id
int64
0
458k
file_name
stringlengths
4
119
file_path
stringlengths
14
227
content
stringlengths
24
9.96M
size
int64
24
9.96M
language
stringclasses
1 value
extension
stringclasses
14 values
total_lines
int64
1
219k
avg_line_length
float64
2.52
4.63M
max_line_length
int64
5
9.91M
alphanum_fraction
float64
0
1
repo_name
stringlengths
7
101
repo_stars
int64
100
139k
repo_forks
int64
0
26.4k
repo_open_issues
int64
0
2.27k
repo_license
stringclasses
12 values
repo_extraction_date
stringclasses
433 values
2,286,900
clientper.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientper.cpython-39.pyc
a f¾`c„ã@sLddlZddlZddlmZddlZddlZddlmZGdd„deƒZ dS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientPerc sBtƒj||||fi|¤�t ¡|_tjj|j  ¡|j d�|_ dS)N)Úlr) ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizer)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©úr/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/clients/clientper.pyr s zclientPer.__init__c Cs| ¡}t ¡}|j ¡|j}|jr8tj d|d¡}t |ƒD]ª}t |ƒD]œ\}\}}t |ƒt gƒkr~|d  |j ¡|d<n |  |j ¡}|  |j ¡}|jr¶t dt tj ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j ¡qLq@|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?Ú num_roundsÚ total_cost)Úload_train_dataÚtimer ÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚtoÚdeviceÚsleepÚabsÚrandrÚ zero_gradr ÚbackwardÚstepÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr1ÚiÚxÚyÚoutputr rrrr!s*       zclientPer.traincCs0t| ¡|jj ¡ƒD]\}}|j ¡|_qdS)N)Úziprr ÚbaseÚdataÚclone)rr Ú new_paramÚ old_paramrrrÚset_parameters0szclientPer.set_parameters)Ú__name__Ú __module__Ú __qualname__rr!r@Ú __classcell__rrrrr s  r) Úcopyr Útorch.nnrÚnumpyr$r Úflcore.clients.clientbaserrrrrrÚ<module>s   
1,856
Python
.pyt
19
96.631579
306
0.469532
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,901
clientdynpt.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientdynpt.cpython-37.pyc
B K´ccèã@sTddlZddlZddlmZddlZddlZddlmZGdd„deƒZ dd„Z dS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientDynPTc s¬tƒj||||f|�t ¡|_tjj|j  ¡|j d�|_ |j |_ d|_ t |j¡}t|ƒ}t |¡|_tjj|jj  ¡|j d�|_tjj|jj  ¡|j d�|_ |j|_dS)N)Úlr)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizerÚalphaÚglobal_model_vectorÚcopyÚdeepcopyÚmodel_parameter_vectorÚ zeros_likeÚold_gradÚ generatorÚ poptimizerÚbaseÚ plocal_steps)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargsr)Ú __class__©úH/root/autodl-tmp/PFL-Non-IID-master/system/flcore/clients/clientdynpt.pyr s   zclientDynPT.__init__c CsÎ| ¡}t ¡}t |jj¡}|j |j¡|j |j¡|_|j  |j¡|_ |j  ¡x|jj   ¡D] }d|_ qdWx|jj  ¡D] }d|_ q€Wx¾t|jƒD]°}xªt|ƒD]�\}\}}t|ƒtgƒkrÚ|d |j¡|d<n | |j¡}| |j¡}|j�rt dt tj ¡¡¡|j ¡| |¡} | | |¡} |  ¡|j ¡q¨WqšW|j} x|jj   ¡D] }d|_ �qbWx|jj  ¡D] }d|_ �q€W|j�rªtj d| d¡} �x t| ƒD]ş}xöt|ƒD]ê\}\}}t|ƒtgƒk�rø|d |j¡|d<n | |j¡}| |j¡}|j�r2t dt tj ¡¡¡|j ¡| |¡} | | |¡} |j dk�ršt |jƒ} | |j!dt" #| |j d¡7} | t" $| |j¡8} |  ¡|j ¡�qÄW�q¶W|j dk�rêt |jƒ %¡} |j|j!| |j |_|j &¡|j &¡|_|j  &¡|_ |j'dd7<|j'dt ¡|7<t |jj¡} d}xRt(|  ¡|   ¡ƒD]<\}}||}t" )|dk|t" *|¡|¡}|t" +|¡}�q^W|j'dd7<|j'dt ¡|7<|S) NFTrgš™™™™™¹?ééÚ num_roundsÚ total_cost),Úload_train_dataÚtimerrr rÚtoÚdevicerrÚtrainrrÚ requires_gradÚrangerÚ enumerateÚtypeÚ train_slowÚsleepÚnpÚabsÚrandomÚrandrÚ zero_gradr ÚbackwardÚstepÚ local_stepsÚrandintrrrr ÚnormÚdotÚdetachÚcpuÚtrain_time_costÚzipÚwhererÚsum)rÚ trainloaderÚ start_timeÚ old_promptÚparamr:ÚiÚxÚyÚoutputr Úmax_local_stepsÚv1Ú new_promptÚ diff_provalueÚ new_paramÚ old_paramÚdiff_pror#r#r$r-"s‚                      zclientDynPT.traincCsHx0t|j ¡|jj ¡ƒD]\}}|j ¡|_qWt|ƒ ¡ ¡|_dS)N) rBrrr ÚdataÚclonerr?r)rr rQrRr#r#r$Úset_parametersss"zclientDynPT.set_parameters)Ú__name__Ú __module__Ú __qualname__rr-rVÚ __classcell__r#r#)r"r$r s QrcCs dd„| ¡Dƒ}tj|dd�S)NcSsg|]}| d¡‘qS)éÿÿÿÿ)Úview)Ú.0Úpr#r#r$ú <listcomp>|sz*model_parameter_vector.<locals>.<listcomp>r)Údim)rr Úcat)r rHr#r#r$r{sr) rr Útorch.nnrÚnumpyr4r*Úflcore.clients.clientbaserrrr#r#r#r$Ú<module>s  o
3,383
Python
.pyt
42
79.452381
336
0.399761
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,902
clientavg.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientavg.cpython-38.pyc
U ”jfcªã@sDddlZddlmZddlZddlZddlmZGdd„deƒZdS)éN)ÚClientcs$eZdZ‡fdd„Zdd„Z‡ZS)Ú clientAVGc s>tƒj||||f|�t ¡|_tjj|j  ¡|j d�|_ dS)N)Úlr) ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersZ learning_rateÚ optimizer)ÚselfÚargsÚidZ train_samplesZ test_samplesÚkwargs©Ú __class__©õKD:\京东\promot\cifar\cifar\Cifar10_iid\system\flcore\clients\clientavg.pyr s zclientAVG.__init__c CsP| ¡}t ¡}|j |j¡|j ¡|j}|jrFtj   d|d¡}t |ƒD]Æ}t |ƒD]¸\}\}}t |ƒt gƒkrŒ|d |j¡|d<n | |j¡}| |j¡}|jrÄt dt tj  ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j�rt|j|t|ƒƒqZ|j ¡qZqN|j ¡|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?Z num_roundsÚ total_cost)Zload_train_dataÚtimer ÚtoÚdeviceÚtrainÚ local_stepsZ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚsleepÚabsÚrandrÚ zero_gradr ÚbackwardZprivacyZdp_stepÚlenÚstepÚcpuZtrain_time_cost) rZ trainloaderÚ start_timeZmax_local_stepsr,ÚiÚxÚyÚoutputr rrrrs2        zclientAVG.train)Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__rrrrr s r) r Útorch.nnrÚnumpyr rZflcore.clients.clientbaserrrrrrÚ<module>s   
1,652
Python
.pyt
20
81.45
306
0.461727
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,903
clientdyn.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientdyn.cpython-39.pyc
a W¢bc‘ ã@sTddlZddlZddlmZddlZddlZddlmZGdd„deƒZ dd„Z dS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientDync sptƒj||||fi|¤�t ¡|_tjj|j  ¡|j d�|_ |j |_ d|_ t |j¡}t|ƒ}t |¡|_dS)N)Úlr)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizerÚalphaÚglobal_model_vectorÚcopyÚdeepcopyÚmodel_parameter_vectorÚ zeros_likeÚold_grad)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargsr©Ú __class__©úr/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/clients/clientdyn.pyr s  zclientDyn.__init__c Cs®| ¡}t ¡}|j |j¡|j ¡|j}|jrFtj   d|d¡}t |ƒD]ò}t |ƒD]ä\}\}}t |ƒt gƒkrŒ|d |j¡|d<n | |j¡}| |j¡}|jrÄt dt tj  ¡¡¡|j ¡| |¡}| ||¡} |jdk�r,t|jƒ} | |jdt | |jd¡7} | t | |j¡8} |  ¡|j ¡qZqN|jdk�rtt|jƒ ¡} |j|j| |j|_|j ¡|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?Ú num_roundsÚ total_cost) Úload_train_dataÚtimer ÚtoÚdeviceÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚsleepÚabsÚrandrÚ zero_gradr rrrr ÚnormÚdotrÚbackwardÚstepÚdetachÚcpuÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr:ÚiÚxÚyÚoutputr Úv1r r r!r*s<            zclientDyn.traincCs@t| ¡|j ¡ƒD]\}}|j ¡|_qt|ƒ ¡ ¡|_dS)N)Úziprr ÚdataÚclonerr;r)rr Ú new_paramÚ old_paramr r r!Úset_parametersLszclientDyn.set_parameters)Ú__name__Ú __module__Ú __qualname__rr*rKÚ __classcell__r r rr!r s .rcCs dd„| ¡Dƒ}tj|dd�S)NcSsg|]}| d¡‘qS)éÿÿÿÿ)Úview)Ú.0Úpr r r!Ú <listcomp>Tóz*model_parameter_vector.<locals>.<listcomp>r)Údim)rr Úcat)r Úparamr r r!rSsr) rr Útorch.nnrÚnumpyr-r'Úflcore.clients.clientbaserrrr r r r!Ú<module>s  I
2,567
Python
.pyt
28
90.571429
281
0.43937
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,904
clientreppt.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientreppt.cpython-39.pyc
a W¢bcû ã@sDddlZddlmZddlZddlZddlmZGdd„deƒZdS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientREPPTc shtƒj||||fi|¤�t ¡|_tjj|jj   ¡|j d�|_ tjj|jj   ¡|j d�|_|j|_dS)N)Úlr)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ generatorÚ parametersÚ learning_rateÚ poptimizerÚbaseÚ optimizerÚ plocal_steps)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©út/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/clients/clientreppt.pyr s  zclientREPPT.__init__c CsŠ| ¡}t ¡}|j |j¡|j ¡|jj ¡D] }d|_q4|jj  ¡D] }d|_qL|jj  ¡D] }d|_qdt |j ƒD]ª}t |ƒD]œ\}\}}t|ƒtgƒkr¸|d |j¡|d<n | |j¡}| |j¡}|jrğt dt tj ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j ¡q†qz|j} |j�rFtj d| d¡} |jj ¡D] }d|_�qR|jj  ¡D] }d|_�ql|jj  ¡D] }d|_�q†t | ƒD]²}t |ƒD]¢\}\}}t|ƒtgƒk�rÜ|d |j¡|d<n | |j¡}| |j¡}|j�rt dt tj ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j ¡�q¨�qœ|j ¡|jdd7<|jdt ¡|7<dS) NFTrgš™™™™™¹?ééÚ num_roundsÚ total_cost)Úload_train_dataÚtimer ÚtoÚdeviceÚtrainrrÚ requires_gradrÚ predictorÚrangerÚ enumerateÚtypeÚ train_slowÚsleepÚnpÚabsÚrandomÚrandrÚ zero_gradr ÚbackwardÚstepÚ local_stepsÚrandintrÚcpuÚtrain_time_cost) rÚ trainloaderÚ start_timeÚparamr5ÚiÚxÚyÚoutputr Úmax_local_stepsrrrr's`                zclientREPPT.traincCs0t| ¡|jj ¡ƒD]\}}|j ¡|_qdS)N)Úziprr rÚdataÚclone)rrÚ new_paramÚ old_paramrrrÚset_parametersTszclientREPPT.set_parameters)Ú__name__Ú __module__Ú __qualname__rr'rGÚ __classcell__rrrrr s >r) r Útorch.nnrÚnumpyr/r$Ú system.flcore.clients.clientbaserrrrrrÚ<module>s   
2,426
Python
.pyt
34
70.117647
296
0.430004
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,905
clientpFedMe.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientpFedMe.cpython-37.pyc
B pûecöã@sXddlZddlZddlZddlZddlmZddlmZddl m Z Gdd„de ƒZ dS)éN)ÚpFedMeOptimizer)ÚClientcs4eZdZ‡fdd„Zdd„Zdd„Zdd„Z‡ZS) Ú clientpFedMec s‚tƒj||||f|�|j|_|j|_|j|_t t|j   ¡ƒ¡|_ t t|j   ¡ƒ¡|_ t  ¡|_t|j   ¡|j|jd�|_dS)N)ÚlrÚlamda)ÚsuperÚ__init__rÚKZp_learning_rateZpersonalized_learning_rateÚcopyÚdeepcopyÚlistÚmodelÚ parametersÚ local_paramsÚpersonalized_paramsÚnnÚCrossEntropyLossÚlossrÚ optimizer)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs)Ú __class__©úI/root/autodl-tmp/PFL-Non-IID-master/system/flcore/clients/clientpFedMe.pyr s zclientpFedMe.__init__c Cs´| ¡}t ¡}|j |j¡|j ¡|j}|jrFtj   d|d¡}�x t |ƒD�]}�x |D�]\}}t |ƒt gƒkr�|d |j¡|d<n | |j¡}| |j¡}|jrÈt  dt tj  ¡¡¡xNt |jƒD]@}|j ¡| |¡}| ||¡} |  ¡|j |j|j¡|_qÔWxHt|j|jƒD]6\} } |  |j¡} | j|j|j| j| j| _�q(Wq`WqRW|j ¡| |j|j¡|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?Ú num_roundsÚ total_cost)Úload_train_dataÚtimer ÚtoÚdeviceÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚtypeÚsleepÚabsÚrandr rÚ zero_gradrÚbackwardÚsteprrÚzipÚdatarÚ learning_rateÚcpuÚupdate_parametersÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr3ÚxÚyÚiÚoutputrÚ new_paramZ localweightrrrr&s8       . zclientpFedMe.traincCsDx>t| ¡|j ¡|jƒD]"\}}}|j ¡|_|j ¡|_qWdS)N)r4rr rr5Úclone)rr rAÚ old_paramZ local_paramrrrÚset_parametersEs$ zclientpFedMe.set_parametersc Csæ| ¡}| |j|j¡|j |j¡|j ¡d}d}t ¡��x†|D]~\}}t |ƒt gƒkrv|d |j¡|d<n | |j¡}| |j¡}| |¡}|t  tj |dd�|k¡  ¡7}||j d7}qHWWdQRX|j ¡||fS)Nrr)Údim)Úload_test_datar8r rr$r%ÚevalÚtorchÚno_gradr-ÚsumÚargmaxÚitemÚshaper7)rÚtestloaderfullÚtest_accÚtest_numr=r>r@rrrÚtest_metrics_personalizedJs"       z&clientpFedMe.test_metrics_personalized)Ú__name__Ú __module__Ú __qualname__rr&rDrQÚ __classcell__rr)rrr s +r) Únumpyr)r#r rHÚtorch.nnrZflcore.optimizers.fedoptimizerrÚflcore.clients.clientbaserrrrrrÚ<module>s   
2,893
Python
.pyt
30
95.1
455
0.447975
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,906
clientditto.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientditto.cpython-38.pyc
U ”jfcñã@s‚ddlZddlZddlZddlZddlmZddlmZddl m Z ddl mm Z ddlmZddlmZGdd„de ƒZdS)éN)ÚPerturbedGradientDescent)ÚClient)Úlabel_binarize)Úmetricscs4eZdZ‡fdd„Zdd„Zdd„Zdd„Z‡ZS) Ú clientDittoc svtƒj||||f|�|j|_|j|_t |j¡|_t  ¡|_ t j j |j ¡|jd�|_t|j ¡|j|jd�|_dS)N)Úlr)rÚmu)ÚsuperÚ__init__rÚ plocal_stepsÚcopyÚdeepcopyÚmodelÚpmodelÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚ parametersÚ learning_rateÚ optimizerrÚ poptimizer)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©õMD:\京东\promot\cifar\cifar\Cifar10_iid\system\flcore\clients\clientditto.pyr s ÿzclientDitto.__init__c CsP| ¡}t ¡}|j |j¡|j ¡|j}|jrFtj   d|d¡}t |ƒD]Æ}t |ƒD]¸\}\}}t |ƒt gƒkrŒ|d |j¡|d<n | |j¡}| |j¡}|jrÄt dt tj  ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j�rt|j|t|ƒƒqZ|j ¡qZqN|j ¡|jdd7<|jdt ¡|7<dS)Néérçš™™™™™¹?Ú num_roundsÚ total_cost)Úload_train_dataÚtimerÚtoÚdeviceÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚsleepÚabsÚrandrÚ zero_gradrÚbackwardÚprivacyÚdp_stepÚlenÚstepÚcpuÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr>ÚiÚxÚyÚoutputrr"r"r#r-!s2        zclientDitto.trainc Cs&| ¡}t ¡}|j |j¡|j ¡|j}|jrFtj   d|d¡}t |ƒD]®}|D]¤\}}t |ƒt gƒkr„|d |j¡|d<n | |j¡}| |j¡}|jr¼t  dt tj  ¡¡¡|j ¡| |¡}| ||¡}| ¡|j |j ¡|j¡qVqN|j ¡|jdt ¡|7<dS)Nr$r%rr&r()r)r*rr+r,r-r r/r0r1r2r3r5r6r7r8rr9rr:r>rrr?r@) rrArBrCr>rErFrGrr"r"r#ÚptrainIs,         zclientDitto.ptrainc CsJ| ¡}|j |j¡|j ¡d}d}g}g}t ¡�Ì|D]À\}}t|ƒtgƒkrl|d |j¡|d<n | |j¡}| |j¡}| |¡}|t tj |dd�|k¡  ¡7}||j d7}|  t  |¡ ¡ ¡ ¡¡|  t| ¡ ¡ ¡t |j¡d�¡q>W5QRX|j ¡tj|dd�}tj|dd�}tj||dd�} ||| fS)Nrr$)Údim)Úclasses)ÚaxisÚmicro)Úaverage)Úload_test_datarr+r,ÚevalrÚno_gradr5ÚsumÚargmaxÚitemÚshapeÚappendÚFÚsoftmaxÚdetachr?Únumpyrr0ÚarangeÚ num_classesÚ concatenaterÚ roc_auc_score) rÚtestloaderfullÚtest_accÚtest_numÚy_probÚy_truerErFrGÚaucr"r"r#Ú test_metricshs.       2 zclientDitto.test_metrics)Ú__name__Ú __module__Ú __qualname__r r-rHrdÚ __classcell__r"r"r r#rs (r)rrYr0r*r Útorch.nnrÚflcore.optimizers.fedoptimizerrÚflcore.clients.clientbaserÚtorch.nn.functionalÚ functionalrVÚsklearn.preprocessingrÚsklearnrrr"r"r"r#Ú<module>s     
3,498
Python
.pyt
36
96
478
0.421311
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,907
clientpt.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientpt.cpython-39.pyc
a W¢bc5 ã@sDddlZddlmZddlZddlZddlmZGdd„deƒZdS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)ÚclientPTc shtƒj||||fi|¤�t ¡|_tjj|jj   ¡|j d�|_ tjj|jj   ¡|j d�|_|j|_dS)N)Úlr)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ generatorÚ parametersÚ learning_rateÚ poptimizerÚbaseÚ optimizerÚ plocal_steps)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©úq/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/clients/clientpt.pyr s  zclientPT.__init__c CsX| ¡}t ¡}|j |j¡|j ¡|jj ¡D] }d|_q4|jj  ¡D] }d|_qLt |j ƒD]ª}t |ƒD]œ\}\}}t |ƒt gƒkr |d |j¡|d<n | |j¡}| |j¡}|jrØt dt tj ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j ¡qnqb|j} |j�r.tj d| d¡} |jj ¡D] }d|_�q:|jj  ¡D] }d|_�qTt | ƒD]²}t |ƒD]¢\}\}}t |ƒt gƒk�rª|d |j¡|d<n | |j¡}| |j¡}|j�rät dt tj ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j ¡�qv�qj|j ¡|jdd7<|jdt ¡|7<dS) NFTrgš™™™™™¹?ééÚ num_roundsÚ total_cost)Úload_train_dataÚtimer ÚtoÚdeviceÚtrainrrÚ requires_gradrÚrangerÚ enumerateÚtypeÚ train_slowÚsleepÚnpÚabsÚrandomÚrandrÚ zero_gradr ÚbackwardÚstepÚ local_stepsÚrandintrÚcpuÚtrain_time_cost) rÚ trainloaderÚ start_timeÚparamr4ÚiÚxÚyÚoutputr Úmax_local_stepsrrrr'sX               zclientPT.traincCs0t| ¡|jj ¡ƒD]\}}|j ¡|_qdS)N)Úziprr rÚdataÚclone)rrÚ new_paramÚ old_paramrrrÚset_parametersPszclientPT.set_parameters)Ú__name__Ú __module__Ú __qualname__rr'rFÚ __classcell__rrrrr s :r) r Útorch.nnrÚnumpyr.r$Ú system.flcore.clients.clientbaserrrrrrÚ<module>s   
2,342
Python
.pyt
32
72
293
0.43055
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,908
clientbabu.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientbabu.cpython-38.pyc
U ”jfcù ã@sLddlZddlZddlmZddlZddlZddlmZGdd„deƒZ dS)éN)ÚClientcs<eZdZ‡fdd„Zdd„Zdd„Zddgfd d „Z‡ZS) Ú clientBABUc s`tƒj||||f|Žt ¡|_tjj|jj   ¡|j d�|_ |j |_ |jj  ¡D] }d|_qPdS)N)ÚlrF)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚbaseÚ parametersÚ learning_rateÚ optimizerÚfine_tuning_stepsÚ predictorÚ requires_grad)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargsÚparam©Ú __class__©õLD:\京东\promot\cifar\cifar\Cifar10_iid\system\flcore\clients\clientbabu.pyr s  zclientBABU.__init__c Cs4| ¡}t ¡}|j |j¡|j ¡|j}|jrFtj   d|d¡}t |ƒD]ª}t |ƒD]œ\}\}}t |ƒt gƒkrŒ|d |j¡|d<n | |j¡}| |j¡}|jrÄt dt tj  ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j ¡qZqN|j ¡|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?Ú num_roundsÚ total_cost)Úload_train_dataÚtimer ÚtoÚdeviceÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚsleepÚabsÚrandrÚ zero_gradr ÚbackwardÚstepÚcpuÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr6ÚiÚxÚyÚoutputr rrrr(s.        zclientBABU.traincCs0t| ¡|jj ¡ƒD]\}}|j ¡|_qdS)N)Úziprr rÚdataÚclone)rrÚ new_paramÚ old_paramrrrÚset_parameters6szclientBABU.set_parametersrrc Cs| ¡}|j |j¡|j ¡d|kr@|jj ¡D] }d|_q4d|kr`|jj ¡D] }d|_qTt|j ƒD]Š}t |ƒD]|\}\}}t |ƒt gƒkr¨|d |j¡|d<n | |j¡}| |j¡}|j   ¡| |¡}| ||¡} |  ¡|j  ¡qvqj|j ¡dS)NrTrFr)r$r r&r'r(rrrr.rr/r0rr4r r5r6r7) rZ which_moduler9rr6r<r=r>r?r rrrÚ fine_tune:s*      zclientBABU.fine_tune)Ú__name__Ú __module__Ú __qualname__rr(rErFÚ __classcell__rrrrr s  r) Úcopyr Útorch.nnrÚnumpyr+r%Úflcore.clients.clientbaserrrrrrÚ<module>s   
2,547
Python
.pyt
33
76
278
0.417097
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,909
clientdynpt.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientdynpt.cpython-39.pyc
a W¢bc¢ã@sTddlZddlZddlmZddlZddlZddlmZGdd„deƒZ dd„Z dS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientDynPTc s°tƒj||||fi|¤�t ¡|_tjj|j  ¡|j d�|_ |j |_ d|_ t |j¡}t|ƒ}t |¡|_tjj|jj  ¡|j d�|_tjj|jj  ¡|j d�|_ |j|_dS)N)Úlr)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizerÚalphaÚglobal_model_vectorÚcopyÚdeepcopyÚmodel_parameter_vectorÚ zeros_likeÚold_gradÚ generatorÚ poptimizerÚbaseÚ plocal_steps)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargsr©Ú __class__©út/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/clients/clientdynpt.pyr s   zclientDynPT.__init__c CsÒ| ¡}t ¡}|j |j¡|j ¡|jj ¡D] }d|_q4|jj  ¡D] }d|_qLt |j ƒD]ª}t |ƒD]œ\}\}}t |ƒt gƒkr |d |j¡|d<n | |j¡}| |j¡}|jrØt dt tj ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j ¡qnqb|j} |jj ¡D] }d|_�q |jj  ¡D] }d|_�q:|j�rbtj d| d¡} t | ƒD]ú}t |ƒD]ê\}\}}t |ƒt gƒk�rª|d |j¡|d<n | |j¡}| |j¡}|j�rät dt tj ¡¡¡|j ¡| |¡}| ||¡} |jdk�rLt|jƒ} | |jdt  | |jd¡7} | t !| |j"¡8} |  ¡|j ¡�qv�qj|jdk�r˜t|jƒ #¡} |j"|j| |j|_"|j $¡|j%dd7<|j%dt ¡|7<dS) NFTrgš™™™™™¹?ééÚ num_roundsÚ total_cost)&Úload_train_dataÚtimer ÚtoÚdeviceÚtrainrrÚ requires_gradrÚrangerÚ enumerateÚtypeÚ train_slowÚsleepÚnpÚabsÚrandomÚrandrÚ zero_gradr ÚbackwardÚstepÚ local_stepsÚrandintrrrrr ÚnormÚdotrÚdetachÚcpuÚtrain_time_cost) rÚ trainloaderÚ start_timeÚparamr;ÚiÚxÚyÚoutputr Úmax_local_stepsÚv1r$r$r%r."sf                   zclientDynPT.traincCsDt|j ¡|jj ¡ƒD]\}}|j ¡|_qt|ƒ ¡ ¡|_dS)N) Úziprrr ÚdataÚclonerr@r)rr Ú new_paramÚ old_paramr$r$r%Úset_parametersfs zclientDynPT.set_parameters)Ú__name__Ú __module__Ú __qualname__rr.rQÚ __classcell__r$r$r"r%r s DrcCs dd„| ¡Dƒ}tj|dd�S)NcSsg|]}| d¡‘qS)éÿÿÿÿ)Úview)Ú.0Úpr$r$r%Ú <listcomp>oóz*model_parameter_vector.<locals>.<listcomp>r)Údim)rr Úcat)r rEr$r$r%rnsr) rr Útorch.nnrÚnumpyr5r+Úflcore.clients.clientbaserrrr$r$r$r%Ú<module>s  b
3,080
Python
.pyt
36
84.527778
394
0.415764
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,910
clientphp.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientphp.cpython-37.pyc
B fcXã@sVddlZddlZddlmZddlZddlZddlmZGdd„deƒZ ddd„Z dS) éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientPHPc s|tƒj||||f|�t ¡|_tjj|j  ¡|j d�|_ |j |j |_ |j|_t |j¡|_x|j  ¡D] }d|_qjWdS)N)ÚlrF)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizerÚmuÚ global_roundsÚlamdaÚcopyÚdeepcopyÚmodel_sÚ requires_grad)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargsÚparam)Ú __class__©úF/root/autodl-tmp/PFL-Non-IID-master/system/flcore/clients/clientphp.pyr s zclientPHP.__init__c Csˆ| ¡}t ¡}|j |j¡|j |j¡|j ¡|j}|jrTt j   d|d¡}xît |ƒD]â}xÜt |ƒD]Ğ\}\}}t|ƒtgƒkr�|d |j¡|d<n | |j¡}| |j¡}|jrÖt dt  t j  ¡¡¡|j ¡| |¡}| ||¡d|j} | t|j |¡|j |¡d|jƒ|j7} |  ¡|j ¡qlWq^W|j ¡|j ¡|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?ÚrbfÚ num_roundsÚ total_cost)Úload_train_dataÚtimer ÚtoÚdevicerÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚsleepÚabsÚrandrÚ zero_gradr rÚMMDÚbaseÚbackwardÚstepÚcpuÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr;ÚiÚxÚyÚoutputr r r r!r+s4     *  zclientPHP.traincCst|j|}x,t| ¡|j ¡ƒD]\}}|j ¡|_q Wx6t| ¡|j ¡ƒD]\}}|d||||_qNWdS)Nr")rÚziprrÚdataÚcloner )rr ÚRrÚ new_paramÚ old_paramr r r!Úset_parameters<s  zclientPHP.set_parameters)Ú__name__Ú __module__Ú __qualname__rr+rKÚ __classcell__r r )rr!r s #rr<cCsÈt || ¡¡t || ¡¡t || ¡¡}}}| ¡ d¡ |¡}| ¡ d¡ |¡}| ¡|d|} | ¡|d|} | ¡|d|} t |j¡ |¡t |j¡ |¡t |j¡ |¡} } }|dk�rJddddg}x`|D]X}| |d|d| d 7} | |d|d| d 7} ||d|d| d 7}qîW|d k�r²d d d dg}xP|D]H}| t  d| |¡7} | t  d| |¡7} |t  d| |¡7}�qfWt  | | d|¡S)a Emprical maximum mean discrepancy. The lower the result the more evidence that distributions are the same. Args: x: first sample, distribution P y: second sample, distribution Q kernel: kernel type such as "multiscale" or "rbf" rg@Z multiscalegš™™™™™É?gà?gÍÌÌÌÌÌì?gÍÌÌÌÌÌô?r#éÿÿÿÿr$é ééé2gà¿) r ÚmmÚtÚdiagÚ unsqueezeÚ expand_asÚzerosÚshaper)ÚexpÚmean)rBrCÚkernelr*ÚxxÚyyÚzzÚrxÚryZdxxZdyyZdxyÚXXÚYYZXYZbandwidth_rangeÚar r r!r8Fs, 4       r8)r<) rr Útorch.nnrÚnumpyr.r(Úflcore.clients.clientbaserrr8r r r r!Ú<module>s  <
3,309
Python
.pyt
43
74.906977
288
0.424985
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,911
clientavg.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientavg.cpython-39.pyc
a W¢bcªã@sDddlZddlmZddlZddlZddlmZGdd„deƒZdS)éN)ÚClientcs$eZdZ‡fdd„Zdd„Z‡ZS)Ú clientAVGc sBtƒj||||fi|¤�t ¡|_tjj|j  ¡|j d�|_ dS)N)Úlr) ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersZ learning_rateÚ optimizer)ÚselfÚargsÚidZ train_samplesZ test_samplesÚkwargs©Ú __class__©úr/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/clients/clientavg.pyr s zclientAVG.__init__c CsP| ¡}t ¡}|j |j¡|j ¡|j}|jrFtj   d|d¡}t |ƒD]Æ}t |ƒD]¸\}\}}t |ƒt gƒkrŒ|d |j¡|d<n | |j¡}| |j¡}|jrÄt dt tj  ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j�rt|j|t|ƒƒqZ|j ¡qZqN|j ¡|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?Z num_roundsÚ total_cost)Zload_train_dataÚtimer ÚtoÚdeviceÚtrainÚ local_stepsZ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚsleepÚabsÚrandrÚ zero_gradr ÚbackwardZprivacyZdp_stepÚlenÚstepÚcpuZtrain_time_cost) rZ trainloaderÚ start_timeZmax_local_stepsr,ÚiÚxÚyÚoutputr rrrrs2        zclientAVG.train)Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__rrrrr s r) r Útorch.nnrÚnumpyr rZflcore.clients.clientbaserrrrrrÚ<module>s   
1,692
Python
.pyt
20
83.45
306
0.472803
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,912
clientbn.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientbn.cpython-38.pyc
U zgc›ã@sDddlZddlmZddlZddlZddlmZGdd„deƒZdS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)ÚclientBNc s>tƒj||||f|�t ¡|_tjj|j  ¡|j d�|_ dS)N)Úlr) ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizer)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©õCD:\京东\promot\cifar\cifar\tiny\system\flcore\clients\clientbn.pyr s zclientBN.__init__c Cs”| ¡}t ¡}|j |j¡|j ¡|j}|jrFtj   d|d¡}t |ƒD]Æ}t |ƒD]¸\}\}}t |ƒt gƒkrŒ|d |j¡|d<n | |j¡}| |j¡}|jrÄt dt tj  ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j�rt|j|t|ƒƒqZ|j ¡qZqN|j ¡|jdd7<|jdt ¡|7<|j�r�t|jƒ\} } td|j›�d| dd ›d | ›d | d›�ƒdS) Néérgš™™™™™¹?Ú num_roundsÚ total_costzClient u(ε = z.2fu, δ = u ) for α = )Úload_train_dataÚtimer ÚtoÚdeviceÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚsleepÚabsÚrandrÚ zero_gradr ÚbackwardÚprivacyÚdp_stepÚlenÚstepÚcpuÚtrain_time_costZ get_dp_paramsÚprintr) rÚ trainloaderÚ start_timeÚmax_local_stepsr4ÚiÚxÚyÚoutputr ÚresZDELTArrrr#s8        zclientBN.traincCs>t| ¡|j ¡ƒD]$\\}}\}}d|kr|j ¡|_qdS)NÚbn)ÚzipÚnamed_parametersr ÚdataÚclone)rr rr&ÚonÚoprrrÚset_parameters<s$zclientBN.set_parameters)Ú__name__Ú __module__Ú __qualname__rr#rGÚ __classcell__rrrrr s 'r) r Útorch.nnrÚnumpyr&r Úflcore.clients.clientbaserrrrrrÚ<module>s   
2,065
Python
.pyt
22
92.727273
293
0.446184
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,913
clientmoonpt.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientmoonpt.cpython-38.pyc
U éÿcàã@s~ddlZddlZddlmZddlZddlZddlmmZ ddl m Z ddlZddl m Z ddlmZGdd„de ƒZdS)éN)ÚClient)Úlabel_binarize)Úmetricscs4eZdZ‡fdd„Zdd„Zdd„Zdd„Z‡ZS) Ú clientMOONPTc s¾tƒj||||f|�t ¡|_tj |jj   ¡|j dœ|jj   ¡|j dœg¡|_ |j|_tjj|jj  ¡|j|jd�|_tjjj|j|j|jd�|_|j|_|j|_d|_t |j¡|_dS)N)ÚparamsÚlr)rÚmomentum)Ú step_sizeÚgamma)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚbaseÚ parametersÚ learning_rateÚ predictorÚ optimizerÚ plocal_stepsÚ generatorÚpt_learning_raterÚ poptimizerÚ lr_schedulerÚStepLRÚlearning_decayÚ schedulerÚtauÚmuÚ global_modelÚcopyÚdeepcopyÚ old_model)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©õdD:\京东\promot\第二次投稿\å®�验\æœ�务器\native - pro\system\flcore\clients\clientmoonpt.pyr s" şÿÿzclientMOONPT.__init__c CsÚ| ¡}t ¡}t |jj¡}|j |j¡|j |j¡|j  |j¡|j  ¡|jj   ¡D] }d|_ q^|jj  ¡D] }d|_ qv|jj  ¡D] }d|_ q�t|jƒD]¶}t|ƒD]¨\}\}}t|ƒtgƒkrâ|d |j¡|d<n | |j¡}| |j¡}|j�rt dt tj ¡¡¡|j ¡| |¡} | | |¡} |  ¡|j ¡|j ¡q°q¤|j} |j�r|tj  d| d¡} |jj   ¡D] }d|_ �qˆ|jj  ¡D] }d|_ �q¢|jj  ¡D] }d|_ �q¼t| ƒD�]F}t|ƒD�]4\}\}}t|ƒtgƒk�r|d |j¡|d<n | |j¡}| |j¡}|j�rPt dt tj ¡¡¡|j! ¡|j  |¡} |j | ¡} | | |¡} |j   |¡ "¡} |j  |¡ "¡}t# $t# %t& '| |¡|j(¡t# %t& '| |¡|j(¡t# %t& '| | ¡|j(¡¡ }| |j)t# *|¡7} |  ¡|j! ¡�qà�qÒ|j +¡|j +¡|j  +¡t |j¡|_ t |jj¡}d}t,|  ¡|  ¡ƒD]<\}}||}t# -|dk|t# .|¡|¡}|t# /|¡}�ql|j0dd7<|j0dt ¡|7<|S) NFTrgš™™™™™¹?ééÚ num_roundsÚ total_cost)1Úload_train_dataÚtimer$r%rrÚtoÚdevicer#r&ÚtrainrrÚ requires_gradrÚrangerÚ enumerateÚtypeÚ train_slowÚsleepÚnpÚabsÚrandomÚrandrÚ zero_gradrÚbackwardÚstepr Ú local_stepsÚrandintrÚdetachrÚlogÚexpÚFÚcosine_similarityr!r"ÚmeanÚcpuÚzipÚwhereÚ zeros_likeÚsumÚtrain_time_cost)r'Ú trainloaderÚ start_timeÚ old_promptÚparamrFÚiÚxÚyÚoutputrÚmax_local_stepsÚrepÚrep_oldÚ rep_globalÚloss_conÚ new_promptÚ diff_provalueÚ new_paramÚ old_paramÚdiff_pror/r/r0r9+s�                ÿÿ   zclientMOONPT.traincCsft|j ¡|jj ¡ƒD]\}}|j ¡|_qt|j ¡|jj ¡ƒD]\}}|j ¡|_qF||_dS)N)rPrrrÚdataÚclonerr#)r'rrdrer/r/r0Úset_parameterss   zclientMOONPT.set_parametersc Cs~| ¡}|j |j¡|j ¡d}d}d}g}g}t ¡�ú|D]î\}}t|ƒtgƒkrp|d |j¡|d<n | |j¡}| |j¡}| |¡} |j |j  |¡¡} |t  tj | dd�|k¡  ¡7}|t  tj | dd�|k¡  ¡7}||j d7}| |  ¡ ¡ ¡¡| t| ¡ ¡ ¡t |j¡d�¡qBW5QRX|j ¡tj|dd�}tj|dd�}tj||dd�} |||| fS)Nrr1)Údim)Úclasses)ÚaxisÚmicro)Úaverage)Úload_test_datarr7r8ÚevalrÚno_gradr=rrrSÚargmaxÚitemÚshapeÚappendrIrOÚnumpyrr@ÚarangeÚ num_classesÚ concatenaterÚ roc_auc_score) r'ÚtestloaderfullÚtest_accÚ test_acc2Útest_numÚy_probÚy_truerZr[r\Úoutput2Úaucr/r/r0Ú test_metrics†s4        2 zclientMOONPT.test_metrics)Ú__name__Ú __module__Ú __qualname__r r9rirƒÚ __classcell__r/r/r-r0rs Tr)r$rÚtorch.nnr rvr@r6Útorch.nn.functionalÚ functionalrLÚflcore.clients.clientbaserÚsklearn.preprocessingrÚsklearnrrr/r/r/r0Ú<module>s    
4,417
Python
.pyt
49
88.877551
555
0.413596
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,914
clientamp.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientamp.cpython-37.pyc
B ü fc ã@sTddlZddlmZddlmZddlZddlZddlZGdd„deƒZ dd„Z dS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientAMPc s\tƒj||||f|�|j|_|j|_t |j¡|_t  ¡|_ t j j |j ¡|jd�|_dS)N)Úlr)ÚsuperÚ__init__ÚalphaKÚlamdaÚcopyÚdeepcopyÚmodelÚclient_uÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚ parametersÚ learning_rateÚ optimizer)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs)Ú __class__©úF/root/autodl-tmp/PFL-Non-IID-master/system/flcore/clients/clientamp.pyr s  zclientAMP.__init__c CsŠ| ¡}t ¡}|j |j¡|j |j¡|j ¡|j}|jrTt j   d|d¡}xît |ƒD]â}xÜ|D]Ô\}}t |ƒt gƒkr–|d |j¡|d<n | |j¡}| |j¡}|jrÎt dt  t j  ¡¡¡|j ¡| |¡}| ||¡}t|jƒ} t|jƒ} | | } ||j|jdt | | ¡7}| ¡|j ¡qhWq^W|j ¡|j ¡~|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?Ú num_roundsÚ total_cost)Úload_train_dataÚtimer ÚtoÚdevicer ÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚtypeÚsleepÚabsÚrandrÚ zero_gradrÚweight_flattenrrrÚdotÚbackwardÚstepÚcpuÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr6ÚxÚyÚoutputrÚparamsÚparams_Úsubrrrr's<           zclientAMP.traincCs<x6t| ¡|j ¡ƒD]\}}|j||j ¡|_qWdS)N)Úziprr ÚdataÚclone)rr Ú coef_selfÚ new_paramÚ old_paramrrrÚset_parameters?szclientAMP.set_parameters)Ú__name__Ú __module__Ú __qualname__rr'rHÚ __classcell__rr)rrr s +rcCs4g}x | ¡D]}| | d¡¡qWt |¡}|S)Néÿÿÿÿ)rÚappendÚviewrÚcat)r r?Úurrrr3Ds  r3) rÚtorch.nnr Úflcore.clients.clientbaserÚnumpyr*r$r rr3rrrrÚ<module>s  ;
2,256
Python
.pyt
27
82.37037
269
0.436323
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,915
clientdyn.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientdyn.cpython-37.pyc
