tj|||d�}|S)a}Compute the Balanced Softmax Loss between `logits` and the ground truth `labels`. Args: labels: A int tensor of size [batch]. logits: A float tensor of size [batch, no_of_classes]. sample_per_class: A int tensor of size [no of classes]. reduction: string. One of "none", "mean", "sum" Returns: loss: A float tensor. Balanced Softmax Loss. réÿÿÿÿ)ÚinputÚtargetÚ reduction)Útype_asÚ unsqueezeÚexpandrsÚlogruÚ cross_entropy)ÚlabelsÚlogitsr(r’Úspcrr7r7r8rOÍs  rO)r�)r"rÚtorch.nnrrwrFr<Úflcore.clients.clientbaserÚtorch.nn.functionalÚ functionalruÚsklearn.preprocessingrÚsklearnrrrOr7r7r7r8Ú<module>s      @
5,970
Python
.pyt
71
82.211268
539
0.404645
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,871
clientbn.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientbn.cpython-39.pyc
a Öæ`cŸã@sDddlZddlmZddlZddlZddlmZGdd„deƒZdS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)ÚclientBNc sBtƒj||||fi|¤�t ¡|_tjj|j  ¡|j d�|_ dS)N)Úlr) ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizer)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©úq/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/clients/clientbn.pyr s zclientBN.__init__c Csz| ¡}t ¡}|j ¡|j}|jr8tj d|d¡}t |ƒD]Ä}t |ƒD]¶\}\}}t |ƒt gƒkr~|d  |j ¡|d<n |  |j ¡}|  |j ¡}|jr¶t dt tj ¡¡¡|j ¡| |¡}| ||¡} |  ¡|jrøt|j|t|ƒƒqL|j ¡qLq@|jdd7<|jdt ¡|7<|j�rvt|jƒ\} } td|j›�d| dd ›d | ›d | d›�ƒdS) Néérgš™™™™™¹?Ú num_roundsÚ total_costzClient u(ε = z.2fu, δ = u ) for α = )Úload_train_dataÚtimer ÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚtoÚdeviceÚsleepÚabsÚrandrÚ zero_gradr ÚbackwardÚprivacyÚdp_stepÚlenÚstepÚtrain_time_costZ get_dp_paramsÚprintr) rÚ trainloaderÚ start_timeÚmax_local_stepsr4ÚiÚxÚyÚoutputr ÚresZDELTArrrr!s4       zclientBN.traincCs>t| ¡|j ¡ƒD]$\\}}\}}d|vr|j ¡|_qdS)NÚbn)ÚzipÚnamed_parametersr ÚdataÚclone)rr rr$ÚonÚoprrrÚset_parameters<s$zclientBN.set_parameters)Ú__name__Ú __module__Ú __qualname__rr!rFÚ __classcell__rrrrr s 'r) r Útorch.nnrÚnumpyr$r Úflcore.clients.clientbaserrrrrrÚ<module>s   
2,077
Python
.pyt
21
97.857143
297
0.461351
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,872
clientditto.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientditto.cpython-37.pyc
B E&fcñã@s‚ddlZddlZddlZddlZddlmZddlmZddl m Z ddl mm Z ddlmZddlmZGdd„de ƒZdS)éN)ÚPerturbedGradientDescent)ÚClient)Úlabel_binarize)Úmetricscs4eZdZ‡fdd„Zdd„Zdd„Zdd„Z‡ZS) Ú clientDittoc svtƒj||||f|�|j|_|j|_t |j¡|_t  ¡|_ t j j |j ¡|jd�|_t|j ¡|j|jd�|_dS)N)Úlr)rÚmu)ÚsuperÚ__init__rÚ plocal_stepsÚcopyÚdeepcopyÚmodelÚpmodelÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚ parametersÚ learning_rateÚ optimizerrÚ poptimizer)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs)Ú __class__©úH/root/autodl-tmp/PFL-Non-IID-master/system/flcore/clients/clientditto.pyr s zclientDitto.__init__c CsX| ¡}t ¡}|j |j¡|j ¡|j}|jrFtj   d|d¡}xÖt |ƒD]Ê}xÄt |ƒD]¸\}\}}t |ƒt gƒkr�|d |j¡|d<n | |j¡}| |j¡}|jrÈt dt tj  ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j�r t|j|t|ƒƒq^|j ¡q^WqPW|j ¡|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?Ú num_roundsÚ total_cost)Úload_train_dataÚtimerÚtoÚdeviceÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚsleepÚabsÚrandrÚ zero_gradrÚbackwardÚprivacyÚdp_stepÚlenÚstepÚcpuÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr<ÚiÚxÚyÚoutputrr!r!r"r+!s2       zclientDitto.trainc Cs.| ¡}t ¡}|j |j¡|j ¡|j}|jrFtj   d|d¡}x¾t |ƒD]²}x¬|D]¤\}}t |ƒt gƒkrˆ|d |j¡|d<n | |j¡}| |j¡}|jrÀt  dt tj  ¡¡¡|j ¡| |¡}| ||¡}| ¡|j |j ¡|j¡qZWqPW|j ¡|jdt ¡|7<dS)Nr#r$rgš™™™™™¹?r&)r'r(rr)r*r+r r-r.r/r0r1r3r4r5r6rr7rr8r<rrr=r>) rr?r@rAr<rCrDrErr!r!r"ÚptrainIs,       zclientDitto.ptrainc CsN| ¡}|j |j¡|j ¡d}d}g}g}t ¡�ĞxÈ|D]À\}}t|ƒtgƒkrn|d |j¡|d<n | |j¡}| |j¡}| |¡}|t tj |dd�|k¡  ¡7}||j d7}|  t  |¡ ¡ ¡ ¡¡|  t| ¡ ¡ ¡t |j¡d�¡q@WWdQRX|j ¡tj|dd�}tj|dd�}tj||dd�} ||| fS)Nrr#)Údim)Úclasses)ÚaxisÚmicro)Úaverage)Úload_test_datarr)r*ÚevalrÚno_gradr3ÚsumÚargmaxÚitemÚshapeÚappendÚFÚsoftmaxÚdetachr=Únumpyrr.ÚarangeÚ num_classesÚ concatenaterÚ roc_auc_score) rÚtestloaderfullÚtest_accÚtest_numÚy_probÚy_truerCrDrEÚaucr!r!r"Ú test_metricshs.      4 zclientDitto.test_metrics)Ú__name__Ú __module__Ú __qualname__r r+rFrbÚ __classcell__r!r!)r r"rs (r)rrWr.r(r Útorch.nnrÚflcore.optimizers.fedoptimizerrÚflcore.clients.clientbaserÚtorch.nn.functionalÚ functionalrTÚsklearn.preprocessingrÚsklearnrrr!r!r!r"Ú<module>s     
3,486
Python
.pyt
36
95.666667
490
0.424515
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,873
clientbabupt.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientbabupt.cpython-38.pyc
U 3Èıckã@slddlZddlZddlmZddlZddlZddlmZddlZddl m Z ddl m Z Gdd„deƒZ dS)éN)ÚClient)Úlabel_binarize)ÚmetricscsDeZdZ‡fdd„Zdd„Zdd„Zddgfd d „Zd d „Z‡ZS) Ú clientBABUPTc sÀtƒj||||f|�t ¡|_tjj|jj   ¡|j d�|_ |j |_ tjj|jj   ¡|j d�|_ |j|_tjj|jj  ¡|j|jd�|_tjjj|j|j|jd�|_|jj  ¡D] }d|_q°dS)N)Úlr)rÚmomentum)Ú step_sizeÚgammaF)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚbaseÚ parametersÚ learning_rateÚ optimizerÚfine_tuning_stepsÚ plocal_stepsÚ generatorÚpt_learning_raterÚ poptimizerÚ lr_schedulerÚStepLRÚlearning_decayÚ schedulerÚ predictorÚ requires_grad)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargsÚparam©Ú __class__©õZD:\京东\promot\第二次投稿\å®�验\native - pro\system\flcore\clients\clientbabupt.pyr s ÿÿzclientBABUPT.__init__c Cs| ¡}t ¡}t |jj¡}|j |j¡|j ¡|jj   ¡D] }d|_ qB|jj  ¡D] }d|_ qZ|jj   ¡D] }d|_ qrt |jƒD]´}t|ƒD]¦\}\}}t|ƒtgƒkrÆ|d |j¡|d<n | |j¡}| |j¡}|jrşt dt tj ¡¡¡|j ¡| |¡} | | |¡} |  ¡|j ¡|j ¡q”qˆ|j} |j�r^tj d| d¡} |jj   ¡D] }d|_ �qj|jj  ¡D] }d|_ �q„|jj   ¡D] }d|_ �q�t | ƒD]²}t|ƒD]¢\}\}}t|ƒtgƒk�rô|d |j¡|d<n | |j¡}| |j¡}|j�r.t dt tj ¡¡¡|j ¡| |¡} | | |¡} |  ¡|j ¡�qÀ�q´|j  ¡t |jj¡} d} t!|  ¡|   ¡ƒD]<\}}||}t" #|dk|t" $|¡|¡}| t" %|¡} �q–|j&dd7<|j&dt ¡|7<| S) NFTrgš™™™™™¹?ééÚ num_roundsÚ total_cost)'Úload_train_dataÚtimeÚcopyÚdeepcopyrrÚtoÚdeviceÚtrainrrr!r ÚrangerÚ enumerateÚtypeÚ train_slowÚsleepÚnpÚabsÚrandomÚrandrÚ zero_gradrÚbackwardÚsteprÚ local_stepsÚrandintrÚcpuÚziprÚwhereÚ zeros_likeÚsumÚtrain_time_cost)r"Ú trainloaderÚ start_timeÚ old_promptr(rCÚiÚxÚyÚoutputrÚmax_local_stepsÚ new_promptÚ diff_provalueÚ new_paramÚ old_paramÚdiff_pror+r+r,r7sr                 zclientBABUPT.traincCs2t|j ¡|jj ¡ƒD]\}}|j ¡|_qdS)N)rGrrrÚdataÚclone)r"rrVrWr+r+r,Úset_parameters_s zclientBABUPT.set_parametersrr c Cs| ¡}|j |j¡|j ¡d|kr@|jj ¡D] }d|_q4d|kr`|jj ¡D] }d|_qTt|j ƒD]Š}t |ƒD]|\}\}}t |ƒt gƒkr¨|d |j¡|d<n | |j¡}| |j¡}|j   ¡| |¡}| ||¡} |  ¡|j  ¡qvqj|j ¡dS)Nr TrFr)r1rr5r6r7r rr!r8rr9r:rrArrBrCrF) r"Ú which_modulerLr(rCrOrPrQrRrr+r+r,Ú fine_tunecs*      zclientBABUPT.fine_tunec Cs~| ¡}|j |j¡|j ¡d}d}d}g}g}t ¡�ú|D]î\}}t|ƒtgƒkrp|d |j¡|d<n | |j¡}| |j¡}| |¡} |j |j  |¡¡} |t  tj | dd�|k¡  ¡7}|t  tj | dd�|k¡  ¡7}||j d7}| |  ¡ ¡ ¡¡| t| ¡ ¡ ¡t |j¡d�¡qBW5QRX|j ¡tj|dd�}tj|dd�}tj||dd�} |||| fS)Nrr-)Údim)Úclasses)ÚaxisÚmicro)Úaverage)Úload_test_datarr5r6ÚevalrÚno_gradr:r rrJÚargmaxÚitemÚshapeÚappendÚdetachrFÚnumpyrr=ÚarangeÚ num_classesÚ concatenaterÚ roc_auc_score) r"ÚtestloaderfullÚtest_accÚ test_acc2Útest_numÚy_probÚy_truerPrQrRÚoutput2Úaucr+r+r,Ú test_metrics~s4        2 zclientBABUPT.test_metrics) Ú__name__Ú __module__Ú __qualname__r r7r[r]rxÚ __classcell__r+r+r)r,r s  Ar)r3rÚtorch.nnr rkr=r2Úflcore.clients.clientbaserÚsklearn.preprocessingrÚsklearnrrr+r+r+r,Ú<module>s    
4,511
Python
.pyt
63
70.222222
558
0.404136
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,874
clientpt.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientpt.cpython-37.pyc
