id
int64
0
458k
file_name
stringlengths
4
119
file_path
stringlengths
14
227
content
stringlengths
24
9.96M
size
int64
24
9.96M
language
stringclasses
1 value
extension
stringclasses
14 values
total_lines
int64
1
219k
avg_line_length
float64
2.52
4.63M
max_line_length
int64
5
9.91M
alphanum_fraction
float64
0
1
repo_name
stringlengths
7
101
repo_stars
int64
100
139k
repo_forks
int64
0
26.4k
repo_open_issues
int64
0
2.27k
repo_license
stringclasses
12 values
repo_extraction_date
stringclasses
433 values
2,287,700
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/embedding/qdrant_fast_embed/src/__init__.py
from .qdrant_fast_embed import QdrantFastEmbedM metadata = { "name": QdrantFastEmbedM.__name__, "version": "1.0.0", "adapter": QdrantFastEmbedM, "description": "QdrantFastEmbed embedding adapter", "is_active": False, }
240
Python
.py
8
26.375
55
0.69697
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,701
qdrant_fast_embed.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/embedding/qdrant_fast_embed/src/qdrant_fast_embed.py
import os from typing import Any from llama_index.core.embeddings import BaseEmbedding from llama_index.embeddings.fastembed import FastEmbedEmbedding from unstract.sdk.adapters.embedding.embedding_adapter import EmbeddingAdapter from unstract.sdk.adapters.embedding.helper import EmbeddingHelper from unstract.sdk.adapters.exceptions import AdapterError class Constants: MODEL = "model_name" ADAPTER_NAME = "adapter_name" class QdrantFastEmbedM(EmbeddingAdapter): def __init__(self, settings: dict[str, Any]): super().__init__("QdrantFastEmbedM") self.config = settings @staticmethod def get_id() -> str: return "qdrantfastembed|31e83eee-a416-4c07-9c9c-02392d5bcf7f" @staticmethod def get_name() -> str: return "QdrantFastEmbedM" @staticmethod def get_description() -> str: return "QdrantFastEmbedM LLM" @staticmethod def get_icon() -> str: return "/icons/adapter-icons/qdrant.png" @staticmethod def get_json_schema() -> str: f = open(f"{os.path.dirname(__file__)}/static/json_schema.json") schema = f.read() f.close() return schema def get_embedding_instance(self) -> BaseEmbedding: try: embedding: BaseEmbedding = FastEmbedEmbedding( model_name=str(self.config.get(Constants.MODEL)) ) return embedding except Exception as e: raise AdapterError(str(e)) def test_connection(self) -> bool: embedding = self.get_embedding_instance() test_result: bool = EmbeddingHelper.test_embedding_instance(embedding) return test_result
1,679
Python
.py
44
31.318182
78
0.689889
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,702
palm.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/embedding/palm/src/palm.py
import os from typing import Any from llama_index.core.embeddings import BaseEmbedding from llama_index.embeddings.google import GooglePaLMEmbedding from unstract.sdk.adapters.embedding.embedding_adapter import EmbeddingAdapter from unstract.sdk.adapters.embedding.helper import EmbeddingHelper from unstract.sdk.adapters.exceptions import AdapterError class Constants: MODEL = "model_name" API_KEY = "api_key" ADAPTER_NAME = "adapter_name" class PaLM(EmbeddingAdapter): def __init__(self, settings: dict[str, Any]): super().__init__("Palm") self.config = settings @staticmethod def get_id() -> str: return "palm|a3fc9fda-f02f-405f-bb26-8bd2ace4317e" @staticmethod def get_name() -> str: return "Palm" @staticmethod def get_description() -> str: return "PaLM Embedding" @staticmethod def get_provider() -> str: return "palm" @staticmethod def get_icon() -> str: return "/icons/adapter-icons/PaLM.png" @staticmethod def get_json_schema() -> str: f = open(f"{os.path.dirname(__file__)}/static/json_schema.json") schema = f.read() f.close() return schema def get_embedding_instance(self) -> BaseEmbedding: try: embedding_batch_size = EmbeddingHelper.get_embedding_batch_size( config=self.config ) embedding: BaseEmbedding = GooglePaLMEmbedding( model_name=str(self.config.get(Constants.MODEL)), api_key=str(self.config.get(Constants.API_KEY)), embed_batch_size=embedding_batch_size, ) return embedding except Exception as e: raise AdapterError(str(e)) def test_connection(self) -> bool: embedding = self.get_embedding_instance() test_result: bool = EmbeddingHelper.test_embedding_instance(embedding) return test_result
1,966
Python
.py
53
29.490566
78
0.659821
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,703
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/embedding/palm/src/__init__.py
from .palm import PaLM metadata = { "name": PaLM.__name__, "version": "1.0.0", "adapter": PaLM, "description": "PaLM embedding adapter", "is_active": True, }
179
Python
.py
8
18.75
44
0.6
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,704
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/embedding/open_ai/src/__init__.py
from .open_ai import OpenAI metadata = { "name": OpenAI.__name__, "version": "1.0.0", "adapter": OpenAI, "description": "OpenAI embedding adapter", "is_active": True, }
190
Python
.py
8
20.125
46
0.618785
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,705
open_ai.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/embedding/open_ai/src/open_ai.py
import os from typing import Any import httpx from llama_index.core.embeddings import BaseEmbedding from llama_index.embeddings.openai import OpenAIEmbedding from unstract.sdk.adapters.embedding.embedding_adapter import EmbeddingAdapter from unstract.sdk.adapters.embedding.helper import EmbeddingHelper from unstract.sdk.adapters.exceptions import AdapterError class Constants: API_KEY = "api_key" MODEL = "model" API_BASE_VALUE = "https://api.openai.com/v1/" API_BASE_KEY = "api_base" ADAPTER_NAME = "adapter_name" API_TYPE = "openai" TIMEOUT = "timeout" DEFAULT_TIMEOUT = 240 class OpenAI(EmbeddingAdapter): def __init__(self, settings: dict[str, Any]): super().__init__("OpenAI") self.config = settings @staticmethod def get_id() -> str: return "openai|717a0b0e-3bbc-41dc-9f0c-5689437a1151" @staticmethod def get_name() -> str: return "OpenAI" @staticmethod def get_description() -> str: return "OpenAI LLM" @staticmethod def get_provider() -> str: return "openai" @staticmethod def get_icon() -> str: return "/icons/adapter-icons/OpenAI.png" @staticmethod def get_json_schema() -> str: f = open(f"{os.path.dirname(__file__)}/static/json_schema.json") schema = f.read() f.close() return schema def get_embedding_instance(self) -> BaseEmbedding: try: timeout = int(self.config.get(Constants.TIMEOUT, Constants.DEFAULT_TIMEOUT)) httpx_timeout = httpx.Timeout(10.0, connect=60.0) httpx_client = httpx.Client(timeout=httpx_timeout) embedding: BaseEmbedding = OpenAIEmbedding( api_key=str(self.config.get(Constants.API_KEY)), api_base=str( self.config.get(Constants.API_BASE_KEY, Constants.API_BASE_VALUE) ), model=str(self.config.get(Constants.MODEL)), api_type=Constants.API_TYPE, timeout=timeout, http_client=httpx_client, ) return embedding except Exception as e: raise AdapterError(str(e)) def test_connection(self) -> bool: embedding = self.get_embedding_instance() test_result: bool = EmbeddingHelper.test_embedding_instance(embedding) return test_result
2,411
Python
.py
64
29.640625
88
0.645949
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,706
hugging_face.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/embedding/hugging_face/src/hugging_face.py
import os from typing import Any, Optional from llama_index.core.embeddings import BaseEmbedding from llama_index.embeddings.huggingface import HuggingFaceEmbedding from unstract.sdk.adapters.embedding.embedding_adapter import EmbeddingAdapter from unstract.sdk.adapters.embedding.helper import EmbeddingHelper from unstract.sdk.adapters.exceptions import AdapterError class Constants: ADAPTER_NAME = "adapter_name" MODEL = "model_name" TOKENIZER_NAME = "tokenizer_name" MAX_LENGTH = "max_length" NORMALIZE = "normalize" class HuggingFace(EmbeddingAdapter): def __init__(self, settings: dict[str, Any]): super().__init__("HuggingFace") self.config = settings @staticmethod def get_id() -> str: return "huggingface|90ec9ec2-1768-4d69-8fb1-c88b95de5e5a" @staticmethod def get_name() -> str: return "HuggingFace" @staticmethod def get_description() -> str: return "HuggingFace Embedding" @staticmethod def get_icon() -> str: return "/icons/adapter-icons/huggingface.png" @staticmethod def get_json_schema() -> str: f = open(f"{os.path.dirname(__file__)}/static/json_schema.json") schema = f.read() f.close() return schema def get_embedding_instance(self) -> BaseEmbedding: try: embedding_batch_size = EmbeddingHelper.get_embedding_batch_size( config=self.config ) max_length: Optional[int] = ( int(self.config.get(Constants.MAX_LENGTH, 0)) if self.config.get(Constants.MAX_LENGTH) else None ) embedding: BaseEmbedding = HuggingFaceEmbedding( model_name=str(self.config.get(Constants.MODEL)), tokenizer_name=str(self.config.get(Constants.TOKENIZER_NAME)), normalize=bool(self.config.get(Constants.NORMALIZE)), embed_batch_size=embedding_batch_size, max_length=max_length, ) return embedding except Exception as e: raise AdapterError(str(e)) def test_connection(self) -> bool: embedding = self.get_embedding_instance() test_result: bool = EmbeddingHelper.test_embedding_instance(embedding) return test_result
2,350
Python
.py
59
31.271186
78
0.655687
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,707
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/embedding/hugging_face/src/__init__.py
from .hugging_face import HuggingFace metadata = { "name": HuggingFace.__name__, "version": "1.0.0", "adapter": HuggingFace, "description": "HuggingFace embedding adapter", "is_active": False, }
216
Python
.py
8
23.375
51
0.666667
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,708
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/embedding/ollama/src/__init__.py
from .ollama import Ollama metadata = { "name": Ollama.__name__, "version": "1.0.0", "adapter": Ollama, "description": "Ollama embedding adapter", "is_active": True, }
189
Python
.py
8
20
46
0.622222
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,709
ollama.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/embedding/ollama/src/ollama.py
import os from typing import Any from llama_index.core.embeddings import BaseEmbedding from llama_index.embeddings.ollama import OllamaEmbedding from unstract.sdk.adapters.embedding.embedding_adapter import EmbeddingAdapter from unstract.sdk.adapters.embedding.helper import EmbeddingHelper from unstract.sdk.adapters.exceptions import AdapterError class Constants: MODEL = "model_name" ADAPTER_NAME = "adapter_name" BASE_URL = "base_url" class Ollama(EmbeddingAdapter): def __init__(self, settings: dict[str, Any]): super().__init__("Ollama") self.config = settings @staticmethod def get_id() -> str: return "ollama|d58d7080-55a9-4542-becd-8433528e127b" @staticmethod def get_name() -> str: return "Ollama" @staticmethod def get_description() -> str: return "Ollama Embedding" @staticmethod def get_provider() -> str: return "ollama" @staticmethod def get_icon() -> str: return "/icons/adapter-icons/ollama.png" @staticmethod def get_json_schema() -> str: f = open(f"{os.path.dirname(__file__)}/static/json_schema.json") schema = f.read() f.close() return schema def get_embedding_instance(self) -> BaseEmbedding: try: embedding_batch_size = EmbeddingHelper.get_embedding_batch_size( config=self.config ) embedding: BaseEmbedding = OllamaEmbedding( model_name=str(self.config.get(Constants.MODEL)), base_url=str(self.config.get(Constants.BASE_URL)), embed_batch_size=embedding_batch_size, ) return embedding except Exception as e: raise AdapterError(str(e)) def test_connection(self) -> bool: embedding = self.get_embedding_instance() test_result: bool = EmbeddingHelper.test_embedding_instance(embedding) return test_result
1,976
Python
.py
53
29.679245
78
0.661603
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,710
azure_open_ai.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/embedding/azure_open_ai/src/azure_open_ai.py
import os from typing import Any import httpx from llama_index.core.embeddings import BaseEmbedding from llama_index.embeddings.azure_openai import AzureOpenAIEmbedding from unstract.sdk.adapters.embedding.embedding_adapter import EmbeddingAdapter from unstract.sdk.adapters.embedding.helper import EmbeddingHelper from unstract.sdk.adapters.exceptions import AdapterError class Constants: ADAPTER_NAME = "adapter_name" MODEL = "model" API_KEY = "api_key" API_VERSION = "api_version" AZURE_ENDPOINT = "azure_endpoint" DEPLOYMENT_NAME = "deployment_name" API_TYPE = "azure" TIMEOUT = "timeout" DEFAULT_TIMEOUT = 240 class AzureOpenAI(EmbeddingAdapter): def __init__(self, settings: dict[str, Any]): super().__init__("AzureOpenAIEmbedding") self.config = settings @staticmethod def get_id() -> str: return "azureopenai|9770f3f6-f8ba-4fa0-bb3a-bef48a00e66f" @staticmethod def get_name() -> str: return "AzureOpenAIEmbedding" @staticmethod def get_description() -> str: return "AzureOpenAI Embedding" @staticmethod def get_provider() -> str: return "azure" @staticmethod def get_icon() -> str: return "/icons/adapter-icons/AzureopenAI.png" @staticmethod def get_json_schema() -> str: f = open(f"{os.path.dirname(__file__)}/static/json_schema.json") schema = f.read() f.close() return schema def get_embedding_instance(self) -> BaseEmbedding: try: embedding_batch_size = EmbeddingHelper.get_embedding_batch_size( config=self.config ) timeout = int(self.config.get(Constants.TIMEOUT, Constants.DEFAULT_TIMEOUT)) httpx_timeout = httpx.Timeout(timeout, connect=60.0) httpx_client = httpx.Client(timeout=httpx_timeout) embedding: BaseEmbedding = AzureOpenAIEmbedding( model=str(self.config.get(Constants.MODEL)), deployment_name=str(self.config.get(Constants.DEPLOYMENT_NAME)), api_key=str(self.config.get(Constants.API_KEY)), api_version=str(self.config.get(Constants.API_VERSION)), azure_endpoint=str(self.config.get(Constants.AZURE_ENDPOINT)), embed_batch_size=embedding_batch_size, api_type=Constants.API_TYPE, timeout=timeout, http_client=httpx_client, ) return embedding except Exception as e: raise AdapterError(str(e)) def test_connection(self) -> bool: embedding = self.get_embedding_instance() test_result: bool = EmbeddingHelper.test_embedding_instance(embedding) return test_result
2,791
Python
.py
69
32.115942
88
0.661743
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,711
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/embedding/azure_open_ai/src/__init__.py
from .azure_open_ai import AzureOpenAI metadata = { "name": AzureOpenAI.__name__, "version": "1.0.0", "adapter": AzureOpenAI, "description": "AzureOpenAI embedding adapter", "is_active": True, }
216
Python
.py
8
23.375
51
0.661836
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,712
no_op_embedding.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/embedding/no_op/src/no_op_embedding.py
import os import time from typing import Any from llama_index.core.embeddings import BaseEmbedding from unstract.sdk.adapters.embedding.embedding_adapter import EmbeddingAdapter from unstract.sdk.adapters.embedding.no_op.src.no_op_custom_embedding import ( NoOpCustomEmbedding, ) class NoOpEmbedding(EmbeddingAdapter): def __init__(self, settings: dict[str, Any]): super().__init__("NoOpCustomEmbedding") self.config = settings @staticmethod def get_id() -> str: return "noOpEmbedding|ff223003-fee8-4079-b288-e86215e6b39a" @staticmethod def get_name() -> str: return "No Op Embedding" @staticmethod def get_description() -> str: return "No Op Embedding" @staticmethod def get_icon() -> str: return "/icons/adapter-icons/noOpEmbedding.png" @staticmethod def get_provider() -> str: return "NoOp" @staticmethod def get_json_schema() -> str: f = open(f"{os.path.dirname(__file__)}/static/json_schema.json") schema = f.read() f.close() return schema def get_embedding_instance(self) -> BaseEmbedding: embedding: BaseEmbedding = NoOpCustomEmbedding( embed_dim=1, wait_time=self.config.get("wait_time") ) return embedding def test_connection(self) -> bool: time.sleep(self.config.get("wait_time")) return True
1,419
Python
.py
41
28.341463
78
0.673499
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,713
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/embedding/no_op/src/__init__.py
from .no_op_embedding import NoOpEmbedding metadata = { "name": NoOpEmbedding.__name__, "version": "1.0.0", "adapter": NoOpEmbedding, "description": "NoOp embedding adapter", "is_active": True, }
217
Python
.py
8
23.5
44
0.663462
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,714
no_op_custom_embedding.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/embedding/no_op/src/no_op_custom_embedding.py
from typing import Any from llama_index.core import MockEmbedding class NoOpCustomEmbedding(MockEmbedding): embed_dim: int def __init__(self, embed_dim: int, wait_time: float, **kwargs: Any) -> None: """Init params.""" super().__init__(embed_dim=embed_dim, **kwargs, wait_time=wait_time)
317
Python
.py
7
40.142857
80
0.685246
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,715
constants.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/x2text/constants.py
class X2TextConstants: PLATFORM_SERVICE_API_KEY = "PLATFORM_SERVICE_API_KEY" X2TEXT_HOST = "X2TEXT_HOST" X2TEXT_PORT = "X2TEXT_PORT" ENABLE_HIGHLIGHT = "enable_highlight" EXTRACTED_TEXT = "extracted_text" WHISPER_HASH = "whisper-hash" WHISPER_HASH_V2 = "whisper_hash"
296
Python
.py
8
32.5
57
0.708333
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,716
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/x2text/__init__.py
from unstract.sdk.adapters import AdapterDict from unstract.sdk.adapters.x2text.register import X2TextRegistry adapters: AdapterDict = {} X2TextRegistry.register_adapters(adapters)
182
Python
.py
4
44.25
64
0.870056
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,717
helper.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/x2text/helper.py
import logging from typing import Any, Optional import requests from requests import Response from requests.exceptions import ConnectionError, HTTPError, Timeout from unstract.sdk.adapters.exceptions import AdapterError from unstract.sdk.adapters.utils import AdapterUtils from unstract.sdk.adapters.x2text.constants import X2TextConstants logger = logging.getLogger(__name__) class X2TextHelper: """Helpers meant for x2text adapters.""" @staticmethod def parse_response( response: Response, out_file_path: Optional[str] = None ) -> tuple[str, bool]: """Parses the response from a request. Optionally it can write the output to a file Args: response (Response): Response to parse out_file_path (Optional[str], optional): Output file path to write to, skipped if None or emtpy. Defaults to None. Returns: tuple[str, bool]: Response's content and status of parsing """ if not response.ok and not response.content: return "", False if isinstance(response.content, bytes): output = response.content.decode("utf-8") if out_file_path: with open(out_file_path, "w", encoding="utf-8") as f: f.write(output) return output, True class UnstructuredHelper: """Helpers meant for unstructured-community and unstructured-enterprise.""" URL = "url" API_KEY = "api_key" TEST_CONNECTION = "test-connection" PROCESS = "process" @staticmethod def test_server_connection( unstructured_adapter_config: dict[str, Any] ) -> bool: UnstructuredHelper.make_request( unstructured_adapter_config, UnstructuredHelper.TEST_CONNECTION ) return True @staticmethod def process_document( unstructured_adapter_config: dict[str, Any], input_file_path: str, output_file_path: Optional[str] = None, ) -> str: try: response: Response with open(input_file_path, "rb") as input_f: mime_type = AdapterUtils.get_file_mime_type( input_file=input_file_path ) files = {"file": (input_file_path, input_f, mime_type)} response = UnstructuredHelper.make_request( unstructured_adapter_config=unstructured_adapter_config, request_type=UnstructuredHelper.PROCESS, files=files, ) output, is_success = X2TextHelper.parse_response( response=response, out_file_path=output_file_path ) if not is_success: raise AdapterError("Couldn't extract text from file") return output except OSError as e: msg = f"OS error while reading {input_file_path} " if output_file_path: msg += f"and writing {output_file_path}" msg += f": {str(e)}" logger.error(msg) raise AdapterError(str(e)) @staticmethod def make_request( unstructured_adapter_config: dict[str, Any], request_type: str, **kwargs: dict[Any, Any], ) -> Response: unstructured_url = unstructured_adapter_config.get( UnstructuredHelper.URL ) x2text_service_url = unstructured_adapter_config.get( X2TextConstants.X2TEXT_HOST ) x2text_service_port = unstructured_adapter_config.get( X2TextConstants.X2TEXT_PORT ) platform_service_api_key = unstructured_adapter_config.get( X2TextConstants.PLATFORM_SERVICE_API_KEY ) headers = { "accept": "application/json", "Authorization": f"Bearer {platform_service_api_key}", } body = { "unstructured-url": unstructured_url, } # Add api key only if present api_key = unstructured_adapter_config.get(UnstructuredHelper.API_KEY) if api_key: body["unstructured-api-key"] = api_key x2text_url = ( f"{x2text_service_url}:{x2text_service_port}" f"/api/v1/x2text/{request_type}" ) # Add files only if the request is for process files = None if "files" in kwargs: files = kwargs["files"] if kwargs["files"] is not None else None try: response = requests.post( x2text_url, headers=headers, data=body, files=files ) response.raise_for_status() except ConnectionError as e: logger.error(f"Adapter error: {e}") raise AdapterError( "Unable to connect to unstructured-io's service, " "please check the URL" ) except Timeout as e: msg = "Request to unstructured-io's service has timed out" logger.error(f"{msg}: {e}") raise AdapterError(msg) except HTTPError as e: logger.error(f"Adapter error: {e}") default_err = "Error while calling the unstructured-io service" msg = AdapterUtils.get_msg_from_request_exc( err=e, message_key="detail", default_err=default_err ) raise AdapterError("unstructured-io: " + msg) return response
5,419
Python
.py
137
29.175182
79
0.601405
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,718
dto.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/x2text/dto.py
from dataclasses import dataclass from typing import Optional @dataclass class TextExtractionMetadata: whisper_hash: str @dataclass class TextExtractionResult: extracted_text: str extraction_metadata: Optional[TextExtractionMetadata] = None
257
Python
.py
9
25.777778
64
0.844262
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,719
register.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/x2text/register.py
import logging import os from importlib import import_module from typing import Any from unstract.sdk.adapters.constants import Common from unstract.sdk.adapters.registry import AdapterRegistry from unstract.sdk.adapters.x2text.x2text_adapter import X2TextAdapter logger = logging.getLogger(__name__) class X2TextRegistry(AdapterRegistry): @staticmethod def register_adapters(adapters: dict[str, Any]) -> None: current_directory = os.path.dirname(os.path.abspath(__file__)) package = "unstract.sdk.adapters.x2text" for adapter in os.listdir(current_directory): adapter_path = os.path.join(current_directory, adapter, Common.SRC_FOLDER) # Check if the item is a directory and not a # special directory like __pycache__ if os.path.isdir(adapter_path) and not adapter.startswith("__"): X2TextRegistry._build_adapter_list(adapter, package, adapters) if len(adapters) == 0: logger.warning("No X2Text adapter found.") @staticmethod def _build_adapter_list( adapter: str, package: str, adapters: dict[str, Any] ) -> None: try: full_module_path = f"{package}.{adapter}.{Common.SRC_FOLDER}" module = import_module(full_module_path) metadata = getattr(module, Common.METADATA, {}) if metadata.get("is_active", False): adapter_class: X2TextAdapter = metadata[Common.ADAPTER] adapter_id = adapter_class.get_id() if not adapter_id or (adapter_id in adapters): logger.warning(f"Duplicate Id : {adapter_id}") else: adapters[adapter_id] = { Common.MODULE: module, Common.METADATA: metadata, } except ModuleNotFoundError as exception: logger.warning(f"Unable to import X2Text adapters : {exception}")
1,974
Python
.py
41
37.634146
86
0.634665
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,720
x2text_adapter.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/x2text/x2text_adapter.py
from abc import ABC from typing import Any, Optional from unstract.sdk.adapters.base import Adapter from unstract.sdk.adapters.enums import AdapterTypes from unstract.sdk.adapters.x2text.dto import TextExtractionResult class X2TextAdapter(Adapter, ABC): def __init__(self, name: str): super().__init__(name) self.name = name @staticmethod def get_id() -> str: return "" @staticmethod def get_name() -> str: return "" @staticmethod def get_description() -> str: return "" @staticmethod def get_icon() -> str: return "" @staticmethod def get_json_schema() -> str: return "" @staticmethod def get_adapter_type() -> AdapterTypes: return AdapterTypes.X2TEXT def test_connection(self) -> bool: return False def process( self, input_file_path: str, output_file_path: Optional[str] = None, **kwargs: dict[Any, Any], ) -> TextExtractionResult: return TextExtractionResult( extracted_text="extracted text", extraction_metadata=None )
1,132
Python
.py
38
23.315789
69
0.641405
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,721
constants.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/x2text/llm_whisperer/src/constants.py
import os from enum import Enum class ProcessingModes(Enum): OCR = "ocr" TEXT = "text" class Modes(Enum): NATIVE_TEXT = "native_text" LOW_COST = "low_cost" HIGH_QUALITY = "high_quality" FORM = "form" class OutputModes(Enum): LINE_PRINTER = "line-printer" DUMP_TEXT = "dump-text" TEXT = "text" class HTTPMethod(Enum): GET = "GET" POST = "POST" class WhispererHeader: UNSTRACT_KEY = "unstract-key" class WhispererEndpoint: """Endpoints available at LLMWhisperer service.""" TEST_CONNECTION = "test-connection" WHISPER = "whisper" STATUS = "whisper-status" RETRIEVE = "whisper-retrieve" class WhispererEnv: """Env variables for LLM whisperer. Can be used to alter behaviour at runtime. Attributes: POLL_INTERVAL: Time in seconds to wait before polling LLMWhisperer's status API. Defaults to 30s MAX_POLLS: Total number of times to poll the status API. Set to -1 to poll indefinitely. Defaults to -1 """ POLL_INTERVAL = "ADAPTER_LLMW_POLL_INTERVAL" MAX_POLLS = "ADAPTER_LLMW_MAX_POLLS" class WhispererConfig: """Dictionary keys used to configure LLMWhisperer service.""" URL = "url" PROCESSING_MODE = "processing_mode" MODE = "mode" OUTPUT_MODE = "output_mode" UNSTRACT_KEY = "unstract_key" MEDIAN_FILTER_SIZE = "median_filter_size" GAUSSIAN_BLUR_RADIUS = "gaussian_blur_radius" FORCE_TEXT_PROCESSING = "force_text_processing" LINE_SPLITTER_TOLERANCE = "line_splitter_tolerance" HORIZONTAL_STRETCH_FACTOR = "horizontal_stretch_factor" PAGES_TO_EXTRACT = "pages_to_extract" STORE_METADATA_FOR_HIGHLIGHTING = "store_metadata_for_highlighting" ADD_LINE_NOS = "add_line_nos" OUTPUT_JSON = "output_json" PAGE_SEPARATOR = "page_seperator" MARK_VERTICAL_LINES = "mark_vertical_lines" MARK_HORIZONTAL_LINES = "mark_horizontal_lines" class WhisperStatus: """Values returned / used by /whisper-status endpoint.""" PROCESSING = "processing" PROCESSED = "processed" DELIVERED = "delivered" UNKNOWN = "unknown" # Used for async processing WHISPER_HASH = "whisper-hash" STATUS = "status" class WhispererDefaults: """Defaults meant for LLM whisperer.""" MEDIAN_FILTER_SIZE = 0 GAUSSIAN_BLUR_RADIUS = 0.0 FORCE_TEXT_PROCESSING = False LINE_SPLITTER_TOLERANCE = 0.75 HORIZONTAL_STRETCH_FACTOR = 1.0 POLL_INTERVAL = int(os.getenv(WhispererEnv.POLL_INTERVAL, 30)) MAX_POLLS = int(os.getenv(WhispererEnv.MAX_POLLS, 30)) PAGES_TO_EXTRACT = "" ADD_LINE_NOS = True OUTPUT_JSON = True PAGE_SEPARATOR = "<<< >>>" MARK_VERTICAL_LINES = False MARK_HORIZONTAL_LINES = False
2,762
Python
.py
79
29.911392
71
0.693032
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,722
llm_whisperer.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/x2text/llm_whisperer/src/llm_whisperer.py
import json import logging import os import time from pathlib import Path from typing import Any, Optional import requests from requests import Response from requests.exceptions import ConnectionError, HTTPError, Timeout from unstract.sdk.adapters.exceptions import ExtractorError from unstract.sdk.adapters.utils import AdapterUtils from unstract.sdk.adapters.x2text.constants import X2TextConstants from unstract.sdk.adapters.x2text.dto import ( TextExtractionMetadata, TextExtractionResult, ) from unstract.sdk.adapters.x2text.llm_whisperer.src.constants import ( HTTPMethod, OutputModes, ProcessingModes, WhispererConfig, WhispererDefaults, WhispererEndpoint, WhispererHeader, WhisperStatus, ) from unstract.sdk.adapters.x2text.x2text_adapter import X2TextAdapter logger = logging.getLogger(__name__) class LLMWhisperer(X2TextAdapter): def __init__(self, settings: dict[str, Any]): super().__init__("LLMWhisperer") self.config = settings @staticmethod def get_id() -> str: return "llmwhisperer|0a1647f0-f65f-410d-843b-3d979c78350e" @staticmethod def get_name() -> str: return "LLMWhisperer" @staticmethod def get_description() -> str: return "LLMWhisperer X2Text" @staticmethod def get_icon() -> str: return "/icons/adapter-icons/LLMWhisperer.png" @staticmethod def get_json_schema() -> str: f = open(f"{os.path.dirname(__file__)}/static/json_schema.json") schema = f.read() f.close() return schema def _get_request_headers(self) -> dict[str, Any]: """Obtains the request headers to authenticate with LLM Whisperer. Returns: str: Request headers """ return { "accept": "application/json", WhispererHeader.UNSTRACT_KEY: self.config.get(WhispererConfig.UNSTRACT_KEY), } def _make_request( self, request_method: HTTPMethod, request_endpoint: str, headers: Optional[dict[str, Any]] = None, params: Optional[dict[str, Any]] = None, data: Optional[Any] = None, ) -> Response: """Makes a request to LLM whisperer service. Args: request_method (HTTPMethod): HTTPMethod to call. Can be GET or POST request_endpoint (str): LLM whisperer endpoint to hit headers (Optional[dict[str, Any]], optional): Headers to pass. Defaults to None. params (Optional[dict[str, Any]], optional): Query params to pass. Defaults to None. data (Optional[Any], optional): Data to pass in case of POST. Defaults to None. Returns: Response: Response from the request """ llm_whisperer_svc_url = ( f"{self.config.get(WhispererConfig.URL)}" f"/v1/{request_endpoint}" ) if not headers: headers = self._get_request_headers() try: response: Response if request_method == HTTPMethod.GET: response = requests.get( url=llm_whisperer_svc_url, headers=headers, params=params ) elif request_method == HTTPMethod.POST: response = requests.post( url=llm_whisperer_svc_url, headers=headers, params=params, data=data, ) else: raise ExtractorError(f"Unsupported request method: {request_method}") response.raise_for_status() except ConnectionError as e: logger.error(f"Adapter error: {e}") raise ExtractorError( "Unable to connect to LLM Whisperer service, please check the URL" ) except Timeout as e: msg = "Request to LLM whisperer has timed out" logger.error(f"{msg}: {e}") raise ExtractorError(msg) except HTTPError as e: logger.error(f"Adapter error: {e}") default_err = "Error while calling the LLM Whisperer service" msg = AdapterUtils.get_msg_from_request_exc( err=e, message_key="message", default_err=default_err ) raise ExtractorError(msg) return response def _get_whisper_params(self, enable_highlight: bool = False) -> dict[str, Any]: """Gets query params meant for /whisper endpoint. The params is filled based on the configuration passed. Returns: dict[str, Any]: Query params """ params = { WhispererConfig.PROCESSING_MODE: self.config.get( WhispererConfig.PROCESSING_MODE, ProcessingModes.TEXT.value ), # Not providing default value to maintain legacy compatablity # Providing default value will overide the params # processing_mode, force_text_processing WhispererConfig.MODE: self.config.get(WhispererConfig.MODE), WhispererConfig.OUTPUT_MODE: self.config.get( WhispererConfig.OUTPUT_MODE, OutputModes.LINE_PRINTER.value ), WhispererConfig.FORCE_TEXT_PROCESSING: self.config.get( WhispererConfig.FORCE_TEXT_PROCESSING, WhispererDefaults.FORCE_TEXT_PROCESSING, ), WhispererConfig.LINE_SPLITTER_TOLERANCE: self.config.get( WhispererConfig.LINE_SPLITTER_TOLERANCE, WhispererDefaults.LINE_SPLITTER_TOLERANCE, ), WhispererConfig.HORIZONTAL_STRETCH_FACTOR: self.config.get( WhispererConfig.HORIZONTAL_STRETCH_FACTOR, WhispererDefaults.HORIZONTAL_STRETCH_FACTOR, ), WhispererConfig.PAGES_TO_EXTRACT: self.config.get( WhispererConfig.PAGES_TO_EXTRACT, WhispererDefaults.PAGES_TO_EXTRACT, ), WhispererConfig.ADD_LINE_NOS: WhispererDefaults.ADD_LINE_NOS, WhispererConfig.OUTPUT_JSON: WhispererDefaults.OUTPUT_JSON, WhispererConfig.PAGE_SEPARATOR: self.config.get( WhispererConfig.PAGE_SEPARATOR, WhispererDefaults.PAGE_SEPARATOR, ), WhispererConfig.MARK_VERTICAL_LINES: self.config.get( WhispererConfig.MARK_VERTICAL_LINES, WhispererDefaults.MARK_VERTICAL_LINES, ), WhispererConfig.MARK_HORIZONTAL_LINES: self.config.get( WhispererConfig.MARK_HORIZONTAL_LINES, WhispererDefaults.MARK_HORIZONTAL_LINES, ), } if not params[WhispererConfig.FORCE_TEXT_PROCESSING]: params.update( { WhispererConfig.MEDIAN_FILTER_SIZE: self.config.get( WhispererConfig.MEDIAN_FILTER_SIZE, WhispererDefaults.MEDIAN_FILTER_SIZE, ), WhispererConfig.GAUSSIAN_BLUR_RADIUS: self.config.get( WhispererConfig.GAUSSIAN_BLUR_RADIUS, WhispererDefaults.GAUSSIAN_BLUR_RADIUS, ), } ) if enable_highlight: params.update( {WhispererConfig.STORE_METADATA_FOR_HIGHLIGHTING: enable_highlight} ) return params def test_connection(self) -> bool: self._make_request( request_method=HTTPMethod.GET, request_endpoint=WhispererEndpoint.TEST_CONNECTION, ) return True def _check_status_until_ready( self, whisper_hash: str, headers: dict[str, Any], params: dict[str, Any] ) -> WhisperStatus: """Checks the extraction status by polling. Polls the /whisper-status endpoint in fixed intervals of env: ADAPTER_LLMW_POLL_INTERVAL for a certain number of times controlled by env: ADAPTER_LLMW_MAX_POLLS. Args: whisper_hash (str): Identifier for the extraction, returned by LLMWhisperer headers (dict[str, Any]): Headers to pass for the status check params (dict[str, Any]): Params to pass for the status check Returns: WhisperStatus: Status of the extraction """ POLL_INTERVAL = WhispererDefaults.POLL_INTERVAL MAX_POLLS = WhispererDefaults.MAX_POLLS request_count = 0 # Check status in fixed intervals upto max poll count. while True: request_count += 1 logger.info( f"Checking status with interval: {POLL_INTERVAL}s" f", request count: {request_count} [max: {MAX_POLLS}]" ) status_response = self._make_request( request_method=HTTPMethod.GET, request_endpoint=WhispererEndpoint.STATUS, headers=headers, params=params, ) if status_response.status_code == 200: status_data = status_response.json() status = status_data.get(WhisperStatus.STATUS, WhisperStatus.UNKNOWN) logger.info(f"Whisper status for {whisper_hash}: {status}") if status in [WhisperStatus.PROCESSED, WhisperStatus.DELIVERED]: break else: raise ExtractorError( "Error checking LLMWhisperer status: " f"{status_response.status_code} - {status_response.text}" ) # Exit with error if max poll count is reached if request_count >= MAX_POLLS: raise ExtractorError( "Unable to extract text after attempting" f" {request_count} times" ) time.sleep(POLL_INTERVAL) return status def _extract_async(self, whisper_hash: str) -> str: """Makes an async extraction with LLMWhisperer. Polls and checks the status first before proceeding to retrieve once. Args: whisper_hash (str): Identifier of the extraction Returns: str: Extracted contents from the file """ logger.info(f"Extracting async for whisper hash: {whisper_hash}") headers: dict[str, Any] = self._get_request_headers() params = { WhisperStatus.WHISPER_HASH: whisper_hash, WhispererConfig.OUTPUT_JSON: WhispererDefaults.OUTPUT_JSON, } # Polls in fixed intervals and checks status self._check_status_until_ready( whisper_hash=whisper_hash, headers=headers, params=params ) retrieve_response = self._make_request( request_method=HTTPMethod.GET, request_endpoint=WhispererEndpoint.RETRIEVE, headers=headers, params=params, ) if retrieve_response.status_code == 200: return retrieve_response.json() else: raise ExtractorError( "Error retrieving from LLMWhisperer: " f"{retrieve_response.status_code} - {retrieve_response.text}" ) def _send_whisper_request( self, input_file_path: str, enable_highlight: bool = False ) -> requests.Response: headers = self._get_request_headers() headers["Content-Type"] = "application/octet-stream" params = self._get_whisper_params(enable_highlight) response: requests.Response try: with open(input_file_path, "rb") as input_f: response = self._make_request( request_method=HTTPMethod.POST, request_endpoint=WhispererEndpoint.WHISPER, headers=headers, params=params, data=input_f.read(), ) except OSError as e: logger.error(f"OS error while reading {input_file_path}: {e}") raise ExtractorError(str(e)) return response def _extract_text_from_response( self, output_file_path: Optional[str], response: requests.Response ) -> str: output_json = {} if response.status_code == 200: output_json = response.json() elif response.status_code == 202: whisper_hash = response.json().get(WhisperStatus.WHISPER_HASH) output_json = self._extract_async(whisper_hash=whisper_hash) else: raise ExtractorError("Couldn't extract text from file") if output_file_path: self._write_output_to_file( output_json=output_json, output_file_path=Path(output_file_path), ) return output_json.get("text", "") def _write_output_to_file(self, output_json: dict, output_file_path: Path) -> None: """Writes the extracted text and metadata to the specified output file and metadata file. Args: output_json (dict): The dictionary containing the extracted data, with "text" as the key for the main content. output_file_path (Path): The file path where the extracted text should be written. Raises: ExtractorError: If there is an error while writing the output file. """ try: text_output = output_json.get("text", "") logger.info(f"Writing output to {output_file_path}") output_file_path.write_text(text_output, encoding="utf-8") try: # Define the directory of the output file and metadata paths output_dir = output_file_path.parent metadata_dir = output_dir / "metadata" metadata_file_name = output_file_path.with_suffix(".json").name metadata_file_path = metadata_dir / metadata_file_name # Ensure the metadata directory exists metadata_dir.mkdir(parents=True, exist_ok=True) # Remove the "text" key from the metadata metadata = { key: value for key, value in output_json.items() if key != "text" } metadata_json = json.dumps(metadata, ensure_ascii=False, indent=4) logger.info(f"Writing metadata to {metadata_file_path}") metadata_file_path.write_text(metadata_json, encoding="utf-8") except Exception as e: logger.error( f"Error while writing metadata to {metadata_file_path}: {e}" ) except Exception as e: logger.error(f"Error while writing {output_file_path}: {e}") raise ExtractorError(str(e)) def process( self, input_file_path: str, output_file_path: Optional[str] = None, **kwargs: dict[Any, Any], ) -> TextExtractionResult: """Used to extract text from documents. Args: input_file_path (str): Path to file that needs to be extracted output_file_path (Optional[str], optional): File path to write extracted text into, if None doesn't write to a file. Defaults to None. Returns: str: Extracted text """ response: requests.Response = self._send_whisper_request( input_file_path, bool(kwargs.get(X2TextConstants.ENABLE_HIGHLIGHT, False)), ) metadata = TextExtractionMetadata( whisper_hash=response.headers.get(X2TextConstants.WHISPER_HASH, "") ) return TextExtractionResult( extracted_text=self._extract_text_from_response(output_file_path, response), extraction_metadata=metadata, )