B È:cc ã@sTddlZddlZddlmZddlZddlZddlmZGdd„deƒZ dd„Z dS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientDync sltƒj||||f|�t ¡|_tjj|j  ¡|j d�|_ |j |_ d|_ t |j¡}t|ƒ}t |¡|_dS)N)Úlr)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizerÚalphaÚglobal_model_vectorÚcopyÚdeepcopyÚmodel_parameter_vectorÚ zeros_likeÚold_grad)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargsr)Ú __class__©úF/root/autodl-tmp/PFL-Non-IID-master/system/flcore/clients/clientdyn.pyr s  zclientDyn.__init__c Csğ| ¡}t ¡}|j |j¡|j |j¡|_|j |j¡|_|j ¡|j}|j rft j   d|d¡}�xt |ƒD]ö}xğt|ƒD]ä\}\}}t|ƒtgƒkr²|d |j¡|d<n | |j¡}| |j¡}|j rêt dt  t j  ¡¡¡|j ¡| |¡}| ||¡} |jdk�rRt|jƒ} | |jdt | |jd¡7} | t | |j¡8} |  ¡|j ¡q€WqrW|jdk�r�t|jƒ ¡} |j|j| |j|_|j ¡|j ¡|_|j ¡|_|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?Ú num_roundsÚ total_cost) Úload_train_dataÚtimer ÚtoÚdevicerrÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚsleepÚabsÚrandrÚ zero_gradr rrr ÚnormÚdotÚbackwardÚstepÚdetachÚcpuÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr9ÚiÚxÚyÚoutputr Úv1rrr r)sD             zclientDyn.traincCsDx,t| ¡|j ¡ƒD]\}}|j ¡|_qWt|ƒ ¡ ¡|_dS)N)Úziprr ÚdataÚclonerr:r)rr Ú new_paramÚ old_paramrrr Úset_parametersOszclientDyn.set_parameters)Ú__name__Ú __module__Ú __qualname__rr)rJÚ __classcell__rr)rr r s 1rcCs dd„| ¡Dƒ}tj|dd�S)NcSsg|]}| d¡‘qS)éÿÿÿÿ)Úview)Ú.0Úprrr ú <listcomp>Wsz*model_parameter_vector.<locals>.<listcomp>r)Údim)rr Úcat)r Úparamrrr rVsr) rr Útorch.nnrÚnumpyr,r&Úflcore.clients.clientbaserrrrrrr Ú<module>s  L
2,573
Python
.pyt
30
84.7
285
0.430031
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,916
clientbase.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientbase.cpython-39.pyc
a W¢bcã@s‚ddlZddlZddlmZddlZddlZddlmmZ ddl m Z ddl m Z ddlmZddlmZGdd„deƒZdS)éN)Ú DataLoader)Úlabel_binarize)Úmetrics)Úread_client_datac@sheZdZdZdd„Zddd„Zddd„Zd d „Zd d „Zd d„Z dd„Z dd„Z ddd„Z ddd„Z dS)ÚClientz7 Base class for clients in federated learning. cKsÒt |j¡|_|j|_|j|_||_|j|_|j|_||_||_ |j |_ |j |_ |j |_ d|_|j ¡D]}t|tjƒrhd|_q„qh|d|_|d|_dddœ|_dddœ|_|j|_|j|_|j |j|_dS)NFTÚ train_slowÚ send_slowrg)Ú num_roundsÚ total_cost)ÚcopyÚdeepcopyÚmodelÚdatasetÚdeviceÚidÚsave_folder_nameÚ num_classesÚ train_samplesÚ test_samplesÚ batch_sizeÚlocal_learning_rateÚ learning_rateÚ local_stepsZ has_BatchNormÚchildrenÚ isinstanceÚnnÚ BatchNorm2drrÚtrain_time_costZsend_time_costÚprivacyZdp_sigmaÚ sample_rate)ÚselfÚargsrrrÚkwargsÚlayer©r$ús/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/clients/clientbase.pyÚ__init__s.     zClient.__init__NcCs0|dkr|j}t|j|jdd�}t||ddd�S)NT©Zis_train©Ú drop_lastÚshuffle©rrrrr)r rÚ train_datar$r$r%Úload_train_data1szClient.load_train_datacCs0|dkr|j}t|j|jdd�}t||ddd�S)NFr'Tr(r+)r rÚ test_datar$r$r%Úload_test_data7szClient.load_test_datacCs.t| ¡|j ¡ƒD]\}}|j ¡|_qdS©N)ÚzipÚ parametersr ÚdataÚclone)r r Ú new_paramÚ old_paramr$r$r%Úset_parameters=szClient.set_parameterscCs,t| ¡| ¡ƒD]\}}|j ¡|_qdSr0©r1r2r3r4)r r ÚtargetÚparamZ target_paramr$r$r%Ú clone_modelAszClient.clone_modelcCs(t| ¡|ƒD]\}}|j ¡|_qdSr0r8)r r Ú new_paramsr:r5r$r$r%Úupdate_parametersFszClient.update_parametersc CsZ| ¡}|j |j¡|j ¡d}d}g}g}t ¡�Ğ|D]º\}}t|ƒtgƒkrl|d |j¡|d<n | |j¡}| |j¡}| |¡}|t tj |dd�|k¡  ¡7}||j d7}|  |  ¡ ¡ ¡¡|  t|  ¡ ¡ ¡t |j¡d�¡q>Wdƒn1�s0Y|j ¡tj|dd�}tj|dd�}tj||dd�} ||| fS)Nré)Údim)Úclasses)ÚaxisÚmicro)Úaverage)r/r ÚtorÚevalÚtorchÚno_gradÚtypeÚsumÚargmaxÚitemÚshapeÚappendÚdetachÚcpuÚnumpyrÚnpÚarangerÚ concatenaterZ roc_auc_score) r ZtestloaderfullZtest_accZtest_numZy_probZy_trueÚxÚyÚoutputZaucr$r$r%Ú test_metricsJs.       H zClient.test_metricscCs¼| ¡}|j |j¡|j ¡d}d}|D]|\}}t|ƒtgƒkrZ|d |j¡|d<n | |j¡}| |j¡}| |¡}||jd7}|| ||¡ ¡|jd7}q,|j  ¡||fS)Nr) r-r rDrrErHrLÚlossrKrO)r Ú trainloaderZ train_numrXrTrUrVr$r$r%Ú train_metricsns       zClient.train_metricsc CsT|dkr|j}tj |¡s$t |¡t |tj |dt|j ƒd|d¡¡dS©NZclient_Ú_z.pt) rÚosÚpathÚexistsÚmakedirsrFÚsaveÚjoinÚstrr)r rKÚ item_nameÚ item_pathr$r$r%Ú save_item–s   zClient.save_itemcCs8|dkr|j}t tj |dt|jƒd|d¡¡Sr[)rrFÚloadr]r^rbrcr)r rdrer$r$r%Ú load_item�szClient.load_item)N)N)N)N)Ú__name__Ú __module__Ú __qualname__Ú__doc__r&r-r/r7r;r=rWrZrfrhr$r$r$r%r s  $( r)r rFÚtorch.nnrrPrQr]Útorch.nn.functionalÚ functionalÚFÚtorch.utils.datarZsklearn.preprocessingrZsklearnrZutils.data_utilsrÚobjectrr$r$r$r%Ú<module>s     
4,448
Python
.pyt
40
109.925
425
0.432978
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,917
clientfomo.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientfomo.cpython-39.pyc
a f¾`c·ã@sdddlZddlmZddlZddlZddlZddlmZddl m Z ddl m Z Gdd„deƒZ dS)éN)ÚClient)Ú DataLoader)Úread_client_datacsneZdZ‡fdd„Zdd„Zddd„Zdd „Zd d „Zd d „Zdd„Z dd„Z dd„Z dd„Z dd„Z ‡ZS)Ú clientFomoc s�tƒj||||fi|¤�|j|_t |j¡|_g|_g|_t j |j|j d�|_ t  ¡|_t jj|j ¡|jd�|_d|_|jd|j|_dS)N)Údevice)Úlrgš™™™™™É?é)ÚsuperÚ__init__Ú num_clientsÚcopyÚdeepcopyÚmodelÚ old_modelÚ received_idsÚreceived_modelsÚtorchÚzerosrÚ weight_vectorÚnnÚCrossEntropyLossÚlossÚoptimÚSGDÚ parametersÚ learning_rateÚ optimizerÚ val_ratioÚ train_samples)ÚselfÚargsÚidrÚ test_samplesÚkwargs©Ú __class__©ús/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/clients/clientfomo.pyr s zclientFomo.__init__c Cs2| ¡\}}t ¡}| |¡| |j|j¡|j ¡|j}|jrVt j   d|d¡}t |ƒD]¢}|D]˜\}}t |ƒt gƒkr”|d |j¡|d<n | |j¡}| |j¡}|jrÌt dt  t j  ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j ¡qfq^|jdd7<|jdt ¡|7<dS)Nrérgš™™™™™¹?Ú num_roundsÚ total_cost)Úload_train_dataÚtimeÚaggregate_parametersÚ clone_modelrrÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚtypeÚtorÚsleepÚabsÚrandrÚ zero_gradrÚbackwardÚstepÚtrain_time_cost) rÚ trainloaderÚ val_loaderÚ start_timeÚmax_local_stepsr=ÚxÚyÚoutputrr&r&r'r/s.          zclientFomo.trainNcCsz|dkr|j}t|j|jdd�}t|jt|ƒƒ }||d…}|d|…}t||jddd�}t||j|jdd�}||fS)NT)Úis_train)Ú drop_lastÚshuffle) Ú batch_sizerÚdatasetr!ÚintrÚlenrÚ has_BatchNorm)rrIÚ train_dataÚval_idxZval_datar?r@r&r&r'r+?s  zclientFomo.load_train_datacCs¨| ¡\}}|j ¡d}d}|D]|\}}t|ƒtgƒkrP|d |j¡|d<n | |j¡}| |j¡}| |¡}||jd7}|| ||¡ ¡|jd7}q"||fS©Nr) r+rÚevalr6r7rÚshaperÚitem)rr?r@Ú train_numrrCrDrEr&r&r'Ú train_metricsLs       zclientFomo.train_metricscCs||_||_dS©N)rr)rÚidsÚmodelsr&r&r'Úreceive_modelscszclientFomo.receive_modelscCs–g}| |j|¡}|jD]h}g}t| ¡|j ¡ƒD]\}}| || d¡¡q4t |¡}| || ||¡t  |¡d¡q|  |¡t  |¡S)Néÿÿÿÿgñh㈵øä>) Úrecalculate_lossrrÚziprÚappendÚviewrÚcatÚnormÚweight_vector_updateÚtensor)rr@Ú weight_listÚLÚreceived_modelZ params_difZparam_nZparam_ir&r&r'Ú weight_calgs  & zclientFomo.weight_calcCsTt |j¡|_t||jƒD]\}}|j|| ¡7<qt |j¡  |j ¡|_dSrV) r2rr rr\rrSrrbr7r)rrcÚwr!r&r&r'ra‚szclientFomo.weight_vector_updatecCs|d}|D]f\}}t|ƒtgƒkr6|d |j¡|d<n | |j¡}| |j¡}||ƒ}| ||¡}|| ¡7}q|t|ƒSrP)r6r7rrrSrL)rZ new_modelr@rdrCrDrErr&r&r'r[Œs    zclientFomo.recalculate_losscCs:t|j ¡| ¡ƒD] \}}|j|j ¡|7_qdSrV)r\rrÚdataÚclone)rrgreÚparamZreceived_paramr&r&r'Úadd_parametersšszclientFomo.add_parameterscCs\| | |¡¡}t|ƒdkrX|j ¡D]}|j ¡q&t||jƒD]\}}|  ||¡qBdSrP) Ú weight_scalerfrLrrrhÚzero_r\rrk)rr@Úweightsrjrgrer&r&r'r-�s   zclientFomo.aggregate_parameterscsNt |t d¡¡}t |¡‰ˆdkr@‡fdd„|Dƒ}t |¡St g¡SdS)Nrcsg|] }|ˆ‘qSr&r&)Ú.0rg©Úw_sumr&r'Ú <listcomp>¬óz+clientFomo.weight_scale.<locals>.<listcomp>)rÚmaximumrbÚsum)rrnr&rpr'rl¨s   zclientFomo.weight_scale)N)Ú__name__Ú __module__Ú __qualname__r r/r+rUrYrfrar[rkr-rlÚ __classcell__r&r&r$r'r s #   r)rÚtorch.nnrÚnumpyr2r,r Úflcore.clients.clientbaserÚtorch.utils.datarÚutils.data_utilsrrr&r&r&r'Ú<module>s    
5,040
Python
.pyt
45
110.844444
841
0.410729
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,918
clientphp.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientphp.cpython-38.pyc
U ”jfcXã@sVddlZddlZddlmZddlZddlZddlmZGdd„deƒZ ddd„Z dS) éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientPHPc sxtƒj||||f|�t ¡|_tjj|j  ¡|j d�|_ |j |j |_ |j|_t |j¡|_|j  ¡D] }d|_qhdS)N)ÚlrF)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizerÚmuÚ global_roundsÚlamdaÚcopyÚdeepcopyÚmodel_sÚ requires_grad)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargsÚparam©Ú __class__©õKD:\京东\promot\cifar\cifar\Cifar10_iid\system\flcore\clients\clientphp.pyr s zclientPHP.__init__c Cs€| ¡}t ¡}|j |j¡|j |j¡|j ¡|j}|jrTt j   d|d¡}t |ƒD]Ş}t |ƒD]Ğ\}\}}t|ƒtgƒkrš|d |j¡|d<n | |j¡}| |j¡}|jrÒt dt  t j  ¡¡¡|j ¡| |¡}| ||¡d|j} | t|j |¡|j |¡d|jƒ|j7} |  ¡|j ¡qhq\|j ¡|j ¡|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?ÚrbfÚ num_roundsÚ total_cost)Úload_train_dataÚtimer ÚtoÚdevicerÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚsleepÚabsÚrandrÚ zero_gradr rÚMMDÚbaseÚbackwardÚstepÚcpuÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr<ÚiÚxÚyÚoutputr r!r!r"r,s4      *  zclientPHP.traincCsl|j|}t| ¡|j ¡ƒD]\}}|j ¡|_qt| ¡|j ¡ƒD]\}}|d||||_qHdS)Nr#)rÚziprrÚdataÚcloner )rr ÚRrÚ new_paramÚ old_paramr!r!r"Úset_parameters<s  zclientPHP.set_parameters)Ú__name__Ú __module__Ú __qualname__rr,rLÚ __classcell__r!r!rr"r s #rr=cCsÀt || ¡¡t || ¡¡t || ¡¡}}}| ¡ d¡ |¡}| ¡ d¡ |¡}| ¡|d|} | ¡|d|} | ¡|d|} t |j¡ |¡t |j¡ |¡t |j¡ |¡} } }|dk�rFddddg}|D]X}| |d|d| d 7} | |d|d| d 7} ||d|d| d 7}qì|d k�rªd d d dg}|D]H}| t  d| |¡7} | t  d| |¡7} |t  d| |¡7}�q`t  | | d|¡S)a Emprical maximum mean discrepancy. The lower the result the more evidence that distributions are the same. Args: x: first sample, distribution P y: second sample, distribution Q kernel: kernel type such as "multiscale" or "rbf" rg@Z multiscalegš™™™™™É?gà?gÍÌÌÌÌÌì?gÍÌÌÌÌÌô?r$éÿÿÿÿr%é ééé2gà¿) r ÚmmÚtÚdiagÚ unsqueezeÚ expand_asÚzerosÚshaper*ÚexpÚmean)rCrDÚkernelr+ÚxxÚyyÚzzÚrxÚryZdxxZdyyZdxyÚXXÚYYZXYZbandwidth_rangeÚar!r!r"r9Fs. 4ş     r9)r=) rr Útorch.nnrÚnumpyr/r)Úflcore.clients.clientbaserrr9r!r!r!r"Ú<module>s  <
3,313
Python
.pyt
42
76.809524
284
0.420361
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,919
clientt.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientt.cpython-38.pyc
U œMgcÜ ã@sLddlZddlmZddlZddlZddlmZddlZGdd„deƒZ dS)éN)ÚClientcs4eZdZ‡fdd„Zdd„Zdd„Zdd„Z‡ZS) ÚclientTc sltƒj||||f|�t ¡|_tjj|jj   ¡|j d�|_ tjj|jj   ¡|j d�|_| ¡|j|_dS)N)Úlr)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ generatorÚ parametersÚ learning_rateÚ poptimizerÚbaseÚ optimizerÚser_paraÚ plocal_steps)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©õBD:\京东\promot\cifar\cifar\tiny\system\flcore\clients\clientt.pyr s  zclientT.__init__cCsxt |j¡t |jjjj¡|jjj_t |jjjj¡|jjj_t |jjj j¡|jjj _t |jjj j¡|jjj _dS©N) r Ú manual_seedrÚ rand_liker rZpad_downÚdataÚpad_leftÚ pad_rightZpad_up)rrrrrs  zclientT.ser_parac CsÖ| ¡}t ¡}t |jj¡}|j |j¡|j ¡|j }|j rTt j   d|d¡}|jj ¡D] }d|_q`|jj ¡D] }d|_qxt|ƒD]¬}t|ƒD]�\}\}} t|ƒtgƒkrÊ|d |j¡|d<n | |j¡}|  |j¡} |j �rt dt  t j  ¡¡¡|j ¡| |¡} | | | ¡} |  ¡|j ¡q˜qŒ|j ¡t |jj¡} d} t| ¡|  ¡ƒD]<\}}||}t |dk|t  |¡|¡}| t !|¡} �qh|j"dd7<|j"dt ¡|7<| S) NééTFrgš™™™™™¹?Ú num_roundsÚ total_cost)#Úload_train_dataÚtimeÚcopyÚdeepcopyr rÚtoÚdeviceÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintrrÚ requires_gradÚrangeÚ enumerateÚtypeÚsleepÚabsÚrandrÚ zero_gradr ÚbackwardÚstepÚcpuÚzipr ÚwhereÚ zeros_likeÚsumÚtrain_time_cost)rÚ trainloaderÚ start_timeÚ old_promptÚmax_local_stepsÚparamr?ÚiÚxÚyÚoutputr Ú new_promptÚ diff_provalueÚ new_paramÚ old_paramÚdiff_prorrrr0sF        z clientT.traincCs0t| ¡|jj ¡ƒD]\}}|j ¡|_qdSr )rArr rr#Úclone)rrrQrRrrrÚset_parametersOszclientT.set_parameters)Ú__name__Ú __module__Ú __qualname__rrr0rUÚ __classcell__rrrrr s 0r) r Útorch.nnrÚnumpyr3r+Úflcore.clients.clientbaserr,rrrrrÚ<module>s   
2,593
Python
.pyt
32
79.875
304
0.440281
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,920
clientavg.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientavg.cpython-37.pyc
B È:ccªã@sDddlZddlmZddlZddlZddlmZGdd„deƒZdS)éN)ÚClientcs$eZdZ‡fdd„Zdd„Z‡ZS)Ú clientAVGc s>tƒj||||f|�t ¡|_tjj|j  ¡|j d�|_ dS)N)Úlr) ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersZ learning_rateÚ optimizer)ÚselfÚargsÚidZ train_samplesZ test_samplesÚkwargs)Ú __class__©úF/root/autodl-tmp/PFL-Non-IID-master/system/flcore/clients/clientavg.pyr s zclientAVG.__init__c CsX| ¡}t ¡}|j |j¡|j ¡|j}|jrFtj   d|d¡}xÖt |ƒD]Ê}xÄt |ƒD]¸\}\}}t |ƒt gƒkr�|d |j¡|d<n | |j¡}| |j¡}|jrÈt dt tj  ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j�r t|j|t|ƒƒq^|j ¡q^WqPW|j ¡|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?Z num_roundsÚ total_cost)Zload_train_dataÚtimer ÚtoÚdeviceÚtrainÚ local_stepsZ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚsleepÚabsÚrandrÚ zero_gradr ÚbackwardZprivacyZdp_stepÚlenÚstepÚcpuZtrain_time_cost) rZ trainloaderÚ start_timeZmax_local_stepsr+ÚiÚxÚyÚoutputr rrrrs2       zclientAVG.train)Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__rr)rrr s r) r Útorch.nnrÚnumpyrrZflcore.clients.clientbaserrrrrrÚ<module>s   
1,638
Python
.pyt
20
80.75
314
0.46572
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,921
clientper.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientper.cpython-37.pyc
B vùec€ã@sLddlZddlZddlmZddlZddlZddlmZGdd„deƒZ dS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientPerc s>tƒj||||f|�t ¡|_tjj|j  ¡|j d�|_ dS)N)Úlr) ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizer)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs)Ú __class__©úF/root/autodl-tmp/PFL-Non-IID-master/system/flcore/clients/clientper.pyr s zclientPer.__init__c Cs<| ¡}t ¡}|j |j¡|j ¡|j}|jrFtj   d|d¡}xºt |ƒD]®}x¨t |ƒD]œ\}\}}t |ƒt gƒkr�|d |j¡|d<n | |j¡}| |j¡}|jrÈt dt tj  ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j ¡q^WqPW|j ¡|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?Ú num_roundsÚ total_cost)Úload_train_dataÚtimer ÚtoÚdeviceÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚsleepÚabsÚrandrÚ zero_gradr ÚbackwardÚstepÚcpuÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr0ÚiÚxÚyÚoutputr rrrr"s.       zclientPer.traincCs4x.t| ¡|jj ¡ƒD]\}}|j ¡|_qWdS)N)Úziprr ÚbaseÚdataÚclone)rr Ú new_paramÚ old_paramrrrÚset_parameters0s zclientPer.set_parameters)Ú__name__Ú __module__Ú __qualname__rr"r@Ú __classcell__rr)rrr s  r) Úcopyr Útorch.nnrÚnumpyr%rÚflcore.clients.clientbaserrrrrrÚ<module>s   
1,835
Python
.pyt
20
90.6
290
0.461454
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,922
clientbabu.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientbabu.cpython-39.pyc
a f¾`cÊ ã@sLddlZddlZddlmZddlZddlZddlmZGdd„deƒZ dS)éN)ÚClientcs<eZdZ‡fdd„Zdd„Zdd„Zddgfd d „Z‡ZS) Ú clientBABUc sdtƒj||||fi|¤Žt ¡|_tjj|jj   ¡|j d�|_ |j |_ |jj  ¡D] }d|_qTdS)N)ÚlrF)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚbaseÚ parametersÚ learning_rateÚ optimizerÚfine_tuning_stepsÚ predictorÚ requires_grad)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargsÚparam©Ú __class__©ús/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/clients/clientbabu.pyr s  zclientBABU.__init__c Cs| ¡}t ¡}|j ¡|j}|jr8tj d|d¡}t |ƒD]ª}t |ƒD]œ\}\}}t |ƒt gƒkr~|d  |j ¡|d<n |  |j ¡}|  |j ¡}|jr¶t dt tj ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j ¡qLq@|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?Ú num_roundsÚ total_cost)Úload_train_dataÚtimer ÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚtoÚdeviceÚsleepÚabsÚrandrÚ zero_gradr ÚbackwardÚstepÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr6ÚiÚxÚyÚoutputr rrrr&s*       zclientBABU.traincCs0t| ¡|jj ¡ƒD]\}}|j ¡|_qdS)N)Úziprr rÚdataÚclone)rrÚ new_paramÚ old_paramrrrÚset_parameters6szclientBABU.set_parametersrrc Csì| ¡}|j ¡d|vr2|jj ¡D] }d|_q&d|vrR|jj ¡D] }d|_qFt|jƒD]Š}t|ƒD]|\}\}}t |ƒt gƒkrš|d  |j ¡|d<n |  |j ¡}|  |j ¡}|j   ¡| |¡}| ||¡} |  ¡|j  ¡qhq\dS)NrTrFr)r$r r&rrrr,rr-r.r/r0rr4r r5r6) rZ which_moduler8rr6r;r<r=r>r rrrÚ fine_tune:s&      zclientBABU.fine_tune)Ú__name__Ú __module__Ú __qualname__rr&rDrEÚ __classcell__rrrrr s  r) Úcopyr Útorch.nnrÚnumpyr)r%Úflcore.clients.clientbaserrrrrrÚ<module>s   
2,521
Python
.pyt
34
72.941176
280
0.430868
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,923
clientrod.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientrod.cpython-37.pyc
B ,fc±ã@s€ddlZddlZddlmZddlZddlZddlmZddl mm Z ddl m Z ddlmZGdd„deƒZd dd „ZdS) éN)ÚClient)Úlabel_binarize)Úmetricscs.eZdZ‡fdd„Zdd„Zddd„Z‡ZS) Ú clientRODc  s´tƒj||||f|�t ¡|_tjj|j  ¡|j d�|_ t   |jj¡|_tjj|j  ¡|j d�|_t |j¡|_| ¡}x4|D],\}}x"|D]} |j|  ¡d7<q�Wq€WdS)N)Úlré)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizerÚcopyÚdeepcopyÚ predictorÚpredÚopt_predÚzerosÚ num_classesÚsample_per_classÚload_train_dataÚitem) ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargsÚ trainloaderÚxÚyÚyy)Ú __class__©úF/root/autodl-tmp/PFL-Non-IID-master/system/flcore/clients/clientrod.pyr s  zclientROD.__init__c Cs‚| ¡}t ¡}|j |j¡|j |j¡|j ¡|j}|jrTt j   d|d¡}xèt |ƒD]Ü}xÖt |ƒD]Ê\}\}}t|ƒtgƒkr�|d |j¡|d<n | |j¡}| |j¡}|j |¡}|j |¡} t|| |jƒ} |j ¡|  ¡|j ¡| | ¡¡} | |  ¡| |¡} |j ¡|  ¡|j ¡qlWq^W|j ¡|j ¡|jdd7<|jdt ¡|7<dS)NrérÚ num_roundsÚ total_cost)rÚtimerÚtoÚdevicerÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚbaserÚbalanced_softmax_lossrrÚ zero_gradÚbackwardÚstepÚdetachr rÚcpuÚtrain_time_cost) rr$Ú start_timeÚmax_local_stepsr>Úir%r&ÚrepÚout_gZloss_bsmÚout_pr r)r)r*r1s:          zclientROD.trainNc CsÜ| ¡}|dkr|j}|j |j¡|j |j¡| ¡d}d}g}g}t ¡��8�x.|D�]$\}}t|ƒtgƒkr�|d |j¡|d<n | |j¡}| |j¡}|j  |¡} |j  | ¡} | |   ¡¡} |   ¡| } |t  tj | dd�|k¡ ¡7}||jd7}| t | ¡  ¡ ¡ ¡¡|j} |jdk�r<| d7} t|  ¡ ¡ ¡t | ¡d�}|jdk�rz|dd…dd…f}| |¡q^WWdQRX|j ¡|j ¡tj|dd�}tj|dd�}tj||dd�}|||fS) Nrr)Údimr+)Úclasses)ÚaxisÚmicro)Úaverage)Úload_test_datarr/r0rÚevalr Úno_gradr9r:rr?ÚsumÚargmaxrÚshapeÚappendÚFÚsoftmaxr@Únumpyrrr4ÚarangeÚ concatenaterÚ roc_auc_score)rrÚ testloaderÚtest_accÚtest_numÚy_probÚy_truer%r&rErFrGÚoutputÚncÚlbÚaucr)r)r*Ú test_metricsDsH           zclientROD.test_metrics)N)Ú__name__Ú __module__Ú __qualname__r r1rcÚ __classcell__r)r))r(r*r s 'rÚmeancCsB| |¡}| d¡ |jdd¡}|| ¡}tj|||d�}|S)a}Compute the Balanced Softmax Loss between `logits` and the ground truth `labels`. Args: labels: A int tensor of size [batch]. logits: A float tensor of size [batch, no_of_classes]. sample_per_class: A int tensor of size [no of classes]. reduction: string. One of "none", "mean", "sum" Returns: loss: A float tensor. Balanced Softmax Loss. réÿÿÿÿ)ÚinputÚtargetÚ reduction)Útype_asÚ unsqueezeÚexpandrRÚlogrTÚ cross_entropy)ÚlabelsÚlogitsrrlZspcr r)r)r*r;ts  r;)rh)rr Útorch.nnr rVr4r.Úflcore.clients.clientbaserÚtorch.nn.functionalÚ functionalrTÚsklearn.preprocessingrÚsklearnrrr;r)r)r)r*Ú<module>s    h
3,840
Python
.pyt
43
87.139535
536
0.446932
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,924
clientbn.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientbn.cpython-37.pyc
B úec›ã@sDddlZddlmZddlZddlZddlmZGdd„deƒZdS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)ÚclientBNc s>tƒj||||f|�t ¡|_tjj|j  ¡|j d�|_ dS)N)Úlr) ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizer)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs)Ú __class__©úE/root/autodl-tmp/PFL-Non-IID-master/system/flcore/clients/clientbn.pyr s zclientBN.__init__c Csœ| ¡}t ¡}|j |j¡|j ¡|j}|jrFtj   d|d¡}xÖt |ƒD]Ê}xÄt |ƒD]¸\}\}}t |ƒt gƒkr�|d |j¡|d<n | |j¡}| |j¡}|jrÈt dt tj  ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j�r t|j|t|ƒƒq^|j ¡q^WqPW|j ¡|jdd7<|jdt ¡|7<|j�r˜t|jƒ\} } td|j›�d| dd ›d | ›d | d›�ƒdS) Néérgš™™™™™¹?Ú num_roundsÚ total_costzClient u(ε = z.2fu, δ = u ) for α = )Úload_train_dataÚtimer ÚtoÚdeviceÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚsleepÚabsÚrandrÚ zero_gradr ÚbackwardÚprivacyÚdp_stepÚlenÚstepÚcpuÚtrain_time_costZ get_dp_paramsÚprintr) rÚ trainloaderÚ start_timeÚmax_local_stepsr3ÚiÚxÚyÚoutputr ÚresZDELTArrrr"s8       zclientBN.traincCsBx<t| ¡|j ¡ƒD]$\\}}\}}d|kr|j ¡|_qWdS)NÚbn)ÚzipÚnamed_parametersr ÚdataÚclone)rr rr%ÚonÚoprrrÚset_parameters<s&zclientBN.set_parameters)Ú__name__Ú __module__Ú __qualname__rr"rFÚ __classcell__rr)rrr s 'r) r Útorch.nnrÚnumpyr%rÚflcore.clients.clientbaserrrrrrÚ<module>s   
2,058
Python
.pyt
22
92.409091
301
0.452626
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,925
clientavgpt.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientavgpt.cpython-38.pyc
U ßıcßã@sdddlZddlmZddlZddlZddlmZddlZddl m Z ddl m Z Gdd„deƒZ dS)éN)ÚClient)Úlabel_binarize)Úmetricscs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientAVGPTc s„tƒj||||f|�t ¡|_tjj|jj   ¡|j d�|_ |j |_ tjj|jj  ¡|j|jd�|_tjjj|j|j |jd�|_dS)N)Úlr)rÚmomentum)Ú step_sizeÚgamma)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚbaseÚ parametersÚ learning_rateÚ optimizerÚ plocal_stepsÚ generatorÚpt_learning_raterÚ poptimizerÚ lr_schedulerÚStepLRÚlearning_decayÚ scheduler)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©õYD:\京东\promot\第二次投稿\å®�验\native - pro\system\flcore\clients\clientavgpt.pyr s ÿÿzclientAVGPT.__init__c CsÒ| ¡}t ¡}t |jj¡}|j |j¡|j ¡|jj   ¡D] }d|_ qB|jj  ¡D] }d|_ qZt |j ƒD]´}t|ƒD]¦\}\}}t|ƒtgƒkr®|d |j¡|d<n | |j¡}| |j¡}|jræt dt tj ¡¡¡|j ¡| |¡} | | |¡} |  ¡|j ¡|j ¡q|qp|j} |j�rFtj d| d¡} |jj   ¡D] }d|_ �qR|jj  ¡D] }d|_ �qlt | ƒD]²}t|ƒD]¢\}\}}t|ƒtgƒk�rÂ|d |j¡|d<n | |j¡}| |j¡}|j�rüt dt tj ¡¡¡|j ¡| |¡} | | |¡} |  ¡|j ¡�q��q‚|j ¡t |jj¡} d} t |  ¡|   ¡ƒD]<\}}||}t! "|dk|t! #|¡|¡}| t! $|¡} �qd|j%dd7<|j%dt ¡|7<| S) NFTrgš™™™™™¹?ééÚ num_roundsÚ total_cost)&Úload_train_dataÚtimeÚcopyÚdeepcopyrrÚtoÚdeviceÚtrainrrÚ requires_gradÚrangerÚ enumerateÚtypeÚ train_slowÚsleepÚnpÚabsÚrandomÚrandrÚ zero_gradrÚbackwardÚsteprÚ local_stepsÚrandintrÚcpuÚziprÚwhereÚ zeros_likeÚsumÚtrain_time_cost)rÚ trainloaderÚ start_timeÚ old_promptÚparamr@ÚiÚxÚyÚoutputrÚmax_local_stepsÚ new_promptÚ diff_provalueÚ new_paramÚ old_paramÚdiff_pror'r'r(r3sj                zclientAVGPT.trainc Csv| ¡}|j |j¡|j ¡d}d}d}g}g}t ¡�ò|D]æ\}}t|ƒtgƒkrp|d |j¡|d<n | |j¡}| |j¡}| |¡} |j |¡} |t  tj | dd�|k¡  ¡7}|t  tj | dd�|k¡  ¡7}||j d7}|  |  ¡ ¡ ¡¡|  t| ¡ ¡ ¡t |j¡d�¡qBW5QRX|j ¡tj|dd�}tj|dd�}tj||dd�} |||| fS)Nrr))Údim)Úclasses)ÚaxisÚmicro)Úaverage)Úload_test_datarr1r2ÚevalrÚno_gradr7rrGÚargmaxÚitemÚshapeÚappendÚdetachrCÚnumpyrr:ÚarangeÚ num_classesÚ concatenaterÚ roc_auc_score) rÚtestloaderfullÚtest_accÚ test_acc2Útest_numÚy_probÚy_truerNrOrPÚoutput2Úaucr'r'r(Ú test_metricscs4         2 zclientAVGPT.test_metrics)Ú__name__Ú __module__Ú __qualname__r r3rqÚ __classcell__r'r'r%r(r s Fr)rÚtorch.nnr rdr:r.Úflcore.clients.clientbaserr/Úsklearn.preprocessingrÚsklearnrrr'r'r'r(Ú<module>s    
3,486
Python
.pyt
47
72.851064
553
0.432558
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,926
clientproto.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientproto.cpython-37.pyc
B ®ûec ã@s`ddlmZddlZddlZddlmZddlZddlZddl m Z Gdd„de ƒZ dd„Z dS)é)Ú defaultdictN)ÚClientcs>eZdZ‡fdd„Zdd„Zdd„Zdd„Zd d d „Z‡ZS) Ú clientProtoc sxtƒj||||f|�t ¡|_tjj|j  ¡|j d�|_ t |jj   ¡ƒdjd|_d|_d|_t ¡|_|j|_dS)N)Úlrré)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizerÚlistÚ predictorÚshapeZ feature_dimÚprotosÚ global_protosÚMSELossÚloss_mseÚlamda)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs)Ú __class__©úH/root/autodl-tmp/PFL-Non-IID-master/system/flcore/clients/clientproto.pyr s  zclientProto.__init__c Cs| ¡}t ¡}|j |j¡|j ¡|j}|jrFtj   d|d¡}t t ƒ}�xrt |ƒD�]d}�x\t|ƒD�]N\}\}}t|ƒtgƒkr |d |j¡|d<n | |j¡}| |j¡}|jrØt dt tj  ¡¡¡|j ¡|j |¡} |j | ¡} | | |¡} |jdk�rjt | ¡} x6t|ƒD]*\}} |  ¡}|j|j| |dd…f<�q&W| | | | ¡|j7} x>t|ƒD]2\}} |  ¡}|| | |dd…f  ¡j¡�qtW|  !¡|j "¡qlWqZW|j #¡t$|ƒ|_%|j&dd7<|j&dt ¡|7<dS)Nrérgš™™™™™¹?Ú num_roundsÚ total_cost)'Úload_train_dataÚtimerÚtoÚdeviceÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintrrÚrangeÚ enumerateÚtypeÚsleepÚabsÚrandrÚ zero_gradÚbaserr rr Ú zeros_likeÚitemÚdatarrÚappendÚdetachÚbackwardÚstepÚcpuÚagg_funcrÚtrain_time_cost)rÚ trainloaderÚ start_timeÚmax_local_stepsrr?ÚiÚxÚyÚrepÚoutputr Z proto_newÚyyÚy_cr"r"r#r+sF         &  zclientProto.traincCst |¡|_dS)N)ÚcopyÚdeepcopyr)rrr"r"r#Ú set_protosNszclientProto.set_protosc Cs | ¡}|j |j¡|j ¡ttƒ}t ¡�ÒxÊt |ƒD]¾\}\}}t |ƒt gƒkrn|d |j¡|d<n | |j¡}| |j¡}|j r¦t   dt tj ¡¡¡|j ¡|j |¡}x<t |ƒD]0\}}| ¡}|| ||dd…f ¡j¡qÆWq<WWdQRXt|ƒ|_|j ¡dS)Nrgš™™™™™¹?)r'rr)r*Úevalrrr Úno_gradr2r3r-r(r4r.r5r/r6rr7r8r:r<r=r;rArr@) rrCrrFrGrHrIrKrLr"r"r#Úcollect_protosQs&      2 zclientProto.collect_protosNc CsL| ¡}|dkr|j}|j |j¡| ¡d}d}t ¡�öxî|D]æ\}}t|ƒtgƒkrr|d |j¡|d<n | |j¡}| |j¡}|j |¡}t dƒt  |j d|j ¡ |j¡}x@t |ƒD]4\} } x*|j ¡D]\} } | | | ¡|| | f<qØWqÄW|t tj|dd�|k¡ ¡7}||j d7}qDWWdQRX|j ¡||dfS)NrÚinfr)Údim)Úload_test_datarr)r*rPr rQr3r8ÚfloatÚonesrÚ num_classesr2rÚitemsrÚsumÚargminr:r@) rrÚ testloaderÚtest_accÚtest_numrGrHrIrJrFÚrÚjÚpror"r"r#Ú test_metricsjs,    $  zclientProto.test_metrics)N) Ú__name__Ú __module__Ú __qualname__rr+rOrRrbÚ __classcell__r"r")r!r#r s  3rcCsjxd| ¡D]X\}}t|ƒdkrVd|dj}x|D]}||j7}q2W|t|ƒ||<q |d||<q W|S)z- Returns the average of the weights. rr)rYÚlenr;)rÚlabelÚ proto_listÚprotorFr"r"r#rA‰s  rA) Ú collectionsrrMr Útorch.nnr Únumpyr.r(Úflcore.clients.clientbaserrrAr"r"r"r#Ú<module>s   ~
4,011
Python
.pyt
44
89.886364
465
0.398438
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,927
clientperavg.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientperavg.cpython-39.pyc
a f¾`c‡ã@sXddlZddlZddlZddlZddlmZddlmZddl m Z Gdd„de ƒZ dS)éN)ÚPerAvgOptimizer)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientPerAvgc sFtƒj||||fi|¤�|j|_t ¡|_t|j  ¡|jd�|_ dS)N)Úlr) ÚsuperÚ__init__Ú learning_rateÚbetaÚnnÚCrossEntropyLossÚlossrÚmodelÚ parametersÚ optimizer)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©úu/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/clients/clientperavg.pyr s zclientPerAvg.__init__c Csp| |jd¡}t ¡}|j ¡|j}|jr@tj  d|d¡}t |ƒD�]ô}|D�]è\}}t   t |j ¡ƒ¡}t|ƒtgƒkr¾ddg}|dd|j… |j¡|d<|dd|j…|d<n|d|j… |j¡}|d|j… |j¡} |j�r t dt tj ¡¡¡|j ¡| |¡} | | | ¡} |  ¡|j ¡t|ƒtgƒk�r�ddg}|d|jd… |j¡|d<|d|jd…|d<n||jd… |j¡}||jd… |j¡} |j�rÜt dt tj ¡¡¡|j ¡| |¡} | | | ¡} |  ¡t|j ¡|ƒD]\} } | j ¡| _�q|jj|jd�qRqH|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?©r Ú num_roundsÚ total_cost)Úload_train_dataÚ batch_sizeÚtimer ÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚcopyÚdeepcopyÚlistrÚtypeÚtoÚdeviceÚsleepÚabsÚrandrÚ zero_gradr ÚbackwardÚstepÚzipÚdataÚcloner Útrain_time_cost)rÚ trainloaderÚ start_timeÚmax_local_stepsr4ÚXÚYZ temp_modelÚxÚyÚoutputr Ú old_paramÚ new_paramrrrr"sN        zclientPerAvg.traincCs | |j¡}t|ƒ}|j ¡t|ƒ\}}t|ƒtgƒkrP|d |j¡|d<n | |j¡}| |j¡}|j   ¡| |¡}|  ||¡}|  ¡|j   ¡t|ƒ\}}t|ƒtgƒkrÌ|d |j¡|d<n | |j¡}| |j¡}|j   ¡| |¡}|  ||¡}|  ¡|j j |jd�dS)Nrr)Úload_test_datar Úiterr r"Únextr,r-r.rr2r r3r4r )rZ testloaderZiter_testloaderr>r?r@r rrrÚtrain_one_stepNs.               zclientPerAvg.train_one_step)Ú__name__Ú __module__Ú __qualname__rr"rFÚ __classcell__rrrrr s :r) Únumpyr%Útorchr!r)Útorch.nnr Úflcore.optimizers.fedoptimizerrÚflcore.clients.clientbaserrrrrrÚ<module>s   
2,779
Python
.pyt
37
73.972973
230
0.406125
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,928
clientapfl.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientapfl.cpython-37.pyc
B Úfcâ ã@sLddlZddlZddlmZddlZddlZddlmZGdd„deƒZ dS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientAPFLc sntƒj||||f|�t ¡|_tjj|j  ¡|j d�|_ |j |_ t  |j¡|_tjj|j  ¡|j d�|_dS)N)Úlr)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizerÚalphaÚcopyÚdeepcopyÚ model_perÚ optimizer_per)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs)Ú __class__©úG/root/autodl-tmp/PFL-Non-IID-master/system/flcore/clients/clientapfl.pyr s  zclientAPFL.__init__c CsÎ| ¡}t ¡}|j |j¡|j |j¡|j ¡|j}|jrTt j   d|d¡}xôt |ƒD]è}xât |ƒD]Ö\}\}}t|ƒtgƒkr�|d |j¡|d<n | |j¡}| |j¡}|jrÖt dt  t j  ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j ¡|j ¡| |¡} | | |¡} |  ¡|j ¡| ¡qlWq^Wx>t|j ¡|j ¡ƒD]$\} } d|j| |j| | _�qbW|j ¡|j ¡|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?Ú num_roundsÚ total_cost)Úload_train_dataÚtimerÚtoÚdevicer ÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚsleepÚabsÚrandrÚ zero_gradr ÚbackwardÚsteprÚ alpha_updateÚziprrÚdataÚcpuÚtrain_time_cost)rÚ trainloaderÚ start_timeÚmax_local_stepsr5ÚiÚxÚyÚoutputr Z output_perZloss_perÚlpÚprrrr'sB               zclientAPFL.traincCsªd}xjt|j ¡|j ¡ƒD]P\}}|j|j}|j|jjd|j|jj}|| d¡j  | d¡¡7}qW|d|j7}|j|j ||_t   |j  ¡dd¡|_dS)Nrréÿÿÿÿg{®Gáz”?ggğ?)r7r rrr8rÚgradÚviewÚTÚdotrr*ÚclipÚitem)rZ grad_alphaZl_paramsZp_paramsZdifrErrrr6@s    zclientAPFL.alpha_update)Ú__name__Ú __module__Ú __qualname__rr'r6Ú __classcell__rr)rrr s ,r) rr Útorch.nnrÚnumpyr*r$Úflcore.clients.clientbaserrrrrrÚ<module>s   
2,394
Python
.pyt
33
71.393939
233
0.428027
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,929
clientamppt.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientamppt.cpython-38.pyc