B K´cc ã@sLddlZddlmZddlZddlZddlmZddlZGdd„deƒZ dS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)ÚclientPTc sdtƒj||||f|�t ¡|_tjj|jj   ¡|j d�|_ tjj|jj   ¡|j d�|_|j|_dS)N)Úlr)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ generatorÚ parametersÚ learning_rateÚ poptimizerÚbaseÚ optimizerÚ plocal_steps)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs)Ú __class__©úE/root/autodl-tmp/PFL-Non-IID-master/system/flcore/clients/clientpt.pyr s  zclientPT.__init__c Csì| ¡}t ¡}t |jj¡}|j |j¡|j ¡x|jj   ¡D] }d|_ qDWx|jj  ¡D] }d|_ q`Wx¼t |j ƒD]®}x¨t|ƒD]œ\}\}}t|ƒtgƒkrº|d |j¡|d<n | |j¡}| |j¡}|jròt dt tj ¡¡¡|j ¡| |¡} | | |¡} |  ¡|j ¡qˆWqzW|j} |j�rLtj d| d¡} x|jj   ¡D] }d|_ �qZWx|jj  ¡D] }d|_ �qxWxÂt | ƒD]¶}x®t|ƒD]¢\}\}}t|ƒtgƒk�rÔ|d |j¡|d<n | |j¡}| |j¡}|j�rt dt tj ¡¡¡|j ¡| |¡} | | |¡} |  ¡|j ¡�q W�q’W|j ¡t |jj¡} d} xRt|  ¡|   ¡ƒD]<\}}||}t  !|dk|t  "|¡|¡}| t  #|¡} �q|W|j$dd7<|j$dt ¡|7<| S) NFTrgš™™™™™¹?ééÚ num_roundsÚ total_cost)%Úload_train_dataÚtimeÚcopyÚdeepcopyr rÚtoÚdeviceÚtrainrrÚ requires_gradÚrangerÚ enumerateÚtypeÚ train_slowÚsleepÚnpÚabsÚrandomÚrandrÚ zero_gradr ÚbackwardÚstepÚ local_stepsÚrandintrÚcpuÚzipr ÚwhereÚ zeros_likeÚsumÚtrain_time_cost)rÚ trainloaderÚ start_timeZ old_promptÚparamr5ÚiÚxÚyÚoutputr Úmax_local_stepsZ new_promptZ diff_provalueÚ new_paramÚ old_paramÚdiff_prorrrr(sh                zclientPT.traincCs4x.t| ¡|jj ¡ƒD]\}}|j ¡|_qWdS)N)r9rr rÚdataÚclone)rrrFrGrrrÚset_parametersYs zclientPT.set_parameters)Ú__name__Ú __module__Ú __qualname__rr(rKÚ __classcell__rr)rrr s Br) r Útorch.nnrÚnumpyr/r#Ú system.flcore.clients.clientbaserr$rrrrrÚ<module>s   
2,568
Python
.pyt
40
62.775
285
0.426255
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,875
clientmoon.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientmoon.cpython-38.pyc
U ”jfcÏ ã@s^ddlZddlZddlmZddlZddlZddlmmZ ddl m Z Gdd„de ƒZ dS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientMOONc sbtƒj||||f|�t ¡|_tjj|j  ¡|j d�|_ |j |_ |j |_ d|_t |j¡|_dS)N)Úlr)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizerÚtauÚmuÚ global_modelÚcopyÚdeepcopyÚ old_model)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©õLD:\京东\promot\cifar\cifar\Cifar10_iid\system\flcore\clients\clientmoon.pyr s zclientMOON.__init__c Cs$| ¡}t ¡}|j |j¡|j |j¡|j |j¡|j ¡|j}|j rbt j   d|d¡}t |ƒD�]Z}t|ƒD�]J\}\}}t|ƒtgƒkr¬|d |j¡|d<n | |j¡}| |j¡}|j rät dt  t j  ¡¡¡|j ¡|j |¡}|j |¡} | | |¡} |j |¡ ¡} |j |¡ ¡} t t t || ¡|j¡t t || ¡|j¡t t || ¡|j¡¡ } | |jt  | ¡7} |  !¡|j"�rºt#|j|t$|ƒƒqx|j %¡qxqj|j &¡|j &¡|j &¡t' (|j¡|_|j)dd7<|j)dt ¡|7<dS)Néérgš™™™™™¹?Ú num_roundsÚ total_cost)*Úload_train_dataÚtimer ÚtoÚdevicerrÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚsleepÚabsÚrandrÚ zero_gradÚbaseÚ predictorr Údetachr ÚlogÚexpÚFÚcosine_similarityrrÚmeanÚbackwardÚprivacyÚdp_stepÚlenÚstepÚcpurrÚtrain_time_cost)rÚ trainloaderÚ start_timeÚmax_local_stepsrBÚiÚxÚyÚrepÚoutputr Zrep_oldZ rep_globalZloss_conrrr r)sF       P   zclientMOON.traincCs4t| ¡|j ¡ƒD]\}}|j ¡|_q||_dS)N)Úziprr ÚdataÚcloner)rr Ú new_paramÚ old_paramrrr Úset_parametersOszclientMOON.set_parameters)Ú__name__Ú __module__Ú __qualname__rr)rRÚ __classcell__rrrr r s 2r) rr Útorch.nnrÚnumpyr,r&Útorch.nn.functionalÚ functionalr;Úflcore.clients.clientbaserrrrrr Ú<module>s  
2,431
Python
.pyt
28
85.714286
263
0.44218
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,876
clientrod.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientrod.cpython-39.pyc
a f¾`cıã@s€ddlZddlZddlmZddlZddlZddlmZddl mm Z ddl m Z ddlmZGdd„deƒZd dd „ZdS) éN)ÚClient)Úlabel_binarize)Úmetricscs.eZdZ‡fdd„Zdd„Zddd„Z‡ZS) Ú clientRODc  s°tƒj||||fi|¤�t ¡|_tjj|j  ¡|j d�|_ t   |jj¡|_tjj|j  ¡|j d�|_t |j¡|_| ¡}|D](\}}|D]} |j|  ¡d7<q�q‚dS)N)Úlré)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizerÚcopyÚdeepcopyÚ predictorÚpredÚopt_predÚzerosÚ num_classesÚsample_per_classÚload_train_dataÚitem) ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargsÚ trainloaderÚxÚyÚyy©Ú __class__©úr/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/clients/clientrod.pyr s  zclientROD.__init__c CsJ| ¡}t ¡}|j ¡|j}|jr8tj d|d¡}t |ƒD]Ø}t |ƒD]Ê\}\}}t |ƒt gƒkr~|d  |j ¡|d<n |  |j ¡}|  |j ¡}|j |¡}|j |¡} t|| |jƒ} |j ¡|  ¡|j ¡| | ¡¡} | |  ¡| |¡} |j ¡|  ¡|j ¡qLq@|jdd7<|jdt ¡|7<dS)NrérÚ num_roundsÚ total_cost)rÚtimerÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚtoÚdeviceÚbaserÚbalanced_softmax_lossrrÚ zero_gradÚbackwardÚsteprÚdetachr rÚtrain_time_cost) rr$Ú start_timeÚmax_local_stepsr?Úir%r&ÚrepÚout_gZloss_bsmÚout_pr r*r*r+r0s2         zclientROD.trainNc Csº| ¡}|dkr|j}| ¡d}d}g}g}t ¡��:|D�]"\}}t|ƒtgƒkrn|d |j¡|d<n | |j¡}| |j¡}|j |¡} |j  | ¡} |  |   ¡¡} |   ¡| } |t  tj | dd�|k¡ ¡7}||jd7}| t | ¡  ¡ ¡ ¡¡|j} |jdk�r| d7} t|  ¡ ¡ ¡t | ¡ƒ}|jdk�rX|dd…dd…f}| |¡q>Wdƒn1�sz0Ytj|dd�}tj|dd�}tj||dd�}|||fS)Nrr)Údimr,)ÚaxisÚmicro)Úaverage)Úload_test_datarÚevalr Úno_gradr8r9r:r;rrr@ÚsumÚargmaxrÚshapeÚappendÚFÚsoftmaxÚcpuÚnumpyrrr3ÚarangeÚ concatenaterÚ roc_auc_score)rrÚ testloaderÚtest_accÚtest_numÚy_probÚy_truer%r&rErFrGÚoutputÚncÚlbÚaucr*r*r+Ú test_metricsBs@         ,zclientROD.test_metrics)N)Ú__name__Ú __module__Ú __qualname__r r0rcÚ __classcell__r*r*r(r+r s %rÚmeancCsB| |¡}| d¡ |jdd¡}|| ¡}tj|||d�}|S)a}Compute the Balanced Softmax Loss between `logits` and the ground truth `labels`. Args: labels: A int tensor of size [batch]. logits: A float tensor of size [batch, no_of_classes]. sample_per_class: A int tensor of size [no of classes]. reduction: string. One of "none", "mean", "sum" Returns: loss: A float tensor. Balanced Softmax Loss. réÿÿÿÿ)ÚinputÚtargetÚ reduction)Útype_asÚ unsqueezeÚexpandrQÚlogrSÚ cross_entropy)ÚlabelsÚlogitsrrlZspcr r*r*r+r<ns  r<)rh)rr Útorch.nnr rVr3r/Úflcore.clients.clientbaserÚtorch.nn.functionalÚ functionalrSÚsklearn.preprocessingrÚsklearnrrr<r*r*r*r+Ú<module>s    b
3,780
Python
.pyt
38
97.210526
523
0.456708
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,877
clientmtlpt.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientmtlpt.cpython-38.pyc
U GçýcÓã@s|ddlZddlmZddlmZddlZddlZddlZddl Z ddl Z ddl m Z ddl m Z Gdd„deƒZdd„ZdS) éN)ÚClient)Úlabel_binarize)Úmetricscs<eZdZ‡fdd„Zdd„Zdd„Zdd„Zd d „Z‡ZS) Ú clientMTLPTc s¨tƒj||||f|Žd|_d|_d|_|j|_d|_t ¡|_ t j   |j j ¡|jdœg¡|_|j|_t j j |j j ¡|j|jd�|_t j jj|j|j|jd�|_dS)Nrg-Cëâ6?)ÚparamsÚlr)rÚmomentum)Ú step_sizeÚgamma)ÚsuperÚ__init__ÚomegaÚW_globÚidxÚitkÚlambaÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚbaseÚ parametersÚ learning_rateÚ optimizerÚ plocal_stepsÚ generatorÚpt_learning_raterÚ poptimizerÚ lr_schedulerÚStepLRÚlearning_decayÚ scheduler)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©õYD:\京东\promot\第二次投稿\实验\native - pro\system\flcore\clients\clientmtlpt.pyr s" ÿÿÿzclientMTLPT.__init__c Cs`| ¡}t ¡}t |jj¡}|j |j¡|j ¡|jj   ¡D] }d|_ qB|jj  ¡D] }d|_ qZt |j ƒD]´}t|ƒD]¦\}\}}t|ƒtgƒkr®|d |j¡|d<n | |j¡}| |j¡}|jræt dt tj ¡¡¡|j ¡| |¡} | | |¡} |  ¡|j ¡|j ¡q|qp|j} |j�rFtj d| d¡} |jj   ¡D] }d|_ �qR|jj  ¡D] }d|_ �qlt | ƒD�]2}|D�]$\}}t|ƒtgƒk�r¾|d |j¡|d<n | |j¡}| |j¡}|j�røt dt tj ¡¡¡|j ¡| |¡} | | |¡} t|jƒ|j dd…|j!f<d} | |j  "¡d7} | t# $t# $|j |j%d¡d¡7} t&t' (|j j)d¡dƒd} | d| 9} | | 7} |  ¡|j ¡�qŒ�q‚|j *¡d|_%d|_ t |jj¡}d}t+|  ¡|  ¡ƒD]<\}}||}t# ,|dk|t# -|¡|¡}|t# $|¡}�qò|j.dd7<|j.d t ¡|7<|S) NFTrgš™™™™™¹?ééé Ú num_roundsÚ total_cost)/Úload_train_dataÚtimeÚcopyÚdeepcopyrrÚtoÚdeviceÚtrainrrÚ requires_gradÚrangerÚ enumerateÚtypeÚ train_slowÚsleepÚnpÚabsÚrandomÚrandr Ú zero_gradrÚbackwardÚstepr$Ú local_stepsÚrandintrÚflattenrrÚnormrÚsumr ÚintÚmathÚlog10ÚshapeÚcpuÚzipÚwhereÚ zeros_likeÚtrain_time_cost)r%Ú trainloaderÚ start_timeÚ old_promptÚparamrGÚiÚxÚyÚoutputrÚmax_local_stepsÚloss_regularizerÚfÚ new_promptÚ diff_provalueÚ new_paramÚ old_paramÚdiff_pror-r-r.r:#s|              " zclientMTLPT.traincCs*t |dd¡|_t |¡|_||_dS)Nr)rÚsqrtr r6r7rr)r%rr rr-r-r.Úreceive_valuesss zclientMTLPT.receive_valuescCs2t|j ¡|jj ¡ƒD]\}}|j ¡|_qdS)N)rRrrrÚdataÚclone)r%rrcrdr-r-r.Úset_parametersws zclientMTLPT.set_parametersc Csv| ¡}|j |j¡|j ¡d}d}d}g}g}t ¡�ò|D]æ\}}t|ƒtgƒkrp|d |j¡|d<n | |j¡}| |j¡}| |¡} |j |¡} |t  tj | dd�|k¡  ¡7}|t  tj | dd�|k¡  ¡7}||j d7}|  |  ¡ ¡ ¡¡|  t| ¡ ¡ ¡t |j¡d�¡qBW5QRX|j ¡tj|dd�}tj|dd�}tj||dd�} |||| fS)Nrr/)Údim)Úclasses)ÚaxisÚmicro)Úaverage)Úload_test_datarr8r9ÚevalrÚno_gradr>rrLÚargmaxÚitemrPÚappendÚdetachrQÚnumpyrrAÚarangeÚ num_classesÚ concatenaterÚ roc_auc_score) r%ÚtestloaderfullÚtest_accÚ test_acc2Útest_numÚy_probÚy_truer[r\r]Úoutput2Úaucr-r-r.Ú test_metrics{s4         2 zclientMTLPT.test_metrics) Ú__name__Ú __module__Ú __qualname__r r:rgrjr„Ú __classcell__r-r-r+r.r s  Prcs,| ¡‰ˆ ¡}‡fdd„|Dƒ}t |¡S)Ncsg|]}ˆ| ¡‘qSr-)rJ)Ú.0Úkey©Ú state_dictr-r.Ú <listcomp>¦szflatten.<locals>.<listcomp>)rŒÚkeysrÚcat)rrŽÚWr-r‹r.rJ£srJ)rÚtorch.nnrÚflcore.clients.clientbaserrwrAr5rNr6Úsklearn.preprocessingrÚsklearnrrrJr-r-r-r.Ú<module>s    
