id
int64 0
458k
| file_name
stringlengths 4
119
| file_path
stringlengths 14
227
| content
stringlengths 24
9.96M
| size
int64 24
9.96M
| language
stringclasses 1
value | extension
stringclasses 14
values | total_lines
int64 1
219k
| avg_line_length
float64 2.52
4.63M
| max_line_length
int64 5
9.91M
| alphanum_fraction
float64 0
1
| repo_name
stringlengths 7
101
| repo_stars
int64 100
139k
| repo_forks
int64 0
26.4k
| repo_open_issues
int64 0
2.27k
| repo_license
stringclasses 12
values | repo_extraction_date
stringclasses 433
values |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2,287,800 | __init__.py | arojsubedi_Improved-YOLOv8s/ultralytics/data/__init__.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from .base import BaseDataset
from .build import build_dataloader, build_yolo_dataset, load_inference_source
from .dataset import ClassificationDataset, SemanticDataset, YOLODataset
__all__ = (
"BaseDataset",
"ClassificationDataset",
"SemanticDataset",
"YOLODataset",
"build_yolo_dataset",
"build_dataloader",
"load_inference_source",
)
| 409 | Python | .py | 13 | 28.153846 | 78 | 0.751269 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,801 | base.py | arojsubedi_Improved-YOLOv8s/ultralytics/data/base.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import glob
import math
import os
import random
from copy import deepcopy
from multiprocessing.pool import ThreadPool
from pathlib import Path
from typing import Optional
import cv2
import numpy as np
import psutil
from torch.utils.data import Dataset
from ultralytics.utils import DEFAULT_CFG, LOCAL_RANK, LOGGER, NUM_THREADS, TQDM
from .utils import HELP_URL, IMG_FORMATS
class BaseDataset(Dataset):
"""
Base dataset class for loading and processing image data.
Args:
img_path (str): Path to the folder containing images.
imgsz (int, optional): Image size. Defaults to 640.
cache (bool, optional): Cache images to RAM or disk during training. Defaults to False.
augment (bool, optional): If True, data augmentation is applied. Defaults to True.
hyp (dict, optional): Hyperparameters to apply data augmentation. Defaults to None.
prefix (str, optional): Prefix to print in log messages. Defaults to ''.
rect (bool, optional): If True, rectangular training is used. Defaults to False.
batch_size (int, optional): Size of batches. Defaults to None.
stride (int, optional): Stride. Defaults to 32.
pad (float, optional): Padding. Defaults to 0.0.
single_cls (bool, optional): If True, single class training is used. Defaults to False.
classes (list): List of included classes. Default is None.
fraction (float): Fraction of dataset to utilize. Default is 1.0 (use all data).
Attributes:
im_files (list): List of image file paths.
labels (list): List of label data dictionaries.
ni (int): Number of images in the dataset.
ims (list): List of loaded images.
npy_files (list): List of numpy file paths.
transforms (callable): Image transformation function.
"""
def __init__(
self,
img_path,
imgsz=640,
cache=False,
augment=True,
hyp=DEFAULT_CFG,
prefix="",
rect=False,
batch_size=16,
stride=32,
pad=0.5,
single_cls=False,
classes=None,
fraction=1.0,
):
"""Initialize BaseDataset with given configuration and options."""
super().__init__()
self.img_path = img_path
self.imgsz = imgsz
self.augment = augment
self.single_cls = single_cls
self.prefix = prefix
self.fraction = fraction
self.im_files = self.get_img_files(self.img_path)
self.labels = self.get_labels()
self.update_labels(include_class=classes) # single_cls and include_class
self.ni = len(self.labels) # number of images
self.rect = rect
self.batch_size = batch_size
self.stride = stride
self.pad = pad
if self.rect:
assert self.batch_size is not None
self.set_rectangle()
# Buffer thread for mosaic images
self.buffer = [] # buffer size = batch size
self.max_buffer_length = min((self.ni, self.batch_size * 8, 1000)) if self.augment else 0
# Cache images
if cache == "ram" and not self.check_cache_ram():
cache = False
self.ims, self.im_hw0, self.im_hw = [None] * self.ni, [None] * self.ni, [None] * self.ni
self.npy_files = [Path(f).with_suffix(".npy") for f in self.im_files]
if cache:
self.cache_images(cache)
# Transforms
self.transforms = self.build_transforms(hyp=hyp)
def get_img_files(self, img_path):
"""Read image files."""
try:
f = [] # image files
for p in img_path if isinstance(img_path, list) else [img_path]:
p = Path(p) # os-agnostic
if p.is_dir(): # dir
f += glob.glob(str(p / "**" / "*.*"), recursive=True)
# F = list(p.rglob('*.*')) # pathlib
elif p.is_file(): # file
with open(p) as t:
t = t.read().strip().splitlines()
parent = str(p.parent) + os.sep
f += [x.replace("./", parent) if x.startswith("./") else x for x in t] # local to global path
# F += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib)
else:
raise FileNotFoundError(f"{self.prefix}{p} does not exist")
im_files = sorted(x.replace("/", os.sep) for x in f if x.split(".")[-1].lower() in IMG_FORMATS)
# self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib
assert im_files, f"{self.prefix}No images found in {img_path}"
except Exception as e:
raise FileNotFoundError(f"{self.prefix}Error loading data from {img_path}\n{HELP_URL}") from e
if self.fraction < 1:
im_files = im_files[: round(len(im_files) * self.fraction)]
return im_files
def update_labels(self, include_class: Optional[list]):
"""Update labels to include only these classes (optional)."""
include_class_array = np.array(include_class).reshape(1, -1)
for i in range(len(self.labels)):
if include_class is not None:
cls = self.labels[i]["cls"]
bboxes = self.labels[i]["bboxes"]
segments = self.labels[i]["segments"]
keypoints = self.labels[i]["keypoints"]
j = (cls == include_class_array).any(1)
self.labels[i]["cls"] = cls[j]
self.labels[i]["bboxes"] = bboxes[j]
if segments:
self.labels[i]["segments"] = [segments[si] for si, idx in enumerate(j) if idx]
if keypoints is not None:
self.labels[i]["keypoints"] = keypoints[j]
if self.single_cls:
self.labels[i]["cls"][:, 0] = 0
def load_image(self, i, rect_mode=True):
"""Loads 1 image from dataset index 'i', returns (im, resized hw)."""
im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i]
if im is None: # not cached in RAM
if fn.exists(): # load npy
try:
im = np.load(fn)
except Exception as e:
LOGGER.warning(f"{self.prefix}WARNING ⚠� Removing corrupt *.npy image file {fn} due to: {e}")
Path(fn).unlink(missing_ok=True)
im = cv2.imread(f) # BGR
else: # read image
im = cv2.imread(f) # BGR
if im is None:
raise FileNotFoundError(f"Image Not Found {f}")
h0, w0 = im.shape[:2] # orig hw
if rect_mode: # resize long side to imgsz while maintaining aspect ratio
r = self.imgsz / max(h0, w0) # ratio
if r != 1: # if sizes are not equal
w, h = (min(math.ceil(w0 * r), self.imgsz), min(math.ceil(h0 * r), self.imgsz))
im = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
elif not (h0 == w0 == self.imgsz): # resize by stretching image to square imgsz
im = cv2.resize(im, (self.imgsz, self.imgsz), interpolation=cv2.INTER_LINEAR)
# Add to buffer if training with augmentations
if self.augment:
self.ims[i], self.im_hw0[i], self.im_hw[i] = im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized
self.buffer.append(i)
if len(self.buffer) >= self.max_buffer_length:
j = self.buffer.pop(0)
self.ims[j], self.im_hw0[j], self.im_hw[j] = None, None, None
return im, (h0, w0), im.shape[:2]
return self.ims[i], self.im_hw0[i], self.im_hw[i]
def cache_images(self, cache):
"""Cache images to memory or disk."""
b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes
fcn = self.cache_images_to_disk if cache == "disk" else self.load_image
with ThreadPool(NUM_THREADS) as pool:
results = pool.imap(fcn, range(self.ni))
pbar = TQDM(enumerate(results), total=self.ni, disable=LOCAL_RANK > 0)
for i, x in pbar:
if cache == "disk":
b += self.npy_files[i].stat().st_size
else: # 'ram'
self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i)
b += self.ims[i].nbytes
pbar.desc = f"{self.prefix}Caching images ({b / gb:.1f}GB {cache})"
pbar.close()
def cache_images_to_disk(self, i):
"""Saves an image as an *.npy file for faster loading."""
f = self.npy_files[i]
if not f.exists():
np.save(f.as_posix(), cv2.imread(self.im_files[i]), allow_pickle=False)
def check_cache_ram(self, safety_margin=0.5):
"""Check image caching requirements vs available memory."""
b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes
n = min(self.ni, 30) # extrapolate from 30 random images
for _ in range(n):
im = cv2.imread(random.choice(self.im_files)) # sample image
ratio = self.imgsz / max(im.shape[0], im.shape[1]) # max(h, w) # ratio
b += im.nbytes * ratio**2
mem_required = b * self.ni / n * (1 + safety_margin) # GB required to cache dataset into RAM
mem = psutil.virtual_memory()
cache = mem_required < mem.available # to cache or not to cache, that is the question
if not cache:
LOGGER.info(
f'{self.prefix}{mem_required / gb:.1f}GB RAM required to cache images '
f'with {int(safety_margin * 100)}% safety margin but only '
f'{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, '
f"{'caching images ✅' if cache else 'not caching images ⚠�'}"
)
return cache
def set_rectangle(self):
"""Sets the shape of bounding boxes for YOLO detections as rectangles."""
bi = np.floor(np.arange(self.ni) / self.batch_size).astype(int) # batch index
nb = bi[-1] + 1 # number of batches
s = np.array([x.pop("shape") for x in self.labels]) # hw
ar = s[:, 0] / s[:, 1] # aspect ratio
irect = ar.argsort()
self.im_files = [self.im_files[i] for i in irect]
self.labels = [self.labels[i] for i in irect]
ar = ar[irect]
# Set training image shapes
shapes = [[1, 1]] * nb
for i in range(nb):
ari = ar[bi == i]
mini, maxi = ari.min(), ari.max()
if maxi < 1:
shapes[i] = [maxi, 1]
elif mini > 1:
shapes[i] = [1, 1 / mini]
self.batch_shapes = np.ceil(np.array(shapes) * self.imgsz / self.stride + self.pad).astype(int) * self.stride
self.batch = bi # batch index of image
def __getitem__(self, index):
"""Returns transformed label information for given index."""
return self.transforms(self.get_image_and_label(index))
def get_image_and_label(self, index):
"""Get and return label information from the dataset."""
label = deepcopy(self.labels[index]) # requires deepcopy() https://github.com/ultralytics/ultralytics/pull/1948
label.pop("shape", None) # shape is for rect, remove it
label["img"], label["ori_shape"], label["resized_shape"] = self.load_image(index)
label["ratio_pad"] = (
label["resized_shape"][0] / label["ori_shape"][0],
label["resized_shape"][1] / label["ori_shape"][1],
) # for evaluation
if self.rect:
label["rect_shape"] = self.batch_shapes[self.batch[index]]
return self.update_labels_info(label)
def __len__(self):
"""Returns the length of the labels list for the dataset."""
return len(self.labels)
def update_labels_info(self, label):
"""Custom your label format here."""
return label
def build_transforms(self, hyp=None):
"""
Users can customize augmentations here.
Example:
```python
if self.augment:
# Training transforms
return Compose([])
else:
# Val transforms
return Compose([])
```
"""
raise NotImplementedError
def get_labels(self):
"""
Users can customize their own format here.
Note:
Ensure output is a dictionary with the following keys:
```python
dict(
im_file=im_file,
shape=shape, # format: (height, width)
cls=cls,
bboxes=bboxes, # xywh
segments=segments, # xy
keypoints=keypoints, # xy
normalized=True, # or False
bbox_format="xyxy", # or xywh, ltwh
)
```
"""
raise NotImplementedError
| 13,216 | Python | .py | 276 | 36.547101 | 120 | 0.562331 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,802 | loaders.py | arojsubedi_Improved-YOLOv8s/ultralytics/data/loaders.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import glob
import math
import os
import time
from dataclasses import dataclass
from pathlib import Path
from threading import Thread
from urllib.parse import urlparse
import cv2
import numpy as np
import requests
import torch
from PIL import Image
from ultralytics.data.utils import IMG_FORMATS, VID_FORMATS
from ultralytics.utils import LOGGER, is_colab, is_kaggle, ops
from ultralytics.utils.checks import check_requirements
@dataclass
class SourceTypes:
"""Class to represent various types of input sources for predictions."""
webcam: bool = False
screenshot: bool = False
from_img: bool = False
tensor: bool = False
class LoadStreams:
"""
Stream Loader for various types of video streams.
Suitable for use with `yolo predict source='rtsp://example.com/media.mp4'`, supports RTSP, RTMP, HTTP, and TCP streams.
Attributes:
sources (str): The source input paths or URLs for the video streams.
vid_stride (int): Video frame-rate stride, defaults to 1.
buffer (bool): Whether to buffer input streams, defaults to False.
running (bool): Flag to indicate if the streaming thread is running.
mode (str): Set to 'stream' indicating real-time capture.
imgs (list): List of image frames for each stream.
fps (list): List of FPS for each stream.
frames (list): List of total frames for each stream.
threads (list): List of threads for each stream.
shape (list): List of shapes for each stream.
caps (list): List of cv2.VideoCapture objects for each stream.
bs (int): Batch size for processing.
Methods:
__init__: Initialize the stream loader.
update: Read stream frames in daemon thread.
close: Close stream loader and release resources.
__iter__: Returns an iterator object for the class.
__next__: Returns source paths, transformed, and original images for processing.
__len__: Return the length of the sources object.
"""
def __init__(self, sources="file.streams", vid_stride=1, buffer=False):
"""Initialize instance variables and check for consistent input stream shapes."""
torch.backends.cudnn.benchmark = True # faster for fixed-size inference
self.buffer = buffer # buffer input streams
self.running = True # running flag for Thread
self.mode = "stream"
self.vid_stride = vid_stride # video frame-rate stride
sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources]
n = len(sources)
self.fps = [0] * n # frames per second
self.frames = [0] * n
self.threads = [None] * n
self.caps = [None] * n # video capture objects
self.imgs = [[] for _ in range(n)] # images
self.shape = [[] for _ in range(n)] # image shapes
self.sources = [ops.clean_str(x) for x in sources] # clean source names for later
for i, s in enumerate(sources): # index, source
# Start thread to read frames from video stream
st = f"{i + 1}/{n}: {s}... "
if urlparse(s).hostname in ("www.youtube.com", "youtube.com", "youtu.be"): # if source is YouTube video
# YouTube format i.e. 'https://www.youtube.com/watch?v=Zgi9g1ksQHc' or 'https://youtu.be/LNwODJXcvt4'
s = get_best_youtube_url(s)
s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam
if s == 0 and (is_colab() or is_kaggle()):
raise NotImplementedError(
"'source=0' webcam not supported in Colab and Kaggle notebooks. "
"Try running 'source=0' in a local environment."
)
self.caps[i] = cv2.VideoCapture(s) # store video capture object
if not self.caps[i].isOpened():
raise ConnectionError(f"{st}Failed to open {s}")
w = int(self.caps[i].get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(self.caps[i].get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = self.caps[i].get(cv2.CAP_PROP_FPS) # warning: may return 0 or nan
self.frames[i] = max(int(self.caps[i].get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float(
"inf"
) # infinite stream fallback
self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 # 30 FPS fallback
success, im = self.caps[i].read() # guarantee first frame
if not success or im is None:
raise ConnectionError(f"{st}Failed to read images from {s}")
self.imgs[i].append(im)
self.shape[i] = im.shape
self.threads[i] = Thread(target=self.update, args=([i, self.caps[i], s]), daemon=True)
LOGGER.info(f"{st}Success ✅ ({self.frames[i]} frames of shape {w}x{h} at {self.fps[i]:.2f} FPS)")
self.threads[i].start()
LOGGER.info("") # newline
# Check for common shapes
self.bs = self.__len__()
def update(self, i, cap, stream):
"""Read stream `i` frames in daemon thread."""
n, f = 0, self.frames[i] # frame number, frame array
while self.running and cap.isOpened() and n < (f - 1):
if len(self.imgs[i]) < 30: # keep a <=30-image buffer
n += 1
cap.grab() # .read() = .grab() followed by .retrieve()
if n % self.vid_stride == 0:
success, im = cap.retrieve()
if not success:
im = np.zeros(self.shape[i], dtype=np.uint8)
LOGGER.warning("WARNING ⚠� Video stream unresponsive, please check your IP camera connection.")
cap.open(stream) # re-open stream if signal was lost
if self.buffer:
self.imgs[i].append(im)
else:
self.imgs[i] = [im]
else:
time.sleep(0.01) # wait until the buffer is empty
def close(self):
"""Close stream loader and release resources."""
self.running = False # stop flag for Thread
for thread in self.threads:
if thread.is_alive():
thread.join(timeout=5) # Add timeout
for cap in self.caps: # Iterate through the stored VideoCapture objects
try:
cap.release() # release video capture
except Exception as e:
LOGGER.warning(f"WARNING ⚠� Could not release VideoCapture object: {e}")
cv2.destroyAllWindows()
def __iter__(self):
"""Iterates through YOLO image feed and re-opens unresponsive streams."""
self.count = -1
return self
def __next__(self):
"""Returns source paths, transformed and original images for processing."""
self.count += 1
images = []
for i, x in enumerate(self.imgs):
# Wait until a frame is available in each buffer
while not x:
if not self.threads[i].is_alive() or cv2.waitKey(1) == ord("q"): # q to quit
self.close()
raise StopIteration
time.sleep(1 / min(self.fps))
x = self.imgs[i]
if not x:
LOGGER.warning(f"WARNING ⚠� Waiting for stream {i}")
# Get and remove the first frame from imgs buffer
if self.buffer:
images.append(x.pop(0))
# Get the last frame, and clear the rest from the imgs buffer
else:
images.append(x.pop(-1) if x else np.zeros(self.shape[i], dtype=np.uint8))
x.clear()
return self.sources, images, None, ""
def __len__(self):
"""Return the length of the sources object."""
return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years
class LoadScreenshots:
"""
YOLOv8 screenshot dataloader.
This class manages the loading of screenshot images for processing with YOLOv8.
Suitable for use with `yolo predict source=screen`.
Attributes:
source (str): The source input indicating which screen to capture.
screen (int): The screen number to capture.
left (int): The left coordinate for screen capture area.
top (int): The top coordinate for screen capture area.
width (int): The width of the screen capture area.
height (int): The height of the screen capture area.
mode (str): Set to 'stream' indicating real-time capture.
frame (int): Counter for captured frames.
sct (mss.mss): Screen capture object from `mss` library.
bs (int): Batch size, set to 1.
monitor (dict): Monitor configuration details.
Methods:
__iter__: Returns an iterator object.
__next__: Captures the next screenshot and returns it.
"""
def __init__(self, source):
"""Source = [screen_number left top width height] (pixels)."""
check_requirements("mss")
import mss # noqa
source, *params = source.split()
self.screen, left, top, width, height = 0, None, None, None, None # default to full screen 0
if len(params) == 1:
self.screen = int(params[0])
elif len(params) == 4:
left, top, width, height = (int(x) for x in params)
elif len(params) == 5:
self.screen, left, top, width, height = (int(x) for x in params)
self.mode = "stream"
self.frame = 0
self.sct = mss.mss()
self.bs = 1
# Parse monitor shape
monitor = self.sct.monitors[self.screen]
self.top = monitor["top"] if top is None else (monitor["top"] + top)
self.left = monitor["left"] if left is None else (monitor["left"] + left)
self.width = width or monitor["width"]
self.height = height or monitor["height"]
self.monitor = {"left": self.left, "top": self.top, "width": self.width, "height": self.height}
def __iter__(self):
"""Returns an iterator of the object."""
return self
def __next__(self):
"""mss screen capture: get raw pixels from the screen as np array."""
im0 = np.asarray(self.sct.grab(self.monitor))[:, :, :3] # BGRA to BGR
s = f"screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: "
self.frame += 1
return [str(self.screen)], [im0], None, s # screen, img, vid_cap, string
class LoadImages:
"""
YOLOv8 image/video dataloader.
This class manages the loading and pre-processing of image and video data for YOLOv8. It supports loading from
various formats, including single image files, video files, and lists of image and video paths.
Attributes:
files (list): List of image and video file paths.
nf (int): Total number of files (images and videos).
video_flag (list): Flags indicating whether a file is a video (True) or an image (False).
mode (str): Current mode, 'image' or 'video'.
vid_stride (int): Stride for video frame-rate, defaults to 1.
bs (int): Batch size, set to 1 for this class.
cap (cv2.VideoCapture): Video capture object for OpenCV.
frame (int): Frame counter for video.
frames (int): Total number of frames in the video.
count (int): Counter for iteration, initialized at 0 during `__iter__()`.
Methods:
_new_video(path): Create a new cv2.VideoCapture object for a given video path.
"""
def __init__(self, path, vid_stride=1):
"""Initialize the Dataloader and raise FileNotFoundError if file not found."""
parent = None
if isinstance(path, str) and Path(path).suffix == ".txt": # *.txt file with img/vid/dir on each line
parent = Path(path).parent
path = Path(path).read_text().splitlines() # list of sources
files = []
for p in sorted(path) if isinstance(path, (list, tuple)) else [path]:
a = str(Path(p).absolute()) # do not use .resolve() https://github.com/ultralytics/ultralytics/issues/2912
if "*" in a:
files.extend(sorted(glob.glob(a, recursive=True))) # glob
elif os.path.isdir(a):
files.extend(sorted(glob.glob(os.path.join(a, "*.*")))) # dir
elif os.path.isfile(a):
files.append(a) # files (absolute or relative to CWD)
elif parent and (parent / p).is_file():
files.append(str((parent / p).absolute())) # files (relative to *.txt file parent)
else:
raise FileNotFoundError(f"{p} does not exist")
images = [x for x in files if x.split(".")[-1].lower() in IMG_FORMATS]
videos = [x for x in files if x.split(".")[-1].lower() in VID_FORMATS]
ni, nv = len(images), len(videos)
self.files = images + videos
self.nf = ni + nv # number of files
self.video_flag = [False] * ni + [True] * nv
self.mode = "image"
self.vid_stride = vid_stride # video frame-rate stride
self.bs = 1
if any(videos):
self._new_video(videos[0]) # new video
else:
self.cap = None
if self.nf == 0:
raise FileNotFoundError(
f"No images or videos found in {p}. "
f"Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}"
)
def __iter__(self):
"""Returns an iterator object for VideoStream or ImageFolder."""
self.count = 0
return self
def __next__(self):
"""Return next image, path and metadata from dataset."""
if self.count == self.nf:
raise StopIteration
path = self.files[self.count]
if self.video_flag[self.count]:
# Read video
self.mode = "video"
for _ in range(self.vid_stride):
self.cap.grab()
success, im0 = self.cap.retrieve()
while not success:
self.count += 1
self.cap.release()
if self.count == self.nf: # last video
raise StopIteration
path = self.files[self.count]
self._new_video(path)
success, im0 = self.cap.read()
self.frame += 1
# im0 = self._cv2_rotate(im0) # for use if cv2 autorotation is False
s = f"video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: "
else:
# Read image
self.count += 1
im0 = cv2.imread(path) # BGR
if im0 is None:
raise FileNotFoundError(f"Image Not Found {path}")
s = f"image {self.count}/{self.nf} {path}: "
return [path], [im0], self.cap, s
def _new_video(self, path):
"""Create a new video capture object."""
self.frame = 0
self.cap = cv2.VideoCapture(path)
self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride)
def __len__(self):
"""Returns the number of files in the object."""
return self.nf # number of files
class LoadPilAndNumpy:
"""
Load images from PIL and Numpy arrays for batch processing.
This class is designed to manage loading and pre-processing of image data from both PIL and Numpy formats.
It performs basic validation and format conversion to ensure that the images are in the required format for
downstream processing.
Attributes:
paths (list): List of image paths or autogenerated filenames.
im0 (list): List of images stored as Numpy arrays.
mode (str): Type of data being processed, defaults to 'image'.
bs (int): Batch size, equivalent to the length of `im0`.
count (int): Counter for iteration, initialized at 0 during `__iter__()`.
Methods:
_single_check(im): Validate and format a single image to a Numpy array.
"""
def __init__(self, im0):
"""Initialize PIL and Numpy Dataloader."""
if not isinstance(im0, list):
im0 = [im0]
self.paths = [getattr(im, "filename", f"image{i}.jpg") for i, im in enumerate(im0)]
self.im0 = [self._single_check(im) for im in im0]
self.mode = "image"
# Generate fake paths
self.bs = len(self.im0)
@staticmethod
def _single_check(im):
"""Validate and format an image to numpy array."""
assert isinstance(im, (Image.Image, np.ndarray)), f"Expected PIL/np.ndarray image type, but got {type(im)}"
if isinstance(im, Image.Image):
if im.mode != "RGB":
im = im.convert("RGB")
im = np.asarray(im)[:, :, ::-1]
im = np.ascontiguousarray(im) # contiguous
return im
def __len__(self):
"""Returns the length of the 'im0' attribute."""
return len(self.im0)
def __next__(self):
"""Returns batch paths, images, processed images, None, ''."""
if self.count == 1: # loop only once as it's batch inference
raise StopIteration
self.count += 1
return self.paths, self.im0, None, ""
def __iter__(self):
"""Enables iteration for class LoadPilAndNumpy."""
self.count = 0
return self
class LoadTensor:
"""
Load images from torch.Tensor data.
This class manages the loading and pre-processing of image data from PyTorch tensors for further processing.
Attributes:
im0 (torch.Tensor): The input tensor containing the image(s).
bs (int): Batch size, inferred from the shape of `im0`.
mode (str): Current mode, set to 'image'.
paths (list): List of image paths or filenames.
count (int): Counter for iteration, initialized at 0 during `__iter__()`.
Methods:
_single_check(im, stride): Validate and possibly modify the input tensor.
"""
def __init__(self, im0) -> None:
"""Initialize Tensor Dataloader."""
self.im0 = self._single_check(im0)
self.bs = self.im0.shape[0]
self.mode = "image"
self.paths = [getattr(im, "filename", f"image{i}.jpg") for i, im in enumerate(im0)]
@staticmethod
def _single_check(im, stride=32):
"""Validate and format an image to torch.Tensor."""
s = (
f"WARNING ⚠� torch.Tensor inputs should be BCHW i.e. shape(1, 3, 640, 640) "
f"divisible by stride {stride}. Input shape{tuple(im.shape)} is incompatible."
)
if len(im.shape) != 4:
if len(im.shape) != 3:
raise ValueError(s)
LOGGER.warning(s)
im = im.unsqueeze(0)
if im.shape[2] % stride or im.shape[3] % stride:
raise ValueError(s)
if im.max() > 1.0 + torch.finfo(im.dtype).eps: # torch.float32 eps is 1.2e-07
LOGGER.warning(
f"WARNING ⚠� torch.Tensor inputs should be normalized 0.0-1.0 but max value is {im.max()}. "
f"Dividing input by 255."
)
im = im.float() / 255.0
return im
def __iter__(self):
"""Returns an iterator object."""
self.count = 0
return self
def __next__(self):
"""Return next item in the iterator."""
if self.count == 1:
raise StopIteration
self.count += 1
return self.paths, self.im0, None, ""
def __len__(self):
"""Returns the batch size."""
return self.bs
def autocast_list(source):
"""Merges a list of source of different types into a list of numpy arrays or PIL images."""
files = []
for im in source:
if isinstance(im, (str, Path)): # filename or uri
files.append(Image.open(requests.get(im, stream=True).raw if str(im).startswith("http") else im))
elif isinstance(im, (Image.Image, np.ndarray)): # PIL or np Image
files.append(im)
else:
raise TypeError(
f"type {type(im).__name__} is not a supported Ultralytics prediction source type. \n"
f"See https://docs.ultralytics.com/modes/predict for supported source types."
)
return files
LOADERS = LoadStreams, LoadPilAndNumpy, LoadImages, LoadScreenshots # tuple
def get_best_youtube_url(url, use_pafy=True):
"""
Retrieves the URL of the best quality MP4 video stream from a given YouTube video.
This function uses the pafy or yt_dlp library to extract the video info from YouTube. It then finds the highest
quality MP4 format that has video codec but no audio codec, and returns the URL of this video stream.
Args:
url (str): The URL of the YouTube video.
use_pafy (bool): Use the pafy package, default=True, otherwise use yt_dlp package.
Returns:
(str): The URL of the best quality MP4 video stream, or None if no suitable stream is found.
"""
if use_pafy:
check_requirements(("pafy", "youtube_dl==2020.12.2"))
import pafy # noqa
return pafy.new(url).getbestvideo(preftype="mp4").url
else:
check_requirements("yt-dlp")
import yt_dlp
with yt_dlp.YoutubeDL({"quiet": True}) as ydl:
info_dict = ydl.extract_info(url, download=False) # extract info
for f in reversed(info_dict.get("formats", [])): # reversed because best is usually last
# Find a format with video codec, no audio, *.mp4 extension at least 1920x1080 size
good_size = (f.get("width") or 0) >= 1920 or (f.get("height") or 0) >= 1080
if good_size and f["vcodec"] != "none" and f["acodec"] == "none" and f["ext"] == "mp4":
return f.get("url")
| 21,910 | Python | .py | 449 | 38.835189 | 123 | 0.597465 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,803 | dataset.py | arojsubedi_Improved-YOLOv8s/ultralytics/data/dataset.py | # Ultralytics YOLO üöÄ, AGPL-3.0 license
import contextlib
from itertools import repeat
from multiprocessing.pool import ThreadPool
from pathlib import Path
import cv2
import numpy as np
import torch
import torchvision
from PIL import Image
from ultralytics.utils import LOCAL_RANK, NUM_THREADS, TQDM, colorstr, is_dir_writeable
from ultralytics.utils.ops import resample_segments
from .augment import Compose, Format, Instances, LetterBox, classify_augmentations, classify_transforms, v8_transforms
from .base import BaseDataset
from .utils import HELP_URL, LOGGER, get_hash, img2label_paths, verify_image, verify_image_label
# Ultralytics dataset *.cache version, >= 1.0.0 for YOLOv8
DATASET_CACHE_VERSION = "1.0.3"
class YOLODataset(BaseDataset):
"""
Dataset class for loading object detection and/or segmentation labels in YOLO format.
Args:
data (dict, optional): A dataset YAML dictionary. Defaults to None.
task (str): An explicit arg to point current task, Defaults to 'detect'.
Returns:
(torch.utils.data.Dataset): A PyTorch dataset object that can be used for training an object detection model.
"""
def __init__(self, *args, data=None, task="detect", **kwargs):
"""Initializes the YOLODataset with optional configurations for segments and keypoints."""
self.use_segments = task == "segment"
self.use_keypoints = task == "pose"
self.use_obb = task == "obb"
self.data = data
assert not (self.use_segments and self.use_keypoints), "Can not use both segments and keypoints."
super().__init__(*args, **kwargs)
def cache_labels(self, path=Path("./labels.cache")):
"""
Cache dataset labels, check images and read shapes.
Args:
path (Path): Path where to save the cache file. Default is Path('./labels.cache').
Returns:
(dict): labels.
"""
x = {"labels": []}
nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages
desc = f"{self.prefix}Scanning {path.parent / path.stem}..."
total = len(self.im_files)
nkpt, ndim = self.data.get("kpt_shape", (0, 0))
if self.use_keypoints and (nkpt <= 0 or ndim not in (2, 3)):
raise ValueError(
"'kpt_shape' in data.yaml missing or incorrect. Should be a list with [number of "
"keypoints, number of dims (2 for x,y or 3 for x,y,visible)], i.e. 'kpt_shape: [17, 3]'"
)
with ThreadPool(NUM_THREADS) as pool:
results = pool.imap(
func=verify_image_label,
iterable=zip(
self.im_files,
self.label_files,
repeat(self.prefix),
repeat(self.use_keypoints),
repeat(len(self.data["names"])),
repeat(nkpt),
repeat(ndim),
),
)
pbar = TQDM(results, desc=desc, total=total)
for im_file, lb, shape, segments, keypoint, nm_f, nf_f, ne_f, nc_f, msg in pbar:
nm += nm_f
nf += nf_f
ne += ne_f
nc += nc_f
if im_file:
x["labels"].append(
dict(
im_file=im_file,
shape=shape,
cls=lb[:, 0:1], # n, 1
bboxes=lb[:, 1:], # n, 4
segments=segments,
keypoints=keypoint,
normalized=True,
bbox_format="xywh",
)
)
if msg:
msgs.append(msg)
pbar.desc = f"{desc} {nf} images, {nm + ne} backgrounds, {nc} corrupt"
pbar.close()
if msgs:
LOGGER.info("\n".join(msgs))
if nf == 0:
LOGGER.warning(f"{self.prefix}WARNING ⚠️ No labels found in {path}. {HELP_URL}")
x["hash"] = get_hash(self.label_files + self.im_files)
x["results"] = nf, nm, ne, nc, len(self.im_files)
x["msgs"] = msgs # warnings
save_dataset_cache_file(self.prefix, path, x)
return x
def get_labels(self):
"""Returns dictionary of labels for YOLO training."""
self.label_files = img2label_paths(self.im_files)
cache_path = Path(self.label_files[0]).parent.with_suffix(".cache")
try:
cache, exists = load_dataset_cache_file(cache_path), True # attempt to load a *.cache file
assert cache["version"] == DATASET_CACHE_VERSION # matches current version
assert cache["hash"] == get_hash(self.label_files + self.im_files) # identical hash
except (FileNotFoundError, AssertionError, AttributeError):
cache, exists = self.cache_labels(cache_path), False # run cache ops
# Display cache
nf, nm, ne, nc, n = cache.pop("results") # found, missing, empty, corrupt, total
if exists and LOCAL_RANK in (-1, 0):
d = f"Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt"
TQDM(None, desc=self.prefix + d, total=n, initial=n) # display results
if cache["msgs"]:
LOGGER.info("\n".join(cache["msgs"])) # display warnings
# Read cache
[cache.pop(k) for k in ("hash", "version", "msgs")] # remove items
labels = cache["labels"]
if not labels:
LOGGER.warning(f"WARNING ⚠️ No images found in {cache_path}, training may not work correctly. {HELP_URL}")
self.im_files = [lb["im_file"] for lb in labels] # update im_files
# Check if the dataset is all boxes or all segments
lengths = ((len(lb["cls"]), len(lb["bboxes"]), len(lb["segments"])) for lb in labels)
len_cls, len_boxes, len_segments = (sum(x) for x in zip(*lengths))
if len_segments and len_boxes != len_segments:
LOGGER.warning(
f"WARNING ⚠️ Box and segment counts should be equal, but got len(segments) = {len_segments}, "
f"len(boxes) = {len_boxes}. To resolve this only boxes will be used and all segments will be removed. "
"To avoid this please supply either a detect or segment dataset, not a detect-segment mixed dataset."
)
for lb in labels:
lb["segments"] = []
if len_cls == 0:
LOGGER.warning(f"WARNING ⚠️ No labels found in {cache_path}, training may not work correctly. {HELP_URL}")
return labels
def build_transforms(self, hyp=None):
"""Builds and appends transforms to the list."""
if self.augment:
hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0
hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0
transforms = v8_transforms(self, self.imgsz, hyp)
else:
transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), scaleup=False)])
transforms.append(
Format(
bbox_format="xywh",
normalize=True,
return_mask=self.use_segments,
return_keypoint=self.use_keypoints,
return_obb=self.use_obb,
batch_idx=True,
mask_ratio=hyp.mask_ratio,
mask_overlap=hyp.overlap_mask,
)
)
return transforms
def close_mosaic(self, hyp):
"""Sets mosaic, copy_paste and mixup options to 0.0 and builds transformations."""
hyp.mosaic = 0.0 # set mosaic ratio=0.0
hyp.copy_paste = 0.0 # keep the same behavior as previous v8 close-mosaic
hyp.mixup = 0.0 # keep the same behavior as previous v8 close-mosaic
self.transforms = self.build_transforms(hyp)
def update_labels_info(self, label):
"""
Custom your label format here.
Note:
cls is not with bboxes now, classification and semantic segmentation need an independent cls label
Can also support classification and semantic segmentation by adding or removing dict keys there.
"""
bboxes = label.pop("bboxes")
segments = label.pop("segments", [])
keypoints = label.pop("keypoints", None)
bbox_format = label.pop("bbox_format")
normalized = label.pop("normalized")
# NOTE: do NOT resample oriented boxes
segment_resamples = 100 if self.use_obb else 1000
if len(segments) > 0:
# list[np.array(1000, 2)] * num_samples
# (N, 1000, 2)
segments = np.stack(resample_segments(segments, n=segment_resamples), axis=0)
else:
segments = np.zeros((0, segment_resamples, 2), dtype=np.float32)
label["instances"] = Instances(bboxes, segments, keypoints, bbox_format=bbox_format, normalized=normalized)
return label
@staticmethod
def collate_fn(batch):
"""Collates data samples into batches."""
new_batch = {}
keys = batch[0].keys()
values = list(zip(*[list(b.values()) for b in batch]))
for i, k in enumerate(keys):
value = values[i]
if k == "img":
value = torch.stack(value, 0)
if k in ["masks", "keypoints", "bboxes", "cls", "segments", "obb"]:
value = torch.cat(value, 0)
new_batch[k] = value
new_batch["batch_idx"] = list(new_batch["batch_idx"])
for i in range(len(new_batch["batch_idx"])):
new_batch["batch_idx"][i] += i # add target image index for build_targets()
new_batch["batch_idx"] = torch.cat(new_batch["batch_idx"], 0)
return new_batch
# Classification dataloaders -------------------------------------------------------------------------------------------
class ClassificationDataset(torchvision.datasets.ImageFolder):
"""
Extends torchvision ImageFolder to support YOLO classification tasks, offering functionalities like image
augmentation, caching, and verification. It's designed to efficiently handle large datasets for training deep
learning models, with optional image transformations and caching mechanisms to speed up training.
This class allows for augmentations using both torchvision and Albumentations libraries, and supports caching images
in RAM or on disk to reduce IO overhead during training. Additionally, it implements a robust verification process
to ensure data integrity and consistency.
Attributes:
cache_ram (bool): Indicates if caching in RAM is enabled.
cache_disk (bool): Indicates if caching on disk is enabled.
samples (list): A list of tuples, each containing the path to an image, its class index, path to its .npy cache
file (if caching on disk), and optionally the loaded image array (if caching in RAM).
torch_transforms (callable): PyTorch transforms to be applied to the images.
"""
def __init__(self, root, args, augment=False, prefix=""):
"""
Initialize YOLO object with root, image size, augmentations, and cache settings.
Args:
root (str): Path to the dataset directory where images are stored in a class-specific folder structure.
args (Namespace): Configuration containing dataset-related settings such as image size, augmentation
parameters, and cache settings. It includes attributes like `imgsz` (image size), `fraction` (fraction
of data to use), `scale`, `fliplr`, `flipud`, `cache` (disk or RAM caching for faster training),
`auto_augment`, `hsv_h`, `hsv_s`, `hsv_v`, and `crop_fraction`.
augment (bool, optional): Whether to apply augmentations to the dataset. Default is False.
prefix (str, optional): Prefix for logging and cache filenames, aiding in dataset identification and
debugging. Default is an empty string.
"""
super().__init__(root=root)
if augment and args.fraction < 1.0: # reduce training fraction
self.samples = self.samples[: round(len(self.samples) * args.fraction)]
self.prefix = colorstr(f"{prefix}: ") if prefix else ""
self.cache_ram = args.cache is True or args.cache == "ram" # cache images into RAM
self.cache_disk = args.cache == "disk" # cache images on hard drive as uncompressed *.npy files
self.samples = self.verify_images() # filter out bad images
self.samples = [list(x) + [Path(x[0]).with_suffix(".npy"), None] for x in self.samples] # file, index, npy, im
scale = (1.0 - args.scale, 1.0) # (0.08, 1.0)
self.torch_transforms = (
classify_augmentations(
size=args.imgsz,
scale=scale,
hflip=args.fliplr,
vflip=args.flipud,
erasing=args.erasing,
auto_augment=args.auto_augment,
hsv_h=args.hsv_h,
hsv_s=args.hsv_s,
hsv_v=args.hsv_v,
)
if augment
else classify_transforms(size=args.imgsz, crop_fraction=args.crop_fraction)
)
def __getitem__(self, i):
"""Returns subset of data and targets corresponding to given indices."""
f, j, fn, im = self.samples[i] # filename, index, filename.with_suffix('.npy'), image
if self.cache_ram and im is None:
im = self.samples[i][3] = cv2.imread(f)
elif self.cache_disk:
if not fn.exists(): # load npy
np.save(fn.as_posix(), cv2.imread(f), allow_pickle=False)
im = np.load(fn)
else: # read image
im = cv2.imread(f) # BGR
# Convert NumPy array to PIL image
im = Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB))
sample = self.torch_transforms(im)
return {"img": sample, "cls": j}
def __len__(self) -> int:
"""Return the total number of samples in the dataset."""
return len(self.samples)
def verify_images(self):
"""Verify all images in dataset."""
desc = f"{self.prefix}Scanning {self.root}..."
path = Path(self.root).with_suffix(".cache") # *.cache file path
with contextlib.suppress(FileNotFoundError, AssertionError, AttributeError):
cache = load_dataset_cache_file(path) # attempt to load a *.cache file
assert cache["version"] == DATASET_CACHE_VERSION # matches current version
assert cache["hash"] == get_hash([x[0] for x in self.samples]) # identical hash
nf, nc, n, samples = cache.pop("results") # found, missing, empty, corrupt, total
if LOCAL_RANK in (-1, 0):
d = f"{desc} {nf} images, {nc} corrupt"
TQDM(None, desc=d, total=n, initial=n)
if cache["msgs"]:
LOGGER.info("\n".join(cache["msgs"])) # display warnings
return samples
# Run scan if *.cache retrieval failed
nf, nc, msgs, samples, x = 0, 0, [], [], {}
with ThreadPool(NUM_THREADS) as pool:
results = pool.imap(func=verify_image, iterable=zip(self.samples, repeat(self.prefix)))
pbar = TQDM(results, desc=desc, total=len(self.samples))
for sample, nf_f, nc_f, msg in pbar:
if nf_f:
samples.append(sample)
if msg:
msgs.append(msg)
nf += nf_f
nc += nc_f
pbar.desc = f"{desc} {nf} images, {nc} corrupt"
pbar.close()
if msgs:
LOGGER.info("\n".join(msgs))
x["hash"] = get_hash([x[0] for x in self.samples])
x["results"] = nf, nc, len(samples), samples
x["msgs"] = msgs # warnings
save_dataset_cache_file(self.prefix, path, x)
return samples
def load_dataset_cache_file(path):
"""Load an Ultralytics *.cache dictionary from path."""
import gc
gc.disable() # reduce pickle load time https://github.com/ultralytics/ultralytics/pull/1585
cache = np.load(str(path), allow_pickle=True).item() # load dict
gc.enable()
return cache
def save_dataset_cache_file(prefix, path, x):
"""Save an Ultralytics dataset *.cache dictionary x to path."""
x["version"] = DATASET_CACHE_VERSION # add cache version
if is_dir_writeable(path.parent):
if path.exists():
path.unlink() # remove *.cache file if exists
np.save(str(path), x) # save cache for next time
path.with_suffix(".cache.npy").rename(path) # remove .npy suffix
LOGGER.info(f"{prefix}New cache created: {path}")
else:
LOGGER.warning(f"{prefix}WARNING ⚠️ Cache directory {path.parent} is not writeable, cache not saved.")
# TODO: support semantic segmentation
class SemanticDataset(BaseDataset):
"""
Semantic Segmentation Dataset.
This class is responsible for handling datasets used for semantic segmentation tasks. It inherits functionalities
from the BaseDataset class.
Note:
This class is currently a placeholder and needs to be populated with methods and attributes for supporting
semantic segmentation tasks.
"""
def __init__(self):
"""Initialize a SemanticDataset object."""
super().__init__()
| 17,616 | Python | .py | 339 | 40.914454 | 122 | 0.595567 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,804 | split_dota.py | arojsubedi_Improved-YOLOv8s/ultralytics/data/split_dota.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import itertools
from glob import glob
from math import ceil
from pathlib import Path
import cv2
import numpy as np
from PIL import Image
from tqdm import tqdm
from ultralytics.data.utils import exif_size, img2label_paths
from ultralytics.utils.checks import check_requirements
check_requirements("shapely")
from shapely.geometry import Polygon
def bbox_iof(polygon1, bbox2, eps=1e-6):
"""
Calculate iofs between bbox1 and bbox2.
Args:
polygon1 (np.ndarray): Polygon coordinates, (n, 8).
bbox2 (np.ndarray): Bounding boxes, (n ,4).
"""
polygon1 = polygon1.reshape(-1, 4, 2)
lt_point = np.min(polygon1, axis=-2)
rb_point = np.max(polygon1, axis=-2)
bbox1 = np.concatenate([lt_point, rb_point], axis=-1)
lt = np.maximum(bbox1[:, None, :2], bbox2[..., :2])
rb = np.minimum(bbox1[:, None, 2:], bbox2[..., 2:])
wh = np.clip(rb - lt, 0, np.inf)
h_overlaps = wh[..., 0] * wh[..., 1]
l, t, r, b = (bbox2[..., i] for i in range(4))
polygon2 = np.stack([l, t, r, t, r, b, l, b], axis=-1).reshape(-1, 4, 2)
sg_polys1 = [Polygon(p) for p in polygon1]
sg_polys2 = [Polygon(p) for p in polygon2]
overlaps = np.zeros(h_overlaps.shape)
for p in zip(*np.nonzero(h_overlaps)):
overlaps[p] = sg_polys1[p[0]].intersection(sg_polys2[p[-1]]).area
unions = np.array([p.area for p in sg_polys1], dtype=np.float32)
unions = unions[..., None]
unions = np.clip(unions, eps, np.inf)
outputs = overlaps / unions
if outputs.ndim == 1:
outputs = outputs[..., None]
return outputs
def load_yolo_dota(data_root, split="train"):
"""
Load DOTA dataset.
Args:
data_root (str): Data root.
split (str): The split data set, could be train or val.
Notes:
The directory structure assumed for the DOTA dataset:
- data_root
- images
- train
- val
- labels
- train
- val
"""
assert split in ["train", "val"]
im_dir = Path(data_root) / "images" / split
assert im_dir.exists(), f"Can't find {im_dir}, please check your data root."
im_files = glob(str(Path(data_root) / "images" / split / "*"))
lb_files = img2label_paths(im_files)
annos = []
for im_file, lb_file in zip(im_files, lb_files):
w, h = exif_size(Image.open(im_file))
with open(lb_file) as f:
lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
lb = np.array(lb, dtype=np.float32)
annos.append(dict(ori_size=(h, w), label=lb, filepath=im_file))
return annos
def get_windows(im_size, crop_sizes=[1024], gaps=[200], im_rate_thr=0.6, eps=0.01):
"""
Get the coordinates of windows.
Args:
im_size (tuple): Original image size, (h, w).
crop_sizes (List(int)): Crop size of windows.
gaps (List(int)): Gap between crops.
im_rate_thr (float): Threshold of windows areas divided by image ares.
"""
h, w = im_size
windows = []
for crop_size, gap in zip(crop_sizes, gaps):
assert crop_size > gap, f"invalid crop_size gap pair [{crop_size} {gap}]"
step = crop_size - gap
xn = 1 if w <= crop_size else ceil((w - crop_size) / step + 1)
xs = [step * i for i in range(xn)]
if len(xs) > 1 and xs[-1] + crop_size > w:
xs[-1] = w - crop_size
yn = 1 if h <= crop_size else ceil((h - crop_size) / step + 1)
ys = [step * i for i in range(yn)]
if len(ys) > 1 and ys[-1] + crop_size > h:
ys[-1] = h - crop_size
start = np.array(list(itertools.product(xs, ys)), dtype=np.int64)
stop = start + crop_size
windows.append(np.concatenate([start, stop], axis=1))
windows = np.concatenate(windows, axis=0)
im_in_wins = windows.copy()
im_in_wins[:, 0::2] = np.clip(im_in_wins[:, 0::2], 0, w)
im_in_wins[:, 1::2] = np.clip(im_in_wins[:, 1::2], 0, h)
im_areas = (im_in_wins[:, 2] - im_in_wins[:, 0]) * (im_in_wins[:, 3] - im_in_wins[:, 1])
win_areas = (windows[:, 2] - windows[:, 0]) * (windows[:, 3] - windows[:, 1])
im_rates = im_areas / win_areas
if not (im_rates > im_rate_thr).any():
max_rate = im_rates.max()
im_rates[abs(im_rates - max_rate) < eps] = 1
return windows[im_rates > im_rate_thr]
def get_window_obj(anno, windows, iof_thr=0.7):
"""Get objects for each window."""
h, w = anno["ori_size"]
label = anno["label"]
if len(label):
label[:, 1::2] *= w
label[:, 2::2] *= h
iofs = bbox_iof(label[:, 1:], windows)
# Unnormalized and misaligned coordinates
return [(label[iofs[:, i] >= iof_thr]) for i in range(len(windows))] # window_anns
else:
return [np.zeros((0, 9), dtype=np.float32) for _ in range(len(windows))] # window_anns
def crop_and_save(anno, windows, window_objs, im_dir, lb_dir):
"""
Crop images and save new labels.
Args:
anno (dict): Annotation dict, including `filepath`, `label`, `ori_size` as its keys.
windows (list): A list of windows coordinates.
window_objs (list): A list of labels inside each window.
im_dir (str): The output directory path of images.
lb_dir (str): The output directory path of labels.
Notes:
The directory structure assumed for the DOTA dataset:
- data_root
- images
- train
- val
- labels
- train
- val
"""
im = cv2.imread(anno["filepath"])
name = Path(anno["filepath"]).stem
for i, window in enumerate(windows):
x_start, y_start, x_stop, y_stop = window.tolist()
new_name = f"{name}__{x_stop - x_start}__{x_start}___{y_start}"
patch_im = im[y_start:y_stop, x_start:x_stop]
ph, pw = patch_im.shape[:2]
cv2.imwrite(str(Path(im_dir) / f"{new_name}.jpg"), patch_im)
label = window_objs[i]
if len(label) == 0:
continue
label[:, 1::2] -= x_start
label[:, 2::2] -= y_start
label[:, 1::2] /= pw
label[:, 2::2] /= ph
with open(Path(lb_dir) / f"{new_name}.txt", "w") as f:
for lb in label:
formatted_coords = ["{:.6g}".format(coord) for coord in lb[1:]]
f.write(f"{int(lb[0])} {' '.join(formatted_coords)}\n")
def split_images_and_labels(data_root, save_dir, split="train", crop_sizes=[1024], gaps=[200]):
"""
Split both images and labels.
Notes:
The directory structure assumed for the DOTA dataset:
- data_root
- images
- split
- labels
- split
and the output directory structure is:
- save_dir
- images
- split
- labels
- split
"""
im_dir = Path(save_dir) / "images" / split
im_dir.mkdir(parents=True, exist_ok=True)
lb_dir = Path(save_dir) / "labels" / split
lb_dir.mkdir(parents=True, exist_ok=True)
annos = load_yolo_dota(data_root, split=split)
for anno in tqdm(annos, total=len(annos), desc=split):
windows = get_windows(anno["ori_size"], crop_sizes, gaps)
window_objs = get_window_obj(anno, windows)
crop_and_save(anno, windows, window_objs, str(im_dir), str(lb_dir))
def split_trainval(data_root, save_dir, crop_size=1024, gap=200, rates=[1.0]):
"""
Split train and val set of DOTA.
Notes:
The directory structure assumed for the DOTA dataset:
- data_root
- images
- train
- val
- labels
- train
- val
and the output directory structure is:
- save_dir
- images
- train
- val
- labels
- train
- val
"""
crop_sizes, gaps = [], []
for r in rates:
crop_sizes.append(int(crop_size / r))
gaps.append(int(gap / r))
for split in ["train", "val"]:
split_images_and_labels(data_root, save_dir, split, crop_sizes, gaps)
def split_test(data_root, save_dir, crop_size=1024, gap=200, rates=[1.0]):
"""
Split test set of DOTA, labels are not included within this set.
Notes:
The directory structure assumed for the DOTA dataset:
- data_root
- images
- test
and the output directory structure is:
- save_dir
- images
- test
"""
crop_sizes, gaps = [], []
for r in rates:
crop_sizes.append(int(crop_size / r))
gaps.append(int(gap / r))
save_dir = Path(save_dir) / "images" / "test"
save_dir.mkdir(parents=True, exist_ok=True)
im_dir = Path(data_root) / "images" / "test"
assert im_dir.exists(), f"Can't find {im_dir}, please check your data root."
im_files = glob(str(im_dir / "*"))
for im_file in tqdm(im_files, total=len(im_files), desc="test"):
w, h = exif_size(Image.open(im_file))
windows = get_windows((h, w), crop_sizes=crop_sizes, gaps=gaps)
im = cv2.imread(im_file)
name = Path(im_file).stem
for window in windows:
x_start, y_start, x_stop, y_stop = window.tolist()
new_name = f"{name}__{x_stop - x_start}__{x_start}___{y_start}"
patch_im = im[y_start:y_stop, x_start:x_stop]
cv2.imwrite(str(save_dir / f"{new_name}.jpg"), patch_im)
if __name__ == "__main__":
split_trainval(data_root="DOTAv2", save_dir="DOTAv2-split")
split_test(data_root="DOTAv2", save_dir="DOTAv2-split")
| 9,961 | Python | .py | 245 | 31.889796 | 95 | 0.558048 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,805 | build.py | arojsubedi_Improved-YOLOv8s/ultralytics/data/build.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import os
import random
from pathlib import Path
import numpy as np
import torch
from PIL import Image
from torch.utils.data import dataloader, distributed
from ultralytics.data.loaders import (
LOADERS,
LoadImages,
LoadPilAndNumpy,
LoadScreenshots,
LoadStreams,
LoadTensor,
SourceTypes,
autocast_list,
)
from ultralytics.data.utils import IMG_FORMATS, VID_FORMATS
from ultralytics.utils import RANK, colorstr
from ultralytics.utils.checks import check_file
from .dataset import YOLODataset
from .utils import PIN_MEMORY
class InfiniteDataLoader(dataloader.DataLoader):
"""
Dataloader that reuses workers.
Uses same syntax as vanilla DataLoader.
"""
def __init__(self, *args, **kwargs):
"""Dataloader that infinitely recycles workers, inherits from DataLoader."""
super().__init__(*args, **kwargs)
object.__setattr__(self, "batch_sampler", _RepeatSampler(self.batch_sampler))
self.iterator = super().__iter__()
def __len__(self):
"""Returns the length of the batch sampler's sampler."""
return len(self.batch_sampler.sampler)
def __iter__(self):
"""Creates a sampler that repeats indefinitely."""
for _ in range(len(self)):
yield next(self.iterator)
def reset(self):
"""
Reset iterator.
This is useful when we want to modify settings of dataset while training.
"""
self.iterator = self._get_iterator()
class _RepeatSampler:
"""
Sampler that repeats forever.
Args:
sampler (Dataset.sampler): The sampler to repeat.
"""
def __init__(self, sampler):
"""Initializes an object that repeats a given sampler indefinitely."""
self.sampler = sampler
def __iter__(self):
"""Iterates over the 'sampler' and yields its contents."""
while True:
yield from iter(self.sampler)
def seed_worker(worker_id): # noqa
"""Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader."""
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
def build_yolo_dataset(cfg, img_path, batch, data, mode="train", rect=False, stride=32):
"""Build YOLO Dataset."""
return YOLODataset(
img_path=img_path,
imgsz=cfg.imgsz,
batch_size=batch,
augment=mode == "train", # augmentation
hyp=cfg, # TODO: probably add a get_hyps_from_cfg function
rect=cfg.rect or rect, # rectangular batches
cache=cfg.cache or None,
single_cls=cfg.single_cls or False,
stride=int(stride),
pad=0.0 if mode == "train" else 0.5,
prefix=colorstr(f"{mode}: "),
task=cfg.task,
classes=cfg.classes,
data=data,
fraction=cfg.fraction if mode == "train" else 1.0,
)
def build_dataloader(dataset, batch, workers, shuffle=True, rank=-1):
"""Return an InfiniteDataLoader or DataLoader for training or validation set."""
batch = min(batch, len(dataset))
nd = torch.cuda.device_count() # number of CUDA devices
nw = min([os.cpu_count() // max(nd, 1), workers]) # number of workers
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
generator = torch.Generator()
generator.manual_seed(6148914691236517205 + RANK)
return InfiniteDataLoader(
dataset=dataset,
batch_size=batch,
shuffle=shuffle and sampler is None,
num_workers=nw,
sampler=sampler,
pin_memory=PIN_MEMORY,
collate_fn=getattr(dataset, "collate_fn", None),
worker_init_fn=seed_worker,
generator=generator,
)
def check_source(source):
"""Check source type and return corresponding flag values."""
webcam, screenshot, from_img, in_memory, tensor = False, False, False, False, False
if isinstance(source, (str, int, Path)): # int for local usb camera
source = str(source)
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(("https://", "http://", "rtsp://", "rtmp://", "tcp://"))
webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
screenshot = source.lower() == "screen"
if is_url and is_file:
source = check_file(source) # download
elif isinstance(source, LOADERS):
in_memory = True
elif isinstance(source, (list, tuple)):
source = autocast_list(source) # convert all list elements to PIL or np arrays
from_img = True
elif isinstance(source, (Image.Image, np.ndarray)):
from_img = True
elif isinstance(source, torch.Tensor):
tensor = True
else:
raise TypeError("Unsupported image type. For supported types see https://docs.ultralytics.com/modes/predict")
return source, webcam, screenshot, from_img, in_memory, tensor
def load_inference_source(source=None, vid_stride=1, buffer=False):
"""
Loads an inference source for object detection and applies necessary transformations.
Args:
source (str, Path, Tensor, PIL.Image, np.ndarray): The input source for inference.
vid_stride (int, optional): The frame interval for video sources. Default is 1.
buffer (bool, optional): Determined whether stream frames will be buffered. Default is False.
Returns:
dataset (Dataset): A dataset object for the specified input source.
"""
source, webcam, screenshot, from_img, in_memory, tensor = check_source(source)
source_type = source.source_type if in_memory else SourceTypes(webcam, screenshot, from_img, tensor)
# Dataloader
if tensor:
dataset = LoadTensor(source)
elif in_memory:
dataset = source
elif webcam:
dataset = LoadStreams(source, vid_stride=vid_stride, buffer=buffer)
elif screenshot:
dataset = LoadScreenshots(source)
elif from_img:
dataset = LoadPilAndNumpy(source)
else:
dataset = LoadImages(source, vid_stride=vid_stride)
# Attach source types to the dataset
setattr(dataset, "source_type", source_type)
return dataset
| 6,293 | Python | .py | 153 | 34.666667 | 117 | 0.671578 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,806 | explorer.py | arojsubedi_Improved-YOLOv8s/ultralytics/data/explorer/explorer.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from io import BytesIO
from pathlib import Path
from typing import Any, List, Tuple, Union
import cv2
import numpy as np
import torch
from PIL import Image
from matplotlib import pyplot as plt
from pandas import DataFrame
from tqdm import tqdm
from ultralytics.data.augment import Format
from ultralytics.data.dataset import YOLODataset
from ultralytics.data.utils import check_det_dataset
from ultralytics.models.yolo.model import YOLO
from ultralytics.utils import LOGGER, IterableSimpleNamespace, checks, USER_CONFIG_DIR
from .utils import get_sim_index_schema, get_table_schema, plot_query_result, prompt_sql_query, sanitize_batch
class ExplorerDataset(YOLODataset):
def __init__(self, *args, data: dict = None, **kwargs) -> None:
super().__init__(*args, data=data, **kwargs)
def load_image(self, i: int) -> Union[Tuple[np.ndarray, Tuple[int, int], Tuple[int, int]], Tuple[None, None, None]]:
"""Loads 1 image from dataset index 'i' without any resize ops."""
im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i]
if im is None: # not cached in RAM
if fn.exists(): # load npy
im = np.load(fn)
else: # read image
im = cv2.imread(f) # BGR
if im is None:
raise FileNotFoundError(f"Image Not Found {f}")
h0, w0 = im.shape[:2] # orig hw
return im, (h0, w0), im.shape[:2]
return self.ims[i], self.im_hw0[i], self.im_hw[i]
def build_transforms(self, hyp: IterableSimpleNamespace = None):
"""Creates transforms for dataset images without resizing."""
return Format(
bbox_format="xyxy",
normalize=False,
return_mask=self.use_segments,
return_keypoint=self.use_keypoints,
batch_idx=True,
mask_ratio=hyp.mask_ratio,
mask_overlap=hyp.overlap_mask,
)
class Explorer:
def __init__(
self,
data: Union[str, Path] = "coco128.yaml",
model: str = "yolov8n.pt",
uri: str = USER_CONFIG_DIR / "explorer",
) -> None:
# Note duckdb==0.10.0 bug https://github.com/ultralytics/ultralytics/pull/8181
checks.check_requirements(["lancedb>=0.4.3", "duckdb<=0.9.2"])
import lancedb
self.connection = lancedb.connect(uri)
self.table_name = Path(data).name.lower() + "_" + model.lower()
self.sim_idx_base_name = (
f"{self.table_name}_sim_idx".lower()
) # Use this name and append thres and top_k to reuse the table
self.model = YOLO(model)
self.data = data # None
self.choice_set = None
self.table = None
self.progress = 0
def create_embeddings_table(self, force: bool = False, split: str = "train") -> None:
"""
Create LanceDB table containing the embeddings of the images in the dataset. The table will be reused if it
already exists. Pass force=True to overwrite the existing table.
Args:
force (bool): Whether to overwrite the existing table or not. Defaults to False.
split (str): Split of the dataset to use. Defaults to 'train'.
Example:
```python
exp = Explorer()
exp.create_embeddings_table()
```
"""
if self.table is not None and not force:
LOGGER.info("Table already exists. Reusing it. Pass force=True to overwrite it.")
return
if self.table_name in self.connection.table_names() and not force:
LOGGER.info(f"Table {self.table_name} already exists. Reusing it. Pass force=True to overwrite it.")
self.table = self.connection.open_table(self.table_name)
self.progress = 1
return
if self.data is None:
raise ValueError("Data must be provided to create embeddings table")
data_info = check_det_dataset(self.data)
if split not in data_info:
raise ValueError(
f"Split {split} is not found in the dataset. Available keys in the dataset are {list(data_info.keys())}"
)
choice_set = data_info[split]
choice_set = choice_set if isinstance(choice_set, list) else [choice_set]
self.choice_set = choice_set
dataset = ExplorerDataset(img_path=choice_set, data=data_info, augment=False, cache=False, task=self.model.task)
# Create the table schema
batch = dataset[0]
vector_size = self.model.embed(batch["im_file"], verbose=False)[0].shape[0]
table = self.connection.create_table(self.table_name, schema=get_table_schema(vector_size), mode="overwrite")
table.add(
self._yield_batches(
dataset,
data_info,
self.model,
exclude_keys=["img", "ratio_pad", "resized_shape", "ori_shape", "batch_idx"],
)
)
self.table = table
def _yield_batches(self, dataset: ExplorerDataset, data_info: dict, model: YOLO, exclude_keys: List[str]):
"""Generates batches of data for embedding, excluding specified keys."""
for i in tqdm(range(len(dataset))):
self.progress = float(i + 1) / len(dataset)
batch = dataset[i]
for k in exclude_keys:
batch.pop(k, None)
batch = sanitize_batch(batch, data_info)
batch["vector"] = model.embed(batch["im_file"], verbose=False)[0].detach().tolist()
yield [batch]
def query(
self, imgs: Union[str, np.ndarray, List[str], List[np.ndarray]] = None, limit: int = 25
) -> Any: # pyarrow.Table
"""
Query the table for similar images. Accepts a single image or a list of images.
Args:
imgs (str or list): Path to the image or a list of paths to the images.
limit (int): Number of results to return.
Returns:
(pyarrow.Table): An arrow table containing the results. Supports converting to:
- pandas dataframe: `result.to_pandas()`
- dict of lists: `result.to_pydict()`
Example:
```python
exp = Explorer()
exp.create_embeddings_table()
similar = exp.query(img='https://ultralytics.com/images/zidane.jpg')
```
"""
if self.table is None:
raise ValueError("Table is not created. Please create the table first.")
if isinstance(imgs, str):
imgs = [imgs]
assert isinstance(imgs, list), f"img must be a string or a list of strings. Got {type(imgs)}"
embeds = self.model.embed(imgs)
# Get avg if multiple images are passed (len > 1)
embeds = torch.mean(torch.stack(embeds), 0).cpu().numpy() if len(embeds) > 1 else embeds[0].cpu().numpy()
return self.table.search(embeds).limit(limit).to_arrow()
def sql_query(
self, query: str, return_type: str = "pandas"
) -> Union[DataFrame, Any, None]: # pandas.dataframe or pyarrow.Table
"""
Run a SQL-Like query on the table. Utilizes LanceDB predicate pushdown.
Args:
query (str): SQL query to run.
return_type (str): Type of the result to return. Can be either 'pandas' or 'arrow'. Defaults to 'pandas'.
Returns:
(pyarrow.Table): An arrow table containing the results.
Example:
```python
exp = Explorer()
exp.create_embeddings_table()
query = "SELECT * FROM 'table' WHERE labels LIKE '%person%'"
result = exp.sql_query(query)
```
"""
assert return_type in {
"pandas",
"arrow",
}, f"Return type should be either `pandas` or `arrow`, but got {return_type}"
import duckdb
if self.table is None:
raise ValueError("Table is not created. Please create the table first.")
# Note: using filter pushdown would be a better long term solution. Temporarily using duckdb for this.
table = self.table.to_arrow() # noqa NOTE: Don't comment this. This line is used by DuckDB
if not query.startswith("SELECT") and not query.startswith("WHERE"):
raise ValueError(
f"Query must start with SELECT or WHERE. You can either pass the entire query or just the WHERE clause. found {query}"
)
if query.startswith("WHERE"):
query = f"SELECT * FROM 'table' {query}"
LOGGER.info(f"Running query: {query}")
rs = duckdb.sql(query)
if return_type == "arrow":
return rs.arrow()
elif return_type == "pandas":
return rs.df()
def plot_sql_query(self, query: str, labels: bool = True) -> Image.Image:
"""
Plot the results of a SQL-Like query on the table.
Args:
query (str): SQL query to run.
labels (bool): Whether to plot the labels or not.
Returns:
(PIL.Image): Image containing the plot.
Example:
```python
exp = Explorer()
exp.create_embeddings_table()
query = "SELECT * FROM 'table' WHERE labels LIKE '%person%'"
result = exp.plot_sql_query(query)
```
"""
result = self.sql_query(query, return_type="arrow")
if len(result) == 0:
LOGGER.info("No results found.")
return None
img = plot_query_result(result, plot_labels=labels)
return Image.fromarray(img)
def get_similar(
self,
img: Union[str, np.ndarray, List[str], List[np.ndarray]] = None,
idx: Union[int, List[int]] = None,
limit: int = 25,
return_type: str = "pandas",
) -> Union[DataFrame, Any]: # pandas.dataframe or pyarrow.Table
"""
Query the table for similar images. Accepts a single image or a list of images.
Args:
img (str or list): Path to the image or a list of paths to the images.
idx (int or list): Index of the image in the table or a list of indexes.
limit (int): Number of results to return. Defaults to 25.
return_type (str): Type of the result to return. Can be either 'pandas' or 'arrow'. Defaults to 'pandas'.
Returns:
(pandas.DataFrame): A dataframe containing the results.
Example:
```python
exp = Explorer()
exp.create_embeddings_table()
similar = exp.get_similar(img='https://ultralytics.com/images/zidane.jpg')
```
"""
assert return_type in {
"pandas",
"arrow",
}, f"Return type should be either `pandas` or `arrow`, but got {return_type}"
img = self._check_imgs_or_idxs(img, idx)
similar = self.query(img, limit=limit)
if return_type == "arrow":
return similar
elif return_type == "pandas":
return similar.to_pandas()
def plot_similar(
self,
img: Union[str, np.ndarray, List[str], List[np.ndarray]] = None,
idx: Union[int, List[int]] = None,
limit: int = 25,
labels: bool = True,
) -> Image.Image:
"""
Plot the similar images. Accepts images or indexes.
Args:
img (str or list): Path to the image or a list of paths to the images.
idx (int or list): Index of the image in the table or a list of indexes.
labels (bool): Whether to plot the labels or not.
limit (int): Number of results to return. Defaults to 25.
Returns:
(PIL.Image): Image containing the plot.
Example:
```python
exp = Explorer()
exp.create_embeddings_table()
similar = exp.plot_similar(img='https://ultralytics.com/images/zidane.jpg')
```
"""
similar = self.get_similar(img, idx, limit, return_type="arrow")
if len(similar) == 0:
LOGGER.info("No results found.")
return None
img = plot_query_result(similar, plot_labels=labels)
return Image.fromarray(img)
def similarity_index(self, max_dist: float = 0.2, top_k: float = None, force: bool = False) -> DataFrame:
"""
Calculate the similarity index of all the images in the table. Here, the index will contain the data points that
are max_dist or closer to the image in the embedding space at a given index.
Args:
max_dist (float): maximum L2 distance between the embeddings to consider. Defaults to 0.2.
top_k (float): Percentage of the closest data points to consider when counting. Used to apply limit when running
vector search. Defaults: None.
force (bool): Whether to overwrite the existing similarity index or not. Defaults to True.
Returns:
(pandas.DataFrame): A dataframe containing the similarity index. Each row corresponds to an image, and columns
include indices of similar images and their respective distances.
Example:
```python
exp = Explorer()
exp.create_embeddings_table()
sim_idx = exp.similarity_index()
```
"""
if self.table is None:
raise ValueError("Table is not created. Please create the table first.")
sim_idx_table_name = f"{self.sim_idx_base_name}_thres_{max_dist}_top_{top_k}".lower()
if sim_idx_table_name in self.connection.table_names() and not force:
LOGGER.info("Similarity matrix already exists. Reusing it. Pass force=True to overwrite it.")
return self.connection.open_table(sim_idx_table_name).to_pandas()
if top_k and not (1.0 >= top_k >= 0.0):
raise ValueError(f"top_k must be between 0.0 and 1.0. Got {top_k}")
if max_dist < 0.0:
raise ValueError(f"max_dist must be greater than 0. Got {max_dist}")
top_k = int(top_k * len(self.table)) if top_k else len(self.table)
top_k = max(top_k, 1)
features = self.table.to_lance().to_table(columns=["vector", "im_file"]).to_pydict()
im_files = features["im_file"]
embeddings = features["vector"]
sim_table = self.connection.create_table(sim_idx_table_name, schema=get_sim_index_schema(), mode="overwrite")
def _yield_sim_idx():
"""Generates a dataframe with similarity indices and distances for images."""
for i in tqdm(range(len(embeddings))):
sim_idx = self.table.search(embeddings[i]).limit(top_k).to_pandas().query(f"_distance <= {max_dist}")
yield [
{
"idx": i,
"im_file": im_files[i],
"count": len(sim_idx),
"sim_im_files": sim_idx["im_file"].tolist(),
}
]
sim_table.add(_yield_sim_idx())
self.sim_index = sim_table
return sim_table.to_pandas()
def plot_similarity_index(self, max_dist: float = 0.2, top_k: float = None, force: bool = False) -> Image:
"""
Plot the similarity index of all the images in the table. Here, the index will contain the data points that are
max_dist or closer to the image in the embedding space at a given index.
Args:
max_dist (float): maximum L2 distance between the embeddings to consider. Defaults to 0.2.
top_k (float): Percentage of closest data points to consider when counting. Used to apply limit when
running vector search. Defaults to 0.01.
force (bool): Whether to overwrite the existing similarity index or not. Defaults to True.
Returns:
(PIL.Image): Image containing the plot.
Example:
```python
exp = Explorer()
exp.create_embeddings_table()
similarity_idx_plot = exp.plot_similarity_index()
similarity_idx_plot.show() # view image preview
similarity_idx_plot.save('path/to/save/similarity_index_plot.png') # save contents to file
```
"""
sim_idx = self.similarity_index(max_dist=max_dist, top_k=top_k, force=force)
sim_count = sim_idx["count"].tolist()
sim_count = np.array(sim_count)
indices = np.arange(len(sim_count))
# Create the bar plot
plt.bar(indices, sim_count)
# Customize the plot (optional)
plt.xlabel("data idx")
plt.ylabel("Count")
plt.title("Similarity Count")
buffer = BytesIO()
plt.savefig(buffer, format="png")
buffer.seek(0)
# Use Pillow to open the image from the buffer
return Image.fromarray(np.array(Image.open(buffer)))
def _check_imgs_or_idxs(
self, img: Union[str, np.ndarray, List[str], List[np.ndarray], None], idx: Union[None, int, List[int]]
) -> List[np.ndarray]:
if img is None and idx is None:
raise ValueError("Either img or idx must be provided.")
if img is not None and idx is not None:
raise ValueError("Only one of img or idx must be provided.")
if idx is not None:
idx = idx if isinstance(idx, list) else [idx]
img = self.table.to_lance().take(idx, columns=["im_file"]).to_pydict()["im_file"]
return img if isinstance(img, list) else [img]
def ask_ai(self, query):
"""
Ask AI a question.
Args:
query (str): Question to ask.
Returns:
(pandas.DataFrame): A dataframe containing filtered results to the SQL query.
Example:
```python
exp = Explorer()
exp.create_embeddings_table()
answer = exp.ask_ai('Show images with 1 person and 2 dogs')
```
"""
result = prompt_sql_query(query)
try:
df = self.sql_query(result)
except Exception as e:
LOGGER.error("AI generated query is not valid. Please try again with a different prompt")
LOGGER.error(e)
return None
return df
def visualize(self, result):
"""
Visualize the results of a query. TODO.
Args:
result (pyarrow.Table): Table containing the results of a query.
"""
pass
def generate_report(self, result):
"""
Generate a report of the dataset.
TODO
"""
pass
| 18,782 | Python | .py | 401 | 36.177057 | 134 | 0.593173 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,807 | utils.py | arojsubedi_Improved-YOLOv8s/ultralytics/data/explorer/utils.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import getpass
from typing import List
import cv2
import numpy as np
import pandas as pd
from ultralytics.data.augment import LetterBox
from ultralytics.utils import LOGGER as logger
from ultralytics.utils import SETTINGS
from ultralytics.utils.checks import check_requirements
from ultralytics.utils.ops import xyxy2xywh
from ultralytics.utils.plotting import plot_images
def get_table_schema(vector_size):
"""Extracts and returns the schema of a database table."""
from lancedb.pydantic import LanceModel, Vector
class Schema(LanceModel):
im_file: str
labels: List[str]
cls: List[int]
bboxes: List[List[float]]
masks: List[List[List[int]]]
keypoints: List[List[List[float]]]
vector: Vector(vector_size)
return Schema
def get_sim_index_schema():
"""Returns a LanceModel schema for a database table with specified vector size."""
from lancedb.pydantic import LanceModel
class Schema(LanceModel):
idx: int
im_file: str
count: int
sim_im_files: List[str]
return Schema
def sanitize_batch(batch, dataset_info):
"""Sanitizes input batch for inference, ensuring correct format and dimensions."""
batch["cls"] = batch["cls"].flatten().int().tolist()
box_cls_pair = sorted(zip(batch["bboxes"].tolist(), batch["cls"]), key=lambda x: x[1])
batch["bboxes"] = [box for box, _ in box_cls_pair]
batch["cls"] = [cls for _, cls in box_cls_pair]
batch["labels"] = [dataset_info["names"][i] for i in batch["cls"]]
batch["masks"] = batch["masks"].tolist() if "masks" in batch else [[[]]]
batch["keypoints"] = batch["keypoints"].tolist() if "keypoints" in batch else [[[]]]
return batch
def plot_query_result(similar_set, plot_labels=True):
"""
Plot images from the similar set.
Args:
similar_set (list): Pyarrow or pandas object containing the similar data points
plot_labels (bool): Whether to plot labels or not
"""
similar_set = (
similar_set.to_dict(orient="list") if isinstance(similar_set, pd.DataFrame) else similar_set.to_pydict()
)
empty_masks = [[[]]]
empty_boxes = [[]]
images = similar_set.get("im_file", [])
bboxes = similar_set.get("bboxes", []) if similar_set.get("bboxes") is not empty_boxes else []
masks = similar_set.get("masks") if similar_set.get("masks")[0] != empty_masks else []
kpts = similar_set.get("keypoints") if similar_set.get("keypoints")[0] != empty_masks else []
cls = similar_set.get("cls", [])
plot_size = 640
imgs, batch_idx, plot_boxes, plot_masks, plot_kpts = [], [], [], [], []
for i, imf in enumerate(images):
im = cv2.imread(imf)
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
h, w = im.shape[:2]
r = min(plot_size / h, plot_size / w)
imgs.append(LetterBox(plot_size, center=False)(image=im).transpose(2, 0, 1))
if plot_labels:
if len(bboxes) > i and len(bboxes[i]) > 0:
box = np.array(bboxes[i], dtype=np.float32)
box[:, [0, 2]] *= r
box[:, [1, 3]] *= r
plot_boxes.append(box)
if len(masks) > i and len(masks[i]) > 0:
mask = np.array(masks[i], dtype=np.uint8)[0]
plot_masks.append(LetterBox(plot_size, center=False)(image=mask))
if len(kpts) > i and kpts[i] is not None:
kpt = np.array(kpts[i], dtype=np.float32)
kpt[:, :, :2] *= r
plot_kpts.append(kpt)
batch_idx.append(np.ones(len(np.array(bboxes[i], dtype=np.float32))) * i)
imgs = np.stack(imgs, axis=0)
masks = np.stack(plot_masks, axis=0) if plot_masks else np.zeros(0, dtype=np.uint8)
kpts = np.concatenate(plot_kpts, axis=0) if plot_kpts else np.zeros((0, 51), dtype=np.float32)
boxes = xyxy2xywh(np.concatenate(plot_boxes, axis=0)) if plot_boxes else np.zeros(0, dtype=np.float32)
batch_idx = np.concatenate(batch_idx, axis=0)
cls = np.concatenate([np.array(c, dtype=np.int32) for c in cls], axis=0)
return plot_images(
imgs, batch_idx, cls, bboxes=boxes, masks=masks, kpts=kpts, max_subplots=len(images), save=False, threaded=False
)
def prompt_sql_query(query):
"""Plots images with optional labels from a similar data set."""
check_requirements("openai>=1.6.1")
from openai import OpenAI
if not SETTINGS["openai_api_key"]:
logger.warning("OpenAI API key not found in settings. Please enter your API key below.")
openai_api_key = getpass.getpass("OpenAI API key: ")
SETTINGS.update({"openai_api_key": openai_api_key})
openai = OpenAI(api_key=SETTINGS["openai_api_key"])
messages = [
{
"role": "system",
"content": """
You are a helpful data scientist proficient in SQL. You need to output exactly one SQL query based on
the following schema and a user request. You only need to output the format with fixed selection
statement that selects everything from "'table'", like `SELECT * from 'table'`
Schema:
im_file: string not null
labels: list<item: string> not null
child 0, item: string
cls: list<item: int64> not null
child 0, item: int64
bboxes: list<item: list<item: double>> not null
child 0, item: list<item: double>
child 0, item: double
masks: list<item: list<item: list<item: int64>>> not null
child 0, item: list<item: list<item: int64>>
child 0, item: list<item: int64>
child 0, item: int64
keypoints: list<item: list<item: list<item: double>>> not null
child 0, item: list<item: list<item: double>>
child 0, item: list<item: double>
child 0, item: double
vector: fixed_size_list<item: float>[256] not null
child 0, item: float
Some details about the schema:
- the "labels" column contains the string values like 'person' and 'dog' for the respective objects
in each image
- the "cls" column contains the integer values on these classes that map them the labels
Example of a correct query:
request - Get all data points that contain 2 or more people and at least one dog
correct query-
SELECT * FROM 'table' WHERE ARRAY_LENGTH(cls) >= 2 AND ARRAY_LENGTH(FILTER(labels, x -> x = 'person')) >= 2 AND ARRAY_LENGTH(FILTER(labels, x -> x = 'dog')) >= 1;
""",
},
{"role": "user", "content": f"{query}"},
]
response = openai.chat.completions.create(model="gpt-3.5-turbo", messages=messages)
return response.choices[0].message.content
| 7,041 | Python | .py | 140 | 40.871429 | 181 | 0.612945 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,808 | __init__.py | arojsubedi_Improved-YOLOv8s/ultralytics/data/explorer/__init__.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from .utils import plot_query_result
__all__ = ["plot_query_result"]
| 113 | Python | .py | 3 | 36 | 41 | 0.731481 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,809 | dash.py | arojsubedi_Improved-YOLOv8s/ultralytics/data/explorer/gui/dash.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import time
from threading import Thread
import pandas as pd
from ultralytics import Explorer
from ultralytics.utils import ROOT, SETTINGS
from ultralytics.utils.checks import check_requirements
check_requirements(("streamlit>=1.29.0", "streamlit-select>=0.3"))
import streamlit as st
from streamlit_select import image_select
def _get_explorer():
"""Initializes and returns an instance of the Explorer class."""
exp = Explorer(data=st.session_state.get("dataset"), model=st.session_state.get("model"))
thread = Thread(
target=exp.create_embeddings_table, kwargs={"force": st.session_state.get("force_recreate_embeddings")}
)
thread.start()
progress_bar = st.progress(0, text="Creating embeddings table...")
while exp.progress < 1:
time.sleep(0.1)
progress_bar.progress(exp.progress, text=f"Progress: {exp.progress * 100}%")
thread.join()
st.session_state["explorer"] = exp
progress_bar.empty()
def init_explorer_form():
"""Initializes an Explorer instance and creates embeddings table with progress tracking."""
datasets = ROOT / "cfg" / "datasets"
ds = [d.name for d in datasets.glob("*.yaml")]
models = [
"yolov8n.pt",
"yolov8s.pt",
"yolov8m.pt",
"yolov8l.pt",
"yolov8x.pt",
"yolov8n-seg.pt",
"yolov8s-seg.pt",
"yolov8m-seg.pt",
"yolov8l-seg.pt",
"yolov8x-seg.pt",
"yolov8n-pose.pt",
"yolov8s-pose.pt",
"yolov8m-pose.pt",
"yolov8l-pose.pt",
"yolov8x-pose.pt",
]
with st.form(key="explorer_init_form"):
col1, col2 = st.columns(2)
with col1:
st.selectbox("Select dataset", ds, key="dataset", index=ds.index("coco128.yaml"))
with col2:
st.selectbox("Select model", models, key="model")
st.checkbox("Force recreate embeddings", key="force_recreate_embeddings")
st.form_submit_button("Explore", on_click=_get_explorer)
def query_form():
"""Sets up a form in Streamlit to initialize Explorer with dataset and model selection."""
with st.form("query_form"):
col1, col2 = st.columns([0.8, 0.2])
with col1:
st.text_input(
"Query",
"WHERE labels LIKE '%person%' AND labels LIKE '%dog%'",
label_visibility="collapsed",
key="query",
)
with col2:
st.form_submit_button("Query", on_click=run_sql_query)
def ai_query_form():
"""Sets up a Streamlit form for user input to initialize Explorer with dataset and model selection."""
with st.form("ai_query_form"):
col1, col2 = st.columns([0.8, 0.2])
with col1:
st.text_input("Query", "Show images with 1 person and 1 dog", label_visibility="collapsed", key="ai_query")
with col2:
st.form_submit_button("Ask AI", on_click=run_ai_query)
def find_similar_imgs(imgs):
"""Initializes a Streamlit form for AI-based image querying with custom input."""
exp = st.session_state["explorer"]
similar = exp.get_similar(img=imgs, limit=st.session_state.get("limit"), return_type="arrow")
paths = similar.to_pydict()["im_file"]
st.session_state["imgs"] = paths
st.session_state["res"] = similar
def similarity_form(selected_imgs):
"""Initializes a form for AI-based image querying with custom input in Streamlit."""
st.write("Similarity Search")
with st.form("similarity_form"):
subcol1, subcol2 = st.columns([1, 1])
with subcol1:
st.number_input(
"limit", min_value=None, max_value=None, value=25, label_visibility="collapsed", key="limit"
)
with subcol2:
disabled = not len(selected_imgs)
st.write("Selected: ", len(selected_imgs))
st.form_submit_button(
"Search",
disabled=disabled,
on_click=find_similar_imgs,
args=(selected_imgs,),
)
if disabled:
st.error("Select at least one image to search.")
# def persist_reset_form():
# with st.form("persist_reset"):
# col1, col2 = st.columns([1, 1])
# with col1:
# st.form_submit_button("Reset", on_click=reset)
#
# with col2:
# st.form_submit_button("Persist", on_click=update_state, args=("PERSISTING", True))
def run_sql_query():
"""Executes an SQL query and returns the results."""
st.session_state["error"] = None
query = st.session_state.get("query")
if query.rstrip().lstrip():
exp = st.session_state["explorer"]
res = exp.sql_query(query, return_type="arrow")
st.session_state["imgs"] = res.to_pydict()["im_file"]
st.session_state["res"] = res
def run_ai_query():
"""Execute SQL query and update session state with query results."""
if not SETTINGS["openai_api_key"]:
st.session_state[
"error"
] = 'OpenAI API key not found in settings. Please run yolo settings openai_api_key="..."'
return
st.session_state["error"] = None
query = st.session_state.get("ai_query")
if query.rstrip().lstrip():
exp = st.session_state["explorer"]
res = exp.ask_ai(query)
if not isinstance(res, pd.DataFrame) or res.empty:
st.session_state["error"] = "No results found using AI generated query. Try another query or rerun it."
return
st.session_state["imgs"] = res["im_file"].to_list()
st.session_state["res"] = res
def reset_explorer():
"""Resets the explorer to its initial state by clearing session variables."""
st.session_state["explorer"] = None
st.session_state["imgs"] = None
st.session_state["error"] = None
def utralytics_explorer_docs_callback():
"""Resets the explorer to its initial state by clearing session variables."""
with st.container(border=True):
st.image(
"https://raw.githubusercontent.com/ultralytics/assets/main/logo/Ultralytics_Logotype_Original.svg",
width=100,
)
st.markdown(
"<p>This demo is built using Ultralytics Explorer API. Visit <a href='https://docs.ultralytics.com/datasets/explorer/'>API docs</a> to try examples & learn more</p>",
unsafe_allow_html=True,
help=None,
)
st.link_button("Ultrlaytics Explorer API", "https://docs.ultralytics.com/datasets/explorer/")
def layout():
"""Resets explorer session variables and provides documentation with a link to API docs."""
st.set_page_config(layout="wide", initial_sidebar_state="collapsed")
st.markdown("<h1 style='text-align: center;'>Ultralytics Explorer Demo</h1>", unsafe_allow_html=True)
if st.session_state.get("explorer") is None:
init_explorer_form()
return
st.button(":arrow_backward: Select Dataset", on_click=reset_explorer)
exp = st.session_state.get("explorer")
col1, col2 = st.columns([0.75, 0.25], gap="small")
imgs = []
if st.session_state.get("error"):
st.error(st.session_state["error"])
else:
if st.session_state.get("imgs"):
imgs = st.session_state.get("imgs")
else:
imgs = exp.table.to_lance().to_table(columns=["im_file"]).to_pydict()["im_file"]
st.session_state["res"] = exp.table.to_arrow()
total_imgs, selected_imgs = len(imgs), []
with col1:
subcol1, subcol2, subcol3, subcol4, subcol5 = st.columns(5)
with subcol1:
st.write("Max Images Displayed:")
with subcol2:
num = st.number_input(
"Max Images Displayed",
min_value=0,
max_value=total_imgs,
value=min(500, total_imgs),
key="num_imgs_displayed",
label_visibility="collapsed",
)
with subcol3:
st.write("Start Index:")
with subcol4:
start_idx = st.number_input(
"Start Index",
min_value=0,
max_value=total_imgs,
value=0,
key="start_index",
label_visibility="collapsed",
)
with subcol5:
reset = st.button("Reset", use_container_width=False, key="reset")
if reset:
st.session_state["imgs"] = None
st.experimental_rerun()
query_form()
ai_query_form()
if total_imgs:
labels, boxes, masks, kpts, classes = None, None, None, None, None
task = exp.model.task
if st.session_state.get("display_labels"):
labels = st.session_state.get("res").to_pydict()["labels"][start_idx : start_idx + num]
boxes = st.session_state.get("res").to_pydict()["bboxes"][start_idx : start_idx + num]
masks = st.session_state.get("res").to_pydict()["masks"][start_idx : start_idx + num]
kpts = st.session_state.get("res").to_pydict()["keypoints"][start_idx : start_idx + num]
classes = st.session_state.get("res").to_pydict()["cls"][start_idx : start_idx + num]
imgs_displayed = imgs[start_idx : start_idx + num]
selected_imgs = image_select(
f"Total samples: {total_imgs}",
images=imgs_displayed,
use_container_width=False,
# indices=[i for i in range(num)] if select_all else None,
labels=labels,
classes=classes,
bboxes=boxes,
masks=masks if task == "segment" else None,
kpts=kpts if task == "pose" else None,
)
with col2:
similarity_form(selected_imgs)
display_labels = st.checkbox("Labels", value=False, key="display_labels")
utralytics_explorer_docs_callback()
if __name__ == "__main__":
layout()
| 10,042 | Python | .py | 231 | 34.398268 | 178 | 0.601801 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,810 | __init__.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/__init__.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from .rtdetr import RTDETR
from .sam import SAM
from .yolo import YOLO, YOLOWorld
__all__ = "YOLO", "RTDETR", "SAM", "YOLOWorld" # allow simpler import
| 197 | Python | .py | 5 | 38 | 70 | 0.731579 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,811 | predict.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/nas/predict.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
from ultralytics.engine.predictor import BasePredictor
from ultralytics.engine.results import Results
from ultralytics.utils import ops
class NASPredictor(BasePredictor):
"""
Ultralytics YOLO NAS Predictor for object detection.
This class extends the `BasePredictor` from Ultralytics engine and is responsible for post-processing the
raw predictions generated by the YOLO NAS models. It applies operations like non-maximum suppression and
scaling the bounding boxes to fit the original image dimensions.
Attributes:
args (Namespace): Namespace containing various configurations for post-processing.
Example:
```python
from ultralytics import NAS
model = NAS('yolo_nas_s')
predictor = model.predictor
# Assumes that raw_preds, img, orig_imgs are available
results = predictor.postprocess(raw_preds, img, orig_imgs)
```
Note:
Typically, this class is not instantiated directly. It is used internally within the `NAS` class.
"""
def postprocess(self, preds_in, img, orig_imgs):
"""Postprocess predictions and returns a list of Results objects."""
# Cat boxes and class scores
boxes = ops.xyxy2xywh(preds_in[0][0])
preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1)
preds = ops.non_max_suppression(
preds,
self.args.conf,
self.args.iou,
agnostic=self.args.agnostic_nms,
max_det=self.args.max_det,
classes=self.args.classes,
)
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
results = []
for i, pred in enumerate(preds):
orig_img = orig_imgs[i]
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
img_path = self.batch[0][i]
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
return results
| 2,136 | Python | .py | 46 | 38.086957 | 109 | 0.665222 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,812 | val.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/nas/val.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
from ultralytics.models.yolo.detect import DetectionValidator
from ultralytics.utils import ops
__all__ = ["NASValidator"]
class NASValidator(DetectionValidator):
"""
Ultralytics YOLO NAS Validator for object detection.
Extends `DetectionValidator` from the Ultralytics models package and is designed to post-process the raw predictions
generated by YOLO NAS models. It performs non-maximum suppression to remove overlapping and low-confidence boxes,
ultimately producing the final detections.
Attributes:
args (Namespace): Namespace containing various configurations for post-processing, such as confidence and IoU thresholds.
lb (torch.Tensor): Optional tensor for multilabel NMS.
Example:
```python
from ultralytics import NAS
model = NAS('yolo_nas_s')
validator = model.validator
# Assumes that raw_preds are available
final_preds = validator.postprocess(raw_preds)
```
Note:
This class is generally not instantiated directly but is used internally within the `NAS` class.
"""
def postprocess(self, preds_in):
"""Apply Non-maximum suppression to prediction outputs."""
boxes = ops.xyxy2xywh(preds_in[0][0])
preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1)
return ops.non_max_suppression(
preds,
self.args.conf,
self.args.iou,
labels=self.lb,
multi_label=False,
agnostic=self.args.single_cls,
max_det=self.args.max_det,
max_time_img=0.5,
)
| 1,680 | Python | .py | 39 | 35.230769 | 129 | 0.679141 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,813 | __init__.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/nas/__init__.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from .model import NAS
from .predict import NASPredictor
from .val import NASValidator
__all__ = "NASPredictor", "NASValidator", "NAS"
| 179 | Python | .py | 5 | 34.4 | 47 | 0.773256 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,814 | model.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/nas/model.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
"""
YOLO-NAS model interface.
Example:
```python
from ultralytics import NAS
model = NAS('yolo_nas_s')
results = model.predict('ultralytics/assets/bus.jpg')
```
"""
from pathlib import Path
import torch
from ultralytics.engine.model import Model
from ultralytics.utils.torch_utils import model_info, smart_inference_mode
from .predict import NASPredictor
from .val import NASValidator
class NAS(Model):
"""
YOLO NAS model for object detection.
This class provides an interface for the YOLO-NAS models and extends the `Model` class from Ultralytics engine.
It is designed to facilitate the task of object detection using pre-trained or custom-trained YOLO-NAS models.
Example:
```python
from ultralytics import NAS
model = NAS('yolo_nas_s')
results = model.predict('ultralytics/assets/bus.jpg')
```
Attributes:
model (str): Path to the pre-trained model or model name. Defaults to 'yolo_nas_s.pt'.
Note:
YOLO-NAS models only support pre-trained models. Do not provide YAML configuration files.
"""
def __init__(self, model="yolo_nas_s.pt") -> None:
"""Initializes the NAS model with the provided or default 'yolo_nas_s.pt' model."""
assert Path(model).suffix not in (".yaml", ".yml"), "YOLO-NAS models only support pre-trained models."
super().__init__(model, task="detect")
@smart_inference_mode()
def _load(self, weights: str, task: str):
"""Loads an existing NAS model weights or creates a new NAS model with pretrained weights if not provided."""
import super_gradients
suffix = Path(weights).suffix
if suffix == ".pt":
self.model = torch.load(weights)
elif suffix == "":
self.model = super_gradients.training.models.get(weights, pretrained_weights="coco")
# Standardize model
self.model.fuse = lambda verbose=True: self.model
self.model.stride = torch.tensor([32])
self.model.names = dict(enumerate(self.model._class_names))
self.model.is_fused = lambda: False # for info()
self.model.yaml = {} # for info()
self.model.pt_path = weights # for export()
self.model.task = "detect" # for export()
def info(self, detailed=False, verbose=True):
"""
Logs model info.
Args:
detailed (bool): Show detailed information about model.
verbose (bool): Controls verbosity.
"""
return model_info(self.model, detailed=detailed, verbose=verbose, imgsz=640)
@property
def task_map(self):
"""Returns a dictionary mapping tasks to respective predictor and validator classes."""
return {"detect": {"predictor": NASPredictor, "validator": NASValidator}}
| 2,864 | Python | .py | 65 | 37.184615 | 117 | 0.666667 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,815 | predict.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/sam/predict.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Generate predictions using the Segment Anything Model (SAM).
SAM is an advanced image segmentation model offering features like promptable segmentation and zero-shot performance.
This module contains the implementation of the prediction logic and auxiliary utilities required to perform segmentation
using SAM. It forms an integral part of the Ultralytics framework and is designed for high-performance, real-time image
segmentation tasks.
"""
import numpy as np
import torch
import torch.nn.functional as F
import torchvision
from ultralytics.data.augment import LetterBox
from ultralytics.engine.predictor import BasePredictor
from ultralytics.engine.results import Results
from ultralytics.utils import DEFAULT_CFG, ops
from ultralytics.utils.torch_utils import select_device
from .amg import (
batch_iterator,
batched_mask_to_box,
build_all_layer_point_grids,
calculate_stability_score,
generate_crop_boxes,
is_box_near_crop_edge,
remove_small_regions,
uncrop_boxes_xyxy,
uncrop_masks,
)
from .build import build_sam
class Predictor(BasePredictor):
"""
Predictor class for the Segment Anything Model (SAM), extending BasePredictor.
The class provides an interface for model inference tailored to image segmentation tasks.
With advanced architecture and promptable segmentation capabilities, it facilitates flexible and real-time
mask generation. The class is capable of working with various types of prompts such as bounding boxes,
points, and low-resolution masks.
Attributes:
cfg (dict): Configuration dictionary specifying model and task-related parameters.
overrides (dict): Dictionary containing values that override the default configuration.
_callbacks (dict): Dictionary of user-defined callback functions to augment behavior.
args (namespace): Namespace to hold command-line arguments or other operational variables.
im (torch.Tensor): Preprocessed input image tensor.
features (torch.Tensor): Extracted image features used for inference.
prompts (dict): Collection of various prompt types, such as bounding boxes and points.
segment_all (bool): Flag to control whether to segment all objects in the image or only specified ones.
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""
Initialize the Predictor with configuration, overrides, and callbacks.
The method sets up the Predictor object and applies any configuration overrides or callbacks provided. It
initializes task-specific settings for SAM, such as retina_masks being set to True for optimal results.
Args:
cfg (dict): Configuration dictionary.
overrides (dict, optional): Dictionary of values to override default configuration.
_callbacks (dict, optional): Dictionary of callback functions to customize behavior.
"""
if overrides is None:
overrides = {}
overrides.update(dict(task="segment", mode="predict", imgsz=1024))
super().__init__(cfg, overrides, _callbacks)
self.args.retina_masks = True
self.im = None
self.features = None
self.prompts = {}
self.segment_all = False
def preprocess(self, im):
"""
Preprocess the input image for model inference.
The method prepares the input image by applying transformations and normalization.
It supports both torch.Tensor and list of np.ndarray as input formats.
Args:
im (torch.Tensor | List[np.ndarray]): BCHW tensor format or list of HWC numpy arrays.
Returns:
(torch.Tensor): The preprocessed image tensor.
"""
if self.im is not None:
return self.im
not_tensor = not isinstance(im, torch.Tensor)
if not_tensor:
im = np.stack(self.pre_transform(im))
im = im[..., ::-1].transpose((0, 3, 1, 2))
im = np.ascontiguousarray(im)
im = torch.from_numpy(im)
im = im.to(self.device)
im = im.half() if self.model.fp16 else im.float()
if not_tensor:
im = (im - self.mean) / self.std
return im
def pre_transform(self, im):
"""
Perform initial transformations on the input image for preprocessing.
The method applies transformations such as resizing to prepare the image for further preprocessing.
Currently, batched inference is not supported; hence the list length should be 1.
Args:
im (List[np.ndarray]): List containing images in HWC numpy array format.
Returns:
(List[np.ndarray]): List of transformed images.
"""
assert len(im) == 1, "SAM model does not currently support batched inference"
letterbox = LetterBox(self.args.imgsz, auto=False, center=False)
return [letterbox(image=x) for x in im]
def inference(self, im, bboxes=None, points=None, labels=None, masks=None, multimask_output=False, *args, **kwargs):
"""
Perform image segmentation inference based on the given input cues, using the currently loaded image. This
method leverages SAM's (Segment Anything Model) architecture consisting of image encoder, prompt encoder, and
mask decoder for real-time and promptable segmentation tasks.
Args:
im (torch.Tensor): The preprocessed input image in tensor format, with shape (N, C, H, W).
bboxes (np.ndarray | List, optional): Bounding boxes with shape (N, 4), in XYXY format.
points (np.ndarray | List, optional): Points indicating object locations with shape (N, 2), in pixel coordinates.
labels (np.ndarray | List, optional): Labels for point prompts, shape (N, ). 1 for foreground and 0 for background.
masks (np.ndarray, optional): Low-resolution masks from previous predictions. Shape should be (N, H, W). For SAM, H=W=256.
multimask_output (bool, optional): Flag to return multiple masks. Helpful for ambiguous prompts. Defaults to False.
Returns:
(tuple): Contains the following three elements.
- np.ndarray: The output masks in shape CxHxW, where C is the number of generated masks.
- np.ndarray: An array of length C containing quality scores predicted by the model for each mask.
- np.ndarray: Low-resolution logits of shape CxHxW for subsequent inference, where H=W=256.
"""
# Override prompts if any stored in self.prompts
bboxes = self.prompts.pop("bboxes", bboxes)
points = self.prompts.pop("points", points)
masks = self.prompts.pop("masks", masks)
if all(i is None for i in [bboxes, points, masks]):
return self.generate(im, *args, **kwargs)
return self.prompt_inference(im, bboxes, points, labels, masks, multimask_output)
def prompt_inference(self, im, bboxes=None, points=None, labels=None, masks=None, multimask_output=False):
"""
Internal function for image segmentation inference based on cues like bounding boxes, points, and masks.
Leverages SAM's specialized architecture for prompt-based, real-time segmentation.
Args:
im (torch.Tensor): The preprocessed input image in tensor format, with shape (N, C, H, W).
bboxes (np.ndarray | List, optional): Bounding boxes with shape (N, 4), in XYXY format.
points (np.ndarray | List, optional): Points indicating object locations with shape (N, 2), in pixel coordinates.
labels (np.ndarray | List, optional): Labels for point prompts, shape (N, ). 1 for foreground and 0 for background.
masks (np.ndarray, optional): Low-resolution masks from previous predictions. Shape should be (N, H, W). For SAM, H=W=256.
multimask_output (bool, optional): Flag to return multiple masks. Helpful for ambiguous prompts. Defaults to False.
Returns:
(tuple): Contains the following three elements.
- np.ndarray: The output masks in shape CxHxW, where C is the number of generated masks.
- np.ndarray: An array of length C containing quality scores predicted by the model for each mask.
- np.ndarray: Low-resolution logits of shape CxHxW for subsequent inference, where H=W=256.
"""
features = self.model.image_encoder(im) if self.features is None else self.features
src_shape, dst_shape = self.batch[1][0].shape[:2], im.shape[2:]
r = 1.0 if self.segment_all else min(dst_shape[0] / src_shape[0], dst_shape[1] / src_shape[1])
# Transform input prompts
if points is not None:
points = torch.as_tensor(points, dtype=torch.float32, device=self.device)
points = points[None] if points.ndim == 1 else points
# Assuming labels are all positive if users don't pass labels.
if labels is None:
labels = np.ones(points.shape[0])
labels = torch.as_tensor(labels, dtype=torch.int32, device=self.device)
points *= r
# (N, 2) --> (N, 1, 2), (N, ) --> (N, 1)
points, labels = points[:, None, :], labels[:, None]
if bboxes is not None:
bboxes = torch.as_tensor(bboxes, dtype=torch.float32, device=self.device)
bboxes = bboxes[None] if bboxes.ndim == 1 else bboxes
bboxes *= r
if masks is not None:
masks = torch.as_tensor(masks, dtype=torch.float32, device=self.device).unsqueeze(1)
points = (points, labels) if points is not None else None
# Embed prompts
sparse_embeddings, dense_embeddings = self.model.prompt_encoder(points=points, boxes=bboxes, masks=masks)
# Predict masks
pred_masks, pred_scores = self.model.mask_decoder(
image_embeddings=features,
image_pe=self.model.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=multimask_output,
)
# (N, d, H, W) --> (N*d, H, W), (N, d) --> (N*d, )
# `d` could be 1 or 3 depends on `multimask_output`.
return pred_masks.flatten(0, 1), pred_scores.flatten(0, 1)
def generate(
self,
im,
crop_n_layers=0,
crop_overlap_ratio=512 / 1500,
crop_downscale_factor=1,
point_grids=None,
points_stride=32,
points_batch_size=64,
conf_thres=0.88,
stability_score_thresh=0.95,
stability_score_offset=0.95,
crop_nms_thresh=0.7,
):
"""
Perform image segmentation using the Segment Anything Model (SAM).
This function segments an entire image into constituent parts by leveraging SAM's advanced architecture
and real-time performance capabilities. It can optionally work on image crops for finer segmentation.
Args:
im (torch.Tensor): Input tensor representing the preprocessed image with dimensions (N, C, H, W).
crop_n_layers (int): Specifies the number of layers for additional mask predictions on image crops.
Each layer produces 2**i_layer number of image crops.
crop_overlap_ratio (float): Determines the extent of overlap between crops. Scaled down in subsequent layers.
crop_downscale_factor (int): Scaling factor for the number of sampled points-per-side in each layer.
point_grids (list[np.ndarray], optional): Custom grids for point sampling normalized to [0,1].
Used in the nth crop layer.
points_stride (int, optional): Number of points to sample along each side of the image.
Exclusive with 'point_grids'.
points_batch_size (int): Batch size for the number of points processed simultaneously.
conf_thres (float): Confidence threshold [0,1] for filtering based on the model's mask quality prediction.
stability_score_thresh (float): Stability threshold [0,1] for mask filtering based on mask stability.
stability_score_offset (float): Offset value for calculating stability score.
crop_nms_thresh (float): IoU cutoff for Non-Maximum Suppression (NMS) to remove duplicate masks between crops.
Returns:
(tuple): A tuple containing segmented masks, confidence scores, and bounding boxes.
"""
self.segment_all = True
ih, iw = im.shape[2:]
crop_regions, layer_idxs = generate_crop_boxes((ih, iw), crop_n_layers, crop_overlap_ratio)
if point_grids is None:
point_grids = build_all_layer_point_grids(points_stride, crop_n_layers, crop_downscale_factor)
pred_masks, pred_scores, pred_bboxes, region_areas = [], [], [], []
for crop_region, layer_idx in zip(crop_regions, layer_idxs):
x1, y1, x2, y2 = crop_region
w, h = x2 - x1, y2 - y1
area = torch.tensor(w * h, device=im.device)
points_scale = np.array([[w, h]]) # w, h
# Crop image and interpolate to input size
crop_im = F.interpolate(im[..., y1:y2, x1:x2], (ih, iw), mode="bilinear", align_corners=False)
# (num_points, 2)
points_for_image = point_grids[layer_idx] * points_scale
crop_masks, crop_scores, crop_bboxes = [], [], []
for (points,) in batch_iterator(points_batch_size, points_for_image):
pred_mask, pred_score = self.prompt_inference(crop_im, points=points, multimask_output=True)
# Interpolate predicted masks to input size
pred_mask = F.interpolate(pred_mask[None], (h, w), mode="bilinear", align_corners=False)[0]
idx = pred_score > conf_thres
pred_mask, pred_score = pred_mask[idx], pred_score[idx]
stability_score = calculate_stability_score(
pred_mask, self.model.mask_threshold, stability_score_offset
)
idx = stability_score > stability_score_thresh
pred_mask, pred_score = pred_mask[idx], pred_score[idx]
# Bool type is much more memory-efficient.
pred_mask = pred_mask > self.model.mask_threshold
# (N, 4)
pred_bbox = batched_mask_to_box(pred_mask).float()
keep_mask = ~is_box_near_crop_edge(pred_bbox, crop_region, [0, 0, iw, ih])
if not torch.all(keep_mask):
pred_bbox, pred_mask, pred_score = pred_bbox[keep_mask], pred_mask[keep_mask], pred_score[keep_mask]
crop_masks.append(pred_mask)
crop_bboxes.append(pred_bbox)
crop_scores.append(pred_score)
# Do nms within this crop
crop_masks = torch.cat(crop_masks)
crop_bboxes = torch.cat(crop_bboxes)
crop_scores = torch.cat(crop_scores)
keep = torchvision.ops.nms(crop_bboxes, crop_scores, self.args.iou) # NMS
crop_bboxes = uncrop_boxes_xyxy(crop_bboxes[keep], crop_region)
crop_masks = uncrop_masks(crop_masks[keep], crop_region, ih, iw)
crop_scores = crop_scores[keep]
pred_masks.append(crop_masks)
pred_bboxes.append(crop_bboxes)
pred_scores.append(crop_scores)
region_areas.append(area.expand(len(crop_masks)))
pred_masks = torch.cat(pred_masks)
pred_bboxes = torch.cat(pred_bboxes)
pred_scores = torch.cat(pred_scores)
region_areas = torch.cat(region_areas)
# Remove duplicate masks between crops
if len(crop_regions) > 1:
scores = 1 / region_areas
keep = torchvision.ops.nms(pred_bboxes, scores, crop_nms_thresh)
pred_masks, pred_bboxes, pred_scores = pred_masks[keep], pred_bboxes[keep], pred_scores[keep]
return pred_masks, pred_scores, pred_bboxes
def setup_model(self, model, verbose=True):
"""
Initializes the Segment Anything Model (SAM) for inference.