15,965
Python
.py
370
31.175676
88
0.596964
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,723
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/x2text/llm_whisperer/src/__init__.py
from .llm_whisperer import LLMWhisperer metadata = { "name": LLMWhisperer.__name__, "version": "1.0.0", "adapter": LLMWhisperer, "description": "LLMWhisperer X2Text adapter", "is_active": True, }
217
Python
.py
8
23.5
49
0.668269
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,724
unstructured_enterprise.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/x2text/unstructured_enterprise/src/unstructured_enterprise.py
import logging import os from typing import Any, Optional from unstract.sdk.adapters.x2text.dto import TextExtractionResult from unstract.sdk.adapters.x2text.helper import UnstructuredHelper from unstract.sdk.adapters.x2text.x2text_adapter import X2TextAdapter logger = logging.getLogger(__name__) class UnstructuredEnterprise(X2TextAdapter): def __init__(self, settings: dict[str, Any]): super().__init__("UnstructuredIOEnterprise") self.config = settings @staticmethod def get_id() -> str: return "unstructuredenterprise|eb1b6c58-221f-4db0-a4a5-e5f9cdca44e1" @staticmethod def get_name() -> str: return "Unstructured IO Enterprise" @staticmethod def get_description() -> str: return "Unstructured IO Enterprise X2Text" @staticmethod def get_icon() -> str: return "/icons/adapter-icons/UnstructuredIO.png" @staticmethod def get_json_schema() -> str: f = open(f"{os.path.dirname(__file__)}/static/json_schema.json") schema = f.read() f.close() return schema def process( self, input_file_path: str, output_file_path: Optional[str] = None, **kwargs: dict[str, Any], ) -> TextExtractionResult: extracted_text: str = UnstructuredHelper.process_document( self.config, input_file_path, output_file_path ) return TextExtractionResult(extracted_text=extracted_text) def test_connection(self) -> bool: result: bool = UnstructuredHelper.test_server_connection(self.config) return result
1,610
Python
.py
42
31.809524
77
0.690231
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,725
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/x2text/unstructured_enterprise/src/__init__.py
from .unstructured_enterprise import UnstructuredEnterprise metadata = { "name": UnstructuredEnterprise.__name__, "version": "1.0.0", "adapter": UnstructuredEnterprise, "description": "UnstructuredIO X2Text adapter", "is_active": True, }
259
Python
.py
8
28.75
59
0.724
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,726
constants.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/x2text/llm_whisperer_v2/src/constants.py
import os from enum import Enum class Modes(Enum): NATIVE_TEXT = "native_text" LOW_COST = "low_cost" HIGH_QUALITY = "high_quality" FORM = "form" class OutputModes(Enum): LAYOUT_PRESERVING = "layout_preserving" TEXT = "text" class HTTPMethod(Enum): GET = "GET" POST = "POST" class WhispererHeader: UNSTRACT_KEY = "unstract-key" class WhispererEndpoint: """Endpoints available at LLMWhisperer service.""" TEST_CONNECTION = "test-connection" WHISPER = "whisper" STATUS = "whisper-status" RETRIEVE = "whisper-retrieve" class WhispererEnv: """Env variables for LLM whisperer. Can be used to alter behaviour at runtime. Attributes: POLL_INTERVAL: Time in seconds to wait before polling LLMWhisperer's status API. Defaults to 30s MAX_POLLS: Total number of times to poll the status API. Set to -1 to poll indefinitely. Defaults to -1 """ POLL_INTERVAL = "ADAPTER_LLMW_POLL_INTERVAL" MAX_POLLS = "ADAPTER_LLMW_MAX_POLLS" class WhispererConfig: """Dictionary keys used to configure LLMWhisperer service.""" URL = "url" MODE = "mode" OUTPUT_MODE = "output_mode" UNSTRACT_KEY = "unstract_key" MEDIAN_FILTER_SIZE = "median_filter_size" GAUSSIAN_BLUR_RADIUS = "gaussian_blur_radius" LINE_SPLITTER_TOLERANCE = "line_splitter_tolerance" LINE_SPLITTER_STRATEGY = "line_splitter_strategy" HORIZONTAL_STRETCH_FACTOR = "horizontal_stretch_factor" PAGES_TO_EXTRACT = "pages_to_extract" MARK_VERTICAL_LINES = "mark_vertical_lines" MARK_HORIZONTAL_LINES = "mark_horizontal_lines" PAGE_SEPARATOR = "page_seperator" URL_IN_POST = "url_in_post" TAG = "tag" USE_WEBHOOK = "use_webhook" WEBHOOK_METADATA = "webhook_metadata" TEXT_ONLY = "text_only" class WhisperStatus: """Values returned / used by /whisper-status endpoint.""" PROCESSING = "processing" PROCESSED = "processed" DELIVERED = "delivered" UNKNOWN = "unknown" # Used for async processing WHISPER_HASH = "whisper_hash" STATUS = "status" class WhispererDefaults: """Defaults meant for LLM whisperer.""" MEDIAN_FILTER_SIZE = 0 GAUSSIAN_BLUR_RADIUS = 0.0 FORCE_TEXT_PROCESSING = False LINE_SPLITTER_TOLERANCE = 0.75 LINE_SPLITTER_STRATEGY = "left-priority" HORIZONTAL_STRETCH_FACTOR = 1.0 POLL_INTERVAL = int(os.getenv(WhispererEnv.POLL_INTERVAL, 30)) MAX_POLLS = int(os.getenv(WhispererEnv.MAX_POLLS, 30)) PAGES_TO_EXTRACT = "" PAGE_SEPARATOR = "<<<" MARK_VERTICAL_LINES = False MARK_HORIZONTAL_LINES = False URL_IN_POST = False TAG = "default" TEXT_ONLY = False
2,712
Python
.py
78
29.705128
66
0.691836
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,727
llm_whisperer_v2.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/x2text/llm_whisperer_v2/src/llm_whisperer_v2.py
import json import logging import os from typing import Any, Optional import requests from unstract.sdk.adapters.x2text.constants import X2TextConstants from unstract.sdk.adapters.x2text.dto import ( TextExtractionMetadata, TextExtractionResult, ) from unstract.sdk.adapters.x2text.llm_whisperer_v2.src.constants import ( HTTPMethod, WhispererEndpoint, ) from unstract.sdk.adapters.x2text.llm_whisperer_v2.src.helper import LLMWhispererHelper from unstract.sdk.adapters.x2text.x2text_adapter import X2TextAdapter logger = logging.getLogger(__name__) class LLMWhispererV2(X2TextAdapter): def __init__(self, settings: dict[str, Any]): super().__init__("LLMWhispererV2") self.config = settings @staticmethod def get_id() -> str: return "llmwhisperer|a5e6b8af-3e1f-4a80-b006-d017e8e67f93" @staticmethod def get_name() -> str: return "LLMWhisperer V2" @staticmethod def get_description() -> str: return "LLMWhisperer V2 X2Text" @staticmethod def get_icon() -> str: return "/icons/adapter-icons/LLMWhispererV2.png" @staticmethod def get_json_schema() -> str: f = open(f"{os.path.dirname(__file__)}/static/json_schema.json") schema = f.read() f.close() return schema def test_connection(self) -> bool: LLMWhispererHelper.make_request( config=self.config, request_method=HTTPMethod.GET, request_endpoint=WhispererEndpoint.TEST_CONNECTION, ) return True def process( self, input_file_path: str, output_file_path: Optional[str] = None, **kwargs: dict[Any, Any], ) -> TextExtractionResult: """Used to extract text from documents. Args: input_file_path (str): Path to file that needs to be extracted output_file_path (Optional[str], optional): File path to write extracted text into, if None doesn't write to a file. Defaults to None. Returns: str: Extracted text """ response: requests.Response = LLMWhispererHelper.send_whisper_request( input_file_path, self.config ) response_text = response.text reponse_dict = json.loads(response_text) metadata = TextExtractionMetadata( whisper_hash=reponse_dict.get(X2TextConstants.WHISPER_HASH_V2, "") ) return TextExtractionResult( extracted_text=LLMWhispererHelper.extract_text_from_response( self.config, output_file_path, reponse_dict, response ), extraction_metadata=metadata, )
2,713
Python
.py
75
28.506667
87
0.661327
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,728
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/x2text/llm_whisperer_v2/src/__init__.py
from .llm_whisperer_v2 import LLMWhispererV2 metadata = { "name": LLMWhispererV2.__name__, "version": "1.0.0", "adapter": LLMWhispererV2, "description": "LLMWhispererV2 X2Text adapter", "is_active": True, }
228
Python
.py
8
24.875
51
0.680365
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,729
helper.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/x2text/llm_whisperer_v2/src/helper.py
import json import logging import time from pathlib import Path from typing import Any, Optional import requests from requests import Response from requests.exceptions import ConnectionError, HTTPError, Timeout from unstract.sdk.adapters.exceptions import ExtractorError from unstract.sdk.adapters.utils import AdapterUtils from unstract.sdk.adapters.x2text.llm_whisperer_v2.src.constants import ( HTTPMethod, Modes, OutputModes, WhispererConfig, WhispererDefaults, WhispererEndpoint, WhispererHeader, WhisperStatus, ) logger = logging.getLogger(__name__) class LLMWhispererHelper: @staticmethod def get_request_headers(config: dict[str, Any]) -> dict[str, Any]: """Obtains the request headers to authenticate with LLM Whisperer. Returns: str: Request headers """ return { "accept": "application/json", WhispererHeader.UNSTRACT_KEY: config.get(WhispererConfig.UNSTRACT_KEY), } @staticmethod def make_request( config: dict[str, Any], request_method: HTTPMethod, request_endpoint: str, headers: Optional[dict[str, Any]] = None, params: Optional[dict[str, Any]] = None, data: Optional[Any] = None, ) -> Response: """Makes a request to LLM whisperer service. Args: request_method (HTTPMethod): HTTPMethod to call. Can be GET or POST request_endpoint (str): LLM whisperer endpoint to hit headers (Optional[dict[str, Any]], optional): Headers to pass. Defaults to None. params (Optional[dict[str, Any]], optional): Query params to pass. Defaults to None. data (Optional[Any], optional): Data to pass in case of POST. Defaults to None. Returns: Response: Response from the request """ llm_whisperer_svc_url = ( f"{config.get(WhispererConfig.URL)}" f"/api/v2/{request_endpoint}" ) if not headers: headers = LLMWhispererHelper.get_request_headers(config=config) try: response: Response if request_method == HTTPMethod.GET: response = requests.get( url=llm_whisperer_svc_url, headers=headers, params=params ) elif request_method == HTTPMethod.POST: response = requests.post( url=llm_whisperer_svc_url, headers=headers, params=params, data=data, ) else: raise ExtractorError(f"Unsupported request method: {request_method}") response.raise_for_status() except ConnectionError as e: logger.error(f"Adapter error: {e}") raise ExtractorError( "Unable to connect to LLM Whisperer service, please check the URL" ) except Timeout as e: msg = "Request to LLM whisperer has timed out" logger.error(f"{msg}: {e}") raise ExtractorError(msg) except HTTPError as e: logger.error(f"Adapter error: {e}") default_err = "Error while calling the LLM Whisperer service" msg = AdapterUtils.get_msg_from_request_exc( err=e, message_key="message", default_err=default_err ) raise ExtractorError(msg) return response @staticmethod def get_whisperer_params(config: dict[str, Any]) -> dict[str, Any]: """Gets query params meant for /whisper endpoint. The params is filled based on the configuration passed. Returns: dict[str, Any]: Query params """ params = { WhispererConfig.MODE: config.get(WhispererConfig.MODE, Modes.FORM.value), WhispererConfig.OUTPUT_MODE: config.get( WhispererConfig.OUTPUT_MODE, OutputModes.LAYOUT_PRESERVING.value ), WhispererConfig.LINE_SPLITTER_TOLERANCE: config.get( WhispererConfig.LINE_SPLITTER_TOLERANCE, WhispererDefaults.LINE_SPLITTER_TOLERANCE, ), WhispererConfig.LINE_SPLITTER_STRATEGY: config.get( WhispererConfig.LINE_SPLITTER_STRATEGY, WhispererDefaults.LINE_SPLITTER_STRATEGY, ), WhispererConfig.HORIZONTAL_STRETCH_FACTOR: config.get( WhispererConfig.HORIZONTAL_STRETCH_FACTOR, WhispererDefaults.HORIZONTAL_STRETCH_FACTOR, ), WhispererConfig.PAGES_TO_EXTRACT: config.get( WhispererConfig.PAGES_TO_EXTRACT, WhispererDefaults.PAGES_TO_EXTRACT, ), WhispererConfig.MARK_VERTICAL_LINES: config.get( WhispererConfig.MARK_VERTICAL_LINES, WhispererDefaults.MARK_VERTICAL_LINES, ), WhispererConfig.MARK_HORIZONTAL_LINES: config.get( WhispererConfig.MARK_HORIZONTAL_LINES, WhispererDefaults.MARK_HORIZONTAL_LINES, ), WhispererConfig.URL_IN_POST: WhispererDefaults.URL_IN_POST, WhispererConfig.PAGE_SEPARATOR: config.get( WhispererConfig.PAGE_SEPARATOR, WhispererDefaults.PAGE_SEPARATOR, ), # Not providing default value to maintain legacy compatablity # these are optional params and identifiers for audit WhispererConfig.TAG: config.get( WhispererConfig.TAG, WhispererDefaults.TAG, ), WhispererConfig.USE_WEBHOOK: config.get(WhispererConfig.USE_WEBHOOK), WhispererConfig.WEBHOOK_METADATA: config.get( WhispererConfig.WEBHOOK_METADATA ), } if params[WhispererConfig.MODE] == Modes.LOW_COST.value: params.update( { WhispererConfig.MEDIAN_FILTER_SIZE: config.get( WhispererConfig.MEDIAN_FILTER_SIZE, WhispererDefaults.MEDIAN_FILTER_SIZE, ), WhispererConfig.GAUSSIAN_BLUR_RADIUS: config.get( WhispererConfig.GAUSSIAN_BLUR_RADIUS, WhispererDefaults.GAUSSIAN_BLUR_RADIUS, ), } ) return params @staticmethod def check_status_until_ready( config: dict[str, Any], whisper_hash: str, headers: dict[str, Any], params: dict[str, Any], ) -> WhisperStatus: """Checks the extraction status by polling. Polls the /whisper-status endpoint in fixed intervals of env: ADAPTER_LLMW_POLL_INTERVAL for a certain number of times controlled by env: ADAPTER_LLMW_MAX_POLLS. Args: whisper_hash (str): Identifier for the extraction, returned by LLMWhisperer headers (dict[str, Any]): Headers to pass for the status check params (dict[str, Any]): Params to pass for the status check Returns: WhisperStatus: Status of the extraction """ POLL_INTERVAL = WhispererDefaults.POLL_INTERVAL MAX_POLLS = WhispererDefaults.MAX_POLLS request_count = 0 # Check status in fixed intervals upto max poll count. while True: request_count += 1 logger.info( f"Checking status with interval: {POLL_INTERVAL}s" f", request count: {request_count} [max: {MAX_POLLS}]" ) status_response = LLMWhispererHelper.make_request( config=config, request_method=HTTPMethod.GET, request_endpoint=WhispererEndpoint.STATUS, headers=headers, params=params, ) if status_response.status_code == 200: status_data = status_response.json() status = status_data.get(WhisperStatus.STATUS, WhisperStatus.UNKNOWN) logger.info(f"Whisper status for {whisper_hash}: {status}") if status in [WhisperStatus.PROCESSED, WhisperStatus.DELIVERED]: break else: raise ExtractorError( "Error checking LLMWhisperer status: " f"{status_response.status_code} - {status_response.text}" ) # Exit with error if max poll count is reached if request_count >= MAX_POLLS: raise ExtractorError( "Unable to extract text after attempting" f" {request_count} times" ) time.sleep(POLL_INTERVAL) return status @staticmethod def extract_async(config: dict[str, Any], whisper_hash: str) -> dict[Any, Any]: """Makes an async extraction with LLMWhisperer. Polls and checks the status first before proceeding to retrieve once. Args: whisper_hash (str): Identifier of the extraction Returns: str: Extracted contents from the file """ logger.info(f"Extracting async for whisper hash: {whisper_hash}") headers: dict[str, Any] = LLMWhispererHelper.get_request_headers(config) params = { WhisperStatus.WHISPER_HASH: whisper_hash, WhispererConfig.TEXT_ONLY: WhispererDefaults.TEXT_ONLY, } # Polls in fixed intervals and checks status LLMWhispererHelper.check_status_until_ready( config=config, whisper_hash=whisper_hash, headers=headers, params=params ) retrieve_response = LLMWhispererHelper.make_request( config=config, request_method=HTTPMethod.GET, request_endpoint=WhispererEndpoint.RETRIEVE, headers=headers, params=params, ) if retrieve_response.status_code == 200: return retrieve_response.json() else: raise ExtractorError( "Error retrieving from LLMWhisperer: " f"{retrieve_response.status_code} - {retrieve_response.text}" ) @staticmethod def send_whisper_request( input_file_path: str, config: dict[str, Any] ) -> requests.Response: headers = LLMWhispererHelper.get_request_headers(config) headers["Content-Type"] = "application/octet-stream" params = LLMWhispererHelper.get_whisperer_params(config) response: requests.Response try: with open(input_file_path, "rb") as input_f: response = LLMWhispererHelper.make_request( config=config, request_method=HTTPMethod.POST, request_endpoint=WhispererEndpoint.WHISPER, headers=headers, params=params, data=input_f.read(), ) except OSError as e: logger.error(f"OS error while reading {input_file_path}: {e}") raise ExtractorError(str(e)) return response @staticmethod def extract_text_from_response( config: dict[str, Any], output_file_path: Optional[str], response_dict: dict[str, Any], response: Response, ) -> str: output_json = {} if response.status_code == 200: output_json = response.json() elif response.status_code == 202: whisper_hash = response_dict.get(WhisperStatus.WHISPER_HASH) output_json = LLMWhispererHelper.extract_async( config=config, whisper_hash=whisper_hash ) else: raise ExtractorError("Couldn't extract text from file") if output_file_path: LLMWhispererHelper.write_output_to_file( output_json=output_json, output_file_path=Path(output_file_path), ) return output_json.get("result_text", "") @staticmethod def write_output_to_file(output_json: dict, output_file_path: Path) -> None: """Writes the extracted text and metadata to the specified output file and metadata file. Args: output_json (dict): The dictionary containing the extracted data, with "text" as the key for the main content. output_file_path (Path): The file path where the extracted text should be written. Raises: ExtractorError: If there is an error while writing the output file. """ try: text_output = output_json.get("result_text", "") logger.info(f"Writing output to {output_file_path}") output_file_path.write_text(text_output, encoding="utf-8") except Exception as e: logger.error(f"Error while writing {output_file_path}: {e}") raise ExtractorError(str(e)) try: # Define the directory of the output file and metadata paths output_dir = output_file_path.parent metadata_dir = output_dir / "metadata" metadata_file_name = output_file_path.with_suffix(".json").name metadata_file_path = metadata_dir / metadata_file_name # Ensure the metadata directory exists metadata_dir.mkdir(parents=True, exist_ok=True) # Remove the "result_text" key from the metadata metadata = { key: value for key, value in output_json.items() if key != "result_text" } metadata_json = json.dumps(metadata, ensure_ascii=False, indent=4) logger.info(f"Writing metadata to {metadata_file_path}") metadata_file_path.write_text(metadata_json, encoding="utf-8") except Exception as e: logger.warn(f"Error while writing metadata to {metadata_file_path}: {e}")
14,078
Python
.py
326
31.09816
88
0.598265
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,730
constants.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/x2text/llama_parse/src/constants.py
class LlamaParseConfig: """Dictionary keys used to process LlamaParse.""" API_KEY = "api_key" BASE_URL = "base_url" RESULT_TYPE = "result_type" NUM_WORKERS = "num_workers" VERBOSE = "verbose" LANGUAGE = "language"
243
Python
.py
8
25.75
53
0.65812
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,731
llama_parse.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/x2text/llama_parse/src/llama_parse.py
import logging import os import pathlib from typing import Any, Optional from httpx import ConnectError from llama_parse import LlamaParse from unstract.sdk.adapters.exceptions import AdapterError from unstract.sdk.adapters.utils import AdapterUtils from unstract.sdk.adapters.x2text.dto import TextExtractionResult from unstract.sdk.adapters.x2text.llama_parse.src.constants import LlamaParseConfig from unstract.sdk.adapters.x2text.x2text_adapter import X2TextAdapter logger = logging.getLogger(__name__) class LlamaParseAdapter(X2TextAdapter): def __init__(self, settings: dict[str, Any]): super().__init__("LlamaParse") self.config = settings @staticmethod def get_id() -> str: return "llamaparse|78860239-b3cc-4cc5-b3de-f84315f75d14" @staticmethod def get_name() -> str: return "LlamaParse" @staticmethod def get_description() -> str: return "LlamaParse X2Text" @staticmethod def get_icon() -> str: return "/icons/adapter-icons/llama-parse.png" @staticmethod def get_json_schema() -> str: f = open(f"{os.path.dirname(__file__)}/static/json_schema.json") schema = f.read() f.close() return schema def _call_parser( self, input_file_path: str, ) -> str: parser = LlamaParse( api_key=self.config.get(LlamaParseConfig.API_KEY), base_url=self.config.get(LlamaParseConfig.BASE_URL), result_type=self.config.get(LlamaParseConfig.RESULT_TYPE), verbose=self.config.get(LlamaParseConfig.VERBOSE), language="en", ignore_errors=False, ) try: file_extension = pathlib.Path(input_file_path).suffix if not file_extension: try: input_file_extension = AdapterUtils.guess_extention(input_file_path) input_file_path_copy = input_file_path input_file_path = ".".join( (input_file_path_copy, input_file_extension) ) except OSError as os_err: logger.error("Exception raised while handling input file.") raise AdapterError(str(os_err)) documents = parser.load_data(input_file_path) except ConnectError as connec_err: logger.error(f"Invalid Base URL given. : {connec_err}") raise AdapterError( "Unable to connect to llama-parse`s service, " "please check the Base URL" ) except Exception as exe: logger.error( "Seems like an invalid API Key or possible internal errors: {exe}" ) raise AdapterError(str(exe)) response_text = documents[0].text return response_text # type:ignore def process( self, input_file_path: str, output_file_path: Optional[str] = None, **kwargs: dict[Any, Any], ) -> TextExtractionResult: response_text = self._call_parser(input_file_path=input_file_path) if output_file_path: with open(output_file_path, "w", encoding="utf-8") as f: f.write(response_text) return TextExtractionResult(extracted_text=response_text) def test_connection(self) -> bool: self._call_parser( input_file_path=f"{os.path.dirname(__file__)}/static/test_input.doc" ) return True
3,516
Python
.py
88
30.318182
88
0.622946
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,732
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/x2text/llama_parse/src/__init__.py
from .llama_parse import LlamaParseAdapter metadata = { "name": LlamaParseAdapter.__name__, "version": "1.0.0", "adapter": LlamaParseAdapter, "description": "LlamaParse X2Text adapter", "is_active": True, }
228
Python
.py
8
24.875
47
0.684932
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,733
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/x2text/unstructured_community/src/__init__.py
from .unstructured_community import UnstructuredCommunity metadata = { "name": UnstructuredCommunity.__name__, "version": "1.0.0", "adapter": UnstructuredCommunity, "description": "UnstructuredIO X2Text adapter", "is_active": True, }
255
Python
.py
8
28.25
57
0.719512
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,734
unstructured_community.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/x2text/unstructured_community/src/unstructured_community.py
import logging import os from typing import Any, Optional from unstract.sdk.adapters.x2text.dto import TextExtractionResult from unstract.sdk.adapters.x2text.helper import UnstructuredHelper from unstract.sdk.adapters.x2text.x2text_adapter import X2TextAdapter logger = logging.getLogger(__name__) class UnstructuredCommunity(X2TextAdapter): def __init__(self, settings: dict[str, Any]): super().__init__("UnstructuredIOCommunity") self.config = settings @staticmethod def get_id() -> str: return "unstructuredcommunity|eeed506f-1875-457f-9101-846fc7115676" @staticmethod def get_name() -> str: return "Unstructured IO Community" @staticmethod def get_description() -> str: return "Unstructured IO Community X2Text" @staticmethod def get_icon() -> str: return "/icons/adapter-icons/UnstructuredIO.png" @staticmethod def get_json_schema() -> str: f = open(f"{os.path.dirname(__file__)}/static/json_schema.json") schema = f.read() f.close() return schema def process( self, input_file_path: str, output_file_path: Optional[str] = None, **kwargs: dict[Any, Any], ) -> TextExtractionResult: extracted_text: str = UnstructuredHelper.process_document( self.config, input_file_path, output_file_path ) return TextExtractionResult(extracted_text=extracted_text) def test_connection(self) -> bool: result: bool = UnstructuredHelper.test_server_connection(self.config) return result
1,605
Python
.py
42
31.690476
77
0.689233
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,735
no_op_x2text.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/x2text/no_op/src/no_op_x2text.py
import logging import os import time from typing import Any, Optional from unstract.sdk.adapters.x2text.dto import TextExtractionResult from unstract.sdk.adapters.x2text.x2text_adapter import X2TextAdapter logger = logging.getLogger(__name__) class NoOpX2Text(X2TextAdapter): def __init__(self, settings: dict[str, Any]): super().__init__("NoOpX2Text") self.config = settings @staticmethod def get_id() -> str: return "noOpX2text|mp66d1op-7100-d340-9101-846fc7115676" @staticmethod def get_name() -> str: return "No Op X2Text" @staticmethod def get_description() -> str: return "No Op X2Text Adapter" @staticmethod def get_icon() -> str: return "/icons/adapter-icons/noOpx2Text.png" @staticmethod def get_json_schema() -> str: f = open(f"{os.path.dirname(__file__)}/static/json_schema.json") schema = f.read() f.close() return schema def process( self, input_file_path: str, output_file_path: Optional[str] = None, **kwargs: dict[Any, Any], ) -> TextExtractionResult: extracted_text: str = ( "This is a No Op x2text adapter response." " This is a sample response and intended for testing \f" ) time.sleep(self.config.get("wait_time")) if output_file_path: with open(output_file_path, "w", encoding="utf-8") as f: f.write(extracted_text) return TextExtractionResult(extracted_text=extracted_text) def test_connection(self) -> bool: time.sleep(self.config.get("wait_time")) return True
1,671
Python
.py
47
28.446809
72
0.641042
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,736
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/x2text/no_op/src/__init__.py
from unstract.sdk.adapters.x2text.no_op.src.no_op_x2text import NoOpX2Text metadata = { "name": NoOpX2Text.__name__, "version": "1.0.0", "adapter": NoOpX2Text, "description": "NoOpX2Text", "is_active": True, }
231
Python
.py
8
25.25
74
0.666667
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,737
ocr_adapter.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/ocr/ocr_adapter.py
from abc import ABC from typing import Any, Optional from unstract.sdk.adapters.base import Adapter from unstract.sdk.adapters.enums import AdapterTypes class OCRAdapter(Adapter, ABC): def __init__(self, name: str): super().__init__(name) self.name = name @staticmethod def get_id() -> str: return "" @staticmethod def get_name() -> str: return "" @staticmethod def get_description() -> str: return "" @staticmethod def get_icon() -> str: return "" @staticmethod def get_json_schema() -> str: return "" @staticmethod def get_adapter_type() -> AdapterTypes: return AdapterTypes.OCR def process( self, input_file_path: str, output_file_path: Optional[str] = None ) -> str: # Overriding methods will contain actual implementation return "" def test_connection(self, llm_metadata: dict[str, Any]) -> bool: return False
986
Python
.py
33
23.69697
74
0.63482
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,738
constants.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/ocr/constants.py
class FileType: TEXT_PLAIN = "text/plain" IMAGE_JPEG = "image/jpeg" IMAGE_PNG = "image/png" IMAGE_TIFF = "image/tiff" IMAGE_BMP = "image/bmp" IMAGE_GIF = "image/gif" IMAGE_WEBP = "image/webp" APPLICATION_PDF = "application/pdf" ALLOWED_TYPES = [ IMAGE_JPEG, IMAGE_PNG, IMAGE_TIFF, IMAGE_BMP, IMAGE_GIF, IMAGE_WEBP, APPLICATION_PDF, ]
430
Python
.py
18
17.555556
39
0.57767
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,739
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/ocr/__init__.py
from unstract.sdk.adapters import AdapterDict from unstract.sdk.adapters.ocr.register import OCRRegistry adapters: AdapterDict = {} OCRRegistry.register_adapters(adapters)
173
Python
.py
4
42
58
0.863095
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,740
register.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/ocr/register.py
import logging import os from importlib import import_module from typing import Any from unstract.sdk.adapters.constants import Common from unstract.sdk.adapters.ocr.ocr_adapter import OCRAdapter from unstract.sdk.adapters.registry import AdapterRegistry logger = logging.getLogger(__name__) class OCRRegistry(AdapterRegistry): @staticmethod def register_adapters(adapters: dict[str, Any]) -> None: current_directory = os.path.dirname(os.path.abspath(__file__)) package = "unstract.sdk.adapters.ocr" for adapter in os.listdir(current_directory): adapter_path = os.path.join(current_directory, adapter, Common.SRC_FOLDER) # Check if the item is a directory and not a # special directory like __pycache__ if os.path.isdir(adapter_path) and not adapter.startswith("__"): OCRRegistry._build_adapter_list(adapter, package, adapters) if len(adapters) == 0: logger.warning("No ocr adapter found.") @staticmethod def _build_adapter_list( adapter: str, package: str, adapters: dict[str, Any] ) -> None: try: full_module_path = f"{package}.{adapter}.{Common.SRC_FOLDER}" module = import_module(full_module_path) metadata = getattr(module, Common.METADATA, {}) if metadata.get("is_active", False): adapter_class: OCRAdapter = metadata[Common.ADAPTER] adapter_id = adapter_class.get_id() if not adapter_id or (adapter_id in adapters): logger.warning(f"Duplicate Id : {adapter_id}") else: adapters[adapter_id] = { Common.MODULE: module, Common.METADATA: metadata, } except ModuleNotFoundError as exception: logger.warning(f"Unable to import ocr adapters : {exception}")
1,947
Python
.py
41
36.97561
86
0.629474
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,741
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/ocr/google_document_ai/src/__init__.py
from .google_document_ai import GoogleDocumentAI metadata = { "name": GoogleDocumentAI.__name__, "version": "1.0.0", "adapter": GoogleDocumentAI, "description": "Google Document AI OCR adapter", "is_active": True, }
237
Python
.py
8
26
52
0.684211
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,742
google_document_ai.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/ocr/google_document_ai/src/google_document_ai.py
import base64 import json import logging import os from typing import Any, Optional import requests from filetype import filetype from google.auth.transport import requests as google_requests from google.oauth2.service_account import Credentials from unstract.sdk.adapters.exceptions import AdapterError from unstract.sdk.adapters.ocr.constants import FileType from unstract.sdk.adapters.ocr.ocr_adapter import OCRAdapter logger = logging.getLogger(__name__) class GoogleDocumentAIKey: RAW_DOCUMENT = "rawDocument" MIME_TYPE = "mimeType" CONTENT = "content" SKIP_HUMAN_REVIEW = "skipHumanReview" FIELD_MASK = "fieldMask" class Constants: URL = "url" CREDENTIALS = "credentials" CREDENTIAL_SCOPES = ["https://www.googleapis.com/auth/cloud-platform"] class GoogleDocumentAI(OCRAdapter): def __init__(self, settings: dict[str, Any]): super().__init__("GoogleDocumentAI") self.config = settings google_service_account = self.config.get(Constants.CREDENTIALS) if not google_service_account: logger.error("Google service account not found") else: self.google_service_account = json.loads(google_service_account) @staticmethod def get_id() -> str: return "googledocumentai|1013f64b-ecc9-4e35-b986-aebd60fb55d7" @staticmethod def get_name() -> str: return "GoogleDocumentAI" @staticmethod def get_description() -> str: return "Google Document AI OCR" @staticmethod def get_icon() -> str: return "/icons/adapter-icons/GoogleDocumentAI.png" @staticmethod def get_json_schema() -> str: f = open(f"{os.path.dirname(__file__)}/static/json_schema.json") schema = f.read() f.close() return schema """ Construct the request body to be sent to Google AI Document server """ def _get_request_body( self, file_type_mime: str, file_content_in_bytes: bytes ) -> dict[str, Any]: return { GoogleDocumentAIKey.RAW_DOCUMENT: { GoogleDocumentAIKey.MIME_TYPE: file_type_mime, GoogleDocumentAIKey.CONTENT: base64.b64encode( file_content_in_bytes ).decode("utf-8"), }, GoogleDocumentAIKey.SKIP_HUMAN_REVIEW: True, GoogleDocumentAIKey.FIELD_MASK: "text", } """ Construct the request headers to be sent to Google AI Document server """ def _get_request_headers(self) -> dict[str, Any]: credentials = Credentials.from_service_account_info( self.google_service_account, scopes=Constants.CREDENTIAL_SCOPES ) # type: ignore credentials.refresh(google_requests.Request()) # type: ignore return { "Content-Type": "application/json; charset=utf-8", "Authorization": f"Bearer {credentials.token}", } """ Detect the mime type from the file content """ def _get_input_file_type_mime(self, input_file_path: str) -> str: with open(input_file_path, mode="rb") as file_obj: sample_contents = file_obj.read(100) file_type = filetype.guess(sample_contents) file_type_mime: str = file_type.MIME if file_type else FileType.TEXT_PLAIN if file_type_mime not in FileType.ALLOWED_TYPES: logger.error("Input file type not supported: " f"{file_type_mime}") logger.info(f"file: `{input_file_path} [{file_type_mime}]`\n\n") return file_type_mime def process( self, input_file_path: str, output_file_path: Optional[str] = None ) -> str: try: file_type_mime = self._get_input_file_type_mime(input_file_path) if os.path.isfile(input_file_path): with open(input_file_path, "rb") as fop: file_content_in_bytes: bytes = fop.read() else: raise AdapterError(f"File not found {input_file_path}") processor_url = self.config.get(Constants.URL, "") + ":process" headers = self._get_request_headers() data = self._get_request_body( file_type_mime=file_type_mime, file_content_in_bytes=file_content_in_bytes, ) response = requests.post(processor_url, headers=headers, json=data) if response.status_code != 200: logger.error(f"Error while calling Google Document AI: {response.text}") response_json: dict[str, Any] = response.json() result_text: str = response_json["document"]["text"] if output_file_path is not None: with open(output_file_path, "w", encoding="utf-8") as f: f.write(result_text) f.close() return result_text except Exception as e: logger.error(f"Error while processing document {e}") if not isinstance(e, AdapterError): raise AdapterError(str(e)) else: raise e finally: if fop is not None: fop.close() def test_connection(self) -> bool: try: url = self.config.get(Constants.URL, "") headers = self._get_request_headers() response = requests.get(url, headers=headers) if response.status_code != 200: logger.error(f"Error while testing Google Document AI: {response.text}") raise AdapterError(f"{response.status_code} - {response.reason}") else: return True except Exception as e: logger.error(f"Error occured while testing adapter {e}") if not isinstance(e, AdapterError): raise AdapterError(str(e)) else: raise e
5,861
Python
.py
136
33.279412
88
0.618989
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,743
llm_adapter.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/llm_adapter.py
import logging import re from abc import ABC, abstractmethod from typing import Optional from llama_index.core.llms import LLM, MockLLM from unstract.sdk.adapters.base import Adapter from unstract.sdk.adapters.enums import AdapterTypes from unstract.sdk.adapters.exceptions import LLMError logger = logging.getLogger(__name__) class LLMAdapter(Adapter, ABC): def __init__(self, name: str): super().__init__(name) self.name = name @staticmethod def get_id() -> str: return "" @staticmethod def get_name() -> str: return "" @staticmethod def get_description() -> str: return "" @staticmethod @abstractmethod def get_provider() -> str: pass @staticmethod def get_icon() -> str: return "" @staticmethod def get_json_schema() -> str: return "" @staticmethod def get_adapter_type() -> AdapterTypes: return AdapterTypes.LLM @staticmethod def parse_llm_err(e: Exception) -> LLMError: """Parse the error from an LLM provider. Helps parse errors from a provider and wraps with custom exception. Args: e (Exception): Exception from LLM provider Returns: LLMError: Error to be sent to the user """ return LLMError(str(e)) def get_llm_instance(self) -> LLM: """Instantiate the llama index LLM class. Returns: LLM: llama index implementation of the LLM Raises exceptions for any error """ return MockLLM() @staticmethod def _test_llm_instance(llm: Optional[LLM]) -> bool: if llm is None: return False response = llm.complete( "The capital of Tamilnadu is ", temperature=0.003, ) response_lower_case: str = response.text.lower() find_match = re.search("chennai", response_lower_case) if find_match: return True else: return False def test_connection(self) -> bool: try: llm = self.get_llm_instance() test_result: bool = self._test_llm_instance(llm=llm) except Exception as e: # Avoids circular import errors from unstract.sdk.adapters.llm.exceptions import parse_llm_err err = parse_llm_err(e) msg = f"Error while testing LLM '{self.get_name()}'. {str(err)}" err.message = msg raise err from e return test_result def get_context_window_size(self) -> int: """Get the context window size supported by the LLM. Note: None of the derived classes implement this method Returns: int: Context window size supported by the LLM """ context_window_size: int = 0 llm = self.get_llm_instance() if llm: context_window_size = llm.metadata.context_window return context_window_size
2,992
Python
.py
89
25.426966
76
0.615144
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,744
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/__init__.py