U #ôıc‰ã@stddlZddlmZddlmZddlZddlZddlZddlZddl m Z ddl m Z Gdd„deƒZ dd„ZdS) éN)ÚClient)Úlabel_binarize)Úmetricscs4eZdZ‡fdd„Zdd„Zdd„Zdd„Z‡ZS) Ú clientAMPPTc s¦tƒj||||f|�|j|_|j|_t |j¡|_t  ¡|_ t j   |jj ¡|jdœg¡|_|j|_t j j |jj ¡|j|jd�|_t j jj|j|j|jd�|_dS)N)ÚparamsÚlr)rÚmomentum)Ú step_sizeÚgamma)ÚsuperÚ__init__ÚalphaKÚlamdaÚcopyÚdeepcopyÚmodelÚclient_uÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚbaseÚ parametersÚ learning_rateÚ optimizerÚ plocal_stepsÚ generatorÚpt_learning_raterÚ poptimizerÚ lr_schedulerÚStepLRÚlearning_decayÚ scheduler)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©õYD:\京东\promot\第二次投稿\å®�验\native - pro\system\flcore\clients\clientamppt.pyr s ÿÿÿzclientAMPPT.__init__c Cs | ¡}t ¡}t |jj¡}|j |j¡|j |j¡|j  ¡|jj   ¡D] }d|_ qP|jj  ¡D] }d|_ qht |jƒD]´}t|ƒD]¦\}\}}t|ƒtgƒkr¼|d |j¡|d<n | |j¡}| |j¡}|jrôt dt tj ¡¡¡|j ¡| |¡} | | |¡} |  ¡|j ¡|j ¡qŠq~|j} |j�rTtj d| d¡} |jj   ¡D] }d|_ �q`|jj  ¡D] }d|_ �qzt | ƒD]æ}|D]Ú\}}t|ƒtgƒk�rÈ|d |j¡|d<n | |j¡}| |j¡}|j�rt dt tj ¡¡¡|j ¡| |¡} | | |¡} t |jƒ} t |jƒ} | | }| |j!|j"dt# $||¡7} |  ¡|j ¡�q˜�q�|j %¡|j %¡~t |jj¡}d}t&|  ¡|  ¡ƒD]<\}}||}t# '|dk|t# (|¡|¡}|t# )|¡}�q²|j*dd7<|j*dt ¡|7<|S) NFTrgš™™™™™¹?ééÚ num_roundsÚ total_cost)+Úload_train_dataÚtimerrrrÚtoÚdevicerÚtrainrrÚ requires_gradÚrangerÚ enumerateÚtypeÚ train_slowÚsleepÚnpÚabsÚrandomÚrandr Ú zero_gradrÚbackwardÚstepr$Ú local_stepsÚrandintrÚweight_flattenrr rÚdotÚcpuÚzipÚwhereÚ zeros_likeÚsumÚtrain_time_cost)r%Ú trainloaderÚ start_timeÚ old_promptÚparamrDÚiÚxÚyÚoutputrÚmax_local_stepsrÚparams_ÚsubÚ new_promptÚ diff_provalueÚ new_paramÚ old_paramÚdiff_pror-r-r.r7 sx                     zclientAMPPT.traincCs<t|j ¡|jj ¡ƒD]\}}|j||j ¡|_qdS)N)rJrrrÚdataÚclone)r%rÚ coef_selfr\r]r-r-r.Úset_parametersis zclientAMPPT.set_parametersc Csv| ¡}|j |j¡|j ¡d}d}d}g}g}t ¡�ò|D]æ\}}t|ƒtgƒkrp|d |j¡|d<n | |j¡}| |j¡}| |¡} |j |¡} |t  tj | dd�|k¡  ¡7}|t  tj | dd�|k¡  ¡7}||j d7}|  |  ¡ ¡ ¡¡|  t| ¡ ¡ ¡t |j¡d�¡qBW5QRX|j ¡tj|dd�}tj|dd�}tj||dd�} |||| fS)Nrr/)Údim)Úclasses)ÚaxisÚmicro)Úaverage)Úload_test_datarr5r6ÚevalrÚno_gradr;rrMÚargmaxÚitemÚshapeÚappendÚdetachrIÚnumpyrr>ÚarangeÚ num_classesÚ concatenaterÚ roc_auc_score) r%ÚtestloaderfullÚtest_accÚ test_acc2Útest_numÚy_probÚy_truerTrUrVÚoutput2Úaucr-r-r.Ú test_metricsms4         2 zclientAMPPT.test_metrics)Ú__name__Ú __module__Ú __qualname__r r7rbr}Ú __classcell__r-r-r+r.r s IrcCs0g}| ¡D]}| | d¡¡q t |¡}|S)Néÿÿÿÿ)rrnÚviewrÚcat)rrÚur-r-r.rG”s   rG)rÚtorch.nnrÚflcore.clients.clientbaserrpr>r4rÚsklearn.preprocessingrÚsklearnrrrGr-r-r-r.Ú<module>s    
4,168
Python
.pyt
48
85.666667
553
0.415291
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,930
clientrep.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientrep.cpython-39.pyc
a W¢bc ã@sDddlZddlmZddlZddlZddlmZGdd„deƒZdS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientRepc shtƒj||||fi|¤�t ¡|_tjj|jj   ¡|j d�|_ tjj|jj   ¡|j d�|_|j|_dS)N)Úlr)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚbaseÚ parametersÚ learning_rateÚ optimizerÚ predictorÚ poptimizerÚ plocal_steps)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©úr/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/clients/clientrep.pyr s  zclientRep.__init__c CsX| ¡}t ¡}|j |j¡|j ¡|jj ¡D] }d|_q4|jj  ¡D] }d|_qLt |j ƒD]ª}t |ƒD]œ\}\}}t |ƒt gƒkr |d |j¡|d<n | |j¡}| |j¡}|jrØt dt tj ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j ¡qnqb|j} |j�r.tj d| d¡} |jj ¡D] }d|_�q:|jj  ¡D] }d|_�qTt | ƒD]²}t |ƒD]¢\}\}}t |ƒt gƒk�rª|d |j¡|d<n | |j¡}| |j¡}|j�rät dt tj ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j ¡�qv�qj|j ¡|jdd7<|jdt ¡|7<dS) NFTrgš™™™™™¹?ééÚ num_roundsÚ total_cost)Úload_train_dataÚtimer ÚtoÚdeviceÚtrainrrÚ requires_gradrÚrangerÚ enumerateÚtypeÚ train_slowÚsleepÚnpÚabsÚrandomÚrandrÚ zero_gradr ÚbackwardÚstepÚ local_stepsÚrandintrÚcpuÚtrain_time_cost) rÚ trainloaderÚ start_timeÚparamr4ÚiÚxÚyÚoutputr Úmax_local_stepsrrrr'sX               zclientRep.traincCs0t| ¡|jj ¡ƒD]\}}|j ¡|_qdS)N)Úziprr rÚdataÚclone)rrÚ new_paramÚ old_paramrrrÚset_parametersLszclientRep.set_parameters)Ú__name__Ú __module__Ú __qualname__rr'rFÚ __classcell__rrrrr s 9r) r Útorch.nnrÚnumpyr.r$Z system.flcore.clients.clientbaserrrrrrÚ<module>s   
2,347
Python
.pyt
32
72.1875
294
0.431779
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,931
clientamp.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientamp.cpython-39.pyc
a f¾`cÍã@sTddlZddlmZddlmZddlZddlZddlZGdd„deƒZ dd„Z dS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientAMPc s`tƒj||||fi|¤�|j|_|j|_t |j¡|_t  ¡|_ t j j |j ¡|jd�|_dS)N)Úlr)ÚsuperÚ__init__ÚalphaKÚlamdaÚcopyÚdeepcopyÚmodelÚclient_uÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚ parametersÚ learning_rateÚ optimizer)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©úr/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/clients/clientamp.pyr s  zclientAMP.__init__c CsR| ¡}t ¡}|j ¡|j}|jr8tj d|d¡}t |ƒD]Ş}|D]Ô\}}t |ƒt gƒkrv|d  |j ¡|d<n |  |j ¡}|  |j ¡}|jr®t  dt tj ¡¡¡|j ¡| |¡}| ||¡}t|jƒ} t|jƒ} | | } ||j|jdt | | ¡7}| ¡|j ¡qHq@~|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?Ú num_roundsÚ total_cost)Úload_train_dataÚtimer ÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚtypeÚtoÚdeviceÚsleepÚabsÚrandrÚ zero_gradrÚweight_flattenr rrrÚdotÚbackwardÚstepÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr7ÚxÚyÚoutputrÚparamsZparams_Úsubrrrr&s4           zclientAMP.traincCs8t| ¡|j ¡ƒD]\}}|j||j ¡|_qdS)N)Úziprr ÚdataÚclone)rr Ú coef_selfÚ new_paramÚ old_paramrrrÚset_parameters=szclientAMP.set_parameters)Ú__name__Ú __module__Ú __qualname__rr&rGÚ __classcell__rrrrr s )rcCs0g}| ¡D]}| | d¡¡q t |¡}|S)Néÿÿÿÿ)rÚappendÚviewrÚcat)r r?Úurrrr4Bs   r4) rÚtorch.nnr Úflcore.clients.clientbaserÚnumpyr)r%r rr4rrrrÚ<module>s  9
2,249
Python
.pyt
24
92.625
277
0.44699
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,932
clientpt.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientpt.cpython-38.pyc
U ˜øc¶ã@sdddlZddlmZddlZddlZddlmZddlZddl m Z ddl m Z Gdd„deƒZ dS)éN)ÚClient)Úlabel_binarize)Úmetricscs4eZdZ‡fdd„Zdd„Zdd„Zdd„Z‡ZS) ÚclientPTc s„tƒj||||f|�t ¡|_tjj|jj   ¡|j d�|_ |j |_ tjj|jj  ¡|j|jd�|_tjjj|j|j |jd�|_dS)N)Úlr)rÚmomentum)Ú step_sizeÚgamma)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚbaseÚ parametersÚ learning_rateÚ optimizerÚ plocal_stepsÚ generatorZpt_learning_raterÚ poptimizerÚ lr_schedulerÚStepLRZlearning_decayÚ scheduler)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©õVD:\京东\promot\第二次投稿\å®�验\native - pro\system\flcore\clients\clientpt.pyr s ÿÿzclientPT.__init__c CsÒ| ¡}t ¡}t |jj¡}|j |j¡|j ¡|jj   ¡D] }d|_ qB|jj  ¡D] }d|_ qZt |j ƒD]´}t|ƒD]¦\}\}}t|ƒtgƒkr®|d |j¡|d<n | |j¡}| |j¡}|jræt dt tj ¡¡¡|j ¡| |¡} | | |¡} |  ¡|j ¡|j ¡q|qp|j} |j�rFtj d| d¡} |jj   ¡D] }d|_ �qR|jj  ¡D] }d|_ �qlt | ƒD]²}t|ƒD]¢\}\}}t|ƒtgƒk�rÂ|d |j¡|d<n | |j¡}| |j¡}|j�rüt dt tj ¡¡¡|j ¡| |¡} | | |¡} |  ¡|j ¡�q��q‚|j ¡t |jj¡} d} t |  ¡|   ¡ƒD]<\}}||}t! "|dk|t! #|¡|¡}| t! $|¡} �qd|j%dd7<|j%dt ¡|7<| S) NFTrgš™™™™™¹?ééÚ num_roundsÚ total_cost)&Úload_train_dataÚtimeÚcopyÚdeepcopyrrÚtoÚdeviceÚtrainrrÚ requires_gradÚrangerÚ enumerateÚtypeÚ train_slowÚsleepÚnpÚabsÚrandomÚrandrÚ zero_gradrÚbackwardÚsteprÚ local_stepsÚrandintrÚcpuÚziprÚwhereÚ zeros_likeÚsumÚtrain_time_cost)rÚ trainloaderÚ start_timeZ old_promptÚparamr>ÚiÚxÚyÚoutputrÚmax_local_stepsZ new_promptZ diff_provalueÚ new_paramÚ old_paramÚdiff_pror%r%r&r1sj                zclientPT.traincCs0t| ¡|jj ¡ƒD]\}}|j ¡|_qdS)N)rBrrrÚdataÚclone)rrrOrPr%r%r&Úset_parametersfszclientPT.set_parametersc Csv| ¡}|j |j¡|j ¡d}d}d}g}g}t ¡�ò|D]æ\}}t|ƒtgƒkrp|d |j¡|d<n | |j¡}| |j¡}| |¡} |j |¡} |t  tj | dd�|k¡  ¡7}|t  tj | dd�|k¡  ¡7}||j d7}|  |  ¡ ¡ ¡¡|  t| ¡ ¡ ¡t |j¡d�¡qBW5QRX|j ¡tj|dd�}tj|dd�}tj||dd�} |||| fS)Nrr')Údim)Úclasses)ÚaxisÚmicro)Úaverage)Úload_test_datarr/r0ÚevalrÚno_gradr5rrEÚargmaxÚitemÚshapeÚappendÚdetachrAÚnumpyrr8ÚarangeÚ num_classesÚ concatenaterÚ roc_auc_score) rÚtestloaderfullÚtest_accÚ test_acc2Útest_numÚy_probÚy_truerKrLrMÚoutput2Úaucr%r%r&Ú test_metricsjs4         2 zclientPT.test_metrics)Ú__name__Ú __module__Ú __qualname__r r1rTroÚ __classcell__r%r%r#r&r s Ir)rÚtorch.nnr rbr8r,Úflcore.clients.clientbaserr-Úsklearn.preprocessingrÚsklearnrrr%r%r%r&Ú<module>s    
3,693
Python
.pyt
46
78.956522
553
0.426261
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,933
clientpFedMe.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientpFedMe.cpython-39.pyc
a f¾`cşã@sXddlZddlZddlZddlZddlmZddlmZddl m Z Gdd„de ƒZ dS)éN)ÚpFedMeOptimizer)ÚClientcs4eZdZ‡fdd„Zdd„Zdd„Zdd„Z‡ZS) Ú clientpFedMec s†tƒj||||fi|¤�|j|_|j|_|j|_t t|j   ¡ƒ¡|_ t t|j   ¡ƒ¡|_ t  ¡|_t|j   ¡|j|jd�|_dS)N)ÚlrÚlamda)ÚsuperÚ__init__rÚKZp_learning_rateZpersonalized_learning_rateÚcopyÚdeepcopyÚlistÚmodelÚ parametersÚ local_paramsÚpersonalized_paramsÚnnÚCrossEntropyLossÚlossrÚ optimizer)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©úu/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/clients/clientpFedMe.pyr s ÿzclientpFedMe.__init__c Cs†| ¡}t ¡}|j ¡|j}|jr8tj d|d¡}t |ƒD�]}|D]ø\}}t |ƒt gƒkrx|d  |j ¡|d<n |  |j ¡}|  |j ¡}|jr°t  dt tj ¡¡¡t |jƒD]@}|j ¡| |¡}| ||¡} |  ¡|j |j|j ¡|_qºt|j|jƒD]6\} } |   |j ¡} | j|j|j| j| j| _�q qJq@| |j|j¡|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?Ú num_roundsÚ total_cost)Úload_train_dataÚtimer ÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚtypeÚtoÚdeviceÚsleepÚabsÚrandr rÚ zero_gradrÚbackwardÚsteprrÚzipÚdatarÚ learning_rateÚupdate_parametersÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr4ÚxÚyÚiÚoutputrÚ new_paramZ localweightrrrr%s4        (zclientpFedMe.traincCs@t| ¡|j ¡|jƒD]"\}}}|j ¡|_|j ¡|_qdS)N)r5rr rr6Úclone)rr rAÚ old_paramZ local_paramrrrÚset_parametersEs" zclientpFedMe.set_parametersc CsŞ| ¡}| |j|j¡|j ¡d}d}t ¡�”|D]~\}}t|ƒtgƒkrf|d |j ¡|d<n | |j ¡}| |j ¡}| |¡}|t  tj |dd�|k¡  ¡7}||j d7}q8Wdƒn1sÌ0Y||fS)Nrr)Údim)Úload_test_datar8r rÚevalÚtorchÚno_gradr,r-r.ÚsumÚargmaxÚitemÚshape)rÚtestloaderfullÚtest_accÚtest_numr=r>r@rrrÚtest_metrics_personalizedJs       .z&clientpFedMe.test_metrics_personalized)Ú__name__Ú __module__Ú __qualname__rr%rDrQÚ __classcell__rrrrr s +r) Únumpyr(r$r rHÚtorch.nnrZflcore.optimizers.fedoptimizerrÚflcore.clients.clientbaserrrrrrÚ<module>s   
2,889
Python
.pyt
29
98.344828
455
0.454387
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,934
clientbnpt.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientbnpt.cpython-38.pyc
U T¸kc÷ã@sLddlZddlmZddlZddlZddlmZddlZGdd„deƒZ dS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientBNPTc s�tƒj||||f|�t ¡|_tjj|j  ¡|j d�|_ tjj|jj   ¡|j d�|_ |j |_ tjj|jj  ¡|j|jd�|_tjjj|j|j |jd�|_dS)N)Úlr)rÚmomentum)Ú step_sizeÚgamma)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizerÚbaseÚ plocal_stepsÚ generatorÚpt_learning_raterÚ poptimizerÚ lr_schedulerÚStepLRÚlearning_decayÚ scheduler)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©õXD:\京东\promot\第二次投稿\å®�验\native - pro\system\flcore\clients\clientbnpt.pyr s  ÿzclientBNPT.__init__c Cs| ¡}t ¡}t |jj¡}|j |j¡|j ¡|jj   ¡D] }d|_ qB|jj  ¡D] }d|_ qZt |j ƒD]´}t|ƒD]¦\}\}}t|ƒtgƒkr®|d |j¡|d<n | |j¡}| |j¡}|jræt dt tj ¡¡¡|j ¡| |¡} | | |¡} |  ¡|j ¡|j ¡q|qp|j} |j�rFtj d| d¡} |jj   ¡D] }d|_ �qR|jj  ¡D] }d|_ �qlt | ƒD]Î}t|ƒD]¾\}\}}t|ƒtgƒk�rÂ|d |j¡|d<n | |j¡}| |j¡}|j�rüt dt tj ¡¡¡|j ¡| |¡} | | |¡} |  ¡|j�r@t |j|t!|ƒƒn |j ¡�q��q‚|j "¡|j#dd7<|j#dt ¡|7<t |jj¡} d} t$|  ¡|   ¡ƒD]<\}}||}t% &|dk|t% '|¡|¡}| t% (|¡} �q¬|j#dd7<|j#dt ¡|7<| S) NFTrgš™™™™™¹?ééÚ num_roundsÚ total_cost))Úload_train_dataÚtimeÚcopyÚdeepcopyrrÚtoÚdeviceÚtrainrrÚ requires_gradÚrangerÚ enumerateÚtypeÚ train_slowÚsleepÚnpÚabsÚrandomÚrandrÚ zero_gradr ÚbackwardÚsteprÚ local_stepsÚrandintrÚprivacyÚdp_stepÚlenÚcpuÚtrain_time_costÚzipr ÚwhereÚ zeros_likeÚsum)rÚ trainloaderÚ start_timeÚ old_promptÚparamr>ÚiÚxÚyÚoutputr Úmax_local_stepsÚ new_promptÚ diff_provalueÚ new_paramÚ old_paramÚdiff_pror%r%r&r1sr                zclientBNPT.traincCsBt|j ¡|jj ¡ƒD]$\\}}\}}d|kr|j ¡|_qdS)NÚbn)rFrÚnamed_parametersrÚdataÚclone)rrr r8ÚonÚopr%r%r&Úset_parametersds(zclientBNPT.set_parameters)Ú__name__Ú __module__Ú __qualname__r r1r^Ú __classcell__r%r%r#r&r s Fr) r Útorch.nnr Únumpyr8r,Úflcore.clients.clientbaserr-rr%r%r%r&Ú<module>s   
2,909
Python
.pyt
41
69.658537
240
0.427675
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,935
clientprox.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientprox.cpython-38.pyc
U ”jfc›ã@sXddlZddlZddlZddlZddlmZddlmZddl m Z Gdd„de ƒZ dS)éN)ÚPerturbedGradientDescent)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientProxc s\tƒj||||f|�|j|_t t|j ¡ƒ¡|_t   ¡|_ t |j ¡|j |jd�|_dS)N)ÚlrÚmu)ÚsuperÚ__init__rÚcopyÚdeepcopyÚlistÚmodelÚ parametersÚ global_paramsÚnnÚCrossEntropyLossÚlossrÚ learning_rateÚ optimizer)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©õLD:\京东\promot\cifar\cifar\Cifar10_iid\system\flcore\clients\clientprox.pyr s ÿzclientProx.__init__c Cs| ¡}t ¡}|j |j¡|j ¡|j}|jrFtj   d|d¡}t |ƒD]Š}|D]€\}}t |ƒt gƒkr„|d |j¡|d<n | |j¡}| |j¡}|j  ¡| |¡}| ||¡}| ¡|j  |j|j¡qVqN|j ¡|jdd7<|jdt ¡|7<dS)NéérÚ num_roundsÚ total_cost)Úload_train_dataÚtimer ÚtoÚdeviceÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚtyperÚ zero_gradrÚbackwardÚsteprÚcpuÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr0ÚxÚyÚoutputrrrrr&s*         zclientProx.traincCs@t| ¡|j|j ¡ƒD]"\}}}|j ¡|_|j ¡|_qdS)N)Úzipr rr ÚdataÚclone)rr Ú new_paramZ global_paramÚparamrrrÚset_parameters5s" zclientProx.set_parameters)Ú__name__Ú __module__Ú __qualname__rr&r>Ú __classcell__rrrrr s r) ÚtorchÚnumpyr)r#r Útorch.nnrÚflcore.optimizers.fedoptimizerrÚflcore.clients.clientbaserrrrrrÚ<module>s   
1,963
Python
.pyt
20
96.9
283
0.459877
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,936
clientprox.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientprox.cpython-39.pyc
a f¾`c›ã@sXddlZddlZddlZddlZddlmZddlmZddl m Z Gdd„de ƒZ dS)éN)ÚPerturbedGradientDescent)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientProxc s`tƒj||||fi|¤�|j|_t t|j ¡ƒ¡|_t   ¡|_ t |j ¡|j |jd�|_dS)N)ÚlrÚmu)ÚsuperÚ__init__rÚcopyÚdeepcopyÚlistÚmodelÚ parametersÚ global_paramsÚnnÚCrossEntropyLossÚlossrÚ learning_rateÚ optimizer)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©ús/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/clients/clientprox.pyr s ÿzclientProx.__init__c Cs| ¡}t ¡}|j ¡|j}|jr8tj d|d¡}t |ƒD]ª}|D] \}}t |ƒt gƒkrv|d  |j ¡|d<n |  |j ¡}|  |j ¡}|jr®t  dt tj ¡¡¡|j ¡| |¡}| ||¡}| ¡|j |j|j ¡qHq@|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?Ú num_roundsÚ total_cost)Úload_train_dataÚtimer ÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚtypeÚtoÚdeviceÚsleepÚabsÚrandrÚ zero_gradrÚbackwardÚsteprÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr3ÚxÚyÚoutputrrrrr$s*        zclientProx.traincCs@t| ¡|j|j ¡ƒD]"\}}}|j ¡|_|j ¡|_qdS)N)Úzipr rr ÚdataÚclone)rr Ú new_paramZ global_paramÚparamrrrÚset_parameters5s" zclientProx.set_parameters)Ú__name__Ú __module__Ú __qualname__rr$r@Ú __classcell__rrrrr s r) ÚtorchÚnumpyr'r#r Útorch.nnrÚflcore.optimizers.fedoptimizerrÚflcore.clients.clientbaserrrrrrÚ<module>s   
2,029
Python
.pyt
20
100.3
293
0.471642
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,937
clientreppt.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientreppt.cpython-38.pyc
U �P÷c�ã@sdddlZddlmZddlZddlZddlmZddlZddl m Z ddl m Z Gdd„deƒZ dS)éN)ÚClient)Úlabel_binarize)Úmetricscs4eZdZ‡fdd„Zdd„Zdd„Zdd„Z‡ZS) Ú clientREPPTc sœtƒj||||f|�t ¡|_tjj|jj   ¡|j d�|_ |j |_ tjj|jj  ¡|jdœ|jj  ¡|j dœg|jd�|_tjjj|j|j |jd�|_dS)N)Úlr)Úparamsr)Úmomentum)Ú step_sizeÚgamma)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚbaseÚ parametersÚ learning_rateÚ optimizerÚ plocal_stepsÚ generatorÚpt_learning_rateÚ predictorrÚ poptimizerÚ lr_schedulerÚStepLRÚlearning_decayÚ scheduler)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©õYD:\京东\promot\第二次投稿\å®�验\native - pro\system\flcore\clients\clientreppt.pyr s şıÿzclientREPPT.__init__c Cs0| ¡}t ¡}t |jj¡}|j |j¡|j ¡|jj   ¡D] }d|_ qB|jj  ¡D] }d|_ qZ|jj   ¡D] }d|_ qrt |jƒD]´}t|ƒD]¦\}\}}t|ƒtgƒkrÆ|d |j¡|d<n | |j¡}| |j¡}|jrşt dt tj ¡¡¡|j ¡| |¡} | | |¡} |  ¡|j ¡|j ¡q”qˆ|j} |j�r^tj d| d¡} |jj   ¡D] }d|_ �qj|jj  ¡D] }d|_ �q„|jj   ¡D] }d|_ �q�t | ƒD]²}t|ƒD]¢\}\}}t|ƒtgƒk�rô|d |j¡|d<n | |j¡}| |j¡}|j�r.t dt tj ¡¡¡|j ¡| |¡} | | |¡} |  ¡|j ¡�qÀ�q´|j  ¡|j!dd7<|j!dt ¡|7<t |jj¡} d} t"|  ¡|   ¡ƒD]<\}}||}t# $|dk|t# %|¡|¡}| t# &|¡} �qÂ|j!dd7<|j!dt ¡|7<| S) NFTrgš™™™™™¹?ééÚ num_roundsÚ total_cost)'Úload_train_dataÚtimeÚcopyÚdeepcopyrrÚtoÚdeviceÚtrainrrÚ requires_gradrÚrangerÚ enumerateÚtypeÚ train_slowÚsleepÚnpÚabsÚrandomÚrandrÚ zero_gradrÚbackwardÚstepr Ú local_stepsÚrandintrÚcpuÚtrain_time_costÚziprÚwhereÚ zeros_likeÚsum)r!Ú trainloaderÚ start_timeÚ old_promptÚparamrBÚiÚxÚyÚoutputrÚmax_local_stepsÚ new_promptÚ diff_provalueÚ new_paramÚ old_paramÚdiff_pror)r)r*r5sv                 zclientREPPT.traincCs0t| ¡|jj ¡ƒD]\}}|j ¡|_qdS)N)rGrrrÚdataÚclone)r!rrVrWr)r)r*Úset_parametersoszclientREPPT.set_parametersc Cs~| ¡}|j |j¡|j ¡d}d}d}g}g}t ¡�ú|D]î\}}t|ƒtgƒkrp|d |j¡|d<n | |j¡}| |j¡}| |¡} |j |j  |¡¡} |t  tj | dd�|k¡  ¡7}|t  tj | dd�|k¡  ¡7}||j d7}| |  ¡ ¡ ¡¡| t| ¡ ¡ ¡t |j¡d�¡qBW5QRX|j ¡tj|dd�}tj|dd�}tj||dd�} |||| fS)Nrr+)Údim)Úclasses)ÚaxisÚmicro)Úaverage)Úload_test_datarr3r4ÚevalrÚno_gradr9rrrJÚargmaxÚitemÚshapeÚappendÚdetachrEÚnumpyrr<ÚarangeÚ num_classesÚ concatenaterÚ roc_auc_score) r!ÚtestloaderfullÚtest_accÚ test_acc2Útest_numÚy_probÚy_truerPrQrRÚoutput2Úaucr)r)r*Ú test_metricsus4        2 zclientREPPT.test_metrics)Ú__name__Ú __module__Ú __qualname__r r5r[rvÚ __classcell__r)r)r'r*r s Pr)rÚtorch.nnr rir<r0Úflcore.clients.clientbaserr1Úsklearn.preprocessingrÚsklearnrrr)r)r)r*Ú<module>s    
3,886
Python
.pyt
51
74.745098
558
0.422576
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,938
clientmtl.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientmtl.cpython-37.pyc
B ùùecª ã@s\ddlZddlmZddlmZddlZddlZddlZddl Z Gdd„deƒZ dd„Z dS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientMTLc s`tƒj||||f|�d|_d|_d|_|j|_d|_t ¡|_ t j j |j  ¡|jdd�|_dS)Nrg-Cëâ6?gà?)ÚlrÚmomentum)ÚsuperÚ__init__ÚomegaÚW_globÚidxZitkZlambaÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizer)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs)Ú __class__©úF/root/autodl-tmp/PFL-Non-IID-master/system/flcore/clients/clientmtl.pyr s zclientMTL.__init__c CsÎ| ¡}t ¡}|j |j¡|j ¡|j}|jrFtj   d|d¡}�x>t |ƒD�]0}�x(|D�]\}}t |ƒt gƒkr�|d |j¡|d<n | |j¡}| |j¡}|jrÈt  dt tj  ¡¡¡|j ¡| |¡}| ||¡}t|jƒ|jdd…|jf<d} | |j ¡d7} | t t |j|jd¡d¡7} tt |jjd¡dƒd} | d| 9} || 7}| ¡|j ¡q`WqRW|j  ¡d|_d|_|j!dd7<|j!dt ¡|7<dS)Néérgš™™™™™¹?é Ú num_roundsÚ total_cost)"Úload_train_dataÚtimerÚtoÚdeviceÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚtypeÚsleepÚabsÚrandrÚ zero_gradr Úflattenr r ÚnormrÚsumrÚintÚmathÚlog10ÚshapeÚbackwardÚstepÚcpuÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr;ÚxÚyÚoutputr Zloss_regularizerÚfrrrr's@      " zclientMTL.traincCs*t |dd¡|_t |¡|_||_dS)Nr)rÚsqrtrÚcopyÚdeepcopyr r )rr rr rrrÚreceive_valuesHs zclientMTL.receive_values)Ú__name__Ú __module__Ú __qualname__rr'rHÚ __classcell__rr)rrr s 1rcs,| ¡‰ˆ ¡}‡fdd„|Dƒ}t |¡S)Ncsg|]}ˆ| ¡‘qSr)r3)Ú.0Úkey)Ú state_dictrrú <listcomp>Qszflatten.<locals>.<listcomp>)rOÚkeysrÚcat)rrQÚWr)rOrr3Nsr3) rÚtorch.nnr Úflcore.clients.clientbaserÚnumpyr*r$r7rFrr3rrrrÚ<module>s  D
2,511
Python
.pyt
26
95.423077
285
0.423974
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,939
clientapfl.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientapfl.cpython-38.pyc
U ”jfcâ ã@sLddlZddlZddlmZddlZddlZddlmZGdd„deƒZ dS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientAPFLc sntƒj||||f|�t ¡|_tjj|j  ¡|j d�|_ |j |_ t  |j¡|_tjj|j  ¡|j d�|_dS)N)Úlr)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ parametersÚ learning_rateÚ optimizerÚalphaÚcopyÚdeepcopyÚ model_perÚ optimizer_per)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©õLD:\京东\promot\cifar\cifar\Cifar10_iid\system\flcore\clients\clientapfl.pyr s  zclientAPFL.__init__c CsÂ| ¡}t ¡}|j |j¡|j |j¡|j ¡|j}|jrTt j   d|d¡}t |ƒD]ä}t |ƒD]Ö\}\}}t|ƒtgƒkrš|d |j¡|d<n | |j¡}| |j¡}|jrÒt dt  t j  ¡¡¡|j ¡| |¡}| ||¡} |  ¡|j ¡|j ¡| |¡} | | |¡} |  ¡|j ¡| ¡qhq\t|j ¡|j ¡ƒD]$\} } d|j| |j| | _�qX|j ¡|j ¡|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?Ú num_roundsÚ total_cost)Úload_train_dataÚtimerÚtoÚdevicer ÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚ enumerateÚtypeÚsleepÚabsÚrandrÚ zero_gradr ÚbackwardÚsteprÚ alpha_updateÚziprrÚdataÚcpuÚtrain_time_cost)rÚ trainloaderÚ start_timeÚmax_local_stepsr6ÚiÚxÚyÚoutputr Z output_perZloss_perÚlpÚprrrr(sB               zclientAPFL.traincCs¦d}t|j ¡|j ¡ƒD]P\}}|j|j}|j|jjd|j|jj}|| d¡j  | d¡¡7}q|d|j7}|j|j ||_t   |j  ¡dd¡|_dS)Nrr éÿÿÿÿg{®Gáz”?ggğ?)r8r rrr9rÚgradÚviewÚTÚdotrr+ÚclipÚitem)rZ grad_alphaZl_paramsZp_paramsZdifrFrrrr7@s  zclientAPFL.alpha_update)Ú__name__Ú __module__Ú __qualname__rr(r7Ú __classcell__rrrrr s ,r) rr Útorch.nnrÚnumpyr+r%Úflcore.clients.clientbaserrrrrrÚ<module>s   
2,404
Python
.pyt
33
71.69697
241
0.42285
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,940
clientprox.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientprox.cpython-37.pyc
B fc›ã@sXddlZddlZddlZddlZddlmZddlmZddl m Z Gdd„de ƒZ dS)éN)ÚPerturbedGradientDescent)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientProxc s\tƒj||||f|�|j|_t t|j ¡ƒ¡|_t   ¡|_ t |j ¡|j |jd�|_dS)N)ÚlrÚmu)ÚsuperÚ__init__rÚcopyÚdeepcopyÚlistÚmodelÚ parametersÚ global_paramsÚnnÚCrossEntropyLossÚlossrÚ learning_rateÚ optimizer)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs)Ú __class__©úG/root/autodl-tmp/PFL-Non-IID-master/system/flcore/clients/clientprox.pyr s  zclientProx.__init__c Cs| ¡}t ¡}|j |j¡|j ¡|j}|jrFtj   d|d¡}xšt |ƒD]�}xˆ|D]€\}}t |ƒt gƒkrˆ|d |j¡|d<n | |j¡}| |j¡}|j  ¡| |¡}| ||¡}| ¡|j  |j|j¡qZWqPW|j ¡|jdd7<|jdt ¡|7<dS)NéérÚ num_roundsÚ total_cost)Úload_train_dataÚtimer ÚtoÚdeviceÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚtyperÚ zero_gradrÚbackwardÚsteprÚcpuÚtrain_time_cost) rÚ trainloaderÚ start_timeÚmax_local_stepsr/ÚxÚyÚoutputrrrrr%s*       zclientProx.traincCsDx>t| ¡|j|j ¡ƒD]"\}}}|j ¡|_|j ¡|_qWdS)N)Úzipr rr ÚdataÚclone)rr Ú new_paramZ global_paramÚparamrrrÚset_parameters5s$ zclientProx.set_parameters)Ú__name__Ú __module__Ú __qualname__rr%r=Ú __classcell__rr)rrr s r) ÚtorchÚnumpyr(r"r Útorch.nnrÚflcore.optimizers.fedoptimizerrÚflcore.clients.clientbaserrrrrrÚ<module>s   
1,943
Python
.pyt
20
95.9
283
0.466216
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,941
clientperavg.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientperavg.cpython-38.pyc
U ”jfcã@sXddlZddlZddlZddlZddlmZddlmZddl m Z Gdd„de ƒZ dS)éN)ÚPerAvgOptimizer)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientPerAvgc sBtƒj||||f|�|j|_t ¡|_t|j  ¡|jd�|_ dS)N)Úlr) ÚsuperÚ__init__Ú learning_rateÚbetaÚnnÚCrossEntropyLossÚlossrÚmodelÚ parametersÚ optimizer)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs©Ú __class__©õND:\京东\promot\cifar\cifar\Cifar10_iid\system\flcore\clients\clientperavg.pyr s zclientPerAvg.__init__c Csˆ| |jd¡}t ¡}|j |j¡|j ¡|j}|jrNt j   d|d¡}t |ƒD�]ô}|D�]è\}}t  t|j ¡ƒ¡}t|ƒtgƒkrÌddg}|dd|j… |j¡|d<|dd|j…|d<n|d|j… |j¡}|d|j… |j¡} |j�rt dt  t j  ¡¡¡|j ¡| |¡} | | | ¡} |  ¡|j ¡t|ƒtgƒk�rœddg}|d|jd… |j¡|d<|d|jd…|d<n||jd… |j¡}||jd… |j¡} |j�rêt dt  t j  ¡¡¡|j ¡| |¡} | | | ¡} |  ¡t|j ¡|ƒD]\} } | j ¡| _�q"|jj|jd�q`qV|j ¡|jdd7<|jdt ¡|7<dS)Néérgš™™™™™¹?©r Ú num_roundsÚ total_cost) Úload_train_dataÚ batch_sizeÚtimer ÚtoÚdeviceÚtrainÚ local_stepsÚ train_slowÚnpÚrandomÚrandintÚrangeÚcopyÚdeepcopyÚlistrÚtypeÚsleepÚabsÚrandrÚ zero_gradr ÚbackwardÚstepÚzipÚdataÚcloner ÚcpuÚtrain_time_cost)rÚ trainloaderÚ start_timeÚmax_local_stepsr4ÚXÚYZ temp_modelÚxÚyÚoutputr Ú old_paramÚ new_paramrrrr$sR         zclientPerAvg.traincCs8| |j¡}t|ƒ}|j |j¡|j ¡t|ƒ\}}t|ƒtgƒkr^|d |j¡|d<n | |j¡}| |j¡}|j   ¡| |¡}|  ||¡}|  ¡|j   ¡t|ƒ\}}t|ƒtgƒkrÚ|d |j¡|d<n | |j¡}| |j¡}|j   ¡| |¡}|  ||¡}|  ¡|j j |jd�|j ¡dS)Nrr)Úload_test_datar Úiterr r"r#r$Únextr.rr2r r3r4r r8)rZ testloaderZiter_testloaderr?r@rAr rrrÚtrain_one_stepNs2               zclientPerAvg.train_one_step)Ú__name__Ú __module__Ú __qualname__rr$rGÚ __classcell__rrrrr s :r) Únumpyr'Útorchr!r+Útorch.nnr Úflcore.optimizers.fedoptimizerrÚflcore.clients.clientbaserrrrrrÚ<module>s   
2,805
Python
.pyt
40
68.9
226
0.395155
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,942
clientreppt.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/clients/__pycache__/clientreppt.cpython-37.pyc
B K´ccZã@sLddlZddlmZddlZddlZddlmZddlZGdd„deƒZ dS)éN)ÚClientcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)Ú clientREPPTc sdtƒj||||f|�t ¡|_tjj|jj   ¡|j d�|_ tjj|jj   ¡|j d�|_|j|_dS)N)Úlr)ÚsuperÚ__init__ÚnnÚCrossEntropyLossÚlossÚtorchÚoptimÚSGDÚmodelÚ generatorÚ parametersÚ learning_rateÚ poptimizerÚbaseÚ optimizerÚ plocal_steps)ÚselfÚargsÚidÚ train_samplesÚ test_samplesÚkwargs)Ú __class__©úH/root/autodl-tmp/PFL-Non-IID-master/system/flcore/clients/clientreppt.pyr s  zclientREPPT.__init__c CsT| ¡}t ¡}t |jj¡}|j |j¡|j ¡x|jj   ¡D] }d|_ qDWx|jj  ¡D] }d|_ q`Wx|jj   ¡D] }d|_ q|Wx¾t |jƒD]°}xªt|ƒD]�\}\}}t|ƒtgƒkrÖ|d |j¡|d<n | |j¡}| |j¡}|j�rt dt tj ¡¡¡|j ¡| |¡} | | |¡} |  ¡|j ¡q¤Wq–W|j} |j�rjtj d| d¡} x|jj   ¡D] }d|_ �qxWx|jj  ¡D] }d|_ �q–Wx|jj   ¡D] }d|_ �q´WxÂt | ƒD]¶}x®t|ƒD]¢\}\}}t|ƒtgƒk�r|d |j¡|d<n | |j¡}| |j¡}|j�rJt dt tj ¡¡¡|j ¡| |¡} | | |¡} |  ¡|j ¡�qÜW�qÎW|j ¡|j dd7<|j dt ¡|7<t |jj¡} d} xRt!|  ¡|   ¡ƒD]<\}}||}t" #|dk|t" $|¡|¡}| t" %|¡} �qäW|j dd7<|j dt ¡|7<| S) NFTrgš™™™™™¹?ééÚ num_roundsÚ total_cost)&Úload_train_dataÚtimeÚcopyÚdeepcopyr rÚtoÚdeviceÚtrainrrÚ requires_gradÚ predictorÚrangerÚ enumerateÚtypeÚ train_slowÚsleepÚnpÚabsÚrandomÚrandrÚ zero_gradr ÚbackwardÚstepÚ local_stepsÚrandintrÚcpuÚtrain_time_costÚzipr ÚwhereÚ zeros_likeÚsum)rÚ trainloaderÚ start_timeÚ old_promptÚparamr6ÚiÚxÚyÚoutputr Úmax_local_stepsÚ new_promptÚ diff_provalueÚ new_paramÚ old_paramÚdiff_prorrrr(st                  zclientREPPT.traincCs4x.t| ¡|jj ¡ƒD]\}}|j ¡|_qWdS)N)r;rr rÚdataÚclone)rrrJrKrrrÚset_parameters^s zclientREPPT.set_parameters)Ú__name__Ú __module__Ú __qualname__rr(rOÚ __classcell__rr)rrr s Hr) r Útorch.nnrÚnumpyr0r#Ú system.flcore.clients.clientbaserr$rrrrrÚ<module>s   
2,710
Python
.pyt
44
60.113636
288
0.421447
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,943
bilstm.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/trainmodel/__pycache__/bilstm.cpython-37.pyc
B É:ccÁã@s*ddlZddlmZGdd„dejƒZdS)éN)Únncs.eZdZd ‡fdd„ Zdd„Zdd„Z‡ZS) ÚBiLSTM_TextClassificationFNc sútt|ƒ ¡||_||_||_||_||_||_||_ | |_ ||_ | dk rbt j  t | ¡¡|_nt   |j|j ¡|_t j|jd�|_|j r´t  |jd|jd¡|_t j|j d�|_t j|j |j|j|dd�|_t j|jd�|_t  |jd|j¡|_dS)N)ÚpééT)ÚdropoutÚ bidirectional)ÚsuperrÚ__init__Ú input_sizeÚ hidden_sizeÚ output_sizeÚ num_layersÚembedding_dropoutÚ lstm_dropoutÚattention_dropoutÚ attentionÚembedding_lengthrÚ EmbeddingÚfrom_pretrainedÚtorchÚtensorÚword_embeddingsÚDropoutÚembedding_dropout_layerÚLinearÚattention_layerÚattention_dropout_layerÚLSTMÚ lstm_layerÚlstm_dropout_layerÚ output_layer) Úselfr r r rrrrrrZembedding_weights)Ú __class__©úF/root/autodl-tmp/PFL-Non-IID-master/system/flcore/trainmodel/bilstm.pyr s* z"BiLSTM_TextClassification.__init__c Cs¬| d¡}t ||¡ d¡}g}xZt|ƒD]N\}}t ||d|…d¡} t |  d¡||d|…dd…f¡} | | ¡q*Wt t |d¡|fd¡} |  | ¡} |  | ¡} | S)Nrré) Ú unsqueezerÚbmmÚsqueezeÚ enumerateÚsoftmaxÚmatmulÚappendÚcatrr) r"Z lstm_outputÚstateÚseq_lensÚhiddenZ attn_weightsZ new_hiddensÚiÚseq_lenZsoft_attn_weightsZ new_hiddenZ concat_hiddenZ output_hiddenr$r$r%Úattention_forward"s $  z+BiLSTM_TextClassification.attention_forwardc sê|\}}t|ƒ}| |¡}| |¡}t |jd||jf¡jdd�}t |jd||jf¡jdd�}| ddd¡}|  |||f¡\‰\}}ˆ ddd¡‰tj ‡fdd„t |ƒDƒdd�} |  | ¡} |j rØ| ˆ| |¡‰n| ‰| ˆ¡} | S) NrÚcuda)Údevicer&rcs,g|]$\}}ˆ||ddd…f d¡‘qS)r&Nr)r')Ú.0r2r3)Úoutputr$r%ú <listcomp>Jsz5BiLSTM_TextClassification.forward.<locals>.<listcomp>)Údim)ÚlenrrrÚzerosrr ÚtoÚpermuterr.r*r rr4r!) r"ÚxZ input_seqr0Ú batch_sizeZh_0Zc_0Zfinal_hidden_stateZfinal_cell_stater/Úlogitsr$)r8r%Úforward8s        z!BiLSTM_TextClassification.forward)FN)Ú__name__Ú __module__Ú __qualname__r r4rBÚ __classcell__r$r$)r#r%rsr)rrÚModulerr$r$r$r%Ú<module>s 
2,663
Python
.pyt
30
87.7
247
0.465452
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,944
vit.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/trainmodel/__pycache__/vit.cpython-38.pyc
