id
int64
0
458k
file_name
stringlengths
4
119
file_path
stringlengths
14
227
content
stringlengths
24
9.96M
size
int64
24
9.96M
language
stringclasses
1 value
extension
stringclasses
14 values
total_lines
int64
1
219k
avg_line_length
float64
2.52
4.63M
max_line_length
int64
5
9.91M
alphanum_fraction
float64
0
1
repo_name
stringlengths
7
101
repo_stars
int64
100
139k
repo_forks
int64
0
26.4k
repo_open_issues
int64
0
2.27k
repo_license
stringclasses
12 values
repo_extraction_date
stringclasses
433 values
2,287,500
constants.py
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/constants.py
board_size = 8 SAMPLE_AZ_ARGS = { "num_net_channels": 512, "num_net_in_channels": 1, "net_dropout": 0.3, "net_action_size": board_size ** 2, "num_simulations": 1317, "self_play_games": 300, "num_iters": 50, "epochs": 500, "lr": 0.0032485504583772953, "max_buffer_size": 100_000, "num_pit_games": 40, "random_pit_freq": 3, "board_size": board_size, "batch_size": 256, "tau": 1, "arena_tau": 0.04139160592420218, "c": 1, "checkpoint_dir": None, "update_threshold": 0.6, "minimax_depth": 4, "show_tqdm": True, "num_workers": 5, "num_to_win": 5, "log_epsilon": 1e-9, "zero_tau_after": 5, "az_net_linear_input_size": 18432, "log_dir": "Logs", "pushbullet_token": None } TRAINED_AZ_NET_ARGS = { "num_net_channels": 512, "num_net_in_channels": 1, "net_dropout": 0.3, "net_action_size": board_size ** 2, "num_simulations": 1317, "self_play_games": 3, "num_iters": 50, "epochs": 320, "lr": 0.0032485504583772953, "max_buffer_size": 100_000, "num_pit_games": 40, "random_pit_freq": 3, "board_size": board_size, "batch_size": 128, "tau": 1.0, "arena_tau": 0, # 0.04139160592420218 "c": 1.15, "checkpoint_dir": None, "update_threshold": 0.6, "minimax_depth": 4, "show_tqdm": True, "num_workers": 5, "num_to_win": 4, "log_epsilon": 1.4165210108199043e-08, "log_dir": "Logs", "pushbullet_token": None } SAMPLE_MZ_ARGS = { "num_net_channels": 512, "num_net_out_channels": 256, "num_net_in_channels": 1, "net_dropout": 0.3, "net_action_size": 14, "net_latent_size": 36, "num_simulations": 240, "self_play_games": 5, "K": 5, "gamma": 0.997, "frame_buffer_size": 32, "frame_skip": 4, "num_steps": 400, "num_iters": 50, "epochs": 100, "lr": 0.001, "max_buffer_size": 70_000, "num_pit_games": 40, "random_pit_freq": 2, "board_size": board_size, "batch_size": 255, "tau": 1, "arena_tau": 1e-2, "c": 1, "c2": 19652, "alpha": 0.8, "checkpoint_dir": None, "update_threshold": 0.6, "minimax_depth": None, # don't use with muzero "show_tqdm": False, "num_workers": 5, "num_to_win": 5, "log_epsilon": 1e-9, "zero_tau_after": 5, "beta": 1, "env_id": "ALE/Asteroids-v5", "pickle_dir": "Pickles/Data", "target_resolution": (96, 96), "az_net_linear_input_size": 8192, "log_dir": "Logs", "pushbullet_token": None }
2,570
Python
.py
102
20.421569
51
0.569631
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,501
checkpointer.py
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/checkpointer.py
import atexit import os import pickle import sys import torch as th from mu_alpha_zero.AlphaZero.utils import DotDict from mu_alpha_zero.General.utils import find_project_root from mu_alpha_zero.config import Config class CheckPointer: def __init__(self, checkpoint_dir: str | None, verbose: bool = True) -> None: self.__checkpoint_dir = checkpoint_dir self.make_dir() self.__checkpoint_num = self.initialize_checkpoint_num() self.__name_prefix = "improved_net_" self.verbose = verbose atexit.register(self.cleanup) def make_dir(self) -> None: if self.__checkpoint_dir is not None: os.makedirs(self.__checkpoint_dir, exist_ok=True) return root_dir = find_project_root() checkpoint_dir = f"{root_dir}/Checkpoints/NetVersions" self.__checkpoint_dir = checkpoint_dir os.makedirs(checkpoint_dir, exist_ok=True) def save_checkpoint(self, net: th.nn.Module, opponent: th.nn.Module, optimizer: th.optim, lr: float, iteration: int, mu_alpha_zero_config: Config, name: str = None) -> None: if name is None: name = self.__name_prefix + str(self.__checkpoint_num) checkpoint_path = f"{self.__checkpoint_dir}/{name}.pth" th.save({ "net": net.state_dict(), "optimizer": optimizer.state_dict() if isinstance(optimizer, th.optim.Optimizer) else optimizer, "lr": lr, "iteration": iteration, "args": mu_alpha_zero_config.to_dict(), 'opponent_state_dict': opponent.state_dict() }, checkpoint_path) self.print_verbose(f"Saved checkpoint to {checkpoint_path} at iteration {iteration}.") self.__checkpoint_num += 1 def save_state_dict_checkpoint(self, net: th.nn.Module, name: str) -> None: checkpoint_path = f"{self.__checkpoint_dir}/{name}.pth" th.save(net.state_dict(), checkpoint_path) self.print_verbose(f"Saved state dict checkpoint.") def load_state_dict_checkpoint(self, net: th.nn.Module, name: str) -> None: checkpoint_path = f"{self.__checkpoint_dir}/{name}.pth" net.load_state_dict(th.load(checkpoint_path)) self.print_verbose(f"Loaded state dict checkpoint.") def load_checkpoint_from_path(self, checkpoint_path: str) -> tuple: sys.modules['mem_buffer'] = sys.modules['mu_alpha_zero.mem_buffer'] checkpoint = th.load(checkpoint_path) self.print_verbose(f"Restoring checkpoint {checkpoint_path} made at iteration {checkpoint['iteration']}.") if "memory" in checkpoint: memory = checkpoint["memory"] else: memory = None return checkpoint["net"], checkpoint["optimizer"], memory, checkpoint["lr"], \ DotDict(checkpoint["args"]), checkpoint["opponent_state_dict"] def load_checkpoint_from_num(self, checkpoint_num: int) -> tuple: checkpoint_path = f"{self.__checkpoint_dir}/{self.__name_prefix}{checkpoint_num}.pth" return self.load_checkpoint_from_path(checkpoint_path) def clear_checkpoints(self) -> None: # This method doesn't obey the verbose flag as it's a destructive operation. print("Clearing all checkpoints.") answer = input("Are you sure?? (y/n): ") if answer != "y": print("Aborted.") return for file_name in os.listdir(self.__checkpoint_dir): os.remove(f"{self.__checkpoint_dir}/{file_name}") print(f"Cleared {len(os.listdir(self.__checkpoint_dir))} saved checkpoints (all).") def save_temp_net_checkpoint(self, net) -> None: process_pid = os.getpid() os.makedirs(f"{self.__checkpoint_dir}/Temp", exist_ok=True) checkpoint_path = f"{self.__checkpoint_dir}/Temp/temp_net_{process_pid}.pth" th.save(net.state_dict(), checkpoint_path) def load_temp_net_checkpoint(self, net) -> None: process_pid = os.getpid() checkpoint_path = f"{self.__checkpoint_dir}/Temp/temp_net_{process_pid}.pth" net.load_state_dict(th.load(checkpoint_path)) def initialize_checkpoint_num(self) -> int: return len([x for x in os.listdir(self.__checkpoint_dir) if x.endswith(".pth")]) def get_highest_checkpoint_num(self) -> int: return max([int(file_name.split("_")[2].split(".")[0]) for file_name in os.listdir(self.__checkpoint_dir)]) def get_temp_path(self) -> str: return f"{self.__checkpoint_dir}/Temp/temp_net.pth" def get_checkpoint_dir(self) -> str: return self.__checkpoint_dir def get_latest_name_match(self, name: str): name_matches = [os.path.join(self.__checkpoint_dir, x) for x in os.listdir(self.__checkpoint_dir) if name in x] name_matches.sort(key=lambda x: os.path.getctime(x)) return name_matches[-1] def get_name_prefix(self): return self.__name_prefix def print_verbose(self, msg: str) -> None: if self.verbose: print(msg) def cleanup(self): import shutil shutil.rmtree(f"{self.__checkpoint_dir}/Temp/", ignore_errors=True) def save_losses(self, losses: list[float]): with open(f"{self.__checkpoint_dir}/training_losses.pkl", "wb") as f: pickle.dump(losses, f)
5,354
Python
.py
103
43.213592
119
0.639372
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,502
utils.py
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/utils.py
import json import os import shutil import time from typing import Type, Literal, Callable import numpy as np import optuna # import pygraphviz import torch as th from mu_alpha_zero.AlphaZero.constants import SAMPLE_AZ_ARGS as test_args from mu_alpha_zero.mem_buffer import MemBuffer from mu_alpha_zero.config import Config, AlphaZeroConfig from mu_alpha_zero.General.network import GeneralNetwork class DotDict(dict): def __getattr__(self, name): return self[name] def __setattr__(self, name, value): self[name] = value def augment_experience_with_symmetries(game_experience: list, board_size) -> list: game_experience_ = [] for state, pi, v, _ in game_experience: pi = np.array([x for x in pi.values()]) game_experience_.append((state, pi, v)) for axis, k in zip([0, 1], [1, 3]): state_ = np.rot90(state.copy(), k=k) pi_ = np.rot90(pi.copy().reshape(board_size, board_size), k=k).flatten() game_experience_.append((state_, pi_, v)) del state_, pi_ state_ = np.flip(state.copy(), axis=axis) pi_ = np.flip(pi.copy().reshape(board_size, board_size), axis=axis).flatten() game_experience_.append((state_, pi_, v)) return game_experience_ def rotate_stack(state: np.ndarray, k: int): for dim in range(state.shape[0]): state[dim] = np.rot90(state[dim], k=k) return state def flip_stack(state: np.ndarray, axis: int): for dim in range(state.shape[0]): state[dim] = np.flip(state[dim], axis=axis) return state def make_channels(game_experience: list): experience = [] for state, pi, v, current_player, move in game_experience: state = make_channels_from_single(state) experience.append((state, pi, v, current_player, move)) return experience def make_channels_from_single(state: np.ndarray): player_one_state = np.where(state == 1, 1, 0) # fill with 1 where player 1 has a piece else 0 player_minus_one_state = np.where(state == -1, 1, 0) # fill with 1 where player -1 has a piece else 0 empty_state = np.where(state == 0, 1, 0) # fill with 1 where empty spaces else 0 return np.stack([state, player_one_state, player_minus_one_state, empty_state], axis=0) def mask_invalid_actions(probabilities: np.ndarray, mask: np.ndarray) -> np.ndarray: mask = mask.reshape(probabilities.shape) valids = probabilities * mask valids_sum = valids.sum() return valids / valids_sum # to_print = "" # for debugging # # mask = np.where(observations != 0, -5, observations) # # mask = np.where(mask == 0, 1, mask) # # mask = np.where(mask == -5, 0, mask) # valids = probabilities.reshape(-1, board_size ** 2) * mask.reshape(-1, board_size ** 2) # valids_sum = valids.sum() # if valids_sum == 0: # # When no valid moves are available (shouldn't happen) sum of valids is 0, making the returned valids an array # # of nan's (result of division by zero). In this case, we create a uniform probability distribution. # to_print += f"Sum of valid probabilities is 0. Creating a uniform probability...\nMask:\n{mask}" # valids = np.full(valids.shape, 1.0 / np.prod(valids.shape)) # else: # valids = valids / valids_sum # normalize # # if len(to_print) > 0: # print(to_print, file=open("masking_message.txt", "w")) # return valids def mask_invalid_actions_batch(states: th.tensor) -> th.tensor: masks = [] for state in states: np_state = state.detach().cpu().numpy() mask = np.where(np_state != 0, -5, np_state) mask = np.where(mask == 0, 1, mask) mask = np.where(mask == -5, 0, mask) masks.append(mask) return th.tensor(np.array(masks), dtype=th.float32).squeeze(1) def check_args(args: dict): required_keys = ["num_net_channels", "num_net_in_channels", "net_dropout", "net_action_size", "num_simulations", "self_play_games", "num_iters", "epochs", "lr", "max_buffer_size", "num_pit_games", "random_pit_freq", "board_size", "batch_size", "tau", "c", "checkpoint_dir", "update_threshold"] for key in required_keys: if key not in args: raise KeyError(f"Missing key {key} in args dict. Please supply all required keys.\n" f"Required keys: {required_keys}.") def calculate_board_win_positions(n: int, k: int): return get_num_horizontal_conv_slides(n, k) * (n * 2 + 2) + 4 * sum( [get_num_horizontal_conv_slides(x, k) for x in range(k, n)]) def get_num_horizontal_conv_slides(board_size: int, kernel_size: int) -> int: return (board_size - kernel_size) + 1 def az_optuna_parameter_search(n_trials: int, target_values: list, target_game, config: AlphaZeroConfig, net_class: Type[GeneralNetwork], results_dir: str, az,refresh_az: Callable): """ Performs a hyperparameter search using optuna. This method is meant to be called using the start_jobs.py script. For this method to work, a mysql database must be running on the storage address and an optuna study with the given name and the 'maximize' direction must exist. :param n_trials: num of trials to run the search for. :param config: The config to use for the search. :return: """ def get_function_from_value(value, trial: optuna.Trial): if type(value[1]) == int: return trial.suggest_int(value[0], value[1], value[2]) if type(value[1]) == float: return trial.suggest_float(value[0], value[1], value[2]) if type(value[1]) == list: return trial.suggest_categorical(value[0], value[1]) def objective(trial: optuna.Trial): az = refresh_az() for value in target_values: setattr(config, value[0], get_function_from_value(value, trial)) az.trainer.opponent_network.load_state_dict(az.trainer.network.state_dict()) shared_storage_manager = SharedStorageManager() shared_storage_manager.start() mem = shared_storage_manager.MemBuffer(az.trainer.memory.max_size, az.trainer.memory.disk, az.trainer.memory.full_disk, az.trainer.memory.dir_path, hook_manager=az.trainer.memory.hook_manager) shared_storage: SharedStorage = shared_storage_manager.SharedStorage(mem) shared_storage.set_stable_network_params(az.trainer.network.state_dict()) pool = az.trainer.mcts.start_continuous_self_play( az.trainer.make_n_networks(az.trainer.muzero_alphazero_config.num_workers), az.trainer.make_n_trees(az.trainer.muzero_alphazero_config.num_workers), shared_storage, az.trainer.device, az.trainer.muzero_alphazero_config, az.trainer.muzero_alphazero_config.num_workers, az.trainer.muzero_alphazero_config.num_worker_iters) az.trainer.logger.log( f"Successfully started a pool of {az.trainer.muzero_alphazero_config.num_workers} workers for " f"self-play (1/2).") p2 = Process(target=az.trainer.network.continuous_weight_update, args=( shared_storage, az.trainer.muzero_alphazero_config, az.trainer.checkpointer, az.trainer.logger)) p2.start() p4 = Process(target=az.trainer.arena.continuous_pit, args=( az.trainer.net_player.make_fresh_instance(), az.trainer.net_player.make_fresh_instance(), RandomPlayer(az.trainer.game_manager.make_fresh_instance(), **{}), az.trainer.muzero_alphazero_config.num_pit_games, az.trainer.muzero_alphazero_config.num_simulations, shared_storage, az.trainer.checkpointer, False, 1 )) p4.start() last_len = 0 max_len = 500 while len(shared_storage.get_combined_losses()) < max_len: if len(shared_storage.get_combined_losses()) <= last_len: time.sleep(2) continue last_len = len(shared_storage.get_combined_losses()) trial.report(shared_storage.get_combined_losses()[-1], len(shared_storage.get_combined_losses())) pool.terminate() p2.terminate() p4.terminate() return shared_storage.get_combined_losses()[-1] from mu_alpha_zero.shared_storage_manager import SharedStorageManager, SharedStorage from mu_alpha_zero.AlphaZero.Arena.players import RandomPlayer from mu_alpha_zero.mem_buffer import MemBuffer from multiprocess.context import Process config.show_tqdm = False study = optuna.create_study(study_name="AlphaZeroHyperparameterSearch", direction="minimize") study.optimize(objective, n_trials=n_trials) with open(f"{results_dir}/best_params.json", "w") as f: json.dump(study.best_params, f) def build_net_from_config(muzero_config: Config, device): from mu_alpha_zero.AlphaZero.Network.nnet import AlphaZeroNet network = AlphaZeroNet(muzero_config.num_net_in_channels, muzero_config.num_net_channels, muzero_config.net_dropout, muzero_config.net_action_size, muzero_config.az_net_linear_input_size) return network.to(device) def build_all_from_config(muzero_alphazero_config: Config, device, lr=None, buffer_size=None): if lr is None: lr = muzero_alphazero_config.lr if buffer_size is None: buffer_size = muzero_alphazero_config.max_buffer_size network = build_net_from_config(muzero_alphazero_config, device) optimizer = th.optim.Adam(network.parameters(), lr=lr) memory = MemBuffer(max_size=buffer_size) return network, optimizer, memory def make_net_from_checkpoint(checkpoint_path: str, args: DotDict | None): if args is None: args = DotDict(test_args) device = th.device("cuda" if th.cuda.is_available() else "cpu") net = build_net_from_config(args, device) data = th.load(checkpoint_path) net.load_state_dict(data["net"]) return net def visualize_tree(root_node, output_file_name: str, depth_limit: int | None = None): graph = pygraphviz.AGraph() graph.graph_attr["label"] = "MCTS visualization" graph.node_attr["shape"] = "circle" graph.edge_attr["color"] = "blue" graph.node_attr["color"] = "gold" if depth_limit is None: depth_limit = float("inf") def make_graph(node, parent, g: pygraphviz.AGraph, d_limit: int): state_ = None if node.state is None: state_ = str(np.random.randint(low=0, high=5, size=parent.state.shape)) else: state_ = str(node.state) g.add_node(state_) if parent != node: g.add_edge(str(parent.state), state_) if not node.was_visited() or d_limit <= 0: return # queue_ = deque(root_node.children.values()) # depth = 1 # num_children = 25 # children_iterated = 0 # parent = root_node for child in node.children.values(): make_graph(child, node, g, d_limit=d_limit - 1 if depth_limit != float("inf") else depth_limit) make_graph(root_node, root_node, graph, d_limit=depth_limit) graph.layout(prog="dot") graph.draw(f"{output_file_name}.png") def cpp_data_to_memory(data: list, memory: MemBuffer, board_size: int): # import pickle # test_data = pickle.load(open(f"{find_project_root()}/history.pkl","rb")) for game_data in data: for state, pi, v in game_data: state = th.tensor(state, dtype=th.float32).reshape(board_size, board_size) pi = th.tensor(pi, dtype=th.float32) memory.add((state, pi, v)) # # if __name__ == "__main__": # cpp_data_to_memory(None,MemBuffer(max_size=10_000),test_args)
11,998
Python
.py
235
42.748936
120
0.644632
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,503
__init__.py
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/__init__.py
#from mu_alpha_zero.mem_buffer import MemBuffer # from AlphaZero.Network.trainer import Trainer # from AlphaZero.Network.nnet import TicTacToeNet # from import cbind
166
Python
.py
4
40.75
49
0.834356
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,504
logger.py
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/logger.py
import atexit import datetime import logging import os from pushbullet import API from mu_alpha_zero.General.utils import find_project_root class Logger: def __init__(self, logdir: str or None, token: str or None = None) -> None: self.logdir = self.init_logdir(logdir) os.makedirs(self.logdir, exist_ok=True) self.logger = logging.getLogger("AlphaZeroLogger") self.logger.setLevel(logging.DEBUG) self.file_handler = logging.FileHandler( f"{self.logdir}/{datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.log") self.file_handler.setLevel(logging.DEBUG) self.logger.addHandler(self.file_handler) self.is_token_set = False self.api = API() self.init_api_token(token) formatter = logging.Formatter("[%(asctime)s - %(levelname)s] %(message)s") self.file_handler.setFormatter(formatter) atexit.register(self.cleanup) def log(self, msg: str, level: str = "debug") -> None: getattr(self.logger, level)(msg) def init_logdir(self,logdir: str or None): if logdir is None: return f"{find_project_root()}/Logs/ProgramLogs" else: return logdir def init_api_token(self, token: str or None) -> None: if token is None: return self.api.set_token(token) self.is_token_set = True def pushbullet_log(self, msg: str, algorithm: str = "MuZero") -> None: if not self.is_token_set: return try: self.api.send_note(f"{algorithm} training notification.", msg) except Exception as e: print(e) def clear_logdir(self): for file_name in os.listdir(self.logdir): os.remove(f"{self.logdir}/{file_name}") def cleanup(self) -> None: self.file_handler.close() self.logger.removeHandler(self.file_handler) class LoggingMessageTemplates: @staticmethod def PITTING_START(name1: str, name2: str, num_games: int): return f"Starting pitting between {name1} and {name2} for {num_games} games." @staticmethod def PITTING_END(name1: str, name2: str, wins1: int, wins2: int, total: int, draws: int): return (f"Pitting ended between {name1} and {name2}. " f"Player 1 win frequency: {wins1 / total}. " f"Player 2 win frequency: {wins2 / total}. Draws: {draws}.") @staticmethod def SELF_PLAY_START(num_games: int): return f"Starting self play for {num_games} games." @staticmethod def SELF_PLAY_END(wins1: int, wins2: int, draws: int, not_zero_fn: callable): if wins1 is None or wins2 is None or draws is None: return "Self play ended. Results not available (This is expected if you are running MuZero)." return (f"Self play ended. Player 1 win frequency: {wins1 / (not_zero_fn(wins1 + wins2 + draws))}. " f"Player 2 win frequency: {wins2 / (not_zero_fn(wins1 + wins2 + draws))}. Draws: {draws}.") @staticmethod def NETWORK_TRAINING_START(num_epchs: int): return f"Starting network training for {num_epchs} epochs." @staticmethod def NETWORK_TRAINING_END(mean_loss: float): return f"Network training ended. Mean loss: {mean_loss}" @staticmethod def MODEL_REJECT(num_wins: float, update_threshold: float): return (f"!!! Model rejected, restoring previous version. Win rate: {num_wins}. " f"Update threshold: {update_threshold} !!!") @staticmethod def MODEL_ACCEPT(num_wins: float, update_threshold: float): return ( f"!!! Model accepted, keeping current version. Win rate: {num_wins}. Update threshold: {update_threshold}" f" !!!") @staticmethod def TRAINING_START(num_iters: int): return f"Starting training for {num_iters} iterations." @staticmethod def TRAINING_END(args_used: dict): args_used_str = "" for key, value in args_used.items(): args_used_str += f"{key}: {value}, " return f"Training ended. Args used: {args_used_str[:-2]}" @staticmethod def SAVED(type_: str, path: str): return f"Saved {type_} to {path}" @staticmethod def LOADED(type_: str, path: str): return f"Restored {type_} from {path}" @staticmethod def ITER_FINISHED_PSB(iter: int): return f"Iteration {iter} of the algorithm training finished!" @staticmethod def TRAINING_END_PSB(): return "Algorithm Training finished, you can collect the results :)"
4,590
Python
.py
101
37.415842
118
0.640376
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,505
alpha_zero.py
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/alpha_zero.py
import sys from typing import Type import numpy as np import torch as th from mu_alpha_zero.AlphaZero.Arena.arena import Arena from mu_alpha_zero.AlphaZero.Arena.players import NetPlayer from mu_alpha_zero.AlphaZero.MCTS.az_search_tree import McSearchTree from mu_alpha_zero.trainer import Trainer from mu_alpha_zero.General.az_game import AlphaZeroGame from mu_alpha_zero.General.memory import GeneralMemoryBuffer from mu_alpha_zero.General.network import GeneralNetwork from mu_alpha_zero.General.utils import net_not_none, find_project_root from mu_alpha_zero.Hooks.hook_manager import HookManager from mu_alpha_zero.config import AlphaZeroConfig class AlphaZero: def __init__(self, game_instance: AlphaZeroGame): self.trainer = None self.net = None self.game = game_instance self.device = th.device("cuda" if th.cuda.is_available() else "cpu") self.alpha_zero_config: AlphaZeroConfig = None self.tree: McSearchTree = None def create_new(self, alpha_zero_config: AlphaZeroConfig, network_class: Type[GeneralNetwork], memory: GeneralMemoryBuffer, headless: bool = True, hook_manager: HookManager or None = None, checkpointer_verbose: bool = False): network = network_class.make_from_config(alpha_zero_config, hook_manager=hook_manager).to( self.device) tree = McSearchTree(self.game.make_fresh_instance(), alpha_zero_config) self.tree = tree net_player = NetPlayer(self.game.make_fresh_instance(), **{"network": network, "monte_carlo_tree_search": tree}) self.alpha_zero_config = alpha_zero_config self.trainer = Trainer.create(alpha_zero_config, self.game, network, tree, net_player, headless=headless, checkpointer_verbose=checkpointer_verbose, memory_override=memory, hook_manager=hook_manager) self.net = self.trainer.get_network() def load_checkpoint(self, network_class: Type[GeneralNetwork], path: str, checkpoint_dir: str, headless: bool = True, hook_manager: HookManager or None = None, checkpointer_verbose: bool = False, memory: GeneralMemoryBuffer = None): self.trainer = Trainer.from_checkpoint(network_class, McSearchTree, NetPlayer, path, checkpoint_dir, self.game, headless=headless, hook_manager=hook_manager, checkpointer_verbose=checkpointer_verbose, mem=memory) self.net = self.trainer.get_network() self.tree = self.trainer.get_tree() self.args = self.trainer.get_args() def train(self): net_not_none(self.net) self.trainer.train() def train_parallel(self, use_pitting: bool): net_not_none(self.net) self.trainer.train_parallel(False, use_pitting) def predict(self, x: np.ndarray, tau: float = 0) -> int: net_not_none(self.net) assert x.shape == (self.args["board_size"], self.args["board_size"], self.args[ "num_net_in_channels"]), "Input shape is not correct. Expected (board_size, board_size, num_net_in_channels)." \ "Got: " + str(x.shape) pi, _ = self.tree.search(self.net, x, 1, self.device, tau=tau) return self.game.select_move(pi, tau=self.alpha_zero_config.tau) def play(self, p1_name: str, p2_name: str, num_games: int, alpha_zero_config: AlphaZeroConfig, starts: int = 1, switch_players: bool = True): net_not_none(self.net) self.net.to(self.device) self.net.eval() manager = self.game.make_fresh_instance() tree = McSearchTree(manager, alpha_zero_config) kwargs = {"network": self.net, "monte_carlo_tree_search": tree, "evaluate_fn": manager.eval_board, "depth": alpha_zero_config.minimax_depth, "player": -1} path_prefix = find_project_root().replace("\\", "/").split("/")[-1] p1 = sys.modules[f"{path_prefix}.AlphaZero.Arena.players"].__dict__[p1_name](manager, **kwargs) p2 = sys.modules[f"{path_prefix}.AlphaZero.Arena.players"].__dict__[p2_name](manager, **kwargs) arena_manager = self.game.make_fresh_instance() arena_manager.set_headless(False) arena = Arena(arena_manager, alpha_zero_config, self.device) p1_w, p2_w, ds = arena.pit(p1, p2, num_games, alpha_zero_config.num_simulations, one_player=not switch_players, start_player=starts, add_to_kwargs=kwargs) print(f"Results: Player 1 wins: {p1_w}, Player 2 wins: {p2_w}, Draws: {ds}")
4,714
Python
.py
75
52.08
124
0.652193
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,506
checkpointer.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/__pycache__/checkpointer.cpython-311.pyc
§ -*¢fêãól—ddlZddlZddlZddlZddlZddlmZddlm Z ddl m Z Gd„d¦«Z dS)éN)ÚDotDict)Úfind_project_root)ÚConfigcóˆ—eZdZd$dedzdeddfd„Zd%d„Z d&dejj d ejj d ej d e d e d e deddfd„Zdejj deddfd„Zdejj deddfd„Zdedefd„Zde defd„Zd%d„Zd%d„Zd%d„Zde fd„Zde fd„Zdefd„Zdefd„Zdefd„Zd„Zdeddfd „Zd!„Zd"ee fd#„Z dS)'Ú CheckPointerTÚcheckpoint_dirNÚverboseÚreturncó¼—||_| ¦«| ¦«|_d|_||_t j|j¦«dS)NÚ improved_net_) Ú_CheckPointer__checkpoint_dirÚmake_dirÚinitialize_checkpoint_numÚ_CheckPointer__checkpoint_numÚ_CheckPointer__name_prefixr ÚatexitÚregisterÚcleanup)Úselfrr s úS/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/AlphaZero/checkpointer.pyÚ__init__zCheckPointer.__init__sR€Ø .ˆÔØ � Š ‰ŒˆØ $× >Ò >Ñ @Ô @ˆÔØ,ˆÔ؈Œ İŒ˜œ Ñ%Ô%Ğ%Ğ%Ğ%ócó®—|j�tj|jd¬¦«dSt¦«}|›d�}||_tj|d¬¦«dS)NT©Úexist_okz/Checkpoints/NetVersions)r ÚosÚmakedirsr)rÚroot_dirrs rrzCheckPointer.make_dirsd€Ø Ô Ğ ,İ ŒK˜Ô-¸Ğ =Ñ =Ô =Ğ =Ø ˆFİ$Ñ&Ô&ˆØ$Ğ>Ğ>Ğ>ˆØ .ˆÔİ Œ �N¨TĞ2Ñ2Ô2Ğ2Ğ2Ğ2rÚnetÚopponentÚ optimizerÚlrÚ iterationÚmu_alpha_zero_configÚnamec ó¾—|€|jt|j¦«z}|j›d|›d�}t j| ¦«t|tjj ¦«r| ¦«n||||  ¦«| ¦«dœ|¦«|  d|›d|›d�¦«|xjdz c_dS)Nú/ú.pth)rr!r"r#ÚargsÚopponent_state_dictzSaved checkpoint to z at iteration ú.é) rÚstrrr ÚthÚsaveÚ state_dictÚ isinstanceÚoptimÚ OptimizerÚto_dictÚ print_verbose) rrr r!r"r#r$r%Úcheckpoint_paths rÚsave_checkpointzCheckPointer.save_checkpointsü€ğ ˆ<ØÔ%­¨DÔ,AÑ(BÔ(BÑBˆDà!Ô2Ğ?Ğ?°TĞ?Ğ?Ğ?ˆİ ŒØ—>’>Ñ#Ô#İ3=¸iÍÌÔI[Ñ3\Ô3\Ğk˜×-Ò-Ñ/Ô/Ğ/ĞbkØØ"Ø(×0Ò0Ñ2Ô2Ø#+×#6Ò#6Ñ#8Ô#8ğ  ğ ğ ñ ô ğ ğ ×ÒĞ]°/Ğ]Ğ]ĞQZĞ]Ğ]Ğ]Ñ^Ô^Ğ^Ø ĞÔ Ñ"ĞÔĞĞrcó˜—|j›d|›d�}tj| ¦«|¦«| d¦«dS)Nr'r(zSaved state dict checkpoint.)r r.r/r0r5©rrr%r6s rÚsave_state_dict_checkpointz'CheckPointer.save_state_dict_checkpoint1sR€Ø!Ô2Ğ?Ğ?°TĞ?Ğ?Ğ?ˆİ Œ�—’Ñ Ô  /Ñ2Ô2Ğ2Ø ×ÒĞ:Ñ;Ô;Ğ;Ğ;Ğ;rcó˜—|j›d|›d�}| tj|¦«¦«| d¦«dS)Nr'r(zLoaded state dict checkpoint.)r Úload_state_dictr.Úloadr5r9s rÚload_state_dict_checkpointz'CheckPointer.load_state_dict_checkpoint6sT€Ø!Ô2Ğ?Ğ?°TĞ?Ğ?Ğ?ˆØ ×Ò�BœG OÑ4Ô4Ñ5Ô5Ğ5Ø ×ÒĞ;Ñ<Ô<Ğ<Ğ<Ğ<rr6có0—tjdtjd<tj|¦«}| d|›d|d›d�¦«d|vr |d}nd}|d|d ||d t |d ¦«|d fS) Nzmu_alpha_zero.mem_bufferÚ mem_bufferzRestoring checkpoint z made at iteration r#r+Úmemoryrr!r"r)r*)ÚsysÚmodulesr.r=r5r)rr6Ú checkpointrAs rÚload_checkpoint_from_pathz&CheckPointer.load_checkpoint_from_path;s¬€İ$'¤KĞ0JÔ$K�Œ �LÑ!İ”W˜_Ñ-Ô-ˆ Ø ×ÒĞq°?ĞqĞqĞWaĞbmÔWnĞqĞqĞqÑrÔrĞrØ �zĞ !Ğ !Ø Ô)ˆFˆFàˆFؘ%Ô  *¨[Ô"9¸6À:ÈdÔCSİ �J˜vÔ&Ñ 'Ô '¨Ğ4IÔ)JğKğ KrÚcheckpoint_numcóT—|j›d|j›|›d�}| |¦«S)Nr'r()r rrE)rrFr6s rÚload_checkpoint_from_numz%CheckPointer.load_checkpoint_from_numFs7€Ø!Ô2Ğ]Ğ]°TÔ5GĞ]ÈĞ]Ğ]Ğ]ˆØ×-Ò-¨oÑ>Ô>Ğ>rcóR—td¦«td¦«}|dkrtd¦«dStj|j¦«D] }tj|j›d|›�¦«Œ!tdt tj|j¦«¦«›d�¦«dS)NzClearing all checkpoints.zAre you sure?? (y/n): ÚyzAborted.r'zCleared z saved checkpoints (all).)ÚprintÚinputrÚlistdirr ÚremoveÚlen)rÚanswerÚ file_names rÚclear_checkpointszCheckPointer.clear_checkpointsJs²€õ Ğ)Ñ*Ô*Ğ*İĞ/Ñ0Ô0ˆØ �SŠ=ˆ=İ �*Ñ Ô Ğ Ø ˆFİœ DÔ$9Ñ:Ô:ğ >ğ >ˆIİ ŒI˜Ô.Ğ<Ğ<°Ğ<Ğ<Ñ =Ô =Ğ =Ğ =İ ĞZ��RœZ¨Ô(=Ñ>Ô>Ñ?Ô?ĞZĞZĞZÑ[Ô[Ğ[Ğ[Ğ[rcóĞ—tj¦«}tj|j›d�d¬¦«|j›d|›d�}t j| ¦«|¦«dS)Nz/TempTrú/Temp/temp_net_r()rÚgetpidrr r.r/r0©rrÚ process_pidr6s rÚsave_temp_net_checkpointz%CheckPointer.save_temp_net_checkpointVsi€İ”i‘k”kˆ İ Œ �tÔ,Ğ3Ğ3Ğ3¸dĞCÑCÔCĞCØ!Ô2ĞTĞTÀ;ĞTĞTĞTˆİ Œ�—’Ñ Ô  /Ñ2Ô2Ğ2Ğ2Ğ2rcó”—tj¦«}|j›d|›d�}| t j|¦«¦«dS)NrTr()rrUr r<r.r=rVs rÚload_temp_net_checkpointz%CheckPointer.load_temp_net_checkpoint\sJ€İ”i‘k”kˆ Ø!Ô2ĞTĞTÀ;ĞTĞTĞTˆØ ×Ò�BœG OÑ4Ô4Ñ5Ô5Ğ5Ğ5Ğ5rcób—td„tj|j¦«D¦«¦«S)Ncó<—g|]}| d¦«¯|‘ŒS)r()Úendswith)Ú.0Úxs rú <listcomp>z:CheckPointer.initialize_checkpoint_num.<locals>.<listcomp>bs)€ĞWĞWĞW˜!ÀAÇJÂJÈvÑDVÔDVĞW�AĞWĞWĞWr)rOrrMr ©rs rrz&CheckPointer.initialize_checkpoint_numas,€İĞWĞW�rœz¨$Ô*?Ñ@Ô@ĞWÑWÔWÑXÔXĞXrcób—td„tj|j¦«D¦«¦«S)Ncó�—g|]C}t| d¦«d d¦«d¦«‘ŒDS)Ú_ér+r)ÚintÚsplit)r^rQs rr`z;CheckPointer.get_highest_checkpoint_num.<locals>.<listcomp>esD€ĞrĞrĞrÀ9•C˜ Ÿš¨Ñ,Ô,¨QÔ/×5Ò5°cÑ:Ô:¸1Ô=Ñ>Ô>ĞrĞrĞrr)ÚmaxrrMr ras rÚget_highest_checkpoint_numz'CheckPointer.get_highest_checkpoint_numds/€İĞrĞrÕPRÔPZĞ[_Ô[pÑPqÔPqĞrÑrÔrÑsÔsĞsrcó—|j›d�S)Nz/Temp/temp_net.pth©r ras rÚ get_temp_pathzCheckPointer.get_temp_pathgs€ØÔ'Ğ;Ğ;Ğ;Ğ;rcó—|jS©Nrkras rÚget_checkpoint_dirzCheckPointer.get_checkpoint_dirjs €ØÔ$Ğ$rcó�‡‡—ˆˆfd„tj‰j¦«D¦«}| d„¬¦«|dS)Ncób•—g|]+}‰|v¯tj ‰j|¦«‘Œ,S©)rÚpathÚjoinr )r^r_r%rs €€rr`z6CheckPointer.get_latest_name_match.<locals>.<listcomp>ns8ø€ĞwĞwĞwÀ1ĞmqĞuvĞmvĞmv�œŸ š  TÔ%:¸AÑ>Ô>ĞmvĞmvĞmvrcó@—tj |¦«Srn)rrsÚgetctime)r_s rú<lambda>z4CheckPointer.get_latest_name_match.<locals>.<lambda>os€­¬×(8Ò(8¸Ñ(;Ô(;€r)Úkeyéÿÿÿÿ)rrMr Úsort)rr%Ú name_matchess`` rÚget_latest_name_matchz"CheckPointer.get_latest_name_matchmsTøø€ØwĞwĞwĞwĞwÍÌ ĞSWÔShÑHiÔHiĞwÑwÔwˆ Ø×ÒĞ;Ğ;ĞÑ<Ô<Ğ<ؘBÔĞrcó—|jSrn)rras rÚget_name_prefixzCheckPointer.get_name_prefixrs €ØÔ!Ğ!rÚmsgcó6—|jrt|¦«dSdSrn)r rK)rrs rr5zCheckPointer.print_verboseus%€Ø Œ<ğ İ �#‰JŒJˆJˆJˆJğ ğ rcóL—ddl}| |j›d�d¬¦«dS)Nrz/Temp/T)Ú ignore_errors)ÚshutilÚrmtreer )rrƒs rrzCheckPointer.cleanupys3€Øˆ ˆ ˆ Ø� Š ˜Ô.Ğ6Ğ6Ğ6Àdˆ ÑKÔKĞKĞKĞKrÚlossescó’—t|j›d�d¦«5}tj||¦«ddd¦«dS#1swxYwYdS)Nz/training_losses.pklÚwb)Úopenr ÚpickleÚdump)rr…Úfs rÚ save_losseszCheckPointer.save_losses}s‘€İ �TÔ*Ğ@Ğ@Ğ@À$Ñ GÔ Gğ #È1İ ŒK˜ Ñ "Ô "Ğ "ğ #ğ #ğ #ñ #ô #ğ #ğ #ğ #ğ #ğ #ğ #ğ #øøøğ #ğ #ğ #ğ #ğ #ğ #s™<¼AÁA)T)r Nrn)!Ú__name__Ú __module__Ú __qualname__r-Úboolrrr.ÚnnÚModuler2Úfloatrfrr7r:r>ÚtuplerErHrRrXrZrrirlror|r~r5rÚlistrŒrrrrrr sš€€€€€ğ&ğ& s¨T¡zğ&¸Dğ&ÈDğ&ğ&ğ&ğ&ğ3ğ3ğ3ğ3ğSWğ#ğ# 2¤5¤<ğ#¸2¼5¼<ğ#ĞTVÔT\ğ#Ø!ğ#à#&ğ#à>Dğ#àLOğ#à[_ğ#ğ#ğ#ğ#ğ$<¨b¬e¬lğ<À#ğ<È$ğ<ğ<ğ<ğ<ğ =¨b¬e¬lğ=À#ğ=È$ğ=ğ=ğ=ğ=ğ K¸ğ KÀğ Kğ Kğ Kğ Kğ?°sğ?¸uğ?ğ?ğ?ğ?ğ \ğ \ğ \ğ \ğ3ğ3ğ3ğ3ğ 6ğ6ğ6ğ6ğ Y¨3ğYğYğYğYğt¨Cğtğtğtğtğ<˜sğ<ğ<ğ<ğ<ğ% Cğ%ğ%ğ%ğ%ğ ¨#ğ ğ ğ ğ ğ "ğ"ğ"ğ ğ¨ğğğğğLğLğLğ# $ u¤+ğ#ğ#ğ#ğ#ğ#ğ#rr) rrr‰rBÚtorchr.Úmu_alpha_zero.AlphaZero.utilsrÚmu_alpha_zero.General.utilsrÚmu_alpha_zero.configrrrrrrú<module>ršs§ğØ € € € Ø € € € Ø € € € Ø € € € àĞĞĞà1Ğ1Ğ1Ğ1Ğ1Ğ1Ø9Ğ9Ğ9Ğ9Ğ9Ğ9Ø'Ğ'Ğ'Ğ'Ğ'Ğ'ğr#ğr#ğr#ğr#ğr#ñr#ôr#ğr#ğr#ğr#r
11,468
Python
.py
35
326.571429
2,143
0.360679
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,507
utils.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/__pycache__/utils.cpython-311.pyc
§ weŠfº*ã ó4—ddlZddlZddlZddlZddlZddlmZddl m Z ddl m Z ddlmZddlmZmZGd„de¦«Zd ed efd „Zd ejd efd„Zd ejdefd„Zd efd„Zd ejfd„Zdejdejd ejfd„Zdejd ejfd„Zdefd„Z ded efd„Z!deded efd„Z"ded e#d!e#d"e#d#ef d$„Z$d%ed e fd&„Z%d6d'ed e&e ej'j(effd(„Z)d)e#dedzfd*„Z*d+„Z+d7d-ed.e,fd/„Z-d8d0e#d1edzfd2„Z.d3ed4edefd5„Z/dS)9éN)Ú get_ipython)Ú AlphaZeroNet)ÚSAMPLE_AZ_ARGS)Ú MemBuffer)ÚConfigÚAlphaZeroConfigcó—eZdZd„Zd„ZdS)ÚDotDictcó—||S©N©)ÚselfÚnames úL/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/AlphaZero/utils.pyÚ __getattr__zDotDict.__getattr__s €Ø�DŒzĞócó—|||<dSr r )rrÚvalues rÚ __setattr__zDotDict.__setattr__s€ØˆˆT‰ ˆ ˆ rN)Ú__name__Ú __module__Ú __qualname__rrr rrr r s2€€€€€ğğğğğğğğrr Úgame_experienceÚreturncó&—g}|D�]Š\}}}}tjd„| ¦«D¦«¦«}| |||f¦«t ddgddg¦«D�]$\}}tj| ¦«|¬¦«} tj| ¦« ||¦«|¬¦« ¦«} | | | |f¦«~ ~ tj | ¦«|¬¦«} tj | ¦« ||¦«|¬¦« ¦«} | | | |f¦«�Œ&�ŒŒ|S)Ncó—g|]}|‘ŒSr r )Ú.0Úxs rú <listcomp>z6augment_experience_with_symmetries.<locals>.<listcomp>s€Ğ.Ğ.Ğ.˜Q�qĞ.Ğ.Ğ.rréé©Úk©Úaxis) ÚnpÚarrayÚvaluesÚappendÚzipÚrot90ÚcopyÚreshapeÚflattenÚflip) rÚ board_sizeÚgame_experience_ÚstateÚpiÚvÚ_r%r#Ústate_Úpi_s rÚ"augment_experience_with_symmetriesr8sw€ØĞØ*ğ 6ñ 6‰ˆˆr�1�aİ ŒXĞ.Ğ. "§)¢)¡+¤+Ğ.Ñ.Ô.Ñ /Ô /ˆØ×Ò ¨¨A Ñ/Ô/Ğ/ݘA˜q˜6 A q 6Ñ*Ô*ğ 6ñ 6‰GˆD�!İ”X˜eŸjšj™lœl¨aĞ0Ñ0Ô0ˆFİ”(˜2Ÿ7š7™9œ9×,Ò,¨Z¸ÑDÔDÈĞJÑJÔJ×RÒRÑTÔTˆCØ × #Ò # V¨S°!Ğ$4Ñ 5Ô 5Ğ 5ؘݔW˜UŸZšZ™\œ\°Ğ5Ñ5Ô5ˆFİ”'˜"Ÿ'š'™)œ)×+Ò+¨J¸ ÑCÔCÈ$ĞOÑOÔO×WÒWÑYÔYˆCØ × #Ò # V¨S°!Ğ$4Ñ 5Ô 5Ğ 5Ñ 5ñ 6ğ Ğrr2r#có~—t|jd¦«D]!}tj|||¬¦«||<Œ"|S)Nrr")ÚrangeÚshaper&r+)r2r#Údims rÚ rotate_stackr=*sB€İ�U”[ ”^Ñ$Ô$ğ/ğ/ˆİ”X˜e Cœj¨AĞ.Ñ.Ô.ˆˆc‰ ˆ Ø €Lrr%có~—t|jd¦«D]!}tj|||¬¦«||<Œ"|S)Nrr$)r:r;r&r/)r2r%r<s rÚ flip_stackr?0sB€İ�U”[ ”^Ñ$Ô$ğ4ğ4ˆİ”W˜U 3œZ¨dĞ3Ñ3Ô3ˆˆc‰ ˆ Ø €Lrcór—g}|D]1\}}}}}t|¦«}| |||||f¦«Œ2|Sr )Úmake_channels_from_singler))rÚ experiencer2r3r4Úcurrent_playerÚmoves rÚ make_channelsrE6sX€Ø€JØ.=ğ@ğ@Ñ*ˆˆr�1�n dİ)¨%Ñ0Ô0ˆØ×Ò˜5 " a¨¸Ğ>Ñ?Ô?Ğ?Ğ?à ĞrcóÒ—tj|dkdd¦«}tj|dkdd¦«}tj|dkdd¦«}tj||||gd¬¦«S)Nr réÿÿÿÿr$)r&ÚwhereÚstack)r2Úplayer_one_stateÚplayer_minus_one_stateÚ empty_states rrArA?sj€İ”x ¨¢ ¨A¨qÑ1Ô1ĞİœX e¨r¢k°1°aÑ8Ô8Ğİ”(˜5 Aš: q¨!Ñ,Ô,€Kİ Œ8�UĞ,Ğ.DÀkĞRĞYZĞ [Ñ [Ô [Ğ[rÚ probabilitiesÚmaskcóŒ—d}| d|dz¦«| d|dz¦«z}| ¦«}|dkr=|d|›�z }tj|jdtj|j¦«z ¦«}n||z }t |¦«dkrt|tdd¦«¬ ¦«|S) NÚrGérzISum of valid probabilities is 0. Creating a uniform probability... Mask: gğ?zmasking_message.txtÚw)Úfile) r-Úsumr&Úfullr;ÚprodÚlenÚprintÚopen)rMrNr0Úto_printÚvalidsÚ valids_sums rÚmask_invalid_actionsr]Fsʀ؀Hğ× "Ò " 2 z°Q¡Ñ 7Ô 7¸$¿,º,ÀrÈ:ĞYZÉ?Ñ:[Ô:[Ñ [€FØ—’‘”€JØ�Q‚€ğ ĞhĞbfĞhĞhÑhˆİ”˜œ s­R¬W°V´\Ñ-BÔ-BÑ'BÑCÔCˆˆà˜*Ñ$ˆå ˆ8�}„}�qÒĞİ ˆh�TĞ"7¸Ñ=Ô=Ğ>Ñ>Ô>Ğ>Ø €MrÚstatescóĞ—g}|D]�}| ¦« ¦« ¦«}tj|dkd|¦«}tj|dkd|¦«}tj|dkd|¦«}| |¦«Œ�t jtj|¦«t j ¬¦«  d¦«S)Nréûÿÿÿr ©Údtype) ÚdetachÚcpuÚnumpyr&rHr)ÚthÚtensorr'Úfloat32Úsqueeze)r^Úmasksr2Únp_staterNs rÚmask_invalid_actions_batchrlZsÂ€Ø €EØğğˆØ—<’<‘>”>×%Ò%Ñ'Ô'×-Ò-Ñ/Ô/ˆİŒx˜ Aš  r¨8Ñ4Ô4ˆİŒx˜ š  1 dÑ+Ô+ˆİŒx˜ š  A tÑ,Ô,ˆØ � Š �TÑÔĞĞå Œ9•R”X˜e‘_”_­B¬JĞ 7Ñ 7Ô 7× ?Ò ?ÀÑ BÔ BĞBrÚargscóL—gd¢}|D]}||vrtd|›d|›d�¦«‚ŒdS)N)Únum_net_channelsÚnum_net_in_channelsÚ net_dropoutÚnet_action_sizeÚnum_simulationsÚself_play_gamesÚ num_itersÚepochsÚlrÚmax_buffer_sizeÚ num_pit_gamesÚrandom_pit_freqr0Ú batch_sizeÚtauÚcÚcheckpoint_dirÚupdate_thresholdz Missing key z? in args dict. Please supply all required keys. Required keys: ú.)ÚKeyError)rmÚ required_keysÚkeys rÚ check_argsr„fst€ğvğvğv€Mğğ?ğ?ˆØ �dˆ?ˆ?İğ>¨#ğ>ğ>Ø-:ğ>ğ>ğ>ñ?ô?ğ ?ğ ğ?ğ?rÚnc ó�‡—t|‰¦«|dzdzzdtˆfd„t‰|¦«D¦«¦«zzS)NrQécó0•—g|]}t|‰¦«‘ŒSr )Úget_num_horizontal_conv_slides)rrr#s €rrz1calculate_board_win_positions.<locals>.<listcomp>ss$ø€ĞCĞCĞC°!Õ '¨¨1Ñ -Ô -ĞCĞCĞCr)r‰rTr:)r…r#s `rÚcalculate_board_win_positionsrŠqsaø€İ )¨!¨QÑ /Ô /°1°q±5¸1±9Ñ =ÀÅCØCĞCĞCĞCµu¸QÀ±{´{ĞCÑCÔCñEEôEEñAEñ EğErr0Ú kernel_sizecó—||z dzS)Nr r )r0r‹s rr‰r‰vs€Ø ˜Ñ $¨Ñ )Ğ)rÚn_trialsÚ init_net_pathÚstorageÚ study_nameÚconfigc󦇇‡‡ ‡ —ˆˆ ˆˆˆ fd„}ddlmŠ ddlmŠ|Š d‰ _t j||¬¦«}| ||¬¦«dS) aœ Performs a hyperparameter search using optuna. This method is meant to be called using the start_jobs.py script. For this method to work, a mysql database must be running on the storage address and an optuna study with the given name and the 'maximize' direction must exist. :param n_trials: num of trials to run the search for. :param init_net_path: The path to the initial network to use for all trials. :param storage: The mysql storage string. Specifies what database to use. :param study_name: Name of the study to use. :param game: The game instance to use. :param config: The config to use for the search. :return: cóX•—| ddd¦«}| ddd¦«}| ddd ¦«}| d d d d ¬¦«}| ddd¦«}| dd d¦«}| ddd¦«}| dddd ¬¦«}|‰_|‰_|‰_|‰_|‰_|‰_|‰_d‰_ |‰_ ‰ ‰  ¦«‰¦«} ‰   ‰‰‰| ¦«} td|j›d�¦«|  ¦«|  ¦«} | | |j¦«td|j›d| ›d�¦«~ | S)NÚnum_mc_simulationsé<i@Únum_self_play_gamesé2éÈÚ num_epochsédi�rwg-Cëâ6?g{®Gáz„?T)ÚlogÚtempgà?gø?Ú arena_tempÚcpuctéÚ log_epsilong»½×Ùß|Û=gH¯¼šò×z>zTrial z started.z finished with win freq r€)Ú suggest_intÚ suggest_floatrsrtrvrwr|r}Ú arena_taurur Úmake_fresh_instanceÚfrom_state_dictrXÚnumberÚtrainÚget_arena_win_frequencies_meanÚreport)Útrialr”r–r™rwrœr�r�r Ú search_treeÚtrainerÚwin_freqÚ McSearchTreeÚTrainerÚgamer�Ú trial_configs €€€€€rÚ objectivez-az_optuna_parameter_search.<locals>.objective‰sÁø€Ø"×.Ò.Ğ/CÀRÈÑNÔNĞØ#×/Ò/Ğ0EÀrÈ3ÑOÔOĞØ×&Ò& |°S¸#Ñ>Ô>ˆ Ø × Ò   t¨T°tĞ Ñ <Ô <ˆØ×"Ò" 6¨3°Ñ4Ô4ˆØ×(Ò(¨°t¸SÑAÔAˆ Ø×#Ò# G¨S°!Ñ4Ô4ˆØ×)Ò)¨-¸ÀÈ$Ğ)ÑOÔOˆ à'9ˆ Ô$Ø':ˆ Ô$Ø(ˆ ÔØˆ ŒØˆ ÔØˆ ŒØ!+ˆ ÔØ!"ˆ ÔØ#.ˆ Ô Ø"�l 4×#;Ò#;Ñ#=Ô#=¸|ÑLÔLˆ Ø×)Ò)¨-¸ÀtÈ[ÑYÔYˆİ Ğ.�u”|Ğ.Ğ.Ğ.Ñ/Ô/Ğ/Ø� Š ‰ŒˆØ×9Ò9Ñ;Ô;ˆØ � Š �X˜uœ|Ñ,Ô,Ğ,İ ĞH�u”|ĞHĞH¸XĞHĞHĞHÑIÔIĞIØ Øˆrr)r¯)r®F)r�r�)r�N)Úmu_alpha_zero.trainerr¯Ú+mu_alpha_zero.AlphaZero.MCTS.az_search_treer®Ú show_tqdmÚoptunaÚ load_studyÚoptimize) r�r�r�r�r°r‘r²Ústudyr®r¯r±s ` ` @@@rÚaz_optuna_parameter_searchrºzs˜øøøøø€ğğğğğğğğğğ:.Ğ-Ğ-Ğ-Ğ-Ğ-ØHĞHĞHĞHĞHĞHØ€LØ"€LÔİ Ô ¨¸WĞ EÑ EÔ E€EØ ‡N‚N�9 x€NÑ0Ô0Ğ0Ğ0Ğ0rÚ muzero_configcó„—t|j|j|j|j|j¦«}| |¦«Sr )rrprorqrrÚaz_net_linear_input_sizeÚto)r»ÚdeviceÚnetworks rÚbuild_net_from_configrÁ®sB€İ˜=Ô<¸mÔ>\Ø(Ô4°mÔ6SØ(ÔAñCôC€Gğ �:Š:�fÑ Ô ĞrÚmuzero_alphazero_configcóÖ—|€|j}|€|j}t||¦«}tj | ¦«|¬¦«}t|¬¦«}|||fS)N)rw)Úmax_size)rwrxrÁrfÚoptimÚAdamÚ parametersr)rÂr¿rwÚ buffer_sizerÀÚ optimizerÚmemorys rÚbuild_all_from_configr˵sm€à €zØ $Ô 'ˆØĞØ-Ô=ˆ İ#Ğ$;¸VÑDÔD€Gİ”— ’ ˜g×0Ò0Ñ2Ô2°r� Ñ:Ô:€Iİ   Ğ ,Ñ ,Ô ,€FØ �I˜vĞ %Ğ%rÚcheckpoint_pathcó—|€tt¦«}tjtj ¦«rdnd¦«}t ||¦«}tj|¦«}| |d¦«|S)NÚcudardÚnet) r Ú test_argsrfr¿rÎÚ is_availablerÁÚloadÚload_state_dict)rÌrmr¿rÏÚdatas rÚmake_net_from_checkpointrÕÁsu€Ø €|İ•yÑ!Ô!ˆİ ŒY¥¤×!5Ò!5Ñ!7Ô!7ĞB�v�v¸UÑ CÔ C€Fİ   fÑ -Ô -€Cİ Œ7�?Ñ #Ô #€DØ×Ò˜˜Uœ Ñ$Ô$Ğ$Ø €JrcóŠ— t¦«jj}|dkrdS|dkrdS|dkrdSdS#t$rYdSwxYw)NÚZMQInteractiveShellTÚShellÚTerminalInteractiveShellF)rÚ __class__rÚ NameError)Úshells rÚ is_notebookrİËso€ğ İ‘ ” Ô'Ô0ˆØ Ğ)Ò )Ğ )Ø�4Ø �gÒ Ğ Ø�4Ø Ğ0Ò 0Ğ 0Ø�5à�5øİ ğğğ؈uˆuğøøøs‚4¢4ª4´ AÁAFÚfilesÚnot_notebook_okcó(—t¦«}|s|rdS|std¦«‚|D]i}tj d¦«s3tj d¦«rtjd¦«t j|d¦«ŒjdS)Nz2This method should only be called from a notebook.z"/content/drive/MyDrive/Checkpointsz/content/drive/MyDrive)rİÚ RuntimeErrorÚosÚpathÚexistsÚmkdirÚshutilr,)rŞrßÚis_nbtrSs rÚupload_checkpoint_to_gdriverèÚs¨€İ ‰]Œ]€FØ ğ�oğØˆØ ğQİĞOÑPÔPĞPàğ@ğ@ˆİŒw�~Š~ĞBÑCÔCğ ;ÍÌÏÊĞWoÑHpÔHpğ ;İ ŒHĞ9Ñ :Ô :Ğ :İŒ �DĞ>Ñ?Ô?Ğ?Ğ?ğ@ğ@rÚoutput_file_nameÚ depth_limitcó\‡‡—t ¦«}d|jd<d|jd<d|jd<d|jd<‰€t d¦«Šd tjd t fˆˆfd „ Љ|||‰¬ ¦«| d ¬¦«| |›d�¦«dS)NzMCTS visualizationÚlabelÚcircler;ÚblueÚcolorÚgoldÚinfÚgÚd_limitc óú•—d}|j€:ttj dd|jj¬¦«¦«}nt|j¦«}| |¦«||kr(| t|j¦«|¦«| ¦«r|dkrdS|j   ¦«D])}‰|||‰td¦«kr|dz n‰¬¦«Œ*dS)NrrŸ)ÚlowÚhighÚsizerñr ©ró) r2Ústrr&ÚrandomÚrandintr;Úadd_nodeÚadd_edgeÚ was_visitedÚchildrenr(Úfloat)ÚnodeÚparentròrór6ÚchildrêÚ make_graphs €€rrz"visualize_tree.<locals>.make_graphğsø€àˆØ Œ:Ğ İ�œ×*Ò*¨q°q¸v¼|Ô?QĞ*ÑRÔRÑSÔSˆFˆF嘜‘_”_ˆFØ � Š �6ÑÔĞØ �TŠ>ˆ>Ø �JŠJ•s˜6œ<Ñ(Ô(¨&Ñ 1Ô 1Ğ 1Ø×ÒÑ!Ô!ğ  W°¢\ \Ø ˆFğ”]×)Ò)Ñ+Ô+ğ lğ lˆEØ ˆJ�u˜d A¸kÍUĞSXÉ\Ì\Ò>YĞ>Y¨w¸©{¨{Ğ_jĞ kÑ kÔ kĞ kĞ kğ lğ lrrøÚdot)Úprogz.png) Ú pygraphvizÚAGraphÚ graph_attrÚ node_attrÚ edge_attrrÚintÚlayoutÚdraw)Ú root_noderérêÚgraphrs ` @rÚvisualize_treerçsåøø€İ × Ò Ñ Ô €EØ 4€EÔ�WÑØ'€E„O�GÑØ%€E„O�GÑØ%€E„O�GÑØĞݘE‘l”lˆ ğl¥JÔ$5ğlÅğlğlğlğlğlğlğlğ*€Jˆy˜) U°KĞ@Ñ@Ô@Ğ@Ø ‡L‚L�e€LÑÔĞØ ‡J‚JĞ"Ğ(Ğ(Ğ(Ñ)Ô)Ğ)Ğ)Ğ)rrÔrÊcóú—|D]w}|D]r\}}}tj|tj¬¦« ||¦«}tj|tj¬¦«}| |||f¦«ŒsŒxdS)Nra)rfrgrhr-Úadd)rÔrÊr0Ú game_datar2r3r4s rÚcpp_data_to_memoryr s�€ğğ'ğ'ˆ Ø%ğ 'ğ '‰LˆE�2�qİ”I˜e­2¬:Ğ6Ñ6Ô6×>Ò>¸zÈ:ÑVÔVˆEİ”˜2¥R¤ZĞ0Ñ0Ô0ˆBØ �JŠJ˜˜r 1�~Ñ &Ô &Ğ &Ğ &ğ 'ğ'ğ'r)NN)Fr )0rârærer&r¶ÚtorchrfÚIPythonrÚ$mu_alpha_zero.AlphaZero.Network.nnetrÚ!mu_alpha_zero.AlphaZero.constantsrrĞÚmu_alpha_zero.mem_bufferrÚmu_alpha_zero.configrrÚdictr Úlistr8Úndarrayr r=r?rErAr]rgrlr„rŠr‰rùrºrÁÚtuplerÅÚ OptimizerrËrÕrİÚboolrèrrr rrú<module>r"s�ğØ € € € Ø € € € ØĞĞĞØ € € € àĞĞĞØĞĞĞĞĞğ>Ğ=Ğ=Ğ=Ğ=Ğ=ØIĞIĞIĞIĞIĞIØ.Ğ.Ğ.Ğ.Ğ.Ğ.Ø8Ğ8Ğ8Ğ8Ğ8Ğ8Ğ8Ğ8ğğğğğˆdñôğğ¸ğÈTğğğğğ"˜œ ğ sğğğğğ �b”jğ¨ğğğğğ  4ğğğğğ\ R¤Zğ\ğ\ğ\ğ\𨬠ğ¸"¼*ğĞUWÔU_ğğğğğ( C r¤yğ C°R´Yğ Cğ Cğ Cğ Cğ?�Tğ?ğ?ğ?ğ?ğE SğE¨SğEğEğEğEğ *¨sğ*Àğ*Èğ*ğ*ğ*ğ*ğ11¨ğ11¸Sğ11È3ğ11Ğ\_ğ11Ğo~ğ11ğ11ğ11ğ11ğh¨ğ¸Lğğğğğ &ğ &°6ğ &ĞafØ�"”(Ô$ iĞ/ôb1ğ &ğ &ğ &ğ &ğ¨cğ¸À4¹ğğğğğ ğ ğ ğ @ğ @ tğ @¸dğ @ğ @ğ @ğ @ğ *ğ *°ğ *À#ÈÁ*ğ *ğ *ğ *ğ *ğF'˜Tğ'¨9ğ'À#ğ'ğ'ğ'ğ'ğ'ğ'r
17,643
Python
.py
104
168.125
1,037
0.351559
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,508
alpha_zero.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/__pycache__/alpha_zero.cpython-311.pyc
§ weŠf¤ãóÀ—ddlZddlmZddlZddlZddlmZddl m Z ddl m Z ddl mZddlmZddlmZdd lmZdd lmZmZdd lmZdd lmZGd „d¦«ZdS)éN)ÚType)ÚArena)Ú NetPlayer)Ú McSearchTree)ÚTrainer)Ú AlphaZeroGame)ÚGeneralMemoryBuffer)ÚGeneralNetwork)Ú net_not_noneÚfind_project_root)Ú HookManager)ÚAlphaZeroConfigc óÒ—eZdZdefd„Z ddedeeded e d e pdd e f d „Z ddeed e de d e d e pdd e f d„Z d„Zddejdedefd„Z dde de dededede f d„ZdS) Ú AlphaZeroÚ game_instancecó¾—d|_d|_||_tjtj ¦«rdnd¦«|_d|_d|_dS)NÚcudaÚcpu) ÚtrainerÚnetÚgameÚthÚdevicerÚ is_availableÚalpha_zero_configÚtree)Úselfrs úQ/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/AlphaZero/alpha_zero.pyÚ__init__zAlphaZero.__init__sR€ØˆŒ ؈ŒØ!ˆŒ Ý”i­"¬'×*>Ò*>Ñ*@Ô*@Ð K  ÀeÑLÔLˆŒ Ø26ˆÔØ"&ˆŒ ˆ ˆ óTNFrÚ network_classÚmemoryÚheadlessÚ hook_managerÚcheckpointer_verbosec ó¦—| ||¬¦« |j¦«}t|j ¦«|¦«}||_t|j ¦«fi||dœ¤Ž} ||_tj ||j||| ||||¬¦ « |_ |j   ¦«|_ dS)N)r$)ÚnetworkÚmonte_carlo_tree_search)r#r%Úmemory_overrider$)Úmake_from_configÚtorrrÚmake_fresh_instancerrrrÚcreaterÚ get_networkr) rrr!r"r#r$r%r'rÚ net_players rÚ create_newzAlphaZero.create_newsÙ€ð ×0Ò0Ð1BÐQ]Ð0Ñ^Ô^×aÒaÐbfÔbmÑnÔnˆÝ˜DœI×9Ò9Ñ;Ô;Ð=NÑOÔOˆØˆŒ ݘtœy×<Ò<Ñ>Ô>ÐxÐxÈgÐrvÐBwÐBwÐxÐxˆ Ø!2ˆÔÝ”~Ð&7¸¼ÀGÈTÐS]ÐhpØ;OÐagØ3?ðAñAôAˆŒ ð”<×+Ò+Ñ-Ô-ˆŒˆˆr ÚpathÚcheckpoint_dirc ó—tj|tt|||j|||¬¦ « |_|j ¦«|_|j ¦«|_ |j  ¦«|_ dS)N)r#r$r%) rÚfrom_checkpointrrrrr.rÚget_treerÚget_argsÚargs)rr!r1r2r#r$r%s rÚload_checkpointzAlphaZero.load_checkpoint)s€õÔ.¨}½lÍIÐW[Ð]kÐmqÔmvØ8@È|ØDXðZñZôZˆŒ ð”<×+Ò+Ñ-Ô-ˆŒØ”L×)Ò)Ñ+Ô+ˆŒ Ø”L×)Ò)Ñ+Ô+ˆŒ ˆ ˆ r có`—t|j¦«|j ¦«dS)N)r rrÚtrain)rs rr:zAlphaZero.train3s,€Ý�T”XÑÔÐØ Œ ×ÒÑÔÐÐÐr rÚxÚtauÚreturncój—t|j¦«|j|jd|jd|jdfksJdt |j¦«z¦«‚|j |j|d|j|¬¦«\}}|j  ||j j ¬¦«S)NÚ board_sizeÚnum_net_in_channelszXInput shape is not correct. Expected (board_size, board_size, num_net_in_channels).Got: é)r<) r rÚshaper7ÚstrrÚsearchrrÚ select_moverr<)rr;r<ÚpiÚ_s rÚpredictzAlphaZero.predict7s¹€Ý�T”XÑÔÐØŒw˜4œ9 \Ô2°D´I¸lÔ4KÈTÌYØ !ôN#ð$ò$ð$ð$ð&-Ý/2°1´7©|¬|ñ&<ñ$ô$ð$ð” × Ò  ¤¨1¨a°´À#Ð ÑFÔF‰ˆˆAØŒy×$Ò$ R¨TÔ-CÔ-GÐ$ÑHÔHÐHr rAÚp1_nameÚp2_nameÚ num_gamesÚstartsÚswitch_playersc ó0—t|j¦«|j |j¦«|j ¦«|j ¦«}t||¦«}|j||j|j ddœ} t¦«  dd¦«  d¦«d} tj| ›d�j||fi| ¤Ž} tj| ›d�j||fi| ¤Ž} |j ¦«} |  d¦«t#| ||j¦«}| | | ||j| || ¬¦«\}}}t)d|›d |›d |›�¦«dS) Néÿÿÿÿ)r'r(Ú evaluate_fnÚdepthÚplayerú\ú/z.AlphaZero.Arena.playersF)Ú one_playerÚ start_playerÚ add_to_kwargszResults: Player 1 wins: z, Player 2 wins: z , Draws: )r rr+rÚevalrr,rÚ eval_boardÚ minimax_depthr ÚreplaceÚsplitÚsysÚmodulesÚ__dict__Ú set_headlessrÚpitÚnum_simulationsÚprint)rrIrJrKrrLrMÚmanagerrÚkwargsÚ path_prefixÚp1Úp2Ú arena_managerÚarenaÚp1_wÚp2_wÚdss rÚplayzAlphaZero.play?s¨€å�T”XÑÔÐØ Œ� Š �D”KÑ Ô Ð Ø Œ� Š ‰ŒˆØ”)×/Ò/Ñ1Ô1ˆÝ˜GÐ%6Ñ7Ô7ˆØ!œXÀ$ÐW^ÔWiØ,Ô:ÀbðJðJˆå'Ñ)Ô)×1Ò1°$¸Ñ<Ô<×BÒBÀ3ÑGÔGÈÔKˆ Ý Œ[˜KÐAÐAÐAÔ BÔ KÈGÔ TÐU\Ð gÐ gÐ`fÐ gÐ gˆÝ Œ[˜KÐAÐAÐAÔ BÔ KÈGÔ TÐU\Ð gÐ gÐ`fÐ gÐ gˆØœ ×5Ò5Ñ7Ô7ˆ Ø×"Ò" 5Ñ)Ô)Ð)Ý�mÐ%6¸¼ ÑDÔDˆØŸš 2 r¨9Ð6GÔ6WÐhvÐdvØ06Àfð#ñNôN‰ˆˆd�Bå ÐS¨ÐSÐSÀÐSÐSÈrÐSÐSÑTÔTÐTÐTÐTr )TNF)r)rAT)Ú__name__Ú __module__Ú __qualname__rrrrr r Úboolr r0rCr8r:ÚnpÚndarrayÚfloatÚintrHrn©r rrrs‹€€€€€ð' mð'ð'ð'ð'ðlpØ05ð .ð .¨Oð .ÈDÐQ_ÔL`ð .Ø.ð .Ø:>ð .ØU`ÐUhÐdhð .à)-ð .ð .ð .ð .ðTXØ5:ð,ð,¨T°.Ô-Að,Èð,Ð^að,Ø"&ð,Ø=HÐ=PÈDð,à.2ð,ð,ð,ð,ððððIðI˜œðI¨%ðI¸ðIðIðIðIðrsØ$(ðUðU˜CðU¨#ðU¸#ðUÐRaðUÐknðUØ!ðUðUðUðUðUðUr r)r]ÚtypingrÚnumpyrsÚtorchrÚ#mu_alpha_zero.AlphaZero.Arena.arenarÚ%mu_alpha_zero.AlphaZero.Arena.playersrÚ+mu_alpha_zero.AlphaZero.MCTS.az_search_treerÚmu_alpha_zero.trainerrÚmu_alpha_zero.General.az_gamerÚmu_alpha_zero.General.memoryr Úmu_alpha_zero.General.networkr Úmu_alpha_zero.General.utilsr r Ú mu_alpha_zero.Hooks.hook_managerr Úmu_alpha_zero.configrrrwr rú<module>r…s.ðØ € € € ØÐÐÐÐÐàÐÐÐØÐÐÐà5Ð5Ð5Ð5Ð5Ð5Ø;Ð;Ð;Ð;Ð;Ð;ØDÐDÐDÐDÐDÐDØ)Ð)Ð)Ð)Ð)Ð)Ø7Ð7Ð7Ð7Ð7Ð7Ø<Ð<Ð<Ð<Ð<Ð<Ø8Ð8Ð8Ð8Ð8Ð8ØGÐGÐGÐGÐGÐGÐGÐGØ8Ð8Ð8Ð8Ð8Ð8Ø0Ð0Ð0Ð0Ð0Ð0ð=Uð=Uð=Uð=Uð=Uñ=Uô=Uð=Uð=Uð=Ur
7,308
Python
.py
31
234.677419
1,057
0.377851
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,509
constants.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/__pycache__/constants.cpython-311.pyc
§ føf! ã ó—dZidd“dd“dd“dedz“d d “d d “d d“dd“dd“dd“dd“dd“de“dd“dd“dd“dd“d d!d"d#d$d$d%d$d&d'd d(œ ¥Zidd“dd“dd“dedz“d d “d d“d d“dd)“dd“dd“dd“dd“de“dd*“dd+“dd,“dd-“d d!d"d#d$d"d.d'd d/œ ¥Zidd“d0d“dd“dd“dd1“d2d3“d d4“d d$“d5d$“d6d7“d8d9“d:d"“d;d<“d d“dd=“dd>“dd?“idd“dd“de“dd@“dd“ddA“dd“dBdC“dDdE“dFd “dGd!“dHd “dIdJ“dKd$“dLd$“dMd%“dNd$“¥ddOdPdJdQdRd'd dSœ¥Zd S)TéÚnum_net_channelsiÚnum_net_in_channelséÚ net_dropoutg333333Ó?Únet_action_sizeéÚnum_simulationsi%Úself_play_gamesi,Ú num_itersé2ÚepochsiôÚlrg{äL?´œj?Úmax_buffer_sizei †Ú num_pit_gamesé(Úrandom_pit_freqéÚ board_sizeÚ batch_sizeéÚtauÚ arena_taugëö‹ÓG1¥?ÚcNg333333ã?éTég•Ö&è .>iHÚLogs) Úcheckpoint_dirÚupdate_thresholdÚ minimax_depthÚ show_tqdmÚ num_workersÚ num_to_winÚ log_epsilonÚzero_tau_afterÚaz_net_linear_input_sizeÚlog_dirÚpushbullet_tokeni@é€gğ?égffffffò?g»"¸hkN>) rrrr r!r"r#r&r'Únum_net_out_channelséÚnet_latent_sizeé$éğÚKÚgammag�•C‹lçï?Úframe_buffer_sizeé Ú frame_skipÚ num_stepsi�édgü©ñÒMbP?ipéÿg{®Gáz„?Úc2iÄLÚalphagš™™™™™é?rrrr Fr!r"r#r$zALE/Asteroids-v5z Pickles/Data)é`r9i )ÚbetaÚenv_idÚ pickle_dirÚuse_javaÚtarget_resolutionr%r&r')rÚSAMPLE_AZ_ARGSÚTRAINED_AZ_NET_ARGSÚSAMPLE_MZ_ARGS©óúP/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/AlphaZero/constants.pyú<module>rEsîğğ€ ğؘğà˜1ğğ�3ğğ�z Q‘ğ ğ �tğ ğ �sğ ğ�ğğ ˆcğğ Ğ ğğ�wğğ�Rğğ�qğğ�*ğğ�#ğğ ˆ1ğğ Ğ$ğ!ğ"ˆğ#ğ$ØØØØØØØØ %ØØğ9ğğ€ğ>ؘğà˜1ğğ�3ğğ�z Q‘ğ ğ �tğ ğ �qğ ğ�ğğ ˆcğğ Ğ ğğ�wğğ�Rğğ�qğğ�*ğğ�#ğğ ˆ3ğğ �ğ!ğ"ˆğ#ğ$ØØØØØØ)ØØğ5ğğĞğ:+ؘğ+à˜Cğ+ğ˜1ğ+ğ�3ğ +ğ �rğ +ğ �rğ +ğ�sğ+ğ�qğ+ğˆğ+ğ ˆUğ+ğ˜ğ+ğ�!ğ+ğ�ğ+ğ�ğ+ğ ˆcğ+ğ  ˆ%ğ!+ğ"�vğ#+ğ+ğ$�Rğ%+ğ&�qğ'+ğ(�*ğ)+ğ*�#ğ++ğ, ˆ1ğ-+ğ.�ğ/+ğ0ˆğ1+ğ2 ˆ%ğ3+ğ4 ˆSğ5+ğ6�dğ7+ğ8˜ğ9+ğ:�Tğ;+ğ<�ğ=+ğ>�1ğ?+ğ@�!ğA+ğB�4ğC+ğD�ağE+ğ+ğF Ø Ø ØØ!Ø $ØØğU+ğ+ğ+€€€rC
2,697
Python
.py
19
140.789474
589
0.454274
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,510
logger.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/__pycache__/logger.cpython-311.pyc
§ føfîãór—ddlZddlZddlZddlZddlmZddlmZGd„d¦«ZGd„d¦«Z dS)éN)ÚAPI©Úfind_project_rootcóŠ—eZdZddepddepdddfd„Zddededdfd „Zdepdfd „Zdepdddfd „Zdded eddfd„Zd„Z dd„Z dS)ÚLoggerNÚlogdirÚtokenÚreturncó—| |¦«|_tj|jd¬¦«t jd¦«|_|j tj¦«t j |j›dtj   ¦«  d¦«›d�¦«|_ |j  tj¦«|j |j ¦«d|_t!¦«|_| |¦«t jd¦«}|j  |¦«t+j|j¦«dS) NT)Úexist_okÚAlphaZeroLoggerú/z%Y-%m-%d_%H-%M-%Sz.logFz)[%(asctime)s - %(levelname)s] %(message)s)Ú init_logdirrÚosÚmakedirsÚloggingÚ getLoggerÚloggerÚsetLevelÚDEBUGÚ FileHandlerÚdatetimeÚnowÚstrftimeÚ file_handlerÚ addHandlerÚ is_token_setrÚapiÚinit_api_tokenÚ FormatterÚ setFormatterÚatexitÚregisterÚcleanup)Úselfrr Ú formatters úM/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/AlphaZero/logger.pyÚ__init__zLogger.__init__ s=€Ø×&Ò& vÑ.Ô.ˆŒ İ Œ �D”K¨$Ğ/Ñ/Ô/Ğ/İÔ'Ğ(9Ñ:Ô:ˆŒ Ø Œ ×Ò�Wœ]Ñ+Ô+Ğ+İ#Ô/ØŒ{Ğ XĞ X�XÔ.×2Ò2Ñ4Ô4×=Ò=Ğ>QÑRÔRĞ XĞ XĞ XñZôZˆÔà Ô×"Ò"¥7¤=Ñ1Ô1Ğ1Ø Œ ×Ò˜tÔ0Ñ1Ô1Ğ1Ø!ˆÔİ‘5”5ˆŒØ ×Ò˜EÑ"Ô"Ğ"İÔ%Ğ&QÑRÔRˆ Ø Ô×&Ò& yÑ1Ô1Ğ1İŒ˜œ Ñ%Ô%Ğ%Ğ%Ğ%óÚdebugÚmsgÚlevelcóB—t|j|¦«|¦«dS©N)Úgetattrr)r%r+r,s r'Úlogz Logger.logs$€Ø#��” ˜UÑ#Ô# CÑ(Ô(Ğ(Ğ(Ğ(r)có,—|€t¦«›d�S|S)Nz/Logs/ProgramLogsr)r%rs r'rzLogger.init_logdirs!€Ø ˆ>İ'Ñ)Ô)Ğ<Ğ<Ğ<Ğ <àˆMr)cóP—|€dS|j |¦«d|_dS)NT)rÚ set_tokenr)r%r s r'rzLogger.init_api_token%s0€Ø ˆ=Ø ˆFØ Œ×Ò˜5Ñ!Ô!Ğ!Ø ˆÔĞĞr)ÚMuZeroÚ algorithmcó¤—|jsdS |j |›d�|¦«dS#t$r}t |¦«Yd}~dSd}~wwxYw)Nz training notification.)rrÚ send_noteÚ ExceptionÚprint)r%r+r5Úes r'Úpushbullet_logzLogger.pushbullet_log+st€ØÔ ğ Ø ˆFğ Ø ŒH× Ò  )ĞDĞDĞDÀcÑ JÔ JĞ JĞ JĞ Jøİğ ğ ğ İ �!‰HŒHˆHˆHˆHˆHˆHˆHˆHøøøøğ øøøs‹+« AµA Á Acóz—tj|j¦«D] }tj|j›d|›�¦«Œ!dS)Nr)rÚlistdirrÚremove)r%Ú file_names r'Ú clear_logdirzLogger.clear_logdir3sJ€İœ D¤KÑ0Ô0ğ 4ğ 4ˆIİ ŒI˜œĞ2Ğ2 yĞ2Ğ2Ñ 3Ô 3Ğ 3Ğ 3ğ 4ğ 4r)cóv—|j ¦«|j |j¦«dSr.)rÚcloserÚ removeHandler)r%s r'r$zLogger.cleanup7s6€Ø Ô×ÒÑ!Ô!Ğ!Ø Œ ×!Ò! $Ô"3Ñ4Ô4Ğ4Ğ4Ğ4r)r.)r*)r4)r N) Ú__name__Ú __module__Ú __qualname__Ústrr(r0rrr;r@r$©r)r'rr s€€€€€ğ&ğ&˜s˜{ dğ&°3°;¸$ğ&È$ğ&ğ&ğ&ğ&ğ )ğ)�sğ) 3ğ)°Tğ)ğ)ğ)ğ)ğ  ¨ğğğğğ ! C K¨4ğ!°Dğ!ğ!ğ!ğ!ğ ğ #ğ°#ğÀTğğğğğ4ğ4ğ4ğ5ğ5ğ5ğ5ğ5ğ5r)rc óÈ—eZdZedededefd„¦«Zededededededef d „¦«Zedefd „¦«Zedededed e fd „¦«Z ed efd„¦«Z ede fd„¦«Z ede de fd„¦«Zede de fd„¦«Zedefd„¦«Zedefd„¦«Zededefd„¦«Zededefd„¦«Zedefd„¦«Zed„¦«Zd S)!ÚLoggingMessageTemplatesÚname1Úname2Ú num_gamescó—d|›d|›d|›d�S)NzStarting pitting between ú and z for ú games.rH)rKrLrMs r'Ú PITTING_STARTz%LoggingMessageTemplates.PITTING_START>s#€àU¨5ĞUĞU°uĞUĞUÀ9ĞUĞUĞUĞUr)Úwins1Úwins2ÚtotalÚdrawsc ó2—d|›d|›d||z ›d||z ›d|›d� S)NzPitting ended between rOz. Player 1 win frequency: ú. Player 2 win frequency: ú . Draws: ú.rH)rKrLrRrSrTrUs r'Ú PITTING_ENDz#LoggingMessageTemplates.PITTING_ENDBse€ğL¨ğLğL°UğLğLØ+0°5©=ğLğLà+0°5©=ğLğLàCHğLğLğLğ Mr)có—d|›d�S)NzStarting self play for rPrH)rMs r'ÚSELF_PLAY_STARTz'LoggingMessageTemplates.SELF_PLAY_STARTHs€à;¨Ğ;Ğ;Ğ;Ğ;r)Ú not_zero_fncór—|�|�|€dSd||||z|z¦«z ›d||||z|z¦«z ›d|›d�S)NzTSelf play ended. Results not available (This is expected if you are running MuZero).z)Self play ended. Player 1 win frequency: rWrXrYrH)rRrSrUr]s r'Ú SELF_PLAY_ENDz%LoggingMessageTemplates.SELF_PLAY_ENDLsˆ€à ˆ=˜E˜M¨U¨]ØiĞiğk¸EÀ[À[ĞQVĞY^ÑQ^ĞafÑQfÑEgÔEgÑ<hğkğkØ+0°K°KÀÈÁ ĞPUÑ@UÑ4VÔ4VÑ+WğkğkØbgğkğkğkğ lr)Ú num_epchscó—d|›d�S)NzStarting network training for z epochs.rH)r`s r'ÚNETWORK_TRAINING_STARTz.LoggingMessageTemplates.NETWORK_TRAINING_STARTSs€àC° ĞCĞCĞCĞCr)Ú mean_losscó —d|›�S)Nz#Network training ended. Mean loss: rH)rcs r'ÚNETWORK_TRAINING_ENDz,LoggingMessageTemplates.NETWORK_TRAINING_ENDWs€à@°YĞ@Ğ@Ğ@r)Únum_winsÚupdate_thresholdcó—d|›d|›d�S)Nz:!!! Model rejected, restoring previous version. Win rate: ú. Update threshold: ú !!!rH©rfrgs r'Ú MODEL_REJECTz$LoggingMessageTemplates.MODEL_REJECT[s*€ğ<ÈXğ<ğ<Ø%5ğ<ğ<ğ<ğ =r)có—d|›d|›d�S)Nz7!!! Model accepted, keeping current version. Win rate: rirjrHrks r'Ú MODEL_ACCEPTz$LoggingMessageTemplates.MODEL_ACCEPT`s*€ğ Àhğ ğ Ğdtğ ğ ğ ğ r)Ú num_iterscó—d|›d�S)NzStarting training for z iterations.rH)ros r'ÚTRAINING_STARTz&LoggingMessageTemplates.TRAINING_STARTfs€à?¨ Ğ?Ğ?Ğ?Ğ?r)Ú args_usedcój—d}| ¦«D]\}}||›d|›d�z }Œd|dd…›�S)NÚz: z, zTraining ended. Args used: éşÿÿÿ)Úitems)rrÚ args_used_strÚkeyÚvalues r'Ú TRAINING_ENDz$LoggingMessageTemplates.TRAINING_ENDjsX€àˆ Ø#Ÿ/š/Ñ+Ô+ğ 1ğ 1‰JˆC�Ø  Ğ0Ğ0 uĞ0Ğ0Ğ0Ñ 0ˆMˆMØA¨]¸3¸B¸3Ô-?ĞAĞAĞAr)Útype_Úpathcó—d|›d|›�S)NzSaved z to rH©r{r|s r'ÚSAVEDzLoggingMessageTemplates.SAVEDqs€à)˜Ğ)Ğ) 4Ğ)Ğ)Ğ)r)có—d|›d|›�S)Nz Restored z from rHr~s r'ÚLOADEDzLoggingMessageTemplates.LOADEDus€à.˜5Ğ.Ğ.¨Ğ.Ğ.Ğ.r)Úitercó—d|›d�S)Nz Iteration z$ of the algorithm training finished!rH)r‚s r'ÚITER_FINISHED_PSBz)LoggingMessageTemplates.ITER_FINISHED_PSBys€àF˜DĞFĞFĞFĞFr)có—dS)Nz;Algorithm Training finished, you can collect the results :)rHrHr)r'ÚTRAINING_END_PSBz(LoggingMessageTemplates.TRAINING_END_PSB}s€àLĞLr)N)rDrErFÚ staticmethodrGÚintrQrZr\Úcallabler_rbÚfloatrerlrnrqÚdictrzrr�r„r†rHr)r'rJrJ<s€€€€€àğV˜SğV¨ğV¸ğVğVğVñ„\ğVğğM˜3ğM sğM°3ğM¸sğMÈ3ğMĞWZğMğMğMñ„\ğMğ ğ< 3ğ<ğ<ğ<ñ„\ğ<ğğl˜Sğl¨ğl°SğlÀxğlğlğlñ„\ğlğ ğD¨#ğDğDğDñ„\ğDğğA¨ğAğAğAñ„\ğAğğ=˜uğ=¸ğ=ğ=ğ=ñ„\ğ=ğğ˜uğ¸ğğğñ„\ğğ ğ@ #ğ@ğ@ğ@ñ„\ğ@ğğB ğBğBğBñ„\ğBğ ğ*�Sğ* ğ*ğ*ğ*ñ„\ğ*ğğ/�cğ/ ğ/ğ/ğ/ñ„\ğ/ğğG ğGğGğGñ„\ğGğğMğMñ„\ğMğMğMr)rJ) r"rrrÚ pushbulletrÚmu_alpha_zero.General.utilsrrrJrHr)r'ú<module>r�s¼ğØ € € € Ø€€€Ø€€€Ø € € € àĞĞĞĞĞà9Ğ9Ğ9Ğ9Ğ9Ğ9ğ.5ğ.5ğ.5ğ.5ğ.5ñ.5ô.5ğ.5ğbCMğCMğCMğCMğCMñCMôCMğCMğCMğCMr)
9,693
Python
.py
20
483.6
3,727
0.398284
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,511
arena.py
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/Arena/arena.py
import time import wandb from mu_alpha_zero.AlphaZero.Arena.players import Player # from mu_alpha_zero.General.az_game import AlphaZeroGame from mu_alpha_zero.General.arena import GeneralArena from mu_alpha_zero.Hooks.hook_manager import HookManager from mu_alpha_zero.Hooks.hook_point import HookAt from mu_alpha_zero.MuZero.utils import scale_action, resize_obs from mu_alpha_zero.config import AlphaZeroConfig class Arena(GeneralArena): def __init__(self, game_manager, alpha_zero_config: AlphaZeroConfig, device, hook_manager: HookManager or None = None, state_managed: bool = False): self.game_manager = game_manager self.state_managed = state_managed self.device = device self.hook_manager = hook_manager if hook_manager is not None else HookManager() self.alpha_zero_config = alpha_zero_config def pit(self, player1: Player, player2: Player, num_games_to_play: int, num_mc_simulations: int, one_player: bool = False, start_player: int = 1, add_to_kwargs: dict or None = None, debug: bool = False, override_player_with_returned_state: bool = False) -> \ tuple[int, int, int]: """ Pit two players against each other for a given number of games and gather the results. :param start_player: Which player should start the game. :param one_player: If True always only the first player will start the game. :param player1: :param player2: :param num_games_to_play: :param num_mc_simulations: :return: number of wins for player1, number of wins for player2, number of draws """ results = {"wins_p1": 0, "wins_p2": 0, "draws": 0} tau = self.alpha_zero_config.arena_tau if one_player: num_games_per_player = num_games_to_play else: num_games_per_player = num_games_to_play // 2 if self.state_managed: if player1.name == "NetPlayer": player1.monte_carlo_tree_search.game_manager = self.game_manager if player2.name == "NetPlayer": player2.monte_carlo_tree_search.game_manager = self.game_manager player1.set_game_manager(self.game_manager) player2.set_game_manager(self.game_manager) move = None for game in range(num_games_to_play): if game < num_games_per_player: current_player = start_player else: current_player = -start_player kwargs = {"num_simulations": num_mc_simulations, "current_player": current_player, "device": self.device, "tau": tau, "unravel": self.alpha_zero_config.unravel, "move": move} if add_to_kwargs is not None: kwargs.update(add_to_kwargs) if not self.alpha_zero_config.requires_player_to_reset: state = self.game_manager.reset() else: state = self.game_manager.reset(player=current_player) if override_player_with_returned_state: if self.alpha_zero_config.arena_running_muzero: current_player = int(state[:, :, -1][0][0]) kwargs["current_player"] = current_player else: current_player = self.game_manager.current_player kwargs["current_player"] = current_player if self.alpha_zero_config.arena_running_muzero and self.alpha_zero_config.enable_frame_buffer: try: player1.monte_carlo_tree_search.buffer.init_buffer( self.game_manager.get_state_for_passive_player(state, 1), 1) player2.monte_carlo_tree_search.buffer.init_buffer( self.game_manager.get_state_for_passive_player(state, -1), -1) except AttributeError: pass if player1.name == "NetworkPlayer": player1.monte_carlo_tree_search.step_root(None) if player2.name == "NetworkPlayer": player2.monte_carlo_tree_search.step_root(None) # time.sleep(0.01) while True: self.game_manager.render() if current_player == 1: move = player1.choose_move(state, **kwargs) else: move = player2.choose_move(state, **kwargs) self.hook_manager.process_hook_executes(self, self.pit.__name__, __file__, HookAt.MIDDLE, args=(move, kwargs, current_player)) if not self.state_managed: state = self.game_manager.get_next_state(state, move, current_player) status = self.game_manager.game_result(current_player, state) else: state = self.game_manager.get_next_state(move, current_player)[0] status = self.game_manager.game_result(current_player) self.game_manager.render() if self.alpha_zero_config.arena_running_muzero: if move is not None: move = scale_action(move, self.game_manager.get_num_actions()) if isinstance(move, int) else \ scale_action(move[0] * state.shape[0] + move[1], self.game_manager.get_num_actions()) try: if current_player == 1: if player2.name == "NetPlayer": player2.monte_carlo_tree_search.buffer.add_frame(state, move, -1) player1.monte_carlo_tree_search.buffer.add_frame( self.game_manager.get_state_for_passive_player(state, 1), move, 1) else: if player1.name == "NetPlayer": player1.monte_carlo_tree_search.buffer.add_frame(state, move, 1) player2.monte_carlo_tree_search.buffer.add_frame( self.game_manager.get_state_for_passive_player(state, -1), move, -1) except AttributeError: # Player is probably not a net player and doesn't have monte_carlo_tree_search. pass if status is not None: if status == 1: if current_player == 1: results["wins_p1"] += 1 else: results["wins_p2"] += 1 elif status == -1: if current_player == 1: results["wins_p2"] += 1 else: results["wins_p1"] += 1 else: results["draws"] += 1 # if debug: # self.wait_keypress() print(f"player {current_player} wins") if (player1.name == "HumanPlayer" or player2.name == "HumanPlayer") and debug: time.sleep(1) try: wandb.log( {"wins_p1": results["wins_p1"], "wins_p2": results["wins_p2"], "draws": results["draws"]}) except wandb.errors.Error: pass break current_player *= -1 kwargs["current_player"] = current_player return results["wins_p1"], results["wins_p2"], results["draws"] def wait_keypress(self): inpt = input("Press any key to continue...") return inpt
7,791
Python
.py
142
37.852113
118
0.541547
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,512
players.py
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/Arena/players.py
import copy import time from abc import ABC, abstractmethod import numpy as np from mu_alpha_zero.Game.tictactoe_game import TicTacToeGameManager class Player(ABC): """ To create a custom player, extend this class and implement the choose_move method. You can see different implementations below. """ @abstractmethod def __init__(self, game_manager, **kwargs): pass @abstractmethod def choose_move(self, board: np.ndarray, **kwargs) -> tuple[int, int]: pass @abstractmethod def make_fresh_instance(self): pass def init_kwargs(self, kwargs: dict): for key in kwargs.keys(): setattr(self, key, kwargs[key]) @abstractmethod def set_game_manager(self, game_manager): pass class RandomPlayer(Player): def __init__(self, game_manager: TicTacToeGameManager, **kwargs): self.game_manager = game_manager self.name = self.__class__.__name__ self.kwargs = kwargs self.init_kwargs(kwargs) def choose_move(self, board: np.ndarray, **kwargs) -> tuple[int, int]: move = self.game_manager.get_random_valid_action(board, **kwargs) if "unravel" in kwargs.keys(): unravel = kwargs["unravel"] else: unravel = True return tuple(move) if unravel else int(move) def make_fresh_instance(self): return RandomPlayer(self.game_manager.make_fresh_instance(), **self.kwargs) def set_game_manager(self, game_manager): self.game_manager = game_manager class PerfectConnect4Player(Player): def __init__(self, game_manager, **kwargs): self.game_manager = game_manager self.name = self.__class__.__name__ self.kwargs = kwargs self.init_kwargs(kwargs) def choose_move(self, board: np.ndarray, **kwargs) -> tuple[int, int]: assert kwargs.get("move") is not None, "Please provide the last move made." from mu_alpha_zero.PerfectConnect4Negamax.board import Board from mu_alpha_zero.PerfectConnect4Negamax.solver import solve bd = Board() bd.play(kwargs["move"]) move = solve(bd) return move def make_fresh_instance(self): pass def set_game_manager(self, game_manager): pass class NetPlayer(Player): def __init__(self, game_manager: TicTacToeGameManager, **kwargs): self.game_manager = game_manager self.name = self.__class__.__name__ self.kwargs = kwargs self.init_kwargs(kwargs) def choose_move(self, board: np.ndarray, **kwargs) -> tuple[int, int]: try: current_player = kwargs["current_player"] device = kwargs["device"] tau = kwargs["tau"] except KeyError: raise KeyError("Missing keyword argument. Please supply kwargs: current_player, device, " "tau") pi, _ = self.monte_carlo_tree_search.search(self.network, board, current_player, device, tau=tau) move = self.game_manager.select_move(pi, tau=tau) self.monte_carlo_tree_search.step_root(None) if "unravel" in kwargs.keys(): unravel = kwargs["unravel"] else: unravel = True if unravel: return self.game_manager.network_to_board(move) return int(move) def make_fresh_instance(self): return NetPlayer(self.game_manager.make_fresh_instance(), **{"network": copy.deepcopy(self.network), "monte_carlo_tree_search": self.monte_carlo_tree_search.make_fresh_instance()}) def set_network(self, network): self.network = network def set_game_manager(self, game_manager): self.game_manager = game_manager class HumanPlayer(Player): def __init__(self, game_manager: TicTacToeGameManager, **kwargs): self.name = self.__class__.__name__ self.game_manager = game_manager self.kwargs = kwargs self.init_kwargs(kwargs) def choose_move(self, board: np.ndarray, **kwargs) -> tuple[int, int]: time.sleep(0.4) if self.game_manager.headless: raise RuntimeError("Cannot play with a human player in headless mode.") move = self.game_manager.get_human_input(board) return move def make_fresh_instance(self): return HumanPlayer(self.game_manager.make_fresh_instance(), **self.kwargs) def set_game_manager(self, game_manager): self.game_manager = game_manager class Connect4MinimaxPlayer(Player): def __init__(self, game_manager, **kwargs): self.game_manager = game_manager self.name = self.__class__.__name__ self.kwargs = kwargs self.init_kwargs(kwargs) def choose_move(self, board: np.ndarray, **kwargs) -> tuple[int, int]: time.sleep(0.4) from mu_alpha_zero.MuZero.MinimaxOpponent.player import PlayerMM from mu_alpha_zero.MuZero.MinimaxOpponent.board import Board bd = Board.from_game_state(board[:, :, 0], (1, kwargs["move"])) player = PlayerMM(6, False) move = player.findMove(bd) return move def make_fresh_instance(self): return Connect4MinimaxPlayer(self.game_manager.make_fresh_instance(), **self.kwargs) def set_game_manager(self, game_manager): self.game_manager = game_manager class NoopPlayer(Player): def __init__(self, game_manager, **kwargs): self.game_manager = game_manager self.name = self.__class__.__name__ self.kwargs = kwargs self.init_kwargs(kwargs) def choose_move(self, board: np.ndarray, **kwargs) -> tuple[int, int]: return None def make_fresh_instance(self): pass def set_game_manager(self, game_manager): pass class MinimaxPlayer(Player): def __init__(self, game_manager: TicTacToeGameManager, **kwargs): # self.evaluate_fn = evaluate_fn self.game_manager = game_manager self.name = self.__class__.__name__ self.kwargs = kwargs self.init_kwargs(kwargs) def choose_move(self, board: np.ndarray, **kwargs) -> tuple[int, int]: try: depth = kwargs["depth"] player = kwargs["player"] except KeyError: raise KeyError("Missing keyword argument. Please supply kwargs: depth, player") move = self.minimax(board.copy(), depth, True, player)[1] return tuple(move) def minimax(self, board: np.ndarray, depth: int, is_max: bool, player: int, alpha=-float("inf"), beta=float("inf")) -> tuple: # self.game_manager.check_pg_events() eval_ = self.evaluate_fn(board) if eval_ is not None: return eval_, None if depth == 0: return self.evaluate_fn(board, check_end=False), None if is_max: best_score = -float("inf") best_move = None for move in self.game_manager.get_valid_moves(board): board[move[0]][move[1]] = player score = self.minimax(board.copy(), depth - 1, False, -player, alpha, beta)[0] # print(score) board[move[0]][move[1]] = 0 if score > best_score: best_move = move best_score = max(score, best_score) alpha = max(alpha, best_score) if alpha >= beta: break # if best_move is None: # return self.evaluate_fn(board, player), None return best_score, best_move else: best_score = float("inf") best_move = None for move in self.game_manager.get_valid_moves(board): board[move[0]][move[1]] = player score = self.minimax(board.copy(), depth - 1, True, -player, alpha, beta)[0] if score is None: continue # print(score) board[move[0]][move[1]] = 0 best_score = min(score, best_score) beta = min(beta, best_score) if beta <= alpha: break # if best_move is None: # return self.evaluate_fn(board, player), None return best_score, best_move def make_fresh_instance(self): return MinimaxPlayer(self.game_manager.make_fresh_instance(), **self.kwargs) def set_game_manager(self, game_manager): self.game_manager = game_manager
8,576
Python
.py
198
33.540404
148
0.606607
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,513
players.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/Arena/__pycache__/players.cpython-311.pyc
§ �Œf$ãó—ddlZddlZddlmZmZddlZddlZddlm Z ddl m Z ddl m Z Gd„de¦«ZGd„d e¦«ZGd „d e¦«ZGd „d e¦«ZGd„de¦«ZGd„de¦«ZGd„de¦«ZdS)éN)ÚABCÚabstractmethod)Ú AlphaZeroNet)ÚTicTacToeGameManager)Ú AlphaZeroGamecóš—eZdZdZed„¦«Zedejdee e ffd„¦«Z ed„¦«Z de fd„Z ed „¦«Zd S) ÚPlayerz� To create a custom player, extend this class and implement the choose_move method. You can see different implementations below. c ó—dS©N©©ÚselfÚ game_managerÚkwargss úT/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/AlphaZero/Arena/players.pyÚ__init__zPlayer.__init__ó€à ˆóÚboardÚreturnc ó—dSr r )rrrs rÚ choose_movezPlayer.choose_moverrcó—dSr r ©rs rÚmake_fresh_instancezPlayer.make_fresh_instancerrrcób—| ¦«D]}t||||¦«ŒdSr )ÚkeysÚsetattr)rrÚkeys rÚ init_kwargszPlayer.init_kwargss<€Ø—;’;‘=”=ğ ,ğ ,ˆCİ �D˜#˜v cœ{Ñ +Ô +Ğ +Ğ +ğ ,ğ ,rcó—dSr r ©rrs rÚset_game_managerzPlayer.set_game_manager#rrN)Ú__name__Ú __module__Ú __qualname__Ú__doc__rrÚnpÚndarrayÚtupleÚintrrÚdictr r#r rrr r s€€€€€ğğğ ğ ğ ñ„^ğ ğğ  ¤ğ ¸%ÀÀSÀ¼/ğ ğ ğ ñ„^ğ ğğ ğ ñ„^ğ ğ, $ğ,ğ,ğ,ğ,ğğ ğ ñ„^ğ ğ ğ rr cóP—eZdZdefd„Zdejdeeeffd„Z d„Z d„Z dS) Ú RandomPlayerrc ón—||_|jj|_||_| |¦«dSr ©rÚ __class__r$Únamerr r s rrzRandomPlayer.__init__)ó7€Ø(ˆÔØ”NÔ+ˆŒ ؈Œ Ø ×Ò˜Ñ Ô Ğ Ğ Ğ rrrc óª—|jj|fi|¤�}d| ¦«vr |d}nd}|rt|¦«nt |¦«S)NÚunravelT)rÚget_random_valid_actionrr*r+)rrrÚmover5s rrzRandomPlayer.choose_move/s^€Ø8ˆtÔ Ô8¸ĞIĞIÀ&ĞIĞIˆØ ˜Ÿ š ™ œ Ğ %Ğ %ؘYÔ'ˆGˆGàˆGØ%Ğ4�u�T‰{Œ{ˆ{­3¨t©9¬9Ğ4rcóT—t|j ¦«fi|j¤�Sr )r.rrrrs rrz RandomPlayer.make_fresh_instance7s)€İ˜DÔ-×AÒAÑCÔCĞSĞSÀtÄ{ĞSĞSĞSrcó—||_dSr ©rr"s rr#zRandomPlayer.set_game_manager:ó€Ø(ˆÔĞĞrN© r$r%r&rrr(r)r*r+rrr#r rrr.r.(s}€€€€€ğ!Ğ%9ğ!ğ!ğ!ğ!ğ 5 ¤ğ5¸%ÀÀSÀ¼/ğ5ğ5ğ5ğ5ğTğTğTğ)ğ)ğ)ğ)ğ)rr.cóV—eZdZdefd„Zdejdeeeffd„Z d„Z d„Z d„Z d S) Ú NetPlayerrc ón—||_|jj|_||_| |¦«dSr r0r s rrzNetPlayer.__init__?r3rrrc ó— |d}|d}|d}n#t$rtd¦«‚wxYw|j |j||||¬¦«\}}|j ||¬¦«}|j d¦«d| ¦«vr |d} nd} | r|j |¦«St|¦«S)NÚcurrent_playerÚdeviceÚtauúKMissing keyword argument. Please supply kwargs: current_player, device, tau©rCr5T) ÚKeyErrorÚmonte_carlo_tree_searchÚsearchÚnetworkrÚ select_moveÚ step_rootrÚnetwork_to_boardr+) rrrrArBrCÚpiÚ_r7r5s rrzNetPlayer.choose_moveEs€ğ "Ø#Ğ$4Ô5ˆNؘHÔ%ˆFؘ”-ˆCˆCøİğ "ğ "ğ "İğ!ñ"ô"ğ "ğ "øøøğÔ,×3Ò3°D´LÀ%ÈĞY_ĞehĞ3ÑiÔi‰ˆˆAØÔ ×,Ò,¨R°CĞ,Ñ8Ô8ˆØ Ô$×.Ò.¨tÑ4Ô4Ğ4Ø ˜Ÿ š ™ œ Ğ %Ğ %ؘYÔ'ˆGˆGàˆGØ ğ <ØÔ$×5Ò5°dÑ;Ô;Ğ ;İ�4‰yŒyĞó‚›5có¬—t|j ¦«fitj|j¦«|j ¦«dœ¤�S)N)rIrG)r>rrÚcopyÚdeepcopyrIrGrs rrzNetPlayer.make_fresh_instanceYsv€İ˜Ô*×>Ò>Ñ@Ô@ğUğUÕPTÔP]Ğ^bÔ^jÑPkÔPkØ`dÔ`|÷aQòaQñaSôaSğETğETğUğUğ Urcó—||_dSr )rI)rrIs rÚ set_networkzNetPlayer.set_network]s €ØˆŒ ˆ ˆ rcó—||_dSr r:r"s rr#zNetPlayer.set_game_manager`r;rN) r$r%r&rrr(r)r*r+rrrTr#r rrr>r>>sŒ€€€€€ğ!Ğ%9ğ!ğ!ğ!ğ!ğ  ¤ğ¸%ÀÀSÀ¼/ğğğğğ(UğUğUğğğğ)ğ)ğ)ğ)ğ)rr>cód—eZdZdededefd„Zdefd„Zdej de e e ffd„Z d „Z d „Zd S) ÚTrainingNetPlayerrIrÚargscó —td¦«‚)Nz8Don't use this class yet, it produces incorrect results.) ÚNotImplementedErrorr1r$r2Ú_TrainingNetPlayer__init_argsrXrIrÚtraceÚ traced_path)rrIrrXs rrzTrainingNetPlayer.__init__es€İ!Ğ"\Ñ]Ô]Ğ]rrcó‚—dD];} | |¦«Œ#t$rtd|›d�¦«YŒ8wxYw|S)N)Úcheckpoint_dirÚ max_depthzKey z not present.)ÚpoprFÚprint)rrXrs rÚ __init_argszTrainingNetPlayer.__init_argsmsg€Ø2ğ 1ğ 1ˆCğ 1Ø—’˜‘ ” � � øİğ 1ğ 1ğ 1İĞ/˜SĞ/Ğ/Ğ/Ñ0Ô0Ğ0Ğ0Ğ0ğ 1øøøàˆ s †œ<»<rc ó,— |d}|d}|d}n#t$rtd¦«‚wxYwt ||||j|j¦«}|j ||¬¦«}|j |¦«S)NrArBrCrDrE)rFÚ CpSelfPlayÚ CmctsSearchrXr]rrJrL)rrrrArBrCrMr7s rrzTrainingNetPlayer.choose_moveus­€ğ "Ø#Ğ$4Ô5ˆNؘHÔ%ˆFؘ”-ˆCˆCøİğ "ğ "ğ "İğ!ñ"ô"ğ "ğ "øøøõ× #Ò # E¨>¸3ÀÄ È4ÔK[Ñ \Ô \ˆØÔ ×,Ò,¨R°CĞ,Ñ8Ô8ˆØÔ ×1Ò1°$Ñ7Ô7Ğ7rOcó—t‚r )rZrs rrz%TrainingNetPlayer.make_fresh_instance�s€İ!Ğ!rcó—||_dSr r:r"s rr#z"TrainingNetPlayer.set_game_manager„r;rN)r$r%r&rrr,rr[r(r)r*r+rrr#r rrrWrWds«€€€€€ğG  ğGĞ<PğGĞX\ğGğGğGğGğ 4ğğğğğ 8 ¤ğ 8¸%ÀÀSÀ¼/ğ 8ğ 8ğ 8ğ 8ğ"ğ"ğ"ğ)ğ)ğ)ğ)ğ)rrWcóP—eZdZdefd„Zdejdeeeffd„Z d„Z d„Z dS) Ú HumanPlayerrc ón—|jj|_||_||_| |¦«dSr )r1r$r2rrr r s rrzHumanPlayer.__init__‰s7€Ø”NÔ+ˆŒ Ø(ˆÔ؈Œ Ø ×Ò˜Ñ Ô Ğ Ğ Ğ rrrc óp—|jjrtd¦«‚|j |¦«}|S)Nz1Cannot play with a human player in headless mode.)rÚheadlessÚ RuntimeErrorÚget_human_input)rrrr7s rrzHumanPlayer.choose_move�s;€Ø Ô Ô %ğ TİĞRÑSÔSĞ SØÔ ×0Ò0°Ñ7Ô7ˆØˆ rcóT—t|j ¦«fi|j¤�Sr )rjrrrrs rrzHumanPlayer.make_fresh_instance•s)€İ˜4Ô,×@Ò@ÑBÔBĞRĞRÀdÄkĞRĞRĞRrcó—||_dSr r:r"s rr#zHumanPlayer.set_game_manager˜r;rNr<r rrrjrjˆs}€€€€€ğ!Ğ%9ğ!ğ!ğ!ğ!ğ  ¤ğ¸%ÀÀSÀ¼/ğğğğğ SğSğSğ)ğ)ğ)ğ)ğ)rrjcóV—eZdZdefd„Zdejdeeeffd„Z d„Z d„Z d„Z d S) ÚJavaMinimaxPlayerrc óÄ—tjd¦«tj¦«||_|jj|_||_tj |j ¦«dS)NzFC:\Users\Skyr\IdeaProjects\Minimax\build\libs\Minimax-1.0-SNAPSHOT.jar) ÚjpypeÚ addClassPathÚstartJVMrr1r$r2rÚatexitÚregisterÚ on_shutdownr s rrzJavaMinimaxPlayer.__init__�sV€İ ÔĞdÑeÔeĞeİ ŒÑÔĞØ(ˆÔØ”NÔ+ˆŒ ؈Œ İŒ˜Ô(Ñ)Ô)Ğ)Ğ)Ğ)rrrc ór— |d}|d}n#t$rtd¦«‚wxYwtjd¦«}|¦«}t|jj¦«tj |¦«}| ||||d|jj¦«}t|¦«S)NÚdepthÚplayerú=Missing keyword argument. Please supply kwargs: depth, playerzdev.skyr.MinimaxT) rFruÚJClassrbrÚ num_to_winÚJArrayÚofÚrunr*) rrrr|r}ÚMinimaxÚminimaxÚjar7s rrzJavaMinimaxPlayer.choose_move¦sº€ğ \ؘ7”OˆEؘHÔ%ˆFˆFøİğ \ğ \ğ \İĞZÑ[Ô[Ğ [ğ \øøøå”,Ğ1Ñ2Ô2ˆØ�'‘)”)ˆİ ˆdÔÔ*Ñ+Ô+Ğ+İ Œ\�_Š_˜UÑ #Ô #ˆØ�{Š{˜5 &¨&°%¸¸tÔ?PÔ?[Ñ\Ô\ˆİ�T‰{Œ{Ğó‚“-có—dSr r rs rrz%JavaMinimaxPlayer.make_fresh_instance³s€Ø ˆrcó,—tj¦«dSr )ruÚ shutdownJVMrs rrzzJavaMinimaxPlayer.on_shutdown¶s€İ ÔÑÔĞĞĞrcó—||_dSr r:r"s rr#z"JavaMinimaxPlayer.set_game_manager¹r;rN) r$r%r&rrr(r)r*r+rrrzr#r rrrsrsœsˆ€€€€€ğ* ]ğ*ğ*ğ*ğ*ğ  ¤ğ ¸%ÀÀSÀ¼/ğ ğ ğ ğ ğ ğ ğ ğğğğ)ğ)ğ)ğ)ğ)rrsc ó¢—eZdZdefd„Zdejdeeeffd„Z e d¦« e d¦«fdejdede d edef d „Z d „Z d „Zd S)Ú MinimaxPlayerrc ón—||_|jj|_||_| |¦«dSr r0r s rrzMinimaxPlayer.__init__¾s7€à(ˆÔØ”NÔ+ˆŒ ؈Œ Ø ×Ò˜Ñ Ô Ğ Ğ Ğ rrrc óŞ— |d}|d}n#t$rtd¦«‚wxYw| | ¦«|d|¦«d}t|¦«S)Nr|r}r~Té)rFr…rQr*)rrrr|r}r7s rrzMinimaxPlayer.choose_moveÅs{€ğ \ؘ7”OˆEؘHÔ%ˆFˆFøİğ \ğ \ğ \İĞZÑ[Ô[Ğ [ğ \øøøà�|Š|˜EŸJšJ™LœL¨%°°vÑ>Ô>¸qÔAˆİ�T‰{Œ{Ğr‡Úinfr|Úis_maxr}c óŠ—| |¦«}|�|dfS|dkr| |d¬¦«dfS|rÇtd¦« }d} |j |¦«D]–} ||| d| d<| | ¦«|dz d| ||¦«d} d|| d| d<| |kr| } t | |¦«}t ||¦«}||krnŒ—|| fStd¦«}d} |j |¦«D]‘} ||| d| d<| | ¦«|dz d| ||¦«d} | €ŒRd|| d| d<t| |¦«}t||¦«}||krnŒ’|| fS)NrF)Ú check_endr‘r�T)Ú evaluate_fnÚfloatrÚget_valid_movesr…rQÚmaxÚmin) rrr|r’r}ÚalphaÚbetaÚeval_Ú best_scoreÚ best_mover7Úscores rr…zMinimaxPlayer.minimaxÎs€ğ× Ò  Ñ'Ô'ˆØ Рؘ$�;Ğ Ø �AŠ:ˆ:Ø×#Ò# E°UĞ#Ñ;Ô;¸TĞAĞ Aà ğ# )İ ™,œ,˜ˆJ؈IØÔ)×9Ò9¸%Ñ@Ô@ğ ğ �Ø*0��d˜1”g”˜t AœwÑ'ØŸ š  U§Z¢Z¡\¤\°5¸1±9¸eÀfÀWÈeĞUYÑZÔZĞ[\Ô]�à*+��d˜1”g”˜t AœwÑ'ؘ:Ò%Ğ%Ø $�Iİ  ¨ Ñ3Ô3� ݘE :Ñ.Ô.�à˜D’=�=Ø�Eğ!ğ˜yĞ(Ğ (å˜u™œˆJ؈IØÔ)×9Ò9¸%Ñ@Ô@ğ ğ �Ø*0��d˜1”g”˜t AœwÑ'ØŸ š  U§Z¢Z¡\¤\°5¸1±9¸dÀVÀGÈUĞTXÑYÔYĞZ[Ô\�Ø�=Øà*+��d˜1”g”˜t AœwÑ'İ  ¨ Ñ3Ô3� ݘ4 Ñ,Ô,�à˜5’=�=Ø�Eğ!ğ˜yĞ(Ğ (rcóT—t|j ¦«fi|j¤�Sr )r�rrrrs rrz!MinimaxPlayer.make_fresh_instanceüs)€İ˜TÔ.×BÒBÑDÔDĞTĞTÈÌ ĞTĞTĞTrcó—||_dSr r:r"s rr#zMinimaxPlayer.set_game_managerÿr;rN)r$r%r&rrr(r)r*r+rr–Úboolr…rr#r rrr�r�½sŞ€€€€€ğ!Ğ%9ğ!ğ!ğ!ğ!ğ ¤ğ¸%ÀÀSÀ¼/ğğğğğX]ĞW\Ğ]bÑWcÔWcĞVcØ�U˜5‘\”\ğ,)ğ,)˜RœZğ,)°ğ,)¸Tğ,)È3ğ,)Ø&+ğ,)ğ,)ğ,)ğ,)ğ\UğUğUğ)ğ)ğ)ğ)ğ)rr�)rxrQÚabcrrruÚnumpyr(Ú$mu_alpha_zero.AlphaZero.Network.nnetrÚ!mu_alpha_zero.Game.tictactoe_gamerÚmu_alpha_zero.General.az_gamerr r.r>rWrjrsr�r rrú<module>r¨s·ğØ € € € Ø € € € Ø#Ğ#Ğ#Ğ#Ğ#Ğ#Ğ#Ğ#à € € € ØĞĞĞà=Ğ=Ğ=Ğ=Ğ=Ğ=ØBĞBĞBĞBĞBĞBØ7Ğ7Ğ7Ğ7Ğ7Ğ7ğ ğ ğ ğ ğ ˆSñ ô ğ ğ6)ğ)ğ)ğ)ğ)�6ñ)ô)ğ)ğ,#)ğ#)ğ#)ğ#)ğ#)�ñ#)ô#)ğ#)ğL!)ğ!)ğ!)ğ!)ğ!)˜ñ!)ô!)ğ!)ğH)ğ)ğ)ğ)ğ)�&ñ)ô)ğ)ğ()ğ)ğ)ğ)ğ)˜ñ)ô)ğ)ğBC)ğC)ğC)ğC)ğC)�FñC)ôC)ğC)ğC)ğC)r