This method sets up the SAM model by allocating it to the appropriate device and initializing the necessary
parameters for image normalization and other Ultralytics compatibility settings.
Args:
model (torch.nn.Module): A pre-trained SAM model. If None, a model will be built based on configuration.
verbose (bool): If True, prints selected device information.
Attributes:
model (torch.nn.Module): The SAM model allocated to the chosen device for inference.
device (torch.device): The device to which the model and tensors are allocated.
mean (torch.Tensor): The mean values for image normalization.
std (torch.Tensor): The standard deviation values for image normalization.
"""
device = select_device(self.args.device, verbose=verbose)
if model is None:
model = build_sam(self.args.model)
model.eval()
self.model = model.to(device)
self.device = device
self.mean = torch.tensor([123.675, 116.28, 103.53]).view(-1, 1, 1).to(device)
self.std = torch.tensor([58.395, 57.12, 57.375]).view(-1, 1, 1).to(device)
# Ultralytics compatibility settings
self.model.pt = False
self.model.triton = False
self.model.stride = 32
self.model.fp16 = False
self.done_warmup = True
def postprocess(self, preds, img, orig_imgs):
"""
Post-processes SAM's inference outputs to generate object detection masks and bounding boxes.
The method scales masks and boxes to the original image size and applies a threshold to the mask predictions. The
SAM model uses advanced architecture and promptable segmentation tasks to achieve real-time performance.
Args:
preds (tuple): The output from SAM model inference, containing masks, scores, and optional bounding boxes.
img (torch.Tensor): The processed input image tensor.
orig_imgs (list | torch.Tensor): The original, unprocessed images.
Returns:
(list): List of Results objects containing detection masks, bounding boxes, and other metadata.
"""
# (N, 1, H, W), (N, 1)
pred_masks, pred_scores = preds[:2]
pred_bboxes = preds[2] if self.segment_all else None
names = dict(enumerate(str(i) for i in range(len(pred_masks))))
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
results = []
for i, masks in enumerate([pred_masks]):
orig_img = orig_imgs[i]
if pred_bboxes is not None:
pred_bboxes = ops.scale_boxes(img.shape[2:], pred_bboxes.float(), orig_img.shape, padding=False)
cls = torch.arange(len(pred_masks), dtype=torch.int32, device=pred_masks.device)
pred_bboxes = torch.cat([pred_bboxes, pred_scores[:, None], cls[:, None]], dim=-1)
masks = ops.scale_masks(masks[None].float(), orig_img.shape[:2], padding=False)[0]
masks = masks > self.model.mask_threshold # to bool
img_path = self.batch[0][i]
results.append(Results(orig_img, path=img_path, names=names, masks=masks, boxes=pred_bboxes))
# Reset segment-all mode.
self.segment_all = False
return results
def setup_source(self, source):
"""
Sets up the data source for inference.
This method configures the data source from which images will be fetched for inference. The source could be a
directory, a video file, or other types of image data sources.
Args:
source (str | Path): The path to the image data source for inference.
"""
if source is not None:
super().setup_source(source)
def set_image(self, image):
"""
Preprocesses and sets a single image for inference.
This function sets up the model if not already initialized, configures the data source to the specified image,
and preprocesses the image for feature extraction. Only one image can be set at a time.
Args:
image (str | np.ndarray): Image file path as a string, or a np.ndarray image read by cv2.
Raises:
AssertionError: If more than one image is set.
"""
if self.model is None:
model = build_sam(self.args.model)
self.setup_model(model)
self.setup_source(image)
assert len(self.dataset) == 1, "`set_image` only supports setting one image!"
for batch in self.dataset:
im = self.preprocess(batch[1])
self.features = self.model.image_encoder(im)
self.im = im
break
def set_prompts(self, prompts):
"""Set prompts in advance."""
self.prompts = prompts
def reset_image(self):
"""Resets the image and its features to None."""
self.im = None
self.features = None
@staticmethod
def remove_small_regions(masks, min_area=0, nms_thresh=0.7):
"""
Perform post-processing on segmentation masks generated by the Segment Anything Model (SAM). Specifically, this
function removes small disconnected regions and holes from the input masks, and then performs Non-Maximum
Suppression (NMS) to eliminate any newly created duplicate boxes.
Args:
masks (torch.Tensor): A tensor containing the masks to be processed. Shape should be (N, H, W), where N is
the number of masks, H is height, and W is width.
min_area (int): The minimum area below which disconnected regions and holes will be removed. Defaults to 0.
nms_thresh (float): The IoU threshold for the NMS algorithm. Defaults to 0.7.
Returns:
(tuple([torch.Tensor, List[int]])):
- new_masks (torch.Tensor): The processed masks with small regions removed. Shape is (N, H, W).
- keep (List[int]): The indices of the remaining masks post-NMS, which can be used to filter the boxes.
"""
if len(masks) == 0:
return masks
# Filter small disconnected regions and holes
new_masks = []
scores = []
for mask in masks:
mask = mask.cpu().numpy().astype(np.uint8)
mask, changed = remove_small_regions(mask, min_area, mode="holes")
unchanged = not changed
mask, changed = remove_small_regions(mask, min_area, mode="islands")
unchanged = unchanged and not changed
new_masks.append(torch.as_tensor(mask).unsqueeze(0))
# Give score=0 to changed masks and 1 to unchanged masks so NMS prefers masks not needing postprocessing
scores.append(float(unchanged))
# Recalculate boxes and remove any new duplicates
new_masks = torch.cat(new_masks, dim=0)
boxes = batched_mask_to_box(new_masks)
keep = torchvision.ops.nms(boxes.float(), torch.as_tensor(scores), nms_thresh)
return new_masks[keep].to(device=masks.device, dtype=masks.dtype), keep
| 23,632 | Python | .py | 404 | 47.836634 | 134 | 0.647983 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,816 | __init__.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/sam/__init__.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from .model import SAM
from .predict import Predictor
__all__ = "SAM", "Predictor" # tuple or list
| 144 | Python | .py | 4 | 34.5 | 45 | 0.731884 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,817 | model.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/sam/model.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
"""
SAM model interface.
This module provides an interface to the Segment Anything Model (SAM) from Ultralytics, designed for real-time image
segmentation tasks. The SAM model allows for promptable segmentation with unparalleled versatility in image analysis,
and has been trained on the SA-1B dataset. It features zero-shot performance capabilities, enabling it to adapt to new
image distributions and tasks without prior knowledge.
Key Features:
- Promptable segmentation
- Real-time performance
- Zero-shot transfer capabilities
- Trained on SA-1B dataset
"""
from pathlib import Path
from ultralytics.engine.model import Model
from ultralytics.utils.torch_utils import model_info
from .build import build_sam
from .predict import Predictor
class SAM(Model):
"""
SAM (Segment Anything Model) interface class.
SAM is designed for promptable real-time image segmentation. It can be used with a variety of prompts such as
bounding boxes, points, or labels. The model has capabilities for zero-shot performance and is trained on the SA-1B
dataset.
"""
def __init__(self, model="sam_b.pt") -> None:
"""
Initializes the SAM model with a pre-trained model file.
Args:
model (str): Path to the pre-trained SAM model file. File should have a .pt or .pth extension.
Raises:
NotImplementedError: If the model file extension is not .pt or .pth.
"""
if model and Path(model).suffix not in (".pt", ".pth"):
raise NotImplementedError("SAM prediction requires pre-trained *.pt or *.pth model.")
super().__init__(model=model, task="segment")
def _load(self, weights: str, task=None):
"""
Loads the specified weights into the SAM model.
Args:
weights (str): Path to the weights file.
task (str, optional): Task name. Defaults to None.
"""
self.model = build_sam(weights)
def predict(self, source, stream=False, bboxes=None, points=None, labels=None, **kwargs):
"""
Performs segmentation prediction on the given image or video source.
Args:
source (str): Path to the image or video file, or a PIL.Image object, or a numpy.ndarray object.
stream (bool, optional): If True, enables real-time streaming. Defaults to False.
bboxes (list, optional): List of bounding box coordinates for prompted segmentation. Defaults to None.
points (list, optional): List of points for prompted segmentation. Defaults to None.
labels (list, optional): List of labels for prompted segmentation. Defaults to None.
Returns:
(list): The model predictions.
"""
overrides = dict(conf=0.25, task="segment", mode="predict", imgsz=1024)
kwargs.update(overrides)
prompts = dict(bboxes=bboxes, points=points, labels=labels)
return super().predict(source, stream, prompts=prompts, **kwargs)
def __call__(self, source=None, stream=False, bboxes=None, points=None, labels=None, **kwargs):
"""
Alias for the 'predict' method.
Args:
source (str): Path to the image or video file, or a PIL.Image object, or a numpy.ndarray object.
stream (bool, optional): If True, enables real-time streaming. Defaults to False.
bboxes (list, optional): List of bounding box coordinates for prompted segmentation. Defaults to None.
points (list, optional): List of points for prompted segmentation. Defaults to None.
labels (list, optional): List of labels for prompted segmentation. Defaults to None.
Returns:
(list): The model predictions.
"""
return self.predict(source, stream, bboxes, points, labels, **kwargs)
def info(self, detailed=False, verbose=True):
"""
Logs information about the SAM model.
Args:
detailed (bool, optional): If True, displays detailed information about the model. Defaults to False.
verbose (bool, optional): If True, displays information on the console. Defaults to True.
Returns:
(tuple): A tuple containing the model's information.
"""
return model_info(self.model, detailed=detailed, verbose=verbose)
@property
def task_map(self):
"""
Provides a mapping from the 'segment' task to its corresponding 'Predictor'.
Returns:
(dict): A dictionary mapping the 'segment' task to its corresponding 'Predictor'.
"""
return {"segment": {"predictor": Predictor}}
| 4,706 | Python | .py | 91 | 43.604396 | 119 | 0.674652 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,818 | amg.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/sam/amg.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import math
from itertools import product
from typing import Any, Generator, List, Tuple
import numpy as np
import torch
def is_box_near_crop_edge(
boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0
) -> torch.Tensor:
"""Return a boolean tensor indicating if boxes are near the crop edge."""
crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
boxes = uncrop_boxes_xyxy(boxes, crop_box).float()
near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
return torch.any(near_crop_edge, dim=1)
def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
"""Yield batches of data from the input arguments."""
assert args and all(len(a) == len(args[0]) for a in args), "Batched iteration must have same-size inputs."
n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
for b in range(n_batches):
yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
def calculate_stability_score(masks: torch.Tensor, mask_threshold: float, threshold_offset: float) -> torch.Tensor:
"""
Computes the stability score for a batch of masks.
The stability score is the IoU between the binary masks obtained by thresholding the predicted mask logits at high
and low values.
Notes:
- One mask is always contained inside the other.
- Save memory by preventing unnecessary cast to torch.int64
"""
intersections = (masks > (mask_threshold + threshold_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32)
unions = (masks > (mask_threshold - threshold_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32)
return intersections / unions
def build_point_grid(n_per_side: int) -> np.ndarray:
"""Generate a 2D grid of evenly spaced points in the range [0,1]x[0,1]."""
offset = 1 / (2 * n_per_side)
points_one_side = np.linspace(offset, 1 - offset, n_per_side)
points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
points_y = np.tile(points_one_side[:, None], (1, n_per_side))
return np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
def build_all_layer_point_grids(n_per_side: int, n_layers: int, scale_per_layer: int) -> List[np.ndarray]:
"""Generate point grids for all crop layers."""
return [build_point_grid(int(n_per_side / (scale_per_layer**i))) for i in range(n_layers + 1)]
def generate_crop_boxes(
im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float
) -> Tuple[List[List[int]], List[int]]:
"""
Generates a list of crop boxes of different sizes.
Each layer has (2**i)**2 boxes for the ith layer.
"""
crop_boxes, layer_idxs = [], []
im_h, im_w = im_size
short_side = min(im_h, im_w)
# Original image
crop_boxes.append([0, 0, im_w, im_h])
layer_idxs.append(0)
def crop_len(orig_len, n_crops, overlap):
"""Crops bounding boxes to the size of the input image."""
return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops))
for i_layer in range(n_layers):
n_crops_per_side = 2 ** (i_layer + 1)
overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
crop_w = crop_len(im_w, n_crops_per_side, overlap)
crop_h = crop_len(im_h, n_crops_per_side, overlap)
crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)]
crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)]
# Crops in XYWH format
for x0, y0 in product(crop_box_x0, crop_box_y0):
box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)]
crop_boxes.append(box)
layer_idxs.append(i_layer + 1)
return crop_boxes, layer_idxs
def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
"""Uncrop bounding boxes by adding the crop box offset."""
x0, y0, _, _ = crop_box
offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device)
# Check if boxes has a channel dimension
if len(boxes.shape) == 3:
offset = offset.unsqueeze(1)
return boxes + offset
def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
"""Uncrop points by adding the crop box offset."""
x0, y0, _, _ = crop_box
offset = torch.tensor([[x0, y0]], device=points.device)
# Check if points has a channel dimension
if len(points.shape) == 3:
offset = offset.unsqueeze(1)
return points + offset
def uncrop_masks(masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int) -> torch.Tensor:
"""Uncrop masks by padding them to the original image size."""
x0, y0, x1, y1 = crop_box
if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h:
return masks
# Coordinate transform masks
pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0)
pad = (x0, pad_x - x0, y0, pad_y - y0)
return torch.nn.functional.pad(masks, pad, value=0)
def remove_small_regions(mask: np.ndarray, area_thresh: float, mode: str) -> Tuple[np.ndarray, bool]:
"""Remove small disconnected regions or holes in a mask, returning the mask and a modification indicator."""
import cv2 # type: ignore
assert mode in {"holes", "islands"}
correct_holes = mode == "holes"
working_mask = (correct_holes ^ mask).astype(np.uint8)
n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8)
sizes = stats[:, -1][1:] # Row 0 is background label
small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh]
if not small_regions:
return mask, False
fill_labels = [0] + small_regions
if not correct_holes:
# If every region is below threshold, keep largest
fill_labels = [i for i in range(n_labels) if i not in fill_labels] or [int(np.argmax(sizes)) + 1]
mask = np.isin(regions, fill_labels)
return mask, True
def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor:
"""
Calculates boxes in XYXY format around masks.
Return [0,0,0,0] for an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4.
"""
# torch.max below raises an error on empty inputs, just skip in this case
if torch.numel(masks) == 0:
return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
# Normalize shape to CxHxW
shape = masks.shape
h, w = shape[-2:]
masks = masks.flatten(0, -3) if len(shape) > 2 else masks.unsqueeze(0)
# Get top and bottom edges
in_height, _ = torch.max(masks, dim=-1)
in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :]
bottom_edges, _ = torch.max(in_height_coords, dim=-1)
in_height_coords = in_height_coords + h * (~in_height)
top_edges, _ = torch.min(in_height_coords, dim=-1)
# Get left and right edges
in_width, _ = torch.max(masks, dim=-2)
in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :]
right_edges, _ = torch.max(in_width_coords, dim=-1)
in_width_coords = in_width_coords + w * (~in_width)
left_edges, _ = torch.min(in_width_coords, dim=-1)
# If the mask is empty the right edge will be to the left of the left edge.
# Replace these boxes with [0, 0, 0, 0]
empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
out = out * (~empty_filter).unsqueeze(-1)
# Return to original shape
return out.reshape(*shape[:-2], 4) if len(shape) > 2 else out[0]
| 7,935 | Python | .py | 147 | 48.517007 | 119 | 0.656944 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,819 | build.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/sam/build.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from functools import partial
import torch
from ultralytics.utils.downloads import attempt_download_asset
from .modules.decoders import MaskDecoder
from .modules.encoders import ImageEncoderViT, PromptEncoder
from .modules.sam import Sam
from .modules.tiny_encoder import TinyViT
from .modules.transformer import TwoWayTransformer
def build_sam_vit_h(checkpoint=None):
"""Build and return a Segment Anything Model (SAM) h-size model."""
return _build_sam(
encoder_embed_dim=1280,
encoder_depth=32,
encoder_num_heads=16,
encoder_global_attn_indexes=[7, 15, 23, 31],
checkpoint=checkpoint,
)
def build_sam_vit_l(checkpoint=None):
"""Build and return a Segment Anything Model (SAM) l-size model."""
return _build_sam(
encoder_embed_dim=1024,
encoder_depth=24,
encoder_num_heads=16,
encoder_global_attn_indexes=[5, 11, 17, 23],
checkpoint=checkpoint,
)
def build_sam_vit_b(checkpoint=None):
"""Build and return a Segment Anything Model (SAM) b-size model."""
return _build_sam(
encoder_embed_dim=768,
encoder_depth=12,
encoder_num_heads=12,
encoder_global_attn_indexes=[2, 5, 8, 11],
checkpoint=checkpoint,
)
def build_mobile_sam(checkpoint=None):
"""Build and return Mobile Segment Anything Model (Mobile-SAM)."""
return _build_sam(
encoder_embed_dim=[64, 128, 160, 320],
encoder_depth=[2, 2, 6, 2],
encoder_num_heads=[2, 4, 5, 10],
encoder_global_attn_indexes=None,
mobile_sam=True,
checkpoint=checkpoint,
)
def _build_sam(
encoder_embed_dim, encoder_depth, encoder_num_heads, encoder_global_attn_indexes, checkpoint=None, mobile_sam=False
):
"""Builds the selected SAM model architecture."""
prompt_embed_dim = 256
image_size = 1024
vit_patch_size = 16
image_embedding_size = image_size // vit_patch_size
image_encoder = (
TinyViT(
img_size=1024,
in_chans=3,
num_classes=1000,
embed_dims=encoder_embed_dim,
depths=encoder_depth,
num_heads=encoder_num_heads,
window_sizes=[7, 7, 14, 7],
mlp_ratio=4.0,
drop_rate=0.0,
drop_path_rate=0.0,
use_checkpoint=False,
mbconv_expand_ratio=4.0,
local_conv_size=3,
layer_lr_decay=0.8,
)
if mobile_sam
else ImageEncoderViT(
depth=encoder_depth,
embed_dim=encoder_embed_dim,
img_size=image_size,
mlp_ratio=4,
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
num_heads=encoder_num_heads,
patch_size=vit_patch_size,
qkv_bias=True,
use_rel_pos=True,
global_attn_indexes=encoder_global_attn_indexes,
window_size=14,
out_chans=prompt_embed_dim,
)
)
sam = Sam(
image_encoder=image_encoder,
prompt_encoder=PromptEncoder(
embed_dim=prompt_embed_dim,
image_embedding_size=(image_embedding_size, image_embedding_size),
input_image_size=(image_size, image_size),
mask_in_chans=16,
),
mask_decoder=MaskDecoder(
num_multimask_outputs=3,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=prompt_embed_dim,
mlp_dim=2048,
num_heads=8,
),
transformer_dim=prompt_embed_dim,
iou_head_depth=3,
iou_head_hidden_dim=256,
),
pixel_mean=[123.675, 116.28, 103.53],
pixel_std=[58.395, 57.12, 57.375],
)
if checkpoint is not None:
checkpoint = attempt_download_asset(checkpoint)
with open(checkpoint, "rb") as f:
state_dict = torch.load(f)
sam.load_state_dict(state_dict)
sam.eval()
# sam.load_state_dict(torch.load(checkpoint), strict=True)
# sam.eval()
return sam
sam_model_map = {
"sam_h.pt": build_sam_vit_h,
"sam_l.pt": build_sam_vit_l,
"sam_b.pt": build_sam_vit_b,
"mobile_sam.pt": build_mobile_sam,
}
def build_sam(ckpt="sam_b.pt"):
"""Build a SAM model specified by ckpt."""
model_builder = None
ckpt = str(ckpt) # to allow Path ckpt types
for k in sam_model_map.keys():
if ckpt.endswith(k):
model_builder = sam_model_map.get(k)
if not model_builder:
raise FileNotFoundError(f"{ckpt} is not a supported SAM model. Available models are: \n {sam_model_map.keys()}")
return model_builder(ckpt)
| 4,943 | Python | .py | 139 | 27.417266 | 120 | 0.619277 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,820 | transformer.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/sam/modules/transformer.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import math
from typing import Tuple, Type
import torch
from torch import Tensor, nn
from ultralytics.nn.modules import MLPBlock
class TwoWayTransformer(nn.Module):
"""
A Two-Way Transformer module that enables the simultaneous attention to both image and query points. This class
serves as a specialized transformer decoder that attends to an input image using queries whose positional embedding
is supplied. This is particularly useful for tasks like object detection, image segmentation, and point cloud
processing.
Attributes:
depth (int): The number of layers in the transformer.
embedding_dim (int): The channel dimension for the input embeddings.
num_heads (int): The number of heads for multihead attention.
mlp_dim (int): The internal channel dimension for the MLP block.
layers (nn.ModuleList): The list of TwoWayAttentionBlock layers that make up the transformer.
final_attn_token_to_image (Attention): The final attention layer applied from the queries to the image.
norm_final_attn (nn.LayerNorm): The layer normalization applied to the final queries.
"""
def __init__(
self,
depth: int,
embedding_dim: int,
num_heads: int,
mlp_dim: int,
activation: Type[nn.Module] = nn.ReLU,
attention_downsample_rate: int = 2,
) -> None:
"""
A transformer decoder that attends to an input image using queries whose positional embedding is supplied.
Args:
depth (int): number of layers in the transformer
embedding_dim (int): the channel dimension for the input embeddings
num_heads (int): the number of heads for multihead attention. Must
divide embedding_dim
mlp_dim (int): the channel dimension internal to the MLP block
activation (nn.Module): the activation to use in the MLP block
"""
super().__init__()
self.depth = depth
self.embedding_dim = embedding_dim
self.num_heads = num_heads
self.mlp_dim = mlp_dim
self.layers = nn.ModuleList()
for i in range(depth):
self.layers.append(
TwoWayAttentionBlock(
embedding_dim=embedding_dim,
num_heads=num_heads,
mlp_dim=mlp_dim,
activation=activation,
attention_downsample_rate=attention_downsample_rate,
skip_first_layer_pe=(i == 0),
)
)
self.final_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
self.norm_final_attn = nn.LayerNorm(embedding_dim)
def forward(
self,
image_embedding: Tensor,
image_pe: Tensor,
point_embedding: Tensor,
) -> Tuple[Tensor, Tensor]:
"""
Args:
image_embedding (torch.Tensor): image to attend to. Should be shape B x embedding_dim x h x w for any h and w.
image_pe (torch.Tensor): the positional encoding to add to the image. Must have same shape as image_embedding.
point_embedding (torch.Tensor): the embedding to add to the query points.
Must have shape B x N_points x embedding_dim for any N_points.
Returns:
(torch.Tensor): the processed point_embedding
(torch.Tensor): the processed image_embedding
"""
# BxCxHxW -> BxHWxC == B x N_image_tokens x C
bs, c, h, w = image_embedding.shape
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
image_pe = image_pe.flatten(2).permute(0, 2, 1)
# Prepare queries
queries = point_embedding
keys = image_embedding
# Apply transformer blocks and final layernorm
for layer in self.layers:
queries, keys = layer(
queries=queries,
keys=keys,
query_pe=point_embedding,
key_pe=image_pe,
)
# Apply the final attention layer from the points to the image
q = queries + point_embedding
k = keys + image_pe
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
queries = queries + attn_out
queries = self.norm_final_attn(queries)
return queries, keys
class TwoWayAttentionBlock(nn.Module):
"""
An attention block that performs both self-attention and cross-attention in two directions: queries to keys and
keys to queries. This block consists of four main layers: (1) self-attention on sparse inputs, (2) cross-attention
of sparse inputs to dense inputs, (3) an MLP block on sparse inputs, and (4) cross-attention of dense inputs to
sparse inputs.
Attributes:
self_attn (Attention): The self-attention layer for the queries.
norm1 (nn.LayerNorm): Layer normalization following the first attention block.
cross_attn_token_to_image (Attention): Cross-attention layer from queries to keys.
norm2 (nn.LayerNorm): Layer normalization following the second attention block.
mlp (MLPBlock): MLP block that transforms the query embeddings.
norm3 (nn.LayerNorm): Layer normalization following the MLP block.
norm4 (nn.LayerNorm): Layer normalization following the third attention block.
cross_attn_image_to_token (Attention): Cross-attention layer from keys to queries.
skip_first_layer_pe (bool): Whether to skip the positional encoding in the first layer.
"""
def __init__(
self,
embedding_dim: int,
num_heads: int,
mlp_dim: int = 2048,
activation: Type[nn.Module] = nn.ReLU,
attention_downsample_rate: int = 2,
skip_first_layer_pe: bool = False,
) -> None:
"""
A transformer block with four layers: (1) self-attention of sparse inputs, (2) cross attention of sparse
inputs to dense inputs, (3) mlp block on sparse inputs, and (4) cross attention of dense inputs to sparse
inputs.
Args:
embedding_dim (int): the channel dimension of the embeddings
num_heads (int): the number of heads in the attention layers
mlp_dim (int): the hidden dimension of the mlp block
activation (nn.Module): the activation of the mlp block
skip_first_layer_pe (bool): skip the PE on the first layer
"""
super().__init__()
self.self_attn = Attention(embedding_dim, num_heads)
self.norm1 = nn.LayerNorm(embedding_dim)
self.cross_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
self.norm2 = nn.LayerNorm(embedding_dim)
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
self.norm3 = nn.LayerNorm(embedding_dim)
self.norm4 = nn.LayerNorm(embedding_dim)
self.cross_attn_image_to_token = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
self.skip_first_layer_pe = skip_first_layer_pe
def forward(self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor) -> Tuple[Tensor, Tensor]:
"""Apply self-attention and cross-attention to queries and keys and return the processed embeddings."""
# Self attention block
if self.skip_first_layer_pe:
queries = self.self_attn(q=queries, k=queries, v=queries)
else:
q = queries + query_pe
attn_out = self.self_attn(q=q, k=q, v=queries)
queries = queries + attn_out
queries = self.norm1(queries)
# Cross attention block, tokens attending to image embedding
q = queries + query_pe
k = keys + key_pe
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
queries = queries + attn_out
queries = self.norm2(queries)
# MLP block
mlp_out = self.mlp(queries)
queries = queries + mlp_out
queries = self.norm3(queries)
# Cross attention block, image embedding attending to tokens
q = queries + query_pe
k = keys + key_pe
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
keys = keys + attn_out
keys = self.norm4(keys)
return queries, keys
class Attention(nn.Module):
"""An attention layer that allows for downscaling the size of the embedding after projection to queries, keys, and
values.
"""
def __init__(
self,
embedding_dim: int,
num_heads: int,
downsample_rate: int = 1,
) -> None:
"""
Initializes the Attention model with the given dimensions and settings.
Args:
embedding_dim (int): The dimensionality of the input embeddings.
num_heads (int): The number of attention heads.
downsample_rate (int, optional): The factor by which the internal dimensions are downsampled. Defaults to 1.
Raises:
AssertionError: If 'num_heads' does not evenly divide the internal dimension (embedding_dim / downsample_rate).
"""
super().__init__()
self.embedding_dim = embedding_dim
self.internal_dim = embedding_dim // downsample_rate
self.num_heads = num_heads
assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
@staticmethod
def _separate_heads(x: Tensor, num_heads: int) -> Tensor:
"""Separate the input tensor into the specified number of attention heads."""
b, n, c = x.shape
x = x.reshape(b, n, num_heads, c // num_heads)
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
@staticmethod
def _recombine_heads(x: Tensor) -> Tensor:
"""Recombine the separated attention heads into a single tensor."""
b, n_heads, n_tokens, c_per_head = x.shape
x = x.transpose(1, 2)
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
"""Compute the attention output given the input query, key, and value tensors."""
# Input projections
q = self.q_proj(q)
k = self.k_proj(k)
v = self.v_proj(v)
# Separate into heads
q = self._separate_heads(q, self.num_heads)
k = self._separate_heads(k, self.num_heads)
v = self._separate_heads(v, self.num_heads)
# Attention
_, _, _, c_per_head = q.shape
attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens
attn = attn / math.sqrt(c_per_head)
attn = torch.softmax(attn, dim=-1)
# Get output
out = attn @ v
out = self._recombine_heads(out)
return self.out_proj(out)
| 11,170 | Python | .py | 230 | 39.330435 | 123 | 0.640694 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,821 | tiny_encoder.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/sam/modules/tiny_encoder.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
# --------------------------------------------------------
# TinyViT Model Architecture
# Copyright (c) 2022 Microsoft
# Adapted from LeViT and Swin Transformer
# LeViT: (https://github.com/facebookresearch/levit)
# Swin: (https://github.com/microsoft/swin-transformer)
# Build the TinyViT Model
# --------------------------------------------------------
import itertools
from typing import Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from ultralytics.utils.instance import to_2tuple
class Conv2d_BN(torch.nn.Sequential):
"""A sequential container that performs 2D convolution followed by batch normalization."""
def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1):
"""Initializes the MBConv model with given input channels, output channels, expansion ratio, activation, and
drop path.
"""
super().__init__()
self.add_module("c", torch.nn.Conv2d(a, b, ks, stride, pad, dilation, groups, bias=False))
bn = torch.nn.BatchNorm2d(b)
torch.nn.init.constant_(bn.weight, bn_weight_init)
torch.nn.init.constant_(bn.bias, 0)
self.add_module("bn", bn)
class PatchEmbed(nn.Module):
"""Embeds images into patches and projects them into a specified embedding dimension."""
def __init__(self, in_chans, embed_dim, resolution, activation):
"""Initialize the PatchMerging class with specified input, output dimensions, resolution and activation
function.
"""
super().__init__()
img_size: Tuple[int, int] = to_2tuple(resolution)
self.patches_resolution = (img_size[0] // 4, img_size[1] // 4)
self.num_patches = self.patches_resolution[0] * self.patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
n = embed_dim
self.seq = nn.Sequential(
Conv2d_BN(in_chans, n // 2, 3, 2, 1),
activation(),
Conv2d_BN(n // 2, n, 3, 2, 1),
)
def forward(self, x):
"""Runs input tensor 'x' through the PatchMerging model's sequence of operations."""
return self.seq(x)
class MBConv(nn.Module):
"""Mobile Inverted Bottleneck Conv (MBConv) layer, part of the EfficientNet architecture."""
def __init__(self, in_chans, out_chans, expand_ratio, activation, drop_path):
"""Initializes a convolutional layer with specified dimensions, input resolution, depth, and activation
function.
"""
super().__init__()
self.in_chans = in_chans
self.hidden_chans = int(in_chans * expand_ratio)
self.out_chans = out_chans
self.conv1 = Conv2d_BN(in_chans, self.hidden_chans, ks=1)
self.act1 = activation()
self.conv2 = Conv2d_BN(self.hidden_chans, self.hidden_chans, ks=3, stride=1, pad=1, groups=self.hidden_chans)
self.act2 = activation()
self.conv3 = Conv2d_BN(self.hidden_chans, out_chans, ks=1, bn_weight_init=0.0)
self.act3 = activation()
# NOTE: `DropPath` is needed only for training.
# self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.drop_path = nn.Identity()
def forward(self, x):
"""Implements the forward pass for the model architecture."""
shortcut = x
x = self.conv1(x)
x = self.act1(x)
x = self.conv2(x)
x = self.act2(x)
x = self.conv3(x)
x = self.drop_path(x)
x += shortcut
return self.act3(x)
class PatchMerging(nn.Module):
"""Merges neighboring patches in the feature map and projects to a new dimension."""
def __init__(self, input_resolution, dim, out_dim, activation):
"""Initializes the ConvLayer with specific dimension, input resolution, depth, activation, drop path, and other
optional parameters.
"""
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.out_dim = out_dim
self.act = activation()
self.conv1 = Conv2d_BN(dim, out_dim, 1, 1, 0)
stride_c = 1 if out_dim in [320, 448, 576] else 2
self.conv2 = Conv2d_BN(out_dim, out_dim, 3, stride_c, 1, groups=out_dim)
self.conv3 = Conv2d_BN(out_dim, out_dim, 1, 1, 0)
def forward(self, x):
"""Applies forward pass on the input utilizing convolution and activation layers, and returns the result."""
if x.ndim == 3:
H, W = self.input_resolution
B = len(x)
# (B, C, H, W)
x = x.view(B, H, W, -1).permute(0, 3, 1, 2)
x = self.conv1(x)
x = self.act(x)
x = self.conv2(x)
x = self.act(x)
x = self.conv3(x)
return x.flatten(2).transpose(1, 2)
class ConvLayer(nn.Module):
"""
Convolutional Layer featuring multiple MobileNetV3-style inverted bottleneck convolutions (MBConv).
Optionally applies downsample operations to the output, and provides support for gradient checkpointing.
"""
def __init__(
self,
dim,
input_resolution,
depth,
activation,
drop_path=0.0,
downsample=None,
use_checkpoint=False,
out_dim=None,
conv_expand_ratio=4.0,
):
"""
Initializes the ConvLayer with the given dimensions and settings.
Args:
dim (int): The dimensionality of the input and output.
input_resolution (Tuple[int, int]): The resolution of the input image.
depth (int): The number of MBConv layers in the block.
activation (Callable): Activation function applied after each convolution.
drop_path (Union[float, List[float]]): Drop path rate. Single float or a list of floats for each MBConv.
downsample (Optional[Callable]): Function for downsampling the output. None to skip downsampling.
use_checkpoint (bool): Whether to use gradient checkpointing to save memory.
out_dim (Optional[int]): The dimensionality of the output. None means it will be the same as `dim`.
conv_expand_ratio (float): Expansion ratio for the MBConv layers.
"""
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# Build blocks
self.blocks = nn.ModuleList(
[
MBConv(
dim,
dim,
conv_expand_ratio,
activation,
drop_path[i] if isinstance(drop_path, list) else drop_path,
)
for i in range(depth)
]
)
# Patch merging layer
self.downsample = (
None
if downsample is None
else downsample(input_resolution, dim=dim, out_dim=out_dim, activation=activation)
)
def forward(self, x):
"""Processes the input through a series of convolutional layers and returns the activated output."""
for blk in self.blocks:
x = checkpoint.checkpoint(blk, x) if self.use_checkpoint else blk(x)
return x if self.downsample is None else self.downsample(x)
class Mlp(nn.Module):
"""
Multi-layer Perceptron (MLP) for transformer architectures.
This layer takes an input with in_features, applies layer normalization and two fully-connected layers.
"""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0):
"""Initializes Attention module with the given parameters including dimension, key_dim, number of heads, etc."""
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.norm = nn.LayerNorm(in_features)
self.fc1 = nn.Linear(in_features, hidden_features)
self.fc2 = nn.Linear(hidden_features, out_features)
self.act = act_layer()
self.drop = nn.Dropout(drop)
def forward(self, x):
"""Applies operations on input x and returns modified x, runs downsample if not None."""
x = self.norm(x)
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
return self.drop(x)
class Attention(torch.nn.Module):
"""
Multi-head attention module with support for spatial awareness, applying attention biases based on spatial
resolution. Implements trainable attention biases for each unique offset between spatial positions in the resolution
grid.
Attributes:
ab (Tensor, optional): Cached attention biases for inference, deleted during training.
"""
def __init__(
self,
dim,
key_dim,
num_heads=8,
attn_ratio=4,
resolution=(14, 14),
):
"""
Initializes the Attention module.
Args:
dim (int): The dimensionality of the input and output.
key_dim (int): The dimensionality of the keys and queries.
num_heads (int, optional): Number of attention heads. Default is 8.
attn_ratio (float, optional): Attention ratio, affecting the dimensions of the value vectors. Default is 4.
resolution (Tuple[int, int], optional): Spatial resolution of the input feature map. Default is (14, 14).
Raises:
AssertionError: If `resolution` is not a tuple of length 2.
"""
super().__init__()
assert isinstance(resolution, tuple) and len(resolution) == 2
self.num_heads = num_heads
self.scale = key_dim**-0.5
self.key_dim = key_dim
self.nh_kd = nh_kd = key_dim * num_heads
self.d = int(attn_ratio * key_dim)
self.dh = int(attn_ratio * key_dim) * num_heads
self.attn_ratio = attn_ratio
h = self.dh + nh_kd * 2
self.norm = nn.LayerNorm(dim)
self.qkv = nn.Linear(dim, h)
self.proj = nn.Linear(self.dh, dim)
points = list(itertools.product(range(resolution[0]), range(resolution[1])))
N = len(points)
attention_offsets = {}
idxs = []
for p1 in points:
for p2 in points:
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
if offset not in attention_offsets:
attention_offsets[offset] = len(attention_offsets)
idxs.append(attention_offsets[offset])
self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, len(attention_offsets)))
self.register_buffer("attention_bias_idxs", torch.LongTensor(idxs).view(N, N), persistent=False)
@torch.no_grad()
def train(self, mode=True):
"""Sets the module in training mode and handles attribute 'ab' based on the mode."""
super().train(mode)
if mode and hasattr(self, "ab"):
del self.ab
else:
self.ab = self.attention_biases[:, self.attention_bias_idxs]
def forward(self, x): # x
"""Performs forward pass over the input tensor 'x' by applying normalization and querying keys/values."""
B, N, _ = x.shape # B, N, C
# Normalization
x = self.norm(x)
qkv = self.qkv(x)
# (B, N, num_heads, d)
q, k, v = qkv.view(B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.d], dim=3)
# (B, num_heads, N, d)
q = q.permute(0, 2, 1, 3)
k = k.permute(0, 2, 1, 3)
v = v.permute(0, 2, 1, 3)
self.ab = self.ab.to(self.attention_biases.device)
attn = (q @ k.transpose(-2, -1)) * self.scale + (
self.attention_biases[:, self.attention_bias_idxs] if self.training else self.ab
)
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh)
return self.proj(x)
class TinyViTBlock(nn.Module):
"""TinyViT Block that applies self-attention and a local convolution to the input."""
def __init__(
self,
dim,
input_resolution,
num_heads,
window_size=7,
mlp_ratio=4.0,
drop=0.0,
drop_path=0.0,
local_conv_size=3,
activation=nn.GELU,
):
"""
Initializes the TinyViTBlock.
Args:
dim (int): The dimensionality of the input and output.
input_resolution (Tuple[int, int]): Spatial resolution of the input feature map.
num_heads (int): Number of attention heads.
window_size (int, optional): Window size for attention. Default is 7.
mlp_ratio (float, optional): Ratio of mlp hidden dim to embedding dim. Default is 4.
drop (float, optional): Dropout rate. Default is 0.
drop_path (float, optional): Stochastic depth rate. Default is 0.
local_conv_size (int, optional): The kernel size of the local convolution. Default is 3.
activation (torch.nn, optional): Activation function for MLP. Default is nn.GELU.
Raises:
AssertionError: If `window_size` is not greater than 0.
AssertionError: If `dim` is not divisible by `num_heads`.
"""
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.num_heads = num_heads
assert window_size > 0, "window_size must be greater than 0"
self.window_size = window_size
self.mlp_ratio = mlp_ratio
# NOTE: `DropPath` is needed only for training.
# self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.drop_path = nn.Identity()
assert dim % num_heads == 0, "dim must be divisible by num_heads"
head_dim = dim // num_heads
window_resolution = (window_size, window_size)
self.attn = Attention(dim, head_dim, num_heads, attn_ratio=1, resolution=window_resolution)
mlp_hidden_dim = int(dim * mlp_ratio)
mlp_activation = activation
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=mlp_activation, drop=drop)
pad = local_conv_size // 2
self.local_conv = Conv2d_BN(dim, dim, ks=local_conv_size, stride=1, pad=pad, groups=dim)
def forward(self, x):
"""Applies attention-based transformation or padding to input 'x' before passing it through a local
convolution.
"""
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
res_x = x
if H == self.window_size and W == self.window_size:
x = self.attn(x)
else:
x = x.view(B, H, W, C)
pad_b = (self.window_size - H % self.window_size) % self.window_size
pad_r = (self.window_size - W % self.window_size) % self.window_size
padding = pad_b > 0 or pad_r > 0
if padding:
x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b))
pH, pW = H + pad_b, W + pad_r
nH = pH // self.window_size
nW = pW // self.window_size
# Window partition
x = (
x.view(B, nH, self.window_size, nW, self.window_size, C)
.transpose(2, 3)
.reshape(B * nH * nW, self.window_size * self.window_size, C)
)
x = self.attn(x)
# Window reverse
x = x.view(B, nH, nW, self.window_size, self.window_size, C).transpose(2, 3).reshape(B, pH, pW, C)
if padding:
x = x[:, :H, :W].contiguous()
x = x.view(B, L, C)
x = res_x + self.drop_path(x)
x = x.transpose(1, 2).reshape(B, C, H, W)
x = self.local_conv(x)
x = x.view(B, C, L).transpose(1, 2)
return x + self.drop_path(self.mlp(x))
def extra_repr(self) -> str:
"""Returns a formatted string representing the TinyViTBlock's parameters: dimension, input resolution, number of
attentions heads, window size, and MLP ratio.
"""
return (
f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, "
f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}"
)
class BasicLayer(nn.Module):
"""A basic TinyViT layer for one stage in a TinyViT architecture."""
def __init__(
self,
dim,
input_resolution,
depth,
num_heads,
window_size,
mlp_ratio=4.0,
drop=0.0,
drop_path=0.0,
downsample=None,
use_checkpoint=False,
local_conv_size=3,
activation=nn.GELU,
out_dim=None,
):
"""
Initializes the BasicLayer.
Args:
dim (int): The dimensionality of the input and output.
input_resolution (Tuple[int, int]): Spatial resolution of the input feature map.
depth (int): Number of TinyViT blocks.
num_heads (int): Number of attention heads.
window_size (int): Local window size.
mlp_ratio (float, optional): Ratio of mlp hidden dim to embedding dim. Default is 4.
drop (float, optional): Dropout rate. Default is 0.
drop_path (float | tuple[float], optional): Stochastic depth rate. Default is 0.
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default is None.
use_checkpoint (bool, optional): Whether to use checkpointing to save memory. Default is False.
local_conv_size (int, optional): Kernel size of the local convolution. Default is 3.
activation (torch.nn, optional): Activation function for MLP. Default is nn.GELU.
out_dim (int | None, optional): The output dimension of the layer. Default is None.
Raises:
ValueError: If `drop_path` is a list of float but its length doesn't match `depth`.
"""
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# Build blocks
self.blocks = nn.ModuleList(
[
TinyViTBlock(
dim=dim,
input_resolution=input_resolution,
num_heads=num_heads,
window_size=window_size,
mlp_ratio=mlp_ratio,
drop=drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
local_conv_size=local_conv_size,
activation=activation,
)
for i in range(depth)
]
)
# Patch merging layer
self.downsample = (
None
if downsample is None
else downsample(input_resolution, dim=dim, out_dim=out_dim, activation=activation)
)
def forward(self, x):
"""Performs forward propagation on the input tensor and returns a normalized tensor."""
for blk in self.blocks:
x = checkpoint.checkpoint(blk, x) if self.use_checkpoint else blk(x)
return x if self.downsample is None else self.downsample(x)
def extra_repr(self) -> str:
"""Returns a string representation of the extra_repr function with the layer's parameters."""
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
class LayerNorm2d(nn.Module):
"""A PyTorch implementation of Layer Normalization in 2D."""
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
"""Initialize LayerNorm2d with the number of channels and an optional epsilon."""
super().__init__()
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Perform a forward pass, normalizing the input tensor."""
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
return self.weight[:, None, None] * x + self.bias[:, None, None]
class TinyViT(nn.Module):
"""
The TinyViT architecture for vision tasks.
Attributes:
img_size (int): Input image size.
in_chans (int): Number of input channels.
num_classes (int): Number of classification classes.
embed_dims (List[int]): List of embedding dimensions for each layer.
depths (List[int]): List of depths for each layer.
num_heads (List[int]): List of number of attention heads for each layer.
window_sizes (List[int]): List of window sizes for each layer.
mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension.
drop_rate (float): Dropout rate for drop layers.
drop_path_rate (float): Drop path rate for stochastic depth.
use_checkpoint (bool): Use checkpointing for efficient memory usage.
mbconv_expand_ratio (float): Expansion ratio for MBConv layer.
local_conv_size (int): Local convolution kernel size.
layer_lr_decay (float): Layer-wise learning rate decay.
Note:
This implementation is generalized to accept a list of depths, attention heads,
embedding dimensions and window sizes, which allows you to create a
"stack" of TinyViT models of varying configurations.
"""
def __init__(
self,
img_size=224,
in_chans=3,
num_classes=1000,
embed_dims=[96, 192, 384, 768],
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_sizes=[7, 7, 14, 7],
mlp_ratio=4.0,
drop_rate=0.0,
drop_path_rate=0.1,
use_checkpoint=False,
mbconv_expand_ratio=4.0,
local_conv_size=3,
layer_lr_decay=1.0,
):
"""
Initializes the TinyViT model.
Args:
img_size (int, optional): The input image size. Defaults to 224.
in_chans (int, optional): Number of input channels. Defaults to 3.
num_classes (int, optional): Number of classification classes. Defaults to 1000.
embed_dims (List[int], optional): List of embedding dimensions for each layer. Defaults to [96, 192, 384, 768].
depths (List[int], optional): List of depths for each layer. Defaults to [2, 2, 6, 2].
num_heads (List[int], optional): List of number of attention heads for each layer. Defaults to [3, 6, 12, 24].
window_sizes (List[int], optional): List of window sizes for each layer. Defaults to [7, 7, 14, 7].
mlp_ratio (float, optional): Ratio of MLP hidden dimension to embedding dimension. Defaults to 4.
drop_rate (float, optional): Dropout rate. Defaults to 0.
drop_path_rate (float, optional): Drop path rate for stochastic depth. Defaults to 0.1.
use_checkpoint (bool, optional): Whether to use checkpointing for efficient memory usage. Defaults to False.
mbconv_expand_ratio (float, optional): Expansion ratio for MBConv layer. Defaults to 4.0.
local_conv_size (int, optional): Local convolution kernel size. Defaults to 3.
layer_lr_decay (float, optional): Layer-wise learning rate decay. Defaults to 1.0.
"""
super().__init__()
self.img_size = img_size
self.num_classes = num_classes
self.depths = depths
self.num_layers = len(depths)
self.mlp_ratio = mlp_ratio
activation = nn.GELU
self.patch_embed = PatchEmbed(
in_chans=in_chans, embed_dim=embed_dims[0], resolution=img_size, activation=activation
)
patches_resolution = self.patch_embed.patches_resolution
self.patches_resolution = patches_resolution
# Stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
# Build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
kwargs = dict(
dim=embed_dims[i_layer],
input_resolution=(
patches_resolution[0] // (2 ** (i_layer - 1 if i_layer == 3 else i_layer)),
patches_resolution[1] // (2 ** (i_layer - 1 if i_layer == 3 else i_layer)),
),
# input_resolution=(patches_resolution[0] // (2 ** i_layer),
# patches_resolution[1] // (2 ** i_layer)),
depth=depths[i_layer],
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])],
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint,
out_dim=embed_dims[min(i_layer + 1, len(embed_dims) - 1)],
activation=activation,
)
if i_layer == 0:
layer = ConvLayer(conv_expand_ratio=mbconv_expand_ratio, **kwargs)
else:
layer = BasicLayer(
num_heads=num_heads[i_layer],
window_size=window_sizes[i_layer],
mlp_ratio=self.mlp_ratio,
drop=drop_rate,
local_conv_size=local_conv_size,
**kwargs,
)
self.layers.append(layer)
# Classifier head
self.norm_head = nn.LayerNorm(embed_dims[-1])
self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else torch.nn.Identity()
# Init weights
self.apply(self._init_weights)
self.set_layer_lr_decay(layer_lr_decay)
self.neck = nn.Sequential(
nn.Conv2d(
embed_dims[-1],
256,
kernel_size=1,
bias=False,
),
LayerNorm2d(256),
nn.Conv2d(
256,
256,
kernel_size=3,
padding=1,
bias=False,
),
LayerNorm2d(256),
)
def set_layer_lr_decay(self, layer_lr_decay):
"""Sets the learning rate decay for each layer in the TinyViT model."""
decay_rate = layer_lr_decay
# Layers -> blocks (depth)
depth = sum(self.depths)
lr_scales = [decay_rate ** (depth - i - 1) for i in range(depth)]
def _set_lr_scale(m, scale):
"""Sets the learning rate scale for each layer in the model based on the layer's depth."""
for p in m.parameters():
p.lr_scale = scale
self.patch_embed.apply(lambda x: _set_lr_scale(x, lr_scales[0]))
i = 0
for layer in self.layers:
for block in layer.blocks:
block.apply(lambda x: _set_lr_scale(x, lr_scales[i]))
i += 1
if layer.downsample is not None:
layer.downsample.apply(lambda x: _set_lr_scale(x, lr_scales[i - 1]))
assert i == depth
for m in [self.norm_head, self.head]:
m.apply(lambda x: _set_lr_scale(x, lr_scales[-1]))
for k, p in self.named_parameters():
p.param_name = k
def _check_lr_scale(m):
"""Checks if the learning rate scale attribute is present in module's parameters."""
for p in m.parameters():
assert hasattr(p, "lr_scale"), p.param_name
self.apply(_check_lr_scale)
def _init_weights(self, m):
"""Initializes weights for linear layers and layer normalization in the given module."""
if isinstance(m, nn.Linear):
# NOTE: This initialization is needed only for training.
# trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay_keywords(self):
"""Returns a dictionary of parameter names where weight decay should not be applied."""
return {"attention_biases"}
def forward_features(self, x):
"""Runs the input through the model layers and returns the transformed output."""
x = self.patch_embed(x) # x input is (N, C, H, W)
x = self.layers[0](x)
start_i = 1
for i in range(start_i, len(self.layers)):
layer = self.layers[i]
x = layer(x)
B, _, C = x.shape
x = x.view(B, 64, 64, C)
x = x.permute(0, 3, 1, 2)
return self.neck(x)
def forward(self, x):
"""Executes a forward pass on the input tensor through the constructed model layers."""
return self.forward_features(x)
| 29,135 | Python | .py | 631 | 35.96355 | 123 | 0.592822 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,822 | decoders.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/sam/modules/decoders.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from typing import List, Tuple, Type
import torch
from torch import nn
from torch.nn import functional as F
from ultralytics.nn.modules import LayerNorm2d
class MaskDecoder(nn.Module):
"""
Decoder module for generating masks and their associated quality scores, using a transformer architecture to predict
masks given image and prompt embeddings.
Attributes:
transformer_dim (int): Channel dimension for the transformer module.
transformer (nn.Module): The transformer module used for mask prediction.
num_multimask_outputs (int): Number of masks to predict for disambiguating masks.
iou_token (nn.Embedding): Embedding for the IoU token.
num_mask_tokens (int): Number of mask tokens.
mask_tokens (nn.Embedding): Embedding for the mask tokens.
output_upscaling (nn.Sequential): Neural network sequence for upscaling the output.
output_hypernetworks_mlps (nn.ModuleList): Hypernetwork MLPs for generating masks.
iou_prediction_head (nn.Module): MLP for predicting mask quality.
"""
def __init__(
self,
*,
transformer_dim: int,
transformer: nn.Module,
num_multimask_outputs: int = 3,
activation: Type[nn.Module] = nn.GELU,
iou_head_depth: int = 3,
iou_head_hidden_dim: int = 256,
) -> None:
"""
Predicts masks given an image and prompt embeddings, using a transformer architecture.
Args:
transformer_dim (int): the channel dimension of the transformer module
transformer (nn.Module): the transformer used to predict masks
num_multimask_outputs (int): the number of masks to predict when disambiguating masks
activation (nn.Module): the type of activation to use when upscaling masks
iou_head_depth (int): the depth of the MLP used to predict mask quality
iou_head_hidden_dim (int): the hidden dimension of the MLP used to predict mask quality
"""
super().__init__()
self.transformer_dim = transformer_dim
self.transformer = transformer
self.num_multimask_outputs = num_multimask_outputs
self.iou_token = nn.Embedding(1, transformer_dim)
self.num_mask_tokens = num_multimask_outputs + 1
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
self.output_upscaling = nn.Sequential(
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
LayerNorm2d(transformer_dim // 4),
activation(),
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
activation(),
)
self.output_hypernetworks_mlps = nn.ModuleList(
[MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for _ in range(self.num_mask_tokens)]
)
self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth)
def forward(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
multimask_output: bool,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Predict masks given image and prompt embeddings.
Args:
image_embeddings (torch.Tensor): the embeddings from the image encoder
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
multimask_output (bool): Whether to return multiple masks or a single mask.
Returns:
torch.Tensor: batched predicted masks
torch.Tensor: batched predictions of mask quality
"""
masks, iou_pred = self.predict_masks(
image_embeddings=image_embeddings,
image_pe=image_pe,
sparse_prompt_embeddings=sparse_prompt_embeddings,
dense_prompt_embeddings=dense_prompt_embeddings,
)
# Select the correct mask or masks for output
mask_slice = slice(1, None) if multimask_output else slice(0, 1)
masks = masks[:, mask_slice, :, :]
iou_pred = iou_pred[:, mask_slice]
# Prepare output
return masks, iou_pred
def predict_masks(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Predicts masks.
See 'forward' for more details.
"""
# Concatenate output tokens
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.shape[0], -1, -1)
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
# Expand per-image data in batch direction to be per-mask
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
src = src + dense_prompt_embeddings
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
b, c, h, w = src.shape
# Run the transformer
hs, src = self.transformer(src, pos_src, tokens)
iou_token_out = hs[:, 0, :]
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
# Upscale mask embeddings and predict masks using the mask tokens
src = src.transpose(1, 2).view(b, c, h, w)
upscaled_embedding = self.output_upscaling(src)
hyper_in_list: List[torch.Tensor] = [
self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) for i in range(self.num_mask_tokens)
]
hyper_in = torch.stack(hyper_in_list, dim=1)
b, c, h, w = upscaled_embedding.shape
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
# Generate mask quality predictions
iou_pred = self.iou_prediction_head(iou_token_out)
return masks, iou_pred
class MLP(nn.Module):
"""
MLP (Multi-Layer Perceptron) model lightly adapted from
https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py
"""
def __init__(
self,
input_dim: int,
hidden_dim: int,
output_dim: int,
num_layers: int,
sigmoid_output: bool = False,
) -> None:
"""
Initializes the MLP (Multi-Layer Perceptron) model.
Args:
input_dim (int): The dimensionality of the input features.
hidden_dim (int): The dimensionality of the hidden layers.
output_dim (int): The dimensionality of the output layer.
num_layers (int): The number of hidden layers.
sigmoid_output (bool, optional): Apply a sigmoid activation to the output layer. Defaults to False.
"""
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
self.sigmoid_output = sigmoid_output
def forward(self, x):
"""Executes feedforward within the neural network module and applies activation."""
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
if self.sigmoid_output:
x = torch.sigmoid(x)
return x
| 7,816 | Python | .py | 161 | 39.440994 | 120 | 0.646079 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,823 | encoders.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/sam/modules/encoders.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from typing import Any, Optional, Tuple, Type
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from ultralytics.nn.modules import LayerNorm2d, MLPBlock
class ImageEncoderViT(nn.Module):
"""
An image encoder using Vision Transformer (ViT) architecture for encoding an image into a compact latent space. The
encoder takes an image, splits it into patches, and processes these patches through a series of transformer blocks.
The encoded patches are then processed through a neck to generate the final encoded representation.
This class and its supporting functions below lightly adapted from the ViTDet backbone available at
https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py.
Attributes:
img_size (int): Dimension of input images, assumed to be square.
patch_embed (PatchEmbed): Module for patch embedding.
pos_embed (nn.Parameter, optional): Absolute positional embedding for patches.
blocks (nn.ModuleList): List of transformer blocks for processing patch embeddings.
neck (nn.Sequential): Neck module to further process the output.
"""
def __init__(
self,
img_size: int = 1024,
patch_size: int = 16,
in_chans: int = 3,
embed_dim: int = 768,
depth: int = 12,
num_heads: int = 12,
mlp_ratio: float = 4.0,
out_chans: int = 256,
qkv_bias: bool = True,
norm_layer: Type[nn.Module] = nn.LayerNorm,
act_layer: Type[nn.Module] = nn.GELU,
use_abs_pos: bool = True,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
window_size: int = 0,
global_attn_indexes: Tuple[int, ...] = (),
) -> None:
"""
Args:
img_size (int): Input image size.
patch_size (int): Patch size.
in_chans (int): Number of input image channels.
embed_dim (int): Patch embedding dimension.
depth (int): Depth of ViT.
num_heads (int): Number of attention heads in each ViT block.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
norm_layer (nn.Module): Normalization layer.
act_layer (nn.Module): Activation layer.
use_abs_pos (bool): If True, use absolute positional embeddings.
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
window_size (int): Window size for window attention blocks.
global_attn_indexes (list): Indexes for blocks using global attention.
"""
super().__init__()
self.img_size = img_size
self.patch_embed = PatchEmbed(
kernel_size=(patch_size, patch_size),
stride=(patch_size, patch_size),
in_chans=in_chans,
embed_dim=embed_dim,
)
self.pos_embed: Optional[nn.Parameter] = None
if use_abs_pos:
# Initialize absolute positional embedding with pretrain image size.
self.pos_embed = nn.Parameter(torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim))
self.blocks = nn.ModuleList()
for i in range(depth):
block = Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
act_layer=act_layer,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
window_size=window_size if i not in global_attn_indexes else 0,
input_size=(img_size // patch_size, img_size // patch_size),
)
self.blocks.append(block)
self.neck = nn.Sequential(
nn.Conv2d(
embed_dim,
out_chans,
kernel_size=1,
bias=False,
),
LayerNorm2d(out_chans),
nn.Conv2d(
out_chans,
out_chans,
kernel_size=3,
padding=1,
bias=False,
),
LayerNorm2d(out_chans),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Processes input through patch embedding, applies positional embedding if present, and passes through blocks
and neck.
"""
x = self.patch_embed(x)
if self.pos_embed is not None:
x = x + self.pos_embed
for blk in self.blocks:
x = blk(x)
return self.neck(x.permute(0, 3, 1, 2))
class PromptEncoder(nn.Module):
"""
Encodes different types of prompts, including points, boxes, and masks, for input to SAM's mask decoder. The encoder
produces both sparse and dense embeddings for the input prompts.
Attributes:
embed_dim (int): Dimension of the embeddings.
input_image_size (Tuple[int, int]): Size of the input image as (H, W).
image_embedding_size (Tuple[int, int]): Spatial size of the image embedding as (H, W).
pe_layer (PositionEmbeddingRandom): Module for random position embedding.
num_point_embeddings (int): Number of point embeddings for different types of points.
point_embeddings (nn.ModuleList): List of point embeddings.
not_a_point_embed (nn.Embedding): Embedding for points that are not a part of any label.
mask_input_size (Tuple[int, int]): Size of the input mask.
mask_downscaling (nn.Sequential): Neural network for downscaling the mask.
no_mask_embed (nn.Embedding): Embedding for cases where no mask is provided.
"""
def __init__(
self,
embed_dim: int,
image_embedding_size: Tuple[int, int],
input_image_size: Tuple[int, int],
mask_in_chans: int,
activation: Type[nn.Module] = nn.GELU,
) -> None:
"""
Encodes prompts for input to SAM's mask decoder.
Args:
embed_dim (int): The prompts' embedding dimension
image_embedding_size (tuple(int, int)): The spatial size of the
image embedding, as (H, W).
input_image_size (int): The padded size of the image as input
to the image encoder, as (H, W).
mask_in_chans (int): The number of hidden channels used for
encoding input masks.
activation (nn.Module): The activation to use when encoding
input masks.
"""
super().__init__()
self.embed_dim = embed_dim
self.input_image_size = input_image_size
self.image_embedding_size = image_embedding_size
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
point_embeddings = [nn.Embedding(1, embed_dim) for _ in range(self.num_point_embeddings)]
self.point_embeddings = nn.ModuleList(point_embeddings)
self.not_a_point_embed = nn.Embedding(1, embed_dim)
self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
self.mask_downscaling = nn.Sequential(
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
LayerNorm2d(mask_in_chans // 4),
activation(),
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
LayerNorm2d(mask_in_chans),
activation(),
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
)
self.no_mask_embed = nn.Embedding(1, embed_dim)
def get_dense_pe(self) -> torch.Tensor:
"""
Returns the positional encoding used to encode point prompts, applied to a dense set of points the shape of the
image encoding.
Returns:
torch.Tensor: Positional encoding with shape 1x(embed_dim)x(embedding_h)x(embedding_w)
"""
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
def _embed_points(self, points: torch.Tensor, labels: torch.Tensor, pad: bool) -> torch.Tensor:
"""Embeds point prompts."""
points = points + 0.5 # Shift to center of pixel
if pad:
padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
points = torch.cat([points, padding_point], dim=1)
labels = torch.cat([labels, padding_label], dim=1)
point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
point_embedding[labels == -1] = 0.0
point_embedding[labels == -1] += self.not_a_point_embed.weight
point_embedding[labels == 0] += self.point_embeddings[0].weight
point_embedding[labels == 1] += self.point_embeddings[1].weight
return point_embedding
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
"""Embeds box prompts."""
boxes = boxes + 0.5 # Shift to center of pixel
coords = boxes.reshape(-1, 2, 2)
corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
return corner_embedding
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
"""Embeds mask inputs."""
return self.mask_downscaling(masks)
def _get_batch_size(
self,
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
boxes: Optional[torch.Tensor],
masks: Optional[torch.Tensor],
) -> int:
"""Gets the batch size of the output given the batch size of the input prompts."""
if points is not None:
return points[0].shape[0]
elif boxes is not None:
return boxes.shape[0]
elif masks is not None:
return masks.shape[0]
else:
return 1
def _get_device(self) -> torch.device:
"""Returns the device of the first point embedding's weight tensor."""
return self.point_embeddings[0].weight.device
def forward(
self,
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
boxes: Optional[torch.Tensor],
masks: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Embeds different types of prompts, returning both sparse and dense embeddings.
Args:
points (tuple(torch.Tensor, torch.Tensor), None): point coordinates and labels to embed.
boxes (torch.Tensor, None): boxes to embed
masks (torch.Tensor, None): masks to embed
Returns:
torch.Tensor: sparse embeddings for the points and boxes, with shape BxNx(embed_dim), where N is determined
by the number of input points and boxes.
torch.Tensor: dense embeddings for the masks, in the shape Bx(embed_dim)x(embed_H)x(embed_W)
"""
bs = self._get_batch_size(points, boxes, masks)
sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
if points is not None:
coords, labels = points
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
if boxes is not None:
box_embeddings = self._embed_boxes(boxes)
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
if masks is not None:
dense_embeddings = self._embed_masks(masks)
else:
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
)
return sparse_embeddings, dense_embeddings
class PositionEmbeddingRandom(nn.Module):
"""Positional encoding using random spatial frequencies."""
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
"""Initializes a position embedding using random spatial frequencies."""
super().__init__()
if scale is None or scale <= 0.0:
scale = 1.0
self.register_buffer("positional_encoding_gaussian_matrix", scale * torch.randn((2, num_pos_feats)))
# Set non-deterministic for forward() error 'cumsum_cuda_kernel does not have a deterministic implementation'
torch.use_deterministic_algorithms(False)
torch.backends.cudnn.deterministic = False
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
"""Positionally encode points that are normalized to [0,1]."""
# Assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
coords = 2 * coords - 1
coords = coords @ self.positional_encoding_gaussian_matrix
coords = 2 * np.pi * coords
# Outputs d_1 x ... x d_n x C shape
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
"""Generate positional encoding for a grid of the specified size."""
h, w = size
device: Any = self.positional_encoding_gaussian_matrix.device
grid = torch.ones((h, w), device=device, dtype=torch.float32)
y_embed = grid.cumsum(dim=0) - 0.5
x_embed = grid.cumsum(dim=1) - 0.5
y_embed = y_embed / h
x_embed = x_embed / w
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
return pe.permute(2, 0, 1) # C x H x W
def forward_with_coords(self, coords_input: torch.Tensor, image_size: Tuple[int, int]) -> torch.Tensor:
"""Positionally encode points that are not normalized to [0,1]."""
coords = coords_input.clone()
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
return self._pe_encoding(coords.to(torch.float)) # B x N x C
class Block(nn.Module):
"""Transformer blocks with support of window attention and residual propagation blocks."""
def __init__(
self,
dim: int,
num_heads: int,
mlp_ratio: float = 4.0,
qkv_bias: bool = True,
norm_layer: Type[nn.Module] = nn.LayerNorm,
act_layer: Type[nn.Module] = nn.GELU,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
window_size: int = 0,
input_size: Optional[Tuple[int, int]] = None,
) -> None:
"""
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads in each ViT block.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
norm_layer (nn.Module): Normalization layer.
act_layer (nn.Module): Activation layer.
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
window_size (int): Window size for window attention blocks. If it equals 0, then
use global attention.
input_size (tuple(int, int), None): Input resolution for calculating the relative
positional parameter size.
"""
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
input_size=input_size if window_size == 0 else (window_size, window_size),
)
self.norm2 = norm_layer(dim)
self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
self.window_size = window_size
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Executes a forward pass through the transformer block with window attention and non-overlapping windows."""
shortcut = x
x = self.norm1(x)
# Window partition
if self.window_size > 0:
H, W = x.shape[1], x.shape[2]
x, pad_hw = window_partition(x, self.window_size)
x = self.attn(x)
# Reverse window partition
if self.window_size > 0:
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
x = shortcut + x
return x + self.mlp(self.norm2(x))
class Attention(nn.Module):
"""Multi-head Attention block with relative position embeddings."""
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = True,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
input_size: Optional[Tuple[int, int]] = None,
) -> None:
"""
Initialize Attention module.
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
input_size (tuple(int, int), None): Input resolution for calculating the relative
positional parameter size.
"""
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
self.use_rel_pos = use_rel_pos
if self.use_rel_pos:
assert input_size is not None, "Input size must be provided if using relative positional encoding."
# Initialize relative positional embeddings
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Applies the forward operation including attention, normalization, MLP, and indexing within window limits."""
B, H, W, _ = x.shape
# qkv with shape (3, B, nHead, H * W, C)
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
# q, k, v with shape (B * nHead, H * W, C)
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
attn = (q * self.scale) @ k.transpose(-2, -1)
if self.use_rel_pos:
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
attn = attn.softmax(dim=-1)
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
return self.proj(x)
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
"""
Partition into non-overlapping windows with padding if needed.
Args:
x (tensor): input tokens with [B, H, W, C].
window_size (int): window size.
Returns:
windows: windows after partition with [B * num_windows, window_size, window_size, C].
(Hp, Wp): padded height and width before partition
"""
B, H, W, C = x.shape
pad_h = (window_size - H % window_size) % window_size
pad_w = (window_size - W % window_size) % window_size
if pad_h > 0 or pad_w > 0:
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
Hp, Wp = H + pad_h, W + pad_w
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows, (Hp, Wp)
def window_unpartition(
windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
) -> torch.Tensor:
"""
Window unpartition into original sequences and removing padding.
Args:
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
window_size (int): window size.
pad_hw (Tuple): padded height and width (Hp, Wp).
hw (Tuple): original height and width (H, W) before padding.
Returns:
x: unpartitioned sequences with [B, H, W, C].
"""
Hp, Wp = pad_hw
H, W = hw
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
if Hp > H or Wp > W:
x = x[:, :H, :W, :].contiguous()
return x
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
"""
Get relative positional embeddings according to the relative positions of query and key sizes.
Args:
q_size (int): size of query q.
k_size (int): size of key k.
rel_pos (Tensor): relative position embeddings (L, C).
Returns:
Extracted positional embeddings according to relative positions.
"""
max_rel_dist = int(2 * max(q_size, k_size) - 1)
# Interpolate rel pos if needed.
if rel_pos.shape[0] != max_rel_dist:
# Interpolate rel pos.
rel_pos_resized = F.interpolate(
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
size=max_rel_dist,
mode="linear",
)
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
else:
rel_pos_resized = rel_pos
# Scale the coords with short length if shapes for q and k are different.
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
return rel_pos_resized[relative_coords.long()]
def add_decomposed_rel_pos(
attn: torch.Tensor,
q: torch.Tensor,
rel_pos_h: torch.Tensor,
rel_pos_w: torch.Tensor,
q_size: Tuple[int, int],
k_size: Tuple[int, int],
) -> torch.Tensor:
"""
Calculate decomposed Relative Positional Embeddings from mvitv2 paper at
https://github.com/facebookresearch/mvit/blob/main/mvit/models/attention.py.
Args:
attn (Tensor): attention map.
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
Returns:
attn (Tensor): attention map with added relative positional embeddings.
"""
q_h, q_w = q_size
k_h, k_w = k_size
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
B, _, dim = q.shape
r_q = q.reshape(B, q_h, q_w, dim)
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
attn = (attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]).view(
B, q_h * q_w, k_h * k_w
)
return attn
class PatchEmbed(nn.Module):
"""Image to Patch Embedding."""
def __init__(
self,
kernel_size: Tuple[int, int] = (16, 16),
stride: Tuple[int, int] = (16, 16),
padding: Tuple[int, int] = (0, 0),
in_chans: int = 3,
embed_dim: int = 768,
) -> None:
"""
Initialize PatchEmbed module.
Args:
kernel_size (Tuple): kernel size of the projection layer.
stride (Tuple): stride of the projection layer.
padding (Tuple): padding size of the projection layer.
in_chans (int): Number of input image channels.
embed_dim (int): Patch embedding dimension.
"""
super().__init__()
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Computes patch embedding by applying convolution and transposing resulting tensor."""
return self.proj(x).permute(0, 2, 3, 1) # B C H W -> B H W C
| 24,746 | Python | .py | 516 | 38.753876 | 120 | 0.609245 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,824 | sam.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/sam/modules/sam.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import List
import torch
from torch import nn
from .decoders import MaskDecoder
from .encoders import ImageEncoderViT, PromptEncoder
class Sam(nn.Module):
"""
Sam (Segment Anything Model) is designed for object segmentation tasks. It uses image encoders to generate image
embeddings, and prompt encoders to encode various types of input prompts. These embeddings are then used by the mask
decoder to predict object masks.
Attributes:
mask_threshold (float): Threshold value for mask prediction.
image_format (str): Format of the input image, default is 'RGB'.
image_encoder (ImageEncoderViT): The backbone used to encode the image into embeddings.
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
mask_decoder (MaskDecoder): Predicts object masks from the image and prompt embeddings.
pixel_mean (List[float]): Mean pixel values for image normalization.
pixel_std (List[float]): Standard deviation values for image normalization.
"""
mask_threshold: float = 0.0
image_format: str = "RGB"
def __init__(
self,
image_encoder: ImageEncoderViT,
prompt_encoder: PromptEncoder,
mask_decoder: MaskDecoder,
pixel_mean: List[float] = (123.675, 116.28, 103.53),
pixel_std: List[float] = (58.395, 57.12, 57.375),
) -> None:
"""
Initialize the Sam class to predict object masks from an image and input prompts.
Note:
All forward() operations moved to SAMPredictor.
Args:
image_encoder (ImageEncoderViT): The backbone used to encode the image into image embeddings.
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
mask_decoder (MaskDecoder): Predicts masks from the image embeddings and encoded prompts.
pixel_mean (List[float], optional): Mean values for normalizing pixels in the input image. Defaults to
(123.675, 116.28, 103.53).
pixel_std (List[float], optional): Std values for normalizing pixels in the input image. Defaults to
(58.395, 57.12, 57.375).
"""
super().__init__()
self.image_encoder = image_encoder
self.prompt_encoder = prompt_encoder
self.mask_decoder = mask_decoder
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
| 2,783 | Python | .py | 53 | 44.943396 | 120 | 0.689845 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,825 | loss.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/utils/loss.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
import torch.nn as nn
import torch.nn.functional as F
from ultralytics.utils.loss import FocalLoss, VarifocalLoss
from ultralytics.utils.metrics import bbox_iou
from .ops import HungarianMatcher
class DETRLoss(nn.Module):
"""
DETR (DEtection TRansformer) Loss class. This class calculates and returns the different loss components for the
DETR object detection model. It computes classification loss, bounding box loss, GIoU loss, and optionally auxiliary
losses.
Attributes:
nc (int): The number of classes.
loss_gain (dict): Coefficients for different loss components.
aux_loss (bool): Whether to compute auxiliary losses.
use_fl (bool): Use FocalLoss or not.
use_vfl (bool): Use VarifocalLoss or not.
use_uni_match (bool): Whether to use a fixed layer to assign labels for the auxiliary branch.
uni_match_ind (int): The fixed indices of a layer to use if `use_uni_match` is True.
matcher (HungarianMatcher): Object to compute matching cost and indices.
fl (FocalLoss or None): Focal Loss object if `use_fl` is True, otherwise None.
vfl (VarifocalLoss or None): Varifocal Loss object if `use_vfl` is True, otherwise None.
device (torch.device): Device on which tensors are stored.
"""
def __init__(
self, nc=80, loss_gain=None, aux_loss=True, use_fl=True, use_vfl=False, use_uni_match=False, uni_match_ind=0
):
"""
DETR loss function.
Args:
nc (int): The number of classes.
loss_gain (dict): The coefficient of loss.
aux_loss (bool): If 'aux_loss = True', loss at each decoder layer are to be used.
use_vfl (bool): Use VarifocalLoss or not.
use_uni_match (bool): Whether to use a fixed layer to assign labels for auxiliary branch.
uni_match_ind (int): The fixed indices of a layer.
"""
super().__init__()
if loss_gain is None:
loss_gain = {"class": 1, "bbox": 5, "giou": 2, "no_object": 0.1, "mask": 1, "dice": 1}
self.nc = nc
self.matcher = HungarianMatcher(cost_gain={"class": 2, "bbox": 5, "giou": 2})
self.loss_gain = loss_gain
self.aux_loss = aux_loss
self.fl = FocalLoss() if use_fl else None
self.vfl = VarifocalLoss() if use_vfl else None
self.use_uni_match = use_uni_match
self.uni_match_ind = uni_match_ind
self.device = None
def _get_loss_class(self, pred_scores, targets, gt_scores, num_gts, postfix=""):
"""Computes the classification loss based on predictions, target values, and ground truth scores."""
# Logits: [b, query, num_classes], gt_class: list[[n, 1]]
name_class = f"loss_class{postfix}"
bs, nq = pred_scores.shape[:2]
# one_hot = F.one_hot(targets, self.nc + 1)[..., :-1] # (bs, num_queries, num_classes)
one_hot = torch.zeros((bs, nq, self.nc + 1), dtype=torch.int64, device=targets.device)
one_hot.scatter_(2, targets.unsqueeze(-1), 1)
one_hot = one_hot[..., :-1]
gt_scores = gt_scores.view(bs, nq, 1) * one_hot
if self.fl:
if num_gts and self.vfl:
loss_cls = self.vfl(pred_scores, gt_scores, one_hot)
else:
loss_cls = self.fl(pred_scores, one_hot.float())
loss_cls /= max(num_gts, 1) / nq
else:
loss_cls = nn.BCEWithLogitsLoss(reduction="none")(pred_scores, gt_scores).mean(1).sum() # YOLO CLS loss
return {name_class: loss_cls.squeeze() * self.loss_gain["class"]}
def _get_loss_bbox(self, pred_bboxes, gt_bboxes, postfix=""):
"""Calculates and returns the bounding box loss and GIoU loss for the predicted and ground truth bounding
boxes.
"""
# Boxes: [b, query, 4], gt_bbox: list[[n, 4]]
name_bbox = f"loss_bbox{postfix}"
name_giou = f"loss_giou{postfix}"
loss = {}
if len(gt_bboxes) == 0:
loss[name_bbox] = torch.tensor(0.0, device=self.device)
loss[name_giou] = torch.tensor(0.0, device=self.device)
return loss
loss[name_bbox] = self.loss_gain["bbox"] * F.l1_loss(pred_bboxes, gt_bboxes, reduction="sum") / len(gt_bboxes)
loss[name_giou] = 1.0 - bbox_iou(pred_bboxes, gt_bboxes, xywh=True, GIoU=True)
loss[name_giou] = loss[name_giou].sum() / len(gt_bboxes)
loss[name_giou] = self.loss_gain["giou"] * loss[name_giou]
return {k: v.squeeze() for k, v in loss.items()}
# This function is for future RT-DETR Segment models
# def _get_loss_mask(self, masks, gt_mask, match_indices, postfix=''):
# # masks: [b, query, h, w], gt_mask: list[[n, H, W]]
# name_mask = f'loss_mask{postfix}'
# name_dice = f'loss_dice{postfix}'
#
# loss = {}
# if sum(len(a) for a in gt_mask) == 0:
# loss[name_mask] = torch.tensor(0., device=self.device)
# loss[name_dice] = torch.tensor(0., device=self.device)
# return loss
#
# num_gts = len(gt_mask)
# src_masks, target_masks = self._get_assigned_bboxes(masks, gt_mask, match_indices)
# src_masks = F.interpolate(src_masks.unsqueeze(0), size=target_masks.shape[-2:], mode='bilinear')[0]
# # TODO: torch does not have `sigmoid_focal_loss`, but it's not urgent since we don't use mask branch for now.
# loss[name_mask] = self.loss_gain['mask'] * F.sigmoid_focal_loss(src_masks, target_masks,
# torch.tensor([num_gts], dtype=torch.float32))
# loss[name_dice] = self.loss_gain['dice'] * self._dice_loss(src_masks, target_masks, num_gts)
# return loss
# This function is for future RT-DETR Segment models
# @staticmethod
# def _dice_loss(inputs, targets, num_gts):
# inputs = F.sigmoid(inputs).flatten(1)
# targets = targets.flatten(1)
# numerator = 2 * (inputs * targets).sum(1)
# denominator = inputs.sum(-1) + targets.sum(-1)
# loss = 1 - (numerator + 1) / (denominator + 1)
# return loss.sum() / num_gts
def _get_loss_aux(
self,
pred_bboxes,
pred_scores,
gt_bboxes,
gt_cls,
gt_groups,
match_indices=None,
postfix="",
masks=None,
gt_mask=None,
):
"""Get auxiliary losses."""
# NOTE: loss class, bbox, giou, mask, dice
loss = torch.zeros(5 if masks is not None else 3, device=pred_bboxes.device)
if match_indices is None and self.use_uni_match:
match_indices = self.matcher(
pred_bboxes[self.uni_match_ind],
pred_scores[self.uni_match_ind],
gt_bboxes,
gt_cls,
gt_groups,
masks=masks[self.uni_match_ind] if masks is not None else None,
gt_mask=gt_mask,
)
for i, (aux_bboxes, aux_scores) in enumerate(zip(pred_bboxes, pred_scores)):
aux_masks = masks[i] if masks is not None else None
loss_ = self._get_loss(
aux_bboxes,
aux_scores,
gt_bboxes,
gt_cls,
gt_groups,
masks=aux_masks,
gt_mask=gt_mask,
postfix=postfix,
match_indices=match_indices,
)
loss[0] += loss_[f"loss_class{postfix}"]
loss[1] += loss_[f"loss_bbox{postfix}"]
loss[2] += loss_[f"loss_giou{postfix}"]
# if masks is not None and gt_mask is not None:
# loss_ = self._get_loss_mask(aux_masks, gt_mask, match_indices, postfix)
# loss[3] += loss_[f'loss_mask{postfix}']
# loss[4] += loss_[f'loss_dice{postfix}']
loss = {
f"loss_class_aux{postfix}": loss[0],
f"loss_bbox_aux{postfix}": loss[1],
f"loss_giou_aux{postfix}": loss[2],
}
# if masks is not None and gt_mask is not None:
# loss[f'loss_mask_aux{postfix}'] = loss[3]
# loss[f'loss_dice_aux{postfix}'] = loss[4]
return loss
@staticmethod
def _get_index(match_indices):
"""Returns batch indices, source indices, and destination indices from provided match indices."""
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(match_indices)])
src_idx = torch.cat([src for (src, _) in match_indices])
dst_idx = torch.cat([dst for (_, dst) in match_indices])
return (batch_idx, src_idx), dst_idx
def _get_assigned_bboxes(self, pred_bboxes, gt_bboxes, match_indices):
"""Assigns predicted bounding boxes to ground truth bounding boxes based on the match indices."""
pred_assigned = torch.cat(
[
t[i] if len(i) > 0 else torch.zeros(0, t.shape[-1], device=self.device)
for t, (i, _) in zip(pred_bboxes, match_indices)
]
)
gt_assigned = torch.cat(
[
t[j] if len(j) > 0 else torch.zeros(0, t.shape[-1], device=self.device)
for t, (_, j) in zip(gt_bboxes, match_indices)
]
)
return pred_assigned, gt_assigned
def _get_loss(
self,
pred_bboxes,
pred_scores,
gt_bboxes,
gt_cls,
gt_groups,
masks=None,
gt_mask=None,
postfix="",
match_indices=None,
):
"""Get losses."""
if match_indices is None:
match_indices = self.matcher(
pred_bboxes, pred_scores, gt_bboxes, gt_cls, gt_groups, masks=masks, gt_mask=gt_mask
)
idx, gt_idx = self._get_index(match_indices)
pred_bboxes, gt_bboxes = pred_bboxes[idx], gt_bboxes[gt_idx]
bs, nq = pred_scores.shape[:2]
targets = torch.full((bs, nq), self.nc, device=pred_scores.device, dtype=gt_cls.dtype)
targets[idx] = gt_cls[gt_idx]
gt_scores = torch.zeros([bs, nq], device=pred_scores.device)
if len(gt_bboxes):
gt_scores[idx] = bbox_iou(pred_bboxes.detach(), gt_bboxes, xywh=True).squeeze(-1)
loss = {}
loss.update(self._get_loss_class(pred_scores, targets, gt_scores, len(gt_bboxes), postfix))
loss.update(self._get_loss_bbox(pred_bboxes, gt_bboxes, postfix))
# if masks is not None and gt_mask is not None:
# loss.update(self._get_loss_mask(masks, gt_mask, match_indices, postfix))
return loss
def forward(self, pred_bboxes, pred_scores, batch, postfix="", **kwargs):
"""
Args:
pred_bboxes (torch.Tensor): [l, b, query, 4]
pred_scores (torch.Tensor): [l, b, query, num_classes]
batch (dict): A dict includes:
gt_cls (torch.Tensor) with shape [num_gts, ],
gt_bboxes (torch.Tensor): [num_gts, 4],
gt_groups (List(int)): a list of batch size length includes the number of gts of each image.
postfix (str): postfix of loss name.
"""
self.device = pred_bboxes.device
match_indices = kwargs.get("match_indices", None)
gt_cls, gt_bboxes, gt_groups = batch["cls"], batch["bboxes"], batch["gt_groups"]
total_loss = self._get_loss(
pred_bboxes[-1], pred_scores[-1], gt_bboxes, gt_cls, gt_groups, postfix=postfix, match_indices=match_indices
)
if self.aux_loss:
total_loss.update(
self._get_loss_aux(
pred_bboxes[:-1], pred_scores[:-1], gt_bboxes, gt_cls, gt_groups, match_indices, postfix
)
)
return total_loss
class RTDETRDetectionLoss(DETRLoss):
"""
Real-Time DeepTracker (RT-DETR) Detection Loss class that extends the DETRLoss.
This class computes the detection loss for the RT-DETR model, which includes the standard detection loss as well as
an additional denoising training loss when provided with denoising metadata.
"""
def forward(self, preds, batch, dn_bboxes=None, dn_scores=None, dn_meta=None):
"""
Forward pass to compute the detection loss.
Args:
preds (tuple): Predicted bounding boxes and scores.
batch (dict): Batch data containing ground truth information.
dn_bboxes (torch.Tensor, optional): Denoising bounding boxes. Default is None.
dn_scores (torch.Tensor, optional): Denoising scores. Default is None.
dn_meta (dict, optional): Metadata for denoising. Default is None.
Returns:
(dict): Dictionary containing the total loss and, if applicable, the denoising loss.
"""
pred_bboxes, pred_scores = preds
total_loss = super().forward(pred_bboxes, pred_scores, batch)
# Check for denoising metadata to compute denoising training loss
if dn_meta is not None:
dn_pos_idx, dn_num_group = dn_meta["dn_pos_idx"], dn_meta["dn_num_group"]
assert len(batch["gt_groups"]) == len(dn_pos_idx)
# Get the match indices for denoising
match_indices = self.get_dn_match_indices(dn_pos_idx, dn_num_group, batch["gt_groups"])
# Compute the denoising training loss
dn_loss = super().forward(dn_bboxes, dn_scores, batch, postfix="_dn", match_indices=match_indices)
total_loss.update(dn_loss)
else:
# If no denoising metadata is provided, set denoising loss to zero
total_loss.update({f"{k}_dn": torch.tensor(0.0, device=self.device) for k in total_loss.keys()})
return total_loss
@staticmethod
def get_dn_match_indices(dn_pos_idx, dn_num_group, gt_groups):
"""
Get the match indices for denoising.
Args:
dn_pos_idx (List[torch.Tensor]): List of tensors containing positive indices for denoising.
dn_num_group (int): Number of denoising groups.
gt_groups (List[int]): List of integers representing the number of ground truths for each image.
Returns:
(List[tuple]): List of tuples containing matched indices for denoising.
"""
dn_match_indices = []
idx_groups = torch.as_tensor([0, *gt_groups[:-1]]).cumsum_(0)
for i, num_gt in enumerate(gt_groups):
if num_gt > 0:
gt_idx = torch.arange(end=num_gt, dtype=torch.long) + idx_groups[i]
gt_idx = gt_idx.repeat(dn_num_group)
assert len(dn_pos_idx[i]) == len(gt_idx), "Expected the same length, "
f"but got {len(dn_pos_idx[i])} and {len(gt_idx)} respectively."
dn_match_indices.append((dn_pos_idx[i], gt_idx))
else:
dn_match_indices.append((torch.zeros([0], dtype=torch.long), torch.zeros([0], dtype=torch.long)))
return dn_match_indices
| 15,134 | Python | .py | 302 | 40.149007 | 120 | 0.590709 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,826 | ops.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/utils/ops.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
import torch.nn as nn
import torch.nn.functional as F
from scipy.optimize import linear_sum_assignment
from ultralytics.utils.metrics import bbox_iou
from ultralytics.utils.ops import xywh2xyxy, xyxy2xywh
class HungarianMatcher(nn.Module):
"""
A module implementing the HungarianMatcher, which is a differentiable module to solve the assignment problem in an
end-to-end fashion.
HungarianMatcher performs optimal assignment over the predicted and ground truth bounding boxes using a cost
function that considers classification scores, bounding box coordinates, and optionally, mask predictions.
Attributes:
cost_gain (dict): Dictionary of cost coefficients: 'class', 'bbox', 'giou', 'mask', and 'dice'.
use_fl (bool): Indicates whether to use Focal Loss for the classification cost calculation.
with_mask (bool): Indicates whether the model makes mask predictions.
num_sample_points (int): The number of sample points used in mask cost calculation.
alpha (float): The alpha factor in Focal Loss calculation.
gamma (float): The gamma factor in Focal Loss calculation.
Methods:
forward(pred_bboxes, pred_scores, gt_bboxes, gt_cls, gt_groups, masks=None, gt_mask=None): Computes the
assignment between predictions and ground truths for a batch.
_cost_mask(bs, num_gts, masks=None, gt_mask=None): Computes the mask cost and dice cost if masks are predicted.
"""
def __init__(self, cost_gain=None, use_fl=True, with_mask=False, num_sample_points=12544, alpha=0.25, gamma=2.0):
"""Initializes HungarianMatcher with cost coefficients, Focal Loss, mask prediction, sample points, and alpha
gamma factors.
"""
super().__init__()
if cost_gain is None:
cost_gain = {"class": 1, "bbox": 5, "giou": 2, "mask": 1, "dice": 1}
self.cost_gain = cost_gain
self.use_fl = use_fl
self.with_mask = with_mask
self.num_sample_points = num_sample_points
self.alpha = alpha
self.gamma = gamma
def forward(self, pred_bboxes, pred_scores, gt_bboxes, gt_cls, gt_groups, masks=None, gt_mask=None):
"""
Forward pass for HungarianMatcher. This function computes costs based on prediction and ground truth
(classification cost, L1 cost between boxes and GIoU cost between boxes) and finds the optimal matching between
predictions and ground truth based on these costs.
Args:
pred_bboxes (Tensor): Predicted bounding boxes with shape [batch_size, num_queries, 4].
pred_scores (Tensor): Predicted scores with shape [batch_size, num_queries, num_classes].
gt_cls (torch.Tensor): Ground truth classes with shape [num_gts, ].
gt_bboxes (torch.Tensor): Ground truth bounding boxes with shape [num_gts, 4].
gt_groups (List[int]): List of length equal to batch size, containing the number of ground truths for
each image.
masks (Tensor, optional): Predicted masks with shape [batch_size, num_queries, height, width].
Defaults to None.
gt_mask (List[Tensor], optional): List of ground truth masks, each with shape [num_masks, Height, Width].
Defaults to None.
Returns:
(List[Tuple[Tensor, Tensor]]): A list of size batch_size, each element is a tuple (index_i, index_j), where:
- index_i is the tensor of indices of the selected predictions (in order)
- index_j is the tensor of indices of the corresponding selected ground truth targets (in order)
For each batch element, it holds:
len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
"""
bs, nq, nc = pred_scores.shape
if sum(gt_groups) == 0:
return [(torch.tensor([], dtype=torch.long), torch.tensor([], dtype=torch.long)) for _ in range(bs)]
# We flatten to compute the cost matrices in a batch
# [batch_size * num_queries, num_classes]
pred_scores = pred_scores.detach().view(-1, nc)
pred_scores = F.sigmoid(pred_scores) if self.use_fl else F.softmax(pred_scores, dim=-1)
# [batch_size * num_queries, 4]
pred_bboxes = pred_bboxes.detach().view(-1, 4)
# Compute the classification cost
pred_scores = pred_scores[:, gt_cls]
if self.use_fl:
neg_cost_class = (1 - self.alpha) * (pred_scores**self.gamma) * (-(1 - pred_scores + 1e-8).log())
pos_cost_class = self.alpha * ((1 - pred_scores) ** self.gamma) * (-(pred_scores + 1e-8).log())
cost_class = pos_cost_class - neg_cost_class
else:
cost_class = -pred_scores
# Compute the L1 cost between boxes
cost_bbox = (pred_bboxes.unsqueeze(1) - gt_bboxes.unsqueeze(0)).abs().sum(-1) # (bs*num_queries, num_gt)
# Compute the GIoU cost between boxes, (bs*num_queries, num_gt)
cost_giou = 1.0 - bbox_iou(pred_bboxes.unsqueeze(1), gt_bboxes.unsqueeze(0), xywh=True, GIoU=True).squeeze(-1)
# Final cost matrix
C = (
self.cost_gain["class"] * cost_class
+ self.cost_gain["bbox"] * cost_bbox
+ self.cost_gain["giou"] * cost_giou
)
# Compute the mask cost and dice cost
if self.with_mask:
C += self._cost_mask(bs, gt_groups, masks, gt_mask)
# Set invalid values (NaNs and infinities) to 0 (fixes ValueError: matrix contains invalid numeric entries)
C[C.isnan() | C.isinf()] = 0.0
C = C.view(bs, nq, -1).cpu()
indices = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(gt_groups, -1))]
gt_groups = torch.as_tensor([0, *gt_groups[:-1]]).cumsum_(0) # (idx for queries, idx for gt)
return [
(torch.tensor(i, dtype=torch.long), torch.tensor(j, dtype=torch.long) + gt_groups[k])
for k, (i, j) in enumerate(indices)
]
# This function is for future RT-DETR Segment models
# def _cost_mask(self, bs, num_gts, masks=None, gt_mask=None):
# assert masks is not None and gt_mask is not None, 'Make sure the input has `mask` and `gt_mask`'
# # all masks share the same set of points for efficient matching
# sample_points = torch.rand([bs, 1, self.num_sample_points, 2])
# sample_points = 2.0 * sample_points - 1.0
#
# out_mask = F.grid_sample(masks.detach(), sample_points, align_corners=False).squeeze(-2)
# out_mask = out_mask.flatten(0, 1)
#
# tgt_mask = torch.cat(gt_mask).unsqueeze(1)
# sample_points = torch.cat([a.repeat(b, 1, 1, 1) for a, b in zip(sample_points, num_gts) if b > 0])
# tgt_mask = F.grid_sample(tgt_mask, sample_points, align_corners=False).squeeze([1, 2])
#
# with torch.cuda.amp.autocast(False):
# # binary cross entropy cost
# pos_cost_mask = F.binary_cross_entropy_with_logits(out_mask, torch.ones_like(out_mask), reduction='none')
# neg_cost_mask = F.binary_cross_entropy_with_logits(out_mask, torch.zeros_like(out_mask), reduction='none')
# cost_mask = torch.matmul(pos_cost_mask, tgt_mask.T) + torch.matmul(neg_cost_mask, 1 - tgt_mask.T)
# cost_mask /= self.num_sample_points
#
# # dice cost
# out_mask = F.sigmoid(out_mask)
# numerator = 2 * torch.matmul(out_mask, tgt_mask.T)
# denominator = out_mask.sum(-1, keepdim=True) + tgt_mask.sum(-1).unsqueeze(0)
# cost_dice = 1 - (numerator + 1) / (denominator + 1)
#
# C = self.cost_gain['mask'] * cost_mask + self.cost_gain['dice'] * cost_dice
# return C
def get_cdn_group(
batch, num_classes, num_queries, class_embed, num_dn=100, cls_noise_ratio=0.5, box_noise_scale=1.0, training=False
):
"""
Get contrastive denoising training group. This function creates a contrastive denoising training group with positive
and negative samples from the ground truths (gt). It applies noise to the class labels and bounding box coordinates,
and returns the modified labels, bounding boxes, attention mask and meta information.
Args:
batch (dict): A dict that includes 'gt_cls' (torch.Tensor with shape [num_gts, ]), 'gt_bboxes'
(torch.Tensor with shape [num_gts, 4]), 'gt_groups' (List(int)) which is a list of batch size length
indicating the number of gts of each image.
num_classes (int): Number of classes.
num_queries (int): Number of queries.
class_embed (torch.Tensor): Embedding weights to map class labels to embedding space.
num_dn (int, optional): Number of denoising. Defaults to 100.
cls_noise_ratio (float, optional): Noise ratio for class labels. Defaults to 0.5.
box_noise_scale (float, optional): Noise scale for bounding box coordinates. Defaults to 1.0.
training (bool, optional): If it's in training mode. Defaults to False.
Returns:
(Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Dict]]): The modified class embeddings,
bounding boxes, attention mask and meta information for denoising. If not in training mode or 'num_dn'
is less than or equal to 0, the function returns None for all elements in the tuple.
"""
if (not training) or num_dn <= 0:
return None, None, None, None
gt_groups = batch["gt_groups"]
total_num = sum(gt_groups)
max_nums = max(gt_groups)
if max_nums == 0:
return None, None, None, None
num_group = num_dn // max_nums
num_group = 1 if num_group == 0 else num_group
# Pad gt to max_num of a batch
bs = len(gt_groups)
gt_cls = batch["cls"] # (bs*num, )
gt_bbox = batch["bboxes"] # bs*num, 4
b_idx = batch["batch_idx"]
# Each group has positive and negative queries.
dn_cls = gt_cls.repeat(2 * num_group) # (2*num_group*bs*num, )
dn_bbox = gt_bbox.repeat(2 * num_group, 1) # 2*num_group*bs*num, 4
dn_b_idx = b_idx.repeat(2 * num_group).view(-1) # (2*num_group*bs*num, )
# Positive and negative mask
# (bs*num*num_group, ), the second total_num*num_group part as negative samples
neg_idx = torch.arange(total_num * num_group, dtype=torch.long, device=gt_bbox.device) + num_group * total_num
if cls_noise_ratio > 0:
# Half of bbox prob
mask = torch.rand(dn_cls.shape) < (cls_noise_ratio * 0.5)
idx = torch.nonzero(mask).squeeze(-1)
# Randomly put a new one here
new_label = torch.randint_like(idx, 0, num_classes, dtype=dn_cls.dtype, device=dn_cls.device)
dn_cls[idx] = new_label
if box_noise_scale > 0:
known_bbox = xywh2xyxy(dn_bbox)
diff = (dn_bbox[..., 2:] * 0.5).repeat(1, 2) * box_noise_scale # 2*num_group*bs*num, 4
rand_sign = torch.randint_like(dn_bbox, 0, 2) * 2.0 - 1.0
rand_part = torch.rand_like(dn_bbox)
rand_part[neg_idx] += 1.0
rand_part *= rand_sign
known_bbox += rand_part * diff
known_bbox.clip_(min=0.0, max=1.0)
dn_bbox = xyxy2xywh(known_bbox)
dn_bbox = torch.logit(dn_bbox, eps=1e-6) # inverse sigmoid
num_dn = int(max_nums * 2 * num_group) # total denoising queries
# class_embed = torch.cat([class_embed, torch.zeros([1, class_embed.shape[-1]], device=class_embed.device)])
dn_cls_embed = class_embed[dn_cls] # bs*num * 2 * num_group, 256
padding_cls = torch.zeros(bs, num_dn, dn_cls_embed.shape[-1], device=gt_cls.device)
padding_bbox = torch.zeros(bs, num_dn, 4, device=gt_bbox.device)
map_indices = torch.cat([torch.tensor(range(num), dtype=torch.long) for num in gt_groups])
pos_idx = torch.stack([map_indices + max_nums * i for i in range(num_group)], dim=0)
map_indices = torch.cat([map_indices + max_nums * i for i in range(2 * num_group)])
padding_cls[(dn_b_idx, map_indices)] = dn_cls_embed
padding_bbox[(dn_b_idx, map_indices)] = dn_bbox
tgt_size = num_dn + num_queries
attn_mask = torch.zeros([tgt_size, tgt_size], dtype=torch.bool)
# Match query cannot see the reconstruct
attn_mask[num_dn:, :num_dn] = True
# Reconstruct cannot see each other
for i in range(num_group):
if i == 0:
attn_mask[max_nums * 2 * i : max_nums * 2 * (i + 1), max_nums * 2 * (i + 1) : num_dn] = True
if i == num_group - 1:
attn_mask[max_nums * 2 * i : max_nums * 2 * (i + 1), : max_nums * i * 2] = True
else:
attn_mask[max_nums * 2 * i : max_nums * 2 * (i + 1), max_nums * 2 * (i + 1) : num_dn] = True
attn_mask[max_nums * 2 * i : max_nums * 2 * (i + 1), : max_nums * 2 * i] = True
dn_meta = {
"dn_pos_idx": [p.reshape(-1) for p in pos_idx.cpu().split(list(gt_groups), dim=1)],
"dn_num_group": num_group,
"dn_num_split": [num_dn, num_queries],
}
return (
padding_cls.to(class_embed.device),
padding_bbox.to(class_embed.device),
attn_mask.to(class_embed.device),
dn_meta,
)
| 13,244 | Python | .py | 225 | 50.831111 | 120 | 0.632463 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,827 | predict.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/rtdetr/predict.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
from ultralytics.data.augment import LetterBox
from ultralytics.engine.predictor import BasePredictor
from ultralytics.engine.results import Results
from ultralytics.utils import ops
class RTDETRPredictor(BasePredictor):
"""
RT-DETR (Real-Time Detection Transformer) Predictor extending the BasePredictor class for making predictions using
Baidu's RT-DETR model.
This class leverages the power of Vision Transformers to provide real-time object detection while maintaining
high accuracy. It supports key features like efficient hybrid encoding and IoU-aware query selection.
Example:
```python
from ultralytics.utils import ASSETS
from ultralytics.models.rtdetr import RTDETRPredictor
args = dict(model='rtdetr-l.pt', source=ASSETS)
predictor = RTDETRPredictor(overrides=args)
predictor.predict_cli()
```
Attributes:
imgsz (int): Image size for inference (must be square and scale-filled).
args (dict): Argument overrides for the predictor.
"""
def postprocess(self, preds, img, orig_imgs):
"""
Postprocess the raw predictions from the model to generate bounding boxes and confidence scores.
The method filters detections based on confidence and class if specified in `self.args`.
Args:
preds (torch.Tensor): Raw predictions from the model.
img (torch.Tensor): Processed input images.
orig_imgs (list or torch.Tensor): Original, unprocessed images.
Returns:
(list[Results]): A list of Results objects containing the post-processed bounding boxes, confidence scores,
and class labels.
"""
nd = preds[0].shape[-1]
bboxes, scores = preds[0].split((4, nd - 4), dim=-1)
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
results = []
for i, bbox in enumerate(bboxes): # (300, 4)
bbox = ops.xywh2xyxy(bbox)
score, cls = scores[i].max(-1, keepdim=True) # (300, 1)
idx = score.squeeze(-1) > self.args.conf # (300, )
if self.args.classes is not None:
idx = (cls == torch.tensor(self.args.classes, device=cls.device)).any(1) & idx
pred = torch.cat([bbox, score, cls], dim=-1)[idx] # filter
orig_img = orig_imgs[i]
oh, ow = orig_img.shape[:2]
pred[..., [0, 2]] *= ow
pred[..., [1, 3]] *= oh
img_path = self.batch[0][i]
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
return results
def pre_transform(self, im):
"""
Pre-transforms the input images before feeding them into the model for inference. The input images are
letterboxed to ensure a square aspect ratio and scale-filled. The size must be square(640) and scaleFilled.
Args:
im (list[np.ndarray] |torch.Tensor): Input images of shape (N,3,h,w) for tensor, [(h,w,3) x N] for list.
Returns:
(list): List of pre-transformed images ready for model inference.
"""
letterbox = LetterBox(self.imgsz, auto=False, scaleFill=True)
return [letterbox(image=x) for x in im]
| 3,425 | Python | .py | 66 | 42.757576 | 119 | 0.651706 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,828 | val.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/rtdetr/val.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
from ultralytics.data import YOLODataset
from ultralytics.data.augment import Compose, Format, v8_transforms
from ultralytics.models.yolo.detect import DetectionValidator
from ultralytics.utils import colorstr, ops
__all__ = ("RTDETRValidator",) # tuple or list
class RTDETRDataset(YOLODataset):
"""
Real-Time DEtection and TRacking (RT-DETR) dataset class extending the base YOLODataset class.
This specialized dataset class is designed for use with the RT-DETR object detection model and is optimized for
real-time detection and tracking tasks.
"""
def __init__(self, *args, data=None, **kwargs):
"""Initialize the RTDETRDataset class by inheriting from the YOLODataset class."""
super().__init__(*args, data=data, **kwargs)
# NOTE: add stretch version load_image for RTDETR mosaic
def load_image(self, i, rect_mode=False):
"""Loads 1 image from dataset index 'i', returns (im, resized hw)."""
return super().load_image(i=i, rect_mode=rect_mode)
def build_transforms(self, hyp=None):
"""Temporary, only for evaluation."""
if self.augment:
hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0
hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0
transforms = v8_transforms(self, self.imgsz, hyp, stretch=True)
else:
# transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), auto=False, scaleFill=True)])
transforms = Compose([])
transforms.append(
Format(
bbox_format="xywh",
normalize=True,
return_mask=self.use_segments,
return_keypoint=self.use_keypoints,
batch_idx=True,
mask_ratio=hyp.mask_ratio,
mask_overlap=hyp.overlap_mask,
)
)
return transforms
class RTDETRValidator(DetectionValidator):
"""
RTDETRValidator extends the DetectionValidator class to provide validation capabilities specifically tailored for
the RT-DETR (Real-Time DETR) object detection model.
The class allows building of an RTDETR-specific dataset for validation, applies Non-maximum suppression for
post-processing, and updates evaluation metrics accordingly.
Example:
```python
from ultralytics.models.rtdetr import RTDETRValidator
args = dict(model='rtdetr-l.pt', data='coco8.yaml')
validator = RTDETRValidator(args=args)
validator()
```
Note:
For further details on the attributes and methods, refer to the parent DetectionValidator class.
"""
def build_dataset(self, img_path, mode="val", batch=None):
"""
Build an RTDETR Dataset.
Args:
img_path (str): Path to the folder containing images.
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
"""
return RTDETRDataset(
img_path=img_path,
imgsz=self.args.imgsz,
batch_size=batch,
augment=False, # no augmentation
hyp=self.args,
rect=False, # no rect
cache=self.args.cache or None,
prefix=colorstr(f"{mode}: "),
data=self.data,
)
def postprocess(self, preds):
"""Apply Non-maximum suppression to prediction outputs."""
bs, _, nd = preds[0].shape
bboxes, scores = preds[0].split((4, nd - 4), dim=-1)
bboxes *= self.args.imgsz
outputs = [torch.zeros((0, 6), device=bboxes.device)] * bs
for i, bbox in enumerate(bboxes): # (300, 4)
bbox = ops.xywh2xyxy(bbox)
score, cls = scores[i].max(-1) # (300, )
# Do not need threshold for evaluation as only got 300 boxes here
# idx = score > self.args.conf
pred = torch.cat([bbox, score[..., None], cls[..., None]], dim=-1) # filter
# Sort by confidence to correctly get internal metrics
pred = pred[score.argsort(descending=True)]
outputs[i] = pred # [idx]
return outputs
def _prepare_batch(self, si, batch):
"""Prepares a batch for training or inference by applying transformations."""
idx = batch["batch_idx"] == si
cls = batch["cls"][idx].squeeze(-1)
bbox = batch["bboxes"][idx]
ori_shape = batch["ori_shape"][si]
imgsz = batch["img"].shape[2:]
ratio_pad = batch["ratio_pad"][si]
if len(cls):
bbox = ops.xywh2xyxy(bbox) # target boxes
bbox[..., [0, 2]] *= ori_shape[1] # native-space pred
bbox[..., [1, 3]] *= ori_shape[0] # native-space pred
return dict(cls=cls, bbox=bbox, ori_shape=ori_shape, imgsz=imgsz, ratio_pad=ratio_pad)
def _prepare_pred(self, pred, pbatch):
"""Prepares and returns a batch with transformed bounding boxes and class labels."""
predn = pred.clone()
predn[..., [0, 2]] *= pbatch["ori_shape"][1] / self.args.imgsz # native-space pred
predn[..., [1, 3]] *= pbatch["ori_shape"][0] / self.args.imgsz # native-space pred
return predn.float()
| 5,401 | Python | .py | 111 | 39.288288 | 118 | 0.623458 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,829 | train.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/rtdetr/train.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from copy import copy
import torch
from ultralytics.models.yolo.detect import DetectionTrainer
from ultralytics.nn.tasks import RTDETRDetectionModel
from ultralytics.utils import RANK, colorstr
from .val import RTDETRDataset, RTDETRValidator
class RTDETRTrainer(DetectionTrainer):
"""
Trainer class for the RT-DETR model developed by Baidu for real-time object detection. Extends the DetectionTrainer
class for YOLO to adapt to the specific features and architecture of RT-DETR. This model leverages Vision
Transformers and has capabilities like IoU-aware query selection and adaptable inference speed.
Notes:
- F.grid_sample used in RT-DETR does not support the `deterministic=True` argument.
- AMP training can lead to NaN outputs and may produce errors during bipartite graph matching.
Example:
```python
from ultralytics.models.rtdetr.train import RTDETRTrainer
args = dict(model='rtdetr-l.yaml', data='coco8.yaml', imgsz=640, epochs=3)
trainer = RTDETRTrainer(overrides=args)
trainer.train()
```
"""
def get_model(self, cfg=None, weights=None, verbose=True):
"""
Initialize and return an RT-DETR model for object detection tasks.
Args:
cfg (dict, optional): Model configuration. Defaults to None.
weights (str, optional): Path to pre-trained model weights. Defaults to None.
verbose (bool): Verbose logging if True. Defaults to True.
Returns:
(RTDETRDetectionModel): Initialized model.
"""
model = RTDETRDetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)
if weights:
model.load(weights)
return model
def build_dataset(self, img_path, mode="val", batch=None):
"""
Build and return an RT-DETR dataset for training or validation.
Args:
img_path (str): Path to the folder containing images.
mode (str): Dataset mode, either 'train' or 'val'.
batch (int, optional): Batch size for rectangle training. Defaults to None.
Returns:
(RTDETRDataset): Dataset object for the specific mode.
"""
return RTDETRDataset(
img_path=img_path,
imgsz=self.args.imgsz,
batch_size=batch,
augment=mode == "train",
hyp=self.args,
rect=False,
cache=self.args.cache or None,
prefix=colorstr(f"{mode}: "),
data=self.data,
)
def get_validator(self):
"""
Returns a DetectionValidator suitable for RT-DETR model validation.
Returns:
(RTDETRValidator): Validator object for model validation.
"""
self.loss_names = "giou_loss", "cls_loss", "l1_loss"
return RTDETRValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))
def preprocess_batch(self, batch):
"""
Preprocess a batch of images. Scales and converts the images to float format.
Args:
batch (dict): Dictionary containing a batch of images, bboxes, and labels.
Returns:
(dict): Preprocessed batch.