from unstract.sdk.adapters import AdapterDict from unstract.sdk.adapters.llm.register import LLMRegistry adapters: AdapterDict = {} LLMRegistry.register_adapters(adapters)
173
Python
.py
4
42
58
0.863095
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,745
exceptions.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/exceptions.py
from anthropic import APIError as AnthropicAPIError from google.api_core.exceptions import GoogleAPICallError from mistralai.exceptions import MistralException from openai import APIError as OpenAIAPIError from vertexai.generative_models import ResponseValidationError from unstract.sdk.adapters.exceptions import LLMError from unstract.sdk.adapters.llm.anthropic.src import AnthropicLLM from unstract.sdk.adapters.llm.mistral.src import MistralLLM from unstract.sdk.adapters.llm.open_ai.src import OpenAILLM from unstract.sdk.adapters.llm.palm.src import PaLMLLM from unstract.sdk.adapters.llm.vertex_ai.src import VertexAILLM def parse_llm_err(e: Exception) -> LLMError: """Parses the exception from LLM provider. Helps parse the LLM error and wraps it with our custom exception object to contain a user friendly message. Args: e (Exception): Error from LLM provider Returns: LLMError: Unstract's LLMError object """ if isinstance(e, ResponseValidationError): return VertexAILLM.parse_llm_err(e) elif isinstance(e, OpenAIAPIError): return OpenAILLM.parse_llm_err(e) elif isinstance(e, AnthropicAPIError): return AnthropicLLM.parse_llm_err(e) elif isinstance(e, MistralException): return MistralLLM.parse_llm_err(e) elif isinstance(e, GoogleAPICallError): return PaLMLLM.parse_llm_err(e) return LLMError(str(e))
1,423
Python
.py
31
41.354839
64
0.784271
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,746
register.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/register.py
import logging import os from importlib import import_module from typing import Any from unstract.sdk.adapters.constants import Common from unstract.sdk.adapters.llm.llm_adapter import LLMAdapter from unstract.sdk.adapters.registry import AdapterRegistry logger = logging.getLogger(__name__) class LLMRegistry(AdapterRegistry): @staticmethod def register_adapters(adapters: dict[str, Any]) -> None: current_directory = os.path.dirname(os.path.abspath(__file__)) package = "unstract.sdk.adapters.llm" for adapter in os.listdir(current_directory): adapter_path = os.path.join(current_directory, adapter, Common.SRC_FOLDER) # Check if the item is a directory and not a # special directory like _pycache__ if os.path.isdir(adapter_path) and not adapter.startswith("__"): LLMRegistry._build_adapter_list(adapter, package, adapters) if len(adapters) == 0: logger.warning("No llm adapter found.") @staticmethod def _build_adapter_list( adapter: str, package: str, adapters: dict[str, Any] ) -> None: try: full_module_path = f"{package}.{adapter}.{Common.SRC_FOLDER}" module = import_module(full_module_path) metadata = getattr(module, Common.METADATA, {}) if metadata.get("is_active", False): adapter_class: LLMAdapter = metadata[Common.ADAPTER] adapter_id = adapter_class.get_id() if not adapter_id or (adapter_id in adapters): logger.warning(f"Duplicate Id : {adapter_id}") else: adapters[adapter_id] = { Common.MODULE: module, Common.METADATA: metadata, } except ModuleNotFoundError as exception: logger.warning(f"Unable to import llm adapters : {exception}")
1,946
Python
.py
41
36.95122
86
0.629805
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,747
anthropic.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/anthropic/src/anthropic.py
import os from typing import Any from anthropic import APIError from llama_index.core.llms import LLM from llama_index.llms.anthropic import Anthropic from llama_index.llms.anthropic.base import DEFAULT_ANTHROPIC_MAX_TOKENS from unstract.sdk.adapters.exceptions import AdapterError, LLMError from unstract.sdk.adapters.llm.constants import LLMKeys from unstract.sdk.adapters.llm.llm_adapter import LLMAdapter class Constants: MODEL = "model" API_KEY = "api_key" TIMEOUT = "timeout" MAX_RETRIES = "max_retries" MAX_TOKENS = "max_tokens" class AnthropicLLM(LLMAdapter): def __init__(self, settings: dict[str, Any]): super().__init__("Anthropic") self.config = settings @staticmethod def get_id() -> str: return "anthropic|90ebd4cd-2f19-4cef-a884-9eeb6ac0f203" @staticmethod def get_name() -> str: return "Anthropic" @staticmethod def get_description() -> str: return "Anthropic LLM" @staticmethod def get_provider() -> str: return "anthropic" @staticmethod def get_icon() -> str: return "/icons/adapter-icons/Anthropic.png" @staticmethod def get_json_schema() -> str: f = open(f"{os.path.dirname(__file__)}/static/json_schema.json") schema = f.read() f.close() return schema def get_llm_instance(self) -> LLM: max_tokens = int( self.config.get(Constants.MAX_TOKENS, DEFAULT_ANTHROPIC_MAX_TOKENS) ) try: llm: LLM = Anthropic( model=str(self.config.get(Constants.MODEL)), api_key=str(self.config.get(Constants.API_KEY)), timeout=float( self.config.get(Constants.TIMEOUT, LLMKeys.DEFAULT_TIMEOUT) ), max_retries=int( self.config.get(Constants.MAX_RETRIES, LLMKeys.DEFAULT_MAX_RETRIES) ), temperature=0, max_tokens=max_tokens, ) return llm except Exception as e: raise AdapterError(str(e)) @staticmethod def parse_llm_err(e: APIError) -> LLMError: """Parse the error from Anthropic. Helps parse errors from Anthropic and wraps with custom exception. Args: e (AnthropicAPIError): Exception from Anthropic Returns: LLMError: Error to be sent to the user """ msg = "Error from Anthropic. " if hasattr(e, "body"): if isinstance(e.body, dict) and "error" in e.body: err = e.body["error"] msg += err.get("message", e.message) else: msg += e.message return LLMError(msg)
2,759
Python
.py
77
27.025974
87
0.612383
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,748
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/anthropic/src/__init__.py
from .anthropic import AnthropicLLM metadata = { "name": AnthropicLLM.__name__, "version": "1.0.0", "adapter": AnthropicLLM, "description": "Anthropic LLM adapter", "is_active": True, } __all__ = ["AnthropicLLM"]
235
Python
.py
9
22.666667
43
0.647321
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,749
vertex_ai.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/vertex_ai/src/vertex_ai.py
import json import logging import os from typing import Any from google.auth.transport import requests as google_requests from google.oauth2.service_account import Credentials from llama_index.core.llms import LLM from llama_index.llms.vertex import Vertex from vertexai.generative_models import Candidate, FinishReason, ResponseValidationError from vertexai.generative_models._generative_models import ( HarmBlockThreshold, HarmCategory, ) from unstract.sdk.adapters.exceptions import LLMError from unstract.sdk.adapters.llm.constants import LLMKeys from unstract.sdk.adapters.llm.llm_adapter import LLMAdapter logger = logging.getLogger(__name__) class Constants: MODEL = "model" PROJECT = "project" JSON_CREDENTIALS = "json_credentials" MAX_RETRIES = "max_retries" MAX_TOKENS = "max_tokens" DEFAULT_MAX_TOKENS = 2048 BLOCK_ONLY_HIGH = "BLOCK_ONLY_HIGH" class SafetySettingsConstants: SAFETY_SETTINGS = "safety_settings" DANGEROUS_CONTENT = "dangerous_content" HATE_SPEECH = "hate_speech" HARASSMENT = "harassment" SEXUAL_CONTENT = "sexual_content" OTHER = "other" UNSTRACT_VERTEX_SAFETY_THRESHOLD_MAPPING: dict[str, HarmBlockThreshold] = { "HARM_BLOCK_THRESHOLD_UNSPECIFIED": HarmBlockThreshold.HARM_BLOCK_THRESHOLD_UNSPECIFIED, # noqa: E501 "BLOCK_LOW_AND_ABOVE": HarmBlockThreshold.BLOCK_LOW_AND_ABOVE, "BLOCK_MEDIUM_AND_ABOVE": HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE, "BLOCK_ONLY_HIGH": HarmBlockThreshold.BLOCK_ONLY_HIGH, "BLOCK_NONE": HarmBlockThreshold.BLOCK_NONE, } class VertexAILLM(LLMAdapter): def __init__(self, settings: dict[str, Any]): super().__init__("VertexAILLM") self.config = settings @staticmethod def get_id() -> str: return "vertexai|78fa17a5-a619-47d4-ac6e-3fc1698fdb55" @staticmethod def get_name() -> str: return "VertexAI" @staticmethod def get_description() -> str: return "Vertex Gemini LLM" @staticmethod def get_provider() -> str: return "vertex_ai" @staticmethod def get_icon() -> str: return "/icons/adapter-icons/VertexAI.png" @staticmethod def get_json_schema() -> str: f = open(f"{os.path.dirname(__file__)}/static/json_schema.json") schema = f.read() f.close() return schema def get_llm_instance(self) -> LLM: input_credentials = self.config.get(Constants.JSON_CREDENTIALS, "{}") try: json_credentials = json.loads(input_credentials) except json.JSONDecodeError: raise LLMError( "Credentials is not a valid service account JSON, " "please provide a valid JSON." ) credentials = Credentials.from_service_account_info( info=json_credentials, scopes=["https://www.googleapis.com/auth/cloud-platform"], ) # type: ignore credentials.refresh(google_requests.Request()) # type: ignore max_retries = int( self.config.get(Constants.MAX_RETRIES, LLMKeys.DEFAULT_MAX_RETRIES) ) max_tokens = int( self.config.get(Constants.MAX_TOKENS, Constants.DEFAULT_MAX_TOKENS) ) safety_settings_default_config: dict[str, str] = { SafetySettingsConstants.DANGEROUS_CONTENT: Constants.BLOCK_ONLY_HIGH, SafetySettingsConstants.HATE_SPEECH: Constants.BLOCK_ONLY_HIGH, SafetySettingsConstants.HARASSMENT: Constants.BLOCK_ONLY_HIGH, SafetySettingsConstants.SEXUAL_CONTENT: Constants.BLOCK_ONLY_HIGH, SafetySettingsConstants.OTHER: Constants.BLOCK_ONLY_HIGH, } safety_settings_user_config: dict[str, str] = self.config.get( SafetySettingsConstants.SAFETY_SETTINGS, safety_settings_default_config, ) vertex_safety_settings: dict[ HarmCategory, HarmBlockThreshold ] = self._get_vertex_safety_settings(safety_settings_user_config) llm: LLM = Vertex( project=str(self.config.get(Constants.PROJECT)), model=str(self.config.get(Constants.MODEL)), credentials=credentials, temperature=0, max_retries=max_retries, max_tokens=max_tokens, safety_settings=vertex_safety_settings, ) return llm def _get_vertex_safety_settings( self, safety_settings_user_config: dict[str, str] ) -> dict[HarmCategory, HarmBlockThreshold]: vertex_safety_settings: dict[HarmCategory, HarmBlockThreshold] = dict() vertex_safety_settings[ HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT ] = UNSTRACT_VERTEX_SAFETY_THRESHOLD_MAPPING[ ( safety_settings_user_config.get( SafetySettingsConstants.DANGEROUS_CONTENT, Constants.BLOCK_ONLY_HIGH, ) ) ] vertex_safety_settings[ HarmCategory.HARM_CATEGORY_HATE_SPEECH ] = UNSTRACT_VERTEX_SAFETY_THRESHOLD_MAPPING[ ( safety_settings_user_config.get( SafetySettingsConstants.HATE_SPEECH, Constants.BLOCK_ONLY_HIGH, ) ) ] vertex_safety_settings[ HarmCategory.HARM_CATEGORY_HARASSMENT ] = UNSTRACT_VERTEX_SAFETY_THRESHOLD_MAPPING[ ( safety_settings_user_config.get( SafetySettingsConstants.HARASSMENT, Constants.BLOCK_ONLY_HIGH, ) ) ] vertex_safety_settings[ HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT ] = UNSTRACT_VERTEX_SAFETY_THRESHOLD_MAPPING[ ( safety_settings_user_config.get( SafetySettingsConstants.SEXUAL_CONTENT, Constants.BLOCK_ONLY_HIGH, ) ) ] vertex_safety_settings[ HarmCategory.HARM_CATEGORY_UNSPECIFIED ] = UNSTRACT_VERTEX_SAFETY_THRESHOLD_MAPPING[ ( safety_settings_user_config.get( SafetySettingsConstants.OTHER, Constants.BLOCK_ONLY_HIGH ) ) ] return vertex_safety_settings @staticmethod def parse_llm_err(e: ResponseValidationError) -> LLMError: """Parse the error from Vertex AI. Helps parse and raise errors from Vertex AI. https://ai.google.dev/api/generate-content#generatecontentresponse Args: e (ResponseValidationError): Exception from Vertex AI Returns: LLMError: Error to be sent to the user """ assert len(e.responses) == 1, ( "Expected e.responses to contain a single element " "since its a completion call and not chat." ) resp = e.responses[0] candidates: list["Candidate"] = resp.candidates if not candidates: msg = str(resp.prompt_feedback) reason_messages = { FinishReason.MAX_TOKENS: ( "The maximum number of tokens for the LLM has been reached. Please " "either tweak your prompts or try using another LLM." ), FinishReason.STOP: ( "The LLM stopped generating a response due to the natural stop " "point of the model or a provided stop sequence." ), FinishReason.SAFETY: "The LLM response was flagged for safety reasons.", FinishReason.RECITATION: ( "The LLM response was flagged for recitation reasons." ), FinishReason.BLOCKLIST: ( "The LLM response generation was stopped because it " "contains forbidden terms." ), FinishReason.PROHIBITED_CONTENT: ( "The LLM response generation was stopped because it " "potentially contains prohibited content." ), FinishReason.SPII: ( "The LLM response generation was stopped because it potentially " "contains Sensitive Personally Identifiable Information." ), } err_list = [] for candidate in candidates: reason: FinishReason = candidate.finish_reason if candidate.finish_message: err_msg = candidate.finish_message else: err_msg = reason_messages.get(reason, str(candidate)) err_list.append(err_msg) msg = "\n\nAnother error: \n".join(err_list) return LLMError(msg)
8,751
Python
.py
216
30.310185
106
0.625602
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,750
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/vertex_ai/src/__init__.py
from .vertex_ai import VertexAILLM metadata = { "name": VertexAILLM.__name__, "version": "1.0.0", "adapter": VertexAILLM, "description": "VertexAI LLM adapter", "is_active": True, } __all__ = ["VertexAILLM"]
230
Python
.py
9
22.111111
42
0.634703
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,751
bedrock.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/bedrock/src/bedrock.py
import os from typing import Any, Optional from llama_index.core.llms import LLM from llama_index.llms.bedrock import Bedrock from unstract.sdk.adapters.exceptions import AdapterError from unstract.sdk.adapters.llm.constants import LLMKeys from unstract.sdk.adapters.llm.llm_adapter import LLMAdapter class Constants: MODEL = "model" API_KEY = "api_key" TIMEOUT = "timeout" MAX_RETRIES = "max_retries" SECRET_ACCESS_KEY = "aws_secret_access_key" ACCESS_KEY_ID = "aws_access_key_id" REGION_NAME = "region_name" CONTEXT_SIZE = "context_size" MAX_TOKENS = "max_tokens" DEFAULT_MAX_TOKENS = 512 # Default at llama-index class BedrockLLM(LLMAdapter): def __init__(self, settings: dict[str, Any]): super().__init__("Bedrock") self.config = settings @staticmethod def get_id() -> str: return "bedrock|8d18571f-5e96-4505-bd28-ad0379c64064" @staticmethod def get_name() -> str: return "Bedrock" @staticmethod def get_description() -> str: return "Bedrock LLM" @staticmethod def get_provider() -> str: return "bedrock" @staticmethod def get_icon() -> str: return "/icons/adapter-icons/Bedrock.png" @staticmethod def get_json_schema() -> str: f = open(f"{os.path.dirname(__file__)}/static/json_schema.json") schema = f.read() f.close() return schema def get_llm_instance(self) -> LLM: try: context_size: Optional[int] = ( int(self.config.get(Constants.CONTEXT_SIZE, 0)) if self.config.get(Constants.CONTEXT_SIZE) else None ) max_tokens = int( self.config.get(Constants.MAX_TOKENS, Constants.DEFAULT_MAX_TOKENS) ) llm: LLM = Bedrock( model=self.config.get(Constants.MODEL), aws_access_key_id=self.config.get(Constants.ACCESS_KEY_ID), aws_secret_access_key=self.config.get(Constants.SECRET_ACCESS_KEY), region_name=self.config.get(Constants.REGION_NAME), timeout=float( self.config.get(Constants.TIMEOUT, LLMKeys.DEFAULT_TIMEOUT) ), max_retries=int( self.config.get(Constants.MAX_RETRIES, LLMKeys.DEFAULT_MAX_RETRIES) ), temperature=0, context_size=context_size, max_tokens=max_tokens, ) return llm except Exception as e: raise AdapterError(str(e))
2,626
Python
.py
71
27.690141
87
0.607002
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,752
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/bedrock/src/__init__.py
from .bedrock import BedrockLLM metadata = { "name": BedrockLLM.__name__, "version": "1.0.0", "adapter": BedrockLLM, "description": "Bedrock LLM adapter", "is_active": True, } __all__ = ["BedrockLLM"]
223
Python
.py
9
21.333333
41
0.627358
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,753
palm.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/palm/src/palm.py
import os from typing import Any, Optional from google.api_core.exceptions import GoogleAPICallError from llama_index.core.llms import LLM from llama_index.llms.palm import PaLM from unstract.sdk.adapters.llm.llm_adapter import LLMAdapter from unstract.sdk.exceptions import LLMError class Constants: MODEL = "model_name" API_KEY = "api_key" NUM_OUTPUT = "num_output" API_TYPE = "palm" DEFAULT_MAX_TOKENS = 1024 class PaLMLLM(LLMAdapter): def __init__(self, settings: dict[str, Any]): super().__init__("PaLM") self.config = settings @staticmethod def get_id() -> str: return "palm|af7c8ee7-3d01-47c5-9b81-5ffd7546014b" @staticmethod def get_name() -> str: return "Palm" @staticmethod def get_description() -> str: return "Palm LLM" @staticmethod def get_provider() -> str: return "palm" @staticmethod def get_icon() -> str: return "/icons/adapter-icons/PaLM.png" @staticmethod def get_json_schema() -> str: f = open(f"{os.path.dirname(__file__)}/static/json_schema.json") schema = f.read() f.close() return schema def get_llm_instance(self) -> LLM: try: num_output: Optional[int] = ( int(self.config.get(Constants.NUM_OUTPUT, Constants.DEFAULT_MAX_TOKENS)) if self.config.get(Constants.NUM_OUTPUT) is not None else None ) llm: LLM = PaLM( model=str(self.config.get(Constants.MODEL)), api_key=str(self.config.get(Constants.API_KEY)), num_output=num_output, api_type=Constants.API_TYPE, temperature=0, ) return llm except Exception as e: # To avoid circular import errors from unstract.sdk.adapters.llm.exceptions import parse_llm_err raise parse_llm_err(e) @staticmethod def parse_llm_err(e: GoogleAPICallError) -> LLMError: """Parse the error from PaLM. Helps parse errors from PaLM and wraps with custom exception. Args: e (OpenAIAPIError): Exception from PaLM Returns: LLMError: Error to be sent to the user """ return LLMError(f"Error from PaLM. {e.message}")
2,366
Python
.py
67
26.80597
88
0.614912
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,754
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/palm/src/__init__.py
from .palm import PaLMLLM metadata = { "name": PaLMLLM.__name__, "version": "1.0.0", "adapter": PaLMLLM, "description": "Palm LLM adapter", "is_active": True, } __all__ = ["PaLMLLM"]
205
Python
.py
9
19.333333
38
0.592784
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,755
replicate.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/replicate/src/replicate.py
import os from typing import Any from llama_index.core.llms import LLM from llama_index.llms.replicate import Replicate from unstract.sdk.adapters.exceptions import AdapterError from unstract.sdk.adapters.llm.llm_adapter import LLMAdapter class Constants: MODEL = "model" API_KEY = "api_key" class ReplicateLLM(LLMAdapter): def __init__(self, settings: dict[str, Any]): super().__init__("Replicate") self.config = settings @staticmethod def get_id() -> str: return "replicate|2715ce84-05af-4ab4-b8e9-67ac3211b81e" @staticmethod def get_name() -> str: return "Replicate" @staticmethod def get_description() -> str: return "Replicate LLM" @staticmethod def get_provider() -> str: return "replicate" @staticmethod def get_icon() -> str: return "/icons/adapter-icons/Replicate.png" @staticmethod def get_json_schema() -> str: f = open(f"{os.path.dirname(__file__)}/static/json_schema.json") schema = f.read() f.close() return schema @staticmethod def can_write() -> bool: return True @staticmethod def can_read() -> bool: return True def get_llm_instance(self) -> LLM: try: llm: LLM = Replicate( model=str(self.config.get(Constants.MODEL)), prompt_key=str(self.config.get(Constants.API_KEY)), temperature=0, ) return llm except Exception as e: raise AdapterError(str(e))
1,578
Python
.py
50
24.34
72
0.62657
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,756
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/replicate/src/__init__.py
from .replicate import ReplicateLLM metadata = { "name": ReplicateLLM.__name__, "version": "1.0.0", "adapter": ReplicateLLM, "description": "Replicate LLM adapter", "is_active": True, } __all__ = ["ReplicateLLM"]
235
Python
.py
9
22.666667
43
0.647321
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,757
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/open_ai/src/__init__.py
from .open_ai import OpenAILLM metadata = { "name": OpenAILLM.__name__, "version": "1.0.0", "adapter": OpenAILLM, "description": "OpenAI LLM adapter", "is_active": True, } __all__ = ["OpenAILLM"]
218
Python
.py
9
20.777778
40
0.613527
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,758
open_ai.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/open_ai/src/open_ai.py
import os from typing import Any from llama_index.core.llms import LLM from llama_index.llms.openai import OpenAI from openai import APIError as OpenAIAPIError from openai import RateLimitError as OpenAIRateLimitError from unstract.sdk.adapters.exceptions import AdapterError from unstract.sdk.adapters.llm.constants import LLMKeys from unstract.sdk.adapters.llm.llm_adapter import LLMAdapter from unstract.sdk.exceptions import LLMError, RateLimitError class Constants: MODEL = "model" API_KEY = "api_key" MAX_RETRIES = "max_retries" ADAPTER_NAME = "adapter_name" TIMEOUT = "timeout" API_BASE = "api_base" API_VERSION = "api_version" MAX_TOKENS = "max_tokens" class OpenAILLM(LLMAdapter): def __init__(self, settings: dict[str, Any]): super().__init__("OpenAI") self.config = settings @staticmethod def get_id() -> str: return "openai|502ecf49-e47c-445c-9907-6d4b90c5cd17" @staticmethod def get_name() -> str: return "OpenAI" @staticmethod def get_description() -> str: return "OpenAI LLM" @staticmethod def get_provider() -> str: return "openai" @staticmethod def get_icon() -> str: return "/icons/adapter-icons/OpenAI.png" @staticmethod def get_json_schema() -> str: f = open(f"{os.path.dirname(__file__)}/static/json_schema.json") schema = f.read() f.close() return schema def get_llm_instance(self) -> LLM: try: max_tokens = self.config.get(Constants.MAX_TOKENS) max_tokens = int(max_tokens) if max_tokens else None llm: LLM = OpenAI( model=str(self.config.get(Constants.MODEL)), api_key=str(self.config.get(Constants.API_KEY)), api_base=str(self.config.get(Constants.API_BASE)), api_version=str(self.config.get(Constants.API_VERSION)), max_retries=int( self.config.get(Constants.MAX_RETRIES, LLMKeys.DEFAULT_MAX_RETRIES) ), api_type="openai", temperature=0, timeout=float( self.config.get(Constants.TIMEOUT, LLMKeys.DEFAULT_TIMEOUT) ), max_tokens=max_tokens, ) return llm except Exception as e: raise AdapterError(str(e)) @staticmethod def parse_llm_err(e: OpenAIAPIError) -> LLMError: """Parse the error from OpenAI. Helps parse errors from OpenAI and wraps with custom exception. Args: e (OpenAIAPIError): Exception from OpenAI Returns: LLMError: Error to be sent to the user """ msg = "Error from OpenAI. " if hasattr(e, "body") and isinstance(e.body, dict) and "message" in e.body: msg += e.body["message"] else: msg += e.message if isinstance(e, OpenAIRateLimitError): return RateLimitError(msg) return LLMError(msg)
3,073
Python
.py
83
28.253012
87
0.619913
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,759
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/ollama/src/__init__.py
from .ollama import OllamaLLM metadata = { "name": OllamaLLM.__name__, "version": "1.0.0", "adapter": OllamaLLM, "description": "Ollama LLM adapter", "is_active": True, } __all__ = ["OllamaLLM"]
217
Python
.py
9
20.666667
40
0.616505
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,760
ollama.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/ollama/src/ollama.py
import logging import os import re from typing import Any from httpx import ConnectError, HTTPStatusError from llama_index.core.llms import LLM from llama_index.llms.ollama import Ollama from unstract.sdk.adapters.exceptions import AdapterError from unstract.sdk.adapters.llm.constants import LLMKeys from unstract.sdk.adapters.llm.llm_adapter import LLMAdapter logger = logging.getLogger(__name__) class Constants: MODEL = "model" API_KEY = "api_key" TIMEOUT = "timeout" BASE_URL = "base_url" JSON_MODE = "json_mode" CONTEXT_WINDOW = "context_window" MODEL_MISSING_ERROR = "try pulling it first" class OllamaLLM(LLMAdapter): def __init__(self, settings: dict[str, Any]): super().__init__("Ollama") self.config = settings @staticmethod def get_id() -> str: return "ollama|4b8bd31a-ce42-48d4-9d69-f29c12e0f276" @staticmethod def get_name() -> str: return "Ollama" @staticmethod def get_description() -> str: return "Ollama AI LLM" @staticmethod def get_provider() -> str: return "ollama" @staticmethod def get_icon() -> str: return "/icons/adapter-icons/ollama.png" @staticmethod def get_json_schema() -> str: f = open(f"{os.path.dirname(__file__)}/static/json_schema.json") schema = f.read() f.close() return schema def get_llm_instance(self) -> LLM: try: llm: LLM = Ollama( model=str(self.config.get(Constants.MODEL)), base_url=str(self.config.get(Constants.BASE_URL)), request_timeout=float( self.config.get(Constants.TIMEOUT, LLMKeys.DEFAULT_TIMEOUT) ), json_mode=False, context_window=int(self.config.get(Constants.CONTEXT_WINDOW, 3900)), temperature=0.01, ) return llm except ConnectError as connec_err: logger.error(f"Ollama server not running : {connec_err}") raise AdapterError( "Unable to connect to Ollama`s Server, " "please check if the server is up and running or" "if it is accepting connections." ) except Exception as exc: logger.error(f"Error occured while getting llm instance:{exc}") raise AdapterError(str(exc)) def test_connection(self) -> bool: try: llm = self.get_llm_instance() if not llm: return False response = llm.complete( "The capital of Tamilnadu is ", temperature=0.003, ) response_lower_case: str = response.text.lower() find_match = re.search("chennai", response_lower_case) if find_match: return True else: return False except HTTPStatusError as http_err: if http_err.response: if ( http_err.response.status_code == 404 and Constants.MODEL_MISSING_ERROR in http_err.response.text ): logger.error( f"Error occured while sending requst to the model{http_err}" ) raise AdapterError( "Model under use is not found. Try pulling it first." ) raise AdapterError( f"Some issue while communicating with the model. " f"Details : {http_err.response.text}" ) except Exception as e: logger.error(f"Error occured while testing adapter {e}") raise AdapterError(str(e))
3,774
Python
.py
101
26.613861
84
0.577681
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,761
azure_open_ai.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/azure_open_ai/src/azure_open_ai.py
import os from typing import Any from llama_index.core.llms import LLM from llama_index.llms.azure_openai import AzureOpenAI from unstract.sdk.adapters.exceptions import AdapterError from unstract.sdk.adapters.llm.constants import LLMKeys from unstract.sdk.adapters.llm.llm_adapter import LLMAdapter class Constants: MODEL = "model" DEPLOYMENT_NAME = "deployment_name" API_KEY = "api_key" API_VERSION = "api_version" MAX_RETRIES = "max_retries" MAX_TOKENS = "max_tokens" AZURE_ENDPONT = "azure_endpoint" API_TYPE = "azure" TIMEOUT = "timeout" DEFAULT_MODEL = "gpt-35-turbo" class AzureOpenAILLM(LLMAdapter): def __init__(self, settings: dict[str, Any]): super().__init__("AzureOpenAI") self.config = settings @staticmethod def get_id() -> str: return "azureopenai|592d84b9-fe03-4102-a17e-6b391f32850b" @staticmethod def get_name() -> str: return "AzureOpenAI" @staticmethod def get_description() -> str: return "AzureOpenAI LLM" @staticmethod def get_provider() -> str: return "azure" @staticmethod def get_icon() -> str: return "/icons/adapter-icons/AzureopenAI.png" @staticmethod def get_json_schema() -> str: f = open(f"{os.path.dirname(__file__)}/static/json_schema.json") schema = f.read() f.close() return schema def get_llm_instance(self) -> LLM: max_retries = int( self.config.get(Constants.MAX_RETRIES, LLMKeys.DEFAULT_MAX_RETRIES) ) max_tokens = self.config.get(Constants.MAX_TOKENS) max_tokens = int(max_tokens) if max_tokens else None try: llm: LLM = AzureOpenAI( model=self.config.get(Constants.MODEL, Constants.DEFAULT_MODEL), deployment_name=str(self.config.get(Constants.DEPLOYMENT_NAME)), api_key=str(self.config.get(Constants.API_KEY)), api_version=str(self.config.get(Constants.API_VERSION)), azure_endpoint=str(self.config.get(Constants.AZURE_ENDPONT)), api_type=Constants.API_TYPE, temperature=0, timeout=float( self.config.get(Constants.TIMEOUT, LLMKeys.DEFAULT_TIMEOUT) ), max_retries=max_retries, max_tokens=max_tokens, ) return llm except Exception as e: raise AdapterError(str(e))
2,508
Python
.py
67
28.955224
80
0.63056
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,762
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/azure_open_ai/src/__init__.py
from .azure_open_ai import AzureOpenAILLM metadata = { "name": AzureOpenAILLM.__name__, "version": "1.0.0", "adapter": AzureOpenAILLM, "description": "AzureOpenAI LLM adapter", "is_active": True, } __all__ = ["AzureOpenAILLM"]
249
Python
.py
9
24.222222
45
0.659664
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,763
no_op_llm.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/no_op/src/no_op_llm.py
import logging import os import time from typing import Any from llama_index.core.llms import LLM from unstract.sdk.adapters.llm.llm_adapter import LLMAdapter from unstract.sdk.adapters.llm.no_op.src.no_op_custom_llm import NoOpCustomLLM logger = logging.getLogger(__name__) class NoOpLLM(LLMAdapter): def __init__(self, settings: dict[str, Any]): super().__init__("NoOpLlm") self.config = settings @staticmethod def get_id() -> str: return "noOpLlm|f673a5a2-90f9-40f5-94c0-9fbc663b7553" @staticmethod def get_name() -> str: return "No Op LLM" @staticmethod def get_description() -> str: return "No Op LLM" @staticmethod def get_provider() -> str: return "noOpLlm" @staticmethod def get_icon() -> str: return "/icons/adapter-icons/noOpLlm.png" @staticmethod def get_json_schema() -> str: f = open(f"{os.path.dirname(__file__)}/static/json_schema.json") schema = f.read() f.close() return schema def get_llm_instance(self) -> LLM: llm: LLM = NoOpCustomLLM(wait_time=self.config.get("wait_time")) return llm def test_connection(self) -> bool: llm = self.get_llm_instance() if not llm: return False llm.complete( "The capital of Tamilnadu is ", temperature=0.003, ) time.sleep(self.config.get("wait_time")) return True
1,477
Python
.py
46
25.434783
78
0.633286
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,764
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/no_op/src/__init__.py
from unstract.sdk.adapters.llm.no_op.src.no_op_llm import NoOpLLM metadata = { "name": NoOpLLM.__name__, "version": "1.0.0", "adapter": NoOpLLM, "description": "NoOp LLM adapter", "is_active": True, } __all__ = ["NoOpLLM"]
245
Python
.py
9
23.777778
65
0.628205
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,765
no_op_custom_llm.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/no_op/src/no_op_custom_llm.py
import time from typing import Any from llama_index.core.base.llms.types import ( CompletionResponse, CompletionResponseGen, LLMMetadata, ) from llama_index.core.llms.custom import CustomLLM class NoOpCustomLLM(CustomLLM): wait_time: float def __init__( self, wait_time: float, ) -> None: wait_time = wait_time super().__init__(wait_time=wait_time) @classmethod def class_name(cls) -> str: return "NoOpLLM" def _generate_text(self) -> str: # Returns a JSON here to support for all enforce types. return '{ "response":"This is a sample response from a NoOp LLM Adapter."}' def complete( self, prompt: str, formatted: bool = False, **kwargs: Any ) -> CompletionResponse: time.sleep(self.wait_time) response_text = self._generate_text() return CompletionResponse( text=response_text, ) def stream_complete( self, prompt: str, formatted: bool = False, **kwargs: Any ) -> CompletionResponseGen: def gen_response() -> CompletionResponseGen: response_text = self._generate_text() yield CompletionResponse( text=response_text, delta=response_text, ) time.sleep(self.wait_time) return gen_response() @property def metadata(self) -> LLMMetadata: """Method to fetch LLM metadata. Overriden to extent Base class. Returns: LLMMetadata """ return LLMMetadata(num_output=-1)
1,586
Python
.py
48
25.25
83
0.624016
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,766
mistral.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/mistral/src/mistral.py
import os from typing import Any from llama_index.core.llms import LLM from llama_index.llms.mistralai import MistralAI from llama_index.llms.mistralai.base import DEFAULT_MISTRALAI_MAX_TOKENS from mistralai.exceptions import MistralException from unstract.sdk.adapters.exceptions import AdapterError from unstract.sdk.adapters.llm.constants import LLMKeys from unstract.sdk.adapters.llm.llm_adapter import LLMAdapter from unstract.sdk.exceptions import LLMError class Constants: MODEL = "model" API_KEY = "api_key" TIMEOUT = "timeout" MAX_RETRIES = "max_retries" MAX_TOKENS = "max_tokens" class MistralLLM(LLMAdapter): def __init__(self, settings: dict[str, Any]): super().__init__("Mistral") self.config = settings @staticmethod def get_id() -> str: return "mistral|00f766a5-6d6d-47ea-9f6c-ddb1e8a94e82" @staticmethod def get_name() -> str: return "Mistral AI" @staticmethod def get_description() -> str: return "Mistral AI LLM" @staticmethod def get_provider() -> str: return "mistral" @staticmethod def get_icon() -> str: return "/icons/adapter-icons/Mistral%20AI.png" @staticmethod def get_json_schema() -> str: f = open(f"{os.path.dirname(__file__)}/static/json_schema.json") schema = f.read() f.close() return schema def get_llm_instance(self) -> LLM: max_retries = int( self.config.get(Constants.MAX_RETRIES, LLMKeys.DEFAULT_MAX_RETRIES) ) max_tokens = int( self.config.get(Constants.MAX_RETRIES, DEFAULT_MISTRALAI_MAX_TOKENS) ) try: llm: LLM = MistralAI( model=str(self.config.get(Constants.MODEL)), api_key=str(self.config.get(Constants.API_KEY)), temperature=0, timeout=float( self.config.get(Constants.TIMEOUT, LLMKeys.DEFAULT_TIMEOUT) ), max_retries=max_retries, max_tokens=max_tokens, ) return llm except Exception as e: raise AdapterError(str(e)) @staticmethod def parse_llm_err(e: MistralException) -> LLMError: """Parse the error from MistralAI. Helps parse errors from MistralAI and wraps with custom exception. Args: e (OpenAIAPIError): Exception from MistralAI Returns: LLMError: Error to be sent to the user """ if e.message and e.message.find('"message":"Unauthorized"'): return LLMError("Incorrect API key, please check the API key provided.") return LLMError(f"Error from MistralAI. {e}")
2,746
Python
.py
74
28.905405
84
0.638795
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,767
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/mistral/src/__init__.py
from .mistral import MistralLLM metadata = { "name": MistralLLM.__name__, "version": "1.0.0", "adapter": MistralLLM, "description": "Mistral LLM adapter", "is_active": True, } __all__ = ["MistralLLM"]
223
Python
.py
9
21.333333
41
0.627358
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,768
__init__.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/any_scale/src/__init__.py
from .anyscale import AnyScaleLLM metadata = { "name": AnyScaleLLM.__name__, "version": "1.0.0", "adapter": AnyScaleLLM, "description": "AnyScale LLM adapter", "is_active": True, } __all__ = ["AnyScaleLLM"]
229
Python
.py
9
22
42
0.637615
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,769
anyscale.py
Zipstack_unstract-sdk/src/unstract/sdk/adapters/llm/any_scale/src/anyscale.py
import os from typing import Any from llama_index.core.constants import DEFAULT_NUM_OUTPUTS from llama_index.core.llms import LLM from llama_index.llms.anyscale import Anyscale from unstract.sdk.adapters.exceptions import AdapterError from unstract.sdk.adapters.llm.constants import LLMKeys from unstract.sdk.adapters.llm.llm_adapter import LLMAdapter class Constants: MODEL = "model" API_KEY = "api_key" API_BASE = "api_base" MAX_RETRIES = "max_retries" ADDITIONAL_KWARGS = "additional_kwargs" MAX_TOKENS = "max_tokens" class AnyScaleLLM(LLMAdapter): def __init__(self, settings: dict[str, Any]): super().__init__("AnyScale") self.config = settings @staticmethod def get_id() -> str: return "anyscale|adec9815-eabc-4207-9389-79cb89952639" @staticmethod def get_name() -> str: return "AnyScale" @staticmethod def get_description() -> str: return "AnyScale LLM" @staticmethod def get_provider() -> str: return "anyscale" @staticmethod def get_icon() -> str: return "/icons/adapter-icons/anyscale.png" @staticmethod def get_json_schema() -> str: f = open(f"{os.path.dirname(__file__)}/static/json_schema.json") schema = f.read() f.close() return schema def get_llm_instance(self) -> LLM: try: max_tokens = int(self.config.get(Constants.MAX_TOKENS, DEFAULT_NUM_OUTPUTS)) llm: LLM = Anyscale( model=str(self.config.get(Constants.MODEL)), api_key=str(self.config.get(Constants.API_KEY)), api_base=str(self.config.get(Constants.API_BASE)), additional_kwargs=self.config.get(Constants.ADDITIONAL_KWARGS), max_retries=int( self.config.get(Constants.MAX_RETRIES, LLMKeys.DEFAULT_MAX_RETRIES) ), temperature=0, max_tokens=max_tokens, ) return llm except Exception as e: raise AdapterError(str(e))
2,092
Python
.py
57
28.596491
88
0.635015
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,770
main.py
Zipstack_unstract-sdk/src/unstract/sdk/static/tool_template/v1/src/main.py
import sys from typing import Any from unstract.sdk.tool.base import BaseTool from unstract.sdk.tool.entrypoint import ToolEntrypoint # TODO: Rename tool's class class ConcreteTool(BaseTool): # TODO: Add any checks that need to be done before running the tool def validate(self, input_file: str, settings: dict[str, Any]) -> None: pass def run( self, settings: dict[str, Any], input_file: str, output_dir: str, ) -> None: # -------------- TODO: Add your code here ---------------- # 1. Read the input_file # 2. Process on its contents # 3. Write files to the output_dir which need to be copied to the # destination. # 4. Write the tool result TEXT or JSON # TODO: Write tool result of dict or str self.write_tool_result(data={}) if __name__ == "__main__": args = sys.argv[1:] # TODO: Rename tool's class tool = ConcreteTool.from_tool_args(args=args) ToolEntrypoint.launch(tool=tool, args=args)
1,039
Python
.py
28
31.035714
74
0.629851
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,771
tool_gen.py
Zipstack_unstract-sdk/src/unstract/sdk/scripts/tool_gen.py