4,639
Python
.pyt
54
84.703704
653
0.41147
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,878
clientper.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientper.cpython-38.pyc
U ”jfc€ã@sLddlZddlZddlmZddlZddlZddlmZGdd„deƒZ dS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientPerc s>tƒj||||f|�t ¡|_tjj|j  ¡|j d�|_ dS)N)Úlr) ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizer)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©õKD:\京东\promot\cifar\cifar\Cifar10_iid\system\flcore\clients\clientper.pyr s zclientPer.__init__c Cs4| ¡}t ¡}|j |j¡|j ¡|j}|jrFtj   d|d¡}t |ƒD]ª}t |ƒD]œ\}\}}t |ƒt gƒkrŒ|d |j¡|d<n | |j¡}| |j¡}|jrÄt dt tj  ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j ¡qZqN|j ¡|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?Ú num_roundsÚ total_cost)Úload_train_dataÚtimer ÚtoÚdeviceÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚsleepÚabsÚrandrÚ zero_gradr ÚbackwardÚstepÚcpuÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr1ÚiÚxÚyÚoutputr rrrr#s.        zclientPer.traincCs0t| ¡|jj ¡ƒD]\}}|j ¡|_qdS)N)Úziprr ÚbaseÚdataÚclone)rr Ú new_paramÚ old_paramrrrÚset_parameters0szclientPer.set_parameters)Ú__name__Ú __module__Ú __qualname__rr#rAÚ __classcell__rrrrr s  r) Úcopyr Útorch.nnrÚnumpyr&r Úflcore.clients.clientbaserrrrrrÚ<module>s   
1,849
Python
.pyt
20
91.3
302
0.457923
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,879
clientmtl.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientmtl.cpython-39.pyc
a f¾`c® ã@s\ddlZddlmZddlmZddlZddlZddlZddl Z Gdd„deƒZ dd„Z dS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientMTLc sdtƒj||||fi|¤�d|_d|_d|_|j|_d|_t ¡|_ t j j |j  ¡|jdd�|_dS)Nrg-Cëâ6?gà?)ÚlrÚmomentum)ÚsuperÚ__init__ÚomegaÚW_globÚidxZitkZlambaÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizer)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©úr/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/clients/clientmtl.pyr s zclientMTL.__init__c Csª| ¡}t ¡}|j ¡|j}|jr8tj d|d¡}t |ƒD�]*}|D�]\}}t |ƒt gƒkrz|d  |j ¡|d<n |  |j ¡}|  |j ¡}|jr²t  dt tj ¡¡¡|j ¡| |¡}| ||¡}t|jƒ|jdd…|jf<d} | |j ¡d7} | t t |j|jd¡d¡7} tt |jjd¡dƒd} | d| 9} || 7}| ¡|j ¡qJq@d|_d|_|j dd7<|j dt ¡|7<dS)Néérgš™™™™™¹?é Ú num_roundsÚ total_cost)!Úload_train_dataÚtimerÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚtypeÚtoÚdeviceÚsleepÚabsÚrandrÚ zero_gradr Úflattenr r ÚnormrÚsumrÚintÚmathÚlog10ÚshapeÚbackwardÚstepÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr<ÚxÚyÚoutputr Zloss_regularizerÚfrrrr&s<      "zclientMTL.traincCs*t |dd¡|_t |¡|_||_dS)Nr)rÚsqrtrÚcopyÚdeepcopyr r )rr rr rrrÚreceive_valuesHs zclientMTL.receive_values)Ú__name__Ú __module__Ú __qualname__rr&rHÚ __classcell__rrrrr s 1rcs,| ¡‰ˆ ¡}‡fdd„|Dƒ}t |¡S)Ncsg|]}ˆ| ¡‘qSr)r4)Ú.0Úkey©Ú state_dictrrÚ <listcomp>Qózflatten.<locals>.<listcomp>)rPÚkeysrÚcat)rrSÚWrrOrr4Nsr4) rÚtorch.nnr Úflcore.clients.clientbaserÚnumpyr)r%r8rFrr4rrrrÚ<module>s  D
2,536
Python
.pyt
26
96.461538
274
0.430506
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,880
clientperpt.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientperpt.cpython-38.pyc
U aÿcPã@slddlZddlZddlmZddlZddlZddlmZddlZddl m Z ddl m Z Gdd„deƒZ dS)éN)ÚClient)Úlabel_binarize)Úmetricscs4eZdZ‡fdd„Zdd„Zdd„Zdd„Z‡ZS) Ú clientPerPTc sštƒj||||f|�t ¡|_tj |jj   ¡|j dœ|jj   ¡|j dœg¡|_ |j|_tjj|jj  ¡|j|jd�|_tjjj|j|j|jd�|_dS)N)ÚparamsÚlr)rÚmomentum)Ú step_sizeÚgamma)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚbaseÚ parametersÚ learning_rateÚ predictorÚ optimizerÚ plocal_stepsÚ generatorÚpt_learning_raterÚ poptimizerÚ lr_schedulerÚStepLRÚlearning_decayÚ scheduler)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©õcD:\京东\promot\第二次投稿\å®�验\æœ�务器\native - pro\system\flcore\clients\clientperpt.pyr s ş ÿzclientPerPT.__init__c Cs0| ¡}t ¡}t |jj¡}|j |j¡|j ¡|jj   ¡D] }d|_ qB|jj   ¡D] }d|_ qZ|jj  ¡D] }d|_ qrt |jƒD]´}t|ƒD]¦\}\}}t|ƒtgƒkrÆ|d |j¡|d<n | |j¡}| |j¡}|jrşt dt tj ¡¡¡|j ¡| |¡} | | |¡} |  ¡|j ¡|j ¡q”qˆ|j} |j�r^tj d| d¡} |jj   ¡D] }d|_ �qj|jj   ¡D] }d|_ �q„|jj  ¡D] }d|_ �q�t | ƒD]²}t|ƒD]¢\}\}}t|ƒtgƒk�rô|d |j¡|d<n | |j¡}| |j¡}|j�r.t dt tj ¡¡¡|j ¡| |¡} | | |¡} |  ¡|j ¡�qÀ�q´|j  ¡t |jj¡} d} |j!dd7<|j!dt ¡|7<t"|  ¡|   ¡ƒD]<\}}||}t# $|dk|t# %|¡|¡}| t# &|¡} �qÂ|j!dd7<|j!dt ¡|7<| S) NFTrgš™™™™™¹?ééÚ num_roundsÚ total_cost)'Úload_train_dataÚtimeÚcopyÚdeepcopyrrÚtoÚdeviceÚtrainrrÚ requires_gradrÚrangerÚ enumerateÚtypeÚ train_slowÚsleepÚnpÚabsÚrandomÚrandrÚ zero_gradrÚbackwardÚstepr Ú local_stepsÚrandintrÚcpuÚtrain_time_costÚziprÚwhereÚ zeros_likeÚsum)r!Ú trainloaderÚ start_timeÚ old_promptÚparamrBÚiÚxÚyÚoutputrÚmax_local_stepsÚ new_promptÚ diff_provalueÚ new_paramÚ old_paramÚdiff_pror)r)r*r5sv                 zclientPerPT.traincCs2t|j ¡|jj ¡ƒD]\}}|j ¡|_qdS)N)rGrrrÚdataÚclone)r!rrVrWr)r)r*Úset_parameters^s zclientPerPT.set_parametersc Cs~| ¡}|j |j¡|j ¡d}d}d}g}g}t ¡�ú|D]î\}}t|ƒtgƒkrp|d |j¡|d<n | |j¡}| |j¡}| |¡} |j |j  |¡¡} |t  tj | dd�|k¡  ¡7}|t  tj | dd�|k¡  ¡7}||j d7}| |  ¡ ¡ ¡¡| t| ¡ ¡ ¡t |j¡d�¡qBW5QRX|j ¡tj|dd�}tj|dd�}tj||dd�} |||| fS)Nrr+)Údim)Úclasses)ÚaxisÚmicro)Úaverage)Úload_test_datarr3r4ÚevalrÚno_gradr9rrrJÚargmaxÚitemÚshapeÚappendÚdetachrEÚnumpyrr<ÚarangeÚ num_classesÚ concatenaterÚ roc_auc_score) r!ÚtestloaderfullÚtest_accÚ test_acc2Útest_numÚy_probÚy_truerPrQrRÚoutput2Úaucr)r)r*Ú test_metricsas4        2 zclientPerPT.test_metrics)Ú__name__Ú __module__Ú __qualname__r r5r[rvÚ __classcell__r)r)r'r*r s Br)r1rÚtorch.nnr rir<r0Úflcore.clients.clientbaserÚsklearn.preprocessingrÚsklearnrrr)r)r)r*Ú<module>s    
3,900
Python
.pyt
52
73.557692
558
0.423227
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,881
clientproxpt.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientproxpt.cpython-38.pyc
U Ñıcã@sxddlZddlZddlZddlZddlmZddlmZddl m Z ddlZddl m Z ddl mZGdd„de ƒZdS)éN)ÚPerturbedGradientDescent)ÚClient)Úlabel_binarize)Úmetricscs4eZdZ‡fdd„Zdd„Zdd„Zdd„Z‡ZS) Ú clientProxPTc sªtƒj||||f|�|j|_t t|jj ¡ƒ¡|_ t   ¡|_ t |jj ¡|jdœg|jd�|_|j|_tjj|jj ¡|j|jd�|_tjjj|j|j|jd�|_dS)N)ÚparamsÚlr)Úmu)rÚmomentum)Ú step_sizeÚgamma)ÚsuperÚ__init__r ÚcopyÚdeepcopyÚlistÚmodelÚbaseÚ parametersÚ global_paramsÚnnÚCrossEntropyLossÚlossrÚ learning_rateÚ optimizerÚ plocal_stepsÚtorchÚoptimÚSGDÚ generatorZpt_learning_rater Ú poptimizerÚ lr_schedulerÚStepLRZlearning_decayÚ scheduler)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©õZD:\京东\promot\第二次投稿\å®�验\native - pro\system\flcore\clients\clientproxpt.pyr s  ÿıÿÿzclientProxPT.__init__c Cs°| ¡}t ¡}t |jj¡}|j |j¡|j ¡|jj   ¡D] }d|_ qB|jj  ¡D] }d|_ qZt |j ƒD]´}t|ƒD]¦\}\}}t|ƒtgƒkr®|d |j¡|d<n | |j¡}| |j¡}|jræt dt tj ¡¡¡|j ¡| |¡} | | |¡} |  ¡|j ¡|j ¡q|qp|j} |j�rFtj d| d¡} |jj   ¡D] }d|_ �qR|jj  ¡D] }d|_ �qlt | ƒD]�}|D]„\}}t|ƒtgƒk�rº|d |j¡|d<n | |j¡}| |j¡}|j ¡| |¡} | | |¡} |  ¡|j |j|j¡�qŠ�q‚|j  ¡t |jj¡} d} t!|  ¡|   ¡ƒD]<\}}||}t" #|dk|t" $|¡|¡}| t" %|¡} �qB|j&dd7<|j&dt ¡|7<| S) NFTrgš™™™™™¹?ééÚ num_roundsÚ total_cost)'Úload_train_dataÚtimerrrrÚtoÚdeviceÚtrainrrÚ requires_gradÚrangerÚ enumerateÚtypeÚ train_slowÚsleepÚnpÚabsÚrandomÚrandr Ú zero_gradrÚbackwardÚstepr#Ú local_stepsÚrandintrrÚcpuÚziprÚwhereÚ zeros_likeÚsumÚtrain_time_cost)r$Ú trainloaderÚ start_timeZ old_promptÚparamrCÚiÚxÚyÚoutputrÚmax_local_stepsZ new_promptZ diff_provalueÚ new_paramÚ old_paramÚdiff_pror,r,r-r6"sf                 zclientProxPT.traincCsDt|j ¡|j|jj ¡ƒD]"\}}}|j ¡|_|j ¡|_qdS)N)rGrrrrÚdataÚclone)r$rrTÚ global_paramrNr,r,r-Úset_parametersas& zclientProxPT.set_parametersc Csv| ¡}|j |j¡|j ¡d}d}d}g}g}t ¡�ò|D]æ\}}t|ƒtgƒkrp|d |j¡|d<n | |j¡}| |j¡}| |¡} |j |¡} |t  tj | dd�|k¡  ¡7}|t  tj | dd�|k¡  ¡7}||j d7}|  |  ¡ ¡ ¡¡|  t| ¡ ¡ ¡t |j¡d�¡qBW5QRX|j ¡tj|dd�}tj|dd�}tj||dd�} |||| fS)Nrr.)Údim)Úclasses)ÚaxisÚmicro)Úaverage)Úload_test_datarr4r5ÚevalrÚno_gradr:rrJÚargmaxÚitemÚshapeÚappendÚdetachrFÚnumpyrr=ÚarangeÚ num_classesÚ concatenaterÚ roc_auc_score) r$ÚtestloaderfullÚtest_accÚ test_acc2Útest_numÚy_probÚy_truerPrQrRÚoutput2Úaucr,r,r-Ú test_metricses4         2 zclientProxPT.test_metrics)Ú__name__Ú __module__Ú __qualname__rr6rZruÚ __classcell__r,r,r*r-r s ?r)rrhr=r3rÚtorch.nnrÚflcore.optimizers.fedoptimizerrÚflcore.clients.clientbaserÚsklearn.preprocessingrÚsklearnrrr,r,r,r-Ú<module>s     