"""
batch = super().preprocess_batch(batch)
bs = len(batch["img"])
batch_idx = batch["batch_idx"]
gt_bbox, gt_class = [], []
for i in range(bs):
gt_bbox.append(batch["bboxes"][batch_idx == i].to(batch_idx.device))
gt_class.append(batch["cls"][batch_idx == i].to(device=batch_idx.device, dtype=torch.long))
return batch
| 3,684 | Python | .py | 82 | 35.890244 | 119 | 0.645548 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,830 | __init__.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/rtdetr/__init__.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from .model import RTDETR
from .predict import RTDETRPredictor
from .val import RTDETRValidator
__all__ = "RTDETRPredictor", "RTDETRValidator", "RTDETR"
| 197 | Python | .py | 5 | 38 | 56 | 0.794737 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,831 | model.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/rtdetr/model.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Interface for Baidu's RT-DETR, a Vision Transformer-based real-time object detector. RT-DETR offers real-time
performance and high accuracy, excelling in accelerated backends like CUDA with TensorRT. It features an efficient
hybrid encoder and IoU-aware query selection for enhanced detection accuracy.
For more information on RT-DETR, visit: https://arxiv.org/pdf/2304.08069.pdf
"""
from ultralytics.engine.model import Model
from ultralytics.nn.tasks import RTDETRDetectionModel
from .predict import RTDETRPredictor
from .train import RTDETRTrainer
from .val import RTDETRValidator
class RTDETR(Model):
"""
Interface for Baidu's RT-DETR model. This Vision Transformer-based object detector provides real-time performance
with high accuracy. It supports efficient hybrid encoding, IoU-aware query selection, and adaptable inference speed.
Attributes:
model (str): Path to the pre-trained model. Defaults to 'rtdetr-l.pt'.
"""
def __init__(self, model="rtdetr-l.pt") -> None:
"""
Initializes the RT-DETR model with the given pre-trained model file. Supports .pt and .yaml formats.
Args:
model (str): Path to the pre-trained model. Defaults to 'rtdetr-l.pt'.
Raises:
NotImplementedError: If the model file extension is not 'pt', 'yaml', or 'yml'.
"""
if model and model.split(".")[-1] not in ("pt", "yaml", "yml"):
raise NotImplementedError("RT-DETR only supports creating from *.pt, *.yaml, or *.yml files.")
super().__init__(model=model, task="detect")
@property
def task_map(self) -> dict:
"""
Returns a task map for RT-DETR, associating tasks with corresponding Ultralytics classes.
Returns:
dict: A dictionary mapping task names to Ultralytics task classes for the RT-DETR model.
"""
return {
"detect": {
"predictor": RTDETRPredictor,
"validator": RTDETRValidator,
"trainer": RTDETRTrainer,
"model": RTDETRDetectionModel,
}
}
| 2,167 | Python | .py | 45 | 40.688889 | 120 | 0.678351 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,832 | __init__.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/yolo/__init__.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from ultralytics.models.yolo import classify, detect, obb, pose, segment
from .model import YOLO, YOLOWorld
__all__ = "classify", "segment", "detect", "pose", "obb", "YOLO", "YOLOWorld"
| 231 | Python | .py | 4 | 56 | 77 | 0.723214 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,833 | model.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/yolo/model.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from pathlib import Path
from ultralytics.engine.model import Model
from ultralytics.models import yolo
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, OBBModel, PoseModel, SegmentationModel, WorldModel
from ultralytics.utils import yaml_load, ROOT
class YOLO(Model):
"""YOLO (You Only Look Once) object detection model."""
def __init__(self, model="yolov8n.pt", task=None, verbose=False):
"""Initialize YOLO model, switching to YOLOWorld if model filename contains '-world'."""
stem = Path(model).stem # filename stem without suffix, i.e. "yolov8n"
if "-world" in stem:
new_instance = YOLOWorld(model)
self.__class__ = type(new_instance)
self.__dict__ = new_instance.__dict__
else:
# Continue with default YOLO initialization
super().__init__(model=model, task=task, verbose=verbose)
@property
def task_map(self):
"""Map head to model, trainer, validator, and predictor classes."""
return {
"classify": {
"model": ClassificationModel,
"trainer": yolo.classify.ClassificationTrainer,
"validator": yolo.classify.ClassificationValidator,
"predictor": yolo.classify.ClassificationPredictor,
},
"detect": {
"model": DetectionModel,
"trainer": yolo.detect.DetectionTrainer,
"validator": yolo.detect.DetectionValidator,
"predictor": yolo.detect.DetectionPredictor,
},
"segment": {
"model": SegmentationModel,
"trainer": yolo.segment.SegmentationTrainer,
"validator": yolo.segment.SegmentationValidator,
"predictor": yolo.segment.SegmentationPredictor,
},
"pose": {
"model": PoseModel,
"trainer": yolo.pose.PoseTrainer,
"validator": yolo.pose.PoseValidator,
"predictor": yolo.pose.PosePredictor,
},
"obb": {
"model": OBBModel,
"trainer": yolo.obb.OBBTrainer,
"validator": yolo.obb.OBBValidator,
"predictor": yolo.obb.OBBPredictor,
},
}
class YOLOWorld(Model):
"""YOLO-World object detection model."""
def __init__(self, model="yolov8s-world.pt") -> None:
"""
Initializes the YOLOv8-World model with the given pre-trained model file. Supports *.pt and *.yaml formats.
Args:
model (str): Path to the pre-trained model. Defaults to 'yolov8s-world.pt'.
"""
super().__init__(model=model, task="detect")
# Assign default COCO class names
self.model.names = yaml_load(ROOT / "cfg/datasets/coco8.yaml").get("names")
@property
def task_map(self):
"""Map head to model, validator, and predictor classes."""
return {
"detect": {
"model": WorldModel,
"validator": yolo.detect.DetectionValidator,
"predictor": yolo.detect.DetectionPredictor,
}
}
def set_classes(self, classes):
"""
Set classes.
Args:
classes (List(str)): A list of categories i.e ["person"].
"""
self.model.set_classes(classes)
# Remove background if it's given
background = " "
if background in classes:
classes.remove(background)
self.model.names = classes
# Reset method class names
# self.predictor = None # reset predictor otherwise old names remain
if self.predictor:
self.predictor.model.names = classes
| 3,827 | Python | .py | 90 | 31.488889 | 120 | 0.588125 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,834 | predict.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/yolo/obb/predict.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
from ultralytics.engine.results import Results
from ultralytics.models.yolo.detect.predict import DetectionPredictor
from ultralytics.utils import DEFAULT_CFG, ops
class OBBPredictor(DetectionPredictor):
"""
A class extending the DetectionPredictor class for prediction based on an Oriented Bounding Box (OBB) model.
Example:
```python
from ultralytics.utils import ASSETS
from ultralytics.models.yolo.obb import OBBPredictor
args = dict(model='yolov8n-obb.pt', source=ASSETS)
predictor = OBBPredictor(overrides=args)
predictor.predict_cli()
```
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""Initializes OBBPredictor with optional model and data configuration overrides."""
super().__init__(cfg, overrides, _callbacks)
self.args.task = "obb"
def postprocess(self, preds, img, orig_imgs):
"""Post-processes predictions and returns a list of Results objects."""
preds = ops.non_max_suppression(
preds,
self.args.conf,
self.args.iou,
agnostic=self.args.agnostic_nms,
max_det=self.args.max_det,
nc=len(self.model.names),
classes=self.args.classes,
rotated=True,
)
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
results = []
for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0]):
rboxes = ops.regularize_rboxes(torch.cat([pred[:, :4], pred[:, -1:]], dim=-1))
rboxes[:, :4] = ops.scale_boxes(img.shape[2:], rboxes[:, :4], orig_img.shape, xywh=True)
# xywh, r, conf, cls
obb = torch.cat([rboxes, pred[:, 4:6]], dim=-1)
results.append(Results(orig_img, path=img_path, names=self.model.names, obb=obb))
return results
| 2,037 | Python | .py | 43 | 38.511628 | 112 | 0.641129 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,835 | val.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/yolo/obb/val.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from pathlib import Path
import torch
from ultralytics.models.yolo.detect import DetectionValidator
from ultralytics.utils import LOGGER, ops
from ultralytics.utils.metrics import OBBMetrics, batch_probiou
from ultralytics.utils.plotting import output_to_rotated_target, plot_images
class OBBValidator(DetectionValidator):
"""
A class extending the DetectionValidator class for validation based on an Oriented Bounding Box (OBB) model.
Example:
```python
from ultralytics.models.yolo.obb import OBBValidator
args = dict(model='yolov8n-obb.pt', data='dota8.yaml')
validator = OBBValidator(args=args)
validator(model=args['model'])
```
"""
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
"""Initialize OBBValidator and set task to 'obb', metrics to OBBMetrics."""
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
self.args.task = "obb"
self.metrics = OBBMetrics(save_dir=self.save_dir, plot=True, on_plot=self.on_plot)
def init_metrics(self, model):
"""Initialize evaluation metrics for YOLO."""
super().init_metrics(model)
val = self.data.get(self.args.split, "") # validation path
self.is_dota = isinstance(val, str) and "DOTA" in val # is COCO
def postprocess(self, preds):
"""Apply Non-maximum suppression to prediction outputs."""
return ops.non_max_suppression(
preds,
self.args.conf,
self.args.iou,
labels=self.lb,
nc=self.nc,
multi_label=True,
agnostic=self.args.single_cls,
max_det=self.args.max_det,
rotated=True,
)
def _process_batch(self, detections, gt_bboxes, gt_cls):
"""
Return correct prediction matrix.
Args:
detections (torch.Tensor): Tensor of shape [N, 7] representing detections.
Each detection is of the format: x1, y1, x2, y2, conf, class, angle.
gt_bboxes (torch.Tensor): Tensor of shape [M, 5] representing rotated boxes.
Each box is of the format: x1, y1, x2, y2, angle.
labels (torch.Tensor): Tensor of shape [M] representing labels.
Returns:
(torch.Tensor): Correct prediction matrix of shape [N, 10] for 10 IoU levels.
"""
iou = batch_probiou(gt_bboxes, torch.cat([detections[:, :4], detections[:, -1:]], dim=-1))
return self.match_predictions(detections[:, 5], gt_cls, iou)
def _prepare_batch(self, si, batch):
"""Prepares and returns a batch for OBB validation."""
idx = batch["batch_idx"] == si
cls = batch["cls"][idx].squeeze(-1)
bbox = batch["bboxes"][idx]
ori_shape = batch["ori_shape"][si]
imgsz = batch["img"].shape[2:]
ratio_pad = batch["ratio_pad"][si]
if len(cls):
bbox[..., :4].mul_(torch.tensor(imgsz, device=self.device)[[1, 0, 1, 0]]) # target boxes
ops.scale_boxes(imgsz, bbox, ori_shape, ratio_pad=ratio_pad, xywh=True) # native-space labels
return dict(cls=cls, bbox=bbox, ori_shape=ori_shape, imgsz=imgsz, ratio_pad=ratio_pad)
def _prepare_pred(self, pred, pbatch):
"""Prepares and returns a batch for OBB validation with scaled and padded bounding boxes."""
predn = pred.clone()
ops.scale_boxes(
pbatch["imgsz"], predn[:, :4], pbatch["ori_shape"], ratio_pad=pbatch["ratio_pad"], xywh=True
) # native-space pred
return predn
def plot_predictions(self, batch, preds, ni):
"""Plots predicted bounding boxes on input images and saves the result."""
plot_images(
batch["img"],
*output_to_rotated_target(preds, max_det=self.args.max_det),
paths=batch["im_file"],
fname=self.save_dir / f"val_batch{ni}_pred.jpg",
names=self.names,
on_plot=self.on_plot,
) # pred
def pred_to_json(self, predn, filename):
"""Serialize YOLO predictions to COCO json format."""
stem = Path(filename).stem
image_id = int(stem) if stem.isnumeric() else stem
rbox = torch.cat([predn[:, :4], predn[:, -1:]], dim=-1)
poly = ops.xywhr2xyxyxyxy(rbox).view(-1, 8)
for i, (r, b) in enumerate(zip(rbox.tolist(), poly.tolist())):
self.jdict.append(
{
"image_id": image_id,
"category_id": self.class_map[int(predn[i, 5].item())],
"score": round(predn[i, 4].item(), 5),
"rbox": [round(x, 3) for x in r],
"poly": [round(x, 3) for x in b],
}
)
def save_one_txt(self, predn, save_conf, shape, file):
"""Save YOLO detections to a txt file in normalized coordinates in a specific format."""
gn = torch.tensor(shape)[[1, 0]] # normalization gain whwh
for *xywh, conf, cls, angle in predn.tolist():
xywha = torch.tensor([*xywh, angle]).view(1, 5)
xyxyxyxy = (ops.xywhr2xyxyxyxy(xywha) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xyxyxyxy, conf) if save_conf else (cls, *xyxyxyxy) # label format
with open(file, "a") as f:
f.write(("%g " * len(line)).rstrip() % line + "\n")
def eval_json(self, stats):
"""Evaluates YOLO output in JSON format and returns performance statistics."""
if self.args.save_json and self.is_dota and len(self.jdict):
import json
import re
from collections import defaultdict
pred_json = self.save_dir / "predictions.json" # predictions
pred_txt = self.save_dir / "predictions_txt" # predictions
pred_txt.mkdir(parents=True, exist_ok=True)
data = json.load(open(pred_json))
# Save split results
LOGGER.info(f"Saving predictions with DOTA format to {pred_txt}...")
for d in data:
image_id = d["image_id"]
score = d["score"]
classname = self.names[d["category_id"]].replace(" ", "-")
p = d["poly"]
with open(f'{pred_txt / f"Task1_{classname}"}.txt', "a") as f:
f.writelines(f"{image_id} {score} {p[0]} {p[1]} {p[2]} {p[3]} {p[4]} {p[5]} {p[6]} {p[7]}\n")
# Save merged results, this could result slightly lower map than using official merging script,
# because of the probiou calculation.
pred_merged_txt = self.save_dir / "predictions_merged_txt" # predictions
pred_merged_txt.mkdir(parents=True, exist_ok=True)
merged_results = defaultdict(list)
LOGGER.info(f"Saving merged predictions with DOTA format to {pred_merged_txt}...")
for d in data:
image_id = d["image_id"].split("__")[0]
pattern = re.compile(r"\d+___\d+")
x, y = (int(c) for c in re.findall(pattern, d["image_id"])[0].split("___"))
bbox, score, cls = d["rbox"], d["score"], d["category_id"]
bbox[0] += x
bbox[1] += y
bbox.extend([score, cls])
merged_results[image_id].append(bbox)
for image_id, bbox in merged_results.items():
bbox = torch.tensor(bbox)
max_wh = torch.max(bbox[:, :2]).item() * 2
c = bbox[:, 6:7] * max_wh # classes
scores = bbox[:, 5] # scores
b = bbox[:, :5].clone()
b[:, :2] += c
# 0.3 could get results close to the ones from official merging script, even slightly better.
i = ops.nms_rotated(b, scores, 0.3)
bbox = bbox[i]
b = ops.xywhr2xyxyxyxy(bbox[:, :5]).view(-1, 8)
for x in torch.cat([b, bbox[:, 5:7]], dim=-1).tolist():
classname = self.names[int(x[-1])].replace(" ", "-")
p = [round(i, 3) for i in x[:-2]] # poly
score = round(x[-2], 3)
with open(f'{pred_merged_txt / f"Task1_{classname}"}.txt', "a") as f:
f.writelines(f"{image_id} {score} {p[0]} {p[1]} {p[2]} {p[3]} {p[4]} {p[5]} {p[6]} {p[7]}\n")
return stats
| 8,500 | Python | .py | 161 | 40.962733 | 117 | 0.56356 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,836 | train.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/yolo/obb/train.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from copy import copy
from ultralytics.models import yolo
from ultralytics.nn.tasks import OBBModel
from ultralytics.utils import DEFAULT_CFG, RANK
class OBBTrainer(yolo.detect.DetectionTrainer):
"""
A class extending the DetectionTrainer class for training based on an Oriented Bounding Box (OBB) model.
Example:
```python
from ultralytics.models.yolo.obb import OBBTrainer
args = dict(model='yolov8n-obb.pt', data='dota8.yaml', epochs=3)
trainer = OBBTrainer(overrides=args)
trainer.train()
```
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""Initialize a OBBTrainer object with given arguments."""
if overrides is None:
overrides = {}
overrides["task"] = "obb"
super().__init__(cfg, overrides, _callbacks)
def get_model(self, cfg=None, weights=None, verbose=True):
"""Return OBBModel initialized with specified config and weights."""
model = OBBModel(cfg, ch=3, nc=self.data["nc"], verbose=verbose and RANK == -1)
if weights:
model.load(weights)
return model
def get_validator(self):
"""Return an instance of OBBValidator for validation of YOLO model."""
self.loss_names = "box_loss", "cls_loss", "dfl_loss"
return yolo.obb.OBBValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))
| 1,473 | Python | .py | 32 | 38.84375 | 108 | 0.671558 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,837 | __init__.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/yolo/obb/__init__.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from .predict import OBBPredictor
from .train import OBBTrainer
from .val import OBBValidator
__all__ = "OBBPredictor", "OBBTrainer", "OBBValidator"
| 193 | Python | .py | 5 | 37.2 | 54 | 0.790323 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,838 | predict.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/yolo/detect/predict.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from ultralytics.engine.predictor import BasePredictor
from ultralytics.engine.results import Results
from ultralytics.utils import ops
class DetectionPredictor(BasePredictor):
"""
A class extending the BasePredictor class for prediction based on a detection model.
Example:
```python
from ultralytics.utils import ASSETS
from ultralytics.models.yolo.detect import DetectionPredictor
args = dict(model='yolov8n.pt', source=ASSETS)
predictor = DetectionPredictor(overrides=args)
predictor.predict_cli()
```
"""
def postprocess(self, preds, img, orig_imgs):
"""Post-processes predictions and returns a list of Results objects."""
preds = ops.non_max_suppression(
preds,
self.args.conf,
self.args.iou,
agnostic=self.args.agnostic_nms,
max_det=self.args.max_det,
classes=self.args.classes,
)
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
results = []
for i, pred in enumerate(preds):
orig_img = orig_imgs[i]
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
img_path = self.batch[0][i]
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
return results
| 1,510 | Python | .py | 35 | 34.371429 | 96 | 0.648943 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,839 | val.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/yolo/detect/val.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import os
from pathlib import Path
import numpy as np
import torch
from ultralytics.data import build_dataloader, build_yolo_dataset, converter
from ultralytics.engine.validator import BaseValidator
from ultralytics.utils import LOGGER, ops
from ultralytics.utils.checks import check_requirements
from ultralytics.utils.metrics import ConfusionMatrix, DetMetrics, box_iou
from ultralytics.utils.plotting import output_to_target, plot_images
class DetectionValidator(BaseValidator):
"""
A class extending the BaseValidator class for validation based on a detection model.
Example:
```python
from ultralytics.models.yolo.detect import DetectionValidator
args = dict(model='yolov8n.pt', data='coco8.yaml')
validator = DetectionValidator(args=args)
validator()
```
"""
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
"""Initialize detection model with necessary variables and settings."""
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
self.nt_per_class = None
self.is_coco = False
self.class_map = None
self.args.task = "detect"
self.metrics = DetMetrics(save_dir=self.save_dir, on_plot=self.on_plot)
self.iouv = torch.linspace(0.5, 0.95, 10) # iou vector for [email protected]:0.95
self.niou = self.iouv.numel()
self.lb = [] # for autolabelling
def preprocess(self, batch):
"""Preprocesses batch of images for YOLO training."""
batch["img"] = batch["img"].to(self.device, non_blocking=True)
batch["img"] = (batch["img"].half() if self.args.half else batch["img"].float()) / 255
for k in ["batch_idx", "cls", "bboxes"]:
batch[k] = batch[k].to(self.device)
if self.args.save_hybrid:
height, width = batch["img"].shape[2:]
nb = len(batch["img"])
bboxes = batch["bboxes"] * torch.tensor((width, height, width, height), device=self.device)
self.lb = (
[
torch.cat([batch["cls"][batch["batch_idx"] == i], bboxes[batch["batch_idx"] == i]], dim=-1)
for i in range(nb)
]
if self.args.save_hybrid
else []
) # for autolabelling
return batch
def init_metrics(self, model):
"""Initialize evaluation metrics for YOLO."""
val = self.data.get(self.args.split, "") # validation path
self.is_coco = isinstance(val, str) and "coco" in val and val.endswith(f"{os.sep}val2017.txt") # is COCO
self.class_map = converter.coco80_to_coco91_class() if self.is_coco else list(range(1000))
self.args.save_json |= self.is_coco and not self.training # run on final val if training COCO
self.names = model.names
self.nc = len(model.names)
self.metrics.names = self.names
self.metrics.plot = self.args.plots
self.confusion_matrix = ConfusionMatrix(nc=self.nc, conf=self.args.conf)
self.seen = 0
self.jdict = []
self.stats = dict(tp=[], conf=[], pred_cls=[], target_cls=[])
def get_desc(self):
"""Return a formatted string summarizing class metrics of YOLO model."""
return ("%22s" + "%11s" * 6) % ("Class", "Images", "Instances", "Box(P", "R", "mAP50", "mAP50-95)")
def postprocess(self, preds):
"""Apply Non-maximum suppression to prediction outputs."""
return ops.non_max_suppression(
preds,
self.args.conf,
self.args.iou,
labels=self.lb,
multi_label=True,
agnostic=self.args.single_cls,
max_det=self.args.max_det,
)
def _prepare_batch(self, si, batch):
"""Prepares a batch of images and annotations for validation."""
idx = batch["batch_idx"] == si
cls = batch["cls"][idx].squeeze(-1)
bbox = batch["bboxes"][idx]
ori_shape = batch["ori_shape"][si]
imgsz = batch["img"].shape[2:]
ratio_pad = batch["ratio_pad"][si]
if len(cls):
bbox = ops.xywh2xyxy(bbox) * torch.tensor(imgsz, device=self.device)[[1, 0, 1, 0]] # target boxes
ops.scale_boxes(imgsz, bbox, ori_shape, ratio_pad=ratio_pad) # native-space labels
return dict(cls=cls, bbox=bbox, ori_shape=ori_shape, imgsz=imgsz, ratio_pad=ratio_pad)
def _prepare_pred(self, pred, pbatch):
"""Prepares a batch of images and annotations for validation."""
predn = pred.clone()
ops.scale_boxes(
pbatch["imgsz"], predn[:, :4], pbatch["ori_shape"], ratio_pad=pbatch["ratio_pad"]
) # native-space pred
return predn
def update_metrics(self, preds, batch):
"""Metrics."""
for si, pred in enumerate(preds):
self.seen += 1
npr = len(pred)
stat = dict(
conf=torch.zeros(0, device=self.device),
pred_cls=torch.zeros(0, device=self.device),
tp=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),
)
pbatch = self._prepare_batch(si, batch)
cls, bbox = pbatch.pop("cls"), pbatch.pop("bbox")
nl = len(cls)
stat["target_cls"] = cls
if npr == 0:
if nl:
for k in self.stats.keys():
self.stats[k].append(stat[k])
if self.args.plots:
self.confusion_matrix.process_batch(detections=None, gt_bboxes=bbox, gt_cls=cls)
continue
# Predictions
if self.args.single_cls:
pred[:, 5] = 0
predn = self._prepare_pred(pred, pbatch)
stat["conf"] = predn[:, 4]
stat["pred_cls"] = predn[:, 5]
# Evaluate
if nl:
stat["tp"] = self._process_batch(predn, bbox, cls)
if self.args.plots:
self.confusion_matrix.process_batch(predn, bbox, cls)
for k in self.stats.keys():
self.stats[k].append(stat[k])
# Save
if self.args.save_json:
self.pred_to_json(predn, batch["im_file"][si])
if self.args.save_txt:
file = self.save_dir / "labels" / f'{Path(batch["im_file"][si]).stem}.txt'
self.save_one_txt(predn, self.args.save_conf, pbatch["ori_shape"], file)
def finalize_metrics(self, *args, **kwargs):
"""Set final values for metrics speed and confusion matrix."""
self.metrics.speed = self.speed
self.metrics.confusion_matrix = self.confusion_matrix
def get_stats(self):
"""Returns metrics statistics and results dictionary."""
stats = {k: torch.cat(v, 0).cpu().numpy() for k, v in self.stats.items()} # to numpy
if len(stats) and stats["tp"].any():
self.metrics.process(**stats)
self.nt_per_class = np.bincount(
stats["target_cls"].astype(int), minlength=self.nc
) # number of targets per class
return self.metrics.results_dict
def print_results(self):
"""Prints training/validation set metrics per class."""
pf = "%22s" + "%11i" * 2 + "%11.3g" * len(self.metrics.keys) # print format
LOGGER.info(pf % ("all", self.seen, self.nt_per_class.sum(), *self.metrics.mean_results()))
if self.nt_per_class.sum() == 0:
LOGGER.warning(f"WARNING ⚠� no labels found in {self.args.task} set, can not compute metrics without labels")
# Print results per class
if self.args.verbose and not self.training and self.nc > 1 and len(self.stats):
for i, c in enumerate(self.metrics.ap_class_index):
LOGGER.info(pf % (self.names[c], self.seen, self.nt_per_class[c], *self.metrics.class_result(i)))
if self.args.plots:
for normalize in True, False:
self.confusion_matrix.plot(
save_dir=self.save_dir, names=self.names.values(), normalize=normalize, on_plot=self.on_plot
)
def _process_batch(self, detections, gt_bboxes, gt_cls):
"""
Return correct prediction matrix.
Args:
detections (torch.Tensor): Tensor of shape [N, 6] representing detections.
Each detection is of the format: x1, y1, x2, y2, conf, class.
labels (torch.Tensor): Tensor of shape [M, 5] representing labels.
Each label is of the format: class, x1, y1, x2, y2.
Returns:
(torch.Tensor): Correct prediction matrix of shape [N, 10] for 10 IoU levels.
"""
iou = box_iou(gt_bboxes, detections[:, :4])
return self.match_predictions(detections[:, 5], gt_cls, iou)
def build_dataset(self, img_path, mode="val", batch=None):
"""
Build YOLO Dataset.
Args:
img_path (str): Path to the folder containing images.
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
"""
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, stride=self.stride)
def get_dataloader(self, dataset_path, batch_size):
"""Construct and return dataloader."""
dataset = self.build_dataset(dataset_path, batch=batch_size, mode="val")
return build_dataloader(dataset, batch_size, self.args.workers, shuffle=False, rank=-1) # return dataloader
def plot_val_samples(self, batch, ni):
"""Plot validation image samples."""
plot_images(
batch["img"],
batch["batch_idx"],
batch["cls"].squeeze(-1),
batch["bboxes"],
paths=batch["im_file"],
fname=self.save_dir / f"val_batch{ni}_labels.jpg",
names=self.names,
on_plot=self.on_plot,
)
def plot_predictions(self, batch, preds, ni):
"""Plots predicted bounding boxes on input images and saves the result."""
plot_images(
batch["img"],
*output_to_target(preds, max_det=self.args.max_det),
paths=batch["im_file"],
fname=self.save_dir / f"val_batch{ni}_pred.jpg",
names=self.names,
on_plot=self.on_plot,
) # pred
def save_one_txt(self, predn, save_conf, shape, file):
"""Save YOLO detections to a txt file in normalized coordinates in a specific format."""
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
for *xyxy, conf, cls in predn.tolist():
xywh = (ops.xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(file, "a") as f:
f.write(("%g " * len(line)).rstrip() % line + "\n")
def pred_to_json(self, predn, filename):
"""Serialize YOLO predictions to COCO json format."""
stem = Path(filename).stem
image_id = int(stem) if stem.isnumeric() else stem
box = ops.xyxy2xywh(predn[:, :4]) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for p, b in zip(predn.tolist(), box.tolist()):
self.jdict.append(
{
"image_id": image_id,
"category_id": self.class_map[int(p[5])],
"bbox": [round(x, 3) for x in b],
"score": round(p[4], 5),
}
)
def eval_json(self, stats):
"""Evaluates YOLO output in JSON format and returns performance statistics."""
if self.args.save_json and self.is_coco and len(self.jdict):
anno_json = self.data["path"] / "annotations/instances_val2017.json" # annotations
pred_json = self.save_dir / "predictions.json" # predictions
LOGGER.info(f"\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...")
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
check_requirements("pycocotools>=2.0.6")
from pycocotools.coco import COCO # noqa
from pycocotools.cocoeval import COCOeval # noqa
for x in anno_json, pred_json:
assert x.is_file(), f"{x} file not found"
anno = COCO(str(anno_json)) # init annotations api
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path)
eval = COCOeval(anno, pred, "bbox")
if self.is_coco:
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # images to eval
eval.evaluate()
eval.accumulate()
eval.summarize()
stats[self.metrics.keys[-1]], stats[self.metrics.keys[-2]] = eval.stats[:2] # update mAP50-95 and mAP50
except Exception as e:
LOGGER.warning(f"pycocotools unable to run: {e}")
return stats
| 13,395 | Python | .py | 262 | 39.816794 | 125 | 0.583766 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,840 | train.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/yolo/detect/train.py | # Ultralytics YOLO üöÄ, AGPL-3.0 license
import math
import random
from copy import copy
import numpy as np
import torch.nn as nn
from ultralytics.data import build_dataloader, build_yolo_dataset
from ultralytics.engine.trainer import BaseTrainer
from ultralytics.models import yolo
from ultralytics.nn.tasks import DetectionModel
from ultralytics.utils import LOGGER, RANK
from ultralytics.utils.plotting import plot_images, plot_labels, plot_results
from ultralytics.utils.torch_utils import de_parallel, torch_distributed_zero_first
class DetectionTrainer(BaseTrainer):
"""
A class extending the BaseTrainer class for training based on a detection model.
Example:
```python
from ultralytics.models.yolo.detect import DetectionTrainer
args = dict(model='yolov8n.pt', data='coco8.yaml', epochs=3)
trainer = DetectionTrainer(overrides=args)
trainer.train()
```
"""
def build_dataset(self, img_path, mode="train", batch=None):
"""
Build YOLO Dataset.
Args:
img_path (str): Path to the folder containing images.
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
"""
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
"""Construct and return dataloader."""
assert mode in ["train", "val"]
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
dataset = self.build_dataset(dataset_path, mode, batch_size)
shuffle = mode == "train"
if getattr(dataset, "rect", False) and shuffle:
LOGGER.warning("WARNING ⚠️ 'rect=True' is incompatible with DataLoader shuffle, setting shuffle=False")
shuffle = False
workers = self.args.workers if mode == "train" else self.args.workers * 2
return build_dataloader(dataset, batch_size, workers, shuffle, rank) # return dataloader
def preprocess_batch(self, batch):
"""Preprocesses a batch of images by scaling and converting to float."""
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255
if self.args.multi_scale:
imgs = batch["img"]
sz = (
random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride)
// self.stride
* self.stride
) # size
sf = sz / max(imgs.shape[2:]) # scale factor
if sf != 1:
ns = [
math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
] # new shape (stretched to gs-multiple)
imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)
batch["img"] = imgs
return batch
def set_model_attributes(self):
"""Nl = de_parallel(self.model).model[-1].nl # number of detection layers (to scale hyps)."""
# self.args.box *= 3 / nl # scale to layers
# self.args.cls *= self.data["nc"] / 80 * 3 / nl # scale to classes and layers
# self.args.cls *= (self.args.imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
self.model.nc = self.data["nc"] # attach number of classes to model
self.model.names = self.data["names"] # attach class names to model
self.model.args = self.args # attach hyperparameters to model
# TODO: self.model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc
def get_model(self, cfg=None, weights=None, verbose=True):
"""Return a YOLO detection model."""
model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)
if weights:
model.load(weights)
return model
def get_validator(self):
"""Returns a DetectionValidator for YOLO model validation."""
self.loss_names = "box_loss", "cls_loss", "dfl_loss"
return yolo.detect.DetectionValidator(
self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
)
def label_loss_items(self, loss_items=None, prefix="train"):
"""
Returns a loss dict with labelled training loss items tensor.
Not needed for classification but necessary for segmentation & detection
"""
keys = [f"{prefix}/{x}" for x in self.loss_names]
if loss_items is not None:
loss_items = [round(float(x), 5) for x in loss_items] # convert tensors to 5 decimal place floats
return dict(zip(keys, loss_items))
else:
return keys
def progress_string(self):
"""Returns a formatted string of training progress with epoch, GPU memory, loss, instances and size."""
return ("\n" + "%11s" * (4 + len(self.loss_names))) % (
"Epoch",
"GPU_mem",
*self.loss_names,
"Instances",
"Size",
)
def plot_training_samples(self, batch, ni):
"""Plots training samples with their annotations."""
plot_images(
images=batch["img"],
batch_idx=batch["batch_idx"],
cls=batch["cls"].squeeze(-1),
bboxes=batch["bboxes"],
paths=batch["im_file"],
fname=self.save_dir / f"train_batch{ni}.jpg",
on_plot=self.on_plot,
)
def plot_metrics(self):
"""Plots metrics from a CSV file."""
plot_results(file=self.csv, on_plot=self.on_plot) # save results.png
def plot_training_labels(self):
"""Create a labeled training plot of the YOLO model."""
boxes = np.concatenate([lb["bboxes"] for lb in self.train_loader.dataset.labels], 0)
cls = np.concatenate([lb["cls"] for lb in self.train_loader.dataset.labels], 0)
plot_labels(boxes, cls.squeeze(), names=self.data["names"], save_dir=self.save_dir, on_plot=self.on_plot)
| 6,306 | Python | .py | 123 | 42.073171 | 119 | 0.627779 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,841 | __init__.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/yolo/detect/__init__.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from .predict import DetectionPredictor
from .train import DetectionTrainer
from .val import DetectionValidator
__all__ = "DetectionPredictor", "DetectionTrainer", "DetectionValidator"
| 229 | Python | .py | 5 | 44.4 | 72 | 0.824324 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,842 | predict.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/yolo/pose/predict.py | # Ultralytics YOLO üöÄ, AGPL-3.0 license
from ultralytics.engine.results import Results
from ultralytics.models.yolo.detect.predict import DetectionPredictor
from ultralytics.utils import DEFAULT_CFG, LOGGER, ops
class PosePredictor(DetectionPredictor):
"""
A class extending the DetectionPredictor class for prediction based on a pose model.
Example:
```python
from ultralytics.utils import ASSETS
from ultralytics.models.yolo.pose import PosePredictor
args = dict(model='yolov8n-pose.pt', source=ASSETS)
predictor = PosePredictor(overrides=args)
predictor.predict_cli()
```
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""Initializes PosePredictor, sets task to 'pose' and logs a warning for using 'mps' as device."""
super().__init__(cfg, overrides, _callbacks)
self.args.task = "pose"
if isinstance(self.args.device, str) and self.args.device.lower() == "mps":
LOGGER.warning(
"WARNING ⚠️ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. "
"See https://github.com/ultralytics/ultralytics/issues/4031."
)
def postprocess(self, preds, img, orig_imgs):
"""Return detection results for a given input image or list of images."""
preds = ops.non_max_suppression(
preds,
self.args.conf,
self.args.iou,
agnostic=self.args.agnostic_nms,
max_det=self.args.max_det,
classes=self.args.classes,
nc=len(self.model.names),
)
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
results = []
for i, pred in enumerate(preds):
orig_img = orig_imgs[i]
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape).round()
pred_kpts = pred[:, 6:].view(len(pred), *self.model.kpt_shape) if len(pred) else pred[:, 6:]
pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, orig_img.shape)
img_path = self.batch[0][i]
results.append(
Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], keypoints=pred_kpts)
)
return results
| 2,404 | Python | .py | 49 | 39.306122 | 112 | 0.626598 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,843 | val.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/yolo/pose/val.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from pathlib import Path
import numpy as np
import torch
from ultralytics.models.yolo.detect import DetectionValidator
from ultralytics.utils import LOGGER, ops
from ultralytics.utils.checks import check_requirements
from ultralytics.utils.metrics import OKS_SIGMA, PoseMetrics, box_iou, kpt_iou
from ultralytics.utils.plotting import output_to_target, plot_images
class PoseValidator(DetectionValidator):
"""
A class extending the DetectionValidator class for validation based on a pose model.
Example:
```python
from ultralytics.models.yolo.pose import PoseValidator
args = dict(model='yolov8n-pose.pt', data='coco8-pose.yaml')
validator = PoseValidator(args=args)
validator()
```
"""
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
"""Initialize a 'PoseValidator' object with custom parameters and assigned attributes."""
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
self.sigma = None
self.kpt_shape = None
self.args.task = "pose"
self.metrics = PoseMetrics(save_dir=self.save_dir, on_plot=self.on_plot)
if isinstance(self.args.device, str) and self.args.device.lower() == "mps":
LOGGER.warning(
"WARNING ⚠� Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. "
"See https://github.com/ultralytics/ultralytics/issues/4031."
)
def preprocess(self, batch):
"""Preprocesses the batch by converting the 'keypoints' data into a float and moving it to the device."""
batch = super().preprocess(batch)
batch["keypoints"] = batch["keypoints"].to(self.device).float()
return batch
def get_desc(self):
"""Returns description of evaluation metrics in string format."""
return ("%22s" + "%11s" * 10) % (
"Class",
"Images",
"Instances",
"Box(P",
"R",
"mAP50",
"mAP50-95)",
"Pose(P",
"R",
"mAP50",
"mAP50-95)",
)
def postprocess(self, preds):
"""Apply non-maximum suppression and return detections with high confidence scores."""
return ops.non_max_suppression(
preds,
self.args.conf,
self.args.iou,
labels=self.lb,
multi_label=True,
agnostic=self.args.single_cls,
max_det=self.args.max_det,
nc=self.nc,
)
def init_metrics(self, model):
"""Initiate pose estimation metrics for YOLO model."""
super().init_metrics(model)
self.kpt_shape = self.data["kpt_shape"]
is_pose = self.kpt_shape == [17, 3]
nkpt = self.kpt_shape[0]
self.sigma = OKS_SIGMA if is_pose else np.ones(nkpt) / nkpt
self.stats = dict(tp_p=[], tp=[], conf=[], pred_cls=[], target_cls=[])
def _prepare_batch(self, si, batch):
"""Prepares a batch for processing by converting keypoints to float and moving to device."""
pbatch = super()._prepare_batch(si, batch)
kpts = batch["keypoints"][batch["batch_idx"] == si]
h, w = pbatch["imgsz"]
kpts = kpts.clone()
kpts[..., 0] *= w
kpts[..., 1] *= h
kpts = ops.scale_coords(pbatch["imgsz"], kpts, pbatch["ori_shape"], ratio_pad=pbatch["ratio_pad"])
pbatch["kpts"] = kpts
return pbatch
def _prepare_pred(self, pred, pbatch):
"""Prepares and scales keypoints in a batch for pose processing."""
predn = super()._prepare_pred(pred, pbatch)
nk = pbatch["kpts"].shape[1]
pred_kpts = predn[:, 6:].view(len(predn), nk, -1)
ops.scale_coords(pbatch["imgsz"], pred_kpts, pbatch["ori_shape"], ratio_pad=pbatch["ratio_pad"])
return predn, pred_kpts
def update_metrics(self, preds, batch):
"""Metrics."""
for si, pred in enumerate(preds):
self.seen += 1
npr = len(pred)
stat = dict(
conf=torch.zeros(0, device=self.device),
pred_cls=torch.zeros(0, device=self.device),
tp=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),
tp_p=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),
)
pbatch = self._prepare_batch(si, batch)
cls, bbox = pbatch.pop("cls"), pbatch.pop("bbox")
nl = len(cls)
stat["target_cls"] = cls
if npr == 0:
if nl:
for k in self.stats.keys():
self.stats[k].append(stat[k])
if self.args.plots:
self.confusion_matrix.process_batch(detections=None, gt_bboxes=bbox, gt_cls=cls)
continue
# Predictions
if self.args.single_cls:
pred[:, 5] = 0
predn, pred_kpts = self._prepare_pred(pred, pbatch)
stat["conf"] = predn[:, 4]
stat["pred_cls"] = predn[:, 5]
# Evaluate
if nl:
stat["tp"] = self._process_batch(predn, bbox, cls)
stat["tp_p"] = self._process_batch(predn, bbox, cls, pred_kpts, pbatch["kpts"])
if self.args.plots:
self.confusion_matrix.process_batch(predn, bbox, cls)
for k in self.stats.keys():
self.stats[k].append(stat[k])
# Save
if self.args.save_json:
self.pred_to_json(predn, batch["im_file"][si])
# if self.args.save_txt:
# save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
def _process_batch(self, detections, gt_bboxes, gt_cls, pred_kpts=None, gt_kpts=None):
"""
Return correct prediction matrix.
Args:
detections (torch.Tensor): Tensor of shape [N, 6] representing detections.
Each detection is of the format: x1, y1, x2, y2, conf, class.
labels (torch.Tensor): Tensor of shape [M, 5] representing labels.
Each label is of the format: class, x1, y1, x2, y2.
pred_kpts (torch.Tensor, optional): Tensor of shape [N, 51] representing predicted keypoints.
51 corresponds to 17 keypoints each with 3 values.
gt_kpts (torch.Tensor, optional): Tensor of shape [N, 51] representing ground truth keypoints.
Returns:
torch.Tensor: Correct prediction matrix of shape [N, 10] for 10 IoU levels.
"""
if pred_kpts is not None and gt_kpts is not None:
# `0.53` is from https://github.com/jin-s13/xtcocoapi/blob/master/xtcocotools/cocoeval.py#L384
area = ops.xyxy2xywh(gt_bboxes)[:, 2:].prod(1) * 0.53
iou = kpt_iou(gt_kpts, pred_kpts, sigma=self.sigma, area=area)
else: # boxes
iou = box_iou(gt_bboxes, detections[:, :4])
return self.match_predictions(detections[:, 5], gt_cls, iou)
def plot_val_samples(self, batch, ni):
"""Plots and saves validation set samples with predicted bounding boxes and keypoints."""
plot_images(
batch["img"],
batch["batch_idx"],
batch["cls"].squeeze(-1),
batch["bboxes"],
kpts=batch["keypoints"],
paths=batch["im_file"],
fname=self.save_dir / f"val_batch{ni}_labels.jpg",
names=self.names,
on_plot=self.on_plot,
)
def plot_predictions(self, batch, preds, ni):
"""Plots predictions for YOLO model."""
pred_kpts = torch.cat([p[:, 6:].view(-1, *self.kpt_shape) for p in preds], 0)
plot_images(
batch["img"],
*output_to_target(preds, max_det=self.args.max_det),
kpts=pred_kpts,
paths=batch["im_file"],
fname=self.save_dir / f"val_batch{ni}_pred.jpg",
names=self.names,
on_plot=self.on_plot,
) # pred
def pred_to_json(self, predn, filename):
"""Converts YOLO predictions to COCO JSON format."""
stem = Path(filename).stem
image_id = int(stem) if stem.isnumeric() else stem
box = ops.xyxy2xywh(predn[:, :4]) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for p, b in zip(predn.tolist(), box.tolist()):
self.jdict.append(
{
"image_id": image_id,
"category_id": self.class_map[int(p[5])],
"bbox": [round(x, 3) for x in b],
"keypoints": p[6:],
"score": round(p[4], 5),
}
)
def eval_json(self, stats):
"""Evaluates object detection model using COCO JSON format."""
if self.args.save_json and self.is_coco and len(self.jdict):
anno_json = self.data["path"] / "annotations/person_keypoints_val2017.json" # annotations
pred_json = self.save_dir / "predictions.json" # predictions
LOGGER.info(f"\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...")
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
check_requirements("pycocotools>=2.0.6")
from pycocotools.coco import COCO # noqa
from pycocotools.cocoeval import COCOeval # noqa
for x in anno_json, pred_json:
assert x.is_file(), f"{x} file not found"
anno = COCO(str(anno_json)) # init annotations api
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path)
for i, eval in enumerate([COCOeval(anno, pred, "bbox"), COCOeval(anno, pred, "keypoints")]):
if self.is_coco:
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # im to eval
eval.evaluate()
eval.accumulate()
eval.summarize()
idx = i * 4 + 2
stats[self.metrics.keys[idx + 1]], stats[self.metrics.keys[idx]] = eval.stats[
:2
] # update mAP50-95 and mAP50
except Exception as e:
LOGGER.warning(f"pycocotools unable to run: {e}")
return stats
| 10,607 | Python | .py | 220 | 36.268182 | 120 | 0.565595 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,844 | train.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/yolo/pose/train.py | # Ultralytics YOLO üöÄ, AGPL-3.0 license
from copy import copy
from ultralytics.models import yolo
from ultralytics.nn.tasks import PoseModel
from ultralytics.utils import DEFAULT_CFG, LOGGER
from ultralytics.utils.plotting import plot_images, plot_results
class PoseTrainer(yolo.detect.DetectionTrainer):
"""
A class extending the DetectionTrainer class for training based on a pose model.
Example:
```python
from ultralytics.models.yolo.pose import PoseTrainer
args = dict(model='yolov8n-pose.pt', data='coco8-pose.yaml', epochs=3)
trainer = PoseTrainer(overrides=args)
trainer.train()
```
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""Initialize a PoseTrainer object with specified configurations and overrides."""
if overrides is None:
overrides = {}
overrides["task"] = "pose"
super().__init__(cfg, overrides, _callbacks)
if isinstance(self.args.device, str) and self.args.device.lower() == "mps":
LOGGER.warning(
"WARNING ⚠️ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. "
"See https://github.com/ultralytics/ultralytics/issues/4031."
)
def get_model(self, cfg=None, weights=None, verbose=True):
"""Get pose estimation model with specified configuration and weights."""
model = PoseModel(cfg, ch=3, nc=self.data["nc"], data_kpt_shape=self.data["kpt_shape"], verbose=verbose)
if weights:
model.load(weights)
return model
def set_model_attributes(self):
"""Sets keypoints shape attribute of PoseModel."""
super().set_model_attributes()
self.model.kpt_shape = self.data["kpt_shape"]
def get_validator(self):
"""Returns an instance of the PoseValidator class for validation."""
self.loss_names = "box_loss", "pose_loss", "kobj_loss", "cls_loss", "dfl_loss"
return yolo.pose.PoseValidator(
self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
)
def plot_training_samples(self, batch, ni):
"""Plot a batch of training samples with annotated class labels, bounding boxes, and keypoints."""
images = batch["img"]
kpts = batch["keypoints"]
cls = batch["cls"].squeeze(-1)
bboxes = batch["bboxes"]
paths = batch["im_file"]
batch_idx = batch["batch_idx"]
plot_images(
images,
batch_idx,
cls,
bboxes,
kpts=kpts,
paths=paths,
fname=self.save_dir / f"train_batch{ni}.jpg",
on_plot=self.on_plot,
)
def plot_metrics(self):
"""Plots training/val metrics."""
plot_results(file=self.csv, pose=True, on_plot=self.on_plot) # save results.png
| 2,926 | Python | .py | 65 | 36.230769 | 112 | 0.634352 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,845 | __init__.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/yolo/pose/__init__.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from .predict import PosePredictor
from .train import PoseTrainer
from .val import PoseValidator
__all__ = "PoseTrainer", "PoseValidator", "PosePredictor"
| 199 | Python | .py | 5 | 38.4 | 57 | 0.796875 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,846 | predict.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/yolo/segment/predict.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from ultralytics.engine.results import Results
from ultralytics.models.yolo.detect.predict import DetectionPredictor
from ultralytics.utils import DEFAULT_CFG, ops
class SegmentationPredictor(DetectionPredictor):
"""
A class extending the DetectionPredictor class for prediction based on a segmentation model.
Example:
```python
from ultralytics.utils import ASSETS
from ultralytics.models.yolo.segment import SegmentationPredictor
args = dict(model='yolov8n-seg.pt', source=ASSETS)
predictor = SegmentationPredictor(overrides=args)
predictor.predict_cli()
```
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""Initializes the SegmentationPredictor with the provided configuration, overrides, and callbacks."""
super().__init__(cfg, overrides, _callbacks)
self.args.task = "segment"
def postprocess(self, preds, img, orig_imgs):
"""Applies non-max suppression and processes detections for each image in an input batch."""
p = ops.non_max_suppression(
preds[0],
self.args.conf,
self.args.iou,
agnostic=self.args.agnostic_nms,
max_det=self.args.max_det,
nc=len(self.model.names),
classes=self.args.classes,
)
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
results = []
proto = preds[1][-1] if isinstance(preds[1], tuple) else preds[1] # tuple if PyTorch model or array if exported
for i, pred in enumerate(p):
orig_img = orig_imgs[i]
img_path = self.batch[0][i]
if not len(pred): # save empty boxes
masks = None
elif self.args.retina_masks:
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC
else:
masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks))
return results
| 2,491 | Python | .py | 48 | 42.041667 | 120 | 0.627362 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,847 | val.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/yolo/segment/val.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from multiprocessing.pool import ThreadPool
from pathlib import Path
import numpy as np
import torch
import torch.nn.functional as F
from ultralytics.models.yolo.detect import DetectionValidator
from ultralytics.utils import LOGGER, NUM_THREADS, ops
from ultralytics.utils.checks import check_requirements
from ultralytics.utils.metrics import SegmentMetrics, box_iou, mask_iou
from ultralytics.utils.plotting import output_to_target, plot_images
class SegmentationValidator(DetectionValidator):
"""
A class extending the DetectionValidator class for validation based on a segmentation model.
Example:
```python
from ultralytics.models.yolo.segment import SegmentationValidator
args = dict(model='yolov8n-seg.pt', data='coco8-seg.yaml')
validator = SegmentationValidator(args=args)
validator()
```
"""
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
"""Initialize SegmentationValidator and set task to 'segment', metrics to SegmentMetrics."""
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
self.plot_masks = None
self.process = None
self.args.task = "segment"
self.metrics = SegmentMetrics(save_dir=self.save_dir, on_plot=self.on_plot)
def preprocess(self, batch):
"""Preprocesses batch by converting masks to float and sending to device."""
batch = super().preprocess(batch)
batch["masks"] = batch["masks"].to(self.device).float()
return batch
def init_metrics(self, model):
"""Initialize metrics and select mask processing function based on save_json flag."""
super().init_metrics(model)
self.plot_masks = []
if self.args.save_json:
check_requirements("pycocotools>=2.0.6")
self.process = ops.process_mask_upsample # more accurate
else:
self.process = ops.process_mask # faster
self.stats = dict(tp_m=[], tp=[], conf=[], pred_cls=[], target_cls=[])
def get_desc(self):
"""Return a formatted description of evaluation metrics."""
return ("%22s" + "%11s" * 10) % (
"Class",
"Images",
"Instances",
"Box(P",
"R",
"mAP50",
"mAP50-95)",
"Mask(P",
"R",
"mAP50",
"mAP50-95)",
)
def postprocess(self, preds):
"""Post-processes YOLO predictions and returns output detections with proto."""
p = ops.non_max_suppression(
preds[0],
self.args.conf,
self.args.iou,
labels=self.lb,
multi_label=True,
agnostic=self.args.single_cls,
max_det=self.args.max_det,
nc=self.nc,
)
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
return p, proto
def _prepare_batch(self, si, batch):
"""Prepares a batch for training or inference by processing images and targets."""
prepared_batch = super()._prepare_batch(si, batch)
midx = [si] if self.args.overlap_mask else batch["batch_idx"] == si
prepared_batch["masks"] = batch["masks"][midx]
return prepared_batch
def _prepare_pred(self, pred, pbatch, proto):
"""Prepares a batch for training or inference by processing images and targets."""
predn = super()._prepare_pred(pred, pbatch)
pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=pbatch["imgsz"])
return predn, pred_masks
def update_metrics(self, preds, batch):
"""Metrics."""
for si, (pred, proto) in enumerate(zip(preds[0], preds[1])):
self.seen += 1
npr = len(pred)
stat = dict(
conf=torch.zeros(0, device=self.device),
pred_cls=torch.zeros(0, device=self.device),
tp=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),
tp_m=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),
)
pbatch = self._prepare_batch(si, batch)
cls, bbox = pbatch.pop("cls"), pbatch.pop("bbox")
nl = len(cls)
stat["target_cls"] = cls
if npr == 0:
if nl:
for k in self.stats.keys():
self.stats[k].append(stat[k])
if self.args.plots:
self.confusion_matrix.process_batch(detections=None, gt_bboxes=bbox, gt_cls=cls)
continue
# Masks
gt_masks = pbatch.pop("masks")
# Predictions
if self.args.single_cls:
pred[:, 5] = 0
predn, pred_masks = self._prepare_pred(pred, pbatch, proto)
stat["conf"] = predn[:, 4]
stat["pred_cls"] = predn[:, 5]
# Evaluate
if nl:
stat["tp"] = self._process_batch(predn, bbox, cls)
stat["tp_m"] = self._process_batch(
predn, bbox, cls, pred_masks, gt_masks, self.args.overlap_mask, masks=True
)
if self.args.plots:
self.confusion_matrix.process_batch(predn, bbox, cls)
for k in self.stats.keys():
self.stats[k].append(stat[k])
pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
if self.args.plots and self.batch_i < 3:
self.plot_masks.append(pred_masks[:15].cpu()) # filter top 15 to plot
# Save
if self.args.save_json:
pred_masks = ops.scale_image(
pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(),
pbatch["ori_shape"],
ratio_pad=batch["ratio_pad"][si],
)
self.pred_to_json(predn, batch["im_file"][si], pred_masks)
# if self.args.save_txt:
# save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
def finalize_metrics(self, *args, **kwargs):
"""Sets speed and confusion matrix for evaluation metrics."""
self.metrics.speed = self.speed
self.metrics.confusion_matrix = self.confusion_matrix
def _process_batch(self, detections, gt_bboxes, gt_cls, pred_masks=None, gt_masks=None, overlap=False, masks=False):
"""
Return correct prediction matrix.
Args:
detections (array[N, 6]), x1, y1, x2, y2, conf, class
labels (array[M, 5]), class, x1, y1, x2, y2
Returns:
correct (array[N, 10]), for 10 IoU levels
"""
if masks:
if overlap:
nl = len(gt_cls)
index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1
gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640)
gt_masks = torch.where(gt_masks == index, 1.0, 0.0)
if gt_masks.shape[1:] != pred_masks.shape[1:]:
gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode="bilinear", align_corners=False)[0]
gt_masks = gt_masks.gt_(0.5)
iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1))
else: # boxes
iou = box_iou(gt_bboxes, detections[:, :4])
return self.match_predictions(detections[:, 5], gt_cls, iou)
def plot_val_samples(self, batch, ni):
"""Plots validation samples with bounding box labels."""
plot_images(
batch["img"],
batch["batch_idx"],
batch["cls"].squeeze(-1),
batch["bboxes"],
masks=batch["masks"],
paths=batch["im_file"],
fname=self.save_dir / f"val_batch{ni}_labels.jpg",
names=self.names,
on_plot=self.on_plot,
)
def plot_predictions(self, batch, preds, ni):
"""Plots batch predictions with masks and bounding boxes."""
plot_images(
batch["img"],
*output_to_target(preds[0], max_det=15), # not set to self.args.max_det due to slow plotting speed
torch.cat(self.plot_masks, dim=0) if len(self.plot_masks) else self.plot_masks,
paths=batch["im_file"],
fname=self.save_dir / f"val_batch{ni}_pred.jpg",
names=self.names,
on_plot=self.on_plot,
) # pred
self.plot_masks.clear()
def pred_to_json(self, predn, filename, pred_masks):
"""
Save one JSON result.
Examples:
>>> result = {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
"""
from pycocotools.mask import encode # noqa
def single_encode(x):
"""Encode predicted masks as RLE and append results to jdict."""
rle = encode(np.asarray(x[:, :, None], order="F", dtype="uint8"))[0]
rle["counts"] = rle["counts"].decode("utf-8")
return rle
stem = Path(filename).stem
image_id = int(stem) if stem.isnumeric() else stem
box = ops.xyxy2xywh(predn[:, :4]) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
pred_masks = np.transpose(pred_masks, (2, 0, 1))
with ThreadPool(NUM_THREADS) as pool:
rles = pool.map(single_encode, pred_masks)
for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())):
self.jdict.append(
{
"image_id": image_id,
"category_id": self.class_map[int(p[5])],
"bbox": [round(x, 3) for x in b],
"score": round(p[4], 5),
"segmentation": rles[i],
}
)
def eval_json(self, stats):
"""Return COCO-style object detection evaluation metrics."""
if self.args.save_json and self.is_coco and len(self.jdict):
anno_json = self.data["path"] / "annotations/instances_val2017.json" # annotations
pred_json = self.save_dir / "predictions.json" # predictions
LOGGER.info(f"\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...")
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
check_requirements("pycocotools>=2.0.6")
from pycocotools.coco import COCO # noqa
from pycocotools.cocoeval import COCOeval # noqa
for x in anno_json, pred_json:
assert x.is_file(), f"{x} file not found"
anno = COCO(str(anno_json)) # init annotations api
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path)
for i, eval in enumerate([COCOeval(anno, pred, "bbox"), COCOeval(anno, pred, "segm")]):
if self.is_coco:
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # im to eval
eval.evaluate()
eval.accumulate()
eval.summarize()
idx = i * 4 + 2
stats[self.metrics.keys[idx + 1]], stats[self.metrics.keys[idx]] = eval.stats[
:2
] # update mAP50-95 and mAP50
except Exception as e:
LOGGER.warning(f"pycocotools unable to run: {e}")
return stats
| 11,745 | Python | .py | 244 | 36.028689 | 120 | 0.560691 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,848 | train.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/yolo/segment/train.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from copy import copy
from ultralytics.models import yolo
from ultralytics.nn.tasks import SegmentationModel
from ultralytics.utils import DEFAULT_CFG, RANK
from ultralytics.utils.plotting import plot_images, plot_results
class SegmentationTrainer(yolo.detect.DetectionTrainer):
"""
A class extending the DetectionTrainer class for training based on a segmentation model.
Example:
```python
from ultralytics.models.yolo.segment import SegmentationTrainer
args = dict(model='yolov8n-seg.pt', data='coco8-seg.yaml', epochs=3)
trainer = SegmentationTrainer(overrides=args)
trainer.train()
```
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""Initialize a SegmentationTrainer object with given arguments."""
if overrides is None:
overrides = {}
overrides["task"] = "segment"
super().__init__(cfg, overrides, _callbacks)
def get_model(self, cfg=None, weights=None, verbose=True):
"""Return SegmentationModel initialized with specified config and weights."""
model = SegmentationModel(cfg, ch=3, nc=self.data["nc"], verbose=verbose and RANK == -1)
if weights:
model.load(weights)
return model
def get_validator(self):
"""Return an instance of SegmentationValidator for validation of YOLO model."""
self.loss_names = "box_loss", "seg_loss", "cls_loss", "dfl_loss"
return yolo.segment.SegmentationValidator(
self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
)
def plot_training_samples(self, batch, ni):
"""Creates a plot of training sample images with labels and box coordinates."""
plot_images(
batch["img"],
batch["batch_idx"],
batch["cls"].squeeze(-1),
batch["bboxes"],
masks=batch["masks"],
paths=batch["im_file"],
fname=self.save_dir / f"train_batch{ni}.jpg",
on_plot=self.on_plot,
)
def plot_metrics(self):
"""Plots training/val metrics."""
plot_results(file=self.csv, segment=True, on_plot=self.on_plot) # save results.png
| 2,298 | Python | .py | 50 | 37.68 | 101 | 0.655188 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,849 | __init__.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/yolo/segment/__init__.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from .predict import SegmentationPredictor
from .train import SegmentationTrainer
from .val import SegmentationValidator
__all__ = "SegmentationPredictor", "SegmentationTrainer", "SegmentationValidator"
| 247 | Python | .py | 5 | 48 | 81 | 0.8375 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,850 | predict.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/yolo/classify/predict.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import cv2
import torch
from PIL import Image
from ultralytics.engine.predictor import BasePredictor
from ultralytics.engine.results import Results
from ultralytics.utils import DEFAULT_CFG, ops
class ClassificationPredictor(BasePredictor):
"""
A class extending the BasePredictor class for prediction based on a classification model.
Notes:
- Torchvision classification models can also be passed to the 'model' argument, i.e. model='resnet18'.
Example:
```python
from ultralytics.utils import ASSETS
from ultralytics.models.yolo.classify import ClassificationPredictor
args = dict(model='yolov8n-cls.pt', source=ASSETS)
predictor = ClassificationPredictor(overrides=args)
predictor.predict_cli()
```
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""Initializes ClassificationPredictor setting the task to 'classify'."""
super().__init__(cfg, overrides, _callbacks)
self.args.task = "classify"
self._legacy_transform_name = "ultralytics.yolo.data.augment.ToTensor"
def preprocess(self, img):
"""Converts input image to model-compatible data type."""
if not isinstance(img, torch.Tensor):
is_legacy_transform = any(
self._legacy_transform_name in str(transform) for transform in self.transforms.transforms
)
if is_legacy_transform: # to handle legacy transforms
img = torch.stack([self.transforms(im) for im in img], dim=0)
else:
img = torch.stack(
[self.transforms(Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB))) for im in img], dim=0
)
img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device)
return img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
def postprocess(self, preds, img, orig_imgs):
"""Post-processes predictions to return Results objects."""
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
results = []
for i, pred in enumerate(preds):
orig_img = orig_imgs[i]
img_path = self.batch[0][i]
results.append(Results(orig_img, path=img_path, names=self.model.names, probs=pred))
return results
| 2,513 | Python | .py | 50 | 41.44 | 112 | 0.665579 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,851 | val.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/yolo/classify/val.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
from ultralytics.data import ClassificationDataset, build_dataloader
from ultralytics.engine.validator import BaseValidator
from ultralytics.utils import LOGGER
from ultralytics.utils.metrics import ClassifyMetrics, ConfusionMatrix
from ultralytics.utils.plotting import plot_images
class ClassificationValidator(BaseValidator):
"""
A class extending the BaseValidator class for validation based on a classification model.
Notes:
- Torchvision classification models can also be passed to the 'model' argument, i.e. model='resnet18'.
Example:
```python
from ultralytics.models.yolo.classify import ClassificationValidator
args = dict(model='yolov8n-cls.pt', data='imagenet10')
validator = ClassificationValidator(args=args)
validator()
```
"""
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
"""Initializes ClassificationValidator instance with args, dataloader, save_dir, and progress bar."""
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
self.targets = None
self.pred = None
self.args.task = "classify"
self.metrics = ClassifyMetrics()
def get_desc(self):
"""Returns a formatted string summarizing classification metrics."""
return ("%22s" + "%11s" * 2) % ("classes", "top1_acc", "top5_acc")
def init_metrics(self, model):
"""Initialize confusion matrix, class names, and top-1 and top-5 accuracy."""
self.names = model.names
self.nc = len(model.names)
self.confusion_matrix = ConfusionMatrix(nc=self.nc, conf=self.args.conf, task="classify")
self.pred = []
self.targets = []
def preprocess(self, batch):
"""Preprocesses input batch and returns it."""
batch["img"] = batch["img"].to(self.device, non_blocking=True)
batch["img"] = batch["img"].half() if self.args.half else batch["img"].float()
batch["cls"] = batch["cls"].to(self.device)
return batch
def update_metrics(self, preds, batch):
"""Updates running metrics with model predictions and batch targets."""
n5 = min(len(self.names), 5)
self.pred.append(preds.argsort(1, descending=True)[:, :n5])
self.targets.append(batch["cls"])
def finalize_metrics(self, *args, **kwargs):
"""Finalizes metrics of the model such as confusion_matrix and speed."""
self.confusion_matrix.process_cls_preds(self.pred, self.targets)
if self.args.plots:
for normalize in True, False:
self.confusion_matrix.plot(
save_dir=self.save_dir, names=self.names.values(), normalize=normalize, on_plot=self.on_plot
)
self.metrics.speed = self.speed
self.metrics.confusion_matrix = self.confusion_matrix
self.metrics.save_dir = self.save_dir
def get_stats(self):
"""Returns a dictionary of metrics obtained by processing targets and predictions."""
self.metrics.process(self.targets, self.pred)
return self.metrics.results_dict
def build_dataset(self, img_path):
"""Creates and returns a ClassificationDataset instance using given image path and preprocessing parameters."""
return ClassificationDataset(root=img_path, args=self.args, augment=False, prefix=self.args.split)
def get_dataloader(self, dataset_path, batch_size):
"""Builds and returns a data loader for classification tasks with given parameters."""
dataset = self.build_dataset(dataset_path)
return build_dataloader(dataset, batch_size, self.args.workers, rank=-1)
def print_results(self):
"""Prints evaluation metrics for YOLO object detection model."""
pf = "%22s" + "%11.3g" * len(self.metrics.keys) # print format
LOGGER.info(pf % ("all", self.metrics.top1, self.metrics.top5))
def plot_val_samples(self, batch, ni):
"""Plot validation image samples."""
plot_images(
images=batch["img"],
batch_idx=torch.arange(len(batch["img"])),
cls=batch["cls"].view(-1), # warning: use .view(), not .squeeze() for Classify models
fname=self.save_dir / f"val_batch{ni}_labels.jpg",
names=self.names,
on_plot=self.on_plot,
)
def plot_predictions(self, batch, preds, ni):
"""Plots predicted bounding boxes on input images and saves the result."""
plot_images(
batch["img"],
batch_idx=torch.arange(len(batch["img"])),
cls=torch.argmax(preds, dim=1),
fname=self.save_dir / f"val_batch{ni}_pred.jpg",
names=self.names,
on_plot=self.on_plot,
) # pred
| 4,861 | Python | .py | 94 | 43.06383 | 119 | 0.656908 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,852 | train.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/yolo/classify/train.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
import torchvision
from ultralytics.data import ClassificationDataset, build_dataloader
from ultralytics.engine.trainer import BaseTrainer
from ultralytics.models import yolo
from ultralytics.nn.tasks import ClassificationModel, attempt_load_one_weight
from ultralytics.utils import DEFAULT_CFG, LOGGER, RANK, colorstr
from ultralytics.utils.plotting import plot_images, plot_results
from ultralytics.utils.torch_utils import is_parallel, strip_optimizer, torch_distributed_zero_first
class ClassificationTrainer(BaseTrainer):
"""
A class extending the BaseTrainer class for training based on a classification model.
Notes:
- Torchvision classification models can also be passed to the 'model' argument, i.e. model='resnet18'.
Example:
```python
from ultralytics.models.yolo.classify import ClassificationTrainer
args = dict(model='yolov8n-cls.pt', data='imagenet10', epochs=3)
trainer = ClassificationTrainer(overrides=args)
trainer.train()
```
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""Initialize a ClassificationTrainer object with optional configuration overrides and callbacks."""
if overrides is None:
overrides = {}
overrides["task"] = "classify"
if overrides.get("imgsz") is None:
overrides["imgsz"] = 224
super().__init__(cfg, overrides, _callbacks)
def set_model_attributes(self):
"""Set the YOLO model's class names from the loaded dataset."""
self.model.names = self.data["names"]
def get_model(self, cfg=None, weights=None, verbose=True):
"""Returns a modified PyTorch model configured for training YOLO."""
model = ClassificationModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)
if weights:
model.load(weights)
for m in model.modules():
if not self.args.pretrained and hasattr(m, "reset_parameters"):
m.reset_parameters()
if isinstance(m, torch.nn.Dropout) and self.args.dropout:
m.p = self.args.dropout # set dropout
for p in model.parameters():
p.requires_grad = True # for training
return model
def setup_model(self):
"""Load, create or download model for any task."""
if isinstance(self.model, torch.nn.Module): # if model is loaded beforehand. No setup needed
return
model, ckpt = str(self.model), None
# Load a YOLO model locally, from torchvision, or from Ultralytics assets
if model.endswith(".pt"):
self.model, ckpt = attempt_load_one_weight(model, device="cpu")
for p in self.model.parameters():
p.requires_grad = True # for training
elif model.split(".")[-1] in ("yaml", "yml"):
self.model = self.get_model(cfg=model)
elif model in torchvision.models.__dict__:
self.model = torchvision.models.__dict__[model](weights="IMAGENET1K_V1" if self.args.pretrained else None)
else:
FileNotFoundError(f"ERROR: model={model} not found locally or online. Please check model name.")
ClassificationModel.reshape_outputs(self.model, self.data["nc"])
return ckpt
def build_dataset(self, img_path, mode="train", batch=None):
"""Creates a ClassificationDataset instance given an image path, and mode (train/test etc.)."""
return ClassificationDataset(root=img_path, args=self.args, augment=mode == "train", prefix=mode)
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
"""Returns PyTorch DataLoader with transforms to preprocess images for inference."""
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
dataset = self.build_dataset(dataset_path, mode)
loader = build_dataloader(dataset, batch_size, self.args.workers, rank=rank)
# Attach inference transforms
if mode != "train":
if is_parallel(self.model):
self.model.module.transforms = loader.dataset.torch_transforms
else:
self.model.transforms = loader.dataset.torch_transforms
return loader
def preprocess_batch(self, batch):
"""Preprocesses a batch of images and classes."""
batch["img"] = batch["img"].to(self.device)
batch["cls"] = batch["cls"].to(self.device)
return batch
def progress_string(self):
"""Returns a formatted string showing training progress."""
return ("\n" + "%11s" * (4 + len(self.loss_names))) % (
"Epoch",
"GPU_mem",
*self.loss_names,
"Instances",
"Size",
)
def get_validator(self):
"""Returns an instance of ClassificationValidator for validation."""
self.loss_names = ["loss"]
return yolo.classify.ClassificationValidator(self.test_loader, self.save_dir, _callbacks=self.callbacks)
def label_loss_items(self, loss_items=None, prefix="train"):
"""
Returns a loss dict with labelled training loss items tensor.
Not needed for classification but necessary for segmentation & detection
"""
keys = [f"{prefix}/{x}" for x in self.loss_names]
if loss_items is None:
return keys
loss_items = [round(float(loss_items), 5)]
return dict(zip(keys, loss_items))
def plot_metrics(self):
"""Plots metrics from a CSV file."""
plot_results(file=self.csv, classify=True, on_plot=self.on_plot) # save results.png
def final_eval(self):
"""Evaluate trained model and save validation results."""
for f in self.last, self.best:
if f.exists():
strip_optimizer(f) # strip optimizers
if f is self.best:
LOGGER.info(f"\nValidating {f}...")
self.validator.args.data = self.args.data
self.validator.args.plots = self.args.plots
self.metrics = self.validator(model=f)
self.metrics.pop("fitness", None)
self.run_callbacks("on_fit_epoch_end")
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}")
def plot_training_samples(self, batch, ni):
"""Plots training samples with their annotations."""
plot_images(
images=batch["img"],
batch_idx=torch.arange(len(batch["img"])),
cls=batch["cls"].view(-1), # warning: use .view(), not .squeeze() for Classify models
fname=self.save_dir / f"train_batch{ni}.jpg",
on_plot=self.on_plot,
)
| 6,832 | Python | .py | 133 | 41.609023 | 118 | 0.639197 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,853 | __init__.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/yolo/classify/__init__.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from ultralytics.models.yolo.classify.predict import ClassificationPredictor
from ultralytics.models.yolo.classify.train import ClassificationTrainer
from ultralytics.models.yolo.classify.val import ClassificationValidator
__all__ = "ClassificationPredictor", "ClassificationTrainer", "ClassificationValidator"
| 355 | Python | .py | 5 | 69.6 | 87 | 0.862069 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,854 | prompt.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/fastsam/prompt.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import os
from pathlib import Path
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
from PIL import Image
from ultralytics.utils import TQDM
class FastSAMPrompt:
"""
Fast Segment Anything Model class for image annotation and visualization.
Attributes:
device (str): Computing device ('cuda' or 'cpu').
results: Object detection or segmentation results.
source: Source image or image path.
clip: CLIP model for linear assignment.
"""
def __init__(self, source, results, device="cuda") -> None:
"""Initializes FastSAMPrompt with given source, results and device, and assigns clip for linear assignment."""
self.device = device
self.results = results
self.source = source
# Import and assign clip
try:
import clip
except ImportError:
from ultralytics.utils.checks import check_requirements
check_requirements("git+https://github.com/openai/CLIP.git")
import clip
self.clip = clip
@staticmethod
def _segment_image(image, bbox):
"""Segments the given image according to the provided bounding box coordinates."""
image_array = np.array(image)
segmented_image_array = np.zeros_like(image_array)
x1, y1, x2, y2 = bbox
segmented_image_array[y1:y2, x1:x2] = image_array[y1:y2, x1:x2]
segmented_image = Image.fromarray(segmented_image_array)
black_image = Image.new("RGB", image.size, (255, 255, 255))
# transparency_mask = np.zeros_like((), dtype=np.uint8)
transparency_mask = np.zeros((image_array.shape[0], image_array.shape[1]), dtype=np.uint8)
transparency_mask[y1:y2, x1:x2] = 255
transparency_mask_image = Image.fromarray(transparency_mask, mode="L")
black_image.paste(segmented_image, mask=transparency_mask_image)
return black_image
@staticmethod
def _format_results(result, filter=0):
"""Formats detection results into list of annotations each containing ID, segmentation, bounding box, score and
area.
"""
annotations = []
n = len(result.masks.data) if result.masks is not None else 0
for i in range(n):
mask = result.masks.data[i] == 1.0
if torch.sum(mask) >= filter:
annotation = {
"id": i,
"segmentation": mask.cpu().numpy(),
"bbox": result.boxes.data[i],
"score": result.boxes.conf[i],
}
annotation["area"] = annotation["segmentation"].sum()
annotations.append(annotation)
return annotations
@staticmethod
def _get_bbox_from_mask(mask):
"""Applies morphological transformations to the mask, displays it, and if with_contours is True, draws
contours.
"""
mask = mask.astype(np.uint8)
contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
x1, y1, w, h = cv2.boundingRect(contours[0])
x2, y2 = x1 + w, y1 + h
if len(contours) > 1:
for b in contours:
x_t, y_t, w_t, h_t = cv2.boundingRect(b)
x1 = min(x1, x_t)
y1 = min(y1, y_t)
x2 = max(x2, x_t + w_t)
y2 = max(y2, y_t + h_t)
return [x1, y1, x2, y2]
def plot(
self,
annotations,
output,
bbox=None,
points=None,
point_label=None,
mask_random_color=True,
better_quality=True,
retina=False,
with_contours=True,
):
"""
Plots annotations, bounding boxes, and points on images and saves the output.
Args:
annotations (list): Annotations to be plotted.
output (str or Path): Output directory for saving the plots.
bbox (list, optional): Bounding box coordinates [x1, y1, x2, y2]. Defaults to None.
points (list, optional): Points to be plotted. Defaults to None.
point_label (list, optional): Labels for the points. Defaults to None.
mask_random_color (bool, optional): Whether to use random color for masks. Defaults to True.
better_quality (bool, optional): Whether to apply morphological transformations for better mask quality. Defaults to True.
retina (bool, optional): Whether to use retina mask. Defaults to False.
with_contours (bool, optional): Whether to plot contours. Defaults to True.
"""
pbar = TQDM(annotations, total=len(annotations))
for ann in pbar:
result_name = os.path.basename(ann.path)
image = ann.orig_img[..., ::-1] # BGR to RGB
original_h, original_w = ann.orig_shape
# For macOS only
# plt.switch_backend('TkAgg')
plt.figure(figsize=(original_w / 100, original_h / 100))
# Add subplot with no margin.
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
plt.margins(0, 0)
plt.gca().xaxis.set_major_locator(plt.NullLocator())
plt.gca().yaxis.set_major_locator(plt.NullLocator())
plt.imshow(image)
if ann.masks is not None:
masks = ann.masks.data
if better_quality:
if isinstance(masks[0], torch.Tensor):
masks = np.array(masks.cpu())
for i, mask in enumerate(masks):
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))
masks[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))
self.fast_show_mask(
masks,
plt.gca(),
random_color=mask_random_color,
bbox=bbox,
points=points,
pointlabel=point_label,
retinamask=retina,
target_height=original_h,
target_width=original_w,
)
if with_contours:
contour_all = []
temp = np.zeros((original_h, original_w, 1))
for i, mask in enumerate(masks):
mask = mask.astype(np.uint8)
if not retina:
mask = cv2.resize(mask, (original_w, original_h), interpolation=cv2.INTER_NEAREST)
contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contour_all.extend(iter(contours))
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
color = np.array([0 / 255, 0 / 255, 1.0, 0.8])
contour_mask = temp / 255 * color.reshape(1, 1, -1)
plt.imshow(contour_mask)
# Save the figure
save_path = Path(output) / result_name
save_path.parent.mkdir(exist_ok=True, parents=True)
plt.axis("off")
plt.savefig(save_path, bbox_inches="tight", pad_inches=0, transparent=True)
plt.close()
pbar.set_description(f"Saving {result_name} to {save_path}")
@staticmethod
def fast_show_mask(
annotation,
ax,
random_color=False,
bbox=None,
points=None,
pointlabel=None,
retinamask=True,
target_height=960,
target_width=960,
):
"""
Quickly shows the mask annotations on the given matplotlib axis.
Args:
annotation (array-like): Mask annotation.
ax (matplotlib.axes.Axes): Matplotlib axis.
random_color (bool, optional): Whether to use random color for masks. Defaults to False.
bbox (list, optional): Bounding box coordinates [x1, y1, x2, y2]. Defaults to None.
points (list, optional): Points to be plotted. Defaults to None.
pointlabel (list, optional): Labels for the points. Defaults to None.
retinamask (bool, optional): Whether to use retina mask. Defaults to True.
target_height (int, optional): Target height for resizing. Defaults to 960.
target_width (int, optional): Target width for resizing. Defaults to 960.
"""
n, h, w = annotation.shape # batch, height, width
areas = np.sum(annotation, axis=(1, 2))
annotation = annotation[np.argsort(areas)]
index = (annotation != 0).argmax(axis=0)
if random_color:
color = np.random.random((n, 1, 1, 3))
else:
color = np.ones((n, 1, 1, 3)) * np.array([30 / 255, 144 / 255, 1.0])
transparency = np.ones((n, 1, 1, 1)) * 0.6
visual = np.concatenate([color, transparency], axis=-1)
mask_image = np.expand_dims(annotation, -1) * visual
show = np.zeros((h, w, 4))
h_indices, w_indices = np.meshgrid(np.arange(h), np.arange(w), indexing="ij")
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
show[h_indices, w_indices, :] = mask_image[indices]
if bbox is not None:
x1, y1, x2, y2 = bbox
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1))
# Draw point
if points is not None:
plt.scatter(
[point[0] for i, point in enumerate(points) if pointlabel[i] == 1],
[point[1] for i, point in enumerate(points) if pointlabel[i] == 1],
s=20,
c="y",
)
plt.scatter(
[point[0] for i, point in enumerate(points) if pointlabel[i] == 0],
[point[1] for i, point in enumerate(points) if pointlabel[i] == 0],
s=20,
c="m",
)
if not retinamask:
show = cv2.resize(show, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
ax.imshow(show)
@torch.no_grad()
def retrieve(self, model, preprocess, elements, search_text: str, device) -> int:
"""Processes images and text with a model, calculates similarity, and returns softmax score."""
preprocessed_images = [preprocess(image).to(device) for image in elements]
tokenized_text = self.clip.tokenize([search_text]).to(device)
stacked_images = torch.stack(preprocessed_images)
image_features = model.encode_image(stacked_images)
text_features = model.encode_text(tokenized_text)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
probs = 100.0 * image_features @ text_features.T
return probs[:, 0].softmax(dim=0)
def _crop_image(self, format_results):
"""Crops an image based on provided annotation format and returns cropped images and related data."""
if os.path.isdir(self.source):
raise ValueError(f"'{self.source}' is a directory, not a valid source for this function.")
image = Image.fromarray(cv2.cvtColor(self.results[0].orig_img, cv2.COLOR_BGR2RGB))
ori_w, ori_h = image.size
annotations = format_results
mask_h, mask_w = annotations[0]["segmentation"].shape
if ori_w != mask_w or ori_h != mask_h:
image = image.resize((mask_w, mask_h))
cropped_boxes = []
cropped_images = []
not_crop = []
filter_id = []
for _, mask in enumerate(annotations):
if np.sum(mask["segmentation"]) <= 100:
filter_id.append(_)
continue
bbox = self._get_bbox_from_mask(mask["segmentation"]) # bbox from mask
cropped_boxes.append(self._segment_image(image, bbox)) # save cropped image
cropped_images.append(bbox) # save cropped image bbox
return cropped_boxes, cropped_images, not_crop, filter_id, annotations
def box_prompt(self, bbox):
"""Modifies the bounding box properties and calculates IoU between masks and bounding box."""
if self.results[0].masks is not None:
assert bbox[2] != 0 and bbox[3] != 0
if os.path.isdir(self.source):
raise ValueError(f"'{self.source}' is a directory, not a valid source for this function.")
masks = self.results[0].masks.data
target_height, target_width = self.results[0].orig_shape
h = masks.shape[1]
w = masks.shape[2]
if h != target_height or w != target_width:
bbox = [
int(bbox[0] * w / target_width),
int(bbox[1] * h / target_height),
int(bbox[2] * w / target_width),
int(bbox[3] * h / target_height),
]
bbox[0] = max(round(bbox[0]), 0)
bbox[1] = max(round(bbox[1]), 0)
bbox[2] = min(round(bbox[2]), w)
bbox[3] = min(round(bbox[3]), h)
# IoUs = torch.zeros(len(masks), dtype=torch.float32)
bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0])
masks_area = torch.sum(masks[:, bbox[1] : bbox[3], bbox[0] : bbox[2]], dim=(1, 2))
orig_masks_area = torch.sum(masks, dim=(1, 2))
union = bbox_area + orig_masks_area - masks_area
iou = masks_area / union
max_iou_index = torch.argmax(iou)
self.results[0].masks.data = torch.tensor(np.array([masks[max_iou_index].cpu().numpy()]))
return self.results
def point_prompt(self, points, pointlabel): # numpy
"""Adjusts points on detected masks based on user input and returns the modified results."""
if self.results[0].masks is not None:
if os.path.isdir(self.source):
raise ValueError(f"'{self.source}' is a directory, not a valid source for this function.")
masks = self._format_results(self.results[0], 0)
target_height, target_width = self.results[0].orig_shape
h = masks[0]["segmentation"].shape[0]
w = masks[0]["segmentation"].shape[1]
if h != target_height or w != target_width:
points = [[int(point[0] * w / target_width), int(point[1] * h / target_height)] for point in points]
onemask = np.zeros((h, w))
for annotation in masks:
mask = annotation["segmentation"] if isinstance(annotation, dict) else annotation
for i, point in enumerate(points):
if mask[point[1], point[0]] == 1 and pointlabel[i] == 1:
onemask += mask
if mask[point[1], point[0]] == 1 and pointlabel[i] == 0:
onemask -= mask
onemask = onemask >= 1
self.results[0].masks.data = torch.tensor(np.array([onemask]))
return self.results
def text_prompt(self, text):
"""Processes a text prompt, applies it to existing results and returns the updated results."""
if self.results[0].masks is not None:
format_results = self._format_results(self.results[0], 0)
cropped_boxes, cropped_images, not_crop, filter_id, annotations = self._crop_image(format_results)
clip_model, preprocess = self.clip.load("ViT-B/32", device=self.device)
scores = self.retrieve(clip_model, preprocess, cropped_boxes, text, device=self.device)
max_idx = scores.argsort()
max_idx = max_idx[-1]
max_idx += sum(np.array(filter_id) <= int(max_idx))
self.results[0].masks.data = torch.tensor(np.array([annotations[max_idx]["segmentation"]]))
return self.results
def everything_prompt(self):
"""Returns the processed results from the previous methods in the class."""
return self.results
| 16,165 | Python | .py | 321 | 38.242991 | 134 | 0.577745 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,855 | predict.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/fastsam/predict.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
from ultralytics.engine.results import Results
from ultralytics.models.fastsam.utils import bbox_iou
from ultralytics.models.yolo.detect.predict import DetectionPredictor
from ultralytics.utils import DEFAULT_CFG, ops
class FastSAMPredictor(DetectionPredictor):
"""
FastSAMPredictor is specialized for fast SAM (Segment Anything Model) segmentation prediction tasks in Ultralytics
YOLO framework.
This class extends the DetectionPredictor, customizing the prediction pipeline specifically for fast SAM.
It adjusts post-processing steps to incorporate mask prediction and non-max suppression while optimizing
for single-class segmentation.
Attributes:
cfg (dict): Configuration parameters for prediction.
overrides (dict, optional): Optional parameter overrides for custom behavior.
_callbacks (dict, optional): Optional list of callback functions to be invoked during prediction.
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""
Initializes the FastSAMPredictor class, inheriting from DetectionPredictor and setting the task to 'segment'.
Args:
cfg (dict): Configuration parameters for prediction.
overrides (dict, optional): Optional parameter overrides for custom behavior.
_callbacks (dict, optional): Optional list of callback functions to be invoked during prediction.
"""
super().__init__(cfg, overrides, _callbacks)
self.args.task = "segment"
def postprocess(self, preds, img, orig_imgs):
"""
Perform post-processing steps on predictions, including non-max suppression and scaling boxes to original image
size, and returns the final results.
Args:
preds (list): The raw output predictions from the model.
img (torch.Tensor): The processed image tensor.
orig_imgs (list | torch.Tensor): The original image or list of images.
Returns:
(list): A list of Results objects, each containing processed boxes, masks, and other metadata.
"""
p = ops.non_max_suppression(
preds[0],
self.args.conf,
self.args.iou,
agnostic=self.args.agnostic_nms,
max_det=self.args.max_det,
nc=1, # set to 1 class since SAM has no class predictions
classes=self.args.classes,
)
full_box = torch.zeros(p[0].shape[1], device=p[0].device)
full_box[2], full_box[3], full_box[4], full_box[6:] = img.shape[3], img.shape[2], 1.0, 1.0
full_box = full_box.view(1, -1)
critical_iou_index = bbox_iou(full_box[0][:4], p[0][:, :4], iou_thres=0.9, image_shape=img.shape[2:])
if critical_iou_index.numel() != 0:
full_box[0][4] = p[0][critical_iou_index][:, 4]
full_box[0][6:] = p[0][critical_iou_index][:, 6:]
p[0][critical_iou_index] = full_box
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
results = []
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
for i, pred in enumerate(p):
orig_img = orig_imgs[i]
img_path = self.batch[0][i]
if not len(pred): # save empty boxes
masks = None
elif self.args.retina_masks:
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC
else:
masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks))
return results
| 4,121 | Python | .py | 73 | 46.726027 | 120 | 0.639653 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,856 | val.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/fastsam/val.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from ultralytics.models.yolo.segment import SegmentationValidator
from ultralytics.utils.metrics import SegmentMetrics
class FastSAMValidator(SegmentationValidator):
"""
Custom validation class for fast SAM (Segment Anything Model) segmentation in Ultralytics YOLO framework.
Extends the SegmentationValidator class, customizing the validation process specifically for fast SAM. This class
sets the task to 'segment' and uses the SegmentMetrics for evaluation. Additionally, plotting features are disabled
to avoid errors during validation.
Attributes:
dataloader: The data loader object used for validation.
save_dir (str): The directory where validation results will be saved.
pbar: A progress bar object.
args: Additional arguments for customization.
_callbacks: List of callback functions to be invoked during validation.
"""
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
"""
Initialize the FastSAMValidator class, setting the task to 'segment' and metrics to SegmentMetrics.
Args:
dataloader (torch.utils.data.DataLoader): Dataloader to be used for validation.
save_dir (Path, optional): Directory to save results.
pbar (tqdm.tqdm): Progress bar for displaying progress.
args (SimpleNamespace): Configuration for the validator.
_callbacks (dict): Dictionary to store various callback functions.
Notes:
Plots for ConfusionMatrix and other related metrics are disabled in this class to avoid errors.
"""
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
self.args.task = "segment"
self.args.plots = False # disable ConfusionMatrix and other plots to avoid errors
self.metrics = SegmentMetrics(save_dir=self.save_dir, on_plot=self.on_plot)
| 1,967 | Python | .py | 32 | 53.46875 | 119 | 0.724961 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,857 | utils.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/fastsam/utils.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
def adjust_bboxes_to_image_border(boxes, image_shape, threshold=20):
"""
Adjust bounding boxes to stick to image border if they are within a certain threshold.
Args:
boxes (torch.Tensor): (n, 4)
image_shape (tuple): (height, width)
threshold (int): pixel threshold
Returns:
adjusted_boxes (torch.Tensor): adjusted bounding boxes
"""
# Image dimensions
h, w = image_shape
# Adjust boxes
boxes[boxes[:, 0] < threshold, 0] = 0 # x1
boxes[boxes[:, 1] < threshold, 1] = 0 # y1
boxes[boxes[:, 2] > w - threshold, 2] = w # x2
boxes[boxes[:, 3] > h - threshold, 3] = h # y2
return boxes
def bbox_iou(box1, boxes, iou_thres=0.9, image_shape=(640, 640), raw_output=False):
"""
Compute the Intersection-Over-Union of a bounding box with respect to an array of other bounding boxes.
Args:
box1 (torch.Tensor): (4, )
boxes (torch.Tensor): (n, 4)
iou_thres (float): IoU threshold
image_shape (tuple): (height, width)
raw_output (bool): If True, return the raw IoU values instead of the indices
Returns:
high_iou_indices (torch.Tensor): Indices of boxes with IoU > thres
"""
boxes = adjust_bboxes_to_image_border(boxes, image_shape)
# Obtain coordinates for intersections
x1 = torch.max(box1[0], boxes[:, 0])
y1 = torch.max(box1[1], boxes[:, 1])
x2 = torch.min(box1[2], boxes[:, 2])
y2 = torch.min(box1[3], boxes[:, 3])
# Compute the area of intersection
intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0)
# Compute the area of both individual boxes
box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
box2_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
# Compute the area of union
union = box1_area + box2_area - intersection
# Compute the IoU
iou = intersection / union # Should be shape (n, )
if raw_output:
return 0 if iou.numel() == 0 else iou
# return indices of boxes with IoU > thres
return torch.nonzero(iou > iou_thres).flatten()
| 2,157 | Python | .py | 51 | 36.431373 | 107 | 0.627751 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,858 | __init__.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/fastsam/__init__.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from .model import FastSAM
from .predict import FastSAMPredictor
from .prompt import FastSAMPrompt
from .val import FastSAMValidator
__all__ = "FastSAMPredictor", "FastSAM", "FastSAMPrompt", "FastSAMValidator"
| 254 | Python | .py | 6 | 41 | 76 | 0.808943 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,859 | model.py | arojsubedi_Improved-YOLOv8s/ultralytics/models/fastsam/model.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from pathlib import Path
from ultralytics.engine.model import Model
from .predict import FastSAMPredictor
from .val import FastSAMValidator
class FastSAM(Model):
"""
FastSAM model interface.
Example:
```python
from ultralytics import FastSAM
model = FastSAM('last.pt')
results = model.predict('ultralytics/assets/bus.jpg')
```
"""
def __init__(self, model="FastSAM-x.pt"):
"""Call the __init__ method of the parent class (YOLO) with the updated default model."""
if str(model) == "FastSAM.pt":
model = "FastSAM-x.pt"
assert Path(model).suffix not in (".yaml", ".yml"), "FastSAM models only support pre-trained models."
super().__init__(model=model, task="segment")
@property
def task_map(self):
"""Returns a dictionary mapping segment task to corresponding predictor and validator classes."""
return {"segment": {"predictor": FastSAMPredictor, "validator": FastSAMValidator}}
| 1,054 | Python | .py | 25 | 35.72 | 109 | 0.666014 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,860 | validator.py | arojsubedi_Improved-YOLOv8s/ultralytics/engine/validator.py | # Ultralytics YOLO üöÄ, AGPL-3.0 license
"""
Check a model's accuracy on a test or val split of a dataset.
Usage:
$ yolo mode=val model=yolov8n.pt data=coco128.yaml imgsz=640
Usage - formats:
$ yolo mode=val model=yolov8n.pt # PyTorch
yolov8n.torchscript # TorchScript
yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
yolov8n_openvino_model # OpenVINO
yolov8n.engine # TensorRT
yolov8n.mlpackage # CoreML (macOS-only)
yolov8n_saved_model # TensorFlow SavedModel
yolov8n.pb # TensorFlow GraphDef
yolov8n.tflite # TensorFlow Lite
yolov8n_edgetpu.tflite # TensorFlow Edge TPU
yolov8n_paddle_model # PaddlePaddle
"""
import json
import time
from pathlib import Path
import numpy as np
import torch
from ultralytics.cfg import get_cfg, get_save_dir
from ultralytics.data.utils import check_cls_dataset, check_det_dataset
from ultralytics.nn.autobackend import AutoBackend
from ultralytics.utils import LOGGER, TQDM, callbacks, colorstr, emojis
from ultralytics.utils.checks import check_imgsz
from ultralytics.utils.ops import Profile
from ultralytics.utils.torch_utils import de_parallel, select_device, smart_inference_mode
class BaseValidator:
"""
BaseValidator.
A base class for creating validators.
Attributes:
args (SimpleNamespace): Configuration for the validator.
dataloader (DataLoader): Dataloader to use for validation.
pbar (tqdm): Progress bar to update during validation.
model (nn.Module): Model to validate.
data (dict): Data dictionary.
device (torch.device): Device to use for validation.
batch_i (int): Current batch index.
training (bool): Whether the model is in training mode.
names (dict): Class names.
seen: Records the number of images seen so far during validation.
stats: Placeholder for statistics during validation.
confusion_matrix: Placeholder for a confusion matrix.
nc: Number of classes.
iouv: (torch.Tensor): IoU thresholds from 0.50 to 0.95 in spaces of 0.05.
jdict (dict): Dictionary to store JSON validation results.
speed (dict): Dictionary with keys 'preprocess', 'inference', 'loss', 'postprocess' and their respective
batch processing times in milliseconds.
save_dir (Path): Directory to save results.
plots (dict): Dictionary to store plots for visualization.
callbacks (dict): Dictionary to store various callback functions.
"""
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
"""
Initializes a BaseValidator instance.
Args:
dataloader (torch.utils.data.DataLoader): Dataloader to be used for validation.
save_dir (Path, optional): Directory to save results.
pbar (tqdm.tqdm): Progress bar for displaying progress.
args (SimpleNamespace): Configuration for the validator.
_callbacks (dict): Dictionary to store various callback functions.
"""
self.args = get_cfg(overrides=args)
self.dataloader = dataloader
self.pbar = pbar
self.stride = None
self.data = None
self.device = None
self.batch_i = None
self.training = True
self.names = None
self.seen = None
self.stats = None
self.confusion_matrix = None
self.nc = None
self.iouv = None
self.jdict = None
self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0}
self.save_dir = save_dir or get_save_dir(self.args)
(self.save_dir / "labels" if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
if self.args.conf is None:
self.args.conf = 0.001 # default conf=0.001
self.args.imgsz = check_imgsz(self.args.imgsz, max_dim=1)
self.plots = {}
self.callbacks = _callbacks or callbacks.get_default_callbacks()
@smart_inference_mode()
def __call__(self, trainer=None, model=None):
"""Supports validation of a pre-trained model if passed or a model being trained if trainer is passed (trainer
gets priority).
"""
self.training = trainer is not None
augment = self.args.augment and (not self.training)
if self.training:
self.device = trainer.device
self.data = trainer.data
self.args.half = self.device.type != "cpu" # force FP16 val during training
model = trainer.ema.ema or trainer.model
model = model.half() if self.args.half else model.float()
# self.model = model
self.loss = torch.zeros_like(trainer.loss_items, device=trainer.device)
self.args.plots &= trainer.stopper.possible_stop or (trainer.epoch == trainer.epochs - 1)
model.eval()
else:
callbacks.add_integration_callbacks(self)
model = AutoBackend(
model or self.args.model,
device=select_device(self.args.device, self.args.batch),
dnn=self.args.dnn,
data=self.args.data,
fp16=self.args.half,
)
# self.model = model
self.device = model.device # update device
self.args.half = model.fp16 # update half
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
imgsz = check_imgsz(self.args.imgsz, stride=stride)
if engine:
self.args.batch = model.batch_size
elif not pt and not jit:
self.args.batch = 1 # export.py models default to batch-size 1
LOGGER.info(f"Forcing batch=1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models")
if str(self.args.data).split(".")[-1] in ("yaml", "yml"):
self.data = check_det_dataset(self.args.data)
elif self.args.task == "classify":
self.data = check_cls_dataset(self.args.data, split=self.args.split)
else:
raise FileNotFoundError(emojis(f"Dataset '{self.args.data}' for task={self.args.task} not found ‚ùå"))
if self.device.type in ("cpu", "mps"):
self.args.workers = 0 # faster CPU val as time dominated by inference, not dataloading
if not pt:
self.args.rect = False
self.stride = model.stride # used in get_dataloader() for padding
self.dataloader = self.dataloader or self.get_dataloader(self.data.get(self.args.split), self.args.batch)
model.eval()
model.warmup(imgsz=(1 if pt else self.args.batch, 3, imgsz, imgsz)) # warmup
self.run_callbacks("on_val_start")
dt = (
Profile(device=self.device),
Profile(device=self.device),
Profile(device=self.device),
Profile(device=self.device),
)
bar = TQDM(self.dataloader, desc=self.get_desc(), total=len(self.dataloader))
self.init_metrics(de_parallel(model))
self.jdict = [] # empty before each val
for batch_i, batch in enumerate(bar):
self.run_callbacks("on_val_batch_start")
self.batch_i = batch_i
# Preprocess
with dt[0]:
batch = self.preprocess(batch)
# Inference
with dt[1]:
preds = model(batch["img"], augment=augment)
# Loss
with dt[2]:
if self.training:
self.loss += model.loss(batch, preds)[1]
# Postprocess
with dt[3]:
preds = self.postprocess(preds)
self.update_metrics(preds, batch)
if self.args.plots and batch_i < 3:
self.plot_val_samples(batch, batch_i)
self.plot_predictions(batch, preds, batch_i)
self.run_callbacks("on_val_batch_end")
stats = self.get_stats()
self.check_stats(stats)
self.speed = dict(zip(self.speed.keys(), (x.t / len(self.dataloader.dataset) * 1e3 for x in dt)))
self.finalize_metrics()
self.print_results()
self.run_callbacks("on_val_end")
if self.training:
model.float()
results = {**stats, **trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix="val")}
return {k: round(float(v), 5) for k, v in results.items()} # return results as 5 decimal place floats
else:
LOGGER.info(
"Speed: %.1fms preprocess, %.1fms inference, %.1fms loss, %.1fms postprocess per image"
% tuple(self.speed.values())
)
if self.args.save_json and self.jdict:
with open(str(self.save_dir / "predictions.json"), "w") as f:
LOGGER.info(f"Saving {f.name}...")
json.dump(self.jdict, f) # flatten and save
stats = self.eval_json(stats) # update stats
if self.args.plots or self.args.save_json:
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}")
return stats
def match_predictions(self, pred_classes, true_classes, iou, use_scipy=False):
"""
Matches predictions to ground truth objects (pred_classes, true_classes) using IoU.
Args:
pred_classes (torch.Tensor): Predicted class indices of shape(N,).
true_classes (torch.Tensor): Target class indices of shape(M,).
iou (torch.Tensor): An NxM tensor containing the pairwise IoU values for predictions and ground of truth
use_scipy (bool): Whether to use scipy for matching (more precise).
Returns:
(torch.Tensor): Correct tensor of shape(N,10) for 10 IoU thresholds.
"""
# Dx10 matrix, where D - detections, 10 - IoU thresholds
correct = np.zeros((pred_classes.shape[0], self.iouv.shape[0])).astype(bool)
# LxD matrix where L - labels (rows), D - detections (columns)
correct_class = true_classes[:, None] == pred_classes
iou = iou * correct_class # zero out the wrong classes
iou = iou.cpu().numpy()
for i, threshold in enumerate(self.iouv.cpu().tolist()):
if use_scipy:
# WARNING: known issue that reduces mAP in https://github.com/ultralytics/ultralytics/pull/4708
import scipy # scope import to avoid importing for all commands
cost_matrix = iou * (iou >= threshold)
if cost_matrix.any():
labels_idx, detections_idx = scipy.optimize.linear_sum_assignment(cost_matrix, maximize=True)
valid = cost_matrix[labels_idx, detections_idx] > 0
if valid.any():
correct[detections_idx[valid], i] = True
else:
matches = np.nonzero(iou >= threshold) # IoU > threshold and classes match
matches = np.array(matches).T
if matches.shape[0]:
if matches.shape[0] > 1:
matches = matches[iou[matches[:, 0], matches[:, 1]].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
# matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
correct[matches[:, 1].astype(int), i] = True
return torch.tensor(correct, dtype=torch.bool, device=pred_classes.device)
def add_callback(self, event: str, callback):
"""Appends the given callback."""
self.callbacks[event].append(callback)
def run_callbacks(self, event: str):
"""Runs all callbacks associated with a specified event."""
for callback in self.callbacks.get(event, []):
callback(self)
def get_dataloader(self, dataset_path, batch_size):
"""Get data loader from dataset path and batch size."""
raise NotImplementedError("get_dataloader function not implemented for this validator")
def build_dataset(self, img_path):
"""Build dataset."""
raise NotImplementedError("build_dataset function not implemented in validator")
def preprocess(self, batch):
"""Preprocesses an input batch."""
return batch
def postprocess(self, preds):
"""Describes and summarizes the purpose of 'postprocess()' but no details mentioned."""
return preds
def init_metrics(self, model):
"""Initialize performance metrics for the YOLO model."""
pass
def update_metrics(self, preds, batch):
"""Updates metrics based on predictions and batch."""
pass
def finalize_metrics(self, *args, **kwargs):
"""Finalizes and returns all metrics."""
pass
def get_stats(self):
"""Returns statistics about the model's performance."""
return {}
def check_stats(self, stats):
"""Checks statistics."""
pass
def print_results(self):
"""Prints the results of the model's predictions."""
pass
def get_desc(self):
"""Get description of the YOLO model."""
pass
@property
def metric_keys(self):
"""Returns the metric keys used in YOLO training/validation."""
return []
def on_plot(self, name, data=None):
"""Registers plots (e.g. to be consumed in callbacks)"""
self.plots[Path(name)] = {"data": data, "timestamp": time.time()}
# TODO: may need to put these following functions into callback
def plot_val_samples(self, batch, ni):
"""Plots validation samples during training."""
pass
def plot_predictions(self, batch, preds, ni):
"""Plots YOLO model predictions on batch images."""
pass
def pred_to_json(self, preds, batch):
"""Convert predictions to JSON format."""
pass
def eval_json(self, stats):
"""Evaluate and return JSON format of prediction statistics."""
pass
| 14,576 | Python | .py | 291 | 38.852234 | 118 | 0.602388 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,861 | exporter.py | arojsubedi_Improved-YOLOv8s/ultralytics/engine/exporter.py | # Ultralytics YOLO üöÄ, AGPL-3.0 license
"""
Export a YOLOv8 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
Format | `format=argument` | Model
--- | --- | ---
PyTorch | - | yolov8n.pt
TorchScript | `torchscript` | yolov8n.torchscript
ONNX | `onnx` | yolov8n.onnx
OpenVINO | `openvino` | yolov8n_openvino_model/
TensorRT | `engine` | yolov8n.engine
CoreML | `coreml` | yolov8n.mlpackage
TensorFlow SavedModel | `saved_model` | yolov8n_saved_model/
TensorFlow GraphDef | `pb` | yolov8n.pb
TensorFlow Lite | `tflite` | yolov8n.tflite
TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite
TensorFlow.js | `tfjs` | yolov8n_web_model/
PaddlePaddle | `paddle` | yolov8n_paddle_model/
ncnn | `ncnn` | yolov8n_ncnn_model/
Requirements:
$ pip install "ultralytics[export]"
Python:
from ultralytics import YOLO
model = YOLO('yolov8n.pt')
results = model.export(format='onnx')
CLI:
$ yolo mode=export model=yolov8n.pt format=onnx
Inference:
$ yolo predict model=yolov8n.pt # PyTorch
yolov8n.torchscript # TorchScript
yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
yolov8n_openvino_model # OpenVINO
yolov8n.engine # TensorRT
yolov8n.mlpackage # CoreML (macOS-only)
yolov8n_saved_model # TensorFlow SavedModel
yolov8n.pb # TensorFlow GraphDef
yolov8n.tflite # TensorFlow Lite
yolov8n_edgetpu.tflite # TensorFlow Edge TPU
yolov8n_paddle_model # PaddlePaddle
TensorFlow.js:
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
$ npm install
$ ln -s ../../yolov5/yolov8n_web_model public/yolov8n_web_model
$ npm start
"""
import json
import os
import shutil
import subprocess
import time
import warnings
from copy import deepcopy
from datetime import datetime
from pathlib import Path
import numpy as np
import torch
from ultralytics.cfg import get_cfg
from ultralytics.data.dataset import YOLODataset
from ultralytics.data.utils import check_det_dataset
from ultralytics.nn.autobackend import check_class_names, default_class_names
from ultralytics.nn.modules import C2f, Detect, RTDETRDecoder
from ultralytics.nn.tasks import DetectionModel, SegmentationModel
from ultralytics.utils import (
ARM64,
DEFAULT_CFG,
LINUX,
LOGGER,
MACOS,
ROOT,
WINDOWS,
__version__,
callbacks,
colorstr,
get_default_args,
yaml_save,
)
from ultralytics.utils.checks import PYTHON_VERSION, check_imgsz, check_is_path_safe, check_requirements, check_version
from ultralytics.utils.downloads import attempt_download_asset, get_github_assets
from ultralytics.utils.files import file_size, spaces_in_path
from ultralytics.utils.ops import Profile
from ultralytics.utils.torch_utils import get_latest_opset, select_device, smart_inference_mode
def export_formats():
"""YOLOv8 export formats."""
import pandas
x = [
["PyTorch", "-", ".pt", True, True],
["TorchScript", "torchscript", ".torchscript", True, True],
["ONNX", "onnx", ".onnx", True, True],
["OpenVINO", "openvino", "_openvino_model", True, False],
["TensorRT", "engine", ".engine", False, True],
["CoreML", "coreml", ".mlpackage", True, False],
["TensorFlow SavedModel", "saved_model", "_saved_model", True, True],
["TensorFlow GraphDef", "pb", ".pb", True, True],
["TensorFlow Lite", "tflite", ".tflite", True, False],
["TensorFlow Edge TPU", "edgetpu", "_edgetpu.tflite", True, False],
["TensorFlow.js", "tfjs", "_web_model", True, False],
["PaddlePaddle", "paddle", "_paddle_model", True, True],
["ncnn", "ncnn", "_ncnn_model", True, True],
]
return pandas.DataFrame(x, columns=["Format", "Argument", "Suffix", "CPU", "GPU"])
def gd_outputs(gd):
"""TensorFlow GraphDef model output node names."""
name_list, input_list = [], []
for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef
name_list.append(node.name)
input_list.extend(node.input)
return sorted(f"{x}:0" for x in list(set(name_list) - set(input_list)) if not x.startswith("NoOp"))
def try_export(inner_func):
"""YOLOv8 export decorator, i..e @try_export."""
inner_args = get_default_args(inner_func)
def outer_func(*args, **kwargs):
"""Export a model."""
prefix = inner_args["prefix"]
try:
with Profile() as dt:
f, model = inner_func(*args, **kwargs)
LOGGER.info(f"{prefix} export success ‚úÖ {dt.t:.1f}s, saved as '{f}' ({file_size(f):.1f} MB)")
return f, model
except Exception as e:
LOGGER.info(f"{prefix} export failure ‚ùå {dt.t:.1f}s: {e}")
raise e
return outer_func
class Exporter:
"""
A class for exporting a model.
Attributes:
args (SimpleNamespace): Configuration for the exporter.
callbacks (list, optional): List of callback functions. Defaults to None.
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""
Initializes the Exporter class.
Args:
cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG.
overrides (dict, optional): Configuration overrides. Defaults to None.
_callbacks (dict, optional): Dictionary of callback functions. Defaults to None.
