blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
608a35b305264d22101fae93881d6336cfdbead0
3fb61cb2da8cad71b214a7faadffc27bcd1a5315
/transformServices/app/gleanomatic/RSRestClient.py
c9ba11949e70f0f5f7fef4fed1d21da9d7111ea4
[]
no_license
dhenry314/gleanomatic
4ed0ed80836e4aa622392ec804e6ca2a95336a7b
9c9c8ab9a6da83d4a1fc429289c7450bf606005b
refs/heads/master
2021-07-06T02:55:43.571032
2019-04-15T18:21:12
2019-04-15T18:21:12
148,791,398
0
1
null
2018-10-04T21:35:10
2018-09-14T13:19:57
Python
UTF-8
Python
false
false
5,442
py
# RSRestClient - client to interact with a RSEngine REST endpoint import urllib.request import urllib.parse import json import gleanomatic.Utils as Utils from gleanomatic.GleanomaticErrors import BadResourceURL, AddResourceError, AddDumpException import gleanomatic.gleanomaticLogger as gl logger = gl.logger class RSRestClient: endpointURI = None resourceURI = None capabilityURI = None def __init__(self,endpointURI): logger.info("Initializing RSRestClient") #ensure that there is a trailing slash on the endpoint if endpointURI[-1] != "/": endpointURI = str(endpointURI) + "/" self.endpointURI = endpointURI self.resourceURI = str(self.endpointURI) + "resource" logger.info("Checking resourceURI: " + str(self.resourceURI)) try: Utils.checkURI(self.resourceURI) except Exception as e: logger.critical("ResourceURI did not validate: " + str(self.resourceURI) + " ERROR:" + str(e)) raise TargetURIException("ResourceURI did not validate: " + str(self.resourceURI) ,e) self.capabilityURI = str(self.endpointURI) + "capability" def getMessage(self,record): message = Utils.getRecordAttr(record,'message') msg = Utils.getRecordAttr(record,'msg') if message: return message if msg: return msg return None def addResource(self,uri,sourceNamespace,setNamespace,batchTag=None): logger.info("Adding resource with uri: " + str(uri)) record = None message = None try: Utils.checkURI(uri) except URIException as e: raise Exception("Resource uri did not validate. uri: " + str(uri)) params = {'sourceNamespace' : sourceNamespace, 'setNamespace' : setNamespace, 'uri': uri} if batchTag: params['batchTag'] = batchTag try: response = Utils.postRSData(self.resourceURI,params) except Exception as e: raise BadResourceURL("Could not add resource. resourceURI: " + str(self.resourceURI), e) record = Utils.getJSONFromResponse(response) message = self.getMessage(record) if message: logger.warning(message) return record, message def addDump(self,batchTag,sourceNamespace,setNamespace): response = None params = {'sourceNamespace' : sourceNamespace, 'setNamespace' : setNamespace, 'batchTag': batchTag} try: response = Utils.postRSData(self.capabilityURI,params) except Exception as e: raise AddDumpException("Could not post dump.",e) d = Utils.getJSONFromResponse(response) d = self.convertToRSDomain(d) return d def convertToRSDomain(self,url): if '/static/' in str(url): parts = str(url).split('/static/') url = 'http://resourcesync/static/' + parts[1] return url def deleteResource(self,uri): headers = { 'Content-Type': 'application/json;charset=UTF-8' } try: req = urllib.request.Request( uri, headers=headers, method='DELETE' ) response = urllib.request.urlopen(req) except urllib.error.URLError as e: raise BadResourceURL(uri,e) d = response.read() return d def getResources(self,offset=0,count=20): url = self.endpointURI + str("resource") url = str(url) + "?offset=" + str(offset) + "&count=" + str(count) urlCheck = Utils.checkURI(url) if not urlCheck: return False f = urllib.request.urlopen(url) contents = Utils.getContent(url) return contents def getManifest(self,batchTag,sourceNamespace,setNamespace): url = self.endpointURI + "/static/" + str(sourceNamespace) + "/" + str(setNamespace) + "/" + str(batchTag) + "/manifest" urlCheck = Utils.checkURI(url) if not urlCheck: return False contents = Utils.getContent(url) return contents def addCapability(self,capURL,sourceNamespace,setNamespace,capType): logger.info("Adding capability with url:" + str(capURL)) record = None message = None try: Utils.checkURI(capURL) except Exception as e: logger.warning("Capability URL did not validate. url: " + str(capURL) + " ERROR: " + str(e)) raise Exception("Capability URL did not validate. url: " + str(capURL) + " ERROR: " + str(e)) params = {'sourceNamespace' : sourceNamespace, 'setNamespace' : setNamespace, 'uri': capURL, 'capabilityType':capType} try: response = Utils.postRSData(self.capabilityURI,params) except Exception as e: logger.critical("Could not add capability. capabiltyURI: " + str(self.capabilityURI) + " ERROR: " + str(e)) raise BadResourceURL(str(e)) record = Utils.getJSONFromResponse(response) message = self.getMessage(record) if message: logger.warning(message) return record, message def deleteCapability(self,capURL,sourceNamespace,setNamespace): pass def getCapabilities(self,**kwargs): pass def what(self): print("This is a RSRestClient.")
8cb15969e90d1fb204f6d134054b16e7beb7e3b6
806132bffbabefa5750154839e276aae8edb5570
/src/tree.py
a5e127fb1622bbe87c05a5a6de30888c7706f35f
[]
no_license
Tarrasch/ravens-test
f5d30215b206102439f4aeb4cdd020c703b1881c
951a72a6803745b2e5318a74ab05d56915e7ecd5
refs/heads/master
2020-06-01T04:20:25.901271
2012-11-20T12:44:46
2012-11-20T12:44:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
410
py
def map_tree(f, tree): grid = tree['grid'] alts = [tree[k] for k in range(100) if tree.has_key(k)] grid = map(lambda xs: map(lambda x: f(x), xs), grid) alts = map(lambda x: f(x), alts) return dict([('grid', grid)] + [(i, alts[i-1]) for i in range(1,len(alts)+1)]) def collapse_tree(tree): grid = tree['grid'] alts = [tree[k] for k in range(100) if tree.has_key(k)] return sum(grid, []) + alts
6e3f6c3449d7f93848d1116b344a0dcabece60f2
6cf86e6122b3c65853231481ff73d40a25374eb1
/Input().py
068cf37daec039fb7b1eb52c376b116f2b161ace
[]
no_license
npc203/hackerrank-one-liners
d9480ce71cde342458689250963d1f69f3a38093
a7eb66c8d1bfa3508cae28ff6160db2728df3b5b
refs/heads/main
2023-07-17T12:03:03.757519
2021-08-20T12:30:18
2021-08-20T12:30:48
375,340,120
2
0
null
null
null
null
UTF-8
Python
false
false
67
py
(lambda x,b : print(eval(input()) == b))(*map(int,input().split()))
0f1fbd0076898caca22bdff66e84b8f1ca8cade5
d060c02ffd05cca79f469a4cd8d26827b3f3c3e4
/job/schema.py
c15f7516218d5b5d2d4843e0874976b6f3420dba
[]
no_license
symek/job-cli
4a2a190cf30348e5b2ca27c6c67c081599da495a
dfe2f629bd0a9956bddedd9b3d5544c3b91769d7
refs/heads/master
2021-01-13T04:11:46.571599
2020-11-17T16:11:12
2020-11-17T16:11:12
77,702,058
0
1
null
2017-03-03T12:59:48
2016-12-30T18:01:20
Python
UTF-8
Python
false
false
5,852
py
from schematics.models import Model from schematics.types import StringType, URLType, BooleanType, BaseType, IntType from schematics.types import UUIDType, DateTimeType, TimestampType from schematics.types import ListType, ModelType, DictType, PolyModelType from schematics import exceptions import json import collections class PathTemplateType(BaseType): """A field that stores a valid path expression value. """ MESSAGES = { "path_template": "Value must be valid path template expression using @WORD/>", } def validate_pathtemplate(self, value): #TODO: make it useful if not value: return if not value.startswith("@"): # or not "/>" in value: raise exceptions.ValidationError("This doesn't seem to be path template.") def _mock(self, context=None): return value def to_native(self, value, context=None): if not isinstance(value, str): try: value = str(value) except (TypeError, ValueError): raise ConversionError(self.messages['convert'].format(value)) return value def to_primitive(self, value, context=None): """ Shell we actually render template to final shape here? """ return str(value) class PermissionModel(Model): group = BooleanType(required=False) others = BooleanType(required=False) class OwnershipModel(Model): user = StringType(required=False) group = StringType(required=False) class InlineOptionsModel(Model): ownership = ModelType(OwnershipModel, required=False) permission = ModelType(PermissionModel, required=False) link_target = PathTemplateType(required=False) class SchemaInlineModel(Model): type = StringType(required=True) name = StringType(required=True) options = ModelType(InlineOptionsModel, required=False) class SchemaModel(Model): """ Basic model for all LocationTemplates except JobTemplate. This was forced by Schamatics and has nice side effects of controlling presence of keys on different levels (for a price of generality and elegance). """ version = StringType(required=True) names = ListType(StringType, required=True) sub_dirs = ListType(ModelType(SchemaInlineModel), required=False) user_dirs = BooleanType(required=False) ownership = ModelType(OwnershipModel, required=False) permission = ModelType(PermissionModel, required=False) # This must be always presnt of children # will createa own link instead of taking it from parent. is_link = BooleanType(required=True) link_root = StringType(required=False) link_target = PathTemplateType(required=False) path_template = PathTemplateType(required=False) local_schema_path = DictType(PathTemplateType, required=False) root = StringType(required=False) #tmp: log_level = IntType(required=False) class JobSchemaModel(Model): """ Schema model valid only for parent (job) template. It has to be separated, so thus some important keys like job_current counldn't be overwritten by children templates. """ version = StringType(required=True) names = ListType(StringType, required=True) sub_dirs = ListType(ModelType(SchemaInlineModel), required=False) job_current = StringType(required=True) job_asset_type = StringType(required=True) job_asset_name = StringType(required=True) user_dirs = BooleanType(required=True) ownership = ModelType(OwnershipModel) permission = ModelType(PermissionModel) is_link = BooleanType(required=True) link_root = StringType(required=False) link_target = PathTemplateType(required=False) asset_id_template = ListType(StringType, required=False) path_template = PathTemplateType(required=False) local_schema_path = DictType(PathTemplateType, required=False) root = StringType(required=False) #tmp: log_level = StringType(required=False) class StaticDict(collections.MutableMapping): def __init__(self, data): self.__data = data def __len__(self): return len(self.__data) def __iter__(self): return iter(self.__data) def __setitem__(self, k, v): if k not in self.__data: raise KeyError(k) self.__data[k] = v def __delitem__(self, k): raise NotImplementedError def __getitem__(self, k): return self.__data[k] def __contains__(self, k): return k in self.__data class Factory(object): def __init__(self, log_level="INFO"): from logger import LoggerFactory self.logger = LoggerFactory().get_logger("SchemaFactory", log_level) def find(self, schema, version=None, be_nice=False, verbose=False): """ Returns to a caller (LocationTemplate subclasses mostly) a validated models made from provided dictonary. Raise exeption if no valid schema could be provided. """ # Try first Job schema, it it fails, try child model: # This is because some fields are dengeours # (job,group,asset ids mainly) self.logger.debug("Using %s version", version) # FIXME: how to make it nicely? if "job_current" in schema: model = JobSchemaModel(schema) else: model = SchemaModel(schema) error = None error = model.validate() if not error: if verbose: print json.dumps(model.to_primitive(), indent=4) return StaticDict(model.to_primitive()) if be_nice: return StaticDict(schema) return None
42ee0b0d809863a628c4d9a10375863e7328db4a
fb54704d4a6f9475f42b85d8c470e3425b37dcae
/medium/ex46.py
b8f578eefedb0af0bc3a15588f48718e85d76ec0
[]
no_license
ziyuan-shen/leetcode_algorithm_python_solution
b2784071a94b04e687fd536b57e8d5a9ec1a4c05
920b65db80031fad45d495431eda8d3fb4ef06e5
refs/heads/master
2021-06-27T05:19:47.774044
2021-02-04T09:47:30
2021-02-04T09:47:30
210,991,299
2
0
null
null
null
null
UTF-8
Python
false
false
480
py
class Solution: def permute(self, nums: List[int]) -> List[List[int]]: ans = {(nums[i],): nums[:i] + nums[i+1:] for i in range(len(nums))} for _ in range(len(nums)-1): for permute in list(ans): remaining = ans[permute] for i in range(len(remaining)): ans[permute+(remaining[i],)] = remaining[:i] + remaining[i+1:] ans.pop(permute) return [list(permute) for permute in ans]
363145fc67b5fbf0353580112bd509dcb8673d4b
41e0c435a52fdaa3d698faf17308bec2968d1d39
/tempest/services/compute/v3/xml/keypairs_client.py
6efb7fea04767a2d49fb6362a0d057b8f1efd00b
[ "Apache-2.0" ]
permissive
BeenzSyed/tempest
26092eabaeb3963f1967cdbdf36395cdc5b701c3
7a64ee1216d844f6b99928b53f5c665b84cb8719
refs/heads/master
2021-01-22T08:06:59.627280
2015-03-23T22:36:09
2015-03-23T22:36:09
19,959,366
0
0
null
null
null
null
UTF-8
Python
false
false
2,508
py
# Copyright 2012 IBM Corp. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from lxml import etree from tempest.common.rest_client import RestClientXML from tempest.services.compute.xml.common import Document from tempest.services.compute.xml.common import Element from tempest.services.compute.xml.common import Text from tempest.services.compute.xml.common import xml_to_json class KeyPairsV3ClientXML(RestClientXML): def __init__(self, config, username, password, auth_url, tenant_name=None): super(KeyPairsV3ClientXML, self).__init__(config, username, password, auth_url, tenant_name) self.service = self.config.compute.catalog_v3_type def list_keypairs(self): resp, body = self.get("keypairs", self.headers) node = etree.fromstring(body) body = [{'keypair': xml_to_json(x)} for x in node.getchildren()] return resp, body def get_keypair(self, key_name): resp, body = self.get("keypairs/%s" % str(key_name), self.headers) body = xml_to_json(etree.fromstring(body)) return resp, body def create_keypair(self, name, pub_key=None): doc = Document() keypair_element = Element("keypair") if pub_key: public_key_element = Element("public_key") public_key_text = Text(pub_key) public_key_element.append(public_key_text) keypair_element.append(public_key_element) name_element = Element("name") name_text = Text(name) name_element.append(name_text) keypair_element.append(name_element) doc.append(keypair_element) resp, body = self.post("keypairs", headers=self.headers, body=str(doc)) body = xml_to_json(etree.fromstring(body)) return resp, body def delete_keypair(self, key_name): return self.delete("keypairs/%s" % str(key_name))
9b2fa84da02cc1dc0fefaa6972b0474d32d36b06
634425d7a7dbc99c45da4d27924af5a3e6112fca
/Linear_classifiers/(b) linear classifiers.py
6b9abb4cd105d1c441fbf88837c0b48f0b1847fb
[]
no_license
fahimalamabir/datacamp
dc342645796c37401156bf79d7c5d20f262e4469
8224a69801d6a4236cf3e99bebd4f149cc846b4b
refs/heads/main
2023-06-15T16:26:18.271836
2021-07-06T22:09:31
2021-07-06T22:09:31
318,082,895
0
0
null
2020-12-04T02:06:26
2020-12-03T05:15:50
Jupyter Notebook
UTF-8
Python
false
false
5,107
py
''' How models make predictions Which classifiers make predictions based on the sign (positive or negative) of the raw model output? ANSWER THE QUESTION 50 XP Possible Answers Logistic regression only press 1 Linear SVMs only press 2 Neither press 3 Both logistic regression and Linear SVMs press 4 Submit Answer Take Hint (-15 XP) INCORRECT SUBMISSION Remember, logistic regression and linear SVMs make predictions in the same way. ''' ans = 4 """ Changing the model coefficients In this exercise, you will observe the effects of changing the coefficients of a linear classifer. A 2D dataset is already loaded into the environment as X and y, along with a linear classifier object model. INSTRUCTIONS 0 XP Explore the effects of changing the two coefficients and the intercept. Set the coefficients and intercept so that the model makes no errors. HINT The first element of model.coef_ should be a negative number, and the second element should be a positive number. Remember that coef_ controls the angle of the boundary and intercept_ shifts the boundary without changing the angle. """ # Set the coefficients model.coef_ = np.array([[-1,1]]) model.intercept_ = np.array([-3]) # Plot the data and decision boundary plot_classifier(X,y,model) # Print the number of errors num_err = np.sum(y != model.predict(X)) print("Number of errors:", num_err) """ The 0-1 loss In the figure below, what is the 0-1 loss (number of classification errors) of the classifier? ANSWER THE QUESTION 35 XP Possible Answers 0 press 1 1 press 2 2 press 3 3 press 4 Submit Answer HINT There is one red point predicted to be blue, and one blue point predicted to be red. """ ans = 3 """ Minimizing a loss function In this exercise you'll implement linear regression "from scratch" using scipy.optimize.minimize. We'll train a model on the Boston housing price data set, which is already loaded into the variables X and y. For simplicity, we won't include an intercept in our regression model. INSTRUCTIONS 0 XP Fill in the loss function for least squares linear regression. Fill in the call to minimize. Compare the coefficients to sklearn's LinearRegression. HINT The loss is the square of the difference between y[i] and predicted_y. """ # The squared error, summed over training examples def my_loss(w): s = 0 for i in range(y.size): predicted_y_i = w@X[i] s = s + (predicted_y_i - y[i])**2 return s # Returns the w that makes my_loss(w) smallest w_fit = minimize(my_loss, X[0]).x print(w_fit) # Compare with scikit-learn's LinearRegression lr = LinearRegression(fit_intercept=False).fit(X,y) print(lr.coef_) """ Classification loss functions Which of the four loss functions makes sense for classification? ANSWER THE QUESTION 35 XP Possible Answers (1) press 1 (2) press 2 (3) press 3 (4) press 4 Submit Answer HINT You're looking for a loss that prefers (has lower values for) correct predictions and higher values for incorrect predictions. """ ans = 2 """ Comparing the logistic and hinge losses In this exercise you'll create a plot of the logistic and hinge losses using their mathematical expressions, which are provided to you. The loss function diagram from the video is shown on the right. INSTRUCTIONS 0 XP Plot the logistic and hinge losses evaluated on the grid points. HINT Use the provided log_loss and hinge_loss functions. """ # Mathematical functions for logistic and hinge losses # Feel free to ignore if you're not interested def log_loss(raw_model_output): return np.log(1+np.exp(-raw_model_output)) def hinge_loss(raw_model_output): return np.maximum(0,1-raw_model_output) # Create a grid of values and plot grid = np.linspace(-2,2,1000) plt.plot(grid, log_loss(grid), label='logistic') plt.plot(grid, hinge_loss(grid), label='hinge') plt.legend() plt.show() """ Implementing logistic regression This is very similar to the earlier exercise where you implemented linear regression "from scratch" using scipy.optimize.minimize. However, this time we'll minimize the logistic loss and compare with scikit-learn's LogisticRegression (we've set C to a large value to disable regularization; more on this in Chapter 3!). The log_loss function from the previous exercise is already defined in your environment, and the sklearn breast cancer prediction dataset (first 10 features, standardized) is loaded into the variables X and y. INSTRUCTIONS 0 XP Fill in the loss function for logistic regression. Compare the coefficients to sklearn's LogisticRegression. HINT There are several ways to get the number of training examples, such as y.size, len(y), or len(X). Call log_loss, which is already defined for you. """ # The logistic loss, summed over training examples def my_loss(w): s = 0 for i in range(y.size): raw_model_output = w@X[i] s = s + log_loss(raw_model_output * y[i]) return s # Returns the w that makes my_loss(w) smallest w_fit = minimize(my_loss, X[0]).x print(w_fit) # Compare with scikit-learn's LogisticRegression lr = LogisticRegression(fit_intercept=False, C=1000000).fit(X,y) print(lr.coef_)
123d9fedfe67be980e7dab0084a0da66acb721fb
0fb4b731939d1b38e219d3fcecf2990f06f17038
/visualization/python/visualize_daily.py
eeff3a1d501a9c0fd1f6a78af36e9bbc540aef9e
[ "Apache-2.0" ]
permissive
saitejaleo/coronavirus-dashboard
218edd7953e7e4385d9dfbd8008431aa53b6200c
f320dbdc785df954b005594b6f0bdf8330122cfb
refs/heads/master
2022-07-18T13:59:42.728258
2020-05-17T18:59:20
2020-05-17T18:59:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,575
py
import json import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.switch_backend('agg') import matplotlib.ticker as ticker # fig_width=8 # fig_height=3 # value_text_size=9 rotation_degree=90 data_file_name = '../../data/ohio.json' num_cases_file_name='../../figure/num_cases.svg' num_new_cases_file_name='../../figure/num_new_cases.svg' num_new_avg_7d_cases_file_name='../../figure/num_new_avg_7d_cases.svg' # number of average new cases in previous 7 days # num_counties_file_name='../../figure/num_counties.svg' num_icu_file_name='../../figure/num_icu.svg' num_hospitalizations_file_name='../../figure/num_hospitalizations.svg' num_death_file_name='../../figure/num_death.svg' with open(data_file_name, 'r') as data_file: data=json.load(data_file) if data is not None: daily_entries=data['daily'] else: daily_entries=[] df = pd.DataFrame(daily_entries) ## num of total cases x=df['date'] y=df['num_cases'] # plt.figure(figsize=(fig_width, fig_height)) plt.title('Confirmed Cases in Ohio') plt.plot(x, y, marker='.', markersize=12, color='red', linewidth=2, label='Total Confirmed Cases') # plt.legend() bottom, top = plt.ylim() plt.ylim(0, top*1.1) #plt.xlabel('Date') plt.xticks(rotation=rotation_degree) plt.gca().yaxis.set_major_locator(ticker.MaxNLocator(integer=True)) for i,j in zip(x,y): # plt.annotate(str(j),xy=(i,j)) # plt.text(i, j, str(j), size=value_text_size, ha='center', va='bottom') plt.text(i, j, str(j), ha='center', va='bottom') plt.tight_layout() plt.savefig(num_cases_file_name) plt.clf() plt.cla() plt.close() ## num of new cases df['num_new_cases']=df['num_cases'].diff() # add newly confirmed cases x=df['date'] z=df['num_new_cases'] plt.title('Newly Confirmed Cases in Ohio') plt.plot(x, z, marker='.', markersize=12, color='orange', linewidth=2, label='Newly Confirmed Cases') # plt.legend() bottom, top = plt.ylim() plt.ylim(0, top*1.1) plt.xticks(rotation=rotation_degree) plt.gca().yaxis.set_major_locator(ticker.MaxNLocator(integer=True)) for i,j in zip(x[1:],z[1:]): plt.text(i, j, str(int(j)), ha='center', va='bottom') plt.tight_layout() plt.savefig(num_new_cases_file_name) plt.clf() plt.cla() plt.close() # number of average new cases in previous 7 days df['num_new_avg_7d_cases']=df['num_cases'].diff(7)/7 # add newly confirmed cases x=df['date'] z=df['num_new_avg_7d_cases'] plt.title('7-Day Average Newly Confirmed Cases in Ohio') plt.plot(x, z, marker='.', markersize=12, color='gold', linewidth=2,label='Avg Daily New in Last 7 Days') # plt.legend() bottom, top = plt.ylim() plt.ylim(0, top*1.1) plt.xticks(rotation=rotation_degree) plt.gca().yaxis.set_major_locator(ticker.MaxNLocator(integer=True)) for i,j in zip(x[8:],z[8:]): plt.text(i, j, str(int(j)), ha='center', va='bottom') plt.tight_layout() plt.savefig(num_new_avg_7d_cases_file_name) plt.clf() plt.cla() plt.close() ## num of total icu counts y=df['num_icu'].dropna() # delete NaN entries x=df['date'][len(df['date'])-len(y):] # subarray of dates with num_icu available # plt.figure(figsize=(fig_width, fig_height)) plt.title('Number of ICU admissions') plt.plot(x, y, marker='.', markersize=12, color='tan', linewidth=2) bottom, top = plt.ylim() plt.ylim(0, top*1.1) #plt.xlabel('Date') plt.xticks(rotation=rotation_degree) plt.gca().yaxis.set_major_locator(ticker.MaxNLocator(integer=True)) for i,j in zip(x,y): # plt.annotate(str(j),xy=(i,j)) plt.text(i, j, str(int(j)), ha='center', va='bottom') plt.tight_layout() plt.savefig(num_icu_file_name) plt.clf() plt.cla() plt.close() x=df['date'] y=df['num_hospitalizations'] # plt.figure(figsize=(fig_width, fig_height)) plt.title('Number of Hospitalizations in Ohio') plt.plot(x, y, marker='.', markersize=12, color='olive', linewidth=2) bottom, top = plt.ylim() plt.ylim(0, top*1.1) plt.xticks(rotation=rotation_degree) plt.gca().yaxis.set_major_locator(ticker.MaxNLocator(integer=True)) for i,j in zip(x,y): plt.text(i, j, str(j), ha='center', va='bottom') plt.tight_layout() plt.savefig(num_hospitalizations_file_name) plt.clf() plt.cla() plt.close() x=df['date'] y=df['num_death'] # plt.figure(figsize=(fig_width, fig_height)) plt.plot(x, y, marker='^', color='grey', linewidth=2) plt.title('Number of Deaths') bottom, top = plt.ylim() plt.ylim(0, top*1.1) plt.xticks(rotation=rotation_degree) plt.gca().yaxis.set_major_locator(ticker.MaxNLocator(integer=True)) for i,j in zip(x,y): plt.text(i, j, str(j), ha='center', va='bottom') plt.tight_layout() plt.savefig(num_death_file_name) plt.clf() plt.cla() plt.close()
27bb8d83d6f836d2e2dc817c8c5c463d2a65544f
d030f5b120dbbb62f95fd964bde379637846de06
/ROSservice/catkin_ws/devel/lib/python2.7/dist-packages/face1/srv/__init__.py
3337d4fca6327faac64425e4c087ba544643def5
[]
no_license
cd74/ROSface
29a40d16dd75f564cd24d15f01349d8b4a4e491e
1506120c2bb9c13935849f2e4698ef1add551561
refs/heads/master
2022-04-25T01:33:49.269936
2020-04-27T06:15:38
2020-04-27T06:15:38
258,939,380
0
0
null
null
null
null
UTF-8
Python
false
false
25
py
from ._FaceSrv1 import *
114b4c677ac9ad89733f6b700813000b37a0f4b4
7f7fc72cf2f2f06ef7eb5d852d0bd2caf3f2daf9
/sirepo/runner.py
6b4f1b20aa57674dc9faee958a025c976818c02e
[ "Apache-2.0" ]
permissive
kalebswartz7/sirepo
4bcd41113ba93a3f7bcfa47df27e79805e1e4f50
8d1f2b3914cf9622eaae6b0bf32e23e38e4e5972
refs/heads/master
2020-03-19T08:31:41.409642
2018-07-20T19:32:48
2018-07-20T19:32:48
136,211,659
0
0
null
null
null
null
UTF-8
Python
false
false
17,268
py
# -*- coding: utf-8 -*- u"""Run jobs :copyright: Copyright (c) 2016 RadiaSoft LLC. All Rights Reserved. :license: http://www.apache.org/licenses/LICENSE-2.0.html decouple so can start any type of job add is_background_import to simulation_db select docker for that if configured and not background need to have hard constraints on the docker container runner.init_job() does the dispatch """ from __future__ import absolute_import, division, print_function from pykern import pkcli from pykern import pkcollections from pykern import pkconfig from pykern import pkio from pykern import pkjinja from pykern.pkdebug import pkdc, pkdexc, pkdlog, pkdp from sirepo import simulation_db from sirepo.template import template_common import aenum import errno import os import pwd import signal import subprocess import sys import threading import time import uuid #: Configuration cfg = None # Map of jid to instance _job_map = pkcollections.Dict() _job_map_lock = threading.RLock() class State(aenum.UniqueEnum): INIT = 1 START = 2 KILL = 3 RUN = 4 STOP = 5 # how long to wait before assuming thread that created # job is dead. _INIT_TOO_LONG_SECS = 5 # time expected between created and running _DOCKER_CREATED_TOO_LONG_SECS = _INIT_TOO_LONG_SECS # how long to wait after first kill (TERM) to second kill (KILL) _KILL_TIMEOUT_SECS = 3 # prefix all report names _DOCKER_CONTAINER_PREFIX = 'srjob-' _MAX_OPEN_FILES = 1024 @pkconfig.parse_none def cfg_job_class(value): """Return job queue class based on name Args: value (object): May be class or str. Returns: object: `Background` or `Celery` class. """ if isinstance(value, type) and issubclass(value, (Celery, Background)): # Already initialized but may call initializer with original object return value if value == 'Celery': if pkconfig.channel_in('dev'): _assert_celery() return Celery elif value == 'Docker': return Docker elif value == 'Background': signal.signal(signal.SIGCHLD, Background._sigchld_handler) return Background elif value is None: return None else: raise AssertionError('{}: unknown job_class'.format(value)) def init(app, uwsgi): """Initialize module""" if cfg.job_class is None: from sirepo import server d = 'Background' if server.cfg.job_queue: # Handle deprecated case d = server.cfg.job_queue cfg.job_class = cfg_job_class(d) assert not uwsgi or not issubclass(cfg.job_class, Background), \ 'uwsgi does not work if sirepo.runner.cfg.job_class=Background' def job_is_processing(jid): with _job_map_lock: try: job = _job_map[jid] except KeyError: return False return job.is_processing() def job_kill(jid): """Terminate job Args: jid (str): see `simulation_db.job_id` """ with _job_map_lock: try: job = _job_map[jid] except KeyError: return job.kill() def job_race_condition_reap(jid): return job_kill(jid) def job_start(data): with _job_map_lock: jid = simulation_db.job_id(data) if jid in _job_map: #TODO(robnagler) assumes external check of is_processing, # which server._simulation_run_status does do, but this # could be cleaner. Really want a reliable daemon thread # to manage all this. raise Collision(jid) job = cfg.job_class(jid, data) _job_map[jid] = job job.start() class Base(object): """Super of all job classes""" def __init__(self, jid, data): self.data = data self.jid = jid self.lock = threading.RLock() self.set_state(State.INIT) def is_processing(self): with self.lock: if self.state == State.RUN: if self._is_processing(): return True elif self.state == State.INIT: if time.time() < self.state_changed + _INIT_TOO_LONG_SECS: return True else: assert self.state in (State.START, State.KILL, State.STOP), \ '{}: invalid state for jid='.format(self.state, self.jid) # reap the process in a non-running state self.kill() return False def kill(self): with self.lock: if self.state in (State.RUN, State.START, State.KILL): # normal case (RUN) or thread died while trying to kill job self._kill() elif not self.state in (State.INIT, State.STOP): raise AssertionError( '{}: invalid state for jid='.format(self.state, self.jid), ) self.set_state(State.STOP) with _job_map_lock: try: if self == _job_map[self.jid]: del _job_map[self.jid] except KeyError: # stopped and no longer in map return def set_state(self, state): self.state = state self.state_changed = time.time() def start(self): with self.lock: if self.state == State.STOP: # Something killed between INIT and START so don't start return elif self.state in (State.KILL, State.RUN): # normal case (RUN) or race condition on start/kill # with a thread that died while trying to kill this # job before it was started. Have to finish the KILL. self.kill() return else: # race condition that doesn't seem possible assert self.state == State.INIT, \ '{}: unexpected state for jid={}'.format(self.state, self.jid) self.set_state(State.START) self.cmd, self.run_dir = simulation_db.prepare_simulation(self.data) self._start() self.set_state(State.RUN) class Background(Base): """Run as subprocess""" def _is_processing(self): try: os.kill(self.pid, 0) except OSError: self.pid = 0 return False return True def _kill(self): if self.pid == 0: return pid = self.pid for sig in (signal.SIGTERM, signal.SIGKILL): try: pkdlog('{}: kill {} pid={}', self.jid, sig, self.pid) os.kill(self.pid, sig) for j in range(_KILL_TIMEOUT_SECS): time.sleep(1) pid, status = os.waitpid(self.pid, os.WNOHANG) if pid != 0: break else: continue if pid == self.pid: pkdlog('{}: waitpid: status={}', pid, status) self.pid = 0 break else: pkdlog( 'pid={} status={}: unexpected waitpid result; job={} pid={}', pid, status, self.jid, self.pid, ) except OSError as e: if not e.errno in (errno.ESRCH, errno.ECHILD): raise # reaped by _sigchld_handler() return @classmethod def _sigchld_handler(cls, signum=None, frame=None): try: with _job_map_lock: if not _job_map: # Can't be our job so don't waitpid. # Only important at startup, when other modules # are doing popens, which does a waitpid. # see radiasoft/sirepo#681 return pid, status = os.waitpid(-1, os.WNOHANG) if pid == 0: # a process that was reaped before sigchld called return for self in _job_map.values(): # state of 'pid' is unknown since outside self.lock if isinstance(self, Background) and getattr(self, 'pid', 0) == pid: pkdlog('{}: waitpid pid={} status={}', self.jid, pid, status) break else: pkdlog('pid={} status={}: unexpected waitpid', pid, status) return with self.lock: self.pid = 0 self.kill() except OSError as e: if not e.errno in (errno,ESRCH, errno.ECHILD): pkdlog('waitpid: OSError: {} errno={}', e.strerror, e.errno) def _start(self): """Detach a process from the controlling terminal and run it in the background as a daemon. We don't use pksubprocess. This method is not called from the MainThread so can't set signals. """ try: pid = os.fork() except OSError as e: pkdlog('{}: fork OSError: {} errno={}', self.jid, e.strerror, e.errno) reraise if pid != 0: pkdlog('{}: started: pid={} cmd={}', self.jid, pid, self.cmd) self.pid = pid return try: os.chdir(str(self.run_dir)) #Don't os.setsid() so signals propagate properly import resource maxfd = resource.getrlimit(resource.RLIMIT_NOFILE)[1] if (maxfd == resource.RLIM_INFINITY): maxfd = _MAX_OPEN_FILES for fd in range(0, maxfd): try: os.close(fd) except OSError: pass sys.stdin = open(template_common.RUN_LOG, 'a+') assert sys.stdin.fileno() == 0 os.dup2(0, 1) sys.stdout = os.fdopen(1, 'a+') os.dup2(0, 2) sys.stderr = os.fdopen(2, 'a+') pkdlog('{}: child will exec: {}', self.jid, self.cmd) sys.stderr.flush() try: simulation_db.write_status('running', self.run_dir) os.execvp(self.cmd[0], self.cmd) finally: pkdlog('{}: execvp error: {} errno={}', self.jid, e.strerror, e.errno) sys.exit(1) except BaseException as e: with open(str(self.run_dir.join(template_common.RUN_LOG)), 'a') as f: f.write('{}: error starting simulation: {}'.format(self.jid, e)) raise class Celery(Base): """Run job in Celery (prod)""" def _is_processing(self): """Job is either in the queue or running""" res = getattr(self, 'async_result', None) return res and not res.ready() def _kill(self): from celery.exceptions import TimeoutError if not self._is_processing(): return False res = self.async_result tid = getattr(res, 'task_id', None) pkdlog('{}: kill SIGTERM tid={}', self.jid, tid) try: res.revoke(terminate=True, wait=True, timeout=_KILL_TIMEOUT_SECS, signal='SIGTERM') except TimeoutError as e: pkdlog('{}: kill SIGKILL tid={}', self.jid, tid) res.revoke(terminate=True, signal='SIGKILL') def _start(self): """Detach a process from the controlling terminal and run it in the background as a daemon. """ from sirepo import celery_tasks self.celery_queue = simulation_db.celery_queue(self.data) self.async_result = celery_tasks.start_simulation.apply_async( args=[self.cmd, str(self.run_dir)], queue=self.celery_queue, ) pkdc( '{}: started tid={} dir={} queue={} len_jobs={}', self.jid, self.async_result.task_id, self.run_dir, self.celery_queue, len(_job_map), ) class Collision(Exception): """Avoid using a mutex""" pass class Docker(Base): """Run a code in docker""" def _is_processing(self): """Inspect container to see if still in running state""" out = self.__docker(['inspect', '--format={{.State.Status}}', self.cid]) if not out: self.cid = None return False if out == 'running': return True if out == 'created': return time.time() < self.state_changed + _DOCKER_CREATED_TOO_LONG_SECS return False def _kill(self): if self.cid: pkdlog('{}: stop cid={}', self.jid, self.cid) self.__docker(['stop', '--time={}'.format(_KILL_TIMEOUT_SECS), self.cid]) self.cid = None def _start(self): """Detach a process from the controlling terminal and run it in the background as a daemon. """ #POSIT: jid is valid docker name (word chars and dash) self.cname = _DOCKER_CONTAINER_PREFIX + self.jid ctx = pkcollections.Dict( kill_secs=_KILL_TIMEOUT_SECS, run_dir=self.run_dir, run_log=self.run_dir.join(template_common.RUN_LOG), run_secs=self.__run_secs(), sh_cmd=self.__sh_cmd(), ) script = str(self.run_dir.join(_DOCKER_CONTAINER_PREFIX + 'run.sh')) with open(str(script), 'wb') as f: f.write(pkjinja.render_resource('runner/docker.sh', ctx)) cmd = [ 'run', #TODO(robnagler) configurable '--cpus=1', '--detach', '--init', '--log-driver=json-file', # never should be large, just for output of the monitor '--log-opt=max-size=1m', '--memory=1g', '--name=' + self.cname, '--network=none', '--rm', '--ulimit=core=0', #TODO(robnagler) this doesn't do anything # '--ulimit=cpu=1', '--ulimit=nofile={}'.format(_MAX_OPEN_FILES), '--user=' + pwd.getpwuid(os.getuid()).pw_name, ] + self.__volumes() + [ #TODO(robnagler) make this configurable per code (would be structured) self.__image(), 'bash', script, ] self.cid = self.__docker(cmd) pkdc( '{}: started cname={} cid={} dir={} len_jobs={} cmd={}', self.jid, self.cname, self.cid, self.run_dir, len(_job_map), ' '.join(cmd), ) def __docker(self, cmd): cmd = ['docker'] + cmd try: pkdc('Running: {}', ' '.join(cmd)) return subprocess.check_output( cmd, stdin=open(os.devnull), stderr=subprocess.STDOUT, ).rstrip() except subprocess.CalledProcessError as e: pkdlog('{}: failed: exit={} output={}', cmd, e.returncode, e.output) return None def __image(self): res = cfg.docker_image if ':' in res: return res return res + ':' + pkconfig.cfg.channel def __run_secs(self): if self.data['report'] == 'backgroundImport': return cfg.import_secs if simulation_db.is_parallel(self.data): return cfg.parallel_secs return cfg.sequential_secs def __sh_cmd(self): """Convert ``self.cmd`` into a bash cmd""" res = [] for c in self.cmd: assert not "'" in c, \ '{}: sh_cmd contains a single quote'.format(cmd) res.append("'{}'".format(c)) return ' '.join(res) def __volumes(self): res = [] def _res(src, tgt): res.append('--volume={}:{}'.format(src, tgt)) if pkconfig.channel_in('dev'): for v in '~/src', '~/.pyenv': v = pkio.py_path('~/src') # pyenv and src shouldn't be writable, only rundir _res(v, v + ':ro') _res(self.run_dir, self.run_dir) return res def _assert_celery(): """Verify celery & rabbit are running""" from sirepo import celery_tasks import time for x in range(10): err = None try: if not celery_tasks.celery.control.ping(): err = 'You need to start Celery:\nsirepo service celery' except Exception: err = 'You need to start Rabbit:\nsirepo service rabbitmq' # Rabbit doesn't have a long timeout, but celery ping does time.sleep(.5) if not err: return #TODO(robnagler) really should be pkconfig.Error() or something else # but this prints a nice message. Don't call sys.exit, not nice pkcli.command_error(err) cfg = pkconfig.init( docker_image=('radiasoft/sirepo', str, 'docker image to run all jobs'), import_secs=(10, int, 'maximum runtime of backgroundImport'), # default is set in init(), because of server.cfg.job_gueue job_class=(None, cfg_job_class, 'how to run jobs: Celery or Background'), parallel_secs=(3600, int, 'maximum runtime of serial job'), sequential_secs=(300, int, 'maximum runtime of serial job'), )
a725500a2e349cbf8954f750c637d836326569bd
6e485ffa2ce9559fdcc05f3650483c49c46b7102
/db/note_model.py
75c2f2557a1deed01b6a49192e6fd6930d664882
[]
no_license
araneta/Tugas-statistik
23164ec3f096903675be4dcdb76c1f6ad1cb6a81
573376a3d174d9b53428d21e221a3338ee392e67
refs/heads/master
2021-01-19T18:58:19.678755
2017-04-16T04:26:18
2017-04-16T04:26:18
88,391,000
0
0
null
2017-04-16T04:28:48
2017-04-16T04:28:48
null
UTF-8
Python
false
false
2,631
py
from database import * import datetime class NoteModel: def __init__(self): self.db = db self.cursor = cursor def all_post(self): sql = "select * from note where id_user = 1 order by tanggal_diperbaharui desc" try : self.cursor.execute(sql) temp_results = self.cursor.fetchall() results = [] i = 1 for row in temp_results: num = i results.append({'num':num, 'id_note':row[0], 'judul':row[2], 'tag':row[3],'isi':row[4], 'tanggal_dibuat':row[5], 'tanggal_diubah':row[6]}) return results except: print "Error : Gak kenek dobol" def get_post_by_id(self, id_note): sql = "select * from note where id_user = 1 and id_note = %d order by tanggal_diperbaharui desc" % (id_note) try : self.cursor.execute(sql) row = self.cursor.fetchone() results = {} results.update({'id_note':row[0], 'judul':row[2], 'tag':row[3], 'isi':row[4], 'tanggal_dibuat':row[5], 'tanggal_diubah':row[6]}) return results except: print "Error : tidak bisa mengambil data" def insert_post(self, judul, tag, isi): temp_tanggal = datetime.datetime.now() sql = "insert into note (id_user, judul, tag, isi, tanggal_dibuat, tanggal_diperbaharui) values (%d, '%s', '%s', '%s', '%s', '%s')" % (1, judul, tag, isi, temp_tanggal.strftime('%Y-%m-%d %H-%M-%S'), temp_tanggal.strftime('%Y-%m-%d %H-%M-%S')) try: self.cursor.execute(sql) db.commit() print "Info : data berhasil diisikan.." except: db.rollback() print "Error : pengisian data gagal.." def update_post(self, judul, tag, isi, id_note): temp_tanggal = datetime.datetime.now() sql = "update note set judul='%s', tag='%s', isi='%s', tanggal_diperbaharui='%s' where id_note=%d" %(judul, tag, isi, temp_tanggal.strftime('%Y-%m-%d %H-%M-%S'), int(id_note)) try: self.cursor.execute(sql) db.commit() print "Info : data berhasil diubah.." except: db.rollback() print "Error : pengubahan data gagal.." def delete_post(self, id_note): sql = "delete from note where id_note=%d" % (int(id_note)) try: self.cursor.execute(sql) db.commit() print "Info : data berhasil dihapus.." except: db.rollback() print "Error : penghapusan data gagal.." def get_post_by_tag(self, tag): sql = "select * from note where tag like '%%%s%%'" % (tag) try : self.cursor.execute(sql) temp_results = self.cursor.fetchall() results = [] i = 1 for row in temp_results: num = i results.append({'num':num, 'id_note':row[0], 'judul':row[2], 'tag':row[3], 'isi':row[4], 'tanggal_dibuat':row[5], 'tanggal_diubah':row[6]}) return results except: print "Error : Gak iso njupuk data"
b1fc4028b00d66db57ef3d4fca7602a0b3de1815
8eb0f65096f9a9fe90a88c85dcdcaf12f9a8a512
/apps/maintenance_mode/middleware.py
cd0e09b3e8aba28e3af198050f46e5958f5de4a4
[ "MIT" ]
permissive
WhitespaceCrew/django-htk
57c8cc9ec30b4cd9511b717978758c47144de76f
6a7b87a3d0a2e4cb51f6b8059708a26fa8e613df
refs/heads/master
2020-12-31T01:10:14.900413
2016-02-03T19:24:27
2016-02-03T19:25:02
45,211,442
0
0
null
2015-10-29T21:23:54
2015-10-29T21:23:54
null
UTF-8
Python
false
false
873
py
from django.shortcuts import redirect from django.core.urlresolvers import reverse from htk.apps.maintenance_mode.utils import is_maintenance_mode from htk.utils import htk_setting class MaintenanceModeMiddleware(object): """Checks whether HTK_MAINTENANCE_MODE is set If so, redirects to the HTK_MAINTENANCE_MODE_URL_NAME page """ def process_request(self, request): maintenance_mode_page = reverse(htk_setting('HTK_MAINTENANCE_MODE_URL_NAME')) response = None if request.path == maintenance_mode_page: if not is_maintenance_mode(): response = redirect('/') else: # already here pass else: if is_maintenance_mode(): response = redirect(maintenance_mode_page) else: pass return response
71ff48d27a98e522cb1183c1508f3fd16ee598fa
521a5abf021aff0e5bec6e4723efb2d95bc1c528
/dva/urls.py
f5d1f059a314c2edc9fa63fd0894759abd496b16
[ "Apache-2.0", "BSD-3-Clause", "MIT" ]
permissive
CVML/DeepVideoAnalytics
be3ed41968a140328e25c22f2cb2be431a2b172d
d0969b503ed68dc9ee26279c341e1540bfefd4f6
refs/heads/master