3,919
Python
.pyt
47
82.085106
553
0.437387
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,882
clientproto.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientproto.cpython-38.pyc
U ”jfc ã@s`ddlmZddlZddlZddlmZddlZddlZddl m Z Gdd„de ƒZ dd„Z dS)é)Ú defaultdictN)ÚClientcs>eZdZ‡fdd„Zdd„Zdd„Zdd„Zd d d „Z‡ZS) Ú clientProtoc sxtƒj||||f|�t ¡|_tjj|j  ¡|j d�|_ t |jj   ¡ƒdjd|_d|_d|_t ¡|_|j|_dS)N)Úlrré)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizerÚlistÚ predictorÚshapeZ feature_dimÚprotosÚ global_protosÚMSELossÚloss_mseÚlamda)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©õMD:\京东\promot\cifar\cifar\Cifar10_iid\system\flcore\clients\clientproto.pyr s  zclientProto.__init__c Csô| ¡}t ¡}|j |j¡|j ¡|j}|jrFtj   d|d¡}t t ƒ}t |ƒD�]V}t|ƒD�]F\}\}}t|ƒtgƒkr˜|d |j¡|d<n | |j¡}| |j¡}|jrĞt dt tj  ¡¡¡|j ¡|j |¡} |j | ¡} | | |¡} |jdk�r^t | ¡} t|ƒD]*\}} |  ¡}|j|j| |dd…f<�q| | | | ¡|j7} t|ƒD]2\}} |  ¡}|| | |dd…f  ¡j¡�qf|  !¡|j "¡qdqV|j #¡t$|ƒ|_%|j&dd7<|j&dt ¡|7<dS)Nrérçš™™™™™¹?Ú num_roundsÚ total_cost)'Úload_train_dataÚtimerÚtoÚdeviceÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintrrÚrangeÚ enumerateÚtypeÚsleepÚabsÚrandrÚ zero_gradÚbaserr rr Ú zeros_likeÚitemÚdatarrÚappendÚdetachÚbackwardÚstepÚcpuÚagg_funcrÚtrain_time_cost)rÚ trainloaderÚ start_timeÚmax_local_stepsrrAÚiÚxÚyÚrepÚoutputr Z proto_newÚyyÚy_cr#r#r$r-sF         $  zclientProto.traincCst |¡|_dS)N)ÚcopyÚdeepcopyr)rrr#r#r$Ú set_protosNszclientProto.set_protosc Cs| ¡}|j |j¡|j ¡ttƒ}t ¡�Êt |ƒD]º\}\}}t |ƒt gƒkrl|d |j¡|d<n | |j¡}| |j¡}|j r¤t   dt tj ¡¡¡|j ¡|j |¡}t |ƒD]0\}}| ¡}|| ||dd…f ¡j¡qÂq:W5QRXt|ƒ|_|j ¡dS)Nrr&)r)rr+r,Úevalrrr Úno_gradr4r5r/r*r6r0r7r1r8rr9r:r<r>r?r=rCrrB) rrErrHrIrJrKrMrNr#r#r$Úcollect_protosQs&      . zclientProto.collect_protosNc Cs@| ¡}|dkr|j}|j |j¡| ¡d}d}t ¡�ê|D]Ş\}}t|ƒtgƒkrp|d |j¡|d<n | |j¡}| |j¡}|j |¡}t dƒt  |j d|j ¡ |j¡}t |ƒD]0\} } |j ¡D]\} } | | | ¡|| | f<qÒqÀ|t tj|dd�|k¡ ¡7}||j d7}qBW5QRX|j ¡||dfS)NrÚinfr)Údim)Úload_test_datarr+r,rRr rSr5r:ÚfloatÚonesrÚ num_classesr4rÚitemsrÚsumÚargminr<rB) rrÚ testloaderÚtest_accÚtest_numrIrJrKrLrHÚrÚjÚpror#r#r$Ú test_metricsjs,     $  zclientProto.test_metrics)N) Ú__name__Ú __module__Ú __qualname__rr-rQrTrdÚ __classcell__r#r#r!r$r s  3rcCsb| ¡D]T\}}t|ƒdkrPd|dj}|D]}||j7}q.|t|ƒ||<q|d||<q|S)z- Returns the average of the weights. rr)r[Úlenr=)rÚlabelÚ proto_listÚprotorHr#r#r$rC‰s  rC) Ú collectionsrrOr Útorch.nnr Únumpyr0r*Úflcore.clients.clientbaserrrCr#r#r#r$Ú<module>s   ~
3,997
Python
.pyt
41
96.195122
455
0.392974
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,883
clientfomo.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientfomo.cpython-37.pyc
B t fcàã@sdddlZddlmZddlZddlZddlZddlmZddl m Z ddl m Z Gdd„deƒZ dS)éN)ÚClient)Ú DataLoader)Úread_client_datacsneZdZ‡fdd„Zdd„Zddd„Zdd „Zd d „Zd d „Zdd„Z dd„Z dd„Z dd„Z dd„Z ‡ZS)Ú clientFomoc sŒtƒj||||f|�|j|_t |j¡|_g|_g|_t j |j|j d�|_ t  ¡|_t jj|j ¡|jd�|_d|_|jd|j|_dS)N)Údevice)Úlrgš™™™™™É?é)ÚsuperÚ__init__Ú num_clientsÚcopyÚdeepcopyÚmodelÚ old_modelÚ received_idsÚreceived_modelsÚtorchÚzerosrÚ weight_vectorÚnnÚCrossEntropyLossÚlossÚoptimÚSGDÚ parametersÚ learning_rateÚ optimizerÚ val_ratioÚ train_samples)ÚselfÚargsÚidrÚ test_samplesÚkwargs)Ú __class__©úG/root/autodl-tmp/PFL-Non-IID-master/system/flcore/clients/clientfomo.pyr s zclientFomo.__init__c CsR| ¡\}}t ¡}| |¡| |j|j¡|j |j¡|j ¡|j }|j rdt j   d|d¡}x²t|ƒD]¦}x |D]˜\}}t|ƒtgƒkr¦|d |j¡|d<n | |j¡}| |j¡}|j rŞt dt  t j  ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j ¡qxWqnW|j ¡|jdd7<|jdt ¡|7<dS)Nrérgš™™™™™¹?Ú num_roundsÚ total_cost)Úload_train_dataÚtimeÚaggregate_parametersÚ clone_modelrrÚtorÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚtypeÚsleepÚabsÚrandrÚ zero_gradrÚbackwardÚstepÚcpuÚtrain_time_cost) rÚ trainloaderÚ val_loaderÚ start_timeÚmax_local_stepsr<ÚxÚyÚoutputrr%r%r&r/s2         zclientFomo.trainNcCsz|dkr|j}t|j|jdd�}t|jt|ƒƒ }||d…}|d|…}t||jddd�}t||j|jdd�}||fS)NT)Úis_train)Ú drop_lastÚshuffle) Ú batch_sizerÚdatasetr!ÚintrÚlenrÚ has_BatchNorm)rrIÚ train_dataÚval_idxZval_datar?r@r%r%r&r*?s  zclientFomo.load_train_datacCsÄ| ¡\}}|j |j¡|j ¡d}d}x„|D]|\}}t|ƒtgƒkr`|d |j¡|d<n | |j¡}| |j¡}| |¡}||jd7}|| ||¡ ¡|jd7}q2W|j  ¡||fS)Nr) r*rr.rÚevalr6ÚshaperÚitemr=)rr?r@Ú train_numrrCrDrEr%r%r&Ú train_metricsLs     " zclientFomo.train_metricscCs||_||_dS)N)rr)rÚidsÚmodelsr%r%r&Úreceive_modelscszclientFomo.receive_modelscCs�g}| |j|¡}xv|jD]l}g}x4t| ¡|j ¡ƒD]\}}| || d¡¡q8Wt |¡}| || ||¡t  |¡d¡qW|  |¡t  |¡S)Néÿÿÿÿgñh㈵øä>) Úrecalculate_lossrrÚziprÚappendÚviewrÚcatÚnormÚweight_vector_updateÚtensor)rr@Ú weight_listÚLÚreceived_modelZ params_difZparam_nZparam_ir%r%r&Ú weight_calgs  ( zclientFomo.weight_calcCsXt |j¡|_x.t||jƒD]\}}|j|| ¡7<qWt |j¡  |j ¡|_dS)N) r2rr rrZrrRrr`r.r)rraÚwr!r%r%r&r_‚szclientFomo.weight_vector_updatecCs”d}| |j¡xn|D]f\}}t|ƒtgƒkrD|d |j¡|d<n | |j¡}| |j¡}||ƒ}| ||¡}|| ¡7}qW| ¡|t|ƒS)Nr)r.rr6rrRr=rL)rZ new_modelr@rbrCrDrErr%r%r&rYŒs    zclientFomo.recalculate_losscCs>x8t|j ¡| ¡ƒD] \}}|j|j ¡|7_qWdS)N)rZrrÚdataÚclone)rrercÚparamZreceived_paramr%r%r&Úadd_parameters›szclientFomo.add_parameterscCsd| | |¡¡}t|ƒdkr`x|j ¡D]}|j ¡q(Wx$t||jƒD]\}}|  ||¡qHWdS)Nr) Ú weight_scalerdrLrrrfÚzero_rZrri)rr@Úweightsrhrercr%r%r&r,Ÿs  zclientFomo.aggregate_parameterscsNt |t d¡¡}t |¡‰ˆdkr@‡fdd„|Dƒ}t |¡St g¡SdS)Nrcsg|] }|ˆ‘qSr%r%)Ú.0re)Úw_sumr%r&ú <listcomp>­sz+clientFomo.weight_scale.<locals>.<listcomp>)rÚmaximumr`Úsum)rrlr%)rnr&rj©s   zclientFomo.weight_scale)N)Ú__name__Ú __module__Ú __qualname__r r/r*rTrWrdr_rYrir,rjÚ __classcell__r%r%)r$r&r s #   r)rÚtorch.nnrÚnumpyr2r+r Úflcore.clients.clientbaserÚtorch.utils.datarÚutils.data_utilsrrr%r%r%r&Ú<module>s    
5,079
Python
.pyt
47
106.978723
876
0.407709
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,884
clientdynpt.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientdynpt.cpython-38.pyc
U ”jfcèã@sTddlZddlZddlmZddlZddlZddlmZGdd„deƒZ dd„Z dS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientDynPTc s¬tƒj||||f|�t ¡|_tjj|j  ¡|j d�|_ |j |_ d|_ t |j¡}t|ƒ}t |¡|_tjj|jj  ¡|j d�|_tjj|jj  ¡|j d�|_ |j|_dS)N)Úlr)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizerÚalphaÚglobal_model_vectorÚcopyÚdeepcopyÚmodel_parameter_vectorÚ zeros_likeÚold_gradÚ generatorÚ poptimizerÚbaseÚ plocal_steps)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargsr©Ú __class__©õMD:\京东\promot\cifar\cifar\Cifar10_iid\system\flcore\clients\clientdynpt.pyr s   zclientDynPT.__init__c Cs¨| ¡}t ¡}t |jj¡}|j |j¡|j |j¡|_|j  |j¡|_ |j  ¡|jj   ¡D] }d|_ qb|jj  ¡D] }d|_ qzt|jƒD]¬}t|ƒD]�\}\}}t|ƒtgƒkrÎ|d |j¡|d<n | |j¡}| |j¡}|j�rt dt tj ¡¡¡|j ¡| |¡} | | |¡} |  ¡|j ¡qœq�|j} |jj   ¡D] }d|_ �qP|jj  ¡D] }d|_ �qj|j�r’tj d| d¡} t| ƒD]ú}t|ƒD]ê\}\}}t|ƒtgƒk�rÚ|d |j¡|d<n | |j¡}| |j¡}|j�rt dt tj ¡¡¡|j ¡| |¡} | | |¡} |j dk�r|t |jƒ} | |j!dt" #| |j d¡7} | t" $| |j¡8} |  ¡|j ¡�q¦�qš|j dk�rÈt |jƒ %¡} |j|j!| |j |_|j &¡|j &¡|_|j  &¡|_ |j'dd7<|j'dt ¡|7<t |jj¡} d}t(|  ¡|   ¡ƒD]<\}}||}t" )|dk|t" *|¡|¡}|t" +|¡}�q:|j'dd7<|j'dt ¡|7<|S) NFTrgš™™™™™¹?ééÚ num_roundsÚ total_cost),Úload_train_dataÚtimerrr rÚtoÚdevicerrÚtrainrrÚ requires_gradÚrangerÚ enumerateÚtypeÚ train_slowÚsleepÚnpÚabsÚrandomÚrandrÚ zero_gradr ÚbackwardÚstepÚ local_stepsÚrandintrrrr ÚnormÚdotÚdetachÚcpuÚtrain_time_costÚzipÚwhererÚsum)rÚ trainloaderÚ start_timeÚ old_promptÚparamr;ÚiÚxÚyÚoutputr Úmax_local_stepsÚv1Ú new_promptÚ diff_provalueÚ new_paramÚ old_paramÚdiff_pror$r$r%r."s‚                     zclientDynPT.traincCsDt|j ¡|jj ¡ƒD]\}}|j ¡|_qt|ƒ ¡ ¡|_dS)N) rCrrr ÚdataÚclonerr@r)rr rRrSr$r$r%Úset_parametersss zclientDynPT.set_parameters)Ú__name__Ú __module__Ú __qualname__rr.rWÚ __classcell__r$r$r"r%r s QrcCs dd„| ¡Dƒ}tj|dd�S)NcSsg|]}| d¡‘qS)éÿÿÿÿ)Úview)Ú.0Úpr$r$r%Ú <listcomp>|sz*model_parameter_vector.<locals>.<listcomp>r)Údim)rr Úcat)r rIr$r$r%r{sr) rr Útorch.nnrÚnumpyr5r+Úflcore.clients.clientbaserrrr$r$r$r%Ú<module>s  o
3,377
Python
.pyt
41
81.268293
328
0.393168