"""
self.args = get_cfg(cfg, overrides)
if self.args.format.lower() in ("coreml", "mlmodel"): # fix attempt for protobuf<3.20.x errors
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" # must run before TensorBoard callback
self.callbacks = _callbacks or callbacks.get_default_callbacks()
callbacks.add_integration_callbacks(self)
@smart_inference_mode()
def __call__(self, model=None):
"""Returns list of exported files/dirs after running callbacks."""
self.run_callbacks("on_export_start")
t = time.time()
fmt = self.args.format.lower() # to lowercase
if fmt in ("tensorrt", "trt"): # 'engine' aliases
fmt = "engine"
if fmt in ("mlmodel", "mlpackage", "mlprogram", "apple", "ios", "coreml"): # 'coreml' aliases
fmt = "coreml"
fmts = tuple(export_formats()["Argument"][1:]) # available export formats
flags = [x == fmt for x in fmts]
if sum(flags) != 1:
raise ValueError(f"Invalid export format='{fmt}'. Valid formats are {fmts}")
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, ncnn = flags # export booleans
# Device
if fmt == "engine" and self.args.device is None:
LOGGER.warning("WARNING ⚠️ TensorRT requires GPU export, automatically assigning device=0")
self.args.device = "0"
self.device = select_device("cpu" if self.args.device is None else self.args.device)
# Checks
if not hasattr(model, "names"):
model.names = default_class_names()
model.names = check_class_names(model.names)
if self.args.half and onnx and self.device.type == "cpu":
LOGGER.warning("WARNING ⚠️ half=True only compatible with GPU export, i.e. use device=0")
self.args.half = False
assert not self.args.dynamic, "half=True not compatible with dynamic=True, i.e. use only one."
self.imgsz = check_imgsz(self.args.imgsz, stride=model.stride, min_dim=2) # check image size
if self.args.optimize:
assert not ncnn, "optimize=True not compatible with format='ncnn', i.e. use optimize=False"
assert self.device.type == "cpu", "optimize=True not compatible with cuda devices, i.e. use device='cpu'"
if edgetpu and not LINUX:
raise SystemError("Edge TPU export only supported on Linux. See https://coral.ai/docs/edgetpu/compiler/")
# Input
im = torch.zeros(self.args.batch, 3, *self.imgsz).to(self.device)
file = Path(
getattr(model, "pt_path", None) or getattr(model, "yaml_file", None) or model.yaml.get("yaml_file", "")
)
if file.suffix in {".yaml", ".yml"}:
file = Path(file.name)
# Update model
model = deepcopy(model).to(self.device)
for p in model.parameters():
p.requires_grad = False
model.eval()
model.float()
model = model.fuse()
for m in model.modules():
if isinstance(m, (Detect, RTDETRDecoder)): # includes all Detect subclasses like Segment, Pose, OBB
m.dynamic = self.args.dynamic
m.export = True
m.format = self.args.format
elif isinstance(m, C2f) and not any((saved_model, pb, tflite, edgetpu, tfjs)):
# EdgeTPU does not support FlexSplitV while split provides cleaner ONNX graph
m.forward = m.forward_split
y = None
for _ in range(2):
y = model(im) # dry runs
if self.args.half and onnx and self.device.type != "cpu":
im, model = im.half(), model.half() # to FP16
# Filter warnings
warnings.filterwarnings("ignore", category=torch.jit.TracerWarning) # suppress TracerWarning
warnings.filterwarnings("ignore", category=UserWarning) # suppress shape prim::Constant missing ONNX warning
warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress CoreML np.bool deprecation warning
# Assign
self.im = im
self.model = model
self.file = file
self.output_shape = (
tuple(y.shape)
if isinstance(y, torch.Tensor)
else tuple(tuple(x.shape if isinstance(x, torch.Tensor) else []) for x in y)
)
self.pretty_name = Path(self.model.yaml.get("yaml_file", self.file)).stem.replace("yolo", "YOLO")
data = model.args["data"] if hasattr(model, "args") and isinstance(model.args, dict) else ""
description = f'Ultralytics {self.pretty_name} model {f"trained on {data}" if data else ""}'
self.metadata = {
"description": description,
"author": "Ultralytics",
"license": "AGPL-3.0 https://ultralytics.com/license",
"date": datetime.now().isoformat(),
"version": __version__,
"stride": int(max(model.stride)),
"task": model.task,
"batch": self.args.batch,
"imgsz": self.imgsz,
"names": model.names,
} # model metadata
if model.task == "pose":
self.metadata["kpt_shape"] = model.model[-1].kpt_shape
LOGGER.info(
f"\n{colorstr('PyTorch:')} starting from '{file}' with input shape {tuple(im.shape)} BCHW and "
f'output shape(s) {self.output_shape} ({file_size(file):.1f} MB)'
)
# Exports
f = [""] * len(fmts) # exported filenames
if jit or ncnn: # TorchScript
f[0], _ = self.export_torchscript()
if engine: # TensorRT required before ONNX
f[1], _ = self.export_engine()
if onnx or xml: # OpenVINO requires ONNX
f[2], _ = self.export_onnx()
if xml: # OpenVINO
f[3], _ = self.export_openvino()
if coreml: # CoreML
f[4], _ = self.export_coreml()
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats
self.args.int8 |= edgetpu
f[5], keras_model = self.export_saved_model()
if pb or tfjs: # pb prerequisite to tfjs
f[6], _ = self.export_pb(keras_model=keras_model)
if tflite:
f[7], _ = self.export_tflite(keras_model=keras_model, nms=False, agnostic_nms=self.args.agnostic_nms)
if edgetpu:
f[8], _ = self.export_edgetpu(tflite_model=Path(f[5]) / f"{self.file.stem}_full_integer_quant.tflite")
if tfjs:
f[9], _ = self.export_tfjs()
if paddle: # PaddlePaddle
f[10], _ = self.export_paddle()
if ncnn: # ncnn
f[11], _ = self.export_ncnn()
# Finish
f = [str(x) for x in f if x] # filter out '' and None
if any(f):
f = str(Path(f[-1]))
square = self.imgsz[0] == self.imgsz[1]
s = (
""
if square
else f"WARNING ⚠️ non-PyTorch val requires square images, 'imgsz={self.imgsz}' will not "
f"work. Use export 'imgsz={max(self.imgsz)}' if val is required."
)
imgsz = self.imgsz[0] if square else str(self.imgsz)[1:-1].replace(" ", "")
predict_data = f"data={data}" if model.task == "segment" and fmt == "pb" else ""
q = "int8" if self.args.int8 else "half" if self.args.half else "" # quantization
LOGGER.info(
f'\nExport complete ({time.time() - t:.1f}s)'
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
f'\nPredict: yolo predict task={model.task} model={f} imgsz={imgsz} {q} {predict_data}'
f'\nValidate: yolo val task={model.task} model={f} imgsz={imgsz} data={data} {q} {s}'
f'\nVisualize: https://netron.app'
)
self.run_callbacks("on_export_end")
return f # return list of exported files/dirs
@try_export
def export_torchscript(self, prefix=colorstr("TorchScript:")):
"""YOLOv8 TorchScript model export."""
LOGGER.info(f"\n{prefix} starting export with torch {torch.__version__}...")
f = self.file.with_suffix(".torchscript")
ts = torch.jit.trace(self.model, self.im, strict=False)
extra_files = {"config.txt": json.dumps(self.metadata)} # torch._C.ExtraFilesMap()
if self.args.optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
LOGGER.info(f"{prefix} optimizing for mobile...")
from torch.utils.mobile_optimizer import optimize_for_mobile
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
else:
ts.save(str(f), _extra_files=extra_files)
return f, None
@try_export
def export_onnx(self, prefix=colorstr("ONNX:")):
"""YOLOv8 ONNX export."""
requirements = ["onnx>=1.12.0"]
if self.args.simplify:
requirements += ["onnxsim>=0.4.33", "onnxruntime-gpu" if torch.cuda.is_available() else "onnxruntime"]
if ARM64:
check_requirements("cmake") # 'cmake' is needed to build onnxsim on aarch64
check_requirements(requirements)
import onnx # noqa
opset_version = self.args.opset or get_latest_opset()
LOGGER.info(f"\n{prefix} starting export with onnx {onnx.__version__} opset {opset_version}...")
f = str(self.file.with_suffix(".onnx"))
output_names = ["output0", "output1"] if isinstance(self.model, SegmentationModel) else ["output0"]
dynamic = self.args.dynamic
if dynamic:
dynamic = {"images": {0: "batch", 2: "height", 3: "width"}} # shape(1,3,640,640)
if isinstance(self.model, SegmentationModel):
dynamic["output0"] = {0: "batch", 2: "anchors"} # shape(1, 116, 8400)
dynamic["output1"] = {0: "batch", 2: "mask_height", 3: "mask_width"} # shape(1,32,160,160)
elif isinstance(self.model, DetectionModel):
dynamic["output0"] = {0: "batch", 2: "anchors"} # shape(1, 84, 8400)
torch.onnx.export(
self.model.cpu() if dynamic else self.model, # dynamic=True only compatible with cpu
self.im.cpu() if dynamic else self.im,
f,
verbose=False,
opset_version=opset_version,
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
input_names=["images"],
output_names=output_names,
dynamic_axes=dynamic or None,
)
# Checks
model_onnx = onnx.load(f) # load onnx model
# onnx.checker.check_model(model_onnx) # check onnx model
# Simplify
if self.args.simplify:
try:
import onnxsim
LOGGER.info(f"{prefix} simplifying with onnxsim {onnxsim.__version__}...")
# subprocess.run(f'onnxsim "{f}" "{f}"', shell=True)
model_onnx, check = onnxsim.simplify(model_onnx)
assert check, "Simplified ONNX model could not be validated"
except Exception as e:
LOGGER.info(f"{prefix} simplifier failure: {e}")
# Metadata
for k, v in self.metadata.items():
meta = model_onnx.metadata_props.add()
meta.key, meta.value = k, str(v)
onnx.save(model_onnx, f)
return f, model_onnx
@try_export
def export_openvino(self, prefix=colorstr("OpenVINO:")):
"""YOLOv8 OpenVINO export."""
check_requirements("openvino-dev>=2023.0") # requires openvino-dev: https://pypi.org/project/openvino-dev/
import openvino.runtime as ov # noqa
from openvino.tools import mo # noqa
LOGGER.info(f"\n{prefix} starting export with openvino {ov.__version__}...")
f = str(self.file).replace(self.file.suffix, f"_openvino_model{os.sep}")
fq = str(self.file).replace(self.file.suffix, f"_int8_openvino_model{os.sep}")
f_onnx = self.file.with_suffix(".onnx")
f_ov = str(Path(f) / self.file.with_suffix(".xml").name)
fq_ov = str(Path(fq) / self.file.with_suffix(".xml").name)
def serialize(ov_model, file):
"""Set RT info, serialize and save metadata YAML."""
ov_model.set_rt_info("YOLOv8", ["model_info", "model_type"])
ov_model.set_rt_info(True, ["model_info", "reverse_input_channels"])
ov_model.set_rt_info(114, ["model_info", "pad_value"])
ov_model.set_rt_info([255.0], ["model_info", "scale_values"])
ov_model.set_rt_info(self.args.iou, ["model_info", "iou_threshold"])
ov_model.set_rt_info([v.replace(" ", "_") for v in self.model.names.values()], ["model_info", "labels"])
if self.model.task != "classify":
ov_model.set_rt_info("fit_to_window_letterbox", ["model_info", "resize_type"])
ov.serialize(ov_model, file) # save
yaml_save(Path(file).parent / "metadata.yaml", self.metadata) # add metadata.yaml
ov_model = mo.convert_model(
f_onnx, model_name=self.pretty_name, framework="onnx", compress_to_fp16=self.args.half
) # export
if self.args.int8:
if not self.args.data:
self.args.data = DEFAULT_CFG.data or "coco128.yaml"
LOGGER.warning(
f"{prefix} WARNING ⚠️ INT8 export requires a missing 'data' arg for calibration. "
f"Using default 'data={self.args.data}'."
)
check_requirements("nncf>=2.5.0")
import nncf
def transform_fn(data_item):
"""Quantization transform function."""
assert (
data_item["img"].dtype == torch.uint8
), "Input image must be uint8 for the quantization preprocessing"
im = data_item["img"].numpy().astype(np.float32) / 255.0 # uint8 to fp16/32 and 0 - 255 to 0.0 - 1.0
return np.expand_dims(im, 0) if im.ndim == 3 else im
# Generate calibration data for integer quantization
LOGGER.info(f"{prefix} collecting INT8 calibration images from 'data={self.args.data}'")
data = check_det_dataset(self.args.data)
dataset = YOLODataset(data["val"], data=data, imgsz=self.imgsz[0], augment=False)
n = len(dataset)
if n < 300:
LOGGER.warning(f"{prefix} WARNING ⚠️ >300 images recommended for INT8 calibration, found {n} images.")
quantization_dataset = nncf.Dataset(dataset, transform_fn)
ignored_scope = None
if isinstance(self.model.model[-1], Detect):
# Includes all Detect subclasses like Segment, Pose, OBB, WorldDetect
head_module_name = ".".join(list(self.model.named_modules())[-1][0].split(".")[:2])
ignored_scope = nncf.IgnoredScope( # ignore operations
patterns=[
f"/{head_module_name}/Add",
f"/{head_module_name}/Sub",
f"/{head_module_name}/Mul",
f"/{head_module_name}/Div",
f"/{head_module_name}/dfl",
],
names=[f"/{head_module_name}/Sigmoid"],
)
quantized_ov_model = nncf.quantize(
ov_model, quantization_dataset, preset=nncf.QuantizationPreset.MIXED, ignored_scope=ignored_scope
)
serialize(quantized_ov_model, fq_ov)
return fq, None
serialize(ov_model, f_ov)
return f, None
@try_export
def export_paddle(self, prefix=colorstr("PaddlePaddle:")):
"""YOLOv8 Paddle export."""
check_requirements(("paddlepaddle", "x2paddle"))
import x2paddle # noqa
from x2paddle.convert import pytorch2paddle # noqa
LOGGER.info(f"\n{prefix} starting export with X2Paddle {x2paddle.__version__}...")
f = str(self.file).replace(self.file.suffix, f"_paddle_model{os.sep}")
pytorch2paddle(module=self.model, save_dir=f, jit_type="trace", input_examples=[self.im]) # export
yaml_save(Path(f) / "metadata.yaml", self.metadata) # add metadata.yaml
return f, None
@try_export
def export_ncnn(self, prefix=colorstr("ncnn:")):
"""
YOLOv8 ncnn export using PNNX https://github.com/pnnx/pnnx.
"""
check_requirements("ncnn")
import ncnn # noqa
LOGGER.info(f"\n{prefix} starting export with ncnn {ncnn.__version__}...")
f = Path(str(self.file).replace(self.file.suffix, f"_ncnn_model{os.sep}"))
f_ts = self.file.with_suffix(".torchscript")
name = Path("pnnx.exe" if WINDOWS else "pnnx") # PNNX filename
pnnx = name if name.is_file() else ROOT / name
if not pnnx.is_file():
LOGGER.warning(
f"{prefix} WARNING ⚠️ PNNX not found. Attempting to download binary file from "
"https://github.com/pnnx/pnnx/.\nNote PNNX Binary file must be placed in current working directory "
f"or in {ROOT}. See PNNX repo for full installation instructions."
)
system = "macos" if MACOS else "windows" if WINDOWS else "linux-aarch64" if ARM64 else "linux"
try:
_, assets = get_github_assets(repo="pnnx/pnnx", retry=True)
url = [x for x in assets if f"{system}.zip" in x][0]
except Exception as e:
url = f"https://github.com/pnnx/pnnx/releases/download/20240226/pnnx-20240226-{system}.zip"
LOGGER.warning(f"{prefix} WARNING ⚠️ PNNX GitHub assets not found: {e}, using default {url}")
asset = attempt_download_asset(url, repo="pnnx/pnnx", release="latest")
if check_is_path_safe(Path.cwd(), asset): # avoid path traversal security vulnerability
unzip_dir = Path(asset).with_suffix("")
(unzip_dir / name).rename(pnnx) # move binary to ROOT
shutil.rmtree(unzip_dir) # delete unzip dir
Path(asset).unlink() # delete zip
pnnx.chmod(0o777) # set read, write, and execute permissions for everyone
ncnn_args = [
f'ncnnparam={f / "model.ncnn.param"}',
f'ncnnbin={f / "model.ncnn.bin"}',
f'ncnnpy={f / "model_ncnn.py"}',
]
pnnx_args = [
f'pnnxparam={f / "model.pnnx.param"}',
f'pnnxbin={f / "model.pnnx.bin"}',
f'pnnxpy={f / "model_pnnx.py"}',
f'pnnxonnx={f / "model.pnnx.onnx"}',
]
cmd = [
str(pnnx),
str(f_ts),
*ncnn_args,
*pnnx_args,
f"fp16={int(self.args.half)}",
f"device={self.device.type}",
f'inputshape="{[self.args.batch, 3, *self.imgsz]}"',
]
f.mkdir(exist_ok=True) # make ncnn_model directory
LOGGER.info(f"{prefix} running '{' '.join(cmd)}'")
subprocess.run(cmd, check=True)
# Remove debug files
pnnx_files = [x.split("=")[-1] for x in pnnx_args]
for f_debug in ("debug.bin", "debug.param", "debug2.bin", "debug2.param", *pnnx_files):
Path(f_debug).unlink(missing_ok=True)
yaml_save(f / "metadata.yaml", self.metadata) # add metadata.yaml
return str(f), None
@try_export
def export_coreml(self, prefix=colorstr("CoreML:")):
"""YOLOv8 CoreML export."""
mlmodel = self.args.format.lower() == "mlmodel" # legacy *.mlmodel export format requested
check_requirements("coremltools>=6.0,<=6.2" if mlmodel else "coremltools>=7.0")
import coremltools as ct # noqa
LOGGER.info(f"\n{prefix} starting export with coremltools {ct.__version__}...")
assert not WINDOWS, "CoreML export is not supported on Windows, please run on macOS or Linux."
f = self.file.with_suffix(".mlmodel" if mlmodel else ".mlpackage")
if f.is_dir():
shutil.rmtree(f)
bias = [0.0, 0.0, 0.0]
scale = 1 / 255
classifier_config = None
if self.model.task == "classify":
classifier_config = ct.ClassifierConfig(list(self.model.names.values())) if self.args.nms else None
model = self.model
elif self.model.task == "detect":
model = IOSDetectModel(self.model, self.im) if self.args.nms else self.model
else:
if self.args.nms:
LOGGER.warning(f"{prefix} WARNING ⚠️ 'nms=True' is only available for Detect models like 'yolov8n.pt'.")
# TODO CoreML Segment and Pose model pipelining
model = self.model
ts = torch.jit.trace(model.eval(), self.im, strict=False) # TorchScript model
ct_model = ct.convert(
ts,
inputs=[ct.ImageType("image", shape=self.im.shape, scale=scale, bias=bias)],
classifier_config=classifier_config,
convert_to="neuralnetwork" if mlmodel else "mlprogram",
)
bits, mode = (8, "kmeans") if self.args.int8 else (16, "linear") if self.args.half else (32, None)
if bits < 32:
if "kmeans" in mode:
check_requirements("scikit-learn") # scikit-learn package required for k-means quantization
if mlmodel:
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
elif bits == 8: # mlprogram already quantized to FP16
import coremltools.optimize.coreml as cto
op_config = cto.OpPalettizerConfig(mode="kmeans", nbits=bits, weight_threshold=512)
config = cto.OptimizationConfig(global_config=op_config)
ct_model = cto.palettize_weights(ct_model, config=config)
if self.args.nms and self.model.task == "detect":
if mlmodel:
# coremltools<=6.2 NMS export requires Python<3.11
check_version(PYTHON_VERSION, "<3.11", name="Python ", hard=True)
weights_dir = None
else:
ct_model.save(str(f)) # save otherwise weights_dir does not exist
weights_dir = str(f / "Data/com.apple.CoreML/weights")
ct_model = self._pipeline_coreml(ct_model, weights_dir=weights_dir)
m = self.metadata # metadata dict
ct_model.short_description = m.pop("description")
ct_model.author = m.pop("author")
ct_model.license = m.pop("license")
ct_model.version = m.pop("version")
ct_model.user_defined_metadata.update({k: str(v) for k, v in m.items()})
try:
ct_model.save(str(f)) # save *.mlpackage
except Exception as e:
LOGGER.warning(
f"{prefix} WARNING ⚠️ CoreML export to *.mlpackage failed ({e}), reverting to *.mlmodel export. "
f"Known coremltools Python 3.11 and Windows bugs https://github.com/apple/coremltools/issues/1928."
)
f = f.with_suffix(".mlmodel")
ct_model.save(str(f))
return f, ct_model
@try_export
def export_engine(self, prefix=colorstr("TensorRT:")):
"""YOLOv8 TensorRT export https://developer.nvidia.com/tensorrt."""
assert self.im.device.type != "cpu", "export running on CPU but must be on GPU, i.e. use 'device=0'"
f_onnx, _ = self.export_onnx() # run before trt import https://github.com/ultralytics/ultralytics/issues/7016
try:
import tensorrt as trt # noqa
except ImportError:
if LINUX:
check_requirements("nvidia-tensorrt", cmds="-U --index-url https://pypi.ngc.nvidia.com")
import tensorrt as trt # noqa
check_version(trt.__version__, "7.0.0", hard=True) # require tensorrt>=7.0.0
self.args.simplify = True
LOGGER.info(f"\n{prefix} starting export with TensorRT {trt.__version__}...")
assert Path(f_onnx).exists(), f"failed to export ONNX file: {f_onnx}"
f = self.file.with_suffix(".engine") # TensorRT engine file
logger = trt.Logger(trt.Logger.INFO)
if self.args.verbose:
logger.min_severity = trt.Logger.Severity.VERBOSE
builder = trt.Builder(logger)
config = builder.create_builder_config()
config.max_workspace_size = self.args.workspace * 1 << 30
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
network = builder.create_network(flag)
parser = trt.OnnxParser(network, logger)
if not parser.parse_from_file(f_onnx):
raise RuntimeError(f"failed to load ONNX file: {f_onnx}")
inputs = [network.get_input(i) for i in range(network.num_inputs)]
outputs = [network.get_output(i) for i in range(network.num_outputs)]
for inp in inputs:
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
for out in outputs:
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
if self.args.dynamic:
shape = self.im.shape
if shape[0] <= 1:
LOGGER.warning(f"{prefix} WARNING ⚠️ 'dynamic=True' model requires max batch size, i.e. 'batch=16'")
profile = builder.create_optimization_profile()
for inp in inputs:
profile.set_shape(inp.name, (1, *shape[1:]), (max(1, shape[0] // 2), *shape[1:]), shape)
config.add_optimization_profile(profile)
LOGGER.info(
f"{prefix} building FP{16 if builder.platform_has_fast_fp16 and self.args.half else 32} engine as {f}"
)
if builder.platform_has_fast_fp16 and self.args.half:
config.set_flag(trt.BuilderFlag.FP16)
del self.model
torch.cuda.empty_cache()
# Write file
with builder.build_engine(network, config) as engine, open(f, "wb") as t:
# Metadata
meta = json.dumps(self.metadata)
t.write(len(meta).to_bytes(4, byteorder="little", signed=True))
t.write(meta.encode())
# Model
t.write(engine.serialize())
return f, None
@try_export
def export_saved_model(self, prefix=colorstr("TensorFlow SavedModel:")):
"""YOLOv8 TensorFlow SavedModel export."""
cuda = torch.cuda.is_available()
try:
import tensorflow as tf # noqa
except ImportError:
suffix = "-macos" if MACOS else "-aarch64" if ARM64 else "" if cuda else "-cpu"
version = "" if ARM64 else "<=2.13.1"
check_requirements(f"tensorflow{suffix}{version}")
import tensorflow as tf # noqa
if ARM64:
check_requirements("cmake") # 'cmake' is needed to build onnxsim on aarch64
check_requirements(
(
"onnx>=1.12.0",
"onnx2tf>=1.15.4,<=1.17.5",
"sng4onnx>=1.0.1",
"onnxsim>=0.4.33",
"onnx_graphsurgeon>=0.3.26",
"tflite_support",
"flatbuffers>=23.5.26,<100", # update old 'flatbuffers' included inside tensorflow package
"onnxruntime-gpu" if cuda else "onnxruntime",
),
cmds="--extra-index-url https://pypi.ngc.nvidia.com",
) # onnx_graphsurgeon only on NVIDIA
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
check_version(
tf.__version__,
"<=2.13.1",
name="tensorflow",
verbose=True,
msg="https://github.com/ultralytics/ultralytics/issues/5161",
)
f = Path(str(self.file).replace(self.file.suffix, "_saved_model"))
if f.is_dir():
import shutil
shutil.rmtree(f) # delete output folder
# Pre-download calibration file to fix https://github.com/PINTO0309/onnx2tf/issues/545
onnx2tf_file = Path("calibration_image_sample_data_20x128x128x3_float32.npy")
if not onnx2tf_file.exists():
attempt_download_asset(f"{onnx2tf_file}.zip", unzip=True, delete=True)
# Export to ONNX
self.args.simplify = True
f_onnx, _ = self.export_onnx()
# Export to TF
tmp_file = f / "tmp_tflite_int8_calibration_images.npy" # int8 calibration images file
if self.args.int8:
verbosity = "--verbosity info"
if self.args.data:
# Generate calibration data for integer quantization
LOGGER.info(f"{prefix} collecting INT8 calibration images from 'data={self.args.data}'")
data = check_det_dataset(self.args.data)
dataset = YOLODataset(data["val"], data=data, imgsz=self.imgsz[0], augment=False)
images = []
for i, batch in enumerate(dataset):
if i >= 100: # maximum number of calibration images
break
im = batch["img"].permute(1, 2, 0)[None] # list to nparray, CHW to BHWC
images.append(im)
f.mkdir()
images = torch.cat(images, 0).float()
# mean = images.view(-1, 3).mean(0) # imagenet mean [123.675, 116.28, 103.53]
# std = images.view(-1, 3).std(0) # imagenet std [58.395, 57.12, 57.375]
np.save(str(tmp_file), images.numpy()) # BHWC
int8 = f'-oiqt -qt per-tensor -cind images "{tmp_file}" "[[[[0, 0, 0]]]]" "[[[[255, 255, 255]]]]"'
else:
int8 = "-oiqt -qt per-tensor"
else:
verbosity = "--non_verbose"
int8 = ""
cmd = f'onnx2tf -i "{f_onnx}" -o "{f}" -nuo {verbosity} {int8}'.strip()
LOGGER.info(f"{prefix} running '{cmd}'")
subprocess.run(cmd, shell=True)
yaml_save(f / "metadata.yaml", self.metadata) # add metadata.yaml
# Remove/rename TFLite models
if self.args.int8:
tmp_file.unlink(missing_ok=True)
for file in f.rglob("*_dynamic_range_quant.tflite"):
file.rename(file.with_name(file.stem.replace("_dynamic_range_quant", "_int8") + file.suffix))
for file in f.rglob("*_integer_quant_with_int16_act.tflite"):
file.unlink() # delete extra fp16 activation TFLite files
# Add TFLite metadata
for file in f.rglob("*.tflite"):
f.unlink() if "quant_with_int16_act.tflite" in str(f) else self._add_tflite_metadata(file)
return str(f), tf.saved_model.load(f, tags=None, options=None) # load saved_model as Keras model
@try_export
def export_pb(self, keras_model, prefix=colorstr("TensorFlow GraphDef:")):
"""YOLOv8 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow."""
import tensorflow as tf # noqa
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 # noqa
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
f = self.file.with_suffix(".pb")
m = tf.function(lambda x: keras_model(x)) # full model
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
frozen_func = convert_variables_to_constants_v2(m)
frozen_func.graph.as_graph_def()
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
return f, None
@try_export
def export_tflite(self, keras_model, nms, agnostic_nms, prefix=colorstr("TensorFlow Lite:")):
"""YOLOv8 TensorFlow Lite export."""
import tensorflow as tf # noqa
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
saved_model = Path(str(self.file).replace(self.file.suffix, "_saved_model"))
if self.args.int8:
f = saved_model / f"{self.file.stem}_int8.tflite" # fp32 in/out
elif self.args.half:
f = saved_model / f"{self.file.stem}_float16.tflite" # fp32 in/out
else:
f = saved_model / f"{self.file.stem}_float32.tflite"
return str(f), None
@try_export
def export_edgetpu(self, tflite_model="", prefix=colorstr("Edge TPU:")):
"""YOLOv8 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/."""
LOGGER.warning(f"{prefix} WARNING ⚠️ Edge TPU known bug https://github.com/ultralytics/ultralytics/issues/1185")
cmd = "edgetpu_compiler --version"
help_url = "https://coral.ai/docs/edgetpu/compiler/"
assert LINUX, f"export only supported on Linux. See {help_url}"
if subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, shell=True).returncode != 0:
LOGGER.info(f"\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}")
sudo = subprocess.run("sudo --version >/dev/null", shell=True).returncode == 0 # sudo installed on system
for c in (
"curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -",
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | '
"sudo tee /etc/apt/sources.list.d/coral-edgetpu.list",
"sudo apt-get update",
"sudo apt-get install edgetpu-compiler",
):
subprocess.run(c if sudo else c.replace("sudo ", ""), shell=True, check=True)
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
LOGGER.info(f"\n{prefix} starting export with Edge TPU compiler {ver}...")
f = str(tflite_model).replace(".tflite", "_edgetpu.tflite") # Edge TPU model
cmd = f'edgetpu_compiler -s -d -k 10 --out_dir "{Path(f).parent}" "{tflite_model}"'
LOGGER.info(f"{prefix} running '{cmd}'")
subprocess.run(cmd, shell=True)
self._add_tflite_metadata(f)
return f, None
@try_export
def export_tfjs(self, prefix=colorstr("TensorFlow.js:")):
"""YOLOv8 TensorFlow.js export."""
check_requirements("tensorflowjs")
import tensorflow as tf
import tensorflowjs as tfjs # noqa
LOGGER.info(f"\n{prefix} starting export with tensorflowjs {tfjs.__version__}...")
f = str(self.file).replace(self.file.suffix, "_web_model") # js dir
f_pb = str(self.file.with_suffix(".pb")) # *.pb path
gd = tf.Graph().as_graph_def() # TF GraphDef
with open(f_pb, "rb") as file:
gd.ParseFromString(file.read())
outputs = ",".join(gd_outputs(gd))
LOGGER.info(f"\n{prefix} output node names: {outputs}")
quantization = "--quantize_float16" if self.args.half else "--quantize_uint8" if self.args.int8 else ""
with spaces_in_path(f_pb) as fpb_, spaces_in_path(f) as f_: # exporter can not handle spaces in path
cmd = f'tensorflowjs_converter --input_format=tf_frozen_model {quantization} --output_node_names={outputs} "{fpb_}" "{f_}"'
LOGGER.info(f"{prefix} running '{cmd}'")
subprocess.run(cmd, shell=True)
if " " in f:
LOGGER.warning(f"{prefix} WARNING ⚠️ your model may not work correctly with spaces in path '{f}'.")
# f_json = Path(f) / 'model.json' # *.json path
# with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
# subst = re.sub(
# r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
# r'"Identity.?.?": {"name": "Identity.?.?"}, '
# r'"Identity.?.?": {"name": "Identity.?.?"}, '
# r'"Identity.?.?": {"name": "Identity.?.?"}}}',
# r'{"outputs": {"Identity": {"name": "Identity"}, '
# r'"Identity_1": {"name": "Identity_1"}, '
# r'"Identity_2": {"name": "Identity_2"}, '
# r'"Identity_3": {"name": "Identity_3"}}}',
# f_json.read_text(),
# )
# j.write(subst)
yaml_save(Path(f) / "metadata.yaml", self.metadata) # add metadata.yaml
return f, None
def _add_tflite_metadata(self, file):
"""Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata."""
from tflite_support import flatbuffers # noqa
from tflite_support import metadata as _metadata # noqa
from tflite_support import metadata_schema_py_generated as _metadata_fb # noqa
# Create model info
model_meta = _metadata_fb.ModelMetadataT()
model_meta.name = self.metadata["description"]
model_meta.version = self.metadata["version"]
model_meta.author = self.metadata["author"]
model_meta.license = self.metadata["license"]
# Label file
tmp_file = Path(file).parent / "temp_meta.txt"
with open(tmp_file, "w") as f:
f.write(str(self.metadata))
label_file = _metadata_fb.AssociatedFileT()
label_file.name = tmp_file.name
label_file.type = _metadata_fb.AssociatedFileType.TENSOR_AXIS_LABELS
# Create input info
input_meta = _metadata_fb.TensorMetadataT()
input_meta.name = "image"
input_meta.description = "Input image to be detected."
input_meta.content = _metadata_fb.ContentT()
input_meta.content.contentProperties = _metadata_fb.ImagePropertiesT()
input_meta.content.contentProperties.colorSpace = _metadata_fb.ColorSpaceType.RGB
input_meta.content.contentPropertiesType = _metadata_fb.ContentProperties.ImageProperties
# Create output info
output1 = _metadata_fb.TensorMetadataT()
output1.name = "output"
output1.description = "Coordinates of detected objects, class labels, and confidence score"
output1.associatedFiles = [label_file]
if self.model.task == "segment":
output2 = _metadata_fb.TensorMetadataT()
output2.name = "output"
output2.description = "Mask protos"
output2.associatedFiles = [label_file]
# Create subgraph info
subgraph = _metadata_fb.SubGraphMetadataT()
subgraph.inputTensorMetadata = [input_meta]
subgraph.outputTensorMetadata = [output1, output2] if self.model.task == "segment" else [output1]
model_meta.subgraphMetadata = [subgraph]
b = flatbuffers.Builder(0)
b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
metadata_buf = b.Output()
populator = _metadata.MetadataPopulator.with_model_file(str(file))
populator.load_metadata_buffer(metadata_buf)
populator.load_associated_files([str(tmp_file)])
populator.populate()
tmp_file.unlink()
def _pipeline_coreml(self, model, weights_dir=None, prefix=colorstr("CoreML Pipeline:")):
"""YOLOv8 CoreML pipeline."""
import coremltools as ct # noqa
LOGGER.info(f"{prefix} starting pipeline with coremltools {ct.__version__}...")
_, _, h, w = list(self.im.shape) # BCHW
# Output shapes
spec = model.get_spec()
out0, out1 = iter(spec.description.output)
if MACOS:
from PIL import Image
img = Image.new("RGB", (w, h)) # w=192, h=320
out = model.predict({"image": img})
out0_shape = out[out0.name].shape # (3780, 80)
out1_shape = out[out1.name].shape # (3780, 4)
else: # linux and windows can not run model.predict(), get sizes from PyTorch model output y
out0_shape = self.output_shape[2], self.output_shape[1] - 4 # (3780, 80)
out1_shape = self.output_shape[2], 4 # (3780, 4)
# Checks
names = self.metadata["names"]
nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height
_, nc = out0_shape # number of anchors, number of classes
# _, nc = out0.type.multiArrayType.shape
assert len(names) == nc, f"{len(names)} names found for nc={nc}" # check
# Define output shapes (missing)
out0.type.multiArrayType.shape[:] = out0_shape # (3780, 80)
out1.type.multiArrayType.shape[:] = out1_shape # (3780, 4)
# spec.neuralNetwork.preprocessing[0].featureName = '0'
# Flexible input shapes
# from coremltools.models.neural_network import flexible_shape_utils
# s = [] # shapes
# s.append(flexible_shape_utils.NeuralNetworkImageSize(320, 192))
# s.append(flexible_shape_utils.NeuralNetworkImageSize(640, 384)) # (height, width)
# flexible_shape_utils.add_enumerated_image_sizes(spec, feature_name='image', sizes=s)
# r = flexible_shape_utils.NeuralNetworkImageSizeRange() # shape ranges
# r.add_height_range((192, 640))
# r.add_width_range((192, 640))
# flexible_shape_utils.update_image_size_range(spec, feature_name='image', size_range=r)
# Print
# print(spec.description)
# Model from spec
model = ct.models.MLModel(spec, weights_dir=weights_dir)
# 3. Create NMS protobuf
nms_spec = ct.proto.Model_pb2.Model()
nms_spec.specificationVersion = 5
for i in range(2):
decoder_output = model._spec.description.output[i].SerializeToString()
nms_spec.description.input.add()
nms_spec.description.input[i].ParseFromString(decoder_output)
nms_spec.description.output.add()
nms_spec.description.output[i].ParseFromString(decoder_output)
nms_spec.description.output[0].name = "confidence"
nms_spec.description.output[1].name = "coordinates"
output_sizes = [nc, 4]
for i in range(2):
ma_type = nms_spec.description.output[i].type.multiArrayType
ma_type.shapeRange.sizeRanges.add()
ma_type.shapeRange.sizeRanges[0].lowerBound = 0
ma_type.shapeRange.sizeRanges[0].upperBound = -1
ma_type.shapeRange.sizeRanges.add()
ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i]
ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i]
del ma_type.shape[:]
nms = nms_spec.nonMaximumSuppression
nms.confidenceInputFeatureName = out0.name # 1x507x80
nms.coordinatesInputFeatureName = out1.name # 1x507x4
nms.confidenceOutputFeatureName = "confidence"
nms.coordinatesOutputFeatureName = "coordinates"
nms.iouThresholdInputFeatureName = "iouThreshold"
nms.confidenceThresholdInputFeatureName = "confidenceThreshold"
nms.iouThreshold = 0.45
nms.confidenceThreshold = 0.25
nms.pickTop.perClass = True
nms.stringClassLabels.vector.extend(names.values())
nms_model = ct.models.MLModel(nms_spec)
# 4. Pipeline models together
pipeline = ct.models.pipeline.Pipeline(
input_features=[
("image", ct.models.datatypes.Array(3, ny, nx)),
("iouThreshold", ct.models.datatypes.Double()),
("confidenceThreshold", ct.models.datatypes.Double()),
],
output_features=["confidence", "coordinates"],
)
pipeline.add_model(model)
pipeline.add_model(nms_model)
# Correct datatypes
pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString())
pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString())
pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString())
# Update metadata
pipeline.spec.specificationVersion = 5
pipeline.spec.description.metadata.userDefined.update(
{"IoU threshold": str(nms.iouThreshold), "Confidence threshold": str(nms.confidenceThreshold)}
)
# Save the model
model = ct.models.MLModel(pipeline.spec, weights_dir=weights_dir)
model.input_description["image"] = "Input image"
model.input_description["iouThreshold"] = f"(optional) IOU threshold override (default: {nms.iouThreshold})"
model.input_description[
"confidenceThreshold"
] = f"(optional) Confidence threshold override (default: {nms.confidenceThreshold})"
model.output_description["confidence"] = 'Boxes √ó Class confidence (see user-defined metadata "classes")'
model.output_description["coordinates"] = "Boxes √ó [x, y, width, height] (relative to image size)"
LOGGER.info(f"{prefix} pipeline success")
return model
def add_callback(self, event: str, callback):
"""Appends the given callback."""
self.callbacks[event].append(callback)
def run_callbacks(self, event: str):
"""Execute all callbacks for a given event."""
for callback in self.callbacks.get(event, []):
callback(self)
class IOSDetectModel(torch.nn.Module):
"""Wrap an Ultralytics YOLO model for Apple iOS CoreML export."""
def __init__(self, model, im):
"""Initialize the IOSDetectModel class with a YOLO model and example image."""
super().__init__()
_, _, h, w = im.shape # batch, channel, height, width
self.model = model
self.nc = len(model.names) # number of classes
if w == h:
self.normalize = 1.0 / w # scalar
else:
self.normalize = torch.tensor([1.0 / w, 1.0 / h, 1.0 / w, 1.0 / h]) # broadcast (slower, smaller)
def forward(self, x):
"""Normalize predictions of object detection model with input size-dependent factors."""
xywh, cls = self.model(x)[0].transpose(0, 1).split((4, self.nc), 1)
return cls, xywh * self.normalize # confidence (3780, 80), coordinates (3780, 4)
| 52,811 | Python | .py | 973 | 43.5889 | 135 | 0.598541 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,862 | trainer.py | arojsubedi_Improved-YOLOv8s/ultralytics/engine/trainer.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Train a model on a dataset.
Usage:
$ yolo mode=train model=yolov8n.pt data=coco128.yaml imgsz=640 epochs=100 batch=16
"""
import math
import os
import subprocess
import time
import warnings
from copy import deepcopy
from datetime import datetime, timedelta
from pathlib import Path
import numpy as np
import torch
from torch import distributed as dist
from torch import nn, optim
from ultralytics.cfg import get_cfg, get_save_dir
from ultralytics.data.utils import check_cls_dataset, check_det_dataset
from ultralytics.nn.tasks import attempt_load_one_weight, attempt_load_weights
from ultralytics.utils import (
DEFAULT_CFG,
LOGGER,
RANK,
TQDM,
__version__,
callbacks,
clean_url,
colorstr,
emojis,
yaml_save,
)
from ultralytics.utils.autobatch import check_train_batch_size
from ultralytics.utils.checks import check_amp, check_file, check_imgsz, check_model_file_from_stem, print_args
from ultralytics.utils.dist import ddp_cleanup, generate_ddp_command
from ultralytics.utils.files import get_latest_run
from ultralytics.utils.torch_utils import (
EarlyStopping,
ModelEMA,
de_parallel,
init_seeds,
one_cycle,
select_device,
strip_optimizer,
)
class BaseTrainer:
"""
BaseTrainer.
A base class for creating trainers.
Attributes:
args (SimpleNamespace): Configuration for the trainer.
validator (BaseValidator): Validator instance.
model (nn.Module): Model instance.
callbacks (defaultdict): Dictionary of callbacks.
save_dir (Path): Directory to save results.
wdir (Path): Directory to save weights.
last (Path): Path to the last checkpoint.
best (Path): Path to the best checkpoint.
save_period (int): Save checkpoint every x epochs (disabled if < 1).
batch_size (int): Batch size for training.
epochs (int): Number of epochs to train for.
start_epoch (int): Starting epoch for training.
device (torch.device): Device to use for training.
amp (bool): Flag to enable AMP (Automatic Mixed Precision).
scaler (amp.GradScaler): Gradient scaler for AMP.
data (str): Path to data.
trainset (torch.utils.data.Dataset): Training dataset.
testset (torch.utils.data.Dataset): Testing dataset.
ema (nn.Module): EMA (Exponential Moving Average) of the model.
resume (bool): Resume training from a checkpoint.
lf (nn.Module): Loss function.
scheduler (torch.optim.lr_scheduler._LRScheduler): Learning rate scheduler.
best_fitness (float): The best fitness value achieved.
fitness (float): Current fitness value.
loss (float): Current loss value.
tloss (float): Total loss value.
loss_names (list): List of loss names.
csv (Path): Path to results CSV file.
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""
Initializes the BaseTrainer class.
Args:
cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG.
overrides (dict, optional): Configuration overrides. Defaults to None.
"""
self.args = get_cfg(cfg, overrides)
self.check_resume(overrides)
self.device = select_device(self.args.device, self.args.batch)
self.validator = None
self.metrics = None
self.plots = {}
init_seeds(self.args.seed + 1 + RANK, deterministic=self.args.deterministic)
# Dirs
self.save_dir = get_save_dir(self.args)
self.args.name = self.save_dir.name # update name for loggers
self.wdir = self.save_dir / "weights" # weights dir
if RANK in (-1, 0):
self.wdir.mkdir(parents=True, exist_ok=True) # make dir
self.args.save_dir = str(self.save_dir)
yaml_save(self.save_dir / "args.yaml", vars(self.args)) # save run args
self.last, self.best = self.wdir / "last.pt", self.wdir / "best.pt" # checkpoint paths
self.save_period = self.args.save_period
self.batch_size = self.args.batch
self.epochs = self.args.epochs
self.start_epoch = 0
if RANK == -1:
print_args(vars(self.args))
# Device
if self.device.type in ("cpu", "mps"):
self.args.workers = 0 # faster CPU training as time dominated by inference, not dataloading
# Model and Dataset
self.model = check_model_file_from_stem(self.args.model) # add suffix, i.e. yolov8n -> yolov8n.pt
try:
if self.args.task == "classify":
self.data = check_cls_dataset(self.args.data)
elif self.args.data.split(".")[-1] in ("yaml", "yml") or self.args.task in ("detect", "segment", "pose"):
self.data = check_det_dataset(self.args.data)
if "yaml_file" in self.data:
self.args.data = self.data["yaml_file"] # for validating 'yolo train data=url.zip' usage
except Exception as e:
raise RuntimeError(emojis(f"Dataset '{clean_url(self.args.data)}' error � {e}")) from e
self.trainset, self.testset = self.get_dataset(self.data)
self.ema = None
# Optimization utils init
self.lf = None
self.scheduler = None
# Epoch level metrics
self.best_fitness = None
self.fitness = None
self.loss = None
self.tloss = None
self.loss_names = ["Loss"]
self.csv = self.save_dir / "results.csv"
self.plot_idx = [0, 1, 2]
# Callbacks
self.callbacks = _callbacks or callbacks.get_default_callbacks()
if RANK in (-1, 0):
callbacks.add_integration_callbacks(self)
def add_callback(self, event: str, callback):
"""Appends the given callback."""
self.callbacks[event].append(callback)
def set_callback(self, event: str, callback):
"""Overrides the existing callbacks with the given callback."""
self.callbacks[event] = [callback]
def run_callbacks(self, event: str):
"""Run all existing callbacks associated with a particular event."""
for callback in self.callbacks.get(event, []):
callback(self)
def train(self):
"""Allow device='', device=None on Multi-GPU systems to default to device=0."""
if isinstance(self.args.device, str) and len(self.args.device): # i.e. device='0' or device='0,1,2,3'
world_size = len(self.args.device.split(","))
elif isinstance(self.args.device, (tuple, list)): # i.e. device=[0, 1, 2, 3] (multi-GPU from CLI is list)
world_size = len(self.args.device)
elif torch.cuda.is_available(): # i.e. device=None or device='' or device=number
world_size = 1 # default to device 0
else: # i.e. device='cpu' or 'mps'
world_size = 0
# Run subprocess if DDP training, else train normally
if world_size > 1 and "LOCAL_RANK" not in os.environ:
# Argument checks
if self.args.rect:
LOGGER.warning("WARNING ⚠� 'rect=True' is incompatible with Multi-GPU training, setting 'rect=False'")
self.args.rect = False
if self.args.batch == -1:
LOGGER.warning(
"WARNING ⚠� 'batch=-1' for AutoBatch is incompatible with Multi-GPU training, setting "
"default 'batch=16'"
)
self.args.batch = 16
# Command
cmd, file = generate_ddp_command(world_size, self)
try:
LOGGER.info(f'{colorstr("DDP:")} debug command {" ".join(cmd)}')
subprocess.run(cmd, check=True)
except Exception as e:
raise e
finally:
ddp_cleanup(self, str(file))
else:
self._do_train(world_size)
def _setup_scheduler(self):
"""Initialize training learning rate scheduler."""
if self.args.cos_lr:
self.lf = one_cycle(1, self.args.lrf, self.epochs) # cosine 1->hyp['lrf']
else:
self.lf = lambda x: max(1 - x / self.epochs, 0) * (1.0 - self.args.lrf) + self.args.lrf # linear
self.scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=self.lf)
def _setup_ddp(self, world_size):
"""Initializes and sets the DistributedDataParallel parameters for training."""
torch.cuda.set_device(RANK)
self.device = torch.device("cuda", RANK)
# LOGGER.info(f'DDP info: RANK {RANK}, WORLD_SIZE {world_size}, DEVICE {self.device}')
os.environ["NCCL_BLOCKING_WAIT"] = "1" # set to enforce timeout
dist.init_process_group(
"nccl" if dist.is_nccl_available() else "gloo",
timeout=timedelta(seconds=10800), # 3 hours
rank=RANK,
world_size=world_size,
)
def _setup_train(self, world_size):
"""Builds dataloaders and optimizer on correct rank process."""
# Model
self.run_callbacks("on_pretrain_routine_start")
ckpt = self.setup_model()
self.model = self.model.to(self.device)
self.set_model_attributes()
# Freeze layers
freeze_list = (
self.args.freeze
if isinstance(self.args.freeze, list)
else range(self.args.freeze)
if isinstance(self.args.freeze, int)
else []
)
always_freeze_names = [".dfl"] # always freeze these layers
freeze_layer_names = [f"model.{x}." for x in freeze_list] + always_freeze_names
for k, v in self.model.named_parameters():
# v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
if any(x in k for x in freeze_layer_names):
LOGGER.info(f"Freezing layer '{k}'")
v.requires_grad = False
elif not v.requires_grad and v.dtype.is_floating_point: # only floating point Tensor can require gradients
LOGGER.info(
f"WARNING ⚠� setting 'requires_grad=True' for frozen layer '{k}'. "
"See ultralytics.engine.trainer for customization of frozen layers."
)
v.requires_grad = True
# Check AMP
self.amp = torch.tensor(self.args.amp).to(self.device) # True or False
if self.amp and RANK in (-1, 0): # Single-GPU and DDP
callbacks_backup = callbacks.default_callbacks.copy() # backup callbacks as check_amp() resets them
self.amp = torch.tensor(check_amp(self.model), device=self.device)
callbacks.default_callbacks = callbacks_backup # restore callbacks
if RANK > -1 and world_size > 1: # DDP
dist.broadcast(self.amp, src=0) # broadcast the tensor from rank 0 to all other ranks (returns None)
self.amp = bool(self.amp) # as boolean
self.scaler = torch.cuda.amp.GradScaler(enabled=self.amp)
if world_size > 1:
self.model = nn.parallel.DistributedDataParallel(self.model, device_ids=[RANK])
# Check imgsz
gs = max(int(self.model.stride.max() if hasattr(self.model, "stride") else 32), 32) # grid size (max stride)
self.args.imgsz = check_imgsz(self.args.imgsz, stride=gs, floor=gs, max_dim=1)
self.stride = gs # for multi-scale training
# Batch size
if self.batch_size == -1 and RANK == -1: # single-GPU only, estimate best batch size
self.args.batch = self.batch_size = check_train_batch_size(self.model, self.args.imgsz, self.amp)
# Dataloaders
batch_size = self.batch_size // max(world_size, 1)
self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=RANK, mode="train")
if RANK in (-1, 0):
# Note: When training DOTA dataset, double batch size could get OOM on images with >2000 objects.
self.test_loader = self.get_dataloader(
self.testset, batch_size=batch_size if self.args.task == "obb" else batch_size * 2, rank=-1, mode="val"
)
self.validator = self.get_validator()
metric_keys = self.validator.metrics.keys + self.label_loss_items(prefix="val")
self.metrics = dict(zip(metric_keys, [0] * len(metric_keys)))
self.ema = ModelEMA(self.model)
if self.args.plots:
self.plot_training_labels()
# Optimizer
self.accumulate = max(round(self.args.nbs / self.batch_size), 1) # accumulate loss before optimizing
weight_decay = self.args.weight_decay * self.batch_size * self.accumulate / self.args.nbs # scale weight_decay
iterations = math.ceil(len(self.train_loader.dataset) / max(self.batch_size, self.args.nbs)) * self.epochs
self.optimizer = self.build_optimizer(
model=self.model,
name=self.args.optimizer,
lr=self.args.lr0,
momentum=self.args.momentum,
decay=weight_decay,
iterations=iterations,
)
# Scheduler
self._setup_scheduler()
self.stopper, self.stop = EarlyStopping(patience=self.args.patience), False
self.resume_training(ckpt)
self.scheduler.last_epoch = self.start_epoch - 1 # do not move
self.run_callbacks("on_pretrain_routine_end")
def _do_train(self, world_size=1):
"""Train completed, evaluate and plot if specified by arguments."""
if world_size > 1:
self._setup_ddp(world_size)
self._setup_train(world_size)
nb = len(self.train_loader) # number of batches
nw = max(round(self.args.warmup_epochs * nb), 100) if self.args.warmup_epochs > 0 else -1 # warmup iterations
last_opt_step = -1
self.epoch_time = None
self.epoch_time_start = time.time()
self.train_time_start = time.time()
self.run_callbacks("on_train_start")
LOGGER.info(
f'Image sizes {self.args.imgsz} train, {self.args.imgsz} val\n'
f'Using {self.train_loader.num_workers * (world_size or 1)} dataloader workers\n'
f"Logging results to {colorstr('bold', self.save_dir)}\n"
f'Starting training for ' + (f"{self.args.time} hours..." if self.args.time else f"{self.epochs} epochs...")
)
if self.args.close_mosaic:
base_idx = (self.epochs - self.args.close_mosaic) * nb
self.plot_idx.extend([base_idx, base_idx + 1, base_idx + 2])
epoch = self.start_epoch
while True:
self.epoch = epoch
self.run_callbacks("on_train_epoch_start")
self.model.train()
if RANK != -1:
self.train_loader.sampler.set_epoch(epoch)
pbar = enumerate(self.train_loader)
# Update dataloader attributes (optional)
if epoch == (self.epochs - self.args.close_mosaic):
self._close_dataloader_mosaic()
self.train_loader.reset()
if RANK in (-1, 0):
LOGGER.info(self.progress_string())
pbar = TQDM(enumerate(self.train_loader), total=nb)
self.tloss = None
self.optimizer.zero_grad()
for i, batch in pbar:
self.run_callbacks("on_train_batch_start")
# Warmup
ni = i + nb * epoch
if ni <= nw:
xi = [0, nw] # x interp
self.accumulate = max(1, int(np.interp(ni, xi, [1, self.args.nbs / self.batch_size]).round()))
for j, x in enumerate(self.optimizer.param_groups):
# Bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
x["lr"] = np.interp(
ni, xi, [self.args.warmup_bias_lr if j == 0 else 0.0, x["initial_lr"] * self.lf(epoch)]
)
if "momentum" in x:
x["momentum"] = np.interp(ni, xi, [self.args.warmup_momentum, self.args.momentum])
# Forward
with torch.cuda.amp.autocast(self.amp):
batch = self.preprocess_batch(batch)
self.loss, self.loss_items = self.model(batch)
if RANK != -1:
self.loss *= world_size
self.tloss = (
(self.tloss * i + self.loss_items) / (i + 1) if self.tloss is not None else self.loss_items
)
# Backward
self.scaler.scale(self.loss).backward()
# Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
if ni - last_opt_step >= self.accumulate:
self.optimizer_step()
last_opt_step = ni
# Timed stopping
if self.args.time:
self.stop = (time.time() - self.train_time_start) > (self.args.time * 3600)
if RANK != -1: # if DDP training
broadcast_list = [self.stop if RANK == 0 else None]
dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
self.stop = broadcast_list[0]
if self.stop: # training time exceeded
break
# Log
mem = f"{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G" # (GB)
loss_len = self.tloss.shape[0] if len(self.tloss.shape) else 1
losses = self.tloss if loss_len > 1 else torch.unsqueeze(self.tloss, 0)
if RANK in (-1, 0):
pbar.set_description(
("%11s" * 2 + "%11.4g" * (2 + loss_len))
% (f"{epoch + 1}/{self.epochs}", mem, *losses, batch["cls"].shape[0], batch["img"].shape[-1])
)
self.run_callbacks("on_batch_end")
if self.args.plots and ni in self.plot_idx:
self.plot_training_samples(batch, ni)
self.run_callbacks("on_train_batch_end")
self.lr = {f"lr/pg{ir}": x["lr"] for ir, x in enumerate(self.optimizer.param_groups)} # for loggers
self.run_callbacks("on_train_epoch_end")
if RANK in (-1, 0):
final_epoch = epoch + 1 == self.epochs
self.ema.update_attr(self.model, include=["yaml", "nc", "args", "names", "stride", "class_weights"])
# Validation
if self.args.val or final_epoch or self.stopper.possible_stop or self.stop:
self.metrics, self.fitness = self.validate()
self.save_metrics(metrics={**self.label_loss_items(self.tloss), **self.metrics, **self.lr})
self.stop |= self.stopper(epoch + 1, self.fitness) or final_epoch
if self.args.time:
self.stop |= (time.time() - self.train_time_start) > (self.args.time * 3600)
# Save model
if self.args.save or final_epoch:
self.save_model()
self.run_callbacks("on_model_save")
# Scheduler
t = time.time()
self.epoch_time = t - self.epoch_time_start
self.epoch_time_start = t
with warnings.catch_warnings():
warnings.simplefilter("ignore") # suppress 'Detected lr_scheduler.step() before optimizer.step()'
if self.args.time:
mean_epoch_time = (t - self.train_time_start) / (epoch - self.start_epoch + 1)
self.epochs = self.args.epochs = math.ceil(self.args.time * 3600 / mean_epoch_time)
self._setup_scheduler()
self.scheduler.last_epoch = self.epoch # do not move
self.stop |= epoch >= self.epochs # stop if exceeded epochs
self.scheduler.step()
self.run_callbacks("on_fit_epoch_end")
torch.cuda.empty_cache() # clear GPU memory at end of epoch, may help reduce CUDA out of memory errors
# Early Stopping
if RANK != -1: # if DDP training
broadcast_list = [self.stop if RANK == 0 else None]
dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
self.stop = broadcast_list[0]
if self.stop:
break # must break all DDP ranks
epoch += 1
if RANK in (-1, 0):
# Do final val with best.pt
LOGGER.info(
f"\n{epoch - self.start_epoch + 1} epochs completed in "
f"{(time.time() - self.train_time_start) / 3600:.3f} hours."
)
self.final_eval()
if self.args.plots:
self.plot_metrics()
self.run_callbacks("on_train_end")
torch.cuda.empty_cache()
self.run_callbacks("teardown")
def save_model(self):
"""Save model training checkpoints with additional metadata."""
import pandas as pd # scope for faster startup
metrics = {**self.metrics, **{"fitness": self.fitness}}
results = {k.strip(): v for k, v in pd.read_csv(self.csv).to_dict(orient="list").items()}
ckpt = {
"epoch": self.epoch,
"best_fitness": self.best_fitness,
"model": deepcopy(de_parallel(self.model)).half(),
"ema": deepcopy(self.ema.ema).half(),
"updates": self.ema.updates,
"optimizer": self.optimizer.state_dict(),
"train_args": vars(self.args), # save as dict
"train_metrics": metrics,
"train_results": results,
"date": datetime.now().isoformat(),
"version": __version__,
}
# Save last and best
torch.save(ckpt, self.last)
if self.best_fitness == self.fitness:
torch.save(ckpt, self.best)
if (self.save_period > 0) and (self.epoch > 0) and (self.epoch % self.save_period == 0):
torch.save(ckpt, self.wdir / f"epoch{self.epoch}.pt")
@staticmethod
def get_dataset(data):
"""
Get train, val path from data dict if it exists.
Returns None if data format is not recognized.
"""
return data["train"], data.get("val") or data.get("test")
def setup_model(self):
"""Load/create/download model for any task."""
if isinstance(self.model, torch.nn.Module): # if model is loaded beforehand. No setup needed
return
model, weights = self.model, None
ckpt = None
if str(model).endswith(".pt"):
weights, ckpt = attempt_load_one_weight(model)
cfg = ckpt["model"].yaml
else:
cfg = model
self.model = self.get_model(cfg=cfg, weights=weights, verbose=RANK == -1) # calls Model(cfg, weights)
return ckpt
def optimizer_step(self):
"""Perform a single step of the training optimizer with gradient clipping and EMA update."""
self.scaler.unscale_(self.optimizer) # unscale gradients
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=10.0) # clip gradients
self.scaler.step(self.optimizer)
self.scaler.update()
self.optimizer.zero_grad()
if self.ema:
self.ema.update(self.model)
def preprocess_batch(self, batch):
"""Allows custom preprocessing model inputs and ground truths depending on task type."""
return batch
def validate(self):
"""
Runs validation on test set using self.validator.
The returned dict is expected to contain "fitness" key.
"""
metrics = self.validator(self)
fitness = metrics.pop("fitness", -self.loss.detach().cpu().numpy()) # use loss as fitness measure if not found
if not self.best_fitness or self.best_fitness < fitness:
self.best_fitness = fitness
return metrics, fitness
def get_model(self, cfg=None, weights=None, verbose=True):
"""Get model and raise NotImplementedError for loading cfg files."""
raise NotImplementedError("This task trainer doesn't support loading cfg files")
def get_validator(self):
"""Returns a NotImplementedError when the get_validator function is called."""
raise NotImplementedError("get_validator function not implemented in trainer")
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
"""Returns dataloader derived from torch.data.Dataloader."""
raise NotImplementedError("get_dataloader function not implemented in trainer")
def build_dataset(self, img_path, mode="train", batch=None):
"""Build dataset."""
raise NotImplementedError("build_dataset function not implemented in trainer")
def label_loss_items(self, loss_items=None, prefix="train"):
"""
Returns a loss dict with labelled training loss items tensor.
Note:
This is not needed for classification but necessary for segmentation & detection
"""
return {"loss": loss_items} if loss_items is not None else ["loss"]
def set_model_attributes(self):
"""To set or update model parameters before training."""
self.model.names = self.data["names"]
def build_targets(self, preds, targets):
"""Builds target tensors for training YOLO model."""
pass
def progress_string(self):
"""Returns a string describing training progress."""
return ""
# TODO: may need to put these following functions into callback
def plot_training_samples(self, batch, ni):
"""Plots training samples during YOLO training."""
pass
def plot_training_labels(self):
"""Plots training labels for YOLO model."""
pass
def save_metrics(self, metrics):
"""Saves training metrics to a CSV file."""
keys, vals = list(metrics.keys()), list(metrics.values())
n = len(metrics) + 1 # number of cols
s = "" if self.csv.exists() else (("%23s," * n % tuple(["epoch"] + keys)).rstrip(",") + "\n") # header
with open(self.csv, "a") as f:
f.write(s + ("%23.5g," * n % tuple([self.epoch + 1] + vals)).rstrip(",") + "\n")
def plot_metrics(self):
"""Plot and display metrics visually."""
pass
def on_plot(self, name, data=None):
"""Registers plots (e.g. to be consumed in callbacks)"""
path = Path(name)
self.plots[path] = {"data": data, "timestamp": time.time()}
def final_eval(self):
"""Performs final evaluation and validation for object detection YOLO model."""
for f in self.last, self.best:
if f.exists():
strip_optimizer(f) # strip optimizers
if f is self.best:
LOGGER.info(f"\nValidating {f}...")
self.validator.args.plots = self.args.plots
self.metrics = self.validator(model=f)
self.metrics.pop("fitness", None)
self.run_callbacks("on_fit_epoch_end")
def check_resume(self, overrides):
"""Check if resume checkpoint exists and update arguments accordingly."""
resume = self.args.resume
if resume:
try:
exists = isinstance(resume, (str, Path)) and Path(resume).exists()
last = Path(check_file(resume) if exists else get_latest_run())
# Check that resume data YAML exists, otherwise strip to force re-download of dataset
ckpt_args = attempt_load_weights(last).args
if not Path(ckpt_args["data"]).exists():
ckpt_args["data"] = self.args.data
resume = True
self.args = get_cfg(ckpt_args)
self.args.model = str(last) # reinstate model
for k in "imgsz", "batch": # allow arg updates to reduce memory on resume if crashed due to CUDA OOM
if k in overrides:
setattr(self.args, k, overrides[k])
except Exception as e:
raise FileNotFoundError(
"Resume checkpoint not found. Please pass a valid checkpoint to resume from, "
"i.e. 'yolo train resume model=path/to/last.pt'"
) from e
self.resume = resume
def resume_training(self, ckpt):
"""Resume YOLO training from given epoch and best fitness."""
if ckpt is None:
return
best_fitness = 0.0
start_epoch = ckpt["epoch"] + 1
if ckpt["optimizer"] is not None:
self.optimizer.load_state_dict(ckpt["optimizer"]) # optimizer
best_fitness = ckpt["best_fitness"]
if self.ema and ckpt.get("ema"):
self.ema.ema.load_state_dict(ckpt["ema"].float().state_dict()) # EMA
self.ema.updates = ckpt["updates"]
if self.resume:
assert start_epoch > 0, (
f"{self.args.model} training to {self.epochs} epochs is finished, nothing to resume.\n"
f"Start a new training without resuming, i.e. 'yolo train model={self.args.model}'"
)
LOGGER.info(
f"Resuming training from {self.args.model} from epoch {start_epoch + 1} to {self.epochs} total epochs"
)
if self.epochs < start_epoch:
LOGGER.info(
f"{self.model} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {self.epochs} more epochs."
)
self.epochs += ckpt["epoch"] # finetune additional epochs
self.best_fitness = best_fitness
self.start_epoch = start_epoch
if start_epoch > (self.epochs - self.args.close_mosaic):
self._close_dataloader_mosaic()
def _close_dataloader_mosaic(self):
"""Update dataloaders to stop using mosaic augmentation."""
if hasattr(self.train_loader.dataset, "mosaic"):
self.train_loader.dataset.mosaic = False
if hasattr(self.train_loader.dataset, "close_mosaic"):
LOGGER.info("Closing dataloader mosaic")
self.train_loader.dataset.close_mosaic(hyp=self.args)
def build_optimizer(self, model, name="auto", lr=0.001, momentum=0.9, decay=1e-5, iterations=1e5):
"""
Constructs an optimizer for the given model, based on the specified optimizer name, learning rate, momentum,
weight decay, and number of iterations.
Args:
model (torch.nn.Module): The model for which to build an optimizer.
name (str, optional): The name of the optimizer to use. If 'auto', the optimizer is selected
based on the number of iterations. Default: 'auto'.
lr (float, optional): The learning rate for the optimizer. Default: 0.001.
momentum (float, optional): The momentum factor for the optimizer. Default: 0.9.
decay (float, optional): The weight decay for the optimizer. Default: 1e-5.
iterations (float, optional): The number of iterations, which determines the optimizer if
name is 'auto'. Default: 1e5.
Returns:
(torch.optim.Optimizer): The constructed optimizer.
"""
g = [], [], [] # optimizer parameter groups
bn = tuple(v for k, v in nn.__dict__.items() if "Norm" in k) # normalization layers, i.e. BatchNorm2d()
if name == "auto":
LOGGER.info(
f"{colorstr('optimizer:')} 'optimizer=auto' found, "
f"ignoring 'lr0={self.args.lr0}' and 'momentum={self.args.momentum}' and "
f"determining best 'optimizer', 'lr0' and 'momentum' automatically... "
)
nc = getattr(model, "nc", 10) # number of classes
lr_fit = round(0.002 * 5 / (4 + nc), 6) # lr0 fit equation to 6 decimal places
name, lr, momentum = ("SGD", 0.01, 0.9) if iterations > 10000 else ("AdamW", lr_fit, 0.9)
self.args.warmup_bias_lr = 0.0 # no higher than 0.01 for Adam
for module_name, module in model.named_modules():
for param_name, param in module.named_parameters(recurse=False):
fullname = f"{module_name}.{param_name}" if module_name else param_name
if "bias" in fullname: # bias (no decay)
g[2].append(param)
elif isinstance(module, bn): # weight (no decay)
g[1].append(param)
else: # weight (with decay)
g[0].append(param)
if name in ("Adam", "Adamax", "AdamW", "NAdam", "RAdam"):
optimizer = getattr(optim, name, optim.Adam)(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0)
elif name == "RMSProp":
optimizer = optim.RMSprop(g[2], lr=lr, momentum=momentum)
elif name == "SGD":
optimizer = optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True)
else:
raise NotImplementedError(
f"Optimizer '{name}' not found in list of available optimizers "
f"[Adam, AdamW, NAdam, RAdam, RMSProp, SGD, auto]."
"To request support for addition optimizers please visit https://github.com/ultralytics/ultralytics."
)
optimizer.add_param_group({"params": g[0], "weight_decay": decay}) # add g0 with weight_decay
optimizer.add_param_group({"params": g[1], "weight_decay": 0.0}) # add g1 (BatchNorm2d weights)
LOGGER.info(
f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}, momentum={momentum}) with parameter groups "
f'{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias(decay=0.0)'
)
return optimizer
| 34,321 | Python | .py | 662 | 40.135952 | 122 | 0.590259 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,863 | tuner.py | arojsubedi_Improved-YOLOv8s/ultralytics/engine/tuner.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
"""
This module provides functionalities for hyperparameter tuning of the Ultralytics YOLO models for object detection,
instance segmentation, image classification, pose estimation, and multi-object tracking.
Hyperparameter tuning is the process of systematically searching for the optimal set of hyperparameters
that yield the best model performance. This is particularly crucial in deep learning models like YOLO,
where small changes in hyperparameters can lead to significant differences in model accuracy and efficiency.
Example:
Tune hyperparameters for YOLOv8n on COCO8 at imgsz=640 and epochs=30 for 300 tuning iterations.
```python
from ultralytics import YOLO
model = YOLO('yolov8n.pt')
model.tune(data='coco8.yaml', epochs=10, iterations=300, optimizer='AdamW', plots=False, save=False, val=False)
```
"""
import random
import shutil
import subprocess
import time
import numpy as np
import torch
from ultralytics.cfg import get_cfg, get_save_dir
from ultralytics.utils import DEFAULT_CFG, LOGGER, callbacks, colorstr, remove_colorstr, yaml_print, yaml_save
from ultralytics.utils.plotting import plot_tune_results
class Tuner:
"""
Class responsible for hyperparameter tuning of YOLO models.
The class evolves YOLO model hyperparameters over a given number of iterations
by mutating them according to the search space and retraining the model to evaluate their performance.
Attributes:
space (dict): Hyperparameter search space containing bounds and scaling factors for mutation.
tune_dir (Path): Directory where evolution logs and results will be saved.
tune_csv (Path): Path to the CSV file where evolution logs are saved.
Methods:
_mutate(hyp: dict) -> dict:
Mutates the given hyperparameters within the bounds specified in `self.space`.
__call__():
Executes the hyperparameter evolution across multiple iterations.
Example:
Tune hyperparameters for YOLOv8n on COCO8 at imgsz=640 and epochs=30 for 300 tuning iterations.
```python
from ultralytics import YOLO
model = YOLO('yolov8n.pt')
model.tune(data='coco8.yaml', epochs=10, iterations=300, optimizer='AdamW', plots=False, save=False, val=False)
```
Tune with custom search space.
```python
from ultralytics import YOLO
model = YOLO('yolov8n.pt')
model.tune(space={key1: val1, key2: val2}) # custom search space dictionary
```
"""
def __init__(self, args=DEFAULT_CFG, _callbacks=None):
"""
Initialize the Tuner with configurations.
Args:
args (dict, optional): Configuration for hyperparameter evolution.
"""
self.space = args.pop("space", None) or { # key: (min, max, gain(optional))
# 'optimizer': tune.choice(['SGD', 'Adam', 'AdamW', 'NAdam', 'RAdam', 'RMSProp']),
"lr0": (1e-5, 1e-1), # initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
"lrf": (0.0001, 0.1), # final OneCycleLR learning rate (lr0 * lrf)
"momentum": (0.7, 0.98, 0.3), # SGD momentum/Adam beta1
"weight_decay": (0.0, 0.001), # optimizer weight decay 5e-4
"warmup_epochs": (0.0, 5.0), # warmup epochs (fractions ok)
"warmup_momentum": (0.0, 0.95), # warmup initial momentum
"box": (1.0, 20.0), # box loss gain
"cls": (0.2, 4.0), # cls loss gain (scale with pixels)
"dfl": (0.4, 6.0), # dfl loss gain
"hsv_h": (0.0, 0.1), # image HSV-Hue augmentation (fraction)
"hsv_s": (0.0, 0.9), # image HSV-Saturation augmentation (fraction)
"hsv_v": (0.0, 0.9), # image HSV-Value augmentation (fraction)
"degrees": (0.0, 45.0), # image rotation (+/- deg)
"translate": (0.0, 0.9), # image translation (+/- fraction)
"scale": (0.0, 0.95), # image scale (+/- gain)
"shear": (0.0, 10.0), # image shear (+/- deg)
"perspective": (0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
"flipud": (0.0, 1.0), # image flip up-down (probability)
"fliplr": (0.0, 1.0), # image flip left-right (probability)
"mosaic": (0.0, 1.0), # image mixup (probability)
"mixup": (0.0, 1.0), # image mixup (probability)
"copy_paste": (0.0, 1.0), # segment copy-paste (probability)
}
self.args = get_cfg(overrides=args)
self.tune_dir = get_save_dir(self.args, name="tune")
self.tune_csv = self.tune_dir / "tune_results.csv"
self.callbacks = _callbacks or callbacks.get_default_callbacks()
self.prefix = colorstr("Tuner: ")
callbacks.add_integration_callbacks(self)
LOGGER.info(
f"{self.prefix}Initialized Tuner instance with 'tune_dir={self.tune_dir}'\n"
f"{self.prefix}💡 Learn about tuning at https://docs.ultralytics.com/guides/hyperparameter-tuning"
)
def _mutate(self, parent="single", n=5, mutation=0.8, sigma=0.2):
"""
Mutates the hyperparameters based on bounds and scaling factors specified in `self.space`.
Args:
parent (str): Parent selection method: 'single' or 'weighted'.
n (int): Number of parents to consider.
mutation (float): Probability of a parameter mutation in any given iteration.
sigma (float): Standard deviation for Gaussian random number generator.
Returns:
(dict): A dictionary containing mutated hyperparameters.
"""
if self.tune_csv.exists(): # if CSV file exists: select best hyps and mutate
# Select parent(s)
x = np.loadtxt(self.tune_csv, ndmin=2, delimiter=",", skiprows=1)
fitness = x[:, 0] # first column
n = min(n, len(x)) # number of previous results to consider
x = x[np.argsort(-fitness)][:n] # top n mutations
w = x[:, 0] - x[:, 0].min() + 1e-6 # weights (sum > 0)
if parent == "single" or len(x) == 1:
# x = x[random.randint(0, n - 1)] # random selection
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
elif parent == "weighted":
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
# Mutate
r = np.random # method
r.seed(int(time.time()))
g = np.array([v[2] if len(v) == 3 else 1.0 for k, v in self.space.items()]) # gains 0-1
ng = len(self.space)
v = np.ones(ng)
while all(v == 1): # mutate until a change occurs (prevent duplicates)
v = (g * (r.random(ng) < mutation) * r.randn(ng) * r.random() * sigma + 1).clip(0.3, 3.0)
hyp = {k: float(x[i + 1] * v[i]) for i, k in enumerate(self.space.keys())}
else:
hyp = {k: getattr(self.args, k) for k in self.space.keys()}
# Constrain to limits
for k, v in self.space.items():
hyp[k] = max(hyp[k], v[0]) # lower limit
hyp[k] = min(hyp[k], v[1]) # upper limit
hyp[k] = round(hyp[k], 5) # significant digits
return hyp
def __call__(self, model=None, iterations=10, cleanup=True):
"""
Executes the hyperparameter evolution process when the Tuner instance is called.
This method iterates through the number of iterations, performing the following steps in each iteration:
1. Load the existing hyperparameters or initialize new ones.
2. Mutate the hyperparameters using the `mutate` method.
3. Train a YOLO model with the mutated hyperparameters.
4. Log the fitness score and mutated hyperparameters to a CSV file.
Args:
model (Model): A pre-initialized YOLO model to be used for training.
iterations (int): The number of generations to run the evolution for.
cleanup (bool): Whether to delete iteration weights to reduce storage space used during tuning.
Note:
The method utilizes the `self.tune_csv` Path object to read and log hyperparameters and fitness scores.
Ensure this path is set correctly in the Tuner instance.
"""
t0 = time.time()
best_save_dir, best_metrics = None, None
(self.tune_dir / "weights").mkdir(parents=True, exist_ok=True)
for i in range(iterations):
# Mutate hyperparameters
mutated_hyp = self._mutate()
LOGGER.info(f"{self.prefix}Starting iteration {i + 1}/{iterations} with hyperparameters: {mutated_hyp}")
metrics = {}
train_args = {**vars(self.args), **mutated_hyp}
save_dir = get_save_dir(get_cfg(train_args))
weights_dir = save_dir / "weights"
ckpt_file = weights_dir / ("best.pt" if (weights_dir / "best.pt").exists() else "last.pt")
try:
# Train YOLO model with mutated hyperparameters (run in subprocess to avoid dataloader hang)
cmd = ["yolo", "train", *(f"{k}={v}" for k, v in train_args.items())]
return_code = subprocess.run(cmd, check=True).returncode
metrics = torch.load(ckpt_file)["train_metrics"]
assert return_code == 0, "training failed"
except Exception as e:
LOGGER.warning(f"WARNING �� training failure for hyperparameter tuning iteration {i + 1}\n{e}")
# Save results and mutated_hyp to CSV
fitness = metrics.get("fitness", 0.0)
log_row = [round(fitness, 5)] + [mutated_hyp[k] for k in self.space.keys()]
headers = "" if self.tune_csv.exists() else (",".join(["fitness"] + list(self.space.keys())) + "\n")
with open(self.tune_csv, "a") as f:
f.write(headers + ",".join(map(str, log_row)) + "\n")
# Get best results
x = np.loadtxt(self.tune_csv, ndmin=2, delimiter=",", skiprows=1)
fitness = x[:, 0] # first column
best_idx = fitness.argmax()
best_is_current = best_idx == i
if best_is_current:
best_save_dir = save_dir
best_metrics = {k: round(v, 5) for k, v in metrics.items()}
for ckpt in weights_dir.glob("*.pt"):
shutil.copy2(ckpt, self.tune_dir / "weights")
elif cleanup:
shutil.rmtree(ckpt_file.parent) # remove iteration weights/ dir to reduce storage space
# Plot tune results
plot_tune_results(self.tune_csv)
# Save and print tune results
header = (
f'{self.prefix}{i + 1}/{iterations} iterations complete ✅ ({time.time() - t0:.2f}s)\n'
f'{self.prefix}Results saved to {colorstr("bold", self.tune_dir)}\n'
f'{self.prefix}Best fitness={fitness[best_idx]} observed at iteration {best_idx + 1}\n'
f'{self.prefix}Best fitness metrics are {best_metrics}\n'
f'{self.prefix}Best fitness model is {best_save_dir}\n'
f'{self.prefix}Best fitness hyperparameters are printed below.\n'
)
LOGGER.info("\n" + header)
data = {k: float(x[best_idx, i + 1]) for i, k in enumerate(self.space.keys())}
yaml_save(
self.tune_dir / "best_hyperparameters.yaml",
data=data,
header=remove_colorstr(header.replace(self.prefix, "# ")) + "\n",
)
yaml_print(self.tune_dir / "best_hyperparameters.yaml")
| 11,758 | Python | .py | 206 | 46.26699 | 119 | 0.603664 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,864 | results.py | arojsubedi_Improved-YOLOv8s/ultralytics/engine/results.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Ultralytics Results, Boxes and Masks classes for handling inference results.
Usage: See https://docs.ultralytics.com/modes/predict/
"""
from copy import deepcopy
from functools import lru_cache
from pathlib import Path
import numpy as np
import torch
from ultralytics.data.augment import LetterBox
from ultralytics.utils import LOGGER, SimpleClass, ops
from ultralytics.utils.plotting import Annotator, colors, save_one_box
from ultralytics.utils.torch_utils import smart_inference_mode
class BaseTensor(SimpleClass):
"""Base tensor class with additional methods for easy manipulation and device handling."""
def __init__(self, data, orig_shape) -> None:
"""
Initialize BaseTensor with data and original shape.
Args:
data (torch.Tensor | np.ndarray): Predictions, such as bboxes, masks and keypoints.
orig_shape (tuple): Original shape of image.
"""
assert isinstance(data, (torch.Tensor, np.ndarray))
self.data = data
self.orig_shape = orig_shape
@property
def shape(self):
"""Return the shape of the data tensor."""
return self.data.shape
def cpu(self):
"""Return a copy of the tensor on CPU memory."""
return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.cpu(), self.orig_shape)
def numpy(self):
"""Return a copy of the tensor as a numpy array."""
return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.numpy(), self.orig_shape)
def cuda(self):
"""Return a copy of the tensor on GPU memory."""
return self.__class__(torch.as_tensor(self.data).cuda(), self.orig_shape)
def to(self, *args, **kwargs):
"""Return a copy of the tensor with the specified device and dtype."""
return self.__class__(torch.as_tensor(self.data).to(*args, **kwargs), self.orig_shape)
def __len__(self): # override len(results)
"""Return the length of the data tensor."""
return len(self.data)
def __getitem__(self, idx):
"""Return a BaseTensor with the specified index of the data tensor."""
return self.__class__(self.data[idx], self.orig_shape)
class Results(SimpleClass):
"""
A class for storing and manipulating inference results.
Attributes:
orig_img (numpy.ndarray): Original image as a numpy array.
orig_shape (tuple): Original image shape in (height, width) format.
boxes (Boxes, optional): Object containing detection bounding boxes.
masks (Masks, optional): Object containing detection masks.
probs (Probs, optional): Object containing class probabilities for classification tasks.
keypoints (Keypoints, optional): Object containing detected keypoints for each object.
speed (dict): Dictionary of preprocess, inference, and postprocess speeds (ms/image).
names (dict): Dictionary of class names.
path (str): Path to the image file.
Methods:
update(boxes=None, masks=None, probs=None, obb=None): Updates object attributes with new detection results.
cpu(): Returns a copy of the Results object with all tensors on CPU memory.
numpy(): Returns a copy of the Results object with all tensors as numpy arrays.
cuda(): Returns a copy of the Results object with all tensors on GPU memory.
to(*args, **kwargs): Returns a copy of the Results object with tensors on a specified device and dtype.
new(): Returns a new Results object with the same image, path, and names.
plot(...): Plots detection results on an input image, returning an annotated image.
show(): Show annotated results to screen.
save(filename): Save annotated results to file.
verbose(): Returns a log string for each task, detailing detections and classifications.
save_txt(txt_file, save_conf=False): Saves detection results to a text file.
save_crop(save_dir, file_name=Path("im.jpg")): Saves cropped detection images.
tojson(normalize=False): Converts detection results to JSON format.
"""
def __init__(self, orig_img, path, names, boxes=None, masks=None, probs=None, keypoints=None, obb=None) -> None:
"""
Initialize the Results class.
Args:
orig_img (numpy.ndarray): The original image as a numpy array.
path (str): The path to the image file.
names (dict): A dictionary of class names.
boxes (torch.tensor, optional): A 2D tensor of bounding box coordinates for each detection.
masks (torch.tensor, optional): A 3D tensor of detection masks, where each mask is a binary image.
probs (torch.tensor, optional): A 1D tensor of probabilities of each class for classification task.
keypoints (torch.tensor, optional): A 2D tensor of keypoint coordinates for each detection.
obb (torch.tensor, optional): A 2D tensor of oriented bounding box coordinates for each detection.
"""
self.orig_img = orig_img
self.orig_shape = orig_img.shape[:2]
self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None # native size boxes
self.masks = Masks(masks, self.orig_shape) if masks is not None else None # native size or imgsz masks
self.probs = Probs(probs) if probs is not None else None
self.keypoints = Keypoints(keypoints, self.orig_shape) if keypoints is not None else None
self.obb = OBB(obb, self.orig_shape) if obb is not None else None
self.speed = {"preprocess": None, "inference": None, "postprocess": None} # milliseconds per image
self.names = names
self.path = path
self.save_dir = None
self._keys = "boxes", "masks", "probs", "keypoints", "obb"
def __getitem__(self, idx):
"""Return a Results object for the specified index."""
return self._apply("__getitem__", idx)
def __len__(self):
"""Return the number of detections in the Results object."""
for k in self._keys:
v = getattr(self, k)
if v is not None:
return len(v)
def update(self, boxes=None, masks=None, probs=None, obb=None):
"""Update the boxes, masks, and probs attributes of the Results object."""
if boxes is not None:
self.boxes = Boxes(ops.clip_boxes(boxes, self.orig_shape), self.orig_shape)
if masks is not None:
self.masks = Masks(masks, self.orig_shape)
if probs is not None:
self.probs = probs
if obb is not None:
self.obb = OBB(obb, self.orig_shape)
def _apply(self, fn, *args, **kwargs):
"""
Applies a function to all non-empty attributes and returns a new Results object with modified attributes. This
function is internally called by methods like .to(), .cuda(), .cpu(), etc.
Args:
fn (str): The name of the function to apply.
*args: Variable length argument list to pass to the function.
**kwargs: Arbitrary keyword arguments to pass to the function.
Returns:
Results: A new Results object with attributes modified by the applied function.
"""
r = self.new()
for k in self._keys:
v = getattr(self, k)
if v is not None:
setattr(r, k, getattr(v, fn)(*args, **kwargs))
return r
def cpu(self):
"""Return a copy of the Results object with all tensors on CPU memory."""
return self._apply("cpu")
def numpy(self):
"""Return a copy of the Results object with all tensors as numpy arrays."""
return self._apply("numpy")
def cuda(self):
"""Return a copy of the Results object with all tensors on GPU memory."""
return self._apply("cuda")
def to(self, *args, **kwargs):
"""Return a copy of the Results object with tensors on the specified device and dtype."""
return self._apply("to", *args, **kwargs)
def new(self):
"""Return a new Results object with the same image, path, and names."""
return Results(orig_img=self.orig_img, path=self.path, names=self.names)
def plot(
self,
conf=True,
line_width=None,
font_size=None,
font="Arial.ttf",
pil=False,
img=None,
im_gpu=None,
kpt_radius=5,
kpt_line=True,
labels=True,
boxes=True,
masks=True,
probs=True,
show=False,
save=False,
filename=None,
):
"""
Plots the detection results on an input RGB image. Accepts a numpy array (cv2) or a PIL Image.
Args:
conf (bool): Whether to plot the detection confidence score.
line_width (float, optional): The line width of the bounding boxes. If None, it is scaled to the image size.
font_size (float, optional): The font size of the text. If None, it is scaled to the image size.
font (str): The font to use for the text.
pil (bool): Whether to return the image as a PIL Image.
img (numpy.ndarray): Plot to another image. if not, plot to original image.
im_gpu (torch.Tensor): Normalized image in gpu with shape (1, 3, 640, 640), for faster mask plotting.
kpt_radius (int, optional): Radius of the drawn keypoints. Default is 5.
kpt_line (bool): Whether to draw lines connecting keypoints.
labels (bool): Whether to plot the label of bounding boxes.
boxes (bool): Whether to plot the bounding boxes.
masks (bool): Whether to plot the masks.
probs (bool): Whether to plot classification probability
show (bool): Whether to display the annotated image directly.
save (bool): Whether to save the annotated image to `filename`.
filename (str): Filename to save image to if save is True.
Returns:
(numpy.ndarray): A numpy array of the annotated image.
Example:
```python
from PIL import Image
from ultralytics import YOLO
model = YOLO('yolov8n.pt')
results = model('bus.jpg') # results list
for r in results:
im_array = r.plot() # plot a BGR numpy array of predictions
im = Image.fromarray(im_array[..., ::-1]) # RGB PIL image
im.show() # show image
im.save('results.jpg') # save image
```
"""
if img is None and isinstance(self.orig_img, torch.Tensor):
img = (self.orig_img[0].detach().permute(1, 2, 0).contiguous() * 255).to(torch.uint8).cpu().numpy()
names = self.names
is_obb = self.obb is not None
pred_boxes, show_boxes = self.obb if is_obb else self.boxes, boxes
pred_masks, show_masks = self.masks, masks
pred_probs, show_probs = self.probs, probs
annotator = Annotator(
deepcopy(self.orig_img if img is None else img),
line_width,
font_size,
font,
pil or (pred_probs is not None and show_probs), # Classify tasks default to pil=True
example=names,
)
# Plot Segment results
if pred_masks and show_masks:
if im_gpu is None:
img = LetterBox(pred_masks.shape[1:])(image=annotator.result())
im_gpu = (
torch.as_tensor(img, dtype=torch.float16, device=pred_masks.data.device)
.permute(2, 0, 1)
.flip(0)
.contiguous()
/ 255
)
idx = pred_boxes.cls if pred_boxes else range(len(pred_masks))
annotator.masks(pred_masks.data, colors=[colors(x, True) for x in idx], im_gpu=im_gpu)
# Plot Detect results
if pred_boxes is not None and show_boxes:
for d in reversed(pred_boxes):
c, conf, id = int(d.cls), float(d.conf) if conf else None, None if d.id is None else int(d.id.item())
name = ("" if id is None else f"id:{id} ") + names[c]
label = (f"{name} {conf:.2f}" if conf else name) if labels else None
box = d.xyxyxyxy.reshape(-1, 4, 2).squeeze() if is_obb else d.xyxy.squeeze()
annotator.box_label(box, label, color=colors(c, True), rotated=is_obb)
# Plot Classify results
if pred_probs is not None and show_probs:
text = ",\n".join(f"{names[j] if names else j} {pred_probs.data[j]:.2f}" for j in pred_probs.top5)
x = round(self.orig_shape[0] * 0.03)
annotator.text([x, x], text, txt_color=(255, 255, 255)) # TODO: allow setting colors
# Plot Pose results
if self.keypoints is not None:
for k in reversed(self.keypoints.data):
annotator.kpts(k, self.orig_shape, radius=kpt_radius, kpt_line=kpt_line)
# Show results
if show:
annotator.show(self.path)
# Save results
if save:
annotator.save(filename)
return annotator.result()
def show(self, *args, **kwargs):
"""Show annotated results image."""
self.plot(show=True, *args, **kwargs)
def save(self, filename=None, *args, **kwargs):
"""Save annotated results image."""
if not filename:
filename = f"results_{Path(self.path).name}"
self.plot(save=True, filename=filename, *args, **kwargs)
return filename
def verbose(self):
"""Return log string for each task."""
log_string = ""
probs = self.probs
boxes = self.boxes
if len(self) == 0:
return log_string if probs is not None else f"{log_string}(no detections), "
if probs is not None:
log_string += f"{', '.join(f'{self.names[j]} {probs.data[j]:.2f}' for j in probs.top5)}, "
if boxes:
for c in boxes.cls.unique():
n = (boxes.cls == c).sum() # detections per class
log_string += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "
return log_string
def save_txt(self, txt_file, save_conf=False):
"""
Save predictions into txt file.
Args:
txt_file (str): txt file path.
save_conf (bool): save confidence score or not.
"""
is_obb = self.obb is not None
boxes = self.obb if is_obb else self.boxes
masks = self.masks
probs = self.probs
kpts = self.keypoints
texts = []
if probs is not None:
# Classify
[texts.append(f"{probs.data[j]:.2f} {self.names[j]}") for j in probs.top5]
elif boxes:
# Detect/segment/pose
for j, d in enumerate(boxes):
c, conf, id = int(d.cls), float(d.conf), None if d.id is None else int(d.id.item())
line = (c, *(d.xyxyxyxyn.view(-1) if is_obb else d.xywhn.view(-1)))
if masks:
seg = masks[j].xyn[0].copy().reshape(-1) # reversed mask.xyn, (n,2) to (n*2)
line = (c, *seg)
if kpts is not None:
kpt = torch.cat((kpts[j].xyn, kpts[j].conf[..., None]), 2) if kpts[j].has_visible else kpts[j].xyn
line += (*kpt.reshape(-1).tolist(),)
line += (conf,) * save_conf + (() if id is None else (id,))
texts.append(("%g " * len(line)).rstrip() % line)
if texts:
Path(txt_file).parent.mkdir(parents=True, exist_ok=True) # make directory
with open(txt_file, "a") as f:
f.writelines(text + "\n" for text in texts)
def save_crop(self, save_dir, file_name=Path("im.jpg")):
"""
Save cropped predictions to `save_dir/cls/file_name.jpg`.
Args:
save_dir (str | pathlib.Path): Save path.
file_name (str | pathlib.Path): File name.
"""
if self.probs is not None:
LOGGER.warning("WARNING ⚠� Classify task do not support `save_crop`.")
return
if self.obb is not None:
LOGGER.warning("WARNING ⚠� OBB task do not support `save_crop`.")
return
for d in self.boxes:
save_one_box(
d.xyxy,
self.orig_img.copy(),
file=Path(save_dir) / self.names[int(d.cls)] / f"{Path(file_name)}.jpg",
BGR=True,
)
def tojson(self, normalize=False):
"""Convert the object to JSON format."""
if self.probs is not None:
LOGGER.warning("Warning: Classify task do not support `tojson` yet.")
return
import json
# Create list of detection dictionaries
results = []
data = self.boxes.data.cpu().tolist()
h, w = self.orig_shape if normalize else (1, 1)
for i, row in enumerate(data): # xyxy, track_id if tracking, conf, class_id
box = {"x1": row[0] / w, "y1": row[1] / h, "x2": row[2] / w, "y2": row[3] / h}
conf = row[-2]
class_id = int(row[-1])
name = self.names[class_id]
result = {"name": name, "class": class_id, "confidence": conf, "box": box}
if self.boxes.is_track:
result["track_id"] = int(row[-3]) # track ID
if self.masks:
x, y = self.masks.xy[i][:, 0], self.masks.xy[i][:, 1] # numpy array
result["segments"] = {"x": (x / w).tolist(), "y": (y / h).tolist()}
if self.keypoints is not None:
x, y, visible = self.keypoints[i].data[0].cpu().unbind(dim=1) # torch Tensor
result["keypoints"] = {"x": (x / w).tolist(), "y": (y / h).tolist(), "visible": visible.tolist()}
results.append(result)
# Convert detections to JSON
return json.dumps(results, indent=2)
class Boxes(BaseTensor):
"""
Manages detection boxes, providing easy access and manipulation of box coordinates, confidence scores, class
identifiers, and optional tracking IDs. Supports multiple formats for box coordinates, including both absolute and
normalized forms.
Attributes:
data (torch.Tensor): The raw tensor containing detection boxes and their associated data.
orig_shape (tuple): The original image size as a tuple (height, width), used for normalization.
is_track (bool): Indicates whether tracking IDs are included in the box data.
Properties:
xyxy (torch.Tensor | numpy.ndarray): Boxes in [x1, y1, x2, y2] format.
conf (torch.Tensor | numpy.ndarray): Confidence scores for each box.
cls (torch.Tensor | numpy.ndarray): Class labels for each box.
id (torch.Tensor | numpy.ndarray, optional): Tracking IDs for each box, if available.
xywh (torch.Tensor | numpy.ndarray): Boxes in [x, y, width, height] format, calculated on demand.
xyxyn (torch.Tensor | numpy.ndarray): Normalized [x1, y1, x2, y2] boxes, relative to `orig_shape`.
xywhn (torch.Tensor | numpy.ndarray): Normalized [x, y, width, height] boxes, relative to `orig_shape`.
Methods:
cpu(): Moves the boxes to CPU memory.
numpy(): Converts the boxes to a numpy array format.
cuda(): Moves the boxes to CUDA (GPU) memory.
to(device, dtype=None): Moves the boxes to the specified device.
"""
def __init__(self, boxes, orig_shape) -> None:
"""
Initialize the Boxes class.
Args:
boxes (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the detection boxes, with
shape (num_boxes, 6) or (num_boxes, 7). The last two columns contain confidence and class values.
If present, the third last column contains track IDs.
orig_shape (tuple): Original image size, in the format (height, width).
"""
if boxes.ndim == 1:
boxes = boxes[None, :]
n = boxes.shape[-1]
assert n in (6, 7), f"expected 6 or 7 values but got {n}" # xyxy, track_id, conf, cls
super().__init__(boxes, orig_shape)
self.is_track = n == 7
self.orig_shape = orig_shape
@property
def xyxy(self):
"""Return the boxes in xyxy format."""
return self.data[:, :4]
@property
def conf(self):
"""Return the confidence values of the boxes."""
return self.data[:, -2]
@property
def cls(self):
"""Return the class values of the boxes."""
return self.data[:, -1]
@property
def id(self):
"""Return the track IDs of the boxes (if available)."""
return self.data[:, -3] if self.is_track else None
@property
@lru_cache(maxsize=2) # maxsize 1 should suffice
def xywh(self):
"""Return the boxes in xywh format."""
return ops.xyxy2xywh(self.xyxy)
@property
@lru_cache(maxsize=2)
def xyxyn(self):
"""Return the boxes in xyxy format normalized by original image size."""
xyxy = self.xyxy.clone() if isinstance(self.xyxy, torch.Tensor) else np.copy(self.xyxy)
xyxy[..., [0, 2]] /= self.orig_shape[1]
xyxy[..., [1, 3]] /= self.orig_shape[0]
return xyxy
@property
@lru_cache(maxsize=2)
def xywhn(self):
"""Return the boxes in xywh format normalized by original image size."""
xywh = ops.xyxy2xywh(self.xyxy)
xywh[..., [0, 2]] /= self.orig_shape[1]
xywh[..., [1, 3]] /= self.orig_shape[0]
return xywh
class Masks(BaseTensor):
"""
A class for storing and manipulating detection masks.
Attributes:
xy (list): A list of segments in pixel coordinates.
xyn (list): A list of normalized segments.
Methods:
cpu(): Returns the masks tensor on CPU memory.
numpy(): Returns the masks tensor as a numpy array.
cuda(): Returns the masks tensor on GPU memory.
to(device, dtype): Returns the masks tensor with the specified device and dtype.
"""
def __init__(self, masks, orig_shape) -> None:
"""Initialize the Masks class with the given masks tensor and original image shape."""
if masks.ndim == 2:
masks = masks[None, :]
super().__init__(masks, orig_shape)
@property
@lru_cache(maxsize=1)
def xyn(self):
"""Return normalized segments."""
return [
ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=True)
for x in ops.masks2segments(self.data)
]
@property
@lru_cache(maxsize=1)
def xy(self):
"""Return segments in pixel coordinates."""
return [
ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=False)
for x in ops.masks2segments(self.data)
]
class Keypoints(BaseTensor):
"""
A class for storing and manipulating detection keypoints.
Attributes:
xy (torch.Tensor): A collection of keypoints containing x, y coordinates for each detection.
xyn (torch.Tensor): A normalized version of xy with coordinates in the range [0, 1].
conf (torch.Tensor): Confidence values associated with keypoints if available, otherwise None.
Methods:
cpu(): Returns a copy of the keypoints tensor on CPU memory.
numpy(): Returns a copy of the keypoints tensor as a numpy array.
cuda(): Returns a copy of the keypoints tensor on GPU memory.
to(device, dtype): Returns a copy of the keypoints tensor with the specified device and dtype.
"""
@smart_inference_mode() # avoid keypoints < conf in-place error
def __init__(self, keypoints, orig_shape) -> None:
"""Initializes the Keypoints object with detection keypoints and original image size."""
if keypoints.ndim == 2:
keypoints = keypoints[None, :]
if keypoints.shape[2] == 3: # x, y, conf
mask = keypoints[..., 2] < 0.5 # points with conf < 0.5 (not visible)
keypoints[..., :2][mask] = 0
super().__init__(keypoints, orig_shape)
self.has_visible = self.data.shape[-1] == 3
@property
@lru_cache(maxsize=1)
def xy(self):
"""Returns x, y coordinates of keypoints."""
return self.data[..., :2]
@property
@lru_cache(maxsize=1)
def xyn(self):
"""Returns normalized x, y coordinates of keypoints."""
xy = self.xy.clone() if isinstance(self.xy, torch.Tensor) else np.copy(self.xy)
xy[..., 0] /= self.orig_shape[1]
xy[..., 1] /= self.orig_shape[0]
return xy
@property
@lru_cache(maxsize=1)
def conf(self):
"""Returns confidence values of keypoints if available, else None."""
return self.data[..., 2] if self.has_visible else None
class Probs(BaseTensor):
"""
A class for storing and manipulating classification predictions.
Attributes:
top1 (int): Index of the top 1 class.
top5 (list[int]): Indices of the top 5 classes.
top1conf (torch.Tensor): Confidence of the top 1 class.
top5conf (torch.Tensor): Confidences of the top 5 classes.
Methods:
cpu(): Returns a copy of the probs tensor on CPU memory.
numpy(): Returns a copy of the probs tensor as a numpy array.
cuda(): Returns a copy of the probs tensor on GPU memory.
to(): Returns a copy of the probs tensor with the specified device and dtype.
"""
def __init__(self, probs, orig_shape=None) -> None:
"""Initialize the Probs class with classification probabilities and optional original shape of the image."""
super().__init__(probs, orig_shape)
@property
@lru_cache(maxsize=1)
def top1(self):
"""Return the index of top 1."""
return int(self.data.argmax())
@property
@lru_cache(maxsize=1)
def top5(self):
"""Return the indices of top 5."""
return (-self.data).argsort(0)[:5].tolist() # this way works with both torch and numpy.
@property
@lru_cache(maxsize=1)
def top1conf(self):
"""Return the confidence of top 1."""
return self.data[self.top1]
@property
@lru_cache(maxsize=1)
def top5conf(self):
"""Return the confidences of top 5."""
return self.data[self.top5]
class OBB(BaseTensor):
"""
A class for storing and manipulating Oriented Bounding Boxes (OBB).
Args:
boxes (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the detection boxes,
with shape (num_boxes, 7) or (num_boxes, 8). The last two columns contain confidence and class values.
If present, the third last column contains track IDs, and the fifth column from the left contains rotation.
orig_shape (tuple): Original image size, in the format (height, width).
Attributes:
xywhr (torch.Tensor | numpy.ndarray): The boxes in [x_center, y_center, width, height, rotation] format.
conf (torch.Tensor | numpy.ndarray): The confidence values of the boxes.
cls (torch.Tensor | numpy.ndarray): The class values of the boxes.
id (torch.Tensor | numpy.ndarray): The track IDs of the boxes (if available).
xyxyxyxyn (torch.Tensor | numpy.ndarray): The rotated boxes in xyxyxyxy format normalized by orig image size.
xyxyxyxy (torch.Tensor | numpy.ndarray): The rotated boxes in xyxyxyxy format.
xyxy (torch.Tensor | numpy.ndarray): The horizontal boxes in xyxyxyxy format.
data (torch.Tensor): The raw OBB tensor (alias for `boxes`).
Methods:
cpu(): Move the object to CPU memory.
numpy(): Convert the object to a numpy array.
cuda(): Move the object to CUDA memory.
to(*args, **kwargs): Move the object to the specified device.
"""
def __init__(self, boxes, orig_shape) -> None:
"""Initialize the Boxes class."""
if boxes.ndim == 1:
boxes = boxes[None, :]
n = boxes.shape[-1]
assert n in (7, 8), f"expected 7 or 8 values but got {n}" # xywh, rotation, track_id, conf, cls
super().__init__(boxes, orig_shape)
self.is_track = n == 8
self.orig_shape = orig_shape
@property
def xywhr(self):
"""Return the rotated boxes in xywhr format."""
return self.data[:, :5]
@property
def conf(self):
"""Return the confidence values of the boxes."""
return self.data[:, -2]
@property
def cls(self):
"""Return the class values of the boxes."""
return self.data[:, -1]
@property
def id(self):
"""Return the track IDs of the boxes (if available)."""
return self.data[:, -3] if self.is_track else None
@property
@lru_cache(maxsize=2)
def xyxyxyxy(self):
"""Return the boxes in xyxyxyxy format, (N, 4, 2)."""
return ops.xywhr2xyxyxyxy(self.xywhr)
@property
@lru_cache(maxsize=2)
def xyxyxyxyn(self):
"""Return the boxes in xyxyxyxy format, (N, 4, 2)."""
xyxyxyxyn = self.xyxyxyxy.clone() if isinstance(self.xyxyxyxy, torch.Tensor) else np.copy(self.xyxyxyxy)
xyxyxyxyn[..., 0] /= self.orig_shape[1]
xyxyxyxyn[..., 1] /= self.orig_shape[0]
return xyxyxyxyn
@property
@lru_cache(maxsize=2)
def xyxy(self):
"""
Return the horizontal boxes in xyxy format, (N, 4).
Accepts both torch and numpy boxes.
"""
x1 = self.xyxyxyxy[..., 0].min(1).values
x2 = self.xyxyxyxy[..., 0].max(1).values
y1 = self.xyxyxyxy[..., 1].min(1).values
y2 = self.xyxyxyxy[..., 1].max(1).values
xyxy = [x1, y1, x2, y2]
return np.stack(xyxy, axis=-1) if isinstance(self.data, np.ndarray) else torch.stack(xyxy, dim=-1)
| 30,120 | Python | .py | 621 | 39.10789 | 120 | 0.610548 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,865 | predictor.py | arojsubedi_Improved-YOLOv8s/ultralytics/engine/predictor.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Run prediction on images, videos, directories, globs, YouTube, webcam, streams, etc.
Usage - sources:
$ yolo mode=predict model=yolov8n.pt source=0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
'https://youtu.be/LNwODJXcvt4' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP, TCP stream
Usage - formats:
$ yolo mode=predict model=yolov8n.pt # PyTorch
yolov8n.torchscript # TorchScript
yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
yolov8n_openvino_model # OpenVINO
yolov8n.engine # TensorRT
yolov8n.mlpackage # CoreML (macOS-only)
yolov8n_saved_model # TensorFlow SavedModel
yolov8n.pb # TensorFlow GraphDef
yolov8n.tflite # TensorFlow Lite
yolov8n_edgetpu.tflite # TensorFlow Edge TPU
yolov8n_paddle_model # PaddlePaddle
"""
import platform
import threading
from pathlib import Path
import cv2
import numpy as np
import torch
from ultralytics.cfg import get_cfg, get_save_dir
from ultralytics.data import load_inference_source
from ultralytics.data.augment import LetterBox, classify_transforms
from ultralytics.nn.autobackend import AutoBackend
from ultralytics.utils import DEFAULT_CFG, LOGGER, MACOS, WINDOWS, callbacks, colorstr, ops
from ultralytics.utils.checks import check_imgsz, check_imshow
from ultralytics.utils.files import increment_path
from ultralytics.utils.torch_utils import select_device, smart_inference_mode
STREAM_WARNING = """
WARNING ⚠� inference results will accumulate in RAM unless `stream=True` is passed, causing potential out-of-memory
errors for large sources or long-running streams and videos. See https://docs.ultralytics.com/modes/predict/ for help.
Example:
results = model(source=..., stream=True) # generator of Results objects
for r in results:
boxes = r.boxes # Boxes object for bbox outputs
masks = r.masks # Masks object for segment masks outputs
probs = r.probs # Class probabilities for classification outputs
"""
class BasePredictor:
"""
BasePredictor.
A base class for creating predictors.
Attributes:
args (SimpleNamespace): Configuration for the predictor.
save_dir (Path): Directory to save results.
done_warmup (bool): Whether the predictor has finished setup.
model (nn.Module): Model used for prediction.
data (dict): Data configuration.
device (torch.device): Device used for prediction.
dataset (Dataset): Dataset used for prediction.
vid_path (str): Path to video file.
vid_writer (cv2.VideoWriter): Video writer for saving video output.
data_path (str): Path to data.
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""
Initializes the BasePredictor class.
Args:
cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG.
overrides (dict, optional): Configuration overrides. Defaults to None.
"""
self.args = get_cfg(cfg, overrides)
self.save_dir = get_save_dir(self.args)
if self.args.conf is None:
self.args.conf = 0.25 # default conf=0.25
self.done_warmup = False
if self.args.show:
self.args.show = check_imshow(warn=True)
# Usable if setup is done
self.model = None
self.data = self.args.data # data_dict
self.imgsz = None
self.device = None
self.dataset = None
self.vid_path, self.vid_writer, self.vid_frame = None, None, None
self.plotted_img = None
self.data_path = None
self.source_type = None
self.batch = None
self.results = None
self.transforms = None
self.callbacks = _callbacks or callbacks.get_default_callbacks()
self.txt_path = None
self._lock = threading.Lock() # for automatic thread-safe inference
callbacks.add_integration_callbacks(self)
def preprocess(self, im):
"""
Prepares input image before inference.
Args:
im (torch.Tensor | List(np.ndarray)): BCHW for tensor, [(HWC) x B] for list.
"""
not_tensor = not isinstance(im, torch.Tensor)
if not_tensor:
im = np.stack(self.pre_transform(im))
im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW, (n, 3, h, w)
im = np.ascontiguousarray(im) # contiguous
im = torch.from_numpy(im)
im = im.to(self.device)
im = im.half() if self.model.fp16 else im.float() # uint8 to fp16/32
if not_tensor:
im /= 255 # 0 - 255 to 0.0 - 1.0
return im
def inference(self, im, *args, **kwargs):
"""Runs inference on a given image using the specified model and arguments."""
visualize = (
increment_path(self.save_dir / Path(self.batch[0][0]).stem, mkdir=True)
if self.args.visualize and (not self.source_type.tensor)
else False
)
return self.model(im, augment=self.args.augment, visualize=visualize, embed=self.args.embed, *args, **kwargs)
def pre_transform(self, im):
"""
Pre-transform input image before inference.
Args:
im (List(np.ndarray)): (N, 3, h, w) for tensor, [(h, w, 3) x N] for list.
Returns:
(list): A list of transformed images.
"""
same_shapes = all(x.shape == im[0].shape for x in im)
letterbox = LetterBox(self.imgsz, auto=same_shapes and self.model.pt, stride=self.model.stride)
return [letterbox(image=x) for x in im]
def write_results(self, idx, results, batch):
"""Write inference results to a file or directory."""
p, im, _ = batch
log_string = ""
if len(im.shape) == 3:
im = im[None] # expand for batch dim
if self.source_type.webcam or self.source_type.from_img or self.source_type.tensor: # batch_size >= 1
log_string += f"{idx}: "
frame = self.dataset.count
else:
frame = getattr(self.dataset, "frame", 0)
self.data_path = p
self.txt_path = str(self.save_dir / "labels" / p.stem) + ("" if self.dataset.mode == "image" else f"_{frame}")
log_string += "%gx%g " % im.shape[2:] # print string
result = results[idx]
log_string += result.verbose()
if self.args.save or self.args.show: # Add bbox to image
plot_args = {
"line_width": self.args.line_width,
"boxes": self.args.show_boxes,
"conf": self.args.show_conf,
"labels": self.args.show_labels,
}
if not self.args.retina_masks:
plot_args["im_gpu"] = im[idx]
self.plotted_img = result.plot(**plot_args)
# Write
if self.args.save_txt:
result.save_txt(f"{self.txt_path}.txt", save_conf=self.args.save_conf)
if self.args.save_crop:
result.save_crop(
save_dir=self.save_dir / "crops",
file_name=self.data_path.stem + ("" if self.dataset.mode == "image" else f"_{frame}"),
)
return log_string
def postprocess(self, preds, img, orig_imgs):
"""Post-processes predictions for an image and returns them."""
return preds
def __call__(self, source=None, model=None, stream=False, *args, **kwargs):
"""Performs inference on an image or stream."""
self.stream = stream
if stream:
return self.stream_inference(source, model, *args, **kwargs)
else:
return list(self.stream_inference(source, model, *args, **kwargs)) # merge list of Result into one
def predict_cli(self, source=None, model=None):
"""
Method used for CLI prediction.