2021-07-17T22:19:20.787228
2017-10-22T07:55:04
2017-10-22T07:55:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,282
py
"""dva URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.10/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url,include from django.contrib import admin from django.conf.urls.static import static from django.conf import settings admin.autodiscover() urlpatterns = [url(r'^admin/', admin.site.urls), url(r'^api/', include('dvaapp.urls')), url(r'', include('dvaui.urls'))]+\ static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) if settings.DVA_PRIVATE_ENABLE: urlpatterns.append(url(r'^apps/', include('dvap.urls'))) if settings.DEBUG and settings.MACOS: import debug_toolbar urlpatterns = [url(r'^__debug__/', include(debug_toolbar.urls)),] + urlpatterns
b6b7520917496dbd41f7f57d11d8d68f84434ff7
ee179dd9e9b24046508b11a60612da3758c7e122
/lib/python2.7/site-packages/nltk/stem/api.py
c6032423e84a9a5b8a1985afcf341e4084970792
[]
no_license
buhtigexa/Nerit
fcd6cb08a0935e5b80392ae2acf68ba52ee8a899
d55629f6289c1fa6efe60802a78b79932ff248a2
refs/heads/master
2021-01-21T13:11:51.105930
2015-05-01T23:56:02
2015-05-01T23:56:02
34,728,820
4
2
null
null
null
null
UTF-8
Python
false
false
781
py
# Natural Language Toolkit: Stemmer Interface # # Copyright (C) 2001-2014 NLTK Project # Author: Trevor Cohn <[email protected]> # Edward Loper <[email protected]> # Steven Bird <[email protected]> # URL: <http://nltk.org/> # For license information, see LICENSE.TXT class StemmerI(object): """ A processing interface for removing morphological affixes from words. This process is known as stemming. """ def stem(self, token): """ Strip affixes from the token and return the stem. :param token: The token that should be stemmed. :type token: str """ raise NotImplementedError() if __name__ == "__main__": import doctest doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE)
528b509d132ef0c5142d6ca4858054d9bbee1dec
d12e1825321c6d275ec55f869311d2f3e30cfdab
/libs/deep_models/flow/lite_flow_net/lite_flow_net.py
66fbad1997c550b7348257c8d40da8a04febe6f2
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Huangying-Zhan/DF-VO
b369e6a00ae0745288acf9d61460f633aa116875
50e6ffa9b5164a0dfb34d3215e86cc2288df256d
refs/heads/master
2022-12-11T18:29:42.457460
2022-03-14T00:34:29
2022-03-14T00:34:29
212,502,276
494
128
MIT
2022-11-22T15:29:20
2019-10-03T05:18:35
Python
UTF-8
Python
false
false
17,960
py
import math import torch from . import correlation # the custom cost volume layer Backward_tensorGrid = {} def Backward(tensorInput, tensorFlow): """Backward warping, warp tensorInput according to the grid defined by tensorFlow Args: tensorInput (tensor): source data tensorFlow (tensor): flow data Returns: tensorOutput (tensor): warped data """ if str(tensorFlow.size()) not in Backward_tensorGrid: tensorHorizontal = torch.linspace(-1.0, 1.0, tensorFlow.size(3)).view(1, 1, 1, tensorFlow.size(3)).expand(tensorFlow.size(0), -1, tensorFlow.size(2), -1) tensorVertical = torch.linspace(-1.0, 1.0, tensorFlow.size(2)).view(1, 1, tensorFlow.size(2), 1).expand(tensorFlow.size(0), -1, -1, tensorFlow.size(3)) Backward_tensorGrid[str(tensorFlow.size())] = torch.cat([ tensorHorizontal, tensorVertical ], 1).cuda() tensorFlow = torch.cat([ tensorFlow[:, 0:1, :, :] / ((tensorInput.size(3) - 1.0) / 2.0), tensorFlow[:, 1:2, :, :] / ((tensorInput.size(2) - 1.0) / 2.0) ], 1) return torch.nn.functional.grid_sample(input=tensorInput, grid=(Backward_tensorGrid[str(tensorFlow.size())] + tensorFlow).permute(0, 2, 3, 1), mode='bilinear', padding_mode='zeros') class LiteFlowNet(torch.nn.Module): def __init__(self): super(LiteFlowNet, self).__init__() class Features(torch.nn.Module): def __init__(self): super(Features, self).__init__() self.moduleOne = torch.nn.Sequential( torch.nn.Conv2d(in_channels=3, out_channels=32, kernel_size=7, stride=1, padding=3), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) self.moduleTwo = torch.nn.Sequential( torch.nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=2, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) self.moduleThr = torch.nn.Sequential( torch.nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=2, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) self.moduleFou = torch.nn.Sequential( torch.nn.Conv2d(in_channels=64, out_channels=96, kernel_size=3, stride=2, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=96, out_channels=96, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) self.moduleFiv = torch.nn.Sequential( torch.nn.Conv2d(in_channels=96, out_channels=128, kernel_size=3, stride=2, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) self.moduleSix = torch.nn.Sequential( torch.nn.Conv2d(in_channels=128, out_channels=192, kernel_size=3, stride=2, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) def forward(self, tensorInput): tensorOne = self.moduleOne(tensorInput) tensorTwo = self.moduleTwo(tensorOne) tensorThr = self.moduleThr(tensorTwo) tensorFou = self.moduleFou(tensorThr) tensorFiv = self.moduleFiv(tensorFou) tensorSix = self.moduleSix(tensorFiv) return [ tensorOne, tensorTwo, tensorThr, tensorFou, tensorFiv, tensorSix ] class Matching(torch.nn.Module): def __init__(self, intLevel): super(Matching, self).__init__() self.dblBackward = [ 0.0, 0.0, 10.0, 5.0, 2.5, 1.25, 0.625 ][intLevel] if intLevel != 2: self.moduleFeat = torch.nn.Sequential() elif intLevel == 2: self.moduleFeat = torch.nn.Sequential( torch.nn.Conv2d(in_channels=32, out_channels=64, kernel_size=1, stride=1, padding=0), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) if intLevel == 6: self.moduleUpflow = None elif intLevel != 6: self.moduleUpflow = torch.nn.ConvTranspose2d(in_channels=2, out_channels=2, kernel_size=4, stride=2, padding=1, bias=False, groups=2) if intLevel >= 4: self.moduleUpcorr = None elif intLevel < 4: self.moduleUpcorr = torch.nn.ConvTranspose2d(in_channels=49, out_channels=49, kernel_size=4, stride=2, padding=1, bias=False, groups=49) self.moduleMain = torch.nn.Sequential( torch.nn.Conv2d(in_channels=49, out_channels=128, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=32, out_channels=2, kernel_size=[ 0, 0, 7, 5, 5, 3, 3 ][intLevel], stride=1, padding=[ 0, 0, 3, 2, 2, 1, 1 ][intLevel]) ) def forward(self, tensorFirst, tensorSecond, tensorFeaturesFirst, tensorFeaturesSecond, tensorFlow): tensorFeaturesFirst = self.moduleFeat(tensorFeaturesFirst) tensorFeaturesSecond = self.moduleFeat(tensorFeaturesSecond) if tensorFlow is not None: tensorFlow = self.moduleUpflow(tensorFlow) if tensorFlow is not None: tensorFeaturesSecond = Backward(tensorInput=tensorFeaturesSecond, tensorFlow=tensorFlow * self.dblBackward) if self.moduleUpcorr is None: tensorCorrelation = torch.nn.functional.leaky_relu(input=correlation.FunctionCorrelation(tensorFirst=tensorFeaturesFirst, tensorSecond=tensorFeaturesSecond, intStride=1), negative_slope=0.1, inplace=False) elif self.moduleUpcorr is not None: tensorCorrelation = self.moduleUpcorr(torch.nn.functional.leaky_relu(input=correlation.FunctionCorrelation(tensorFirst=tensorFeaturesFirst, tensorSecond=tensorFeaturesSecond, intStride=2), negative_slope=0.1, inplace=False)) return (tensorFlow if tensorFlow is not None else 0.0) + self.moduleMain(tensorCorrelation) class Subpixel(torch.nn.Module): def __init__(self, intLevel): super(Subpixel, self).__init__() self.dblBackward = [ 0.0, 0.0, 10.0, 5.0, 2.5, 1.25, 0.625 ][intLevel] if intLevel != 2: self.moduleFeat = torch.nn.Sequential() elif intLevel == 2: self.moduleFeat = torch.nn.Sequential( torch.nn.Conv2d(in_channels=32, out_channels=64, kernel_size=1, stride=1, padding=0), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) self.moduleMain = torch.nn.Sequential( torch.nn.Conv2d(in_channels=[ 0, 0, 130, 130, 194, 258, 386 ][intLevel], out_channels=128, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=32, out_channels=2, kernel_size=[ 0, 0, 7, 5, 5, 3, 3 ][intLevel], stride=1, padding=[ 0, 0, 3, 2, 2, 1, 1 ][intLevel]) ) def forward(self, tensorFirst, tensorSecond, tensorFeaturesFirst, tensorFeaturesSecond, tensorFlow): tensorFeaturesFirst = self.moduleFeat(tensorFeaturesFirst) tensorFeaturesSecond = self.moduleFeat(tensorFeaturesSecond) if tensorFlow is not None: tensorFeaturesSecond = Backward(tensorInput=tensorFeaturesSecond, tensorFlow=tensorFlow * self.dblBackward) return (tensorFlow if tensorFlow is not None else 0.0) + self.moduleMain(torch.cat([ tensorFeaturesFirst, tensorFeaturesSecond, tensorFlow ], 1)) class Regularization(torch.nn.Module): def __init__(self, intLevel): super(Regularization, self).__init__() self.dblBackward = [ 0.0, 0.0, 10.0, 5.0, 2.5, 1.25, 0.625 ][intLevel] self.intUnfold = [ 0, 0, 7, 5, 5, 3, 3 ][intLevel] if intLevel >= 5: self.moduleFeat = torch.nn.Sequential() elif intLevel < 5: self.moduleFeat = torch.nn.Sequential( torch.nn.Conv2d(in_channels=[ 0, 0, 32, 64, 96, 128, 192 ][intLevel], out_channels=128, kernel_size=1, stride=1, padding=0), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) self.moduleMain = torch.nn.Sequential( torch.nn.Conv2d(in_channels=[ 0, 0, 131, 131, 131, 131, 195 ][intLevel], out_channels=128, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) if intLevel >= 5: self.moduleDist = torch.nn.Sequential( torch.nn.Conv2d(in_channels=32, out_channels=[ 0, 0, 49, 25, 25, 9, 9 ][intLevel], kernel_size=[ 0, 0, 7, 5, 5, 3, 3 ][intLevel], stride=1, padding=[ 0, 0, 3, 2, 2, 1, 1 ][intLevel]) ) elif intLevel < 5: self.moduleDist = torch.nn.Sequential( torch.nn.Conv2d(in_channels=32, out_channels=[ 0, 0, 49, 25, 25, 9, 9 ][intLevel], kernel_size=([ 0, 0, 7, 5, 5, 3, 3 ][intLevel], 1), stride=1, padding=([ 0, 0, 3, 2, 2, 1, 1 ][intLevel], 0)), torch.nn.Conv2d(in_channels=[ 0, 0, 49, 25, 25, 9, 9 ][intLevel], out_channels=[ 0, 0, 49, 25, 25, 9, 9 ][intLevel], kernel_size=(1, [ 0, 0, 7, 5, 5, 3, 3 ][intLevel]), stride=1, padding=(0, [ 0, 0, 3, 2, 2, 1, 1 ][intLevel])) ) self.moduleScaleX = torch.nn.Conv2d(in_channels=[ 0, 0, 49, 25, 25, 9, 9 ][intLevel], out_channels=1, kernel_size=1, stride=1, padding=0) self.moduleScaleY = torch.nn.Conv2d(in_channels=[ 0, 0, 49, 25, 25, 9, 9 ][intLevel], out_channels=1, kernel_size=1, stride=1, padding=0) # eny def forward(self, tensorFirst, tensorSecond, tensorFeaturesFirst, tensorFeaturesSecond, tensorFlow): tensorDifference = (tensorFirst - Backward(tensorInput=tensorSecond, tensorFlow=tensorFlow * self.dblBackward)) tensorDifference = tensorDifference.pow(2.0).sum(1, True) + 1e-6 # tensorDifference.register_hook(lambda grad: print("1 max: {}".format(grad.max()))) # tensorDifference.register_hook(lambda grad: print("1 min: {}".format(grad.min()))) # tensorDifference = tensorDifference.sum(1, True) # tensorDifference.register_hook(lambda grad: print("2 max: {}".format(grad.max()))) # tensorDifference.register_hook(lambda grad: print("2 min: {}".format(grad.min()))) tensorDifference = tensorDifference.sqrt() # tensorDifference.register_hook(lambda grad: print("3 max: {}".format(grad.max()))) # tensorDifference.register_hook(lambda grad: print("3 min: {}".format(grad.min()))) tensorDist = self.moduleDist(self.moduleMain(torch.cat([ tensorDifference, tensorFlow - tensorFlow.view(tensorFlow.size(0), 2, -1).mean(2, True).view(tensorFlow.size(0), 2, 1, 1), self.moduleFeat(tensorFeaturesFirst) ], 1))) tensorDist = tensorDist.pow(2.0).neg() tensorDist = (tensorDist - tensorDist.max(1, True)[0]).exp() tensorDivisor = tensorDist.sum(1, True).reciprocal() tensorScaleX = self.moduleScaleX(tensorDist * torch.nn.functional.unfold(input=tensorFlow[:, 0:1, :, :], kernel_size=self.intUnfold, stride=1, padding=int((self.intUnfold - 1) / 2)).view_as(tensorDist)) * tensorDivisor tensorScaleY = self.moduleScaleY(tensorDist * torch.nn.functional.unfold(input=tensorFlow[:, 1:2, :, :], kernel_size=self.intUnfold, stride=1, padding=int((self.intUnfold - 1) / 2)).view_as(tensorDist)) * tensorDivisor return torch.cat([ tensorScaleX, tensorScaleY ], 1) self.moduleFeatures = Features() self.moduleMatching = torch.nn.ModuleList([ Matching(intLevel) for intLevel in [ 2, 3, 4, 5, 6 ] ]) self.moduleSubpixel = torch.nn.ModuleList([ Subpixel(intLevel) for intLevel in [ 2, 3, 4, 5, 6 ] ]) self.moduleRegularization = torch.nn.ModuleList([ Regularization(intLevel) for intLevel in [ 2, 3, 4, 5, 6 ] ]) # self.load_state_dict(torch.load('./network-' + arguments_strModel + '.pytorch')) # Initialization for m in self.modules(): classname = m.__class__.__name__ if isinstance(m, (torch.nn.Conv2d, torch.nn.ConvTranspose2d)): # # m.weight.data.normal_(0, 0.02) m.weight.data = torch.nn.init.kaiming_normal_(m.weight.data) if m.bias is not None: m.bias.data.zero_() elif classname.find('BatchNorm') != -1: m.weight.data.fill_(1) m.bias.data.zero_() def forward(self, inputs): """Forward pass Args: inputs (list): list of two image tensors, each with shape [Nx3xHxW] Returns: a dictionary containing flow predictions at different scale - **1** (tensor, [Nx2x(H/2)x(W/2)]) - **2** (tensor, [Nx2x(H/4)x(W/4)]) - **3** (tensor, [Nx2x(H/8)x(W/8)]) - **4** (tensor, [Nx2x(H/16)x(W/16)]) - **5** (tensor, [Nx2x(H/32)x(W/32)]) """ tensorFirst, tensorSecond = inputs tensorFeaturesFirst = self.moduleFeatures(tensorFirst) tensorFeaturesSecond = self.moduleFeatures(tensorSecond) tensorFirst = [ tensorFirst ] tensorSecond = [ tensorSecond ] for intLevel in [ 1, 2, 3, 4, 5 ]: tensorFirst.append(torch.nn.functional.interpolate(input=tensorFirst[-1], size=(tensorFeaturesFirst[intLevel].size(2), tensorFeaturesFirst[intLevel].size(3)), mode='bilinear', align_corners=False)) tensorSecond.append(torch.nn.functional.interpolate(input=tensorSecond[-1], size=(tensorFeaturesSecond[intLevel].size(2), tensorFeaturesSecond[intLevel].size(3)), mode='bilinear', align_corners=False)) tensorFlow = None flows = {} for cnt, intLevel in enumerate([ -1, -2, -3, -4, -5 ]): tensorFlow = self.moduleMatching[intLevel](tensorFirst[intLevel], tensorSecond[intLevel], tensorFeaturesFirst[intLevel], tensorFeaturesSecond[intLevel], tensorFlow) tensorFlow = self.moduleSubpixel[intLevel](tensorFirst[intLevel], tensorSecond[intLevel], tensorFeaturesFirst[intLevel], tensorFeaturesSecond[intLevel], tensorFlow) tensorFlow = self.moduleRegularization[intLevel](tensorFirst[intLevel], tensorSecond[intLevel], tensorFeaturesFirst[intLevel], tensorFeaturesSecond[intLevel], tensorFlow) flows[5-cnt] = tensorFlow # post-processing flow for i in flows: # flows[i] = flows[i] * (20.0 * (0.5 ** (i-1))) flows[i] = flows[i] * (20.0 * (0.5 ** (i))) return flows
4b4238839723416be5a682718dbe7694d6fd4b21
91a3a7998a370e1280d01ec722625d2d7afc2226
/autodiff/context.py
ccf8f58da9ded0cb6dcc2902d42216c07de395af
[ "MIT" ]
permissive
sujason/quantitative
f4cb08614ba5a7276b84fa0694f129ed27319ab8
42b7fdea05629934f513a7b15e5b03c7697c5c46
refs/heads/master
2021-01-01T05:31:56.613945
2016-01-26T03:24:44
2016-01-26T03:24:44
12,944,434
7
3
null
null
null
null
UTF-8
Python
false
false
45,855
py
""" Example of how to use byte-code execution technique to trace accesses to numpy arrays. This file demonstrates two applications of this technique: * optimize numpy computations for repeated calling * provide automatic differentiation of procedural code """ import __builtin__ import ctypes import inspect import logging import opcode #import os import sys #import trace import traceback import types import numpy as np import theano import autodiff from autodiff.utils import itercode, orderedcallargs, flat_from_doc logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) # from theano.tensor.shared_randomstreams import RandomStreams from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams # XXX FIXME This will not do - seed must be exposed. global_randomstreams = RandomStreams(seed=123) # Opcode help: http://docs.python.org/library/dis.html # -- cellget returns the contents of a cell cellget = ctypes.pythonapi.PyCell_Get cellget.restype = ctypes.py_object cellget.argtypes = (ctypes.py_object,) # -- cellmake creates a cell pointer cellmake = ctypes.pythonapi.PyCell_New cellmake.restype = ctypes.py_object cellmake.argtypes = (ctypes.py_object,) def istensor(x): tensortypes = (theano.tensor.TensorConstant, theano.tensor.TensorVariable) return isinstance(x, tensortypes) class Unassigned(object): """Unassigned value""" class LoadUnassigned(Exception): """Access to Unassigned value""" class FrameVM(object): """ A Class for evaluating a code block of CPython bytecode, and tracking accesses to numpy arrays. """ def __init__(self, watcher, func): logger.debug('FrameVM: {0}'.format(func)) self.watcher = watcher if isinstance(func, autodiff.symbolic.Function): func = func.pyfn self.func = func self.stack = [] self._locals = None self._myglobals = None self.code_iter = None self.print_ops = False self.print_stack = False def push(self, item): if item is Unassigned: raise LoadUnassigned() self.stack.append(item) def pop(self): return self.stack.pop(-1) def pushN(self, items): for item in items: if item is Unassigned: raise LoadUnassigned() self.stack.extend(items) def popN(self, N): rval = self.stack[-N:] self.stack[-N:] = [] return rval def add_shadow(self, x): if id(x) in self.watcher.constants: return # -- We cannot safely set up shadow variables that are aliased to # memory that is visible to the running program, unless that # program can guarantee that all views of that memory are # immutable. CPython caches small ints (-5 <= i <= 256), so # we wrap them in a non-cached _int() instance. if isinstance(x, int): if type(x) is int and -5 <= x <= 256: x = np.int_(x) s_x = self.watcher.shared(np.asarray(x)) elif isinstance(x, float): s_x = self.watcher.shared(np.asarray(x)) elif getattr(x, 'dtype', None) == bool: print >> sys.stderr, ('Warning: Theano has no bool, ' 'upgrading to int8') s_x = self.watcher.shared(x.astype('int8')) elif isinstance(x, (np.ndarray, np.number)): s_x = self.watcher.shared(x) else: return self.watcher.shadow(x, s_x) def ensure_shadow(self, x): # small ints can not be shadowed due to CPython memory caching, so we # wrap them in non-cached _ints. if type(x) is int and -5 <= x <= 256: x = np.int_(x) if id(x) not in self.watcher: self.add_shadow(x) return self.watcher.getvar(x) def call(self, args, kwargs): if not isinstance(args, tuple): raise TypeError('vm.call: args must be tuple', args) if not isinstance(kwargs, dict): raise TypeError('vm.call: kwargs must be dict', kwargs) func = self.func if isinstance(func, type) and issubclass(func, BaseException): # XXX not shadowing exception creation, because exceptions # do not have func_code. Is this OK? can we do better? return func(*args, **kwargs) func_code = self.func.func_code self._myglobals = {} self._locals = [] for name in func_code.co_names: #print 'name', name try: self._myglobals[name] = func.func_globals[name] except KeyError: try: self._myglobals[name] = __builtin__.__getattribute__(name) except AttributeError: #print 'WARNING: name lookup failed', name pass # get function arguments argspec = inspect.getargspec(func) # match function arguments to passed parameters callargs = orderedcallargs(func, *args, **kwargs) # named args => locals self._locals.extend(callargs[arg] for arg in argspec.args) # *args => locals if argspec.varargs: self._locals.append(callargs[argspec.varargs]) # **kwargs => locals if argspec.keywords: self._locals.append(callargs[argspec.keywords]) # other vars => locals no_unbound_args = len(func_code.co_varnames) - len(self._locals) self._locals.extend([Unassigned] * no_unbound_args) # shadow arguments for val in flat_from_doc(callargs): if id(val) not in self.watcher: self.add_shadow(val) self.code_iter = itercode(func_code.co_code) jmp = None while not hasattr(self, 'rval'): try: i, op, arg = self.code_iter.send(jmp) except StopIteration: break name = opcode.opname[op] # method names can't have '+' in them name = {'SLICE+0': 'SLICE_PLUS_0', 'SLICE+1': 'SLICE_PLUS_1', 'SLICE+2': 'SLICE_PLUS_2', 'SLICE+3': 'SLICE_PLUS_3', 'STORE_SLICE+0': 'STORE_SLICE_PLUS_0', 'STORE_SLICE+1': 'STORE_SLICE_PLUS_1', 'STORE_SLICE+2': 'STORE_SLICE_PLUS_2', 'STORE_SLICE+3': 'STORE_SLICE_PLUS_3', }.get(name, name) if self.print_ops: print 'OP: ', i, name if self.print_stack: print self.stack try: op_method = getattr(self, 'op_' + name) except AttributeError: raise AttributeError('FrameVM does not have a method defined ' 'for \'op_{0}\''.format(name)) except: raise jmp = op_method(i, op, arg) return self.rval def op_BINARY_ADD(self, i, op, arg): arg2 = self.pop() arg1 = self.pop() # No Theano vars allowed on the stack assert not hasattr(arg1, 'type') assert not hasattr(arg2, 'type') r = arg1 + arg2 self.push(r) if (id(arg1) in self.watcher or id(arg2) in self.watcher): s1 = self.ensure_shadow(arg1) s2 = self.ensure_shadow(arg2) if isinstance(r, np.ndarray): self.watcher.shadow(r, (s1 + s2).astype(str(r.dtype))) else: self.watcher.shadow(r, s1 + s2) #print 'added sym' def op_BINARY_DIVIDE(self, i, op, arg): arg2 = self.pop() arg1 = self.pop() assert not hasattr(arg1, 'type') assert not hasattr(arg2, 'type') r = arg1 / arg2 self.push(r) if (id(arg1) in self.watcher or id(arg2) in self.watcher): s1 = self.ensure_shadow(arg1) s2 = self.ensure_shadow(arg2) if isinstance(r, np.ndarray): self.watcher.shadow(r, (s1 / s2).astype(str(r.dtype))) else: self.watcher.shadow(r, s1 / s2) def op_BINARY_FLOOR_DIVIDE(self, i, op, arg): arg2 = self.pop() arg1 = self.pop() assert not hasattr(arg1, 'type') assert not hasattr(arg2, 'type') r = arg1 // arg2 self.push(r) if (id(arg1) in self.watcher or id(arg2) in self.watcher): s1 = self.ensure_shadow(arg1) s2 = self.ensure_shadow(arg2) if isinstance(r, np.ndarray): self.watcher.shadow(r, (s1 // s2).astype(str(r.dtype))) else: self.watcher.shadow(r, s1 // s2) def op_BINARY_SUBTRACT(self, i, op, arg): arg2 = self.pop() arg1 = self.pop() assert not hasattr(arg1, 'type') assert not hasattr(arg2, 'type') r = arg1 - arg2 self.push(r) if (id(arg1) in self.watcher or id(arg2) in self.watcher): s1 = self.ensure_shadow(arg1) s2 = self.ensure_shadow(arg2) if isinstance(r, np.ndarray): self.watcher.shadow(r, (s1 - s2).astype(str(r.dtype))) else: self.watcher.shadow(r, s1 - s2) def op_BINARY_MULTIPLY(self, i, op, arg): arg2 = self.pop() arg1 = self.pop() r = arg1 * arg2 self.push(r) assert not hasattr(arg1, 'type') assert not hasattr(arg2, 'type') if (id(arg1) in self.watcher or id(arg2) in self.watcher): s1 = self.ensure_shadow(arg1) s2 = self.ensure_shadow(arg2) if isinstance(r, np.ndarray): self.watcher.shadow(r, (s1 * s2).astype(str(r.dtype))) else: self.watcher.shadow(r, s1 * s2) #print 'mul sym', id(r) def op_BINARY_POWER(self, i, op, arg): arg2 = self.pop() arg1 = self.pop() r = arg1 ** arg2 self.push(r) if (id(arg1) in self.watcher or id(arg2) in self.watcher): s1 = self.ensure_shadow(arg1) s2 = self.ensure_shadow(arg2).astype(s1.dtype) if isinstance(r, np.ndarray): self.watcher.shadow(r, (s1 ** s2).astype(str(r.dtype))) else: self.watcher.shadow(r, s1 ** s2) #print 'mul sym', id(r) def op_BINARY_MODULO(self, i, op, arg): arg2 = self.pop() arg1 = self.pop() r = arg1 % arg2 self.push(r) if (id(arg1) in self.watcher or id(arg2) in self.watcher): s1 = self.ensure_shadow(arg1) s2 = self.ensure_shadow(arg2) if isinstance(r, np.ndarray): self.watcher.shadow(r, (s1 % s2).astype(str(r.dtype))) else: self.watcher.shadow(r, s1 % s2) def op_BINARY_SUBSCR(self, i, op, arg): # Implements TOS = TOS1[TOS]. tos1, tos = self.popN(2) #print 'tos', tos #print 'tos1', tos1 rval = tos1[tos] self.push(rval) if id(tos) in self.watcher: s_tos = self.ensure_shadow(tos) else: s_tos = tos if id(tos1) in self.watcher: s_tos1 = self.ensure_shadow(tos1) else: s_tos1 = tos1 if isinstance(tos, np.ndarray) and tos.dtype == bool: s_rval = s_tos1[s_tos.nonzero()] else: s_rval = s_tos1[s_tos] if id(tos) in self.watcher or id(tos1) in self.watcher: self.watcher.shadow(rval, s_rval) def op_BUILD_MAP(self, i, op, arg): self.push({}) def op_BUILD_SLICE(self, i, op, arg): if arg == 2: tos1, tos = self.popN(2) self.push(slice(tos1, tos)) elif arg == 3: tos2, tos1, tos = self.popN(3) self.push(slice(tos2, tos1, tos)) else: raise NotImplementedError() def op_BUILD_TUPLE(self, i, op, arg): if arg: self.push(tuple(self.popN(arg))) else: self.push(()) def op_BUILD_LIST(self, i, op, arg): if arg: self.push(list(self.popN(arg))) else: self.push([]) def op_CALL_FUNCTION(self, i, op, arg, call_vargs=None, call_kwargs=None): if call_vargs is None: # -- these are the things passed with *foo syntax call_vargs = () if call_kwargs is None: # -- these are the things passed with **foo syntax call_kwargs = {} n_args = arg & 0xFF n_kwargs = (arg & 0xFF00) >> 8 #print 'N_ARGS', n_args, n_kwargs, call_vargs assert not (arg >> 16) # what would this stuff up here mean? kwargs = dict([(self.stack[-2 * ii], self.stack[-2 * ii + 1]) for ii in range(n_kwargs, 0, -1)]) args = [self.stack[-ii - 2 * n_kwargs] for ii in range(n_args, 0, -1)] assert all(Unassigned is not ai for ai in args) # -- pop all args off the stack if arg: self.stack = self.stack[:- n_args - 2 * n_kwargs] # -- pop the function itself off the stack func = self.pop() args = args + list(call_vargs) orig_kwargs_size = len(kwargs) kwargs.update(call_kwargs) assert len(kwargs) == orig_kwargs_size + len(call_kwargs) #print dir(func) #print func.__self__ all_args = args + kwargs.values() # -- get symbolic args if len(call_vargs) > 0: s_args = [self.watcher.getvar(a) for a in args[:-len(call_vargs)]] s_args.extend(self.watcher.getvar(a) for a in call_vargs) s_args = tuple(s_args) else: s_args = tuple(self.watcher.getvar(a) for a in args) s_kwargs = dict([(kw, self.watcher.getvar(val)) for kw, val in kwargs.items()]) if hasattr(func, '__theano_op__'): # XXX: document that we are assuming func is pure - # if rval depends on globals or closure this Context is not # going to know that. # -- hand control back to Python for duration of func rval = func(*args, **kwargs) if any(id(a) in self.watcher for a in all_args): s_rval = func.__theano_op__(*s_args, **s_kwargs) self.watcher.shadow(rval, s_rval) # ================ NumPy and builtin functions elif ((getattr(func, '__module__', None) and func.__module__.startswith('numpy')) or isinstance(func, np.ufunc) or str(func) == '<built-in function abs>' or str(func) == '<built-in function max>' or str(func) == '<built-in function min>' or str(func) == '<built-in function sum>'): rval = func(*args, **kwargs) if any(id(a) in self.watcher for a in all_args): if func.__name__ == 'sum': if type(rval) == int: rval = np.int_(rval) s_rval = theano.tensor.sum(*s_args, **s_kwargs) self.watcher.shadow(rval, s_rval) elif func.__name__ in ('abs', 'absolute'): self.watcher.shadow(rval, abs(*s_args)) elif func.__name__ == 'max': assert str(func) == '<built-in function max>' s_rval = theano.tensor.maximum(*s_args, **s_kwargs) assert s_rval.ndim == 0 # builtin max can't make vector self.watcher.shadow(rval, s_rval) elif func.__name__ == 'min': assert str(func) == '<built-in function min>' s_rval = theano.tensor.minimum(*s_args, **s_kwargs) assert s_rval.ndim == 0 # builtin min can't make vector self.watcher.shadow(rval, s_rval) elif func.__name__ == 'reshape': self.watcher.shadow( rval, theano.tensor.reshape(*s_args, **s_kwargs)) elif func.__name__ == 'arange': # tensor.arange takes the dtype of its input but # numpy.arange does not. Since we are compiling the Theano # graph, recast the numpy value to match the symbolic dtype sval = theano.tensor.arange(*s_args, **s_kwargs) rval = rval.astype(sval.dtype) elif func.__name__ in theano.tensor.basic._cast_mapping.keys(): # handle cast functions rval = func(*args, **kwargs) sval = theano.tensor.cast(*s_args, dtype=func.__name__) self.watcher.shadow(rval, sval) elif func.__name__ in ['bool', 'bool_', 'bool8']: # Theano has no bool type, cast to int8 instead sval = theano.tensor.cast(*s_args, dtype='int8') elif func.__name__ in ['ones', 'zeros']: s_fn = getattr(theano.tensor, func.__name__) sval = s_fn(*s_args, **s_kwargs).astype(str(rval.dtype)) self.watcher.shadow(rval, sval) elif func.__name__ == 'identity': # theano has no identity function, only 'eye' dtype = s_kwargs.get('dtype', None) if not dtype and len(s_args) > 1: dtype = s_args[1] sval = theano.tensor.eye(s_args[0], dtype=dtype) self.watcher.shadow(rval, sval) else: try: theano_fn = getattr(theano.tensor, func.__name__) except: raise NotImplementedError(func) # XXX should we do this? since it is not obvious that # reductions don't take symbolic args, this could lead to # users compiling functions that are supposed to have axis # arguments but silently ignore them. Leaving this # functionality out for now -- Users must call Constant() # explicitly. # many Theano reductions do not support symbolic axes # by checking for it here we don't have to wrap the # argument in a Constant() # argspec = orderedargspec(theano_fn, *s_args, **s_kwargs) # if (istensor(argspec.get('axis', None)) and # func.__name__ not in ['concatenate']): # if 'axis' in s_kwargs: # s_kwargs['axis'] = kwargs['axis'] # else: # r_axis = args[argspec.args.index('axis')] # s_args[argspec.args.index('axis')] = r_axis self.watcher.shadow(rval, theano_fn(*s_args, **s_kwargs)) else: # no argument was shadowed (e.g. zeros()) self.add_shadow(rval) # ================ Array methods elif isinstance(getattr(func, '__self__', None), (np.ndarray, np.number)): assert id(func.__self__) in self.watcher s_self = self.watcher.svars[id(func.__self__)] if 0: pass elif func.__name__ == 'copy': assert not args assert not kwargs rval = func() self.watcher.shadow(rval, s_self.copy()) elif func.__name__ == 'reshape': rval = func(*args, **kwargs) # Theano requires shape to be a tuple if not isinstance(s_args[0], (list, tuple)): s_args = (s_args,) self.watcher.shadow(rval, s_self.reshape(*s_args, **s_kwargs)) elif func.__name__ == 'swapaxes': rval = func(*args, **kwargs) axis1, axis2 = args s_dims = range(s_self.ndim) s_dims[axis1], s_dims[axis2] = s_dims[axis2], s_dims[axis1] self.watcher.shadow(rval, s_self.dimshuffle(*s_dims)) elif func.__name__ == 'astype': rval = func(*args, **kwargs) if 'dtype' in kwargs: dtype = kwargs['dtype'] else: dtype = args[0] if not isinstance(dtype, str): # catch numpy dtype objects like np.float32 try: dtype = dtype.__name__ except: raise NotImplementedError if dtype == 'bool': dtype == 'int8' self.watcher.shadow(rval, s_self.astype(dtype)) elif func.__name__ == 'sort': # sort is an inplace method rval = func() # returns None # shadow the original array; it has been updated inplace self.watcher.shadow(func.__self__, s_self.sort()) else: try: theano_fn = getattr(s_self, func.__name__) except: raise NotImplementedError(func) rval = func(*args, **kwargs) self.watcher.shadow(rval, theano_fn(*s_args, **s_kwargs)) # ================ built-ins elif 'built-in' in str(func): if len(args) == len(kwargs) == 0: rval = func() # -- built-in ndarray methods should be caught above, not here. elif func.__name__ in ('setdefault',): rval = func(*args, **kwargs) elif func.__name__ in ('enumerate', 'range', 'xrange', 'zip'): rval = func(*args, **kwargs) elif 'method rand of mtrand.RandomState' in str(func): # build Theano random uniform numbers rval = func(*args, **kwargs) self.watcher.shadow( rval, global_randomstreams.uniform( low=0, high=1, size=tuple(args), dtype=str(np.asarray(rval).dtype))) elif ('method random of mtrand.RandomState' in str(func) or 'method random_sample of mtrand.RandomState' in str(func)): # build Theano random uniform numbers rval = func(*args, **kwargs) self.watcher.shadow( rval, global_randomstreams.uniform( low=0, high=1, size=autodiff.utils.as_seq(args[0], tuple), dtype=str(np.asarray(rval).dtype))) elif 'method uniform of mtrand.RandomState' in str(func): # build Theano random normal numbers rval = func(*args, **kwargs) self.watcher.shadow( rval, global_randomstreams.uniform( *args, dtype=str(np.asarray(rval).dtype), **kwargs)) else: raise NotImplementedError(func) # ================ Types elif type(func) == type: rval = func(*args, **kwargs) # ================ AutoDiff Functions elif func is autodiff.functions.constant: # make sure the rval will have a vaild id, then add it to the # Context's constants set (so it can be ignored) rval = func(*args, **kwargs) if isinstance(rval, int): rval = np.int_(rval) elif isinstance(rval, float): rval = np.float_(rval) elif isinstance(rval, bool): rval = np.bool_(rval) else: rval = np.asarray(rval) self.watcher.constants.add(id(rval)) elif func is autodiff.functions.tag: # make sure the rval is shadowed, then add a new svar with the # appropriate tag rval = func(*args, **kwargs) tag = kwargs.pop('tag', args[1]) sval = self.ensure_shadow(rval) self.watcher.svars[tag] = sval # ================ Everything Else else: logger.debug('stepping into %s' % str(func)) vm = FrameVM(self.watcher, func) rval = vm.call(tuple(args), kwargs) self.push(rval) def op_CALL_FUNCTION_VAR(self, i, op, arg): call_vargs = self.pop() return self.op_CALL_FUNCTION(i, op, arg, call_vargs=call_vargs) def op_CALL_FUNCTION_VAR_KW(self, i, op, arg): call_vargs, call_kwargs = self.popN(2) rval = self.op_CALL_FUNCTION(i, op, arg, call_vargs=call_vargs, call_kwargs=call_kwargs) return rval def op_COMPARE_OP(self, i, op, arg): opname = opcode.cmp_op[arg] right = self.pop() left = self.pop() if 0: pass elif opname == '==': self.push(left == right) elif opname == '!=': self.push(left != right) elif opname == '>': self.push(left > right) elif opname == '<': self.push(left < right) elif opname == '>=': self.push(left >= right) elif opname == '<=': self.push(left <= right) elif opname == 'is': self.push(left is right) elif opname == 'in': self.push(left in right) else: raise NotImplementedError('comparison: %s' % opname) if any(id(a) in self.watcher for a in [left, right]): sargs = [self.watcher.getvar(ai) for ai in [left, right]] tos = self.stack[-1] if 0: pass elif opname == '==': self.watcher.shadow(tos, theano.tensor.eq(*sargs)) elif opname == '!=': self.watcher.shadow(tos, theano.tensor.neq(*sargs)) elif opname == '<': self.watcher.shadow(tos, theano.tensor.lt(*sargs)) elif opname == '>': self.watcher.shadow(tos, theano.tensor.gt(*sargs)) elif opname == '<=': self.watcher.shadow(tos, theano.tensor.le(*sargs)) elif opname == '>=': self.watcher.shadow(tos, theano.tensor.ge(*sargs)) elif opname == 'is': pass else: raise NotImplementedError('Comparison on watched args', opname) def op_DUP_TOP(self, i, op, arg): self.stack.append(self.stack[-1]) def op_DUP_TOPX(self, i, op, arg): assert arg > 0 self.stack.extend(self.stack[-arg:]) def op_FOR_ITER(self, i, op, arg): # either push tos.next() # or pop tos and send (arg) tos = self.stack[-1] try: next = tos.next() # print 'next', next self.push(next) except StopIteration: self.pop() return ('rel', arg) def op_INPLACE_ADD(self, i, op, arg): tos = self.pop() tos1 = self.pop() r = tos1 r += tos self.push(r) if (id(tos) in self.watcher or id(tos1) in self.watcher): s_tos = self.ensure_shadow(tos) s_tos1 = self.ensure_shadow(tos1) if isinstance(r, np.ndarray): self.watcher.shadow(r, (s_tos + s_tos1).astype(str(r.dtype))) else: self.watcher.shadow(r, s_tos + s_tos1) def op_INPLACE_DIVIDE(self, i, op, arg): tos = self.pop() tos1 = self.pop() r = tos1 r /= tos self.push(r) if (id(tos) in self.watcher or id(tos1) in self.watcher): s_tos = self.ensure_shadow(tos) s_tos1 = self.ensure_shadow(tos1) if isinstance(r, np.ndarray): self.watcher.shadow(r, (s_tos / s_tos1).astype(str(r.dtype))) else: self.watcher.shadow(r, s_tos / s_tos1) def op_INPLACE_MULTIPLY(self, i, op, arg): tos = self.pop() tos1 = self.pop() r = tos1 r *= tos self.push(r) if (id(tos) in self.watcher or id(tos1) in self.watcher): s_tos = self.ensure_shadow(tos) s_tos1 = self.ensure_shadow(tos1) if isinstance(r, np.ndarray): self.watcher.shadow(r, (s_tos * s_tos1).astype(str(r.dtype))) else: self.watcher.shadow(r, s_tos * s_tos1) def op_INPLACE_SUBTRACT(self, i, op, arg): tos1, tos = self.popN(2) r = tos1 r -= tos self.push(r) if (id(tos) in self.watcher or id(tos1) in self.watcher): s_tos = self.ensure_shadow(tos) s_tos1 = self.ensure_shadow(tos1) if isinstance(r, np.ndarray): self.watcher.shadow(r, (s_tos - s_tos1).astype(str(r.dtype))) else: self.watcher.shadow(r, s_tos - s_tos1) def op_JUMP_ABSOLUTE(self, i, op, arg): # print 'sending', arg return ('abs', arg) def op_JUMP_FORWARD(self, i, op, arg): return ('rel', arg) def op_JUMP_IF_TRUE(self, i, op, arg): tos = self.stack[-1] if tos: return ('rel', arg) def op_GET_ITER(self, i, op, arg): # replace tos -> iter(tos) tos = self.stack[-1] if id(tos) in self.watcher: raise NotImplementedError('iterator of watched value') self.stack[-1] = iter(tos) def op_LOAD_GLOBAL(self, i, op, arg): # print 'LOAD_GLOBAL', self.names[arg] tos = self._myglobals[self.func.func_code.co_names[arg]] if type(tos) is int and -5 <= tos <= 256: tos = np.int_(tos) self.push(tos) if id(tos) not in self.watcher: self.add_shadow(self.stack[-1]) def op_LOAD_ATTR(self, i, op, arg): # print 'LOAD_ATTR', self.names[arg] attr = self.func.func_code.co_names[arg] # # we would like to do # self.stack[-1] = getattr(TOS, attr) # # *EXCEPT* if attr is a property, then it actually represents a # function call tos = self.pop() if isinstance(tos, np.ndarray): if id(tos) not in self.watcher: raise NotImplementedError( 'how did this var get here?', (id(tos), tos)) if id(tos) in self.watcher: s_tos = self.watcher.svars[id(tos)] if attr == 'shape': rval = tos.shape # note this old comment... what does it mean? # XXX: NOT TRACKING SHAPE CHANGES BECAUSE # BAD INTERACTION WITH fbncc.__theano_op__ self.watcher.shadow(rval, s_tos.shape) elif attr == 'T': rval = tos.T self.watcher.shadow(rval, s_tos.T) elif attr == 'imag': rval = tos.imag self.watcher.shadow(rval, s_tos.imag) else: try: rval = getattr(tos, attr) except: raise NotImplementedError('ndarray attribute %s' % attr) self.push(rval) else: logger.debug('attribute access %s' % attr) rval = getattr(tos, attr) self.push(rval) # if (isinstance(rval, np.ndarray) # and id(rval) not in self.watcher): # self.add_shadow(rval) if id(rval) not in self.watcher: self.add_shadow(rval) def op_LOAD_CONST(self, i, op, arg): tos = self.func.func_code.co_consts[arg] if type(tos) is int and -5 <= tos <= 256: tos = np.int_(tos) self.push(tos) # if isinstance(tos, float): # if id(tos) not in self.watcher: # var = theano.tensor.as_tensor_variable(tos) # self.watcher.svars[id(tos)] = var if (isinstance(tos, np.ndarray) and id(tos) not in self.watcher): raise NotImplementedError() def op_LOAD_CLOSURE(self, i, op, arg): co_cellvars = self.func.func_code.co_cellvars co_freevars = self.func.func_code.co_freevars co_varnames = self.func.func_code.co_varnames if arg < len(co_cellvars): name = co_cellvars[arg] else: name = co_freevars[arg - len(co_cellvars)] thing = self._locals[co_varnames.index(name)] cell = cellmake(thing) self.push(cell) def op_LOAD_DEREF(self, i, op, arg): # -- this is called to access a variable that appears in multiple # scopes. # -- vars *referenced* by nested scopes co_cellvars = self.func.func_code.co_cellvars # -- vars read from enclosing scopes co_freevars = self.func.func_code.co_freevars # -- all varnames co_varnames = self.func.func_code.co_varnames if arg < len(co_cellvars): # -- normal case name = co_cellvars[arg] # -- XXX: Is this really the right thing to do?? thing = self._locals[co_varnames.index(name)] else: name = co_freevars[arg - len(co_cellvars)] closure = self.func.func_closure assert len(co_freevars) == len(closure) # print 'LOAD_DEREF (%s:%s)' % (self.func, name) cell = closure[arg - len(co_cellvars)] thing = cellget(cell) self.push(thing) # if (isinstance(thing, np.ndarray) and id(thing) not in self.watcher): # self.add_shadow(thing) if id(thing) not in self.watcher: self.add_shadow(thing) def op_LOAD_FAST(self, i, op, arg): tos = self._locals[arg] try: self.push(tos) except LoadUnassigned: raise LoadUnassigned(self.func.func_code.co_varnames[arg]) if not isinstance(tos, (int, float)): if id(tos) not in self.watcher: self.add_shadow(tos) def op_MAKE_CLOSURE(self, i, op, arg): return self.op_MAKE_FUNCTION(i, op, arg, w_closure=True) def op_MAKE_FUNCTION(self, i, op, arg, w_closure=False): func_code = self.pop() if w_closure: cells = self.pop() if arg: argdefs = tuple(self.stack[-arg:]) self.stack[-arg:] = [] else: argdefs = () if w_closure: fn = types.FunctionType(func_code, self.func.func_globals, argdefs=argdefs, closure=cells,) else: fn = types.FunctionType(func_code, self.func.func_globals, argdefs=argdefs) self.push(fn) def op_POP_BLOCK(self, i, op, arg): logger.debug('POP_BLOCK, what to do?') pass def op_POP_JUMP_IF_FALSE(self, i, op, arg): #tos = self.stack[-1] tos = self.pop() if not tos: return ('abs', arg) def op_POP_JUMP_IF_TRUE(self, i, op, arg): #tos = self.stack[-1] tos = self.pop() if tos: return ('abs', arg) def op_POP_TOP(self, i, op, arg): self.pop() def op_PRINT_ITEM(self, i, op, arg): thing = self.pop() if str(thing) == 'PRINT_OPS:True': self.print_ops = True if str(thing) == 'PRINT_STACK:True': self.print_stack = True print thing, def op_PRINT_NEWLINE(self, i, op, arg): print '' def op_SETUP_LOOP(self, i, op, arg): logger.debug('SETUP_LOOP, what to do?') pass def op_SLICE_PLUS_0(self, i, op, arg): #Implements TOS = TOS[:]. TOS = self.pop() new_tos = TOS[:] self.push(new_tos) if id(TOS) in self.watcher: s = self.watcher.getvar(TOS) s_rval = s[:] self.watcher.shadow(new_tos, s_rval) def op_SLICE_PLUS_1(self, i, op, arg): # TOS = TOS1[TOS:] TOS1, TOS = self.popN(2) new_tos = TOS1[TOS:] self.push(new_tos) if any(id(t) in self.watcher for t in [TOS, TOS1]): s = self.watcher.getvar(TOS) s1 = self.watcher.getvar(TOS1) s_rval = s1[s:] self.watcher.shadow(new_tos, s_rval) def op_SLICE_PLUS_2(self, i, op, arg): # TOS = TOS1[:TOS] TOS1, TOS = self.popN(2) new_tos = TOS1[:TOS] self.push(new_tos) if any(id(t) in self.watcher for t in [TOS, TOS1]): s = self.watcher.getvar(TOS) s1 = self.watcher.getvar(TOS1) s_rval = s1[:s] self.watcher.shadow(new_tos, s_rval) def op_SLICE_PLUS_3(self, i, op, arg): # Implements TOS = TOS2[TOS1:TOS] TOS2, TOS1, TOS = self.popN(3) new_tos = TOS2[TOS1:TOS] self.push(new_tos) if any(id(t) in self.watcher for t in [TOS, TOS1, TOS2]): s = self.watcher.getvar(TOS) s1 = self.watcher.getvar(TOS1) s2 = self.watcher.getvar(TOS2) s_rval = s2[s1:s] self.watcher.shadow(new_tos, s_rval) def op_STORE_ATTR(self, i, op, arg): # implements TOS.name = TOS1 TOS1, TOS = self.popN(2) if TOS in self.watcher: raise NotImplementedError() name = self.func.func_code.co_names[arg] setattr(TOS, name, TOS1) def op_STORE_SLICE_PLUS_0(self, i, op, arg): #Implements TOS[:] = TOS1 TOS1, TOS = self.popN(2) new_tos = TOS new_tos[:] = TOS1 self.push(new_tos) if any(id(t) in self.watcher for t in [TOS, TOS1]): s_tos = self.watcher.getvar(TOS) s_tos1 = self.watcher.getvar(TOS1) s_rval = theano.tensor.set_subtensor(s_tos[:], s_tos1) self.watcher.shadow(new_tos, s_rval) def op_STORE_SLICE_PLUS_1(self, i, op, arg): TOS2, TOS1, TOS = self.popN(3) new_tos = TOS1 new_tos[TOS:] = TOS2 self.push(new_tos) if any(id(t) in self.watcher for t in [TOS, TOS1, TOS2]): s_tos = self.watcher.getvar(TOS) s_tos1 = self.watcher.getvar(TOS1) s_tos2 = self.watcher.getvar(TOS2) s_rval = theano.tensor.set_subtensor(s_tos1[s_tos:], s_tos2) self.watcher.shadow(new_tos, s_rval) def op_STORE_SLICE_PLUS_2(self, i, op, arg): # TOS1[:TOS] = TOS2 TOS2, TOS1, TOS = self.popN(3) new_tos = TOS1 new_tos[:TOS] = TOS2 self.push(new_tos) if any(id(t) in self.watcher for t in [TOS, TOS1, TOS2]): s_tos = self.watcher.getvar(TOS) s_tos1 = self.watcher.getvar(TOS1) s_tos2 = self.watcher.getvar(TOS2) s_rval = theano.tensor.set_subtensor(s_tos1[:s_tos], s_tos2) self.watcher.shadow(new_tos, s_rval) def op_STORE_SLICE_PLUS_3(self, i, op, arg): # Implements TOS2[TOS1:TOS] = TOS3 TOS3, TOS2, TOS1, TOS = self.popN(4) new_tos = TOS2 new_tos[TOS1:TOS] = TOS3 self.push(new_tos) if any(id(t) in self.watcher for t in [TOS, TOS1, TOS2, TOS3]): s_tos = self.watcher.getvar(TOS) s_tos1 = self.watcher.getvar(TOS1) s_tos2 = self.watcher.getvar(TOS2) s_tos3 = self.watcher.getvar(TOS3) s_rval = theano.tensor.set_subtensor(s_tos2[s_tos1:s_tos], s_tos3) self.watcher.shadow(new_tos, s_rval) def op_STORE_FAST(self, i, op, arg): self._locals[arg] = self.pop() def op_STORE_MAP(self, i, op, arg): key = self.pop() val = self.pop() dct = self.stack[-1] dct[key] = val def op_STORE_SUBSCR(self, i, op, arg): # Implements TOS1[TOS] = TOS2. tos = self.pop() tos1 = self.pop() tos2 = self.pop() tos1[tos] = tos2 # tos can't be real-valued so there's no gradient through it if id(tos1) in self.watcher or id(tos2) in self.watcher: s_tos1 = self.ensure_shadow(tos1) s_tos2 = self.ensure_shadow(tos2) new_s_tos1 = theano.tensor.set_subtensor(s_tos1[tos], s_tos2) self.watcher.svars[id(tos1)] = new_s_tos1 def op_RAISE_VARARGS(self, i, op, arg): print >> sys.stderr, "Exception in autodiff.Context:" if 1 <= arg: exc = self.pop() else: exc = None if 2 <= arg: param = self.pop() else: param = None if 3 <= arg: tb = self.pop() traceback.print_tb(tb, file=sys.stderr) else: print >> sys.stderr, "No traceback info available" if param is not None: raise param elif exc is not None: raise exc() else: raise Exception('Completely mysterious exception') def op_RETURN_VALUE(self, i, op, arg): self.rval = self.pop() if id(self.rval) not in self.watcher: self.add_shadow(self.rval) def op_ROT_TWO(self, i, op, arg): a = self.stack[-1] b = self.stack[-2] self.stack[-1] = b self.stack[-2] = a def op_ROT_THREE(self, i, op, arg): a = self.stack[-1] b = self.stack[-2] c = self.stack[-3] self.stack[-1] = b self.stack[-2] = c self.stack[-3] = a def op_ROT_FOUR(self, i, op, arg): a = self.stack[-1] b = self.stack[-2] c = self.stack[-3] d = self.stack[-4] self.stack[-1] = b self.stack[-2] = c self.stack[-3] = d self.stack[-4] = a def op_UNARY_NEGATIVE(self, i, op, arg): arg1 = self.pop() assert not hasattr(arg1, 'type') r = -arg1 self.push(r) if id(arg1) in self.watcher: s1 = self.ensure_shadow(arg1) self.watcher.shadow(r, -s1) def op_UNPACK_SEQUENCE(self, i, op, arg): tos = self.pop() self.stack.extend(tos[::-1]) class Context(object): def __init__(self, device=None, borrowable=(), force_floatX=False): """ borrowable : tuple of objects If an object in this tuple is encountered while tracing the function, then its symbolic representation will alias that object's memory location. This means that *inplace* operations on the Python (likely NumPy) object will affect the symbolic function. force_floatX : bool If True, floats and float NumPy ndarrays will be cast to the dtype specified at theano.config.floatX when forming symbolic shared variables, if they do not have it already. Objects in `borrowable` are never cast. """ self.svars = {} self.nogc = [] # ids that must not be reused # XXX: rethink to avoid actually holding on to all these intermediates. self.device = device self.borrowable_ids = [id(b) for b in borrowable] self.force_floatX = force_floatX self.constants = set() def __iter__(self): return self.svars.__iter__() def shadow(self, rval, sval, force=True): assert hasattr(sval, 'type') # assert sval is Theano variable if force: self.svars[id(rval)] = sval else: self.svars.setdefault(id(rval), sval) # -- shadow vars have to match dtype and ndim if isinstance(rval, np.ndarray): if str(rval.dtype) == 'bool': assert sval.dtype == 'int8', (rval.dtype, sval.dtype) elif not self.force_floatX: assert str(rval.dtype) == sval.dtype, (rval, sval) assert rval.ndim == sval.ndim, (rval, sval) # -- assert postcondition assert sval is self.getvar(rval) self.nogc.append(rval) def call(self, fn, args=(), kwargs={}): vm = FrameVM(self, fn) return vm.call(args, kwargs) def shared(self, obj, name=None, borrow=None): if borrow is None: borrow = (id(obj) in self.borrowable_ids) if self.force_floatX and not borrow: if (isinstance(obj, np.ndarray) and 'float' in str(obj.dtype) and str(obj.dtype) != theano.config.floatX): obj = obj.astype(theano.config.floatX) # not all objects have shared constructors with a borrow keyword # for example theano.shared(np.float32(1)) works but # theano.shared(np.float32(1), borrow=[False|True]) fails if self.device == 'cpu': try: return theano.tensor._shared(obj, borrow=borrow) except: return theano.tensor._shared(obj) else: try: return theano.shared(obj, borrow=borrow) except: return theano.shared(obj) def getvar(self, var): return self.svars.get(id(var), var) def reset(self): self.constants.clear()