U ”jfc7ã@s–ddlZddlmZddlmZmZddlmZdd„ZGdd„dejƒZ Gd d „d ejƒZ Gd d „d ejƒZ Gd d„dejƒZ Gdd„dejƒZ dS)éN)Únn)Ú rearrangeÚrepeat)Ú RearrangecCst|tƒr|S||fS©N)Ú isinstanceÚtuple©Út©r õHD:\京东\promot\cifar\cifar\Cifar10_iid\system\flcore\trainmodel\vit.pyÚpair sr cs$eZdZ‡fdd„Zdd„Z‡ZS)ÚPreNormcs tƒ ¡t |¡|_||_dSr)ÚsuperÚ__init__rÚ LayerNormÚnormÚfn)ÚselfÚdimr©Ú __class__r r rs  zPreNorm.__init__cKs|j| |¡f|�Sr)rr)rÚxÚkwargsr r r ÚforwardszPreNorm.forward©Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__r r rr rs rcs&eZdZd‡fdd„ Zdd„Z‡ZS)Ú FeedForwardçc sBtƒ ¡t t ||¡t ¡t |¡t ||¡t |¡¡|_dSr)rrrÚ SequentialÚLinearÚGELUÚDropoutÚnet)rrÚ hidden_dimÚdropoutrr r rs   ûzFeedForward.__init__cCs | |¡Sr)r&)rrr r r r szFeedForward.forward)r!rr r rr r s r cs&eZdZd‡fdd„ Zdd„Z‡ZS) Ú Attentionéé@çš™™™™™¹?cs„tƒ ¡||}|dko ||k }||_|d|_tjdd�|_tj||ddd�|_|rvt  t ||¡t  |¡¡nt  ¡|_ dS)Négà¿éÿÿÿÿ©réF)Úbias) rrÚheadsÚscalerÚSoftmaxÚattendr#Úto_qkvr"r%ÚIdentityÚto_out)rrr2Údim_headr(Z inner_dimZ project_outrr r r$s  ı şızAttention.__init__c spˆ |¡jddd�}t‡fdd„|ƒ\}}}t || dd¡¡ˆj}ˆ |¡}t ||¡}t|dƒ}ˆ  |¡S)Nr0r.r/cst|dˆjd�S)Nzb n (h d) -> b h n d)Úh)rr2r ©rr r Ú<lambda>6óz#Attention.forward.<locals>.<lambda>éşÿÿÿzb h n d -> b n (h d)) r6ÚchunkÚmapÚtorchÚmatmulÚ transposer3r5rr8) rrÚqkvÚqÚkÚvÚdotsÚattnÚoutr r;r r4s  zAttention.forward)r*r+r,rr r rr r)#sr)cs&eZdZd‡fdd„ Zdd„Z‡ZS)Ú Transformerr!c s`tƒ ¡t g¡|_t|ƒD]<}|j t t|t||||d�ƒt|t |||d�ƒg¡¡qdS)N)r2r9r()r() rrrÚ ModuleListÚlayersÚrangeÚappendrr)r )rrÚdepthr2r9Úmlp_dimr(Ú_rr r rIs    şzTransformer.__init__cCs8d}|jD](\}}|d7}||ƒ|}||ƒ|}q |S)Nrr-)rM)rrÚllrIÚffr r r rQs  zTransformer.forward)r!rr r rr rKHsrKcsJeZdZddddddœ‡fdd„ Zdd „Zd d „Zd d „Zdd„Z‡ZS)ÚViTÚclsr0r+r!)ÚpoolÚchannelsr9r(Ú emb_dropoutc s tƒ ¡t|ƒ\} }t|ƒ\}}| |dkr:||dksBtdƒ‚| |||}| ||}|dksntdƒ‚t td||d�t ||¡¡|_t  t   d|d|¡¡|_ t  t   dd|¡¡|_ t | ¡|_t|||| || ƒ|_||_t ¡|_t |¡|_t ||¡|_dS)Nrz5Image dimensions must be divisible by the patch size.>rVÚmeanz?pool type must be either cls (cls token) or mean (mean pooling)z&b c (h p1) (w p2) -> b (h w) (p1 p2 c))Úp1Úp2r-)rrr ÚAssertionErrorrr"rr#Úto_patch_embeddingÚ ParameterrAÚrandnÚ pos_embeddingÚ cls_tokenr%r(rKÚ transformerrWr7Ú to_latentrrÚfc)rÚ image_sizeÚ patch_sizeÚ num_classesrrPr2rQrWrXr9r(rYÚ image_heightÚ image_widthZ patch_heightZ patch_widthÚ num_patchesÚ patch_dimrr r rZs&       ş   z ViT.__init__cCs²| |¡}|j\}}}t|jd|d�}tj||fdd�}||jdd…d|d…f7}| |¡}| |¡}|j dkr€|j dd�n|dd…df}|  |¡}|  |¡}|  |¡}|S©Nú() n d -> b n d©Úbr-r/rZr)r^ÚshaperrbrAÚcatrar(rcrWrZrdrre©rÚimgrrpÚnrRÚ cls_tokensr r r rws    &   z ViT.forwardcCs�| |¡}|j\}}}t|jd|d�}tj||fdd�}||jdd…d|d…f7}| |¡}| |¡}|j dkr€|j dd�n|dd…df}|  |¡}|Srm) r^rqrrbrArrrar(rcrWrZrdrsr r r Úproduce_feature‡s    & zViT.produce_featurecCsn| |¡}|j\}}}t|jd|d�}tj||fdd�}||jdd…d|d…f7}| |¡}| |¡}|S©Nrnror-r/© r^rqrrbrArrrar(rcrsr r r Ú cal_feature—s    zViT.cal_featurecCsn| |¡}|j\}}}t|jd|d�}tj||fdd�}||jdd…d|d…f7}| |¡}| |¡}|Srxryrsr r r Ú Show_detail¤s    zViT.Show_detail) rrrrrrwrzr{rr r rr rUYs  rU)rArZeinopsrrZeinops.layers.torchrr ÚModulerr r)rKrUr r r r Ú<module>s   %
5,881
Python
.pyt
56
103.875
448
0.353072
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,945
vit.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/trainmodel/__pycache__/vit.cpython-37.pyc
B Ƭdc7ã@s–ddlZddlmZddlmZmZddlmZdd„ZGdd„dejƒZ Gd d „d ejƒZ Gd d „d ejƒZ Gd d„dejƒZ Gdd„dejƒZ dS)éN)Únn)Ú rearrangeÚrepeat)Ú RearrangecCst|tƒr|S||fS)N)Ú isinstanceÚtuple)Út©r úC/root/autodl-tmp/PFL-Non-IID-master/system/flcore/trainmodel/vit.pyÚpair sr cs$eZdZ‡fdd„Zdd„Z‡ZS)ÚPreNormcs tƒ ¡t |¡|_||_dS)N)ÚsuperÚ__init__rÚ LayerNormÚnormÚfn)ÚselfÚdimr)Ú __class__r r rs  zPreNorm.__init__cKs|j| |¡f|ŽS)N)rr)rÚxÚkwargsr r r ÚforwardszPreNorm.forward)Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__r r )rr r s r cs&eZdZd‡fdd„ Zdd„Z‡ZS)Ú FeedForwardçc sBtƒ ¡t t ||¡t ¡t |¡t ||¡t |¡¡|_dS)N)r rrÚ SequentialÚLinearÚGELUÚDropoutÚnet)rrÚ hidden_dimÚdropout)rr r rs   zFeedForward.__init__cCs | |¡S)N)r")rrr r r r szFeedForward.forward)r)rrrrrrr r )rr rs rcs&eZdZd‡fdd„ Zdd„Z‡ZS) Ú Attentionéé@çš™™™™™¹?cs„tƒ ¡||}|dko ||k }||_|d|_tjdd�|_tj||ddd�|_|rvt  t ||¡t  |¡¡nt  ¡|_ dS)Négà¿éÿÿÿÿ)réF)Úbias) r rÚheadsÚscalerÚSoftmaxÚattendrÚto_qkvrr!ÚIdentityÚto_out)rrr-Údim_headr$Z inner_dimZ project_out)rr r r$s  zAttention.__init__c spˆ |¡jddd�}t‡fdd„|ƒ\}}}t || dd¡¡ˆj}ˆ |¡}t ||¡}t|dƒ}ˆ  |¡S)Nr+r*)rcst|dˆjd�S)Nzb n (h d) -> b h n d)Úh)rr-)r)rr r Ú<lambda>6óz#Attention.forward.<locals>.<lambda>éþÿÿÿzb h n d -> b n (h d)) r1ÚchunkÚmapÚtorchÚmatmulÚ transposer.r0rr3) rrÚqkvÚqÚkÚvÚdotsÚattnÚoutr )rr r4s  zAttention.forward)r&r'r()rrrrrrr r )rr r%#sr%cs&eZdZd‡fdd„ Zdd„Z‡ZS)Ú Transformerçc sdtƒ ¡t g¡|_xHt|ƒD]<}|j t t|t||||d�ƒt|t |||d�ƒg¡¡q WdS)N)r-r4r$)r$) r rrÚ ModuleListÚlayersÚrangeÚappendr r%r)rrÚdepthr-r4Úmlp_dimr$Ú_)rr r rIs    zTransformer.__init__cCs<d}x2|jD](\}}|d7}||ƒ|}||ƒ|}q W|S)Nrr))rH)rrÚllrCÚffr r r rQs  zTransformer.forward)rF)rrrrrrr r )rr rEHsrEcsJeZdZddddddœ‡fdd„ Zdd „Zd d „Zd d „Zdd„Z‡ZS)ÚViTÚclsr+r'g)ÚpoolÚchannelsr4r$Ú emb_dropoutc s tƒ ¡t|ƒ\} }t|ƒ\}}| |dkr:||dksBtdƒ‚| |||}| ||}|dksntdƒ‚t td||d�t ||¡¡|_t  t   d|d|¡¡|_ t  t   dd|¡¡|_ t | ¡|_t|||| || ƒ|_||_t ¡|_t |¡|_t ||¡|_dS)Nrz5Image dimensions must be divisible by the patch size.>ÚmeanrQz?pool type must be either cls (cls token) or mean (mean pooling)z&b c (h p1) (w p2) -> b (h w) (p1 p2 c))Úp1Úp2r))r rr ÚAssertionErrorrrrrÚto_patch_embeddingÚ Parameterr;ÚrandnÚ pos_embeddingÚ cls_tokenr!r$rEÚ transformerrRr2Ú to_latentrrÚfc)rÚ image_sizeÚ patch_sizeÚ num_classesrrKr-rLrRrSr4r$rTÚ image_heightÚ image_widthZ patch_heightZ patch_widthÚ num_patchesÚ patch_dim)rr r rZs$         z ViT.__init__cCs²| |¡}|j\}}}t|jd|d�}tj||fdd�}||jdd…d|d…f7}| |¡}| |¡}|j dkr€|j dd�n|dd…df}|  |¡}|  |¡}|  |¡}|S)Nz() n d -> b n d)Úbr))rrUr)rYÚshaperr]r;Úcatr\r$r^rRrUr_rr`)rÚimgrrhÚnrMÚ cls_tokensr r r rws    &   z ViT.forwardcCsž| |¡}|j\}}}t|jd|d�}tj||fdd�}||jdd…d|d…f7}| |¡}| |¡}|j dkr€|j dd�n|dd…df}|  |¡}|S)Nz() n d -> b n d)rhr))rrUr) rYrirr]r;rjr\r$r^rRrUr_)rrkrrhrlrMrmr r r Úproduce_feature‡s    & zViT.produce_featurecCsn| |¡}|j\}}}t|jd|d�}tj||fdd�}||jdd…d|d…f7}| |¡}| |¡}|S)Nz() n d -> b n d)rhr))r) rYrirr]r;rjr\r$r^)rrkrrhrlrMrmr r r Ú cal_feature—s    zViT.cal_featurecCsn| |¡}|j\}}}t|jd|d�}tj||fdd�}||jdd…d|d…f7}| |¡}| |¡}|S)Nz() n d -> b n d)rhr))r) rYrirr]r;rjr\r$r^)rrkrrhrlrMrmr r r Ú Show_detail¤s    zViT.Show_detail) rrrrrrnrorprr r )rr rPYs  rP)r;rZeinopsrrZeinops.layers.torchrr ÚModuler rr%rErPr r r r Ú<module>s   %
6,118
Python
.pyt
73
82.69863
448
0.349983
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,946
models.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/trainmodel/__pycache__/models.cpython-38.pyc
U >Nÿcblã@sddlZddlmZddlmmZddlZddlZddlm Z ddl m Z ddl Z ddlmZmZddlmZmZmZmZdZGdd„dejƒZGd d „d ejƒZGd d „d ejƒZGd d„dejƒZGdd„dejƒZGdd„dejƒZGdd„dejƒZGdd„dejƒZGdd„dejƒZ dd„Z!Gdd„dejƒZ"Gdd„dejƒZ#Gdd „d ejƒZ$Gd!d"„d"ejƒZ%Gd#d$„d$ejƒZ&Gd%d&„d&ejƒZ'Gd'd(„d(ejƒZ(Gd)d*„d*ejƒZ)Gd+d,„d,ejƒZ*Gd-d.„d.ejƒZ+Gd/d0„d0ejƒZ,Gd1d2„d2ejƒZ-dS)3éN)Úpartial)Ú OrderedDict)ÚIMAGENET_DEFAULT_MEANÚIMAGENET_DEFAULT_STD)Ú StdConv2dSameÚDropPathÚ to_2tupleÚ trunc_normal_écs$eZdZ‡fdd„Zdd„Z‡ZS)Ú LocalModelcstt|ƒ ¡||_||_dS©N)Úsuperr Ú__init__ÚbaseÚ predictor)Úselfrr©Ú __class__©õaD:\京东\promot\第二次投稿\å®�验\æœ�务器\native - pro\system\flcore\trainmodel\models.pyrszLocalModel.__init__cCs| |¡}| |¡}|Sr )rr©rÚxÚoutrrrÚforwards  zLocalModel.forward©Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__rrrrr s r cs$eZdZ‡fdd„Zdd„Z‡ZS)Ú LocalModel_ptcstt|ƒ ¡||_||_dSr )r rrÚ generatorr)rr rrrrr#szLocalModel_pt.__init__cCs| |¡}| |¡}|Sr )r rrrrrr)s  zLocalModel_pt.forwardrrrrrr"s rcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚLocalModel_repptcs$tt|ƒ ¡||_||_||_dSr )r r!rr rr)rr rrrrrr0szLocalModel_reppt.__init__cCs"| |¡}| |¡}| |¡}|Sr )r rrrrrrr7s   zLocalModel_reppt.forwardrrrrrr!/s r!cs&eZdZd‡fdd„ Zdd„Z‡ZS) Ú FedAvgCNNéé éc s�tƒ ¡t tj|dddddd�tjdd�tjdd �¡|_t tjdd ddddd�tjdd�tjdd �¡|_t t  |d ¡tjdd�¡|_ t  d |¡|_ dS) Né érr#T)Ú kernel_sizeÚpaddingÚstrideÚbias©Úinplace)ér.©r(é@i) r rÚnnÚ SequentialÚConv2dÚReLUÚ MaxPool2dÚconv1Úconv2ÚLinearÚfc1Úfc)rÚ in_featuresÚ num_classesÚdimrrrr`s8 û  ø û  ø   şzFedAvgCNN.__init__cCs8| |¡}| |¡}t |d¡}| |¡}| |¡}|S©Nr#)r6r7ÚtorchÚflattenr9r:rrrrr|s      zFedAvgCNN.forward)r#r$r%rrrrrr"_sr"cs&eZdZd‡fdd„ Zdd„Z‡ZS) Ú FedAvgMLPér$éÈcs8tƒ ¡t ||¡|_t ||¡|_tjdd�|_dS)NTr,)r rr1r8r9Úfc2r4Úact)rr;r<Ú hidden_dimrrrrˆs zFedAvgMLP.__init__cCs:|jdkr| | d¡d¡}| | |¡¡}| |¡}|S)Néréÿÿÿÿ)ÚndimÚviewÚsizerEr9rD©rrrrrr�s   zFedAvgMLP.forward)rBr$rCrrrrrrA‡srAcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚNetcsjtt|ƒ ¡t dtdd¡|_t tddd¡|_t d¡|_ t d¡|_ t  dd¡|_ t  dd¡|_ dS) Nr#r.r&gĞ?çà?iHé€r$)r rMrr1r3Ú batch_sizer6r7ÚDropoutÚdropout1Údropout2r8r9r:)rrrrr˜s  z Net.__init__cCs�| |¡}t ¡|ƒ}t dd¡|ƒ}| |¡}| |¡}t ¡|ƒ}t dd¡|ƒ}| |¡}t |d¡}|  |¡}t ¡|ƒ}|  |¡}t j |dd�}|S)Nr.r#©r=) r6r1r4r5rRr7rSr?r@r9r:ÚFÚ log_softmax©rrÚoutputrrrr¡s          z Net.forwardrrrrrrM—s rMcs&eZdZd‡fdd„ Zdd„Z‡ZS)Ú Mclr_LogisticrBr$cs tt|ƒ ¡t ||¡|_dSr )r rYrr1r8r:)rÚ input_dimr<rrrr´szMclr_Logistic.__init__cCs(t |d¡}| |¡}tj|dd�}|S©Nr#rT)r?r@r:rUrVrWrrrr¸s  zMclr_Logistic.forward)rBr$rrrrrrY³srYcs&eZdZd‡fdd„ Zdd„Z‡ZS) ÚDNNrBédr$cs.tt|ƒ ¡t ||¡|_t ||¡|_dSr )r r\rr1r8r9r:)rrZZmid_dimr<rrrrÁsz DNN.__init__cCs8t |d¡}t | |¡¡}| |¡}tj|dd�}|Sr[)r?r@rUÚrelur9r:rVrLrrrrÆs   z DNN.forward)rBr]r$rrrrrr\Àsr\cs&eZdZd‡fdd„ Zdd„Z‡ZS)ÚCifarNetr$csrtt|ƒ ¡t ddd¡|_t dd¡|_t dtd¡|_ t  tddd¡|_ t  dd¡|_ t  d|¡|_ dS)Néér'r.éxéT)r r_rr1r3r6r5ÚpoolrPr7r8r9rDr:)rr<rrrrĞszCifarNet.__init__cCs|| t | |¡¡¡}| t | |¡¡¡}| dtdd¡}t | |¡¡}t | |¡¡}|  |¡}tj |dd�}|S)NrHr'r#rT) rdrUr^r6r7rJrPr9rDr:rVrLrrrrÙs zCifarNet.forward)r$rrrrrr_Ïs r_cCs |jj}| d¡dks$| d¡dkrBtj |j¡tj |j¡nZ| d¡dkrrtj  |jdd¡tj |j¡n*| d¡dkrœtj  |j¡tj |j¡dS)Nr3rHÚConvTranspose2dZ BatchNormgğ?g{®Gáz”?r8) rrÚfindr1ÚinitÚkaiming_uniform_ÚweightÚzeros_r+Únormal_Úxavier_normal_)ÚmÚ classnamerrrÚ init_weightssrocs&eZdZd‡fdd„ Zdd„Z‡ZS) Ú PadPrompterr#éNc s´tt|ƒ ¡|}|}||_||_||d|_t t  d|j||g¡¡|_ t t  d|j||g¡¡|_ t t  d|j||d|g¡¡|_ t t  d|j||d|g¡¡|_ dS)Nr.r#)r rprÚargsÚinchanelÚ base_sizer1Ú Parameterr?ÚzerosÚpad_upÚpad_downÚpad_leftÚ pad_right©rrsÚpad_sizeÚ image_sizerrrrrrs$zPadPrompter.__init__cCsnt d|j|j|j¡ |jj¡}tj|j||j gdd�}tj|j ||j gdd�}t |  d¡|g¡}||S)Nr#r`rTr.r) r?rvrsrtÚtorrÚdeviceÚcatryrzrwrxrK)rrrÚpromptrrrr)s  zPadPrompter.forward)r#r#rqNrrrrrrps rpcs&eZdZd‡fdd„ Zdd„Z‡ZS) ÚFixedPatchPrompterr#rqNcsJtt|ƒ ¡||_||_||_t t  d|j|j|jg¡¡|_ ||_ dSr>) r r‚rÚisizeÚpsizersr1rur?ÚrandnÚpatchrrr{rrrr4s  zFixedPatchPrompter.__init__cCsPt d|j|j|jg¡ |jj¡}|j|dd…dd…d|j…d|j…f<||Sr>) r?rvrsrƒr~rrrr†r„)rrr�rrrr=s"&zFixedPatchPrompter.forward)r#r#rqNrrrrrr‚3s r‚cs&eZdZd‡fdd„ Zdd„Z‡ZS) ÚRandomPatchPrompterr#rqNcsJtt|ƒ ¡||_||_||_t t  d|j|j|jg¡¡|_ ||_ dSr>) r r‡rrƒr„rsr1rur?r…r†rrr{rrrrEs  zRandomPatchPrompter.__init__cCs€tj |j|j¡}tj |j|j¡}t d|j|j|jg¡ |j j ¡}|j |dd…dd…|||j…|||j…f<||Sr>) ÚnpÚrandomÚchoicerƒr„r?rvrsr~rrrr†)rrÚx_Zy_r�rrrrNs ".zRandomPatchPrompter.forward)r#r#rqNrrrrrr‡Ds r‡cs&eZdZd ‡fdd„ Zdd„Z‡ZS) ÚLeNeté ér$Nc sÌtt|ƒ ¡t tjdddd�t d¡t ¡tjdddd�tjdd�t d¡t ¡¡|_ tj |d d �|_ tj dd�|_ t ||¡|_|j t¡t ||¡|_|d kr¼tjj|jd d �|_|j t¡dS)Nr#ér'r/r.é2rN©ÚpT)ÚaffineÚwnri)Úname)r rŒrr1r2r3r5r4Ú Dropout2dÚ conv_paramsÚ BatchNorm1dÚbnrQÚdropoutr8Ú bottleneckÚapplyror:ÚutilsÚ weight_norm)rÚ feature_dimZbottleneck_dimr<ZiswnrrrrXs$ ù  zLeNet.__init__cCsV| |¡}| | d¡d¡}| |¡}| |¡}| |¡}| |¡}tj|dd�}|S©NrrHr#rT) r—rJrKr›r™ršr:rUrVrLrrrrms     z LeNet.forward)r�r�r$NrrrrrrŒWsrŒcs&eZdZd ‡fdd„ Zd d „Z‡ZS) ÚLSTMNetr.Fçš™™™™™É?réK�r$c s`tƒ ¡t |¡|_t |||¡|_tj|||||dd�|_|rJ|dn|}t  ||¡|_ dS)NT)Ú input_sizeÚ hidden_sizeÚ num_layersÚ bidirectionalršÚ batch_firstr.) r rr1rQršÚ EmbeddingÚ embeddingÚLSTMÚlstmr8r:) rrFr¦r§ršÚ padding_idxÚ vocab_sizer<Údimsrrrr—s  ûzLSTMNet.__init__c Cs’|\}}| |¡}tjjj||ddd�}| |¡\}\}}tjjj|dd�\} } t | dd…ddd…f¡} |  | ¡} |  | ¡} t j | dd�} | S)NTF)r¨Úenforce_sorted)r¨rHr#rT) rªr1r�ÚrnnÚpack_padded_sequencer¬Úpad_packed_sequencer?Úrelu_ršr:rUrV) rrÚtextÚ text_lengthsZembeddedZpacked_embeddedZ packed_outputÚhiddenÚcellrZ out_lengthsrrrr¦s   zLSTMNet.forward)r.Fr¢rr£r$rrrrrr¡–s ÿr¡cs&eZdZd‡fdd„ Zdd„Z‡ZS) ÚfastTextrr£r$cs>tt|ƒ ¡t |||¡|_t ||¡|_t ||¡|_dSr ) r r¹rr1r©rªr8r9r:)rrFr­r®r<rrrr¼szfastText.__init__cCs>|\}}| |¡}| | d¡¡}| |¡}tj|dd�}|Sr[)rªr9Úmeanr:rUrV)rrrµr¶Ú embedded_sentÚhÚzrrrrrÈs   zfastText.forward)rr£r$rrrrrr¹»s r¹cs:eZdZddddgddddd f‡fd d „ Zd d „Z‡ZS)ÚTextCNNr]r`rGr'rCgš™™™™™é?rr£r$c sætt|ƒ ¡t |||¡|_t tj|||dd�t ¡t  ||dd¡¡|_ t tj|||dd�t ¡t  ||dd¡¡|_ t tj|||dd�t ¡t  ||dd¡¡|_ t  |¡|_t |t|ƒ|¡|_dS)Nr)Ú in_channelsÚ out_channelsr(r#r.)r r¾rr1r©rªr2ÚConv1dr4Ú MaxPool1dr6r7Úconv3rQršr8Úlenr:) rrFÚ num_channelsr(Úmax_lenršr­r®r<rrrrÕs&ııı zTextCNN.__init__c Cs„|\}}| |¡ ddd¡}| |¡ d¡}| |¡ d¡}| |¡ d¡}t |||fd¡}| |¡} |  | ¡} t j | dd�} | S)Nrr.r#rT) rªÚpermuter6Úsqueezer7rÃr?r€ršr:rUrV) rrrµr¶r»Z conv_out1Z conv_out2Z conv_out3Zall_outZfinal_feature_maprrrrrós  zTextCNN.forwardrrrrrr¾Ôs ÿr¾cs*eZdZdZd ‡fdd„ Zdd „Z‡ZS) Ú PatchEmbedz{ Image to Patch Embedding CNN_proj + Rearrange: [B, C, W, H] -> [B, D, Pn_W, Pn_H] -> [B, D, Pn] -> [B, Pn, D] éàr r`écsdtƒ ¡t|ƒ}t|ƒ}|d|d|d|d}||_||_||_tj||||d�|_dS)Nr#r)r(r*) r rrÚimg_sizeÚ patch_sizeÚ num_patchesr1r3Úproj)rrÌrÍÚin_chansÚ embed_dimrÎrrrr s  zPatchEmbed.__init__c Cst|j\}}}}||jdkr*||jdksXtd|›d|›d|jd›d|jd›d� ƒ‚| |¡ d¡ dd¡}|S)Nrr#zInput image size (Ú*z) doesn't match model (z).r.)ÚshaperÌÚAssertionErrorrÏr@Ú transpose)rrÚBÚCÚHÚWrrrrs (ÿzPatchEmbed.forward)rÊr r`rË©rrrÚ__doc__rrrrrrrrÉs rÉcs4eZdZdZddejdf‡fdd„ Zdd„Z‡ZS)ÚFFNz� FFN (from timm) :param in_features: :param hidden_features: :param out_features: :param act_layer: :param drop: NçcsNtƒ ¡|p|}|p|}t ||¡|_|ƒ|_t ||¡|_t |¡|_dSr ) r rr1r8r9rErDrQÚdrop)rr;Úhidden_featuresÚ out_featuresÚ act_layerrŞrrrr,s z FFN.__init__cCs6| |¡}| |¡}| |¡}| |¡}| |¡}|Sr )r9rErŞrDrLrrrr8s      z FFN.forward) rrrrÛr1ÚGELUrrrrrrrrÜ"s  rÜcs*eZdZdZd ‡fdd„ Zdd „Z‡ZS) Ú Attentiona� qkv Transform + MSA(MHSA) (from timm) # input x.shape = batch, patch_number, patch_dim # output x.shape = batch, patch_number, patch_dim :param dim: dim=CNN feature dim, because the patch size is 1x1 :param num_heads: :param qkv_bias: :param qk_scale: by default head_dim ** -0.5 (squre root) :param attn_drop: dropout rate after MHSA :param proj_drop: éFNrİcsftƒ ¡||_||}|p"|d|_tj||d|d�|_t |¡|_t ||¡|_ t |¡|_ dS)Ngà¿r`)r+) r rÚ num_headsÚscaler1r8ÚqkvrQÚ attn_droprÏÚ proj_drop)rr=råÚqkv_biasÚqk_scalerèréÚhead_dimrrrrQs  zAttention.__init__c Cs´|j\}}}| |¡ ||d|j||j¡ ddddd¡}|d|d|d}}}|| dd¡|j} | jdd�} | | ¡} | | dd¡ |||¡}|  |¡}|  |¡}|S) Nr`r.rr#rGéşÿÿÿrHrT) rÓrçÚreshaperårÇrÕræÚsoftmaxrèrÏré) rrÚbatchZ patch_numberZ patch_dimrçÚqÚkÚvÚattnrrrr^s$ ÿÿ    zAttention.forward)räFNrİrİrÚrrrrrãDs  rãcs:eZdZddddddejejf‡fdd„ Zdd„Z‡ZS) ÚBlockg@FNrİc sptƒ ¡| |ƒ|_t||||||d�|_|dkr:t|ƒnt ¡|_| |ƒ|_ t ||ƒ} t || | |d�|_ dS)aê # input x.shape = batch, patch_number, patch_dim # output x.shape = batch, patch_number, patch_dim :param dim: dim :param num_heads: :param mlp_ratio: FFN :param qkv_bias: :param qk_scale: by default head_dim ** -0.5 (squre root) :param drop: :param attn_drop: dropout rate after Attention :param drop_path: dropout rate after sd :param act_layer: FFN act :param norm_layer: Pre Norm )rårêrërèrérİ)r;rßrárŞN) r rÚnorm1rãrôrr1ÚIdentityÚ drop_pathÚnorm2ÚintrÜÚmlp) rr=råÚ mlp_ratiorêrërŞrèrøráÚ norm_layerZmlp_hidden_dimrrrr{s   ÿ  zBlock.__init__cCs8|| | | |¡¡¡}|| | | |¡¡¡}|Sr )rørôrörûrùrLrrrršsz Block.forward) rrrr1râÚ LayerNormrrrrrrrrõys  ÿrõcsReZdZdZddddddddd d d d d ed d f‡fd d „ Zdd„Zdd„Z‡ZS)ÚVisionTransformerz¬ Vision Transformer A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 r&rGr`r$rOräg@TNrİc sXtƒ ¡||_ˆ|_|_d|_ˆp2ttjdd�‰ˆp<tj ‰||||ˆd�|_ |j j }t  t  ddˆ¡¡|_t  t  d||jˆ¡¡|_tjˆd�|_dd„t  d| |¡Dƒ‰tj‡‡‡‡‡‡‡‡‡f d d„t|ƒDƒ�|_ˆˆƒ|_| �r| |_t td t ˆ| ¡fd t ¡fgƒ¡|_n t ¡|_|jdk�rDt |j|j¡nt ¡|_d |_d S) aš Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels num_classes (int): number of classes for classification head embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set drop_rate (float): dropout rate attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate embed_layer (nn.Module): patch embedding layer norm_layer: (nn.Module): normalization layer r#g�íµ ÷ư>)Úeps)rÌrÍrĞrÑr‘cSsg|] }| ¡‘qSr)Úitem)Ú.0rrrrÚ <listcomp>Òsz.VisionTransformer.__init__.<locals>.<listcomp>rc s*g|]"}tˆˆˆˆˆˆˆ|ˆˆd� ‘qS)) r=rårürêrŞrèrørırá)rõ)rÚi© ráÚattn_drop_rateZdprÚ drop_raterÑrürırårêrrrÕsş ÿr:rEN)r rr<Ú num_featuresrÑZ num_tokensrr1rşrâÚ patch_embedrÎrur?rvÚ cls_tokenÚ pos_embedrQÚpos_dropÚlinspacer2ÚrangeÚblocksÚnormrr8ÚTanhÚ pre_logitsr÷r:Z head_dist)rrÌrÍrĞr<rÑÚdepthrårürêÚrepresentation_sizerrZdrop_path_rateZ embed_layerrırárÎrrrrªs<   ÿı   ş  &zVisionTransformer.__init__cCsZ| |¡}|j |jddd¡}tj||fdd�}| ||j¡}| |¡}|  |¡}|Sr ) r r ÚexpandrÓr?r€r r rr)rrr rrrÚforward_featuresës   z"VisionTransformer.forward_featurescCs.| |¡}| |dd…df¡}| |¡}|S)Nr)rrr:rLrrrrös  zVisionTransformer.forward) rrrrÛrÉrrrrrrrrrÿ£s şA rÿ).r?Útorch.nnr1Útorch.nn.functionalÚ functionalrUÚmathÚloggingÚ functoolsrÚ collectionsrÚnumpyrˆZ timm.datarrZtimm.models.layersrrrr rPÚModuler rr!r"rArMrYr\r_rorpr‚r‡rŒr¡r¹r¾rÉrÜrãrõrÿrrrrÚ<module>s@    0( @ ?%0"5*
21,084
Python
.pyt
210
97.457143
663
0.359138
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,947
mobilenet_v2.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/trainmodel/__pycache__/mobilenet_v2.cpython-37.pyc
B Ê:ccã@svddlmZddlmZddgZddiZddd„ZGd d „d ejƒZGd d „d ej ƒZ Gd d„dej ƒZ ddd„Z dS)é)Únn)Úload_state_dict_from_urlÚ MobileNetV2Ú mobilenet_v2z=https://download.pytorch.org/models/mobilenet_v2-b0353104.pthNcCsB|dkr |}t|t||dƒ||ƒ}|d|kr>||7}|S)aD This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py :param v: :param divisor: :param min_value: :return: NégÍÌÌÌÌÌì?)ÚmaxÚint)ÚvÚdivisorÚ min_valueÚnew_v©r úL/root/autodl-tmp/PFL-Non-IID-master/system/flcore/trainmodel/mobilenet_v2.pyÚ_make_divisible s  rcseZdZd‡fdd„ Z‡ZS)Ú ConvBNReLUééNc sR|dd}|dkrtj}tt|ƒ tj||||||dd�||ƒtjdd�¡dS)NrrF)ÚgroupsÚbiasT)Úinplace)rÚ BatchNorm2dÚsuperrÚ__init__ÚConv2dÚReLU6)ÚselfÚ in_planesÚ out_planesÚ kernel_sizeÚstriderÚ norm_layerÚpadding)Ú __class__r rr"s  zConvBNReLU.__init__)rrrN)Ú__name__Ú __module__Ú __qualname__rÚ __classcell__r r )r"rr!srcs&eZdZd‡fdd„ Zdd„Z‡ZS)ÚInvertedResidualNc s¸tt|ƒ ¡||_|dks t‚|dkr.tj}tt||ƒƒ}|jdkoN||k|_ g}|dkrt|  t ||d|d�¡|  t |||||d�tj ||ddddd�||ƒg¡tj|�|_dS)N)rrr)rr )rrr rF)r)rr'rrÚAssertionErrorrrrÚroundÚuse_res_connectÚappendrÚextendrÚ SequentialÚconv)rÚinpÚouprÚ expand_ratior Ú hidden_dimÚlayers)r"r rr.s  zInvertedResidual.__init__cCs"|jr|| |¡S| |¡SdS)N)r*r.)rÚxr r rÚforwardFszInvertedResidual.forward)N)r#r$r%rr5r&r r )r"rr'-sr'cs.eZdZd ‡fdd„ Zdd„Zd d „Z‡ZS) réèçğ?Néc s<tt|ƒ ¡|dkrt}|dkr(tj}d}d}|dkr‚ddddgddddgddd dgdd d dgdd d dgdd d dgddddgg}t|ƒdks�t|dƒd kr¬td |¡ƒ‚t |||ƒ}t |t d|ƒ|ƒ|_ t d |d|d�g} xd|D]\\} } } } t | ||ƒ}x@t | ƒD]4}|dk�r| nd}|  ||||| |d�¡|}�q WqèW|  t ||j d|d�¡tj| �|_t d¡|_t |j |¡|_x®| ¡D]¢}t|tjƒ�rÒtjj|jdd�|jdk �r2tj |j¡n`t|tjtjfƒ�rtj |j¡tj |j¡n.t|tjƒ�r’tj |jdd¡tj |j¡�q’WdS)aA MobileNet V2 main class Args: num_classes (int): Number of classes width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount inverted_residual_setting: Network structure round_nearest (int): Round the number of channels in each layer to be a multiple of this number Set to 1 to turn off rounding block: Module specifying inverted residual building block for mobilenet norm_layer: Module specifying the normalization layer to use Né irééérré@éé`é i@rzIinverted_residual_setting should be non-empty or a 4-element list, got {}gğ?)rr )r1r )rr gš™™™™™É?Úfan_out)Úmodeg{®Gáz„?) rrrr'rrÚlenÚ ValueErrorÚformatrrÚ last_channelrÚranger+r-ÚfeaturesÚDropoutÚdropoutÚLinearÚfcÚmodulesÚ isinstancerÚinitÚkaiming_normal_ÚweightrÚzeros_Ú GroupNormÚones_Únormal_)rÚ num_classesÚ width_multÚinverted_residual_settingÚ round_nearestÚblockr Ú input_channelrFrHÚtÚcÚnÚsÚoutput_channelÚirÚm)r"r rrNsT         zMobileNetV2.__init__cCs>| |¡}tj |d¡ |jdd¡}| |¡}| |¡}|S)Nrréÿÿÿÿ)rHrÚ functionalÚadaptive_avg_pool2dÚreshapeÚshaperJrL)rr4r r rÚ _forward_implŸs    zMobileNetV2._forward_implcCs | |¡S)N)rh)rr4r r rr5©szMobileNetV2.forward)r6r7Nr8NN)r#r$r%rrhr5r&r r )r"rrMsK FTcKshtf|�}|rdttd|d�}i}x6| ¡D]*\}}d|krF|||<q,||| dd¡<q,W| |¡|S)aC Constructs a MobileNetV2 architecture from `"MobileNetV2: Inverted Residuals and Linear Bottlenecks" <https://arxiv.org/abs/1801.04381>`_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr r)ÚprogressÚ classifierz classifier.1rL)rrÚ model_urlsÚitemsÚreplaceÚload_state_dict)Ú pretrainedriÚkwargsÚmodelÚ state_dictÚnew_dictÚkr r r rr­s   )N)FT) ÚtorchrZ torch.hubrÚ__all__rkrr-rÚModuler'rrr r r rÚ<module>s     `
5,660
Python
.pyt
67
80.761194
395
0.473618
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,948
alexnet.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/trainmodel/__pycache__/alexnet.cpython-38.pyc
U ”jfc) ã@sPddlZddlmZddlmZddgZddiZGdd„dejƒZd d d„Z dS) éN)Úload_state_dict_from_urlÚAlexNetÚalexnetz<https://download.pytorch.org/models/alexnet-owt-4df8aa71.pthcs&eZdZd‡fdd„ Zdd„Z‡ZS)réècstt|ƒ ¡t tjdddddd�tjdd�tjddd �tjdd d dd �tjdd�tjddd �tjd d ddd �tjdd�tjd dddd �tjdd�tjddddd �tjdd�tjddd �¡ |_t  d¡|_ t t  ¡t  dd¡tjdd�t  ¡t  dd¡tjdd�¡|_ t  d|¡|_dS)Néé@é éé)Ú kernel_sizeÚstrideÚpaddingT)Úinplace)r r éÀé)r r i€éé)éri$i)ÚsuperrÚ__init__ÚnnÚ SequentialÚConv2dÚReLUÚ MaxPool2dÚfeaturesÚAdaptiveAvgPool2dÚavgpoolÚDropoutÚLinearÚ classifierÚfc)ÚselfÚ num_classes©Ú __class__©õLD:\京东\promot\cifar\cifar\Cifar10_iid\system\flcore\trainmodel\alexnet.pyrs4        ó     úzAlexNet.__init__cCs8| |¡}| |¡}t |d¡}| |¡}| |¡}|S)Nr)rrÚtorchÚflattenr r!)r"Úxr&r&r'Úforward+s      zAlexNet.forward)r)Ú__name__Ú __module__Ú __qualname__rr+Ú __classcell__r&r&r$r'r sFTcKsdtf|�}|r`ttd|d�}i}| ¡D]*\}}d|krD|||<q*||| dd¡<q*| |¡|S)aAlexNet model architecture from the `"One weird trick..." <https://arxiv.org/abs/1404.5997>`_ paper. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr r)Úprogressz classifier.6r!)rrÚ model_urlsÚitemsÚreplaceÚload_state_dict)Ú pretrainedr0ÚkwargsÚmodelÚ state_dictÚnew_dictÚkÚvr&r&r'r4s ÿ  )FT) r(Útorch.nnrZ torch.hubrÚ__all__r1ÚModulerrr&r&r&r'Ú<module>s  ÿ'
2,184
Python
.pyt
34
62.352941
303
0.465581
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,949
models.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/trainmodel/__pycache__/models.cpython-37.pyc
B éecTgã@säddlZddlmZddlmmZddlZddlZddlm Z ddl m Z ddl Z ddlmZmZddlmZmZmZmZdZGdd„dejƒZGd d „d ejƒZGd d „d ejƒZGd d„dejƒZGdd„dejƒZGdd„dejƒZGdd„dejƒZGdd„dejƒZGdd„dejƒZ dd„Z!Gdd„dejƒZ"Gdd„dejƒZ#Gdd „d ejƒZ$Gd!d"„d"ejƒZ%Gd#d$„d$ejƒZ&Gd%d&„d&ejƒZ'Gd'd(„d(ejƒZ(Gd)d*„d*ejƒZ)Gd+d,„d,ejƒZ*Gd-d.„d.ejƒZ+dS)/éN)Úpartial)Ú OrderedDict)ÚIMAGENET_DEFAULT_MEANÚIMAGENET_DEFAULT_STD)Ú StdConv2dSameÚDropPathÚ to_2tupleÚ trunc_normal_écs$eZdZ‡fdd„Zdd„Z‡ZS)Ú LocalModelcstt|ƒ ¡||_||_dS)N)Úsuperr Ú__init__ÚbaseÚ predictor)Úselfrr)Ú __class__©úF/root/autodl-tmp/PFL-Non-IID-master/system/flcore/trainmodel/models.pyr szLocalModel.__init__cCs| |¡}| |¡}|S)N)rr)rÚxÚoutrrrÚforwards  zLocalModel.forward)Ú__name__Ú __module__Ú __qualname__r rÚ __classcell__rr)rrr s r cs$eZdZ‡fdd„Zdd„Z‡ZS)Ú LocalModel_ptcstt|ƒ ¡||_||_dS)N)r rr Ú generatorr)rrr)rrrr #szLocalModel_pt.__init__cCs| |¡}| |¡}|S)N)rr)rrrrrrr)s  zLocalModel_pt.forward)rrrr rrrr)rrr"s rcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚLocalModel_repptcs$tt|ƒ ¡||_||_||_dS)N)r rr rrr)rrrr)rrrr 0szLocalModel_reppt.__init__cCs"| |¡}| |¡}| |¡}|S)N)rrr)rrrrrrr7s   zLocalModel_reppt.forward)rrrr rrrr)rrr/s rcs&eZdZd‡fdd„ Zdd„Z‡ZS) Ú FedAvgCNNéé éc s�tƒ ¡t tj|dddddd�tjdd�tjdd �¡|_t tjdd ddddd�tjdd�tjdd �¡|_t t  |d ¡tjdd�¡|_ t  d |¡|_ dS) Né érrT)Ú kernel_sizeÚpaddingÚstrideÚbias)Úinplace)ér))r$é@i) r r ÚnnÚ SequentialÚConv2dÚReLUÚ MaxPool2dÚconv1Úconv2ÚLinearÚfc1Úfc)rÚ in_featuresÚ num_classesÚdim)rrrr `s.    zFedAvgCNN.__init__cCs8| |¡}| |¡}t |d¡}| |¡}| |¡}|S)Nr)r0r1ÚtorchÚflattenr3r4)rrrrrrr|s      zFedAvgCNN.forward)rr r!)rrrr rrrr)rrr_srcs&eZdZd‡fdd„ Zdd„Z‡ZS) Ú FedAvgMLPér éÈcs8tƒ ¡t ||¡|_t ||¡|_tjdd�|_dS)NT)r()r r r+r2r3Úfc2r.Úact)rr5r6Ú hidden_dim)rrrr ˆs zFedAvgMLP.__init__cCs:|jdkr| | d¡d¡}| | |¡¡}| |¡}|S)Néréÿÿÿÿ)ÚndimÚviewÚsizer>r3r=)rrrrrr�s   zFedAvgMLP.forward)r;r r<)rrrr rrrr)rrr:‡sr:cs$eZdZ‡fdd„Zdd„Z‡ZS)ÚNetcsjtt|ƒ ¡t dtdd¡|_t tddd¡|_t d¡|_ t d¡|_ t  dd¡|_ t  dd¡|_ dS) Nrr)r"gĞ?gà?iHé€r )r rEr r+r-Ú batch_sizer0r1ÚDropoutÚdropout1Údropout2r2r3r4)r)rrrr ˜s  z Net.__init__cCs�| |¡}t ¡|ƒ}t dd¡|ƒ}| |¡}| |¡}t ¡|ƒ}t dd¡|ƒ}| |¡}t |d¡}|  |¡}t ¡|ƒ}|  |¡}t j |dd�}|S)Nr)r)r7) r0r+r.r/rIr1rJr8r9r3r4ÚFÚ log_softmax)rrÚoutputrrrr¡s          z Net.forward)rrrr rrrr)rrrE—s rEcs&eZdZd‡fdd„ Zdd„Z‡ZS)Ú Mclr_Logisticér cs tt|ƒ ¡t ||¡|_dS)N)r rNr r+r2r4)rÚ input_dimr6)rrrr ´szMclr_Logistic.__init__cCs(t |d¡}| |¡}tj|dd�}|S)Nr)r7)r8r9r4rKrL)rrrMrrrr¸s  zMclr_Logistic.forward)rOr )rrrr rrrr)rrrN³srNcs&eZdZd‡fdd„ Zdd„Z‡ZS) ÚDNNéédr cs.tt|ƒ ¡t ||¡|_t ||¡|_dS)N)r rQr r+r2r3r4)rrPZmid_dimr6)rrrr Ász DNN.__init__cCs8t |d¡}t | |¡¡}| |¡}tj|dd�}|S)Nr)r7)r8r9rKÚrelur3r4rL)rrrrrrÆs   z DNN.forward)rRrSr )rrrr rrrr)rrrQÀsrQcs&eZdZd‡fdd„ Zdd„Z‡ZS)ÚCifarNetr csrtt|ƒ ¡t ddd¡|_t dd¡|_t dtd¡|_ t  tddd¡|_ t  dd¡|_ t  d|¡|_ dS)Néér#r)éxéT)r rUr r+r-r0r/ÚpoolrGr1r2r3r=r4)rr6)rrrr ĞszCifarNet.__init__cCs|| t | |¡¡¡}| t | |¡¡¡}| dtdd¡}t | |¡¡}t | |¡¡}|  |¡}tj |dd�}|S)NrAr#r)r7) rZrKrTr0r1rCrGr3r=r4rL)rrrrrrÙs zCifarNet.forward)r )rrrr rrrr)rrrUÏs rUcCs |jj}| d¡dks$| d¡dkrBtj |j¡tj |j¡nZ| d¡dkrrtj  |jdd¡tj |j¡n*| d¡dkrœtj  |j¡tj |j¡dS)Nr-rAÚConvTranspose2dZ BatchNormgğ?g{®Gáz”?r2) rrÚfindr+ÚinitÚkaiming_uniform_ÚweightÚzeros_r'Únormal_Úxavier_normal_)ÚmÚ classnamerrrÚ init_weightssrecs&eZdZd‡fdd„ Zdd„Z‡ZS) Ú PadPrompterréNc s´tt|ƒ ¡|}|}||_||_||d|_t t  d|j||g¡¡|_ t t  d|j||g¡¡|_ t t  d|j||d|g¡¡|_ t t  d|j||d|g¡¡|_ dS)Nr)r)r rfr ÚargsÚinchanelÚ base_sizer+Ú Parameterr8ÚrandnÚpad_upÚpad_downÚpad_leftÚ pad_right)rriÚpad_sizeÚ image_sizerh)rrrr s$zPadPrompter.__init__cCsnt d|j|j|j¡ |jj¡}tj|j||j gdd�}tj|j ||j gdd�}t |  d¡|g¡}||S)NrrV)r7r)r) r8ÚzerosrirjÚtorhÚdeviceÚcatrorprmrnrD)rrrÚpromptrrrr)s  zPadPrompter.forward)rrrgN)rrrr rrrr)rrrfs rfcs&eZdZd ‡fdd„ Zdd„Z‡ZS) ÚLeNeté ér Nc sÌtt|ƒ ¡t tjdddd�t d¡t ¡tjdddd�tjdd�t d¡t ¡¡|_ tj |d d �|_ tj dd�|_ t ||¡|_|j t¡t ||¡|_|d kr¼tjj|jd d �|_|j t¡dS)Nrér#)r$r)é2gà?)ÚpT)ÚaffineÚwnr_)Úname)r rxr r+r,r-r/r.Ú Dropout2dÚ conv_paramsÚ BatchNorm1dÚbnrHÚdropoutr2Ú bottleneckÚapplyrer4ÚutilsÚ weight_norm)rÚ feature_dimZbottleneck_dimr6Ziswn)rrrr 4s"   zLeNet.__init__cCsV| |¡}| | d¡d¡}| |¡}| |¡}| |¡}| |¡}tj|dd�}|S)NrrAr)r7) r‚rCrDr†r„r…r4rKrL)rrrrrrIs     z LeNet.forward)ryrzr N)rrrr rrrr)rrrx3srxcs&eZdZd ‡fdd„ Zd d „Z‡ZS) ÚLSTMNetr)Fçš™™™™™É?réK�r c s`tƒ ¡t |¡|_t |||¡|_tj|||||dd�|_|rJ|dn|}t  ||¡|_ dS)NT)Ú input_sizeÚ hidden_sizeÚ num_layersÚ bidirectionalr…Ú batch_firstr)) r r r+rHr…Ú EmbeddingÚ embeddingÚLSTMÚlstmr2r4) rr?r�r‘r…Ú padding_idxÚ vocab_sizer6Údims)rrrr ss   zLSTMNet.__init__c Cs’|\}}| |¡}tjjj||ddd�}| |¡\}\}}tjjj|dd�\} } t | dd…ddd…f¡} |  | ¡} |  | ¡} t j | dd�} | S)NTF)r’Úenforce_sorted)r’rAr)r7) r”r+rˆÚrnnÚpack_padded_sequencer–Úpad_packed_sequencer8Úrelu_r…r4rKrL) rrÚtextÚ text_lengthsZembeddedZpacked_embeddedZ packed_outputÚhiddenÚcellrZ out_lengthsrrrr‚s   zLSTMNet.forward)r)FrŒrr�r )rrrr rrrr)rrr‹rsr‹cs&eZdZd‡fdd„ Zdd„Z‡ZS) ÚfastTextréK�r cs>tt|ƒ ¡t |||¡|_t ||¡|_t ||¡|_dS)N) r r£r r+r“r”r2r3r4)rr?r—r˜r6)rrrr ˜szfastText.__init__cCs>|\}}| |¡}| | d¡¡}| |¡}tj|dd�}|S)Nr)r7)r”r3Úmeanr4rKrL)rrrŸr Ú embedded_sentÚhÚzrrrrr¤s   zfastText.forward)rr¤r )rrrr rrrr)rrr£—s r£cs:eZdZddddgddddd f‡fd d „ Zd d „Z‡ZS)ÚTextCNNrSrVr@r#r<gš™™™™™é?riK�r c sætt|ƒ ¡t |||¡|_t tj|||dd�t ¡t  ||dd¡¡|_ t tj|||dd�t ¡t  ||dd¡¡|_ t tj|||dd�t ¡t  ||dd¡¡|_ t  |¡|_t |t|ƒ|¡|_dS)Nr)Ú in_channelsÚ out_channelsr$rr))r r©r r+r“r”r,ÚConv1dr.Ú MaxPool1dr0r1Úconv3rHr…r2Úlenr4) rr?Ú num_channelsr$Úmax_lenr…r—r˜r6)rrrr ±s  zTextCNN.__init__c Cs„|\}}| |¡ ddd¡}| |¡ d¡}| |¡ d¡}| |¡ d¡}t |||fd¡}| |¡} |  | ¡} t j | dd�} | S)Nrr)r)r7) r”Úpermuter0Úsqueezer1r®r8rvr…r4rKrL) rrrŸr r¦Z conv_out1Z conv_out2Z conv_out3Úall_outZfinal_feature_maprrrrrÏs  zTextCNN.forward)rrrr rrrr)rrr©°sr©cs*eZdZdZd ‡fdd„ Zdd „Z‡ZS) Ú PatchEmbedz{ Image to Patch Embedding CNN_proj + Rearrange: [B, C, W, H] -> [B, D, Pn_W, Pn_H] -> [B, D, Pn] -> [B, Pn, D] éàr rVécsdtƒ ¡t|ƒ}t|ƒ}|d|d|d|d}||_||_||_tj||||d�|_dS)Nrr)r$r&) r r rÚimg_sizeÚ patch_sizeÚ num_patchesr+r-Úproj)rr¸r¹Úin_chansÚ embed_dimrº)rrrr æs  zPatchEmbed.__init__c Cst|j\}}}}||jdkr*||jdksXtd|›d|›d|jd›d|jd›d� ƒ‚| |¡ d¡ dd¡}|S)NrrzInput image size (Ú*z) doesn't match model (z).r))Úshaper¸ÚAssertionErrorr»r9Ú transpose)rrÚBÚCÚHÚWrrrrñs ,zPatchEmbed.forward)r¶r rVr·)rrrÚ__doc__r rrrr)rrrµàs rµcs4eZdZdZddejdf‡fdd„ Zdd„Z‡ZS)ÚFFNz� FFN (from timm) :param in_features: :param hidden_features: :param out_features: :param act_layer: :param drop: NgcsNtƒ ¡|p|}|p|}t ||¡|_|ƒ|_t ||¡|_t |¡|_dS)N) r r r+r2r3r>r=rHÚdrop)rr5Úhidden_featuresÚ out_featuresÚ act_layerrÈ)rrrr s z FFN.__init__cCs6| |¡}| |¡}| |¡}| |¡}| |¡}|S)N)r3r>rÈr=)rrrrrrs      z FFN.forward) rrrrÆr+ÚGELUr rrrr)rrrÇşs rÇcs*eZdZdZd ‡fdd„ Zdd „Z‡ZS) Ú Attentiona� qkv Transform + MSA(MHSA) (from timm) # input x.shape = batch, patch_number, patch_dim # output x.shape = batch, patch_number, patch_dim :param dim: dim=CNN feature dim, because the patch size is 1x1 :param num_heads: :param qkv_bias: :param qk_scale: by default head_dim ** -0.5 (squre root) :param attn_drop: dropout rate after MHSA :param proj_drop: éFNçcsftƒ ¡||_||}|p"|d|_tj||d|d�|_t |¡|_t ||¡|_ t |¡|_ dS)Ngà¿rV)r') r r Ú num_headsÚscaler+r2ÚqkvrHÚ attn_dropr»Ú proj_drop)rr7rĞÚqkv_biasÚqk_scalerÓrÔÚhead_dim)rrrr -s  zAttention.__init__c Cs´|j\}}}| |¡ ||d|j||j¡ ddddd¡}|d|d|d}}}|| dd¡|j} | jdd�} | | ¡} | | dd¡ |||¡}|  |¡}|  |¡}|S) NrVr)rrr@éşÿÿÿrA)r7) r¿rÒÚreshaperĞr²rÁrÑÚsoftmaxrÓr»rÔ) rrÚbatchZ patch_numberZ patch_dimrÒÚqÚkÚvÚattnrrrr:s     zAttention.forward)rÎFNrÏrÏ)rrrrÆr rrrr)rrrÍ s  rÍcs:eZdZddddddejejf‡fdd„ Zdd„Z‡ZS) ÚBlockg@FNgc sptƒ ¡| |ƒ|_t||||||d�|_|dkr:t|ƒnt ¡|_| |ƒ|_ t ||ƒ} t || | |d�|_ dS)aê # input x.shape = batch, patch_number, patch_dim # output x.shape = batch, patch_number, patch_dim :param dim: dim :param num_heads: :param mlp_ratio: FFN :param qkv_bias: :param qk_scale: by default head_dim ** -0.5 (squre root) :param drop: :param attn_drop: dropout rate after Attention :param drop_path: dropout rate after sd :param act_layer: FFN act :param norm_layer: Pre Norm )rĞrÕrÖrÓrÔg)r5rÉrËrÈN) r r Únorm1rÍrßrr+ÚIdentityÚ drop_pathÚnorm2ÚintrÇÚmlp) rr7rĞÚ mlp_ratiorÕrÖrÈrÓrãrËÚ norm_layerZmlp_hidden_dim)rrrr Ws      zBlock.__init__cCs8|| | | |¡¡¡}|| | | |¡¡¡}|S)N)rãrßrárærä)rrrrrrvsz Block.forward) rrrr+rÌÚ LayerNormr rrrr)rrràUs ràcsReZdZdZddddddddd d d d d ed d f‡fd d „ Zdd„Zdd„Z‡ZS)ÚVisionTransformerz¬ Vision Transformer A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 r"r rVr rFrÎg@TNgc sXtƒ ¡||_ˆ|_|_d|_ˆp2ttjdd�‰ˆp<tj ‰||||ˆd�|_ |j j }t  t  ddˆ¡¡|_t  t  d||jˆ¡¡|_tjˆd�|_dd„t  d| |¡Dƒ‰tj‡‡‡‡‡‡‡‡‡f d d„t|ƒDƒ�|_ˆˆƒ|_| �r| |_t td t ˆ| ¡fd t ¡fgƒ¡|_n t ¡|_|jdk�rDt |j|j¡nt ¡|_d |_d S) aš Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels num_classes (int): number of classes for classification head embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set drop_rate (float): dropout rate attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate embed_layer (nn.Module): patch embedding layer norm_layer: (nn.Module): normalization layer rg�íµ ÷ư>)Úeps)r¸r¹r¼r½)r}cSsg|] }| ¡‘qSr)Úitem)Ú.0rrrrú <listcomp>®sz.VisionTransformer.__init__.<locals>.<listcomp>rc s*g|]"}tˆˆˆˆˆˆˆ|ˆˆd� ‘qS)) r7rĞrçrÕrÈrÓrãrèrË)rà)ríÚi) rËÚattn_drop_rateÚdprÚ drop_rater½rçrèrĞrÕrrrî²sr4r>N)r r r6Ú num_featuresr½Z num_tokensrr+rérÌÚ patch_embedrºrkr8rsÚ cls_tokenÚ pos_embedrHÚpos_dropÚlinspacer,ÚrangeÚblocksÚnormrr2ÚTanhÚ pre_logitsrâr4Z head_dist)rr¸r¹r¼r6r½ÚdepthrĞrçrÕÚrepresentation_sizeròrğZdrop_path_rateZ embed_layerrèrËrº)r) rËrğrñròr½rçrèrĞrÕrr †s2     &zVisionTransformer.__init__cCsZ| |¡}|j |jddd¡}tj||fdd�}| ||j¡}| |¡}|  |¡}|S)NrrAr)r7) rôrõÚexpandr¿r8rvr÷rörúrû)rrrõrrrÚforward_featuresÇs   z"VisionTransformer.forward_featurescCs.| |¡}| |dd…df¡}| |¡}|S)Nr)rrır4)rrrrrrÒs  zVisionTransformer.forward) rrrrÆrµr rrrrr)rrrês   ? rê),r8Útorch.nnr+Útorch.nn.functionalÚ functionalrKÚmathÚloggingÚ functoolsrÚ collectionsrÚnumpyÚnpZ timm.datarrZtimm.models.layersrrrr rGÚModuler rrrr:rErNrQrUrerfrxr‹r£r©rµrÇrÍràrêrrrrÚ<module>s<    0( @ ?%0"5*