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,885
clientt.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientt.cpython-37.pyc
B v¹ccã ã@sLddlZddlmZddlZddlZddlmZddlZGdd„deƒZ dS)éN)ÚClientcs4eZdZ‡fdd„Zdd„Zdd„Zdd„Z‡ZS) ÚclientTc sltƒj||||f|�t ¡|_tjj|jj   ¡|j d�|_ tjj|jj   ¡|j d�|_| ¡|j|_dS)N)Úlr)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ generatorÚ parametersÚ learning_rateÚ poptimizerÚbaseÚ optimizerÚser_paraÚ plocal_steps)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs)Ú __class__©úD/root/autodl-tmp/PFL-Non-IID-master/system/flcore/clients/clientt.pyr s  zclientT.__init__cCsxt |j¡t |jjjj¡|jjj_t |jjjj¡|jjj_t |jjj j¡|jjj _t |jjj j¡|jjj _dS)N) r Ú manual_seedrÚ rand_liker rZpad_downÚdataÚpad_leftÚ pad_rightZpad_up)rrrrrs  zclientT.ser_parac Csê| ¡}t ¡}t |jj¡}|j |j¡|j ¡|j }|j rTt j   d|d¡}x|jj ¡D] }d|_qbWx|jj ¡D] }d|_q~Wx¼t|ƒD]°}xªt|ƒD]�\}\}} t|ƒtgƒkrÖ|d |j¡|d<n | |j¡}|  |j¡} |j �rt dt  t j  ¡¡¡|j ¡| |¡} | | | ¡} |  ¡|j ¡q¤Wq–W|j ¡t |jj¡} d} xRt| ¡|  ¡ƒD]<\}}||}t |dk|t  |¡|¡}| t !|¡} �qzW|j"dd7<|j"dt ¡|7<| S) NééTFrgš™™™™™¹?Ú num_roundsÚ total_cost)#Úload_train_dataÚtimeÚcopyÚdeepcopyr rÚtoÚdeviceÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintrrÚ requires_gradÚrangeÚ enumerateÚtypeÚsleepÚabsÚrandrÚ zero_gradr ÚbackwardÚstepÚcpuÚzipr ÚwhereÚ zeros_likeÚsumÚtrain_time_cost)rÚ trainloaderÚ start_timeÚ old_promptÚmax_local_stepsÚparamr=ÚiÚxÚyÚoutputr Ú new_promptÚ diff_provalueÚ new_paramÚ old_paramÚdiff_prorrrr.sF         z clientT.traincCs4x.t| ¡|jj ¡ƒD]\}}|j ¡|_qWdS)N)r?rr rr!Úclone)rrrOrPrrrÚset_parametersOs zclientT.set_parameters)Ú__name__Ú __module__Ú __qualname__rrr.rSÚ __classcell__rr)rrr s 0r) r Útorch.nnrÚnumpyr1r)Ú system.flcore.clients.clientbaserr*rrrrrÚ<module>s   
2,599
Python
.pyt
34
75.294118
292
0.447389
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,886
clientproto.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientproto.cpython-39.pyc
a âæ`cšã@s`ddlmZddlZddlZddlmZddlZddlZddl m Z Gdd„de ƒZ dd„Z dS)é)Ú defaultdictN)ÚClientcs>eZdZ‡fdd„Zdd„Zdd„Zdd„Zd d d „Z‡ZS) Ú clientProtoc s|tƒj||||fi|¤�t ¡|_tjj|j  ¡|j d�|_ t |jj   ¡ƒdjd|_d|_d|_t ¡|_|j|_dS)N)Úlrré)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizerÚlistÚ predictorÚshapeZ feature_dimÚprotosÚ global_protosÚMSELossÚloss_mseÚlamda)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©út/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/clients/clientproto.pyr s  zclientProto.__init__c CsÜ| ¡}t ¡}|j ¡|j}|jr8tj d|d¡}t t ƒ}t |ƒD�]V}t |ƒD�]F\}\}}t |ƒt gƒkrŠ|d |j¡|d<n | |j¡}| |j¡}|jrÂt dt tj ¡¡¡|j ¡|j |¡} |j | ¡} | | |¡} |jdk�rPt | ¡} t |ƒD]*\}} |  ¡}|j|j| |dd…f<�q| | | | ¡|j7} t |ƒD]2\}} |  ¡}|| | |dd…f  ¡j¡�qX|  !¡|j "¡qVqHt#|ƒ|_$|j%dd7<|j%dt ¡|7<dS)Nrérçš™™™™™¹?Ú num_roundsÚ total_cost)&Úload_train_dataÚtimerÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintrrÚrangeÚ enumerateÚtypeÚtoÚdeviceÚsleepÚabsÚrandrÚ zero_gradÚbaserr rr Ú zeros_likeÚitemÚdatarrÚappendÚdetachÚbackwardÚstepÚagg_funcrÚtrain_time_cost)rÚ trainloaderÚ start_timeÚmax_local_stepsrrAÚiÚxÚyÚrepÚoutputr Z proto_newÚyyÚy_cr#r#r$r+sB         $ zclientProto.traincCst |¡|_dS)N)ÚcopyÚdeepcopyr)rrr#r#r$Ú set_protosNszclientProto.set_protosc Cs| ¡}|j ¡ttƒ}t ¡�Ôt|ƒD]º\}\}}t|ƒtgƒkr^|d  |j ¡|d<n |  |j ¡}|  |j ¡}|j r–t   dt tj ¡¡¡|j ¡|j |¡}t|ƒD]0\}}| ¡}|| ||dd…f ¡j¡q´q,Wdƒn1sü0Yt|ƒ|_dS)Nrr&)r)rÚevalrrr Úno_gradr2r3r4r5r-r*r6r.r7r/r8rr9r:r<r>r?r=rBr) rrDrrGrHrIrJrLrMr#r#r$Úcollect_protosQs"      BzclientProto.collect_protosNc Cs>| ¡}|dkr|j}| ¡d}d}t ¡�ô|D]Ş\}}t|ƒtgƒkrb|d |j¡|d<n | |j¡}| |j¡}|j |¡}t dƒt  |j d|j ¡ |j¡}t |ƒD]0\} } |j ¡D]\} } | | | ¡|| | f<qÄq²|t tj|dd�|k¡ ¡7}||j d7}q4Wdƒn1�s*0Y||dfS)NrÚinfr)Údim)Úload_test_datarrQr rRr3r4r5r:ÚfloatÚonesrÚ num_classesr2rÚitemsrÚsumÚargminr<) rrÚ testloaderÚtest_accÚtest_numrHrIrJrKrGÚrÚjÚpror#r#r$Ú test_metricshs(     $ 0zclientProto.test_metrics)N) Ú__name__Ú __module__Ú __qualname__rr+rPrSrcÚ __classcell__r#r#r!r$r s  3rcCsb| ¡D]T\}}t|ƒdkrPd|dj}|D]}||j7}q.|t|ƒ||<q|d||<q|S)z- Returns the average of the weights. rr)rZÚlenr=)rÚlabelÚ proto_listÚprotorGr#r#r$rB†s  rB) Ú collectionsrrNr Útorch.nnr Únumpyr.r*Úflcore.clients.clientbaserrrBr#r#r#r$Ú<module>s   {
3,980
Python
.pyt
39
100.794872
408
0.40208
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,887
clientditto.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientditto.cpython-39.pyc
a $æ`cùã@s‚ddlZddlZddlZddlZddlmZddlmZddl m Z ddl mm Z ddlmZddlmZGdd„de ƒZdS)éN)ÚPerturbedGradientDescent)ÚClient)Úlabel_binarize)Úmetricscs4eZdZ‡fdd„Zdd„Zdd„Zdd„Z‡ZS) Ú clientDittoc sztƒj||||fi|¤�|j|_|j|_t |j¡|_t  ¡|_ t j j |j ¡|jd�|_t|j ¡|j|jd�|_dS)N)Úlr)rÚmu)ÚsuperÚ__init__rÚ plocal_stepsÚcopyÚdeepcopyÚmodelÚpmodelÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚ parametersÚ learning_rateÚ optimizerrÚ poptimizer)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©út/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/clients/clientditto.pyr s ÿzclientDitto.__init__c Cs6| ¡}t ¡}|j ¡|j}|jr8tj d|d¡}t |ƒD]Ä}t |ƒD]¶\}\}}t |ƒt gƒkr~|d  |j ¡|d<n |  |j ¡}|  |j ¡}|jr¶t dt tj ¡¡¡|j ¡| |¡}| ||¡} |  ¡|jrøt|j|t|ƒƒqL|j ¡qLq@|jdd7<|jdt ¡|7<dS)Néérçš™™™™™¹?Ú num_roundsÚ total_cost)Úload_train_dataÚtimerÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚtoÚdeviceÚsleepÚabsÚrandrÚ zero_gradrÚbackwardÚprivacyÚdp_stepÚlenÚstepÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr>ÚiÚxÚyÚoutputrr"r"r#r+!s.       zclientDitto.trainc Cs| ¡}t ¡}|j ¡|j}|jr8tj d|d¡}t |ƒD]®}|D]¤\}}t |ƒt gƒkrv|d  |j ¡|d<n |  |j ¡}|  |j ¡}|jr®t  dt tj ¡¡¡|j ¡| |¡}| ||¡}| ¡|j |j ¡|j ¡qHq@|jdt ¡|7<dS)Nr$r%rr&r()r)r*rr+r r-r.r/r0r1r3r4r5r6r7r8rr9rr:r>rrr?) rr@rArBr>rDrErFrr"r"r#ÚptrainIs(        zclientDitto.ptrainc CsH| ¡}|j ¡d}d}g}g}t ¡�Ö|D]À\}}t|ƒtgƒkr^|d |j¡|d<n | |j¡}| |j¡}| |¡}|t tj |dd�|k¡  ¡7}||j d7}|  t  |¡ ¡ ¡ ¡¡|  t| ¡ ¡ ¡t |j¡d�¡q0Wdƒn1�s0Ytj|dd�}tj|dd�}tj||dd�} ||| fS)Nrr$)Údim)Úclasses)ÚaxisÚmicro)Úaverage)Úload_test_datarÚevalrÚno_gradr3r4r5ÚsumÚargmaxÚitemÚshapeÚappendÚFÚsoftmaxÚdetachÚcpuÚnumpyrr.ÚarangeÚ num_classesÚ concatenaterÚ roc_auc_score) rÚtestloaderfullÚtest_accÚtest_numÚy_probÚy_truerDrErFÚaucr"r"r#Ú test_metricshs*       HzclientDitto.test_metrics)Ú__name__Ú __module__Ú __qualname__r r+rGrdÚ __classcell__r"r"r r#rs (r)rrYr.r*r Útorch.nnrÚflcore.optimizers.fedoptimizerrÚflcore.clients.clientbaserÚtorch.nn.functionalÚ functionalrUÚsklearn.preprocessingrÚsklearnrrr"r"r"r#Ú<module>s     
3,460
Python
.pyt
34
100.705882
420
0.432156
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,888
clientapfl.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientapfl.cpython-39.pyc
a f¾`c€ ã@sLddlZddlZddlmZddlZddlZddlmZGdd„deƒZ dS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientAPFLc srtƒj||||fi|¤�t ¡|_tjj|j  ¡|j d�|_ |j |_ t  |j¡|_tjj|j  ¡|j d�|_dS)N)Úlr)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizerÚalphaÚcopyÚdeepcopyÚ model_perÚ optimizer_per)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©ús/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/clients/clientapfl.pyr s  zclientAPFL.__init__c Cs’| ¡}t ¡}|j ¡|j}|jr8tj d|d¡}t |ƒD]ä}t |ƒD]Ö\}\}}t |ƒt gƒkr~|d  |j ¡|d<n |  |j ¡}|  |j ¡}|jr¶t dt tj ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j ¡|j ¡| |¡} | | |¡} |  ¡|j ¡| ¡qLq@t|j ¡|j ¡ƒD]$\} } d|j| |j| | _�q<|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?Ú num_roundsÚ total_cost)Úload_train_dataÚtimer ÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚtoÚdeviceÚsleepÚabsÚrandrÚ zero_gradr ÚbackwardÚsteprrÚ alpha_updateÚziprrÚdataÚtrain_time_cost)rÚ trainloaderÚ start_timeÚmax_local_stepsr6ÚiÚxÚyÚoutputr Z output_perZloss_perÚlpÚprrrr&s:             zclientAPFL.traincCs¦d}t|j ¡|j ¡ƒD]P\}}|j|j}|j|jjd|j|jj}|| d¡j  | d¡¡7}q|d|j7}|j|j ||_t   |j  ¡dd¡|_dS)Nrr éÿÿÿÿg{®Gáz”?ggğ?)r8r rrr9rÚgradÚviewÚTÚdotrr)ÚclipÚitem)rZ grad_alphaZl_paramsZp_paramsZdifrErrrr7>s  zclientAPFL.alpha_update)Ú__name__Ú __module__Ú __qualname__rr&r7Ú __classcell__rrrrr s *r) rr Útorch.nnrÚnumpyr)r%Úflcore.clients.clientbaserrrrrrÚ<module>s   
2,383
Python
.pyt
30
78.366667
277