#!/usr/bin/env python import argparse import shutil from importlib.resources import files from pathlib import Path def new_tool(args): tool_name = args.tool_name if tool_name is None: print("Tool name is required") exit(1) location = args.location if location is None: print("Location is required") exit(1) overwrite = args.overwrite print(f"Creating new tool {tool_name} at {location}") # Check if folder exists folder = Path(location).joinpath(tool_name) if folder.exists(): if overwrite: print("Folder exists, overwriting") else: print("Folder exists, exiting") exit(1) else: folder.mkdir(parents=True, exist_ok=True) source = Path(files("unstract.sdk").joinpath("static/tool_template/v1/")) print(f"Copying files from {source} to {folder}") # Copy all files in source to folder, recursively shutil.copytree(source, folder, dirs_exist_ok=True) def main() -> None: parser = argparse.ArgumentParser( prog="Unstract tool generator", description="Script to generate a new Unstract tool", epilog="Unstract SDK", ) parser.add_argument( "--command", type=str, help="Command to execute", required=True ) parser.add_argument( "--tool-name", type=str, help="Tool name", required=False ) parser.add_argument( "--location", type=str, help="Director to create the new tool in", required=False, ) parser.add_argument( "--overwrite", help="Overwrite existing tool", required=False, default=False, action="store_true", ) args = parser.parse_args() command = str.upper(args.command) if command == "NEW": try: new_tool(args) except Exception as e: print(f"Error creating new tool: {e}") exit(1) print("New tool created successfully") else: print("Command not supported") exit(1) if __name__ == "__main__": main()
2,102
Python
.py
69
23.608696
77
0.619753
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,772
test_ocr.py
Zipstack_unstract-sdk/tests/test_ocr.py
import json import logging import os import unittest from typing import Any from dotenv import load_dotenv from parameterized import parameterized from unstract.sdk.ocr import OCR from unstract.sdk.tool.base import BaseTool load_dotenv() logger = logging.getLogger(__name__) def get_test_values(env_key: str) -> list[str]: values = json.loads(os.environ.get(env_key)) return values def get_env_value(env_key: str) -> str: value = os.environ.get(env_key) return value class ToolOCRTest(unittest.TestCase): class MockTool(BaseTool): def run( self, params: dict[str, Any] = {}, settings: dict[str, Any] = {}, workflow_id: str = "", ) -> None: pass @classmethod def setUpClass(cls): cls.tool = cls.MockTool() @parameterized.expand(get_test_values("OCR_TEST_VALUES")) def test_get_ocr(self, adapter_instance_id): tool_ocr = OCR(tool=self.tool) ocr = tool_ocr.get_ocr(adapter_instance_id) result = ocr.test_connection() self.assertTrue(result) input_file = get_env_value("INPUT_FILE_PATH") output_file = get_env_value("OUTPUT_FILE_PATH") if os.path.isfile(output_file): os.remove(output_file) output = ocr.process(input_file, output_file) file_size = os.path.getsize(output_file) self.assertGreater(file_size, 0) if os.path.isfile(output_file): os.remove(output_file) with open(output_file, "w", encoding="utf-8") as f: f.write(output) f.close() file_size = os.path.getsize(output_file) self.assertGreater(file_size, 0) if __name__ == "__main__": unittest.main()
1,755
Python
.py
51
27.568627
61
0.63787
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,773
test_x2text.py
Zipstack_unstract-sdk/tests/test_x2text.py
import json import logging import os import unittest from typing import Any from dotenv import load_dotenv from parameterized import parameterized from unstract.sdk.tool.base import BaseTool from unstract.sdk.x2txt import X2Text load_dotenv() logger = logging.getLogger(__name__) def get_test_values(env_key: str) -> list[str]: values = json.loads(os.environ.get(env_key)) return values def get_env_value(env_key: str) -> str: value = os.environ.get(env_key) return value class ToolX2TextTest(unittest.TestCase): class MockTool(BaseTool): def run( self, params: dict[str, Any] = {}, settings: dict[str, Any] = {}, workflow_id: str = "", ) -> None: # Dummify method for dummy tool pass @classmethod def setUpClass(cls): cls.tool = cls.MockTool() @parameterized.expand(get_test_values("X2TEXT_TEST_VALUES")) def test_get_x2text(self, adapter_instance_id): tool_x2text = X2Text(tool=self.tool) x2text = tool_x2text.get_x2text(adapter_instance_id) self.assertIsNotNone(x2text) self.assertTrue(x2text.test_connection()) input_file = get_env_value("INPUT_FILE_PATH") output_file = get_env_value("OUTPUT_FILE_PATH") if os.path.isfile(output_file): os.remove(output_file) file_content = x2text.process(input_file, output_file) file_size = os.path.getsize(output_file) self.assertGreater(file_size, 0) if os.path.isfile(output_file): os.remove(output_file) with open(output_file, "w", encoding="utf-8") as f: f.write(file_content) f.close() file_size = os.path.getsize(output_file) self.assertGreater(file_size, 0) if __name__ == "__main__": unittest.main()
1,862
Python
.py
52
28.788462
64
0.647518
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,774
test_cache.py
Zipstack_unstract-sdk/tests/test_cache.py
import unittest from typing import Any from unstract.sdk.cache import ToolCache from unstract.sdk.tool.base import BaseTool # Requires the platform service to be run and # PLATFORM_SERVICE_API_KEY env to be set class UnstractToolCacheTest(unittest.TestCase): class MockTool(BaseTool): def run( self, params: dict[str, Any] = {}, settings: dict[str, Any] = {}, workflow_id: str = "", ) -> None: # self.stream_log("Mock tool running") pass @classmethod def setUpClass(cls): cls.tool = cls.MockTool() def test_set(self): cache = ToolCache( tool=self.tool, platform_host="http://localhost", platform_port=3001 ) result = cache.set(key="test_key", value="test_value") self.assertTrue(result) def test_get(self): cache = ToolCache( tool=self.tool, platform_host="http://localhost", platform_port=3001 ) cache.set(key="test_key", value="test_value") result = cache.get(key="test_key") self.assertEqual(result, "test_value") def test_delete(self): cache = ToolCache( tool=self.tool, platform_host="http://localhost", platform_port=3001 ) cache.set(key="test_key", value="test_value") result = cache.delete(key="test_key") self.assertTrue(result) result = cache.get(key="test_key") self.assertIsNone(result) if __name__ == "__main__": unittest.main()
1,539
Python
.py
43
27.883721
80
0.61197
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,775
test_vector_db.py
Zipstack_unstract-sdk/tests/test_vector_db.py
import json import logging import os import unittest from dotenv import load_dotenv from llama_index.core import MockEmbedding from llama_index.core.vector_stores.types import ( BasePydanticVectorStore, VectorStore, ) from parameterized import parameterized from unstract.adapters.vectordb.helper import VectorDBHelper from unstract.sdk.tool.base import BaseTool from unstract.sdk.vector_db import ToolVectorDB load_dotenv() logger = logging.getLogger(__name__) def get_test_values(env_key: str) -> list[str]: test_values = json.loads(os.environ.get(env_key)) return test_values class ToolVectorDBTest(unittest.TestCase): class MockTool(BaseTool): def run( self, ) -> None: self.stream_log("Mock tool running") def setUp(self) -> None: self.tool = self.MockTool() @parameterized.expand( get_test_values("VECTOR_DB_TEST_VALUES") # Works for Qdrant and Postgres ) def test_get_vector_db(self, adapter_instance_id: str) -> None: mock_embedding = MockEmbedding(embed_dim=1) unstract_tool_vector_db = ToolVectorDB(tool=self.tool) vector_store = unstract_tool_vector_db.get_vector_db( adapter_instance_id, mock_embedding.embed_dim ) self.assertIsNotNone(vector_store) self.assertIsInstance( vector_store, (BasePydanticVectorStore, VectorStore) ) result = VectorDBHelper.test_vector_db_instance(vector_store) self.assertEqual(result, True) if __name__ == "__main__": unittest.main()
1,589
Python
.py
45
29.577778
69
0.706074
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,776
test_embedding.py
Zipstack_unstract-sdk/tests/test_embedding.py
import json import os import unittest from dotenv import load_dotenv from llama_index.core.embeddings import BaseEmbedding from parameterized import parameterized from unstract.sdk.embedding import ToolEmbedding from unstract.sdk.tool.base import BaseTool load_dotenv() def get_test_values(env_key: str) -> list[str]: test_values = json.loads(os.environ.get(env_key)) return test_values class ToolEmbeddingTest(unittest.TestCase): TEST_SNIPPET = "Hello, I am Unstract" class MockTool(BaseTool): def run( self, ) -> None: self.stream_log("Mock tool running") def setUp(self) -> None: self.tool = self.MockTool() def run_embedding_test(self, adapter_instance_id): embedding = ToolEmbedding(tool=self.tool) embed_model = embedding.get_embedding(adapter_instance_id) self.assertIsNotNone(embed_model) self.assertIsInstance(embed_model, BaseEmbedding) response = embed_model._get_text_embedding( ToolEmbeddingTest.TEST_SNIPPET ) self.assertIsNotNone(response) @parameterized.expand(get_test_values("EMBEDDING_TEST_VALUES")) def test_get_embedding(self, adapter_instance_id: str) -> None: self.run_embedding_test(adapter_instance_id) if __name__ == "__main__": unittest.main()
1,344
Python
.py
35
32.457143
67
0.709877
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,777
test_llm.py
Zipstack_unstract-sdk/tests/test_llm.py
import json import logging import os import unittest from typing import Any from dotenv import load_dotenv from parameterized import parameterized from unstract.adapters.llm.helper import LLMHelper from unstract.sdk.llm import ToolLLM from unstract.sdk.tool.base import BaseTool load_dotenv() logger = logging.getLogger(__name__) def get_test_values(env_key: str) -> list[str]: test_values = json.loads(os.environ.get(env_key)) return test_values class ToolLLMTest(unittest.TestCase): class MockTool(BaseTool): def run( self, params: dict[str, Any] = {}, settings: dict[str, Any] = {}, workflow_id: str = "", ) -> None: # self.stream_log("Mock tool running") pass @classmethod def setUpClass(cls): cls.tool = cls.MockTool() @parameterized.expand( get_test_values("LLM_TEST_VALUES") # AzureOpenAI (Works) # OpenAI (Works) # AnyScale (llm FAILS) # Anthropic (llm.complete FAILS) # 1. unsupported params: max_token, stop. # TypeError: create() got an unexpected keyword argument # 'max_tokens' # 2. anthropic.APIConnectionError: Connection error. # PaLM (Works) # Errors # 1. unexpected keyword argument 'max_tokens', 'stop' # Replicate (llm.complete FAILS) # Errors # 1. replicate.exceptions.ReplicateError: # You did not pass an authentication token # Mistral (llm.complete FAILS) # Errors # 1.TypeError: chat() got an unexpected keyword argument 'stop' ) def test_get_llm(self, adapter_instance_id): tool_llm = ToolLLM(tool=self.tool) llm = tool_llm.get_llm(adapter_instance_id) self.assertIsNotNone(llm) result = LLMHelper.test_llm_instance(llm) logger.error(result) self.assertEqual(result, True) if __name__ == "__main__": unittest.main()
1,987
Python
.py
58
27.310345
71
0.643006
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,778
test_index.py
Zipstack_unstract-sdk/tests/test_index.py
import json import logging import os import unittest from typing import Any, Optional from unittest.mock import Mock, patch from dotenv import load_dotenv from parameterized import parameterized from unstract.sdk.index import Index from unstract.sdk.tool.base import BaseTool load_dotenv() logger = logging.getLogger(__name__) def get_test_values(env_key: str) -> list[str]: test_values = json.loads(os.environ.get(env_key)) return test_values class ToolLLMTest(unittest.TestCase): class MockTool(BaseTool): def run( self, params: dict[str, Any] = {}, settings: dict[str, Any] = {}, workflow_id: str = "", ) -> None: # self.stream_log("Mock tool running") pass @classmethod def setUpClass(cls): cls.tool = cls.MockTool() @patch( "unstract.sdk.index.Index.generate_index_key", Mock( return_value="77843eb8d9e30ad56bfcb018c2633fa32feef2f0c09762b6b820c75664b64c1b" ), ) def test_generate_file_id(self): expected = "77843eb8d9e30ad56bfcb018c2633fa32feef2f0c09762b6b820c75664b64c1b" index = Index(tool=self.tool) actual = index.generate_file_id( tool_id="8ac26867-7811-4dc7-a17b-b16d3b561583", vector_db="81f1f6a8-cae8-4b8e-b2a4-57f80de512f6", embedding="ecf998d6-ded0-4aca-acd1-372a21daf0f9", x2text="59bc55fc-e2a7-48dd-ae93-794b4d81d46e", chunk_size="1024", chunk_overlap="128", file_path="/a/b/c", file_hash="045b1a67824592b67426f8e60c1f8328e8d2a35139f9983e0aa0a7b6f10915c3", ) assert expected == actual test_data = [ { "vector_db": "81f1f6a8-cae8-4b8e-b2a4-57f80de512f6", "embedding": "ecf998d6-ded0-4aca-acd1-372a21daf0f9", "x2text": "59bc55fc-e2a7-48dd-ae93-794b4d81d46e", "chunk_size": "1024", "chunk_overlap": "128", "file_path": "/a/b/c", }, { "vector_db": "81f1f6a8-cae8-4b8e-b2a4-57f80de512f6", "embedding": "ecf998d6-ded0-4aca-acd1-372a21daf0f9", "x2text": "59bc55fc-e2a7-48dd-ae93-794b4d81d46e", "chunk_size": "1024", "chunk_overlap": "128", "file_path": "/a/b/c", "file_hash": "045b1a67824592b67426f8e60c1f8328e8d2a35139f9983e0aa0a7b6f10915c3", }, ] @parameterized.expand(test_data) @patch( "unstract.sdk.adapter.ToolAdapter.get_adapter_config", Mock(return_value={}), ) @patch( "unstract.sdk.utils.ToolUtils.hash_str", Mock( return_value="77843eb8d9e30ad56bfcb018c2633fa32feef2f0c09762b6b820c75664b64c1b" ), ) @patch( "unstract.sdk.utils.ToolUtils.get_hash_from_file", Mock( return_value="ab940bb34a60d2a7876dd8e1bd1b22f5dc85936a9e2af3c49bfc888a1d944ff0" ), ) def test_generate_index_key( self, vector_db: str, embedding: str, x2text: str, chunk_size: str, chunk_overlap: str, file_path: Optional[str] = None, file_hash: Optional[str] = None, ): expected = "77843eb8d9e30ad56bfcb018c2633fa32feef2f0c09762b6b820c75664b64c1b" index = Index(tool=self.tool) actual = index.generate_index_key( vector_db, embedding, x2text, chunk_size, chunk_overlap, file_path, file_hash, ) assert expected == actual if __name__ == "__main__": unittest.main()
3,675
Python
.py
108
25.37963
92
0.613847
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,779
test_entrypoint.py
Zipstack_unstract-sdk/tests/tool/test_entrypoint.py
import unittest from io import StringIO from typing import Any from unittest.mock import patch from unstract.sdk.constants import LogLevel from unstract.sdk.tool.base import BaseTool from unstract.sdk.tool.entrypoint import ToolEntrypoint class UnstractSDKToolsEntrypointTest(unittest.TestCase): INFO_MESSAGE = "Running a mock tool" DEBUG_MESSAGE = "Example DEBUG message" class MockTool(BaseTool): def run( self, params: dict[str, Any] = {}, settings: dict[str, Any] = {}, workflow_id: str = "", ) -> None: self.stream_log(UnstractSDKToolsEntrypointTest.INFO_MESSAGE) self.stream_log( UnstractSDKToolsEntrypointTest.DEBUG_MESSAGE, LogLevel.DEBUG ) @classmethod def setUpClass(cls): cls.tool = cls.MockTool(log_level=LogLevel.DEBUG) def _launch_tool(self, args: list[str]) -> str: captured_output = StringIO() with patch("sys.stdout", new=captured_output): ToolEntrypoint.launch(tool=self.tool, args=args) return captured_output.getvalue() def test_spec(self): args = [ "--command", "SPEC", "--workflow-id", "00000000-0000-0000-0000-000000000000", "--log-level", "INFO", ] captured_output_str = self._launch_tool(args=args) self.assertIn("SPEC", captured_output_str) def test_properties(self): args = [ "--command", "PROPERTIES", "--workflow-id", "00000000-0000-0000-0000-000000000000", "--log-level", "INFO", ] captured_output_str = self._launch_tool(args=args) self.assertIn("PROPERTIES", captured_output_str) def test_variables(self): args = [ "--command", "VARIABLES", "--workflow-id", "00000000-0000-0000-0000-000000000000", "--log-level", "INFO", ] captured_output_str = self._launch_tool(args=args) self.assertIn("VARIABLES", captured_output_str) def test_run(self): args = [ "--command", "RUN", "--params", "{}", "--settings", "{}", "--workflow-id", "00000000-0000-0000-0000-000000000000", "--log-level", "INFO", ] captured_output_str = self._launch_tool(args=args) self.assertIn(self.INFO_MESSAGE, captured_output_str) def test_run_debug(self): args = [ "--command", "RUN", "--params", "{}", "--settings", "{}", "--workflow-id", "00000000-0000-0000-0000-000000000000", "--log-level", "DEBUG", ] captured_output_str = self._launch_tool(args=args) self.assertIn(self.DEBUG_MESSAGE, captured_output_str) if __name__ == "__main__": unittest.main()
3,090
Python
.py
94
22.968085
76
0.545424
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,780
test_static.py
Zipstack_unstract-sdk/tests/tool/test_static.py
import unittest from io import StringIO from unittest.mock import patch from unstract.sdk.tool.mixin import ToolConfigHelper from unstract.sdk.tool.stream import StreamMixin from unstract.sdk.utils import ToolUtils class UnstractSDKToolsStaticTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.tool = StreamMixin() def test_spec(self): spec = ToolUtils.json_to_str( ToolConfigHelper.spec(spec_file="config/tool_spec.json") ) self.assertIsNotNone(spec) def test_stream_spec(self): spec = ToolUtils.json_to_str( ToolConfigHelper.spec(spec_file="config/tool_spec.json") ) captured_output = StringIO() with patch("sys.stdout", new=captured_output): self.tool.stream_spec(spec) captured_output_str = captured_output.getvalue() # print(captured_output_str) self.assertIn("SPEC", captured_output_str) def test_properties(self): properties = ToolUtils.json_to_str( ToolConfigHelper.properties( properties_file="config/tool_properties.json" ) ) self.assertIsNotNone(properties) def test_stream_properties(self): properties = ToolUtils.json_to_str( ToolConfigHelper.properties( properties_file="config/tool_properties.json" ) ) captured_output = StringIO() with patch("sys.stdout", new=captured_output): self.tool.stream_properties(properties) captured_output_str = captured_output.getvalue() # print(captured_output_str) self.assertIn("PROPERTIES", captured_output_str) def test_icon(self): icon = ToolConfigHelper.icon(icon_file="config/icon.svg") self.assertIsNotNone(icon) def test_stream_icon(self): icon = ToolConfigHelper.icon(icon_file="config/icon.svg") captured_output = StringIO() with patch("sys.stdout", new=captured_output): self.tool.stream_icon(icon) captured_output_str = captured_output.getvalue() # print(captured_output_str) self.assertIn("ICON", captured_output_str) if __name__ == "__main__": unittest.main()
2,252
Python
.py
57
31.157895
68
0.659341
Zipstack/unstract-sdk
8
0
1
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,781
hub.ipynb
arojsubedi_Improved-YOLOv8s/examples/hub.ipynb
{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "Ultralytics HUB", "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" }, "accelerator": "GPU" }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "FIzICjaph_Wy" }, "source": [ "<a align=\"center\" href=\"https://hub.ultralytics.com\" target=\"_blank\">\n", "<img width=\"1024\", src=\"https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png\"></a>\n", "\n", "<div align=\"center\">\n", "\n", "[中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [हिन्दी](https://docs.ultralytics.com/hi/) | [العربية](https://docs.ultralytics.com/ar/)\n", "\n", " <a href=\"https://github.com/ultralytics/hub/actions/workflows/ci.yaml\">\n", " <img src=\"https://github.com/ultralytics/hub/actions/workflows/ci.yaml/badge.svg\" alt=\"CI CPU\"></a>\n", " <a href=\"https://colab.research.google.com/github/ultralytics/hub/blob/master/hub.ipynb\">\n", " <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n", "\n", "Welcome to the [Ultralytics](https://ultralytics.com/) HUB notebook!\n", "\n", "This notebook allows you to train [YOLOv5](https://github.com/ultralytics/yolov5) and [YOLOv8](https://github.com/ultralytics/ultralytics) 🚀 models using [HUB](https://hub.ultralytics.com/). Please browse the HUB <a href=\"https://docs.ultralytics.com/hub/\">Docs</a> for details, raise an issue on <a href=\"https://github.com/ultralytics/hub/issues/new/choose\">GitHub</a> for support, and join our <a href=\"https://ultralytics.com/discord\">Discord</a> community for questions and discussions!\n", "</div>" ] }, { "cell_type": "markdown", "metadata": { "id": "eRQ2ow94MiOv" }, "source": [ "# Setup\n", "\n", "Pip install `ultralytics` and [dependencies](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) and check software and hardware." ] }, { "cell_type": "code", "metadata": { "id": "FyDnXd-n4c7Y", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "01e34b44-a26f-4dbc-a5a1-6e29bca01a1b" }, "source": [ "%pip install ultralytics # install\n", "from ultralytics import YOLO, checks, hub\n", "checks() # checks" ], "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "Ultralytics YOLOv8.0.210 🚀 Python-3.10.12 torch-2.0.1+cu118 CUDA:0 (Tesla T4, 15102MiB)\n", "Setup complete ✅ (2 CPUs, 12.7 GB RAM, 24.4/78.2 GB disk)\n" ] } ] }, { "cell_type": "markdown", "metadata": { "id": "cQ9BwaAqxAm4" }, "source": [ "# Start\n", "\n", "Login with your [API key](https://hub.ultralytics.com/settings?tab=api+keys), select your YOLO 🚀 model and start training!" ] }, { "cell_type": "code", "metadata": { "id": "XSlZaJ9Iw_iZ" }, "source": [ "hub.login('API_KEY') # use your API key\n", "\n", "model = YOLO('https://hub.ultralytics.com/MODEL_ID') # use your model URL\n", "results = model.train() # train model" ], "execution_count": null, "outputs": [] } ] }
4,064
Python
.py
106
30.962264
513
0.553815
arojsubedi/Improved-YOLOv8s
8
5
0
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,782
heatmaps.ipynb
arojsubedi_Improved-YOLOv8s/examples/heatmaps.ipynb
{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "gpuType": "T4" }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" }, "accelerator": "GPU" }, "cells": [ { "cell_type": "markdown", "source": [ "<div align=\"center\">\n", "\n", " <a href=\"https://ultralytics.com/yolov8\" target=\"_blank\">\n", " <img width=\"1024\", src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png\"></a>\n", "\n", " [中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [हिन्दी](https://docs.ultralytics.com/hi/) | [العربية](https://docs.ultralytics.com/ar/)\n", "\n", " <a href=\"https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/heatmaps.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n", "\n", "Welcome to the Ultralytics YOLOv8 🚀 notebook! <a href=\"https://github.com/ultralytics/ultralytics\">YOLOv8</a> is the latest version of the YOLO (You Only Look Once) AI models developed by <a href=\"https://ultralytics.com\">Ultralytics</a>. This notebook serves as the starting point for exploring the <a href=\"https://docs.ultralytics.com/guides/heatmaps/\">heatmaps</a> and understand its features and capabilities.\n", "\n", "YOLOv8 models are fast, accurate, and easy to use, making them ideal for various object detection and image segmentation tasks. They can be trained on large datasets and run on diverse hardware platforms, from CPUs to GPUs.\n", "\n", "We hope that the resources in this notebook will help you get the most out of <a href=\"https://docs.ultralytics.com/guides/heatmaps/\">Ultralytics Heatmaps</a>. Please browse the YOLOv8 <a href=\"https://docs.ultralytics.com/\">Docs</a> for details, raise an issue on <a href=\"https://github.com/ultralytics/ultralytics\">GitHub</a> for support, and join our <a href=\"https://ultralytics.com/discord\">Discord</a> community for questions and discussions!\n", "\n", "</div>" ], "metadata": { "id": "PN1cAxdvd61e" } }, { "cell_type": "markdown", "source": [ "# Setup\n", "\n", "Pip install `ultralytics` and [dependencies](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) and check software and hardware." ], "metadata": { "id": "o68Sg1oOeZm2" } }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "9dSwz_uOReMI" }, "outputs": [], "source": [ "!pip install ultralytics" ] }, { "cell_type": "markdown", "source": [ "# Ultralytics Heatmaps\n", "\n", "Heatmap is color-coded matrix, generated by Ultralytics YOLOv8, simplifies intricate data by using vibrant colors. This visual representation employs warmer hues for higher intensities and cooler tones for lower values. Heatmaps are effective in illustrating complex data patterns, correlations, and anomalies, providing a user-friendly and engaging way to interpret data across various domains." ], "metadata": { "id": "m7VkxQ2aeg7k" } }, { "cell_type": "code", "source": [ "from ultralytics import YOLO\n", "from ultralytics.solutions import heatmap\n", "import cv2\n", "\n", "model = YOLO(\"yolov8n.pt\")\n", "cap = cv2.VideoCapture(\"path/to/video/file.mp4\")\n", "assert cap.isOpened(), \"Error reading video file\"\n", "w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))\n", "\n", "# Video writer\n", "video_writer = cv2.VideoWriter(\"heatmap_output.avi\",\n", " cv2.VideoWriter_fourcc(*'mp4v'),\n", " fps,\n", " (w, h))\n", "\n", "# Init heatmap\n", "heatmap_obj = heatmap.Heatmap()\n", "heatmap_obj.set_args(colormap=cv2.COLORMAP_PARULA,\n", " imw=w,\n", " imh=h,\n", " view_img=True,\n", " shape=\"circle\")\n", "\n", "while cap.isOpened():\n", " success, im0 = cap.read()\n", " if not success:\n", " print(\"Video frame is empty or video processing has been successfully completed.\")\n", " break\n", " tracks = model.track(im0, persist=True, show=False)\n", "\n", " im0 = heatmap_obj.generate_heatmap(im0, tracks)\n", " video_writer.write(im0)\n", "\n", "cap.release()\n", "video_writer.release()\n", "cv2.destroyAllWindows()" ], "metadata": { "id": "Cx-u59HQdu2o" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "#Community Support\n", "\n", "For more information, you can explore <a href=\"https://docs.ultralytics.com/guides/heatmaps/#heatmap-colormaps\">Ultralytics Heatmaps Docs</a>\n", "\n", "Ultralytics ⚡ resources\n", "- About Us – https://ultralytics.com/about\n", "- Join Our Team – https://ultralytics.com/work\n", "- Contact Us – https://ultralytics.com/contact\n", "- Discord – https://discord.gg/2wNGbc6g9X\n", "- Ultralytics License – https://ultralytics.com/license\n", "\n", "YOLOv8 🚀 resources\n", "- GitHub – https://github.com/ultralytics/ultralytics\n", "- Docs – https://docs.ultralytics.com/" ], "metadata": { "id": "QrlKg-y3fEyD" } } ] }
6,440
Python
.py
145
36.841379
506
0.568615
arojsubedi/Improved-YOLOv8s
8
5
0
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,783
tutorial.ipynb
arojsubedi_Improved-YOLOv8s/examples/tutorial.ipynb
{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "YOLOv8 Tutorial", "provenance": [], "toc_visible": true }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "accelerator": "GPU" }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "t6MPjfT5NrKQ" }, "source": [ "<div align=\"center\">\n", "\n", " <a href=\"https://ultralytics.com/yolov8\" target=\"_blank\">\n", " <img width=\"1024\", src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png\"></a>\n", "\n", " [中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [हिन्दी](https://docs.ultralytics.com/hi/) | [العربية](https://docs.ultralytics.com/ar/)\n", "\n", " <a href=\"https://console.paperspace.com/github/ultralytics/ultralytics\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"/></a>\n", " <a href=\"https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n", " <a href=\"https://www.kaggle.com/ultralytics/yolov8\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n", "\n", "Welcome to the Ultralytics YOLOv8 🚀 notebook! <a href=\"https://github.com/ultralytics/ultralytics\">YOLOv8</a> is the latest version of the YOLO (You Only Look Once) AI models developed by <a href=\"https://ultralytics.com\">Ultralytics</a>. This notebook serves as the starting point for exploring the various resources available to help you get started with YOLOv8 and understand its features and capabilities.\n", "\n", "YOLOv8 models are fast, accurate, and easy to use, making them ideal for various object detection and image segmentation tasks. They can be trained on large datasets and run on diverse hardware platforms, from CPUs to GPUs.\n", "\n", "We hope that the resources in this notebook will help you get the most out of YOLOv8. Please browse the YOLOv8 <a href=\"https://docs.ultralytics.com/\">Docs</a> for details, raise an issue on <a href=\"https://github.com/ultralytics/ultralytics\">GitHub</a> for support, and join our <a href=\"https://ultralytics.com/discord\">Discord</a> community for questions and discussions!\n", "\n", "</div>" ] }, { "cell_type": "markdown", "metadata": { "id": "7mGmQbAO5pQb" }, "source": [ "# Setup\n", "\n", "Pip install `ultralytics` and [dependencies](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) and check software and hardware." ] }, { "cell_type": "code", "metadata": { "id": "wbvMlHd_QwMG", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "27ca383c-0a97-4679-f1c5-ba843f033de7" }, "source": [ "%pip install ultralytics\n", "import ultralytics\n", "ultralytics.checks()" ], "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "Ultralytics YOLOv8.0.145 🚀 Python-3.10.6 torch-2.0.1+cu118 CUDA:0 (Tesla T4, 15102MiB)\n", "Setup complete ✅ (2 CPUs, 12.7 GB RAM, 24.2/78.2 GB disk)\n" ] } ] }, { "cell_type": "markdown", "metadata": { "id": "4JnkELT0cIJg" }, "source": [ "# 1. Predict\n", "\n", "YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See a full list of available `yolo` [arguments](https://docs.ultralytics.com/usage/cfg/) and other details in the [YOLOv8 Predict Docs](https://docs.ultralytics.com/modes/train/).\n" ] }, { "cell_type": "code", "metadata": { "id": "zR9ZbuQCH7FX", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "64489d1f-e71a-44b5-92f6-2088781ca096" }, "source": [ "# Run inference on an image with YOLOv8n\n", "!yolo predict model=yolov8n.pt source='https://ultralytics.com/images/zidane.jpg'" ], "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Downloading https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n.pt to 'yolov8n.pt'...\n", "100% 6.23M/6.23M [00:00<00:00, 77.2MB/s]\n", "Ultralytics YOLOv8.0.145 🚀 Python-3.10.6 torch-2.0.1+cu118 CUDA:0 (Tesla T4, 15102MiB)\n", "YOLOv8n summary (fused): 168 layers, 3151904 parameters, 0 gradients\n", "\n", "Downloading https://ultralytics.com/images/zidane.jpg to 'zidane.jpg'...\n", "100% 165k/165k [00:00<00:00, 7.46MB/s]\n", "image 1/1 /content/zidane.jpg: 384x640 2 persons, 1 tie, 365.8ms\n", "Speed: 13.7ms preprocess, 365.8ms inference, 431.7ms postprocess per image at shape (1, 3, 384, 640)\n", "Results saved to \u001b[1mruns/detect/predict\u001b[0m\n" ] } ] }, { "cell_type": "markdown", "metadata": { "id": "hkAzDWJ7cWTr" }, "source": [ "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n", "<img align=\"left\" src=\"https://user-images.githubusercontent.com/26833433/212889447-69e5bdf1-5800-4e29-835e-2ed2336dede2.jpg\" width=\"600\">" ] }, { "cell_type": "markdown", "metadata": { "id": "0eq1SMWl6Sfn" }, "source": [ "# 2. Val\n", "Validate a model's accuracy on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset's `val` or `test` splits. The latest YOLOv8 [models](https://github.com/ultralytics/ultralytics#models) are downloaded automatically the first time they are used. See [YOLOv8 Val Docs](https://docs.ultralytics.com/modes/val/) for more information." ] }, { "cell_type": "code", "metadata": { "id": "WQPtK1QYVaD_" }, "source": [ "# Download COCO val\n", "import torch\n", "torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017val.zip', 'tmp.zip') # download (780M - 5000 images)\n", "!unzip -q tmp.zip -d datasets && rm tmp.zip # unzip" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "X58w8JLpMnjH", "outputId": "e3aacd98-ceca-49b7-e112-a0c25979ad6c", "colab": { "base_uri": "https://localhost:8080/" } }, "source": [ "# Validate YOLOv8n on COCO8 val\n", "!yolo val model=yolov8n.pt data=coco8.yaml" ], "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Ultralytics YOLOv8.0.145 🚀 Python-3.10.6 torch-2.0.1+cu118 CUDA:0 (Tesla T4, 15102MiB)\n", "YOLOv8n summary (fused): 168 layers, 3151904 parameters, 0 gradients\n", "\n", "Dataset 'coco8.yaml' images not found ⚠️, missing path '/content/datasets/coco8/images/val'\n", "Downloading https://ultralytics.com/assets/coco8.zip to '/content/datasets/coco8.zip'...\n", "100% 433k/433k [00:00<00:00, 12.4MB/s]\n", "Unzipping /content/datasets/coco8.zip to /content/datasets...\n", "Dataset download success ✅ (0.7s), saved to \u001b[1m/content/datasets\u001b[0m\n", "\n", "Downloading https://ultralytics.com/assets/Arial.ttf to '/root/.config/Ultralytics/Arial.ttf'...\n", "100% 755k/755k [00:00<00:00, 17.5MB/s]\n", "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco8/labels/val... 4 images, 0 backgrounds, 0 corrupt: 100% 4/4 [00:00<00:00, 276.04it/s]\n", "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco8/labels/val.cache\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100% 1/1 [00:03<00:00, 3.84s/it]\n", " all 4 17 0.621 0.833 0.888 0.63\n", " person 4 10 0.721 0.5 0.519 0.269\n", " dog 4 1 0.37 1 0.995 0.597\n", " horse 4 2 0.751 1 0.995 0.631\n", " elephant 4 2 0.505 0.5 0.828 0.394\n", " umbrella 4 1 0.564 1 0.995 0.995\n", " potted plant 4 1 0.814 1 0.995 0.895\n", "Speed: 0.3ms preprocess, 78.7ms inference, 0.0ms loss, 65.4ms postprocess per image\n", "Results saved to \u001b[1mruns/detect/val\u001b[0m\n" ] } ] }, { "cell_type": "markdown", "metadata": { "id": "ZY2VXXXu74w5" }, "source": [ "# 3. Train\n", "\n", "<p align=\"\"><a href=\"https://bit.ly/ultralytics_hub\"><img width=\"1000\" src=\"https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png\"/></a></p>\n", "\n", "Train YOLOv8 on [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/), [Classify](https://docs.ultralytics.com/tasks/classify/) and [Pose](https://docs.ultralytics.com/tasks/pose/) datasets. See [YOLOv8 Train Docs](https://docs.ultralytics.com/modes/train/) for more information." ] }, { "cell_type": "code", "source": [ "#@title Select YOLOv8 🚀 logger {run: 'auto'}\n", "logger = 'Comet' #@param ['Comet', 'TensorBoard']\n", "\n", "if logger == 'Comet':\n", " %pip install -q comet_ml\n", " import comet_ml; comet_ml.init()\n", "elif logger == 'TensorBoard':\n", " %load_ext tensorboard\n", " %tensorboard --logdir ." ], "metadata": { "id": "ktegpM42AooT" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "1NcFxRcFdJ_O", "outputId": "b750f2fe-c4d9-4764-b8d5-ed7bd920697b", "colab": { "base_uri": "https://localhost:8080/" } }, "source": [ "# Train YOLOv8n on COCO8 for 3 epochs\n", "!yolo train model=yolov8n.pt data=coco8.yaml epochs=3 imgsz=640" ], "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Ultralytics YOLOv8.0.145 🚀 Python-3.10.6 torch-2.0.1+cu118 CUDA:0 (Tesla T4, 15102MiB)\n", "\u001b[34m\u001b[1mengine/trainer: \u001b[0mtask=detect, mode=train, model=yolov8n.pt, data=coco8.yaml, epochs=3, patience=50, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=None, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, vid_stride=1, line_width=None, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, tracker=botsort.yaml, save_dir=runs/detect/train\n", "\n", " from n params module arguments \n", " 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] \n", " 1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2] \n", " 2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True] \n", " 3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] \n", " 4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True] \n", " 5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] \n", " 6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True] \n", " 7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] \n", " 8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True] \n", " 9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5] \n", " 10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", " 11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 12 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1] \n", " 13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", " 14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 15 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1] \n", " 16 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] \n", " 17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 18 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1] \n", " 19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] \n", " 20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 21 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1] \n", " 22 [15, 18, 21] 1 897664 ultralytics.nn.modules.head.Detect [80, [64, 128, 256]] \n", "Model summary: 225 layers, 3157200 parameters, 3157184 gradients\n", "\n", "Transferred 355/355 items from pretrained weights\n", "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/detect/train', view at http://localhost:6006/\n", "\u001b[34m\u001b[1mAMP: \u001b[0mrunning Automatic Mixed Precision (AMP) checks with YOLOv8n...\n", "\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n", "\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/datasets/coco8/labels/train... 4 images, 0 backgrounds, 0 corrupt: 100% 4/4 [00:00<00:00, 860.11it/s]\n", "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco8/labels/train.cache\n", "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n", "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco8/labels/val.cache... 4 images, 0 backgrounds, 0 corrupt: 100% 4/4 [00:00<?, ?it/s]\n", "Plotting labels to runs/detect/train/labels.jpg... \n", "\u001b[34m\u001b[1moptimizer:\u001b[0m AdamW(lr=0.000119, momentum=0.9) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias(decay=0.0)\n", "Image sizes 640 train, 640 val\n", "Using 2 dataloader workers\n", "Logging results to \u001b[1mruns/detect/train\u001b[0m\n", "Starting training for 3 epochs...\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 1/3 0.761G 0.9273 3.155 1.291 32 640: 100% 1/1 [00:01<00:00, 1.23s/it]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100% 1/1 [00:00<00:00, 2.21it/s]\n", " all 4 17 0.613 0.899 0.888 0.621\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 2/3 0.78G 1.161 3.126 1.517 33 640: 100% 1/1 [00:00<00:00, 9.06it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100% 1/1 [00:00<00:00, 7.18it/s]\n", " all 4 17 0.601 0.896 0.888 0.613\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 3/3 0.757G 0.9264 2.508 1.254 17 640: 100% 1/1 [00:00<00:00, 7.32it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100% 1/1 [00:00<00:00, 5.26it/s]\n", " all 4 17 0.598 0.892 0.886 0.613\n", "\n", "3 epochs completed in 0.003 hours.\n", "Optimizer stripped from runs/detect/train/weights/last.pt, 6.5MB\n", "Optimizer stripped from runs/detect/train/weights/best.pt, 6.5MB\n", "\n", "Validating runs/detect/train/weights/best.pt...