15,725
Python
.py
55
284.672727
1,489
0.309936
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,514
arena.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/Arena/__pycache__/arena.cpython-311.pyc
§ kŒ¢fHãó~—ddlZddlZddlmZddlmZddlmZddlm Z ddl m Z m Z ddl mZGd„d e¦«ZdS) éN)ÚPlayer)Ú GeneralArena)Ú HookManager)ÚHookAt)Ú scale_actionÚ resize_obs)ÚAlphaZeroConfigcóv—eZdZ ddedepddefd„Z dded ed ed ed ed ede pddede eeeffd„Z d„Z dS)ÚArenaNFÚalpha_zero_configÚ hook_managerÚ state_managedcól—||_||_||_|�|n t¦«|_||_dS)N)Ú game_managerrÚdevicerr r )Úselfrr rr rs úR/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/AlphaZero/Arena/arena.pyÚ__init__zArena.__init__s<€à(ˆÔØ*ˆÔ؈Œ Ø,8Ğ,D˜L˜LÍ+É-Ì-ˆÔØ!2ˆÔĞĞóéÚplayer1Úplayer2Únum_games_to_playÚnum_mc_simulationsÚ one_playerÚ start_playerÚ add_to_kwargsÚdebugÚreturnc óÔ —ddddœ} |jj} |r|} n|dz} |jrl|jdkr|j|j_|jdkr|j|j_| |j¦«| |j¦«t|¦«D�]²} | | kr|} n| } || |j| |jj dœ}|�|  |¦«|jj s|j  ¦«}n|j  | ¬¦«}|jj r�|jjr„ |jj |j |d¦«d¦«|jj |j |d ¦«d ¦«n#t$$rYnwxYw|jd kr|j d¦«|jd kr|j d¦« |j ¦«| dkr|j|fi|¤�}n|j|fi|¤�}|j ||jjt4t6j||| f¬ ¦«|js8|j ||| ¦«}|j | |¦«}n;|j || ¦«d}|j | ¦«}|j ¦«|jj �ret?|t@¦«r'tC||j "¦«¦«nCtC|d|j#dz|dz|j "¦«¦«} | dkrg|jdkr!|jj $||d ¦«|jj $|j |d¦«|d¦«nf|jdkr!|jj $||d¦«|jj $|j |d ¦«|d ¦«n#t$$rYnwxYw|�Ã|dkr(| dkr| d xxdz cc<nO| dxxdz cc<n>|d kr(| dkr| dxxdz cc<n!| d xxdz cc<n| dxxdz cc<|jdks |jdkr|rtKj&d¦«tOj(| d | d| ddœ¦«n | d z} | |d<�ŒM�Œ´| d | d| dfS)aÌ Pit two players against each other for a given number of games and gather the results. :param start_player: Which player should start the game. :param one_player: If True always only the first player will start the game. :param player1: :param player2: :param num_games_to_play: :param num_mc_simulations: :return: number of wins for player1, number of wins for player2, number of draws r)Úwins_p1Úwins_p2ÚdrawséÚ NetPlayer)Únum_simulationsÚcurrent_playerrÚtauÚunravelN)ÚplayerréÿÿÿÿÚ NetworkPlayerT)Úargsr!r"r#Ú HumanPlayergš™™™™™É?r'))r Ú arena_taurÚnamerÚmonte_carlo_tree_searchÚset_game_managerÚrangerr)ÚupdateÚrequires_player_to_resetÚresetÚarena_running_muzeroÚenable_frame_bufferÚbufferÚ init_bufferÚget_state_for_passive_playerÚAttributeErrorÚ step_rootÚrenderÚ choose_mover Úprocess_hook_executesÚpitÚ__name__Ú__file__rÚMIDDLEÚget_next_stateÚ game_resultÚ isinstanceÚintrÚget_num_actionsÚshapeÚ add_frameÚtimeÚsleepÚwandbÚlog)rrrrrrrrrÚresultsr(Únum_games_per_playerÚgamer'ÚkwargsÚstateÚmoveÚstatuss rrAz Arena.pitsš€ğ ¨A¸Ğ:Ğ:ˆØÔ$Ô.ˆØ ğ :Ø#4Ğ Ğ à#4¸Ñ#9Ğ à Ô ğ 8ØŒ|˜{Ò*Ğ*Ø?CÔ?P�Ô/Ô<ØŒ|˜{Ò*Ğ*Ø?CÔ?P�Ô/Ô<à × $Ò $ TÔ%6Ñ 7Ô 7Ğ 7Ø × $Ò $ TÔ%6Ñ 7Ô 7Ğ 7åĞ+Ñ,Ô,ğV :ñV :ˆDØĞ*Ò*Ğ*Ø!-��à". �à);È~ĞimÔitØ ¨TÔ-CÔ-KğMğMˆFàĞ(Ø— ’ ˜mÑ,Ô,Ğ,ØÔ)ÔBğ GØÔ)×/Ò/Ñ1Ô1��àÔ)×/Ò/°~Ğ/ÑFÔF�àÔ%Ô:ğ ¸tÔ?UÔ?iğ ğØÔ3Ô:×FÒFØÔ)×FÒFÀuÈaÑPÔPØñôğğÔ3Ô:×FÒFØÔ)×FÒFÀuÈbÑQÔQĞSUñWôWğWğWøå%ğğğØ�DğøøøğŒ|˜Ò.Ğ.ØÔ/×9Ò9¸$Ñ?Ô?Ğ?ØŒ|˜Ò.Ğ.ØÔ/×9Ò9¸$Ñ?Ô?Ğ?ğ8 :ØÔ!×(Ò(Ñ*Ô*Ğ*Ø! QÒ&Ğ&Ø.˜7Ô.¨uĞ?Ğ?¸Ğ?Ğ?�D�Dà.˜7Ô.¨uĞ?Ğ?¸Ğ?Ğ?�DØÔ!×7Ò7¸¸d¼hÔ>OÕQYÕ[aÔ[hØ>BÀFÈNĞ=[ğ8ñ]ô]ğ]àÔ)ğKØ Ô-×<Ò<¸UÀDÈ.ÑYÔY�EØ!Ô.×:Ò:¸>È5ÑQÔQ�F�Fà Ô-×<Ò<¸TÀ>ÑRÔRĞSTÔU�EØ!Ô.×:Ò:¸>ÑJÔJ�FØÔ!×(Ò(Ñ*Ô*Ğ*ØÔ)Ô>ñİV`ĞaeÕgjÑVkÔVkğn�<¨¨dÔ.?×.OÒ.OÑ.QÔ.QÑRÔRĞRİ$ T¨!¤W¨u¬{¸1¬~Ñ%=ÀÀQÄÑ%GÈÔIZ×IjÒIjÑIlÔIlÑmÔmğğ Ø)¨QÒ.Ğ.Ø&œ|¨{Ò:Ğ:Ø 'Ô ?Ô F× PÒ PĞQVĞW[Ğ\^Ñ _Ô _Ğ _Ø#Ô;ÔB×LÒLÈTÔM^×M{ÒM{ğ}BğDEñNFôNFğGKğLMñNôNğNğNà&œ|¨{Ò:Ğ:Ø 'Ô ?Ô F× PÒ PĞQVĞW[Ğ\]Ñ ^Ô ^Ğ ^Ø#Ô;ÔB×LÒLÈTÔM^×M{ÒM{ğ}BğDFñNGôNGğHLğMOñPôPğPøøå)ğğğà˜ğøøøğĞ%Ø ’{�{Ø)¨QÒ.Ğ.Ø# IĞ.Ğ.Ô.°!Ñ3Ğ.Ğ.Ñ.Ğ.à# IĞ.Ğ.Ô.°!Ñ3Ğ.Ğ.Ñ.Ğ.à 2š˜Ø)¨QÒ.Ğ.Ø# IĞ.Ğ.Ô.°!Ñ3Ğ.Ğ.Ñ.Ğ.à# IĞ.Ğ.Ô.°!Ñ3Ğ.Ğ.Ñ.Ğ.à Ğ(Ğ(Ô(¨AÑ-Ğ(Ğ(Ñ(ğ œ ¨ Ò5Ğ5¸¼ÈÒ9VĞ9VĞ\aĞ9Vİœ  3™œ˜å”I¨'°)Ô*<ÈĞQZÔI[ĞfmĞnuÔfvĞwĞwÑxÔxĞxØà "Ñ$�Ø+9�Ğ'Ñ(ñq8 :ñjğ�yÔ! 7¨9Ô#5°w¸wÔ7GĞGĞGs&Ä6A2F)Æ) F6Æ5F6ÎCQ0Ñ0 Q=Ñ<Q=có$—td¦«}|S)NzPress any key to continue...)Úinput)rÚinpts rÚ wait_keypresszArena.wait_keypress�s€İĞ3Ñ4Ô4ˆØˆ r)NF)FrNF) rBÚ __module__Ú __qualname__r rÚboolrrrHÚdictÚtuplerArZ©rrr r s퀀€€€àQVğ3ğ3¸ğ3Ø*Ğ2¨dğ3ØJNğ3ğ3ğ3ğ3ğpuğuHğuH˜6ğuH¨FğuHÀsğuHĞ`cğuHØğuHØ47ğuHØLPÈLĞTXğuHØhlğuHà �#�s˜C�-Ô ğuHğuHğuHğuHğnğğğğrr )rLrNÚ%mu_alpha_zero.AlphaZero.Arena.playersrÚmu_alpha_zero.General.arenarÚ mu_alpha_zero.Hooks.hook_managerrÚmu_alpha_zero.Hooks.hook_pointrÚmu_alpha_zero.MuZero.utilsrrÚmu_alpha_zero.configr r r`rrú<module>rgsÇğØ € € € à € € € à8Ğ8Ğ8Ğ8Ğ8Ğ8à4Ğ4Ğ4Ğ4Ğ4Ğ4Ø8Ğ8Ğ8Ğ8Ğ8Ğ8Ø1Ğ1Ğ1Ğ1Ğ1Ğ1Ø?Ğ?Ğ?Ğ?Ğ?Ğ?Ğ?Ğ?Ø0Ğ0Ğ0Ğ0Ğ0Ğ0ğBğBğBğBğBˆLñBôBğBğBğBr
7,879
Python
.py
29
268.103448
1,827
0.361992
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,515
az_search_tree.py
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/MCTS/az_search_tree.py
import copy from typing import Tuple, List, Any, Dict import wandb from multiprocess import set_start_method set_start_method("spawn", force=True) from multiprocess.pool import Pool import numpy as np import torch as th from mu_alpha_zero.AlphaZero.MCTS.az_node import AlphaZeroNode from mu_alpha_zero.AlphaZero.utils import augment_experience_with_symmetries, mask_invalid_actions from mu_alpha_zero.Game.tictactoe_game import TicTacToeGameManager from mu_alpha_zero.General.memory import GeneralMemoryBuffer from mu_alpha_zero.General.network import GeneralNetwork from mu_alpha_zero.General.search_tree import SearchTree from mu_alpha_zero.Hooks.hook_manager import HookManager from mu_alpha_zero.Hooks.hook_point import HookAt from mu_alpha_zero.config import AlphaZeroConfig from mu_alpha_zero.mem_buffer import SingleGameData, DataPoint from mu_alpha_zero.shared_storage_manager import SharedStorage class McSearchTree(SearchTree): def __init__(self, game_manager: TicTacToeGameManager, alpha_zero_config: AlphaZeroConfig, hook_manager: HookManager or None = None): self.game_manager = game_manager self.alpha_zero_config = alpha_zero_config self.hook_manager = hook_manager if hook_manager is not None else HookManager() self.root_node = None def play_one_game(self, network: GeneralNetwork, device: th.device) -> tuple[ list | list[tuple[int | Any, Any, float, int]], int, int, int]: """ Plays a single game using the Monte Carlo Tree Search algorithm. Args: network: The neural network used for searching and evaluating moves. device: The device (e.g., CPU or GPU) on which the network is located. Returns: A tuple containing the game history, and the number of wins, losses, and draws. The game history is a list of tuples, where each tuple contains: - The game state multiplied by the current player - The policy vector (probability distribution over moves) - The game result (1 for a win, -1 for a loss, 0 for a draw) - The current player (-1 or 1) """ # tau = self.args["tau"] state = self.game_manager.reset() current_player = 1 game_history = [] # game_data = SingleGameData() results = {"1": 0, "-1": 0, "D": 0} move_number = 0 tau = self.alpha_zero_config.tau while True: if move_number > self.alpha_zero_config.zero_tau_after_first_n_moves != 0: tau = 0 pi, _ = self.search(network, state, current_player, device) move = self.game_manager.select_move(pi, tau=tau) # self.step_root([move]) self.step_root(None) # pi = [x for x in pi.values()] game_history.append((state * current_player, pi, None, current_player, self.game_manager.get_invalid_actions(state, current_player))) state = self.game_manager.get_next_state(state, self.game_manager.network_to_board(move), current_player) r = self.game_manager.game_result(current_player, state) if r is not None: if r == current_player: results["1"] += 1 elif -1 < r < 1: results["D"] += 1 else: results["-1"] += 1 if -1 < r < 1: game_history = [(x[0], x[1], r, x[3], x[4]) for x in game_history] else: game_history = [(x[0], x[1], r * current_player * x[3], x[3], x[4]) for x in game_history] break current_player *= -1 move_number += 1 # game_history = make_channels(game_history) if self.alpha_zero_config.augment_with_symmetries: game_history = self.game_manager.augment_game_history_with_symmetries(game_history) self.hook_manager.process_hook_executes(self, self.play_one_game.__name__, __file__, HookAt.TAIL, args=(game_history, results)) # for state, pi, r, player, move_mask in game_history: # game_data.add_data_point(DataPoint(pi, r, None, None, player, state, move_mask)) return game_history, results["1"], results["-1"], results["D"] def search(self, network, state, current_player, device, tau=None): """ Perform a Monte Carlo Tree Search on the current state starting with the current player. :param tau: :param network: :param state: :param current_player: :param device: :return: """ num_simulations = self.alpha_zero_config.num_simulations if tau is None: tau = self.alpha_zero_config.tau if self.root_node is None: self.root_node = AlphaZeroNode(current_player, times_visited_init=0) state_ = self.game_manager.get_canonical_form(state, current_player) # state_ = make_channels_from_single(state_) state_ = th.tensor(state_, dtype=th.float32, device=device).unsqueeze(0) probabilities, v = network.predict(state_, muzero=False) if self.alpha_zero_config.add_dirichlet_noise: probabilities = ( 1 - self.alpha_zero_config.dirichlet_alpha) * probabilities + self.alpha_zero_config.dirichlet_alpha * np.random.dirichlet( [0.03] * len(probabilities)) probabilities = mask_invalid_actions(probabilities, self.game_manager.get_invalid_actions(state.copy(), current_player)) probabilities = probabilities.flatten().tolist() self.root_node.expand(state, probabilities) for simulation in range(num_simulations): current_node = self.root_node path = [current_node] action = None while current_node.was_visited(): current_node, action = current_node.get_best_child(c=self.alpha_zero_config.c) if current_node is None: # This was for testing purposes th.save(self.root_node, "root_node.pt") th.save(network.state_dict(), f"network_none_checkpoint_{current_player}.pt") raise ValueError("current_node is None") path.append(current_node) # leaf node reached next_state = self.game_manager.get_next_state(current_node.parent().state.copy(), self.game_manager.network_to_board(action), current_node.parent().current_player) next_state_ = self.game_manager.get_canonical_form(next_state, current_node.current_player) v = self.game_manager.game_result(current_node.current_player, next_state) if v is None: # next_state_ = make_channels_from_single(next_state_) next_state_ = th.tensor(next_state_, dtype=th.float32, device=device).unsqueeze(0) probabilities, v = network.predict(next_state_, muzero=False) probabilities = mask_invalid_actions(probabilities, self.game_manager.get_invalid_actions(next_state, current_node.current_player)) v = v.flatten().tolist()[0] probabilities = probabilities.flatten().tolist() current_node.expand(next_state, probabilities) self.backprop(v, path) self.hook_manager.process_hook_executes(self, self.search.__name__, __file__, HookAt.TAIL, args=(tau, self.root_node)) return self.root_node.get_self_action_probabilities(), None def backprop(self, v, path): """ Backpropagates the value `v` through the search tree, updating the relevant nodes. Args: v (float): The value to be backpropagated. path (list): The path from the leaf node to the root node. Returns: None """ for node in reversed(path): v *= -1 node.total_value += v node.update_q(v) node.times_visited += 1 def step_root(self, actions: list | None) -> None: if actions is not None: if self.root_node is not None: if not self.root_node.was_visited(): return for action in actions: self.root_node = self.root_node.children[action] self.root_node.parent = None else: # reset root node self.root_node = None def make_fresh_instance(self): return McSearchTree(self.game_manager.make_fresh_instance(), self.alpha_zero_config) def self_play(self, net: GeneralNetwork, device: th.device, num_games: int, memory: GeneralMemoryBuffer) -> tuple[ int, int, int]: wins_p1, wins_p2, draws = 0, 0, 0 for game in range(num_games): game_results, wins_p1_, wins_p2_, draws_ = self.play_one_game(net, device) wins_p1 += wins_p1_ wins_p2 += wins_p2_ draws += draws_ memory.add_list(game_results) return wins_p1, wins_p2, draws @staticmethod def parallel_self_play(nets: list, trees: list, memory: GeneralMemoryBuffer, device: th.device, num_games: int, num_jobs: int): with Pool(num_jobs) as p: if not memory.is_disk: results = p.starmap(p_self_play, [(nets[i], trees[i], copy.deepcopy(device), num_games // num_jobs, None) for i in range(len(nets))]) else: results = p.starmap(p_self_play, [ (nets[i], trees[i], copy.deepcopy(device), num_games // num_jobs, copy.deepcopy(memory)) for i in range(len(nets))]) wins_p1, wins_p2, draws = 0, 0, 0 for result in results: wins_p1 += result[0] wins_p2 += result[1] draws += result[2] if not memory.is_disk: memory.add_list(result[3]) return wins_p1, wins_p2, draws @staticmethod def start_continuous_self_play(nets: list, trees: list, shared_storage: SharedStorage, device: th.device, config: AlphaZeroConfig, num_jobs: int, num_worker_iters: int) -> Pool: pool = Pool(num_jobs) for i in range(num_jobs): pool.apply_async(c_p_self_play, args=( nets[i], trees[i], copy.deepcopy(device), config, i, shared_storage, num_worker_iters // num_jobs )) return pool def p_self_play(net, tree, device, num_games, memory): wins_p1, wins_p2, draws = 0, 0, 0 data = [] for game in range(num_games): game_results, wp1, wp2, ds = tree.play_one_game(net, device) wins_p1 += wp1 wins_p2 += wp2 draws += ds if memory is not None: memory.add_list(game_results) else: data.extend(game_results) if memory is None: return wins_p1, wins_p2, draws, data return wins_p1, wins_p2, draws def c_p_self_play(net, tree, device, config: AlphaZeroConfig, p_num: int, shared_storage: SharedStorage, num_worker_iters: int): if p_num == 0: wandb.init(project=config.wandbd_project_name, name="Self play") net = net.to(device) for iter_ in range(num_worker_iters): if shared_storage.get_experimental_network_params() is None: params = shared_storage.get_stable_network_params() else: params = shared_storage.get_experimental_network_params() # params = shared_storage.get_stable_network_params() net.load_state_dict(params) net.eval() game_results, wins_p1, wins_p2, draws = tree.play_one_game(net, device) shared_storage.add_list(game_results) if p_num == 0: wandb.log({"Iteration": iter_, "Wins p1": wins_p1, "Wins p2": wins_p2, "Draws": draws})
12,367
Python
.py
238
39.344538
159
0.589271
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,516
az_node.py
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/MCTS/az_node.py
import math import weakref import numpy as np from mu_alpha_zero.Game.tictactoe_game import TicTacToeGameManager as GameManager class AlphaZeroNode: """ This class defines a node in the search tree. It stores all the information needed for DeepMind's AlphaZero algorithm. """ def __init__(self, current_player, select_probability=0, parent=None, times_visited_init=0): self.times_visited = times_visited_init self.was_init_with_zero_visits = times_visited_init == 0 self.children = {} self.parent = weakref.ref(parent) if parent is not None else None self.select_probability = select_probability self.q = None self.current_player = current_player self.state = None self.total_value = 0 def expand(self, state, action_probabilities) -> None: """ Expands the newly visited node with the given action probabilities and state. :param state: np.ndarray of shape (board_size, board_size) representing the state current game board. :param action_probabilities: list of action probabilities for each action. :return: None """ self.state = state.copy() # copying here is probably not necessary. for action, probability in enumerate(action_probabilities): node = AlphaZeroNode(self.current_player * (-1), select_probability=probability, parent=self) self.children[action] = node def was_visited(self): return len(self.children) > 0 def update_q(self, v): # Based on DeepMind's AlphaZero paper. if self.q is None: self.q = v else: self.q = (self.times_visited * self.q + v) / (self.times_visited + 1) def get_best_child(self, c=1.5): best_utc = -float("inf") best_child = None best_action = None valids_for_state = np.where(self.state != 0, -5, self.state) valids_for_state = np.where(valids_for_state == 0, 1, valids_for_state) utcs = [] for action, child in self.children.items(): action_ = np.unravel_index(action, self.state.shape) if valids_for_state[action_] != 1: continue child_utc = child.calculate_utc(c=c) utcs.append(child_utc) if child_utc > best_utc: best_utc = child_utc best_child = child best_action = action printable_children = [[child.state, child.times_visited, child.q, child.select_probability] for child in self.children.values()] if best_child is None: # This was for testing purposes print("Best child is None. Possibly important info:\n", self.state, "\n", valids_for_state, printable_children, self.was_visited(), utcs, file=open("important_info" ".txt", "w")) # raise Exception("Best child is None,terminating.") return best_child, best_action def calculate_utc(self, c=1.5): parent = self.parent() if self.q is None: # Inspiration taken from https://github.com/suragnair/alpha-zero-general/blob/master/MCTS.py utc = c * self.select_probability * math.sqrt(parent.times_visited + 1e-8) else: utc = self.q + c * ( self.select_probability * ((math.sqrt(parent.times_visited)) / (1 + self.times_visited))) return utc def get_self_value(self): return self.total_value / self.times_visited if self.times_visited > 0 else 0 def get_self_action_probabilities(self): total_times_visited = self.times_visited action_probs = {} for action, child in self.children.items(): action_probs[action] = child.times_visited / total_times_visited return action_probs def get_latent(self): return self.state
3,970
Python
.py
83
37.626506
122
0.619798
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,517
az_node.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/MCTS/__pycache__/az_node.cpython-311.pyc
§ ’Ô†f‚ãóD—ddlZddlZddlZddlmZGd„d¦«ZdS)éN)ÚTicTacToeGameManagercóP—eZdZdZdd„Zdd„Zd„Zd„Zdd „Zdd „Z d „Z d „Z d„Z dS)Ú AlphaZeroNodez€ This class defines a node in the search tree. It stores all the information needed for DeepMind's AlphaZero algorithm. rNcó¸—||_|dk|_i|_|�tj|¦«nd|_||_d|_||_d|_ d|_ dS©Nr) Ú times_visitedÚwas_init_with_zero_visitsÚchildrenÚweakrefÚrefÚparentÚselect_probabilityÚqÚcurrent_playerÚstateÚ total_value)Úselfrrr Útimes_visited_inits úS/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/AlphaZero/MCTS/az_node.pyÚ__init__zAlphaZeroNode.__init__ se€Ø/ˆÔØ);¸qÒ)@ˆÔ&؈Œ Ø-3Ğ-?•g”k &Ñ)Ô)Ğ)ÀTˆŒ Ø"4ˆÔ؈ŒØ,ˆÔ؈Œ ؈ÔĞĞóÚreturncóª—| ¦«|_t|¦«D])\}}t|jdz||¬¦«}||j|<Œ*dS)a6 Expands the newly visited node with the given action probabilities and state. :param state: np.ndarray of shape (board_size, board_size) representing the state current game board. :param action_probabilities: list of action probabilities for each action. :return: None éÿÿÿÿ)rr N)ÚcopyrÚ enumeraterrr )rrÚaction_probabilitiesÚactionÚ probabilityÚnodes rÚexpandzAlphaZeroNode.expandsg€ğ—Z’Z‘\”\ˆŒ å#,Ğ-AÑ#BÔ#Bğ )ğ )Ñ ˆF�Kİ  Ô!4¸Ñ!;ĞP[ĞdhĞiÑiÔiˆDØ$(ˆDŒM˜&Ñ !Ğ !ğ )ğ )rcó2—t|j¦«dkSr)Úlenr ©rs rÚ was_visitedzAlphaZeroNode.was_visited&s€İ�4”=Ñ!Ô! AÒ%Ğ%rcój—|j€ ||_dS|j|jz|z|jdzz |_dS)Né)rr)rÚvs rÚupdate_qzAlphaZeroNode.update_q)s;€à Œ6ˆ>؈DŒFˆFˆFàÔ(¨4¬6Ñ1°AÑ5¸$Ô:LÈqÑ:PÑQˆDŒFˆFˆFrçø?c óx—td¦« }d}d}tj|jdkd|j¦«}tj|dkd|¦«}g}|j ¦«D]h\}}tj||jj¦«} || dkrŒ1| |¬¦«} |  | ¦«| |kr| }|}|}Œid„|j  ¦«D¦«} |€<td|jd|| |  ¦«|td d ¦«¬ ¦«||fS) NÚinfréûÿÿÿr')ÚccóB—g|]}|j|j|j|jg‘ŒS©)rrrr)Ú.0Úchilds rú <listcomp>z0AlphaZeroNode.get_best_child.<locals>.<listcomp>Bs8€ğ6ğ6ğ6Ğhm˜uœ{¨EÔ,?ÀÄÈ%ÔJbĞcğ6ğ6ğ6rz-Best child is None. Possibly important info: Ú zimportant_info.txtÚw)Úfile)ÚfloatÚnpÚwhererr ÚitemsÚ unravel_indexÚshapeÚ calculate_utcÚappendÚvaluesÚprintr%Úopen) rr.Úbest_utcÚ best_childÚ best_actionÚvalids_for_stateÚutcsrr2Úaction_Ú child_utcÚprintable_childrens rÚget_best_childzAlphaZeroNode.get_best_child0so€İ˜%‘L”L�=ˆØˆ ؈ İœ8 D¤J°!¢O°R¸¼ÑDÔDĞİœ8Ğ$4¸Ò$9¸1Ğ>NÑOÔOĞØˆØ!œ]×0Ò0Ñ2Ô2ğ %ğ %‰MˆF�EİÔ& v¨t¬zÔ/?Ñ@Ô@ˆGØ Ô(¨AÒ-Ğ-ØØ×+Ò+¨aĞ+Ñ0Ô0ˆIØ �KŠK˜ Ñ "Ô "Ğ "ؘ8Ò#Ğ#Ø$�Ø"� Ø$� øğ6ğ6Ø"œm×2Ò2Ñ4Ô4ğ6ñ6ô6Ğà Ğ å ĞBÀDÄJĞPTØ"Ğ$6¸×8HÒ8HÑ8JÔ8JÈDİğ#Ø$'ñ)ô)ğ *ñ *ô *ğ *ğ ˜;Ğ&Ğ&rcóú—| ¦«}|j€(||jztj|jdz¦«z}n7|j||jtj|j¦«d|jzz zzz}|S)Ng:Œ0â�yE>r')r rrÚmathÚsqrtr)rr.r Úutcs rr=zAlphaZeroNode.calculate_utcMs€€Ø—’‘”ˆØ Œ6ˆ>à�dÔ-Ñ-µ´ ¸&Ô:NĞQUÑ:UÑ0VÔ0VÑVˆCˆCà”&˜1ØÔ+µ´ ¸&Ô:NÑ0OÔ0OĞTUĞX\ÔXjÑTjÑ/kÑlñnñnˆCğˆ rcó:—|jdkr|j|jz ndSr)rrr$s rÚget_self_valuezAlphaZeroNode.get_self_valueXs&€Ø8<Ô8JÈQÒ8NĞ8NˆtÔ $Ô"4Ñ4Ğ4ĞTUĞUrcóp—|j}i}|j ¦«D]\}}|j|z ||<Œ|S©N)rr r:)rÚtotal_times_visitedÚ action_probsrr2s rÚget_self_action_probabilitiesz+AlphaZeroNode.get_self_action_probabilities[sO€à"Ô0ĞØˆ Ø!œ]×0Ò0Ñ2Ô2ğ Mğ M‰MˆF�EØ#(Ô#6Ğ9LÑ#LˆL˜Ñ Ğ àĞrcó—|jSrR)rr$s rÚ get_latentzAlphaZeroNode.get_latentds €ØŒzĞr)rNr)rN)r*) Ú__name__Ú __module__Ú __qualname__Ú__doc__rr!r%r)rJr=rPrUrWr0rrrrs¿€€€€€ğğğ ğ ğ ğ ğ )ğ )ğ )ğ )ğ&ğ&ğ&ğRğRğRğ'ğ'ğ'ğ'ğ: ğ ğ ğ ğVğVğVğğğğğğğğrr)rLr Únumpyr8Ú!mu_alpha_zero.Game.tictactoe_gamerÚ GameManagerrr0rrú<module>r_sqğØ € € € Ø€€€ØĞĞĞàQĞQĞQĞQĞQĞQğ]ğ]ğ]ğ]ğ]ñ]ô]ğ]ğ]ğ]r
5,913
Python
.py
35
166.514286
775
0.387651
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,518
az_search_tree.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/MCTS/__pycache__/az_search_tree.cpython-311.pyc
§ ’Ô†fe(ãó¼—ddlZddlmZddlZddlZddlmZddl m Z m Z ddl m Z ddlmZddlmZddlmZdd lmZdd lmZdd lmZGd „d e¦«Zd„ZdS)éN)ÚPool)Ú AlphaZeroNode)Ú"augment_experience_with_symmetriesÚmask_invalid_actions)ÚTicTacToeGameManager)ÚGeneralMemoryBuffer)ÚGeneralNetwork)Ú SearchTree)Ú HookManager)ÚHookAt)ÚAlphaZeroConfigc óø—eZdZ ddededepdfd„Zdedej de e e e e ffd „Z dd „Zd „Zd e dzddfd „Zd„Zdedej de dede e e e ff d„Zede de dedej de de f d„¦«ZdS)Ú McSearchTreeNÚ game_managerÚalpha_zero_configÚ hook_managercó^—||_||_|�|n t¦«|_d|_dS©N)rrr rÚ root_node)Úselfrrrs úZ/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/AlphaZero/MCTS/az_search_tree.pyÚ__init__zMcSearchTree.__init__s2€à(ˆÔØ!2ˆÔØ,8Ğ,D˜L˜LÍ+É-Ì-ˆÔ؈ŒˆˆóÚnetworkÚdeviceÚreturncó¨‡ ‡ —|j ¦«}dŠ g}ddddœ} | ||‰ |¦«\}}|j ||jj¬¦«}| d¦«| |‰ z|d‰ f¦«|j ||j  |¦«‰ ¦«}|j  ‰ |¦«Š ‰ �w‰ ‰ kr|dxxdz cc<n1d‰ cxkrdkrnn|d xxdz cc<n|d xxdz cc<d‰ cxkrdkrnnˆ fd „|D¦«}nˆ ˆ fd „|D¦«}n‰ dzŠ �ŒAt||jj ¦«}|j  ||jjt"t$j||f¬ ¦«||d|d |d fS)a¸ Plays a single game using the Monte Carlo Tree Search algorithm. Args: network: The neural network used for searching and evaluating moves. device: The device (e.g., CPU or GPU) on which the network is located. Returns: A tuple containing the game history, and the number of wins, losses, and draws. The game history is a list of tuples, where each tuple contains: - The game state multiplied by the current player - The policy vector (probability distribution over moves) - The game result (1 for a win, -1 for a loss, 0 for a draw) - The current player (-1 or 1) ér)Ú1ú-1ÚDT)ÚtauNréÿÿÿÿr!r có@•—g|]}|d|d‰|df‘ŒS©rré©)Ú.0ÚxÚrs €rú <listcomp>z.McSearchTree.play_one_game.<locals>.<listcomp>As.ø€Ğ#PĞ#PĞ#P¸a Q q¤T¨1¨Q¬4°°A°a´DĞ$9Ğ#PĞ#PĞ#PrcóX•—g|]&}|d|d‰‰z|dz|df‘Œ'Sr%r')r(r)Úcurrent_playerr*s €€rr+z.McSearchTree.play_one_game.<locals>.<listcomp>Cs=ø€Ğ#hĞ#hĞ#hĞVW Q q¤T¨1¨Q¬4°°^Ñ1CÀaÈÄdÑ1JÈAÈaÌDĞ$QĞ#hĞ#hĞ#hr©Úargs)rÚresetÚsearchÚ select_moverr"Ú step_rootÚappendÚget_next_stateÚnetwork_to_boardÚ game_resultrÚ board_sizerÚprocess_hook_executesÚ play_one_gameÚ__name__Ú__file__r ÚTAIL) rrrÚstateÚ game_historyÚresultsÚpiÚ_Úmover-r*s @@rr:zMcSearchTree.play_one_games/øø€ğ"Ô!×'Ò'Ñ)Ô)ˆØˆØˆ Ø ¨Ğ+Ğ+ˆğ !Ø—K’K ¨°ÀÑGÔG‰EˆB�ØÔ$×0Ò0°¸Ô8NÔ8RĞ0ÑSÔSˆDà �NŠN˜4Ñ Ô Ğ à × Ò  ¨Ñ!7¸¸TÀ>Ğ RÑ SÔ SĞ SØÔ%×4Ò4°U¸DÔ<M×<^Ò<^Ğ_cÑ<dÔ<dĞftÑuÔuˆEØÔ!×-Ò-¨n¸eÑDÔDˆA؈}ؘÒ&Ğ&ؘC�L�L”L AÑ%�L�L‘L�Lؘ!�Z�Z’Z�Z˜a’Z�Z�Z�Z�ZؘC�L�L”L AÑ%�L�L‘L�Là˜D�M�M”M QÑ&�M�M‘Mà˜�:�:’:�:˜A’:�:�:�:�:Ø#PĞ#PĞ#PĞ#PÀ<Ğ#PÑ#PÔ#P�L�Là#hĞ#hĞ#hĞ#hĞ#hĞ[gĞ#hÑ#hÔ#h�LØØ ˜bÑ ˆNñ- !õ2:¸,ÈÔHYÔHdÑeÔeˆ Ø Ô×/Ò/°°dÔ6HÔ6QÕS[Õ]cÔ]hØ6BÀGĞ5Lğ 0ñ Nô Nğ Nà˜W Sœ\¨7°4¬=¸'À#¼,ĞFĞFrcó�—|jj}|€ |jj}|j€t |d¬¦«|_|j ||¦«}tj|tj |¬¦«  d¦«}|  |d¬¦«\}} |tj  |jjg|jjz¦« dd¦«z}t%||j | ¦«|¦«|jj¦«}| ¦« ¦«}|j ||¦«t3|¦«D�]n} |j} | g} d} |  ¦«r¢|  |jj¬ ¦«\} } | €Ttj|jd ¦«tj| ¦«d |›d �¦«t?d ¦«‚|   | ¦«|  ¦«°¢|j !|  "¦«j#|j $| ¦«|  "¦«j%¦«}|j || j%¦«}|j &| j%|¦«} | €ïtj|tj |¬¦«  d¦«}|  |d¬¦«\}} t%||j || j%¦«|jj¦«}|  ¦« ¦«d} | ¦« ¦«}|  ||¦«| '| | ¦«�Œp|j( )||j*j+tXtZj.||jf¬¦«|j /¦«dfS)zó Perform a Monte Carlo Tree Search on the current state starting with the current player. :param tau: :param network: :param state: :param current_player: :param device: :return: Nr)Útimes_visited_init)ÚdtyperF)Úmuzerorr#)Úcz root_node.ptÚnetwork_none_checkpoint_z.ptzcurrent_node is Noner.)0rÚnum_simulationsr"rrrÚget_canonical_formÚthÚtensorÚfloat32Ú unsqueezeÚpredictÚnpÚrandomÚ dirichletÚdirichlet_alphaÚnet_action_sizeÚreshaperÚget_invalid_actionsÚcopyr8ÚflattenÚtolistÚexpandÚrangeÚ was_visitedÚget_best_childrHÚsaveÚ state_dictÚ ValueErrorr4r5Úparentr>r6r-r7Úbackproprr9r1r;r<r r=Úget_self_action_probabilities)rrr>r-rr"rJÚstate_Ú probabilitiesÚvÚ simulationÚ current_nodeÚpathÚactionÚ next_stateÚ next_state_s rr1zMcSearchTree.searchMs €ğÔ0Ô@ˆØ ˆ;ØÔ(Ô,ˆCØ Œ>Ğ !İ*¨>ÈaĞPÑPÔPˆDŒNØÔ"×5Ò5°e¸^ÑLÔLˆå”˜6­¬¸FĞCÑCÔC×MÒMÈaÑPÔPˆØ"Ÿ?š?¨6¸%˜?Ñ@Ô@ш �qØ%­¬ ×(;Ò(;Ø Ô #Ô 3Ğ 4°tÔ7MÔ7]Ñ ]ñ)_ô)_ß_fÒ_fĞghØgiñ`kô`kñkˆ õ-¨]Ø-1Ô->×-RÒ-RĞSX×S]ÒS]ÑS_ÔS_ĞaoÑ-pÔ-pØ-1Ô->Ô-IñKôKˆ ğ&×-Ò-Ñ/Ô/×6Ò6Ñ8Ô8ˆ Ø Œ×Ò˜e ]Ñ3Ô3Ğ3İ Ñ0Ô0ğ #ñ #ˆJØœ>ˆLØ �>ˆD؈FØ×*Ò*Ñ,Ô,ğ *Ø'3×'BÒ'BÀTÔE[ÔE]Ğ'BÑ'^Ô'^Ñ$� ˜fØĞ'İ”G˜DœN¨NÑ;Ô;Ğ;İ”G˜G×.Ò.Ñ0Ô0Ğ2`È^Ğ2`Ğ2`Ğ2`ÑaÔaĞaİ$Ğ%;Ñ<Ô<Ğ<Ø— ’ ˜LÑ)Ô)Ğ)ğ ×*Ò*Ñ,Ô,ğ *ğÔ*×9Ò9¸,×:MÒ:MÑ:OÔ:OÔ:UØ:>Ô:K×:\Ò:\Ğ]cÑ:dÔ:dØ:F×:MÒ:MÑ:OÔ:OÔ:^ñ`ô`ˆJğÔ+×>Ò>¸zÈ<ÔKfÑgÔgˆKØÔ!×-Ò-¨lÔ.IÈ:ÑVÔVˆA؈yå œi¨ ½2¼:ÈfĞUÑUÔU×_Ò_Ğ`aÑbÔb� Ø#*§?¢?°;Àu ?Ñ#MÔ#MÑ � ˜qİ 4°]ÀDÔDU×DiÒDiĞjtØjvôkFñEGôEGà59Ô5FÔ5Qñ!Sô!S� ğ—I’I‘K”K×&Ò&Ñ(Ô(¨Ô+�Ø -× 5Ò 5Ñ 7Ô 7× >Ò >Ñ @Ô @� Ø×#Ò# J° Ñ>Ô>Ğ>à �MŠM˜!˜TÑ "Ô "Ğ "Ñ "à Ô×/Ò/°°d´kÔ6JÍHÕV\ÔVaØ69¸4¼>Ğ5Jğ 0ñ Lô Lğ LàŒ~×;Ò;Ñ=Ô=¸tĞCĞCrcó�—t|¦«D]<}|dz}|xj|z c_| |¦«|xjdz c_Œ=dS)a Backpropagates the value `v` through the search tree, updating the relevant nodes. Args: v (float): The value to be backpropagated. path (list): The path from the leaf node to the root node. Returns: None r#rN)ÚreversedÚ total_valueÚupdate_qÚ times_visited)rrgrjÚnodes rrczMcSearchTree.backprop‹si€õ˜T‘N”Nğ $ğ $ˆDØ �‰GˆAØ Ğ Ô  Ñ !Ğ Ô Ø �MŠM˜!Ñ Ô Ğ Ø Ğ Ô  !Ñ #Ğ Ô Ğ ğ  $ğ $rÚactionscó´—|�N|j�E|j ¦«sdS|D]}|jj||_Œd|j_dSdSd|_dSr)rr]Úchildrenrb)rrtrks rr3zMcSearchTree.step_rootœst€Ø Ğ ØŒ~Ğ)Ø”~×1Ò1Ñ3Ô3ğØ�FØ%ğEğE�FØ%)¤^Ô%<¸VÔ%D�D”N�NØ(,�”Ô%Ğ%Ğ%ğ *Ğ)ğ"ˆDŒNˆNˆNrcóZ—t|j ¦«|j¦«Sr)rrÚmake_fresh_instancer)rs rrxz McSearchTree.make_fresh_instance¨s$€İ˜DÔ-×AÒAÑCÔCÀTÔE[Ñ\Ô\Ğ\rÚnetÚ num_gamesÚmemorycóº—d\}}}t|¦«D]A}| ||¦«\} } } } || z }|| z }|| z }| | ¦«ŒB|||fS©N©rrr)r\r:Úadd_list) rryrrzr{Úwins_p1Úwins_p2ÚdrawsÚgameÚ game_resultsÚwins_p1_Úwins_p2_Údraws_s rÚ self_playzMcSearchTree.self_play«s‚€à")ш�˜%ݘ)Ñ$Ô$ğ *ğ *ˆDØ7;×7IÒ7IÈ#ÈvÑ7VÔ7VÑ 4ˆL˜( H¨fØ �xÑ ˆGØ �xÑ ˆGØ �V‰OˆEØ �OŠO˜LÑ )Ô )Ğ )Ğ )à˜ Ğ&Ğ&rÚnetsÚtreesÚnum_jobsc ó(‡‡‡‡‡‡—t‰¦«5}‰jsF| tˆˆˆˆˆfd„t t ‰¦«¦«D¦«¦«}nF| tˆˆˆˆˆˆfd„t t ‰¦«¦«D¦«¦«}ddd¦«n #1swxYwYd\}} } |D]E} || dz }| | dz } | | dz } ‰js‰ | d¦«ŒF|| | fS)Ncó`•—g|]*}‰|‰|tj‰¦«‰‰zdf‘Œ+Sr©rXÚdeepcopy)r(Úirr‰rzr‹rŠs €€€€€rr+z3McSearchTree.parallel_self_play.<locals>.<listcomp>½sKø€ğ%7ğ%7ğ%7Ğqr d¨1¤g¨u°Q¬x½¼ÀvÑ9NÔ9NĞPYĞ]eÑPeĞgkĞ%lğ%7ğ%7ğ%7rc ó„•—g|]<}‰|‰|tj‰¦«‰‰ztj‰¦«f‘Œ=Sr'r�)r(r�rr{r‰rzr‹rŠs €€€€€€rr+z3McSearchTree.parallel_self_play.<locals>.<listcomp>ÀsUø€ğ2&ğ2&ğ2&Øqr�T˜!”W˜e Aœh­¬ °fÑ(=Ô(=¸yÈHÑ?TÕVZÔVcĞdjÑVkÔVkĞlğ2&ğ2&ğ2&rr~rrér&)rÚis_diskÚstarmapÚ p_self_playr\Úlenr) r‰rŠr{rrzr‹Úpr@r€r�r‚Úresults `````` rÚparallel_self_playzMcSearchTree.parallel_self_play·sªøøøøøø€õ�(‰^Œ^ğ '˜qØ”>ğ 'ØŸ)š)¥Kğ%7ğ%7ğ%7ğ%7ğ%7ğ%7ğ%7ğ%7İ%*­3¨t©9¬9Ñ%5Ô%5ğ%7ñ%7ô%7ñ8ô8��ğŸ)š)¥Kğ2&ğ2&ğ2&ğ2&ğ2&ğ2&ğ2&ğ2&ğ2&å�#˜d™)œ)Ñ$Ô$ğ2&ñ2&ô2&ñ'ô'�ğ  'ğ 'ğ 'ñ 'ô 'ğ 'ğ 'ğ 'ğ 'ğ 'ğ 'øøøğ 'ğ 'ğ 'ğ 'ğ#*ш�˜%Øğ +ğ +ˆFØ �v˜a”yÑ ˆGØ �v˜a”yÑ ˆGØ �V˜A”YÑ ˆEØ”>ğ +Ø—’  q¤ Ñ*Ô*Ğ*øØ˜ Ğ&Ğ&s–BB6Â6B:Â=B:r)r;Ú __module__Ú __qualname__rr r rr rLrÚtupleÚlistÚintr:r1rcr3rxrrˆÚ staticmethodr™r'rrrrsŒ€€€€€à59ğğĞ%9ğÈoğØ*Ğ2¨dğğğğğ1G ^ğ1G¸R¼Yğ1GÈ5ĞQUĞWZĞ\_ĞadĞQdÔKeğ1Gğ1Gğ1Gğ1Gğf<Dğ<Dğ<Dğ<Dğ|$ğ$ğ$ğ" " ¨¡ğ "°ğ "ğ "ğ "ğ "ğ]ğ]ğ]ğ '˜^ğ '°R´Yğ 'È3ğ 'ĞXkğ 'ĞpuØ ˆS�#ˆ ôqğ 'ğ 'ğ 'ğ 'ğğ' ğ'¨dğ'Ğ<Oğ'ĞY[ÔYbğ'Ğorğ'Ø%(ğ'ğ'ğ'ñ„\ğ'ğ'ğ'rrcóş—d\}}}g}t|¦«D]Y} | ||¦«\} } } } || z }|| z }|| z }|�| | ¦«ŒD| | ¦«ŒZ|€||||fS|||fSr})r\r:rÚextend)ryÚtreerrzr{r€r�r‚Údatarƒr„Úwp1Úwp2Údss rr•r•Ís´€Ø%Ñ€GˆW�eØ €Dİ�iÑ Ô ğ&ğ&ˆØ%)×%7Ò%7¸¸VÑ%DÔ%DÑ"ˆ �c˜3 Ø�3‰ˆØ�3‰ˆØ �‰ ˆØ Ğ Ø �OŠO˜LÑ )Ô )Ğ )Ğ )à �KŠK˜ Ñ %Ô %Ğ %Ğ %Ø €~ؘ ¨Ğ,Ğ,Ø �G˜UĞ "Ğ"r)rXÚmultiprocessingrÚnumpyrQÚtorchrLÚ$mu_alpha_zero.AlphaZero.MCTS.az_noderÚmu_alpha_zero.AlphaZero.utilsrrÚ!mu_alpha_zero.Game.tictactoe_gamerÚmu_alpha_zero.General.memoryrÚmu_alpha_zero.General.networkr Ú!mu_alpha_zero.General.search_treer Ú mu_alpha_zero.Hooks.hook_managerr Úmu_alpha_zero.Hooks.hook_pointr Úmu_alpha_zero.configr rr•r'rrú<module>r³s,ğØ € € € Ø Ğ Ğ Ğ Ğ Ğ àĞĞĞØĞĞĞà>Ğ>Ğ>Ğ>Ğ>Ğ>ØbĞbĞbĞbĞbĞbĞbĞbØBĞBĞBĞBĞBĞBØ<Ğ<Ğ<Ğ<Ğ<Ğ<Ø8Ğ8Ğ8Ğ8Ğ8Ğ8Ø8Ğ8Ğ8Ğ8Ğ8Ğ8Ø8Ğ8Ğ8Ğ8Ğ8Ğ8Ø1Ğ1Ğ1Ğ1Ğ1Ğ1Ø0Ğ0Ğ0Ğ0Ğ0Ğ0ğx'ğx'ğx'ğx'ğx'�:ñx'ôx'ğx'ğv#ğ#ğ#ğ#ğ#r
14,571
Python
.py
85
167.270588
1,422
0.350549
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,519
nnet.py
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/Network/nnet.py
import atexit import glob import os import time from itertools import chain import numpy as np import torch as th import torch.nn as nn import torch.nn.functional as F import wandb from torch.nn.functional import mse_loss from torch.nn.modules.module import T from mu_alpha_zero.AlphaZero.checkpointer import CheckPointer from mu_alpha_zero.AlphaZero.logger import Logger from mu_alpha_zero.General.network import GeneralAlphZeroNetwork from mu_alpha_zero.Hooks.hook_manager import HookManager from mu_alpha_zero.Hooks.hook_point import HookAt from mu_alpha_zero.config import AlphaZeroConfig, Config from mu_alpha_zero.mem_buffer import MemBuffer from mu_alpha_zero.shared_storage_manager import SharedStorage class AlphaZeroNet(nn.Module, GeneralAlphZeroNetwork): def __init__(self, in_channels: int, num_channels: int, dropout: float, action_size: int, linear_input_size: int, hook_manager: HookManager or None = None): super(AlphaZeroNet, self).__init__() self.in_channels = in_channels self.num_channels = num_channels self.dropout_p = dropout self.action_size = action_size self.linear_input_size = linear_input_size self.hook_manager = hook_manager if hook_manager is not None else HookManager() # Convolutional layers self.conv1 = nn.Conv2d(in_channels, num_channels, 3, padding=1) self.bn1 = nn.BatchNorm2d(num_channels) self.conv2 = nn.Conv2d(num_channels, num_channels, 3, padding=1) self.bn2 = nn.BatchNorm2d(num_channels) self.conv3 = nn.Conv2d(num_channels, num_channels, 3, padding=1) self.bn3 = nn.BatchNorm2d(num_channels) self.conv4 = nn.Conv2d(num_channels, num_channels, 3) self.bn4 = nn.BatchNorm2d(num_channels) # Fully connected layers # 4608 (5x5) or 512 (3x3) or 32768 (10x10) or 18432 (8x8) # or 8192 for atari (6x6) self.fc1 = nn.Linear(self.linear_input_size, 1024) self.fc1_bn = nn.BatchNorm1d(1024) self.fc2 = nn.Linear(1024, 512) self.fc2_bn = nn.BatchNorm1d(512) self.dropout = nn.Dropout(dropout) # Output layers self.pi = nn.Linear(512, action_size) # probability head self.v = nn.Linear(512, 1) # value head atexit.register(self.clear_traces) def forward(self, x, muzero: bool = True): if not muzero: x = x.unsqueeze(1) x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = F.relu(self.bn3(self.conv3(x))) x = F.relu(self.bn4(self.conv4(x))) x = x.reshape(x.size(0), -1) # Flatten x = F.relu(self.fc1_bn(self.fc1(x))) x = self.dropout(x) x = F.relu(self.fc2_bn(self.fc2(x))) x = self.dropout(x) pi = F.log_softmax(self.pi(x), dim=1) v = F.tanh(self.v(x)) return pi, v @th.no_grad() def predict(self, x, muzero=True): pi, v = self.forward(x, muzero=muzero) pi = th.exp(pi) return pi.detach().cpu().numpy(), v.detach().cpu().numpy() def to_traced_script(self, board_size: int = 10): return th.jit.trace(self, th.rand(1, 256, board_size, board_size).cuda()) def trace(self, board_size: int) -> str: traced = self.to_traced_script(board_size=board_size) path = "traced.pt" traced.save(path) return path def clear_traces(self) -> None: from mu_alpha_zero.General.utils import find_project_root for trace_file in glob.glob(f"{find_project_root()}/Checkpoints/Traces/*.pt"): os.remove(trace_file) def make_fresh_instance(self): return AlphaZeroNet(self.in_channels, self.num_channels, self.dropout_p, self.action_size, self.linear_input_size) @staticmethod def make_from_config(config: AlphaZeroConfig, hook_manager: HookManager or None = None): return AlphaZeroNet(config.num_net_in_channels, config.num_net_channels, config.net_dropout, config.net_action_size, config.az_net_linear_input_size, hook_manager=hook_manager) def train_net(self, memory_buffer: MemBuffer, alpha_zero_config: AlphaZeroConfig): from mu_alpha_zero.AlphaZero.utils import mask_invalid_actions_batch device = th.device("cuda" if th.cuda.is_available() else "cpu") losses = [] optimizer = th.optim.Adam(self.parameters(), lr=alpha_zero_config.lr) memory_buffer.shuffle() for epoch in range(alpha_zero_config.epochs): for experience_batch in memory_buffer(alpha_zero_config.batch_size): if len(experience_batch) <= 1: continue states, pi, v = zip(*experience_batch) states = th.tensor(np.array(states), dtype=th.float32, device=device) pi = th.tensor(np.array(pi), dtype=th.float32, device=device) v = th.tensor(v, dtype=th.float32, device=device).unsqueeze(1) pi_pred, v_pred = self.forward(states, muzero=False) masks = mask_invalid_actions_batch(states) loss = mse_loss(v_pred, v) + self.pi_loss(pi_pred, pi, masks, device) losses.append(loss.item()) # self.summary_writer.add_scalar("Loss", loss.item(), i * epochs + epoch) optimizer.zero_grad() loss.backward() optimizer.step() self.hook_manager.process_hook_executes(self, self.train_net.__name__, __file__, HookAt.MIDDLE, args=(experience_batch, loss.item(), epoch)) self.hook_manager.process_hook_executes(self, self.train_net.__name__, __file__, HookAt.TAIL, args=(losses,)) return sum(losses) / len(losses), losses def pi_loss(self, y_hat, y, masks, device: th.device): masks = masks.reshape(y_hat.shape).to(device) masked_y_hat = masks * y_hat return -th.sum(y * masked_y_hat) / y.size()[0] def to_shared_memory(self): for param in self.parameters(): param.share_memory_() def run_at_training_end(self): self.hook_manager.process_hook_executes(self, self.run_at_training_end.__name__, __file__, HookAt.ALL) class OriginalAlphaZeroNetwork(nn.Module, GeneralAlphZeroNetwork): def __init__(self, in_channels: int, num_channels: int, dropout: float, action_size: int, linear_input_size: list[int], support_size: int, state_linear_layers: int, pi_linear_layers: int, v_linear_layers: int, linear_head_hidden_size: int, is_atari: bool, latent_size: list[int] = [6, 6], hook_manager: HookManager or None = None, num_blocks: int = 8, muzero: bool = False, is_dynamics: bool = False, is_representation: bool = False): super(OriginalAlphaZeroNetwork, self).__init__() self.in_channels = in_channels self.num_channels = num_channels self.dropout_p = dropout self.action_size = action_size self.linear_input_size = linear_input_size self.support_size = support_size self.num_blocks = num_blocks self.muzero = muzero self.latent_size = latent_size self.is_dynamics = is_dynamics self.is_representation = is_representation self.state_linear_layers = state_linear_layers self.pi_linear_layers = pi_linear_layers self.v_linear_layers = v_linear_layers self.linear_head_hidden_size = linear_head_hidden_size self.is_atari = is_atari self.optimizer = None self.scheduler = None self.hook_manager = hook_manager if hook_manager is not None else HookManager() self.conv1 = nn.Conv2d(in_channels, num_channels, 3, padding=1) self.bn1 = nn.BatchNorm2d(num_channels) self.dropout = nn.Dropout(dropout) self.blocks = nn.ModuleList([OriginalAlphaZeroBlock(num_channels, num_channels) for _ in range(num_blocks)]) if not is_representation: self.value_head = ValueHead(muzero, linear_input_size[0], support_size, num_channels, v_linear_layers, linear_head_hidden_size) else: self.value_head = th.nn.Identity() if is_dynamics or is_representation: self.policy_state_head = StateHead(linear_input_size[2], num_channels, latent_size, state_linear_layers, linear_head_hidden_size) else: self.policy_state_head = PolicyHead(action_size, linear_input_size[1], num_channels, pi_linear_layers, linear_head_hidden_size) def forward(self, x, muzero: bool = False, return_support: bool = False): if not muzero: x = x.unsqueeze(1) x = F.relu(self.bn1(self.conv1(x))) for block in self.blocks: x = block(x) # x = self.dropout(x) val_h_output = self.value_head(x) pol_h_output = self.policy_state_head(x) if self.is_representation: return pol_h_output if not return_support and self.muzero: from mu_alpha_zero.MuZero.utils import invert_scale_reward_value # multiply arange by softmax probabilities val_h_output = th.exp(val_h_output) support_range = th.arange(-self.support_size, self.support_size + 1, 1, dtype=th.float32, device=x.device).unsqueeze(0) output = th.sum(val_h_output * support_range, dim=1) if self.is_atari: output = invert_scale_reward_value(output) return pol_h_output, output.unsqueeze(1) return pol_h_output, val_h_output @th.no_grad() def predict(self, x, muzero=True): pi, v = self.forward(x, muzero=muzero) pi = th.exp(pi) return pi.detach().cpu().numpy(), v.detach().cpu().numpy() def pi_loss(self, y_hat, y, masks, device: th.device): masks = masks.reshape(y_hat.shape).to(device) masked_y_hat = masks * y_hat return -th.sum(y * masked_y_hat) / y.size()[0] def make_fresh_instance(self): return OriginalAlphaZeroNetwork(self.in_channels, self.num_channels, self.dropout_p, self.action_size, self.linear_input_size, self.support_size, self.state_linear_layers, self.pi_linear_layers, self.v_linear_layers, self.linear_head_hidden_size, self.is_atari, self.latent_size, hook_manager=self.hook_manager, num_blocks=self.num_blocks, muzero=self.muzero, is_dynamics=self.is_dynamics) @classmethod def make_from_config(cls, config: Config, hook_manager: HookManager or None = None): return OriginalAlphaZeroNetwork(config.num_net_in_channels, config.num_net_channels, config.net_dropout, config.net_action_size, config.az_net_linear_input_size, hook_manager=hook_manager, state_linear_layers=config.state_linear_layers, pi_linear_layers=config.pi_linear_layers, v_linear_layers=config.v_linear_layers, linear_head_hidden_size=config.linear_head_hidden_size, num_blocks=config.num_blocks, muzero=config.muzero, is_atari=config.is_atari, support_size=config.support_size, latent_size=config.net_latent_size) def train_net(self, memory_buffer, muzero_alphazero_config: Config) -> tuple[float, list[float]]: if memory_buffer.train_length() <= 1: return 0, [] losses = [] if self.optimizer is None: self.optimizer = th.optim.Adam(self.parameters(), lr=muzero_alphazero_config.lr, weight_decay=muzero_alphazero_config.l2) if muzero_alphazero_config.lr_scheduler is not None and self.scheduler is None: self.scheduler = muzero_alphazero_config.lr_scheduler(self.optimizer, **muzero_alphazero_config.lr_scheduler_kwargs) # memory_buffer.shuffle() for epoch in range(muzero_alphazero_config.epochs): for experience_batch in memory_buffer.batch(muzero_alphazero_config.batch_size): loss, v_loss, pi_loss = self.calculate_loss(experience_batch, muzero_alphazero_config) losses.append(loss.item()) wandb.log({"combined_loss": loss.item(), "loss_v": v_loss.item(), "loss_pi": pi_loss.item()}) self.optimizer.zero_grad() loss.backward() self.optimizer.step() if self.scheduler is not None: self.scheduler.step() wandb.log({"lr": self.scheduler.get_last_lr()[-1]}) self.hook_manager.process_hook_executes(self, self.train_net.__name__, __file__, HookAt.MIDDLE, args=(experience_batch, loss.item(), epoch)) self.hook_manager.process_hook_executes(self, self.train_net.__name__, __file__, HookAt.TAIL, args=(losses,)) return sum(losses) / len(losses), losses def eval_net(self, memory_buffer, muzero_alphazero_config: Config) -> None: if memory_buffer.eval_length() <= 1: return if self.optimizer is None: self.optimizer = th.optim.Adam(self.parameters(), lr=muzero_alphazero_config.lr, weight_decay=muzero_alphazero_config.l2) # memory_buffer.shuffle(is_eval=True) for epoch in range(muzero_alphazero_config.eval_epochs): for experience_batch in memory_buffer.batch(muzero_alphazero_config.batch_size, is_eval=True): loss, v_loss, pi_loss = self.calculate_loss(experience_batch, muzero_alphazero_config) wandb.log( {"eval_combined_loss": loss.item(), "eval_loss_v": v_loss.item(), "eval_loss_pi": pi_loss.item()}) def calculate_loss(self, experience_batch, muzero_alphazero_config): from mu_alpha_zero.AlphaZero.utils import mask_invalid_actions_batch device = th.device("cuda" if th.cuda.is_available() else "cpu") states, pi, v, _, masks = experience_batch[0], experience_batch[1], experience_batch[2], experience_batch[3], \ experience_batch[4] pi = [[y for y in x.values()] if isinstance(x, dict) else x for x in pi] # game = [[y.frame,y.pi,y.v,y.action_mask] for y in experience_batch.datapoints] # states, pi, v, masks = zip(*game) states = th.tensor(np.array(states), dtype=th.float32, device=device) pi = th.tensor(np.array(pi), dtype=th.float32, device=device) v = th.tensor(v, dtype=th.float32, device=device).unsqueeze(1) masks = th.tensor(np.array(masks), dtype=th.float32, device=device) pi_pred, v_pred = self.forward(states, muzero=muzero_alphazero_config.muzero) v_loss = mse_loss(v_pred, v) pi_loss = self.pi_loss(pi_pred, pi, masks, device) loss = v_loss + pi_loss return loss, v_loss, pi_loss def continuous_weight_update(self, shared_storage: SharedStorage, alpha_zero_config: AlphaZeroConfig, checkpointer: CheckPointer or None, logger: Logger or None): wandb.init(project=alpha_zero_config.wandbd_project_name, name="Continuous Weight Update") alpha_zero_config.epochs = 1 alpha_zero_config.eval_epochs = 50 self.train() while shared_storage.train_length() < 200: time.sleep(5) params = shared_storage.get_stable_network_params() self.load_state_dict(params) for iter_ in range(alpha_zero_config.num_worker_iters): # print(iter_) # if not shared_storage.get_was_pitted(): # print("Waiting for pitting to finish") # time.sleep(5) # continue avg_iter_losses = self.train_net(shared_storage, alpha_zero_config) shared_storage.set_experimental_network_params(self.state_dict()) shared_storage.set_training_iter(iter_) shared_storage.add_combined_loss(avg_iter_losses[0]) # shared_storage.set_was_pitted(False) if iter_ % alpha_zero_config.eval_interval == 0 and iter_ != 0: self.eval_net(shared_storage, alpha_zero_config) checkpointer.save_checkpoint(self, self, self.optimizer, alpha_zero_config.lr, iter_, alpha_zero_config) print(f"Saved checkpoint at iteration {iter_}") class OriginalAlphaZeroBlock(th.nn.Module): def __init__(self, in_channels: int, num_channels: int): super(OriginalAlphaZeroBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, num_channels, 3, padding=1) self.bn1 = nn.BatchNorm2d(num_channels) self.conv2 = nn.Conv2d(num_channels, num_channels, 3, padding=1) self.bn2 = nn.BatchNorm2d(num_channels) def forward(self, x): x_skip = x x = F.relu(self.bn1(self.conv1(x))) x = self.bn2(self.conv2(x)) x += x_skip return F.relu(x) class ValueHead(th.nn.Module): def __init__(self, muzero: bool, linear_input_size: int, support_size: int, num_channels: int, num_layers: int, linear_hidden_size: int): super(ValueHead, self).__init__() self.conv = nn.Conv2d(num_channels, linear_hidden_size, 1) self.bn = nn.BatchNorm2d(linear_hidden_size) self.fc1 = nn.Linear(linear_input_size, 256) # self.fc = HeadLinear(256, 256, num_layers, linear_hidden_size) if muzero: self.fc2 = nn.Linear(256, 2 * support_size + 1) self.act = nn.LogSoftmax(dim=1) else: self.fc2 = nn.Linear(256, 1) self.act = nn.Tanh() def forward(self, x): x = F.relu(self.bn(self.conv(x))) x = x.reshape(x.size(0), -1) x = F.relu(self.fc1(x)) # x = F.relu(self.fc(x)) x = self.fc2(x) return self.act(x) class PolicyHead(th.nn.Module): def __init__(self, action_size: int, linear_input_size_policy: int, num_channels: int, num_layers: int, linear_hidden_size: int): super(PolicyHead, self).__init__() self.conv = nn.Conv2d(num_channels, linear_hidden_size, 1) self.bn = nn.BatchNorm2d(linear_hidden_size) self.fc1 = nn.Linear(linear_input_size_policy, 256) # self.fc = HeadLinear(256, 256, num_layers, linear_hidden_size) self.fc2 = nn.Linear(256, action_size) def forward(self, x): x = F.relu(self.bn(self.conv(x))) x = x.reshape(x.size(0), -1) x = F.relu(self.fc1(x)) # x = F.relu(self.fc(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) class StateHead(th.nn.Module): def __init__(self, linear_input_size: int, out_channels: int, latent_size: list[int], num_layers: int, linear_hidden_size: int): super(StateHead, self).__init__() self.conv = nn.Conv2d(out_channels, out_channels, 1) self.bn = nn.BatchNorm2d(out_channels) # self.fc = HeadLinear(linear_input_size, out_channels, num_layers, linear_hidden_size) self.fc3 = nn.Linear(linear_input_size, latent_size[0] * latent_size[1] * out_channels) def forward(self, x): x = F.relu(self.bn(self.conv(x))) x = x.reshape(x.size(0), -1) # x = F.relu(self.fc(x)) x = F.relu(self.fc3(x)) return x class HeadLinear(nn.Module): def __init__(self, in_channels: int, out_channels: int, num_layers: int, hidden_size: int): super(HeadLinear, self).__init__() self.fc1 = nn.Linear(in_channels, hidden_size) self.fc = nn.Sequential(*[nn.Linear(hidden_size, hidden_size) for _ in range(num_layers)]) self.fc2 = nn.Linear(hidden_size, out_channels) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc(x)) return self.fc2(x)
20,720
Python
.py
373
43.356568
120
0.604543
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,520
nnet.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/Network/__pycache__/nnet.cpython-311.pyc
§ *¤fZDãóî—ddlZddlZddlZddlZddlZddlmZddl mcm Z ddl Z ddl m Z ddlmZddlmZddlmZddlmZddlmZmZddlmZdd lmZGd „d eje¦«ZGd „d eje¦«ZGd„dejj¦«Z Gd„dejj¦«Z!Gd„dejj¦«Z"Gd„dejj¦«Z#Gd„dej¦«Z$dS)éN)Úmse_loss)ÚT)ÚGeneralAlphZeroNetwork)Ú HookManager)ÚHookAt)ÚAlphaZeroConfigÚConfig)Ú MemBuffer)Úinvert_scale_reward_valuec ó‡—eZdZ ddedededededepdf ˆfd„ Zdd efd „Ze j ¦«dd „¦«Z ddefd„Z dede fd„Zd d„Zd„Zeddedepdfd„¦«Zdedefd„Zde jfd„Zd„Zd„ZˆxZS)!Ú AlphaZeroNetNÚ in_channelsÚ num_channelsÚdropoutÚ action_sizeÚlinear_input_sizeÚ hook_managercó•—tt|¦« ¦«||_||_||_||_||_|�|n t¦«|_ tj ||dd¬¦«|_ tj |¦«|_tj ||dd¬¦«|_tj |¦«|_tj ||dd¬¦«|_tj |¦«|_tj ||d¦«|_tj |¦«|_tj|jd¦«|_tjd¦«|_tjdd¦«|_tjd¦«|_tj|¦«|_tjd|¦«|_tjdd¦«|_t?j |j!¦«dS)Néé©Úpaddingii)"Úsuperr Ú__init__rrÚ dropout_prrrrÚnnÚConv2dÚconv1Ú BatchNorm2dÚbn1Úconv2Úbn2Úconv3Úbn3Úconv4Úbn4ÚLinearÚfc1Ú BatchNorm1dÚfc1_bnÚfc2Úfc2_bnÚDropoutrÚpiÚvÚatexitÚregisterÚ clear_traces)ÚselfrrrrrrÚ __class__s €úS/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/AlphaZero/Network/nnet.pyrzAlphaZeroNet.__init__s¡ø€å �l˜DÑ!Ô!×*Ò*Ñ,Ô,Ğ,Ø&ˆÔØ(ˆÔØ ˆŒØ&ˆÔØ!2ˆÔØ,8Ğ,D˜L˜LÍ+É-Ì-ˆÔå”Y˜{¨L¸!ÀQĞGÑGÔGˆŒ İ”> ,Ñ/Ô/ˆŒİ”Y˜|¨\¸1ÀaĞHÑHÔHˆŒ İ”> ,Ñ/Ô/ˆŒİ”Y˜|¨\¸1ÀaĞHÑHÔHˆŒ İ”> ,Ñ/Ô/ˆŒİ”Y˜|¨\¸1Ñ=Ô=ˆŒ İ”> ,Ñ/Ô/ˆŒõ”9˜TÔ3°TÑ:Ô:ˆŒİ”n TÑ*Ô*ˆŒ İ”9˜T 3Ñ'Ô'ˆŒİ”n SÑ)Ô)ˆŒ å”z 'Ñ*Ô*ˆŒ õ”)˜C Ñ-Ô-ˆŒİ”˜3 Ñ"Ô"ˆŒİŒ˜Ô)Ñ*Ô*Ğ*Ğ*Ğ*óTÚmuzerocó6—|s| d¦«}tj| | |¦«¦«¦«}tj| | |¦«¦«¦«}tj| | |¦«¦«¦«}tj|  |  |¦«¦«¦«}|  |  d¦«d¦«}tj|  | |¦«¦«¦«}| |¦«}tj| | |¦«¦«¦«}| |¦«}tj| |¦«d¬¦«}tj| |¦«¦«}||fS)Nrréÿÿÿÿ©Údim)Ú unsqueezeÚFÚrelur rr"r!r$r#r&r%ÚreshapeÚsizer*r(rr,r+Ú log_softmaxr.Útanhr/©r3Úxr7r.r/s r5ÚforwardzAlphaZeroNet.forward7sr€Øğ Ø— ’ ˜A‘”ˆAİ ŒF�4—8’8˜DŸJšJ q™MœMÑ*Ô*Ñ +Ô +ˆİ ŒF�4—8’8˜DŸJšJ q™MœMÑ*Ô*Ñ +Ô +ˆİ ŒF�4—8’8˜DŸJšJ q™MœMÑ*Ô*Ñ +Ô +ˆİ ŒF�4—8’8˜DŸJšJ q™MœMÑ*Ô*Ñ +Ô +ˆà �IŠI�a—f’f˜Q‘i”i Ñ $Ô $ˆå ŒF�4—;’;˜tŸxšx¨™{œ{Ñ+Ô+Ñ ,Ô ,ˆØ �LŠL˜‰OŒOˆå ŒF�4—;’;˜tŸxšx¨™{œ{Ñ+Ô+Ñ ,Ô ,ˆØ �LŠL˜‰OŒOˆå Œ]˜4Ÿ7š7 1™:œ:¨1Ğ -Ñ -Ô -ˆİ ŒF�4—6’6˜!‘9”9Ñ Ô ˆà�1ˆuˆ r6có>—| ||¬¦«\}}tj|¦«}| ¦« ¦« ¦«| ¦« ¦« ¦«fS©N©r7©rEÚthÚexpÚdetachÚcpuÚnumpyrCs r5ÚpredictzAlphaZeroNet.predictLóo€à— ’ ˜Q v� Ñ.Ô.‰ˆˆAİ ŒV�B‰ZŒZˆØ�yŠy‰{Œ{�ŠÑ Ô ×&Ò&Ñ(Ô(¨!¯(ª(©*¬*¯.ª.Ñ*:Ô*:×*@Ò*@Ñ*BÔ*BĞBĞBr6é Ú board_sizec ó�—tj |tjdd||¦« ¦«¦«S)Nré)rJÚjitÚtraceÚrandÚcuda)r3rRs r5Úto_traced_scriptzAlphaZeroNet.to_traced_scriptRs4€İŒv�|Š|˜D¥"¤'¨!¨S°*¸jÑ"IÔ"I×"NÒ"NÑ"PÔ"PÑQÔQĞQr6Úreturncó`—| |¬¦«}d}| |¦«|S)N)rRz traced.pt)rYÚsave)r3rRÚtracedÚpaths r5rVzAlphaZeroNet.traceUs4€Ø×&Ò&°*Ğ&Ñ=Ô=ˆØˆØ� Š �DÑÔĞØˆ r6có~—ddlm}tj|¦«›d�¦«D]}tj|¦«ŒdS)Nr)Úfind_project_rootz/Checkpoints/Traces/*.pt)Úmu_alpha_zero.General.utilsr`ÚglobÚosÚremove)r3r`Ú trace_files r5r2zAlphaZeroNet.clear_traces[s]€ØAĞAĞAĞAĞAĞAİœ)Ğ'8Ğ'8Ñ':Ô':Ğ$TĞ$TĞ$TÑUÔUğ "ğ "ˆJİ ŒI�jÑ !Ô !Ğ !Ğ !ğ "ğ "r6cóZ—t|j|j|j|j|j¦«S©N)r rrrrr©r3s r5Úmake_fresh_instancez AlphaZeroNet.make_fresh_instance`s.€İ˜DÔ,¨dÔ.?ÀÄĞQUÔQaØ Ô2ñ4ô4ğ 4r6Úconfigcó^—t|j|j|j|j|j|¬¦«S)N)r)r Únum_net_in_channelsÚnum_net_channelsÚ net_dropoutÚnet_action_sizeÚaz_net_linear_input_size)rjrs r5Úmake_from_configzAlphaZeroNet.make_from_configds;€å˜FÔ6¸Ô8OĞQWÔQcØ"Ô2°FÔ4SĞbnğpñpôpğ pr6Ú memory_bufferÚalpha_zero_configc ó”—ddlm}tjtj ¦«rdnd¦«}g}tj | ¦«|j ¬¦«}|  ¦«t|j ¦«D�]Ñ}||j ¦«D�]¼}t|¦«dkrŒt|�\} } } tjt#j| ¦«tj|¬¦«} tjt#j| ¦«tj|¬¦«} tj| tj|¬¦« d¦«} | | d¬ ¦«\} } || ¦«}t-| | ¦«| | | ||¦«z}| | ¦«¦«| ¦«| ¦«| ¦«|j ||jj tBtDj#|| ¦«|f¬ ¦«�Œ¾�ŒÓ|j ||jj tBtDj$|f¬ ¦«tK|¦«t|¦«z |fS) Nr©Úmask_invalid_actions_batchrXrM)Úlrr©ÚdtypeÚdeviceFrH©Úargs)&Úmu_alpha_zero.AlphaZero.utilsrvrJrzrXÚ is_availableÚoptimÚAdamÚ parametersrwÚshuffleÚrangeÚepochsÚ batch_sizeÚlenÚzipÚtensorÚnpÚarrayÚfloat32r<rErÚpi_lossÚappendÚitemÚ zero_gradÚbackwardÚsteprÚprocess_hook_executesÚ train_netÚ__name__Ú__file__rÚMIDDLEÚTAILÚsum)r3rrrsrvrzÚlossesÚ optimizerÚepochÚexperience_batchÚstatesr.r/Úpi_predÚv_predÚmasksÚlosss r5r“zAlphaZeroNet.train_netisƒ€ØLĞLĞLĞLĞLĞLİ”¥R¤W×%9Ò%9Ñ%;Ô%;ĞF˜6˜6ÀÑGÔGˆØˆİ”H—M’M $§/¢/Ñ"3Ô"3Ğ8IÔ8L�MÑMÔMˆ Ø×ÒÑÔĞİĞ,Ô3Ñ4Ô4ğ eñ eˆEØ$1 MĞ2CÔ2NÑ$OÔ$Oğ eñ eĞ İĞ'Ñ(Ô(¨AÒ-Ğ-Øİ #Ğ%5Ğ 6‘ �˜˜Aİœ¥2¤8¨FÑ#3Ô#3½2¼:ÈfĞUÑUÔU�İ”Y�rœx¨™|œ|µ2´:ÀfĞMÑMÔM�İ”I˜a¥r¤z¸&ĞAÑAÔA×KÒKÈAÑNÔN�Ø"&§,¢,¨v¸e ,Ñ"DÔ"D‘�˜Ø2Ğ2°6Ñ:Ô:�İ ¨Ñ*Ô*¨T¯\ª\¸'À2ÀuÈfÑ-UÔ-UÑU�Ø— ’ ˜dŸiši™kœkÑ*Ô*Ğ*ğ×#Ò#Ñ%Ô%Ğ%Ø— ’ ‘”�Ø—’Ñ Ô Ğ ØÔ!×7Ò7¸¸d¼nÔ>UÕW_ÕagÔanØ>NĞPT×PYÒPYÑP[ÔP[Ğ]bĞ=cğ8ñeôeğeñeñ! eğ& Ô×/Ò/°°d´nÔ6MÍxÕY_ÔYdĞlrĞktĞ/ÑuÔuĞuİ�6‰{Œ{�S ™[œ[Ñ(¨&Ğ0Ğ0r6rzcóÌ—| |j¦« |¦«}||z}tj||z¦« | ¦«dz S©Nr©r?ÚshapeÚtorJr˜r@©r3Úy_hatÚyr rzÚ masked_y_hats r5rŒzAlphaZeroNet.pi_loss†óU€Ø— ’ ˜eœkÑ*Ô*×-Ò-¨fÑ5Ô5ˆØ˜u‘}ˆ İ”�q˜<Ñ'Ñ(Ô(Ğ(¨1¯6ª6©8¬8°A¬;Ñ6Ğ6r6có\—| ¦«D]}| ¦«ŒdSrg)r�Ú share_memory_)r3Úparams r5Úto_shared_memoryzAlphaZeroNet.to_shared_memory‹s:€Ø—_’_Ñ&Ô&ğ "ğ "ˆEØ × Ò Ñ !Ô !Ğ !Ğ !ğ "ğ "r6cór—|j ||jjtt j¦«dSrg)rr’Úrun_at_training_endr”r•rÚALLrhs r5r±z AlphaZeroNet.run_at_training_end�s0€Ø Ô×/Ò/°°dÔ6NÔ6WÕYaÕciÔcmÑnÔnĞnĞnĞnr6rg©T)rQ)rZN)r”Ú __module__Ú __qualname__ÚintÚfloatrrÚboolrErJÚno_gradrOrYÚstrrVr2riÚ staticmethodrrqr r“rzrŒr¯r±Ú __classcell__©r4s@r5r r sÒø€€€€€à59ğ+ğ+ Cğ+°sğ+ÀUğ+ĞY\ğ+Ğqtğ+Ø*Ğ2¨dğ+ğ+ğ+ğ+ğ+ğ+ğBğ ğğğğğ*€R„Z�\„\ğCğCğCñ„\ğCğ RğR¨3ğRğRğRğRğ ğ¨ğğğğğ "ğ"ğ"ğ"ğ 4ğ4ğ4ğğpğp ğpÀ Ğ@SÈtğpğpğpñ„\ğpğ1 yğ1À_ğ1ğ1ğ1ğ1ğ:7¨r¬yğ7ğ7ğ7ğ7ğ "ğ"ğ"ğoğoğoğoğoğoğor6r cóT‡—eZdZddgddddfdedededed eed ed ed ed ededeedepddededefˆfd„ Zd$dedefd„Z e j ¦«d%d„¦«Z de j fd„Zd„Zed&dedddepdfd„¦«Zded eeeeffd!„Zded dfd"„Zd#„ZˆxZS)'ÚOriginalAlphaZerNetworkéNéFrrrrrÚ support_sizeÚstate_linear_layersÚpi_linear_layersÚv_linear_layersÚlinear_head_hidden_sizeÚ latent_sizerÚ num_blocksr7Ú is_dynamicsc󕇗tt|¦« ¦«||_‰|_||_||_||_||_| |_ ||_ | |_ ||_ ||_ ||_| |_| |_d|_| �| n t%¦«|_t)j|‰dd¬¦«|_t)j‰¦«|_t)j|¦«|_t)jˆfd„t9| ¦«D¦«¦«|_t=||d|‰| | ¦«|_|r tA|d‰| || ¦«|_!dStE||d‰|| ¦«|_!dS)Nrrrcó0•—g|]}t‰‰¦«‘ŒS©)ÚOriginalAlphaZeroBlock)Ú.0Ú_rs €r5ú <listcomp>z4OriginalAlphaZerNetwork.__init__.<locals>.<listcomp>°s%ø€Ğ$sĞ$sĞ$sĞ\]Õ%;¸LÈ,Ñ%WÔ%WĞ$sĞ$sĞ$sr6ré)#rr¿rrrrrrrÂrÈr7rÇrÉrÃrÄrÅrÆršrrrrrrr r-rÚ ModuleListrƒÚblocksÚ ValueHeadÚ value_headÚ StateHeadÚ policy_headÚ PolicyHead)r3rrrrrrÂrÃrÄrÅrÆrÇrrÈr7rÉr4s ` €r5rz OriginalAlphaZerNetwork.__init__•s¡øø€õ Õ% tÑ,Ô,×5Ò5Ñ7Ô7Ğ7Ø&ˆÔØ(ˆÔØ ˆŒØ&ˆÔØ!2ˆÔØ(ˆÔØ$ˆŒØˆŒ Ø&ˆÔØ&ˆÔØ#6ˆÔ Ø 0ˆÔØ.ˆÔØ'>ˆÔ$؈ŒØ,8Ğ,D˜L˜LÍ+É-Ì-ˆÔå”Y˜{¨L¸!ÀQĞGÑGÔGˆŒ İ”> ,Ñ/Ô/ˆŒİ”z 'Ñ*Ô*ˆŒ İ”mĞ$sĞ$sĞ$sĞ$sÕafĞgqÑarÔarĞ$sÑ$sÔ$sÑtÔtˆŒ İ# FĞ,=¸aÔ,@À,ĞP\Ğ^mØ$;ñ=ô=ˆŒà ğ Cİ(Ğ):¸1Ô)=¸|È[ĞZmØ)@ñ Bô BˆDÔ Ğ Ğ õ *¨+Ğ7HÈÔ7KÈ\Ğ[kØ*Añ Cô CˆDÔ Ğ Ğ r6Úreturn_supportcó�—|s| d¦«}tj| | |¦«¦«¦«}|jD] }||¦«}Œ| |¦«}| |¦«}| |¦«}|sœtj |¦«}tj |j |j dzdtj |j¬¦« d¦«}tj||zd¬¦«}t!|¦«}|| d¦«fS||fS)Nrrxrr:)r<r=r>r rrÓrrÕr×rJrKÚarangerÂr‹rzr˜r ) r3rDr7rÙÚblockÚ val_h_outputÚ pol_h_outputÚ support_rangeÚoutputs r5rEzOriginalAlphaZerNetwork.forwardºs6€Øğ Ø— ’ ˜A‘”ˆAİ ŒF�4—8’8˜DŸJšJ q™MœMÑ*Ô*Ñ +Ô +ˆØ”[ğ ğ ˆEØ��a‘”ˆAˆAØ �LŠL˜‰OŒOˆØ—’ qÑ)Ô)ˆ Ø×'Ò'¨Ñ*Ô*ˆ Øğ 5åœ6 ,Ñ/Ô/ˆLİœI tÔ'8Ğ&8¸$Ô:KÈaÑ:OĞQRÕZ\ÔZdØ-.¬Xğ7ñ7ô7ß7@²yÀ±|´|ğ å”V˜L¨=Ñ8¸aĞ@Ñ@Ô@ˆFİ.¨vÑ6Ô6ˆFØ ×!1Ò!1°!Ñ!4Ô!4Ğ4Ğ 4ؘ\Ğ)Ğ)r6Tcó>—| ||¬¦«\}}tj|¦«}| ¦« ¦« ¦«| ¦« ¦« ¦«fSrGrIrCs r5rOzOriginalAlphaZerNetwork.predictÍrPr6rzcóÌ—| |j¦« |¦«}||z}tj||z¦« | ¦«dz Sr£r¤r§s r5rŒzOriginalAlphaZerNetwork.pi_lossÓr«r6cóÔ—t|j|j|j|j|j|j|j|j|j |j |j |j |j |j|j¬¦«S)N)rrÈr7rÉ)r¿rrrrrrÂrÃrÄrÅrÆrÇrrÈr7rÉrhs r5riz+OriginalAlphaZerNetwork.make_fresh_instanceØsn€İ& tÔ'7¸Ô9JÈDÌNĞ\`Ô\lØ'+Ô'=¸tÔ?PØ'+Ô'?ÀÔAVĞX\ÔXlØ'+Ô'CØ'+Ô'7Ø48Ô4EØ26´/È$Ì+ĞcgÔcsğ uñuôuğ ur6rjÚ game_managercó¾—t|j|j|j|j|j||j|j|j|j |j |j |j |j ¬¦«S)N) rrÃrÄrÅrÆrÈr7rÂrÇ)r¿rlrmrnrorprÃrÄrÅrÆrÈr7rÂÚnet_latent_size)Úclsrjrärs r5rqz(OriginalAlphaZerNetwork.make_from_configási€å& vÔ'AÀ6ÔCZĞ\bÔ\nØ'-Ô'=¸vÔ?^Ø4@Ø;AÔ;UØ8>Ô8OØ7=Ô7MØ?EÔ?]Ø28Ô2CÈFÌMØ4:Ô4GĞU[ÔUkğmñmômğ mr6Úmuzero_alphazero_configrZc ó>—g}|j€Ctj | ¦«|j|j¬¦«|_| ¦«t|j ¦«D�]N}||j ¦«D�]9}t|¦«dkrŒ|  ||¦«\}}}|  | ¦«¦«tj| ¦«| ¦«| ¦«dœ¦«|j ¦«| ¦«|j ¦«|j ||jjt0t2j|| ¦«|f¬¦«�Œ;�ŒP|j ||jjt0t2j|f¬¦«t9|¦«t|¦«z |fS)N©rwÚ weight_decayr)Ú combined_lossÚloss_vÚloss_pir{)ršrJrr€r�rwÚl2r‚rƒr„r…r†Úcalculate_lossr�r�ÚwandbÚlogr�r�r‘rr’r“r”r•rr–r—r˜) r3rrrèr™r›rœr¡Úv_lossrŒs r5r“z!OriginalAlphaZerNetwork.train_netísõ€ØˆØ Œ>Ğ !İœXŸ]š]¨4¯?ª?Ñ+<Ô+<ĞAXÔA[Ø8OÔ8Rğ+ñTôTˆDŒNà×ÒÑÔĞİĞ2Ô9Ñ:Ô:ğ eñ eˆEØ$1 MĞ2IÔ2TÑ$UÔ$Uğ eñ eĞ İĞ'Ñ(Ô(¨AÒ-Ğ-ØØ(,×(;Ò(;Ğ<LĞNeÑ(fÔ(fÑ%��f˜gØ— ’ ˜dŸiši™kœkÑ*Ô*Ğ*İ” ¨D¯IªI©K¬KÀ6Ç;Â;Á=Ä=Ğ]d×]iÒ]iÑ]kÔ]kĞlĞlÑmÔmĞmØ”×(Ò(Ñ*Ô*Ğ*Ø— ’ ‘”�Ø”×#Ò#Ñ%Ô%Ğ%ØÔ!×7Ò7¸¸d¼nÔ>UÕW_ÕagÔanØ>NĞPT×PYÒPYÑP[ÔP[Ğ]bĞ=cğ8ñeôeğeñeñ eğ Ô×/Ò/°°d´nÔ6MÍxÕY_ÔYdĞlrĞktĞ/ÑuÔuĞuİ�6‰{Œ{�S ™[œ[Ñ(¨&Ğ0Ğ0r6có—|j€Ctj | ¦«|j|j¬¦«|_| d¬¦«t|j ¦«D]“}||j d¬¦«D]~}t|¦«dkrŒ|  ||¦«\}}}tj| ¦«| ¦«| ¦«dœ¦«ŒŒ”dS)NrêT)Úis_evalr)Úeval_combined_lossÚ eval_loss_vÚ eval_loss_pi)ršrJrr€r�rwrïr‚rƒÚ eval_epochsr…r†rğrñròr�)r3rrrèr›rœr¡rórŒs r5Úeval_netz OriginalAlphaZerNetwork.eval_nets(€Ø Œ>Ğ !İœXŸ]š]¨4¯?ª?Ñ+<Ô+<ĞAXÔA[Ø8OÔ8Rğ+ñTôTˆDŒNà×Ò dĞÑ+Ô+Ğ+İĞ2Ô>Ñ?Ô?ğ wğ wˆEØ$1 MĞ2IÔ2TĞ^bĞ$cÑ$cÔ$cğ wğ wĞ İĞ'Ñ(Ô(¨AÒ-Ğ-ØØ(,×(;Ò(;Ğ<LĞNeÑ(fÔ(fÑ%��f˜gİ” Ø+/¯9ª9©;¬;ÀvÇ{Â{Á}Ä}Ğfm×frÒfrÑftÔftĞuĞuñwôwğwğwğ  wğ wğ wr6có|—ddlm}tjtj ¦«rdnd¦«}t |�\}}}tjtj |¦«tj |¬¦«}tjtj |¦«tj |¬¦«}tj|tj |¬¦«  d¦«}|  ||j ¬¦«\}} ||¦«} t| |¦«} | ||| |¦«} | | z} | | | fS)NrrurXrMrxrrH)r}rvrJrzrXr~r‡rˆr‰rŠr‹r<rEr7rrŒ)r3rœrèrvrzr�r.r/r�rŸr rórŒr¡s r5rğz&OriginalAlphaZerNetwork.calculate_losss€ØLĞLĞLĞLĞLĞLİ”¥R¤W×%9Ò%9Ñ%;Ô%;ĞF˜6˜6ÀÑGÔGˆİĞ-Ğ.‰ ˆ��Aİ”�2œ8 FÑ+Ô+µ2´:ÀfĞMÑMÔMˆİ ŒY•r”x ‘|”|­2¬:¸fĞ EÑ EÔ Eˆİ ŒI�a�rœz°&Ğ 9Ñ 9Ô 9× CÒ CÀAÑ FÔ FˆØŸ,š, vĞ6MÔ6T˜,ÑUÔU‰ˆ�Ø*Ğ*¨6Ñ2Ô2ˆİ˜& !Ñ$Ô$ˆØ—,’,˜w¨¨E°6Ñ:Ô:ˆØ˜ÑˆØ�V˜WĞ$Ğ$r6)FFr³rg)r”r´rµr¶r·Úlistrr¸rrErJr¹rOrzrŒriÚ classmethodr rqÚtupler“rúrğr¼r½s@r5r¿r¿“s3ø€€€€€ğ ,-¨a¨&Ø59ÈQĞ_dØ%*ğ #Cğ#C Cğ#C°sğ#CÀUğ#CĞY\ğ#CØ$(¨¤Iğ#CØ=@ğ#Cà&)ğ#Cà=@ğ#CàSVğ#Càqtğ#Cğ# 3œiğ#Cğ +Ğ2¨dğ #CğHKğ #CğY]ğ #Cğ #ğ #Cğ#Cğ#Cğ#Cğ#Cğ#CğJ*ğ* ğ*¸tğ*ğ*ğ*ğ*ğ&€R„Z�\„\ğCğCğCñ„\ğCğ 7¨r¬yğ7ğ7ğ7ğ7ğ uğuğuğğ mğ m fğ m¸Dğ mĞP[ĞPcĞ_cğ mğ mğ mñ„[ğ mğ1Àğ1È5ĞQVĞX\Ğ]bÔXcĞQcÔKdğ1ğ1ğ1ğ1ğ, w¸vğ wÈ$ğ wğ wğ wğ wğ %ğ %ğ %ğ %ğ %ğ %ğ %r6r¿có.‡—eZdZdedefˆfd„ Zd„ZˆxZS)rÍrrcó.•—tt|¦« ¦«tj||dd¬¦«|_tj|¦«|_tj||dd¬¦«|_tj|¦«|_ dS)Nrrr) rrÍrrrrrr r!r")r3rrr4s €r5rzOriginalAlphaZeroBlock.__init__ szø€İ Õ$ dÑ+Ô+×4Ò4Ñ6Ô6Ğ6İ”Y˜{¨L¸!ÀQĞGÑGÔGˆŒ İ”> ,Ñ/Ô/ˆŒİ”Y˜|¨\¸1ÀaĞHÑHÔHˆŒ İ”> ,Ñ/Ô/ˆŒˆˆr6cóü—|}tj| | |¦«¦«¦«}| | |¦«¦«}||z }tj|¦«Srg)r=r>r rr"r!)r3rDÚx_skips r5rEzOriginalAlphaZeroBlock.forward's^€Øˆİ ŒF�4—8’8˜DŸJšJ q™MœMÑ*Ô*Ñ +Ô +ˆØ �HŠH�T—Z’Z ‘]”]Ñ #Ô #ˆØ ˆV‰ ˆİŒv�a‰yŒyĞr6©r”r´rµr¶rrEr¼r½s@r5rÍrÍsZø€€€€€ğ0 Cğ0°sğ0ğ0ğ0ğ0ğ0ğ0ğğğğğğğr6rÍc ó>‡—eZdZdedededededef ˆfd„ Zd„ZˆxZS) rÔr7rrÂrÚ num_layersÚlinear_hidden_sizecó•—tt|¦« ¦«tj|dd¦«|_tjd¦«|_tj|d¦«|_ tdd||¦«|_ |r<tjdd|zdz¦«|_ tj d¬¦«|_dStjdd¦«|_ tj¦«|_dS)NrrTrÑr:)rrÔrrrÚconvrÚbnr'r(Ú HeadLinearÚfcr+Ú LogSoftmaxÚactÚTanh)r3r7rrÂrrrr4s €r5rzValueHead.__init__0sĞø€å �i˜ÑÔ×'Ò'Ñ)Ô)Ğ)İ”I˜l¨A¨qÑ1Ô1ˆŒ İ”. Ñ#Ô#ˆŒİ”9Ğ.°Ñ4Ô4ˆŒİ˜S # zĞ3EÑFÔFˆŒØ ğ !İ”y  a¨,Ñ&6¸Ñ&:Ñ;Ô;ˆDŒHİ”}¨Ğ+Ñ+Ô+ˆDŒHˆHˆHå”y  aÑ(Ô(ˆDŒHİ”w‘y”yˆDŒHˆHˆHr6có¸—tj| | |¦«¦«¦«}| | d¦«d¦«}tj| |¦«¦«}tj| |¦«¦«}| |¦«}|  |¦«S©Nrr9) r=r>r rr?r@r(r r+r ©r3rDs r5rEzValueHead.forward>s•€İ ŒF�4—7’7˜4Ÿ9š9 Q™<œ<Ñ(Ô(Ñ )Ô )ˆØ �IŠI�a—f’f˜Q‘i”i Ñ $Ô $ˆİ ŒF�4—8’8˜A‘;”;Ñ Ô ˆİ ŒF�4—7’7˜1‘:”:Ñ Ô ˆØ �HŠH�Q‰KŒKˆØ�xŠx˜‰{Œ{Ğr6)r”r´rµr¸r¶rrEr¼r½s@r5rÔrÔ/syø€€€€€ğ !˜tğ !¸ğ !È3ğ !Ğ^ağ !Ğorğ !Ø%(ğ !ğ !ğ !ğ !ğ !ğ !ğğğğğğğr6rÔc ó:‡—eZdZdededededef ˆfd„ Zd„ZˆxZS)rØrÚlinear_input_size_policyrrrcóT•—tt|¦« ¦«tj|dd¦«|_tjd¦«|_tj|d¦«|_ tdd||¦«|_ tjd|¦«|_ dS)NrÑrrT) rrØrrrrrr r'r(r r r+)r3rrrrrr4s €r5rzPolicyHead.__init__Hs†ø€å �j˜$ÑÔ×(Ò(Ñ*Ô*Ğ*İ”I˜l¨A¨qÑ1Ô1ˆŒ İ”. Ñ#Ô#ˆŒİ”9Ğ5°sÑ;Ô;ˆŒİ˜S # zĞ3EÑFÔFˆŒİ”9˜S +Ñ.Ô.ˆŒˆˆr6cóº—tj| | |¦«¦«¦«}| | d¦«d¦«}tj| |¦«¦«}tj| |¦«¦«}| |¦«}tj |d¬¦«S)Nrr9rr:) r=r>r rr?r@r(r r+rArs r5rEzPolicyHead.forwardQsš€İ ŒF�4—7’7˜4Ÿ9š9 Q™<œ<Ñ(Ô(Ñ )Ô )ˆØ �IŠI�a—f’f˜Q‘i”i Ñ $Ô $ˆİ ŒF�4—8’8˜A‘;”;Ñ Ô ˆİ ŒF�4—7’7˜1‘:”:Ñ Ô ˆØ �HŠH�Q‰KŒKˆİŒ}˜Q AĞ&Ñ&Ô&Ğ&r6rr½s@r5rØrØGsrø€€€€€ğ/ Cğ/À3ğ/ĞVYğ/Ğgjğ/Ø%(ğ/ğ/ğ/ğ/ğ/ğ/ğ'ğ'ğ'ğ'ğ'ğ'ğ'r6rØc óF‡—eZdZdededeededef ˆfd„ Zd„ZˆxZS)rÖrÚ out_channelsrÇrrcóD•—tt|¦« ¦«tj|dd¦«|_tjd¦«|_t||||¦«|_ tj ||d|dz|z¦«|_ dS)Nérr) rrÖrrrrrr r r r'Úfc3)r3rrrÇrrr4s €r5rzStateHead.__init__[s…ø€å �i˜ÑÔ×'Ò'Ñ)Ô)Ğ)İ”I˜l¨A¨qÑ1Ô1ˆŒ İ”. Ñ#Ô#ˆŒİĞ.° ¸jĞJ\Ñ]Ô]ˆŒİ”9˜\¨;°q¬>¸KȼNÑ+JÈ\Ñ+YÑZÔZˆŒˆˆr6cóD—tj| | |¦«¦«¦«}| | d¦«d¦«}tj| |¦«¦«}| |¦«}|Sr)r=r>r rr?r@r rrs r5rEzStateHead.forwardcsq€İ ŒF�4—7’7˜4Ÿ9š9 Q™<œ<Ñ(Ô(Ñ )Ô )ˆØ �IŠI�a—f’f˜Q‘i”i Ñ $Ô $ˆİ ŒF�4—7’7˜1‘:”:Ñ Ô ˆØ �HŠH�Q‰KŒKˆØˆr6)r”r´rµr¶rürrEr¼r½s@r5rÖrÖZs�ø€€€€€ğ[¨#ğ[¸Sğ[ÈtĞTWÌyğ[Ğfiğ[Ø%(ğ[ğ[ğ[ğ[ğ[ğ[ğğğğğğğr6rÖcó6‡—eZdZdedededefˆfd„ Zd„ZˆxZS)r rrrÚ hidden_sizec󕇗tt|¦« ¦«tj|‰¦«|_tjˆfd„t|¦«D¦«�|_tj‰|¦«|_ dS)Ncó:•—g|]}tj‰‰¦«‘ŒSrÌ)rr')rÎrÏrs €r5rĞz'HeadLinear.__init__.<locals>.<listcomp>os%ø€Ğ!aĞ!aĞ!aÈ!¥"¤)¨K¸Ñ"EÔ"EĞ!aĞ!aĞ!ar6) rr rrr'r(Ú Sequentialrƒr r+)r3rrrrr4s `€r5rzHeadLinear.__init__lsvøø€İ �j˜$ÑÔ×(Ò(Ñ*Ô*Ğ*İ”9˜[¨+Ñ6Ô6ˆŒİ”-Ğ!aĞ!aĞ!aĞ!aÍuĞU_ÑO`ÔO`Ğ!aÑ!aÔ!aĞbˆŒİ”9˜[¨,Ñ7Ô7ˆŒˆˆr6cóÈ—tj| |¦«¦«}tj| |¦«¦«}| |¦«Srg)r=r>r(r r+rs r5rEzHeadLinear.forwardrsD€İ ŒF�4—8’8˜A‘;”;Ñ Ô ˆİ ŒF�4—7’7˜1‘:”:Ñ Ô ˆØ�xŠx˜‰{Œ{Ğr6rr½s@r5r r ksiø€€€€€ğ8 Cğ8°sğ8Èğ8ĞZ]ğ8ğ8ğ8ğ8ğ8ğ8ğ ğğğğğğr6r )%r0rbrcrNr‰ÚtorchrJÚtorch.nnrÚtorch.nn.functionalÚ functionalr=rñrÚtorch.nn.modules.modulerÚmu_alpha_zero.General.networkrÚ mu_alpha_zero.Hooks.hook_managerrÚmu_alpha_zero.Hooks.hook_pointrÚmu_alpha_zero.configrr Úmu_alpha_zero.mem_bufferr Úmu_alpha_zero.MuZero.utilsr ÚModuler r¿rÍrÔrØrÖr rÌr6r5ú<module>r.sjğØ € € € Ø € € € Ø € € € àĞĞĞØĞĞĞØĞĞĞĞĞØĞĞĞĞĞĞĞĞØ € € € Ø(Ğ(Ğ(Ğ(Ğ(Ğ(Ø%Ğ%Ğ%Ğ%Ğ%Ğ%à@Ğ@Ğ@Ğ@Ğ@Ğ@Ø8Ğ8Ğ8Ğ8Ğ8Ğ8Ø1Ğ1Ğ1Ğ1Ğ1Ğ1Ø8Ğ8Ğ8Ğ8Ğ8Ğ8Ğ8Ğ8Ø.Ğ.Ğ.Ğ.Ğ.Ğ.Ø@Ğ@Ğ@Ğ@Ğ@Ğ@ğ{oğ{oğ{oğ{oğ{o�2”9Ğ4ñ{oô{oğ{oğ|I%ğI%ğI%ğI%ğI%˜bœiĞ)?ñI%ôI%ğI%ğX ğ ğ ğ ğ ˜RœUœ\ñ ô ğ ğ ğğğğ�”” ñôğğ0'ğ'ğ'ğ'ğ'�””ñ'ô'ğ'ğ&ğğğğ�”” ñôğğ" ğ ğ ğ ğ �”ñ ô ğ ğ ğ r6
31,519
Python
.py
95
330.715789
1,929
0.273636
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,521
trainer.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/Network/__pycache__/trainer.cpython-311.pyc
§ °#Ûeu>ãóJ—ddlmZddlmZedd¬¦«ddlmZddlmZddlZ dd l m Z dd l m Z dd l mZdd lmZmZmZdd lmZddlmZddlmZddlmZmZddlmZddlmZddl m!Z!ddl"m#Z#ddl$m%Z%ddl&m'Z'ddl(m)Z)ddl*m+Z+ddl,m-Z-Gd„d¦«Z.dS)é)Úset_start_method)Únot_zeroÚspawnT)Úforce)Údeepcopy)ÚTypeN)Ú SummaryWriter)Útqdm)ÚArena)Ú RandomPlayerÚPlayerÚ NetPlayer)Ú McSearchTree)Ú AlphaZeroNet)Ú CheckPointer)ÚLoggingMessageTemplatesÚLogger)Úbuild_all_from_config)Ú GeneralArena)Ú AlphaZeroGame)ÚGeneralMemoryBuffer)ÚGeneralNetwork)Ú SearchTree)Ú JavaManager)ÚConfig)Ú MemBuffercó"—eZdZ d0dededejdedede d e d e d e d ej jpdd epddeddfd„Ze d1deedee dee dededed e de d epdfd„¦«Ze d2dededed e d e d e de d epddepddepdfd„¦«Ze d1dededed e d e de depdfd„¦«Zdefd„Zdedeefd„Zdedeefd „Zd!„Zd"„Z d3d#„Z!d$„Z"d%„Z#d&„Z$d'ed(efd)„Z%d'ed(ed*efd+„Z&d,ed-ed.e'd*efd/„Z(dS)4ÚTrainerTNÚnetworkÚgameÚ optimizerÚmemoryÚmuzero_alphazero_configÚ checkpointerÚ search_treeÚ net_playerÚheadlessÚopponent_network_overrideÚarena_overrideÚ java_managerÚreturncóΗ||_| |_| |_||_||_||_||_| €|j ¦«n| |_||_ ||_ | |_ td¦«|_ | € t|j|j|j¦«n| |_||_t#|jj|jj¬¦«|_g|_g|_dS)NzLogs/AlphaZero)ÚlogdirÚtoken)r#Údevicer'Ú game_managerÚmctsr&rÚmake_fresh_instanceÚopponent_networkr!r"r*r Úsummary_writerr Úarenar$rÚlog_dirÚpushbullet_tokenÚloggerÚarena_win_frequenciesÚlosses)Úselfrr r!r"r#r$r%r&r/r'r(r)r*s úV/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/AlphaZero/Network/trainer.pyÚ__init__zTrainer.__init__"sû€ğ(?ˆÔ$؈Œ Ø ˆŒ Ø ˆÔ؈Œ Ø$ˆŒØˆŒ ØF_ĞFg ¤ × @Ò @Ñ BÔ BĞ BğnGˆÔØ"ˆŒØˆŒ Ø(ˆÔİ+Ğ,<Ñ=Ô=ˆÔà+9Ğ+Aõ˜4Ô,¨dÔ.JØœ;ñ(ô(ğ(ØGUğ Œ à(ˆÔİ DÔ$@Ô$HØ#'Ô#?Ô#PğRñRôRˆŒ à%'ˆÔ"؈Œ ˆ ˆ óFÚ net_classÚ tree_classÚnet_player_classÚcheckpoint_pathÚcheckpoint_dirÚcheckpointer_verbosec óö—tjtj ¦«rdnd¦«} t ||¬¦«} |  |¦«\} } }}}}t j|¦«}|| ¦«|¦«}| dj d|_ |  |¦«}| ¦«}tj   | ¦«|¬¦«}|| ¦«fi||dœ¤�}| | ¦«| |¦«| | ¦«||||||| ||| || ¬¦ « S) NÚcudaÚcpu©Úverbosez fc1.weighté)Úlr©rÚmonte_carlo_tree_search)r'r))Úthr/rFÚ is_availablerÚload_checkpoint_from_pathrÚ from_argsr2ÚshapeÚaz_net_linear_input_sizeÚmake_from_configÚoptimÚAdamÚ parametersÚload_state_dict)Úclsr?r@rArBrCr r'rDr)r/r$Ú network_dictÚoptimizer_dictr"rKÚargsÚ opponent_dictÚconfÚtreerr3r!r&s r<Úfrom_checkpointzTrainer.from_checkpoint>s–€õ”¥R¤W×%9Ò%9Ñ%;Ô%;ĞF˜6˜6ÀÑGÔGˆİ# NĞ<PĞQÑQÔQˆ àHT×HnÒHnØ ñIôIÑEˆ �n f¨b°$¸ åÔ Ñ%Ô%ˆØˆz˜$×2Ò2Ñ4Ô4°dÑ;Ô;ˆØ(4°\Ô(BÔ(HÈÔ(KˆÔ%Ø×,Ò,¨TÑ2Ô2ˆØ"×6Ò6Ñ8Ô8Ğİ”H—M’M '×"4Ò"4Ñ"6Ô"6¸2�MÑ>Ô>ˆ à%Ğ% d×&>Ò&>Ñ&@Ô&@ğ_ğ_Ø4;ĞX\Ğ(]Ğ(]ğ_ğ_ˆ à×Ò  Ñ-Ô-Ğ-Ø×(Ò(¨Ñ7Ô7Ğ7Ø×!Ò! .Ñ1Ô1Ğ1؈s�7˜D )¨V°T¸<ÈÈzĞ[aĞltØ"0ğ2ñ2ô2ğ 2r>Úmemory_overridec óø—tjtj ¦«rdnd¦«} t || ¦«\} } }| €|n| }t |j|¬¦«}|||| |||||| ||| ¬¦ « S)NrFrGrH)r'r)r*)rNr/rFrOrrrC)rYr#r rr%r&r'rDr)rar*r/Ú_r!Úmemr"r$s r<ÚcreatezTrainer.createYs¡€õ”¥R¤W×%9Ò%9Ñ%;Ô%;ĞF˜6˜6ÀÑGÔGˆİ1Ğ2IÈ6ÑRÔRшˆ9�cØ'Ğ/��°_ˆİ#Ğ$;Ô$JĞThĞiÑiÔiˆ ؈s�7˜D )¨VĞ5LÈlĞ\gĞisØØ$°^ĞR^ğ`ñ`ô`ğ `r>Úpathc ó|—tjtj ¦«rdnd¦«}t ||¦«\} } } t |j|¬¦«} |  tj|¦«¦«t|  ¦«fi| |dœ¤�} || || | || || |||¬¦ « S)NrFrGrHrL)r'r*) rNr/rFrOrrrCrXÚloadrr2)rYrfr#r r%r'rDr*r/Únetr!r"r$r&s r<Úfrom_state_dictzTrainer.from_state_dictjsÔ€õ”¥R¤W×%9Ò%9Ñ%;Ô%;ĞF˜6˜6ÀÑGÔGˆİ!6Ğ7NĞPVÑ!WÔ!WшˆY˜İ#Ğ$;Ô$JĞThĞiÑiÔiˆ Ø ×Ò�BœG D™MœMÑ*Ô*Ğ*ݘt×7Ò7Ñ9Ô9ĞvĞvÈĞitĞ=uĞ=uĞvĞvˆ ؈s�3˜˜i¨Ğ1HÈ,ĞXcĞeoĞqwØ$Ø ,ğ.ñ.ô.ğ .r>c óš —|j |j¦«|j t j|jj¦«¦«|j  |j   ¦«¦«|jj}|jj }|jj }|jj}|j  ¦«| t#|¦«dd¦«D�]}||jjkr d|j_t)j¦«5|jj}|j t j|¦«¦«|jjdkr˜|j | |¦«| |¦«|j|j||¦«\}}} t;|jt<¦«r*|jjr|j  ¦«|_n0|j !|j |j||j¦«\}}} |j t j"||| tF¦«¦«|j $d¦«ddd¦«n #1swxYwY|j% &|j ¦«|j t j'd|j% (¦«¦«¦«|j% )|j¦«|j t j*d|j% (¦«¦«¦«|j  +¦«|j t j,|¦«¦«|j  -|j|j¦«\} } |j t j.| ¦«¦«|j $d| ›dt_| ¦«›d ta| ¦«›�¦«|j1 2| ¦«|j% 3|j1¦«|j% 4|j |j|j5|jj6||jd ¬ ¦«|jj7} |jj8} | 9|| ¦«\}}}}| :||| |¦«| ;|| |¦«�Œ |jj|jj|jj<|jj8|jj |jj=|jj>|jj7d œ}|j t j?|¦«¦«|j $t j@¦«¦«|j S) NzTraining ProgressrrJzFinished self-play.ztemp checkpointzopponent networkz Mean loss: z , Max loss: z , Min loss: Úlatest_trained_net)Úname)ÚnumItersÚnumSelfPlayGamesÚtauÚupdateThresholdÚ mcSimulationsÚcÚmaxDepthÚ numPitGames)Ar3Útor/r8ÚlogrÚTRAINING_STARTr#Ú num_itersrXrÚ state_dictÚepochsÚnum_simulationsÚself_play_gamesÚevalÚ make_tqdm_barÚrangeÚzero_tau_afterÚ arena_taurNÚno_gradÚ num_workersÚSELF_PLAY_STARTr1Úparallel_self_playÚmake_n_networksÚ make_n_treesr"Ú isinstancerÚis_diskr2Ú self_playÚ SELF_PLAY_ENDrÚpushbullet_logr$Úsave_temp_net_checkpointÚSAVEDÚ get_temp_pathÚload_temp_net_checkpointÚLOADEDÚtrainÚNETWORK_TRAINING_STARTÚ train_netÚNETWORK_TRAINING_ENDÚmaxÚminr:ÚextendÚ save_lossesÚsave_checkpointr!rKÚ num_pit_gamesÚupdate_thresholdÚ run_pittingÚ check_modelÚrun_pitting_randomrprsÚ max_depthÚ TRAINING_ENDÚTRAINING_END_PSB)r;ryr{r|r}ÚiÚn_jobsÚwins_p1Úwins_p2Ú game_drawsÚ mean_lossr:Ú num_gamesr�Úp1_winsÚp2_winsÚdrawsÚ wins_totalÚimportant_argss r<r“z Trainer.trainwsn€Ø Ô× Ò  ¤Ñ-Ô-Ğ-Ø Œ �ŠÕ/Ô>¸tÔ?[Ô?eÑfÔfÑgÔgĞgØ Ô×-Ò-¨d¬l×.EÒ.EÑ.GÔ.GÑHÔHĞHàÔ0Ô:ˆ ØÔ-Ô4ˆØÔ6ÔFˆØÔ6ÔFˆØ Œ ×ÒÑÔĞà×#Ò#¥E¨)Ñ$4Ô$4Ğ6IÈ1ÑMÔMğ( Cñ( CˆAØ�DÔ0Ô?Ò?Ğ?Ø9:�Ô,Ô6İ”‘”ğ Bğ BØÔ5ÔA�Ø” —’Õ 7Ô GÈÑ XÔ XÑYÔYĞYàÔ/Ô;¸aÒ?Ğ?Ø37´9×3OÒ3OĞPT×PdÒPdĞekÑPlÔPlØPT×PaÒPaĞbhÑPiÔPiØPTÔP[Ğ]aÔ]hØP_ØPVñ 4Xô4XÑ0�G˜W jõ " $¤+­yÑ9Ô9ğH¸d¼kÔ>QğHØ&*¤k×&EÒ&EÑ&GÔ&G˜œ øà37´9×3FÒ3FÀtÄ|ĞUYÔU`ĞbqØGKÄ{ñ4Tô4TÑ0�G˜W jà” —’Õ 7Ô EÀgÈwĞXbÕdlÑ mÔ mÑnÔnĞnØ” ×*Ò*Ğ+@ÑAÔAĞAğ! Bğ Bğ Bñ Bô Bğ Bğ Bğ Bğ Bğ Bğ Bøøøğ Bğ Bğ Bğ Bğ$ Ô × 6Ò 6°t´|Ñ DÔ DĞ DØ ŒK�OŠOÕ3Ô9Ğ:KÈTÔM^×MlÒMlÑMnÔMnÑoÔoÑ pÔ pĞ pØ Ô × 6Ò 6°tÔ7LÑ MÔ MĞ MØ ŒK�OŠOÕ3Ô:Ğ;MÈtÔO`×OnÒOnÑOpÔOpÑqÔqÑ rÔ rĞ rØ ŒL× Ò Ñ Ô Ğ Ø ŒK�OŠOÕ3ÔJÈ6ÑRÔRÑ SÔ SĞ SØ $¤ × 6Ò 6°t´{ÀDÔD`Ñ aÔ aÑ ˆI�vØ ŒK�OŠOÕ3ÔHÈÑSÔSÑ TÔ TĞ TØ ŒK× &Ò &Ğ'r°YĞ'rĞ'rÍCĞPVÉKÌKĞ'rĞ'rÕehĞioÑepÔepĞ'rĞ'rÑ sÔ sĞ sØ ŒK× Ò ˜vÑ &Ô &Ğ &Ø Ô × )Ò )¨$¬+Ñ 6Ô 6Ğ 6Ø Ô × -Ò -¨d¬l¸DÔ<QĞSWÔSaØ.2Ô.JÔ.MÈqĞRVÔRnØ3Gğ .ñ Iô Iğ IğÔ4ÔBˆIØ#Ô;ÔLĞ Ø26×2BÒ2BÀ?ĞT]Ñ2^Ô2^Ñ /ˆG�W˜e ZØ × Ò ˜W jĞ2BÀAÑ FÔ FĞ FØ × #Ò # O°YÀÑ BÔ BĞ BÑ BğÔ4Ô>Ø $Ô <Ô LØÔ/Ô3Ø#Ô;ÔLØ!Ô9ÔIØÔ-Ô/ØÔ4Ô>ØÔ7ÔEğ  ğ  ˆğ Œ �ŠÕ/Ô<¸^ÑLÔLÑMÔMĞMØ Œ ×"Ò"Õ#:Ô#KÑ#MÔ#MÑNÔNĞNØŒ|ĞsÄ&EJÊJ ÊJ Úncó:‡—ˆfd„t|¦«D¦«S)z« Make n identical copies of self.network using deepcopy. :param n: The number of copies to make. :return: A list of n identical networks. có8•—g|]}t‰j¦«‘ŒS©)rr)Ú.0rcr;s €r<ú <listcomp>z+Trainer.make_n_networks.<locals>.<listcomp>Âs#ø€Ğ9Ğ9Ğ9¨1•˜œÑ&Ô&Ğ9Ğ9Ğ9r>)r€)r;r°s` r<r‡zTrainer.make_n_networks»s%ø€ğ:Ğ9Ğ9Ğ9µ°a±´Ğ9Ñ9Ô9Ğ9r>cóŠ—g}t|¦«D]0}|j ¦«}| |¦«Œ1|S)zŠ Make n new search trees. :param n: The number of trees to create. :return: A list of n new search trees. )r€r1r2Úappend)r;r°Útreesr¤r_s r<rˆzTrainer.make_n_treesÄsK€ğ ˆİ�q‘”ğ ğ ˆAà”9×0Ò0Ñ2Ô2ˆDØ �LŠL˜Ñ Ô Ğ Ğ Øˆ r>cón—t|j¦«tt|j¦«¦«z S©N)Úsumr9rÚlen©r;s r<Úget_arena_win_frequencies_meanz&Trainer.get_arena_win_frequencies_meanÑs+€İ�4Ô-Ñ.Ô.µ½#¸dÔ>XÑ:YÔ:YÑ1ZÔ1ZÑZĞZr>c ód—|j ¦«}|j ¦«}|j ¦«}t j||j|jj|||j  ¦«dœ|¦«td  |¦«¦«dS)N)r!r"rKriÚopponent_state_dictr\zSaved latest model data to {}) rrzr3r!rNÚsaver"r#rKÚto_dictÚprintÚformat)r;rfrzrÀÚoptimizer_state_dicts r<Ú save_latestzTrainer.save_latestÔs¯€Ø”\×,Ò,Ñ.Ô.ˆ Ø"Ô3×>Ò>Ñ@Ô@ĞØ#œ~×8Ò8Ñ:Ô:Ğİ ŒØ-Ø”kØÔ.Ô1ØØ#6ØÔ0×8Ò8Ñ:Ô:ğ  ğ ğ ñ ô ğ õ Ğ-×4Ò4°TÑ:Ô:Ñ;Ô;Ğ;Ğ;Ğ;r>cóD—|jjrt||||¬¦«S|S)N)ÚdescÚpositionÚleave)r#Ú show_tqdmr )r;ÚiterablerÈrÉrÊs r<rzTrainer.make_tqdm_barâs,€Ø Ô 'Ô 1ğ ݘ t°hÀeĞLÑLÔLĞ LàˆOr>có—|jSrº)rr½s r<Ú get_networkzTrainer.get_networkès €ØŒ|Ğr>có—|jSrº)r1r½s r<Úget_treezTrainer.get_treeës €ØŒyĞr>có—|jSrº)r#r½s r<Úget_argszTrainer.get_argsîs €ØÔ+Ğ+r>r|rªc óÈ—|j ¦«|j ¦«|j ¦«}| |j¦«|j ¦«}| |j¦«|j tj |j |j |¦«¦«|j   ||||d¬¦«\}}}t||z¦«}|j tj|j |j ||||¦«¦«|j ||z ¦«||||fS)NF)Únum_mc_simulationsÚ one_player)rr~r3r&r2Ú set_networkr8rwrÚ PITTING_STARTrmr5ÚpitrÚ PITTING_ENDr9r·) r;r|rªÚp1Úp2r«r¬r­r®s r<r�zTrainer.run_pittingñsN€Ø Œ ×ÒÑÔĞØ Ô×"Ò"Ñ$Ô$Ğ$Ø Œ_× 0Ò 0Ñ 2Ô 2ˆØ �Š�t”|Ñ$Ô$Ğ$Ø Œ_× 0Ò 0Ñ 2Ô 2ˆØ �Š�tÔ,Ñ-Ô-Ğ-Ø Œ �ŠÕ/Ô=¸b¼gÀrÄwĞPYÑZÔZÑ[Ô[Ğ[Ø"&¤*§.¢.°°R¸ĞWfØ<Ağ#1ñ#Cô#Cш�˜%å˜g¨Ñ/Ñ0Ô0ˆ Ø Œ �ŠÕ/Ô;¸B¼GÀRÄWÈgØ<CÀZĞQVñXôXñ Yô Yğ Yà Ô"×)Ò)¨'°IÑ*=Ñ>Ô>Ğ>ؘ ¨ Ğ2Ğ2r>r¤c ó¶—||jjzdkrdS|j ¦«t j¦«5t |j ¦«fii¤�}|j  ¦«}|  |j¦«|j   tj|j|j|¦«¦«|j ||||¬¦«\}}}t%||z¦«} |j   tj|j|j||| |¦«¦«ddd¦«dS#1swxYwYdS)Nr)rÔ)r#Úrandom_pit_freqrr~rNrƒr r0r2r&rÖr8rwrr×rmr5rØrrÙ) r;r|rªr¤Ú random_playerrÚÚp1_wins_randomÚp2_wins_randomÚ draws_randomr®s r<r zTrainer.run_pitting_randoms¬€Ø ˆtÔ+Ô;Ñ ;¸qÒ @Ğ @Ø ˆFØ Œ ×ÒÑÔĞİ ŒZ‰\Œ\ğ _ğ _İ(¨Ô):×)NÒ)NÑ)PÔ)PĞWĞWĞTVĞWĞWˆMà”×4Ò4Ñ6Ô6ˆBØ �NŠN˜4œ<Ñ (Ô (Ğ (Ø ŒK�OŠOÕ3ÔAÀ"Ä'È=ÔK]Ğ_hÑiÔiÑ jÔ jĞ jØ;?¼:¿>º>È"ÈmĞ]fØ]lğ<Jñ<nô<nÑ 8ˆN˜N¨Lå! .°>Ñ"AÑBÔBˆJØ ŒK�OŠOİ'Ô3°B´G¸]Ô=OĞQ_Ø4BÀJĞP\ñ^ô^ñ _ô _ğ _ğ _ğ _ğ _ñ _ô _ğ _ğ _ğ _ğ _ğ _ğ _ğ _øøøğ _ğ _ğ _ğ _ğ _ğ _sÁC?EÅEÅEr«r®r�cóú—||z |kr²|j tj||z |¦«¦«|j |j|j|j|j j ||j ¦«|j tj d|j  ¦«¦«¦«n“|j tj ||z |¦«¦«|j |j¦«|j tjd|j ¦«¦«¦«|j tj|¦«¦«dS)Nzaccepted model checkpointzprevious version checkpoint)r8rwrÚ MODEL_ACCEPTr$r›rr3r!r#rKr�Úget_checkpoint_dirÚ MODEL_REJECTr‘r’r�r�ÚITER_FINISHED_PSB)r;r«r®r�r¤s r<rŸzTrainer.check_models�€Ø �ZÑ Ğ"2Ò 2Ğ 2Ø ŒK�OŠOÕ3Ô@ÀÈ:ÑAUØAQñSôSñ Tô Tğ Tà Ô × -Ò -¨d¬l¸DÔ<QĞSWÔSaØ.2Ô.JÔ.MÈqØ.2Ô.Jñ Lô Lğ Lğ ŒK�OŠOÕ3Ô9Ğ:UØ:>Ô:K×:^Ò:^Ñ:`Ô:`ñbôbñ cô cğ cğ cğ ŒK�OŠOÕ3Ô@ÀÈ:ÑAUØAQñSôSñ Tô Tğ Tà Ô × 6Ò 6°t´|Ñ DÔ DĞ DØ ŒK�OŠOÕ3Ô:Ğ;XØ;?Ô;L×;ZÒ;ZÑ;\Ô;\ñ^ô^ñ _ô _ğ _à Œ ×"Ò"Õ#:Ô#LÈQÑ#OÔ#OÑPÔPĞPĞPĞPr>)TNNN)TFN)TFNNN)T))Ú__name__Ú __module__Ú __qualname__rrrNrUrrrrr ÚboolÚnnÚModulerrr=Ú classmethodrÚstrr`rerjrr“ÚintÚlistr‡rrˆr¾rÆrrÎrĞrÒr�r ÚfloatrŸr³r>r<rr!sÁ€€€€€ğ +/ØCGØ8<Ø-1ğğ ğ°mğØœHğØ.Ağà*0ğà@Lğğ)ğğ7=ğğ$(ğ ğ -/¬E¬LĞ,@¸Dğ ğ ".Ğ!5°ğ ğ +ğğ7;ğğğğğ8ğ?CØ5:Ø?Cğ 2ğ2¨¨^Ô(<ğ2È$ÈzÔJZğ2Ø*.¨v¬,ğ2à),ğ2à>Ağ2ğ,ğ2ğ8<ğ2ğ/3ğ 2ğ )5Ğ(<¸ğ 2ğ2ğ2ñ„[ğ2ğ4ğ!%Ø,1Ø6:Ø>BØ37ğ`ğ`¨Vğ`¸=ğ`ĞSağ`Ø&ğ`à!ğ`ğğ`ğ&*ğ `ğ ,Ğ3¨tğ `ğ !4Ğ ;°tğ `ğ)Ğ0¨Dğ`ğ`ğ`ñ„[ğ`ğ à)-Ø`dğ .ğ . 3ğ .Àğ .È}ğ .Ğkuğ .Ø"&ğ .à.2ğ .àJUĞJ]ĞY]ğ .ğ .ğ .ñ„[ğ .ğB�|ğBğBğBğBğH: ğ:¨¨lÔ);ğ:ğ:ğ:ğ:ğ ˜cğ  d¨<Ô&8ğ ğ ğ ğ ğ[ğ[ğ[ğ <ğ <ğ <ğğğğğ ğğğğğğ,ğ,ğ,ğ3¨3ğ3¸3ğ3ğ3ğ3ğ3ğ _°#ğ_À#ğ_È#ğ_ğ_ğ_ğ_ğ"Q 3ğQ°CğQÈ5ğQĞUXğQğQğQğQğQğQr>r)/Útorch.multiprocessingrÚmu_alpha_zero.General.utilsrÚcopyrÚtypingrÚtorchrNÚtorch.utils.tensorboardr r Ú#mu_alpha_zero.AlphaZero.Arena.arenar Ú%mu_alpha_zero.AlphaZero.Arena.playersr r rÚ+mu_alpha_zero.AlphaZero.MCTS.az_search_treerÚ$mu_alpha_zero.AlphaZero.Network.nnetrÚ$mu_alpha_zero.AlphaZero.checkpointerrÚmu_alpha_zero.AlphaZero.loggerrrÚmu_alpha_zero.AlphaZero.utilsrÚmu_alpha_zero.General.arenarÚmu_alpha_zero.General.az_gamerÚmu_alpha_zero.General.memoryrÚmu_alpha_zero.General.networkrÚ!mu_alpha_zero.General.search_treerÚ-mu_alpha_zero.MuZero.JavaGateway.java_managerrÚmu_alpha_zero.configrÚmu_alpha_zero.mem_bufferrrr³r>r<ú<module>rsùğØ2Ğ2Ğ2Ğ2Ğ2Ğ2à0Ğ0Ğ0Ğ0Ğ0Ğ0àĞ� Ğ%Ñ%Ô%Ğ%ØĞĞĞĞĞàĞĞĞĞĞàĞĞĞØ1Ğ1Ğ1Ğ1Ğ1Ğ1ØĞĞĞĞĞØ5Ğ5Ğ5Ğ5Ğ5Ğ5ØPĞPĞPĞPĞPĞPĞPĞPĞPĞPØDĞDĞDĞDĞDĞDØ=Ğ=Ğ=Ğ=Ğ=Ğ=Ø=Ğ=Ğ=Ğ=Ğ=Ğ=ØJĞJĞJĞJĞJĞJĞJĞJØ?Ğ?Ğ?Ğ?Ğ?Ğ?Ø4Ğ4Ğ4Ğ4Ğ4Ğ4Ø7Ğ7Ğ7Ğ7Ğ7Ğ7Ø<Ğ<Ğ<Ğ<Ğ<Ğ<Ø8Ğ8Ğ8Ğ8Ğ8Ğ8Ø8Ğ8Ğ8Ğ8Ğ8Ğ8ØEĞEĞEĞEĞEĞEØ'Ğ'Ğ'Ğ'Ğ'Ğ'Ø.Ğ.Ğ.Ğ.Ğ.Ğ.ğ @Qğ@Qğ@Qğ@Qğ@Qñ@Qô@Qğ@Qğ@Qğ@Qr>
21,360
Python
.py
95
223.126316
1,279
0.33802
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,522
asteroids.py
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/Game/asteroids.py
import numpy as np import torch as th from gymnasium import make from mu_alpha_zero.General.mz_game import MuZeroGame class Asteroids(MuZeroGame): def get_state_for_passive_player(self, state: np.ndarray, player: int): return state def __init__(self): self.env = make("ALE/Asteroids-v5") self.done = False def reset(self) -> np.ndarray or th.Tensor: obs, _ = self.env.reset() return obs def get_noop(self) -> int: return 0 def get_num_actions(self) -> int: return self.env.action_space.n def game_result(self, player: int or None) -> bool or None: return self.done def make_fresh_instance(self): return Asteroids() def get_next_state(self, action: int, player: int or None, frame_skip: int = 4) -> ( np.ndarray or th.Tensor, int, bool): obs, rew, done, _, _ = self.env.step(action) self.done = done return obs, rew, done def frame_skip_step(self, action: int, player: int or None, frame_skip: int = 4) -> ( np.ndarray or th.Tensor, int, bool): obs, rew, done = self.get_next_state(action, player) for i in range(frame_skip - 1): obs, rew, done = self.get_next_state(action, player) return obs, rew, done def render(self): pass def get_random_valid_action(self, state: np.ndarray, **kwargs): return self.env.action_space.sample() def get_invalid_actions(self, state: np.ndarray, player: int): return np.ones((self.get_num_actions()))