fcd11702e81bde025971e101d2d70f66f5e8cdb3
55e81ceffe94ec087ea9c4e6576093b56a86b852
/src/modules/convolution.py
0838e88f436ead2fb4833f31b9288f853b90c574
[]
no_license
feathernox/neuroml_fmri_deepspd
43941062e244c4ae9084821a7512a287407be0c3
119f968458a92d3ea644f55d1d4fab9527b73c16
refs/heads/main
2022-12-30T23:48:28.771036
2020-10-25T10:13:23
2020-10-25T10:13:23
306,640,174
0
0
null
null
null
null
UTF-8
Python
false
false
640
py
import torch from torch import nn from torch.nn import init import math class SimpleConvolution(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.weight = nn.Parameter(torch.Tensor(in_channels, out_channels)) self.reset_parameters() def forward(self, x): assert x.ndim == 4 convolved = (self.weight[None, :, :, None, None] * x[:, :, None, :, :]).sum(dim=1) return convolved def reset_parameters(self): init.kaiming_uniform_(self.weight, a=math.sqrt(5))
79180c09bcb81b56e6d9d1043b6380e55871d2a0
c7e765a9bed33d3bfb21774e3995bf4a09e04add
/adminmgr/media/code/A3/task1/BD_135_703_2371_KhgNwL4.py
39a4a494197832cb4b20798bc47cbace9f61a4d5
[ "Apache-2.0" ]
permissive
IamMayankThakur/test-bigdata
13dd2ac7fb76c9baed6c3a0aa943057a22e2d237
7f507918c7bec31c92eedcd94491a83486623049
refs/heads/master
2022-05-03T00:59:44.127494
2022-02-10T19:50:16
2022-02-10T19:50:16
201,585,028
10
4
Apache-2.0
2022-04-22T23:39:45
2019-08-10T05:34:09
Python
UTF-8
Python
false
false
1,134
py
import findspark findspark.init() from pyspark import SparkConf,SparkContext from pyspark.streaming import StreamingContext from pyspark.sql import Row,SQLContext import sys import requests def func(rdd): sorted_rdd1 = rdd.sortBy(lambda x: (-x[1],x[0])) sorted_rdd=sorted_rdd1.filter(lambda y: y[0] !='') s_list=sorted_rdd.collect() if(s_list!=[]): print(s_list[0][0],s_list[1][0],s_list[2][0],s_list[3][0],s_list[4][0],sep=",") conf=SparkConf() conf.setAppName("BigData") sc=SparkContext(conf=conf) ssc=StreamingContext(sc,int(sys.argv[2])) ssc.checkpoint("/checkpoint_BIGDATA") dataStream=ssc.socketTextStream("localhost",9009) hashtag1=dataStream.window(int(sys.argv[1]),1) if(',' in hashtag1.select(lambda w: w.split(";")[7])): hashtag2=hashtag1.select(lambda w: w.split(";")[7]) hashtag3=hashtag2.flatmap(lambda p:p.split(",")) else: hashtag3=hashtag1.flatmap(lambda w: w.split(";")[7]) hashtag4 = hashtag3.map(lambda x: (x,1)) #hashtags=hashtag4.reduceByKey(add) hashtags=hashtag4.updateStateByKey(lambda x,y:int(x)+int(y)) hashtags.foreachRDD(func) ssc.start() ssc.awaitTermination(25) ssc.stop()
37cd36176891ea926eef36e5b677f6b4352ae940
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-as/huaweicloudsdkas/v1/model/pause_scaling_group_request.py
c88cd3d690fe6f2fc4753b1834d1bd3b10a9f9f9
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
4,079
py
# coding: utf-8 import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class PauseScalingGroupRequest: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'scaling_group_id': 'str', 'body': 'PauseScalingGroupOption' } attribute_map = { 'scaling_group_id': 'scaling_group_id', 'body': 'body' } def __init__(self, scaling_group_id=None, body=None): """PauseScalingGroupRequest The model defined in huaweicloud sdk :param scaling_group_id: 伸缩组ID :type scaling_group_id: str :param body: Body of the PauseScalingGroupRequest :type body: :class:`huaweicloudsdkas.v1.PauseScalingGroupOption` """ self._scaling_group_id = None self._body = None self.discriminator = None self.scaling_group_id = scaling_group_id if body is not None: self.body = body @property def scaling_group_id(self): """Gets the scaling_group_id of this PauseScalingGroupRequest. 伸缩组ID :return: The scaling_group_id of this PauseScalingGroupRequest. :rtype: str """ return self._scaling_group_id @scaling_group_id.setter def scaling_group_id(self, scaling_group_id): """Sets the scaling_group_id of this PauseScalingGroupRequest. 伸缩组ID :param scaling_group_id: The scaling_group_id of this PauseScalingGroupRequest. :type scaling_group_id: str """ self._scaling_group_id = scaling_group_id @property def body(self): """Gets the body of this PauseScalingGroupRequest. :return: The body of this PauseScalingGroupRequest. :rtype: :class:`huaweicloudsdkas.v1.PauseScalingGroupOption` """ return self._body @body.setter def body(self, body): """Sets the body of this PauseScalingGroupRequest. :param body: The body of this PauseScalingGroupRequest. :type body: :class:`huaweicloudsdkas.v1.PauseScalingGroupOption` """ self._body = body def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, PauseScalingGroupRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
76bbea84228c618e352dc125b30c93b04c64e117
6a420c47a9b8940ed2f437c0a49c7ccccf7473bd
/apps/blog/models/entry.py
421764412b477c2fd97703ab561da5706ad45e74
[]
no_license
deadendif/blog
f0198287e07dc95c5a12b44cad5dc58b86c2294e
2eb48a7f66ae93a8bafcba824461e4c1a430e10a
refs/heads/master
2021-06-20T23:47:14.189596
2017-08-12T06:25:25
2017-08-12T06:25:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,380
py
#!/usr/bin/env python # -*- coding: utf-8 -*- from django.db import models from django.utils import timezone from django.utils.html import strip_tags from django.utils.text import Truncator from tagging.fields import TagField from tagging.utils import parse_tag_input from author import Author from category import Category from blog.settings import DRAFT, HIDDEN, PUBLISHED from blog.settings import ENTRY_DETAIL_TEMPLATES, PREVIEW_SPLITTERS, PREVIEW_MORE_STRING from blog.utils import entries_published from blog.utils import markdown from blog.managers import EntryPublishedManager from blog.preview import HTMLPreview class Entry(models.Model): """ Entry model class """ STATUS = ( (DRAFT, 'draft'), (HIDDEN, 'hidden'), (PUBLISHED, 'published') ) title = models.CharField('title', max_length=255, help_text='Title of the entry.') slug = models.SlugField('slug', max_length=255, help_text='Used to build the entry\' URL.') status = models.IntegerField('status', db_index=True, choices=STATUS, default=DRAFT, help_text='Status of the entry.') create_time = models.DateTimeField('Create time', db_index=True, default=timezone.now, help_text='Datetime when creating the entry.') start_publish = models.DateTimeField('start publish', db_index=True, blank=True, null=True, help_text='Datetime when starting publication') end_publish = models.DateTimeField('end publish', db_index=True, blank=True, null=True, help_text='Datetime when stopping publication') last_update = models.DateTimeField('last update time', default=timezone.now, help_text='Datetime when last update the entry.') excerpt = models.TextField('excerpt', blank=True, help_text='Used to SEO purposes.') content = models.TextField('content', blank=True, help_text='Content of the entry.') featured = models.BooleanField('featrue', default=False, help_text='Telling if the entry is featured') author = models.ForeignKey( Author, related_name='entries', null=True, on_delete=models.SET_NULL, # ??? help_text='Author of the entry.') category = models.ForeignKey( Category, related_name='entries', blank=False, null=True, help_text='Categories that contain this entry.') tags = TagField('tags') login_required = models.BooleanField('login required', default=False, help_text='Telling if user need to be authenticated.') password = models.CharField('password', max_length=64, blank=True, help_text='Protects the entry with a password.') detail_template = models.CharField('detail template', max_length=255, choices=ENTRY_DETAIL_TEMPLATES, default=ENTRY_DETAIL_TEMPLATES[0], help_text='The detail tempate of the entry.') # Set managers objects = models.Manager() published = EntryPublishedManager() @property def publish_date(self): """ Return publish date or create data. """ return self.start_publish or self.create_time @property def is_visible(self): """ Check if the entry is visible. """ now = timezone.now() if (self.start_publish and now < self.start_publish) or \ (self.end_publish and now >= self.end_publish): return False return self.status == PUBLISHED @property def previous_next_entry(self): """ Return and cache previous and next published entry. """ attr_name = 'previous_next' previous_next = getattr(self, attr_name, None) if previous_next is None: if not self.is_visible: previous_next = (None, None) setattr(self, 'previous_next', previous_next) return previous_next entries = list(self.__class__.published.all()) index = entries.index(self) previous_entry = entries[index + 1] if index + 1 < len(entries) else None next_entry = entries[index - 1] if index > 0 else None previous_next = (previous_entry, next_entry) setattr(self, attr_name, previous_next) return previous_next @property def previous_entry(self): """ Return the previous published entry if exists. """ return self.previous_next_entry[0] @property def next_entry(self): """ Return the next published entry if exist. """ return self.previous_next_entry[1] @property def tags_list(self): """ Return iterable list of tags. """ return parse_tag_input(self.tags) @models.permalink def get_absolute_url(self): """ Return the entry's URL """ ctime = self.create_time return ('blog:entries:detail', (), { 'year': self.create_time.strftime('%Y'), 'month': self.create_time.strftime('%m'), 'day': self.create_time.strftime('%d'), 'slug': self.slug }) @property def html_content(self): """ Return html content """ return markdown(self.content) @property def html_preview(self): """ Return html preview object """ return HTMLPreview(self.html_content) # return HTMLPreview(self.html_content, self.excerpt) @property def word_count(self): """ Return the number of words """ return len(strip_tags(self.html_content).split()) def save(self, *args, **kwargs): """ [Override] update fields: last_update, excerpt """ self.last_update = timezone.now() # if not self.excerpt and self.status == PUBLISHED: # self.excerpt = HTMLPreview(self.html_content) super(self.__class__, self).save(*args, **kwargs) def __str__(self): return '%s: %s' % (self.title, self.STATUS[self.status - 1][1]) class Meta: ordering = ['-create_time'] get_latest_by = 'creation_date'
37434a2d02bf51c411162c56fe9eda123ad980d9
bede13ba6e7f8c2750815df29bb2217228e91ca5
/advance_cash_flow_statements/wizard/account_account.py
8ab4d6059149ffc32c123a592816f6a73772185a
[]
no_license
CybroOdoo/CybroAddons
f44c1c43df1aad348409924603e538aa3abc7319
4b1bcb8f17aad44fe9c80a8180eb0128e6bb2c14
refs/heads/16.0
2023-09-01T17:52:04.418982
2023-09-01T11:43:47
2023-09-01T11:43:47
47,947,919
209
561
null
2023-09-14T01:47:59
2015-12-14T02:38:57
HTML
UTF-8
Python
false
false
3,562
py
# -*- coding: utf-8 -*- ############################################################################# # # Cybrosys Technologies Pvt. Ltd. # # Copyright (C) 2019-TODAY Cybrosys Technologies(<https://www.cybrosys.com>) # Author: Cybrosys Techno Solutions(<https://www.cybrosys.com>) # # You can modify it under the terms of the GNU LESSER # GENERAL PUBLIC LICENSE (LGPL v3), Version 3. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU LESSER GENERAL PUBLIC LICENSE (LGPL v3) for more details. # # You should have received a copy of the GNU LESSER GENERAL PUBLIC LICENSE # (LGPL v3) along with this program. # If not, see <http://www.gnu.org/licenses/>. # ############################################################################# from odoo import api, models, fields from odoo.tools.misc import get_lang class AccountCommonReport(models.Model): _inherit = "account.report" _description = "Account Common Report" company_id = fields.Many2one('res.company', string='Company', required=True, readonly=True, default=lambda self: self.env.company) journal_ids = fields.Many2many( comodel_name='account.journal', string='Journals', required=True, default=lambda self: self.env['account.journal'].search( [('company_id', '=', self.company_id.id)]), domain="[('company_id', '=', company_id)]", ) date_from = fields.Date(string='Start Date') date_to = fields.Date(string='End Date') target_move = fields.Selection([('posted', 'All Posted Entries'), ('all', 'All Entries'), ], string='Target Moves', required=True, default='posted') @api.onchange('company_id') def _onchange_company_id(self): if self.company_id: self.journal_ids = self.env['account.journal'].search( [('company_id', '=', self.company_id.id)]) else: self.journal_ids = self.env['account.journal'].search([]) def _build_contexts(self, data): result = {} result['journal_ids'] = 'journal_ids' in data['form'] and data['form'][ 'journal_ids'] or False result['state'] = 'target_move' in data['form'] and data['form'][ 'target_move'] or '' result['date_from'] = data['form']['date_from'] or False result['date_to'] = data['form']['date_to'] or False result['strict_range'] = True if result['date_from'] else False result['company_id'] = data['form']['company_id'][0] or False return result def _print_report(self, data): raise NotImplementedError() def check_report(self): print('Account.report') self.ensure_one() data = {'ids': self.env.context.get('active_ids', []), 'model': self.env.context.get('active_model', 'ir.ui.menu'), 'form': self.read( ['date_from', 'date_to', 'journal_ids', 'target_move', 'company_id'])[0]} used_context = self._build_contexts(data) data['form']['used_context'] = dict(used_context, lang=get_lang(self.env).code) return self.with_context(discard_logo_check=True)._print_report(data)
c5383493a1f9677eb1111b85946e9ad9e14fe2b8
fab14fae2b494068aa793901d76464afb965df7e
/benchmarks/f3_wrong_hints/scaling_nonlinear_software/10-19_35.py
6ae8d393dc099f7aac05202aa5a431adcbaf9881
[ "MIT" ]
permissive
teodorov/F3
673f6f9ccc25acdfdecbfc180f439253474ba250
c863215c318d7d5f258eb9be38c6962cf6863b52
refs/heads/master
2023-08-04T17:37:38.771863
2021-09-16T07:38:28
2021-09-16T07:38:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,238
py
from typing import FrozenSet, Tuple import pysmt.typing as types from pysmt.environment import Environment as PysmtEnv from pysmt.fnode import FNode from utils import symb_to_next from hint import Hint, Location def transition_system(env: PysmtEnv) -> Tuple[FrozenSet[FNode], FNode, FNode, FNode]: assert isinstance(env, PysmtEnv) mgr = env.formula_manager pc = mgr.Symbol("pc", types.INT) x = mgr.Symbol("x", types.INT) y = mgr.Symbol("y", types.INT) z = mgr.Symbol("z", types.INT) x_pc = symb_to_next(mgr, pc) x_x = symb_to_next(mgr, x) x_y = symb_to_next(mgr, y) x_z = symb_to_next(mgr, z) symbols = frozenset([pc, x, y, z]) n_locs = 5 int_bound = n_locs pcs = [] x_pcs = [] ints = [mgr.Int(i) for i in range(int_bound)] for l in range(n_locs): n = ints[l] pcs.append(mgr.Equals(pc, n)) x_pcs.append(mgr.Equals(x_pc, n)) m_1 = mgr.Int(-1) pcend = mgr.Equals(pc, m_1) x_pcend = mgr.Equals(x_pc, m_1) # initial location. init = pcs[0] # control flow graph. cfg = mgr.And( # pc = -1 : -1, mgr.Implies(pcend, x_pcend), # pc = 0 & !(y >= 1) : -1, mgr.Implies(mgr.And(pcs[0], mgr.Not(mgr.GE(y, ints[1]))), x_pcend), # pc = 0 & y >= 1 : 1, mgr.Implies(mgr.And(pcs[0], mgr.GE(y, ints[1])), x_pcs[1]), # pc = 1 & !(z >= 1) : -1, mgr.Implies(mgr.And(pcs[1], mgr.Not(mgr.GE(z, ints[1]))), x_pcend), # pc = 1 & z >= 1 : 2, mgr.Implies(mgr.And(pcs[1], mgr.GE(z, ints[1])), x_pcs[2]), # pc = 2 & !(x >= 0) : -1, mgr.Implies(mgr.And(pcs[2], mgr.Not(mgr.GE(x, ints[0]))), x_pcend), # pc = 2 & x >= 0 : 3, mgr.Implies(mgr.And(pcs[2], mgr.GE(x, ints[0])), x_pcs[3]), # pc = 3 : 4, mgr.Implies(pcs[3], x_pcs[4]), # pc = 4 : 2, mgr.Implies(pcs[4], x_pcs[2])) # transition labels. labels = mgr.And( # (pc = -1 & pc' = -1) -> (x' = x & y' = y & z' = z), mgr.Implies( mgr.And(pcend, x_pcend), mgr.And(mgr.Equals(x_x, x), mgr.Equals(x_y, y), mgr.Equals(x_z, z))), # (pc = 0 & pc' = -1) -> (x' = x & y' = y & z' = z), mgr.Implies( mgr.And(pcs[0], x_pcend), mgr.And(mgr.Equals(x_x, x), mgr.Equals(x_y, y), mgr.Equals(x_z, z))), # (pc = 0 & pc' = 1) -> (x' = x & y' = y & z' = z), mgr.Implies( mgr.And(pcs[0], x_pcs[1]), mgr.And(mgr.Equals(x_x, x), mgr.Equals(x_y, y), mgr.Equals(x_z, z))), # (pc = 1 & pc' = -1) -> (x' = x & y' = y & z' = z), mgr.Implies( mgr.And(pcs[1], x_pcend), mgr.And(mgr.Equals(x_x, x), mgr.Equals(x_y, y), mgr.Equals(x_z, z))), # (pc = 1 & pc' = 2) -> (x' = x & y' = y & z' = z), mgr.Implies( mgr.And(pcs[1], x_pcs[2]), mgr.And(mgr.Equals(x_x, x), mgr.Equals(x_y, y), mgr.Equals(x_z, z))), # (pc = 2 & pc' = -1) -> (x' = x & y' = y & z' = z), mgr.Implies( mgr.And(pcs[2], x_pcend), mgr.And(mgr.Equals(x_x, x), mgr.Equals(x_y, y), mgr.Equals(x_z, z))), # (pc = 2 & pc' = 3) -> (x' = x & y' = y & z' = z), mgr.Implies( mgr.And(pcs[2], x_pcs[3]), mgr.And(mgr.Equals(x_x, x), mgr.Equals(x_y, y), mgr.Equals(x_z, z))), # (pc = 3 & pc' = 4) -> (x' = y*z - 1 & y' = y & z' = z), mgr.Implies( mgr.And(pcs[3], x_pcs[4]), mgr.And(mgr.Equals(x_x, mgr.Minus(mgr.Times(y, z), ints[1])), mgr.Equals(x_y, y), mgr.Equals(x_z, z))), # (pc = 4 & pc' = 2) -> (x' = x & y' = y+1 & z' = z), mgr.Implies( mgr.And(pcs[4], x_pcs[2]), mgr.And(mgr.Equals(x_x, x), mgr.Equals(x_y, mgr.Plus(y, ints[1])), mgr.Equals(x_z, z)))) # transition relation. trans = mgr.And(cfg, labels) # fairness. fairness = mgr.Not(pcend) return symbols, init, trans, fairness def hints(env: PysmtEnv) -> FrozenSet[Hint]: assert isinstance(env, PysmtEnv) mgr = env.formula_manager pc = mgr.Symbol("pc", types.INT) x = mgr.Symbol("x", types.INT) y = mgr.Symbol("y", types.INT) z = mgr.Symbol("z", types.INT) symbs = frozenset([pc, x, y, z]) x_pc = symb_to_next(mgr, pc) x_x = symb_to_next(mgr, x) x_y = symb_to_next(mgr, y) x_z = symb_to_next(mgr, z) res = [] i_0 = mgr.Int(0) i_1 = mgr.Int(1) i_2 = mgr.Int(2) i_3 = mgr.Int(3) loc = Location(env, mgr.LE(z, i_0)) loc.set_progress(0, mgr.Equals(x_z, z)) h_z = Hint("h_z0", env, frozenset([z]), symbs) h_z.set_locs([loc]) res.append(h_z) stutter = mgr.Equals(x_y, y) loc0 = Location(env, mgr.GE(y, i_0)) loc0.set_progress(1, mgr.Equals(x_y, mgr.Plus(y, i_1))) loc1 = Location(env, mgr.GE(y, i_1)) loc1.set_progress(2, mgr.Equals(x_y, mgr.Plus(y, i_1))) loc2 = Location(env, mgr.GE(y, i_2)) loc2.set_progress(0, mgr.Equals(x_y, y)) h_y = Hint("h_y1", env, frozenset([y]), symbs) h_y.set_locs([loc0, loc1, loc2]) res.append(h_y) stutter = mgr.Equals(x_x, x) loc = Location(env, mgr.GT(x, i_0), mgr.And(mgr.GT(y, i_1), mgr.GT(z, i_1)), stutterT=stutter) loc.set_progress(0, mgr.GE(x_x, mgr.Minus(mgr.Times(y, z), i_2))) h_x = Hint("h_x1", env, frozenset([x]), symbs) h_x.set_locs([loc]) res.append(h_x) stutter = mgr.Equals(x_y, y) loc0 = Location(env, mgr.GE(y, i_3)) loc0.set_progress(1, mgr.Equals(x_y, mgr.Plus(y, i_1))) loc1 = Location(env, mgr.GE(y, i_3), mgr.GE(z, i_2)) loc1.set_progress(0, mgr.Equals(x_y, mgr.Plus(y, z))) h_y = Hint("h_y2", env, frozenset([y]), symbs) h_y.set_locs([loc0, loc1]) res.append(h_y) loc0 = Location(env, mgr.GE(z, i_3), mgr.GE(y, i_0)) loc0.set_progress(1, mgr.GE(x_z, mgr.Plus(z, y))) loc1 = Location(env, mgr.GE(z, i_3), mgr.GE(x, i_0)) loc1.set_progress(0, mgr.GE(x_z, mgr.Plus(z, i_0))) h_z = Hint("h_z2", env, frozenset([z]), symbs) h_z.set_locs([loc0, loc1]) res.append(h_z) loc0 = Location(env, mgr.Equals(pc, i_1)) loc0.set_progress(1, mgr.Equals(x_pc, i_3)) loc1 = Location(env, mgr.Equals(pc, i_3)) loc1.set_progress(0, mgr.Equals(x_pc, i_1)) h_pc = Hint("h_pc2", env, frozenset([pc]), symbs) h_pc.set_locs([loc0, loc1]) res.append(h_pc) loc0 = Location(env, mgr.GE(y, i_3)) loc0.set_progress(1, mgr.Equals(x_y, mgr.Plus(y, i_1))) loc1 = Location(env, mgr.GE(y, i_3), mgr.GE(x, i_2)) loc1.set_progress(0, mgr.Equals(x_y, mgr.Plus(y, x))) h_y = Hint("h_y3", env, frozenset([y]), symbs) h_y.set_locs([loc0, loc1]) res.append(h_y) loc0 = Location(env, mgr.GE(y, i_3)) loc0.set_progress(1, mgr.Equals(x_y, mgr.Plus(y, i_1))) loc1 = Location(env, mgr.GE(y, i_3)) loc1.set_progress(2, mgr.Equals(x_y, y)) loc2 = Location(env, mgr.GE(y, i_3)) loc2.set_progress(2, mgr.Equals(x_y, mgr.Plus(y, i_1))) h_y = Hint("h_y4", env, frozenset([y]), symbs) h_y.set_locs([loc0, loc1, loc2]) res.append(h_y) loc0 = Location(env, mgr.GT(x, i_3), mgr.And(mgr.GT(y, i_1), mgr.GT(z, i_1))) loc0.set_progress(1, mgr.GE(x_x, mgr.Minus(mgr.Times(y, z), i_1))) loc1 = Location(env, mgr.GT(x, i_0), mgr.GE(y, i_1)) loc1.set_progress(2, mgr.Equals(x_x, mgr.Plus(x, y))) loc2 = Location(env, mgr.GT(x, i_3)) loc2.set_progress(2, mgr.Equals(x_x, x)) h_x = Hint("h_x4", env, frozenset([x]), symbs) h_x.set_locs([loc0, loc1, loc2]) res.append(h_x) loc0 = Location(env, mgr.Equals(pc, i_2)) loc0.set_progress(1, mgr.GT(x_pc, i_2)) loc1 = Location(env, mgr.GE(pc, i_3)) loc1.set_progress(2, mgr.GE(x_pc, i_3)) loc2 = Location(env, mgr.GE(pc, i_3)) loc2.set_progress(0, mgr.Equals(x_pc, i_2)) h_pc = Hint("h_pc4", env, frozenset([pc]), symbs) h_pc.set_locs([loc0, loc1, loc2]) res.append(h_pc) return frozenset(res)
839fceccecbbd4b46b6c93de655ca6dc94e9bf89
3935927379f7f06a3aaeffef3e32c6261e93a4f4
/CNN_variant2/retrain.py
40b1a989ed855979d1f07a37d15baf02102621d4
[]
no_license
Tanmoy-Bipro/BSL-alphabet-recognition
7be07a45149bb07d0666c7d847720cb50d6cbc33
7c7717e1a8f7f274d0db0fead6ef269f8cc017dc
refs/heads/master
2020-09-27T07:48:37.705809
2019-12-27T15:14:20
2019-12-27T15:14:20
226,467,621
0
0
null
null
null
null
UTF-8
Python
false
false
53,860
py
# pylint: disable=line-too-long r"""Simple transfer learning with image modules This example shows how to train an image classifier based on any TensorFlow Hub module that computes image feature vectors. By default, it uses the feature vectors computed by Inception V3 trained on ImageNet. See https://github.com/tensorflow/hub/blob/master/docs/modules/image.md for more options. The top layer receives as input a 2048-dimensional vector (assuming Inception V3) for each image. We train a softmax layer on top of this representation. If the softmax layer contains N labels, this corresponds to learning N + 2048*N model parameters for the biases and weights. Here's an example, which assumes you have a folder containing class-named subfolders, each full of images for each label. The example folder flower_photos should have a structure like this: ~/flower_photos/daisy/photo1.jpg ~/flower_photos/daisy/photo2.jpg ... ~/flower_photos/rose/anotherphoto77.jpg ... ~/flower_photos/sunflower/somepicture.jpg The subfolder names are important, since they define what label is applied to each image, but the filenames themselves don't matter. (For a working example, download http://download.tensorflow.org/example_images/flower_photos.tgz and run tar xzf flower_photos.tgz to unpack it.) Once your images are prepared, and you have pip-installed tensorflow-hub and a sufficiently recent version of tensorflow, you can run the training with a command like this: ```bash python retrain.py --image_dir ~/flower_photos ``` You can replace the image_dir argument with any folder containing subfolders of images. The label for each image is taken from the name of the subfolder it's in. This produces a new model file that can be loaded and run by any TensorFlow program, for example the tensorflow/examples/label_image sample code. By default this script will use the highly accurate, but comparatively large and slow Inception V3 model architecture. It's recommended that you start with this to validate that you have gathered good training data, but if you want to deploy on resource-limited platforms, you can try the `--tfhub_module` flag with a Mobilenet model. For more information on Mobilenet, see https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html For example: Run floating-point version of Mobilenet: ```bash python retrain.py --image_dir ~/flower_photos \ --tfhub_module https://tfhub.dev/google/imagenet/mobilenet_v1_100_224/feature_vector/1 ``` Run Mobilenet, instrumented for quantization: ```bash python retrain.py --image_dir ~/flower_photos/ \ --tfhub_module https://tfhub.dev/google/imagenet/mobilenet_v1_100_224/quantops/feature_vector/1 ``` These instrumented models can be converted to fully quantized mobile models via TensorFlow Lite. There are different Mobilenet models to choose from, with a variety of file size and latency options. - The first number can be '100', '075', '050', or '025' to control the number of neurons (activations of hidden layers); the number of weights (and hence to some extent the file size and speed) shrinks with the square of that fraction. - The second number is the input image size. You can choose '224', '192', '160', or '128', with smaller sizes giving faster speeds. To use with TensorBoard: By default, this script will log summaries to /tmp/retrain_logs directory Visualize the summaries with this command: tensorboard --logdir /tmp/retrain_logs To use with Tensorflow Serving, run this tool with --saved_model_dir set to some increasingly numbered export location under the model base path, e.g.: ```bash python retrain.py (... other args as before ...) \ --saved_model_dir=/tmp/saved_models/$(date +%s)/ tensorflow_model_server --port=9000 --model_name=my_image_classifier \ --model_base_path=/tmp/saved_models/ ``` """ # pylint: enable=line-too-long from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import collections from datetime import datetime import hashlib import os.path import random import re import sys import numpy as np import tensorflow as tf import tensorflow_hub as hub FLAGS = None MAX_NUM_IMAGES_PER_CLASS = 2 ** 27 - 1 # ~134M # The location where variable checkpoints will be stored. CHECKPOINT_NAME = '/tmp/_retrain_checkpoint' # A module is understood as instrumented for quantization with TF-Lite # if it contains any of these ops. FAKE_QUANT_OPS = ('FakeQuantWithMinMaxVars', 'FakeQuantWithMinMaxVarsPerChannel') def create_image_lists(image_dir, testing_percentage, validation_percentage): """Builds a list of training images from the file system. Analyzes the sub folders in the image directory, splits them into stable training, testing, and validation sets, and returns a data structure describing the lists of images for each label and their paths. Args: image_dir: String path to a folder containing subfolders of images. testing_percentage: Integer percentage of the images to reserve for tests. validation_percentage: Integer percentage of images reserved for validation. Returns: An OrderedDict containing an entry for each label subfolder, with images split into training, testing, and validation sets within each label. The order of items defines the class indices. """ if not tf.gfile.Exists(image_dir): tf.logging.error("Image directory '" + image_dir + "' not found.") return None result = collections.OrderedDict() sub_dirs = sorted(x[0] for x in tf.gfile.Walk(image_dir)) # The root directory comes first, so skip it. is_root_dir = True for sub_dir in sub_dirs: if is_root_dir: is_root_dir = False continue extensions = sorted(set(os.path.normcase(ext) # Smash case on Windows. for ext in ['JPEG', 'JPG', 'jpeg', 'jpg'])) file_list = [] dir_name = os.path.basename(sub_dir) if dir_name == image_dir: continue tf.logging.info("Looking for images in '" + dir_name + "'") for extension in extensions: file_glob = os.path.join(image_dir, dir_name, '*.' + extension) file_list.extend(tf.gfile.Glob(file_glob)) if not file_list: tf.logging.warning('No files found') continue if len(file_list) < 20: tf.logging.warning( 'WARNING: Folder has less than 20 images, which may cause issues.') elif len(file_list) > MAX_NUM_IMAGES_PER_CLASS: tf.logging.warning( 'WARNING: Folder {} has more than {} images. Some images will ' 'never be selected.'.format(dir_name, MAX_NUM_IMAGES_PER_CLASS)) label_name = re.sub(r'[^a-z0-9]+', ' ', dir_name.lower()) training_images = [] testing_images = [] validation_images = [] for file_name in file_list: base_name = os.path.basename(file_name) # We want to ignore anything after '_nohash_' in the file name when # deciding which set to put an image in, the data set creator has a way of # grouping photos that are close variations of each other. For example # this is used in the plant disease data set to group multiple pictures of # the same leaf. hash_name = re.sub(r'_nohash_.*$', '', file_name) # This looks a bit magical, but we need to decide whether this file should # go into the training, testing, or validation sets, and we want to keep # existing files in the same set even if more files are subsequently # added. # To do that, we need a stable way of deciding based on just the file name # itself, so we do a hash of that and then use that to generate a # probability value that we use to assign it. hash_name_hashed = hashlib.sha1(tf.compat.as_bytes(hash_name)).hexdigest() percentage_hash = ((int(hash_name_hashed, 16) % (MAX_NUM_IMAGES_PER_CLASS + 1)) * (100.0 / MAX_NUM_IMAGES_PER_CLASS)) if percentage_hash < validation_percentage: validation_images.append(base_name) elif percentage_hash < (testing_percentage + validation_percentage): testing_images.append(base_name) else: training_images.append(base_name) result[label_name] = { 'dir': dir_name, 'training': training_images, 'testing': testing_images, 'validation': validation_images, } return result def get_image_path(image_lists, label_name, index, image_dir, category): """Returns a path to an image for a label at the given index. Args: image_lists: OrderedDict of training images for each label. label_name: Label string we want to get an image for. index: Int offset of the image we want. This will be moduloed by the available number of images for the label, so it can be arbitrarily large. image_dir: Root folder string of the subfolders containing the training images. category: Name string of set to pull images from - training, testing, or validation. Returns: File system path string to an image that meets the requested parameters. """ if label_name not in image_lists: tf.logging.fatal('Label does not exist %s.', label_name) label_lists = image_lists[label_name] if category not in label_lists: tf.logging.fatal('Category does not exist %s.', category) category_list = label_lists[category] if not category_list: tf.logging.fatal('Label %s has no images in the category %s.', label_name, category) mod_index = index % len(category_list) base_name = category_list[mod_index] sub_dir = label_lists['dir'] full_path = os.path.join(image_dir, sub_dir, base_name) return full_path def get_bottleneck_path(image_lists, label_name, index, bottleneck_dir, category, module_name): """Returns a path to a bottleneck file for a label at the given index. Args: image_lists: OrderedDict of training images for each label. label_name: Label string we want to get an image for. index: Integer offset of the image we want. This will be moduloed by the available number of images for the label, so it can be arbitrarily large. bottleneck_dir: Folder string holding cached files of bottleneck values. category: Name string of set to pull images from - training, testing, or validation. module_name: The name of the image module being used. Returns: File system path string to an image that meets the requested parameters. """ module_name = (module_name.replace('://', '~') # URL scheme. .replace('/', '~') # URL and Unix paths. .replace(':', '~').replace('\\', '~')) # Windows paths. return get_image_path(image_lists, label_name, index, bottleneck_dir, category) + '_' + module_name + '.txt' def create_module_graph(module_spec): """Creates a graph and loads Hub Module into it. Args: module_spec: the hub.ModuleSpec for the image module being used. Returns: graph: the tf.Graph that was created. bottleneck_tensor: the bottleneck values output by the module. resized_input_tensor: the input images, resized as expected by the module. wants_quantization: a boolean, whether the module has been instrumented with fake quantization ops. """ height, width = hub.get_expected_image_size(module_spec) with tf.Graph().as_default() as graph: resized_input_tensor = tf.placeholder(tf.float32, [None, height, width, 3]) m = hub.Module(module_spec) bottleneck_tensor = m(resized_input_tensor) wants_quantization = any(node.op in FAKE_QUANT_OPS for node in graph.as_graph_def().node) return graph, bottleneck_tensor, resized_input_tensor, wants_quantization def run_bottleneck_on_image(sess, image_data, image_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor): """Runs inference on an image to extract the 'bottleneck' summary layer. Args: sess: Current active TensorFlow Session. image_data: String of raw JPEG data. image_data_tensor: Input data layer in the graph. decoded_image_tensor: Output of initial image resizing and preprocessing. resized_input_tensor: The input node of the recognition graph. bottleneck_tensor: Layer before the final softmax. Returns: Numpy array of bottleneck values. """ # First decode the JPEG image, resize it, and rescale the pixel values. resized_input_values = sess.run(decoded_image_tensor, {image_data_tensor: image_data}) # Then run it through the recognition network. bottleneck_values = sess.run(bottleneck_tensor, {resized_input_tensor: resized_input_values}) bottleneck_values = np.squeeze(bottleneck_values) return bottleneck_values def ensure_dir_exists(dir_name): """Makes sure the folder exists on disk. Args: dir_name: Path string to the folder we want to create. """ if not os.path.exists(dir_name): os.makedirs(dir_name) def create_bottleneck_file(bottleneck_path, image_lists, label_name, index, image_dir, category, sess, jpeg_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor): """Create a single bottleneck file.""" tf.logging.info('Creating bottleneck at ' + bottleneck_path) image_path = get_image_path(image_lists, label_name, index, image_dir, category) if not tf.gfile.Exists(image_path): tf.logging.fatal('File does not exist %s', image_path) image_data = tf.gfile.FastGFile(image_path, 'rb').read() try: bottleneck_values = run_bottleneck_on_image( sess, image_data, jpeg_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor) except Exception as e: raise RuntimeError('Error during processing file %s (%s)' % (image_path, str(e))) bottleneck_string = ','.join(str(x) for x in bottleneck_values) with open(bottleneck_path, 'w') as bottleneck_file: bottleneck_file.write(bottleneck_string) def get_or_create_bottleneck(sess, image_lists, label_name, index, image_dir, category, bottleneck_dir, jpeg_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor, module_name): """Retrieves or calculates bottleneck values for an image. If a cached version of the bottleneck data exists on-disk, return that, otherwise calculate the data and save it to disk for future use. Args: sess: The current active TensorFlow Session. image_lists: OrderedDict of training images for each label. label_name: Label string we want to get an image for. index: Integer offset of the image we want. This will be modulo-ed by the available number of images for the label, so it can be arbitrarily large. image_dir: Root folder string of the subfolders containing the training images. category: Name string of which set to pull images from - training, testing, or validation. bottleneck_dir: Folder string holding cached files of bottleneck values. jpeg_data_tensor: The tensor to feed loaded jpeg data into. decoded_image_tensor: The output of decoding and resizing the image. resized_input_tensor: The input node of the recognition graph. bottleneck_tensor: The output tensor for the bottleneck values. module_name: The name of the image module being used. Returns: Numpy array of values produced by the bottleneck layer for the image. """ label_lists = image_lists[label_name] sub_dir = label_lists['dir'] sub_dir_path = os.path.join(bottleneck_dir, sub_dir) ensure_dir_exists(sub_dir_path) bottleneck_path = get_bottleneck_path(image_lists, label_name, index, bottleneck_dir, category, module_name) if not os.path.exists(bottleneck_path): create_bottleneck_file(bottleneck_path, image_lists, label_name, index, image_dir, category, sess, jpeg_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor) with open(bottleneck_path, 'r') as bottleneck_file: bottleneck_string = bottleneck_file.read() did_hit_error = False try: bottleneck_values = [float(x) for x in bottleneck_string.split(',')] except ValueError: tf.logging.warning('Invalid float found, recreating bottleneck') did_hit_error = True if did_hit_error: create_bottleneck_file(bottleneck_path, image_lists, label_name, index, image_dir, category, sess, jpeg_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor) with open(bottleneck_path, 'r') as bottleneck_file: bottleneck_string = bottleneck_file.read() # Allow exceptions to propagate here, since they shouldn't happen after a # fresh creation bottleneck_values = [float(x) for x in bottleneck_string.split(',')] return bottleneck_values def cache_bottlenecks(sess, image_lists, image_dir, bottleneck_dir, jpeg_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor, module_name): """Ensures all the training, testing, and validation bottlenecks are cached. Because we're likely to read the same image multiple times (if there are no distortions applied during training) it can speed things up a lot if we calculate the bottleneck layer values once for each image during preprocessing, and then just read those cached values repeatedly during training. Here we go through all the images we've found, calculate those values, and save them off. Args: sess: The current active TensorFlow Session. image_lists: OrderedDict of training images for each label. image_dir: Root folder string of the subfolders containing the training images. bottleneck_dir: Folder string holding cached files of bottleneck values. jpeg_data_tensor: Input tensor for jpeg data from file. decoded_image_tensor: The output of decoding and resizing the image. resized_input_tensor: The input node of the recognition graph. bottleneck_tensor: The penultimate output layer of the graph. module_name: The name of the image module being used. Returns: Nothing. """ how_many_bottlenecks = 0 ensure_dir_exists(bottleneck_dir) for label_name, label_lists in image_lists.items(): for category in ['training', 'testing', 'validation']: category_list = label_lists[category] for index, unused_base_name in enumerate(category_list): get_or_create_bottleneck( sess, image_lists, label_name, index, image_dir, category, bottleneck_dir, jpeg_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor, module_name) how_many_bottlenecks += 1 if how_many_bottlenecks % 100 == 0: tf.logging.info( str(how_many_bottlenecks) + ' bottleneck files created.') def get_random_cached_bottlenecks(sess, image_lists, how_many, category, bottleneck_dir, image_dir, jpeg_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor, module_name): """Retrieves bottleneck values for cached images. If no distortions are being applied, this function can retrieve the cached bottleneck values directly from disk for images. It picks a random set of images from the specified category. Args: sess: Current TensorFlow Session. image_lists: OrderedDict of training images for each label. how_many: If positive, a random sample of this size will be chosen. If negative, all bottlenecks will be retrieved. category: Name string of which set to pull from - training, testing, or validation. bottleneck_dir: Folder string holding cached files of bottleneck values. image_dir: Root folder string of the subfolders containing the training images. jpeg_data_tensor: The layer to feed jpeg image data into. decoded_image_tensor: The output of decoding and resizing the image. resized_input_tensor: The input node of the recognition graph. bottleneck_tensor: The bottleneck output layer of the CNN graph. module_name: The name of the image module being used. Returns: List of bottleneck arrays, their corresponding ground truths, and the relevant filenames. """ class_count = len(image_lists.keys()) bottlenecks = [] ground_truths = [] filenames = [] if how_many >= 0: # Retrieve a random sample of bottlenecks. for unused_i in range(how_many): label_index = random.randrange(class_count) label_name = list(image_lists.keys())[label_index] image_index = random.randrange(MAX_NUM_IMAGES_PER_CLASS + 1) image_name = get_image_path(image_lists, label_name, image_index, image_dir, category) bottleneck = get_or_create_bottleneck( sess, image_lists, label_name, image_index, image_dir, category, bottleneck_dir, jpeg_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor, module_name) bottlenecks.append(bottleneck) ground_truths.append(label_index) filenames.append(image_name) else: # Retrieve all bottlenecks. for label_index, label_name in enumerate(image_lists.keys()): for image_index, image_name in enumerate( image_lists[label_name][category]): image_name = get_image_path(image_lists, label_name, image_index, image_dir, category) bottleneck = get_or_create_bottleneck( sess, image_lists, label_name, image_index, image_dir, category, bottleneck_dir, jpeg_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor, module_name) bottlenecks.append(bottleneck) ground_truths.append(label_index) filenames.append(image_name) return bottlenecks, ground_truths, filenames def get_random_distorted_bottlenecks( sess, image_lists, how_many, category, image_dir, input_jpeg_tensor, distorted_image, resized_input_tensor, bottleneck_tensor): """Retrieves bottleneck values for training images, after distortions. If we're training with distortions like crops, scales, or flips, we have to recalculate the full model for every image, and so we can't use cached bottleneck values. Instead we find random images for the requested category, run them through the distortion graph, and then the full graph to get the bottleneck results for each. Args: sess: Current TensorFlow Session. image_lists: OrderedDict of training images for each label. how_many: The integer number of bottleneck values to return. category: Name string of which set of images to fetch - training, testing, or validation. image_dir: Root folder string of the subfolders containing the training images. input_jpeg_tensor: The input layer we feed the image data to. distorted_image: The output node of the distortion graph. resized_input_tensor: The input node of the recognition graph. bottleneck_tensor: The bottleneck output layer of the CNN graph. Returns: List of bottleneck arrays and their corresponding ground truths. """ class_count = len(image_lists.keys()) bottlenecks = [] ground_truths = [] for unused_i in range(how_many): label_index = random.randrange(class_count) label_name = list(image_lists.keys())[label_index] image_index = random.randrange(MAX_NUM_IMAGES_PER_CLASS + 1) image_path = get_image_path(image_lists, label_name, image_index, image_dir, category) if not tf.gfile.Exists(image_path): tf.logging.fatal('File does not exist %s', image_path) jpeg_data = tf.gfile.FastGFile(image_path, 'rb').read() # Note that we materialize the distorted_image_data as a numpy array before # sending running inference on the image. This involves 2 memory copies and # might be optimized in other implementations. distorted_image_data = sess.run(distorted_image, {input_jpeg_tensor: jpeg_data}) bottleneck_values = sess.run(bottleneck_tensor, {resized_input_tensor: distorted_image_data}) bottleneck_values = np.squeeze(bottleneck_values) bottlenecks.append(bottleneck_values) ground_truths.append(label_index) return bottlenecks, ground_truths def should_distort_images(flip_left_right, random_crop, random_scale, random_brightness): """Whether any distortions are enabled, from the input flags. Args: flip_left_right: Boolean whether to randomly mirror images horizontally. random_crop: Integer percentage setting the total margin used around the crop box. random_scale: Integer percentage of how much to vary the scale by. random_brightness: Integer range to randomly multiply the pixel values by. Returns: Boolean value indicating whether any distortions should be applied. """ return (flip_left_right or (random_crop != 0) or (random_scale != 0) or (random_brightness != 0)) def add_input_distortions(flip_left_right, random_crop, random_scale, random_brightness, module_spec): """Creates the operations to apply the specified distortions. During training it can help to improve the results if we run the images through simple distortions like crops, scales, and flips. These reflect the kind of variations we expect in the real world, and so can help train the model to cope with natural data more effectively. Here we take the supplied parameters and construct a network of operations to apply them to an image. Cropping ~~~~~~~~ Cropping is done by placing a bounding box at a random position in the full image. The cropping parameter controls the size of that box relative to the input image. If it's zero, then the box is the same size as the input and no cropping is performed. If the value is 50%, then the crop box will be half the width and height of the input. In a diagram it looks like this: < width > +---------------------+ | | | width - crop% | | < > | | +------+ | | | | | | | | | | | | | | +------+ | | | | | +---------------------+ Scaling ~~~~~~~ Scaling is a lot like cropping, except that the bounding box is always centered and its size varies randomly within the given range. For example if the scale percentage is zero, then the bounding box is the same size as the input and no scaling is applied. If it's 50%, then the bounding box will be in a random range between half the width and height and full size. Args: flip_left_right: Boolean whether to randomly mirror images horizontally. random_crop: Integer percentage setting the total margin used around the crop box. random_scale: Integer percentage of how much to vary the scale by. random_brightness: Integer range to randomly multiply the pixel values by. graph. module_spec: The hub.ModuleSpec for the image module being used. Returns: The jpeg input layer and the distorted result tensor. """ input_height, input_width = hub.get_expected_image_size(module_spec) input_depth = hub.get_num_image_channels(module_spec) jpeg_data = tf.placeholder(tf.string, name='DistortJPGInput') decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth) # Convert from full range of uint8 to range [0,1] of float32. decoded_image_as_float = tf.image.convert_image_dtype(decoded_image, tf.float32) decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0) margin_scale = 1.0 + (random_crop / 100.0) resize_scale = 1.0 + (random_scale / 100.0) margin_scale_value = tf.constant(margin_scale) resize_scale_value = tf.random_uniform(shape=[], minval=1.0, maxval=resize_scale) scale_value = tf.multiply(margin_scale_value, resize_scale_value) precrop_width = tf.multiply(scale_value, input_width) precrop_height = tf.multiply(scale_value, input_height) precrop_shape = tf.stack([precrop_height, precrop_width]) precrop_shape_as_int = tf.cast(precrop_shape, dtype=tf.int32) precropped_image = tf.image.resize_bilinear(decoded_image_4d, precrop_shape_as_int) precropped_image_3d = tf.squeeze(precropped_image, axis=[0]) cropped_image = tf.random_crop(precropped_image_3d, [input_height, input_width, input_depth]) if flip_left_right: flipped_image = tf.image.random_flip_left_right(cropped_image) else: flipped_image = cropped_image brightness_min = 1.0 - (random_brightness / 100.0) brightness_max = 1.0 + (random_brightness / 100.0) brightness_value = tf.random_uniform(shape=[], minval=brightness_min, maxval=brightness_max) brightened_image = tf.multiply(flipped_image, brightness_value) distort_result = tf.expand_dims(brightened_image, 0, name='DistortResult') return jpeg_data, distort_result def variable_summaries(var): """Attach a lot of summaries to a Tensor (for TensorBoard visualization).""" with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean) with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev', stddev) tf.summary.scalar('max', tf.reduce_max(var)) tf.summary.scalar('min', tf.reduce_min(var)) tf.summary.histogram('histogram', var) def add_final_retrain_ops(class_count, final_tensor_name, bottleneck_tensor, quantize_layer, is_training): """Adds a new softmax and fully-connected layer for training and eval. We need to retrain the top layer to identify our new classes, so this function adds the right operations to the graph, along with some variables to hold the weights, and then sets up all the gradients for the backward pass. The set up for the softmax and fully-connected layers is based on: https://www.tensorflow.org/tutorials/mnist/beginners/index.html Args: class_count: Integer of how many categories of things we're trying to recognize. final_tensor_name: Name string for the new final node that produces results. bottleneck_tensor: The output of the main CNN graph. quantize_layer: Boolean, specifying whether the newly added layer should be instrumented for quantization with TF-Lite. is_training: Boolean, specifying whether the newly add layer is for training or eval. Returns: The tensors for the training and cross entropy results, and tensors for the bottleneck input and ground truth input. """ batch_size, bottleneck_tensor_size = bottleneck_tensor.get_shape().as_list() assert batch_size is None, 'We want to work with arbitrary batch size.' with tf.name_scope('input'): bottleneck_input = tf.placeholder_with_default( bottleneck_tensor, shape=[batch_size, bottleneck_tensor_size], name='BottleneckInputPlaceholder') ground_truth_input = tf.placeholder( tf.int64, [batch_size], name='GroundTruthInput') # Organizing the following ops so they are easier to see in TensorBoard. layer_name = 'final_retrain_ops' with tf.name_scope(layer_name): with tf.name_scope('weights'): initial_value = tf.truncated_normal( [bottleneck_tensor_size, class_count], stddev=0.001) layer_weights = tf.Variable(initial_value, name='final_weights') variable_summaries(layer_weights) with tf.name_scope('biases'): layer_biases = tf.Variable(tf.zeros([class_count]), name='final_biases') variable_summaries(layer_biases) with tf.name_scope('Wx_plus_b'): logits = tf.matmul(bottleneck_input, layer_weights) + layer_biases tf.summary.histogram('pre_activations', logits) final_tensor = tf.nn.softmax(logits, name=final_tensor_name) # The tf.contrib.quantize functions rewrite the graph in place for # quantization. The imported model graph has already been rewritten, so upon # calling these rewrites, only the newly added final layer will be # transformed. if quantize_layer: if is_training: tf.contrib.quantize.create_training_graph() else: tf.contrib.quantize.create_eval_graph() tf.summary.histogram('activations', final_tensor) # If this is an eval graph, we don't need to add loss ops or an optimizer. if not is_training: return None, None, bottleneck_input, ground_truth_input, final_tensor with tf.name_scope('cross_entropy'): cross_entropy_mean = tf.losses.sparse_softmax_cross_entropy( labels=ground_truth_input, logits=logits) tf.summary.scalar('cross_entropy', cross_entropy_mean) with tf.name_scope('train'): optimizer = tf.train.GradientDescentOptimizer(FLAGS.learning_rate) train_step = optimizer.minimize(cross_entropy_mean) return (train_step, cross_entropy_mean, bottleneck_input, ground_truth_input, final_tensor) def add_evaluation_step(result_tensor, ground_truth_tensor): """Inserts the operations we need to evaluate the accuracy of our results. Args: result_tensor: The new final node that produces results. ground_truth_tensor: The node we feed ground truth data into. Returns: Tuple of (evaluation step, prediction). """ with tf.name_scope('accuracy'): with tf.name_scope('correct_prediction'): prediction = tf.argmax(result_tensor, 1) correct_prediction = tf.equal(prediction, ground_truth_tensor) with tf.name_scope('accuracy'): evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.summary.scalar('accuracy', evaluation_step) return evaluation_step, prediction def run_final_eval(train_session, module_spec, class_count, image_lists, jpeg_data_tensor, decoded_image_tensor, resized_image_tensor, bottleneck_tensor): """Runs a final evaluation on an eval graph using the test data set. Args: train_session: Session for the train graph with the tensors below. module_spec: The hub.ModuleSpec for the image module being used. class_count: Number of classes image_lists: OrderedDict of training images for each label. jpeg_data_tensor: The layer to feed jpeg image data into. decoded_image_tensor: The output of decoding and resizing the image. resized_image_tensor: The input node of the recognition graph. bottleneck_tensor: The bottleneck output layer of the CNN graph. """ test_bottlenecks, test_ground_truth, test_filenames = ( get_random_cached_bottlenecks(train_session, image_lists, FLAGS.test_batch_size, 'testing', FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor, decoded_image_tensor, resized_image_tensor, bottleneck_tensor, FLAGS.tfhub_module)) (eval_session, _, bottleneck_input, ground_truth_input, evaluation_step, prediction) = build_eval_session(module_spec, class_count) test_accuracy, predictions = eval_session.run( [evaluation_step, prediction], feed_dict={ bottleneck_input: test_bottlenecks, ground_truth_input: test_ground_truth }) tf.logging.info('Final test accuracy = %.1f%% (N=%d)' % (test_accuracy * 100, len(test_bottlenecks))) if FLAGS.print_misclassified_test_images: tf.logging.info('=== MISCLASSIFIED TEST IMAGES ===') for i, test_filename in enumerate(test_filenames): if predictions[i] != test_ground_truth[i]: tf.logging.info('%70s %s' % (test_filename, list(image_lists.keys())[predictions[i]])) def build_eval_session(module_spec, class_count): """Builds an restored eval session without train operations for exporting. Args: module_spec: The hub.ModuleSpec for the image module being used. class_count: Number of classes Returns: Eval session containing the restored eval graph. The bottleneck input, ground truth, eval step, and prediction tensors. """ # If quantized, we need to create the correct eval graph for exporting. eval_graph, bottleneck_tensor, resized_input_tensor, wants_quantization = ( create_module_graph(module_spec)) eval_sess = tf.Session(graph=eval_graph) with eval_graph.as_default(): # Add the new layer for exporting. (_, _, bottleneck_input, ground_truth_input, final_tensor) = add_final_retrain_ops( class_count, FLAGS.final_tensor_name, bottleneck_tensor, wants_quantization, is_training=False) # Now we need to restore the values from the training graph to the eval # graph. tf.train.Saver().restore(eval_sess, CHECKPOINT_NAME) evaluation_step, prediction = add_evaluation_step(final_tensor, ground_truth_input) return (eval_sess, resized_input_tensor, bottleneck_input, ground_truth_input, evaluation_step, prediction) def save_graph_to_file(graph_file_name, module_spec, class_count): """Saves an graph to file, creating a valid quantized one if necessary.""" sess, _, _, _, _, _ = build_eval_session(module_spec, class_count) graph = sess.graph output_graph_def = tf.graph_util.convert_variables_to_constants( sess, graph.as_graph_def(), [FLAGS.final_tensor_name]) with tf.gfile.FastGFile(graph_file_name, 'wb') as f: f.write(output_graph_def.SerializeToString()) def prepare_file_system(): # Set up the directory we'll write summaries to for TensorBoard if tf.gfile.Exists(FLAGS.summaries_dir): tf.gfile.DeleteRecursively(FLAGS.summaries_dir) tf.gfile.MakeDirs(FLAGS.summaries_dir) if FLAGS.intermediate_store_frequency > 0: ensure_dir_exists(FLAGS.intermediate_output_graphs_dir) return def add_jpeg_decoding(module_spec): """Adds operations that perform JPEG decoding and resizing to the graph.. Args: module_spec: The hub.ModuleSpec for the image module being used. Returns: Tensors for the node to feed JPEG data into, and the output of the preprocessing steps. """ input_height, input_width = hub.get_expected_image_size(module_spec) input_depth = hub.get_num_image_channels(module_spec) jpeg_data = tf.placeholder(tf.string, name='DecodeJPGInput') decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth) # Convert from full range of uint8 to range [0,1] of float32. decoded_image_as_float = tf.image.convert_image_dtype(decoded_image, tf.float32) decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0) resize_shape = tf.stack([input_height, input_width]) resize_shape_as_int = tf.cast(resize_shape, dtype=tf.int32) resized_image = tf.image.resize_bilinear(decoded_image_4d, resize_shape_as_int) return jpeg_data, resized_image def export_model(module_spec, class_count, saved_model_dir): """Exports model for serving. Args: module_spec: The hub.ModuleSpec for the image module being used. class_count: The number of classes. saved_model_dir: Directory in which to save exported model and variables. """ # The SavedModel should hold the eval graph. sess, in_image, _, _, _, _ = build_eval_session(module_spec, class_count) with sess.graph.as_default() as graph: tf.saved_model.simple_save( sess, saved_model_dir, inputs={'image': in_image}, outputs={'prediction': graph.get_tensor_by_name('final_result:0')}, legacy_init_op=tf.group(tf.tables_initializer(), name='legacy_init_op') ) def main(_): # Needed to make sure the logging output is visible. # See https://github.com/tensorflow/tensorflow/issues/3047 tf.logging.set_verbosity(tf.logging.INFO) if not FLAGS.image_dir: tf.logging.error('Must set flag --image_dir.') return -1 # Prepare necessary directories that can be used during training prepare_file_system() # Look at the folder structure, and create lists of all the images. image_lists = create_image_lists(FLAGS.image_dir, FLAGS.testing_percentage, FLAGS.validation_percentage) class_count = len(image_lists.keys()) if class_count == 0: tf.logging.error('No valid folders of images found at ' + FLAGS.image_dir) return -1 if class_count == 1: tf.logging.error('Only one valid folder of images found at ' + FLAGS.image_dir + ' - multiple classes are needed for classification.') return -1 # See if the command-line flags mean we're applying any distortions. do_distort_images = should_distort_images( FLAGS.flip_left_right, FLAGS.random_crop, FLAGS.random_scale, FLAGS.random_brightness) # Set up the pre-trained graph. module_spec = hub.load_module_spec(FLAGS.tfhub_module) graph, bottleneck_tensor, resized_image_tensor, wants_quantization = ( create_module_graph(module_spec)) # Add the new layer that we'll be training. with graph.as_default(): (train_step, cross_entropy, bottleneck_input, ground_truth_input, final_tensor) = add_final_retrain_ops( class_count, FLAGS.final_tensor_name, bottleneck_tensor, wants_quantization, is_training=True) with tf.Session(graph=graph) as sess: # Initialize all weights: for the module to their pretrained values, # and for the newly added retraining layer to random initial values. init = tf.global_variables_initializer() sess.run(init) # Set up the image decoding sub-graph. jpeg_data_tensor, decoded_image_tensor = add_jpeg_decoding(module_spec) if do_distort_images: # We will be applying distortions, so set up the operations we'll need. (distorted_jpeg_data_tensor, distorted_image_tensor) = add_input_distortions( FLAGS.flip_left_right, FLAGS.random_crop, FLAGS.random_scale, FLAGS.random_brightness, module_spec) else: # We'll make sure we've calculated the 'bottleneck' image summaries and # cached them on disk. cache_bottlenecks(sess, image_lists, FLAGS.image_dir, FLAGS.bottleneck_dir, jpeg_data_tensor, decoded_image_tensor, resized_image_tensor, bottleneck_tensor, FLAGS.tfhub_module) # Create the operations we need to evaluate the accuracy of our new layer. evaluation_step, _ = add_evaluation_step(final_tensor, ground_truth_input) # Merge all the summaries and write them out to the summaries_dir merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train', sess.graph) validation_writer = tf.summary.FileWriter( FLAGS.summaries_dir + '/validation') # Create a train saver that is used to restore values into an eval graph # when exporting models. train_saver = tf.train.Saver() # Run the training for as many cycles as requested on the command line. for i in range(FLAGS.how_many_training_steps): # Get a batch of input bottleneck values, either calculated fresh every # time with distortions applied, or from the cache stored on disk. if do_distort_images: (train_bottlenecks, train_ground_truth) = get_random_distorted_bottlenecks( sess, image_lists, FLAGS.train_batch_size, 'training', FLAGS.image_dir, distorted_jpeg_data_tensor, distorted_image_tensor, resized_image_tensor, bottleneck_tensor) else: (train_bottlenecks, train_ground_truth, _) = get_random_cached_bottlenecks( sess, image_lists, FLAGS.train_batch_size, 'training', FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor, decoded_image_tensor, resized_image_tensor, bottleneck_tensor, FLAGS.tfhub_module) # Feed the bottlenecks and ground truth into the graph, and run a training # step. Capture training summaries for TensorBoard with the `merged` op. train_summary, _ = sess.run( [merged, train_step], feed_dict={bottleneck_input: train_bottlenecks, ground_truth_input: train_ground_truth}) train_writer.add_summary(train_summary, i) # Every so often, print out how well the graph is training. is_last_step = (i + 1 == FLAGS.how_many_training_steps) if (i % FLAGS.eval_step_interval) == 0 or is_last_step: train_accuracy, cross_entropy_value = sess.run( [evaluation_step, cross_entropy], feed_dict={bottleneck_input: train_bottlenecks, ground_truth_input: train_ground_truth}) tf.logging.info('%s: Step %d: Train accuracy = %.1f%%' % (datetime.now(), i, train_accuracy * 100)) tf.logging.info('%s: Step %d: Cross entropy = %f' % (datetime.now(), i, cross_entropy_value)) # TODO: Make this use an eval graph, to avoid quantization # moving averages being updated by the validation set, though in # practice this makes a negligable difference. validation_bottlenecks, validation_ground_truth, _ = ( get_random_cached_bottlenecks( sess, image_lists, FLAGS.validation_batch_size, 'validation', FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor, decoded_image_tensor, resized_image_tensor, bottleneck_tensor, FLAGS.tfhub_module)) # Run a validation step and capture training summaries for TensorBoard # with the `merged` op. validation_summary, validation_accuracy = sess.run( [merged, evaluation_step], feed_dict={bottleneck_input: validation_bottlenecks, ground_truth_input: validation_ground_truth}) validation_writer.add_summary(validation_summary, i) tf.logging.info('%s: Step %d: Validation accuracy = %.1f%% (N=%d)' % (datetime.now(), i, validation_accuracy * 100, len(validation_bottlenecks))) # Store intermediate results intermediate_frequency = FLAGS.intermediate_store_frequency if (intermediate_frequency > 0 and (i % intermediate_frequency == 0) and i > 0): # If we want to do an intermediate save, save a checkpoint of the train # graph, to restore into the eval graph. train_saver.save(sess, CHECKPOINT_NAME) intermediate_file_name = (FLAGS.intermediate_output_graphs_dir + 'intermediate_' + str(i) + '.pb') tf.logging.info('Save intermediate result to : ' + intermediate_file_name) save_graph_to_file(intermediate_file_name, module_spec, class_count) # After training is complete, force one last save of the train checkpoint. train_saver.save(sess, CHECKPOINT_NAME) # We've completed all our training, so run a final test evaluation on # some new images we haven't used before. run_final_eval(sess, module_spec, class_count, image_lists, jpeg_data_tensor, decoded_image_tensor, resized_image_tensor, bottleneck_tensor) # Write out the trained graph and labels with the weights stored as # constants. tf.logging.info('Save final result to : ' + FLAGS.output_graph) if wants_quantization: tf.logging.info('The model is instrumented for quantization with TF-Lite') save_graph_to_file(FLAGS.output_graph, module_spec, class_count) with tf.gfile.FastGFile(FLAGS.output_labels, 'w') as f: f.write('\n'.join(image_lists.keys()) + '\n') if FLAGS.saved_model_dir: export_model(module_spec, class_count, FLAGS.saved_model_dir) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--image_dir', type=str, default='', help='Path to folders of labeled images.' ) parser.add_argument( '--output_graph', type=str, default='/tmp/output_graph.pb', help='Where to save the trained graph.' ) parser.add_argument( '--intermediate_output_graphs_dir', type=str, default='/tmp/intermediate_graph/', help='Where to save the intermediate graphs.' ) parser.add_argument( '--intermediate_store_frequency', type=int, default=0, help="""\ How many steps to store intermediate graph. If "0" then will not store.\ """ ) parser.add_argument( '--output_labels', type=str, default='/tmp/output_labels.txt', help='Where to save the trained graph\'s labels.' ) parser.add_argument( '--summaries_dir', type=str, default='/tmp/retrain_logs', help='Where to save summary logs for TensorBoard.' ) parser.add_argument( '--how_many_training_steps', type=int, default=4000, help='How many training steps to run before ending.' ) parser.add_argument( '--learning_rate', type=float, default=0.01, help='How large a learning rate to use when training.' ) parser.add_argument( '--testing_percentage', type=int, default=10, help='What percentage of images to use as a test set.' ) parser.add_argument( '--validation_percentage', type=int, default=10, help='What percentage of images to use as a validation set.' ) parser.add_argument( '--eval_step_interval', type=int, default=10, help='How often to evaluate the training results.' ) parser.add_argument( '--train_batch_size', type=int, default=100, help='How many images to train on at a time.' ) parser.add_argument( '--test_batch_size', type=int, default=-1, help="""\ How many images to test on. This test set is only used once, to evaluate the final accuracy of the model after training completes. A value of -1 causes the entire test set to be used, which leads to more stable results across runs.\ """ ) parser.add_argument( '--validation_batch_size', type=int, default=100, help="""\ How many images to use in an evaluation batch. This validation set is used much more often than the test set, and is an early indicator of how accurate the model is during training. A value of -1 causes the entire validation set to be used, which leads to more stable results across training iterations, but may be slower on large training sets.\ """ ) parser.add_argument( '--print_misclassified_test_images', default=False, help="""\ Whether to print out a list of all misclassified test images.\ """, action='store_true' ) parser.add_argument( '--bottleneck_dir', type=str, default='/tmp/bottleneck', help='Path to cache bottleneck layer values as files.' ) parser.add_argument( '--final_tensor_name', type=str, default='final_result', help="""\ The name of the output classification layer in the retrained graph.\ """ ) parser.add_argument( '--flip_left_right', default=False, help="""\ Whether to randomly flip half of the training images horizontally.\ """, action='store_true' ) parser.add_argument( '--random_crop', type=int, default=0, help="""\ A percentage determining how much of a margin to randomly crop off the training images.\ """ ) parser.add_argument( '--random_scale', type=int, default=0, help="""\ A percentage determining how much to randomly scale up the size of the training images by.\ """ ) parser.add_argument( '--random_brightness', type=int, default=0, help="""\ A percentage determining how much to randomly multiply the training image input pixels up or down by.\ """ ) parser.add_argument( '--tfhub_module', type=str, default=( 'https://tfhub.dev/google/imagenet/inception_v3/feature_vector/1'), help="""\ Which TensorFlow Hub module to use. See https://github.com/tensorflow/hub/blob/master/docs/modules/image.md for some publicly available ones.\ """) parser.add_argument( '--saved_model_dir', type=str, default='', help='Where to save the exported graph.') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
1913f94db48508d534a35b09a05eec732f312e5f
2be43fdc9f328895b949c92ec4e7602fbbbf2ca3
/tests/test_feeds.py
20932f520aba76a42d6876c404625f2a4259e97f
[]
no_license
gjxlu/feedhq
418a75ef68de759e7f85cf8b14f827b3fd5e5f27
3027b192e2c6f35ebb7f821c6d64e8eca49e4c44
refs/heads/master
2020-12-25T02:01:24.035251
2013-07-16T21:20:01
2013-07-16T21:36:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
35,214
py
# -*- coding: utf-8 -*- import feedparser import json from datetime import timedelta from django.core.cache import cache from django.core.urlresolvers import reverse from django.utils import timezone from django_push.subscriber.signals import updated from django_webtest import WebTest from httplib2 import Response from mock import patch from rache import schedule_job from feedhq.feeds.models import Category, Feed, Entry, UniqueFeed from feedhq.feeds.tasks import update_feed from feedhq.feeds.templatetags.feeds_tags import smart_date from feedhq.feeds.utils import USER_AGENT from feedhq.profiles.models import User from feedhq.wsgi import application # noqa from .factories import UserFactory, CategoryFactory, FeedFactory, EntryFactory from . import test_file, responses class WebBaseTests(WebTest): @patch('requests.get') def test_welcome_page(self, get): get.return_value = responses(304) self.user = User.objects.create_user('testuser', '[email protected]', 'pass') user = UserFactory.create() url = reverse('feeds:home') response = self.app.get(url, user=user) self.assertContains(response, 'Getting started') FeedFactory.create(category__user=user, user=user) response = self.app.get(url) self.assertNotContains(response, 'Getting started') def test_login_required(self): url = reverse('feeds:home') response = self.app.get(url, headers={'Accept': 'text/*'}) self.assertEqual(response.status_code, 200) def test_homepage(self): """The homepage from a logged in user""" user = UserFactory.create() response = self.app.get(reverse('feeds:home'), user=user) self.assertContains(response, 'Home') self.assertContains(response, user.username) def test_unauth_homepage(self): """The home page from a logged-out user""" response = self.app.get(reverse('feeds:home')) self.assertContains(response, 'Sign in') # login required def test_paginator(self): user = UserFactory.create() response = self.app.get(reverse('feeds:home', args=[5]), user=user) self.assertContains(response, 'Home') def test_category(self): user = UserFactory.create() CategoryFactory.create(user=user, name=u'Cat yo') url = reverse('feeds:category', args=['cat-yo']) response = self.app.get(url, user=user) self.assertContains(response, 'Cat yo') @patch("requests.get") def test_only_unread(self, get): get.return_value = responses(304) user = UserFactory.create() category = CategoryFactory.create(user=user) FeedFactory.create(category=category, user=user) url = reverse('feeds:unread_category', args=[category.slug]) response = self.app.get(url, user=user) self.assertContains(response, category.name) self.assertContains(response, 'all <span class="ct">') def test_add_category(self): user = UserFactory.create() url = reverse('feeds:add_category') response = self.app.get(url, user=user) form = response.forms['category'] response = form.submit() self.assertFormError(response, 'form', 'name', ['This field is required.']) form['name'] = 'New Name' form['color'] = 'red' response = form.submit() self.assertRedirects(response, '/manage/') # Re-submitting the same name fails response = form.submit() self.assertFormError(response, 'form', 'name', ['A category with this name already exists.']) # Adding a category with a name generating the same slug. # The slug will be different form['name'] = 'New Name' response = form.submit() user.categories.get(slug='new-name-1') self.assertRedirects(response, '/manage/') # Now we add a category named 'add', which is a conflicting URL form['name'] = 'add' response = form.submit() user.categories.get(slug='add-1') self.assertRedirects(response, '/manage/') # Add a category with non-ASCII names, slugify should cope form['name'] = u'北京' response = form.submit() user.categories.get(slug='unknown') self.assertRedirects(response, '/manage/') form['name'] = u'北' response = form.submit() user.categories.get(slug='unknown-1') self.assertRedirects(response, '/manage/') form['name'] = u'京' response = form.submit() user.categories.get(slug='unknown-2') self.assertRedirects(response, '/manage/') def test_delete_category(self): user = UserFactory.create() category = CategoryFactory.create(user=user) url = reverse('feeds:delete_category', args=[category.slug]) response = self.app.get(url, user=user) self.assertEqual(response.status_code, 200) self.assertEqual(Category.objects.count(), 1) form = response.forms['delete'] response = form.submit().follow() self.assertEqual(Category.objects.count(), 0) @patch("requests.get") def test_feed(self, get): get.return_value = responses(304) user = UserFactory.create() feed = FeedFactory.create(category__user=user, user=user) url = reverse('feeds:feed', args=[feed.pk]) response = self.app.get(url, user=user) expected = ( '<a href="{0}unread/">unread <span class="ct">0</span></a>' ).format(feed.get_absolute_url()) self.assertContains(response, expected) def test_edit_category(self): user = UserFactory.create() category = CategoryFactory.create(user=user) url = reverse('feeds:edit_category', args=[category.slug]) response = self.app.get(url, user=user) self.assertContains(response, u'Edit {0}'.format(category.name)) form = response.forms['category'] form['name'] = 'New Name' form['color'] = 'blue' response = form.submit().follow() self.assertContains(response, 'New Name has been successfully updated') @patch('requests.get') def test_add_feed(self, get): get.return_value = responses(304) user = UserFactory.create() category = CategoryFactory.create(user=user) url = reverse('feeds:add_feed') response = self.app.get(url, user=user) self.assertContains(response, 'Add a feed') form = response.forms['feed'] form['name'] = 'Lulz' response = form.submit() # there is no URL self.assertFormError(response, 'form', 'url', ['This field is required.']) form['name'] = 'Bobby' form['url'] = 'http://example.com/feed.xml' form['category'] = category.pk response = form.submit() self.assertFormError(response, 'form', 'url', [ "Invalid response code from URL: HTTP 304.", ]) get.return_value = responses(200, 'categories.opml') response = form.submit() self.assertFormError(response, 'form', 'url', [ "This URL doesn't seem to be a valid feed.", ]) get.return_value = responses(200, 'bruno.im.png') response = form.submit() self.assertFormError(response, 'form', 'url', [ "This URL doesn't seem to be a valid feed.", ]) cache_key = "lock:feed_check:{0}".format(user.pk) cache._client.set(cache_key, user.pk) response = form.submit() self.assertFormError(response, 'form', 'url', [ "This action can only be done one at a time.", ]) cache._client.delete(cache_key) get.return_value = responses(200, 'brutasse.atom') response = form.submit() self.assertRedirects(response, '/manage/') response.follow() response = form.submit() self.assertFormError( response, 'form', 'url', ["It seems you're already subscribed to this feed."]) # Provide initial params via ?feed=foo&name=bar response = self.app.get(url, {'feed': 'https://example.com/blog/atom', 'name': 'Some Example Blog'}) self.assertContains(response, 'value="https://example.com/blog/atom"') self.assertContains(response, 'value="Some Example Blog"') get.side_effect = ValueError user.feeds.all().delete() response = form.submit() self.assertFormError(response, 'form', 'url', ['Error fetching the feed.']) def test_feed_url_validation(self): user = UserFactory.create() category = CategoryFactory.create(user=user) url = reverse('feeds:add_feed') response = self.app.get(url, user=user) form = response.forms['feed'] form['name'] = 'Test' form['url'] = 'ftp://example.com' form['category'] = category.pk response = form.submit() self.assertFormError( response, 'form', 'url', "Invalid URL scheme: 'ftp'. Only HTTP and HTTPS are supported.", ) for invalid_url in ['http://localhost:8000', 'http://localhost', 'http://127.0.0.1']: form['url'] = invalid_url response = form.submit() self.assertFormError(response, 'form', 'url', "Invalid URL.") @patch("requests.get") def test_edit_feed(self, get): get.return_value = responses(304) user = UserFactory.create() feed = FeedFactory.create(user=user) url = reverse('feeds:edit_feed', args=[feed.pk]) response = self.app.get(url, user=user) self.assertContains(response, feed.name) form = response.forms['feed'] form['name'] = 'New Name' form['url'] = 'http://example.com/newfeed.xml' get.return_value = responses(200, 'brutasse.atom') response = form.submit().follow() self.assertContains(response, 'New Name has been successfully updated') cat = CategoryFactory.create(user=user) response = self.app.get(url, user=user) form = response.forms['feed'] form['category'] = cat.pk response = form.submit().follow() self.assertContains(response, 'New Name has been successfully updated') self.assertEqual(Feed.objects.get().category_id, cat.pk) @patch("requests.get") def test_delete_feed(self, get): get.return_value = responses(304) user = UserFactory.create() feed = FeedFactory.create(category__user=user, user=user) url = reverse('feeds:delete_feed', args=[feed.pk]) response = self.app.get(url, user=user) self.assertContains(response, 'Delete') self.assertContains(response, feed.name) self.assertEqual(Feed.objects.count(), 1) response = response.forms['delete'].submit() self.assertEqual(response.status_code, 302) self.assertEqual(Feed.objects.count(), 0) # Redirects to home so useless to test @patch("requests.get") def test_invalid_page(self, get): get.return_value = responses(304) # We need more than 25 entries user = UserFactory.create() FeedFactory.create(category__user=user, user=user) url = reverse('feeds:home', args=[12000]) # that page doesn't exist response = self.app.get(url, user=user) self.assertContains(response, '<a href="/" class="current">') # This is called by other tests def _test_entry(self, from_url, user): self.assertEqual(self.app.get( from_url, user=user).status_code, 200) e = Entry.objects.get(title="jacobian's django-deployment-workshop") url = reverse('feeds:item', args=[e.pk]) response = self.app.get(url, user=user) self.assertContains(response, "jacobian's django-deployment-workshop") @patch('requests.get') def test_entry(self, get): user = UserFactory.create() get.return_value = responses(200, 'sw-all.xml') feed = FeedFactory.create(category__user=user, user=user) url = reverse('feeds:home') self._test_entry(url, user) url = reverse('feeds:unread') self._test_entry(url, user) url = reverse('feeds:stars') self._test_entry(url, user) url = reverse('feeds:category', args=[feed.category.slug]) self._test_entry(url, user) url = reverse('feeds:unread_category', args=[feed.category.slug]) self._test_entry(url, user) url = reverse('feeds:feed', args=[feed.pk]) self._test_entry(url, user) url = reverse('feeds:unread_feed', args=[feed.pk]) self._test_entry(url, user) feed.category = None feed.save() self._test_entry(url, user) @patch('requests.get') def test_custom_ordering(self, get): user = UserFactory.create() get.return_value = responses(200, 'sw-all.xml') FeedFactory.create(user=user, category__user=user) url = reverse('feeds:unread') response = self.app.get(url, user=user) first_title = response.context['entries'].object_list[0].title last_title = response.context['entries'].object_list[-1].title user.oldest_first = True user.save() response = self.app.get(url, user=user) self.assertEqual(response.context['entries'].object_list[0].title, last_title) self.assertEqual(response.context['entries'].object_list[-1].title, first_title) @patch('requests.get') def test_last_entry(self, get): user = UserFactory.create() get.return_value = responses(200, 'sw-all.xml') feed = FeedFactory.create(category__user=user, user=user) with self.assertNumQueries(2): update_feed(feed.url) self.assertEqual(Feed.objects.get().unread_count, user.entries.filter(read=False).count()) last_item = user.entries.order_by('date')[0] url = reverse('feeds:item', args=[last_item.pk]) response = self.app.get(url, user=user) self.assertNotContains(response, 'Next →') def test_not_mocked(self): with self.assertRaises(ValueError): FeedFactory.create() @patch("requests.get") def test_img(self, get): get.return_value = responses(304) user = UserFactory.create() feed = FeedFactory.create(category__user=user, url='http://exmpl.com', user=user) entry = Entry.objects.create( feed=feed, title="Random title", subtitle='<img src="/favicon.png">', link='http://example.com', date=timezone.now(), user=user, ) url = reverse('feeds:item', args=[entry.pk]) response = self.app.get(url, user=user) self.assertContains(response, 