0.434579
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,889
clientphp.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientphp.cpython-39.pyc
a Èæ`cã@sVddlZddlZddlmZddlZddlZddlmZGdd„deƒZ ddd„Z dS) éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientPHPc s|tƒj||||fi|¤�t ¡|_tjj|j  ¡|j d�|_ |j |j |_ |j|_t |j¡|_|j  ¡D] }d|_qldS)N)ÚlrF)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizerÚmuÚ global_roundsÚlamdaÚcopyÚdeepcopyÚmodel_sÚ requires_grad)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargsÚparam©Ú __class__©úr/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/clients/clientphp.pyr s zclientPHP.__init__c CsP| ¡}t ¡}|j ¡|j}|jr8tj d|d¡}t |ƒD]Ş}t |ƒD]Ğ\}\}}t |ƒt gƒkr~|d  |j ¡|d<n |  |j ¡}|  |j ¡}|jr¶t dt tj ¡¡¡|j ¡| |¡}| ||¡d|j} | t|j |¡|j |¡d|j ƒ|j7} |  ¡|j ¡qLq@|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?ÚrbfÚ num_roundsÚ total_cost)Úload_train_dataÚtimer ÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚtoÚdeviceÚsleepÚabsÚrandrÚ zero_gradr rÚMMDÚbaserÚbackwardÚstepÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr<ÚiÚxÚyÚoutputr r!r!r"r*s,      *zclientPHP.traincCsl|j|}t| ¡|j ¡ƒD]\}}|j ¡|_qt| ¡|j ¡ƒD]\}}|d||||_qHdS)Nr#)rÚziprrÚdataÚcloner )rr ÚRrÚ new_paramÚ old_paramr!r!r"Úset_parameters:s  zclientPHP.set_parameters)Ú__name__Ú __module__Ú __qualname__rr*rKÚ __classcell__r!r!rr"r s !rÚcpucCs¸t || ¡¡t || ¡¡t || ¡¡}}}| ¡ d¡ |¡}| ¡ d¡ |¡}| ¡|d|} | ¡|d|} | ¡|d|} t |j¡ |¡t |j¡ |¡t |j¡ |¡} } }|dk�rBgd¢}|D]X}| |d|d| d7} | |d|d| d7} ||d|d| d7}qè|dk�r¢gd¢}|D]H}| t  d | |¡7} | t  d | |¡7} |t  d | |¡7}�qXt  | | d|¡S) a Emprical maximum mean discrepancy. The lower the result the more evidence that distributions are the same. Args: x: first sample, distribution P y: second sample, distribution Q kernel: kernel type such as "multiscale" or "rbf" rg@Z multiscale)gš™™™™™É?gà?gÍÌÌÌÌÌì?gÍÌÌÌÌÌô?r$éÿÿÿÿr%)é ééé2gà¿) r ÚmmÚtÚdiagÚ unsqueezeÚ expand_asÚzerosÚshaper3ÚexpÚmean)rBrCÚkernelr4ÚxxÚyyÚzzÚrxÚryZdxxZdyyZdxyÚXXÚYYZXYZbandwidth_rangeÚar!r!r"r9Ds. 4ş   r9)rP) rr Útorch.nnrÚnumpyr-r)Úflcore.clients.clientbaserrr9r!r!r!r"Ú<module>s  :
3,288
Python
.pyt
39
82.230769
313
0.429671
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,890
clientbase.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientbase.cpython-38.pyc
U ºşchã@s‚ddlZddlZddlmZddlZddlZddlmmZ ddl m Z ddl m Z ddlmZddlmZGdd„deƒZdS)éN)Ú DataLoader)Úlabel_binarize)Úmetrics)Úread_client_datac@sheZdZdZdd„Zddd„Zddd„Zd d „Zd d „Zd d„Z dd„Z dd„Z ddd„Z ddd„Z dS)ÚClientz7 Base class for clients in federated learning. cKsØt |j¡|_|j|_|j|_||_|j|_||_|j|_||_ ||_ |j |_ |j |_ |j|_d|_|j ¡D]}t|tjƒrnd|_qŠqn|d|_|d|_dddœ|_dddœ|_|j|_|j|_|j |j |_dS)NFTÚ train_slowÚ send_slowrg)Ú num_roundsÚ total_cost)ÚcopyÚdeepcopyÚmodelÚdatasetÚdeviceÚidÚsave_folder_nameÚargsÚ num_classesÚ train_samplesÚ test_samplesÚ batch_sizeÚlocal_learning_rateÚ learning_rateÚ local_stepsZ has_BatchNormÚchildrenÚ isinstanceÚnnÚ BatchNorm2drrÚtrain_time_costZsend_time_costÚprivacyZdp_sigmaÚ sample_rate)ÚselfrrrrÚkwargsÚlayer©r$õbD:\京东\promot\第二次投稿\å®�验\æœ�务器\native - pro\system\flcore\clients\clientbase.pyÚ__init__s0     zClient.__init__NcCs4|dkr|j}t|j|j|jdd�}t||ddd�S)NT©Zis_train©Ú drop_lastÚshuffle©rrrrrr)r!rÚ train_datar$r$r%Úload_train_data2szClient.load_train_datacCs4|dkr|j}t|j|j|jdd�}t||ddd�S)NFr'Tr(r+)r!rÚ test_datar$r$r%Úload_test_data8szClient.load_test_datacCs.t| ¡|j ¡ƒD]\}}|j ¡|_qdS©N)ÚzipÚ parametersr ÚdataÚclone)r!r Ú new_paramÚ old_paramr$r$r%Úset_parameters>szClient.set_parameterscCs,t| ¡| ¡ƒD]\}}|j ¡|_qdSr0©r1r2r3r4)r!r ÚtargetÚparamZ target_paramr$r$r%Ú clone_modelBszClient.clone_modelcCs(t| ¡|ƒD]\}}|j ¡|_qdSr0r8)r!r Ú new_paramsr:r5r$r$r%Úupdate_parametersGszClient.update_parametersc CsD| ¡}|j |j¡|j ¡d}d}g}g}t ¡�Æ|D]º\}}t|ƒtgƒkrl|d |j¡|d<n | |j¡}| |j¡}| |¡}|t tj |dd�|k¡  ¡7}||j d7}|  |  ¡ ¡ ¡¡|  t|  ¡ ¡ ¡t |j¡d�¡q>W5QRX|j ¡tj|dd�}tj|dd�}tj||dd�} ||| fS)Nré)Údim)Úclasses)ÚaxisÚmicro)Úaverage)r/r ÚtorÚevalÚtorchÚno_gradÚtypeÚsumÚargmaxÚitemÚshapeÚappendÚdetachÚcpuÚnumpyrÚnpÚarangerÚ concatenaterZ roc_auc_score) r!ZtestloaderfullZtest_accZtest_numZy_probZy_trueÚxÚyÚoutputZaucr$r$r%Ú test_metricsKs.       2 zClient.test_metricscCs¼| ¡}|j |j¡|j ¡d}d}|D]|\}}t|ƒtgƒkrZ|d |j¡|d<n | |j¡}| |j¡}| |¡}||jd7}|| ||¡ ¡|jd7}q,|j  ¡||fS)Nr) r-r rDrrErHrLÚlossrKrO)r!Ú trainloaderZ train_numrXrTrUrVr$r$r%Ú train_metricsrs       zClient.train_metricsc CsT|dkr|j}tj |¡s$t |¡t |tj |dt|j ƒd|d¡¡dS©NZclient_Ú_z.pt) rÚosÚpathÚexistsÚmakedirsrFÚsaveÚjoinÚstrr)r!rKÚ item_nameÚ item_pathr$r$r%Ú save_itemšs   zClient.save_itemcCs8|dkr|j}t tj |dt|jƒd|d¡¡Sr[)rrFÚloadr]r^rbrcr)r!rdrer$r$r%Ú load_item¡szClient.load_item)N)N)N)N)Ú__name__Ú __module__Ú __qualname__Ú__doc__r&r-r/r7r;r=rWrZrfrhr$r$r$r%r s  '( r)r rFÚtorch.nnrrPrQr]Útorch.nn.functionalÚ functionalÚFÚtorch.utils.datarZsklearn.preprocessingrZsklearnrZutils.data_utilsrÚobjectrr$r$r$r%Ú<module>s     
4,438
Python
.pyt
38
115.5
425
0.428312
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,891
clientrep.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientrep.cpython-38.pyc
U Ǭkc ã@sDddlZddlmZddlZddlZddlmZGdd„deƒZdS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientRepc sdtƒj||||f|�t ¡|_tjj|jj   ¡|j d�|_ tjj|jj   ¡|j d�|_|j|_dS)N)Úlr)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚbaseÚ parametersÚ learning_rateÚ optimizerÚ predictorÚ poptimizerÚ plocal_steps)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©õWD:\京东\promot\第二次投稿\å®�验\native - pro\system\flcore\clients\clientrep.pyr s  zclientRep.__init__c CsX| ¡}t ¡}|j |j¡|j ¡|jj ¡D] }d|_q4|jj  ¡D] }d|_qLt |j ƒD]ª}t |ƒD]œ\}\}}t |ƒt gƒkr |d |j¡|d<n | |j¡}| |j¡}|jrØt dt tj ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j ¡qnqb|j} |j�r.tj d| d¡} |jj ¡D] }d|_�q:|jj  ¡D] }d|_�qTt | ƒD]²}t |ƒD]¢\}\}}t |ƒt gƒk�rª|d |j¡|d<n | |j¡}| |j¡}|j�rät dt tj ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j ¡�qv�qj|j ¡|jdd7<|jdt ¡|7<dS) NFTrgš™™™™™¹?ééÚ num_roundsÚ total_cost)Úload_train_dataÚtimer ÚtoÚdeviceÚtrainrrÚ requires_gradrÚrangerÚ enumerateÚtypeÚ train_slowÚsleepÚnpÚabsÚrandomÚrandrÚ zero_gradr ÚbackwardÚstepÚ local_stepsÚrandintrÚcpuÚtrain_time_cost) rÚ trainloaderÚ start_timeÚparamr4ÚiÚxÚyÚoutputr Úmax_local_stepsrrrr'sX               zclientRep.traincCs0t| ¡|jj ¡ƒD]\}}|j ¡|_qdS)N)Úziprr rÚdataÚclone)rrÚ new_paramÚ old_paramrrrÚset_parametersMszclientRep.set_parameters)Ú__name__Ú __module__Ú __qualname__rr'rFÚ __classcell__rrrrr s :r) r Útorch.nnrÚnumpyr.r$Úflcore.clients.clientbaserrrrrrÚ<module>s   
2,312
Python
.pyt
32
71.09375
290
0.419991
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,892
clientmoon.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientmoon.cpython-37.pyc
B ïfcÏ ã@s^ddlZddlZddlmZddlZddlZddlmmZ ddl m Z Gdd„de ƒZ dS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientMOONc sbtƒj||||f|�t ¡|_tjj|j  ¡|j d�|_ |j |_ |j |_ d|_t |j¡|_dS)N)Úlr)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizerÚtauÚmuÚ global_modelÚcopyÚdeepcopyÚ old_model)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs)Ú __class__©úG/root/autodl-tmp/PFL-Non-IID-master/system/flcore/clients/clientmoon.pyr s zclientMOON.__init__c Cs0| ¡}t ¡}|j |j¡|j |j¡|j |j¡|j ¡|j}|j rbt j   d|d¡}�xnt |ƒD�]`}�xXt|ƒD�]J\}\}}t|ƒtgƒkr´|d |j¡|d<n | |j¡}| |j¡}|j rìt dt  t j  ¡¡¡|j ¡|j |¡}|j |¡} | | |¡} |j |¡ ¡} |j |¡ ¡} t t t || ¡|j¡t t || ¡|j¡t t || ¡|j¡¡ } | |jt  | ¡7} |  !¡|j"�rÂt#|j|t$|ƒƒq€|j %¡q€WqnW|j &¡|j &¡|j &¡t' (|j¡|_|j)dd7<|j)dt ¡|7<dS)Néérgš™™™™™¹?Ú num_roundsÚ total_cost)*Úload_train_dataÚtimer ÚtoÚdevicerrÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚsleepÚabsÚrandrÚ zero_gradÚbaseÚ predictorr Údetachr ÚlogÚexpÚFÚcosine_similarityrrÚmeanÚbackwardÚprivacyÚdp_stepÚlenÚstepÚcpurrÚtrain_time_cost)rÚ trainloaderÚ start_timeÚmax_local_stepsrAÚiÚxÚyÚrepÚoutputr Zrep_oldZ rep_globalZloss_conrrrr(sF       P   zclientMOON.traincCs8x,t| ¡|j ¡ƒD]\}}|j ¡|_qW||_dS)N)Úziprr ÚdataÚcloner)rr Ú new_paramÚ old_paramrrrÚset_parametersOszclientMOON.set_parameters)Ú__name__Ú __module__Ú __qualname__rr(rQÚ __classcell__rr)rrr s 2r) rr Útorch.nnrÚnumpyr+r%Útorch.nn.functionalÚ functionalr:Úflcore.clients.clientbaserrrrrrÚ<module>s  
