blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
ea98b768baecabb185a4dec462e1d58d22c97517
405e8ba51ab7f177797a14bbbc619e033c5e9fcc
/metrics_utils.py
5ffc4e8672d8127ea826b90bc19898102248d67d
[]
no_license
htfhxx/metrics_python
6d801f49136c249979d5e6c1d7d3ed5ba1b3f710
c360353668cfbff335418921b67c3224ba182309
refs/heads/master
2022-12-15T20:51:33.211776
2020-09-13T11:53:01
2020-09-13T11:53:01
295,139,113
3
0
null
null
null
null
UTF-8
Python
false
false
7,220
py
def evaluate_2(y_true, y_pred): tp = sum(1 for a, b in zip(y_true, y_pred) if a == 1 and b == 1) fp = sum(1 for a, b in zip(y_true, y_pred) if a == 0 and b == 1) fn = sum(1 for a, b in zip(y_true, y_pred) if a == 1 and b == 0) # tp = ((y_true==1) & (y_pred==1)).sum() # fp = ((y_true==0) & (y_pred==1)).sum() # fn = ((y_true==1) & (y_pred==0)).sum() if tp == 0: return 0.0 precision = tp / (tp + fp) recall = tp / (tp+fn) f1 = 2 * (precision * recall) / (precision + recall) return precision, recall, f1 def evaluate_N(y_true, y_pred, N, average=None): tp_list,fp_list, fn_list = [0 for i in range(N)],[0 for i in range(N)],[0 for i in range(N)] for i in range(1, N+1): y_true_tmp = [1 if j==i else 0 for j in y_true] y_pred_tmp = [1 if j==i else 0 for j in y_pred] # tp, fp, fn = count_tp_fp_fn(y_true_tmp, y_pred_tmp) tp = sum(1 for a, b in zip(y_true_tmp, y_pred_tmp) if a == 1 and b == 1) fp = sum(1 for a, b in zip(y_true_tmp, y_pred_tmp) if a == 0 and b == 1) fn = sum(1 for a, b in zip(y_true_tmp, y_pred_tmp) if a == 1 and b == 0) tp_list[i-1]=tp fp_list[i-1]=fp fn_list[i-1]=fn if average == 'micro': tp = sum(tp_list) fp = sum(fp_list) fn = sum(fn_list) precision = tp / (tp + fp) recall = tp / (tp + fn) if tp == 0: f1 = 0.0 else: f1 = 2 * (precision * recall) / (precision + recall) return precision, recall, f1 elif average == 'macro': precision_list, recall_list, f1_list = [0 for i in range(N)],[0 for i in range(N)],[0 for i in range(N)] for i in range(1, N+1): precision_list[i-1] = tp_list[i-1] / ( tp_list[i-1] + fp_list[i-1] ) recall_list[i-1] = tp_list[i-1] / ( tp_list[i-1] + fn_list[i-1] ) if (precision_list[i-1] + recall_list[i-1]) == 0: f1_list[i-1] = 0.0 else: f1_list[i-1] = 2 * (precision_list[i-1] * recall_list[i-1]) / (precision_list[i-1] + recall_list[i-1]) return sum(precision_list) / N, sum(recall_list) / N, sum(f1_list) / N elif average == 'weighted': precision_list, recall_list, f1_list = [0 for i in range(N)],[0 for i in range(N)],[0 for i in range(N)] num_list = [0 for i in range(N)] for i in range(1, N+1): precision_list[i-1] = tp_list[i-1] / ( tp_list[i-1] + fp_list[i-1] ) recall_list[i-1] = tp_list[i-1] / ( tp_list[i-1] + fn_list[i-1] ) if (precision_list[i-1] + recall_list[i-1]) == 0: f1_list[i-1] = 0.0 else: f1_list[i-1] = 2 * (precision_list[i-1] * recall_list[i-1]) / (precision_list[i-1] + recall_list[i-1]) num_list[i-1] = sum(1 for a in y_true if a == i) assert sum(num_list) == len(y_true) == len(y_pred) percent_list = [a/len(y_true) for a in num_list] func = lambda x, y: x * y return sum(map(func, precision_list, percent_list)), sum(map(func, recall_list, percent_list)), sum(map(func, f1_list, percent_list)) else: print('wrong average !') exit() def evaluate_Multi(y_true, y_pred, N, average=None): # reference_list = [[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 0], [1, 0, 1]] # prediciton_list = [[1, 0, 0], [1, 0, 0], [1, 1, 1], [1, 0, 0], [0, 1, 1]] tp_list,fp_list, fn_list = [0 for i in range(N)],[0 for i in range(N)],[0 for i in range(N)] for i in range(1, N+1): y_true_tmp = [1 if j[i-1]==1 else 0 for j in y_true] y_pred_tmp = [1 if j[i-1]==1 else 0 for j in y_pred] # print("y_true_tmp: ",y_true_tmp) # print("y_pred_tmp: ",y_pred_tmp) tp = sum(1 for a, b in zip(y_true_tmp, y_pred_tmp) if a == 1 and b == 1) fp = sum(1 for a, b in zip(y_true_tmp, y_pred_tmp) if a == 0 and b == 1) fn = sum(1 for a, b in zip(y_true_tmp, y_pred_tmp) if a == 1 and b == 0) tp_list[i-1]=tp fp_list[i-1]=fp fn_list[i-1]=fn if average == 'micro': tp = sum(tp_list) fp = sum(fp_list) fn = sum(fn_list) if tp ==0: return 0.0, 0.0, 0.0 precision = tp / (tp + fp) recall = tp / (tp + fn) if (precision + recall)== 0: f1 = 0.0 else: f1 = 2 * (precision * recall) / (precision + recall) return precision, recall, f1 elif average == 'macro': precision_list, recall_list, f1_list = [0 for i in range(N)],[0 for i in range(N)],[0 for i in range(N)] for i in range(1, N+1): precision_list[i-1] = tp_list[i-1] / ( tp_list[i-1] + fp_list[i-1] ) recall_list[i-1] = tp_list[i-1] / ( tp_list[i-1] + fn_list[i-1] ) if (precision_list[i-1] + recall_list[i-1]) == 0: f1_list[i-1] = 0.0 else: f1_list[i-1] = 2 * (precision_list[i-1] * recall_list[i-1]) / (precision_list[i-1] + recall_list[i-1]) return sum(precision_list) / N, sum(recall_list) / N, sum(f1_list) / N elif average == 'weighted': precision_list, recall_list, f1_list = [0 for i in range(N)],[0 for i in range(N)],[0 for i in range(N)] num_list = [0 for i in range(N)] for i in range(1, N+1): precision_list[i-1] = tp_list[i-1] / ( tp_list[i-1] + fp_list[i-1] ) recall_list[i-1] = tp_list[i-1] / ( tp_list[i-1] + fn_list[i-1] ) if (precision_list[i-1] + recall_list[i-1]) == 0: f1_list[i-1] = 0.0 else: f1_list[i-1] = 2 * (precision_list[i-1] * recall_list[i-1]) / (precision_list[i-1] + recall_list[i-1]) # print('y_true: ',y_true) num_list[i-1] = sum(1 for a in y_true if a[i-1] ==1) # assert sum(num_list) == len(y_true) == len(y_pred) # print('num_list: ', num_list) percent_list = [a/sum(num_list) for a in num_list] func = lambda x, y: x * y return sum(map(func, precision_list, percent_list)), sum(map(func, recall_list, percent_list)), sum(map(func, f1_list, percent_list)) else: print('wrong average !') exit() def main(): reference_list = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] prediciton_list = [0, 0, 1, 1, 1, 0, 0, 1, 1, 1] print(evaluate_2(reference_list, prediciton_list)) print('-'*100) reference_list = [1, 1, 2, 2, 2, 3, 3, 3, 3, 3] prediciton_list = [1, 2, 2, 2, 3, 1, 2, 3, 3, 3] print(evaluate_N(reference_list, prediciton_list, 3,average='micro')) print(evaluate_N(reference_list, prediciton_list, 3,average='macro')) print(evaluate_N(reference_list, prediciton_list, 3,average='weighted')) print('-'*100) reference_list = [[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 0], [1, 0, 1]] prediciton_list = [[1, 0, 0], [1, 0, 0], [1, 1, 1], [1, 0, 0], [0, 1, 1]] print(evaluate_Multi(reference_list, prediciton_list, 3, average='micro')) print(evaluate_Multi(reference_list, prediciton_list, 3, average='macro')) print(evaluate_Multi(reference_list, prediciton_list, 3, average='weighted')) if __name__ == '__main__': main()
112ff750125e7c5fb1438b5dcf7bcdaef7265187
a992a2bcea0e40a9cc3d947466a7eaafaf337280
/SocketPython/server.py
0e78bac2702be3473a62e6ef8bef95fec62d64df
[]
no_license
rodrigoferrazazevedo/dojo-python
6bcfb4bf27435b5e60fa1c992840e319fe2dbbb3
b3aebfae8b0dae2c2b898431ed747dd9236706e3
refs/heads/master
2022-12-24T10:25:10.692833
2022-06-22T02:12:18
2022-06-22T02:12:18
107,460,652
0
1
null
null
null
null
UTF-8
Python
false
false
284
py