1,576
Python
.py
38
34.078947
89
0.630335
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,523
tictactoe_game.py
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/Game/tictactoe_game.py
import io import random import sys import numpy as np import pygame as pg import torch as th from PIL import Image from mu_alpha_zero.General.az_game import AlphaZeroGame class TicTacToeGameManager(AlphaZeroGame): """ This class is the game manager for the game of Tic Tac Toe and its variants. """ def __init__(self, board_size: int, headless: bool, num_to_win=None) -> None: # TODO: Implement the possibility to play over internet using sockets. self.player = 1 self.enemy_player = -1 self.board_size = board_size self.board = self.initialize_board() self.headless = headless self.num_to_win = self.init_num_to_win(num_to_win) self.screen = self.create_screen(headless) def play(self, player: int, index: tuple) -> None: self.board[index] = player def init_num_to_win(self, num_to_win: int | None) -> int: if num_to_win is None: num_to_win = self.board_size if num_to_win > self.board_size: raise Exception("Num to win can't be greater than board size") return num_to_win def initialize_board(self): board = np.zeros((self.board_size, self.board_size), dtype=np.int8) return board def get_random_valid_action(self, observations: np.ndarray, **kwargs) -> list: valid_moves = self.get_valid_moves(observations) if len(valid_moves) == 0: raise Exception("No valid moves") return random.choice(valid_moves) def create_screen(self, headless): if headless: return pg.init() pg.display.set_caption("Tic Tac Toe") board_rect_size = self.board_size * 100 screen = pg.display.set_mode((board_rect_size, board_rect_size)) return screen def full_iterate_array(self, arr: np.ndarray, func: callable) -> list: """ This function iterates over all rows, columns and the two main diagonals of supplied array, applies the supplied function to each of them and returns the results in a list. :param arr: a 2D numpy array. :param func: a callable function that takes a 1D array as input and returns a result. :return: A list of results. """ results = [] results.append("row") for row in arr: results.append(func(row.reshape(-1))) results.append("col") for col in arr.T: results.append(func(col.reshape(-1))) diags = [np.diag(arr, k=i) for i in range(-arr.shape[0] + 1, arr.shape[1])] flipped_diags = [np.diag(np.fliplr(arr), k=i) for i in range(-arr.shape[0] + 1, arr.shape[1])] diags.extend(flipped_diags) for idx, diag in enumerate(diags): if idx == 0: results.append("diag_left") elif idx == len(diags) // 2: results.append("diag_right") results.append(func(diag.reshape(-1))) # results.append("diag_left") # results.append(func(arr.diagonal().reshape(-1))) # results.append("diag_right") # results.append(func(np.fliplr(arr).diagonal().reshape(-1))) return results def eval_board(self, board: np.ndarray, check_end: bool = True) -> int | None: if self.is_board_full(board): return 0 score = 0 for i in range(self.num_to_win, self.num_to_win // 2, -1): current_won = self.check_partial_win(-1, self.num_to_win, board=board) opp_won = self.check_partial_win(1, self.num_to_win, board=board) if current_won: score += 1 * 2 if opp_won: score -= 1 if check_end: return None if self.game_result(-1, board) is None else score return score def full_iterate_array_all_diags(self, arr: np.ndarray, func: callable): results = [] for row in arr: results.append(func(row.reshape(-1))) for col in arr.T: results.append(func(col.reshape(-1))) diags = [np.diag(arr, k=i) for i in range(-arr.shape[0] + 1, arr.shape[1])] flipped_diags = [np.diag(np.fliplr(arr), k=i) for i in range(-arr.shape[0] + 1, arr.shape[1])] diags.extend(flipped_diags) for diag in diags: # if diag.size < self.num_to_win: # continue results.append(func(diag.reshape(-1))) return results def extract_all_vectors(self, board: np.ndarray): vectors = board.tolist() + board.T.tolist() vectors.extend([np.diag(board, k=i) for i in range(-board.shape[0] + 1, board.shape[1])]) vectors.extend([np.diag(np.fliplr(board), k=i) for i in range(-board.shape[0] + 1, board.shape[1])]) # pad vectors with -3's to have the same length as the board size and stack them vectors = [np.pad(vector, (0, self.board_size - len(vector)), constant_values=-3) for vector in vectors] return np.array(vectors) def check_win(self, player: int, board=None) -> bool: # if self.num_to_win == self.board_size: # return self.check_full_win(player, board=board) # else: return self.check_partial_win(player, self.num_to_win, board=board) def check_full_win(self, player: int, board=None) -> bool: """ This function checks if the supplied player has won the game with a full win (num_to_win == board_size). :param player: The player to check for (1 or -1). :param board: The board to check on. If None, the current board is used. :return: True if the player has won, False otherwise. """ if board is None: board = self.get_board() matches = self.full_iterate_array(board, lambda part: np.all(part == player)) for match in matches: if not isinstance(match, str) and match: return True return False def check_partial_win(self, player: int, n: int, board=None) -> bool: """ This function checks if the supplied player has won the game with a partial win (num_to_win < board_size). :param player: The player to check for (1 or -1). :param n: The number of consecutive pieces needed to win. :param board: The board to check on. If None, the current board is used. :return: True if the player has won, False otherwise. """ if board is None: board = self.get_board() matches = self.full_iterate_array_all_diags(board, lambda part: np.convolve((part == player), np.ones(n, dtype=np.int8), "valid")) for match in matches: if np.any(match == n): return True return False def check_partial_win_vectorized(self, player: int, n: int, board=None) -> bool: if board is None: board = self.get_board() vectors = th.tensor(self.extract_all_vectors(board)).unsqueeze(0) weight = th.ones((1, 1, 1, n), dtype=th.long) vectors_where_player = th.where(vectors == player, 1, 0).long() res = th.nn.functional.conv2d(vectors_where_player, weight=weight) return th.any(res == n).item() def check_partial_win_to_index(self, player: int, n: int, board=None) -> dict[tuple, str] | dict: """ This variation of check_partial_win returns the index of the first partial win found. The index being the index of the first piece in the winning sequence. :param player: The player to check for (1 or -1). :param n: The number of consecutive pieces needed to win. :param board: The board to check on. If None, the current board is used. :return: A dictionary containing the index and the position of the winning sequence. """ if board is None: board = self.get_board() indices = self.full_iterate_array(board, lambda part: np.convolve((part == player), np.ones(n, dtype=int), "valid")) indices = [x.tolist() if not isinstance(x, str) else x for x in indices] pos = "row" for vector in indices: if isinstance(vector, str): pos = vector continue for el in vector: if el == n: vector_index = indices.index(vector) pos_index = indices.index(pos) # num_strings_before = len([x for index,x in enumerate(indices) if isinstance(x,str) and index < pos_index]) element_index = vector_index - (pos_index + 1) if vector_index > pos_index else indices.index( vector, pos_index) diag_idx = { "index": ((self.board_size - 1) - element_index, 0)} if element_index < self.board_size else { "index": (0, element_index - self.board_size)} diag_idx["pos"] = pos match pos: case "row": return {"index": (element_index, 0), "pos": pos} case "col": return {"index": (0, element_index), "pos": pos} case "diag_left": return diag_idx case "diag_right": return diag_idx # case "diag_right": return {"index": None, "pos": None} def return_index_if_valid(self, index: tuple, return_on_fail: tuple = ()) -> tuple: if index[0] < 0 or index[0] >= self.board_size or index[1] < 0 or index[1] >= self.board_size: return return_on_fail return index def make_fresh_instance(self): return TicTacToeGameManager(self.board_size, self.headless, num_to_win=self.num_to_win) def get_previous(self, index: tuple, pos: str, n: int): if np.array(index).all() == 0: return index match pos: case "row": return self.return_index_if_valid((index[0], index[1] - n), return_on_fail=index) case "col": return self.return_index_if_valid((index[0] - n, index[1]), return_on_fail=index) case "diag_left": return self.return_index_if_valid((index[0] - n, index[1] - n), return_on_fail=index) case "diag_right": return self.return_index_if_valid((index[0] - n, index[1] + n), return_on_fail=index) def get_next(self, index: tuple, pos: str, n: int): if np.array(index).all() == self.board_size - 1: return index match pos: case "row": return self.return_index_if_valid((index[0], index[1] + n), return_on_fail=index) case "col": return self.return_index_if_valid((index[0] + n, index[1]), return_on_fail=index) case "diag_left": return self.return_index_if_valid((index[0] + n, index[1] + n), return_on_fail=index) case "diag_right": return self.return_index_if_valid((index[0] + n, index[1] - n), return_on_fail=index) def is_board_full(self, board=None) -> bool: if board is None: board = self.get_board() return np.all(board != 0) def get_board(self): return self.board.copy() def reset(self): self.board = self.initialize_board() return self.board.copy() def get_board_size(self): return self.board_size def render(self) -> bool: if self.headless: return False self.screen.fill((0, 0, 0)) self._draw_board() for row in range(self.board_size): for col in range(self.board_size): if self.board[row][col] == self.player: self._draw_circle(col * 100 + 50, row * 100 + 50) elif self.board[row][col] == self.enemy_player: self._draw_cross(col * 100 + 50, row * 100 + 50) pg.event.pump() pg.display.flip() return True def _draw_circle(self, x, y) -> None: if self.headless: return pg.draw.circle(self.screen, "green", (x, y), 40, 1) def _draw_cross(self, x, y) -> None: if self.headless: return pg.draw.line(self.screen, "red", (x - 40, y - 40), (x + 40, y + 40), 1) pg.draw.line(self.screen, "red", (x + 40, y - 40), (x - 40, y + 40), 1) def _draw_board(self): for x in range(0, self.board_size * 100, 100): for y in range(0, self.board_size * 100, 100): pg.draw.rect(self.screen, (255, 255, 255), pg.Rect(x, y, 100, 100), 1) def is_empty(self, index: tuple) -> bool: return self.board[index] == 0 def get_valid_moves(self, observation: np.ndarray, player: int or None = None) -> list: """ Legal moves are the empty spaces on the board. :param observation: A 2D numpy array representing the current state of the game. :param player: The player to check for. Since the game is symmetric, this is ignored. :return: A list of legal moves. """ legal_moves = [] observation = observation.reshape(self.board_size, self.board_size) for row in range(self.board_size): for col in range(self.board_size): if observation[row][col] == 0: legal_moves.append([row, col]) return legal_moves def pygame_quit(self) -> bool: if self.headless: return False pg.quit() return True def get_click_coords(self): if self.headless: return mouse_pos = (x // 100 for x in pg.mouse.get_pos()) if pg.mouse.get_pressed()[0]: # left click return mouse_pos def get_human_input(self, board: np.ndarray): if self.headless: return while True: self.check_pg_events() if self.get_click_coords() is not None: x, y = self.get_click_coords() if board[y][x] == 0: return y, x # time.sleep(1 / 60) def check_pg_events(self): if self.headless: return for event in pg.event.get(): if event.type == pg.QUIT: self.pygame_quit() sys.exit(0) def network_to_board(self, move): """ Converts an integer move from the network to a board index. :param move: An integer move selected from the network probabilities. :return: A tuple representing the board index (int,int). """ return np.unravel_index(move, self.board.shape) @staticmethod def get_canonical_form(board, player) -> np.ndarray: return board * player def get_next_state(self, board: np.ndarray, action: int or tuple, player: int) -> np.ndarray: if isinstance(action, int): action = self.network_to_board(action) board_ = board.copy() board_[action] = player return board_ def set_headless(self, val: bool): self.headless = val def get_invalid_actions(self, state: np.ndarray, player: int): mask = np.where(state == 0, 1, 0) return mask def __str__(self): return str(self.board).replace('1', 'X').replace('-1', 'O') # # if __name__ == "__main__": # sample_arr = np.array([[-1,1,-1,1,1],[-1,1,1,-1,-1],[1,-1,1,1,0],[-1,1,1,-1,0],[0,0,-1,1,1]]) # game_manager = GameManager(5, True,num_to_win=3) # res = game_manager.check_partial_win_vectorized(1,3,sample_arr) # res = game_manager.game_result(-1,sample_arr) # print(res) # print(game_manager.check_partial_win(1,3,sample_arr))
16,109
Python
.py
340
36.097059
128
0.567581
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,524
tictactoe_game.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/Game/__pycache__/tictactoe_game.cpython-311.pyc
§ Uxf"Dãó~—ddlZddlZddlZddlmZddlZddlZ ddl Z ddl Z ddlmZddlmZGd„de¦«ZdS)éN)ÚImage)Ú AlphaZeroGamec óŞ—eZdZdZd?dededdfd„Zdededdfd „Zd edzdefd „Z d „Z d e j de fd„Zd„Zde j dede fd„Zd@de j dededzfd„Zde j defd„Zde j fd„Zd?dedefd„Zd?dedefd„Zd?dededefd„Zd?dededefd„Zd?dededeeefezfd„ZdAded edefd!„Zd"„Zded#edefd$„Zded#edefd%„Zd?defd&„Z d'„Z!d(„Z"d)„Z#defd*„Z$dBd+„Z%dBd,„Z&d-„Z'dedefd.„Z(d?d/e j depdde fd0„Z)defd1„Z*d2„Z+de j fd3„Z,d4„Z-d5„Z.d6„Z/e0de j fd7„¦«Z1de j d8epedede j fd9„Z2d:efd;„Z3d<e j defd=„Z4d>„Z5dS)CÚTicTacToeGameManagerzV This class is the game manager for the game of Tic Tac Toe and its variants. NÚ board_sizeÚheadlessÚreturncóØ—d|_d|_||_| ¦«|_||_| |¦«|_| |¦«|_ dS)Nééÿÿÿÿ) ÚplayerÚ enemy_playerrÚinitialize_boardÚboardrÚinit_num_to_winÚ num_to_winÚ create_screenÚscreen)Úselfrrrs úP/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/Game/tictactoe_game.pyÚ__init__zTicTacToeGameManager.__init__s`€àˆŒ ØˆÔØ$ˆŒØ×*Ò*Ñ,Ô,ˆŒ Ø ˆŒ Ø×.Ò.¨zÑ:Ô:ˆŒØ×(Ò(¨Ñ2Ô2ˆŒ ˆ ˆ ór Úindexcó—||j|<dS©N©r)rr rs rÚplayzTicTacToeGameManager.plays€Ø"ˆŒ �5ÑĞĞrrcóL—|€|j}||jkrtd¦«‚|S)Nz+Num to win can't be greater than board size)rÚ Exception)rrs rrz$TicTacToeGameManager.init_num_to_win!s1€Ø Ğ ØœˆJØ ˜œÒ 'Ğ 'İĞIÑJÔJĞ JØĞrcó^—tj|j|jftj¬¦«}|S)N©Údtype)ÚnpÚzerosrÚint8©rrs rrz%TicTacToeGameManager.initialize_board(s&€İ”˜$œ/¨4¬?Ğ;Å2Ä7ĞKÑKÔKˆØˆ rÚ observationsc ó˜—| |¦«}t|¦«dkrtd¦«‚tj|¦«S)NrzNo valid moves)Úget_valid_movesÚlenrÚrandomÚchoice)rr'ÚkwargsÚ valid_movess rÚget_random_valid_actionz,TicTacToeGameManager.get_random_valid_action,sG€Ø×*Ò*¨<Ñ8Ô8ˆ İ ˆ{Ñ Ô ˜qÒ Ğ İĞ,Ñ-Ô-Ğ -İŒ}˜[Ñ)Ô)Ğ)rcóÈ—|rdStj¦«tj d¦«|jdz}tj ||f¦«}|S)Nz Tic Tac Toeéd)ÚpgÚinitÚdisplayÚ set_captionrÚset_mode)rrÚboard_rect_sizers rrz"TicTacToeGameManager.create_screen2s[€Ø ğ Ø ˆFå Œ‰ Œ ˆ İ Œ ×Ò˜}Ñ-Ô-Ğ-Øœ/¨CÑ/ˆİ”×$Ò$ o°Ğ%GÑHÔHˆØˆ rÚarrÚfunccó^‡—g}| d¦«‰D]3}| || d¦«¦«¦«Œ4| d¦«‰jD]3}| || d¦«¦«¦«Œ4ˆfd„t‰jd dz‰jd¦«D¦«}ˆfd„t‰jd dz‰jd¦«D¦«}| |¦«t |¦«D]}\}} |dkr| d¦«n+|t|¦«d zkr| d ¦«| ||  d¦«¦«¦«Œ~|S) an This function iterates over all rows, columns and the two main diagonals of supplied array, applies the supplied function to each of them and returns the results in a list. :param arr: a 2D numpy array. :param func: a callable function that takes a 1D array as input and returns a result. :return: A list of results. Úrowr Úcolcó<•—g|]}tj‰|¬¦«‘ŒS©)Úk©r#Údiag©Ú.0Úir8s €rú <listcomp>z;TicTacToeGameManager.full_iterate_array.<locals>.<listcomp>Mó(ø€ĞSĞSĞS q•”˜ Ğ"Ñ"Ô"ĞSĞSĞSrrr có`•—g|]*}tjtj‰¦«|¬¦«‘Œ+Sr>©r#rAÚfliplrrBs €rrEz;TicTacToeGameManager.full_iterate_array.<locals>.<listcomp>Nó0ø€ĞfĞfĞf¸!�œ¥¤¨3¡¤°1Ğ5Ñ5Ô5ĞfĞfĞfrÚ diag_leftéÚ diag_right)ÚappendÚreshapeÚTÚrangeÚshapeÚextendÚ enumerater*) rr8r9Úresultsr;r<ÚdiagsÚ flipped_diagsÚidxrAs ` rÚfull_iterate_arrayz'TicTacToeGameManager.full_iterate_array<s¶ø€ğˆØ�Š�uÑÔĞØğ 2ğ 2ˆCØ �NŠN˜4˜4 § ¢ ¨B¡¤Ñ0Ô0Ñ 1Ô 1Ğ 1Ğ 1à�Š�uÑÔĞØ”5ğ 2ğ 2ˆCØ �NŠN˜4˜4 § ¢ ¨B¡¤Ñ0Ô0Ñ 1Ô 1Ğ 1Ğ 1àSĞSĞSĞS­E°3´9¸Q´<°-À!Ñ2CÀSÄYÈqÄ\Ñ,RÔ,RĞSÑSÔSˆØfĞfĞfĞf½uÀcÄiĞPQÄlÀ]ĞUVÑEVĞX[ÔXaĞbcÔXdÑ?eÔ?eĞfÑfÔfˆ Ø � Š �]Ñ#Ô#Ğ#İ" 5Ñ)Ô)ğ 3ğ 3‰IˆC�Ø�aŠxˆxØ—’˜{Ñ+Ô+Ğ+Ğ+Ø�˜E™ œ  a™Ò'Ğ'Ø—’˜|Ñ,Ô,Ğ,Ø �NŠN˜4˜4 § ¢ ¨RÑ 0Ô 0Ñ1Ô1Ñ 2Ô 2Ğ 2Ğ 2ğ ˆrTrÚ check_endcóB—| |¦«rdSd}t|j|jdzd¦«D]J}| d|j|¬¦«}| d|j|¬¦«}|r|dz }|r|dz}ŒK|r| d|¦«€dn|S|S)NrrLr rr )Ú is_board_fullrQrÚcheck_partial_winÚ game_result)rrrZÚscorerDÚ current_wonÚopp_wons rÚ eval_boardzTicTacToeGameManager.eval_board]sÎ€Ø × Ò ˜eÑ $Ô $ğ Ø�1؈İ�t”¨¬¸1Ñ(<¸bÑAÔAğ ğ ˆAØ×0Ò0°°T´_ÈEĞ0ÑRÔRˆKØ×,Ò,¨Q°´ÀuĞ,ÑMÔMˆGØğ ؘ‘�Øğ ؘ‘ �øØ ğ JØ×+Ò+¨B°Ñ6Ô6Ğ>�4�4ÀEĞ I؈ rcó\‡—g}‰D]3}| || d¦«¦«¦«Œ4‰jD]3}| || d¦«¦«¦«Œ4ˆfd„t‰jd dz‰jd¦«D¦«}ˆfd„t‰jd dz‰jd¦«D¦«}| |¦«|D]3}| || d¦«¦«¦«Œ4|S)Nr có<•—g|]}tj‰|¬¦«‘ŒSr>r@rBs €rrEzETicTacToeGameManager.full_iterate_array_all_diags.<locals>.<listcomp>urFrrr có`•—g|]*}tjtj‰¦«|¬¦«‘Œ+Sr>rHrBs €rrEzETicTacToeGameManager.full_iterate_array_all_diags.<locals>.<listcomp>vrJr)rNrOrPrQrRrS) rr8r9rUr;r<rVrWrAs ` rÚfull_iterate_array_all_diagsz1TicTacToeGameManager.full_iterate_array_all_diagsls?ø€àˆØğ 2ğ 2ˆCØ �NŠN˜4˜4 § ¢ ¨B¡¤Ñ0Ô0Ñ 1Ô 1Ğ 1Ğ 1à”5ğ 2ğ 2ˆCØ �NŠN˜4˜4 § ¢ ¨B¡¤Ñ0Ô0Ñ 1Ô 1Ğ 1Ğ 1àSĞSĞSĞS­E°3´9¸Q´<°-À!Ñ2CÀSÄYÈqÄ\Ñ,RÔ,RĞSÑSÔSˆØfĞfĞfĞf½uÀcÄiĞPQÄlÀ]ĞUVÑEVĞX[ÔXaĞbcÔXdÑ?eÔ?eĞfÑfÔfˆ Ø � Š �]Ñ#Ô#Ğ#Øğ 3ğ 3ˆDğ �NŠN˜4˜4 § ¢ ¨RÑ 0Ô 0Ñ1Ô1Ñ 2Ô 2Ğ 2Ğ 2àˆrcóʇ‡—‰ ¦«‰j ¦«z}| ˆfd„t‰jd dz‰jd¦«D¦«¦«| ˆfd„t‰jd dz‰jd¦«D¦«¦«ˆfd„|D¦«}t j|¦«S)Ncó<•—g|]}tj‰|¬¦«‘ŒSr>r@©rCrDrs €rrEz<TicTacToeGameManager.extract_all_vectors.<locals>.<listcomp>�s(ø€Ğ`Ğ`Ğ`°�œ ¨Ğ+Ñ+Ô+Ğ`Ğ`Ğ`rrr có`•—g|]*}tjtj‰¦«|¬¦«‘Œ+Sr>rHris €rrEz<TicTacToeGameManager.extract_all_vectors.<locals>.<listcomp>‚s2ø€ĞkĞkĞk¸1�œ¥¤ ¨%Ñ 0Ô 0°AĞ6Ñ6Ô6ĞkĞkĞkrc ól•—g|]0}tj|d‰jt|¦«z fd¬¦«‘Œ1S)réıÿÿÿ)Úconstant_values)r#Úpadrr*)rCÚvectorrs €rrEz<TicTacToeGameManager.extract_all_vectors.<locals>.<listcomp>„s>ø€ĞpĞpĞpĞ^d•2”6˜& 1 d¤o½¸F¹ ¼ Ñ&CĞ"DĞVXĞYÑYÔYĞpĞpĞpr)ÚtolistrPrSrQrRr#Úarray)rrÚvectorss`` rÚextract_all_vectorsz(TicTacToeGameManager.extract_all_vectorssŞøø€Ø—,’,‘.”. 5¤7§>¢>Ñ#3Ô#3Ñ3ˆØ�ŠĞ`Ğ`Ğ`Ğ`µU¸E¼KȼN¸?ÈQÑ;NĞPUÔP[Ğ\]ÔP^Ñ5_Ô5_Ğ`Ñ`Ô`ÑaÔaĞaØ�ŠĞkĞkĞkĞkÅÀuÄ{ĞSTÄ~ÀoĞXYÑFYĞ[`Ô[fĞghÔ[iÑ@jÔ@jĞkÑkÔkÑlÔlĞlàpĞpĞpĞpĞhoĞpÑpÔpˆİŒx˜Ñ Ô Ğ rcó<—| ||j|¬¦«S)Nr)r]r)rr rs rÚ check_winzTicTacToeGameManager.check_win‡s!€ğ×%Ò% f¨d¬oÀUĞ%ÑKÔKĞKrc󤇗|€| ¦«}| |ˆfd„¦«}|D]}t|t¦«s|rdSŒdS)aC This function checks if the supplied player has won the game with a full win (num_to_win == board_size). :param player: The player to check for (1 or -1). :param board: The board to check on. If None, the current board is used. :return: True if the player has won, False otherwise. Ncó4•—tj|‰k¦«Sr)r#Úall)Úpartr s €rú<lambda>z5TicTacToeGameManager.check_full_win.<locals>.<lambda>–sø€½b¼fÀTÈVÂ^Ñ>TÔ>T€rTF)Ú get_boardrYÚ isinstanceÚstr)rr rÚmatchesÚmatchs ` rÚcheck_full_winz#TicTacToeGameManager.check_full_win�smø€ğ ˆ=Ø—N’NÑ$Ô$ˆEØ×)Ò)¨%Ğ1TĞ1TĞ1TĞ1TÑUÔUˆØğ ğ ˆEݘe¥SÑ)Ô)ğ ¨eğ Ø�t�tøàˆurÚnc󪇇—|€| ¦«}| |ˆˆfd„¦«}|D]}tj|‰k¦«rdSŒdS)aˆ This function checks if the supplied player has won the game with a partial win (num_to_win < board_size). :param player: The player to check for (1 or -1). :param n: The number of consecutive pieces needed to win. :param board: The board to check on. If None, the current board is used. :return: True if the player has won, False otherwise. Ncót•—tj|‰ktj‰tj¬¦«d¦«S©Nr!Úvalid)r#ÚconvolveÚonesr%©ryr�r s €€rrzz8TicTacToeGameManager.check_partial_win.<locals>.<lambda>©s:ø€İ46´KÀÈÂÕRTÔRYĞZ[ÕceÔcjĞRkÑRkÔRkØ@Gñ5Iô5IğrTF)r{rfr#Úany)rr r�rr~rs `` rr]z&TicTacToeGameManager.check_partial_win�s‹øø€ğ ˆ=Ø—N’NÑ$Ô$ˆEØ×3Ò3°Eğ5Iğ5Iğ5Iğ5Iğ5IñJôJˆğ ğ ğ ˆEİŒv�e˜q’jÑ!Ô!ğ Ø�t�tğ ğˆurcóâ—|€| ¦«}tj| |¦«¦« d¦«}tjddd|ftj¬¦«}tj||kdd¦« ¦«}tjj   ||¬¦«}tj ||k¦«  ¦«S)Nrr r!)Úweight) r{ÚthÚtensorrsÚ unsqueezer‡ÚlongÚwhereÚnnÚ functionalÚconv2dr‰Úitem)rr r�rrrr‹Úvectors_where_playerÚress rÚcheck_partial_win_vectorizedz1TicTacToeGameManager.check_partial_win_vectorized³sÂ€Ø ˆ=Ø—N’NÑ$Ô$ˆEİ”)˜D×4Ò4°UÑ;Ô;Ñ<Ô<×FÒFÀqÑIÔIˆİ”˜!˜Q  1˜­R¬WĞ5Ñ5Ô5ˆİ!œx¨°6Ò(9¸1¸aÑ@Ô@×EÒEÑGÔGĞİŒeÔ×%Ò%Ğ&:À6Ğ%ÑJÔJˆİŒv�c˜Q’hÑÔ×$Ò$Ñ&Ô&Ğ&rcóP‡‡—|€| ¦«}| |ˆˆfd„¦«}d„|D¦«}d}|D]ß}t|t¦«r|}Œ|D]Â}|‰krº| |¦«}| |¦«} || kr|| dzz n| || ¦«} | |jkrd|jdz | z dfin dd| |jz fi} || d<|xdkr | df|d œccSxd kr d| f|d œccSxd kr| ccSd kr| ccSŒÃŒàddd œS) aß This variation of check_partial_win returns the index of the first partial win found. The index being the index of the first piece in the winning sequence. :param player: The player to check for (1 or -1). :param n: The number of consecutive pieces needed to win. :param board: The board to check on. If None, the current board is used. :return: A dictionary containing the index and the position of the winning sequence. Ncój•—tj|‰ktj‰t¬¦«d¦«Sr„)r#r†r‡Úintrˆs €€rrzzATicTacToeGameManager.check_partial_win_to_index.<locals>.<lambda>Ès3ø€İ*,¬+°t¸v²~ÍÌĞPQÕY\ĞH]ÑH]ÔH]Ø6=ñ+?ô+?ğrcód—g|]-}t|t¦«s| ¦«n|‘Œ.S©)r|r}rp©rCÚxs rrEzCTicTacToeGameManager.check_partial_win_to_index.<locals>.<listcomp>Ës3€ĞPĞPĞPÀ1¥Z°µ3Ñ%7Ô%7Ğ>�1—8’8‘:”:�:¸QĞPĞPĞPrr;r rrÚpos)rrŸr<rKrM)r{rYr|r}rr) rr r�rÚindicesrŸroÚelÚ vector_indexÚ pos_indexÚ element_indexÚdiag_idxs `` rÚcheck_partial_win_to_indexz/TicTacToeGameManager.check_partial_win_to_index¼sõøø€ğ ˆ=Ø—N’NÑ$Ô$ˆEØ×)Ò)¨%ğ+?ğ+?ğ+?ğ+?ğ+?ñ@ô@ˆğQĞPÈĞPÑPÔPˆàˆØğ ,ğ ,ˆFݘ&¥#Ñ&Ô&ğ Ø�ØØğ ,ğ ,�ؘ’7�7Ø#*§=¢=°Ñ#8Ô#8�LØ '§ ¢ ¨cÑ 2Ô 2�IàFRĞU^ÒF^ĞF^ L°IÀ±MÑ$BĞ$BĞdk×dqÒdqØ  ñe+ôe+�MğQ^Ğ`dÔ`oÒPoĞPo˜ 4¤?°QÑ#6¸-Ñ"GÈĞ!Kğ Mğ Mà ! ]°T´_Ñ%DĞ!EğvGğğ'*�H˜U‘OØØ"˜UšU˜U˜UØ.;¸QĞ-?ÈĞ#LĞ#LĞLĞLĞLĞLĞLØ"˜UšU˜U˜UØ./°Ğ-?ÈĞ#LĞ#LĞLĞLĞLĞLĞLØ(˜[š[˜[˜[Ø#+˜O˜O˜O˜O˜OØ)š\˜\Ø#+˜O˜O˜O˜O˜Oøğ' ,ğ. dĞ+Ğ+Ğ+rrœÚreturn_on_failcó~—|ddks.|d|jks|ddks|d|jkr|S|S©Nrr ©r)rrr§s rÚreturn_index_if_validz*TicTacToeGameManager.return_index_if_validësI€Ø �Œ8�aŠ<ˆ<˜5 œ8 t¤Ò6Ğ6¸%À¼(ÀQº,¸,È%ĞPQÌ(ĞVZÔVeÒJeĞJeØ!Ğ !؈ rcóD—t|j|j|j¬¦«S)N)r)rrrr©rs rÚmake_fresh_instancez(TicTacToeGameManager.make_fresh_instanceğs€İ# D¤O°T´]ÈtÌĞ_Ñ_Ô_Ğ_rrŸcóà—tj|¦« ¦«dkr|S|xdkr)| |d|d|z f|¬¦«Sxdkr)| |d|z |df|¬¦«Sxdkr,| |d|z |d|z f|¬¦«Sdkr+| |d|z |d|zf|¬¦«SdS)Nrr;r ©r§r<rKrM)r#rqrxr«©rrrŸr�s rÚ get_previousz!TicTacToeGameManager.get_previousós €İ Œ8�E‰?Œ?× Ò Ñ Ô  AÒ %Ğ %؈LØØ�’��Ø×1Ò1°5¸´8¸UÀ1¼Xȹ\Ğ2JĞ[`Ğ1ÑaÔaĞaØ�’��Ø×1Ò1°5¸´8¸a±<ÀÀqÄĞ2JĞ[`Ğ1ÑaÔaĞaØ�’��Ø×1Ò1°5¸´8¸a±<ÀÀqÄÈAÁĞ2NĞ_dĞ1ÑeÔeĞeØ’�Ø×1Ò1°5¸´8¸a±<ÀÀqÄÈAÁĞ2NĞ_dĞ1ÑeÔeĞeğ�rcóğ—tj|¦« ¦«|jdz kr|S|xdkr)| |d|d|zf|¬¦«Sxdkr)| |d|z|df|¬¦«Sxdkr,| |d|z|d|zf|¬¦«Sdkr+| |d|z|d|z f|¬¦«SdS)Nr r;rr°r<rKrM)r#rqrxrr«r±s rÚget_nextzTicTacToeGameManager.get_nexts€İ Œ8�E‰?Œ?× Ò Ñ Ô  D¤O°aÑ$7Ò 7Ğ 7؈LØØ�’��Ø×1Ò1°5¸´8¸UÀ1¼Xȹ\Ğ2JĞ[`Ğ1ÑaÔaĞaØ�’��Ø×1Ò1°5¸´8¸a±<ÀÀqÄĞ2JĞ[`Ğ1ÑaÔaĞaØ�’��Ø×1Ò1°5¸´8¸a±<ÀÀqÄÈAÁĞ2NĞ_dĞ1ÑeÔeĞeØ’�Ø×1Ò1°5¸´8¸a±<ÀÀqÄÈAÁĞ2NĞ_dĞ1ÑeÔeĞeğ�rcó^—|€| ¦«}tj|dk¦«S©Nr)r{r#rxr&s rr\z"TicTacToeGameManager.is_board_full s*€Ø ˆ=Ø—N’NÑ$Ô$ˆEİŒv�e˜q’jÑ!Ô!Ğ!rcó4—|j ¦«Sr)rÚcopyr­s rr{zTicTacToeGameManager.get_boards€ØŒz�ŠÑ Ô Ğ rcóf—| ¦«|_|j ¦«Sr)rrr¸r­s rÚresetzTicTacToeGameManager.resets'€Ø×*Ò*Ñ,Ô,ˆŒ ØŒz�ŠÑ Ô Ğ rcó—|jSrrªr­s rÚget_board_sizez#TicTacToeGameManager.get_board_sizes €ØŒĞrcóB—|jrdS|j d¦«| ¦«t |j¦«D]–}t |j¦«D]}|j|||jkr#| |dzdz|dzdz¦«ŒA|j|||j kr"|  |dzdz|dzdz¦«Œ€Œ—tj   ¦«tj ¦«dS)NF)rrrr1é2T)rrÚfillÚ _draw_boardrQrrr Ú _draw_circlerÚ _draw_crossr2ÚeventÚpumpr4Úflip)rr;r<s rÚrenderzTicTacToeGameManager.renders€Ø Œ=ğ Ø�5à Œ ×Ò˜Ñ#Ô#Ğ#Ø ×ÒÑÔĞݘœÑ)Ô)ğ Eğ EˆCݘTœ_Ñ-Ô-ğ Eğ E�Ø”:˜c”? 3Ô'¨4¬;Ò6Ğ6Ø×%Ò% c¨C¡i°"¡n°c¸C±iÀ"±nÑEÔEĞEĞEà”Z ”_ SÔ)¨TÔ->Ò>Ğ>Ø×$Ò$ S¨3¡Y°¡^°S¸3±YÀ±^ÑDÔDĞDøğ  Eõ Œ� Š ‰Œˆİ Œ �ŠÑÔĞØˆtrcól—|jrdStj |jd||fdd¦«dS)NÚgreené(r )rr2ÚdrawÚcircler©rr�Úys rrÁz!TicTacToeGameManager._draw_circle.s9€Ø Œ=ğ Ø ˆFİ Œ�Š�t”{ G¨a°¨V°R¸Ñ;Ô;Ğ;Ğ;Ğ;rcóø—|jrdStj |jd|dz |dz f|dz|dzfd¦«tj |jd|dz|dz f|dz |dzfd¦«dS)NÚredrÉr )rr2rÊÚlinerrÌs rrÂz TicTacToeGameManager._draw_cross3s‡€Ø Œ=ğ Ø ˆFİ Œ� Š �T”[ %¨!¨b©&°!°b±&Ğ)9¸AÀ¹FÀAÈÁFĞ;KÈQÑOÔOĞOİ Œ� Š �T”[ %¨!¨b©&°!°b±&Ğ)9¸AÀ¹FÀAÈÁFĞ;KÈQÑOÔOĞOĞOĞOrc óî—td|jdzd¦«D]Z}td|jdzd¦«D]>}tj |jdtj||dd¦«d¦«Œ?Œ[dS)Nrr1)éÿrÒrÒr )rQrr2rÊÚrectrÚRectrÌs rrÀz TicTacToeGameManager._draw_board9sŒ€İ�q˜$œ/¨CÑ/°Ñ5Ô5ğ Wğ WˆAݘ1˜dœo°Ñ3°SÑ9Ô9ğ Wğ W�İ”— ’ ˜Tœ[¨/½2¼7À1ÀaÈÈcÑ;RÔ;RĞTUÑVÔVĞVĞVğ Wğ Wğ Wrcó$—|j|dkSr¶r)rrs rÚis_emptyzTicTacToeGameManager.is_empty>s€ØŒz˜%Ô  AÒ%Ğ%rÚ observationcóø—g}| |j|j¦«}t|j¦«D]B}t|j¦«D]+}|||dkr| ||g¦«Œ,ŒC|S)a Legal moves are the empty spaces on the board. :param observation: A 2D numpy array representing the current state of the game. :param player: The player to check for. Since the game is symmetric, this is ignored. :return: A list of legal moves. r)rOrrQrN)rr×r Ú legal_movesr;r<s rr)z$TicTacToeGameManager.get_valid_movesAs�€ğˆ Ø!×)Ò)¨$¬/¸4¼?ÑKÔKˆ ݘœÑ)Ô)ğ 3ğ 3ˆCݘTœ_Ñ-Ô-ğ 3ğ 3�ؘsÔ# CÔ(¨AÒ-Ğ-Ø×&Ò&¨¨S zÑ2Ô2Ğ2øğ 3ğĞrcó>—|jrdStj¦«dS)NFT)rr2Úquitr­s rÚ pygame_quitz TicTacToeGameManager.pygame_quitPs!€Ø Œ=ğ Ø�5İ Œ‰ Œ ˆ ؈trcó´—|jrdSd„tj ¦«D¦«}tj ¦«dr|SdS)Nc3ó K—|] }|dzV—Œ dS)r1Nrœr�s rú <genexpr>z8TicTacToeGameManager.get_click_coords.<locals>.<genexpr>Ys&èè€Ğ:Ğ: !�Q˜#‘XĞ:Ğ:Ğ:Ğ:Ğ:Ğ:rr)rr2ÚmouseÚget_posÚ get_pressed)rÚ mouse_poss rÚget_click_coordsz%TicTacToeGameManager.get_click_coordsVs]€Ø Œ=ğ Ø ˆFØ:Ğ:¥r¤x×'7Ò'7Ñ'9Ô'9Ğ:Ñ:Ô:ˆ İ Œ8× Ò Ñ !Ô ! !Ô $ğ ØĞ ğ ğ rcó—|jrdS | ¦«| ¦«�-| ¦«\}}|||dkr||fSŒV)NTr)rÚcheck_pg_eventsrä)rrr�rÍs rÚget_human_inputz$TicTacToeGameManager.get_human_input]sp€Ø Œ=ğ Ø ˆFğ Ø × Ò Ñ "Ô "Ğ "Ø×$Ò$Ñ&Ô&Ğ2Ø×,Ò,Ñ.Ô.‘��1ؘ”8˜A”; !Ò#Ğ#ؘa˜4�Kğ  rcóÔ—|jrdStj ¦«D]?}|jtjkr(| ¦«tjd¦«Œ@dSr¶) rr2rÃÚgetÚtypeÚQUITrÜÚsysÚexit)rrÃs rræz$TicTacToeGameManager.check_pg_eventsisc€Ø Œ=ğ Ø ˆFİ”X—\’\‘^”^ğ ğ ˆEØŒz�RœWÒ$Ğ$Ø× Ò Ñ"Ô"Ğ"İ”˜‘ ” � øğ ğ rcó@—tj||jj¦«S)zÜ Converts an integer move from the network to a board index. :param move: An integer move selected from the network probabilities. :return: A tuple representing the board index (int,int). ©r#Ú unravel_indexrrR)rÚmoves rÚnetwork_to_boardz%TicTacToeGameManager.network_to_boardqs€õ Ô  d¤jÔ&6Ñ7Ô7Ğ7rc󪇗‰jrdStjd¬¦«t| ¦«�\}}t |¦«ˆfd„|D¦«}t j||¬¦«tjd¬¦«tj d¦«tj d¦«tj d ¦«tj ¦«}tj|d d ¬ ¦«| d ¦«t!j|¦«}t$j ‰jd¦«}t!jd‰j ¦«|¦«}|j|jz} t!jdt5|j|j¦«| f¦«} |  |d¦«|  |d |jf¦«|  |¦«dS)N)éé )Úfigsizec󪕗g|]O}tj|‰jj¦«d›dtj|‰jj¦«d›�‘ŒPS)rú;r rï)rCr�rs €rrEzKTicTacToeGameManager.save_screenshot_with_probabilities.<locals>.<listcomp>sfø€ğğğĞop•RÔ% a¨¬Ô)9Ñ:Ô:¸1Ô=ĞjĞjÅÔ@PĞQRĞTXÔT^ÔTdÑ@eÔ@eĞfgÔ@hĞjĞjğğğr)r�rÍéZ)ÚrotationÚMoveÚ ProbabilityzAction probabilitiesÚpngÚtight)ÚformatÚ bbox_inchesrÚRGBAÚRGB)rr)rÚpltÚfigureÚzipÚitemsÚprintÚsnsÚbarplotÚxticksÚxlabelÚylabelÚtitleÚioÚBytesIOÚsavefigÚseekrÚopenr2ÚimageÚtostringrÚ frombytesÚget_sizeÚheightÚnewÚmaxÚwidthÚpasteÚsave) rÚ action_probsÚpathÚlabelsÚ probabilitiesÚbufÚplot_imgÚsurface_bufferÚ surface_imgÚ total_heightÚ combined_imgs ` rÚ"save_screenshot_with_probabilitiesz7TicTacToeGameManager.save_screenshot_with_probabilitiesysÍø€Ø Œ=ğ Ø ˆFİ Œ ˜8Ğ$Ñ$Ô$Ğ$İ # \×%7Ò%7Ñ%9Ô%9Ğ :ш� İ ˆmÑÔĞğğğğØğñôˆå Œ �f  Ğ.Ñ.Ô.Ğ.İ Œ ˜BĞÑÔĞİ Œ �6ÑÔĞİ Œ �=Ñ!Ô!Ğ!İ Œ Ğ(Ñ)Ô)Ğ)åŒj‰lŒlˆİ Œ �C °7Ğ;Ñ;Ô;Ğ;Ø �Š�‰ Œ ˆ İ”:˜c‘?”?ˆõœ×*Ò*¨4¬;¸Ñ?Ô?ˆİ”o f¨d¬k×.BÒ.BÑ.DÔ.DÀnÑUÔUˆ 𠔨Ô);Ñ;ˆ İ”y ­¨X¬^¸[Ô=NÑ)OÔ)OĞQ]Ğ(^Ñ_Ô_ˆ Ø×Ò˜8 VÑ,Ô,Ğ,Ø×Ò˜;¨¨H¬OĞ(<Ñ=Ô=Ğ=Ø×Ò˜$ÑÔĞĞĞrcó —||zSrrœ)rr s rÚget_canonical_formz'TicTacToeGameManager.get_canonical_form—s €à�v‰~ĞrÚactioncóŒ—t|t¦«r| |¦«}| ¦«}|||<|Sr)r|ršròr¸)rrr*r Úboard_s rÚget_next_statez#TicTacToeGameManager.get_next_state›sB€İ �f�cÑ "Ô "ğ 3Ø×*Ò*¨6Ñ2Ô2ˆFØ—’‘”ˆØˆˆv‰Øˆ rÚvalcó—||_dSr)r)rr.s rÚ set_headlessz!TicTacToeGameManager.set_headless¢s €ØˆŒ ˆ ˆ rÚstatecó:—tj|dkdd¦«}|Sr©)r#r�)rr1r Úmasks rÚget_invalid_actionsz(TicTacToeGameManager.get_invalid_actions¥s€İŒx˜ š  A qÑ)Ô)ˆØˆ rcóz—t|j¦« dd¦« dd¦«S)NÚ1ÚXz-1ÚO)r}rÚreplacer­s rÚ__str__zTicTacToeGameManager.__str__©s0€İ�4”:‰Œ×&Ò& s¨CÑ0Ô0×8Ò8¸¸sÑCÔCĞCrr)T)rœ)r N)6Ú__name__Ú __module__Ú __qualname__Ú__doc__ršÚboolrÚtuplerrrr#ÚndarrayÚlistr/rÚcallablerYrbrfrsrur€r]r—Údictr}r¦r«r®r²r´r\r{rºr¼rÆrÁrÂrÀrÖr)rÜrärçræròr'Ú staticmethodr)r-r0r4r:rœrrrrs8€€€€€ğğğ3ğ3 3ğ3°$ğ3ÈDğ3ğ3ğ3ğ3ğ#˜3ğ# uğ#°ğ#ğ#ğ#ğ#ğ¨#°©*ğ¸ğğğğğğğğ*°B´Jğ*ÈTğ*ğ*ğ*ğ*ğ ğğğ b¤jğ¸ğÀTğğğğğB ğ  ¤ ğ °tğ ÀsÈTÁzğ ğ ğ ğ ğ°´ ğÀ(ğğğğğ&!¨¬ğ!ğ!ğ!ğ!ğLğL ğL°DğLğLğLğLğ ğ Sğ¸ğğğğğ ğ¨ğ°ğÀDğğğğğ,'ğ'°3ğ'¸3ğ'Ètğ'ğ'ğ'ğ'ğ-,ğ-,°ğ-,¸ğ-,ÈTĞRWĞY\ĞR\ÔM]Ğ`dÑMdğ-,ğ-,ğ-,ğ-,ğ^ğ¨5ğÀ%ğĞQVğğğğğ `ğ`ğ`ğ f %ğ f¨cğ f°cğ fğ fğ fğ fğ f˜eğ f¨#ğ f°#ğ fğ fğ fğ fğ"ğ"¨4ğ"ğ"ğ"ğ"ğ !ğ!ğ!ğ!ğ!ğ!ğğğğ˜ğğğğğ$<ğ<ğ<ğ<ğ PğPğPğPğ WğWğWğ &˜eğ&¨ğ&ğ&ğ&ğ&ğ ğ ¨2¬:ğ ¸s¸{Àdğ ĞVZğ ğ ğ ğ ğ˜Tğğğğğ ğğğ  R¤Zğ ğ ğ ğ ğğğğ8ğ8ğ8ğ ğ ğ ğ<ğ¨R¬Zğğğñ„\ğğ B¤J𸸠¸uğÈcğĞVXÔV`ğğğğğ ğğğğğ¨¬ğ¸SğğğğğDğDğDğDğDrr)rr+rìÚmatplotlib.pyplotÚpyplotrÚnumpyr#Úpygamer2ÚseabornrÚtorchrŒÚPILrÚmu_alpha_zero.General.az_gamerrrœrrú<module>rNsÎğØ € € € Ø € € € Ø € € € àĞĞĞĞĞØĞĞĞØĞĞĞØĞĞĞØĞĞĞØĞĞĞĞĞà7Ğ7Ğ7Ğ7Ğ7Ğ7ğ[Dğ[Dğ[Dğ[Dğ[D˜=ñ[Dô[Dğ[Dğ[Dğ[Dr
31,194
Python
.py
118
260.949153
2,695
0.344221
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,525
asteroids.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/Game/__pycache__/asteroids.cpython-311.pyc
§ Ô`�f(ãóJ—ddlZddlZddlmZddlmZGd„de¦«ZdS)éN)Úmake)Ú MuZeroGamec ó6—eZdZdejdefd„Zd„Zdejpej fd„Z defd„Z defd„Z depd de pd fd „Zd „Zdd edepd dedejpej ee ffd„Zdd edepd dedejpej ee ffd„Zd„Zdejfd„Zdejdefd„Zd S)Ú AsteroidsÚstateÚplayercó—|S©N©©Úselfrrs úK/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/Game/asteroids.pyÚget_state_for_passive_playerz&Asteroids.get_state_for_passive_player s€Øˆ ócó<—td¦«|_d|_dS)NzALE/Asteroids-v5F)rÚenvÚdone©r s rÚ__init__zAsteroids.__init__ s€İĞ*Ñ+Ô+ˆŒØˆŒ ˆ ˆ rÚreturncó>—|j ¦«\}}|Sr )rÚreset)r ÚobsÚ_s rrzAsteroids.resets€Ø”—’Ñ!Ô!‰ˆˆQ؈ rcó—dS)Nrr rs rÚget_noopzAsteroids.get_noops€Øˆqrcó$—|jjjSr )rÚ action_spaceÚnrs rÚget_num_actionszAsteroids.get_num_actionss€ØŒxÔ$Ô&Ğ&rNcó—|jSr )r)r rs rÚ game_resultzAsteroids.game_results €ØŒyĞrcó—t¦«Sr )rrs rÚmake_fresh_instancezAsteroids.make_fresh_instances €İ‰{Œ{ĞréÚactionÚ frame_skipcóZ—|j |¦«\}}}}}||_|||fSr )rÚstepr)r r&rr'rÚrewrrs rÚget_next_statezAsteroids.get_next_state!s3€à#œxŸ}š}¨VÑ4Ô4шˆS�$˜˜1؈Œ Ø�C˜ˆ~Ğrcó�—| ||¦«\}}}t|dz ¦«D]}| ||¦«\}}}Œ|||fS)Né)r+Úrange)r r&rr'rr*rÚis rÚframe_skip_stepzAsteroids.frame_skip_step'sc€à×,Ò,¨V°VÑ<Ô<‰ˆˆS�$İ�z A‘~Ñ&Ô&ğ Ağ AˆAØ!×0Ò0°¸Ñ@Ô@‰NˆC��d�dØ�C˜ˆ~Ğrcó—dSr r rs rÚrenderzAsteroids.render.s€Ø ˆrc ó>—|jj ¦«Sr )rrÚsample)r rÚkwargss rÚget_random_valid_actionz!Asteroids.get_random_valid_action1s€ØŒxÔ$×+Ò+Ñ-Ô-Ğ-rcóN—tj| ¦«¦«Sr )ÚnpÚonesr r s rÚget_invalid_actionszAsteroids.get_invalid_actions4s€İŒw˜×,Ò,Ñ.Ô.Ñ0Ô0Ğ0r)r%)Ú__name__Ú __module__Ú __qualname__r8ÚndarrayÚintrrÚthÚTensorrrr Úboolr"r$r+r0r2r6r:r rrrrsÄ€€€€€ğ°"´*ğÀcğğğğğğğğ�r”zĞ. R¤Yğğğğğ˜#ğğğğğ' ğ'ğ'ğ'ğ'ğ # +¨ğ°$°,¸$ğğğğğğğğğ Sğ°#°+¸ğÈ3ğØ ŒJĞ #˜"œ) S¨$ğX0ğğğğğ ğ cğ°3°;¸$ğÈCğØ ŒJĞ #˜"œ) S¨$ğY0ğğğğğ ğ ğ ğ.¨R¬Zğ.ğ.ğ.ğ.ğ1¨¬ğ1¸Sğ1ğ1ğ1ğ1ğ1ğ1rr) Únumpyr8Útorchr@Ú gymnasiumrÚmu_alpha_zero.General.mz_gamerrr rrú<module>rGsuğØĞĞĞØĞĞĞØĞĞĞĞĞà4Ğ4Ğ4Ğ4Ğ4Ğ4ğ-1ğ-1ğ-1ğ-1ğ-1� ñ-1ô-1ğ-1ğ-1ğ-1r
3,983
Python
.py
20
198.1
830
0.346367
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,526
muzero.py
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/MuZero/muzero.py
import os import sys import numpy as np from mu_alpha_zero.General.arena import GeneralArena sys.path.append(os.path.abspath(".")) from typing import Type import torch as th from mu_alpha_zero.AlphaZero.Arena.players import NetPlayer from mu_alpha_zero.trainer import Trainer from mu_alpha_zero.General.utils import find_project_root, net_not_none from mu_alpha_zero.General.mz_game import MuZeroGame from mu_alpha_zero.General.memory import GeneralMemoryBuffer from mu_alpha_zero.General.network import GeneralNetwork from mu_alpha_zero.MuZero.MZ_Arena.arena import MzArena from mu_alpha_zero.MuZero.MZ_MCTS.mz_search_tree import MuZeroSearchTree from mu_alpha_zero.config import MuZeroConfig from mu_alpha_zero.Hooks.hook_manager import HookManager class MuZero: """ Class for managing the training and creation of a MuZero model. Attributes: game_manager (MuZeroGame): The game manager instance. net (GeneralNetwork): The neural network used by MuZero for prediction. trainer (Trainer): The trainer object responsible for training the model. device (torch.device): The device (CPU or CUDA) used for computations. Methods: __init__(self, game_manager: MuZeroGame) Initializes a new instance of the MuZero class. create_new(self, args: dict, network_class: Type[GeneralNetwork], headless: bool = True, checkpointer_verbose: bool = False) Creates a new MuZero model using the specified arguments. train(self) Trains the MuZero model. """ def __init__(self, game_manager: MuZeroGame): self.game_manager = game_manager self.net = None self.trainer = None self.device = th.device("cuda" if th.cuda.is_available() else "cpu") self.tree = None self.muzero_config = None def create_new(self, muzero_config: MuZeroConfig, network_class: Type[GeneralNetwork], memory: GeneralMemoryBuffer, hook_manager: HookManager or None = None, headless: bool = True, arena_override: GeneralArena or None = None, checkpointer_verbose: bool = False): muzero_config.net_action_size = int(self.game_manager.get_num_actions()) if not os.path.isabs(muzero_config.pickle_dir): muzero_config.pickle_dir = find_project_root() + "/" + muzero_config.pickle_dir self.muzero_config = muzero_config network = network_class.make_from_config(muzero_config, hook_manager=hook_manager).to( self.device) self.tree = MuZeroSearchTree(self.game_manager.make_fresh_instance(), muzero_config) net_player = NetPlayer(self.game_manager.make_fresh_instance(), **{"network": network, "monte_carlo_tree_search": self.tree}) arena = MzArena(self.game_manager.make_fresh_instance(), self.muzero_config, self.device) if arena_override is None else arena_override self.trainer = Trainer.create(self.muzero_config, self.game_manager.make_fresh_instance(), network, self.tree, net_player, headless=headless, checkpointer_verbose=checkpointer_verbose, arena_override=arena, hook_manager=hook_manager, memory_override=memory) self.net = self.trainer.get_network() def from_checkpoint(self, network_class: Type[GeneralNetwork], memory: GeneralMemoryBuffer, path: str, checkpoint_dir: str, headless: bool = True, hook_manager: HookManager or None = None, logdir_override: str = None, checkpointer_verbose: bool = False): self.trainer = Trainer.from_checkpoint(network_class, MuZeroSearchTree, NetPlayer, path, checkpoint_dir, self.game_manager, headless=headless, hook_manager=hook_manager, checkpointer_verbose=checkpointer_verbose, mem=memory, log_dir_override=logdir_override) self.net = self.trainer.get_network() self.tree = self.trainer.get_tree() self.args = self.trainer.get_args() def train(self): net_not_none(self.net) self.trainer.train() def train_parallel(self, use_reanalyze: bool): net_not_none(self.net) self.trainer.train_parallel(use_reanalyze=use_reanalyze, use_pitting=False) def predict(self, x: np.ndarray, tau: float = 0) -> int: net_not_none(self.net) assert x.shape == self.muzero_config.target_resolution + ( 3,), "Input shape must match target resolution with 3 channels. Got: " + str(x.shape) self.net.eval() pi, (v, _) = self.tree.search(self.net, x, None, self.device, tau=tau) move = self.game_manager.select_move(pi, tau=self.muzero_config.tau) return move
5,294
Python
.py
94
42.946809
119
0.620876
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,527
utils.py
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/MuZero/utils.py
import json import math from typing import Callable import numpy as np import optuna import torch as th from PIL import Image from mu_alpha_zero.config import MuZeroConfig def add_actions_to_obs(observations: th.Tensor, actions: th.Tensor, dim=0): return th.cat((observations, actions), dim=dim) def match_action_with_obs(observations: th.Tensor, action: int, config: MuZeroConfig): if config.is_atari: tensor_action = th.zeros((config.net_action_size,), dtype=th.float32, device=observations.device).scatter(0, th.tensor( action), 1) tensor_action = tensor_action.expand((observations.shape[1], observations.shape[2])) else: if config.actions_are == "columns": tensor_action = th.full((1, observations.size(1), observations.size(2)), scale_action(action, config.net_action_size), device=observations.device) elif config.actions_are == "rows": tensor_action = th.zeros((observations.shape[1],), device=observations.device).scatter(0, th.tensor(action, device=observations.device), 1).unsqueeze(0) tensor_action = tensor_action.expand((1, observations.shape[1], observations.shape[2])) elif config.actions_are == "board": # unravel to 2d action = [action % observations.shape[1], action % observations.shape[2]] tensor_action = th.zeros((1, observations.shape[1], observations.shape[2]), device=observations.device)[ action[0], action[1]] = 1 else: raise ValueError("Invalid config.actions_are value.") return add_actions_to_obs(observations, tensor_action) def match_action_with_obs_batch(observation_batch: th.Tensor, action_batch: list[int], config: MuZeroConfig): tensors = [match_action_with_obs(observation_batch[index], action_batch[index], config).unsqueeze(0) for index in range(len(action_batch))] return th.cat(tensors, dim=0) def resize_obs(observations: np.ndarray, size: tuple[int, int], resize: bool) -> np.ndarray: if not resize: return observations obs = Image.fromarray(observations) obs = obs.resize(size) return np.array(obs) def scale_state(state: np.ndarray, scale: bool): if not scale: return state # scales the given state to be between 0 and 1 return state / 255 def scale_action(action: int, num_actions: int): # return action / (num_actions - 1) return (action + 1) / num_actions def scale_hidden_state(hidden_state: th.Tensor): was_reshaped = False if len(hidden_state.shape) == 3: hidden_state = hidden_state.unsqueeze(0) was_reshaped = True max_ = hidden_state.view(hidden_state.size(0), hidden_state.size(1), -1).max(dim=2, keepdim=True)[0].unsqueeze(-1) min_ = hidden_state.view(hidden_state.size(0), hidden_state.size(1), -1).min(dim=2, keepdim=True)[0].unsqueeze(-1) max_min_dif = max_ - min_ max_min_dif[max_min_dif < 1e-5] += 1e-5 hidden_state = (hidden_state - min_) / max_min_dif return hidden_state.squeeze(0) if was_reshaped else hidden_state def scale_reward_value(value: th.Tensor, e: float = 0.001): return th.sign(value) * (th.sqrt(th.abs(value) + 1) - 1) + e * value def invert_scale_reward_value(value: th.Tensor, e: float = 0.001): return th.sign(value) * ( ((th.sqrt(1 + 4 * 0.001 * (th.abs(value) + 1 + 0.001)) - 1) / (2 * 0.001)) ** 2 - 1 ) def scale_reward(reward: float): return math.log(reward + 1, 5) def muzero_loss(y_hat, y): return -th.sum(y * y_hat, dim=1).unsqueeze(1) def scalar_to_support(x: th.Tensor, support_size: int, is_atari: bool): # x is of shape: [batch_size,1] at unroll step t if is_atari: x = scale_reward_value(x) x = th.clamp(x, -support_size, support_size) lower_p = 1 - (x - x.floor()) upper_p = x - x.floor() support = th.zeros((x.size(0), 2 * support_size + 1), device=x.device) support.scatter_(1, (support_size + x.floor()).type(th.int64), lower_p) upper_index = (support_size + x.floor() + 1) upper_index[upper_index >= 2 * support_size] = 0 support.scatter_(1, ( upper_index).type(th.int64), upper_p) return support def support_to_scalar(x: th.Tensor, support_size: int, is_atari: bool): support = th.arange(-support_size, support_size + 1, 1, dtype=x.dtype, device=x.device).unsqueeze(0) output = th.sum(x * support, dim=1) if is_atari: output = invert_scale_reward_value(output) return output.unsqueeze(1) def mz_optuna_parameter_search(n_trials: int, storage: str or None, study_name: str, game, muzero_config: MuZeroConfig, in_memory: bool = False, direction: str = "maximize", arena_override=None, memory_override=None): def objective(trial: optuna.Trial): muzero_config.num_simulations = trial.suggest_int("num_mc_simulations", 60, 800) muzero_config.lr = trial.suggest_float("lr", 1e-5, 5e-2, log=True) muzero_config.tau = trial.suggest_float("temp", 0.5, 2) muzero_config.arena_tau = trial.suggest_float("arena_temp", 0, 2) muzero_config.c = trial.suggest_float("cpuct", 0.7, 2) muzero_config.l2 = trial.suggest_float("l2_norm", 1e-6, 6e-2) # muzero_config.frame_buffer_size = trial.suggest_int("frame_buffer_size", 10, 40) muzero_config.alpha = trial.suggest_float("alpha", 0.4, 2) muzero_config.beta = trial.suggest_float("beta", 0.1, 1) muzero_config.balance_term = trial.suggest_categorical("loss_scale", [1, 0.5]) muzero_config.num_blocks = trial.suggest_int("num_blocks", 5, 32) muzero_config.K = trial.suggest_int("k", 2, 25) muzero_config.epochs = trial.suggest_int("epochs", 200, 500) muzero_config.self_play_games = 300 muzero_config.num_iters = 1 device = th.device("cuda" if th.cuda.is_available() else "cpu") trial.net_action_size = int(game.get_num_actions()) network = MuZeroNet.make_from_config(muzero_config).to(device) tree = MuZeroSearchTree(game.make_fresh_instance(), muzero_config) net_player = NetPlayer(game.make_fresh_instance(), **{"network": network, "monte_carlo_tree_search": tree}) if arena_override is None: arena = MzArena(game.make_fresh_instance(), muzero_config, device) else: arena = arena_override if memory_override is None: mem = MemBuffer(muzero_config.max_buffer_size, disk=True, full_disk=False, dir_path=muzero_config.pickle_dir) else: mem = memory_override trainer = Trainer.create(muzero_config, game.make_fresh_instance(), network, tree, net_player, headless=True, arena_override=arena, checkpointer_verbose=False, memory_override=mem) trainer.train() mean = trainer.get_arena_win_frequencies_mean() trial.report(mean, muzero_config.num_iters) print(f"Trial {trial.number} finished with win freq {mean}.") del trainer del network del tree del net_player return mean from mu_alpha_zero.MuZero.MZ_Arena.arena import MzArena from mu_alpha_zero.MuZero.MZ_MCTS.mz_search_tree import MuZeroSearchTree from mu_alpha_zero.MuZero.Network.networks import MuZeroNet from mu_alpha_zero.trainer import Trainer from mu_alpha_zero.AlphaZero.Arena.players import NetPlayer from mu_alpha_zero.mem_buffer import MemBuffer muzero_config.show_tqdm = False if in_memory: study = optuna.create_study(study_name=study_name, direction=direction) else: if storage is None: raise ValueError("Storage can't be None if in_memory is False.") study = optuna.load_study(study_name=study_name, storage=storage) study.optimize(objective, n_trials=n_trials) with open(f"{muzero_config.checkpoint_dir}/study_params.json", "w") as file: json.dump(study.best_params, file) def mask_invalid_actions(invalid_actions: np.ndarray, pi: np.ndarray): if np.sum(invalid_actions) == 0: print("No valid actions left.") pi = pi.reshape(-1) * invalid_actions.reshape(-1) return pi / pi.sum() def mask_invalid_actions_batch(get_invalid_actions: Callable, pis: th.Tensor, players: list[int]): invalid_actions_ts = th.empty(pis.shape) for i, player in enumerate(players): invaid_actions = get_invalid_actions(pis[i], player) invalid_actions_ts[i] = invaid_actions return invalid_actions_ts def get_opponent_action(game_state: np.ndarray, last_move: int, last_player: int, opponent: str, tree, net) -> tuple: if opponent == "muzero": res = tree.search(net, game_state, -last_player, th.device("cuda" if th.cuda.is_available() else "cpu")) return res[0], res[1][0] elif opponent == "minimax": return get_minimax_action_connect4(game_state[:,:,0], last_move, last_player) def get_minimax_action_connect4(game_state: np.ndarray, last_move: int, last_player: int) -> tuple[dict, None]: from mu_alpha_zero.MuZero.MinimaxOpponent.board import Board from mu_alpha_zero.MuZero.MinimaxOpponent.player import PlayerMM board = Board.from_game_state(game_state, (last_player, last_move)) depth = 5 player = PlayerMM(depth, False) move = player.findMove(board) pi = [0.0] * game_state.shape[1] pi[move] = 1.0 return {idx: el for idx, el in enumerate(pi)}, None
10,181
Python
.py
183
45.071038
140
0.624108
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,528
lazy_arrays.py
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/MuZero/lazy_arrays.py
import gzip import os import uuid import numpy as np class LazyArray: def __init__(self, array: np.ndarray, directory_path: str): self.directory_path = directory_path self.path = f"{directory_path}/array_{uuid.uuid4()}.npy.gz" self.persistent = False self.save_array(array) def load_array(self): f = gzip.GzipFile(self.path, 'r') arr = np.load(f) f.close() return arr def save_array(self, array: np.ndarray): file = gzip.GzipFile(self.path, 'w') np.save(file, array) file.close() def __array__(self): return self.load_array() def remove_array(self): os.remove(self.path) def make_persistent(self): self.persistent = True
767
Python
.py
25
23.84
67
0.617486
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,529
utils.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/MuZero/__pycache__/utils.cpython-311.pyc
§ ‰Ó¢f�ã ó$—ddlZddlZddlmZddlZddlZddlZddl m Z ddl m Z d3dej dej fd„Zdej defd „Zd ej d eefd „Zdejd eeefdedejfd„Zdejdefd„Zdedefd„Zdej fd„Zd4dej defd„Zd4dej defd„Zdefd„Zdej d efd!„Zdej d efd"„Z d5d%ed&e pdd'e d(e d)ed*e f d+„Z!d,ejd-ejfd.„Z"d/ed0ej d1eefd2„Z#dS)6éN)ÚCallable)ÚImage)Ú MuZeroConfigÚ observationsÚactionscó2—tj||f|¬¦«S)N©Údim)ÚthÚcat)rrr s úI/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/MuZero/utils.pyÚadd_actions_to_obsr s€İ Œ6�< Ğ)¨sĞ 3Ñ 3Ô 3Ğ3óÚactioncó¢—tjd|jd|jdf|tj|j¬¦«}t ||¦«S)Néé©ÚdtypeÚdevice)r ÚfullÚshapeÚfloat32rr)rrs r Úmatch_action_with_obsrsO€İ ŒW�a˜Ô+¨AÔ.° Ô0BÀ1Ô0EĞFÈÕVXÔV`Ø(Ô/ğ1ñ1ô1€Få ˜l¨FÑ 3Ô 3Ğ3rÚobservation_batchÚ action_batchcóp‡—ˆfd„|D¦«}tj|d¬¦«}t‰|d¬¦«S)Nc ó’•—g|]C}tjdd‰jd‰jdf|tj‰j¬¦«‘ŒDS)rrér)r rrrr)Ú.0rrs €r ú <listcomp>z/match_action_with_obs_batch.<locals>.<listcomp>smø€ğTğTğTØ<BõŒw˜˜1Ğ/Ô5°aÔ8Ğ:KÔ:QĞRSÔ:TĞUĞW]ÕegÔeoØ/Ô6ğ8ñ8ô8ğTğTğTrrr r)r r r)rrÚtensorsrs` r Úmatch_action_with_obs_batchr#s\ø€ğTğTğTğTØFRğTñTôT€GåŒf�W !Ğ$Ñ$Ô$€Gİ Ğ/°¸aĞ @Ñ @Ô @Ğ@rÚsizeÚresizeÚreturncó„—|s|Stj|¦«}| |¦«}tj|¦«S©N)rÚ fromarrayr%ÚnpÚarray)rr$r%Úobss r Ú resize_obsr-s>€Ø ğØĞİ Œ/˜,Ñ 'Ô '€CØ �*Š*�TÑ Ô €Cİ Œ8�C‰=Œ=ĞrÚstateÚscalecó—|s|S|dz S)Néÿ©)r.r/s r Ú scale_stater3&s€Ø ğØˆ à �3‰;ĞrÚ num_actionscó—|dz|z S©Nrr2)rr4s r Ú scale_actionr7-s€à �Q‰J˜+Ñ %Ğ%rÚ hidden_statecón—d}t|j¦«dkr| d¦«}d}| | d¦«| d¦«d¦« dd¬¦«d d¦«}| | d¦«| d¦«d¦« dd¬¦«d d¦«}||z }d ||dk<||z |z }|r| d¦«n|S) NFrrTréÿÿÿÿr)r Úkeepdimçñh㈵øä>)ÚlenrÚ unsqueezeÚviewr$ÚmaxÚminÚsqueeze)r8Ú was_reshapedÚmax_Úmin_Ú max_min_difs r Úscale_hidden_staterG2s4€Ø€Lİ ˆ<Ô ÑÔ !Ò#Ğ#Ø#×-Ò-¨aÑ0Ô0ˆ ؈ Ø × Ò ˜\×.Ò.¨qÑ1Ô1°,×2CÒ2CÀAÑ2FÔ2FÀrÑ JÔ J× NÒ NĞSTĞ]aĞ NÑ bÔ bĞcdÔ e× oÒ oĞprÑ sÔ s€DØ × Ò ˜\×.Ò.¨qÑ1Ô1°,×2CÒ2CÀAÑ2FÔ2FÀrÑ JÔ J× NÒ NĞSTĞ]aĞ NÑ bÔ bĞcdÔ e× oÒ oĞprÑ sÔ s€Dؘ‘+€KØ$(€K� ˜qÒ Ñ!Ø  4Ñ'¨;Ñ6€LØ&2Ğ Dˆ<× Ò  Ñ "Ô "Ğ "¸ ĞDrçü©ñÒMbP?ÚvalueÚecó�—tj|¦«tjtj|¦«dz¦«dz z||zzSr6©r ÚsignÚsqrtÚabs©rIrJs r Úscale_reward_valuerQ?s:€İ Œ7�5‰>Œ>�RœW¥R¤V¨E¡]¤]°QÑ%6Ñ7Ô7¸!Ñ;Ñ <¸qÀ5¹yÑ HĞHrcó¨—tj|¦«tjddtj|¦«dzdzzz¦«dz dz dzdz zS)Nrgü©ñÒMbp?rHgü©ñÒMb`?rrLrPs r Úinvert_scale_reward_valuerSCsZ€İ Œ7�5‰>Œ>İŒg�a˜)¥r¤v¨e¡}¤}°qÑ'8¸5Ñ'@ÑAÑAÑBÔBÀQÑFÈ9Ñ UØñ àñ ñ ğrÚrewardcó2—tj|dzd¦«S)Nré)ÚmathÚlog)rTs r Ú scale_rewardrYLs€İ Œ8�F˜Q‘J Ñ "Ô "Ğ"rÚxÚ support_sizecón—t|¦«}tj|| |¦«}d|| ¦«z z }|| ¦«z }tj| d¦«d|zdzf|j¬¦«}| d|| ¦«z tj ¦«|¦« | d|| ¦«zdz tj ¦«|¦«n#t$rYnwxYw|S)Nrrr)r) rQr ÚclampÚfloorÚzerosr$rÚscatter_ÚtypeÚint64Ú RuntimeError)rZr[Úlower_pÚupper_pÚsupports r Úscalar_to_supportrgPs!€å˜1ÑÔ€Aİ Œ��\�M <Ñ0Ô0€AØ�1�q—w’w‘y”y‘=Ñ!€GØ�!—'’'‘)”)‰m€GİŒh˜Ÿš˜q™ œ  1 |Ñ#3°aÑ#7Ğ8ÀÄĞJÑJÔJ€GØ ×Ò�Q˜¨¯ª© ¬ Ñ1×7Ò7½¼ÑAÔAÀ7ÑKÔKĞKğ Ø×ҘؘqŸwšw™yœyÑ(¨1Ñ,¯dªdµ2´8©n¬n¸gñ Gô Gğ Gğ Gøå ğ ğ ğ à ˆğ øøøğ €NsÃA D%Ä% D2Ä1D2cóğ—tj| |dzd|j|j¬¦« d¦«}tj||zd¬¦«}t |¦«}| d¦«S)Nrrrr )r Úarangerrr>ÚsumrS)rZr[rfÚoutputs r Úsupport_to_scalarrlasq€İŒi˜˜  |°aÑ'7¸À!Ä'ĞRSÔRZĞ[Ñ[Ô[×eÒeĞfgÑhÔh€Gİ ŒV�A˜‘K QĞ 'Ñ 'Ô '€Fİ & vÑ .Ô .€FØ × Ò ˜AÑ Ô ĞrFÚmaximizeÚn_trialsÚstorageÚ study_nameÚ muzero_configÚ in_memoryÚ directionc óꇇ‡‡‡ ‡ ‡‡‡‡—dtjfˆ ˆ ˆˆˆˆˆˆˆˆf d„ } ddlmŠddlmŠddlmŠ ddlm Šddl m Šdd l m Š d ‰_|rtj||¬ ¦«} n'|€t!d ¦«‚tj||¬ ¦«} |  | |¬¦«t'‰j›d�d¦«5} t+j| j| ¦«ddd¦«dS#1swxYwYdS)NÚtrialc óî• —| ddd¦«‰_| dddd¬¦«‰_| d d d ¦«‰_| d d d ¦«‰_| ddd ¦«‰_| ddd¦«‰_| ddd ¦«‰_| ddd¦«‰_ |  ddd g¦«‰_ | ddd¦«‰_ | dd d¦«‰_ | ddd ¦«‰_d!‰_d‰_t#jt"j ¦«rd"nd#¦«}t+‰ ¦«¦«|_‰  ‰¦« |¦«}‰ ‰ ¦«‰¦«}‰ ‰ ¦«fi||d$œ¤�}‰€ ‰ ‰ ¦«‰|¦«}n‰}‰€‰ ‰jdd%‰j¬&¦«}n‰}‰ ‰‰ ¦«|||d|d%|¬'¦ « }| ¦«| ¦«}|  |‰j¦«tCd(|j"›d)|›d*�¦«~~~~|S)+NÚnum_mc_simulationsé<i Úlrr<gš™™™™™©?T)rXÚtempgà?rÚ arena_temprÚcpuctgffffffæ?Úl2_normg�íµ ÷ư>g¸…ëQ¸®?Úalphagš™™™™™Ù?Úbetagš™™™™™¹?rÚ loss_scaleÚ num_blocksrVé ÚkéÚepochséÈiôi,ÚcudaÚcpu)ÚnetworkÚmonte_carlo_tree_searchF)ÚdiskÚ full_diskÚdir_path)ÚheadlessÚarena_overrideÚcheckpointer_verboseÚmemory_overridezTrial z finished with win freq ú.)#Ú suggest_intÚnum_simulationsÚ suggest_floatryÚtauÚ arena_tauÚcÚl2r~rÚsuggest_categoricalÚ balance_termr�ÚKr…Úself_play_gamesÚ num_itersr rr‡Ú is_availableÚintÚget_num_actionsÚnet_action_sizeÚmake_from_configÚtoÚmake_fresh_instanceÚmax_buffer_sizeÚ pickle_dirÚcreateÚtrainÚget_arena_win_frequencies_meanÚreportÚprintÚnumber)rurr‰ÚtreeÚ net_playerÚarenaÚmemÚtrainerÚmeanÚ MemBufferÚ MuZeroNetÚMuZeroSearchTreeÚMzArenaÚ NetPlayerÚTrainerr�Úgamer‘rqs €€€€€€€€€€r Ú objectivez-mz_optuna_parameter_search.<locals>.objectiveks ø€Ø(-×(9Ò(9Ğ:NĞPRĞTWÑ(XÔ(Xˆ Ô%Ø ×.Ò.¨t°T¸4ÀTĞ.ÑJÔJˆ ÔØ!×/Ò/°¸¸QÑ?Ô?ˆ ÔØ"'×"5Ò"5°lÀAÀqÑ"IÔ"Iˆ ÔØ×-Ò-¨g°s¸AÑ>Ô>ˆ ŒØ ×.Ò.¨y¸$ÀÑEÔEˆ Ôà#×1Ò1°'¸3ÀÑBÔBˆ ÔØ"×0Ò0°¸¸aÑ@Ô@ˆ ÔØ%*×%>Ò%>¸|ÈaĞQTÈXÑ%VÔ%Vˆ Ô"Ø#(×#4Ò#4°\À1ÀbÑ#IÔ#Iˆ Ô Ø×+Ò+¨C°°BÑ7Ô7ˆ ŒØ$×0Ò0°¸3ÀÑDÔDˆ Ôà(+ˆ Ô%Ø"#ˆ Ô唥R¤W×%9Ò%9Ñ%;Ô%;ĞF˜6˜6ÀÑGÔGˆİ # D×$8Ò$8Ñ$:Ô$:Ñ ;Ô ;ˆÔØ×,Ò,¨]Ñ;Ô;×>Ò>¸vÑFÔFˆØĞ × 8Ò 8Ñ :Ô :¸MÑJÔJˆØ�Y˜t×7Ò7Ñ9Ô9ĞsĞsÈĞmqĞ=rĞ=rĞsĞsˆ Ø Ğ !Ø�G˜D×4Ò4Ñ6Ô6¸ ÀvÑNÔNˆEˆEà"ˆEØ Ğ "Ø�)˜MÔ9ÀĞPUØ%2Ô%=ğ?ñ?ô?ˆCˆCğ"ˆCØ—.’. °×0HÒ0HÑ0JÔ0JÈGĞUYĞ[eĞptØ05ÈEĞcfğ!ñhôhˆà� Š ‰ŒˆØ×5Ò5Ñ7Ô7ˆØ � Š �T˜=Ô2Ñ3Ô3Ğ3İ ĞD�u”|ĞDĞD¸TĞDĞDĞDÑEÔEĞEØ Ø Ø Ø Øˆ rr)r·)r¶)rµ)r¹)r¸)r´F)rprsz,Storage can't be None if in_memory is False.)rpro)rnz/study_params.jsonÚw)ÚoptunaÚTrialÚ#mu_alpha_zero.MuZero.MZ_Arena.arenar·Ú+mu_alpha_zero.MuZero.MZ_MCTS.mz_search_treer¶Ú%mu_alpha_zero.MuZero.Network.networksrµÚmu_alpha_zero.trainerr¹Ú%mu_alpha_zero.AlphaZero.Arena.playersr¸Úmu_alpha_zero.mem_bufferr´Ú show_tqdmÚ create_studyÚ ValueErrorÚ load_studyÚoptimizeÚopenÚcheckpoint_dirÚjsonÚdumpÚ best_params)rnrorprºrqrrrsr�r‘r»ÚstudyÚfiler´rµr¶r·r¸r¹s `` `` @@@@@@r Úmz_optuna_parameter_searchrÑhsÈøøøøøøøøøø€ğ*�œğ*ğ*ğ*ğ*ğ*ğ*ğ*ğ*ğ*ğ*ğ*ğ*ğ*ğ*ğ*ğX<Ğ;Ğ;Ğ;Ğ;Ğ;ØLĞLĞLĞLĞLĞLØ?Ğ?Ğ?Ğ?Ğ?Ğ?Ø-Ğ-Ğ-Ğ-Ğ-Ğ-Ø?Ğ?Ğ?Ğ?Ğ?Ğ?Ø2Ğ2Ğ2Ğ2Ğ2Ğ2à#€MÔØğJİÔ#¨zÀYĞOÑOÔOˆˆà ˆ?İĞKÑLÔLĞ LİÔ!¨ZÀĞIÑIÔIˆØ ‡N‚N�9 x€NÑ0Ô0Ğ0İ �Ô-ĞAĞAĞAÀ3Ñ GÔ Gğ+È4İ Œ �%Ô# TÑ*Ô*Ğ*ğ+ğ+ğ+ñ+ô+ğ+ğ+ğ+ğ+ğ+ğ+ğ+øøøğ+ğ+ğ+ğ+ğ+ğ+sÃC(Ã(C,Ã/C,Úinvalid_actionsÚpicóÔ—tj|¦«dkrtd¦«| d¦«| d¦«z}|| ¦«z S)NrzNo valid actions left.r:)r*rjr¬Úreshape)rÒrÓs r Úmask_invalid_actionsrÖªsZ€İ „vˆoÑÔ !Ò#Ğ#İ Ğ&Ñ'Ô'Ğ'Ø �Š�B‰Œ˜/×1Ò1°"Ñ5Ô5Ñ 5€BØ �—’‘”‰=ĞrÚget_invalid_actionsÚpisÚplayerscó�—tj|j¦«}t|¦«D]\}}||||¦«}|||<Œ|Sr()r ÚemptyrÚ enumerate)r×rØrÙÚinvalid_actions_tsÚiÚplayerÚinvaid_actionss r Úmask_invalid_actions_batchrá±sY€İœ #¤)Ñ,Ô,ĞݘwÑ'Ô'ğ/ğ/‰ ˆˆ6Ø,Ğ,¨S°¬V°VÑ<Ô<ˆØ .И1ÑĞØ Ğr)r)rH)FrmNN)$rÌrWÚtypingrÚnumpyr*r½Útorchr ÚPILrÚmu_alpha_zero.configrÚTensorrr rÚlistr#ÚndarrayÚtupleÚboolr-r3r7rGÚfloatrQrSrYrgrlÚstrrÑrÖrár2rr ú<module>rîsğØ € € € Ø € € € ØĞĞĞĞĞàĞĞĞØ € € € ØĞĞĞØĞĞĞĞĞà-Ğ-Ğ-Ğ-Ğ-Ğ-ğ4ğ4 R¤Yğ4¸¼ğ4ğ4ğ4ğ4ğ4¨¬ ğ4¸3ğ4ğ4ğ4ğ4ğ A°2´9ğAÈDĞQTÌIğAğAğAğAğ˜RœZğ¨u°S¸#°X¬ğÈğĞQSÔQ[ğğğğğ�r”zğ¨$ğğğğğ&˜ğ&¨3ğ&ğ&ğ&ğ&ğ E R¤Yğ Eğ Eğ Eğ EğIğI˜bœiğI¨EğIğIğIğIğğ R¤Yğ°5ğğğğğ#˜ğ#ğ#ğ#ğ#ğ˜œğ°#ğğğğğ"˜œğ°#ğğğğğgqØDHğ?+ğ?+¨ğ?+°s°{¸dğ?+ĞPSğ?+Ø.:ğ?+ØGKğ?+Ø`cğ?+ğ?+ğ?+ğ?+ğD¨"¬*ğ¸"¼*ğğğğğ°HğÀ2Ä9ğĞW[Ğ\_ÔW`ğğğğğğr
13,692
Python
.py
53
257.226415
2,296
0.333675
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,530
pickler.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/MuZero/__pycache__/pickler.cpython-311.pyc
§ føf, ãó<—ddlZddlZddlmZGd„d¦«ZdS)éN)ÚLockcób—eZdZdZdefd„Zdedefd„Zdefd„Zde fd „Z dd e d ed e fd„Z d„Z dS)Ú DataPicklerzQ Class for efficiently storing and retrieving data from the file system. Ú pickle_dircóH—d|_| |¦«|_dS)Nr)Úprocessed_countÚ_DataPickler__init_pickle_dirr©Úselfrs úK/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/MuZero/pickler.pyÚ__init__zDataPickler.__init__ s#€Ø ˆÔØ×0Ò0°Ñ<Ô<ˆŒˆˆóÚreturncó2—tj|d¬¦«|S)NT)Úexist_ok)ÚosÚmakedirsr s r Ú__init_pickle_dirzDataPickler.__init_pickle_dirs€İ Œ �J¨Ğ.Ñ.Ô.Ğ.ØĞrÚbuffercó–‡—tt|d¦«¦«D]”Šˆfd„|D¦«}t|j›d‰›d�dd¬¦«5}t j||¦«| ¦«tj|  ¦«¦«ddd¦«n #1swxYwYŒ•|xj dz c_ dS) Nrcó •—g|] }|‰‘Œ S©r)Ú.0ÚitemÚindexs €r ú <listcomp>z-DataPickler.pickle_buffer.<locals>.<listcomp>sø€Ğ3Ğ3Ğ3 D�D˜”KĞ3Ğ3Ğ3rú/item_ú.pklÚabéZ©Útimeouté) ÚrangeÚlenrrÚpickleÚdumpÚflushrÚfsyncÚfilenor)r rÚdataÚfrs @r Ú pickle_bufferzDataPickler.pickle_buffers ø€İ�3˜v aœy™>œ>Ñ*Ô*ğ %ğ %ˆEØ3Ğ3Ğ3Ğ3¨FĞ3Ñ3Ô3ˆDݘœĞ;Ğ;°Ğ;Ğ;Ğ;¸TÈ2ĞNÑNÔNğ %ĞRSİ” ˜D !Ñ$Ô$Ğ$Ø—’‘ ” � İ”˜Ÿš™œÑ$Ô$Ğ$ğ %ğ %ğ %ñ %ô %ğ %ğ %ğ %ğ %ğ %ğ %øøøğ %ğ %ğ %ğ %øğ ĞÔ Ñ!ĞÔĞĞsÁAB-Â-B1 Â4B1 rcóğ—|j›d|›d�}g}t|dd¬¦«5} | tj|¦«¦«n#t $rYnwxYwŒ: ddd¦«n #1swxYwY|S)NrrÚrbr r!)rrÚextendr&ÚloadÚEOFError)r rÚfiler+r,s r Ú load_indexzDataPickler.load_indexsހؔ/Ğ4Ğ4¨Ğ4Ğ4Ğ4ˆØˆİ �$˜ bĞ )Ñ )Ô )ğ ¨Qğ ğØ—K’K¥¤ ¨A¡¤Ñ/Ô/Ğ/Ğ/øİğğğØ�Eğøøøğ ğğ  ğ ğ ñ ô ğ ğ ğ ğ ğ ğ øøøğ ğ ğ ğ ğˆ s4¢A+¥'A Á A+Á AÁA+ÁAÁA+Á+A/Á2A/r#Ú batch_sizeÚindexesÚKc ó6—d„tj|j¦«D¦«}| d„¬¦«d„t t |¦«¦«D¦«}t |¦«D�]\}}t|j›d|›�dd¬¦«5}d } t ||¦«|krn¿ tj |¦«} |D]ƒ} | t | ¦«z| cxkr| krdnŒ"| t | ¦«z|z | kr| || t | ¦«z| z z z} | | z} | | | |z…} ||  | ¦«Œ„| t | ¦«z } n#t$rYnwxYwŒÙddd¦«n #1swxYwY�Œd „t|�D¦«S) Ncó<—g|]}| d¦«¯|‘ŒS©r©Úendswith©rÚxs r rz(DataPickler.load_all.<locals>.<listcomp>*ó)€ĞNĞNĞN�q¸1¿:º:ÀfÑ;MÔ;MĞN�ĞNĞNĞNrcó„—t| d¦«d d¦«d¦«S)NÚ_r#ú.r)ÚintÚsplit)r>s r ú<lambda>z&DataPickler.load_all.<locals>.<lambda>+s/€¥ Q§W¢W¨S¡\¤\°!¤_×%:Ò%:¸3Ñ%?Ô%?ÀÔ%BÑ!CÔ!C€r)Úkeycó—g|]}g‘ŒSrr)rrAs r rz(DataPickler.load_all.<locals>.<listcomp>,s€Ğ.Ğ.Ğ.�q�Ğ.Ğ.Ğ.rú/r/r r!rTcóŒ—g|]A}|d|d|dd|dd|ddf|df‘ŒBS)rr#éérr=s r rz(DataPickler.load_all.<locals>.<listcomp>@sL€ĞTĞTĞTÀA��1”�q˜”t˜a œd 1œg q¨¤t¨A¤w°°!´°Q´Ğ8¸!¸A¼$Ğ?ĞTĞTĞTr) rÚlistdirrÚsortr$r%Ú enumeraterr&r1r0r2Úzip) r r5r6r7Úfilesr+Úir3r,Úlast_lenÚ file_datarÚ data_points r Úload_allzDataPickler.load_all)s€ØNĞN�BœJ t¤Ñ7Ô7ĞNÑNÔNˆØ � Š ĞCĞCˆ ÑDÔDĞDØ.Ğ.�E¥# e¡*¤*Ñ-Ô-Ğ.Ñ.Ô.ˆİ  Ñ'Ô'ğ ñ ‰GˆAˆtݘœĞ1Ğ1¨4Ğ1Ğ1°4ÀĞDÑDÔDğ ÈØ�ğݘ4 œ7‘|”| zÒ1Ğ1Øğ İ$*¤K°¡N¤N˜ Ø%,ğ;ğ;˜EØ'­#¨i©.¬.Ñ8¸5ĞLĞLÒLĞLÀHÒLĞLĞLĞLĞLØ#+­c°)©n¬nÑ#<¸qÑ#@À5Ò#HĞ#HØ$)¨Q°8½cÀ)¹n¼nÑ3LĞPUÑ2UÑ-VÑ$V EØ %¨Ñ 1 Ø-6°u¸UÀQ¹Y°Ô-G  Ø $ Q¤§¢¨zÑ :Ô :Ğ :øà ¥C¨ ¡N¤NÑ2˜˜øİ#ğğğØ˜ğøøøğğ ğ ğ ñ ô ğ ğ ğ ğ ğ ğ øøøğ ğ ğ ğ ùğ$UĞTÍÈdÈĞTÑTÔTĞTs7ÂE;Â1B,EÅE;Å E+Å(E;Å*E+Å+E;Å;E? ÆE? có —d„tj|j¦«D¦«}|D] }tj|j›d|›�¦«Œ!d|_dS)Ncó<—g|]}| d¦«¯|‘ŒSr:r;r=s r rz)DataPickler.clear_dir.<locals>.<listcomp>Cr?rrHr)rrLrÚremover)r rPr3s r Ú clear_dirzDataPickler.clear_dirBsa€ØNĞN�BœJ t¤Ñ7Ô7ĞNÑNÔNˆØğ 3ğ 3ˆDİ ŒI˜œĞ1Ğ1¨4Ğ1Ğ1Ñ 2Ô 2Ğ 2Ğ 2Ø ˆÔĞĞrN)r#) Ú__name__Ú __module__Ú __qualname__Ú__doc__Ústrr r Úlistr-rCr4rUrYrrr rrsÖ€€€€€ğğğ= 3ğ=ğ=ğ=ğ=ğ¨Cğ°Cğğğğğ" Dğ"ğ"ğ"ğ"ğ  ğ ğ ğ ğ ğUğU 3ğU°ğU¸#ğUğUğUğUğ2!ğ!ğ!ğ!ğ!rr)rr&Ú portalockerrrrrr ú<module>ras[ğØ € € € Ø € € € àĞĞĞĞĞğ?!ğ?!ğ?!ğ?!ğ?!ñ?!ô?!ğ?!ğ?!ğ?!r
6,669
Python
.py
39
169.666667
1,389
0.31398
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,531
board.py
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/MuZero/MinimaxOpponent/board.py
####################### BOARD CLASS ########################### # The Board class is the data structure that holds the Connect 4 boards and the game operations import numpy as np # The Connect 4 board is 7 cells wide and 6 cells tall # The underlying data structure is a 2-d list # The first dimension is the column; the second dimension is the row # Every cell in the above list contains either a 0 or a 1. Player 1 is represented by 0 tiles, and Player ############################################################################## class Board: #static class variables - shared across all instances HEIGHT = 6 WIDTH = 7 def __init__(self, orig=None, hash=None): # copy if(orig): self.board = [list(col) for col in orig.board] self.numMoves = orig.numMoves self.lastMove = orig.lastMove return # creates from hash - NOTE: Does not understand move order elif(hash): self.board = [] self.numMoves = 0 self.lastMove = None # convert to base 3 digits = [] while hash: digits.append(int(hash % 3)) hash //= 3 col = [] for item in digits: # 2 indicates new column if item == 2: self.board.append(col) col = [] # otherwise directly append base number else: col.append(item) self.numMoves += 1 return # create new else: self.board = [[] for x in range(self.WIDTH)] self.numMoves = 0 self.lastMove = None return @classmethod def from_game_state(cls, game_state:np.ndarray, last_move:tuple): clss = cls() clss.board = [[int(x) if x == 1 else 0 for x in reversed(col.tolist()) if x != 0] for col in game_state.T] clss.numMoves = np.sum(game_state != 0) clss.lastMove = last_move return clss ######################################################################## # Mutations ######################################################################## # Puts a piece in the appropriate column and checks to see if it was a winning move # Pieces are either 1 or 0; automatically decided def makeMove(self, column): # update board data piece = self.numMoves % 2 self.lastMove = (piece, column) self.numMoves += 1 self.board[column].append(piece) ######################################################################## # Observations ######################################################################## # Generates a list of the valid children of the board # A child is of the form (move_to_make_child, child_object) def children(self): children = [] for i in range(7): if len(self.board[i]) < 6: child = Board(self) child.makeMove(i) children.append((i, child)) return children # Returns: # -1 if game is not over # 0 if the game is a draw # 1 if player 1 wins # 2 if player 2 wins def isTerminal(self): for i in range(0,self.WIDTH): for j in range(0,self.HEIGHT): try: if self.board[i][j] == self.board[i+1][j] == self.board[i+2][j] == self.board[i+3][j]: return self.board[i][j] + 1 except IndexError: pass try: if self.board[i][j] == self.board[i][j+1] == self.board[i][j+2] == self.board[i][j+3]: return self.board[i][j] + 1 except IndexError: pass try: if not j + 3 > self.HEIGHT and self.board[i][j] == self.board[i+1][j + 1] == self.board[i+2][j + 2] == self.board[i+3][j + 3]: return self.board[i][j] + 1 except IndexError: pass try: if not j - 3 < 0 and self.board[i][j] == self.board[i+1][j - 1] == self.board[i+2][j - 2] == self.board[i+3][j - 3]: return self.board[i][j] + 1 except IndexError: pass if self.isFull(): return 0 return -1 # Returns a unique decimal number for each board object based on the # underlying data def hash(self): power = 0 hash = 0 for column in self.board: # add 0 or 1 depending on piece for piece in column: hash += piece * (3 ** power) power += 1 # add a 2 to indicate end of column hash += 2 * (3 ** power) power += 1 return hash ######################################################################## # Utilities ######################################################################## # Return true iff the game is full def isFull(self): return self.numMoves == 42 # Prints out a visual representation of the board # X's are 1's and 0's are 0s def print(self): print("") print("+" + "---+" * self.WIDTH) for rowNum in range(self.HEIGHT - 1, -1, -1): row = "|" for colNum in range(self.WIDTH): if len(self.board[colNum]) > rowNum: row += " " + ('X' if self.board[colNum][rowNum] else 'O') + " |" else: row += " |" print(row) print("+" + "---+" * self.WIDTH) print(self.lastMove[1]) print(self.numMoves)
6,165
Python
.py
144
29.840278
147
0.440224
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,532
player.py
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/MuZero/MinimaxOpponent/player.py
import math from mu_alpha_zero.MuZero.MinimaxOpponent.board import Board ## Partnered with Nick Konich class Player: def __init__(self, depthLimit, isPlayerOne): self.isPlayerOne = isPlayerOne self.depthLimit = depthLimit # Returns a heuristic for the board position # Good positions for 0 pieces are positive and good positions for 1 pieces # are be negative def heuristic(self, board): heur = 0 state = board.board for i in range(0, board.WIDTH): for j in range(0, board.HEIGHT): # check horizontal streaks try: # add player one streak scores to heur if state[i][j] == state[i + 1][j] == 0: heur += 10 if state[i][j] == state[i + 1][j] == state[i + 2][j] == 0: heur += 100 if state[i][j] == state[i + 1][j] == state[i + 2][j] == state[i + 3][j] == 0: heur += 10000 # subtract player two streak score to heur if state[i][j] == state[i + 1][j] == 1: heur -= 10 if state[i][j] == state[i + 1][j] == state[i + 2][j] == 1: heur -= 100 if state[i][j] == state[i + 1][j] == state[i + 2][j] == state[i + 3][j] == 1: heur -= 10000 except IndexError: pass # check vertical streaks try: # add player one vertical streaks to heur if state[i][j] == state[i][j + 1] == 0: heur += 10 if state[i][j] == state[i][j + 1] == state[i][j + 2] == 0: heur += 100 if state[i][j] == state[i][j + 1] == state[i][j + 2] == state[i][j + 3] == 0: heur += 10000 # subtract player two streaks from heur if state[i][j] == state[i][j + 1] == 1: heur -= 10 if state[i][j] == state[i][j + 1] == state[i][j + 2] == 1: heur -= 100 if state[i][j] == state[i][j + 1] == state[i][j + 2] == state[i][j + 3] == 1: heur -= 10000 except IndexError: pass # check positive diagonal streaks try: # add player one streaks to heur if not j + 3 > board.HEIGHT and state[i][j] == state[i + 1][j + 1] == 0: heur += 100 if not j + 3 > board.HEIGHT and state[i][j] == state[i + 1][j + 1] == state[i + 2][j + 2] == 0: heur += 100 if not j + 3 > board.HEIGHT and state[i][j] == state[i + 1][j + 1] == state[i + 2][j + 2] \ == state[i + 3][j + 3] == 0: heur += 10000 # add player two streaks to heur if not j + 3 > board.HEIGHT and state[i][j] == state[i + 1][j + 1] == 1: heur -= 100 if not j + 3 > board.HEIGHT and state[i][j] == state[i + 1][j + 1] == state[i + 2][j + 2] == 1: heur -= 100 if not j + 3 > board.HEIGHT and state[i][j] == state[i + 1][j + 1] == state[i + 2][j + 2] \ == state[i + 3][j + 3] == 1: heur -= 10000 except IndexError: pass # check negative diagonal streaks try: # add player one streaks if not j - 3 < 0 and state[i][j] == state[i + 1][j - 1] == 0: heur += 10 if not j - 3 < 0 and state[i][j] == state[i + 1][j - 1] == state[i + 2][j - 2] == 0: heur += 100 if not j - 3 < 0 and state[i][j] == state[i + 1][j - 1] == state[i + 2][j - 2] \ == state[i + 3][j - 3] == 0: heur += 10000 # subtract player two streaks if not j - 3 < 0 and state[i][j] == state[i + 1][j - 1] == 1: heur -= 10 if not j - 3 < 0 and state[i][j] == state[i + 1][j - 1] == state[i + 2][j - 2] == 1: heur -= 100 if not j - 3 < 0 and state[i][j] == state[i + 1][j - 1] == state[i + 2][j - 2] \ == state[i + 3][j - 3] == 1: heur -= 10000 except IndexError: pass return heur class PlayerMM(Player): def __init__(self, depthLimit, isPlayerOne): super().__init__(depthLimit, isPlayerOne) # returns the optimal column to move in by implementing the MiniMax algorithm def findMove(self, board): #return self.mmH(board, self.depthLimit, self.isPlayerOne) #return self.minMaxHelper(board, self.depthLimit, self.isPlayerOne) score, move = self.miniMax(board, self.depthLimit, self.isPlayerOne) # print(self.isPlayerOne, "move made", move) return move # findMove helper function using miniMax algorithm def miniMax(self, board, depth, player): if board.isTerminal() == 0: return -math.inf if player else math.inf, -1 elif depth == 0: return self.heuristic(board), -1 if player: bestScore = -math.inf shouldReplace = lambda x: x > bestScore else: bestScore = math.inf shouldReplace = lambda x: x < bestScore bestMove = -1 children = board.children() for child in children: move, childboard = child temp = self.miniMax(childboard, depth - 1, not player)[0] if shouldReplace(temp): bestScore = temp bestMove = move return bestScore, bestMove # minimax helper function - unused def mmH(self, board, depth, player): if depth == 0: boards = board.children() scores = {} for i in boards: scores[i[0]] = self.heuristic(i[1]) if player: return max(scores, key=lambda k: scores[k]) else: return min(scores, key=lambda k: scores[k]) else: return self.mmH(board, depth - 1, not player) class PlayerAB(Player): def __init__(self, depthLimit, isPlayerOne): super().__init__(depthLimit, isPlayerOne) # returns the optimal column to move in by implementing the Alpha-Beta algorithm def findMove(self, board): score, move = self.alphaBeta(board, self.depthLimit, self.isPlayerOne, -math.inf, math.inf) return move # findMove helper function, utilizing alpha-beta pruning within the minimax algorithm def alphaBeta(self, board, depth, player, alpha, beta): if board.isTerminal() == 0: return -math.inf if player else math.inf, -1 elif depth == 0: return self.heuristic(board), -1 if player: bestScore = -math.inf shouldReplace = lambda x: x > bestScore else: bestScore = math.inf shouldReplace = lambda x: x < bestScore bestMove = -1 children = board.children() for child in children: move, childboard = child temp = self.alphaBeta(childboard, depth - 1, not player, alpha, beta)[0] if shouldReplace(temp): bestScore = temp bestMove = move if player: alpha = max(alpha, temp) else: beta = min(beta, temp) if alpha >= beta: break return bestScore, bestMove class ManualPlayer(Player): def findMove(self, board): opts = " " for c in range(board.WIDTH): opts += " " + (str(c + 1) if len(board.board[c]) < 6 else ' ') + " " print(opts) col = input("Place an " + ('O' if self.isPlayerOne else 'X') + " in column: ") col = int(col) - 1 return col
8,595
Python
.py
179
31.726257
116
0.454251
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,533
mz_node.py
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/MuZero/MZ_MCTS/mz_node.py
import math import numpy as np from mu_alpha_zero.AlphaZero.MCTS.az_node import AlphaZeroNode import torch as th class MzAlphaZeroNode(AlphaZeroNode): def __init__(self, select_probability=0, parent=None, times_visited_init=0, current_player=1): super().__init__(current_player, select_probability, parent, times_visited_init) self.reward = 0 def get_best_child(self, min_q: float, max_q: float, gamma: float, multiple_players: bool, c=1.5, c2=19652): best_utc = -float("inf") best_child = None best_action = None # best_children = [] # best_actions = [] for action, child in self.children.items(): if child.select_probability == 0: continue child_utc = child.calculate_utc_score(min_q, max_q, gamma, multiple_players, c=c, c2=c2) if child_utc >= best_utc: best_utc = child_utc best_child = child best_action = action # best_children.append(child) # best_actions.append(action) # random_idx = random.randint(0, len(best_children) - 1) # best_child = best_children[random_idx] # best_action = best_actions[random_idx] return best_child, best_action def get_value_pred(self, prediction_forward: callable): return prediction_forward(self.state) def expand_node(self, state: th.Tensor,action_probabilities: dict, im_reward: float) -> None: self.state = state.clone() self.reward = im_reward for action, probability in enumerate(action_probabilities): node = MzAlphaZeroNode(select_probability=probability, parent=self, current_player=self.current_player * (-1)) self.children[action] = node def get_immediate_reward(self, dynamics_forward: callable, action: int): return dynamics_forward(self.state, action) def calculate_utc_score(self, min_q: float, max_q: float, gamma: float, multiple_players: bool, c=1.5, c2=19652): parent = self.parent() if self.times_visited == 0: return c * self.select_probability * math.sqrt(parent.times_visited + 1e-8) q = self.scale_q(min_q, max_q, gamma, multiple_players) utc = q + self.select_probability * ( (math.sqrt(parent.times_visited)) / (1 + self.times_visited)) * ( c + math.log((parent.times_visited + c2 + 1) / c2)) return utc def scale_q(self, min_q, max_q, gamma: float, multiple_players: bool, val: float or None = None) -> float: if val is not None: q = val else: q = self.reward + (-self.get_self_value() if multiple_players else self.get_self_value()) if min_q == max_q or (min_q == float("inf") or max_q == float("-inf")) or q == 0: return q return (q - min_q) / (max_q - min_q)
2,953
Python
.py
56
42.339286
117
0.608183
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,534
mz_search_tree.py
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/MuZero/MZ_MCTS/mz_search_tree.py