It uses always generator as outputs as not required by CLI mode.
"""
gen = self.stream_inference(source, model)
for _ in gen: # noqa, running CLI inference without accumulating any outputs (do not modify)
pass
def setup_source(self, source):
"""Sets up source and inference mode."""
self.imgsz = check_imgsz(self.args.imgsz, stride=self.model.stride, min_dim=2) # check image size
self.transforms = (
getattr(
self.model.model,
"transforms",
classify_transforms(self.imgsz[0], crop_fraction=self.args.crop_fraction),
)
if self.args.task == "classify"
else None
)
self.dataset = load_inference_source(
source=source, vid_stride=self.args.vid_stride, buffer=self.args.stream_buffer
)
self.source_type = self.dataset.source_type
if not getattr(self, "stream", True) and (
self.dataset.mode == "stream" # streams
or len(self.dataset) > 1000 # images
or any(getattr(self.dataset, "video_flag", [False]))
): # videos
LOGGER.warning(STREAM_WARNING)
self.vid_path = [None] * self.dataset.bs
self.vid_writer = [None] * self.dataset.bs
self.vid_frame = [None] * self.dataset.bs
@smart_inference_mode()
def stream_inference(self, source=None, model=None, *args, **kwargs):
"""Streams real-time inference on camera feed and saves results to file."""
if self.args.verbose:
LOGGER.info("")
# Setup model
if not self.model:
self.setup_model(model)
with self._lock: # for thread-safe inference
# Setup source every time predict is called
self.setup_source(source if source is not None else self.args.source)
# Check if save_dir/ label file exists
if self.args.save or self.args.save_txt:
(self.save_dir / "labels" if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
# Warmup model
if not self.done_warmup:
self.model.warmup(imgsz=(1 if self.model.pt or self.model.triton else self.dataset.bs, 3, *self.imgsz))
self.done_warmup = True
self.seen, self.windows, self.batch = 0, [], None
profilers = (
ops.Profile(device=self.device),
ops.Profile(device=self.device),
ops.Profile(device=self.device),
)
self.run_callbacks("on_predict_start")
for batch in self.dataset:
self.run_callbacks("on_predict_batch_start")
self.batch = batch
path, im0s, vid_cap, s = batch
# Preprocess
with profilers[0]:
im = self.preprocess(im0s)
# Inference
with profilers[1]:
preds = self.inference(im, *args, **kwargs)
if self.args.embed:
yield from [preds] if isinstance(preds, torch.Tensor) else preds # yield embedding tensors
continue
# Postprocess
with profilers[2]:
self.results = self.postprocess(preds, im, im0s)
self.run_callbacks("on_predict_postprocess_end")
# Visualize, save, write results
n = len(im0s)
for i in range(n):
self.seen += 1
self.results[i].speed = {
"preprocess": profilers[0].dt * 1e3 / n,
"inference": profilers[1].dt * 1e3 / n,
"postprocess": profilers[2].dt * 1e3 / n,
}
p, im0 = path[i], None if self.source_type.tensor else im0s[i].copy()
p = Path(p)
if self.args.verbose or self.args.save or self.args.save_txt or self.args.show:
s += self.write_results(i, self.results, (p, im, im0))
if self.args.save or self.args.save_txt:
self.results[i].save_dir = self.save_dir.__str__()
if self.args.show and self.plotted_img is not None:
self.show(p)
if self.args.save and self.plotted_img is not None:
self.save_preds(vid_cap, i, str(self.save_dir / p.name))
self.run_callbacks("on_predict_batch_end")
yield from self.results
# Print time (inference-only)
if self.args.verbose:
LOGGER.info(f"{s}{profilers[1].dt * 1E3:.1f}ms")
# Release assets
if isinstance(self.vid_writer[-1], cv2.VideoWriter):
self.vid_writer[-1].release() # release final video writer
# Print results
if self.args.verbose and self.seen:
t = tuple(x.t / self.seen * 1e3 for x in profilers) # speeds per image
LOGGER.info(
f"Speed: %.1fms preprocess, %.1fms inference, %.1fms postprocess per image at shape "
f"{(1, 3, *im.shape[2:])}" % t
)
if self.args.save or self.args.save_txt or self.args.save_crop:
nl = len(list(self.save_dir.glob("labels/*.txt"))) # number of labels
s = f"\n{nl} label{'s' * (nl > 1)} saved to {self.save_dir / 'labels'}" if self.args.save_txt else ""
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}")
self.run_callbacks("on_predict_end")
def setup_model(self, model, verbose=True):
"""Initialize YOLO model with given parameters and set it to evaluation mode."""
self.model = AutoBackend(
model or self.args.model,
device=select_device(self.args.device, verbose=verbose),
dnn=self.args.dnn,
data=self.args.data,
fp16=self.args.half,
fuse=True,
verbose=verbose,
)
self.device = self.model.device # update device
self.args.half = self.model.fp16 # update half
self.model.eval()
def show(self, p):
"""Display an image in a window using OpenCV imshow()."""
im0 = self.plotted_img
if platform.system() == "Linux" and p not in self.windows:
self.windows.append(p)
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
cv2.imshow(str(p), im0)
cv2.waitKey(500 if self.batch[3].startswith("image") else 1) # 1 millisecond
def save_preds(self, vid_cap, idx, save_path):
"""Save video predictions as mp4 at specified path."""
im0 = self.plotted_img
# Save imgs
if self.dataset.mode == "image":
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
frames_path = f'{save_path.split(".", 1)[0]}_frames/'
if self.vid_path[idx] != save_path: # new video
self.vid_path[idx] = save_path
if self.args.save_frames:
Path(frames_path).mkdir(parents=True, exist_ok=True)
self.vid_frame[idx] = 0
if isinstance(self.vid_writer[idx], cv2.VideoWriter):
self.vid_writer[idx].release() # release previous video writer
if vid_cap: # video
fps = int(vid_cap.get(cv2.CAP_PROP_FPS)) # integer required, floats produce error in MP4 codec
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
suffix, fourcc = (".mp4", "avc1") if MACOS else (".avi", "WMV2") if WINDOWS else (".avi", "MJPG")
self.vid_writer[idx] = cv2.VideoWriter(
str(Path(save_path).with_suffix(suffix)), cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)
)
# Write video
self.vid_writer[idx].write(im0)
# Write frame
if self.args.save_frames:
cv2.imwrite(f"{frames_path}{self.vid_frame[idx]}.jpg", im0)
self.vid_frame[idx] += 1
def run_callbacks(self, event: str):
"""Runs all registered callbacks for a specific event."""
for callback in self.callbacks.get(event, []):
callback(self)
def add_callback(self, event: str, func):
"""Add callback."""
self.callbacks[event].append(func)
| 17,832 | Python | .py | 354 | 37.432203 | 119 | 0.55655 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,866 | model.py | arojsubedi_Improved-YOLOv8s/ultralytics/engine/model.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import inspect
import sys
from pathlib import Path
from typing import Union
import numpy as np
import torch
from ultralytics.cfg import TASK2DATA, get_cfg, get_save_dir
from ultralytics.hub.utils import HUB_WEB_ROOT
from ultralytics.nn.tasks import attempt_load_one_weight, guess_model_task, nn, yaml_model_load
from ultralytics.utils import ASSETS, DEFAULT_CFG_DICT, LOGGER, RANK, SETTINGS, callbacks, checks, emojis, yaml_load
class Model(nn.Module):
"""
A base class for implementing YOLO models, unifying APIs across different model types.
This class provides a common interface for various operations related to YOLO models, such as training,
validation, prediction, exporting, and benchmarking. It handles different types of models, including those
loaded from local files, Ultralytics HUB, or Triton Server. The class is designed to be flexible and
extendable for different tasks and model configurations.
Args:
model (Union[str, Path], optional): Path or name of the model to load or create. This can be a local file
path, a model name from Ultralytics HUB, or a Triton Server model. Defaults to 'yolov8n.pt'.
task (Any, optional): The task type associated with the YOLO model. This can be used to specify the model's
application domain, such as object detection, segmentation, etc. Defaults to None.
verbose (bool, optional): If True, enables verbose output during the model's operations. Defaults to False.
Attributes:
callbacks (dict): A dictionary of callback functions for various events during model operations.
predictor (BasePredictor): The predictor object used for making predictions.
model (nn.Module): The underlying PyTorch model.
trainer (BaseTrainer): The trainer object used for training the model.
ckpt (dict): The checkpoint data if the model is loaded from a *.pt file.
cfg (str): The configuration of the model if loaded from a *.yaml file.
ckpt_path (str): The path to the checkpoint file.
overrides (dict): A dictionary of overrides for model configuration.
metrics (dict): The latest training/validation metrics.
session (HUBTrainingSession): The Ultralytics HUB session, if applicable.
task (str): The type of task the model is intended for.
model_name (str): The name of the model.
Methods:
__call__: Alias for the predict method, enabling the model instance to be callable.
_new: Initializes a new model based on a configuration file.
_load: Loads a model from a checkpoint file.
_check_is_pytorch_model: Ensures that the model is a PyTorch model.
reset_weights: Resets the model's weights to their initial state.
load: Loads model weights from a specified file.
save: Saves the current state of the model to a file.
info: Logs or returns information about the model.
fuse: Fuses Conv2d and BatchNorm2d layers for optimized inference.
predict: Performs object detection predictions.
track: Performs object tracking.
val: Validates the model on a dataset.
benchmark: Benchmarks the model on various export formats.
export: Exports the model to different formats.
train: Trains the model on a dataset.
tune: Performs hyperparameter tuning.
_apply: Applies a function to the model's tensors.
add_callback: Adds a callback function for an event.
clear_callback: Clears all callbacks for an event.
reset_callbacks: Resets all callbacks to their default functions.
_get_hub_session: Retrieves or creates an Ultralytics HUB session.
is_triton_model: Checks if a model is a Triton Server model.
is_hub_model: Checks if a model is an Ultralytics HUB model.
_reset_ckpt_args: Resets checkpoint arguments when loading a PyTorch model.
_smart_load: Loads the appropriate module based on the model task.
task_map: Provides a mapping from model tasks to corresponding classes.
Raises:
FileNotFoundError: If the specified model file does not exist or is inaccessible.
ValueError: If the model file or configuration is invalid or unsupported.
ImportError: If required dependencies for specific model types (like HUB SDK) are not installed.
TypeError: If the model is not a PyTorch model when required.
AttributeError: If required attributes or methods are not implemented or available.
NotImplementedError: If a specific model task or mode is not supported.
"""
def __init__(
self,
model: Union[str, Path] = "yolov8n.pt",
task: str = None,
verbose: bool = False,
) -> None:
"""
Initializes a new instance of the YOLO model class.
This constructor sets up the model based on the provided model path or name. It handles various types of model
sources, including local files, Ultralytics HUB models, and Triton Server models. The method initializes several
important attributes of the model and prepares it for operations like training, prediction, or export.
Args:
model (Union[str, Path], optional): The path or model file to load or create. This can be a local
file path, a model name from Ultralytics HUB, or a Triton Server model. Defaults to 'yolov8n.pt'.
task (Any, optional): The task type associated with the YOLO model, specifying its application domain.
Defaults to None.
verbose (bool, optional): If True, enables verbose output during the model's initialization and subsequent
operations. Defaults to False.
Raises:
FileNotFoundError: If the specified model file does not exist or is inaccessible.
ValueError: If the model file or configuration is invalid or unsupported.
ImportError: If required dependencies for specific model types (like HUB SDK) are not installed.
"""
super().__init__()
self.callbacks = callbacks.get_default_callbacks()
self.predictor = None # reuse predictor
self.model = None # model object
self.trainer = None # trainer object
self.ckpt = None # if loaded from *.pt
self.cfg = None # if loaded from *.yaml
self.ckpt_path = None
self.overrides = {} # overrides for trainer object
self.metrics = None # validation/training metrics
self.session = None # HUB session
self.task = task # task type
self.model_name = model = str(model).strip() # strip spaces
# Check if Ultralytics HUB model from https://hub.ultralytics.com
if self.is_hub_model(model):
# Fetch model from HUB
checks.check_requirements("hub-sdk>0.0.2")
self.session = self._get_hub_session(model)
model = self.session.model_file
# Check if Triton Server model
elif self.is_triton_model(model):
self.model = model
self.task = task
return
# Load or create new YOLO model
model = checks.check_model_file_from_stem(model) # add suffix, i.e. yolov8n -> yolov8n.pt
if Path(model).suffix in (".yaml", ".yml"):
self._new(model, task=task, verbose=verbose)
else:
self._load(model, task=task)
self.model_name = model
def __call__(
self,
source: Union[str, Path, int, list, tuple, np.ndarray, torch.Tensor] = None,
stream: bool = False,
**kwargs,
) -> list:
"""
An alias for the predict method, enabling the model instance to be callable.
This method simplifies the process of making predictions by allowing the model instance to be called directly
with the required arguments for prediction.
Args:
source (str | Path | int | PIL.Image | np.ndarray, optional): The source of the image for making
predictions. Accepts various types, including file paths, URLs, PIL images, and numpy arrays.
Defaults to None.
stream (bool, optional): If True, treats the input source as a continuous stream for predictions.
Defaults to False.
**kwargs (dict): Additional keyword arguments for configuring the prediction process.
Returns:
(List[ultralytics.engine.results.Results]): A list of prediction results, encapsulated in the Results class.
"""
return self.predict(source, stream, **kwargs)
@staticmethod
def _get_hub_session(model: str):
"""Creates a session for Hub Training."""
from ultralytics.hub.session import HUBTrainingSession
session = HUBTrainingSession(model)
return session if session.client.authenticated else None
@staticmethod
def is_triton_model(model: str) -> bool:
"""Is model a Triton Server URL string, i.e. <scheme>://<netloc>/<endpoint>/<task_name>"""
from urllib.parse import urlsplit
url = urlsplit(model)
return url.netloc and url.path and url.scheme in {"http", "grpc"}
@staticmethod
def is_hub_model(model: str) -> bool:
"""Check if the provided model is a HUB model."""
return any(
(
model.startswith(f"{HUB_WEB_ROOT}/models/"), # i.e. https://hub.ultralytics.com/models/MODEL_ID
[len(x) for x in model.split("_")] == [42, 20], # APIKEY_MODELID
len(model) == 20 and not Path(model).exists() and all(x not in model for x in "./\\"), # MODELID
)
)
def _new(self, cfg: str, task=None, model=None, verbose=False) -> None:
"""
Initializes a new model and infers the task type from the model definitions.
Args:
cfg (str): model configuration file
task (str | None): model task
model (BaseModel): Customized model.
verbose (bool): display model info on load
"""
cfg_dict = yaml_model_load(cfg)
self.cfg = cfg
self.task = task or guess_model_task(cfg_dict)
self.model = (model or self._smart_load("model"))(cfg_dict, verbose=verbose and RANK == -1) # build model
self.overrides["model"] = self.cfg
self.overrides["task"] = self.task
# Below added to allow export from YAMLs
self.model.args = {**DEFAULT_CFG_DICT, **self.overrides} # combine default and model args (prefer model args)
self.model.task = self.task
def _load(self, weights: str, task=None) -> None:
"""
Initializes a new model and infers the task type from the model head.
Args:
weights (str): model checkpoint to be loaded
task (str | None): model task
"""
suffix = Path(weights).suffix
if suffix == ".pt":
self.model, self.ckpt = attempt_load_one_weight(weights)
self.task = self.model.args["task"]
self.overrides = self.model.args = self._reset_ckpt_args(self.model.args)
self.ckpt_path = self.model.pt_path
else:
weights = checks.check_file(weights)
self.model, self.ckpt = weights, None
self.task = task or guess_model_task(weights)
self.ckpt_path = weights
self.overrides["model"] = weights
self.overrides["task"] = self.task
def _check_is_pytorch_model(self) -> None:
"""Raises TypeError is model is not a PyTorch model."""
pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == ".pt"
pt_module = isinstance(self.model, nn.Module)
if not (pt_module or pt_str):
raise TypeError(
f"model='{self.model}' should be a *.pt PyTorch model to run this method, but is a different format. "
f"PyTorch models can train, val, predict and export, i.e. 'model.train(data=...)', but exported "
f"formats like ONNX, TensorRT etc. only support 'predict' and 'val' modes, "
f"i.e. 'yolo predict model=yolov8n.onnx'.\nTo run CUDA or MPS inference please pass the device "
f"argument directly in your inference command, i.e. 'model.predict(source=..., device=0)'"
)
def reset_weights(self) -> "Model":
"""
Resets the model parameters to randomly initialized values, effectively discarding all training information.
This method iterates through all modules in the model and resets their parameters if they have a
'reset_parameters' method. It also ensures that all parameters have 'requires_grad' set to True, enabling them
to be updated during training.
Returns:
self (ultralytics.engine.model.Model): The instance of the class with reset weights.
Raises:
AssertionError: If the model is not a PyTorch model.
"""
self._check_is_pytorch_model()
for m in self.model.modules():
if hasattr(m, "reset_parameters"):
m.reset_parameters()
for p in self.model.parameters():
p.requires_grad = True
return self
def load(self, weights: Union[str, Path] = "yolov8n.pt") -> "Model":
"""
Loads parameters from the specified weights file into the model.
This method supports loading weights from a file or directly from a weights object. It matches parameters by
name and shape and transfers them to the model.
Args:
weights (str | Path): Path to the weights file or a weights object. Defaults to 'yolov8n.pt'.
Returns:
self (ultralytics.engine.model.Model): The instance of the class with loaded weights.
Raises:
AssertionError: If the model is not a PyTorch model.
"""
self._check_is_pytorch_model()
if isinstance(weights, (str, Path)):
weights, self.ckpt = attempt_load_one_weight(weights)
self.model.load(weights)
return self
def save(self, filename: Union[str, Path] = "saved_model.pt") -> None:
"""
Saves the current model state to a file.
This method exports the model's checkpoint (ckpt) to the specified filename.
Args:
filename (str | Path): The name of the file to save the model to. Defaults to 'saved_model.pt'.
Raises:
AssertionError: If the model is not a PyTorch model.
"""
self._check_is_pytorch_model()
torch.save(self.ckpt, filename)
def info(self, detailed: bool = False, verbose: bool = True):
"""
Logs or returns model information.
This method provides an overview or detailed information about the model, depending on the arguments passed.
It can control the verbosity of the output.
Args:
detailed (bool): If True, shows detailed information about the model. Defaults to False.
verbose (bool): If True, prints the information. If False, returns the information. Defaults to True.
Returns:
(list): Various types of information about the model, depending on the 'detailed' and 'verbose' parameters.
Raises:
AssertionError: If the model is not a PyTorch model.
"""
self._check_is_pytorch_model()
return self.model.info(detailed=detailed, verbose=verbose)
def fuse(self):
"""
Fuses Conv2d and BatchNorm2d layers in the model.
This method optimizes the model by fusing Conv2d and BatchNorm2d layers, which can improve inference speed.
Raises:
AssertionError: If the model is not a PyTorch model.
"""
self._check_is_pytorch_model()
self.model.fuse()
def embed(
self,
source: Union[str, Path, int, list, tuple, np.ndarray, torch.Tensor] = None,
stream: bool = False,
**kwargs,
) -> list:
"""
Generates image embeddings based on the provided source.
This method is a wrapper around the 'predict()' method, focusing on generating embeddings from an image source.
It allows customization of the embedding process through various keyword arguments.
Args:
source (str | int | PIL.Image | np.ndarray): The source of the image for generating embeddings.
The source can be a file path, URL, PIL image, numpy array, etc. Defaults to None.
stream (bool): If True, predictions are streamed. Defaults to False.
**kwargs (dict): Additional keyword arguments for configuring the embedding process.
Returns:
(List[torch.Tensor]): A list containing the image embeddings.
Raises:
AssertionError: If the model is not a PyTorch model.
"""
if not kwargs.get("embed"):
kwargs["embed"] = [len(self.model.model) - 2] # embed second-to-last layer if no indices passed
return self.predict(source, stream, **kwargs)
def predict(
self,
source: Union[str, Path, int, list, tuple, np.ndarray, torch.Tensor] = None,
stream: bool = False,
predictor=None,
**kwargs,
) -> list:
"""
Performs predictions on the given image source using the YOLO model.
This method facilitates the prediction process, allowing various configurations through keyword arguments.
It supports predictions with custom predictors or the default predictor method. The method handles different
types of image sources and can operate in a streaming mode. It also provides support for SAM-type models
through 'prompts'.
The method sets up a new predictor if not already present and updates its arguments with each call.
It also issues a warning and uses default assets if the 'source' is not provided. The method determines if it
is being called from the command line interface and adjusts its behavior accordingly, including setting defaults
for confidence threshold and saving behavior.
Args:
source (str | int | PIL.Image | np.ndarray, optional): The source of the image for making predictions.
Accepts various types, including file paths, URLs, PIL images, and numpy arrays. Defaults to ASSETS.
stream (bool, optional): Treats the input source as a continuous stream for predictions. Defaults to False.
predictor (BasePredictor, optional): An instance of a custom predictor class for making predictions.
If None, the method uses a default predictor. Defaults to None.
**kwargs (dict): Additional keyword arguments for configuring the prediction process. These arguments allow
for further customization of the prediction behavior.
Returns:
(List[ultralytics.engine.results.Results]): A list of prediction results, encapsulated in the Results class.
Raises:
AttributeError: If the predictor is not properly set up.
"""
if source is None:
source = ASSETS
LOGGER.warning(f"WARNING ⚠� 'source' is missing. Using 'source={source}'.")
is_cli = (sys.argv[0].endswith("yolo") or sys.argv[0].endswith("ultralytics")) and any(
x in sys.argv for x in ("predict", "track", "mode=predict", "mode=track")
)
custom = {"conf": 0.25, "save": is_cli, "mode": "predict"} # method defaults
args = {**self.overrides, **custom, **kwargs} # highest priority args on the right
prompts = args.pop("prompts", None) # for SAM-type models
if not self.predictor:
self.predictor = predictor or self._smart_load("predictor")(overrides=args, _callbacks=self.callbacks)
self.predictor.setup_model(model=self.model, verbose=is_cli)
else: # only update args if predictor is already setup
self.predictor.args = get_cfg(self.predictor.args, args)
if "project" in args or "name" in args:
self.predictor.save_dir = get_save_dir(self.predictor.args)
if prompts and hasattr(self.predictor, "set_prompts"): # for SAM-type models
self.predictor.set_prompts(prompts)
return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream)
def track(
self,
source: Union[str, Path, int, list, tuple, np.ndarray, torch.Tensor] = None,
stream: bool = False,
persist: bool = False,
**kwargs,
) -> list:
"""
Conducts object tracking on the specified input source using the registered trackers.
This method performs object tracking using the model's predictors and optionally registered trackers. It is
capable of handling different types of input sources such as file paths or video streams. The method supports
customization of the tracking process through various keyword arguments. It registers trackers if they are not
already present and optionally persists them based on the 'persist' flag.
The method sets a default confidence threshold specifically for ByteTrack-based tracking, which requires low
confidence predictions as input. The tracking mode is explicitly set in the keyword arguments.
Args:
source (str, optional): The input source for object tracking. It can be a file path, URL, or video stream.
stream (bool, optional): Treats the input source as a continuous video stream. Defaults to False.
persist (bool, optional): Persists the trackers between different calls to this method. Defaults to False.
**kwargs (dict): Additional keyword arguments for configuring the tracking process. These arguments allow
for further customization of the tracking behavior.
Returns:
(List[ultralytics.engine.results.Results]): A list of tracking results, encapsulated in the Results class.
Raises:
AttributeError: If the predictor does not have registered trackers.
"""
if not hasattr(self.predictor, "trackers"):
from ultralytics.trackers import register_tracker
register_tracker(self, persist)
kwargs["conf"] = kwargs.get("conf") or 0.1 # ByteTrack-based method needs low confidence predictions as input
kwargs["mode"] = "track"
return self.predict(source=source, stream=stream, **kwargs)
def val(
self,
validator=None,
**kwargs,
):
"""
Validates the model using a specified dataset and validation configuration.
This method facilitates the model validation process, allowing for a range of customization through various
settings and configurations. It supports validation with a custom validator or the default validation approach.
The method combines default configurations, method-specific defaults, and user-provided arguments to configure
the validation process. After validation, it updates the model's metrics with the results obtained from the
validator.
The method supports various arguments that allow customization of the validation process. For a comprehensive
list of all configurable options, users should refer to the 'configuration' section in the documentation.
Args:
validator (BaseValidator, optional): An instance of a custom validator class for validating the model. If
None, the method uses a default validator. Defaults to None.
**kwargs (dict): Arbitrary keyword arguments representing the validation configuration. These arguments are
used to customize various aspects of the validation process.
Returns:
(dict): Validation metrics obtained from the validation process.
Raises:
AssertionError: If the model is not a PyTorch model.
"""
custom = {"rect": True} # method defaults
args = {**self.overrides, **custom, **kwargs, "mode": "val"} # highest priority args on the right
validator = (validator or self._smart_load("validator"))(args=args, _callbacks=self.callbacks)
validator(model=self.model)
self.metrics = validator.metrics
return validator.metrics
def benchmark(
self,
**kwargs,
):
"""
Benchmarks the model across various export formats to evaluate performance.
This method assesses the model's performance in different export formats, such as ONNX, TorchScript, etc.
It uses the 'benchmark' function from the ultralytics.utils.benchmarks module. The benchmarking is configured
using a combination of default configuration values, model-specific arguments, method-specific defaults, and
any additional user-provided keyword arguments.
The method supports various arguments that allow customization of the benchmarking process, such as dataset
choice, image size, precision modes, device selection, and verbosity. For a comprehensive list of all
configurable options, users should refer to the 'configuration' section in the documentation.
Args:
**kwargs (dict): Arbitrary keyword arguments to customize the benchmarking process. These are combined with
default configurations, model-specific arguments, and method defaults.
Returns:
(dict): A dictionary containing the results of the benchmarking process.
Raises:
AssertionError: If the model is not a PyTorch model.
"""
self._check_is_pytorch_model()
from ultralytics.utils.benchmarks import benchmark
custom = {"verbose": False} # method defaults
args = {**DEFAULT_CFG_DICT, **self.model.args, **custom, **kwargs, "mode": "benchmark"}
return benchmark(
model=self,
data=kwargs.get("data"), # if no 'data' argument passed set data=None for default datasets
imgsz=args["imgsz"],
half=args["half"],
int8=args["int8"],
device=args["device"],
verbose=kwargs.get("verbose"),
)
def export(
self,
**kwargs,
):
"""
Exports the model to a different format suitable for deployment.
This method facilitates the export of the model to various formats (e.g., ONNX, TorchScript) for deployment
purposes. It uses the 'Exporter' class for the export process, combining model-specific overrides, method
defaults, and any additional arguments provided. The combined arguments are used to configure export settings.
The method supports a wide range of arguments to customize the export process. For a comprehensive list of all
possible arguments, refer to the 'configuration' section in the documentation.
Args:
**kwargs (dict): Arbitrary keyword arguments to customize the export process. These are combined with the
model's overrides and method defaults.
Returns:
(object): The exported model in the specified format, or an object related to the export process.
Raises:
AssertionError: If the model is not a PyTorch model.
"""
self._check_is_pytorch_model()
from .exporter import Exporter
custom = {"imgsz": self.model.args["imgsz"], "batch": 1, "data": None, "verbose": False} # method defaults
args = {**self.overrides, **custom, **kwargs, "mode": "export"} # highest priority args on the right
return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model)
def train(
self,
trainer=None,
**kwargs,
):
"""
Trains the model using the specified dataset and training configuration.
This method facilitates model training with a range of customizable settings and configurations. It supports
training with a custom trainer or the default training approach defined in the method. The method handles
different scenarios, such as resuming training from a checkpoint, integrating with Ultralytics HUB, and
updating model and configuration after training.
When using Ultralytics HUB, if the session already has a loaded model, the method prioritizes HUB training
arguments and issues a warning if local arguments are provided. It checks for pip updates and combines default
configurations, method-specific defaults, and user-provided arguments to configure the training process. After
training, it updates the model and its configurations, and optionally attaches metrics.
Args:
trainer (BaseTrainer, optional): An instance of a custom trainer class for training the model. If None, the
method uses a default trainer. Defaults to None.
**kwargs (dict): Arbitrary keyword arguments representing the training configuration. These arguments are
used to customize various aspects of the training process.
Returns:
(dict | None): Training metrics if available and training is successful; otherwise, None.
Raises:
AssertionError: If the model is not a PyTorch model.
PermissionError: If there is a permission issue with the HUB session.
ModuleNotFoundError: If the HUB SDK is not installed.
"""
self._check_is_pytorch_model()
if hasattr(self.session, "model") and self.session.model.id: # Ultralytics HUB session with loaded model
if any(kwargs):
LOGGER.warning("WARNING ⚠� using HUB training arguments, ignoring local training arguments.")
kwargs = self.session.train_args # overwrite kwargs
checks.check_pip_update_available()
overrides = yaml_load(checks.check_yaml(kwargs["cfg"])) if kwargs.get("cfg") else self.overrides
custom = {"data": DEFAULT_CFG_DICT["data"] or TASK2DATA[self.task]} # method defaults
args = {**overrides, **custom, **kwargs, "mode": "train"} # highest priority args on the right
if args.get("resume"):
args["resume"] = self.ckpt_path
self.trainer = (trainer or self._smart_load("trainer"))(overrides=args, _callbacks=self.callbacks)
if not args.get("resume"): # manually set model only if not resuming
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
self.model = self.trainer.model
if SETTINGS["hub"] is True and not self.session:
# Create a model in HUB
try:
self.session = self._get_hub_session(self.model_name)
if self.session:
self.session.create_model(args)
# Check model was created
if not getattr(self.session.model, "id", None):
self.session = None
except (PermissionError, ModuleNotFoundError):
# Ignore PermissionError and ModuleNotFoundError which indicates hub-sdk not installed
pass
self.trainer.hub_session = self.session # attach optional HUB session
self.trainer.train()
# Update model and cfg after training
if RANK in (-1, 0):
ckpt = self.trainer.best if self.trainer.best.exists() else self.trainer.last
self.model, _ = attempt_load_one_weight(ckpt)
self.overrides = self.model.args
self.metrics = getattr(self.trainer.validator, "metrics", None) # TODO: no metrics returned by DDP
return self.metrics
def tune(
self,
use_ray=False,
iterations=10,
*args,
**kwargs,
):
"""
Conducts hyperparameter tuning for the model, with an option to use Ray Tune.
This method supports two modes of hyperparameter tuning: using Ray Tune or a custom tuning method.
When Ray Tune is enabled, it leverages the 'run_ray_tune' function from the ultralytics.utils.tuner module.
Otherwise, it uses the internal 'Tuner' class for tuning. The method combines default, overridden, and
custom arguments to configure the tuning process.
Args:
use_ray (bool): If True, uses Ray Tune for hyperparameter tuning. Defaults to False.
iterations (int): The number of tuning iterations to perform. Defaults to 10.
*args (list): Variable length argument list for additional arguments.
**kwargs (dict): Arbitrary keyword arguments. These are combined with the model's overrides and defaults.
Returns:
(dict): A dictionary containing the results of the hyperparameter search.
Raises:
AssertionError: If the model is not a PyTorch model.
"""
self._check_is_pytorch_model()
if use_ray:
from ultralytics.utils.tuner import run_ray_tune
return run_ray_tune(self, max_samples=iterations, *args, **kwargs)
else:
from .tuner import Tuner
custom = {} # method defaults
args = {**self.overrides, **custom, **kwargs, "mode": "train"} # highest priority args on the right
return Tuner(args=args, _callbacks=self.callbacks)(model=self, iterations=iterations)
def _apply(self, fn) -> "Model":
"""Apply to(), cpu(), cuda(), half(), float() to model tensors that are not parameters or registered buffers."""
self._check_is_pytorch_model()
self = super()._apply(fn) # noqa
self.predictor = None # reset predictor as device may have changed
self.overrides["device"] = self.device # was str(self.device) i.e. device(type='cuda', index=0) -> 'cuda:0'
return self
@property
def names(self) -> list:
"""
Retrieves the class names associated with the loaded model.
This property returns the class names if they are defined in the model. It checks the class names for validity
using the 'check_class_names' function from the ultralytics.nn.autobackend module.
Returns:
(list | None): The class names of the model if available, otherwise None.
"""
from ultralytics.nn.autobackend import check_class_names
return check_class_names(self.model.names) if hasattr(self.model, "names") else None
@property
def device(self) -> torch.device:
"""
Retrieves the device on which the model's parameters are allocated.
This property is used to determine whether the model's parameters are on CPU or GPU. It only applies to models
that are instances of nn.Module.
Returns:
(torch.device | None): The device (CPU/GPU) of the model if it is a PyTorch model, otherwise None.
"""
return next(self.model.parameters()).device if isinstance(self.model, nn.Module) else None
@property
def transforms(self):
"""
Retrieves the transformations applied to the input data of the loaded model.
This property returns the transformations if they are defined in the model.
Returns:
(object | None): The transform object of the model if available, otherwise None.
"""
return self.model.transforms if hasattr(self.model, "transforms") else None
def add_callback(self, event: str, func) -> None:
"""
Adds a callback function for a specified event.
This method allows the user to register a custom callback function that is triggered on a specific event during
model training or inference.
Args:
event (str): The name of the event to attach the callback to.
func (callable): The callback function to be registered.
Raises:
ValueError: If the event name is not recognized.
"""
self.callbacks[event].append(func)
def clear_callback(self, event: str) -> None:
"""
Clears all callback functions registered for a specified event.
This method removes all custom and default callback functions associated with the given event.
Args:
event (str): The name of the event for which to clear the callbacks.
Raises:
ValueError: If the event name is not recognized.
"""
self.callbacks[event] = []
def reset_callbacks(self) -> None:
"""
Resets all callbacks to their default functions.
This method reinstates the default callback functions for all events, removing any custom callbacks that were
added previously.
"""
for event in callbacks.default_callbacks.keys():
self.callbacks[event] = [callbacks.default_callbacks[event][0]]
@staticmethod
def _reset_ckpt_args(args: dict) -> dict:
"""Reset arguments when loading a PyTorch model."""
include = {"imgsz", "data", "task", "single_cls"} # only remember these arguments when loading a PyTorch model
return {k: v for k, v in args.items() if k in include}
# def __getattr__(self, attr):
# """Raises error if object has no requested attribute."""
# name = self.__class__.__name__
# raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
def _smart_load(self, key: str):
"""Load model/trainer/validator/predictor."""
try:
return self.task_map[self.task][key]
except Exception as e:
name = self.__class__.__name__
mode = inspect.stack()[1][3] # get the function name.
raise NotImplementedError(
emojis(f"WARNING ⚠� '{name}' model does not support '{mode}' mode for '{self.task}' task yet.")
) from e
@property
def task_map(self) -> dict:
"""
Map head to model, trainer, validator, and predictor classes.
Returns:
task_map (dict): The map of model task to mode classes.
"""
raise NotImplementedError("Please provide task map for your model!")
| 38,620 | Python | .py | 670 | 47.555224 | 120 | 0.661439 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,867 | errors.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/errors.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from ultralytics.utils import emojis
class HUBModelError(Exception):
"""
Custom exception class for handling errors related to model fetching in Ultralytics YOLO.
This exception is raised when a requested model is not found or cannot be retrieved.
The message is also processed to include emojis for better user experience.
Attributes:
message (str): The error message displayed when the exception is raised.
Note:
The message is automatically processed through the 'emojis' function from the 'ultralytics.utils' package.
"""
def __init__(self, message="Model not found. Please check model URL and try again."):
"""Create an exception for when a model is not found."""
super().__init__(emojis(message))
| 816 | Python | .py | 15 | 48.666667 | 114 | 0.731738 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,868 | checks.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/checks.py | # Ultralytics YOLO üöÄ, AGPL-3.0 license
import contextlib
import glob
import inspect
import math
import os
import platform
import re
import shutil
import subprocess
import time
from importlib import metadata
from pathlib import Path
from typing import Optional
import cv2
import numpy as np
import requests
import torch
from matplotlib import font_manager
from ultralytics.utils import (
ASSETS,
AUTOINSTALL,
LINUX,
LOGGER,
ONLINE,
ROOT,
USER_CONFIG_DIR,
SimpleNamespace,
ThreadingLocked,
TryExcept,
clean_url,
colorstr,
downloads,
emojis,
is_colab,
is_docker,
is_github_action_running,
is_jupyter,
is_kaggle,
is_online,
is_pip_package,
url2file,
)
PYTHON_VERSION = platform.python_version()
def parse_requirements(file_path=ROOT.parent / "requirements.txt", package=""):
"""
Parse a requirements.txt file, ignoring lines that start with '#' and any text after '#'.
Args:
file_path (Path): Path to the requirements.txt file.
package (str, optional): Python package to use instead of requirements.txt file, i.e. package='ultralytics'.
Returns:
(List[Dict[str, str]]): List of parsed requirements as dictionaries with `name` and `specifier` keys.
Example:
```python
from ultralytics.utils.checks import parse_requirements
parse_requirements(package='ultralytics')
```
"""
if package:
requires = [x for x in metadata.distribution(package).requires if "extra == " not in x]
else:
requires = Path(file_path).read_text().splitlines()
requirements = []
for line in requires:
line = line.strip()
if line and not line.startswith("#"):
line = line.split("#")[0].strip() # ignore inline comments
match = re.match(r"([a-zA-Z0-9-_]+)\s*([<>!=~]+.*)?", line)
if match:
requirements.append(SimpleNamespace(name=match[1], specifier=match[2].strip() if match[2] else ""))
return requirements
def parse_version(version="0.0.0") -> tuple:
"""
Convert a version string to a tuple of integers, ignoring any extra non-numeric string attached to the version. This
function replaces deprecated 'pkg_resources.parse_version(v)'.
Args:
version (str): Version string, i.e. '2.0.1+cpu'
Returns:
(tuple): Tuple of integers representing the numeric part of the version and the extra string, i.e. (2, 0, 1)
"""
try:
return tuple(map(int, re.findall(r"\d+", version)[:3])) # '2.0.1+cpu' -> (2, 0, 1)
except Exception as e:
LOGGER.warning(f"WARNING ⚠️ failure for parse_version({version}), returning (0, 0, 0): {e}")
return 0, 0, 0
def is_ascii(s) -> bool:
"""
Check if a string is composed of only ASCII characters.
Args:
s (str): String to be checked.
Returns:
(bool): True if the string is composed only of ASCII characters, False otherwise.
"""
# Convert list, tuple, None, etc. to string
s = str(s)
# Check if the string is composed of only ASCII characters
return all(ord(c) < 128 for c in s)
def check_imgsz(imgsz, stride=32, min_dim=1, max_dim=2, floor=0):
"""
Verify image size is a multiple of the given stride in each dimension. If the image size is not a multiple of the
stride, update it to the nearest multiple of the stride that is greater than or equal to the given floor value.
Args:
imgsz (int | cList[int]): Image size.
stride (int): Stride value.
min_dim (int): Minimum number of dimensions.
max_dim (int): Maximum number of dimensions.
floor (int): Minimum allowed value for image size.
Returns:
(List[int]): Updated image size.
"""
# Convert stride to integer if it is a tensor
stride = int(stride.max() if isinstance(stride, torch.Tensor) else stride)
# Convert image size to list if it is an integer
if isinstance(imgsz, int):
imgsz = [imgsz]
elif isinstance(imgsz, (list, tuple)):
imgsz = list(imgsz)
else:
raise TypeError(
f"'imgsz={imgsz}' is of invalid type {type(imgsz).__name__}. "
f"Valid imgsz types are int i.e. 'imgsz=640' or list i.e. 'imgsz=[640,640]'"
)
# Apply max_dim
if len(imgsz) > max_dim:
msg = (
"'train' and 'val' imgsz must be an integer, while 'predict' and 'export' imgsz may be a [h, w] list "
"or an integer, i.e. 'yolo export imgsz=640,480' or 'yolo export imgsz=640'"
)
if max_dim != 1:
raise ValueError(f"imgsz={imgsz} is not a valid image size. {msg}")
LOGGER.warning(f"WARNING ⚠️ updating to 'imgsz={max(imgsz)}'. {msg}")
imgsz = [max(imgsz)]
# Make image size a multiple of the stride
sz = [max(math.ceil(x / stride) * stride, floor) for x in imgsz]
# Print warning message if image size was updated
if sz != imgsz:
LOGGER.warning(f"WARNING ⚠️ imgsz={imgsz} must be multiple of max stride {stride}, updating to {sz}")
# Add missing dimensions if necessary
sz = [sz[0], sz[0]] if min_dim == 2 and len(sz) == 1 else sz[0] if min_dim == 1 and len(sz) == 1 else sz
return sz
def check_version(
current: str = "0.0.0",
required: str = "0.0.0",
name: str = "version",
hard: bool = False,
verbose: bool = False,
msg: str = "",
) -> bool:
"""
Check current version against the required version or range.
Args:
current (str): Current version or package name to get version from.
required (str): Required version or range (in pip-style format).
name (str, optional): Name to be used in warning message.
hard (bool, optional): If True, raise an AssertionError if the requirement is not met.
verbose (bool, optional): If True, print warning message if requirement is not met.
msg (str, optional): Extra message to display if verbose.
Returns:
(bool): True if requirement is met, False otherwise.
Example:
```python
# Check if current version is exactly 22.04
check_version(current='22.04', required='==22.04')
# Check if current version is greater than or equal to 22.04
check_version(current='22.10', required='22.04') # assumes '>=' inequality if none passed
# Check if current version is less than or equal to 22.04
check_version(current='22.04', required='<=22.04')
# Check if current version is between 20.04 (inclusive) and 22.04 (exclusive)
check_version(current='21.10', required='>20.04,<22.04')
```
"""
if not current: # if current is '' or None
LOGGER.warning(f"WARNING ⚠️ invalid check_version({current}, {required}) requested, please check values.")
return True
elif not current[0].isdigit(): # current is package name rather than version string, i.e. current='ultralytics'
try:
name = current # assigned package name to 'name' arg
current = metadata.version(current) # get version string from package name
except metadata.PackageNotFoundError as e:
if hard:
raise ModuleNotFoundError(emojis(f"WARNING ⚠️ {current} package is required but not installed")) from e
else:
return False
if not required: # if required is '' or None
return True
op = ""
version = ""
result = True
c = parse_version(current) # '1.2.3' -> (1, 2, 3)
for r in required.strip(",").split(","):
op, version = re.match(r"([^0-9]*)([\d.]+)", r).groups() # split '>=22.04' -> ('>=', '22.04')
v = parse_version(version) # '1.2.3' -> (1, 2, 3)
if op == "==" and c != v:
result = False
elif op == "!=" and c == v:
result = False
elif op in (">=", "") and not (c >= v): # if no constraint passed assume '>=required'
result = False
elif op == "<=" and not (c <= v):
result = False
elif op == ">" and not (c > v):
result = False
elif op == "<" and not (c < v):
result = False
if not result:
warning = f"WARNING ⚠️ {name}{op}{version} is required, but {name}=={current} is currently installed {msg}"
if hard:
raise ModuleNotFoundError(emojis(warning)) # assert version requirements met
if verbose:
LOGGER.warning(warning)
return result
def check_latest_pypi_version(package_name="ultralytics"):
"""
Returns the latest version of a PyPI package without downloading or installing it.
Parameters:
package_name (str): The name of the package to find the latest version for.
Returns:
(str): The latest version of the package.
"""
with contextlib.suppress(Exception):
requests.packages.urllib3.disable_warnings() # Disable the InsecureRequestWarning
response = requests.get(f"https://pypi.org/pypi/{package_name}/json", timeout=3)
if response.status_code == 200:
return response.json()["info"]["version"]
def check_pip_update_available():
"""
Checks if a new version of the ultralytics package is available on PyPI.
Returns:
(bool): True if an update is available, False otherwise.
"""
if ONLINE and is_pip_package():
with contextlib.suppress(Exception):
from ultralytics import __version__
latest = check_latest_pypi_version()
if check_version(__version__, f"<{latest}"): # check if current version is < latest version
LOGGER.info(
f"New https://pypi.org/project/ultralytics/{latest} available üòÉ "
f"Update with 'pip install -U ultralytics'"
)
return True
return False
@ThreadingLocked()
def check_font(font="Arial.ttf"):
"""
Find font locally or download to user's configuration directory if it does not already exist.
Args:
font (str): Path or name of font.
Returns:
file (Path): Resolved font file path.
"""
name = Path(font).name
# Check USER_CONFIG_DIR
file = USER_CONFIG_DIR / name
if file.exists():
return file
# Check system fonts
matches = [s for s in font_manager.findSystemFonts() if font in s]
if any(matches):
return matches[0]
# Download to USER_CONFIG_DIR if missing
url = f"https://ultralytics.com/assets/{name}"
if downloads.is_url(url):
downloads.safe_download(url=url, file=file)
return file
def check_python(minimum: str = "3.8.0") -> bool:
"""
Check current python version against the required minimum version.
Args:
minimum (str): Required minimum version of python.
Returns:
(bool): Whether the installed Python version meets the minimum constraints.
"""
return check_version(PYTHON_VERSION, minimum, name="Python ", hard=True)
@TryExcept()
def check_requirements(requirements=ROOT.parent / "requirements.txt", exclude=(), install=True, cmds=""):
"""
Check if installed dependencies meet YOLOv8 requirements and attempt to auto-update if needed.
Args:
requirements (Union[Path, str, List[str]]): Path to a requirements.txt file, a single package requirement as a
string, or a list of package requirements as strings.
exclude (Tuple[str]): Tuple of package names to exclude from checking.
install (bool): If True, attempt to auto-update packages that don't meet requirements.
cmds (str): Additional commands to pass to the pip install command when auto-updating.
Example:
```python
from ultralytics.utils.checks import check_requirements
# Check a requirements.txt file
check_requirements('path/to/requirements.txt')
# Check a single package
check_requirements('ultralytics>=8.0.0')
# Check multiple packages
check_requirements(['numpy', 'ultralytics>=8.0.0'])
```
"""
prefix = colorstr("red", "bold", "requirements:")
check_python() # check python version
check_torchvision() # check torch-torchvision compatibility
if isinstance(requirements, Path): # requirements.txt file
file = requirements.resolve()
assert file.exists(), f"{prefix} {file} not found, check failed."
requirements = [f"{x.name}{x.specifier}" for x in parse_requirements(file) if x.name not in exclude]
elif isinstance(requirements, str):
requirements = [requirements]
pkgs = []
for r in requirements:
r_stripped = r.split("/")[-1].replace(".git", "") # replace git+https://org/repo.git -> 'repo'
match = re.match(r"([a-zA-Z0-9-_]+)([<>!=~]+.*)?", r_stripped)
name, required = match[1], match[2].strip() if match[2] else ""
try:
assert check_version(metadata.version(name), required) # exception if requirements not met
except (AssertionError, metadata.PackageNotFoundError):
pkgs.append(r)
s = " ".join(f'"{x}"' for x in pkgs) # console string
if s:
if install and AUTOINSTALL: # check environment variable
n = len(pkgs) # number of packages updates
LOGGER.info(f"{prefix} Ultralytics requirement{'s' * (n > 1)} {pkgs} not found, attempting AutoUpdate...")
try:
t = time.time()
assert is_online(), "AutoUpdate skipped (offline)"
LOGGER.info(subprocess.check_output(f"pip install --no-cache {s} {cmds}", shell=True).decode())
dt = time.time() - t
LOGGER.info(
f"{prefix} AutoUpdate success ‚úÖ {dt:.1f}s, installed {n} package{'s' * (n > 1)}: {pkgs}\n"
f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
)
except Exception as e:
LOGGER.warning(f"{prefix} ‚ùå {e}")
return False
else:
return False
return True
def check_torchvision():
"""
Checks the installed versions of PyTorch and Torchvision to ensure they're compatible.
This function checks the installed versions of PyTorch and Torchvision, and warns if they're incompatible according
to the provided compatibility table based on:
https://github.com/pytorch/vision#installation.
The compatibility table is a dictionary where the keys are PyTorch versions and the values are lists of compatible
Torchvision versions.
"""
import torchvision
# Compatibility table
compatibility_table = {"2.0": ["0.15"], "1.13": ["0.14"], "1.12": ["0.13"]}
# Extract only the major and minor versions
v_torch = ".".join(torch.__version__.split("+")[0].split(".")[:2])
v_torchvision = ".".join(torchvision.__version__.split("+")[0].split(".")[:2])
if v_torch in compatibility_table:
compatible_versions = compatibility_table[v_torch]
if all(v_torchvision != v for v in compatible_versions):
print(
f"WARNING ⚠️ torchvision=={v_torchvision} is incompatible with torch=={v_torch}.\n"
f"Run 'pip install torchvision=={compatible_versions[0]}' to fix torchvision or "
"'pip install -U torch torchvision' to update both.\n"
"For a full compatibility table see https://github.com/pytorch/vision#installation"
)
def check_suffix(file="yolov8n.pt", suffix=".pt", msg=""):
"""Check file(s) for acceptable suffix."""
if file and suffix:
if isinstance(suffix, str):
suffix = (suffix,)
for f in file if isinstance(file, (list, tuple)) else [file]:
s = Path(f).suffix.lower().strip() # file suffix
if len(s):
assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}, not {s}"
def check_yolov5u_filename(file: str, verbose: bool = True):
"""Replace legacy YOLOv5 filenames with updated YOLOv5u filenames."""
if "yolov3" in file or "yolov5" in file:
if "u.yaml" in file:
file = file.replace("u.yaml", ".yaml") # i.e. yolov5nu.yaml -> yolov5n.yaml
elif ".pt" in file and "u" not in file:
original_file = file
file = re.sub(r"(.*yolov5([nsmlx]))\.pt", "\\1u.pt", file) # i.e. yolov5n.pt -> yolov5nu.pt
file = re.sub(r"(.*yolov5([nsmlx])6)\.pt", "\\1u.pt", file) # i.e. yolov5n6.pt -> yolov5n6u.pt
file = re.sub(r"(.*yolov3(|-tiny|-spp))\.pt", "\\1u.pt", file) # i.e. yolov3-spp.pt -> yolov3-sppu.pt
if file != original_file and verbose:
LOGGER.info(
f"PRO TIP üí° Replace 'model={original_file}' with new 'model={file}'.\nYOLOv5 'u' models are "
f"trained with https://github.com/ultralytics/ultralytics and feature improved performance vs "
f"standard YOLOv5 models trained with https://github.com/ultralytics/yolov5.\n"
)
return file
def check_model_file_from_stem(model="yolov8n"):
"""Return a model filename from a valid model stem."""
if model and not Path(model).suffix and Path(model).stem in downloads.GITHUB_ASSETS_STEMS:
return Path(model).with_suffix(".pt") # add suffix, i.e. yolov8n -> yolov8n.pt
else:
return model
def check_file(file, suffix="", download=True, hard=True):
"""Search/download file (if necessary) and return path."""
check_suffix(file, suffix) # optional
file = str(file).strip() # convert to string and strip spaces
file = check_yolov5u_filename(file) # yolov5n -> yolov5nu
if (
not file
or ("://" not in file and Path(file).exists()) # '://' check required in Windows Python<3.10
or file.lower().startswith("grpc://")
): # file exists or gRPC Triton images
return file
elif download and file.lower().startswith(("https://", "http://", "rtsp://", "rtmp://", "tcp://")): # download
url = file # warning: Pathlib turns :// -> :/
file = url2file(file) # '%2F' to '/', split https://url.com/file.txt?auth
if Path(file).exists():
LOGGER.info(f"Found {clean_url(url)} locally at {file}") # file already exists
else:
downloads.safe_download(url=url, file=file, unzip=False)
return file
else: # search
files = glob.glob(str(ROOT / "cfg" / "**" / file), recursive=True) # find file
if not files and hard:
raise FileNotFoundError(f"'{file}' does not exist")
elif len(files) > 1 and hard:
raise FileNotFoundError(f"Multiple files match '{file}', specify exact path: {files}")
return files[0] if len(files) else [] # return file
def check_yaml(file, suffix=(".yaml", ".yml"), hard=True):
"""Search/download YAML file (if necessary) and return path, checking suffix."""
return check_file(file, suffix, hard=hard)
def check_is_path_safe(basedir, path):
"""
Check if the resolved path is under the intended directory to prevent path traversal.
Args:
basedir (Path | str): The intended directory.
path (Path | str): The path to check.
Returns:
(bool): True if the path is safe, False otherwise.
"""
base_dir_resolved = Path(basedir).resolve()
path_resolved = Path(path).resolve()
return path_resolved.is_file() and path_resolved.parts[: len(base_dir_resolved.parts)] == base_dir_resolved.parts
def check_imshow(warn=False):
"""Check if environment supports image displays."""
try:
if LINUX:
assert "DISPLAY" in os.environ and not is_docker() and not is_colab() and not is_kaggle()
cv2.imshow("test", np.zeros((8, 8, 3), dtype=np.uint8)) # show a small 8-pixel image
cv2.waitKey(1)
cv2.destroyAllWindows()
cv2.waitKey(1)
return True
except Exception as e:
if warn:
LOGGER.warning(f"WARNING ⚠️ Environment does not support cv2.imshow() or PIL Image.show()\n{e}")
return False
def check_yolo(verbose=True, device=""):
"""Return a human-readable YOLO software and hardware summary."""
import psutil
from ultralytics.utils.torch_utils import select_device
if is_jupyter():
if check_requirements("wandb", install=False):
os.system("pip uninstall -y wandb") # uninstall wandb: unwanted account creation prompt with infinite hang
if is_colab():
shutil.rmtree("sample_data", ignore_errors=True) # remove colab /sample_data directory
if verbose:
# System info
gib = 1 << 30 # bytes per GiB
ram = psutil.virtual_memory().total
total, used, free = shutil.disk_usage("/")
s = f"({os.cpu_count()} CPUs, {ram / gib:.1f} GB RAM, {(total - free) / gib:.1f}/{total / gib:.1f} GB disk)"
with contextlib.suppress(Exception): # clear display if ipython is installed
from IPython import display
display.clear_output()
else:
s = ""
select_device(device=device, newline=False)
LOGGER.info(f"Setup complete ‚úÖ {s}")
def collect_system_info():
"""Collect and print relevant system information including OS, Python, RAM, CPU, and CUDA."""
import psutil
from ultralytics.utils import ENVIRONMENT, is_git_dir
from ultralytics.utils.torch_utils import get_cpu_info
ram_info = psutil.virtual_memory().total / (1024**3) # Convert bytes to GB
check_yolo()
LOGGER.info(
f"\n{'OS':<20}{platform.platform()}\n"
f"{'Environment':<20}{ENVIRONMENT}\n"
f"{'Python':<20}{PYTHON_VERSION}\n"
f"{'Install':<20}{'git' if is_git_dir() else 'pip' if is_pip_package() else 'other'}\n"
f"{'RAM':<20}{ram_info:.2f} GB\n"
f"{'CPU':<20}{get_cpu_info()}\n"
f"{'CUDA':<20}{torch.version.cuda if torch and torch.cuda.is_available() else None}\n"
)
for r in parse_requirements(package="ultralytics"):
try:
current = metadata.version(r.name)
is_met = "‚úÖ " if check_version(current, str(r.specifier), hard=True) else "‚ùå "
except metadata.PackageNotFoundError:
current = "(not installed)"
is_met = "‚ùå "
LOGGER.info(f"{r.name:<20}{is_met}{current}{r.specifier}")
if is_github_action_running():
LOGGER.info(
f"\nRUNNER_OS: {os.getenv('RUNNER_OS')}\n"
f"GITHUB_EVENT_NAME: {os.getenv('GITHUB_EVENT_NAME')}\n"
f"GITHUB_WORKFLOW: {os.getenv('GITHUB_WORKFLOW')}\n"
f"GITHUB_ACTOR: {os.getenv('GITHUB_ACTOR')}\n"
f"GITHUB_REPOSITORY: {os.getenv('GITHUB_REPOSITORY')}\n"
f"GITHUB_REPOSITORY_OWNER: {os.getenv('GITHUB_REPOSITORY_OWNER')}\n"
)
def check_amp(model):
"""
This function checks the PyTorch Automatic Mixed Precision (AMP) functionality of a YOLOv8 model. If the checks
fail, it means there are anomalies with AMP on the system that may cause NaN losses or zero-mAP results, so AMP will
be disabled during training.
Args:
model (nn.Module): A YOLOv8 model instance.
Example:
```python
from ultralytics import YOLO
from ultralytics.utils.checks import check_amp
model = YOLO('yolov8n.pt').model.cuda()
check_amp(model)
```
Returns:
(bool): Returns True if the AMP functionality works correctly with YOLOv8 model, else False.
"""
device = next(model.parameters()).device # get model device
if device.type in ("cpu", "mps"):
return False # AMP only used on CUDA devices
def amp_allclose(m, im):
"""All close FP32 vs AMP results."""
a = m(im, device=device, verbose=False)[0].boxes.data # FP32 inference
with torch.cuda.amp.autocast(True):
b = m(im, device=device, verbose=False)[0].boxes.data # AMP inference
del m
return a.shape == b.shape and torch.allclose(a, b.float(), atol=0.5) # close to 0.5 absolute tolerance
im = ASSETS / "bus.jpg" # image to check
prefix = colorstr("AMP: ")
LOGGER.info(f"{prefix}running Automatic Mixed Precision (AMP) checks with YOLOv8n...")
warning_msg = "Setting 'amp=True'. If you experience zero-mAP or NaN losses you can disable AMP with amp=False."
try:
from ultralytics import YOLO
assert amp_allclose(YOLO("yolov8n.pt"), im)
LOGGER.info(f"{prefix}checks passed ‚úÖ")
except ConnectionError:
LOGGER.warning(f"{prefix}checks skipped ⚠️, offline and unable to download YOLOv8n. {warning_msg}")
except (AttributeError, ModuleNotFoundError):
LOGGER.warning(
f"{prefix}checks skipped ⚠️. "
f"Unable to load YOLOv8n due to possible Ultralytics package modifications. {warning_msg}"
)
except AssertionError:
LOGGER.warning(
f"{prefix}checks failed ‚ùå. Anomalies were detected with AMP on your system that may lead to "
f"NaN losses or zero-mAP results, so AMP will be disabled during training."
)
return False
return True
def git_describe(path=ROOT): # path must be a directory
"""Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe."""
with contextlib.suppress(Exception):
return subprocess.check_output(f"git -C {path} describe --tags --long --always", shell=True).decode()[:-1]
return ""
def print_args(args: Optional[dict] = None, show_file=True, show_func=False):
"""Print function arguments (optional args dict)."""
def strip_auth(v):
"""Clean longer Ultralytics HUB URLs by stripping potential authentication information."""
return clean_url(v) if (isinstance(v, str) and v.startswith("http") and len(v) > 100) else v
x = inspect.currentframe().f_back # previous frame
file, _, func, _, _ = inspect.getframeinfo(x)
if args is None: # get args automatically
args, _, _, frm = inspect.getargvalues(x)
args = {k: v for k, v in frm.items() if k in args}
try:
file = Path(file).resolve().relative_to(ROOT).with_suffix("")
except ValueError:
file = Path(file).stem
s = (f"{file}: " if show_file else "") + (f"{func}: " if show_func else "")
LOGGER.info(colorstr(s) + ", ".join(f"{k}={strip_auth(v)}" for k, v in args.items()))
def cuda_device_count() -> int:
"""
Get the number of NVIDIA GPUs available in the environment.
Returns:
(int): The number of NVIDIA GPUs available.
"""
try:
# Run the nvidia-smi command and capture its output
output = subprocess.check_output(
["nvidia-smi", "--query-gpu=count", "--format=csv,noheader,nounits"], encoding="utf-8"
)
# Take the first line and strip any leading/trailing white space
first_line = output.strip().split("\n")[0]
return int(first_line)
except (subprocess.CalledProcessError, FileNotFoundError, ValueError):
# If the command fails, nvidia-smi is not found, or output is not an integer, assume no GPUs are available
return 0
def cuda_is_available() -> bool:
"""
Check if CUDA is available in the environment.
Returns:
(bool): True if one or more NVIDIA GPUs are available, False otherwise.
"""
return cuda_device_count() > 0
# Define constants
IS_PYTHON_3_12 = check_version(PYTHON_VERSION, "==3.12", name="Python ", hard=False)
| 27,785 | Python | .py | 594 | 39.016835 | 123 | 0.631838 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,869 | patches.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/patches.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
"""Monkey patches to update/extend functionality of existing functions."""
import time
from pathlib import Path
import cv2
import numpy as np
import torch
# OpenCV Multilanguage-friendly functions ------------------------------------------------------------------------------
_imshow = cv2.imshow # copy to avoid recursion errors
def imread(filename: str, flags: int = cv2.IMREAD_COLOR):
"""
Read an image from a file.
Args:
filename (str): Path to the file to read.
flags (int, optional): Flag that can take values of cv2.IMREAD_*. Defaults to cv2.IMREAD_COLOR.
Returns:
(np.ndarray): The read image.
"""
return cv2.imdecode(np.fromfile(filename, np.uint8), flags)
def imwrite(filename: str, img: np.ndarray, params=None):
"""
Write an image to a file.
Args:
filename (str): Path to the file to write.
img (np.ndarray): Image to write.
params (list of ints, optional): Additional parameters. See OpenCV documentation.
Returns:
(bool): True if the file was written, False otherwise.
"""
try:
cv2.imencode(Path(filename).suffix, img, params)[1].tofile(filename)
return True
except Exception:
return False
def imshow(winname: str, mat: np.ndarray):
"""
Displays an image in the specified window.
Args:
winname (str): Name of the window.
mat (np.ndarray): Image to be shown.
"""
_imshow(winname.encode("unicode_escape").decode(), mat)
# PyTorch functions ----------------------------------------------------------------------------------------------------
_torch_save = torch.save # copy to avoid recursion errors
def torch_save(*args, **kwargs):
"""
Use dill (if exists) to serialize the lambda functions where pickle does not do this. Also adds 3 retries with
exponential standoff in case of save failure to improve robustness to transient issues.
Args:
*args (tuple): Positional arguments to pass to torch.save.
**kwargs (dict): Keyword arguments to pass to torch.save.
"""
try:
import dill as pickle # noqa
except ImportError:
import pickle
if "pickle_module" not in kwargs:
kwargs["pickle_module"] = pickle # noqa
for i in range(4): # 3 retries
try:
return _torch_save(*args, **kwargs)
except RuntimeError: # unable to save, possibly waiting for device to flush or anti-virus to finish scanning
if i == 3:
raise
time.sleep((2**i) / 2) # exponential standoff 0.5s, 1.0s, 2.0s
| 2,659 | Python | .py | 65 | 34.784615 | 120 | 0.619122 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,870 | torch_utils.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/torch_utils.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import math
import os
import random
import time
from contextlib import contextmanager
from copy import deepcopy
from pathlib import Path
from typing import Union
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from ultralytics.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, __version__
from ultralytics.utils.checks import PYTHON_VERSION, check_version
try:
import thop
except ImportError:
thop = None
TORCH_1_9 = check_version(torch.__version__, "1.9.0")
TORCH_2_0 = check_version(torch.__version__, "2.0.0")
TORCHVISION_0_10 = check_version(torchvision.__version__, "0.10.0")
TORCHVISION_0_11 = check_version(torchvision.__version__, "0.11.0")
TORCHVISION_0_13 = check_version(torchvision.__version__, "0.13.0")
@contextmanager
def torch_distributed_zero_first(local_rank: int):
"""Decorator to make all processes in distributed training wait for each local_master to do something."""
initialized = torch.distributed.is_available() and torch.distributed.is_initialized()
if initialized and local_rank not in (-1, 0):
dist.barrier(device_ids=[local_rank])
yield
if initialized and local_rank == 0:
dist.barrier(device_ids=[0])
def smart_inference_mode():
"""Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator."""
def decorate(fn):
"""Applies appropriate torch decorator for inference mode based on torch version."""
if TORCH_1_9 and torch.is_inference_mode_enabled():
return fn # already in inference_mode, act as a pass-through
else:
return (torch.inference_mode if TORCH_1_9 else torch.no_grad)()(fn)
return decorate
def get_cpu_info():
"""Return a string with system CPU information, i.e. 'Apple M2'."""
import cpuinfo # pip install py-cpuinfo
k = "brand_raw", "hardware_raw", "arch_string_raw" # info keys sorted by preference (not all keys always available)
info = cpuinfo.get_cpu_info() # info dict
string = info.get(k[0] if k[0] in info else k[1] if k[1] in info else k[2], "unknown")
return string.replace("(R)", "").replace("CPU ", "").replace("@ ", "")
def select_device(device="", batch=0, newline=False, verbose=True):
"""
Selects the appropriate PyTorch device based on the provided arguments.
The function takes a string specifying the device or a torch.device object and returns a torch.device object
representing the selected device. The function also validates the number of available devices and raises an
exception if the requested device(s) are not available.
Args:
device (str | torch.device, optional): Device string or torch.device object.
Options are 'None', 'cpu', or 'cuda', or '0' or '0,1,2,3'. Defaults to an empty string, which auto-selects
the first available GPU, or CPU if no GPU is available.
batch (int, optional): Batch size being used in your model. Defaults to 0.
newline (bool, optional): If True, adds a newline at the end of the log string. Defaults to False.
verbose (bool, optional): If True, logs the device information. Defaults to True.
Returns:
(torch.device): Selected device.
Raises:
ValueError: If the specified device is not available or if the batch size is not a multiple of the number of
devices when using multiple GPUs.
Examples:
>>> select_device('cuda:0')
device(type='cuda', index=0)
>>> select_device('cpu')
device(type='cpu')
Note:
Sets the 'CUDA_VISIBLE_DEVICES' environment variable for specifying which GPUs to use.
"""
if isinstance(device, torch.device):
return device
s = f"Ultralytics YOLOv{__version__} 🚀 Python-{PYTHON_VERSION} torch-{torch.__version__} "
device = str(device).lower()
for remove in "cuda:", "none", "(", ")", "[", "]", "'", " ":
device = device.replace(remove, "") # to string, 'cuda:0' -> '0' and '(0, 1)' -> '0,1'
cpu = device == "cpu"
mps = device in ("mps", "mps:0") # Apple Metal Performance Shaders (MPS)
if cpu or mps:
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # force torch.cuda.is_available() = False
elif device: # non-cpu device requested
if device == "cuda":
device = "0"
visible = os.environ.get("CUDA_VISIBLE_DEVICES", None)
os.environ["CUDA_VISIBLE_DEVICES"] = device # set environment variable - must be before assert is_available()
if not (torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(",", ""))):
LOGGER.info(s)
install = (
"See https://pytorch.org/get-started/locally/ for up-to-date torch install instructions if no "
"CUDA devices are seen by torch.\n"
if torch.cuda.device_count() == 0
else ""
)
raise ValueError(
f"Invalid CUDA 'device={device}' requested."
f" Use 'device=cpu' or pass valid CUDA device(s) if available,"
f" i.e. 'device=0' or 'device=0,1,2,3' for Multi-GPU.\n"
f"\ntorch.cuda.is_available(): {torch.cuda.is_available()}"
f"\ntorch.cuda.device_count(): {torch.cuda.device_count()}"
f"\nos.environ['CUDA_VISIBLE_DEVICES']: {visible}\n"
f"{install}"
)
if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available
devices = device.split(",") if device else "0" # range(torch.cuda.device_count()) # i.e. 0,1,6,7
n = len(devices) # device count
if n > 1 and batch > 0 and batch % n != 0: # check batch_size is divisible by device_count
raise ValueError(
f"'batch={batch}' must be a multiple of GPU count {n}. Try 'batch={batch // n * n}' or "
f"'batch={batch // n * n + n}', the nearest batch sizes evenly divisible by {n}."
)
space = " " * (len(s) + 1)
for i, d in enumerate(devices):
p = torch.cuda.get_device_properties(i)
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB
arg = "cuda:0"
elif mps and TORCH_2_0 and torch.backends.mps.is_available():
# Prefer MPS if available
s += f"MPS ({get_cpu_info()})\n"
arg = "mps"
else: # revert to CPU
s += f"CPU ({get_cpu_info()})\n"
arg = "cpu"
if verbose:
LOGGER.info(s if newline else s.rstrip())
return torch.device(arg)
def time_sync():
"""PyTorch-accurate time."""
if torch.cuda.is_available():
torch.cuda.synchronize()
return time.time()
def fuse_conv_and_bn(conv, bn):
"""Fuse Conv2d() and BatchNorm2d() layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/."""
fusedconv = (
nn.Conv2d(
conv.in_channels,
conv.out_channels,
kernel_size=conv.kernel_size,
stride=conv.stride,
padding=conv.padding,
dilation=conv.dilation,
groups=conv.groups,
bias=True,
)
.requires_grad_(False)
.to(conv.weight.device)
)
# Prepare filters
w_conv = conv.weight.clone().view(conv.out_channels, -1)
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
# Prepare spatial bias
b_conv = torch.zeros(conv.weight.shape[0], device=conv.weight.device) if conv.bias is None else conv.bias
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
return fusedconv
def fuse_deconv_and_bn(deconv, bn):
"""Fuse ConvTranspose2d() and BatchNorm2d() layers."""
fuseddconv = (
nn.ConvTranspose2d(
deconv.in_channels,
deconv.out_channels,
kernel_size=deconv.kernel_size,
stride=deconv.stride,
padding=deconv.padding,
output_padding=deconv.output_padding,
dilation=deconv.dilation,
groups=deconv.groups,
bias=True,
)
.requires_grad_(False)
.to(deconv.weight.device)
)
# Prepare filters
w_deconv = deconv.weight.clone().view(deconv.out_channels, -1)
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
fuseddconv.weight.copy_(torch.mm(w_bn, w_deconv).view(fuseddconv.weight.shape))
# Prepare spatial bias
b_conv = torch.zeros(deconv.weight.shape[1], device=deconv.weight.device) if deconv.bias is None else deconv.bias
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
fuseddconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
return fuseddconv
def model_info(model, detailed=False, verbose=True, imgsz=640):
"""
Model information.
imgsz may be int or list, i.e. imgsz=640 or imgsz=[640, 320].
"""
if not verbose:
return
n_p = get_num_params(model) # number of parameters
n_g = get_num_gradients(model) # number of gradients
n_l = len(list(model.modules())) # number of layers
if detailed:
LOGGER.info(
f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}"
)
for i, (name, p) in enumerate(model.named_parameters()):
name = name.replace("module_list.", "")
LOGGER.info(
"%5g %40s %9s %12g %20s %10.3g %10.3g %10s"
% (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std(), p.dtype)
)
flops = get_flops(model, imgsz)
fused = " (fused)" if getattr(model, "is_fused", lambda: False)() else ""
fs = f", {flops:.1f} GFLOPs" if flops else ""
yaml_file = getattr(model, "yaml_file", "") or getattr(model, "yaml", {}).get("yaml_file", "")
model_name = Path(yaml_file).stem.replace("yolo", "YOLO") or "Model"
LOGGER.info(f"{model_name} summary{fused}: {n_l} layers, {n_p} parameters, {n_g} gradients{fs}")
return n_l, n_p, n_g, flops
def get_num_params(model):
"""Return the total number of parameters in a YOLO model."""
return sum(x.numel() for x in model.parameters())
def get_num_gradients(model):
"""Return the total number of parameters with gradients in a YOLO model."""
return sum(x.numel() for x in model.parameters() if x.requires_grad)
def model_info_for_loggers(trainer):
"""
Return model info dict with useful model information.
Example:
YOLOv8n info for loggers
```python
results = {'model/parameters': 3151904,
'model/GFLOPs': 8.746,
'model/speed_ONNX(ms)': 41.244,
'model/speed_TensorRT(ms)': 3.211,
'model/speed_PyTorch(ms)': 18.755}
```
"""
if trainer.args.profile: # profile ONNX and TensorRT times
from ultralytics.utils.benchmarks import ProfileModels
results = ProfileModels([trainer.last], device=trainer.device).profile()[0]
results.pop("model/name")
else: # only return PyTorch times from most recent validation
results = {
"model/parameters": get_num_params(trainer.model),
"model/GFLOPs": round(get_flops(trainer.model), 3),
}
results["model/speed_PyTorch(ms)"] = round(trainer.validator.speed["inference"], 3)
return results
def get_flops(model, imgsz=640):
"""Return a YOLO model's FLOPs."""
if not thop:
return 0.0 # if not installed return 0.0 GFLOPs
try:
model = de_parallel(model)
p = next(model.parameters())
if not isinstance(imgsz, list):
imgsz = [imgsz, imgsz] # expand if int/float
try:
# Use stride size for input tensor
stride = max(int(model.stride.max()), 32) if hasattr(model, "stride") else 32 # max stride
im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format
flops = thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1e9 * 2 # stride GFLOPs
return flops * imgsz[0] / stride * imgsz[1] / stride # imgsz GFLOPs
except Exception:
# Use actual image size for input tensor (i.e. required for RTDETR models)
im = torch.empty((1, p.shape[1], *imgsz), device=p.device) # input image in BCHW format
return thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1e9 * 2 # imgsz GFLOPs
except Exception:
return 0.0
def get_flops_with_torch_profiler(model, imgsz=640):
"""Compute model FLOPs (thop alternative)."""
if TORCH_2_0:
model = de_parallel(model)
p = next(model.parameters())
stride = (max(int(model.stride.max()), 32) if hasattr(model, "stride") else 32) * 2 # max stride
im = torch.zeros((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format
with torch.profiler.profile(with_flops=True) as prof:
model(im)
flops = sum(x.flops for x in prof.key_averages()) / 1e9
imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz] # expand if int/float
flops = flops * imgsz[0] / stride * imgsz[1] / stride # 640x640 GFLOPs
return flops
return 0
def initialize_weights(model):
"""Initialize model weights to random values."""
for m in model.modules():
t = type(m)
if t is nn.Conv2d:
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif t is nn.BatchNorm2d:
m.eps = 1e-3
m.momentum = 0.03
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
m.inplace = True
def scale_img(img, ratio=1.0, same_shape=False, gs=32):
"""Scales and pads an image tensor of shape img(bs,3,y,x) based on given ratio and grid size gs, optionally
retaining the original shape.
"""
if ratio == 1.0:
return img
h, w = img.shape[2:]
s = (int(h * ratio), int(w * ratio)) # new size
img = F.interpolate(img, size=s, mode="bilinear", align_corners=False) # resize
if not same_shape: # pad/crop img
h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w))
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
def make_divisible(x, divisor):
"""Returns nearest x divisible by divisor."""
if isinstance(divisor, torch.Tensor):
divisor = int(divisor.max()) # to int
return math.ceil(x / divisor) * divisor
def copy_attr(a, b, include=(), exclude=()):
"""Copies attributes from object 'b' to object 'a', with options to include/exclude certain attributes."""
for k, v in b.__dict__.items():
if (len(include) and k not in include) or k.startswith("_") or k in exclude:
continue
else:
setattr(a, k, v)
def get_latest_opset():
"""Return second-most (for maturity) recently supported ONNX opset by this version of torch."""
return max(int(k[14:]) for k in vars(torch.onnx) if "symbolic_opset" in k) - 1 # opset
def intersect_dicts(da, db, exclude=()):
"""Returns a dictionary of intersecting keys with matching shapes, excluding 'exclude' keys, using da values."""
return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape}
def is_parallel(model):
"""Returns True if model is of type DP or DDP."""
return isinstance(model, (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel))
def de_parallel(model):
"""De-parallelize a model: returns single-GPU model if model is of type DP or DDP."""
return model.module if is_parallel(model) else model
def one_cycle(y1=0.0, y2=1.0, steps=100):
"""Returns a lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf."""
return lambda x: max((1 - math.cos(x * math.pi / steps)) / 2, 0) * (y2 - y1) + y1
def init_seeds(seed=0, deterministic=False):
"""Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html."""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # for Multi-GPU, exception safe
# torch.backends.cudnn.benchmark = True # AutoBatch problem https://github.com/ultralytics/yolov5/issues/9287
if deterministic:
if TORCH_2_0:
torch.use_deterministic_algorithms(True, warn_only=True) # warn if deterministic is not possible
torch.backends.cudnn.deterministic = True
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
os.environ["PYTHONHASHSEED"] = str(seed)
else:
LOGGER.warning("WARNING ⚠� Upgrade to torch>=2.0.0 for deterministic training.")
else:
torch.use_deterministic_algorithms(False)
torch.backends.cudnn.deterministic = False
class ModelEMA:
"""Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models
Keeps a moving average of everything in the model state_dict (parameters and buffers)
For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
To disable EMA set the `enabled` attribute to `False`.
"""
def __init__(self, model, decay=0.9999, tau=2000, updates=0):
"""Create EMA."""
self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA
self.updates = updates # number of EMA updates
self.decay = lambda x: decay * (1 - math.exp(-x / tau)) # decay exponential ramp (to help early epochs)
for p in self.ema.parameters():
p.requires_grad_(False)
self.enabled = True
def update(self, model):
"""Update EMA parameters."""
if self.enabled:
self.updates += 1
d = self.decay(self.updates)
msd = de_parallel(model).state_dict() # model state_dict
for k, v in self.ema.state_dict().items():
if v.dtype.is_floating_point: # true for FP16 and FP32
v *= d
v += (1 - d) * msd[k].detach()
# assert v.dtype == msd[k].dtype == torch.float32, f'{k}: EMA {v.dtype}, model {msd[k].dtype}'
def update_attr(self, model, include=(), exclude=("process_group", "reducer")):
"""Updates attributes and saves stripped model with optimizer removed."""
if self.enabled:
copy_attr(self.ema, model, include, exclude)
def strip_optimizer(f: Union[str, Path] = "best.pt", s: str = "") -> None:
"""
Strip optimizer from 'f' to finalize training, optionally save as 's'.
Args:
f (str): file path to model to strip the optimizer from. Default is 'best.pt'.
s (str): file path to save the model with stripped optimizer to. If not provided, 'f' will be overwritten.
Returns:
None
Example:
```python
from pathlib import Path
from ultralytics.utils.torch_utils import strip_optimizer
for f in Path('path/to/weights').rglob('*.pt'):
strip_optimizer(f)
```
"""
x = torch.load(f, map_location=torch.device("cpu"))
if "model" not in x:
LOGGER.info(f"Skipping {f}, not a valid Ultralytics model.")
return
if hasattr(x["model"], "args"):
x["model"].args = dict(x["model"].args) # convert from IterableSimpleNamespace to dict
args = {**DEFAULT_CFG_DICT, **x["train_args"]} if "train_args" in x else None # combine args
if x.get("ema"):
x["model"] = x["ema"] # replace model with ema
for k in "optimizer", "best_fitness", "ema", "updates": # keys
x[k] = None
x["epoch"] = -1
x["model"].half() # to FP16
for p in x["model"].parameters():
p.requires_grad = False
x["train_args"] = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # strip non-default keys
# x['model'].args = x['train_args']
torch.save(x, s or f)
mb = os.path.getsize(s or f) / 1e6 # file size
LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
def profile(input, ops, n=10, device=None):
"""
Ultralytics speed, memory and FLOPs profiler.
Example:
```python
from ultralytics.utils.torch_utils import profile
input = torch.randn(16, 3, 640, 640)
m1 = lambda x: x * torch.sigmoid(x)
m2 = nn.SiLU()
profile(input, [m1, m2], n=100) # profile over 100 iterations
```
"""
results = []
if not isinstance(device, torch.device):
device = select_device(device)
LOGGER.info(
f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
f"{'input':>24s}{'output':>24s}"
)
for x in input if isinstance(input, list) else [input]:
x = x.to(device)
x.requires_grad = True
for m in ops if isinstance(ops, list) else [ops]:
m = m.to(device) if hasattr(m, "to") else m # device
m = m.half() if hasattr(m, "half") and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward
try:
flops = thop.profile(m, inputs=[x], verbose=False)[0] / 1e9 * 2 if thop else 0 # GFLOPs
except Exception:
flops = 0
try:
for _ in range(n):
t[0] = time_sync()
y = m(x)
t[1] = time_sync()
try:
(sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
t[2] = time_sync()
except Exception: # no backward method
# print(e) # for debug
t[2] = float("nan")
tf += (t[1] - t[0]) * 1000 / n # ms per op forward
tb += (t[2] - t[1]) * 1000 / n # ms per op backward
mem = torch.cuda.memory_reserved() / 1e9 if torch.cuda.is_available() else 0 # (GB)
s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else "list" for x in (x, y)) # shapes
p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 # parameters
LOGGER.info(f"{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}")
results.append([p, flops, mem, tf, tb, s_in, s_out])
except Exception as e:
LOGGER.info(e)
results.append(None)
torch.cuda.empty_cache()
return results
class EarlyStopping:
"""Early stopping class that stops training when a specified number of epochs have passed without improvement."""
def __init__(self, patience=50):
"""
Initialize early stopping object.
Args:
patience (int, optional): Number of epochs to wait after fitness stops improving before stopping.
"""
self.best_fitness = 0.0 # i.e. mAP
self.best_epoch = 0
self.patience = patience or float("inf") # epochs to wait after fitness stops improving to stop
self.possible_stop = False # possible stop may occur next epoch
def __call__(self, epoch, fitness):
"""
Check whether to stop training.
Args:
epoch (int): Current epoch of training
fitness (float): Fitness value of current epoch
Returns:
(bool): True if training should stop, False otherwise
"""
if fitness is None: # check if fitness=None (happens when val=False)
return False
if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training
self.best_epoch = epoch
self.best_fitness = fitness
delta = epoch - self.best_epoch # epochs without improvement
self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch
stop = delta >= self.patience # stop training if patience exceeded
if stop:
LOGGER.info(
f"Stopping training early as no improvement observed in last {self.patience} epochs. "
f"Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n"
f"To update EarlyStopping(patience={self.patience}) pass a new patience value, "
f"i.e. `patience=300` or use `patience=0` to disable EarlyStopping."
)
return stop
| 25,132 | Python | .py | 504 | 41.311508 | 120 | 0.615168 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,871 | tal.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/tal.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
import torch.nn as nn
from .checks import check_version
from .metrics import bbox_iou
TORCH_1_10 = check_version(torch.__version__, '1.10.0')
def select_candidates_in_gts(xy_centers, gt_bboxes, eps=1e-9):
"""
Select the positive anchor center in gt.
Args:
xy_centers (Tensor): shape(h*w, 2)
gt_bboxes (Tensor): shape(b, n_boxes, 4)
Returns:
(Tensor): shape(b, n_boxes, h*w)
"""
n_anchors = xy_centers.shape[0]
bs, n_boxes, _ = gt_bboxes.shape
lt, rb = gt_bboxes.view(-1, 1, 4).chunk(2, 2) # left-top, right-bottom
bbox_deltas = torch.cat((xy_centers[None] - lt, rb - xy_centers[None]), dim=2).view(bs, n_boxes, n_anchors, -1)
# return (bbox_deltas.min(3)[0] > eps).to(gt_bboxes.dtype)
return bbox_deltas.amin(3).gt_(eps)
def select_highest_overlaps(mask_pos, overlaps, n_max_boxes):
"""
If an anchor box is assigned to multiple gts, the one with the highest IoI will be selected.
Args:
mask_pos (Tensor): shape(b, n_max_boxes, h*w)
overlaps (Tensor): shape(b, n_max_boxes, h*w)
Returns:
target_gt_idx (Tensor): shape(b, h*w)
fg_mask (Tensor): shape(b, h*w)
mask_pos (Tensor): shape(b, n_max_boxes, h*w)
"""
# (b, n_max_boxes, h*w) -> (b, h*w)
fg_mask = mask_pos.sum(-2)
if fg_mask.max() > 1: # one anchor is assigned to multiple gt_bboxes
mask_multi_gts = (fg_mask.unsqueeze(1) > 1).expand(-1, n_max_boxes, -1) # (b, n_max_boxes, h*w)
max_overlaps_idx = overlaps.argmax(1) # (b, h*w)
is_max_overlaps = torch.zeros(mask_pos.shape, dtype=mask_pos.dtype, device=mask_pos.device)
is_max_overlaps.scatter_(1, max_overlaps_idx.unsqueeze(1), 1)
mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos).float() # (b, n_max_boxes, h*w)
fg_mask = mask_pos.sum(-2)
# Find each grid serve which gt(index)
target_gt_idx = mask_pos.argmax(-2) # (b, h*w)
return target_gt_idx, fg_mask, mask_pos
class TaskAlignedAssigner(nn.Module):
"""
A task-aligned assigner for object detection.
This class assigns ground-truth (gt) objects to anchors based on the task-aligned metric,
which combines both classification and localization information.
Attributes:
topk (int): The number of top candidates to consider.
num_classes (int): The number of object classes.
alpha (float): The alpha parameter for the classification component of the task-aligned metric.
beta (float): The beta parameter for the localization component of the task-aligned metric.
eps (float): A small value to prevent division by zero.
"""
def __init__(self, topk=13, num_classes=80, alpha=1.0, beta=6.0, eps=1e-9):
"""Initialize a TaskAlignedAssigner object with customizable hyperparameters."""
super().__init__()
self.topk = topk
self.num_classes = num_classes
self.bg_idx = num_classes
self.alpha = alpha
self.beta = beta
self.eps = eps
@torch.no_grad()
def forward(self, pd_scores, pd_bboxes, anc_points, gt_labels, gt_bboxes, mask_gt):
"""
Compute the task-aligned assignment.
Reference https://github.com/Nioolek/PPYOLOE_pytorch/blob/master/ppyoloe/assigner/tal_assigner.py
Args:
pd_scores (Tensor): shape(bs, num_total_anchors, num_classes)
pd_bboxes (Tensor): shape(bs, num_total_anchors, 4)
anc_points (Tensor): shape(num_total_anchors, 2)
gt_labels (Tensor): shape(bs, n_max_boxes, 1)
gt_bboxes (Tensor): shape(bs, n_max_boxes, 4)
mask_gt (Tensor): shape(bs, n_max_boxes, 1)
Returns:
target_labels (Tensor): shape(bs, num_total_anchors)
target_bboxes (Tensor): shape(bs, num_total_anchors, 4)
target_scores (Tensor): shape(bs, num_total_anchors, num_classes)
fg_mask (Tensor): shape(bs, num_total_anchors)
target_gt_idx (Tensor): shape(bs, num_total_anchors)
"""
self.bs = pd_scores.size(0)
self.n_max_boxes = gt_bboxes.size(1)
if self.n_max_boxes == 0:
device = gt_bboxes.device
return (torch.full_like(pd_scores[..., 0], self.bg_idx).to(device), torch.zeros_like(pd_bboxes).to(device),
torch.zeros_like(pd_scores).to(device), torch.zeros_like(pd_scores[..., 0]).to(device),
torch.zeros_like(pd_scores[..., 0]).to(device))
mask_pos, align_metric, overlaps = self.get_pos_mask(pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points,
mask_gt)
target_gt_idx, fg_mask, mask_pos = select_highest_overlaps(mask_pos, overlaps, self.n_max_boxes)
# Assigned target
target_labels, target_bboxes, target_scores = self.get_targets(gt_labels, gt_bboxes, target_gt_idx, fg_mask)
# Normalize
align_metric *= mask_pos
pos_align_metrics = align_metric.amax(dim=-1, keepdim=True) # b, max_num_obj
pos_overlaps = (overlaps * mask_pos).amax(dim=-1, keepdim=True) # b, max_num_obj
norm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).amax(-2).unsqueeze(-1)
target_scores = target_scores * norm_align_metric
return target_labels, target_bboxes, target_scores, fg_mask.bool(), target_gt_idx
def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt):
"""Get in_gts mask, (b, max_num_obj, h*w)."""
mask_in_gts = select_candidates_in_gts(anc_points, gt_bboxes)
# Get anchor_align metric, (b, max_num_obj, h*w)
align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_in_gts * mask_gt)
# Get topk_metric mask, (b, max_num_obj, h*w)
mask_topk = self.select_topk_candidates(align_metric, topk_mask=mask_gt.expand(-1, -1, self.topk).bool())
# Merge all mask to a final mask, (b, max_num_obj, h*w)
mask_pos = mask_topk * mask_in_gts * mask_gt
return mask_pos, align_metric, overlaps
def get_box_metrics(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_gt):
"""Compute alignment metric given predicted and ground truth bounding boxes."""
na = pd_bboxes.shape[-2]
mask_gt = mask_gt.bool() # b, max_num_obj, h*w
overlaps = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_bboxes.dtype, device=pd_bboxes.device)
bbox_scores = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_scores.dtype, device=pd_scores.device)
ind = torch.zeros([2, self.bs, self.n_max_boxes], dtype=torch.long) # 2, b, max_num_obj
ind[0] = torch.arange(end=self.bs).view(-1, 1).expand(-1, self.n_max_boxes) # b, max_num_obj
ind[1] = gt_labels.squeeze(-1) # b, max_num_obj
# Get the scores of each grid for each gt cls
bbox_scores[mask_gt] = pd_scores[ind[0], :, ind[1]][mask_gt] # b, max_num_obj, h*w
# (b, max_num_obj, 1, 4), (b, 1, h*w, 4)
pd_boxes = pd_bboxes.unsqueeze(1).expand(-1, self.n_max_boxes, -1, -1)[mask_gt]
gt_boxes = gt_bboxes.unsqueeze(2).expand(-1, -1, na, -1)[mask_gt]
overlaps[mask_gt] = bbox_iou(gt_boxes, pd_boxes, xywh=False, WIoU=True)[2].squeeze(-1).clamp_(0)
align_metric = bbox_scores.pow(self.alpha) * overlaps.pow(self.beta)
return align_metric, overlaps
def select_topk_candidates(self, metrics, largest=True, topk_mask=None):
"""
Select the top-k candidates based on the given metrics.
Args:
metrics (Tensor): A tensor of shape (b, max_num_obj, h*w), where b is the batch size,
max_num_obj is the maximum number of objects, and h*w represents the
total number of anchor points.
largest (bool): If True, select the largest values; otherwise, select the smallest values.
topk_mask (Tensor): An optional boolean tensor of shape (b, max_num_obj, topk), where
topk is the number of top candidates to consider. If not provided,
the top-k values are automatically computed based on the given metrics.
Returns:
(Tensor): A tensor of shape (b, max_num_obj, h*w) containing the selected top-k candidates.
"""
# (b, max_num_obj, topk)
topk_metrics, topk_idxs = torch.topk(metrics, self.topk, dim=-1, largest=largest)
if topk_mask is None:
topk_mask = (topk_metrics.max(-1, keepdim=True)[0] > self.eps).expand_as(topk_idxs)
# (b, max_num_obj, topk)
topk_idxs.masked_fill_(~topk_mask, 0)
# (b, max_num_obj, topk, h*w) -> (b, max_num_obj, h*w)
count_tensor = torch.zeros(metrics.shape, dtype=torch.int8, device=topk_idxs.device)
ones = torch.ones_like(topk_idxs[:, :, :1], dtype=torch.int8, device=topk_idxs.device)
for k in range(self.topk):
# Expand topk_idxs for each value of k and add 1 at the specified positions
count_tensor.scatter_add_(-1, topk_idxs[:, :, k:k + 1], ones)
# count_tensor.scatter_add_(-1, topk_idxs, torch.ones_like(topk_idxs, dtype=torch.int8, device=topk_idxs.device))
# Filter invalid bboxes
count_tensor.masked_fill_(count_tensor > 1, 0)
return count_tensor.to(metrics.dtype)
def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask):
"""
Compute target labels, target bounding boxes, and target scores for the positive anchor points.
Args:
gt_labels (Tensor): Ground truth labels of shape (b, max_num_obj, 1), where b is the
batch size and max_num_obj is the maximum number of objects.
gt_bboxes (Tensor): Ground truth bounding boxes of shape (b, max_num_obj, 4).
target_gt_idx (Tensor): Indices of the assigned ground truth objects for positive
anchor points, with shape (b, h*w), where h*w is the total
number of anchor points.
fg_mask (Tensor): A boolean tensor of shape (b, h*w) indicating the positive
(foreground) anchor points.
Returns:
(Tuple[Tensor, Tensor, Tensor]): A tuple containing the following tensors:
- target_labels (Tensor): Shape (b, h*w), containing the target labels for
positive anchor points.
- target_bboxes (Tensor): Shape (b, h*w, 4), containing the target bounding boxes
for positive anchor points.
- target_scores (Tensor): Shape (b, h*w, num_classes), containing the target scores
for positive anchor points, where num_classes is the number
of object classes.
"""
# Assigned target labels, (b, 1)
batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[..., None]
target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes # (b, h*w)
target_labels = gt_labels.long().flatten()[target_gt_idx] # (b, h*w)
# Assigned target boxes, (b, max_num_obj, 4) -> (b, h*w, 4)
target_bboxes = gt_bboxes.view(-1, 4)[target_gt_idx]
# Assigned target scores
target_labels.clamp_(0)
# 10x faster than F.one_hot()
target_scores = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.num_classes),
dtype=torch.int64,
device=target_labels.device) # (b, h*w, 80)
target_scores.scatter_(2, target_labels.unsqueeze(-1), 1)
fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes) # (b, h*w, 80)
target_scores = torch.where(fg_scores_mask > 0, target_scores, 0)
return target_labels, target_bboxes, target_scores
def make_anchors(feats, strides, grid_cell_offset=0.5):
"""Generate anchors from features."""
anchor_points, stride_tensor = [], []
assert feats is not None
dtype, device = feats[0].dtype, feats[0].device
for i, stride in enumerate(strides):
_, _, h, w = feats[i].shape
sx = torch.arange(end=w, device=device, dtype=dtype) + grid_cell_offset # shift x
sy = torch.arange(end=h, device=device, dtype=dtype) + grid_cell_offset # shift y
sy, sx = torch.meshgrid(sy, sx, indexing='ij') if TORCH_1_10 else torch.meshgrid(sy, sx)
anchor_points.append(torch.stack((sx, sy), -1).view(-1, 2))
stride_tensor.append(torch.full((h * w, 1), stride, dtype=dtype, device=device))
return torch.cat(anchor_points), torch.cat(stride_tensor)
def dist2bbox(distance, anchor_points, xywh=True, dim=-1):
"""Transform distance(ltrb) to box(xywh or xyxy)."""
lt, rb = distance.chunk(2, dim)
x1y1 = anchor_points - lt
x2y2 = anchor_points + rb
if xywh:
c_xy = (x1y1 + x2y2) / 2
wh = x2y2 - x1y1
return torch.cat((c_xy, wh), dim) # xywh bbox
return torch.cat((x1y1, x2y2), dim) # xyxy bbox
def bbox2dist(anchor_points, bbox, reg_max):
"""Transform bbox(xyxy) to dist(ltrb)."""
x1y1, x2y2 = bbox.chunk(2, -1)
return torch.cat((anchor_points - x1y1, x2y2 - anchor_points), -1).clamp_(0, reg_max - 0.01) # dist (lt, rb)
| 13,656 | Python | .py | 225 | 50.16 | 121 | 0.611871 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,872 | plotting.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/plotting.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import contextlib
import math
import warnings
from pathlib import Path
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
from PIL import __version__ as pil_version
from ultralytics.utils import LOGGER, TryExcept, ops, plt_settings, threaded
from .checks import check_font, check_version, is_ascii
from .files import increment_path
class Colors:
"""
Ultralytics default color palette https://ultralytics.com/.
This class provides methods to work with the Ultralytics color palette, including converting hex color codes to
RGB values.
Attributes:
palette (list of tuple): List of RGB color values.
n (int): The number of colors in the palette.
pose_palette (np.ndarray): A specific color palette array with dtype np.uint8.
"""
def __init__(self):
"""Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values()."""
hexs = (
"FF3838",
"FF9D97",
"FF701F",
"FFB21D",
"CFD231",
"48F90A",
"92CC17",
"3DDB86",
"1A9334",
"00D4BB",
"2C99A8",
"00C2FF",
"344593",
"6473FF",
"0018EC",
"8438FF",
"520085",
"CB38FF",
"FF95C8",
"FF37C7",
)
self.palette = [self.hex2rgb(f"#{c}") for c in hexs]
self.n = len(self.palette)
self.pose_palette = np.array(
[
[255, 128, 0],
[255, 153, 51],
[255, 178, 102],
[230, 230, 0],
[255, 153, 255],
[153, 204, 255],
[255, 102, 255],
[255, 51, 255],
[102, 178, 255],
[51, 153, 255],
[255, 153, 153],
[255, 102, 102],
[255, 51, 51],
[153, 255, 153],
[102, 255, 102],
[51, 255, 51],
[0, 255, 0],
[0, 0, 255],
[255, 0, 0],
[255, 255, 255],
],
dtype=np.uint8,
)
def __call__(self, i, bgr=False):
"""Converts hex color codes to RGB values."""
c = self.palette[int(i) % self.n]
return (c[2], c[1], c[0]) if bgr else c
@staticmethod
def hex2rgb(h):
"""Converts hex color codes to RGB values (i.e. default PIL order)."""
return tuple(int(h[1 + i : 1 + i + 2], 16) for i in (0, 2, 4))
colors = Colors() # create instance for 'from utils.plots import colors'
class Annotator:
"""
Ultralytics Annotator for train/val mosaics and JPGs and predictions annotations.
Attributes:
im (Image.Image or numpy array): The image to annotate.
pil (bool): Whether to use PIL or cv2 for drawing annotations.
font (ImageFont.truetype or ImageFont.load_default): Font used for text annotations.
lw (float): Line width for drawing.
skeleton (List[List[int]]): Skeleton structure for keypoints.
limb_color (List[int]): Color palette for limbs.
kpt_color (List[int]): Color palette for keypoints.
"""
def __init__(self, im, line_width=None, font_size=None, font="Arial.ttf", pil=False, example="abc"):
"""Initialize the Annotator class with image and line width along with color palette for keypoints and limbs."""
non_ascii = not is_ascii(example) # non-latin labels, i.e. asian, arabic, cyrillic
input_is_pil = isinstance(im, Image.Image)
self.pil = pil or non_ascii or input_is_pil
self.lw = line_width or max(round(sum(im.size if input_is_pil else im.shape) / 2 * 0.003), 2)
if self.pil: # use PIL
self.im = im if input_is_pil else Image.fromarray(im)
self.draw = ImageDraw.Draw(self.im)
try:
font = check_font("Arial.Unicode.ttf" if non_ascii else font)
size = font_size or max(round(sum(self.im.size) / 2 * 0.035), 12)
self.font = ImageFont.truetype(str(font), size)
except Exception:
self.font = ImageFont.load_default()
# Deprecation fix for w, h = getsize(string) -> _, _, w, h = getbox(string)
if check_version(pil_version, "9.2.0"):
self.font.getsize = lambda x: self.font.getbbox(x)[2:4] # text width, height
else: # use cv2
assert im.data.contiguous, "Image not contiguous. Apply np.ascontiguousarray(im) to Annotator input images."
self.im = im if im.flags.writeable else im.copy()
self.tf = max(self.lw - 1, 1) # font thickness
self.sf = self.lw / 3 # font scale
# Pose
self.skeleton = [
[16, 14],
[14, 12],
[17, 15],
[15, 13],
[12, 13],
[6, 12],
[7, 13],
[6, 7],
[6, 8],
[7, 9],
[8, 10],
[9, 11],
[2, 3],
[1, 2],
[1, 3],
[2, 4],
[3, 5],
[4, 6],
[5, 7],
]
self.limb_color = colors.pose_palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]]
self.kpt_color = colors.pose_palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]]
def box_label(self, box, label="", color=(128, 128, 128), txt_color=(255, 255, 255), rotated=False):
"""Add one xyxy box to image with label."""
if isinstance(box, torch.Tensor):
box = box.tolist()
if self.pil or not is_ascii(label):
if rotated:
p1 = box[0]
# NOTE: PIL-version polygon needs tuple type.
self.draw.polygon([tuple(b) for b in box], width=self.lw, outline=color)
else:
p1 = (box[0], box[1])
self.draw.rectangle(box, width=self.lw, outline=color) # box
if label:
w, h = self.font.getsize(label) # text width, height
outside = p1[1] - h >= 0 # label fits outside box
self.draw.rectangle(
(p1[0], p1[1] - h if outside else p1[1], p1[0] + w + 1, p1[1] + 1 if outside else p1[1] + h + 1),
fill=color,
)
# self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls') # for PIL>8.0
self.draw.text((p1[0], p1[1] - h if outside else p1[1]), label, fill=txt_color, font=self.font)
else: # cv2
if rotated:
p1 = [int(b) for b in box[0]]
# NOTE: cv2-version polylines needs np.asarray type.
cv2.polylines(self.im, [np.asarray(box, dtype=int)], True, color, self.lw)
else:
p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
if label:
w, h = cv2.getTextSize(label, 0, fontScale=self.sf, thickness=self.tf)[0] # text width, height
outside = p1[1] - h >= 3
p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled
cv2.putText(
self.im,
label,
(p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
0,
self.sf,
txt_color,
thickness=self.tf,
lineType=cv2.LINE_AA,
)
def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False):
"""
Plot masks on image.
Args:
masks (tensor): Predicted masks on cuda, shape: [n, h, w]
colors (List[List[Int]]): Colors for predicted masks, [[r, g, b] * n]
im_gpu (tensor): Image is in cuda, shape: [3, h, w], range: [0, 1]
alpha (float): Mask transparency: 0.0 fully transparent, 1.0 opaque
retina_masks (bool): Whether to use high resolution masks or not. Defaults to False.
"""
if self.pil:
# Convert to numpy first
self.im = np.asarray(self.im).copy()
if len(masks) == 0:
self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
if im_gpu.device != masks.device:
im_gpu = im_gpu.to(masks.device)
colors = torch.tensor(colors, device=masks.device, dtype=torch.float32) / 255.0 # shape(n,3)
colors = colors[:, None, None] # shape(n,1,1,3)
masks = masks.unsqueeze(3) # shape(n,h,w,1)
masks_color = masks * (colors * alpha) # shape(n,h,w,3)
inv_alpha_masks = (1 - masks * alpha).cumprod(0) # shape(n,h,w,1)
mcs = masks_color.max(dim=0).values # shape(n,h,w,3)
im_gpu = im_gpu.flip(dims=[0]) # flip channel
im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3)
im_gpu = im_gpu * inv_alpha_masks[-1] + mcs
im_mask = im_gpu * 255
im_mask_np = im_mask.byte().cpu().numpy()
self.im[:] = im_mask_np if retina_masks else ops.scale_image(im_mask_np, self.im.shape)
if self.pil:
# Convert im back to PIL and update draw
self.fromarray(self.im)
def kpts(self, kpts, shape=(640, 640), radius=5, kpt_line=True):
"""
Plot keypoints on the image.
Args:
kpts (tensor): Predicted keypoints with shape [17, 3]. Each keypoint has (x, y, confidence).
shape (tuple): Image shape as a tuple (h, w), where h is the height and w is the width.
radius (int, optional): Radius of the drawn keypoints. Default is 5.
kpt_line (bool, optional): If True, the function will draw lines connecting keypoints
for human pose. Default is True.
Note:
`kpt_line=True` currently only supports human pose plotting.
"""
if self.pil:
# Convert to numpy first
self.im = np.asarray(self.im).copy()
nkpt, ndim = kpts.shape
is_pose = nkpt == 17 and ndim in {2, 3}
kpt_line &= is_pose # `kpt_line=True` for now only supports human pose plotting
for i, k in enumerate(kpts):
color_k = [int(x) for x in self.kpt_color[i]] if is_pose else colors(i)
x_coord, y_coord = k[0], k[1]
if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:
if len(k) == 3:
conf = k[2]
if conf < 0.5:
continue
cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, color_k, -1, lineType=cv2.LINE_AA)
if kpt_line:
ndim = kpts.shape[-1]
for i, sk in enumerate(self.skeleton):
pos1 = (int(kpts[(sk[0] - 1), 0]), int(kpts[(sk[0] - 1), 1]))
pos2 = (int(kpts[(sk[1] - 1), 0]), int(kpts[(sk[1] - 1), 1]))
if ndim == 3:
conf1 = kpts[(sk[0] - 1), 2]
conf2 = kpts[(sk[1] - 1), 2]
if conf1 < 0.5 or conf2 < 0.5:
continue
if pos1[0] % shape[1] == 0 or pos1[1] % shape[0] == 0 or pos1[0] < 0 or pos1[1] < 0:
continue
if pos2[0] % shape[1] == 0 or pos2[1] % shape[0] == 0 or pos2[0] < 0 or pos2[1] < 0:
continue
cv2.line(self.im, pos1, pos2, [int(x) for x in self.limb_color[i]], thickness=2, lineType=cv2.LINE_AA)
if self.pil:
# Convert im back to PIL and update draw
self.fromarray(self.im)
def rectangle(self, xy, fill=None, outline=None, width=1):
"""Add rectangle to image (PIL-only)."""
self.draw.rectangle(xy, fill, outline, width)
def text(self, xy, text, txt_color=(255, 255, 255), anchor="top", box_style=False):
"""Adds text to an image using PIL or cv2."""
if anchor == "bottom": # start y from font bottom
w, h = self.font.getsize(text) # text width, height
xy[1] += 1 - h
if self.pil:
if box_style:
w, h = self.font.getsize(text)
self.draw.rectangle((xy[0], xy[1], xy[0] + w + 1, xy[1] + h + 1), fill=txt_color)
# Using `txt_color` for background and draw fg with white color
txt_color = (255, 255, 255)
if "\n" in text:
lines = text.split("\n")
_, h = self.font.getsize(text)
for line in lines:
self.draw.text(xy, line, fill=txt_color, font=self.font)
xy[1] += h
else:
self.draw.text(xy, text, fill=txt_color, font=self.font)
else:
if box_style:
w, h = cv2.getTextSize(text, 0, fontScale=self.sf, thickness=self.tf)[0] # text width, height
outside = xy[1] - h >= 3
p2 = xy[0] + w, xy[1] - h - 3 if outside else xy[1] + h + 3
cv2.rectangle(self.im, xy, p2, txt_color, -1, cv2.LINE_AA) # filled
# Using `txt_color` for background and draw fg with white color
txt_color = (255, 255, 255)
cv2.putText(self.im, text, xy, 0, self.sf, txt_color, thickness=self.tf, lineType=cv2.LINE_AA)
def fromarray(self, im):
"""Update self.im from a numpy array."""
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
self.draw = ImageDraw.Draw(self.im)
def result(self):
"""Return annotated image as array."""
return np.asarray(self.im)
def show(self, title=None):
"""Show the annotated image."""
Image.fromarray(np.asarray(self.im)[..., ::-1]).show(title)
def save(self, filename="image.jpg"):
"""Save the annotated image to 'filename'."""
cv2.imwrite(filename, np.asarray(self.im))
def draw_region(self, reg_pts=None, color=(0, 255, 0), thickness=5):
"""
Draw region line.
Args:
reg_pts (list): Region Points (for line 2 points, for region 4 points)
color (tuple): Region Color value
thickness (int): Region area thickness value
"""
cv2.polylines(self.im, [np.array(reg_pts, dtype=np.int32)], isClosed=True, color=color, thickness=thickness)
def draw_centroid_and_tracks(self, track, color=(255, 0, 255), track_thickness=2):
"""
Draw centroid point and track trails.
Args:
track (list): object tracking points for trails display
color (tuple): tracks line color
track_thickness (int): track line thickness value
"""
points = np.hstack(track).astype(np.int32).reshape((-1, 1, 2))
cv2.polylines(self.im, [points], isClosed=False, color=color, thickness=track_thickness)
cv2.circle(self.im, (int(track[-1][0]), int(track[-1][1])), track_thickness * 2, color, -1)
def count_labels(self, counts=0, count_txt_size=2, color=(255, 255, 255), txt_color=(0, 0, 0)):
"""
Plot counts for object counter.
Args:
counts (int): objects counts value
count_txt_size (int): text size for counts display
color (tuple): background color of counts display
txt_color (tuple): text color of counts display
"""
self.tf = count_txt_size
tl = self.tf or round(0.002 * (self.im.shape[0] + self.im.shape[1]) / 2) + 1
tf = max(tl - 1, 1)
# Get text size for in_count and out_count
t_size_in = cv2.getTextSize(str(counts), 0, fontScale=tl / 2, thickness=tf)[0]
# Calculate positions for counts label
text_width = t_size_in[0]
text_x = (self.im.shape[1] - text_width) // 2 # Center x-coordinate
text_y = t_size_in[1]
# Create a rounded rectangle for in_count
cv2.rectangle(
self.im, (text_x - 5, text_y - 5), (text_x + text_width + 7, text_y + t_size_in[1] + 7), color, -1
)
cv2.putText(
self.im, str(counts), (text_x, text_y + t_size_in[1]), 0, tl / 2, txt_color, self.tf, lineType=cv2.LINE_AA
)
@staticmethod
def estimate_pose_angle(a, b, c):
"""
Calculate the pose angle for object.