import socket server = socket.socket() server.bind( ('localhost',8000)) server.listen(5) while True: conn, addr = server.accept() print "Connection established" print addr msg = conn.recv(1024) print msg conn.send("Connection established") conn.close()
095d3023a70bd06fac2923e3635efb9a4e247285
91e56cf5312223af9bef83538c4ccd50afa1ca27
/p024_LexicographicPermutations.py
b0136f3d7a929a64a7c07f3d98b8f9326cccab32
[]
no_license
fletcherw/projecteuler
18dedac2bd90186f7ea9320ff45892cdc838f082
6bc3094f816511ca10984ed58b6fb8e99594327a
refs/heads/master
2021-05-16T03:06:14.495177
2016-12-17T23:25:39
2016-12-17T23:25:39
18,919,808
2
0
null
null
null
null
UTF-8
Python
false
false
383
py
import math digits = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] digitsout = "" index = 999999 #the index of the permutation you're trying to calculate. Note that this is 0 indexed, so the 10th permutation would be 9, etc. etc. for n in range(len(digits) - 1, -1, -1): fact = math.factorial(n) digitsout += str(digits.pop(int(math.floor(index/fact)))) index = index % fact print digitsout
4a6c735916616d81dda3aa9ae347e5ab8ee1ef2c
4b2d75ba65d2a6838a0cbc70cdda0ae49bd4ae49
/testdata/api_endpoint.py
4a5691c2fcbfc737d822dd14c0db0fa80015d454
[]
no_license
mimqupspy/python_rest
32360d051f266f379165543aea9f7a7bf7252188
707ac2494752fd6772081f7afddfc7e9102ad12a
refs/heads/main
2023-08-29T12:41:39.738241
2021-10-12T04:44:29
2021-10-12T04:44:29
415,355,636
0
0
null
null
null
null
UTF-8
Python
false
false
724
py
# api endpoints list_user = "https://reqres.in/api/users?page=2" single_user = "https://reqres.in/api/users/2" single_user_not_found = "https://reqres.in/api/users/23" list_resource = "https://reqres.in/api/unknown" single_resource = "https://reqres.in/api/unknown/2" single_resource_not_found = "https://reqres.in/api/unknown/23" post_create_user_url = "https://reqres.in/api/users" patch_user_url = "https://reqres.in/api/users/2" delete_user_url = "https://reqres.in/api/users/2" # Register Sucessfull, Unsucessfull register_url = "https://reqres.in/api/register" # Login Sucessfull, unsucessfull login_url = "https://reqres.in/api/login" # response delayed get_delayed_url = "https://reqres.in/api/users?delay=3"
a3531277a9a252270e45aa6e6fef912242833302
1588092ae5dc099be61cea76900ca5b0f01b8739
/exam_2020/order.py
031c694e024b5fdd873722a99f7fb446c0612724
[]
no_license
isakss/Forritun1_Python
e13fa19d90c7fba64dea3ef28853313e6a836ed8
9d9590126fbd80f1a5a8a440240fead03154ce91
refs/heads/master
2023-02-15T16:07:30.325561
2021-01-12T09:07:40
2021-01-12T09:07:40
292,535,583
0
0
null
null
null
null
UTF-8
Python
false
false
597
py
class Order(object): def __init__(self, item_str="", price=0.0): self.__item = item_str self.__price = price def item(self): return self.__item def price(self): return self.__price def __gt__(self, other): return self.__price > other.__price def __add__(self, other): result = Order() result.__item = self.__item + "+" + other.__item result.__price = self.__price + other.__price return result def __str__(self): return "Item: {}, price: {}".format(self.__item, self.__price)
98bb88d68bcbb6950b2ada14bd90d249dbc4e630
9ac9e863da8831703e1d0322a0fe9d279c550fbf
/auctions/migrations/0002_category_listing.py
8c128798bf571a1448f073efd337bfe8e9352792
[]
no_license
eldocbrown/cs50w-project2-commerce
b247da79ff2563f59781c7bc13d1efabae0c5a29
48988ac8f510c15fcf41d4c13010efe5509b3aa4
refs/heads/master
2023-01-04T00:24:34.454410
2020-10-26T03:27:08
2020-10-26T03:27:08
305,499,319
0
0
null
null
null
null
UTF-8
Python
false
false
1,304
py
# Generated by Django 3.1.2 on 2020-10-20 18:06 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('auctions', '0001_initial'), ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=64)), ], ), migrations.CreateModel( name='Listing', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=255)), ('description', models.TextField()), ('startingPrice', models.DecimalField(decimal_places=2, max_digits=10)), ('category', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='catListings', to='auctions.category')), ('creator', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='usrListings', to=settings.AUTH_USER_MODEL)), ], ), ]
71dfbd91d20000eec465c1c8fe2f2198fd8b1e9c
38d568d4a230aa7b8ace0957847e9b681223564f
/getSingleZoneCloudMain.py
399eff7450c8b4e45d3d065528d6bf9cd8da3506
[]
no_license
lifeisjustagame/Hello-World
03aa19c0fb8d77663439fb0de73780bbd8d9eeee
43e51d79cffdb90a89b3bf2f219b5e8c2bb1e52a
refs/heads/master
2021-01-23T06:54:26.110225
2017-04-06T07:44:21
2017-04-06T07:44:21
86,407,323
0
0
null
2017-03-28T03:01:34
2017-03-28T02:45:52
null
UTF-8
Python
false
false
399
py
if __name__ == '__main__': start = time.time() LOG.warning('PROGRAM START AT: %s' % TIME) try: mc = MainClass() mc.task_main() except Exception, e: LOG.error(e) raise except (SystemExit, keyboardInterrupt), e: error_str = 'Program killed by user, reason: %s' %e LOG.error(error_str) sys.exit() finally: end = 'use: %s' % (time.time() - start) LOG.info(end)
6215b44a8f43d5aaf175a030c7c142759e405f83
747c76c186567d0fc1af2774f6bd732ce6b11198
/catkin_auefinals/build/auefinals/turtlebot3/turtlebot3_slam/catkin_generated/pkg.installspace.context.pc.py
8e5ea4bc2c9b2df68a1eb7a58dbe208672968976
[]
no_license
abhibhagwat/TurtleBot3_obstaclecourse
5bf9374b3f99f377f22f04304c65f10c0d5df0fd
4e213042e5da385d5086175de1dae3e345be4880
refs/heads/master
2023-03-12T09:59:50.178892
2021-03-04T08:46:20
2021-03-04T08:46:20
344,267,482
0
1
null
null
null
null
UTF-8
Python
false
false
443
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "${prefix}/include".split(';') if "${prefix}/include" != "" else [] PROJECT_CATKIN_DEPENDS = "roscpp;sensor_msgs".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "turtlebot3_slam" PROJECT_SPACE_DIR = "/home/abhibhagwat/catkin_auefinals/install" PROJECT_VERSION = "1.2.1"
cf0a8120c529928cdef0b3a7a81c713a31381216
72512fb3e6c3e5b38f55a5385411ed6a9873aa05
/examples/single_calculations/test_multiple_force_eval.py
333c996e81ad331042290003dde1ea948be3a9de
[ "MIT" ]
permissive
borellim/aiida-cp2k
e8750e5e514b98c34b6a604fe46d3c473f359d35
ea5cd54bd8419fefd24967f2c2569031cc28a592
refs/heads/master
2020-12-19T17:03:05.545681
2019-10-19T07:03:37
2019-10-19T07:03:37
235,795,066
0
0
MIT
2020-01-23T12:56:45
2020-01-23T12:56:44
null
UTF-8
Python
false
false
7,658
py