import copy import gc import random import time import wandb from multiprocess import set_start_method set_start_method("spawn", force=True) from multiprocess.pool import Pool import numpy as np import torch as th from mu_alpha_zero.General.memory import GeneralMemoryBuffer from mu_alpha_zero.General.mz_game import MuZeroGame from mu_alpha_zero.General.search_tree import SearchTree from mu_alpha_zero.Hooks.hook_manager import HookManager from mu_alpha_zero.Hooks.hook_point import HookAt from mu_alpha_zero.MuZero.MZ_MCTS.mz_node import MzAlphaZeroNode from mu_alpha_zero.MuZero.Network.networks import MuZeroNet from mu_alpha_zero.MuZero.lazy_arrays import LazyArray from mu_alpha_zero.MuZero.utils import match_action_with_obs, resize_obs, scale_action, scale_state, \ scale_hidden_state, mask_invalid_actions from mu_alpha_zero.config import MuZeroConfig from mu_alpha_zero.mem_buffer import MuZeroFrameBuffer, SingleGameData, DataPoint from mu_alpha_zero.shared_storage_manager import SharedStorage from typing import Optional class MuZeroSearchTree(SearchTree): def __init__(self, game_manager: MuZeroGame, muzero_config: MuZeroConfig, hook_manager: Optional[HookManager] = None): self.game_manager = game_manager self.muzero_config = muzero_config self.hook_manager = hook_manager if hook_manager is not None else HookManager() self.buffer = self.init_frame_buffer() self.min_max_q = [float("inf"), -float("inf")] def init_frame_buffer(self): if self.muzero_config.enable_frame_buffer: return MuZeroFrameBuffer(self.muzero_config.frame_buffer_size, self.game_manager.get_noop(), self.muzero_config.net_action_size, ignore_actions=self.muzero_config.frame_buffer_ignores_actions) return MuZeroFrameBuffer(1, self.game_manager.get_noop(), self.muzero_config.net_action_size, ignore_actions=self.muzero_config.frame_buffer_ignores_actions) def play_one_game(self, network_wrapper: MuZeroNet, device: th.device, dir_path: Optional[str] = None, calculate_avg_num_children: bool = False) -> list[SingleGameData]: self.buffer = self.init_frame_buffer() num_steps = self.muzero_config.num_steps frame_skip = self.muzero_config.frame_skip state = self.game_manager.reset() state = resize_obs(state, self.muzero_config.target_resolution, self.muzero_config.resize_images) state = scale_state(state, self.muzero_config.scale_state) player = 1 self.buffer.init_buffer(state, player) if self.muzero_config.multiple_players: self.buffer.init_buffer(self.game_manager.get_state_for_passive_player(state, -player), -player) data = SingleGameData() frame = self.buffer.concat_frames(player).detach().cpu().numpy() data.add_data_point( DataPoint(None, None, 0, None, player, frame if dir_path is None else LazyArray(frame, dir_path), self.game_manager.get_invalid_actions(player))) game_length = 0 for step in range(num_steps): game_length += 1 pi, (v, latent) = self.search(network_wrapper, state, player, device, calculate_avg_num_children=( calculate_avg_num_children and step == 0)) move = self.game_manager.select_move(pi, tau=self.muzero_config.tau) # _, pred_v = network_wrapper.prediction_forward(latent.unsqueeze(0), predict=True) state, rew, done = self.game_manager.frame_skip_step(move, player, frame_skip=frame_skip) state = resize_obs(state, self.muzero_config.target_resolution, self.muzero_config.resize_images) state = scale_state(state, self.muzero_config.scale_state) # data.append( # (pi, v, (rew, move, float(pred_v[0]), player), # )) if self.muzero_config.multiple_players: player = -player self.buffer.add_frame(state, scale_action(move, self.game_manager.get_num_actions()), player) self.buffer.add_frame(self.game_manager.get_state_for_passive_player(state, -player), scale_action(move, self.game_manager.get_num_actions()), -player) data.datapoints[-1].v = v data.datapoints[-1].pi = [x for x in pi.values()] data.datapoints[-1].move = move frame = self.buffer.concat_frames(player).detach().cpu().numpy() data.add_data_point( DataPoint(np.ones((len(data.datapoints[-1].pi))) / len(data.datapoints[-1].pi), 0, rew, random.randint(0, len(data.datapoints[-1].pi) - 1), player, frame if dir_path is None else LazyArray(frame, dir_path), self.game_manager.get_invalid_actions(player))) if done: # time.sleep(1) # print(player) # print(v) break # self.game_manager.render() # time.sleep(0.5) try: wandb.log({"Game length": game_length}) except Exception: pass data.compute_initial_priorities(self.muzero_config) return [data] def search(self, network_wrapper, state: np.ndarray, current_player: Optional[int], device: th.device, tau: Optional[float] = None, calculate_avg_num_children: bool = False, use_state_directly: bool = False): self.min_max_q = [float("inf"), -float("inf")] if self.buffer.__len__(current_player) == 0 and not use_state_directly: self.buffer.init_buffer(state, current_player) num_simulations = self.muzero_config.num_simulations if tau is None: tau = self.muzero_config.tau games = [copy.deepcopy(self.game_manager)] if self.muzero_config.use_true_game_state_in_tree else [] root_node = MzAlphaZeroNode(current_player=current_player) # print(self.buffer.buffers[current_player][-1][0][:,:,0]) game_state = state if use_state_directly else self.buffer.concat_frames(current_player) state_ = network_wrapper.representation_forward( game_state.permute(2, 0, 1).unsqueeze(0).to(device)).squeeze(0) if self.muzero_config.scale_hidden_state: state_ = scale_hidden_state(state_) pi, v = network_wrapper.prediction_forward(state_.unsqueeze(0), predict=True) if self.muzero_config.dirichlet_alpha > 0: pi = pi + np.random.dirichlet([self.muzero_config.dirichlet_alpha] * self.muzero_config.net_action_size) pi = mask_invalid_actions(self.game_manager.get_invalid_actions(current_player), pi) pi = pi.flatten().tolist() root_node.expand_node(state_, pi, 0) for simulation in range(num_simulations): current_node = root_node path = [current_node] action = None while current_node.was_visited(): done = False current_node, action = current_node.get_best_child(self.min_max_q[0], self.min_max_q[1], self.muzero_config.gamma, self.muzero_config.multiple_players, c=self.muzero_config.c, c2=self.muzero_config.c2) path.append(current_node) if self.muzero_config.use_true_game_state_in_tree: game = copy.deepcopy(games[-1]) _, rew, done = game.get_next_state(action, current_node.parent().current_player) games.append(game) # action = scale_action(action, self.game_manager.get_num_actions()) if not done: current_node_state_with_action = match_action_with_obs(current_node.parent().state, action, self.muzero_config) next_state, reward = network_wrapper.dynamics_forward(current_node_state_with_action.unsqueeze(0), predict=True) if self.muzero_config.scale_hidden_state: next_state = scale_hidden_state(next_state) reward = reward[0][0] pi, v = network_wrapper.prediction_forward(next_state.unsqueeze(0), predict=True) if self.muzero_config.use_true_game_state_in_tree: reward = rew pi = mask_invalid_actions(games[-1].get_invalid_actions(current_node.current_player), pi) pi = pi.flatten().tolist() v = v.flatten().tolist()[0] current_node.expand_node(next_state, pi, reward) else: if self.muzero_config.multiple_players: v = -1 else: v = rew self.backprop(v, path, games) action_probs = root_node.get_self_action_probabilities() root_val_latent = (root_node.get_self_value(), root_node.get_latent()) self.hook_manager.process_hook_executes(self, self.search.__name__, __file__, HookAt.TAIL, args=(action_probs, root_val_latent, root_node)) # if calculate_avg_num_children: # num_nodes = self.get_num_nodes(root_node) # wandb.log({"Number of non-leaf nodes": num_nodes}) root_node = None return action_probs, root_val_latent def backprop(self, v: float, path: list, games: list): # G = v G_node = v gamma = self.muzero_config.gamma for node in reversed(path): node.times_visited += 1 if self.muzero_config.multiple_players: # G = node.reward + gamma * ( # -G) # G should be from the perspective of the parent as the parent is selecting from the children based on what's good for them. node.total_value += G_node self.update_min_max_q(node.reward - node.get_self_value()) G_node = node.reward + gamma * (-G_node) else: node.total_value += G_node self.update_min_max_q(node.reward + node.get_self_value()) G_node = node.reward + gamma * G_node if self.muzero_config.use_true_game_state_in_tree and node.select_probability != 0: games.pop() # node.update_q(G_node) def self_play(self, net: MuZeroNet, device: th.device, num_games: int, memory: GeneralMemoryBuffer) -> tuple[ int, int, int]: for game in range(num_games): game_results = self.play_one_game(net, device, calculate_avg_num_children=game == num_games - 1) memory.add_list(game_results) return None, None, None def make_fresh_instance(self): return MuZeroSearchTree(self.game_manager.make_fresh_instance(), copy.deepcopy(self.muzero_config), hook_manager=copy.deepcopy(self.hook_manager)) def step_root(self, action: int or None): # I am never reusing the tree in MuZero. pass def update_min_max_q(self, q): self.min_max_q[0] = min(self.min_max_q[0], q) self.min_max_q[1] = max(self.min_max_q[1], q) def get_num_nodes(self, root_node: MzAlphaZeroNode): num_nodes = 0 if len(root_node.children) > 0: num_nodes = 1 for child in root_node.children.values(): nn = self.get_num_nodes(child) num_nodes += nn return num_nodes @staticmethod def parallel_self_play(nets: list, trees: list, memory: GeneralMemoryBuffer, device: th.device, num_games: int, num_jobs: int): with Pool(num_jobs) as p: if memory.is_disk and memory.full_disk: results = p.starmap(p_self_play, [ (nets[i], trees[i], copy.deepcopy(device), num_games // num_jobs, copy.deepcopy(memory), None) for i in range(len(nets))]) else: results = p.starmap(p_self_play, [ (nets[i], trees[i], copy.deepcopy(device), num_games // num_jobs, None, memory.dir_path) for i in range(len(nets))]) for result in results: memory.add_list(result) return None, None, None @staticmethod def start_continuous_self_play(nets: list, trees: list, shared_storage: SharedStorage, device: th.device, config: MuZeroConfig, num_jobs: int, num_worker_iters: int): pool = Pool(num_jobs) for i in range(num_jobs): pool.apply_async(c_p_self_play, args=( nets[i], trees[i], copy.deepcopy(device), config, i, shared_storage, num_worker_iters, shared_storage.get_dir_path()) ) return pool @staticmethod def reanalyze(net, tree, device, shared_storage: SharedStorage, config: MuZeroConfig): wandb.init(project=config.wandbd_project_name, name="Reanalyze") net = net.to(device) while len(shared_storage.get_buffer()) < 10_000: time.sleep(5) for iter_ in range(config.num_worker_iters): data = random.choice(shared_storage.get_buffer()) net.eval() if shared_storage.get_experimental_network_params() is not None: net.load_state_dict(shared_storage.get_experimental_network_params()) else: net.load_state_dict(shared_storage.get_stable_network_params()) wandb.log({"reanalyze_iteration": iter_}) tree = tree.make_fresh_instance() for data_point in data.datapoints: if isinstance(data_point.frame, LazyArray): frame = data_point.frame.load_array() else: frame = data_point.frame state = th.tensor(frame, device=device, dtype=th.float32) pi, (v, _) = tree.search(net, state, data_point.player, device, use_state_directly=True) data_point.v = v data_point.pi = [x for x in pi.values()] data.compute_initial_priorities(config) def run_on_training_end(self): self.hook_manager.process_hook_executes(self, self.run_on_training_end.__name__, __file__, HookAt.ALL) def p_self_play(net, tree, dev, num_g, mem, dir_path: Optional[str] = None): data = [] for game in range(num_g): game_results = tree.play_one_game(net, dev, dir_path=dir_path, calculate_avg_num_children=game == num_g - 1) if mem is not None: mem.add_list(game_results) else: data.extend(game_results) return data def c_p_self_play(net, tree, device, config: MuZeroConfig, p_num: int, shared_storage: SharedStorage, num_worker_iters: int, dir_path: Optional[str] = None): if p_num == 0: wandb.init(project=config.wandbd_project_name, name="Self play") net = net.to(device) for iter_ in range(num_worker_iters): # for game in range(num_g): # if not shared_storage.get_was_pitted(): # # If the network was not yet decided on, slow down the process so the data won't get overpopulated with current params. # time.sleep(5) if shared_storage.get_experimental_network_params() is None: params = shared_storage.get_stable_network_params() else: params = shared_storage.get_experimental_network_params() net.eval() net.load_state_dict(params) game_results = tree.play_one_game(net, device, dir_path=dir_path) shared_storage.add_list(game_results)
16,087
Python
.py
286
43.157343
151
0.601066
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,535
mz_search_tree.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/MuZero/MZ_MCTS/__pycache__/mz_search_tree.cpython-311.pyc
§ |Ú£fX3ã óf—ddlZddlZddlZddlZddlmZedd¬¦«ddlmZddlZ ddl Z ddl m Z ddlmZdd lmZdd lmZdd lmZdd lmZdd lmZddlmZddlmZmZmZm Z m!Z!m"Z"ddl#m$Z$ddl%m&Z&m'Z'm(Z(ddl)m*Z*Gd„de¦«Z+dde,pdfd„Z- dde$de.de*de.de,pdf d„Z/dS)éN)Úset_start_methodÚspawnT)Úforce)ÚPool)ÚGeneralMemoryBuffer)Ú MuZeroGame)Ú SearchTree)Ú HookManager)ÚHookAt)ÚMzAlphaZeroNode)Ú MuZeroNet)Ú LazyArray)Úmatch_action_with_obsÚ resize_obsÚ scale_actionÚ scale_stateÚscale_hidden_stateÚmask_invalid_actions)Ú MuZeroConfig)ÚMuZeroFrameBufferÚSingleGameDataÚ DataPoint)Ú SharedStoragecóª—eZdZd'dededepdfd„Zd„Z d(ded e j d e pdd e d e ef d „Z d(dejdepdd e j depdd e f d„Zd„Zded e j deded eeeeff d„Zd„Zdepdfd„Zd„Zdefd„Zede de ded e j dedef d „¦«Zede de d!e d e j d"eded#efd$„¦«Z!ed!e d"efd%„¦«Z"d&„Z#dS))ÚMuZeroSearchTreeNÚ game_managerÚ muzero_configÚ hook_managercóÊ—||_||_|�|n t¦«|_| ¦«|_t d¦«t d¦« g|_dS)NÚinf)rrr rÚinit_frame_bufferÚbufferÚfloatÚ min_max_q)Úselfrrrs úZ/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/MuZero/MZ_MCTS/mz_search_tree.pyÚ__init__zMuZeroSearchTree.__init__sX€Ø(ˆÔØ*ˆÔØ,8Ğ,D˜L˜LÍ+É-Ì-ˆÔØ×,Ò,Ñ.Ô.ˆŒ İ ™,œ,­¨u©¬¨ Ğ6ˆŒˆˆócóö—|jjr<t|jj|j ¦«|jj¦«Std|j ¦«|jj¦«S©Né)rÚenable_frame_bufferrÚframe_buffer_sizerÚget_noopÚnet_action_size©r%s r&r!z"MuZeroSearchTree.init_frame_buffer%so€Ø Ô Ô 1ğ Iİ$ TÔ%7Ô%IÈ4ÔK\×KeÒKeÑKgÔKgØ%)Ô%7Ô%GñIôIğ Iå   DÔ$5×$>Ò$>Ñ$@Ô$@À$ÔBTÔBdÑeÔeĞer(FÚnetwork_wrapperÚdeviceÚdir_pathÚcalculate_avg_num_childrenÚreturnc ó—|jj}|jj}|j ¦«}t ||jj|jj¦«}t||jj¦«}d}|j   ||¦«|jj r6|j   |j  || ¦«| ¦«t¦«} d} t|¦«D�]Ì} | dz } | |||||o| dk¬¦«\} \} }|j | |jj¬¦«}|j |||¬¦«\}}}t ||jj|jj¦«}t||jj¦«}t'||j ¦«¦«}|j  |¦« ¦« ¦« ¦«}t3| | ||||€|nt5||¦«¦«}|  |¦«|rnd|jj r| }|j  |||¦«|j  |j  || ¦«|| ¦«�ŒÎ t;jd| i¦«n#t>$rYnwxYw|   |j¦«| gS)Nr+r©r4©Útau)Ú frame_skipz Game length)!rÚ num_stepsr:rÚresetrÚtarget_resolutionÚ resize_imagesrr"Ú init_bufferÚmultiple_playersÚget_state_for_passive_playerrÚrangeÚsearchÚ select_mover9Úframe_skip_steprÚget_num_actionsÚ concat_framesÚdetachÚcpuÚnumpyrrÚadd_data_pointÚ add_frameÚwandbÚlogÚ ExceptionÚcompute_initial_priorities)r%r1r2r3r4r;r:ÚstateÚplayerÚdataÚ game_lengthÚstepÚpiÚvÚlatentÚmoveÚrewÚdoneÚframeÚ data_points r&Ú play_one_gamezMuZeroSearchTree.play_one_game+s€àÔ&Ô0ˆ ØÔ'Ô2ˆ ØÔ!×'Ò'Ñ)Ô)ˆİ˜5 $Ô"4Ô"FÈÔHZÔHhÑiÔiˆİ˜E 4Ô#5Ô#AÑBÔBˆØˆØ Œ ×Ò  vÑ.Ô.Ğ.Ø Ô Ô .ğ mØ ŒK× #Ò # DÔ$5×$RÒ$RĞSXĞ[aĞZaÑ$bÔ$bĞekĞdkÑ lÔ lĞ lİÑԈ؈ ݘ)Ñ$Ô$ğ qñ qˆDØ ˜1Ñ ˆKØ"Ÿkšk¨/¸5À&È&Ø.Ğ<°4¸1²9ğ*ñ?ô?‰OˆB‘ ��FàÔ$×0Ò0°¸Ô9KÔ9OĞ0ÑPÔPˆDà#Ô0×@Ò@ÀÀvĞZdĞ@ÑeÔeÑ ˆE�3˜İ˜u dÔ&8Ô&JÈDÔL^ÔLlÑmÔmˆEİ  tÔ'9Ô'EÑFÔFˆEİ  dÔ&7×&GÒ&GÑ&IÔ&IÑJÔJˆDØ”K×-Ò-¨fÑ5Ô5×<Ò<Ñ>Ô>×BÒBÑDÔD×JÒJÑLÔLˆEİ" 2 q¨#¨t°VÀhĞFV¸U¸UÕ\eĞfkĞmuÑ\vÔ\vÑwÔwˆJğ × Ò   Ñ +Ô +Ğ +Øğ Ø�ØÔ!Ô2ğ !Ø ˜�Ø ŒK× !Ò ! %¨¨vÑ 6Ô 6Ğ 6Ø ŒK× !Ò ! $Ô"3×"PÒ"PĞQVĞY_ĞX_Ñ"`Ô"`ĞbfĞioĞhoÑ pÔ pĞ pÑ pğ İ ŒI�} kĞ2Ñ 3Ô 3Ğ 3Ğ 3øİğ ğ ğ Ø ˆDğ øøøà ×'Ò'¨Ô(:Ñ;Ô;Ğ;؈vˆ sÊ>KË K"Ë!K"rQÚcurrent_playerr9c óZ—|j |¦«dkr|j ||¦«|jj}|€ |jj}t |¬¦«}| |j |¦«  ddd¦«  d¦«¦«  d¦«} t| ¦«} |  |   d¦«d¬¦«\} } |jjdkr:| tj |jjg|jjz¦«z} t'|j ||¦«| ¦«} |  ¦« ¦«} | | | d¦«t3|¦«D�]ç} |} | g}d}|  ¦«r…|  |jd|jd|jj|jj|jj|jj ¬¦«\} }| !| ¦«|  ¦«°…tE||j #¦«¦«}tI|  %¦«j&|¦«}| '|  d¦«d¬¦«\}}t|¦«}|dd}|  |  d¦«d¬¦«\} } |  ¦« ¦«} |  ¦« ¦«d} |  || |¦«| (| |¦«�Œé| )¦«}| *¦«| +¦«f}|j, -||j.j/t`tbj2|||f¬¦«d}||fS) Nr)r_ér+T)Úpredict)ÚcÚc2©Úargs)3r"Ú__len__r?rÚnum_simulationsr9r Úrepresentation_forwardrGÚpermuteÚ unsqueezeÚsqueezerÚprediction_forwardÚdirichlet_alphaÚnpÚrandomÚ dirichletr/rrÚget_invalid_actionsÚflattenÚtolistÚ expand_noderBÚ was_visitedÚget_best_childr$Úgammar@rcrdÚappendrrFrÚparentrQÚdynamics_forwardÚbackpropÚget_self_action_probabilitiesÚget_self_valueÚ get_latentrÚprocess_hook_executesrCÚ__name__Ú__file__r ÚTAIL)r%r1rQr_r2r9r4rhÚ root_nodeÚstate_rVrWÚ simulationÚ current_nodeÚpathÚactionÚcurrent_node_state_with_actionÚ next_stateÚrewardÚ action_probsÚroot_val_latents r&rCzMuZeroSearchTree.searchVsñ€à Œ;× Ò ˜~Ñ .Ô .°!Ò 3Ğ 3Ø ŒK× #Ò # E¨>Ñ :Ô :Ğ :ØÔ,Ô<ˆØ ˆ;ØÔ$Ô(ˆCå#°>ĞBÑBÔBˆ à ×7Ò7Ø ŒK× %Ò % nÑ 5Ô 5× =Ò =¸aÀÀAÑ FÔ F× PÒ PĞQRÑ SÔ SñUôUßU\ÒU\Ğ]^ÑU_ÔU_ğ å# FÑ+Ô+ˆØ×2Ò2°6×3CÒ3CÀAÑ3FÔ3FĞPTĞ2ÑUÔU‰ˆˆAØ Ô Ô -°Ò 1Ğ 1Ø•b”i×)Ò)¨4Ô+=Ô+MĞ*NĞQUÔQcÔQsÑ*sÑtÔtÑtˆBİ ! $Ô"3×"GÒ"GÈÈ~Ñ"^Ô"^Ğ`bÑ cÔ cˆØ �ZŠZ‰\Œ\× Ò Ñ "Ô "ˆØ×Ò˜f b¨!Ñ,Ô,Ğ,İ Ñ0Ô0ğ #ñ #ˆJØ$ˆLØ �>ˆD؈FØ×*Ò*Ñ,Ô,ğ *Ø'3×'BÒ'BÀ4Ä>ĞRSÔCTĞVZÔVdĞefÔVgØCGÔCUÔC[ØCGÔCUÔCfØEIÔEWÔEYĞ^bÔ^pÔ^sğ(Cñ(uô(uÑ$� ˜fğ— ’ ˜LÑ)Ô)Ğ)ğ ×*Ò*Ñ,Ô,ğ *õ" &¨$Ô*;×*KÒ*KÑ*MÔ*MÑNÔNˆFå-BÀ<×CVÒCVÑCXÔCXÔC^Ğ`fÑ-gÔ-gĞ *Ø!0×!AÒ!AĞB`×BjÒBjĞklÑBmÔBmØJNğ"Bñ"Pô"PÑ ˆJ˜å+¨JÑ7Ô7ˆJؘA”Y˜q”\ˆFØ#×6Ò6°z×7KÒ7KÈAÑ7NÔ7NĞX\Ğ6Ñ]Ô]‰EˆB�Ø—’‘”×$Ò$Ñ&Ô&ˆBØ— ’ ‘ ” ×"Ò"Ñ$Ô$ QÔ'ˆAØ × $Ò $ Z°°VÑ <Ô <Ğ <Ø �MŠM˜!˜TÑ "Ô "Ğ "Ñ "à ×>Ò>Ñ@Ô@ˆ Ø$×3Ò3Ñ5Ô5°y×7KÒ7KÑ7MÔ7MĞNˆØ Ô×/Ò/°°d´kÔ6JÍHÕV\ÔVaØ6BÀOĞU^Ğ5_ğ 0ñ aô ağ ağ ˆ Ø˜_Ğ,Ğ,r(có²—|}|jj}t|¦«D]¸}|jjrN|xj|z c_| |j| ¦«z ¦«|j|| zz}nL|xj|z c_| |j| ¦«z¦«|j||zz}|xjdz c_Œ¹dSr*) rrxÚreversedr@Ú total_valueÚupdate_min_max_qrŒr~Ú times_visited)r%rWrˆÚG_noderxÚnodes r&r|zMuZeroSearchTree.backprop‹só€àˆØÔ"Ô(ˆİ˜T‘N”Nğ $ğ $ˆDàÔ!Ô2ğ 6ğĞ Ô  FÑ*Ğ Ô Ø×%Ò% d¤k°D×4GÒ4GÑ4IÔ4IÑ&IÑJÔJĞJØœ u°°Ñ'8Ñ8��àĞ Ô  FÑ*Ğ Ô Ø×%Ò% d¤k°D×4GÒ4GÑ4IÔ4IÑ&IÑJÔJĞJØœ u¨v¡~Ñ5�à Ğ Ô  !Ñ #Ğ Ô Ğ ğ $ğ $r(ÚnetÚ num_gamesÚmemorycó’—t|¦«D]6}| ||||dz k¬¦«}| |¦«Œ7dS)Nr+r7©NNN)rBr^Úadd_list)r%r–r2r—r˜ÚgameÚ game_resultss r&Ú self_playzMuZeroSearchTree.self_playŸs[€å˜)Ñ$Ô$ğ *ğ *ˆDØ×-Ò-¨c°6ĞVZĞ^gĞjkÑ^kÒVkĞ-ÑlÔlˆLØ �OŠO˜LÑ )Ô )Ğ )Ğ )àĞr(có°—t|j ¦«tj|j¦«tj|j¦«¬¦«S)N)r)rrÚmake_fresh_instanceÚcopyÚdeepcopyrrr0s r&r z$MuZeroSearchTree.make_fresh_instance§sN€İ Ô 1× EÒ EÑ GÔ GÍÌĞW[ÔWiÑIjÔIjİ-1¬]¸4Ô;LÑ-MÔ-MğOñOôOğ Or(r‰có—dS©N©)r%r‰s r&Ú step_rootzMuZeroSearchTree.step_root«s€à ˆr(có’—t|jd|¦«|jd<t|jd|¦«|jd<dS©Nrr+)Úminr$Úmax)r%Úqs r&r’z!MuZeroSearchTree.update_min_max_q¯sB€İ ¤¨qÔ 1°1Ñ5Ô5ˆŒ�qÑİ ¤¨qÔ 1°1Ñ5Ô5ˆŒ�qÑĞĞr(r„cóª—d}t|j¦«dkrd}|j ¦«D]}| |¦«}||z }Œ|Sr¨)ÚlenÚchildrenÚvaluesÚ get_num_nodes)r%r„Ú num_nodesÚchildÚnns r&r°zMuZeroSearchTree.get_num_nodes³sd€Øˆ İ ˆyÔ!Ñ "Ô " QÒ &Ğ &؈IØÔ'×.Ò.Ñ0Ô0ğ ğ ˆEØ×#Ò# EÑ*Ô*ˆBØ ˜‰OˆIˆIàĞr(ÚnetsÚtreesÚnum_jobsc óʇ‡‡‡‡‡—t‰¦«5}‰jrN‰jrG| tˆˆˆˆˆˆfd„t t ‰¦«¦«D¦«¦«}nF| tˆˆˆˆˆˆfd„t t ‰¦«¦«D¦«¦«}ddd¦«n #1swxYwY|D]}‰ |¦«ŒdS)Nc 󆕗g|]=}‰|‰|tj‰¦«‰‰ztj‰¦«df‘Œ>Sr¤)r¡r¢©Ú.0Úir2r˜r´r—r¶rµs €€€€€€r&ú <listcomp>z7MuZeroSearchTree.parallel_self_play.<locals>.<listcomp>ÂsXø€ğ2)ğ2)ğ2)Øwx�T˜!”W˜e Aœh­¬ °fÑ(=Ô(=¸yÈHÑ?TÕVZÔVcĞdjÑVkÔVkĞmqĞrğ2)ğ2)ğ2)r(cól•—g|]0}‰|‰|tj‰¦«‰‰zd‰jf‘Œ1Sr¤)r¡r¢r3r¹s €€€€€€r&r¼z7MuZeroSearchTree.parallel_self_play.<locals>.<listcomp>ÆsOø€ğ2&ğ2&ğ2&Øqr�T˜!”W˜e Aœh­¬ °fÑ(=Ô(=¸yÈHÑ?TĞVZĞ\bÔ\kĞlğ2&ğ2&ğ2&r(rš)rÚis_diskÚ full_diskÚstarmapÚ p_self_playrBr­r›) r´rµr˜r2r—r¶ÚpÚresultsÚresults `````` r&Úparallel_self_playz#MuZeroSearchTree.parallel_self_play½spøøøøøø€õ�(‰^Œ^ğ '˜qØŒ~ğ ' &Ô"2ğ 'ØŸ)š)¥Kğ2)ğ2)ğ2)ğ2)ğ2)ğ2)ğ2)ğ2)ğ2)å�S ™YœYÑ'Ô'ğ2)ñ2)ô2)ñ*ô*��ğŸ)š)¥Kğ2&ğ2&ğ2&ğ2&ğ2&ğ2&ğ2&ğ2&ğ2&å�#˜d™)œ)Ñ$Ô$ğ2&ñ2&ô2&ñ'ô'�ğ  'ğ 'ğ 'ñ 'ô 'ğ 'ğ 'ğ 'ğ 'ğ 'ğ 'øøøğ 'ğ 'ğ 'ğ 'ğğ $ğ $ˆFØ �OŠO˜FÑ #Ô #Ğ #Ğ #àĞs–BB>Â>CÃCÚshared_storageÚconfigÚnum_worker_itersc óğ—t|¦«}t|¦«D]V}| t||||t j|¦«||||| ¦«f¬¦«ŒW|S)Nre)rrBÚ apply_asyncÚ c_p_self_playr¡r¢Ú get_dir_path) r´rµrÆr2rÇr¶rÈÚpoolr»s r&Ústart_continuous_self_playz+MuZeroSearchTree.start_continuous_self_playÎsƒ€õ�H‰~Œ~ˆİ�x‘”ğ ğ ˆAØ × Ò �]Ø�Q”˜˜qœ¥4¤=°Ñ#8Ô#8¸&À!À^ĞUeØ×+Ò+Ñ-Ô-ğ2/Ğ ñ ô ğ ğ ğ ˆ r(cóì—dtdtfd„}| |¦«}| ¦«t | ¦«¦«|jdzkrAtjd¦«t | ¦«¦«|jdzk°At|j ¦«D]µ}||jdz|¦«}|D]œ\}} \} } } } }t|t¦«r|  ¦«}tj||¬¦« ¦«}| ||| |¦«\}\} }|j ||j¬¦«} Œ�Œ¶dS) NÚnÚmemcó�—| ¦«}g}t|¦«D]}| |||f¦«Œ |Sr¤)Ú get_bufferrBry)rĞrÑr"rSr»s r&Ú get_first_nz/MuZeroSearchTree.reanalyze.<locals>.get_first_nÜsM€Ø—^’^Ñ%Ô%ˆF؈Dݘ1‘X”Xğ ,ğ ,�Ø— ’ ˜V AœY¨˜NÑ+Ô+Ğ+Ğ+؈Kr(ééra)r2r8)ÚintrÚtoÚevalr­rÓÚ batch_sizeÚtimeÚsleeprBrÈÚ isinstancerÚ load_arrayÚthÚtensorr#rCrrDr9)r–Útreer2rÆrÇrÔÚiter_rSrVrWrZrYÚpred_vrRr\rQÚ_s r&Ú reanalyzezMuZeroSearchTree.reanalyzeÚsŠ€ğ �3ğ ¥]ğ ğ ğ ğ ğ�fŠf�V‰nŒnˆØ �Љ Œ ˆ İ�.×+Ò+Ñ-Ô-Ñ.Ô.°Ô1BÀQÑ1FÒFĞFİ ŒJ�q‰MŒMˆMõ�.×+Ò+Ñ-Ô-Ñ.Ô.°Ô1BÀQÑ1FÒFĞFå˜6Ô2Ñ3Ô3ğ Iğ IˆEØ�;˜vÔ0°1Ñ4°nÑEÔEˆDØ=Ağ Iğ IÑ9��AÑ2˜˜T 6¨6°Eݘe¥YÑ/Ô/ğ/Ø!×,Ò,Ñ.Ô.�Eİœ  %°Ğ7Ñ7Ô7×=Ò=Ñ?Ô?�Ø!Ÿ[š[¨¨e°V¸VÑDÔD‘ �‘F�Q˜ØÔ(×4Ò4°R¸V¼ZĞ4ÑHÔH��ğ  Iğ Iğ Ir(cór—|j ||jjtt j¦«dSr¤)rr€Úrun_on_training_endr�r‚r ÚALLr0s r&rçz$MuZeroSearchTree.run_on_training_endğs0€Ø Ô×/Ò/°°dÔ6NÔ6WÕYaÕciÔcmÑnÔnĞnĞnĞnr(r¤)NF)$r�Ú __module__Ú __qualname__rrr r'r!r rßr2ÚstrÚboolÚlistrr^roÚndarrayr×r#rCr|rÚtupler�r r¦r’r r°Ú staticmethodrÅrrÎrårçr¥r(r&rrs«€€€€€ğ7ğ7 Zğ7À ğ7Ğ\gĞ\oĞkoğ7ğ7ğ7ğ7ğfğfğfğ dhØ9>ğ)ğ)¨Yğ)ÀÄ ğ)ĞUXĞU`Ğ\`ğ)Ø26ğ)ØCGÈÔCWğ)ğ)ğ)ğ)ğXNSğ3-ğ3-¨R¬Zğ3-ÈÈĞPTğ3-Ğ^`Ô^gğ3-Ø�M˜Tğ3-ØFJğ3-ğ3-ğ3-ğ3-ğj$ğ$ğ$ğ( ˜Yğ °´ ğ Àcğ ĞSfğ ĞkpØ ˆS�#ˆ ôlğ ğ ğ ğ ğOğOğOğ     tğ ğ ğ ğ ğ6ğ6ğ6ğ ğğğğğğ  ğ ¨dğ Ğ<Oğ ĞY[ÔYbğ Ğorğ Ø%(ğ ğ ğ ñ„\ğ ğ ğ ¨ğ °dğ ÈMğ Ø+-¬9ğ Ø>Jğ ØVYğ Ømpğ ğ ğ ñ„\ğ ğğI°]ğIÈLğIğIğIñ„\ğIğ*oğoğoğoğor(rr3c óÈ—g}t|¦«D]O}| |||||dz k¬¦«}|�| |¦«Œ:| |¦«ŒP|S)Nr+)r3r4)rBr^r›Úextend) r–ráÚdevÚnum_grÑr3rSrœr�s r&rÁrÁôsy€Ø €Dİ�e‘ ” ğ&ğ&ˆØ×)Ò)¨#¨s¸XĞbfĞjoĞrsÑjsÒbsĞ)ÑtÔtˆ Ø ˆ?Ø �LŠL˜Ñ &Ô &Ğ &Ğ &à �KŠK˜ Ñ %Ô %Ğ %Ğ %Ø €Kr(rÇÚp_numrÆrÈcó¼—|dkrtj|jd¬¦«| |¦«}| ¦«t |¦«D]�}| ¦«€| ¦«} n| ¦«} | | ¦«|  |||¬¦«} |  | ¦«Œ‚dS)Nrz Self play)ÚprojectÚname)r3) rMÚinitÚwandbd_project_namerØrÙrBÚget_experimental_network_paramsÚget_stable_network_paramsÚload_state_dictr^r›) r–rár2rÇrõrÆrÈr3râÚparamsr�s r&rËrËÿsà€ğ �‚z€zİ Œ ˜6Ô5¸KĞHÑHÔHĞHØ �&Š&�‰.Œ.€C؇H‚H�J„J€JİĞ'Ñ(Ô(ğ .ğ .ˆğ × 9Ò 9Ñ ;Ô ;Ğ CØ#×=Ò=Ñ?Ô?ˆFˆFà#×CÒCÑEÔEˆFØ ×Ò˜FÑ#Ô#Ğ#Ø×)Ò)¨#¨vÀĞ)ÑIÔIˆ Ø×Ò  Ñ-Ô-Ğ-Ğ-ğ .ğ .r(r¤)0r¡ÚgcrÛrMÚ multiprocessrÚmultiprocess.poolrrJroÚtorchrßÚmu_alpha_zero.General.memoryrÚmu_alpha_zero.General.mz_gamerÚ!mu_alpha_zero.General.search_treer Ú mu_alpha_zero.Hooks.hook_managerr Úmu_alpha_zero.Hooks.hook_pointr Ú$mu_alpha_zero.MuZero.MZ_MCTS.mz_noder Ú%mu_alpha_zero.MuZero.Network.networksr Ú mu_alpha_zero.MuZero.lazy_arraysrÚmu_alpha_zero.MuZero.utilsrrrrrrÚmu_alpha_zero.configrÚmu_alpha_zero.mem_bufferrrrÚ$mu_alpha_zero.shared_storage_managerrrrërÁr×rËr¥r(r&ú<module>rsNğØ € € € Ø € € € Ø € € € à € € € Ø)Ğ)Ğ)Ğ)Ğ)Ğ)àĞ� Ğ%Ñ%Ô%Ğ%Ø"Ğ"Ğ"Ğ"Ğ"Ğ"àĞĞĞØĞĞĞØ<Ğ<Ğ<Ğ<Ğ<Ğ<Ø4Ğ4Ğ4Ğ4Ğ4Ğ4Ø8Ğ8Ğ8Ğ8Ğ8Ğ8Ø8Ğ8Ğ8Ğ8Ğ8Ğ8Ø1Ğ1Ğ1Ğ1Ğ1Ğ1Ø@Ğ@Ğ@Ğ@Ğ@Ğ@Ø;Ğ;Ğ;Ğ;Ğ;Ğ;Ø6Ğ6Ğ6Ğ6Ğ6Ğ6ğ-ğ-ğ-ğ-ğ-ğ-ğ-ğ-ğ-ğ-ğ-ğ-ğ-ğ-ğ-ğ-à-Ğ-Ğ-Ğ-Ğ-Ğ-ØQĞQĞQĞQĞQĞQĞQĞQĞQĞQØ>Ğ>Ğ>Ğ>Ğ>Ğ>ğUoğUoğUoğUoğUo�zñUoôUoğUoğpğ°c°k¸Tğğğğğ+/ğ.ğ.¨\ğ.À#ğ.ĞWdğ.Ø$'ğ.à˜K 4ğ.ğ.ğ.ğ.ğ.ğ.r(
20,530
Python
.py
75
272.533333
1,754
0.326408
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,536
mz_node.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/MuZero/MZ_MCTS/__pycache__/mz_node.cpython-311.pyc
§ ¬Õ£f^ ãó6—ddlZddlmZGd„de¦«ZdS)éN)Ú AlphaZeroNodec 󌇗eZdZdˆfd„ Zddeded ed efd „Zd efd „Zdd„Z dede fd„Z ddeded ed efd„Z d ed edefd„Z ˆxZS)ÚMzAlphaZeroNoderNécó^•—t¦« ||||¦«d|_dS)Nr)ÚsuperÚ__init__Úreward)ÚselfÚselect_probabilityÚparentÚtimes_visited_initÚcurrent_playerÚ __class__s €úS/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/MuZero/MZ_MCTS/mz_node.pyr zMzAlphaZeroNode.__init__s.ø€İ ‰Œ×Ò˜Ğ);¸VĞEWÑXÔXĞX؈Œ ˆ ˆ óçø?éÄLÚmin_qÚmax_qÚgammaÚmultiple_playersc ó¾—td¦« }d}d} |j ¦«D],\} } |  ||||||¬¦«} | |kr| }| }| } Œ-|| fS)NÚinf)ÚcÚc2)ÚfloatÚchildrenÚitemsÚcalculate_utc_score) r rrrrrrÚbest_utcÚ best_childÚ best_actionÚactionÚchildÚ child_utcs rÚget_best_childzMzAlphaZeroNode.get_best_child sƒ€İ˜%‘L”L�=ˆØˆ ؈ Ø!œ]×0Ò0Ñ2Ô2ğ %ğ %‰MˆF�EØ×1Ò1°%¸¸uĞEUĞYZĞ_aĞ1ÑbÔbˆIؘ8Ò#Ğ#Ø$�Ø"� Ø$� øØ˜;Ğ&Ğ&rÚprediction_forwardcó"—||j¦«S©N©Ústate)r r(s rÚget_value_predzMzAlphaZeroNode.get_value_preds€Ø!Ğ! $¤*Ñ-Ô-Ğ-rÚreturncó¸—| ¦«|_||_t|¦«D])\}}t |||jdz¬¦«}||j|<Œ*dS)Néÿÿÿÿ)r r r)Úcloner,r Ú enumeraterrr)r r,Úaction_probabilitiesÚ im_rewardr$Ú probabilityÚnodes rÚ expand_nodezMzAlphaZeroNode.expand_nodest€à—[’[‘]”]ˆŒ ؈Œ İ#,Ğ-AÑ#BÔ#Bğ )ğ )Ñ ˆF�Kİ"°kÈ$Ø26Ô2EÈÑ2LğNñNôNˆDà$(ˆDŒM˜&Ñ !Ğ !ğ )ğ )rÚdynamics_forwardr$có$—||j|¦«Sr*r+)r r8r$s rÚget_immediate_rewardz$MzAlphaZeroNode.get_immediate_reward"s€ØĞ ¤ ¨FÑ3Ô3Ğ3rcól—| ¦«}|jdkr'||jztj|jdz¦«zS| ||||¦«}||jtj|j¦«d|jzz z|tj|j|zdz|z ¦«zzz} | S)Nrg:Œ0â�yE>r)r Ú times_visitedr ÚmathÚsqrtÚscale_qÚlog) r rrrrrrr ÚqÚutcs rr z#MzAlphaZeroNode.calculate_utc_score%s¿€Ø—’‘”ˆØ Ô  1Ò $Ğ $Ø�tÔ.Ñ.µ´¸6Ô;OĞRVÑ;VÑ1WÔ1WÑWĞ WØ �LŠL˜  eĞ,<Ñ =Ô =ˆØ�$Ô)İ”˜6Ô/Ñ0Ô0°Q¸Ô9KÑ5KÑLñNà�$œ( FÔ$8¸2Ñ$=ÀÑ$AÀRÑ#GÑHÔHÑHñJñJˆğˆ rcóÚ—|j|r| ¦« n| ¦«z}||ks&|td¦«ks|td¦«kr|S||z ||z z S)Nrz-inf)r Úget_self_valuer)r rrrrrAs rr?zMzAlphaZeroNode.scale_q0su€Ø ŒKĞ5EĞ`˜D×/Ò/Ñ1Ô1Ğ1Ğ1È4×K^ÒK^ÑK`ÔK`Ñ aˆØ �EŠ>ˆ>˜e¥u¨U¡|¤|Ò3Ğ3°uÅÀfÁ Ä Ò7MĞ7M؈HØ�E‘ ˜e e™mÑ,Ğ,r)rNrr)rr)r.N)Ú__name__Ú __module__Ú __qualname__r rÚboolr'Úcallabler-r7Úintr:r r?Ú __classcell__)rs@rrrs#ø€€€€€ğğğğğğğ 'ğ ' Eğ '°%ğ 'Àğ 'ĞX\ğ 'ğ 'ğ 'ğ 'ğ.°ğ.ğ.ğ.ğ.ğ)ğ)ğ)ğ)ğ4°Xğ4Àsğ4ğ4ğ4ğ4ğ ğ ¨ğ °uğ ÀUğ Ğ]ağ ğ ğ ğ ğ-¨5ğ-ÀDğ-ÈUğ-ğ-ğ-ğ-ğ-ğ-ğ-ğ-rr)r=Ú$mu_alpha_zero.AlphaZero.MCTS.az_noderr©rrú<module>rNsTğØ € € € Ø>Ğ>Ğ>Ğ>Ğ>Ğ>ğ/-ğ/-ğ/-ğ/-ğ/-�mñ/-ô/-ğ/-ğ/-ğ/-r
4,303
Python
.py
31
137.774194
655
0.357126
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,537
java_manager.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/MuZero/JavaGateway/__pycache__/java_manager.cpython-311.pyc
§ Ùxf¼ ãóˆ—ddlZddlZddlZddlZddlZddlmZddlm Z m Z m Z ddl m Z ddlmZddlZGd„d¦«ZdS)éN)Ú JavaGateway)Úget_python_homeÚfind_project_rootÚget_site_packages_path)Ú JavaNetworks)Ú MuZeroNetcóR—eZdZdedefd„Zdefd„Zd„Zdedefd„Z d efd „Z d „Z d S) Ú JavaManagerÚnetworkÚargscóH—t¦«tjd<t¦«|_||_|d|_| |¦«|_|  ¦«|_ t¦«|_ tj|j¦«dS)NÚ PYTHONHOMEÚenv_id)rÚosÚenvironrÚ java_netsÚnetrÚ prepare_argsr Ú spawn_java_pÚ java_processrÚ java_gatewayÚatexitÚregisterÚkill_java_process)Úselfr r s ú\/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/MuZero/JavaGateway/java_manager.pyÚ__init__zJavaManager.__init__s�€õ$3Ñ#4Ô#4�Œ �<Ñ å%™œˆŒØˆŒØ˜8”nˆŒ Ø×%Ò% dÑ+Ô+ˆŒ Ø ×-Ò-Ñ/Ô/ˆÔİ'™MœMˆÔİŒ˜Ô.Ñ/Ô/Ğ/Ğ/Ğ/ócó>—d„| ¦«D¦«S)NcóÄ—i|]]\}}t|tj¦«r>t|t¦«s)|t d¦«k¯G|t d¦«k¯Z||“Œ^S)Úinfz-inf)Ú isinstanceÚnumbersÚNumberÚboolÚfloat)Ú.0ÚkÚvs rú <dictcomp>z,JavaManager.prepare_args.<locals>.<dictcomp>s|€ğxğxğx™˜˜Aݘ1�gœnÑ-Ô-ğxİ6@ÀÅDÑ6IÔ6IğxØNOÕSXĞY^ÑS_ÔS_ÒN_ĞN_ĞdeÕinĞouÑivÔivÒdvĞdvğ�1ØdvĞdvĞdvr)Úitems)rr s rrzJavaManager.prepare_argss0€ğxğx §¢¡¤ğxñxôxğ xrcóR—tjddddt¦«›d�g¦«S)NÚjavaz-jarzH/home/skyr/IdeaProjects/JSelfPlay/target/JSeflplayLinux-1.0-SNAPSHOT.jarz-Djava.library.path=z/jep/)Ú subprocessÚPopenr©rs rrzJavaManager.spawn_java_p s=€İÔØ �VĞgØ CÕ$:Ñ$<Ô$<Ğ CĞ CĞ Cğ EñFôFğ FrÚn_jobsÚn_gamescóT—g}|j |j¦«}tjt ¦«›d�d¬¦«|jj ||||  |j ¦«|j ¦«}td„|D¦«¦«}g}|D])}|  tj|¦«¦«Œ*tj|d¬¦«}t#|¦«D�]\} } |  ¦«} d„|  ¦«D¦«} t)|  ¦«¦«} t)|  ¦« ¦«¦«t)|  ¦« ¦«¦«t)|  ¦« ¦«¦«f}|  | | ||| f¦«�Œt/jt ¦«›d�¦«|S)Nz/Arrays/T)Úexist_okcó6—g|]}| ¦«‘ŒS©)Ú getValue3)r'Úxs rú <listcomp>z;JavaManager.run_parallel_java_self_play.<locals>.<listcomp>+s €Ğ4Ğ4Ğ4¨1˜Ÿš™œĞ4Ğ4Ğ4rr)Úaxiscó�—i|]C}t| ¦«¦«t| ¦«¦«“ŒDSr6)ÚintÚgetKeyr&ÚgetValue)r'Úentrys rr*z;JavaManager.run_parallel_java_self_play.<locals>.<dictcomp>2s<€Ğ\Ğ\Ğ\À5•#�e—l’l‘n”nÑ%Ô%¥u¨U¯^ª^Ñ-=Ô-=Ñ'>Ô'>Ğ\Ğ\Ğ\r)rÚsaverrÚmakedirsrrÚ entry_pointÚrunParallelSelfPlayÚdict_to_java_mapr rÚsetÚappendÚnpÚloadÚ concatenateÚ enumerateÚ getValue0ÚentrySetr&Ú getValue1Ú getValue2ÚshutilÚrmtree)rr1r2ÚresultsÚpathÚresÚ arr_pathsÚarrsÚarrÚiÚquartedÚhmapÚpdr)Úrmpred_rs rÚrun_parallel_java_self_playz'JavaManager.run_parallel_java_self_play%s÷€ØˆØŒ~×"Ò" 4¤8Ñ,Ô,ˆİ Œ Õ(Ñ*Ô*Ğ4Ğ4Ğ4¸tĞDÑDÔDĞDØÔÔ+×?Ò?ÀÈĞQUĞW[×WlÒWlĞmqÔmvÑWwÔWwØ@DÄ ñMôMˆåĞ4Ğ4°Ğ4Ñ4Ô4Ñ5Ô5ˆ ؈Øğ 'ğ 'ˆDØ �KŠK�œ ™ œ Ñ &Ô &Ğ &Ğ &İŒn˜T¨Ğ*Ñ*Ô*ˆİ" 3™œğ 6ñ 6‰IˆAˆgØ×$Ò$Ñ&Ô&ˆDØ\Ğ\ÈDÏMÊMÉOÌOĞ\Ñ\Ô\ˆBİ�g×'Ò'Ñ)Ô)Ñ*Ô*ˆAݘg×/Ò/Ñ1Ô1×;Ò;Ñ=Ô=Ñ>Ô>ÅÀg×FWÒFWÑFYÔFY×FcÒFcÑFeÔFeÑ@fÔ@fݘg×/Ò/Ñ1Ô1×;Ò;Ñ=Ô=Ñ>Ô>ğ@ˆHà �NŠN˜B  8¨S°¬VĞ4Ñ 5Ô 5Ğ 5Ñ 5İŒ Õ*Ñ,Ô,Ğ6Ğ6Ğ6Ñ7Ô7Ğ7؈rÚdictcóĞ—|jjjj ¦«}| ¦«D](\}}| |t|¦«¦«Œ)|S)N)rÚjvmr-ÚutilÚHashMapr+ÚputÚstr)rr]Újava_mapr(r)s rrDzJavaManager.dict_to_java_map:s\€ØÔ$Ô(Ô-Ô2×:Ò:Ñ<Ô<ˆØ—J’J‘L”Lğ $ğ $‰DˆAˆqØ �LŠL˜�C ™FœFÑ #Ô #Ğ #Ğ #؈rcóˆ—|j ¦«|j ¦«td¦«dS)NzJava process ended.)rÚkillÚwaitÚprintr0s rrzJavaManager.kill_java_process@s@€Ø Ô×ÒÑ Ô Ğ Ø Ô×ÒÑ Ô Ğ İ Ğ#Ñ$Ô$Ğ$؈rN) Ú__name__Ú __module__Ú __qualname__rr]rrrr<r\rDrr6rrr r s´€€€€€ğ 0  ğ 0°ğ 0ğ 0ğ 0ğ 0ğx ğxğxğxğxğFğFğFğ °#ğÀğğğğğ* Tğğğğğ ğğğğrr )r#rrOr.ÚnumpyrGÚpy4j.java_gatewayrÚmu_alpha_zero.General.utilsrrrÚ.mu_alpha_zero.MuZero.JavaGateway.java_networksrÚ%mu_alpha_zero.MuZero.Network.networksrrr r6rrú<module>rqsÇğØ€€€Ø € € € Ø € € € ØĞĞĞàĞĞĞØ)Ğ)Ğ)Ğ)Ğ)Ğ)ØbĞbĞbĞbĞbĞbĞbĞbĞbĞbØGĞGĞGĞGĞGĞGØ;Ğ;Ğ;Ğ;Ğ;Ğ;Ø € € € ğ6ğ6ğ6ğ6ğ6ñ6ô6ğ6ğ6ğ6r
6,645
Python
.py
27
244.888889
1,309
0.34824
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,538
java_networks.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/MuZero/JavaGateway/__pycache__/java_networks.cpython-311.pyc
§ ÙxfAãó@—ddlZddlmZddlmZGd„d¦«ZdS)éN)Ú MuZeroNet)Úfind_project_rootcó—eZdZdedefd„ZdS)Ú JavaNetworksÚnetworks_wrapperÚreturncóR—t¦«›d�}| |¦«|S)Nz /mz_net.pth)rÚ to_pickle)ÚselfrÚpaths ú]/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/MuZero/JavaGateway/java_networks.pyÚsavezJavaNetworks.saves/€İ#Ñ%Ô%Ğ2Ğ2Ğ2ˆØ×"Ò" 4Ñ(Ô(Ğ(؈ óN)Ú__name__Ú __module__Ú __qualname__rÚstrr©rr rrs6€€€€€ğ Yğ°3ğğğğğğrr)ÚmathÚ%mu_alpha_zero.MuZero.Network.networksrÚmu_alpha_zero.General.utilsrrrrr ú<module>rsdğØ € € € à;Ğ;Ğ;Ğ;Ğ;Ğ;Ø9Ğ9Ğ9Ğ9Ğ9Ğ9ğğğğğñôğğğr
980
Python
.py
3
325.333333
606
0.431493
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,539
arena.py
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/MuZero/MZ_Arena/arena.py
import random from typing import Type import torch as th from mu_alpha_zero.AlphaZero.Arena.players import Player, NetPlayer, RandomPlayer from mu_alpha_zero.General.arena import GeneralArena from mu_alpha_zero.General.mz_game import MuZeroGame from mu_alpha_zero.Hooks.hook_manager import HookManager from mu_alpha_zero.Hooks.hook_point import HookAt from mu_alpha_zero.MuZero.utils import resize_obs, scale_state, scale_action from mu_alpha_zero.config import MuZeroConfig import wandb from mu_alpha_zero.shared_storage_manager import SharedStorage class MzArena(GeneralArena): def __init__(self, game_manager: MuZeroGame, muzero_config: MuZeroConfig, device: th.device, hook_manager: HookManager or None = None): self.game_manager = game_manager self.muzero_config = muzero_config self.hook_manager = hook_manager if hook_manager is not None else HookManager() self.device = device def pit(self, player1: Type[Player], player2: Type[Player], num_games_to_play: int, num_mc_simulations: int, one_player: bool = False, start_player: int = 1): tau = self.muzero_config.arena_tau rewards = {1: [], -1: []} if one_player: num_games_per_player = num_games_to_play else: num_games_per_player = num_games_to_play // 2 noop_num = random.randint(0, 30) players = {"1": player1, "-1": player2} for player in [1, -1]: kwargs = {"num_simulations": num_mc_simulations, "current_player": player, "device": self.device, "tau": tau, "unravel": False} for game in range(num_games_per_player): self.game_manager.reset() state, _, _ = self.game_manager.frame_skip_step(self.game_manager.get_noop(), player, frame_skip=noop_num) state = resize_obs(state, self.muzero_config.target_resolution, self.muzero_config.resize_images) state = scale_state(state, self.muzero_config.scale_state) for step in range(self.muzero_config.num_steps): self.game_manager.render() move = players[str(player)].choose_move(state, **kwargs) state, reward, done = self.game_manager.frame_skip_step(move, player) state = resize_obs(state, self.muzero_config.target_resolution, self.muzero_config.resize_images) state = scale_state(state, self.muzero_config.scale_state) try: players[str(player)].monte_carlo_tree_search.buffer.add_frame(state, scale_action(move, self.game_manager.get_num_actions()), player) except AttributeError: # Player is probably not net player and doesn't have monte_carlo_tree_search. pass rewards[player].append(reward) if done: break self.hook_manager.process_hook_executes(self, self.pit.__name__, __file__, HookAt.TAIL, (rewards, kwargs)) return sum(rewards[1]), sum(rewards[-1]), 0 def run_on_training_end(self): self.hook_manager.process_hook_executes(self, self.run_on_training_end.__name__, __file__, HookAt.ALL)
3,551
Python
.py
58
45.62069
143
0.590635
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,540
arena.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/MuZero/MZ_Arena/__pycache__/arena.cpython-311.pyc
§  ‹fß ãó¶—ddlZddlmZddlZddlmZmZmZddl m Z ddl m Z ddl mZddlmZddlmZmZmZdd lmZddlZdd lmZGd „d e ¦«ZdS) éN)ÚType)ÚPlayerÚ NetPlayerÚ RandomPlayer)Ú GeneralArena)Ú MuZeroGame)Ú HookManager)ÚHookAt)Ú resize_obsÚ scale_stateÚ scale_action)Ú MuZeroConfig)Ú SharedStoragec óz—eZdZ ddededejdepdfd„Z dd e e d e e d e d e d e de f d„Z d„ZdS)ÚMzArenaNÚ game_managerÚ muzero_configÚdeviceÚ hook_managercó^—||_||_|�|n t¦«|_||_dS©N)rrr rr)Úselfrrrrs úR/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/MuZero/MZ_Arena/arena.pyÚ__init__zMzArena.__init__s2€à(ˆÔØ*ˆÔØ,8Ğ,D˜L˜LÍ+É-Ì-ˆÔ؈Œ ˆ ˆ óFéÚplayer1Úplayer2Únum_games_to_playÚnum_mc_simulationsÚ one_playerÚ start_playerc ó$—|jj}ggdœ}|r|} n|dz} tjdd¦«} ||dœ} dD�]ô} || |j|ddœ} t | ¦«D�]Ó}|j ¦«|j |j  ¦«| | ¬¦«\}}}t||jj |jj ¦«}t||jj ¦«}t |jj¦«D�]%}|j ¦«| t!| ¦«j|fi| ¤�}|j || ¦«\}}}t||jj |jj ¦«}t||jj ¦«} | t!| ¦«jj |t+||j ¦«¦«| ¦«n#t.$rYnwxYw||  |¦«|rn�Œ'�ŒÕ�Œö|j ||jjt:t<j|| f¦«tA|d ¦«tA|d ¦«dfS) N)réÿÿÿÿéré)Ú1z-1F)Únum_simulationsÚcurrent_playerrÚtauÚunravel)Ú frame_skiprr$)!rÚ arena_tauÚrandomÚrandintrÚrangerÚresetÚframe_skip_stepÚget_noopr Útarget_resolutionÚ resize_imagesr Ú num_stepsÚrenderÚstrÚ choose_moveÚmonte_carlo_tree_searchÚbufferÚ add_framer Úget_num_actionsÚAttributeErrorÚappendrÚprocess_hook_executesÚpitÚ__name__Ú__file__r ÚTAILÚsum)rrrrr r!r"r*ÚrewardsÚnum_games_per_playerÚnoop_numÚplayersÚplayerÚkwargsÚgameÚstateÚ_ÚstepÚmoveÚrewardÚdones rrAz MzArena.pits߀àÔ Ô*ˆØ˜b�/�/ˆØ ğ :Ø#4Ğ Ğ à#4¸Ñ#9Ğ İ”> ! RÑ(Ô(ˆØ wĞ/Ğ/ˆØğ ñ ˆFØ);ÈvĞaeÔalØ ¨Uğ4ğ4ˆFåĞ2Ñ3Ô3ğ ñ �ØÔ!×'Ò'Ñ)Ô)Ğ)à"Ô/×?Ò?ÀÔ@Q×@ZÒ@ZÑ@\Ô@\Ğ^dØKSğ@ñUôU‘ ��q˜!å" 5¨$Ô*<Ô*NĞPTÔPbÔPpÑqÔq�İ# E¨4Ô+=Ô+IÑJÔJ�İ! $Ô"4Ô">Ñ?Ô?ğñ�DØÔ%×,Ò,Ñ.Ô.Ğ.Ø;˜7¥3 v¡;¤;Ô/Ô;¸EĞLĞLÀVĞLĞL�Dà*.Ô*;×*KÒ*KÈDĞRXÑ*YÔ*YÑ'�E˜6 4İ& u¨dÔ.@Ô.RĞTXÔTfÔTtÑuÔu�Eİ'¨¨tÔ/AÔ/MÑNÔN�EğØ¥ F¡ ¤ Ô,ÔDÔK×UÒUĞV[Õ]iĞjnØjnÔj{÷kLòkLñkNôkNñ^Oô^OàV\ñ^ô^ğ^ğ^øõ*ğğğà˜ğøøøğ˜F”O×*Ò*¨6Ñ2Ô2Ğ2Øğؘñùñ- ğ2 Ô×/Ò/°°d´hÔ6GÍÕSYÔS^ĞahĞjpĞ`qÑrÔrĞrİ�7˜1”:‰Œ¥ G¨B¤KÑ 0Ô 0°!Ğ3Ğ3sÆAG9Ç9 H ÈH cór—|j ||jjtt j¦«dSr)rr@Úrun_on_training_endrBrCr ÚALL)rs rrTzMzArena.run_on_training_endCs0€Ø Ô×/Ò/°°dÔ6NÔ6WÕYaÕciÔcmÑnÔnĞnĞnĞnrr)Fr)rBÚ __module__Ú __qualname__rrÚthrr rrrÚintÚboolrArT©rrrrs¿€€€€€à59ğğ ZğÀ ğĞVXÔV_ğØ*Ğ2¨dğğğğğ;<ğ'4ğ'4˜4 œ<ğ'4°$°v´,ğ'4ĞSVğ'4Ğloğ'4Øğ'4Ø47ğ'4ğ'4ğ'4ğ'4ğRoğoğoğoğorr)r.ÚtypingrÚtorchrXÚ%mu_alpha_zero.AlphaZero.Arena.playersrrrÚmu_alpha_zero.General.arenarÚmu_alpha_zero.General.mz_gamerÚ mu_alpha_zero.Hooks.hook_managerr Úmu_alpha_zero.Hooks.hook_pointr Úmu_alpha_zero.MuZero.utilsr r r Úmu_alpha_zero.configrÚwandbÚ$mu_alpha_zero.shared_storage_managerrrr[rrú<module>rgsğØ € € € ØĞĞĞĞĞàĞĞĞàQĞQĞQĞQĞQĞQĞQĞQĞQĞQØ4Ğ4Ğ4Ğ4Ğ4Ğ4Ø4Ğ4Ğ4Ğ4Ğ4Ğ4Ø8Ğ8Ğ8Ğ8Ğ8Ğ8Ø1Ğ1Ğ1Ğ1Ğ1Ğ1ØLĞLĞLĞLĞLĞLĞLĞLĞLĞLØ-Ğ-Ğ-Ğ-Ğ-Ğ-Ø € € € à>Ğ>Ğ>Ğ>Ğ>Ğ>ğ2oğ2oğ2oğ2oğ2oˆlñ2oô2oğ2oğ2oğ2or
5,155
Python
.py
22
233.272727
971
0.387807
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,541
networks.py
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/MuZero/Network/networks.py
import time from typing import Tuple, List, Any import numpy as np import torch as th import torch.nn.functional as F import wandb from torch import nn, Tensor from torch.nn.functional import mse_loss from mu_alpha_zero.AlphaZero.Network.nnet import AlphaZeroNet as PredictionNet, OriginalAlphaZeroNetwork from mu_alpha_zero.AlphaZero.checkpointer import CheckPointer from mu_alpha_zero.AlphaZero.logger import Logger from mu_alpha_zero.General.memory import GeneralMemoryBuffer from mu_alpha_zero.General.mz_game import MuZeroGame from mu_alpha_zero.General.network import GeneralMuZeroNetwork from mu_alpha_zero.Hooks.hook_manager import HookManager from mu_alpha_zero.Hooks.hook_point import HookAt from mu_alpha_zero.MuZero.utils import match_action_with_obs_batch, scalar_to_support, support_to_scalar, \ scale_hidden_state from mu_alpha_zero.config import MuZeroConfig from mu_alpha_zero.shared_storage_manager import SharedStorage class MuZeroNet(th.nn.Module, GeneralMuZeroNetwork): def __init__(self, input_channels: int, dropout: float, action_size: int, num_channels: int, latent_size: list[int], num_out_channels: int, linear_input_size: int or list[int], rep_input_channels: int, use_original: bool, support_size: int, num_blocks: int, state_linear_layers: int, pi_linear_layers: int, v_linear_layers: int, linear_head_hidden_size: int, is_atari: bool, hook_manager: HookManager or None = None, use_pooling: bool = True): super(MuZeroNet, self).__init__() self.input_channels = input_channels self.rep_input_channels = rep_input_channels self.dropout = dropout self.use_original = use_original self.use_pooling = use_pooling self.device = th.device("cuda" if th.cuda.is_available() else "cpu") self.action_size = action_size self.num_channels = num_channels self.latent_size = latent_size self.optimizer = None self.scheduler = None self.num_out_channels = num_out_channels self.linear_input_size = linear_input_size self.support_size = support_size self.is_atari = is_atari self.num_blocks = num_blocks self.state_linear_layers = state_linear_layers self.pi_linear_layers = pi_linear_layers self.v_linear_layers = v_linear_layers self.linear_head_hidden_size = linear_head_hidden_size self.hook_manager = hook_manager if hook_manager is not None else HookManager() # self.action_embedding = th.nn.Embedding(action_size, 256) if not is_atari: self.representation_network = OriginalAlphaZeroNetwork(in_channels=rep_input_channels, num_channels=num_out_channels, dropout=dropout, action_size=action_size, linear_input_size=linear_input_size, state_linear_layers=state_linear_layers, pi_linear_layers=pi_linear_layers, v_linear_layers=v_linear_layers, linear_head_hidden_size=linear_head_hidden_size, is_atari=is_atari, support_size=support_size, latent_size=latent_size, num_blocks=num_blocks, muzero=True, is_dynamics=False, is_representation=True) else: self.representation_network = RepresentationNet(rep_input_channels, use_pooling=use_pooling) if use_original: self.dynamics_network = OriginalAlphaZeroNetwork(in_channels=num_channels + 1, num_channels=num_out_channels, dropout=dropout, action_size=action_size, linear_input_size=linear_input_size, state_linear_layers=state_linear_layers, pi_linear_layers=pi_linear_layers, v_linear_layers=v_linear_layers, linear_head_hidden_size=linear_head_hidden_size, is_atari=is_atari, support_size=support_size, latent_size=latent_size, num_blocks=num_blocks, muzero=True, is_dynamics=True) self.prediction_network = OriginalAlphaZeroNetwork(in_channels=num_channels, num_channels=num_out_channels, dropout=dropout, action_size=action_size, state_linear_layers=state_linear_layers, pi_linear_layers=pi_linear_layers, v_linear_layers=v_linear_layers, linear_head_hidden_size=linear_head_hidden_size, is_atari=is_atari, linear_input_size=linear_input_size, support_size=support_size, latent_size=latent_size, num_blocks=num_blocks, muzero=True, is_dynamics=False) else: self.dynamics_network = DynamicsNet(in_channels=257, num_channels=num_channels, dropout=dropout, latent_size=latent_size, out_channels=num_out_channels) # prediction outputs 6x6 latent state self.prediction_network = PredictionNet(in_channels=256, num_channels=num_channels, dropout=dropout, action_size=action_size, linear_input_size=linear_input_size) @classmethod def make_from_config(cls, config: MuZeroConfig, hook_manager: HookManager or None = None): return cls(config.num_net_in_channels, config.net_dropout, config.net_action_size, config.num_net_channels, config.net_latent_size, config.num_net_out_channels, config.az_net_linear_input_size, config.rep_input_channels, config.use_original, config.support_size, config.num_blocks, config.state_linear_layers, config.pi_linear_layers, config.v_linear_layers, config.linear_head_hidden_size, config.is_atari, hook_manager=hook_manager, use_pooling=config.use_pooling) def dynamics_forward(self, x: th.Tensor, predict: bool = False, return_support: bool = False, convert_to_state: bool = True): if predict: state, r = self.dynamics_network.forward(x, muzero=True) reward = r.detach().cpu().numpy() else: state, reward = self.dynamics_network(x, muzero=True, return_support=return_support) if convert_to_state: try: state = state.view(self.num_out_channels, self.latent_size[0], self.latent_size[1]) except RuntimeError: # The state is batched state = state.view(-1, self.num_out_channels, self.latent_size[0], self.latent_size[1]) return state, reward def prediction_forward(self, x: th.Tensor, predict: bool = False, return_support: bool = False): if predict: pi, v = self.prediction_network.predict(x, muzero=True) return pi, v pi, v = self.prediction_network(x, muzero=True, return_support=return_support) return pi, v def representation_forward(self, x: th.Tensor): state = self.representation_network(x, muzero=True) try: state = state.view(self.num_out_channels, self.latent_size[0], self.latent_size[1]) except RuntimeError: # The state is batched state = state.view(-1, self.num_out_channels, self.latent_size[0], self.latent_size[1]) return state def forward_recurrent(self, hidden_state_with_action: th.Tensor, all_predict: bool, return_support: bool = False): next_state, reward = self.dynamics_forward(hidden_state_with_action, predict=all_predict, return_support=return_support) pi, v = self.prediction_forward(next_state, predict=all_predict, return_support=return_support) return next_state, reward, pi, v def make_fresh_instance(self): return MuZeroNet(self.input_channels, self.dropout, self.action_size, self.num_channels, self.latent_size, self.num_out_channels, self.linear_input_size, self.rep_input_channels, hook_manager=self.hook_manager, use_original=self.use_original, support_size=self.support_size, num_blocks=self.num_blocks, use_pooling=self.use_pooling, state_linear_layers=self.state_linear_layers, pi_linear_layers=self.pi_linear_layers, v_linear_layers=self.v_linear_layers, linear_head_hidden_size=self.linear_head_hidden_size, is_atari=self.is_atari) def train_net(self, memory_buffer: GeneralMemoryBuffer, muzero_config: MuZeroConfig) -> tuple[float, list[float]]: if memory_buffer.train_length() <= 1: return 0, [] device = th.device("cuda" if th.cuda.is_available() else "cpu") if self.optimizer is None: self.optimizer = th.optim.Adam(self.parameters(), lr=muzero_config.lr, weight_decay=muzero_config.l2) if self.scheduler is None and muzero_config.lr_scheduler is not None: self.scheduler = muzero_config.lr_scheduler(self.optimizer, **muzero_config.lr_scheduler_kwargs) losses = [] iteration = 0 loader = lambda: memory_buffer.batch_with_priorities(muzero_config.enable_per, muzero_config.batch_size, muzero_config) for epoch in range(muzero_config.epochs): sampled_game_data, grad_scales, priorities, weights = loader() if len(sampled_game_data) <= 1: continue loss, loss_v, loss_pi, loss_r = self.calculate_losses(sampled_game_data, grad_scales, weights, device, muzero_config) wandb.log({"combined_loss": loss.item(), "loss_v": loss_v.item(), "loss_pi": loss_pi.item(), "loss_r": loss_r.item()}) losses.append(loss.item()) self.optimizer.zero_grad() loss.backward() self.optimizer.step() if self.scheduler is not None: self.scheduler.step() try: wandb.log({"lr": self.scheduler.get_last_lr()[0]}) except: pass self.hook_manager.process_hook_executes(self, self.train_net.__name__, __file__, HookAt.MIDDLE, args=( sampled_game_data, loss.item(), loss_v, loss_pi, loss_r, iteration)) iteration += 1 self.hook_manager.process_hook_executes(self, self.train_net.__name__, __file__, HookAt.TAIL, args=(memory_buffer, losses)) return sum(losses) / len(losses), losses def eval_net(self, memory_buffer: GeneralMemoryBuffer, muzero_config: MuZeroConfig) -> None: if memory_buffer.eval_length() == 0: return device = th.device("cuda" if th.cuda.is_available() else "cpu") if self.optimizer is None: self.optimizer = th.optim.Adam(self.parameters(), lr=muzero_config.lr, weight_decay=muzero_config.l2) loader = lambda: memory_buffer.batch_with_priorities(muzero_config.enable_per, muzero_config.batch_size, muzero_config, is_eval=True) for epoch in range(muzero_config.eval_epochs): experience_batch, grad_scales, priorities, weights = loader() if len(experience_batch) <= 1: continue loss, loss_v, loss_pi, loss_r = self.calculate_losses(experience_batch, grad_scales, weights, device, muzero_config) wandb.log({"eval_combined_loss": loss.item(), "eval_loss_v": loss_v.item(), "eval_loss_pi": loss_pi.item(), "eval_loss_r": loss_r.item()}) def calculate_losses(self, experience_batch, grad_scales, weights, device, muzero_config): init_states, rewards, scalar_values, moves, pis, masks = self.get_batch_for_unroll_index(0, experience_batch, device) loss_fn = muzero_config._value_reward_loss # rewards = scalar_to_support(rewards, muzero_config.support_size) if muzero_config.loss_gets_support: values = scalar_to_support(scalar_values, muzero_config.support_size, muzero_config.is_atari) else: values = scalar_values hidden_state = self.representation_forward(init_states) if muzero_config.scale_hidden_state: hidden_state = scale_hidden_state(hidden_state) pred_pis, pred_vs = self.prediction_forward(hidden_state, return_support=muzero_config.loss_gets_support) pi_loss, v_loss, r_loss = 0, 0, 0 pi_loss += self.muzero_loss(pred_pis, pis,masks=masks) v_loss += loss_fn(pred_vs, values) new_priorities = [[] for x in range(pred_pis.size(0))] grad_scales = [[grad_scales[x][i] for x in range(len(grad_scales))] for i in range(len(grad_scales[0]))] if muzero_config.enable_per: self.populate_priorities((th.abs(support_to_scalar(pred_vs, muzero_config.support_size, muzero_config.is_atari) - scalar_values) ** muzero_config.alpha).reshape( -1).tolist(), new_priorities) for i in range(1, muzero_config.K + 1): _, rewards, scalar_values, moves, pis, masks = self.get_batch_for_unroll_index(i, experience_batch, device) if muzero_config.loss_gets_support: rewards = scalar_to_support(rewards, muzero_config.support_size, muzero_config.is_atari) values = scalar_to_support(scalar_values, muzero_config.support_size, muzero_config.is_atari) else: values = scalar_values hidden_state, pred_rs, pred_pis, pred_vs = self.forward_recurrent( match_action_with_obs_batch(hidden_state, moves, muzero_config), False, return_support=muzero_config.loss_gets_support) if muzero_config.scale_hidden_state: hidden_state = scale_hidden_state(hidden_state) hidden_state.register_hook(lambda grad: grad * 0.5) current_pi_loss = self.muzero_loss(pred_pis, pis,masks=masks) current_v_loss = loss_fn(pred_vs, values) current_r_loss = loss_fn(pred_rs, rewards) current_r_loss.register_hook( lambda grad: grad * (1 / th.tensor(grad_scales[i], device=device)).reshape(grad.shape)) current_v_loss.register_hook( lambda grad: grad * (1 / th.tensor(grad_scales[i], device=device)).reshape(grad.shape)) current_pi_loss.register_hook( lambda grad: grad * (1 / th.tensor(grad_scales[i], device=device)).reshape(grad.shape)) pi_loss += current_pi_loss v_loss += current_v_loss r_loss += current_r_loss if muzero_config.enable_per: self.populate_priorities((th.abs(support_to_scalar(pred_vs, muzero_config.support_size, muzero_config.is_atari) - scalar_values) ** muzero_config.alpha).reshape( -1).tolist(), new_priorities) # TODO: Multiply v by 0.25 when reanalyze implemented. v_loss *= 0.25 loss = pi_loss + v_loss + r_loss if muzero_config.enable_per: loss *= th.tensor(weights, dtype=loss.dtype, device=loss.device) loss = loss.mean() if muzero_config.enable_per: self.update_priorities(new_priorities, experience_batch) return loss, v_loss.mean(), pi_loss.mean(), r_loss.mean() def get_batch_for_unroll_index(self, index: int, experience_batch, device) -> tuple[ Tensor | None, Tensor, Tensor, list[Any], Tensor, Tensor]: tensor_from_x = lambda x: th.tensor(x, dtype=th.float32, device=device) init_states = None if index == 0: init_states = [np.array(x.datapoints[index].frame) for x in experience_batch] init_states = tensor_from_x(np.array(init_states)).permute(0, 3, 1, 2) move_index = max(0, index - 1) rewards = np.array([x.datapoints[index].reward for x in experience_batch]) rewards = tensor_from_x(rewards) values = np.array([x.datapoints[index].v for x in experience_batch]) values = tensor_from_x(values) moves = [x.datapoints[move_index].move for x in experience_batch] # moves = np.array([x.datapoints[index].move for x in experience_batch]) # moves = tensor_from_x(moves) pis = np.array([x.datapoints[index].pi for x in experience_batch]) pis = tensor_from_x(pis) masks = np.array([x.datapoints[index].action_mask for x in experience_batch]) masks = tensor_from_x(masks) return init_states, rewards.unsqueeze(1), values.unsqueeze(1), moves, pis, masks def populate_priorities(self, new_priorities: list, priorities_list: list): for idx, priority in enumerate(new_priorities): priorities_list[idx].append(priority) def update_priorities(self, new_priorities: list, experience_batch: list): for idx, game in enumerate(experience_batch): for i in range(len(game.datapoints)): game.datapoints[i].priority = new_priorities[idx][i] def muzero_loss(self, y_hat, y,masks: th.Tensor or None = None) -> th.Tensor: # if masks is not None: # y_hat = y_hat * masks.reshape(y_hat.shape) return -th.sum(y * y_hat, dim=1).unsqueeze(1) def continuous_weight_update(self, shared_storage: SharedStorage, muzero_config: MuZeroConfig, checkpointer: CheckPointer, logger: Logger): wandb.init(project=muzero_config.wandbd_project_name, name="Continuous Weight Update") self.train() # losses = [] # loss_avgs = [] # num_epochs = muzero_config.epochs muzero_config.epochs = 1 muzero_config.eval_epochs = 1 # while len( # shared_storage.get_buffer()) < muzero_config.batch_size // 4: # await reasonable buffer size # time.sleep(5) logger.log("Finished waiting for target buffer size,starting training.") for iter_ in range(muzero_config.num_worker_iters): # if not shared_storage.get_was_pitted(): # time.sleep(5) # continue # self.load_state_dict(shared_storage.get_stable_network_params()) # for epoch in range(num_epochs): avg, iter_losses = self.train_net(shared_storage, muzero_config) shared_storage.set_experimental_network_params(self.state_dict()) # shared_storage.set_optimizer(self.optimizer.state_dict()) # loss_avgs.append(avg) # losses.extend(iter_losses) # shared_storage.set_was_pitted(False) if iter_ % muzero_config.eval_interval == 0: self.eval_net(shared_storage, muzero_config) if iter_ % 250 == 0 and iter_ != 0: logger.log(f"Saving checkpoint at iteration {iter_}.") checkpointer.save_checkpoint(self, self, self.optimizer, muzero_config.lr, iter_, muzero_config) # wandb.log({"loss_avg": avg}) def to_pickle(self, path: str): th.save(self, path) def run_on_training_end(self): self.hook_manager.process_hook_executes(self, self.run_on_training_end.__name__, __file__, HookAt.ALL) class RepresentationNet(th.nn.Module): def __init__(self, rep_input_channels: int, use_pooling: bool = True): super(RepresentationNet, self).__init__() self.device = th.device("cuda" if th.cuda.is_available() else "cpu") self.conv1 = th.nn.Conv2d(in_channels=rep_input_channels, out_channels=128, kernel_size=3, stride=2, padding=1) self.residuals1 = th.nn.ModuleList([ResidualBlock(128) for _ in range(2)]) self.conv2 = th.nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1) self.residuals2 = th.nn.ModuleList([ResidualBlock(256) for _ in range(3)]) self.residuals3 = th.nn.ModuleList([ResidualBlock(256) for _ in range(3)]) if use_pooling: self.pool1 = th.nn.AvgPool2d(kernel_size=3, stride=2, padding=1) self.pool2 = th.nn.AvgPool2d(kernel_size=3, stride=2, padding=1) else: self.pool1 = th.nn.Identity() self.pool2 = th.nn.Identity() self.relu = th.nn.ReLU() def forward(self, x: th.Tensor, muzero: bool = False): # x.unsqueeze(0) x = x.to(self.device) x = self.relu(self.conv1(x)) for residual in self.residuals1: x = residual(x) x = self.relu(self.conv2(x)) for residual in self.residuals2: x = residual(x) x = self.pool1(x) for residual in self.residuals3: x = residual(x) x = self.pool2(x) return x def trace(self): data = th.rand((1, 128, 8, 8)) traced_script_module = th.jit.trace(self, data) return traced_script_module class DynamicsNet(nn.Module): def __init__(self, in_channels, num_channels, dropout, latent_size, out_channels): super(DynamicsNet, self).__init__() self.out_channels = out_channels self.latent_size = latent_size # Convolutional layers self.conv1 = nn.Conv2d(in_channels, num_channels, 3, padding=1) self.bn1 = nn.BatchNorm2d(num_channels) self.conv2 = nn.Conv2d(num_channels, num_channels, 3, padding=1) self.bn2 = nn.BatchNorm2d(num_channels) self.conv3 = nn.Conv2d(num_channels, num_channels, 3, padding=1) self.bn3 = nn.BatchNorm2d(num_channels) self.conv4 = nn.Conv2d(num_channels, num_channels, 3) self.bn4 = nn.BatchNorm2d(num_channels) # Fully connected layers # 4608 (5x5) or 512 (3x3) or 32768 (10x10) or 18432 (8x8) self.fc1 = nn.Linear(8192, 1024) self.fc1_bn = nn.BatchNorm1d(1024) self.fc2 = nn.Linear(1024, 512) self.fc2_bn = nn.BatchNorm1d(512) self.dropout = nn.Dropout(dropout) # Output layers self.state_head = nn.Linear(512, latent_size[0] * latent_size[1] * out_channels) # state head self.reward_head = nn.Linear(512, 1) # reward head def forward(self, x, muzero=False): # x = x.unsqueeze(0) x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = F.relu(self.bn3(self.conv3(x))) x = F.relu(self.bn4(self.conv4(x))) x = x.view(x.size(0), -1) # Flatten x = F.relu(self.fc1_bn(self.fc1(x))) x = self.dropout(x) x = F.relu(self.fc2_bn(self.fc2(x))) x = self.dropout(x) state = self.state_head(x) r = self.reward_head(x) return state, r def trace(self) -> th.jit.ScriptFunction: data = th.rand((1, 257, 6, 6)).to("cuda:0") traced_script_module = th.jit.trace(self, data) return traced_script_module @th.no_grad() def predict(self, x): state, r = self.forward(x) state = state.view(self.out_channels, self.latent_size[0], self.latent_size[1]) return state, r.detach().cpu().numpy() class ResidualBlock(th.nn.Module): def __init__(self, channels: int): super(ResidualBlock, self).__init__() self.convolution1 = th.nn.Conv2d(in_channels=channels, out_channels=channels, kernel_size=3, padding=1) self.bnorm1 = th.nn.BatchNorm2d(channels) self.convolution2 = th.nn.Conv2d(in_channels=channels, out_channels=channels, kernel_size=3, padding=1) self.bnorm2 = th.nn.BatchNorm2d(channels) self.relu = th.nn.ReLU() def forward(self, x): # x = x.unsqueeze(0) x_res = x convolved = self.convolution1(x) x = self.relu(self.bnorm1(convolved)) x = self.bnorm2(self.convolution2(x)) x += x_res x = self.relu(x) return x
26,509
Python
.py
430
44.613953
140
0.567582
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,542
networks.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/MuZero/Network/__pycache__/networks.cpython-311.pyc
§ k¤føUãó˜—ddlZddlZddlZddlmcmZddl Z ddlmZddlm Z ddl m Z mZddlmZddlmZddlmZddlmZdd lmZdd lmZdd lmZdd lmZmZm Z dd l!m"Z"ddl#m$Z$Gd„dejj%e¦«Z&Gd„dejj%¦«Z'Gd„dej%¦«Z(Gd„dejj%¦«Z)dS)éN)Únn)Úmse_loss)Ú AlphaZeroNetÚOriginalAlphaZerNetwork)Ú CheckPointer)ÚLogger)ÚGeneralMemoryBuffer)Ú MuZeroGame)ÚGeneralMuZeroNetwork)Ú HookManager)ÚHookAt)Úmatch_action_with_obs_batchÚscalar_to_supportÚsupport_to_scalar)Ú MuZeroConfig)Ú SharedStoragec#ó‡—eZdZ d8dededededeeded epeed ed ed ed edededededepddef"ˆfd„ Ze d9de depdfd„¦«Z d:de j dededefd„Zd;de j dedefd„Zde j fd„Zd<de j d edefd!„Zd"„Zd#ed$e d%eeeeffd&„Zd#ed$e d%dfd'„Zd(„Zd)ed%ee j e j e j ee j ffd*„Zd+ed,efd-„Zd+ed.efd/„Zd0„Zd1ed$e d2ed3efd4„Zd5e fd6„Z!d7„Z"ˆxZ#S)=Ú MuZeroNetNTÚinput_channelsÚdropoutÚ action_sizeÚ num_channelsÚ latent_sizeÚnum_out_channelsÚlinear_input_sizeÚrep_input_channelsÚ use_originalÚ support_sizeÚ num_blocksÚstate_linear_layersÚpi_linear_layersÚv_linear_layersÚlinear_head_hidden_sizeÚ hook_managerÚ use_poolingcó•—tt|¦« ¦«||_||_||_| |_||_tj tj   ¦«rdnd¦«|_ ||_ ||_ ||_d|_||_||_| |_| |_| |_| |_||_||_|�|n t1¦«|_t5||¬¦«|_| rFt9d||||| | ||| || dd¬¦«|_t9d|||| | |||| || dd¬ ¦«|_dSt?d||||¬ ¦«|_tAd||||¬ ¦«|_dS) NÚcudaÚcpu)r%éT)Ú in_channelsrrrrr r!r"r#rrrÚmuzeroÚ is_dynamicséF)r*rrrr r!r"r#rrrrr+r,)r*rrrÚ out_channels)r*rrrr)!ÚsuperrÚ__init__rrrrr%ÚthÚdevicer'Ú is_availablerrrÚ optimizerrrrrr r!r"r#r r$ÚRepresentationNetÚrepresentation_networkrÚdynamics_networkÚprediction_networkÚ DynamicsNetÚ PredictionNet)Úselfrrrrrrrrrrrr r!r"r#r$r%Ú __class__s €úT/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/MuZero/Network/networks.pyr0zMuZeroNet.__init__sêø€õ �i˜ÑÔ×'Ò'Ñ)Ô)Ğ)Ø,ˆÔØ"4ˆÔ؈Œ Ø(ˆÔØ&ˆÔİ”i­"¬'×*>Ò*>Ñ*@Ô*@Ğ K  ÀeÑLÔLˆŒ Ø&ˆÔØ(ˆÔØ&ˆÔ؈ŒØ 0ˆÔØ!2ˆÔØ(ˆÔØ$ˆŒØ#6ˆÔ Ø 0ˆÔØ.ˆÔØ'>ˆÔ$Ø,8Ğ,D˜L˜LÍ+É-Ì-ˆÔå&7Ğ8JĞXcĞ&dÑ&dÔ&dˆÔ#Ø ğ rİ$;ÈĞZjØDKØHSØN_ØPcØM]ØL[ØTkØIUĞcnØGQĞZ^Ğlpğ %rñ %rô %rˆDÔ !õ'>È#Ğ\lØFMØJUØReØO_ØN]ØVmØPaØKWĞepØISĞ\`Ğnsğ 'uñ 'uô 'uˆDÔ #Ğ #Ğ #õ%0¸CÈlĞdkØ<GĞVfğ%hñ%hô%hˆDÔ !õ'4ÀĞR^ĞhoØ@KĞ_pğ'rñ'rô'rˆDÔ #Ğ #Ğ #óÚconfigcóÚ—||j|j|j|j|j|j|j|j|j|j |j |j |j |j |j||j¬¦«S)N)r$r%)Únum_net_in_channelsÚ net_dropoutÚnet_action_sizeÚnum_net_channelsÚnet_latent_sizeÚnum_net_out_channelsÚaz_net_linear_input_sizerrrrr r!r"r#r%)Úclsr?r$s r=Úmake_from_configzMuZeroNet.make_from_configOsx€àˆs�6Ô-¨vÔ/AÀ6ÔCYĞ[aÔ[rØÔ)¨6Ô+FÈÔHgØÔ,¨fÔ.AÀ6ÔCVĞX^ÔXiØÔ-¨vÔ/FÈÔH^ØÔ1Ø ,¸&Ô:Lğ NñNôNğ Nr>FÚxÚpredictÚreturn_supportÚconvert_to_statecóæ—|rX|j |d¬¦«\}}| ¦« ¦« ¦«}n| |d|¬¦«\}}|rw | |j|jd|jd¦«}nC#t$r6| d|j|jd|jd¦«}YnwxYw||fS)NT©r+©r+rLrééÿÿÿÿ) r7ÚforwardÚdetachr(ÚnumpyÚviewrrÚ RuntimeError)r;rJrKrLrMÚstateÚrÚrewards r=Údynamics_forwardzMuZeroNet.dynamics_forwardXs€à ğ aØÔ,×4Ò4°Q¸tĞ4ÑDÔD‰HˆE�1Ø—X’X‘Z”Z—^’^Ñ%Ô%×+Ò+Ñ-Ô-ˆFˆFà ×1Ò1°!¸DĞQ_Ğ1Ñ`Ô`‰MˆE�6Ø ğ hğ hØŸ š  4Ô#8¸$Ô:JÈ1Ô:MÈtÔO_Ğ`aÔObÑcÔc��øİğ hğ hğ hàŸ š  2 tÔ'<¸dÔ>NÈqÔ>QĞSWÔScĞdeÔSfÑgÔg���ğ høøøğ�fˆ}ĞsÁ92B,Â,=C,Ã+C,cóŠ—|r#|j |d¬¦«\}}||fS| |d|¬¦«\}}||fS)NTrOrP)r8rK)r;rJrKrLÚpiÚvs r=Úprediction_forwardzMuZeroNet.prediction_forwardgsY€Ø ğ ØÔ+×3Ò3°A¸dĞ3ÑCÔC‰EˆB�Ø�q�5ˆLØ×'Ò'¨°$À~Ğ'ÑVÔV‰ˆˆAØ�1ˆuˆ r>có0—| |¦«}|S©N)r6)r;rJs r=Úrepresentation_forwardz MuZeroNet.representation_forwardns€Ø × 'Ò '¨Ñ *Ô *ˆØˆr>Úhidden_state_with_actionÚ all_predictcóz—| |||¬¦«\}}| |||¬¦«\}}||||fS)N)rKrL)r[r_)r;rcrdrLÚ next_staterZr]r^s r=Úforward_recurrentzMuZeroNet.forward_recurrentrsZ€Ø!×2Ò2Ğ3KĞU`ØBPğ3ñRôRш �Fà×'Ò'¨ ¸KĞXfĞ'ÑgÔg‰ˆˆAؘ6 2 qĞ(Ğ(r>cóì—t|j|j|j|j|j|j|j|j|j |j |j |j |j |j|j|j|j¬¦«S)N) r$rrrr%r r!r"r#)rrrrrrrrrr$rrrr%r r!r"r#©r;s r=Úmake_fresh_instancezMuZeroNet.make_fresh_instancexsy€İ˜Ô,¨d¬l¸DÔ<LÈdÔN_ĞaeÔaqØÔ.°Ô0FÈÔH_Ø&*Ô&7ÀdÔFWĞfjÔfwØ$(¤OÀÔAQØ-1Ô-EØ*.Ô*?ĞQUÔQeØ15Ô1Mğ OñOôOğ Or>Ú memory_bufferÚ muzero_configÚreturnc 󇇗tjtj ¦«rdnd¦«}|j€Ctj | ¦«‰j‰j ¬¦«|_g}d}ˆˆfd„}t‰j ¦«D�]e}|¦«\}} } t|¦«dkrŒ%|  || |‰¦«\} } } }tj|  ¦«|  ¦«|  ¦«| ¦«dœ¦«| |  ¦«¦«|j ¦«|  ¦«|j ¦«|j ||jjt2t4j||  ¦«| | ||f¬¦«|dz }�Œg|j ||jjt2t4j‰|f¬¦«t;|¦«t|¦«z |fS) Nr'r(©ÚlrÚ weight_decayrcóF•—‰ ‰j‰j‰¦«Sra©Úbatch_with_prioritiesÚ enable_perÚ batch_size©rkrls€€r=ú<lambda>z%MuZeroNet.train_net.<locals>.<lambda>ˆs'ø€˜×<Ò<¸]Ô=UØ=JÔ=UĞWdñfôf€r>rQ)Ú combined_lossÚloss_vÚloss_piÚloss_r)Úargs)r1r2r'r3r4ÚoptimÚAdamÚ parametersrpÚl2ÚrangeÚepochsÚlenÚcalculate_lossesÚwandbÚlogÚitemÚappendÚ zero_gradÚbackwardÚstepr$Úprocess_hook_executesÚ train_netÚ__name__Ú__file__r ÚMIDDLEÚTAILÚsum)r;rkrlr2ÚlossesÚ iterationÚloaderÚepochÚsampled_game_dataÚ prioritiesÚweightsÚlossrzr{r|s `` r=r�zMuZeroNet.train_net�sGøø€İ”¥R¤W×%9Ò%9Ñ%;Ô%;ĞF˜6˜6ÀÑGÔGˆØ Œ>Ğ !İœXŸ]š]¨4¯?ª?Ñ+<Ô+<ÀÔAQØ8EÔ8Hğ+ñJôJˆDŒNàˆØˆ ğfğfğfğfğfˆå˜=Ô/Ñ0Ô0ğ ñ ˆEØ5;°V±X´XÑ 2Ğ ˜z¨7İĞ$Ñ%Ô%¨Ò*Ğ*ØØ,0×,AÒ,AĞBSĞU\Ğ^dĞfsÑ,tÔ,tÑ )ˆD�&˜' 6İ ŒI¨¯ ª © ¬ ¸v¿{º{¹}¼}ĞY`×YeÒYeÑYgÔYgØ!'§¢¡¤ğ0ğ0ñ 1ô 1ğ 1à �MŠM˜$Ÿ)š)™+œ+Ñ &Ô &Ğ &Ø ŒN× $Ò $Ñ &Ô &Ğ &Ø �MŠM‰OŒOˆOØ ŒN× Ò Ñ !Ô !Ğ !Ø Ô × 3Ò 3°D¸$¼.Ô:QÕS[Õ]cÔ]jØ! 4§9¢9¡;¤;°¸ÀØğrĞ 3ñ ô ğ 𠘉NˆI‰IØ Ô×/Ò/°°d´nÔ6MÍxÕY_ÔYdØ6CÀVĞ5Lğ 0ñ Nô Nğ Nå�6‰{Œ{�S ™[œ[Ñ(¨&Ğ0Ğ0r>c󴇇—‰ ¦«dkrdStjtj ¦«rdnd¦«}|j€Ctj | ¦«‰j ‰j ¬¦«|_ˆˆfd„}t‰j ¦«D]¢}|¦«\}}}t|¦«dkrŒ$| |||‰¦«\} } } } tj|  ¦«|  ¦«|  ¦«|  ¦«dœ¦«Œ£dS)Nrr'r(rocóJ•—‰ ‰j‰j‰d¬¦«S)NT)Úis_evalrsrws€€r=rxz$MuZeroNet.eval_net.<locals>.<lambda>¥s/ø€˜×<Ò<¸]Ô=UØ=JÔ=UØ=JØEIğ=ñKôK€r>rQ)Úeval_combined_lossÚ eval_loss_vÚ eval_loss_piÚ eval_loss_r)Ú eval_lengthr1r2r'r3r4r~rr€rpr�r‚Ú eval_epochsr„r…r†r‡rˆ) r;rkrlr2r–r—Úexperience_batchr™ršr›rzr{r|s `` r=Úeval_netzMuZeroNet.eval_net�sjøø€Ø × $Ò $Ñ &Ô &¨!Ò +Ğ +Ø ˆFİ”¥R¤W×%9Ò%9Ñ%;Ô%;ĞF˜6˜6ÀÑGÔGˆØ Œ>Ğ !İœXŸ]š]¨4¯?ª?Ñ+<Ô+<ÀÔAQØ8EÔ8Hğ+ñJôJˆDŒNğKğKğKğKğKˆõ˜=Ô4Ñ5Ô5ğ 6ğ 6ˆEØ4:°F±H´HÑ 1Ğ ˜j¨'İĞ#Ñ$Ô$¨Ò)Ğ)ØØ,0×,AÒ,AĞBRĞT[Ğ]cĞerÑ,sÔ,sÑ )ˆD�&˜' 6İ ŒI¨T¯YªY©[¬[ÈÏÊÉÌĞho×htÒhtÑhvÔhvØ&,§k¢k¡m¤mğ5ğ5ñ 6ô 6ğ 6ğ 6ğ  6ğ 6r>c ó‡—| d||¦«\}}}}} t|‰j¦«} | |¦«} | | d¬¦«\} } d\}}}|| | | ¦«z }|| | | ¦«z }d„t |  d¦«¦«D¦«}‰jrk|  tj t| ‰j¦«|z ¦«‰j z d¦« ¦«|¦«t d‰jdz¦«D�]–}| |||¦«\}}}}} t|‰j¦«}t|‰j¦«} | t%| |¦«dd¬¦«\} }} } |  d „¦«| | | ¦«}| | | ¦«}| ||¦«}| ˆfd „¦«| ˆfd „¦«| ˆfd „¦«||z }||z }||z }‰jrk|  tj t| ‰j¦«|z ¦«‰j z d¦« ¦«|¦«�Œ˜|d z}||z|z}‰jr$|tj||j|j¬¦«z}| ¦«}‰jr| ||¦«|| ¦«| ¦«| ¦«fS)NrT)rL)rrrcó—g|]}g‘ŒS©r©)Ú.0rJs r=ú <listcomp>z.MuZeroNet.calculate_losses.<locals>.<listcomp>ºs€Ğ>Ğ>Ğ> ˜"Ğ>Ğ>Ğ>r>rRrQFcó —|dzS)Ngà?r©)Úgrads r=rxz,MuZeroNet.calculate_losses.<locals>.<lambda>Æs €°D¸3±J€r>có•—|d‰jz zS©NrQ©ÚK©r­rls €r=rxz,MuZeroNet.calculate_losses.<locals>.<lambda>Êóø€°d¸aÀ-Ä/Ñ>QÑ6R€r>có•—|d‰jz zSr¯r°r²s €r=rxz,MuZeroNet.calculate_losses.<locals>.<lambda>Ër³r>có•—|d‰jz zSr¯r°r²s €r=rxz,MuZeroNet.calculate_losses.<locals>.<lambda>Ìsø€°t¸qÀ=Ä?Ñ?RÑ7S€r>gĞ?©Údtyper2)Úget_batch_for_unroll_indexrrrbr_Ú muzero_lossr‚ÚsizeruÚpopulate_prioritiesr1ÚabsrÚalphaÚreshapeÚtolistr±rgrÚ register_hookÚtensorr·r2r“Úupdate_priorities)r;r¥ršr2rlÚ init_statesÚrewardsÚ scalar_valuesÚmovesÚpisÚvaluesÚ hidden_stateÚpred_pisÚpred_vsÚpi_lossÚv_lossÚr_lossÚnew_prioritiesÚiÚ_Úpred_rsÚcurrent_pi_lossÚcurrent_v_lossÚcurrent_r_lossr›s ` r=r…zMuZeroNet.calculate_losses±sø€Ø:>×:YÒ:YĞZ[Ğ]mĞouÑ:vÔ:vÑ7ˆ �W˜m¨U°Cå" =°-Ô2LÑMÔMˆØ×2Ò2°;Ñ?Ô?ˆ Ø ×3Ò3°LĞQUĞ3ÑVÔVш�'Ø")ш�˜Ø�4×#Ò# H¨cÑ2Ô2Ñ2ˆØ�$×"Ò" 7¨FÑ3Ô3Ñ3ˆØ>Ğ>¥e¨H¯MªM¸!Ñ,<Ô,<Ñ&=Ô&=Ğ>Ñ>Ô>ˆØ Ô #ğ .Ø × $Ò $¥b¤fÕ->¸wØ?LÔ?Yñ.[ô.[Ø]jñ.kñ'lô'lØo|ôpCñ'C÷ELòELØñEôEß’F‘H”H˜nñ .ô .ğ .õ�q˜-œ/¨AÑ-Ñ.Ô.ğ 2ñ 2ˆAØ48×4SÒ4SĞTUĞWgØTZñ5\ô5\Ñ 1ˆAˆw˜  u¨cå'¨°Ô1KÑLÔLˆGİ& }°mÔ6PÑQÔQˆFØ7;×7MÒ7Mİ+¨L¸%Ñ@Ô@À%ĞX\ğ8Nñ8^ô8^Ñ 4ˆL˜' 8¨Wà × &Ò &Ğ'>Ğ'>Ñ ?Ô ?Ğ ?Ø"×.Ò.¨x¸Ñ=Ô=ˆOØ!×-Ò-¨g°vÑ>Ô>ˆNØ!×-Ò-¨g°wÑ?Ô?ˆNØ × (Ò (Ğ)RĞ)RĞ)RĞ)RÑ SÔ SĞ SØ × (Ò (Ğ)RĞ)RĞ)RĞ)RÑ SÔ SĞ SØ × )Ò )Ğ*SĞ*SĞ*SĞ*SÑ TÔ TĞ TØ �Ñ &ˆGØ �nÑ $ˆFØ �nÑ $ˆFØÔ'ğ 2Ø×(Ò(­"¬&Õ1BÀ7ØCPÔC]ñ2_ô2_Øanñ2oñ+pô+pğtAôtGñ+G÷IPòIPØñIôIßš™œ .ñ2ô2ğ2ùğ �$‰ˆØ˜Ñ &Ñ(ˆØ Ô #ğ MØ •B”I˜g¨T¬ZÀÄ ĞLÑLÔLÑ LˆDØ�xŠx‰zŒzˆØ Ô #ğ EØ × "Ò " >Ğ3CÑ DÔ DĞ DØ�V—Z’Z‘\”\ 7§;¢;¡=¤=°&·*²*±,´,Ğ>Ğ>r>Úindexc󇇗ˆfd„}d}‰dkrAˆfd„|D¦«}|tj|¦«¦« dddd¦«}tjˆfd„|D¦«¦«}||¦«}tjˆfd„|D¦«¦«}||¦«}ˆfd „|D¦«}tjˆfd „|D¦«¦«} || ¦«} || d¦«| d¦«|| fS) NcóF•—tj|tj‰¬¦«S)Nr¶)r1rÁÚfloat32)rJr2s €r=rxz6MuZeroNet.get_batch_for_unroll_index.<locals>.<lambda>àsø€¥"¤)¨AµR´ZÈĞ"OÑ"OÔ"O€r>rcóX•—g|]&}tj|j‰j¦«‘Œ'Sr©)ÚnpÚarrayÚ datapointsÚframe©rªrJrÖs €r=r«z8MuZeroNet.get_batch_for_unroll_index.<locals>.<listcomp>ãs-ø€ĞYĞYĞYÀ1�2œ8 A¤L°Ô$7Ô$=Ñ>Ô>ĞYĞYĞYr>érQécó4•—g|]}|j‰j‘ŒSr©)rİrZrßs €r=r«z8MuZeroNet.get_batch_for_unroll_index.<locals>.<listcomp>ås#ø€ĞQĞQĞQ¸1˜AœL¨Ô/Ô6ĞQĞQĞQr>có4•—g|]}|j‰j‘ŒSr©)rİr^rßs €r=r«z8MuZeroNet.get_batch_for_unroll_index.<locals>.<listcomp>çs#ø€ĞKĞKĞK°Q˜1œ<¨Ô.Ô0ĞKĞKĞKr>có4•—g|]}|j‰j‘ŒSr©)rİÚmoverßs €r=r«z8MuZeroNet.get_batch_for_unroll_index.<locals>.<listcomp>és#ø€ĞDĞDĞD¨a�”˜eÔ$Ô)ĞDĞDĞDr>có4•—g|]}|j‰j‘ŒSr©)rİr]rßs €r=r«z8MuZeroNet.get_batch_for_unroll_index.<locals>.<listcomp>ìs#ø€ĞIĞIĞI°1˜œ  UÔ+Ô.ĞIĞIĞIr>)rÛrÜÚpermuteÚ unsqueeze) r;rÖr¥r2Ú tensor_from_xrÃrÄrÈrÆrÇs ` ` r=r¸z$MuZeroNet.get_batch_for_unroll_indexŞsMøø€àOĞOĞOĞOˆ ؈ Ø �AŠ:ˆ:ØYĞYĞYĞYĞHXĞYÑYÔYˆKØ'˜-­¬°Ñ(=Ô(=Ñ>Ô>×FÒFÀqÈ!ÈQĞPQÑRÔRˆKİ”(ĞQĞQĞQĞQĞ@PĞQÑQÔQÑRÔRˆØ�- Ñ(Ô(ˆİ”ĞKĞKĞKĞKĞ:JĞKÑKÔKÑLÔLˆØ�˜vÑ&Ô&ˆØDĞDĞDĞDĞ3CĞDÑDÔDˆõŒhĞIĞIĞIĞIĞ8HĞIÑIÔIÑJÔJˆØˆm˜CÑ Ô ˆØ˜G×-Ò-¨aÑ0Ô0°&×2BÒ2BÀ1Ñ2EÔ2EÀuÈcĞQĞQr>rÏÚpriorities_listcóf—t|¦«D] \}}|| |¦«Œ!dSra)Ú enumerater‰)r;rÏrêÚidxÚprioritys r=r»zMuZeroNet.populate_prioritiesğsC€İ& ~Ñ6Ô6ğ 2ğ 2‰MˆC�Ø ˜CÔ × 'Ò '¨Ñ 1Ô 1Ğ 1Ğ 1ğ 2ğ 2r>r¥có´—t|¦«D]G\}}tt|j¦«¦«D] }||||j|_Œ!ŒHdSra)rìr‚r„rİrî)r;rÏr¥ríÚgamerĞs r=rÂzMuZeroNet.update_prioritiesôsq€İ"Ğ#3Ñ4Ô4ğ Eğ E‰IˆC�İ�3˜tœÑ/Ô/Ñ0Ô0ğ Eğ E�Ø.<¸SÔ.AÀ!Ô.D�” Ô"Ô+Ğ+ğ Eğ Eğ Er>có’—tj||zd¬¦« d¦« | ¦«dz S)NrQ)Údimr)r1r“rèrº)r;Úy_hatÚys r=r¹zMuZeroNet.muzero_lossùs=€İ”�q˜5‘y aĞ(Ñ(Ô(×2Ò2°1Ñ5Ô5Ğ5¸¿º¹¼À¼ ÑCĞCr>Úshared_storageÚ checkpointerÚloggerc óP—tj|jd¬¦«| ¦«d|_d|_t | ¦«¦«|jdzkrAtj d¦«t | ¦«¦«|jdzk°A|  d¦«t|j ¦«D]Ğ}| ||¦«\}}| | ¦«¦«| |j ¦«¦«| ||¦«|dzdkrC|dkr=|  d |›d �¦«| |||j|j||¦«ŒÑdS) NzContinuous Weight Update)ÚprojectÚnamerQééz:Finished waiting for target buffer size,starting training.iôrzSaving checkpoint at iteration ú.)r†ÚinitÚwandbd_project_nameÚtrainrƒr¤r„Ú get_bufferrvÚtimeÚsleepr‡r‚Únum_worker_itersr�Úset_experimental_network_paramsÚ state_dictÚ set_optimizerr4r¦Úsave_checkpointrp)r;rõrlrör÷Úiter_ÚavgÚ iter_lossess r=Úcontinuous_weight_updatez"MuZeroNet.continuous_weight_updateüs·€å Œ ˜=Ô<ĞC]Ğ^Ñ^Ô^Ğ^Ø � Š ‰ Œ ˆ ğ !ˆ ÔØ$%ˆ Ô!İØ×)Ò)Ñ+Ô+ñ-ô-Ø/<Ô/GÈ1Ñ/LòMğMå ŒJ�q‰MŒMˆMõØ×)Ò)Ñ+Ô+ñ-ô-Ø/<Ô/GÈ1Ñ/LòMğMğ � Š ĞOÑPÔPĞPݘ=Ô9Ñ:Ô:ğ qğ qˆEğ $Ÿ~š~¨n¸mÑLÔLÑ ˆC�Ø × :Ò :¸4¿?º?Ñ;LÔ;LÑ MÔ MĞ MØ × (Ò (¨¬×)BÒ)BÑ)DÔ)DÑ EÔ EĞ Eğ �MŠM˜.¨-Ñ 8Ô 8Ğ 8Ø�s‰{˜aÒĞ E¨Q¢J JØ— ’ ĞE¸UĞEĞEĞEÑFÔFĞFØ×,Ò,¨T°4¸¼ÈÔIYĞ[`ĞboÑpÔpĞpøğ qğ qr>Úpathcó0—tj||¦«dSra)r1Úsave)r;r s r=Ú to_picklezMuZeroNet.to_pickles€İ Œ��dÑÔĞĞĞr>cór—|j ||jjtt j¦«dSra)r$r�Úrun_on_training_endr�r�r ÚALLris r=rzMuZeroNet.run_on_training_ends0€Ø Ô×/Ò/°°dÔ6NÔ6WÕYaÕciÔcmÑnÔnĞnĞnĞnr>)NTra)FFT)FF©F)$r�Ú __module__Ú __qualname__ÚintÚfloatÚlistÚboolr r0Ú classmethodrrIr1ÚTensorr[r_rbrgrjr Útupler�r¦r…r¸r»rÂr¹rrrr ÚstrrrÚ __classcell__©r<s@r=rrs¨ø€€€€€ğ PTğ 5rğ5r sğ5r°Uğ5rÈğ5rĞ\_ğ5rĞnrĞsvÔnwğ5rØ#&ğ5rØ;>Ğ;KÀ$ÀsÄ)ğ5rØadğ5rà#ğ5rà36ğ5ràDGğ5rğ'*ğ5rğ>Ağ5rğTWğ5rğruğ5rğ +Ğ2¨dğ 5rğIMğ 5rğ5rğ5rğ5rğ5rğ5rğnğNğN lğNÀ+ĞBUĞQUğNğNğNñ„[ğNğ\aØ26ğ ğ  "¤)ğ °dğ ĞTXğ Ø+/ğ ğ ğ ğ ğğ B¤Iğ¸ğĞVZğğğğ𨬠ğğğğğ)ğ)¸"¼)ğ)ĞRVğ)Ğhlğ)ğ)ğ)ğ)ğ OğOğOğ1Ğ':ğ1È<ğ1Ğ\aĞbgĞimĞnsÔitĞbtÔ\uğ1ğ1ğ1ğ1ğ86Ğ&9ğ6È,ğ6Ğ[_ğ6ğ6ğ6ğ6ğ(+?ğ+?ğ+?ğZR°ğRĞRWØ Œ �2”9˜bœi¨¨r¬yĞ8ôS:ğRğRğRğRğ$2°$ğ2Èğ2ğ2ğ2ğ2ğE°ğEÈğEğEğEğEğ DğDğDğq°}ğqĞUağqØ/;ğqØEKğqğqğqğqğ>˜cğğğğğoğoğoğoğoğoğor>rcóF‡—eZdZddedefˆfd„ Zdejfd„Zd„Z ˆxZ S) r5Trr%cóB•—tt|¦« ¦«tjtj ¦«rdnd¦«|_tj |dddd¬¦«|_ tj  d„td¦«D¦«¦«|_ tj dd ddd¬¦«|_ tj  d „td¦«D¦«¦«|_tj  d „td¦«D¦«¦«|_|rOtj ddd¬ ¦«|_tj ddd¬ ¦«|_nFtj ¦«|_tj ¦«|_tj ¦«|_dS) Nr'r(é€ràrárQ)r*r.Ú kernel_sizeÚstrideÚpaddingcó,—g|]}td¦«‘ŒS)r#©Ú ResidualBlock©rªrÑs r=r«z.RepresentationNet.__init__.<locals>.<listcomp>'ó €Ğ+QĞ+QĞ+QÀ1­M¸#Ñ,>Ô,>Ğ+QĞ+QĞ+Qr>r-có,—g|]}td¦«‘ŒS©r-r(r*s r=r«z.RepresentationNet.__init__.<locals>.<listcomp>)r+r>có,—g|]}td¦«‘ŒSr-r(r*s r=r«z.RepresentationNet.__init__.<locals>.<listcomp>+r+r>)r$r%r&)r/r5r0r1r2r'r3rÚConv2dÚconv1Ú ModuleListr‚Ú residuals1Úconv2Ú residuals2Ú residuals3Ú AvgPool2dÚpool1Úpool2ÚIdentityÚReLUÚrelu)r;rr%r<s €r=r0zRepresentationNet.__init__#sŒø€İ Õ Ñ&Ô&×/Ò/Ñ1Ô1Ğ1İ”i­"¬'×*>Ò*>Ñ*@Ô*@Ğ K  ÀeÑLÔLˆŒ İ”U—\’\Ğ.@ÈsĞ`aĞjkĞuv�\ÑwÔwˆŒ İœ%×*Ò*Ğ+QĞ+QÍÈaÉÌĞ+QÑ+QÔ+QÑRÔRˆŒİ”U—\’\¨cÀĞQRĞ[\Ğfg�\ÑhÔhˆŒ İœ%×*Ò*Ğ+QĞ+QÍÈaÉÌĞ+QÑ+QÔ+QÑRÔRˆŒåœ%×*Ò*Ğ+QĞ+QÍÈaÉÌĞ+QÑ+QÔ+QÑRÔRˆŒØ ğ *İœŸš°Q¸qÈ!˜ÑLÔLˆDŒJİœŸš°Q¸qÈ!˜ÑLÔLˆDŒJˆJ土šÑ)Ô)ˆDŒJİœŸšÑ)Ô)ˆDŒJİ”E—J’J‘L”LˆŒ ˆ ˆ r>rJcó¬—| |j¦«}| | |¦«¦«}|jD] }||¦«}Œ| | |¦«¦«}|jD] }||¦«}Œ| |¦«}|jD] }||¦«}Œ|  |¦«}|Sra) Útor2r;r0r2r3r4r7r5r8)r;rJÚresiduals r=rSzRepresentationNet.forward4s΀à �DŠD�”Ñ Ô ˆØ �IŠI�d—j’j ‘m”mÑ $Ô $ˆØœğ ğ ˆHØ�˜‘ ” ˆAˆAØ �IŠI�d—j’j ‘m”mÑ $Ô $ˆØœğ ğ ˆHØ�˜‘ ” ˆAˆAØ �JŠJ�q‰MŒMˆØœğ ğ ˆHØ�˜‘ ” ˆAˆAØ �JŠJ�q‰MŒMˆØˆr>cón—tjd¦«}tj ||¦«}|S)N)rQr#ér@)r1ÚrandÚjitÚtrace©r;ÚdataÚtraced_script_modules r=rCzRepresentationNet.traceCs-€İŒw�~Ñ&Ô&ˆİ!œvŸ|š|¨D°$Ñ7Ô7ĞØ#Ğ#r>)T) r�rrrrr0r1rrSrCrr s@r=r5r5"s|ø€€€€€ğ!ğ!¨3ğ!¸Tğ!ğ!ğ!ğ!ğ!ğ!ğ" ˜œğ ğ ğ ğ ğ$ğ$ğ$ğ$ğ$ğ$ğ$r>r5cóv‡—eZdZˆfd„Zdd„Zdejjfd„Zej ¦«d„¦«Z ˆxZ S)r9c󨕗tt|¦« ¦«||_||_t j||dd¬¦«|_t j|¦«|_ t j||dd¬¦«|_ t j|¦«|_ t j||dd¬¦«|_ t j|¦«|_ t j||d¦«|_t j|¦«|_t jdd¦«|_t jd¦«|_t jdd¦«|_t jd¦«|_t j|¦«|_t jd|d|dz|z¦«|_t jdd¦«|_dS)NràrQ)r&i iir)r/r9r0r.rrr/r0Ú BatchNorm2dÚbn1r3Úbn2Úconv3Úbn3Úconv4Úbn4ÚLinearÚfc1Ú BatchNorm1dÚfc1_bnÚfc2Úfc2_bnÚDropoutrÚ state_headÚ reward_head)r;r*rrrr.r<s €r=r0zDynamicsNet.__init__Jstø€İ �k˜4Ñ Ô ×)Ò)Ñ+Ô+Ğ+Ø(ˆÔØ&ˆÔõ”Y˜{¨L¸!ÀQĞGÑGÔGˆŒ İ”> ,Ñ/Ô/ˆŒİ”Y˜|¨\¸1ÀaĞHÑHÔHˆŒ İ”> ,Ñ/Ô/ˆŒİ”Y˜|¨\¸1ÀaĞHÑHÔHˆŒ İ”> ,Ñ/Ô/ˆŒİ”Y˜|¨\¸1Ñ=Ô=ˆŒ İ”> ,Ñ/Ô/ˆŒõ”9˜T 4Ñ(Ô(ˆŒİ”n TÑ*Ô*ˆŒ İ”9˜T 3Ñ'Ô'ˆŒİ”n SÑ)Ô)ˆŒ å”z 'Ñ*Ô*ˆŒ õœ) C¨°Q¬¸+Àa¼.Ñ)HÈ<Ñ)WÑXÔXˆŒİœ9 S¨!Ñ,Ô,ˆÔĞĞr>Fcó¼—tj| | |¦«¦«¦«}tj| | |¦«¦«¦«}tj| | |¦«¦«¦«}tj| |  |¦«¦«¦«}|  |  d¦«d¦«}tj|  |  |¦«¦«¦«}| |¦«}tj| | |¦«¦«¦«}| |¦«}| |¦«}| |¦«}||fS)NrrR)ÚFr;rJr0rKr3rMrLrOrNrVrºrSrQrrUrTrWrX)r;rJr+rXrYs r=rSzDynamicsNet.forwardfsH€å ŒF�4—8’8˜DŸJšJ q™MœMÑ*Ô*Ñ +Ô +ˆİ ŒF�4—8’8˜DŸJšJ q™MœMÑ*Ô*Ñ +Ô +ˆİ ŒF�4—8’8˜DŸJšJ q™MœMÑ*Ô*Ñ +Ô +ˆİ ŒF�4—8’8˜DŸJšJ q™MœMÑ*Ô*Ñ +Ô +ˆà �FŠF�1—6’6˜!‘9”9˜bÑ !Ô !ˆå ŒF�4—;’;˜tŸxšx¨™{œ{Ñ+Ô+Ñ ,Ô ,ˆØ �LŠL˜‰OŒOˆå ŒF�4—;’;˜tŸxšx¨™{œ{Ñ+Ô+Ñ ,Ô ,ˆØ �LŠL˜‰OŒOˆà—’ Ñ"Ô"ˆØ × Ò ˜QÑ Ô ˆà�aˆxˆr>rmcó”—tjd¦« d¦«}tj ||¦«}|S)N)rQr)ér\zcuda:0)r1rAr=rBrCrDs r=rCzDynamicsNet.tracezs;€İŒw�~Ñ&Ô&×)Ò)¨(Ñ3Ô3ˆİ!œvŸ|š|¨D°$Ñ7Ô7ĞØ#Ğ#r>có —| |¦«\}}| |j|jd|jd¦«}|| ¦« ¦« ¦«fS)NrrQ)rSrVr.rrTr(rU)r;rJrXrYs r=rKzDynamicsNet.predictsg€à—<’< ‘?”?‰ˆˆqØ— ’ ˜4Ô,¨dÔ.>¸qÔ.AÀ4ÔCSĞTUÔCVÑWÔWˆØ�a—h’h‘j”j—n’nÑ&Ô&×,Ò,Ñ.Ô.Ğ.Ğ.r>r) r�rrr0rSr1rBÚScriptFunctionrCÚno_gradrKrr s@r=r9r9Is�ø€€€€€ğ-ğ-ğ-ğ-ğ-ğ8ğğğğ($�r”vÔ,ğ$ğ$ğ$ğ$ğ €R„Z�\„\ğ/ğ/ñ„\ğ/ğ/ğ/ğ/ğ/r>r9có*‡—eZdZdefˆfd„ Zd„ZˆxZS)r)ÚchannelscóÌ•—tt|¦« ¦«tj ||dd¬¦«|_tj |¦«|_tj ||dd¬¦«|_ tj |¦«|_ tj  ¦«|_ dS)NràrQ)r*r.r$r&) r/r)r0r1rr/Ú convolution1rIÚbnorm1Ú convolution2Úbnorm2r:r;)r;rar<s €r=r0zResidualBlock.__init__‡s¢ø€İ �m˜TÑ"Ô"×+Ò+Ñ-Ô-Ğ-İœEŸLšL°XÈHĞbcĞmn˜LÑoÔoˆÔİ”e×'Ò'¨Ñ1Ô1ˆŒ İœEŸLšL°XÈHĞbcĞmn˜LÑoÔoˆÔİ”e×'Ò'¨Ñ1Ô1ˆŒ İ”E—J’J‘L”LˆŒ ˆ ˆ r>có—|}| |¦«}| | |¦«¦«}| | |¦«¦«}||z }| |¦«}|Sra)rcr;rdrfre)r;rJÚx_resÚ convolveds r=rSzResidualBlock.forward�ss€àˆØ×%Ò% aÑ(Ô(ˆ Ø �IŠI�d—k’k )Ñ,Ô,Ñ -Ô -ˆØ �KŠK˜×)Ò)¨!Ñ,Ô,Ñ -Ô -ˆØ ˆU‰ ˆØ �IŠI�a‰LŒLˆØˆr>)r�rrrr0rSrr s@r=r)r)†sSø€€€€€ğ! ğ!ğ!ğ!ğ!ğ!ğ!ğğğğğğğr>r))*rrUrÛÚtorchr1Útorch.nn.functionalrÚ functionalrZr†rÚ$mu_alpha_zero.AlphaZero.Network.nnetrr:rÚ$mu_alpha_zero.AlphaZero.checkpointerrÚmu_alpha_zero.AlphaZero.loggerrÚmu_alpha_zero.General.memoryr Úmu_alpha_zero.General.mz_gamer Úmu_alpha_zero.General.networkr Ú mu_alpha_zero.Hooks.hook_managerr Úmu_alpha_zero.Hooks.hook_pointr Úmu_alpha_zero.MuZero.utilsrrrÚmu_alpha_zero.configrÚ$mu_alpha_zero.shared_storage_managerrÚModulerr5r9r)r©r>r=ú<module>rysğØ € € € àĞĞĞØĞĞĞØĞĞĞĞĞĞĞĞØ € € € ØĞĞĞĞĞØ(Ğ(Ğ(Ğ(Ğ(Ğ(àgĞgĞgĞgĞgĞgĞgĞgØ=Ğ=Ğ=Ğ=Ğ=Ğ=Ø1Ğ1Ğ1Ğ1Ğ1Ğ1Ø<Ğ<Ğ<Ğ<Ğ<Ğ<Ø4Ğ4Ğ4Ğ4Ğ4Ğ4Ø>Ğ>Ğ>Ğ>Ğ>Ğ>Ø8Ğ8Ğ8Ğ8Ğ8Ğ8Ø1Ğ1Ğ1Ğ1Ğ1Ğ1ØhĞhĞhĞhĞhĞhĞhĞhĞhĞhØ-Ğ-Ğ-Ğ-Ğ-Ğ-Ø>Ğ>Ğ>Ğ>Ğ>Ğ>ğHoğHoğHoğHoğHo�”” Ğ2ñHoôHoğHoğV$$ğ$$ğ$$ğ$$ğ$$˜œœ ñ$$ô$$ğ$$ğN:/ğ:/ğ:/ğ:/ğ:/�"”)ñ:/ô:/ğ:/ğzğğğğ�B”E”Lñôğğğr>
33,954
Python
.py
94
360.12766
2,500
0.306695
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,543
hook_callables.py
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/Hooks/hook_callables.py
from abc import abstractmethod, ABC from typing import Callable class HookCallable(ABC): @abstractmethod def execute(self, cls: object, *args): """ Execute the hook :return: The return of the hook """ pass class HookMethodCallable(HookCallable): def __init__(self, method: Callable, args: tuple): super().__init__() self.__method = method self.__args = args def execute(self, cls: object, *args): return self.__method(cls, *self.__args, *args)
541
Python
.py
17
25.117647
54
0.623301
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,544
hook_manager.py
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/Hooks/hook_manager.py
from mu_alpha_zero.Hooks.hook_callables import HookCallable from mu_alpha_zero.Hooks.hook_point import HookPoint, HookAt class HookManager: def __init__(self): self.hooks = {} def register_method_hook(self, where: HookPoint, hook: HookCallable): self.hooks[where] = hook def process_hook_executes(self, cls: object, fn_name: str, file: str, at: HookAt, args: tuple = ()): file_name = file.replace("\\", "/").split("/")[-1] for hook_point, hook_callable in self.hooks.items(): if hook_point.here(file_name, fn_name, at): hook_callable.execute(cls, *args) return
653
Python
.py
13
42.153846
104
0.638365
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,545
hook_point.py
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/Hooks/hook_point.py
import enum class HookAt(enum.Enum): HEAD = "head" TAIL = "tail" MIDDLE = "middle" ALL = "all" class HookPoint: def __init__(self, at: HookAt, file: str, fn_name: str): self.__at = at self.__file = file self.__function_name = fn_name @property def at(self) -> HookAt: return self.__at @property def file(self) -> str: return self.__file @property def function_name(self) -> str: return self.__function_name def here(self, file: str, function_name: str, at: HookAt): return file == self.file and function_name == self.function_name and (at == self.at or at == HookAt.ALL)
683
Python
.py
22
24.954545
112
0.598775
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,546
hook_manager.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/Hooks/__pycache__/hook_manager.cpython-311.pyc
§ føf�ãó<—ddlmZddlmZmZGd„d¦«ZdS)é)Ú HookCallable)Ú HookPointÚHookAtc óB—eZdZd„Zdedefd„Zd dededed e d e f d „Z d S)Ú HookManagercó—i|_dS©N©Úhooks)Úselfs úO/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/Hooks/hook_manager.pyÚ__init__zHookManager.__init__s €ØˆŒ ˆ ˆ óÚwhereÚhookcó—||j|<dSr r )r rrs r Úregister_method_hookz HookManager.register_method_hook s€Ø ˆŒ �5ÑĞĞr©ÚclsÚfn_nameÚfileÚatÚargscóò—| dd¦« d¦«d}|j ¦«D]-\}}| |||¦«r|j|g|¢R�dSŒ.dS)Nú\ú/éÿÿÿÿ)ÚreplaceÚsplitr ÚitemsÚhereÚexecute) r rrrrrÚ file_nameÚ hook_pointÚ hook_callables r Úprocess_hook_executesz!HookManager.process_hook_executes s“€Ø—L’L  sÑ+Ô+×1Ò1°#Ñ6Ô6°rÔ:ˆ Ø)-¬×)9Ò)9Ñ);Ô);ğ ğ Ñ %ˆJ˜ Ø�Š˜y¨'°2Ñ6Ô6ğ Ø%� Ô% cĞ1¨DĞ1Ğ1Ğ1Ğ1Ø��ğ ğ ğ rN)r) Ú__name__Ú __module__Ú __qualname__rrrrÚobjectÚstrrÚtupler&rrr rrs‚€€€€€ğğğğ!¨)ğ!¸<ğ!ğ!ğ!ğ!ğğ¨ğ¸#ğÀSğÈfğĞ\ağğğğğğrrN)Ú"mu_alpha_zero.Hooks.hook_callablesrÚmu_alpha_zero.Hooks.hook_pointrrrrrr ú<module>r/sağØ;Ğ;Ğ;Ğ;Ğ;Ğ;Ø<Ğ<Ğ<Ğ<Ğ<Ğ<Ğ<Ğ<ğ ğ ğ ğ ğ ñ ô ğ ğ ğ r
1,829
Python
.py
12
151.333333
480
0.388889
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,547
hook_callables.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/Hooks/__pycache__/hook_callables.cpython-311.pyc
§ føfãóZ—ddlmZmZddlmZGd„de¦«ZGd„de¦«ZdS)é)ÚabstractmethodÚABC)ÚCallablecó*—eZdZedefd„¦«ZdS)Ú HookCallableÚclscó—dS)zJ Execute the hook :return: The return of the hook N©©ÚselfrÚargss úQ/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/Hooks/hook_callables.pyÚexecutezHookCallable.executes €ğ ˆóN)Ú__name__Ú __module__Ú __qualname__rÚobjectrr rrrrs9€€€€€àğ ˜6ğ ğ ğ ñ„^ğ ğ ğ rrcó4‡—eZdZdedefˆfd„ Zdefd„ZˆxZS)ÚHookMethodCallableÚmethodr cód•—t¦« ¦«||_||_dS©N)ÚsuperÚ__init__Ú_HookMethodCallable__methodÚ_HookMethodCallable__args)r rr Ú __class__s €rrzHookMethodCallable.__init__s+ø€İ ‰Œ×ÒÑÔĞØˆŒ ؈Œ ˆ ˆ rrcó,—|j|g|j¢|¢R�Sr)rrr s rrzHookMethodCallable.executes#€ØˆtŒ}˜SĞ6 4¤;Ğ6°Ğ6Ğ6Ğ6Ğ6r) rrrrÚtuplerrrÚ __classcell__)rs@rrrsfø€€€€€ğ˜xğ¨uğğğğğğğ 7˜6ğ7ğ7ğ7ğ7ğ7ğ7ğ7ğ7rrN)ÚabcrrÚtypingrrrr rrú<module>r$s�ğØ#Ğ#Ğ#Ğ#Ğ#Ğ#Ğ#Ğ#ØĞĞĞĞĞğ ğ ğ ğ ğ �3ñ ô ğ ğ7ğ7ğ7ğ7ğ7˜ñ7ô7ğ7ğ7ğ7r
1,774
Python
.py
9
193.333333
893
0.378256
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,548
hook_point.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/Hooks/__pycache__/hook_point.cpython-311.pyc