\n", "Ultralytics YOLOv8.0.145 🚀 Python-3.10.6 torch-2.0.1+cu118 CUDA:0 (Tesla T4, 15102MiB)\n", "Model summary (fused): 168 layers, 3151904 parameters, 0 gradients\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100% 1/1 [00:00<00:00, 16.58it/s]\n", " all 4 17 0.613 0.898 0.888 0.621\n", " person 4 10 0.661 0.5 0.52 0.285\n", " dog 4 1 0.337 1 0.995 0.597\n", " horse 4 2 0.723 1 0.995 0.631\n", " elephant 4 2 0.629 0.886 0.828 0.319\n", " umbrella 4 1 0.55 1 0.995 0.995\n", " potted plant 4 1 0.776 1 0.995 0.895\n", "Speed: 0.2ms preprocess, 4.6ms inference, 0.0ms loss, 1.1ms postprocess per image\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n" ] } ] }, { "cell_type": "markdown", "source": [ "# 4. Export\n", "\n", "Export a YOLOv8 model to any supported format below with the `format` argument, i.e. `format=onnx`. See [YOLOv8 Export Docs](https://docs.ultralytics.com/modes/export/) for more information.\n", "\n", "- 💡 ProTip: Export to [ONNX](https://onnx.ai/) or [OpenVINO](https://docs.openvino.ai/latest/index.html) for up to 3x CPU speedup. \n", "- 💡 ProTip: Export to [TensorRT](https://developer.nvidia.com/tensorrt) for up to 5x GPU speedup.\n", "\n", "\n", "| Format | `format` Argument | Model | Metadata | Arguments |\n", "|--------------------------------------------------------------------|-------------------|---------------------------|----------|-----------------------------------------------------|\n", "| [PyTorch](https://pytorch.org/) | - | `yolov8n.pt` | ✅ | - |\n", "| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n.torchscript` | ✅ | `imgsz`, `optimize` |\n", "| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n.onnx` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `opset` |\n", "| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n_openvino_model/` | ✅ | `imgsz`, `half`, `int8` |\n", "| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n.engine` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `workspace` |\n", "| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n.mlpackage` | ✅ | `imgsz`, `half`, `int8`, `nms` |\n", "| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n_saved_model/` | ✅ | `imgsz`, `keras`, `int8` |\n", "| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n.pb` | ❌ | `imgsz` |\n", "| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n.tflite` | ✅ | `imgsz`, `half`, `int8` |\n", "| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` | ✅ | `imgsz` |\n", "| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` | ✅ | `imgsz` |\n", "| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` | ✅ | `imgsz` |\n", "| [ncnn](https://github.com/Tencent/ncnn) | `ncnn` | `yolov8n_ncnn_model/` | ✅ | `imgsz`, `half` |\n" ], "metadata": { "id": "nPZZeNrLCQG6" } }, { "cell_type": "code", "source": [ "!yolo export model=yolov8n.pt format=torchscript" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "CYIjW4igCjqD", "outputId": "2b65e381-717b-4a6f-d6f5-5254c867f3a4" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Ultralytics YOLOv8.0.145 🚀 Python-3.10.6 torch-2.0.1+cu118 CPU (Intel Xeon 2.30GHz)\n", "YOLOv8n summary (fused): 168 layers, 3151904 parameters, 0 gradients\n", "\n", "\u001b[34m\u001b[1mPyTorch:\u001b[0m starting from 'yolov8n.pt' with input shape (1, 3, 640, 640) BCHW and output shape(s) (1, 84, 8400) (6.2 MB)\n", "\n", "\u001b[34m\u001b[1mTorchScript:\u001b[0m starting export with torch 2.0.1+cu118...\n", "\u001b[34m\u001b[1mTorchScript:\u001b[0m export success ✅ 2.8s, saved as 'yolov8n.torchscript' (12.4 MB)\n", "\n", "Export complete (4.6s)\n", "Results saved to \u001b[1m/content\u001b[0m\n", "Predict: yolo predict task=detect model=yolov8n.torchscript imgsz=640 \n", "Validate: yolo val task=detect model=yolov8n.torchscript imgsz=640 data=None \n", "Visualize: https://netron.app\n" ] } ] }, { "cell_type": "markdown", "source": [ "# 5. Python Usage\n", "\n", "YOLOv8 was reimagined using Python-first principles for the most seamless Python YOLO experience yet. YOLOv8 models can be loaded from a trained checkpoint or created from scratch. Then methods are used to train, val, predict, and export the model. See detailed Python usage examples in the [YOLOv8 Python Docs](https://docs.ultralytics.com/usage/python/)." ], "metadata": { "id": "kUMOQ0OeDBJG" } }, { "cell_type": "code", "source": [ "from ultralytics import YOLO\n", "\n", "# Load a model\n", "model = YOLO('yolov8n.yaml') # build a new model from scratch\n", "model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)\n", "\n", "# Use the model\n", "results = model.train(data='coco128.yaml', epochs=3) # train the model\n", "results = model.val() # evaluate model performance on the validation set\n", "results = model('https://ultralytics.com/images/bus.jpg') # predict on an image\n", "results = model.export(format='onnx') # export the model to ONNX format" ], "metadata": { "id": "bpF9-vS_DAaf" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "# 6. Tasks\n", "\n", "YOLOv8 can train, val, predict and export models for the most common tasks in vision AI: [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/), [Classify](https://docs.ultralytics.com/tasks/classify/) and [Pose](https://docs.ultralytics.com/tasks/pose/). See [YOLOv8 Tasks Docs](https://docs.ultralytics.com/tasks/) for more information.\n", "\n", "<br><img width=\"1024\" src=\"https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png\">\n" ], "metadata": { "id": "Phm9ccmOKye5" } }, { "cell_type": "markdown", "source": [ "## 1. Detection\n", "\n", "YOLOv8 _detection_ models have no suffix and are the default YOLOv8 models, i.e. `yolov8n.pt` and are pretrained on COCO. See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for full details.\n" ], "metadata": { "id": "yq26lwpYK1lq" } }, { "cell_type": "code", "source": [ "# Load YOLOv8n, train it on COCO128 for 3 epochs and predict an image with it\n", "from ultralytics import YOLO\n", "\n", "model = YOLO('yolov8n.pt') # load a pretrained YOLOv8n detection model\n", "model.train(data='coco128.yaml', epochs=3) # train the model\n", "model('https://ultralytics.com/images/bus.jpg') # predict on an image" ], "metadata": { "id": "8Go5qqS9LbC5" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "## 2. Segmentation\n", "\n", "YOLOv8 _segmentation_ models use the `-seg` suffix, i.e. `yolov8n-seg.pt` and are pretrained on COCO. See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for full details.\n" ], "metadata": { "id": "7ZW58jUzK66B" } }, { "cell_type": "code", "source": [ "# Load YOLOv8n-seg, train it on COCO128-seg for 3 epochs and predict an image with it\n", "from ultralytics import YOLO\n", "\n", "model = YOLO('yolov8n-seg.pt') # load a pretrained YOLOv8n segmentation model\n", "model.train(data='coco128-seg.yaml', epochs=3) # train the model\n", "model('https://ultralytics.com/images/bus.jpg') # predict on an image" ], "metadata": { "id": "WFPJIQl_L5HT" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "## 3. Classification\n", "\n", "YOLOv8 _classification_ models use the `-cls` suffix, i.e. `yolov8n-cls.pt` and are pretrained on ImageNet. See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for full details.\n" ], "metadata": { "id": "ax3p94VNK9zR" } }, { "cell_type": "code", "source": [ "# Load YOLOv8n-cls, train it on mnist160 for 3 epochs and predict an image with it\n", "from ultralytics import YOLO\n", "\n", "model = YOLO('yolov8n-cls.pt') # load a pretrained YOLOv8n classification model\n", "model.train(data='mnist160', epochs=3) # train the model\n", "model('https://ultralytics.com/images/bus.jpg') # predict on an image" ], "metadata": { "id": "5q9Zu6zlL5rS" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "## 4. Pose\n", "\n", "YOLOv8 _pose_ models use the `-pose` suffix, i.e. `yolov8n-pose.pt` and are pretrained on COCO Keypoints. See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for full details." ], "metadata": { "id": "SpIaFLiO11TG" } }, { "cell_type": "code", "source": [ "# Load YOLOv8n-pose, train it on COCO8-pose for 3 epochs and predict an image with it\n", "from ultralytics import YOLO\n", "\n", "model = YOLO('yolov8n-pose.pt') # load a pretrained YOLOv8n classification model\n", "model.train(data='coco8-pose.yaml', epochs=3) # train the model\n", "model('https://ultralytics.com/images/bus.jpg') # predict on an image" ], "metadata": { "id": "si4aKFNg19vX" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "IEijrePND_2I" }, "source": [ "# Appendix\n", "\n", "Additional content below." ] }, { "cell_type": "code", "source": [ "# Pip install from source\n", "!pip install git+https://github.com/ultralytics/ultralytics@main" ], "metadata": { "id": "pIdE6i8C3LYp" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Git clone and run tests on updates branch\n", "!git clone https://github.com/ultralytics/ultralytics -b main\n", "%pip install -qe ultralytics" ], "metadata": { "id": "uRKlwxSJdhd1" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Run tests (Git clone only)\n", "!pytest ultralytics/tests" ], "metadata": { "id": "GtPlh7mcCGZX" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Validate multiple models\n", "for x in 'nsmlx':\n", " !yolo val model=yolov8{x}.pt data=coco.yaml" ], "metadata": { "id": "Wdc6t_bfzDDk" }, "execution_count": null, "outputs": [] } ] }
33,450
Python
.py
616
45.545455
1,413
0.508924
arojsubedi/Improved-YOLOv8s
8
5
0
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,784
object_tracking.ipynb
arojsubedi_Improved-YOLOv8s/examples/object_tracking.ipynb
{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "gpuType": "T4" }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" }, "accelerator": "GPU" }, "cells": [ { "cell_type": "markdown", "source": [ "<div align=\"center\">\n", "\n", " <a href=\"https://ultralytics.com/yolov8\" target=\"_blank\">\n", " <img width=\"1024\", src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png\"></a>\n", "\n", " [中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [हिन्दी](https://docs.ultralytics.com/hi/) | [العربية](https://docs.ultralytics.com/ar/)\n", "\n", " <a href=\"https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_tracking.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n", "\n", "Welcome to the Ultralytics YOLOv8 🚀 notebook! <a href=\"https://github.com/ultralytics/ultralytics\">YOLOv8</a> is the latest version of the YOLO (You Only Look Once) AI models developed by <a href=\"https://ultralytics.com\">Ultralytics</a>. This notebook serves as the starting point for exploring the <a href=\"https://docs.ultralytics.com/modes/track/\">Object Tracking</a> and understand its features and capabilities.\n", "\n", "YOLOv8 models are fast, accurate, and easy to use, making them ideal for various object detection and image segmentation tasks. They can be trained on large datasets and run on diverse hardware platforms, from CPUs to GPUs.\n", "\n", "We hope that the resources in this notebook will help you get the most out of <a href=\"https://docs.ultralytics.com/modes/track/\">Ultralytics Object Tracking</a>. Please browse the YOLOv8 <a href=\"https://docs.ultralytics.com/\">Docs</a> for details, raise an issue on <a href=\"https://github.com/ultralytics/ultralytics\">GitHub</a> for support, and join our <a href=\"https://ultralytics.com/discord\">Discord</a> community for questions and discussions!\n", "\n", "</div>" ], "metadata": { "id": "PN1cAxdvd61e" } }, { "cell_type": "markdown", "source": [ "# Setup\n", "\n", "Pip install `ultralytics` and [dependencies](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) and check software and hardware." ], "metadata": { "id": "o68Sg1oOeZm2" } }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "9dSwz_uOReMI" }, "outputs": [], "source": [ "!pip install ultralytics" ] }, { "cell_type": "markdown", "source": [ "# Ultralytics Object Tracking\n", "\n", "Within the domain of video analytics, object tracking stands out as a crucial undertaking. It goes beyond merely identifying the location and class of objects within the frame; it also involves assigning a unique ID to each detected object as the video unfolds. The applications of this technology are vast, spanning from surveillance and security to real-time sports analytics." ], "metadata": { "id": "m7VkxQ2aeg7k" } }, { "cell_type": "markdown", "source": [ "## CLI" ], "metadata": { "id": "-ZF9DM6e6gz0" } }, { "cell_type": "code", "source": [ "!yolo track source=\"/path/to/video/file.mp4\" save=True" ], "metadata": { "id": "-XJqhOwo6iqT" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "## Python\n", "\n", "- Draw Object tracking trails" ], "metadata": { "id": "XRcw0vIE6oNb" } }, { "cell_type": "code", "source": [ "import cv2\n", "import numpy as np\n", "from ultralytics import YOLO\n", "\n", "from ultralytics.utils.checks import check_imshow\n", "from ultralytics.utils.plotting import Annotator, colors\n", "\n", "from collections import defaultdict\n", "\n", "track_history = defaultdict(lambda: [])\n", "model = YOLO(\"yolov8n.pt\")\n", "names = model.model.names\n", "\n", "video_path = \"/path/to/video/file.mp4\"\n", "cap = cv2.VideoCapture(video_path)\n", "assert cap.isOpened(), \"Error reading video file\"\n", "\n", "w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))\n", "\n", "result = cv2.VideoWriter(\"object_tracking.avi\",\n", " cv2.VideoWriter_fourcc(*'mp4v'),\n", " fps,\n", " (w, h))\n", "\n", "while cap.isOpened():\n", " success, frame = cap.read()\n", " if success:\n", " results = model.track(frame, persist=True, verbose=False)\n", " boxes = results[0].boxes.xyxy.cpu()\n", "\n", " if results[0].boxes.id is not None:\n", "\n", " # Extract prediction results\n", " clss = results[0].boxes.cls.cpu().tolist()\n", " track_ids = results[0].boxes.id.int().cpu().tolist()\n", " confs = results[0].boxes.conf.float().cpu().tolist()\n", "\n", " # Annotator Init\n", " annotator = Annotator(frame, line_width=2)\n", "\n", " for box, cls, track_id in zip(boxes, clss, track_ids):\n", " annotator.box_label(box, color=colors(int(cls), True), label=names[int(cls)])\n", "\n", " # Store tracking history\n", " track = track_history[track_id]\n", " track.append((int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2)))\n", " if len(track) > 30:\n", " track.pop(0)\n", "\n", " # Plot tracks\n", " points = np.array(track, dtype=np.int32).reshape((-1, 1, 2))\n", " cv2.circle(frame, (track[-1]), 7, colors(int(cls), True), -1)\n", " cv2.polylines(frame, [points], isClosed=False, color=colors(int(cls), True), thickness=2)\n", "\n", " result.write(frame)\n", " if cv2.waitKey(1) & 0xFF == ord(\"q\"):\n", " break\n", " else:\n", " break\n", "\n", "result.release()\n", "cap.release()\n", "cv2.destroyAllWindows()" ], "metadata": { "id": "Cx-u59HQdu2o" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "#Community Support\n", "\n", "For more information, you can explore <a href=\"https://docs.ultralytics.com/modes/track/\">Ultralytics Object Tracking Docs</a>\n", "\n", "Ultralytics ⚡ resources\n", "- About Us – https://ultralytics.com/about\n", "- Join Our Team – https://ultralytics.com/work\n", "- Contact Us – https://ultralytics.com/contact\n", "- Discord – https://discord.gg/2wNGbc6g9X\n", "- Ultralytics License – https://ultralytics.com/license\n", "\n", "YOLOv8 🚀 resources\n", "- GitHub – https://github.com/ultralytics/ultralytics\n", "- Docs – https://docs.ultralytics.com/" ], "metadata": { "id": "QrlKg-y3fEyD" } } ] }
8,348
Python
.py
203
33.423645
506
0.534929
arojsubedi/Improved-YOLOv8s
8
5
0
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,785
object_counting.ipynb
arojsubedi_Improved-YOLOv8s/examples/object_counting.ipynb
{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "gpuType": "T4" }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" }, "accelerator": "GPU" }, "cells": [ { "cell_type": "markdown", "source": [ "<div align=\"center\">\n", "\n", " <a href=\"https://ultralytics.com/yolov8\" target=\"_blank\">\n", " <img width=\"1024\", src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png\"></a>\n", "\n", " [中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [हिन्दी](https://docs.ultralytics.com/hi/) | [العربية](https://docs.ultralytics.com/ar/)\n", "\n", " <a href=\"https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_counting.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n", "\n", "Welcome to the Ultralytics YOLOv8 🚀 notebook! <a href=\"https://github.com/ultralytics/ultralytics\">YOLOv8</a> is the latest version of the YOLO (You Only Look Once) AI models developed by <a href=\"https://ultralytics.com\">Ultralytics</a>. This notebook serves as the starting point for exploring the <a href=\"https://docs.ultralytics.com/guides/object-counting/\">Object Counting</a> and understand its features and capabilities.\n", "\n", "YOLOv8 models are fast, accurate, and easy to use, making them ideal for various object detection and image segmentation tasks. They can be trained on large datasets and run on diverse hardware platforms, from CPUs to GPUs.\n", "\n", "We hope that the resources in this notebook will help you get the most out of <a href=\"https://docs.ultralytics.com/guides/object-counting/\">Ultralytics Object Counting</a>. Please browse the YOLOv8 <a href=\"https://docs.ultralytics.com/\">Docs</a> for details, raise an issue on <a href=\"https://github.com/ultralytics/ultralytics\">GitHub</a> for support, and join our <a href=\"https://ultralytics.com/discord\">Discord</a> community for questions and discussions!\n", "\n", "</div>" ], "metadata": { "id": "PN1cAxdvd61e" } }, { "cell_type": "markdown", "source": [ "# Setup\n", "\n", "Pip install `ultralytics` and [dependencies](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) and check software and hardware." ], "metadata": { "id": "o68Sg1oOeZm2" } }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "9dSwz_uOReMI" }, "outputs": [], "source": [ "!pip install ultralytics" ] }, { "cell_type": "markdown", "source": [ "# Ultralytics Object Counting\n", "\n", "Counting objects using Ultralytics YOLOv8 entails the precise detection and enumeration of specific objects within videos and camera streams. YOLOv8 demonstrates exceptional performance in real-time applications, delivering efficient and accurate object counting across diverse scenarios such as crowd analysis and surveillance. This is attributed to its advanced algorithms and deep learning capabilities." ], "metadata": { "id": "m7VkxQ2aeg7k" } }, { "cell_type": "code", "source": [ "from ultralytics import YOLO\n", "from ultralytics.solutions import object_counter\n", "import cv2\n", "\n", "model = YOLO(\"yolov8n.pt\")\n", "cap = cv2.VideoCapture(\"path/to/video/file.mp4\")\n", "assert cap.isOpened(), \"Error reading video file\"\n", "w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))\n", "\n", "# Define region points\n", "region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]\n", "\n", "# Video writer\n", "video_writer = cv2.VideoWriter(\"object_counting_output.avi\",\n", " cv2.VideoWriter_fourcc(*'mp4v'),\n", " fps,\n", " (w, h))\n", "\n", "# Init Object Counter\n", "counter = object_counter.ObjectCounter()\n", "counter.set_args(view_img=True,\n", " reg_pts=region_points,\n", " classes_names=model.names,\n", " draw_tracks=True)\n", "\n", "while cap.isOpened():\n", " success, im0 = cap.read()\n", " if not success:\n", " print(\"Video frame is empty or video processing has been successfully completed.\")\n", " break\n", " tracks = model.track(im0, persist=True, show=False)\n", "\n", " im0 = counter.start_counting(im0, tracks)\n", " video_writer.write(im0)\n", "\n", "cap.release()\n", "video_writer.release()\n", "cv2.destroyAllWindows()" ], "metadata": { "id": "Cx-u59HQdu2o" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "#Community Support\n", "\n", "For more information, you can explore <a href=\"https://docs.ultralytics.com/guides/object-counting/\">Ultralytics Object Counting Docs</a>\n", "\n", "Ultralytics ⚡ resources\n", "- About Us – https://ultralytics.com/about\n", "- Join Our Team – https://ultralytics.com/work\n", "- Contact Us – https://ultralytics.com/contact\n", "- Discord – https://discord.gg/2wNGbc6g9X\n", "- Ultralytics License – https://ultralytics.com/license\n", "\n", "YOLOv8 🚀 resources\n", "- GitHub – https://github.com/ultralytics/ultralytics\n", "- Docs – https://docs.ultralytics.com/" ], "metadata": { "id": "QrlKg-y3fEyD" } } ] }
6,574
Python
.py
147
37.129252
506
0.57794
arojsubedi/Improved-YOLOv8s
8
5
0
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,786
main.py
arojsubedi_Improved-YOLOv8s/examples/YOLOv8-ONNXRuntime/main.py
# Ultralytics YOLO 🚀, AGPL-3.0 license import argparse import cv2 import numpy as np import onnxruntime as ort import torch from ultralytics.utils import ASSETS, yaml_load from ultralytics.utils.checks import check_requirements, check_yaml class YOLOv8: """YOLOv8 object detection model class for handling inference and visualization.""" def __init__(self, onnx_model, input_image, confidence_thres, iou_thres): """ Initializes an instance of the YOLOv8 class. Args: onnx_model: Path to the ONNX model. input_image: Path to the input image. confidence_thres: Confidence threshold for filtering detections. iou_thres: IoU (Intersection over Union) threshold for non-maximum suppression. """ self.onnx_model = onnx_model self.input_image = input_image self.confidence_thres = confidence_thres self.iou_thres = iou_thres # Load the class names from the COCO dataset self.classes = yaml_load(check_yaml("coco128.yaml"))["names"] # Generate a color palette for the classes self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3)) def draw_detections(self, img, box, score, class_id): """ Draws bounding boxes and labels on the input image based on the detected objects. Args: img: The input image to draw detections on. box: Detected bounding box. score: Corresponding detection score. class_id: Class ID for the detected object. Returns: None """ # Extract the coordinates of the bounding box x1, y1, w, h = box # Retrieve the color for the class ID color = self.color_palette[class_id] # Draw the bounding box on the image cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2) # Create the label text with class name and score label = f"{self.classes[class_id]}: {score:.2f}" # Calculate the dimensions of the label text (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) # Calculate the position of the label text label_x = x1 label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10 # Draw a filled rectangle as the background for the label text cv2.rectangle( img, (label_x, label_y - label_height), (label_x + label_width, label_y + label_height), color, cv2.FILLED ) # Draw the label text on the image cv2.putText(img, label, (label_x, label_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA) def preprocess(self): """ Preprocesses the input image before performing inference. Returns: image_data: Preprocessed image data ready for inference. """ # Read the input image using OpenCV self.img = cv2.imread(self.input_image) # Get the height and width of the input image self.img_height, self.img_width = self.img.shape[:2] # Convert the image color space from BGR to RGB img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB) # Resize the image to match the input shape img = cv2.resize(img, (self.input_width, self.input_height)) # Normalize the image data by dividing it by 255.0 image_data = np.array(img) / 255.0 # Transpose the image to have the channel dimension as the first dimension image_data = np.transpose(image_data, (2, 0, 1)) # Channel first # Expand the dimensions of the image data to match the expected input shape image_data = np.expand_dims(image_data, axis=0).astype(np.float32) # Return the preprocessed image data return image_data def postprocess(self, input_image, output): """ Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs. Args: input_image (numpy.ndarray): The input image. output (numpy.ndarray): The output of the model. Returns: numpy.ndarray: The input image with detections drawn on it. """ # Transpose and squeeze the output to match the expected shape outputs = np.transpose(np.squeeze(output[0])) # Get the number of rows in the outputs array rows = outputs.shape[0] # Lists to store the bounding boxes, scores, and class IDs of the detections boxes = [] scores = [] class_ids = [] # Calculate the scaling factors for the bounding box coordinates x_factor = self.img_width / self.input_width y_factor = self.img_height / self.input_height # Iterate over each row in the outputs array for i in range(rows): # Extract the class scores from the current row classes_scores = outputs[i][4:] # Find the maximum score among the class scores max_score = np.amax(classes_scores) # If the maximum score is above the confidence threshold if max_score >= self.confidence_thres: # Get the class ID with the highest score class_id = np.argmax(classes_scores) # Extract the bounding box coordinates from the current row x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3] # Calculate the scaled coordinates of the bounding box left = int((x - w / 2) * x_factor) top = int((y - h / 2) * y_factor) width = int(w * x_factor) height = int(h * y_factor) # Add the class ID, score, and box coordinates to the respective lists class_ids.append(class_id) scores.append(max_score) boxes.append([left, top, width, height]) # Apply non-maximum suppression to filter out overlapping bounding boxes indices = cv2.dnn.NMSBoxes(boxes, scores, self.confidence_thres, self.iou_thres) # Iterate over the selected indices after non-maximum suppression for i in indices: # Get the box, score, and class ID corresponding to the index box = boxes[i] score = scores[i] class_id = class_ids[i] # Draw the detection on the input image self.draw_detections(input_image, box, score, class_id) # Return the modified input image return input_image def main(self): """ Performs inference using an ONNX model and returns the output image with drawn detections. Returns: output_img: The output image with drawn detections. """ # Create an inference session using the ONNX model and specify execution providers session = ort.InferenceSession(self.onnx_model, providers=["CUDAExecutionProvider", "CPUExecutionProvider"]) # Get the model inputs model_inputs = session.get_inputs() # Store the shape of the input for later use input_shape = model_inputs[0].shape self.input_width = input_shape[2] self.input_height = input_shape[3] # Preprocess the image data img_data = self.preprocess() # Run inference using the preprocessed image data outputs = session.run(None, {model_inputs[0].name: img_data}) # Perform post-processing on the outputs to obtain output image. return self.postprocess(self.img, outputs) # output image if __name__ == "__main__": # Create an argument parser to handle command-line arguments parser = argparse.ArgumentParser() parser.add_argument("--model", type=str, default="yolov8n.onnx", help="Input your ONNX model.") parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image.") parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold") parser.add_argument("--iou-thres", type=float, default=0.5, help="NMS IoU threshold") args = parser.parse_args() # Check the requirements and select the appropriate backend (CPU or GPU) check_requirements("onnxruntime-gpu" if torch.cuda.is_available() else "onnxruntime") # Create an instance of the YOLOv8 class with the specified arguments detection = YOLOv8(args.model, args.img, args.conf_thres, args.iou_thres) # Perform object detection and obtain the output image output_image = detection.main() # Display the output image in a window cv2.namedWindow("Output", cv2.WINDOW_NORMAL) cv2.imshow("Output", output_image) # Wait for a key press to exit cv2.waitKey(0)
8,812
Python
.py
171
41.97076
118
0.643748
arojsubedi/Improved-YOLOv8s
8
5
0
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,787
yolov8_region_counter.py
arojsubedi_Improved-YOLOv8s/examples/YOLOv8-Region-Counter/yolov8_region_counter.py
# Ultralytics YOLO 🚀, AGPL-3.0 license import argparse from collections import defaultdict from pathlib import Path import cv2 import numpy as np from shapely.geometry import Polygon from shapely.geometry.point import Point from ultralytics import YOLO from ultralytics.utils.files import increment_path from ultralytics.utils.plotting import Annotator, colors track_history = defaultdict(list) current_region = None counting_regions = [ { "name": "YOLOv8 Polygon Region", "polygon": Polygon([(50, 80), (250, 20), (450, 80), (400, 350), (100, 350)]), # Polygon points "counts": 0, "dragging": False, "region_color": (255, 42, 4), # BGR Value "text_color": (255, 255, 255), # Region Text Color }, { "name": "YOLOv8 Rectangle Region", "polygon": Polygon([(200, 250), (440, 250), (440, 550), (200, 550)]), # Polygon points "counts": 0, "dragging": False, "region_color": (37, 255, 225), # BGR Value "text_color": (0, 0, 0), # Region Text Color }, ] def mouse_callback(event, x, y, flags, param): """ Handles mouse events for region manipulation. Parameters: event (int): The mouse event type (e.g., cv2.EVENT_LBUTTONDOWN). x (int): The x-coordinate of the mouse pointer. y (int): The y-coordinate of the mouse pointer. flags (int): Additional flags passed by OpenCV. param: Additional parameters passed to the callback (not used in this function). Global Variables: current_region (dict): A dictionary representing the current selected region. Mouse Events: - LBUTTONDOWN: Initiates dragging for the region containing the clicked point. - MOUSEMOVE: Moves the selected region if dragging is active. - LBUTTONUP: Ends dragging for the selected region. Notes: - This function is intended to be used as a callback for OpenCV mouse events. - Requires the existence of the 'counting_regions' list and the 'Polygon' class. Example: >>> cv2.setMouseCallback(window_name, mouse_callback) """ global current_region # Mouse left button down event if event == cv2.EVENT_LBUTTONDOWN: for region in counting_regions: if region["polygon"].contains(Point((x, y))): current_region = region current_region["dragging"] = True current_region["offset_x"] = x current_region["offset_y"] = y # Mouse move event elif event == cv2.EVENT_MOUSEMOVE: if current_region is not None and current_region["dragging"]: dx = x - current_region["offset_x"] dy = y - current_region["offset_y"] current_region["polygon"] = Polygon( [(p[0] + dx, p[1] + dy) for p in current_region["polygon"].exterior.coords] ) current_region["offset_x"] = x current_region["offset_y"] = y # Mouse left button up event elif event == cv2.EVENT_LBUTTONUP: if current_region is not None and current_region["dragging"]: current_region["dragging"] = False def run( weights="yolov8n.pt", source=None, device="cpu", view_img=False, save_img=False, exist_ok=False, classes=None, line_thickness=2, track_thickness=2, region_thickness=2, ): """ Run Region counting on a video using YOLOv8 and ByteTrack. Supports movable region for real time counting inside specific area. Supports multiple regions counting. Regions can be Polygons or rectangle in shape Args: weights (str): Model weights path. source (str): Video file path. device (str): processing device cpu, 0, 1 view_img (bool): Show results. save_img (bool): Save results. exist_ok (bool): Overwrite existing files. classes (list): classes to detect and track line_thickness (int): Bounding box thickness. track_thickness (int): Tracking line thickness region_thickness (int): Region thickness. """ vid_frame_count = 0 # Check source path if not Path(source).exists(): raise FileNotFoundError(f"Source path '{source}' does not exist.") # Setup Model model = YOLO(f"{weights}") model.to("cuda") if device == "0" else model.to("cpu") # Extract classes names names = model.model.names # Video setup videocapture = cv2.VideoCapture(source) frame_width, frame_height = int(videocapture.get(3)), int(videocapture.get(4)) fps, fourcc = int(videocapture.get(5)), cv2.VideoWriter_fourcc(*"mp4v") # Output setup save_dir = increment_path(Path("ultralytics_rc_output") / "exp", exist_ok) save_dir.mkdir(parents=True, exist_ok=True) video_writer = cv2.VideoWriter(str(save_dir / f"{Path(source).stem}.mp4"), fourcc, fps, (frame_width, frame_height)) # Iterate over video frames while videocapture.isOpened(): success, frame = videocapture.read() if not success: break vid_frame_count += 1 # Extract the results results = model.track(frame, persist=True, classes=classes) if results[0].boxes.id is not None: boxes = results[0].boxes.xyxy.cpu() track_ids = results[0].boxes.id.int().cpu().tolist() clss = results[0].boxes.cls.cpu().tolist() annotator = Annotator(frame, line_width=line_thickness, example=str(names)) for box, track_id, cls in zip(boxes, track_ids, clss): annotator.box_label(box, str(names[cls]), color=colors(cls, True)) bbox_center = (box[0] + box[2]) / 2, (box[1] + box[3]) / 2 # Bbox center track = track_history[track_id] # Tracking Lines plot track.append((float(bbox_center[0]), float(bbox_center[1]))) if len(track) > 30: track.pop(0) points = np.hstack(track).astype(np.int32).reshape((-1, 1, 2)) cv2.polylines(frame, [points], isClosed=False, color=colors(cls, True), thickness=track_thickness) # Check if detection inside region for region in counting_regions: if region["polygon"].contains(Point((bbox_center[0], bbox_center[1]))): region["counts"] += 1 # Draw regions (Polygons/Rectangles) for region in counting_regions: region_label = str(region["counts"]) region_color = region["region_color"] region_text_color = region["text_color"] polygon_coords = np.array(region["polygon"].exterior.coords, dtype=np.int32) centroid_x, centroid_y = int(region["polygon"].centroid.x), int(region["polygon"].centroid.y) text_size, _ = cv2.getTextSize( region_label, cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.7, thickness=line_thickness ) text_x = centroid_x - text_size[0] // 2 text_y = centroid_y + text_size[1] // 2 cv2.rectangle( frame, (text_x - 5, text_y - text_size[1] - 5), (text_x + text_size[0] + 5, text_y + 5), region_color, -1, ) cv2.putText( frame, region_label, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 0.7, region_text_color, line_thickness ) cv2.polylines(frame, [polygon_coords], isClosed=True, color=region_color, thickness=region_thickness) if view_img: if vid_frame_count == 1: cv2.namedWindow("Ultralytics YOLOv8 Region Counter Movable") cv2.setMouseCallback("Ultralytics YOLOv8 Region Counter Movable", mouse_callback) cv2.imshow("Ultralytics YOLOv8 Region Counter Movable", frame) if save_img: video_writer.write(frame) for region in counting_regions: # Reinitialize count for each region region["counts"] = 0 if cv2.waitKey(1) & 0xFF == ord("q"): break del vid_frame_count video_writer.release() videocapture.release() cv2.destroyAllWindows() def parse_opt(): """Parse command line arguments.""" parser = argparse.ArgumentParser() parser.add_argument("--weights", type=str, default="yolov8n.pt", help="initial weights path") parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu") parser.add_argument("--source", type=str, required=True, help="video file path") parser.add_argument("--view-img", action="store_true", help="show results") parser.add_argument("--save-img", action="store_true", help="save results") parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment") parser.add_argument("--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3") parser.add_argument("--line-thickness", type=int, default=2, help="bounding box thickness") parser.add_argument("--track-thickness", type=int, default=2, help="Tracking line thickness") parser.add_argument("--region-thickness", type=int, default=4, help="Region thickness") return parser.parse_args() def main(opt): """Main function.""" run(**vars(opt)) if __name__ == "__main__": opt = parse_opt() main(opt)
9,478
Python
.py
205
37.556098
120
0.624472
arojsubedi/Improved-YOLOv8s
8
5
0
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,788
yolov8_sahi.py
arojsubedi_Improved-YOLOv8s/examples/YOLOv8-SAHI-Inference-Video/yolov8_sahi.py
# Ultralytics YOLO 🚀, AGPL-3.0 license import argparse from pathlib import Path import cv2 from sahi import AutoDetectionModel from sahi.predict import get_sliced_prediction from sahi.utils.yolov8 import download_yolov8s_model from ultralytics.utils.files import increment_path def run(weights="yolov8n.pt", source="test.mp4", view_img=False, save_img=False, exist_ok=False): """ Run object detection on a video using YOLOv8 and SAHI. Args: weights (str): Model weights path. source (str): Video file path. view_img (bool): Show results. save_img (bool): Save results. exist_ok (bool): Overwrite existing files. """ # Check source path if not Path(source).exists(): raise FileNotFoundError(f"Source path '{source}' does not exist.") yolov8_model_path = f"models/{weights}" download_yolov8s_model(yolov8_model_path) detection_model = AutoDetectionModel.from_pretrained( model_type="yolov8", model_path=yolov8_model_path, confidence_threshold=0.3, device="cpu" ) # Video setup videocapture = cv2.VideoCapture(source) frame_width, frame_height = int(videocapture.get(3)), int(videocapture.get(4)) fps, fourcc = int(videocapture.get(5)), cv2.VideoWriter_fourcc(*"mp4v") # Output setup save_dir = increment_path(Path("ultralytics_results_with_sahi") / "exp", exist_ok) save_dir.mkdir(parents=True, exist_ok=True) video_writer = cv2.VideoWriter(str(save_dir / f"{Path(source).stem}.mp4"), fourcc, fps, (frame_width, frame_height)) while videocapture.isOpened(): success, frame = videocapture.read() if not success: break results = get_sliced_prediction( frame, detection_model, slice_height=512, slice_width=512, overlap_height_ratio=0.2, overlap_width_ratio=0.2 ) object_prediction_list = results.object_prediction_list boxes_list = [] clss_list = [] for ind, _ in enumerate(object_prediction_list): boxes = ( object_prediction_list[ind].bbox.minx, object_prediction_list[ind].bbox.miny, object_prediction_list[ind].bbox.maxx, object_prediction_list[ind].bbox.maxy, ) clss = object_prediction_list[ind].category.name boxes_list.append(boxes) clss_list.append(clss) for box, cls in zip(boxes_list, clss_list): x1, y1, x2, y2 = box cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (56, 56, 255), 2) label = str(cls) t_size = cv2.getTextSize(label, 0, fontScale=0.6, thickness=1)[0] cv2.rectangle( frame, (int(x1), int(y1) - t_size[1] - 3), (int(x1) + t_size[0], int(y1) + 3), (56, 56, 255), -1 ) cv2.putText( frame, label, (int(x1), int(y1) - 2), 0, 0.6, [255, 255, 255], thickness=1, lineType=cv2.LINE_AA ) if view_img: cv2.imshow(Path(source).stem, frame) if save_img: video_writer.write(frame) if cv2.waitKey(1) & 0xFF == ord("q"): break video_writer.release() videocapture.release() cv2.destroyAllWindows() def parse_opt(): """Parse command line arguments.""" parser = argparse.ArgumentParser() parser.add_argument("--weights", type=str, default="yolov8n.pt", help="initial weights path") parser.add_argument("--source", type=str, required=True, help="video file path") parser.add_argument("--view-img", action="store_true", help="show results") parser.add_argument("--save-img", action="store_true", help="save results") parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment") return parser.parse_args() def main(opt): """Main function.""" run(**vars(opt)) if __name__ == "__main__": opt = parse_opt() main(opt)
3,997