# -*- coding: utf-8 -*- # pylint: disable=invalid-name ############################################################################### # Copyright (c), The AiiDA-CP2K authors. # # SPDX-License-Identifier: MIT # # AiiDA-CP2K is hosted on GitHub at https://github.com/aiidateam/aiida-cp2k # # For further information on the license, see the LICENSE.txt file. # ############################################################################### """Run DFT calculation with multiple force eval sections""" from __future__ import print_function from __future__ import absolute_import import sys import ase import click from aiida.engine import run from aiida.orm import (Code, Dict, StructureData) from aiida.common import NotExistent from aiida.plugins import CalculationFactory Cp2kCalculation = CalculationFactory('cp2k') @click.command('cli') @click.argument('codelabel') def main(codelabel): """Run DFT calculation with multiple force eval sections""" try: code = Code.get_from_string(codelabel) except NotExistent: print("The code '{}' does not exist".format(codelabel)) sys.exit(1) print("Testing CP2K ENERGY on H2O dimer (Mixed: DFT+MM)...") # structure pos = [[0.934, 2.445, 1.844], [1.882, 2.227, 1.982], [0.81, 3.165, 2.479], [3.59, 2.048, 2.436], [4.352, 2.339, 1.906], [3.953, 1.304, 2.946]] atoms = ase.Atoms(symbols='OH2OH2', pbc=True, cell=[5.0, 5.0, 5.0]) atoms.set_positions(pos) structure = StructureData(ase=atoms) # parameters parameters = Dict( dict={ 'MULTIPLE_FORCE_EVALS': { 'FORCE_EVAL_ORDER': '2 3', 'MULTIPLE_SUBSYS': 'T', }, 'FORCE_EVAL': [ { 'METHOD': 'MIXED', 'MIXED': { 'MIXING_TYPE': 'GENMIX', 'GENERIC': { 'ERROR_LIMIT': 1.0E-10, 'MIXING_FUNCTION': 'E1+E2', 'VARIABLES': 'E1 E2', }, 'MAPPING': { 'FORCE_EVAL_MIXED': { 'FRAGMENT': [ { '_': 1, '1': '3' }, { '_': 2, '4': '6' }, ], }, 'FORCE_EVAL': [{ '_': 1, 'DEFINE_FRAGMENTS': '1 2', }, { '_': 2, 'DEFINE_FRAGMENTS': '1 2', }], } }, }, { 'METHOD': 'FIST', 'MM': { 'FORCEFIELD': { 'SPLINE': { 'EPS_SPLINE': 1.30E-5, 'EMAX_SPLINE': 0.8, }, 'CHARGE': [ { 'ATOM': 'H', 'CHARGE': 0.0, }, { 'ATOM': 'O', 'CHARGE': 0.0, }, ], 'BOND': { 'ATOMS': 'H O', 'K': 0.0, 'R0': 2.0, }, 'BEND': { 'ATOMS': 'H O H', 'K': 0.0, 'THETA0': 2.0, }, 'NONBONDED': { 'LENNARD-JONES': [ { 'ATOMS': 'H H', 'EPSILON': 0.2, 'SIGMA': 2.4, }, { 'ATOMS': 'H O', 'EPSILON': 0.4, 'SIGMA': 3.0, }, { 'ATOMS': 'O O', 'EPSILON': 0.8, 'SIGMA': 3.6, }, ] }, }, 'POISSON': { 'EWALD': { 'EWALD_TYPE': 'none', } } }, 'SUBSYS': { 'TOPOLOGY': { 'CONNECTIVITY': 'GENERATE', 'GENERATE': { 'CREATE_MOLECULES': True, } } } }, { 'METHOD': 'Quickstep', 'DFT': { 'BASIS_SET_FILE_NAME': 'BASIS_MOLOPT', 'QS': { 'EPS_DEFAULT': 1.0e-12, 'WF_INTERPOLATION': 'ps', 'EXTRAPOLATION_ORDER': 3, }, 'MGRID': { 'NGRIDS': 4, 'CUTOFF': 280, 'REL_CUTOFF': 30, }, 'XC': { 'XC_FUNCTIONAL': { '_': 'LDA', }, }, 'POISSON': { 'PERIODIC': 'none', 'PSOLVER': 'MT', }, }, 'SUBSYS': { 'KIND': [ { '_': 'O', 'BASIS_SET': 'DZVP-MOLOPT-SR-GTH', 'POTENTIAL': 'GTH-LDA-q6' }, { '_': 'H', 'BASIS_SET': 'DZVP-MOLOPT-SR-GTH', 'POTENTIAL': 'GTH-LDA-q1' }, ], }, }, ] }) options = { "resources": { "num_machines": 1, "num_mpiprocs_per_machine": 1, }, "max_wallclock_seconds": 1 * 3 * 60, } inputs = {'structure': structure, 'parameters': parameters, 'code': code, 'metadata': {'options': options,}} print("Submitted calculation...") run(Cp2kCalculation, **inputs) if __name__ == '__main__': main() # pylint: disable=no-value-for-parameter
575cc3c1e2ae6bca3bd38b5117cba86f4090d1a7
24b1bec9f2e2cb0ae1f7dd75527a2a1a01e08429
/py/neural_network.py
958d7c089c05fb3f4a18a2d601633bdb4edf7f2c
[]
no_license
lwierzb1/mgr-colorful-image-colorization
c370409f6690bb72c7c5651104a470373a427fe4
fe60cc06ce406d0ced75db36cb3755634216c019
refs/heads/main
2023-02-22T19:31:40.577761
2021-01-25T21:41:57
2021-01-25T21:41:57
332,080,742
0
0
null
null
null
null
UTF-8
Python
false
false
2,576
py
#!/usr/bin/env python import cv2 import numpy as np from config_reader import ConfigReader __author__ = "Lukasz Wierzbicki" __version__ = "1.0.0" __maintainer__ = "Lukasz Wierzbicki" __email__ = "[email protected]" class NeuralNetwork: """ CNN neural network used to colorize grayscale image. [https://arxiv.org/pdf/1603.08511] ... Attributes ---------- __PROTO_FILE file with cnn description. Describe the structure of neural network __WEIGHTS_FILE file that defines the internal parameters of cnn layers. __QUANTIZED_LAB_SPACE file with quantized lab space. __INPUT_WIDTH cnn input width. __INPUT_HEIGHT cnn input height. __neural_network instance of cnn neural network Methods ------- populate(blob_matrix) sets input (blob_matrix) of __neural_network instance. predict_ab_space() predicts the ab space based on the provided input with the method populate() """ def __init__(self): config_reader = ConfigReader() self.__PROTO_FILE = config_reader.get_string_property('ProtoFile') self.__WEIGHTS_FILE = config_reader.get_string_property('WeightsFile') quantized_lab_space_path = config_reader.get_string_property('QuantizedLabSpace') self.__QUANTIZED_LAB_SPACE = np.load(quantized_lab_space_path).transpose().reshape(2, 313, 1, 1) self.__INPUT_WIDTH = config_reader.get_int_property('Width') self.__INPUT_HEIGHT = config_reader.get_int_property('Height') self.__neural_network = cv2.dnn.readNetFromCaffe(self.__PROTO_FILE, self.__WEIGHTS_FILE) self.__populate_network_layers_with_quantized_lab_space() def __populate_network_layers_with_quantized_lab_space(self): # populate cluster centers as 1x1 convolution kernel. Based on 'colorization_deploy_v2.prototxt' class8 = self.__neural_network.getLayerId("class8_ab") conv8 = self.__neural_network.getLayerId("conv8_313_rh") self.__neural_network.getLayer(class8).blobs = [self.__QUANTIZED_LAB_SPACE.astype("float32")] self.__neural_network.getLayer(conv8).blobs = [np.full([1, 313], 2.606, dtype="float32")] def predict_ab_space(self): result = self.__neural_network.forward() return result[0, :, :, :].transpose((1, 2, 0)) def populate(self, blob_matrix): self.__neural_network.setInput(blob_matrix) def get_width(self): return self.__INPUT_WIDTH def get_height(self): return self.__INPUT_HEIGHT
cdbbd4c40b880cbbffc579c8ac2750e95e75bb71
649bd422025e421d86025743eac324c9b882a2e8
/exam/1_three-dimensional_atomic_system/dump/phasetrans/temp42_7000.py
7498f9768395d5a4d3115ae4ba0a49d57c335108
[]
no_license
scheuclu/atom_class
36ddee1f6a5995872e858add151c5942c109847c
0c9a8c63d9b38898c1869fe8983126cef17662cd
refs/heads/master
2021-01-21T10:52:28.448221
2017-03-07T23:04:41
2017-03-07T23:04:41
83,489,471
0
0
null
null
null
null
UTF-8
Python
false
false
68,978
py
ITEM: TIMESTEP 7000 ITEM: NUMBER OF ATOMS 2048 ITEM: BOX BOUNDS pp pp pp 7.2345940138227149e-01 4.6476540598614875e+01 7.2345940138227149e-01 4.6476540598614875e+01 7.2345940138227149e-01 4.6476540598614875e+01 ITEM: ATOMS id type xs ys zs 8 1 0.128552 0.0630246 0.0619357 35 1 0.0601396 0.125834 0.0579319 130 1 0.0620239 0.0611971 0.118196 165 1 0.121561 0.127058 0.122569 389 1 0.122801 7.85632e-05 0.373726 1423 1 0.440806 0.503865 0.436085 4 1 0.00145638 0.0660019 0.0574981 161 1 0.0018685 0.126967 0.120668 61 1 0.878707 0.12832 -0.000217188 509 1 0.873791 0.375808 0.370374 2 1 0.0606639 0.057574 -0.00141547 510 1 0.936259 0.439689 0.379218 12 1 0.246629 0.059001 0.0580648 39 1 0.183194 0.123133 0.0624847 43 1 0.311763 0.117562 0.0645861 134 1 0.189522 0.0648692 0.118709 138 1 0.309126 0.0546212 0.124301 169 1 0.251353 0.122474 0.125306 10 1 0.317942 0.0595849 0.000554554 1437 1 0.873931 0.498099 0.378169 143 1 0.43594 -0.00534059 0.185141 16 1 0.376082 0.059471 0.063345 47 1 0.440619 0.123451 0.058817 142 1 0.437309 0.0639194 0.122341 173 1 0.370194 0.120437 0.123993 177 1 0.503774 0.117399 0.122794 20 1 0.497881 0.0599086 0.0634801 1181 1 0.869593 0.497704 0.124042 24 1 0.622682 0.0627586 0.0613091 51 1 0.560709 0.125569 0.0578838 146 1 0.565034 0.0587568 0.126662 181 1 0.622477 0.122264 0.128479 1171 1 0.56661 0.497058 0.187624 1431 1 0.691599 