Args:
a (float) : The value of pose point a
b (float): The value of pose point b
c (float): The value o pose point c
Returns:
angle (degree): Degree value of angle between three points
"""
a, b, c = np.array(a), np.array(b), np.array(c)
radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0])
angle = np.abs(radians * 180.0 / np.pi)
if angle > 180.0:
angle = 360 - angle
return angle
def draw_specific_points(self, keypoints, indices=[2, 5, 7], shape=(640, 640), radius=2):
"""
Draw specific keypoints for gym steps counting.
Args:
keypoints (list): list of keypoints data to be plotted
indices (list): keypoints ids list to be plotted
shape (tuple): imgsz for model inference
radius (int): Keypoint radius value
"""
for i, k in enumerate(keypoints):
if i in indices:
x_coord, y_coord = k[0], k[1]
if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:
if len(k) == 3:
conf = k[2]
if conf < 0.5:
continue
cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, (0, 255, 0), -1, lineType=cv2.LINE_AA)
return self.im
def plot_angle_and_count_and_stage(self, angle_text, count_text, stage_text, center_kpt, line_thickness=2):
"""
Plot the pose angle, count value and step stage.
Args:
angle_text (str): angle value for workout monitoring
count_text (str): counts value for workout monitoring
stage_text (str): stage decision for workout monitoring
center_kpt (int): centroid pose index for workout monitoring
line_thickness (int): thickness for text display
"""
angle_text, count_text, stage_text = (f" {angle_text:.2f}", f"Steps : {count_text}", f" {stage_text}")
font_scale = 0.6 + (line_thickness / 10.0)
# Draw angle
(angle_text_width, angle_text_height), _ = cv2.getTextSize(angle_text, 0, font_scale, line_thickness)
angle_text_position = (int(center_kpt[0]), int(center_kpt[1]))
angle_background_position = (angle_text_position[0], angle_text_position[1] - angle_text_height - 5)
angle_background_size = (angle_text_width + 2 * 5, angle_text_height + 2 * 5 + (line_thickness * 2))
cv2.rectangle(
self.im,
angle_background_position,
(
angle_background_position[0] + angle_background_size[0],
angle_background_position[1] + angle_background_size[1],
),
(255, 255, 255),
-1,
)
cv2.putText(self.im, angle_text, angle_text_position, 0, font_scale, (0, 0, 0), line_thickness)
# Draw Counts
(count_text_width, count_text_height), _ = cv2.getTextSize(count_text, 0, font_scale, line_thickness)
count_text_position = (angle_text_position[0], angle_text_position[1] + angle_text_height + 20)
count_background_position = (
angle_background_position[0],
angle_background_position[1] + angle_background_size[1] + 5,
)
count_background_size = (count_text_width + 10, count_text_height + 10 + (line_thickness * 2))
cv2.rectangle(
self.im,
count_background_position,
(
count_background_position[0] + count_background_size[0],
count_background_position[1] + count_background_size[1],
),
(255, 255, 255),
-1,
)
cv2.putText(self.im, count_text, count_text_position, 0, font_scale, (0, 0, 0), line_thickness)
# Draw Stage
(stage_text_width, stage_text_height), _ = cv2.getTextSize(stage_text, 0, font_scale, line_thickness)
stage_text_position = (int(center_kpt[0]), int(center_kpt[1]) + angle_text_height + count_text_height + 40)
stage_background_position = (stage_text_position[0], stage_text_position[1] - stage_text_height - 5)
stage_background_size = (stage_text_width + 10, stage_text_height + 10)
cv2.rectangle(
self.im,
stage_background_position,
(
stage_background_position[0] + stage_background_size[0],
stage_background_position[1] + stage_background_size[1],
),
(255, 255, 255),
-1,
)
cv2.putText(self.im, stage_text, stage_text_position, 0, font_scale, (0, 0, 0), line_thickness)
def seg_bbox(self, mask, mask_color=(255, 0, 255), det_label=None, track_label=None):
"""
Function for drawing segmented object in bounding box shape.
Args:
mask (list): masks data list for instance segmentation area plotting
mask_color (tuple): mask foreground color
det_label (str): Detection label text
track_label (str): Tracking label text
"""
cv2.polylines(self.im, [np.int32([mask])], isClosed=True, color=mask_color, thickness=2)
label = f"Track ID: {track_label}" if track_label else det_label
text_size, _ = cv2.getTextSize(label, 0, 0.7, 1)
cv2.rectangle(
self.im,
(int(mask[0][0]) - text_size[0] // 2 - 10, int(mask[0][1]) - text_size[1] - 10),
(int(mask[0][0]) + text_size[0] // 2 + 5, int(mask[0][1] + 5)),
mask_color,
-1,
)
cv2.putText(
self.im, label, (int(mask[0][0]) - text_size[0] // 2, int(mask[0][1]) - 5), 0, 0.7, (255, 255, 255), 2
)
def plot_distance_and_line(self, distance_m, distance_mm, centroids, line_color, centroid_color):
"""
Plot the distance and line on frame.
Args:
distance_m (float): Distance between two bbox centroids in meters.
distance_mm (float): Distance between two bbox centroids in millimeters.
centroids (list): Bounding box centroids data.
line_color (RGB): Distance line color.
centroid_color (RGB): Bounding box centroid color.
"""
(text_width_m, text_height_m), _ = cv2.getTextSize(
f"Distance M: {distance_m:.2f}m", cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2
)
cv2.rectangle(self.im, (15, 25), (15 + text_width_m + 10, 25 + text_height_m + 20), (255, 255, 255), -1)
cv2.putText(
self.im,
f"Distance M: {distance_m:.2f}m",
(20, 50),
cv2.FONT_HERSHEY_SIMPLEX,
0.8,
(0, 0, 0),
2,
cv2.LINE_AA,
)
(text_width_mm, text_height_mm), _ = cv2.getTextSize(
f"Distance MM: {distance_mm:.2f}mm", cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2
)
cv2.rectangle(self.im, (15, 75), (15 + text_width_mm + 10, 75 + text_height_mm + 20), (255, 255, 255), -1)
cv2.putText(
self.im,
f"Distance MM: {distance_mm:.2f}mm",
(20, 100),
cv2.FONT_HERSHEY_SIMPLEX,
0.8,
(0, 0, 0),
2,
cv2.LINE_AA,
)
cv2.line(self.im, centroids[0], centroids[1], line_color, 3)
cv2.circle(self.im, centroids[0], 6, centroid_color, -1)
cv2.circle(self.im, centroids[1], 6, centroid_color, -1)
def visioneye(self, box, center_point, color=(235, 219, 11), pin_color=(255, 0, 255), thickness=2, pins_radius=10):
"""
Function for pinpoint human-vision eye mapping and plotting.
Args:
box (list): Bounding box coordinates
center_point (tuple): center point for vision eye view
color (tuple): object centroid and line color value
pin_color (tuple): visioneye point color value
thickness (int): int value for line thickness
pins_radius (int): visioneye point radius value
"""
center_bbox = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2)
cv2.circle(self.im, center_point, pins_radius, pin_color, -1)
cv2.circle(self.im, center_bbox, pins_radius, color, -1)
cv2.line(self.im, center_point, center_bbox, color, thickness)
@TryExcept() # known issue https://github.com/ultralytics/yolov5/issues/5395
@plt_settings()
def plot_labels(boxes, cls, names=(), save_dir=Path(""), on_plot=None):
"""Plot training labels including class histograms and box statistics."""
import pandas as pd
import seaborn as sn
# Filter matplotlib>=3.7.2 warning and Seaborn use_inf and is_categorical FutureWarnings
warnings.filterwarnings("ignore", category=UserWarning, message="The figure layout has changed to tight")
warnings.filterwarnings("ignore", category=FutureWarning)
# Plot dataset labels
LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
nc = int(cls.max() + 1) # number of classes
boxes = boxes[:1000000] # limit to 1M boxes
x = pd.DataFrame(boxes, columns=["x", "y", "width", "height"])
# Seaborn correlogram
sn.pairplot(x, corner=True, diag_kind="auto", kind="hist", diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
plt.savefig(save_dir / "labels_correlogram.jpg", dpi=200)
plt.close()
# Matplotlib labels
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
y = ax[0].hist(cls, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
for i in range(nc):
y[2].patches[i].set_color([x / 255 for x in colors(i)])
ax[0].set_ylabel("instances")
if 0 < len(names) < 30:
ax[0].set_xticks(range(len(names)))
ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10)
else:
ax[0].set_xlabel("classes")
sn.histplot(x, x="x", y="y", ax=ax[2], bins=50, pmax=0.9)
sn.histplot(x, x="width", y="height", ax=ax[3], bins=50, pmax=0.9)
# Rectangles
boxes[:, 0:2] = 0.5 # center
boxes = ops.xywh2xyxy(boxes) * 1000
img = Image.fromarray(np.ones((1000, 1000, 3), dtype=np.uint8) * 255)
for cls, box in zip(cls[:500], boxes[:500]):
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot
ax[1].imshow(img)
ax[1].axis("off")
for a in [0, 1, 2, 3]:
for s in ["top", "right", "left", "bottom"]:
ax[a].spines[s].set_visible(False)
fname = save_dir / "labels.jpg"
plt.savefig(fname, dpi=200)
plt.close()
if on_plot:
on_plot(fname)
def save_one_box(xyxy, im, file=Path("im.jpg"), gain=1.02, pad=10, square=False, BGR=False, save=True):
"""
Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop.
This function takes a bounding box and an image, and then saves a cropped portion of the image according
to the bounding box. Optionally, the crop can be squared, and the function allows for gain and padding
adjustments to the bounding box.
Args:
xyxy (torch.Tensor or list): A tensor or list representing the bounding box in xyxy format.
im (numpy.ndarray): The input image.
file (Path, optional): The path where the cropped image will be saved. Defaults to 'im.jpg'.
gain (float, optional): A multiplicative factor to increase the size of the bounding box. Defaults to 1.02.
pad (int, optional): The number of pixels to add to the width and height of the bounding box. Defaults to 10.
square (bool, optional): If True, the bounding box will be transformed into a square. Defaults to False.
BGR (bool, optional): If True, the image will be saved in BGR format, otherwise in RGB. Defaults to False.
save (bool, optional): If True, the cropped image will be saved to disk. Defaults to True.
Returns:
(numpy.ndarray): The cropped image.
Example:
```python
from ultralytics.utils.plotting import save_one_box
xyxy = [50, 50, 150, 150]
im = cv2.imread('image.jpg')
cropped_im = save_one_box(xyxy, im, file='cropped.jpg', square=True)
```
"""
if not isinstance(xyxy, torch.Tensor): # may be list
xyxy = torch.stack(xyxy)
b = ops.xyxy2xywh(xyxy.view(-1, 4)) # boxes
if square:
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
xyxy = ops.xywh2xyxy(b).long()
xyxy = ops.clip_boxes(xyxy, im.shape)
crop = im[int(xyxy[0, 1]) : int(xyxy[0, 3]), int(xyxy[0, 0]) : int(xyxy[0, 2]), :: (1 if BGR else -1)]
if save:
file.parent.mkdir(parents=True, exist_ok=True) # make directory
f = str(increment_path(file).with_suffix(".jpg"))
# cv2.imwrite(f, crop) # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0) # save RGB
return crop
@threaded
def plot_images(
images,
batch_idx,
cls,
bboxes=np.zeros(0, dtype=np.float32),
confs=None,
masks=np.zeros(0, dtype=np.uint8),
kpts=np.zeros((0, 51), dtype=np.float32),
paths=None,
fname="images.jpg",
names=None,
on_plot=None,
max_subplots=16,
save=True,
conf_thres=0.25,
):
"""Plot image grid with labels."""
if isinstance(images, torch.Tensor):
images = images.cpu().float().numpy()
if isinstance(cls, torch.Tensor):
cls = cls.cpu().numpy()
if isinstance(bboxes, torch.Tensor):
bboxes = bboxes.cpu().numpy()
if isinstance(masks, torch.Tensor):
masks = masks.cpu().numpy().astype(int)
if isinstance(kpts, torch.Tensor):
kpts = kpts.cpu().numpy()
if isinstance(batch_idx, torch.Tensor):
batch_idx = batch_idx.cpu().numpy()
max_size = 1920 # max image size
bs, _, h, w = images.shape # batch size, _, height, width
bs = min(bs, max_subplots) # limit plot images
ns = np.ceil(bs**0.5) # number of subplots (square)
if np.max(images[0]) <= 1:
images *= 255 # de-normalise (optional)
# Build Image
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
for i in range(bs):
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
mosaic[y : y + h, x : x + w, :] = images[i].transpose(1, 2, 0)
# Resize (optional)
scale = max_size / ns / max(h, w)
if scale < 1:
h = math.ceil(scale * h)
w = math.ceil(scale * w)
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
# Annotate
fs = int((h + w) * ns * 0.01) # font size
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
for i in range(bs):
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
if paths:
annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
if len(cls) > 0:
idx = batch_idx == i
classes = cls[idx].astype("int")
labels = confs is None
if len(bboxes):
boxes = bboxes[idx]
conf = confs[idx] if confs is not None else None # check for confidence presence (label vs pred)
is_obb = boxes.shape[-1] == 5 # xywhr
boxes = ops.xywhr2xyxyxyxy(boxes) if is_obb else ops.xywh2xyxy(boxes)
if len(boxes):
if boxes[:, :4].max() <= 1.1: # if normalized with tolerance 0.1
boxes[..., 0::2] *= w # scale to pixels
boxes[..., 1::2] *= h
elif scale < 1: # absolute coords need scale if image scales
boxes[..., :4] *= scale
boxes[..., 0::2] += x
boxes[..., 1::2] += y
for j, box in enumerate(boxes.astype(np.int64).tolist()):
c = classes[j]
color = colors(c)
c = names.get(c, c) if names else c
if labels or conf[j] > conf_thres:
label = f"{c}" if labels else f"{c} {conf[j]:.1f}"
annotator.box_label(box, label, color=color, rotated=is_obb)
elif len(classes):
for c in classes:
color = colors(c)
c = names.get(c, c) if names else c
annotator.text((x, y), f"{c}", txt_color=color, box_style=True)
# Plot keypoints
if len(kpts):
kpts_ = kpts[idx].copy()
if len(kpts_):
if kpts_[..., 0].max() <= 1.01 or kpts_[..., 1].max() <= 1.01: # if normalized with tolerance .01
kpts_[..., 0] *= w # scale to pixels
kpts_[..., 1] *= h
elif scale < 1: # absolute coords need scale if image scales
kpts_ *= scale
kpts_[..., 0] += x
kpts_[..., 1] += y
for j in range(len(kpts_)):
if labels or conf[j] > conf_thres:
annotator.kpts(kpts_[j])
# Plot masks
if len(masks):
if idx.shape[0] == masks.shape[0]: # overlap_masks=False
image_masks = masks[idx]
else: # overlap_masks=True
image_masks = masks[[i]] # (1, 640, 640)
nl = idx.sum()
index = np.arange(nl).reshape((nl, 1, 1)) + 1
image_masks = np.repeat(image_masks, nl, axis=0)
image_masks = np.where(image_masks == index, 1.0, 0.0)
im = np.asarray(annotator.im).copy()
for j in range(len(image_masks)):
if labels or conf[j] > conf_thres:
color = colors(classes[j])
mh, mw = image_masks[j].shape
if mh != h or mw != w:
mask = image_masks[j].astype(np.uint8)
mask = cv2.resize(mask, (w, h))
mask = mask.astype(bool)
else:
mask = image_masks[j].astype(bool)
with contextlib.suppress(Exception):
im[y : y + h, x : x + w, :][mask] = (
im[y : y + h, x : x + w, :][mask] * 0.4 + np.array(color) * 0.6
)
annotator.fromarray(im)
if not save:
return np.asarray(annotator.im)
annotator.im.save(fname) # save
if on_plot:
on_plot(fname)
@plt_settings()
def plot_results(file="path/to/results.csv", dir="", segment=False, pose=False, classify=False, on_plot=None):
"""
Plot training results from a results CSV file. The function supports various types of data including segmentation,
pose estimation, and classification. Plots are saved as 'results.png' in the directory where the CSV is located.
Args:
file (str, optional): Path to the CSV file containing the training results. Defaults to 'path/to/results.csv'.
dir (str, optional): Directory where the CSV file is located if 'file' is not provided. Defaults to ''.
segment (bool, optional): Flag to indicate if the data is for segmentation. Defaults to False.
pose (bool, optional): Flag to indicate if the data is for pose estimation. Defaults to False.
classify (bool, optional): Flag to indicate if the data is for classification. Defaults to False.
on_plot (callable, optional): Callback function to be executed after plotting. Takes filename as an argument.
Defaults to None.
Example:
```python
from ultralytics.utils.plotting import plot_results
plot_results('path/to/results.csv', segment=True)
```
"""
import pandas as pd
from scipy.ndimage import gaussian_filter1d
save_dir = Path(file).parent if file else Path(dir)
if classify:
fig, ax = plt.subplots(2, 2, figsize=(6, 6), tight_layout=True)
index = [1, 4, 2, 3]
elif segment:
fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
index = [1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]
elif pose:
fig, ax = plt.subplots(2, 9, figsize=(21, 6), tight_layout=True)
index = [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16, 17, 18, 8, 9, 12, 13]
else:
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
index = [1, 2, 3, 4, 5, 8, 9, 10, 6, 7]
ax = ax.ravel()
files = list(save_dir.glob("results*.csv"))
assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot."
for f in files:
try:
data = pd.read_csv(f)
s = [x.strip() for x in data.columns]
x = data.values[:, 0]
for i, j in enumerate(index):
y = data.values[:, j].astype("float")
# y[y == 0] = np.nan # don't show zero values
ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=8) # actual results
ax[i].plot(x, gaussian_filter1d(y, sigma=3), ":", label="smooth", linewidth=2) # smoothing line
ax[i].set_title(s[j], fontsize=12)
# if j in [8, 9, 10]: # share train and val loss y axes
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
except Exception as e:
LOGGER.warning(f"WARNING: Plotting error for {f}: {e}")
ax[1].legend()
fname = save_dir / "results.png"
fig.savefig(fname, dpi=200)
plt.close()
if on_plot:
on_plot(fname)
def plt_color_scatter(v, f, bins=20, cmap="viridis", alpha=0.8, edgecolors="none"):
"""
Plots a scatter plot with points colored based on a 2D histogram.
Args:
v (array-like): Values for the x-axis.
f (array-like): Values for the y-axis.
bins (int, optional): Number of bins for the histogram. Defaults to 20.
cmap (str, optional): Colormap for the scatter plot. Defaults to 'viridis'.
alpha (float, optional): Alpha for the scatter plot. Defaults to 0.8.
edgecolors (str, optional): Edge colors for the scatter plot. Defaults to 'none'.
Examples:
>>> v = np.random.rand(100)
>>> f = np.random.rand(100)
>>> plt_color_scatter(v, f)
"""
# Calculate 2D histogram and corresponding colors
hist, xedges, yedges = np.histogram2d(v, f, bins=bins)
colors = [
hist[
min(np.digitize(v[i], xedges, right=True) - 1, hist.shape[0] - 1),
min(np.digitize(f[i], yedges, right=True) - 1, hist.shape[1] - 1),
]
for i in range(len(v))
]
# Scatter plot
plt.scatter(v, f, c=colors, cmap=cmap, alpha=alpha, edgecolors=edgecolors)
def plot_tune_results(csv_file="tune_results.csv"):
"""
Plot the evolution results stored in an 'tune_results.csv' file. The function generates a scatter plot for each key
in the CSV, color-coded based on fitness scores. The best-performing configurations are highlighted on the plots.
Args:
csv_file (str, optional): Path to the CSV file containing the tuning results. Defaults to 'tune_results.csv'.
Examples:
>>> plot_tune_results('path/to/tune_results.csv')
"""
import pandas as pd
from scipy.ndimage import gaussian_filter1d
# Scatter plots for each hyperparameter
csv_file = Path(csv_file)
data = pd.read_csv(csv_file)
num_metrics_columns = 1
keys = [x.strip() for x in data.columns][num_metrics_columns:]
x = data.values
fitness = x[:, 0] # fitness
j = np.argmax(fitness) # max fitness index
n = math.ceil(len(keys) ** 0.5) # columns and rows in plot
plt.figure(figsize=(10, 10), tight_layout=True)
for i, k in enumerate(keys):
v = x[:, i + num_metrics_columns]
mu = v[j] # best single result
plt.subplot(n, n, i + 1)
plt_color_scatter(v, fitness, cmap="viridis", alpha=0.8, edgecolors="none")
plt.plot(mu, fitness.max(), "k+", markersize=15)
plt.title(f"{k} = {mu:.3g}", fontdict={"size": 9}) # limit to 40 characters
plt.tick_params(axis="both", labelsize=8) # Set axis label size to 8
if i % n != 0:
plt.yticks([])
file = csv_file.with_name("tune_scatter_plots.png") # filename
plt.savefig(file, dpi=200)
plt.close()
LOGGER.info(f"Saved {file}")
# Fitness vs iteration
x = range(1, len(fitness) + 1)
plt.figure(figsize=(10, 6), tight_layout=True)
plt.plot(x, fitness, marker="o", linestyle="none", label="fitness")
plt.plot(x, gaussian_filter1d(fitness, sigma=3), ":", label="smoothed", linewidth=2) # smoothing line
plt.title("Fitness vs Iteration")
plt.xlabel("Iteration")
plt.ylabel("Fitness")
plt.grid(True)
plt.legend()
file = csv_file.with_name("tune_fitness.png") # filename
plt.savefig(file, dpi=200)
plt.close()
LOGGER.info(f"Saved {file}")
def output_to_target(output, max_det=300):
"""Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting."""
targets = []
for i, o in enumerate(output):
box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
j = torch.full((conf.shape[0], 1), i)
targets.append(torch.cat((j, cls, ops.xyxy2xywh(box), conf), 1))
targets = torch.cat(targets, 0).numpy()
return targets[:, 0], targets[:, 1], targets[:, 2:-1], targets[:, -1]
def output_to_rotated_target(output, max_det=300):
"""Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting."""
targets = []
for i, o in enumerate(output):
box, conf, cls, angle = o[:max_det].cpu().split((4, 1, 1, 1), 1)
j = torch.full((conf.shape[0], 1), i)
targets.append(torch.cat((j, cls, box, angle, conf), 1))
targets = torch.cat(targets, 0).numpy()
return targets[:, 0], targets[:, 1], targets[:, 2:-1], targets[:, -1]
def feature_visualization(x, module_type, stage, n=32, save_dir=Path("runs/detect/exp")):
"""
Visualize feature maps of a given model module during inference.
Args:
x (torch.Tensor): Features to be visualized.
module_type (str): Module type.
stage (int): Module stage within the model.
n (int, optional): Maximum number of feature maps to plot. Defaults to 32.
save_dir (Path, optional): Directory to save results. Defaults to Path('runs/detect/exp').
"""
for m in ["Detect", "Pose", "Segment"]:
if m in module_type:
return
batch, channels, height, width = x.shape # batch, channels, height, width
if height > 1 and width > 1:
f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename
blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels
n = min(n, channels) # number of plots
fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols
ax = ax.ravel()
plt.subplots_adjust(wspace=0.05, hspace=0.05)
for i in range(n):
ax[i].imshow(blocks[i].squeeze()) # cmap='gray'
ax[i].axis("off")
LOGGER.info(f"Saving {f}... ({n}/{channels})")
plt.savefig(f, dpi=300, bbox_inches="tight")
plt.close()
np.save(str(f.with_suffix(".npy")), x[0].cpu().numpy()) # npy save
| 44,711 | Python | .py | 925 | 37.601081 | 120 | 0.557164 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,873 | tuner.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/tuner.py | # Ultralytics YOLO üöÄ, AGPL-3.0 license
import subprocess
from ultralytics.cfg import TASK2DATA, TASK2METRIC, get_save_dir
from ultralytics.utils import DEFAULT_CFG, DEFAULT_CFG_DICT, LOGGER, NUM_THREADS
def run_ray_tune(
model, space: dict = None, grace_period: int = 10, gpu_per_trial: int = None, max_samples: int = 10, **train_args
):
"""
Runs hyperparameter tuning using Ray Tune.
Args:
model (YOLO): Model to run the tuner on.
space (dict, optional): The hyperparameter search space. Defaults to None.
grace_period (int, optional): The grace period in epochs of the ASHA scheduler. Defaults to 10.
gpu_per_trial (int, optional): The number of GPUs to allocate per trial. Defaults to None.
max_samples (int, optional): The maximum number of trials to run. Defaults to 10.
train_args (dict, optional): Additional arguments to pass to the `train()` method. Defaults to {}.
Returns:
(dict): A dictionary containing the results of the hyperparameter search.
Example:
```python
from ultralytics import YOLO
# Load a YOLOv8n model
model = YOLO('yolov8n.pt')
# Start tuning hyperparameters for YOLOv8n training on the COCO8 dataset
result_grid = model.tune(data='coco8.yaml', use_ray=True)
```
"""
LOGGER.info("üí° Learn about RayTune at https://docs.ultralytics.com/integrations/ray-tune")
if train_args is None:
train_args = {}
try:
subprocess.run("pip install ray[tune]".split(), check=True)
import ray
from ray import tune
from ray.air import RunConfig
from ray.air.integrations.wandb import WandbLoggerCallback
from ray.tune.schedulers import ASHAScheduler
except ImportError:
raise ModuleNotFoundError('Tuning hyperparameters requires Ray Tune. Install with: pip install "ray[tune]"')
try:
import wandb
assert hasattr(wandb, "__version__")
except (ImportError, AssertionError):
wandb = False
default_space = {
# 'optimizer': tune.choice(['SGD', 'Adam', 'AdamW', 'NAdam', 'RAdam', 'RMSProp']),
"lr0": tune.uniform(1e-5, 1e-1),
"lrf": tune.uniform(0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
"momentum": tune.uniform(0.6, 0.98), # SGD momentum/Adam beta1
"weight_decay": tune.uniform(0.0, 0.001), # optimizer weight decay 5e-4
"warmup_epochs": tune.uniform(0.0, 5.0), # warmup epochs (fractions ok)
"warmup_momentum": tune.uniform(0.0, 0.95), # warmup initial momentum
"box": tune.uniform(0.02, 0.2), # box loss gain
"cls": tune.uniform(0.2, 4.0), # cls loss gain (scale with pixels)
"hsv_h": tune.uniform(0.0, 0.1), # image HSV-Hue augmentation (fraction)
"hsv_s": tune.uniform(0.0, 0.9), # image HSV-Saturation augmentation (fraction)
"hsv_v": tune.uniform(0.0, 0.9), # image HSV-Value augmentation (fraction)
"degrees": tune.uniform(0.0, 45.0), # image rotation (+/- deg)
"translate": tune.uniform(0.0, 0.9), # image translation (+/- fraction)
"scale": tune.uniform(0.0, 0.9), # image scale (+/- gain)
"shear": tune.uniform(0.0, 10.0), # image shear (+/- deg)
"perspective": tune.uniform(0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
"flipud": tune.uniform(0.0, 1.0), # image flip up-down (probability)
"fliplr": tune.uniform(0.0, 1.0), # image flip left-right (probability)
"mosaic": tune.uniform(0.0, 1.0), # image mixup (probability)
"mixup": tune.uniform(0.0, 1.0), # image mixup (probability)
"copy_paste": tune.uniform(0.0, 1.0), # segment copy-paste (probability)
}
# Put the model in ray store
task = model.task
model_in_store = ray.put(model)
def _tune(config):
"""
Trains the YOLO model with the specified hyperparameters and additional arguments.
Args:
config (dict): A dictionary of hyperparameters to use for training.
Returns:
None
"""
model_to_train = ray.get(model_in_store) # get the model from ray store for tuning
model_to_train.reset_callbacks()
config.update(train_args)
results = model_to_train.train(**config)
return results.results_dict
# Get search space
if not space:
space = default_space
LOGGER.warning("WARNING ⚠️ search space not provided, using default search space.")
# Get dataset
data = train_args.get("data", TASK2DATA[task])
space["data"] = data
if "data" not in train_args:
LOGGER.warning(f'WARNING ⚠️ data not provided, using default "data={data}".')
# Define the trainable function with allocated resources
trainable_with_resources = tune.with_resources(_tune, {"cpu": NUM_THREADS, "gpu": gpu_per_trial or 0})
# Define the ASHA scheduler for hyperparameter search
asha_scheduler = ASHAScheduler(
time_attr="epoch",
metric=TASK2METRIC[task],
mode="max",
max_t=train_args.get("epochs") or DEFAULT_CFG_DICT["epochs"] or 100,
grace_period=grace_period,
reduction_factor=3,
)
# Define the callbacks for the hyperparameter search
tuner_callbacks = [WandbLoggerCallback(project="YOLOv8-tune")] if wandb else []
# Create the Ray Tune hyperparameter search tuner
tune_dir = get_save_dir(DEFAULT_CFG, name="tune").resolve() # must be absolute dir
tune_dir.mkdir(parents=True, exist_ok=True)
tuner = tune.Tuner(
trainable_with_resources,
param_space=space,
tune_config=tune.TuneConfig(scheduler=asha_scheduler, num_samples=max_samples),
run_config=RunConfig(callbacks=tuner_callbacks, storage_path=tune_dir),
)
# Run the hyperparameter search
tuner.fit()
# Return the results of the hyperparameter search
return tuner.get_results()
| 6,003 | Python | .py | 119 | 42.932773 | 117 | 0.654772 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,874 | metrics.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/metrics.py | # Ultralytics YOLO üöÄ, AGPL-3.0 license
"""Model validation metrics."""
import math
import warnings
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import torch
from ultralytics.utils import LOGGER, SimpleClass, TryExcept, plt_settings
OKS_SIGMA = np.array([.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89]) / 10.0
class WIoU_Scale:
''' monotonous: {
None: origin v1
True: monotonic FM v2
False: non-monotonic FM v3
}
momentum: The momentum of running mean'''
iou_mean = 1.
monotonous = False
_momentum = 1 - pow(0.05, 1 / 1200)
_is_train = True
def __init__(self, iou):
self.iou = iou
self._update(self)
@classmethod
def _update(cls, self):
if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \
cls._momentum * self.iou.detach().mean().item()
@classmethod
def _scaled_loss(cls, self, gamma=1.9, delta=3):
if isinstance(self.monotonous, bool):
if self.monotonous:
return (self.iou.detach() / self.iou_mean).sqrt()
else:
beta = self.iou.detach() / self.iou_mean
alpha = delta * torch.pow(gamma, beta - delta)
return beta / alpha
return 1
def bbox_ioa(box1, box2, iou=False, eps=1e-7):
"""
Calculate the intersection over box2 area given box1 and box2. Boxes are in x1y1x2y2 format.
Args:
box1 (np.array): A numpy array of shape (n, 4) representing n bounding boxes.
box2 (np.array): A numpy array of shape (m, 4) representing m bounding boxes.
iou (bool): Calculate the standard iou if True else return inter_area/box2_area.
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.
Returns:
(np.array): A numpy array of shape (n, m) representing the intersection over box2 area.
"""
# Get the coordinates of bounding boxes
b1_x1, b1_y1, b1_x2, b1_y2 = box1.T
b2_x1, b2_y1, b2_x2, b2_y2 = box2.T
# Intersection area
inter_area = (np.minimum(b1_x2[:, None], b2_x2) - np.maximum(b1_x1[:, None], b2_x1)).clip(0) * \
(np.minimum(b1_y2[:, None], b2_y2) - np.maximum(b1_y1[:, None], b2_y1)).clip(0)
# Box2 area
area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)
if iou:
box1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)
area = area + box1_area[:, None] - inter_area
# Intersection over box2 area
return inter_area / (area + eps)
def box_iou(box1, box2, eps=1e-7):
"""
Calculate intersection-over-union (IoU) of boxes.
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
Based on https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
Args:
box1 (torch.Tensor): A tensor of shape (N, 4) representing N bounding boxes.
box2 (torch.Tensor): A tensor of shape (M, 4) representing M bounding boxes.
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.
Returns:
(torch.Tensor): An NxM tensor containing the pairwise IoU values for every element in box1 and box2.
"""
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
(a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp_(0).prod(2)
# IoU = inter / (area1 + area2 - inter)
return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)
def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, WIoU=False, alpha=1, scale=True, eps=1e-7):
"""
Calculate Intersection over Union (IoU) of box1(1, 4) to box2(n, 4).
Args:
box1 (torch.Tensor): A tensor representing a single bounding box with shape (1, 4).
box2 (torch.Tensor): A tensor representing n bounding boxes with shape (n, 4).
xywh (bool, optional): If True, input boxes are in (x, y, w, h) format. If False, input boxes are in
(x1, y1, x2, y2) format. Defaults to True.
GIoU (bool, optional): If True, calculate Generalized IoU. Defaults to False.
DIoU (bool, optional): If True, calculate Distance IoU. Defaults to False.
CIoU (bool, optional): If True, calculate Complete IoU. Defaults to False.
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.
Returns:
(torch.Tensor): IoU, GIoU, DIoU, or CIoU values depending on the specified flags.
"""
# Get the coordinates of bounding boxes
if xywh: # transform from xywh to xyxy
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
else: # x1, y1, x2, y2 = box1
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
# Intersection area
inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp_(0) * \
(b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp_(0)
# Union Area
union = w1 * h1 + w2 * h2 - inter + eps
if scale:
self = WIoU_Scale(1 - (inter / union))
# IoU
# iou = inter / union # ori iou
iou = torch.pow(inter/(union + eps), alpha) # alpha iou
if CIoU or DIoU or GIoU or WIoU:
cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width
ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height
if CIoU or DIoU or WIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
c2 = (cw ** 2 + ch ** 2) ** alpha + eps # convex diagonal squared
rho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha # center dist ** 2
if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
with torch.no_grad():
alpha_ciou = v / (v - iou + (1 + eps))
return iou - (rho2 / c2 + v * alpha_ciou) # CIoU
elif WIoU:
if scale:
return getattr(WIoU_Scale, '_scaled_loss')(self), (1 - iou) * torch.exp((rho2 / c2)), iou # WIoU https://arxiv.org/abs/2301.10051
else:
return iou, torch.exp((rho2 / c2)) # WIoU v1
return iou - rho2 / c2 # DIoU
c_area = cw * ch + eps # convex area
return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf
return iou # IoU
def mask_iou(mask1, mask2, eps=1e-7):
"""
Calculate masks IoU.
Args:
mask1 (torch.Tensor): A tensor of shape (N, n) where N is the number of ground truth objects and n is the
product of image width and height.
mask2 (torch.Tensor): A tensor of shape (M, n) where M is the number of predicted objects and n is the
product of image width and height.
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.
Returns:
(torch.Tensor): A tensor of shape (N, M) representing masks IoU.
"""
intersection = torch.matmul(mask1, mask2.T).clamp_(0)
union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection # (area1 + area2) - intersection
return intersection / (union + eps)
def kpt_iou(kpt1, kpt2, area, sigma, eps=1e-7):
"""
Calculate Object Keypoint Similarity (OKS).
Args:
kpt1 (torch.Tensor): A tensor of shape (N, 17, 3) representing ground truth keypoints.
kpt2 (torch.Tensor): A tensor of shape (M, 17, 3) representing predicted keypoints.
area (torch.Tensor): A tensor of shape (N,) representing areas from ground truth.
sigma (list): A list containing 17 values representing keypoint scales.
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.
Returns:
(torch.Tensor): A tensor of shape (N, M) representing keypoint similarities.
"""
d = (kpt1[:, None, :, 0] - kpt2[..., 0]) ** 2 + (kpt1[:, None, :, 1] - kpt2[..., 1]) ** 2 # (N, M, 17)
sigma = torch.tensor(sigma, device=kpt1.device, dtype=kpt1.dtype) # (17, )
kpt_mask = kpt1[..., 2] != 0 # (N, 17)
e = d / (2 * sigma) ** 2 / (area[:, None, None] + eps) / 2 # from cocoeval
# e = d / ((area[None, :, None] + eps) * sigma) ** 2 / 2 # from formula
return (torch.exp(-e) * kpt_mask[:, None]).sum(-1) / (kpt_mask.sum(-1)[:, None] + eps)
def smooth_BCE(eps=0.1):
"""
Computes smoothed positive and negative Binary Cross-Entropy targets.
This function calculates positive and negative label smoothing BCE targets based on a given epsilon value.
For implementation details, refer to https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441.
Args:
eps (float, optional): The epsilon value for label smoothing. Defaults to 0.1.
Returns:
(tuple): A tuple containing the positive and negative label smoothing BCE targets.
"""
return 1.0 - 0.5 * eps, 0.5 * eps
class ConfusionMatrix:
"""
A class for calculating and updating a confusion matrix for object detection and classification tasks.
Attributes:
task (str): The type of task, either 'detect' or 'classify'.
matrix (np.array): The confusion matrix, with dimensions depending on the task.
nc (int): The number of classes.
conf (float): The confidence threshold for detections.
iou_thres (float): The Intersection over Union threshold.
"""
def __init__(self, nc, conf=0.25, iou_thres=0.45, task='detect'):
"""Initialize attributes for the YOLO model."""
self.task = task
self.matrix = np.zeros((nc + 1, nc + 1)) if self.task == 'detect' else np.zeros((nc, nc))
self.nc = nc # number of classes
self.conf = 0.25 if conf in (None, 0.001) else conf # apply 0.25 if default val conf is passed
self.iou_thres = iou_thres
def process_cls_preds(self, preds, targets):
"""
Update confusion matrix for classification task.
Args:
preds (Array[N, min(nc,5)]): Predicted class labels.
targets (Array[N, 1]): Ground truth class labels.
"""
preds, targets = torch.cat(preds)[:, 0], torch.cat(targets)
for p, t in zip(preds.cpu().numpy(), targets.cpu().numpy()):
self.matrix[p][t] += 1
def process_batch(self, detections, labels):
"""
Update confusion matrix for object detection task.
Args:
detections (Array[N, 6]): Detected bounding boxes and their associated information.
Each row should contain (x1, y1, x2, y2, conf, class).
labels (Array[M, 5]): Ground truth bounding boxes and their associated class labels.
Each row should contain (class, x1, y1, x2, y2).
"""
if detections is None:
gt_classes = labels.int()
for gc in gt_classes:
self.matrix[self.nc, gc] += 1 # background FN
return
detections = detections[detections[:, 4] > self.conf]
gt_classes = labels[:, 0].int()
detection_classes = detections[:, 5].int()
iou = box_iou(labels[:, 1:], detections[:, :4])
x = torch.where(iou > self.iou_thres)
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
else:
matches = np.zeros((0, 3))
n = matches.shape[0] > 0
m0, m1, _ = matches.transpose().astype(int)
for i, gc in enumerate(gt_classes):
j = m0 == i
if n and sum(j) == 1:
self.matrix[detection_classes[m1[j]], gc] += 1 # correct
else:
self.matrix[self.nc, gc] += 1 # true background
if n:
for i, dc in enumerate(detection_classes):
if not any(m1 == i):
self.matrix[dc, self.nc] += 1 # predicted background
def matrix(self):
"""Returns the confusion matrix."""
return self.matrix
def tp_fp(self):
"""Returns true positives and false positives."""
tp = self.matrix.diagonal() # true positives
fp = self.matrix.sum(1) - tp # false positives
# fn = self.matrix.sum(0) - tp # false negatives (missed detections)
return (tp[:-1], fp[:-1]) if self.task == 'detect' else (tp, fp) # remove background class if task=detect
@TryExcept('WARNING ⚠️ ConfusionMatrix plot failure')
@plt_settings()
def plot(self, normalize=True, save_dir='', names=(), on_plot=None):
"""
Plot the confusion matrix using seaborn and save it to a file.
Args:
normalize (bool): Whether to normalize the confusion matrix.
save_dir (str): Directory where the plot will be saved.
names (tuple): Names of classes, used as labels on the plot.
on_plot (func): An optional callback to pass plots path and data when they are rendered.
"""
import seaborn as sn
array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1) # normalize columns
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True)
nc, nn = self.nc, len(names) # number of classes, names
sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size
labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels
ticklabels = (list(names) + ['background']) if labels else 'auto'
with warnings.catch_warnings():
warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered
sn.heatmap(array,
ax=ax,
annot=nc < 30,
annot_kws={
'size': 8},
cmap='Blues',
fmt='.2f' if normalize else '.0f',
square=True,
vmin=0.0,
xticklabels=ticklabels,
yticklabels=ticklabels).set_facecolor((1, 1, 1))
title = 'Confusion Matrix' + ' Normalized' * normalize
ax.set_xlabel('True')
ax.set_ylabel('Predicted')
ax.set_title(title)
plot_fname = Path(save_dir) / f'{title.lower().replace(" ", "_")}.png'
fig.savefig(plot_fname, dpi=250)
plt.close(fig)
if on_plot:
on_plot(plot_fname)
def print(self):
"""Print the confusion matrix to the console."""
for i in range(self.nc + 1):
LOGGER.info(' '.join(map(str, self.matrix[i])))
def smooth(y, f=0.05):
"""Box filter of fraction f."""
nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd)
p = np.ones(nf // 2) # ones padding
yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded
return np.convolve(yp, np.ones(nf) / nf, mode='valid') # y-smoothed
@plt_settings()
def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=(), on_plot=None):
"""Plots a precision-recall curve."""
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
py = np.stack(py, axis=1)
if 0 < len(names) < 21: # display per-class legend if < 21 classes
for i, y in enumerate(py.T):
ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
else:
ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f [email protected]' % ap[:, 0].mean())
ax.set_xlabel('Recall')
ax.set_ylabel('Precision')
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left')
ax.set_title('Precision-Recall Curve')
fig.savefig(save_dir, dpi=250)
plt.close(fig)
if on_plot:
on_plot(save_dir)
@plt_settings()
def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric', on_plot=None):
"""Plots a metric-confidence curve."""
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
if 0 < len(names) < 21: # display per-class legend if < 21 classes
for i, y in enumerate(py):
ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
else:
ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
y = smooth(py.mean(0), 0.05)
ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left')
ax.set_title(f'{ylabel}-Confidence Curve')
fig.savefig(save_dir, dpi=250)
plt.close(fig)
if on_plot:
on_plot(save_dir)
def compute_ap(recall, precision):
"""
Compute the average precision (AP) given the recall and precision curves.
Args:
recall (list): The recall curve.
precision (list): The precision curve.
Returns:
(float): Average precision.
(np.ndarray): Precision envelope curve.
(np.ndarray): Modified recall curve with sentinel values added at the beginning and end.
"""
# Append sentinel values to beginning and end
mrec = np.concatenate(([0.0], recall, [1.0]))
mpre = np.concatenate(([1.0], precision, [0.0]))
# Compute the precision envelope
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
# Integrate area under curve
method = 'interp' # methods: 'continuous', 'interp'
if method == 'interp':
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
else: # 'continuous'
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x-axis (recall) changes
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
return ap, mpre, mrec
def ap_per_class(tp,
conf,
pred_cls,
target_cls,
plot=False,
on_plot=None,
save_dir=Path(),
names=(),
eps=1e-16,
prefix=''):
"""
Computes the average precision per class for object detection evaluation.
Args:
tp (np.ndarray): Binary array indicating whether the detection is correct (True) or not (False).
conf (np.ndarray): Array of confidence scores of the detections.
pred_cls (np.ndarray): Array of predicted classes of the detections.
target_cls (np.ndarray): Array of true classes of the detections.
plot (bool, optional): Whether to plot PR curves or not. Defaults to False.
on_plot (func, optional): A callback to pass plots path and data when they are rendered. Defaults to None.
save_dir (Path, optional): Directory to save the PR curves. Defaults to an empty path.
names (tuple, optional): Tuple of class names to plot PR curves. Defaults to an empty tuple.
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-16.
prefix (str, optional): A prefix string for saving the plot files. Defaults to an empty string.
Returns:
(tuple): A tuple of six arrays and one array of unique classes, where:
tp (np.ndarray): True positive counts at threshold given by max F1 metric for each class.Shape: (nc,).
fp (np.ndarray): False positive counts at threshold given by max F1 metric for each class. Shape: (nc,).
p (np.ndarray): Precision values at threshold given by max F1 metric for each class. Shape: (nc,).
r (np.ndarray): Recall values at threshold given by max F1 metric for each class. Shape: (nc,).
f1 (np.ndarray): F1-score values at threshold given by max F1 metric for each class. Shape: (nc,).
ap (np.ndarray): Average precision for each class at different IoU thresholds. Shape: (nc, 10).
unique_classes (np.ndarray): An array of unique classes that have data. Shape: (nc,).
p_curve (np.ndarray): Precision curves for each class. Shape: (nc, 1000).
r_curve (np.ndarray): Recall curves for each class. Shape: (nc, 1000).
f1_curve (np.ndarray): F1-score curves for each class. Shape: (nc, 1000).
x (np.ndarray): X-axis values for the curves. Shape: (1000,).
prec_values: Precision values at [email protected] for each class. Shape: (nc, 1000).
"""
# Sort by objectness
i = np.argsort(-conf)
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
# Find unique classes
unique_classes, nt = np.unique(target_cls, return_counts=True)
nc = unique_classes.shape[0] # number of classes, number of detections
# Create Precision-Recall curve and compute AP for each class
x, prec_values = np.linspace(0, 1, 1000), []
# Average precision, precision and recall curves
ap, p_curve, r_curve = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
for ci, c in enumerate(unique_classes):
i = pred_cls == c
n_l = nt[ci] # number of labels
n_p = i.sum() # number of predictions
if n_p == 0 or n_l == 0:
continue
# Accumulate FPs and TPs
fpc = (1 - tp[i]).cumsum(0)
tpc = tp[i].cumsum(0)
# Recall
recall = tpc / (n_l + eps) # recall curve
r_curve[ci] = np.interp(-x, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
# Precision
precision = tpc / (tpc + fpc) # precision curve
p_curve[ci] = np.interp(-x, -conf[i], precision[:, 0], left=1) # p at pr_score
# AP from recall-precision curve
for j in range(tp.shape[1]):
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
if plot and j == 0:
prec_values.append(np.interp(x, mrec, mpre)) # precision at [email protected]
prec_values = np.array(prec_values) # (nc, 1000)
# Compute F1 (harmonic mean of precision and recall)
f1_curve = 2 * p_curve * r_curve / (p_curve + r_curve + eps)
names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data
names = dict(enumerate(names)) # to dict
if plot:
plot_pr_curve(x, prec_values, ap, save_dir / f'{prefix}PR_curve.png', names, on_plot=on_plot)
plot_mc_curve(x, f1_curve, save_dir / f'{prefix}F1_curve.png', names, ylabel='F1', on_plot=on_plot)
plot_mc_curve(x, p_curve, save_dir / f'{prefix}P_curve.png', names, ylabel='Precision', on_plot=on_plot)
plot_mc_curve(x, r_curve, save_dir / f'{prefix}R_curve.png', names, ylabel='Recall', on_plot=on_plot)
i = smooth(f1_curve.mean(0), 0.1).argmax() # max F1 index
p, r, f1 = p_curve[:, i], r_curve[:, i], f1_curve[:, i] # max-F1 precision, recall, F1 values
tp = (r * nt).round() # true positives
fp = (tp / (p + eps) - tp).round() # false positives
return tp, fp, p, r, f1, ap, unique_classes.astype(int), p_curve, r_curve, f1_curve, x, prec_values
class Metric(SimpleClass):
"""
Class for computing evaluation metrics for YOLOv8 model.
Attributes:
p (list): Precision for each class. Shape: (nc,).
r (list): Recall for each class. Shape: (nc,).
f1 (list): F1 score for each class. Shape: (nc,).
all_ap (list): AP scores for all classes and all IoU thresholds. Shape: (nc, 10).
ap_class_index (list): Index of class for each AP score. Shape: (nc,).
nc (int): Number of classes.
Methods:
ap50(): AP at IoU threshold of 0.5 for all classes. Returns: List of AP scores. Shape: (nc,) or [].
ap(): AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: List of AP scores. Shape: (nc,) or [].
mp(): Mean precision of all classes. Returns: Float.
mr(): Mean recall of all classes. Returns: Float.
map50(): Mean AP at IoU threshold of 0.5 for all classes. Returns: Float.
map75(): Mean AP at IoU threshold of 0.75 for all classes. Returns: Float.
map(): Mean AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: Float.
mean_results(): Mean of results, returns mp, mr, map50, map.
class_result(i): Class-aware result, returns p[i], r[i], ap50[i], ap[i].
maps(): mAP of each class. Returns: Array of mAP scores, shape: (nc,).
fitness(): Model fitness as a weighted combination of metrics. Returns: Float.
update(results): Update metric attributes with new evaluation results.
"""
def __init__(self) -> None:
"""Initializes a Metric instance for computing evaluation metrics for the YOLOv8 model."""
self.p = [] # (nc, )
self.r = [] # (nc, )
self.f1 = [] # (nc, )
self.all_ap = [] # (nc, 10)
self.ap_class_index = [] # (nc, )
self.nc = 0
@property
def ap50(self):
"""
Returns the Average Precision (AP) at an IoU threshold of 0.5 for all classes.
Returns:
(np.ndarray, list): Array of shape (nc,) with AP50 values per class, or an empty list if not available.
"""
return self.all_ap[:, 0] if len(self.all_ap) else []
@property
def ap(self):
"""
Returns the Average Precision (AP) at an IoU threshold of 0.5-0.95 for all classes.
Returns:
(np.ndarray, list): Array of shape (nc,) with AP50-95 values per class, or an empty list if not available.
"""
return self.all_ap.mean(1) if len(self.all_ap) else []
@property
def mp(self):
"""
Returns the Mean Precision of all classes.
Returns:
(float): The mean precision of all classes.
"""
return self.p.mean() if len(self.p) else 0.0
@property
def mr(self):
"""
Returns the Mean Recall of all classes.
Returns:
(float): The mean recall of all classes.
"""
return self.r.mean() if len(self.r) else 0.0
@property
def map50(self):
"""
Returns the mean Average Precision (mAP) at an IoU threshold of 0.5.
Returns:
(float): The mAP50 at an IoU threshold of 0.5.
"""
return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0
@property
def map75(self):
"""
Returns the mean Average Precision (mAP) at an IoU threshold of 0.75.
Returns:
(float): The mAP50 at an IoU threshold of 0.75.
"""
return self.all_ap[:, 5].mean() if len(self.all_ap) else 0.0
@property
def map(self):
"""
Returns the mean Average Precision (mAP) over IoU thresholds of 0.5 - 0.95 in steps of 0.05.
Returns:
(float): The mAP over IoU thresholds of 0.5 - 0.95 in steps of 0.05.
"""
return self.all_ap.mean() if len(self.all_ap) else 0.0
def mean_results(self):
"""Mean of results, return mp, mr, map50, map."""
return [self.mp, self.mr, self.map50, self.map]
def class_result(self, i):
"""Class-aware result, return p[i], r[i], ap50[i], ap[i]."""
return self.p[i], self.r[i], self.ap50[i], self.ap[i]
@property
def maps(self):
"""MAP of each class."""
maps = np.zeros(self.nc) + self.map
for i, c in enumerate(self.ap_class_index):
maps[c] = self.ap[i]
return maps
def fitness(self):
"""Model fitness as a weighted combination of metrics."""
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, [email protected], [email protected]:0.95]
return (np.array(self.mean_results()) * w).sum()
def update(self, results):
"""
Updates the evaluation metrics of the model with a new set of results.
Args:
results (tuple): A tuple containing the following evaluation metrics:
- p (list): Precision for each class. Shape: (nc,).
- r (list): Recall for each class. Shape: (nc,).
- f1 (list): F1 score for each class. Shape: (nc,).
- all_ap (list): AP scores for all classes and all IoU thresholds. Shape: (nc, 10).
- ap_class_index (list): Index of class for each AP score. Shape: (nc,).
Side Effects:
Updates the class attributes `self.p`, `self.r`, `self.f1`, `self.all_ap`, and `self.ap_class_index` based
on the values provided in the `results` tuple.
"""
(self.p, self.r, self.f1, self.all_ap, self.ap_class_index, self.p_curve, self.r_curve, self.f1_curve, self.px,
self.prec_values) = results
@property
def curves(self):
"""Returns a list of curves for accessing specific metrics curves."""
return []
@property
def curves_results(self):
"""Returns a list of curves for accessing specific metrics curves."""
return [[self.px, self.prec_values, 'Recall', 'Precision'], [self.px, self.f1_curve, 'Confidence', 'F1'],
[self.px, self.p_curve, 'Confidence', 'Precision'], [self.px, self.r_curve, 'Confidence', 'Recall']]
class DetMetrics(SimpleClass):
"""
This class is a utility class for computing detection metrics such as precision, recall, and mean average precision
(mAP) of an object detection model.
Args:
save_dir (Path): A path to the directory where the output plots will be saved. Defaults to current directory.
plot (bool): A flag that indicates whether to plot precision-recall curves for each class. Defaults to False.
on_plot (func): An optional callback to pass plots path and data when they are rendered. Defaults to None.
names (tuple of str): A tuple of strings that represents the names of the classes. Defaults to an empty tuple.
Attributes:
save_dir (Path): A path to the directory where the output plots will be saved.
plot (bool): A flag that indicates whether to plot the precision-recall curves for each class.
on_plot (func): An optional callback to pass plots path and data when they are rendered.
names (tuple of str): A tuple of strings that represents the names of the classes.
box (Metric): An instance of the Metric class for storing the results of the detection metrics.
speed (dict): A dictionary for storing the execution time of different parts of the detection process.
Methods:
process(tp, conf, pred_cls, target_cls): Updates the metric results with the latest batch of predictions.
keys: Returns a list of keys for accessing the computed detection metrics.
mean_results: Returns a list of mean values for the computed detection metrics.
class_result(i): Returns a list of values for the computed detection metrics for a specific class.
maps: Returns a dictionary of mean average precision (mAP) values for different IoU thresholds.
fitness: Computes the fitness score based on the computed detection metrics.
ap_class_index: Returns a list of class indices sorted by their average precision (AP) values.
results_dict: Returns a dictionary that maps detection metric keys to their computed values.
curves: TODO
curves_results: TODO
"""
def __init__(self, save_dir=Path('.'), plot=False, on_plot=None, names=()) -> None:
"""Initialize a DetMetrics instance with a save directory, plot flag, callback function, and class names."""
self.save_dir = save_dir
self.plot = plot
self.on_plot = on_plot
self.names = names
self.box = Metric()
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
self.task = 'detect'
def process(self, tp, conf, pred_cls, target_cls):
"""Process predicted results for object detection and update metrics."""
results = ap_per_class(tp,
conf,
pred_cls,
target_cls,
plot=self.plot,
save_dir=self.save_dir,
names=self.names,
on_plot=self.on_plot)[2:]
self.box.nc = len(self.names)
self.box.update(results)
@property
def keys(self):
"""Returns a list of keys for accessing specific metrics."""
return ['metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)']
def mean_results(self):
"""Calculate mean of detected objects & return precision, recall, mAP50, and mAP50-95."""
return self.box.mean_results()
def class_result(self, i):
"""Return the result of evaluating the performance of an object detection model on a specific class."""
return self.box.class_result(i)
@property
def maps(self):
"""Returns mean Average Precision (mAP) scores per class."""
return self.box.maps
@property
def fitness(self):
"""Returns the fitness of box object."""
return self.box.fitness()
@property
def ap_class_index(self):
"""Returns the average precision index per class."""
return self.box.ap_class_index
@property
def results_dict(self):
"""Returns dictionary of computed performance metrics and statistics."""
return dict(zip(self.keys + ['fitness'], self.mean_results() + [self.fitness]))
@property
def curves(self):
"""Returns a list of curves for accessing specific metrics curves."""
return ['Precision-Recall(B)', 'F1-Confidence(B)', 'Precision-Confidence(B)', 'Recall-Confidence(B)']
@property
def curves_results(self):
"""Returns dictionary of computed performance metrics and statistics."""
return self.box.curves_results
class SegmentMetrics(SimpleClass):
"""
Calculates and aggregates detection and segmentation metrics over a given set of classes.
Args:
save_dir (Path): Path to the directory where the output plots should be saved. Default is the current directory.
plot (bool): Whether to save the detection and segmentation plots. Default is False.
on_plot (func): An optional callback to pass plots path and data when they are rendered. Defaults to None.
names (list): List of class names. Default is an empty list.
Attributes:
save_dir (Path): Path to the directory where the output plots should be saved.
plot (bool): Whether to save the detection and segmentation plots.
on_plot (func): An optional callback to pass plots path and data when they are rendered.
names (list): List of class names.
box (Metric): An instance of the Metric class to calculate box detection metrics.
seg (Metric): An instance of the Metric class to calculate mask segmentation metrics.
speed (dict): Dictionary to store the time taken in different phases of inference.
Methods:
process(tp_m, tp_b, conf, pred_cls, target_cls): Processes metrics over the given set of predictions.
mean_results(): Returns the mean of the detection and segmentation metrics over all the classes.
class_result(i): Returns the detection and segmentation metrics of class `i`.
maps: Returns the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95.
fitness: Returns the fitness scores, which are a single weighted combination of metrics.
ap_class_index: Returns the list of indices of classes used to compute Average Precision (AP).
results_dict: Returns the dictionary containing all the detection and segmentation metrics and fitness score.
"""
def __init__(self, save_dir=Path('.'), plot=False, on_plot=None, names=()) -> None:
"""Initialize a SegmentMetrics instance with a save directory, plot flag, callback function, and class names."""
self.save_dir = save_dir
self.plot = plot
self.on_plot = on_plot
self.names = names
self.box = Metric()
self.seg = Metric()
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
self.task = 'segment'
def process(self, tp_b, tp_m, conf, pred_cls, target_cls):
"""
Processes the detection and segmentation metrics over the given set of predictions.
Args:
tp_b (list): List of True Positive boxes.
tp_m (list): List of True Positive masks.
conf (list): List of confidence scores.
pred_cls (list): List of predicted classes.
target_cls (list): List of target classes.
"""
results_mask = ap_per_class(tp_m,
conf,
pred_cls,
target_cls,
plot=self.plot,
on_plot=self.on_plot,
save_dir=self.save_dir,
names=self.names,
prefix='Mask')[2:]
self.seg.nc = len(self.names)
self.seg.update(results_mask)
results_box = ap_per_class(tp_b,
conf,
pred_cls,
target_cls,
plot=self.plot,
on_plot=self.on_plot,
save_dir=self.save_dir,
names=self.names,
prefix='Box')[2:]
self.box.nc = len(self.names)
self.box.update(results_box)
@property
def keys(self):
"""Returns a list of keys for accessing metrics."""
return [
'metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)',
'metrics/precision(M)', 'metrics/recall(M)', 'metrics/mAP50(M)', 'metrics/mAP50-95(M)']
def mean_results(self):
"""Return the mean metrics for bounding box and segmentation results."""
return self.box.mean_results() + self.seg.mean_results()
def class_result(self, i):
"""Returns classification results for a specified class index."""
return self.box.class_result(i) + self.seg.class_result(i)
@property
def maps(self):
"""Returns mAP scores for object detection and semantic segmentation models."""
return self.box.maps + self.seg.maps
@property
def fitness(self):
"""Get the fitness score for both segmentation and bounding box models."""
return self.seg.fitness() + self.box.fitness()
@property
def ap_class_index(self):
"""Boxes and masks have the same ap_class_index."""
return self.box.ap_class_index
@property
def results_dict(self):
"""Returns results of object detection model for evaluation."""
return dict(zip(self.keys + ['fitness'], self.mean_results() + [self.fitness]))
@property
def curves(self):
"""Returns a list of curves for accessing specific metrics curves."""
return [
'Precision-Recall(B)', 'F1-Confidence(B)', 'Precision-Confidence(B)', 'Recall-Confidence(B)',
'Precision-Recall(M)', 'F1-Confidence(M)', 'Precision-Confidence(M)', 'Recall-Confidence(M)']
@property
def curves_results(self):
"""Returns dictionary of computed performance metrics and statistics."""
return self.box.curves_results + self.seg.curves_results
class PoseMetrics(SegmentMetrics):
"""
Calculates and aggregates detection and pose metrics over a given set of classes.
Args:
save_dir (Path): Path to the directory where the output plots should be saved. Default is the current directory.
plot (bool): Whether to save the detection and segmentation plots. Default is False.
on_plot (func): An optional callback to pass plots path and data when they are rendered. Defaults to None.
names (list): List of class names. Default is an empty list.
Attributes:
save_dir (Path): Path to the directory where the output plots should be saved.
plot (bool): Whether to save the detection and segmentation plots.
on_plot (func): An optional callback to pass plots path and data when they are rendered.
names (list): List of class names.
box (Metric): An instance of the Metric class to calculate box detection metrics.
pose (Metric): An instance of the Metric class to calculate mask segmentation metrics.
speed (dict): Dictionary to store the time taken in different phases of inference.
Methods:
process(tp_m, tp_b, conf, pred_cls, target_cls): Processes metrics over the given set of predictions.
mean_results(): Returns the mean of the detection and segmentation metrics over all the classes.
class_result(i): Returns the detection and segmentation metrics of class `i`.
maps: Returns the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95.
fitness: Returns the fitness scores, which are a single weighted combination of metrics.
ap_class_index: Returns the list of indices of classes used to compute Average Precision (AP).
results_dict: Returns the dictionary containing all the detection and segmentation metrics and fitness score.
"""
def __init__(self, save_dir=Path('.'), plot=False, on_plot=None, names=()) -> None:
"""Initialize the PoseMetrics class with directory path, class names, and plotting options."""
super().__init__(save_dir, plot, names)
self.save_dir = save_dir
self.plot = plot
self.on_plot = on_plot
self.names = names
self.box = Metric()
self.pose = Metric()
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
self.task = 'pose'
def process(self, tp_b, tp_p, conf, pred_cls, target_cls):
"""
Processes the detection and pose metrics over the given set of predictions.
Args:
tp_b (list): List of True Positive boxes.
tp_p (list): List of True Positive keypoints.
conf (list): List of confidence scores.
pred_cls (list): List of predicted classes.
target_cls (list): List of target classes.
"""
results_pose = ap_per_class(tp_p,
conf,
pred_cls,
target_cls,
plot=self.plot,
on_plot=self.on_plot,
save_dir=self.save_dir,
names=self.names,
prefix='Pose')[2:]
self.pose.nc = len(self.names)
self.pose.update(results_pose)
results_box = ap_per_class(tp_b,
conf,
pred_cls,
target_cls,
plot=self.plot,
on_plot=self.on_plot,
save_dir=self.save_dir,
names=self.names,
prefix='Box')[2:]
self.box.nc = len(self.names)
self.box.update(results_box)
@property
def keys(self):
"""Returns list of evaluation metric keys."""
return [
'metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)',
'metrics/precision(P)', 'metrics/recall(P)', 'metrics/mAP50(P)', 'metrics/mAP50-95(P)']
def mean_results(self):
"""Return the mean results of box and pose."""
return self.box.mean_results() + self.pose.mean_results()
def class_result(self, i):
"""Return the class-wise detection results for a specific class i."""
return self.box.class_result(i) + self.pose.class_result(i)
@property
def maps(self):
"""Returns the mean average precision (mAP) per class for both box and pose detections."""
return self.box.maps + self.pose.maps
@property
def fitness(self):
"""Computes classification metrics and speed using the `targets` and `pred` inputs."""
return self.pose.fitness() + self.box.fitness()
@property
def curves(self):
"""Returns a list of curves for accessing specific metrics curves."""
return [
'Precision-Recall(B)', 'F1-Confidence(B)', 'Precision-Confidence(B)', 'Recall-Confidence(B)',
'Precision-Recall(P)', 'F1-Confidence(P)', 'Precision-Confidence(P)', 'Recall-Confidence(P)']
@property
def curves_results(self):
"""Returns dictionary of computed performance metrics and statistics."""
return self.box.curves_results + self.pose.curves_results
class ClassifyMetrics(SimpleClass):
"""
Class for computing classification metrics including top-1 and top-5 accuracy.
Attributes:
top1 (float): The top-1 accuracy.
top5 (float): The top-5 accuracy.
speed (Dict[str, float]): A dictionary containing the time taken for each step in the pipeline.
Properties:
fitness (float): The fitness of the model, which is equal to top-5 accuracy.
results_dict (Dict[str, Union[float, str]]): A dictionary containing the classification metrics and fitness.
keys (List[str]): A list of keys for the results_dict.
Methods:
process(targets, pred): Processes the targets and predictions to compute classification metrics.
"""
def __init__(self) -> None:
"""Initialize a ClassifyMetrics instance."""
self.top1 = 0
self.top5 = 0
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
self.task = 'classify'
def process(self, targets, pred):
"""Target classes and predicted classes."""
pred, targets = torch.cat(pred), torch.cat(targets)
correct = (targets[:, None] == pred).float()
acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy
self.top1, self.top5 = acc.mean(0).tolist()
@property
def fitness(self):
"""Returns mean of top-1 and top-5 accuracies as fitness score."""
return (self.top1 + self.top5) / 2
@property
def results_dict(self):
"""Returns a dictionary with model's performance metrics and fitness score."""
return dict(zip(self.keys + ['fitness'], [self.top1, self.top5, self.fitness]))
@property
def keys(self):
"""Returns a list of keys for the results_dict property."""
return ['metrics/accuracy_top1', 'metrics/accuracy_top5']
@property
def curves(self):
"""Returns a list of curves for accessing specific metrics curves."""
return []
@property
def curves_results(self):
"""Returns a list of curves for accessing specific metrics curves."""
return []
| 48,600 | Python | .py | 918 | 43.077342 | 149 | 0.603437 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,875 | downloads.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/downloads.py | # Ultralytics YOLO üöÄ, AGPL-3.0 license
import contextlib
import re
import shutil
import subprocess
from itertools import repeat
from multiprocessing.pool import ThreadPool
from pathlib import Path
from urllib import parse, request
import requests
import torch
from ultralytics.utils import LOGGER, TQDM, checks, clean_url, emojis, is_online, url2file
# Define Ultralytics GitHub assets maintained at https://github.com/ultralytics/assets
GITHUB_ASSETS_REPO = "ultralytics/assets"
GITHUB_ASSETS_NAMES = (
[f"yolov8{k}{suffix}.pt" for k in "nsmlx" for suffix in ("", "-cls", "-seg", "-pose", "-obb")]
+ [f"yolov5{k}{resolution}u.pt" for k in "nsmlx" for resolution in ("", "6")]
+ [f"yolov3{k}u.pt" for k in ("", "-spp", "-tiny")]
+ [f"yolov8{k}-world.pt" for k in "sml"]
+ [f"yolo_nas_{k}.pt" for k in "sml"]
+ [f"sam_{k}.pt" for k in "bl"]
+ [f"FastSAM-{k}.pt" for k in "sx"]
+ [f"rtdetr-{k}.pt" for k in "lx"]
+ ["mobile_sam.pt"]
+ ["calibration_image_sample_data_20x128x128x3_float32.npy.zip"]
)
GITHUB_ASSETS_STEMS = [Path(k).stem for k in GITHUB_ASSETS_NAMES]
def is_url(url, check=True):
"""
Validates if the given string is a URL and optionally checks if the URL exists online.
Args:
url (str): The string to be validated as a URL.
check (bool, optional): If True, performs an additional check to see if the URL exists online.
Defaults to True.
Returns:
(bool): Returns True if the string is a valid URL. If 'check' is True, also returns True if the URL exists online.
Returns False otherwise.
Example:
```python
valid = is_url("https://www.example.com")
```
"""
with contextlib.suppress(Exception):
url = str(url)
result = parse.urlparse(url)
assert all([result.scheme, result.netloc]) # check if is url
if check:
with request.urlopen(url) as response:
return response.getcode() == 200 # check if exists online
return True
return False
def delete_dsstore(path, files_to_delete=(".DS_Store", "__MACOSX")):
"""
Deletes all ".DS_store" files under a specified directory.
Args:
path (str, optional): The directory path where the ".DS_store" files should be deleted.
files_to_delete (tuple): The files to be deleted.
Example:
```python
from ultralytics.utils.downloads import delete_dsstore
delete_dsstore('path/to/dir')
```
Note:
".DS_store" files are created by the Apple operating system and contain metadata about folders and files. They
are hidden system files and can cause issues when transferring files between different operating systems.
"""
for file in files_to_delete:
matches = list(Path(path).rglob(file))
LOGGER.info(f"Deleting {file} files: {matches}")
for f in matches:
f.unlink()
def zip_directory(directory, compress=True, exclude=(".DS_Store", "__MACOSX"), progress=True):
"""
Zips the contents of a directory, excluding files containing strings in the exclude list. The resulting zip file is
named after the directory and placed alongside it.
Args:
directory (str | Path): The path to the directory to be zipped.
compress (bool): Whether to compress the files while zipping. Default is True.
exclude (tuple, optional): A tuple of filename strings to be excluded. Defaults to ('.DS_Store', '__MACOSX').
progress (bool, optional): Whether to display a progress bar. Defaults to True.
Returns:
(Path): The path to the resulting zip file.
Example:
```python
from ultralytics.utils.downloads import zip_directory
file = zip_directory('path/to/dir')
```
"""
from zipfile import ZIP_DEFLATED, ZIP_STORED, ZipFile
delete_dsstore(directory)
directory = Path(directory)
if not directory.is_dir():
raise FileNotFoundError(f"Directory '{directory}' does not exist.")
# Unzip with progress bar
files_to_zip = [f for f in directory.rglob("*") if f.is_file() and all(x not in f.name for x in exclude)]
zip_file = directory.with_suffix(".zip")
compression = ZIP_DEFLATED if compress else ZIP_STORED
with ZipFile(zip_file, "w", compression) as f:
for file in TQDM(files_to_zip, desc=f"Zipping {directory} to {zip_file}...", unit="file", disable=not progress):
f.write(file, file.relative_to(directory))
return zip_file # return path to zip file
def unzip_file(file, path=None, exclude=(".DS_Store", "__MACOSX"), exist_ok=False, progress=True):
"""
Unzips a *.zip file to the specified path, excluding files containing strings in the exclude list.
If the zipfile does not contain a single top-level directory, the function will create a new
directory with the same name as the zipfile (without the extension) to extract its contents.
If a path is not provided, the function will use the parent directory of the zipfile as the default path.
Args:
file (str): The path to the zipfile to be extracted.
path (str, optional): The path to extract the zipfile to. Defaults to None.
exclude (tuple, optional): A tuple of filename strings to be excluded. Defaults to ('.DS_Store', '__MACOSX').
exist_ok (bool, optional): Whether to overwrite existing contents if they exist. Defaults to False.
progress (bool, optional): Whether to display a progress bar. Defaults to True.
Raises:
BadZipFile: If the provided file does not exist or is not a valid zipfile.
Returns:
(Path): The path to the directory where the zipfile was extracted.
Example:
```python
from ultralytics.utils.downloads import unzip_file
dir = unzip_file('path/to/file.zip')
```
"""
from zipfile import BadZipFile, ZipFile, is_zipfile
if not (Path(file).exists() and is_zipfile(file)):
raise BadZipFile(f"File '{file}' does not exist or is a bad zip file.")
if path is None:
path = Path(file).parent # default path
# Unzip the file contents
with ZipFile(file) as zipObj:
files = [f for f in zipObj.namelist() if all(x not in f for x in exclude)]
top_level_dirs = {Path(f).parts[0] for f in files}
if len(top_level_dirs) > 1 or (len(files) > 1 and not files[0].endswith("/")):
# Zip has multiple files at top level
path = extract_path = Path(path) / Path(file).stem # i.e. ../datasets/coco8
else:
# Zip has 1 top-level directory
extract_path = path # i.e. ../datasets
path = Path(path) / list(top_level_dirs)[0] # i.e. ../datasets/coco8
# Check if destination directory already exists and contains files
if path.exists() and any(path.iterdir()) and not exist_ok:
# If it exists and is not empty, return the path without unzipping
LOGGER.warning(f"WARNING ⚠️ Skipping {file} unzip as destination directory {path} is not empty.")
return path
for f in TQDM(files, desc=f"Unzipping {file} to {Path(path).resolve()}...", unit="file", disable=not progress):
# Ensure the file is within the extract_path to avoid path traversal security vulnerability
if ".." in Path(f).parts:
LOGGER.warning(f"Potentially insecure file path: {f}, skipping extraction.")
continue
zipObj.extract(f, extract_path)
return path # return unzip dir
def check_disk_space(url="https://ultralytics.com/assets/coco128.zip", sf=1.5, hard=True):
"""
Check if there is sufficient disk space to download and store a file.
Args:
url (str, optional): The URL to the file. Defaults to 'https://ultralytics.com/assets/coco128.zip'.
sf (float, optional): Safety factor, the multiplier for the required free space. Defaults to 2.0.
hard (bool, optional): Whether to throw an error or not on insufficient disk space. Defaults to True.
Returns:
(bool): True if there is sufficient disk space, False otherwise.
"""
try:
r = requests.head(url) # response
assert r.status_code < 400, f"URL error for {url}: {r.status_code} {r.reason}" # check response
except Exception:
return True # requests issue, default to True
# Check file size
gib = 1 << 30 # bytes per GiB
data = int(r.headers.get("Content-Length", 0)) / gib # file size (GB)
total, used, free = (x / gib for x in shutil.disk_usage(Path.cwd())) # bytes
if data * sf < free:
return True # sufficient space
# Insufficient space
text = (
f"WARNING ⚠️ Insufficient free disk space {free:.1f} GB < {data * sf:.3f} GB required, "
f"Please free {data * sf - free:.1f} GB additional disk space and try again."
)
if hard:
raise MemoryError(text)
LOGGER.warning(text)
return False
def get_google_drive_file_info(link):
"""
Retrieves the direct download link and filename for a shareable Google Drive file link.
Args:
link (str): The shareable link of the Google Drive file.
Returns:
(str): Direct download URL for the Google Drive file.
(str): Original filename of the Google Drive file. If filename extraction fails, returns None.
Example:
```python
from ultralytics.utils.downloads import get_google_drive_file_info
link = "https://drive.google.com/file/d/1cqT-cJgANNrhIHCrEufUYhQ4RqiWG_lJ/view?usp=drive_link"
url, filename = get_google_drive_file_info(link)
```
"""
file_id = link.split("/d/")[1].split("/view")[0]
drive_url = f"https://drive.google.com/uc?export=download&id={file_id}"
filename = None
# Start session
with requests.Session() as session:
response = session.get(drive_url, stream=True)
if "quota exceeded" in str(response.content.lower()):
raise ConnectionError(
emojis(
f"‚ùå Google Drive file download quota exceeded. "
f"Please try again later or download this file manually at {link}."
)
)
for k, v in response.cookies.items():
if k.startswith("download_warning"):
drive_url += f"&confirm={v}" # v is token
cd = response.headers.get("content-disposition")
if cd:
filename = re.findall('filename="(.+)"', cd)[0]
return drive_url, filename
def safe_download(
url,
file=None,
dir=None,
unzip=True,
delete=False,
curl=False,
retry=3,
min_bytes=1e0,
exist_ok=False,
progress=True,
):
"""
Downloads files from a URL, with options for retrying, unzipping, and deleting the downloaded file.
Args:
url (str): The URL of the file to be downloaded.
file (str, optional): The filename of the downloaded file.
If not provided, the file will be saved with the same name as the URL.
dir (str, optional): The directory to save the downloaded file.
If not provided, the file will be saved in the current working directory.
unzip (bool, optional): Whether to unzip the downloaded file. Default: True.
delete (bool, optional): Whether to delete the downloaded file after unzipping. Default: False.
curl (bool, optional): Whether to use curl command line tool for downloading. Default: False.
retry (int, optional): The number of times to retry the download in case of failure. Default: 3.
min_bytes (float, optional): The minimum number of bytes that the downloaded file should have, to be considered
a successful download. Default: 1E0.
exist_ok (bool, optional): Whether to overwrite existing contents during unzipping. Defaults to False.
progress (bool, optional): Whether to display a progress bar during the download. Default: True.
Example:
```python
from ultralytics.utils.downloads import safe_download
link = "https://ultralytics.com/assets/bus.jpg"
path = safe_download(link)
```
"""
gdrive = url.startswith("https://drive.google.com/") # check if the URL is a Google Drive link
if gdrive:
url, file = get_google_drive_file_info(url)
f = Path(dir or ".") / (file or url2file(url)) # URL converted to filename
if "://" not in str(url) and Path(url).is_file(): # URL exists ('://' check required in Windows Python<3.10)
f = Path(url) # filename
elif not f.is_file(): # URL and file do not exist
desc = f"Downloading {url if gdrive else clean_url(url)} to '{f}'"
LOGGER.info(f"{desc}...")
f.parent.mkdir(parents=True, exist_ok=True) # make directory if missing
check_disk_space(url)
for i in range(retry + 1):
try:
if curl or i > 0: # curl download with retry, continue
s = "sS" * (not progress) # silent
r = subprocess.run(["curl", "-#", f"-{s}L", url, "-o", f, "--retry", "3", "-C", "-"]).returncode
assert r == 0, f"Curl return value {r}"
else: # urllib download
method = "torch"
if method == "torch":
torch.hub.download_url_to_file(url, f, progress=progress)
else:
with request.urlopen(url) as response, TQDM(
total=int(response.getheader("Content-Length", 0)),
desc=desc,
disable=not progress,
unit="B",
unit_scale=True,
unit_divisor=1024,
) as pbar:
with open(f, "wb") as f_opened:
for data in response:
f_opened.write(data)
pbar.update(len(data))
if f.exists():
if f.stat().st_size > min_bytes:
break # success
f.unlink() # remove partial downloads
except Exception as e:
if i == 0 and not is_online():
raise ConnectionError(emojis(f"‚ùå Download failure for {url}. Environment is not online.")) from e
elif i >= retry:
raise ConnectionError(emojis(f"‚ùå Download failure for {url}. Retry limit reached.")) from e
LOGGER.warning(f"⚠️ Download failure, retrying {i + 1}/{retry} {url}...")
if unzip and f.exists() and f.suffix in ("", ".zip", ".tar", ".gz"):
from zipfile import is_zipfile
unzip_dir = (dir or f.parent).resolve() # unzip to dir if provided else unzip in place
if is_zipfile(f):
unzip_dir = unzip_file(file=f, path=unzip_dir, exist_ok=exist_ok, progress=progress) # unzip
elif f.suffix in (".tar", ".gz"):
LOGGER.info(f"Unzipping {f} to {unzip_dir}...")
subprocess.run(["tar", "xf" if f.suffix == ".tar" else "xfz", f, "--directory", unzip_dir], check=True)
if delete:
f.unlink() # remove zip
return unzip_dir
def get_github_assets(repo="ultralytics/assets", version="latest", retry=False):
"""
Retrieve the specified version's tag and assets from a GitHub repository. If the version is not specified, the
function fetches the latest release assets.
Args:
repo (str, optional): The GitHub repository in the format 'owner/repo'. Defaults to 'ultralytics/assets'.
version (str, optional): The release version to fetch assets from. Defaults to 'latest'.
retry (bool, optional): Flag to retry the request in case of a failure. Defaults to False.
Returns:
(tuple): A tuple containing the release tag and a list of asset names.
Example:
```python
tag, assets = get_github_assets(repo='ultralytics/assets', version='latest')
```
"""
if version != "latest":
version = f"tags/{version}" # i.e. tags/v6.2
url = f"https://api.github.com/repos/{repo}/releases/{version}"
r = requests.get(url) # github api
if r.status_code != 200 and r.reason != "rate limit exceeded" and retry: # failed and not 403 rate limit exceeded
r = requests.get(url) # try again
if r.status_code != 200:
LOGGER.warning(f"⚠️ GitHub assets check failure for {url}: {r.status_code} {r.reason}")
return "", []
data = r.json()
return data["tag_name"], [x["name"] for x in data["assets"]] # tag, assets i.e. ['yolov8n.pt', 'yolov8s.pt', ...]
def attempt_download_asset(file, repo="ultralytics/assets", release="v8.1.0", **kwargs):
"""
Attempt to download a file from GitHub release assets if it is not found locally. The function checks for the file
locally first, then tries to download it from the specified GitHub repository release.
Args:
file (str | Path): The filename or file path to be downloaded.
repo (str, optional): The GitHub repository in the format 'owner/repo'. Defaults to 'ultralytics/assets'.
release (str, optional): The specific release version to be downloaded. Defaults to 'v8.1.0'.
**kwargs (dict): Additional keyword arguments for the download process.
Returns:
(str): The path to the downloaded file.
Example:
```python
file_path = attempt_download_asset('yolov5s.pt', repo='ultralytics/assets', release='latest')
```
"""
from ultralytics.utils import SETTINGS # scoped for circular import
# YOLOv3/5u updates
file = str(file)
file = checks.check_yolov5u_filename(file)
file = Path(file.strip().replace("'", ""))
if file.exists():
return str(file)
elif (SETTINGS["weights_dir"] / file).exists():
return str(SETTINGS["weights_dir"] / file)
else:
# URL specified
name = Path(parse.unquote(str(file))).name # decode '%2F' to '/' etc.
download_url = f"https://github.com/{repo}/releases/download"
if str(file).startswith(("http:/", "https:/")): # download
url = str(file).replace(":/", "://") # Pathlib turns :// -> :/
file = url2file(name) # parse authentication https://url.com/file.txt?auth...
if Path(file).is_file():
LOGGER.info(f"Found {clean_url(url)} locally at {file}") # file already exists
else:
safe_download(url=url, file=file, min_bytes=1e5, **kwargs)
elif repo == GITHUB_ASSETS_REPO and name in GITHUB_ASSETS_NAMES:
safe_download(url=f"{download_url}/{release}/{name}", file=file, min_bytes=1e5, **kwargs)
else:
tag, assets = get_github_assets(repo, release)
if not assets:
tag, assets = get_github_assets(repo) # latest release
if name in assets:
safe_download(url=f"{download_url}/{tag}/{name}", file=file, min_bytes=1e5, **kwargs)
return str(file)
def download(url, dir=Path.cwd(), unzip=True, delete=False, curl=False, threads=1, retry=3, exist_ok=False):
"""
Downloads files from specified URLs to a given directory. Supports concurrent downloads if multiple threads are
specified.
Args:
url (str | list): The URL or list of URLs of the files to be downloaded.
dir (Path, optional): The directory where the files will be saved. Defaults to the current working directory.
unzip (bool, optional): Flag to unzip the files after downloading. Defaults to True.
delete (bool, optional): Flag to delete the zip files after extraction. Defaults to False.
curl (bool, optional): Flag to use curl for downloading. Defaults to False.
threads (int, optional): Number of threads to use for concurrent downloads. Defaults to 1.
retry (int, optional): Number of retries in case of download failure. Defaults to 3.
exist_ok (bool, optional): Whether to overwrite existing contents during unzipping. Defaults to False.
Example:
```python
download('https://ultralytics.com/assets/example.zip', dir='path/to/dir', unzip=True)
```
"""
dir = Path(dir)
dir.mkdir(parents=True, exist_ok=True) # make directory
if threads > 1:
with ThreadPool(threads) as pool:
pool.map(
lambda x: safe_download(
url=x[0],
dir=x[1],
unzip=unzip,
delete=delete,
curl=curl,
retry=retry,
exist_ok=exist_ok,
progress=threads <= 1,
),
zip(url, repeat(dir)),
)
pool.close()
pool.join()
else:
for u in [url] if isinstance(url, (str, Path)) else url:
safe_download(url=u, dir=dir, unzip=unzip, delete=delete, curl=curl, retry=retry, exist_ok=exist_ok)
| 21,303 | Python | .py | 417 | 41.827338 | 122 | 0.623955 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,876 | __init__.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/__init__.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import contextlib
import inspect
import logging.config
import os
import platform
import re
import subprocess
import sys
import threading
import time
import urllib
import uuid
from pathlib import Path
from types import SimpleNamespace
from typing import Union
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
import yaml
from tqdm import tqdm as tqdm_original
from ultralytics import __version__
# PyTorch Multi-GPU DDP Constants
RANK = int(os.getenv("RANK", -1))
LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) # https://pytorch.org/docs/stable/elastic/run.html
# Other Constants
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLO
ASSETS = ROOT / "assets" # default images
DEFAULT_CFG_PATH = ROOT / "cfg/default.yaml"
NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads
AUTOINSTALL = str(os.getenv("YOLO_AUTOINSTALL", True)).lower() == "true" # global auto-install mode
VERBOSE = str(os.getenv("YOLO_VERBOSE", True)).lower() == "true" # global verbose mode
TQDM_BAR_FORMAT = "{l_bar}{bar:10}{r_bar}" if VERBOSE else None # tqdm bar format
LOGGING_NAME = "ultralytics"
MACOS, LINUX, WINDOWS = (platform.system() == x for x in ["Darwin", "Linux", "Windows"]) # environment booleans
ARM64 = platform.machine() in ("arm64", "aarch64") # ARM64 booleans
HELP_MSG = """
Usage examples for running YOLOv8:
1. Install the ultralytics package:
pip install ultralytics
2. Use the Python SDK:
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.yaml') # build a new model from scratch
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Use the model
results = model.train(data="coco128.yaml", epochs=3) # train the model
results = model.val() # evaluate model performance on the validation set
results = model('https://ultralytics.com/images/bus.jpg') # predict on an image
success = model.export(format='onnx') # export the model to ONNX format
3. Use the command line interface (CLI):
YOLOv8 'yolo' CLI commands use the following syntax:
yolo TASK MODE ARGS
Where TASK (optional) is one of [detect, segment, classify]
MODE (required) is one of [train, val, predict, export]
ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults.
See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg'
- Train a detection model for 10 epochs with an initial learning_rate of 0.01
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
- Predict a YouTube video using a pretrained segmentation model at image size 320:
yolo segment predict model=yolov8n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
- Val a pretrained detection model at batch-size 1 and image size 640:
yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640
- Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required)
yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128
- Run special commands:
yolo help
yolo checks
yolo version
yolo settings
yolo copy-cfg
yolo cfg
Docs: https://docs.ultralytics.com
Community: https://community.ultralytics.com
GitHub: https://github.com/ultralytics/ultralytics
"""
# Settings
torch.set_printoptions(linewidth=320, precision=4, profile="default")
np.set_printoptions(linewidth=320, formatter={"float_kind": "{:11.5g}".format}) # format short g, %precision=5
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
os.environ["NUMEXPR_MAX_THREADS"] = str(NUM_THREADS) # NumExpr max threads
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8" # for deterministic training
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" # suppress verbose TF compiler warnings in Colab
class TQDM(tqdm_original):
"""
Custom Ultralytics tqdm class with different default arguments.
Args:
*args (list): Positional arguments passed to original tqdm.
**kwargs (dict): Keyword arguments, with custom defaults applied.
"""
def __init__(self, *args, **kwargs):
"""
Initialize custom Ultralytics tqdm class with different default arguments.
Note these can still be overridden when calling TQDM.
"""
kwargs["disable"] = not VERBOSE or kwargs.get("disable", False) # logical 'and' with default value if passed
kwargs.setdefault("bar_format", TQDM_BAR_FORMAT) # override default value if passed
super().__init__(*args, **kwargs)
class SimpleClass:
"""Ultralytics SimpleClass is a base class providing helpful string representation, error reporting, and attribute
access methods for easier debugging and usage.
"""
def __str__(self):
"""Return a human-readable string representation of the object."""
attr = []
for a in dir(self):
v = getattr(self, a)
if not callable(v) and not a.startswith("_"):
if isinstance(v, SimpleClass):
# Display only the module and class name for subclasses
s = f"{a}: {v.__module__}.{v.__class__.__name__} object"
else:
s = f"{a}: {repr(v)}"
attr.append(s)
return f"{self.__module__}.{self.__class__.__name__} object with attributes:\n\n" + "\n".join(attr)
def __repr__(self):
"""Return a machine-readable string representation of the object."""
return self.__str__()
def __getattr__(self, attr):
"""Custom attribute access error message with helpful information."""
name = self.__class__.__name__
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
class IterableSimpleNamespace(SimpleNamespace):
"""Ultralytics IterableSimpleNamespace is an extension class of SimpleNamespace that adds iterable functionality and
enables usage with dict() and for loops.
"""
def __iter__(self):
"""Return an iterator of key-value pairs from the namespace's attributes."""
return iter(vars(self).items())
def __str__(self):
"""Return a human-readable string representation of the object."""
return "\n".join(f"{k}={v}" for k, v in vars(self).items())
def __getattr__(self, attr):
"""Custom attribute access error message with helpful information."""
name = self.__class__.__name__
raise AttributeError(
f"""
'{name}' object has no attribute '{attr}'. This may be caused by a modified or out of date ultralytics
'default.yaml' file.\nPlease update your code with 'pip install -U ultralytics' and if necessary replace
{DEFAULT_CFG_PATH} with the latest version from
https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/default.yaml
"""
)
def get(self, key, default=None):
"""Return the value of the specified key if it exists; otherwise, return the default value."""
return getattr(self, key, default)
def plt_settings(rcparams=None, backend="Agg"):
"""
Decorator to temporarily set rc parameters and the backend for a plotting function.
Example:
decorator: @plt_settings({"font.size": 12})
context manager: with plt_settings({"font.size": 12}):
Args:
rcparams (dict): Dictionary of rc parameters to set.
backend (str, optional): Name of the backend to use. Defaults to 'Agg'.
Returns:
(Callable): Decorated function with temporarily set rc parameters and backend. This decorator can be
applied to any function that needs to have specific matplotlib rc parameters and backend for its execution.
"""
if rcparams is None:
rcparams = {"font.size": 11}
def decorator(func):
"""Decorator to apply temporary rc parameters and backend to a function."""
def wrapper(*args, **kwargs):
"""Sets rc parameters and backend, calls the original function, and restores the settings."""
original_backend = plt.get_backend()
if backend.lower() != original_backend.lower():
plt.close("all") # auto-close()ing of figures upon backend switching is deprecated since 3.8
plt.switch_backend(backend)
with plt.rc_context(rcparams):
result = func(*args, **kwargs)
if backend != original_backend:
plt.close("all")
plt.switch_backend(original_backend)
return result
return wrapper
return decorator
def set_logging(name=LOGGING_NAME, verbose=True):
"""Sets up logging for the given name with UTF-8 encoding support."""
level = logging.INFO if verbose and RANK in {-1, 0} else logging.ERROR # rank in world for Multi-GPU trainings
# Configure the console (stdout) encoding to UTF-8
formatter = logging.Formatter("%(message)s") # Default formatter
if WINDOWS and sys.stdout.encoding != "utf-8":
try:
if hasattr(sys.stdout, "reconfigure"):
sys.stdout.reconfigure(encoding="utf-8")
elif hasattr(sys.stdout, "buffer"):
import io
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding="utf-8")
else:
sys.stdout.encoding = "utf-8"
except Exception as e:
print(f"Creating custom formatter for non UTF-8 environments due to {e}")
class CustomFormatter(logging.Formatter):
def format(self, record):
"""Sets up logging with UTF-8 encoding and configurable verbosity."""
return emojis(super().format(record))
formatter = CustomFormatter("%(message)s") # Use CustomFormatter to eliminate UTF-8 output as last recourse
# Create and configure the StreamHandler
stream_handler = logging.StreamHandler(sys.stdout)
stream_handler.setFormatter(formatter)
stream_handler.setLevel(level)
logger = logging.getLogger(name)
logger.setLevel(level)
logger.addHandler(stream_handler)
logger.propagate = False
return logger
# Set logger
LOGGER = set_logging(LOGGING_NAME, verbose=VERBOSE) # define globally (used in train.py, val.py, predict.py, etc.)
for logger in "sentry_sdk", "urllib3.connectionpool":
logging.getLogger(logger).setLevel(logging.CRITICAL + 1)
def emojis(string=""):
"""Return platform-dependent emoji-safe version of string."""
return string.encode().decode("ascii", "ignore") if WINDOWS else string
class ThreadingLocked:
"""
A decorator class for ensuring thread-safe execution of a function or method. This class can be used as a decorator
to make sure that if the decorated function is called from multiple threads, only one thread at a time will be able
to execute the function.
Attributes:
lock (threading.Lock): A lock object used to manage access to the decorated function.
Example:
```python
from ultralytics.utils import ThreadingLocked
@ThreadingLocked()
def my_function():
# Your code here
pass
```
"""
def __init__(self):
"""Initializes the decorator class for thread-safe execution of a function or method."""
self.lock = threading.Lock()
def __call__(self, f):
"""Run thread-safe execution of function or method."""
from functools import wraps
@wraps(f)
def decorated(*args, **kwargs):
"""Applies thread-safety to the decorated function or method."""
with self.lock:
return f(*args, **kwargs)
return decorated
def yaml_save(file="data.yaml", data=None, header=""):
"""
Save YAML data to a file.
Args:
file (str, optional): File name. Default is 'data.yaml'.
data (dict): Data to save in YAML format.
header (str, optional): YAML header to add.
Returns:
(None): Data is saved to the specified file.
"""
if data is None:
data = {}
file = Path(file)
if not file.parent.exists():
# Create parent directories if they don't exist
file.parent.mkdir(parents=True, exist_ok=True)
# Convert Path objects to strings
valid_types = int, float, str, bool, list, tuple, dict, type(None)
for k, v in data.items():
if not isinstance(v, valid_types):
data[k] = str(v)
# Dump data to file in YAML format
with open(file, "w", errors="ignore", encoding="utf-8") as f:
if header:
f.write(header)
yaml.safe_dump(data, f, sort_keys=False, allow_unicode=True)
def yaml_load(file="data.yaml", append_filename=False):
"""
Load YAML data from a file.
Args:
file (str, optional): File name. Default is 'data.yaml'.
append_filename (bool): Add the YAML filename to the YAML dictionary. Default is False.
Returns:
(dict): YAML data and file name.
"""
assert Path(file).suffix in (".yaml", ".yml"), f"Attempting to load non-YAML file {file} with yaml_load()"
with open(file, errors="ignore", encoding="utf-8") as f:
s = f.read() # string
# Remove special characters
if not s.isprintable():
s = re.sub(r"[^\x09\x0A\x0D\x20-\x7E\x85\xA0-\uD7FF\uE000-\uFFFD\U00010000-\U0010ffff]+", "", s)
# Add YAML filename to dict and return
data = yaml.safe_load(s) or {} # always return a dict (yaml.safe_load() may return None for empty files)
if append_filename:
data["yaml_file"] = str(file)
return data
def yaml_print(yaml_file: Union[str, Path, dict]) -> None:
"""
Pretty prints a YAML file or a YAML-formatted dictionary.
Args:
yaml_file: The file path of the YAML file or a YAML-formatted dictionary.
Returns:
(None)
"""
yaml_dict = yaml_load(yaml_file) if isinstance(yaml_file, (str, Path)) else yaml_file
dump = yaml.dump(yaml_dict, sort_keys=False, allow_unicode=True)
LOGGER.info(f"Printing '{colorstr('bold', 'black', yaml_file)}'\n\n{dump}")
# Default configuration
DEFAULT_CFG_DICT = yaml_load(DEFAULT_CFG_PATH)
for k, v in DEFAULT_CFG_DICT.items():
if isinstance(v, str) and v.lower() == "none":
DEFAULT_CFG_DICT[k] = None
DEFAULT_CFG_KEYS = DEFAULT_CFG_DICT.keys()
DEFAULT_CFG = IterableSimpleNamespace(**DEFAULT_CFG_DICT)
def is_ubuntu() -> bool:
"""
Check if the OS is Ubuntu.
Returns:
(bool): True if OS is Ubuntu, False otherwise.
"""
with contextlib.suppress(FileNotFoundError):
with open("/etc/os-release") as f:
return "ID=ubuntu" in f.read()
return False
def is_colab():
"""
Check if the current script is running inside a Google Colab notebook.
Returns:
(bool): True if running inside a Colab notebook, False otherwise.
"""
return "COLAB_RELEASE_TAG" in os.environ or "COLAB_BACKEND_VERSION" in os.environ
def is_kaggle():
"""
Check if the current script is running inside a Kaggle kernel.
Returns:
(bool): True if running inside a Kaggle kernel, False otherwise.
"""
return os.environ.get("PWD") == "/kaggle/working" and os.environ.get("KAGGLE_URL_BASE") == "https://www.kaggle.com"
def is_jupyter():
"""
Check if the current script is running inside a Jupyter Notebook. Verified on Colab, Jupyterlab, Kaggle, Paperspace.
Returns:
(bool): True if running inside a Jupyter Notebook, False otherwise.
"""
with contextlib.suppress(Exception):
from IPython import get_ipython
return get_ipython() is not None
return False
def is_docker() -> bool:
"""
Determine if the script is running inside a Docker container.
Returns:
(bool): True if the script is running inside a Docker container, False otherwise.
"""
file = Path("/proc/self/cgroup")
if file.exists():
with open(file) as f:
return "docker" in f.read()
else:
return False
def is_online() -> bool:
"""
Check internet connectivity by attempting to connect to a known online host.
Returns:
(bool): True if connection is successful, False otherwise.
"""
import socket
for host in "1.1.1.1", "8.8.8.8", "223.5.5.5": # Cloudflare, Google, AliDNS:
try:
test_connection = socket.create_connection(address=(host, 53), timeout=2)
except (socket.timeout, socket.gaierror, OSError):
continue
else:
# If the connection was successful, close it to avoid a ResourceWarning
test_connection.close()
return True
return False
ONLINE = is_online()
def is_pip_package(filepath: str = __name__) -> bool:
"""
Determines if the file at the given filepath is part of a pip package.
Args:
filepath (str): The filepath to check.
Returns:
(bool): True if the file is part of a pip package, False otherwise.
"""
import importlib.util
# Get the spec for the module
spec = importlib.util.find_spec(filepath)
# Return whether the spec is not None and the origin is not None (indicating it is a package)
return spec is not None and spec.origin is not None
def is_dir_writeable(dir_path: Union[str, Path]) -> bool:
"""
Check if a directory is writeable.
Args:
dir_path (str | Path): The path to the directory.
Returns:
(bool): True if the directory is writeable, False otherwise.
"""
return os.access(str(dir_path), os.W_OK)
def is_pytest_running():
"""
Determines whether pytest is currently running or not.
Returns:
(bool): True if pytest is running, False otherwise.
"""
return ("PYTEST_CURRENT_TEST" in os.environ) or ("pytest" in sys.modules) or ("pytest" in Path(sys.argv[0]).stem)
def is_github_action_running() -> bool:
"""
Determine if the current environment is a GitHub Actions runner.
Returns:
(bool): True if the current environment is a GitHub Actions runner, False otherwise.
"""
return "GITHUB_ACTIONS" in os.environ and "GITHUB_WORKFLOW" in os.environ and "RUNNER_OS" in os.environ
def is_git_dir():
"""
Determines whether the current file is part of a git repository. If the current file is not part of a git
repository, returns None.
Returns:
(bool): True if current file is part of a git repository.
"""
return get_git_dir() is not None
def get_git_dir():
"""
Determines whether the current file is part of a git repository and if so, returns the repository root directory. If
the current file is not part of a git repository, returns None.
Returns:
(Path | None): Git root directory if found or None if not found.
"""
for d in Path(__file__).parents:
if (d / ".git").is_dir():
return d
def get_git_origin_url():
"""
Retrieves the origin URL of a git repository.
Returns:
(str | None): The origin URL of the git repository or None if not git directory.
"""
if is_git_dir():
with contextlib.suppress(subprocess.CalledProcessError):
origin = subprocess.check_output(["git", "config", "--get", "remote.origin.url"])
return origin.decode().strip()
def get_git_branch():
"""
Returns the current git branch name. If not in a git repository, returns None.
Returns:
(str | None): The current git branch name or None if not a git directory.
"""
if is_git_dir():
with contextlib.suppress(subprocess.CalledProcessError):
origin = subprocess.check_output(["git", "rev-parse", "--abbrev-ref", "HEAD"])
return origin.decode().strip()
def get_default_args(func):
"""
Returns a dictionary of default arguments for a function.
Args:
func (callable): The function to inspect.
Returns:
(dict): A dictionary where each key is a parameter name, and each value is the default value of that parameter.
"""
signature = inspect.signature(func)
return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty}
def get_ubuntu_version():
"""
Retrieve the Ubuntu version if the OS is Ubuntu.
Returns:
(str): Ubuntu version or None if not an Ubuntu OS.
"""
if is_ubuntu():
with contextlib.suppress(FileNotFoundError, AttributeError):
with open("/etc/os-release") as f:
return re.search(r'VERSION_ID="(\d+\.\d+)"', f.read())[1]
def get_user_config_dir(sub_dir="Ultralytics"):
"""
Return the appropriate config directory based on the environment operating system.
Args:
sub_dir (str): The name of the subdirectory to create.
Returns:
(Path): The path to the user config directory.
"""
if WINDOWS:
path = Path.home() / "AppData" / "Roaming" / sub_dir
elif MACOS: # macOS
path = Path.home() / "Library" / "Application Support" / sub_dir
elif LINUX:
path = Path.home() / ".config" / sub_dir
else:
raise ValueError(f"Unsupported operating system: {platform.system()}")
# GCP and AWS lambda fix, only /tmp is writeable
if not is_dir_writeable(path.parent):
LOGGER.warning(
f"WARNING ⚠� user config directory '{path}' is not writeable, defaulting to '/tmp' or CWD."
"Alternatively you can define a YOLO_CONFIG_DIR environment variable for this path."
)
path = Path("/tmp") / sub_dir if is_dir_writeable("/tmp") else Path().cwd() / sub_dir
# Create the subdirectory if it does not exist
path.mkdir(parents=True, exist_ok=True)
return path
USER_CONFIG_DIR = Path(os.getenv("YOLO_CONFIG_DIR") or get_user_config_dir()) # Ultralytics settings dir
SETTINGS_YAML = USER_CONFIG_DIR / "settings.yaml"
def colorstr(*input):
"""
Colors a string based on the provided color and style arguments. Utilizes ANSI escape codes.
See https://en.wikipedia.org/wiki/ANSI_escape_code for more details.
This function can be called in two ways:
- colorstr('color', 'style', 'your string')
- colorstr('your string')
In the second form, 'blue' and 'bold' will be applied by default.
Args:
*input (str): A sequence of strings where the first n-1 strings are color and style arguments,
and the last string is the one to be colored.
Supported Colors and Styles:
Basic Colors: 'black', 'red', 'green', 'yellow', 'blue', 'magenta', 'cyan', 'white'
Bright Colors: 'bright_black', 'bright_red', 'bright_green', 'bright_yellow',
'bright_blue', 'bright_magenta', 'bright_cyan', 'bright_white'
Misc: 'end', 'bold', 'underline'
Returns:
(str): The input string wrapped with ANSI escape codes for the specified color and style.
Examples:
>>> colorstr('blue', 'bold', 'hello world')
>>> '\033[34m\033[1mhello world\033[0m'
"""
*args, string = input if len(input) > 1 else ("blue", "bold", input[0]) # color arguments, string
colors = {
"black": "\033[30m", # basic colors
"red": "\033[31m",
"green": "\033[32m",
"yellow": "\033[33m",
"blue": "\033[34m",
"magenta": "\033[35m",
"cyan": "\033[36m",
"white": "\033[37m",
"bright_black": "\033[90m", # bright colors
"bright_red": "\033[91m",
"bright_green": "\033[92m",
"bright_yellow": "\033[93m",
"bright_blue": "\033[94m",
"bright_magenta": "\033[95m",
"bright_cyan": "\033[96m",
"bright_white": "\033[97m",
"end": "\033[0m", # misc
"bold": "\033[1m",
"underline": "\033[4m",
}
return "".join(colors[x] for x in args) + f"{string}" + colors["end"]
def remove_colorstr(input_string):
"""
Removes ANSI escape codes from a string, effectively un-coloring it.
Args:
input_string (str): The string to remove color and style from.
Returns:
(str): A new string with all ANSI escape codes removed.
Examples:
>>> remove_colorstr(colorstr('blue', 'bold', 'hello world'))
>>> 'hello world'
"""
ansi_escape = re.compile(r"\x1B\[[0-9;]*[A-Za-z]")
return ansi_escape.sub("", input_string)
class TryExcept(contextlib.ContextDecorator):
"""
Ultralytics TryExcept class. Use as @TryExcept() decorator or 'with TryExcept():' context manager.
Examples:
As a decorator:
>>> @TryExcept(msg="Error occurred in func", verbose=True)
>>> def func():
>>> # Function logic here
>>> pass
As a context manager:
>>> with TryExcept(msg="Error occurred in block", verbose=True):
>>> # Code block here
>>> pass
"""
def __init__(self, msg="", verbose=True):
"""Initialize TryExcept class with optional message and verbosity settings."""
self.msg = msg
self.verbose = verbose
def __enter__(self):
"""Executes when entering TryExcept context, initializes instance."""
pass
def __exit__(self, exc_type, value, traceback):
"""Defines behavior when exiting a 'with' block, prints error message if necessary."""
if self.verbose and value:
print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}"))
return True
class Retry(contextlib.ContextDecorator):
"""
Retry class for function execution with exponential backoff.
Can be used as a decorator or a context manager to retry a function or block of code on exceptions, up to a
specified number of times with an exponentially increasing delay between retries.
Examples:
Example usage as a decorator:
>>> @Retry(times=3, delay=2)
>>> def test_func():
>>> # Replace with function logic that may raise exceptions
>>> return True
Example usage as a context manager:
>>> with Retry(times=3, delay=2):
>>> # Replace with code block that may raise exceptions
>>> pass
"""
def __init__(self, times=3, delay=2):
"""Initialize Retry class with specified number of retries and delay."""
self.times = times
self.delay = delay
self._attempts = 0
def __call__(self, func):
"""Decorator implementation for Retry with exponential backoff."""
def wrapped_func(*args, **kwargs):
"""Applies retries to the decorated function or method."""
self._attempts = 0
while self._attempts < self.times:
try:
return func(*args, **kwargs)
except Exception as e:
self._attempts += 1
print(f"Retry {self._attempts}/{self.times} failed: {e}")
if self._attempts >= self.times:
raise e
time.sleep(self.delay * (2**self._attempts)) # exponential backoff delay
return wrapped_func
def __enter__(self):
"""Enter the runtime context related to this object."""
self._attempts = 0
def __exit__(self, exc_type, exc_value, traceback):
"""Exit the runtime context related to this object with exponential backoff."""
if exc_type is not None:
self._attempts += 1
if self._attempts < self.times:
print(f"Retry {self._attempts}/{self.times} failed: {exc_value}")
time.sleep(self.delay * (2**self._attempts)) # exponential backoff delay
return True # Suppresses the exception and retries
return False # Re-raises the exception if retries are exhausted
def threaded(func):
"""
Multi-threads a target function by default and returns the thread or function result.
Use as @threaded decorator. The function runs in a separate thread unless 'threaded=False' is passed.
"""
def wrapper(*args, **kwargs):
"""Multi-threads a given function based on 'threaded' kwarg and returns the thread or function result."""
if kwargs.pop("threaded", True): # run in thread
thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True)
thread.start()
return thread
else:
return func(*args, **kwargs)
return wrapper
def set_sentry():
"""
Initialize the Sentry SDK for error tracking and reporting. Only used if sentry_sdk package is installed and
sync=True in settings. Run 'yolo settings' to see and update settings YAML file.
Conditions required to send errors (ALL conditions must be met or no errors will be reported):
- sentry_sdk package is installed
- sync=True in YOLO settings
- pytest is not running
- running in a pip package installation
- running in a non-git directory
- running with rank -1 or 0
- online environment
- CLI used to run package (checked with 'yolo' as the name of the main CLI command)
The function also configures Sentry SDK to ignore KeyboardInterrupt and FileNotFoundError
exceptions and to exclude events with 'out of memory' in their exception message.
Additionally, the function sets custom tags and user information for Sentry events.
"""
def before_send(event, hint):
"""
Modify the event before sending it to Sentry based on specific exception types and messages.
Args:
event (dict): The event dictionary containing information about the error.
hint (dict): A dictionary containing additional information about the error.
Returns:
dict: The modified event or None if the event should not be sent to Sentry.