§ føf«ãóN—ddlZGd„dej¦«ZGd„d¦«ZdS)éNcó—eZdZdZdZdZdZdS)ÚHookAtÚheadÚtailÚmiddleÚallN)Ú__name__Ú __module__Ú __qualname__ÚHEADÚTAILÚMIDDLEÚALL©óúM/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/Hooks/hook_point.pyrrs"€€€€€Ø €DØ €DØ €FØ €C€C€CrrcóŠ—eZdZdededefd„Zedefd„¦«Zedefd„¦«Zedefd„¦«Z ded edefd „Z d S) Ú HookPointÚatÚfileÚfn_namecó0—||_||_||_dS©N)Ú_HookPoint__atÚ_HookPoint__fileÚ_HookPoint__function_name)Úselfrrrs rÚ__init__zHookPoint.__init__ s€ØˆŒ ؈Œ Ø&ˆÔĞĞrÚreturncó—|jSr)r©rs rrz HookPoint.ats €àŒyĞrcó—|jSr)rr!s rrzHookPoint.files €àŒ{Ğrcó—|jSr)rr!s rÚ function_namezHookPoint.function_names €àÔ#Ğ#rr$cód—||jko%||jko||jkp|tjkSr)rr$rrr)rrr$rs rÚherezHookPoint.heres8€Ø�t”yÒ Ğp ]°dÔ6HÒ%HĞpÈbĞTXÔT[ÊmĞNoĞ_aÕekÔeoÒ_oĞprN) r r r rÚstrrÚpropertyrrr$r&rrrrr s䀀€€€ğ'˜6ğ'¨ğ'°sğ'ğ'ğ'ğ'ğ ğ�Fğğğñ„Xğğğ�cğğğñ„Xğğğ$˜sğ$ğ$ğ$ñ„Xğ$ğq˜ğq¨Sğq°fğqğqğqğqğqğqrr)ÚenumÚEnumrrrrrú<module>r+svğØ € € € ğğğğğˆTŒYñôğğqğqğqğqğqñqôqğqğqğqr
2,064
Python
.py
10
205.3
453
0.345985
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,549
donkey_kong.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/examples/__pycache__/donkey_kong.cpython-311.pyc
§ à6ÛeîãóJ—ddlZddlZddlmZddlmZGd„de¦«ZdS)éN)Úmake)Ú MuZeroGamec óæ—eZdZd„Zdedepddejpejee ffd„Z dejpejfd„Z defd„Z defd „Z depdde pdfd „Zd „Zd „Zddedepddedejpejee ffd„ZdS)ÚDonkeyKongGamecó@—tdd¬¦«|_d|_dS)NzALE/DonkeyKong-v5Úrgb)Úobs_typeF)rÚdonkey_kong_envÚis_done©Úselfs úC/home/skyr/PycharmProjects/MuAlphaZeroBuild/examples/donkey_kong.pyÚ__init__zDonkeyKongGame.__init__s#€İ#Ğ$7À%ĞHÑHÔHˆÔ؈Œ ˆ ˆ óÚactionÚplayerNÚreturncóL—|j |¦«\}}}}}|||fS©N)r Ústep)r rrÚobsÚrewÚdoneÚ_s rÚget_next_statezDonkeyKongGame.get_next_state s/€à#Ô3×8Ò8¸Ñ@Ô@шˆS�$˜˜1Ø�C˜ˆ~Ğrcó>—|j ¦«\}}|Sr)r Úreset)r rrs rrzDonkeyKongGame.resets€ØÔ%×+Ò+Ñ-Ô-‰ˆˆQ؈ rcó—dS)Nr©r s rÚget_noopzDonkeyKongGame.get_noops€Øˆqrcó$—|jjjSr)r Ú action_spaceÚnr s rÚget_num_actionszDonkeyKongGame.get_num_actionss€ØÔ#Ô0Ô2Ğ2rcó—|jSr)r )r rs rÚ game_resultzDonkeyKongGame.game_results €ØŒ|Ğrcó—t¦«Sr)rr s rÚmake_fresh_instancez"DonkeyKongGame.make_fresh_instances€İÑÔĞrcó—dSrrr s rÚrenderzDonkeyKongGame.render!s€Ø ˆréÚ frame_skipcó�—| ||¦«\}}}t|dz ¦«D]}| ||¦«\}}}Œ|||fS)Né)rÚrange)r rrr,rrrÚis rÚframe_skip_stepzDonkeyKongGame.frame_skip_step$sc€à×,Ò,¨V°VÑ<Ô<‰ˆˆS�$İ�z A‘~Ñ&Ô&ğ Ağ AˆAØ!×0Ò0°¸Ñ@Ô@‰NˆC��d�dØ�C˜ˆ~Ğr)r+)Ú__name__Ú __module__Ú __qualname__rÚintÚnpÚndarrayÚthÚTensorÚboolrrr r$r&r(r*r1rrrrrsS€€€€€ğğğğ Sğ°#°+¸ğØ ŒJĞ #˜"œ) S¨$ğC0ğğğğğ �r”zĞ. R¤Yğğğğğ˜#ğğğğğ3 ğ3ğ3ğ3ğ3ğ # +¨ğ°$°,¸$ğğğğğ ğ ğ ğ ğ ğ ğğ cğ°3°;¸$ğÈCğØ ŒJĞ #˜"œ) S¨$ğY0ğğğğğğrr) Únumpyr6Útorchr8Ú gymnasiumrÚ mu_alpha_zerorrrrrú<module>r?suğØĞĞĞØĞĞĞØĞĞĞĞĞØ$Ğ$Ğ$Ğ$Ğ$Ğ$ğ"ğ"ğ"ğ"ğ"�Zñ"ô"ğ"ğ"ğ"r
3,166
Python
.pyt
14
225.071429
561
0.355217
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,550
mem_buffer.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/__pycache__/mem_buffer.cpython-311.pyc
§ aG¡f«@ãó�—ddlZddlZddlZddlmZddlmZddlZddlZddl Z ddl Z ddl m Z ddlmZmZddlmZddlmZddlmZdd lmZdd lmZdd lmZdd lmZdd lm Z Gd„de¦«Z!Gd„de¦«Z"Gd„d¦«Z#Gd„d¦«Z$Gd„d¦«Z%Gd„de¦«Z&Gd„de¦«Z'dS)éN)Údeque)Úchain)ÚDeque)ÚDatasetÚ DataLoader)ÚGeneralMemoryBuffer)Úfind_project_root)Ú HookManager)ÚHookAt)Ú LazyArray)Ú DataPickler)Ú scale_action)Ú MuZeroConfigcó —eZdZd„Zd„Zd„ZdS)Ú MemDatasetcó.—t|¦«|_dS©N)ÚlistÚ mem_buffer)Úselfrs úG/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/mem_buffer.pyÚ__init__zMemDataset.__init__s€İ˜zÑ*Ô*ˆŒˆˆócó*—t|j¦«Sr)Úlenr©rs rÚ__len__zMemDataset.__len__s€İ�4”?Ñ#Ô#Ğ#rcó—|j|Sr)r)rÚidxs rÚ __getitem__zMemDataset.__getitem__s€ØŒ˜sÔ#Ğ#rN)Ú__name__Ú __module__Ú __qualname__rrr ©rrrrsA€€€€€ğ+ğ+ğ+ğ$ğ$ğ$ğ$ğ$ğ$ğ$ğ$rrc ó—eZdZ d&dedededepdfd„Zd'defd „Zdepdfd „Zd „Z d(d e fd„Z d„Z d'defd„Z d'de defd„Zd'dedefd„Zd„Zd„Zd'dede dedefd„Zd„Zd'dededefd„Zdede de defd „Zd!„Zd"„Zd#„Zd$„Zd%„ZdS))Ú MemBufferFNÚdiskÚ full_diskÚdir_pathÚ hook_managercóğ—||_||_||_||_|�|n t ¦«|_| |¦«|_| |¦«|_d|_ ||_ dS©Nr) Úmax_sizer'r(r)r r*Ú init_bufferÚbufferÚ eval_bufferÚlast_buffer_sizeÚis_disk)rr-r'r(r)r*s rrzMemBuffer.__init__$ss€à ˆŒ ؈Œ Ø"ˆŒØ ˆŒ Ø,8Ğ,D˜L˜LÍ+É-Ì-ˆÔØ×&Ò& xÑ0Ô0ˆŒ Ø×+Ò+¨HÑ5Ô5ˆÔØ !ˆÔğˆŒ ˆ ˆ rÚis_evalcó¾—t|t¦«std¦«‚|s|j |¦«dS|j |¦«dS)Nz'Experience must be a DataPoint instance)Ú isinstanceÚSingleGameDataÚ ValueErrorr/Úappendr0)rÚ experiencer3s rÚaddz MemBuffer.add2sg€İ˜*¥nÑ5Ô5ğ HİĞFÑGÔGĞ Gğ ğ 0Ø ŒK× Ò ˜zÑ *Ô *Ğ *Ğ *Ğ *à Ô × #Ò # JÑ /Ô /Ğ /Ğ /Ğ /rcóš—|jr0|jr)|€t¦«›d�}t|j|¬¦«St |j¬¦«S)Nz /Pickles/Data)ÚmaxlenÚ directory©r<)r'r(r rr-r)rr)s rr.zMemBuffer.init_buffer>sW€Ø Œ9ğ /˜œğ /ØĞİ/Ñ1Ô1Ğ@Ğ@Ğ@�İ ¤ ¸ĞBÑBÔBĞ Bå ¤ Ğ.Ñ.Ô.Ğ .rcó—|jSr)r)rs rÚ get_dir_pathzMemBuffer.get_dir_pathFs €ØŒ}Ğré Ú percent_evalcóè—t|j¦«dkr:tj¦«}|dkr!|D]}|j |¦«ŒdS|D]}|j |¦«ŒdS)NrAgš™™™™™¹?)rr/Úrandomr0r8)rÚexperience_listrBÚprobÚitems rÚadd_listzMemBuffer.add_listIs‹€İ ˆtŒ{Ñ Ô ˜rÒ !Ğ !İ”=‘?”?ˆDØ�cŠzˆzà+ğ2ğ2�DØÔ$×+Ò+¨DÑ1Ô1Ğ1Ğ1Ø�Ø#ğ %ğ %ˆDØ ŒK× Ò ˜tÑ $Ô $Ğ $Ğ $ğ %ğ %rcó6—tj|j|¦«Sr)rDÚsampler/©rÚ batch_sizes rrJzMemBuffer.sampleTs€İŒ}˜Tœ[¨*Ñ5Ô5Ğ5rcór—|rtj|j¦«dStj|j¦«dSr)rDÚshuffler0r/)rr3s rrNzMemBuffer.shuffleWs;€Ø ğ (İ ŒN˜4Ô+Ñ ,Ô ,Ğ ,Ğ ,Ğ ,å ŒN˜4œ;Ñ 'Ô 'Ğ 'Ğ 'Ğ 'rrLc óæ—g}|s|jn|j}t|¦«}td||¦«D]=}| t |¦«|t ||z|¦«…¦«Œ>|Sr,)r/r0rÚranger8rÚmin)rrLr3Úbatched_bufferÚbufÚ buffer_lenrs rÚbatchzMemBuffer.batch]s~€ØˆØ!(Ğ>ˆdŒkˆk¨dÔ.>ˆİ˜‘X”Xˆ ݘ˜J¨ Ñ3Ô3ğ Tğ TˆCØ × !Ò !¥$ s¡)¤)¨Cµ°C¸*Ñ4DÀjÑ0QÔ0QĞ,QÔ"RÑ SÔ SĞ SĞ SàĞrÚreturncó0—| ||¬¦«S)N)r3)rU)rrLr3s rÚ__call__zMemBuffer.__call__fs€Ø�zŠz˜*¨gˆzÑ6Ô6Ğ6rcó*—t|j¦«Sr)rr/rs rrzMemBuffer.__len__is€İ�4”;ÑÔĞrcó*—t|j¦«Sr)rr0rs rÚ eval_lengthzMemBuffer.eval_lengthls€İ�4Ô#Ñ$Ô$Ğ$rÚ enable_perÚconfigc 󇇇‡ —|s|jn|jŠ|rtjd„‰D¦«¦«Šn"tjt ‰¦«f¦«Š‰‰ ¦«zŠtj tj t ‰¦«¦«dt|t ‰¦«¦«‰¬¦«  ¦«}ˆˆfd„|D¦«Š ‰j rYˆˆ fd„tt ‰ ¦«¦«D¦«}tj|¦«}d||jdz‰jzz }n"tjt ‰ ¦«f¦«}‰ ‰| dd¦«fS) Ncó—g|] }|j‘Œ Sr$)Ú game_priority©Ú.0Úxs rú <listcomp>z3MemBuffer.batch_with_priorities.<locals>.<listcomp>ws€Ğ'EĞ'EĞ'E¸A¨¬Ğ'EĞ'EĞ'ErF)ÚreplaceÚsizeÚpcól•—g|]0}‰| ‰¦« ‰¦«‘Œ1Sr$)Ú normalizeÚsample_position_with_unroll)rbÚindexrSr]s €€rrdz3MemBuffer.batch_with_priorities.<locals>.<listcomp>~s:ø€ĞsĞsĞsĞZ_�S˜”Z×)Ò)¨&Ñ1Ô1×MÒMÈfÑUÔUĞsĞsĞsrcóR•—g|]#}‰|jdj‰|z‘Œ$S©r)Ú datapointsÚpriority)rbÚiÚgame_prioritiesÚ positionss €€rrdz3MemBuffer.batch_with_priorities.<locals>.<listcomp>€s3ø€ĞoĞoĞoĞTU�y ”|Ô.¨qÔ1Ô:¸_ÈQÔ=OÑOĞoĞoĞoréréÿÿÿÿ)r/r0ÚnpÚarrayÚonesrÚsumrDÚchoiceÚarangerQÚtolistr\rPÚshapeÚbetaÚreshape) rr\rLr]r3Úsampled_indexesÚweightsrSrqrrs ` @@@rÚbatch_with_prioritieszMemBuffer.batch_with_prioritiesosøøøø€Ø!(Ğ>ˆdŒkˆk¨dÔ.>ˆğ ğ 3İ œhĞ'EĞ'EÀĞ'EÑ'EÔ'EÑFÔFˆOˆOå œg¥s¨3¡x¤x kÑ2Ô2ˆOà˜?×.Ò.Ñ0Ô0Ñ0ˆİœ)×*Ò*­2¬9µS¸±X´XÑ+>Ô+>ÈÕTWĞXbÕdgĞhkÑdlÔdlÑTmÔTmØ-<ğ+ñ>ô>ß>Dºf¹h¼hğ àsĞsĞsĞsĞsĞcrĞsÑsÔsˆ Ø Ô ğ 1ØoĞoĞoĞoĞoÕY^Õ_bĞclÑ_mÔ_mÑYnÔYnĞoÑoÔoˆGİ”h˜wÑ'Ô'ˆGؘ7 W¤]°1Ô%5Ñ5¸&¼+ÑEÑEˆGˆGå”g�s 9™~œ~Ğ/Ñ0Ô0ˆGؘ/¨7¯?ª?¸2¸aÑ+@Ô+@Ğ@Ğ@rcó—d|_dSr©Ú prioritiesrs rÚreset_prioritieszMemBuffer.reset_priorities‡s €ØˆŒˆˆrÚuser_perÚalphac󲇗|s|jn|jŠ|s2tjt ‰¦«f¦«t ‰¦«z Sˆfd„t t ‰¦«¦«D¦«}tj|¦«}||z}|| ¦«z }|j  ||j j ttj|f¬¦«|S)Ncóp•—g|]2}t‰|d‰|ddz ¦«‘Œ3S)rsé©Úabs)rbrprSs €rrdz2MemBuffer.calculate_priorities.<locals>.<listcomp>�s:ø€Ğ EĞ EĞ E°�c�#�a”&˜”)˜c !œf Qœi¨œlÑ*Ñ+Ô+Ğ EĞ EĞ Er)Úargs)r/r0rurwrrPrvrxr*Úprocess_hook_executesÚcalculate_prioritiesr!Ú__file__r ÚALL)rr†r‡r3ÚpsrSs @rr�zMemBuffer.calculate_prioritiesŠsÊø€Ø!(Ğ>ˆdŒkˆk¨dÔ.>ˆØğ 3İ”7�C ™HœH˜;Ñ'Ô'­#¨c©(¬(Ñ2Ğ 2Ø EĞ EĞ EĞ EµU½3¸s¹8¼8±_´_Ğ EÑ EÔ Eˆİ ŒX�b‰\Œ\ˆØ �5‰[ˆØ �"—&’&‘(”(‰]ˆØ Ô×/Ò/°°dÔ6OÔ6XÕZbÕdjÔdnØ68°Uğ 0ñ <ô <ğ <àˆ rrSÚKc 󇇇—tj tjt ‰¦«¦«t t ‰j¦«‰zt|‰zd¦«¦«d‰j¬¦« ¦«}ˆˆfd„|D¦«}ˆˆfd„|D¦«}ttj |¦«¦«tj ttj |¦«¦«tj¬¦«fS)NrsF©rfrergc ó\•—g|](}ttj‰||‰z¦«¦«‘Œ)Sr$)rÚ itertoolsÚislice)rbrpr“rSs €€rrdz+MemBuffer.simple_sample.<locals>.<listcomp>šs4ø€ĞOĞOĞO¸1••iÔ& s¨A¨q°1©uÑ5Ô5Ñ6Ô6ĞOĞOĞOrcó4•—g|]}‰j||‰z…‘ŒSr$rƒ)rbrpr“rs €€rrdz+MemBuffer.simple_sample.<locals>.<listcomp>›s(ø€ĞAĞAĞA¨Q�”  ! a¡% Ô(ĞAĞAĞAr©Údtype)rurDryrzrrQr„Úmaxr{rrÚ from_iterableÚthÚtensorÚfloat32)rrSrLr“Úrandom_indexesrUÚpriss`` ` rÚ simple_samplezMemBuffer.simple_sample–söøøø€İœ×)Ò)­"¬)µC¸±H´HÑ*=Ô*=İ/2µ3°t´Ñ3GÔ3GÈ1Ñ3LÍcĞR\Ğ`aÑRaĞcdÑNeÔNeÑ/fÔ/fØ27¸4¼?ğ*ñLôLçLRÊFÉHÌHğ ğPĞOĞOĞOĞOÀĞOÑOÔOˆØAĞAĞAĞAĞA°.ĞAÑAÔAˆİ•EÔ'¨Ñ.Ô.Ñ/Ô/µ´½4ÅÔ@SĞTXÑ@YÔ@YÑ;ZÔ;ZÕbdÔblĞ1mÑ1mÔ1mĞmĞmrcó\—t|j|j|j|j|j¬¦«S)N)r*)r&r-r'r(r)r*rs rÚmake_fresh_instancezMemBuffer.make_fresh_instance�s'€İ˜œ¨¬ °4´>À4Ä=Ğ_cÔ_pĞqÑqÔqĞqrcóN—tt|j¦«|dd„¬¦«S)NTcó—|Srr$)rcs rú<lambda>z)MemBuffer.to_dataloader.<locals>.<lambda>¢s€Ğmn€r)rLrNÚ collate_fn)rrr/rKs rÚ to_dataloaderzMemBuffer.to_dataloader¡s(€İ�* T¤[Ñ1Ô1¸jĞRVĞcnĞcnĞoÑoÔoĞorcór—|j ||jjtt j¦«dSr)r*r�Úrun_on_training_endr!r�r r‘rs rr¬zMemBuffer.run_on_training_end¤s0€Ø Ô×/Ò/°°dÔ6NÔ6WÕYaÕciÔcmÑnÔnĞnĞnĞnrcóº—|jsIt|j¦«}tj|t ¦«›d�¦«t ¦«›d�S|jjS)Nz/Pickles/memory_buffer.pt)r'rr/r�Úsaver r=)rr/s rr®zMemBuffer.save§s]€ØŒyğ )ݘ$œ+Ñ&Ô&ˆFİ ŒG�FÕ0Ñ2Ô2ĞMĞMĞMÑ NÔ NĞ Nİ'Ñ)Ô)ĞDĞDĞDĞ Dà”;Ô(Ğ (rcó—|jSr)r/rs rÚ get_bufferzMemBuffer.get_buffer¯s €ØŒ{Ğr)FFNN)F)rA) r!r"r#ÚboolÚstrr rr:r.r@ÚintrHrJrNrUrrXrr[rr�r…Úfloatr�rÚtupler£r¥rªr¬r®r°r$rrr&r&#sg€€€€€Ø^bØ59ğ ğ  tğ Àğ ĞX[ğ Ø*Ğ2¨dğ ğ ğ ğ ğ 0ğ 0 tğ 0ğ 0ğ 0ğ 0ğ/ C K¨4ğ/ğ/ğ/ğ/ğğğğ %ğ %°cğ %ğ %ğ %ğ %ğ6ğ6ğ6ğ(ğ(˜tğ(ğ(ğ(ğ(ğ ğ ğ¨dğğğğğ7ğ7¨Dğ7¸Tğ7ğ7ğ7ğ7ğ ğ ğ ğ%ğ%ğ%ğAğA°ğAÀ#ğAÈ|ğAĞfjğAğAğAğAğ0ğğğ ğ ¨Tğ ¸%ğ È$ğ ğ ğ ğ ğn ğn°Cğn¸CğnÀEğnğnğnğnğrğrğrğpğpğpğoğoğoğ)ğ)ğ)ğğğğğrr&cóJ—eZdZd„Zd„Zdefd„Zdefd„Zdefd„Zdefd„Z dS) r6có<—g|_td¦«|_dS)Nz-inf)rnr´r`rs rrzSingleGameData.__init__´s€ØˆŒİ$)¨&¡M¤MˆÔĞĞrcó:—|j |¦«dSr)rnr8)rÚexperience_points rÚadd_data_pointzSingleGameData.add_data_point¸s€Ø Œ×ÒĞ/Ñ0Ô0Ğ0Ğ0Ğ0rr]cóª—|jsdSt|j¦«D�]3\}}||jz}|t |j¦«krS|j|j|jkr|j|jn|j|j }||j|jzz}nd}t|j||dz…¦«D]2\}}||j|jkr|jn|j |j|zzz }Œ3t|j|j|z ¦«|j z|j|_ t|j |j|j ¦«|_ �Œ5dS)Nrrs)r\Ú enumeraternÚ num_td_stepsrÚplayerÚvÚgammaÚrewardrŒr‡rorœr`)rr]rkÚ data_pointÚ future_indexÚvalrÚd_points rÚcompute_initial_prioritiesz)SingleGameData.compute_initial_priorities»s…€ØÔ ğ Ø ˆFİ!*¨4¬?Ñ!;Ô!;ğ Zñ ZÑ ˆE�:Ø  6Ô#6Ñ6ˆLØ�c $¤/Ñ2Ô2Ò2Ğ2Ø9=¼Ø=Iô:KÜKQĞU_ÔUfò:gğ:g�d”o lÔ3Ô5Ğ5à”O LÔ1Ô3ğm4ğğ˜FœL¨FÔ,?Ñ?Ñ?��à�İ )¨$¬/¸%ÀĞPQÑAQĞ:QÔ*RÑ SÔ Sğ }ğ }‘ ��WØØ-4¬^¸zÔ?PÒ-PĞ-P˜7œ>˜>ĞW^ÔWeĞVeĞioÔiuĞy|Ñi|ñ}ñ}��å.1°$´/À%Ô2HÔ2JÈSÑ2PÑ.QÔ.QĞU[ÔUaÑ.aˆDŒO˜EÔ "Ô +å!$ TÔ%7¸¼ÈÔ9OÔ9XÑ!YÔ!YˆDÔ Ñ ğ Zğ Zrcóx—|js|Sd}|jD] }||jz }Œ |jD]}|xj|zc_Œ|Sr,)r\rnro)rr]Úsum_Ú datapoints rrizSingleGameData.normalizeÎsd€ØÔ ğ ØˆK؈؜ğ 'ğ 'ˆIØ �IÔ&Ñ &ˆDˆDØœğ 'ğ 'ˆIØ Ğ Ô  $Ñ &Ğ Ô Ğ Øˆ rcób—|jrpd„|jD¦«}tj t jt|j¦«¦«d|¬¦« ¦«d}n*tj dt|j¦«dz ¦«}|j||fS)Ncó—g|] }|j‘Œ Sr$©roras rrdz2SingleGameData.sample_position.<locals>.<listcomp>Ús€Ğ>Ğ>Ğ>¨˜!œ*Ğ>Ğ>Ğ>r©rs)rfrgrrs) r\rnÚnumpyrDryrurzrr{Úrandint)rr]r„rks rÚsample_positionzSingleGameData.sample_positionØs¡€Ø Ô ğ @Ø>Ğ>¨d¬oĞ>Ñ>Ô>ˆJİ”L×'Ò'­¬ µ#°d´oÑ2FÔ2FÑ(GÔ(GÈdØ*4ğ(ñ6ô6ß6<²f±h´h¸qôBˆEˆEõ”N 1¥c¨$¬/Ñ&:Ô&:¸QÑ&>Ñ?Ô?ˆEàŒ˜uÔ% uĞ,Ğ,rc ó—| |¦«\}}t¦«}t|||jzdz¦«D]¿}|t |j¦«kr!| |j|¦«Œ;| ttj tj |j f¦«|j ¦«  ¦«ddtjd|j dz ¦«dd¦«¦«ŒÀ|S)Nrsr)rĞr6rPr“rrnrºÚ DataPointruÚdividerwÚnet_action_sizer{rDrÏ)rr]ÚpositionrkÚ game_dataÚ unroll_indexs rrjz*SingleGameData.sample_position_with_unrollâsş€Ø×.Ò.¨vÑ6Ô6‰ˆ�%İ"Ñ$Ô$ˆ İ! %¨°´Ñ)9¸AÑ)=Ñ>Ô>ğ ğ ˆLØ�c $¤/Ñ2Ô2Ò2Ğ2Ø×(Ò(¨¬¸Ô)FÑGÔGĞGĞGà×(Ò(­İ”I�bœg vÔ'=Ğ&?Ñ@Ô@À&ÔBXÑYÔY×`Ò`ÑbÔbØØİ”N 1 fÔ&<¸qÑ&@ÑAÔAØØñ *ô*ñôğğğĞrN) r!r"r#rrºrrÆrirĞrjr$rrr6r6³s£€€€€€ğ2ğ2ğ2ğ1ğ1ğ1ğZ°ğZğZğZğZğ&˜|ğğğğğ- \ğ-ğ-ğ-ğ-ğ°,ğğğğğğrr6c ó<—eZdZdedededededejpdf d„ZdS) rÒÚpir¿rÁÚmover¾ÚframeNcóΗt|t¦«rd„| ¦«D¦«n||_||_||_||_||_||_d|_ dS)Ncó—g|]}|‘ŒSr$r$ras rrdz&DataPoint.__init__.<locals>.<listcomp>ös€Ğ*Ğ*Ğ*˜�1Ğ*Ğ*Ğ*r) r5ÚdictÚvaluesrÙr¿rÁrÚr¾rÛro)rrÙr¿rÁrÚr¾rÛs rrzDataPoint.__init__õsb€İ.8¸½DÑ.AÔ.AĞIĞ*Ğ*˜bŸiši™kœkĞ*Ñ*Ô*Ğ*ÀrˆŒØˆŒØˆŒ ؈Œ ؈Œ ؈Œ ؈Œ ˆ ˆ r) r!r"r#rŞr´r³ruÚndarrayrr$rrrÒrÒôs\€€€€€ğ˜4ğ Eğ°5ğÀğÈSğĞY[ÔYcĞYkĞgkğğğğğğrrÒcó6—eZdZdedefd„Zd„Zd„Zd„Zd„ZdS) ÚMuZeroFrameBufferÚ noop_actionÚaction_space_sizecó|—||_||_||_t|¬¦«t|¬¦«dœ|_dS)Nr>)rsrt)r-rãrärÚbuffers)rÚframe_buffer_sizerãräs rrzMuZeroFrameBuffer.__init__sD€Ø)ˆŒ Ø&ˆÔØ!2ˆÔİ Ğ(9Ğ:Ñ:Ô:ÅĞM^Ğ@_Ñ@_Ô@_Ğ`Ğ`ˆŒ ˆ ˆ rcóJ—|j| ||f¦«dSr)rær8)rrÛÚactionr¾s rÚ add_framezMuZeroFrameBuffer.add_frames'€Ø Œ �VÔ×#Ò# U¨F OÑ4Ô4Ğ4Ğ4Ğ4rcó\—d„|j|D¦«}tj|d¬¦«S)Nc óğ—g|]s\}}tjtj|tj¬¦«tj|jd|jddf|tj¬¦«fd¬¦«‘ŒtS)ršrrsrŠ©Údim)r�ÚcatrŸr Úfullr|)rbrÛrés rrdz3MuZeroFrameBuffer.concat_frames.<locals>.<listcomp> s�€ğJğJğJá#0 5¨&õ "œv¥r¤y°½b¼jĞ'IÑ'IÔ'Iİ')¤w°´ ¸A´ÀÄ ÈAÄĞPQĞ/RĞTZÕbdÔblĞ'mÑ'mÔ'mğ'oØtuğ wñ wô wğJğJğJrrŠrí)rær�rï)rr¾Úframes_with_actionss rÚ concat_frameszMuZeroFrameBuffer.concat_frames sE€ğJğJà48´LÀÔ4HğJñJôJĞõŒvĞ)¨qĞ1Ñ1Ô1Ğ1rcó¨—t|j¦«D]<}|j| |t |j|j¦«f¦«Œ=dSr)rPr-rær8rrãrä)rÚ init_stater¾Ú_s rr.zMuZeroFrameBuffer.init_buffers]€İ�t”}Ñ%Ô%ğ nğ nˆAØ ŒL˜Ô × 'Ò '¨µ\À$ÔBRĞTXÔTjÑ5kÔ5kĞ(lÑ mÔ mĞ mĞ mğ nğ nrcó6—t|j|¦«Sr)rræ)rr¾s rrzMuZeroFrameBuffer.__len__s€İ�4”< Ô'Ñ(Ô(Ğ(rN) r!r"r#r³rrêròr.rr$rrrârâÿs{€€€€€ğa°sğaÈsğağağağağ 5ğ5ğ5ğ2ğ2ğ2ğnğnğnğ)ğ)ğ)ğ)ğ)rrâcóR—eZdZd„Zd„Zd„Zd„Zd„Zd„Zdd„Z d „Z d „Z d „Z d „Z d S)ÚMongoDBMemBuffercón—tjdd¦«j|_d|_d|_d|_dS)NÚ localhosti‰irF)ÚpymongoÚ MongoClientÚmuzeroÚdbÚcalculated_buffer_sizer2r(rs rrzMongoDBMemBuffer.__init__s3€İÔ% k°5Ñ9Ô9Ô@ˆŒØ&'ˆÔ#؈Œ ؈ŒˆˆrcóŒ—t|t¦«std¦«‚|jj |¦«dS)NzExperience must be a dict)r5rŞr7rşrÖÚinsert©rr9s rr:zMongoDBMemBuffer.addsB€İ˜*¥dÑ+Ô+ğ :İĞ8Ñ9Ô9Ğ 9Ø ŒÔ× Ò  Ñ,Ô,Ğ,Ğ,Ğ,rcóD—|jj |¦«dSr)rşrÖÚ insert_many©rrEs rrHzMongoDBMemBuffer.add_list$s!€Ø ŒÔ×%Ò% oÑ6Ô6Ğ6Ğ6Ğ6rcó—tjd|jj i¦«|z ¦«}t |jj i¦« |¦« |¦«¦«Sr,) rDrÏrşrÖÚcount_documentsrÚfindÚskipÚlimit)rrLÚ random_idxs rrUzMongoDBMemBuffer.batch'sh€İ”^ A t¤wÔ'8×'HÒ'HÈÑ'LÔ'LÈzÑ'YÑZÔZˆ İ�D”GÔ%×*Ò*¨2Ñ.Ô.×3Ò3°JÑ?Ô?×EÒEÀjÑQÔQÑRÔRĞRrcól‡—|jj i¦«|_|jj iddddœ¦«}ˆfd„|D¦«}|jj iddi¦«}t ||¦«D])\}}|jj |dd|ii¦«Œ*dS)Nrrs)Ú_idÚ pred_rewardÚt_rewardcóR•—g|]#}t|d|dz ¦«‰z‘Œ$S)rrr‹)rbrcr‡s €rrdz9MongoDBMemBuffer.calculate_priorities.<locals>.<listcomp>.s4ø€Ğ MĞ MĞ MÀ�c�!�MÔ" Q z¤]Ñ2Ñ3Ô3°uÑ<Ğ MĞ MĞ Mrr z$setro)rşrÖrrÿrÚzipÚ update_one) rrLr‡r“Úfieldsr’Ú document_idsÚdoc_idrgs ` rr�z%MongoDBMemBuffer.calculate_priorities+sÌø€Ø&*¤gÔ&7×&GÒ&GÈÑ&KÔ&KˆÔ#Ø”Ô"×'Ò'¨°AÀaĞUVĞ,WĞ,WÑXÔXˆØ MĞ MĞ MĞ MÀfĞ MÑ MÔ Mˆà”wÔ(×-Ò-¨b°5¸!°*Ñ=Ô=ˆ ݘ\¨2Ñ.Ô.ğ Lğ L‰IˆF�AØ ŒGÔ × (Ò (¨°&¸:Àq¸/Ğ1JÑ KÔ KĞ KĞ Kğ Lğ Lrcó’—|j|jj i¦«kr| |j||¦«dSdSr)rÿrşrÖrr�)rr‡r“s rÚupdate_priorities_if_neededz,MongoDBMemBuffer.update_priorities_if_needed4sM€Ø Ô &¨¬Ô):×)JÒ)JÈ2Ñ)NÔ)NÒ NĞ NØ × %Ò % dÔ&AÀ5È!Ñ LÔ LĞ LĞ LĞ Lğ OĞ Nrrsc #óL‡‡‡ K—t|¦«D�]�}‰ |‰¦«t‰jj idddœ¦« d¦«¦«}d„‰jj idddœ¦«D¦«}t|¦«Š ˆ fd„|D¦«}tj   tj ‰jj  i¦«¦«t‰j|‰z¦«d|¬¦« ¦«}ˆˆfd „|D¦«} tt!j| ¦«¦«} t%d „| D¦«¦«} | t'j|t&j¬ ¦«fV—�Œ�dS) Nrsr)ror écó—g|] }|d‘Œ SrÌr$ras rrdz:MongoDBMemBuffer.batch_with_priorities.<locals>.<listcomp>=s€ĞgĞgĞg¨A˜!˜Jœ-ĞgĞgĞgrcó•—g|]}|‰z ‘ŒSr$r$©rbrgÚsum_ps €rrdz:MongoDBMemBuffer.batch_with_priorities.<locals>.<listcomp>?sø€Ğ8Ğ8Ğ8¨˜!˜e™)Ğ8Ğ8Ğ8rFr•có´•—g|]T}t‰jj i¦« |¦« ‰¦«¦«‘ŒUSr$)rrşrÖrr r )rbrcr“rs €€rrdz:MongoDBMemBuffer.batch_with_priorities.<locals>.<listcomp>CsPø€ĞXĞXĞXÈ1•T˜$œ'Ô+×0Ò0°Ñ4Ô4×9Ò9¸!Ñ<Ô<×BÒBÀ1ÑEÔEÑFÔFĞXĞXĞXrcóh—g|]/}|d|d|d|d|df|df‘Œ0S)Ú probabilitiesÚvsrÚ game_moverÚ game_stater$ras rrdz:MongoDBMemBuffer.batch_with_priorities.<locals>.<listcomp>FsS€ğğğĞwx�!�OÔ$ a¨¤g°°*´ ¸qÀ¼~ÈqĞQ^ÔO_Ğ/`ĞbcĞdpÔbqĞrğğğrrš)rPrrrşrÖrr rxrurDryrzrrQrÿr{rr�rµr�rŸr ) rÚepochsrLr“r‡rõÚtest_pr„ÚindexesÚitemsrs ` ` @rr�z&MongoDBMemBuffer.batch_with_priorities8s¾øøøèè€İ�v‘”ğ Añ AˆAØ × ,Ò ,¨U°AÑ 6Ô 6Ğ 6ݘ$œ'Ô+×0Ò0°À!ÈAĞ5NĞ5NÑOÔO×UÒUĞVWÑXÔXÑYÔYˆFàgĞg°´Ô1B×1GÒ1GÈĞYZĞcdĞLeĞLeÑ1fÔ1fĞgÑgÔgˆJݘ ‘O”OˆEØ8Ğ8Ğ8Ğ8¨ZĞ8Ñ8Ô8ˆJİ”i×&Ò&¥r¤y°´Ô1B×1RÒ1RĞSUÑ1VÔ1VÑ'WÔ'Wİ,/°Ô0KÈZĞ[\É_Ñ,]Ô,]ĞglØ)3ğ'ñ5ô5ç5;²V±X´Xğ ğYĞXĞXĞXĞXĞPWĞXÑXÔXˆEİ�Ô,¨UÑ3Ô3Ñ4Ô4ˆEİğğØğñôñôˆEğ�œ :µR´ZĞ@Ñ@Ô@Ğ@Ğ @Ğ @Ğ @Ñ @ğ Ağ Arcóh—|jj dtjfg¬¦«dS)Nr )Úsort)rşrÖÚfind_onerûÚ DESCENDINGrs rÚget_last_greatest_idz%MongoDBMemBuffer.get_last_greatest_idJs.€ØŒwÔ ×)Ò)°½Ô8JĞ0KĞ/LĞ)ÑMÔMÈeÔTĞTrcó@—|jj i¦«Sr)rşrÖrrs rrzMongoDBMemBuffer.__len__Ms€ØŒwÔ ×0Ò0°Ñ4Ô4Ğ4rcóB—|jj ¦«dSr)rşrÖÚdroprs rÚdrop_game_datazMongoDBMemBuffer.drop_game_dataPs€Ø ŒÔ×ÒÑ Ô Ğ Ğ Ğ rcó—t¦«Sr)rørs rr¥z$MongoDBMemBuffer.make_fresh_instanceSs€İÑ!Ô!Ğ!rNrÍ)r!r"r#rr:rHrUr�rr�r,rr0r¥r$rrrørøs΀€€€€ğğğğ -ğ-ğ-ğ 7ğ7ğ7ğSğSğSğLğLğLğMğMğMğAğAğAğAğ$UğUğUğ5ğ5ğ5ğ!ğ!ğ!ğ"ğ"ğ"ğ"ğ"rrøcóL—eZdZdefd„Zd„Zd„Zd„Zd„Zd d„Z d „Z d „Z d „Z d S)ÚPickleMemBufferÚ pickle_dircóX—||_d|_d|_t|¦«|_dS)NT)r4r2r(r Úpickler)rr4s rrzPickleMemBuffer.__init__Ys*€Ø$ˆŒØˆŒ ؈Œİ" :Ñ.Ô.ˆŒ ˆ ˆ rcó —td¦«‚)NzqSingle experience addition shouldn't be performed in PickleMemBuffer, please add entire bach with add_list method©ÚNotImplementedErrorrs rr:zPickleMemBuffer.add_s€İ!ğ#EñFôFğ Frcó:—|j |¦«dSr)r6Ú pickle_bufferrs rrHzPickleMemBuffer.add_listcs€Ø Œ ×"Ò" ?Ñ3Ô3Ğ3Ğ3Ğ3rcó —td¦«‚)NzRBatch method not implemented for PickleMemBuffer, please use batch_with_prioritiesr8rKs rrUzPickleMemBuffer.batchfs€İ!Ğ"vÑwÔwĞwrcó>‡‡‡‡—|j d¦«Š|j d¦«Šˆˆˆfd„tt‰¦«¦«D¦«d| …}t d„|D¦«¦«Šˆfd„|D¦«}d„|D¦«S)NrsrŠcób•—g|]+}t‰|‰|dz ¦«‰z|f‘Œ,S)rŠr‹)rbrpr‡Úrewsr!s €€€rrdz8PickleMemBuffer.calculate_priorities.<locals>.<listcomp>ls<ø€Ğ LĞ LĞ L¸�s�2�a”5˜4 œ7 1œ:Ñ%Ñ&Ô&¨%Ñ/°Ğ3Ğ LĞ LĞ Lrcó—g|] }|d‘Œ Srmr$©rbrgs rrdz8PickleMemBuffer.calculate_priorities.<locals>.<listcomp>ms€Ğ&Ğ&Ğ&˜a�Q�q”TĞ&Ğ&Ğ&rcó6•—g|]}|d‰z |df‘ŒS)rrsr$rs €rrdz8PickleMemBuffer.calculate_priorities.<locals>.<listcomp>ns*ø€Ğ /Ğ /Ğ / qˆq�Œt�e‰|˜Q˜qœTĞ"Ğ /Ğ /Ğ /rcó,—i|]}|d|d“ŒS)rsrr$rAs rú <dictcomp>z8PickleMemBuffer.calculate_priorities.<locals>.<dictcomp>os"€Ğ'Ğ'Ğ'˜q��!”�a˜”dĞ'Ğ'Ğ'r)r6Ú load_indexrPrrx)rrLr‡r“r’r?rr!s ` @@@rr�z$PickleMemBuffer.calculate_prioritiesis¯øøøø€Ø Œ\× $Ò $ QÑ 'Ô 'ˆØŒ|×&Ò& qÑ)Ô)ˆØ LĞ LĞ LĞ LĞ LĞ L½UÅ3ÀrÁ7Ä7¹^¼^Ğ LÑ LÔ LÈSÈqÈbÈSÔ QˆİĞ&Ğ& 2Ğ&Ñ&Ô&Ñ'Ô'ˆØ /Ğ /Ğ /Ğ /¨BĞ /Ñ /Ô /ˆØ'Ğ' BĞ'Ñ'Ô'Ğ'rrsc #óʇ‡ K—| ||‰¦«Š tjt‰  ¦«¦«¦«}t |¦«D�]}tj tjt‰ ¦«¦«tt‰ ¦«‰zt|‰zd¦«¦«dt|¦«¬¦«  ¦«}|j  ||‰¦«}ˆˆ fd„|D¦«} ttj| ¦«¦«} |t#j| t"j¬¦«fV—�ŒdS)NrsFr•cóh•—g|].}t‰ ¦«¦«||‰z…‘Œ/Sr$)rrß)rbrpr“r„s €€rrdz9PickleMemBuffer.batch_with_priorities.<locals>.<listcomp>ys:ø€ĞOĞOĞO¸1•D˜×*Ò*Ñ,Ô,Ñ-Ô-¨a°°A±¨gÔ6ĞOĞOĞOrrš)r�rurvrrßrPrDryrzrrQrœr{r6Úload_allrr�r�rŸr ) rr$rLr“r‡Úps_probsrõr¡rUr¢Útmpr„s ` @rr�z%PickleMemBuffer.batch_with_prioritiesqsGøøèè€Ø×.Ò.¨z¸5À!ÑDÔDˆ İ”8�D ×!2Ò!2Ñ!4Ô!4Ñ5Ô5Ñ6Ô6ˆİ�v‘”ğ :ñ :ˆAİœY×-Ò-­b¬i½¸J¹¼Ñ.HÔ.Hİ36µs¸:±´È!Ñ7KÍSĞQ[Ğ_`ÑQ`ĞbcÑMdÔMdÑ3eÔ3eĞotİ04°X±´ğ.ñ@ô@ç@FÂÁÄğ ğ”L×)Ò)¨*°nÀaÑHÔHˆEØOĞOĞOĞOĞOÀĞOÑOÔOˆDİ•uÔ*¨4Ñ0Ô0Ñ1Ô1ˆCØ�œ 3­b¬jĞ9Ñ9Ô9Ğ9Ğ 9Ğ 9Ğ 9Ñ 9ğ :ğ :rcó.—td¦«|jS)Nz/Load using datapickler.load_all(float(inf),...))Úprintr4rs rr®zPickleMemBuffer.save}s€İ Ğ?Ñ@Ô@Ğ@ØŒĞrcó*—t|j¦«Sr)r3r4rs rr¥z#PickleMemBuffer.make_fresh_instance�s€İ˜tœÑ/Ô/Ğ/rcó —td¦«‚)Nz+Length not implemented for PickleMemBuffer.r8rs rrzPickleMemBuffer.__len__„s€İ!Ğ"OÑPÔPĞPrNrÍ) r!r"r#r²rr:rHrUr�r�r®r¥rr$rrr3r3Ws·€€€€€ğ/ 3ğ/ğ/ğ/ğ/ğ FğFğFğ4ğ4ğ4ğxğxğxğ(ğ(ğ(ğ :ğ :ğ :ğ :ğğğğ0ğ0ğ0ğQğQğQğQğQrr3)(r—rDÚuuidÚ collectionsrrrÎruÚ numpy.randomrûÚtorchr�Ú diskcacherÚtorch.utils.datarrÚmu_alpha_zero.General.memoryrÚmu_alpha_zero.General.utilsr Ú mu_alpha_zero.Hooks.hook_managerr Úmu_alpha_zero.Hooks.hook_pointr Ú mu_alpha_zero.MuZero.lazy_arraysr Úmu_alpha_zero.MuZero.picklerr Úmu_alpha_zero.MuZero.utilsrÚmu_alpha_zero.configrrr&r6rÒrârør3r$rrú<module>r]spğØĞĞĞØ € € € Ø € € € ØĞĞĞĞĞØĞĞĞĞĞàĞĞĞØĞĞĞØ€€€ØĞĞĞØĞĞĞĞĞØ0Ğ0Ğ0Ğ0Ğ0Ğ0Ğ0Ğ0à<Ğ<Ğ<Ğ<Ğ<Ğ<Ø9Ğ9Ğ9Ğ9Ğ9Ğ9Ø8Ğ8Ğ8Ğ8Ğ8Ğ8Ø1Ğ1Ğ1Ğ1Ğ1Ğ1Ø6Ğ6Ğ6Ğ6Ğ6Ğ6Ø4Ğ4Ğ4Ğ4Ğ4Ğ4Ø3Ğ3Ğ3Ğ3Ğ3Ğ3Ø-Ğ-Ğ-Ğ-Ğ-Ğ-ğ$ğ$ğ$ğ$ğ$�ñ$ô$ğ$ğMğMğMğMğMĞ#ñMôMğMğ`>ğ>ğ>ğ>ğ>ñ>ô>ğ>ğBğğğğñôğğ)ğ)ğ)ğ)ğ)ñ)ô)ğ)ğ2<"ğ<"ğ<"ğ<"ğ<"Ğ*ñ<"ô<"ğ<"ğ~.Qğ.Qğ.Qğ.Qğ.QĞ)ñ.Qô.Qğ.Qğ.Qğ.Qr
34,763
Python
.pyt
105
330.047619
1,519
0.323523
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,551
__init__.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/__pycache__/__init__.cpython-311.pyc
§ µ%îetãó—ddlmZddlmZddlmZddlmZddlm Z ddl m Z ddl m Z ddlmZdd lmZmZdd lmZmZdd lmZdd lmZdd lmZddlmZddlmZdS)é)ÚMuZero)Ú AlphaZero)ÚGeneralMemoryBuffer)ÚGeneralNetwork)Ú GeneralArena)Ú AlphaZeroGame)Ú MuZeroGame)Ú SearchTree)ÚSAMPLE_AZ_ARGSÚSAMPLE_MZ_ARGS)Úfind_project_rootÚclear_disk_data)ÚTicTacToeGameManager)Ú Asteroids)Ú MuZeroNet)Ú AlphaZeroNet)Ú resize_obsN) Úmu_alpha_zero.MuZero.muzerorÚ"mu_alpha_zero.AlphaZero.alpha_zerorÚmu_alpha_zero.General.memoryrÚmu_alpha_zero.General.networkrÚmu_alpha_zero.General.arenarÚmu_alpha_zero.General.az_gamerÚmu_alpha_zero.General.mz_gamer Ú!mu_alpha_zero.General.search_treer Ú!mu_alpha_zero.AlphaZero.constantsr r Úmu_alpha_zero.General.utilsr rÚ!mu_alpha_zero.Game.tictactoe_gamerÚmu_alpha_zero.Game.asteroidsrÚ%mu_alpha_zero.MuZero.Network.networksrÚ$mu_alpha_zero.AlphaZero.Network.nnetrÚmu_alpha_zero.MuZero.utilsr©óúE/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/__init__.pyú<module>r&s%ðØ.Ð.Ð.Ð.Ð.Ð.Ø8Ð8Ð8Ð8Ð8Ð8Ø<Ð<Ð<Ð<Ð<Ð<Ø8Ð8Ð8Ð8Ð8Ð8Ø4Ð4Ð4Ð4Ð4Ð4Ø7Ð7Ð7Ð7Ð7Ð7Ø4Ð4Ð4Ð4Ð4Ð4Ø8Ð8Ð8Ð8Ð8Ð8ØLÐLÐLÐLÐLÐLÐLÐLØJÐJÐJÐJÐJÐJÐJÐJØBÐBÐBÐBÐBÐBØ2Ð2Ð2Ð2Ð2Ð2Ø;Ð;Ð;Ð;Ð;Ð;Ø=Ð=Ð=Ð=Ð=Ð=Ø1Ð1Ð1Ð1Ð1Ð1Ð1Ð1r$
1,494
Python
.pyt
8
185.625
682
0.65232
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,552
config.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/__pycache__/config.cpython-311.pyc
§ G¤f*ãó˜—ddlmZmZeGd„d¦«¦«ZeGd„de¦«¦«ZeGd„de¦«¦«ZdS) é)Ú dataclassÚfieldcóˆ—eZdZUdZeed<dZeed<dZeed<dZ eed<d Z d Z d Z d Z eed <d Zeed <dZeed<dZeed<dZeed<dZeed<dZeed<dZeed<dZeed<dZeed<dZeed<dZeed <dZeed!<d"Zd#Zeed$<d%Zeed&<d'Zeed(<d)Zeed*<d'Z eed+<d,Z!epe"eed-<d.Z#eed/<d#Z$eed0<d1Z%eed2<d3Z&eed4<dZ'eed5<e(d6„¬7¦«Z)e"eed8<d9Z*eed:<d;Z+e,ed<<d=Z-e,ed><d=Z.e,ed?<d=Z/e,ed@<dAZ0eedB<d;Z1e,edC<d=Z2e,edD<dEZ3eedF<dG„Z4e5dHe6fdI„¦«Z7d#S)JÚConfigéÚnum_net_channelséÚnum_net_in_channelsç333333Ó?Ú net_dropoutéÚnet_action_sizeé éÚlinear_head_hidden_sizeé Únum_simulationsédÚself_play_gamesé2Ú num_itersé@ÚepochsçÜç…‰Õƒé>ÚlrépÚmax_buffer_sizeé(Ú num_pit_gameséÚrandom_pit_freqéÿÚ batch_sizeÚtauç{®Gáz„?Ú arena_tauÚcgš™™™™™É?NÚcheckpoint_dirç333333ã?Úupdate_thresholdéÚ num_workersç•Ö&è .>Ú log_epsilonÚzero_tau_afteré Úaz_net_linear_input_sizeÚLogsÚlog_dirÚpushbullet_tokenéÚ num_blocksg-Cëâ6?Úl2Ú eval_epochscó —ddgS)Né©r;óúC/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/config.pyú<lambda>zConfig.<lambda>-s €¸qÀ¸e€r<)Údefault_factoryÚnet_latent_sizeé,Ú support_sizeTÚunravelFÚrequires_player_to_resetÚarena_running_muzeroÚ use_wandbé †Únum_worker_itersÚenable_frame_bufferÚrecalculate_p_on_every_callÚmzÚwandbd_project_namecó—|jS)N)Ú__dict__)Úselfs r=Úto_dictzConfig.to_dict8s €ØŒ}Ğr<ÚargscóB—g}t¦«}| ¦«D]S\}}|| ¦« ¦«vr| |¦«t |||¦«ŒTt |¦«dkrtd|›d�¦«|S)NrzHThe following keys were missing from the default config and were added: ú.)Ú MuZeroConfigÚitemsrPÚkeysÚappendÚsetattrÚlenÚprint)rQÚmissingÚconfigÚkeyÚvals r=Ú from_argszConfig.from_args;s¤€àˆİ‘”ˆØŸ š ™ œ ğ &ğ &‰HˆC�ؘ&Ÿ.š.Ñ*Ô*×/Ò/Ñ1Ô1Ğ1Ğ1Ø—’˜sÑ#Ô#Ğ#İ �F˜C Ñ %Ô %Ğ %Ğ %å ˆw‰<Œ<˜!Ò Ğ İ ĞgĞ]dĞgĞgĞgÑ hÔ hĞ h؈ r<)8Ú__name__Ú __module__Ú __qualname__rÚintÚ__annotations__r r ÚfloatrÚstate_linear_layersÚpi_linear_layersÚv_linear_layersrrrrrrrrr!r#r$r&r'Údirichlet_alphar(Ústrr*r,r.r/r1Úlistr3r4r6r7r8rr@rBrCÚboolrDrErFrHrIrJrLrPÚ staticmethodÚdictr_r;r<r=rr s䀀€€€€àĞ�cĞĞÑØ Ğ˜Ğ Ğ Ñ Ø€K�ĞĞÑØ€O�SĞĞÑØĞØĞØ€OØ#&ИSĞ&Ğ&Ñ&Ø€O�SĞĞÑØ€O�SĞĞÑØ€IˆsĞĞÑØ€FˆCĞĞÑØ&€BˆĞ&Ğ&Ñ&Ø!€O�SĞ!Ğ!Ñ!Ø€M�3ĞĞÑØ€O�SĞĞÑØ€J�ĞĞÑØ€Cˆ€N€N�NØ€IˆuĞĞÑØ€A€u€L€L�LØ€OØ€N�CĞĞÑØ!Ğ�eĞ!Ğ!Ñ!Ø€K�ĞĞÑØ€K�ĞĞÑØ€N�CĞĞÑØ15ИcĞ. T¨#¤YĞ5Ğ5Ñ5Ø€GˆSĞĞÑØ Ğ�cĞ Ğ Ñ Ø€J�ĞĞÑØ€BˆĞĞÑØ€K�ĞĞÑØ!& °|°|Ğ!DÑ!DÔ!D€O�T˜#”YĞDĞDÑDØ€L�#ĞĞÑØ€GˆTĞĞÑØ%*ИdĞ*Ğ*Ñ*Ø!&И$Ğ&Ğ&Ñ&Ø€IˆtĞĞÑØ#Ğ�cĞ#Ğ#Ñ#Ø $ИĞ$Ğ$Ñ$Ø(-Ğ Ğ-Ğ-Ñ-Ø#ИĞ#Ğ#Ñ#ğğğğğ ˜ğ ğ ğ ñ„\ğ ğ ğ r<rcó´—eZdZUdZeed<dZeed<dZeed<dZeed<d Z e ed <d Z eed <d Z eed<dZ eed<dZeed<dZe ed<dZeed<dZeed<dZeed<dZeed<dZeed<dZe ed <d!Zeed"<d#Zeed$<d%Zeed&<d'Zeed(<dZe ed)<d*Ze ed+<dZe ed,<d-Zeed.<d/Ze ed0<d1Ze ed2<d3Z!e ed4<dZ"eed5<d6Z#e ed7<dZ$eed8<dZ%eed9<d:Z&e ed;<d<Z'e(eefed=<d>Z)epe*eed?<d1Z+e ed@<d1Z,e edA<dBZ-e.edC<dDZ/e.edE<dDZ0e.edF<dDZ1e.edG<dDZ2e.edH<dBZ3e.edI<dDZ4e.edJ<dZ5e edK<dDZ6e.edL<dMZ7eedN<d1S)OrTrrrÚnum_net_out_channelsr r é€Úrep_input_channelsr r r rrrrrr+ÚKg�•C‹lçï?Úgammaé Úframe_buffer_sizeéÚ frame_skipi�Ú num_stepsrrrrrrrrrrr r!r"r#r$r%r&r'iÄLÚc2gš™™™™™é?ÚalphaNr(r)r*r,r-r.r/Úbetaz Pickles/DataÚ pickle_dir)é`r~Útarget_resolutionr0r1r3r4FÚ show_tqdmTÚ resize_imagesÚmuzeroÚ use_originalÚ use_poolingÚmultiple_playersÚ scale_stateÚ balance_termÚ enable_perrÚ num_td_steps)8r`rarbrrcrdrpr rrr rerrrrsrtrvrxryrrrrrr!r#r$r&r'rzr{r(rjr*r,r.r/r|r}rÚtupler1rkr3r4r€rlr�r‚rƒr„r…r†r‡rˆr‰r;r<r=rTrTIsş€€€€€€àĞ�cĞĞÑØ #И#Ğ#Ğ#Ñ#Ø Ğ˜Ğ Ğ Ñ Ø!ИĞ!Ğ!Ñ!Ø€K�ĞĞÑØ€O�SĞĞÑØ€O�SĞĞÑØ€O�SĞĞÑØ €A€s€J€J�JØ€Eˆ5ĞĞÑØĞ�sĞĞÑØ€J�ĞĞÑØ€IˆsĞĞÑØ€IˆsĞĞÑØ€FˆCĞĞÑØ&€BˆĞ&Ğ&Ñ&Ø!€O�SĞ!Ğ!Ñ!Ø€M�3ĞĞÑØ€O�SĞĞÑØ€J�ĞĞÑØ€Cˆ€N€N�NØ€IˆuĞĞÑØ€A€u€L€L�LØ€Bˆ€O€O�OØ€Eˆ5ĞĞÑØ€N�CĞĞÑØ!Ğ�eĞ!Ğ!Ñ!Ø€K�ĞĞÑØ€K�ĞĞÑØ€N�CĞĞÑØ€Dˆ#€M€M�MØ$€J�Ğ$Ğ$Ñ$Ø)1Ğ�u˜S #˜X”Ğ1Ğ1Ñ1Ø15ИcĞ. T¨#¤YĞ5Ğ5Ñ5Ø€GˆSĞĞÑØ Ğ�cĞ Ğ Ñ Ø€IˆtĞĞÑØ€M�4ĞĞÑØ€FˆDĞĞÑØ€L�$ĞĞÑØ€K�ĞĞÑØ"Ğ�dĞ"Ğ"Ñ"Ø€K�ĞĞÑØ€L�%ĞĞÑØ€J�ĞĞÑØ€L�#ĞĞÑĞĞr<rTcó¬—eZdZUdZeed<dZeed<dZeed<dZe ed<ed zZ eed <d Z eed <d Z eed<dZ eed<dZeed<dZe ed<dZeed<dZeed<dZeed<dZeed<dZe ed<dZe ed<dZe ed <d!Zeed"<d#Ze ed$<d%Zeed&<d'Zeed(<d)Zeed*<d)Zeed+<d,Ze ed-<d)Z eed.<d/Z!eed0<d!Z"eed1<d!Z#eed2<d3Z$eed4<d!S)5ÚAlphaZeroConfigr5Ú board_sizerrr r r r r ri%rrArrriôrg{äL?´œj?rrGrrrér!rr#r$gëö‹ÓG1¥?r&r'Nr(r)r*rwÚ minimax_depthTr€r+r,Ú num_to_winr-r.r/iHr1r3r4Fr‚)%r`rarbr�rcrdrr r rerrrrrrrrr!r#r$r&r'r(rjr*r�r€rlr,r�r.r/r1r3r4r‚r;r<r=rŒrŒ~s倀€€€€à€J�ĞĞÑØĞ�cĞĞÑØ Ğ˜Ğ Ğ Ñ Ø€K�ĞĞÑØ%¨™?€O�SĞ*Ğ*Ñ*Ø€O�SĞĞÑØ€O�SĞĞÑØ€IˆsĞĞÑØ€FˆCĞĞÑØ%€BˆĞ%Ğ%Ñ%Ø"€O�SĞ"Ğ"Ñ"Ø€M�3ĞĞÑØ€O�SĞĞÑØ€J�ĞĞÑØ€Cˆ€N€N�NØ*€IˆuĞ*Ğ*Ñ*Ø€A€u€L€L�LØ€N�CĞĞÑØ!Ğ�eĞ!Ğ!Ñ!Ø€M�3ĞĞÑØ€IˆtĞĞÑØ€K�ĞĞÑØ€J�ĞĞÑØ€K�ĞĞÑØ€N�CĞĞÑØ$)ИcĞ)Ğ)Ñ)Ø€GˆSĞĞÑØ Ğ�cĞ Ğ Ñ Ø€FˆDĞĞÑĞĞr<rŒN)Ú dataclassesrrrrTrŒr;r<r=ú<module>r’sËğğ(Ğ'Ğ'Ğ'Ğ'Ğ'Ğ'Ğ'ğ ğ:ğ:ğ:ğ:ğ:ñ:ô:ñ „ğ:ğz ğ.ğ.ğ.ğ.ğ.�6ñ.ô.ñ „ğ.ğh ğğğğğ�fñôñ „ğğğr<
8,034
Python
.pyt
43
185.813953
1,158
0.413163
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,553
memory.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/General/__pycache__/memory.cpython-311.pyc
§ føf¢ãó2—ddlmZmZGd„de¦«ZdS)é)ÚABCÚabstractmethodcó|—eZdZed„¦«Zed„¦«Zed„¦«Zed„¦«Zed„¦«ZdS)ÚGeneralMemoryBuffercó—dS)z8 Add a single experience to the buffer. N©)ÚselfÚ experiences úK/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/General/memory.pyÚaddzGeneralMemoryBuffer.addó €ð ˆócó—dS)z: Add a list of experiences to the buffer. Nr)r Úexperience_lists r Úadd_listzGeneralMemoryBuffer.add_list r rcó—dS)z0 Return a batch of experiences. Nr)r Ú batch_sizes r ÚbatchzGeneralMemoryBuffer.batchr rcó—dS)z2 Return the length of the buffer. Nr©r s r Ú__len__zGeneralMemoryBuffer.__len__r rcó—dS)Nrrs r Úmake_fresh_instancez'GeneralMemoryBuffer.make_fresh_instance!s€à ˆrN) Ú__name__Ú __module__Ú __qualname__rr rrrrrrr rrs™€€€€€Øð ð ñ„^ð ð ð ð ñ„^ð ð ð ð ñ„^ð ð ð ð ñ„^ð ð ð ð ñ„^ð ð ð rrN)Úabcrrrrrr ú<module>rsQðØ#Ð#Ð#Ð#Ð#Ð#Ð#Ð#ð ð ð ð ð ˜#ñ ô ð ð ð r
1,621
Python
.pyt
14
110.142857
399
0.402363
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,554
az_game.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/General/__pycache__/az_game.cpython-311.pyc
§ ’Ô†f"ãóF—ddlmZmZddlmZddlZGd„de¦«ZdS)é)ÚABCÚabstractmethod)Úadjust_probabilitiesNc ó2—eZdZdZdedzfd„Zededefd„¦«Ze d„¦«Z e d e d e j defd „¦«Zee d e j d e de j fd „¦«¦«Ze d e j d e ped e de j fd„¦«Ze d e j defd„¦«Ze d e j d e pdde j fd„¦«Ze de j fd„¦«Ze d„¦«Zd e j d e fd„Ze d„¦«Ze d e j fd„¦«Ze de j d e fd„¦«ZdS)Ú AlphaZeroGamezP Make your custom game extend this class and implement all the methods. ÚreturnNcóœ—| ||¬¦«rdS| | |¬¦«rdS| |¬¦«rdSdS)a. Returns the result of the game from the perspective of the supplied player. :param player: The player to check for (1 or -1). :param board: The board to check on. If None, the current board is used. :return: The game result. None when the game is not over yet. )Úboardgğ?gğ¿g-Cëâ6?N)Ú check_winÚ is_board_full©ÚselfÚplayerr s úL/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/General/az_game.pyÚ game_resultzAlphaZeroGame.game_result sc€ğ �>Š>˜&¨ˆ>Ñ .Ô .ğ Ø�3Ø �>Š>˜6˜'¨ˆ>Ñ /Ô /ğ Ø�4Ø × Ò  EĞ Ñ *Ô *ğ Ø�4؈tóÚ action_probsÚtaucó¢—t||¬¦«}t| ¦«�\}}tj ||¬¦«S)N)r)Úp)rÚzipÚitemsÚnpÚrandomÚchoice)rrÚmovesÚprobss rÚ select_movezAlphaZeroGame.select_movesI€å+¨L¸cĞBÑBÔBˆ ݘL×.Ò.Ñ0Ô0Ğ1‰ ˆˆuİŒy×Ò ¨ĞÑ/Ô/Ğ/rcó—dS)zD Returns a fresh instance of the game (not a copy). N©©rs rÚmake_fresh_instancez!AlphaZeroGame.make_fresh_instance ó €ğ ˆrrr có—dS)zk Checks if the current player 'player' won on the 'board'. If so returns true, else false. Nr r s rr zAlphaZeroGame.check_win'r#rcó—dS)z¾ Returns the canonical form of the board. In this case, that is a board where the current player is always player 1. You probably want: return board * player Nr ©rr rs rÚget_canonical_formz AlphaZeroGame.get_canonical_form.s €ğ ˆrÚactioncó—dS)z‡ This method plays move given by 'board_index' as 'player' on the given 'board' and returns the updated board. Nr )rr r(rs rÚget_next_statezAlphaZeroGame.get_next_state8ó €ğ ˆrcó—dS)zj Checks if the given board is completely full. Returns true if so, false other otherwise, Nr )rr s rr zAlphaZeroGame.is_board_full@r#rcó—dS)zŸ Returns a list of valid moves for the given player on the given board. If valid moves are independent of player, use None for player. Nr r&s rÚget_valid_moveszAlphaZeroGame.get_valid_movesGr+rcó—dS)z6 Returns a copy of the current board. Nr r!s rÚ get_boardzAlphaZeroGame.get_boardOr#rcó—dS)z@ Resets the game and returns the initial board. Nr r!s rÚresetzAlphaZeroGame.resetVr#rcó—dS)z§ Optional. Evaluates the board from the perspective of the given player. This is used for minimax, override this method if you want to use it. Nr r&s rÚ eval_boardzAlphaZeroGame.eval_board]r#rcó—dS)z- Render the GUI of the game. Nr r!s rÚrenderzAlphaZeroGame.renderdr#rc ó—dS)zZ Returns a random valid action for the given board and optionally player. Nr )rr Úkwargss rÚget_random_valid_actionz%AlphaZeroGame.get_random_valid_actionkr#rÚstatecó—dS)zI Returns a list of invalid actions for the given player. Nr )rr:rs rÚget_invalid_actionsz!AlphaZeroGame.get_invalid_actionsrr#r)Ú__name__Ú __module__Ú __qualname__Ú__doc__ÚfloatrÚ staticmethodÚdictrrr"ÚintrÚndarrayÚboolr r'Útupler*r r.r0r2r4r6r9r<r rrrrs�€€€€€ğğğ ¨E°D©Lğ ğ ğ ğ ğğ0 $ğ0¨Uğ0ğ0ğ0ñ„\ğ0ğ ğ ğ ñ„^ğ ğ ğ  ğ ¨B¬Jğ ¸4ğ ğ ğ ñ„^ğ ğ Øğ ¨¬ ğ ¸Cğ ÀBÄJğ ğ ğ ñ„^ñ„\ğ ğğ  B¤J𠸸 ¸uğ Ècğ ĞVXÔV`ğ ğ ğ ñ„^ğ ğğ  2¤:ğ °$ğ ğ ğ ñ„^ğ ğ ğ  R¤Z𠸸Àğ ÈÌğ ğ ğ ñ„^ğ ğğ ˜2œ:ğ ğ ğ ñ„^ğ ğ ğ ğ ñ„^ğ ğ   ¤ ğ °Cğ ğ ğ ğ ğğ ğ ñ„^ğ ğ ğ ¨R¬Zğ ğ ğ ñ„^ğ ğ 𠨬ğ ¸Sğ ğ ğ ñ„^ğ ğ ğ rr)ÚabcrrÚmu_alpha_zero.General.utilsrÚnumpyrrr rrú<module>rKsyğØ#Ğ#Ğ#Ğ#Ğ#Ğ#Ğ#Ğ#Ø<Ğ<Ğ<Ğ<Ğ<Ğ<ØĞĞĞğq ğq ğq ğq ğq �Cñq ôq ğq ğq ğq r
5,992
Python
.pyt
58
97.465517
706
0.436731
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,555
utils.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/General/__pycache__/utils.cpython-311.pyc
§ ’Ô†f; ãó˜—ddlZddlZddlZdefd„Zd„Zdefd„Zdefd„ZGd„d¦«Zd „Z d „Z de efd „Z dd e de fd„ZdS)éNÚreturncóò—tj tj t¦«¦«}tj|¦«dtj|¦«vrztj¦«dkstj¦«dkrtd¦«‚tjd¦«tj¦«}dtj|¦«v°ztj¦«S)Nz root.rootú/zC:\zCould not find project root.z..) ÚosÚpathÚdirnameÚabspathÚ__file__ÚchdirÚlistdirÚgetcwdÚFileNotFoundError)Údir_s úJ/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/General/utils.pyÚfind_project_rootrs²€İ Œ7�?Š?�2œ7Ÿ?š?­8Ñ4Ô4Ñ 5Ô 5€Dİ„HˆT�N„N€NØ �RœZ¨Ñ-Ô-Ğ -Ğ -İ Œ9‰;Œ;˜#Ò Ğ ¥¤¡¤°Ò!6Ğ!6İ#Ğ$BÑCÔCĞ Cİ Œ�‰ŒˆİŒy‰{Œ{ˆğ �RœZ¨Ñ-Ô-Ğ -Ğ -õ Œ9‰;Œ;Ğócó—|dkr|ndS)Nré©)Úxs rÚnot_zerors€Ø�Q’�ˆ1ˆ1˜AĞrcó�—tj tj tj¦«¦«S©N)rrrÚsysÚ executablerrrÚget_python_homers&€İ Œ7�?Š?�2œ7Ÿ?š?­3¬>Ñ:Ô:Ñ ;Ô ;Ğ;rcó¶—tjd¦«}| d¦«d d¦«d ¦«S)Nzpip show torchz Location:rÚRequiresr)Ú subprocessÚ getoutputÚsplitÚstrip)Úoutputs rÚget_site_packages_pathr$sI€İ Ô !Ğ"2Ñ 3Ô 3€FØ �<Š<˜ Ñ $Ô $ QÔ '× -Ò -¨jÑ 9Ô 9¸!Ô <× BÒ BÑ DÔ DĞDrcó6—eZdZgfdefd„Zd„Zd„Zd„Zd„ZdS)Ú OnlyUniqueÚiterablecó>—g|_| |¦«dSr)ÚuniqueÚextend)Úselfr's rÚ__init__zOnlyUnique.__init__s!€ØˆŒ Ø � Š �HÑÔĞĞĞrcóP—||jvr|j |¦«dSdSr)r)Úappend)r+Úitems rÚaddzOnlyUnique.add#s3€Ø �t”{Ğ "Ğ "Ø ŒK× Ò ˜tÑ $Ô $Ğ $Ğ $Ğ $ğ #Ğ "rcó:—|D]}| |¦«ŒdSr)r0)r+r'r/s rr*zOnlyUnique.extend's,€Øğ ğ ˆDØ �HŠH�T‰NŒNˆNˆNğ ğ rcó*—t|j¦«Sr)Úlenr)©r+s rÚ__len__zOnlyUnique.__len__+s€İ�4”;ÑÔĞrcó—|jSr)r)r4s rÚgetzOnlyUnique.get.s €ØŒ{ĞrN) Ú__name__Ú __module__Ú __qualname__Úlistr,r0r*r5r7rrrr&r&ss€€€€€Ø(*ğğ ğğğğğ%ğ%ğ%ğğğğ ğ ğ ğğğğğrr&cóˆ—t¦«›d�}tj|¦«D]}tj|›d|›�¦«ŒdS)Nz /Pickles/Datar)rrr Úremove)rÚfiles rÚclear_disk_datar?2sZ€İÑ!Ô!Ğ 0Ğ 0Ğ 0€Dİ” ˜4Ñ Ô ğ$ğ$ˆİ Œ �TĞ"Ğ"˜DĞ"Ğ"Ñ#Ô#Ğ#Ğ#ğ$ğ$rcó—|€ Jd¦«‚dS)NzNetwork is None, can't train/predict/pit. Make sure you initialize the network with eitherload_checkpoint or create_new method.r)Únets rÚ net_not_nonerB8s€Ø ˆ?ˆ?ğ 0ñ Œ?ˆ?ˆ?ˆ?rcóş—t¦« dd¦« d¦«d}d„ttj|›d�j ¦«¦«D¦«S)Nú\réÿÿÿÿcó<—g|]}| d¦«¯|‘ŒS)ÚPlayer)Úendswith©Ú.0rs rú <listcomp>zget_players.<locals>.<listcomp>@s8€ğ "ğ "ğ "�!Ø �JŠJ�xÑ Ô ğ "ˆAğ "ğ "ğ "rz.AlphaZero.Arena.players)rÚreplacer!r;rÚmodulesÚ__dict__Úkeys)Ú path_prefixs rÚ get_playersrQ>sw€İ#Ñ%Ô%×-Ò-¨d°CÑ8Ô8×>Ò>¸sÑCÔCÀBÔG€Kğ "ğ "•t�CœK¨;Ğ(PĞ(PĞ(PÔQÔZ×_Ò_ÑaÔaÑbÔbğ "ñ "ô "ğ"rçğ?Úaction_probabilitiescó‡‡ —‰dkršd„| ¦«D¦«}| t|¦«¦«}d„tt |¦«¦«D¦«}d||<t t | ¦«|¦«¦«St | ¦«�\}}ˆfd„|D¦«}t|¦«Š ˆ fd„|D¦«}t t ||¦«¦«S)aı Selects a move from the action probabilities using either greedy or stochastic policy. The stochastic policy uses the tau parameter to adjust the probabilities. This is based on the temperature parameter in DeepMind's AlphaZero paper. :param action_probabilities: A dictionary containing the action probabilities in the form of {action_index: probability}. :param tau: The temperature parameter. 0 for greedy, >0 for stochastic. :return: The selected move as an integer (index). rcó—g|]}|‘ŒSrrrIs rrKz(adjust_probabilities.<locals>.<listcomp>Os€Ğ9Ğ9Ğ9�a�Ğ9Ğ9Ğ9rcó—g|]}d‘ŒS)rr)rJÚ_s rrKz(adjust_probabilities.<locals>.<listcomp>Qs€Ğ-Ğ-Ğ-�q�Ğ-Ğ-Ğ-rrcó •—g|] }|d‰z z‘Œ S)rr)rJÚprobÚtaus €rrKz(adjust_probabilities.<locals>.<listcomp>Vs"ø€ĞBĞBĞB¨D�d˜q 3™wÑ'ĞBĞBĞBrcó•—g|]}|‰z ‘ŒSrr)rJrYÚadjusted_probs_sums €rrKz(adjust_probabilities.<locals>.<listcomp>Xsø€ĞMĞMĞM°d˜Ğ1Ñ1ĞMĞMĞMr) ÚvaluesÚindexÚmaxÚranger3ÚdictÚziprOÚitemsÚsum) rSrZÚvalsÚmax_idxÚprobsÚmovesÚ probabilitiesÚadjusted_probsÚnormalized_probsr\s ` @rÚadjust_probabilitiesrlDs øø€ğ ˆa‚x€xØ9Ğ9Ğ/×6Ò6Ñ8Ô8Ğ9Ñ9Ô9ˆØ—*’*�S ™YœYÑ'Ô'ˆØ-Ğ-�E¥# d¡)¤)Ñ,Ô,Ğ-Ñ-Ô-ˆØˆˆg‰İ•CĞ,×1Ò1Ñ3Ô3°UÑ;Ô;Ñ<Ô<Ğ<åĞ 4× :Ò :Ñ <Ô <Ğ=Ñ€Eˆ=ØBĞBĞBĞB°MĞBÑBÔB€Nݘ^Ñ,Ô,ĞØMĞMĞMĞM¸nĞMÑMÔMĞİ •�EĞ+Ñ,Ô,Ñ -Ô -Ğ-r)rR)rrrÚstrrrrr$r&r?rBr;rQrarlrrrú<module>rnsğØ € € € ØĞĞĞØ € € € ğ˜3ğğğğğğğğ<˜ğ<ğ<ğ<ğ<ğE ğEğEğEğEğ ğğğğñôğğ($ğ$ğ$ğ 1ğ1ğ1ğ "�T˜#”Yğ"ğ"ğ"ğ"ğ .ğ.¨tğ.Àğ.ğ.ğ.ğ.ğ.ğ.r
7,465
Python
.pyt
36
205.527778
966
0.344192
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,556
search_tree.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/General/__pycache__/search_tree.cpython-311.pyc
§ føfÙãóZ—ddlmZmZddlZddlZddlmZddl m Z Gd„de¦«Z dS)é)ÚABCÚabstractmethodN)ÚGeneralMemoryBuffer)ÚGeneralNetworkcó—eZdZeddejdepddeee e e ffd„¦«Z e dde j de pddejde pdfd „¦«Zed „¦«Zed e pdfd „¦«Zed edejde dedee e e ff d„¦«ZdS)Ú SearchTreeNÚdeviceÚdir_pathÚreturncó—dS)z4 Performs one game of the algorithm N©)ÚselfÚnetworkr r s úP/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/General/search_tree.pyÚ play_one_gamezSearchTree.play_one_game ó €ğ ˆóÚstateÚcurrent_playerÚtaucó—dS)zG Performs MCTS search for given number of simulations. Nr )rrrrr rs rÚsearchzSearchTree.searchs €ğ ˆrcó—dS)z4 Return new instance of this class. Nr )rs rÚmake_fresh_instancezSearchTree.make_fresh_instancerrÚactioncó—dS)z: Steps the root node to the given action. Nr )rrs rÚ step_rootzSearchTree.step_root#rrÚnetÚ num_gamesÚmemorycó—dS)z? Performs self play for given number of games. Nr )rrr rr s rÚ self_playzSearchTree.self_play*s €ğ ˆr)N)Ú__name__Ú __module__Ú __qualname__rÚthr ÚstrÚtupleÚlistÚintrÚnpÚndarrayÚfloatrrrrrr"r rrrr sT€€€€€àğ ğ ¨R¬Yğ ÀÀÈğ ĞX]Ğ^bĞdgĞilĞnqĞ^qÔXrğ ğ ğ ñ„^ğ ğ à$(ğ ğ  R¤Zğ ÀÀÈğ ĞVXÔV_ğ Ø�M˜Tğ ğ ğ ñ„^ğ ğğ ğ ñ„^ğ ğ ğ     tğ ğ ğ ñ„^ğ ğ ğ ˜^ğ °R´Yğ È3ğ ĞXkğ ĞpuØ ˆS�#ˆ ôqğ ğ ğ ñ„^ğ ğ ğ rr) ÚabcrrÚnumpyr+Útorchr&Úmu_alpha_zero.General.memoryrÚmu_alpha_zero.General.networkrrr rrú<module>r3s�ğØ#Ğ#Ğ#Ğ#Ğ#Ğ#Ğ#Ğ#àĞĞĞØĞĞĞà<Ğ<Ğ<Ğ<Ğ<Ğ<Ø8Ğ8Ğ8Ğ8Ğ8Ğ8ğ& ğ& ğ& ğ& ğ& �ñ& ô& ğ& ğ& ğ& r
2,471
Python
.pyt
22
107.636364
660
0.433061
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,557
network.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/General/__pycache__/network.cpython-311.pyc
§ "¨žf¢ ãó–—ddlmZmZddlmZddlmZddlmZddl Z Gd„de¦«Z Gd„d e ¦«Z Gd „d e ¦«Z dS) é)ÚABCÚabstractmethod)Ú MuZeroGame)Ú HookManager)ÚConfigNcó¶—eZdZed„¦«Zeed dedepdfd„¦«¦«Zedede e e e ffd„¦«Z ededdfd „¦«Z dS) ÚGeneralNetworkcó—dS)z9 Returns a fresh instance of the network N©)Úselfs úL/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/General/network.pyÚmake_fresh_instancez"GeneralNetwork.make_fresh_instance ó €ð ˆóNÚconfigÚ hook_managercó—dS)zC Builds the network from the given arguments dict. Nr )Úclsrrs r Úmake_from_configzGeneralNetwork.make_from_configs €ð ˆrÚmuzero_alphazero_configÚreturncó—dS)z? Trains the network for given number of epochs Nr ©r Ú memory_bufferrs r Ú train_netzGeneralNetwork.train_netrrcó—dS)a/ Evaluates the network against the evaluation dataset and reports directly to wandb. :param memory_buffer: The memory buffer where the datasets should be pulled from. :param muzero_alphazero_config: The config for this algorithm. :return: None, reports to wandb. Nr rs r Úeval_netzGeneralNetwork.eval_net!ó €ð ˆr)N)Ú__name__Ú __module__Ú __qualname__rrÚ classmethodrrrÚtupleÚfloatÚlistrrr rr r r sÝ€€€€€Øð ð ñ„^ð ð Øð ð  fð ¸KÐ<OÈ4ð ð ð ñ„^ñ„[ð ð ð Àð È5ÐQVÐX\Ð]bÔXcÐQcÔKdð ð ð ñ„^ð ð ð ¸vð È$ð ð ð ñ„^ð ð ð rr c ó—eZdZed dejdedejejffd„¦«Zed dejdedejejffd„¦«Zedejdejfd„¦«Z edejd ejdejfd „¦«Z d S) ÚGeneralMuZeroNetworkFÚxÚpredictrcó—dS)aa Forward pass for the dynamics network. Should operate only on the hidden state, not the actual game state. Call representation_forward first. :param x: The input hidden state. :param predict: Whether to predict or do pure forward pass. :return: A tuple of the next hidden state and the immediate reward. Nr ©r r(r)s r Údynamics_forwardz%GeneralMuZeroNetwork.dynamics_forward.s €ð ˆrcó—dS)a� Forward pass for the prediction network. As dynamics forward, this should operate only on the hidden state, not the actual game state. Call representation_forward first. :param x: The input hidden state. :param predict: Whether to predict or do pure forward pass. :return: A tuple of the action probability distribution and the value of the current state. Nr r+s r Úprediction_forwardz'GeneralMuZeroNetwork.prediction_forward9s €ð ˆrcó—dS)z· Forward pass for the representation network. This should operate on the actual game state. :param x: The input game state. :return: The hidden state. Nr )r r(s r Úrepresentation_forwardz+GeneralMuZeroNetwork.representation_forwardEs €ð ˆrÚy_hatÚycó—dS)zò Calculate the loss for the action probability distribution. :param y_hat: The predicted action probability distribution. :param y: The MCTS improved action probability distribution. :return: The loss. Nr )r r1r2s r Ú muzero_lossz GeneralMuZeroNetwork.muzero_lossNrrN)F) rr r!rÚthÚTensorÚboolr,r.r0r4r rr r'r',s €€€€€àð ð  "¤)ð °dð ÈÌ ÐSUÔS\ÐG]ð ð ð ñ„^ð ðð  ð   B¤Ið  ¸ð  È"Ì)ÐUWÔU^ÐI_ð  ð  ð  ñ„^ð  ð𠨬 ð °b´ið ð ð ñ„^ð ðð  ¤ð ¨r¬yð ¸R¼Yð ð ð ñ„^ð ð ð rr'c óV—eZdZeddejdedejejffd„¦«ZdS)ÚGeneralAlphZeroNetworkTr(Úmuzerorcó—dS)a0 Predict the action probability distribution and the value of the current state. :param x: The input game state. :param muzero: Whether to predict for MuZero or AlphaZero. :return: A tuple of the action probability distribution and the value of the current state. Nr )r r(r:s r r)zGeneralAlphZeroNetwork.predictZrrN)T)rr r!rr5r6r7r)r rr r9r9YsW€€€€€Øð 𠘜ð ¨Dð ¸R¼YÈÌ Ð<Rð ð ð ñ„^ð ð ð rr9)ÚabcrrÚmu_alpha_zero.General.mz_gamerÚ mu_alpha_zero.Hooks.hook_managerrÚmu_alpha_zero.configrÚtorchr5r r'r9r rr ú<module>rAséðØ#Ð#Ð#Ð#Ð#Ð#Ð#Ð#à4Ð4Ð4Ð4Ð4Ð4à8Ð8Ð8Ð8Ð8Ð8Ø'Ð'Ð'Ð'Ð'Ð'ØÐÐÐð ð ð ð ð �Sñ ô ð ðD* ð* ð* ð* ð* ˜>ñ* ô* ð* ðZ  ð  ð  ð  ð  ˜^ñ  ô  ð  ð  ð  r
5,721
Python
.pyt
51
105.196078
695
0.492506
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,558
mz_game.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/General/__pycache__/mz_game.cpython-311.pyc
§ ¯a�fc ãóN—ddlmZmZddlZddlZddlmZGd„de¦«Z dS)é)ÚABCÚabstractmethodN)Úadjust_probabilitiesc óú—eZdZededepddejpejee ffd„¦«Z edejpejfd„¦«Z edefd„¦«Z edefd„¦«Z edepdde pdfd „¦«Zed „¦«Zed „¦«Zeddedepdd edejpejee ffd„¦«Zededefd„¦«Zedejdefd„¦«Zedejfd„¦«Zedejdefd„¦«ZdS)Ú MuZeroGameÚactionÚplayerNÚreturncó—dS)a„ Given a game state and an action return the next state. Currently this implementation only supports one player, so supply None. :param state: The current state of the game. :param action: The action to be taken. :param player: The player taking the action. :return: The next state, the reward and a boolean indicating if the game is done. N©)Úselfrr s úL/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/General/mz_game.pyÚget_next_statezMuZeroGame.get_next_state s €ğ ˆócó—dS)z@ Resets the game and returns the initial board. Nr ©r s rÚresetzMuZeroGame.resetó €ğ ˆrcó—dS)z* Returns the noop action. Nr rs rÚget_noopzMuZeroGame.get_nooprrcó—dS)zT Returns the number of actions possible in the current environment. Nr rs rÚget_num_actionszMuZeroGame.get_num_actions$rrcó—dS)zã Returns true if this environment is done, false otherwise. If this environment doesn't have a clear terminal state, return None. Currently this implementation only supports one player, so supply None. Nr )r r s rÚ game_resultzMuZeroGame.game_result+ó €ğ ˆrcó—dS)z= Return fresh instance of this game manager. Nr rs rÚmake_fresh_instancezMuZeroGame.make_fresh_instance3rrcó—dS)z- Render the GUI of the game. Nr rs rÚrenderzMuZeroGame.render:rréÚ frame_skipcó—dS)zj Wrapper for the frame skip method. This method should be used instead of get_next_state. Nr )r rr r!s rÚframe_skip_stepzMuZeroGame.frame_skip_stepArrÚ action_probsÚtaucó¢—t||¬¦«}t| ¦«�\}}tj ||¬¦«S)z? Samples a move from the action probabilities. )r%)Úp)rÚzipÚitemsÚnpÚrandomÚchoice)r$r%ÚmovesÚprobss rÚ select_movezMuZeroGame.select_moveIsK€õ ,¨L¸cĞBÑBÔBˆ ݘL×.Ò.Ñ0Ô0Ğ1‰ ˆˆuİŒy×Ò ¨ĞÑ/Ô/Ğ/rÚstatecó—dS)zÿ Calculates and returns the invalid actions in the given state. :return: A numpy array containing the invalid actions in the current state. In this array actions marked as valid will be one, while invalid actions will be 0.Nr ©r r0r s rÚget_invalid_actionszMuZeroGame.get_invalid_actionsRó €ğ ˆrc ó—dS)z] Returns a random valid action in the given state and optionally the player. Nr )r r0Úkwargss rÚget_random_valid_actionz"MuZeroGame.get_random_valid_action[rrcó—dS)aV Returns a state with information specific for the provided player. This should only be done when a part of the actual observation is player specific (for example the player's cards in a card game). In other cases this method should return the provided state as is (for example in chess or other board games). Nr r2s rÚget_state_for_passive_playerz'MuZeroGame.get_state_for_passive_playerbr4r)r )Ú__name__Ú __module__Ú __qualname__rÚintr*ÚndarrayÚthÚTensorÚboolrrrrrrrr#Ú staticmethodÚdictÚfloatr/r3r7r9r rrrrsY€€€€€àğ   Sğ  °#°+¸ğ  Ø ŒJĞ #˜"œ) S¨$ğC0ğ  ğ  ğ  ñ„^ğ  ğğ �r”zĞ. R¤Yğ ğ ğ ñ„^ğ ğ ğ ˜#ğ ğ ğ ñ„^ğ ğ ğ  ğ ğ ğ ñ„^ğ ğ ğ  # +¨ğ °$°,¸$ğ ğ ğ ñ„^ğ ğğ ğ ñ„^ğ ğ ğ ğ ñ„^ğ ğ ğ ğ  cğ °3°;¸$ğ ÈCğ Ø ŒJĞ #˜"œ) S¨$ğY0ğ ğ ğ ñ„^ğ ğğ0 $ğ0¨Uğ0ğ0ğ0ñ„\ğ0ğ𠨬ğ ¸Sğ ğ ğ ñ„^ğ ğğ ¨R¬Zğ ğ ğ ñ„^ğ ğ ğ °"´*ğ Àcğ ğ ğ ñ„^ğ ğ ğ rr) ÚabcrrÚnumpyr*Útorchr?Úmu_alpha_zero.General.utilsrrr rrú<module>rIs…ğØ#Ğ#Ğ#Ğ#Ğ#Ğ#Ğ#Ğ#àĞĞĞØĞĞĞØ<Ğ<Ğ<Ğ<Ğ<Ğ<ğa ğa ğa ğa ğa �ña ôa ğa ğa ğa r
5,517
Python
.pyt
44
118.363636
799
0.47004
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,559
arena.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/General/__pycache__/arena.cpython-311.pyc
§ Ái¡f ãóz—ddlZddlmZmZddlmZddlZddlmZm Z m Z ddl m Z ddl mZGd„de¦«ZdS) éN)ÚabstractmethodÚABC)ÚType)ÚPlayerÚ NetPlayerÚ RandomPlayer)Ú CheckPointer)Ú SharedStoragecóŒ—eZdZe ddeedeededededef d „¦«Z dde de d e deded e d e dedefd „Z dS)Ú GeneralArenaFéÚplayer1Úplayer2Únum_games_to_playÚnum_mc_simulationsÚ one_playerÚ start_playercó—dS)N©)Úselfrrrrrrs úJ/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/General/arena.pyÚpitzGeneralArena.pit s €ğ ˆóÚ player_2_2Úshared_storageÚ checkpointerc óø—tjdd¬¦«t|d¦«r|jn|j} |j ¦«|j ¦«d} t| j¦«D�]{} |  ¦«} | �|  ¦«rtj d¦«ŒB|j  | ¦«|j  | ¦«¦«| |||||| ¬¦«\}}}tj||dœ¦«d „}||||z¦«z | jkrU| | ¦«| d z } | |j|j| ¦«| j| | ¦«| d ¦«| |||||| ¬¦«\}}}tj||d œ¦«�Œ}dS) NÚMZz Arena Pit)ÚprojectÚnameÚ muzero_configré)rr)Ú wins_p1_vs_p2Ú wins_p2_vs_p1có—|dkr|ndS)Nrr r)Úxs rú<lambda>z-GeneralArena.continuous_pit.<locals>.<lambda>'s€ a¨1¢f f  °!€rr T)Úwins_p1_vs_randomÚwins_random_vs_p1)ÚwandbÚinitÚhasattrr!Úalpha_zero_configÚnetworkÚevalÚrangeÚnum_worker_itersÚget_experimental_network_paramsÚget_was_pittedÚtimeÚsleepÚload_state_dictÚget_stable_network_paramsrÚlogÚupdate_thresholdÚset_stable_network_paramsÚsave_checkpointÚ get_optimizerÚlrÚset_was_pitted)rrrrrrrrrrÚconfÚ accept_numÚiter_Ú tested_paramsÚ results_p1Ú results_p2Ú_Únot_zeros rÚcontinuous_pitzGeneralArena.continuous_pits&€õ Œ ˜4 kĞ2Ñ2Ô2Ğ2İ%,¨T°?Ñ%CÔ%CĞ_ˆtÔ!Ğ!ÈÔI_ˆØŒ×ÒÑÔĞØŒ×ÒÑÔĞØˆ ݘ4Ô0Ñ1Ô1ğ Zñ ZˆEØ*×JÒJÑLÔLˆMØĞ$¨×(EÒ(EÑ(GÔ(GĞ$İ” ˜1‘ ” � ØØ ŒO× +Ò +¨MÑ :Ô :Ğ :Ø ŒO× +Ò +¨N×,TÒ,TÑ,VÔ,VÑ WÔ WĞ WØ(,¯ª°¸'ĞCTĞVhØ<FĞUağ)1ñ)cô)cÑ %ˆJ˜  Aå ŒI¨ ÀZĞPĞPÑ QÔ QĞ QØ3Ğ3ˆHؘH˜H Z°*Ñ%<Ñ=Ô=Ñ=ÀÔAVÒVĞVØ×8Ò8¸ÑGÔGĞGؘa‘� Ø×,Ò,¨W¬_¸g¼oÈ~×OkÒOkÑOmÔOmĞosÔovØ-7¸ñ?ô?ğ?à × )Ò )¨$Ñ /Ô /Ğ /à(,¯ª°¸*ĞFWĞYkØ<FĞUağ)1ñ)cô)cÑ %ˆJ˜  Aå ŒI¨JÈZĞXĞXÑ YÔ YĞ YÑ Yğ) Zğ ZrN)Fr )Ú__name__Ú __module__Ú __qualname__rrrÚintÚboolrrrr r rGrrrr r sñ€€€€€ØàPUØ !ğ ğ ˜4 œ<ğ °$°v´,ğ Ø"ğ Ø8;ğ ØIMğ àğ ğ ğ ñ„^ğ ğFGğ ZğZ iğZ¸)ğZĞQ]ğZĞruğZØ+.ğZà'4ğZğ&2ğZğ$(ğ Zğ@Cğ ZğZğZğZğZğZrr )r4ÚabcrrÚtypingrr*Ú%mu_alpha_zero.AlphaZero.Arena.playersrrrÚ$mu_alpha_zero.AlphaZero.checkpointerr Ú$mu_alpha_zero.shared_storage_managerr r rrrú<module>rRsÁğØ € € € Ø#Ğ#Ğ#Ğ#Ğ#Ğ#Ğ#Ğ#ØĞĞĞĞĞà € € € àQĞQĞQĞQĞQĞQĞQĞQĞQĞQØ=Ğ=Ğ=Ğ=Ğ=Ğ=Ø>Ğ>Ğ>Ğ>Ğ>Ğ>ğ%Zğ%Zğ%Zğ%Zğ%Z�3ñ%Zô%Zğ%Zğ%Zğ%Zr
4,033
Python
.pyt
31
128.967742
855
0.394954
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,560
checkpointer.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/__pycache__/checkpointer.cpython-311.pyc
§ -*¢fêãól—ddlZddlZddlZddlZddlZddlmZddlm Z ddl m Z Gd„d¦«Z dS)éN)ÚDotDict)Úfind_project_root)ÚConfigcóˆ—eZdZd$dedzdeddfd„Zd%d„Z d&dejj d ejj d ej d e d e d e deddfd„Zdejj deddfd„Zdejj deddfd„Zdedefd„Zde defd„Zd%d„Zd%d„Zd%d„Zde fd„Zde fd„Zdefd„Zdefd„Zdefd„Zd„Zdeddfd „Zd!„Zd"ee fd#„Z dS)'Ú CheckPointerTÚcheckpoint_dirNÚverboseÚreturncó¼—||_| ¦«| ¦«|_d|_||_t j|j¦«dS)NÚ improved_net_) Ú_CheckPointer__checkpoint_dirÚmake_dirÚinitialize_checkpoint_numÚ_CheckPointer__checkpoint_numÚ_CheckPointer__name_prefixr ÚatexitÚregisterÚcleanup)Úselfrr s úS/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/AlphaZero/checkpointer.pyÚ__init__zCheckPointer.__init__sR€Ø .ˆÔØ � Š ‰ŒˆØ $× >Ò >Ñ @Ô @ˆÔØ,ˆÔ؈Œ İŒ˜œ Ñ%Ô%Ğ%Ğ%Ğ%ócó®—|j�tj|jd¬¦«dSt¦«}|›d�}||_tj|d¬¦«dS)NT©Úexist_okz/Checkpoints/NetVersions)r ÚosÚmakedirsr)rÚroot_dirrs rrzCheckPointer.make_dirsd€Ø Ô Ğ ,İ ŒK˜Ô-¸Ğ =Ñ =Ô =Ğ =Ø ˆFİ$Ñ&Ô&ˆØ$Ğ>Ğ>Ğ>ˆØ .ˆÔİ Œ �N¨TĞ2Ñ2Ô2Ğ2Ğ2Ğ2rÚnetÚopponentÚ optimizerÚlrÚ iterationÚmu_alpha_zero_configÚnamec ó¾—|€|jt|j¦«z}|j›d|›d�}t j| ¦«t|tjj ¦«r| ¦«n||||  ¦«| ¦«dœ|¦«|  d|›d|›d�¦«|xjdz c_dS)Nú/ú.pth)rr!r"r#ÚargsÚopponent_state_dictzSaved checkpoint to z at iteration ú.é) rÚstrrr ÚthÚsaveÚ state_dictÚ isinstanceÚoptimÚ OptimizerÚto_dictÚ print_verbose) rrr r!r"r#r$r%Úcheckpoint_paths rÚsave_checkpointzCheckPointer.save_checkpointsü€ğ ˆ<ØÔ%­¨DÔ,AÑ(BÔ(BÑBˆDà!Ô2Ğ?Ğ?°TĞ?Ğ?Ğ?ˆİ ŒØ—>’>Ñ#Ô#İ3=¸iÍÌÔI[Ñ3\Ô3\Ğk˜×-Ò-Ñ/Ô/Ğ/ĞbkØØ"Ø(×0Ò0Ñ2Ô2Ø#+×#6Ò#6Ñ#8Ô#8ğ  ğ ğ ñ ô ğ ğ ×ÒĞ]°/Ğ]Ğ]ĞQZĞ]Ğ]Ğ]Ñ^Ô^Ğ^Ø ĞÔ Ñ"ĞÔĞĞrcó˜—|j›d|›d�}tj| ¦«|¦«| d¦«dS)Nr'r(zSaved state dict checkpoint.)r r.r/r0r5©rrr%r6s rÚsave_state_dict_checkpointz'CheckPointer.save_state_dict_checkpoint1sR€Ø!Ô2Ğ?Ğ?°TĞ?Ğ?Ğ?ˆİ Œ�—’Ñ Ô  /Ñ2Ô2Ğ2Ø ×ÒĞ:Ñ;Ô;Ğ;Ğ;Ğ;rcó˜—|j›d|›d�}| tj|¦«¦«| d¦«dS)Nr'r(zLoaded state dict checkpoint.)r Úload_state_dictr.Úloadr5r9s rÚload_state_dict_checkpointz'CheckPointer.load_state_dict_checkpoint6sT€Ø!Ô2Ğ?Ğ?°TĞ?Ğ?Ğ?ˆØ ×Ò�BœG OÑ4Ô4Ñ5Ô5Ğ5Ø ×ÒĞ;Ñ<Ô<Ğ<Ğ<Ğ<rr6có0—tjdtjd<tj|¦«}| d|›d|d›d�¦«d|vr |d}nd}|d|d ||d t |d ¦«|d fS) Nzmu_alpha_zero.mem_bufferÚ mem_bufferzRestoring checkpoint z made at iteration r#r+Úmemoryrr!r"r)r*)ÚsysÚmodulesr.r=r5r)rr6Ú checkpointrAs rÚload_checkpoint_from_pathz&CheckPointer.load_checkpoint_from_path;s¬€İ$'¤KĞ0JÔ$K�Œ �LÑ!İ”W˜_Ñ-Ô-ˆ Ø ×ÒĞq°?ĞqĞqĞWaĞbmÔWnĞqĞqĞqÑrÔrĞrØ �zĞ !Ğ !Ø Ô)ˆFˆFàˆFؘ%Ô  *¨[Ô"9¸6À:ÈdÔCSİ �J˜vÔ&Ñ 'Ô '¨Ğ4IÔ)JğKğ KrÚcheckpoint_numcóT—|j›d|j›|›d�}| |¦«S)Nr'r()r rrE)rrFr6s rÚload_checkpoint_from_numz%CheckPointer.load_checkpoint_from_numFs7€Ø!Ô2Ğ]Ğ]°TÔ5GĞ]ÈĞ]Ğ]Ğ]ˆØ×-Ò-¨oÑ>Ô>Ğ>rcóR—td¦«td¦«}|dkrtd¦«dStj|j¦«D] }tj|j›d|›�¦«Œ!tdt tj|j¦«¦«›d�¦«dS)NzClearing all checkpoints.zAre you sure?? (y/n): ÚyzAborted.r'zCleared z saved checkpoints (all).)ÚprintÚinputrÚlistdirr ÚremoveÚlen)rÚanswerÚ file_names rÚclear_checkpointszCheckPointer.clear_checkpointsJs²€õ Ğ)Ñ*Ô*Ğ*İĞ/Ñ0Ô0ˆØ �SŠ=ˆ=İ �*Ñ Ô Ğ Ø ˆFİœ DÔ$9Ñ:Ô:ğ >ğ >ˆIİ ŒI˜Ô.Ğ<Ğ<°Ğ<Ğ<Ñ =Ô =Ğ =Ğ =İ ĞZ��RœZ¨Ô(=Ñ>Ô>Ñ?Ô?ĞZĞZĞZÑ[Ô[Ğ[Ğ[Ğ[rcóĞ—tj¦«}tj|j›d�d¬¦«|j›d|›d�}t j| ¦«|¦«dS)Nz/TempTrú/Temp/temp_net_r()rÚgetpidrr r.r/r0©rrÚ process_pidr6s rÚsave_temp_net_checkpointz%CheckPointer.save_temp_net_checkpointVsi€İ”i‘k”kˆ İ Œ �tÔ,Ğ3Ğ3Ğ3¸dĞCÑCÔCĞCØ!Ô2ĞTĞTÀ;ĞTĞTĞTˆİ Œ�—’Ñ Ô  /Ñ2Ô2Ğ2Ğ2Ğ2rcó”—tj¦«}|j›d|›d�}| t j|¦«¦«dS)NrTr()rrUr r<r.r=rVs rÚload_temp_net_checkpointz%CheckPointer.load_temp_net_checkpoint\sJ€İ”i‘k”kˆ Ø!Ô2ĞTĞTÀ;ĞTĞTĞTˆØ ×Ò�BœG OÑ4Ô4Ñ5Ô5Ğ5Ğ5Ğ5rcób—td„tj|j¦«D¦«¦«S)Ncó<—g|]}| d¦«¯|‘ŒS)r()Úendswith)Ú.0Úxs rú <listcomp>z:CheckPointer.initialize_checkpoint_num.<locals>.<listcomp>bs)€ĞWĞWĞW˜!ÀAÇJÂJÈvÑDVÔDVĞW�AĞWĞWĞWr)rOrrMr ©rs rrz&CheckPointer.initialize_checkpoint_numas,€İĞWĞW�rœz¨$Ô*?Ñ@Ô@ĞWÑWÔWÑXÔXĞXrcób—td„tj|j¦«D¦«¦«S)Ncó�—g|]C}t| d¦«d d¦«d¦«‘ŒDS)Ú_ér+r)ÚintÚsplit)r^rQs rr`z;CheckPointer.get_highest_checkpoint_num.<locals>.<listcomp>esD€ĞrĞrĞrÀ9•C˜ Ÿš¨Ñ,Ô,¨QÔ/×5Ò5°cÑ:Ô:¸1Ô=Ñ>Ô>ĞrĞrĞrr)ÚmaxrrMr ras rÚget_highest_checkpoint_numz'CheckPointer.get_highest_checkpoint_numds/€İĞrĞrÕPRÔPZĞ[_Ô[pÑPqÔPqĞrÑrÔrÑsÔsĞsrcó—|j›d�S)Nz/Temp/temp_net.pth©r ras rÚ get_temp_pathzCheckPointer.get_temp_pathgs€ØÔ'Ğ;Ğ;Ğ;Ğ;rcó—|jS©Nrkras rÚget_checkpoint_dirzCheckPointer.get_checkpoint_dirjs €ØÔ$Ğ$rcó�‡‡—ˆˆfd„tj‰j¦«D¦«}| d„¬¦«|dS)Ncób•—g|]+}‰|v¯tj ‰j|¦«‘Œ,S©)rÚpathÚjoinr )r^r_r%rs €€rr`z6CheckPointer.get_latest_name_match.<locals>.<listcomp>ns8ø€ĞwĞwĞwÀ1ĞmqĞuvĞmvĞmv�œŸ š  TÔ%:¸AÑ>Ô>ĞmvĞmvĞmvrcó@—tj |¦«Srn)rrsÚgetctime)r_s rú<lambda>z4CheckPointer.get_latest_name_match.<locals>.<lambda>os€­¬×(8Ò(8¸Ñ(;Ô(;€r)Úkeyéÿÿÿÿ)rrMr Úsort)rr%Ú name_matchess`` rÚget_latest_name_matchz"CheckPointer.get_latest_name_matchmsTøø€ØwĞwĞwĞwĞwÍÌ ĞSWÔShÑHiÔHiĞwÑwÔwˆ Ø×ÒĞ;Ğ;ĞÑ<Ô<Ğ<ؘBÔĞrcó—|jSrn)rras rÚget_name_prefixzCheckPointer.get_name_prefixrs €ØÔ!Ğ!rÚmsgcó6—|jrt|¦«dSdSrn)r rK)rrs rr5zCheckPointer.print_verboseus%€Ø Œ<ğ İ �#‰JŒJˆJˆJˆJğ ğ rcóL—ddl}| |j›d�d¬¦«dS)Nrz/Temp/T)Ú ignore_errors)ÚshutilÚrmtreer )rrƒs rrzCheckPointer.cleanupys3€Øˆ ˆ ˆ Ø� Š ˜Ô.Ğ6Ğ6Ğ6Àdˆ ÑKÔKĞKĞKĞKrÚlossescó’—t|j›d�d¦«5}tj||¦«ddd¦«dS#1swxYwYdS)Nz/training_losses.pklÚwb)Úopenr ÚpickleÚdump)rr…Úfs rÚ save_losseszCheckPointer.save_losses}s‘€İ �TÔ*Ğ@Ğ@Ğ@À$Ñ GÔ Gğ #È1İ ŒK˜ Ñ "Ô "Ğ "ğ #ğ #ğ #ñ #ô #ğ #ğ #ğ #ğ #ğ #ğ #ğ #øøøğ #ğ #ğ #ğ #ğ #ğ #s™<¼AÁA)T)r Nrn)!Ú__name__Ú __module__Ú __qualname__r-Úboolrrr.ÚnnÚModuler2Úfloatrfrr7r:r>ÚtuplerErHrRrXrZrrirlror|r~r5rÚlistrŒrrrrrr sš€€€€€ğ&ğ& s¨T¡zğ&¸Dğ&ÈDğ&ğ&ğ&ğ&ğ3ğ3ğ3ğ3ğSWğ#ğ# 2¤5¤<ğ#¸2¼5¼<ğ#ĞTVÔT\ğ#Ø!ğ#à#&ğ#à>Dğ#àLOğ#à[_ğ#ğ#ğ#ğ#ğ$<¨b¬e¬lğ<À#ğ<È$ğ<ğ<ğ<ğ<ğ =¨b¬e¬lğ=À#ğ=È$ğ=ğ=ğ=ğ=ğ K¸ğ KÀğ Kğ Kğ Kğ Kğ?°sğ?¸uğ?ğ?ğ?ğ?ğ \ğ \ğ \ğ \ğ3ğ3ğ3ğ3ğ 6ğ6ğ6ğ6ğ Y¨3ğYğYğYğYğt¨Cğtğtğtğtğ<˜sğ<ğ<ğ<ğ<ğ% Cğ%ğ%ğ%ğ%ğ ¨#ğ ğ ğ ğ ğ "ğ"ğ"ğ ğ¨ğğğğğLğLğLğ# $ u¤+ğ#ğ#ğ#ğ#ğ#ğ#rr) rrr‰rBÚtorchr.Úmu_alpha_zero.AlphaZero.utilsrÚmu_alpha_zero.General.utilsrÚmu_alpha_zero.configrrrrrrú<module>ršs§ğØ € € € Ø € € € Ø € € € Ø € € € àĞĞĞà1Ğ1Ğ1Ğ1Ğ1Ğ1Ø9Ğ9Ğ9Ğ9Ğ9Ğ9Ø'Ğ'Ğ'Ğ'Ğ'Ğ'ğr#ğr#ğr#ğr#ğr#ñr#ôr#ğr#ğr#ğr#r
11,468
Python
.pyt
35
326.571429
2,143
0.360679
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,561
utils.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/__pycache__/utils.cpython-311.pyc
§ weŠfº*ã ó4—ddlZddlZddlZddlZddlZddlmZddl m Z ddl m Z ddlmZddlmZmZGd„de¦«Zd ed efd „Zd ejd efd„Zd ejdefd„Zd efd„Zd ejfd„Zdejdejd ejfd„Zdejd ejfd„Zdefd„Z ded efd„Z!deded efd„Z"ded e#d!e#d"e#d#ef d$„Z$d%ed e fd&„Z%d6d'ed e&e ej'j(effd(„Z)d)e#dedzfd*„Z*d+„Z+d7d-ed.e,fd/„Z-d8d0e#d1edzfd2„Z.d3ed4edefd5„Z/dS)9éN)Ú get_ipython)Ú AlphaZeroNet)ÚSAMPLE_AZ_ARGS)Ú MemBuffer)ÚConfigÚAlphaZeroConfigcó—eZdZd„Zd„ZdS)ÚDotDictcó—||S©N©)ÚselfÚnames úL/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/AlphaZero/utils.pyÚ __getattr__zDotDict.__getattr__s €Ø�DŒzĞócó—|||<dSr r )rrÚvalues rÚ __setattr__zDotDict.__setattr__s€ØˆˆT‰ ˆ ˆ rN)Ú__name__Ú __module__Ú __qualname__rrr rrr r s2€€€€€ğğğğğğğğrr Úgame_experienceÚreturncó&—g}|D�]Š\}}}}tjd„| ¦«D¦«¦«}| |||f¦«t ddgddg¦«D�]$\}}tj| ¦«|¬¦«} tj| ¦« ||¦«|¬¦« ¦«} | | | |f¦«~ ~ tj | ¦«|¬¦«} tj | ¦« ||¦«|¬¦« ¦«} | | | |f¦«�Œ&�ŒŒ|S)Ncó—g|]}|‘ŒSr r )Ú.0Úxs rú <listcomp>z6augment_experience_with_symmetries.<locals>.<listcomp>s€Ğ.Ğ.Ğ.˜Q�qĞ.Ğ.Ğ.rréé©Úk©Úaxis) ÚnpÚarrayÚvaluesÚappendÚzipÚrot90ÚcopyÚreshapeÚflattenÚflip) rÚ board_sizeÚgame_experience_ÚstateÚpiÚvÚ_r%r#Ústate_Úpi_s rÚ"augment_experience_with_symmetriesr8sw€ØĞØ*ğ 6ñ 6‰ˆˆr�1�aİ ŒXĞ.Ğ. "§)¢)¡+¤+Ğ.Ñ.Ô.Ñ /Ô /ˆØ×Ò ¨¨A Ñ/Ô/Ğ/ݘA˜q˜6 A q 6Ñ*Ô*ğ 6ñ 6‰GˆD�!İ”X˜eŸjšj™lœl¨aĞ0Ñ0Ô0ˆFİ”(˜2Ÿ7š7™9œ9×,Ò,¨Z¸ÑDÔDÈĞJÑJÔJ×RÒRÑTÔTˆCØ × #Ò # V¨S°!Ğ$4Ñ 5Ô 5Ğ 5ؘݔW˜UŸZšZ™\œ\°Ğ5Ñ5Ô5ˆFİ”'˜"Ÿ'š'™)œ)×+Ò+¨J¸ ÑCÔCÈ$ĞOÑOÔO×WÒWÑYÔYˆCØ × #Ò # V¨S°!Ğ$4Ñ 5Ô 5Ğ 5Ñ 5ñ 6ğ Ğrr2r#có~—t|jd¦«D]!}tj|||¬¦«||<Œ"|S)Nrr")ÚrangeÚshaper&r+)r2r#Údims rÚ rotate_stackr=*sB€İ�U”[ ”^Ñ$Ô$ğ/ğ/ˆİ”X˜e Cœj¨AĞ.Ñ.Ô.ˆˆc‰ ˆ Ø €Lrr%có~—t|jd¦«D]!}tj|||¬¦«||<Œ"|S)Nrr$)r:r;r&r/)r2r%r<s rÚ flip_stackr?0sB€İ�U”[ ”^Ñ$Ô$ğ4ğ4ˆİ”W˜U 3œZ¨dĞ3Ñ3Ô3ˆˆc‰ ˆ Ø €Lrcór—g}|D]1\}}}}}t|¦«}| |||||f¦«Œ2|Sr )Úmake_channels_from_singler))rÚ experiencer2r3r4Úcurrent_playerÚmoves rÚ make_channelsrE6sX€Ø€JØ.=ğ@ğ@Ñ*ˆˆr�1�n dİ)¨%Ñ0Ô0ˆØ×Ò˜5 " a¨¸Ğ>Ñ?Ô?Ğ?Ğ?à ĞrcóÒ—tj|dkdd¦«}tj|dkdd¦«}tj|dkdd¦«}tj||||gd¬¦«S)Nr réÿÿÿÿr$)r&ÚwhereÚstack)r2Úplayer_one_stateÚplayer_minus_one_stateÚ empty_states rrArA?sj€İ”x ¨¢ ¨A¨qÑ1Ô1ĞİœX e¨r¢k°1°aÑ8Ô8Ğİ”(˜5 Aš: q¨!Ñ,Ô,€Kİ Œ8�UĞ,Ğ.DÀkĞRĞYZĞ [Ñ [Ô [Ğ[rÚ probabilitiesÚmaskcóŒ—d}| d|dz¦«| d|dz¦«z}| ¦«}|dkr=|d|›�z }tj|jdtj|j¦«z ¦«}n||z }t |¦«dkrt|tdd¦«¬ ¦«|S) NÚrGérzISum of valid probabilities is 0. Creating a uniform probability... Mask: gğ?zmasking_message.txtÚw)Úfile) r-Úsumr&Úfullr;ÚprodÚlenÚprintÚopen)rMrNr0Úto_printÚvalidsÚ valids_sums rÚmask_invalid_actionsr]Fsʀ؀Hğ× "Ò " 2 z°Q¡Ñ 7Ô 7¸$¿,º,ÀrÈ:ĞYZÉ?Ñ:[Ô:[Ñ [€FØ—’‘”€JØ�Q‚€ğ ĞhĞbfĞhĞhÑhˆİ”˜œ s­R¬W°V´\Ñ-BÔ-BÑ'BÑCÔCˆˆà˜*Ñ$ˆå ˆ8�}„}�qÒĞİ ˆh�TĞ"7¸Ñ=Ô=Ğ>Ñ>Ô>Ğ>Ø €MrÚstatescóĞ—g}|D]�}| ¦« ¦« ¦«}tj|dkd|¦«}tj|dkd|¦«}tj|dkd|¦«}| |¦«Œ�t jtj|¦«t j ¬¦«  d¦«S)Nréûÿÿÿr ©Údtype) ÚdetachÚcpuÚnumpyr&rHr)ÚthÚtensorr'Úfloat32Úsqueeze)r^Úmasksr2Únp_staterNs rÚmask_invalid_actions_batchrlZsÂ€Ø €EØğğˆØ—<’<‘>”>×%Ò%Ñ'Ô'×-Ò-Ñ/Ô/ˆİŒx˜ Aš  r¨8Ñ4Ô4ˆİŒx˜ š  1 dÑ+Ô+ˆİŒx˜ š  A tÑ,Ô,ˆØ � Š �TÑÔĞĞå Œ9•R”X˜e‘_”_­B¬JĞ 7Ñ 7Ô 7× ?Ò ?ÀÑ BÔ BĞBrÚargscóL—gd¢}|D]}||vrtd|›d|›d�¦«‚ŒdS)N)Únum_net_channelsÚnum_net_in_channelsÚ net_dropoutÚnet_action_sizeÚnum_simulationsÚself_play_gamesÚ num_itersÚepochsÚlrÚmax_buffer_sizeÚ num_pit_gamesÚrandom_pit_freqr0Ú batch_sizeÚtauÚcÚcheckpoint_dirÚupdate_thresholdz Missing key z? in args dict. Please supply all required keys. Required keys: ú.)ÚKeyError)rmÚ required_keysÚkeys rÚ check_argsr„fst€ğvğvğv€Mğğ?ğ?ˆØ �dˆ?ˆ?İğ>¨#ğ>ğ>Ø-:ğ>ğ>ğ>ñ?ô?ğ ?ğ ğ?ğ?rÚnc ó�‡—t|‰¦«|dzdzzdtˆfd„t‰|¦«D¦«¦«zzS)NrQécó0•—g|]}t|‰¦«‘ŒSr )Úget_num_horizontal_conv_slides)rrr#s €rrz1calculate_board_win_positions.<locals>.<listcomp>ss$ø€ĞCĞCĞC°!Õ '¨¨1Ñ -Ô -ĞCĞCĞCr)r‰rTr:)r…r#s `rÚcalculate_board_win_positionsrŠqsaø€İ )¨!¨QÑ /Ô /°1°q±5¸1±9Ñ =ÀÅCØCĞCĞCĞCµu¸QÀ±{´{ĞCÑCÔCñEEôEEñAEñ EğErr0Ú kernel_sizecó—||z dzS)Nr r )r0r‹s rr‰r‰vs€Ø ˜Ñ $¨Ñ )Ğ)rÚn_trialsÚ init_net_pathÚstorageÚ study_nameÚconfigc󦇇‡‡ ‡ —ˆˆ ˆˆˆ fd„}ddlmŠ ddlmŠ|Š d‰ _t j||¬¦«}| ||¬¦«dS) aœ Performs a hyperparameter search using optuna. This method is meant to be called using the start_jobs.py script. For this method to work, a mysql database must be running on the storage address and an optuna study with the given name and the 'maximize' direction must exist. :param n_trials: num of trials to run the search for. :param init_net_path: The path to the initial network to use for all trials. :param storage: The mysql storage string. Specifies what database to use. :param study_name: Name of the study to use. :param game: The game instance to use. :param config: The config to use for the search. :return: cóX•—| ddd¦«}| ddd¦«}| ddd ¦«}| d d d d ¬¦«}| ddd¦«}| dd d¦«}| ddd¦«}| dddd ¬¦«}|‰_|‰_|‰_|‰_|‰_|‰_|‰_d‰_ |‰_ ‰ ‰  ¦«‰¦«} ‰   ‰‰‰| ¦«} td|j›d�¦«|  ¦«|  ¦«} | | |j¦«td|j›d| ›d�¦«~ | S)NÚnum_mc_simulationsé<i@Únum_self_play_gamesé2éÈÚ num_epochsédi�rwg-Cëâ6?g{®Gáz„?T)ÚlogÚtempgà?gø?Ú arena_tempÚcpuctéÚ log_epsilong»½×Ùß|Û=gH¯¼šò×z>zTrial z started.z finished with win freq r€)Ú suggest_intÚ suggest_floatrsrtrvrwr|r}Ú arena_taurur Úmake_fresh_instanceÚfrom_state_dictrXÚnumberÚtrainÚget_arena_win_frequencies_meanÚreport)Útrialr”r–r™rwrœr�r�r Ú search_treeÚtrainerÚwin_freqÚ McSearchTreeÚTrainerÚgamer�Ú trial_configs €€€€€rÚ objectivez-az_optuna_parameter_search.<locals>.objective‰sÁø€Ø"×.Ò.Ğ/CÀRÈÑNÔNĞØ#×/Ò/Ğ0EÀrÈ3ÑOÔOĞØ×&Ò& |°S¸#Ñ>Ô>ˆ Ø × Ò   t¨T°tĞ Ñ <Ô <ˆØ×"Ò" 6¨3°Ñ4Ô4ˆØ×(Ò(¨°t¸SÑAÔAˆ Ø×#Ò# G¨S°!Ñ4Ô4ˆØ×)Ò)¨-¸ÀÈ$Ğ)ÑOÔOˆ à'9ˆ Ô$Ø':ˆ Ô$Ø(ˆ ÔØˆ ŒØˆ ÔØˆ ŒØ!+ˆ ÔØ!"ˆ ÔØ#.ˆ Ô Ø"�l 4×#;Ò#;Ñ#=Ô#=¸|ÑLÔLˆ Ø×)Ò)¨-¸ÀtÈ[ÑYÔYˆİ Ğ.�u”|Ğ.Ğ.Ğ.Ñ/Ô/Ğ/Ø� Š ‰ŒˆØ×9Ò9Ñ;Ô;ˆØ � Š �X˜uœ|Ñ,Ô,Ğ,İ ĞH�u”|ĞHĞH¸XĞHĞHĞHÑIÔIĞIØ Øˆrr)r¯)r®F)r�r�)r�N)Úmu_alpha_zero.trainerr¯Ú+mu_alpha_zero.AlphaZero.MCTS.az_search_treer®Ú show_tqdmÚoptunaÚ load_studyÚoptimize) r�r�r�r�r°r‘r²Ústudyr®r¯r±s ` ` @@@rÚaz_optuna_parameter_searchrºzs˜øøøøø€ğğğğğğğğğğ:.Ğ-Ğ-Ğ-Ğ-Ğ-ØHĞHĞHĞHĞHĞHØ€LØ"€LÔİ Ô ¨¸WĞ EÑ EÔ E€EØ ‡N‚N�9 x€NÑ0Ô0Ğ0Ğ0Ğ0rÚ muzero_configcó„—t|j|j|j|j|j¦«}| |¦«Sr )rrprorqrrÚaz_net_linear_input_sizeÚto)r»ÚdeviceÚnetworks rÚbuild_net_from_configrÁ®sB€İ˜=Ô<¸mÔ>\Ø(Ô4°mÔ6SØ(ÔAñCôC€Gğ �:Š:�fÑ Ô ĞrÚmuzero_alphazero_configcóÖ—|€|j}|€|j}t||¦«}tj | ¦«|¬¦«}t|¬¦«}|||fS)N)rw)Úmax_size)rwrxrÁrfÚoptimÚAdamÚ parametersr)rÂr¿rwÚ buffer_sizerÀÚ optimizerÚmemorys rÚbuild_all_from_configr˵sm€à €zØ $Ô 'ˆØĞØ-Ô=ˆ İ#Ğ$;¸VÑDÔD€Gİ”— ’ ˜g×0Ò0Ñ2Ô2°r� Ñ:Ô:€Iİ   Ğ ,Ñ ,Ô ,€FØ �I˜vĞ %Ğ%rÚcheckpoint_pathcó—|€tt¦«}tjtj ¦«rdnd¦«}t ||¦«}tj|¦«}| |d¦«|S)NÚcudardÚnet) r Ú test_argsrfr¿rÎÚ is_availablerÁÚloadÚload_state_dict)rÌrmr¿rÏÚdatas rÚmake_net_from_checkpointrÕÁsu€Ø €|İ•yÑ!Ô!ˆİ ŒY¥¤×!5Ò!5Ñ!7Ô!7ĞB�v�v¸UÑ CÔ C€Fİ   fÑ -Ô -€Cİ Œ7�?Ñ #Ô #€DØ×Ò˜˜Uœ Ñ$Ô$Ğ$Ø €JrcóŠ— t¦«jj}|dkrdS|dkrdS|dkrdSdS#t$rYdSwxYw)NÚZMQInteractiveShellTÚShellÚTerminalInteractiveShellF)rÚ __class__rÚ NameError)Úshells rÚ is_notebookrİËso€ğ İ‘ ” Ô'Ô0ˆØ Ğ)Ò )Ğ )Ø�4Ø �gÒ Ğ Ø�4Ø Ğ0Ò 0Ğ 0Ø�5à�5øİ ğğğ؈uˆuğøøøs‚4¢4ª4´ AÁAFÚfilesÚnot_notebook_okcó(—t¦«}|s|rdS|std¦«‚|D]i}tj d¦«s3tj d¦«rtjd¦«t j|d¦«ŒjdS)Nz2This method should only be called from a notebook.z"/content/drive/MyDrive/Checkpointsz/content/drive/MyDrive)rİÚ RuntimeErrorÚosÚpathÚexistsÚmkdirÚshutilr,)rŞrßÚis_nbtrSs rÚupload_checkpoint_to_gdriverèÚs¨€İ ‰]Œ]€FØ ğ�oğØˆØ ğQİĞOÑPÔPĞPàğ@ğ@ˆİŒw�~Š~ĞBÑCÔCğ ;ÍÌÏÊĞWoÑHpÔHpğ ;İ ŒHĞ9Ñ :Ô :Ğ :İŒ �DĞ>Ñ?Ô?Ğ?Ğ?ğ@ğ@rÚoutput_file_nameÚ depth_limitcó\‡‡—t ¦«}d|jd<d|jd<d|jd<d|jd<‰€t d¦«Šd tjd t fˆˆfd „ Љ|||‰¬ ¦«| d ¬¦«| |›d�¦«dS)NzMCTS visualizationÚlabelÚcircler;ÚblueÚcolorÚgoldÚinfÚgÚd_limitc óú•—d}|j€:ttj dd|jj¬¦«¦«}nt|j¦«}| |¦«||kr(| t|j¦«|¦«| ¦«r|dkrdS|j   ¦«D])}‰|||‰td¦«kr|dz n‰¬¦«Œ*dS)NrrŸ)ÚlowÚhighÚsizerñr ©ró) r2Ústrr&ÚrandomÚrandintr;Úadd_nodeÚadd_edgeÚ was_visitedÚchildrenr(Úfloat)ÚnodeÚparentròrór6ÚchildrêÚ make_graphs €€rrz"visualize_tree.<locals>.make_graphğsø€àˆØ Œ:Ğ İ�œ×*Ò*¨q°q¸v¼|Ô?QĞ*ÑRÔRÑSÔSˆFˆF嘜‘_”_ˆFØ � Š �6ÑÔĞØ �TŠ>ˆ>Ø �JŠJ•s˜6œ<Ñ(Ô(¨&Ñ 1Ô 1Ğ 1Ø×ÒÑ!Ô!ğ  W°¢\ \Ø ˆFğ”]×)Ò)Ñ+Ô+ğ lğ lˆEØ ˆJ�u˜d A¸kÍUĞSXÉ\Ì\Ò>YĞ>Y¨w¸©{¨{Ğ_jĞ kÑ kÔ kĞ kĞ kğ lğ lrrøÚdot)Úprogz.png) Ú pygraphvizÚAGraphÚ graph_attrÚ node_attrÚ edge_attrrÚintÚlayoutÚdraw)Ú root_noderérêÚgraphrs ` @rÚvisualize_treerçsåøø€İ × Ò Ñ Ô €EØ 4€EÔ�WÑØ'€E„O�GÑØ%€E„O�GÑØ%€E„O�GÑØĞݘE‘l”lˆ ğl¥JÔ$5ğlÅğlğlğlğlğlğlğlğ*€Jˆy˜) U°KĞ@Ñ@Ô@Ğ@Ø ‡L‚L�e€LÑÔĞØ ‡J‚JĞ"Ğ(Ğ(Ğ(Ñ)Ô)Ğ)Ğ)Ğ)rrÔrÊcóú—|D]w}|D]r\}}}tj|tj¬¦« ||¦«}tj|tj¬¦«}| |||f¦«ŒsŒxdS)Nra)rfrgrhr-Úadd)rÔrÊr0Ú game_datar2r3r4s rÚcpp_data_to_memoryr s�€ğğ'ğ'ˆ Ø%ğ 'ğ '‰LˆE�2�qİ”I˜e­2¬:Ğ6Ñ6Ô6×>Ò>¸zÈ:ÑVÔVˆEİ”˜2¥R¤ZĞ0Ñ0Ô0ˆBØ �JŠJ˜˜r 1�~Ñ &Ô &Ğ &Ğ &ğ 'ğ'ğ'r)NN)Fr )0rârærer&r¶ÚtorchrfÚIPythonrÚ$mu_alpha_zero.AlphaZero.Network.nnetrÚ!mu_alpha_zero.AlphaZero.constantsrrĞÚmu_alpha_zero.mem_bufferrÚmu_alpha_zero.configrrÚdictr Úlistr8Úndarrayr r=r?rErAr]rgrlr„rŠr‰rùrºrÁÚtuplerÅÚ OptimizerrËrÕrİÚboolrèrrr rrú<module>r"s�ğØ € € € Ø € € € ØĞĞĞØ € € € àĞĞĞØĞĞĞĞĞğ>Ğ=Ğ=Ğ=Ğ=Ğ=ØIĞIĞIĞIĞIĞIØ.Ğ.Ğ.Ğ.Ğ.Ğ.Ø8Ğ8Ğ8Ğ8Ğ8Ğ8Ğ8Ğ8ğğğğğˆdñôğğ¸ğÈTğğğğğ"˜œ ğ sğğğğğ �b”jğ¨ğğğğğ  4ğğğğğ\ R¤Zğ\ğ\ğ\ğ\𨬠ğ¸"¼*ğĞUWÔU_ğğğğğ( C r¤yğ C°R´Yğ Cğ Cğ Cğ Cğ?�Tğ?ğ?ğ?ğ?ğE SğE¨SğEğEğEğEğ *¨sğ*Àğ*Èğ*ğ*ğ*ğ*ğ11¨ğ11¸Sğ11È3ğ11Ğ\_ğ11Ğo~ğ11ğ11ğ11ğ11ğh¨ğ¸Lğğğğğ &ğ &°6ğ &ĞafØ�"”(Ô$ iĞ/ôb1ğ &ğ &ğ &ğ &ğ¨cğ¸À4¹ğğğğğ ğ ğ ğ @ğ @ tğ @¸dğ @ğ @ğ @ğ @ğ *ğ *°ğ *À#ÈÁ*ğ *ğ *ğ *ğ *ğF'˜Tğ'¨9ğ'À#ğ'ğ'ğ'ğ'ğ'ğ'r
17,643
Python
.pyt
104
168.125
1,037
0.351559
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,562
alpha_zero.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/__pycache__/alpha_zero.cpython-311.pyc
§ weŠf¤ãóÀ—ddlZddlmZddlZddlZddlmZddl m Z ddl m Z ddl mZddlmZddlmZdd lmZdd lmZmZdd lmZdd lmZGd „d¦«ZdS)éN)ÚType)ÚArena)Ú NetPlayer)Ú McSearchTree)ÚTrainer)Ú AlphaZeroGame)ÚGeneralMemoryBuffer)ÚGeneralNetwork)Ú net_not_noneÚfind_project_root)Ú HookManager)ÚAlphaZeroConfigc óÒ—eZdZdefd„Z ddedeeded e d e pdd e f d „Z ddeed e de d e d e pdd e f d„Z d„Zddejdedefd„Z dde de dededede f d„ZdS) Ú AlphaZeroÚ game_instancecó¾—d|_d|_||_tjtj ¦«rdnd¦«|_d|_d|_dS)NÚcudaÚcpu) ÚtrainerÚnetÚgameÚthÚdevicerÚ is_availableÚalpha_zero_configÚtree)Úselfrs úQ/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/AlphaZero/alpha_zero.pyÚ__init__zAlphaZero.__init__sR€ØˆŒ ؈ŒØ!ˆŒ Ý”i­"¬'×*>Ò*>Ñ*@Ô*@Ð K  ÀeÑLÔLˆŒ Ø26ˆÔØ"&ˆŒ ˆ ˆ óTNFrÚ network_classÚmemoryÚheadlessÚ hook_managerÚcheckpointer_verbosec ó¦—| ||¬¦« |j¦«}t|j ¦«|¦«}||_t|j ¦«fi||dœ¤Ž} ||_tj ||j||| ||||¬¦ « |_ |j   ¦«|_ dS)N)r$)ÚnetworkÚmonte_carlo_tree_search)r#r%Úmemory_overrider$)Úmake_from_configÚtorrrÚmake_fresh_instancerrrrÚcreaterÚ get_networkr) rrr!r"r#r$r%r'rÚ net_players rÚ create_newzAlphaZero.create_newsÙ€ð ×0Ò0Ð1BÐQ]Ð0Ñ^Ô^×aÒaÐbfÔbmÑnÔnˆÝ˜DœI×9Ò9Ñ;Ô;Ð=NÑOÔOˆØˆŒ ݘtœy×<Ò<Ñ>Ô>ÐxÐxÈgÐrvÐBwÐBwÐxÐxˆ Ø!2ˆÔÝ”~Ð&7¸¼ÀGÈTÐS]ÐhpØ;OÐagØ3?ðAñAôAˆŒ ð”<×+Ò+Ñ-Ô-ˆŒˆˆr ÚpathÚcheckpoint_dirc ó—tj|tt|||j|||¬¦ « |_|j ¦«|_|j ¦«|_ |j  ¦«|_ dS)N)r#r$r%) rÚfrom_checkpointrrrrr.rÚget_treerÚget_argsÚargs)rr!r1r2r#r$r%s rÚload_checkpointzAlphaZero.load_checkpoint)s€õÔ.¨}½lÍIÐW[Ð]kÐmqÔmvØ8@È|ØDXðZñZôZˆŒ ð”<×+Ò+Ñ-Ô-ˆŒØ”L×)Ò)Ñ+Ô+ˆŒ Ø”L×)Ò)Ñ+Ô+ˆŒ ˆ ˆ r có`—t|j¦«|j ¦«dS)N)r rrÚtrain)rs rr:zAlphaZero.train3s,€Ý�T”XÑÔÐØ Œ ×ÒÑÔÐÐÐr rÚxÚtauÚreturncój—t|j¦«|j|jd|jd|jdfksJdt |j¦«z¦«‚|j |j|d|j|¬¦«\}}|j  ||j j ¬¦«S)NÚ board_sizeÚnum_net_in_channelszXInput shape is not correct. Expected (board_size, board_size, num_net_in_channels).Got: é)r<) r rÚshaper7ÚstrrÚsearchrrÚ select_moverr<)rr;r<ÚpiÚ_s rÚpredictzAlphaZero.predict7s¹€Ý�T”XÑÔÐØŒw˜4œ9 \Ô2°D´I¸lÔ4KÈTÌYØ !ôN#ð$ò$ð$ð$ð&-Ý/2°1´7©|¬|ñ&<ñ$ô$ð$ð” × Ò  ¤¨1¨a°´À#Ð ÑFÔF‰ˆˆAØŒy×$Ò$ R¨TÔ-CÔ-GÐ$ÑHÔHÐHr rAÚp1_nameÚp2_nameÚ num_gamesÚstartsÚswitch_playersc ó0—t|j¦«|j |j¦«|j ¦«|j ¦«}t||¦«}|j||j|j ddœ} t¦«  dd¦«  d¦«d} tj| ›d�j||fi| ¤Ž} tj| ›d�j||fi| ¤Ž} |j ¦«} |  d¦«t#| ||j¦«}| | | ||j| || ¬¦«\}}}t)d|›d |›d |›�¦«dS) Néÿÿÿÿ)r'r(Ú evaluate_fnÚdepthÚplayerú\ú/z.AlphaZero.Arena.playersF)Ú one_playerÚ start_playerÚ add_to_kwargszResults: Player 1 wins: z, Player 2 wins: z , Draws: )r rr+rÚevalrr,rÚ eval_boardÚ minimax_depthr ÚreplaceÚsplitÚsysÚmodulesÚ__dict__Ú set_headlessrÚpitÚnum_simulationsÚprint)rrIrJrKrrLrMÚmanagerrÚkwargsÚ path_prefixÚp1Úp2Ú arena_managerÚarenaÚp1_wÚp2_wÚdss rÚplayzAlphaZero.play?s¨€å�T”XÑÔÐØ Œ� Š �D”KÑ Ô Ð Ø Œ� Š ‰ŒˆØ”)×/Ò/Ñ1Ô1ˆÝ˜GÐ%6Ñ7Ô7ˆØ!œXÀ$ÐW^ÔWiØ,Ô:ÀbðJðJˆå'Ñ)Ô)×1Ò1°$¸Ñ<Ô<×BÒBÀ3ÑGÔGÈÔKˆ Ý Œ[˜KÐAÐAÐAÔ BÔ KÈGÔ TÐU\Ð gÐ gÐ`fÐ gÐ gˆÝ Œ[˜KÐAÐAÐAÔ BÔ KÈGÔ TÐU\Ð gÐ gÐ`fÐ gÐ gˆØœ ×5Ò5Ñ7Ô7ˆ Ø×"Ò" 5Ñ)Ô)Ð)Ý�mÐ%6¸¼ ÑDÔDˆØŸš 2 r¨9Ð6GÔ6WÐhvÐdvØ06Àfð#ñNôN‰ˆˆd�Bå ÐS¨ÐSÐSÀÐSÐSÈrÐSÐSÑTÔTÐTÐTÐTr )TNF)r)rAT)Ú__name__Ú __module__Ú __qualname__rrrrr r Úboolr r0rCr8r:ÚnpÚndarrayÚfloatÚintrHrn©r rrrs‹€€€€€ð' mð'ð'ð'ð'ðlpØ05ð .ð .¨Oð .ÈDÐQ_ÔL`ð .Ø.ð .Ø:>ð .ØU`ÐUhÐdhð .à)-ð .ð .ð .ð .ðTXØ5:ð,ð,¨T°.Ô-Að,Èð,Ð^að,Ø"&ð,Ø=HÐ=PÈDð,à.2ð,ð,ð,ð,ððððIðI˜œðI¨%ðI¸ðIðIðIðIðrsØ$(ðUðU˜CðU¨#ðU¸#ðUÐRaðUÐknðUØ!ðUðUðUðUðUðUr r)r]ÚtypingrÚnumpyrsÚtorchrÚ#mu_alpha_zero.AlphaZero.Arena.arenarÚ%mu_alpha_zero.AlphaZero.Arena.playersrÚ+mu_alpha_zero.AlphaZero.MCTS.az_search_treerÚmu_alpha_zero.trainerrÚmu_alpha_zero.General.az_gamerÚmu_alpha_zero.General.memoryr Úmu_alpha_zero.General.networkr Úmu_alpha_zero.General.utilsr r Ú mu_alpha_zero.Hooks.hook_managerr Úmu_alpha_zero.configrrrwr rú<module>r…s.ðØ € € € ØÐÐÐÐÐàÐÐÐØÐÐÐà5Ð5Ð5Ð5Ð5Ð5Ø;Ð;Ð;Ð;Ð;Ð;ØDÐDÐDÐDÐDÐDØ)Ð)Ð)Ð)Ð)Ð)Ø7Ð7Ð7Ð7Ð7Ð7Ø<Ð<Ð<Ð<Ð<Ð<Ø8Ð8Ð8Ð8Ð8Ð8ØGÐGÐGÐGÐGÐGÐGÐGØ8Ð8Ð8Ð8Ð8Ð8Ø0Ð0Ð0Ð0Ð0Ð0ð=Uð=Uð=Uð=Uð=Uñ=Uô=Uð=Uð=Uð=Ur
7,308
Python
.pyt
31
234.677419
1,057
0.377851
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,563
constants.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/__pycache__/constants.cpython-311.pyc
§ føf! ã ó—dZidd“dd“dd“dedz“d d “d d “d d“dd“dd“dd“dd“dd“de“dd“dd“dd“dd“d d!d"d#d$d$d%d$d&d'd d(œ ¥Zidd“dd“dd“dedz“d d “d d“d d“dd)“dd“dd“dd“dd“de“dd*“dd+“dd,“dd-“d d!d"d#d$d"d.d'd d/œ ¥Zidd“d0d“dd“dd“dd1“d2d3“d d4“d d$“d5d$“d6d7“d8d9“d:d"“d;d<“d d“dd=“dd>“dd?“idd“dd“de“dd@“dd“ddA“dd“dBdC“dDdE“dFd “dGd!“dHd “dIdJ“dKd$“dLd$“dMd%“dNd$“¥ddOdPdJdQdRd'd dSœ¥Zd S)TéÚnum_net_channelsiÚnum_net_in_channelséÚ net_dropoutg333333Ó?Únet_action_sizeéÚnum_simulationsi%Úself_play_gamesi,Ú num_itersé2ÚepochsiôÚlrg{äL?´œj?Úmax_buffer_sizei †Ú num_pit_gamesé(Úrandom_pit_freqéÚ board_sizeÚ batch_sizeéÚtauÚ arena_taugëö‹ÓG1¥?ÚcNg333333ã?éTég•Ö&è .>iHÚLogs) Úcheckpoint_dirÚupdate_thresholdÚ minimax_depthÚ show_tqdmÚ num_workersÚ num_to_winÚ log_epsilonÚzero_tau_afterÚaz_net_linear_input_sizeÚlog_dirÚpushbullet_tokeni@é€gğ?égffffffò?g»"¸hkN>) rrrr r!r"r#r&r'Únum_net_out_channelséÚnet_latent_sizeé$éğÚKÚgammag�•C‹lçï?Úframe_buffer_sizeé Ú frame_skipÚ num_stepsi�édgü©ñÒMbP?ipéÿg{®Gáz„?Úc2iÄLÚalphagš™™™™™é?rrrr Fr!r"r#r$zALE/Asteroids-v5z Pickles/Data)é`r9i )ÚbetaÚenv_idÚ pickle_dirÚuse_javaÚtarget_resolutionr%r&r')rÚSAMPLE_AZ_ARGSÚTRAINED_AZ_NET_ARGSÚSAMPLE_MZ_ARGS©óúP/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/AlphaZero/constants.pyú<module>rEsîğğ€ ğؘğà˜1ğğ�3ğğ�z Q‘ğ ğ �tğ ğ �sğ ğ�ğğ ˆcğğ Ğ ğğ�wğğ�Rğğ�qğğ�*ğğ�#ğğ ˆ1ğğ Ğ$ğ!ğ"ˆğ#ğ$ØØØØØØØØ %ØØğ9ğğ€ğ>ؘğà˜1ğğ�3ğğ�z Q‘ğ ğ �tğ ğ �qğ ğ�ğğ ˆcğğ Ğ ğğ�wğğ�Rğğ�qğğ�*ğğ�#ğğ ˆ3ğğ �ğ!ğ"ˆğ#ğ$ØØØØØØ)ØØğ5ğğĞğ:+ؘğ+à˜Cğ+ğ˜1ğ+ğ�3ğ +ğ �rğ +ğ �rğ +ğ�sğ+ğ�qğ+ğˆğ+ğ ˆUğ+ğ˜ğ+ğ�!ğ+ğ�ğ+ğ�ğ+ğ ˆcğ+ğ  ˆ%ğ!+ğ"�vğ#+ğ+ğ$�Rğ%+ğ&�qğ'+ğ(�*ğ)+ğ*�#ğ++ğ, ˆ1ğ-+ğ.�ğ/+ğ0ˆğ1+ğ2 ˆ%ğ3+ğ4 ˆSğ5+ğ6�dğ7+ğ8˜ğ9+ğ:�Tğ;+ğ<�ğ=+ğ>�1ğ?+ğ@�!ğA+ğB�4ğC+ğD�ağE+ğ+ğF Ø Ø ØØ!Ø $ØØğU+ğ+ğ+€€€rC
2,697
Python
.pyt
19
140.789474
589
0.454274
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,564
logger.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/__pycache__/logger.cpython-311.pyc
§ føfîãór—ddlZddlZddlZddlZddlmZddlmZGd„d¦«ZGd„d¦«Z dS)éN)ÚAPI©Úfind_project_rootcóŠ—eZdZddepddepdddfd„Zddededdfd „Zdepdfd „Zdepdddfd „Zdded eddfd„Zd„Z dd„Z dS)ÚLoggerNÚlogdirÚtokenÚreturncó—| |¦«|_tj|jd¬¦«t jd¦«|_|j tj¦«t j |j›dtj   ¦«  d¦«›d�¦«|_ |j  tj¦«|j |j ¦«d|_t!¦«|_| |¦«t jd¦«}|j  |¦«t+j|j¦«dS) NT)Úexist_okÚAlphaZeroLoggerú/z%Y-%m-%d_%H-%M-%Sz.logFz)[%(asctime)s - %(levelname)s] %(message)s)Ú init_logdirrÚosÚmakedirsÚloggingÚ getLoggerÚloggerÚsetLevelÚDEBUGÚ FileHandlerÚdatetimeÚnowÚstrftimeÚ file_handlerÚ addHandlerÚ is_token_setrÚapiÚinit_api_tokenÚ FormatterÚ setFormatterÚatexitÚregisterÚcleanup)Úselfrr Ú formatters úM/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/AlphaZero/logger.pyÚ__init__zLogger.__init__ s=€Ø×&Ò& vÑ.Ô.ˆŒ İ Œ �D”K¨$Ğ/Ñ/Ô/Ğ/İÔ'Ğ(9Ñ:Ô:ˆŒ Ø Œ ×Ò�Wœ]Ñ+Ô+Ğ+İ#Ô/ØŒ{Ğ XĞ X�XÔ.×2Ò2Ñ4Ô4×=Ò=Ğ>QÑRÔRĞ XĞ XĞ XñZôZˆÔà Ô×"Ò"¥7¤=Ñ1Ô1Ğ1Ø Œ ×Ò˜tÔ0Ñ1Ô1Ğ1Ø!ˆÔİ‘5”5ˆŒØ ×Ò˜EÑ"Ô"Ğ"İÔ%Ğ&QÑRÔRˆ Ø Ô×&Ò& yÑ1Ô1Ğ1İŒ˜œ Ñ%Ô%Ğ%Ğ%Ğ%óÚdebugÚmsgÚlevelcóB—t|j|¦«|¦«dS©N)Úgetattrr)r%r+r,s r'Úlogz Logger.logs$€Ø#��” ˜UÑ#Ô# CÑ(Ô(Ğ(Ğ(Ğ(r)có,—|€t¦«›d�S|S)Nz/Logs/ProgramLogsr)r%rs r'rzLogger.init_logdirs!€Ø ˆ>İ'Ñ)Ô)Ğ<Ğ<Ğ<Ğ <àˆMr)cóP—|€dS|j |¦«d|_dS)NT)rÚ set_tokenr)r%r s r'rzLogger.init_api_token%s0€Ø ˆ=Ø ˆFØ Œ×Ò˜5Ñ!Ô!Ğ!Ø ˆÔĞĞr)ÚMuZeroÚ algorithmcó¤—|jsdS |j |›d�|¦«dS#t$r}t |¦«Yd}~dSd}~wwxYw)Nz training notification.)rrÚ send_noteÚ ExceptionÚprint)r%r+r5Úes r'Úpushbullet_logzLogger.pushbullet_log+st€ØÔ ğ Ø ˆFğ Ø ŒH× Ò  )ĞDĞDĞDÀcÑ JÔ JĞ JĞ JĞ Jøİğ ğ ğ İ �!‰HŒHˆHˆHˆHˆHˆHˆHˆHøøøøğ øøøs‹+« AµA Á Acóz—tj|j¦«D] }tj|j›d|›�¦«Œ!dS)Nr)rÚlistdirrÚremove)r%Ú file_names r'Ú clear_logdirzLogger.clear_logdir3sJ€İœ D¤KÑ0Ô0ğ 4ğ 4ˆIİ ŒI˜œĞ2Ğ2 yĞ2Ğ2Ñ 3Ô 3Ğ 3Ğ 3ğ 4ğ 4r)cóv—|j ¦«|j |j¦«dSr.)rÚcloserÚ removeHandler)r%s r'r$zLogger.cleanup7s6€Ø Ô×ÒÑ!Ô!Ğ!Ø Œ ×!Ò! $Ô"3Ñ4Ô4Ğ4Ğ4Ğ4r)r.)r*)r4)r N) Ú__name__Ú __module__Ú __qualname__Ústrr(r0rrr;r@r$©r)r'rr s€€€€€ğ&ğ&˜s˜{ dğ&°3°;¸$ğ&È$ğ&ğ&ğ&ğ&ğ )ğ)�sğ) 3ğ)°Tğ)ğ)ğ)ğ)ğ  ¨ğğğğğ ! C K¨4ğ!°Dğ!ğ!ğ!ğ!ğ ğ #ğ°#ğÀTğğğğğ4ğ4ğ4ğ5ğ5ğ5ğ5ğ5ğ5r)rc óÈ—eZdZedededefd„¦«Zededededededef d „¦«Zedefd „¦«Zedededed e fd „¦«Z ed efd„¦«Z ede fd„¦«Z ede de fd„¦«Zede de fd„¦«Zedefd„¦«Zedefd„¦«Zededefd„¦«Zededefd„¦«Zedefd„¦«Zed„¦«Zd S)!ÚLoggingMessageTemplatesÚname1Úname2Ú num_gamescó—d|›d|›d|›d�S)NzStarting pitting between ú and z for ú games.rH)rKrLrMs r'Ú PITTING_STARTz%LoggingMessageTemplates.PITTING_START>s#€àU¨5ĞUĞU°uĞUĞUÀ9ĞUĞUĞUĞUr)Úwins1Úwins2ÚtotalÚdrawsc ó2—d|›d|›d||z ›d||z ›d|›d� S)NzPitting ended between rOz. Player 1 win frequency: ú. Player 2 win frequency: ú . Draws: ú.rH)rKrLrRrSrTrUs r'Ú PITTING_ENDz#LoggingMessageTemplates.PITTING_ENDBse€ğL¨ğLğL°UğLğLØ+0°5©=ğLğLà+0°5©=ğLğLàCHğLğLğLğ Mr)có—d|›d�S)NzStarting self play for rPrH)rMs r'ÚSELF_PLAY_STARTz'LoggingMessageTemplates.SELF_PLAY_STARTHs€à;¨Ğ;Ğ;Ğ;Ğ;r)Ú not_zero_fncór—|�|�|€dSd||||z|z¦«z ›d||||z|z¦«z ›d|›d�S)NzTSelf play ended. Results not available (This is expected if you are running MuZero).z)Self play ended. Player 1 win frequency: rWrXrYrH)rRrSrUr]s r'Ú SELF_PLAY_ENDz%LoggingMessageTemplates.SELF_PLAY_ENDLsˆ€à ˆ=˜E˜M¨U¨]ØiĞiğk¸EÀ[À[ĞQVĞY^ÑQ^ĞafÑQfÑEgÔEgÑ<hğkğkØ+0°K°KÀÈÁ ĞPUÑ@UÑ4VÔ4VÑ+WğkğkØbgğkğkğkğ lr)Ú num_epchscó—d|›d�S)NzStarting network training for z epochs.rH)r`s r'ÚNETWORK_TRAINING_STARTz.LoggingMessageTemplates.NETWORK_TRAINING_STARTSs€àC° ĞCĞCĞCĞCr)Ú mean_losscó —d|›�S)Nz#Network training ended. Mean loss: rH)rcs r'ÚNETWORK_TRAINING_ENDz,LoggingMessageTemplates.NETWORK_TRAINING_ENDWs€à@°YĞ@Ğ@Ğ@r)Únum_winsÚupdate_thresholdcó—d|›d|›d�S)Nz:!!! Model rejected, restoring previous version. Win rate: ú. Update threshold: ú !!!rH©rfrgs r'Ú MODEL_REJECTz$LoggingMessageTemplates.MODEL_REJECT[s*€ğ<ÈXğ<ğ<Ø%5ğ<ğ<ğ<ğ =r)có—d|›d|›d�S)Nz7!!! Model accepted, keeping current version. Win rate: rirjrHrks r'Ú MODEL_ACCEPTz$LoggingMessageTemplates.MODEL_ACCEPT`s*€ğ Àhğ ğ Ğdtğ ğ ğ ğ r)Ú num_iterscó—d|›d�S)NzStarting training for z iterations.rH)ros r'ÚTRAINING_STARTz&LoggingMessageTemplates.TRAINING_STARTfs€à?¨ Ğ?Ğ?Ğ?Ğ?r)Ú args_usedcój—d}| ¦«D]\}}||›d|›d�z }Œd|dd…›�S)NÚz: z, zTraining ended. Args used: éşÿÿÿ)Úitems)rrÚ args_used_strÚkeyÚvalues r'Ú TRAINING_ENDz$LoggingMessageTemplates.TRAINING_ENDjsX€àˆ Ø#Ÿ/š/Ñ+Ô+ğ 1ğ 1‰JˆC�Ø  Ğ0Ğ0 uĞ0Ğ0Ğ0Ñ 0ˆMˆMØA¨]¸3¸B¸3Ô-?ĞAĞAĞAr)Útype_Úpathcó—d|›d|›�S)NzSaved z to rH©r{r|s r'ÚSAVEDzLoggingMessageTemplates.SAVEDqs€à)˜Ğ)Ğ) 4Ğ)Ğ)Ğ)r)có—d|›d|›�S)Nz Restored z from rHr~s r'ÚLOADEDzLoggingMessageTemplates.LOADEDus€à.˜5Ğ.Ğ.¨Ğ.Ğ.Ğ.r)Úitercó—d|›d�S)Nz Iteration z$ of the algorithm training finished!rH)r‚s r'ÚITER_FINISHED_PSBz)LoggingMessageTemplates.ITER_FINISHED_PSBys€àF˜DĞFĞFĞFĞFr)có—dS)Nz;Algorithm Training finished, you can collect the results :)rHrHr)r'ÚTRAINING_END_PSBz(LoggingMessageTemplates.TRAINING_END_PSB}s€àLĞLr)N)rDrErFÚ staticmethodrGÚintrQrZr\Úcallabler_rbÚfloatrerlrnrqÚdictrzrr�r„r†rHr)r'rJrJ<s€€€€€àğV˜SğV¨ğV¸ğVğVğVñ„\ğVğğM˜3ğM sğM°3ğM¸sğMÈ3ğMĞWZğMğMğMñ„\ğMğ ğ< 3ğ<ğ<ğ<ñ„\ğ<ğğl˜Sğl¨ğl°SğlÀxğlğlğlñ„\ğlğ ğD¨#ğDğDğDñ„\ğDğğA¨ğAğAğAñ„\ğAğğ=˜uğ=¸ğ=ğ=ğ=ñ„\ğ=ğğ˜uğ¸ğğğñ„\ğğ ğ@ #ğ@ğ@ğ@ñ„\ğ@ğğB ğBğBğBñ„\ğBğ ğ*�Sğ* ğ*ğ*ğ*ñ„\ğ*ğğ/�cğ/ ğ/ğ/ğ/ñ„\ğ/ğğG ğGğGğGñ„\ğGğğMğMñ„\ğMğMğMr)rJ) r"rrrÚ pushbulletrÚmu_alpha_zero.General.utilsrrrJrHr)r'ú<module>r�s¼ğØ € € € Ø€€€Ø€€€Ø € € € àĞĞĞĞĞà9Ğ9Ğ9Ğ9Ğ9Ğ9ğ.5ğ.5ğ.5ğ.5ğ.5ñ.5ô.5ğ.5ğbCMğCMğCMğCMğCMñCMôCMğCMğCMğCMr)
9,693
Python
.pyt
20
483.6
3,727
0.398284
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,565
players.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/Arena/__pycache__/players.cpython-311.pyc