0.500284 0.440763 28 1 0.74877 0.0616595 0.0627112 55 1 0.687452 0.125176 0.0597502 59 1 0.809676 0.125273 0.057304 150 1 0.692701 0.0637766 0.124013 154 1 0.80358 0.0654529 0.126697 185 1 0.745165 0.130014 0.124371 511 1 0.936169 0.372248 0.434261 1545 1 0.250192 0.497895 0.500736 512 1 0.876242 0.435194 0.439084 32 1 0.872674 0.0631448 0.0528145 63 1 0.938453 0.129104 0.058489 158 1 0.937772 0.0658637 0.120985 189 1 0.868243 0.123613 0.127033 399 1 0.438347 0.00121822 0.43826 40 1 0.123344 0.190071 0.0624893 67 1 0.061922 0.25435 0.0595683 72 1 0.133622 0.312737 0.0624685 162 1 0.0613279 0.188186 0.12354 194 1 0.0579134 0.316056 0.125646 197 1 0.125838 0.250344 0.1246 193 1 0.000868717 0.25327 0.125516 36 1 0.997218 0.19095 0.0645919 1435 1 0.814979 0.497984 0.435272 1281 1 1.00149 0.49997 0.250178 1429 1 0.627468 0.499332 0.386837 44 1 0.252754 0.187648 0.0625167 71 1 0.193338 0.246197 0.065619 75 1 0.31301 0.242155 0.0679734 76 1 0.252183 0.310784 0.0611341 166 1 0.188771 0.18211 0.123487 170 1 0.312798 0.190317 0.128483 198 1 0.192784 0.310755 0.121206 201 1 0.254954 0.251877 0.124522 202 1 0.314553 0.306996 0.124304 37 1 0.122934 0.127788 0.00153675 54 1 0.685453 0.191815 0.00013005 279 1 0.689414 0.00444724 0.314638 48 1 0.375741 0.18364 0.0641309 79 1 0.436483 0.245963 0.0594011 80 1 0.377986 0.309758 0.0622608 174 1 0.438238 0.183728 0.120081 205 1 0.379909 0.245674 0.124493 206 1 0.431713 0.315859 0.126658 52 1 0.502132 0.184773 0.0556531 1553 1 0.500981 0.497773 0.502565 209 1 0.494878 0.252142 0.120503 84 1 0.495935 0.311758 0.0608669 56 1 0.623663 0.183738 0.0663643 83 1 0.559196 0.244661 0.0641338 88 1 0.623248 0.308722 0.0632706 178 1 0.556537 0.183699 0.125315 210 1 0.558979 0.312292 0.120671 213 1 0.623702 0.252075 0.124608 60 1 0.751316 0.190625 0.0595086 87 1 0.6843 0.253515 0.0617974 91 1 0.809441 0.253359 0.0601402 92 1 0.751254 0.317498 0.0631962 182 1 0.682531 0.185316 0.122869 186 1 0.810428 0.189535 0.122964 214 1 0.686531 0.319619 0.122417 217 1 0.744962 0.25211 0.127427 218 1 0.811189 0.315369 0.12395 1169 1 0.500988 0.499828 0.123902 58 1 0.811208 0.189449 0.000213794 68 1 -0.0030746 0.310442 0.0629016 64 1 0.872593 0.188861 0.0671485 95 1 0.9296 0.251326 0.0692817 96 1 0.872728 0.311167 0.0643383 190 1 0.932789 0.187715 0.123904 221 1 0.871726 0.250878 0.126301 222 1 0.936077 0.314049 0.128202 53 1 0.626523 0.122997 0.00239837 481 1 -0.00233232 0.379308 0.371507 99 1 0.0698692 0.370332 0.0629588 104 1 0.132725 0.435108 0.0643846 226 1 0.0575469 0.436034 0.122689 229 1 0.124783 0.375395 0.127106 100 1 -0.00238494 0.442914 0.0633281 225 1 -0.00447408 0.373053 0.129089 135 1 0.186565 0.000400529 0.184849 62 1 0.934627 0.197249 0.0037252 1557 1 0.631374 0.499806 0.499968 281 1 0.753278 0.0020219 0.253043 103 1 0.193817 0.370276 0.0634747 107 1 0.316543 0.368993 0.0635862 108 1 0.254407 0.433809 0.0609888 230 1 0.192594 0.432589 0.121703 233 1 0.253361 0.370163 0.124159 234 1 0.310614 0.434772 0.122718 1303 1 0.68494 0.499832 0.313981 57 1 0.74889 0.124971 -0.00479295 111 1 0.434137 0.371804 0.0640754 112 1 0.379526 0.43471 0.0590255 237 1 0.372144 0.377514 0.125438 238 1 0.437321 0.434043 0.124914 241 1 0.498001 0.368891 0.121795 116 1 0.497304 0.436309 0.0607125 277 1 0.625793 0.000628152 0.249755 502 1 0.685319 0.440824 0.3764 503 1 0.685713 0.377063 0.438696 505 1 0.746164 0.371623 0.375539 411 1 0.816512 0.00157497 0.438578 6 1 0.183284 0.0638795 -0.00197856 115 1 0.557357 0.374096 0.0609541 120 1 0.624987 0.435852 0.062274 242 1 0.559459 0.43416 0.119013 245 1 0.619542 0.374346 0.122522 1305 1 0.748577 0.501699 0.252 119 1 0.686413 0.375393 0.0604713 123 1 0.813632 0.377248 0.06223 124 1 0.749588 0.43348 0.0602707 246 1 0.682314 0.430593 0.125754 249 1 0.750122 0.378295 0.128234 250 1 0.81313 0.433156 0.126269 22 1 0.685842 0.058761 -0.00122662 46 1 0.437046 0.188562 -0.00156703 127 1 0.937209 0.378517 0.0599529 128 1 0.872609 0.441509 0.061635 253 1 0.879914 0.378305 0.124592 254 1 0.936245 0.440139 0.125389 1409 1 0.00116811 0.498174 0.37569 506 1 0.813886 0.435297 0.375083 507 1 0.81274 0.37594 0.433099 508 1 0.75235 0.435584 0.43348 136 1 0.130429 0.0633251 0.18346 163 1 0.0642844 0.12429 0.185431 258 1 0.0626707 0.0626388 0.247322 264 1 0.122467 0.0627412 0.306706 291 1 0.0673849 0.128648 0.305536 293 1 0.126393 0.123899 0.24655 289 1 0.998768 0.12333 0.251277 140 1 0.249732 0.0599185 0.189703 167 1 0.191698 0.123987 0.189693 171 1 0.313517 0.12353 0.189509 262 1 0.183233 0.0589461 0.246267 266 1 0.314834 0.0637815 0.249472 268 1 0.250061 0.0621561 0.311939 295 1 0.186613 0.126324 0.31215 297 1 0.246649 0.126435 0.255237 299 1 0.314374 0.119777 0.31392 497 1 0.503502 0.374056 0.372282 144 1 0.379654 0.0579709 0.1919 175 1 0.436289 0.121758 0.18678 270 1 0.441094 0.0637015 0.252388 272 1 0.376906 0.0686017 0.317739 301 1 0.377446 0.119876 0.253432 303 1 0.440069 0.128176 0.316893 276 1 0.497579 0.0637862 0.313563 499 1 0.560995 0.377338 0.439845 148 1 0.50105 0.0618843 0.1883 305 1 0.499461 0.130923 0.255709 152 1 0.627963 0.0644428 0.192913 179 1 0.564038 0.127673 0.187498 274 1 0.559456 0.0743504 0.250611 280 1 0.626151 0.0650221 0.319268 307 1 0.559634 0.133156 0.312291 309 1 0.623981 0.129246 0.255201 504 1 0.626374 0.436987 0.438067 156 1 0.749008 0.0601101 0.189288 183 1 0.685492 0.129157 0.190995 187 1 0.809609 0.124112 0.186662 278 1 0.689394 0.0642617 0.257972 282 1 0.8052 0.0663072 0.250196 284 1 0.751253 0.0658281 0.315226 311 1 0.688663 0.13078 0.317425 313 1 0.751228 0.128691 0.251998 315 1 0.813729 0.131315 0.313511 626 1 0.56668 0.43788 0.498761 415 1 0.934626 -0.00282726 0.43551 498 1 0.560171 0.43641 0.378076 501 1 0.626643 0.377951 0.377553 260 1 1.00084 0.064715 0.310442 132 1 1.00368 0.0634479 0.184217 160 1 0.868685 0.0661395 0.188977 191 1 0.935907 0.126375 0.181639 286 1 0.932168 0.0640314 0.251438 288 1 0.866742 0.0625634 0.310761 317 1 0.873402 0.127423 0.243852 319 1 0.927993 0.131207 0.307613 3 1 0.0581158 -0.00190146 0.0619134 1177 1 0.751377 0.494014 0.125438 168 1 0.131123 0.184282 0.182038 195 1 0.0619186 0.251811 0.183098 200 1 0.12648 0.314769 0.182843 290 1 0.0682699 0.193436 0.243153 296 1 0.125708 0.197806 0.306016 322 1 0.0627085 0.323108 0.244657 323 1 0.0611777 0.252611 0.309632 325 1 0.124 0.258409 0.246446 328 1 0.123175 0.315897 0.311894 321 1 0.00261834 0.252948 0.246918 292 1 1.0036 0.189879 0.313072 172 1 0.252467 0.187329 0.189602 199 1 0.190551 0.247671 0.18132 203 1 0.314936 0.251209 0.187796 204 1 0.253621 0.313072 0.190657 294 1 0.189229 0.192158 0.247511 298 1 0.310573 0.184121 0.250842 300 1 0.250667 0.187152 0.31468 326 1 0.190392 0.315595 0.245044 327 1 0.187356 0.249585 0.314412 329 1 0.254179 0.247527 0.254073 330 1 0.310352 0.313613 0.252407 331 1 0.314816 0.250537 0.316564 332 1 0.246705 0.314151 0.312047 176 1 0.374258 0.185664 0.191951 207 1 0.435957 0.246665 0.186958 208 1 0.374461 0.313458 0.19019 302 1 0.432612 0.188601 0.25042 304 1 0.374425 0.182642 0.316039 333 1 0.369893 0.245776 0.249567 334 1 0.438595 0.308344 0.248895 335 1 0.433205 0.250308 0.311236 336 1 0.374491 0.313021 0.315189 212 