19,905
Python
.pyt
200
96.485
658
0.361362
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,950
alexnet.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/trainmodel/__pycache__/alexnet.cpython-37.pyc
B Ê:cc) ã@sPddlZddlmZddlmZddgZddiZGdd„dejƒZd d d„Z dS) éN)Úload_state_dict_from_urlÚAlexNetÚalexnetz<https://download.pytorch.org/models/alexnet-owt-4df8aa71.pthcs&eZdZd‡fdd„ Zdd„Z‡ZS)réècstt|ƒ ¡t tjdddddd�tjdd�tjddd �tjdd d dd �tjdd�tjddd �tjd d ddd �tjdd�tjd dddd �tjdd�tjddddd �tjdd�tjddd �¡ |_t  d¡|_ t t  ¡t  dd¡tjdd�t  ¡t  dd¡tjdd�¡|_ t  d|¡|_dS)Néé@é éé)Ú kernel_sizeÚstrideÚpaddingT)Úinplace)r r éÀé)r r i€éé)éri$i)ÚsuperrÚ__init__ÚnnÚ SequentialÚConv2dÚReLUÚ MaxPool2dÚfeaturesÚAdaptiveAvgPool2dÚavgpoolÚDropoutÚLinearÚ classifierÚfc)ÚselfÚ num_classes)Ú __class__©úG/root/autodl-tmp/PFL-Non-IID-master/system/flcore/trainmodel/alexnet.pyrs0           zAlexNet.__init__cCs8| |¡}| |¡}t |d¡}| |¡}| |¡}|S)Nr)rrÚtorchÚflattenr r!)r"Úxr%r%r&Úforward+s      zAlexNet.forward)r)Ú__name__Ú __module__Ú __qualname__rr*Ú __classcell__r%r%)r$r&r sFTcKshtf|�}|rdttd|d�}i}x6| ¡D]*\}}d|krF|||<q,||| dd¡<q,W| |¡|S)aAlexNet model architecture from the `"One weird trick..." <https://arxiv.org/abs/1404.5997>`_ paper. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr r)Úprogressz classifier.6r!)rrÚ model_urlsÚitemsÚreplaceÚload_state_dict)Ú pretrainedr/ÚkwargsÚmodelÚ state_dictÚnew_dictÚkÚvr%r%r&r4s   )FT) r'Útorch.nnrZ torch.hubrÚ__all__r0ÚModulerrr%r%r%r&Ú<module>s   '
2,152
Python
.pyt
33
63.30303
295
0.470505
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,951
bilstm.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/trainmodel/__pycache__/bilstm.cpython-38.pyc
U ”jfcÁã@s*ddlZddlmZGdd„dejƒZdS)éN)Únncs.eZdZd ‡fdd„ Zdd„Zdd„Z‡ZS) ÚBiLSTM_TextClassificationFNc sútt|ƒ ¡||_||_||_||_||_||_||_ | |_ ||_ | dk rbt j  t | ¡¡|_nt   |j|j ¡|_t j|jd�|_|j r´t  |jd|jd¡|_t j|j d�|_t j|j |j|j|dd�|_t j|jd�|_t  |jd|j¡|_dS)N)ÚpééT)ÚdropoutÚ bidirectional)ÚsuperrÚ__init__Ú input_sizeÚ hidden_sizeÚ output_sizeÚ num_layersÚembedding_dropoutÚ lstm_dropoutÚattention_dropoutÚ attentionÚembedding_lengthrÚ EmbeddingÚfrom_pretrainedÚtorchÚtensorÚword_embeddingsÚDropoutÚembedding_dropout_layerÚLinearÚattention_layerÚattention_dropout_layerÚLSTMÚ lstm_layerÚlstm_dropout_layerÚ output_layer) Úselfr r r rrrrrrZembedding_weights©Ú __class__©õKD:\京东\promot\cifar\cifar\Cifar10_iid\system\flcore\trainmodel\bilstm.pyr s,ÿz"BiLSTM_TextClassification.__init__c Cs¨| d¡}t ||¡ d¡}g}t|ƒD]N\}}t ||d|…d¡} t |  d¡||d|…dd…f¡} | | ¡q(t t |d¡|fd¡} |  | ¡} |  | ¡} | S)Nrré) Ú unsqueezerÚbmmÚsqueezeÚ enumerateÚsoftmaxÚmatmulÚappendÚcatrr) r"Z lstm_outputÚstateÚseq_lensÚhiddenZ attn_weightsZ new_hiddensÚiÚseq_lenZsoft_attn_weightsZ new_hiddenZ concat_hiddenZ output_hiddenr%r%r&Úattention_forward"s $   z+BiLSTM_TextClassification.attention_forwardc sê|\}}t|ƒ}| |¡}| |¡}t |jd||jf¡jdd�}t |jd||jf¡jdd�}| ddd¡}|  |||f¡\‰\}}ˆ ddd¡‰tj ‡fdd„t |ƒDƒdd�} |  | ¡} |j rØ| ˆ| |¡‰n| ‰| ˆ¡} | S) NrÚcuda)Údevicer'rcs,g|]$\}}ˆ||ddd…f d¡‘qS)r'Nr)r()Ú.0r3r4©Úoutputr%r&Ú <listcomp>Jsz5BiLSTM_TextClassification.forward.<locals>.<listcomp>)Údim)ÚlenrrrÚzerosrr ÚtoÚpermuterr/r+r rr5r!) r"ÚxZ input_seqr1Ú batch_sizeZh_0Zc_0Zfinal_hidden_stateZfinal_cell_stater0Úlogitsr%r9r&Úforward8s        z!BiLSTM_TextClassification.forward)FN)Ú__name__Ú __module__Ú __qualname__r r5rDÚ __classcell__r%r%r#r&rs ÿr)rrÚModulerr%r%r%r&Ú<module>s 
2,695
Python
.pyt
30
88.766667
247
0.46099
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,952
mobilenet_v2.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/trainmodel/__pycache__/mobilenet_v2.cpython-38.pyc
U ”jfcã@svddlmZddlmZddgZddiZddd„ZGd d „d ejƒZGd d „d ej ƒZ Gd d„dej ƒZ ddd„Z dS)é)Únn)Úload_state_dict_from_urlÚ MobileNetV2Ú mobilenet_v2z=https://download.pytorch.org/models/mobilenet_v2-b0353104.pthNcCsB|dkr |}t|t||dƒ||ƒ}|d|kr>||7}|S)aD This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py :param v: :param divisor: :param min_value: :return: NégÍÌÌÌÌÌì?)ÚmaxÚint)ÚvÚdivisorÚ min_valueÚnew_v©r õQD:\京东\promot\cifar\cifar\Cifar10_iid\system\flcore\trainmodel\mobilenet_v2.pyÚ_make_divisible s  rcseZdZd‡fdd„ Z‡ZS)Ú ConvBNReLUééNc sR|dd}|dkrtj}tt|ƒ tj||||||dd�||ƒtjdd�¡dS)NrrF)ÚgroupsÚbiasT)Úinplace)rÚ BatchNorm2dÚsuperrÚ__init__ÚConv2dÚReLU6)ÚselfÚ in_planesÚ out_planesÚ kernel_sizeÚstriderÚ norm_layerÚpadding©Ú __class__r rr"s   ýzConvBNReLU.__init__)rrrN)Ú__name__Ú __module__Ú __qualname__rÚ __classcell__r r r"rr!srcs&eZdZd‡fdd„ Zdd„Z‡ZS)ÚInvertedResidualNc s¸tt|ƒ ¡||_|dks t‚|dkr.tj}tt||ƒƒ}|jdkoN||k|_ g}|dkrt|  t ||d|d�¡|  t |||||d�tj ||ddddd�||ƒg¡tj|Ž|_dS)N)rrr©rr )rrr rF)r)rr(rrÚAssertionErrorrrrÚroundÚuse_res_connectÚappendrÚextendrÚ SequentialÚconv)rÚinpÚouprÚ expand_ratior Ú hidden_dimÚlayersr"r rr.s  ûzInvertedResidual.__init__cCs"|jr|| |¡S| |¡SdS©N)r,r0©rÚxr r rÚforwardFszInvertedResidual.forward)N)r$r%r&rr9r'r r r"rr(-sr(cs.eZdZd ‡fdd„ Zdd„Zd d „Z‡ZS) réèçð?Néc s0tt|ƒ ¡|dkrt}|dkr(tj}d}d}|dkr‚ddddgddddgddd dgdd d dgdd d dgdd d dgddddgg}t|ƒdksžt|dƒd kr¬td |¡ƒ‚t |||ƒ}t |t d|ƒ|ƒ|_ t d |d|d�g} |D]X\} } } } t | ||ƒ}t | ƒD]4}|dk�r| nd}|  ||||| |d�¡|}�qqæ|  t ||j d|d�¡tj| Ž|_t d¡|_t |j |¡|_| ¡D]¢}t|tjƒ�rÈtjj|jdd�|jdk �r(tj |j¡n`t|tjtjfƒ�rútj |j¡tj |j¡n.t|tjƒ�rˆtj |jdd¡tj |j¡�qˆdS)aA MobileNet V2 main class Args: num_classes (int): Number of classes width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount inverted_residual_setting: Network structure round_nearest (int): Round the number of channels in each layer to be a multiple of this number Set to 1 to turn off rounding block: Module specifying inverted residual building block for mobilenet norm_layer: Module specifying the normalization layer to use Né irééérré@éé`é i@rzIinverted_residual_setting should be non-empty or a 4-element list, got {}r;)rr )r3r r)gš™™™™™É?Úfan_out)Úmodeg{®Gáz„?) rrrr(rrÚlenÚ ValueErrorÚformatrrÚ last_channelrÚranger-r/ÚfeaturesÚDropoutÚdropoutÚLinearÚfcÚmodulesÚ isinstancerÚinitÚkaiming_normal_ÚweightrÚzeros_Ú GroupNormÚones_Únormal_)rÚ num_classesÚ width_multÚinverted_residual_settingÚ round_nearestÚblockr Ú input_channelrJrLÚtÚcÚnÚsÚoutput_channelÚirÚmr"r rrNsX       ø ÿ      zMobileNetV2.__init__cCs>| |¡}tj |d¡ |jdd¡}| |¡}| |¡}|S)Nrréÿÿÿÿ)rLrÚ functionalÚadaptive_avg_pool2dÚreshapeÚshaperNrPr7r r rÚ _forward_implŸs    zMobileNetV2._forward_implcCs | |¡Sr6)rlr7r r rr9©szMobileNetV2.forward)r:r;Nr<NN)r$r%r&rrlr9r'r r r"rrMsúQ FTcKsdtf|Ž}|r`ttd|d�}i}| ¡D]*\}}d|krD|||<q*||| dd¡<q*| |¡|S)aC Constructs a MobileNetV2 architecture from `"MobileNetV2: Inverted Residuals and Linear Bottlenecks" <https://arxiv.org/abs/1801.04381>`_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr r)ÚprogressÚ classifierz classifier.1rP)rrÚ model_urlsÚitemsÚreplaceÚload_state_dict)Ú pretrainedrmÚkwargsÚmodelÚ state_dictÚnew_dictÚkr r r rr­s ÿ  )N)FT) ÚtorchrZ torch.hubrÚ__all__rorr/rÚModuler(rrr r r rÚ<module>s  ÿ   `
5,683
Python
.pyt
70
77.585714
401
0.472287
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,953
models.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/trainmodel/__pycache__/models.cpython-39.pyc
a °“bcZgã@säddlZddlmZddlmmZddlZddlZddlm Z ddl m Z ddl Z ddlmZmZddlmZmZmZmZdZGdd„dejƒZGd d „d ejƒZGd d „d ejƒZGd d„dejƒZGdd„dejƒZGdd„dejƒZGdd„dejƒZGdd„dejƒZGdd„dejƒZ dd„Z!Gdd„dejƒZ"Gdd„dejƒZ#Gdd „d ejƒZ$Gd!d"„d"ejƒZ%Gd#d$„d$ejƒZ&Gd%d&„d&ejƒZ'Gd'd(„d(ejƒZ(Gd)d*„d*ejƒZ)Gd+d,„d,ejƒZ*Gd-d.„d.ejƒZ+dS)/éN)Úpartial)Ú OrderedDict)ÚIMAGENET_DEFAULT_MEANÚIMAGENET_DEFAULT_STD)Ú StdConv2dSameÚDropPathÚ to_2tupleÚ trunc_normal_écs$eZdZ‡fdd„Zdd„Z‡ZS)Ú LocalModelcstt|ƒ ¡||_||_dS©N)Úsuperr Ú__init__ÚbaseÚ predictor)Úselfrr©Ú __class__©úr/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/trainmodel/models.pyrszLocalModel.__init__cCs| |¡}| |¡}|Sr )rr©rÚxÚoutrrrÚforwards  zLocalModel.forward©Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__rrrrr s r cs$eZdZ‡fdd„Zdd„Z‡ZS)Ú LocalModel_ptcstt|ƒ ¡||_||_dSr )r rrÚ generatorr)rr rrrrr#szLocalModel_pt.__init__cCs| |¡}| |¡}|Sr )r rrrrrr)s  zLocalModel_pt.forwardrrrrrr"s rcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚLocalModel_repptcs$tt|ƒ ¡||_||_||_dSr )r r!rr rr)rr rrrrrr0szLocalModel_reppt.__init__cCs"| |¡}| |¡}| |¡}|Sr )r rrrrrrr7s   zLocalModel_reppt.forwardrrrrrr!/s r!cs&eZdZd‡fdd„ Zdd„Z‡ZS) Ú FedAvgCNNéé éc s�tƒ ¡t tj|dddddd�tjdd�tjdd �¡|_t tjdd ddddd�tjdd�tjdd �¡|_t t  |d ¡tjdd�¡|_ t  d |¡|_ dS) Né érr#T)Ú kernel_sizeÚpaddingÚstrideÚbias©Úinplace)ér.©r(é@i) r rÚnnÚ SequentialÚConv2dÚReLUÚ MaxPool2dÚconv1Úconv2ÚLinearÚfc1Úfc)rÚ in_featuresÚ num_classesÚdimrrrr`s8 û  ø û  ø   şzFedAvgCNN.__init__cCs8| |¡}| |¡}t |d¡}| |¡}| |¡}|S)Nr#)r6r7ÚtorchÚflattenr9r:rrrrr|s      zFedAvgCNN.forward)r#r$r%rrrrrr"_sr"cs&eZdZd‡fdd„ Zdd„Z‡ZS) Ú FedAvgMLPér$éÈcs8tƒ ¡t ||¡|_t ||¡|_tjdd�|_dS)NTr,)r rr1r8r9Úfc2r4Úact)rr;r<Ú hidden_dimrrrrˆs zFedAvgMLP.__init__cCs:|jdkr| | d¡d¡}| | |¡¡}| |¡}|S)Néréÿÿÿÿ)ÚndimÚviewÚsizerDr9rC©rrrrrr�s   zFedAvgMLP.forward)rAr$rBrrrrrr@‡sr@cs$eZdZ‡fdd„Zdd„Z‡ZS)ÚNetcsjtt|ƒ ¡t dtdd¡|_t tddd¡|_t d¡|_ t d¡|_ t  dd¡|_ t  dd¡|_ dS) Nr#r.r&gĞ?çà?iHé€r$)r rLrr1r3Ú batch_sizer6r7ÚDropoutÚdropout1Údropout2r8r9r:)rrrrr˜s  z Net.__init__cCs�| |¡}t ¡|ƒ}t dd¡|ƒ}| |¡}| |¡}t ¡|ƒ}t dd¡|ƒ}| |¡}t |d¡}|  |¡}t ¡|ƒ}|  |¡}t j |dd�}|S)Nr.r#©r=) r6r1r4r5rQr7rRr>r?r9r:ÚFÚ log_softmax©rrÚoutputrrrr¡s          z Net.forwardrrrrrrL—s rLcs&eZdZd‡fdd„ Zdd„Z‡ZS)Ú Mclr_LogisticrAr$cs tt|ƒ ¡t ||¡|_dSr )r rXrr1r8r:)rÚ input_dimr<rrrr´szMclr_Logistic.__init__cCs(t |d¡}| |¡}tj|dd�}|S©Nr#rS)r>r?r:rTrUrVrrrr¸s  zMclr_Logistic.forward)rAr$rrrrrrX³srXcs&eZdZd‡fdd„ Zdd„Z‡ZS) ÚDNNrAédr$cs.tt|ƒ ¡t ||¡|_t ||¡|_dSr )r r[rr1r8r9r:)rrYZmid_dimr<rrrrÁsz DNN.__init__cCs8t |d¡}t | |¡¡}| |¡}tj|dd�}|SrZ)r>r?rTÚrelur9r:rUrKrrrrÆs   z DNN.forward)rAr\r$rrrrrr[Àsr[cs&eZdZd‡fdd„ Zdd„Z‡ZS)ÚCifarNetr$csrtt|ƒ ¡t ddd¡|_t dd¡|_t dtd¡|_ t  tddd¡|_ t  dd¡|_ t  d|¡|_ dS)Néér'r.éxéT)r r^rr1r3r6r5ÚpoolrOr7r8r9rCr:)rr<rrrrĞszCifarNet.__init__cCs|| t | |¡¡¡}| t | |¡¡¡}| dtdd¡}t | |¡¡}t | |¡¡}|  |¡}tj |dd�}|S)NrGr'r#rS) rcrTr]r6r7rIrOr9rCr:rUrKrrrrÙs zCifarNet.forward)r$rrrrrr^Ïs r^cCs |jj}| d¡dks$| d¡dkrBtj |j¡tj |j¡nZ| d¡dkrrtj  |jdd¡tj |j¡n*| d¡dkrœtj  |j¡tj |j¡dS)Nr3rGÚConvTranspose2dZ BatchNormgğ?g{®Gáz”?r8) rrÚfindr1ÚinitÚkaiming_uniform_ÚweightÚzeros_r+Únormal_Úxavier_normal_)ÚmÚ classnamerrrÚ init_weightssrncs&eZdZd‡fdd„ Zdd„Z‡ZS) Ú PadPrompterr#éNc s´tt|ƒ ¡|}|}||_||_||d|_t t  d|j||g¡¡|_ t t  d|j||g¡¡|_ t t  d|j||d|g¡¡|_ t t  d|j||d|g¡¡|_ dS)Nr.r#)r rorÚargsÚinchanelÚ base_sizer1Ú Parameterr>ÚrandnÚpad_upÚpad_downÚpad_leftÚ pad_right)rrrÚpad_sizeÚ image_sizerqrrrrs$zPadPrompter.__init__cCsnt d|j|j|j¡ |jj¡}tj|j||j gdd�}tj|j ||j gdd�}t |  d¡|g¡}||S)Nr#r_rSr.r) r>ÚzerosrrrsÚtorqÚdeviceÚcatrxryrvrwrJ)rrrÚpromptrrrr)s  zPadPrompter.forward)r#r#rpNrrrrrros rocs&eZdZd ‡fdd„ Zdd„Z‡ZS) ÚLeNeté ér$Nc sÌtt|ƒ ¡t tjdddd�t d¡t ¡tjdddd�tjdd�t d¡t ¡¡|_ tj |d d �|_ tj dd�|_ t ||¡|_|j t¡t ||¡|_|d kr¼tjj|jd d �|_|j t¡dS)Nr#ér'r/r.é2rM©ÚpT)ÚaffineÚwnrh)Úname)r r�rr1r2r3r5r4Ú Dropout2dÚ conv_paramsÚ BatchNorm1dÚbnrPÚdropoutr8Ú bottleneckÚapplyrnr:ÚutilsÚ weight_norm)rÚ feature_dimZbottleneck_dimr<Ziswnrrrr4s$ ù  zLeNet.__init__cCsV| |¡}| | d¡d¡}| |¡}| |¡}| |¡}| |¡}tj|dd�}|S©NrrGr#rS) rŒrIrJr�r�r�r:rTrUrKrrrrIs     z LeNet.forward)r‚rƒr$Nrrrrrr�3sr�cs&eZdZd ‡fdd„ Zd d „Z‡ZS) ÚLSTMNetr.Fçš™™™™™É?réK�r$c s`tƒ ¡t |¡|_t |||¡|_tj|||||dd�|_|rJ|dn|}t  ||¡|_ dS)NT)Ú input_sizeÚ hidden_sizeÚ num_layersÚ bidirectionalr�Ú batch_firstr.) r rr1rPr�Ú EmbeddingÚ embeddingÚLSTMÚlstmr8r:) rrEr›rœr�Ú padding_idxÚ vocab_sizer<Údimsrrrrss  ûzLSTMNet.__init__c Cs’|\}}| |¡}tjjj||ddd�}| |¡\}\}}tjjj|dd�\} } t | dd…ddd…f¡} |  | ¡} |  | ¡} t j | dd�} | S)NTF)r�Úenforce_sorted)r�rGr#rS) rŸr1r’ÚrnnÚpack_padded_sequencer¡Úpad_packed_sequencer>Úrelu_r�r:rTrU) rrÚtextÚ text_lengthsZembeddedZpacked_embeddedZ packed_outputÚhiddenÚcellrZ out_lengthsrrrr‚s   zLSTMNet.forward)r.Fr—rr˜r$rrrrrr–rsÿr–cs&eZdZd‡fdd„ Zdd„Z‡ZS) ÚfastTextrr˜r$cs>tt|ƒ ¡t |||¡|_t ||¡|_t ||¡|_dSr ) r r®rr1r�rŸr8r9r:)rrEr¢r£r<rrrr˜szfastText.__init__cCs>|\}}| |¡}| | d¡¡}| |¡}tj|dd�}|SrZ)rŸr9Úmeanr:rTrU)rrrªr«Ú embedded_sentÚhÚzrrrrr¤s   zfastText.forward)rr˜r$rrrrrr®—s r®cs8eZdZdgd¢dddddf‡fdd „ Zd d „Z‡ZS) ÚTextCNNr\)r_rFr'rBgš™™™™™é?rr˜r$c sætt|ƒ ¡t |||¡|_t tj|||dd�t ¡t  ||dd¡¡|_ t tj|||dd�t ¡t  ||dd¡¡|_ t tj|||dd�t ¡t  ||dd¡¡|_ t  |¡|_t |t|ƒ|¡|_dS)Nr)Ú in_channelsÚ out_channelsr(r#r.)r r³rr1r�rŸr2ÚConv1dr4Ú MaxPool1dr6r7Úconv3rPr�r8Úlenr:) rrEÚ num_channelsr(Úmax_lenr�r¢r£r<rrrr±s&ııı zTextCNN.__init__c Cs„|\}}| |¡ ddd¡}| |¡ d¡}| |¡ d¡}| |¡ d¡}t |||fd¡}| |¡} |  | ¡} t j | dd�} | S)Nrr.r#rS) rŸÚpermuter6Úsqueezer7r¸r>rr�r:rTrU) rrrªr«r°Z conv_out1Z conv_out2Z conv_out3Zall_outZfinal_feature_maprrrrrÏs  zTextCNN.forwardrrrrrr³°s ÿr³cs*eZdZdZd ‡fdd„ Zdd „Z‡ZS) Ú PatchEmbedz{ Image to Patch Embedding CNN_proj + Rearrange: [B, C, W, H] -> [B, D, Pn_W, Pn_H] -> [B, D, Pn] -> [B, Pn, D] éàr r_écsdtƒ ¡t|ƒ}t|ƒ}|d|d|d|d}||_||_||_tj||||d�|_dS)Nr#r)r(r*) r rrÚimg_sizeÚ patch_sizeÚ num_patchesr1r3Úproj)rrÁrÂÚin_chansÚ embed_dimrÃrrrræs  zPatchEmbed.__init__c Cst|j\}}}}||jdkr*||jdksXJd|›d|›d|jd›d|jd›d� ƒ‚| |¡ d¡ dd¡}|S)Nrr#zInput image size (Ú*z) doesn't match model (z).r.)ÚshaperÁrÄr?Ú transpose)rrÚBÚCÚHÚWrrrrñs (ÿzPatchEmbed.forward)r¿r r_rÀ©rrrÚ__doc__rrrrrrrr¾às r¾cs4eZdZdZddejdf‡fdd„ Zdd„Z‡ZS)ÚFFNz� FFN (from timm) :param in_features: :param hidden_features: :param out_features: :param act_layer: :param drop: NçcsNtƒ ¡|p|}|p|}t ||¡|_|ƒ|_t ||¡|_t |¡|_dSr ) r rr1r8r9rDrCrPÚdrop)rr;Úhidden_featuresÚ out_featuresÚ act_layerrÒrrrrs z FFN.__init__cCs6| |¡}| |¡}| |¡}| |¡}| |¡}|Sr )r9rDrÒrCrKrrrrs      z FFN.forward) rrrrÏr1ÚGELUrrrrrrrrĞşs  rĞcs*eZdZdZd ‡fdd„ Zdd „Z‡ZS) Ú Attentiona� qkv Transform + MSA(MHSA) (from timm) # input x.shape = batch, patch_number, patch_dim # output x.shape = batch, patch_number, patch_dim :param dim: dim=CNN feature dim, because the patch size is 1x1 :param num_heads: :param qkv_bias: :param qk_scale: by default head_dim ** -0.5 (squre root) :param attn_drop: dropout rate after MHSA :param proj_drop: éFNrÑcsftƒ ¡||_||}|p"|d|_tj||d|d�|_t |¡|_t ||¡|_ t |¡|_ dS)Ngà¿r_)r+) r rÚ num_headsÚscaler1r8ÚqkvrPÚ attn_droprÄÚ proj_drop)rr=rÙÚqkv_biasÚqk_scalerÜrİÚhead_dimrrrr-s  zAttention.__init__c Cs´|j\}}}| |¡ ||d|j||j¡ ddddd¡}|d|d|d}}}|| dd¡|j} | jdd�} | | ¡} | | dd¡ |||¡}|  |¡}|  |¡}|S) Nr_r.rr#rFéşÿÿÿrGrS) rÈrÛÚreshaperÙr¼rÉrÚÚsoftmaxrÜrÄrİ) rrÚbatchZ patch_numberZ patch_dimrÛÚqÚkÚvÚattnrrrr:s ÿ ÿ    zAttention.forward)rØFNrÑrÑrÎrrrrr× s  r×cs:eZdZddddddejejf‡fdd„ Zdd„Z‡ZS) ÚBlockç@FNrÑc sptƒ ¡| |ƒ|_t||||||d�|_|dkr:t|ƒnt ¡|_| |ƒ|_ t ||ƒ} t || | |d�|_ dS)aê # input x.shape = batch, patch_number, patch_dim # output x.shape = batch, patch_number, patch_dim :param dim: dim :param num_heads: :param mlp_ratio: FFN :param qkv_bias: :param qk_scale: by default head_dim ** -0.5 (squre root) :param drop: :param attn_drop: dropout rate after Attention :param drop_path: dropout rate after sd :param act_layer: FFN act :param norm_layer: Pre Norm )rÙrŞrßrÜrİrÑ)r;rÓrÕrÒN) r rÚnorm1r×rèrr1ÚIdentityÚ drop_pathÚnorm2ÚintrĞÚmlp) rr=rÙÚ mlp_ratiorŞrßrÒrÜrírÕÚ norm_layerZmlp_hidden_dimrrrrWs   ÿ  zBlock.__init__cCs8|| | | |¡¡¡}|| | | |¡¡¡}|Sr )rírèrërğrîrKrrrrvsz Block.forward) rrrr1rÖÚ LayerNormrrrrrrrréUs  ÿrécsReZdZdZddddddddd d d d d ed d f‡fd d „ Zdd„Zdd„Z‡ZS)ÚVisionTransformerz¬ Vision Transformer A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 r&r r_r$rÀé rêTNrÑc sXtƒ ¡||_ˆ|_|_d|_ˆp2ttjdd�‰ˆp<tj ‰||||ˆd�|_ |j j }t  t  ddˆ¡¡|_t  t  d||jˆ¡¡|_tjˆd�|_dd„t  d| |¡Dƒ‰tj‡‡‡‡‡‡‡‡‡f d d„t|ƒDƒ�|_ˆˆƒ|_| �r| |_t td t ˆ| ¡fd t ¡fgƒ¡|_n t ¡|_|jdk�rDt |j|j¡nt ¡|_d |_d S) aš Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels num_classes (int): number of classes for classification head embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set drop_rate (float): dropout rate attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate embed_layer (nn.Module): patch embedding layer norm_layer: (nn.Module): normalization layer r#g�íµ ÷ư>)Úeps)rÁrÂrÅrÆr†cSsg|] }| ¡‘qSr)Úitem)Ú.0rrrrÚ <listcomp>®óz.VisionTransformer.__init__.<locals>.<listcomp>rc s*g|]"}tˆˆˆˆˆˆˆ|ˆˆd� ‘qS)) r=rÙrñrŞrÒrÜríròrÕ)ré)røÚi© rÕÚattn_drop_rateZdprÚ drop_raterÆrñròrÙrŞrrrù±sş  ÿr:rDN)r rr<Ú num_featuresrÆZ num_tokensrr1rórÖÚ patch_embedrÃrtr>r|Ú cls_tokenÚ pos_embedrPÚpos_dropÚlinspacer2ÚrangeÚblocksÚnormrr8ÚTanhÚ pre_logitsrìÚheadZ head_dist)rrÁrÂrÅr<rÆÚdepthrÙrñrŞÚrepresentation_sizerşrıZdrop_path_rateZ embed_layerròrÕrÃrrürr†s6   ÿı   ş  &zVisionTransformer.__init__cCsZ| |¡}|j |jddd¡}tj||fdd�}| ||j¡}| |¡}|  |¡}|Sr•) rrÚexpandrÈr>rrrrr)rrrrrrÚforward_featuresÇs   z"VisionTransformer.forward_featurescCs.| |¡}| |dd…df¡}| |¡}|S)Nr)rr r rKrrrrÒs  zVisionTransformer.forward) rrrrÏr¾rrrrrrrrrôs  şA rô),r>Útorch.nnr1Útorch.nn.functionalÚ functionalrTÚmathÚloggingÚ functoolsrÚ collectionsrÚnumpyÚnpZ timm.datarrZtimm.models.layersrrrr rOÚModuler rr!r"r@rLrXr[r^rnror�r–r®r³r¾rĞr×rérôrrrrÚ<module>s<    0( @ ?%0"5*
19,577
Python
.pyt
207
91.603865
633
0.364153
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,954
serverrep.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverrep.cpython-37.pyc
B ·:cc ã@sHddlmZddlmZddlmZddlZddlZGdd„deƒZdS)é)Ú clientRep)ÚServer)ÚThreadNcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)ÚFedRepcsLtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒg|_dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.) ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clientsÚBudget)ÚselfÚargsÚtimes)Ú __class__©úF/root/autodl-tmp/PFL-Non-IID-master/system/flcore/servers/serverrep.pyr s  zFedRep.__init__cCs x®t|jdƒD]œ}t ¡}| ¡|_| ¡||jdkr\td|›d�ƒtdƒ| ¡x|jD] }|  ¡qdW|  ¡|  ¡|j   t ¡|¡tddd|j dƒqWtd ƒtt|jƒƒtd ƒtt|j dd…ƒt|j dd…ƒƒ| ¡| ¡dS) Nérz -------------Round number: z -------------z Evaluate global modelz-------------------------z time costéÿÿÿÿz Best global accuracy.z Average time cost per round.)ÚrangeÚ global_roundsÚtimeÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersr ÚappendÚmaxÚ rs_test_accÚsumÚlenÚ save_resultsÚsave_global_model)rÚiÚs_tÚclientrrrrs(   (z FedRep.traincCsŒt|jƒdkst‚d}x|jD]}||j7}qWg|_g|_g|_xD|jD]:}|j |j|¡|j |j¡|j t   |j j ¡¡qJWdS)Nr) r%rÚAssertionErrorÚ train_samplesÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsr!ÚidÚcopyÚdeepcopyÚmodelÚbase)rZactive_train_samplesr*rrrr:s  zFedRep.receive_models)Ú__name__Ú __module__Ú __qualname__rrrÚ __classcell__rr)rrrs #r) Zsystem.flcore.clients.clientreprÚ system.flcore.servers.serverbaserÚ threadingrrr1rrrrrÚ<module>s   
2,146
Python
.pyt
16
132.6875
338
0.47771
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,955
servermtl.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/servermtl.cpython-39.pyc
a f¾`c ã@s@ddlZddlmZddlmZddlmZGdd„deƒZdS)éN)Ú clientMTL)ÚServer)ÚThreadcs4eZdZ‡fdd„Zdd„Zdd„Zdd„Z‡ZS) ÚFedMTLcsÈtƒ ||¡t| |j¡ƒ|_tj|j|jf|j d�|_ |j |_ t  |j|jf¡}t  |jdf¡}|d|j|  |j ¡d}| |j ¡|_| ¡| |t¡td|j›d|j›�ƒtdƒdS)N©Údeviceééz Join clients / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__ÚlenÚflattenÚ global_modelÚdimÚtorchÚzerosÚ join_clientsrÚW_globÚonesÚmmÚTÚtoÚomegaÚset_slow_clientsÚ set_clientsrÚprintÚ num_clients)ÚselfÚargsÚtimesÚIÚir©Ú __class__©úr/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/servers/servermtl.pyr s zFedMTL.__init__cCs¬t|jdƒD]r}| ¡|_| ¡||jdkrRtd|›d�ƒtdƒ| ¡t|jƒD]"\}}|  |j |j |¡|  ¡q\qtdƒtt |jƒƒ| ¡| ¡dS)Nrrz -------------Round number: z -------------z Evaluate global modelz Best global accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚaggregate_parametersÚeval_gaprÚevaluateÚ enumerateZreceive_valuesrrÚtrainÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)rr!ÚidxÚclientr$r$r%r.s  z FedMTL.traincs,| ¡‰ˆ ¡}‡fdd„|Dƒ}t |¡S)Ncsg|]}ˆ| ¡‘qSr$)r )Ú.0Úkey©Ú state_dictr$r%Ú <listcomp><óz"FedMTL.flatten.<locals>.<listcomp>)r8ÚkeysrÚcat)rÚmodelr;ÚWr$r7r%r 9szFedMTL.flattencCsLtj|j|jf|jd�|_t|jƒD]"\}}| |j ¡|jdd…|f<q$dS)Nr) rrrrrrr-r)r r=)rr3r4r$r$r%r*?szFedMTL.aggregate_parameters)Ú__name__Ú __module__Ú __qualname__r r.r r*Ú __classcell__r$r$r"r%rs r)rZflcore.clients.clientmtlrÚflcore.servers.serverbaserÚ threadingrrr$r$r$r%Ú<module>s   
2,406
Python
.pyt
13
183.846154
602
0.442356
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,956
serverdyn.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverdyn.cpython-38.pyc
U Mrgcã@sPddlZddlZddlmZddlmZddlmZddlZGdd„deƒZ dS)éN)Ú clientDyn)ÚServer)ÚThreadcs<eZdZ‡fdd„Zdd„Zdd„Zdd„Zd d „Z‡ZS) ÚFedDyncs€tƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒg|_|j |_ t   |j ¡|_ |j  ¡D]}t |j¡|_qhdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clientsÚBudgetÚalphaÚcopyÚdeepcopyÚmodelÚ server_stateÚ parametersÚtorchÚ zeros_likeÚdata)ÚselfÚargsÚtimesÚparam©Ú __class__©õDD:\京东\promot\cifar\cifar\tiny\system\flcore\servers\serverdyn.pyr s zFedDyn.__init__cCshg}d|_d}t|jdƒD]Ü}t ¡}| ¡|_| ¡||jdkrhtd|›d�ƒtdƒ|  ¡|jD] }|  ¡qn||jdkržtdƒ|j |d�|  ¡|  ¡|  ¡|j t ¡|¡td |jd ƒ|j|jg|jd �|_|d7}qtd ƒtt|jƒƒtd ƒtt|ƒƒtdƒtt|jdd…ƒt|jdd…ƒƒ| ¡| ¡dS)NFréz -------------Round number: z -------------z Evaluate global modelz Evaluate local model)Úaccz2--------------------------------------------------éÿÿÿÿ)Úacc_lssÚtop_cntz Best global accuracy.z Best local accuracy.z Averaged time per iteration.)ÚdoneÚrangeÚ global_roundsÚtimeÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚupdate_server_stateÚaggregate_parametersr ÚappendÚ check_doneÚ rs_test_accr#ÚmaxÚsumÚlenÚ save_resultsÚsave_global_model)rZ local_accÚiÚs_tÚclientrrrr-s>      (z FedDyn.traincCs<t|j ¡| ¡ƒD]"\}}|j|j ¡|j7_qdS)N)ÚzipÚ global_modelrrÚcloneÚ join_clients)rÚ client_modelÚ server_paramÚ client_paramrrrÚadd_parametersOszFedDyn.add_parameterscCs”t|jƒdkst‚t |jd¡|_|j ¡D]}t |j ¡|_ q.|jD]}|  |¡qHt |j ¡|j  ¡ƒD] \}}|j d|j |8_ qndS)Nrr)r6Úuploaded_modelsÚAssertionErrorrrr=rrrrrCr<rr)rrr@rAÚ state_paramrrrr0Ss  zFedDyn.aggregate_parameterscCs¾t|jƒdkst‚t |jd¡}| ¡D]}t |j¡|_q*|jD]B}t |j  ¡| ¡| ¡ƒD]"\}}}|j|||j 7_qbqDt |j  ¡| ¡ƒD]\}}|j|j |8_qœdS)Nr)r6rDrErrrrrrr<r=r rr)rZ model_deltarr@rArBZ delta_paramrFrrrr/`s  $zFedDyn.update_server_state) Ú__name__Ú __module__Ú __qualname__rr-rCr0r/Ú __classcell__rrrrr s  1 r) rrZflcore.clients.clientdynrÚflcore.servers.serverbaserÚ threadingrr'rrrrrÚ<module>s    
3,276
Python
.pyt
30
107.9
399
0.434247
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,957
serverperavg.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverperavg.cpython-38.pyc
U ”jfc‚ã@sHddlZddlZddlmZddlmZddlmZGdd„deƒZdS)éN)Ú clientPerAvg)ÚServer)ÚThreadcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)ÚPerAvgcsFtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes©Ú __class__©õND:\京东\promot\cifar\cifar\Cifar10_iid\system\flcore\servers\serverperavg.pyr s  zPerAvg.__init__cCsªt|jdƒD]p}| ¡|_| ¡||jdkrRtd|›d�ƒtdƒ| ¡|jD]}| ¡| ¡qX|  ¡|  ¡qtdƒtt |j ƒƒ|  ¡| ¡dS)Nérz -------------Round number: z -------------z+ Evaluate global model with one step updatez Best global accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr Úevaluate_one_stepÚtrainÚreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)r ÚiÚclientrrrrs     z PerAvg.traincCs’g}|jD]}| t |j¡¡| ¡q | ¡}t|jƒD]\}}| |||j¡q<t |dƒdt |dƒ}|j  |¡t d  |¡ƒdS)Négğ?rzAverage Test Accurancy: {:.4f}) ÚclientsÚappendÚcopyÚdeepcopyÚmodelZtrain_one_stepÚ test_metricsÚ enumerateÚ clone_modelÚsumr r Úformat)r Z models_tempÚcÚstatsr#Útest_accrrrr4s   zPerAvg.evaluate_one_step)Ú__name__Ú __module__Ú __qualname__rrrÚ __classcell__rrrrrs !r) r(ÚtorchZflcore.clients.clientperavgrÚflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s    
2,024
Python
.pyt
22
90.727273
347
0.482776
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,958
serverpFedMe.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverpFedMe.cpython-39.pyc
a f¾`cEã@sPddlZddlZddlZddlmZddlmZddlmZGdd„deƒZ dS)éN)Ú clientpFedMe)ÚServer)ÚThreadcsLeZdZ‡fdd„Zdd„Zdd„Zdd„Zd d „Zd d „Zd d„Z ‡Z S)ÚpFedMecs`tƒ ||¡| ¡| |t¡|j|_g|_g|_g|_t d|j ›d|j ›�ƒt dƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.) ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚbetaÚrs_train_acc_perÚrs_train_loss_perÚrs_test_acc_perÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes©Ú __class__©úu/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/servers/serverpFedMe.pyr s zpFedMe.__init__cCsÀt|jdƒD]†}| ¡|_| ¡|jD] }| ¡q*||jdkrftd|›d�ƒtdƒ| ¡t   t |j   ¡ƒ¡|_| ¡| ¡| ¡qtdƒtt|jƒƒ| ¡| ¡dS)Nérz -------------Round number: z -------------z Evaluate personalized modelz Best personalized results.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚtrainÚeval_gaprÚevaluate_personalized_modelÚcopyÚdeepcopyÚlistÚ global_modelÚ parametersÚprevious_global_modelÚreceive_modelsÚaggregate_parametersÚbeta_aggregate_parametersÚmaxr Ú save_resultsÚsave_global_model)rÚiÚclientrrrrs"    z pFedMe.traincCs>t|j|j ¡ƒD]&\}}d|j|j|j|j|_qdS)Nr)Úzipr&r$r%r Údata)rZ pre_paramÚparamrrrr)Dsz pFedMe.beta_aggregate_parameterscCsRg}g}|jD](}| ¡\}}| |d¡| |¡qdd„|jDƒ}|||fS)Nçð?cSsg|] }|j‘qSr©Úid©Ú.0ÚcrrrÚ <listcomp>Póz4pFedMe.test_metrics_personalized.<locals>.<listcomp>)ÚclientsÚtest_metrics_personalizedÚappend)rÚ num_samplesÚ tot_correctr7ÚctÚnsÚidsrrrr;Is   z pFedMe.test_metrics_personalizedc Cshg}g}g}|jD]8}| ¡\}}}| |d¡| |¡| |d¡qdd„|jDƒ}||||fS)Nr2cSsg|] }|j‘qSrr3r5rrrr8^r9z5pFedMe.train_metrics_personalized.<locals>.<listcomp>)r:Útrain_metrics_personalizedr<) rr=r>Úlossesr7r?Úclr@rArrrrBTs  z!pFedMe.train_metrics_personalizedcCsB| ¡}t|dƒdt|dƒ}|j |¡td |¡ƒdS)Nér2rz+Average Personalized Test Accurancy: {:.4f})r;Úsumr r<rÚformat)rÚstatsÚtest_accrrrr bs z"pFedMe.evaluate_personalized_modelcCsº|jd|j}d}tj |¡s*t |¡t|jƒr¶|d|jdt |j ƒ}t   |d  |¡d¡�@}|jd|jd�|jd|jd�|jd|jd�Wdƒn1s¬0YdS) NÚ_z ../results/z{}.h5ÚwÚ rs_test_acc)r0Z rs_train_accÚ rs_train_loss)ÚdatasetÚ algorithmÚosÚpathÚexistsÚmakedirsÚlenr ÚgoalÚstrrÚh5pyÚFilerGÚcreate_datasetr r )rÚalgoÚ result_pathZalgo2Úhfrrrr+qs  zpFedMe.save_results) Ú__name__Ú __module__Ú __qualname__rrr)r;rBr r+Ú __classcell__rrrrr s + r) rPr!rWZflcore.clients.clientpFedMerZflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s    