Python
.py
89
36.921348
120
0.632784
arojsubedi/Improved-YOLOv8s
8
5
0
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,789
main.py
arojsubedi_Improved-YOLOv8s/examples/YOLOv8-OpenCV-ONNX-Python/main.py
# Ultralytics YOLO 🚀, AGPL-3.0 license import argparse import cv2.dnn import numpy as np from ultralytics.utils import ASSETS, yaml_load from ultralytics.utils.checks import check_yaml CLASSES = yaml_load(check_yaml("coco128.yaml"))["names"] colors = np.random.uniform(0, 255, size=(len(CLASSES), 3)) def draw_bounding_box(img, class_id, confidence, x, y, x_plus_w, y_plus_h): """ Draws bounding boxes on the input image based on the provided arguments. Args: img (numpy.ndarray): The input image to draw the bounding box on. class_id (int): Class ID of the detected object. confidence (float): Confidence score of the detected object. x (int): X-coordinate of the top-left corner of the bounding box. y (int): Y-coordinate of the top-left corner of the bounding box. x_plus_w (int): X-coordinate of the bottom-right corner of the bounding box. y_plus_h (int): Y-coordinate of the bottom-right corner of the bounding box. """ label = f"{CLASSES[class_id]} ({confidence:.2f})" color = colors[class_id] cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2) cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) def main(onnx_model, input_image): """ Main function to load ONNX model, perform inference, draw bounding boxes, and display the output image. Args: onnx_model (str): Path to the ONNX model. input_image (str): Path to the input image. Returns: list: List of dictionaries containing detection information such as class_id, class_name, confidence, etc. """ # Load the ONNX model model: cv2.dnn.Net = cv2.dnn.readNetFromONNX(onnx_model) # Read the input image original_image: np.ndarray = cv2.imread(input_image) [height, width, _] = original_image.shape # Prepare a square image for inference length = max((height, width)) image = np.zeros((length, length, 3), np.uint8) image[0:height, 0:width] = original_image # Calculate scale factor scale = length / 640 # Preprocess the image and prepare blob for model blob = cv2.dnn.blobFromImage(image, scalefactor=1 / 255, size=(640, 640), swapRB=True) model.setInput(blob) # Perform inference outputs = model.forward() # Prepare output array outputs = np.array([cv2.transpose(outputs[0])]) rows = outputs.shape[1] boxes = [] scores = [] class_ids = [] # Iterate through output to collect bounding boxes, confidence scores, and class IDs for i in range(rows): classes_scores = outputs[0][i][4:] (minScore, maxScore, minClassLoc, (x, maxClassIndex)) = cv2.minMaxLoc(classes_scores) if maxScore >= 0.25: box = [ outputs[0][i][0] - (0.5 * outputs[0][i][2]), outputs[0][i][1] - (0.5 * outputs[0][i][3]), outputs[0][i][2], outputs[0][i][3], ] boxes.append(box) scores.append(maxScore) class_ids.append(maxClassIndex) # Apply NMS (Non-maximum suppression) result_boxes = cv2.dnn.NMSBoxes(boxes, scores, 0.25, 0.45, 0.5) detections = [] # Iterate through NMS results to draw bounding boxes and labels for i in range(len(result_boxes)): index = result_boxes[i] box = boxes[index] detection = { "class_id": class_ids[index], "class_name": CLASSES[class_ids[index]], "confidence": scores[index], "box": box, "scale": scale, } detections.append(detection) draw_bounding_box( original_image, class_ids[index], scores[index], round(box[0] * scale), round(box[1] * scale), round((box[0] + box[2]) * scale), round((box[1] + box[3]) * scale), ) # Display the image with bounding boxes cv2.imshow("image", original_image) cv2.waitKey(0) cv2.destroyAllWindows() return detections if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model", default="yolov8n.onnx", help="Input your ONNX model.") parser.add_argument("--img", default=str(ASSETS / "bus.jpg"), help="Path to input image.") args = parser.parse_args() main(args.model, args.img)
4,404
Python
.py
104
34.980769
114
0.629621
arojsubedi/Improved-YOLOv8s
8
5
0
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,790
main.py
arojsubedi_Improved-YOLOv8s/examples/YOLOv8-Segmentation-ONNXRuntime-Python/main.py
# Ultralytics YOLO 🚀, AGPL-3.0 license import argparse import cv2 import numpy as np import onnxruntime as ort from ultralytics.utils import ASSETS, yaml_load from ultralytics.utils.checks import check_yaml from ultralytics.utils.plotting import Colors class YOLOv8Seg: """YOLOv8 segmentation model.""" def __init__(self, onnx_model): """ Initialization. Args: onnx_model (str): Path to the ONNX model. """ # Build Ort session self.session = ort.InferenceSession( onnx_model, providers=["CUDAExecutionProvider", "CPUExecutionProvider"] if ort.get_device() == "GPU" else ["CPUExecutionProvider"], ) # Numpy dtype: support both FP32 and FP16 onnx model self.ndtype = np.half if self.session.get_inputs()[0].type == "tensor(float16)" else np.single # Get model width and height(YOLOv8-seg only has one input) self.model_height, self.model_width = [x.shape for x in self.session.get_inputs()][0][-2:] # Load COCO class names self.classes = yaml_load(check_yaml("coco128.yaml"))["names"] # Create color palette self.color_palette = Colors() def __call__(self, im0, conf_threshold=0.4, iou_threshold=0.45, nm=32): """ The whole pipeline: pre-process -> inference -> post-process. Args: im0 (Numpy.ndarray): original input image. conf_threshold (float): confidence threshold for filtering predictions. iou_threshold (float): iou threshold for NMS. nm (int): the number of masks. Returns: boxes (List): list of bounding boxes. segments (List): list of segments. masks (np.ndarray): [N, H, W], output masks. """ # Pre-process im, ratio, (pad_w, pad_h) = self.preprocess(im0) # Ort inference preds = self.session.run(None, {self.session.get_inputs()[0].name: im}) # Post-process boxes, segments, masks = self.postprocess( preds, im0=im0, ratio=ratio, pad_w=pad_w, pad_h=pad_h, conf_threshold=conf_threshold, iou_threshold=iou_threshold, nm=nm, ) return boxes, segments, masks def preprocess(self, img): """ Pre-processes the input image. Args: img (Numpy.ndarray): image about to be processed. Returns: img_process (Numpy.ndarray): image preprocessed for inference. ratio (tuple): width, height ratios in letterbox. pad_w (float): width padding in letterbox. pad_h (float): height padding in letterbox. """ # Resize and pad input image using letterbox() (Borrowed from Ultralytics) shape = img.shape[:2] # original image shape new_shape = (self.model_height, self.model_width) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) ratio = r, r new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) pad_w, pad_h = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2 # wh padding if shape[::-1] != new_unpad: # resize img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(pad_h - 0.1)), int(round(pad_h + 0.1)) left, right = int(round(pad_w - 0.1)), int(round(pad_w + 0.1)) img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)) # Transforms: HWC to CHW -> BGR to RGB -> div(255) -> contiguous -> add axis(optional) img = np.ascontiguousarray(np.einsum("HWC->CHW", img)[::-1], dtype=self.ndtype) / 255.0 img_process = img[None] if len(img.shape) == 3 else img return img_process, ratio, (pad_w, pad_h) def postprocess(self, preds, im0, ratio, pad_w, pad_h, conf_threshold, iou_threshold, nm=32): """ Post-process the prediction. Args: preds (Numpy.ndarray): predictions come from ort.session.run(). im0 (Numpy.ndarray): [h, w, c] original input image. ratio (tuple): width, height ratios in letterbox. pad_w (float): width padding in letterbox. pad_h (float): height padding in letterbox. conf_threshold (float): conf threshold. iou_threshold (float): iou threshold. nm (int): the number of masks. Returns: boxes (List): list of bounding boxes. segments (List): list of segments. masks (np.ndarray): [N, H, W], output masks. """ x, protos = preds[0], preds[1] # Two outputs: predictions and protos # Transpose the first output: (Batch_size, xywh_conf_cls_nm, Num_anchors) -> (Batch_size, Num_anchors, xywh_conf_cls_nm) x = np.einsum("bcn->bnc", x) # Predictions filtering by conf-threshold x = x[np.amax(x[..., 4:-nm], axis=-1) > conf_threshold] # Create a new matrix which merge these(box, score, cls, nm) into one # For more details about `numpy.c_()`: https://numpy.org/doc/1.26/reference/generated/numpy.c_.html x = np.c_[x[..., :4], np.amax(x[..., 4:-nm], axis=-1), np.argmax(x[..., 4:-nm], axis=-1), x[..., -nm:]] # NMS filtering x = x[cv2.dnn.NMSBoxes(x[:, :4], x[:, 4], conf_threshold, iou_threshold)] # Decode and return if len(x) > 0: # Bounding boxes format change: cxcywh -> xyxy x[..., [0, 1]] -= x[..., [2, 3]] / 2 x[..., [2, 3]] += x[..., [0, 1]] # Rescales bounding boxes from model shape(model_height, model_width) to the shape of original image x[..., :4] -= [pad_w, pad_h, pad_w, pad_h] x[..., :4] /= min(ratio) # Bounding boxes boundary clamp x[..., [0, 2]] = x[:, [0, 2]].clip(0, im0.shape[1]) x[..., [1, 3]] = x[:, [1, 3]].clip(0, im0.shape[0]) # Process masks masks = self.process_mask(protos[0], x[:, 6:], x[:, :4], im0.shape) # Masks -> Segments(contours) segments = self.masks2segments(masks) return x[..., :6], segments, masks # boxes, segments, masks else: return [], [], [] @staticmethod def masks2segments(masks): """ It takes a list of masks(n,h,w) and returns a list of segments(n,xy) (Borrowed from https://github.com/ultralytics/ultralytics/blob/465df3024f44fa97d4fad9986530d5a13cdabdca/ultralytics/utils/ops.py#L750) Args: masks (numpy.ndarray): the output of the model, which is a tensor of shape (batch_size, 160, 160). Returns: segments (List): list of segment masks. """ segments = [] for x in masks.astype("uint8"): c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0] # CHAIN_APPROX_SIMPLE if c: c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2) else: c = np.zeros((0, 2)) # no segments found segments.append(c.astype("float32")) return segments @staticmethod def crop_mask(masks, boxes): """ It takes a mask and a bounding box, and returns a mask that is cropped to the bounding box. (Borrowed from https://github.com/ultralytics/ultralytics/blob/465df3024f44fa97d4fad9986530d5a13cdabdca/ultralytics/utils/ops.py#L599) Args: masks (Numpy.ndarray): [n, h, w] tensor of masks. boxes (Numpy.ndarray): [n, 4] tensor of bbox coordinates in relative point form. Returns: (Numpy.ndarray): The masks are being cropped to the bounding box. """ n, h, w = masks.shape x1, y1, x2, y2 = np.split(boxes[:, :, None], 4, 1) r = np.arange(w, dtype=x1.dtype)[None, None, :] c = np.arange(h, dtype=x1.dtype)[None, :, None] return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2)) def process_mask(self, protos, masks_in, bboxes, im0_shape): """ Takes the output of the mask head, and applies the mask to the bounding boxes. This produces masks of higher quality but is slower. (Borrowed from https://github.com/ultralytics/ultralytics/blob/465df3024f44fa97d4fad9986530d5a13cdabdca/ultralytics/utils/ops.py#L618) Args: protos (numpy.ndarray): [mask_dim, mask_h, mask_w]. masks_in (numpy.ndarray): [n, mask_dim], n is number of masks after nms. bboxes (numpy.ndarray): bboxes re-scaled to original image shape. im0_shape (tuple): the size of the input image (h,w,c). Returns: (numpy.ndarray): The upsampled masks. """ c, mh, mw = protos.shape masks = np.matmul(masks_in, protos.reshape((c, -1))).reshape((-1, mh, mw)).transpose(1, 2, 0) # HWN masks = np.ascontiguousarray(masks) masks = self.scale_mask(masks, im0_shape) # re-scale mask from P3 shape to original input image shape masks = np.einsum("HWN -> NHW", masks) # HWN -> NHW masks = self.crop_mask(masks, bboxes) return np.greater(masks, 0.5) @staticmethod def scale_mask(masks, im0_shape, ratio_pad=None): """ Takes a mask, and resizes it to the original image size. (Borrowed from https://github.com/ultralytics/ultralytics/blob/465df3024f44fa97d4fad9986530d5a13cdabdca/ultralytics/utils/ops.py#L305) Args: masks (np.ndarray): resized and padded masks/images, [h, w, num]/[h, w, 3]. im0_shape (tuple): the original image shape. ratio_pad (tuple): the ratio of the padding to the original image. Returns: masks (np.ndarray): The masks that are being returned. """ im1_shape = masks.shape[:2] if ratio_pad is None: # calculate from im0_shape gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding else: pad = ratio_pad[1] # Calculate tlbr of mask top, left = int(round(pad[1] - 0.1)), int(round(pad[0] - 0.1)) # y, x bottom, right = int(round(im1_shape[0] - pad[1] + 0.1)), int(round(im1_shape[1] - pad[0] + 0.1)) if len(masks.shape) < 2: raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}') masks = masks[top:bottom, left:right] masks = cv2.resize( masks, (im0_shape[1], im0_shape[0]), interpolation=cv2.INTER_LINEAR ) # INTER_CUBIC would be better if len(masks.shape) == 2: masks = masks[:, :, None] return masks def draw_and_visualize(self, im, bboxes, segments, vis=False, save=True): """ Draw and visualize results. Args: im (np.ndarray): original image, shape [h, w, c]. bboxes (numpy.ndarray): [n, 4], n is number of bboxes. segments (List): list of segment masks. vis (bool): imshow using OpenCV. save (bool): save image annotated. Returns: None """ # Draw rectangles and polygons im_canvas = im.copy() for (*box, conf, cls_), segment in zip(bboxes, segments): # draw contour and fill mask cv2.polylines(im, np.int32([segment]), True, (255, 255, 255), 2) # white borderline cv2.fillPoly(im_canvas, np.int32([segment]), self.color_palette(int(cls_), bgr=True)) # draw bbox rectangle cv2.rectangle( im, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), self.color_palette(int(cls_), bgr=True), 1, cv2.LINE_AA, ) cv2.putText( im, f"{self.classes[cls_]}: {conf:.3f}", (int(box[0]), int(box[1] - 9)), cv2.FONT_HERSHEY_SIMPLEX, 0.7, self.color_palette(int(cls_), bgr=True), 2, cv2.LINE_AA, ) # Mix image im = cv2.addWeighted(im_canvas, 0.3, im, 0.7, 0) # Show image if vis: cv2.imshow("demo", im) cv2.waitKey(0) cv2.destroyAllWindows() # Save image if save: cv2.imwrite("demo.jpg", im) if __name__ == "__main__": # Create an argument parser to handle command-line arguments parser = argparse.ArgumentParser() parser.add_argument("--model", type=str, required=True, help="Path to ONNX model") parser.add_argument("--source", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image") parser.add_argument("--conf", type=float, default=0.25, help="Confidence threshold") parser.add_argument("--iou", type=float, default=0.45, help="NMS IoU threshold") args = parser.parse_args() # Build model model = YOLOv8Seg(args.model) # Read image by OpenCV img = cv2.imread(args.source) # Inference boxes, segments, _ = model(img, conf_threshold=args.conf, iou_threshold=args.iou) # Draw bboxes and polygons if len(boxes) > 0: model.draw_and_visualize(img, boxes, segments, vis=False, save=True)
13,623
Python
.py
280
38.317857
157
0.577667
arojsubedi/Improved-YOLOv8s
8
5
0
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,791
main.py
arojsubedi_Improved-YOLOv8s/examples/YOLOv8-OpenCV-int8-tflite-Python/main.py
# Ultralytics YOLO 🚀, AGPL-3.0 license import argparse import cv2 import numpy as np from tflite_runtime import interpreter as tflite from ultralytics.utils import ASSETS, yaml_load from ultralytics.utils.checks import check_yaml # Declare as global variables, can be updated based trained model image size img_width = 640 img_height = 640 class LetterBox: def __init__( self, new_shape=(img_width, img_height), auto=False, scaleFill=False, scaleup=True, center=True, stride=32 ): self.new_shape = new_shape self.auto = auto self.scaleFill = scaleFill self.scaleup = scaleup self.stride = stride self.center = center # Put the image in the middle or top-left def __call__(self, labels=None, image=None): """Return updated labels and image with added border.""" if labels is None: labels = {} img = labels.get("img") if image is None else image shape = img.shape[:2] # current shape [height, width] new_shape = labels.pop("rect_shape", self.new_shape) if isinstance(new_shape, int): new_shape = (new_shape, new_shape) # Scale ratio (new / old) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) if not self.scaleup: # only scale down, do not scale up (for better val mAP) r = min(r, 1.0) # Compute padding ratio = r, r # width, height ratios new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding if self.auto: # minimum rectangle dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride) # wh padding elif self.scaleFill: # stretch dw, dh = 0.0, 0.0 new_unpad = (new_shape[1], new_shape[0]) ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios if self.center: dw /= 2 # divide padding into 2 sides dh /= 2 if shape[::-1] != new_unpad: # resize img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1)) left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1)) img = cv2.copyMakeBorder( img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114) ) # add border if labels.get("ratio_pad"): labels["ratio_pad"] = (labels["ratio_pad"], (left, top)) # for evaluation if len(labels): labels = self._update_labels(labels, ratio, dw, dh) labels["img"] = img labels["resized_shape"] = new_shape return labels else: return img def _update_labels(self, labels, ratio, padw, padh): """Update labels.""" labels["instances"].convert_bbox(format="xyxy") labels["instances"].denormalize(*labels["img"].shape[:2][::-1]) labels["instances"].scale(*ratio) labels["instances"].add_padding(padw, padh) return labels class Yolov8TFLite: def __init__(self, tflite_model, input_image, confidence_thres, iou_thres): """ Initializes an instance of the Yolov8TFLite class. Args: tflite_model: Path to the TFLite model. input_image: Path to the input image. confidence_thres: Confidence threshold for filtering detections. iou_thres: IoU (Intersection over Union) threshold for non-maximum suppression. """ self.tflite_model = tflite_model self.input_image = input_image self.confidence_thres = confidence_thres self.iou_thres = iou_thres # Load the class names from the COCO dataset self.classes = yaml_load(check_yaml("coco128.yaml"))["names"] # Generate a color palette for the classes self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3)) def draw_detections(self, img, box, score, class_id): """ Draws bounding boxes and labels on the input image based on the detected objects. Args: img: The input image to draw detections on. box: Detected bounding box. score: Corresponding detection score. class_id: Class ID for the detected object. Returns: None """ # Extract the coordinates of the bounding box x1, y1, w, h = box # Retrieve the color for the class ID color = self.color_palette[class_id] # Draw the bounding box on the image cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2) # Create the label text with class name and score label = f"{self.classes[class_id]}: {score:.2f}" # Calculate the dimensions of the label text (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) # Calculate the position of the label text label_x = x1 label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10 # Draw a filled rectangle as the background for the label text cv2.rectangle( img, (int(label_x), int(label_y - label_height)), (int(label_x + label_width), int(label_y + label_height)), color, cv2.FILLED, ) # Draw the label text on the image cv2.putText(img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA) def preprocess(self): """ Preprocesses the input image before performing inference. Returns: image_data: Preprocessed image data ready for inference. """ # Read the input image using OpenCV self.img = cv2.imread(self.input_image) print("image before", self.img) # Get the height and width of the input image self.img_height, self.img_width = self.img.shape[:2] letterbox = LetterBox(new_shape=[img_width, img_height], auto=False, stride=32) image = letterbox(image=self.img) image = [image] image = np.stack(image) image = image[..., ::-1].transpose((0, 3, 1, 2)) img = np.ascontiguousarray(image) # n, h, w, c image = img.astype(np.float32) return image / 255 def postprocess(self, input_image, output): """ Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs. Args: input_image (numpy.ndarray): The input image. output (numpy.ndarray): The output of the model. Returns: numpy.ndarray: The input image with detections drawn on it. """ boxes = [] scores = [] class_ids = [] for pred in output: pred = np.transpose(pred) for box in pred: x, y, w, h = box[:4] x1 = x - w / 2 y1 = y - h / 2 boxes.append([x1, y1, w, h]) idx = np.argmax(box[4:]) scores.append(box[idx + 4]) class_ids.append(idx) indices = cv2.dnn.NMSBoxes(boxes, scores, self.confidence_thres, self.iou_thres) for i in indices: # Get the box, score, and class ID corresponding to the index box = boxes[i] gain = min(img_width / self.img_width, img_height / self.img_height) pad = ( round((img_width - self.img_width * gain) / 2 - 0.1), round((img_height - self.img_height * gain) / 2 - 0.1), ) box[0] = (box[0] - pad[0]) / gain box[1] = (box[1] - pad[1]) / gain box[2] = box[2] / gain box[3] = box[3] / gain score = scores[i] class_id = class_ids[i] if score > 0.25: print(box, score, class_id) # Draw the detection on the input image self.draw_detections(input_image, box, score, class_id) return input_image def main(self): """ Performs inference using a TFLite model and returns the output image with drawn detections. Returns: output_img: The output image with drawn detections. """ # Create an interpreter for the TFLite model interpreter = tflite.Interpreter(model_path=self.tflite_model) self.model = interpreter interpreter.allocate_tensors() # Get the model inputs input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() # Store the shape of the input for later use input_shape = input_details[0]["shape"] self.input_width = input_shape[1] self.input_height = input_shape[2] # Preprocess the image data img_data = self.preprocess() img_data = img_data # img_data = img_data.cpu().numpy() # Set the input tensor to the interpreter print(input_details[0]["index"]) print(img_data.shape) img_data = img_data.transpose((0, 2, 3, 1)) scale, zero_point = input_details[0]["quantization"] interpreter.set_tensor(input_details[0]["index"], img_data) # Run inference interpreter.invoke() # Get the output tensor from the interpreter output = interpreter.get_tensor(output_details[0]["index"]) scale, zero_point = output_details[0]["quantization"] output = (output.astype(np.float32) - zero_point) * scale output[:, [0, 2]] *= img_width output[:, [1, 3]] *= img_height print(output) # Perform post-processing on the outputs to obtain output image. return self.postprocess(self.img, output) if __name__ == "__main__": # Create an argument parser to handle command-line arguments parser = argparse.ArgumentParser() parser.add_argument( "--model", type=str, default="yolov8n_full_integer_quant.tflite", help="Input your TFLite model." ) parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image.") parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold") parser.add_argument("--iou-thres", type=float, default=0.5, help="NMS IoU threshold") args = parser.parse_args() # Create an instance of the Yolov8TFLite class with the specified arguments detection = Yolov8TFLite(args.model, args.img, args.conf_thres, args.iou_thres) # Perform object detection and obtain the output image output_image = detection.main() # Display the output image in a window cv2.imshow("Output", output_image) # Wait for a key press to exit cv2.waitKey(0)
10,983
Python
.py
239
36.317992
119
0.599401
arojsubedi/Improved-YOLOv8s
8
5
0
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,792
Dockerfile-python
arojsubedi_Improved-YOLOv8s/docker/Dockerfile-python
# Ultralytics YOLO 🚀, AGPL-3.0 license # Builds ultralytics/ultralytics:latest-cpu image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics # Image is CPU-optimized for ONNX, OpenVINO and PyTorch YOLOv8 deployments # Use the official Python 3.10 slim-bookworm as base image FROM python:3.10-slim-bookworm # Downloads to user config dir ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \ https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.Unicode.ttf \ /root/.config/Ultralytics/ # Install linux packages # g++ required to build 'tflite_support' and 'lap' packages, libusb-1.0-0 required for 'tflite_support' package RUN apt update \ && apt install --no-install-recommends -y python3-pip git zip curl htop libgl1 libglib2.0-0 libpython3-dev gnupg g++ libusb-1.0-0 # Create working directory WORKDIR /usr/src/ultralytics # Copy contents # COPY . /usr/src/ultralytics # git permission issues inside container RUN git clone https://github.com/ultralytics/ultralytics -b main /usr/src/ultralytics ADD https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n.pt /usr/src/ultralytics/ # Remove python3.11/EXTERNALLY-MANAGED or use 'pip install --break-system-packages' avoid 'externally-managed-environment' Ubuntu nightly error # RUN rm -rf /usr/lib/python3.11/EXTERNALLY-MANAGED # Install pip packages RUN python3 -m pip install --upgrade pip wheel RUN pip install --no-cache -e ".[export]" --extra-index-url https://download.pytorch.org/whl/cpu # Run exports to AutoInstall packages RUN yolo export model=tmp/yolov8n.pt format=edgetpu imgsz=32 RUN yolo export model=tmp/yolov8n.pt format=ncnn imgsz=32 # Requires <= Python 3.10, bug with paddlepaddle==2.5.0 https://github.com/PaddlePaddle/X2Paddle/issues/991 RUN pip install --no-cache paddlepaddle>=2.6.0 x2paddle # Remove exported models RUN rm -rf tmp # Usage Examples ------------------------------------------------------------------------------------------------------- # Build and Push # t=ultralytics/ultralytics:latest-python && sudo docker build -f docker/Dockerfile-python -t $t . && sudo docker push $t # Run # t=ultralytics/ultralytics:latest-python && sudo docker run -it --ipc=host $t # Pull and Run # t=ultralytics/ultralytics:latest-python && sudo docker pull $t && sudo docker run -it --ipc=host $t # Pull and Run with local volume mounted # t=ultralytics/ultralytics:latest-python && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/datasets:/usr/src/datasets $t
2,547
Python
.py
40
62.025
143
0.744485
arojsubedi/Improved-YOLOv8s
8
5
0
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,793
build_reference.py
arojsubedi_Improved-YOLOv8s/docs/build_reference.py
# Ultralytics YOLO 🚀, AGPL-3.0 license """ Helper file to build Ultralytics Docs reference section. Recursively walks through ultralytics dir and builds an MkDocs reference section of *.md files composed of classes and functions, and also creates a nav menu for use in mkdocs.yaml. Note: Must be run from repository root directory. Do not run from docs directory. """ import re from collections import defaultdict from pathlib import Path # Get package root i.e. /Users/glennjocher/PycharmProjects/ultralytics/ultralytics from ultralytics.utils import ROOT as PACKAGE_DIR # Constants REFERENCE_DIR = PACKAGE_DIR.parent / "docs/en/reference" GITHUB_REPO = "ultralytics/ultralytics" def extract_classes_and_functions(filepath: Path) -> tuple: """Extracts class and function names from a given Python file.""" content = filepath.read_text() class_pattern = r"(?:^|\n)class\s(\w+)(?:\(|:)" func_pattern = r"(?:^|\n)def\s(\w+)\(" classes = re.findall(class_pattern, content) functions = re.findall(func_pattern, content) return classes, functions def create_markdown(py_filepath: Path, module_path: str, classes: list, functions: list): """Creates a Markdown file containing the API reference for the given Python module.""" md_filepath = py_filepath.with_suffix(".md") # Read existing content and keep header content between first two --- header_content = "" if md_filepath.exists(): existing_content = md_filepath.read_text() header_parts = existing_content.split("---") for part in header_parts: if "description:" in part or "comments:" in part: header_content += f"---{part}---\n\n" module_name = module_path.replace(".__init__", "") module_path = module_path.replace(".", "/") url = f"https://github.com/{GITHUB_REPO}/blob/main/{module_path}.py" edit = f"https://github.com/{GITHUB_REPO}/edit/main/{module_path}.py" title_content = ( f"# Reference for `{module_path}.py`\n\n" f"!!! Note\n\n" f" This file is available at [{url}]({url}). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request]({edit}) 🛠️. Thank you 🙏!\n\n" ) md_content = ["<br><br>\n"] + [f"## ::: {module_name}.{class_name}\n\n<br><br>\n" for class_name in classes] md_content.extend(f"## ::: {module_name}.{func_name}\n\n<br><br>\n" for func_name in functions) md_content = header_content + title_content + "\n".join(md_content) if not md_content.endswith("\n"): md_content += "\n" md_filepath.parent.mkdir(parents=True, exist_ok=True) md_filepath.write_text(md_content) return md_filepath.relative_to(PACKAGE_DIR.parent) def nested_dict() -> defaultdict: """Creates and returns a nested defaultdict.""" return defaultdict(nested_dict) def sort_nested_dict(d: dict) -> dict: """Sorts a nested dictionary recursively.""" return {key: sort_nested_dict(value) if isinstance(value, dict) else value for key, value in sorted(d.items())} def create_nav_menu_yaml(nav_items: list, save: bool = False): """Creates a YAML file for the navigation menu based on the provided list of items.""" nav_tree = nested_dict() for item_str in nav_items: item = Path(item_str) parts = item.parts current_level = nav_tree["reference"] for part in parts[2:-1]: # skip the first two parts (docs and reference) and the last part (filename) current_level = current_level[part] md_file_name = parts[-1].replace(".md", "") current_level[md_file_name] = item nav_tree_sorted = sort_nested_dict(nav_tree) def _dict_to_yaml(d, level=0): """Converts a nested dictionary to a YAML-formatted string with indentation.""" yaml_str = "" indent = " " * level for k, v in d.items(): if isinstance(v, dict): yaml_str += f"{indent}- {k}:\n{_dict_to_yaml(v, level + 1)}" else: yaml_str += f"{indent}- {k}: {str(v).replace('docs/en/', '')}\n" return yaml_str # Print updated YAML reference section print("Scan complete, new mkdocs.yaml reference section is:\n\n", _dict_to_yaml(nav_tree_sorted)) # Save new YAML reference section if save: (PACKAGE_DIR.parent / "nav_menu_updated.yml").write_text(_dict_to_yaml(nav_tree_sorted)) def main(): """Main function to extract class and function names, create Markdown files, and generate a YAML navigation menu.""" nav_items = [] for py_filepath in PACKAGE_DIR.rglob("*.py"): classes, functions = extract_classes_and_functions(py_filepath) if classes or functions: py_filepath_rel = py_filepath.relative_to(PACKAGE_DIR) md_filepath = REFERENCE_DIR / py_filepath_rel module_path = f"{PACKAGE_DIR.name}.{py_filepath_rel.with_suffix('').as_posix().replace('/', '.')}" md_rel_filepath = create_markdown(md_filepath, module_path, classes, functions) nav_items.append(str(md_rel_filepath)) create_nav_menu_yaml(nav_items) if __name__ == "__main__": main()
5,232
Python
.py
97
47.484536
218
0.661113
arojsubedi/Improved-YOLOv8s
8
5
0
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,794
build_docs.py
arojsubedi_Improved-YOLOv8s/docs/build_docs.py
# Ultralytics YOLO 🚀, AGPL-3.0 license """ This Python script is designed to automate the building and post-processing of MkDocs documentation, particularly for projects with multilingual content. It streamlines the workflow for generating localized versions of the documentation and updating HTML links to ensure they are correctly formatted. Key Features: - Automated building of MkDocs documentation: The script compiles both the main documentation and any localized versions specified in separate MkDocs configuration files. - Post-processing of generated HTML files: After the documentation is built, the script updates all HTML files to remove the '.md' extension from internal links. This ensures that links in the built HTML documentation correctly point to other HTML pages rather than Markdown files, which is crucial for proper navigation within the web-based documentation. Usage: - Run the script from the root directory of your MkDocs project. - Ensure that MkDocs is installed and that all MkDocs configuration files (main and localized versions) are present in the project directory. - The script first builds the documentation using MkDocs, then scans the generated HTML files in the 'site' directory to update the internal links. - It's ideal for projects where the documentation is written in Markdown and needs to be served as a static website. Note: - This script is built to be run in an environment where Python and MkDocs are installed and properly configured. """ import os import re import shutil import subprocess from pathlib import Path from tqdm import tqdm DOCS = Path(__file__).parent.resolve() SITE = DOCS.parent / "site" def build_docs(clone_repos=True): """Build docs using mkdocs.""" if SITE.exists(): print(f"Removing existing {SITE}") shutil.rmtree(SITE) # Get hub-sdk repo if clone_repos: repo = "https://github.com/ultralytics/hub-sdk" local_dir = DOCS.parent / Path(repo).name if not local_dir.exists(): os.system(f"git clone {repo} {local_dir}") os.system(f"git -C {local_dir} pull") # update repo shutil.rmtree(DOCS / "en/hub/sdk", ignore_errors=True) # delete if exists shutil.copytree(local_dir / "docs", DOCS / "en/hub/sdk") # for docs shutil.rmtree(DOCS.parent / "hub_sdk", ignore_errors=True) # delete if exists shutil.copytree(local_dir / "hub_sdk", DOCS.parent / "hub_sdk") # for mkdocstrings print(f"Cloned/Updated {repo} in {local_dir}") # Build the main documentation print(f"Building docs from {DOCS}") subprocess.run(f"mkdocs build -f {DOCS.parent}/mkdocs.yml", check=True, shell=True) print(f"Site built at {SITE}") def update_page_title(file_path: Path, new_title: str): """Update the title of an HTML file.""" # Read the content of the file with open(file_path, encoding="utf-8") as file: content = file.read() # Replace the existing title with the new title updated_content = re.sub(r"<title>.*?</title>", f"<title>{new_title}</title>", content) # Write the updated content back to the file with open(file_path, "w", encoding="utf-8") as file: file.write(updated_content) def update_html_head(script=""): """Update the HTML head section of each file.""" html_files = Path(SITE).rglob("*.html") for html_file in tqdm(html_files, desc="Processing HTML files"): with html_file.open("r", encoding="utf-8") as file: html_content = file.read() if script in html_content: # script already in HTML file return head_end_index = html_content.lower().rfind("</head>") if head_end_index != -1: # Add the specified JavaScript to the HTML file just before the end of the head tag. new_html_content = html_content[:head_end_index] + script + html_content[head_end_index:] with html_file.open("w", encoding="utf-8") as file: file.write(new_html_content) def update_subdir_edit_links(subdir="", docs_url=""): """Update the HTML head section of each file.""" from bs4 import BeautifulSoup if str(subdir[0]) == "/": subdir = str(subdir[0])[1:] html_files = (SITE / subdir).rglob("*.html") for html_file in tqdm(html_files, desc="Processing subdir files"): with html_file.open("r", encoding="utf-8") as file: soup = BeautifulSoup(file, "html.parser") # Find the anchor tag and update its href attribute a_tag = soup.find("a", {"class": "md-content__button md-icon"}) if a_tag and a_tag["title"] == "Edit this page": a_tag["href"] = f"{docs_url}{a_tag['href'].split(subdir)[-1]}" # Write the updated HTML back to the file with open(html_file, "w", encoding="utf-8") as file: file.write(str(soup)) def main(): """Builds docs, updates titles and edit links, and prints local server command.""" build_docs() # Update titles update_page_title(SITE / "404.html", new_title="Ultralytics Docs - Not Found") # Update edit links update_subdir_edit_links( subdir="hub/sdk/", # do not use leading slash docs_url="https://github.com/ultralytics/hub-sdk/tree/develop/docs/", ) # Update HTML file head section script = "" if any(script): update_html_head(script) # Show command to serve built website print('Serve site at http://localhost:8000 with "python -m http.server --directory site"') if __name__ == "__main__": main()
5,587
Python
.py
109
45.422018
118
0.687167
arojsubedi/Improved-YOLOv8s
8
5
0
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,795
__init__.py
arojsubedi_Improved-YOLOv8s/ultralytics/__init__.py
# Ultralytics YOLO 🚀, AGPL-3.0 license __version__ = "8.1.19" from ultralytics.data.explorer.explorer import Explorer from ultralytics.models import RTDETR, SAM, YOLO, YOLOWorld from ultralytics.models.fastsam import FastSAM from ultralytics.models.nas import NAS from ultralytics.utils import ASSETS, SETTINGS as settings from ultralytics.utils.checks import check_yolo as checks from ultralytics.utils.downloads import download __all__ = ( "__version__", "ASSETS", "YOLO", "YOLOWorld", "NAS", "SAM", "FastSAM", "RTDETR", "checks", "download", "settings", "Explorer", )
625
Python
.py
23
23.956522
59
0.724541
arojsubedi/Improved-YOLOv8s
8
5
0
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,796
augment.py
arojsubedi_Improved-YOLOv8s/ultralytics/data/augment.py