1 0.501217 0.308275 0.184892 180 1 0.499941 0.18775 0.189727 308 1 0.499901 0.198606 0.311885 337 1 0.504367 0.254397 0.250366 340 1 0.497735 0.308694 0.311539 184 1 0.620302 0.185567 0.18841 211 1 0.560284 0.24965 0.182716 216 1 0.624408 0.314685 0.186641 306 1 0.564943 0.187647 0.252178 312 1 0.626893 0.192262 0.317594 338 1 0.565502 0.3151 0.247957 339 1 0.56419 0.256323 0.318893 341 1 0.625277 0.247575 0.249511 344 1 0.626406 0.316473 0.319034 188 1 0.745194 0.188593 0.188862 215 1 0.685737 0.251487 0.188383 219 1 0.81075 0.25178 0.189911 220 1 0.747784 0.3166 0.184695 310 1 0.684747 0.187144 0.256345 314 1 0.81079 0.188943 0.248082 316 1 0.749085 0.191064 0.313833 342 1 0.682474 0.314296 0.247686 343 1 0.688598 0.251542 0.314451 345 1 0.749651 0.250412 0.254062 346 1 0.810808 0.310493 0.248272 347 1 0.810164 0.251835 0.310499 348 1 0.744454 0.312693 0.310947 164 1 1.00328 0.184529 0.184832 324 1 1.00033 0.318132 0.309838 196 1 0.998697 0.313816 0.187448 192 1 0.872146 0.188689 0.183754 223 1 0.940535 0.250959 0.194518 224 1 0.877115 0.312882 0.190439 318 1 0.942039 0.184671 0.246444 320 1 0.875249 0.19185 0.312871 349 1 0.872674 0.252178 0.249771 350 1 0.93938 0.312645 0.253081 351 1 0.942492 0.250996 0.309285 352 1 0.878816 0.311622 0.311129 141 1 0.374978 3.92766e-05 0.122342 495 1 0.431885 0.3731 0.440483 227 1 0.0610198 0.374336 0.184984 232 1 0.126975 0.436617 0.18747 354 1 0.062513 0.437497 0.246811 355 1 0.0567612 0.38038 0.31601 357 1 0.12795 0.374827 0.242928 360 1 0.123694 0.438657 0.31007 356 1 0.992778 0.438884 0.310326 1283 1 0.0658573 0.501334 0.308944 273 1 0.506477 0.00427065 0.246629 494 1 0.441121 0.431742 0.378643 275 1 0.564042 0.00585184 0.308686 231 1 0.190993 0.374897 0.183494 235 1 0.311153 0.37696 0.185077 236 1 0.251098 0.434731 0.190255 358 1 0.188591 0.437991 0.247593 359 1 0.186018 0.37192 0.310038 361 1 0.252116 0.377792 0.251082 362 1 0.319875 0.438181 0.248636 363 1 0.314823 0.373693 0.313649 364 1 0.247823 0.43407 0.315161 493 1 0.373908 0.371581 0.377474 239 1 0.43849 0.369392 0.189544 240 1 0.377445 0.4337 0.183779 365 1 0.376758 0.37242 0.250733 366 1 0.433668 0.435656 0.248918 367 1 0.436666 0.374441 0.311694 368 1 0.376764 0.434919 0.310584 372 1 0.495942 0.434176 0.309584 244 1 0.50491 0.433899 0.187062 1439 1 0.942286 0.503028 0.43994 496 1 0.370026 0.438406 0.436723 287 1 0.936656 0.00398446 0.311895 369 1 0.500541 0.370402 0.247066 243 1 0.560679 0.371185 0.183311 248 1 0.624468 0.435352 0.186798 370 1 0.561684 0.432782 0.251939 371 1 0.562493 0.374042 0.313589 373 1 0.620893 0.376883 0.252521 376 1 0.624071 0.436007 0.314989 30 1 0.936737 0.0623645 0.000342756 129 1 0.00269962 0.000235982 0.121504 500 1 0.50152 0.437805 0.442839 247 1 0.68836 0.377992 0.190801 251 1 0.811435 0.374581 0.18448 252 1 0.753016 0.437142 0.193963 374 1 0.683446 0.436022 0.252517 375 1 0.683907 0.37497 0.314856 377 1 0.745761 0.373462 0.25147 378 1 0.81527 0.437948 0.252875 379 1 0.812838 0.37478 0.309425 380 1 0.747196 0.434409 0.311165 487 1 0.187698 0.37479 0.439347 1179 1 0.811322 0.499754 0.190289 1307 1 0.810746 0.505592 0.312752 263 1 0.183463 -0.00171005 0.312065 153 1 0.749312 0.00464983 0.125944 353 1 -0.00250144 0.379131 0.24883 228 1 -0.000391314 0.437336 0.1879 255 1 0.934083 0.377709 0.191298 256 1 0.871654 0.435546 0.19066 381 1 0.873295 0.37573 0.248809 382 1 0.935019 0.440722 0.248507 383 1 0.931914 0.380095 0.308505 384 1 0.874068 0.441369 0.315725 492 1 0.254135 0.439013 0.43624 1153 1 0.000331684 0.498357 0.124853 21 1 0.620344 0.000766715 -0.00146579 386 1 0.0662106 0.0684488 0.367382 392 1 0.126811 0.0619125 0.433824 419 1 0.0557541 0.124532 0.432022 421 1 0.12483 0.127573 0.369494 45 1 0.378547 0.124434 0.00133342 417 1 0.993974 0.123545 0.369929 1055 1 0.940165 0.504438 0.0616815 390 1 0.186223 0.0581618 0.371363 394 1 0.313466 0.0616664 0.375598 396 1 0.249939 0.0590612 0.437839 423 1 0.182974 0.122141 0.435049 425 1 0.250685 0.12319 0.376158 427 1 0.305581 0.119276 0.439374 491 1 0.311575 0.375249 0.437182 27 1 0.808756 0.00399316 0.0608145 486 1 0.188179 0.437942 0.371363 398 1 0.44097 0.0645954 0.376025 400 1 0.377356 0.0581341 0.434185 429 1 0.374444 0.130744 0.382271 431 1 0.443105 0.126526 0.434328 404 1 0.500676 0.0635706 0.440855 433 1 0.502201 0.12964 0.376101 1167 1 0.442553 0.497192 0.188607 617 1 0.250893 0.379023 0.499613 489 1 0.251782 0.374845 0.376108 1043 1 0.55871 0.497263 0.0568525 402 1 0.557668 0.066272 0.375141 408 1 0.626015 0.06475 0.434459 435 1 0.561246 0.124332 0.441317 437 1 0.62323 0.127912 0.376177 613 1 0.123415 0.374029 0.497484 159 1 0.934087 0.00619878 0.187281 562 1 0.564433 0.190248 0.499584 406 1 0.689208 0.06333 0.377409 410 1 0.812277 0.0631291 0.369976 412 1 0.749065 0.0633817 0.437206 439 1 0.686039 0.122799 0.444428 441 1 0.754034 0.123997 0.371065 443 1 0.809814 0.131784 0.432745 147 1 0.562587 0.000727164 0.181478 388 1 -0.00667217 0.0631736 0.434461 155 1 0.808683 -0.00127362 0.185638 414 1 0.93414 0.0650846 0.365536 416 1 0.875739 0.0701361 0.431391 445 1 0.875632 0.129289 0.369882 447 1 0.938803 0.12923 0.438796 1183 1 0.931201 0.49678 0.189292 1291 1 0.313711 0.498161 0.310527 418 1 0.06194 0.187106 0.376438 424 1 0.123853 0.186693 0.437777 450 1 0.0594206 0.317453 0.371678 451 1 0.0646468 0.248481 0.431968 453 1 0.123632 0.251669 0.367846 456 1 0.127553 0.313207 0.434796 452 1 0.994775 0.312803 0.435383 449 1 1.00268 0.253946 0.372113 391 1 0.185279 -0.00283091 0.433333 422 1 0.187366 0.189477 0.373049 426 1 0.309395 0.185385 0.381033 428 1 0.248359 0.182331 0.440471 454 1 0.186034 0.319678 0.371947 455 1 0.18237 0.249334 0.440373 457 1 0.246698 0.253643 0.373445 458 1 0.313812 0.314132 0.375606 459 1 0.307098 0.24968 0.436605 460 1 0.247253 0.312552 0.439602 1301 1 0.623926 0.499971 0.253137 546 1 0.0569969 0.190214 0.494085 1311 1 0.935712 0.502896 0.317711 430 1 0.439075 0.190808 0.373474 432 1 0.37508 0.192366 0.439258 461 1 0.378866 0.253051 0.377676 462 1 0.438708 0.316425 0.375089 463 1 0.441406 0.249369 0.437825 464 1 0.376712 0.312293 0.441147 436 1 0.498526 0.189639 0.442379 468 1 0.498721 0.317384 0.438036 465 1 0.501899 0.250892 0.376591 434 1 0.566026 0.190338 0.377444 440 1 0.626881 0.187723 0.444149 466 1 0.563432 0.311309 0.381162 467 1 0.559754 0.247968 0.438728 469 1 0.63032 0.248573 0.382204 472 1 0.620388 0.313928 0.441874 271 1 0.439033 -0.00106042 0.318222 473 1 0.753229 0.250453 0.37312 438 1 0.689598 0.1874 0.38137 442 1 0.809045 0.186526 0.371863 474 1 0.815001 0.313861 0.369948 444 1 0.753241 0.189608 0.440551 475 1 0.811177 0.247323 0.436242 476 1 0.751959 0.314415 0.437781 470 1 0.684813 0.315197 0.380985 471 1 0.685407 0.251678 0.446317 420 1 0.997909 0.189232 0.435278 479 1 0.939295 0.252653 0.434769 478 1 0.938104 0.314663 0.369391 477 1 0.873111 0.254639 0.37348 446 1 0.938719 0.19003 0.371371 448 1 0.873682 0.189067 0.431966 480 1 0.876965 0.312689 0.437697 483 1 0.0569922 0.371938 0.438989 484 1 -0.00134206 0.435792 0.440835 485 1 0.122074 0.372907 0.377218 488 1 0.126285 0.436041 0.434475 1549 1 0.381121 0.49942 0.498838 490 1 0.313301 0.436939 0.376498 482 