"""
if "exc_info" in hint:
exc_type, exc_value, tb = hint["exc_info"]
if exc_type in (KeyboardInterrupt, FileNotFoundError) or "out of memory" in str(exc_value):
return None # do not send event
event["tags"] = {
"sys_argv": sys.argv[0],
"sys_argv_name": Path(sys.argv[0]).name,
"install": "git" if is_git_dir() else "pip" if is_pip_package() else "other",
"os": ENVIRONMENT,
}
return event
if (
SETTINGS["sync"]
and RANK in (-1, 0)
and Path(sys.argv[0]).name == "yolo"
and not TESTS_RUNNING
and ONLINE
and is_pip_package()
and not is_git_dir()
):
# If sentry_sdk package is not installed then return and do not use Sentry
try:
import sentry_sdk # noqa
except ImportError:
return
sentry_sdk.init(
dsn="https://5ff1556b71594bfea135ff0203a0d290@o4504521589325824.ingest.sentry.io/4504521592406016",
debug=False,
traces_sample_rate=1.0,
release=__version__,
environment="production", # 'dev' or 'production'
before_send=before_send,
ignore_errors=[KeyboardInterrupt, FileNotFoundError],
)
sentry_sdk.set_user({"id": SETTINGS["uuid"]}) # SHA-256 anonymized UUID hash
class SettingsManager(dict):
"""
Manages Ultralytics settings stored in a YAML file.
Args:
file (str | Path): Path to the Ultralytics settings YAML file. Default is USER_CONFIG_DIR / 'settings.yaml'.
version (str): Settings version. In case of local version mismatch, new default settings will be saved.
"""
def __init__(self, file=SETTINGS_YAML, version="0.0.4"):
"""Initialize the SettingsManager with default settings, load and validate current settings from the YAML
file.
"""
import copy
import hashlib
from ultralytics.utils.checks import check_version
from ultralytics.utils.torch_utils import torch_distributed_zero_first
git_dir = get_git_dir()
root = git_dir or Path()
datasets_root = (root.parent if git_dir and is_dir_writeable(root.parent) else root).resolve()
self.file = Path(file)
self.version = version
self.defaults = {
"settings_version": version,
"datasets_dir": str(datasets_root / "datasets"),
"weights_dir": str(root / "weights"),
"runs_dir": str(root / "runs"),
"uuid": hashlib.sha256(str(uuid.getnode()).encode()).hexdigest(),
"sync": True,
"api_key": "",
"openai_api_key": "",
"clearml": True, # integrations
"comet": True,
"dvc": True,
"hub": True,
"mlflow": True,
"neptune": True,
"raytune": True,
"tensorboard": True,
"wandb": True,
}
super().__init__(copy.deepcopy(self.defaults))
with torch_distributed_zero_first(RANK):
if not self.file.exists():
self.save()
self.load()
correct_keys = self.keys() == self.defaults.keys()
correct_types = all(type(a) is type(b) for a, b in zip(self.values(), self.defaults.values()))
correct_version = check_version(self["settings_version"], self.version)
if not (correct_keys and correct_types and correct_version):
LOGGER.warning(
"WARNING ⚠� Ultralytics settings reset to default values. This may be due to a possible problem "
"with your settings or a recent ultralytics package update. "
f"\nView settings with 'yolo settings' or at '{self.file}'"
"\nUpdate settings with 'yolo settings key=value', i.e. 'yolo settings runs_dir=path/to/dir'."
)
self.reset()
def load(self):
"""Loads settings from the YAML file."""
super().update(yaml_load(self.file))
def save(self):
"""Saves the current settings to the YAML file."""
yaml_save(self.file, dict(self))
def update(self, *args, **kwargs):
"""Updates a setting value in the current settings."""
super().update(*args, **kwargs)
self.save()
def reset(self):
"""Resets the settings to default and saves them."""
self.clear()
self.update(self.defaults)
self.save()
def deprecation_warn(arg, new_arg, version=None):
"""Issue a deprecation warning when a deprecated argument is used, suggesting an updated argument."""
if not version:
version = float(__version__[:3]) + 0.2 # deprecate after 2nd major release
LOGGER.warning(
f"WARNING ⚠� '{arg}' is deprecated and will be removed in 'ultralytics {version}' in the future. "
f"Please use '{new_arg}' instead."
)
def clean_url(url):
"""Strip auth from URL, i.e. https://url.com/file.txt?auth -> https://url.com/file.txt."""
url = Path(url).as_posix().replace(":/", "://") # Pathlib turns :// -> :/, as_posix() for Windows
return urllib.parse.unquote(url).split("?")[0] # '%2F' to '/', split https://url.com/file.txt?auth
def url2file(url):
"""Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt."""
return Path(clean_url(url)).name
# Run below code on utils init ------------------------------------------------------------------------------------
# Check first-install steps
PREFIX = colorstr("Ultralytics: ")
SETTINGS = SettingsManager() # initialize settings
DATASETS_DIR = Path(SETTINGS["datasets_dir"]) # global datasets directory
WEIGHTS_DIR = Path(SETTINGS["weights_dir"]) # global weights directory
RUNS_DIR = Path(SETTINGS["runs_dir"]) # global runs directory
ENVIRONMENT = (
"Colab"
if is_colab()
else "Kaggle"
if is_kaggle()
else "Jupyter"
if is_jupyter()
else "Docker"
if is_docker()
else platform.system()
)
TESTS_RUNNING = is_pytest_running() or is_github_action_running()
set_sentry()
# Apply monkey patches
from .patches import imread, imshow, imwrite, torch_save
torch.save = torch_save
if WINDOWS:
# Apply cv2 patches for non-ASCII and non-UTF characters in image paths
cv2.imread, cv2.imwrite, cv2.imshow = imread, imwrite, imshow
| 36,969 | Python | .py | 812 | 37.641626 | 121 | 0.637545 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,877 | instance.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/instance.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from collections import abc
from itertools import repeat
from numbers import Number
from typing import List
import numpy as np
from .ops import ltwh2xywh, ltwh2xyxy, xywh2ltwh, xywh2xyxy, xyxy2ltwh, xyxy2xywh
def _ntuple(n):
"""From PyTorch internals."""
def parse(x):
"""Parse bounding boxes format between XYWH and LTWH."""
return x if isinstance(x, abc.Iterable) else tuple(repeat(x, n))
return parse
to_2tuple = _ntuple(2)
to_4tuple = _ntuple(4)
# `xyxy` means left top and right bottom
# `xywh` means center x, center y and width, height(YOLO format)
# `ltwh` means left top and width, height(COCO format)
_formats = ["xyxy", "xywh", "ltwh"]
__all__ = ("Bboxes",) # tuple or list
class Bboxes:
"""
A class for handling bounding boxes.
The class supports various bounding box formats like 'xyxy', 'xywh', and 'ltwh'.
Bounding box data should be provided in numpy arrays.
Attributes:
bboxes (numpy.ndarray): The bounding boxes stored in a 2D numpy array.
format (str): The format of the bounding boxes ('xyxy', 'xywh', or 'ltwh').
Note:
This class does not handle normalization or denormalization of bounding boxes.
"""
def __init__(self, bboxes, format="xyxy") -> None:
"""Initializes the Bboxes class with bounding box data in a specified format."""
assert format in _formats, f"Invalid bounding box format: {format}, format must be one of {_formats}"
bboxes = bboxes[None, :] if bboxes.ndim == 1 else bboxes
assert bboxes.ndim == 2
assert bboxes.shape[1] == 4
self.bboxes = bboxes
self.format = format
# self.normalized = normalized
def convert(self, format):
"""Converts bounding box format from one type to another."""
assert format in _formats, f"Invalid bounding box format: {format}, format must be one of {_formats}"
if self.format == format:
return
elif self.format == "xyxy":
func = xyxy2xywh if format == "xywh" else xyxy2ltwh
elif self.format == "xywh":
func = xywh2xyxy if format == "xyxy" else xywh2ltwh
else:
func = ltwh2xyxy if format == "xyxy" else ltwh2xywh
self.bboxes = func(self.bboxes)
self.format = format
def areas(self):
"""Return box areas."""
self.convert("xyxy")
return (self.bboxes[:, 2] - self.bboxes[:, 0]) * (self.bboxes[:, 3] - self.bboxes[:, 1])
# def denormalize(self, w, h):
# if not self.normalized:
# return
# assert (self.bboxes <= 1.0).all()
# self.bboxes[:, 0::2] *= w
# self.bboxes[:, 1::2] *= h
# self.normalized = False
#
# def normalize(self, w, h):
# if self.normalized:
# return
# assert (self.bboxes > 1.0).any()
# self.bboxes[:, 0::2] /= w
# self.bboxes[:, 1::2] /= h
# self.normalized = True
def mul(self, scale):
"""
Args:
scale (tuple | list | int): the scale for four coords.
"""
if isinstance(scale, Number):
scale = to_4tuple(scale)
assert isinstance(scale, (tuple, list))
assert len(scale) == 4
self.bboxes[:, 0] *= scale[0]
self.bboxes[:, 1] *= scale[1]
self.bboxes[:, 2] *= scale[2]
self.bboxes[:, 3] *= scale[3]
def add(self, offset):
"""
Args:
offset (tuple | list | int): the offset for four coords.
"""
if isinstance(offset, Number):
offset = to_4tuple(offset)
assert isinstance(offset, (tuple, list))
assert len(offset) == 4
self.bboxes[:, 0] += offset[0]
self.bboxes[:, 1] += offset[1]
self.bboxes[:, 2] += offset[2]
self.bboxes[:, 3] += offset[3]
def __len__(self):
"""Return the number of boxes."""
return len(self.bboxes)
@classmethod
def concatenate(cls, boxes_list: List["Bboxes"], axis=0) -> "Bboxes":
"""
Concatenate a list of Bboxes objects into a single Bboxes object.
Args:
boxes_list (List[Bboxes]): A list of Bboxes objects to concatenate.
axis (int, optional): The axis along which to concatenate the bounding boxes.
Defaults to 0.
Returns:
Bboxes: A new Bboxes object containing the concatenated bounding boxes.
Note:
The input should be a list or tuple of Bboxes objects.
"""
assert isinstance(boxes_list, (list, tuple))
if not boxes_list:
return cls(np.empty(0))
assert all(isinstance(box, Bboxes) for box in boxes_list)
if len(boxes_list) == 1:
return boxes_list[0]
return cls(np.concatenate([b.bboxes for b in boxes_list], axis=axis))
def __getitem__(self, index) -> "Bboxes":
"""
Retrieve a specific bounding box or a set of bounding boxes using indexing.
Args:
index (int, slice, or np.ndarray): The index, slice, or boolean array to select
the desired bounding boxes.
Returns:
Bboxes: A new Bboxes object containing the selected bounding boxes.
Raises:
AssertionError: If the indexed bounding boxes do not form a 2-dimensional matrix.
Note:
When using boolean indexing, make sure to provide a boolean array with the same
length as the number of bounding boxes.
"""
if isinstance(index, int):
return Bboxes(self.bboxes[index].view(1, -1))
b = self.bboxes[index]
assert b.ndim == 2, f"Indexing on Bboxes with {index} failed to return a matrix!"
return Bboxes(b)
class Instances:
"""
Container for bounding boxes, segments, and keypoints of detected objects in an image.
Attributes:
_bboxes (Bboxes): Internal object for handling bounding box operations.
keypoints (ndarray): keypoints(x, y, visible) with shape [N, 17, 3]. Default is None.
normalized (bool): Flag indicating whether the bounding box coordinates are normalized.
segments (ndarray): Segments array with shape [N, 1000, 2] after resampling.
Args:
bboxes (ndarray): An array of bounding boxes with shape [N, 4].
segments (list | ndarray, optional): A list or array of object segments. Default is None.
keypoints (ndarray, optional): An array of keypoints with shape [N, 17, 3]. Default is None.
bbox_format (str, optional): The format of bounding boxes ('xywh' or 'xyxy'). Default is 'xywh'.
normalized (bool, optional): Whether the bounding box coordinates are normalized. Default is True.
Examples:
```python
# Create an Instances object
instances = Instances(
bboxes=np.array([[10, 10, 30, 30], [20, 20, 40, 40]]),
segments=[np.array([[5, 5], [10, 10]]), np.array([[15, 15], [20, 20]])],
keypoints=np.array([[[5, 5, 1], [10, 10, 1]], [[15, 15, 1], [20, 20, 1]]])
)
```
Note:
The bounding box format is either 'xywh' or 'xyxy', and is determined by the `bbox_format` argument.
This class does not perform input validation, and it assumes the inputs are well-formed.
"""
def __init__(self, bboxes, segments=None, keypoints=None, bbox_format="xywh", normalized=True) -> None:
"""
Args:
bboxes (ndarray): bboxes with shape [N, 4].
segments (list | ndarray): segments.
keypoints (ndarray): keypoints(x, y, visible) with shape [N, 17, 3].
"""
self._bboxes = Bboxes(bboxes=bboxes, format=bbox_format)
self.keypoints = keypoints
self.normalized = normalized
self.segments = segments
def convert_bbox(self, format):
"""Convert bounding box format."""
self._bboxes.convert(format=format)
@property
def bbox_areas(self):
"""Calculate the area of bounding boxes."""
return self._bboxes.areas()
def scale(self, scale_w, scale_h, bbox_only=False):
"""This might be similar with denormalize func but without normalized sign."""
self._bboxes.mul(scale=(scale_w, scale_h, scale_w, scale_h))
if bbox_only:
return
self.segments[..., 0] *= scale_w
self.segments[..., 1] *= scale_h
if self.keypoints is not None:
self.keypoints[..., 0] *= scale_w
self.keypoints[..., 1] *= scale_h
def denormalize(self, w, h):
"""Denormalizes boxes, segments, and keypoints from normalized coordinates."""
if not self.normalized:
return
self._bboxes.mul(scale=(w, h, w, h))
self.segments[..., 0] *= w
self.segments[..., 1] *= h
if self.keypoints is not None:
self.keypoints[..., 0] *= w
self.keypoints[..., 1] *= h
self.normalized = False
def normalize(self, w, h):
"""Normalize bounding boxes, segments, and keypoints to image dimensions."""
if self.normalized:
return
self._bboxes.mul(scale=(1 / w, 1 / h, 1 / w, 1 / h))
self.segments[..., 0] /= w
self.segments[..., 1] /= h
if self.keypoints is not None:
self.keypoints[..., 0] /= w
self.keypoints[..., 1] /= h
self.normalized = True
def add_padding(self, padw, padh):
"""Handle rect and mosaic situation."""
assert not self.normalized, "you should add padding with absolute coordinates."
self._bboxes.add(offset=(padw, padh, padw, padh))
self.segments[..., 0] += padw
self.segments[..., 1] += padh
if self.keypoints is not None:
self.keypoints[..., 0] += padw
self.keypoints[..., 1] += padh
def __getitem__(self, index) -> "Instances":
"""
Retrieve a specific instance or a set of instances using indexing.
Args:
index (int, slice, or np.ndarray): The index, slice, or boolean array to select
the desired instances.
Returns:
Instances: A new Instances object containing the selected bounding boxes,
segments, and keypoints if present.
Note:
When using boolean indexing, make sure to provide a boolean array with the same
length as the number of instances.
"""
segments = self.segments[index] if len(self.segments) else self.segments
keypoints = self.keypoints[index] if self.keypoints is not None else None
bboxes = self.bboxes[index]
bbox_format = self._bboxes.format
return Instances(
bboxes=bboxes,
segments=segments,
keypoints=keypoints,
bbox_format=bbox_format,
normalized=self.normalized,
)
def flipud(self, h):
"""Flips the coordinates of bounding boxes, segments, and keypoints vertically."""
if self._bboxes.format == "xyxy":
y1 = self.bboxes[:, 1].copy()
y2 = self.bboxes[:, 3].copy()
self.bboxes[:, 1] = h - y2
self.bboxes[:, 3] = h - y1
else:
self.bboxes[:, 1] = h - self.bboxes[:, 1]
self.segments[..., 1] = h - self.segments[..., 1]
if self.keypoints is not None:
self.keypoints[..., 1] = h - self.keypoints[..., 1]
def fliplr(self, w):
"""Reverses the order of the bounding boxes and segments horizontally."""
if self._bboxes.format == "xyxy":
x1 = self.bboxes[:, 0].copy()
x2 = self.bboxes[:, 2].copy()
self.bboxes[:, 0] = w - x2
self.bboxes[:, 2] = w - x1
else:
self.bboxes[:, 0] = w - self.bboxes[:, 0]
self.segments[..., 0] = w - self.segments[..., 0]
if self.keypoints is not None:
self.keypoints[..., 0] = w - self.keypoints[..., 0]
def clip(self, w, h):
"""Clips bounding boxes, segments, and keypoints values to stay within image boundaries."""
ori_format = self._bboxes.format
self.convert_bbox(format="xyxy")
self.bboxes[:, [0, 2]] = self.bboxes[:, [0, 2]].clip(0, w)
self.bboxes[:, [1, 3]] = self.bboxes[:, [1, 3]].clip(0, h)
if ori_format != "xyxy":
self.convert_bbox(format=ori_format)
self.segments[..., 0] = self.segments[..., 0].clip(0, w)
self.segments[..., 1] = self.segments[..., 1].clip(0, h)
if self.keypoints is not None:
self.keypoints[..., 0] = self.keypoints[..., 0].clip(0, w)
self.keypoints[..., 1] = self.keypoints[..., 1].clip(0, h)
def remove_zero_area_boxes(self):
"""
Remove zero-area boxes, i.e. after clipping some boxes may have zero width or height.
This removes them.
"""
good = self.bbox_areas > 0
if not all(good):
self._bboxes = self._bboxes[good]
if len(self.segments):
self.segments = self.segments[good]
if self.keypoints is not None:
self.keypoints = self.keypoints[good]
return good
def update(self, bboxes, segments=None, keypoints=None):
"""Updates instance variables."""
self._bboxes = Bboxes(bboxes, format=self._bboxes.format)
if segments is not None:
self.segments = segments
if keypoints is not None:
self.keypoints = keypoints
def __len__(self):
"""Return the length of the instance list."""
return len(self.bboxes)
@classmethod
def concatenate(cls, instances_list: List["Instances"], axis=0) -> "Instances":
"""
Concatenates a list of Instances objects into a single Instances object.
Args:
instances_list (List[Instances]): A list of Instances objects to concatenate.
axis (int, optional): The axis along which the arrays will be concatenated. Defaults to 0.
Returns:
Instances: A new Instances object containing the concatenated bounding boxes,
segments, and keypoints if present.
Note:
The `Instances` objects in the list should have the same properties, such as
the format of the bounding boxes, whether keypoints are present, and if the
coordinates are normalized.
"""
assert isinstance(instances_list, (list, tuple))
if not instances_list:
return cls(np.empty(0))
assert all(isinstance(instance, Instances) for instance in instances_list)
if len(instances_list) == 1:
return instances_list[0]
use_keypoint = instances_list[0].keypoints is not None
bbox_format = instances_list[0]._bboxes.format
normalized = instances_list[0].normalized
cat_boxes = np.concatenate([ins.bboxes for ins in instances_list], axis=axis)
cat_segments = np.concatenate([b.segments for b in instances_list], axis=axis)
cat_keypoints = np.concatenate([b.keypoints for b in instances_list], axis=axis) if use_keypoint else None
return cls(cat_boxes, cat_segments, cat_keypoints, bbox_format, normalized)
@property
def bboxes(self):
"""Return bounding boxes."""
return self._bboxes.bboxes
| 15,575 | Python | .py | 342 | 36.143275 | 114 | 0.593882 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,878 | benchmarks.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/benchmarks.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Benchmark a YOLO model formats for speed and accuracy.
Usage:
from ultralytics.utils.benchmarks import ProfileModels, benchmark
ProfileModels(['yolov8n.yaml', 'yolov8s.yaml']).profile()
benchmark(model='yolov8n.pt', imgsz=160)
Format | `format=argument` | Model
--- | --- | ---
PyTorch | - | yolov8n.pt
TorchScript | `torchscript` | yolov8n.torchscript
ONNX | `onnx` | yolov8n.onnx
OpenVINO | `openvino` | yolov8n_openvino_model/
TensorRT | `engine` | yolov8n.engine
CoreML | `coreml` | yolov8n.mlpackage
TensorFlow SavedModel | `saved_model` | yolov8n_saved_model/
TensorFlow GraphDef | `pb` | yolov8n.pb
TensorFlow Lite | `tflite` | yolov8n.tflite
TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite
TensorFlow.js | `tfjs` | yolov8n_web_model/
PaddlePaddle | `paddle` | yolov8n_paddle_model/
ncnn | `ncnn` | yolov8n_ncnn_model/
"""
import glob
import platform
import time
from pathlib import Path
import numpy as np
import torch.cuda
from ultralytics import YOLO
from ultralytics.cfg import TASK2DATA, TASK2METRIC
from ultralytics.engine.exporter import export_formats
from ultralytics.utils import ASSETS, LINUX, LOGGER, MACOS, TQDM, WEIGHTS_DIR
from ultralytics.utils.checks import IS_PYTHON_3_12, check_requirements, check_yolo
from ultralytics.utils.files import file_size
from ultralytics.utils.torch_utils import select_device
def benchmark(
model=WEIGHTS_DIR / "yolov8n.pt", data=None, imgsz=160, half=False, int8=False, device="cpu", verbose=False
):
"""
Benchmark a YOLO model across different formats for speed and accuracy.
Args:
model (str | Path | optional): Path to the model file or directory. Default is
Path(SETTINGS['weights_dir']) / 'yolov8n.pt'.
data (str, optional): Dataset to evaluate on, inherited from TASK2DATA if not passed. Default is None.
imgsz (int, optional): Image size for the benchmark. Default is 160.
half (bool, optional): Use half-precision for the model if True. Default is False.
int8 (bool, optional): Use int8-precision for the model if True. Default is False.
device (str, optional): Device to run the benchmark on, either 'cpu' or 'cuda'. Default is 'cpu'.
verbose (bool | float | optional): If True or a float, assert benchmarks pass with given metric.
Default is False.
Returns:
df (pandas.DataFrame): A pandas DataFrame with benchmark results for each format, including file size,
metric, and inference time.
Example:
```python
from ultralytics.utils.benchmarks import benchmark
benchmark(model='yolov8n.pt', imgsz=640)
```
"""
import pandas as pd
pd.options.display.max_columns = 10
pd.options.display.width = 120
device = select_device(device, verbose=False)
if isinstance(model, (str, Path)):
model = YOLO(model)
y = []
t0 = time.time()
for i, (name, format, suffix, cpu, gpu) in export_formats().iterrows(): # index, (name, format, suffix, CPU, GPU)
emoji, filename = "�", None # export defaults
try:
# Checks
if i == 9:
assert LINUX, "Edge TPU export only supported on Linux"
elif i == 7:
assert model.task != "obb", "TensorFlow GraphDef not supported for OBB task"
elif i in {5, 10}: # CoreML and TF.js
assert MACOS or LINUX, "export only supported on macOS and Linux"
if i in {3, 5}: # CoreML and OpenVINO
assert not IS_PYTHON_3_12, "CoreML and OpenVINO not supported on Python 3.12"
if "cpu" in device.type:
assert cpu, "inference not supported on CPU"
if "cuda" in device.type:
assert gpu, "inference not supported on GPU"
# Export
if format == "-":
filename = model.ckpt_path or model.cfg
exported_model = model # PyTorch format
else:
filename = model.export(imgsz=imgsz, format=format, half=half, int8=int8, device=device, verbose=False)
exported_model = YOLO(filename, task=model.task)
assert suffix in str(filename), "export failed"
emoji = "�" # indicates export succeeded
# Predict
assert model.task != "pose" or i != 7, "GraphDef Pose inference is not supported"
assert i not in (9, 10), "inference not supported" # Edge TPU and TF.js are unsupported
assert i != 5 or platform.system() == "Darwin", "inference only supported on macOS>=10.13" # CoreML
exported_model.predict(ASSETS / "bus.jpg", imgsz=imgsz, device=device, half=half)
# Validate
data = data or TASK2DATA[model.task] # task to dataset, i.e. coco8.yaml for task=detect
key = TASK2METRIC[model.task] # task to metric, i.e. metrics/mAP50-95(B) for task=detect
results = exported_model.val(
data=data, batch=1, imgsz=imgsz, plots=False, device=device, half=half, int8=int8, verbose=False
)
metric, speed = results.results_dict[key], results.speed["inference"]
y.append([name, "✅", round(file_size(filename), 1), round(metric, 4), round(speed, 2)])
except Exception as e:
if verbose:
assert type(e) is AssertionError, f"Benchmark failure for {name}: {e}"
LOGGER.warning(f"ERROR �� Benchmark failure for {name}: {e}")
y.append([name, emoji, round(file_size(filename), 1), None, None]) # mAP, t_inference
# Print results
check_yolo(device=device) # print system info
df = pd.DataFrame(y, columns=["Format", "Status�", "Size (MB)", key, "Inference time (ms/im)"])
name = Path(model.ckpt_path).name
s = f"\nBenchmarks complete for {name} on {data} at imgsz={imgsz} ({time.time() - t0:.2f}s)\n{df}\n"
LOGGER.info(s)
with open("benchmarks.log", "a", errors="ignore", encoding="utf-8") as f:
f.write(s)
if verbose and isinstance(verbose, float):
metrics = df[key].array # values to compare to floor
floor = verbose # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
assert all(x > floor for x in metrics if pd.notna(x)), f"Benchmark failure: metric(s) < floor {floor}"
return df
class ProfileModels:
"""
ProfileModels class for profiling different models on ONNX and TensorRT.
This class profiles the performance of different models, returning results such as model speed and FLOPs.
Attributes:
paths (list): Paths of the models to profile.
num_timed_runs (int): Number of timed runs for the profiling. Default is 100.
num_warmup_runs (int): Number of warmup runs before profiling. Default is 10.
min_time (float): Minimum number of seconds to profile for. Default is 60.
imgsz (int): Image size used in the models. Default is 640.
Methods:
profile(): Profiles the models and prints the result.
Example:
```python
from ultralytics.utils.benchmarks import ProfileModels
ProfileModels(['yolov8n.yaml', 'yolov8s.yaml'], imgsz=640).profile()
```
"""
def __init__(
self,
paths: list,
num_timed_runs=100,
num_warmup_runs=10,
min_time=60,
imgsz=640,
half=True,
trt=True,
device=None,
):
"""
Initialize the ProfileModels class for profiling models.
Args:
paths (list): List of paths of the models to be profiled.
num_timed_runs (int, optional): Number of timed runs for the profiling. Default is 100.
num_warmup_runs (int, optional): Number of warmup runs before the actual profiling starts. Default is 10.
min_time (float, optional): Minimum time in seconds for profiling a model. Default is 60.
imgsz (int, optional): Size of the image used during profiling. Default is 640.
half (bool, optional): Flag to indicate whether to use half-precision floating point for profiling.
trt (bool, optional): Flag to indicate whether to profile using TensorRT. Default is True.
device (torch.device, optional): Device used for profiling. If None, it is determined automatically.
"""
self.paths = paths
self.num_timed_runs = num_timed_runs
self.num_warmup_runs = num_warmup_runs
self.min_time = min_time
self.imgsz = imgsz
self.half = half
self.trt = trt # run TensorRT profiling
self.device = device or torch.device(0 if torch.cuda.is_available() else "cpu")
def profile(self):
"""Logs the benchmarking results of a model, checks metrics against floor and returns the results."""
files = self.get_files()
if not files:
print("No matching *.pt or *.onnx files found.")
return
table_rows = []
output = []
for file in files:
engine_file = file.with_suffix(".engine")
if file.suffix in (".pt", ".yaml", ".yml"):
model = YOLO(str(file))
model.fuse() # to report correct params and GFLOPs in model.info()
model_info = model.info()
if self.trt and self.device.type != "cpu" and not engine_file.is_file():
engine_file = model.export(
format="engine", half=self.half, imgsz=self.imgsz, device=self.device, verbose=False
)
onnx_file = model.export(
format="onnx", half=self.half, imgsz=self.imgsz, simplify=True, device=self.device, verbose=False
)
elif file.suffix == ".onnx":
model_info = self.get_onnx_model_info(file)
onnx_file = file
else:
continue
t_engine = self.profile_tensorrt_model(str(engine_file))
t_onnx = self.profile_onnx_model(str(onnx_file))
table_rows.append(self.generate_table_row(file.stem, t_onnx, t_engine, model_info))
output.append(self.generate_results_dict(file.stem, t_onnx, t_engine, model_info))
self.print_table(table_rows)
return output
def get_files(self):
"""Returns a list of paths for all relevant model files given by the user."""
files = []
for path in self.paths:
path = Path(path)
if path.is_dir():
extensions = ["*.pt", "*.onnx", "*.yaml"]
files.extend([file for ext in extensions for file in glob.glob(str(path / ext))])
elif path.suffix in {".pt", ".yaml", ".yml"}: # add non-existing
files.append(str(path))
else:
files.extend(glob.glob(str(path)))
print(f"Profiling: {sorted(files)}")
return [Path(file) for file in sorted(files)]
def get_onnx_model_info(self, onnx_file: str):
"""Retrieves the information including number of layers, parameters, gradients and FLOPs for an ONNX model
file.
"""
return 0.0, 0.0, 0.0, 0.0 # return (num_layers, num_params, num_gradients, num_flops)
def iterative_sigma_clipping(self, data, sigma=2, max_iters=3):
"""Applies an iterative sigma clipping algorithm to the given data times number of iterations."""
data = np.array(data)
for _ in range(max_iters):
mean, std = np.mean(data), np.std(data)
clipped_data = data[(data > mean - sigma * std) & (data < mean + sigma * std)]
if len(clipped_data) == len(data):
break
data = clipped_data
return data
def profile_tensorrt_model(self, engine_file: str, eps: float = 1e-3):
"""Profiles the TensorRT model, measuring average run time and standard deviation among runs."""
if not self.trt or not Path(engine_file).is_file():
return 0.0, 0.0
# Model and input
model = YOLO(engine_file)
input_data = np.random.rand(self.imgsz, self.imgsz, 3).astype(np.float32) # must be FP32
# Warmup runs
elapsed = 0.0
for _ in range(3):
start_time = time.time()
for _ in range(self.num_warmup_runs):
model(input_data, imgsz=self.imgsz, verbose=False)
elapsed = time.time() - start_time
# Compute number of runs as higher of min_time or num_timed_runs
num_runs = max(round(self.min_time / (elapsed + eps) * self.num_warmup_runs), self.num_timed_runs * 50)
# Timed runs
run_times = []
for _ in TQDM(range(num_runs), desc=engine_file):
results = model(input_data, imgsz=self.imgsz, verbose=False)
run_times.append(results[0].speed["inference"]) # Convert to milliseconds
run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=3) # sigma clipping
return np.mean(run_times), np.std(run_times)
def profile_onnx_model(self, onnx_file: str, eps: float = 1e-3):
"""Profiles an ONNX model by executing it multiple times and returns the mean and standard deviation of run
times.
"""
check_requirements("onnxruntime")
import onnxruntime as ort
# Session with either 'TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'
sess_options = ort.SessionOptions()
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
sess_options.intra_op_num_threads = 8 # Limit the number of threads
sess = ort.InferenceSession(onnx_file, sess_options, providers=["CPUExecutionProvider"])
input_tensor = sess.get_inputs()[0]
input_type = input_tensor.type
# Mapping ONNX datatype to numpy datatype
if "float16" in input_type:
input_dtype = np.float16
elif "float" in input_type:
input_dtype = np.float32
elif "double" in input_type:
input_dtype = np.float64
elif "int64" in input_type:
input_dtype = np.int64
elif "int32" in input_type:
input_dtype = np.int32
else:
raise ValueError(f"Unsupported ONNX datatype {input_type}")
input_data = np.random.rand(*input_tensor.shape).astype(input_dtype)
input_name = input_tensor.name
output_name = sess.get_outputs()[0].name
# Warmup runs
elapsed = 0.0
for _ in range(3):
start_time = time.time()
for _ in range(self.num_warmup_runs):
sess.run([output_name], {input_name: input_data})
elapsed = time.time() - start_time
# Compute number of runs as higher of min_time or num_timed_runs
num_runs = max(round(self.min_time / (elapsed + eps) * self.num_warmup_runs), self.num_timed_runs)
# Timed runs
run_times = []
for _ in TQDM(range(num_runs), desc=onnx_file):
start_time = time.time()
sess.run([output_name], {input_name: input_data})
run_times.append((time.time() - start_time) * 1000) # Convert to milliseconds
run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=5) # sigma clipping
return np.mean(run_times), np.std(run_times)
def generate_table_row(self, model_name, t_onnx, t_engine, model_info):
"""Generates a formatted string for a table row that includes model performance and metric details."""
layers, params, gradients, flops = model_info
return f"| {model_name:18s} | {self.imgsz} | - | {t_onnx[0]:.2f} ± {t_onnx[1]:.2f} ms | {t_engine[0]:.2f} ± {t_engine[1]:.2f} ms | {params / 1e6:.1f} | {flops:.1f} |"
def generate_results_dict(self, model_name, t_onnx, t_engine, model_info):
"""Generates a dictionary of model details including name, parameters, GFLOPS and speed metrics."""
layers, params, gradients, flops = model_info
return {
"model/name": model_name,
"model/parameters": params,
"model/GFLOPs": round(flops, 3),
"model/speed_ONNX(ms)": round(t_onnx[0], 3),
"model/speed_TensorRT(ms)": round(t_engine[0], 3),
}
def print_table(self, table_rows):
"""Formats and prints a comparison table for different models with given statistics and performance data."""
gpu = torch.cuda.get_device_name(0) if torch.cuda.is_available() else "GPU"
header = f"| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>{gpu} TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |"
separator = "|-------------|---------------------|--------------------|------------------------------|-----------------------------------|------------------|-----------------|"
print(f"\n\n{header}")
print(separator)
for row in table_rows:
print(row)
| 17,641 | Python | .py | 326 | 44.530675 | 189 | 0.603871 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,879 | dist.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/dist.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import os
import shutil
import socket
import sys
import tempfile
from . import USER_CONFIG_DIR
from .torch_utils import TORCH_1_9
def find_free_network_port() -> int:
"""
Finds a free port on localhost.
It is useful in single-node training when we don't want to connect to a real main node but have to set the
`MASTER_PORT` environment variable.
"""
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind(("127.0.0.1", 0))
return s.getsockname()[1] # port
def generate_ddp_file(trainer):
"""Generates a DDP file and returns its file name."""
module, name = f"{trainer.__class__.__module__}.{trainer.__class__.__name__}".rsplit(".", 1)
content = f"""
# Ultralytics Multi-GPU training temp file (should be automatically deleted after use)
overrides = {vars(trainer.args)}
if __name__ == "__main__":
from {module} import {name}
from ultralytics.utils import DEFAULT_CFG_DICT
cfg = DEFAULT_CFG_DICT.copy()
cfg.update(save_dir='') # handle the extra key 'save_dir'
trainer = {name}(cfg=cfg, overrides=overrides)
results = trainer.train()
"""
(USER_CONFIG_DIR / "DDP").mkdir(exist_ok=True)
with tempfile.NamedTemporaryFile(
prefix="_temp_",
suffix=f"{id(trainer)}.py",
mode="w+",
encoding="utf-8",
dir=USER_CONFIG_DIR / "DDP",
delete=False,
) as file:
file.write(content)
return file.name
def generate_ddp_command(world_size, trainer):
"""Generates and returns command for distributed training."""
import __main__ # noqa local import to avoid https://github.com/Lightning-AI/lightning/issues/15218
if not trainer.resume:
shutil.rmtree(trainer.save_dir) # remove the save_dir
file = generate_ddp_file(trainer)
dist_cmd = "torch.distributed.run" if TORCH_1_9 else "torch.distributed.launch"
port = find_free_network_port()
cmd = [sys.executable, "-m", dist_cmd, "--nproc_per_node", f"{world_size}", "--master_port", f"{port}", file]
return cmd, file
def ddp_cleanup(trainer, file):
"""Delete temp file if created."""
if f"{id(trainer)}.py" in file: # if temp_file suffix in file
os.remove(file)
| 2,267 | Python | .py | 56 | 35.571429 | 113 | 0.668033 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,880 | triton.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/triton.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from typing import List
from urllib.parse import urlsplit
import numpy as np
class TritonRemoteModel:
"""
Client for interacting with a remote Triton Inference Server model.
Attributes:
endpoint (str): The name of the model on the Triton server.
url (str): The URL of the Triton server.
triton_client: The Triton client (either HTTP or gRPC).
InferInput: The input class for the Triton client.
InferRequestedOutput: The output request class for the Triton client.
input_formats (List[str]): The data types of the model inputs.
np_input_formats (List[type]): The numpy data types of the model inputs.
input_names (List[str]): The names of the model inputs.
output_names (List[str]): The names of the model outputs.
"""
def __init__(self, url: str, endpoint: str = "", scheme: str = ""):
"""
Initialize the TritonRemoteModel.
Arguments may be provided individually or parsed from a collective 'url' argument of the form
<scheme>://<netloc>/<endpoint>/<task_name>
Args:
url (str): The URL of the Triton server.
endpoint (str): The name of the model on the Triton server.
scheme (str): The communication scheme ('http' or 'grpc').
"""
if not endpoint and not scheme: # Parse all args from URL string
splits = urlsplit(url)
endpoint = splits.path.strip("/").split("/")[0]
scheme = splits.scheme
url = splits.netloc
self.endpoint = endpoint
self.url = url
# Choose the Triton client based on the communication scheme
if scheme == "http":
import tritonclient.http as client # noqa
self.triton_client = client.InferenceServerClient(url=self.url, verbose=False, ssl=False)
config = self.triton_client.get_model_config(endpoint)
else:
import tritonclient.grpc as client # noqa
self.triton_client = client.InferenceServerClient(url=self.url, verbose=False, ssl=False)
config = self.triton_client.get_model_config(endpoint, as_json=True)["config"]
# Sort output names alphabetically, i.e. 'output0', 'output1', etc.
config["output"] = sorted(config["output"], key=lambda x: x.get("name"))
# Define model attributes
type_map = {"TYPE_FP32": np.float32, "TYPE_FP16": np.float16, "TYPE_UINT8": np.uint8}
self.InferRequestedOutput = client.InferRequestedOutput
self.InferInput = client.InferInput
self.input_formats = [x["data_type"] for x in config["input"]]
self.np_input_formats = [type_map[x] for x in self.input_formats]
self.input_names = [x["name"] for x in config["input"]]
self.output_names = [x["name"] for x in config["output"]]
def __call__(self, *inputs: np.ndarray) -> List[np.ndarray]:
"""
Call the model with the given inputs.
Args:
*inputs (List[np.ndarray]): Input data to the model.
Returns:
(List[np.ndarray]): Model outputs.
"""
infer_inputs = []
input_format = inputs[0].dtype
for i, x in enumerate(inputs):
if x.dtype != self.np_input_formats[i]:
x = x.astype(self.np_input_formats[i])
infer_input = self.InferInput(self.input_names[i], [*x.shape], self.input_formats[i].replace("TYPE_", ""))
infer_input.set_data_from_numpy(x)
infer_inputs.append(infer_input)
infer_outputs = [self.InferRequestedOutput(output_name) for output_name in self.output_names]
outputs = self.triton_client.infer(model_name=self.endpoint, inputs=infer_inputs, outputs=infer_outputs)
return [outputs.as_numpy(output_name).astype(input_format) for output_name in self.output_names]
| 3,936 | Python | .py | 73 | 44.328767 | 118 | 0.639178 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,881 | loss.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/loss.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
import torch.nn as nn
import torch.nn.functional as F
from ultralytics.utils.metrics import OKS_SIGMA
from ultralytics.utils.ops import crop_mask, xywh2xyxy, xyxy2xywh
from ultralytics.utils.tal import TaskAlignedAssigner, dist2bbox, make_anchors
from .metrics import bbox_iou
from .tal import bbox2dist
class VarifocalLoss(nn.Module):
"""
Varifocal loss by Zhang et al.
https://arxiv.org/abs/2008.13367.
"""
def __init__(self):
"""Initialize the VarifocalLoss class."""
super().__init__()
@staticmethod
def forward(pred_score, gt_score, label, alpha=0.75, gamma=2.0):
"""Computes varfocal loss."""
weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label
with torch.cuda.amp.autocast(enabled=False):
loss = (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(), reduction='none') *
weight).mean(1).sum()
return loss
class FocalLoss(nn.Module):
"""Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)."""
def __init__(self, ):
"""Initializer for FocalLoss class with no parameters."""
super().__init__()
@staticmethod
def forward(pred, label, gamma=1.5, alpha=0.25):
"""Calculates and updates confusion matrix for object detection/classification tasks."""
loss = F.binary_cross_entropy_with_logits(pred, label, reduction='none')
# p_t = torch.exp(-loss)
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
pred_prob = pred.sigmoid() # prob from logits
p_t = label * pred_prob + (1 - label) * (1 - pred_prob)
modulating_factor = (1.0 - p_t) ** gamma
loss *= modulating_factor
if alpha > 0:
alpha_factor = label * alpha + (1 - label) * (1 - alpha)
loss *= alpha_factor
return loss.mean(1).sum()
class BboxLoss(nn.Module):
"""Criterion class for computing training losses during training."""
def __init__(self, reg_max, use_dfl=False):
"""Initialize the BboxLoss module with regularization maximum and DFL settings."""
super().__init__()
self.reg_max = reg_max
self.use_dfl = use_dfl
def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):
"""IoU loss."""
weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1)
iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, WIoU=True)
if type(iou) is tuple:
if len(iou) == 2:
loss_iou = ((1.0 - iou[0]) * iou[1].detach() * weight).sum() / target_scores_sum
else:
loss_iou = (iou[0] * iou[1] * weight).sum() / target_scores_sum
else:
loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum
# DFL loss
if self.use_dfl:
target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)
loss_dfl = self._df_loss(pred_dist[fg_mask].view(-1, self.reg_max + 1), target_ltrb[fg_mask]) * weight
loss_dfl = loss_dfl.sum() / target_scores_sum
else:
loss_dfl = torch.tensor(0.0).to(pred_dist.device)
return loss_iou, loss_dfl
@staticmethod
def _df_loss(pred_dist, target):
"""Return sum of left and right DFL losses."""
# Distribution Focal Loss (DFL) proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
tl = target.long() # target left
tr = tl + 1 # target right
wl = tr - target # weight left
wr = 1 - wl # weight right
return (F.cross_entropy(pred_dist, tl.view(-1), reduction='none').view(tl.shape) * wl +
F.cross_entropy(pred_dist, tr.view(-1), reduction='none').view(tl.shape) * wr).mean(-1, keepdim=True)
class KeypointLoss(nn.Module):
"""Criterion class for computing training losses."""
def __init__(self, sigmas) -> None:
"""Initialize the KeypointLoss class."""
super().__init__()
self.sigmas = sigmas
def forward(self, pred_kpts, gt_kpts, kpt_mask, area):
"""Calculates keypoint loss factor and Euclidean distance loss for predicted and actual keypoints."""
d = (pred_kpts[..., 0] - gt_kpts[..., 0]) ** 2 + (pred_kpts[..., 1] - gt_kpts[..., 1]) ** 2
kpt_loss_factor = kpt_mask.shape[1] / (torch.sum(kpt_mask != 0, dim=1) + 1e-9)
# e = d / (2 * (area * self.sigmas) ** 2 + 1e-9) # from formula
e = d / (2 * self.sigmas) ** 2 / (area + 1e-9) / 2 # from cocoeval
return (kpt_loss_factor.view(-1, 1) * ((1 - torch.exp(-e)) * kpt_mask)).mean()
class v8DetectionLoss:
"""Criterion class for computing training losses."""
def __init__(self, model): # model must be de-paralleled
"""Initializes v8DetectionLoss with the model, defining model-related properties and BCE loss function."""
device = next(model.parameters()).device # get model device
h = model.args # hyperparameters
m = model.model[-1] # Detect() module
self.bce = nn.BCEWithLogitsLoss(reduction='none')
self.hyp = h
self.stride = m.stride # model strides
self.nc = m.nc # number of classes
self.no = m.no
self.reg_max = m.reg_max
self.device = device
self.use_dfl = m.reg_max > 1
self.assigner = TaskAlignedAssigner(topk=10, num_classes=self.nc, alpha=0.5, beta=6.0)
self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=self.use_dfl).to(device)
self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device)
def preprocess(self, targets, batch_size, scale_tensor):
"""Preprocesses the target counts and matches with the input batch size to output a tensor."""
if targets.shape[0] == 0:
out = torch.zeros(batch_size, 0, 5, device=self.device)
else:
i = targets[:, 0] # image index
_, counts = i.unique(return_counts=True)
counts = counts.to(dtype=torch.int32)
out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
for j in range(batch_size):
matches = i == j
n = matches.sum()
if n:
out[j, :n] = targets[matches, 1:]
out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
return out
def bbox_decode(self, anchor_points, pred_dist):
"""Decode predicted object bounding box coordinates from anchor points and distribution."""
if self.use_dfl:
b, a, c = pred_dist.shape # batch, anchors, channels
pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
# pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
# pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
return dist2bbox(pred_dist, anchor_points, xywh=False)
def __call__(self, preds, batch):
"""Calculate the sum of the loss for box, cls and dfl multiplied by batch size."""
loss = torch.zeros(3, device=self.device) # box, cls, dfl
feats = preds[1] if isinstance(preds, tuple) else preds
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
(self.reg_max * 4, self.nc), 1)
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
dtype = pred_scores.dtype
batch_size = pred_scores.shape[0]
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
# Targets
targets = torch.cat((batch['batch_idx'].view(-1, 1), batch['cls'].view(-1, 1), batch['bboxes']), 1)
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
# Pboxes
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
_, target_bboxes, target_scores, fg_mask, _ = self.assigner(
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)
target_scores_sum = max(target_scores.sum(), 1)
# Cls loss
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
# Bbox loss
if fg_mask.sum():
target_bboxes /= stride_tensor
loss[0], loss[2] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores,
target_scores_sum, fg_mask)
loss[0] *= self.hyp.box # box gain
loss[1] *= self.hyp.cls # cls gain
loss[2] *= self.hyp.dfl # dfl gain
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
class v8SegmentationLoss(v8DetectionLoss):
"""Criterion class for computing training losses."""
def __init__(self, model): # model must be de-paralleled
"""Initializes the v8SegmentationLoss class, taking a de-paralleled model as argument."""
super().__init__(model)
self.overlap = model.args.overlap_mask
def __call__(self, preds, batch):
"""Calculate and return the loss for the YOLO model."""
loss = torch.zeros(4, device=self.device) # box, cls, dfl
feats, pred_masks, proto = preds if len(preds) == 3 else preds[1]
batch_size, _, mask_h, mask_w = proto.shape # batch size, number of masks, mask height, mask width
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
(self.reg_max * 4, self.nc), 1)
# B, grids, ..
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
pred_masks = pred_masks.permute(0, 2, 1).contiguous()
dtype = pred_scores.dtype
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
# Targets
try:
batch_idx = batch['batch_idx'].view(-1, 1)
targets = torch.cat((batch_idx, batch['cls'].view(-1, 1), batch['bboxes']), 1)
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
except RuntimeError as e:
raise TypeError('ERROR � segment dataset incorrectly formatted or not a segment dataset.\n'
"This error can occur when incorrectly training a 'segment' model on a 'detect' dataset, "
"i.e. 'yolo train model=yolov8n-seg.pt data=coco128.yaml'.\nVerify your dataset is a "
"correctly formatted 'segment' dataset using 'data=coco128-seg.yaml' "
'as an example.\nSee https://docs.ultralytics.com/tasks/segment/ for help.') from e
# Pboxes
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
_, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)
target_scores_sum = max(target_scores.sum(), 1)
# Cls loss
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
loss[2] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
if fg_mask.sum():
# Bbox loss
loss[0], loss[3] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes / stride_tensor,
target_scores, target_scores_sum, fg_mask)
# Masks loss
masks = batch['masks'].to(self.device).float()
if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]
loss[1] = self.calculate_segmentation_loss(fg_mask, masks, target_gt_idx, target_bboxes, batch_idx, proto,
pred_masks, imgsz, self.overlap)
# WARNING: lines below prevent Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove
else:
loss[1] += (proto * 0).sum() + (pred_masks * 0).sum() # inf sums may lead to nan loss
loss[0] *= self.hyp.box # box gain
loss[1] *= self.hyp.box # seg gain
loss[2] *= self.hyp.cls # cls gain
loss[3] *= self.hyp.dfl # dfl gain
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
@staticmethod
def single_mask_loss(gt_mask: torch.Tensor, pred: torch.Tensor, proto: torch.Tensor, xyxy: torch.Tensor,
area: torch.Tensor) -> torch.Tensor:
"""
Compute the instance segmentation loss for a single image.
Args:
gt_mask (torch.Tensor): Ground truth mask of shape (n, H, W), where n is the number of objects.
pred (torch.Tensor): Predicted mask coefficients of shape (n, 32).
proto (torch.Tensor): Prototype masks of shape (32, H, W).
xyxy (torch.Tensor): Ground truth bounding boxes in xyxy format, normalized to [0, 1], of shape (n, 4).
area (torch.Tensor): Area of each ground truth bounding box of shape (n,).
Returns:
(torch.Tensor): The calculated mask loss for a single image.
Notes:
The function uses the equation pred_mask = torch.einsum('in,nhw->ihw', pred, proto) to produce the
predicted masks from the prototype masks and predicted mask coefficients.
"""
pred_mask = torch.einsum('in,nhw->ihw', pred, proto) # (n, 32) @ (32, 80, 80) -> (n, 80, 80)
loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none')
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).sum()
def calculate_segmentation_loss(
self,
fg_mask: torch.Tensor,
masks: torch.Tensor,
target_gt_idx: torch.Tensor,
target_bboxes: torch.Tensor,
batch_idx: torch.Tensor,
proto: torch.Tensor,
pred_masks: torch.Tensor,
imgsz: torch.Tensor,
overlap: bool,
) -> torch.Tensor:
"""
Calculate the loss for instance segmentation.
Args:
fg_mask (torch.Tensor): A binary tensor of shape (BS, N_anchors) indicating which anchors are positive.
masks (torch.Tensor): Ground truth masks of shape (BS, H, W) if `overlap` is False, otherwise (BS, ?, H, W).
target_gt_idx (torch.Tensor): Indexes of ground truth objects for each anchor of shape (BS, N_anchors).
target_bboxes (torch.Tensor): Ground truth bounding boxes for each anchor of shape (BS, N_anchors, 4).
batch_idx (torch.Tensor): Batch indices of shape (N_labels_in_batch, 1).
proto (torch.Tensor): Prototype masks of shape (BS, 32, H, W).
pred_masks (torch.Tensor): Predicted masks for each anchor of shape (BS, N_anchors, 32).
imgsz (torch.Tensor): Size of the input image as a tensor of shape (2), i.e., (H, W).
overlap (bool): Whether the masks in `masks` tensor overlap.
Returns:
(torch.Tensor): The calculated loss for instance segmentation.
Notes:
The batch loss can be computed for improved speed at higher memory usage.
For example, pred_mask can be computed as follows:
pred_mask = torch.einsum('in,nhw->ihw', pred, proto) # (i, 32) @ (32, 160, 160) -> (i, 160, 160)
"""
_, _, mask_h, mask_w = proto.shape
loss = 0
# Normalize to 0-1
target_bboxes_normalized = target_bboxes / imgsz[[1, 0, 1, 0]]
# Areas of target bboxes
marea = xyxy2xywh(target_bboxes_normalized)[..., 2:].prod(2)
# Normalize to mask size
mxyxy = target_bboxes_normalized * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=proto.device)
for i, single_i in enumerate(zip(fg_mask, target_gt_idx, pred_masks, proto, mxyxy, marea, masks)):
fg_mask_i, target_gt_idx_i, pred_masks_i, proto_i, mxyxy_i, marea_i, masks_i = single_i
if fg_mask_i.any():
mask_idx = target_gt_idx_i[fg_mask_i]
if overlap:
gt_mask = masks_i == (mask_idx + 1).view(-1, 1, 1)
gt_mask = gt_mask.float()
else:
gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
loss += self.single_mask_loss(gt_mask, pred_masks_i[fg_mask_i], proto_i, mxyxy_i[fg_mask_i],
marea_i[fg_mask_i])
# WARNING: lines below prevents Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove
else:
loss += (proto * 0).sum() + (pred_masks * 0).sum() # inf sums may lead to nan loss
return loss / fg_mask.sum()
class v8PoseLoss(v8DetectionLoss):
"""Criterion class for computing training losses."""
def __init__(self, model): # model must be de-paralleled
"""Initializes v8PoseLoss with model, sets keypoint variables and declares a keypoint loss instance."""
super().__init__(model)
self.kpt_shape = model.model[-1].kpt_shape
self.bce_pose = nn.BCEWithLogitsLoss()
is_pose = self.kpt_shape == [17, 3]
nkpt = self.kpt_shape[0] # number of keypoints
sigmas = torch.from_numpy(OKS_SIGMA).to(self.device) if is_pose else torch.ones(nkpt, device=self.device) / nkpt
self.keypoint_loss = KeypointLoss(sigmas=sigmas)
def __call__(self, preds, batch):
"""Calculate the total loss and detach it."""
loss = torch.zeros(5, device=self.device) # box, cls, dfl, kpt_location, kpt_visibility
feats, pred_kpts = preds if isinstance(preds[0], list) else preds[1]
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
(self.reg_max * 4, self.nc), 1)
# B, grids, ..
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
pred_kpts = pred_kpts.permute(0, 2, 1).contiguous()
dtype = pred_scores.dtype
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
# Targets
batch_size = pred_scores.shape[0]
batch_idx = batch['batch_idx'].view(-1, 1)
targets = torch.cat((batch_idx, batch['cls'].view(-1, 1), batch['bboxes']), 1)
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
# Pboxes
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
pred_kpts = self.kpts_decode(anchor_points, pred_kpts.view(batch_size, -1, *self.kpt_shape)) # (b, h*w, 17, 3)
_, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)
target_scores_sum = max(target_scores.sum(), 1)
# Cls loss
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
loss[3] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
# Bbox loss
if fg_mask.sum():
target_bboxes /= stride_tensor
loss[0], loss[4] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores,
target_scores_sum, fg_mask)
keypoints = batch['keypoints'].to(self.device).float().clone()
keypoints[..., 0] *= imgsz[1]
keypoints[..., 1] *= imgsz[0]
loss[1], loss[2] = self.calculate_keypoints_loss(fg_mask, target_gt_idx, keypoints, batch_idx,
stride_tensor, target_bboxes, pred_kpts)
loss[0] *= self.hyp.box # box gain
loss[1] *= self.hyp.pose # pose gain
loss[2] *= self.hyp.kobj # kobj gain
loss[3] *= self.hyp.cls # cls gain
loss[4] *= self.hyp.dfl # dfl gain
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
@staticmethod
def kpts_decode(anchor_points, pred_kpts):
"""Decodes predicted keypoints to image coordinates."""
y = pred_kpts.clone()
y[..., :2] *= 2.0
y[..., 0] += anchor_points[:, [0]] - 0.5
y[..., 1] += anchor_points[:, [1]] - 0.5
return y
def calculate_keypoints_loss(self, masks, target_gt_idx, keypoints, batch_idx, stride_tensor, target_bboxes,
pred_kpts):
"""
Calculate the keypoints loss for the model.
This function calculates the keypoints loss and keypoints object loss for a given batch. The keypoints loss is
based on the difference between the predicted keypoints and ground truth keypoints. The keypoints object loss is
a binary classification loss that classifies whether a keypoint is present or not.
Args:
masks (torch.Tensor): Binary mask tensor indicating object presence, shape (BS, N_anchors).
target_gt_idx (torch.Tensor): Index tensor mapping anchors to ground truth objects, shape (BS, N_anchors).
keypoints (torch.Tensor): Ground truth keypoints, shape (N_kpts_in_batch, N_kpts_per_object, kpts_dim).
batch_idx (torch.Tensor): Batch index tensor for keypoints, shape (N_kpts_in_batch, 1).
stride_tensor (torch.Tensor): Stride tensor for anchors, shape (N_anchors, 1).
target_bboxes (torch.Tensor): Ground truth boxes in (x1, y1, x2, y2) format, shape (BS, N_anchors, 4).
pred_kpts (torch.Tensor): Predicted keypoints, shape (BS, N_anchors, N_kpts_per_object, kpts_dim).
Returns:
(tuple): Returns a tuple containing:
- kpts_loss (torch.Tensor): The keypoints loss.
- kpts_obj_loss (torch.Tensor): The keypoints object loss.
"""
batch_idx = batch_idx.flatten()
batch_size = len(masks)
# Find the maximum number of keypoints in a single image
max_kpts = torch.unique(batch_idx, return_counts=True)[1].max()
# Create a tensor to hold batched keypoints
batched_keypoints = torch.zeros((batch_size, max_kpts, keypoints.shape[1], keypoints.shape[2]),
device=keypoints.device)
# TODO: any idea how to vectorize this?
# Fill batched_keypoints with keypoints based on batch_idx
for i in range(batch_size):
keypoints_i = keypoints[batch_idx == i]
batched_keypoints[i, :keypoints_i.shape[0]] = keypoints_i
# Expand dimensions of target_gt_idx to match the shape of batched_keypoints
target_gt_idx_expanded = target_gt_idx.unsqueeze(-1).unsqueeze(-1)
# Use target_gt_idx_expanded to select keypoints from batched_keypoints
selected_keypoints = batched_keypoints.gather(
1, target_gt_idx_expanded.expand(-1, -1, keypoints.shape[1], keypoints.shape[2]))
# Divide coordinates by stride
selected_keypoints /= stride_tensor.view(1, -1, 1, 1)
kpts_loss = 0
kpts_obj_loss = 0
if masks.any():
gt_kpt = selected_keypoints[masks]
area = xyxy2xywh(target_bboxes[masks])[:, 2:].prod(1, keepdim=True)
pred_kpt = pred_kpts[masks]
kpt_mask = gt_kpt[..., 2] != 0 if gt_kpt.shape[-1] == 3 else torch.full_like(gt_kpt[..., 0], True)
kpts_loss = self.keypoint_loss(pred_kpt, gt_kpt, kpt_mask, area) # pose loss
if pred_kpt.shape[-1] == 3:
kpts_obj_loss = self.bce_pose(pred_kpt[..., 2], kpt_mask.float()) # keypoint obj loss
return kpts_loss, kpts_obj_loss
class v8ClassificationLoss:
"""Criterion class for computing training losses."""
def __call__(self, preds, batch):
"""Compute the classification loss between predictions and true labels."""
loss = torch.nn.functional.cross_entropy(preds, batch['cls'], reduction='sum') / 64
loss_items = loss.detach()
return loss, loss_items
| 26,018 | Python | .py | 427 | 50.091335 | 129 | 0.604632 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,882 | autobatch.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/autobatch.py | # Ultralytics YOLO üöÄ, AGPL-3.0 license
"""Functions for estimating the best YOLO batch size to use a fraction of the available CUDA memory in PyTorch."""
from copy import deepcopy
import numpy as np
import torch
from ultralytics.utils import DEFAULT_CFG, LOGGER, colorstr
from ultralytics.utils.torch_utils import profile
def check_train_batch_size(model, imgsz=640, amp=True):
"""
Check YOLO training batch size using the autobatch() function.
Args:
model (torch.nn.Module): YOLO model to check batch size for.
imgsz (int): Image size used for training.
amp (bool): If True, use automatic mixed precision (AMP) for training.
Returns:
(int): Optimal batch size computed using the autobatch() function.
"""
with torch.cuda.amp.autocast(amp):
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
def autobatch(model, imgsz=640, fraction=0.60, batch_size=DEFAULT_CFG.batch):
"""
Automatically estimate the best YOLO batch size to use a fraction of the available CUDA memory.
Args:
model (torch.nn.module): YOLO model to compute batch size for.
imgsz (int, optional): The image size used as input for the YOLO model. Defaults to 640.
fraction (float, optional): The fraction of available CUDA memory to use. Defaults to 0.60.
batch_size (int, optional): The default batch size to use if an error is detected. Defaults to 16.
Returns:
(int): The optimal batch size.
"""
# Check device
prefix = colorstr("AutoBatch: ")
LOGGER.info(f"{prefix}Computing optimal batch size for imgsz={imgsz}")
device = next(model.parameters()).device # get model device
if device.type == "cpu":
LOGGER.info(f"{prefix}CUDA not detected, using default CPU batch-size {batch_size}")
return batch_size
if torch.backends.cudnn.benchmark:
LOGGER.info(f"{prefix} ⚠️ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}")
return batch_size
# Inspect CUDA memory
gb = 1 << 30 # bytes to GiB (1024 ** 3)
d = str(device).upper() # 'CUDA:0'
properties = torch.cuda.get_device_properties(device) # device properties
t = properties.total_memory / gb # GiB total
r = torch.cuda.memory_reserved(device) / gb # GiB reserved
a = torch.cuda.memory_allocated(device) / gb # GiB allocated
f = t - (r + a) # GiB free
LOGGER.info(f"{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free")
# Profile batch sizes
batch_sizes = [1, 2, 4, 8, 16]
try:
img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]
results = profile(img, model, n=3, device=device)
# Fit a solution
y = [x[2] for x in results if x] # memory [2]
p = np.polyfit(batch_sizes[: len(y)], y, deg=1) # first degree polynomial fit
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
if None in results: # some sizes failed
i = results.index(None) # first fail index
if b >= batch_sizes[i]: # y intercept above failure point
b = batch_sizes[max(i - 1, 0)] # select prior safe point
if b < 1 or b > 1024: # b outside of safe range
b = batch_size
LOGGER.info(f"{prefix}WARNING ⚠️ CUDA anomaly detected, using default batch-size {batch_size}.")
fraction = (np.polyval(p, b) + r + a) / t # actual fraction predicted
LOGGER.info(f"{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ‚úÖ")
return b
except Exception as e:
LOGGER.warning(f"{prefix}WARNING ⚠️ error detected: {e}, using default batch-size {batch_size}.")
return batch_size
| 3,863 | Python | .py | 71 | 47.535211 | 124 | 0.657483 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,883 | files.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/files.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import contextlib
import glob
import os
import shutil
import tempfile
from contextlib import contextmanager
from datetime import datetime
from pathlib import Path
class WorkingDirectory(contextlib.ContextDecorator):
"""Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager."""
def __init__(self, new_dir):
"""Sets the working directory to 'new_dir' upon instantiation."""
self.dir = new_dir # new dir
self.cwd = Path.cwd().resolve() # current dir
def __enter__(self):
"""Changes the current directory to the specified directory."""
os.chdir(self.dir)
def __exit__(self, exc_type, exc_val, exc_tb): # noqa
"""Restore the current working directory on context exit."""
os.chdir(self.cwd)
@contextmanager
def spaces_in_path(path):
"""
Context manager to handle paths with spaces in their names. If a path contains spaces, it replaces them with
underscores, copies the file/directory to the new path, executes the context code block, then copies the
file/directory back to its original location.
Args:
path (str | Path): The original path.
Yields:
(Path): Temporary path with spaces replaced by underscores if spaces were present, otherwise the original path.
Example:
```python
with ultralytics.utils.files import spaces_in_path
with spaces_in_path('/path/with spaces') as new_path:
# Your code here
```
"""
# If path has spaces, replace them with underscores
if " " in str(path):
string = isinstance(path, str) # input type
path = Path(path)
# Create a temporary directory and construct the new path
with tempfile.TemporaryDirectory() as tmp_dir:
tmp_path = Path(tmp_dir) / path.name.replace(" ", "_")
# Copy file/directory
if path.is_dir():
# tmp_path.mkdir(parents=True, exist_ok=True)
shutil.copytree(path, tmp_path)
elif path.is_file():
tmp_path.parent.mkdir(parents=True, exist_ok=True)
shutil.copy2(path, tmp_path)
try:
# Yield the temporary path
yield str(tmp_path) if string else tmp_path
finally:
# Copy file/directory back
if tmp_path.is_dir():
shutil.copytree(tmp_path, path, dirs_exist_ok=True)
elif tmp_path.is_file():
shutil.copy2(tmp_path, path) # Copy back the file
else:
# If there are no spaces, just yield the original path
yield path
def increment_path(path, exist_ok=False, sep="", mkdir=False):
"""
Increments a file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
If the path exists and exist_ok is not set to True, the path will be incremented by appending a number and sep to
the end of the path. If the path is a file, the file extension will be preserved. If the path is a directory, the
number will be appended directly to the end of the path. If mkdir is set to True, the path will be created as a
directory if it does not already exist.
Args:
path (str, pathlib.Path): Path to increment.
exist_ok (bool, optional): If True, the path will not be incremented and returned as-is. Defaults to False.
sep (str, optional): Separator to use between the path and the incrementation number. Defaults to ''.
mkdir (bool, optional): Create a directory if it does not exist. Defaults to False.
Returns:
(pathlib.Path): Incremented path.
"""
path = Path(path) # os-agnostic
if path.exists() and not exist_ok:
path, suffix = (path.with_suffix(""), path.suffix) if path.is_file() else (path, "")
# Method 1
for n in range(2, 9999):
p = f"{path}{sep}{n}{suffix}" # increment path
if not os.path.exists(p):
break
path = Path(p)
if mkdir:
path.mkdir(parents=True, exist_ok=True) # make directory
return path
def file_age(path=__file__):
"""Return days since last file update."""
dt = datetime.now() - datetime.fromtimestamp(Path(path).stat().st_mtime) # delta
return dt.days # + dt.seconds / 86400 # fractional days
def file_date(path=__file__):
"""Return human-readable file modification date, i.e. '2021-3-26'."""
t = datetime.fromtimestamp(Path(path).stat().st_mtime)
return f"{t.year}-{t.month}-{t.day}"
def file_size(path):
"""Return file/dir size (MB)."""
if isinstance(path, (str, Path)):
mb = 1 << 20 # bytes to MiB (1024 ** 2)
path = Path(path)
if path.is_file():
return path.stat().st_size / mb
elif path.is_dir():
return sum(f.stat().st_size for f in path.glob("**/*") if f.is_file()) / mb
return 0.0
def get_latest_run(search_dir="."):
"""Return path to most recent 'last.pt' in /runs (i.e. to --resume from)."""
last_list = glob.glob(f"{search_dir}/**/last*.pt", recursive=True)
return max(last_list, key=os.path.getctime) if last_list else ""
| 5,275 | Python | .py | 113 | 38.690265 | 119 | 0.633385 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,884 | ops.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/ops.py | # Ultralytics YOLO üöÄ, AGPL-3.0 license
import contextlib
import math
import re
import time
import cv2
import numpy as np
import torch
import torch.nn.functional as F
import torchvision
from ultralytics.utils import LOGGER
from ultralytics.utils.metrics import batch_probiou
class Profile(contextlib.ContextDecorator):
"""
YOLOv8 Profile class. Use as a decorator with @Profile() or as a context manager with 'with Profile():'.
Example:
```python
from ultralytics.utils.ops import Profile
with Profile(device=device) as dt:
pass # slow operation here
print(dt) # prints "Elapsed time is 9.5367431640625e-07 s"
```
"""
def __init__(self, t=0.0, device: torch.device = None):
"""
Initialize the Profile class.
Args:
t (float): Initial time. Defaults to 0.0.
device (torch.device): Devices used for model inference. Defaults to None (cpu).
"""
self.t = t
self.device = device
self.cuda = bool(device and str(device).startswith("cuda"))
def __enter__(self):
"""Start timing."""
self.start = self.time()
return self
def __exit__(self, type, value, traceback): # noqa
"""Stop timing."""
self.dt = self.time() - self.start # delta-time
self.t += self.dt # accumulate dt
def __str__(self):
"""Returns a human-readable string representing the accumulated elapsed time in the profiler."""
return f"Elapsed time is {self.t} s"
def time(self):
"""Get current time."""
if self.cuda:
torch.cuda.synchronize(self.device)
return time.time()
def segment2box(segment, width=640, height=640):
"""
Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy).
Args:
segment (torch.Tensor): the segment label
width (int): the width of the image. Defaults to 640
height (int): The height of the image. Defaults to 640
Returns:
(np.ndarray): the minimum and maximum x and y values of the segment.
"""
x, y = segment.T # segment xy
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
x = x[inside]
y = y[inside]
return (
np.array([x.min(), y.min(), x.max(), y.max()], dtype=segment.dtype)
if any(x)
else np.zeros(4, dtype=segment.dtype)
) # xyxy
def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None, padding=True, xywh=False):
"""
Rescales bounding boxes (in the format of xyxy by default) from the shape of the image they were originally
specified in (img1_shape) to the shape of a different image (img0_shape).
Args:
img1_shape (tuple): The shape of the image that the bounding boxes are for, in the format of (height, width).
boxes (torch.Tensor): the bounding boxes of the objects in the image, in the format of (x1, y1, x2, y2)
img0_shape (tuple): the shape of the target image, in the format of (height, width).
ratio_pad (tuple): a tuple of (ratio, pad) for scaling the boxes. If not provided, the ratio and pad will be
calculated based on the size difference between the two images.
padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular
rescaling.
xywh (bool): The box format is xywh or not, default=False.
Returns:
boxes (torch.Tensor): The scaled bounding boxes, in the format of (x1, y1, x2, y2)
"""
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (
round((img1_shape[1] - img0_shape[1] * gain) / 2 - 0.1),
round((img1_shape[0] - img0_shape[0] * gain) / 2 - 0.1),
) # wh padding
else:
gain = ratio_pad[0][0]
pad = ratio_pad[1]
if padding:
boxes[..., 0] -= pad[0] # x padding
boxes[..., 1] -= pad[1] # y padding
if not xywh:
boxes[..., 2] -= pad[0] # x padding
boxes[..., 3] -= pad[1] # y padding
boxes[..., :4] /= gain
return clip_boxes(boxes, img0_shape)
def make_divisible(x, divisor):
"""
Returns the nearest number that is divisible by the given divisor.
Args:
x (int): The number to make divisible.
divisor (int | torch.Tensor): The divisor.
Returns:
(int): The nearest number divisible by the divisor.
"""
if isinstance(divisor, torch.Tensor):
divisor = int(divisor.max()) # to int
return math.ceil(x / divisor) * divisor
def nms_rotated(boxes, scores, threshold=0.45):
"""
NMS for obbs, powered by probiou and fast-nms.
Args:
boxes (torch.Tensor): (N, 5), xywhr.
scores (torch.Tensor): (N, ).
threshold (float): Iou threshold.
Returns:
"""
if len(boxes) == 0:
return np.empty((0,), dtype=np.int8)
sorted_idx = torch.argsort(scores, descending=True)
boxes = boxes[sorted_idx]
ious = batch_probiou(boxes, boxes).triu_(diagonal=1)
pick = torch.nonzero(ious.max(dim=0)[0] < threshold).squeeze_(-1)
return sorted_idx[pick]
def non_max_suppression(
prediction,
conf_thres=0.25,
iou_thres=0.45,
classes=None,
agnostic=False,
multi_label=False,
labels=(),
max_det=300,
nc=0, # number of classes (optional)
max_time_img=0.05,
max_nms=30000,
max_wh=7680,
in_place=True,
rotated=False,
):
"""
Perform non-maximum suppression (NMS) on a set of boxes, with support for masks and multiple labels per box.
Args:
prediction (torch.Tensor): A tensor of shape (batch_size, num_classes + 4 + num_masks, num_boxes)
containing the predicted boxes, classes, and masks. The tensor should be in the format
output by a model, such as YOLO.
conf_thres (float): The confidence threshold below which boxes will be filtered out.
Valid values are between 0.0 and 1.0.
iou_thres (float): The IoU threshold below which boxes will be filtered out during NMS.
Valid values are between 0.0 and 1.0.
classes (List[int]): A list of class indices to consider. If None, all classes will be considered.
agnostic (bool): If True, the model is agnostic to the number of classes, and all
classes will be considered as one.
multi_label (bool): If True, each box may have multiple labels.
labels (List[List[Union[int, float, torch.Tensor]]]): A list of lists, where each inner
list contains the apriori labels for a given image. The list should be in the format
output by a dataloader, with each label being a tuple of (class_index, x1, y1, x2, y2).
max_det (int): The maximum number of boxes to keep after NMS.
nc (int, optional): The number of classes output by the model. Any indices after this will be considered masks.
max_time_img (float): The maximum time (seconds) for processing one image.
max_nms (int): The maximum number of boxes into torchvision.ops.nms().
max_wh (int): The maximum box width and height in pixels.
in_place (bool): If True, the input prediction tensor will be modified in place.
Returns:
(List[torch.Tensor]): A list of length batch_size, where each element is a tensor of
shape (num_boxes, 6 + num_masks) containing the kept boxes, with columns
(x1, y1, x2, y2, confidence, class, mask1, mask2, ...).
"""
# Checks
assert 0 <= conf_thres <= 1, f"Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0"
assert 0 <= iou_thres <= 1, f"Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0"
if isinstance(prediction, (list, tuple)): # YOLOv8 model in validation model, output = (inference_out, loss_out)
prediction = prediction[0] # select only inference output
bs = prediction.shape[0] # batch size
nc = nc or (prediction.shape[1] - 4) # number of classes
nm = prediction.shape[1] - nc - 4
mi = 4 + nc # mask start index
xc = prediction[:, 4:mi].amax(1) > conf_thres # candidates
# Settings
# min_wh = 2 # (pixels) minimum box width and height
time_limit = 2.0 + max_time_img * bs # seconds to quit after
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
prediction = prediction.transpose(-1, -2) # shape(1,84,6300) to shape(1,6300,84)
if not rotated:
if in_place:
prediction[..., :4] = xywh2xyxy(prediction[..., :4]) # xywh to xyxy
else:
prediction = torch.cat((xywh2xyxy(prediction[..., :4]), prediction[..., 4:]), dim=-1) # xywh to xyxy
t = time.time()
output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs
for xi, x in enumerate(prediction): # image index, image inference
# Apply constraints
# x[((x[:, 2:4] < min_wh) | (x[:, 2:4] > max_wh)).any(1), 4] = 0 # width-height
x = x[xc[xi]] # confidence
# Cat apriori labels if autolabelling
if labels and len(labels[xi]) and not rotated:
lb = labels[xi]
v = torch.zeros((len(lb), nc + nm + 4), device=x.device)
v[:, :4] = xywh2xyxy(lb[:, 1:5]) # box
v[range(len(lb)), lb[:, 0].long() + 4] = 1.0 # cls
x = torch.cat((x, v), 0)
# If none remain process next image
if not x.shape[0]:
continue
# Detections matrix nx6 (xyxy, conf, cls)
box, cls, mask = x.split((4, nc, nm), 1)
if multi_label:
i, j = torch.where(cls > conf_thres)
x = torch.cat((box[i], x[i, 4 + j, None], j[:, None].float(), mask[i]), 1)
else: # best class only
conf, j = cls.max(1, keepdim=True)
x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]
# Filter by class
if classes is not None:
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
# Check shape
n = x.shape[0] # number of boxes
if not n: # no boxes
continue
if n > max_nms: # excess boxes
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence and remove excess boxes
# Batched NMS
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
scores = x[:, 4] # scores
if rotated:
boxes = torch.cat((x[:, :2] + c, x[:, 2:4], x[:, -1:]), dim=-1) # xywhr
i = nms_rotated(boxes, scores, iou_thres)
else:
boxes = x[:, :4] + c # boxes (offset by class)
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
i = i[:max_det] # limit detections
# # Experimental
# merge = False # use merge-NMS
# if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
# # Update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
# from .metrics import box_iou
# iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
# weights = iou * scores[None] # box weights
# x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
# redundant = True # require redundant detections
# if redundant:
# i = i[iou.sum(1) > 1] # require redundancy
output[xi] = x[i]
if (time.time() - t) > time_limit:
LOGGER.warning(f"WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded")
break # time limit exceeded
return output
def clip_boxes(boxes, shape):
"""
Takes a list of bounding boxes and a shape (height, width) and clips the bounding boxes to the shape.
Args:
boxes (torch.Tensor): the bounding boxes to clip
shape (tuple): the shape of the image
Returns:
(torch.Tensor | numpy.ndarray): Clipped boxes
"""
if isinstance(boxes, torch.Tensor): # faster individually (WARNING: inplace .clamp_() Apple MPS bug)
boxes[..., 0] = boxes[..., 0].clamp(0, shape[1]) # x1
boxes[..., 1] = boxes[..., 1].clamp(0, shape[0]) # y1
boxes[..., 2] = boxes[..., 2].clamp(0, shape[1]) # x2
boxes[..., 3] = boxes[..., 3].clamp(0, shape[0]) # y2
else: # np.array (faster grouped)
boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1]) # x1, x2
boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0]) # y1, y2
return boxes
def clip_coords(coords, shape):
"""
Clip line coordinates to the image boundaries.
Args:
coords (torch.Tensor | numpy.ndarray): A list of line coordinates.
shape (tuple): A tuple of integers representing the size of the image in the format (height, width).
Returns:
(torch.Tensor | numpy.ndarray): Clipped coordinates
"""
if isinstance(coords, torch.Tensor): # faster individually (WARNING: inplace .clamp_() Apple MPS bug)
coords[..., 0] = coords[..., 0].clamp(0, shape[1]) # x
coords[..., 1] = coords[..., 1].clamp(0, shape[0]) # y
else: # np.array (faster grouped)
coords[..., 0] = coords[..., 0].clip(0, shape[1]) # x
coords[..., 1] = coords[..., 1].clip(0, shape[0]) # y
return coords
def scale_image(masks, im0_shape, ratio_pad=None):
"""
Takes a mask, and resizes it to the original image size.
Args:
masks (np.ndarray): resized and padded masks/images, [h, w, num]/[h, w, 3].
im0_shape (tuple): the original image shape
ratio_pad (tuple): the ratio of the padding to the original image.
Returns:
masks (torch.Tensor): The masks that are being returned.
"""
# Rescale coordinates (xyxy) from im1_shape to im0_shape
im1_shape = masks.shape
if im1_shape[:2] == im0_shape[:2]:
return masks
if ratio_pad is None: # calculate from im0_shape
gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new
pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding
else:
# gain = ratio_pad[0][0]
pad = ratio_pad[1]
top, left = int(pad[1]), int(pad[0]) # y, x
bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0])
if len(masks.shape) < 2:
raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
masks = masks[top:bottom, left:right]
masks = cv2.resize(masks, (im0_shape[1], im0_shape[0]))
if len(masks.shape) == 2:
masks = masks[:, :, None]
return masks
def xyxy2xywh(x):
"""
Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height) format where (x1, y1) is the
top-left corner and (x2, y2) is the bottom-right corner.
Args:
x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format.
Returns:
y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height) format.
"""
assert x.shape[-1] == 4, f"input shape last dimension expected 4 but input shape is {x.shape}"
y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x) # faster than clone/copy
y[..., 0] = (x[..., 0] + x[..., 2]) / 2 # x center
y[..., 1] = (x[..., 1] + x[..., 3]) / 2 # y center
y[..., 2] = x[..., 2] - x[..., 0] # width
y[..., 3] = x[..., 3] - x[..., 1] # height
return y
def xywh2xyxy(x):
"""
Convert bounding box coordinates from (x, y, width, height) format to (x1, y1, x2, y2) format where (x1, y1) is the
top-left corner and (x2, y2) is the bottom-right corner.
Args:
x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x, y, width, height) format.
Returns:
y (np.ndarray | torch.Tensor): The bounding box coordinates in (x1, y1, x2, y2) format.
"""
assert x.shape[-1] == 4, f"input shape last dimension expected 4 but input shape is {x.shape}"
y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x) # faster than clone/copy
dw = x[..., 2] / 2 # half-width
dh = x[..., 3] / 2 # half-height
y[..., 0] = x[..., 0] - dw # top left x
y[..., 1] = x[..., 1] - dh # top left y
y[..., 2] = x[..., 0] + dw # bottom right x
y[..., 3] = x[..., 1] + dh # bottom right y
return y
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
"""
Convert normalized bounding box coordinates to pixel coordinates.
Args:
x (np.ndarray | torch.Tensor): The bounding box coordinates.
w (int): Width of the image. Defaults to 640
h (int): Height of the image. Defaults to 640
padw (int): Padding width. Defaults to 0
padh (int): Padding height. Defaults to 0
Returns:
y (np.ndarray | torch.Tensor): The coordinates of the bounding box in the format [x1, y1, x2, y2] where
x1,y1 is the top-left corner, x2,y2 is the bottom-right corner of the bounding box.
"""
assert x.shape[-1] == 4, f"input shape last dimension expected 4 but input shape is {x.shape}"
y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x) # faster than clone/copy
y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw # top left x
y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh # top left y
y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw # bottom right x
y[..., 3] = h * (x[..., 1] + x[..., 3] / 2) + padh # bottom right y
return y
def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
"""
Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height, normalized) format. x, y,
width and height are normalized to image dimensions.
Args:
x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format.
w (int): The width of the image. Defaults to 640
h (int): The height of the image. Defaults to 640
clip (bool): If True, the boxes will be clipped to the image boundaries. Defaults to False
eps (float): The minimum value of the box's width and height. Defaults to 0.0
Returns:
y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height, normalized) format
"""
if clip:
x = clip_boxes(x, (h - eps, w - eps))
assert x.shape[-1] == 4, f"input shape last dimension expected 4 but input shape is {x.shape}"
y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x) # faster than clone/copy
y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w # x center
y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h # y center
y[..., 2] = (x[..., 2] - x[..., 0]) / w # width
y[..., 3] = (x[..., 3] - x[..., 1]) / h # height
return y
def xywh2ltwh(x):
"""
Convert the bounding box format from [x, y, w, h] to [x1, y1, w, h], where x1, y1 are the top-left coordinates.
Args:
x (np.ndarray | torch.Tensor): The input tensor with the bounding box coordinates in the xywh format
Returns:
y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = x[..., 0] - x[..., 2] / 2 # top left x
y[..., 1] = x[..., 1] - x[..., 3] / 2 # top left y
return y
def xyxy2ltwh(x):
"""
Convert nx4 bounding boxes from [x1, y1, x2, y2] to [x1, y1, w, h], where xy1=top-left, xy2=bottom-right.
Args:
x (np.ndarray | torch.Tensor): The input tensor with the bounding boxes coordinates in the xyxy format
Returns:
y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format.
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 2] = x[..., 2] - x[..., 0] # width
y[..., 3] = x[..., 3] - x[..., 1] # height
return y
def ltwh2xywh(x):
"""
Convert nx4 boxes from [x1, y1, w, h] to [x, y, w, h] where xy1=top-left, xy=center.
Args:
x (torch.Tensor): the input tensor
Returns:
y (np.ndarray | torch.Tensor): The bounding box coordinates in the xywh format.
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = x[..., 0] + x[..., 2] / 2 # center x
y[..., 1] = x[..., 1] + x[..., 3] / 2 # center y
return y
def xyxyxyxy2xywhr(corners):
"""
Convert batched Oriented Bounding Boxes (OBB) from [xy1, xy2, xy3, xy4] to [xywh, rotation]. Rotation values are
expected in degrees from 0 to 90.
Args:
corners (numpy.ndarray | torch.Tensor): Input corners of shape (n, 8).
Returns:
(numpy.ndarray | torch.Tensor): Converted data in [cx, cy, w, h, rotation] format of shape (n, 5).
"""
is_torch = isinstance(corners, torch.Tensor)
points = corners.cpu().numpy() if is_torch else corners
points = points.reshape(len(corners), -1, 2)
rboxes = []
for pts in points:
# NOTE: Use cv2.minAreaRect to get accurate xywhr,
# especially some objects are cut off by augmentations in dataloader.
(x, y), (w, h), angle = cv2.minAreaRect(pts)
rboxes.append([x, y, w, h, angle / 180 * np.pi])
return (
torch.tensor(rboxes, device=corners.device, dtype=corners.dtype)
if is_torch
else np.asarray(rboxes, dtype=points.dtype)
) # rboxes
def xywhr2xyxyxyxy(rboxes):
"""
Convert batched Oriented Bounding Boxes (OBB) from [xywh, rotation] to [xy1, xy2, xy3, xy4]. Rotation values should
be in degrees from 0 to 90.
Args:
rboxes (numpy.ndarray | torch.Tensor): Boxes in [cx, cy, w, h, rotation] format of shape (n, 5) or (b, n, 5).
Returns:
(numpy.ndarray | torch.Tensor): Converted corner points of shape (n, 4, 2) or (b, n, 4, 2).
"""
is_numpy = isinstance(rboxes, np.ndarray)
cos, sin = (np.cos, np.sin) if is_numpy else (torch.cos, torch.sin)
ctr = rboxes[..., :2]
w, h, angle = (rboxes[..., i : i + 1] for i in range(2, 5))
cos_value, sin_value = cos(angle), sin(angle)
vec1 = [w / 2 * cos_value, w / 2 * sin_value]
vec2 = [-h / 2 * sin_value, h / 2 * cos_value]
vec1 = np.concatenate(vec1, axis=-1) if is_numpy else torch.cat(vec1, dim=-1)
vec2 = np.concatenate(vec2, axis=-1) if is_numpy else torch.cat(vec2, dim=-1)
pt1 = ctr + vec1 + vec2
pt2 = ctr + vec1 - vec2
pt3 = ctr - vec1 - vec2
pt4 = ctr - vec1 + vec2
return np.stack([pt1, pt2, pt3, pt4], axis=-2) if is_numpy else torch.stack([pt1, pt2, pt3, pt4], dim=-2)
def ltwh2xyxy(x):
"""
It converts the bounding box from [x1, y1, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right.
Args:
x (np.ndarray | torch.Tensor): the input image
Returns:
y (np.ndarray | torch.Tensor): the xyxy coordinates of the bounding boxes.
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 2] = x[..., 2] + x[..., 0] # width
y[..., 3] = x[..., 3] + x[..., 1] # height
return y
def segments2boxes(segments):
"""
It converts segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
Args:
segments (list): list of segments, each segment is a list of points, each point is a list of x, y coordinates
Returns:
(np.ndarray): the xywh coordinates of the bounding boxes.
"""
boxes = []
for s in segments:
x, y = s.T # segment xy
boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
return xyxy2xywh(np.array(boxes)) # cls, xywh
def resample_segments(segments, n=1000):
"""
Inputs a list of segments (n,2) and returns a list of segments (n,2) up-sampled to n points each.
Args:
segments (list): a list of (n,2) arrays, where n is the number of points in the segment.
n (int): number of points to resample the segment to. Defaults to 1000
Returns:
segments (list): the resampled segments.
"""
for i, s in enumerate(segments):
s = np.concatenate((s, s[0:1, :]), axis=0)
x = np.linspace(0, len(s) - 1, n)
xp = np.arange(len(s))
segments[i] = (
np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)], dtype=np.float32).reshape(2, -1).T
) # segment xy
return segments
def crop_mask(masks, boxes):
"""
It takes a mask and a bounding box, and returns a mask that is cropped to the bounding box.
Args:
masks (torch.Tensor): [n, h, w] tensor of masks
boxes (torch.Tensor): [n, 4] tensor of bbox coordinates in relative point form
Returns:
(torch.Tensor): The masks are being cropped to the bounding box.
"""
_, h, w = masks.shape
x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(n,1,1)
r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,1,w)
c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None] # cols shape(1,h,1)
return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
def process_mask_upsample(protos, masks_in, bboxes, shape):
"""
Takes the output of the mask head, and applies the mask to the bounding boxes. This produces masks of higher quality
but is slower.
Args:
protos (torch.Tensor): [mask_dim, mask_h, mask_w]
masks_in (torch.Tensor): [n, mask_dim], n is number of masks after nms
bboxes (torch.Tensor): [n, 4], n is number of masks after nms
shape (tuple): the size of the input image (h,w)
Returns:
(torch.Tensor): The upsampled masks.
"""
c, mh, mw = protos.shape # CHW
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
masks = F.interpolate(masks[None], shape, mode="bilinear", align_corners=False)[0] # CHW
masks = crop_mask(masks, bboxes) # CHW
return masks.gt_(0.5)
def process_mask(protos, masks_in, bboxes, shape, upsample=False):
"""
Apply masks to bounding boxes using the output of the mask head.
Args:
protos (torch.Tensor): A tensor of shape [mask_dim, mask_h, mask_w].
masks_in (torch.Tensor): A tensor of shape [n, mask_dim], where n is the number of masks after NMS.
bboxes (torch.Tensor): A tensor of shape [n, 4], where n is the number of masks after NMS.
shape (tuple): A tuple of integers representing the size of the input image in the format (h, w).
upsample (bool): A flag to indicate whether to upsample the mask to the original image size. Default is False.
Returns:
(torch.Tensor): A binary mask tensor of shape [n, h, w], where n is the number of masks after NMS, and h and w
are the height and width of the input image. The mask is applied to the bounding boxes.
"""
c, mh, mw = protos.shape # CHW
ih, iw = shape
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW
width_ratio = mw / iw
height_ratio = mh / ih
downsampled_bboxes = bboxes.clone()
downsampled_bboxes[:, 0] *= width_ratio
downsampled_bboxes[:, 2] *= width_ratio
downsampled_bboxes[:, 3] *= height_ratio
downsampled_bboxes[:, 1] *= height_ratio
masks = crop_mask(masks, downsampled_bboxes) # CHW
if upsample:
masks = F.interpolate(masks[None], shape, mode="bilinear", align_corners=False)[0] # CHW
return masks.gt_(0.5)
def process_mask_native(protos, masks_in, bboxes, shape):
"""
It takes the output of the mask head, and crops it after upsampling to the bounding boxes.
Args:
protos (torch.Tensor): [mask_dim, mask_h, mask_w]
masks_in (torch.Tensor): [n, mask_dim], n is number of masks after nms
bboxes (torch.Tensor): [n, 4], n is number of masks after nms
shape (tuple): the size of the input image (h,w)
Returns:
masks (torch.Tensor): The returned masks with dimensions [h, w, n]
"""
c, mh, mw = protos.shape # CHW
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
masks = scale_masks(masks[None], shape)[0] # CHW
masks = crop_mask(masks, bboxes) # CHW
return masks.gt_(0.5)
def scale_masks(masks, shape, padding=True):
"""
Rescale segment masks to shape.
Args:
masks (torch.Tensor): (N, C, H, W).
shape (tuple): Height and width.
padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular
rescaling.
"""
mh, mw = masks.shape[2:]
gain = min(mh / shape[0], mw / shape[1]) # gain = old / new
pad = [mw - shape[1] * gain, mh - shape[0] * gain] # wh padding
if padding:
pad[0] /= 2
pad[1] /= 2
top, left = (int(pad[1]), int(pad[0])) if padding else (0, 0) # y, x
bottom, right = (int(mh - pad[1]), int(mw - pad[0]))
masks = masks[..., top:bottom, left:right]
masks = F.interpolate(masks, shape, mode="bilinear", align_corners=False) # NCHW
return masks
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None, normalize=False, padding=True):
"""
Rescale segment coordinates (xy) from img1_shape to img0_shape.
Args:
img1_shape (tuple): The shape of the image that the coords are from.
coords (torch.Tensor): the coords to be scaled of shape n,2.
img0_shape (tuple): the shape of the image that the segmentation is being applied to.
ratio_pad (tuple): the ratio of the image size to the padded image size.
normalize (bool): If True, the coordinates will be normalized to the range [0, 1]. Defaults to False.
padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular
rescaling.
Returns:
coords (torch.Tensor): The scaled coordinates.
"""
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0][0]
pad = ratio_pad[1]
if padding:
coords[..., 0] -= pad[0] # x padding
coords[..., 1] -= pad[1] # y padding
coords[..., 0] /= gain
coords[..., 1] /= gain
coords = clip_coords(coords, img0_shape)
if normalize:
coords[..., 0] /= img0_shape[1] # width
coords[..., 1] /= img0_shape[0] # height
return coords
def regularize_rboxes(rboxes):
"""
Regularize rotated boxes in range [0, pi/2].
Args:
rboxes (torch.Tensor): (N, 5), xywhr.
Returns:
(torch.Tensor): The regularized boxes.
"""
x, y, w, h, t = rboxes.unbind(dim=-1)
# Swap edge and angle if h >= w
w_ = torch.where(w > h, w, h)
h_ = torch.where(w > h, h, w)
t = torch.where(w > h, t, t + math.pi / 2) % math.pi
return torch.stack([x, y, w_, h_, t], dim=-1) # regularized boxes
def masks2segments(masks, strategy="largest"):
"""
It takes a list of masks(n,h,w) and returns a list of segments(n,xy)
Args:
masks (torch.Tensor): the output of the model, which is a tensor of shape (batch_size, 160, 160)
strategy (str): 'concat' or 'largest'. Defaults to largest
Returns:
segments (List): list of segment masks
"""
segments = []
for x in masks.int().cpu().numpy().astype("uint8"):
c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
if c:
if strategy == "concat": # concatenate all segments
c = np.concatenate([x.reshape(-1, 2) for x in c])
elif strategy == "largest": # select largest segment
c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
else:
c = np.zeros((0, 2)) # no segments found
segments.append(c.astype("float32"))
return segments
def convert_torch2numpy_batch(batch: torch.Tensor) -> np.ndarray:
"""
Convert a batch of FP32 torch tensors (0.0-1.0) to a NumPy uint8 array (0-255), changing from BCHW to BHWC layout.
Args:
batch (torch.Tensor): Input tensor batch of shape (Batch, Channels, Height, Width) and dtype torch.float32.
Returns:
(np.ndarray): Output NumPy array batch of shape (Batch, Height, Width, Channels) and dtype uint8.
"""
return (batch.permute(0, 2, 3, 1).contiguous() * 255).clamp(0, 255).to(torch.uint8).cpu().numpy()
def clean_str(s):
"""
Cleans a string by replacing special characters with underscore _
Args:
s (str): a string needing special characters replaced
Returns:
(str): a string with special characters replaced by an underscore _
"""
return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
| 33,264 | Python | .py | 692 | 41.154624 | 120 | 0.603764 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,885 | dvc.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/callbacks/dvc.py | # Ultralytics YOLO üöÄ, AGPL-3.0 license
from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING, checks
try:
assert not TESTS_RUNNING # do not log pytest
assert SETTINGS["dvc"] is True # verify integration is enabled
import dvclive
assert checks.check_version("dvclive", "2.11.0", verbose=True)
import os
import re
from pathlib import Path
# DVCLive logger instance
live = None
_processed_plots = {}
# `on_fit_epoch_end` is called on final validation (probably need to be fixed) for now this is the way we
# distinguish final evaluation of the best model vs last epoch validation
_training_epoch = False
except (ImportError, AssertionError, TypeError):
dvclive = None
def _log_images(path, prefix=""):
"""Logs images at specified path with an optional prefix using DVCLive."""
if live:
name = path.name
# Group images by batch to enable sliders in UI
if m := re.search(r"_batch(\d+)", name):
ni = m[1]
new_stem = re.sub(r"_batch(\d+)", "_batch", path.stem)
name = (Path(new_stem) / ni).with_suffix(path.suffix)
live.log_image(os.path.join(prefix, name), path)
def _log_plots(plots, prefix=""):
"""Logs plot images for training progress if they have not been previously processed."""
for name, params in plots.items():
timestamp = params["timestamp"]
if _processed_plots.get(name) != timestamp:
_log_images(name, prefix)
_processed_plots[name] = timestamp
def _log_confusion_matrix(validator):
"""Logs the confusion matrix for the given validator using DVCLive."""
targets = []
preds = []
matrix = validator.confusion_matrix.matrix
names = list(validator.names.values())
if validator.confusion_matrix.task == "detect":
names += ["background"]
for ti, pred in enumerate(matrix.T.astype(int)):
for pi, num in enumerate(pred):
targets.extend([names[ti]] * num)
preds.extend([names[pi]] * num)
live.log_sklearn_plot("confusion_matrix", targets, preds, name="cf.json", normalized=True)
def on_pretrain_routine_start(trainer):
"""Initializes DVCLive logger for training metadata during pre-training routine."""
try:
global live
live = dvclive.Live(save_dvc_exp=True, cache_images=True)
LOGGER.info("DVCLive is detected and auto logging is enabled (run 'yolo settings dvc=False' to disable).")
except Exception as e:
LOGGER.warning(f"WARNING ⚠️ DVCLive installed but not initialized correctly, not logging this run. {e}")
def on_pretrain_routine_end(trainer):
"""Logs plots related to the training process at the end of the pretraining routine."""
_log_plots(trainer.plots, "train")
def on_train_start(trainer):
"""Logs the training parameters if DVCLive logging is active."""
if live:
live.log_params(trainer.args)
def on_train_epoch_start(trainer):
"""Sets the global variable _training_epoch value to True at the start of training each epoch."""
global _training_epoch
_training_epoch = True
def on_fit_epoch_end(trainer):
"""Logs training metrics and model info, and advances to next step on the end of each fit epoch."""
global _training_epoch
if live and _training_epoch:
all_metrics = {**trainer.label_loss_items(trainer.tloss, prefix="train"), **trainer.metrics, **trainer.lr}
for metric, value in all_metrics.items():
live.log_metric(metric, value)
if trainer.epoch == 0:
from ultralytics.utils.torch_utils import model_info_for_loggers
for metric, value in model_info_for_loggers(trainer).items():
live.log_metric(metric, value, plot=False)
_log_plots(trainer.plots, "train")
_log_plots(trainer.validator.plots, "val")
live.next_step()
_training_epoch = False
def on_train_end(trainer):
"""Logs the best metrics, plots, and confusion matrix at the end of training if DVCLive is active."""
if live:
# At the end log the best metrics. It runs validator on the best model internally.
all_metrics = {**trainer.label_loss_items(trainer.tloss, prefix="train"), **trainer.metrics, **trainer.lr}
for metric, value in all_metrics.items():
live.log_metric(metric, value, plot=False)
_log_plots(trainer.plots, "val")
_log_plots(trainer.validator.plots, "val")
_log_confusion_matrix(trainer.validator)
if trainer.best.exists():
live.log_artifact(trainer.best, copy=True, type="model")
live.end()
callbacks = (
{
"on_pretrain_routine_start": on_pretrain_routine_start,
"on_pretrain_routine_end": on_pretrain_routine_end,
"on_train_start": on_train_start,
"on_train_epoch_start": on_train_epoch_start,
"on_fit_epoch_end": on_fit_epoch_end,
"on_train_end": on_train_end,
}
if dvclive
else {}
)
| 5,045 | Python | .py | 107 | 40.074766 | 116 | 0.667959 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,886 | wb.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/callbacks/wb.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from ultralytics.utils import SETTINGS, TESTS_RUNNING
from ultralytics.utils.torch_utils import model_info_for_loggers
try:
assert not TESTS_RUNNING # do not log pytest
assert SETTINGS["wandb"] is True # verify integration is enabled
import wandb as wb
assert hasattr(wb, "__version__") # verify package is not directory
import numpy as np
import pandas as pd
_processed_plots = {}
except (ImportError, AssertionError):
wb = None
def _custom_table(x, y, classes, title="Precision Recall Curve", x_title="Recall", y_title="Precision"):
"""
Create and log a custom metric visualization to wandb.plot.pr_curve.
This function crafts a custom metric visualization that mimics the behavior of wandb's default precision-recall
curve while allowing for enhanced customization. The visual metric is useful for monitoring model performance across
different classes.
Args:
x (List): Values for the x-axis; expected to have length N.
y (List): Corresponding values for the y-axis; also expected to have length N.
classes (List): Labels identifying the class of each point; length N.
title (str, optional): Title for the plot; defaults to 'Precision Recall Curve'.
x_title (str, optional): Label for the x-axis; defaults to 'Recall'.
y_title (str, optional): Label for the y-axis; defaults to 'Precision'.
Returns:
(wandb.Object): A wandb object suitable for logging, showcasing the crafted metric visualization.
"""
df = pd.DataFrame({"class": classes, "y": y, "x": x}).round(3)
fields = {"x": "x", "y": "y", "class": "class"}
string_fields = {"title": title, "x-axis-title": x_title, "y-axis-title": y_title}
return wb.plot_table(
"wandb/area-under-curve/v0", wb.Table(dataframe=df), fields=fields, string_fields=string_fields
)
def _plot_curve(
x,
y,
names=None,
id="precision-recall",
title="Precision Recall Curve",
x_title="Recall",
y_title="Precision",
num_x=100,
only_mean=False,
):
"""
Log a metric curve visualization.
This function generates a metric curve based on input data and logs the visualization to wandb.
The curve can represent aggregated data (mean) or individual class data, depending on the 'only_mean' flag.
Args:
x (np.ndarray): Data points for the x-axis with length N.
y (np.ndarray): Corresponding data points for the y-axis with shape CxN, where C is the number of classes.
names (list, optional): Names of the classes corresponding to the y-axis data; length C. Defaults to [].
id (str, optional): Unique identifier for the logged data in wandb. Defaults to 'precision-recall'.
title (str, optional): Title for the visualization plot. Defaults to 'Precision Recall Curve'.
x_title (str, optional): Label for the x-axis. Defaults to 'Recall'.
y_title (str, optional): Label for the y-axis. Defaults to 'Precision'.
num_x (int, optional): Number of interpolated data points for visualization. Defaults to 100.
only_mean (bool, optional): Flag to indicate if only the mean curve should be plotted. Defaults to True.
Note:
The function leverages the '_custom_table' function to generate the actual visualization.
"""
# Create new x
if names is None:
names = []
x_new = np.linspace(x[0], x[-1], num_x).round(5)
# Create arrays for logging
x_log = x_new.tolist()
y_log = np.interp(x_new, x, np.mean(y, axis=0)).round(3).tolist()
if only_mean:
table = wb.Table(data=list(zip(x_log, y_log)), columns=[x_title, y_title])
wb.run.log({title: wb.plot.line(table, x_title, y_title, title=title)})
else:
classes = ["mean"] * len(x_log)
for i, yi in enumerate(y):
x_log.extend(x_new) # add new x
y_log.extend(np.interp(x_new, x, yi)) # interpolate y to new x
classes.extend([names[i]] * len(x_new)) # add class names
wb.log({id: _custom_table(x_log, y_log, classes, title, x_title, y_title)}, commit=False)
def _log_plots(plots, step):
"""Logs plots from the input dictionary if they haven't been logged already at the specified step."""
for name, params in plots.items():
timestamp = params["timestamp"]
if _processed_plots.get(name) != timestamp:
wb.run.log({name.stem: wb.Image(str(name))}, step=step)
_processed_plots[name] = timestamp
def on_pretrain_routine_start(trainer):
"""Initiate and start project if module is present."""
wb.run or wb.init(project=trainer.args.project or "YOLOv8", name=trainer.args.name, config=vars(trainer.args))
def on_fit_epoch_end(trainer):
"""Logs training metrics and model information at the end of an epoch."""
wb.run.log(trainer.metrics, step=trainer.epoch + 1)
_log_plots(trainer.plots, step=trainer.epoch + 1)
_log_plots(trainer.validator.plots, step=trainer.epoch + 1)
if trainer.epoch == 0:
wb.run.log(model_info_for_loggers(trainer), step=trainer.epoch + 1)
def on_train_epoch_end(trainer):
"""Log metrics and save images at the end of each training epoch."""
wb.run.log(trainer.label_loss_items(trainer.tloss, prefix="train"), step=trainer.epoch + 1)
wb.run.log(trainer.lr, step=trainer.epoch + 1)
if trainer.epoch == 1:
_log_plots(trainer.plots, step=trainer.epoch + 1)
def on_train_end(trainer):
"""Save the best model as an artifact at end of training."""
_log_plots(trainer.validator.plots, step=trainer.epoch + 1)
_log_plots(trainer.plots, step=trainer.epoch + 1)
art = wb.Artifact(type="model", name=f"run_{wb.run.id}_model")
if trainer.best.exists():
art.add_file(trainer.best)
wb.run.log_artifact(art, aliases=["best"])
for curve_name, curve_values in zip(trainer.validator.metrics.curves, trainer.validator.metrics.curves_results):
x, y, x_title, y_title = curve_values
_plot_curve(
x,
y,
names=list(trainer.validator.metrics.names.values()),
id=f"curves/{curve_name}",
title=curve_name,
x_title=x_title,
y_title=y_title,
)
wb.run.finish() # required or run continues on dashboard
callbacks = (
{
"on_pretrain_routine_start": on_pretrain_routine_start,
"on_train_epoch_end": on_train_epoch_end,
"on_fit_epoch_end": on_fit_epoch_end,
"on_train_end": on_train_end,
}
if wb
else {}
)
| 6,635 | Python | .py | 133 | 43.278195 | 120 | 0.668572 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,887 | comet.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/callbacks/comet.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from ultralytics.utils import LOGGER, RANK, SETTINGS, TESTS_RUNNING, ops
try:
assert not TESTS_RUNNING # do not log pytest
assert SETTINGS["comet"] is True # verify integration is enabled
import comet_ml
assert hasattr(comet_ml, "__version__") # verify package is not directory
import os
from pathlib import Path
# Ensures certain logging functions only run for supported tasks
COMET_SUPPORTED_TASKS = ["detect"]
# Names of plots created by YOLOv8 that are logged to Comet
EVALUATION_PLOT_NAMES = "F1_curve", "P_curve", "R_curve", "PR_curve", "confusion_matrix"
LABEL_PLOT_NAMES = "labels", "labels_correlogram"
_comet_image_prediction_count = 0
except (ImportError, AssertionError):
comet_ml = None
def _get_comet_mode():
"""Returns the mode of comet set in the environment variables, defaults to 'online' if not set."""
return os.getenv("COMET_MODE", "online")
def _get_comet_model_name():
"""Returns the model name for Comet from the environment variable 'COMET_MODEL_NAME' or defaults to 'YOLOv8'."""
return os.getenv("COMET_MODEL_NAME", "YOLOv8")
def _get_eval_batch_logging_interval():
"""Get the evaluation batch logging interval from environment variable or use default value 1."""
return int(os.getenv("COMET_EVAL_BATCH_LOGGING_INTERVAL", 1))
def _get_max_image_predictions_to_log():
"""Get the maximum number of image predictions to log from the environment variables."""
return int(os.getenv("COMET_MAX_IMAGE_PREDICTIONS", 100))
def _scale_confidence_score(score):
"""Scales the given confidence score by a factor specified in an environment variable."""
scale = float(os.getenv("COMET_MAX_CONFIDENCE_SCORE", 100.0))
return score * scale
def _should_log_confusion_matrix():
"""Determines if the confusion matrix should be logged based on the environment variable settings."""
return os.getenv("COMET_EVAL_LOG_CONFUSION_MATRIX", "false").lower() == "true"
def _should_log_image_predictions():
"""Determines whether to log image predictions based on a specified environment variable."""
return os.getenv("COMET_EVAL_LOG_IMAGE_PREDICTIONS", "true").lower() == "true"
def _get_experiment_type(mode, project_name):
"""Return an experiment based on mode and project name."""
if mode == "offline":
return comet_ml.OfflineExperiment(project_name=project_name)
return comet_ml.Experiment(project_name=project_name)
def _create_experiment(args):
"""Ensures that the experiment object is only created in a single process during distributed training."""
if RANK not in (-1, 0):
return
try:
comet_mode = _get_comet_mode()
_project_name = os.getenv("COMET_PROJECT_NAME", args.project)
experiment = _get_experiment_type(comet_mode, _project_name)
experiment.log_parameters(vars(args))
experiment.log_others(
{
"eval_batch_logging_interval": _get_eval_batch_logging_interval(),
"log_confusion_matrix_on_eval": _should_log_confusion_matrix(),
"log_image_predictions": _should_log_image_predictions(),
"max_image_predictions": _get_max_image_predictions_to_log(),
}
)
experiment.log_other("Created from", "yolov8")
except Exception as e:
LOGGER.warning(f"WARNING ⚠� Comet installed but not initialized correctly, not logging this run. {e}")
def _fetch_trainer_metadata(trainer):
"""Returns metadata for YOLO training including epoch and asset saving status."""
curr_epoch = trainer.epoch + 1
train_num_steps_per_epoch = len(trainer.train_loader.dataset) // trainer.batch_size
curr_step = curr_epoch * train_num_steps_per_epoch
final_epoch = curr_epoch == trainer.epochs
save = trainer.args.save
save_period = trainer.args.save_period
save_interval = curr_epoch % save_period == 0
save_assets = save and save_period > 0 and save_interval and not final_epoch
return dict(curr_epoch=curr_epoch, curr_step=curr_step, save_assets=save_assets, final_epoch=final_epoch)
def _scale_bounding_box_to_original_image_shape(box, resized_image_shape, original_image_shape, ratio_pad):
"""
YOLOv8 resizes images during training and the label values are normalized based on this resized shape.
This function rescales the bounding box labels to the original image shape.