# Ultralytics YOLO 🚀, AGPL-3.0 license import math import random from copy import deepcopy import cv2 import numpy as np import torch import torchvision.transforms as T from ultralytics.utils import LOGGER, colorstr from ultralytics.utils.checks import check_version from ultralytics.utils.instance import Instances from ultralytics.utils.metrics import bbox_ioa from ultralytics.utils.ops import segment2box, xyxyxyxy2xywhr from ultralytics.utils.torch_utils import TORCHVISION_0_10, TORCHVISION_0_11, TORCHVISION_0_13 from .utils import polygons2masks, polygons2masks_overlap DEFAULT_MEAN = (0.0, 0.0, 0.0) DEFAULT_STD = (1.0, 1.0, 1.0) DEFAULT_CROP_FTACTION = 1.0 # TODO: we might need a BaseTransform to make all these augments be compatible with both classification and semantic class BaseTransform: """ Base class for image transformations. This is a generic transformation class that can be extended for specific image processing needs. The class is designed to be compatible with both classification and semantic segmentation tasks. Methods: __init__: Initializes the BaseTransform object. apply_image: Applies image transformation to labels. apply_instances: Applies transformations to object instances in labels. apply_semantic: Applies semantic segmentation to an image. __call__: Applies all label transformations to an image, instances, and semantic masks. """ def __init__(self) -> None: """Initializes the BaseTransform object.""" pass def apply_image(self, labels): """Applies image transformations to labels.""" pass def apply_instances(self, labels): """Applies transformations to object instances in labels.""" pass def apply_semantic(self, labels): """Applies semantic segmentation to an image.""" pass def __call__(self, labels): """Applies all label transformations to an image, instances, and semantic masks.""" self.apply_image(labels) self.apply_instances(labels) self.apply_semantic(labels) class Compose: """Class for composing multiple image transformations.""" def __init__(self, transforms): """Initializes the Compose object with a list of transforms.""" self.transforms = transforms def __call__(self, data): """Applies a series of transformations to input data.""" for t in self.transforms: data = t(data) return data def append(self, transform): """Appends a new transform to the existing list of transforms.""" self.transforms.append(transform) def tolist(self): """Converts the list of transforms to a standard Python list.""" return self.transforms def __repr__(self): """Returns a string representation of the object.""" return f"{self.__class__.__name__}({', '.join([f'{t}' for t in self.transforms])})" class BaseMixTransform: """ Class for base mix (MixUp/Mosaic) transformations. This implementation is from mmyolo. """ def __init__(self, dataset, pre_transform=None, p=0.0) -> None: """Initializes the BaseMixTransform object with dataset, pre_transform, and probability.""" self.dataset = dataset self.pre_transform = pre_transform self.p = p def __call__(self, labels): """Applies pre-processing transforms and mixup/mosaic transforms to labels data.""" if random.uniform(0, 1) > self.p: return labels # Get index of one or three other images indexes = self.get_indexes() if isinstance(indexes, int): indexes = [indexes] # Get images information will be used for Mosaic or MixUp mix_labels = [self.dataset.get_image_and_label(i) for i in indexes] if self.pre_transform is not None: for i, data in enumerate(mix_labels): mix_labels[i] = self.pre_transform(data) labels["mix_labels"] = mix_labels # Mosaic or MixUp labels = self._mix_transform(labels) labels.pop("mix_labels", None) return labels def _mix_transform(self, labels): """Applies MixUp or Mosaic augmentation to the label dictionary.""" raise NotImplementedError def get_indexes(self): """Gets a list of shuffled indexes for mosaic augmentation.""" raise NotImplementedError class Mosaic(BaseMixTransform): """ Mosaic augmentation. This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image. The augmentation is applied to a dataset with a given probability. Attributes: dataset: The dataset on which the mosaic augmentation is applied. imgsz (int, optional): Image size (height and width) after mosaic pipeline of a single image. Default to 640. p (float, optional): Probability of applying the mosaic augmentation. Must be in the range 0-1. Default to 1.0. n (int, optional): The grid size, either 4 (for 2x2) or 9 (for 3x3). """ def __init__(self, dataset, imgsz=640, p=1.0, n=4): """Initializes the object with a dataset, image size, probability, and border.""" assert 0 <= p <= 1.0, f"The probability should be in range [0, 1], but got {p}." assert n in (4, 9), "grid must be equal to 4 or 9." super().__init__(dataset=dataset, p=p) self.dataset = dataset self.imgsz = imgsz self.border = (-imgsz // 2, -imgsz // 2) # width, height self.n = n def get_indexes(self, buffer=True): """Return a list of random indexes from the dataset.""" if buffer: # select images from buffer return random.choices(list(self.dataset.buffer), k=self.n - 1) else: # select any images return [random.randint(0, len(self.dataset) - 1) for _ in range(self.n - 1)] def _mix_transform(self, labels): """Apply mixup transformation to the input image and labels.""" assert labels.get("rect_shape", None) is None, "rect and mosaic are mutually exclusive." assert len(labels.get("mix_labels", [])), "There are no other images for mosaic augment." return ( self._mosaic3(labels) if self.n == 3 else self._mosaic4(labels) if self.n == 4 else self._mosaic9(labels) ) # This code is modified for mosaic3 method. def _mosaic3(self, labels): """Create a 1x3 image mosaic.""" mosaic_labels = [] s = self.imgsz for i in range(3): labels_patch = labels if i == 0 else labels["mix_labels"][i - 1] # Load image img = labels_patch["img"] h, w = labels_patch.pop("resized_shape") # Place img in img3 if i == 0: # center img3 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 3 tiles h0, w0 = h, w c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates elif i == 1: # right c = s + w0, s, s + w0 + w, s + h elif i == 2: # left c = s - w, s + h0 - h, s, s + h0 padw, padh = c[:2] x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords img3[y1:y2, x1:x2] = img[y1 - padh :, x1 - padw :] # img3[ymin:ymax, xmin:xmax] # hp, wp = h, w # height, width previous for next iteration # Labels assuming imgsz*2 mosaic size labels_patch = self._update_labels(labels_patch, padw + self.border[0], padh + self.border[1]) mosaic_labels.append(labels_patch) final_labels = self._cat_labels(mosaic_labels) final_labels["img"] = img3[-self.border[0] : self.border[0], -self.border[1] : self.border[1]] return final_labels def _mosaic4(self, labels): """Create a 2x2 image mosaic.""" mosaic_labels = [] s = self.imgsz yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.border) # mosaic center x, y for i in range(4): labels_patch = labels if i == 0 else labels["mix_labels"][i - 1] # Load image img = labels_patch["img"] h, w = labels_patch.pop("resized_shape") # Place img in img4 if i == 0: # top left img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) elif i == 1: # top right x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h elif i == 2: # bottom left x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) elif i == 3: # bottom right x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] padw = x1a - x1b padh = y1a - y1b labels_patch = self._update_labels(labels_patch, padw, padh) mosaic_labels.append(labels_patch) final_labels = self._cat_labels(mosaic_labels) final_labels["img"] = img4 return final_labels def _mosaic9(self, labels): """Create a 3x3 image mosaic.""" mosaic_labels = [] s = self.imgsz hp, wp = -1, -1 # height, width previous for i in range(9): labels_patch = labels if i == 0 else labels["mix_labels"][i - 1] # Load image img = labels_patch["img"] h, w = labels_patch.pop("resized_shape") # Place img in img9 if i == 0: # center img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles h0, w0 = h, w c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates elif i == 1: # top c = s, s - h, s + w, s elif i == 2: # top right c = s + wp, s - h, s + wp + w, s elif i == 3: # right c = s + w0, s, s + w0 + w, s + h elif i == 4: # bottom right c = s + w0, s + hp, s + w0 + w, s + hp + h elif i == 5: # bottom c = s + w0 - w, s + h0, s + w0, s + h0 + h elif i == 6: # bottom left c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h elif i == 7: # left c = s - w, s + h0 - h, s, s + h0 elif i == 8: # top left c = s - w, s + h0 - hp - h, s, s + h0 - hp padw, padh = c[:2] x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords # Image img9[y1:y2, x1:x2] = img[y1 - padh :, x1 - padw :] # img9[ymin:ymax, xmin:xmax] hp, wp = h, w # height, width previous for next iteration # Labels assuming imgsz*2 mosaic size labels_patch = self._update_labels(labels_patch, padw + self.border[0], padh + self.border[1]) mosaic_labels.append(labels_patch) final_labels = self._cat_labels(mosaic_labels) final_labels["img"] = img9[-self.border[0] : self.border[0], -self.border[1] : self.border[1]] return final_labels @staticmethod def _update_labels(labels, padw, padh): """Update labels.""" nh, nw = labels["img"].shape[:2] labels["instances"].convert_bbox(format="xyxy") labels["instances"].denormalize(nw, nh) labels["instances"].add_padding(padw, padh) return labels def _cat_labels(self, mosaic_labels): """Return labels with mosaic border instances clipped.""" if len(mosaic_labels) == 0: return {} cls = [] instances = [] imgsz = self.imgsz * 2 # mosaic imgsz for labels in mosaic_labels: cls.append(labels["cls"]) instances.append(labels["instances"]) # Final labels final_labels = { "im_file": mosaic_labels[0]["im_file"], "ori_shape": mosaic_labels[0]["ori_shape"], "resized_shape": (imgsz, imgsz), "cls": np.concatenate(cls, 0), "instances": Instances.concatenate(instances, axis=0), "mosaic_border": self.border, } final_labels["instances"].clip(imgsz, imgsz) good = final_labels["instances"].remove_zero_area_boxes() final_labels["cls"] = final_labels["cls"][good] return final_labels class MixUp(BaseMixTransform): """Class for applying MixUp augmentation to the dataset.""" def __init__(self, dataset, pre_transform=None, p=0.0) -> None: """Initializes MixUp object with dataset, pre_transform, and probability of applying MixUp.""" super().__init__(dataset=dataset, pre_transform=pre_transform, p=p) def get_indexes(self): """Get a random index from the dataset.""" return random.randint(0, len(self.dataset) - 1) def _mix_transform(self, labels): """Applies MixUp augmentation as per https://arxiv.org/pdf/1710.09412.pdf.""" r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0 labels2 = labels["mix_labels"][0] labels["img"] = (labels["img"] * r + labels2["img"] * (1 - r)).astype(np.uint8) labels["instances"] = Instances.concatenate([labels["instances"], labels2["instances"]], axis=0) labels["cls"] = np.concatenate([labels["cls"], labels2["cls"]], 0) return labels class RandomPerspective: """ Implements random perspective and affine transformations on images and corresponding bounding boxes, segments, and keypoints. These transformations include rotation, translation, scaling, and shearing. The class also offers the option to apply these transformations conditionally with a specified probability. Attributes: degrees (float): Degree range for random rotations. translate (float): Fraction of total width and height for random translation. scale (float): Scaling factor interval, e.g., a scale factor of 0.1 allows a resize between 90%-110%. shear (float): Shear intensity (angle in degrees). perspective (float): Perspective distortion factor. border (tuple): Tuple specifying mosaic border. pre_transform (callable): A function/transform to apply to the image before starting the random transformation. Methods: affine_transform(img, border): Applies a series of affine transformations to the image. apply_bboxes(bboxes, M): Transforms bounding boxes using the calculated affine matrix. apply_segments(segments, M): Transforms segments and generates new bounding boxes. apply_keypoints(keypoints, M): Transforms keypoints. __call__(labels): Main method to apply transformations to both images and their corresponding annotations. box_candidates(box1, box2): Filters out bounding boxes that don't meet certain criteria post-transformation. """ def __init__( self, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, border=(0, 0), pre_transform=None ): """Initializes RandomPerspective object with transformation parameters.""" self.degrees = degrees self.translate = translate self.scale = scale self.shear = shear self.perspective = perspective self.border = border # mosaic border self.pre_transform = pre_transform def affine_transform(self, img, border): """ Applies a sequence of affine transformations centered around the image center. Args: img (ndarray): Input image. border (tuple): Border dimensions. Returns: img (ndarray): Transformed image. M (ndarray): Transformation matrix. s (float): Scale factor. """ # Center C = np.eye(3, dtype=np.float32) C[0, 2] = -img.shape[1] / 2 # x translation (pixels) C[1, 2] = -img.shape[0] / 2 # y translation (pixels) # Perspective P = np.eye(3, dtype=np.float32) P[2, 0] = random.uniform(-self.perspective, self.perspective) # x perspective (about y) P[2, 1] = random.uniform(-self.perspective, self.perspective) # y perspective (about x) # Rotation and Scale R = np.eye(3, dtype=np.float32) a = random.uniform(-self.degrees, self.degrees) # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations s = random.uniform(1 - self.scale, 1 + self.scale) # s = 2 ** random.uniform(-scale, scale) R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) # Shear S = np.eye(3, dtype=np.float32) S[0, 1] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) # x shear (deg) S[1, 0] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) # y shear (deg) # Translation T = np.eye(3, dtype=np.float32) T[0, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[0] # x translation (pixels) T[1, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[1] # y translation (pixels) # Combined rotation matrix M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT # Affine image if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed if self.perspective: img = cv2.warpPerspective(img, M, dsize=self.size, borderValue=(114, 114, 114)) else: # affine img = cv2.warpAffine(img, M[:2], dsize=self.size, borderValue=(114, 114, 114)) return img, M, s def apply_bboxes(self, bboxes, M): """ Apply affine to bboxes only. Args: bboxes (ndarray): list of bboxes, xyxy format, with shape (num_bboxes, 4). M (ndarray): affine matrix. Returns: new_bboxes (ndarray): bboxes after affine, [num_bboxes, 4]. """ n = len(bboxes) if n == 0: return bboxes xy = np.ones((n * 4, 3), dtype=bboxes.dtype) xy[:, :2] = bboxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 xy = xy @ M.T # transform xy = (xy[:, :2] / xy[:, 2:3] if self.perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine # Create new boxes x = xy[:, [0, 2, 4, 6]] y = xy[:, [1, 3, 5, 7]] return np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1)), dtype=bboxes.dtype).reshape(4, n).T def apply_segments(self, segments, M): """ Apply affine to segments and generate new bboxes from segments. Args: segments (ndarray): list of segments, [num_samples, 500, 2]. M (ndarray): affine matrix. Returns: new_segments (ndarray): list of segments after affine, [num_samples, 500, 2]. new_bboxes (ndarray): bboxes after affine, [N, 4]. """ n, num = segments.shape[:2] if n == 0: return [], segments xy = np.ones((n * num, 3), dtype=segments.dtype) segments = segments.reshape(-1, 2) xy[:, :2] = segments xy = xy @ M.T # transform xy = xy[:, :2] / xy[:, 2:3] segments = xy.reshape(n, -1, 2) bboxes = np.stack([segment2box(xy, self.size[0], self.size[1]) for xy in segments], 0) segments[..., 0] = segments[..., 0].clip(bboxes[:, 0:1], bboxes[:, 2:3]) segments[..., 1] = segments[..., 1].clip(bboxes[:, 1:2], bboxes[:, 3:4]) return bboxes, segments def apply_keypoints(self, keypoints, M): """ Apply affine to keypoints. Args: keypoints (ndarray): keypoints, [N, 17, 3]. M (ndarray): affine matrix. Returns: new_keypoints (ndarray): keypoints after affine, [N, 17, 3]. """ n, nkpt = keypoints.shape[:2] if n == 0: return keypoints xy = np.ones((n * nkpt, 3), dtype=keypoints.dtype) visible = keypoints[..., 2].reshape(n * nkpt, 1) xy[:, :2] = keypoints[..., :2].reshape(n * nkpt, 2) xy = xy @ M.T # transform xy = xy[:, :2] / xy[:, 2:3] # perspective rescale or affine out_mask = (xy[:, 0] < 0) | (xy[:, 1] < 0) | (xy[:, 0] > self.size[0]) | (xy[:, 1] > self.size[1]) visible[out_mask] = 0 return np.concatenate([xy, visible], axis=-1).reshape(n, nkpt, 3) def __call__(self, labels): """ Affine images and targets. Args: labels (dict): a dict of `bboxes`, `segments`, `keypoints`. """ if self.pre_transform and "mosaic_border" not in labels: labels = self.pre_transform(labels) labels.pop("ratio_pad", None) # do not need ratio pad img = labels["img"] cls = labels["cls"] instances = labels.pop("instances") # Make sure the coord formats are right instances.convert_bbox(format="xyxy") instances.denormalize(*img.shape[:2][::-1]) border = labels.pop("mosaic_border", self.border) self.size = img.shape[1] + border[1] * 2, img.shape[0] + border[0] * 2 # w, h # M is affine matrix # Scale for func:`box_candidates` img, M, scale = self.affine_transform(img, border) bboxes = self.apply_bboxes(instances.bboxes, M) segments = instances.segments keypoints = instances.keypoints # Update bboxes if there are segments. if len(segments): bboxes, segments = self.apply_segments(segments, M) if keypoints is not None: keypoints = self.apply_keypoints(keypoints, M) new_instances = Instances(bboxes, segments, keypoints, bbox_format="xyxy", normalized=False) # Clip new_instances.clip(*self.size) # Filter instances instances.scale(scale_w=scale, scale_h=scale, bbox_only=True) # Make the bboxes have the same scale with new_bboxes i = self.box_candidates( box1=instances.bboxes.T, box2=new_instances.bboxes.T, area_thr=0.01 if len(segments) else 0.10 ) labels["instances"] = new_instances[i] labels["cls"] = cls[i] labels["img"] = img labels["resized_shape"] = img.shape[:2] return labels def box_candidates(self, box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): """ Compute box candidates based on a set of thresholds. This method compares the characteristics of the boxes before and after augmentation to decide whether a box is a candidate for further processing. Args: box1 (numpy.ndarray): The 4,n bounding box before augmentation, represented as [x1, y1, x2, y2]. box2 (numpy.ndarray): The 4,n bounding box after augmentation, represented as [x1, y1, x2, y2]. wh_thr (float, optional): The width and height threshold in pixels. Default is 2. ar_thr (float, optional): The aspect ratio threshold. Default is 100. area_thr (float, optional): The area ratio threshold. Default is 0.1. eps (float, optional): A small epsilon value to prevent division by zero. Default is 1e-16. Returns: (numpy.ndarray): A boolean array indicating which boxes are candidates based on the given thresholds. """ w1, h1 = box1[2] - box1[0], box1[3] - box1[1] w2, h2 = box2[2] - box2[0], box2[3] - box2[1] ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates class RandomHSV: """ This class is responsible for performing random adjustments to the Hue, Saturation, and Value (HSV) channels of an image. The adjustments are random but within limits set by hgain, sgain, and vgain. """ def __init__(self, hgain=0.5, sgain=0.5, vgain=0.5) -> None: """ Initialize RandomHSV class with gains for each HSV channel. Args: hgain (float, optional): Maximum variation for hue. Default is 0.5. sgain (float, optional): Maximum variation for saturation. Default is 0.5. vgain (float, optional): Maximum variation for value. Default is 0.5. """ self.hgain = hgain self.sgain = sgain self.vgain = vgain def __call__(self, labels): """ Applies random HSV augmentation to an image within the predefined limits. The modified image replaces the original image in the input 'labels' dict. """ img = labels["img"] if self.hgain or self.sgain or self.vgain: r = np.random.uniform(-1, 1, 3) * [self.hgain, self.sgain, self.vgain] + 1 # random gains hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) dtype = img.dtype # uint8 x = np.arange(0, 256, dtype=r.dtype) lut_hue = ((x * r[0]) % 180).astype(dtype) lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) lut_val = np.clip(x * r[2], 0, 255).astype(dtype) im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))) cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed return labels class RandomFlip: """ Applies a random horizontal or vertical flip to an image with a given probability. Also updates any instances (bounding boxes, keypoints, etc.) accordingly. """ def __init__(self, p=0.5, direction="horizontal", flip_idx=None) -> None: """ Initializes the RandomFlip class with probability and direction. Args: p (float, optional): The probability of applying the flip. Must be between 0 and 1. Default is 0.5. direction (str, optional): The direction to apply the flip. Must be 'horizontal' or 'vertical'. Default is 'horizontal'. flip_idx (array-like, optional): Index mapping for flipping keypoints, if any. """ assert direction in ["horizontal", "vertical"], f"Support direction `horizontal` or `vertical`, got {direction}" assert 0 <= p <= 1.0 self.p = p self.direction = direction self.flip_idx = flip_idx def __call__(self, labels): """ Applies random flip to an image and updates any instances like bounding boxes or keypoints accordingly. Args: labels (dict): A dictionary containing the keys 'img' and 'instances'. 'img' is the image to be flipped. 'instances' is an object containing bounding boxes and optionally keypoints. Returns: (dict): The same dict with the flipped image and updated instances under the 'img' and 'instances' keys. """ img = labels["img"] instances = labels.pop("instances") instances.convert_bbox(format="xywh") h, w = img.shape[:2] h = 1 if instances.normalized else h w = 1 if instances.normalized else w # Flip up-down if self.direction == "vertical" and random.random() < self.p: img = np.flipud(img) instances.flipud(h) if self.direction == "horizontal" and random.random() < self.p: img = np.fliplr(img) instances.fliplr(w) # For keypoints if self.flip_idx is not None and instances.keypoints is not None: instances.keypoints = np.ascontiguousarray(instances.keypoints[:, self.flip_idx, :]) labels["img"] = np.ascontiguousarray(img) labels["instances"] = instances return labels class LetterBox: """Resize image and padding for detection, instance segmentation, pose.""" def __init__(self, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, center=True, stride=32): """Initialize LetterBox object with specific parameters.""" self.new_shape = new_shape self.auto = auto self.scaleFill = scaleFill self.scaleup = scaleup self.stride = stride self.center = center # Put the image in the middle or top-left def __call__(self, labels=None, image=None): """Return updated labels and image with added border.""" if labels is None: labels = {} img = labels.get("img") if image is None else image shape = img.shape[:2] # current shape [height, width] new_shape = labels.pop("rect_shape", self.new_shape) if isinstance(new_shape, int): new_shape = (new_shape, new_shape) # Scale ratio (new / old) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) if not self.scaleup: # only scale down, do not scale up (for better val mAP) r = min(r, 1.0) # Compute padding ratio = r, r # width, height ratios new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding if self.auto: # minimum rectangle dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride) # wh padding elif self.scaleFill: # stretch dw, dh = 0.0, 0.0 new_unpad = (new_shape[1], new_shape[0]) ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios if self.center: dw /= 2 # divide padding into 2 sides dh /= 2 if shape[::-1] != new_unpad: # resize img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1)) left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1)) img = cv2.copyMakeBorder( img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114) ) # add border if labels.get("ratio_pad"): labels["ratio_pad"] = (labels["ratio_pad"], (left, top)) # for evaluation if len(labels): labels = self._update_labels(labels, ratio, dw, dh) labels["img"] = img labels["resized_shape"] = new_shape return labels else: return img def _update_labels(self, labels, ratio, padw, padh): """Update labels.""" labels["instances"].convert_bbox(format="xyxy") labels["instances"].denormalize(*labels["img"].shape[:2][::-1]) labels["instances"].scale(*ratio) labels["instances"].add_padding(padw, padh) return labels class CopyPaste: """ Implements the Copy-Paste augmentation as described in the paper https://arxiv.org/abs/2012.07177. This class is responsible for applying the Copy-Paste augmentation on images and their corresponding instances. """ def __init__(self, p=0.5) -> None: """ Initializes the CopyPaste class with a given probability. Args: p (float, optional): The probability of applying the Copy-Paste augmentation. Must be between 0 and 1. Default is 0.5. """ self.p = p def __call__(self, labels): """ Applies the Copy-Paste augmentation to the given image and instances. Args: labels (dict): A dictionary containing: - 'img': The image to augment. - 'cls': Class labels associated with the instances. - 'instances': Object containing bounding boxes, and optionally, keypoints and segments. Returns: (dict): Dict with augmented image and updated instances under the 'img', 'cls', and 'instances' keys. Notes: 1. Instances are expected to have 'segments' as one of their attributes for this augmentation to work. 2. This method modifies the input dictionary 'labels' in place. """ im = labels["img"] cls = labels["cls"] h, w = im.shape[:2] instances = labels.pop("instances") instances.convert_bbox(format="xyxy") instances.denormalize(w, h) if self.p and len(instances.segments): n = len(instances) _, w, _ = im.shape # height, width, channels im_new = np.zeros(im.shape, np.uint8) # Calculate ioa first then select indexes randomly ins_flip = deepcopy(instances) ins_flip.fliplr(w) ioa = bbox_ioa(ins_flip.bboxes, instances.bboxes) # intersection over area, (N, M) indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, ) n = len(indexes) for j in random.sample(list(indexes), k=round(self.p * n)): cls = np.concatenate((cls, cls[[j]]), axis=0) instances = Instances.concatenate((instances, ins_flip[[j]]), axis=0) cv2.drawContours(im_new, instances.segments[[j]].astype(np.int32), -1, (1, 1, 1), cv2.FILLED) result = cv2.flip(im, 1) # augment segments (flip left-right) i = cv2.flip(im_new, 1).astype(bool) im[i] = result[i] labels["img"] = im labels["cls"] = cls labels["instances"] = instances return labels class Albumentations: """ Albumentations transformations. Optional, uninstall package to disable. Applies Blur, Median Blur, convert to grayscale, Contrast Limited Adaptive Histogram Equalization, random change of brightness and contrast, RandomGamma and lowering of image quality by compression. """ def __init__(self, p=1.0): """Initialize the transform object for YOLO bbox formatted params.""" self.p = p self.transform = None prefix = colorstr("albumentations: ") try: import albumentations as A check_version(A.__version__, "1.0.3", hard=True) # version requirement # Transforms T = [ A.Blur(p=0.01), A.MedianBlur(p=0.01), A.ToGray(p=0.01), A.CLAHE(p=0.01), A.RandomBrightnessContrast(p=0.0), A.RandomGamma(p=0.0), A.ImageCompression(quality_lower=75, p=0.0), ] self.transform = A.Compose(T, bbox_params=A.BboxParams(format="yolo", label_fields=["class_labels"])) LOGGER.info(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p)) except ImportError: # package not installed, skip pass except Exception as e: LOGGER.info(f"{prefix}{e}") def __call__(self, labels): """Generates object detections and returns a dictionary with detection results.""" im = labels["img"] cls = labels["cls"] if len(cls): labels["instances"].convert_bbox("xywh") labels["instances"].normalize(*im.shape[:2][::-1]) bboxes = labels["instances"].bboxes # TODO: add supports of segments and keypoints if self.transform and random.random() < self.p: new = self.transform(image=im, bboxes=bboxes, class_labels=cls) # transformed if len(new["class_labels"]) > 0: # skip update if no bbox in new im labels["img"] = new["image"] labels["cls"] = np.array(new["class_labels"]) bboxes = np.array(new["bboxes"], dtype=np.float32) labels["instances"].update(bboxes=bboxes) return labels # TODO: technically this is not an augmentation, maybe we should put this to another files class Format: """ Formats image annotations for object detection, instance segmentation, and pose estimation tasks. The class standardizes the image and instance annotations to be used by the `collate_fn` in PyTorch DataLoader. Attributes: bbox_format (str): Format for bounding boxes. Default is 'xywh'. normalize (bool): Whether to normalize bounding boxes. Default is True. return_mask (bool): Return instance masks for segmentation. Default is False. return_keypoint (bool): Return keypoints for pose estimation. Default is False. mask_ratio (int): Downsample ratio for masks. Default is 4. mask_overlap (bool): Whether to overlap masks. Default is True. batch_idx (bool): Keep batch indexes. Default is True. """ def __init__( self, bbox_format="xywh", normalize=True, return_mask=False, return_keypoint=False, return_obb=False, mask_ratio=4, mask_overlap=True, batch_idx=True, ): """Initializes the Format class with given parameters.""" self.bbox_format = bbox_format self.normalize = normalize self.return_mask = return_mask # set False when training detection only self.return_keypoint = return_keypoint self.return_obb = return_obb self.mask_ratio = mask_ratio self.mask_overlap = mask_overlap self.batch_idx = batch_idx # keep the batch indexes def __call__(self, labels): """Return formatted image, classes, bounding boxes & keypoints to be used by 'collate_fn'.""" img = labels.pop("img") h, w = img.shape[:2] cls = labels.pop("cls") instances = labels.pop("instances") instances.convert_bbox(format=self.bbox_format) instances.denormalize(w, h) nl = len(instances) if self.return_mask: if nl: masks, instances, cls = self._format_segments(instances, cls, w, h) masks = torch.from_numpy(masks) else: masks = torch.zeros( 1 if self.mask_overlap else nl, img.shape[0] // self.mask_ratio, img.shape[1] // self.mask_ratio ) labels["masks"] = masks if self.normalize: instances.normalize(w, h) labels["img"] = self._format_img(img) labels["cls"] = torch.from_numpy(cls) if nl else torch.zeros(nl) labels["bboxes"] = torch.from_numpy(instances.bboxes) if nl else torch.zeros((nl, 4)) if self.return_keypoint: labels["keypoints"] = torch.from_numpy(instances.keypoints) if self.return_obb: labels["bboxes"] = ( xyxyxyxy2xywhr(torch.from_numpy(instances.segments)) if len(instances.segments) else torch.zeros((0, 5)) ) # Then we can use collate_fn if self.batch_idx: labels["batch_idx"] = torch.zeros(nl) return labels def _format_img(self, img): """Format the image for YOLO from Numpy array to PyTorch tensor.""" if len(img.shape) < 3: img = np.expand_dims(img, -1) img = np.ascontiguousarray(img.transpose(2, 0, 1)[::-1]) img = torch.from_numpy(img) return img def _format_segments(self, instances, cls, w, h): """Convert polygon points to bitmap.""" segments = instances.segments if self.mask_overlap: masks, sorted_idx = polygons2masks_overlap((h, w), segments, downsample_ratio=self.mask_ratio) masks = masks[None] # (640, 640) -> (1, 640, 640) instances = instances[sorted_idx] cls = cls[sorted_idx] else: masks = polygons2masks((h, w), segments, color=1, downsample_ratio=self.mask_ratio) return masks, instances, cls def v8_transforms(dataset, imgsz, hyp, stretch=False): """Convert images to a size suitable for YOLOv8 training.""" pre_transform = Compose( [ Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic), CopyPaste(p=hyp.copy_paste), RandomPerspective( degrees=hyp.degrees, translate=hyp.translate, scale=hyp.scale, shear=hyp.shear, perspective=hyp.perspective, pre_transform=None if stretch else LetterBox(new_shape=(imgsz, imgsz)), ), ] ) flip_idx = dataset.data.get("flip_idx", []) # for keypoints augmentation if dataset.use_keypoints: kpt_shape = dataset.data.get("kpt_shape", None) if len(flip_idx) == 0 and hyp.fliplr > 0.0: hyp.fliplr = 0.0 LOGGER.warning("WARNING ⚠� No 'flip_idx' array defined in data.yaml, setting augmentation 'fliplr=0.0'") elif flip_idx and (len(flip_idx) != kpt_shape[0]): raise ValueError(f"data.yaml flip_idx={flip_idx} length must be equal to kpt_shape[0]={kpt_shape[0]}") return Compose( [ pre_transform, MixUp(dataset, pre_transform=pre_transform, p=hyp.mixup), Albumentations(p=1.0), RandomHSV(hgain=hyp.hsv_h, sgain=hyp.hsv_s, vgain=hyp.hsv_v), RandomFlip(direction="vertical", p=hyp.flipud), RandomFlip(direction="horizontal", p=hyp.fliplr, flip_idx=flip_idx), ] ) # transforms # Classification augmentations ----------------------------------------------------------------------------------------- def classify_transforms( size=224, mean=DEFAULT_MEAN, std=DEFAULT_STD, interpolation: T.InterpolationMode = T.InterpolationMode.BILINEAR, crop_fraction: float = DEFAULT_CROP_FTACTION, ): """ Classification transforms for evaluation/inference. Inspired by timm/data/transforms_factory.py. Args: size (int): image size mean (tuple): mean values of RGB channels std (tuple): std values of RGB channels interpolation (T.InterpolationMode): interpolation mode. default is T.InterpolationMode.BILINEAR. crop_fraction (float): fraction of image to crop. default is 1.0. Returns: (T.Compose): torchvision transforms """ if isinstance(size, (tuple, list)): assert len(size) == 2 scale_size = tuple(math.floor(x / crop_fraction) for x in size) else: scale_size = math.floor(size / crop_fraction) scale_size = (scale_size, scale_size) # aspect ratio is preserved, crops center within image, no borders are added, image is lost if scale_size[0] == scale_size[1]: # simple case, use torchvision built-in Resize w/ shortest edge mode (scalar size arg) tfl = [T.Resize(scale_size[0], interpolation=interpolation)] else: # resize shortest edge to matching target dim for non-square target tfl = [T.Resize(scale_size)] tfl += [T.CenterCrop(size)] tfl += [ T.ToTensor(), T.Normalize( mean=torch.tensor(mean), std=torch.tensor(std), ), ] return T.Compose(tfl) # Classification augmentations train --------------------------------------------------------------------------------------- def classify_augmentations( size=224, mean=DEFAULT_MEAN, std=DEFAULT_STD, scale=None, ratio=None, hflip=0.5, vflip=0.0, auto_augment=None, hsv_h=0.015, # image HSV-Hue augmentation (fraction) hsv_s=0.4, # image HSV-Saturation augmentation (fraction) hsv_v=0.4, # image HSV-Value augmentation (fraction) force_color_jitter=False, erasing=0.0, interpolation: T.InterpolationMode = T.InterpolationMode.BILINEAR, ): """ Classification transforms with augmentation for training. Inspired by timm/data/transforms_factory.py. Args: size (int): image size scale (tuple): scale range of the image. default is (0.08, 1.0) ratio (tuple): aspect ratio range of the image. default is (3./4., 4./3.) mean (tuple): mean values of RGB channels std (tuple): std values of RGB channels hflip (float): probability of horizontal flip vflip (float): probability of vertical flip auto_augment (str): auto augmentation policy. can be 'randaugment', 'augmix', 'autoaugment' or None. hsv_h (float): image HSV-Hue augmentation (fraction) hsv_s (float): image HSV-Saturation augmentation (fraction) hsv_v (float): image HSV-Value augmentation (fraction) force_color_jitter (bool): force to apply color jitter even if auto augment is enabled erasing (float): probability of random erasing interpolation (T.InterpolationMode): interpolation mode. default is T.InterpolationMode.BILINEAR. Returns: (T.Compose): torchvision transforms """ # Transforms to apply if albumentations not installed if not isinstance(size, int): raise TypeError(f"classify_transforms() size {size} must be integer, not (list, tuple)") scale = tuple(scale or (0.08, 1.0)) # default imagenet scale range ratio = tuple(ratio or (3.0 / 4.0, 4.0 / 3.0)) # default imagenet ratio range primary_tfl = [T.RandomResizedCrop(size, scale=scale, ratio=ratio, interpolation=interpolation)] if hflip > 0.0: primary_tfl += [T.RandomHorizontalFlip(p=hflip)] if vflip > 0.0: primary_tfl += [T.RandomVerticalFlip(p=vflip)] secondary_tfl = [] disable_color_jitter = False if auto_augment: assert isinstance(auto_augment, str) # color jitter is typically disabled if AA/RA on, # this allows override without breaking old hparm cfgs disable_color_jitter = not force_color_jitter if auto_augment == "randaugment": if TORCHVISION_0_11: secondary_tfl += [T.RandAugment(interpolation=interpolation)] else: LOGGER.warning('"auto_augment=randaugment" requires torchvision >= 0.11.0. Disabling it.') elif auto_augment == "augmix": if TORCHVISION_0_13: secondary_tfl += [T.AugMix(interpolation=interpolation)] else: LOGGER.warning('"auto_augment=augmix" requires torchvision >= 0.13.0. Disabling it.') elif auto_augment == "autoaugment": if TORCHVISION_0_10: secondary_tfl += [T.AutoAugment(interpolation=interpolation)] else: LOGGER.warning('"auto_augment=autoaugment" requires torchvision >= 0.10.0. Disabling it.') else: raise ValueError( f'Invalid auto_augment policy: {auto_augment}. Should be one of "randaugment", ' f'"augmix", "autoaugment" or None' ) if not disable_color_jitter: secondary_tfl += [T.ColorJitter(brightness=hsv_v, contrast=hsv_v, saturation=hsv_s, hue=hsv_h)] final_tfl = [ T.ToTensor(), T.Normalize(mean=torch.tensor(mean), std=torch.tensor(std)), T.RandomErasing(p=erasing, inplace=True), ] return T.Compose(primary_tfl + secondary_tfl + final_tfl) # NOTE: keep this class for backward compatibility class ClassifyLetterBox: """ YOLOv8 LetterBox class for image preprocessing, designed to be part of a transformation pipeline, e.g., T.Compose([LetterBox(size), ToTensor()]). Attributes: h (int): Target height of the image. w (int): Target width of the image. auto (bool): If True, automatically solves for short side using stride. stride (int): The stride value, used when 'auto' is True. """ def __init__(self, size=(640, 640), auto=False, stride=32): """ Initializes the ClassifyLetterBox class with a target size, auto-flag, and stride. Args: size (Union[int, Tuple[int, int]]): The target dimensions (height, width) for the letterbox. auto (bool): If True, automatically calculates the short side based on stride. stride (int): The stride value, used when 'auto' is True. """ super().__init__() self.h, self.w = (size, size) if isinstance(size, int) else size self.auto = auto # pass max size integer, automatically solve for short side using stride self.stride = stride # used with auto def __call__(self, im): """ Resizes the image and pads it with a letterbox method. Args: im (numpy.ndarray): The input image as a numpy array of shape HWC. Returns: (numpy.ndarray): The letterboxed and resized image as a numpy array. """ imh, imw = im.shape[:2] r = min(self.h / imh, self.w / imw) # ratio of new/old dimensions h, w = round(imh * r), round(imw * r) # resized image dimensions # Calculate padding dimensions hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else (self.h, self.w) top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1) # Create padded image im_out = np.full((hs, ws, 3), 114, dtype=im.dtype) im_out[top : top + h, left : left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR) return im_out # NOTE: keep this class for backward compatibility class CenterCrop: """YOLOv8 CenterCrop class for image preprocessing, designed to be part of a transformation pipeline, e.g., T.Compose([CenterCrop(size), ToTensor()]). """ def __init__(self, size=640): """Converts an image from numpy array to PyTorch tensor.""" super().__init__() self.h, self.w = (size, size) if isinstance(size, int) else size def __call__(self, im): """ Resizes and crops the center of the image using a letterbox method. Args: im (numpy.ndarray): The input image as a numpy array of shape HWC. Returns: (numpy.ndarray): The center-cropped and resized image as a numpy array. """ imh, imw = im.shape[:2] m = min(imh, imw) # min dimension top, left = (imh - m) // 2, (imw - m) // 2 return cv2.resize(im[top : top + m, left : left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR) # NOTE: keep this class for backward compatibility class ToTensor: """YOLOv8 ToTensor class for image preprocessing, i.e., T.Compose([LetterBox(size), ToTensor()]).""" def __init__(self, half=False): """Initialize YOLOv8 ToTensor object with optional half-precision support.""" super().__init__() self.half = half def __call__(self, im): """ Transforms an image from a numpy array to a PyTorch tensor, applying optional half-precision and normalization. Args: im (numpy.ndarray): Input image as a numpy array with shape (H, W, C) in BGR order. Returns: (torch.Tensor): The transformed image as a PyTorch tensor in float32 or float16, normalized to [0, 1]. """ im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous im = torch.from_numpy(im) # to torch im = im.half() if self.half else im.float() # uint8 to fp16/32 im /= 255.0 # 0-255 to 0.0-1.0 return im
52,000