1 0.064173 0.439183 0.372623 157 1 0.868307 0.0069701 0.126431 1433 1 0.753198 0.501021 0.372849 269 1 0.376982 0.00081037 0.251643 285 1 0.870084 0.000646785 0.245479 1419 1 0.316831 0.500513 0.435092 1049 1 0.749367 0.499365 -8.06914e-05 1421 1 0.376461 0.495069 0.373614 1295 1 0.439645 0.498139 0.315578 15 1 0.438754 0.00303228 0.065206 1297 1 0.507068 0.495652 0.248928 1175 1 0.683844 0.495873 0.185368 403 1 0.566975 0.00452225 0.440572 395 1 0.3123 -0.000585075 0.439513 610 1 0.0609063 0.437441 0.498717 593 1 0.497808 0.250396 0.499175 614 1 0.187232 0.440176 0.500463 9 1 0.245108 0.00202299 -0.00365606 1287 1 0.188464 0.500764 0.311751 139 1 0.313057 0.00157957 0.190137 1031 1 0.191881 0.494702 0.0663062 1035 1 0.311949 0.501131 0.0634568 1161 1 0.254855 0.496256 0.122763 29 1 0.870721 -0.000234753 0.000450807 413 1 0.875065 -0.000707176 0.373339 1285 1 0.129312 0.496968 0.250386 133 1 0.122837 0.00111593 0.1228 1045 1 0.621874 0.500224 -0.000807479 283 1 0.812789 -0.00129986 0.312839 1299 1 0.565038 0.497543 0.318349 131 1 0.0663741 0.00684952 0.184368 586 1 0.308124 0.31267 0.496695 514 1 0.0661114 0.0592995 0.497838 126 1 0.936719 0.43723 -0.000539188 618 1 0.315415 0.444037 0.500092 530 1 0.558248 0.0639541 0.503641 573 1 0.880604 0.126956 0.499553 17 1 0.500793 0.000173482 2.98394e-06 525 1 0.375497 -0.00123303 0.497529 1053 1 0.876359 0.502476 0.00249757 605 1 0.871831 0.247236 0.496698 125 1 0.872662 0.373497 -0.00103968 558 1 0.433649 0.195764 0.50476 1025 1 0.999089 0.501939 0.00247765 578 1 0.0633985 0.30943 0.500574 526 1 0.436419 0.0653712 0.500581 1 1 1.00082 -0.00223193 -0.00420077 561 1 0.49684 0.123359 0.500739 101 1 0.133281 0.379761 0.0047027 109 1 0.373151 0.373592 0.00135549 1561 1 0.748435 0.504914 0.502589 566 1 0.688869 0.18698 0.499233 117 1 0.622944 0.368307 0.00276264 622 1 0.436778 0.436051 0.498559 14 1 0.433657 0.0579452 -0.00298516 625 1 0.500982 0.375712 0.500169 634 1 0.810848 0.444363 0.499293 638 1 0.936604 0.436084 0.501887 518 1 0.182865 0.0582678 0.50336 49 1 0.496425 0.125832 -0.00902918 74 1 0.311832 0.311072 0.000372142 38 1 0.189616 0.191698 0.00335144 1041 1 0.496416 0.497982 -0.00655761 34 1 0.0634845 0.187676 -0.00239472 521 1 0.249008 -0.00660895 0.500631 520 1 0.126301 0.0622904 0.562213 547 1 0.0637536 0.122087 0.559946 642 1 0.0597411 0.0575779 0.62446 677 1 0.128431 0.124784 0.622987 516 1 0.000300178 0.063029 0.559377 907 1 0.311435 -0.00124977 0.939829 513 1 -0.00163344 -0.000334918 0.498526 581 1 0.123125 0.248136 0.502039 1943 1 0.687658 0.490706 0.931849 524 1 0.244747 0.0617972 0.562151 551 1 0.189595 0.126865 0.562738 555 1 0.308629 0.128502 0.552369 646 1 0.187072 0.0671946 0.624397 650 1 0.31117 0.0652671 0.620275 681 1 0.249288 0.126762 0.619581 909 1 0.373105 -8.40608e-05 0.870463 527 1 0.437495 0.00415031 0.560414 641 1 -0.00426936 -0.00101645 0.623458 528 1 0.372371 0.0663369 0.564949 559 1 0.434526 0.124524 0.562057 654 1 0.434501 0.0624754 0.627552 685 1 0.375361 0.123588 0.630649 532 1 0.498787 0.0609038 0.566987 601 1 0.753871 0.246728 0.501564 1951 1 0.938844 0.501539 0.937489 689 1 0.491391 0.13202 0.627178 536 1 0.625442 0.0583403 0.564089 563 1 0.559668 0.126134 0.571048 658 1 0.560138 0.0636245 0.628744 693 1 0.623675 0.122774 0.625306 1021 1 0.87753 0.374464 0.869492 669 1 0.879409 0.00673035 0.625305 540 1 0.750762 0.0658896 0.56392 567 1 0.692765 0.127084 0.56069 571 1 0.813331 0.123383 0.565094 662 1 0.686999 0.0633361 0.624982 666 1 0.813392 0.0613319 0.627102 697 1 0.753659 0.121914 0.62917 522 1 0.315828 0.0614469 0.50067 515 1 0.0614112 -0.00214769 0.5607 1022 1 0.943811 0.434816 0.878991 570 1 0.814508 0.187234 0.50202 519 1 0.181519 -0.00444905 0.559169 673 1 -0.0025037 0.125391 0.625122 544 1 0.880289 0.0630278 0.562581 575 1 0.933886 0.126384 0.56237 670 1 0.938856 0.0646148 0.621931 701 1 0.872952 0.130417 0.626798 911 1 0.434057 -0.00551882 0.936008 645 1 0.126139 -6.22041e-06 0.622581 569 1 0.755751 0.126882 0.499361 1929 1 0.25134 0.500876 0.869416 787 1 0.562019 0.00108128 0.808233 552 1 0.120141 0.185039 0.559269 579 1 0.0605794 0.247573 0.561744 584 1 0.127518 0.313878 0.562735 674 1 0.063762 0.184231 0.627348 706 1 0.0645617 0.311034 0.627859 709 1 0.125825 0.248681 0.626123 580 1 0.00375345 0.309811 0.566473 705 1 0.00471667 0.248082 0.626877 647 1 0.185766 0.000853534 0.687077 543 1 0.934572 -0.00209961 0.562554 556 1 0.247262 0.186428 0.554287 583 1 0.185095 0.246007 0.561617 587 1 0.310663 0.250313 0.559886 588 1 0.248719 0.314738 0.560482 678 1 0.191963 0.184628 0.630398 682 1 0.311257 0.196608 0.624712 710 1 0.187606 0.310189 0.625493 713 1 0.248311 0.250239 0.622945 714 1 0.306411 0.315873 0.623844 667 1 0.816034 -8.07411e-05 0.683572 779 1 0.314674 -0.000742022 0.809021 565 1 0.623402 0.120924 0.509187 560 1 0.372191 0.187739 0.562663 591 1 0.436149 0.256897 0.569148 592 1 0.371225 0.312626 0.561652 686 1 0.434821 0.190923 0.622524 717 1 0.373253 0.252869 0.62533 718 1 0.441138 0.311267 0.628673 564 1 0.498065 0.186202 0.560351 721 1 0.504203 0.243046 0.625252 1949 1 0.880026 0.496081 0.876367 899 1 0.0596275 -0.00265895 0.933129 606 1 0.939622 0.310775 0.501205 596 1 0.504397 0.313089 0.56426 568 1 0.628052 0.18754 0.56002 595 1 0.564288 0.249971 0.561845 600 1 0.627396 0.312996 0.56288 690 1 0.563334 0.187674 0.625169 722 1 0.563894 0.309739 0.621208 725 1 0.628234 0.251519 0.623003 538 1 0.810274 0.0665569 0.497744 1947 1 0.818948 0.496339 0.933981 917 1 0.619495 -0.00758049 0.869356 534 1 0.687672 0.0639608 0.50471 553 1 0.242712 0.124325 0.496831 572 1 0.75623 0.186571 0.563757 599 1 0.689184 0.254521 0.560172 603 1 0.812323 0.254262 0.567951 604 1 0.751509 0.31413 0.563518 694 1 0.687257 0.194308 0.624667 698 1 0.814787 0.188258 0.626842 726 1 0.690383 0.31539 0.622634 729 1 0.751656 0.249156 0.627397 730 1 0.816775 0.317287 0.625228 781 1 0.37196 -0.000487247 0.75122 1555 1 0.566193 0.499576 0.566721 548 1 1.00355 0.184696 0.560827 576 1 0.873346 0.189107 0.556639 607 1 0.935946 0.249639 0.559766 608 1 0.875126 0.317565 0.563922 702 1 0.942737 0.191188 0.623407 733 1 0.876628 0.250058 0.623399 734 1 0.93926 0.312204 0.623448 1691 1 0.813175 0.495108 0.685383 1927 1 0.193531 0.500823 0.936511 1921 1 1.00142 0.498997 0.876526 1023 1 0.942281 0.373286 0.943807 611 1 0.0622056 0.373226 0.561208 616 1 0.127972 0.435877 0.558709 738 1 0.0643782 0.435046 0.623199 741 1 0.126444 0.377903 0.626166 612 1 1.00071 0.43367 0.559662 737 1 1.00461 0.374136 0.627225 1665 1 0.999982 0.504268 0.62481 1813 1 0.623152 0.502683 0.757126 615 1 0.184781 0.375875 0.560492 619 1 0.315107 0.381726 0.559613 620 1 0.24927 0.438362 0.56388 742 1 0.18533 0.435363 0.623237 745 1 0.247463 0.375231 0.62415 746 1 0.314461 0.438759 0.627755 1024 1 0.878779 0.435075 0.936839 557 1 0.374978 0.128469 0.496047 623 1 0.440265 0.374161 0.566352 624 1 0.37689 0.439938 0.563171 749 1 0.373267 0.373671 0.626459 750 1 0.436179 0.437938 0.627138 753 1 0.50213 0.377951 0.623058 628 1 0.495838 0.440374 0.562026 602 1 0.810549 0.310486 0.500802 609 1 0.000101122 0.37223 0.501596 793 1 0.751631 0.00468845 0.750142 1014 1 