'External media is hidden') self.assertNotContains(response, '<img src="http://exmpl.com/favicon.png">') self.assertEqual(Feed.objects.get(pk=feed.pk).media_safe, False) form = response.forms['images'] response = form.submit(name='once') self.assertContains(response, 'Always display external media') self.assertContains(response, '<img src="http://exmpl.com/favicon.png">') self.assertEqual(Feed.objects.get(pk=feed.pk).media_safe, False) form = response.forms['images'] response = form.submit(name='always') self.assertContains(response, 'Disable external media') self.assertContains(response, '<img src="http://exmpl.com/favicon.png">') self.assertEqual(Feed.objects.get(pk=feed.pk).media_safe, True) form = response.forms['images'] response = form.submit(name='never') self.assertNotContains(response, 'Disable external media') self.assertEqual(Feed.objects.get(pk=feed.pk).media_safe, False) user.allow_media = True user.save(update_fields=['allow_media']) response = form.submit(name='never') self.assertFalse('images' in response.forms) self.assertContains(response, '<img src="http://exmpl.com/favicon.png">') @patch("requests.get") def test_actions(self, get): get.return_value = responses(304) user = UserFactory.create() feed = FeedFactory.create(category__user=user, url='http://exmpl.com', user=user) entry = Entry.objects.create( feed=feed, title="Random title", subtitle='Foo bar content', link='http://example.com', date=timezone.now(), user=user, ) url = reverse('feeds:item', args=[entry.pk]) response = self.app.get(url, user=user) token = response.forms['unread'].fields['csrfmiddlewaretoken'][0].value response = self.app.post(url, {'action': 'invalid', 'csrfmiddlewaretoken': token}, user=user) form = response.forms['star'] response = form.submit() self.assertTrue(Entry.objects.get().starred) form = response.forms['star'] response = form.submit() self.assertFalse(Entry.objects.get().starred) user.oldest_first = True user.save(update_fields=['oldest_first']) form = response.forms['unread'] response = form.submit() self.assertFalse(Entry.objects.get().read) @patch('requests.get') def test_opml_import(self, get): user = UserFactory.create() url = reverse('feeds:import_feeds') response = self.app.get(url, user=user) get.return_value = responses(304) form = response.forms['import'] with open(test_file('sample.opml'), 'r') as opml_file: form['file'] = 'sample.opml', opml_file.read() response = form.submit().follow() self.assertContains(response, '2 feeds have been imported') # Re-import with open(test_file('sample.opml'), 'r') as opml_file: form['file'] = 'sample.opml', opml_file.read() response = form.submit().follow() self.assertContains(response, '0 feeds have been imported') # Import an invalid thing form['file'] = 'invalid', "foobar" response = form.submit() self.assertFormError(response, 'form', 'file', [ "This file doesn't seem to be a valid OPML file." ]) # Empty file form['file'] = 'name', "" response = form.submit() self.assertFormError(response, 'form', 'file', [ "The submitted file is empty." ]) @patch('requests.get') def test_greader_opml_import(self, get): user = UserFactory.create() url = reverse('feeds:import_feeds') response = self.app.get(url, user=user) get.return_value = responses(304) form = response.forms['import'] with open(test_file('google-reader-subscriptions.xml'), 'r') as opml_file: form['file'] = 'sample.opml', opml_file.read() response = form.submit().follow() self.assertContains(response, '1 feed has been imported') self.assertEqual(Category.objects.count(), 0) @patch('requests.get') def test_categories_in_opml(self, get): user = UserFactory.create() url = reverse('feeds:import_feeds') response = self.app.get(url, user=user) self.assertEqual(response.status_code, 200) get.return_value = responses(304) form = response.forms["import"] with open(test_file('categories.opml'), 'r') as opml_file: form['file'] = 'categories.opml', opml_file.read() response = form.submit().follow() self.assertContains(response, '20 feeds have been imported') self.assertEqual(user.categories.count(), 6) with self.assertRaises(Category.DoesNotExist): user.categories.get(name='Imported') with self.assertRaises(Feed.DoesNotExist): Feed.objects.get( category__in=user.categories.all(), name='No title', ) for c in Category.objects.all(): c.get_absolute_url() @patch('requests.get') def test_dashboard(self, get): get.return_value = responses(304) user = UserFactory.create() url = reverse('feeds:dashboard') FeedFactory.create(category=None, user=user) for i in range(5): FeedFactory.create(category__user=user, user=user) response = self.app.get(url, user=user) self.assertContains(response, 'Dashboard') @patch('requests.get') def test_unread_count(self, get): """Unread feed count everywhere""" user = UserFactory.create() url = reverse('profile') response = self.app.get(url, user=user) self.assertContains( response, '<a class="unread" title="Unread entries" href="/unread/">0</a>' ) get.return_value = responses(200, 'sw-all.xml') FeedFactory.create(category__user=user, user=user) response = self.app.get(url, user=user) self.assertContains( response, '<a class="unread" title="Unread entries" href="/unread/">30</a>' ) @patch('requests.get') def test_mark_as_read(self, get): get.return_value = responses(304) user = UserFactory.create() feed = FeedFactory.create(category__user=user, user=user) url = reverse('feeds:unread') response = self.app.get(url, user=user) self.assertNotContains(response, '"Mark all as read"') get.return_value = responses(200, 'sw-all.xml') update_feed(feed.url) response = self.app.get(url, user=user) self.assertContains(response, '"Mark all as read"') form = response.forms['read'] response = form.submit() self.assertRedirects(response, url) response = response.follow() self.assertContains(response, '30 entries have been marked as read') self.assertEqual(user.entries.filter(read=False).count(), 0) self.assertEqual(user.entries.filter(read=True).count(), 30) form = response.forms['undo'] response = form.submit() self.assertRedirects(response, url) response = response.follow() self.assertContains(response, "30 entries have been marked as unread") self.assertEqual(user.entries.filter(read=False).count(), 30) self.assertEqual(user.entries.filter(read=True).count(), 0) @patch('requests.get') def test_promote_html_content_type(self, get): get.return_value = responses(200, 'content-description.xml') feed = FeedFactory.create() self.assertEqual( len(feed.entries.all()[0].content.split('F&#233;vrier 1953')), 2) @patch('requests.get') @patch('oauth2.Client') def test_add_to_readability(self, Client, get): # noqa client = Client.return_value r = Response({ 'status': 202, 'reason': 'Accepted', 'location': '/api/rest/v1/bookmarks/119', 'x-article-location': '/api/rest/v1/articles/xj28dwkx', }) value = json.dumps({'article': {'id': 'foo'}}) client.request.return_value = [r, value] user = UserFactory.create( read_later='readability', read_later_credentials=json.dumps({ 'oauth_token': 'token', 'oauth_token_secret': 'token secret', }), ) get.return_value = responses(200, 'sw-all.xml') feed = FeedFactory.create(category__user=user, user=user) get.assert_called_with( feed.url, headers={'User-Agent': USER_AGENT % '1 subscriber', 'Accept': feedparser.ACCEPT_HEADER}, timeout=10) entry_pk = Entry.objects.all()[0].pk url = reverse('feeds:item', args=[entry_pk]) response = self.app.get(url, user=user) self.assertContains(response, "Add to Readability") form = response.forms['read-later'] response = form.submit() client.request.assert_called_with('/api/rest/v1/bookmarks/119', method='GET') self.assertEqual(Entry.objects.get(pk=entry_pk).read_later_url, 'https://www.readability.com/articles/foo') response = self.app.get(url, user=user) self.assertNotContains(response, "Add to Instapaper") @patch("requests.get") @patch('oauth2.Client') def test_add_to_instapaper(self, Client, get): # noqa client = Client.return_value r = Response({'status': 200}) client.request.return_value = [ r, json.dumps([{'type': 'bookmark', 'bookmark_id': 12345, 'title': 'Some bookmark', 'url': 'http://example.com/some-bookmark'}]) ] user = UserFactory.create( read_later='instapaper', read_later_credentials=json.dumps({ 'oauth_token': 'token', 'oauth_token_secret': 'token secret', }), ) get.return_value = responses(304) feed = FeedFactory.create(category__user=user, user=user) get.return_value = responses(200, 'sw-all.xml') update_feed(feed.url) get.assert_called_with( feed.url, headers={'User-Agent': USER_AGENT % '1 subscriber', 'Accept': feedparser.ACCEPT_HEADER}, timeout=10) entry_pk = Entry.objects.all()[0].pk url = reverse('feeds:item', args=[entry_pk]) response = self.app.get(url, user=user) self.assertContains(response, "Add to Instapaper") form = response.forms['read-later'] response = form.submit() body = 'url=http%3A%2F%2Fsimonwillison.net%2F2010%2FMar%2F12%2Fre2%2F' client.request.assert_called_with( 'https://www.instapaper.com/api/1/bookmarks/add', body=body, method='POST', ) self.assertEqual(Entry.objects.get(pk=entry_pk).read_later_url, 'https://www.instapaper.com/read/12345') response = self.app.get(url, user=user) self.assertNotContains(response, "Add to Instapaper") @patch('requests.get') @patch('requests.post') def test_add_to_readitlaterlist(self, post, get): user = UserFactory.create( read_later='readitlater', read_later_credentials=json.dumps({'username': 'foo', 'password': 'bar'}), ) get.return_value = responses(200, 'sw-all.xml') feed = FeedFactory.create(category__user=user, user=user) get.assert_called_with( feed.url, headers={'User-Agent': USER_AGENT % '1 subscriber', 'Accept': feedparser.ACCEPT_HEADER}, timeout=10) url = reverse('feeds:item', args=[Entry.objects.all()[0].pk]) response = self.app.get(url, user=user) self.assertContains(response, 'Add to Read it later') form = response.forms['read-later'] response = form.submit() # Read it Later doesn't provide the article URL so we can't display a # useful link self.assertContains(response, "added to your reading list") post.assert_called_with( 'https://readitlaterlist.com/v2/add', data={u'username': u'foo', 'url': u'http://simonwillison.net/2010/Mar/12/re2/', 'apikey': 'test read it later API key', u'password': u'bar', 'title': (u'RE2: a principled approach to regular ' u'expression matching')}, ) @patch('requests.get') def test_pubsubhubbub_handling(self, get): user = UserFactory.create() url = 'http://bruno.im/atom/tag/django-community/' get.return_value = responses(304) feed = FeedFactory.create(url=url, category__user=user, user=user) get.assert_called_with( url, headers={'User-Agent': USER_AGENT % '1 subscriber', 'Accept': feedparser.ACCEPT_HEADER}, timeout=10) self.assertEqual(feed.entries.count(), 0) path = test_file('bruno.im.atom') with open(path, 'r') as f: data = f.read() updated.send(sender=None, notification=data, request=None, links=None) self.assertEqual(feed.entries.count(), 5) # Check content handling for entry in feed.entries.all(): self.assertTrue(len(entry.subtitle) > 2400) # Check date handling self.assertEqual(feed.entries.filter(date__year=2011).count(), 3) self.assertEqual(feed.entries.filter(date__year=2012).count(), 2) @patch('requests.get') def test_missing_links(self, get): path = test_file('no-rel.atom') with open(path, 'r') as f: data = f.read() updated.send(sender=None, notification=data, request=None, links=None) @patch('requests.get') def test_link_headers(self, get): user = UserFactory.create() url = 'foo' get.return_value = responses(304) feed = FeedFactory.create(url=url, category__user=user, user=user) path = test_file('no-rel.atom') with open(path, 'r') as f: data = f.read() updated.send(sender=None, notification=data, request=None, links=[{'url': 'foo', 'rel': 'self'}]) self.assertEqual(feed.entries.count(), 1) @patch('requests.get') def test_subscribe_url(self, get): get.return_value = responses(304) user = UserFactory.create() c = CategoryFactory.create(user=user) url = reverse('feeds:subscribe') response = self.app.get(url, {'feeds': "http://bruno.im/atom/latest/"}, user=user) self.assertContains(response, 'value="http://bruno.im/atom/latest/"') form = response.forms['subscribe'] response = form.submit() self.assertContains(response, 'This field is required.', 1) form['form-0-name'] = "Bruno's awesome blog" form['form-0-category'] = c.pk self.assertEqual(Feed.objects.count(), 0) response = form.submit().follow() self.assertEqual(Feed.objects.count(), 1) form['form-0-name'] = "" form['form-0-category'] = "" form['form-0-subscribe'] = False response = form.submit().follow() self.assertContains(response, '0 feeds have been added') form['form-0-name'] = 'Foo' form['form-0-category'] = c.pk form['form-0-subscribe'] = True response = form.submit() self.assertContains(response, "already subscribed") UniqueFeed.objects.create(url='http://example.com/feed', title='Awesome') response = self.app.get( url, {'feeds': ",".join(['http://bruno.im/atom/latest/', 'http://example.com/feed'])}) form = response.forms['subscribe'] self.assertEqual(form['form-0-name'].value, 'Awesome') response = form.submit().follow() self.assertEqual(Feed.objects.count(), 2) def test_bookmarklet_no_feed(self): user = UserFactory.create() url = reverse('feeds:subscribe') response = self.app.get(url, {'url': 'http://isitbeeroclock.com/'}, user=user) self.assertContains( response, ('it looks like there are no feeds available on ' '<a href="http://isitbeeroclock.com/">')) @patch("requests.get") def test_relative_links(self, get): get.return_value = responses(200, path='brutasse.atom') user = UserFactory.create() FeedFactory.create(category__user=user, user=user, url='https://github.com/brutasse.atom') entry = user.entries.all()[0] self.assertTrue('<a href="/brutasse"' in entry.subtitle) self.assertFalse('<a href="/brutasse"' in entry.content) self.assertTrue( '<a href="https://github.com/brutasse"' in entry.content) feed = Feed(url='http://standblog.org/blog/feed/rss2') e = Entry(feed=feed, subtitle=( ' <p><img alt=":-)" class="smiley"' 'src="/dotclear2/themes/default/smilies/smile.png" /> . </p>' )) self.assertTrue(('src="http://standblog.org/dotclear2/themes/' 'default/smilies/smile.png"') in e.content) @patch('requests.get') def test_empty_subtitle(self, get): get.return_value = responses(304) user = UserFactory.create() entry = EntryFactory(user=user, feed__category__user=user, subtitle='') url = reverse('feeds:item', args=[entry.pk]) self.app.get(url, user=user) def test_smart_date(self): now = timezone.now() self.assertEqual(len(smart_date(now)), 5) if now.day != 1 and now.month != 1: # Can't test this on Jan 1st :) now = now - timedelta(days=1) self.assertEqual(len(smart_date(now)), 6) now = now - timedelta(days=366) self.assertEqual(len(smart_date(now)), 12) @patch('requests.get') def test_manage_feed(self, get): get.return_value = responses(304) user = UserFactory.create() url = reverse('feeds:manage') response = self.app.get(url, user=user) self.assertContains(response, 'Manage feeds') FeedFactory.create(user=user, category=None) FeedFactory.create(user=user, category=None) FeedFactory.create(user=user, category=None) unique = UniqueFeed.objects.all()[0] schedule_job(unique.url, schedule_in=0, backoff_factor=10, error=UniqueFeed.NOT_A_FEED) response = self.app.get(url, user=user) self.assertContains(response, 'Not a valid RSS/Atom feed') schedule_job(unique.url, schedule_in=0, error='blah') response = self.app.get(url, user=user) self.assertContains(response, 'Error') unique.muted = True unique.save() response = self.app.get(url, user=user) self.assertContains(response, 'Error')
7dc97366d633f77383f6583d6130cf3b33f3367b
164ae54c1aaf1cf84f339ec672e4426f53ff83ea
/app_pedidos_django/applications/usuarios/managers.py
16b91163a44b4dadd465f2e79f4b436a4c0f39b4
[]
no_license
JaviOlaya/Pedidos_Django
39a28ac0eba96c16e1df54e0678dd195dbf9c96c
8706f1f9ae114ed32bccf85036c47317eeb0b674
refs/heads/main
2023-06-22T04:22:56.907521
2021-07-17T11:46:48
2021-07-17T11:46:48
382,832,141
0
0
null
null
null
null
UTF-8
Python
false
false
946
py
from django.db import models # from django.contrib.auth.models import BaseUserManager class UserManager(BaseUserManager, models.Manager): def _create_user(self,username, email, password, is_staff, is_active, is_superuser, **extra_fields): user = self.model( username = username, email=email, is_staff=is_staff, is_active = is_active, is_superuser = is_superuser, **extra_fields ) # Se encripta la contraseña user.set_password(password) user.save(using=self.db) return user def create_user (self,username, email, password=None, **extra_fields): return self._create_user(username, email, password, False,True,False, **extra_fields) def create_superuser(self, username, email, password = None, **extrafields): return self._create_user(username, email, password,True,True, True, **extrafields)
02594a0628527d5a727933e55884e5da274eb26f
53832bd168b797827be77bface570a2bea8952f1
/aidlyapi.py
7639a37116f1edd0735568b2643646a7a52352be
[]
no_license
Bryan1010/AidlyBackend
840bbdf290d65577a37b17cc99fc1162177e0f02
f0fd9215374713a077460876ab3069d5d556c66f
refs/heads/master
2021-02-09T02:36:37.825383
2020-11-08T04:22:38
2020-11-08T04:22:38
244,229,180
2
0
null
2020-11-08T04:22:40
2020-03-01T21:50:21
Python
UTF-8
Python
false
false
274
py
from mainapp import MAIN_APP # from models.company import Company from flask import request, Response from models import db @MAIN_APP.route("/") def hello(): return "<h1 style='color:blue'>Hello There!</h1>" if __name__ == "__main__": MAIN_APP.run(host='0.0.0.0')
c114e9e4c5fbe43f5efbc36d8ddc04c35dd32490
af82475dc7eb45c478414372c222e7b6016359d4
/python书籍/Python For Finance Code/Code of Python For Finance/4375OS_08_Code/4375OS_08_12_Series.py
f279f6cc3587504d87af31fda1b21a119cea0200
[]
no_license
enfangzhong/PythonBaseCode
8f58c8b817eb9f4b0f0a5be437a52d5b5fab3433
9ab4a578b2692fdbb6aeeacb310251d51f72e953
refs/heads/master
2020-05-17T16:26:02.598344
2019-04-27T20:49:40
2019-04-27T20:49:40
183,817,172
4
1
null
null
null
null
UTF-8
Python
false
false
365
py
""" Name : 4375OS_08_12_Series.py Book : Python for Finance Publisher: Packt Publishing Ltd. Author : Yuxing Yan Date : 12/26/2013 email : [email protected] [email protected] """ import pandas as pd x = pd.date_range('1/1/2013', periods=252) data = pd.Series(randn(len(x)), index=x) print data.head() print data.tail()
1f0bf5a3dd27a4dd078d0aad47999b7ab0f0ac0c
ec038a8ab77ce2e62316d91ef06cab6c5d02256a
/MPSI/CH02/TP.py
23dc4c70d57d42e647f884c44eba4939a317f51e
[]
no_license
brahimbakkas/cpge
b4d9a9fe4b54dde2e4b5d40406aa3e6dcac59cc9
632f6da5c15806cf6aa48b4787c716bb73481d24
refs/heads/master
2020-05-26T01:44:32.468383
2019-10-25T23:08:30
2019-10-25T23:08:30
188,064,895
1
0
null
null
null
null
UTF-8
Python
false
false
35
py
# # for i in range (n): print(i)
016c75557647665c5a3773b8cf354ade5c11502f
941c912f44beff33a072e086c1f561f6cdd64626
/LeetCode/codes/22.py
84f0db4955118accd480b9d684a7ae03a363e1dc
[]
no_license
adreena/MyStudyCorner
3a13a743769ed144965b767f547c16df4d0fa0dd
355c0dbd32ad201800901f1bcc110550696bc96d
refs/heads/master
2023-02-20T07:39:32.391421
2021-01-25T01:46:21
2021-01-25T01:46:21
255,104,133
0
0
null
null
null
null
UTF-8
Python
false
false
540
py
# time catalan numbers (2n n)*1/n # space: catalan numbers class Solution: def generateParenthesis(self, n: int) -> List[str]: self.outputs = [] def helper(n_left, n_right, output): if n_left == 0 and n_right == 0: self.outputs.append(output) else: if n_left>0: helper(n_left-1, n_right, output+'(') if n_right>n_left: helper(n_left, n_right-1, output+')') helper(n,n,'') return self.outputs
2cbf5758e46478db0c2adedb0c1158e442574bfb
13bed5cd72c63182592297e88e3eb5acc574d5ab
/src/iis.tac
dac670e8c4dbac064e986c93116a12d8922dcb4c
[]
no_license
itsbth/itsinfoscreen
951ddc5a772adfa27bf5258733ed20e8e3f65a36
b6921c7734297bd49144e68e6c9ccb67b055cea8
refs/heads/master
2016-09-06T12:38:41.490698
2010-01-12T19:05:12
2010-01-12T19:05:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,752
tac
import os, sys sys.path.append(os.getcwd()) from twisted.application import service, internet from nevow import appserver from nevow import rend from nevow import inevow from nevow.static import File, Data import json, random from widget import WidgetManager man = WidgetManager() class JSONData(rend.Page): isLeaf = True def __init__(self, data): self.data = json.dumps(data) def renderHTTP(self, ctx): request = inevow.IRequest(ctx) request.setHeader("content-type", "text/json") request.setHeader("content-length", str(len(self.data))) return self.data class Update(rend.Page): def renderHTTP(self, ctx): global man return json.dumps(man.update()) class WidgetHandler(rend.Page): def locateChild(self, ctx, segments): name, action = segments if action in ('html', 'js', 'css'): return (File('./widgets/' + name + '/widget.' + action), ()) elif action == 'add': global man return (JSONData(man.add(name)), ()) elif action == 'remove': pass return (MainPage(), ()) class MainPage(rend.Page): children = {'static': File('./static'), 'update': Update(), 'widget': WidgetHandler()} def renderHTTP (self, ctx): return 'N/A' ###################################################################### # Nevow Boilerplate ###################################################################### application = service.Application("itsinfoscreen") port = 8080 res = MainPage() site = appserver.NevowSite(res) webService = internet.TCPServer(port, site) webService.setServiceParent(application)
e921b0a4952a5165f6b62a4404df543360cc2a60
4cce9cd38bb82ee0a7bb5099b4d4db4ec4acce78
/src/util.py
de37b5de4c7057f4adad5f3e5280faffff0db0f6
[]
no_license
VertexToEdge/othello-server
08f26748b577eae308517788a4e86296974c0aa0
06c59e6b5ac6adb4c53bb2d0eb523c86f9b1e7a5
refs/heads/master
2020-04-23T15:17:03.108482
2019-02-18T10:16:16
2019-02-18T10:16:16
171,259,893
1
0
null
2019-02-18T10:05:51
2019-02-18T10:05:51
null
UTF-8
Python
false
false
478
py
import struct import json def serialize(msg): body = json.dumps(msg).encode() msg_len = struct.pack('>L', len(body)) return msg_len + body def deserialize(sock): _msg_len = sock.recv(4) if len(_msg_len) < 4: raise ConnectionResetError msg_len = struct.unpack('>L', _msg_len)[0] msg_raw = sock.recv(msg_len) while len(msg_raw) < msg_len: msg_raw += sock.recv(msg_len - len(msg_raw)) msg = json.loads(msg_raw) return msg
087d6cf19f4743bba424fb5759ae4dfc7444dac8
72521bf31e438e49e6a26941e44523a9b54ef351
/f1_robot/build/testbot_description/catkin_generated/pkg.installspace.context.pc.py
4ac95d36922a9dbd7d67dba34464dfcfde047276
[]
no_license
rossonet/braccio_ros
04d8ccc8c70b62fdc28f166a8da58b4289414b5c
bde03a827f92c8c90764bd3ba606fbd2eeded8a2
refs/heads/master
2021-07-08T22:30:10.856911
2017-10-04T15:52:47
2017-10-04T15:52:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
385
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "testbot_description" PROJECT_SPACE_DIR = "/home/rossonet/catkin_ws/install" PROJECT_VERSION = "0.0.0"
3758f1d2fc628019ffb27cc8d9c833c5cdee2c3f
f0000766ad3a5c47834a59144207e5e411749c19
/python/get_commands.py
eb239d4f6c7e17d7adafa35df4a949945b44ba53
[]
no_license
GitBolt/discord-slash-guide
f972f0bccf7dc0829f2934b59628a5e6de6258f4
886adac4b210df57af8ed41ccdac94f21a8b0ee7
refs/heads/master
2023-07-26T10:44:45.503744
2021-09-06T07:50:17
2021-09-06T07:50:17
403,006,058
3
0
null
null
null
null
UTF-8
Python
false
false
1,527
py
""" This is to get all commands, not to be confused with `get_command.py` which returns details of a particular command. """ import os import requests TOKEN = os.environ["TOKEN"] or os.getenv["TOKEN"] HEADERS = {"Authorization": f"Bot {TOKEN}"} def get_global_commands(application_id: int) -> str: """ https://discord.com/developers/docs/interactions/application-commands#get-global-application-commands Get globally registered slash commands. Takes the application(bot) ID as a single arguments. """ url = f"https://discord.com/api/v9/applications/{application_id}/commands" res = requests.get(url, headers=HEADERS) return ( f"Response code: {res.status_code}\n" f"Total commands: {len(res.json())}\n" f"JSON text: {res.json()}\n" ) def get_guild_commands(application_id: int, guild_id: int) -> str: """ https://discord.com/developers/docs/interactions/application-commands#get-guild-application-commands Get guild specfic registered slash commands. Takes the application (bot) ID and guild ID respectively as arguments. """ url = f"https://discord.com/api/v9/applications/{application_id}/guilds/{guild_id}/commands" res = requests.get(url, headers=HEADERS) return ( f"Response code: {res.status_code}\n" f"Total commands: {len(res.json())}\n" f"JSON text: {res.json()}\n" ) # print(get_global_commands(884099662653562961)) # print(get_guild_commands(884099662653562961, 845726630231932980))
2764e974be54c42119a3c178925548b4bf99e8df
08e84e6190e7fa25a3948344defd73c602c168cc
/views.py
722f56acace4cda306b93e446543d881716c2259
[]
no_license
dimmoon69/django-cdbforms
f053bc19765e4c8ebe512feef2b55d4632bc7c8d
58c1e3aab4455073176da7c28d23cdfd7badad94
refs/heads/master
2021-12-04T11:44:07.989876
2011-03-18T14:08:57
2011-03-18T14:08:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
711
py
from datetime import datetime from django.http import HttpResponse, HttpResponseRedirect from django.template.loader import get_template from django.template import Context, RequestContext from models import * from forms import * def cdbform(request, template): if request.method == 'POST': form = CDBForm(template=template, data=request.POST) if form.is_valid(): data = form.save() tmpl = get_template('sample.html') html = tmpl.render(RequestContext(request, {'data': data})) return HttpResponse(html) else: form = CDBForm(template=template) tmpl = get_template('sample.html') html = tmpl.render(RequestContext(request, {'form': form})) return HttpResponse(html)
[ "fedor.tyurin@3da375b8-c7c2-11dd-94fd-9de6169c3690" ]
fedor.tyurin@3da375b8-c7c2-11dd-94fd-9de6169c3690
a7f65228a1a5c133e9d806213124e862f5e27193
fab99203d20d8755a055045b5117ea8a77ab9597
/spanningForest/txn2Phase/tools/run_once.py
f59a2b1c3f648ed2edae85039fe10d7491591f62
[]
no_license
yuxiamit/LiTM
2ee787a9d8b433fbfbb1219e9355a9a0512e8dab
d118033ed4dd3b42f45b85f61908015fac8b5293
refs/heads/master
2020-04-18T12:08:47.797136
2019-08-19T19:57:01
2019-08-19T19:57:01
167,524,994
4
0
null
null
null
null
UTF-8
Python
false
false
1,135
py
batchRanges =[ #500, 700, 1000, 2000, 3000, 5000, 10000, 20000, 50000, 75000, 100000, 200000] # [100, 200, 300, 500, 700, 1000, 2000, 3000, 5000, 10000, 20000, 50000, 75000, 100000, 200000] import os import sys import subprocess trials = 10 executable = "MIS" inputFile = "randTI" if len(sys.argv) > 1: # inputFile = sys.argv[1] executable = sys.argv[1] timeList = [] def avg(l): return float(sum(l))/len(l) for batchSize in batchRanges: currentL = [] for t in range(trials): ret = subprocess.check_output(["numactl -i all -- ./" + executable, "-b", str(batchSize), inputFile], shell=True) time = float(ret.split('PBBS-time:')[1].strip()) currentL.append(time) timeList.append(avg(currentL)) print batchSize, time, currentL print timeList resultSEQ = '''100 0.548 200 0.281 300 0.214 500 0.146 700 0.11 1000 0.0914 2000 0.0869 3000 0.0636 5000 0.0585 10000 0.0647 20000 0.0723 50000 0.127 1000000 0.641''' resultDET = '''100 0.0562 200 0.0494 300 0.0504 500 0.0495 700 0.0535 1000 0.0496 2000 0.0533 3000 0.0511 5000 0.0559 10000 0.0602 20000 0.075 50000 0.103 1000000 0.495'''
0ad5c07617722f7b2b34d3993e6f969784a7bcd9
80a92f0aab314b590d718e9fa602551d75a3728f
/rules.py
6cbbc80819bf26074836953c046115143af06c0c
[]
no_license
clauszitzelsberger/Schafkopf_RL
54b3040a1db6f01b781cd56fd6ef04b423cd0828
7be0515472d6b9f488deea8e63c1fc43bf9ff343
refs/heads/master
2020-03-20T11:05:40.410251
2018-10-21T09:45:26
2018-10-21T09:45:26
137,392,936
7
0
null
2018-06-16T18:15:58
2018-06-14T18:12:18
Python
UTF-8
Python
false
false
4,800
py
import numpy as np #from random import shuffle import random import copy class Rules(): def __init__(self): self.card_number = ['siebener', 'achter', 'neuner', 'zehner', 'unter', 'ober', 'koenig', 'sau'] self.card_color = ['eichel', 'gras', 'herz', 'schellen'] self.card_scores = [0,0,0,10,2,3,4,11] ############## eichel # gras # herz # schellen # self.cards = [[0,0], [1,0], [2,0], [3,0], #siebener [0,1], [1,1], [2,1], [3,1], #achter [0,2], [1,2], [2,2], [3,2], #neuner [0,3], [1,3], [2,3], [3,3], #zehner [0,4], [1,4], [2,4], [3,4], #unter [0,5], [1,5], [2,5], [3,5], #ober [0,6], [1,6], [2,6], [3,6], #koenig [0,7], [1,7], [2,7], [3,7]] #sau self.game_names = ['sauspiel', 'solo', 'wenz'] ############# eichel # gras # herz # schellen # self.games = [[None, None], #no game [0,0], [1,0], [3,0], #sauspiel [0,1], [1,1], [2,1], [3,1], #solo [None, 2]] #wenz self.reward_basic = [0, 20, 50, 50] # no game, sauspiel, solo, wenz self.reward_schneider = [0, 10, 20] # normal, schneider, schneider schwarz self.winning_thresholds = [0, 30, 60, 90, 119] def shuffle_cards(self): cards = copy.copy(self.cards) #random.seed(1) random.shuffle(cards) return cards def deal_cards(self, number_of_players=4): shuffled_cards = self.shuffle_cards() return [shuffled_cards[:8], shuffled_cards[8:16], shuffled_cards[16:24], shuffled_cards[24:32]] def name_of_cards(self, cards_list): return [[self.card_color[color], self.card_number[number]] \ for color, number in cards_list] def name_of_game(self, game): color = game[0] game_type = game[1] if color == None: return [None, self.game_names[game_type]] else: return [self.card_color[color], self.game_names[game_type]] def get_specific_cards(self, cards_list, card=[None, None]): if card[0] == None and card[1] == None: return cards_list if card[0] != None and card[1] != None: if card in cards_list: return card else: return [] if card[0] != None: return [[color, number] for color, number in cards_list if (color in [card[0]])] if card[1] != None: return [[color, number] for color, number in cards_list if (number in [card[1]])] def get_trumps(self, game, cards_list): if self.name_of_game(game)[1] == 'sauspiel': trump_colors = [2] #Herz trump_numbers = [4, 5] # Unter, Ober elif self.name_of_game(game)[1] == 'solo': trump_colors = [game[0]] trump_numbers = [4, 5] else: #wenz trump_colors = [] trump_numbers = [4] return [[color, number] for color, number in cards_list \ if color in trump_colors or number in trump_numbers] def get_specific_cards2(self, cards_list, game, card=[None, None], wo_trumps=True): if wo_trumps: cards_in_color = self.get_specific_cards(cards_list, [card[0], None]) trumps = self.get_trumps(game, cards_list) return [cards for cards in cards_in_color \ if cards not in trumps] else: return self.get_specific_cards(cards_list, card) def get_index(self, item, type): """ Get index either cards or games list Params: item: card or game type: string if item is card or game """ if type == 'card': return self.cards.index(item) else: return self.games.index(item) def get_one_hot_cards(self, cards_list_indexed): number_cards = len(self.cards) return_ = [int(i in cards_list_indexed) for i in range(number_cards)] return return_ def get_one_hot_games(self, game_indexed): number_games = len(self.games) return [int(i in game_indexed) for i in range(number_games)] def get_one_hot(self, subgroup, len_group): return [int(i in subgroup) for i in range(len_group)]
27cacce4b3a5ddfcd0ac9cd6fe61e916c9aee2a2
1210fd2bdad04eb7dfb7c015caf3aaa9a06c73d4
/meditation/post/models.py
a9d989806902f13e2cf6e04682c7e119bd67da89
[]
no_license
andyxdman/meditation
c719c8d3a906a29d2ea521fc14d8f093e92dc499
612d8c56ed1c658018b8a583d55ce712b4f2cf79
refs/heads/master
2020-09-22T17:54:41.528561
2019-12-02T15:47:30
2019-12-02T15:47:30
225,292,138
0
0
null
null
null
null
UTF-8
Python
false
false
1,788
py
from django.db import models from django.contrib.auth.models import User # Create your models here. class Post(models.Model): POST_DRAFT = 0 POST_NORMAL = 1 POST_HIDDEN = 2 POST_TYPE = ( (POST_DRAFT, '草稿'), (POST_NORMAL, '正常'), (POST_HIDDEN, '隱藏'), ) owner = models.ForeignKey(User, on_delete=models.CASCADE, verbose_name='作者') post_title = models.CharField(max_length=200, verbose_name='標題') post_content = models.TextField(max_length=1024, verbose_name='內容') category = models.ForeignKey('Category', on_delete=models.CASCADE) tags = models.ManyToManyField('Tag') pub_time = models.DateTimeField(auto_now_add=True, verbose_name='建立時間') mod_time = models.DateTimeField(auto_now=True, verbose_name='更新時間') views = models.PositiveSmallIntegerField(default=0) def __str__(self): return self.post_title class Meta: ordering = ['-pub_time'] verbose_name = verbose_name_plural = '文章' class Category(models.Model): category_name = models.CharField(max_length=200, verbose_name='分頖名字') pub_time = models.DateTimeField(auto_now_add=True, verbose_name='建立時間') mod_time = models.DateTimeField(auto_now=True, verbose_name='更新時間') class Meta: ordering = ['-pub_time'] verbose_name = verbose_name_plural = '分頖' class Tag(models.Model): tag_name = models.CharField(max_length=200, verbose_name='標籤名字') pub_time = models.DateTimeField(auto_now_add=True, verbose_name='建立時間') mod_time = models.DateTimeField(auto_now=True, verbose_name='更新時間') class Meta: ordering = ['-pub_time'] verbose_name = verbose_name_plural = '標籤'
abf504d987f86ea021d138b7f2ff2b1fa1df0dc8
2173a5432ff7d47346cdd4d45811284b117708c6
/Python/ifstatements.py
03085abbc1f64a069c21109d7493c2e31357778e
[]
no_license
lucasvdiepen/PythonAchievements
beac4abeac7a46920f641a2f34db9d8a4438ba2a
25eb9f4518abb69f31c3c979e041319810deb42b
refs/heads/master
2023-01-10T07:44:45.578549
2020-11-11T18:05:13
2020-11-11T18:05:13
292,278,811
0
0
null
null
null
null
UTF-8
Python
false
false
564
py
varA = 5 varB = 10 if (varA == 5): print("varA staat gelijk aan 5") else: print("varA staat niet gelijk aan 5") if(varA == varB): print("varA staat gelijk aan varB") elif (varA < varB): print("varA is kleiner dan varB") elif (varA == 50): pass #Doe niks else: print("varA is toch groter dan varB") if(False): print("Doe dit") varW = False varX = True varY = True varZ = True if(varW and varX or varY and varZ): print("Print dit") if(varW and (varX or varY) and varZ): print("Print mij ook") print("Einde programma")
a7833550c3629ae6e2e33022924a2e4d51d2dcc7
77653811587e0d9285380ae866952b3fcf09ae80
/dj4e-samples/views/views/settings.py
8bb54857eb0d6da3145fd0e858926655dc91be25
[ "MIT", "CC-BY-3.0" ]
permissive
natc23/SI_364_Local
477c82a74f7ac34bcca9db33c11ea6ec1c333cd5
e72c98bef29ee9d6cdb1b9c120152ffc007293d2
refs/heads/master
2020-04-24T00:37:57.639011
2019-04-12T01:17:48
2019-04-12T01:17:48
171,571,776
0
0
null
null
null
null
UTF-8
Python
false
false
3,118
py
""" Django settings for views project. Generated by 'django-admin startproject' using Django 2.0.5. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'csox50cw%_4qmx($epil-nwuon06&i#dfz3qx=bgwsmw4bnjrm' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [ '*' ] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'home.apps.HomeConfig', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'views.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'views.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/'
382879de143cc3ef780b3c978f986a11db227dfb
f04e9d6cc8318f3ebd5a613e6eb87a08d1da9f03
/Lesson35_PIR_LED/code/python/Lesson35_PIR_LED.py
bd8ecd9c95bd94d580d42f45f917e6259648dbc5
[]
no_license
adeept/Adeept_Ultimate_Starter_Kit_for_RPi
bef331c62aeb9d6bde19b8606380f7cf491979f6
2fc3655cd2de187d2388dd78b37e4d8b883d5c68
refs/heads/master
2022-11-04T10:12:15.869910
2020-06-20T10:01:53
2020-06-20T10:01:53
258,106,856
1
0
null
null
null
null
UTF-8
Python
false
false
1,134
py
import RPi.GPIO as GPIO import time PIR_OUT_PIN = 13 # pin11 def setup(): GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location GPIO.setup(PIR_OUT_PIN, GPIO.IN) # Set BtnPin's mode is input def destroy(): GPIO.cleanup() # Release resource class Led: def __init__(self, pin): self.pin = pin # LED GPIO pin def setup(self): GPIO.setmode(GPIO.BOARD) GPIO.setup(self.pin, GPIO.OUT) GPIO.output(self.pin, GPIO.HIGH) def on(self): """turn on led""" GPIO.output(self.pin, GPIO.LOW) def off(self): """turn off led""" GPIO.output(self.pin, GPIO.HIGH) def destroy(self): """close GPIO pin""" GPIO.cleanup() if __name__ == '__main__': # Program start from here setup() led = Led(11) led.setup() try: while True: if GPIO.input(PIR_OUT_PIN) == GPIO.LOW: print('...Movement not detected!') led.off() else: print('Movement detected!...') led.on() time.sleep(0.5) except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will be executed. destroy() led.destroy()
7dda60f128bc4578497e8aab41bcc3504e0f2038
7c0b611f13346e24970ae6d59829cc11f43f7168
/backend/api/endpoints/lobby.py
590cc11302dc7c9abf915e1bbd756ea78be94320
[]
no_license
dl-eric/zhao-peng-you
e7e5823762d366d63e13225b2c361179fbdb898c
0cc5954fbd33bcd9ba8c0aae1778ce7cee477f45
refs/heads/main
2022-12-28T16:24:35.007146
2020-10-12T03:14:57
2020-10-12T03:14:57
302,989,051
0
0
null
null
null
null
UTF-8
Python
false
false
2,780
py
from fastapi import APIRouter, HTTPException, WebSocket, WebSocketDisconnect from backend.core.lobby_manager import LobbyManager from backend.core.exceptions import SessionsFullException, LobbyNotFoundException, LobbyPlayerExistsException router = APIRouter() @router.get('/count') async def get_num_lobbies(): lm = LobbyManager.get_instance() return lm.get_num_lobbies() @router.put('/create') async def create_lobby(): # Ask game if we can create a new lobby lm = LobbyManager.get_instance() code = None try: code = lm.create_lobby() except SessionsFullException: raise HTTPException(status_code=400, detail="Can't create lobby") # Return lobby code return code # Message Protocol: # First message client sends should be the player name they want # First message client receives should be the player name they're assigned (server sanitized) # Name message format: # name:<name here>:<uuid> # # Chat message format: # send_chat:<message> # # Disconnect msg format: # disconnect:<player_name>:<player_id> # # New player msg format: # new:<new player's name> # # Kick player msg format: # kick:<player being kicked name>:<player id> # @router.websocket('/{lobby_code}') async def lobby_websocket(websocket: WebSocket, lobby_code: str, player_name: str = None): lm = LobbyManager.get_instance() lobby = None try: lobby = lm.get_lobby(lobby_code) except LobbyNotFoundException: # Websocket close logic await websocket.close() return if not player_name or len(player_name) < 2: await websocket.close() return (new_player_id, new_player_name) = await lobby.join_lobby(player_name) await lobby.connect(websocket, new_player_id) print(new_player_name, "joined lobby", lobby_code, "with id", new_player_id) await websocket.send_text("name:" + new_player_name + ":" + str(new_player_id)) try: while True: message = await websocket.receive_text() await websocket.send_text(f"Message text was: {message}") values = message.split(':') if values[0] == "disconnect": try: await lobby.disconnect(websocket, values[1], values[2]) except: pass elif values[0] == "send_chat": await lobby.broadcast(new_player_name + ": " + values[1]) elif values[0] == "kick": await lobby.kick(values[1], values[2]) except WebSocketDisconnect: await lobby.disconnect(websocket, new_player_name, new_player_id) print(new_player_name, "WS Disconnected from", lobby_code)
16929652a578a13f35466e8c785048bd1a45f63a
f9a2ac4593462c669ec2cf996a01d3706c6bb955
/bookmarks/views.py
be9ec2b1390839acb139afc4935ab43cc2f95b90
[]
no_license
rogatzkij/readhelper-be
2287a341780509a0d76ac69b9042da9222230388
18fe3e4263a431c29f84d51c9136f1b620568bc3
refs/heads/master
2022-04-04T13:39:46.305275
2020-01-04T14:30:46
2020-01-04T14:30:46
225,032,251
0
0
null
null
null
null
UTF-8
Python
false
false
3,672
py
from django.db import IntegrityError from django.http import JsonResponse from django.utils.timezone import now from rest_framework import permissions from rest_framework.response import Response from rest_framework.views import APIView from bookmarks.models import Bookmark from bookmarks.serializer import BookmarkSerializer from books.models import Book # Create your views here. class BookmarksView(APIView): """ Просмотр и добавление закладок """ permission_classes = [permissions.IsAuthenticated, ] def get(self, request): """" Получить список закладок """ # Достаем параметры из запроса try: book_id = int(request.GET.get("book")) except: return Response(status=400, data='Не правильный тип параметра book') # Находим нужную книгу try: book = Book.objects.get(id=book_id, owner=request.user) except: return Response(status=404, data='Книга с таким id не найдена') # Получаем закладки в этой книге bookmarks = Bookmark.objects.filter(book=book) # Сериализуем и выдаем результат в ответе serializer = BookmarkSerializer(bookmarks, many=True) return JsonResponse({'bookmarks': serializer.data}) def post(self, request): """" Добавить закладку """ # Достаем параметры из запроса try: book_id = int(request.GET.get("book")) position = int(request.GET.get("position")) except: return Response(status=400, data='Не правильный тип параметра book или position') # Находим нужную книгу try: book = Book.objects.get(id=book_id, owner=request.user) except: return Response(status=404, data='Книга с таким id не найдена') # Добавляем закладку try: b = Bookmark(book=book, position=position, date=now()) b.save() except IntegrityError: return Response(status=409, data='Такая закладка уже существует') # Получаем закладки в этой книге bookmarks = Bookmark.objects.filter(book=book) # Сериализуем и выдаем результат в ответе serializer = BookmarkSerializer(bookmarks, many=True) return JsonResponse({'bookmarks': serializer.data}) def delete(self, request): # Достаем параметры из запроса try: bookmark_id = int(request.GET.get("bookmark")) except: return Response(status=400, data='Не правильный тип параметра bookmark') try: bookmark = Bookmark.objects.get(id=bookmark_id) except: return Response(status=404, data='Закладка с таким id не найдена') # Запоминаем книгу book = bookmark.book # Удаляем закладку bookmark.delete() # Получаем закладки в этой книге bookmarks = Bookmark.objects.filter(book=book) # Сериализуем и выдаем результат в ответе serializer = BookmarkSerializer(bookmarks, many=True) return JsonResponse({'bookmarks': serializer.data})
7ed539393db275f2f1dd067a9bf2e75a118f4e81
6edcb269d4f54ea37f7f12c31169192ab13e882f
/text.py
3518e7030baf503f62f4b6845e0c3e6f9c65fe59
[]
no_license
Jovi007/newGit
63f79befe801865d8132f6211422fa473e452e68
7b26570343d95d00b4e1dd4c05383ca8dcb43653
refs/heads/master
2021-01-01T04:58:04.412831
2016-04-20T10:10:59
2016-04-20T10:10:59
56,666,477
0
0
null
2016-04-20T10:10:59
2016-04-20T07:43:26
Python
UTF-8
Python
false
false
175
py
print 'new branch' print 'master branch fix' print 'fix conflict' print 'I want master get my code,I am dev1' print 'I am master,I have new code' print 'fix bug ing.........'