Python
.py
1,047
40.03916
124
0.599862
arojsubedi/Improved-YOLOv8s
8
5
0
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,797
converter.py
arojsubedi_Improved-YOLOv8s/ultralytics/data/converter.py
# Ultralytics YOLO 🚀, AGPL-3.0 license import json from collections import defaultdict from pathlib import Path import cv2 import numpy as np from ultralytics.utils import LOGGER, TQDM from ultralytics.utils.files import increment_path def coco91_to_coco80_class(): """ Converts 91-index COCO class IDs to 80-index COCO class IDs. Returns: (list): A list of 91 class IDs where the index represents the 80-index class ID and the value is the corresponding 91-index class ID. """ return [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, None, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, None, 24, 25, None, None, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, None, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, None, 60, None, None, 61, None, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, None, 73, 74, 75, 76, 77, 78, 79, None, ] def coco80_to_coco91_class(): """ Converts 80-index (val2014) to 91-index (paper). For details see https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/. Example: ```python import numpy as np a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet ``` """ return [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, ] def convert_coco( labels_dir="../coco/annotations/", save_dir="coco_converted/", use_segments=False, use_keypoints=False, cls91to80=True, ): """ Converts COCO dataset annotations to a YOLO annotation format suitable for training YOLO models. Args: labels_dir (str, optional): Path to directory containing COCO dataset annotation files. save_dir (str, optional): Path to directory to save results to. use_segments (bool, optional): Whether to include segmentation masks in the output. use_keypoints (bool, optional): Whether to include keypoint annotations in the output. cls91to80 (bool, optional): Whether to map 91 COCO class IDs to the corresponding 80 COCO class IDs. Example: ```python from ultralytics.data.converter import convert_coco convert_coco('../datasets/coco/annotations/', use_segments=True, use_keypoints=False, cls91to80=True) ``` Output: Generates output files in the specified output directory. """ # Create dataset directory save_dir = increment_path(save_dir) # increment if save directory already exists for p in save_dir / "labels", save_dir / "images": p.mkdir(parents=True, exist_ok=True) # make dir # Convert classes coco80 = coco91_to_coco80_class() # Import json for json_file in sorted(Path(labels_dir).resolve().glob("*.json")): fn = Path(save_dir) / "labels" / json_file.stem.replace("instances_", "") # folder name fn.mkdir(parents=True, exist_ok=True) with open(json_file) as f: data = json.load(f) # Create image dict images = {f'{x["id"]:d}': x for x in data["images"]} # Create image-annotations dict imgToAnns = defaultdict(list) for ann in data["annotations"]: imgToAnns[ann["image_id"]].append(ann) # Write labels file for img_id, anns in TQDM(imgToAnns.items(), desc=f"Annotations {json_file}"): img = images[f"{img_id:d}"] h, w, f = img["height"], img["width"], img["file_name"] bboxes = [] segments = [] keypoints = [] for ann in anns: if ann["iscrowd"]: continue # The COCO box format is [top left x, top left y, width, height] box = np.array(ann["bbox"], dtype=np.float64) box[:2] += box[2:] / 2 # xy top-left corner to center box[[0, 2]] /= w # normalize x box[[1, 3]] /= h # normalize y if box[2] <= 0 or box[3] <= 0: # if w <= 0 and h <= 0 continue cls = coco80[ann["category_id"] - 1] if cls91to80 else ann["category_id"] - 1 # class box = [cls] + box.tolist() if box not in bboxes: bboxes.append(box) if use_segments and ann.get("segmentation") is not None: if len(ann["segmentation"]) == 0: segments.append([]) continue elif len(ann["segmentation"]) > 1: s = merge_multi_segment(ann["segmentation"]) s = (np.concatenate(s, axis=0) / np.array([w, h])).reshape(-1).tolist() else: s = [j for i in ann["segmentation"] for j in i] # all segments concatenated s = (np.array(s).reshape(-1, 2) / np.array([w, h])).reshape(-1).tolist() s = [cls] + s segments.append(s) if use_keypoints and ann.get("keypoints") is not None: keypoints.append( box + (np.array(ann["keypoints"]).reshape(-1, 3) / np.array([w, h, 1])).reshape(-1).tolist() ) # Write with open((fn / f).with_suffix(".txt"), "a") as file: for i in range(len(bboxes)): if use_keypoints: line = (*(keypoints[i]),) # cls, box, keypoints else: line = ( *(segments[i] if use_segments and len(segments[i]) > 0 else bboxes[i]), ) # cls, box or segments file.write(("%g " * len(line)).rstrip() % line + "\n") LOGGER.info(f"COCO data converted successfully.\nResults saved to {save_dir.resolve()}") def convert_dota_to_yolo_obb(dota_root_path: str): """ Converts DOTA dataset annotations to YOLO OBB (Oriented Bounding Box) format. The function processes images in the 'train' and 'val' folders of the DOTA dataset. For each image, it reads the associated label from the original labels directory and writes new labels in YOLO OBB format to a new directory. Args: dota_root_path (str): The root directory path of the DOTA dataset. Example: ```python from ultralytics.data.converter import convert_dota_to_yolo_obb convert_dota_to_yolo_obb('path/to/DOTA') ``` Notes: The directory structure assumed for the DOTA dataset: - DOTA ├─ images │ ├─ train │ └─ val └─ labels ├─ train_original └─ val_original After execution, the function will organize the labels into: - DOTA └─ labels ├─ train └─ val """ dota_root_path = Path(dota_root_path) # Class names to indices mapping class_mapping = { "plane": 0, "ship": 1, "storage-tank": 2, "baseball-diamond": 3, "tennis-court": 4, "basketball-court": 5, "ground-track-field": 6, "harbor": 7, "bridge": 8, "large-vehicle": 9, "small-vehicle": 10, "helicopter": 11, "roundabout": 12, "soccer-ball-field": 13, "swimming-pool": 14, "container-crane": 15, "airport": 16, "helipad": 17, } def convert_label(image_name, image_width, image_height, orig_label_dir, save_dir): """Converts a single image's DOTA annotation to YOLO OBB format and saves it to a specified directory.""" orig_label_path = orig_label_dir / f"{image_name}.txt" save_path = save_dir / f"{image_name}.txt" with orig_label_path.open("r") as f, save_path.open("w") as g: lines = f.readlines() for line in lines: parts = line.strip().split() if len(parts) < 9: continue class_name = parts[8] class_idx = class_mapping[class_name] coords = [float(p) for p in parts[:8]] normalized_coords = [ coords[i] / image_width if i % 2 == 0 else coords[i] / image_height for i in range(8) ] formatted_coords = ["{:.6g}".format(coord) for coord in normalized_coords] g.write(f"{class_idx} {' '.join(formatted_coords)}\n") for phase in ["train", "val"]: image_dir = dota_root_path / "images" / phase orig_label_dir = dota_root_path / "labels" / f"{phase}_original" save_dir = dota_root_path / "labels" / phase save_dir.mkdir(parents=True, exist_ok=True) image_paths = list(image_dir.iterdir()) for image_path in TQDM(image_paths, desc=f"Processing {phase} images"): if image_path.suffix != ".png": continue image_name_without_ext = image_path.stem img = cv2.imread(str(image_path)) h, w = img.shape[:2] convert_label(image_name_without_ext, w, h, orig_label_dir, save_dir) def min_index(arr1, arr2): """ Find a pair of indexes with the shortest distance between two arrays of 2D points. Args: arr1 (np.ndarray): A NumPy array of shape (N, 2) representing N 2D points. arr2 (np.ndarray): A NumPy array of shape (M, 2) representing M 2D points. Returns: (tuple): A tuple containing the indexes of the points with the shortest distance in arr1 and arr2 respectively. """ dis = ((arr1[:, None, :] - arr2[None, :, :]) ** 2).sum(-1) return np.unravel_index(np.argmin(dis, axis=None), dis.shape) def merge_multi_segment(segments): """ Merge multiple segments into one list by connecting the coordinates with the minimum distance between each segment. This function connects these coordinates with a thin line to merge all segments into one. Args: segments (List[List]): Original segmentations in COCO's JSON file. Each element is a list of coordinates, like [segmentation1, segmentation2,...]. Returns: s (List[np.ndarray]): A list of connected segments represented as NumPy arrays. """ s = [] segments = [np.array(i).reshape(-1, 2) for i in segments] idx_list = [[] for _ in range(len(segments))] # Record the indexes with min distance between each segment for i in range(1, len(segments)): idx1, idx2 = min_index(segments[i - 1], segments[i]) idx_list[i - 1].append(idx1) idx_list[i].append(idx2) # Use two round to connect all the segments for k in range(2): # Forward connection if k == 0: for i, idx in enumerate(idx_list): # Middle segments have two indexes, reverse the index of middle segments if len(idx) == 2 and idx[0] > idx[1]: idx = idx[::-1] segments[i] = segments[i][::-1, :] segments[i] = np.roll(segments[i], -idx[0], axis=0) segments[i] = np.concatenate([segments[i], segments[i][:1]]) # Deal with the first segment and the last one if i in [0, len(idx_list) - 1]: s.append(segments[i]) else: idx = [0, idx[1] - idx[0]] s.append(segments[i][idx[0] : idx[1] + 1]) else: for i in range(len(idx_list) - 1, -1, -1): if i not in [0, len(idx_list) - 1]: idx = idx_list[i] nidx = abs(idx[1] - idx[0]) s.append(segments[i][nidx:]) return s def yolo_bbox2segment(im_dir, save_dir=None, sam_model="sam_b.pt"): """ Converts existing object detection dataset (bounding boxes) to segmentation dataset or oriented bounding box (OBB) in YOLO format. Generates segmentation data using SAM auto-annotator as needed. Args: im_dir (str | Path): Path to image directory to convert. save_dir (str | Path): Path to save the generated labels, labels will be saved into `labels-segment` in the same directory level of `im_dir` if save_dir is None. Default: None. sam_model (str): Segmentation model to use for intermediate segmentation data; optional. Notes: The input directory structure assumed for dataset: - im_dir ├─ 001.jpg ├─ .. └─ NNN.jpg - labels ├─ 001.txt ├─ .. └─ NNN.txt """ from ultralytics.data import YOLODataset from ultralytics.utils.ops import xywh2xyxy from ultralytics.utils import LOGGER from ultralytics import SAM from tqdm import tqdm # NOTE: add placeholder to pass class index check dataset = YOLODataset(im_dir, data=dict(names=list(range(1000)))) if len(dataset.labels[0]["segments"]) > 0: # if it's segment data LOGGER.info("Segmentation labels detected, no need to generate new ones!") return LOGGER.info("Detection labels detected, generating segment labels by SAM model!") sam_model = SAM(sam_model) for l in tqdm(dataset.labels, total=len(dataset.labels), desc="Generating segment labels"): h, w = l["shape"] boxes = l["bboxes"] if len(boxes) == 0: # skip empty labels continue boxes[:, [0, 2]] *= w boxes[:, [1, 3]] *= h im = cv2.imread(l["im_file"]) sam_results = sam_model(im, bboxes=xywh2xyxy(boxes), verbose=False, save=False) l["segments"] = sam_results[0].masks.xyn save_dir = Path(save_dir) if save_dir else Path(im_dir).parent / "labels-segment" save_dir.mkdir(parents=True, exist_ok=True) for l in dataset.labels: texts = [] lb_name = Path(l["im_file"]).with_suffix(".txt").name txt_file = save_dir / lb_name cls = l["cls"] for i, s in enumerate(l["segments"]): line = (int(cls[i]), *s.reshape(-1)) texts.append(("%g " * len(line)).rstrip() % line) if texts: with open(txt_file, "a") as f: f.writelines(text + "\n" for text in texts) LOGGER.info(f"Generated segment labels saved in {save_dir}")
16,503
Python
.py
481
23.995842
120
0.522022
arojsubedi/Improved-YOLOv8s
8
5
0
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,798
annotator.py
arojsubedi_Improved-YOLOv8s/ultralytics/data/annotator.py
# Ultralytics YOLO 🚀, AGPL-3.0 license from pathlib import Path from ultralytics import SAM, YOLO def auto_annotate(data, det_model="yolov8x.pt", sam_model="sam_b.pt", device="", output_dir=None): """ Automatically annotates images using a YOLO object detection model and a SAM segmentation model. Args: data (str): Path to a folder containing images to be annotated. det_model (str, optional): Pre-trained YOLO detection model. Defaults to 'yolov8x.pt'. sam_model (str, optional): Pre-trained SAM segmentation model. Defaults to 'sam_b.pt'. device (str, optional): Device to run the models on. Defaults to an empty string (CPU or GPU, if available). output_dir (str | None | optional): Directory to save the annotated results. Defaults to a 'labels' folder in the same directory as 'data'. Example: ```python from ultralytics.data.annotator import auto_annotate auto_annotate(data='ultralytics/assets', det_model='yolov8n.pt', sam_model='mobile_sam.pt') ``` """ det_model = YOLO(det_model) sam_model = SAM(sam_model) data = Path(data) if not output_dir: output_dir = data.parent / f"{data.stem}_auto_annotate_labels" Path(output_dir).mkdir(exist_ok=True, parents=True) det_results = det_model(data, stream=True, device=device) for result in det_results: class_ids = result.boxes.cls.int().tolist() # noqa if len(class_ids): boxes = result.boxes.xyxy # Boxes object for bbox outputs sam_results = sam_model(result.orig_img, bboxes=boxes, verbose=False, save=False, device=device) segments = sam_results[0].masks.xyn # noqa with open(f"{Path(output_dir) / Path(result.path).stem}.txt", "w") as f: for i in range(len(segments)): s = segments[i] if len(s) == 0: continue segment = map(str, segments[i].reshape(-1).tolist()) f.write(f"{class_ids[i]} " + " ".join(segment) + "\n")
2,117
Python
.py
39
44.692308
116
0.629898
arojsubedi/Improved-YOLOv8s
8
5
0
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)
2,287,799
utils.py
arojsubedi_Improved-YOLOv8s/ultralytics/data/utils.py
# Ultralytics YOLO 🚀, AGPL-3.0 license import contextlib import hashlib import json import os import random import subprocess import time import zipfile from multiprocessing.pool import ThreadPool from pathlib import Path from tarfile import is_tarfile import cv2 import numpy as np from PIL import Image, ImageOps from ultralytics.nn.autobackend import check_class_names from ultralytics.utils import ( DATASETS_DIR, LOGGER, NUM_THREADS, ROOT, SETTINGS_YAML, TQDM, clean_url, colorstr, emojis, yaml_load, yaml_save, ) from ultralytics.utils.checks import check_file, check_font, is_ascii from ultralytics.utils.downloads import download, safe_download, unzip_file from ultralytics.utils.ops import segments2boxes HELP_URL = "See https://docs.ultralytics.com/datasets/detect for dataset formatting guidance." IMG_FORMATS = "bmp", "dng", "jpeg", "jpg", "mpo", "png", "tif", "tiff", "webp", "pfm" # image suffixes VID_FORMATS = "asf", "avi", "gif", "m4v", "mkv", "mov", "mp4", "mpeg", "mpg", "ts", "wmv", "webm" # video suffixes PIN_MEMORY = str(os.getenv("PIN_MEMORY", True)).lower() == "true" # global pin_memory for dataloaders def img2label_paths(img_paths): """Define label paths as a function of image paths.""" sa, sb = f"{os.sep}images{os.sep}", f"{os.sep}labels{os.sep}" # /images/, /labels/ substrings return [sb.join(x.rsplit(sa, 1)).rsplit(".", 1)[0] + ".txt" for x in img_paths] def get_hash(paths): """Returns a single hash value of a list of paths (files or dirs).""" size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes h = hashlib.sha256(str(size).encode()) # hash sizes h.update("".join(paths).encode()) # hash paths return h.hexdigest() # return hash def exif_size(img: Image.Image): """Returns exif-corrected PIL size.""" s = img.size # (width, height) if img.format == "JPEG": # only support JPEG images with contextlib.suppress(Exception): exif = img.getexif() if exif: rotation = exif.get(274, None) # the EXIF key for the orientation tag is 274 if rotation in [6, 8]: # rotation 270 or 90 s = s[1], s[0] return s def verify_image(args): """Verify one image.""" (im_file, cls), prefix = args # Number (found, corrupt), message nf, nc, msg = 0, 0, "" try: im = Image.open(im_file) im.verify() # PIL verify shape = exif_size(im) # image size shape = (shape[1], shape[0]) # hw assert (shape[0] > 9) & (shape[1] > 9), f"image size {shape} <10 pixels" assert im.format.lower() in IMG_FORMATS, f"invalid image format {im.format}" if im.format.lower() in ("jpg", "jpeg"): with open(im_file, "rb") as f: f.seek(-2, 2) if f.read() != b"\xff\xd9": # corrupt JPEG ImageOps.exif_transpose(Image.open(im_file)).save(im_file, "JPEG", subsampling=0, quality=100) msg = f"{prefix}WARNING ⚠� {im_file}: corrupt JPEG restored and saved" nf = 1 except Exception as e: nc = 1 msg = f"{prefix}WARNING ⚠� {im_file}: ignoring corrupt image/label: {e}" return (im_file, cls), nf, nc, msg def verify_image_label(args): """Verify one image-label pair.""" im_file, lb_file, prefix, keypoint, num_cls, nkpt, ndim = args # Number (missing, found, empty, corrupt), message, segments, keypoints nm, nf, ne, nc, msg, segments, keypoints = 0, 0, 0, 0, "", [], None try: # Verify images im = Image.open(im_file) im.verify() # PIL verify shape = exif_size(im) # image size shape = (shape[1], shape[0]) # hw assert (shape[0] > 9) & (shape[1] > 9), f"image size {shape} <10 pixels" assert im.format.lower() in IMG_FORMATS, f"invalid image format {im.format}" if im.format.lower() in ("jpg", "jpeg"): with open(im_file, "rb") as f: f.seek(-2, 2) if f.read() != b"\xff\xd9": # corrupt JPEG ImageOps.exif_transpose(Image.open(im_file)).save(im_file, "JPEG", subsampling=0, quality=100) msg = f"{prefix}WARNING ⚠� {im_file}: corrupt JPEG restored and saved" # Verify labels if os.path.isfile(lb_file): nf = 1 # label found with open(lb_file) as f: lb = [x.split() for x in f.read().strip().splitlines() if len(x)] if any(len(x) > 6 for x in lb) and (not keypoint): # is segment classes = np.array([x[0] for x in lb], dtype=np.float32) segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...) lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh) lb = np.array(lb, dtype=np.float32) nl = len(lb) if nl: if keypoint: assert lb.shape[1] == (5 + nkpt * ndim), f"labels require {(5 + nkpt * ndim)} columns each" points = lb[:, 5:].reshape(-1, ndim)[:, :2] else: assert lb.shape[1] == 5, f"labels require 5 columns, {lb.shape[1]} columns detected" points = lb[:, 1:] assert points.max() <= 1, f"non-normalized or out of bounds coordinates {points[points > 1]}" assert lb.min() >= 0, f"negative label values {lb[lb < 0]}" # All labels max_cls = lb[:, 0].max() # max label count assert max_cls <= num_cls, ( f"Label class {int(max_cls)} exceeds dataset class count {num_cls}. " f"Possible class labels are 0-{num_cls - 1}" ) _, i = np.unique(lb, axis=0, return_index=True) if len(i) < nl: # duplicate row check lb = lb[i] # remove duplicates if segments: segments = [segments[x] for x in i] msg = f"{prefix}WARNING ⚠� {im_file}: {nl - len(i)} duplicate labels removed" else: ne = 1 # label empty lb = np.zeros((0, (5 + nkpt * ndim) if keypoint else 5), dtype=np.float32) else: nm = 1 # label missing lb = np.zeros((0, (5 + nkpt * ndim) if keypoints else 5), dtype=np.float32) if keypoint: keypoints = lb[:, 5:].reshape(-1, nkpt, ndim) if ndim == 2: kpt_mask = np.where((keypoints[..., 0] < 0) | (keypoints[..., 1] < 0), 0.0, 1.0).astype(np.float32) keypoints = np.concatenate([keypoints, kpt_mask[..., None]], axis=-1) # (nl, nkpt, 3) lb = lb[:, :5] return im_file, lb, shape, segments, keypoints, nm, nf, ne, nc, msg except Exception as e: nc = 1 msg = f"{prefix}WARNING ⚠� {im_file}: ignoring corrupt image/label: {e}" return [None, None, None, None, None, nm, nf, ne, nc, msg] def polygon2mask(imgsz, polygons, color=1, downsample_ratio=1): """ Convert a list of polygons to a binary mask of the specified image size. Args: imgsz (tuple): The size of the image as (height, width). polygons (list[np.ndarray]): A list of polygons. Each polygon is an array with shape [N, M], where N is the number of polygons, and M is the number of points such that M % 2 = 0. color (int, optional): The color value to fill in the polygons on the mask. Defaults to 1. downsample_ratio (int, optional): Factor by which to downsample the mask. Defaults to 1. Returns: (np.ndarray): A binary mask of the specified image size with the polygons filled in. """ mask = np.zeros(imgsz, dtype=np.uint8) polygons = np.asarray(polygons, dtype=np.int32) polygons = polygons.reshape((polygons.shape[0], -1, 2)) cv2.fillPoly(mask, polygons, color=color) nh, nw = (imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio) # Note: fillPoly first then resize is trying to keep the same loss calculation method when mask-ratio=1 return cv2.resize(mask, (nw, nh)) def polygons2masks(imgsz, polygons, color, downsample_ratio=1): """ Convert a list of polygons to a set of binary masks of the specified image size. Args: imgsz (tuple): The size of the image as (height, width). polygons (list[np.ndarray]): A list of polygons. Each polygon is an array with shape [N, M], where N is the number of polygons, and M is the number of points such that M % 2 = 0. color (int): The color value to fill in the polygons on the masks. downsample_ratio (int, optional): Factor by which to downsample each mask. Defaults to 1. Returns: (np.ndarray): A set of binary masks of the specified image size with the polygons filled in. """ return np.array([polygon2mask(imgsz, [x.reshape(-1)], color, downsample_ratio) for x in polygons]) def polygons2masks_overlap(imgsz, segments, downsample_ratio=1): """Return a (640, 640) overlap mask.""" masks = np.zeros( (imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio), dtype=np.int32 if len(segments) > 255 else np.uint8, ) areas = [] ms = [] for si in range(len(segments)): mask = polygon2mask(imgsz, [segments[si].reshape(-1)], downsample_ratio=downsample_ratio, color=1) ms.append(mask) areas.append(mask.sum()) areas = np.asarray(areas) index = np.argsort(-areas) ms = np.array(ms)[index] for i in range(len(segments)): mask = ms[i] * (i + 1) masks = masks + mask masks = np.clip(masks, a_min=0, a_max=i + 1) return masks, index def find_dataset_yaml(path: Path) -> Path: """ Find and return the YAML file associated with a Detect, Segment or Pose dataset. This function searches for a YAML file at the root level of the provided directory first, and if not found, it performs a recursive search. It prefers YAML files that have the same stem as the provided path. An AssertionError is raised if no YAML file is found or if multiple YAML files are found. Args: path (Path): The directory path to search for the YAML file. Returns: (Path): The path of the found YAML file. """ files = list(path.glob("*.yaml")) or list(path.rglob("*.yaml")) # try root level first and then recursive assert files, f"No YAML file found in '{path.resolve()}'" if len(files) > 1: files = [f for f in files if f.stem == path.stem] # prefer *.yaml files that match assert len(files) == 1, f"Expected 1 YAML file in '{path.resolve()}', but found {len(files)}.\n{files}" return files[0] def check_det_dataset(dataset, autodownload=True): """ Download, verify, and/or unzip a dataset if not found locally. This function checks the availability of a specified dataset, and if not found, it has the option to download and unzip the dataset. It then reads and parses the accompanying YAML data, ensuring key requirements are met and also resolves paths related to the dataset. Args: dataset (str): Path to the dataset or dataset descriptor (like a YAML file). autodownload (bool, optional): Whether to automatically download the dataset if not found. Defaults to True. Returns: (dict): Parsed dataset information and paths. """ file = check_file(dataset) # Download (optional) extract_dir = "" if zipfile.is_zipfile(file) or is_tarfile(file): new_dir = safe_download(file, dir=DATASETS_DIR, unzip=True, delete=False) file = find_dataset_yaml(DATASETS_DIR / new_dir) extract_dir, autodownload = file.parent, False # Read YAML data = yaml_load(file, append_filename=True) # dictionary # Checks for k in "train", "val": if k not in data: if k != "val" or "validation" not in data: raise SyntaxError( emojis(f"{dataset} '{k}:' key missing �.\n'train' and 'val' are required in all data YAMLs.") ) LOGGER.info("WARNING ⚠� renaming data YAML 'validation' key to 'val' to match YOLO format.") data["val"] = data.pop("validation") # replace 'validation' key with 'val' key if "names" not in data and "nc" not in data: raise SyntaxError(emojis(f"{dataset} key missing �.\n either 'names' or 'nc' are required in all data YAMLs.")) if "names" in data and "nc" in data and len(data["names"]) != data["nc"]: raise SyntaxError(emojis(f"{dataset} 'names' length {len(data['names'])} and 'nc: {data['nc']}' must match.")) if "names" not in data: data["names"] = [f"class_{i}" for i in range(data["nc"])] else: data["nc"] = len(data["names"]) data["names"] = check_class_names(data["names"]) # Resolve paths path = Path(extract_dir or data.get("path") or Path(data.get("yaml_file", "")).parent) # dataset root if not path.is_absolute(): path = (DATASETS_DIR / path).resolve() # Set paths data["path"] = path # download scripts for k in "train", "val", "test": if data.get(k): # prepend path if isinstance(data[k], str): x = (path / data[k]).resolve() if not x.exists() and data[k].startswith("../"): x = (path / data[k][3:]).resolve() data[k] = str(x) else: data[k] = [str((path / x).resolve()) for x in data[k]] # Parse YAML val, s = (data.get(x) for x in ("val", "download")) if val: val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path if not all(x.exists() for x in val): name = clean_url(dataset) # dataset name with URL auth stripped m = f"\nDataset '{name}' images not found ⚠�, missing path '{[x for x in val if not x.exists()][0]}'" if s and autodownload: LOGGER.warning(m) else: m += f"\nNote dataset download directory is '{DATASETS_DIR}'. You can update this in '{SETTINGS_YAML}'" raise FileNotFoundError(m) t = time.time() r = None # success if s.startswith("http") and s.endswith(".zip"): # URL safe_download(url=s, dir=DATASETS_DIR, delete=True) elif s.startswith("bash "): # bash script LOGGER.info(f"Running {s} ...") r = os.system(s) else: # python script exec(s, {"yaml": data}) dt = f"({round(time.time() - t, 1)}s)" s = f"success ✅ {dt}, saved to {colorstr('bold', DATASETS_DIR)}" if r in (0, None) else f"failure {dt} �" LOGGER.info(f"Dataset download {s}\n") check_font("Arial.ttf" if is_ascii(data["names"]) else "Arial.Unicode.ttf") # download fonts return data # dictionary def check_cls_dataset(dataset, split=""): """ Checks a classification dataset such as Imagenet. This function accepts a `dataset` name and attempts to retrieve the corresponding dataset information. If the dataset is not found locally, it attempts to download the dataset from the internet and save it locally. Args: dataset (str | Path): The name of the dataset. split (str, optional): The split of the dataset. Either 'val', 'test', or ''. Defaults to ''. Returns: (dict): A dictionary containing the following keys: - 'train' (Path): The directory path containing the training set of the dataset. - 'val' (Path): The directory path containing the validation set of the dataset. - 'test' (Path): The directory path containing the test set of the dataset. - 'nc' (int): The number of classes in the dataset. - 'names' (dict): A dictionary of class names in the dataset. """ # Download (optional if dataset=https://file.zip is passed directly) if str(dataset).startswith(("http:/", "https:/")): dataset = safe_download(dataset, dir=DATASETS_DIR, unzip=True, delete=False) elif Path(dataset).suffix in (".zip", ".tar", ".gz"): file = check_file(dataset) dataset = safe_download(file, dir=DATASETS_DIR, unzip=True, delete=False) dataset = Path(dataset) data_dir = (dataset if dataset.is_dir() else (DATASETS_DIR / dataset)).resolve() if not data_dir.is_dir(): LOGGER.warning(f"\nDataset not found ⚠�, missing path {data_dir}, attempting download...") t = time.time() if str(dataset) == "imagenet": subprocess.run(f"bash {ROOT / 'data/scripts/get_imagenet.sh'}", shell=True, check=True) else: url = f"https://github.com/ultralytics/yolov5/releases/download/v1.0/{dataset}.zip" download(url, dir=data_dir.parent) s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n" LOGGER.info(s) train_set = data_dir / "train" val_set = ( data_dir / "val" if (data_dir / "val").exists() else data_dir / "validation" if (data_dir / "validation").exists() else None ) # data/test or data/val test_set = data_dir / "test" if (data_dir / "test").exists() else None # data/val or data/test if split == "val" and not val_set: LOGGER.warning("WARNING ⚠� Dataset 'split=val' not found, using 'split=test' instead.") elif split == "test" and not test_set: LOGGER.warning("WARNING ⚠� Dataset 'split=test' not found, using 'split=val' instead.") nc = len([x for x in (data_dir / "train").glob("*") if x.is_dir()]) # number of classes names = [x.name for x in (data_dir / "train").iterdir() if x.is_dir()] # class names list names = dict(enumerate(sorted(names))) # Print to console for k, v in {"train": train_set, "val": val_set, "test": test_set}.items(): prefix = f'{colorstr(f"{k}:")} {v}...' if v is None: LOGGER.info(prefix) else: files = [path for path in v.rglob("*.*") if path.suffix[1:].lower() in IMG_FORMATS] nf = len(files) # number of files nd = len({file.parent for file in files}) # number of directories if nf == 0: if k == "train": raise FileNotFoundError(emojis(f"{dataset} '{k}:' no training images found � ")) else: LOGGER.warning(f"{prefix} found {nf} images in {nd} classes: WARNING ⚠� no images found") elif nd != nc: LOGGER.warning(f"{prefix} found {nf} images in {nd} classes: ERROR �� requires {nc} classes, not {nd}") else: LOGGER.info(f"{prefix} found {nf} images in {nd} classes ✅ ") return {"train": train_set, "val": val_set, "test": test_set, "nc": nc, "names": names} class HUBDatasetStats: """ A class for generating HUB dataset JSON and `-hub` dataset directory. Args: path (str): Path to data.yaml or data.zip (with data.yaml inside data.zip). Default is 'coco8.yaml'. task (str): Dataset task. Options are 'detect', 'segment', 'pose', 'classify'. Default is 'detect'. autodownload (bool): Attempt to download dataset if not found locally. Default is False. Example: Download *.zip files from https://github.com/ultralytics/hub/tree/main/example_datasets i.e. https://github.com/ultralytics/hub/raw/main/example_datasets/coco8.zip for coco8.zip. ```python from ultralytics.data.utils import HUBDatasetStats stats = HUBDatasetStats('path/to/coco8.zip', task='detect') # detect dataset stats = HUBDatasetStats('path/to/coco8-seg.zip', task='segment') # segment dataset stats = HUBDatasetStats('path/to/coco8-pose.zip', task='pose') # pose dataset stats = HUBDatasetStats('path/to/imagenet10.zip', task='classify') # classification dataset stats.get_json(save=True) stats.process_images() ``` """ def __init__(self, path="coco8.yaml", task="detect", autodownload=False): """Initialize class.""" path = Path(path).resolve() LOGGER.info(f"Starting HUB dataset checks for {path}....") self.task = task # detect, segment, pose, classify if self.task == "classify": unzip_dir = unzip_file(path) data = check_cls_dataset(unzip_dir) data["path"] = unzip_dir else: # detect, segment, pose _, data_dir, yaml_path = self._unzip(Path(path)) try: # Load YAML with checks data = yaml_load(yaml_path) data["path"] = "" # strip path since YAML should be in dataset root for all HUB datasets yaml_save(yaml_path, data) data = check_det_dataset(yaml_path, autodownload) # dict data["path"] = data_dir # YAML path should be set to '' (relative) or parent (absolute) except Exception as e: raise Exception("error/HUB/dataset_stats/init") from e self.hub_dir = Path(f'{data["path"]}-hub') self.im_dir = self.hub_dir / "images" self.stats = {"nc": len(data["names"]), "names": list(data["names"].values())} # statistics dictionary self.data = data @staticmethod def _unzip(path): """Unzip data.zip.""" if not str(path).endswith(".zip"): # path is data.yaml return False, None, path unzip_dir = unzip_file(path, path=path.parent) assert unzip_dir.is_dir(), ( f"Error unzipping {path}, {unzip_dir} not found. " f"path/to/abc.zip MUST unzip to path/to/abc/" ) return True, str(unzip_dir), find_dataset_yaml(unzip_dir) # zipped, data_dir, yaml_path def _hub_ops(self, f): """Saves a compressed image for HUB previews.""" compress_one_image(f, self.im_dir / Path(f).name) # save to dataset-hub def get_json(self, save=False, verbose=False): """Return dataset JSON for Ultralytics HUB.""" def _round(labels): """Update labels to integer class and 4 decimal place floats.""" if self.task == "detect": coordinates = labels["bboxes"] elif self.task == "segment": coordinates = [x.flatten() for x in labels["segments"]] elif self.task == "pose": n = labels["keypoints"].shape[0] coordinates = np.concatenate((labels["bboxes"], labels["keypoints"].reshape(n, -1)), 1) else: raise ValueError("Undefined dataset task.") zipped = zip(labels["cls"], coordinates) return [[int(c[0]), *(round(float(x), 4) for x in points)] for c, points in zipped] for split in "train", "val", "test": self.stats[split] = None # predefine path = self.data.get(split) # Check split if path is None: # no split continue files = [f for f in Path(path).rglob("*.*") if f.suffix[1:].lower() in IMG_FORMATS] # image files in split if not files: # no images continue # Get dataset statistics if self.task == "classify": from torchvision.datasets import ImageFolder dataset = ImageFolder(self.data[split]) x = np.zeros(len(dataset.classes)).astype(int) for im in dataset.imgs: x[im[1]] += 1 self.stats[split] = { "instance_stats": {"total": len(dataset), "per_class": x.tolist()}, "image_stats": {"total": len(dataset), "unlabelled": 0, "per_class": x.tolist()}, "labels": [{Path(k).name: v} for k, v in dataset.imgs], } else: from ultralytics.data import YOLODataset dataset = YOLODataset(img_path=self.data[split], data=self.data, task=self.task) x = np.array( [ np.bincount(label["cls"].astype(int).flatten(), minlength=self.data["nc"]) for label in TQDM(dataset.labels, total=len(dataset), desc="Statistics") ] ) # shape(128x80) self.stats[split] = { "instance_stats": {"total": int(x.sum()), "per_class": x.sum(0).tolist()}, "image_stats": { "total": len(dataset), "unlabelled": int(np.all(x == 0, 1).sum()), "per_class": (x > 0).sum(0).tolist(), }, "labels": [{Path(k).name: _round(v)} for k, v in zip(dataset.im_files, dataset.labels)], } # Save, print and return if save: self.hub_dir.mkdir(parents=True, exist_ok=True) # makes dataset-hub/ stats_path = self.hub_dir / "stats.json" LOGGER.info(f"Saving {stats_path.resolve()}...") with open(stats_path, "w") as f: json.dump(self.stats, f) # save stats.json if verbose: LOGGER.info(json.dumps(self.stats, indent=2, sort_keys=False)) return self.stats def process_images(self): """Compress images for Ultralytics HUB.""" from ultralytics.data import YOLODataset # ClassificationDataset self.im_dir.mkdir(parents=True, exist_ok=True) # makes dataset-hub/images/ for split in "train", "val", "test": if self.data.get(split) is None: continue dataset = YOLODataset(img_path=self.data[split], data=self.data) with ThreadPool(NUM_THREADS) as pool: for _ in TQDM(pool.imap(self._hub_ops, dataset.im_files), total=len(dataset), desc=f"{split} images"): pass LOGGER.info(f"Done. All images saved to {self.im_dir}") return self.im_dir def compress_one_image(f, f_new=None, max_dim=1920, quality=50): """ Compresses a single image file to reduced size while preserving its aspect ratio and quality using either the Python Imaging Library (PIL) or OpenCV library. If the input image is smaller than the maximum dimension, it will not be resized. Args: f (str): The path to the input image file. f_new (str, optional): The path to the output image file. If not specified, the input file will be overwritten. max_dim (int, optional): The maximum dimension (width or height) of the output image. Default is 1920 pixels. quality (int, optional): The image compression quality as a percentage. Default is 50%. Example: ```python from pathlib import Path from ultralytics.data.utils import compress_one_image for f in Path('path/to/dataset').rglob('*.jpg'): compress_one_image(f) ``` """ try: # use PIL im = Image.open(f) r = max_dim / max(im.height, im.width) # ratio if r < 1.0: # image too large im = im.resize((int(im.width * r), int(im.height * r))) im.save(f_new or f, "JPEG", quality=quality, optimize=True) # save except Exception as e: # use OpenCV LOGGER.info(f"WARNING ⚠� HUB ops PIL failure {f}: {e}") im = cv2.imread(f) im_height, im_width = im.shape[:2] r = max_dim / max(im_height, im_width) # ratio if r < 1.0: # image too large im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA) cv2.imwrite(str(f_new or f), im) def autosplit(path=DATASETS_DIR / "coco8/images", weights=(0.9, 0.1, 0.0), annotated_only=False): """ Automatically split a dataset into train/val/test splits and save the resulting splits into autosplit_*.txt files. Args: path (Path, optional): Path to images directory. Defaults to DATASETS_DIR / 'coco8/images'. weights (list | tuple, optional): Train, validation, and test split fractions. Defaults to (0.9, 0.1, 0.0). annotated_only (bool, optional): If True, only images with an associated txt file are used. Defaults to False. Example: ```python from ultralytics.data.utils import autosplit autosplit() ``` """ path = Path(path) # images dir files = sorted(x for x in path.rglob("*.*") if x.suffix[1:].lower() in IMG_FORMATS) # image files only n = len(files) # number of files random.seed(0) # for reproducibility indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split txt = ["autosplit_train.txt", "autosplit_val.txt", "autosplit_test.txt"] # 3 txt files for x in txt: if (path.parent / x).exists(): (path.parent / x).unlink() # remove existing LOGGER.info(f"Autosplitting images from {path}" + ", using *.txt labeled images only" * annotated_only) for i, img in TQDM(zip(indices, files), total=n): if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label with open(path.parent / txt[i], "a") as f: f.write(f"./{img.relative_to(path.parent).as_posix()}" + "\n") # add image to txt file
29,778
Python
.py
559
43.314848
123
0.59268
arojsubedi/Improved-YOLOv8s
8
5
0
AGPL-3.0
9/5/2024, 10:48:18 PM (Europe/Amsterdam)