0.689711 0.433178 0.872506 1803 1 0.313972 0.503967 0.810229 627 1 0.561524 0.376224 0.56169 632 1 0.624465 0.438702 0.562261 754 1 0.56103 0.437785 0.626842 757 1 0.625462 0.378826 0.624365 1015 1 0.683745 0.369765 0.940963 1695 1 0.942558 0.499325 0.687239 651 1 0.310134 0.000469171 0.687503 1017 1 0.752565 0.370502 0.871178 1689 1 0.752204 0.498967 0.627151 1563 1 0.812794 0.495945 0.562941 631 1 0.690756 0.380956 0.559491 635 1 0.81278 0.378319 0.560965 636 1 0.752246 0.441226 0.561838 758 1 0.688141 0.434503 0.63175 761 1 0.74688 0.374752 0.624112 762 1 0.813417 0.435558 0.624606 1817 1 0.753055 0.495136 0.754604 65 1 0.00200859 0.250385 1.00042 639 1 0.940187 0.37743 0.562002 640 1 0.871539 0.431237 0.555974 765 1 0.877642 0.379393 0.620556 766 1 0.941883 0.437871 0.624064 1018 1 0.809939 0.436945 0.879502 102 1 0.196933 0.434943 1.00391 1019 1 0.8094 0.372837 0.936057 590 1 0.436266 0.31096 0.506536 1793 1 0.00398661 0.500974 0.752631 1020 1 0.746994 0.431292 0.937424 791 1 0.688489 -0.00277478 0.81048 648 1 0.121043 0.0583957 0.686025 675 1 0.0684466 0.12349 0.685356 770 1 0.063205 0.0587692 0.747939 776 1 0.11747 0.0659846 0.813527 803 1 0.0606525 0.127154 0.809193 805 1 0.123429 0.122972 0.748939 644 1 0.00016984 0.0627566 0.685988 652 1 0.245703 0.0641332 0.686682 679 1 0.185201 0.124277 0.691537 683 1 0.311525 0.125601 0.686411 774 1 0.186385 0.0600975 0.752037 778 1 0.308117 0.0603319 0.749428 780 1 0.251825 0.0585692 0.811563 807 1 0.190514 0.118517 0.813226 809 1 0.251877 0.118137 0.747862 811 1 0.316811 0.122962 0.810243 656 1 0.372819 0.0618856 0.685787 687 1 0.435908 0.12572 0.689402 782 1 0.437846 0.0634155 0.748734 784 1 0.375794 0.0601246 0.812172 813 1 0.370368 0.121438 0.749003 815 1 0.436191 0.127933 0.81464 817 1 0.499408 0.128584 0.75207 788 1 0.500078 0.0618522 0.813826 1551 1 0.436938 0.501767 0.563826 660 1 0.498956 0.0653694 0.687908 664 1 0.628042 0.060037 0.689149 691 1 0.561481 0.122729 0.68379 786 1 0.559025 0.0693465 0.754228 792 1 0.621361 0.0597747 0.811365 819 1 0.565278 0.127886 0.812955 821 1 0.623156 0.126837 0.744307 1567 1 0.941386 0.49989 0.562061 66 1 0.0660371 0.313985 0.999076 668 1 0.749737 0.0610649 0.690401 695 1 0.683013 0.125866 0.686436 699 1 0.817169 0.1315 0.689272 790 1 0.683204 0.0622763 0.751394 794 1 0.812258 0.0627159 0.752424 796 1 0.748102 0.0602179 0.81532 823 1 0.689909 0.123188 0.817338 825 1 0.748606 0.125376 0.750518 827 1 0.80876 0.125655 0.817942 1821 1 0.874825 0.495872 0.750699 69 1 0.125249 0.248129 0.999698 86 1 0.685142 0.314141 1.00111 122 1 0.810043 0.433249 0.997818 772 1 1.00059 0.0594568 0.81091 801 1 1.00431 0.12983 0.746355 672 1 0.876569 0.0629857 0.690109 703 1 0.9387 0.122611 0.696418 798 1 0.940537 0.0564948 0.750826 800 1 0.876128 0.0585347 0.808556 829 1 0.870163 0.127308 0.753362 831 1 0.939635 0.125853 0.809723 1805 1 0.376562 0.498733 0.748155 1687 1 0.68367 0.500508 0.688349 680 1 0.12669 0.1856 0.688286 707 1 0.0633253 0.25204 0.687688 712 1 0.126177 0.314266 0.691734 802 1 0.0664631 0.187561 0.745994 808 1 0.122924 0.186519 0.808223 834 1 0.0619484 0.312386 0.747285 835 1 0.065297 0.251352 0.815673 837 1 0.125487 0.245806 0.753187 840 1 0.124664 0.314769 0.81313 708 1 0.99977 0.31157 0.686638 804 1 1.00139 0.189776 0.811906 833 1 0.00138796 0.244494 0.745417 684 1 0.251274 0.18382 0.68715 711 1 0.184333 0.250916 0.692773 715 1 0.305842 0.25309 0.68687 716 1 0.244893 0.314483 0.686449 806 1 0.188705 0.185398 0.748699 810 1 0.311688 0.184688 0.747696 812 1 0.25195 0.187161 0.807969 838 1 0.186702 0.312494 0.751026 839 1 0.186741 0.248435 0.812802 841 1 0.251791 0.250015 0.748527 842 1 0.313746 0.311862 0.74877 843 1 0.316652 0.251032 0.810324 844 1 0.246749 0.309719 0.813681 688 1 0.372296 0.18701 0.687647 719 1 0.438833 0.250695 0.689864 720 1 0.375556 0.314452 0.685963 814 1 0.434657 0.184714 0.751711 816 1 0.372406 0.188964 0.809005 845 1 0.374838 0.251208 0.745043 846 1 0.434971 0.313388 0.749753 847 1 0.435982 0.24786 0.814117 848 1 0.374752 0.313901 0.815865 849 1 0.503129 0.249545 0.749249 724 1 0.500913 0.307833 0.684878 852 1 0.496462 0.309394 0.813795 820 1 0.499022 0.187023 0.81994 692 1 0.496368 0.18828 0.688687 696 1 0.623857 0.18751 0.682375 723 1 0.566801 0.250268 0.688464 728 1 0.624837 0.314039 0.685603 818 1 0.564782 0.186901 0.745163 824 1 0.623079 0.190147 0.81495 850 1 0.563185 0.314082 0.746421 851 1 0.563701 0.247312 0.807662 853 1 0.621871 0.250029 0.747968 856 1 0.623759 0.312894 0.80908 700 1 0.751874 0.185875 0.689576 727 1 0.686644 0.253752 0.686105 731 1 0.817292 0.253832 0.689158 732 1 0.753364 0.316069 0.685942 822 1 0.686188 0.186782 0.750925 826 1 0.814761 0.186579 0.753176 828 1 0.748174 0.186009 0.81581 854 1 0.687887 0.31412 0.746905 855 1 0.687655 0.254763 0.808153 857 1 0.750548 0.247 0.75398 858 1 0.819442 0.312286 0.753793 859 1 0.814024 0.250077 0.814526 860 1 0.752366 0.312122 0.807777 676 1 1.00697 0.183799 0.689788 836 1 1.00579 0.315527 0.808823 704 1 0.884745 0.188548 0.689552 735 1 0.942048 0.25044 0.685493 736 1 0.876494 0.311842 0.683221 830 1 0.93726 0.184917 0.753346 832 1 0.877538 0.185339 0.812909 861 1 0.884386 0.250874 0.751769 862 1 0.943427 0.312663 0.749472 863 1 0.940148 0.250085 0.815218 864 1 0.878583 0.313626 0.813606 739 1 0.0622092 0.373534 0.688091 744 1 0.124357 0.438936 0.68881 866 1 0.0650629 0.436417 0.75478 867 1 0.0701104 0.379289 0.816857 869 1 0.126206 0.377829 0.749614 872 1 0.129499 0.445246 0.81258 868 1 1.00061 0.442453 0.816866 1671 1 0.188744 0.503331 0.689532 743 1 0.187158 0.378057 0.685469 747 1 0.313026 0.375264 0.690381 748 1 0.250494 0.439247 0.688676 870 1 0.186415 0.442522 0.747624 871 1 0.187845 0.378197 0.811114 873 1 0.250426 0.374033 0.746647 874 1 0.305004 0.441481 0.750714 875 1 0.311699 0.372381 0.810329 876 1 0.250113 0.438763 0.807056 1012 1 0.498439 0.437637 0.935513 751 1 0.437973 0.376309 0.689113 752 1 0.372933 0.436553 0.69199 877 1 0.377224 0.374173 0.750503 878 1 0.439105 0.437632 0.751027 879 1 0.438175 0.37547 0.81251 880 1 0.374 0.435036 0.811447 881 1 0.498929 0.371236 0.751713 1009 1 0.497567 0.379988 0.874053 884 1 0.501037 0.439479 0.813179 756 1 0.498519 0.435553 0.689372 755 1 0.562164 0.373563 0.6853 760 1 0.626924 0.434824 0.687532 882 1 0.563475 0.435785 0.750447 883 1 0.561982 0.372679 0.814654 885 1 0.623516 0.372877 0.747323 888 1 0.620134 0.438167 0.813877 1010 1 0.560817 0.433473 0.876421 93 1 0.868443 0.252651 0.998477 1016 1 0.617944 0.438089 0.93688 759 1 0.689522 0.374028 0.691348 763 1 0.819722 0.376308 0.688517 764 1 0.753774 0.433904 0.685774 886 1 0.688874 0.444246 0.750171 887 1 0.683944 0.379166 0.806586 889 1 0.749103 0.376316 0.750122 890 1 0.81143 0.436833 0.750431 891 1 0.816325 0.376516 0.81578 892 1 0.751739 0.435666 0.811919 865 1 0.00356826 0.376961 0.752409 740 1 0.00682604 0.438569 0.68975 767 1 0.938433 0.374441 0.685172 768 1 0.879194 0.439719 0.690243 893 1 0.883159 0.377043 0.749671 894 1 0.942622 0.440634 0.750491 895 1 0.941523 0.379622 0.811505 896 1 0.877823 0.438165 0.811263 1011 1 0.56077 0.373741 0.935524 898 1 0.0609698 0.0615097 0.875382 904 1 0.120447 