§ �Œf$ãó—ddlZddlZddlmZmZddlZddlZddlm Z ddl m Z ddl m Z Gd„de¦«ZGd„d e¦«ZGd „d e¦«ZGd „d e¦«ZGd„de¦«ZGd„de¦«ZGd„de¦«ZdS)éN)ÚABCÚabstractmethod)Ú AlphaZeroNet)ÚTicTacToeGameManager)Ú AlphaZeroGamecóš—eZdZdZed„¦«Zedejdee e ffd„¦«Z ed„¦«Z de fd„Z ed „¦«Zd S) ÚPlayerz� To create a custom player, extend this class and implement the choose_move method. You can see different implementations below. c ó—dS©N©©ÚselfÚ game_managerÚkwargss úT/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/AlphaZero/Arena/players.pyÚ__init__zPlayer.__init__ó€à ˆóÚboardÚreturnc ó—dSr r )rrrs rÚ choose_movezPlayer.choose_moverrcó—dSr r ©rs rÚmake_fresh_instancezPlayer.make_fresh_instancerrrcób—| ¦«D]}t||||¦«ŒdSr )ÚkeysÚsetattr)rrÚkeys rÚ init_kwargszPlayer.init_kwargss<€Ø—;’;‘=”=ğ ,ğ ,ˆCİ �D˜#˜v cœ{Ñ +Ô +Ğ +Ğ +ğ ,ğ ,rcó—dSr r ©rrs rÚset_game_managerzPlayer.set_game_manager#rrN)Ú__name__Ú __module__Ú __qualname__Ú__doc__rrÚnpÚndarrayÚtupleÚintrrÚdictr r#r rrr r s€€€€€ğğğ ğ ğ ñ„^ğ ğğ  ¤ğ ¸%ÀÀSÀ¼/ğ ğ ğ ñ„^ğ ğğ ğ ñ„^ğ ğ, $ğ,ğ,ğ,ğ,ğğ ğ ñ„^ğ ğ ğ rr cóP—eZdZdefd„Zdejdeeeffd„Z d„Z d„Z dS) Ú RandomPlayerrc ón—||_|jj|_||_| |¦«dSr ©rÚ __class__r$Únamerr r s rrzRandomPlayer.__init__)ó7€Ø(ˆÔØ”NÔ+ˆŒ ؈Œ Ø ×Ò˜Ñ Ô Ğ Ğ Ğ rrrc óª—|jj|fi|¤�}d| ¦«vr |d}nd}|rt|¦«nt |¦«S)NÚunravelT)rÚget_random_valid_actionrr*r+)rrrÚmover5s rrzRandomPlayer.choose_move/s^€Ø8ˆtÔ Ô8¸ĞIĞIÀ&ĞIĞIˆØ ˜Ÿ š ™ œ Ğ %Ğ %ؘYÔ'ˆGˆGàˆGØ%Ğ4�u�T‰{Œ{ˆ{­3¨t©9¬9Ğ4rcóT—t|j ¦«fi|j¤�Sr )r.rrrrs rrz RandomPlayer.make_fresh_instance7s)€İ˜DÔ-×AÒAÑCÔCĞSĞSÀtÄ{ĞSĞSĞSrcó—||_dSr ©rr"s rr#zRandomPlayer.set_game_manager:ó€Ø(ˆÔĞĞrN© r$r%r&rrr(r)r*r+rrr#r rrr.r.(s}€€€€€ğ!Ğ%9ğ!ğ!ğ!ğ!ğ 5 ¤ğ5¸%ÀÀSÀ¼/ğ5ğ5ğ5ğ5ğTğTğTğ)ğ)ğ)ğ)ğ)rr.cóV—eZdZdefd„Zdejdeeeffd„Z d„Z d„Z d„Z d S) Ú NetPlayerrc ón—||_|jj|_||_| |¦«dSr r0r s rrzNetPlayer.__init__?r3rrrc ó— |d}|d}|d}n#t$rtd¦«‚wxYw|j |j||||¬¦«\}}|j ||¬¦«}|j d¦«d| ¦«vr |d} nd} | r|j |¦«St|¦«S)NÚcurrent_playerÚdeviceÚtauúKMissing keyword argument. Please supply kwargs: current_player, device, tau©rCr5T) ÚKeyErrorÚmonte_carlo_tree_searchÚsearchÚnetworkrÚ select_moveÚ step_rootrÚnetwork_to_boardr+) rrrrArBrCÚpiÚ_r7r5s rrzNetPlayer.choose_moveEs€ğ "Ø#Ğ$4Ô5ˆNؘHÔ%ˆFؘ”-ˆCˆCøİğ "ğ "ğ "İğ!ñ"ô"ğ "ğ "øøøğÔ,×3Ò3°D´LÀ%ÈĞY_ĞehĞ3ÑiÔi‰ˆˆAØÔ ×,Ò,¨R°CĞ,Ñ8Ô8ˆØ Ô$×.Ò.¨tÑ4Ô4Ğ4Ø ˜Ÿ š ™ œ Ğ %Ğ %ؘYÔ'ˆGˆGàˆGØ ğ <ØÔ$×5Ò5°dÑ;Ô;Ğ ;İ�4‰yŒyĞó‚›5có¬—t|j ¦«fitj|j¦«|j ¦«dœ¤�S)N)rIrG)r>rrÚcopyÚdeepcopyrIrGrs rrzNetPlayer.make_fresh_instanceYsv€İ˜Ô*×>Ò>Ñ@Ô@ğUğUÕPTÔP]Ğ^bÔ^jÑPkÔPkØ`dÔ`|÷aQòaQñaSôaSğETğETğUğUğ Urcó—||_dSr )rI)rrIs rÚ set_networkzNetPlayer.set_network]s €ØˆŒ ˆ ˆ rcó—||_dSr r:r"s rr#zNetPlayer.set_game_manager`r;rN) r$r%r&rrr(r)r*r+rrrTr#r rrr>r>>sŒ€€€€€ğ!Ğ%9ğ!ğ!ğ!ğ!ğ  ¤ğ¸%ÀÀSÀ¼/ğğğğğ(UğUğUğğğğ)ğ)ğ)ğ)ğ)rr>cód—eZdZdededefd„Zdefd„Zdej de e e ffd„Z d „Z d „Zd S) ÚTrainingNetPlayerrIrÚargscó —td¦«‚)Nz8Don't use this class yet, it produces incorrect results.) ÚNotImplementedErrorr1r$r2Ú_TrainingNetPlayer__init_argsrXrIrÚtraceÚ traced_path)rrIrrXs rrzTrainingNetPlayer.__init__es€İ!Ğ"\Ñ]Ô]Ğ]rrcó‚—dD];} | |¦«Œ#t$rtd|›d�¦«YŒ8wxYw|S)N)Úcheckpoint_dirÚ max_depthzKey z not present.)ÚpoprFÚprint)rrXrs rÚ __init_argszTrainingNetPlayer.__init_argsmsg€Ø2ğ 1ğ 1ˆCğ 1Ø—’˜‘ ” � � øİğ 1ğ 1ğ 1İĞ/˜SĞ/Ğ/Ğ/Ñ0Ô0Ğ0Ğ0Ğ0ğ 1øøøàˆ s †œ<»<rc ó,— |d}|d}|d}n#t$rtd¦«‚wxYwt ||||j|j¦«}|j ||¬¦«}|j |¦«S)NrArBrCrDrE)rFÚ CpSelfPlayÚ CmctsSearchrXr]rrJrL)rrrrArBrCrMr7s rrzTrainingNetPlayer.choose_moveus­€ğ "Ø#Ğ$4Ô5ˆNؘHÔ%ˆFؘ”-ˆCˆCøİğ "ğ "ğ "İğ!ñ"ô"ğ "ğ "øøøõ× #Ò # E¨>¸3ÀÄ È4ÔK[Ñ \Ô \ˆØÔ ×,Ò,¨R°CĞ,Ñ8Ô8ˆØÔ ×1Ò1°$Ñ7Ô7Ğ7rOcó—t‚r )rZrs rrz%TrainingNetPlayer.make_fresh_instance�s€İ!Ğ!rcó—||_dSr r:r"s rr#z"TrainingNetPlayer.set_game_manager„r;rN)r$r%r&rrr,rr[r(r)r*r+rrr#r rrrWrWds«€€€€€ğG  ğGĞ<PğGĞX\ğGğGğGğGğ 4ğğğğğ 8 ¤ğ 8¸%ÀÀSÀ¼/ğ 8ğ 8ğ 8ğ 8ğ"ğ"ğ"ğ)ğ)ğ)ğ)ğ)rrWcóP—eZdZdefd„Zdejdeeeffd„Z d„Z d„Z dS) Ú HumanPlayerrc ón—|jj|_||_||_| |¦«dSr )r1r$r2rrr r s rrzHumanPlayer.__init__‰s7€Ø”NÔ+ˆŒ Ø(ˆÔ؈Œ Ø ×Ò˜Ñ Ô Ğ Ğ Ğ rrrc óp—|jjrtd¦«‚|j |¦«}|S)Nz1Cannot play with a human player in headless mode.)rÚheadlessÚ RuntimeErrorÚget_human_input)rrrr7s rrzHumanPlayer.choose_move�s;€Ø Ô Ô %ğ TİĞRÑSÔSĞ SØÔ ×0Ò0°Ñ7Ô7ˆØˆ rcóT—t|j ¦«fi|j¤�Sr )rjrrrrs rrzHumanPlayer.make_fresh_instance•s)€İ˜4Ô,×@Ò@ÑBÔBĞRĞRÀdÄkĞRĞRĞRrcó—||_dSr r:r"s rr#zHumanPlayer.set_game_manager˜r;rNr<r rrrjrjˆs}€€€€€ğ!Ğ%9ğ!ğ!ğ!ğ!ğ  ¤ğ¸%ÀÀSÀ¼/ğğğğğ SğSğSğ)ğ)ğ)ğ)ğ)rrjcóV—eZdZdefd„Zdejdeeeffd„Z d„Z d„Z d„Z d S) ÚJavaMinimaxPlayerrc óÄ—tjd¦«tj¦«||_|jj|_||_tj |j ¦«dS)NzFC:\Users\Skyr\IdeaProjects\Minimax\build\libs\Minimax-1.0-SNAPSHOT.jar) ÚjpypeÚ addClassPathÚstartJVMrr1r$r2rÚatexitÚregisterÚ on_shutdownr s rrzJavaMinimaxPlayer.__init__�sV€İ ÔĞdÑeÔeĞeİ ŒÑÔĞØ(ˆÔØ”NÔ+ˆŒ ؈Œ İŒ˜Ô(Ñ)Ô)Ğ)Ğ)Ğ)rrrc ór— |d}|d}n#t$rtd¦«‚wxYwtjd¦«}|¦«}t|jj¦«tj |¦«}| ||||d|jj¦«}t|¦«S)NÚdepthÚplayerú=Missing keyword argument. Please supply kwargs: depth, playerzdev.skyr.MinimaxT) rFruÚJClassrbrÚ num_to_winÚJArrayÚofÚrunr*) rrrr|r}ÚMinimaxÚminimaxÚjar7s rrzJavaMinimaxPlayer.choose_move¦sº€ğ \ؘ7”OˆEؘHÔ%ˆFˆFøİğ \ğ \ğ \İĞZÑ[Ô[Ğ [ğ \øøøå”,Ğ1Ñ2Ô2ˆØ�'‘)”)ˆİ ˆdÔÔ*Ñ+Ô+Ğ+İ Œ\�_Š_˜UÑ #Ô #ˆØ�{Š{˜5 &¨&°%¸¸tÔ?PÔ?[Ñ\Ô\ˆİ�T‰{Œ{Ğó‚“-có—dSr r rs rrz%JavaMinimaxPlayer.make_fresh_instance³s€Ø ˆrcó,—tj¦«dSr )ruÚ shutdownJVMrs rrzzJavaMinimaxPlayer.on_shutdown¶s€İ ÔÑÔĞĞĞrcó—||_dSr r:r"s rr#z"JavaMinimaxPlayer.set_game_manager¹r;rN) r$r%r&rrr(r)r*r+rrrzr#r rrrsrsœsˆ€€€€€ğ* ]ğ*ğ*ğ*ğ*ğ  ¤ğ ¸%ÀÀSÀ¼/ğ ğ ğ ğ ğ ğ ğ ğğğğ)ğ)ğ)ğ)ğ)rrsc ó¢—eZdZdefd„Zdejdeeeffd„Z e d¦« e d¦«fdejdede d edef d „Z d „Z d „Zd S)Ú MinimaxPlayerrc ón—||_|jj|_||_| |¦«dSr r0r s rrzMinimaxPlayer.__init__¾s7€à(ˆÔØ”NÔ+ˆŒ ؈Œ Ø ×Ò˜Ñ Ô Ğ Ğ Ğ rrrc óŞ— |d}|d}n#t$rtd¦«‚wxYw| | ¦«|d|¦«d}t|¦«S)Nr|r}r~Té)rFr…rQr*)rrrr|r}r7s rrzMinimaxPlayer.choose_moveÅs{€ğ \ؘ7”OˆEؘHÔ%ˆFˆFøİğ \ğ \ğ \İĞZÑ[Ô[Ğ [ğ \øøøà�|Š|˜EŸJšJ™LœL¨%°°vÑ>Ô>¸qÔAˆİ�T‰{Œ{Ğr‡Úinfr|Úis_maxr}c óŠ—| |¦«}|�|dfS|dkr| |d¬¦«dfS|rÇtd¦« }d} |j |¦«D]–} ||| d| d<| | ¦«|dz d| ||¦«d} d|| d| d<| |kr| } t | |¦«}t ||¦«}||krnŒ—|| fStd¦«}d} |j |¦«D]‘} ||| d| d<| | ¦«|dz d| ||¦«d} | €ŒRd|| d| d<t| |¦«}t||¦«}||krnŒ’|| fS)NrF)Ú check_endr‘r�T)Ú evaluate_fnÚfloatrÚget_valid_movesr…rQÚmaxÚmin) rrr|r’r}ÚalphaÚbetaÚeval_Ú best_scoreÚ best_mover7Úscores rr…zMinimaxPlayer.minimaxÎs€ğ× Ò  Ñ'Ô'ˆØ Рؘ$�;Ğ Ø �AŠ:ˆ:Ø×#Ò# E°UĞ#Ñ;Ô;¸TĞAĞ Aà ğ# )İ ™,œ,˜ˆJ؈IØÔ)×9Ò9¸%Ñ@Ô@ğ ğ �Ø*0��d˜1”g”˜t AœwÑ'ØŸ š  U§Z¢Z¡\¤\°5¸1±9¸eÀfÀWÈeĞUYÑZÔZĞ[\Ô]�à*+��d˜1”g”˜t AœwÑ'ؘ:Ò%Ğ%Ø $�Iİ  ¨ Ñ3Ô3� ݘE :Ñ.Ô.�à˜D’=�=Ø�Eğ!ğ˜yĞ(Ğ (å˜u™œˆJ؈IØÔ)×9Ò9¸%Ñ@Ô@ğ ğ �Ø*0��d˜1”g”˜t AœwÑ'ØŸ š  U§Z¢Z¡\¤\°5¸1±9¸dÀVÀGÈUĞTXÑYÔYĞZ[Ô\�Ø�=Øà*+��d˜1”g”˜t AœwÑ'İ  ¨ Ñ3Ô3� ݘ4 Ñ,Ô,�à˜5’=�=Ø�Eğ!ğ˜yĞ(Ğ (rcóT—t|j ¦«fi|j¤�Sr )r�rrrrs rrz!MinimaxPlayer.make_fresh_instanceüs)€İ˜TÔ.×BÒBÑDÔDĞTĞTÈÌ ĞTĞTĞTrcó—||_dSr r:r"s rr#zMinimaxPlayer.set_game_managerÿr;rN)r$r%r&rrr(r)r*r+rr–Úboolr…rr#r rrr�r�½sŞ€€€€€ğ!Ğ%9ğ!ğ!ğ!ğ!ğ ¤ğ¸%ÀÀSÀ¼/ğğğğğX]ĞW\Ğ]bÑWcÔWcĞVcØ�U˜5‘\”\ğ,)ğ,)˜RœZğ,)°ğ,)¸Tğ,)È3ğ,)Ø&+ğ,)ğ,)ğ,)ğ,)ğ\UğUğUğ)ğ)ğ)ğ)ğ)rr�)rxrQÚabcrrruÚnumpyr(Ú$mu_alpha_zero.AlphaZero.Network.nnetrÚ!mu_alpha_zero.Game.tictactoe_gamerÚmu_alpha_zero.General.az_gamerr r.r>rWrjrsr�r rrú<module>r¨s·ğØ € € € Ø € € € Ø#Ğ#Ğ#Ğ#Ğ#Ğ#Ğ#Ğ#à € € € ØĞĞĞà=Ğ=Ğ=Ğ=Ğ=Ğ=ØBĞBĞBĞBĞBĞBØ7Ğ7Ğ7Ğ7Ğ7Ğ7ğ ğ ğ ğ ğ ˆSñ ô ğ ğ6)ğ)ğ)ğ)ğ)�6ñ)ô)ğ)ğ,#)ğ#)ğ#)ğ#)ğ#)�ñ#)ô#)ğ#)ğL!)ğ!)ğ!)ğ!)ğ!)˜ñ!)ô!)ğ!)ğH)ğ)ğ)ğ)ğ)�&ñ)ô)ğ)ğ()ğ)ğ)ğ)ğ)˜ñ)ô)ğ)ğBC)ğC)ğC)ğC)ğC)�FñC)ôC)ğC)ğC)ğC)r
15,725
Python
.pyt
55
284.672727
1,489
0.309936
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,566
arena.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/Arena/__pycache__/arena.cpython-311.pyc
§ kŒ¢fHãó~—ddlZddlZddlmZddlmZddlmZddlm Z ddl m Z m Z ddl mZGd„d e¦«ZdS) éN)ÚPlayer)Ú GeneralArena)Ú HookManager)ÚHookAt)Ú scale_actionÚ resize_obs)ÚAlphaZeroConfigcóv—eZdZ ddedepddefd„Z dded ed ed ed ed ede pddede eeeffd„Z d„Z dS)ÚArenaNFÚalpha_zero_configÚ hook_managerÚ state_managedcól—||_||_||_|�|n t¦«|_||_dS)N)Ú game_managerrÚdevicerr r )Úselfrr rr rs úR/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/AlphaZero/Arena/arena.pyÚ__init__zArena.__init__s<€à(ˆÔØ*ˆÔ؈Œ Ø,8Ğ,D˜L˜LÍ+É-Ì-ˆÔØ!2ˆÔĞĞóéÚplayer1Úplayer2Únum_games_to_playÚnum_mc_simulationsÚ one_playerÚ start_playerÚ add_to_kwargsÚdebugÚreturnc óÔ —ddddœ} |jj} |r|} n|dz} |jrl|jdkr|j|j_|jdkr|j|j_| |j¦«| |j¦«t|¦«D�]²} | | kr|} n| } || |j| |jj dœ}|�|  |¦«|jj s|j  ¦«}n|j  | ¬¦«}|jj r�|jjr„ |jj |j |d¦«d¦«|jj |j |d ¦«d ¦«n#t$$rYnwxYw|jd kr|j d¦«|jd kr|j d¦« |j ¦«| dkr|j|fi|¤�}n|j|fi|¤�}|j ||jjt4t6j||| f¬ ¦«|js8|j ||| ¦«}|j | |¦«}n;|j || ¦«d}|j | ¦«}|j ¦«|jj �ret?|t@¦«r'tC||j "¦«¦«nCtC|d|j#dz|dz|j "¦«¦«} | dkrg|jdkr!|jj $||d ¦«|jj $|j |d¦«|d¦«nf|jdkr!|jj $||d¦«|jj $|j |d ¦«|d ¦«n#t$$rYnwxYw|�Ã|dkr(| dkr| d xxdz cc<nO| dxxdz cc<n>|d kr(| dkr| dxxdz cc<n!| d xxdz cc<n| dxxdz cc<|jdks |jdkr|rtKj&d¦«tOj(| d | d| ddœ¦«n | d z} | |d<�ŒM�Œ´| d | d| dfS)aÌ Pit two players against each other for a given number of games and gather the results. :param start_player: Which player should start the game. :param one_player: If True always only the first player will start the game. :param player1: :param player2: :param num_games_to_play: :param num_mc_simulations: :return: number of wins for player1, number of wins for player2, number of draws r)Úwins_p1Úwins_p2ÚdrawséÚ NetPlayer)Únum_simulationsÚcurrent_playerrÚtauÚunravelN)ÚplayerréÿÿÿÿÚ NetworkPlayerT)Úargsr!r"r#Ú HumanPlayergš™™™™™É?r'))r Ú arena_taurÚnamerÚmonte_carlo_tree_searchÚset_game_managerÚrangerr)ÚupdateÚrequires_player_to_resetÚresetÚarena_running_muzeroÚenable_frame_bufferÚbufferÚ init_bufferÚget_state_for_passive_playerÚAttributeErrorÚ step_rootÚrenderÚ choose_mover Úprocess_hook_executesÚpitÚ__name__Ú__file__rÚMIDDLEÚget_next_stateÚ game_resultÚ isinstanceÚintrÚget_num_actionsÚshapeÚ add_frameÚtimeÚsleepÚwandbÚlog)rrrrrrrrrÚresultsr(Únum_games_per_playerÚgamer'ÚkwargsÚstateÚmoveÚstatuss rrAz Arena.pitsš€ğ ¨A¸Ğ:Ğ:ˆØÔ$Ô.ˆØ ğ :Ø#4Ğ Ğ à#4¸Ñ#9Ğ à Ô ğ 8ØŒ|˜{Ò*Ğ*Ø?CÔ?P�Ô/Ô<ØŒ|˜{Ò*Ğ*Ø?CÔ?P�Ô/Ô<à × $Ò $ TÔ%6Ñ 7Ô 7Ğ 7Ø × $Ò $ TÔ%6Ñ 7Ô 7Ğ 7åĞ+Ñ,Ô,ğV :ñV :ˆDØĞ*Ò*Ğ*Ø!-��à". �à);È~ĞimÔitØ ¨TÔ-CÔ-KğMğMˆFàĞ(Ø— ’ ˜mÑ,Ô,Ğ,ØÔ)ÔBğ GØÔ)×/Ò/Ñ1Ô1��àÔ)×/Ò/°~Ğ/ÑFÔF�àÔ%Ô:ğ ¸tÔ?UÔ?iğ ğØÔ3Ô:×FÒFØÔ)×FÒFÀuÈaÑPÔPØñôğğÔ3Ô:×FÒFØÔ)×FÒFÀuÈbÑQÔQĞSUñWôWğWğWøå%ğğğØ�DğøøøğŒ|˜Ò.Ğ.ØÔ/×9Ò9¸$Ñ?Ô?Ğ?ØŒ|˜Ò.Ğ.ØÔ/×9Ò9¸$Ñ?Ô?Ğ?ğ8 :ØÔ!×(Ò(Ñ*Ô*Ğ*Ø! QÒ&Ğ&Ø.˜7Ô.¨uĞ?Ğ?¸Ğ?Ğ?�D�Dà.˜7Ô.¨uĞ?Ğ?¸Ğ?Ğ?�DØÔ!×7Ò7¸¸d¼hÔ>OÕQYÕ[aÔ[hØ>BÀFÈNĞ=[ğ8ñ]ô]ğ]àÔ)ğKØ Ô-×<Ò<¸UÀDÈ.ÑYÔY�EØ!Ô.×:Ò:¸>È5ÑQÔQ�F�Fà Ô-×<Ò<¸TÀ>ÑRÔRĞSTÔU�EØ!Ô.×:Ò:¸>ÑJÔJ�FØÔ!×(Ò(Ñ*Ô*Ğ*ØÔ)Ô>ñİV`ĞaeÕgjÑVkÔVkğn�<¨¨dÔ.?×.OÒ.OÑ.QÔ.QÑRÔRĞRİ$ T¨!¤W¨u¬{¸1¬~Ñ%=ÀÀQÄÑ%GÈÔIZ×IjÒIjÑIlÔIlÑmÔmğğ Ø)¨QÒ.Ğ.Ø&œ|¨{Ò:Ğ:Ø 'Ô ?Ô F× PÒ PĞQVĞW[Ğ\^Ñ _Ô _Ğ _Ø#Ô;ÔB×LÒLÈTÔM^×M{ÒM{ğ}BğDEñNFôNFğGKğLMñNôNğNğNà&œ|¨{Ò:Ğ:Ø 'Ô ?Ô F× PÒ PĞQVĞW[Ğ\]Ñ ^Ô ^Ğ ^Ø#Ô;ÔB×LÒLÈTÔM^×M{ÒM{ğ}BğDFñNGôNGğHLğMOñPôPğPøøå)ğğğà˜ğøøøğĞ%Ø ’{�{Ø)¨QÒ.Ğ.Ø# IĞ.Ğ.Ô.°!Ñ3Ğ.Ğ.Ñ.Ğ.à# IĞ.Ğ.Ô.°!Ñ3Ğ.Ğ.Ñ.Ğ.à 2š˜Ø)¨QÒ.Ğ.Ø# IĞ.Ğ.Ô.°!Ñ3Ğ.Ğ.Ñ.Ğ.à# IĞ.Ğ.Ô.°!Ñ3Ğ.Ğ.Ñ.Ğ.à Ğ(Ğ(Ô(¨AÑ-Ğ(Ğ(Ñ(ğ œ ¨ Ò5Ğ5¸¼ÈÒ9VĞ9VĞ\aĞ9Vİœ  3™œ˜å”I¨'°)Ô*<ÈĞQZÔI[ĞfmĞnuÔfvĞwĞwÑxÔxĞxØà "Ñ$�Ø+9�Ğ'Ñ(ñq8 :ñjğ�yÔ! 7¨9Ô#5°w¸wÔ7GĞGĞGs&Ä6A2F)Æ) F6Æ5F6ÎCQ0Ñ0 Q=Ñ<Q=có$—td¦«}|S)NzPress any key to continue...)Úinput)rÚinpts rÚ wait_keypresszArena.wait_keypress�s€İĞ3Ñ4Ô4ˆØˆ r)NF)FrNF) rBÚ __module__Ú __qualname__r rÚboolrrrHÚdictÚtuplerArZ©rrr r s퀀€€€àQVğ3ğ3¸ğ3Ø*Ğ2¨dğ3ØJNğ3ğ3ğ3ğ3ğpuğuHğuH˜6ğuH¨FğuHÀsğuHĞ`cğuHØğuHØ47ğuHØLPÈLĞTXğuHØhlğuHà �#�s˜C�-Ô ğuHğuHğuHğuHğnğğğğrr )rLrNÚ%mu_alpha_zero.AlphaZero.Arena.playersrÚmu_alpha_zero.General.arenarÚ mu_alpha_zero.Hooks.hook_managerrÚmu_alpha_zero.Hooks.hook_pointrÚmu_alpha_zero.MuZero.utilsrrÚmu_alpha_zero.configr r r`rrú<module>rgsÇğØ € € € à € € € à8Ğ8Ğ8Ğ8Ğ8Ğ8à4Ğ4Ğ4Ğ4Ğ4Ğ4Ø8Ğ8Ğ8Ğ8Ğ8Ğ8Ø1Ğ1Ğ1Ğ1Ğ1Ğ1Ø?Ğ?Ğ?Ğ?Ğ?Ğ?Ğ?Ğ?Ø0Ğ0Ğ0Ğ0Ğ0Ğ0ğBğBğBğBğBˆLñBôBğBğBğBr
7,879
Python
.pyt
29
268.103448
1,827
0.361992
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,567
az_node.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/MCTS/__pycache__/az_node.cpython-311.pyc
§ ’Ô†f‚ãóD—ddlZddlZddlZddlmZGd„d¦«ZdS)éN)ÚTicTacToeGameManagercóP—eZdZdZdd„Zdd„Zd„Zd„Zdd „Zdd „Z d „Z d „Z d„Z dS)Ú AlphaZeroNodez€ This class defines a node in the search tree. It stores all the information needed for DeepMind's AlphaZero algorithm. rNcó¸—||_|dk|_i|_|�tj|¦«nd|_||_d|_||_d|_ d|_ dS©Nr) Ú times_visitedÚwas_init_with_zero_visitsÚchildrenÚweakrefÚrefÚparentÚselect_probabilityÚqÚcurrent_playerÚstateÚ total_value)Úselfrrr Útimes_visited_inits úS/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/AlphaZero/MCTS/az_node.pyÚ__init__zAlphaZeroNode.__init__ se€Ø/ˆÔØ);¸qÒ)@ˆÔ&؈Œ Ø-3Ğ-?•g”k &Ñ)Ô)Ğ)ÀTˆŒ Ø"4ˆÔ؈ŒØ,ˆÔ؈Œ ؈ÔĞĞóÚreturncóª—| ¦«|_t|¦«D])\}}t|jdz||¬¦«}||j|<Œ*dS)a6 Expands the newly visited node with the given action probabilities and state. :param state: np.ndarray of shape (board_size, board_size) representing the state current game board. :param action_probabilities: list of action probabilities for each action. :return: None éÿÿÿÿ)rr N)ÚcopyrÚ enumeraterrr )rrÚaction_probabilitiesÚactionÚ probabilityÚnodes rÚexpandzAlphaZeroNode.expandsg€ğ—Z’Z‘\”\ˆŒ å#,Ğ-AÑ#BÔ#Bğ )ğ )Ñ ˆF�Kİ  Ô!4¸Ñ!;ĞP[ĞdhĞiÑiÔiˆDØ$(ˆDŒM˜&Ñ !Ğ !ğ )ğ )rcó2—t|j¦«dkSr)Úlenr ©rs rÚ was_visitedzAlphaZeroNode.was_visited&s€İ�4”=Ñ!Ô! AÒ%Ğ%rcój—|j€ ||_dS|j|jz|z|jdzz |_dS)Né)rr)rÚvs rÚupdate_qzAlphaZeroNode.update_q)s;€à Œ6ˆ>؈DŒFˆFˆFàÔ(¨4¬6Ñ1°AÑ5¸$Ô:LÈqÑ:PÑQˆDŒFˆFˆFrçø?c óx—td¦« }d}d}tj|jdkd|j¦«}tj|dkd|¦«}g}|j ¦«D]h\}}tj||jj¦«} || dkrŒ1| |¬¦«} |  | ¦«| |kr| }|}|}Œid„|j  ¦«D¦«} |€<td|jd|| |  ¦«|td d ¦«¬ ¦«||fS) NÚinfréûÿÿÿr')ÚccóB—g|]}|j|j|j|jg‘ŒS©)rrrr)Ú.0Úchilds rú <listcomp>z0AlphaZeroNode.get_best_child.<locals>.<listcomp>Bs8€ğ6ğ6ğ6Ğhm˜uœ{¨EÔ,?ÀÄÈ%ÔJbĞcğ6ğ6ğ6rz-Best child is None. Possibly important info: Ú zimportant_info.txtÚw)Úfile)ÚfloatÚnpÚwhererr ÚitemsÚ unravel_indexÚshapeÚ calculate_utcÚappendÚvaluesÚprintr%Úopen) rr.Úbest_utcÚ best_childÚ best_actionÚvalids_for_stateÚutcsrr2Úaction_Ú child_utcÚprintable_childrens rÚget_best_childzAlphaZeroNode.get_best_child0so€İ˜%‘L”L�=ˆØˆ ؈ İœ8 D¤J°!¢O°R¸¼ÑDÔDĞİœ8Ğ$4¸Ò$9¸1Ğ>NÑOÔOĞØˆØ!œ]×0Ò0Ñ2Ô2ğ %ğ %‰MˆF�EİÔ& v¨t¬zÔ/?Ñ@Ô@ˆGØ Ô(¨AÒ-Ğ-ØØ×+Ò+¨aĞ+Ñ0Ô0ˆIØ �KŠK˜ Ñ "Ô "Ğ "ؘ8Ò#Ğ#Ø$�Ø"� Ø$� øğ6ğ6Ø"œm×2Ò2Ñ4Ô4ğ6ñ6ô6Ğà Ğ å ĞBÀDÄJĞPTØ"Ğ$6¸×8HÒ8HÑ8JÔ8JÈDİğ#Ø$'ñ)ô)ğ *ñ *ô *ğ *ğ ˜;Ğ&Ğ&rcóú—| ¦«}|j€(||jztj|jdz¦«z}n7|j||jtj|j¦«d|jzz zzz}|S)Ng:Œ0â�yE>r')r rrÚmathÚsqrtr)rr.r Úutcs rr=zAlphaZeroNode.calculate_utcMs€€Ø—’‘”ˆØ Œ6ˆ>à�dÔ-Ñ-µ´ ¸&Ô:NĞQUÑ:UÑ0VÔ0VÑVˆCˆCà”&˜1ØÔ+µ´ ¸&Ô:NÑ0OÔ0OĞTUĞX\ÔXjÑTjÑ/kÑlñnñnˆCğˆ rcó:—|jdkr|j|jz ndSr)rrr$s rÚget_self_valuezAlphaZeroNode.get_self_valueXs&€Ø8<Ô8JÈQÒ8NĞ8NˆtÔ $Ô"4Ñ4Ğ4ĞTUĞUrcóp—|j}i}|j ¦«D]\}}|j|z ||<Œ|S©N)rr r:)rÚtotal_times_visitedÚ action_probsrr2s rÚget_self_action_probabilitiesz+AlphaZeroNode.get_self_action_probabilities[sO€à"Ô0ĞØˆ Ø!œ]×0Ò0Ñ2Ô2ğ Mğ M‰MˆF�EØ#(Ô#6Ğ9LÑ#LˆL˜Ñ Ğ àĞrcó—|jSrR)rr$s rÚ get_latentzAlphaZeroNode.get_latentds €ØŒzĞr)rNr)rN)r*) Ú__name__Ú __module__Ú __qualname__Ú__doc__rr!r%r)rJr=rPrUrWr0rrrrs¿€€€€€ğğğ ğ ğ ğ ğ )ğ )ğ )ğ )ğ&ğ&ğ&ğRğRğRğ'ğ'ğ'ğ'ğ: ğ ğ ğ ğVğVğVğğğğğğğğrr)rLr Únumpyr8Ú!mu_alpha_zero.Game.tictactoe_gamerÚ GameManagerrr0rrú<module>r_sqğØ € € € Ø€€€ØĞĞĞàQĞQĞQĞQĞQĞQğ]ğ]ğ]ğ]ğ]ñ]ô]ğ]ğ]ğ]r
5,913
Python
.pyt
35
166.514286
775
0.387651
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,568
az_search_tree.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/MCTS/__pycache__/az_search_tree.cpython-311.pyc
§ ’Ô†fe(ãó¼—ddlZddlmZddlZddlZddlmZddl m Z m Z ddl m Z ddlmZddlmZddlmZdd lmZdd lmZdd lmZGd „d e¦«Zd„ZdS)éN)ÚPool)Ú AlphaZeroNode)Ú"augment_experience_with_symmetriesÚmask_invalid_actions)ÚTicTacToeGameManager)ÚGeneralMemoryBuffer)ÚGeneralNetwork)Ú SearchTree)Ú HookManager)ÚHookAt)ÚAlphaZeroConfigc óø—eZdZ ddededepdfd„Zdedej de e e e e ffd „Z dd „Zd „Zd e dzddfd „Zd„Zdedej de dede e e e ff d„Zede de dedej de de f d„¦«ZdS)Ú McSearchTreeNÚ game_managerÚalpha_zero_configÚ hook_managercó^—||_||_|�|n t¦«|_d|_dS©N)rrr rÚ root_node)Úselfrrrs úZ/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/AlphaZero/MCTS/az_search_tree.pyÚ__init__zMcSearchTree.__init__s2€à(ˆÔØ!2ˆÔØ,8Ğ,D˜L˜LÍ+É-Ì-ˆÔ؈ŒˆˆóÚnetworkÚdeviceÚreturncó¨‡ ‡ —|j ¦«}dŠ g}ddddœ} | ||‰ |¦«\}}|j ||jj¬¦«}| d¦«| |‰ z|d‰ f¦«|j ||j  |¦«‰ ¦«}|j  ‰ |¦«Š ‰ �w‰ ‰ kr|dxxdz cc<n1d‰ cxkrdkrnn|d xxdz cc<n|d xxdz cc<d‰ cxkrdkrnnˆ fd „|D¦«}nˆ ˆ fd „|D¦«}n‰ dzŠ �ŒAt||jj ¦«}|j  ||jjt"t$j||f¬ ¦«||d|d |d fS)a¸ Plays a single game using the Monte Carlo Tree Search algorithm. Args: network: The neural network used for searching and evaluating moves. device: The device (e.g., CPU or GPU) on which the network is located. Returns: A tuple containing the game history, and the number of wins, losses, and draws. The game history is a list of tuples, where each tuple contains: - The game state multiplied by the current player - The policy vector (probability distribution over moves) - The game result (1 for a win, -1 for a loss, 0 for a draw) - The current player (-1 or 1) ér)Ú1ú-1ÚDT)ÚtauNréÿÿÿÿr!r có@•—g|]}|d|d‰|df‘ŒS©rré©)Ú.0ÚxÚrs €rú <listcomp>z.McSearchTree.play_one_game.<locals>.<listcomp>As.ø€Ğ#PĞ#PĞ#P¸a Q q¤T¨1¨Q¬4°°A°a´DĞ$9Ğ#PĞ#PĞ#PrcóX•—g|]&}|d|d‰‰z|dz|df‘Œ'Sr%r')r(r)Úcurrent_playerr*s €€rr+z.McSearchTree.play_one_game.<locals>.<listcomp>Cs=ø€Ğ#hĞ#hĞ#hĞVW Q q¤T¨1¨Q¬4°°^Ñ1CÀaÈÄdÑ1JÈAÈaÌDĞ$QĞ#hĞ#hĞ#hr©Úargs)rÚresetÚsearchÚ select_moverr"Ú step_rootÚappendÚget_next_stateÚnetwork_to_boardÚ game_resultrÚ board_sizerÚprocess_hook_executesÚ play_one_gameÚ__name__Ú__file__r ÚTAIL) rrrÚstateÚ game_historyÚresultsÚpiÚ_Úmover-r*s @@rr:zMcSearchTree.play_one_games/øø€ğ"Ô!×'Ò'Ñ)Ô)ˆØˆØˆ Ø ¨Ğ+Ğ+ˆğ !Ø—K’K ¨°ÀÑGÔG‰EˆB�ØÔ$×0Ò0°¸Ô8NÔ8RĞ0ÑSÔSˆDà �NŠN˜4Ñ Ô Ğ à × Ò  ¨Ñ!7¸¸TÀ>Ğ RÑ SÔ SĞ SØÔ%×4Ò4°U¸DÔ<M×<^Ò<^Ğ_cÑ<dÔ<dĞftÑuÔuˆEØÔ!×-Ò-¨n¸eÑDÔDˆA؈}ؘÒ&Ğ&ؘC�L�L”L AÑ%�L�L‘L�Lؘ!�Z�Z’Z�Z˜a’Z�Z�Z�Z�ZؘC�L�L”L AÑ%�L�L‘L�Là˜D�M�M”M QÑ&�M�M‘Mà˜�:�:’:�:˜A’:�:�:�:�:Ø#PĞ#PĞ#PĞ#PÀ<Ğ#PÑ#PÔ#P�L�Là#hĞ#hĞ#hĞ#hĞ#hĞ[gĞ#hÑ#hÔ#h�LØØ ˜bÑ ˆNñ- !õ2:¸,ÈÔHYÔHdÑeÔeˆ Ø Ô×/Ò/°°dÔ6HÔ6QÕS[Õ]cÔ]hØ6BÀGĞ5Lğ 0ñ Nô Nğ Nà˜W Sœ\¨7°4¬=¸'À#¼,ĞFĞFrcó�—|jj}|€ |jj}|j€t |d¬¦«|_|j ||¦«}tj|tj |¬¦«  d¦«}|  |d¬¦«\}} |tj  |jjg|jjz¦« dd¦«z}t%||j | ¦«|¦«|jj¦«}| ¦« ¦«}|j ||¦«t3|¦«D�]n} |j} | g} d} |  ¦«r¢|  |jj¬ ¦«\} } | €Ttj|jd ¦«tj| ¦«d |›d �¦«t?d ¦«‚|   | ¦«|  ¦«°¢|j !|  "¦«j#|j $| ¦«|  "¦«j%¦«}|j || j%¦«}|j &| j%|¦«} | €ïtj|tj |¬¦«  d¦«}|  |d¬¦«\}} t%||j || j%¦«|jj¦«}|  ¦« ¦«d} | ¦« ¦«}|  ||¦«| '| | ¦«�Œp|j( )||j*j+tXtZj.||jf¬¦«|j /¦«dfS)zó Perform a Monte Carlo Tree Search on the current state starting with the current player. :param tau: :param network: :param state: :param current_player: :param device: :return: Nr)Útimes_visited_init)ÚdtyperF)Úmuzerorr#)Úcz root_node.ptÚnetwork_none_checkpoint_z.ptzcurrent_node is Noner.)0rÚnum_simulationsr"rrrÚget_canonical_formÚthÚtensorÚfloat32Ú unsqueezeÚpredictÚnpÚrandomÚ dirichletÚdirichlet_alphaÚnet_action_sizeÚreshaperÚget_invalid_actionsÚcopyr8ÚflattenÚtolistÚexpandÚrangeÚ was_visitedÚget_best_childrHÚsaveÚ state_dictÚ ValueErrorr4r5Úparentr>r6r-r7Úbackproprr9r1r;r<r r=Úget_self_action_probabilities)rrr>r-rr"rJÚstate_Ú probabilitiesÚvÚ simulationÚ current_nodeÚpathÚactionÚ next_stateÚ next_state_s rr1zMcSearchTree.searchMs €ğÔ0Ô@ˆØ ˆ;ØÔ(Ô,ˆCØ Œ>Ğ !İ*¨>ÈaĞPÑPÔPˆDŒNØÔ"×5Ò5°e¸^ÑLÔLˆå”˜6­¬¸FĞCÑCÔC×MÒMÈaÑPÔPˆØ"Ÿ?š?¨6¸%˜?Ñ@Ô@ш �qØ%­¬ ×(;Ò(;Ø Ô #Ô 3Ğ 4°tÔ7MÔ7]Ñ ]ñ)_ô)_ß_fÒ_fĞghØgiñ`kô`kñkˆ õ-¨]Ø-1Ô->×-RÒ-RĞSX×S]ÒS]ÑS_ÔS_ĞaoÑ-pÔ-pØ-1Ô->Ô-IñKôKˆ ğ&×-Ò-Ñ/Ô/×6Ò6Ñ8Ô8ˆ Ø Œ×Ò˜e ]Ñ3Ô3Ğ3İ Ñ0Ô0ğ #ñ #ˆJØœ>ˆLØ �>ˆD؈FØ×*Ò*Ñ,Ô,ğ *Ø'3×'BÒ'BÀTÔE[ÔE]Ğ'BÑ'^Ô'^Ñ$� ˜fØĞ'İ”G˜DœN¨NÑ;Ô;Ğ;İ”G˜G×.Ò.Ñ0Ô0Ğ2`È^Ğ2`Ğ2`Ğ2`ÑaÔaĞaİ$Ğ%;Ñ<Ô<Ğ<Ø— ’ ˜LÑ)Ô)Ğ)ğ ×*Ò*Ñ,Ô,ğ *ğÔ*×9Ò9¸,×:MÒ:MÑ:OÔ:OÔ:UØ:>Ô:K×:\Ò:\Ğ]cÑ:dÔ:dØ:F×:MÒ:MÑ:OÔ:OÔ:^ñ`ô`ˆJğÔ+×>Ò>¸zÈ<ÔKfÑgÔgˆKØÔ!×-Ò-¨lÔ.IÈ:ÑVÔVˆA؈yå œi¨ ½2¼:ÈfĞUÑUÔU×_Ò_Ğ`aÑbÔb� Ø#*§?¢?°;Àu ?Ñ#MÔ#MÑ � ˜qİ 4°]ÀDÔDU×DiÒDiĞjtØjvôkFñEGôEGà59Ô5FÔ5Qñ!Sô!S� ğ—I’I‘K”K×&Ò&Ñ(Ô(¨Ô+�Ø -× 5Ò 5Ñ 7Ô 7× >Ò >Ñ @Ô @� Ø×#Ò# J° Ñ>Ô>Ğ>à �MŠM˜!˜TÑ "Ô "Ğ "Ñ "à Ô×/Ò/°°d´kÔ6JÍHÕV\ÔVaØ69¸4¼>Ğ5Jğ 0ñ Lô Lğ LàŒ~×;Ò;Ñ=Ô=¸tĞCĞCrcó�—t|¦«D]<}|dz}|xj|z c_| |¦«|xjdz c_Œ=dS)a Backpropagates the value `v` through the search tree, updating the relevant nodes. Args: v (float): The value to be backpropagated. path (list): The path from the leaf node to the root node. Returns: None r#rN)ÚreversedÚ total_valueÚupdate_qÚ times_visited)rrgrjÚnodes rrczMcSearchTree.backprop‹si€õ˜T‘N”Nğ $ğ $ˆDØ �‰GˆAØ Ğ Ô  Ñ !Ğ Ô Ø �MŠM˜!Ñ Ô Ğ Ø Ğ Ô  !Ñ #Ğ Ô Ğ ğ  $ğ $rÚactionscó´—|�N|j�E|j ¦«sdS|D]}|jj||_Œd|j_dSdSd|_dSr)rr]Úchildrenrb)rrtrks rr3zMcSearchTree.step_rootœst€Ø Ğ ØŒ~Ğ)Ø”~×1Ò1Ñ3Ô3ğØ�FØ%ğEğE�FØ%)¤^Ô%<¸VÔ%D�D”N�NØ(,�”Ô%Ğ%Ğ%ğ *Ğ)ğ"ˆDŒNˆNˆNrcóZ—t|j ¦«|j¦«Sr)rrÚmake_fresh_instancer)rs rrxz McSearchTree.make_fresh_instance¨s$€İ˜DÔ-×AÒAÑCÔCÀTÔE[Ñ\Ô\Ğ\rÚnetÚ num_gamesÚmemorycóº—d\}}}t|¦«D]A}| ||¦«\} } } } || z }|| z }|| z }| | ¦«ŒB|||fS©N©rrr)r\r:Úadd_list) rryrrzr{Úwins_p1Úwins_p2ÚdrawsÚgameÚ game_resultsÚwins_p1_Úwins_p2_Údraws_s rÚ self_playzMcSearchTree.self_play«s‚€à")ш�˜%ݘ)Ñ$Ô$ğ *ğ *ˆDØ7;×7IÒ7IÈ#ÈvÑ7VÔ7VÑ 4ˆL˜( H¨fØ �xÑ ˆGØ �xÑ ˆGØ �V‰OˆEØ �OŠO˜LÑ )Ô )Ğ )Ğ )à˜ Ğ&Ğ&rÚnetsÚtreesÚnum_jobsc ó(‡‡‡‡‡‡—t‰¦«5}‰jsF| tˆˆˆˆˆfd„t t ‰¦«¦«D¦«¦«}nF| tˆˆˆˆˆˆfd„t t ‰¦«¦«D¦«¦«}ddd¦«n #1swxYwYd\}} } |D]E} || dz }| | dz } | | dz } ‰js‰ | d¦«ŒF|| | fS)Ncó`•—g|]*}‰|‰|tj‰¦«‰‰zdf‘Œ+Sr©rXÚdeepcopy)r(Úirr‰rzr‹rŠs €€€€€rr+z3McSearchTree.parallel_self_play.<locals>.<listcomp>½sKø€ğ%7ğ%7ğ%7Ğqr d¨1¤g¨u°Q¬x½¼ÀvÑ9NÔ9NĞPYĞ]eÑPeĞgkĞ%lğ%7ğ%7ğ%7rc ó„•—g|]<}‰|‰|tj‰¦«‰‰ztj‰¦«f‘Œ=Sr'r�)r(r�rr{r‰rzr‹rŠs €€€€€€rr+z3McSearchTree.parallel_self_play.<locals>.<listcomp>ÀsUø€ğ2&ğ2&ğ2&Øqr�T˜!”W˜e Aœh­¬ °fÑ(=Ô(=¸yÈHÑ?TÕVZÔVcĞdjÑVkÔVkĞlğ2&ğ2&ğ2&rr~rrér&)rÚis_diskÚstarmapÚ p_self_playr\Úlenr) r‰rŠr{rrzr‹Úpr@r€r�r‚Úresults `````` rÚparallel_self_playzMcSearchTree.parallel_self_play·sªøøøøøø€õ�(‰^Œ^ğ '˜qØ”>ğ 'ØŸ)š)¥Kğ%7ğ%7ğ%7ğ%7ğ%7ğ%7ğ%7ğ%7İ%*­3¨t©9¬9Ñ%5Ô%5ğ%7ñ%7ô%7ñ8ô8��ğŸ)š)¥Kğ2&ğ2&ğ2&ğ2&ğ2&ğ2&ğ2&ğ2&ğ2&å�#˜d™)œ)Ñ$Ô$ğ2&ñ2&ô2&ñ'ô'�ğ  'ğ 'ğ 'ñ 'ô 'ğ 'ğ 'ğ 'ğ 'ğ 'ğ 'øøøğ 'ğ 'ğ 'ğ 'ğ#*ш�˜%Øğ +ğ +ˆFØ �v˜a”yÑ ˆGØ �v˜a”yÑ ˆGØ �V˜A”YÑ ˆEØ”>ğ +Ø—’  q¤ Ñ*Ô*Ğ*øØ˜ Ğ&Ğ&s–BB6Â6B:Â=B:r)r;Ú __module__Ú __qualname__rr r rr rLrÚtupleÚlistÚintr:r1rcr3rxrrˆÚ staticmethodr™r'rrrrsŒ€€€€€à59ğğĞ%9ğÈoğØ*Ğ2¨dğğğğğ1G ^ğ1G¸R¼Yğ1GÈ5ĞQUĞWZĞ\_ĞadĞQdÔKeğ1Gğ1Gğ1Gğ1Gğf<Dğ<Dğ<Dğ<Dğ|$ğ$ğ$ğ" " ¨¡ğ "°ğ "ğ "ğ "ğ "ğ]ğ]ğ]ğ '˜^ğ '°R´Yğ 'È3ğ 'ĞXkğ 'ĞpuØ ˆS�#ˆ ôqğ 'ğ 'ğ 'ğ 'ğğ' ğ'¨dğ'Ğ<Oğ'ĞY[ÔYbğ'Ğorğ'Ø%(ğ'ğ'ğ'ñ„\ğ'ğ'ğ'rrcóş—d\}}}g}t|¦«D]Y} | ||¦«\} } } } || z }|| z }|| z }|�| | ¦«ŒD| | ¦«ŒZ|€||||fS|||fSr})r\r:rÚextend)ryÚtreerrzr{r€r�r‚Údatarƒr„Úwp1Úwp2Údss rr•r•Ís´€Ø%Ñ€GˆW�eØ €Dİ�iÑ Ô ğ&ğ&ˆØ%)×%7Ò%7¸¸VÑ%DÔ%DÑ"ˆ �c˜3 Ø�3‰ˆØ�3‰ˆØ �‰ ˆØ Ğ Ø �OŠO˜LÑ )Ô )Ğ )Ğ )à �KŠK˜ Ñ %Ô %Ğ %Ğ %Ø €~ؘ ¨Ğ,Ğ,Ø �G˜UĞ "Ğ"r)rXÚmultiprocessingrÚnumpyrQÚtorchrLÚ$mu_alpha_zero.AlphaZero.MCTS.az_noderÚmu_alpha_zero.AlphaZero.utilsrrÚ!mu_alpha_zero.Game.tictactoe_gamerÚmu_alpha_zero.General.memoryrÚmu_alpha_zero.General.networkr Ú!mu_alpha_zero.General.search_treer Ú mu_alpha_zero.Hooks.hook_managerr Úmu_alpha_zero.Hooks.hook_pointr Úmu_alpha_zero.configr rr•r'rrú<module>r³s,ğØ € € € Ø Ğ Ğ Ğ Ğ Ğ àĞĞĞØĞĞĞà>Ğ>Ğ>Ğ>Ğ>Ğ>ØbĞbĞbĞbĞbĞbĞbĞbØBĞBĞBĞBĞBĞBØ<Ğ<Ğ<Ğ<Ğ<Ğ<Ø8Ğ8Ğ8Ğ8Ğ8Ğ8Ø8Ğ8Ğ8Ğ8Ğ8Ğ8Ø8Ğ8Ğ8Ğ8Ğ8Ğ8Ø1Ğ1Ğ1Ğ1Ğ1Ğ1Ø0Ğ0Ğ0Ğ0Ğ0Ğ0ğx'ğx'ğx'ğx'ğx'�:ñx'ôx'ğx'ğv#ğ#ğ#ğ#ğ#r
14,571
Python
.pyt
85
167.270588
1,422
0.350549
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,569
nnet.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/Network/__pycache__/nnet.cpython-311.pyc
§ *¤fZDãóî—ddlZddlZddlZddlZddlZddlmZddl mcm Z ddl Z ddl m Z ddlmZddlmZddlmZddlmZddlmZmZddlmZdd lmZGd „d eje¦«ZGd „d eje¦«ZGd„dejj¦«Z Gd„dejj¦«Z!Gd„dejj¦«Z"Gd„dejj¦«Z#Gd„dej¦«Z$dS)éN)Úmse_loss)ÚT)ÚGeneralAlphZeroNetwork)Ú HookManager)ÚHookAt)ÚAlphaZeroConfigÚConfig)Ú MemBuffer)Úinvert_scale_reward_valuec ó‡—eZdZ ddedededededepdf ˆfd„ Zdd efd „Ze j ¦«dd „¦«Z ddefd„Z dede fd„Zd d„Zd„Zeddedepdfd„¦«Zdedefd„Zde jfd„Zd„Zd„ZˆxZS)!Ú AlphaZeroNetNÚ in_channelsÚ num_channelsÚdropoutÚ action_sizeÚlinear_input_sizeÚ hook_managercó•—tt|¦« ¦«||_||_||_||_||_|�|n t¦«|_ tj ||dd¬¦«|_ tj |¦«|_tj ||dd¬¦«|_tj |¦«|_tj ||dd¬¦«|_tj |¦«|_tj ||d¦«|_tj |¦«|_tj|jd¦«|_tjd¦«|_tjdd¦«|_tjd¦«|_tj|¦«|_tjd|¦«|_tjdd¦«|_t?j |j!¦«dS)Néé©Úpaddingii)"Úsuperr Ú__init__rrÚ dropout_prrrrÚnnÚConv2dÚconv1Ú BatchNorm2dÚbn1Úconv2Úbn2Úconv3Úbn3Úconv4Úbn4ÚLinearÚfc1Ú BatchNorm1dÚfc1_bnÚfc2Úfc2_bnÚDropoutrÚpiÚvÚatexitÚregisterÚ clear_traces)ÚselfrrrrrrÚ __class__s €úS/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/AlphaZero/Network/nnet.pyrzAlphaZeroNet.__init__s¡ø€å �l˜DÑ!Ô!×*Ò*Ñ,Ô,Ğ,Ø&ˆÔØ(ˆÔØ ˆŒØ&ˆÔØ!2ˆÔØ,8Ğ,D˜L˜LÍ+É-Ì-ˆÔå”Y˜{¨L¸!ÀQĞGÑGÔGˆŒ İ”> ,Ñ/Ô/ˆŒİ”Y˜|¨\¸1ÀaĞHÑHÔHˆŒ İ”> ,Ñ/Ô/ˆŒİ”Y˜|¨\¸1ÀaĞHÑHÔHˆŒ İ”> ,Ñ/Ô/ˆŒİ”Y˜|¨\¸1Ñ=Ô=ˆŒ İ”> ,Ñ/Ô/ˆŒõ”9˜TÔ3°TÑ:Ô:ˆŒİ”n TÑ*Ô*ˆŒ İ”9˜T 3Ñ'Ô'ˆŒİ”n SÑ)Ô)ˆŒ å”z 'Ñ*Ô*ˆŒ õ”)˜C Ñ-Ô-ˆŒİ”˜3 Ñ"Ô"ˆŒİŒ˜Ô)Ñ*Ô*Ğ*Ğ*Ğ*óTÚmuzerocó6—|s| d¦«}tj| | |¦«¦«¦«}tj| | |¦«¦«¦«}tj| | |¦«¦«¦«}tj|  |  |¦«¦«¦«}|  |  d¦«d¦«}tj|  | |¦«¦«¦«}| |¦«}tj| | |¦«¦«¦«}| |¦«}tj| |¦«d¬¦«}tj| |¦«¦«}||fS)Nrréÿÿÿÿ©Údim)Ú unsqueezeÚFÚrelur rr"r!r$r#r&r%ÚreshapeÚsizer*r(rr,r+Ú log_softmaxr.Útanhr/©r3Úxr7r.r/s r5ÚforwardzAlphaZeroNet.forward7sr€Øğ Ø— ’ ˜A‘”ˆAİ ŒF�4—8’8˜DŸJšJ q™MœMÑ*Ô*Ñ +Ô +ˆİ ŒF�4—8’8˜DŸJšJ q™MœMÑ*Ô*Ñ +Ô +ˆİ ŒF�4—8’8˜DŸJšJ q™MœMÑ*Ô*Ñ +Ô +ˆİ ŒF�4—8’8˜DŸJšJ q™MœMÑ*Ô*Ñ +Ô +ˆà �IŠI�a—f’f˜Q‘i”i Ñ $Ô $ˆå ŒF�4—;’;˜tŸxšx¨™{œ{Ñ+Ô+Ñ ,Ô ,ˆØ �LŠL˜‰OŒOˆå ŒF�4—;’;˜tŸxšx¨™{œ{Ñ+Ô+Ñ ,Ô ,ˆØ �LŠL˜‰OŒOˆå Œ]˜4Ÿ7š7 1™:œ:¨1Ğ -Ñ -Ô -ˆİ ŒF�4—6’6˜!‘9”9Ñ Ô ˆà�1ˆuˆ r6có>—| ||¬¦«\}}tj|¦«}| ¦« ¦« ¦«| ¦« ¦« ¦«fS©N©r7©rEÚthÚexpÚdetachÚcpuÚnumpyrCs r5ÚpredictzAlphaZeroNet.predictLóo€à— ’ ˜Q v� Ñ.Ô.‰ˆˆAİ ŒV�B‰ZŒZˆØ�yŠy‰{Œ{�ŠÑ Ô ×&Ò&Ñ(Ô(¨!¯(ª(©*¬*¯.ª.Ñ*:Ô*:×*@Ò*@Ñ*BÔ*BĞBĞBr6é Ú board_sizec ó�—tj |tjdd||¦« ¦«¦«S)Nré)rJÚjitÚtraceÚrandÚcuda)r3rRs r5Úto_traced_scriptzAlphaZeroNet.to_traced_scriptRs4€İŒv�|Š|˜D¥"¤'¨!¨S°*¸jÑ"IÔ"I×"NÒ"NÑ"PÔ"PÑQÔQĞQr6Úreturncó`—| |¬¦«}d}| |¦«|S)N)rRz traced.pt)rYÚsave)r3rRÚtracedÚpaths r5rVzAlphaZeroNet.traceUs4€Ø×&Ò&°*Ğ&Ñ=Ô=ˆØˆØ� Š �DÑÔĞØˆ r6có~—ddlm}tj|¦«›d�¦«D]}tj|¦«ŒdS)Nr)Úfind_project_rootz/Checkpoints/Traces/*.pt)Úmu_alpha_zero.General.utilsr`ÚglobÚosÚremove)r3r`Ú trace_files r5r2zAlphaZeroNet.clear_traces[s]€ØAĞAĞAĞAĞAĞAİœ)Ğ'8Ğ'8Ñ':Ô':Ğ$TĞ$TĞ$TÑUÔUğ "ğ "ˆJİ ŒI�jÑ !Ô !Ğ !Ğ !ğ "ğ "r6cóZ—t|j|j|j|j|j¦«S©N)r rrrrr©r3s r5Úmake_fresh_instancez AlphaZeroNet.make_fresh_instance`s.€İ˜DÔ,¨dÔ.?ÀÄĞQUÔQaØ Ô2ñ4ô4ğ 4r6Úconfigcó^—t|j|j|j|j|j|¬¦«S)N)r)r Únum_net_in_channelsÚnum_net_channelsÚ net_dropoutÚnet_action_sizeÚaz_net_linear_input_size)rjrs r5Úmake_from_configzAlphaZeroNet.make_from_configds;€å˜FÔ6¸Ô8OĞQWÔQcØ"Ô2°FÔ4SĞbnğpñpôpğ pr6Ú memory_bufferÚalpha_zero_configc ó”—ddlm}tjtj ¦«rdnd¦«}g}tj | ¦«|j ¬¦«}|  ¦«t|j ¦«D�]Ñ}||j ¦«D�]¼}t|¦«dkrŒt|�\} } } tjt#j| ¦«tj|¬¦«} tjt#j| ¦«tj|¬¦«} tj| tj|¬¦« d¦«} | | d¬ ¦«\} } || ¦«}t-| | ¦«| | | ||¦«z}| | ¦«¦«| ¦«| ¦«| ¦«|j ||jj tBtDj#|| ¦«|f¬ ¦«�Œ¾�ŒÓ|j ||jj tBtDj$|f¬ ¦«tK|¦«t|¦«z |fS) Nr©Úmask_invalid_actions_batchrXrM)Úlrr©ÚdtypeÚdeviceFrH©Úargs)&Úmu_alpha_zero.AlphaZero.utilsrvrJrzrXÚ is_availableÚoptimÚAdamÚ parametersrwÚshuffleÚrangeÚepochsÚ batch_sizeÚlenÚzipÚtensorÚnpÚarrayÚfloat32r<rErÚpi_lossÚappendÚitemÚ zero_gradÚbackwardÚsteprÚprocess_hook_executesÚ train_netÚ__name__Ú__file__rÚMIDDLEÚTAILÚsum)r3rrrsrvrzÚlossesÚ optimizerÚepochÚexperience_batchÚstatesr.r/Úpi_predÚv_predÚmasksÚlosss r5r“zAlphaZeroNet.train_netisƒ€ØLĞLĞLĞLĞLĞLİ”¥R¤W×%9Ò%9Ñ%;Ô%;ĞF˜6˜6ÀÑGÔGˆØˆİ”H—M’M $§/¢/Ñ"3Ô"3Ğ8IÔ8L�MÑMÔMˆ Ø×ÒÑÔĞİĞ,Ô3Ñ4Ô4ğ eñ eˆEØ$1 MĞ2CÔ2NÑ$OÔ$Oğ eñ eĞ İĞ'Ñ(Ô(¨AÒ-Ğ-Øİ #Ğ%5Ğ 6‘ �˜˜Aİœ¥2¤8¨FÑ#3Ô#3½2¼:ÈfĞUÑUÔU�İ”Y�rœx¨™|œ|µ2´:ÀfĞMÑMÔM�İ”I˜a¥r¤z¸&ĞAÑAÔA×KÒKÈAÑNÔN�Ø"&§,¢,¨v¸e ,Ñ"DÔ"D‘�˜Ø2Ğ2°6Ñ:Ô:�İ ¨Ñ*Ô*¨T¯\ª\¸'À2ÀuÈfÑ-UÔ-UÑU�Ø— ’ ˜dŸiši™kœkÑ*Ô*Ğ*ğ×#Ò#Ñ%Ô%Ğ%Ø— ’ ‘”�Ø—’Ñ Ô Ğ ØÔ!×7Ò7¸¸d¼nÔ>UÕW_ÕagÔanØ>NĞPT×PYÒPYÑP[ÔP[Ğ]bĞ=cğ8ñeôeğeñeñ! eğ& Ô×/Ò/°°d´nÔ6MÍxÕY_ÔYdĞlrĞktĞ/ÑuÔuĞuİ�6‰{Œ{�S ™[œ[Ñ(¨&Ğ0Ğ0r6rzcóÌ—| |j¦« |¦«}||z}tj||z¦« | ¦«dz S©Nr©r?ÚshapeÚtorJr˜r@©r3Úy_hatÚyr rzÚ masked_y_hats r5rŒzAlphaZeroNet.pi_loss†óU€Ø— ’ ˜eœkÑ*Ô*×-Ò-¨fÑ5Ô5ˆØ˜u‘}ˆ İ”�q˜<Ñ'Ñ(Ô(Ğ(¨1¯6ª6©8¬8°A¬;Ñ6Ğ6r6có\—| ¦«D]}| ¦«ŒdSrg)r�Ú share_memory_)r3Úparams r5Úto_shared_memoryzAlphaZeroNet.to_shared_memory‹s:€Ø—_’_Ñ&Ô&ğ "ğ "ˆEØ × Ò Ñ !Ô !Ğ !Ğ !ğ "ğ "r6cór—|j ||jjtt j¦«dSrg)rr’Úrun_at_training_endr”r•rÚALLrhs r5r±z AlphaZeroNet.run_at_training_end�s0€Ø Ô×/Ò/°°dÔ6NÔ6WÕYaÕciÔcmÑnÔnĞnĞnĞnr6rg©T)rQ)rZN)r”Ú __module__Ú __qualname__ÚintÚfloatrrÚboolrErJÚno_gradrOrYÚstrrVr2riÚ staticmethodrrqr r“rzrŒr¯r±Ú __classcell__©r4s@r5r r sÒø€€€€€à59ğ+ğ+ Cğ+°sğ+ÀUğ+ĞY\ğ+Ğqtğ+Ø*Ğ2¨dğ+ğ+ğ+ğ+ğ+ğ+ğBğ ğğğğğ*€R„Z�\„\ğCğCğCñ„\ğCğ RğR¨3ğRğRğRğRğ ğ¨ğğğğğ "ğ"ğ"ğ"ğ 4ğ4ğ4ğğpğp ğpÀ Ğ@SÈtğpğpğpñ„\ğpğ1 yğ1À_ğ1ğ1ğ1ğ1ğ:7¨r¬yğ7ğ7ğ7ğ7ğ "ğ"ğ"ğoğoğoğoğoğoğor6r cóT‡—eZdZddgddddfdedededed eed ed ed ed ededeedepddededefˆfd„ Zd$dedefd„Z e j ¦«d%d„¦«Z de j fd„Zd„Zed&dedddepdfd„¦«Zded eeeeffd!„Zded dfd"„Zd#„ZˆxZS)'ÚOriginalAlphaZerNetworkéNéFrrrrrÚ support_sizeÚstate_linear_layersÚpi_linear_layersÚv_linear_layersÚlinear_head_hidden_sizeÚ latent_sizerÚ num_blocksr7Ú is_dynamicsc󕇗tt|¦« ¦«||_‰|_||_||_||_||_| |_ ||_ | |_ ||_ ||_ ||_| |_| |_d|_| �| n t%¦«|_t)j|‰dd¬¦«|_t)j‰¦«|_t)j|¦«|_t)jˆfd„t9| ¦«D¦«¦«|_t=||d|‰| | ¦«|_|r tA|d‰| || ¦«|_!dStE||d‰|| ¦«|_!dS)Nrrrcó0•—g|]}t‰‰¦«‘ŒS©)ÚOriginalAlphaZeroBlock)Ú.0Ú_rs €r5ú <listcomp>z4OriginalAlphaZerNetwork.__init__.<locals>.<listcomp>°s%ø€Ğ$sĞ$sĞ$sĞ\]Õ%;¸LÈ,Ñ%WÔ%WĞ$sĞ$sĞ$sr6ré)#rr¿rrrrrrrÂrÈr7rÇrÉrÃrÄrÅrÆršrrrrrrr r-rÚ ModuleListrƒÚblocksÚ ValueHeadÚ value_headÚ StateHeadÚ policy_headÚ PolicyHead)r3rrrrrrÂrÃrÄrÅrÆrÇrrÈr7rÉr4s ` €r5rz OriginalAlphaZerNetwork.__init__•s¡øø€õ Õ% tÑ,Ô,×5Ò5Ñ7Ô7Ğ7Ø&ˆÔØ(ˆÔØ ˆŒØ&ˆÔØ!2ˆÔØ(ˆÔØ$ˆŒØˆŒ Ø&ˆÔØ&ˆÔØ#6ˆÔ Ø 0ˆÔØ.ˆÔØ'>ˆÔ$؈ŒØ,8Ğ,D˜L˜LÍ+É-Ì-ˆÔå”Y˜{¨L¸!ÀQĞGÑGÔGˆŒ İ”> ,Ñ/Ô/ˆŒİ”z 'Ñ*Ô*ˆŒ İ”mĞ$sĞ$sĞ$sĞ$sÕafĞgqÑarÔarĞ$sÑ$sÔ$sÑtÔtˆŒ İ# FĞ,=¸aÔ,@À,ĞP\Ğ^mØ$;ñ=ô=ˆŒà ğ Cİ(Ğ):¸1Ô)=¸|È[ĞZmØ)@ñ Bô BˆDÔ Ğ Ğ õ *¨+Ğ7HÈÔ7KÈ\Ğ[kØ*Añ Cô CˆDÔ Ğ Ğ r6Úreturn_supportcó�—|s| d¦«}tj| | |¦«¦«¦«}|jD] }||¦«}Œ| |¦«}| |¦«}| |¦«}|sœtj |¦«}tj |j |j dzdtj |j¬¦« d¦«}tj||zd¬¦«}t!|¦«}|| d¦«fS||fS)Nrrxrr:)r<r=r>r rrÓrrÕr×rJrKÚarangerÂr‹rzr˜r ) r3rDr7rÙÚblockÚ val_h_outputÚ pol_h_outputÚ support_rangeÚoutputs r5rEzOriginalAlphaZerNetwork.forwardºs6€Øğ Ø— ’ ˜A‘”ˆAİ ŒF�4—8’8˜DŸJšJ q™MœMÑ*Ô*Ñ +Ô +ˆØ”[ğ ğ ˆEØ��a‘”ˆAˆAØ �LŠL˜‰OŒOˆØ—’ qÑ)Ô)ˆ Ø×'Ò'¨Ñ*Ô*ˆ Øğ 5åœ6 ,Ñ/Ô/ˆLİœI tÔ'8Ğ&8¸$Ô:KÈaÑ:OĞQRÕZ\ÔZdØ-.¬Xğ7ñ7ô7ß7@²yÀ±|´|ğ å”V˜L¨=Ñ8¸aĞ@Ñ@Ô@ˆFİ.¨vÑ6Ô6ˆFØ ×!1Ò!1°!Ñ!4Ô!4Ğ4Ğ 4ؘ\Ğ)Ğ)r6Tcó>—| ||¬¦«\}}tj|¦«}| ¦« ¦« ¦«| ¦« ¦« ¦«fSrGrIrCs r5rOzOriginalAlphaZerNetwork.predictÍrPr6rzcóÌ—| |j¦« |¦«}||z}tj||z¦« | ¦«dz Sr£r¤r§s r5rŒzOriginalAlphaZerNetwork.pi_lossÓr«r6cóÔ—t|j|j|j|j|j|j|j|j|j |j |j |j |j |j|j¬¦«S)N)rrÈr7rÉ)r¿rrrrrrÂrÃrÄrÅrÆrÇrrÈr7rÉrhs r5riz+OriginalAlphaZerNetwork.make_fresh_instanceØsn€İ& tÔ'7¸Ô9JÈDÌNĞ\`Ô\lØ'+Ô'=¸tÔ?PØ'+Ô'?ÀÔAVĞX\ÔXlØ'+Ô'CØ'+Ô'7Ø48Ô4EØ26´/È$Ì+ĞcgÔcsğ uñuôuğ ur6rjÚ game_managercó¾—t|j|j|j|j|j||j|j|j|j |j |j |j |j ¬¦«S)N) rrÃrÄrÅrÆrÈr7rÂrÇ)r¿rlrmrnrorprÃrÄrÅrÆrÈr7rÂÚnet_latent_size)Úclsrjrärs r5rqz(OriginalAlphaZerNetwork.make_from_configási€å& vÔ'AÀ6ÔCZĞ\bÔ\nØ'-Ô'=¸vÔ?^Ø4@Ø;AÔ;UØ8>Ô8OØ7=Ô7MØ?EÔ?]Ø28Ô2CÈFÌMØ4:Ô4GĞU[ÔUkğmñmômğ mr6Úmuzero_alphazero_configrZc ó>—g}|j€Ctj | ¦«|j|j¬¦«|_| ¦«t|j ¦«D�]N}||j ¦«D�]9}t|¦«dkrŒ|  ||¦«\}}}|  | ¦«¦«tj| ¦«| ¦«| ¦«dœ¦«|j ¦«| ¦«|j ¦«|j ||jjt0t2j|| ¦«|f¬¦«�Œ;�ŒP|j ||jjt0t2j|f¬¦«t9|¦«t|¦«z |fS)N©rwÚ weight_decayr)Ú combined_lossÚloss_vÚloss_pir{)ršrJrr€r�rwÚl2r‚rƒr„r…r†Úcalculate_lossr�r�ÚwandbÚlogr�r�r‘rr’r“r”r•rr–r—r˜) r3rrrèr™r›rœr¡Úv_lossrŒs r5r“z!OriginalAlphaZerNetwork.train_netísõ€ØˆØ Œ>Ğ !İœXŸ]š]¨4¯?ª?Ñ+<Ô+<ĞAXÔA[Ø8OÔ8Rğ+ñTôTˆDŒNà×ÒÑÔĞİĞ2Ô9Ñ:Ô:ğ eñ eˆEØ$1 MĞ2IÔ2TÑ$UÔ$Uğ eñ eĞ İĞ'Ñ(Ô(¨AÒ-Ğ-ØØ(,×(;Ò(;Ğ<LĞNeÑ(fÔ(fÑ%��f˜gØ— ’ ˜dŸiši™kœkÑ*Ô*Ğ*İ” ¨D¯IªI©K¬KÀ6Ç;Â;Á=Ä=Ğ]d×]iÒ]iÑ]kÔ]kĞlĞlÑmÔmĞmØ”×(Ò(Ñ*Ô*Ğ*Ø— ’ ‘”�Ø”×#Ò#Ñ%Ô%Ğ%ØÔ!×7Ò7¸¸d¼nÔ>UÕW_ÕagÔanØ>NĞPT×PYÒPYÑP[ÔP[Ğ]bĞ=cğ8ñeôeğeñeñ eğ Ô×/Ò/°°d´nÔ6MÍxÕY_ÔYdĞlrĞktĞ/ÑuÔuĞuİ�6‰{Œ{�S ™[œ[Ñ(¨&Ğ0Ğ0r6có—|j€Ctj | ¦«|j|j¬¦«|_| d¬¦«t|j ¦«D]“}||j d¬¦«D]~}t|¦«dkrŒ|  ||¦«\}}}tj| ¦«| ¦«| ¦«dœ¦«ŒŒ”dS)NrêT)Úis_evalr)Úeval_combined_lossÚ eval_loss_vÚ eval_loss_pi)ršrJrr€r�rwrïr‚rƒÚ eval_epochsr…r†rğrñròr�)r3rrrèr›rœr¡rórŒs r5Úeval_netz OriginalAlphaZerNetwork.eval_nets(€Ø Œ>Ğ !İœXŸ]š]¨4¯?ª?Ñ+<Ô+<ĞAXÔA[Ø8OÔ8Rğ+ñTôTˆDŒNà×Ò dĞÑ+Ô+Ğ+İĞ2Ô>Ñ?Ô?ğ wğ wˆEØ$1 MĞ2IÔ2TĞ^bĞ$cÑ$cÔ$cğ wğ wĞ İĞ'Ñ(Ô(¨AÒ-Ğ-ØØ(,×(;Ò(;Ğ<LĞNeÑ(fÔ(fÑ%��f˜gİ” Ø+/¯9ª9©;¬;ÀvÇ{Â{Á}Ä}Ğfm×frÒfrÑftÔftĞuĞuñwôwğwğwğ  wğ wğ wr6có|—ddlm}tjtj ¦«rdnd¦«}t |�\}}}tjtj |¦«tj |¬¦«}tjtj |¦«tj |¬¦«}tj|tj |¬¦«  d¦«}|  ||j ¬¦«\}} ||¦«} t| |¦«} | ||| |¦«} | | z} | | | fS)NrrurXrMrxrrH)r}rvrJrzrXr~r‡rˆr‰rŠr‹r<rEr7rrŒ)r3rœrèrvrzr�r.r/r�rŸr rórŒr¡s r5rğz&OriginalAlphaZerNetwork.calculate_losss€ØLĞLĞLĞLĞLĞLİ”¥R¤W×%9Ò%9Ñ%;Ô%;ĞF˜6˜6ÀÑGÔGˆİĞ-Ğ.‰ ˆ��Aİ”�2œ8 FÑ+Ô+µ2´:ÀfĞMÑMÔMˆİ ŒY•r”x ‘|”|­2¬:¸fĞ EÑ EÔ Eˆİ ŒI�a�rœz°&Ğ 9Ñ 9Ô 9× CÒ CÀAÑ FÔ FˆØŸ,š, vĞ6MÔ6T˜,ÑUÔU‰ˆ�Ø*Ğ*¨6Ñ2Ô2ˆİ˜& !Ñ$Ô$ˆØ—,’,˜w¨¨E°6Ñ:Ô:ˆØ˜ÑˆØ�V˜WĞ$Ğ$r6)FFr³rg)r”r´rµr¶r·Úlistrr¸rrErJr¹rOrzrŒriÚ classmethodr rqÚtupler“rúrğr¼r½s@r5r¿r¿“s3ø€€€€€ğ ,-¨a¨&Ø59ÈQĞ_dØ%*ğ #Cğ#C Cğ#C°sğ#CÀUğ#CĞY\ğ#CØ$(¨¤Iğ#CØ=@ğ#Cà&)ğ#Cà=@ğ#CàSVğ#Càqtğ#Cğ# 3œiğ#Cğ +Ğ2¨dğ #CğHKğ #CğY]ğ #Cğ #ğ #Cğ#Cğ#Cğ#Cğ#Cğ#CğJ*ğ* ğ*¸tğ*ğ*ğ*ğ*ğ&€R„Z�\„\ğCğCğCñ„\ğCğ 7¨r¬yğ7ğ7ğ7ğ7ğ uğuğuğğ mğ m fğ m¸Dğ mĞP[ĞPcĞ_cğ mğ mğ mñ„[ğ mğ1Àğ1È5ĞQVĞX\Ğ]bÔXcĞQcÔKdğ1ğ1ğ1ğ1ğ, w¸vğ wÈ$ğ wğ wğ wğ wğ %ğ %ğ %ğ %ğ %ğ %ğ %r6r¿có.‡—eZdZdedefˆfd„ Zd„ZˆxZS)rÍrrcó.•—tt|¦« ¦«tj||dd¬¦«|_tj|¦«|_tj||dd¬¦«|_tj|¦«|_ dS)Nrrr) rrÍrrrrrr r!r")r3rrr4s €r5rzOriginalAlphaZeroBlock.__init__ szø€İ Õ$ dÑ+Ô+×4Ò4Ñ6Ô6Ğ6İ”Y˜{¨L¸!ÀQĞGÑGÔGˆŒ İ”> ,Ñ/Ô/ˆŒİ”Y˜|¨\¸1ÀaĞHÑHÔHˆŒ İ”> ,Ñ/Ô/ˆŒˆˆr6cóü—|}tj| | |¦«¦«¦«}| | |¦«¦«}||z }tj|¦«Srg)r=r>r rr"r!)r3rDÚx_skips r5rEzOriginalAlphaZeroBlock.forward's^€Øˆİ ŒF�4—8’8˜DŸJšJ q™MœMÑ*Ô*Ñ +Ô +ˆØ �HŠH�T—Z’Z ‘]”]Ñ #Ô #ˆØ ˆV‰ ˆİŒv�a‰yŒyĞr6©r”r´rµr¶rrEr¼r½s@r5rÍrÍsZø€€€€€ğ0 Cğ0°sğ0ğ0ğ0ğ0ğ0ğ0ğğğğğğğr6rÍc ó>‡—eZdZdedededededef ˆfd„ Zd„ZˆxZS) rÔr7rrÂrÚ num_layersÚlinear_hidden_sizecó•—tt|¦« ¦«tj|dd¦«|_tjd¦«|_tj|d¦«|_ tdd||¦«|_ |r<tjdd|zdz¦«|_ tj d¬¦«|_dStjdd¦«|_ tj¦«|_dS)NrrTrÑr:)rrÔrrrÚconvrÚbnr'r(Ú HeadLinearÚfcr+Ú LogSoftmaxÚactÚTanh)r3r7rrÂrrrr4s €r5rzValueHead.__init__0sĞø€å �i˜ÑÔ×'Ò'Ñ)Ô)Ğ)İ”I˜l¨A¨qÑ1Ô1ˆŒ İ”. Ñ#Ô#ˆŒİ”9Ğ.°Ñ4Ô4ˆŒİ˜S # zĞ3EÑFÔFˆŒØ ğ !İ”y  a¨,Ñ&6¸Ñ&:Ñ;Ô;ˆDŒHİ”}¨Ğ+Ñ+Ô+ˆDŒHˆHˆHå”y  aÑ(Ô(ˆDŒHİ”w‘y”yˆDŒHˆHˆHr6có¸—tj| | |¦«¦«¦«}| | d¦«d¦«}tj| |¦«¦«}tj| |¦«¦«}| |¦«}|  |¦«S©Nrr9) r=r>r rr?r@r(r r+r ©r3rDs r5rEzValueHead.forward>s•€İ ŒF�4—7’7˜4Ÿ9š9 Q™<œ<Ñ(Ô(Ñ )Ô )ˆØ �IŠI�a—f’f˜Q‘i”i Ñ $Ô $ˆİ ŒF�4—8’8˜A‘;”;Ñ Ô ˆİ ŒF�4—7’7˜1‘:”:Ñ Ô ˆØ �HŠH�Q‰KŒKˆØ�xŠx˜‰{Œ{Ğr6)r”r´rµr¸r¶rrEr¼r½s@r5rÔrÔ/syø€€€€€ğ !˜tğ !¸ğ !È3ğ !Ğ^ağ !Ğorğ !Ø%(ğ !ğ !ğ !ğ !ğ !ğ !ğğğğğğğr6rÔc ó:‡—eZdZdededededef ˆfd„ Zd„ZˆxZS)rØrÚlinear_input_size_policyrrrcóT•—tt|¦« ¦«tj|dd¦«|_tjd¦«|_tj|d¦«|_ tdd||¦«|_ tjd|¦«|_ dS)NrÑrrT) rrØrrrrrr r'r(r r r+)r3rrrrrr4s €r5rzPolicyHead.__init__Hs†ø€å �j˜$ÑÔ×(Ò(Ñ*Ô*Ğ*İ”I˜l¨A¨qÑ1Ô1ˆŒ İ”. Ñ#Ô#ˆŒİ”9Ğ5°sÑ;Ô;ˆŒİ˜S # zĞ3EÑFÔFˆŒİ”9˜S +Ñ.Ô.ˆŒˆˆr6cóº—tj| | |¦«¦«¦«}| | d¦«d¦«}tj| |¦«¦«}tj| |¦«¦«}| |¦«}tj |d¬¦«S)Nrr9rr:) r=r>r rr?r@r(r r+rArs r5rEzPolicyHead.forwardQsš€İ ŒF�4—7’7˜4Ÿ9š9 Q™<œ<Ñ(Ô(Ñ )Ô )ˆØ �IŠI�a—f’f˜Q‘i”i Ñ $Ô $ˆİ ŒF�4—8’8˜A‘;”;Ñ Ô ˆİ ŒF�4—7’7˜1‘:”:Ñ Ô ˆØ �HŠH�Q‰KŒKˆİŒ}˜Q AĞ&Ñ&Ô&Ğ&r6rr½s@r5rØrØGsrø€€€€€ğ/ Cğ/À3ğ/ĞVYğ/Ğgjğ/Ø%(ğ/ğ/ğ/ğ/ğ/ğ/ğ'ğ'ğ'ğ'ğ'ğ'ğ'r6rØc óF‡—eZdZdededeededef ˆfd„ Zd„ZˆxZS)rÖrÚ out_channelsrÇrrcóD•—tt|¦« ¦«tj|dd¦«|_tjd¦«|_t||||¦«|_ tj ||d|dz|z¦«|_ dS)Nérr) rrÖrrrrrr r r r'Úfc3)r3rrrÇrrr4s €r5rzStateHead.__init__[s…ø€å �i˜ÑÔ×'Ò'Ñ)Ô)Ğ)İ”I˜l¨A¨qÑ1Ô1ˆŒ İ”. Ñ#Ô#ˆŒİĞ.° ¸jĞJ\Ñ]Ô]ˆŒİ”9˜\¨;°q¬>¸KȼNÑ+JÈ\Ñ+YÑZÔZˆŒˆˆr6cóD—tj| | |¦«¦«¦«}| | d¦«d¦«}tj| |¦«¦«}| |¦«}|Sr)r=r>r rr?r@r rrs r5rEzStateHead.forwardcsq€İ ŒF�4—7’7˜4Ÿ9š9 Q™<œ<Ñ(Ô(Ñ )Ô )ˆØ �IŠI�a—f’f˜Q‘i”i Ñ $Ô $ˆİ ŒF�4—7’7˜1‘:”:Ñ Ô ˆØ �HŠH�Q‰KŒKˆØˆr6)r”r´rµr¶rürrEr¼r½s@r5rÖrÖZs�ø€€€€€ğ[¨#ğ[¸Sğ[ÈtĞTWÌyğ[Ğfiğ[Ø%(ğ[ğ[ğ[ğ[ğ[ğ[ğğğğğğğr6rÖcó6‡—eZdZdedededefˆfd„ Zd„ZˆxZS)r rrrÚ hidden_sizec󕇗tt|¦« ¦«tj|‰¦«|_tjˆfd„t|¦«D¦«�|_tj‰|¦«|_ dS)Ncó:•—g|]}tj‰‰¦«‘ŒSrÌ)rr')rÎrÏrs €r5rĞz'HeadLinear.__init__.<locals>.<listcomp>os%ø€Ğ!aĞ!aĞ!aÈ!¥"¤)¨K¸Ñ"EÔ"EĞ!aĞ!aĞ!ar6) rr rrr'r(Ú Sequentialrƒr r+)r3rrrrr4s `€r5rzHeadLinear.__init__lsvøø€İ �j˜$ÑÔ×(Ò(Ñ*Ô*Ğ*İ”9˜[¨+Ñ6Ô6ˆŒİ”-Ğ!aĞ!aĞ!aĞ!aÍuĞU_ÑO`ÔO`Ğ!aÑ!aÔ!aĞbˆŒİ”9˜[¨,Ñ7Ô7ˆŒˆˆr6cóÈ—tj| |¦«¦«}tj| |¦«¦«}| |¦«Srg)r=r>r(r r+rs r5rEzHeadLinear.forwardrsD€İ ŒF�4—8’8˜A‘;”;Ñ Ô ˆİ ŒF�4—7’7˜1‘:”:Ñ Ô ˆØ�xŠx˜‰{Œ{Ğr6rr½s@r5r r ksiø€€€€€ğ8 Cğ8°sğ8Èğ8ĞZ]ğ8ğ8ğ8ğ8ğ8ğ8ğ ğğğğğğr6r )%r0rbrcrNr‰ÚtorchrJÚtorch.nnrÚtorch.nn.functionalÚ functionalr=rñrÚtorch.nn.modules.modulerÚmu_alpha_zero.General.networkrÚ mu_alpha_zero.Hooks.hook_managerrÚmu_alpha_zero.Hooks.hook_pointrÚmu_alpha_zero.configrr Úmu_alpha_zero.mem_bufferr Úmu_alpha_zero.MuZero.utilsr ÚModuler r¿rÍrÔrØrÖr rÌr6r5ú<module>r.sjğØ € € € Ø € € € Ø € € € àĞĞĞØĞĞĞØĞĞĞĞĞØĞĞĞĞĞĞĞĞØ € € € Ø(Ğ(Ğ(Ğ(Ğ(Ğ(Ø%Ğ%Ğ%Ğ%Ğ%Ğ%à@Ğ@Ğ@Ğ@Ğ@Ğ@Ø8Ğ8Ğ8Ğ8Ğ8Ğ8Ø1Ğ1Ğ1Ğ1Ğ1Ğ1Ø8Ğ8Ğ8Ğ8Ğ8Ğ8Ğ8Ğ8Ø.Ğ.Ğ.Ğ.Ğ.Ğ.Ø@Ğ@Ğ@Ğ@Ğ@Ğ@ğ{oğ{oğ{oğ{oğ{o�2”9Ğ4ñ{oô{oğ{oğ|I%ğI%ğI%ğI%ğI%˜bœiĞ)?ñI%ôI%ğI%ğX ğ ğ ğ ğ ˜RœUœ\ñ ô ğ ğ ğğğğ�”” ñôğğ0'ğ'ğ'ğ'ğ'�””ñ'ô'ğ'ğ&ğğğğ�”” ñôğğ" ğ ğ ğ ğ �”ñ ô ğ ğ ğ r6
31,519
Python
.pyt
95
330.715789
1,929
0.273636
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,570
trainer.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/AlphaZero/Network/__pycache__/trainer.cpython-311.pyc
§ °#Ûeu>ãóJ—ddlmZddlmZedd¬¦«ddlmZddlmZddlZ dd l m Z dd l m Z dd l mZdd lmZmZmZdd lmZddlmZddlmZddlmZmZddlmZddlmZddl m!Z!ddl"m#Z#ddl$m%Z%ddl&m'Z'ddl(m)Z)ddl*m+Z+ddl,m-Z-Gd„d¦«Z.dS)é)Úset_start_method)Únot_zeroÚspawnT)Úforce)Údeepcopy)ÚTypeN)Ú SummaryWriter)Útqdm)ÚArena)Ú RandomPlayerÚPlayerÚ NetPlayer)Ú McSearchTree)Ú AlphaZeroNet)Ú CheckPointer)ÚLoggingMessageTemplatesÚLogger)Úbuild_all_from_config)Ú GeneralArena)Ú AlphaZeroGame)ÚGeneralMemoryBuffer)ÚGeneralNetwork)Ú SearchTree)Ú JavaManager)ÚConfig)Ú MemBuffercó"—eZdZ d0dededejdedede d e d e d e d ej jpdd epddeddfd„Ze d1deedee dee dededed e de d epdfd„¦«Ze d2dededed e d e d e de d epddepddepdfd„¦«Ze d1dededed e d e de depdfd„¦«Zdefd„Zdedeefd„Zdedeefd „Zd!„Zd"„Z d3d#„Z!d$„Z"d%„Z#d&„Z$d'ed(efd)„Z%d'ed(ed*efd+„Z&d,ed-ed.e'd*efd/„Z(dS)4ÚTrainerTNÚnetworkÚgameÚ optimizerÚmemoryÚmuzero_alphazero_configÚ checkpointerÚ search_treeÚ net_playerÚheadlessÚopponent_network_overrideÚarena_overrideÚ java_managerÚreturncóΗ||_| |_| |_||_||_||_||_| €|j ¦«n| |_||_ ||_ | |_ td¦«|_ | € t|j|j|j¦«n| |_||_t#|jj|jj¬¦«|_g|_g|_dS)NzLogs/AlphaZero)ÚlogdirÚtoken)r#Údevicer'Ú game_managerÚmctsr&rÚmake_fresh_instanceÚopponent_networkr!r"r*r Úsummary_writerr Úarenar$rÚlog_dirÚpushbullet_tokenÚloggerÚarena_win_frequenciesÚlosses)Úselfrr r!r"r#r$r%r&r/r'r(r)r*s úV/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/AlphaZero/Network/trainer.pyÚ__init__zTrainer.__init__"sû€ğ(?ˆÔ$؈Œ Ø ˆŒ Ø ˆÔ؈Œ Ø$ˆŒØˆŒ ØF_ĞFg ¤ × @Ò @Ñ BÔ BĞ BğnGˆÔØ"ˆŒØˆŒ Ø(ˆÔİ+Ğ,<Ñ=Ô=ˆÔà+9Ğ+Aõ˜4Ô,¨dÔ.JØœ;ñ(ô(ğ(ØGUğ Œ à(ˆÔİ DÔ$@Ô$HØ#'Ô#?Ô#PğRñRôRˆŒ à%'ˆÔ"؈Œ ˆ ˆ óFÚ net_classÚ tree_classÚnet_player_classÚcheckpoint_pathÚcheckpoint_dirÚcheckpointer_verbosec óö—tjtj ¦«rdnd¦«} t ||¬¦«} |  |¦«\} } }}}}t j|¦«}|| ¦«|¦«}| dj d|_ |  |¦«}| ¦«}tj   | ¦«|¬¦«}|| ¦«fi||dœ¤�}| | ¦«| |¦«| | ¦«||||||| ||| || ¬¦ « S) NÚcudaÚcpu©Úverbosez fc1.weighté)Úlr©rÚmonte_carlo_tree_search)r'r))Úthr/rFÚ is_availablerÚload_checkpoint_from_pathrÚ from_argsr2ÚshapeÚaz_net_linear_input_sizeÚmake_from_configÚoptimÚAdamÚ parametersÚload_state_dict)Úclsr?r@rArBrCr r'rDr)r/r$Ú network_dictÚoptimizer_dictr"rKÚargsÚ opponent_dictÚconfÚtreerr3r!r&s r<Úfrom_checkpointzTrainer.from_checkpoint>s–€õ”¥R¤W×%9Ò%9Ñ%;Ô%;ĞF˜6˜6ÀÑGÔGˆİ# NĞ<PĞQÑQÔQˆ àHT×HnÒHnØ ñIôIÑEˆ �n f¨b°$¸ åÔ Ñ%Ô%ˆØˆz˜$×2Ò2Ñ4Ô4°dÑ;Ô;ˆØ(4°\Ô(BÔ(HÈÔ(KˆÔ%Ø×,Ò,¨TÑ2Ô2ˆØ"×6Ò6Ñ8Ô8Ğİ”H—M’M '×"4Ò"4Ñ"6Ô"6¸2�MÑ>Ô>ˆ à%Ğ% d×&>Ò&>Ñ&@Ô&@ğ_ğ_Ø4;ĞX\Ğ(]Ğ(]ğ_ğ_ˆ à×Ò  Ñ-Ô-Ğ-Ø×(Ò(¨Ñ7Ô7Ğ7Ø×!Ò! .Ñ1Ô1Ğ1؈s�7˜D )¨V°T¸<ÈÈzĞ[aĞltØ"0ğ2ñ2ô2ğ 2r>Úmemory_overridec óø—tjtj ¦«rdnd¦«} t || ¦«\} } }| €|n| }t |j|¬¦«}|||| |||||| ||| ¬¦ « S)NrFrGrH)r'r)r*)rNr/rFrOrrrC)rYr#r rr%r&r'rDr)rar*r/Ú_r!Úmemr"r$s r<ÚcreatezTrainer.createYs¡€õ”¥R¤W×%9Ò%9Ñ%;Ô%;ĞF˜6˜6ÀÑGÔGˆİ1Ğ2IÈ6ÑRÔRшˆ9�cØ'Ğ/��°_ˆİ#Ğ$;Ô$JĞThĞiÑiÔiˆ ؈s�7˜D )¨VĞ5LÈlĞ\gĞisØØ$°^ĞR^ğ`ñ`ô`ğ `r>Úpathc ó|—tjtj ¦«rdnd¦«}t ||¦«\} } } t |j|¬¦«} |  tj|¦«¦«t|  ¦«fi| |dœ¤�} || || | || || |||¬¦ « S)NrFrGrHrL)r'r*) rNr/rFrOrrrCrXÚloadrr2)rYrfr#r r%r'rDr*r/Únetr!r"r$r&s r<Úfrom_state_dictzTrainer.from_state_dictjsÔ€õ”¥R¤W×%9Ò%9Ñ%;Ô%;ĞF˜6˜6ÀÑGÔGˆİ!6Ğ7NĞPVÑ!WÔ!WшˆY˜İ#Ğ$;Ô$JĞThĞiÑiÔiˆ Ø ×Ò�BœG D™MœMÑ*Ô*Ğ*ݘt×7Ò7Ñ9Ô9ĞvĞvÈĞitĞ=uĞ=uĞvĞvˆ ؈s�3˜˜i¨Ğ1HÈ,ĞXcĞeoĞqwØ$Ø ,ğ.ñ.ô.ğ .r>c óš —|j |j¦«|j t j|jj¦«¦«|j  |j   ¦«¦«|jj}|jj }|jj }|jj}|j  ¦«| t#|¦«dd¦«D�]}||jjkr d|j_t)j¦«5|jj}|j t j|¦«¦«|jjdkr˜|j | |¦«| |¦«|j|j||¦«\}}} t;|jt<¦«r*|jjr|j  ¦«|_n0|j !|j |j||j¦«\}}} |j t j"||| tF¦«¦«|j $d¦«ddd¦«n #1swxYwY|j% &|j ¦«|j t j'd|j% (¦«¦«¦«|j% )|j¦«|j t j*d|j% (¦«¦«¦«|j  +¦«|j t j,|¦«¦«|j  -|j|j¦«\} } |j t j.| ¦«¦«|j $d| ›dt_| ¦«›d ta| ¦«›�¦«|j1 2| ¦«|j% 3|j1¦«|j% 4|j |j|j5|jj6||jd ¬ ¦«|jj7} |jj8} | 9|| ¦«\}}}}| :||| |¦«| ;|| |¦«�Œ |jj|jj|jj<|jj8|jj |jj=|jj>|jj7d œ}|j t j?|¦«¦«|j $t j@¦«¦«|j S) NzTraining ProgressrrJzFinished self-play.ztemp checkpointzopponent networkz Mean loss: z , Max loss: z , Min loss: Úlatest_trained_net)Úname)ÚnumItersÚnumSelfPlayGamesÚtauÚupdateThresholdÚ mcSimulationsÚcÚmaxDepthÚ numPitGames)Ar3Útor/r8ÚlogrÚTRAINING_STARTr#Ú num_itersrXrÚ state_dictÚepochsÚnum_simulationsÚself_play_gamesÚevalÚ make_tqdm_barÚrangeÚzero_tau_afterÚ arena_taurNÚno_gradÚ num_workersÚSELF_PLAY_STARTr1Úparallel_self_playÚmake_n_networksÚ make_n_treesr"Ú isinstancerÚis_diskr2Ú self_playÚ SELF_PLAY_ENDrÚpushbullet_logr$Úsave_temp_net_checkpointÚSAVEDÚ get_temp_pathÚload_temp_net_checkpointÚLOADEDÚtrainÚNETWORK_TRAINING_STARTÚ train_netÚNETWORK_TRAINING_ENDÚmaxÚminr:ÚextendÚ save_lossesÚsave_checkpointr!rKÚ num_pit_gamesÚupdate_thresholdÚ run_pittingÚ check_modelÚrun_pitting_randomrprsÚ max_depthÚ TRAINING_ENDÚTRAINING_END_PSB)r;ryr{r|r}ÚiÚn_jobsÚwins_p1Úwins_p2Ú game_drawsÚ mean_lossr:Ú num_gamesr�Úp1_winsÚp2_winsÚdrawsÚ wins_totalÚimportant_argss r<r“z Trainer.trainwsn€Ø Ô× Ò  ¤Ñ-Ô-Ğ-Ø Œ �ŠÕ/Ô>¸tÔ?[Ô?eÑfÔfÑgÔgĞgØ Ô×-Ò-¨d¬l×.EÒ.EÑ.GÔ.GÑHÔHĞHàÔ0Ô:ˆ ØÔ-Ô4ˆØÔ6ÔFˆØÔ6ÔFˆØ Œ ×ÒÑÔĞà×#Ò#¥E¨)Ñ$4Ô$4Ğ6IÈ1ÑMÔMğ( Cñ( CˆAØ�DÔ0Ô?Ò?Ğ?Ø9:�Ô,Ô6İ”‘”ğ Bğ BØÔ5ÔA�Ø” —’Õ 7Ô GÈÑ XÔ XÑYÔYĞYàÔ/Ô;¸aÒ?Ğ?Ø37´9×3OÒ3OĞPT×PdÒPdĞekÑPlÔPlØPT×PaÒPaĞbhÑPiÔPiØPTÔP[Ğ]aÔ]hØP_ØPVñ 4Xô4XÑ0�G˜W jõ " $¤+­yÑ9Ô9ğH¸d¼kÔ>QğHØ&*¤k×&EÒ&EÑ&GÔ&G˜œ øà37´9×3FÒ3FÀtÄ|ĞUYÔU`ĞbqØGKÄ{ñ4Tô4TÑ0�G˜W jà” —’Õ 7Ô EÀgÈwĞXbÕdlÑ mÔ mÑnÔnĞnØ” ×*Ò*Ğ+@ÑAÔAĞAğ! Bğ Bğ Bñ Bô Bğ Bğ Bğ Bğ Bğ Bğ Bøøøğ Bğ Bğ Bğ Bğ$ Ô × 6Ò 6°t´|Ñ DÔ DĞ DØ ŒK�OŠOÕ3Ô9Ğ:KÈTÔM^×MlÒMlÑMnÔMnÑoÔoÑ pÔ pĞ pØ Ô × 6Ò 6°tÔ7LÑ MÔ MĞ MØ ŒK�OŠOÕ3Ô:Ğ;MÈtÔO`×OnÒOnÑOpÔOpÑqÔqÑ rÔ rĞ rØ ŒL× Ò Ñ Ô Ğ Ø ŒK�OŠOÕ3ÔJÈ6ÑRÔRÑ SÔ SĞ SØ $¤ × 6Ò 6°t´{ÀDÔD`Ñ aÔ aÑ ˆI�vØ ŒK�OŠOÕ3ÔHÈÑSÔSÑ TÔ TĞ TØ ŒK× &Ò &Ğ'r°YĞ'rĞ'rÍCĞPVÉKÌKĞ'rĞ'rÕehĞioÑepÔepĞ'rĞ'rÑ sÔ sĞ sØ ŒK× Ò ˜vÑ &Ô &Ğ &Ø Ô × )Ò )¨$¬+Ñ 6Ô 6Ğ 6Ø Ô × -Ò -¨d¬l¸DÔ<QĞSWÔSaØ.2Ô.JÔ.MÈqĞRVÔRnØ3Gğ .ñ Iô Iğ IğÔ4ÔBˆIØ#Ô;ÔLĞ Ø26×2BÒ2BÀ?ĞT]Ñ2^Ô2^Ñ /ˆG�W˜e ZØ × Ò ˜W jĞ2BÀAÑ FÔ FĞ FØ × #Ò # O°YÀÑ BÔ BĞ BÑ BğÔ4Ô>Ø $Ô <Ô LØÔ/Ô3Ø#Ô;ÔLØ!Ô9ÔIØÔ-Ô/ØÔ4Ô>ØÔ7ÔEğ  ğ  ˆğ Œ �ŠÕ/Ô<¸^ÑLÔLÑMÔMĞMØ Œ ×"Ò"Õ#:Ô#KÑ#MÔ#MÑNÔNĞNØŒ|ĞsÄ&EJÊJ ÊJ Úncó:‡—ˆfd„t|¦«D¦«S)z« Make n identical copies of self.network using deepcopy. :param n: The number of copies to make. :return: A list of n identical networks. có8•—g|]}t‰j¦«‘ŒS©)rr)Ú.0rcr;s €r<ú <listcomp>z+Trainer.make_n_networks.<locals>.<listcomp>Âs#ø€Ğ9Ğ9Ğ9¨1•˜œÑ&Ô&Ğ9Ğ9Ğ9r>)r€)r;r°s` r<r‡zTrainer.make_n_networks»s%ø€ğ:Ğ9Ğ9Ğ9µ°a±´Ğ9Ñ9Ô9Ğ9r>cóŠ—g}t|¦«D]0}|j ¦«}| |¦«Œ1|S)zŠ Make n new search trees. :param n: The number of trees to create. :return: A list of n new search trees. )r€r1r2Úappend)r;r°Útreesr¤r_s r<rˆzTrainer.make_n_treesÄsK€ğ ˆİ�q‘”ğ ğ ˆAà”9×0Ò0Ñ2Ô2ˆDØ �LŠL˜Ñ Ô Ğ Ğ Øˆ r>cón—t|j¦«tt|j¦«¦«z S©N)Úsumr9rÚlen©r;s r<Úget_arena_win_frequencies_meanz&Trainer.get_arena_win_frequencies_meanÑs+€İ�4Ô-Ñ.Ô.µ½#¸dÔ>XÑ:YÔ:YÑ1ZÔ1ZÑZĞZr>c ód—|j ¦«}|j ¦«}|j ¦«}t j||j|jj|||j  ¦«dœ|¦«td  |¦«¦«dS)N)r!r"rKriÚopponent_state_dictr\zSaved latest model data to {}) rrzr3r!rNÚsaver"r#rKÚto_dictÚprintÚformat)r;rfrzrÀÚoptimizer_state_dicts r<Ú save_latestzTrainer.save_latestÔs¯€Ø”\×,Ò,Ñ.Ô.ˆ Ø"Ô3×>Ò>Ñ@Ô@ĞØ#œ~×8Ò8Ñ:Ô:Ğİ ŒØ-Ø”kØÔ.Ô1ØØ#6ØÔ0×8Ò8Ñ:Ô:ğ  ğ ğ ñ ô ğ õ Ğ-×4Ò4°TÑ:Ô:Ñ;Ô;Ğ;Ğ;Ğ;r>cóD—|jjrt||||¬¦«S|S)N)ÚdescÚpositionÚleave)r#Ú show_tqdmr )r;ÚiterablerÈrÉrÊs r<rzTrainer.make_tqdm_barâs,€Ø Ô 'Ô 1ğ ݘ t°hÀeĞLÑLÔLĞ LàˆOr>có—|jSrº)rr½s r<Ú get_networkzTrainer.get_networkès €ØŒ|Ğr>có—|jSrº)r1r½s r<Úget_treezTrainer.get_treeës €ØŒyĞr>có—|jSrº)r#r½s r<Úget_argszTrainer.get_argsîs €ØÔ+Ğ+r>r|rªc óÈ—|j ¦«|j ¦«|j ¦«}| |j¦«|j ¦«}| |j¦«|j tj |j |j |¦«¦«|j   ||||d¬¦«\}}}t||z¦«}|j tj|j |j ||||¦«¦«|j ||z ¦«||||fS)NF)Únum_mc_simulationsÚ one_player)rr~r3r&r2Ú set_networkr8rwrÚ PITTING_STARTrmr5ÚpitrÚ PITTING_ENDr9r·) r;r|rªÚp1Úp2r«r¬r­r®s r<r�zTrainer.run_pittingñsN€Ø Œ ×ÒÑÔĞØ Ô×"Ò"Ñ$Ô$Ğ$Ø Œ_× 0Ò 0Ñ 2Ô 2ˆØ �Š�t”|Ñ$Ô$Ğ$Ø Œ_× 0Ò 0Ñ 2Ô 2ˆØ �Š�tÔ,Ñ-Ô-Ğ-Ø Œ �ŠÕ/Ô=¸b¼gÀrÄwĞPYÑZÔZÑ[Ô[Ğ[Ø"&¤*§.¢.°°R¸ĞWfØ<Ağ#1ñ#Cô#Cш�˜%å˜g¨Ñ/Ñ0Ô0ˆ Ø Œ �ŠÕ/Ô;¸B¼GÀRÄWÈgØ<CÀZĞQVñXôXñ Yô Yğ Yà Ô"×)Ò)¨'°IÑ*=Ñ>Ô>Ğ>ؘ ¨ Ğ2Ğ2r>r¤c ó¶—||jjzdkrdS|j ¦«t j¦«5t |j ¦«fii¤�}|j  ¦«}|  |j¦«|j   tj|j|j|¦«¦«|j ||||¬¦«\}}}t%||z¦«} |j   tj|j|j||| |¦«¦«ddd¦«dS#1swxYwYdS)Nr)rÔ)r#Úrandom_pit_freqrr~rNrƒr r0r2r&rÖr8rwrr×rmr5rØrrÙ) r;r|rªr¤Ú random_playerrÚÚp1_wins_randomÚp2_wins_randomÚ draws_randomr®s r<r zTrainer.run_pitting_randoms¬€Ø ˆtÔ+Ô;Ñ ;¸qÒ @Ğ @Ø ˆFØ Œ ×ÒÑÔĞİ ŒZ‰\Œ\ğ _ğ _İ(¨Ô):×)NÒ)NÑ)PÔ)PĞWĞWĞTVĞWĞWˆMà”×4Ò4Ñ6Ô6ˆBØ �NŠN˜4œ<Ñ (Ô (Ğ (Ø ŒK�OŠOÕ3ÔAÀ"Ä'È=ÔK]Ğ_hÑiÔiÑ jÔ jĞ jØ;?¼:¿>º>È"ÈmĞ]fØ]lğ<Jñ<nô<nÑ 8ˆN˜N¨Lå! .°>Ñ"AÑBÔBˆJØ ŒK�OŠOİ'Ô3°B´G¸]Ô=OĞQ_Ø4BÀJĞP\ñ^ô^ñ _ô _ğ _ğ _ğ _ğ _ñ _ô _ğ _ğ _ğ _ğ _ğ _ğ _ğ _øøøğ _ğ _ğ _ğ _ğ _ğ _sÁC?EÅEÅEr«r®r�cóú—||z |kr²|j tj||z |¦«¦«|j |j|j|j|j j ||j ¦«|j tj d|j  ¦«¦«¦«n“|j tj ||z |¦«¦«|j |j¦«|j tjd|j ¦«¦«¦«|j tj|¦«¦«dS)Nzaccepted model checkpointzprevious version checkpoint)r8rwrÚ MODEL_ACCEPTr$r›rr3r!r#rKr�Úget_checkpoint_dirÚ MODEL_REJECTr‘r’r�r�ÚITER_FINISHED_PSB)r;r«r®r�r¤s r<rŸzTrainer.check_models�€Ø �ZÑ Ğ"2Ò 2Ğ 2Ø ŒK�OŠOÕ3Ô@ÀÈ:ÑAUØAQñSôSñ Tô Tğ Tà Ô × -Ò -¨d¬l¸DÔ<QĞSWÔSaØ.2Ô.JÔ.MÈqØ.2Ô.Jñ Lô Lğ Lğ ŒK�OŠOÕ3Ô9Ğ:UØ:>Ô:K×:^Ò:^Ñ:`Ô:`ñbôbñ cô cğ cğ cğ ŒK�OŠOÕ3Ô@ÀÈ:ÑAUØAQñSôSñ Tô Tğ Tà Ô × 6Ò 6°t´|Ñ DÔ DĞ DØ ŒK�OŠOÕ3Ô:Ğ;XØ;?Ô;L×;ZÒ;ZÑ;\Ô;\ñ^ô^ñ _ô _ğ _à Œ ×"Ò"Õ#:Ô#LÈQÑ#OÔ#OÑPÔPĞPĞPĞPr>)TNNN)TFN)TFNNN)T))Ú__name__Ú __module__Ú __qualname__rrrNrUrrrrr ÚboolÚnnÚModulerrr=Ú classmethodrÚstrr`rerjrr“ÚintÚlistr‡rrˆr¾rÆrrÎrĞrÒr�r ÚfloatrŸr³r>r<rr!sÁ€€€€€ğ +/ØCGØ8<Ø-1ğğ ğ°mğØœHğØ.Ağà*0ğà@Lğğ)ğğ7=ğğ$(ğ ğ -/¬E¬LĞ,@¸Dğ ğ ".Ğ!5°ğ ğ +ğğ7;ğğğğğ8ğ?CØ5:Ø?Cğ 2ğ2¨¨^Ô(<ğ2È$ÈzÔJZğ2Ø*.¨v¬,ğ2à),ğ2à>Ağ2ğ,ğ2ğ8<ğ2ğ/3ğ 2ğ )5Ğ(<¸ğ 2ğ2ğ2ñ„[ğ2ğ4ğ!%Ø,1Ø6:Ø>BØ37ğ`ğ`¨Vğ`¸=ğ`ĞSağ`Ø&ğ`à!ğ`ğğ`ğ&*ğ `ğ ,Ğ3¨tğ `ğ !4Ğ ;°tğ `ğ)Ğ0¨Dğ`ğ`ğ`ñ„[ğ`ğ à)-Ø`dğ .ğ . 3ğ .Àğ .È}ğ .Ğkuğ .Ø"&ğ .à.2ğ .àJUĞJ]ĞY]ğ .ğ .ğ .ñ„[ğ .ğB�|ğBğBğBğBğH: ğ:¨¨lÔ);ğ:ğ:ğ:ğ:ğ ˜cğ  d¨<Ô&8ğ ğ ğ ğ ğ[ğ[ğ[ğ <ğ <ğ <ğğğğğ ğğğğğğ,ğ,ğ,ğ3¨3ğ3¸3ğ3ğ3ğ3ğ3ğ _°#ğ_À#ğ_È#ğ_ğ_ğ_ğ_ğ"Q 3ğQ°CğQÈ5ğQĞUXğQğQğQğQğQğQr>r)/Útorch.multiprocessingrÚmu_alpha_zero.General.utilsrÚcopyrÚtypingrÚtorchrNÚtorch.utils.tensorboardr r Ú#mu_alpha_zero.AlphaZero.Arena.arenar Ú%mu_alpha_zero.AlphaZero.Arena.playersr r rÚ+mu_alpha_zero.AlphaZero.MCTS.az_search_treerÚ$mu_alpha_zero.AlphaZero.Network.nnetrÚ$mu_alpha_zero.AlphaZero.checkpointerrÚmu_alpha_zero.AlphaZero.loggerrrÚmu_alpha_zero.AlphaZero.utilsrÚmu_alpha_zero.General.arenarÚmu_alpha_zero.General.az_gamerÚmu_alpha_zero.General.memoryrÚmu_alpha_zero.General.networkrÚ!mu_alpha_zero.General.search_treerÚ-mu_alpha_zero.MuZero.JavaGateway.java_managerrÚmu_alpha_zero.configrÚmu_alpha_zero.mem_bufferrrr³r>r<ú<module>rsùğØ2Ğ2Ğ2Ğ2Ğ2Ğ2à0Ğ0Ğ0Ğ0Ğ0Ğ0àĞ� Ğ%Ñ%Ô%Ğ%ØĞĞĞĞĞàĞĞĞĞĞàĞĞĞØ1Ğ1Ğ1Ğ1Ğ1Ğ1ØĞĞĞĞĞØ5Ğ5Ğ5Ğ5Ğ5Ğ5ØPĞPĞPĞPĞPĞPĞPĞPĞPĞPØDĞDĞDĞDĞDĞDØ=Ğ=Ğ=Ğ=Ğ=Ğ=Ø=Ğ=Ğ=Ğ=Ğ=Ğ=ØJĞJĞJĞJĞJĞJĞJĞJØ?Ğ?Ğ?Ğ?Ğ?Ğ?Ø4Ğ4Ğ4Ğ4Ğ4Ğ4Ø7Ğ7Ğ7Ğ7Ğ7Ğ7Ø<Ğ<Ğ<Ğ<Ğ<Ğ<Ø8Ğ8Ğ8Ğ8Ğ8Ğ8Ø8Ğ8Ğ8Ğ8Ğ8Ğ8ØEĞEĞEĞEĞEĞEØ'Ğ'Ğ'Ğ'Ğ'Ğ'Ø.Ğ.Ğ.Ğ.Ğ.Ğ.ğ @Qğ@Qğ@Qğ@Qğ@Qñ@Qô@Qğ@Qğ@Qğ@Qr>
21,360
Python
.pyt
95
223.126316
1,279
0.33802
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,571
tictactoe_game.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/Game/__pycache__/tictactoe_game.cpython-311.pyc
§ Uxf"Dãó~—ddlZddlZddlZddlmZddlZddlZ ddl Z ddl Z ddlmZddlmZGd„de¦«ZdS)éN)ÚImage)Ú AlphaZeroGamec óŞ—eZdZdZd?dededdfd„Zdededdfd „Zd edzdefd „Z d „Z d e j de fd„Zd„Zde j dede fd„Zd@de j dededzfd„Zde j defd„Zde j fd„Zd?dedefd„Zd?dedefd„Zd?dededefd„Zd?dededefd„Zd?dededeeefezfd„ZdAded edefd!„Zd"„Zded#edefd$„Zded#edefd%„Zd?defd&„Z d'„Z!d(„Z"d)„Z#defd*„Z$dBd+„Z%dBd,„Z&d-„Z'dedefd.„Z(d?d/e j depdde fd0„Z)defd1„Z*d2„Z+de j fd3„Z,d4„Z-d5„Z.d6„Z/e0de j fd7„¦«Z1de j d8epedede j fd9„Z2d:efd;„Z3d<e j defd=„Z4d>„Z5dS)CÚTicTacToeGameManagerzV This class is the game manager for the game of Tic Tac Toe and its variants. NÚ board_sizeÚheadlessÚreturncóØ—d|_d|_||_| ¦«|_||_| |¦«|_| |¦«|_ dS)Nééÿÿÿÿ) ÚplayerÚ enemy_playerrÚinitialize_boardÚboardrÚinit_num_to_winÚ num_to_winÚ create_screenÚscreen)Úselfrrrs úP/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/Game/tictactoe_game.pyÚ__init__zTicTacToeGameManager.__init__s`€àˆŒ ØˆÔØ$ˆŒØ×*Ò*Ñ,Ô,ˆŒ Ø ˆŒ Ø×.Ò.¨zÑ:Ô:ˆŒØ×(Ò(¨Ñ2Ô2ˆŒ ˆ ˆ ór Úindexcó—||j|<dS©N©r)rr rs rÚplayzTicTacToeGameManager.plays€Ø"ˆŒ �5ÑĞĞrrcóL—|€|j}||jkrtd¦«‚|S)Nz+Num to win can't be greater than board size)rÚ Exception)rrs rrz$TicTacToeGameManager.init_num_to_win!s1€Ø Ğ ØœˆJØ ˜œÒ 'Ğ 'İĞIÑJÔJĞ JØĞrcó^—tj|j|jftj¬¦«}|S)N©Údtype)ÚnpÚzerosrÚint8©rrs rrz%TicTacToeGameManager.initialize_board(s&€İ”˜$œ/¨4¬?Ğ;Å2Ä7ĞKÑKÔKˆØˆ rÚ observationsc ó˜—| |¦«}t|¦«dkrtd¦«‚tj|¦«S)NrzNo valid moves)Úget_valid_movesÚlenrÚrandomÚchoice)rr'ÚkwargsÚ valid_movess rÚget_random_valid_actionz,TicTacToeGameManager.get_random_valid_action,sG€Ø×*Ò*¨<Ñ8Ô8ˆ İ ˆ{Ñ Ô ˜qÒ Ğ İĞ,Ñ-Ô-Ğ -İŒ}˜[Ñ)Ô)Ğ)rcóÈ—|rdStj¦«tj d¦«|jdz}tj ||f¦«}|S)Nz Tic Tac Toeéd)ÚpgÚinitÚdisplayÚ set_captionrÚset_mode)rrÚboard_rect_sizers rrz"TicTacToeGameManager.create_screen2s[€Ø ğ Ø ˆFå Œ‰ Œ ˆ İ Œ ×Ò˜}Ñ-Ô-Ğ-Øœ/¨CÑ/ˆİ”×$Ò$ o°Ğ%GÑHÔHˆØˆ rÚarrÚfunccó^‡—g}| d¦«‰D]3}| || d¦«¦«¦«Œ4| d¦«‰jD]3}| || d¦«¦«¦«Œ4ˆfd„t‰jd dz‰jd¦«D¦«}ˆfd„t‰jd dz‰jd¦«D¦«}| |¦«t |¦«D]}\}} |dkr| d¦«n+|t|¦«d zkr| d ¦«| ||  d¦«¦«¦«Œ~|S) an This function iterates over all rows, columns and the two main diagonals of supplied array, applies the supplied function to each of them and returns the results in a list. :param arr: a 2D numpy array. :param func: a callable function that takes a 1D array as input and returns a result. :return: A list of results. Úrowr Úcolcó<•—g|]}tj‰|¬¦«‘ŒS©)Úk©r#Údiag©Ú.0Úir8s €rú <listcomp>z;TicTacToeGameManager.full_iterate_array.<locals>.<listcomp>Mó(ø€ĞSĞSĞS q•”˜ Ğ"Ñ"Ô"ĞSĞSĞSrrr có`•—g|]*}tjtj‰¦«|¬¦«‘Œ+Sr>©r#rAÚfliplrrBs €rrEz;TicTacToeGameManager.full_iterate_array.<locals>.<listcomp>Nó0ø€ĞfĞfĞf¸!�œ¥¤¨3¡¤°1Ğ5Ñ5Ô5ĞfĞfĞfrÚ diag_leftéÚ diag_right)ÚappendÚreshapeÚTÚrangeÚshapeÚextendÚ enumerater*) rr8r9Úresultsr;r<ÚdiagsÚ flipped_diagsÚidxrAs ` rÚfull_iterate_arrayz'TicTacToeGameManager.full_iterate_array<s¶ø€ğˆØ�Š�uÑÔĞØğ 2ğ 2ˆCØ �NŠN˜4˜4 § ¢ ¨B¡¤Ñ0Ô0Ñ 1Ô 1Ğ 1Ğ 1à�Š�uÑÔĞØ”5ğ 2ğ 2ˆCØ �NŠN˜4˜4 § ¢ ¨B¡¤Ñ0Ô0Ñ 1Ô 1Ğ 1Ğ 1àSĞSĞSĞS­E°3´9¸Q´<°-À!Ñ2CÀSÄYÈqÄ\Ñ,RÔ,RĞSÑSÔSˆØfĞfĞfĞf½uÀcÄiĞPQÄlÀ]ĞUVÑEVĞX[ÔXaĞbcÔXdÑ?eÔ?eĞfÑfÔfˆ Ø � Š �]Ñ#Ô#Ğ#İ" 5Ñ)Ô)ğ 3ğ 3‰IˆC�Ø�aŠxˆxØ—’˜{Ñ+Ô+Ğ+Ğ+Ø�˜E™ œ  a™Ò'Ğ'Ø—’˜|Ñ,Ô,Ğ,Ø �NŠN˜4˜4 § ¢ ¨RÑ 0Ô 0Ñ1Ô1Ñ 2Ô 2Ğ 2Ğ 2ğ ˆrTrÚ check_endcóB—| |¦«rdSd}t|j|jdzd¦«D]J}| d|j|¬¦«}| d|j|¬¦«}|r|dz }|r|dz}ŒK|r| d|¦«€dn|S|S)NrrLr rr )Ú is_board_fullrQrÚcheck_partial_winÚ game_result)rrrZÚscorerDÚ current_wonÚopp_wons rÚ eval_boardzTicTacToeGameManager.eval_board]sÎ€Ø × Ò ˜eÑ $Ô $ğ Ø�1؈İ�t”¨¬¸1Ñ(<¸bÑAÔAğ ğ ˆAØ×0Ò0°°T´_ÈEĞ0ÑRÔRˆKØ×,Ò,¨Q°´ÀuĞ,ÑMÔMˆGØğ ؘ‘�Øğ ؘ‘ �øØ ğ JØ×+Ò+¨B°Ñ6Ô6Ğ>�4�4ÀEĞ I؈ rcó\‡—g}‰D]3}| || d¦«¦«¦«Œ4‰jD]3}| || d¦«¦«¦«Œ4ˆfd„t‰jd dz‰jd¦«D¦«}ˆfd„t‰jd dz‰jd¦«D¦«}| |¦«|D]3}| || d¦«¦«¦«Œ4|S)Nr có<•—g|]}tj‰|¬¦«‘ŒSr>r@rBs €rrEzETicTacToeGameManager.full_iterate_array_all_diags.<locals>.<listcomp>urFrrr có`•—g|]*}tjtj‰¦«|¬¦«‘Œ+Sr>rHrBs €rrEzETicTacToeGameManager.full_iterate_array_all_diags.<locals>.<listcomp>vrJr)rNrOrPrQrRrS) rr8r9rUr;r<rVrWrAs ` rÚfull_iterate_array_all_diagsz1TicTacToeGameManager.full_iterate_array_all_diagsls?ø€àˆØğ 2ğ 2ˆCØ �NŠN˜4˜4 § ¢ ¨B¡¤Ñ0Ô0Ñ 1Ô 1Ğ 1Ğ 1à”5ğ 2ğ 2ˆCØ �NŠN˜4˜4 § ¢ ¨B¡¤Ñ0Ô0Ñ 1Ô 1Ğ 1Ğ 1àSĞSĞSĞS­E°3´9¸Q´<°-À!Ñ2CÀSÄYÈqÄ\Ñ,RÔ,RĞSÑSÔSˆØfĞfĞfĞf½uÀcÄiĞPQÄlÀ]ĞUVÑEVĞX[ÔXaĞbcÔXdÑ?eÔ?eĞfÑfÔfˆ Ø � Š �]Ñ#Ô#Ğ#Øğ 3ğ 3ˆDğ �NŠN˜4˜4 § ¢ ¨RÑ 0Ô 0Ñ1Ô1Ñ 2Ô 2Ğ 2Ğ 2àˆrcóʇ‡—‰ ¦«‰j ¦«z}| ˆfd„t‰jd dz‰jd¦«D¦«¦«| ˆfd„t‰jd dz‰jd¦«D¦«¦«ˆfd„|D¦«}t j|¦«S)Ncó<•—g|]}tj‰|¬¦«‘ŒSr>r@©rCrDrs €rrEz<TicTacToeGameManager.extract_all_vectors.<locals>.<listcomp>�s(ø€Ğ`Ğ`Ğ`°�œ ¨Ğ+Ñ+Ô+Ğ`Ğ`Ğ`rrr có`•—g|]*}tjtj‰¦«|¬¦«‘Œ+Sr>rHris €rrEz<TicTacToeGameManager.extract_all_vectors.<locals>.<listcomp>‚s2ø€ĞkĞkĞk¸1�œ¥¤ ¨%Ñ 0Ô 0°AĞ6Ñ6Ô6ĞkĞkĞkrc ól•—g|]0}tj|d‰jt|¦«z fd¬¦«‘Œ1S)réıÿÿÿ)Úconstant_values)r#Úpadrr*)rCÚvectorrs €rrEz<TicTacToeGameManager.extract_all_vectors.<locals>.<listcomp>„s>ø€ĞpĞpĞpĞ^d•2”6˜& 1 d¤o½¸F¹ ¼ Ñ&CĞ"DĞVXĞYÑYÔYĞpĞpĞpr)ÚtolistrPrSrQrRr#Úarray)rrÚvectorss`` rÚextract_all_vectorsz(TicTacToeGameManager.extract_all_vectorssŞøø€Ø—,’,‘.”. 5¤7§>¢>Ñ#3Ô#3Ñ3ˆØ�ŠĞ`Ğ`Ğ`Ğ`µU¸E¼KȼN¸?ÈQÑ;NĞPUÔP[Ğ\]ÔP^Ñ5_Ô5_Ğ`Ñ`Ô`ÑaÔaĞaØ�ŠĞkĞkĞkĞkÅÀuÄ{ĞSTÄ~ÀoĞXYÑFYĞ[`Ô[fĞghÔ[iÑ@jÔ@jĞkÑkÔkÑlÔlĞlàpĞpĞpĞpĞhoĞpÑpÔpˆİŒx˜Ñ Ô Ğ rcó<—| ||j|¬¦«S)Nr)r]r)rr rs rÚ check_winzTicTacToeGameManager.check_win‡s!€ğ×%Ò% f¨d¬oÀUĞ%ÑKÔKĞKrc󤇗|€| ¦«}| |ˆfd„¦«}|D]}t|t¦«s|rdSŒdS)aC This function checks if the supplied player has won the game with a full win (num_to_win == board_size). :param player: The player to check for (1 or -1). :param board: The board to check on. If None, the current board is used. :return: True if the player has won, False otherwise. Ncó4•—tj|‰k¦«Sr)r#Úall)Úpartr s €rú<lambda>z5TicTacToeGameManager.check_full_win.<locals>.<lambda>–sø€½b¼fÀTÈVÂ^Ñ>TÔ>T€rTF)Ú get_boardrYÚ isinstanceÚstr)rr rÚmatchesÚmatchs ` rÚcheck_full_winz#TicTacToeGameManager.check_full_win�smø€ğ ˆ=Ø—N’NÑ$Ô$ˆEØ×)Ò)¨%Ğ1TĞ1TĞ1TĞ1TÑUÔUˆØğ ğ ˆEݘe¥SÑ)Ô)ğ ¨eğ Ø�t�tøàˆurÚnc󪇇—|€| ¦«}| |ˆˆfd„¦«}|D]}tj|‰k¦«rdSŒdS)aˆ This function checks if the supplied player has won the game with a partial win (num_to_win < board_size). :param player: The player to check for (1 or -1). :param n: The number of consecutive pieces needed to win. :param board: The board to check on. If None, the current board is used. :return: True if the player has won, False otherwise. Ncót•—tj|‰ktj‰tj¬¦«d¦«S©Nr!Úvalid)r#ÚconvolveÚonesr%©ryr�r s €€rrzz8TicTacToeGameManager.check_partial_win.<locals>.<lambda>©s:ø€İ46´KÀÈÂÕRTÔRYĞZ[ÕceÔcjĞRkÑRkÔRkØ@Gñ5Iô5IğrTF)r{rfr#Úany)rr r�rr~rs `` rr]z&TicTacToeGameManager.check_partial_win�s‹øø€ğ ˆ=Ø—N’NÑ$Ô$ˆEØ×3Ò3°Eğ5Iğ5Iğ5Iğ5Iğ5IñJôJˆğ ğ ğ ˆEİŒv�e˜q’jÑ!Ô!ğ Ø�t�tğ ğˆurcóâ—|€| ¦«}tj| |¦«¦« d¦«}tjddd|ftj¬¦«}tj||kdd¦« ¦«}tjj   ||¬¦«}tj ||k¦«  ¦«S)Nrr r!)Úweight) r{ÚthÚtensorrsÚ unsqueezer‡ÚlongÚwhereÚnnÚ functionalÚconv2dr‰Úitem)rr r�rrrr‹Úvectors_where_playerÚress rÚcheck_partial_win_vectorizedz1TicTacToeGameManager.check_partial_win_vectorized³sÂ€Ø ˆ=Ø—N’NÑ$Ô$ˆEİ”)˜D×4Ò4°UÑ;Ô;Ñ<Ô<×FÒFÀqÑIÔIˆİ”˜!˜Q  1˜­R¬WĞ5Ñ5Ô5ˆİ!œx¨°6Ò(9¸1¸aÑ@Ô@×EÒEÑGÔGĞİŒeÔ×%Ò%Ğ&:À6Ğ%ÑJÔJˆİŒv�c˜Q’hÑÔ×$Ò$Ñ&Ô&Ğ&rcóP‡‡—|€| ¦«}| |ˆˆfd„¦«}d„|D¦«}d}|D]ß}t|t¦«r|}Œ|D]Â}|‰krº| |¦«}| |¦«} || kr|| dzz n| || ¦«} | |jkrd|jdz | z dfin dd| |jz fi} || d<|xdkr | df|d œccSxd kr d| f|d œccSxd kr| ccSd kr| ccSŒÃŒàddd œS) aß This variation of check_partial_win returns the index of the first partial win found. The index being the index of the first piece in the winning sequence. :param player: The player to check for (1 or -1). :param n: The number of consecutive pieces needed to win. :param board: The board to check on. If None, the current board is used. :return: A dictionary containing the index and the position of the winning sequence. Ncój•—tj|‰ktj‰t¬¦«d¦«Sr„)r#r†r‡Úintrˆs €€rrzzATicTacToeGameManager.check_partial_win_to_index.<locals>.<lambda>Ès3ø€İ*,¬+°t¸v²~ÍÌĞPQÕY\ĞH]ÑH]ÔH]Ø6=ñ+?ô+?ğrcód—g|]-}t|t¦«s| ¦«n|‘Œ.S©)r|r}rp©rCÚxs rrEzCTicTacToeGameManager.check_partial_win_to_index.<locals>.<listcomp>Ës3€ĞPĞPĞPÀ1¥Z°µ3Ñ%7Ô%7Ğ>�1—8’8‘:”:�:¸QĞPĞPĞPrr;r rrÚpos)rrŸr<rKrM)r{rYr|r}rr) rr r�rÚindicesrŸroÚelÚ vector_indexÚ pos_indexÚ element_indexÚdiag_idxs `` rÚcheck_partial_win_to_indexz/TicTacToeGameManager.check_partial_win_to_index¼sõøø€ğ ˆ=Ø—N’NÑ$Ô$ˆEØ×)Ò)¨%ğ+?ğ+?ğ+?ğ+?ğ+?ñ@ô@ˆğQĞPÈĞPÑPÔPˆàˆØğ ,ğ ,ˆFݘ&¥#Ñ&Ô&ğ Ø�ØØğ ,ğ ,�ؘ’7�7Ø#*§=¢=°Ñ#8Ô#8�LØ '§ ¢ ¨cÑ 2Ô 2�IàFRĞU^ÒF^ĞF^ L°IÀ±MÑ$BĞ$BĞdk×dqÒdqØ  ñe+ôe+�MğQ^Ğ`dÔ`oÒPoĞPo˜ 4¤?°QÑ#6¸-Ñ"GÈĞ!Kğ Mğ Mà ! ]°T´_Ñ%DĞ!EğvGğğ'*�H˜U‘OØØ"˜UšU˜U˜UØ.;¸QĞ-?ÈĞ#LĞ#LĞLĞLĞLĞLĞLØ"˜UšU˜U˜UØ./°Ğ-?ÈĞ#LĞ#LĞLĞLĞLĞLĞLØ(˜[š[˜[˜[Ø#+˜O˜O˜O˜O˜OØ)š\˜\Ø#+˜O˜O˜O˜O˜Oøğ' ,ğ. dĞ+Ğ+Ğ+rrœÚreturn_on_failcó~—|ddks.|d|jks|ddks|d|jkr|S|S©Nrr ©r)rrr§s rÚreturn_index_if_validz*TicTacToeGameManager.return_index_if_validësI€Ø �Œ8�aŠ<ˆ<˜5 œ8 t¤Ò6Ğ6¸%À¼(ÀQº,¸,È%ĞPQÌ(ĞVZÔVeÒJeĞJeØ!Ğ !؈ rcóD—t|j|j|j¬¦«S)N)r)rrrr©rs rÚmake_fresh_instancez(TicTacToeGameManager.make_fresh_instanceğs€İ# D¤O°T´]ÈtÌĞ_Ñ_Ô_Ğ_rrŸcóà—tj|¦« ¦«dkr|S|xdkr)| |d|d|z f|¬¦«Sxdkr)| |d|z |df|¬¦«Sxdkr,| |d|z |d|z f|¬¦«Sdkr+| |d|z |d|zf|¬¦«SdS)Nrr;r ©r§r<rKrM)r#rqrxr«©rrrŸr�s rÚ get_previousz!TicTacToeGameManager.get_previousós €İ Œ8�E‰?Œ?× Ò Ñ Ô  AÒ %Ğ %؈LØØ�’��Ø×1Ò1°5¸´8¸UÀ1¼Xȹ\Ğ2JĞ[`Ğ1ÑaÔaĞaØ�’��Ø×1Ò1°5¸´8¸a±<ÀÀqÄĞ2JĞ[`Ğ1ÑaÔaĞaØ�’��Ø×1Ò1°5¸´8¸a±<ÀÀqÄÈAÁĞ2NĞ_dĞ1ÑeÔeĞeØ’�Ø×1Ò1°5¸´8¸a±<ÀÀqÄÈAÁĞ2NĞ_dĞ1ÑeÔeĞeğ�rcóğ—tj|¦« ¦«|jdz kr|S|xdkr)| |d|d|zf|¬¦«Sxdkr)| |d|z|df|¬¦«Sxdkr,| |d|z|d|zf|¬¦«Sdkr+| |d|z|d|z f|¬¦«SdS)Nr r;rr°r<rKrM)r#rqrxrr«r±s rÚget_nextzTicTacToeGameManager.get_nexts€İ Œ8�E‰?Œ?× Ò Ñ Ô  D¤O°aÑ$7Ò 7Ğ 7؈LØØ�’��Ø×1Ò1°5¸´8¸UÀ1¼Xȹ\Ğ2JĞ[`Ğ1ÑaÔaĞaØ�’��Ø×1Ò1°5¸´8¸a±<ÀÀqÄĞ2JĞ[`Ğ1ÑaÔaĞaØ�’��Ø×1Ò1°5¸´8¸a±<ÀÀqÄÈAÁĞ2NĞ_dĞ1ÑeÔeĞeØ’�Ø×1Ò1°5¸´8¸a±<ÀÀqÄÈAÁĞ2NĞ_dĞ1ÑeÔeĞeğ�rcó^—|€| ¦«}tj|dk¦«S©Nr)r{r#rxr&s rr\z"TicTacToeGameManager.is_board_full s*€Ø ˆ=Ø—N’NÑ$Ô$ˆEİŒv�e˜q’jÑ!Ô!Ğ!rcó4—|j ¦«Sr)rÚcopyr­s rr{zTicTacToeGameManager.get_boards€ØŒz�ŠÑ Ô Ğ rcóf—| ¦«|_|j ¦«Sr)rrr¸r­s rÚresetzTicTacToeGameManager.resets'€Ø×*Ò*Ñ,Ô,ˆŒ ØŒz�ŠÑ Ô Ğ rcó—|jSrrªr­s rÚget_board_sizez#TicTacToeGameManager.get_board_sizes €ØŒĞrcóB—|jrdS|j d¦«| ¦«t |j¦«D]–}t |j¦«D]}|j|||jkr#| |dzdz|dzdz¦«ŒA|j|||j kr"|  |dzdz|dzdz¦«Œ€Œ—tj   ¦«tj ¦«dS)NF)rrrr1é2T)rrÚfillÚ _draw_boardrQrrr Ú _draw_circlerÚ _draw_crossr2ÚeventÚpumpr4Úflip)rr;r<s rÚrenderzTicTacToeGameManager.renders€Ø Œ=ğ Ø�5à Œ ×Ò˜Ñ#Ô#Ğ#Ø ×ÒÑÔĞݘœÑ)Ô)ğ Eğ EˆCݘTœ_Ñ-Ô-ğ Eğ E�Ø”:˜c”? 3Ô'¨4¬;Ò6Ğ6Ø×%Ò% c¨C¡i°"¡n°c¸C±iÀ"±nÑEÔEĞEĞEà”Z ”_ SÔ)¨TÔ->Ò>Ğ>Ø×$Ò$ S¨3¡Y°¡^°S¸3±YÀ±^ÑDÔDĞDøğ  Eõ Œ� Š ‰Œˆİ Œ �ŠÑÔĞØˆtrcól—|jrdStj |jd||fdd¦«dS)NÚgreené(r )rr2ÚdrawÚcircler©rr�Úys rrÁz!TicTacToeGameManager._draw_circle.s9€Ø Œ=ğ Ø ˆFİ Œ�Š�t”{ G¨a°¨V°R¸Ñ;Ô;Ğ;Ğ;Ğ;rcóø—|jrdStj |jd|dz |dz f|dz|dzfd¦«tj |jd|dz|dz f|dz |dzfd¦«dS)NÚredrÉr )rr2rÊÚlinerrÌs rrÂz TicTacToeGameManager._draw_cross3s‡€Ø Œ=ğ Ø ˆFİ Œ� Š �T”[ %¨!¨b©&°!°b±&Ğ)9¸AÀ¹FÀAÈÁFĞ;KÈQÑOÔOĞOİ Œ� Š �T”[ %¨!¨b©&°!°b±&Ğ)9¸AÀ¹FÀAÈÁFĞ;KÈQÑOÔOĞOĞOĞOrc óî—td|jdzd¦«D]Z}td|jdzd¦«D]>}tj |jdtj||dd¦«d¦«Œ?Œ[dS)Nrr1)éÿrÒrÒr )rQrr2rÊÚrectrÚRectrÌs rrÀz TicTacToeGameManager._draw_board9sŒ€İ�q˜$œ/¨CÑ/°Ñ5Ô5ğ Wğ WˆAݘ1˜dœo°Ñ3°SÑ9Ô9ğ Wğ W�İ”— ’ ˜Tœ[¨/½2¼7À1ÀaÈÈcÑ;RÔ;RĞTUÑVÔVĞVĞVğ Wğ Wğ Wrcó$—|j|dkSr¶r)rrs rÚis_emptyzTicTacToeGameManager.is_empty>s€ØŒz˜%Ô  AÒ%Ğ%rÚ observationcóø—g}| |j|j¦«}t|j¦«D]B}t|j¦«D]+}|||dkr| ||g¦«Œ,ŒC|S)a Legal moves are the empty spaces on the board. :param observation: A 2D numpy array representing the current state of the game. :param player: The player to check for. Since the game is symmetric, this is ignored. :return: A list of legal moves. r)rOrrQrN)rr×r Ú legal_movesr;r<s rr)z$TicTacToeGameManager.get_valid_movesAs�€ğˆ Ø!×)Ò)¨$¬/¸4¼?ÑKÔKˆ ݘœÑ)Ô)ğ 3ğ 3ˆCݘTœ_Ñ-Ô-ğ 3ğ 3�ؘsÔ# CÔ(¨AÒ-Ğ-Ø×&Ò&¨¨S zÑ2Ô2Ğ2øğ 3ğĞrcó>—|jrdStj¦«dS)NFT)rr2Úquitr­s rÚ pygame_quitz TicTacToeGameManager.pygame_quitPs!€Ø Œ=ğ Ø�5İ Œ‰ Œ ˆ ؈trcó´—|jrdSd„tj ¦«D¦«}tj ¦«dr|SdS)Nc3ó K—|] }|dzV—Œ dS)r1Nrœr�s rú <genexpr>z8TicTacToeGameManager.get_click_coords.<locals>.<genexpr>Ys&èè€Ğ:Ğ: !�Q˜#‘XĞ:Ğ:Ğ:Ğ:Ğ:Ğ:rr)rr2ÚmouseÚget_posÚ get_pressed)rÚ mouse_poss rÚget_click_coordsz%TicTacToeGameManager.get_click_coordsVs]€Ø Œ=ğ Ø ˆFØ:Ğ:¥r¤x×'7Ò'7Ñ'9Ô'9Ğ:Ñ:Ô:ˆ İ Œ8× Ò Ñ !Ô ! !Ô $ğ ØĞ ğ ğ rcó—|jrdS | ¦«| ¦«�-| ¦«\}}|||dkr||fSŒV)NTr)rÚcheck_pg_eventsrä)rrr�rÍs rÚget_human_inputz$TicTacToeGameManager.get_human_input]sp€Ø Œ=ğ Ø ˆFğ Ø × Ò Ñ "Ô "Ğ "Ø×$Ò$Ñ&Ô&Ğ2Ø×,Ò,Ñ.Ô.‘��1ؘ”8˜A”; !Ò#Ğ#ؘa˜4�Kğ  rcóÔ—|jrdStj ¦«D]?}|jtjkr(| ¦«tjd¦«Œ@dSr¶) rr2rÃÚgetÚtypeÚQUITrÜÚsysÚexit)rrÃs rræz$TicTacToeGameManager.check_pg_eventsisc€Ø Œ=ğ Ø ˆFİ”X—\’\‘^”^ğ ğ ˆEØŒz�RœWÒ$Ğ$Ø× Ò Ñ"Ô"Ğ"İ”˜‘ ” � øğ ğ rcó@—tj||jj¦«S)zÜ Converts an integer move from the network to a board index. :param move: An integer move selected from the network probabilities. :return: A tuple representing the board index (int,int). ©r#Ú unravel_indexrrR)rÚmoves rÚnetwork_to_boardz%TicTacToeGameManager.network_to_boardqs€õ Ô  d¤jÔ&6Ñ7Ô7Ğ7rc󪇗‰jrdStjd¬¦«t| ¦«�\}}t |¦«ˆfd„|D¦«}t j||¬¦«tjd¬¦«tj d¦«tj d¦«tj d ¦«tj ¦«}tj|d d ¬ ¦«| d ¦«t!j|¦«}t$j ‰jd¦«}t!jd‰j ¦«|¦«}|j|jz} t!jdt5|j|j¦«| f¦«} |  |d¦«|  |d |jf¦«|  |¦«dS)N)éé )Úfigsizec󪕗g|]O}tj|‰jj¦«d›dtj|‰jj¦«d›�‘ŒPS)rú;r rï)rCr�rs €rrEzKTicTacToeGameManager.save_screenshot_with_probabilities.<locals>.<listcomp>sfø€ğğğĞop•RÔ% a¨¬Ô)9Ñ:Ô:¸1Ô=ĞjĞjÅÔ@PĞQRĞTXÔT^ÔTdÑ@eÔ@eĞfgÔ@hĞjĞjğğğr)r�rÍéZ)ÚrotationÚMoveÚ ProbabilityzAction probabilitiesÚpngÚtight)ÚformatÚ bbox_inchesrÚRGBAÚRGB)rr)rÚpltÚfigureÚzipÚitemsÚprintÚsnsÚbarplotÚxticksÚxlabelÚylabelÚtitleÚioÚBytesIOÚsavefigÚseekrÚopenr2ÚimageÚtostringrÚ frombytesÚget_sizeÚheightÚnewÚmaxÚwidthÚpasteÚsave) rÚ action_probsÚpathÚlabelsÚ probabilitiesÚbufÚplot_imgÚsurface_bufferÚ surface_imgÚ total_heightÚ combined_imgs ` rÚ"save_screenshot_with_probabilitiesz7TicTacToeGameManager.save_screenshot_with_probabilitiesysÍø€Ø Œ=ğ Ø ˆFİ Œ ˜8Ğ$Ñ$Ô$Ğ$İ # \×%7Ò%7Ñ%9Ô%9Ğ :ш� İ ˆmÑÔĞğğğğØğñôˆå Œ �f  Ğ.Ñ.Ô.Ğ.İ Œ ˜BĞÑÔĞİ Œ �6ÑÔĞİ Œ �=Ñ!Ô!Ğ!İ Œ Ğ(Ñ)Ô)Ğ)åŒj‰lŒlˆİ Œ �C °7Ğ;Ñ;Ô;Ğ;Ø �Š�‰ Œ ˆ İ”:˜c‘?”?ˆõœ×*Ò*¨4¬;¸Ñ?Ô?ˆİ”o f¨d¬k×.BÒ.BÑ.DÔ.DÀnÑUÔUˆ 𠔨Ô);Ñ;ˆ İ”y ­¨X¬^¸[Ô=NÑ)OÔ)OĞQ]Ğ(^Ñ_Ô_ˆ Ø×Ò˜8 VÑ,Ô,Ğ,Ø×Ò˜;¨¨H¬OĞ(<Ñ=Ô=Ğ=Ø×Ò˜$ÑÔĞĞĞrcó —||zSrrœ)rr s rÚget_canonical_formz'TicTacToeGameManager.get_canonical_form—s €à�v‰~ĞrÚactioncóŒ—t|t¦«r| |¦«}| ¦«}|||<|Sr)r|ršròr¸)rrr*r Úboard_s rÚget_next_statez#TicTacToeGameManager.get_next_state›sB€İ �f�cÑ "Ô "ğ 3Ø×*Ò*¨6Ñ2Ô2ˆFØ—’‘”ˆØˆˆv‰Øˆ rÚvalcó—||_dSr)r)rr.s rÚ set_headlessz!TicTacToeGameManager.set_headless¢s €ØˆŒ ˆ ˆ rÚstatecó:—tj|dkdd¦«}|Sr©)r#r�)rr1r Úmasks rÚget_invalid_actionsz(TicTacToeGameManager.get_invalid_actions¥s€İŒx˜ š  A qÑ)Ô)ˆØˆ rcóz—t|j¦« dd¦« dd¦«S)NÚ1ÚXz-1ÚO)r}rÚreplacer­s rÚ__str__zTicTacToeGameManager.__str__©s0€İ�4”:‰Œ×&Ò& s¨CÑ0Ô0×8Ò8¸¸sÑCÔCĞCrr)T)rœ)r N)6Ú__name__Ú __module__Ú __qualname__Ú__doc__ršÚboolrÚtuplerrrr#ÚndarrayÚlistr/rÚcallablerYrbrfrsrur€r]r—Údictr}r¦r«r®r²r´r\r{rºr¼rÆrÁrÂrÀrÖr)rÜrärçræròr'Ú staticmethodr)r-r0r4r:rœrrrrs8€€€€€ğğğ3ğ3 3ğ3°$ğ3ÈDğ3ğ3ğ3ğ3ğ#˜3ğ# uğ#°ğ#ğ#ğ#ğ#ğ¨#°©*ğ¸ğğğğğğğğ*°B´Jğ*ÈTğ*ğ*ğ*ğ*ğ ğğğ b¤jğ¸ğÀTğğğğğB ğ  ¤ ğ °tğ ÀsÈTÁzğ ğ ğ ğ ğ°´ ğÀ(ğğğğğ&!¨¬ğ!ğ!ğ!ğ!ğLğL ğL°DğLğLğLğLğ ğ Sğ¸ğğğğğ ğ¨ğ°ğÀDğğğğğ,'ğ'°3ğ'¸3ğ'Ètğ'ğ'ğ'ğ'ğ-,ğ-,°ğ-,¸ğ-,ÈTĞRWĞY\ĞR\ÔM]Ğ`dÑMdğ-,ğ-,ğ-,ğ-,ğ^ğ¨5ğÀ%ğĞQVğğğğğ `ğ`ğ`ğ f %ğ f¨cğ f°cğ fğ fğ fğ fğ f˜eğ f¨#ğ f°#ğ fğ fğ fğ fğ"ğ"¨4ğ"ğ"ğ"ğ"ğ !ğ!ğ!ğ!ğ!ğ!ğğğğ˜ğğğğğ$<ğ<ğ<ğ<ğ PğPğPğPğ WğWğWğ &˜eğ&¨ğ&ğ&ğ&ğ&ğ ğ ¨2¬:ğ ¸s¸{Àdğ ĞVZğ ğ ğ ğ ğ˜Tğğğğğ ğğğ  R¤Zğ ğ ğ ğ ğğğğ8ğ8ğ8ğ ğ ğ ğ<ğ¨R¬Zğğğñ„\ğğ B¤J𸸠¸uğÈcğĞVXÔV`ğğğğğ ğğğğğ¨¬ğ¸SğğğğğDğDğDğDğDrr)rr+rìÚmatplotlib.pyplotÚpyplotrÚnumpyr#Úpygamer2ÚseabornrÚtorchrŒÚPILrÚmu_alpha_zero.General.az_gamerrrœrrú<module>rNsÎğØ € € € Ø € € € Ø € € € àĞĞĞĞĞØĞĞĞØĞĞĞØĞĞĞØĞĞĞØĞĞĞĞĞà7Ğ7Ğ7Ğ7Ğ7Ğ7ğ[Dğ[Dğ[Dğ[Dğ[D˜=ñ[Dô[Dğ[Dğ[Dğ[Dr
31,194
Python
.pyt
118
260.949153
2,695
0.344221
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,572
asteroids.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/Game/__pycache__/asteroids.cpython-311.pyc
§ Ô`�f(ãóJ—ddlZddlZddlmZddlmZGd„de¦«ZdS)éN)Úmake)Ú MuZeroGamec ó6—eZdZdejdefd„Zd„Zdejpej fd„Z defd„Z defd„Z depd de pd fd „Zd „Zdd edepd dedejpej ee ffd„Zdd edepd dedejpej ee ffd„Zd„Zdejfd„Zdejdefd„Zd S)Ú AsteroidsÚstateÚplayercó—|S©N©©Úselfrrs úK/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/Game/asteroids.pyÚget_state_for_passive_playerz&Asteroids.get_state_for_passive_player s€Øˆ ócó<—td¦«|_d|_dS)NzALE/Asteroids-v5F)rÚenvÚdone©r s rÚ__init__zAsteroids.__init__ s€İĞ*Ñ+Ô+ˆŒØˆŒ ˆ ˆ rÚreturncó>—|j ¦«\}}|Sr )rÚreset)r ÚobsÚ_s rrzAsteroids.resets€Ø”—’Ñ!Ô!‰ˆˆQ؈ rcó—dS)Nrr rs rÚget_noopzAsteroids.get_noops€Øˆqrcó$—|jjjSr )rÚ action_spaceÚnrs rÚget_num_actionszAsteroids.get_num_actionss€ØŒxÔ$Ô&Ğ&rNcó—|jSr )r)r rs rÚ game_resultzAsteroids.game_results €ØŒyĞrcó—t¦«Sr )rrs rÚmake_fresh_instancezAsteroids.make_fresh_instances €İ‰{Œ{ĞréÚactionÚ frame_skipcóZ—|j |¦«\}}}}}||_|||fSr )rÚstepr)r r&rr'rÚrewrrs rÚget_next_statezAsteroids.get_next_state!s3€à#œxŸ}š}¨VÑ4Ô4шˆS�$˜˜1؈Œ Ø�C˜ˆ~Ğrcó�—| ||¦«\}}}t|dz ¦«D]}| ||¦«\}}}Œ|||fS)Né)r+Úrange)r r&rr'rr*rÚis rÚframe_skip_stepzAsteroids.frame_skip_step'sc€à×,Ò,¨V°VÑ<Ô<‰ˆˆS�$İ�z A‘~Ñ&Ô&ğ Ağ AˆAØ!×0Ò0°¸Ñ@Ô@‰NˆC��d�dØ�C˜ˆ~Ğrcó—dSr r rs rÚrenderzAsteroids.render.s€Ø ˆrc ó>—|jj ¦«Sr )rrÚsample)r rÚkwargss rÚget_random_valid_actionz!Asteroids.get_random_valid_action1s€ØŒxÔ$×+Ò+Ñ-Ô-Ğ-rcóN—tj| ¦«¦«Sr )ÚnpÚonesr r s rÚget_invalid_actionszAsteroids.get_invalid_actions4s€İŒw˜×,Ò,Ñ.Ô.Ñ0Ô0Ğ0r)r%)Ú__name__Ú __module__Ú __qualname__r8ÚndarrayÚintrrÚthÚTensorrrr Úboolr"r$r+r0r2r6r:r rrrrsÄ€€€€€ğ°"´*ğÀcğğğğğğğğ�r”zĞ. R¤Yğğğğğ˜#ğğğğğ' ğ'ğ'ğ'ğ'ğ # +¨ğ°$°,¸$ğğğğğğğğğ Sğ°#°+¸ğÈ3ğØ ŒJĞ #˜"œ) S¨$ğX0ğğğğğ ğ cğ°3°;¸$ğÈCğØ ŒJĞ #˜"œ) S¨$ğY0ğğğğğ ğ ğ ğ.¨R¬Zğ.ğ.ğ.ğ.ğ1¨¬ğ1¸Sğ1ğ1ğ1ğ1ğ1ğ1rr) Únumpyr8Útorchr@Ú gymnasiumrÚmu_alpha_zero.General.mz_gamerrr rrú<module>rGsuğØĞĞĞØĞĞĞØĞĞĞĞĞà4Ğ4Ğ4Ğ4Ğ4Ğ4ğ-1ğ-1ğ-1ğ-1ğ-1� ñ-1ô-1ğ-1ğ-1ğ-1r
3,983
Python
.pyt
20
198.1
830
0.346367
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,573
utils.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/MuZero/__pycache__/utils.cpython-311.pyc
§ ‰Ó¢f�ã ó$—ddlZddlZddlmZddlZddlZddlZddl m Z ddl m Z d3dej dej fd„Zdej defd „Zd ej d eefd „Zdejd eeefdedejfd„Zdejdefd„Zdedefd„Zdej fd„Zd4dej defd„Zd4dej defd„Zdefd„Zdej d efd!„Zdej d efd"„Z d5d%ed&e pdd'e d(e d)ed*e f d+„Z!d,ejd-ejfd.„Z"d/ed0ej d1eefd2„Z#dS)6éN)ÚCallable)ÚImage)Ú MuZeroConfigÚ observationsÚactionscó2—tj||f|¬¦«S)N©Údim)ÚthÚcat)rrr s úI/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/MuZero/utils.pyÚadd_actions_to_obsr s€İ Œ6�< Ğ)¨sĞ 3Ñ 3Ô 3Ğ3óÚactioncó¢—tjd|jd|jdf|tj|j¬¦«}t ||¦«S)Néé©ÚdtypeÚdevice)r ÚfullÚshapeÚfloat32rr)rrs r Úmatch_action_with_obsrsO€İ ŒW�a˜Ô+¨AÔ.° Ô0BÀ1Ô0EĞFÈÕVXÔV`Ø(Ô/ğ1ñ1ô1€Få ˜l¨FÑ 3Ô 3Ğ3rÚobservation_batchÚ action_batchcóp‡—ˆfd„|D¦«}tj|d¬¦«}t‰|d¬¦«S)Nc ó’•—g|]C}tjdd‰jd‰jdf|tj‰j¬¦«‘ŒDS)rrér)r rrrr)Ú.0rrs €r ú <listcomp>z/match_action_with_obs_batch.<locals>.<listcomp>smø€ğTğTğTØ<BõŒw˜˜1Ğ/Ô5°aÔ8Ğ:KÔ:QĞRSÔ:TĞUĞW]ÕegÔeoØ/Ô6ğ8ñ8ô8ğTğTğTrrr r)r r r)rrÚtensorsrs` r Úmatch_action_with_obs_batchr#s\ø€ğTğTğTğTØFRğTñTôT€GåŒf�W !Ğ$Ñ$Ô$€Gİ Ğ/°¸aĞ @Ñ @Ô @Ğ@rÚsizeÚresizeÚreturncó„—|s|Stj|¦«}| |¦«}tj|¦«S©N)rÚ fromarrayr%ÚnpÚarray)rr$r%Úobss r Ú resize_obsr-s>€Ø ğØĞİ Œ/˜,Ñ 'Ô '€CØ �*Š*�TÑ Ô €Cİ Œ8�C‰=Œ=ĞrÚstateÚscalecó—|s|S|dz S)Néÿ©)r.r/s r Ú scale_stater3&s€Ø ğØˆ à �3‰;ĞrÚ num_actionscó—|dz|z S©Nrr2)rr4s r Ú scale_actionr7-s€à �Q‰J˜+Ñ %Ğ%rÚ hidden_statecón—d}t|j¦«dkr| d¦«}d}| | d¦«| d¦«d¦« dd¬¦«d d¦«}| | d¦«| d¦«d¦« dd¬¦«d d¦«}||z }d ||dk<||z |z }|r| d¦«n|S) NFrrTréÿÿÿÿr)r Úkeepdimçñh㈵øä>)ÚlenrÚ unsqueezeÚviewr$ÚmaxÚminÚsqueeze)r8Ú was_reshapedÚmax_Úmin_Ú max_min_difs r Úscale_hidden_staterG2s4€Ø€Lİ ˆ<Ô ÑÔ !Ò#Ğ#Ø#×-Ò-¨aÑ0Ô0ˆ ؈ Ø × Ò ˜\×.Ò.¨qÑ1Ô1°,×2CÒ2CÀAÑ2FÔ2FÀrÑ JÔ J× NÒ NĞSTĞ]aĞ NÑ bÔ bĞcdÔ e× oÒ oĞprÑ sÔ s€DØ × Ò ˜\×.Ò.¨qÑ1Ô1°,×2CÒ2CÀAÑ2FÔ2FÀrÑ JÔ J× NÒ NĞSTĞ]aĞ NÑ bÔ bĞcdÔ e× oÒ oĞprÑ sÔ s€Dؘ‘+€KØ$(€K� ˜qÒ Ñ!Ø  4Ñ'¨;Ñ6€LØ&2Ğ Dˆ<× Ò  Ñ "Ô "Ğ "¸ ĞDrçü©ñÒMbP?ÚvalueÚecó�—tj|¦«tjtj|¦«dz¦«dz z||zzSr6©r ÚsignÚsqrtÚabs©rIrJs r Úscale_reward_valuerQ?s:€İ Œ7�5‰>Œ>�RœW¥R¤V¨E¡]¤]°QÑ%6Ñ7Ô7¸!Ñ;Ñ <¸qÀ5¹yÑ HĞHrcó¨—tj|¦«tjddtj|¦«dzdzzz¦«dz dz dzdz zS)Nrgü©ñÒMbp?rHgü©ñÒMb`?rrLrPs r Úinvert_scale_reward_valuerSCsZ€İ Œ7�5‰>Œ>İŒg�a˜)¥r¤v¨e¡}¤}°qÑ'8¸5Ñ'@ÑAÑAÑBÔBÀQÑFÈ9Ñ UØñ àñ ñ ğrÚrewardcó2—tj|dzd¦«S)Nré)ÚmathÚlog)rTs r Ú scale_rewardrYLs€İ Œ8�F˜Q‘J Ñ "Ô "Ğ"rÚxÚ support_sizecón—t|¦«}tj|| |¦«}d|| ¦«z z }|| ¦«z }tj| d¦«d|zdzf|j¬¦«}| d|| ¦«z tj ¦«|¦« | d|| ¦«zdz tj ¦«|¦«n#t$rYnwxYw|S)Nrrr)r) rQr ÚclampÚfloorÚzerosr$rÚscatter_ÚtypeÚint64Ú RuntimeError)rZr[Úlower_pÚupper_pÚsupports r Úscalar_to_supportrgPs!€å˜1ÑÔ€Aİ Œ��\�M <Ñ0Ô0€AØ�1�q—w’w‘y”y‘=Ñ!€GØ�!—'’'‘)”)‰m€GİŒh˜Ÿš˜q™ œ  1 |Ñ#3°aÑ#7Ğ8ÀÄĞJÑJÔJ€GØ ×Ò�Q˜¨¯ª© ¬ Ñ1×7Ò7½¼ÑAÔAÀ7ÑKÔKĞKğ Ø×ҘؘqŸwšw™yœyÑ(¨1Ñ,¯dªdµ2´8©n¬n¸gñ Gô Gğ Gğ Gøå ğ ğ ğ à ˆğ øøøğ €NsÃA D%Ä% D2Ä1D2cóğ—tj| |dzd|j|j¬¦« d¦«}tj||zd¬¦«}t |¦«}| d¦«S)Nrrrr )r Úarangerrr>ÚsumrS)rZr[rfÚoutputs r Úsupport_to_scalarrlasq€İŒi˜˜  |°aÑ'7¸À!Ä'ĞRSÔRZĞ[Ñ[Ô[×eÒeĞfgÑhÔh€Gİ ŒV�A˜‘K QĞ 'Ñ 'Ô '€Fİ & vÑ .Ô .€FØ × Ò ˜AÑ Ô ĞrFÚmaximizeÚn_trialsÚstorageÚ study_nameÚ muzero_configÚ in_memoryÚ directionc óꇇ‡‡‡ ‡ ‡‡‡‡—dtjfˆ ˆ ˆˆˆˆˆˆˆˆf d„ } ddlmŠddlmŠddlmŠ ddlm Šddl m Šdd l m Š d ‰_|rtj||¬ ¦«} n'|€t!d ¦«‚tj||¬ ¦«} |  | |¬¦«t'‰j›d�d¦«5} t+j| j| ¦«ddd¦«dS#1swxYwYdS)NÚtrialc óî• —| ddd¦«‰_| dddd¬¦«‰_| d d d ¦«‰_| d d d ¦«‰_| ddd ¦«‰_| ddd¦«‰_| ddd ¦«‰_| ddd¦«‰_ |  ddd g¦«‰_ | ddd¦«‰_ | dd d¦«‰_ | ddd ¦«‰_d!‰_d‰_t#jt"j ¦«rd"nd#¦«}t+‰ ¦«¦«|_‰  ‰¦« |¦«}‰ ‰ ¦«‰¦«}‰ ‰ ¦«fi||d$œ¤�}‰€ ‰ ‰ ¦«‰|¦«}n‰}‰€‰ ‰jdd%‰j¬&¦«}n‰}‰ ‰‰ ¦«|||d|d%|¬'¦ « }| ¦«| ¦«}|  |‰j¦«tCd(|j"›d)|›d*�¦«~~~~|S)+NÚnum_mc_simulationsé<i Úlrr<gš™™™™™©?T)rXÚtempgà?rÚ arena_temprÚcpuctgffffffæ?Úl2_normg�íµ ÷ư>g¸…ëQ¸®?Úalphagš™™™™™Ù?Úbetagš™™™™™¹?rÚ loss_scaleÚ num_blocksrVé ÚkéÚepochséÈiôi,ÚcudaÚcpu)ÚnetworkÚmonte_carlo_tree_searchF)ÚdiskÚ full_diskÚdir_path)ÚheadlessÚarena_overrideÚcheckpointer_verboseÚmemory_overridezTrial z finished with win freq ú.)#Ú suggest_intÚnum_simulationsÚ suggest_floatryÚtauÚ arena_tauÚcÚl2r~rÚsuggest_categoricalÚ balance_termr�ÚKr…Úself_play_gamesÚ num_itersr rr‡Ú is_availableÚintÚget_num_actionsÚnet_action_sizeÚmake_from_configÚtoÚmake_fresh_instanceÚmax_buffer_sizeÚ pickle_dirÚcreateÚtrainÚget_arena_win_frequencies_meanÚreportÚprintÚnumber)rurr‰ÚtreeÚ net_playerÚarenaÚmemÚtrainerÚmeanÚ MemBufferÚ MuZeroNetÚMuZeroSearchTreeÚMzArenaÚ NetPlayerÚTrainerr�Úgamer‘rqs €€€€€€€€€€r Ú objectivez-mz_optuna_parameter_search.<locals>.objectiveks ø€Ø(-×(9Ò(9Ğ:NĞPRĞTWÑ(XÔ(Xˆ Ô%Ø ×.Ò.¨t°T¸4ÀTĞ.ÑJÔJˆ ÔØ!×/Ò/°¸¸QÑ?Ô?ˆ ÔØ"'×"5Ò"5°lÀAÀqÑ"IÔ"Iˆ ÔØ×-Ò-¨g°s¸AÑ>Ô>ˆ ŒØ ×.Ò.¨y¸$ÀÑEÔEˆ Ôà#×1Ò1°'¸3ÀÑBÔBˆ ÔØ"×0Ò0°¸¸aÑ@Ô@ˆ ÔØ%*×%>Ò%>¸|ÈaĞQTÈXÑ%VÔ%Vˆ Ô"Ø#(×#4Ò#4°\À1ÀbÑ#IÔ#Iˆ Ô Ø×+Ò+¨C°°BÑ7Ô7ˆ ŒØ$×0Ò0°¸3ÀÑDÔDˆ Ôà(+ˆ Ô%Ø"#ˆ Ô唥R¤W×%9Ò%9Ñ%;Ô%;ĞF˜6˜6ÀÑGÔGˆİ # D×$8Ò$8Ñ$:Ô$:Ñ ;Ô ;ˆÔØ×,Ò,¨]Ñ;Ô;×>Ò>¸vÑFÔFˆØĞ × 8Ò 8Ñ :Ô :¸MÑJÔJˆØ�Y˜t×7Ò7Ñ9Ô9ĞsĞsÈĞmqĞ=rĞ=rĞsĞsˆ Ø Ğ !Ø�G˜D×4Ò4Ñ6Ô6¸ ÀvÑNÔNˆEˆEà"ˆEØ Ğ "Ø�)˜MÔ9ÀĞPUØ%2Ô%=ğ?ñ?ô?ˆCˆCğ"ˆCØ—.’. °×0HÒ0HÑ0JÔ0JÈGĞUYĞ[eĞptØ05ÈEĞcfğ!ñhôhˆà� Š ‰ŒˆØ×5Ò5Ñ7Ô7ˆØ � Š �T˜=Ô2Ñ3Ô3Ğ3İ ĞD�u”|ĞDĞD¸TĞDĞDĞDÑEÔEĞEØ Ø Ø Ø Øˆ rr)r·)r¶)rµ)r¹)r¸)r´F)rprsz,Storage can't be None if in_memory is False.)rpro)rnz/study_params.jsonÚw)ÚoptunaÚTrialÚ#mu_alpha_zero.MuZero.MZ_Arena.arenar·Ú+mu_alpha_zero.MuZero.MZ_MCTS.mz_search_treer¶Ú%mu_alpha_zero.MuZero.Network.networksrµÚmu_alpha_zero.trainerr¹Ú%mu_alpha_zero.AlphaZero.Arena.playersr¸Úmu_alpha_zero.mem_bufferr´Ú show_tqdmÚ create_studyÚ ValueErrorÚ load_studyÚoptimizeÚopenÚcheckpoint_dirÚjsonÚdumpÚ best_params)rnrorprºrqrrrsr�r‘r»ÚstudyÚfiler´rµr¶r·r¸r¹s `` `` @@@@@@r Úmz_optuna_parameter_searchrÑhsÈøøøøøøøøøø€ğ*�œğ*ğ*ğ*ğ*ğ*ğ*ğ*ğ*ğ*ğ*ğ*ğ*ğ*ğ*ğ*ğX<Ğ;Ğ;Ğ;Ğ;Ğ;ØLĞLĞLĞLĞLĞLØ?Ğ?Ğ?Ğ?Ğ?Ğ?Ø-Ğ-Ğ-Ğ-Ğ-Ğ-Ø?Ğ?Ğ?Ğ?Ğ?Ğ?Ø2Ğ2Ğ2Ğ2Ğ2Ğ2à#€MÔØğJİÔ#¨zÀYĞOÑOÔOˆˆà ˆ?İĞKÑLÔLĞ LİÔ!¨ZÀĞIÑIÔIˆØ ‡N‚N�9 x€NÑ0Ô0Ğ0İ �Ô-ĞAĞAĞAÀ3Ñ GÔ Gğ+È4İ Œ �%Ô# TÑ*Ô*Ğ*ğ+ğ+ğ+ñ+ô+ğ+ğ+ğ+ğ+ğ+ğ+ğ+øøøğ+ğ+ğ+ğ+ğ+ğ+sÃC(Ã(C,Ã/C,Úinvalid_actionsÚpicóÔ—tj|¦«dkrtd¦«| d¦«| d¦«z}|| ¦«z S)NrzNo valid actions left.r:)r*rjr¬Úreshape)rÒrÓs r Úmask_invalid_actionsrÖªsZ€İ „vˆoÑÔ !Ò#Ğ#İ Ğ&Ñ'Ô'Ğ'Ø �Š�B‰Œ˜/×1Ò1°"Ñ5Ô5Ñ 5€BØ �—’‘”‰=ĞrÚget_invalid_actionsÚpisÚplayerscó�—tj|j¦«}t|¦«D]\}}||||¦«}|||<Œ|Sr()r ÚemptyrÚ enumerate)r×rØrÙÚinvalid_actions_tsÚiÚplayerÚinvaid_actionss r Úmask_invalid_actions_batchrá±sY€İœ #¤)Ñ,Ô,ĞݘwÑ'Ô'ğ/ğ/‰ ˆˆ6Ø,Ğ,¨S°¬V°VÑ<Ô<ˆØ .И1ÑĞØ Ğr)r)rH)FrmNN)$rÌrWÚtypingrÚnumpyr*r½Útorchr ÚPILrÚmu_alpha_zero.configrÚTensorrr rÚlistr#ÚndarrayÚtupleÚboolr-r3r7rGÚfloatrQrSrYrgrlÚstrrÑrÖrár2rr ú<module>rîsğØ € € € Ø € € € ØĞĞĞĞĞàĞĞĞØ € € € ØĞĞĞØĞĞĞĞĞà-Ğ-Ğ-Ğ-Ğ-Ğ-ğ4ğ4 R¤Yğ4¸¼ğ4ğ4ğ4ğ4ğ4¨¬ ğ4¸3ğ4ğ4ğ4ğ4ğ A°2´9ğAÈDĞQTÌIğAğAğAğAğ˜RœZğ¨u°S¸#°X¬ğÈğĞQSÔQ[ğğğğğ�r”zğ¨$ğğğğğ&˜ğ&¨3ğ&ğ&ğ&ğ&ğ E R¤Yğ Eğ Eğ Eğ EğIğI˜bœiğI¨EğIğIğIğIğğ R¤Yğ°5ğğğğğ#˜ğ#ğ#ğ#ğ#ğ˜œğ°#ğğğğğ"˜œğ°#ğğğğğgqØDHğ?+ğ?+¨ğ?+°s°{¸dğ?+ĞPSğ?+Ø.:ğ?+ØGKğ?+Ø`cğ?+ğ?+ğ?+ğ?+ğD¨"¬*ğ¸"¼*ğğğğğ°HğÀ2Ä9ğĞW[Ğ\_ÔW`ğğğğğğr
13,692
Python
.pyt
53
257.226415
2,296
0.333675
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,574
pickler.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/MuZero/__pycache__/pickler.cpython-311.pyc