7bba2b545e38840999f2778d1537f8684c064ee8
946ead8406872492ca4763e96b4d6a3fb5c05a81
/venv/Scripts/easy_install-3.7-script.py
c84b105c51d98b7171cf4562cb748e94afc3d9ac
[]
no_license
Hortmagen21/Flex
14249ad9d8563af4807f29bce935d991ab582d8f
db8cc5a0f11af3c6678e2e3631cc296efb44f1db
refs/heads/master
2023-01-24T14:49:59.074381
2020-09-21T12:27:44
2020-09-21T12:27:44
243,205,920
0
0
null
null
null
null
UTF-8
Python
false
false
437
py
#!C:\Users\Max\Flex\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==39.1.0','console_scripts','easy_install-3.7' __requires__ = 'setuptools==39.1.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==39.1.0', 'console_scripts', 'easy_install-3.7')() )
e1c5d4e673bec81279d06a0f9df24cc150fee5d6
c2911877d9e892c0ffa31399af8f326b1fcc14b3
/flaskPojects/flaskBlog/__init__.py
97fa28ec0bd4bb636bb877ae02272222dfbc1c2e
[]
no_license
MuneebSheikh/Python-Flask-
d313955aa6fb566cd80b19b3333f45802174531c
a29ac9aedc622597f6efdc45e2bde1bf7d53860a
refs/heads/master
2020-07-15T08:15:50.398176
2019-10-24T11:51:11
2019-10-24T11:51:11
205,519,896
0
0
null
null
null
null
UTF-8
Python
false
false
833
py
from flask import Flask from flask_sqlalchemy import SQLAlchemy from flask_bcrypt import Bcrypt from flask_login import LoginManager app = Flask(__name__) app.config['SECRET_KEY'] = '0e4cc2d780d7f2b9a1be03e1a42e84c9' app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///site.db' db = SQLAlchemy(app) bcrypt = Bcrypt(app) login_manager = LoginManager(app) login_manager.login_view = 'login' #same as login function name this will be used in url_for() login_manager.login_message_category = 'info' #the class name which we are using in html [now we are using bootstrap] ############################################################################## # Do not move this import because it will create errors on importing modules from flaskBlog import routes ##############################################################################
f8030a439634075910d8b4cc1c7c7a989af7d51d
c6a624ffc2b6165d8e1f1c85a45ae1fa1c2baee4
/OJ/CodeWars/Find the odd int.py
fcd97c3bb29e11c390a08aaea3b08331fe73416b
[ "Unlicense" ]
permissive
JuChunChen/Algorithm
41be8f8b9fd0543ef4d3e2297c3a0be81fc1433d
8291a7ed498a0a9d763e7e50fffacf78db101a7e
refs/heads/master
2023-04-02T21:25:08.227053
2021-04-10T07:57:55
2021-04-10T07:58:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
329
py
from functools import reduce def find_it(seq): return [ k for k, v in { v: (lambda val, seq: reduce(lambda r, v: r + (v == val), seq, 0) )(v, seq) for v in seq }.items() if v % 2 != 0 ][0] """ def find_it(seq): for i in seq: if seq.count(i)%2!=0: return i """
045c865fc678eba2750f62646d81f6c24d5e15cb
7e93b1c33045b4c03054f42b6a2b800279b12a9b
/core/cache/backends/redis/compressors/base.py
8d9e74deabf56d11d14abf6ab944ca71c3f9526c
[ "MIT" ]
permissive
anthill-arch/framework
6f8036980667843f2be1414850255cf6a10e2dcd
a6c238a62ae9c3fb319d12e77f7e9047aab75e8d
refs/heads/master
2020-05-09T06:01:31.186830
2019-08-23T13:52:43
2019-08-23T13:52:43
180,988,916
0
0
null
null
null
null
UTF-8
Python
false
false
229
py
class BaseCompressor(object): def __init__(self, options): self._options = options def compress(self, value): raise NotImplementedError def decompress(self, value): raise NotImplementedError
b049e56da653b855a8ad4584671e6605341e7f9f
50c02a07926f706a9de70b6cc2576c3daf3c441e
/Maya/Python/digital37/maya/lighting/test.py
f47a0bc42d69b2354552ea3d07de3bb02055e340
[]
no_license
kizikay/digital37
d24204a0ae68ef84c0778333ddaa01137f06731f
9bcb111c013cbbd51b36f3ba32346a78349755cf
refs/heads/master
2021-05-29T12:57:36.466534
2012-08-05T17:11:25
2012-08-05T17:11:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,326
py
import maya.cmds as cmds import re import os def getShadingSG(shapesList): for shape in shapesList : #def SYH_changeMapDetail(detail): # # noTexture = False # pattern = "." # # sel = cmds.ls(sl = True) # if(len(sel) <= 0): # print "no object are selected" # return # # cmds.select(cl = True) # # for s in sel: # print s # cmds.select(s, r = True) # cmds.hyperShade(s, smn = True) # temp = cmds.ls(sl = True) # file = cmds.listConnections(temp[0], type = "file") # if(file == None): # noTexture = True # else: # noTexture = False # # if(not noTexture): # texture = cmds.getAttr(file[0] + ".fileTextureName") # print texture # finFile = texture.replace('.','__' + detail + '.') # print finFile # #if os.path.isfile(finFile) or not os.path.isfile(finFile) : # finFile = finFile.replace('\\','/') # finFile = re.sub( ('^.*/(' + 'sourceimages' + ')'), 'sourceimages', finFile ) # cmds.setAttr(file[0] + ".fileTextureName", finFile, type = "string") # print finFile # print "process ok!" #SYH_changeMapDetail("M")
[ "[email protected]@e21bde55-81c9-5408-e5b9-2d3a39b4433e" ]
[email protected]@e21bde55-81c9-5408-e5b9-2d3a39b4433e
abc977568852cbb171525797863a63f3f63231a4
b314b8ccfdb83d84dd54df341a3191ed7aedab08
/text_categorizer/trainer.py
b36437de54f433634f6c2d4511dc935614a18ec9
[]
no_license
LuisVilarBarbosa/DISS
9dc817c18197795277a81c1ab2aa8a00f014fd4d
d276b4f3e98a811031da3971587bf15fb292fb7d
refs/heads/master
2020-04-22T22:09:19.391734
2019-07-26T13:43:29
2019-07-26T13:44:22
170,697,977
0
0
null
null
null
null
UTF-8
Python
false
false
3,644
py
#!/usr/bin/python3 # coding=utf-8 import classifiers import pickle_manager from os.path import isfile from pandas import read_excel #from profilehooks import profile from FeatureExtractor import FeatureExtractor from functions import data_frame_to_document_list from logger import logger from Parameters import Parameters from Preprocessor import Preprocessor from train_test_split import train_test_split #@profile def main(config_filename): logger.debug("Starting execution.") parameters = Parameters(config_filename, training_mode=True) if parameters.preprocessed_data: if not isfile(parameters.excel_file) and not isfile(parameters.preprocessed_data_file): logger.error("Please, provide a valid Excel file or a valid preprocessed data file.") quit() if not isfile(parameters.preprocessed_data_file) and isfile(parameters.excel_file): logger.info("Loading Excel file.") data_frame = read_excel(parameters.excel_file) logger.info("Creating documents.") docs = data_frame_to_document_list(data_frame) logger.info("Storing generated documents.") pickle_manager.dump_documents(docs, parameters.preprocessed_data_file) logger.info("Preprocessing documents.") preprocessor = Preprocessor(stanfordnlp_language_package=parameters.stanfordnlp_language_package, stanfordnlp_use_gpu=parameters.stanfordnlp_use_gpu, stanfordnlp_resources_dir=parameters.stanfordnlp_resources_dir, training_mode=parameters.training_mode) preprocessor.preprocess(text_field=parameters.excel_column_with_text_data, preprocessed_data_file=parameters.preprocessed_data_file) logger.info("Checking generated data.") pickle_manager.check_data(parameters.preprocessed_data_file) else: if not isfile(parameters.preprocessed_data_file): logger.error("The indicated preprocessed data file does not exist.") quit() logger.info("Extracting features.") feature_extractor = FeatureExtractor(nltk_stop_words_package=parameters.nltk_stop_words_package, vectorizer_name=parameters.vectorizer, training_mode=parameters.training_mode, use_lda=parameters.use_lda, document_adjustment_code=parameters.document_adjustment_code, remove_adjectives=parameters.remove_adjectives, synonyms_file=parameters.synonyms_file, features_file=parameters.features_file) X, y, _lemmas = feature_extractor.generate_X_y(class_field=parameters.excel_column_with_classification_data, preprocessed_data_file=parameters.preprocessed_data_file) logger.info("Splitting dataset into training and test subsets.") train_test_split(y, parameters.test_subset_size, parameters.preprocessed_data_file, parameters.force_subsets_regeneration) logger.info("Running classifiers.") p = classifiers.Pipeline(parameters.classifiers, parameters.cross_validate) metadata = pickle_manager.get_docs_metadata(parameters.preprocessed_data_file) training_set_indexes = metadata['training_set_indexes'].tolist() test_set_indexes = metadata['test_set_indexes'].tolist() assert len(training_set_indexes) == len(set(training_set_indexes)) assert len(test_set_indexes) == len(set(test_set_indexes)) for elem in feature_extractor.to_remove: try: training_set_indexes.remove(elem) except ValueError: test_set_indexes.remove(elem) logger.info("Accuracies:") p.start(X, y, parameters.number_of_jobs, parameters.set_num_accepted_probs, training_set_indexes, test_set_indexes, parameters.resampling) logger.debug("Execution completed.")
df6b3cdaa09073a8075e928c7ef9df25a4f7150f
1f3a2cee3654c11586b30151fd9a3fc6fd705c0a
/deep_learning/pic.py
5488840c452ac9667371b0542085d8a928c76634
[]
no_license
2020668/AI
24ff42cefacac3f397e7a6f54dda7e9d741f2e03
3e1a78a6348e453b0f3e8862a784105620a22bc1
refs/heads/master
2020-12-09T02:03:55.311209
2020-02-10T15:36:26
2020-02-10T15:36:26
231,186,509
0
0
null
null
null
null
UTF-8
Python
false
false
142
py
import tensorflow as tf print(tf.__version__) # 输出'2.0.0-alpha0' print(tf.test.is_gpu_available()) # 会输出True,则证明安装成功
4a699bc62ac3bdeec338f860c09e2a05aefe9edf
7a6c9a4e38e4c7271bddd3c51ff8fb1bfa714c87
/4/1.py
923a108704b6cead829194f7df0776d896c91fc0
[]
no_license
simonsayscodes/School
bf934e2a32b01e063d5f3fa49e4a4668b566518c
377de06267ab6744992fd4f241c64cb047ba8c26
refs/heads/master
2023-02-23T04:49:39.232936
2021-01-24T22:53:03
2021-01-24T22:53:03
292,821,712
0
0
null
null
null
null
UTF-8
Python
false
false
385
py
name = "Pog" # Använd inte () när det är name age = 18,77 print(f"Ajad {age} är riktigt jobbig") if name is "Simon Jendman": #Du glömde : tänk alltid att om du använder if name is / is not använd : print ("Och ska åka snart") elif age == 19: #Samma sak som tidigare med if name is fast elif print ("snälla din charaktär är dålig") else: print("katt bajs")
4e515a7ffea62d3d0983fe8800071ecacb2849a2
14c712219774aef5a620cde4cd3150ac31cca512
/jjwxc/parse_user.py
a4155212fddb99dd41ceb2e3ad23c0996cf401c5
[ "MIT" ]
permissive
jeffmxh/spider
8d9a6e41852c84967bb44c170927a9e6a6aa96af
bec2376a05a64185d956760d9b143424c639c33f
refs/heads/master
2021-05-11T23:57:38.861728
2019-01-06T07:55:47
2019-01-06T07:55:47
117,522,604
1
0
null
null
null
null
UTF-8
Python
false
false
5,527
py
import pandas as pd import threading import requests from bs4 import BeautifulSoup from selenium import webdriver import argparse import re import os import time import random import logging ''' 获取html原网页文本 参数:url,即要打开的网页链接 返回值:为html网页文本 ''' class Spider: def __init__(self): self.headers = {'user-agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:54.0) Gecko/20100101 Firefox/54.0'} def get_url_soup(self, url, encoding='gbk'): # time.sleep(3 + 3 * random.random()) response = requests.get(url, headers=self.headers) response.encoding = encoding soup = BeautifulSoup(response.text, 'lxml') return soup def get_html_text(self, url, encoding='gbk'): try: time.sleep(5 + 10 * random.random()) r = requests.get(url, timeout = 30) r.raise_for_status() r.encoding = encoding return r.text except: return "" def parse_table(self, text): data = [] table = text.find('table') table_body = table.find('tbody') rows = table_body.find_all('tr') for row in rows: cols = row.find_all('td') cols = [ele.text.strip() for ele in cols] data.append([ele for ele in cols if ele]) return data def text_trim(self, text): pattern = re.compile(',|<.+?>|\\u3000') text = pattern.sub(',', str(text)) text = re.sub(',+|,+', ',', text) text = re.sub('^,|,$', '', text) return text def write_list_txt(self, data, file_name): assert isinstance(data, list) assert file_name.endswith('.txt') with open(file_name, 'w') as f: f.writelines('\n'.join(data)) def write_txt(self, data, file_name): assert isinstance(data, str) assert file_name.endswith('.txt') with open(file_name, 'w') as f: f.write(data) def list_trim(tab): foo = [re.sub('\s+', '_', x) for x in tab] return '\t'.join(foo) def get_logger(): logger = logging.getLogger('my_logger') logger.setLevel(logging.DEBUG) # 建立一个streamhandler来把日志打在CMD窗口上,级别为info以上 ch = logging.StreamHandler() ch.setLevel(logging.INFO) # 设置日志格式 formatter = logging.Formatter('[%(levelname)-3s]%(asctime)s %(filename)s[line:%(lineno)d]:%(message)s') ch.setFormatter(formatter) #将相应的handler添加在logger对象中 logger.addHandler(ch) return logger def load_users(file_name): user_root_path = 'save/users/' if not os.path.exists(user_root_path): os.makedirs(user_root_path) current_users = os.listdir(user_root_path) user_list = [] with open(file_name, 'r') as f: for user in f.readlines(): user_list.append(user.strip()) TODO_users = list(set(user_list) - set(current_users)) return TODO_users def parse_recent_table(soup): data = [] table_body = soup.find('table') rows = table_body.find_all('tr') for row in rows: cols = row.find_all('td') cols = [re.sub('\n', '', ele.text.strip()) for ele in cols] data.append([ele for ele in cols if ele]) return data def parse_user(user_id, spider): user_root_path = 'save/users/' if not os.path.exists(user_root_path): os.makedirs(user_root_path) # 订阅的作品 recent_url = 'http://www.jjwxc.net/onereader_ajax.php?readerid={}&action=show_vipServer'.format(user_id) recent_soup = spider.get_url_soup(recent_url, encoding='utf-8') time.sleep(0.5 + random.random()) recent_list = parse_recent_table(recent_soup) recent_list = ['\t'.join(x) for x in recent_list][1::2] # 收藏的作品 star_url = 'http://www.jjwxc.net/onereader_ajax.php?readerid={}&action=show_novelsa'.format(user_id) star_soup = spider.get_url_soup(star_url, encoding='utf-8') time.sleep(0.5 + random.random()) star_result = parse_recent_table(star_soup) star_result = ['\t'.join(x) for x in star_result] # 用户名 user_href = 'http://www.jjwxc.net/onereader.php?readerid={}'.format(user_id) user_soup = spider.get_url_soup(user_href) time.sleep(0.5 + random.random()) user_name = user_soup.find('span', attrs={"id":"favorite_reader"})['rel'] # 存储数据 user_path = user_root_path + user_id + '/' os.mkdir(user_path) spider.write_list_txt(recent_list, file_name=user_path+'订阅.txt') spider.write_list_txt(star_result, file_name=user_path+'收藏.txt') spider.write_txt(user_name, file_name=user_path+'用户名.txt') time.sleep(1 + 3 * random.random()) def main(file_path): spider = Spider() logger = get_logger() TODO_users = load_users(file_path) users_count = len(TODO_users) for i, user in enumerate(TODO_users): try: parse_user(user, spider) logger.info('Step {} of {}, User : {} parsed sucessfully!'.format(i+1, users_count, user)) except: logger.info('Step {} of {}, User : {} parsed Failed!'.format(i+1, users_count, user)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='用户抓取脚本说明') parser.add_argument('-i', '--inpath', dest='input_path', nargs='?', default='', help='Name of the input txt file containing user list') args = parser.parse_args() main(args.input_path)
c74e724a225f8334412b1593428a285b7c2f0acd
69eca466d7f184e9cb100572ba1dee4264d2e0c8
/organization/migrations/0001_initial.py
bdd91ae95d41f35a0106038179b5451172ed4734
[]
no_license
bbkchdhry/django-crud
1247dafe55d522994ae0d070e669a67b7be1d553
a2724b0a6c611ae3759ae7b4fd63315a66a921c4
refs/heads/master
2021-08-29T23:26:33.299576
2017-12-15T08:37:02
2017-12-15T08:37:02
114,346,966
0
0
null
null
null
null
UTF-8
Python
false
false
1,353
py
# Generated by Django 2.0 on 2017-12-15 07:43 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Department', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('dept_name', models.CharField(blank=True, max_length=30, null=True)), ], options={ 'db_table': 'Department', }, ), migrations.CreateModel( name='Organization', fields=[ ('id', models.IntegerField(primary_key=True, serialize=False)), ('org_name', models.CharField(blank=True, max_length=30, null=True)), ('org_type', models.CharField(blank=True, max_length=30, null=True)), ], options={ 'db_table': 'Organization', }, ), migrations.AddField( model_name='department', name='organization', field=models.ForeignKey(db_column='organization_id', on_delete=django.db.models.deletion.CASCADE, related_name='departments', to='organization.Organization'), ), ]
5de0f9c4b170ee96a23070ab179376033873edf0
3436a1502b344e92351c03a03a2e97e9dc0b3e00
/chapter4/code/classifier-fast.py
3283e6a907145eb9ea64e8a5797152456d44f9b9
[]
no_license
Rajiv-Nayan/Machine-Learning
0c47321c59938600f6f77ab9a6f7de5637598b9e
3850eb7c4ce1018c92ccf6a228174599613cfba7
refs/heads/master
2022-11-30T04:26:21.882330
2020-08-11T16:09:59
2020-08-11T16:09:59
284,464,237
1
0
null
null
null
null
UTF-8
Python
false
false
2,188
py
import os import numpy as np from collections import Counter from sklearn.metrics import accuracy_score def make_Dictionary(root_dir): all_words = [] emails = [os.path.join(root_dir,f) for f in os.listdir(root_dir)] for mail in emails: with open(mail) as m: for line in m: words = line.split() all_words += words dictionary = Counter(all_words) list_to_remove = dictionary.keys() for item in list_to_remove: if item.isalpha() == False: del dictionary[item] elif len(item) == 1: del dictionary[item] dictionary = dictionary.most_common(3000) return dictionary def extract_features(mail_dir): files = [os.path.join(mail_dir,fi) for fi in os.listdir(mail_dir)] features_matrix = np.zeros((len(files),3000)) train_labels = np.zeros(len(files)) count = 0; docID = 0; for fil in files: with open(fil) as fi: for i,line in enumerate(fi): if i == 2: words = line.split() for word in words: wordID = 0 for i,d in enumerate(dictionary): if d[0] == word: wordID = i features_matrix[docID,wordID] = words.count(word) train_labels[docID] = 0; filepathTokens = fil.split('/') lastToken = filepathTokens[len(filepathTokens) - 1] if lastToken.startswith("spmsg"): train_labels[docID] = 1; count = count + 1 docID = docID + 1 return features_matrix, train_labels from sklearn.neighbors import KNeighborsClassifier TRAIN_DIR = "../train-mails" TEST_DIR = "../test-mails" dictionary = make_Dictionary(TRAIN_DIR) print "reading and processing emails from file." features_matrix, labels = extract_features(TRAIN_DIR) test_feature_matrix, test_labels = extract_features(TEST_DIR) neigh = KNeighborsClassifier(n_neighbors=3) print "Training model." #train model neigh.fit(features_matrix, labels) predicted_values = neigh.predict(test_feature_matrix) print "FINISHED classifying. accuracy score : " print accuracy_score(test_labels, predicted_values)
b70b66f6096c21bc356db17ef7a9da3c02eaf719
f8bb2d5287f73944d0ae4a8ddb85a18b420ce288
/python/basic/for/format_obj.py
df47968c9dd34f209133f19983ab9c23ed9b0fe2
[]
no_license
nishizumi-lab/sample
1a2eb3baf0139e9db99b0c515ac618eb2ed65ad2
fcdf07eb6d5c9ad9c6f5ea539046c334afffe8d2
refs/heads/master
2023-08-22T15:52:04.998574
2023-08-20T04:09:08
2023-08-20T04:09:08
248,222,555
8
20
null
2023-02-02T09:03:50
2020-03-18T12:14:34
C
UTF-8
Python
false
false
46
py
for 変数 in オブジェクト: 処理
7543cdf445cb135d685ea0c8aadce2b1123acf5d
b07208301e07076da04fde86402fbaf826a90d73
/chapter2/Chapter_2.1.1.4 KNN.py
40bbeb0dd79e24167282d812dcdcc51916cb6fb9
[]
no_license
TaoStarlit/python_ML
b5baf7c90c207a215db2b311bea1f6068b30d881
278524509503613b71c0d66c3b533e5b0c79d8d1
refs/heads/master
2021-08-29T01:43:40.746184
2017-12-13T10:01:51
2017-12-13T10:01:51
103,505,901
1
0
null
null
null
null
UTF-8
Python
false
false
1,786
py
# coding: utf-8 # In[1]: # 从sklearn.datasets 导入 iris数据加载器。 from sklearn.datasets import load_iris # 使用加载器读取数据并且存入变量iris。 iris = load_iris() # 查验数据规模。 iris.data.shape # In[2]: # 查看数据说明。对于一名机器学习的实践者来讲,这是一个好习惯。 print iris.DESCR # In[3]: # 从sklearn.cross_validation里选择导入train_test_split用于数据分割。 from sklearn.cross_validation import train_test_split # 从使用train_test_split,利用随机种子random_state采样25%的数据作为测试集。 X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.25, random_state=33) # In[4]: # 从sklearn.preprocessing里选择导入数据标准化模块。 from sklearn.preprocessing import StandardScaler # 从sklearn.neighbors里选择导入KNeighborsClassifier,即K近邻分类器。 from sklearn.neighbors import KNeighborsClassifier # 对训练和测试的特征数据进行标准化。 ss = StandardScaler() X_train = ss.fit_transform(X_train) X_test = ss.transform(X_test) # 使用K近邻分类器对测试数据进行类别预测,预测结果储存在变量y_predict中。 knc = KNeighborsClassifier() knc.fit(X_train, y_train) y_predict = knc.predict(X_test) # In[5]: # 使用模型自带的评估函数进行准确性测评。 print 'The accuracy of K-Nearest Neighbor Classifier is', knc.score(X_test, y_test) # In[6]: # 依然使用sklearn.metrics里面的classification_report模块对预测结果做更加详细的分析。 from sklearn.metrics import classification_report print classification_report(y_test, y_predict, target_names=iris.target_names) # In[ ]:
be136d34d8b79c6aa596f970cf3d0bd28b394505
965da23a89791f445334fd7e23f032435bf993c4
/dturm.py
10ce1d10771f2bee7232bbf9443070455fc39296
[ "MIT" ]
permissive
aktech/dturmscrap
b669c9d461fa89a6d4b9ff146796025d6df2e242
b6046daa4deec5782f98069f57c4c96262443563
refs/heads/master
2021-01-01T16:19:00.902853
2015-11-16T19:21:33
2015-11-16T19:21:33
40,501,549
5
1
null
null
null
null
UTF-8
Python
false
false
4,728
py
# DTU RM Scrapper # Author: AMiT Kumar <[email protected]> # Version: 0.1 import sys sys.path.insert(0, 'libs') import webapp2 from google.appengine.api import mail from google.appengine.ext import db import pickle import logging import cookielib import urllib2 import mechanize from bs4 import BeautifulSoup # Globals roll_no = 'ROLL_NO' password = 'PASSWORD' rm_url = 'http://tnp.dtu.ac.in/rm3y/login.php' # Email Details sender_address = '[email protected]' # This is based on your GAE ID user_address = ['USER-EMAIL'] subject = 'DTU RM Notification' # HTML Parser from HTMLParser import HTMLParser class MLStripper(HTMLParser): def __init__(self): self.reset() self.strict = False self.convert_charrefs = True self.fed = [] def handle_data(self, d): self.fed.append(d) def get_data(self): return ''.join(self.fed) def strip_tags(html): s = MLStripper() s.feed(html) return s.get_data() class ObjectProperty(db.BlobProperty): # Use this property to store objects. def validate(self, value): try: result = pickle.dumps(value) return value except pickle.PicklingError, e: return super(ObjectProperty, self).validate(value) def get_value_for_datastore(self, model_instance): result = super(ObjectProperty, self).get_value_for_datastore(model_instance) result = pickle.dumps(result) return db.Blob(result) def make_value_from_datastore(self, value): try: value = pickle.loads(str(value)) except: pass return super(ObjectProperty, self).make_value_from_datastore(value) class MyEntity(db.Model): name = db.StringProperty() obj = ObjectProperty() # Kudos def open_browser(url): # Browser br = mechanize.Browser() # Enable cookie support for urllib2 cookiejar = cookielib.LWPCookieJar() br.set_cookiejar(cookiejar) # Browser options br.set_handle_equiv(True) # br.set_handle_gzip(True) # Experimental feature br.set_handle_redirect(True) br.set_handle_referer(True) br.set_handle_robots(False) # Headers br.set_handle_refresh(mechanize._http.HTTPRefreshProcessor(), max_time=1) br.addheaders = [('User-agent', 'Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.1) Gecko/2008071615 Fedora/3.0.1-1.fc9 Firefox/3.0.1' ) ] # authenticate br.open(url) return br def select_form(form): return form.attrs.get('action', None) == 'login.php' def login(br, roll_no, password): # Username & Password br["stud_username"] = roll_no br["stud_password"] = password br.submit() def get_news(br, announce_style=None): soup = BeautifulSoup(br.response().read()) # announce_news_soup = soup.findAll('h4', {'style': announce_style[0]}) announce_news_soup = soup.find_all('h4', attrs = {'style' : True, 'align': False}) if not announce_news_soup: return ['Invalid scrap'] def get_contents(s): return s.contents announce_news_content = map(get_contents, announce_news_soup) all_news = map(str, announce_news_content) all_news = map(strip_tags, all_news) all_news = all_news[:25:] return all_news def add_news_id(a): for k, v in enumerate(a): hsh = '#' a[k] = ('UPDATE: {}{} \n' + a[k]).format(hsh, k+1) return a def latest_news(all_news): entities = MyEntity.all() entities = entities.fetch(1) if entities: old_news = entities[0].obj else: old_news = [] logging.info("Old News Empty") latestnews = [item for item in all_news if item not in old_news] logging.info('old_news: %s', old_news) latestnews = add_news_id(latestnews) logging.info('latestnews: %s', latestnews) return latestnews def save_news(all_news): db.delete(MyEntity.all(keys_only=True)) entity = MyEntity(name="all_news", obj=all_news) entity.put() class MainPage(webapp2.RequestHandler): def get(self): run_rmscrap() self.response.write("\n Success!\n") def run_rmscrap(): br = open_browser(rm_url) br.select_form(predicate=select_form) login(br, roll_no, password) # GET News allnews = get_news(br) latestnews = latest_news(allnews) if latestnews: save_news(allnews) logging.info('Saved News: %s', allnews) # SEND Latest News body = '\n'.join(latestnews) if body: mail.send_mail(sender_address, user_address, subject, body) logging.info("Mail Sent!") else: logging.info("No Latest News Found") app = webapp2.WSGIApplication([ ('/', MainPage), ], debug=True)
b1a48b404cef952e203b19b3d0a78243594f0388
97ccf3f73e371afd4037b664ba0c71b0b6af1db3
/guessing_number.py
aa6edf2ce024ad5db431f145fa4fdc80d98c9d35
[]
no_license
jaesmanalang/number-guessing
97f33e61d0c44d3e385965c4c671ab377bb5f7b4
919255390e1aef6b43c748c0d0e2551ed08561f2
refs/heads/master
2022-08-13T15:51:05.519634
2020-05-17T14:51:21
2020-05-17T14:51:21
264,690,067
0
0
null
null
null
null
UTF-8
Python
false
false
1,859
py
import random import os attempts = 0 game_playing = True def play_game(): reset() global game_playing, attempts max_range = get_max_range() the_number = number_to_guess(max_range) while game_playing: guess = player_guess(max_range) if check_guess(guess, the_number): game_playing = False while True: choice = str(input('Do you want to play again? y/n: ')) if choice.lower() == 'y': play_game() elif choice.lower() == 'n': break else: continue print('Thank you for playing.') def check_guess(guess, the_number): global attempts, highest_score if guess == the_number: print('You guessed it. Congratulations!') if attempts > 1: print(f"It took {attempts} tries.") else: print(f"It took only {attempts} try.") return True elif guess > the_number: print('Too high!') return False else: print('Too low!') return False def number_to_guess(max_num): return random.randint(1, max_num) def player_guess(max_num): global attempts while True: try: guess = int(input(f'Please guess a number between 1-{max_num}: ')) attempts += 1 except ValueError: print('Please enter a number.') else: break return guess def get_max_range(): while True: try: max_number = int(input('Please enter the maximum number range: ')) except ValueError: print('Please enter a number.') else: break return max_number def reset(): global attempts, game_playing attempts = 0 game_playing = True clear() def clear(): os.system('cls') if __name__ == '__main__': play_game()
6524ea94820092e4a5ac123ed4c71fb81f6f7c7e
764001a417797e484d20b90e902dce6e0cc41c97
/code/models_single_xgb_tree.py
ce587d370ff8141143498bc47cc5fd029f25860f
[]
no_license
apex51/kaggle-home-depot-search-relevance
39145f8e6d2f944e5e8f50e9b149bd2041d74a92
44b439e5ef462dcdde2cd19ff879ca9086639536
refs/heads/master
2021-01-19T12:22:03.853816
2017-03-09T14:14:11
2017-03-09T14:14:11
84,448,610
0
0
null
null
null
null
UTF-8
Python
false
false
4,040
py
import numpy as np import pandas as pd import pickle import xgboost as xgb # from sklearn.cross_validation import train_test_split from sklearn.cross_validation import KFold from sklearn.metrics import mean_squared_error from datetime import datetime from hyperopt import fmin, tpe, hp, STATUS_OK, Trials PROJECT_PATH = '/Users/jianghao/Projects/mine/home_depot/' ############################# # loading data ############################# print '='*20 print 'loading features from pickles...' start = datetime.now() # load y_train from original features # notice: original features did not drop the irrelevant features with open(PROJECT_PATH + 'pickles/df_features.pkl') as f: df_train, df_test = pickle.load(f) x_train = df_train.drop(labels=['relevance'], inplace=False, axis=1) x_test = df_test y_train = df_train['relevance'] # load data from unigram features with open(PROJECT_PATH + 'pickles/df_features_unigram.pkl') as f: df_train_unigram, df_test_unigram = pickle.load(f) # load data from bigram features with open(PROJECT_PATH + 'pickles/df_features_bigram.pkl') as f: df_train_bigram, df_test_bigram = pickle.load(f) # load data from trigram features with open(PROJECT_PATH + 'pickles/df_features_trigram.pkl') as f: df_train_trigram, df_test_trigram = pickle.load(f) # load data from svd features with open(PROJECT_PATH + 'pickles/df_features_svd.pkl') as f: df_train_svd, df_test_svd = pickle.load(f) x_train = pd.concat((x_train, df_train_unigram, df_train_bigram, df_train_trigram, df_train_svd), axis=1) x_test = pd.concat((x_test, df_test_unigram, df_test_bigram, df_test_trigram, df_test_svd), axis=1) print 'done, {}'.format(datetime.now() - start) ############################# # use hyperopt ############################# def hyperopt_train_test(params): print '='*20 print 'loading features from pickles...' start = datetime.now() # k-fold kf = KFold(74067, n_folds=5, shuffle=True, random_state=22) n_rounds = [] scores = [] for train_index, test_index in kf: x_train_sp, x_test_sp = x_train.iloc[train_index], x_train.iloc[test_index] y_train_sp, y_test_sp = y_train[train_index], y_train[test_index] dtrain = xgb.DMatrix(x_train_sp, y_train_sp) deval = xgb.DMatrix(x_test_sp, y_test_sp) watchlist = [(dtrain, 'train'), (deval, 'eval')] num_rounds = 20000 clf = xgb.train(params, dtrain, num_rounds, watchlist, early_stopping_rounds=15) n_rounds.append(clf.best_iteration) scores.append(clf.best_score) eval_time = datetime.now() - start print 'done, {}'.format(eval_time) return {'loss': np.mean(scores), 'n_rounds': n_rounds, 'scores': scores, 'eval_time': str(eval_time)} def f(params): results = hyperopt_train_test(params) return {'loss': results['loss'], 'status': STATUS_OK, 'other_stuff': {'n_rounds': results['n_rounds'], 'scores': results['scores'], 'eval_time': results['eval_time'] } } space = { 'task': 'regression', 'booster': 'gbtree', 'objective': 'reg:linear', 'eta': hp.quniform('eta', 0.01, 0.05, 0.01), 'gamma': hp.quniform('gamma', 0, 2, 0.1), 'min_child_weight': hp.quniform('min_child_weight', 0, 10, 1), 'max_depth': hp.quniform('max_depth', 1, 20, 1), 'subsample': hp.quniform('subsample', 0.5, 1, 0.1), 'colsample_bytree': hp.quniform('colsample_bytree', 0.5, 1, 0.1), 'silent': 1 } trials = Trials() best = fmin(f, space, algo=tpe.suggest, max_evals=30, trials=trials) # xgb tree booster # 'colsample_bytree': [0.5], # 'eta': [0.01], # 'gamma': [1.3], # 'max_depth': [15.0], # 'min_child_weight': [9.0], # 'subsample': [0.7]}, # 'loss': 0.449447, # 'eval_time': '0:48:26.242368', # 'n_rounds': [954, 1287, 969, 890, 862], mean = 990 # 'scores': [0.449414, 0.446667, 0.450931, 0.452023, 0.4482]},
f3409674f6082e19e2cdbb91ddc6cc1956ae779f
9aea1b19a8681b4c6b15d628a080982fb2d98b39
/mianJing111111/Google/Implement Queue using Stacks.py
2e144185623f255bcbf62dc1b0ca3271002fcff4
[]
no_license
yzl232/code_training
ee7612efc6f166742fcf48e1af715f57a624d3aa
fc165027c3d7b1fec58ebfad2f9ada275a6b8c03
refs/heads/master
2021-01-21T04:32:02.522931
2016-07-01T21:35:29
2016-07-01T21:35:29
26,989,266
2
0
null
null
null
null
UTF-8
Python
false
false
901
py
# encoding=utf-8 ''' In this method, in en-queue operation, the new element is entered at the top of stack1. In de-queue operation, if stack2 is empty then all the elements are moved to stack2 and finally top of stack2 is returned. enQueue(q, x) 1) Push x to stack1 (assuming size of stacks is unlimited). deQueue(q) 1) If both stacks are empty then error. 2) If stack2 is empty While stack1 is not empty, push everything from satck1 to stack2. 3) Pop the element from stack2 and return it. ''' # G家考过。 class queue: def __init__(self): self.stack1 = [] self.stack2 = [] def enqueue(self, x): self.stack1.append(x) def dequeue(self): if not self.stack1 and not self.stack2: raise ValueError() if not self.stack2: while self.stack1: self.stack2.append(self.stack1.pop()) return self.stack2.pop()
f933c954e217766db493055dde446e4bbc81de4e
189e580f1525a4f15a279daacb1e62155c65542b
/metrilyx/metrilyxconfig.py
cf2fba1498ac1c594f3be18db0a7ddacc50de9b8
[ "Apache-2.0" ]
permissive
hvyas/metrilyx-2.0
33c009a0c925d84e31580960d8424c4ab9a7f1be
ca3aac416298fb6ba2550dd040cdc50379ab894a
refs/heads/master
2020-12-26T04:37:38.725817
2014-09-28T22:56:22
2014-09-28T22:56:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
375
py
import os from datastores import jsonFromFile _abspath = os.path.abspath(__file__) _apphome = os.path.dirname(os.path.dirname(_abspath)) CONFIG_FILE = os.path.join(_apphome, "etc/metrilyx/metrilyx.conf") config = jsonFromFile(CONFIG_FILE) config["static_path"] = os.path.join(os.path.dirname(_abspath), "static") config["schema_path"] = os.path.join(_apphome, "schemas")
4a0902dc27453f1c3c75f66b24e4029df02fe5ed
4f205fc9316eff48092f573b072b644e8f02d8bd
/src/training/mytransforms.py
a8bdbb915bba86ea0d73dbf24e6f4d62a1ae0203
[ "Apache-2.0", "MIT" ]
permissive
hip-satomi/microbeSEG
017d5a0af616b4ee4652c315dea21eb4fc62b754
7e5455f1a27bc42ad765ec06e62c36012be71c11
refs/heads/main
2023-04-14T10:29:08.178419
2023-01-26T10:09:59
2023-01-26T10:09:59
483,291,328
6
1
MIT
2022-10-21T15:11:37
2022-04-19T14:55:12
Python
UTF-8
Python
false
false
15,396
py
import numpy as np import random import scipy import torch from imgaug import augmenters as iaa from skimage.exposure import equalize_adapthist, rescale_intensity from torchvision import transforms from src.utils.utils import min_max_normalization def augmentors(label_type, min_value, max_value): """ Get augmentations for the training process. :param label_type: Type of the label images, e.g., 'boundary' or 'distance'. :type label_type: str :param min_value: Minimum value for the min-max normalization. :type min_value: int :param max_value: Minimum value for the min-max normalization. :type min_value: int :return: Dict of augmentations. """ data_transforms = {'train': transforms.Compose([Flip(p=1.0), Contrast(p=0.45), Scaling(p=0.25), Rotate(p=0.25), Blur(p=0.3), Noise(p=0.3), ToTensor(label_type=label_type, min_value=min_value, max_value=max_value)]), 'val': ToTensor(label_type=label_type, min_value=min_value, max_value=max_value)} return data_transforms class Blur(object): """ Blur augmentation (label-preserving transformation) """ def __init__(self, p=1): """ :param p: Probability to apply augmentation to an image. :type p: float """ self.p = p def __call__(self, sample): """ :param sample: Dictionary containing image and label image (numpy arrays). :type sample: dict :return: Dictionary containing augmented image and label image (numpy arrays). """ if random.random() < self.p: sigma = random.random() + 1.0 sample['image'] = scipy.ndimage.gaussian_filter(sample['image'], sigma, order=0) return sample class Contrast(object): """ Contrast augmentation (label-preserving transformation) """ def __init__(self, p=1): """ param p: Probability to apply augmentation to an image. :type p: float """ self.p = p def __call__(self, sample): """ :param sample: Dictionary containing image and label image (numpy arrays). :type sample: dict :return: Dictionary containing augmented image and label image (numpy arrays). """ if random.random() < self.p: img = sample['image'] h = random.randint(0, 2) if h == 0: # Apply CLAHE or contrast stretching img = equalize_adapthist(np.squeeze(img), clip_limit=0.01) img = (65535 * img[..., None]).astype(np.uint16) elif h == 1: # Contrast stretching if random.randint(0, 1) == 0: p0, p1 = np.percentile(img, (0.2, 99.8)) else: p0, p1 = np.percentile(img, (0.1, 99.9)) img = rescale_intensity(img, in_range=(p0, p1)) else: # Apply Contrast and gamma adjustment dtype = img.dtype img = (img.astype(np.float32) - np.iinfo(dtype).min) / (np.iinfo(dtype).max - np.iinfo(dtype).min) contrast_range, gamma_range = (0.75, 1.25), (0.7, 1.3) # Contrast img_mean, img_min, img_max = img.mean(), img.min(), img.max() factor = np.random.uniform(contrast_range[0], contrast_range[1]) img = (img - img_mean) * factor + img_mean # Gamma img_mean, img_std, img_min, img_max = img.mean(), img.std(), img.min(), img.max() gamma = np.random.uniform(gamma_range[0], gamma_range[1]) rnge = img_max - img_min img = np.power(((img - img_min) / float(rnge + 1e-7)), gamma) * rnge + img_min img = np.clip(img, 0, 1) img = img * (np.iinfo(dtype).max - np.iinfo(dtype).min) - np.iinfo(dtype).min img = img.astype(dtype) sample['image'] = img return sample class Flip(object): """ Flip and rotation augmentation (label-preserving transformation). Crop needed for non-square images. """ def __init__(self, p=0.5): """ param p: Probability to apply augmentation to an image. :type p: float """ self.p = p def __call__(self, sample): """ :param sample: Dictionary containing image and label image (numpy arrays). :type sample: dict :return: Dictionary containing augmented image and label image (numpy arrays). """ img = sample['image'] if random.random() < self.p: h = random.randint(0, 7) if h == 0: pass elif h == 1: # Flip left-right sample['image'] = np.flip(img, axis=1).copy() if len(sample) == 3: sample['label'] = np.flip(sample['label'], axis=1).copy() elif len(sample) == 4: sample['border_label'] = np.flip(sample['border_label'], axis=1).copy() sample['cell_label'] = np.flip(sample['cell_label'], axis=1).copy() elif h == 2: # Flip up-down sample['image'] = np.flip(img, axis=0).copy() if len(sample) == 3: sample['label'] = np.flip(sample['label'], axis=0).copy() elif len(sample) == 4: sample['border_label'] = np.flip(sample['border_label'], axis=0).copy() sample['cell_label'] = np.flip(sample['cell_label'], axis=0).copy() elif h == 3: # Rotate 90° sample['image'] = np.rot90(img, axes=(0, 1)).copy() if len(sample) == 3: sample['label'] = np.rot90(sample['label'], axes=(0, 1)).copy() elif len(sample) == 4: sample['border_label'] = np.rot90(sample['border_label'], axes=(0, 1)).copy() sample['cell_label'] = np.rot90(sample['cell_label'], axes=(0, 1)).copy() elif h == 4: # Rotate 180° sample['image'] = np.rot90(img, k=2, axes=(0, 1)).copy() if len(sample) == 3: sample['label'] = np.rot90(sample['label'], k=2, axes=(0, 1)).copy() elif len(sample) == 4: sample['border_label'] = np.rot90(sample['border_label'], k=2, axes=(0, 1)).copy() sample['cell_label'] = np.rot90(sample['cell_label'], k=2, axes=(0, 1)).copy() elif h == 5: # Rotate 270° sample['image'] = np.rot90(img, k=3, axes=(0, 1)).copy() if len(sample) == 3: sample['label'] = np.rot90(sample['label'], k=3, axes=(0, 1)).copy() elif len(sample) == 4: sample['border_label'] = np.rot90(sample['border_label'], k=3, axes=(0, 1)).copy() sample['cell_label'] = np.rot90(sample['cell_label'], k=3, axes=(0, 1)).copy() elif h == 6: # Flip left-right + rotate 90° img = np.flip(img, axis=1).copy() sample['image'] = np.rot90(img, axes=(0, 1)).copy() if len(sample) == 3: label_img = np.flip(sample['label'], axis=1).copy() sample['label'] = np.rot90(label_img, k=1, axes=(0, 1)).copy() elif len(sample) == 4: border_label = np.flip(sample['border_label'], axis=1).copy() cell_label = np.flip(sample['cell_label'], axis=1).copy() sample['border_label'] = np.rot90(border_label, k=1, axes=(0, 1)).copy() sample['cell_label'] = np.rot90(cell_label, k=1, axes=(0, 1)).copy() elif h == 7: # Flip up-down + rotate 90° img = np.flip(img, axis=0).copy() sample['image'] = np.rot90(img, axes=(0, 1)).copy() if len(sample) == 3: label_img = np.flip(sample['label'], axis=0).copy() sample['label'] = np.rot90(label_img, k=1, axes=(0, 1)).copy() elif len(sample) == 4: border_label = np.flip(sample['border_label'], axis=0).copy() cell_label = np.flip(sample['cell_label'], axis=0).copy() sample['border_label'] = np.rot90(border_label, k=1, axes=(0, 1)).copy() sample['cell_label'] = np.rot90(cell_label, k=1, axes=(0, 1)).copy() return sample class Noise(object): """ Gaussian noise augmentation """ def __init__(self, p=0.25): """ param p: Probability to apply augmentation to an image. :type p: float """ self.p = p def __call__(self, sample): """ :param sample: Dictionary containing image and label image (numpy arrays). :type sample: dict :return: Dictionary containing augmented image and label image (numpy arrays). """ if random.random() < self.p: # Add noise with sigma 1-5% of image maximum sigma = random.randint(1, 5) / 100 * np.max(sample['image']) # Add noise to selected images seq = iaa.Sequential([iaa.AdditiveGaussianNoise(scale=sigma, per_channel=False)]) sample['image'] = seq.augment_image(sample['image']) return sample class Rotate(object): """ Rotation augmentation (label-changing augmentation) """ def __init__(self, p=1): """ param p: Probability to apply augmentation to an image. :type p: float """ self.p = p self.angle = (-45, 45) def __call__(self, sample): """ :param sample: Dictionary containing image and label image (numpy arrays). :type sample: dict :return: Dictionary containing augmented image and label image (numpy arrays). """ if random.random() < self.p: angle = random.uniform(self.angle[0], self.angle[1]) seq1 = iaa.Sequential([iaa.Affine(rotate=angle)]).to_deterministic() seq2 = iaa.Sequential([iaa.Affine(rotate=angle, order=0)]).to_deterministic() sample['image'] = seq1.augment_image(sample['image']) if len(sample) == 3: if sample['label'].dtype == np.uint8: sample['label'] = seq2.augment_image(sample['label']) else: sample['label'] = seq1.augment_image(sample['label']) elif len(sample) == 4: if sample['border_label'].dtype == np.uint8: sample['border_label'] = seq2.augment_image(sample['border_label']) else: sample['border_label'] = seq1.augment_image(sample['border_label']) if sample['cell_label'].dtype == np.uint8: sample['cell_label'] = seq2.augment_image(sample['cell_label']) else: sample['cell_label'] = seq1.augment_image(sample['cell_label']) else: raise Exception('Unsupported sample format.') return sample class Scaling(object): """ Scaling augmentation (label-changing transformation) """ def __init__(self, p=1): """ param p: Probability to apply augmentation to an image. :type p: float """ self.p = p self.scale = (0.85, 1.15) def __call__(self, sample): """ :param sample: Dictionary containing image and label image (numpy arrays). :type sample: dict :return: Dictionary containing augmented image and label image (numpy arrays). """ if random.random() < self.p: scale1 = random.uniform(self.scale[0], self.scale[1]) scale2 = random.uniform(self.scale[0], self.scale[1]) seq1 = iaa.Sequential([iaa.Affine(scale={"x": scale1, "y": scale2})]) seq2 = iaa.Sequential([iaa.Affine(scale={"x": scale1, "y": scale2}, order=0)]) sample['image'] = seq1.augment_image(sample['image']) if len(sample) == 3: if sample['label'].dtype == np.uint8: sample['label'] = seq2.augment_image(sample['label']) else: sample['label'] = seq1.augment_image(sample['label']).copy() elif len(sample) == 4: if sample['border_label'].dtype == np.uint8: sample['border_label'] = seq2.augment_image(sample['border_label']) else: sample['border_label'] = seq1.augment_image(sample['border_label']) if sample['cell_label'].dtype == np.uint8: sample['cell_label'] = seq2.augment_image(sample['cell_label']) else: sample['cell_label'] = seq1.augment_image(sample['cell_label']) else: raise Exception('Unsupported sample format.') return sample class ToTensor(object): """ Convert image and label image to Torch tensors """ def __init__(self, label_type, min_value, max_value): """ :param min_value: Minimum value for the normalization. All values below this value are clipped :type min_value: int :param max_value: Maximum value for the normalization. All values above this value are clipped. :type max_value: int """ self.min_value = min_value self.max_value = max_value self.label_type = label_type def __call__(self, sample): """ :param sample: Dictionary containing image and label image (numpy arrays). :type sample: dict :return: Dictionary containing augmented image and label image (numpy arrays). """ # Normalize image sample['image'] = min_max_normalization(sample['image'], min_value=self.min_value, max_value=self.max_value) # Swap axes from (H, W, Channels) to (Channels, H, W) for key in sample: if key != 'id': sample[key] = np.transpose(sample[key], (2, 0, 1)) img = torch.from_numpy(sample['image']).to(torch.float) if self.label_type == 'boundary': # loss needs long tensor with shape [batch, height, width] label = torch.from_numpy(sample['label'])[0, :, :].to(torch.long) return img, label elif self.label_type == 'distance': # loss needs float tensor with shape [batch, channels, height, width] cell_label = torch.from_numpy(sample['cell_label']).to(torch.float) border_label = torch.from_numpy(sample['border_label']).to(torch.float) return img, border_label, cell_label else: raise Exception('Unknown label type')
ea876ca3108b51995f148ecb425ba1ea887579b0
e5718bfa592ca171fd4100116ce566ecb0883e10
/lib/to_delete/ConvDeconvClassesMnist_mods.py
25cd606c3926001bf43fd87215e721ac80405fbe
[ "MIT" ]
permissive
joaquimlyrio/feature-visualization
e0d4eba7d9f5d3e99c917d00a6780e59fbf77ef5
47ead5044d1239dba1133b7ea812b2ed7f2564dc
refs/heads/master
2021-08-30T13:03:09.928336
2017-12-18T03:27:05
2017-12-18T03:27:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,528
py
### ### maybe try to use tf.nn.conv2d? ### # Imports import numpy as np import tensorflow as tf import matplotlib.pyplot as plt import random import math from scipy.misc import imsave ### ### Convolutional Neural Network (CNN) for MNIST ### class CnnMnist: def __init__( self, session, n_in, n_out, mode ): # instantiate session self.session = session self.n_in = n_in # 28*28 self.n_out = n_out # 10 self.mode = mode # data placeholders self.x = tf.placeholder(tf.float32, [None, n_in], name='x') self.y = tf.placeholder(tf.float32, [None, n_out], name='y') self.x_in = tf.reshape(self.x, [-1,self.n_in]) self.W_c1 = tf.get_variable( 'W_c1', shape = [ 5, 5, 1, 32 ] ) self.W_c2 = tf.get_variable( 'W_c2', shape = [ 5, 5, 32, 64 ] ) ## ## Network Architecture ## # Input Layer self.input_layer = tf.reshape(self.x, [-1, 28, 28, 1]) # # Convolutional Layer #1 # # filter self.conv1 = tf.nn.conv2d( input = self.input_layer, filter = self.W_c1, padding = "SAME", strides = [1,1,1,1] ) # relu self.relu1 = tf.nn.relu( self.conv1 ) # # Pooling Layer #1 # self.pool1 = tf.layers.max_pooling2d(inputs=self.relu1, pool_size=[2, 2], strides=2) # # Convolutional Layer #2 # # filter self.conv2 = tf.nn.conv2d( input = self.pool1, filter = self.W_c2, padding = "SAME", strides = [1,1,1,1] ) # relu self.relu2 = tf.nn.relu( self.conv2 ) # # Pooling layer #2 # self.pool2 = tf.layers.max_pooling2d(inputs=self.conv2, pool_size=[2, 2], strides=2) # # Dense Layer # pool2_flat = tf.reshape(self.pool2, [-1, 7 * 7 * 64]) dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu) dropout = tf.layers.dropout( inputs=dense, rate=0.4, training = self.mode ) # Logits Layer self.logits = tf.layers.dense(inputs=dropout, units=10) self.q = tf.argmax(input = self.logits, axis=1) # Output Layer onehot_labels = tf.one_hot( indices = tf.cast(self.y, tf.int32), depth = 10 ) self.loss = tf.nn.softmax_cross_entropy_with_logits( labels = self.y, logits = self.logits ) self.train_step = tf.train.AdamOptimizer(1e-3).minimize(self.loss) # method to compute y given x def compute(self, x): return self.session.run(self.q, feed_dict={self.x:np.reshape(x,[-1,self.n_in])}) # method to train network def train(self, x_batch, y_batch): # take a training step _ = self.session.run(self.train_step, feed_dict={self.x: x_batch, self.y: y_batch}) # acessor method for output after pooling layers def getPools(self): return ( self.pool1, self.pool2 ) # acessor method for output after convolutional layers def getConvs(self): return ( self.conv1, self.conv2 ) # acessor method for loss def getLoss(self): return self.loss # saver method to save trained cnn in disk def netSaver(self, savePath): saver = tf.train.Saver() saver.save(self.session, savePath) print("Model saved in file: %s" % savePath) # loader method to restore weights of a pretrained cnn def netLoader(self, loadPath): loader = tf.train.Saver({"W_c1":self.W_c1, "W_c2":self.W_c2}) restoredModel= loader.restore(self.session, loadPath) print("Model restored from %s" % loadPath) # method to initialize filter weights def initWeight(shape): weights = tf.truncated_normal(shape,stddev=0.1) return tf.Variable(weights) # method to instantiate deconvolutional neural net def createDeconvNet(self, inputImage, inputLabel): return CnnMnist.DeconvMnist( self, self.session, self.n_in, self.n_out, inputImage, inputLabel ) #''' DON'T COMMENT ME PLEASE!!! ### ### Nested Class: Deconvolutional Neural Network (CNN) for MNIST ### class DeconvMnist: def __init__( self, outer, session, inDim, outDim, inputImage, inputLabel ): # data placeholders #self.inputImage = tf.placeholder(tf.float32, [None, inDim], name='x') #self.inputLabel = tf.placeholder(tf.float32, [None, outDim], name='y') # instantiate outer class in inner class self.cnn = outer self.inDim = inDim self.outDim = outDim self.sess = session activations1 = self.calculateActivations( inputImage, inputLabel, 1 ) self.deconv1 = self.deconvLayer1( inputImage, inputLabel, activations1 ) activations2 = self.calculateActivations(inputImage, inputLabel, 2) self.deconv2 = self.deconvLayer2( inputImage, inputLabel, activations2 ) def deconvLayer1( self, inputImage, inputLabel, activations1 ): # ## Deconvoluting 1st layer ## # get activations for layer 1 #activations1 = self.calculateActivations( inputImage, inputLabel, 1 ) # convert from array to tensor act1_tf = tf.convert_to_tensor( activations1, np.float32 ) # unpool unPool1 = self.unpool( act1_tf ) # unrelu unRelu1 = tf.nn.relu( unPool1 ) # deconvolute (filter) unConv1 = tf.nn.conv2d_transpose( # check dimensions #activations1, unRelu1, self.cnn.W_c1, output_shape = [ inputImage.shape[0], 28, 28, 1], strides = [1, 1, 1, 1], padding = "SAME" ) return unConv1 def deconvLayer2( self, inputImage, inputLabel, activations2 ): ## ## Deconvoluting 2nd layer ## # get activations for layer 2 # activations2 = self.calculateActivations(inputImage, inputLabel, 2) # convert from array to tensor act1_tf = tf.convert_to_tensor( activations2, np.float32 ) # 1st unpool unPool1 = self.unpool( act1_tf ) # 1st unrelu unRelu1 = tf.nn.relu( unPool1 ) # 1st deconvolute (filter) unConv1 = tf.nn.conv2d_transpose( #activations1, unRelu1, self.cnn.W_c2, output_shape = [ inputImage.shape[0], 14, 14, 32], strides = [1, 1, 1, 1], padding = "SAME" ) # 2nd unpool unPool2 = self.unpool( unConv1 ) # 2nd relu unRelu2 = tf.nn.relu( unPool2 ) # 2nd deconvolute (filter) # 1st deconvolute (filter) unConv2 = tf.nn.conv2d_transpose( #activations1, unRelu2, self.cnn.W_c1, output_shape = [ inputImage.shape[0], 28, 28, 1], strides = [1, 1, 1, 1], padding = "SAME" ) return unConv2 # calculate activations for layer (1 or 2) def calculateActivations( self, inputImage, inputLabel, layer ): if( layer == 1 ): return self.cnn.pool1.eval(feed_dict={self.cnn.x: np.reshape(inputImage,[-1,self.inDim])}) else: return self.cnn.pool2.eval(feed_dict={self.cnn.x: np.reshape(inputImage,[-1,self.inDim])}) def getDeconv( self ): return self.deconv1, self.deconv2 # method to unpool (taken from kvfrans - put link!) def unpool( self, value ): """N-dimensional version of the unpooling operation from https://www.robots.ox.ac.uk/~vgg/rg/papers/Dosovitskiy_Learning_to_Generate_2015_CVPR_paper.pdf :param value: A Tensor of shape [b, d0, d1, ..., dn, ch] :return: A Tensor of shape [b, 2*d0, 2*d1, ..., 2*dn, ch] """ #with tf.name_scope(name) as scope: sh = value.get_shape().as_list() dim = len(sh[1:-1]) out = (tf.reshape(value, [-1] + sh[-dim:])) for i in range(dim, 0, -1): out = tf.concat( [out, out], i) out_size = [-1] + [s * 2 for s in sh[1:-1]] + [sh[-1]] out = tf.reshape(out, out_size)#, name=scope) return out #Returns de deconvoluted layer1 as numpy array, with isolated nodes, #and save the images on the "img" folder def displayFeatures1( self, inputImage, inputLabel): # ## Deconvoluting 1st layer ## # get activations for layer 1 activations1 = self.calculateActivations( inputImage, inputLabel, 1 ) filters = activations1.shape[-1] batch_size = activations1.shape[0] all_isolations = np.zeros([filters, batch_size, 28, 28, 1]) for i in range(filters): # Isolate filters if i % 5 == 0: print("Deconvoluting Layer 1 activation number: {}".format(i)) isolated = activations1.copy() isolated[:,:,:,:i] = 0 isolated[:,:,:,i+1:] = 0 unConv1 = self.deconvLayer1( inputImage, inputLabel, isolated ) u = unConv1.eval() imsave("img/Deconv1_Node_{}_of_N3.jpg".format(i), u[1,:,:,0]) all_isolations[i,:,:,:,:] = u return all_isolations def displayFeatures2( self, inputImage, inputLabel ): ## ## Deconvoluting 2nd layer ## # get activations for layer 2 activations2 = self.calculateActivations(inputImage, inputLabel, 2) filters = activations2.shape[-1] batch_size = activations2.shape[0] all_isolations = np.zeros([filters, batch_size, 28, 28, 1]) for i in range(filters): # Isolate filters if i % 5 == 0: print("Deconvoluting Layer 2 activation number: {}".format(i)) isolated = activations2.copy() isolated[:,:,:,:i] = 0 isolated[:,:,:,i+1:] = 0 unConv2 = self.deconvLayer2( inputImage, inputLabel, isolated ) u = unConv2.eval() imsave("img/Deconv2_Node_{}_of_N3.jpg".format(i), u[1,:,:,0]) all_isolations[i,:,:,:,:] = u return all_isolations # if layer == 1: # isolated = self.activations1.copy() # isolated[:,:,:,:1] = 0 # isolated[:,:,:,1+1:] = 0 # return isolated # #print("isolated shape") # #print (np.shape(isolated)) # #totals = np.sum( isolated, axis = (1,2,3) ) # #best = np.argmin( totals, axis = 0 ) # #print (best) # #pixelactive = self.unPool1.eval(feed_dict={self.unPool1PlaceHolder: isolated}) # #pixelactive = self.unConv1.eval(feed_dict={self.unConv1PlaceHolder: isolated[5,:,:,1]}) # else: # # isolated = self.activations2.copy() # # isolated[:,:,:,:1] = 0 # # isolated[:,:,:,1+1:] = 0 # # #print (np.shape(isolated)) # # totals = np.sum( isolated, axis = (1,2,3) ) # # best = np.argmin( totals, axis = 0 ) # # #print (best) # # #pixelactive = self.unPool2.eval(feed_dict={self.unPool2PlaceHolder: isolated}) # # pixelactive = self.unConv2.eval(feed_dict={self.unConv2PlaceHolder: isolated}) # # saves pixel-representations of features from Conv layer 1 # featuresReLu1 = tf.placeholder("float",[None,32,32,32]) # unReLu = tf.nn.relu(featuresReLu1) # unBias = unReLu # unConv = tf.nn.conv2d_transpose(unBias, wConv1, output_shape=[batchsizeFeatures,imagesize,imagesize,colors] , strides=[1,1,1,1], padding="SAME") # activations1 = relu1.eval(feed_dict={img: inputImage, lbl: inputLabel, keepProb: 1.0}) # print (np.shape(activations1)) # # display features # for i in xrange(32): # isolated = self.activations1.copy() # isolated[:,:,:,:i] = 0 # isolated[:,:,:,i+1:] = 0 # #print (np.shape(isolated)) # totals = np.sum( isolated, axis = (1,2,3) ) # best = np.argmin( totals, axis = 0 ) # #print (best) # pixelactive = self.unConv1.eval(feed_dict={self.unPool1PlaceHolder: isolated}) # # totals = np.sum(pixelactive,axis=(1,2,3)) # # best = np.argmax(totals,axis=0) # # best = 0 # saveImage(pixelactive[best],"activ"+str(i)+".png") # saveImage(inputImage[best],"activ"+str(i)+"-base.png") # return False #''' DON'T COMMENT ME PLEASE!!!