3,828
Python
.pyt
28
135.428571
434
0.464596
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,959
serverphp.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverphp.cpython-39.pyc
a f¾`c”ã@sHddlmZddlmZddlmZddlZddlZGdd„deƒZdS)é)Ú clientPHP)ÚServer)ÚThreadNcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)ÚFedPHPcsLtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒg|_dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.) ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clientsÚBudget)ÚselfÚargsÚtimes©Ú __class__©úr/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/servers/serverphp.pyr s  zFedPHP.__init__cCs¤t|jdƒD]j}| ¡|_| |¡||jdkrTtd|›d�ƒtdƒ| ¡|jD] }| ¡qZ|  ¡|  ¡qtdƒtt |j ƒƒ|  ¡| ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz Best global accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)rÚiÚclientrrrrs     z FedPHP.traincCs0t|jƒdksJ‚|jD]}| |j|¡qdS)Nr)ÚlenrÚset_parametersÚ global_model)rÚRr%rrrr5s zFedPHP.send_models)Ú__name__Ú __module__Ú __qualname__rrrÚ __classcell__rrrrrs r) Zflcore.clients.clientphprÚflcore.servers.serverbaserÚ threadingrÚtimeÚcopyrrrrrÚ<module>s   
1,758
Python
.pyt
17
102.176471
371
0.487371
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,960
serveravg.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serveravg.cpython-37.pyc
B ¿:ccçã@sHddlZddlZddlmZddlmZddlmZGdd„deƒZdS)éN)Ú clientAVG)ÚServer)ÚThreadcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚFedAvgcsLtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒg|_dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.) ÚsuperÚ__init__Zset_slow_clientsZ set_clientsrÚprintÚ join_ratioÚ num_clientsÚBudget)ÚselfÚargsÚtimes)Ú __class__©úF/root/autodl-tmp/PFL-Non-IID-master/system/flcore/servers/serveravg.pyr s  zFedAvg.__init__cCs x®t|jdƒD]œ}t ¡}| ¡|_| ¡||jdkr\td|›d�ƒtdƒ| ¡x|jD] }|  ¡qdW|  ¡|  ¡|j   t ¡|¡tddd|j dƒqWtd ƒtt|jƒƒtd ƒtt|j dd…ƒt|j dd…ƒƒ| ¡| ¡dS) Nérz -------------Round number: z -------------z Evaluate global modelz-------------------------z time costéÿÿÿÿz Best global accuracy.z Average time cost per round.)ÚrangeÚ global_roundsÚtimeZselect_clientsZselected_clientsZ send_modelsÚeval_gaprZevaluateÚtrainZreceive_modelsZaggregate_parametersr ÚappendÚmaxZ rs_test_accÚsumÚlenZ save_resultsZsave_global_model)r ÚiZs_tÚclientrrrrs(   (z FedAvg.train)Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__rr)rrrs r) rÚtorchZsystem.flcore.clients.clientavgrZ system.flcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s    
1,721
Python
.pyt
14
121.571429
330
0.485948
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,961
servermtlpt.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/servermtlpt.cpython-38.pyc
U Õ şc²ã@shddlZddlmZddlmZddlmZddlZddlZddl Z ddlZddl Z Gdd„deƒZ dS)éN)Ú clientMTLPT)ÚServer)ÚThreadcs^eZdZ‡fdd„Zdd„Zdd„Zdd„Zd d „Zdd d „Zdd„Z dd„Z dd„Z ‡Z S)ÚFedMTLPTcsÚtƒ ||¡||_t| |j¡ƒ|_tj|j|j f|j d�|_ |j |_ t  |j |j f¡}t  |j df¡}|d|j |  |j¡d}| |j ¡|_g|_g|_| ¡| |t¡td|j ›d|j›�ƒtdƒdS)N©Údeviceééz Join clients / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__ÚargsÚlenÚflattenÚ global_modelÚdimÚtorchÚzerosÚ join_clientsrÚW_globÚonesÚmmÚTÚtoÚomegaÚclients_divergeÚdiff_proÚset_slow_clientsÚ set_clientsrÚprintÚ num_clients)Úselfr ÚtimesÚIÚir©Ú __class__©õcD:\京东\promot\第二次投稿\å®�验\æœ�务器\native - pro\system\flcore\servers\servermtlpt.pyr s zFedMTLPT.__init__c Cs¢g}t|jdƒD�]F}| ¡|_| ¡||jdkrXtd|›d�ƒtdƒ| ¡d}t|jƒD].\}}|  |j |j |¡|  ¡}||  ¡}qftd |¡ƒ|j |¡d}t|jdjj ¡|jdjj ¡ƒD]:\}} || } t | dk| t | ¡| ¡} |t | ¡}qÚtd |  ¡¡ƒ|j |  ¡¡||jdkrtdƒ|j|d �qtd ƒtt|jƒƒtd ƒtt|ƒƒ| ¡| ¡| ¡dS) Nrrz -------------Round number: z -------------z Evaluate global modelz"Averaged prompr difference: {:.4f}z"0 and 1 clients difference: {:.4f}z Evaluate local model)Úaccz Best global accuracy.z Best local accuracy.) ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚaggregate_parametersÚeval_gaprÚevaluateÚ enumerateÚreceive_valuesrrÚtrainÚitemÚformatrÚappendÚzipÚclientsÚmodelÚ generatorÚ parametersrÚwhereÚ zeros_likeÚsumrÚmaxÚ rs_test_accÚ save_resultsÚsave_global_modelÚsave_client_model) r Ú local_accr#Ú temp_diff_proÚidxÚclientÚtemp_diff_pro_clientÚdiverge_clentsÚ new_paramÚ old_paramrr&r&r'r2 sD  ÿ  zFedMTLPT.traincCs‚t|jƒdkst‚d}|jD]}||j7}qg|_g|_g|_|jD]8}|j |j|¡|j |j¡|j t   |j ¡¡qDdS)Nr) r r,ÚAssertionErrorÚ train_samplesÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsr5ÚidÚcopyÚdeepcopyr8)r Úactive_train_samplesrFr&r&r'Úreceive_modelsMs   zFedMTLPT.receive_modelscCstj d|jd|jjd|jjd|jjd|jjd|jj d|jj ¡}tj  |¡sjt  |¡t |jƒD]†\}}tj ||jdt|ƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒd¡}t |j|¡qtdS)NÚmodelsrFÚ*Ú_clientÚ_z.pt)ÚosÚpathÚjoinÚdatasetr Úarv1Úarv2Úarv3Úarv4Úarv5Úarv6ÚexistsÚmakedirsr0r7Ú algorithmÚstrÚ num_promptÚ join_ratiorÚ plocal_stepsr*rÚsaver8)r Ú model_pathÚc_idxÚcÚmodel_path_saver&r&r'rB[s T  pzFedMTLPT.save_client_modelc Cs€|jd|j}d|jjd|jjd|jjd|jjd|jjd|jjd}t j   |¡srt   |¡t |jƒ�r||d|jdt|jƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒ}|d |¡}td|ƒt |d¡�f}|jd|jd �|jd |jd �|jd |jd �|jd |jd �|jd |jd �|jd|j d �W5QRXdS)NrXz ../results/rVú/z{}.h5z File path: Úwr?)ÚdataÚrs_test_acc_stdÚ rs_test_aucÚ rs_train_lossrr)!r\rer r]r^r_r`rarbrYrZrcrdr r?Úgoalrfr!rgrhrrir*r4rÚh5pyÚFileÚcreate_datasetrrrsrtrr)r ÚalgoÚ result_pathÚ file_pathÚhfr&r&r'r@csL   l zFedMTLPT.save_resultsNc Cs|| ¡}| ¡}t|dƒdt|dƒ}t|dƒdt|dƒ}t|dƒdt|dƒ}t|dƒdt|dƒ}dd„t|d|dƒDƒ} dd„t|d|dƒDƒ} |dkrÎ|j |¡n | |¡|j |¡|j t  | ¡¡|dk�r|j  |¡n | |¡t d   |¡ƒt d   |¡ƒt d   |¡ƒt d   |¡ƒt d   t  | ¡¡ƒt d  t  | ¡¡ƒdS)Nr çğ?réécSsg|]\}}||‘qSr&r&©Ú.0ÚaÚnr&r&r'Ú <listcomp>sz%FedMTLPT.evaluate.<locals>.<listcomp>cSsg|]\}}||‘qSr&r&r€r&r&r'r„€szAveraged Train Loss: {:.4f}zAveraged Test Accurancy: {:.4f}z$Averaged Test oral Accurancy: {:.4f}zAveraged Test AUC: {:.4f}zStd Test Accurancy: {:.4f}zStd Test AUC: {:.4f}) Ú test_metricsÚ train_metricsr=r6r?r5rsrrÚnpÚstdrtrr4) r r(ÚlossÚstatsÚ stats_trainÚtest_accÚ test_acc2Útest_aucÚ train_lossÚaccsÚaucsr&r&r'r/vs,    zFedMTLPT.evaluatec Cs~g}g}g}g}|jD]H}| ¡\}}}} | |d¡| |d¡| | |¡| |¡qdd„|jDƒ} | ||||fS)Nr}cSsg|] }|j‘qSr&)rP)r�rmr&r&r'r„¢sz)FedMTLPT.test_metrics.<locals>.<listcomp>)r7r…r5) r Ú num_samplesÚ tot_correctÚ tot_correct2Útot_aucrmÚctÚct2ÚnsÚaucÚidsr&r&r'r…•s  zFedMTLPT.test_metricscs,| ¡‰ˆ ¡}‡fdd„|Dƒ}t |¡S)Ncsg|]}ˆ| ¡‘qSr&)r)r�Úkey©Ú state_dictr&r'r„©sz$FedMTLPT.flatten.<locals>.<listcomp>)r�ÚkeysrÚcat)r r8r�ÚWr&rœr'r¦szFedMTLPT.flattencCsLtj|j|jf|jd�|_t|jƒD]"\}}| |j ¡|jdd…|f<q$dS)Nr) rrrrrrr0r,rr8)r rErFr&r&r'r-¬szFedMTLPT.aggregate_parameters)NN) Ú__name__Ú __module__Ú __qualname__r r2rTrBr@r/r…rr-Ú __classcell__r&r&r$r'r s - r) rZflcore.clients.clientmtlptrÚflcore.servers.serverbaserÚ threadingrrvrQrYÚnumpyr‡rr&r&r&r'Ú<module>s   
6,744
Python
.pyt
57
117.122807
640
0.419258
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,962
serverperpt.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverperpt.cpython-38.pyc
U Õ şcGã@s`ddlmZddlmZddlmZddlZddlZddlZddl Z ddl Z Gdd„deƒZ dS)é)Ú clientPerPT)ÚServer)ÚThreadNcsNeZdZ‡fdd„Zdd„Zdd„Zdd„Zd d „Zdd d „Zdd„Z ‡Z S)ÚFedPerPTcsRtƒ ||¡| ¡| |t¡g|_g|_td|j›d|j ›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.) ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚclients_divergeÚdiff_proÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes©Ú __class__©õcD:\京东\promot\第二次投稿\å®�验\æœ�务器\native - pro\system\flcore\servers\serverperpt.pyr s zFedPerPT.__init__c Csšg}t|jdƒD�]>}| ¡|_| ¡||jdkrXtd|›d�ƒtdƒ| ¡d}|jD]}| ¡}||  ¡}qbtd  |¡ƒ|j   |¡d}t |jdjj ¡|jdjj ¡ƒD]:\}}||} t | dk| t | ¡| ¡} |t | ¡}qÀtd  |  ¡¡ƒ|j  |  ¡¡||jdk�rBtdƒ|j|d �| ¡| ¡qtd ƒtt|jƒƒtd ƒtt|ƒƒ| ¡| ¡| ¡dS) Nérz -------------Round number: z -------------z Evaluate global modelz"Averaged prompr difference: {:.4f}z"0 and 1 clients difference: {:.4f}z Evaluate local model)Úaccz Best global accuracy.z Best local accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚitemÚformatr ÚappendÚzipÚclientsÚmodelÚ generatorÚ parametersÚtorchÚwhereÚ zeros_likeÚsumr Úreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚ save_resultsÚsave_global_modelÚsave_client_model) rÚ local_accÚiÚ temp_diff_proÚclientÚtemp_diff_pro_clientÚdiverge_clentsÚ new_paramÚ old_paramr rrrrsF   ÿ    zFedPerPT.traincCstj d|jd|jjd|jjd|jjd|jjd|jj d|jj ¡}tj  |¡sjt  |¡t |jƒD]†\}}tj ||jdt|ƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒd¡}t |j|¡qtdS)NÚmodelsr6Ú*Ú_clientÚ_z.pt)ÚosÚpathÚjoinÚdatasetrÚarv1Úarv2Úarv3Úarv4Úarv5Úarv6ÚexistsÚmakedirsÚ enumerater$Ú algorithmÚstrÚ num_promptr rÚ plocal_stepsrr(Úsaver%)rÚ model_pathÚc_idxÚcÚmodel_path_saverrrr2Es T  pzFedPerPT.save_client_modelcCs�t|jƒdkst‚g|_d}g|_g|_|jD]8}|j |j¡||j7}|j |j¡|j |j ¡q.t |jƒD]\}}|||j|<qrdS)Nr) ÚlenrÚAssertionErrorÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsr"Ú train_samplesÚidr%rK)rÚ tot_samplesr6r4Úwrrrr,Ms  zFedPerPT.receive_modelsc Cs |jd|j}d|jjd|jjd|jjd|jjd|jjd|jjd}t j   |¡srt   |¡t |jƒ�r|d|jdt|jƒ}|d |¡}td|ƒt |d¡�V}|jd|jd �|jd |jd �|jd |jd �|jd |jd �|jd |jd �W5QRXdS)Nr>z ../results/r<ú/z{}.h5z File path: r]r/)ÚdataÚrs_test_acc_stdÚ rs_test_aucÚ rs_train_lossr )rBrLrrCrDrErFrGrHr?r@rIrJrUr/ÚgoalrMrr!r Úh5pyÚFileÚcreate_datasetr`rarbr )rÚalgoÚ result_pathÚ file_pathÚhfrrrr0\sL    zFedPerPT.save_resultsNc Cs|| ¡}| ¡}t|dƒdt|dƒ}t|dƒdt|dƒ}t|dƒdt|dƒ}t|dƒdt|dƒ}dd„t|d|dƒDƒ} dd„t|d|dƒDƒ} |dkrÎ|j |¡n | |¡|j |¡|j t  | ¡¡|dk�r|j  |¡n | |¡t d   |¡ƒt d   |¡ƒt d   |¡ƒt d   |¡ƒt d   t  | ¡¡ƒt d  t  | ¡¡ƒdS)Néçğ?réécSsg|]\}}||‘qSrr©Ú.0ÚaÚnrrrÚ <listcomp>vsz%FedPerPT.evaluate.<locals>.<listcomp>cSsg|]\}}||‘qSrrrorrrrswszAveraged Train Loss: {:.4f}zAveraged Test Accurancy: {:.4f}z$Averaged Test oral Accurancy: {:.4f}zAveraged Test AUC: {:.4f}zStd Test Accurancy: {:.4f}zStd Test AUC: {:.4f}) Ú test_metricsÚ train_metricsr+r#r/r"rar`ÚnpÚstdrbr r!) rrÚlossÚstatsÚ stats_trainÚtest_accÚ test_acc2Útest_aucÚ train_lossÚaccsÚaucsrrrrms,    zFedPerPT.evaluatec Cs~g}g}g}g}|jD]H}| ¡\}}}} | |d¡| |d¡| | |¡| |¡qdd„|jDƒ} | ||||fS)NrlcSsg|] }|j‘qSr)r[)rprSrrrrsšsz)FedPerPT.test_metrics.<locals>.<listcomp>)r$rtr") rÚ num_samplesÚ tot_correctÚ tot_correct2Útot_aucrSÚctÚct2ÚnsÚaucÚidsrrrrt‹s  zFedPerPT.test_metrics)NN) Ú__name__Ú __module__Ú __qualname__rrr2r,r0rrtÚ __classcell__rrrrr s - r) Zflcore.clients.clientperptrÚflcore.servers.serverbaserÚ threadingrrdÚcopyr?r(ÚnumpyrvrrrrrÚ<module>s   
5,687
Python
.pyt
52
108.153846
496
0.432044
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,963
serverdynpt.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverdynpt.cpython-37.pyc
B ‰½ccÉã@shddlZddlZddlmZddlmZddlmZddlZddl Z ddlZddl Z Gdd„deƒZ dS)éN)Ú clientDynPT)ÚServer)ÚThreadcsLeZdZ‡fdd„Zdd„Zdd„Zdd„Zd d „Zd d „Zd d„Z ‡Z S)ÚFedDynPTcs�tƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒg|_g|_ |j |_ g|_ t   |j¡|_x |j ¡D]}t |j¡|_qvWdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clientsÚBudgetÚdiff_proÚalphaÚclients_divergeÚcopyÚdeepcopyÚmodelÚ server_stateÚ parametersÚtorchÚ zeros_likeÚdata)ÚselfÚargsÚtimesÚparam)Ú __class__©úH/root/autodl-tmp/PFL-Non-IID-master/system/flcore/servers/serverdynpt.pyr s zFedDynPT.__init__c Cs,g}d|_d}�x¬t|jdƒD�]˜}t ¡}| ¡|_| ¡||jdkrntd|›d�ƒtdƒ|  ¡d}x"|jD]}|  ¡}||  ¡}qzWtd  |¡ƒ|j  |¡d}xdt|jdjj ¡|jdjj ¡ƒD]:\}} || } t | dk| t | ¡| ¡} |t | ¡}qÜWtd  |  ¡¡ƒ|j |  ¡¡||jdk�r`td ƒ|j |d �| ¡| ¡| ¡|j t ¡|¡td |jd ƒ|j|jg|jd �|_|d7}q Wtdƒtt |jƒƒtdƒtt |ƒƒtdƒtt|jdd…ƒt!|jdd…ƒƒ| "¡| #¡dS)NFréz -------------Round number: z -------------z Evaluate global modelz"Averaged prompr difference: {:.4f}z"0 and 1 clients difference: {:.4f}z Evaluate local model)Úaccz2--------------------------------------------------éÿÿÿÿ)Úacc_lssÚtop_cntz Best global accuracy.z Best local accuracy.z Averaged time per iteration.)$ÚdoneÚrangeÚ global_roundsÚtimeÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚitemÚformatrÚappendÚzipÚclientsrÚ generatorrrÚwhererÚsumrÚreceive_modelsÚupdate_server_stateÚaggregate_parametersr Ú check_doneÚ rs_test_accr$ÚmaxÚlenÚ save_resultsÚsave_global_model) rÚ local_accÚiÚs_tÚ temp_diff_proÚclientÚtemp_diff_pro_clientÚdiverge_clentsÚ new_paramÚ old_paramrrrrr. sT   0   (zFedDynPT.traincCs@x:t|j ¡| ¡ƒD]"\}}|j|j ¡|j7_qWdS)N)r2Ú global_modelrrÚcloneÚ join_clients)rÚ client_modelÚ server_paramÚ client_paramrrrÚadd_parameters\szFedDynPT.add_parameterscCs t|jƒdkst‚t |jd¡|_x |j ¡D]}t |j ¡|_ q0Wx|jD]}|  |¡qNWx:t |j ¡|j  ¡ƒD] \}}|j d|j |8_ qxWdS)Nrr )r=Úuploaded_modelsÚAssertionErrorrrrIrrrrrOr2rr)rrrLrMÚ state_paramrrrr9`s  zFedDynPT.aggregate_parameterscCsÎt|jƒdkst‚t |jd¡}x| ¡D]}t |j¡|_q,WxP|jD]F}x@t |j  ¡| ¡| ¡ƒD]"\}}}|j|||j 7_qjWqJWx4t |j  ¡| ¡ƒD]\}}|j|j |8_qªWdS)Nr)r=rPrQrrrrrrr2rIr rr)rÚ model_deltarrLrMrNÚ delta_paramrRrrrr8ms   zFedDynPT.update_server_statecCsŠt|jƒdkst‚d}x|jD]}||j7}qWg|_g|_g|_xB|jD]8}|j |j|¡|j |j¡|j t   |j ¡¡qJWdS)Nr) r=r*rQÚ train_samplesÚuploaded_weightsÚ uploaded_idsrPr1Úidrrr)rÚactive_train_samplesrDrrrr7{s  zFedDynPT.receive_modelsc CsÖ|jd|j}d}tj |¡s*t |¡t|jƒrÒ|d|jdt |j ƒ}|d  |¡}t d|ƒt  |d¡�V}|jd|jd�|jd|jd�|jd |jd�|jd |jd�|jd |jd�WdQRXdS) NÚ_z ../results/z{}.h5z File path: Úwr;)rÚrs_test_acc_stdÚ rs_test_aucÚ rs_train_lossr)ÚdatasetÚ algorithmÚosÚpathÚexistsÚmakedirsr=r;ÚgoalÚstrrr0r Úh5pyÚFileÚcreate_datasetr\r]r^r)rÚalgoÚ result_pathÚ file_pathÚhfrrrr>‰s    zFedDynPT.save_results) Ú__name__Ú __module__Ú __qualname__rr.rOr9r8r7r>Ú __classcell__rr)rrr s < r) rrZ!system.flcore.clients.clientdynptrÚ system.flcore.servers.serverbaserÚ threadingrr(rgrarrrrrÚ<module>s   
4,852
Python
.pyt
39
123.179487
482
0.439551
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,964
serverproxpt.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverproxpt.cpython-38.pyc
U Õ şcœã@s`ddlmZddlmZddlmZddlZddlZddlZddl Z ddl Z Gdd„deƒZ dS)é)Ú clientProxPT)ÚServer)ÚThreadNcsNeZdZ‡fdd„Zdd„Zdd„Zdd„Zd d „Zdd d „Zdd„Z ‡Z S)Ú FedProxPTcsftƒ ||¡||_| ¡| |t¡g|_g|_t  |j ¡|_ t d|j ›d|j›�ƒt dƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__ÚargsÚset_slow_clientsÚ set_clientsrÚclients_divergeÚdiff_proÚcopyÚdeepcopyÚmodelÚ global_modelÚprintÚ join_ratioÚ num_clients)ÚselfrÚtimes©Ú __class__©õdD:\京东\promot\第二次投稿\å®�验\æœ�务器\native - pro\system\flcore\servers\serverproxpt.pyr s zFedProxPT.__init__c Csšg}t|jdƒD�]>}| ¡|_| ¡||jdkrXtd|›d�ƒtdƒ| ¡d}|jD]}| ¡}||  ¡}qbtd  |¡ƒ|j   |¡d}t |jdjj ¡|jdjj ¡ƒD]:\}}||} t | dk| t | ¡| ¡} |t | ¡}qÀtd  |  ¡¡ƒ|j  |  ¡¡||jdk�rBtdƒ|j|d �| ¡| ¡qtd ƒtt|jƒƒtd ƒtt|ƒƒ| ¡| ¡| ¡dS) Nérz -------------Round number: z -------------z Evaluate global modelz"Averaged prompr difference: {:.4f}z"0 and 1 clients difference: {:.4f}z Evaluate local model)Úaccz Best global accuracy.z Best local accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gaprÚevaluateÚtrainÚitemÚformatr ÚappendÚzipÚclientsrÚ generatorÚ parametersÚtorchÚwhereÚ zeros_likeÚsumr Úreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚ save_resultsÚsave_global_modelÚsave_client_model) rÚ local_accÚiZ temp_diff_proÚclientZtemp_diff_pro_clientZdiverge_clentsÚ new_paramÚ old_paramr rrrr#sF   ÿ    zFedProxPT.traincCs‚t|jƒdkst‚d}|jD]}||j7}qg|_g|_g|_|jD]8}|j |j|¡|j |j¡|j t   |j ¡¡qDdS)Nr) ÚlenrÚAssertionErrorÚ train_samplesÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsr&Úidr rr)rZactive_train_samplesr8rrrr/Hs   zFedProxPT.receive_modelscCstj d|jd|jjd|jjd|jjd|jjd|jj d|jj ¡}tj  |¡sjt  |¡t |jƒD]†\}}tj ||jdt|ƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒd¡}t |j|¡qtdS)NÚmodelsr8Ú*Z_clientÚ_z.pt)ÚosÚpathÚjoinÚdatasetrÚarv1Úarv2Úarv3Úarv4Úarv5Úarv6ÚexistsÚmakedirsÚ enumerater(Ú algorithmÚstrÚ num_promptrrÚ plocal_stepsrr+Úsaver)rÚ model_pathÚc_idxÚcZmodel_path_saverrrr5Vs T  pzFedProxPT.save_client_modelc Cs€|jd|j}d|jjd|jjd|jjd|jjd|jjd|jjd}t j   |¡srt   |¡t |jƒ�r||d|jdt|jƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒ}|d |¡}td|ƒt |d¡�f}|jd|jd �|jd |jd �|jd |jd �|jd |jd �|jd |jd �|jd|j d �W5QRXdS)NrDz ../results/rCú/z{}.h5z File path: Úwr2)ÚdataÚrs_test_acc_stdÚ rs_test_aucÚ rs_train_lossr r )!rHrRrrIrJrKrLrMrNrErFrOrPr;r2ÚgoalrSrrTrrrUrr%rÚh5pyÚFileÚcreate_datasetr]r^r_r r )rÚalgoÚ result_pathÚ file_pathÚhfrrrr3^sL   l zFedProxPT.save_resultsNc Cs|| ¡}| ¡}t|dƒdt|dƒ}t|dƒdt|dƒ}t|dƒdt|dƒ}t|dƒdt|dƒ}dd„t|d|dƒDƒ} dd„t|d|dƒDƒ} |dkrÎ|j |¡n | |¡|j |¡|j t  | ¡¡|dk�r|j  |¡n | |¡t d   |¡ƒt d   |¡ƒt d   |¡ƒt d   |¡ƒt d   t  | ¡¡ƒt d  t  | ¡¡ƒdS)Néçğ?réécSsg|]\}}||‘qSrr©Ú.0ÚaÚnrrrÚ <listcomp>zsz&FedProxPT.evaluate.<locals>.<listcomp>cSsg|]\}}||‘qSrrrlrrrrp{szAveraged Train Loss: {:.4f}zAveraged Test Accurancy: {:.4f}z$Averaged Test oral Accurancy: {:.4f}zAveraged Test AUC: {:.4f}zStd Test Accurancy: {:.4f}zStd Test AUC: {:.4f}) Ú test_metricsÚ train_metricsr.r'r2r&r^r]ÚnpÚstdr_rr%) rrÚlossÚstatsÚ stats_trainÚtest_accZ test_acc2Útest_aucÚ train_lossÚaccsÚaucsrrrr"qs,    zFedProxPT.evaluatec Cs~g}g}g}g}|jD]H}| ¡\}}}} | |d¡| |d¡| | |¡| |¡qdd„|jDƒ} | ||||fS)NricSsg|] }|j‘qSr)rA)rmrYrrrrp�sz*FedProxPT.test_metrics.<locals>.<listcomp>)r(rqr&) rÚ num_samplesÚ tot_correctZ tot_correct2Útot_aucrYÚctÚct2ÚnsÚaucÚidsrrrrq�s  zFedProxPT.test_metrics)NN) Ú__name__Ú __module__Ú __qualname__rr#r/r5r3r"rqÚ __classcell__rrrrr s . r) Zflcore.clients.clientproxptrÚflcore.servers.serverbaserÚ threadingrrar rEr+ÚnumpyrsrrrrrÚ<module>s   
5,886
Python
.pyt
51
114.156863
497
0.43146
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,965
serverbabu.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverbabu.cpython-39.pyc
a f¾`c•ã@s8ddlmZddlmZddlmZGdd„deƒZdS)é)Ú clientBABU)ÚServer)ÚThreadcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)ÚFedBABUcsFtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes©Ú __class__©ús/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/servers/serverbabu.pyrs  zFedBABU.__init__cCsÆt|jdƒD]h}| ¡|_| ¡||jdkrRtd|›d�ƒtdƒ| ¡|jD] }| ¡qX|  ¡|  ¡qtdƒtt |j ƒƒ|j D] }| ¡q”tdƒ| ¡| ¡| ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz Best global accuracy.z4 -------------Evaluate fine-tuned model-------------)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚclientsZ fine_tuneÚ save_resultsÚsave_global_model)r ÚiÚclientrrrrs&      z FedBABU.traincCs�t|jƒdksJ‚g|_d}g|_g|_|jD]:}|j |j¡||j7}|j |j¡|j |jj ¡q.t |jƒD]\}}|||j|<qtdS)Nr) ÚlenrÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsÚappendÚ train_samplesÚidÚmodelÚbaseÚ enumerate)r Ú tot_samplesr%r$Úwrrrr7s  zFedBABU.receive_models)Ú__name__Ú __module__Ú __qualname__rrrÚ __classcell__rrrrrs #rN)Zflcore.clients.clientbaburÚflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s   
2,038
Python
.pyt
22
91.454545
232
0.481904
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,966
serverreppt.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverreppt.cpython-39.pyc
a Òibck ã@sXddlmZddlmZddlmZddlZddlZddlZddl Z Gdd„deƒZ dS)é)Ú clientREPPT)ÚServer)ÚThreadNcs4eZdZ‡fdd„Zdd„Zdd„Zdd„Z‡ZS) Ú PFedRepPTcs\tƒ ||¡| ¡| |t¡t |jj¡|_ t d|j ›d|j ›�ƒt dƒg|_ dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚcopyÚdeepcopyÚmodelÚbaseÚ global_modelÚprintÚ join_ratioÚ num_clientsÚBudget)ÚselfÚargsÚtimes©Ú __class__©út/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/servers/serverreppt.pyr s zPFedRepPT.__init__cCs t|jdƒD]˜}t ¡}| ¡|_| ¡||jdkrZtd|›d�ƒtdƒ| ¡|jD] }|  ¡q`|  ¡|  ¡|j   t ¡|¡tddd|j dƒqtd ƒtt|jƒƒtd ƒtt|j dd…ƒt|j dd…ƒƒ| ¡| ¡| ¡dS) Nérz -------------Round number: z -------------z Evaluate global modelz-------------------------z time costéÿÿÿÿz Best global accuracy.z Average time cost per round.)ÚrangeÚ global_roundsÚtimeÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gaprÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersrÚappendÚmaxÚ rs_test_accÚsumÚlenÚ save_resultsÚsave_global_modelÚsave_client_model)rÚiÚs_tÚclientrrrr$s*   (zPFedRepPT.traincCs„t|jƒdksJ‚d}|jD]}||j7}qg|_g|_g|_|jD]:}|j |j|¡|j |j¡|j t  |j j ¡¡qDdS)Nr) r+r Ú train_samplesÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsr'Úidr r r r )rÚactive_train_samplesr1rrrr%@s   zPFedRepPT.receive_modelscCsntj d|jd¡}tj |¡s(t |¡t|jƒD]6\}}tj ||jdt |ƒd¡}t   |j |¡q2dS)NÚmodelsr1Ú_serverz.pt) ÚosÚpathÚjoinÚdatasetÚexistsÚmakedirsÚ enumerateÚclientsÚ algorithmÚstrÚtorchÚsaver )rÚ model_pathÚc_idxÚcÚmodel_path_saverrrr.Ns    zPFedRepPT.save_client_model)Ú__name__Ú __module__Ú __qualname__rr$r%r.Ú __classcell__rrrrr s &r) Z!system.flcore.clients.clientrepptrÚ system.flcore.servers.serverbaserÚ threadingrrr rDr:rrrrrÚ<module>s   
2,705
Python
.pyt
27
98.925926
326
0.483763
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,967
serverlocal.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverlocal.cpython-38.pyc
U ºĞıccã@s8ddlmZddlmZddlmZGdd„deƒZdS)é)Ú clientAVG)ÚServer)ÚThreadcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚLocalcsFtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes©Ú __class__©õYD:\京东\promot\第二次投稿\å®�验\native - pro\system\flcore\servers\serverlocal.pyrs  zLocal.__init__cCsÎg}t|jdƒD]|}| ¡|_||jdkrNtd|›d�ƒtdƒ| ¡| ¡|_|jD] }| ¡q^||jdkrtdƒ|j|d�qtdƒtt|j ƒƒtd ƒtt|ƒƒ|  ¡|  ¡dS) Nérz -------------Round number: z -------------z Evaluate global modelz Evaluate local model)Úaccz Best global accuracy.z Best local accuracy.) ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚeval_gapr ÚevaluateÚtrainÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)r Ú local_accÚiÚclientrrrrs&     z Local.train)Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__rrrrrs rN)Úflcore.clients.clientavgrÚflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s   
1,535
Python
.pyt
18
84.055556
318
0.480896
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,968
serverfedpt.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverfedpt.cpython-37.pyc
B ÐecÓã@s`ddlmZddlmZddlmZddlZddlZddlZddl Z ddl Z Gdd„deƒZ dS)é)ÚclientT)ÚServer)ÚThreadNcs<eZdZ‡fdd„Zdd„Zdd„Zdd„Zd d „Z‡ZS) ÚFedPTcsntƒ ||¡||_| ¡| |t¡t |jj ¡|_ g|_ g|_ t d|j›d|j›�ƒt dƒg|_dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__ÚargsÚset_slow_clientsÚ set_clientsrÚcopyÚdeepcopyÚmodelÚbaseÚ global_modelÚdiff_proÚclients_divergeÚprintÚ join_ratioÚ num_clientsÚBudget)ÚselfrÚtimes)Ú __class__©úH/root/autodl-tmp/PFL-Non-IID-master/system/flcore/servers/serverfedpt.pyr s zFedPT.__init__c CsÌ�xft|jdƒD�]R}t ¡}| ¡|_| ¡||jdkr`td|›d�ƒtdƒ| ¡d}x"|jD]}|  ¡}||  ¡}qlWd}xdt |j dj j ¡|j dj j ¡ƒD]:\}}||} t | dk| t | ¡| ¡} |t | ¡}q´Wtd |¡ƒtd |  ¡¡ƒ|j |¡|j |  ¡¡| ¡| ¡|j t ¡|¡tdd d|jd ƒqWtd ƒtt|jƒƒtd ƒtt|jdd…ƒt|jdd…ƒƒ| ¡| ¡|  ¡dS) Nérz -------------Round number: z -------------z Evaluate global modelz"Averaged prompr difference: {:.4f}z"0 and 1 clients difference: {:.4f}z-------------------------z time costéÿÿÿÿz Best global accuracy.z Average time cost per round.)!ÚrangeÚ global_roundsÚtimeÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gaprÚevaluateÚtrainÚitemÚzipÚclientsr Ú generatorÚ parametersÚtorchÚwhereÚ zeros_likeÚsumÚformatrÚappendrÚreceive_modelsÚaggregate_parametersrÚmaxÚ rs_test_accÚlenÚ save_resultsÚsave_global_modelÚsave_client_model) rÚiÚs_tÚ temp_diff_proÚclientÚtemp_diff_pro_clientÚdiverge_clentsÚ new_paramÚ old_paramrrrrr%s@  0 (z FedPT.traincCsŒt|jƒdkst‚d}x|jD]}||j7}qWg|_g|_g|_xD|jD]:}|j |j|¡|j |j¡|j t   |j j ¡¡qJWdS)Nr) r5r!ÚAssertionErrorÚ train_samplesÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsr0Úidr r r r)rÚactive_train_samplesr<rrrr1Os  zFedPT.receive_modelscCsÂtj d|jd¡}tj |¡s(t |¡x”t|jƒD]†\}}tj ||jdt |ƒdt |j j ƒdt |j j ƒdt |j j ƒdt |j jƒdt |j jƒd¡}t |j|¡q4WdS)NÚmodelsr<Ú_clientÚ_z.pt)ÚosÚpathÚjoinÚdatasetÚexistsÚmakedirsÚ enumerater(Ú algorithmÚstrrÚ num_promptrrÚ plocal_stepsrr+Úsaver )rÚ model_pathÚc_idxÚcÚmodel_path_saverrrr8]s   pzFedPT.save_client_modelc Cs8|jd|j}d}tj |¡s*t |¡t|jƒ�r4|d|jdt |j ƒdt |j j ƒdt |j j ƒdt |j jƒdt |j jƒdt |j jƒ}|d |¡}td|ƒt |d¡�f}|jd|jd�|jd|jd�|jd |jd�|jd |jd�|jd |jd�|jd |jd�WdQRXdS) NrJz ../results/z{}.h5z File path: Úwr4)ÚdataÚrs_test_acc_stdÚ rs_test_aucÚ rs_train_lossrr)rNrRrKrLrOrPr5r4ÚgoalrSrrrTrrrUrr/rÚh5pyÚFileÚcreate_datasetr]r^r_rr)rÚalgoÚ result_pathÚ file_pathÚhfrrrr6es   l zFedPT.save_results) Ú__name__Ú __module__Ú __qualname__rr%r1r8r6Ú __classcell__rr)rrr s  2r) Zsystem.flcore.clients.clienttrÚ system.flcore.servers.serverbaserÚ threadingrrr+rKrar rrrrrÚ<module>s   
4,029
Python
.pyt
36
110.666667
397
0.457687
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,969
serverfomo.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverfomo.cpython-39.pyc
a f¾`ciã@s`ddlZddlZddlZddlZddlZddlmZddlm Z ddl m Z Gdd„de ƒZ dS)éN)Ú clientFomo)ÚServer)ÚThreadcs4eZdZ‡fdd„Zdd„Zdd„Zdd„Z‡ZS) ÚFedFomocs€tƒ ||¡| ¡| |t¡t tj|j|j d�¡|_ |j g|_ g|_ t|j|jƒ|_td|j›d|j›�ƒtdƒdS)N)Údevicez Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚtorchÚdiagÚonesÚ num_clientsrÚPÚ global_modelÚuploaded_modelsÚ uploaded_idsÚminÚMÚ join_clientsÚprintÚ join_ratio)ÚselfÚargsÚtimes©Ú __class__©ús/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/servers/serverfomo.pyr s  zFedFomo.__init__cCsšt|jdƒD]`}| ¡|_| ¡||jdkrRtd|›d�ƒtdƒ| ¡|jD] }| ¡qX|  ¡qtdƒtt |j ƒƒ|  ¡|  ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz Best global accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gaprÚevaluateÚtrainÚreceive_modelsÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)rÚiÚclientrrrr's    z FedFomo.traincCsøt|jƒdksJ‚|jD]Ú}t ¡}|jrDt dt tj ¡¡¡t|j ƒdkrÂt |j t|j ƒƒ}t  |j|j|j |¡j ¡}g}g}|D]$}| |j |¡| |j |¡q�| ||¡|jdd7<|jddt ¡|7<qdS)Nrgš™™™™™¹?Ú num_roundsrÚ total_costé)Úlenr#ÚtimeÚ send_slowÚsleepÚnpÚabsÚrandomÚrandrrrrr ÚtopkrÚidÚindicesÚtolistÚappendr(Úsend_time_cost)rr.Ú start_timeZM_r<rrr-rrrr$9s    zFedFomo.send_modelscCsøt|jƒdksJ‚t |jtd|j|jƒ¡}g|_g|_d}g|_ |D]†}|j d|j d|j d|j d}||j krJ|j  |j¡|j  |j¡||j7}|j   t |j¡¡|j|j|j7<qJt|jƒD]\}}|||j|<qÜdS)Nrrr0r/)r2r#r8ÚsampleÚintÚclient_drop_raterrÚuploaded_weightsrÚtrain_time_costr?Útime_thretholdr>r;Ú train_samplesÚcopyÚdeepcopyÚmodelrZ weight_vectorÚ enumerate)rZactive_clientsÚ tot_samplesr.Zclient_time_costr-Úwrrrr(Ps(ÿÿ  zFedFomo.receive_models)Ú__name__Ú __module__Ú __qualname__rr'r$r(Ú __classcell__rrrrr s r) r r3rHr8Únumpyr6Zflcore.clients.clientfomorÚflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s   
3,014
Python
.pyt
26
114.807692
501
0.457009
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,970
serverditto.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverditto.cpython-39.pyc
a f¾`cüã@sHddlZddlmZddlmZddlmZddlZGdd„deƒZdS)éN)Ú clientDitto)ÚServer)ÚThreadcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚDittocsLtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒg|_dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.) ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clientsÚBudget)ÚselfÚargsÚtimes©Ú __class__©út/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/servers/serverditto.pyr s  zDitto.__init__cCs t|jdƒD] }t ¡}| ¡|_| ¡||jdkrZtd|›d�ƒtdƒ| ¡|jD]}|  ¡|  ¡q`|  ¡|  ¡|j  t ¡|¡tddd|j dƒqtd ƒtt|jƒƒtd ƒtt|j dd…ƒt|j dd…ƒƒ| ¡| ¡dS) Nérz -------------Round number: z -------------z Evaluate global modelz-------------------------z time costéÿÿÿÿz Best global accuracy.z Average time cost per round.)ÚrangeÚ global_roundsÚtimeÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateZptrainÚtrainÚreceive_modelsÚaggregate_parametersr ÚappendÚmaxÚ rs_test_accÚsumÚlenÚ save_resultsÚsave_global_model)rÚiÚs_tÚclientrrrrs*   (z Ditto.train)Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__rrrrrs r) ÚcopyZflcore.clients.clientdittorÚflcore.servers.serverbaserÚ threadingrrrrrrrÚ<module>s    
1,777
Python
.pyt
17
103.235294
343
0.488927
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,971
serverfomo.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverfomo.cpython-37.pyc