2,421
Python
.pyt
28
85.357143
263
0.44528
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,893
clientfomo.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientfomo.cpython-38.pyc
U ”jfcàã@sdddlZddlmZddlZddlZddlZddlmZddl m Z ddl m Z Gdd„deƒZ dS)éN)ÚClient)Ú DataLoader)Úread_client_datacsneZdZ‡fdd„Zdd„Zddd„Zdd „Zd d „Zd d „Zdd„Z dd„Z dd„Z dd„Z dd„Z ‡ZS)Ú clientFomoc sŒtƒj||||f|�|j|_t |j¡|_g|_g|_t j |j|j d�|_ t  ¡|_t jj|j ¡|jd�|_d|_|jd|j|_dS)N)Údevice)Úlrgš™™™™™É?é)ÚsuperÚ__init__Ú num_clientsÚcopyÚdeepcopyÚmodelÚ old_modelÚ received_idsÚreceived_modelsÚtorchÚzerosrÚ weight_vectorÚnnÚCrossEntropyLossÚlossÚoptimÚSGDÚ parametersÚ learning_rateÚ optimizerÚ val_ratioÚ train_samples)ÚselfÚargsÚidrÚ test_samplesÚkwargs©Ú __class__©õLD:\京东\promot\cifar\cifar\Cifar10_iid\system\flcore\clients\clientfomo.pyr s zclientFomo.__init__c CsJ| ¡\}}t ¡}| |¡| |j|j¡|j |j¡|j ¡|j }|j rdt j   d|d¡}t|ƒD]¢}|D]˜\}}t|ƒtgƒkr¢|d |j¡|d<n | |j¡}| |j¡}|j rÚt dt  t j  ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j ¡qtql|j ¡|jdd7<|jdt ¡|7<dS)Nrérgš™™™™™¹?Ú num_roundsÚ total_cost)Úload_train_dataÚtimeÚaggregate_parametersÚ clone_modelrrÚtorÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚtypeÚsleepÚabsÚrandrÚ zero_gradrÚbackwardÚstepÚcpuÚtrain_time_cost) rÚ trainloaderÚ val_loaderÚ start_timeÚmax_local_stepsr=ÚxÚyÚoutputrr&r&r'r0s2           zclientFomo.trainNcCsz|dkr|j}t|j|jdd�}t|jt|ƒƒ }||d…}|d|…}t||jddd�}t||j|jdd�}||fS)NT)Úis_train)Ú drop_lastÚshuffle) Ú batch_sizerÚdatasetr!ÚintrÚlenrÚ has_BatchNorm)rrJÚ train_dataÚval_idxZval_datar@rAr&r&r'r+?s  zclientFomo.load_train_datacCsÀ| ¡\}}|j |j¡|j ¡d}d}|D]|\}}t|ƒtgƒkr^|d |j¡|d<n | |j¡}| |j¡}| |¡}||jd7}|| ||¡ ¡|jd7}q0|j  ¡||fS©Nr) r+rr/rÚevalr7ÚshaperÚitemr>)rr@rAÚ train_numrrDrErFr&r&r'Ú train_metricsLs        zclientFomo.train_metricscCs||_||_dS©N)rr)rÚidsÚmodelsr&r&r'Úreceive_modelscszclientFomo.receive_modelscCs–g}| |j|¡}|jD]h}g}t| ¡|j ¡ƒD]\}}| || d¡¡q4t |¡}| || ||¡t  |¡d¡q|  |¡t  |¡S)Néÿÿÿÿgñh㈵øä>) Úrecalculate_lossrrÚziprÚappendÚviewrÚcatÚnormÚweight_vector_updateÚtensor)rrAÚ weight_listÚLÚreceived_modelZ params_difZparam_nZparam_ir&r&r'Ú weight_calgs  & zclientFomo.weight_calcCsTt |j¡|_t||jƒD]\}}|j|| ¡7<qt |j¡  |j ¡|_dSrW) r3rr rr]rrTrrcr/r)rrdÚwr!r&r&r'rb‚szclientFomo.weight_vector_updatecCs�d}| |j¡|D]f\}}t|ƒtgƒkrB|d |j¡|d<n | |j¡}| |j¡}||ƒ}| ||¡}|| ¡7}q| ¡|t|ƒSrQ)r/rr7rrTr>rM)rZ new_modelrArerDrErFrr&r&r'r\Œs     zclientFomo.recalculate_losscCs:t|j ¡| ¡ƒD] \}}|j|j ¡|7_qdSrW)r]rrÚdataÚclone)rrhrfÚparamZreceived_paramr&r&r'Úadd_parameters›szclientFomo.add_parameterscCs\| | |¡¡}t|ƒdkrX|j ¡D]}|j ¡q&t||jƒD]\}}|  ||¡qBdSrQ) Ú weight_scalergrMrrriÚzero_r]rrl)rrAÚweightsrkrhrfr&r&r'r-Ÿs   zclientFomo.aggregate_parameterscsNt |t d¡¡}t |¡‰ˆdkr@‡fdd„|Dƒ}t |¡St g¡SdS)Nrcsg|] }|ˆ‘qSr&r&)Ú.0rh©Úw_sumr&r'Ú <listcomp>­sz+clientFomo.weight_scale.<locals>.<listcomp>)rÚmaximumrcÚsum)rror&rqr'rm©s   zclientFomo.weight_scale)N)Ú__name__Ú __module__Ú __qualname__r r0r+rVrZrgrbr\rlr-rmÚ __classcell__r&r&r$r'r s #   r)rÚtorch.nnrÚnumpyr3r,r Úflcore.clients.clientbaserÚtorch.utils.datarÚutils.data_utilsrrr&r&r&r'Ú<module>s    
5,099
Python
.pyt
48
105.145833
870
0.403405
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,894
clientpFedMe.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientpFedMe.cpython-38.pyc
U ”jfcöã@sXddlZddlZddlZddlZddlmZddlmZddl m Z Gdd„de ƒZ dS)éN)ÚpFedMeOptimizer)ÚClientcs4eZdZ‡fdd„Zdd„Zdd„Zdd„Z‡ZS) Ú clientpFedMec s‚tƒj||||f|�|j|_|j|_|j|_t t|j   ¡ƒ¡|_ t t|j   ¡ƒ¡|_ t  ¡|_t|j   ¡|j|jd�|_dS)N)ÚlrÚlamda)ÚsuperÚ__init__rÚKZp_learning_rateZpersonalized_learning_rateÚcopyÚdeepcopyÚlistÚmodelÚ parametersÚ local_paramsÚpersonalized_paramsÚnnÚCrossEntropyLossÚlossrÚ optimizer)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©õND:\京东\promot\cifar\cifar\Cifar10_iid\system\flcore\clients\clientpFedMe.pyr s ÿzclientpFedMe.__init__c Cs�| ¡}t ¡}|j |j¡|j ¡|j}|jrFtj   d|d¡}t |ƒD�]}|D]ø\}}t |ƒt gƒkr†|d |j¡|d<n | |j¡}| |j¡}|jr¾t  dt tj  ¡¡¡t |jƒD]@}|j ¡| |¡}| ||¡} |  ¡|j |j|j¡|_qÈt|j|jƒD]6\} } |  |j¡} | j|j|j| j| j| _�qqXqN|j ¡| |j|j¡|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?Ú num_roundsÚ total_cost)Úload_train_dataÚtimer ÚtoÚdeviceÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚtypeÚsleepÚabsÚrandr rÚ zero_gradrÚbackwardÚsteprrÚzipÚdatarÚ learning_rateÚcpuÚupdate_parametersÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr4ÚxÚyÚiÚoutputrÚ new_paramZ localweightrrrr's8        ( zclientpFedMe.traincCs@t| ¡|j ¡|jƒD]"\}}}|j ¡|_|j ¡|_qdS)N)r5rr rr6Úclone)rr rBÚ old_paramZ local_paramrrrÚset_parametersEs" zclientpFedMe.set_parametersc Csâ| ¡}| |j|j¡|j |j¡|j ¡d}d}t ¡�Š|D]~\}}t |ƒt gƒkrt|d |j¡|d<n | |j¡}| |j¡}| |¡}|t  tj |dd�|k¡  ¡7}||j d7}qFW5QRX|j ¡||fS)Nrr)Údim)Úload_test_datar9r rr%r&ÚevalÚtorchÚno_gradr.ÚsumÚargmaxÚitemÚshaper8)rÚtestloaderfullÚtest_accÚtest_numr>r?rArrrÚtest_metrics_personalizedJs"        z&clientpFedMe.test_metrics_personalized)Ú__name__Ú __module__Ú __qualname__rr'rErRÚ __classcell__rrrrr s +r) Únumpyr*r$r rIÚtorch.nnrZflcore.optimizers.fedoptimizerrÚflcore.clients.clientbaserrrrrrÚ<module>s   
2,899
Python
.pyt
29
98.62069
457
0.444096
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,895
clientperavg.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientperavg.cpython-37.pyc
B gûecã@sXddlZddlZddlZddlZddlmZddlmZddl m Z Gdd„de ƒZ dS)éN)ÚPerAvgOptimizer)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientPerAvgc sBtƒj||||f|�|j|_t ¡|_t|j  ¡|jd�|_ dS)N)Úlr) ÚsuperÚ__init__Ú learning_rateÚbetaÚnnÚCrossEntropyLossÚlossrÚmodelÚ parametersÚ optimizer)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs)Ú __class__©úI/root/autodl-tmp/PFL-Non-IID-master/system/flcore/clients/clientperavg.pyr s zclientPerAvg.__init__c Cs˜| |jd¡}t ¡}|j |j¡|j ¡|j}|jrNt j   d|d¡}�x t |ƒD�]ş}�xö|D�]ì\}}t  t|j ¡ƒ¡}t|ƒtgƒkrÔddg}|dd|j… |j¡|d<|dd|j…|d<n|d|j… |j¡}|d|j… |j¡} |j�r"t dt  t j  ¡¡¡|j ¡| |¡} | | | ¡} |  ¡|j ¡t|ƒtgƒk�r¤ddg}|d|jd… |j¡|d<|d|jd…|d<n||jd… |j¡}||jd… |j¡} |j�ròt dt  t j  ¡¡¡|j ¡| |¡} | | | ¡} |  ¡x*t|j ¡|ƒD]\} } | j ¡| _�q,W|jj|jd�qhWqZW|j ¡|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?)r Ú num_roundsÚ total_cost) Úload_train_dataÚ batch_sizeÚtimer ÚtoÚdeviceÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚcopyÚdeepcopyÚlistrÚtypeÚsleepÚabsÚrandrÚ zero_gradr ÚbackwardÚstepÚzipÚdataÚcloner ÚcpuÚtrain_time_cost)rÚ trainloaderÚ start_timeÚmax_local_stepsr2ÚXÚYZ temp_modelÚxÚyÚoutputr Ú old_paramÚ new_paramrrrr"sR         zclientPerAvg.traincCs8| |j¡}t|ƒ}|j |j¡|j ¡t|ƒ\}}t|ƒtgƒkr^|d |j¡|d<n | |j¡}| |j¡}|j   ¡| |¡}|  ||¡}|  ¡|j   ¡t|ƒ\}}t|ƒtgƒkrÚ|d |j¡|d<n | |j¡}| |j¡}|j   ¡| |¡}|  ||¡}|  ¡|j j |jd�|j ¡dS)Nr)r )Úload_test_datarÚiterr r r!r"Únextr,rr0r r1r2r r6)rZ testloaderZiter_testloaderr=r>r?r rrrÚtrain_one_stepNs2               zclientPerAvg.train_one_step)Ú__name__Ú __module__Ú __qualname__rr"rEÚ __classcell__rr)rrr s :r) Únumpyr%Útorchrr)Útorch.nnr Úflcore.optimizers.fedoptimizerrÚflcore.clients.clientbaserrrrrrÚ<module>s   
2,797
Python
.pyt
40
68.7
218
0.397389
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,896
clientbabu.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientbabu.cpython-37.pyc