§ føf, ãó<—ddlZddlZddlmZGd„d¦«ZdS)éN)ÚLockcób—eZdZdZdefd„Zdedefd„Zdefd„Zde fd „Z dd e d ed e fd„Z d„Z dS)Ú DataPicklerzQ Class for efficiently storing and retrieving data from the file system. Ú pickle_dircóH—d|_| |¦«|_dS)Nr)Úprocessed_countÚ_DataPickler__init_pickle_dirr©Úselfrs úK/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/MuZero/pickler.pyÚ__init__zDataPickler.__init__ s#€Ø ˆÔØ×0Ò0°Ñ<Ô<ˆŒˆˆóÚreturncó2—tj|d¬¦«|S)NT)Úexist_ok)ÚosÚmakedirsr s r Ú__init_pickle_dirzDataPickler.__init_pickle_dirs€İ Œ �J¨Ğ.Ñ.Ô.Ğ.ØĞrÚbuffercó–‡—tt|d¦«¦«D]”Šˆfd„|D¦«}t|j›d‰›d�dd¬¦«5}t j||¦«| ¦«tj|  ¦«¦«ddd¦«n #1swxYwYŒ•|xj dz c_ dS) Nrcó •—g|] }|‰‘Œ S©r)Ú.0ÚitemÚindexs €r ú <listcomp>z-DataPickler.pickle_buffer.<locals>.<listcomp>sø€Ğ3Ğ3Ğ3 D�D˜”KĞ3Ğ3Ğ3rú/item_ú.pklÚabéZ©Útimeouté) ÚrangeÚlenrrÚpickleÚdumpÚflushrÚfsyncÚfilenor)r rÚdataÚfrs @r Ú pickle_bufferzDataPickler.pickle_buffers ø€İ�3˜v aœy™>œ>Ñ*Ô*ğ %ğ %ˆEØ3Ğ3Ğ3Ğ3¨FĞ3Ñ3Ô3ˆDݘœĞ;Ğ;°Ğ;Ğ;Ğ;¸TÈ2ĞNÑNÔNğ %ĞRSİ” ˜D !Ñ$Ô$Ğ$Ø—’‘ ” � İ”˜Ÿš™œÑ$Ô$Ğ$ğ %ğ %ğ %ñ %ô %ğ %ğ %ğ %ğ %ğ %ğ %øøøğ %ğ %ğ %ğ %øğ ĞÔ Ñ!ĞÔĞĞsÁAB-Â-B1 Â4B1 rcóğ—|j›d|›d�}g}t|dd¬¦«5} | tj|¦«¦«n#t $rYnwxYwŒ: ddd¦«n #1swxYwY|S)NrrÚrbr r!)rrÚextendr&ÚloadÚEOFError)r rÚfiler+r,s r Ú load_indexzDataPickler.load_indexsހؔ/Ğ4Ğ4¨Ğ4Ğ4Ğ4ˆØˆİ �$˜ bĞ )Ñ )Ô )ğ ¨Qğ ğØ—K’K¥¤ ¨A¡¤Ñ/Ô/Ğ/Ğ/øİğğğØ�Eğøøøğ ğğ  ğ ğ ñ ô ğ ğ ğ ğ ğ ğ øøøğ ğ ğ ğ ğˆ s4¢A+¥'A Á A+Á AÁA+ÁAÁA+Á+A/Á2A/r#Ú batch_sizeÚindexesÚKc ó6—d„tj|j¦«D¦«}| d„¬¦«d„t t |¦«¦«D¦«}t |¦«D�]\}}t|j›d|›�dd¬¦«5}d } t ||¦«|krn¿ tj |¦«} |D]ƒ} | t | ¦«z| cxkr| krdnŒ"| t | ¦«z|z | kr| || t | ¦«z| z z z} | | z} | | | |z…} ||  | ¦«Œ„| t | ¦«z } n#t$rYnwxYwŒÙddd¦«n #1swxYwY�Œd „t|�D¦«S) Ncó<—g|]}| d¦«¯|‘ŒS©r©Úendswith©rÚxs r rz(DataPickler.load_all.<locals>.<listcomp>*ó)€ĞNĞNĞN�q¸1¿:º:ÀfÑ;MÔ;MĞN�ĞNĞNĞNrcó„—t| d¦«d d¦«d¦«S)NÚ_r#ú.r)ÚintÚsplit)r>s r ú<lambda>z&DataPickler.load_all.<locals>.<lambda>+s/€¥ Q§W¢W¨S¡\¤\°!¤_×%:Ò%:¸3Ñ%?Ô%?ÀÔ%BÑ!CÔ!C€r)Úkeycó—g|]}g‘ŒSrr)rrAs r rz(DataPickler.load_all.<locals>.<listcomp>,s€Ğ.Ğ.Ğ.�q�Ğ.Ğ.Ğ.rú/r/r r!rTcóŒ—g|]A}|d|d|dd|dd|ddf|df‘ŒBS)rr#éérr=s r rz(DataPickler.load_all.<locals>.<listcomp>@sL€ĞTĞTĞTÀA��1”�q˜”t˜a œd 1œg q¨¤t¨A¤w°°!´°Q´Ğ8¸!¸A¼$Ğ?ĞTĞTĞTr) rÚlistdirrÚsortr$r%Ú enumeraterr&r1r0r2Úzip) r r5r6r7Úfilesr+Úir3r,Úlast_lenÚ file_datarÚ data_points r Úload_allzDataPickler.load_all)s€ØNĞN�BœJ t¤Ñ7Ô7ĞNÑNÔNˆØ � Š ĞCĞCˆ ÑDÔDĞDØ.Ğ.�E¥# e¡*¤*Ñ-Ô-Ğ.Ñ.Ô.ˆİ  Ñ'Ô'ğ ñ ‰GˆAˆtݘœĞ1Ğ1¨4Ğ1Ğ1°4ÀĞDÑDÔDğ ÈØ�ğݘ4 œ7‘|”| zÒ1Ğ1Øğ İ$*¤K°¡N¤N˜ Ø%,ğ;ğ;˜EØ'­#¨i©.¬.Ñ8¸5ĞLĞLÒLĞLÀHÒLĞLĞLĞLĞLØ#+­c°)©n¬nÑ#<¸qÑ#@À5Ò#HĞ#HØ$)¨Q°8½cÀ)¹n¼nÑ3LĞPUÑ2UÑ-VÑ$V EØ %¨Ñ 1 Ø-6°u¸UÀQ¹Y°Ô-G  Ø $ Q¤§¢¨zÑ :Ô :Ğ :øà ¥C¨ ¡N¤NÑ2˜˜øİ#ğğğØ˜ğøøøğğ ğ ğ ñ ô ğ ğ ğ ğ ğ ğ øøøğ ğ ğ ğ ùğ$UĞTÍÈdÈĞTÑTÔTĞTs7ÂE;Â1B,EÅE;Å E+Å(E;Å*E+Å+E;Å;E? ÆE? có —d„tj|j¦«D¦«}|D] }tj|j›d|›�¦«Œ!d|_dS)Ncó<—g|]}| d¦«¯|‘ŒSr:r;r=s r rz)DataPickler.clear_dir.<locals>.<listcomp>Cr?rrHr)rrLrÚremover)r rPr3s r Ú clear_dirzDataPickler.clear_dirBsa€ØNĞN�BœJ t¤Ñ7Ô7ĞNÑNÔNˆØğ 3ğ 3ˆDİ ŒI˜œĞ1Ğ1¨4Ğ1Ğ1Ñ 2Ô 2Ğ 2Ğ 2Ø ˆÔĞĞrN)r#) Ú__name__Ú __module__Ú __qualname__Ú__doc__Ústrr r Úlistr-rCr4rUrYrrr rrsÖ€€€€€ğğğ= 3ğ=ğ=ğ=ğ=ğ¨Cğ°Cğğğğğ" Dğ"ğ"ğ"ğ"ğ  ğ ğ ğ ğ ğUğU 3ğU°ğU¸#ğUğUğUğUğ2!ğ!ğ!ğ!ğ!rr)rr&Ú portalockerrrrrr ú<module>ras[ğØ € € € Ø € € € àĞĞĞĞĞğ?!ğ?!ğ?!ğ?!ğ?!ñ?!ô?!ğ?!ğ?!ğ?!r
6,669
Python
.pyt
39
169.666667
1,389
0.31398
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,575
mz_search_tree.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/MuZero/MZ_MCTS/__pycache__/mz_search_tree.cpython-311.pyc
§ |Ú£fX3ã óf—ddlZddlZddlZddlZddlmZedd¬¦«ddlmZddlZ ddl Z ddl m Z ddlmZdd lmZdd lmZdd lmZdd lmZdd lmZddlmZddlmZmZmZm Z m!Z!m"Z"ddl#m$Z$ddl%m&Z&m'Z'm(Z(ddl)m*Z*Gd„de¦«Z+dde,pdfd„Z- dde$de.de*de.de,pdf d„Z/dS)éN)Úset_start_methodÚspawnT)Úforce)ÚPool)ÚGeneralMemoryBuffer)Ú MuZeroGame)Ú SearchTree)Ú HookManager)ÚHookAt)ÚMzAlphaZeroNode)Ú MuZeroNet)Ú LazyArray)Úmatch_action_with_obsÚ resize_obsÚ scale_actionÚ scale_stateÚscale_hidden_stateÚmask_invalid_actions)Ú MuZeroConfig)ÚMuZeroFrameBufferÚSingleGameDataÚ DataPoint)Ú SharedStoragecóª—eZdZd'dededepdfd„Zd„Z d(ded e j d e pdd e d e ef d „Z d(dejdepdd e j depdd e f d„Zd„Zded e j deded eeeeff d„Zd„Zdepdfd„Zd„Zdefd„Zede de ded e j dedef d „¦«Zede de d!e d e j d"eded#efd$„¦«Z!ed!e d"efd%„¦«Z"d&„Z#dS))ÚMuZeroSearchTreeNÚ game_managerÚ muzero_configÚ hook_managercóÊ—||_||_|�|n t¦«|_| ¦«|_t d¦«t d¦« g|_dS)NÚinf)rrr rÚinit_frame_bufferÚbufferÚfloatÚ min_max_q)Úselfrrrs úZ/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/MuZero/MZ_MCTS/mz_search_tree.pyÚ__init__zMuZeroSearchTree.__init__sX€Ø(ˆÔØ*ˆÔØ,8Ğ,D˜L˜LÍ+É-Ì-ˆÔØ×,Ò,Ñ.Ô.ˆŒ İ ™,œ,­¨u©¬¨ Ğ6ˆŒˆˆócóö—|jjr<t|jj|j ¦«|jj¦«Std|j ¦«|jj¦«S©Né)rÚenable_frame_bufferrÚframe_buffer_sizerÚget_noopÚnet_action_size©r%s r&r!z"MuZeroSearchTree.init_frame_buffer%so€Ø Ô Ô 1ğ Iİ$ TÔ%7Ô%IÈ4ÔK\×KeÒKeÑKgÔKgØ%)Ô%7Ô%GñIôIğ Iå   DÔ$5×$>Ò$>Ñ$@Ô$@À$ÔBTÔBdÑeÔeĞer(FÚnetwork_wrapperÚdeviceÚdir_pathÚcalculate_avg_num_childrenÚreturnc ó—|jj}|jj}|j ¦«}t ||jj|jj¦«}t||jj¦«}d}|j   ||¦«|jj r6|j   |j  || ¦«| ¦«t¦«} d} t|¦«D�]Ì} | dz } | |||||o| dk¬¦«\} \} }|j | |jj¬¦«}|j |||¬¦«\}}}t ||jj|jj¦«}t||jj¦«}t'||j ¦«¦«}|j  |¦« ¦« ¦« ¦«}t3| | ||||€|nt5||¦«¦«}|  |¦«|rnd|jj r| }|j  |||¦«|j  |j  || ¦«|| ¦«�ŒÎ t;jd| i¦«n#t>$rYnwxYw|   |j¦«| gS)Nr+r©r4©Útau)Ú frame_skipz Game length)!rÚ num_stepsr:rÚresetrÚtarget_resolutionÚ resize_imagesrr"Ú init_bufferÚmultiple_playersÚget_state_for_passive_playerrÚrangeÚsearchÚ select_mover9Úframe_skip_steprÚget_num_actionsÚ concat_framesÚdetachÚcpuÚnumpyrrÚadd_data_pointÚ add_frameÚwandbÚlogÚ ExceptionÚcompute_initial_priorities)r%r1r2r3r4r;r:ÚstateÚplayerÚdataÚ game_lengthÚstepÚpiÚvÚlatentÚmoveÚrewÚdoneÚframeÚ data_points r&Ú play_one_gamezMuZeroSearchTree.play_one_game+s€àÔ&Ô0ˆ ØÔ'Ô2ˆ ØÔ!×'Ò'Ñ)Ô)ˆİ˜5 $Ô"4Ô"FÈÔHZÔHhÑiÔiˆİ˜E 4Ô#5Ô#AÑBÔBˆØˆØ Œ ×Ò  vÑ.Ô.Ğ.Ø Ô Ô .ğ mØ ŒK× #Ò # DÔ$5×$RÒ$RĞSXĞ[aĞZaÑ$bÔ$bĞekĞdkÑ lÔ lĞ lİÑԈ؈ ݘ)Ñ$Ô$ğ qñ qˆDØ ˜1Ñ ˆKØ"Ÿkšk¨/¸5À&È&Ø.Ğ<°4¸1²9ğ*ñ?ô?‰OˆB‘ ��FàÔ$×0Ò0°¸Ô9KÔ9OĞ0ÑPÔPˆDà#Ô0×@Ò@ÀÀvĞZdĞ@ÑeÔeÑ ˆE�3˜İ˜u dÔ&8Ô&JÈDÔL^ÔLlÑmÔmˆEİ  tÔ'9Ô'EÑFÔFˆEİ  dÔ&7×&GÒ&GÑ&IÔ&IÑJÔJˆDØ”K×-Ò-¨fÑ5Ô5×<Ò<Ñ>Ô>×BÒBÑDÔD×JÒJÑLÔLˆEİ" 2 q¨#¨t°VÀhĞFV¸U¸UÕ\eĞfkĞmuÑ\vÔ\vÑwÔwˆJğ × Ò   Ñ +Ô +Ğ +Øğ Ø�ØÔ!Ô2ğ !Ø ˜�Ø ŒK× !Ò ! %¨¨vÑ 6Ô 6Ğ 6Ø ŒK× !Ò ! $Ô"3×"PÒ"PĞQVĞY_ĞX_Ñ"`Ô"`ĞbfĞioĞhoÑ pÔ pĞ pÑ pğ İ ŒI�} kĞ2Ñ 3Ô 3Ğ 3Ğ 3øİğ ğ ğ Ø ˆDğ øøøà ×'Ò'¨Ô(:Ñ;Ô;Ğ;؈vˆ sÊ>KË K"Ë!K"rQÚcurrent_playerr9c óZ—|j |¦«dkr|j ||¦«|jj}|€ |jj}t |¬¦«}| |j |¦«  ddd¦«  d¦«¦«  d¦«} t| ¦«} |  |   d¦«d¬¦«\} } |jjdkr:| tj |jjg|jjz¦«z} t'|j ||¦«| ¦«} |  ¦« ¦«} | | | d¦«t3|¦«D�]ç} |} | g}d}|  ¦«r…|  |jd|jd|jj|jj|jj|jj ¬¦«\} }| !| ¦«|  ¦«°…tE||j #¦«¦«}tI|  %¦«j&|¦«}| '|  d¦«d¬¦«\}}t|¦«}|dd}|  |  d¦«d¬¦«\} } |  ¦« ¦«} |  ¦« ¦«d} |  || |¦«| (| |¦«�Œé| )¦«}| *¦«| +¦«f}|j, -||j.j/t`tbj2|||f¬¦«d}||fS) Nr)r_ér+T)Úpredict)ÚcÚc2©Úargs)3r"Ú__len__r?rÚnum_simulationsr9r Úrepresentation_forwardrGÚpermuteÚ unsqueezeÚsqueezerÚprediction_forwardÚdirichlet_alphaÚnpÚrandomÚ dirichletr/rrÚget_invalid_actionsÚflattenÚtolistÚ expand_noderBÚ was_visitedÚget_best_childr$Úgammar@rcrdÚappendrrFrÚparentrQÚdynamics_forwardÚbackpropÚget_self_action_probabilitiesÚget_self_valueÚ get_latentrÚprocess_hook_executesrCÚ__name__Ú__file__r ÚTAIL)r%r1rQr_r2r9r4rhÚ root_nodeÚstate_rVrWÚ simulationÚ current_nodeÚpathÚactionÚcurrent_node_state_with_actionÚ next_stateÚrewardÚ action_probsÚroot_val_latents r&rCzMuZeroSearchTree.searchVsñ€à Œ;× Ò ˜~Ñ .Ô .°!Ò 3Ğ 3Ø ŒK× #Ò # E¨>Ñ :Ô :Ğ :ØÔ,Ô<ˆØ ˆ;ØÔ$Ô(ˆCå#°>ĞBÑBÔBˆ à ×7Ò7Ø ŒK× %Ò % nÑ 5Ô 5× =Ò =¸aÀÀAÑ FÔ F× PÒ PĞQRÑ SÔ SñUôUßU\ÒU\Ğ]^ÑU_ÔU_ğ å# FÑ+Ô+ˆØ×2Ò2°6×3CÒ3CÀAÑ3FÔ3FĞPTĞ2ÑUÔU‰ˆˆAØ Ô Ô -°Ò 1Ğ 1Ø•b”i×)Ò)¨4Ô+=Ô+MĞ*NĞQUÔQcÔQsÑ*sÑtÔtÑtˆBİ ! $Ô"3×"GÒ"GÈÈ~Ñ"^Ô"^Ğ`bÑ cÔ cˆØ �ZŠZ‰\Œ\× Ò Ñ "Ô "ˆØ×Ò˜f b¨!Ñ,Ô,Ğ,İ Ñ0Ô0ğ #ñ #ˆJØ$ˆLØ �>ˆD؈FØ×*Ò*Ñ,Ô,ğ *Ø'3×'BÒ'BÀ4Ä>ĞRSÔCTĞVZÔVdĞefÔVgØCGÔCUÔC[ØCGÔCUÔCfØEIÔEWÔEYĞ^bÔ^pÔ^sğ(Cñ(uô(uÑ$� ˜fğ— ’ ˜LÑ)Ô)Ğ)ğ ×*Ò*Ñ,Ô,ğ *õ" &¨$Ô*;×*KÒ*KÑ*MÔ*MÑNÔNˆFå-BÀ<×CVÒCVÑCXÔCXÔC^Ğ`fÑ-gÔ-gĞ *Ø!0×!AÒ!AĞB`×BjÒBjĞklÑBmÔBmØJNğ"Bñ"Pô"PÑ ˆJ˜å+¨JÑ7Ô7ˆJؘA”Y˜q”\ˆFØ#×6Ò6°z×7KÒ7KÈAÑ7NÔ7NĞX\Ğ6Ñ]Ô]‰EˆB�Ø—’‘”×$Ò$Ñ&Ô&ˆBØ— ’ ‘ ” ×"Ò"Ñ$Ô$ QÔ'ˆAØ × $Ò $ Z°°VÑ <Ô <Ğ <Ø �MŠM˜!˜TÑ "Ô "Ğ "Ñ "à ×>Ò>Ñ@Ô@ˆ Ø$×3Ò3Ñ5Ô5°y×7KÒ7KÑ7MÔ7MĞNˆØ Ô×/Ò/°°d´kÔ6JÍHÕV\ÔVaØ6BÀOĞU^Ğ5_ğ 0ñ aô ağ ağ ˆ Ø˜_Ğ,Ğ,r(có²—|}|jj}t|¦«D]¸}|jjrN|xj|z c_| |j| ¦«z ¦«|j|| zz}nL|xj|z c_| |j| ¦«z¦«|j||zz}|xjdz c_Œ¹dSr*) rrxÚreversedr@Ú total_valueÚupdate_min_max_qrŒr~Ú times_visited)r%rWrˆÚG_noderxÚnodes r&r|zMuZeroSearchTree.backprop‹só€àˆØÔ"Ô(ˆİ˜T‘N”Nğ $ğ $ˆDàÔ!Ô2ğ 6ğĞ Ô  FÑ*Ğ Ô Ø×%Ò% d¤k°D×4GÒ4GÑ4IÔ4IÑ&IÑJÔJĞJØœ u°°Ñ'8Ñ8��àĞ Ô  FÑ*Ğ Ô Ø×%Ò% d¤k°D×4GÒ4GÑ4IÔ4IÑ&IÑJÔJĞJØœ u¨v¡~Ñ5�à Ğ Ô  !Ñ #Ğ Ô Ğ ğ $ğ $r(ÚnetÚ num_gamesÚmemorycó’—t|¦«D]6}| ||||dz k¬¦«}| |¦«Œ7dS)Nr+r7©NNN)rBr^Úadd_list)r%r–r2r—r˜ÚgameÚ game_resultss r&Ú self_playzMuZeroSearchTree.self_playŸs[€å˜)Ñ$Ô$ğ *ğ *ˆDØ×-Ò-¨c°6ĞVZĞ^gĞjkÑ^kÒVkĞ-ÑlÔlˆLØ �OŠO˜LÑ )Ô )Ğ )Ğ )àĞr(có°—t|j ¦«tj|j¦«tj|j¦«¬¦«S)N)r)rrÚmake_fresh_instanceÚcopyÚdeepcopyrrr0s r&r z$MuZeroSearchTree.make_fresh_instance§sN€İ Ô 1× EÒ EÑ GÔ GÍÌĞW[ÔWiÑIjÔIjİ-1¬]¸4Ô;LÑ-MÔ-MğOñOôOğ Or(r‰có—dS©N©)r%r‰s r&Ú step_rootzMuZeroSearchTree.step_root«s€à ˆr(có’—t|jd|¦«|jd<t|jd|¦«|jd<dS©Nrr+)Úminr$Úmax)r%Úqs r&r’z!MuZeroSearchTree.update_min_max_q¯sB€İ ¤¨qÔ 1°1Ñ5Ô5ˆŒ�qÑİ ¤¨qÔ 1°1Ñ5Ô5ˆŒ�qÑĞĞr(r„cóª—d}t|j¦«dkrd}|j ¦«D]}| |¦«}||z }Œ|Sr¨)ÚlenÚchildrenÚvaluesÚ get_num_nodes)r%r„Ú num_nodesÚchildÚnns r&r°zMuZeroSearchTree.get_num_nodes³sd€Øˆ İ ˆyÔ!Ñ "Ô " QÒ &Ğ &؈IØÔ'×.Ò.Ñ0Ô0ğ ğ ˆEØ×#Ò# EÑ*Ô*ˆBØ ˜‰OˆIˆIàĞr(ÚnetsÚtreesÚnum_jobsc óʇ‡‡‡‡‡—t‰¦«5}‰jrN‰jrG| tˆˆˆˆˆˆfd„t t ‰¦«¦«D¦«¦«}nF| tˆˆˆˆˆˆfd„t t ‰¦«¦«D¦«¦«}ddd¦«n #1swxYwY|D]}‰ |¦«ŒdS)Nc 󆕗g|]=}‰|‰|tj‰¦«‰‰ztj‰¦«df‘Œ>Sr¤)r¡r¢©Ú.0Úir2r˜r´r—r¶rµs €€€€€€r&ú <listcomp>z7MuZeroSearchTree.parallel_self_play.<locals>.<listcomp>ÂsXø€ğ2)ğ2)ğ2)Øwx�T˜!”W˜e Aœh­¬ °fÑ(=Ô(=¸yÈHÑ?TÕVZÔVcĞdjÑVkÔVkĞmqĞrğ2)ğ2)ğ2)r(cól•—g|]0}‰|‰|tj‰¦«‰‰zd‰jf‘Œ1Sr¤)r¡r¢r3r¹s €€€€€€r&r¼z7MuZeroSearchTree.parallel_self_play.<locals>.<listcomp>ÆsOø€ğ2&ğ2&ğ2&Øqr�T˜!”W˜e Aœh­¬ °fÑ(=Ô(=¸yÈHÑ?TĞVZĞ\bÔ\kĞlğ2&ğ2&ğ2&r(rš)rÚis_diskÚ full_diskÚstarmapÚ p_self_playrBr­r›) r´rµr˜r2r—r¶ÚpÚresultsÚresults `````` r&Úparallel_self_playz#MuZeroSearchTree.parallel_self_play½spøøøøøø€õ�(‰^Œ^ğ '˜qØŒ~ğ ' &Ô"2ğ 'ØŸ)š)¥Kğ2)ğ2)ğ2)ğ2)ğ2)ğ2)ğ2)ğ2)ğ2)å�S ™YœYÑ'Ô'ğ2)ñ2)ô2)ñ*ô*��ğŸ)š)¥Kğ2&ğ2&ğ2&ğ2&ğ2&ğ2&ğ2&ğ2&ğ2&å�#˜d™)œ)Ñ$Ô$ğ2&ñ2&ô2&ñ'ô'�ğ  'ğ 'ğ 'ñ 'ô 'ğ 'ğ 'ğ 'ğ 'ğ 'ğ 'øøøğ 'ğ 'ğ 'ğ 'ğğ $ğ $ˆFØ �OŠO˜FÑ #Ô #Ğ #Ğ #àĞs–BB>Â>CÃCÚshared_storageÚconfigÚnum_worker_itersc óğ—t|¦«}t|¦«D]V}| t||||t j|¦«||||| ¦«f¬¦«ŒW|S)Nre)rrBÚ apply_asyncÚ c_p_self_playr¡r¢Ú get_dir_path) r´rµrÆr2rÇr¶rÈÚpoolr»s r&Ústart_continuous_self_playz+MuZeroSearchTree.start_continuous_self_playÎsƒ€õ�H‰~Œ~ˆİ�x‘”ğ ğ ˆAØ × Ò �]Ø�Q”˜˜qœ¥4¤=°Ñ#8Ô#8¸&À!À^ĞUeØ×+Ò+Ñ-Ô-ğ2/Ğ ñ ô ğ ğ ğ ˆ r(cóì—dtdtfd„}| |¦«}| ¦«t | ¦«¦«|jdzkrAtjd¦«t | ¦«¦«|jdzk°At|j ¦«D]µ}||jdz|¦«}|D]œ\}} \} } } } }t|t¦«r|  ¦«}tj||¬¦« ¦«}| ||| |¦«\}\} }|j ||j¬¦«} Œ�Œ¶dS) NÚnÚmemcó�—| ¦«}g}t|¦«D]}| |||f¦«Œ |Sr¤)Ú get_bufferrBry)rĞrÑr"rSr»s r&Ú get_first_nz/MuZeroSearchTree.reanalyze.<locals>.get_first_nÜsM€Ø—^’^Ñ%Ô%ˆF؈Dݘ1‘X”Xğ ,ğ ,�Ø— ’ ˜V AœY¨˜NÑ+Ô+Ğ+Ğ+؈Kr(ééra)r2r8)ÚintrÚtoÚevalr­rÓÚ batch_sizeÚtimeÚsleeprBrÈÚ isinstancerÚ load_arrayÚthÚtensorr#rCrrDr9)r–Útreer2rÆrÇrÔÚiter_rSrVrWrZrYÚpred_vrRr\rQÚ_s r&Ú reanalyzezMuZeroSearchTree.reanalyzeÚsŠ€ğ �3ğ ¥]ğ ğ ğ ğ ğ�fŠf�V‰nŒnˆØ �Љ Œ ˆ İ�.×+Ò+Ñ-Ô-Ñ.Ô.°Ô1BÀQÑ1FÒFĞFİ ŒJ�q‰MŒMˆMõ�.×+Ò+Ñ-Ô-Ñ.Ô.°Ô1BÀQÑ1FÒFĞFå˜6Ô2Ñ3Ô3ğ Iğ IˆEØ�;˜vÔ0°1Ñ4°nÑEÔEˆDØ=Ağ Iğ IÑ9��AÑ2˜˜T 6¨6°Eݘe¥YÑ/Ô/ğ/Ø!×,Ò,Ñ.Ô.�Eİœ  %°Ğ7Ñ7Ô7×=Ò=Ñ?Ô?�Ø!Ÿ[š[¨¨e°V¸VÑDÔD‘ �‘F�Q˜ØÔ(×4Ò4°R¸V¼ZĞ4ÑHÔH��ğ  Iğ Iğ Ir(cór—|j ||jjtt j¦«dSr¤)rr€Úrun_on_training_endr�r‚r ÚALLr0s r&rçz$MuZeroSearchTree.run_on_training_endğs0€Ø Ô×/Ò/°°dÔ6NÔ6WÕYaÕciÔcmÑnÔnĞnĞnĞnr(r¤)NF)$r�Ú __module__Ú __qualname__rrr r'r!r rßr2ÚstrÚboolÚlistrr^roÚndarrayr×r#rCr|rÚtupler�r r¦r’r r°Ú staticmethodrÅrrÎrårçr¥r(r&rrs«€€€€€ğ7ğ7 Zğ7À ğ7Ğ\gĞ\oĞkoğ7ğ7ğ7ğ7ğfğfğfğ dhØ9>ğ)ğ)¨Yğ)ÀÄ ğ)ĞUXĞU`Ğ\`ğ)Ø26ğ)ØCGÈÔCWğ)ğ)ğ)ğ)ğXNSğ3-ğ3-¨R¬Zğ3-ÈÈĞPTğ3-Ğ^`Ô^gğ3-Ø�M˜Tğ3-ØFJğ3-ğ3-ğ3-ğ3-ğj$ğ$ğ$ğ( ˜Yğ °´ ğ Àcğ ĞSfğ ĞkpØ ˆS�#ˆ ôlğ ğ ğ ğ ğOğOğOğ     tğ ğ ğ ğ ğ6ğ6ğ6ğ ğğğğğğ  ğ ¨dğ Ğ<Oğ ĞY[ÔYbğ Ğorğ Ø%(ğ ğ ğ ñ„\ğ ğ ğ ¨ğ °dğ ÈMğ Ø+-¬9ğ Ø>Jğ ØVYğ Ømpğ ğ ğ ñ„\ğ ğğI°]ğIÈLğIğIğIñ„\ğIğ*oğoğoğoğor(rr3c óÈ—g}t|¦«D]O}| |||||dz k¬¦«}|�| |¦«Œ:| |¦«ŒP|S)Nr+)r3r4)rBr^r›Úextend) r–ráÚdevÚnum_grÑr3rSrœr�s r&rÁrÁôsy€Ø €Dİ�e‘ ” ğ&ğ&ˆØ×)Ò)¨#¨s¸XĞbfĞjoĞrsÑjsÒbsĞ)ÑtÔtˆ Ø ˆ?Ø �LŠL˜Ñ &Ô &Ğ &Ğ &à �KŠK˜ Ñ %Ô %Ğ %Ğ %Ø €Kr(rÇÚp_numrÆrÈcó¼—|dkrtj|jd¬¦«| |¦«}| ¦«t |¦«D]�}| ¦«€| ¦«} n| ¦«} | | ¦«|  |||¬¦«} |  | ¦«Œ‚dS)Nrz Self play)ÚprojectÚname)r3) rMÚinitÚwandbd_project_namerØrÙrBÚget_experimental_network_paramsÚget_stable_network_paramsÚload_state_dictr^r›) r–rár2rÇrõrÆrÈr3râÚparamsr�s r&rËrËÿsà€ğ �‚z€zİ Œ ˜6Ô5¸KĞHÑHÔHĞHØ �&Š&�‰.Œ.€C؇H‚H�J„J€JİĞ'Ñ(Ô(ğ .ğ .ˆğ × 9Ò 9Ñ ;Ô ;Ğ CØ#×=Ò=Ñ?Ô?ˆFˆFà#×CÒCÑEÔEˆFØ ×Ò˜FÑ#Ô#Ğ#Ø×)Ò)¨#¨vÀĞ)ÑIÔIˆ Ø×Ò  Ñ-Ô-Ğ-Ğ-ğ .ğ .r(r¤)0r¡ÚgcrÛrMÚ multiprocessrÚmultiprocess.poolrrJroÚtorchrßÚmu_alpha_zero.General.memoryrÚmu_alpha_zero.General.mz_gamerÚ!mu_alpha_zero.General.search_treer Ú mu_alpha_zero.Hooks.hook_managerr Úmu_alpha_zero.Hooks.hook_pointr Ú$mu_alpha_zero.MuZero.MZ_MCTS.mz_noder Ú%mu_alpha_zero.MuZero.Network.networksr Ú mu_alpha_zero.MuZero.lazy_arraysrÚmu_alpha_zero.MuZero.utilsrrrrrrÚmu_alpha_zero.configrÚmu_alpha_zero.mem_bufferrrrÚ$mu_alpha_zero.shared_storage_managerrrrërÁr×rËr¥r(r&ú<module>rsNğØ € € € Ø € € € Ø € € € à € € € Ø)Ğ)Ğ)Ğ)Ğ)Ğ)àĞ� Ğ%Ñ%Ô%Ğ%Ø"Ğ"Ğ"Ğ"Ğ"Ğ"àĞĞĞØĞĞĞØ<Ğ<Ğ<Ğ<Ğ<Ğ<Ø4Ğ4Ğ4Ğ4Ğ4Ğ4Ø8Ğ8Ğ8Ğ8Ğ8Ğ8Ø8Ğ8Ğ8Ğ8Ğ8Ğ8Ø1Ğ1Ğ1Ğ1Ğ1Ğ1Ø@Ğ@Ğ@Ğ@Ğ@Ğ@Ø;Ğ;Ğ;Ğ;Ğ;Ğ;Ø6Ğ6Ğ6Ğ6Ğ6Ğ6ğ-ğ-ğ-ğ-ğ-ğ-ğ-ğ-ğ-ğ-ğ-ğ-ğ-ğ-ğ-ğ-à-Ğ-Ğ-Ğ-Ğ-Ğ-ØQĞQĞQĞQĞQĞQĞQĞQĞQĞQØ>Ğ>Ğ>Ğ>Ğ>Ğ>ğUoğUoğUoğUoğUo�zñUoôUoğUoğpğ°c°k¸Tğğğğğ+/ğ.ğ.¨\ğ.À#ğ.ĞWdğ.Ø$'ğ.à˜K 4ğ.ğ.ğ.ğ.ğ.ğ.r(
20,530
Python
.pyt
75
272.533333
1,754
0.326408
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,576
mz_node.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/MuZero/MZ_MCTS/__pycache__/mz_node.cpython-311.pyc
§ ¬Õ£f^ ãó6—ddlZddlmZGd„de¦«ZdS)éN)Ú AlphaZeroNodec 󌇗eZdZdˆfd„ Zddeded ed efd „Zd efd „Zdd„Z dede fd„Z ddeded ed efd„Z d ed edefd„Z ˆxZS)ÚMzAlphaZeroNoderNécó^•—t¦« ||||¦«d|_dS)Nr)ÚsuperÚ__init__Úreward)ÚselfÚselect_probabilityÚparentÚtimes_visited_initÚcurrent_playerÚ __class__s €úS/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/MuZero/MZ_MCTS/mz_node.pyr zMzAlphaZeroNode.__init__s.ø€İ ‰Œ×Ò˜Ğ);¸VĞEWÑXÔXĞX؈Œ ˆ ˆ óçø?éÄLÚmin_qÚmax_qÚgammaÚmultiple_playersc ó¾—td¦« }d}d} |j ¦«D],\} } |  ||||||¬¦«} | |kr| }| }| } Œ-|| fS)NÚinf)ÚcÚc2)ÚfloatÚchildrenÚitemsÚcalculate_utc_score) r rrrrrrÚbest_utcÚ best_childÚ best_actionÚactionÚchildÚ child_utcs rÚget_best_childzMzAlphaZeroNode.get_best_child sƒ€İ˜%‘L”L�=ˆØˆ ؈ Ø!œ]×0Ò0Ñ2Ô2ğ %ğ %‰MˆF�EØ×1Ò1°%¸¸uĞEUĞYZĞ_aĞ1ÑbÔbˆIؘ8Ò#Ğ#Ø$�Ø"� Ø$� øØ˜;Ğ&Ğ&rÚprediction_forwardcó"—||j¦«S©N©Ústate)r r(s rÚget_value_predzMzAlphaZeroNode.get_value_preds€Ø!Ğ! $¤*Ñ-Ô-Ğ-rÚreturncó¸—| ¦«|_||_t|¦«D])\}}t |||jdz¬¦«}||j|<Œ*dS)Néÿÿÿÿ)r r r)Úcloner,r Ú enumeraterrr)r r,Úaction_probabilitiesÚ im_rewardr$Ú probabilityÚnodes rÚ expand_nodezMzAlphaZeroNode.expand_nodest€à—[’[‘]”]ˆŒ ؈Œ İ#,Ğ-AÑ#BÔ#Bğ )ğ )Ñ ˆF�Kİ"°kÈ$Ø26Ô2EÈÑ2LğNñNôNˆDà$(ˆDŒM˜&Ñ !Ğ !ğ )ğ )rÚdynamics_forwardr$có$—||j|¦«Sr*r+)r r8r$s rÚget_immediate_rewardz$MzAlphaZeroNode.get_immediate_reward"s€ØĞ ¤ ¨FÑ3Ô3Ğ3rcól—| ¦«}|jdkr'||jztj|jdz¦«zS| ||||¦«}||jtj|j¦«d|jzz z|tj|j|zdz|z ¦«zzz} | S)Nrg:Œ0â�yE>r)r Ú times_visitedr ÚmathÚsqrtÚscale_qÚlog) r rrrrrrr ÚqÚutcs rr z#MzAlphaZeroNode.calculate_utc_score%s¿€Ø—’‘”ˆØ Ô  1Ò $Ğ $Ø�tÔ.Ñ.µ´¸6Ô;OĞRVÑ;VÑ1WÔ1WÑWĞ WØ �LŠL˜  eĞ,<Ñ =Ô =ˆØ�$Ô)İ”˜6Ô/Ñ0Ô0°Q¸Ô9KÑ5KÑLñNà�$œ( FÔ$8¸2Ñ$=ÀÑ$AÀRÑ#GÑHÔHÑHñJñJˆğˆ rcóÚ—|j|r| ¦« n| ¦«z}||ks&|td¦«ks|td¦«kr|S||z ||z z S)Nrz-inf)r Úget_self_valuer)r rrrrrAs rr?zMzAlphaZeroNode.scale_q0su€Ø ŒKĞ5EĞ`˜D×/Ò/Ñ1Ô1Ğ1Ğ1È4×K^ÒK^ÑK`ÔK`Ñ aˆØ �EŠ>ˆ>˜e¥u¨U¡|¤|Ò3Ğ3°uÅÀfÁ Ä Ò7MĞ7M؈HØ�E‘ ˜e e™mÑ,Ğ,r)rNrr)rr)r.N)Ú__name__Ú __module__Ú __qualname__r rÚboolr'Úcallabler-r7Úintr:r r?Ú __classcell__)rs@rrrs#ø€€€€€ğğğğğğğ 'ğ ' Eğ '°%ğ 'Àğ 'ĞX\ğ 'ğ 'ğ 'ğ 'ğ.°ğ.ğ.ğ.ğ.ğ)ğ)ğ)ğ)ğ4°Xğ4Àsğ4ğ4ğ4ğ4ğ ğ ¨ğ °uğ ÀUğ Ğ]ağ ğ ğ ğ ğ-¨5ğ-ÀDğ-ÈUğ-ğ-ğ-ğ-ğ-ğ-ğ-ğ-rr)r=Ú$mu_alpha_zero.AlphaZero.MCTS.az_noderr©rrú<module>rNsTğØ € € € Ø>Ğ>Ğ>Ğ>Ğ>Ğ>ğ/-ğ/-ğ/-ğ/-ğ/-�mñ/-ô/-ğ/-ğ/-ğ/-r
4,303
Python
.pyt
31
137.774194
655
0.357126
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,577
java_manager.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/MuZero/JavaGateway/__pycache__/java_manager.cpython-311.pyc
§ Ùxf¼ ãóˆ—ddlZddlZddlZddlZddlZddlmZddlm Z m Z m Z ddl m Z ddlmZddlZGd„d¦«ZdS)éN)Ú JavaGateway)Úget_python_homeÚfind_project_rootÚget_site_packages_path)Ú JavaNetworks)Ú MuZeroNetcóR—eZdZdedefd„Zdefd„Zd„Zdedefd„Z d efd „Z d „Z d S) Ú JavaManagerÚnetworkÚargscóH—t¦«tjd<t¦«|_||_|d|_| |¦«|_|  ¦«|_ t¦«|_ tj|j¦«dS)NÚ PYTHONHOMEÚenv_id)rÚosÚenvironrÚ java_netsÚnetrÚ prepare_argsr Ú spawn_java_pÚ java_processrÚ java_gatewayÚatexitÚregisterÚkill_java_process)Úselfr r s ú\/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/MuZero/JavaGateway/java_manager.pyÚ__init__zJavaManager.__init__s�€õ$3Ñ#4Ô#4�Œ �<Ñ å%™œˆŒØˆŒØ˜8”nˆŒ Ø×%Ò% dÑ+Ô+ˆŒ Ø ×-Ò-Ñ/Ô/ˆÔİ'™MœMˆÔİŒ˜Ô.Ñ/Ô/Ğ/Ğ/Ğ/ócó>—d„| ¦«D¦«S)NcóÄ—i|]]\}}t|tj¦«r>t|t¦«s)|t d¦«k¯G|t d¦«k¯Z||“Œ^S)Úinfz-inf)Ú isinstanceÚnumbersÚNumberÚboolÚfloat)Ú.0ÚkÚvs rú <dictcomp>z,JavaManager.prepare_args.<locals>.<dictcomp>s|€ğxğxğx™˜˜Aݘ1�gœnÑ-Ô-ğxİ6@ÀÅDÑ6IÔ6IğxØNOÕSXĞY^ÑS_ÔS_ÒN_ĞN_ĞdeÕinĞouÑivÔivÒdvĞdvğ�1ØdvĞdvĞdvr)Úitems)rr s rrzJavaManager.prepare_argss0€ğxğx §¢¡¤ğxñxôxğ xrcóR—tjddddt¦«›d�g¦«S)NÚjavaz-jarzH/home/skyr/IdeaProjects/JSelfPlay/target/JSeflplayLinux-1.0-SNAPSHOT.jarz-Djava.library.path=z/jep/)Ú subprocessÚPopenr©rs rrzJavaManager.spawn_java_p s=€İÔØ �VĞgØ CÕ$:Ñ$<Ô$<Ğ CĞ CĞ Cğ EñFôFğ FrÚn_jobsÚn_gamescóT—g}|j |j¦«}tjt ¦«›d�d¬¦«|jj ||||  |j ¦«|j ¦«}td„|D¦«¦«}g}|D])}|  tj|¦«¦«Œ*tj|d¬¦«}t#|¦«D�]\} } |  ¦«} d„|  ¦«D¦«} t)|  ¦«¦«} t)|  ¦« ¦«¦«t)|  ¦« ¦«¦«t)|  ¦« ¦«¦«f}|  | | ||| f¦«�Œt/jt ¦«›d�¦«|S)Nz/Arrays/T)Úexist_okcó6—g|]}| ¦«‘ŒS©)Ú getValue3)r'Úxs rú <listcomp>z;JavaManager.run_parallel_java_self_play.<locals>.<listcomp>+s €Ğ4Ğ4Ğ4¨1˜Ÿš™œĞ4Ğ4Ğ4rr)Úaxiscó�—i|]C}t| ¦«¦«t| ¦«¦«“ŒDSr6)ÚintÚgetKeyr&ÚgetValue)r'Úentrys rr*z;JavaManager.run_parallel_java_self_play.<locals>.<dictcomp>2s<€Ğ\Ğ\Ğ\À5•#�e—l’l‘n”nÑ%Ô%¥u¨U¯^ª^Ñ-=Ô-=Ñ'>Ô'>Ğ\Ğ\Ğ\r)rÚsaverrÚmakedirsrrÚ entry_pointÚrunParallelSelfPlayÚdict_to_java_mapr rÚsetÚappendÚnpÚloadÚ concatenateÚ enumerateÚ getValue0ÚentrySetr&Ú getValue1Ú getValue2ÚshutilÚrmtree)rr1r2ÚresultsÚpathÚresÚ arr_pathsÚarrsÚarrÚiÚquartedÚhmapÚpdr)Úrmpred_rs rÚrun_parallel_java_self_playz'JavaManager.run_parallel_java_self_play%s÷€ØˆØŒ~×"Ò" 4¤8Ñ,Ô,ˆİ Œ Õ(Ñ*Ô*Ğ4Ğ4Ğ4¸tĞDÑDÔDĞDØÔÔ+×?Ò?ÀÈĞQUĞW[×WlÒWlĞmqÔmvÑWwÔWwØ@DÄ ñMôMˆåĞ4Ğ4°Ğ4Ñ4Ô4Ñ5Ô5ˆ ؈Øğ 'ğ 'ˆDØ �KŠK�œ ™ œ Ñ &Ô &Ğ &Ğ &İŒn˜T¨Ğ*Ñ*Ô*ˆİ" 3™œğ 6ñ 6‰IˆAˆgØ×$Ò$Ñ&Ô&ˆDØ\Ğ\ÈDÏMÊMÉOÌOĞ\Ñ\Ô\ˆBİ�g×'Ò'Ñ)Ô)Ñ*Ô*ˆAݘg×/Ò/Ñ1Ô1×;Ò;Ñ=Ô=Ñ>Ô>ÅÀg×FWÒFWÑFYÔFY×FcÒFcÑFeÔFeÑ@fÔ@fݘg×/Ò/Ñ1Ô1×;Ò;Ñ=Ô=Ñ>Ô>ğ@ˆHà �NŠN˜B  8¨S°¬VĞ4Ñ 5Ô 5Ğ 5Ñ 5İŒ Õ*Ñ,Ô,Ğ6Ğ6Ğ6Ñ7Ô7Ğ7؈rÚdictcóĞ—|jjjj ¦«}| ¦«D](\}}| |t|¦«¦«Œ)|S)N)rÚjvmr-ÚutilÚHashMapr+ÚputÚstr)rr]Újava_mapr(r)s rrDzJavaManager.dict_to_java_map:s\€ØÔ$Ô(Ô-Ô2×:Ò:Ñ<Ô<ˆØ—J’J‘L”Lğ $ğ $‰DˆAˆqØ �LŠL˜�C ™FœFÑ #Ô #Ğ #Ğ #؈rcóˆ—|j ¦«|j ¦«td¦«dS)NzJava process ended.)rÚkillÚwaitÚprintr0s rrzJavaManager.kill_java_process@s@€Ø Ô×ÒÑ Ô Ğ Ø Ô×ÒÑ Ô Ğ İ Ğ#Ñ$Ô$Ğ$؈rN) Ú__name__Ú __module__Ú __qualname__rr]rrrr<r\rDrr6rrr r s´€€€€€ğ 0  ğ 0°ğ 0ğ 0ğ 0ğ 0ğx ğxğxğxğxğFğFğFğ °#ğÀğğğğğ* Tğğğğğ ğğğğrr )r#rrOr.ÚnumpyrGÚpy4j.java_gatewayrÚmu_alpha_zero.General.utilsrrrÚ.mu_alpha_zero.MuZero.JavaGateway.java_networksrÚ%mu_alpha_zero.MuZero.Network.networksrrr r6rrú<module>rqsÇğØ€€€Ø € € € Ø € € € ØĞĞĞàĞĞĞØ)Ğ)Ğ)Ğ)Ğ)Ğ)ØbĞbĞbĞbĞbĞbĞbĞbĞbĞbØGĞGĞGĞGĞGĞGØ;Ğ;Ğ;Ğ;Ğ;Ğ;Ø € € € ğ6ğ6ğ6ğ6ğ6ñ6ô6ğ6ğ6ğ6r
6,645
Python
.pyt
27
244.888889
1,309
0.34824
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,578
java_networks.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/MuZero/JavaGateway/__pycache__/java_networks.cpython-311.pyc
§ ÙxfAãó@—ddlZddlmZddlmZGd„d¦«ZdS)éN)Ú MuZeroNet)Úfind_project_rootcó—eZdZdedefd„ZdS)Ú JavaNetworksÚnetworks_wrapperÚreturncóR—t¦«›d�}| |¦«|S)Nz /mz_net.pth)rÚ to_pickle)ÚselfrÚpaths ú]/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/MuZero/JavaGateway/java_networks.pyÚsavezJavaNetworks.saves/€İ#Ñ%Ô%Ğ2Ğ2Ğ2ˆØ×"Ò" 4Ñ(Ô(Ğ(؈ óN)Ú__name__Ú __module__Ú __qualname__rÚstrr©rr rrs6€€€€€ğ Yğ°3ğğğğğğrr)ÚmathÚ%mu_alpha_zero.MuZero.Network.networksrÚmu_alpha_zero.General.utilsrrrrr ú<module>rsdğØ € € € à;Ğ;Ğ;Ğ;Ğ;Ğ;Ø9Ğ9Ğ9Ğ9Ğ9Ğ9ğğğğğñôğğğr
980
Python
.pyt
3
325.333333
606
0.431493
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,579
arena.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/MuZero/MZ_Arena/__pycache__/arena.cpython-311.pyc
§  ‹fß ãó¶—ddlZddlmZddlZddlmZmZmZddl m Z ddl m Z ddl mZddlmZddlmZmZmZdd lmZddlZdd lmZGd „d e ¦«ZdS) éN)ÚType)ÚPlayerÚ NetPlayerÚ RandomPlayer)Ú GeneralArena)Ú MuZeroGame)Ú HookManager)ÚHookAt)Ú resize_obsÚ scale_stateÚ scale_action)Ú MuZeroConfig)Ú SharedStoragec óz—eZdZ ddededejdepdfd„Z dd e e d e e d e d e d e de f d„Z d„ZdS)ÚMzArenaNÚ game_managerÚ muzero_configÚdeviceÚ hook_managercó^—||_||_|�|n t¦«|_||_dS©N)rrr rr)Úselfrrrrs úR/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/MuZero/MZ_Arena/arena.pyÚ__init__zMzArena.__init__s2€à(ˆÔØ*ˆÔØ,8Ğ,D˜L˜LÍ+É-Ì-ˆÔ؈Œ ˆ ˆ óFéÚplayer1Úplayer2Únum_games_to_playÚnum_mc_simulationsÚ one_playerÚ start_playerc ó$—|jj}ggdœ}|r|} n|dz} tjdd¦«} ||dœ} dD�]ô} || |j|ddœ} t | ¦«D�]Ó}|j ¦«|j |j  ¦«| | ¬¦«\}}}t||jj |jj ¦«}t||jj ¦«}t |jj¦«D�]%}|j ¦«| t!| ¦«j|fi| ¤�}|j || ¦«\}}}t||jj |jj ¦«}t||jj ¦«} | t!| ¦«jj |t+||j ¦«¦«| ¦«n#t.$rYnwxYw||  |¦«|rn�Œ'�ŒÕ�Œö|j ||jjt:t<j|| f¦«tA|d ¦«tA|d ¦«dfS) N)réÿÿÿÿéré)Ú1z-1F)Únum_simulationsÚcurrent_playerrÚtauÚunravel)Ú frame_skiprr$)!rÚ arena_tauÚrandomÚrandintrÚrangerÚresetÚframe_skip_stepÚget_noopr Útarget_resolutionÚ resize_imagesr Ú num_stepsÚrenderÚstrÚ choose_moveÚmonte_carlo_tree_searchÚbufferÚ add_framer Úget_num_actionsÚAttributeErrorÚappendrÚprocess_hook_executesÚpitÚ__name__Ú__file__r ÚTAILÚsum)rrrrr r!r"r*ÚrewardsÚnum_games_per_playerÚnoop_numÚplayersÚplayerÚkwargsÚgameÚstateÚ_ÚstepÚmoveÚrewardÚdones rrAz MzArena.pits߀àÔ Ô*ˆØ˜b�/�/ˆØ ğ :Ø#4Ğ Ğ à#4¸Ñ#9Ğ İ”> ! RÑ(Ô(ˆØ wĞ/Ğ/ˆØğ ñ ˆFØ);ÈvĞaeÔalØ ¨Uğ4ğ4ˆFåĞ2Ñ3Ô3ğ ñ �ØÔ!×'Ò'Ñ)Ô)Ğ)à"Ô/×?Ò?ÀÔ@Q×@ZÒ@ZÑ@\Ô@\Ğ^dØKSğ@ñUôU‘ ��q˜!å" 5¨$Ô*<Ô*NĞPTÔPbÔPpÑqÔq�İ# E¨4Ô+=Ô+IÑJÔJ�İ! $Ô"4Ô">Ñ?Ô?ğñ�DØÔ%×,Ò,Ñ.Ô.Ğ.Ø;˜7¥3 v¡;¤;Ô/Ô;¸EĞLĞLÀVĞLĞL�Dà*.Ô*;×*KÒ*KÈDĞRXÑ*YÔ*YÑ'�E˜6 4İ& u¨dÔ.@Ô.RĞTXÔTfÔTtÑuÔu�Eİ'¨¨tÔ/AÔ/MÑNÔN�EğØ¥ F¡ ¤ Ô,ÔDÔK×UÒUĞV[Õ]iĞjnØjnÔj{÷kLòkLñkNôkNñ^Oô^OàV\ñ^ô^ğ^ğ^øõ*ğğğà˜ğøøøğ˜F”O×*Ò*¨6Ñ2Ô2Ğ2Øğؘñùñ- ğ2 Ô×/Ò/°°d´hÔ6GÍÕSYÔS^ĞahĞjpĞ`qÑrÔrĞrİ�7˜1”:‰Œ¥ G¨B¤KÑ 0Ô 0°!Ğ3Ğ3sÆAG9Ç9 H ÈH cór—|j ||jjtt j¦«dSr)rr@Úrun_on_training_endrBrCr ÚALL)rs rrTzMzArena.run_on_training_endCs0€Ø Ô×/Ò/°°dÔ6NÔ6WÕYaÕciÔcmÑnÔnĞnĞnĞnrr)Fr)rBÚ __module__Ú __qualname__rrÚthrr rrrÚintÚboolrArT©rrrrs¿€€€€€à59ğğ ZğÀ ğĞVXÔV_ğØ*Ğ2¨dğğğğğ;<ğ'4ğ'4˜4 œ<ğ'4°$°v´,ğ'4ĞSVğ'4Ğloğ'4Øğ'4Ø47ğ'4ğ'4ğ'4ğ'4ğRoğoğoğoğorr)r.ÚtypingrÚtorchrXÚ%mu_alpha_zero.AlphaZero.Arena.playersrrrÚmu_alpha_zero.General.arenarÚmu_alpha_zero.General.mz_gamerÚ mu_alpha_zero.Hooks.hook_managerr Úmu_alpha_zero.Hooks.hook_pointr Úmu_alpha_zero.MuZero.utilsr r r Úmu_alpha_zero.configrÚwandbÚ$mu_alpha_zero.shared_storage_managerrrr[rrú<module>rgsğØ € € € ØĞĞĞĞĞàĞĞĞàQĞQĞQĞQĞQĞQĞQĞQĞQĞQØ4Ğ4Ğ4Ğ4Ğ4Ğ4Ø4Ğ4Ğ4Ğ4Ğ4Ğ4Ø8Ğ8Ğ8Ğ8Ğ8Ğ8Ø1Ğ1Ğ1Ğ1Ğ1Ğ1ØLĞLĞLĞLĞLĞLĞLĞLĞLĞLØ-Ğ-Ğ-Ğ-Ğ-Ğ-Ø € € € à>Ğ>Ğ>Ğ>Ğ>Ğ>ğ2oğ2oğ2oğ2oğ2oˆlñ2oô2oğ2oğ2oğ2or
5,155
Python
.pyt
22
233.272727
971
0.387807
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,580
networks.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/MuZero/Network/__pycache__/networks.cpython-311.pyc
§ k¤føUãó˜—ddlZddlZddlZddlmcmZddl Z ddlmZddlm Z ddl m Z mZddlmZddlmZddlmZddlmZdd lmZdd lmZdd lmZdd lmZmZm Z dd l!m"Z"ddl#m$Z$Gd„dejj%e¦«Z&Gd„dejj%¦«Z'Gd„dej%¦«Z(Gd„dejj%¦«Z)dS)éN)Únn)Úmse_loss)Ú AlphaZeroNetÚOriginalAlphaZerNetwork)Ú CheckPointer)ÚLogger)ÚGeneralMemoryBuffer)Ú MuZeroGame)ÚGeneralMuZeroNetwork)Ú HookManager)ÚHookAt)Úmatch_action_with_obs_batchÚscalar_to_supportÚsupport_to_scalar)Ú MuZeroConfig)Ú SharedStoragec#ó‡—eZdZ d8dededededeeded epeed ed ed ed edededededepddef"ˆfd„ Ze d9de depdfd„¦«Z d:de j dededefd„Zd;de j dedefd„Zde j fd„Zd<de j d edefd!„Zd"„Zd#ed$e d%eeeeffd&„Zd#ed$e d%dfd'„Zd(„Zd)ed%ee j e j e j ee j ffd*„Zd+ed,efd-„Zd+ed.efd/„Zd0„Zd1ed$e d2ed3efd4„Zd5e fd6„Z!d7„Z"ˆxZ#S)=Ú MuZeroNetNTÚinput_channelsÚdropoutÚ action_sizeÚ num_channelsÚ latent_sizeÚnum_out_channelsÚlinear_input_sizeÚrep_input_channelsÚ use_originalÚ support_sizeÚ num_blocksÚstate_linear_layersÚpi_linear_layersÚv_linear_layersÚlinear_head_hidden_sizeÚ hook_managerÚ use_poolingcó•—tt|¦« ¦«||_||_||_| |_||_tj tj   ¦«rdnd¦«|_ ||_ ||_ ||_d|_||_||_| |_| |_| |_| |_||_||_|�|n t1¦«|_t5||¬¦«|_| rFt9d||||| | ||| || dd¬¦«|_t9d|||| | |||| || dd¬ ¦«|_dSt?d||||¬ ¦«|_tAd||||¬ ¦«|_dS) NÚcudaÚcpu)r%éT)Ú in_channelsrrrrr r!r"r#rrrÚmuzeroÚ is_dynamicséF)r*rrrr r!r"r#rrrrr+r,)r*rrrÚ out_channels)r*rrrr)!ÚsuperrÚ__init__rrrrr%ÚthÚdevicer'Ú is_availablerrrÚ optimizerrrrrr r!r"r#r r$ÚRepresentationNetÚrepresentation_networkrÚdynamics_networkÚprediction_networkÚ DynamicsNetÚ PredictionNet)Úselfrrrrrrrrrrrr r!r"r#r$r%Ú __class__s €úT/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/MuZero/Network/networks.pyr0zMuZeroNet.__init__sêø€õ �i˜ÑÔ×'Ò'Ñ)Ô)Ğ)Ø,ˆÔØ"4ˆÔ؈Œ Ø(ˆÔØ&ˆÔİ”i­"¬'×*>Ò*>Ñ*@Ô*@Ğ K  ÀeÑLÔLˆŒ Ø&ˆÔØ(ˆÔØ&ˆÔ؈ŒØ 0ˆÔØ!2ˆÔØ(ˆÔØ$ˆŒØ#6ˆÔ Ø 0ˆÔØ.ˆÔØ'>ˆÔ$Ø,8Ğ,D˜L˜LÍ+É-Ì-ˆÔå&7Ğ8JĞXcĞ&dÑ&dÔ&dˆÔ#Ø ğ rİ$;ÈĞZjØDKØHSØN_ØPcØM]ØL[ØTkØIUĞcnØGQĞZ^Ğlpğ %rñ %rô %rˆDÔ !õ'>È#Ğ\lØFMØJUØReØO_ØN]ØVmØPaØKWĞepØISĞ\`Ğnsğ 'uñ 'uô 'uˆDÔ #Ğ #Ğ #õ%0¸CÈlĞdkØ<GĞVfğ%hñ%hô%hˆDÔ !õ'4ÀĞR^ĞhoØ@KĞ_pğ'rñ'rô'rˆDÔ #Ğ #Ğ #óÚconfigcóÚ—||j|j|j|j|j|j|j|j|j|j |j |j |j |j |j||j¬¦«S)N)r$r%)Únum_net_in_channelsÚ net_dropoutÚnet_action_sizeÚnum_net_channelsÚnet_latent_sizeÚnum_net_out_channelsÚaz_net_linear_input_sizerrrrr r!r"r#r%)Úclsr?r$s r=Úmake_from_configzMuZeroNet.make_from_configOsx€àˆs�6Ô-¨vÔ/AÀ6ÔCYĞ[aÔ[rØÔ)¨6Ô+FÈÔHgØÔ,¨fÔ.AÀ6ÔCVĞX^ÔXiØÔ-¨vÔ/FÈÔH^ØÔ1Ø ,¸&Ô:Lğ NñNôNğ Nr>FÚxÚpredictÚreturn_supportÚconvert_to_statecóæ—|rX|j |d¬¦«\}}| ¦« ¦« ¦«}n| |d|¬¦«\}}|rw | |j|jd|jd¦«}nC#t$r6| d|j|jd|jd¦«}YnwxYw||fS)NT©r+©r+rLrééÿÿÿÿ) r7ÚforwardÚdetachr(ÚnumpyÚviewrrÚ RuntimeError)r;rJrKrLrMÚstateÚrÚrewards r=Údynamics_forwardzMuZeroNet.dynamics_forwardXs€à ğ aØÔ,×4Ò4°Q¸tĞ4ÑDÔD‰HˆE�1Ø—X’X‘Z”Z—^’^Ñ%Ô%×+Ò+Ñ-Ô-ˆFˆFà ×1Ò1°!¸DĞQ_Ğ1Ñ`Ô`‰MˆE�6Ø ğ hğ hØŸ š  4Ô#8¸$Ô:JÈ1Ô:MÈtÔO_Ğ`aÔObÑcÔc��øİğ hğ hğ hàŸ š  2 tÔ'<¸dÔ>NÈqÔ>QĞSWÔScĞdeÔSfÑgÔg���ğ høøøğ�fˆ}ĞsÁ92B,Â,=C,Ã+C,cóŠ—|r#|j |d¬¦«\}}||fS| |d|¬¦«\}}||fS)NTrOrP)r8rK)r;rJrKrLÚpiÚvs r=Úprediction_forwardzMuZeroNet.prediction_forwardgsY€Ø ğ ØÔ+×3Ò3°A¸dĞ3ÑCÔC‰EˆB�Ø�q�5ˆLØ×'Ò'¨°$À~Ğ'ÑVÔV‰ˆˆAØ�1ˆuˆ r>có0—| |¦«}|S©N)r6)r;rJs r=Úrepresentation_forwardz MuZeroNet.representation_forwardns€Ø × 'Ò '¨Ñ *Ô *ˆØˆr>Úhidden_state_with_actionÚ all_predictcóz—| |||¬¦«\}}| |||¬¦«\}}||||fS)N)rKrL)r[r_)r;rcrdrLÚ next_staterZr]r^s r=Úforward_recurrentzMuZeroNet.forward_recurrentrsZ€Ø!×2Ò2Ğ3KĞU`ØBPğ3ñRôRш �Fà×'Ò'¨ ¸KĞXfĞ'ÑgÔg‰ˆˆAؘ6 2 qĞ(Ğ(r>cóì—t|j|j|j|j|j|j|j|j|j |j |j |j |j |j|j|j|j¬¦«S)N) r$rrrr%r r!r"r#)rrrrrrrrrr$rrrr%r r!r"r#©r;s r=Úmake_fresh_instancezMuZeroNet.make_fresh_instancexsy€İ˜Ô,¨d¬l¸DÔ<LÈdÔN_ĞaeÔaqØÔ.°Ô0FÈÔH_Ø&*Ô&7ÀdÔFWĞfjÔfwØ$(¤OÀÔAQØ-1Ô-EØ*.Ô*?ĞQUÔQeØ15Ô1Mğ OñOôOğ Or>Ú memory_bufferÚ muzero_configÚreturnc 󇇗tjtj ¦«rdnd¦«}|j€Ctj | ¦«‰j‰j ¬¦«|_g}d}ˆˆfd„}t‰j ¦«D�]e}|¦«\}} } t|¦«dkrŒ%|  || |‰¦«\} } } }tj|  ¦«|  ¦«|  ¦«| ¦«dœ¦«| |  ¦«¦«|j ¦«|  ¦«|j ¦«|j ||jjt2t4j||  ¦«| | ||f¬¦«|dz }�Œg|j ||jjt2t4j‰|f¬¦«t;|¦«t|¦«z |fS) Nr'r(©ÚlrÚ weight_decayrcóF•—‰ ‰j‰j‰¦«Sra©Úbatch_with_prioritiesÚ enable_perÚ batch_size©rkrls€€r=ú<lambda>z%MuZeroNet.train_net.<locals>.<lambda>ˆs'ø€˜×<Ò<¸]Ô=UØ=JÔ=UĞWdñfôf€r>rQ)Ú combined_lossÚloss_vÚloss_piÚloss_r)Úargs)r1r2r'r3r4ÚoptimÚAdamÚ parametersrpÚl2ÚrangeÚepochsÚlenÚcalculate_lossesÚwandbÚlogÚitemÚappendÚ zero_gradÚbackwardÚstepr$Úprocess_hook_executesÚ train_netÚ__name__Ú__file__r ÚMIDDLEÚTAILÚsum)r;rkrlr2ÚlossesÚ iterationÚloaderÚepochÚsampled_game_dataÚ prioritiesÚweightsÚlossrzr{r|s `` r=r�zMuZeroNet.train_net�sGøø€İ”¥R¤W×%9Ò%9Ñ%;Ô%;ĞF˜6˜6ÀÑGÔGˆØ Œ>Ğ !İœXŸ]š]¨4¯?ª?Ñ+<Ô+<ÀÔAQØ8EÔ8Hğ+ñJôJˆDŒNàˆØˆ ğfğfğfğfğfˆå˜=Ô/Ñ0Ô0ğ ñ ˆEØ5;°V±X´XÑ 2Ğ ˜z¨7İĞ$Ñ%Ô%¨Ò*Ğ*ØØ,0×,AÒ,AĞBSĞU\Ğ^dĞfsÑ,tÔ,tÑ )ˆD�&˜' 6İ ŒI¨¯ ª © ¬ ¸v¿{º{¹}¼}ĞY`×YeÒYeÑYgÔYgØ!'§¢¡¤ğ0ğ0ñ 1ô 1ğ 1à �MŠM˜$Ÿ)š)™+œ+Ñ &Ô &Ğ &Ø ŒN× $Ò $Ñ &Ô &Ğ &Ø �MŠM‰OŒOˆOØ ŒN× Ò Ñ !Ô !Ğ !Ø Ô × 3Ò 3°D¸$¼.Ô:QÕS[Õ]cÔ]jØ! 4§9¢9¡;¤;°¸ÀØğrĞ 3ñ ô ğ 𠘉NˆI‰IØ Ô×/Ò/°°d´nÔ6MÍxÕY_ÔYdØ6CÀVĞ5Lğ 0ñ Nô Nğ Nå�6‰{Œ{�S ™[œ[Ñ(¨&Ğ0Ğ0r>c󴇇—‰ ¦«dkrdStjtj ¦«rdnd¦«}|j€Ctj | ¦«‰j ‰j ¬¦«|_ˆˆfd„}t‰j ¦«D]¢}|¦«\}}}t|¦«dkrŒ$| |||‰¦«\} } } } tj|  ¦«|  ¦«|  ¦«|  ¦«dœ¦«Œ£dS)Nrr'r(rocóJ•—‰ ‰j‰j‰d¬¦«S)NT)Úis_evalrsrws€€r=rxz$MuZeroNet.eval_net.<locals>.<lambda>¥s/ø€˜×<Ò<¸]Ô=UØ=JÔ=UØ=JØEIğ=ñKôK€r>rQ)Úeval_combined_lossÚ eval_loss_vÚ eval_loss_piÚ eval_loss_r)Ú eval_lengthr1r2r'r3r4r~rr€rpr�r‚Ú eval_epochsr„r…r†r‡rˆ) r;rkrlr2r–r—Úexperience_batchr™ršr›rzr{r|s `` r=Úeval_netzMuZeroNet.eval_net�sjøø€Ø × $Ò $Ñ &Ô &¨!Ò +Ğ +Ø ˆFİ”¥R¤W×%9Ò%9Ñ%;Ô%;ĞF˜6˜6ÀÑGÔGˆØ Œ>Ğ !İœXŸ]š]¨4¯?ª?Ñ+<Ô+<ÀÔAQØ8EÔ8Hğ+ñJôJˆDŒNğKğKğKğKğKˆõ˜=Ô4Ñ5Ô5ğ 6ğ 6ˆEØ4:°F±H´HÑ 1Ğ ˜j¨'İĞ#Ñ$Ô$¨Ò)Ğ)ØØ,0×,AÒ,AĞBRĞT[Ğ]cĞerÑ,sÔ,sÑ )ˆD�&˜' 6İ ŒI¨T¯YªY©[¬[ÈÏÊÉÌĞho×htÒhtÑhvÔhvØ&,§k¢k¡m¤mğ5ğ5ñ 6ô 6ğ 6ğ 6ğ  6ğ 6r>c ó‡—| d||¦«\}}}}} t|‰j¦«} | |¦«} | | d¬¦«\} } d\}}}|| | | ¦«z }|| | | ¦«z }d„t |  d¦«¦«D¦«}‰jrk|  tj t| ‰j¦«|z ¦«‰j z d¦« ¦«|¦«t d‰jdz¦«D�]–}| |||¦«\}}}}} t|‰j¦«}t|‰j¦«} | t%| |¦«dd¬¦«\} }} } |  d „¦«| | | ¦«}| | | ¦«}| ||¦«}| ˆfd „¦«| ˆfd „¦«| ˆfd „¦«||z }||z }||z }‰jrk|  tj t| ‰j¦«|z ¦«‰j z d¦« ¦«|¦«�Œ˜|d z}||z|z}‰jr$|tj||j|j¬¦«z}| ¦«}‰jr| ||¦«|| ¦«| ¦«| ¦«fS)NrT)rL)rrrcó—g|]}g‘ŒS©r©)Ú.0rJs r=ú <listcomp>z.MuZeroNet.calculate_losses.<locals>.<listcomp>ºs€Ğ>Ğ>Ğ> ˜"Ğ>Ğ>Ğ>r>rRrQFcó —|dzS)Ngà?r©)Úgrads r=rxz,MuZeroNet.calculate_losses.<locals>.<lambda>Æs €°D¸3±J€r>có•—|d‰jz zS©NrQ©ÚK©r­rls €r=rxz,MuZeroNet.calculate_losses.<locals>.<lambda>Êóø€°d¸aÀ-Ä/Ñ>QÑ6R€r>có•—|d‰jz zSr¯r°r²s €r=rxz,MuZeroNet.calculate_losses.<locals>.<lambda>Ër³r>có•—|d‰jz zSr¯r°r²s €r=rxz,MuZeroNet.calculate_losses.<locals>.<lambda>Ìsø€°t¸qÀ=Ä?Ñ?RÑ7S€r>gĞ?©Údtyper2)Úget_batch_for_unroll_indexrrrbr_Ú muzero_lossr‚ÚsizeruÚpopulate_prioritiesr1ÚabsrÚalphaÚreshapeÚtolistr±rgrÚ register_hookÚtensorr·r2r“Úupdate_priorities)r;r¥ršr2rlÚ init_statesÚrewardsÚ scalar_valuesÚmovesÚpisÚvaluesÚ hidden_stateÚpred_pisÚpred_vsÚpi_lossÚv_lossÚr_lossÚnew_prioritiesÚiÚ_Úpred_rsÚcurrent_pi_lossÚcurrent_v_lossÚcurrent_r_lossr›s ` r=r…zMuZeroNet.calculate_losses±sø€Ø:>×:YÒ:YĞZ[Ğ]mĞouÑ:vÔ:vÑ7ˆ �W˜m¨U°Cå" =°-Ô2LÑMÔMˆØ×2Ò2°;Ñ?Ô?ˆ Ø ×3Ò3°LĞQUĞ3ÑVÔVш�'Ø")ш�˜Ø�4×#Ò# H¨cÑ2Ô2Ñ2ˆØ�$×"Ò" 7¨FÑ3Ô3Ñ3ˆØ>Ğ>¥e¨H¯MªM¸!Ñ,<Ô,<Ñ&=Ô&=Ğ>Ñ>Ô>ˆØ Ô #ğ .Ø × $Ò $¥b¤fÕ->¸wØ?LÔ?Yñ.[ô.[Ø]jñ.kñ'lô'lØo|ôpCñ'C÷ELòELØñEôEß’F‘H”H˜nñ .ô .ğ .õ�q˜-œ/¨AÑ-Ñ.Ô.ğ 2ñ 2ˆAØ48×4SÒ4SĞTUĞWgØTZñ5\ô5\Ñ 1ˆAˆw˜  u¨cå'¨°Ô1KÑLÔLˆGİ& }°mÔ6PÑQÔQˆFØ7;×7MÒ7Mİ+¨L¸%Ñ@Ô@À%ĞX\ğ8Nñ8^ô8^Ñ 4ˆL˜' 8¨Wà × &Ò &Ğ'>Ğ'>Ñ ?Ô ?Ğ ?Ø"×.Ò.¨x¸Ñ=Ô=ˆOØ!×-Ò-¨g°vÑ>Ô>ˆNØ!×-Ò-¨g°wÑ?Ô?ˆNØ × (Ò (Ğ)RĞ)RĞ)RĞ)RÑ SÔ SĞ SØ × (Ò (Ğ)RĞ)RĞ)RĞ)RÑ SÔ SĞ SØ × )Ò )Ğ*SĞ*SĞ*SĞ*SÑ TÔ TĞ TØ �Ñ &ˆGØ �nÑ $ˆFØ �nÑ $ˆFØÔ'ğ 2Ø×(Ò(­"¬&Õ1BÀ7ØCPÔC]ñ2_ô2_Øanñ2oñ+pô+pğtAôtGñ+G÷IPòIPØñIôIßš™œ .ñ2ô2ğ2ùğ �$‰ˆØ˜Ñ &Ñ(ˆØ Ô #ğ MØ •B”I˜g¨T¬ZÀÄ ĞLÑLÔLÑ LˆDØ�xŠx‰zŒzˆØ Ô #ğ EØ × "Ò " >Ğ3CÑ DÔ DĞ DØ�V—Z’Z‘\”\ 7§;¢;¡=¤=°&·*²*±,´,Ğ>Ğ>r>Úindexc󇇗ˆfd„}d}‰dkrAˆfd„|D¦«}|tj|¦«¦« dddd¦«}tjˆfd„|D¦«¦«}||¦«}tjˆfd„|D¦«¦«}||¦«}ˆfd „|D¦«}tjˆfd „|D¦«¦«} || ¦«} || d¦«| d¦«|| fS) NcóF•—tj|tj‰¬¦«S)Nr¶)r1rÁÚfloat32)rJr2s €r=rxz6MuZeroNet.get_batch_for_unroll_index.<locals>.<lambda>àsø€¥"¤)¨AµR´ZÈĞ"OÑ"OÔ"O€r>rcóX•—g|]&}tj|j‰j¦«‘Œ'Sr©)ÚnpÚarrayÚ datapointsÚframe©rªrJrÖs €r=r«z8MuZeroNet.get_batch_for_unroll_index.<locals>.<listcomp>ãs-ø€ĞYĞYĞYÀ1�2œ8 A¤L°Ô$7Ô$=Ñ>Ô>ĞYĞYĞYr>érQécó4•—g|]}|j‰j‘ŒSr©)rİrZrßs €r=r«z8MuZeroNet.get_batch_for_unroll_index.<locals>.<listcomp>ås#ø€ĞQĞQĞQ¸1˜AœL¨Ô/Ô6ĞQĞQĞQr>có4•—g|]}|j‰j‘ŒSr©)rİr^rßs €r=r«z8MuZeroNet.get_batch_for_unroll_index.<locals>.<listcomp>çs#ø€ĞKĞKĞK°Q˜1œ<¨Ô.Ô0ĞKĞKĞKr>có4•—g|]}|j‰j‘ŒSr©)rİÚmoverßs €r=r«z8MuZeroNet.get_batch_for_unroll_index.<locals>.<listcomp>és#ø€ĞDĞDĞD¨a�”˜eÔ$Ô)ĞDĞDĞDr>có4•—g|]}|j‰j‘ŒSr©)rİr]rßs €r=r«z8MuZeroNet.get_batch_for_unroll_index.<locals>.<listcomp>ìs#ø€ĞIĞIĞI°1˜œ  UÔ+Ô.ĞIĞIĞIr>)rÛrÜÚpermuteÚ unsqueeze) r;rÖr¥r2Ú tensor_from_xrÃrÄrÈrÆrÇs ` ` r=r¸z$MuZeroNet.get_batch_for_unroll_indexŞsMøø€àOĞOĞOĞOˆ ؈ Ø �AŠ:ˆ:ØYĞYĞYĞYĞHXĞYÑYÔYˆKØ'˜-­¬°Ñ(=Ô(=Ñ>Ô>×FÒFÀqÈ!ÈQĞPQÑRÔRˆKİ”(ĞQĞQĞQĞQĞ@PĞQÑQÔQÑRÔRˆØ�- Ñ(Ô(ˆİ”ĞKĞKĞKĞKĞ:JĞKÑKÔKÑLÔLˆØ�˜vÑ&Ô&ˆØDĞDĞDĞDĞ3CĞDÑDÔDˆõŒhĞIĞIĞIĞIĞ8HĞIÑIÔIÑJÔJˆØˆm˜CÑ Ô ˆØ˜G×-Ò-¨aÑ0Ô0°&×2BÒ2BÀ1Ñ2EÔ2EÀuÈcĞQĞQr>rÏÚpriorities_listcóf—t|¦«D] \}}|| |¦«Œ!dSra)Ú enumerater‰)r;rÏrêÚidxÚprioritys r=r»zMuZeroNet.populate_prioritiesğsC€İ& ~Ñ6Ô6ğ 2ğ 2‰MˆC�Ø ˜CÔ × 'Ò '¨Ñ 1Ô 1Ğ 1Ğ 1ğ 2ğ 2r>r¥có´—t|¦«D]G\}}tt|j¦«¦«D] }||||j|_Œ!ŒHdSra)rìr‚r„rİrî)r;rÏr¥ríÚgamerĞs r=rÂzMuZeroNet.update_prioritiesôsq€İ"Ğ#3Ñ4Ô4ğ Eğ E‰IˆC�İ�3˜tœÑ/Ô/Ñ0Ô0ğ Eğ E�Ø.<¸SÔ.AÀ!Ô.D�” Ô"Ô+Ğ+ğ Eğ Eğ Er>có’—tj||zd¬¦« d¦« | ¦«dz S)NrQ)Údimr)r1r“rèrº)r;Úy_hatÚys r=r¹zMuZeroNet.muzero_lossùs=€İ”�q˜5‘y aĞ(Ñ(Ô(×2Ò2°1Ñ5Ô5Ğ5¸¿º¹¼À¼ ÑCĞCr>Úshared_storageÚ checkpointerÚloggerc óP—tj|jd¬¦«| ¦«d|_d|_t | ¦«¦«|jdzkrAtj d¦«t | ¦«¦«|jdzk°A|  d¦«t|j ¦«D]Ğ}| ||¦«\}}| | ¦«¦«| |j ¦«¦«| ||¦«|dzdkrC|dkr=|  d |›d �¦«| |||j|j||¦«ŒÑdS) NzContinuous Weight Update)ÚprojectÚnamerQééz:Finished waiting for target buffer size,starting training.iôrzSaving checkpoint at iteration ú.)r†ÚinitÚwandbd_project_nameÚtrainrƒr¤r„Ú get_bufferrvÚtimeÚsleepr‡r‚Únum_worker_itersr�Úset_experimental_network_paramsÚ state_dictÚ set_optimizerr4r¦Úsave_checkpointrp)r;rõrlrör÷Úiter_ÚavgÚ iter_lossess r=Úcontinuous_weight_updatez"MuZeroNet.continuous_weight_updateüs·€å Œ ˜=Ô<ĞC]Ğ^Ñ^Ô^Ğ^Ø � Š ‰ Œ ˆ ğ !ˆ ÔØ$%ˆ Ô!İØ×)Ò)Ñ+Ô+ñ-ô-Ø/<Ô/GÈ1Ñ/LòMğMå ŒJ�q‰MŒMˆMõØ×)Ò)Ñ+Ô+ñ-ô-Ø/<Ô/GÈ1Ñ/LòMğMğ � Š ĞOÑPÔPĞPݘ=Ô9Ñ:Ô:ğ qğ qˆEğ $Ÿ~š~¨n¸mÑLÔLÑ ˆC�Ø × :Ò :¸4¿?º?Ñ;LÔ;LÑ MÔ MĞ MØ × (Ò (¨¬×)BÒ)BÑ)DÔ)DÑ EÔ EĞ Eğ �MŠM˜.¨-Ñ 8Ô 8Ğ 8Ø�s‰{˜aÒĞ E¨Q¢J JØ— ’ ĞE¸UĞEĞEĞEÑFÔFĞFØ×,Ò,¨T°4¸¼ÈÔIYĞ[`ĞboÑpÔpĞpøğ qğ qr>Úpathcó0—tj||¦«dSra)r1Úsave)r;r s r=Ú to_picklezMuZeroNet.to_pickles€İ Œ��dÑÔĞĞĞr>cór—|j ||jjtt j¦«dSra)r$r�Úrun_on_training_endr�r�r ÚALLris r=rzMuZeroNet.run_on_training_ends0€Ø Ô×/Ò/°°dÔ6NÔ6WÕYaÕciÔcmÑnÔnĞnĞnĞnr>)NTra)FFT)FF©F)$r�Ú __module__Ú __qualname__ÚintÚfloatÚlistÚboolr r0Ú classmethodrrIr1ÚTensorr[r_rbrgrjr Útupler�r¦r…r¸r»rÂr¹rrrr ÚstrrrÚ __classcell__©r<s@r=rrs¨ø€€€€€ğ PTğ 5rğ5r sğ5r°Uğ5rÈğ5rĞ\_ğ5rĞnrĞsvÔnwğ5rØ#&ğ5rØ;>Ğ;KÀ$ÀsÄ)ğ5rØadğ5rà#ğ5rà36ğ5ràDGğ5rğ'*ğ5rğ>Ağ5rğTWğ5rğruğ5rğ +Ğ2¨dğ 5rğIMğ 5rğ5rğ5rğ5rğ5rğ5rğnğNğN lğNÀ+ĞBUĞQUğNğNğNñ„[ğNğ\aØ26ğ ğ  "¤)ğ °dğ ĞTXğ Ø+/ğ ğ ğ ğ ğğ B¤Iğ¸ğĞVZğğğğ𨬠ğğğğğ)ğ)¸"¼)ğ)ĞRVğ)Ğhlğ)ğ)ğ)ğ)ğ OğOğOğ1Ğ':ğ1È<ğ1Ğ\aĞbgĞimĞnsÔitĞbtÔ\uğ1ğ1ğ1ğ1ğ86Ğ&9ğ6È,ğ6Ğ[_ğ6ğ6ğ6ğ6ğ(+?ğ+?ğ+?ğZR°ğRĞRWØ Œ �2”9˜bœi¨¨r¬yĞ8ôS:ğRğRğRğRğ$2°$ğ2Èğ2ğ2ğ2ğ2ğE°ğEÈğEğEğEğEğ DğDğDğq°}ğqĞUağqØ/;ğqØEKğqğqğqğqğ>˜cğğğğğoğoğoğoğoğoğor>rcóF‡—eZdZddedefˆfd„ Zdejfd„Zd„Z ˆxZ S) r5Trr%cóB•—tt|¦« ¦«tjtj ¦«rdnd¦«|_tj |dddd¬¦«|_ tj  d„td¦«D¦«¦«|_ tj dd ddd¬¦«|_ tj  d „td¦«D¦«¦«|_tj  d „td¦«D¦«¦«|_|rOtj ddd¬ ¦«|_tj ddd¬ ¦«|_nFtj ¦«|_tj ¦«|_tj ¦«|_dS) Nr'r(é€ràrárQ)r*r.Ú kernel_sizeÚstrideÚpaddingcó,—g|]}td¦«‘ŒS)r#©Ú ResidualBlock©rªrÑs r=r«z.RepresentationNet.__init__.<locals>.<listcomp>'ó €Ğ+QĞ+QĞ+QÀ1­M¸#Ñ,>Ô,>Ğ+QĞ+QĞ+Qr>r-có,—g|]}td¦«‘ŒS©r-r(r*s r=r«z.RepresentationNet.__init__.<locals>.<listcomp>)r+r>có,—g|]}td¦«‘ŒSr-r(r*s r=r«z.RepresentationNet.__init__.<locals>.<listcomp>+r+r>)r$r%r&)r/r5r0r1r2r'r3rÚConv2dÚconv1Ú ModuleListr‚Ú residuals1Úconv2Ú residuals2Ú residuals3Ú AvgPool2dÚpool1Úpool2ÚIdentityÚReLUÚrelu)r;rr%r<s €r=r0zRepresentationNet.__init__#sŒø€İ Õ Ñ&Ô&×/Ò/Ñ1Ô1Ğ1İ”i­"¬'×*>Ò*>Ñ*@Ô*@Ğ K  ÀeÑLÔLˆŒ İ”U—\’\Ğ.@ÈsĞ`aĞjkĞuv�\ÑwÔwˆŒ İœ%×*Ò*Ğ+QĞ+QÍÈaÉÌĞ+QÑ+QÔ+QÑRÔRˆŒİ”U—\’\¨cÀĞQRĞ[\Ğfg�\ÑhÔhˆŒ İœ%×*Ò*Ğ+QĞ+QÍÈaÉÌĞ+QÑ+QÔ+QÑRÔRˆŒåœ%×*Ò*Ğ+QĞ+QÍÈaÉÌĞ+QÑ+QÔ+QÑRÔRˆŒØ ğ *İœŸš°Q¸qÈ!˜ÑLÔLˆDŒJİœŸš°Q¸qÈ!˜ÑLÔLˆDŒJˆJ土šÑ)Ô)ˆDŒJİœŸšÑ)Ô)ˆDŒJİ”E—J’J‘L”LˆŒ ˆ ˆ r>rJcó¬—| |j¦«}| | |¦«¦«}|jD] }||¦«}Œ| | |¦«¦«}|jD] }||¦«}Œ| |¦«}|jD] }||¦«}Œ|  |¦«}|Sra) Útor2r;r0r2r3r4r7r5r8)r;rJÚresiduals r=rSzRepresentationNet.forward4s΀à �DŠD�”Ñ Ô ˆØ �IŠI�d—j’j ‘m”mÑ $Ô $ˆØœğ ğ ˆHØ�˜‘ ” ˆAˆAØ �IŠI�d—j’j ‘m”mÑ $Ô $ˆØœğ ğ ˆHØ�˜‘ ” ˆAˆAØ �JŠJ�q‰MŒMˆØœğ ğ ˆHØ�˜‘ ” ˆAˆAØ �JŠJ�q‰MŒMˆØˆr>cón—tjd¦«}tj ||¦«}|S)N)rQr#ér@)r1ÚrandÚjitÚtrace©r;ÚdataÚtraced_script_modules r=rCzRepresentationNet.traceCs-€İŒw�~Ñ&Ô&ˆİ!œvŸ|š|¨D°$Ñ7Ô7ĞØ#Ğ#r>)T) r�rrrrr0r1rrSrCrr s@r=r5r5"s|ø€€€€€ğ!ğ!¨3ğ!¸Tğ!ğ!ğ!ğ!ğ!ğ!ğ" ˜œğ ğ ğ ğ ğ$ğ$ğ$ğ$ğ$ğ$ğ$r>r5cóv‡—eZdZˆfd„Zdd„Zdejjfd„Zej ¦«d„¦«Z ˆxZ S)r9c󨕗tt|¦« ¦«||_||_t j||dd¬¦«|_t j|¦«|_ t j||dd¬¦«|_ t j|¦«|_ t j||dd¬¦«|_ t j|¦«|_ t j||d¦«|_t j|¦«|_t jdd¦«|_t jd¦«|_t jdd¦«|_t jd¦«|_t j|¦«|_t jd|d|dz|z¦«|_t jdd¦«|_dS)NràrQ)r&i iir)r/r9r0r.rrr/r0Ú BatchNorm2dÚbn1r3Úbn2Úconv3Úbn3Úconv4Úbn4ÚLinearÚfc1Ú BatchNorm1dÚfc1_bnÚfc2Úfc2_bnÚDropoutrÚ state_headÚ reward_head)r;r*rrrr.r<s €r=r0zDynamicsNet.__init__Jstø€İ �k˜4Ñ Ô ×)Ò)Ñ+Ô+Ğ+Ø(ˆÔØ&ˆÔõ”Y˜{¨L¸!ÀQĞGÑGÔGˆŒ İ”> ,Ñ/Ô/ˆŒİ”Y˜|¨\¸1ÀaĞHÑHÔHˆŒ İ”> ,Ñ/Ô/ˆŒİ”Y˜|¨\¸1ÀaĞHÑHÔHˆŒ İ”> ,Ñ/Ô/ˆŒİ”Y˜|¨\¸1Ñ=Ô=ˆŒ İ”> ,Ñ/Ô/ˆŒõ”9˜T 4Ñ(Ô(ˆŒİ”n TÑ*Ô*ˆŒ İ”9˜T 3Ñ'Ô'ˆŒİ”n SÑ)Ô)ˆŒ å”z 'Ñ*Ô*ˆŒ õœ) C¨°Q¬¸+Àa¼.Ñ)HÈ<Ñ)WÑXÔXˆŒİœ9 S¨!Ñ,Ô,ˆÔĞĞr>Fcó¼—tj| | |¦«¦«¦«}tj| | |¦«¦«¦«}tj| | |¦«¦«¦«}tj| |  |¦«¦«¦«}|  |  d¦«d¦«}tj|  |  |¦«¦«¦«}| |¦«}tj| | |¦«¦«¦«}| |¦«}| |¦«}| |¦«}||fS)NrrR)ÚFr;rJr0rKr3rMrLrOrNrVrºrSrQrrUrTrWrX)r;rJr+rXrYs r=rSzDynamicsNet.forwardfsH€å ŒF�4—8’8˜DŸJšJ q™MœMÑ*Ô*Ñ +Ô +ˆİ ŒF�4—8’8˜DŸJšJ q™MœMÑ*Ô*Ñ +Ô +ˆİ ŒF�4—8’8˜DŸJšJ q™MœMÑ*Ô*Ñ +Ô +ˆİ ŒF�4—8’8˜DŸJšJ q™MœMÑ*Ô*Ñ +Ô +ˆà �FŠF�1—6’6˜!‘9”9˜bÑ !Ô !ˆå ŒF�4—;’;˜tŸxšx¨™{œ{Ñ+Ô+Ñ ,Ô ,ˆØ �LŠL˜‰OŒOˆå ŒF�4—;’;˜tŸxšx¨™{œ{Ñ+Ô+Ñ ,Ô ,ˆØ �LŠL˜‰OŒOˆà—’ Ñ"Ô"ˆØ × Ò ˜QÑ Ô ˆà�aˆxˆr>rmcó”—tjd¦« d¦«}tj ||¦«}|S)N)rQr)ér\zcuda:0)r1rAr=rBrCrDs r=rCzDynamicsNet.tracezs;€İŒw�~Ñ&Ô&×)Ò)¨(Ñ3Ô3ˆİ!œvŸ|š|¨D°$Ñ7Ô7ĞØ#Ğ#r>có —| |¦«\}}| |j|jd|jd¦«}|| ¦« ¦« ¦«fS)NrrQ)rSrVr.rrTr(rU)r;rJrXrYs r=rKzDynamicsNet.predictsg€à—<’< ‘?”?‰ˆˆqØ— ’ ˜4Ô,¨dÔ.>¸qÔ.AÀ4ÔCSĞTUÔCVÑWÔWˆØ�a—h’h‘j”j—n’nÑ&Ô&×,Ò,Ñ.Ô.Ğ.Ğ.r>r) r�rrr0rSr1rBÚScriptFunctionrCÚno_gradrKrr s@r=r9r9Is�ø€€€€€ğ-ğ-ğ-ğ-ğ-ğ8ğğğğ($�r”vÔ,ğ$ğ$ğ$ğ$ğ €R„Z�\„\ğ/ğ/ñ„\ğ/ğ/ğ/ğ/ğ/r>r9có*‡—eZdZdefˆfd„ Zd„ZˆxZS)r)ÚchannelscóÌ•—tt|¦« ¦«tj ||dd¬¦«|_tj |¦«|_tj ||dd¬¦«|_ tj |¦«|_ tj  ¦«|_ dS)NràrQ)r*r.r$r&) r/r)r0r1rr/Ú convolution1rIÚbnorm1Ú convolution2Úbnorm2r:r;)r;rar<s €r=r0zResidualBlock.__init__‡s¢ø€İ �m˜TÑ"Ô"×+Ò+Ñ-Ô-Ğ-İœEŸLšL°XÈHĞbcĞmn˜LÑoÔoˆÔİ”e×'Ò'¨Ñ1Ô1ˆŒ İœEŸLšL°XÈHĞbcĞmn˜LÑoÔoˆÔİ”e×'Ò'¨Ñ1Ô1ˆŒ İ”E—J’J‘L”LˆŒ ˆ ˆ r>có—|}| |¦«}| | |¦«¦«}| | |¦«¦«}||z }| |¦«}|Sra)rcr;rdrfre)r;rJÚx_resÚ convolveds r=rSzResidualBlock.forward�ss€àˆØ×%Ò% aÑ(Ô(ˆ Ø �IŠI�d—k’k )Ñ,Ô,Ñ -Ô -ˆØ �KŠK˜×)Ò)¨!Ñ,Ô,Ñ -Ô -ˆØ ˆU‰ ˆØ �IŠI�a‰LŒLˆØˆr>)r�rrrr0rSrr s@r=r)r)†sSø€€€€€ğ! ğ!ğ!ğ!ğ!ğ!ğ!ğğğğğğğr>r))*rrUrÛÚtorchr1Útorch.nn.functionalrÚ functionalrZr†rÚ$mu_alpha_zero.AlphaZero.Network.nnetrr:rÚ$mu_alpha_zero.AlphaZero.checkpointerrÚmu_alpha_zero.AlphaZero.loggerrÚmu_alpha_zero.General.memoryr Úmu_alpha_zero.General.mz_gamer Úmu_alpha_zero.General.networkr Ú mu_alpha_zero.Hooks.hook_managerr Úmu_alpha_zero.Hooks.hook_pointr Úmu_alpha_zero.MuZero.utilsrrrÚmu_alpha_zero.configrÚ$mu_alpha_zero.shared_storage_managerrÚModulerr5r9r)r©r>r=ú<module>rysğØ € € € àĞĞĞØĞĞĞØĞĞĞĞĞĞĞĞØ € € € ØĞĞĞĞĞØ(Ğ(Ğ(Ğ(Ğ(Ğ(àgĞgĞgĞgĞgĞgĞgĞgØ=Ğ=Ğ=Ğ=Ğ=Ğ=Ø1Ğ1Ğ1Ğ1Ğ1Ğ1Ø<Ğ<Ğ<Ğ<Ğ<Ğ<Ø4Ğ4Ğ4Ğ4Ğ4Ğ4Ø>Ğ>Ğ>Ğ>Ğ>Ğ>Ø8Ğ8Ğ8Ğ8Ğ8Ğ8Ø1Ğ1Ğ1Ğ1Ğ1Ğ1ØhĞhĞhĞhĞhĞhĞhĞhĞhĞhØ-Ğ-Ğ-Ğ-Ğ-Ğ-Ø>Ğ>Ğ>Ğ>Ğ>Ğ>ğHoğHoğHoğHoğHo�”” Ğ2ñHoôHoğHoğV$$ğ$$ğ$$ğ$$ğ$$˜œœ ñ$$ô$$ğ$$ğN:/ğ:/ğ:/ğ:/ğ:/�"”)ñ:/ô:/ğ:/ğzğğğğ�B”E”Lñôğğğr>
33,954
Python
.pyt
94
360.12766
2,500
0.306695
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,581
hook_manager.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/Hooks/__pycache__/hook_manager.cpython-311.pyc
§ føf�ãó<—ddlmZddlmZmZGd„d¦«ZdS)é)Ú HookCallable)Ú HookPointÚHookAtc óB—eZdZd„Zdedefd„Zd dededed e d e f d „Z d S)Ú HookManagercó—i|_dS©N©Úhooks)Úselfs úO/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/Hooks/hook_manager.pyÚ__init__zHookManager.__init__s €ØˆŒ ˆ ˆ óÚwhereÚhookcó—||j|<dSr r )r rrs r Úregister_method_hookz HookManager.register_method_hook s€Ø ˆŒ �5ÑĞĞr©ÚclsÚfn_nameÚfileÚatÚargscóò—| dd¦« d¦«d}|j ¦«D]-\}}| |||¦«r|j|g|¢R�dSŒ.dS)Nú\ú/éÿÿÿÿ)ÚreplaceÚsplitr ÚitemsÚhereÚexecute) r rrrrrÚ file_nameÚ hook_pointÚ hook_callables r Úprocess_hook_executesz!HookManager.process_hook_executes s“€Ø—L’L  sÑ+Ô+×1Ò1°#Ñ6Ô6°rÔ:ˆ Ø)-¬×)9Ò)9Ñ);Ô);ğ ğ Ñ %ˆJ˜ Ø�Š˜y¨'°2Ñ6Ô6ğ Ø%� Ô% cĞ1¨DĞ1Ğ1Ğ1Ğ1Ø��ğ ğ ğ rN)r) Ú__name__Ú __module__Ú __qualname__rrrrÚobjectÚstrrÚtupler&rrr rrs‚€€€€€ğğğğ!¨)ğ!¸<ğ!ğ!ğ!ğ!ğğ¨ğ¸#ğÀSğÈfğĞ\ağğğğğğrrN)Ú"mu_alpha_zero.Hooks.hook_callablesrÚmu_alpha_zero.Hooks.hook_pointrrrrrr ú<module>r/sağØ;Ğ;Ğ;Ğ;Ğ;Ğ;Ø<Ğ<Ğ<Ğ<Ğ<Ğ<Ğ<Ğ<ğ ğ ğ ğ ğ ñ ô ğ ğ ğ r
1,829
Python
.pyt
12
151.333333
480
0.388889
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,582
hook_callables.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/Hooks/__pycache__/hook_callables.cpython-311.pyc
§ føfãóZ—ddlmZmZddlmZGd„de¦«ZGd„de¦«ZdS)é)ÚabstractmethodÚABC)ÚCallablecó*—eZdZedefd„¦«ZdS)Ú HookCallableÚclscó—dS)zJ Execute the hook :return: The return of the hook N©©ÚselfrÚargss úQ/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/Hooks/hook_callables.pyÚexecutezHookCallable.executes €ğ ˆóN)Ú__name__Ú __module__Ú __qualname__rÚobjectrr rrrrs9€€€€€àğ ˜6ğ ğ ğ ñ„^ğ ğ ğ rrcó4‡—eZdZdedefˆfd„ Zdefd„ZˆxZS)ÚHookMethodCallableÚmethodr cód•—t¦« ¦«||_||_dS©N)ÚsuperÚ__init__Ú_HookMethodCallable__methodÚ_HookMethodCallable__args)r rr Ú __class__s €rrzHookMethodCallable.__init__s+ø€İ ‰Œ×ÒÑÔĞØˆŒ ؈Œ ˆ ˆ rrcó,—|j|g|j¢|¢R�Sr)rrr s rrzHookMethodCallable.executes#€ØˆtŒ}˜SĞ6 4¤;Ğ6°Ğ6Ğ6Ğ6Ğ6r) rrrrÚtuplerrrÚ __classcell__)rs@rrrsfø€€€€€ğ˜xğ¨uğğğğğğğ 7˜6ğ7ğ7ğ7ğ7ğ7ğ7ğ7ğ7rrN)ÚabcrrÚtypingrrrr rrú<module>r$s�ğØ#Ğ#Ğ#Ğ#Ğ#Ğ#Ğ#Ğ#ØĞĞĞĞĞğ ğ ğ ğ ğ �3ñ ô ğ ğ7ğ7ğ7ğ7ğ7˜ñ7ô7ğ7ğ7ğ7r
1,774
Python
.pyt
9
193.333333
893
0.378256
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,583
hook_point.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/Hooks/__pycache__/hook_point.cpython-311.pyc
§ føf«ãóN—ddlZGd„dej¦«ZGd„d¦«ZdS)éNcó—eZdZdZdZdZdZdS)ÚHookAtÚheadÚtailÚmiddleÚallN)Ú__name__Ú __module__Ú __qualname__ÚHEADÚTAILÚMIDDLEÚALL©óúM/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/Hooks/hook_point.pyrrs"€€€€€Ø €DØ €DØ €FØ €C€C€CrrcóŠ—eZdZdededefd„Zedefd„¦«Zedefd„¦«Zedefd„¦«Z ded edefd „Z d S) Ú HookPointÚatÚfileÚfn_namecó0—||_||_||_dS©N)Ú_HookPoint__atÚ_HookPoint__fileÚ_HookPoint__function_name)Úselfrrrs rÚ__init__zHookPoint.__init__ s€ØˆŒ ؈Œ Ø&ˆÔĞĞrÚreturncó—|jSr)r©rs rrz HookPoint.ats €àŒyĞrcó—|jSr)rr!s rrzHookPoint.files €àŒ{Ğrcó—|jSr)rr!s rÚ function_namezHookPoint.function_names €àÔ#Ğ#rr$cód—||jko%||jko||jkp|tjkSr)rr$rrr)rrr$rs rÚherezHookPoint.heres8€Ø�t”yÒ Ğp ]°dÔ6HÒ%HĞpÈbĞTXÔT[ÊmĞNoĞ_aÕekÔeoÒ_oĞprN) r r r rÚstrrÚpropertyrrr$r&rrrrr s䀀€€€ğ'˜6ğ'¨ğ'°sğ'ğ'ğ'ğ'ğ ğ�Fğğğñ„Xğğğ�cğğğñ„Xğğğ$˜sğ$ğ$ğ$ñ„Xğ$ğq˜ğq¨Sğq°fğqğqğqğqğqğqrr)ÚenumÚEnumrrrrrú<module>r+svğØ € € € ğğğğğˆTŒYñôğğqğqğqğqğqñqôqğqğqğqr
2,064
Python
.pyt
10
205.3
453
0.345985
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,584
tictactoe_game.py
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/Game/tictactoe_game.py
import io import random import sys import numpy as np import pygame as pg import torch as th from PIL import Image from mu_alpha_zero.General.az_game import AlphaZeroGame class TicTacToeGameManager(AlphaZeroGame): """ This class is the game manager for the game of Tic Tac Toe and its variants. """ def __init__(self, board_size: int, headless: bool, num_to_win=None) -> None: # TODO: Implement the possibility to play over internet using sockets. self.player = 1 self.enemy_player = -1 self.board_size = board_size self.board = self.initialize_board() self.headless = headless self.num_to_win = self.init_num_to_win(num_to_win) self.screen = self.create_screen(headless) def play(self, player: int, index: tuple) -> None: self.board[index] = player def init_num_to_win(self, num_to_win: int | None) -> int: if num_to_win is None: num_to_win = self.board_size if num_to_win > self.board_size: raise Exception("Num to win can't be greater than board size") return num_to_win def initialize_board(self): board = np.zeros((self.board_size, self.board_size), dtype=np.int8) return board def get_random_valid_action(self, observations: np.ndarray, **kwargs) -> list: valid_moves = self.get_valid_moves(observations) if len(valid_moves) == 0: raise Exception("No valid moves") return random.choice(valid_moves) def create_screen(self, headless): if headless: return pg.init() pg.display.set_caption("Tic Tac Toe") board_rect_size = self.board_size * 100 screen = pg.display.set_mode((board_rect_size, board_rect_size)) return screen def full_iterate_array(self, arr: np.ndarray, func: callable) -> list: """ This function iterates over all rows, columns and the two main diagonals of supplied array, applies the supplied function to each of them and returns the results in a list. :param arr: a 2D numpy array. :param func: a callable function that takes a 1D array as input and returns a result. :return: A list of results. """ results = [] results.append("row") for row in arr: results.append(func(row.reshape(-1))) results.append("col") for col in arr.T: results.append(func(col.reshape(-1))) diags = [np.diag(arr, k=i) for i in range(-arr.shape[0] + 1, arr.shape[1])] flipped_diags = [np.diag(np.fliplr(arr), k=i) for i in range(-arr.shape[0] + 1, arr.shape[1])] diags.extend(flipped_diags) for idx, diag in enumerate(diags): if idx == 0: results.append("diag_left") elif idx == len(diags) // 2: results.append("diag_right") results.append(func(diag.reshape(-1))) # results.append("diag_left") # results.append(func(arr.diagonal().reshape(-1))) # results.append("diag_right") # results.append(func(np.fliplr(arr).diagonal().reshape(-1))) return results def eval_board(self, board: np.ndarray, check_end: bool = True) -> int | None: if self.is_board_full(board): return 0 score = 0 for i in range(self.num_to_win, self.num_to_win // 2, -1): current_won = self.check_partial_win(-1, self.num_to_win, board=board) opp_won = self.check_partial_win(1, self.num_to_win, board=board) if current_won: score += 1 * 2 if opp_won: score -= 1 if check_end: return None if self.game_result(-1, board) is None else score return score def full_iterate_array_all_diags(self, arr: np.ndarray, func: callable): results = [] for row in arr: results.append(func(row.reshape(-1))) for col in arr.T: results.append(func(col.reshape(-1))) diags = [np.diag(arr, k=i) for i in range(-arr.shape[0] + 1, arr.shape[1])] flipped_diags = [np.diag(np.fliplr(arr), k=i) for i in range(-arr.shape[0] + 1, arr.shape[1])] diags.extend(flipped_diags) for diag in diags: # if diag.size < self.num_to_win: # continue results.append(func(diag.reshape(-1))) return results def extract_all_vectors(self, board: np.ndarray): vectors = board.tolist() + board.T.tolist() vectors.extend([np.diag(board, k=i) for i in range(-board.shape[0] + 1, board.shape[1])]) vectors.extend([np.diag(np.fliplr(board), k=i) for i in range(-board.shape[0] + 1, board.shape[1])]) # pad vectors with -3's to have the same length as the board size and stack them vectors = [np.pad(vector, (0, self.board_size - len(vector)), constant_values=-3) for vector in vectors] return np.array(vectors) def check_win(self, player: int, board=None) -> bool: # if self.num_to_win == self.board_size: # return self.check_full_win(player, board=board) # else: return self.check_partial_win(player, self.num_to_win, board=board) def check_full_win(self, player: int, board=None) -> bool: """ This function checks if the supplied player has won the game with a full win (num_to_win == board_size). :param player: The player to check for (1 or -1). :param board: The board to check on. If None, the current board is used. :return: True if the player has won, False otherwise. """ if board is None: board = self.get_board() matches = self.full_iterate_array(board, lambda part: np.all(part == player)) for match in matches: if not isinstance(match, str) and match: return True return False def check_partial_win(self, player: int, n: int, board=None) -> bool: """ This function checks if the supplied player has won the game with a partial win (num_to_win < board_size). :param player: The player to check for (1 or -1). :param n: The number of consecutive pieces needed to win. :param board: The board to check on. If None, the current board is used. :return: True if the player has won, False otherwise. """ if board is None: board = self.get_board() matches = self.full_iterate_array_all_diags(board, lambda part: np.convolve((part == player), np.ones(n, dtype=np.int8), "valid")) for match in matches: if np.any(match == n): return True return False def check_partial_win_vectorized(self, player: int, n: int, board=None) -> bool: if board is None: board = self.get_board() vectors = th.tensor(self.extract_all_vectors(board)).unsqueeze(0) weight = th.ones((1, 1, 1, n), dtype=th.long) vectors_where_player = th.where(vectors == player, 1, 0).long() res = th.nn.functional.conv2d(vectors_where_player, weight=weight) return th.any(res == n).item() def check_partial_win_to_index(self, player: int, n: int, board=None) -> dict[tuple, str] | dict: """ This variation of check_partial_win returns the index of the first partial win found. The index being the index of the first piece in the winning sequence. :param player: The player to check for (1 or -1). :param n: The number of consecutive pieces needed to win. :param board: The board to check on. If None, the current board is used. :return: A dictionary containing the index and the position of the winning sequence. """ if board is None: board = self.get_board() indices = self.full_iterate_array(board, lambda part: np.convolve((part == player), np.ones(n, dtype=int), "valid")) indices = [x.tolist() if not isinstance(x, str) else x for x in indices] pos = "row" for vector in indices: if isinstance(vector, str): pos = vector continue for el in vector: if el == n: vector_index = indices.index(vector) pos_index = indices.index(pos) # num_strings_before = len([x for index,x in enumerate(indices) if isinstance(x,str) and index < pos_index]) element_index = vector_index - (pos_index + 1) if vector_index > pos_index else indices.index( vector, pos_index) diag_idx = { "index": ((self.board_size - 1) - element_index, 0)} if element_index < self.board_size else { "index": (0, element_index - self.board_size)} diag_idx["pos"] = pos match pos: case "row": return {"index": (element_index, 0), "pos": pos} case "col": return {"index": (0, element_index), "pos": pos} case "diag_left": return diag_idx case "diag_right": return diag_idx # case "diag_right": return {"index": None, "pos": None} def return_index_if_valid(self, index: tuple, return_on_fail: tuple = ()) -> tuple: if index[0] < 0 or index[0] >= self.board_size or index[1] < 0 or index[1] >= self.board_size: return return_on_fail return index def make_fresh_instance(self): return TicTacToeGameManager(self.board_size, self.headless, num_to_win=self.num_to_win) def get_previous(self, index: tuple, pos: str, n: int): if np.array(index).all() == 0: return index match pos: case "row": return self.return_index_if_valid((index[0], index[1] - n), return_on_fail=index) case "col": return self.return_index_if_valid((index[0] - n, index[1]), return_on_fail=index) case "diag_left": return self.return_index_if_valid((index[0] - n, index[1] - n), return_on_fail=index) case "diag_right": return self.return_index_if_valid((index[0] - n, index[1] + n), return_on_fail=index) def get_next(self, index: tuple, pos: str, n: int): if np.array(index).all() == self.board_size - 1: return index match pos: case "row": return self.return_index_if_valid((index[0], index[1] + n), return_on_fail=index) case "col": return self.return_index_if_valid((index[0] + n, index[1]), return_on_fail=index) case "diag_left": return self.return_index_if_valid((index[0] + n, index[1] + n), return_on_fail=index) case "diag_right": return self.return_index_if_valid((index[0] + n, index[1] - n), return_on_fail=index) def is_board_full(self, board=None) -> bool: if board is None: board = self.get_board() return np.all(board != 0) def get_board(self): return self.board.copy() def reset(self): self.board = self.initialize_board() return self.board.copy() def get_board_size(self): return self.board_size def render(self) -> bool: if self.headless: return False self.screen.fill((0, 0, 0)) self._draw_board() for row in range(self.board_size): for col in range(self.board_size): if self.board[row][col] == self.player: self._draw_circle(col * 100 + 50, row * 100 + 50) elif self.board[row][col] == self.enemy_player: self._draw_cross(col * 100 + 50, row * 100 + 50) pg.event.pump() pg.display.flip() return True def _draw_circle(self, x, y) -> None: if self.headless: return pg.draw.circle(self.screen, "green", (x, y), 40, 1) def _draw_cross(self, x, y) -> None: if self.headless: return pg.draw.line(self.screen, "red", (x - 40, y - 40), (x + 40, y + 40), 1) pg.draw.line(self.screen, "red", (x + 40, y - 40), (x - 40, y + 40), 1) def _draw_board(self): for x in range(0, self.board_size * 100, 100): for y in range(0, self.board_size * 100, 100): pg.draw.rect(self.screen, (255, 255, 255), pg.Rect(x, y, 100, 100), 1) def is_empty(self, index: tuple) -> bool: return self.board[index] == 0 def get_valid_moves(self, observation: np.ndarray, player: int or None = None) -> list: """ Legal moves are the empty spaces on the board. :param observation: A 2D numpy array representing the current state of the game. :param player: The player to check for. Since the game is symmetric, this is ignored. :return: A list of legal moves. """ legal_moves = [] observation = observation.reshape(self.board_size, self.board_size) for row in range(self.board_size): for col in range(self.board_size): if observation[row][col] == 0: legal_moves.append([row, col]) return legal_moves def pygame_quit(self) -> bool: if self.headless: return False pg.quit() return True def get_click_coords(self): if self.headless: return mouse_pos = (x // 100 for x in pg.mouse.get_pos()) if pg.mouse.get_pressed()[0]: # left click return mouse_pos def get_human_input(self, board: np.ndarray): if self.headless: return while True: self.check_pg_events() if self.get_click_coords() is not None: x, y = self.get_click_coords() if board[y][x] == 0: return y, x # time.sleep(1 / 60) def check_pg_events(self): if self.headless: return for event in pg.event.get(): if event.type == pg.QUIT: self.pygame_quit() sys.exit(0) def network_to_board(self, move): """ Converts an integer move from the network to a board index. :param move: An integer move selected from the network probabilities. :return: A tuple representing the board index (int,int). """ return np.unravel_index(move, self.board.shape) @staticmethod def get_canonical_form(board, player) -> np.ndarray: return board * player def get_next_state(self, board: np.ndarray, action: int or tuple, player: int) -> np.ndarray: if isinstance(action, int): action = self.network_to_board(action) board_ = board.copy() board_[action] = player return board_ def set_headless(self, val: bool): self.headless = val def get_invalid_actions(self, state: np.ndarray, player: int): mask = np.where(state == 0, 1, 0) return mask def __str__(self): return str(self.board).replace('1', 'X').replace('-1', 'O') # # if __name__ == "__main__": # sample_arr = np.array([[-1,1,-1,1,1],[-1,1,1,-1,-1],[1,-1,1,1,0],[-1,1,1,-1,0],[0,0,-1,1,1]]) # game_manager = GameManager(5, True,num_to_win=3) # res = game_manager.check_partial_win_vectorized(1,3,sample_arr) # res = game_manager.game_result(-1,sample_arr) # print(res) # print(game_manager.check_partial_win(1,3,sample_arr))
16,109
Python
.tac
340
36.097059
128
0.567581
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,585
tictactoe_game.cpython-311.pyc
Skirlax_MuAlphaZeroLibrary/mu_alpha_zero/Game/__pycache__/tictactoe_game.cpython-311.pyc
§ Uxf"Dãó~—ddlZddlZddlZddlmZddlZddlZ ddl Z ddl Z ddlmZddlmZGd„de¦«ZdS)éN)ÚImage)Ú AlphaZeroGamec óŞ—eZdZdZd?dededdfd„Zdededdfd „Zd edzdefd „Z d „Z d e j de fd„Zd„Zde j dede fd„Zd@de j dededzfd„Zde j defd„Zde j fd„Zd?dedefd„Zd?dedefd„Zd?dededefd„Zd?dededefd„Zd?dededeeefezfd„ZdAded edefd!„Zd"„Zded#edefd$„Zded#edefd%„Zd?defd&„Z d'„Z!d(„Z"d)„Z#defd*„Z$dBd+„Z%dBd,„Z&d-„Z'dedefd.„Z(d?d/e j depdde fd0„Z)defd1„Z*d2„Z+de j fd3„Z,d4„Z-d5„Z.d6„Z/e0de j fd7„¦«Z1de j d8epedede j fd9„Z2d:efd;„Z3d<e j defd=„Z4d>„Z5dS)CÚTicTacToeGameManagerzV This class is the game manager for the game of Tic Tac Toe and its variants. NÚ board_sizeÚheadlessÚreturncóØ—d|_d|_||_| ¦«|_||_| |¦«|_| |¦«|_ dS)Nééÿÿÿÿ) ÚplayerÚ enemy_playerrÚinitialize_boardÚboardrÚinit_num_to_winÚ num_to_winÚ create_screenÚscreen)Úselfrrrs úP/home/skyr/PycharmProjects/MuAlphaZeroBuild/mu_alpha_zero/Game/tictactoe_game.pyÚ__init__zTicTacToeGameManager.__init__s`€àˆŒ ØˆÔØ$ˆŒØ×*Ò*Ñ,Ô,ˆŒ Ø ˆŒ Ø×.Ò.¨zÑ:Ô:ˆŒØ×(Ò(¨Ñ2Ô2ˆŒ ˆ ˆ ór Úindexcó—||j|<dS©N©r)rr rs rÚplayzTicTacToeGameManager.plays€Ø"ˆŒ �5ÑĞĞrrcóL—|€|j}||jkrtd¦«‚|S)Nz+Num to win can't be greater than board size)rÚ Exception)rrs rrz$TicTacToeGameManager.init_num_to_win!s1€Ø Ğ ØœˆJØ ˜œÒ 'Ğ 'İĞIÑJÔJĞ JØĞrcó^—tj|j|jftj¬¦«}|S)N©Údtype)ÚnpÚzerosrÚint8©rrs rrz%TicTacToeGameManager.initialize_board(s&€İ”˜$œ/¨4¬?Ğ;Å2Ä7ĞKÑKÔKˆØˆ rÚ observationsc ó˜—| |¦«}t|¦«dkrtd¦«‚tj|¦«S)NrzNo valid moves)Úget_valid_movesÚlenrÚrandomÚchoice)rr'ÚkwargsÚ valid_movess rÚget_random_valid_actionz,TicTacToeGameManager.get_random_valid_action,sG€Ø×*Ò*¨<Ñ8Ô8ˆ İ ˆ{Ñ Ô ˜qÒ Ğ İĞ,Ñ-Ô-Ğ -İŒ}˜[Ñ)Ô)Ğ)rcóÈ—|rdStj¦«tj d¦«|jdz}tj ||f¦«}|S)Nz Tic Tac Toeéd)ÚpgÚinitÚdisplayÚ set_captionrÚset_mode)rrÚboard_rect_sizers rrz"TicTacToeGameManager.create_screen2s[€Ø ğ Ø ˆFå Œ‰ Œ ˆ İ Œ ×Ò˜}Ñ-Ô-Ğ-Øœ/¨CÑ/ˆİ”×$Ò$ o°Ğ%GÑHÔHˆØˆ rÚarrÚfunccó^‡—g}| d¦«‰D]3}| || d¦«¦«¦«Œ4| d¦«‰jD]3}| || d¦«¦«¦«Œ4ˆfd„t‰jd dz‰jd¦«D¦«}ˆfd„t‰jd dz‰jd¦«D¦«}| |¦«t |¦«D]}\}} |dkr| d¦«n+|t|¦«d zkr| d ¦«| ||  d¦«¦«¦«Œ~|S) an This function iterates over all rows, columns and the two main diagonals of supplied array, applies the supplied function to each of them and returns the results in a list. :param arr: a 2D numpy array. :param func: a callable function that takes a 1D array as input and returns a result. :return: A list of results. Úrowr Úcolcó<•—g|]}tj‰|¬¦«‘ŒS©)Úk©r#Údiag©Ú.0Úir8s €rú <listcomp>z;TicTacToeGameManager.full_iterate_array.<locals>.<listcomp>Mó(ø€ĞSĞSĞS q•”˜ Ğ"Ñ"Ô"ĞSĞSĞSrrr có`•—g|]*}tjtj‰¦«|¬¦«‘Œ+Sr>©r#rAÚfliplrrBs €rrEz;TicTacToeGameManager.full_iterate_array.<locals>.<listcomp>Nó0ø€ĞfĞfĞf¸!�œ¥¤¨3¡¤°1Ğ5Ñ5Ô5ĞfĞfĞfrÚ diag_leftéÚ diag_right)ÚappendÚreshapeÚTÚrangeÚshapeÚextendÚ enumerater*) rr8r9Úresultsr;r<ÚdiagsÚ flipped_diagsÚidxrAs ` rÚfull_iterate_arrayz'TicTacToeGameManager.full_iterate_array<s¶ø€ğˆØ�Š�uÑÔĞØğ 2ğ 2ˆCØ �NŠN˜4˜4 § ¢ ¨B¡¤Ñ0Ô0Ñ 1Ô 1Ğ 1Ğ 1à�Š�uÑÔĞØ”5ğ 2ğ 2ˆCØ �NŠN˜4˜4 § ¢ ¨B¡¤Ñ0Ô0Ñ 1Ô 1Ğ 1Ğ 1àSĞSĞSĞS­E°3´9¸Q´<°-À!Ñ2CÀSÄYÈqÄ\Ñ,RÔ,RĞSÑSÔSˆØfĞfĞfĞf½uÀcÄiĞPQÄlÀ]ĞUVÑEVĞX[ÔXaĞbcÔXdÑ?eÔ?eĞfÑfÔfˆ Ø � Š �]Ñ#Ô#Ğ#İ" 5Ñ)Ô)ğ 3ğ 3‰IˆC�Ø�aŠxˆxØ—’˜{Ñ+Ô+Ğ+Ğ+Ø�˜E™ œ  a™Ò'Ğ'Ø—’˜|Ñ,Ô,Ğ,Ø �NŠN˜4˜4 § ¢ ¨RÑ 0Ô 0Ñ1Ô1Ñ 2Ô 2Ğ 2Ğ 2ğ ˆrTrÚ check_endcóB—| |¦«rdSd}t|j|jdzd¦«D]J}| d|j|¬¦«}| d|j|¬¦«}|r|dz }|r|dz}ŒK|r| d|¦«€dn|S|S)NrrLr rr )Ú is_board_fullrQrÚcheck_partial_winÚ game_result)rrrZÚscorerDÚ current_wonÚopp_wons rÚ eval_boardzTicTacToeGameManager.eval_board]sÎ€Ø × Ò ˜eÑ $Ô $ğ Ø�1؈İ�t”¨¬¸1Ñ(<¸bÑAÔAğ ğ ˆAØ×0Ò0°°T´_ÈEĞ0ÑRÔRˆKØ×,Ò,¨Q°´ÀuĞ,ÑMÔMˆGØğ ؘ‘�Øğ ؘ‘ �øØ ğ JØ×+Ò+¨B°Ñ6Ô6Ğ>�4�4ÀEĞ I؈ rcó\‡—g}‰D]3}| || d¦«¦«¦«Œ4‰jD]3}| || d¦«¦«¦«Œ4ˆfd„t‰jd dz‰jd¦«D¦«}ˆfd„t‰jd dz‰jd¦«D¦«}| |¦«|D]3}| || d¦«¦«¦«Œ4|S)Nr có<•—g|]}tj‰|¬¦«‘ŒSr>r@rBs €rrEzETicTacToeGameManager.full_iterate_array_all_diags.<locals>.<listcomp>urFrrr có`•—g|]*}tjtj‰¦«|¬¦«‘Œ+Sr>rHrBs €rrEzETicTacToeGameManager.full_iterate_array_all_diags.<locals>.<listcomp>vrJr)rNrOrPrQrRrS) rr8r9rUr;r<rVrWrAs ` rÚfull_iterate_array_all_diagsz1TicTacToeGameManager.full_iterate_array_all_diagsls?ø€àˆØğ 2ğ 2ˆCØ �NŠN˜4˜4 § ¢ ¨B¡¤Ñ0Ô0Ñ 1Ô 1Ğ 1Ğ 1à”5ğ 2ğ 2ˆCØ �NŠN˜4˜4 § ¢ ¨B¡¤Ñ0Ô0Ñ 1Ô 1Ğ 1Ğ 1àSĞSĞSĞS­E°3´9¸Q´<°-À!Ñ2CÀSÄYÈqÄ\Ñ,RÔ,RĞSÑSÔSˆØfĞfĞfĞf½uÀcÄiĞPQÄlÀ]ĞUVÑEVĞX[ÔXaĞbcÔXdÑ?eÔ?eĞfÑfÔfˆ Ø � Š �]Ñ#Ô#Ğ#Øğ 3ğ 3ˆDğ �NŠN˜4˜4 § ¢ ¨RÑ 0Ô 0Ñ1Ô1Ñ 2Ô 2Ğ 2Ğ 2àˆrcóʇ‡—‰ ¦«‰j ¦«z}| ˆfd„t‰jd dz‰jd¦«D¦«¦«| ˆfd„t‰jd dz‰jd¦«D¦«¦«ˆfd„|D¦«}t j|¦«S)Ncó<•—g|]}tj‰|¬¦«‘ŒSr>r@©rCrDrs €rrEz<TicTacToeGameManager.extract_all_vectors.<locals>.<listcomp>�s(ø€Ğ`Ğ`Ğ`°�œ ¨Ğ+Ñ+Ô+Ğ`Ğ`Ğ`rrr có`•—g|]*}tjtj‰¦«|¬¦«‘Œ+Sr>rHris €rrEz<TicTacToeGameManager.extract_all_vectors.<locals>.<listcomp>‚s2ø€ĞkĞkĞk¸1�œ¥¤ ¨%Ñ 0Ô 0°AĞ6Ñ6Ô6ĞkĞkĞkrc ól•—g|]0}tj|d‰jt|¦«z fd¬¦«‘Œ1S)réıÿÿÿ)Úconstant_values)r#Úpadrr*)rCÚvectorrs €rrEz<TicTacToeGameManager.extract_all_vectors.<locals>.<listcomp>„s>ø€ĞpĞpĞpĞ^d•2”6˜& 1 d¤o½¸F¹ ¼ Ñ&CĞ"DĞVXĞYÑYÔYĞpĞpĞpr)ÚtolistrPrSrQrRr#Úarray)rrÚvectorss`` rÚextract_all_vectorsz(TicTacToeGameManager.extract_all_vectorssŞøø€Ø—,’,‘.”. 5¤7§>¢>Ñ#3Ô#3Ñ3ˆØ�ŠĞ`Ğ`Ğ`Ğ`µU¸E¼KȼN¸?ÈQÑ;NĞPUÔP[Ğ\]ÔP^Ñ5_Ô5_Ğ`Ñ`Ô`ÑaÔaĞaØ�ŠĞkĞkĞkĞkÅÀuÄ{ĞSTÄ~ÀoĞXYÑFYĞ[`Ô[fĞghÔ[iÑ@jÔ@jĞkÑkÔkÑlÔlĞlàpĞpĞpĞpĞhoĞpÑpÔpˆİŒx˜Ñ Ô Ğ rcó<—| ||j|¬¦«S)Nr)r]r)rr rs rÚ check_winzTicTacToeGameManager.check_win‡s!€ğ×%Ò% f¨d¬oÀUĞ%ÑKÔKĞKrc󤇗|€| ¦«}| |ˆfd„¦«}|D]}t|t¦«s|rdSŒdS)aC This function checks if the supplied player has won the game with a full win (num_to_win == board_size). :param player: The player to check for (1 or -1). :param board: The board to check on. If None, the current board is used. :return: True if the player has won, False otherwise. Ncó4•—tj|‰k¦«Sr)r#Úall)Úpartr s €rú<lambda>z5TicTacToeGameManager.check_full_win.<locals>.<lambda>–sø€½b¼fÀTÈVÂ^Ñ>TÔ>T€rTF)Ú get_boardrYÚ isinstanceÚstr)rr rÚmatchesÚmatchs ` rÚcheck_full_winz#TicTacToeGameManager.check_full_win�smø€ğ ˆ=Ø—N’NÑ$Ô$ˆEØ×)Ò)¨%Ğ1TĞ1TĞ1TĞ1TÑUÔUˆØğ ğ ˆEݘe¥SÑ)Ô)ğ ¨eğ Ø�t�tøàˆurÚnc󪇇—|€| ¦«}| |ˆˆfd„¦«}|D]}tj|‰k¦«rdSŒdS)aˆ This function checks if the supplied player has won the game with a partial win (num_to_win < board_size). :param player: The player to check for (1 or -1). :param n: The number of consecutive pieces needed to win. :param board: The board to check on. If None, the current board is used. :return: True if the player has won, False otherwise. Ncót•—tj|‰ktj‰tj¬¦«d¦«S©Nr!Úvalid)r#ÚconvolveÚonesr%©ryr�r s €€rrzz8TicTacToeGameManager.check_partial_win.<locals>.<lambda>©s:ø€İ46´KÀÈÂÕRTÔRYĞZ[ÕceÔcjĞRkÑRkÔRkØ@Gñ5Iô5IğrTF)r{rfr#Úany)rr r�rr~rs `` rr]z&TicTacToeGameManager.check_partial_win�s‹øø€ğ ˆ=Ø—N’NÑ$Ô$ˆEØ×3Ò3°Eğ5Iğ5Iğ5Iğ5Iğ5IñJôJˆğ ğ ğ ˆEİŒv�e˜q’jÑ!Ô!ğ Ø�t�tğ ğˆurcóâ—|€| ¦«}tj| |¦«¦« d¦«}tjddd|ftj¬¦«}tj||kdd¦« ¦«}tjj   ||¬¦«}tj ||k¦«  ¦«S)Nrr r!)Úweight) r{ÚthÚtensorrsÚ unsqueezer‡ÚlongÚwhereÚnnÚ functionalÚconv2dr‰Úitem)rr r�rrrr‹Úvectors_where_playerÚress rÚcheck_partial_win_vectorizedz1TicTacToeGameManager.check_partial_win_vectorized³sÂ€Ø ˆ=Ø—N’NÑ$Ô$ˆEİ”)˜D×4Ò4°UÑ;Ô;Ñ<Ô<×FÒFÀqÑIÔIˆİ”˜!˜Q  1˜­R¬WĞ5Ñ5Ô5ˆİ!œx¨°6Ò(9¸1¸aÑ@Ô@×EÒEÑGÔGĞİŒeÔ×%Ò%Ğ&:À6Ğ%ÑJÔJˆİŒv�c˜Q’hÑÔ×$Ò$Ñ&Ô&Ğ&rcóP‡‡—|€| ¦«}| |ˆˆfd„¦«}d„|D¦«}d}|D]ß}t|t¦«r|}Œ|D]Â}|‰krº| |¦«}| |¦«} || kr|| dzz n| || ¦«} | |jkrd|jdz | z dfin dd| |jz fi} || d<|xdkr | df|d œccSxd kr d| f|d œccSxd kr| ccSd kr| ccSŒÃŒàddd œS) aß This variation of check_partial_win returns the index of the first partial win found. The index being the index of the first piece in the winning sequence. :param player: The player to check for (1 or -1). :param n: The number of consecutive pieces needed to win. :param board: The board to check on. If None, the current board is used. :return: A dictionary containing the index and the position of the winning sequence. Ncój•—tj|‰ktj‰t¬¦«d¦«Sr„)r#r†r‡Úintrˆs €€rrzzATicTacToeGameManager.check_partial_win_to_index.<locals>.<lambda>Ès3ø€İ*,¬+°t¸v²~ÍÌĞPQÕY\ĞH]ÑH]ÔH]Ø6=ñ+?ô+?ğrcód—g|]-}t|t¦«s| ¦«n|‘Œ.S©)r|r}rp©rCÚxs rrEzCTicTacToeGameManager.check_partial_win_to_index.<locals>.<listcomp>Ës3€ĞPĞPĞPÀ1¥Z°µ3Ñ%7Ô%7Ğ>�1—8’8‘:”:�:¸QĞPĞPĞPrr;r rrÚpos)rrŸr<rKrM)r{rYr|r}rr) rr r�rÚindicesrŸroÚelÚ vector_indexÚ pos_indexÚ element_indexÚdiag_idxs `` rÚcheck_partial_win_to_indexz/TicTacToeGameManager.check_partial_win_to_index¼sõøø€ğ ˆ=Ø—N’NÑ$Ô$ˆEØ×)Ò)¨%ğ+?ğ+?ğ+?ğ+?ğ+?ñ@ô@ˆğQĞPÈĞPÑPÔPˆàˆØğ ,ğ ,ˆFݘ&¥#Ñ&Ô&ğ Ø�ØØğ ,ğ ,�ؘ’7�7Ø#*§=¢=°Ñ#8Ô#8�LØ '§ ¢ ¨cÑ 2Ô 2�IàFRĞU^ÒF^ĞF^ L°IÀ±MÑ$BĞ$BĞdk×dqÒdqØ  ñe+ôe+�MğQ^Ğ`dÔ`oÒPoĞPo˜ 4¤?°QÑ#6¸-Ñ"GÈĞ!Kğ Mğ Mà ! ]°T´_Ñ%DĞ!EğvGğğ'*�H˜U‘OØØ"˜UšU˜U˜UØ.;¸QĞ-?ÈĞ#LĞ#LĞLĞLĞLĞLĞLØ"˜UšU˜U˜UØ./°Ğ-?ÈĞ#LĞ#LĞLĞLĞLĞLĞLØ(˜[š[˜[˜[Ø#+˜O˜O˜O˜O˜OØ)š\˜\Ø#+˜O˜O˜O˜O˜Oøğ' ,ğ. dĞ+Ğ+Ğ+rrœÚreturn_on_failcó~—|ddks.|d|jks|ddks|d|jkr|S|S©Nrr ©r)rrr§s rÚreturn_index_if_validz*TicTacToeGameManager.return_index_if_validësI€Ø �Œ8�aŠ<ˆ<˜5 œ8 t¤Ò6Ğ6¸%À¼(ÀQº,¸,È%ĞPQÌ(ĞVZÔVeÒJeĞJeØ!Ğ !؈ rcóD—t|j|j|j¬¦«S)N)r)rrrr©rs rÚmake_fresh_instancez(TicTacToeGameManager.make_fresh_instanceğs€İ# D¤O°T´]ÈtÌĞ_Ñ_Ô_Ğ_rrŸcóà—tj|¦« ¦«dkr|S|xdkr)| |d|d|z f|¬¦«Sxdkr)| |d|z |df|¬¦«Sxdkr,| |d|z |d|z f|¬¦«Sdkr+| |d|z |d|zf|¬¦«SdS)Nrr;r ©r§r<rKrM)r#rqrxr«©rrrŸr�s rÚ get_previousz!TicTacToeGameManager.get_previousós €İ Œ8�E‰?Œ?× Ò Ñ Ô  AÒ %Ğ %؈LØØ�’��Ø×1Ò1°5¸´8¸UÀ1¼Xȹ\Ğ2JĞ[`Ğ1ÑaÔaĞaØ�’��Ø×1Ò1°5¸´8¸a±<ÀÀqÄĞ2JĞ[`Ğ1ÑaÔaĞaØ�’��Ø×1Ò1°5¸´8¸a±<ÀÀqÄÈAÁĞ2NĞ_dĞ1ÑeÔeĞeØ’�Ø×1Ò1°5¸´8¸a±<ÀÀqÄÈAÁĞ2NĞ_dĞ1ÑeÔeĞeğ�rcóğ—tj|¦« ¦«|jdz kr|S|xdkr)| |d|d|zf|¬¦«Sxdkr)| |d|z|df|¬¦«Sxdkr,| |d|z|d|zf|¬¦«Sdkr+| |d|z|d|z f|¬¦«SdS)Nr r;rr°r<rKrM)r#rqrxrr«r±s rÚget_nextzTicTacToeGameManager.get_nexts€İ Œ8�E‰?Œ?× Ò Ñ Ô  D¤O°aÑ$7Ò 7Ğ 7؈LØØ�’��Ø×1Ò1°5¸´8¸UÀ1¼Xȹ\Ğ2JĞ[`Ğ1ÑaÔaĞaØ�’��Ø×1Ò1°5¸´8¸a±<ÀÀqÄĞ2JĞ[`Ğ1ÑaÔaĞaØ�’��Ø×1Ò1°5¸´8¸a±<ÀÀqÄÈAÁĞ2NĞ_dĞ1ÑeÔeĞeØ’�Ø×1Ò1°5¸´8¸a±<ÀÀqÄÈAÁĞ2NĞ_dĞ1ÑeÔeĞeğ�rcó^—|€| ¦«}tj|dk¦«S©Nr)r{r#rxr&s rr\z"TicTacToeGameManager.is_board_full s*€Ø ˆ=Ø—N’NÑ$Ô$ˆEİŒv�e˜q’jÑ!Ô!Ğ!rcó4—|j ¦«Sr)rÚcopyr­s rr{zTicTacToeGameManager.get_boards€ØŒz�ŠÑ Ô Ğ rcóf—| ¦«|_|j ¦«Sr)rrr¸r­s rÚresetzTicTacToeGameManager.resets'€Ø×*Ò*Ñ,Ô,ˆŒ ØŒz�ŠÑ Ô Ğ rcó—|jSrrªr­s rÚget_board_sizez#TicTacToeGameManager.get_board_sizes €ØŒĞrcóB—|jrdS|j d¦«| ¦«t |j¦«D]–}t |j¦«D]}|j|||jkr#| |dzdz|dzdz¦«ŒA|j|||j kr"|  |dzdz|dzdz¦«Œ€Œ—tj   ¦«tj ¦«dS)NF)rrrr1é2T)rrÚfillÚ _draw_boardrQrrr Ú _draw_circlerÚ _draw_crossr2ÚeventÚpumpr4Úflip)rr;r<s rÚrenderzTicTacToeGameManager.renders€Ø Œ=ğ Ø�5à Œ ×Ò˜Ñ#Ô#Ğ#Ø ×ÒÑÔĞݘœÑ)Ô)ğ Eğ EˆCݘTœ_Ñ-Ô-ğ Eğ E�Ø”:˜c”? 3Ô'¨4¬;Ò6Ğ6Ø×%Ò% c¨C¡i°"¡n°c¸C±iÀ"±nÑEÔEĞEĞEà”Z ”_ SÔ)¨TÔ->Ò>Ğ>Ø×$Ò$ S¨3¡Y°¡^°S¸3±YÀ±^ÑDÔDĞDøğ  Eõ Œ� Š ‰Œˆİ Œ �ŠÑÔĞØˆtrcól—|jrdStj |jd||fdd¦«dS)NÚgreené(r )rr2ÚdrawÚcircler©rr�Úys rrÁz!TicTacToeGameManager._draw_circle.s9€Ø Œ=ğ Ø ˆFİ Œ�Š�t”{ G¨a°¨V°R¸Ñ;Ô;Ğ;Ğ;Ğ;rcóø—|jrdStj |jd|dz |dz f|dz|dzfd¦«tj |jd|dz|dz f|dz |dzfd¦«dS)NÚredrÉr )rr2rÊÚlinerrÌs rrÂz TicTacToeGameManager._draw_cross3s‡€Ø Œ=ğ Ø ˆFİ Œ� Š �T”[ %¨!¨b©&°!°b±&Ğ)9¸AÀ¹FÀAÈÁFĞ;KÈQÑOÔOĞOİ Œ� Š �T”[ %¨!¨b©&°!°b±&Ğ)9¸AÀ¹FÀAÈÁFĞ;KÈQÑOÔOĞOĞOĞOrc óî—td|jdzd¦«D]Z}td|jdzd¦«D]>}tj |jdtj||dd¦«d¦«Œ?Œ[dS)Nrr1)éÿrÒrÒr )rQrr2rÊÚrectrÚRectrÌs rrÀz TicTacToeGameManager._draw_board9sŒ€İ�q˜$œ/¨CÑ/°Ñ5Ô5ğ Wğ WˆAݘ1˜dœo°Ñ3°SÑ9Ô9ğ Wğ W�İ”— ’ ˜Tœ[¨/½2¼7À1ÀaÈÈcÑ;RÔ;RĞTUÑVÔVĞVĞVğ Wğ Wğ Wrcó$—|j|dkSr¶r)rrs rÚis_emptyzTicTacToeGameManager.is_empty>s€ØŒz˜%Ô  AÒ%Ğ%rÚ observationcóø—g}| |j|j¦«}t|j¦«D]B}t|j¦«D]+}|||dkr| ||g¦«Œ,ŒC|S)a Legal moves are the empty spaces on the board. :param observation: A 2D numpy array representing the current state of the game. :param player: The player to check for. Since the game is symmetric, this is ignored. :return: A list of legal moves. r)rOrrQrN)rr×r Ú legal_movesr;r<s rr)z$TicTacToeGameManager.get_valid_movesAs�€ğˆ Ø!×)Ò)¨$¬/¸4¼?ÑKÔKˆ ݘœÑ)Ô)ğ 3ğ 3ˆCݘTœ_Ñ-Ô-ğ 3ğ 3�ؘsÔ# CÔ(¨AÒ-Ğ-Ø×&Ò&¨¨S zÑ2Ô2Ğ2øğ 3ğĞrcó>—|jrdStj¦«dS)NFT)rr2Úquitr­s rÚ pygame_quitz TicTacToeGameManager.pygame_quitPs!€Ø Œ=ğ Ø�5İ Œ‰ Œ ˆ ؈trcó´—|jrdSd„tj ¦«D¦«}tj ¦«dr|SdS)Nc3ó K—|] }|dzV—Œ dS)r1Nrœr�s rú <genexpr>z8TicTacToeGameManager.get_click_coords.<locals>.<genexpr>Ys&èè€Ğ:Ğ: !�Q˜#‘XĞ:Ğ:Ğ:Ğ:Ğ:Ğ:rr)rr2ÚmouseÚget_posÚ get_pressed)rÚ mouse_poss rÚget_click_coordsz%TicTacToeGameManager.get_click_coordsVs]€Ø Œ=ğ Ø ˆFØ:Ğ:¥r¤x×'7Ò'7Ñ'9Ô'9Ğ:Ñ:Ô:ˆ İ Œ8× Ò Ñ !Ô ! !Ô $ğ ØĞ ğ ğ rcó—|jrdS | ¦«| ¦«�-| ¦«\}}|||dkr||fSŒV)NTr)rÚcheck_pg_eventsrä)rrr�rÍs rÚget_human_inputz$TicTacToeGameManager.get_human_input]sp€Ø Œ=ğ Ø ˆFğ Ø × Ò Ñ "Ô "Ğ "Ø×$Ò$Ñ&Ô&Ğ2Ø×,Ò,Ñ.Ô.‘��1ؘ”8˜A”; !Ò#Ğ#ؘa˜4�Kğ  rcóÔ—|jrdStj ¦«D]?}|jtjkr(| ¦«tjd¦«Œ@dSr¶) rr2rÃÚgetÚtypeÚQUITrÜÚsysÚexit)rrÃs rræz$TicTacToeGameManager.check_pg_eventsisc€Ø Œ=ğ Ø ˆFİ”X—\’\‘^”^ğ ğ ˆEØŒz�RœWÒ$Ğ$Ø× Ò Ñ"Ô"Ğ"İ”˜‘ ” � øğ ğ rcó@—tj||jj¦«S)zÜ Converts an integer move from the network to a board index. :param move: An integer move selected from the network probabilities. :return: A tuple representing the board index (int,int). ©r#Ú unravel_indexrrR)rÚmoves rÚnetwork_to_boardz%TicTacToeGameManager.network_to_boardqs€õ Ô  d¤jÔ&6Ñ7Ô7Ğ7rc󪇗‰jrdStjd¬¦«t| ¦«�\}}t |¦«ˆfd„|D¦«}t j||¬¦«tjd¬¦«tj d¦«tj d¦«tj d ¦«tj ¦«}tj|d d ¬ ¦«| d ¦«t!j|¦«}t$j ‰jd¦«}t!jd‰j ¦«|¦«}|j|jz} t!jdt5|j|j¦«| f¦«} |  |d¦«|  |d |jf¦«|  |¦«dS)N)éé )Úfigsizec󪕗g|]O}tj|‰jj¦«d›dtj|‰jj¦«d›�‘ŒPS)rú;r rï)rCr�rs €rrEzKTicTacToeGameManager.save_screenshot_with_probabilities.<locals>.<listcomp>sfø€ğğğĞop•RÔ% a¨¬Ô)9Ñ:Ô:¸1Ô=ĞjĞjÅÔ@PĞQRĞTXÔT^ÔTdÑ@eÔ@eĞfgÔ@hĞjĞjğğğr)r�rÍéZ)ÚrotationÚMoveÚ ProbabilityzAction probabilitiesÚpngÚtight)ÚformatÚ bbox_inchesrÚRGBAÚRGB)rr)rÚpltÚfigureÚzipÚitemsÚprintÚsnsÚbarplotÚxticksÚxlabelÚylabelÚtitleÚioÚBytesIOÚsavefigÚseekrÚopenr2ÚimageÚtostringrÚ frombytesÚget_sizeÚheightÚnewÚmaxÚwidthÚpasteÚsave) rÚ action_probsÚpathÚlabelsÚ probabilitiesÚbufÚplot_imgÚsurface_bufferÚ surface_imgÚ total_heightÚ combined_imgs ` rÚ"save_screenshot_with_probabilitiesz7TicTacToeGameManager.save_screenshot_with_probabilitiesysÍø€Ø Œ=ğ Ø ˆFİ Œ ˜8Ğ$Ñ$Ô$Ğ$İ # \×%7Ò%7Ñ%9Ô%9Ğ :ш� İ ˆmÑÔĞğğğğØğñôˆå Œ �f  Ğ.Ñ.Ô.Ğ.İ Œ ˜BĞÑÔĞİ Œ �6ÑÔĞİ Œ �=Ñ!Ô!Ğ!İ Œ Ğ(Ñ)Ô)Ğ)åŒj‰lŒlˆİ Œ �C °7Ğ;Ñ;Ô;Ğ;Ø �Š�‰ Œ ˆ İ”:˜c‘?”?ˆõœ×*Ò*¨4¬;¸Ñ?Ô?ˆİ”o f¨d¬k×.BÒ.BÑ.DÔ.DÀnÑUÔUˆ 𠔨Ô);Ñ;ˆ İ”y ­¨X¬^¸[Ô=NÑ)OÔ)OĞQ]Ğ(^Ñ_Ô_ˆ Ø×Ò˜8 VÑ,Ô,Ğ,Ø×Ò˜;¨¨H¬OĞ(<Ñ=Ô=Ğ=Ø×Ò˜$ÑÔĞĞĞrcó —||zSrrœ)rr s rÚget_canonical_formz'TicTacToeGameManager.get_canonical_form—s €à�v‰~ĞrÚactioncóŒ—t|t¦«r| |¦«}| ¦«}|||<|Sr)r|ršròr¸)rrr*r Úboard_s rÚget_next_statez#TicTacToeGameManager.get_next_state›sB€İ �f�cÑ "Ô "ğ 3Ø×*Ò*¨6Ñ2Ô2ˆFØ—’‘”ˆØˆˆv‰Øˆ rÚvalcó—||_dSr)r)rr.s rÚ set_headlessz!TicTacToeGameManager.set_headless¢s €ØˆŒ ˆ ˆ rÚstatecó:—tj|dkdd¦«}|Sr©)r#r�)rr1r Úmasks rÚget_invalid_actionsz(TicTacToeGameManager.get_invalid_actions¥s€İŒx˜ š  A qÑ)Ô)ˆØˆ rcóz—t|j¦« dd¦« dd¦«S)NÚ1ÚXz-1ÚO)r}rÚreplacer­s rÚ__str__zTicTacToeGameManager.__str__©s0€İ�4”:‰Œ×&Ò& s¨CÑ0Ô0×8Ò8¸¸sÑCÔCĞCrr)T)rœ)r N)6Ú__name__Ú __module__Ú __qualname__Ú__doc__ršÚboolrÚtuplerrrr#ÚndarrayÚlistr/rÚcallablerYrbrfrsrur€r]r—Údictr}r¦r«r®r²r´r\r{rºr¼rÆrÁrÂrÀrÖr)rÜrärçræròr'Ú staticmethodr)r-r0r4r:rœrrrrs8€€€€€ğğğ3ğ3 3ğ3°$ğ3ÈDğ3ğ3ğ3ğ3ğ#˜3ğ# uğ#°ğ#ğ#ğ#ğ#ğ¨#°©*ğ¸ğğğğğğğğ*°B´Jğ*ÈTğ*ğ*ğ*ğ*ğ ğğğ b¤jğ¸ğÀTğğğğğB ğ  ¤ ğ °tğ ÀsÈTÁzğ ğ ğ ğ ğ°´ ğÀ(ğğğğğ&!¨¬ğ!ğ!ğ!ğ!ğLğL ğL°DğLğLğLğLğ ğ Sğ¸ğğğğğ ğ¨ğ°ğÀDğğğğğ,'ğ'°3ğ'¸3ğ'Ètğ'ğ'ğ'ğ'ğ-,ğ-,°ğ-,¸ğ-,ÈTĞRWĞY\ĞR\ÔM]Ğ`dÑMdğ-,ğ-,ğ-,ğ-,ğ^ğ¨5ğÀ%ğĞQVğğğğğ `ğ`ğ`ğ f %ğ f¨cğ f°cğ fğ fğ fğ fğ f˜eğ f¨#ğ f°#ğ fğ fğ fğ fğ"ğ"¨4ğ"ğ"ğ"ğ"ğ !ğ!ğ!ğ!ğ!ğ!ğğğğ˜ğğğğğ$<ğ<ğ<ğ<ğ PğPğPğPğ WğWğWğ &˜eğ&¨ğ&ğ&ğ&ğ&ğ ğ ¨2¬:ğ ¸s¸{Àdğ ĞVZğ ğ ğ ğ ğ˜Tğğğğğ ğğğ  R¤Zğ ğ ğ ğ ğğğğ8ğ8ğ8ğ ğ ğ ğ<ğ¨R¬Zğğğñ„\ğğ B¤J𸸠¸uğÈcğĞVXÔV`ğğğğğ ğğğğğ¨¬ğ¸SğğğğğDğDğDğDğDrr)rr+rìÚmatplotlib.pyplotÚpyplotrÚnumpyr#Úpygamer2ÚseabornrÚtorchrŒÚPILrÚmu_alpha_zero.General.az_gamerrrœrrú<module>rNsÎğØ € € € Ø € € € Ø € € € àĞĞĞĞĞØĞĞĞØĞĞĞØĞĞĞØĞĞĞØĞĞĞĞĞà7Ğ7Ğ7Ğ7Ğ7Ğ7ğ[Dğ[Dğ[Dğ[Dğ[D˜=ñ[Dô[Dğ[Dğ[Dğ[Dr
31,194
Python
.tac
118
260.949153
2,695
0.344221
Skirlax/MuAlphaZeroLibrary
8
0
0
GPL-2.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,586
__init__.py
pblottiere_QSA/qsa-plugin/__init__.py
# -*- coding: utf-8 -*- import os import sys import json import time import struct import pickle import socket from osgeo import gdal from pathlib import Path from threading import Thread from datetime import datetime from qgis import PyQt from qgis.utils import server_active_plugins from qgis.server import QgsConfigCache, QgsServerFilter from qgis.core import Qgis, QgsProviderRegistry, QgsApplication LOG_MESSAGES = [] class ProbeFilter(QgsServerFilter): def __init__(self, iface, task): super().__init__(iface) self.task = task def onRequestReady(self) -> bool: request = self.serverInterface().requestHandler() params = request.parameterMap() self.task["project"] = params.get("MAP", "") self.task["service"] = params.get("SERVICE", "") self.task["request"] = params.get("REQUEST", "") self.task["start"] = datetime.now() self.task["count"] += 1 return True def onResponseComplete(self) -> bool: self._clear_task() return True def onSendResponse(self) -> bool: self._clear_task() return True def _clear_task(self): count = self.task["count"] self.task.clear() self.task["count"] = count def log_messages(): m = {} m["logs"] = "\n".join(LOG_MESSAGES) return m def stats(task): s = task if "start" in s: s["duration"] = int( (datetime.now() - s["start"]).total_seconds() * 1000 ) return s def metadata(iface) -> dict: m = {} m["plugins"] = server_active_plugins m["versions"] = {} m["versions"]["qgis"] = f"{Qgis.version().split('-')[0]}" m["versions"]["qt"] = PyQt.QtCore.QT_VERSION_STR m["versions"]["python"] = sys.version.split(" ")[0] m["versions"]["gdal"] = gdal.__version__ m["providers"] = QgsProviderRegistry.instance().pluginList().split("\n") m["cache"] = {} m["cache"]["projects"] = [] for project in QgsConfigCache.instance().projects(): m["cache"]["projects"].append(Path(project.fileName()).name) return m def auto_connect(s: socket.socket, host: str, port: int) -> socket.socket: while True: print("Try to connect...", file=sys.stderr) try: s.connect((host, port)) break except Exception as e: if e.errno == 106: s.close() s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) time.sleep(5) print("Connected with QSA server", file=sys.stderr) return s def f(iface, host: str, port: int, task: dict) -> None: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s = auto_connect(s, host, port) while True: try: data = s.recv(2000) payload = {} if b"metadata" in data: payload = metadata(iface) elif b"logs" in data: payload = log_messages() elif b"stats" in data: payload = stats(task) ser = pickle.dumps(payload) s.sendall(struct.pack(">I", len(ser))) s.sendall(ser) except Exception as e: print(e, file=sys.stderr) s = auto_connect(s, host, port) def capture_log_message(message, tag, level): LOG_MESSAGES.append(message) def serverClassFactory(iface): QgsApplication.instance().messageLog().messageReceived.connect( capture_log_message ) host = str(os.environ.get("QSA_HOST", "localhost")) port = int(os.environ.get("QSA_PORT", 9999)) task = {} task["count"] = 0 t = Thread( target=f, args=( iface, host.replace('"', ""), port, task, ), ) t.start() iface.registerFilter(ProbeFilter(iface, task), 100)
3,856