B ¸:cciã@s`ddlZddlZddlZddlZddlZddlmZddlm Z ddl m Z Gdd„de ƒZ dS)éN)Ú clientFomo)ÚServer)ÚThreadcs4eZdZ‡fdd„Zdd„Zdd„Zdd„Z‡ZS) ÚFedFomocs€tƒ ||¡| ¡| |t¡t tj|j|j d�¡|_ |j g|_ g|_ t|j|jƒ|_td|j›d|j›�ƒtdƒdS)N)Údevicez Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚtorchÚdiagÚonesÚ num_clientsrÚPÚ global_modelÚuploaded_modelsÚ uploaded_idsÚminÚMÚ join_clientsÚprintÚ join_ratio)ÚselfÚargsÚtimes)Ú __class__©úG/root/autodl-tmp/PFL-Non-IID-master/system/flcore/servers/serverfomo.pyr s  zFedFomo.__init__cCs¢xvt|jdƒD]d}| ¡|_| ¡||jdkrTtd|›d�ƒtdƒ| ¡x|jD] }| ¡q\W|  ¡qWtdƒtt |j ƒƒ|  ¡|  ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz Best global accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gaprÚevaluateÚtrainÚreceive_modelsÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)rÚiÚclientrrrr&s    z FedFomo.traincCst|jƒdkst‚xè|jD]Ş}t ¡}|jrFt dt tj  ¡¡¡t|j ƒdkrÈt |j t|j ƒƒ}t |j|j|j |¡j ¡}g}g}x,|D]$}| |j |¡| |j |¡q”W| ||¡|jdd7<|jddt ¡|7<qWdS)Nrgš™™™™™¹?Ú num_roundsrÚ total_costé)Úlenr"ÚAssertionErrorÚtimeÚ send_slowÚsleepÚnpÚabsÚrandomÚrandrrrrr ÚtopkrÚidÚindicesÚtolistÚappendr'Úsend_time_cost)rr-Ú start_timeZM_r<rrr,rrrr#9s     zFedFomo.send_modelscCst|jƒdkst‚t |jtd|j|jƒ¡}g|_g|_ d}g|_ x�|D]†}|j d|j d|j d|j d}||j krL|j |j¡|j  |j¡||j7}|j  t |j¡¡|j|j|j7<qLWx$t|j ƒD]\}}|||j |<qâWdS)Nrrr/r.)r1r"r2r8ÚsampleÚintÚclient_drop_raterrÚuploaded_weightsrÚtrain_time_costr?Útime_thretholdr>r;Ú train_samplesÚcopyÚdeepcopyÚmodelrZ weight_vectorÚ enumerate)rZactive_clientsÚ tot_samplesr-Zclient_time_costr,Úwrrrr'Ps$   zFedFomo.receive_models)Ú__name__Ú __module__Ú __qualname__rr&r#r'Ú __classcell__rr)rrr s r) r r3rHr8Únumpyr6Zflcore.clients.clientfomorÚflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s   
2,989
Python
.pyt
26
113.807692
422
0.45614
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,972
serverapfl.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverapfl.cpython-39.pyc
a f¾`c®ã@s8ddlmZddlmZddlmZGdd„deƒZdS)é)Ú clientAPFL)ÚServer)ÚThreadcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚAPFLcsFtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes©Ú __class__©ús/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/servers/serverapfl.pyrs  z APFL.__init__cCs¢t|jdƒD]h}| ¡|_| ¡||jdkrRtd|›d�ƒtdƒ| ¡|jD] }| ¡qX|  ¡|  ¡qtdƒtt |j ƒƒ|  ¡| ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz Best global accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)r ÚiÚclientrrrrs    z APFL.train)Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__rrrrrs rN)Zflcore.clients.clientapflrÚflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s   
1,492
Python
.pyt
17
86.529412
225
0.500678
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,973
serverbn.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverbn.cpython-38.pyc
U ”jfcãã@sLddlmZddlmZddlmZddlmZddlZGdd„deƒZ dS)é)ÚclientBN)ÚServer)Úread_client_data)ÚThreadNcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚFedBNcsFtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes©Ú __class__©õJD:\京东\promot\cifar\cifar\Cifar10_iid\system\flcore\servers\serverbn.pyr s  zFedBN.__init__cCs¢t|jdƒD]h}| ¡|_| ¡||jdkrRtd|›d�ƒtdƒ| ¡|jD] }| ¡qX|  ¡|  ¡qtdƒtt |j ƒƒ|  ¡| ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz Best global accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)rÚiÚclientrrrrs    z FedBN.train)Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__rrrrrs r) Zflcore.clients.clientbnrÚflcore.servers.serverbaserÚutils.data_utilsrÚ threadingrÚtimerrrrrÚ<module>s    
1,526
Python
.pyt
16
94.125
358
0.494375
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,974
serverreppt.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverreppt.cpython-38.pyc
U Õ şc¡ã@spddlmZddlmZddlmZddlZddlZddlZddl Z ddl Z ddlZddl Z Gdd„deƒZ dS)é)Ú clientREPPT)ÚServer)ÚThreadNcsNeZdZ‡fdd„Zdd„Zdd„Zdd„Zd d „Zdd d „Zdd„Z ‡Z S)Ú PFedRepPTcsntƒ ||¡||_| ¡| |t¡t |jj ¡|_ g|_ g|_ t d|j›d|j›�ƒt dƒg|_dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__ÚargsÚset_slow_clientsÚ set_clientsrÚcopyÚdeepcopyÚmodelÚbaseÚ global_modelÚdiff_proÚclients_divergeÚprintÚ join_ratioÚ num_clientsÚBudget)ÚselfrÚtimes©Ú __class__©õcD:\京东\promot\第二次投稿\å®�验\æœ�务器\native - pro\system\flcore\servers\serverreppt.pyr s zPFedRepPT.__init__c Csúg}t|jdƒD�]n}t ¡}| ¡|_| ¡||jdkr`td|›d�ƒtdƒ| ¡d}|jD]}|  ¡}||  ¡}qjd}t |j dj j ¡|j dj j ¡ƒD]:\}} || } t | dk| t | ¡| ¡} |t | ¡}q®td |  ¡¡ƒ|j |  ¡¡td |¡ƒ|j |¡||jdk�rJtdƒ|j|d �| ¡| ¡|j t ¡|¡td d d |jd ƒqtd ƒtt|jƒƒtdƒtt|jdd…ƒt|jdd…ƒƒtdƒtt|ƒƒ| ¡| ¡|  ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz"0 and 1 clients difference: {:.4f}z"Averaged prompr difference: {:.4f}z Evaluate local model)Úaccz-------------------------z time costéÿÿÿÿz Best global accuracy.z Average time cost per round.z Best local accuracy.)!ÚrangeÚ global_roundsÚtimeÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gaprÚevaluateÚtrainÚitemÚzipÚclientsr Ú generatorÚ parametersÚtorchÚwhereÚ zeros_likeÚsumÚformatrÚappendrÚreceive_modelsÚaggregate_parametersrÚmaxÚ rs_test_accÚlenÚ save_resultsÚsave_global_modelÚsave_client_model) rÚ local_accÚiÚs_tÚ temp_diff_proÚclientÚtemp_diff_pro_clientÚdiverge_clentsÚ new_paramÚ old_paramrrrrr'sL  .  ( zPFedRepPT.traincCs„t|jƒdkst‚d}|jD]}||j7}qg|_g|_g|_|jD]:}|j |j|¡|j |j¡|j t   |j j ¡¡qDdS)Nr) r7r#ÚAssertionErrorÚ train_samplesÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsr2Úidr r r r)rÚactive_train_samplesr?rrrr3Qs   zPFedRepPT.receive_modelscCstj d|jd|jjd|jjd|jjd|jjd|jj d|jj ¡}tj  |¡sjt  |¡t |jƒD]†\}}tj ||jdt|ƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒd¡}t |j|¡qtdS)NÚmodelsr?Ú*Ú_clientÚ_z.pt)ÚosÚpathÚjoinÚdatasetrÚarv1Úarv2Úarv3Úarv4Úarv5Úarv6ÚexistsÚmakedirsÚ enumerater*Ú algorithmÚstrÚ num_promptrrÚ plocal_stepsr r-Úsaver )rÚ model_pathÚc_idxÚcÚmodel_path_saverrrr:_s T  pzPFedRepPT.save_client_modelc Cs€|jd|j}d|jjd|jjd|jjd|jjd|jjd|jjd}t j   |¡srt   |¡t |jƒ�r||d|jdt|jƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒ}|d |¡}td|ƒt |d¡�f}|jd|jd �|jd |jd �|jd |jd �|jd |jd �|jd |jd �|jd|j d �W5QRXdS)NrNz ../results/rLú/z{}.h5z File path: Úwr6)ÚdataÚrs_test_acc_stdÚ rs_test_aucÚ rs_train_lossrr)!rRr\rrSrTrUrVrWrXrOrPrYrZr7r6Úgoalr]rr^rrr_r r1rÚh5pyÚFileÚcreate_datasetrhrirjrr)rÚalgoÚ result_pathÚ file_pathÚhfrrrr8gsL   l zPFedRepPT.save_resultsNc Cs|| ¡}| ¡}t|dƒdt|dƒ}t|dƒdt|dƒ}t|dƒdt|dƒ}t|dƒdt|dƒ}dd„t|d|dƒDƒ} dd„t|d|dƒDƒ} |dkrÎ|j |¡n | |¡|j |¡|j t  | ¡¡|dk�r|j  |¡n | |¡t d   |¡ƒt d   |¡ƒt d   |¡ƒt d   |¡ƒt d   t  | ¡¡ƒt d  t  | ¡¡ƒdS)Néçğ?réécSsg|]\}}||‘qSrr©Ú.0ÚaÚnrrrÚ <listcomp>‚sz&PFedRepPT.evaluate.<locals>.<listcomp>cSsg|]\}}||‘qSrrrwrrrr{ƒszAveraged Train Loss: {:.4f}zAveraged Test Accurancy: {:.4f}z$Averaged Test oral Accurancy: {:.4f}zAveraged Test AUC: {:.4f}zStd Test Accurancy: {:.4f}zStd Test AUC: {:.4f}) Ú test_metricsÚ train_metricsr0r)r6r2rirhÚnpÚstdrjrr1) rrÚlossÚstatsÚ stats_trainÚtest_accÚ test_acc2Útest_aucÚ train_lossÚaccsÚaucsrrrr&ys,    zPFedRepPT.evaluatec Cs~g}g}g}g}|jD]H}| ¡\}}}} | |d¡| |d¡| | |¡| |¡qdd„|jDƒ} | ||||fS)NrtcSsg|] }|j‘qSr)rI)rxrcrrrr{¦sz*PFedRepPT.test_metrics.<locals>.<listcomp>)r*r|r2) rÚ num_samplesÚ tot_correctÚ tot_correct2Útot_aucrcÚctÚct2ÚnsÚaucÚidsrrrr|—s  zPFedRepPT.test_metrics)NN) Ú__name__Ú __module__Ú __qualname__rr'r3r:r8r&r|Ú __classcell__rrrrr s 4 r)Zflcore.clients.clientrepptrÚflcore.servers.serverbaserÚ threadingrr!r r-rOrlÚnumpyr~rrrrrÚ<module>s   
6,136
Python
.pyt
58
104.534483
497
0.430005
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,975
serverper.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverper.cpython-37.pyc
B ¿:ccîã@s8ddlmZddlmZddlmZGdd„deƒZdS)é)Ú clientPer)ÚServer)ÚThreadcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)ÚFedPercsFtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes)Ú __class__©úF/root/autodl-tmp/PFL-Non-IID-master/system/flcore/servers/serverper.pyrs  zFedPer.__init__cCsªx~t|jdƒD]l}| ¡|_| ¡||jdkrTtd|›d�ƒtdƒ| ¡x|jD] }| ¡q\W|  ¡|  ¡qWtdƒtt |j ƒƒ|  ¡| ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz Best global accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)r ÚiÚclientrrrrs    z FedPer.traincCs˜t|jƒdkst‚g|_d}g|_g|_xD|jD]:}|j |j¡||j7}|j |j¡|j |j j ¡q0Wx$t |jƒD]\}}|||j|<qzWdS)Nr) ÚlenrÚAssertionErrorÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsÚappendÚ train_samplesÚidÚmodelÚbaseÚ enumerate)r Ú tot_samplesr#r"Úwrrrr2s  zFedPer.receive_models)Ú__name__Ú __module__Ú __qualname__rrrÚ __classcell__rr)rrrs rN)Zflcore.clients.clientperrÚflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s   
1,883
Python
.pyt
14
133.214286
315
0.483422
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,976
serverdynpt.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverdynpt.cpython-38.pyc
U œMgc|ã@shddlZddlZddlmZddlmZddlmZddlZddl Z ddlZddl Z Gdd„deƒZ dS)éN)Ú clientDynPT)ÚServer)ÚThreadcsDeZdZ‡fdd„Zdd„Zdd„Zdd„Zd d „Zd d „Z‡Z S) ÚFedDynPTcsŒtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒg|_g|_ |j |_ g|_ t   |j¡|_|j ¡D]}t |j¡|_qtdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clientsÚBudgetÚdiff_proÚalphaÚclients_divergeÚcopyÚdeepcopyÚmodelÚ server_stateÚ parametersÚtorchÚ zeros_likeÚdata)ÚselfÚargsÚtimesÚparam©Ú __class__©õFD:\京东\promot\cifar\cifar\tiny\system\flcore\servers\serverdynpt.pyr s zFedDynPT.__init__c Csg}d|_d}t|jdƒD�]�}t ¡}| ¡|_| ¡||jdkrjtd|›d�ƒtdƒ|  ¡d}|jD]}|  ¡}||  ¡}qttd  |¡ƒ|j  |¡d}t|jdjj ¡|jdjj ¡ƒD]:\}} || } t | dk| t | ¡| ¡} |t | ¡}qÒtd  |  ¡¡ƒ|j |  ¡¡||jdk�rTtd ƒ|j |d �| ¡| ¡| ¡|j t ¡|¡td |jd ƒ|j|jg|jd �|_|d7}qtdƒtt |jƒƒtdƒtt |ƒƒtdƒtt|jdd…ƒt!|jdd…ƒƒ| "¡| #¡dS)NFréz -------------Round number: z -------------z Evaluate global modelz"Averaged prompr difference: {:.4f}z"0 and 1 clients difference: {:.4f}z Evaluate local model)Úaccz2--------------------------------------------------éÿÿÿÿ)Úacc_lssÚtop_cntz Best global accuracy.z Best local accuracy.z Averaged time per iteration.)$ÚdoneÚrangeÚ global_roundsÚtimeÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚitemÚformatrÚappendÚzipÚclientsrÚ generatorrrÚwhererÚsumrÚreceive_modelsÚupdate_server_stateÚaggregate_parametersr Ú check_doneÚ rs_test_accr%ÚmaxÚlenÚ save_resultsÚsave_global_model) rÚ local_accÚiÚs_tÚ temp_diff_proÚclientÚtemp_diff_pro_clientÚdiverge_clentsÚ new_paramÚ old_paramrrrr r/ sT   .   (zFedDynPT.traincCs<t|j ¡| ¡ƒD]"\}}|j|j ¡|j7_qdS)N)r3Ú global_modelrrÚcloneÚ join_clients)rÚ client_modelÚ server_paramÚ client_paramrrr Úadd_parameters\szFedDynPT.add_parameterscCs”t|jƒdkst‚t |jd¡|_|j ¡D]}t |j ¡|_ q.|jD]}|  |¡qHt |j ¡|j  ¡ƒD] \}}|j d|j |8_ qndS)Nrr!)r>Úuploaded_modelsÚAssertionErrorrrrJrrrrrPr3rr)rrrMrNÚ state_paramrrr r:`s  zFedDynPT.aggregate_parameterscCs¾t|jƒdkst‚t |jd¡}| ¡D]}t |j¡|_q*|jD]B}t |j  ¡| ¡| ¡ƒD]"\}}}|j|||j 7_qbqDt |j  ¡| ¡ƒD]\}}|j|j |8_qœdS)Nr)r>rQrRrrrrrrr3rJr rr)rÚ model_deltarrMrNrOÚ delta_paramrSrrr r9ms   ÿzFedDynPT.update_server_statec CsÖ|jd|j}d}tj |¡s*t |¡t|jƒrÒ|d|jdt |j ƒ}|d  |¡}t d|ƒt  |d¡�V}|jd|jd�|jd|jd�|jd |jd�|jd |jd�|jd |jd�W5QRXdS) NÚ_z ../results/z{}.h5z File path: Úwr<)rÚrs_test_acc_stdÚ rs_test_aucÚ rs_train_lossr)ÚdatasetÚ algorithmÚosÚpathÚexistsÚmakedirsr>r<ÚgoalÚstrrr1r Úh5pyÚFileÚcreate_datasetrXrYrZr)rÚalgoÚ result_pathÚ file_pathÚhfrrr r?|s    zFedDynPT.save_results) Ú__name__Ú __module__Ú __qualname__rr/rPr:r9r?Ú __classcell__rrrr r s  < r) rrZflcore.clients.clientdynptrÚflcore.servers.serverbaserÚ threadingrr)rcr]rrrrr Ú<module>s   
4,433
Python
.pyt
43
101.930233
403
0.438169
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,977
serverfedpt.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverfedpt.cpython-38.pyc
U [ÐýcÇã@s`ddlmZddlmZddlmZddlZddlZddlZddl Z ddl Z Gdd„deƒZ dS)é)ÚclientT)ÚServer)ÚThreadNcs<eZdZ‡fdd„Zdd„Zdd„Zdd„Zd d „Z‡ZS) ÚFedPTcsntƒ ||¡||_| ¡| |t¡t |jj ¡|_ g|_ g|_ t d|j›d|j›�ƒt dƒg|_dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__ÚargsÚset_slow_clientsÚ set_clientsrÚcopyÚdeepcopyÚmodelÚbaseÚ global_modelÚdiff_proÚclients_divergeÚprintÚ join_ratioÚ num_clientsÚBudget)ÚselfrÚtimes©Ú __class__©õYD:\京东\promot\第二次投稿\实验\native - pro\system\flcore\servers\serverfedpt.pyr s zFedPT.__init__c Cs¾t|jdƒD�]J}t ¡}| ¡|_| ¡||jdkr\td|›d�ƒtdƒ| ¡d}|jD]}|  ¡}||  ¡}qfd}t |j dj j ¡|j dj j ¡ƒD]:\}}||} t | dk| t | ¡| ¡} |t | ¡}qªtd |¡ƒtd |  ¡¡ƒ|j |¡|j |  ¡¡| ¡| ¡|j t ¡|¡tdd d|jd ƒqtd ƒtt|jƒƒtd ƒtt|jdd…ƒt|jdd…ƒƒ| ¡| ¡|  ¡dS) Nérz -------------Round number: z -------------z Evaluate global modelz"Averaged prompr difference: {:.4f}z"0 and 1 clients difference: {:.4f}z-------------------------z time costéÿÿÿÿz Best global accuracy.z Average time cost per round.)!ÚrangeÚ global_roundsÚtimeÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gaprÚevaluateÚtrainÚitemÚzipÚclientsr Ú generatorÚ parametersÚtorchÚwhereÚ zeros_likeÚsumÚformatrÚappendrÚreceive_modelsÚaggregate_parametersrÚmaxÚ rs_test_accÚlenÚ save_resultsÚsave_global_modelÚsave_client_model) rÚiÚs_tÚ temp_diff_proÚclientÚtemp_diff_pro_clientÚdiverge_clentsÚ new_paramÚ old_paramrrrrr&s@  . (z FedPT.traincCs„t|jƒdkst‚d}|jD]}||j7}qg|_g|_g|_|jD]:}|j |j|¡|j |j¡|j t   |j j ¡¡qDdS)Nr) r6r"ÚAssertionErrorÚ train_samplesÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsr1Úidr r r r)rÚactive_train_samplesr=rrrr2Ps   zFedPT.receive_modelscCs¾tj d|jd¡}tj |¡s(t |¡t|jƒD]†\}}tj ||jdt |ƒdt |j j ƒdt |j j ƒdt |j j ƒdt |j jƒdt |j jƒd¡}t |j|¡q2dS)NÚmodelsr=Ú_clientÚ_z.pt)ÚosÚpathÚjoinÚdatasetÚexistsÚmakedirsÚ enumerater)Ú algorithmÚstrrÚ num_promptrrÚ plocal_stepsrr,Úsaver )rÚ model_pathÚc_idxÚcÚmodel_path_saverrrr9^s   pzFedPT.save_client_modelc Cs8|jd|j}d}tj |¡s*t |¡t|jƒ�r4|d|jdt |j ƒdt |j j ƒdt |j j ƒdt |j jƒdt |j jƒdt |j jƒ}|d |¡}td|ƒt |d¡�f}|jd|jd�|jd|jd�|jd |jd�|jd |jd�|jd |jd�|jd |jd�W5QRXdS) NrKz ../results/z{}.h5z File path: Úwr5)ÚdataÚrs_test_acc_stdÚ rs_test_aucÚ rs_train_lossrr)rOrSrLrMrPrQr6r5ÚgoalrTrrrUrrrVrr0rÚh5pyÚFileÚcreate_datasetr^r_r`rr)rÚalgoÚ result_pathÚ file_pathÚhfrrrr7fs   l zFedPT.save_results) Ú__name__Ú __module__Ú __qualname__rr&r2r9r7Ú __classcell__rrrrr s  3r) Zflcore.clients.clienttrÚflcore.servers.serverbaserÚ threadingrr r,rLrbr rrrrrÚ<module>s   
4,035
Python
.pyt
39
102.230769
397
0.451839
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,978
serverdynpt.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverdynpt.cpython-39.pyc
a »¢bcã@sPddlZddlZddlmZddlmZddlmZddlZGdd„deƒZ dS)éN)Ú clientDynPT)ÚServer)ÚThreadcsDeZdZ‡fdd„Zdd„Zdd„Zdd„Zd d „Zd d „Z‡Z S) ÚFedDynPTcs€tƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒg|_|j |_ t   |j ¡|_ |j  ¡D]}t |j¡|_qhdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clientsÚBudgetÚalphaÚcopyÚdeepcopyÚmodelÚ server_stateÚ parametersÚtorchÚ zeros_likeÚdata)ÚselfÚargsÚtimesÚparam©Ú __class__©út/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/servers/serverdynpt.pyr s zFedDynPT.__init__cCshg}d|_d}t|jdƒD]Ü}t ¡}| ¡|_| ¡||jdkrhtd|›d�ƒtdƒ|  ¡|jD] }|  ¡qn||jdkržtdƒ|j |d�|  ¡|  ¡|  ¡|j t ¡|¡td |jd ƒ|j|jg|jd �|_|d7}qtd ƒtt|jƒƒtd ƒtt|ƒƒtdƒtt|jdd…ƒt|jdd…ƒƒ| ¡| ¡dS)NFréz -------------Round number: z -------------z Evaluate global modelz Evaluate local model)Úaccz2--------------------------------------------------éÿÿÿÿ)Úacc_lssÚtop_cntz Best global accuracy.z Best local accuracy.z Averaged time per iteration.)ÚdoneÚrangeÚ global_roundsÚtimeÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚupdate_server_stateÚaggregate_parametersr ÚappendÚ check_doneÚ rs_test_accr#ÚmaxÚsumÚlenÚ save_resultsÚsave_global_model)rÚ local_accÚiÚs_tÚclientrrrr-s>      (zFedDynPT.traincCs<t|j ¡| ¡ƒD]"\}}|j|j ¡|j7_qdS)N)ÚzipÚ global_modelrrÚcloneÚ join_clients)rÚ client_modelÚ server_paramÚ client_paramrrrÚadd_parametersOszFedDynPT.add_parameterscCs”t|jƒdksJ‚t |jd¡|_|j ¡D]}t |j¡|_q.|jD]}|  |¡qHt |j ¡|j  ¡ƒD] \}}|jd|j |8_qndS)Nrr) r6Úuploaded_modelsrrr>rrrrrDr=rr)rrrArBÚ state_paramrrrr0Ss  zFedDynPT.aggregate_parameterscCs¾t|jƒdksJ‚t |jd¡}| ¡D]}t |j¡|_q*|jD]B}t|j  ¡| ¡| ¡ƒD]"\}}}|j|||j 7_qbqDt|j  ¡| ¡ƒD]\}}|j|j |8_qœdS©Nr) r6rErrrrrrr=r>r rr)rÚ model_deltarrArBrCÚ delta_paramrFrrrr/`s    ÿzFedDynPT.update_server_statecCs‚t|jƒdksJ‚d}|jD]}||j7}qg|_g|_g|_|jD]8}|j |j|¡|j |j¡|j t  |j ¡¡qDdSrG) r6r)Ú train_samplesÚuploaded_weightsÚ uploaded_idsrEr1Úidrrr)rÚactive_train_samplesr<rrrr.ns   zFedDynPT.receive_models) Ú__name__Ú __module__Ú __qualname__rr-rDr0r/r.Ú __classcell__rrrrr s  2 r) rrZ!system.flcore.clients.clientdynptrÚ system.flcore.servers.serverbaserÚ threadingrr'rrrrrÚ<module>s    
3,712
Python
.pyt
34
107.970588
413
0.437075
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,979
servermtl.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/servermtl.cpython-38.pyc
U ºĞıcå ã@s@ddlZddlmZddlmZddlmZGdd„deƒZdS)éN)Ú clientMTL)ÚServer)ÚThreadcs4eZdZ‡fdd„Zdd„Zdd„Zdd„Z‡ZS) ÚFedMTLcsÈtƒ ||¡t| |j¡ƒ|_tj|j|jf|j d�|_ |j |_ t  |j|jf¡}t  |jdf¡}|d|j|  |j ¡d}| |j ¡|_| ¡| |t¡td|j›d|j›�ƒtdƒdS)N©Údeviceééz Join clients / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__ÚlenÚflattenÚ global_modelÚdimÚtorchÚzerosÚ join_clientsrÚW_globÚonesÚmmÚTÚtoÚomegaÚset_slow_clientsÚ set_clientsrÚprintÚ num_clients)ÚselfÚargsÚtimesÚIÚir©Ú __class__©õWD:\京东\promot\第二次投稿\å®�验\native - pro\system\flcore\servers\servermtl.pyr s zFedMTL.__init__cCsæg}t|jdƒD]”}| ¡|_| ¡||jdkrVtd|›d�ƒtdƒ| ¡t|jƒD]"\}}|  |j |j |¡|  ¡q`||jdkrtdƒ|j|d�qtdƒtt |jƒƒtd ƒtt |ƒƒ| ¡| ¡dS) Nrrz -------------Round number: z -------------z Evaluate global modelz Evaluate local model)Úaccz Best global accuracy.z Best local accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚaggregate_parametersÚeval_gaprÚevaluateÚ enumerateZreceive_valuesrrÚtrainÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)rÚ local_accr!ÚidxÚclientr$r$r%r/s(   z FedMTL.traincs,| ¡‰ˆ ¡}‡fdd„|Dƒ}t |¡S)Ncsg|]}ˆ| ¡‘qSr$)r )Ú.0Úkey©Ú state_dictr$r%Ú <listcomp>@sz"FedMTL.flatten.<locals>.<listcomp>)r:ÚkeysrÚcat)rÚmodelr<ÚWr$r9r%r =szFedMTL.flattencCsLtj|j|jf|jd�|_t|jƒD]"\}}| |j ¡|jdd…|f<q$dS)Nr) rrrrrrr.r*r r>)rr5r6r$r$r%r+CszFedMTL.aggregate_parameters)Ú__name__Ú __module__Ú __qualname__r r/r r+Ú __classcell__r$r$r"r%rs !r)rZflcore.clients.clientmtlrÚflcore.servers.serverbaserÚ threadingrrr$r$r$r%Ú<module>s   
2,520
Python
.pyt
17
147.058824
582
0.436502
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,980
serverpFedMe.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverpFedMe.cpython-38.pyc
U ”jfcEã@sPddlZddlZddlZddlmZddlmZddlmZGdd„deƒZ dS)éN)Ú clientpFedMe)ÚServer)ÚThreadcsLeZdZ‡fdd„Zdd„Zdd„Zdd„Zd d „Zd d „Zd d„Z ‡Z S)ÚpFedMecs`tƒ ||¡| ¡| |t¡|j|_g|_g|_g|_t d|j ›d|j ›�ƒt dƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.) ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚbetaÚrs_train_acc_perÚrs_train_loss_perÚrs_test_acc_perÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes©Ú __class__©õND:\京东\promot\cifar\cifar\Cifar10_iid\system\flcore\servers\serverpFedMe.pyr s zpFedMe.__init__cCsÀt|jdƒD]†}| ¡|_| ¡|jD] }| ¡q*||jdkrftd|›d�ƒtdƒ| ¡t   t |j   ¡ƒ¡|_| ¡| ¡| ¡qtdƒtt|jƒƒ| ¡| ¡dS)Nérz -------------Round number: z -------------z Evaluate personalized modelz Best personalized results.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚtrainÚeval_gaprÚevaluate_personalized_modelÚcopyÚdeepcopyÚlistÚ global_modelÚ parametersÚprevious_global_modelÚreceive_modelsÚaggregate_parametersÚbeta_aggregate_parametersÚmaxr Ú save_resultsÚsave_global_model)rÚiÚclientrrrrs"    z pFedMe.traincCs>t|j|j ¡ƒD]&\}}d|j|j|j|j|_qdS)Nr)Úzipr&r$r%r Údata)rZ pre_paramÚparamrrrr)Dsz pFedMe.beta_aggregate_parameterscCsRg}g}|jD](}| ¡\}}| |d¡| |¡qdd„|jDƒ}|||fS)Nçğ?cSsg|] }|j‘qSr©Úid©Ú.0ÚcrrrÚ <listcomp>Psz4pFedMe.test_metrics_personalized.<locals>.<listcomp>)ÚclientsÚtest_metrics_personalizedÚappend)rÚ num_samplesÚ tot_correctr7ÚctÚnsÚidsrrrr:Is   z pFedMe.test_metrics_personalizedc Cshg}g}g}|jD]8}| ¡\}}}| |d¡| |¡| |d¡qdd„|jDƒ}||||fS)Nr2cSsg|] }|j‘qSrr3r5rrrr8^sz5pFedMe.train_metrics_personalized.<locals>.<listcomp>)r9Útrain_metrics_personalizedr;) rr<r=Úlossesr7r>Úclr?r@rrrrATs  z!pFedMe.train_metrics_personalizedcCsB| ¡}t|dƒdt|dƒ}|j |¡td |¡ƒdS)Nér2rz+Average Personalized Test Accurancy: {:.4f})r:Úsumr r;rÚformat)rÚstatsÚtest_accrrrr bs z"pFedMe.evaluate_personalized_modelc Cs¦|jd|j}d}tj |¡s*t |¡t|jƒr¢|d|jdt |j ƒ}t   |d  |¡d¡�6}|jd|jd�|jd|jd�|jd|jd�W5QRXdS) NÚ_z ../results/z{}.h5ÚwÚ rs_test_acc)r0Z rs_train_accÚ rs_train_loss)ÚdatasetÚ algorithmÚosÚpathÚexistsÚmakedirsÚlenr ÚgoalÚstrrÚh5pyÚFilerFÚcreate_datasetr r )rÚalgoÚ result_pathZalgo2Úhfrrrr+qs  zpFedMe.save_results) Ú__name__Ú __module__Ú __qualname__rrr)r:rAr r+Ú __classcell__rrrrr s + r) rOr!rVZflcore.clients.clientpFedMerZflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s    
3,780
Python
.pyt
28
133.714286
434
0.460144
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,981
serverprox.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverprox.cpython-39.pyc
a f¾`c²ã@s8ddlmZddlmZddlmZGdd„deƒZdS)é)Ú clientProx)ÚServer)ÚThreadcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚFedProxcsFtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes©Ú __class__©ús/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/servers/serverprox.pyrs  zFedProx.__init__cCs¢t|jdƒD]h}| ¡|_| ¡||jdkrRtd|›d�ƒtdƒ| ¡|jD] }| ¡qX|  ¡|  ¡qtdƒtt |j ƒƒ|  ¡| ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz Best global accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)r ÚiÚclientrrrrs    z FedProx.train)Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__rrrrrs rN)Zflcore.clients.clientproxrÚflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s   
1,501
Python
.pyt
16
92.5625
225
0.504038
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,982
serverlocalpt.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverlocalpt.cpython-38.pyc
U şc4ã@s`ddlmZddlmZddlmZddlZddlZddlZddl Z ddl Z Gdd„deƒZ dS)é)Ú clientAVGPT)ÚServer)ÚThreadNcsNeZdZ‡fdd„Zdd„Zdd„Zdd„Zd d „Zdd d „Zdd„Z ‡Z S)ÚLocalPTcsXtƒ ||¡||_| ¡| |t¡g|_g|_td|j ›d|j ›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.) ÚsuperÚ__init__ÚargsÚset_slow_clientsÚ set_clientsrÚdiff_proÚclients_divergeÚprintÚ join_ratioÚ num_clients)ÚselfrÚtimes©Ú __class__©õeD:\京东\promot\第二次投稿\å®�验\æœ�务器\native - pro\system\flcore\servers\serverlocalpt.pyr s zLocalPT.__init__c CsŠg}t|jdƒD�].}| ¡|_||jdkrPtd|›d�ƒtdƒ| ¡| ¡|_d}|jD]}| ¡}|| ¡}qdtd  |¡ƒ|j   |¡d}t |j djj ¡|j djj ¡ƒD]:\}}||} t | dk| t | ¡| ¡} |t | ¡}qÂtd  | ¡¡ƒ|j  | ¡¡||jdkrtdƒ|j|d �qtd ƒtt|jƒƒtd ƒtt|ƒƒ| ¡| ¡| ¡dS) Nérz -------------Round number: z -------------z Evaluate global modelz"Averaged prompr difference: {:.4f}z"0 and 1 clients difference: {:.4f}z Evaluate local model)Úaccz Best global accuracy.z Best local accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚeval_gapr ÚevaluateÚtrainÚitemÚformatr ÚappendÚzipÚclientsÚmodelÚ generatorÚ parametersÚtorchÚwhereÚ zeros_likeÚsumr ÚmaxÚ rs_test_accÚ save_resultsÚsave_global_modelÚsave_client_model) rÚ local_accÚiÚ temp_diff_proÚclientÚtemp_diff_pro_clientÚdiverge_clentsÚ new_paramÚ old_paramr rrrrsB    ÿ  z LocalPT.traincCs„t|jƒdkst‚d}|jD]}||j7}qg|_g|_g|_|jD]:}|j |j|¡|j |j¡|j t   |j j ¡¡qDdS)Nr) ÚlenrÚAssertionErrorÚ train_samplesÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsr!ÚidÚcopyÚdeepcopyr$Úbase)rÚactive_train_samplesr3rrrÚreceive_modelsDs   zLocalPT.receive_modelscCstj d|jd|jjd|jjd|jjd|jjd|jj d|jj ¡}tj  |¡sjt  |¡t |jƒD]†\}}tj ||jdt|ƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒd¡}t |j|¡qtdS)NÚmodelsr3Ú*Ú_clientÚ_z.pt)ÚosÚpathÚjoinÚdatasetrÚarv1Úarv2Úarv3Úarv4Úarv5Úarv6ÚexistsÚmakedirsÚ enumerater#Ú algorithmÚstrÚ num_promptrrÚ plocal_stepsrr'Úsaver$)rÚ model_pathÚc_idxÚcÚmodel_path_saverrrr/Rs T  pzLocalPT.save_client_modelc Cs€|jd|j}d|jjd|jjd|jjd|jjd|jjd|jjd}t j   |¡srt   |¡t |jƒ�r||d|jdt|jƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒ}|d |¡}td|ƒt |d¡�f}|jd|jd �|jd |jd �|jd |jd �|jd |jd �|jd |jd �|jd|j d �W5QRXdS)NrGz ../results/rEú/z{}.h5z File path: Úwr,)ÚdataÚrs_test_acc_stdÚ rs_test_aucÚ rs_train_lossr r )!rKrUrrLrMrNrOrPrQrHrIrRrSr8r,ÚgoalrVrrWrrrXrr r Úh5pyÚFileÚcreate_datasetrarbrcr r )rÚalgoÚ result_pathÚ file_pathÚhfrrrr-ZsL   l zLocalPT.save_resultsNc Cs|| ¡}| ¡}t|dƒdt|dƒ}t|dƒdt|dƒ}t|dƒdt|dƒ}t|dƒdt|dƒ}dd„t|d|dƒDƒ} dd„t|d|dƒDƒ} |dkrÎ|j |¡n | |¡|j |¡|j t  | ¡¡|dk�r|j  |¡n | |¡t d   |¡ƒt d   |¡ƒt d   |¡ƒt d   |¡ƒt d   t  | ¡¡ƒt d  t  | ¡¡ƒdS)Néçğ?réécSsg|]\}}||‘qSrr©Ú.0ÚaÚnrrrÚ <listcomp>vsz$LocalPT.evaluate.<locals>.<listcomp>cSsg|]\}}||‘qSrrrprrrrtwszAveraged Train Loss: {:.4f}zAveraged Test Accurancy: {:.4f}z$Averaged Test oral Accurancy: {:.4f}zAveraged Test AUC: {:.4f}zStd Test Accurancy: {:.4f}zStd Test AUC: {:.4f}) Ú test_metricsÚ train_metricsr*r"r,r!rbraÚnpÚstdrcr r ) rrÚlossÚstatsÚ stats_trainÚtest_accÚ test_acc2Útest_aucÚ train_lossÚaccsÚaucsrrrrms,    zLocalPT.evaluatec Cs~g}g}g}g}|jD]H}| ¡\}}}} | |d¡| |d¡| | |¡| |¡qdd„|jDƒ} | ||||fS)NrmcSsg|] }|j‘qSr)r>)rqr\rrrrt™sz(LocalPT.test_metrics.<locals>.<listcomp>)r#rur!) rÚ num_samplesÚ tot_correctÚ tot_correct2Útot_aucr\ÚctÚct2ÚnsÚaucÚidsrrrruŒs  zLocalPT.test_metrics)NN) Ú__name__Ú __module__Ú __qualname__rrrCr/r-rruÚ __classcell__rrrrr s , r) Zflcore.clients.clientavgptrÚflcore.servers.serverbaserÚ threadingrr'rHrer?ÚnumpyrwrrrrrÚ<module>s   
5,768
Python
.pyt
51
111.823529
495
0.428821
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,983
serverdyn.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverdyn.cpython-37.pyc
B ¿:ccã@sPddlZddlZddlmZddlmZddlmZddlZGdd„deƒZ dS)éN)Ú clientDyn)ÚServer)ÚThreadcs<eZdZ‡fdd„Zdd„Zdd„Zdd„Zd d „Z‡ZS) ÚFedDyncs„tƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒg|_|j |_ t   |j ¡|_ x |j  ¡D]}t |j¡|_qjWdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clientsÚBudgetÚalphaÚcopyÚdeepcopyÚmodelÚ server_stateÚ parametersÚtorchÚ zeros_likeÚdata)ÚselfÚargsÚtimesÚparam)Ú __class__©úF/root/autodl-tmp/PFL-Non-IID-master/system/flcore/servers/serverdyn.pyr s zFedDyn.__init__cCspg}d|_d}xòt|jdƒD]à}t ¡}| ¡|_| ¡||jdkrjtd|›d�ƒtdƒ|  ¡x|jD] }|  ¡qrW||jdkr¤tdƒ|j |d�|  ¡|  ¡|  ¡|j t ¡|¡td |jd ƒ|j|jg|jd �|_|d7}qWtd ƒtt|jƒƒtd ƒtt|ƒƒtdƒtt|jdd…ƒt|jdd…ƒƒ| ¡| ¡dS)NFréz -------------Round number: z -------------z Evaluate global modelz Evaluate local model)Úaccz2--------------------------------------------------éÿÿÿÿ)Úacc_lssÚtop_cntz Best global accuracy.z Best local accuracy.z Averaged time per iteration.)ÚdoneÚrangeÚ global_roundsÚtimeÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚupdate_server_stateÚaggregate_parametersr ÚappendÚ check_doneÚ rs_test_accr"ÚmaxÚsumÚlenÚ save_resultsÚsave_global_model)rZ local_accÚiÚs_tÚclientrrrr,s>      (z FedDyn.traincCs@x:t|j ¡| ¡ƒD]"\}}|j|j ¡|j7_qWdS)N)ÚzipÚ global_modelrrÚcloneÚ join_clients)rÚ client_modelÚ server_paramÚ client_paramrrrÚadd_parametersOszFedDyn.add_parameterscCs t|jƒdkst‚t |jd¡|_x |j ¡D]}t |j ¡|_ q0Wx|jD]}|  |¡qNWx:t |j ¡|j  ¡ƒD] \}}|j d|j |8_ qxWdS)Nrr)r5Úuploaded_modelsÚAssertionErrorrrr<rrrrrBr;rr)rrr?r@Ú state_paramrrrr/Ss  zFedDyn.aggregate_parameterscCsÎt|jƒdkst‚t |jd¡}x| ¡D]}t |j¡|_q,WxP|jD]F}x@t |j  ¡| ¡| ¡ƒD]"\}}}|j|||j 7_qjWqJWx4t |j  ¡| ¡ƒD]\}}|j|j |8_qªWdS)Nr)r5rCrDrrrrrrr;r<r rr)rZ model_deltarr?r@rAZ delta_paramrErrrr.`s & zFedDyn.update_server_state) Ú__name__Ú __module__Ú __qualname__rr,rBr/r.Ú __classcell__rr)rrr s  1 r) rrZsystem.flcore.clients.clientdynrÚ system.flcore.servers.serverbaserÚ threadingrr&rrrrrÚ<module>s    
3,307
Python
.pyt
25
130.92
435
0.439842
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,984
serverditto.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverditto.cpython-38.pyc
U ”jfcüã@sHddlZddlmZddlmZddlmZddlZGdd„deƒZdS)éN)Ú clientDitto)ÚServer)ÚThreadcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚDittocsLtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒg|_dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.) ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clientsÚBudget)ÚselfÚargsÚtimes©Ú __class__©õMD:\京东\promot\cifar\cifar\Cifar10_iid\system\flcore\servers\serverditto.pyr s  zDitto.__init__cCs t|jdƒD] }t ¡}| ¡|_| ¡||jdkrZtd|›d�ƒtdƒ| ¡|jD]}|  ¡|  ¡q`|  ¡|  ¡|j  t ¡|¡tddd|j dƒqtd ƒtt|jƒƒtd ƒtt|j dd…ƒt|j dd…ƒƒ| ¡| ¡dS) Nérz -------------Round number: z -------------z Evaluate global modelz-------------------------z time costéÿÿÿÿz Best global accuracy.z Average time cost per round.)ÚrangeÚ global_roundsÚtimeÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateZptrainÚtrainÚreceive_modelsÚaggregate_parametersr ÚappendÚmaxÚ rs_test_accÚsumÚlenÚ save_resultsÚsave_global_model)rÚiÚs_tÚclientrrrrs*   (z Ditto.train)Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__rrrrrs r) ÚcopyZflcore.clients.clientdittorÚflcore.servers.serverbaserÚ threadingrrrrrrrÚ<module>s    
1,741
Python
.pyt
17
101.117647
343
0.478841
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,985
serverprox.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverprox.cpython-37.pyc
B ¿:cc²ã@s8ddlmZddlmZddlmZGdd„deƒZdS)é)Ú clientProx)ÚServer)ÚThreadcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚFedProxcsFtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes)Ú __class__©úG/root/autodl-tmp/PFL-Non-IID-master/system/flcore/servers/serverprox.pyrs  zFedProx.__init__cCsªx~t|jdƒD]l}| ¡|_| ¡||jdkrTtd|›d�ƒtdƒ| ¡x|jD] }| ¡q\W|  ¡|  ¡qWtdƒtt |j ƒƒ|  ¡| ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz Best global accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)r ÚiÚclientrrrrs    z FedProx.train)Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__rr)rrrs rN)Zflcore.clients.clientproxrÚflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s   