"""
resized_image_height, resized_image_width = resized_image_shape
# Convert normalized xywh format predictions to xyxy in resized scale format
box = ops.xywhn2xyxy(box, h=resized_image_height, w=resized_image_width)
# Scale box predictions from resized image scale back to original image scale
box = ops.scale_boxes(resized_image_shape, box, original_image_shape, ratio_pad)
# Convert bounding box format from xyxy to xywh for Comet logging
box = ops.xyxy2xywh(box)
# Adjust xy center to correspond top-left corner
box[:2] -= box[2:] / 2
box = box.tolist()
return box
def _format_ground_truth_annotations_for_detection(img_idx, image_path, batch, class_name_map=None):
"""Format ground truth annotations for detection."""
indices = batch["batch_idx"] == img_idx
bboxes = batch["bboxes"][indices]
if len(bboxes) == 0:
LOGGER.debug(f"COMET WARNING: Image: {image_path} has no bounding boxes labels")
return None
cls_labels = batch["cls"][indices].squeeze(1).tolist()
if class_name_map:
cls_labels = [str(class_name_map[label]) for label in cls_labels]
original_image_shape = batch["ori_shape"][img_idx]
resized_image_shape = batch["resized_shape"][img_idx]
ratio_pad = batch["ratio_pad"][img_idx]
data = []
for box, label in zip(bboxes, cls_labels):
box = _scale_bounding_box_to_original_image_shape(box, resized_image_shape, original_image_shape, ratio_pad)
data.append(
{
"boxes": [box],
"label": f"gt_{label}",
"score": _scale_confidence_score(1.0),
}
)
return {"name": "ground_truth", "data": data}
def _format_prediction_annotations_for_detection(image_path, metadata, class_label_map=None):
"""Format YOLO predictions for object detection visualization."""
stem = image_path.stem
image_id = int(stem) if stem.isnumeric() else stem
predictions = metadata.get(image_id)
if not predictions:
LOGGER.debug(f"COMET WARNING: Image: {image_path} has no bounding boxes predictions")
return None
data = []
for prediction in predictions:
boxes = prediction["bbox"]
score = _scale_confidence_score(prediction["score"])
cls_label = prediction["category_id"]
if class_label_map:
cls_label = str(class_label_map[cls_label])
data.append({"boxes": [boxes], "label": cls_label, "score": score})
return {"name": "prediction", "data": data}
def _fetch_annotations(img_idx, image_path, batch, prediction_metadata_map, class_label_map):
"""Join the ground truth and prediction annotations if they exist."""
ground_truth_annotations = _format_ground_truth_annotations_for_detection(
img_idx, image_path, batch, class_label_map
)
prediction_annotations = _format_prediction_annotations_for_detection(
image_path, prediction_metadata_map, class_label_map
)
annotations = [
annotation for annotation in [ground_truth_annotations, prediction_annotations] if annotation is not None
]
return [annotations] if annotations else None
def _create_prediction_metadata_map(model_predictions):
"""Create metadata map for model predictions by groupings them based on image ID."""
pred_metadata_map = {}
for prediction in model_predictions:
pred_metadata_map.setdefault(prediction["image_id"], [])
pred_metadata_map[prediction["image_id"]].append(prediction)
return pred_metadata_map
def _log_confusion_matrix(experiment, trainer, curr_step, curr_epoch):
"""Log the confusion matrix to Comet experiment."""
conf_mat = trainer.validator.confusion_matrix.matrix
names = list(trainer.data["names"].values()) + ["background"]
experiment.log_confusion_matrix(
matrix=conf_mat, labels=names, max_categories=len(names), epoch=curr_epoch, step=curr_step
)
def _log_images(experiment, image_paths, curr_step, annotations=None):
"""Logs images to the experiment with optional annotations."""
if annotations:
for image_path, annotation in zip(image_paths, annotations):
experiment.log_image(image_path, name=image_path.stem, step=curr_step, annotations=annotation)
else:
for image_path in image_paths:
experiment.log_image(image_path, name=image_path.stem, step=curr_step)
def _log_image_predictions(experiment, validator, curr_step):
"""Logs predicted boxes for a single image during training."""
global _comet_image_prediction_count
task = validator.args.task
if task not in COMET_SUPPORTED_TASKS:
return
jdict = validator.jdict
if not jdict:
return
predictions_metadata_map = _create_prediction_metadata_map(jdict)
dataloader = validator.dataloader
class_label_map = validator.names
batch_logging_interval = _get_eval_batch_logging_interval()
max_image_predictions = _get_max_image_predictions_to_log()
for batch_idx, batch in enumerate(dataloader):
if (batch_idx + 1) % batch_logging_interval != 0:
continue
image_paths = batch["im_file"]
for img_idx, image_path in enumerate(image_paths):
if _comet_image_prediction_count >= max_image_predictions:
return
image_path = Path(image_path)
annotations = _fetch_annotations(
img_idx,
image_path,
batch,
predictions_metadata_map,
class_label_map,
)
_log_images(
experiment,
[image_path],
curr_step,
annotations=annotations,
)
_comet_image_prediction_count += 1
def _log_plots(experiment, trainer):
"""Logs evaluation plots and label plots for the experiment."""
plot_filenames = [trainer.save_dir / f"{plots}.png" for plots in EVALUATION_PLOT_NAMES]
_log_images(experiment, plot_filenames, None)
label_plot_filenames = [trainer.save_dir / f"{labels}.jpg" for labels in LABEL_PLOT_NAMES]
_log_images(experiment, label_plot_filenames, None)
def _log_model(experiment, trainer):
"""Log the best-trained model to Comet.ml."""
model_name = _get_comet_model_name()
experiment.log_model(model_name, file_or_folder=str(trainer.best), file_name="best.pt", overwrite=True)
def on_pretrain_routine_start(trainer):
"""Creates or resumes a CometML experiment at the start of a YOLO pre-training routine."""
experiment = comet_ml.get_global_experiment()
is_alive = getattr(experiment, "alive", False)
if not experiment or not is_alive:
_create_experiment(trainer.args)
def on_train_epoch_end(trainer):
"""Log metrics and save batch images at the end of training epochs."""
experiment = comet_ml.get_global_experiment()
if not experiment:
return
metadata = _fetch_trainer_metadata(trainer)
curr_epoch = metadata["curr_epoch"]
curr_step = metadata["curr_step"]
experiment.log_metrics(trainer.label_loss_items(trainer.tloss, prefix="train"), step=curr_step, epoch=curr_epoch)
if curr_epoch == 1:
_log_images(experiment, trainer.save_dir.glob("train_batch*.jpg"), curr_step)
def on_fit_epoch_end(trainer):
"""Logs model assets at the end of each epoch."""
experiment = comet_ml.get_global_experiment()
if not experiment:
return
metadata = _fetch_trainer_metadata(trainer)
curr_epoch = metadata["curr_epoch"]
curr_step = metadata["curr_step"]
save_assets = metadata["save_assets"]
experiment.log_metrics(trainer.metrics, step=curr_step, epoch=curr_epoch)
experiment.log_metrics(trainer.lr, step=curr_step, epoch=curr_epoch)
if curr_epoch == 1:
from ultralytics.utils.torch_utils import model_info_for_loggers
experiment.log_metrics(model_info_for_loggers(trainer), step=curr_step, epoch=curr_epoch)
if not save_assets:
return
_log_model(experiment, trainer)
if _should_log_confusion_matrix():
_log_confusion_matrix(experiment, trainer, curr_step, curr_epoch)
if _should_log_image_predictions():
_log_image_predictions(experiment, trainer.validator, curr_step)
def on_train_end(trainer):
"""Perform operations at the end of training."""
experiment = comet_ml.get_global_experiment()
if not experiment:
return
metadata = _fetch_trainer_metadata(trainer)
curr_epoch = metadata["curr_epoch"]
curr_step = metadata["curr_step"]
plots = trainer.args.plots
_log_model(experiment, trainer)
if plots:
_log_plots(experiment, trainer)
_log_confusion_matrix(experiment, trainer, curr_step, curr_epoch)
_log_image_predictions(experiment, trainer.validator, curr_step)
experiment.end()
global _comet_image_prediction_count
_comet_image_prediction_count = 0
callbacks = (
{
"on_pretrain_routine_start": on_pretrain_routine_start,
"on_train_epoch_end": on_train_epoch_end,
"on_fit_epoch_end": on_fit_epoch_end,
"on_train_end": on_train_end,
}
if comet_ml
else {}
)
| 13,744 | Python | .py | 277 | 42.790614 | 117 | 0.689356 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,888 | clearml.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/callbacks/clearml.py | # Ultralytics YOLO üöÄ, AGPL-3.0 license
from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING
try:
assert not TESTS_RUNNING # do not log pytest
assert SETTINGS["clearml"] is True # verify integration is enabled
import clearml
from clearml import Task
from clearml.binding.frameworks.pytorch_bind import PatchPyTorchModelIO
from clearml.binding.matplotlib_bind import PatchedMatplotlib
assert hasattr(clearml, "__version__") # verify package is not directory
except (ImportError, AssertionError):
clearml = None
def _log_debug_samples(files, title="Debug Samples") -> None:
"""
Log files (images) as debug samples in the ClearML task.
Args:
files (list): A list of file paths in PosixPath format.
title (str): A title that groups together images with the same values.
"""
import re
if task := Task.current_task():
for f in files:
if f.exists():
it = re.search(r"_batch(\d+)", f.name)
iteration = int(it.groups()[0]) if it else 0
task.get_logger().report_image(
title=title, series=f.name.replace(it.group(), ""), local_path=str(f), iteration=iteration
)
def _log_plot(title, plot_path) -> None:
"""
Log an image as a plot in the plot section of ClearML.
Args:
title (str): The title of the plot.
plot_path (str): The path to the saved image file.
"""
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
img = mpimg.imread(plot_path)
fig = plt.figure()
ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect="auto", xticks=[], yticks=[]) # no ticks
ax.imshow(img)
Task.current_task().get_logger().report_matplotlib_figure(
title=title, series="", figure=fig, report_interactive=False
)
def on_pretrain_routine_start(trainer):
"""Runs at start of pretraining routine; initializes and connects/ logs task to ClearML."""
try:
if task := Task.current_task():
# Make sure the automatic pytorch and matplotlib bindings are disabled!
# We are logging these plots and model files manually in the integration
PatchPyTorchModelIO.update_current_task(None)
PatchedMatplotlib.update_current_task(None)
else:
task = Task.init(
project_name=trainer.args.project or "YOLOv8",
task_name=trainer.args.name,
tags=["YOLOv8"],
output_uri=True,
reuse_last_task_id=False,
auto_connect_frameworks={"pytorch": False, "matplotlib": False},
)
LOGGER.warning(
"ClearML Initialized a new task. If you want to run remotely, "
"please add clearml-init and connect your arguments before initializing YOLO."
)
task.connect(vars(trainer.args), name="General")
except Exception as e:
LOGGER.warning(f"WARNING ⚠️ ClearML installed but not initialized correctly, not logging this run. {e}")
def on_train_epoch_end(trainer):
"""Logs debug samples for the first epoch of YOLO training and report current training progress."""
if task := Task.current_task():
# Log debug samples
if trainer.epoch == 1:
_log_debug_samples(sorted(trainer.save_dir.glob("train_batch*.jpg")), "Mosaic")
# Report the current training progress
for k, v in trainer.label_loss_items(trainer.tloss, prefix="train").items():
task.get_logger().report_scalar("train", k, v, iteration=trainer.epoch)
for k, v in trainer.lr.items():
task.get_logger().report_scalar("lr", k, v, iteration=trainer.epoch)
def on_fit_epoch_end(trainer):
"""Reports model information to logger at the end of an epoch."""
if task := Task.current_task():
# You should have access to the validation bboxes under jdict
task.get_logger().report_scalar(
title="Epoch Time", series="Epoch Time", value=trainer.epoch_time, iteration=trainer.epoch
)
for k, v in trainer.metrics.items():
task.get_logger().report_scalar("val", k, v, iteration=trainer.epoch)
if trainer.epoch == 0:
from ultralytics.utils.torch_utils import model_info_for_loggers
for k, v in model_info_for_loggers(trainer).items():
task.get_logger().report_single_value(k, v)
def on_val_end(validator):
"""Logs validation results including labels and predictions."""
if Task.current_task():
# Log val_labels and val_pred
_log_debug_samples(sorted(validator.save_dir.glob("val*.jpg")), "Validation")
def on_train_end(trainer):
"""Logs final model and its name on training completion."""
if task := Task.current_task():
# Log final results, CM matrix + PR plots
files = [
"results.png",
"confusion_matrix.png",
"confusion_matrix_normalized.png",
*(f"{x}_curve.png" for x in ("F1", "PR", "P", "R")),
]
files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter
for f in files:
_log_plot(title=f.stem, plot_path=f)
# Report final metrics
for k, v in trainer.validator.metrics.results_dict.items():
task.get_logger().report_single_value(k, v)
# Log the final model
task.update_output_model(model_path=str(trainer.best), model_name=trainer.args.name, auto_delete_file=False)
callbacks = (
{
"on_pretrain_routine_start": on_pretrain_routine_start,
"on_train_epoch_end": on_train_epoch_end,
"on_fit_epoch_end": on_fit_epoch_end,
"on_val_end": on_val_end,
"on_train_end": on_train_end,
}
if clearml
else {}
)
| 5,897 | Python | .py | 126 | 38.103175 | 116 | 0.63342 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,889 | raytune.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/callbacks/raytune.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from ultralytics.utils import SETTINGS
try:
assert SETTINGS["raytune"] is True # verify integration is enabled
import ray
from ray import tune
from ray.air import session
except (ImportError, AssertionError):
tune = None
def on_fit_epoch_end(trainer):
"""Sends training metrics to Ray Tune at end of each epoch."""
if ray.tune.is_session_enabled():
metrics = trainer.metrics
metrics["epoch"] = trainer.epoch
session.report(metrics)
callbacks = (
{
"on_fit_epoch_end": on_fit_epoch_end,
}
if tune
else {}
)
| 632 | Python | .py | 22 | 23.954545 | 71 | 0.68325 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,890 | __init__.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/callbacks/__init__.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from .base import add_integration_callbacks, default_callbacks, get_default_callbacks
__all__ = "add_integration_callbacks", "default_callbacks", "get_default_callbacks"
| 214 | Python | .py | 3 | 69.666667 | 85 | 0.784689 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,891 | hub.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/callbacks/hub.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import json
from time import time
from ultralytics.hub.utils import HUB_WEB_ROOT, PREFIX, events
from ultralytics.utils import LOGGER, SETTINGS
def on_pretrain_routine_end(trainer):
"""Logs info before starting timer for upload rate limit."""
session = getattr(trainer, "hub_session", None)
if session:
# Start timer for upload rate limit
session.timers = {
"metrics": time(),
"ckpt": time(),
} # start timer on session.rate_limit
def on_fit_epoch_end(trainer):
"""Uploads training progress metrics at the end of each epoch."""
session = getattr(trainer, "hub_session", None)
if session:
# Upload metrics after val end
all_plots = {
**trainer.label_loss_items(trainer.tloss, prefix="train"),
**trainer.metrics,
}
if trainer.epoch == 0:
from ultralytics.utils.torch_utils import model_info_for_loggers
all_plots = {**all_plots, **model_info_for_loggers(trainer)}
session.metrics_queue[trainer.epoch] = json.dumps(all_plots)
if time() - session.timers["metrics"] > session.rate_limits["metrics"]:
session.upload_metrics()
session.timers["metrics"] = time() # reset timer
session.metrics_queue = {} # reset queue
def on_model_save(trainer):
"""Saves checkpoints to Ultralytics HUB with rate limiting."""
session = getattr(trainer, "hub_session", None)
if session:
# Upload checkpoints with rate limiting
is_best = trainer.best_fitness == trainer.fitness
if time() - session.timers["ckpt"] > session.rate_limits["ckpt"]:
LOGGER.info(f"{PREFIX}Uploading checkpoint {HUB_WEB_ROOT}/models/{session.model.id}")
session.upload_model(trainer.epoch, trainer.last, is_best)
session.timers["ckpt"] = time() # reset timer
def on_train_end(trainer):
"""Upload final model and metrics to Ultralytics HUB at the end of training."""
session = getattr(trainer, "hub_session", None)
if session:
# Upload final model and metrics with exponential standoff
LOGGER.info(f"{PREFIX}Syncing final model...")
session.upload_model(
trainer.epoch,
trainer.best,
map=trainer.metrics.get("metrics/mAP50-95(B)", 0),
final=True,
)
session.alive = False # stop heartbeats
LOGGER.info(f"{PREFIX}Done ✅\n" f"{PREFIX}View model at {session.model_url} 🚀")
def on_train_start(trainer):
"""Run events on train start."""
events(trainer.args)
def on_val_start(validator):
"""Runs events on validation start."""
events(validator.args)
def on_predict_start(predictor):
"""Run events on predict start."""
events(predictor.args)
def on_export_start(exporter):
"""Run events on export start."""
events(exporter.args)
callbacks = (
{
"on_pretrain_routine_end": on_pretrain_routine_end,
"on_fit_epoch_end": on_fit_epoch_end,
"on_model_save": on_model_save,
"on_train_end": on_train_end,
"on_train_start": on_train_start,
"on_val_start": on_val_start,
"on_predict_start": on_predict_start,
"on_export_start": on_export_start,
}
if SETTINGS["hub"] is True
else {}
) # verify enabled
| 3,402 | Python | .py | 81 | 34.604938 | 97 | 0.643528 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,892 | base.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/callbacks/base.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
"""Base callbacks."""
from collections import defaultdict
from copy import deepcopy
# Trainer callbacks ----------------------------------------------------------------------------------------------------
def on_pretrain_routine_start(trainer):
"""Called before the pretraining routine starts."""
pass
def on_pretrain_routine_end(trainer):
"""Called after the pretraining routine ends."""
pass
def on_train_start(trainer):
"""Called when the training starts."""
pass
def on_train_epoch_start(trainer):
"""Called at the start of each training epoch."""
pass
def on_train_batch_start(trainer):
"""Called at the start of each training batch."""
pass
def optimizer_step(trainer):
"""Called when the optimizer takes a step."""
pass
def on_before_zero_grad(trainer):
"""Called before the gradients are set to zero."""
pass
def on_train_batch_end(trainer):
"""Called at the end of each training batch."""
pass
def on_train_epoch_end(trainer):
"""Called at the end of each training epoch."""
pass
def on_fit_epoch_end(trainer):
"""Called at the end of each fit epoch (train + val)."""
pass
def on_model_save(trainer):
"""Called when the model is saved."""
pass
def on_train_end(trainer):
"""Called when the training ends."""
pass
def on_params_update(trainer):
"""Called when the model parameters are updated."""
pass
def teardown(trainer):
"""Called during the teardown of the training process."""
pass
# Validator callbacks --------------------------------------------------------------------------------------------------
def on_val_start(validator):
"""Called when the validation starts."""
pass
def on_val_batch_start(validator):
"""Called at the start of each validation batch."""
pass
def on_val_batch_end(validator):
"""Called at the end of each validation batch."""
pass
def on_val_end(validator):
"""Called when the validation ends."""
pass
# Predictor callbacks --------------------------------------------------------------------------------------------------
def on_predict_start(predictor):
"""Called when the prediction starts."""
pass
def on_predict_batch_start(predictor):
"""Called at the start of each prediction batch."""
pass
def on_predict_batch_end(predictor):
"""Called at the end of each prediction batch."""
pass
def on_predict_postprocess_end(predictor):
"""Called after the post-processing of the prediction ends."""
pass
def on_predict_end(predictor):
"""Called when the prediction ends."""
pass
# Exporter callbacks ---------------------------------------------------------------------------------------------------
def on_export_start(exporter):
"""Called when the model export starts."""
pass
def on_export_end(exporter):
"""Called when the model export ends."""
pass
default_callbacks = {
# Run in trainer
"on_pretrain_routine_start": [on_pretrain_routine_start],
"on_pretrain_routine_end": [on_pretrain_routine_end],
"on_train_start": [on_train_start],
"on_train_epoch_start": [on_train_epoch_start],
"on_train_batch_start": [on_train_batch_start],
"optimizer_step": [optimizer_step],
"on_before_zero_grad": [on_before_zero_grad],
"on_train_batch_end": [on_train_batch_end],
"on_train_epoch_end": [on_train_epoch_end],
"on_fit_epoch_end": [on_fit_epoch_end], # fit = train + val
"on_model_save": [on_model_save],
"on_train_end": [on_train_end],
"on_params_update": [on_params_update],
"teardown": [teardown],
# Run in validator
"on_val_start": [on_val_start],
"on_val_batch_start": [on_val_batch_start],
"on_val_batch_end": [on_val_batch_end],
"on_val_end": [on_val_end],
# Run in predictor
"on_predict_start": [on_predict_start],
"on_predict_batch_start": [on_predict_batch_start],
"on_predict_postprocess_end": [on_predict_postprocess_end],
"on_predict_batch_end": [on_predict_batch_end],
"on_predict_end": [on_predict_end],
# Run in exporter
"on_export_start": [on_export_start],
"on_export_end": [on_export_end],
}
def get_default_callbacks():
"""
Return a copy of the default_callbacks dictionary with lists as default values.
Returns:
(defaultdict): A defaultdict with keys from default_callbacks and empty lists as default values.
"""
return defaultdict(list, deepcopy(default_callbacks))
def add_integration_callbacks(instance):
"""
Add integration callbacks from various sources to the instance's callbacks.
Args:
instance (Trainer, Predictor, Validator, Exporter): An object with a 'callbacks' attribute that is a dictionary
of callback lists.
"""
# Load HUB callbacks
from .hub import callbacks as hub_cb
callbacks_list = [hub_cb]
# Load training callbacks
if "Trainer" in instance.__class__.__name__:
from .clearml import callbacks as clear_cb
from .comet import callbacks as comet_cb
from .dvc import callbacks as dvc_cb
from .mlflow import callbacks as mlflow_cb
from .neptune import callbacks as neptune_cb
from .raytune import callbacks as tune_cb
from .tensorboard import callbacks as tb_cb
from .wb import callbacks as wb_cb
callbacks_list.extend([clear_cb, comet_cb, dvc_cb, mlflow_cb, neptune_cb, tune_cb, tb_cb, wb_cb])
# Add the callbacks to the callbacks dictionary
for callbacks in callbacks_list:
for k, v in callbacks.items():
if v not in instance.callbacks[k]:
instance.callbacks[k].append(v)
| 5,777 | Python | .py | 147 | 34.29932 | 120 | 0.63602 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,893 | mlflow.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/callbacks/mlflow.py | # Ultralytics YOLO üöÄ, AGPL-3.0 license
"""
MLflow Logging for Ultralytics YOLO.
This module enables MLflow logging for Ultralytics YOLO. It logs metrics, parameters, and model artifacts.
For setting up, a tracking URI should be specified. The logging can be customized using environment variables.
Commands:
1. To set a project name:
`export MLFLOW_EXPERIMENT_NAME=<your_experiment_name>` or use the project=<project> argument
2. To set a run name:
`export MLFLOW_RUN=<your_run_name>` or use the name=<name> argument
3. To start a local MLflow server:
mlflow server --backend-store-uri runs/mlflow
It will by default start a local server at http://127.0.0.1:5000.
To specify a different URI, set the MLFLOW_TRACKING_URI environment variable.
4. To kill all running MLflow server instances:
ps aux | grep 'mlflow' | grep -v 'grep' | awk '{print $2}' | xargs kill -9
"""
from ultralytics.utils import LOGGER, RUNS_DIR, SETTINGS, TESTS_RUNNING, colorstr
try:
import os
assert not TESTS_RUNNING or "test_mlflow" in os.environ.get("PYTEST_CURRENT_TEST", "") # do not log pytest
assert SETTINGS["mlflow"] is True # verify integration is enabled
import mlflow
assert hasattr(mlflow, "__version__") # verify package is not directory
from pathlib import Path
PREFIX = colorstr("MLflow: ")
SANITIZE = lambda x: {k.replace("(", "").replace(")", ""): float(v) for k, v in x.items()}
except (ImportError, AssertionError):
mlflow = None
def on_pretrain_routine_end(trainer):
"""
Log training parameters to MLflow at the end of the pretraining routine.
This function sets up MLflow logging based on environment variables and trainer arguments. It sets the tracking URI,
experiment name, and run name, then starts the MLflow run if not already active. It finally logs the parameters
from the trainer.
Args:
trainer (ultralytics.engine.trainer.BaseTrainer): The training object with arguments and parameters to log.
Global:
mlflow: The imported mlflow module to use for logging.
Environment Variables:
MLFLOW_TRACKING_URI: The URI for MLflow tracking. If not set, defaults to 'runs/mlflow'.
MLFLOW_EXPERIMENT_NAME: The name of the MLflow experiment. If not set, defaults to trainer.args.project.
MLFLOW_RUN: The name of the MLflow run. If not set, defaults to trainer.args.name.
"""
global mlflow
uri = os.environ.get("MLFLOW_TRACKING_URI") or str(RUNS_DIR / "mlflow")
LOGGER.debug(f"{PREFIX} tracking uri: {uri}")
mlflow.set_tracking_uri(uri)
# Set experiment and run names
experiment_name = os.environ.get("MLFLOW_EXPERIMENT_NAME") or trainer.args.project or "/Shared/YOLOv8"
run_name = os.environ.get("MLFLOW_RUN") or trainer.args.name
mlflow.set_experiment(experiment_name)
mlflow.autolog()
try:
active_run = mlflow.active_run() or mlflow.start_run(run_name=run_name)
LOGGER.info(f"{PREFIX}logging run_id({active_run.info.run_id}) to {uri}")
if Path(uri).is_dir():
LOGGER.info(f"{PREFIX}view at http://127.0.0.1:5000 with 'mlflow server --backend-store-uri {uri}'")
LOGGER.info(f"{PREFIX}disable with 'yolo settings mlflow=False'")
mlflow.log_params(dict(trainer.args))
except Exception as e:
LOGGER.warning(f"{PREFIX}WARNING ⚠️ Failed to initialize: {e}\n" f"{PREFIX}WARNING ⚠️ Not tracking this run")
def on_train_epoch_end(trainer):
"""Log training metrics at the end of each train epoch to MLflow."""
if mlflow:
mlflow.log_metrics(
metrics={
**SANITIZE(trainer.lr),
**SANITIZE(trainer.label_loss_items(trainer.tloss, prefix="train")),
},
step=trainer.epoch,
)
def on_fit_epoch_end(trainer):
"""Log training metrics at the end of each fit epoch to MLflow."""
if mlflow:
mlflow.log_metrics(metrics=SANITIZE(trainer.metrics), step=trainer.epoch)
def on_train_end(trainer):
"""Log model artifacts at the end of the training."""
if mlflow:
mlflow.log_artifact(str(trainer.best.parent)) # log save_dir/weights directory with best.pt and last.pt
for f in trainer.save_dir.glob("*"): # log all other files in save_dir
if f.suffix in {".png", ".jpg", ".csv", ".pt", ".yaml"}:
mlflow.log_artifact(str(f))
mlflow.end_run()
LOGGER.info(
f"{PREFIX}results logged to {mlflow.get_tracking_uri()}\n"
f"{PREFIX}disable with 'yolo settings mlflow=False'"
)
callbacks = (
{
"on_pretrain_routine_end": on_pretrain_routine_end,
"on_train_epoch_end": on_train_epoch_end,
"on_fit_epoch_end": on_fit_epoch_end,
"on_train_end": on_train_end,
}
if mlflow
else {}
)
| 4,909 | Python | .py | 98 | 43.346939 | 125 | 0.678168 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,894 | neptune.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/callbacks/neptune.py | # Ultralytics YOLO üöÄ, AGPL-3.0 license
from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING
try:
assert not TESTS_RUNNING # do not log pytest
assert SETTINGS["neptune"] is True # verify integration is enabled
import neptune
from neptune.types import File
assert hasattr(neptune, "__version__")
run = None # NeptuneAI experiment logger instance
except (ImportError, AssertionError):
neptune = None
def _log_scalars(scalars, step=0):
"""Log scalars to the NeptuneAI experiment logger."""
if run:
for k, v in scalars.items():
run[k].append(value=v, step=step)
def _log_images(imgs_dict, group=""):
"""Log scalars to the NeptuneAI experiment logger."""
if run:
for k, v in imgs_dict.items():
run[f"{group}/{k}"].upload(File(v))
def _log_plot(title, plot_path):
"""
Log plots to the NeptuneAI experiment logger.
Args:
title (str): Title of the plot.
plot_path (PosixPath | str): Path to the saved image file.
"""
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
img = mpimg.imread(plot_path)
fig = plt.figure()
ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect="auto", xticks=[], yticks=[]) # no ticks
ax.imshow(img)
run[f"Plots/{title}"].upload(fig)
def on_pretrain_routine_start(trainer):
"""Callback function called before the training routine starts."""
try:
global run
run = neptune.init_run(project=trainer.args.project or "YOLOv8", name=trainer.args.name, tags=["YOLOv8"])
run["Configuration/Hyperparameters"] = {k: "" if v is None else v for k, v in vars(trainer.args).items()}
except Exception as e:
LOGGER.warning(f"WARNING ⚠️ NeptuneAI installed but not initialized correctly, not logging this run. {e}")
def on_train_epoch_end(trainer):
"""Callback function called at end of each training epoch."""
_log_scalars(trainer.label_loss_items(trainer.tloss, prefix="train"), trainer.epoch + 1)
_log_scalars(trainer.lr, trainer.epoch + 1)
if trainer.epoch == 1:
_log_images({f.stem: str(f) for f in trainer.save_dir.glob("train_batch*.jpg")}, "Mosaic")
def on_fit_epoch_end(trainer):
"""Callback function called at end of each fit (train+val) epoch."""
if run and trainer.epoch == 0:
from ultralytics.utils.torch_utils import model_info_for_loggers
run["Configuration/Model"] = model_info_for_loggers(trainer)
_log_scalars(trainer.metrics, trainer.epoch + 1)
def on_val_end(validator):
"""Callback function called at end of each validation."""
if run:
# Log val_labels and val_pred
_log_images({f.stem: str(f) for f in validator.save_dir.glob("val*.jpg")}, "Validation")
def on_train_end(trainer):
"""Callback function called at end of training."""
if run:
# Log final results, CM matrix + PR plots
files = [
"results.png",
"confusion_matrix.png",
"confusion_matrix_normalized.png",
*(f"{x}_curve.png" for x in ("F1", "PR", "P", "R")),
]
files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter
for f in files:
_log_plot(title=f.stem, plot_path=f)
# Log the final model
run[f"weights/{trainer.args.name or trainer.args.task}/{trainer.best.name}"].upload(File(str(trainer.best)))
callbacks = (
{
"on_pretrain_routine_start": on_pretrain_routine_start,
"on_train_epoch_end": on_train_epoch_end,
"on_fit_epoch_end": on_fit_epoch_end,
"on_val_end": on_val_end,
"on_train_end": on_train_end,
}
if neptune
else {}
)
| 3,756 | Python | .py | 86 | 37.209302 | 118 | 0.648738 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,895 | tensorboard.py | arojsubedi_Improved-YOLOv8s/ultralytics/utils/callbacks/tensorboard.py | # Ultralytics YOLO üöÄ, AGPL-3.0 license
import contextlib
from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING, colorstr
try:
# WARNING: do not move SummaryWriter import due to protobuf bug https://github.com/ultralytics/ultralytics/pull/4674
from torch.utils.tensorboard import SummaryWriter
assert not TESTS_RUNNING # do not log pytest
assert SETTINGS["tensorboard"] is True # verify integration is enabled
WRITER = None # TensorBoard SummaryWriter instance
PREFIX = colorstr("TensorBoard: ")
# Imports below only required if TensorBoard enabled
import warnings
from copy import deepcopy
from ultralytics.utils.torch_utils import de_parallel, torch
except (ImportError, AssertionError, TypeError, AttributeError):
# TypeError for handling 'Descriptors cannot not be created directly.' protobuf errors in Windows
# AttributeError: module 'tensorflow' has no attribute 'io' if 'tensorflow' not installed
SummaryWriter = None
def _log_scalars(scalars, step=0):
"""Logs scalar values to TensorBoard."""
if WRITER:
for k, v in scalars.items():
WRITER.add_scalar(k, v, step)
def _log_tensorboard_graph(trainer):
"""Log model graph to TensorBoard."""
# Input image
imgsz = trainer.args.imgsz
imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz
p = next(trainer.model.parameters()) # for device, type
im = torch.zeros((1, 3, *imgsz), device=p.device, dtype=p.dtype) # input image (must be zeros, not empty)
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=UserWarning) # suppress jit trace warning
warnings.simplefilter("ignore", category=torch.jit.TracerWarning) # suppress jit trace warning
# Try simple method first (YOLO)
with contextlib.suppress(Exception):
WRITER.add_graph(torch.jit.trace(de_parallel(trainer.model), im, strict=False), [])
LOGGER.info(f"{PREFIX}model graph visualization added ‚úÖ")
return
# Fallback to TorchScript export steps (RTDETR)
try:
model = deepcopy(de_parallel(trainer.model))
model.eval()
model = model.fuse(verbose=False)
for m in model.modules():
if hasattr(m, "export"): # Detect, RTDETRDecoder (Segment and Pose use Detect base class)
m.export = True
m.format = "torchscript"
model(im) # dry run
WRITER.add_graph(torch.jit.trace(model, im, strict=False), [])
LOGGER.info(f"{PREFIX}model graph visualization added ‚úÖ")
except Exception as e:
LOGGER.warning(f"{PREFIX}WARNING ⚠️ TensorBoard graph visualization failure {e}")
def on_pretrain_routine_start(trainer):
"""Initialize TensorBoard logging with SummaryWriter."""
if SummaryWriter:
try:
global WRITER
WRITER = SummaryWriter(str(trainer.save_dir))
LOGGER.info(f"{PREFIX}Start with 'tensorboard --logdir {trainer.save_dir}', view at http://localhost:6006/")
except Exception as e:
LOGGER.warning(f"{PREFIX}WARNING ⚠️ TensorBoard not initialized correctly, not logging this run. {e}")
def on_train_start(trainer):
"""Log TensorBoard graph."""
if WRITER:
_log_tensorboard_graph(trainer)
def on_train_epoch_end(trainer):
"""Logs scalar statistics at the end of a training epoch."""
_log_scalars(trainer.label_loss_items(trainer.tloss, prefix="train"), trainer.epoch + 1)
_log_scalars(trainer.lr, trainer.epoch + 1)
def on_fit_epoch_end(trainer):
"""Logs epoch metrics at end of training epoch."""
_log_scalars(trainer.metrics, trainer.epoch + 1)
callbacks = (
{
"on_pretrain_routine_start": on_pretrain_routine_start,
"on_train_start": on_train_start,
"on_fit_epoch_end": on_fit_epoch_end,
"on_train_epoch_end": on_train_epoch_end,
}
if SummaryWriter
else {}
)
| 4,038 | Python | .py | 82 | 41.768293 | 120 | 0.679888 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,896 | __init__.py | arojsubedi_Improved-YOLOv8s/ultralytics/cfg/__init__.py | # Ultralytics YOLO üöÄ, AGPL-3.0 license
import contextlib
import shutil
import subprocess
import sys
from pathlib import Path
from types import SimpleNamespace
from typing import Dict, List, Union
from ultralytics.utils import (
ASSETS,
DEFAULT_CFG,
DEFAULT_CFG_DICT,
DEFAULT_CFG_PATH,
LOGGER,
RANK,
ROOT,
RUNS_DIR,
SETTINGS,
SETTINGS_YAML,
TESTS_RUNNING,
IterableSimpleNamespace,
__version__,
checks,
colorstr,
deprecation_warn,
yaml_load,
yaml_print,
)
# Define valid tasks and modes
MODES = "train", "val", "predict", "export", "track", "benchmark"
TASKS = "detect", "segment", "classify", "pose", "obb"
TASK2DATA = {
"detect": "coco8.yaml",
"segment": "coco8-seg.yaml",
"classify": "imagenet10",
"pose": "coco8-pose.yaml",
"obb": "dota8.yaml",
}
TASK2MODEL = {
"detect": "yolov8n.pt",
"segment": "yolov8n-seg.pt",
"classify": "yolov8n-cls.pt",
"pose": "yolov8n-pose.pt",
"obb": "yolov8n-obb.pt",
}
TASK2METRIC = {
"detect": "metrics/mAP50-95(B)",
"segment": "metrics/mAP50-95(M)",
"classify": "metrics/accuracy_top1",
"pose": "metrics/mAP50-95(P)",
"obb": "metrics/mAP50-95(B)",
}
CLI_HELP_MSG = f"""
Arguments received: {str(['yolo'] + sys.argv[1:])}. Ultralytics 'yolo' commands use the following syntax:
yolo TASK MODE ARGS
Where TASK (optional) is one of {TASKS}
MODE (required) is one of {MODES}
ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults.
See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg'
1. Train a detection model for 10 epochs with an initial learning_rate of 0.01
yolo train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
2. Predict a YouTube video using a pretrained segmentation model at image size 320:
yolo predict model=yolov8n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
3. Val a pretrained detection model at batch-size 1 and image size 640:
yolo val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640
4. Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required)
yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128
6. Explore your datasets using semantic search and SQL with a simple GUI powered by Ultralytics Explorer API
yolo explorer
5. Run special commands:
yolo help
yolo checks
yolo version
yolo settings
yolo copy-cfg
yolo cfg
Docs: https://docs.ultralytics.com
Community: https://community.ultralytics.com
GitHub: https://github.com/ultralytics/ultralytics
"""
# Define keys for arg type checks
CFG_FLOAT_KEYS = "warmup_epochs", "box", "cls", "dfl", "degrees", "shear", "time"
CFG_FRACTION_KEYS = (
"dropout",
"iou",
"lr0",
"lrf",
"momentum",
"weight_decay",
"warmup_momentum",
"warmup_bias_lr",
"label_smoothing",
"hsv_h",
"hsv_s",
"hsv_v",
"translate",
"scale",
"perspective",
"flipud",
"fliplr",
"mosaic",
"mixup",
"copy_paste",
"conf",
"iou",
"fraction",
) # fraction floats 0.0 - 1.0
CFG_INT_KEYS = (
"epochs",
"patience",
"batch",
"workers",
"seed",
"close_mosaic",
"mask_ratio",
"max_det",
"vid_stride",
"line_width",
"workspace",
"nbs",
"save_period",
)
CFG_BOOL_KEYS = (
"save",
"exist_ok",
"verbose",
"deterministic",
"single_cls",
"rect",
"cos_lr",
"overlap_mask",
"val",
"save_json",
"save_hybrid",
"half",
"dnn",
"plots",
"show",
"save_txt",
"save_conf",
"save_crop",
"save_frames",
"show_labels",
"show_conf",
"visualize",
"augment",
"agnostic_nms",
"retina_masks",
"show_boxes",
"keras",
"optimize",
"int8",
"dynamic",
"simplify",
"nms",
"profile",
"multi_scale",
)
def cfg2dict(cfg):
"""
Convert a configuration object to a dictionary, whether it is a file path, a string, or a SimpleNamespace object.
Args:
cfg (str | Path | dict | SimpleNamespace): Configuration object to be converted to a dictionary.
Returns:
cfg (dict): Configuration object in dictionary format.
"""
if isinstance(cfg, (str, Path)):
cfg = yaml_load(cfg) # load dict
elif isinstance(cfg, SimpleNamespace):
cfg = vars(cfg) # convert to dict
return cfg
def get_cfg(cfg: Union[str, Path, Dict, SimpleNamespace] = DEFAULT_CFG_DICT, overrides: Dict = None):
"""
Load and merge configuration data from a file or dictionary.
Args:
cfg (str | Path | Dict | SimpleNamespace): Configuration data.
overrides (str | Dict | optional): Overrides in the form of a file name or a dictionary. Default is None.
Returns:
(SimpleNamespace): Training arguments namespace.
"""
cfg = cfg2dict(cfg)
# Merge overrides
if overrides:
overrides = cfg2dict(overrides)
if "save_dir" not in cfg:
overrides.pop("save_dir", None) # special override keys to ignore
check_dict_alignment(cfg, overrides)
cfg = {**cfg, **overrides} # merge cfg and overrides dicts (prefer overrides)
# Special handling for numeric project/name
for k in "project", "name":
if k in cfg and isinstance(cfg[k], (int, float)):
cfg[k] = str(cfg[k])
if cfg.get("name") == "model": # assign model to 'name' arg
cfg["name"] = cfg.get("model", "").split(".")[0]
LOGGER.warning(f"WARNING ⚠️ 'name=model' automatically updated to 'name={cfg['name']}'.")
# Type and Value checks
for k, v in cfg.items():
if v is not None: # None values may be from optional args
if k in CFG_FLOAT_KEYS and not isinstance(v, (int, float)):
raise TypeError(
f"'{k}={v}' is of invalid type {type(v).__name__}. "
f"Valid '{k}' types are int (i.e. '{k}=0') or float (i.e. '{k}=0.5')"
)
elif k in CFG_FRACTION_KEYS:
if not isinstance(v, (int, float)):
raise TypeError(
f"'{k}={v}' is of invalid type {type(v).__name__}. "
f"Valid '{k}' types are int (i.e. '{k}=0') or float (i.e. '{k}=0.5')"
)
if not (0.0 <= v <= 1.0):
raise ValueError(f"'{k}={v}' is an invalid value. " f"Valid '{k}' values are between 0.0 and 1.0.")
elif k in CFG_INT_KEYS and not isinstance(v, int):
raise TypeError(
f"'{k}={v}' is of invalid type {type(v).__name__}. " f"'{k}' must be an int (i.e. '{k}=8')"
)
elif k in CFG_BOOL_KEYS and not isinstance(v, bool):
raise TypeError(
f"'{k}={v}' is of invalid type {type(v).__name__}. "
f"'{k}' must be a bool (i.e. '{k}=True' or '{k}=False')"
)
# Return instance
return IterableSimpleNamespace(**cfg)
def get_save_dir(args, name=None):
"""Return save_dir as created from train/val/predict arguments."""
if getattr(args, "save_dir", None):
save_dir = args.save_dir
else:
from ultralytics.utils.files import increment_path
project = args.project or (ROOT.parent / "tests/tmp/runs" if TESTS_RUNNING else RUNS_DIR) / args.task
name = name or args.name or f"{args.mode}"
save_dir = increment_path(Path(project) / name, exist_ok=args.exist_ok if RANK in (-1, 0) else True)
return Path(save_dir)
def _handle_deprecation(custom):
"""Hardcoded function to handle deprecated config keys."""
for key in custom.copy().keys():
if key == "boxes":
deprecation_warn(key, "show_boxes")
custom["show_boxes"] = custom.pop("boxes")
if key == "hide_labels":
deprecation_warn(key, "show_labels")
custom["show_labels"] = custom.pop("hide_labels") == "False"
if key == "hide_conf":
deprecation_warn(key, "show_conf")
custom["show_conf"] = custom.pop("hide_conf") == "False"
if key == "line_thickness":
deprecation_warn(key, "line_width")
custom["line_width"] = custom.pop("line_thickness")
return custom
def check_dict_alignment(base: Dict, custom: Dict, e=None):
"""
This function checks for any mismatched keys between a custom configuration list and a base configuration list. If
any mismatched keys are found, the function prints out similar keys from the base list and exits the program.
Args:
custom (dict): a dictionary of custom configuration options
base (dict): a dictionary of base configuration options
e (Error, optional): An optional error that is passed by the calling function.
"""
custom = _handle_deprecation(custom)
base_keys, custom_keys = (set(x.keys()) for x in (base, custom))
mismatched = [k for k in custom_keys if k not in base_keys]
if mismatched:
from difflib import get_close_matches
string = ""
for x in mismatched:
matches = get_close_matches(x, base_keys) # key list
matches = [f"{k}={base[k]}" if base.get(k) is not None else k for k in matches]
match_str = f"Similar arguments are i.e. {matches}." if matches else ""
string += f"'{colorstr('red', 'bold', x)}' is not a valid YOLO argument. {match_str}\n"
raise SyntaxError(string + CLI_HELP_MSG) from e
def merge_equals_args(args: List[str]) -> List[str]:
"""
Merges arguments around isolated '=' args in a list of strings. The function considers cases where the first
argument ends with '=' or the second starts with '=', as well as when the middle one is an equals sign.
Args:
args (List[str]): A list of strings where each element is an argument.
Returns:
(List[str]): A list of strings where the arguments around isolated '=' are merged.
"""
new_args = []
for i, arg in enumerate(args):
if arg == "=" and 0 < i < len(args) - 1: # merge ['arg', '=', 'val']
new_args[-1] += f"={args[i + 1]}"
del args[i + 1]
elif arg.endswith("=") and i < len(args) - 1 and "=" not in args[i + 1]: # merge ['arg=', 'val']
new_args.append(f"{arg}{args[i + 1]}")
del args[i + 1]
elif arg.startswith("=") and i > 0: # merge ['arg', '=val']
new_args[-1] += arg
else:
new_args.append(arg)
return new_args
def handle_yolo_hub(args: List[str]) -> None:
"""
Handle Ultralytics HUB command-line interface (CLI) commands.
This function processes Ultralytics HUB CLI commands such as login and logout.
It should be called when executing a script with arguments related to HUB authentication.
Args:
args (List[str]): A list of command line arguments
Example:
```bash
python my_script.py hub login your_api_key
```
"""
from ultralytics import hub
if args[0] == "login":
key = args[1] if len(args) > 1 else ""
# Log in to Ultralytics HUB using the provided API key
hub.login(key)
elif args[0] == "logout":
# Log out from Ultralytics HUB
hub.logout()
def handle_yolo_settings(args: List[str]) -> None:
"""
Handle YOLO settings command-line interface (CLI) commands.
This function processes YOLO settings CLI commands such as reset.
It should be called when executing a script with arguments related to YOLO settings management.
Args:
args (List[str]): A list of command line arguments for YOLO settings management.
Example:
```bash
python my_script.py yolo settings reset
```
"""
url = "https://docs.ultralytics.com/quickstart/#ultralytics-settings" # help URL
try:
if any(args):
if args[0] == "reset":
SETTINGS_YAML.unlink() # delete the settings file
SETTINGS.reset() # create new settings
LOGGER.info("Settings reset successfully") # inform the user that settings have been reset
else: # save a new setting
new = dict(parse_key_value_pair(a) for a in args)
check_dict_alignment(SETTINGS, new)
SETTINGS.update(new)
LOGGER.info(f"üí° Learn about settings at {url}")
yaml_print(SETTINGS_YAML) # print the current settings
except Exception as e:
LOGGER.warning(f"WARNING ⚠️ settings error: '{e}'. Please see {url} for help.")
def handle_explorer():
"""Open the Ultralytics Explorer GUI."""
checks.check_requirements("streamlit")
LOGGER.info(f"üí° Loading Explorer dashboard...")
subprocess.run(["streamlit", "run", ROOT / "data/explorer/gui/dash.py", "--server.maxMessageSize", "2048"])
def parse_key_value_pair(pair):
"""Parse one 'key=value' pair and return key and value."""
k, v = pair.split("=", 1) # split on first '=' sign
k, v = k.strip(), v.strip() # remove spaces
assert v, f"missing '{k}' value"
return k, smart_value(v)
def smart_value(v):
"""Convert a string to an underlying type such as int, float, bool, etc."""
v_lower = v.lower()
if v_lower == "none":
return None
elif v_lower == "true":
return True
elif v_lower == "false":
return False
else:
with contextlib.suppress(Exception):
return eval(v)
return v
def entrypoint(debug=""):
"""
This function is the ultralytics package entrypoint, it's responsible for parsing the command line arguments passed
to the package.
This function allows for:
- passing mandatory YOLO args as a list of strings
- specifying the task to be performed, either 'detect', 'segment' or 'classify'
- specifying the mode, either 'train', 'val', 'test', or 'predict'
- running special modes like 'checks'
- passing overrides to the package's configuration
It uses the package's default cfg and initializes it using the passed overrides.
Then it calls the CLI function with the composed cfg
"""
args = (debug.split(" ") if debug else sys.argv)[1:]
if not args: # no arguments passed
LOGGER.info(CLI_HELP_MSG)
return
special = {
"help": lambda: LOGGER.info(CLI_HELP_MSG),
"checks": checks.collect_system_info,
"version": lambda: LOGGER.info(__version__),
"settings": lambda: handle_yolo_settings(args[1:]),
"cfg": lambda: yaml_print(DEFAULT_CFG_PATH),
"hub": lambda: handle_yolo_hub(args[1:]),
"login": lambda: handle_yolo_hub(args),
"copy-cfg": copy_default_cfg,
"explorer": lambda: handle_explorer(),
}
full_args_dict = {**DEFAULT_CFG_DICT, **{k: None for k in TASKS}, **{k: None for k in MODES}, **special}
# Define common misuses of special commands, i.e. -h, -help, --help
special.update({k[0]: v for k, v in special.items()}) # singular
special.update({k[:-1]: v for k, v in special.items() if len(k) > 1 and k.endswith("s")}) # singular
special = {**special, **{f"-{k}": v for k, v in special.items()}, **{f"--{k}": v for k, v in special.items()}}
overrides = {} # basic overrides, i.e. imgsz=320
for a in merge_equals_args(args): # merge spaces around '=' sign
if a.startswith("--"):
LOGGER.warning(f"WARNING ⚠️ '{a}' does not require leading dashes '--', updating to '{a[2:]}'.")
a = a[2:]
if a.endswith(","):
LOGGER.warning(f"WARNING ⚠️ '{a}' does not require trailing comma ',', updating to '{a[:-1]}'.")
a = a[:-1]
if "=" in a:
try:
k, v = parse_key_value_pair(a)
if k == "cfg" and v is not None: # custom.yaml passed
LOGGER.info(f"Overriding {DEFAULT_CFG_PATH} with {v}")
overrides = {k: val for k, val in yaml_load(checks.check_yaml(v)).items() if k != "cfg"}
else:
overrides[k] = v
except (NameError, SyntaxError, ValueError, AssertionError) as e:
check_dict_alignment(full_args_dict, {a: ""}, e)
elif a in TASKS:
overrides["task"] = a
elif a in MODES:
overrides["mode"] = a
elif a.lower() in special:
special[a.lower()]()
return
elif a in DEFAULT_CFG_DICT and isinstance(DEFAULT_CFG_DICT[a], bool):
overrides[a] = True # auto-True for default bool args, i.e. 'yolo show' sets show=True
elif a in DEFAULT_CFG_DICT:
raise SyntaxError(
f"'{colorstr('red', 'bold', a)}' is a valid YOLO argument but is missing an '=' sign "
f"to set its value, i.e. try '{a}={DEFAULT_CFG_DICT[a]}'\n{CLI_HELP_MSG}"
)
else:
check_dict_alignment(full_args_dict, {a: ""})
# Check keys
check_dict_alignment(full_args_dict, overrides)
# Mode
mode = overrides.get("mode")
if mode is None:
mode = DEFAULT_CFG.mode or "predict"
LOGGER.warning(f"WARNING ⚠️ 'mode' is missing. Valid modes are {MODES}. Using default 'mode={mode}'.")
elif mode not in MODES:
raise ValueError(f"Invalid 'mode={mode}'. Valid modes are {MODES}.\n{CLI_HELP_MSG}")
# Task
task = overrides.pop("task", None)
if task:
if task not in TASKS:
raise ValueError(f"Invalid 'task={task}'. Valid tasks are {TASKS}.\n{CLI_HELP_MSG}")
if "model" not in overrides:
overrides["model"] = TASK2MODEL[task]
# Model
model = overrides.pop("model", DEFAULT_CFG.model)
if model is None:
model = "yolov8n.pt"
LOGGER.warning(f"WARNING ⚠️ 'model' is missing. Using default 'model={model}'.")
overrides["model"] = model
stem = Path(model).stem.lower()
if "rtdetr" in stem: # guess architecture
from ultralytics import RTDETR
model = RTDETR(model) # no task argument
elif "fastsam" in stem:
from ultralytics import FastSAM
model = FastSAM(model)
elif "sam" in stem:
from ultralytics import SAM
model = SAM(model)
else:
from ultralytics import YOLO
model = YOLO(model, task=task)
if isinstance(overrides.get("pretrained"), str):
model.load(overrides["pretrained"])
# Task Update
if task != model.task:
if task:
LOGGER.warning(
f"WARNING ⚠️ conflicting 'task={task}' passed with 'task={model.task}' model. "
f"Ignoring 'task={task}' and updating to 'task={model.task}' to match model."
)
task = model.task
# Mode
if mode in ("predict", "track") and "source" not in overrides:
overrides["source"] = DEFAULT_CFG.source or ASSETS
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using default 'source={overrides['source']}'.")
elif mode in ("train", "val"):
if "data" not in overrides and "resume" not in overrides:
overrides["data"] = DEFAULT_CFG.data or TASK2DATA.get(task or DEFAULT_CFG.task, DEFAULT_CFG.data)
LOGGER.warning(f"WARNING ⚠️ 'data' is missing. Using default 'data={overrides['data']}'.")
elif mode == "export":
if "format" not in overrides:
overrides["format"] = DEFAULT_CFG.format or "torchscript"
LOGGER.warning(f"WARNING ⚠️ 'format' is missing. Using default 'format={overrides['format']}'.")
# Run command in python
getattr(model, mode)(**overrides) # default args from model
# Show help
LOGGER.info(f"üí° Learn more at https://docs.ultralytics.com/modes/{mode}")
# Special modes --------------------------------------------------------------------------------------------------------
def copy_default_cfg():
"""Copy and create a new default configuration file with '_copy' appended to its name."""
new_file = Path.cwd() / DEFAULT_CFG_PATH.name.replace(".yaml", "_copy.yaml")
shutil.copy2(DEFAULT_CFG_PATH, new_file)
LOGGER.info(
f"{DEFAULT_CFG_PATH} copied to {new_file}\n"
f"Example YOLO command with this new custom cfg:\n yolo cfg='{new_file}' imgsz=320 batch=8"
)
if __name__ == "__main__":
# Example: entrypoint(debug='yolo predict model=yolov8n.pt')
entrypoint(debug="")
| 20,768 | Python | .py | 502 | 33.802789 | 120 | 0.604133 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,897 | autobackend.py | arojsubedi_Improved-YOLOv8s/ultralytics/nn/autobackend.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
import ast
import contextlib
import json
import platform
import zipfile
from collections import OrderedDict, namedtuple
from pathlib import Path
import cv2
import numpy as np
import torch
import torch.nn as nn
from PIL import Image
from ultralytics.utils import ARM64, LINUX, LOGGER, ROOT, yaml_load
from ultralytics.utils.checks import check_requirements, check_suffix, check_version, check_yaml
from ultralytics.utils.downloads import attempt_download_asset, is_url
def check_class_names(names):
"""
Check class names.
Map imagenet class codes to human-readable names if required. Convert lists to dicts.
"""
if isinstance(names, list): # names is a list
names = dict(enumerate(names)) # convert to dict
if isinstance(names, dict):
# Convert 1) string keys to int, i.e. '0' to 0, and non-string values to strings, i.e. True to 'True'
names = {int(k): str(v) for k, v in names.items()}
n = len(names)
if max(names.keys()) >= n:
raise KeyError(
f"{n}-class dataset requires class indices 0-{n - 1}, but you have invalid class indices "
f"{min(names.keys())}-{max(names.keys())} defined in your dataset YAML."
)
if isinstance(names[0], str) and names[0].startswith("n0"): # imagenet class codes, i.e. 'n01440764'
names_map = yaml_load(ROOT / "cfg/datasets/ImageNet.yaml")["map"] # human-readable names
names = {k: names_map[v] for k, v in names.items()}
return names
def default_class_names(data=None):
"""Applies default class names to an input YAML file or returns numerical class names."""
if data:
with contextlib.suppress(Exception):
return yaml_load(check_yaml(data))["names"]
return {i: f"class{i}" for i in range(999)} # return default if above errors
class AutoBackend(nn.Module):
"""
Handles dynamic backend selection for running inference using Ultralytics YOLO models.
The AutoBackend class is designed to provide an abstraction layer for various inference engines. It supports a wide
range of formats, each with specific naming conventions as outlined below:
Supported Formats and Naming Conventions:
| Format | File Suffix |
|-----------------------|------------------|
| PyTorch | *.pt |
| TorchScript | *.torchscript |
| ONNX Runtime | *.onnx |
| ONNX OpenCV DNN | *.onnx (dnn=True)|
| OpenVINO | *openvino_model/ |
| CoreML | *.mlpackage |
| TensorRT | *.engine |
| TensorFlow SavedModel | *_saved_model |
| TensorFlow GraphDef | *.pb |
| TensorFlow Lite | *.tflite |
| TensorFlow Edge TPU | *_edgetpu.tflite |
| PaddlePaddle | *_paddle_model |
| ncnn | *_ncnn_model |
This class offers dynamic backend switching capabilities based on the input model format, making it easier to deploy
models across various platforms.
"""
@torch.no_grad()
def __init__(
self,
weights="yolov8n.pt",
device=torch.device("cpu"),
dnn=False,
data=None,
fp16=False,
fuse=True,
verbose=True,
):
"""
Initialize the AutoBackend for inference.
Args:
weights (str): Path to the model weights file. Defaults to 'yolov8n.pt'.
device (torch.device): Device to run the model on. Defaults to CPU.
dnn (bool): Use OpenCV DNN module for ONNX inference. Defaults to False.
data (str | Path | optional): Path to the additional data.yaml file containing class names. Optional.
fp16 (bool): Enable half-precision inference. Supported only on specific backends. Defaults to False.
fuse (bool): Fuse Conv2D + BatchNorm layers for optimization. Defaults to True.
verbose (bool): Enable verbose logging. Defaults to True.
"""
super().__init__()
w = str(weights[0] if isinstance(weights, list) else weights)
nn_module = isinstance(weights, torch.nn.Module)
(
pt,
jit,
onnx,
xml,
engine,
coreml,
saved_model,
pb,
tflite,
edgetpu,
tfjs,
paddle,
ncnn,
triton,
) = self._model_type(w)
fp16 &= pt or jit or onnx or xml or engine or nn_module or triton # FP16
nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)
stride = 32 # default stride
model, metadata = None, None
# Set device
cuda = torch.cuda.is_available() and device.type != "cpu" # use CUDA
if cuda and not any([nn_module, pt, jit, engine, onnx]): # GPU dataloader formats
device = torch.device("cpu")
cuda = False
# Download if not local
if not (pt or triton or nn_module):
w = attempt_download_asset(w)
# Load model
if nn_module: # in-memory PyTorch model
model = weights.to(device)
model = model.fuse(verbose=verbose) if fuse else model
if hasattr(model, "kpt_shape"):
kpt_shape = model.kpt_shape # pose-only
stride = max(int(model.stride.max()), 32) # model stride
names = model.module.names if hasattr(model, "module") else model.names # get class names
model.half() if fp16 else model.float()
self.model = model # explicitly assign for to(), cpu(), cuda(), half()
pt = True
elif pt: # PyTorch
from ultralytics.nn.tasks import attempt_load_weights
model = attempt_load_weights(
weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse
)
if hasattr(model, "kpt_shape"):
kpt_shape = model.kpt_shape # pose-only
stride = max(int(model.stride.max()), 32) # model stride
names = model.module.names if hasattr(model, "module") else model.names # get class names
model.half() if fp16 else model.float()
self.model = model # explicitly assign for to(), cpu(), cuda(), half()
elif jit: # TorchScript
LOGGER.info(f"Loading {w} for TorchScript inference...")
extra_files = {"config.txt": ""} # model metadata
model = torch.jit.load(w, _extra_files=extra_files, map_location=device)
model.half() if fp16 else model.float()
if extra_files["config.txt"]: # load metadata dict
metadata = json.loads(extra_files["config.txt"], object_hook=lambda x: dict(x.items()))
elif dnn: # ONNX OpenCV DNN
LOGGER.info(f"Loading {w} for ONNX OpenCV DNN inference...")
check_requirements("opencv-python>=4.5.4")
net = cv2.dnn.readNetFromONNX(w)
elif onnx: # ONNX Runtime
LOGGER.info(f"Loading {w} for ONNX Runtime inference...")
check_requirements(("onnx", "onnxruntime-gpu" if cuda else "onnxruntime"))
import onnxruntime
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] if cuda else ["CPUExecutionProvider"]
session = onnxruntime.InferenceSession(w, providers=providers)
output_names = [x.name for x in session.get_outputs()]
metadata = session.get_modelmeta().custom_metadata_map # metadata
elif xml: # OpenVINO
LOGGER.info(f"Loading {w} for OpenVINO inference...")
check_requirements("openvino>=2023.0") # requires openvino-dev: https://pypi.org/project/openvino-dev/
from openvino.runtime import Core, Layout, get_batch # noqa
core = Core()
w = Path(w)
if not w.is_file(): # if not *.xml
w = next(w.glob("*.xml")) # get *.xml file from *_openvino_model dir
ov_model = core.read_model(model=str(w), weights=w.with_suffix(".bin"))
if ov_model.get_parameters()[0].get_layout().empty:
ov_model.get_parameters()[0].set_layout(Layout("NCHW"))
batch_dim = get_batch(ov_model)
if batch_dim.is_static:
batch_size = batch_dim.get_length()
ov_compiled_model = core.compile_model(ov_model, device_name="AUTO") # AUTO selects best available device
metadata = w.parent / "metadata.yaml"
elif engine: # TensorRT
LOGGER.info(f"Loading {w} for TensorRT inference...")
try:
import tensorrt as trt # noqa https://developer.nvidia.com/nvidia-tensorrt-download
except ImportError:
if LINUX:
check_requirements("nvidia-tensorrt", cmds="-U --index-url https://pypi.ngc.nvidia.com")
import tensorrt as trt # noqa
check_version(trt.__version__, "7.0.0", hard=True) # require tensorrt>=7.0.0
if device.type == "cpu":
device = torch.device("cuda:0")
Binding = namedtuple("Binding", ("name", "dtype", "shape", "data", "ptr"))
logger = trt.Logger(trt.Logger.INFO)
# Read file
with open(w, "rb") as f, trt.Runtime(logger) as runtime:
meta_len = int.from_bytes(f.read(4), byteorder="little") # read metadata length
metadata = json.loads(f.read(meta_len).decode("utf-8")) # read metadata
model = runtime.deserialize_cuda_engine(f.read()) # read engine
context = model.create_execution_context()
bindings = OrderedDict()
output_names = []
fp16 = False # default updated below
dynamic = False
for i in range(model.num_bindings):
name = model.get_binding_name(i)
dtype = trt.nptype(model.get_binding_dtype(i))
if model.binding_is_input(i):
if -1 in tuple(model.get_binding_shape(i)): # dynamic
dynamic = True
context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2]))
if dtype == np.float16:
fp16 = True
else: # output
output_names.append(name)
shape = tuple(context.get_binding_shape(i))
im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
batch_size = bindings["images"].shape[0] # if dynamic, this is instead max batch size
elif coreml: # CoreML
LOGGER.info(f"Loading {w} for CoreML inference...")
import coremltools as ct
model = ct.models.MLModel(w)
metadata = dict(model.user_defined_metadata)
elif saved_model: # TF SavedModel
LOGGER.info(f"Loading {w} for TensorFlow SavedModel inference...")
import tensorflow as tf
keras = False # assume TF1 saved_model
model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
metadata = Path(w) / "metadata.yaml"
elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
LOGGER.info(f"Loading {w} for TensorFlow GraphDef inference...")
import tensorflow as tf
from ultralytics.engine.exporter import gd_outputs
def wrap_frozen_graph(gd, inputs, outputs):
"""Wrap frozen graphs for deployment."""
x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
ge = x.graph.as_graph_element
return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
gd = tf.Graph().as_graph_def() # TF GraphDef
with open(w, "rb") as f:
gd.ParseFromString(f.read())
frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs=gd_outputs(gd))
elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
from tflite_runtime.interpreter import Interpreter, load_delegate
except ImportError:
import tensorflow as tf
Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate
if edgetpu: # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
LOGGER.info(f"Loading {w} for TensorFlow Lite Edge TPU inference...")
delegate = {"Linux": "libedgetpu.so.1", "Darwin": "libedgetpu.1.dylib", "Windows": "edgetpu.dll"}[
platform.system()
]
interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
else: # TFLite
LOGGER.info(f"Loading {w} for TensorFlow Lite inference...")
interpreter = Interpreter(model_path=w) # load TFLite model
interpreter.allocate_tensors() # allocate
input_details = interpreter.get_input_details() # inputs
output_details = interpreter.get_output_details() # outputs
# Load metadata
with contextlib.suppress(zipfile.BadZipFile):
with zipfile.ZipFile(w, "r") as model:
meta_file = model.namelist()[0]
metadata = ast.literal_eval(model.read(meta_file).decode("utf-8"))
elif tfjs: # TF.js
raise NotImplementedError("YOLOv8 TF.js inference is not currently supported.")
elif paddle: # PaddlePaddle
LOGGER.info(f"Loading {w} for PaddlePaddle inference...")
check_requirements("paddlepaddle-gpu" if cuda else "paddlepaddle")
import paddle.inference as pdi # noqa
w = Path(w)
if not w.is_file(): # if not *.pdmodel
w = next(w.rglob("*.pdmodel")) # get *.pdmodel file from *_paddle_model dir
config = pdi.Config(str(w), str(w.with_suffix(".pdiparams")))
if cuda:
config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)
predictor = pdi.create_predictor(config)
input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
output_names = predictor.get_output_names()
metadata = w.parents[1] / "metadata.yaml"
elif ncnn: # ncnn
LOGGER.info(f"Loading {w} for ncnn inference...")
check_requirements("git+https://github.com/Tencent/ncnn.git" if ARM64 else "ncnn") # requires ncnn
import ncnn as pyncnn
net = pyncnn.Net()
net.opt.use_vulkan_compute = cuda
w = Path(w)
if not w.is_file(): # if not *.param
w = next(w.glob("*.param")) # get *.param file from *_ncnn_model dir
net.load_param(str(w))
net.load_model(str(w.with_suffix(".bin")))
metadata = w.parent / "metadata.yaml"
elif triton: # NVIDIA Triton Inference Server
check_requirements("tritonclient[all]")
from ultralytics.utils.triton import TritonRemoteModel
model = TritonRemoteModel(w)
else:
from ultralytics.engine.exporter import export_formats
raise TypeError(
f"model='{w}' is not a supported model format. "
"See https://docs.ultralytics.com/modes/predict for help."
f"\n\n{export_formats()}"
)
# Load external metadata YAML
if isinstance(metadata, (str, Path)) and Path(metadata).exists():
metadata = yaml_load(metadata)
if metadata:
for k, v in metadata.items():
if k in ("stride", "batch"):
metadata[k] = int(v)
elif k in ("imgsz", "names", "kpt_shape") and isinstance(v, str):
metadata[k] = eval(v)
stride = metadata["stride"]
task = metadata["task"]
batch = metadata["batch"]
imgsz = metadata["imgsz"]
names = metadata["names"]
kpt_shape = metadata.get("kpt_shape")
elif not (pt or triton or nn_module):
LOGGER.warning(f"WARNING ⚠� Metadata not found for 'model={weights}'")
# Check names
if "names" not in locals(): # names missing
names = default_class_names(data)
names = check_class_names(names)
# Disable gradients
if pt:
for p in model.parameters():
p.requires_grad = False
self.__dict__.update(locals()) # assign all variables to self
def forward(self, im, augment=False, visualize=False, embed=None):
"""
Runs inference on the YOLOv8 MultiBackend model.
Args:
im (torch.Tensor): The image tensor to perform inference on.
augment (bool): whether to perform data augmentation during inference, defaults to False
visualize (bool): whether to visualize the output predictions, defaults to False
embed (list, optional): A list of feature vectors/embeddings to return.
Returns:
(tuple): Tuple containing the raw output tensor, and processed output for visualization (if visualize=True)
"""
b, ch, h, w = im.shape # batch, channel, height, width
if self.fp16 and im.dtype != torch.float16:
im = im.half() # to FP16
if self.nhwc:
im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3)
if self.pt or self.nn_module: # PyTorch
y = self.model(im, augment=augment, visualize=visualize, embed=embed)
elif self.jit: # TorchScript
y = self.model(im)
elif self.dnn: # ONNX OpenCV DNN
im = im.cpu().numpy() # torch to numpy
self.net.setInput(im)
y = self.net.forward()
elif self.onnx: # ONNX Runtime
im = im.cpu().numpy() # torch to numpy
y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
elif self.xml: # OpenVINO
im = im.cpu().numpy() # FP32
y = list(self.ov_compiled_model(im).values())
elif self.engine: # TensorRT
if self.dynamic and im.shape != self.bindings["images"].shape:
i = self.model.get_binding_index("images")
self.context.set_binding_shape(i, im.shape) # reshape if dynamic
self.bindings["images"] = self.bindings["images"]._replace(shape=im.shape)
for name in self.output_names:
i = self.model.get_binding_index(name)
self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
s = self.bindings["images"].shape
assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
self.binding_addrs["images"] = int(im.data_ptr())
self.context.execute_v2(list(self.binding_addrs.values()))
y = [self.bindings[x].data for x in sorted(self.output_names)]
elif self.coreml: # CoreML
im = im[0].cpu().numpy()
im_pil = Image.fromarray((im * 255).astype("uint8"))
# im = im.resize((192, 320), Image.BILINEAR)
y = self.model.predict({"image": im_pil}) # coordinates are xywh normalized
if "confidence" in y:
raise TypeError(
"Ultralytics only supports inference of non-pipelined CoreML models exported with "
f"'nms=False', but 'model={w}' has an NMS pipeline created by an 'nms=True' export."
)
# TODO: CoreML NMS inference handling
# from ultralytics.utils.ops import xywh2xyxy
# box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
# conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float32)
# y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
elif len(y) == 1: # classification model
y = list(y.values())
elif len(y) == 2: # segmentation model
y = list(reversed(y.values())) # reversed for segmentation models (pred, proto)
elif self.paddle: # PaddlePaddle
im = im.cpu().numpy().astype(np.float32)
self.input_handle.copy_from_cpu(im)
self.predictor.run()
y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
elif self.ncnn: # ncnn
mat_in = self.pyncnn.Mat(im[0].cpu().numpy())
ex = self.net.create_extractor()
input_names, output_names = self.net.input_names(), self.net.output_names()
ex.input(input_names[0], mat_in)
y = []
for output_name in output_names:
mat_out = self.pyncnn.Mat()
ex.extract(output_name, mat_out)
y.append(np.array(mat_out)[None])
elif self.triton: # NVIDIA Triton Inference Server
im = im.cpu().numpy() # torch to numpy
y = self.model(im)
else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
im = im.cpu().numpy()
if self.saved_model: # SavedModel
y = self.model(im, training=False) if self.keras else self.model(im)
if not isinstance(y, list):
y = [y]
elif self.pb: # GraphDef
y = self.frozen_func(x=self.tf.constant(im))
if len(y) == 2 and len(self.names) == 999: # segments and names not defined
ip, ib = (0, 1) if len(y[0].shape) == 4 else (1, 0) # index of protos, boxes
nc = y[ib].shape[1] - y[ip].shape[3] - 4 # y = (1, 160, 160, 32), (1, 116, 8400)
self.names = {i: f"class{i}" for i in range(nc)}
else: # Lite or Edge TPU
details = self.input_details[0]
integer = details["dtype"] in (np.int8, np.int16) # is TFLite quantized int8 or int16 model
if integer:
scale, zero_point = details["quantization"]
im = (im / scale + zero_point).astype(details["dtype"]) # de-scale
self.interpreter.set_tensor(details["index"], im)
self.interpreter.invoke()
y = []
for output in self.output_details:
x = self.interpreter.get_tensor(output["index"])
if integer:
scale, zero_point = output["quantization"]
x = (x.astype(np.float32) - zero_point) * scale # re-scale
if x.ndim > 2: # if task is not classification
# Denormalize xywh by image size. See https://github.com/ultralytics/ultralytics/pull/1695
# xywh are normalized in TFLite/EdgeTPU to mitigate quantization error of integer models
x[:, [0, 2]] *= w
x[:, [1, 3]] *= h
y.append(x)
# TF segment fixes: export is reversed vs ONNX export and protos are transposed
if len(y) == 2: # segment with (det, proto) output order reversed
if len(y[1].shape) != 4:
y = list(reversed(y)) # should be y = (1, 116, 8400), (1, 160, 160, 32)
y[1] = np.transpose(y[1], (0, 3, 1, 2)) # should be y = (1, 116, 8400), (1, 32, 160, 160)
y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
# for x in y:
# print(type(x), len(x)) if isinstance(x, (list, tuple)) else print(type(x), x.shape) # debug shapes
if isinstance(y, (list, tuple)):
return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
else:
return self.from_numpy(y)
def from_numpy(self, x):
"""
Convert a numpy array to a tensor.
Args:
x (np.ndarray): The array to be converted.
Returns:
(torch.Tensor): The converted tensor
"""
return torch.tensor(x).to(self.device) if isinstance(x, np.ndarray) else x
def warmup(self, imgsz=(1, 3, 640, 640)):
"""
Warm up the model by running one forward pass with a dummy input.
Args:
imgsz (tuple): The shape of the dummy input tensor in the format (batch_size, channels, height, width)
"""
warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton, self.nn_module
if any(warmup_types) and (self.device.type != "cpu" or self.triton):
im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
for _ in range(2 if self.jit else 1):
self.forward(im) # warmup
@staticmethod
def _model_type(p="path/to/model.pt"):
"""
This function takes a path to a model file and returns the model type. Possibles types are pt, jit, onnx, xml,
engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, ncnn or paddle.
Args:
p: path to the model file. Defaults to path/to/model.pt
Examples:
>>> model = AutoBackend(weights="path/to/model.onnx")
>>> model_type = model._model_type() # returns "onnx"
"""
from ultralytics.engine.exporter import export_formats
sf = list(export_formats().Suffix) # export suffixes
if not is_url(p, check=False) and not isinstance(p, str):
check_suffix(p, sf) # checks
name = Path(p).name
types = [s in name for s in sf]
types[5] |= name.endswith(".mlmodel") # retain support for older Apple CoreML *.mlmodel formats
types[8] &= not types[9] # tflite &= not edgetpu
if any(types):
triton = False
else:
from urllib.parse import urlsplit
url = urlsplit(p)
triton = url.netloc and url.path and url.scheme in {"http", "grpc"}
return types + [triton]
| 27,069 | Python | .py | 497 | 41.901408 | 120 | 0.572263 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,898 | tasks.py | arojsubedi_Improved-YOLOv8s/ultralytics/nn/tasks.py | # Ultralytics YOLO üöÄ, AGPL-3.0 license
import contextlib
from copy import deepcopy
from pathlib import Path
import torch
import torch.nn as nn
from ultralytics.nn.modules import (
AIFI,
C1,
C2,
C3,
C3TR,
OBB,
SPP,
SPPF,
Bottleneck,
BottleneckCSP,
C2f,
C2fAttn,
ImagePoolingAttn,
C3Ghost,
C3x,
Classify,
Concat,
Conv,
Conv2,
ConvTranspose,
Detect,
DWConv,
DWConvTranspose2d,
Focus,
GhostBottleneck,
GhostConv,
HGBlock,
HGStem,
Pose,
RepC3,
RepConv,
ResNetLayer,
RTDETRDecoder,
Segment,
WorldDetect,
GAM_Attention
)
from ultralytics.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, colorstr, emojis, yaml_load
from ultralytics.utils.checks import check_requirements, check_suffix, check_yaml
from ultralytics.utils.loss import v8ClassificationLoss, v8DetectionLoss, v8OBBLoss, v8PoseLoss, v8SegmentationLoss
from ultralytics.utils.plotting import feature_visualization
from ultralytics.utils.torch_utils import (
fuse_conv_and_bn,
fuse_deconv_and_bn,
initialize_weights,
intersect_dicts,
make_divisible,
model_info,
scale_img,
time_sync,
)
try:
import thop
except ImportError:
thop = None
class BaseModel(nn.Module):
"""The BaseModel class serves as a base class for all the models in the Ultralytics YOLO family."""
def forward(self, x, *args, **kwargs):
"""
Forward pass of the model on a single scale. Wrapper for `_forward_once` method.
Args:
x (torch.Tensor | dict): The input image tensor or a dict including image tensor and gt labels.
Returns:
(torch.Tensor): The output of the network.
"""
if isinstance(x, dict): # for cases of training and validating while training.
return self.loss(x, *args, **kwargs)
return self.predict(x, *args, **kwargs)
def predict(self, x, profile=False, visualize=False, augment=False, embed=None):
"""
Perform a forward pass through the network.
Args:
x (torch.Tensor): The input tensor to the model.
profile (bool): Print the computation time of each layer if True, defaults to False.
visualize (bool): Save the feature maps of the model if True, defaults to False.
augment (bool): Augment image during prediction, defaults to False.
embed (list, optional): A list of feature vectors/embeddings to return.
Returns:
(torch.Tensor): The last output of the model.
"""
if augment:
return self._predict_augment(x)
return self._predict_once(x, profile, visualize, embed)
def _predict_once(self, x, profile=False, visualize=False, embed=None):
"""
Perform a forward pass through the network.
Args:
x (torch.Tensor): The input tensor to the model.
profile (bool): Print the computation time of each layer if True, defaults to False.
visualize (bool): Save the feature maps of the model if True, defaults to False.
embed (list, optional): A list of feature vectors/embeddings to return.
Returns:
(torch.Tensor): The last output of the model.
"""
y, dt, embeddings = [], [], [] # outputs
for m in self.model:
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
if profile:
self._profile_one_layer(m, x, dt)
x = m(x) # run
y.append(x if m.i in self.save else None) # save output
if visualize:
feature_visualization(x, m.type, m.i, save_dir=visualize)
if embed and m.i in embed:
embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1)) # flatten
if m.i == max(embed):
return torch.unbind(torch.cat(embeddings, 1), dim=0)
return x
def _predict_augment(self, x):
"""Perform augmentations on input image x and return augmented inference."""
LOGGER.warning(
f"WARNING ⚠️ {self.__class__.__name__} does not support augmented inference yet. "
f"Reverting to single-scale inference instead."
)
return self._predict_once(x)
def _profile_one_layer(self, m, x, dt):
"""
Profile the computation time and FLOPs of a single layer of the model on a given input. Appends the results to
the provided list.
Args:
m (nn.Module): The layer to be profiled.
x (torch.Tensor): The input data to the layer.
dt (list): A list to store the computation time of the layer.
Returns:
None
"""
c = m == self.model[-1] and isinstance(x, list) # is final layer list, copy input as inplace fix
flops = thop.profile(m, inputs=[x.copy() if c else x], verbose=False)[0] / 1e9 * 2 if thop else 0 # FLOPs
t = time_sync()
for _ in range(10):
m(x.copy() if c else x)
dt.append((time_sync() - t) * 100)
if m == self.model[0]:
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")
LOGGER.info(f"{dt[-1]:10.2f} {flops:10.2f} {m.np:10.0f} {m.type}")
if c:
LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
def fuse(self, verbose=True):
"""
Fuse the `Conv2d()` and `BatchNorm2d()` layers of the model into a single layer, in order to improve the
computation efficiency.
Returns:
(nn.Module): The fused model is returned.
"""
if not self.is_fused():
for m in self.model.modules():
if isinstance(m, (Conv, Conv2, DWConv)) and hasattr(m, "bn"):
if isinstance(m, Conv2):
m.fuse_convs()
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
delattr(m, "bn") # remove batchnorm
m.forward = m.forward_fuse # update forward
if isinstance(m, ConvTranspose) and hasattr(m, "bn"):
m.conv_transpose = fuse_deconv_and_bn(m.conv_transpose, m.bn)
delattr(m, "bn") # remove batchnorm
m.forward = m.forward_fuse # update forward
if isinstance(m, RepConv):
m.fuse_convs()
m.forward = m.forward_fuse # update forward
self.info(verbose=verbose)
return self
def is_fused(self, thresh=10):
"""
Check if the model has less than a certain threshold of BatchNorm layers.
Args:
thresh (int, optional): The threshold number of BatchNorm layers. Default is 10.
Returns:
(bool): True if the number of BatchNorm layers in the model is less than the threshold, False otherwise.
"""
bn = tuple(v for k, v in nn.__dict__.items() if "Norm" in k) # normalization layers, i.e. BatchNorm2d()
return sum(isinstance(v, bn) for v in self.modules()) < thresh # True if < 'thresh' BatchNorm layers in model
def info(self, detailed=False, verbose=True, imgsz=640):
"""
Prints model information.
Args:
detailed (bool): if True, prints out detailed information about the model. Defaults to False
verbose (bool): if True, prints out the model information. Defaults to False
imgsz (int): the size of the image that the model will be trained on. Defaults to 640
"""
return model_info(self, detailed=detailed, verbose=verbose, imgsz=imgsz)
def _apply(self, fn):
"""
Applies a function to all the tensors in the model that are not parameters or registered buffers.
Args:
fn (function): the function to apply to the model
Returns:
(BaseModel): An updated BaseModel object.
"""
self = super()._apply(fn)
m = self.model[-1] # Detect()
if isinstance(m, Detect): # includes all Detect subclasses like Segment, Pose, OBB, WorldDetect
m.stride = fn(m.stride)
m.anchors = fn(m.anchors)
m.strides = fn(m.strides)
return self
def load(self, weights, verbose=True):
"""
Load the weights into the model.
Args:
weights (dict | torch.nn.Module): The pre-trained weights to be loaded.
verbose (bool, optional): Whether to log the transfer progress. Defaults to True.
"""
model = weights["model"] if isinstance(weights, dict) else weights # torchvision models are not dicts
csd = model.float().state_dict() # checkpoint state_dict as FP32
csd = intersect_dicts(csd, self.state_dict()) # intersect
self.load_state_dict(csd, strict=False) # load
if verbose:
LOGGER.info(f"Transferred {len(csd)}/{len(self.model.state_dict())} items from pretrained weights")
def loss(self, batch, preds=None):
"""
Compute loss.
Args:
batch (dict): Batch to compute loss on
preds (torch.Tensor | List[torch.Tensor]): Predictions.
"""
if not hasattr(self, "criterion"):
self.criterion = self.init_criterion()
preds = self.forward(batch["img"]) if preds is None else preds
return self.criterion(preds, batch)
def init_criterion(self):
"""Initialize the loss criterion for the BaseModel."""
raise NotImplementedError("compute_loss() needs to be implemented by task heads")
class DetectionModel(BaseModel):
"""YOLOv8 detection model."""
def __init__(self, cfg="yolov8n.yaml", ch=3, nc=None, verbose=True): # model, input channels, number of classes
"""Initialize the YOLOv8 detection model with the given config and parameters."""
super().__init__()
self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg) # cfg dict
# Define model
ch = self.yaml["ch"] = self.yaml.get("ch", ch) # input channels
if nc and nc != self.yaml["nc"]:
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
self.yaml["nc"] = nc # override YAML value
self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose) # model, savelist
self.names = {i: f"{i}" for i in range(self.yaml["nc"])} # default names dict
self.inplace = self.yaml.get("inplace", True)
# Build strides
m = self.model[-1] # Detect()
if isinstance(m, Detect): # includes all Detect subclasses like Segment, Pose, OBB, WorldDetect
s = 256 # 2x min stride
m.inplace = self.inplace
forward = lambda x: self.forward(x)[0] if isinstance(m, (Segment, Pose, OBB)) else self.forward(x)
m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward
self.stride = m.stride
m.bias_init() # only run once
else:
self.stride = torch.Tensor([32]) # default stride for i.e. RTDETR
# Init weights, biases
initialize_weights(self)
if verbose:
self.info()
LOGGER.info("")
def _predict_augment(self, x):
"""Perform augmentations on input image x and return augmented inference and train outputs."""
img_size = x.shape[-2:] # height, width
s = [1, 0.83, 0.67] # scales
f = [None, 3, None] # flips (2-ud, 3-lr)
y = [] # outputs
for si, fi in zip(s, f):
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
yi = super().predict(xi)[0] # forward
yi = self._descale_pred(yi, fi, si, img_size)
y.append(yi)
y = self._clip_augmented(y) # clip augmented tails
return torch.cat(y, -1), None # augmented inference, train
@staticmethod
def _descale_pred(p, flips, scale, img_size, dim=1):
"""De-scale predictions following augmented inference (inverse operation)."""
p[:, :4] /= scale # de-scale
x, y, wh, cls = p.split((1, 1, 2, p.shape[dim] - 4), dim)
if flips == 2:
y = img_size[0] - y # de-flip ud
elif flips == 3:
x = img_size[1] - x # de-flip lr
return torch.cat((x, y, wh, cls), dim)
def _clip_augmented(self, y):
"""Clip YOLO augmented inference tails."""
nl = self.model[-1].nl # number of detection layers (P3-P5)
g = sum(4**x for x in range(nl)) # grid points
e = 1 # exclude layer count
i = (y[0].shape[-1] // g) * sum(4**x for x in range(e)) # indices
y[0] = y[0][..., :-i] # large
i = (y[-1].shape[-1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
y[-1] = y[-1][..., i:] # small
return y
def init_criterion(self):
"""Initialize the loss criterion for the DetectionModel."""
return v8DetectionLoss(self)
class OBBModel(DetectionModel):
"""YOLOv8 Oriented Bounding Box (OBB) model."""
def __init__(self, cfg="yolov8n-obb.yaml", ch=3, nc=None, verbose=True):
"""Initialize YOLOv8 OBB model with given config and parameters."""
super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)
def init_criterion(self):
"""Initialize the loss criterion for the model."""
return v8OBBLoss(self)
class SegmentationModel(DetectionModel):
"""YOLOv8 segmentation model."""
def __init__(self, cfg="yolov8n-seg.yaml", ch=3, nc=None, verbose=True):
"""Initialize YOLOv8 segmentation model with given config and parameters."""
super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)
def init_criterion(self):
"""Initialize the loss criterion for the SegmentationModel."""
return v8SegmentationLoss(self)
class PoseModel(DetectionModel):
"""YOLOv8 pose model."""
def __init__(self, cfg="yolov8n-pose.yaml", ch=3, nc=None, data_kpt_shape=(None, None), verbose=True):
"""Initialize YOLOv8 Pose model."""
if not isinstance(cfg, dict):
cfg = yaml_model_load(cfg) # load model YAML
if any(data_kpt_shape) and list(data_kpt_shape) != list(cfg["kpt_shape"]):
LOGGER.info(f"Overriding model.yaml kpt_shape={cfg['kpt_shape']} with kpt_shape={data_kpt_shape}")
cfg["kpt_shape"] = data_kpt_shape
super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)
def init_criterion(self):
"""Initialize the loss criterion for the PoseModel."""
return v8PoseLoss(self)
class ClassificationModel(BaseModel):
"""YOLOv8 classification model."""
def __init__(self, cfg="yolov8n-cls.yaml", ch=3, nc=None, verbose=True):
"""Init ClassificationModel with YAML, channels, number of classes, verbose flag."""
super().__init__()
self._from_yaml(cfg, ch, nc, verbose)
def _from_yaml(self, cfg, ch, nc, verbose):
"""Set YOLOv8 model configurations and define the model architecture."""
self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg) # cfg dict
# Define model
ch = self.yaml["ch"] = self.yaml.get("ch", ch) # input channels
if nc and nc != self.yaml["nc"]:
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
self.yaml["nc"] = nc # override YAML value
elif not nc and not self.yaml.get("nc", None):
raise ValueError("nc not specified. Must specify nc in model.yaml or function arguments.")
self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose) # model, savelist
self.stride = torch.Tensor([1]) # no stride constraints
self.names = {i: f"{i}" for i in range(self.yaml["nc"])} # default names dict
self.info()
@staticmethod
def reshape_outputs(model, nc):
"""Update a TorchVision classification model to class count 'n' if required."""
name, m = list((model.model if hasattr(model, "model") else model).named_children())[-1] # last module
if isinstance(m, Classify): # YOLO Classify() head
if m.linear.out_features != nc:
m.linear = nn.Linear(m.linear.in_features, nc)
elif isinstance(m, nn.Linear): # ResNet, EfficientNet
if m.out_features != nc:
setattr(model, name, nn.Linear(m.in_features, nc))
elif isinstance(m, nn.Sequential):
types = [type(x) for x in m]
if nn.Linear in types:
i = types.index(nn.Linear) # nn.Linear index
if m[i].out_features != nc:
m[i] = nn.Linear(m[i].in_features, nc)
elif nn.Conv2d in types:
i = types.index(nn.Conv2d) # nn.Conv2d index
if m[i].out_channels != nc:
m[i] = nn.Conv2d(m[i].in_channels, nc, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None)
def init_criterion(self):
"""Initialize the loss criterion for the ClassificationModel."""
return v8ClassificationLoss()
class RTDETRDetectionModel(DetectionModel):
"""
RTDETR (Real-time DEtection and Tracking using Transformers) Detection Model class.
This class is responsible for constructing the RTDETR architecture, defining loss functions, and facilitating both
the training and inference processes. RTDETR is an object detection and tracking model that extends from the
DetectionModel base class.
Attributes:
cfg (str): The configuration file path or preset string. Default is 'rtdetr-l.yaml'.
ch (int): Number of input channels. Default is 3 (RGB).
nc (int, optional): Number of classes for object detection. Default is None.
verbose (bool): Specifies if summary statistics are shown during initialization. Default is True.
Methods:
init_criterion: Initializes the criterion used for loss calculation.
loss: Computes and returns the loss during training.
predict: Performs a forward pass through the network and returns the output.
"""
def __init__(self, cfg="rtdetr-l.yaml", ch=3, nc=None, verbose=True):
"""
Initialize the RTDETRDetectionModel.
Args:
cfg (str): Configuration file name or path.
ch (int): Number of input channels.
nc (int, optional): Number of classes. Defaults to None.
verbose (bool, optional): Print additional information during initialization. Defaults to True.
"""
super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)
def init_criterion(self):
"""Initialize the loss criterion for the RTDETRDetectionModel."""
from ultralytics.models.utils.loss import RTDETRDetectionLoss
return RTDETRDetectionLoss(nc=self.nc, use_vfl=True)
def loss(self, batch, preds=None):
"""
Compute the loss for the given batch of data.
Args:
batch (dict): Dictionary containing image and label data.
preds (torch.Tensor, optional): Precomputed model predictions. Defaults to None.
Returns:
(tuple): A tuple containing the total loss and main three losses in a tensor.
"""
if not hasattr(self, "criterion"):
self.criterion = self.init_criterion()
img = batch["img"]
# NOTE: preprocess gt_bbox and gt_labels to list.
bs = len(img)
batch_idx = batch["batch_idx"]
gt_groups = [(batch_idx == i).sum().item() for i in range(bs)]
targets = {
"cls": batch["cls"].to(img.device, dtype=torch.long).view(-1),
"bboxes": batch["bboxes"].to(device=img.device),
"batch_idx": batch_idx.to(img.device, dtype=torch.long).view(-1),
"gt_groups": gt_groups,
}
preds = self.predict(img, batch=targets) if preds is None else preds
dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta = preds if self.training else preds[1]
if dn_meta is None:
dn_bboxes, dn_scores = None, None
else:
dn_bboxes, dec_bboxes = torch.split(dec_bboxes, dn_meta["dn_num_split"], dim=2)
dn_scores, dec_scores = torch.split(dec_scores, dn_meta["dn_num_split"], dim=2)
dec_bboxes = torch.cat([enc_bboxes.unsqueeze(0), dec_bboxes]) # (7, bs, 300, 4)
dec_scores = torch.cat([enc_scores.unsqueeze(0), dec_scores])
loss = self.criterion(
(dec_bboxes, dec_scores), targets, dn_bboxes=dn_bboxes, dn_scores=dn_scores, dn_meta=dn_meta
)
# NOTE: There are like 12 losses in RTDETR, backward with all losses but only show the main three losses.
return sum(loss.values()), torch.as_tensor(
[loss[k].detach() for k in ["loss_giou", "loss_class", "loss_bbox"]], device=img.device
)
def predict(self, x, profile=False, visualize=False, batch=None, augment=False, embed=None):
"""
Perform a forward pass through the model.
Args:
x (torch.Tensor): The input tensor.
profile (bool, optional): If True, profile the computation time for each layer. Defaults to False.
visualize (bool, optional): If True, save feature maps for visualization. Defaults to False.
batch (dict, optional): Ground truth data for evaluation. Defaults to None.
augment (bool, optional): If True, perform data augmentation during inference. Defaults to False.
embed (list, optional): A list of feature vectors/embeddings to return.
Returns:
(torch.Tensor): Model's output tensor.
"""
y, dt, embeddings = [], [], [] # outputs
for m in self.model[:-1]: # except the head part
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
if profile:
self._profile_one_layer(m, x, dt)
x = m(x) # run
y.append(x if m.i in self.save else None) # save output
if visualize:
feature_visualization(x, m.type, m.i, save_dir=visualize)
if embed and m.i in embed:
embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1)) # flatten
if m.i == max(embed):
return torch.unbind(torch.cat(embeddings, 1), dim=0)
head = self.model[-1]
x = head([y[j] for j in head.f], batch) # head inference
return x
class WorldModel(DetectionModel):
"""YOLOv8 World Model."""
def __init__(self, cfg="yolov8s-world.yaml", ch=3, nc=None, verbose=True):
"""Initialize YOLOv8 world model with given config and parameters."""
self.txt_feats = torch.randn(1, nc or 80, 512) # placeholder
super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)
def set_classes(self, text):
"""Perform a forward pass with optional profiling, visualization, and embedding extraction."""
try:
import clip
except ImportError:
check_requirements("git+https://github.com/openai/CLIP.git")
import clip
model, _ = clip.load("ViT-B/32")
device = next(model.parameters()).device
text_token = clip.tokenize(text).to(device)
txt_feats = model.encode_text(text_token).to(dtype=torch.float32)
txt_feats = txt_feats / txt_feats.norm(p=2, dim=-1, keepdim=True)
self.txt_feats = txt_feats.reshape(-1, len(text), txt_feats.shape[-1])
self.model[-1].nc = len(text)
def init_criterion(self):
"""Initialize the loss criterion for the model."""
raise NotImplementedError
def predict(self, x, profile=False, visualize=False, augment=False, embed=None):
"""
Perform a forward pass through the model.
Args:
x (torch.Tensor): The input tensor.
profile (bool, optional): If True, profile the computation time for each layer. Defaults to False.
visualize (bool, optional): If True, save feature maps for visualization. Defaults to False.
augment (bool, optional): If True, perform data augmentation during inference. Defaults to False.
embed (list, optional): A list of feature vectors/embeddings to return.
Returns:
(torch.Tensor): Model's output tensor.
"""
txt_feats = self.txt_feats.to(device=x.device, dtype=x.dtype)
if len(txt_feats) != len(x):
txt_feats = txt_feats.repeat(len(x), 1, 1)
ori_txt_feats = txt_feats.clone()
y, dt, embeddings = [], [], [] # outputs
for m in self.model: # except the head part
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
if profile:
self._profile_one_layer(m, x, dt)
if isinstance(m, C2fAttn):
x = m(x, txt_feats)
elif isinstance(m, WorldDetect):
x = m(x, ori_txt_feats)
elif isinstance(m, ImagePoolingAttn):
txt_feats = m(x, txt_feats)
else:
x = m(x) # run
y.append(x if m.i in self.save else None) # save output
if visualize:
feature_visualization(x, m.type, m.i, save_dir=visualize)
if embed and m.i in embed:
embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1)) # flatten
if m.i == max(embed):
return torch.unbind(torch.cat(embeddings, 1), dim=0)
return x
class Ensemble(nn.ModuleList):
"""Ensemble of models."""
def __init__(self):
"""Initialize an ensemble of models."""
super().__init__()
def forward(self, x, augment=False, profile=False, visualize=False):
"""Function generates the YOLO network's final layer."""
y = [module(x, augment, profile, visualize)[0] for module in self]
# y = torch.stack(y).max(0)[0] # max ensemble
# y = torch.stack(y).mean(0) # mean ensemble
y = torch.cat(y, 2) # nms ensemble, y shape(B, HW, C)
return y, None # inference, train output
# Functions ------------------------------------------------------------------------------------------------------------
@contextlib.contextmanager
def temporary_modules(modules=None):
"""
Context manager for temporarily adding or modifying modules in Python's module cache (`sys.modules`).
This function can be used to change the module paths during runtime. It's useful when refactoring code,
where you've moved a module from one location to another, but you still want to support the old import
paths for backwards compatibility.
Args:
modules (dict, optional): A dictionary mapping old module paths to new module paths.
Example:
```python
with temporary_modules({'old.module.path': 'new.module.path'}):
import old.module.path # this will now import new.module.path
```
Note:
The changes are only in effect inside the context manager and are undone once the context manager exits.
Be aware that directly manipulating `sys.modules` can lead to unpredictable results, especially in larger
applications or libraries. Use this function with caution.
"""
if not modules:
modules = {}
import importlib
import sys
try:
# Set modules in sys.modules under their old name
for old, new in modules.items():
sys.modules[old] = importlib.import_module(new)
yield
finally:
# Remove the temporary module paths
for old in modules:
if old in sys.modules:
del sys.modules[old]
def torch_safe_load(weight):
"""
This function attempts to load a PyTorch model with the torch.load() function. If a ModuleNotFoundError is raised,
it catches the error, logs a warning message, and attempts to install the missing module via the
check_requirements() function. After installation, the function again attempts to load the model using torch.load().
Args:
weight (str): The file path of the PyTorch model.
Returns:
(dict): The loaded PyTorch model.
"""
from ultralytics.utils.downloads import attempt_download_asset
check_suffix(file=weight, suffix=".pt")
file = attempt_download_asset(weight) # search online if missing locally
try:
with temporary_modules(
{
"ultralytics.yolo.utils": "ultralytics.utils",
"ultralytics.yolo.v8": "ultralytics.models.yolo",
"ultralytics.yolo.data": "ultralytics.data",
}
): # for legacy 8.0 Classify and Pose models
ckpt = torch.load(file, map_location="cpu")
except ModuleNotFoundError as e: # e.name is missing module name
if e.name == "models":
raise TypeError(
emojis(
f"ERROR ❌️ {weight} appears to be an Ultralytics YOLOv5 model originally trained "
f"with https://github.com/ultralytics/yolov5.\nThis model is NOT forwards compatible with "
f"YOLOv8 at https://github.com/ultralytics/ultralytics."
f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to "
f"run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'"
)
) from e
LOGGER.warning(
f"WARNING ⚠️ {weight} appears to require '{e.name}', which is not in ultralytics requirements."
f"\nAutoInstall will run now for '{e.name}' but this feature will be removed in the future."
f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to "
f"run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'"
)
check_requirements(e.name) # install missing module
ckpt = torch.load(file, map_location="cpu")
if not isinstance(ckpt, dict):
# File is likely a YOLO instance saved with i.e. torch.save(model, "saved_model.pt")
LOGGER.warning(
f"WARNING ⚠️ The file '{weight}' appears to be improperly saved or formatted. "
f"For optimal results, use model.save('filename.pt') to correctly save YOLO models."
)
ckpt = {"model": ckpt.model}
return ckpt, file # load
def attempt_load_weights(weights, device=None, inplace=True, fuse=False):
"""Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a."""
ensemble = Ensemble()
for w in weights if isinstance(weights, list) else [weights]:
ckpt, w = torch_safe_load(w) # load ckpt
args = {**DEFAULT_CFG_DICT, **ckpt["train_args"]} if "train_args" in ckpt else None # combined args
model = (ckpt.get("ema") or ckpt["model"]).to(device).float() # FP32 model
# Model compatibility updates
model.args = args # attach args to model
model.pt_path = w # attach *.pt file path to model
model.task = guess_model_task(model)
if not hasattr(model, "stride"):
model.stride = torch.tensor([32.0])
# Append
ensemble.append(model.fuse().eval() if fuse and hasattr(model, "fuse") else model.eval()) # model in eval mode
# Module updates
for m in ensemble.modules():
if hasattr(m, "inplace"):
m.inplace = inplace
elif isinstance(m, nn.Upsample) and not hasattr(m, "recompute_scale_factor"):
m.recompute_scale_factor = None # torch 1.11.0 compatibility
# Return model
if len(ensemble) == 1:
return ensemble[-1]
# Return ensemble
LOGGER.info(f"Ensemble created with {weights}\n")
for k in "names", "nc", "yaml":
setattr(ensemble, k, getattr(ensemble[0], k))
ensemble.stride = ensemble[int(torch.argmax(torch.tensor([m.stride.max() for m in ensemble])))].stride
assert all(ensemble[0].nc == m.nc for m in ensemble), f"Models differ in class counts {[m.nc for m in ensemble]}"
return ensemble
def attempt_load_one_weight(weight, device=None, inplace=True, fuse=False):
"""Loads a single model weights."""
ckpt, weight = torch_safe_load(weight) # load ckpt
args = {**DEFAULT_CFG_DICT, **(ckpt.get("train_args", {}))} # combine model and default args, preferring model args
model = (ckpt.get("ema") or ckpt["model"]).to(device).float() # FP32 model
# Model compatibility updates
model.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # attach args to model
model.pt_path = weight # attach *.pt file path to model
model.task = guess_model_task(model)
if not hasattr(model, "stride"):
model.stride = torch.tensor([32.0])
model = model.fuse().eval() if fuse and hasattr(model, "fuse") else model.eval() # model in eval mode
# Module updates
for m in model.modules():
if hasattr(m, "inplace"):
m.inplace = inplace
elif isinstance(m, nn.Upsample) and not hasattr(m, "recompute_scale_factor"):
m.recompute_scale_factor = None # torch 1.11.0 compatibility
# Return model and ckpt
return model, ckpt
def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)
"""Parse a YOLO model.yaml dictionary into a PyTorch model."""
import ast
# Args
max_channels = float("inf")
nc, act, scales = (d.get(x) for x in ("nc", "activation", "scales"))
depth, width, kpt_shape = (d.get(x, 1.0) for x in ("depth_multiple", "width_multiple", "kpt_shape"))
if scales:
#scale = d.get("scale")
scale = "s" # Setting scale to small
if not scale:
scale = tuple(scales.keys())[0]
LOGGER.warning(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.")
depth, width, max_channels = scales[scale]
if act:
Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
if verbose:
LOGGER.info(f"{colorstr('activation:')} {act}") # print
if verbose:
LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10} {'module':<45}{'arguments':<30}")
ch = [ch]
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]): # from, number, module, args
m = getattr(torch.nn, m[3:]) if "nn." in m else globals()[m] # get module
for j, a in enumerate(args):
if isinstance(a, str):
with contextlib.suppress(ValueError):
args[j] = locals()[a] if a in locals() else ast.literal_eval(a)
n = n_ = max(round(n * depth), 1) if n > 1 else n # depth gain
if m in (
Classify,
Conv,
ConvTranspose,
GhostConv,
Bottleneck,
GhostBottleneck,
SPP,
SPPF,
DWConv,
Focus,
BottleneckCSP,
C1,
C2,
C2f,
C2fAttn,
C3,
C3TR,
C3Ghost,
nn.ConvTranspose2d,
DWConvTranspose2d,
C3x,
RepC3,
GAM_Attention
):
c1, c2 = ch[f], args[0]
if c2 != nc: # if c2 not equal to number of classes (i.e. for Classify() output)
c2 = make_divisible(min(c2, max_channels) * width, 8)
if m is C2fAttn:
args[1] = make_divisible(min(args[1], max_channels // 2) * width, 8) # embed channels
args[2] = int(
max(round(min(args[2], max_channels // 2 // 32)) * width, 1) if args[2] > 1 else args[2]
) # num heads
args = [c1, c2, *args[1:]]
if m in (BottleneckCSP, C1, C2, C2f, C2fAttn, C3, C3TR, C3Ghost, C3x, RepC3):
args.insert(2, n) # number of repeats
n = 1
elif m is AIFI:
args = [ch[f], *args]
elif m in (HGStem, HGBlock):
c1, cm, c2 = ch[f], args[0], args[1]
args = [c1, cm, c2, *args[2:]]
if m is HGBlock:
args.insert(4, n) # number of repeats
n = 1
elif m is ResNetLayer:
c2 = args[1] if args[3] else args[1] * 4
elif m is nn.BatchNorm2d:
args = [ch[f]]
elif m is Concat:
c2 = sum(ch[x] for x in f)
elif m in (Detect, WorldDetect, Segment, Pose, OBB, ImagePoolingAttn):
args.append([ch[x] for x in f])
if m is Segment:
args[2] = make_divisible(min(args[2], max_channels) * width, 8)
elif m is RTDETRDecoder: # special case, channels arg must be passed in index 1
args.insert(1, [ch[x] for x in f])
else:
c2 = ch[f]
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
t = str(m)[8:-2].replace("__main__.", "") # module type
m.np = sum(x.numel() for x in m_.parameters()) # number params
m_.i, m_.f, m_.type = i, f, t # attach index, 'from' index, type
if verbose:
LOGGER.info(f"{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f} {t:<45}{str(args):<30}") # print
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
layers.append(m_)
if i == 0:
ch = []
ch.append(c2)
return nn.Sequential(*layers), sorted(save)
def yaml_model_load(path):
"""Load a YOLOv8 model from a YAML file."""
import re
path = Path(path)
if path.stem in (f"yolov{d}{x}6" for x in "nsmlx" for d in (5, 8)):
new_stem = re.sub(r"(\d+)([nslmx])6(.+)?$", r"\1\2-p6\3", path.stem)
LOGGER.warning(f"WARNING ⚠️ Ultralytics YOLO P6 models now use -p6 suffix. Renaming {path.stem} to {new_stem}.")
path = path.with_name(new_stem + path.suffix)
unified_path = re.sub(r"(\d+)([nslmx])(.+)?$", r"\1\3", str(path)) # i.e. yolov8x.yaml -> yolov8.yaml
yaml_file = check_yaml(unified_path, hard=False) or check_yaml(path)
d = yaml_load(yaml_file) # model dict
d["scale"] = guess_model_scale(path)
d["yaml_file"] = str(path)
return d
def guess_model_scale(model_path):
"""
Takes a path to a YOLO model's YAML file as input and extracts the size character of the model's scale. The function
uses regular expression matching to find the pattern of the model scale in the YAML file name, which is denoted by
n, s, m, l, or x. The function returns the size character of the model scale as a string.
Args:
model_path (str | Path): The path to the YOLO model's YAML file.
Returns:
(str): The size character of the model's scale, which can be n, s, m, l, or x.
"""
with contextlib.suppress(AttributeError):
import re
return re.search(r"yolov\d+([nslmx])", Path(model_path).stem).group(1) # n, s, m, l, or x
return ""
def guess_model_task(model):
"""
Guess the task of a PyTorch model from its architecture or configuration.
Args:
model (nn.Module | dict): PyTorch model or model configuration in YAML format.
Returns:
(str): Task of the model ('detect', 'segment', 'classify', 'pose').
Raises:
SyntaxError: If the task of the model could not be determined.
"""
def cfg2task(cfg):
"""Guess from YAML dictionary."""
m = cfg["head"][-1][-2].lower() # output module name
if m in ("classify", "classifier", "cls", "fc"):
return "classify"
if m == "detect":
return "detect"
if m == "segment":
return "segment"
if m == "pose":
return "pose"
if m == "obb":
return "obb"
# Guess from model cfg
if isinstance(model, dict):
with contextlib.suppress(Exception):
return cfg2task(model)
# Guess from PyTorch model
if isinstance(model, nn.Module): # PyTorch model
for x in "model.args", "model.model.args", "model.model.model.args":
with contextlib.suppress(Exception):
return eval(x)["task"]
for x in "model.yaml", "model.model.yaml", "model.model.model.yaml":
with contextlib.suppress(Exception):
return cfg2task(eval(x))
for m in model.modules():
if isinstance(m, Segment):
return "segment"
elif isinstance(m, Classify):
return "classify"
elif isinstance(m, Pose):
return "pose"
elif isinstance(m, OBB):
return "obb"
elif isinstance(m, (Detect, WorldDetect)):
return "detect"
# Guess from model filename
if isinstance(model, (str, Path)):
model = Path(model)
if "-seg" in model.stem or "segment" in model.parts:
return "segment"
elif "-cls" in model.stem or "classify" in model.parts:
return "classify"
elif "-pose" in model.stem or "pose" in model.parts:
return "pose"
elif "-obb" in model.stem or "obb" in model.parts:
return "obb"
elif "detect" in model.parts:
return "detect"
# Unable to determine task from model
LOGGER.warning(
"WARNING ⚠️ Unable to automatically guess model task, assuming 'task=detect'. "
"Explicitly define task for your model, i.e. 'task=detect', 'segment', 'classify','pose' or 'obb'."
)
return "detect" # assume detect
| 42,451 | Python | .py | 866 | 39.353349 | 124 | 0.60071 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
2,287,899 | __init__.py | arojsubedi_Improved-YOLOv8s/ultralytics/nn/__init__.py | # Ultralytics YOLO 🚀, AGPL-3.0 license
from .tasks import (
BaseModel,
ClassificationModel,
DetectionModel,
SegmentationModel,
attempt_load_one_weight,
attempt_load_weights,
guess_model_scale,
guess_model_task,
parse_model,
torch_safe_load,
yaml_model_load,
)
__all__ = (
"attempt_load_one_weight",
"attempt_load_weights",
"parse_model",
"yaml_model_load",
"guess_model_task",
"guess_model_scale",
"torch_safe_load",
"DetectionModel",
"SegmentationModel",
"ClassificationModel",
"BaseModel",
)
| 587 | Python | .py | 27 | 17.407407 | 41 | 0.668459 | arojsubedi/Improved-YOLOv8s | 8 | 5 | 0 | AGPL-3.0 | 9/5/2024, 10:48:18 PM (Europe/Amsterdam) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.