9004f791a1dcd8b9174c7e98612c338f9f24f0b8
1bfab43b76b084e428e8d0ff1809afd6d20acc35
/on luyen python/django/render_templates/render_templates/settings.py
02ecb7968a902fe613e0f578cd8570a56debf306
[]
no_license
namdh1985/python
807a292c24e225b7d671fe2138b1d3d63865d191
35c2760326b04e264ed35342a73262e816be8798
refs/heads/master
2022-12-05T10:20:48.910118
2020-08-26T14:28:57
2020-08-26T14:28:57
287,443,752
0
0
null
null
null
null
UTF-8
Python
false
false
3,129
py
""" Django settings for render_templates project. Generated by 'django-admin startproject' using Django 3.0.8. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '5ydje*ej)h3+#6)h#jg7npz#hiha^w19=#ecys9i26*^i%k$p$' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'app', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'render_templates.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'render_templates.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/'
e0912c5ac778e21ca948703da25cf176eec9062e
415a2bcd0350270956e94a8e1adb90216b1293e8
/venv/Scripts/pip-script.py
1f44689ada4571fcbbab8ad5ec3c9978f3602acd
[]
no_license
unclet1999/Sort
1205d0c19b7603d8960a9701e27e0c1c60ecb6ab
b620dd714d1d0b86e6fd0fecfec19de03f5a9c48
refs/heads/master
2020-08-23T11:29:37.636864
2019-10-28T18:03:01
2019-10-28T18:03:01
216,606,298
0
1
null
2019-10-28T19:16:43
2019-10-21T15:48:07
Python
UTF-8
Python
false
false
408
py
#!C:\Users\Uncle\Desktop\Sort_Project\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==19.0.3','console_scripts','pip' __requires__ = 'pip==19.0.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==19.0.3', 'console_scripts', 'pip')() )
003ffc8b931687487cf729b77a66c0d3d2b33116
af41debd568a7e2701f6be440b2a60d3afb3afef
/py_tests/t_queue.py
7cf04f164bead3a0ce1390479b5b403e501f57fd
[]
no_license
rimelis/BBB-Alarm
f948b208df2e5529445689b3bf2f21bc3df381a0
cd3539746ec118d5556bc096f0816ad2ceb29ed4
refs/heads/master
2021-01-01T17:54:25.204728
2019-03-19T15:37:40
2019-03-19T15:37:40
98,190,778
0
0
null
null
null
null
UTF-8
Python
false
false
1,539
py
import threading import time import logging import random import queue logging.basicConfig(level=logging.DEBUG, format='(%(threadName)-9s) %(message)s',) BUF_SIZE = 10 q = queue.Queue(BUF_SIZE) class ProducerThread(threading.Thread): def __init__(self, group=None, target=None, name=None, args=(), kwargs=None, verbose=None): super(ProducerThread,self).__init__() self.target = target self.name = name def run(self): while True: if not q.full(): item = random.randint(1,10) q.put(item) logging.debug('Putting ' + str(item) + ' : ' + str(q.qsize()) + ' items in queue') time.sleep(random.random()) return class ConsumerThread(threading.Thread): def __init__(self, group=None, target=None, name=None, args=(), kwargs=None, verbose=None): super(ConsumerThread,self).__init__() self.target = target self.name = name return def run(self): while True: if not q.empty(): item = q.get() logging.debug('Getting ' + str(item) + ' : ' + str(q.qsize()) + ' items in queue') time.sleep(random.random()) return if __name__ == '__main__': p = ProducerThread(name='producer') c = ConsumerThread(name='consumer') p.start() time.sleep(2) c.start() time.sleep(2)
b4b48833b14eeae1819479c4994e066e45300d1c
d0dccd8b1c31c0256dca3472719acab561661aa9
/events/views.py
8f52985d56e7d9d48486c2516ac1ab2f8b850635
[]
no_license
cjredmond/GrouperApp
5fe97271bc275e570d2e3565c2bb5233ce34a79d
aba431c7def9173150e24686dbbb87685d25ed24
refs/heads/master
2020-03-19T21:43:12.609648
2018-06-29T16:17:10
2018-06-29T16:17:10
136,947,937
0
0
null
null
null
null
UTF-8
Python
false
false
636
py
from django.shortcuts import render from django.views.generic import * from django.views.generic.edit import * from django.contrib.auth import get_user_model from django.urls import reverse from .models import Event from .forms import EventCreateForm from group.models import Entity class EventCreateView(CreateView): model = Event form_class = EventCreateForm def form_valid(self,form,**kwargs): instance = form.save(commit=False) instance.entity = Entity.objects.get(slug=self.kwargs['slug']) return super().form_valid(form) def get_success_url(self): return reverse('landing_view')
ee0c4d0093eb8fb6ee16511f21e8fcbcd1f15975
d0b6e0994331a27e4828a42256cf2a4960e6fc77
/src/visualization/visualize.py
fad8beca4b6d54169a1b7d0eec11dbfd9f7f9ab5
[]
no_license
MikkelMathiasen23/mlops_cookiecutter
08593f1475a164def363d7bf9ca231000f29efd9
9ec63e756257abaa793658db7d8671213cead17e
refs/heads/master
2023-06-02T07:48:28.159788
2021-06-17T08:28:27
2021-06-17T08:28:27
374,989,943
0
0
null
null
null
null
UTF-8
Python
false
false
1,705
py
import argparse import sys import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import torch import torch.nn as nn from sklearn.manifold import TSNE from src.data.make_dataset import mnist from src.models.model import MNIST_NET parser = argparse.ArgumentParser(description='Training arguments') parser.add_argument('--modelpath', default='models/0_checkpoint.pth') parser.add_argument('--n_components', default=2) args = parser.parse_args(sys.argv[2:]) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') _, testset = mnist() testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False) model = MNIST_NET().to(device) state_dict = torch.load(args.modelpath) model.load_state_dict(state_dict) modules = list(model.children())[:-1] modules2 = list(model.classifier.children())[:-4] model = nn.Sequential(*modules) model2 = nn.Sequential(*modules2) out = [] lab = [] with torch.no_grad(): # validation pass here model.eval() for batch_idx, (images, labels) in enumerate(testloader): x = model(images) x = x.view(x.size(0), -1) x = model2(x) out.append(x) lab.append(labels) out = torch.cat(out, dim=0) lab = torch.cat(lab, dim=0) tsne = TSNE(args.n_components) x_new = tsne.fit_transform(out) df = pd.DataFrame(lab, columns=['label']) df['tsne-1'] = x_new[:, 0] df['tsne-2'] = x_new[:, 1] plt.figure(figsize=(16, 10)) sns.scatterplot(x="tsne-1", y="tsne-2", hue="label", palette=sns.color_palette("hls", 10), data=df, legend="full", alpha=0.3) plt.savefig('reports/figures/tsne_features.png')
e0d2036b5459a0bba69f3c1b91adeb65c9e1cccb
f1d850a59052deb004b8742a468d3f03e5d849cc
/youtap.py
e94858323194787eee1ba093a236114c4f4ccc5e
[ "Apache-2.0" ]
permissive
hubert10/youtap
00c5bf168d6967b17400a913932e2d6e7cec45ef
232134389336afd316f79d09689e127630d087ae
refs/heads/master
2020-12-28T12:18:22.928153
2011-07-26T21:52:11
2011-07-26T21:52:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,812
py
#!/usr/bin/python # # Copyright [2011] Sundar Srinivasan # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: Sundar Srinivasan ([email protected]) Twitter: @krishnasun __author__ = ('Sundar Srinivasan') import re import sys import urllib2 def getVideoUrl(content): fmtre = re.search('(?<=fmt_url_map=).*', content) grps = fmtre.group(0).split('&amp;') vurls = urllib2.unquote(grps[0]) videoUrl = None for vurl in vurls.split('|'): if vurl.find('itag=5') > 0: return vurl return None def getTitle(content): title = content.split('</title>', 1)[0].split('<title>')[1] return sanitizeTitle(title) def sanitizeTitle(rawtitle): rawtitle = urllib2.unquote(rawtitle) lines = rawtitle.split('\n') title = '' for line in lines: san = unicode(re.sub('[^\w\s-]', '', line).strip()) san = re.sub('[-\s]+', '_', san) title = title + san ffr = title[:4] title = title[5:].split(ffr, 1)[0] return title def downloadVideo(f, resp): totalSize = int(resp.info().getheader('Content-Length').strip()) currentSize = 0 CHUNK_SIZE = 32768 while True: data = resp.read(CHUNK_SIZE) if not data: break currentSize += len(data) f.write(data) print('============> ' + \ str(round(float(currentSize*100)/totalSize, 2)) + \ '% of ' + str(totalSize) + ' bytes') if currentSize >= totalSize: break return if __name__ == '__main__': if len(sys.argv) < 2: print("Usage: python youtap.py \"<youtube-url>\"") exit(1) urlname = sys.argv[1].split('&', 1)[0] print('Downloading: ' + urlname) try: resp = urllib2.urlopen(urlname) except urllib2.HTTPError: print('Bad URL: 404') exit(1) content = resp.read() videoUrl = getVideoUrl(content) if not videoUrl: print('Video URL cannot be found') exit(1) title = getTitle(content) filename = title + '.flv' print('Creating file: ' + filename) f = open(filename, 'wb') print('Download begins...') ## Download video video = urllib2.urlopen(videoUrl) downloadVideo(f, video) f.flush() f.close() exit(0)
a3dcc90e068ad557401a75428293332468a08fb3
ebff4045910369fafd56ad369f2de0da992dd221
/button.py
4d8510cc5a5355da8a451c9d60a87dfe6a408fa8
[]
no_license
galaxy-dust/alien_invasion
0d654e33af3fc4cd49cddcf7dc3faf2d959bf8fb
206141b0fde7ee30bed41cc6850ec2b2962137b0
refs/heads/master
2020-04-10T00:29:37.037805
2018-12-06T14:32:04
2018-12-06T14:32:04
160,686,852
0
0
null
null
null
null
UTF-8
Python
false
false
849
py
import pygame.font import pygame class Button(): def __init__(self,ai_settings, screen, msg): self.ai_settings = ai_settings self.screen = screen self.screen_rect = self.screen.get_rect() self.width, self.height = 200, 50 self.button_color = (0,255,0) self.text_color =(255,255,255) self.font = pygame.font.SysFont(None, 48) self.rect = pygame.Rect(0, 0, self.width, self.height) self.rect.center = self.screen_rect.center self.prep_msg(msg) def prep_msg(self,msg): self.msg_image = self.font.render(msg, True, self.text_color, self.button_color) self.msg_image_rect = self.msg_image.get_rect() self.msg_image_rect.center = self.screen_rect.center def draw_button(self): self.screen.fill(self.button_color, self.rect) self.screen.blit(self.msg_image, self.msg_image_rect)
16a366d7fe0e7f788721b4bb5f0dad1de7ce646f
77929020bd02471b46e5627de621e13870876216
/weather/urls.py
8dbbf64b32fbd85072cbfb07c8e9ca9d83869b31
[]
no_license
Hiwa2719/weather
0c8b593ce8935b938e72616d41867bd75fd0acab
b16b9c7cf90dda43d8d6e34c8f7d8200b7454c37
refs/heads/main
2023-04-14T23:01:16.794996
2021-04-23T21:36:30
2021-04-23T21:36:30
348,776,625
0
0
null
2021-04-23T18:23:10
2021-03-17T16:23:58
SCSS
UTF-8
Python
false
false
366
py
from django.urls import path from . import views app_name = 'weather' urlpatterns = [ path('', views.IndexView.as_view(), name='index'), path('new-list/', views.NewList.as_view(), name='new_list'), path('remove-city/', views.RemoveCity.as_view(), name='remove_city'), path('model-detail/', views.GetModalDetail.as_view(), name='modal-detail') ]
e94a700f968a82baaa9b58e135e2d927dc8dca63
43e79af67945b3bf580d294d09da63d0379b4ae0
/script/relative_kinect_publisher.py
58d7290d3d026b3ed5f6e8d0de08c01edd44fa41
[]
no_license
payamn/following-ahead
3ef0caf0a50cdbec877c98051969661a42a98a90
25743f8683df3e96d79355422bd202a935b61c28
refs/heads/master
2021-09-05T17:24:30.442715
2017-09-20T03:28:47
2017-09-20T03:28:47
104,242,088
0
0
null
2017-09-20T16:44:00
2017-09-20T16:44:00
null
UTF-8
Python
false
false
2,396
py
#!/usr/bin/env python import rospy from geometry_msgs.msg import TransformStamped import message_filters import tf as transform import numpy as np tfObj = transform.TransformerROS(True, rospy.Duration(10.0)) relativePosePub = rospy.Publisher('/person_follower/groundtruth_pose', TransformStamped, queue_size=1) def callback(helmetMsg, kinectMsg): helmetPose = tfObj.fromTranslationRotation( (helmetMsg.transform.translation.x, helmetMsg.transform.translation.y, helmetMsg.transform.translation.z), (helmetMsg.transform.rotation.x, helmetMsg.transform.rotation.y, helmetMsg.transform.rotation.z, helmetMsg.transform.rotation.w) ) kinectPose = tfObj.fromTranslationRotation( (kinectMsg.transform.translation.x, kinectMsg.transform.translation.y, kinectMsg.transform.translation.z), (kinectMsg.transform.rotation.x, kinectMsg.transform.rotation.y, kinectMsg.transform.rotation.z, kinectMsg.transform.rotation.w) ) relativePose = np.dot(np.linalg.inv(kinectPose), helmetPose) relativeQuaternion = transform.transformations.quaternion_from_matrix(relativePose) relativePoseMsg = TransformStamped() relativePoseMsg.header.frame_id = "world" relativePoseMsg.child_frame_id = "person_follower/helmet_relative" relativePoseMsg.transform.translation.x = relativePose[0, 3] relativePoseMsg.transform.translation.y = relativePose[1, 3] relativePoseMsg.transform.translation.z = relativePose[2, 3] relativePoseMsg.transform.rotation.x = relativeQuaternion[0] relativePoseMsg.transform.rotation.y = relativeQuaternion[1] relativePoseMsg.transform.rotation.z = relativeQuaternion[2] relativePoseMsg.transform.rotation.w = relativeQuaternion[3] relativePosePub.publish(relativePoseMsg) br = transform.TransformBroadcaster() br.sendTransform( (relativePose[0, 3], relativePose[1, 3], relativePose[2, 3]), relativeQuaternion, rospy.Time.now(), relativePoseMsg.child_frame_id, "world" ) if __name__ == '__main__': rospy.init_node('node_name') helmetSub = message_filters.Subscriber('/vicon/helmet/helmet', TransformStamped) kinectSub = message_filters.Subscriber('/vicon/husky_follower/husky_follower', TransformStamped) ts = message_filters.TimeSynchronizer([helmetSub, kinectSub], 10) ts.registerCallback(callback) rospy.spin()
187962dd8c17294e9070e38afbd203c6d97037a2
1258e001beb0c5aabb866a170625698e9385d3e9
/Alura/diff21.py
1295c6d8cd97d286c3f377611f0ca9d13ae814b9
[]
no_license
mgarcia86/python
7b3d450d7a0cb5623af446074784f247eb113497
66dd2e0dd6000a6d500dca594b23b54acae88169
refs/heads/master
2020-03-16T19:46:28.420744
2018-05-10T19:32:28
2018-05-10T19:32:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
650
py
def diff21(): if n > 21: return 2 * (abs(21 - n)) elif n <= 21: return abs(21 - n) def sleep(): if not week: return True elif week and not holiday: return False else: return True def nao_string(str): if len(str) >= 3 and str[:3] == 'not': return str return 'not ' + str def monkey_trouble(a_smile, b_smile): if a_smile and b_smile: return True elif not a_smile and not b_smile: return True else: return False def near_hundred(n): if n in range(abs(10, 100)) or n in range(abs(10, 200)): return True else: return False
15a4d561dfb7b03334bf6343e7c40bcd382ae8a9
a7893ea023f4839fa0447845b88fbf2536966ba0
/FASRGAN_and_Fs-SRGAN/codes/models/__init__.py
035089f9d36bccbf24381558a598506920d7475d
[]
no_license
Rainyfish/FASRGAN-and-Fs-SRGAN
c84f6e0220d48271799b521237b937c9383e6471
2d85fc0bb5cb65d4ef4101c1953f0322fd3effbf
refs/heads/master
2021-06-21T23:53:35.992689
2021-03-14T10:22:56
2021-03-14T10:22:56
201,067,476
24
6
null
null
null
null
UTF-8
Python
false
false
989
py
import logging logger = logging.getLogger('base') def create_model(opt): model = opt['model'] if model == 'sr': from .SR_model import SRModel as M elif model == 'FsSRModel': from .FsSR_model import FsSRModel as M elif model == 'srgan': from .SRGAN_model import SRGANModel as M elif model == 'srragan': from .SRRaGAN_model import SRRaGANModel as M elif model == 'sftgan': from .SFTGAN_ACD_model import SFTGAN_ACD_Model as M elif model =='FASRGAN': #Fine-grained attention SRGAN from .FASRGAN_model import FASRGANModel as M elif model =='FsSRGAN': #feature-sharing SRGAN from .FsSRGAN_model import FsSRGANModel as M elif model == 'FAFS_SRGAN': from .FAFS_SRGAN_model import FAFS_SRGANModel as M else: raise NotImplementedError('Model [{:s}] not recognized.'.format(model)) m = M(opt) logger.info('Model [{:s}] is created.'.format(m.__class__.__name__)) return m
0b04dcafbb7bafeed73250d6bc7254c906731ccc
7486b3af4d4413a96b3e0bf76f776cd8605d7c05
/koalakid1/Divide Conquer/bj-2630.py
bdd6711efba8a0bed6260a699fb4fb5d2babdeb5
[]
no_license
WonyJeong/algorithm-study
7146e18ec9a3d7f46910e31890768b2e37f8b9b4
dd659bf75c902800bed226d392d144b691d8e059
refs/heads/main
2023-03-31T14:38:47.365622
2021-04-02T01:35:36
2021-04-02T01:35:36
334,309,434
3
1
null
null
null
null
UTF-8
Python
false
false
704
py
import sys def quadtree(n, x, y): global graph, blue, white point = graph[x][y] for i in range(x, x + n): for j in range(y, y + n): if point != graph[i][j]: quadtree(n//2, x, y) quadtree(n//2, x, y+n//2) quadtree(n//2, x+n//2, y) quadtree(n//2, x+n//2, y+n//2) return if point: blue += 1 return else: white += 1 return if __name__ == "__main__": input = sys.stdin.readline n = int(input()) graph = [list(map(int, input().strip().split())) for _ in range(n)] blue, white = 0, 0 quadtree(n, 0, 0) print(white) print(blue)
cbf79af35fb2759d0e7ec9a19ca7f7380778de56
02d003627dc39487c43827de23f8a26faa616574
/ds/array/contains_dup.py
b279e96b09329f845a71fa8705cba64e06c63801
[]
no_license
amitt001/cs-review
63d31739d70c24eb1204537d2e37b4bbfb195e36
f04987b32f2598e6f058edd44c2e586894dab704
refs/heads/master
2020-05-24T23:32:50.234181
2019-09-03T14:26:18
2019-09-03T14:26:18
187,516,405
0
0
null
null
null
null
UTF-8
Python
false
false
892
py
"""Given an array of integers, find if the array contains any duplicates. Your function should return true if any value appears at least twice in the array, and it should return false if every element is distinct. Input: [1,2,3,1] Output: true Input: [1,2,3,4] Output: false """ def containsDuplicate(nums) -> bool: s = set() for i in nums: if i in s: return True s.add(i) return False def sol_const_space(nums) -> bool: if not nums: return nums.sort() last_val = nums[0] for i in nums[1:]: if i == last_val: return True last_val = i return False if __name__ == '__main__': arr = [1, 2, 3, 1] assert containsDuplicate(arr) is True assert sol_const_space(arr) is True arr = [1, 2, 3, 4] assert containsDuplicate(arr) is False assert sol_const_space(arr) is False
8b4a671e8f15ec14fb5e1bf7b5b95915b9486d2a
c10d080c40161633a922b1274b92d3048555ea5b
/src/interaction.py
5d3b9721a9476bcf679456078f04c14a32d3b311
[ "MIT" ]
permissive
leolani/leolani-datarepresentation
3c784bb8401c3b67efe2b80ac4a34498f0f9e827
bc2975310fe623f7548db54bf5d691c7bbcf0c1e
refs/heads/main
2023-01-06T07:52:45.733312
2020-10-23T09:10:29
2020-10-23T09:10:29
306,548,492
0
0
null
null
null
null
UTF-8
Python
false
false
8,604
py
import os import re import platform import requests import pycountry import subprocess from time import time from datetime import datetime from random import getrandbits from typing import List, Iterable, Dict, Tuple, Optional from vision import Object, Face, Observations from language import Chat class Context(object): """ Context Object Contains Awareness for People, Objects & Conversations """ OBSERVATION_TIMEOUT = 60 _people = None # type: Dict[str, Tuple[Face, float]] _objects = None # type: Observations def __init__(self, name, friends): # type: (str, Iterable[str]) -> None self._id = getrandbits(128) self._name = name self._friends = friends self._chats = [] self._chat_start = None self._chatting = False self._people = {} self._current_people = [] self._objects = Observations() self._intention = None self._location = Location() @property def id(self): # type: () -> int """ ID Returns ------- id: int """ return self._id @property def own_name(self): # type: () -> str """ Returns ------- str The robot's own name """ return self._name @property def chats(self): # type: () -> List[Chat] """ Returns ------- chats: list of Chat List of all Chats that were held during current session """ return self._chats @property def chatting(self): # type: () -> bool """ Returns True when a Chat is happening Returns ------- chatting: bool """ return self._chatting @property def chat(self): # type: () -> Optional[Chat] """ The Current Chat, if any Returns ------- chat: Optional[Chat] """ return self.chats[-1] if self.chatting else None @property def datetime(self): # When # type: () -> datetime """ The Current Date & Time Returns ------- datetime: datetime Current Date and Time """ return datetime.now() @property def location(self): # Where # type: () -> Location """ The Current Location Returns ------- location: Location Current Location """ return self._location @property def people(self): # Who # type: () -> List[Face] """ People seen within Observation Timeout Returns ------- people: list of Face List of People seen within Observation Timeout """ current_time = time() return [person for person, t in self._people.values() if (current_time - t) < Context.OBSERVATION_TIMEOUT] @property def friends(self): # type: () -> List[str] """ Names of all friends. Returns ------- List[str] List of all friends names """ return self._friends def current_people(self, in_chat=False, timeout=OBSERVATION_TIMEOUT): # type: () -> List[Face] """ People seen currently in the Context Returns ------- people: list of Face List of all People seen currently in the Context """ if in_chat and not self.chatting: return [] current_time = time() return [person for person, t in self._people.values() if current_time - t <= timeout and (not in_chat or t >= self._chat_start)] @property def all_people(self): # type: () -> List[Face] """ People seen since beginning of Context Returns ------- people: list of Face List of all People seen since beginning of Context """ return [person for person, t in self._people.values()] @property def objects(self): # What # type: () -> List[Object] """ Objects seen within Observation Timeout Returns ------- objects: list of Object List of Objects seen within Observation Timeout """ return self._objects.instances @property def all_objects(self): # type: () -> List[Object] """ Objects seen since beginning of Context Returns ------- objects: list of Object List of all Objects since beginning of Context """ return self._objects.instances def add_objects(self, objects): # type: (List[Object]) -> None """ Add Object Observations to Context Parameters ---------- objects: list of Object List of Objects """ if objects: self._objects.add_observations(objects[0].image, objects) def add_people(self, people): # type: (Iterable[Face]) -> None """ Add People Observations to Context Parameters ---------- people: list of Face List of People """ for person in people: self._people[person.name] = (person, time()) def start_chat(self, speaker): # type: (str) -> None """ Start Chat with Speaker Parameters ---------- speaker: str Name of Speaker """ self._chat_start = time() self._chatting = True self._chats.append(Chat(speaker, self)) def stop_chat(self): # type: () -> None """Stop Chat""" self._chat_start = None self._chatting = False class Location(object): """Location on Earth""" UNKNOWN = "Unknown" def __init__(self): # TODO use UUIDs self._id = getrandbits(128) self._label = self.UNKNOWN try: loc = requests.get("https://ipinfo.io").json() self._country = pycountry.countries.get(alpha_2=loc['country']).name self._region = loc['region'] self._city = loc['city'] except: self._country = self.UNKNOWN self._region = self.UNKNOWN self._city = self.UNKNOWN @property def id(self): # type: () -> int """ ID for this Location object Returns ------- id: int """ return self._id @property def country(self): # type: () -> str """ Country String Returns ------- country: str """ return self._country @property def region(self): # type: () -> str """ Region String Returns ------- region: str """ return self._region @property def city(self): # type: () -> str """ City String Returns ------- city: str """ return self._city @property def label(self): # type: () -> str """ Learned Location Label Returns ------- label: str """ return self._label @label.setter def label(self, value): # type: (str) -> None """ Learned Location Label Parameters ---------- value: str """ self._label = value @staticmethod def _get_lat_lon(): # type: () -> Optional[Tuple[float, float]] """ Get Latitude & Longitude from GPS Returns ------- latlon: Optional[Tuple[float, float]] GPS Latitude & Longitude """ try: if platform.system() == "Darwin": # Use WhereAmI tool by Rob Mathers -> https://github.com/robmathers/WhereAmI whereami = os.path.join(os.path.dirname(__file__), 'util', 'whereami') regex = "Latitude: (.+?)\nLongitude: (.+?)\n" return tuple(float(coord) for coord in re.findall(regex, subprocess.check_output(whereami))[0]) else: raise Exception() except: # TODO: Add Support for (at least) Windows print("Couldn't get GPS Coordinates") return None def __repr__(self): return "{}({}, {}, {})".format(self.__class__.__name__, self.city, self.region, self.country)
31a0c3c321b124e25d22c7584aa8ccbc4ed0ae04
c7a6f8ed434c86b4cdae9c6144b9dd557e594f78
/ECE364/.PyCharm40/system/python_stubs/348993582/PyQt4/QtNetwork/__init__.py
499f277c4fd5601ad24160f4fb960e5e5fc2f65f
[]
no_license
ArbalestV/Purdue-Coursework
75d979bbe72106975812b1d46b7d854e16e8e15e
ee7f86145edb41c17aefcd442fa42353a9e1b5d1
refs/heads/master
2020-08-29T05:27:52.342264
2018-04-03T17:59:01
2018-04-03T17:59:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,637
py
# encoding: utf-8 # module PyQt4.QtNetwork # from /usr/lib64/python2.6/site-packages/PyQt4/QtNetwork.so # by generator 1.136 # no doc # imports import PyQt4.QtCore as __PyQt4_QtCore # no functions # classes from QAbstractNetworkCache import QAbstractNetworkCache from QAbstractSocket import QAbstractSocket from QAuthenticator import QAuthenticator from QFtp import QFtp from QHostAddress import QHostAddress from QHostInfo import QHostInfo from QHttp import QHttp from QHttpHeader import QHttpHeader from QHttpRequestHeader import QHttpRequestHeader from QHttpResponseHeader import QHttpResponseHeader from QLocalServer import QLocalServer from QLocalSocket import QLocalSocket from QNetworkAccessManager import QNetworkAccessManager from QNetworkAddressEntry import QNetworkAddressEntry from QNetworkCacheMetaData import QNetworkCacheMetaData from QNetworkCookie import QNetworkCookie from QNetworkCookieJar import QNetworkCookieJar from QNetworkDiskCache import QNetworkDiskCache from QNetworkInterface import QNetworkInterface from QNetworkProxy import QNetworkProxy from QNetworkProxyFactory import QNetworkProxyFactory from QNetworkProxyQuery import QNetworkProxyQuery from QNetworkReply import QNetworkReply from QNetworkRequest import QNetworkRequest from QSsl import QSsl from QSslCertificate import QSslCertificate from QSslCipher import QSslCipher from QSslConfiguration import QSslConfiguration from QSslError import QSslError from QSslKey import QSslKey from QTcpSocket import QTcpSocket from QSslSocket import QSslSocket from QTcpServer import QTcpServer from QUdpSocket import QUdpSocket from QUrlInfo import QUrlInfo
fc7d7b27a526a43db9c9b511ae29a4442acf81d4
0fb2e09c0629cf47045881d7eecc125f674230e5
/pps_webapp/main/views.py
bf6d96c2869c358792ae6771da7c09201b547904
[]
no_license
satwik77/phenopacket-scraper-webapp
ea24ad2cc2fbd988e12df1178be5ba940c8a9859
4382c2a4e501448e7bfd68c7826a3c4c5ab39a26
refs/heads/master
2021-01-17T09:33:07.188192
2016-08-23T17:24:20
2016-08-23T17:24:20
61,695,575
0
0
null
2016-06-22T06:45:50
2016-06-22T06:45:50
null
UTF-8
Python
false
false
1,984
py
from django.shortcuts import get_object_or_404, render_to_response, redirect from django.shortcuts import render from django.contrib import auth from django.http import HttpResponse from django.views.decorators.csrf import csrf_exempt import requests import pprint api_url= 'http://localhost:8001/api/' @csrf_exempt def home(request): if request.POST: choice = str(request.POST['choice']) url = str(request.POST['url']) data = "" if choice == '1': get_data={'url' : str(url)} response = requests.get(api_url+ 'scrape', params = get_data) if response.status_code == 200: response_data = response.json() abstract = response_data['Abstract'] title = str(response_data['Title']) hpo_terms = response_data['HPO Terms'] data+= "Title:\n" + title + "\n" data+="Abstract:\n" + abstract + "\n" data+="HPO Terms:\n" for term in hpo_terms: data += str(term) + "\n" if choice == '2': get_data={'url' : str(url)} response = requests.get(api_url+ 'annotate', params = get_data) if response.status_code == 200: response_data = response.json() data = {} data["annotated_terms"] = response_data['Annotated HPO Terms'] data["annotated_abstract"] = response_data['Annotated Abstract'] data= pprint.pformat(data, indent=4) if choice == '3': get_data={'url' : str(url)} response = requests.get(api_url+ 'phenopacket', params = get_data) if response.status_code == 200: response_data = response.json() phenopacket = response_data['phenopacket'] data = phenopacket return HttpResponse(data) return render(request, 'main/index.html')
d6722ce189fbb5948c8db922d888a2d1878b4e68
6fa437f198e74ebac1446999303bd34a04378e3f
/wat/wat.py
3cffd9f75ebfc222306612cb35ee58220fed0d5e
[]
no_license
0f11/Python
27f718e38cf40d2a8a348a9134660b619f4f6f20
7ba7941343560604539c2ad61b94afd660f8279d
refs/heads/master
2020-07-11T01:43:04.402080
2019-08-26T07:32:50
2019-08-26T07:32:50
204,421,162
0
1
null
null
null
null
UTF-8
Python
false
false
425
py
"""Wat.""" def first(n: int): """ First. :param n: :return: """ if n == 1: return 0 if n == 2: return 2 if n == 4: return 4 if n == 3: return 6 if n == 713: return 8 if n == -145: return 11 if n == -789: return 12 if n == -1: return 14 if n == 0: return 16 if n == 2138: return 18
[ "Welcomettu13" ]
Welcomettu13
c245e365442238e1f481ff741ef8a55ec08242bd
af5184f69ef76b40a27a220cd6b9085978e6ade4
/handlers/ui_ibon.py
3824f5dd68ef1c2f1d6f421d3dfb44a822863395
[]
no_license
igoiko-ii40project/web_remoht
f0a71a2954083367956edcad3e58c08420ab19f2
4e63c897d357e71686d449796b224c33ea5dec54
refs/heads/master
2020-09-15T23:16:06.365373
2016-09-13T08:09:12
2016-09-13T08:09:12
67,804,652
0
0
null
null
null
null
UTF-8
Python
false
false
6,735
py
__author__ = '105031691' import os import logging import webapp2 import jinja2 from google.appengine.api import xmpp, taskqueue, users from google.appengine.ext import ndb import datetime import json import model from . import BaseHandler COUNTER_PAGE_HTML = """\ <!DOCTYPE html> <html> <body> <form action="#" method="POST"> <label for="key">Key:</label><input type="text" name="key" id="key"> <input type="submit" value="+1"> </form> </body> </html> """ # ----------------------------------------------------------------------------------- class Counter(ndb.Model): count = ndb.IntegerProperty(indexed=False) # ----------------------------------------------------------------------------------- #------------------------------------------------------------------------------------------------ #------------------------------------------------------------------------------------------------ class CounterHandler(webapp2.RequestHandler): def get(self): try: self.response.write(COUNTER_PAGE_HTML) logging.info("CounterHandler GET: page counter shown") except Exception as ex: logging.warn("Error in GET counterhandler") def post(self): try: key = self.request.get('key') logging.debug("button clicked: key: %s",key) # Add the task to the default queue. taskqueue.add(url='/poll_worker', queue_name='default', params={'key': key}) except Exception as ex: logging.warn("Error in POST counterhandler") self.redirect('/') # ----------------------------------------------------------------------------------- #------------------------------------------------------------------------------------------------ #------------------------------------------------------------------------------------------------ class PollWorker(webapp2.RequestHandler): def post(self): # should run at most 1/s due to entity group limit key = self.request.get('key') logging.debug("***************** Log entered as a result of a qued task: key was %s ************************", key) if True: # request readings .... jid_to_poll = self.request.get('jid') when_to_execute = self.request.get('eta') this_is_datetime=datetime.datetime.now().strftime("%Y/%m/%d-%H:%M:%S") msg = { "cmd" : "get_readings"} logging.debug(this_is_datetime+": Sending request for get_readings as part of PollWorker to %s",jid_to_poll) logging.debug(this_is_datetime+": %s", msg) xmpp.send_message(jid_to_poll, json.dumps(msg)) # request relays.... msg = { "cmd" : "get_relays"} logging.debug(this_is_datetime+": Sending request for get_relays as part of PollWorker to %s",jid_to_poll) logging.debug(this_is_datetime+": %s", msg) xmpp.send_message(jid_to_poll, json.dumps(msg)) @ndb.transactional def update_counter(): counter = Counter.get_or_insert(key, count=0) counter.count += 1 counter.put() update_counter() # ----------------------------------------------------------------------------------- #------------------------------------------------------------------------------------------------ #------------------------------------------------------------------------------------------------ class FunsHandler(BaseHandler): # i enable a page to manage different action requests (funs) coming from UI javascript def post(self, device_id, fun=None): user = users.get_current_user() if not user: return self.unauthorized() device = model.Device.get_by_id(int(device_id)) if device is None: return self.notfound() logging.info("Device ID: %d, %s, Fun: %s", int(device_id),device.full_jid,fun) # fun = self.request.get('fun') # i pass "fun" in the "POST", not in the "request" if fun=='1': fun_code="get_code" elif fun=='2': fun_code="get_cred" elif fun=='3': fun_code="request_image" else: fun_code='' logging.debug("ERROR: FunsHandler Received unknown code: %s",fun) if fun_code == 'request_image': # request image .... this_is_datetime=datetime.datetime.now().strftime("%Y/%m/%d-%H:%M:%S") msg = { "cmd" : "get_image"} logging.debug(this_is_datetime+": Sending request for get_image to %s",device.full_jid) xmpp.send_message(device.full_jid, json.dumps(msg)) pass elif fun_code=='beep': pass elif fun_code=='get_cred': # get new credentials from propietary bucket.... this_is_datetime=datetime.datetime.now().strftime("%Y/%m/%d-%H:%M:%S") msg = { "cmd" : "get_cred"} logging.debug(this_is_datetime+": Sending request for get_cred to %s",device.full_jid) xmpp.send_message(device.full_jid, json.dumps(msg)) pass elif fun_code=='get_code': # get new code from propietary bucket.... this_is_datetime=datetime.datetime.now().strftime("%Y/%m/%d-%H:%M:%S") msg = { "cmd" : "get_code"} logging.debug(this_is_datetime+": Sending request for get_cred to %s",device.full_jid) xmpp.send_message(device.full_jid, json.dumps(msg)) pass else: logging.debug("ERROR: Received request to perform unknown function: %s",fun) #------------------------------------------------------------------------------------------------ #------------------------------------------------------------------------------------------------ #------------------------------------------------------------------------------------------------ class FunsButtonsHandler(BaseHandler): def post(self, device_id, fun): user = users.get_current_user() if not user: return self.unauthorized() device = model.Device.get_by_id(int(device_id)) if device is None: return self.notfound() logging.info("Device ID: %d, %s", int(device_id),device.full_jid) logging.debug("function %s to %s", fun, device_id) msg = { "cmd" : "fun", "params" : { "param1" : 0, "param2" : 1 } } to_jid = device.full_jid logging.debug(datetime.datetime.now().strftime("%H:%M:%S")+": Sending toggle_relay to %s, %s=%s", to_jid, relay, state) # xmpp.send_message( to_jid, json.dumps(msg))#, from_jid=from_jid) # self.render_json({"msg":"OK","relays":device.relays})
3bae786e9e40c36b6f97504686557294fa9bf5c6
695a2237c52485a01086e690a633f4fd43e3c128
/COVID-away_one-class_classification_models/Acc+Gyro+Mbar+RVect/Local_Outlier_Factor.py
5608c38c7b291f332df1ef6940f08aed4ae2db11
[]
no_license
wbing520/COVID-away
db3c3dc10d4b56036a30985a02e93d3b7f0338e3
fea67b4d1e7232e0f16b5bbd886788fe7a676771
refs/heads/master
2022-12-23T14:43:57.455443
2020-10-07T01:53:19
2020-10-07T01:53:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
518
py
# local outlier factor for imbalanced classification import pandas as pd from sklearn.metrics import precision_recall_fscore_support, classification_report,confusion_matrix, precision_recall_curve import pickle test = pd.read_csv('./Test.csv') testX = test.drop(['label','Pattern'], axis = 1) testy = test.label filename = 'lof_model.sav' loaded_lof = pickle.load(open(filename, 'rb')) yhat = loaded_lof.fit_predict(testX) testy[testy == 1] = -1 testy[testy == 0] = 1 print(classification_report(testy, yhat))
f819a33c29a02bdfd3bd03dc17a1abc83f6968ad
67c8fbadf97cad08d5dc03100863a7e4cfb67bd4
/api/serializers.py
5907ce214f03dba88de81b96f3d340c91d23dac6
[]
no_license
SavenkovAlx/public-chat-API
4fb3c388992f57991e52da936086a4323b162f6f
3c9b33f447f40ee43e6b833638c83b603789585f
refs/heads/main
2023-03-31T05:27:56.899064
2021-03-28T13:53:24
2021-03-28T13:53:24
352,340,422
0
0
null
2021-03-28T13:53:24
2021-03-28T13:44:20
Python
UTF-8
Python
false
false
797
py
import re from rest_framework import serializers from .models import Message class MessageSerializer(serializers.ModelSerializer): class Meta: model = Message fields = ['id', 'email', 'text', 'created_date', 'update_date'] def validate_email(self, email): norm_email = email.lower() regex = '^(\w|\.|\_|\-)+[@](\w|\_|\-|\.)+[.]\w{2,3}$' if not re.search(regex, norm_email): raise serializers.ValidationError('Enter a valid Email') return norm_email def validate_text(self, text): regex = '^(?!\s*$).{,99}$' if not re.search(regex, text): raise serializers.ValidationError( 'The message must not be empty string and must not be longer than 100 characters') return text
ddb174f793b28d3d67bd47fc709bbd1e25118f3d
a671a684173ba8128f43d075d6b070c04689a0f7
/myS2SVAE/Vocabulary.py
a4c5c515eec4cff42bb9365bff21e71cf52983f6
[]
no_license
yeyeye529/my-vae
160a983a8f6249fa989b13b3ed6ae9f493a11051
8809ebd603f6dc8dc26759fa2cb457313ac5ab10
refs/heads/master
2020-03-29T22:05:01.785176
2018-10-23T07:41:33
2018-10-23T07:41:33
150,402,204
0
0
null
null
null
null
UTF-8
Python
false
false
4,362
py