1,451
Python
.pyt
13
110.307692
227
0.496178
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,986
serverrep.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverrep.cpython-39.pyc
a ï`c ã@sHddlmZddlmZddlmZddlZddlZGdd„deƒZdS)é)Ú clientRep)ÚServer)ÚThreadNcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)ÚFedRepcsLtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒg|_dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.) ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clientsÚBudget)ÚselfÚargsÚtimes©Ú __class__©úr/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/servers/serverrep.pyr s  zFedRep.__init__cCst|jdƒD]˜}t ¡}| ¡|_| ¡||jdkrZtd|›d�ƒtdƒ| ¡|jD] }|  ¡q`|  ¡|  ¡|j   t ¡|¡tddd|j dƒqtd ƒtt|jƒƒtd ƒtt|j dd…ƒt|j dd…ƒƒ| ¡| ¡dS) Nérz -------------Round number: z -------------z Evaluate global modelz-------------------------z time costéÿÿÿÿz Best global accuracy.z Average time cost per round.)ÚrangeÚ global_roundsÚtimeÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersr ÚappendÚmaxÚ rs_test_accÚsumÚlenÚ save_resultsÚsave_global_model)rÚiÚs_tÚclientrrrrs(   (z FedRep.traincCs„t|jƒdksJ‚d}|jD]}||j7}qg|_g|_g|_|jD]:}|j |j|¡|j |j¡|j t  |j j ¡¡qDdS)Nr) r&rÚ train_samplesÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsr"ÚidÚcopyÚdeepcopyÚmodelÚbase)rZactive_train_samplesr+rrrr :s   zFedRep.receive_models)Ú__name__Ú __module__Ú __qualname__rrr Ú __classcell__rrrrrs #r) Zsystem.flcore.clients.clientreprÚ system.flcore.servers.serverbaserÚ threadingrrr1rrrrrÚ<module>s   
2,176
Python
.pyt
19
113.263158
369
0.477294
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,987
serverbnpt.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverbnpt.cpython-38.pyc
U €fc" ã@slddlmZddlmZddlmZddlmZddlZddl Z ddl Z ddl Z ddl Z Gdd„deƒZ dS)é)Ú clientBNPT)ÚServer)Úread_client_data)ÚThreadNcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)ÚFedBNPTcsRtƒ ||¡| ¡| |t¡g|_g|_td|j›d|j ›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.) ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚdiff_proÚclients_divergeÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes©Ú __class__©õLD:\京东\promot\cifar\cifar\Cifar10_iid\system\flcore\servers\serverbnpt.pyr s zFedBNPT.__init__c CsVt|jdƒD�]}| ¡|_| ¡||jdkrTtd|›d�ƒtdƒ| ¡d}|jD]}| ¡}||  ¡}q^td  |¡ƒ|j   |¡d}t |jdjj ¡|jdjj ¡ƒD]:\}}||}t |dk|t |¡|¡}|t |¡}q¼td  |  ¡¡ƒ|j  |  ¡¡| ¡| ¡qtdƒtt|jƒƒ| ¡| ¡dS) Nérz -------------Round number: z -------------z Evaluate global modelz"Averaged prompr difference: {:.4f}z"0 and 1 clients difference: {:.4f}z Best global accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚitemÚformatr ÚappendÚzipÚclientsÚmodelÚ generatorÚ parametersÚtorchÚwhereÚ zeros_likeÚsumr Úreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model) rÚiÚ temp_diff_proÚclientÚtemp_diff_pro_clientÚdiverge_clentsÚ new_paramÚ old_paramr rrrrs8   ÿ  z FedBNPT.trainc CsÖ|jd|j}d}tj |¡s*t |¡t|jƒrÒ|d|jdt |j ƒ}|d  |¡}t d|ƒt  |d¡�V}|jd|jd�|jd|jd�|jd |jd�|jd |jd�|jd |jd�W5QRXdS) NÚ_z ../results/z{}.h5z File path: Úwr/)ÚdataÚrs_test_acc_stdÚ rs_test_aucÚ rs_train_lossr )ÚdatasetÚ algorithmÚosÚpathÚexistsÚmakedirsÚlenr/ÚgoalÚstrrr!r Úh5pyÚFileÚcreate_datasetr<r=r>r )rÚalgoÚ result_pathÚ file_pathÚhfrrrr0Cs    zFedBNPT.save_results)Ú__name__Ú __module__Ú __qualname__rrr0Ú __classcell__rrrrr s (r)Zflcore.clients.clientbnptrÚflcore.servers.serverbaserÚutils.data_utilsrÚ threadingrÚtimerHÚcopyrAr(rrrrrÚ<module>s    
2,725
Python
.pyt
23
117.26087
357
0.483907
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,988
serverper.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverper.cpython-38.pyc
U ºĞıc ã@s`ddlmZddlmZddlmZddlZddlZddlZddl Z ddl Z Gdd„deƒZ dS)é)Ú clientPer)ÚServer)ÚThreadNcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)ÚFedPercsFtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes©Ú __class__©õWD:\京东\promot\第二次投稿\å®�验\native - pro\system\flcore\servers\serverper.pyr s  zFedPer.__init__cCsÜg}t|jdƒD]Š}| ¡|_| ¡||jdkrVtd|›d�ƒtdƒ| ¡|jD] }| ¡q\||jdkrŒtdƒ|j|d�|  ¡|  ¡qtdƒtt |j ƒƒtd ƒtt |ƒƒ|  ¡| ¡dS) Nérz -------------Round number: z -------------z Evaluate global modelz Evaluate local model)Úaccz Best global accuracy.z Best local accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)r Ú local_accÚiÚclientrrrrs*      z FedPer.traincCs�t|jƒdkst‚g|_d}g|_g|_|jD]:}|j |j¡||j7}|j |j¡|j |j j ¡q.t |jƒD]\}}|||j|<qtdS)Nr) ÚlenrÚAssertionErrorÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsÚappendÚ train_samplesÚidÚmodelÚbaseÚ enumerate)r Ú tot_samplesr&r%Úwrrrr:s  zFedPer.receive_models)Ú__name__Ú __module__Ú __qualname__rrrÚ __classcell__rrrrr s "r) Zflcore.clients.clientperrÚflcore.servers.serverbaserÚ threadingrÚh5pyÚcopyÚosÚtorchÚnumpyÚnprrrrrÚ<module>s   
2,123
Python
.pyt
23
91.130435
254
0.482151
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,989
serverprox.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverprox.cpython-38.pyc
U ºĞıc�ã@s8ddlmZddlmZddlmZGdd„deƒZdS)é)Ú clientProx)ÚServer)ÚThreadcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚFedProxcsFtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes©Ú __class__©õXD:\京东\promot\第二次投稿\å®�验\native - pro\system\flcore\servers\serverprox.pyrs  zFedProx.__init__cCsÜg}t|jdƒD]Š}| ¡|_| ¡||jdkrVtd|›d�ƒtdƒ| ¡|jD] }| ¡q\||jdkrŒtdƒ|j|d�|  ¡|  ¡qtdƒtt |j ƒƒtd ƒtt |ƒƒ|  ¡| ¡dS) Nérz -------------Round number: z -------------z Evaluate global modelz Evaluate local model)Úaccz Best global accuracy.z Best local accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)r Ú local_accÚiÚclientrrrrs*      z FedProx.train)Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__rrrrrs rN)Zflcore.clients.clientproxrÚflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s   
1,611
Python
.pyt
19
83.578947
225
0.491525
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,990
serverlocal.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverlocal.cpython-39.pyc
a f¾`c…ã@s8ddlmZddlmZddlmZGdd„deƒZdS)é)Ú clientAVG)ÚServer)ÚThreadcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚLocalcsFtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes©Ú __class__©út/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/servers/serverlocal.pyrs  zLocal.__init__cCs”t|jdƒD]Z}| ¡|_||jdkrJtd|›d�ƒtdƒ| ¡| ¡|_|jD] }| ¡qZqtdƒtt|j ƒƒ|  ¡|  ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz Best global accuracy.) ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚeval_gapr ÚevaluateÚtrainÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)r ÚiÚclientrrrrs    z Local.train)Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__rrrrrs rN)Zflcore.clients.clientavgrÚflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s   
1,425
Python
.pyt
14
100.5
318
0.492918
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,991
serveramppt.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serveramppt.cpython-38.pyc
U şc£!ã@sŒddlZddlZddlZddlZddlZddlmZmZddl m Z ddl m Z ddl Z ddlZddlZddlZddlZGdd„de ƒZdS)éN)Ú clientAMPPTÚweight_flatten)ÚServer)ÚThreadcs^eZdZ‡fdd„Zdd„Zdd„Zdd„Zd d „Zdd d „Zdd„Z dd„Z dd„Z ‡Z S)ÚFedAMPPTcshtƒ ||¡||_| ¡| |t¡g|_g|_|j|_|j |_ t d|j ›d|j ›�ƒt dƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.) ÚsuperÚ__init__ÚargsÚset_slow_clientsÚ set_clientsrÚclients_divergeÚdiff_proÚalphaKÚsigmaÚprintÚ join_ratioÚ num_clients)Úselfr Útimes©Ú __class__©õcD:\京东\promot\第二次投稿\å®�验\æœ�务器\native - pro\system\flcore\servers\serveramppt.pyrs zFedAMPPT.__init__c Cs’g}t|jdƒD�]6}| ¡|_| ¡||jdkrXtd|›d�ƒtdƒ| ¡d}|jD]}| ¡}||  ¡}qbtd  |¡ƒ|j   |¡d}t |jdjj ¡|jdjj ¡ƒD]:\}}||} t | dk| t | ¡| ¡} |t | ¡}qÀtd  |  ¡¡ƒ|j  |  ¡¡||jdk�rBtdƒ|j|d �| ¡qtd ƒtt|jƒƒtd ƒtt|ƒƒ| ¡| ¡| ¡dS) Nérz -------------Round number: z -------------z Evaluate global modelz"Averaged prompr difference: {:.4f}z"0 and 1 clients difference: {:.4f}z Evaluate local model)Úaccz Best global accuracy.z Best local accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gaprÚevaluateÚtrainÚitemÚformatr ÚappendÚzipÚclientsÚmodelÚ generatorÚ parametersÚtorchÚwhereÚ zeros_likeÚsumr Úreceive_modelsÚmaxÚ rs_test_accÚ save_resultsÚsave_global_modelÚsave_client_model) rÚ local_accÚiÚ temp_diff_proÚclientÚtemp_diff_pro_clientÚdiverge_clentsÚ new_paramÚ old_paramr rrrr"sD   ÿ    zFedAMPPT.traincCs‚t|jƒdkst‚d}|jD]}||j7}qg|_g|_g|_|jD]8}|j |j|¡|j |j¡|j t   |j ¡¡qDdS)Nr) ÚlenrÚAssertionErrorÚ train_samplesÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsr%ÚidÚcopyÚdeepcopyr()rÚactive_train_samplesr8rrrr/Ks   zFedAMPPT.receive_modelscCstj d|jd|jjd|jjd|jjd|jjd|jj d|jj ¡}tj  |¡sjt  |¡t |jƒD]†\}}tj ||jdt|ƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒd¡}t |j|¡qtdS)NÚmodelsr8Ú*Ú_clientÚ_z.pt)ÚosÚpathÚjoinÚdatasetr Úarv1Úarv2Úarv3Úarv4Úarv5Úarv6ÚexistsÚmakedirsÚ enumerater'Ú algorithmÚstrÚ num_promptrrÚ plocal_stepsrr+Úsaver()rÚ model_pathÚc_idxÚcÚmodel_path_saverrrr4Ys T  pzFedAMPPT.save_client_modelc Cs€|jd|j}d|jjd|jjd|jjd|jjd|jjd|jjd}t j   |¡srt   |¡t |jƒ�r||d|jdt|jƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒ}|d |¡}td|ƒt |d¡�f}|jd|jd �|jd |jd �|jd |jd �|jd |jd �|jd |jd �|jd|j d �W5QRXdS)NrJz ../results/rHú/z{}.h5z File path: Úwr1)ÚdataÚrs_test_acc_stdÚ rs_test_aucÚ rs_train_lossr r )!rNrXr rOrPrQrRrSrTrKrLrUrVr=r1ÚgoalrYrrZrrr[rr$rÚh5pyÚFileÚcreate_datasetrdrerfr r )rÚalgoÚ result_pathÚ file_pathÚhfrrrr2asL   l zFedAMPPT.save_resultsNc Cs|| ¡}| ¡}t|dƒdt|dƒ}t|dƒdt|dƒ}t|dƒdt|dƒ}t|dƒdt|dƒ}dd„t|d|dƒDƒ} dd„t|d|dƒDƒ} |dkrÎ|j |¡n | |¡|j |¡|j t  | ¡¡|dk�r|j  |¡n | |¡t d   |¡ƒt d   |¡ƒt d   |¡ƒt d   |¡ƒt d   t  | ¡¡ƒt d  t  | ¡¡ƒdS)Néçğ?réécSsg|]\}}||‘qSrr©Ú.0ÚaÚnrrrÚ <listcomp>}sz%FedAMPPT.evaluate.<locals>.<listcomp>cSsg|]\}}||‘qSrrrsrrrrw~szAveraged Train Loss: {:.4f}zAveraged Test Accurancy: {:.4f}z$Averaged Test oral Accurancy: {:.4f}zAveraged Test AUC: {:.4f}zStd Test Accurancy: {:.4f}zStd Test AUC: {:.4f}) Ú test_metricsÚ train_metricsr.r&r1r%rerdÚnpÚstdrfrr$) rrÚlossÚstatsÚ stats_trainÚtest_accÚ test_acc2Útest_aucÚ train_lossÚaccsÚaucsrrrr!ts,    zFedAMPPT.evaluatec Cs~g}g}g}g}|jD]H}| ¡\}}}} | |d¡| |d¡| | |¡| |¡qdd„|jDƒ} | ||||fS)NrpcSsg|] }|j‘qSr)rC)rtr_rrrrw sz)FedAMPPT.test_metrics.<locals>.<listcomp>)r'rxr%) rÚ num_samplesÚ tot_correctÚ tot_correct2Útot_aucr_ÚctÚct2ÚnsÚaucÚidsrrrrx“s  zFedAMPPT.test_metricsc CsŒt|jƒdkst‚t|jƒdk�rˆ|jD�]\}t |j¡}| ¡D]}|j   ¡qBt   |j ¡}t|jƒD]b\}}|j|j|krÂt|jƒ}t|ƒ}|| d¡} t  | | ¡} |j| | ¡||<qhd||<qhdt  |¡} t|jƒD]:\}}t| ¡| ¡ƒD]\}} |j ||| 7_ qşqät ¡} |j�rJt dt tj ¡¡¡|  || ¡|j!dd7<|j!ddt ¡| 7<q(dS)Nréÿÿÿÿrgš™™™™™¹?Ú num_roundsÚ total_costro)"r=rr>rBr'rDrEÚ global_modelr*rcÚzero_r+ÚzerosÚ join_clientsrWrCrArr(ÚviewÚdotrÚer.r&ÚtimeÚ send_slowÚsleeprzÚabsÚrandomÚrandÚset_parametersÚsend_time_cost) rr_ÚmuÚparamÚcoefÚjÚmwÚ weights_iÚ weights_jÚsubÚ coef_selfÚparam_jÚ start_timerrrr¥s2         zFedAMPPT.send_modelscCst | |j¡|jS)N)ÚmathÚexpr)rÚxrrrr—Ész FedAMPPT.e)NN) Ú__name__Ú __module__Ú __qualname__rr"r/r4r2r!rxrr—Ú __classcell__rrrrrs - $r)r+rDr˜Únumpyrzr«Zflcore.clients.clientampptrrÚflcore.servers.serverbaserÚ threadingrrhrKrrrrrÚ<module>s  
6,980
Python
.pyt
62
111.33871
496
0.421882
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,992
serverpfedpt.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverpfedpt.cpython-37.pyc
B �ÑecŞã@s`ddlmZddlmZddlmZddlZddlZddlZddl Z ddl Z Gdd„deƒZ dS)é)ÚclientPT)ÚServer)ÚThreadNcs<eZdZ‡fdd„Zdd„Zdd„Zdd„Zd d „Z‡ZS) ÚPFedPTcsntƒ ||¡| ¡||_| |t¡t |jj ¡|_ g|_ g|_ t d|j›d|j›�ƒt dƒg|_dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚargsÚ set_clientsrÚcopyÚdeepcopyÚmodelÚbaseÚ global_modelÚdiff_proÚclients_divergeÚprintÚ join_ratioÚ num_clientsÚBudget)Úselfr Útimes)Ú __class__©úI/root/autodl-tmp/PFL-Non-IID-master/system/flcore/servers/serverpfedpt.pyr s zPFedPT.__init__c CsÌ�xft|jdƒD�]R}t ¡}| ¡|_| ¡||jdkr`td|›d�ƒtdƒ| ¡d}x"|jD]}|  ¡}||  ¡}qlWtd  |¡ƒ|j   |¡d}xdt|jdjj ¡|jdjj ¡ƒD]:\}}||} t | dk| t | ¡| ¡} |t | ¡}qÎWtd  |  ¡¡ƒ|j  |  ¡¡| ¡| ¡|j  t ¡|¡tdd d|jd ƒqWtd ƒtt|jƒƒtd ƒtt|jdd…ƒt|jdd…ƒƒ| ¡| ¡|  ¡dS) Nérz -------------Round number: z -------------z Evaluate global modelz"Averaged prompr difference: {:.4f}z"0 and 1 clients difference: {:.4f}z-------------------------z time costéÿÿÿÿz Best global accuracy.z Average time cost per round.)!ÚrangeÚ global_roundsÚtimeÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gaprÚevaluateÚtrainÚitemÚformatrÚappendÚzipÚclientsr Ú generatorÚ parametersÚtorchÚwhereÚ zeros_likeÚsumrÚreceive_modelsÚaggregate_parametersrÚmaxÚ rs_test_accÚlenÚ save_resultsÚsave_global_modelÚsave_client_model) rÚiÚs_tZ temp_diff_proÚclientZtemp_diff_pro_clientZdiverge_clentsÚ new_paramÚ old_paramrrrrr%s@   0(z PFedPT.traincCsŒt|jƒdkst‚d}x|jD]}||j7}qWg|_g|_g|_xD|jD]:}|j |j|¡|j |j¡|j t   |j j ¡¡qJWdS)Nr) r5r!ÚAssertionErrorÚ train_samplesÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsr(Úidr r r r)rÚactive_train_samplesr;rrrr1Os  zPFedPT.receive_modelscCsÂtj d|jd¡}tj |¡s(t |¡x”t|jƒD]†\}}tj ||jdt |ƒdt |j j ƒdt |j j ƒdt |j j ƒdt |j jƒdt |j jƒd¡}t |j|¡q4WdS)NÚmodelsr;Z_clientÚ_z.pt)ÚosÚpathÚjoinÚdatasetÚexistsÚmakedirsÚ enumerater*Ú algorithmÚstrr Ú num_promptrrÚ plocal_stepsrr-Úsaver )rÚ model_pathÚc_idxÚcZmodel_path_saverrrr8]s   pzPFedPT.save_client_modelc Cs8|jd|j}d}tj |¡s*t |¡t|jƒ�r4|d|jdt |j ƒdt |j j ƒdt |j j ƒdt |j jƒdt |j jƒdt |j jƒ}|d |¡}td|ƒt |d¡�f}|jd|jd�|jd|jd�|jd |jd�|jd |jd�|jd |jd�|jd |jd�WdQRXdS) NrFz ../results/z{}.h5z File path: Úwr4)ÚdataÚrs_test_acc_stdÚ rs_test_aucÚ rs_train_lossrr)rJrNrGrHrKrLr5r4ÚgoalrOrr rPrrrQrr'rÚh5pyÚFileÚcreate_datasetrXrYrZrr)rÚalgoÚ result_pathÚ file_pathÚhfrrrr6es   l zPFedPT.save_results) Ú__name__Ú __module__Ú __qualname__rr%r1r8r6Ú __classcell__rr)rrr s  1r) Zsystem.flcore.clients.clientptrÚ system.flcore.servers.serverbaserÚ threadingrrr-rGr\r rrrrrÚ<module>s   
4,038
Python
.pyt
36
110.916667
397
0.459405
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,993
serverproto.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverproto.cpython-37.pyc
B ¾:ccÜã@shddlmZddlmZddlmZddlmZddlZddl Z ddl m Z Gdd„deƒZ d d „ZdS) é)Ú clientProto)ÚServer)Úread_client_data)ÚThreadN)Ú defaultdictcs>eZdZ‡fdd„Zdd„Zdd„Zdd„Zd d d „Z‡ZS) ÚFedProtocsjtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒg|_|j |_ dd„t |j ƒDƒ|_ dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.cSsg|]}d‘qS)N©)Ú.0Ú_rrúH/root/autodl-tmp/PFL-Non-IID-master/system/flcore/servers/serverproto.pyú <listcomp>sz%FedProto.__init__.<locals>.<listcomp>) ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clientsÚBudgetÚ num_classesÚrangeÚ global_protos)ÚselfÚargsÚtimes)Ú __class__rr r s zFedProto.__init__cCs&d|_d}xĞ|jsÚt ¡}| ¡|_||jdkrZ|dkrZtd|›d�ƒtdƒ| ¡x|jD] }| ¡qbW| ¡t |j ƒ|_ |  ¡|j  t ¡|¡td|j dƒ|dkrĞ|j|jg|jd�|_|d 7}q Wtd ƒtt|jƒƒtt|j d d…ƒt|j d d…ƒƒ| ¡dS) NFrz -------------Round number: z -------------z Evaluate global modelz2--------------------------------------------------éÿÿÿÿ)Úacc_lssÚtop_cntéz Best global accuracy.)ÚdoneÚtimeÚselect_clientsÚselected_clientsÚeval_gaprÚevaluateÚtrainÚreceive_protosÚproto_aggregationÚuploaded_protosrÚ send_protosrÚappendÚ check_doneÚ rs_test_accrÚmaxÚsumÚlenÚ save_results)rÚiÚs_tÚclientrrr r&s.     (zFedProto.traincCs2t|jƒdkst‚x|jD]}| |j¡qWdS)Nr)r0r#ÚAssertionErrorZ set_protosr)rr4rrr r*Cs zFedProto.send_protoscCsNt|jƒdkst‚g|_g|_x*|jD] }|j |j¡|j |j¡q&WdS)Nr)r0r#r5Ú uploaded_idsr)r+ÚidÚprotos)rr4rrr r'Is  zFedProto.receive_protosNcCsØ| ¡}| ¡}t|dƒdt|dƒ}t|dƒdt|dƒ}dd„t|d|dƒDƒ}|dkrz|j |¡n | |¡|dkrš|j |¡n | |¡td |¡ƒtd |¡ƒtd t   |¡¡ƒdS) Négğ?rcSsg|]\}}||‘qSrr)r ÚaÚnrrr r Xsz%FedProto.evaluate.<locals>.<listcomp>zAveraged Train Loss: {:.4f}zAveraged Test Accurancy: {:.4f}zStd Test Accurancy: {:.4f}) Ú test_metricsÚ train_metricsr/Úzipr-r+Ú rs_train_lossrÚformatÚnpÚstd)rÚaccÚlossÚstatsÚ stats_trainÚtest_accÚ train_lossÚaccsrrr r%Rs  zFedProto.evaluate)NN) Ú__name__Ú __module__Ú __qualname__rr&r*r'r%Ú __classcell__rr)rr r s  ( rcCs¦ttƒ}x0|D](}x"| ¡D]}|| ||¡qWqWxf| ¡D]Z\}}t|ƒdkr�d|dj}x|D]}||j7}qlW|t|ƒ||<qD|dj||<qDW|S)Nrr)rÚlistÚkeysr+Úitemsr0Údata)Zlocal_protos_listZagg_protos_labelZ local_protosÚlabelZ proto_listÚprotor2rrr r(ks   r()Zflcore.clients.clientprotorÚflcore.servers.serverbaserÚutils.data_utilsrÚ threadingrr!ÚnumpyrAÚ collectionsrrr(rrrr Ú<module>s     a
3,696
Python
.pyt
29
126.275862
475
0.439204
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,994
serverphp.cpython-37.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverphp.cpython-37.pyc
B ¿:cc”ã@sHddlmZddlmZddlmZddlZddlZGdd„deƒZdS)é)Ú clientPHP)ÚServer)ÚThreadNcs,eZdZ‡fdd„Zdd„Zdd„Z‡ZS)ÚFedPHPcsLtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒg|_dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.) ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clientsÚBudget)ÚselfÚargsÚtimes)Ú __class__©úF/root/autodl-tmp/PFL-Non-IID-master/system/flcore/servers/serverphp.pyr s  zFedPHP.__init__cCs¬x€t|jdƒD]n}| ¡|_| |¡||jdkrVtd|›d�ƒtdƒ| ¡x|jD] }| ¡q^W|  ¡|  ¡qWtdƒtt |j ƒƒ|  ¡| ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz Best global accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)rÚiÚclientrrrrs     z FedPHP.traincCs4t|jƒdkst‚x|jD]}| |j|¡qWdS)Nr)ÚlenrÚAssertionErrorÚset_parametersÚ global_model)rÚRr$rrrr5s zFedPHP.send_models)Ú__name__Ú __module__Ú __qualname__rrrÚ __classcell__rr)rrrs r) Zflcore.clients.clientphprÚflcore.servers.serverbaserÚ threadingrÚtimeÚcopyrrrrrÚ<module>s   
1,724
Python
.pyt
13
131.307692
338
0.484813
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,995
servermoon.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/servermoon.cpython-39.pyc
a f¾`c{ã@sLddlmZddlmZddlmZddlmZddlZGdd„deƒZ dS)é)Ú clientMOON)ÚServer)Úread_client_data)ÚThreadNcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚMOONcsLtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒg|_dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.) ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clientsÚBudget)ÚselfÚargsÚtimes©Ú __class__©ús/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/servers/servermoon.pyr s  z MOON.__init__cCsTg}d|_d}|jsæt ¡}| ¡|_| ¡||jdkr\td|›d�ƒtdƒ| ¡|jD] }| ¡qb||jdkr’tdƒ|j|d�|  ¡|  ¡|j   t ¡|¡td|j d ƒ|j |jg|jd �|_|d 7}qtd ƒtt|jƒƒtd ƒtt|ƒƒtdƒtt|j d d…ƒt|j d d…ƒƒ| ¡| ¡dS)NFrz -------------Round number: z -------------z Evaluate global modelz Evaluate local model)Úaccz2--------------------------------------------------éÿÿÿÿ)Úacc_lssÚtop_cntéz Best global accuracy.z Best local accuracy.z Averaged time per iteration.)ÚdoneÚtimeÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersrÚappendÚ check_doneÚ rs_test_accrÚmaxÚsumÚlenÚ save_resultsÚsave_global_model)rÚ local_accÚiÚs_tÚclientrrrr"s<      (z MOON.train)Ú__name__Ú __module__Ú __qualname__rr"Ú __classcell__rrrrrs r) Zflcore.clients.clientmoonrÚflcore.servers.serverbaserÚutils.data_utilsrÚ threadingrrrrrrrÚ<module>s    
1,996
Python
.pyt
22
89.5
412
0.482025
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,996
serverbabupt.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverbabupt.cpython-38.pyc
U şc ã@s`ddlmZddlmZddlmZddlZddlZddlZddl Z ddl Z Gdd„deƒZ dS)é)Ú clientBABUPT)ÚServer)ÚThreadNcsNeZdZ‡fdd„Zdd„Zdd„Zdd„Zdd d „Zd d „Zdd„Z ‡Z S)Ú FedBABUPTcsXtƒ ||¡||_| ¡| |t¡g|_g|_td|j ›d|j ›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.) ÚsuperÚ__init__ÚargsÚset_slow_clientsÚ set_clientsrÚclients_divergeÚdiff_proÚprintÚ join_ratioÚ num_clients)ÚselfrÚtimes©Ú __class__©õdD:\京东\promot\第二次投稿\å®�验\æœ�务器\native - pro\system\flcore\servers\serverbabupt.pyr s zFedBABUPT.__init__c CsÀg}t|jdƒD�]>}| ¡|_| ¡||jdkrXtd|›d�ƒtdƒ| ¡d}|jD]}| ¡}||  ¡}qbtd  |¡ƒ|j   |¡d}t |jdjj ¡|jdjj ¡ƒD]:\}}||} t | dk| t | ¡| ¡} |t | ¡}qÀtd  |  ¡¡ƒ|j  |  ¡¡||jdk�rBtdƒ|j|d �| ¡| ¡qtd ƒtt|jƒƒtd ƒtt|ƒƒ|jD]}| ¡�q„td ƒ| ¡| ¡| ¡| ¡dS) Nérz -------------Round number: z -------------z Evaluate global modelz"Averaged prompr difference: {:.4f}z"0 and 1 clients difference: {:.4f}z Evaluate local model)Úaccz Best global accuracy.z Best local accuracy.z4 -------------Evaluate fine-tuned model-------------)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚitemÚformatr ÚappendÚzipÚclientsÚmodelÚ generatorÚ parametersÚtorchÚwhereÚ zeros_likeÚsumr Úreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚ fine_tuneÚ save_resultsÚsave_global_modelÚsave_client_model) rÚ local_accÚiÚ temp_diff_proÚclientÚtemp_diff_pro_clientÚdiverge_clentsÚ new_paramÚ old_paramr rrrrsN   ÿ      zFedBABUPT.traincCstj d|jd|jjd|jjd|jjd|jjd|jj d|jj ¡}tj  |¡sjt  |¡t |jƒD]†\}}tj ||jdt|ƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒd¡}t |j|¡qtdS)NÚmodelsr7Ú*Ú_clientÚ_z.pt)ÚosÚpathÚjoinÚdatasetrÚarv1Úarv2Úarv3Úarv4Úarv5Úarv6ÚexistsÚmakedirsÚ enumerater$Ú algorithmÚstrÚ num_promptrrÚ plocal_stepsrr(Úsaver%)rÚ model_pathÚc_idxÚcÚmodel_path_saverrrr3Ns T  pzFedBABUPT.save_client_modelc Cs€|jd|j}d|jjd|jjd|jjd|jjd|jjd|jjd}t j   |¡srt   |¡t |jƒ�r||d|jdt|jƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒdt|jjƒ}|d |¡}td|ƒt |d¡�f}|jd|jd �|jd |jd �|jd |jd �|jd |jd �|jd |jd �|jd|j d �W5QRXdS)Nr?z ../results/r=ú/z{}.h5z File path: Úwr/)ÚdataÚrs_test_acc_stdÚ rs_test_aucÚ rs_train_lossr r )!rCrMrrDrErFrGrHrIr@rArJrKÚlenr/ÚgoalrNrrOrrrPrr!r Úh5pyÚFileÚcreate_datasetrYrZr[r r )rÚalgoÚ result_pathÚ file_pathÚhfrrrr1VsL   l zFedBABUPT.save_resultsNc Cs|| ¡}| ¡}t|dƒdt|dƒ}t|dƒdt|dƒ}t|dƒdt|dƒ}t|dƒdt|dƒ}dd„t|d|dƒDƒ} dd„t|d|dƒDƒ} |dkrÎ|j |¡n | |¡|j |¡|j t  | ¡¡|dk�r|j  |¡n | |¡t d   |¡ƒt d   |¡ƒt d   |¡ƒt d   |¡ƒt d   t  | ¡¡ƒt d  t  | ¡¡ƒdS)Néçğ?réécSsg|]\}}||‘qSrr©Ú.0ÚaÚnrrrÚ <listcomp>rsz&FedBABUPT.evaluate.<locals>.<listcomp>cSsg|]\}}||‘qSrrrirrrrmsszAveraged Train Loss: {:.4f}zAveraged Test Accurancy: {:.4f}z$Averaged Test oral Accurancy: {:.4f}zAveraged Test AUC: {:.4f}zStd Test Accurancy: {:.4f}zStd Test AUC: {:.4f}) Ú test_metricsÚ train_metricsr+r#r/r"rZrYÚnpÚstdr[r r!) rrÚlossÚstatsÚ stats_trainÚtest_accÚ test_acc2Útest_aucÚ train_lossÚaccsÚaucsrrrris,    zFedBABUPT.evaluatec Cs~g}g}g}g}|jD]H}| ¡\}}}} | |d¡| |d¡| | |¡| |¡qdd„|jDƒ} | ||||fS)NrfcSsg|] }|j‘qSr)Úid)rjrTrrrrm•sz*FedBABUPT.test_metrics.<locals>.<listcomp>)r$rnr") rÚ num_samplesÚ tot_correctÚ tot_correct2Útot_aucrTÚctÚct2ÚnsÚaucÚidsrrrrnˆs  zFedBABUPT.test_metricscCs�t|jƒdkst‚g|_d}g|_g|_|jD]8}|j |j¡||j7}|j |j¡|j |j ¡q.t |jƒD]\}}|||j|<qrdS)Nr) r\rÚAssertionErrorÚuploaded_weightsÚ uploaded_idsÚuploaded_modelsr"Ú train_samplesr{r%rL)rÚ tot_samplesr7r5rWrrrr,šs  zFedBABUPT.receive_models)NN) Ú__name__Ú __module__Ú __qualname__rrr3r1rrnr,Ú __classcell__rrrrr s 4 r) Zflcore.clients.clientbabuptrÚflcore.servers.serverbaserÚ threadingrr^Úcopyr@r(ÚnumpyrprrrrrÚ<module>s   
5,957
Python
.pyt
53
111.188679
497
0.427942
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,997
serverproto.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverproto.cpython-38.pyc
U •icÊã@shddlmZddlmZddlmZddlmZddlZddl Z ddl m Z Gdd„deƒZ d d „ZdS) é)Ú clientProto)ÚServer)Úread_client_data)ÚThreadN)Ú defaultdictcs>eZdZ‡fdd„Zdd„Zdd„Zdd„Zd d d „Z‡ZS) ÚFedProtocsjtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒg|_|j |_ dd„t |j ƒDƒ|_ dS)Nz Join ratio / total clients: z / z%Finished creating server and clients.cSsg|]}d‘qS)N©)Ú.0Ú_rrõFD:\京东\promot\cifar\cifar\tiny\system\flcore\servers\serverproto.pyÚ <listcomp>sz%FedProto.__init__.<locals>.<listcomp>) ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clientsÚBudgetÚ num_classesÚrangeÚ global_protos)ÚselfÚargsÚtimes©Ú __class__rr r s zFedProto.__init__cCsd|_d}|jsÔt ¡}| ¡|_||jdkrX|dkrXtd|›d�ƒtdƒ| ¡|jD] }| ¡q^| ¡t |j ƒ|_ |  ¡|j  t ¡|¡td|j dƒ|dkrÊ|j|jg|jd�|_|d 7}q td ƒtt|jƒƒtt|j d d…ƒt|j d d…ƒƒ| ¡dS) NFrz -------------Round number: z -------------z Evaluate global modelz2--------------------------------------------------éÿÿÿÿ)Úacc_lssÚtop_cntéz Best global accuracy.)ÚdoneÚtimeÚselect_clientsÚselected_clientsÚeval_gaprÚevaluateÚtrainÚreceive_protosÚproto_aggregationÚuploaded_protosrÚ send_protosrÚappendÚ check_doneÚ rs_test_accrÚmaxÚsumÚlenÚ save_results)rÚiÚs_tÚclientrrr r's.     (zFedProto.traincCs.t|jƒdkst‚|jD]}| |j¡qdS©Nr)r1ÚclientsÚAssertionErrorZ set_protosr©rr5rrr r+Cs zFedProto.send_protoscCsJt|jƒdkst‚g|_g|_|jD] }|j |j¡|j |j¡q$dSr6)r1r$r8Ú uploaded_idsr*r,ÚidÚprotosr9rrr r(Is  zFedProto.receive_protosNcCsØ| ¡}| ¡}t|dƒdt|dƒ}t|dƒdt|dƒ}dd„t|d|dƒDƒ}|dkrz|j |¡n | |¡|dkrš|j |¡n | |¡td |¡ƒtd |¡ƒtd t   |¡¡ƒdS) Négğ?r cSsg|]\}}||‘qSrr)r ÚaÚnrrr r Xsz%FedProto.evaluate.<locals>.<listcomp>zAveraged Train Loss: {:.4f}zAveraged Test Accurancy: {:.4f}zStd Test Accurancy: {:.4f}) Ú test_metricsÚ train_metricsr0Úzipr.r,Ú rs_train_lossrÚformatÚnpÚstd)rÚaccÚlossÚstatsÚ stats_trainÚtest_accÚ train_lossÚaccsrrr r&Rs  zFedProto.evaluate)NN) Ú__name__Ú __module__Ú __qualname__rr'r+r(r&Ú __classcell__rrrr r s  ( rcCs–ttƒ}|D]$}| ¡D]}|| ||¡qq | ¡D]V\}}t|ƒdkr‚d|dj}|D]}||j7}q`|t|ƒ||<q:|dj||<q:|S)Nr r)rÚlistÚkeysr,Úitemsr1Údata)Zlocal_protos_listZagg_protos_labelZ local_protosÚlabelZ proto_listÚprotor3rrr r)ks   r))Zflcore.clients.clientprotorÚflcore.servers.serverbaserÚutils.data_utilsrÚ threadingrr"ÚnumpyrEÚ collectionsrrr)rrrr Ú<module>s     a
3,701
Python
.pyt
33
111
412
0.433361
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,998
serverrod.cpython-38.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serverrod.cpython-38.pyc
U ºĞıcÄã@sLddlmZddlmZddlmZddlmZddlZGdd„deƒZ dS)é)Ú clientROD)ÚServer)Úread_client_data)ÚThreadNcs$eZdZ‡fdd„Zdd„Z‡ZS)ÚFedRODcsFtƒ ||¡| ¡| |t¡td|j›d|j›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.)ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes©Ú __class__©õWD:\京东\promot\第二次投稿\å®�验\native - pro\system\flcore\servers\serverrod.pyr s  zFedROD.__init__cCsÜg}t|jdƒD]Š}| ¡|_| ¡||jdkrVtd|›d�ƒtdƒ| ¡|jD] }| ¡q\||jdkrŒtdƒ|j|d�|  ¡|  ¡qtdƒtt |j ƒƒtd ƒtt |ƒƒ|  ¡| ¡dS) Nérz -------------Round number: z -------------z Evaluate global modelz Evaluate local model)Úaccz Best global accuracy.z Best local accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚaggregate_parametersÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)rÚ local_accÚiÚclientrrrrs*      z FedROD.train)Ú__name__Ú __module__Ú __qualname__rrÚ __classcell__rrrrrs r) Zflcore.clients.clientrodrÚflcore.servers.serverbaserÚutils.data_utilsrÚ threadingrÚtimerrrrrÚ<module>s    
1,678
Python
.pyt
19
87.105263
360
0.495783
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,286,999
serveramp.cpython-39.pyc
hkgdifyu_pFedPT/system/flcore/servers/__pycache__/serveramp.cpython-39.pyc
a f¾`cÍ ã@sdddlZddlZddlZddlZddlZddlmZmZddl m Z ddl m Z Gdd„de ƒZ dS)éN)Ú clientAMPÚweight_flatten)ÚServer)ÚThreadcs4eZdZ‡fdd„Zdd„Zdd„Zdd„Z‡ZS) ÚFedAMPcsVtƒ ||¡| ¡| |t¡|j|_|j|_td|j›d|j ›�ƒtdƒdS)Nz Join ratio / total clients: z / z%Finished creating server and clients.) ÚsuperÚ__init__Úset_slow_clientsÚ set_clientsrÚalphaKÚsigmaÚprintÚ join_ratioÚ num_clients)ÚselfÚargsÚtimes©Ú __class__©úr/media/sim812/391e55df-b6f2-4fe9-a920-53434a8506fa/lgh/pdept/PFL-Non-IID-master/system/flcore/servers/serveramp.pyr s zFedAMP.__init__cCsšt|jdƒD]`}| ¡|_| ¡||jdkrRtd|›d�ƒtdƒ| ¡|jD] }| ¡qX|  ¡qtdƒtt |j ƒƒ|  ¡|  ¡dS)Nérz -------------Round number: z -------------z Evaluate global modelz Best global accuracy.)ÚrangeÚ global_roundsÚselect_clientsÚselected_clientsÚ send_modelsÚeval_gapr ÚevaluateÚtrainÚreceive_modelsÚmaxÚ rs_test_accÚ save_resultsÚsave_global_model)rÚiÚclientrrrrs    z FedAMP.trainc CsŒt|jƒdksJ‚t|jƒdk�rˆ|jD�]\}t |j¡}| ¡D]}|j ¡qBt   |j ¡}t |jƒD]b\}}|j |j|krÂt|jƒ}t|ƒ}|| d¡} t  | | ¡} |j| | ¡||<qhd||<qhdt  |¡} t |jƒD]:\}}t| ¡| ¡ƒD]\}} |j||| 7_qşqät ¡} |j�rJt dt tj ¡¡¡| || ¡|jdd7<|jddt ¡| 7<q(dS)Nréÿÿÿÿrgš™™™™™¹?Ú num_roundsÚ total_costé) ÚlenrÚuploaded_modelsÚcopyÚdeepcopyÚ global_modelÚ parametersÚdataÚzero_ÚtorchÚzerosÚ join_clientsÚ enumerateÚidÚ uploaded_idsrÚmodelÚviewÚdotr ÚeÚsumÚzipÚtimeÚ send_slowÚsleepÚnpÚabsÚrandomÚrandÚset_parametersÚsend_time_cost) rÚcÚmuÚparamÚcoefÚjÚmwZ weights_iZ weights_jÚsubZ coef_selfZparam_jÚ start_timerrrr6s2         zFedAMP.send_modelscCst | |j¡|jS)N)ÚmathÚexpr )rÚxrrrr<ZszFedAMP.e)Ú__name__Ú __module__Ú __qualname__rrrr<Ú __classcell__rrrrr s $r)r3r-r?ÚnumpyrBrPZflcore.clients.clientamprrÚflcore.servers.serverbaserÚ threadingrrrrrrÚ<module>s  
2,696
Python
.pyt
26
102.5
373
0.469861
hkgdifyu/pFedPT
8
3
0
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)