Python
.py
118
25.474576
76
0.593463
pblottiere/QSA
8
4
12
GPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,587
cli.py
pblottiere_QSA/qsa-cli/qsa/cli.py
# coding: utf8 import os import json import time import click import requests from pathlib import Path from tabulate import tabulate QSA_URL = os.environ.get("QSA_SERVER_URL", "http://localhost:5000/") @click.group() def cli(): pass @cli.command() def ps(): """ List QGIS Server instances """ url = f"{QSA_URL}/api/instances" data = requests.get(url) headers = ["INSTANCE ID", "IP", "STATUS"] table = [] for s in data.json()["servers"]: t = [] t.append(s["id"]) t.append(s["ip"]) t.append(f"Binded {s['binded']} seconds ago") table.append(t) print(tabulate(table, headers=headers)) @cli.command() @click.argument("id") def inspect(id): """ Returns metadata about a specific QGIS Server instance """ url = f"{QSA_URL}/api/instances/{id}" data = requests.get(url) print(json.dumps(data.json(), indent=2)) @cli.command() @click.argument("id") def logs(id): """ Returns logs of a specific QGIS Server instance """ url = f"{QSA_URL}/api/instances/{id}/logs" data = requests.get(url) print(data.json()["logs"]) @cli.command() @click.argument("id", required=False) def stats(id): """ Returns stats of QGIS Server instances """ ids = [] if id: ids.append(id) else: url = f"{QSA_URL}/api/instances" data = requests.get(url) for s in data.json()["servers"]: ids.append(s["id"]) headers = [ "INSTANCE ID", "COUNT", "TIME ", "SERVICE", "REQUEST", "PROJECT", ] try: while 1: table = [] for i in ids: url = f"{QSA_URL}/api/instances/{i}/stats" task = requests.get(url).json() if "error" in task: continue t = [] t.append(i) t.append(task["count"]) if "service" in task: t.append(f"{task['duration']} ms") t.append(task["service"]) t.append(task["request"]) p = Path(task["project"]).name t.append(p) else: t.append("") t.append("") t.append("") t.append("") table.append(t) s = tabulate(table, headers=headers) os.system("cls" if os.name == "nt" else "clear") print(s) time.sleep(0.25) except: pass
2,610
Python
.py
97
18.463918
68
0.51027
pblottiere/QSA
8
4
12
GPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,588
test_api_storage_filesystem.py
pblottiere_QSA/qsa-api/tests/test_api_storage_filesystem.py
import os import unittest from pathlib import Path from .utils import TestClient GPKG = Path(__file__).parent / "data.gpkg" if "QSA_GPKG" in os.environ: GPKG = os.environ["QSA_GPKG"] GEOTIFF = Path(__file__).parent / "landsat_4326.tif" if "QSA_GEOTIFF" in os.environ: GEOTIFF = os.environ["QSA_GEOTIFF"] TEST_PROJECT_0 = "qsa_test_project0" TEST_PROJECT_1 = "qsa_test_project1" class APITestCaseFilesystem(unittest.TestCase): def setUp(self): self.app = TestClient("/tmp/qsa/projects/qgis") def test_projects(self): # no projects p = self.app.get("/api/projects/") self.assertTrue(TEST_PROJECT_0 not in p.get_json()) self.assertTrue(TEST_PROJECT_1 not in p.get_json()) # add projects data = {} data["name"] = TEST_PROJECT_0 data["author"] = "pblottiere" p = self.app.post("/api/projects/", data) self.assertEqual(p.status_code, 201) data = {} data["name"] = "qsa_test_project1" data["author"] = "pblottiere" p = self.app.post("/api/projects/", data) self.assertEqual(p.status_code, 201) # 2 projects p = self.app.get("/api/projects/") self.assertTrue(TEST_PROJECT_0 in p.get_json()) self.assertTrue(TEST_PROJECT_1 in p.get_json()) # remove project p = self.app.delete(f"/api/projects/{TEST_PROJECT_0}") self.assertEqual(p.status_code, 201) # 1 projects p = self.app.get("/api/projects/") self.assertTrue(TEST_PROJECT_1 in p.get_json()) # get info about project p = self.app.get(f"/api/projects/{TEST_PROJECT_1}") j = p.get_json() self.assertTrue("crs" in j) self.assertTrue("creation_datetime" in j) self.assertEqual(j["author"], "pblottiere") self.assertEqual(j["storage"], "filesystem") self.assertFalse("schema" in j) # remove last project p = self.app.delete(f"/api/projects/{TEST_PROJECT_1}") def test_vector_symbology_line(self): # access symbol properties p = self.app.get( "/api/symbology/vector/line/single_symbol/line/properties" ) j = p.get_json() self.assertTrue("line_width" in j) def test_vector_symbology_fill(self): # list symbology for fill geometries p = self.app.get( "/api/symbology/vector/polygon/single_symbol/fill/properties" ) j = p.get_json() self.assertTrue("outline_style" in j) def test_vector_symbology_marker(self): # list symbology for marker geometries p = self.app.get( "/api/symbology/vector/point/single_symbol/marker/properties" ) j = p.get_json() self.assertTrue("outline_style" in j) def test_vector_symbology_rendering(self): p = self.app.get("/api/symbology/vector/rendering/properties") j = p.get_json() self.assertTrue("opacity" in j) def test_raster_symbology_rendering(self): p = self.app.get("/api/symbology/raster/rendering/properties") j = p.get_json() self.assertTrue("gamma" in j) self.assertTrue("brightness" in j) self.assertTrue("contrast" in j) self.assertTrue("saturation" in j) def test_raster_symbology_singlebandgray(self): p = self.app.get("/api/symbology/raster/singlebandgray/properties") j = p.get_json() self.assertTrue("gray" in j) self.assertTrue("contrast_enhancement" in j) def test_raster_symbology_multibandcolor(self): p = self.app.get("/api/symbology/raster/multibandcolor/properties") j = p.get_json() self.assertTrue("contrast_enhancement" in j) def test_layers(self): # add project data = {} data["name"] = TEST_PROJECT_0 data["author"] = "pblottiere" p = self.app.post("/api/projects/", data) self.assertEqual(p.status_code, 201) # 0 layer p = self.app.get(f"/api/projects/{TEST_PROJECT_0}/layers") self.assertEqual(p.get_json(), []) # add layer data = {} data["name"] = "layer0" data["datasource"] = f"{GPKG}|layername=polygons" data["crs"] = 4326 data["type"] = "vector" p = self.app.post(f"/api/projects/{TEST_PROJECT_0}/layers", data) self.assertEqual(p.status_code, 201) data = {} data["name"] = "layer1" data["datasource"] = f"{GPKG}|layername=lines" # data["crs"] = 4326 # No CRS because it's optional data["type"] = "vector" p = self.app.post(f"/api/projects/{TEST_PROJECT_0}/layers", data) self.assertEqual(p.status_code, 201) data = {} data["name"] = "layer2" data["datasource"] = f"{GPKG}|layername=points" data["crs"] = 4326 data["type"] = "vector" p = self.app.post(f"/api/projects/{TEST_PROJECT_0}/layers", data) self.assertEqual(p.status_code, 201) data = {} data["name"] = "layer3" data["datasource"] = f"{GEOTIFF}" data["crs"] = 4326 data["type"] = "raster" p = self.app.post(f"/api/projects/{TEST_PROJECT_0}/layers", data) self.assertEqual(p.status_code, 201) # 3 layers p = self.app.get(f"/api/projects/{TEST_PROJECT_0}/layers") self.assertEqual( p.get_json(), ["layer0", "layer1", "layer2", "layer3"] ) # layer metadata p = self.app.get(f"/api/projects/{TEST_PROJECT_0}/layers/layer1") j = p.get_json() self.assertEqual(j["type"], "vector") p = self.app.get(f"/api/projects/{TEST_PROJECT_0}/layers/layer2") j = p.get_json() self.assertEqual(j["valid"], True) # remove layer0 p = self.app.delete(f"/api/projects/{TEST_PROJECT_0}/layers/layer0") self.assertEqual(p.status_code, 201) # 2 layer p = self.app.get(f"/api/projects/{TEST_PROJECT_0}/layers") self.assertEqual(p.get_json(), ["layer1", "layer2", "layer3"]) # remove last project p = self.app.delete(f"/api/projects/{TEST_PROJECT_0}") def test_raster_style(self): # add project data = {} data["name"] = TEST_PROJECT_0 data["author"] = "pblottiere" p = self.app.post("/api/projects/", data) self.assertEqual(p.status_code, 201) # 0 style p = self.app.get(f"/api/projects/{TEST_PROJECT_0}/styles") self.assertEqual(p.get_json(), []) # add multibandcolor style to project data = {} data["type"] = "raster" data["name"] = "style_multibandcolor" data["symbology"] = {"type": "multibandcolor"} data["symbology"]["properties"] = { "red": {"band": 1}, "blue": {"band": 1}, "green": {"band": 1}, } data["rendering"] = { "brightness": 10, "gamma": 1.0, "contrast": 3, "saturation": 2, } p = self.app.post(f"/api/projects/{TEST_PROJECT_0}/styles", data) self.assertEqual(p.status_code, 201) p = self.app.get( f"/api/projects/{TEST_PROJECT_0}/styles/style_multibandcolor" ) self.assertTrue("rendering" in p.get_json()) self.assertTrue("symbology" in p.get_json()) self.assertTrue("properties" in p.get_json()["symbology"]) # 1 style p = self.app.get(f"/api/projects/{TEST_PROJECT_0}/styles") self.assertTrue("style_multibandcolor" in p.get_json()) # add raster layer data = {} data["name"] = "layer0" data["datasource"] = f"{GEOTIFF}" data["crs"] = 4326 data["type"] = "raster" p = self.app.post(f"/api/projects/{TEST_PROJECT_0}/layers", data) self.assertEqual(p.status_code, 201) # update layer's style data = {} data["current"] = True data["name"] = "style_multibandcolor" p = self.app.post( f"/api/projects/{TEST_PROJECT_0}/layers/layer0/style", data ) self.assertEqual(p.status_code, 201) # check style for layers p = self.app.get(f"/api/projects/{TEST_PROJECT_0}/layers/layer0") j = p.get_json() self.assertEqual(j["styles"], ["default", "style_multibandcolor"]) self.assertEqual(j["current_style"], "style_multibandcolor") # remove style p = self.app.delete( f"/api/projects/{TEST_PROJECT_0}/styles/style_multibandcolor" ) self.assertEqual(p.status_code, 415) # style still in use # update layer's style data = {} data["current"] = True data["name"] = "default" p = self.app.post( f"/api/projects/{TEST_PROJECT_0}/layers/layer0/style", data ) self.assertEqual(p.status_code, 201) # remove style p = self.app.delete( f"/api/projects/{TEST_PROJECT_0}/styles/style_multibandcolor" ) self.assertEqual(p.status_code, 201) # 0 style p = self.app.get(f"/api/projects/{TEST_PROJECT_0}/styles") self.assertEqual(p.get_json(), []) # remove last project p = self.app.delete(f"/api/projects/{TEST_PROJECT_0}") def test_vector_style(self): # add project data = {} data["name"] = TEST_PROJECT_0 data["author"] = "pblottiere" p = self.app.post("/api/projects/", data) self.assertEqual(p.status_code, 201) # 0 style p = self.app.get(f"/api/projects/{TEST_PROJECT_0}/styles") self.assertEqual(p.get_json(), []) # add line style to project data = {} data["type"] = "vector" data["name"] = "style_line" data["symbology"] = {"type": "single_symbol", "symbol": "line"} data["symbology"]["properties"] = {"line_width": 0.5} data["rendering"] = {"opacity": 0.4} p = self.app.post(f"/api/projects/{TEST_PROJECT_0}/styles", data) self.assertEqual(p.status_code, 201) # add fill style to project data = {} data["type"] = "vector" data["name"] = "style_fill" data["symbology"] = {"type": "single_symbol", "symbol": "fill"} data["symbology"]["properties"] = {"outline_width": 0.5} data["rendering"] = {} p = self.app.post(f"/api/projects/{TEST_PROJECT_0}/styles", data) self.assertEqual(p.status_code, 201) # 2 styles p = self.app.get(f"/api/projects/{TEST_PROJECT_0}/styles") self.assertTrue("style_line" in p.get_json()) self.assertTrue("style_fill" in p.get_json()) # style line metadata p = self.app.get(f"/api/projects/{TEST_PROJECT_0}/styles/style_line") j = p.get_json() self.assertTrue(j["symbology"]["properties"]["line_width"], 0.75) # style fill metadata p = self.app.get(f"/api/projects/{TEST_PROJECT_0}/styles/style_fill") j = p.get_json() self.assertTrue(j["symbology"]["properties"]["outline_width"], 0.75) # add layers data = {} data["name"] = "layer0" data["datasource"] = f"{GPKG}|layername=polygons" data["crs"] = 4326 data["type"] = "vector" p = self.app.post(f"/api/projects/{TEST_PROJECT_0}/layers", data) self.assertEqual(p.status_code, 201) data = {} data["name"] = "layer1" data["datasource"] = f"{GPKG}|layername=lines" data["crs"] = 32637 data["type"] = "vector" p = self.app.post(f"/api/projects/{TEST_PROJECT_0}/layers", data) self.assertEqual(p.status_code, 201) # add style to layers data = {} data["current"] = False data["name"] = "style_fill" p = self.app.post( f"/api/projects/{TEST_PROJECT_0}/layers/layer0/style", data ) self.assertEqual(p.status_code, 201) data = {} data["current"] = True data["name"] = "style_line" p = self.app.post( f"/api/projects/{TEST_PROJECT_0}/layers/layer1/style", data ) self.assertEqual(p.status_code, 201) # check style for layers p = self.app.get(f"/api/projects/{TEST_PROJECT_0}/layers/layer0") j = p.get_json() self.assertEqual(j["styles"], ["default", "style_fill"]) self.assertEqual(j["current_style"], "default") p = self.app.get(f"/api/projects/{TEST_PROJECT_0}/layers/layer1") j = p.get_json() self.assertEqual(j["styles"], ["default", "style_line"]) self.assertEqual(j["current_style"], "style_line") # remove style p = self.app.delete( f"/api/projects/{TEST_PROJECT_0}/styles/style_fill" ) self.assertEqual(p.status_code, 201) # 1 style p = self.app.get(f"/api/projects/{TEST_PROJECT_0}/styles") self.assertEqual(p.get_json(), ["style_line"]) # remove last project p = self.app.delete(f"/api/projects/{TEST_PROJECT_0}") def test_default_style(self): # add project data = {} data["name"] = TEST_PROJECT_0 data["author"] = "pblottiere" data["storage"] = "filesystem" p = self.app.post("/api/projects/", data) self.assertEqual(p.status_code, 201) # default styles p = self.app.get(f"/api/projects/{TEST_PROJECT_0}/styles/default") self.assertEqual( p.get_json(), { "line": "default", "polygon": "default", "point": "default", }, ) # add line style to project data = {} data["type"] = "vector" data["name"] = "style_line" data["symbology"] = {"type": "single_symbol", "symbol": "line"} data["symbology"]["properties"] = { "line_width": 0.75, "line_style": "dash", "customdash": "10;3", "use_custom_dash": "1", "line_color": "#0055FF", } data["rendering"] = {} p = self.app.post(f"/api/projects/{TEST_PROJECT_0}/styles", data) self.assertEqual(p.status_code, 201) # add fill style to project data = {} data["type"] = "vector" data["name"] = "style_fill" data["symbology"] = {"type": "single_symbol", "symbol": "fill"} data["symbology"]["properties"] = { "color": "#00BBBB", "style": "cross", "outline_width": 0.16, "outline_color": "#002222", } data["rendering"] = {} p = self.app.post(f"/api/projects/{TEST_PROJECT_0}/styles", data) self.assertEqual(p.status_code, 201) # add marker style to project data = {} data["type"] = "vector" data["name"] = "style_marker" data["symbology"] = {"type": "single_symbol", "symbol": "marker"} data["symbology"]["properties"] = { "color": "#00BBBB", "name": "star", "size": 6, "angle": 45, } data["rendering"] = {} p = self.app.post(f"/api/projects/{TEST_PROJECT_0}/styles", data) self.assertEqual(p.status_code, 201) # set default styles for polygons/fill symbol data = {} data["symbology"] = "single_symbol" data["geometry"] = "polygon" data["symbol"] = "fill" data["style"] = "style_fill" p = self.app.post( f"/api/projects/{TEST_PROJECT_0}/styles/default", data ) self.assertEqual(p.status_code, 201) # set default styles for line/line symbol data = {} data["symbology"] = "single_symbol" data["geometry"] = "line" data["symbol"] = "line" data["style"] = "style_line" p = self.app.post( f"/api/projects/{TEST_PROJECT_0}/styles/default", data ) self.assertEqual(p.status_code, 201) # set default styles for point/marker symbol data = {} data["symbology"] = "single_symbol" data["geometry"] = "point" data["symbol"] = "marker" data["style"] = "style_marker" p = self.app.post( f"/api/projects/{TEST_PROJECT_0}/styles/default", data ) self.assertEqual(p.status_code, 201) # check default style p = self.app.get(f"/api/projects/{TEST_PROJECT_0}/styles/default") self.assertEqual( p.get_json(), { "line": "style_line", "polygon": "style_fill", "point": "style_marker", }, ) # add layer data = {} data["name"] = "layer0" data["datasource"] = f"{GPKG}|layername=polygons" data["crs"] = 4326 data["type"] = "vector" p = self.app.post(f"/api/projects/{TEST_PROJECT_0}/layers", data) self.assertEqual(p.status_code, 201) data = {} data["name"] = "layer1" data["datasource"] = f"{GPKG}|layername=lines" data["crs"] = 4326 data["type"] = "vector" p = self.app.post(f"/api/projects/{TEST_PROJECT_0}/layers", data) self.assertEqual(p.status_code, 201) data = {} data["name"] = "layer2" data["datasource"] = f"{GPKG}|layername=points" data["crs"] = 4326 data["type"] = "vector" p = self.app.post(f"/api/projects/{TEST_PROJECT_0}/layers", data) self.assertEqual(p.status_code, 201) # check if default style is applied when adding a new layer in the project p = self.app.get(f"/api/projects/{TEST_PROJECT_0}/layers/layer0") j = p.get_json() self.assertEqual(j["styles"], ["default", "style_fill"]) self.assertEqual(j["current_style"], "style_fill") p = self.app.get(f"/api/projects/{TEST_PROJECT_0}/layers/layer1") j = p.get_json() self.assertEqual(j["styles"], ["default", "style_line"]) self.assertEqual(j["current_style"], "style_line") if not self.app.is_flask_client: # save polygon layer as png r = self.app.get( f"/api/projects/{TEST_PROJECT_0}/layers/layer0/map" ) with open( f"/tmp/{TEST_PROJECT_0}_layer0_style_fill.png", "wb" ) as out_file: out_file.write(r.resp.content) # save line layer as png r = self.app.get( f"/api/projects/{TEST_PROJECT_0}/layers/layer1/map" ) with open( f"/tmp/{TEST_PROJECT_0}_layer1_style_line.png", "wb" ) as out_file: out_file.write(r.resp.content) # save point layer as png r = self.app.get( f"/api/projects/{TEST_PROJECT_0}/layers/layer2/map" ) with open( f"/tmp/{TEST_PROJECT_0}_layer2_style_marker.png", "wb" ) as out_file: out_file.write(r.resp.content) # remove last project p = self.app.delete(f"/api/projects/{TEST_PROJECT_0}") if __name__ == "__main__": unittest.main()
19,356
Python
.py
482
30.605809
82
0.5596
pblottiere/QSA
8
4
12
GPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,589
test_api_storage_postgresql.py
pblottiere_QSA/qsa-api/tests/test_api_storage_postgresql.py
import os import unittest from pathlib import Path from .utils import TestClient GPKG = Path(__file__).parent / "data.gpkg" if "QSA_GPKG" in os.environ: GPKG = os.environ["QSA_GPKG"] GEOTIFF = Path(__file__).parent / "landsat_4326.tif" if "QSA_GEOTIFF" in os.environ: GEOTIFF = os.environ["QSA_GEOTIFF"] TEST_PROJECT_0 = "qsa_test_project0" TEST_PROJECT_1 = "qsa_test_project1" class APITestCasePostgresql(unittest.TestCase): def setUp(self): self.app = TestClient("/tmp/qsa/projects/qgis", "qsa_test") def test_projects(self): # no projects p = self.app.get("/api/projects/") self.assertTrue(TEST_PROJECT_0 not in p.get_json()) self.assertTrue(TEST_PROJECT_1 not in p.get_json()) # add projects data = {} data["name"] = TEST_PROJECT_0 data["author"] = "pblottiere" p = self.app.post("/api/projects/", data) self.assertEqual(p.status_code, 201) data = {} data["name"] = "qsa_test_project1" data["author"] = "pblottiere" p = self.app.post("/api/projects/", data) self.assertEqual(p.status_code, 201) # 2 projects p = self.app.get("/api/projects/") self.assertTrue(TEST_PROJECT_0 in p.get_json()) self.assertTrue(TEST_PROJECT_1 in p.get_json()) # remove project p = self.app.delete(f"/api/projects/{TEST_PROJECT_0}") self.assertEqual(p.status_code, 201) # 1 projects p = self.app.get("/api/projects/") self.assertTrue(TEST_PROJECT_1 in p.get_json()) # get info about project p = self.app.get(f"/api/projects/{TEST_PROJECT_1}") j = p.get_json() self.assertTrue("crs" in j) self.assertTrue("creation_datetime" in j) self.assertEqual(j["author"], "pblottiere") self.assertEqual(j["storage"], "postgresql") self.assertEqual(j["schema"], "public") self.assertEqual(j["crs"], "EPSG:3857") # remove last project p = self.app.delete(f"/api/projects/{TEST_PROJECT_1}") def test_layers(self): # add project data = {} data["name"] = TEST_PROJECT_0 data["author"] = "pblottiere" p = self.app.post("/api/projects/", data) self.assertEqual(p.status_code, 201) # 0 layer p = self.app.get(f"/api/projects/{TEST_PROJECT_0}/layers") self.assertEqual(p.get_json(), []) # add layer data = {} data["name"] = "layer0" data["datasource"] = f"{GPKG}|layername=polygons" data["crs"] = 4326 data["type"] = "vector" p = self.app.post(f"/api/projects/{TEST_PROJECT_0}/layers", data) self.assertEqual(p.status_code, 201) data = {} data["name"] = "layer1" data["datasource"] = f"{GPKG}|layername=lines" data["crs"] = 4326 data["type"] = "vector" p = self.app.post(f"/api/projects/{TEST_PROJECT_0}/layers", data) self.assertEqual(p.status_code, 201) data = {} data["name"] = "layer2" data["datasource"] = f"{GPKG}|layername=points" data["crs"] = 4326 data["type"] = "vector" p = self.app.post(f"/api/projects/{TEST_PROJECT_0}/layers", data) self.assertEqual(p.status_code, 201) data = {} data["name"] = "layer3" data["datasource"] = f"{GEOTIFF}" data["crs"] = 4326 data["type"] = "raster" p = self.app.post(f"/api/projects/{TEST_PROJECT_0}/layers", data) self.assertEqual(p.status_code, 201) # 3 layers p = self.app.get(f"/api/projects/{TEST_PROJECT_0}/layers") self.assertEqual( p.get_json(), ["layer0", "layer1", "layer2", "layer3"] ) # remove last project p = self.app.delete(f"/api/projects/{TEST_PROJECT_0}")
3,883
Python
.py
98
31.459184
73
0.585703
pblottiere/QSA
8
4
12
GPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,590
utils.py
pblottiere_QSA/qsa-api/tests/utils.py
import os import json import shutil import requests from flask import Flask from pathlib import Path app = Flask(__name__) from qsa_api.config import QSAConfig from qsa_api.api.projects import projects from qsa_api.api.symbology import symbology app.register_blueprint(projects, url_prefix="/api/projects") app.register_blueprint(symbology, url_prefix="/api/symbology") class TestResponse: def __init__(self, resp, flask_client): self.flask_client = flask_client self.resp = resp @property def status_code(self): return self.resp.status_code def get_json(self): if self.flask_client: return self.resp.get_json() return self.resp.json() class TestClient: def __init__(self, projects_dir, projects_psql_service=""): self.app = requests self._url = "" if "QSA_HOST" not in os.environ or "QSA_PORT" not in os.environ: self.app = app.test_client() # prepare app client self.app = app.test_client() os.environ["QSA_QGISSERVER_URL"] = "http://qgisserver/ogc/" os.environ["QSA_QGISSERVER_PROJECTS_DIR"] = projects_dir if projects_psql_service: os.environ["QSA_QGISSERVER_PROJECTS_PSQL_SERVICE"] = ( projects_psql_service ) self.app.application.config["CONFIG"] = QSAConfig() self.app.application.config["DEBUG"] = True # clear projects dir tmpdir = Path("/tmp/qsa/projects") shutil.rmtree(tmpdir, ignore_errors=True) (tmpdir / "qgis").mkdir(parents=True, exist_ok=True) (tmpdir / "mapproxy").mkdir(parents=True, exist_ok=True) else: host = os.environ["QSA_HOST"] port = os.environ["QSA_PORT"] self._url = f"http://{host}:{port}" self.delete(f"/api/projects/{TEST_PROJECT_0}") self.delete(f"/api/projects/{TEST_PROJECT_1}") def post(self, url, data): if self.is_flask_client: r = self.app.post( self.url(url), data=json.dumps(data), content_type="application/json", ) else: r = self.app.post( self.url(url), data=json.dumps(data), headers={"Content-type": "application/json"}, ) return TestResponse(r, self.is_flask_client) def delete(self, url): r = self.app.delete(self.url(url)) return TestResponse(r, self.is_flask_client) def get(self, url): r = self.app.get(self.url(url)) return TestResponse(r, self.is_flask_client) def url(self, url) -> str: return f"{self._url}{url}" @property def is_flask_client(self) -> bool: return not bool(self._url)
2,873
Python
.py
75
28.88
72
0.592513
pblottiere/QSA
8
4
12
GPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,591
project.py
pblottiere_QSA/qsa-api/qsa_api/project.py
# coding: utf8 import sys import shutil import sqlite3 from pathlib import Path from qgis.PyQt.QtCore import Qt, QDateTime from qgis.core import ( Qgis, QgsSymbol, QgsProject, QgsMapLayer, QgsWkbTypes, QgsFillSymbol, QgsLineSymbol, QgsApplication, QgsVectorLayer, QgsRasterLayer, QgsMarkerSymbol, QgsDateTimeRange, QgsRasterMinMaxOrigin, QgsContrastEnhancement, QgsSingleSymbolRenderer, QgsSimpleFillSymbolLayer, QgsSimpleLineSymbolLayer, QgsSimpleMarkerSymbolLayer, QgsRasterLayerTemporalProperties, ) from .mapproxy import QSAMapProxy from .vector import VectorSymbologyRenderer from .utils import StorageBackend, config, logger from .raster import RasterSymbologyRenderer, RasterOverview RENDERER_TAG_NAME = "renderer-v2" # constant from core/symbology/renderer.h class QSAProject: def __init__(self, name: str, schema: str = "public") -> None: self.name: str = name self.schema: str = "public" if schema: self.schema = schema @property def sqlite_db(self) -> Path: p = self._qgis_project_dir / "qsa.db" if not p.exists(): p.parent.mkdir(parents=True, exist_ok=True) con = sqlite3.connect(p) cur = con.cursor() cur.execute("CREATE TABLE styles_default(geometry, style)") cur.execute("INSERT INTO styles_default VALUES('line', 'default')") cur.execute( "INSERT INTO styles_default VALUES('polygon', 'default')" ) cur.execute( "INSERT INTO styles_default VALUES('point', 'default')" ) con.commit() con.close() return p @staticmethod def projects(schema: str = "") -> list: p = [] if StorageBackend.type() == StorageBackend.FILESYSTEM: for i in QSAProject._qgis_projects_dir().glob("**/*.qgs"): name = i.parent.name.replace( QSAProject._qgis_project_dir_prefix(), "" ) p.append(QSAProject(name)) else: service = config().qgisserver_projects_psql_service uri = f"postgresql:?service={service}&schema={schema}" storage = ( QgsApplication.instance() .projectStorageRegistry() .projectStorageFromType("postgresql") ) for pname in storage.listProjects(uri): p.append(QSAProject(pname, schema)) return p @property def styles(self) -> list[str]: s = [] for qml in self._qgis_project_dir.glob("**/*.qml"): s.append(qml.stem) self.debug(f"{len(s)} styles found") return s @property def project(self) -> QgsProject: project = QgsProject() project.read(self._qgis_project_uri, Qgis.ProjectReadFlag.DontResolveLayers) return project @property def layers(self) -> list: layers = [] p = QgsProject() p.read(self._qgis_project_uri, Qgis.ProjectReadFlag.DontResolveLayers) for layer in p.mapLayers().values(): layers.append(layer.name()) self.debug(f"{len(layers)} layers found") return layers @property def metadata(self) -> dict: m = {} p = QgsProject() p.read(self._qgis_project_uri, Qgis.ProjectReadFlag.DontResolveLayers) m["author"] = p.metadata().author() m["creation_datetime"] = ( p.metadata().creationDateTime().toString(Qt.ISODate) ) m["crs"] = p.crs().authid() m["storage"] = StorageBackend.type().name.lower() if StorageBackend.type() == StorageBackend.POSTGRESQL: m["schema"] = self.schema m["cache"] = "disabled" if self._mapproxy_enabled: m["cache"] = "mapproxy" return m def cache_metadata(self) -> (dict, str): if self._mapproxy_enabled: return QSAMapProxy(self.name).metadata(), "" return {}, "Cache is disabled" def cache_reset(self) -> (bool, str): if self._mapproxy_enabled: mp = QSAMapProxy(self.name) rc, err = mp.read() if not rc: return False, err p = QgsProject() p.read(self._qgis_project_uri) for layer in p.mapLayers().values(): t = layer.type() bbox = QSAProject._layer_bbox(layer) epsg_code = QSAProject._layer_epsg_code(layer) mp.remove_layer(layer.name()) mp.add_layer( layer.name(), bbox, epsg_code, t == Qgis.LayerType.Raster, None ) mp.write() return True, "" return False, "Cache is disabled" def style_default(self, geometry: str) -> bool: con = sqlite3.connect(self.sqlite_db.as_posix()) cur = con.cursor() sql = f"SELECT style FROM styles_default WHERE geometry = '{geometry}'" res = cur.execute(sql) default_style = res.fetchone()[0] con.close() return default_style def style(self, name: str) -> (dict, str): if name not in self.styles: return {}, "Invalid style" path = self._qgis_project_dir / f"{name}.qml" if VectorSymbologyRenderer.style_is_vector(path): return VectorSymbologyRenderer.style_to_json(path) else: return RasterSymbologyRenderer.style_to_json(path) def style_update(self, geometry: str, style: str) -> None: con = sqlite3.connect(self.sqlite_db.as_posix()) cur = con.cursor() sql = f"UPDATE styles_default SET style = '{style}' WHERE geometry = '{geometry}'" cur.execute(sql) con.commit() con.close() def default_styles(self) -> list: s = {} s["polygon"] = self.style_default("polygon") s["line"] = self.style_default("line") s["point"] = self.style_default("point") return s def layer(self, name: str) -> dict: project = QgsProject() project.read(self._qgis_project_uri) layers = project.mapLayersByName(name) if layers: layer = layers[0] infos = {} infos["name"] = layer.name() infos["type"] = layer.type().name.lower() if layer.type() == Qgis.LayerType.Vector: infos["geometry"] = QgsWkbTypes.displayString(layer.wkbType()) elif layer.type() == Qgis.LayerType.Raster: infos["bands"] = layer.bandCount() infos["data_type"] = layer.dataProvider().dataType(1).name.lower() infos["source"] = layer.source() infos["crs"] = layer.crs().authid() infos["current_style"] = layer.styleManager().currentStyle() infos["styles"] = layer.styleManager().styles() infos["valid"] = layer.isValid() infos["bbox"] = layer.extent().asWktCoordinates() return infos return {} def layer_update_style( self, layer_name: str, style_name: str, current: bool ) -> (bool, str): if layer_name not in self.layers: return False, f"Layer '{layer_name}' does not exist" if style_name != "default" and style_name not in self.styles: return False, f"Style '{style_name}' does not exist" flags = Qgis.ProjectReadFlags() flags |= Qgis.ProjectReadFlag.ForceReadOnlyLayers project = QgsProject() project.read(self._qgis_project_uri, flags) style_path = self._qgis_project_dir / f"{style_name}.qml" layer = project.mapLayersByName(layer_name)[0] if style_name not in layer.styleManager().styles(): self.debug(f"Add new style {style_name} in style manager") l = layer.clone() l.loadNamedStyle(style_path.as_posix()) # set "default" style layer.styleManager().addStyle( style_name, l.styleManager().style("default") ) if current: self.debug(f"Set default style {style_name}") layer.styleManager().setCurrentStyle(style_name) # refresh min/max for the current layer if necessary # (because the style is built on an empty geotiff) if layer.type() == QgsMapLayer.RasterLayer: self.debug("Refresh symbology renderer min/max") renderer = RasterSymbologyRenderer(layer.renderer().type()) renderer.refresh_min_max(layer) if self._mapproxy_enabled: self.debug("Clear MapProxy cache") mp = QSAMapProxy(self.name) mp.clear_cache(layer_name) self.debug("Write project") project.write() return True, "" def layer_exists(self, name: str) -> bool: return bool(self.layer(name)) def remove_layer(self, name: str) -> bool: # remove layer in qgis project project = QgsProject() project.read(self._qgis_project_uri, Qgis.ProjectReadFlag.DontResolveLayers) ids = [] for layer in project.mapLayersByName(name): ids.append(layer.id()) project.removeMapLayers(ids) rc = project.write() # remove layer in mapproxy config if self._mapproxy_enabled: mp = QSAMapProxy(self.name) rc, err = mp.read() if not rc: self.debug(err) return False mp.remove_layer(name) mp.write() return rc def exists(self) -> bool: if StorageBackend.type() == StorageBackend.FILESYSTEM: return self._qgis_project_dir.exists() else: service = config().qgisserver_projects_psql_service uri = f"postgresql:?service={service}&schema={self.schema}" storage = ( QgsApplication.instance() .projectStorageRegistry() .projectStorageFromType("postgresql") ) projects = storage.listProjects(uri) # necessary step if the project has been created without QSA if self.name in projects: self._qgis_projects_dir().mkdir(parents=True, exist_ok=True) return self.name in projects and self._qgis_projects_dir().exists() def create(self, author: str) -> (bool, str): if self.exists(): return False # create qgis directory for qsa sqlite database and .qgs file if # filesystem storage based self._qgis_project_dir.mkdir(parents=True, exist_ok=True) # create qgis project project = QgsProject() m = project.metadata() m.setAuthor(author) project.setMetadata(m) crs = project.crs() crs.createFromString("EPSG:3857") # default to webmercator project.setCrs(crs) self.debug("Write QGIS project") rc = project.write(self._qgis_project_uri) # create mapproxy config file if self._mapproxy_enabled: self.debug("Write MapProxy configuration file") mp = QSAMapProxy(self.name) mp.create() # init sqlite database self.sqlite_db return rc, project.error() def remove(self) -> None: # clear cache and stuff for layer in self.layers: self.remove_layer(layer) # remove mapproxy config file if self._mapproxy_enabled: mp = QSAMapProxy(self.name) mp.remove() # remove qsa projects dir shutil.rmtree(self._qgis_project_dir, ignore_errors=True) # remove remove qgis prohect in db if necessary if StorageBackend.type() == StorageBackend.POSTGRESQL: storage = ( QgsApplication.instance() .projectStorageRegistry() .projectStorageFromType("postgresql") ) storage.removeProject(self._qgis_project_uri) def add_layer( self, datasource: str, layer_type: str, name: str, epsg_code: int, overview: bool, datetime: QDateTime | None, ) -> (bool, str): t = self._layer_type(layer_type) if t is None: return False, "Invalid layer type" if name in self.layers: return False, f"A layer {name} already exists" provider = QSAProject._layer_provider(t, datasource) lyr = None if t == Qgis.LayerType.Vector: self.debug("Init vector layer") lyr = QgsVectorLayer(datasource, name, provider) elif t == Qgis.LayerType.Raster: self.debug("Init raster layer") lyr = QgsRasterLayer(datasource, name, provider) ovr = RasterOverview(lyr) if overview: if not ovr.is_valid(): self.debug("Build overviews") rc, err = ovr.build() if not rc: return False, err else: self.debug("Overviews already exist") if datetime: self.debug("Activate temporal properties") mode = QgsRasterLayerTemporalProperties.ModeFixedTemporalRange props = lyr.temporalProperties() props.setMode(mode) dt_range = QgsDateTimeRange(datetime, datetime) props.setFixedTemporalRange(dt_range) props.setIsActive(True) else: return False, "Invalid layer type" if lyr is None: return False, "Invalid layer (None)" if not lyr.isValid(): return False, f"Invalid layer ({lyr.error()})" if epsg_code > 0: crs = lyr.crs() crs.createFromString(f"EPSG:{epsg_code}") lyr.setCrs(crs) if not lyr.isValid(): return False, f"Invalid layer ({lyr.error()})" # create project project = QgsProject() project.read(self._qgis_project_uri, Qgis.ProjectReadFlag.DontResolveLayers) project.addMapLayer(lyr) self.debug("Write QGIS project") project.write() # set default style if t == Qgis.LayerType.Vector: self.debug("Set default style") geometry = lyr.geometryType().name.lower() default_style = self.style_default(geometry) self.layer_update_style(name, default_style, True) # add layer in mapproxy config file if self._mapproxy_enabled: self.debug("Update MapProxy configuration file") bbox = QSAProject._layer_bbox(lyr) epsg_code = QSAProject._layer_epsg_code(lyr) if epsg_code < 0: return False, f"Invalid CRS {lyr.crs().authid()}" self.debug(f"EPSG code {epsg_code}") mp = QSAMapProxy(self.name) rc, err = mp.read() if not rc: return False, err rc, err = mp.add_layer( name, bbox, epsg_code, t == Qgis.LayerType.Raster, datetime ) if not rc: return False, err mp.write() return True, "" def add_style( self, name: str, layer_type: str, symbology: dict, rendering: dict, ) -> (bool, str): t = self._layer_type(layer_type) if t == Qgis.LayerType.Vector: return self._add_style_vector(name, symbology, rendering) elif t == Qgis.LayerType.Raster: return self._add_style_raster(name, symbology, rendering) elif t is None: return False, "Invalid layer type" def _add_style_raster( self, name: str, symbology: dict, rendering: dict ) -> (bool, str): # safety check if "type" not in symbology: return False, "`type` is missing in `symbology`" if "properties" not in symbology: return False, "`properties` is missing in `symbology`" # init renderer tif = Path(__file__).resolve().parent / "raster" / "empty.tif" rl = QgsRasterLayer(tif.as_posix(), "", "gdal") # symbology renderer = RasterSymbologyRenderer(symbology["type"]) renderer.load(symbology["properties"]) # config rendering if "gamma" in rendering: rl.brightnessFilter().setGamma(float(rendering["gamma"])) if "brightness" in rendering: rl.brightnessFilter().setBrightness(int(rendering["brightness"])) if "contrast" in rendering: rl.brightnessFilter().setContrast(int(rendering["contrast"])) if "saturation" in rendering: rl.hueSaturationFilter().setSaturation( int(rendering["saturation"]) ) # save style if renderer.renderer: rl.setRenderer(renderer.renderer) # contrast enhancement needs to be managed after setting renderer if renderer.contrast_algorithm: rl.setContrastEnhancement( renderer.contrast_algorithm, renderer.contrast_limits ) # user defined min/max if ( renderer.contrast_limits == QgsRasterMinMaxOrigin.Limits.None_ ): if ( renderer.type == RasterSymbologyRenderer.Type.SINGLE_BAND_GRAY ): ce = QgsContrastEnhancement( rl.renderer().contrastEnhancement() ) if renderer.gray_min is not None: ce.setMinimumValue(renderer.gray_min) if renderer.gray_max is not None: ce.setMaximumValue(renderer.gray_max) rl.renderer().setContrastEnhancement(ce) elif ( renderer.type == RasterSymbologyRenderer.Type.MULTI_BAND_COLOR ): # red red_ce = QgsContrastEnhancement( rl.renderer().redContrastEnhancement() ) if renderer.red_min is not None: red_ce.setMinimumValue(renderer.red_min) if renderer.red_max is not None: red_ce.setMaximumValue(renderer.red_max) rl.renderer().setRedContrastEnhancement(red_ce) # green green_ce = QgsContrastEnhancement( rl.renderer().greenContrastEnhancement() ) if renderer.green_min is not None: green_ce.setMinimumValue(renderer.green_min) if renderer.green_max is not None: green_ce.setMaximumValue(renderer.green_max) rl.renderer().setGreenContrastEnhancement(green_ce) # blue blue_ce = QgsContrastEnhancement( rl.renderer().blueContrastEnhancement() ) if renderer.blue_min is not None: blue_ce.setMinimumValue(renderer.blue_min) if renderer.blue_max is not None: blue_ce.setMaximumValue(renderer.blue_max) rl.renderer().setBlueContrastEnhancement(blue_ce) # save path = self._qgis_project_dir / f"{name}.qml" rl.saveNamedStyle( path.as_posix(), categories=QgsMapLayer.AllStyleCategories ) return True, "" return False, "Error" def _add_style_vector( self, name: str, symbology: dict, rendering: dict ) -> (bool, str): if "type" not in symbology: return False, "`type` is missing in `symbology`" if "symbol" not in symbology: return False, "`symbol` is missing in `symbology`" if "properties" not in symbology: return False, "`properties` is missing in `symbology`" if symbology["type"] != "single_symbol": return False, "Invalid symbol" r = None vl = QgsVectorLayer() symbol = symbology["symbol"] properties = symbology["properties"] if symbol == "line": r = QgsSingleSymbolRenderer( QgsSymbol.defaultSymbol(QgsWkbTypes.LineGeometry) ) props = QgsSimpleLineSymbolLayer().properties() for key in properties.keys(): if key not in props: return False, "Invalid properties" symbol = QgsLineSymbol.createSimple(properties) r.setSymbol(symbol) elif symbol == "fill": r = QgsSingleSymbolRenderer( QgsSymbol.defaultSymbol(QgsWkbTypes.PolygonGeometry) ) props = QgsSimpleFillSymbolLayer().properties() for key in properties.keys(): if key not in props: return False, "Invalid properties" symbol = QgsFillSymbol.createSimple(properties) r.setSymbol(symbol) elif symbol == "marker": r = QgsSingleSymbolRenderer( QgsSymbol.defaultSymbol(QgsWkbTypes.PointGeometry) ) props = QgsSimpleMarkerSymbolLayer().properties() for key in properties.keys(): if key not in props: return False, "Invalid properties" symbol = QgsMarkerSymbol.createSimple(properties) r.setSymbol(symbol) if "opacity" in rendering: vl.setOpacity(float(rendering["opacity"])) if r: vl.setRenderer(r) path = self._qgis_project_dir / f"{name}.qml" vl.saveNamedStyle( path.as_posix(), categories=QgsMapLayer.Symbology ) return True, "" return False, "Error" def remove_style(self, name: str) -> bool: if name not in self.styles: return False, f"Style '{name}' does not exist" p = QgsProject() p.read(self._qgis_project_uri) for layer in p.mapLayers().values(): if name == layer.styleManager().currentStyle(): return False, f"Style is used by {layer.name()}" for layer in p.mapLayers().values(): layer.styleManager().removeStyle(name) path = self._qgis_project_dir / f"{name}.qml" path.unlink() p.write() return True, "" def debug(self, msg: str) -> None: caller = f"{self.__class__.__name__}.{sys._getframe().f_back.f_code.co_name}" if StorageBackend.type() == StorageBackend.FILESYSTEM: msg = f"[{caller}][{self.name}] {msg}" else: msg = f"[{caller}][{self.schema}:{self.name}] {msg}" logger().debug(msg) @staticmethod def _qgis_projects_dir() -> Path: return Path(config().qgisserver_projects_dir) @staticmethod def _layer_type(layer_type: str) -> Qgis.LayerType | None: if layer_type.lower() == "vector": return Qgis.LayerType.Vector elif layer_type.lower() == "raster": return Qgis.LayerType.Raster return None @property def _mapproxy_enabled(self) -> bool: return bool(config().mapproxy_projects_dir) @property def _qgis_project_dir(self) -> Path: return ( self._qgis_projects_dir() / f"{QSAProject._qgis_project_dir_prefix(self.schema)}{self.name}" ) @staticmethod def _qgis_project_dir_prefix(schema: str = "") -> str: prefix = "" if StorageBackend.type() == StorageBackend.POSTGRESQL: prefix = f"{schema}_" return prefix @staticmethod def _layer_provider(layer_type: Qgis.LayerType, datasource: str) -> str: provider = "" if layer_type == Qgis.LayerType.Vector: provider = "ogr" if "table=" in datasource: provider = "postgres" elif layer_type == Qgis.LayerType.Raster: provider = "gdal" return provider @staticmethod def _layer_epsg_code(lyr) -> int: authid_items = lyr.crs().authid().split(":") if len(authid_items) < 2: return -1 return int(authid_items[1]) @staticmethod def _layer_bbox(lyr) -> list: return list( map( float, lyr.extent() .asWktCoordinates() .replace(",", "") .split(" "), ) ) @property def _qgis_project_uri(self) -> str: if StorageBackend.type() == StorageBackend.POSTGRESQL: service = config().qgisserver_projects_psql_service return f"postgresql:?service={service}&schema={self.schema}&project={self.name}" else: return (self._qgis_project_dir / f"{self.name}.qgs").as_posix()
25,580
Python
.py
622
29.051447
92
0.562888
pblottiere/QSA
8
4
12
GPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,592
config.py
pblottiere_QSA/qsa-api/qsa_api/config.py
# coding: utf8 import os import logging from pathlib import Path class QSAConfig: @property def is_valid(self) -> bool: if self.qgisserver_url and self.qgisserver_projects_dir: return True return False @property def loglevel(self): level = os.environ.get("QSA_LOGLEVEL", "INFO").lower() logging_level = logging.INFO if level == "debug": logging_level = logging.DEBUG elif level == "error": logging_level = logging.ERROR return logging_level @property def gdal_pam_proxy_dir(self) -> Path: return Path(os.environ.get("GDAL_PAM_PROXY_DIR", "")) @property def monitoring_port(self) -> int: return int(os.environ.get("QSA_QGISSERVER_MONITORING_PORT", "0")) @property def qgisserver_url(self) -> str: return os.environ.get("QSA_QGISSERVER_URL", "") @property def qgisserver_projects_dir(self) -> str: return os.environ.get("QSA_QGISSERVER_PROJECTS_DIR", "") @property def qgisserver_projects_psql_service(self) -> str: return os.environ.get("QSA_QGISSERVER_PROJECTS_PSQL_SERVICE", "") @property def mapproxy_projects_dir(self) -> str: return os.environ.get("QSA_MAPPROXY_PROJECTS_DIR", "").replace('"', "") @property def mapproxy_cache_s3_bucket(self) -> str: return os.environ.get("QSA_MAPPROXY_CACHE_S3_BUCKET", "") @property def mapproxy_cache_s3_dir(self) -> str: return os.environ.get("QSA_MAPPROXY_CACHE_S3_DIR", "/mapproxy/cache") @property def aws_access_key_id(self) -> str: return os.environ.get("AWS_ACCESS_KEY_ID", "") @property def aws_secret_access_key(self) -> str: return os.environ.get("AWS_SECRET_ACCESS_KEY", "")
1,810
Python
.py
49
30.163265
79
0.640893
pblottiere/QSA
8
4
12
GPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,593
app.py
pblottiere_QSA/qsa-api/qsa_api/app.py
# coding: utf8 import click from flask import Flask from qsa_api.config import QSAConfig from qsa_api.monitor import QSAMonitor from qsa_api.api.projects import projects from qsa_api.api.symbology import symbology from qsa_api.api.instances import instances from qsa_api.api.processing import processing app = Flask(__name__) class QSA: def __init__(self) -> None: self.cfg = QSAConfig() if not self.cfg.is_valid: return self.monitor = None if self.cfg.monitoring_port: self.monitor = QSAMonitor(self.cfg) self.monitor.start() app.config["CONFIG"] = self.cfg app.config["MONITOR"] = self.monitor app.register_blueprint(projects, url_prefix="/api/projects") app.register_blueprint(symbology, url_prefix="/api/symbology") app.register_blueprint(instances, url_prefix="/api/instances") app.register_blueprint(processing, url_prefix="/api/processing") app.logger.setLevel(self.cfg.loglevel) def run(self): app.run(host="0.0.0.0", threaded=False) qsa = QSA() @click.command() def run(): qsa.run()
1,149
Python
.py
32
30
72
0.6875
pblottiere/QSA
8
4
12
GPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,594
utils.py
pblottiere_QSA/qsa-api/qsa_api/utils.py
# coding: utf8 import os import sys import boto3 import logging import threading from enum import Enum from pathlib import Path from flask import current_app from botocore.exceptions import ClientError from .config import QSAConfig def config(): return current_app.config["CONFIG"] def logger(): return current_app.logger def s3_parse_uri(uri: str): # /vsis3/{bucket}/{subdirs}/{filename} bucket = uri.split("/")[2] subdirs = Path(uri.split(f"/vsis3/{bucket}/")[1]).parent.as_posix() filename = Path(uri.split(f"/vsis3/{bucket}/")[1]).name return bucket, subdirs, filename class StorageBackend(Enum): FILESYSTEM = 0 POSTGRESQL = 1 @staticmethod def type() -> "StorageBackend": if config().qgisserver_projects_psql_service: return StorageBackend.POSTGRESQL return StorageBackend.FILESYSTEM def qgisserver_base_url(project: str, psql_schema: str) -> str: url = f"{config().qgisserver_url}" if StorageBackend.type() == StorageBackend.FILESYSTEM: url = f"{url}/{project}?" elif StorageBackend.type() == StorageBackend.POSTGRESQL: service = config().qgisserver_projects_psql_service url = f"{url}?MAP=postgresql:?service={service}%26schema={psql_schema}%26project={project}&" return url # see boto3 doc class ProgressPercentage: def __init__(self, filename): self._filename = filename self._size = float(os.path.getsize(filename)) self._seen_so_far = 0 self._lock = threading.Lock() self._last = 0 def __call__(self, bytes_amount): with self._lock: self._seen_so_far += bytes_amount percentage = (self._seen_so_far / self._size) * 100 if percentage < self._last + 5: return self._last = percentage if QSAConfig().loglevel == logging.DEBUG: print( "\r%s %s / %s (%.2f%%)" % ( self._filename, self._seen_so_far, self._size, percentage, ), file=sys.stderr, ) sys.stdout.flush() def s3_bucket_upload(bucket: str, source: str, dest: str) -> (bool, str): size = float(os.path.getsize(source) >> 20) logger().debug( f"[utils.s3_bucket_upload] Upload {source} ({size}MB) to S3 bucket {bucket} in {dest}" ) try: s3 = boto3.resource("s3") s3.Bucket(bucket).upload_file( source, dest, Callback=ProgressPercentage(source), ) except ClientError as e: return False, "Upload to S3 bucket failed" return True, ""
2,784
Python
.py
79
26.772152
100
0.596118
pblottiere/QSA
8
4
12
GPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,595
__init__.py
pblottiere_QSA/qsa-api/qsa_api/__init__.py
# coding: utf8 import os from qgis.core import QgsApplication # avoid "Application path not initialized" message os.environ["GDAL_PAM_PROXY_DIR"] = "/tmp" os.environ["QT_QPA_PLATFORM"] = "offscreen" QgsApplication.setPrefixPath("/usr", True) qgs = QgsApplication([], False) qgs.initQgis()
293
Python
.py
9
31.111111
50
0.771429
pblottiere/QSA
8
4
12
GPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,596
monitor.py
pblottiere_QSA/qsa-api/qsa_api/monitor.py
# coding: utf8 import sys import uuid import time import pickle import socket import struct from datetime import datetime from threading import Thread, Lock from qsa_api.config import QSAConfig class QSAMonitorThread(Thread): def __init__(self, con, ip: str, port: int) -> None: Thread.__init__(self) self.con = con self.ip = ip self.port = port self.now = datetime.now() self.response = None def run(self): try: while True: # empty recv if error or size of the payload data = self.con.recv(4) if not data: self.con.close() return data_size = struct.unpack(">I", data)[0] self.response = self._recv_payload(data_size) except BrokenPipeError: return @property def metadata(self) -> dict: self.response = None try: self.con.send(b"metadata") return self._wait_recv() except Exception: return {} @property def logs(self) -> dict: self.response = None try: self.con.send(b"logs") return self._wait_recv() except Exception as e: print(e, file=sys.stderr) return {} @property def stats(self) -> dict: self.response = None try: self.con.send(b"stats") return self._wait_recv() except Exception as e: print(e, file=sys.stderr) return {} def _wait_recv(self): it = 0 while True: if self.response: return self.response time.sleep(0.1) it += 1 if it >= 20: return {"error": "timeout"} def _recv_payload(self, data_size): received_payload = b"" reamining_payload_size = data_size while reamining_payload_size != 0: received_payload += self.con.recv(reamining_payload_size) reamining_payload_size = data_size - len(received_payload) return pickle.loads(received_payload) class QSAMonitor: def __init__(self, cfg: QSAConfig) -> None: self.monitor: Thread self.port: int = cfg.monitoring_port self._lock = Lock() self._conns: dict = {} @property def conns(self): conns = {} self._lock.acquire() for uid in self._conns: if self._conns[uid].is_alive(): conns[uid] = self._conns[uid] else: self._conns[uid].join() self._conns = conns self._lock.release() return self._conns def start(self) -> None: self.monitor = Thread(target=self._start, args=()) self.monitor.start() def _start(self) -> None: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind(("0.0.0.0", self.port)) while True: s.listen(5) try: (con, (ip, port)) = s.accept() except: break thread = QSAMonitorThread(con, ip, port) thread.start() self._lock.acquire() uid = str(uuid.uuid4())[:8] self._conns[uid] = thread self._lock.release() for uid in self._conns: self._conns[uid].join()
3,488
Python
.py
111
21.468468
70
0.534467
pblottiere/QSA
8
4
12
GPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,597
wms.py
pblottiere_QSA/qsa-api/qsa_api/wms.py
# coding: utf8 from .project import QSAProject from .utils import qgisserver_base_url class WMS: @staticmethod def getmap_url(project, psql_schema, layer): p = QSAProject(project, psql_schema) props = p.layer(layer) if "bbox" not in props: return "Invalid layer" bbox = props["bbox"].replace(" ", ",").replace(",,", ",").split(",") wms_bbox = f"{bbox[1]},{bbox[0]},{bbox[3]},{bbox[2]}" return f"REQUEST=GetMap&WIDTH=400&HEIGHT=400&CRS={props['crs']}&VERSION=1.3.0&BBOX={wms_bbox}&LAYERS={layer}" @staticmethod def getmap(project, psql_schema, layer): return f"{qgisserver_base_url(project, psql_schema)}{WMS.getmap_url(project, psql_schema, layer)}"
741
Python
.py
16
39.625
117
0.639276
pblottiere/QSA
8
4
12
GPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,598
mapproxy.py
pblottiere_QSA/qsa-api/qsa_api/mapproxy/mapproxy.py
# coding: utf8 import sys import yaml import boto3 import shutil from pathlib import Path from qgis.PyQt.QtCore import Qt, QDateTime from ..utils import config, logger, qgisserver_base_url class QSAMapProxy: def __init__(self, name: str, schema: str = "") -> None: self.name = name self.schema = "public" if schema: self.schema = schema def create(self) -> None: parent = Path(__file__).resolve().parent template = parent / "mapproxy.yaml" shutil.copy(template, self._mapproxy_project) def remove(self) -> None: self._mapproxy_project.unlink() def write(self) -> None: with open(self._mapproxy_project, "w") as file: yaml.safe_dump(self.cfg, file, sort_keys=False) def read(self) -> (bool, str): # if a QGIS project is created manually without QSA, the MapProxy # configuration file may not be created at this point. if not self._mapproxy_project.exists(): self.create() try: with open(self._mapproxy_project, "r") as file: self.cfg = yaml.safe_load(file) except yaml.scanner.ScannerError as e: return ( False, f"Failed to load MapProxy configuration file {self._mapproxy_project}", ) if self.cfg is None: return ( False, f"Failed to load MapProxy configuration file {self._mapproxy_project}", ) return True, "" def metadata(self) -> dict: md = {} md["storage"] = "" md["valid"] = False if self._mapproxy_project.exists(): md["valid"] = True md["storage"] = "filesystem" if config().mapproxy_cache_s3_bucket: md["storage"] = "s3" return md def clear_cache(self, layer_name: str) -> None: if config().mapproxy_cache_s3_bucket: bucket_name = config().mapproxy_cache_s3_bucket cache_dir = f"{config().mapproxy_cache_s3_dir}/{layer_name}" if cache_dir[0] == "/": cache_dir = cache_dir[1:] self.debug(f"Clear S3 cache 's3://{bucket_name}/{cache_dir}'") s3 = boto3.resource( "s3", aws_access_key_id=config().aws_access_key_id, aws_secret_access_key=config().aws_secret_access_key, ) bucket = s3.Bucket(bucket_name) bucket.objects.filter(Prefix=cache_dir).delete() else: cache_dir = self._mapproxy_project.parent / "cache_data" self.debug(f"Clear tiles cache '{cache_dir}'") for d in cache_dir.glob(f"{layer_name}_cache_*"): shutil.rmtree(d) cache_dir = self._mapproxy_project.parent / "cache_data" / "legends" self.debug(f"Clear legends cache '{cache_dir}'") shutil.rmtree(cache_dir, ignore_errors=True) def add_layer( self, name: str, bbox: list, srs: int, is_raster: bool, datetime: QDateTime | None, ) -> (bool, str): if self.cfg is None: return False, "Invalid MapProxy configuration" if "layers" not in self.cfg: self.cfg["layers"] = [] self.cfg["caches"] = {} self.cfg["sources"] = {} lyr = {"name": name, "title": name, "sources": [f"{name}_cache"]} if datetime and is_raster: lyr["dimensions"] = {} lyr["dimensions"]["time"] = { "values": [datetime.toString(Qt.ISODate)] } self.cfg["layers"].append(lyr) c = {"grids": ["webmercator"], "sources": [f"{name}_wms"]} if is_raster: c["use_direct_from_level"] = 14 c["meta_size"] = [1, 1] c["meta_buffer"] = 0 if config().mapproxy_cache_s3_bucket: s3_cache_dir = f"{config().mapproxy_cache_s3_dir}/{name}" c["cache"] = {} c["cache"]["type"] = "s3" c["cache"]["directory"] = s3_cache_dir c["cache"]["bucket_name"] = config().mapproxy_cache_s3_bucket self.cfg["caches"][f"{name}_cache"] = c s = { "type": "wms", "wms_opts": { "legendgraphic": True, }, "req": { "url": qgisserver_base_url(self.name, self.schema), "layers": name, "transparent": True, }, "coverage": {"bbox": bbox, "srs": f"EPSG:{srs}"}, } if datetime and is_raster: s["forward_req_params"] = ["TIME"] self.cfg["sources"][f"{name}_wms"] = s return True, "" def remove_layer(self, name: str) -> None: # early return if "layers" not in self.cfg: return # clear cache self.clear_cache(name) # clean layers layers = [] for layer in self.cfg["layers"]: if layer["name"] != name: layers.append(layer) self.cfg["layers"] = layers # clean caches cache_name = f"{name}_cache" if cache_name in self.cfg["caches"]: self.cfg["caches"].pop(cache_name) # clean sources source_name = f"{name}_wms" if source_name in self.cfg["sources"]: self.cfg["sources"].pop(source_name) def debug(self, msg: str) -> None: caller = f"{self.__class__.__name__}.{sys._getframe().f_back.f_code.co_name}" msg = f"[{caller}][{self.name}] {msg}" logger().debug(msg) @staticmethod def _mapproxy_projects_dir() -> Path: return Path(config().mapproxy_projects_dir) @property def _mapproxy_project(self) -> Path: return QSAMapProxy._mapproxy_projects_dir() / f"{self.name}.yaml"
5,918
Python
.py
153
28.078431
87
0.533694
pblottiere/QSA
8
4
12
GPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,599
renderer.py
pblottiere_QSA/qsa-api/qsa_api/raster/renderer.py
# coding: utf8 from enum import Enum from pathlib import Path from qgis.core import ( QgsStyle, QgsRasterLayer, QgsRasterShader, QgsColorRampShader, QgsRasterBandStats, QgsGradientColorRamp, QgsRasterMinMaxOrigin, QgsContrastEnhancement, QgsSingleBandGrayRenderer, QgsMultiBandColorRenderer, QgsSingleBandPseudoColorRenderer, ) ContrastEnhancementAlgorithm = ( QgsContrastEnhancement.ContrastEnhancementAlgorithm ) class RasterSymbologyRenderer: class Type(Enum): SINGLE_BAND_GRAY = QgsSingleBandGrayRenderer(None, 1).type() SINGLE_BAND_PSEUDOCOLOR = QgsSingleBandPseudoColorRenderer( None, 1 ).type() MULTI_BAND_COLOR = QgsMultiBandColorRenderer(None, 1, 1, 1).type() def __init__(self, name: str) -> None: self.renderer = None self.contrast_algorithm = None self.contrast_limits = QgsRasterMinMaxOrigin.Limits.MinMax self.gray_min = None self.gray_max = None self.red_min = None self.red_max = None self.green_min = None self.green_max = None self.blue_min = None self.blue_max = None if name == RasterSymbologyRenderer.Type.SINGLE_BAND_GRAY.value: self.renderer = QgsSingleBandGrayRenderer(None, 1) elif name == RasterSymbologyRenderer.Type.MULTI_BAND_COLOR.value: self.renderer = QgsMultiBandColorRenderer(None, 1, 1, 1) elif ( name == RasterSymbologyRenderer.Type.SINGLE_BAND_PSEUDOCOLOR.value ): self.renderer = QgsSingleBandPseudoColorRenderer(None, 1) @property def type(self): if ( self.renderer.type() == RasterSymbologyRenderer.Type.SINGLE_BAND_GRAY.value ): return RasterSymbologyRenderer.Type.SINGLE_BAND_GRAY elif ( self.renderer.type() == RasterSymbologyRenderer.Type.MULTI_BAND_COLOR.value ): return RasterSymbologyRenderer.Type.MULTI_BAND_COLOR elif ( self.renderer.type() == RasterSymbologyRenderer.Type.SINGLE_BAND_PSEUDOCOLOR.value ): return RasterSymbologyRenderer.Type.SINGLE_BAND_PSEUDOCOLOR return None def load(self, properties: dict) -> (bool, str): if not self.renderer: return False, "Invalid renderer" if "contrast_enhancement" in properties: self._load_contrast_enhancement(properties["contrast_enhancement"]) if self.type == RasterSymbologyRenderer.Type.MULTI_BAND_COLOR: self._load_multibandcolor_properties(properties) elif self.type == RasterSymbologyRenderer.Type.SINGLE_BAND_GRAY: self._load_singlebandgray_properties(properties) elif self.type == RasterSymbologyRenderer.Type.SINGLE_BAND_PSEUDOCOLOR: self._load_singlebandpseudocolor_properties(properties) return True, "" def refresh_min_max(self, layer: QgsRasterLayer) -> None: # see QgsRasterMinMaxWidget::doComputations # early break if ( layer.renderer().minMaxOrigin().limits() == QgsRasterMinMaxOrigin.Limits.None_ ): return # refresh according to renderer if self.type == RasterSymbologyRenderer.Type.SINGLE_BAND_GRAY: self._refresh_min_max_singlebandgray(layer) elif self.type == RasterSymbologyRenderer.Type.MULTI_BAND_COLOR: self._refresh_min_max_multibandcolor(layer) elif self.type == RasterSymbologyRenderer.Type.SINGLE_BAND_PSEUDOCOLOR: self._refresh_min_max_singlebandpseudocolor(layer) @staticmethod def style_to_json(path: Path) -> (dict, str): tif = Path(__file__).resolve().parent / "empty.tif" rl = QgsRasterLayer(tif.as_posix(), "", "gdal") rl.loadNamedStyle(path.as_posix()) renderer = rl.renderer() renderer_type = RasterSymbologyRenderer(renderer.type()).type m = {} m["name"] = path.stem m["type"] = "raster" m["symbology"] = {} m["symbology"]["type"] = renderer.type() props = {} if renderer_type == RasterSymbologyRenderer.Type.SINGLE_BAND_GRAY: props = RasterSymbologyRenderer._singlebandgray_properties( renderer ) elif renderer_type == RasterSymbologyRenderer.Type.MULTI_BAND_COLOR: props = RasterSymbologyRenderer._multibandcolor_properties( renderer ) elif ( renderer_type == RasterSymbologyRenderer.Type.SINGLE_BAND_PSEUDOCOLOR ): props = RasterSymbologyRenderer._singlebandpseudocolor_properties( renderer ) m["symbology"]["properties"] = props m["rendering"] = {} m["rendering"]["brightness"] = rl.brightnessFilter().brightness() m["rendering"]["contrast"] = rl.brightnessFilter().contrast() m["rendering"]["gamma"] = rl.brightnessFilter().gamma() m["rendering"]["saturation"] = rl.hueSaturationFilter().saturation() return m, "" @staticmethod def _multibandcolor_properties(renderer) -> dict: props = {} # limits limits = renderer.minMaxOrigin().limits() props["contrast_enhancement"] = {} props["contrast_enhancement"]["limits_min_max"] = "UserDefined" if limits == QgsRasterMinMaxOrigin.Limits.MinMax: props["contrast_enhancement"]["limits_min_max"] = "MinMax" # bands props["red"] = {} props["red"]["band"] = renderer.redBand() props["blue"] = {} props["blue"]["band"] = renderer.blueBand() props["green"] = {} props["green"]["band"] = renderer.greenBand() # red band if renderer.redContrastEnhancement(): red_ce = QgsContrastEnhancement(renderer.redContrastEnhancement()) props["red"]["min"] = red_ce.minimumValue() props["red"]["max"] = red_ce.maximumValue() # blue band blue_ce = QgsContrastEnhancement( renderer.blueContrastEnhancement() ) props["blue"]["min"] = blue_ce.minimumValue() props["blue"]["max"] = blue_ce.maximumValue() # green band green_ce = QgsContrastEnhancement( renderer.greenContrastEnhancement() ) props["green"]["min"] = green_ce.minimumValue() props["green"]["max"] = green_ce.maximumValue() # ce alg = red_ce.contrastEnhancementAlgorithm() props["contrast_enhancement"]["algorithm"] = "NoEnhancement" if ( alg == QgsContrastEnhancement.ContrastEnhancementAlgorithm.StretchToMinimumMaximum ): props["contrast_enhancement"][ "algorithm" ] = "StretchToMinimumMaximum" else: # default behavior props["contrast_enhancement"][ "algorithm" ] = "StretchToMinimumMaximum" return props @staticmethod def _singlebandgray_properties(renderer) -> dict: props = {} props["gray"] = {} props["gray"]["band"] = renderer.grayBand() ce = renderer.contrastEnhancement() props["gray"]["min"] = ce.minimumValue() props["gray"]["max"] = ce.maximumValue() gradient = renderer.gradient() if gradient == QgsSingleBandGrayRenderer.Gradient.BlackToWhite: props["color_gradient"] = "BlackToWhite" else: props["color_gradient"] = "WhiteToBlack" props["contrast_enhancement"] = {} alg = ce.contrastEnhancementAlgorithm() props["contrast_enhancement"]["algorithm"] = "NoEnhancement" if ( alg == QgsContrastEnhancement.ContrastEnhancementAlgorithm.StretchToMinimumMaximum ): props["contrast_enhancement"][ "algorithm" ] = "StretchToMinimumMaximum" limits = renderer.minMaxOrigin().limits() props["contrast_enhancement"]["limits_min_max"] = "UserDefined" if limits == QgsRasterMinMaxOrigin.Limits.MinMax: props["contrast_enhancement"]["limits_min_max"] = "MinMax" return props @staticmethod def _singlebandpseudocolor_properties(renderer) -> dict: props = {} if renderer.shader() is None: return {}, "Invalid shader in singlebandpseudocolor renderer" if renderer.shader().rasterShaderFunction().sourceColorRamp() is None: return {}, "Invalid color ramp in singlebandpseudocolor renderer" props["band"] = {} props["band"]["band"] = renderer.band() props["band"]["min"] = renderer.classificationMin() props["band"]["max"] = renderer.classificationMax() props["ramp"] = {} shader_fct = renderer.shader().rasterShaderFunction() color_1 = ( shader_fct.sourceColorRamp().properties()["color1"].split("rgb")[0] ) color_2 = ( shader_fct.sourceColorRamp().properties()["color2"].split("rgb")[0] ) stops = shader_fct.sourceColorRamp().properties()["stops"] props["ramp"]["color1"] = color_1 props["ramp"]["color2"] = color_2 props["ramp"]["stops"] = stops ramp_type = shader_fct.colorRampType() if ramp_type == QgsColorRampShader.Discrete: props["ramp"]["interpolation"] = "Discrete" elif ramp_type == QgsColorRampShader.Exact: props["ramp"]["interpolation"] = "Exact" elif ramp_type == QgsColorRampShader.Interpolated: props["ramp"]["interpolation"] = "Interpolated" props["contrast_enhancement"] = {} limits = renderer.minMaxOrigin().limits() props["contrast_enhancement"]["limits_min_max"] = "UserDefined" if limits == QgsRasterMinMaxOrigin.Limits.MinMax: props["contrast_enhancement"]["limits_min_max"] = "MinMax" return props def _refresh_min_max_multibandcolor(self, layer: QgsRasterLayer) -> None: renderer = layer.renderer() red_ce = QgsContrastEnhancement(renderer.redContrastEnhancement()) green_ce = QgsContrastEnhancement(renderer.greenContrastEnhancement()) blue_ce = QgsContrastEnhancement(renderer.blueContrastEnhancement()) # early break alg = red_ce.contrastEnhancementAlgorithm() if ( alg == ContrastEnhancementAlgorithm.NoEnhancement or alg == ContrastEnhancementAlgorithm.UserDefinedEnhancement ): return # compute min/max with "Accuracy: estimate" min_max_origin = renderer.minMaxOrigin().limits() if min_max_origin == QgsRasterMinMaxOrigin.Limits.MinMax: red_band = renderer.redBand() red_stats = layer.dataProvider().bandStatistics( red_band, QgsRasterBandStats.Min | QgsRasterBandStats.Max, layer.extent(), 250000, ) red_ce.setMinimumValue(red_stats.minimumValue) red_ce.setMaximumValue(red_stats.maximumValue) green_band = renderer.greenBand() green_stats = layer.dataProvider().bandStatistics( green_band, QgsRasterBandStats.Min | QgsRasterBandStats.Max, layer.extent(), 250000, ) green_ce.setMinimumValue(green_stats.minimumValue) green_ce.setMaximumValue(green_stats.maximumValue) blue_band = renderer.blueBand() blue_stats = layer.dataProvider().bandStatistics( blue_band, QgsRasterBandStats.Min | QgsRasterBandStats.Max, layer.extent(), 250000, ) blue_ce.setMinimumValue(blue_stats.minimumValue) blue_ce.setMaximumValue(blue_stats.maximumValue) layer.renderer().setRedContrastEnhancement(red_ce) layer.renderer().setGreenContrastEnhancement(green_ce) layer.renderer().setBlueContrastEnhancement(blue_ce) def _refresh_min_max_singlebandgray(self, layer: QgsRasterLayer) -> None: ce = QgsContrastEnhancement(layer.renderer().contrastEnhancement()) # early break alg = ce.contrastEnhancementAlgorithm() if ( alg == ContrastEnhancementAlgorithm.NoEnhancement or alg == ContrastEnhancementAlgorithm.UserDefinedEnhancement ): return # compute min/max min_max_origin = layer.renderer().minMaxOrigin().limits() if min_max_origin == QgsRasterMinMaxOrigin.Limits.MinMax: # Accuracy : estimate stats = layer.dataProvider().bandStatistics( 1, QgsRasterBandStats.Min | QgsRasterBandStats.Max, layer.extent(), 250000, ) ce.setMinimumValue(stats.minimumValue) ce.setMaximumValue(stats.maximumValue) layer.renderer().setContrastEnhancement(ce) def _refresh_min_max_singlebandpseudocolor( self, layer: QgsRasterLayer ) -> None: # compute min/max min_max_origin = layer.renderer().minMaxOrigin().limits() if min_max_origin == QgsRasterMinMaxOrigin.Limits.MinMax: # Accuracy : estimate stats = layer.dataProvider().bandStatistics( 1, QgsRasterBandStats.Min | QgsRasterBandStats.Max, layer.extent(), 250000, ) layer.renderer().setClassificationMin(stats.minimumValue) layer.renderer().setClassificationMax(stats.maximumValue) layer.renderer().shader().rasterShaderFunction().classifyColorRamp() def _load_multibandcolor_properties(self, properties: dict) -> None: if "red" in properties: red = properties["red"] self.renderer.setRedBand(int(red["band"])) if self.contrast_limits == QgsRasterMinMaxOrigin.Limits.None_: if "min" in red: self.red_min = float(red["min"]) if "max" in red: self.red_max = float(red["max"]) if "blue" in properties: blue = properties["blue"] self.renderer.setBlueBand(int(blue["band"])) if self.contrast_limits == QgsRasterMinMaxOrigin.Limits.None_: if "min" in blue: self.blue_min = float(blue["min"]) if "max" in blue: self.blue_max = float(blue["max"]) if "green" in properties: green = properties["green"] self.renderer.setGreenBand(int(green["band"])) if self.contrast_limits == QgsRasterMinMaxOrigin.Limits.None_: if "min" in green: self.green_min = float(green["min"]) if "max" in green: self.green_max = float(green["max"]) def _load_singlebandgray_properties(self, properties: dict) -> None: if "gray" in properties: gray = properties["gray"] self.renderer.setGrayBand(int(gray["band"])) if self.contrast_limits == QgsRasterMinMaxOrigin.Limits.None_: if "min" in gray: self.gray_min = float(gray["min"]) if "max" in gray: self.gray_max = float(gray["max"]) if "color_gradient" in properties: gradient = properties["color_gradient"] if gradient == "blacktowhite": self.renderer.setGradient( QgsSingleBandGrayRenderer.Gradient.BlackToWhite ) elif gradient == "whitetoblack": self.renderer.setGradient( QgsSingleBandGrayRenderer.Gradient.WhiteToBlack ) def _load_singlebandpseudocolor_properties(self, properties: dict) -> None: # always stretch to min/max in case of the singlepseudocolor renderer self.contrast_algorithm = ( ContrastEnhancementAlgorithm.StretchToMinimumMaximum ) band_min = None band_max = None if "band" in properties: band = properties["band"] self.renderer.setBand(int(band["band"])) if self.contrast_limits == QgsRasterMinMaxOrigin.Limits.None_: if "min" in band: band_min = float(band["min"]) if "max" in band: band_max = float(band["max"]) if "ramp" in properties: ramp = properties["ramp"] shader_type = QgsColorRampShader.Type.Interpolated if "interpolation" in ramp: interpolation = ramp["interpolation"] if interpolation == "Discrete": shader_type = QgsColorRampShader.Type.Discrete elif interpolation == "Exact": shader_type = QgsColorRampShader.Type.Exact color_ramp = QgsStyle().defaultStyle().colorRamp("Spectral") if "name" in ramp and ramp["name"]: color_ramp = QgsStyle().defaultStyle().colorRamp(ramp["name"]) elif "color1" in ramp and "color2" in ramp: color_ramp = QgsGradientColorRamp.create(ramp) ramp_shader = QgsColorRampShader() ramp_shader.setSourceColorRamp(color_ramp) ramp_shader.setColorRampType(shader_type) shader = QgsRasterShader() shader.setRasterShaderFunction(ramp_shader) self.renderer.setShader(shader) if band_min is not None: self.renderer.setClassificationMin(band_min) if band_max is not None: self.renderer.setClassificationMax(band_max) self.renderer.shader().rasterShaderFunction().classifyColorRamp() def _load_contrast_enhancement(self, properties: dict) -> None: if "algorithm" in properties: alg = properties["algorithm"] if alg == "StretchToMinimumMaximum": self.contrast_algorithm = ( ContrastEnhancementAlgorithm.StretchToMinimumMaximum ) elif alg == "NoEnhancement": self.contrast_algorithm = ( ContrastEnhancementAlgorithm.NoEnhancement ) if "limits_min_max" in properties: limits = properties["limits_min_max"] if limits == "UserDefined": self.contrast_limits = QgsRasterMinMaxOrigin.Limits.None_ elif limits == "MinMax": self.contrast_limits = QgsRasterMinMaxOrigin.Limits.MinMax
19,024
Python
.py
423
33.3026
94
0.605393
pblottiere/QSA
8
4
12
GPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)