from collections import defaultdict class vocabulary(object): def __init__(self, max_vocab_size = 1000000): self._vocab = None self._word2idx = None self.bos_id = 0 self.eos_id = 1 self.unk_id = 2 self.pad_id = 3 self._max_vocab_size = max_vocab_size pass @property def vocab(self): if self._vocab == None: assert 'Vocabulary does not exist' return None else: return self._vocab @property def word2idx(self): if self._word2idx == None: assert 'Vocabulary does not exist' return None else: return self._word2idx def build_vocab(self, sentence_list, remove_low_freq = 0): vocab = [] vocab_with_cnt = defaultdict(int) for s in sentence_list: for w in s: vocab_with_cnt[w] += 1 print("Original vocab size = ", len(vocab_with_cnt)) i = 0 for w, cnt in vocab_with_cnt.items(): if cnt > remove_low_freq: vocab.append(w) i += 1 if i > self._max_vocab_size: break print("Now vocab size = ", len(vocab)) vocab.sort() vocab_new = ['<s>', '</s>', '<unk>', '<pad>'] # <s>: begin of sentence; </s>: end of sentence; <unk>: unknown word vocab_new += vocab word2idx = {w:i for i, w in enumerate(vocab_new)} self._vocab = vocab_new self._word2idx = word2idx def vocab_sent(self, sent_list, max_str_len = None, truncated = False, truncated_length = 0): sent_list_new = list() sent_lengths = [] if max_str_len == None: max_str_len = 0 for i in sent_list: if len(i) > max_str_len: max_str_len = len(i) max_str_len += 2 # + <bos>, <eos> if truncated: max_str_len = truncated_length + 2 # + <bos>, <eos> for s in sent_list: sent_new = list() sent_new.append(self.bos_id) for w in s: if w in self._word2idx: sent_new.append(self._word2idx[w]) else: sent_new.append(self.unk_id) # <unk> sent_new.append(self.eos_id) sent_lengths.append(min(len(sent_new), max_str_len)) #Padding: if (len(sent_new) < max_str_len): sent_new.extend([self.pad_id]*(max_str_len - len(sent_new))) else: sent_new = sent_new[0:max_str_len] sent_list_new.append(sent_new) return sent_list_new, sent_lengths, max_str_len def vocab_sent_for_multi_refs(self, sent_list, max_str_len = None, truncated = False, truncated_length = 0): sent_list_new = list() sent_lengths = [] if max_str_len == None: max_str_len = 0 for refs in sent_list: for i in refs: if len(i) > max_str_len: max_str_len = len(i) max_str_len += 2 # + <bos>, <eos> if truncated: max_str_len = truncated_length + 2 # + <bos>, <eos> for refs in sent_list: refs_new = list() refs_lengths = list() for s in refs: sent_new = list() sent_new.append(self.bos_id) for w in s: if w in self._word2idx: sent_new.append(self._word2idx[w]) else: sent_new.append(self.unk_id) # <unk> sent_new.append(self.eos_id) refs_lengths.append(min(len(sent_new), max_str_len)) # sent_lengths #Padding: if (len(sent_new) < max_str_len): sent_new.extend([self.pad_id]*(max_str_len - len(sent_new))) else: sent_new = sent_new[0:max_str_len] refs_new.append(sent_new) # sent_list_new sent_list_new.append(refs_new) sent_lengths.append(refs_lengths) return sent_list_new, sent_lengths, max_str_len
406ba475df4e4247276045d3a8377eed80d0612b
116763c900b41ff793c6621edeb196ccfafda403
/scripts/analyses/archive/penalized_regression/penal_regresFC_Age_TMDif_Gaus.py
6a7081400f43036e2ac33d7f730a639cb93d57fe
[]
no_license
weiwei-wch/multiscale
b29d1ef24013c4756c019b6f5d884bfe0c7708ec
9f7cbc021a47c4acb87afa85b3654093b7ef984a
refs/heads/master
2023-04-26T04:38:33.998724
2021-05-17T21:25:56
2021-05-17T21:25:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,317
py
## imports ## import scipy import scipy.io as sio from os.path import dirname, join as pjoin import numpy as np import sklearn from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.linear_model import RidgeCV from sklearn.linear_model import Ridge from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score import h5py import pandas as pd import sys ### paramters that apply across all loop iterations # set alphas for gcv # use this alpha range alphas = np.exp2(np.arange(16) - 10) # vector for variable edge numbers edgeRange = range(30,1000,30) # arrays for storing iterative lm features SR_preds=np.empty([100,len(edgeRange)]) LR_preds=np.empty([100,len(edgeRange)]) AR_preds=np.empty([100,len(edgeRange)]) SR_alphas=np.empty([100,len(edgeRange)]) LR_alphas=np.empty([100,len(edgeRange)]) AR_alphas=np.empty([100,len(edgeRange)]) # for all scales, and using full feature matrix as "scale 31" for convenience for edgeNum in edgeRange: # print index in edge range print(edgeRange.index(edgeNum)) # Subject b.w. features SRfilename='/cbica/projects/pinesParcels/results/EffectVecs/SR' + str(edgeNum) + '_for_bw_RRfc.csv' LRfilename='/cbica/projects/pinesParcels/results/EffectVecs/LR' + str(edgeNum) + '_for_bw_RRfc.csv' ARfilename='/cbica/projects/pinesParcels/results/EffectVecs/AR' + str(edgeNum) + '_for_bw_RRfc.csv' dataSR=np.loadtxt(SRfilename,delimiter=',') dataLR=np.loadtxt(LRfilename,delimiter=',') dataAR=np.loadtxt(ARfilename,delimiter=',') # Divide to predict var of int columns SRFeatvecs=dataSR[:,2:(len(dataSR))] LRFeatvecs=dataLR[:,2:(len(dataLR))] ARFeatvecs=dataAR[:,2:(len(dataAR))] # extract Age variable from 1st column SRvarofint=dataSR[:,0] LRvarofint=dataLR[:,0] ARvarofint=dataAR[:,0] for split in range(0,100): # for a few different train and test splits # Train and test split from data frame SRxtrain,SRxtest,SRytrain,SRytest=train_test_split(SRFeatvecs,SRvarofint,test_size=0.33,random_state=(split)) LRxtrain,LRxtest,LRytrain,LRytest=train_test_split(LRFeatvecs,LRvarofint,test_size=0.33,random_state=(split)) ARxtrain,ARxtest,ARytrain,ARytest=train_test_split(ARFeatvecs,ARvarofint,test_size=0.33,random_state=(split)) # fit model with gcv # false intercept bc it is centered now SRlm = sklearn.linear_model.RidgeCV(alphas=alphas,store_cv_values=True).fit(SRxtrain,SRytrain) LRlm = sklearn.linear_model.RidgeCV(alphas=alphas,store_cv_values=True).fit(LRxtrain,LRytrain) ARlm = sklearn.linear_model.RidgeCV(alphas=alphas,store_cv_values=True).fit(ARxtrain,ARytrain) # set prediction alpha to best performing alpha in training set SRalpha=SRlm.alpha_ LRalpha=LRlm.alpha_ ARalpha=ARlm.alpha_ # test prediction on left out sample SRpred_obs_r2 = sklearn.linear_model.Ridge(alpha=SRalpha).fit(SRxtrain,SRytrain).score(SRxtest,SRytest) LRpred_obs_r2 = sklearn.linear_model.Ridge(alpha=LRalpha).fit(LRxtrain,LRytrain).score(LRxtest,LRytest) ARpred_obs_r2 = sklearn.linear_model.Ridge(alpha=ARalpha).fit(ARxtrain,ARytrain).score(ARxtest,ARytest) # stack the predictions vertically to be averaged across samples splits SR_preds[split,edgeRange.index(edgeNum)]=SRpred_obs_r2 SR_alphas[split,edgeRange.index(edgeNum)]=SRalpha LR_preds[split,edgeRange.index(edgeNum)]=LRpred_obs_r2 LR_alphas[split,edgeRange.index(edgeNum)]=LRalpha AR_preds[split,edgeRange.index(edgeNum)]=ARpred_obs_r2 AR_alphas[split,edgeRange.index(edgeNum)]=ARalpha SRmean_preds=np.average(SR_preds[:,edgeRange.index(edgeNum)]) SRmean_alphas=np.average(SR_alphas[:,edgeRange.index(edgeNum)]) LRmean_preds=np.average(LR_preds[:,edgeRange.index(edgeNum)]) LRmean_alphas=np.average(LR_alphas[:,edgeRange.index(edgeNum)]) ARmean_preds=np.average(AR_preds[:,edgeRange.index(edgeNum)]) ARmean_alphas=np.average(AR_alphas[:,edgeRange.index(edgeNum)]) print('Short-range out-of-samp. pred. w/ ' + str(edgeNum) + ' edges: ' + str(SRmean_preds) + ', alpha='+ str(SRmean_alphas)) print('Long-range out-of-samp. pred. w/ ' + str(edgeNum) + ' edges: ' + str(LRmean_preds) + ', alpha='+ str(LRmean_alphas)) print('All-range out-of-samp. pred. w/ ' + str(edgeNum) + ' edges: ' + str(ARmean_preds) + ', alpha='+ str(ARmean_alphas)) print("done")
924ad60f641a250c2dc45b133d9e54b951e6657d
3d42221bf6adffb35000a0cf2dd115de6ffa5796
/clades_adapted - Kopie/Delphineae/input/01_make-revscript.py
e14988122ea32c4fa154d548b7aface5ea9816f7
[ "MIT" ]
permissive
envima/AlpineFloraLJ
0e021f47d0457fc018b0dad0e52b6735e2d45a90
d3d7bbd188fbe1792382756237776cf317eabf71
refs/heads/main
2023-04-07T13:34:06.290176
2021-04-12T10:12:53
2021-04-12T10:12:53
304,222,269
0
0
null
null
null
null
UTF-8
Python
false
false
4,623
py
import operator from functools import reduce import model pd = model.pd areas = model.areas ranges = model.ranges biomes = model.biomes states = model.states nstates = model.nstates # read the data csv files - the first column (taxa) is identical in each, # so we can concatenate them csvdata = pd.concat([pd.read_csv('range.csv', index_col=0), pd.read_csv('biome.csv', index_col=0)[['a','A']]], axis=1) csvdata.iloc[:,:len(areas)] *= areas.values csvdata.iloc[:,len(areas):] *= biomes.bitvalues data = pd.Series( index=csvdata.index, data=[ states.idx[x] for x in csvdata.sum(axis=1).values ]) #Below, change file name and totol species diversity accordingly. treefile = 'Delphineae.nex' outfilebase = 'Delphineae' total_diversity = 824 nTimeSlices = 1000 ngen_burnin = 200 ngen_mcmc = 2000 revscript = 'Delphineae_classe.rev' classe_state_datafile = 'Delphineae_states.csv' data.to_csv(classe_state_datafile, index_label=None) extinction_rate_lines = [] # extinction rates are nonzero only for single-area states for v in model.stategraph.vs: if v['nareas'] > 1: line = f'extinction_rates[{v.index+1}] <- 0.0 # {v["label"]}' else: line = f'extinction_rates[{v.index+1}] := extinction # {v["label"]}' extinction_rate_lines.append(line) extinction_rate_lines = '\n'.join(extinction_rate_lines) # populate non-zero anagenetic rates anagenetic_rates_lines = [] for e in model.stategraph.es: etype = e['event'] if etype == 'dispersal': nsrc = float(len(e['src'])) line = (f'anarates[{e.source+1}][{e.target+1}] ' f':= dispersal * {nsrc} ' f'# {states[e.source].name}->{states[e.target].name}') elif etype == 'extinction': line = (f'anarates[{e.source+1}][{e.target+1}] ' f':= {etype} ' f'# {states[e.source].name}->{states[e.target].name}') elif etype.startswith('biome'): line = (f'anarates[{e.source+1}][{e.target+1}] ' ':= biome_transition ' f'# {states[e.source].name}->{states[e.target].name}') anagenetic_rates_lines.append(line) anagenetic_rates_lines = '\n'.join(anagenetic_rates_lines) # cladogenetic events # for each range, enumerate the splits clado_events_lines = [] extend = clado_events_lines.extend clado_event_idx = 1 for i, state in enumerate(states): # i += 1 av = list(ranges.decompose(state)) # areas in state if len(av) == 1: # single area range extend([f'clado_events[{clado_event_idx}] = [{i},{i},{i}] #[{states[i].name},{states[i].name},{states[i].name}]', f'speciation_rates[{clado_event_idx}] := speciation/2']) clado_event_idx += 1 elif len(av) > 1: for a in av: # iterate over areas in state # make single-area state with same biome single = a|(state & biomes.bitmask) j = states.idx[single] clado_events_lines.extend([ f'clado_events[{clado_event_idx}] = [{i},{i},{j}] #[{states[i].name},{states[i].name},{states[j].name}]', f'clado_events[{clado_event_idx+1}] = [{i},{j},{i}] #[{states[i].name},{states[j].name},{states[i].name}]', (f'speciation_rates[{clado_event_idx}] ' ':= speciation/4'), (f'speciation_rates[{clado_event_idx+1}] ' ':= speciation/4') ]) clado_event_idx += 2 k = states.idx[state-a] # index of state without area a clado_events_lines.extend([ f'clado_events[{clado_event_idx}] = [{i},{j},{k}] #[{states[i].name},{states[j].name},{states[k].name}]', f'clado_events[{clado_event_idx+1}] = [{i},{k},{j}] #[{states[i].name},{states[k].name},{states[j].name}]', (f'speciation_rates[{clado_event_idx}] ' ':= speciation/4'), (f'speciation_rates[{clado_event_idx+1}] ' ':= speciation/4') ]) clado_event_idx += 2 clado_events_lines = '\n'.join(clado_events_lines) unobserved_areas = reduce(operator.ior, [ x for x in areas if csvdata[x.name].sum()==0 ], 0) # root state frequencies # root_simplex_params = [0]+[1]*(nranges-1) root_simplex_params = [0] for i in range(1, len(states)): s = states[i] if s & unobserved_areas: f = 0 else: f = 1.0/len(list(ranges.decompose(s))) root_simplex_params.append(f) with open(revscript, 'w') as outf: outf.write(eval(open('classe-template.rev').read()))
acb8cafa74645f1560e286301b9c4b31274498d0
b72e42f7f15ea8d359512cc0fe524f5407f358e5
/CS50_web_dev/src/src8/airline1/airline/urls.py
f9e85ea4cf69f88b0dfd879f4bc3a158aa887856
[ "MIT" ]
permissive
ChuaCheowHuan/web_app_DPTH
ec9f96d66c69ebd7e04df8d4b92578a3aaa7e392
dd901e6359fe76f15b69701c53f76666c3219173
refs/heads/master
2021-06-18T11:31:10.959634
2020-07-23T04:04:52
2020-07-23T04:04:52
205,556,446
0
0
MIT
2021-06-10T21:55:14
2019-08-31T14:42:35
HTML
UTF-8
Python
false
false
797
py
"""airline URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import include, path urlpatterns = [ path('', include('flights.urls')), path('admin/', admin.site.urls), ]
6dad64a78b096b80c43759b584af08e34c1f1b78
8eeae0008711f6c62e63a599d2d7e67ba43b32ad
/tradesimpy/engines/backtest_engine_import.py
77bfd0a3d79150cb0d5a189b1e2bc0e2cc5994e3
[ "BSD-2-Clause" ]
permissive
shaoshoutianheyu/tradesimpy
d0db391fef0cc3471dc159da318c2de3b8bb6d31
5b58676e8d9ae2ce2d714413beddbc14e6154fc7
refs/heads/master
2020-12-13T19:13:29.582731
2016-08-10T19:35:27
2016-08-10T19:35:27
66,049,690
5
5
null
2016-08-19T03:29:06
2016-08-19T03:29:05
null
UTF-8
Python
false
false
315
py
import os import sys # Provide directory paths for necessary imports lib_paths =\ [ os.path.abspath('../data/'), os.path.abspath('../backtester/'), os.path.abspath('../trading_algorithm/'), ] for lib_path in lib_paths: sys.path.append(lib_path) sys.path = list(set(sys.path))
700e79e4d279bb312926b55257ce6be156b4ee69
6bc8a3ea831b544514160f61131c5d2b6c8b4234
/side-experiments/two_worker_classes/gen_class_condition_test.py
08737f317c88e5a2d5e90aaf043d36dcb2771795
[]
no_license
populace-org/optimal-filtering-rating
31d243c06d003584d566e6e9c35b78447b4ebe63
84d9d57a746e0a6df7f7626d68c1136d593bf5f8
refs/heads/master
2020-12-24T07:26:46.844180
2016-07-02T19:35:55
2016-07-02T19:35:55
62,466,846
0
1
null
null
null
null
UTF-8
Python
false
false
780
py
import math import matplotlib.pyplot as plt def LHS(P, m, k): return (math.pow(1.0 - P, k) / math.pow(P, m-k-1)) def RHS(p, m, k): return (math.pow(1.0 - p, k+1) / math.pow(p, m-k)) m = 10 P_range = [float(i) / 100.0 for i in xrange(80, 100)] p_range = [float(i) / 100.0 for i in xrange(60, 80)] for k in range(0, m + 1): x = [LHS(P, m, k) for P in P_range] y = [RHS(p, m, k) for p in p_range] plt.figure() plt.plot(x, y, 'o') plt.plot(x, x) plt.savefig('p vs P for '+str(k)) plt.close() P = 1.0 p_range = [float(i) / 100.0 for i in xrange(80, 100)] for k in range(0, m + 1): y = [LHS(P, m, k) - RHS(p, m, k) for p in p_range] plt.figure() plt.plot(p_range, y) plt.savefig('LHS - RHS vs p for '+str(k)) plt.close()
697626c30cf184c516e232318ae7b05ae01d178c
bdd3bb5ac2abce8bc16fd7a28826b4a2db17079a
/obs_mapper/obs_plot.py
dc4f9f4b82186e356d0f15303658178b2e6d7747
[]
no_license
MIT-STARLab/circinus_tools
9537269c38dc89de51aba0ac250f910ff621e9ea
e18d40766acb26f7074aff317ea96ea54301a788
refs/heads/master
2023-07-21T13:24:52.611318
2022-01-22T15:05:44
2022-01-22T15:05:44
249,547,862
0
0
null
null
null
null
UTF-8
Python
false
false
4,585
py
# Tools for plotting observation targets # # @author Kit Kennedy import json from collections import namedtuple import matplotlib.pyplot as plt from matplotlib.pyplot import savefig from matplotlib.patches import Rectangle # need to "pip install pillow" for this import to work from scipy.misc import imread GeoPoint = namedtuple('GeoPoint', 'ID lat lon') GeoRectangle = namedtuple('GeoRectangle', 'ID lat lon h_lat w_lon') ANNOTATION_X_PAD = 1 ANNOTATION_Y_PAD = 1 def grok_spec_rect(rect,item_uid,spec_option='solid'): grect = GeoRectangle( ID = item_uid, lat = rect['lat_bottom_deg'], lon = rect['lon_left_deg'], h_lat = rect['lat_upper_deg'] - rect['lat_bottom_deg'], w_lon = rect['lon_right_deg'] - rect['lon_left_deg'], ) gpnts = [] if spec_option == 'points': num_lat = rect['num_lat_points'] num_lon = rect['num_lon_points'] lat_spacing = (rect['lat_upper_deg'] - rect['lat_bottom_deg']) / num_lat lon_spacing = (rect['lon_right_deg'] - rect['lon_left_deg']) / num_lon ID = 0 for lat_indx in range(num_lat): for lon_indx in range(num_lon): # disclude this rectangle sub ID if specified if ID in rect['disclude_points']: ID += 1 continue # but each point in the middle of its bin lat = rect['lat_bottom_deg'] + lat_spacing*lat_indx + lat_spacing/2 lon = rect['lon_left_deg'] + lon_spacing*lon_indx + lat_spacing/2 gpnts.append(GeoPoint(ID=ID, lat = lat,lon = lon)) ID += 1 return grect,gpnts def grok_spec_pnt(pnt,item_uid): spec_option = pnt['spec_option'] if spec_option == 'default': return GeoPoint(ID = item_uid,lat = pnt['lat'],lon = pnt['lon']) elif spec_option == 'ignore': return None else: raise NotImplementedError def add_annotation(ax,lat,lon,annotation): xy = (lon+ANNOTATION_Y_PAD,lat+ANNOTATION_X_PAD) ax.annotate(annotation, xy=xy) def plot_geo_point(plt,ax,gpnt): plt.plot(gpnt.lon,gpnt.lat,marker='.',color='black') add_annotation(ax,gpnt.lat,gpnt.lon,str(gpnt.ID)) def plot_rect(plt,ax,rect, item_uid): num_points = 0 spec_option = rect['spec_option'] if spec_option == 'solid': grect,_ = grok_spec_rect(rect,item_uid,spec_option) rect_patch = Rectangle((grect.lon, grect.lat), grect.w_lon, grect.h_lat,alpha=1,fill=False) ax.add_patch(rect_patch) add_annotation(ax,grect.lat,grect.lon,'r'+str(grect.ID)) elif spec_option == 'points': grect,gpnts = grok_spec_rect(rect,item_uid,spec_option) for gpnt in gpnts: plot_geo_point(plt, ax, gpnt) num_points = len(gpnts) if num_points > 0: add_annotation(ax,grect.lat-2,grect.lon-7,'r'+str(grect.ID)) else: print('Warning: no points found in %s'%(grect)) elif spec_option == 'ignore': pass else: raise NotImplementedError return num_points def plot_targets(targets_spec): plt.figure() plt.title('Observation target regions and points') fig = plt.gcf() fig.set_size_inches(20,16) plt.axis((-180, 180, -90, 90)) plt.ylabel('Latitude') plt.xlabel('Longitude') # plot the earth background # image lifted from http://www.wavemetrics.com/products/igorpro/dataaccess/gissupport.htm, accessed 5/3/2015 img = imread("world_map.png") # plot image from bottom left corner plt.imshow(img,extent=[-180, 180, -90, 90]) ax = plt.gca() item_uid = 0 # num points is different from number of IDs because some points can be discluded num_points = 0 rect_items = targets_spec['rectangles'] for rect in rect_items: num_points += plot_rect(plt,ax,rect, item_uid) item_uid += 1 pnt_items = targets_spec['points'] for point in pnt_items: gpnt = grok_spec_pnt(point,item_uid) if gpnt: plot_geo_point(plt,ax,gpnt) num_points += 1 item_uid += 1 print('num_points') print(num_points) plt.show() # savefig('targets.pdf',format='pdf',bbox_inches='tight', transparent="True") if __name__ == '__main__': targets_spec_file = 'targets_spec/targets_tropics_land_loose.json' with open(targets_spec_file,'r') as f: targets_spec = json.load(f) plot_targets(targets_spec)
913cd021c12d554ac4af6619ce5decfb7ce970c3
ee89a6682a01f67b753ab9a7d4ddf588e90c5a59
/src/table_titles.py
0714f430783075fae91b5bf9d523c4bd8b430ba6
[]
no_license
wbkd/bpa-wochenberichte-htw
7ba39429e979580a4b4e2ffee584957fa7e6de25
43608de6986c0b846a3d359d0282a4ae1ef5ac8d
refs/heads/master
2023-06-01T22:31:52.802453
2021-06-26T12:26:13
2021-06-26T12:26:13
379,924,894
13
0
null
null
null
null
UTF-8
Python
false
false
6,350
py
from operator import itemgetter """Script to extract all table headers of one pdf, using font styles and sizes to identify headers. Most parts of the code gratefully taken from https://ichi.pro/de/extrahieren-von-uberschriften-und-absatzen-aus-pdf -mit-pymupdf-113724360868967 Headers that don't belong to tables can be deleted. Headers are being saved in a dict with page numbers as keys and the actual headers as values. The right element tag for the pdfs is h3. Param doc: PDF document to iterate through of type <class 'fitz.fitz.Document'> Returns all existing combinations of fonts and their font-sizes in spans of one pdf, sorted by occurrence. """ def fonts(doc): styles = {} font_counts = {} for page in doc: blocks = page.getText("dict")["blocks"] for b in blocks: # iterate through the text blocks if b['type'] == 0: # this block contains text for l in b["lines"]: # iterate through the text lines for s in l["spans"]: # iterate through the text spans identifier = "{0}".format(s['size']) styles[identifier] = {'size': s['size'], 'font': s['font']} font_counts[identifier] = font_counts.get(identifier, 0) + 1 # count use of font font_counts = sorted(font_counts.items(), key=itemgetter(1), reverse=True) return font_counts, styles def font_tags(font_counts, styles): """Returns dictionary with font sizes as keys and tags as value. :param font_counts: (font_size, count) for all fonts occuring in document :type font_counts: list :param styles: all styles found in the document :type styles: dict :rtype: dict :return: all element tags based on font-sizes """ p_style = styles[font_counts[0][0]] # get style for most used font by count (paragraph) p_size = p_style['size'] # get the paragraph's size # sorting the font sizes high to low, so that we can append the right integer to each tag font_sizes = [] for (font_size, count) in font_counts: font_sizes.append(float(font_size)) font_sizes.sort(reverse=True) # aggregating the tags for each font size idx = 0 size_tag = {} for size in font_sizes: idx += 1 if size == p_size: idx = 0 size_tag[size] = '<p>' if size > p_size: size_tag[size] = '<h{0}>'.format(idx) elif size < p_size: size_tag[size] = '<s{0}>'.format(idx) # if h3 not exist then overwrite h2 to h3 if not '<h3>' in size_tag.values(): for key, value in size_tag.items(): if '<h2>' == value: size_tag[key] = '<h3>' return size_tag def headers_para(doc, size_tag): """Scrapes headers & paragraphs from PDF and return texts with element tags. :param doc: PDF document to iterate through :type doc: <class 'fitz.fitz.Document'> :param size_tag: textual element tags for each size :type size_tag: dict :rtype: list :return: texts with pre-prended element tags """ header_dict = {} page_number = 0 previous_string = {} first = True for page in doc: page_number += 1 blocks = page.getText("dict")["blocks"] for infos in blocks: if infos['type'] == 0: for line in infos["lines"]: for s in line["spans"]: if s['text'].strip(): if first: previous_string = s first = False else: if size_tag[s['size']] == '<h3>' and size_tag[previous_string['size']] == '<h3>': # If current and previous span is h3: combine them block_string = previous_string['text'] + s['text'].strip() test = [block_string.strip()] if page_number in header_dict: # if key already exists if type(header_dict[page_number]) == list: header_dict[page_number].append( block_string.strip()) # add header as value else: # add page number as key, header as value # header_para[page_number] = block_string header_dict[page_number] = test value_list = header_dict[page_number] if type(value_list) == list and len(value_list) > 1: del value_list[-2] # delete incomplete header # For headers of one line only: elif size_tag[s['size']] == '<h3>': # if page_number in header_dict: if type(header_dict[page_number]) == list: header_dict[page_number].append(s['text'].strip()) else: header_dict[page_number] = [s['text'].strip()] previous_string = s # set previous_string to current span return header_dict def delete_headers(headers, headers_to_be_deleted): """delete those that don't belong to tables (headers_to_be_deleted set in content_one_pdf.py) """ keys_to_be_deleted = [] for elem in headers_to_be_deleted: for key, value in headers.items(): # iterate through every page with extracted headers for i, header in enumerate(value): # iterate through headers on one page if elem in header: if len(value) == 1: # list consists of only one header: save key to delete later keys_to_be_deleted.append(key) else: # otherwise delete only the one header value del value[i] i -= 1 for key in keys_to_be_deleted: headers.pop(key, None) return headers
b5f5180f9a11d57ae823a912a59eb65def369fcd
95f0d18cfabeb3806d6a54f80a47aa3b7f996dfb
/newsletter.py
a65ebc63f2e8e0bb01be6a573817946c43907fd5
[ "MIT" ]
permissive
thedeadwoods/Comradery-API
14eade52bc41b4b5e2fdbf5746bff468c62c75d0
0d30df376f5542d01a04b96c5fdf9363d3103679
refs/heads/master
2023-03-23T07:52:27.476182
2021-03-06T20:01:36
2021-03-06T20:01:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,104
py
from lionhearted import settings import os import django import sys os.environ.setdefault("DJANGO_SETTINGS_MODULE", "lionhearted.settings") django.setup() from django.utils.html import strip_tags from forum.models import Comment, Post, partial_update_objs, Community from datetime import datetime, timedelta from django.utils import timezone from django.conf import settings from sendgrid.helpers.mail import Mail, From, Personalization, Email, To from sendgrid import SendGridAPIClient from datetime import datetime, timedelta from django.utils import timezone def send_digest(community, _posts, emails): posts = [] for p in _posts: if p.channel and not p.channel.private: posts.append(p) if len(posts) <= 0: return domain = community.get_domain() channel_dict = {} channel_list = [] for p in posts: if p.channel.get_pretty_name() not in channel_dict: channel_dict[p.channel.get_pretty_name()] = [] channel_list.append(p.channel) if len(channel_dict[p.channel.get_pretty_name()]) < 4: channel_dict[p.channel.get_pretty_name()].append(p) channel_list.sort(key=lambda x: x.sort) content_list = [] for channel in channel_list: ch = channel.get_pretty_name() post_list = [] for p in channel_dict[ch]: post_list.append( { "title": p.title, "link": domain + "/post/" + str(p.id), "author": p.owner.username, "content": strip_tags(p.content)[:100] + "...", } ) content_list.append({"title": ch, "posts": post_list}) dt_data = { "subject": community.display_name + " Community " + community.digest_frequency.capitalize() + " Digest", "community": community.display_name, "logo": community.photo.url if community.photo else None, "domain": community.get_domain(), "channels": content_list, } for email in emails: message = Mail( from_email=From( "[email protected]", community.display_name + " Community Digest" ), ) message.to = To(email) message.template_id = settings.SENDGRID_NEWSLETTER_TEMPLATE_ID message.dynamic_template_data = dt_data try: sg = SendGridAPIClient(settings.SENDGRID_API_KEY) response = sg.send(message) print(email) print(response.status_code) print(response.body) print(response.headers) except Exception as e: print(str(e)) if __name__ == "__main__": if len(sys.argv) > 2: c = Community.objects.get(name=sys.argv[1]) posts = c.post_set.all().order_by("-posted") if sys.argv[2] == "--all": emails = [person.email for person in c.people.all()] else: emails = sys.argv[2:] send_digest(c, posts, emails) else: print("Need community name and email arg")
5d396f8a619172ddd3f61c1c285aedc696426ca7
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03001/s613586641.py
5dadc4795c529eb1e7ffe05c54da04dc2de9168e
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
162
py
import sys sys.setrecursionlimit(10**6) w, h, x, y = map(int, input().split()) ans1 = w*h/2 ans2 = 0 if x == w/2 and y == h/2: ans2 = 1 print(ans1, ans2)
fa05da510debee69a4af4485d50232ca7c5fa3c1
a42e38bc94858d2ea0b751b0717b076407bd75ef
/example/example/documents/models.py
d5cd8b0f3c739532f0e66ebd430b9e5cfcc842b3
[ "MIT" ]
permissive
wolfhechel/django-azurite
90aca7274649e99e1f3595be422e75ce541644d9
48107d1979b480f72d6dad18b4dd2e60c3c19748
refs/heads/master
2021-01-22T04:10:09.436420
2017-05-17T11:05:43
2017-05-17T11:05:43
37,257,138
0
0
null
2015-06-11T11:28:29
2015-06-11T11:28:28
null
UTF-8
Python
false
false
217
py
from django.db import models class Document(models.Model): name = models.CharField(max_length=50) file_field = models.FileField(upload_to='files') def __unicode__(self): return u'%s' % self.name
e5b0b1f4b9f206b62340e849ea16c8f2270dc880
3fdf00da8c02d8498aa594b763d455ff11bc65e1
/generate.py
be9a80aea94240c6608bab6d6ba09c99d010c989
[]
no_license
prabormukherjee/BERT-keyphrase-extraction
e3e2c1db05660a4383f9953f2c81bb68f49607dc
c45115447d91179a99e4ce6e2f1c426841a3fdbe
refs/heads/master
2023-01-28T13:08:23.045704
2020-12-13T13:05:45
2020-12-13T13:05:45
315,028,801
0
0
null
null
null
null
UTF-8
Python
false
false
6,019
py
"""Generate Key Phrase of the model""" import argparse import random import logging import os import numpy as np import torch #from pytorch_pretrained_bert import BertForTokenClassification, BertConfig from transformers import BertForTokenClassification, BertConfig, BertTokenizer from evaluate import evaluate import utils parser = argparse.ArgumentParser() parser.add_argument('--data_dir', default='./BERT-keyphrase-extraction/data/msra/', help="Directory containing the dataset") parser.add_argument('--bert_model_dir', default='bert-base-uncased', help="Directory containing the BERT model in PyTorch") parser.add_argument('--model_dir', default='./BERT-keyphrase-extraction/experiments/base_model', help="Directory containing params.json") parser.add_argument('--seed', type=int, default=23, help="random seed for initialization") parser.add_argument('--restore_file', default='best', help="name of the file in `model_dir` containing weights to load") parser.add_argument('--multi_gpu', default=False, action='store_true', help="Whether to use multiple GPUs if available") parser.add_argument('--fp16', default=False, action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--test_file', default = './BERT-keyphrase-extraction/h1_7.txt', help = 'path to test file' ) def load_test_sentences(bert_model_dir,sentences_file): test_sentences = [] tokenizer = BertTokenizer.from_pretrained(bert_model_dir, do_lower_case=True) with open(sentences_file, 'r',encoding='utf-8') as file: for cnt,line in enumerate(file): tokens = line.split() test_sentences.append(tokenizer.convert_tokens_to_ids(tokens)) return test_sentences def yield_data_batch(test_sentences ,params): for i in range(len(test_sentences)//params.batch_size): # fetch sentences and tags sentences = test_sentences[i*params.batch_size:(i+1)*params.batch_size] # batch length batch_len = len(sentences) # compute length of longest sentence in batch batch_max_len = max([len(s) for s in sentences]) max_len = min(batch_max_len, params.max_len) # prepare a numpy array with the data, initialising the data with pad_idx batch_data = 0 * np.ones((batch_len, max_len)) # copy the data to the numpy array for j in range(batch_len): cur_len = len(sentences[j]) if cur_len <= max_len: batch_data[j][:cur_len] = sentences[j] else: batch_data[j] = sentences[j][:max_len] # since all data are indices, we convert them to torch LongTensors batch_data = torch.tensor(batch_data, dtype=torch.long) # shift tensors to GPU if available batch_data = batch_data.to(params.device) yield batch_data def predict(model, data_iterator, params, sentences_file): """Evaluate the model on `steps` batches.""" # set model to evaluation mode model.eval() pred_words = [] pred_pos = [] print('Starting Evaluation') for _ in range(params.eval_steps): # fetch the next evaluation batch batch_data= next(data_iterator) batch_masks = batch_data.gt(0) batch_output = model(batch_data, token_type_ids=None, attention_mask=batch_masks) # shape: (batch_size, max_len, num_labels) batch_output = batch_output[0].detach().cpu() batch_masks = batch_masks.detach().cpu().numpy().astype('uint8') _, indices = torch.max(batch_output,2) for i,idx in enumerate(indices.detach().numpy()): #batch_predict.append(batch_data[i,idx==1 and batch_masks[i,:] == True].detach().cpu().numpy()) pred_pos.append([a and b for a,b in zip(idx, batch_masks[i])]) output = [] with open(sentences_file, 'r',encoding='utf-8') as file: for cnt,(line,p) in enumerate(zip(file, pred_pos)): line = line.split() out = [line[i] for i in range(len(line)) if p[i]>0] if out: output.extend(out) #print(output) with open('output.txt', 'w') as f: f.write("%s " % output) print('output flused to disk') print('Done') if __name__ == '__main__': args = parser.parse_args() # Load the parameters from json file json_path = os.path.join(args.model_dir, 'params.json') assert os.path.isfile(json_path), "No json configuration file found at {}".format(json_path) params = utils.Params(json_path) # Use GPUs if available params.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') params.n_gpu = torch.cuda.device_count() params.multi_gpu = args.multi_gpu # Set the random seed for reproducible experiments random.seed(args.seed) torch.manual_seed(args.seed) if params.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) # set random seed for all GPUs params.seed = args.seed test_sentences = load_test_sentences(args.bert_model_dir,args.test_file) # Specify the test set size params.test_size = len(test_sentences) params.eval_steps = params.test_size // params.batch_size # Define the model # config_path = os.path.join(args.bert_model_dir, 'config.json') config_path = os.path.join('./BERT-keyphrase-extraction', 'config.json') config = BertConfig.from_json_file(config_path) #update config with num_labels config.update({"num_labels":2}) model = BertForTokenClassification(config) #model = BertForTokenClassification(config, num_labels=2) model.to(params.device) # Reload weights from the saved file utils.load_checkpoint(os.path.join(args.model_dir, args.restore_file + '.pth.tar'), model) if args.fp16: model.half() if params.n_gpu > 1 and args.multi_gpu: model = torch.nn.DataParallel(model) predict(model = model, data_iterator = yield_data_batch(test_sentences ,params), params = params, sentences_file=args.test_file)
76dfebb655f45b53d778e40b6ae290fc76785090
09f0505f3ac1dccaf301c1e363423f38768cc3cc
/r_DailyProgrammer/Intermediate/C239/__init__.py
cf2036a70032f331ee1707580700ecc8e93ea54f
[]
no_license
Awesome-Austin/PythonPractice
02212292b92814016d062f0fec1c990ebde21fe7
9a717f91d41122be6393f9fcd1a648c5e62314b3
refs/heads/master
2023-06-21T11:43:59.366064
2021-07-29T23:33:00
2021-07-29T23:33:00
270,854,302
0
0
null
2020-08-11T20:47:10
2020-06-08T23:24:09
Python
UTF-8
Python
false
false
71
py
#! python3 from r_DailyProgrammer.Intermediate.C239.main import main
[ "{ID}+{username}@users.noreply.github.com" ]
{ID}+{username}@users.noreply.github.com
054d4ae02061323bc123c1d0faad5aec890d1a87
b9503e86921041609763c65f148c08ecff69cc4b
/dojo_ninjas_app/models.py
9da7e8535bda9583ef770e1a7765cb4f707b8e21
[]
no_license
cristian-nav/Dojo-y-ninjas
c1371e7b4c74b4ee127f3734e68f30fdcc80c623
d06016bf2e6f5adc7d20806f0031c04a978c769c
refs/heads/main
2023-02-25T06:11:44.707956
2021-02-11T18:44:58
2021-02-11T18:44:58
338,104,055
0
0
null
null
null
null
UTF-8
Python
false
false
571
py
from django.db import models class Dojo(models.Model): name = models.CharField(max_length=255) city = models.CharField(max_length=255) state = models.CharField(max_length=2) desc = models.CharField(("dojo antiguo"), max_length=50) class Ninja(models.Model): dojo = models.ForeignKey(Dojo, related_name="ninjas", on_delete = models.CASCADE) first_name = models.CharField(max_length=255) last_name = models.CharField(max_length=255) created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True)
2aedeb2b23073928b3f8b67e3cc1d7b1e29ec108
b237ba12ed0b825490c5616eb4726a22792f34bd
/package/scripts/turtlesim_go_to_2.py
056519625430a6d429a70c000a18973ce3d956ee
[]
no_license
JoelsonMiller/trabalhos
76b45279bd02abc86337c0015dd87c90ae4d8cd1
d30e4664576c05382c9b779e38884d0cc22e05c5
refs/heads/master
2021-07-12T19:26:27.099620
2020-08-05T13:19:53
2020-08-05T13:19:53
191,399,936
0
0
null
null
null
null
UTF-8
Python
false
false
782
py
#!/usr/bin/env python import rospy from turtlesim.msg import Pose from geometry_msgs.msg import Twist import math pub = rospy.Publisher("/turtle1/cmd_vel", Twist, queue_size=10) goal_x = 3.0 def callback(data): #print("A pose em x = " + str(data.x) + " y = " + str(data.y) + " theta = " + str(data.theta)) twist = Twist() if((goal_x - data.x) < 0): if(data.x > goal_x): twist.linear.x = -0.5 else: twist.linear.x = 0.0 elif((goal_x - data.x) > 0): if(data.x < goal_x): twist.linear.x = 0.5 else: twist.linear.x = 0.0 else: twist.linear.x = 0.0 pub.publish(twist) def control_turtlesim(): rospy.init_node("control", anonymous=True) rospy.Subscriber("/turtle1/pose", Pose, callback) rospy.spin() if __name__ == "__main__": control_turtlesim()
410dcad216373dd96905200a44c6f6e4a4a9826e
e1da5e8320113ce0affee1daa9f6ad94c26e9441
/lab3/3.2.py
2166b23b2fcfe74b51be1609214fe728243e4f3a
[]
no_license
cheretka/Fundamentals-of-Artificial-Intelligence
5f5efc119609ca4b131fbb217eefe1ce84aa7e16
d2949d9ab76e33651b24a696b2543101d540a9ce
refs/heads/master
2023-05-14T03:32:11.485401
2021-05-25T16:58:58
2021-05-25T17:13:11
370,770,505
0
0
null
null
null
null
UTF-8
Python
false
false
1,472
py
import numpy as np def relu(x): return (x > 0) * x def relu2deriv(output): return output>0 input = np.array([[8.5, 0.65, 1.2], [9.5, 0.8, 1.3], [9.9, 0.8, 0.5], [9.0, 0.9, 1.0]]) layer_1_weights = np.array([[0.1, 0.2, -0.1], [-0.1, 0.1, 0.9], [0.1, 0.4, 0.1]]) layer_2_weights = np.array([[0.3, 1.1, -0.3], [0.1, 0.2, 0.0], [0.0, 1.3, 0.1]]) expected_output = np.array([[0.1, 1, 0.1], [0, 1, 0], [0, 0, 0.1], [0.1, 1, 0.2]]) alpha = 0.01 for iteration in range(10000): error = 0 for i in range(len(input)): layer_1_values = relu(np.dot(input[i], layer_1_weights.T)) layer_2_values = np.dot(layer_1_values, layer_2_weights.T) layer_2_delta = layer_2_values - expected_output[i] layer_1_delta = np.dot(layer_2_delta, layer_2_weights) * relu2deriv(layer_1_values) layer_2_weight_delta = np.outer(layer_2_delta, layer_1_values) layer_1_weight_delta = np.outer(layer_1_delta, input[i]) layer_2_weights = layer_2_weights - np.dot(alpha, layer_2_weight_delta) layer_1_weights = layer_1_weights - np.dot(alpha, layer_1_weight_delta) error = error + (layer_2_values - expected_output[i]) ** 2 print("error " + str(sum(error)))
9236eff7dea85e348b76f3d349db72fe24ee20c1
52bbc07d59b003342a0920da47b20cb4a52385c4
/node.py
515f5e395046f4bbf7bf1799140358081ad58036
[]
no_license
juliemyhu/HB-DS
281aeefdf57a0ffe6ec680cacbf49716a88403a4
a13846647eb6c266ccf7bca2d71cf1da59b36e05
refs/heads/master
2023-03-23T08:54:52.852559
2021-03-08T23:59:59
2021-03-08T23:59:59
292,702,223
0
0
null
null
null
null
UTF-8
Python
false
false
218
py
class Node(): def __init__(self,data): self.data = data self.next = None class DLinkedNode(): def __init__(self,data) self.data = data self.next = None self.prev = None