B šúecù ã@sLddlZddlZddlmZddlZddlZddlmZGdd„deƒZ dS)éN)ÚClientcs<eZdZ‡fdd„Zdd„Zdd„Zddgfd d „Z‡ZS) Ú clientBABUc sdtƒj||||f|Žt ¡|_tjj|jj   ¡|j d�|_ |j |_ x|jj  ¡D] }d|_qRWdS)N)ÚlrF)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚbaseÚ parametersÚ learning_rateÚ optimizerÚfine_tuning_stepsÚ predictorÚ requires_grad)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargsÚparam)Ú __class__©úG/root/autodl-tmp/PFL-Non-IID-master/system/flcore/clients/clientbabu.pyr s  zclientBABU.__init__c Cs<| ¡}t ¡}|j |j¡|j ¡|j}|jrFtj   d|d¡}xºt |ƒD]®}x¨t |ƒD]œ\}\}}t |ƒt gƒkr�|d |j¡|d<n | |j¡}| |j¡}|jrÈt dt tj  ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j ¡q^WqPW|j ¡|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?Ú num_roundsÚ total_cost)Úload_train_dataÚtimer ÚtoÚdeviceÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚsleepÚabsÚrandrÚ zero_gradr ÚbackwardÚstepÚcpuÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr5ÚiÚxÚyÚoutputr rrrr's.       zclientBABU.traincCs4x.t| ¡|jj ¡ƒD]\}}|j ¡|_qWdS)N)Úziprr rÚdataÚclone)rrÚ new_paramÚ old_paramrrrÚset_parameters6s zclientBABU.set_parametersrrc Cs| ¡}|j |j¡|j ¡d|krDx|jj ¡D] }d|_q6Wd|krhx|jj ¡D] }d|_qZWxœt|j ƒD]Ž}xˆt |ƒD]|\}\}}t |ƒt gƒkr´|d |j¡|d<n | |j¡}| |j¡}|j   ¡| |¡}| ||¡} |  ¡|j  ¡q‚WqtW|j ¡dS)NrTrFr)r#r r%r&r'rrrr-rr.r/rr3r r4r5r6) rZ which_moduler8rr5r;r<r=r>r rrrÚ fine_tune:s*        zclientBABU.fine_tune)Ú__name__Ú __module__Ú __qualname__rr'rDrEÚ __classcell__rr)rrr s  r) Úcopyr Útorch.nnrÚnumpyr*r$Úflcore.clients.clientbaserrrrrrÚ<module>s   
2,549
Python
.pyt
35
71.657143
286
0.422664
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,897
clientrod.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientrod.cpython-38.pyc
U 5ngc±„@sÄddlZddlZddlmZddlZddlZddlmZddl mm Z ddl m Z ddlmZGddÑdeÉZd dd ÑZdS) ÈN)⁄Client)⁄label_binarize)⁄metricscs.eZdZáfddÑZddÑZdddÑZáZS) ⁄ clientRODc  s¨tÉj||||f|ét†°|_tjj|j† °|j dç|_ t † |jj°|_tjj|j† °|j dç|_t†|j°|_|†°}|D](\}}|D]} |j| †°d7<qäq~dS)N)⁄lrÈ)⁄super⁄__init__⁄nn⁄CrossEntropyLoss⁄loss⁄torch⁄optim⁄SGD⁄model⁄ parameters⁄ learning_rate⁄ optimizer⁄copy⁄deepcopy⁄ predictor⁄pred⁄opt_pred⁄zeros⁄ num_classes⁄sample_per_class⁄load_train_data⁄item) ⁄self⁄args⁄id⁄ train_samples⁄ test_samples⁄kwargs⁄ trainloader⁄x⁄y⁄yy©⁄ __class__©ıDD:\‰∫¨‰∏ú\promot\cifar\cifar\tiny\system\flcore\clients\clientrod.pyr s  zclientROD.__init__c Csz|†°}t†°}|j†|j°|j†|j°|j†°|j}|jrTt j † d|d°}t |ÉD]ÿ}t |ÉD] \}\}}t|ÉtgÉkrö|d†|j°|d<n |†|j°}|†|j°}|j†|°}|j†|°} t|| |jÉ} |j†°| †°|j†°|†|†°°} |†| †°| |°} |j†°| †°|j†°qhq\|j†°|j†°|jdd7<|jdt†°|7<dS)NrÈr⁄ num_rounds⁄ total_cost)r⁄timer⁄to⁄devicer⁄train⁄ local_steps⁄ train_slow⁄np⁄random⁄randint⁄range⁄ enumerate⁄type⁄baser⁄balanced_softmax_lossrr⁄ zero_grad⁄backward⁄step⁄detachr r⁄cpu⁄train_time_cost) rr$⁄ start_time⁄max_local_stepsr?⁄ir%r&⁄rep⁄out_gZloss_bsm⁄out_pr r*r*r+r2s:           zclientROD.trainNc Cs÷|†°}|dkr|j}|j†|j°|j†|j°|†°d}d}g}g}t†°êè2|Dê]$\}}t|ÉtgÉkrä|d†|j°|d<n |†|j°}|†|j°}|j† |°} |j† | °} |†| † °°} | † °| } |t† tj | ddç|k°†°7}||jd7}|†t†| °† °†°†°°|j} |jdkêr8| d7} t|† °†°†°t†| °dç}|jdkêrv|ddÖddÖf}|†|°qZW5QRX|j†°|j†°tj|ddç}tj|ddç}tj||ddç}|||fS) Nrr)⁄dimr,)⁄classes)⁄axis⁄micro)⁄average)⁄load_test_datarr0r1r⁄evalr ⁄no_gradr:r;rr@⁄sum⁄argmaxr⁄shape⁄append⁄F⁄softmaxrA⁄numpyrrr5⁄arange⁄ concatenater⁄ roc_auc_score)rr⁄ testloader⁄test_acc⁄test_num⁄y_prob⁄y_truer%r&rFrGrH⁄output⁄nc⁄lb⁄aucr*r*r+⁄ test_metricsDsH           zclientROD.test_metrics)N)⁄__name__⁄ __module__⁄ __qualname__r r2rd⁄ __classcell__r*r*r(r+r s 'r⁄meancCsB|†|°}|†d°†|jdd°}||†°}tj|||dç}|S)a}Compute the Balanced Softmax Loss between `logits` and the ground truth `labels`. Args: labels: A int tensor of size [batch]. logits: A float tensor of size [batch, no_of_classes]. sample_per_class: A int tensor of size [no of classes]. reduction: string. One of "none", "mean", "sum" Returns: loss: A float tensor. Balanced Softmax Loss. rÈˇˇˇˇ)⁄input⁄target⁄ reduction)⁄type_as⁄ unsqueeze⁄expandrS⁄logrU⁄ cross_entropy)⁄labels⁄logitsrrmZspcr r*r*r+r<ts  r<)ri)rr ⁄torch.nnr rWr5r/⁄flcore.clients.clientbaser⁄torch.nn.functional⁄ functionalrU⁄sklearn.preprocessingr⁄sklearnrrr<r*r*r*r+⁄<module>s    h
3,841
Python
.pyt
42
89.404762
534
0.419058
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,898
clientbase.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientbase.cpython-37.pyc
B 9Íec ã@s‚ddlZddlZddlmZddlZddlZddlmmZ ddl m Z ddl m Z ddlmZddlmZGdd„deƒZdS)éN)Ú DataLoader)Úlabel_binarize)Úmetrics)Úread_client_datac@sheZdZdZdd„Zddd„Zddd„Zd d „Zd d „Zd d„Z dd„Z dd„Z ddd„Z ddd„Z dS)ÚClientz7 Base class for clients in federated learning. cKsÔt |j¡|_|j|_|j|_||_|j|_|j|_||_||_ |j |_ |j |_ |j |_ d|_x&|j ¡D]}t|tjƒrjd|_PqjW|d|_|d|_dddœ|_dddœ|_|j|_|j|_|j |j|_dS)NFTÚ train_slowÚ send_slowrg)Ú num_roundsÚ total_cost)ÚcopyÚdeepcopyÚmodelÚdatasetÚdeviceÚidÚsave_folder_nameÚ num_classesÚ train_samplesÚ test_samplesÚ batch_sizeÚlocal_learning_rateÚ learning_rateÚ local_stepsZ has_BatchNormÚchildrenÚ isinstanceÚnnÚ BatchNorm2drrÚtrain_time_costZsend_time_costÚprivacyZdp_sigmaÚ sample_rate)ÚselfÚargsrrrÚkwargsÚlayer©r$úG/root/autodl-tmp/PFL-Non-IID-master/system/flcore/clients/clientbase.pyÚ__init__s.     zClient.__init__NcCs0|dkr|j}t|j|jdd�}t||ddd�S)NT)Úis_train)Ú drop_lastÚshuffle)rrrrr)r rÚ train_datar$r$r%Úload_train_data1szClient.load_train_datacCs0|dkr|j}t|j|jdd�}t||ddd�S)NF)r'T)r(r))rrrrr)r rÚ test_datar$r$r%Úload_test_data7szClient.load_test_datacCs2x,t| ¡|j ¡ƒD]\}}|j ¡|_qWdS)N)ÚzipÚ parametersr ÚdataÚclone)r r Ú new_paramÚ old_paramr$r$r%Úset_parameters=szClient.set_parameterscCs0x*t| ¡| ¡ƒD]\}}|j ¡|_qWdS)N)r.r/r0r1)r r ÚtargetÚparamZ target_paramr$r$r%Ú clone_modelAszClient.clone_modelcCs,x&t| ¡|ƒD]\}}|j ¡|_qWdS)N)r.r/r0r1)r r Ú new_paramsr6r2r$r$r%Úupdate_parametersFszClient.update_parametersc CsH| ¡}|j |j¡|j ¡d}d}g}g}t ¡�ÊxÂ|D]º\}}t|ƒtgƒkrn|d |j¡|d<n | |j¡}| |j¡}| |¡}|t tj |dd�|k¡  ¡7}||j d7}|  |  ¡ ¡ ¡¡|  t|  ¡ ¡ ¡t |j¡d�¡q@WWdQRX|j ¡tj|dd�}tj|dd�}tj||dd�} ||| fS)Nré)Údim)Úclasses)ÚaxisÚmicro)Úaverage)r-r ÚtorÚevalÚtorchÚno_gradÚtypeÚsumÚargmaxÚitemÚshapeÚappendÚdetachÚcpuÚnumpyrÚnpÚarangerÚ concatenaterZ roc_auc_score) r ZtestloaderfullZtest_accZtest_numZy_probZy_trueÚxÚyÚoutputZaucr$r$r%Ú test_metricsJs.      4 zClient.test_metricscCsÀ| ¡}|j |j¡|j ¡d}d}x„|D]|\}}t|ƒtgƒkr\|d |j¡|d<n | |j¡}| |j¡}| |¡}||jd7}|| ||¡ ¡|jd7}q.W|j  ¡||fS)Nr) r+r r@rrArDrHÚlossrGrK)r Ú trainloaderZ train_numrTrPrQrRr$r$r%Ú train_metricsos    " zClient.train_metricsc CsT|dkr|j}tj |¡s$t |¡t |tj |dt|j ƒd|d¡¡dS)NÚclient_Ú_z.pt) rÚosÚpathÚexistsÚmakedirsrBÚsaveÚjoinÚstrr)r rGÚ item_nameÚ item_pathr$r$r%Ú save_item—s   zClient.save_itemcCs8|dkr|j}t tj |dt|jƒd|d¡¡S)NrWrXz.pt)rrBÚloadrYrZr^r_r)r r`rar$r$r%Ú load_item�szClient.load_item)N)N)N)N)Ú__name__Ú __module__Ú __qualname__Ú__doc__r&r+r-r4r7r9rSrVrbrdr$r$r$r%r s  %( r)r rBÚtorch.nnrrLrMrYÚtorch.nn.functionalÚ functionalÚFÚtorch.utils.datarZsklearn.preprocessingrZsklearnrZutils.data_utilsrÚobjectrr$r$r$r%Ú<module>s     
4,413
Python
.pyt
40
109.05
438
0.433699
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,899
clientrep.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientrep.cpython-37.pyc
B À:cc ã@sDddlZddlmZddlZddlZddlmZGdd„deƒZdS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientRepc sdtƒj||||f|�t ¡|_tjj|jj   ¡|j d�|_ tjj|jj   ¡|j d�|_|j|_dS)N)Úlr)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚbaseÚ parametersÚ learning_rateÚ optimizerÚ predictorÚ poptimizerÚ plocal_steps)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs)Ú __class__©úF/root/autodl-tmp/PFL-Non-IID-master/system/flcore/clients/clientrep.pyr s  zclientRep.__init__c Csx| ¡}t ¡}|j |j¡|j ¡x|jj ¡D] }d|_q6Wx|jj  ¡D] }d|_qRWx¼t |j ƒD]®}x¨t |ƒD]œ\}\}}t |ƒt gƒkr¬|d |j¡|d<n | |j¡}| |j¡}|jrät dt tj ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j ¡qzWqlW|j} |j�r>tj d| d¡} x|jj ¡D] }d|_�qLWx|jj  ¡D] }d|_�qjWxÂt | ƒD]¶}x®t |ƒD]¢\}\}}t |ƒt gƒk�rÆ|d |j¡|d<n | |j¡}| |j¡}|j�rt dt tj ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j ¡�q’W�q„W|j ¡|jdd7<|jdt ¡|7<dS) NFTrgš™™™™™¹?ééÚ num_roundsÚ total_cost)Úload_train_dataÚtimer ÚtoÚdeviceÚtrainrrÚ requires_gradrÚrangerÚ enumerateÚtypeÚ train_slowÚsleepÚnpÚabsÚrandomÚrandrÚ zero_gradr ÚbackwardÚstepÚ local_stepsÚrandintrÚcpuÚtrain_time_cost) rÚ trainloaderÚ start_timeÚparamr3ÚiÚxÚyÚoutputr Úmax_local_stepsrrrr&sX                zclientRep.traincCs4x.t| ¡|jj ¡ƒD]\}}|j ¡|_qWdS)N)Úziprr rÚdataÚclone)rrÚ new_paramÚ old_paramrrrÚset_parametersLs zclientRep.set_parameters)Ú__name__Ú __module__Ú __qualname__rr&rEÚ __classcell__rr)rrr s 9r) r Útorch.nnrÚnumpyr-r#Z system.flcore.clients.clientbaserrrrrrÚ<module>s   
2,317
Python
.pyt
32
71.25
278
0.427384
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)