0.0581093 0.942375 931 1 0.0636595 0.124825 0.939188 933 1 0.123957 0.123088 0.875454 900 1 0.000386377 0.0590057 0.937003 929 1 0.00271309 0.125172 0.876828 902 1 0.187206 0.061552 0.878412 906 1 0.312871 0.0541039 0.874158 908 1 0.249489 0.0652397 0.939658 935 1 0.188785 0.125157 0.933246 937 1 0.261406 0.118855 0.873699 939 1 0.316576 0.120855 0.937873 910 1 0.436552 0.0570089 0.872924 912 1 0.374345 0.0552077 0.934071 941 1 0.375888 0.117649 0.876264 943 1 0.438097 0.125375 0.934396 945 1 0.499955 0.124359 0.872807 995 1 0.0685415 0.377886 0.944965 633 1 0.752546 0.374752 0.503503 997 1 0.131813 0.379726 0.875133 1013 1 0.628702 0.371961 0.87699 916 1 0.501656 0.0568814 0.936075 914 1 0.563876 0.0614942 0.872777 920 1 0.62427 0.0585178 0.934028 947 1 0.565645 0.126302 0.936471 949 1 0.623355 0.122167 0.871268 82 1 0.560916 0.312546 0.999533 1667 1 0.0600651 0.500149 0.689391 994 1 0.0627763 0.436605 0.874542 1008 1 0.372654 0.440828 0.94024 50 1 0.564523 0.186358 0.996303 996 1 1.00125 0.43778 0.940209 918 1 0.686881 0.0608146 0.875695 922 1 0.812824 0.0620989 0.880622 924 1 0.743826 0.0616869 0.935371 951 1 0.68006 0.123081 0.938462 953 1 0.74698 0.12228 0.877994 955 1 0.818305 0.130552 0.937804 795 1 0.806589 -0.00104722 0.813652 1007 1 0.434619 0.375897 0.93433 926 1 0.937618 0.0651643 0.873001 928 1 0.879134 0.0602827 0.935861 957 1 0.876136 0.124457 0.867919 959 1 0.933601 0.129011 0.942167 960 1 0.876117 0.189599 0.934769 930 1 0.0654225 0.192273 0.873897 936 1 0.127544 0.185882 0.939264 962 1 0.0676279 0.31782 0.881195 963 1 0.0673427 0.248322 0.935481 965 1 0.12535 0.24935 0.8765 968 1 0.131094 0.319385 0.935034 932 1 0.000722945 0.18932 0.932045 961 1 0.00405908 0.257291 0.870709 964 1 1.00093 0.315465 0.941237 993 1 1.00394 0.379577 0.872604 1004 1 0.254338 0.44225 0.933187 934 1 0.191397 0.184664 0.866218 938 1 0.314213 0.186622 0.872318 940 1 0.250644 0.182045 0.935574 966 1 0.188468 0.312967 0.876532 967 1 0.189554 0.245098 0.931564 969 1 0.251171 0.248454 0.872866 970 1 0.307875 0.312742 0.871282 971 1 0.310955 0.247725 0.936203 972 1 0.252218 0.313019 0.93388 1005 1 0.369061 0.377314 0.875801 998 1 0.188793 0.441007 0.877128 942 1 0.43498 0.187172 0.874811 944 1 0.375273 0.187141 0.933489 973 1 0.371727 0.251523 0.875585 974 1 0.435227 0.313417 0.877166 975 1 0.434344 0.249781 0.933501 976 1 0.373777 0.313785 0.935506 980 1 0.496952 0.313709 0.939395 948 1 0.501578 0.190916 0.936855 977 1 0.502456 0.249591 0.870085 1003 1 0.31368 0.375996 0.939798 1002 1 0.314949 0.439872 0.868943 946 1 0.560274 0.187733 0.874198 952 1 0.626441 0.194318 0.934311 978 1 0.564867 0.310884 0.874651 979 1 0.565392 0.251714 0.927466 981 1 0.625241 0.251134 0.872851 984 1 0.624693 0.312486 0.933649 1006 1 0.429391 0.437771 0.87494 1001 1 0.250399 0.374313 0.874991 1000 1 0.129054 0.437194 0.942808 988 1 0.748066 0.313303 0.934697 987 1 0.810337 0.254823 0.936739 986 1 0.818498 0.31344 0.870634 985 1 0.749409 0.252409 0.876624 983 1 0.690082 0.252305 0.933825 982 1 0.687305 0.314678 0.871239 950 1 0.687563 0.186777 0.875912 954 1 0.810699 0.192221 0.878795 956 1 0.7482 0.186216 0.93898 999 1 0.191952 0.381417 0.942198 990 1 0.941229 0.319355 0.878351 991 1 0.94042 0.249364 0.933077 958 1 0.941957 0.186134 0.872053 989 1 0.87638 0.249539 0.874672 992 1 0.875025 0.315512 0.935102 771 1 0.0631879 0.000258648 0.812841 661 1 0.622953 0.000149141 0.630295 1807 1 0.434668 0.499424 0.812502 1811 1 0.560257 0.501111 0.814438 925 1 0.872534 0.00104581 0.873342 897 1 0.00178828 -0.00420825 0.87658 643 1 0.0557384 0.00117441 0.68985 1941 1 0.623209 0.497903 0.870316 1677 1 0.378172 0.501107 0.631196 915 1 0.569654 -0.0019318 0.936163 637 1 0.876363 0.369817 0.500739 799 1 0.936832 -0.00502061 0.814754 923 1 0.809612 0.00155874 0.938856 90 1 0.808423 0.317483 1.00115 1559 1 0.688949 0.501999 0.557994 81 1 0.502191 0.249465 0.999055 1799 1 0.188658 0.503169 0.811006 769 1 0.996272 -0.00292914 0.75051 98 1 0.0691753 0.439219 1.00298 1933 1 0.375847 0.503282 0.874504 927 1 0.934333 -0.00324277 0.937027 671 1 0.939331 0.00281526 0.686074 1925 1 0.127275 0.502585 0.878281 1669 1 0.121566 0.501075 0.627358 1693 1 0.87703 0.497016 0.620874 919 1 0.686309 -0.000328338 0.934096 1937 1 0.49023 0.498245 0.873764 913 1 0.507089 -0.00674374 0.874027 78 1 0.43491 0.310474 0.994507 77 1 0.371041 0.249063 1.00079 33 1 -0.00165645 0.133325 1.00004 110 1 0.435972 0.438737 0.99627 113 1 0.494602 0.377584 1 94 1 0.936303 0.307356 0.999617 41 1 0.251755 0.124592 1.00533 118 1 0.683616 0.436094 0.998945 97 1 0.00560698 0.378789 1.00806 106 1 0.312882 0.438717 1 70 1 0.189944 0.304892 0.999267 26 1 0.805038 0.0647419 0.996867 621 1 0.376948 0.377028 0.503238 18 1 0.559888 0.0599769 0.998551 598 1 0.681122 0.317578 0.501327 89 1 0.747523 0.252204 1.00062 42 1 0.316564 0.182952 1.00244 85 1 0.622137 0.255068 0.997024 630 1 0.695816 0.439623 0.498825 73 1 0.253373 0.247813 0.998789 585 1 0.243574 0.244869 0.498151 114 1 0.561095 0.43401 1.00093 629 1 0.627539 0.378052 0.502852 121 1 0.747578 0.375263 0.99736 105 1 0.253632 0.374592 0.998494 545 1 0.00224336 0.120531 0.499839 554 1 0.310558 0.191986 0.499791 589 1 0.368939 0.251449 0.497076 577 1 1.00296 0.252804 0.501549 597 1 0.62344 0.249805 0.500152 574 1 0.940322 0.191154 0.498889 549 1 0.122273 0.122462 0.498432 582 1 0.190704 0.312002 0.50105 594 1 0.557103 0.311726 0.498403 550 1 0.181297 0.186305 0.496279 542 1 0.93355 0.0589477 0.501781 537 1 0.756154 0.0039511 0.502387 1032 1 0.129447 0.564322 0.0679548 1059 1 0.065999 0.626819 0.064 1154 1 0.0638823 0.559838 0.129117 1189 1 0.12774 0.627736 0.127726 1028 1 0.00184071 0.564103 0.0669725 1185 1 -0.00300657 0.623766 0.132565 1122 1 0.0568578 0.939076 -0.00352094 1036 1 0.247358 0.563132 0.0622339 1063 1 0.185701 0.633572 0.0612891 1067 1 0.307523 0.622013 0.0648938 1158 1 0.192615 0.557573 0.124547 1162 1 0.313206 0.560507 0.12716 1193 1 0.249082 0.626718 0.122836 1411 1 0.0642662 0.494766 0.435891 1137 1 0.495695 0.87408 0.00136876 1138 1 0.562007 0.936185 0.00246663 11 1 0.312865 0.998492 0.0580585 1415 1 0.188445 0.494647 0.436692 1040 1 0.375836 0.562654 0.0657666 1071 1 0.437671 0.627839 0.0610853 1166 1 0.439196 0.562685 0.127524 1197 1 0.378144 0.620969 0.120022 1044 1 0.498533 0.566671 0.0601403 1201 1 0.502375 0.62264 0.122422 387 1 0.0617609 1.00075 0.433522 149 1 0.627658 1.00479 0.126844 1048 1 0.627123 0.559681 0.0571268 1075 1 0.560693 0.621334 0.0593583 1170 1 0.562692 0.563241 0.122342 1205 1 0.627603 0.62232 0.122191 1052 1 0.752065 0.563119 0.0576874 1079 1 0.684753 0.628129 0.0630683 1083 1 0.810035 0.628497 0.0625762 1174 1 0.691674 0.563976 0.128284 1178 1 0.808608 0.558432 0.124335 1209 1 0.747243 0.623346 0.123094 1056 1 0.871603 0.564614 0.06195 1087 1 0.936127 0.622234 0.070371 1182 1 0.939459 0.556904 0.127333 1213 1 0.866679 0.629124 0.123817 13 1 0.375001 0.998116 0.00145028 259 1 0.0617089 1.0039 0.311156 1064 1 0.123668 0.689696 0.0661475 1091 1 0.0605113 0.747805 0.0638264 1096 1 0.123586 0.811312 0.0577846 1186 1 0.0615333 0.684045 0.129313 1218 1 0.0612658 0.805914 0.128762 1221 1 0.123651 0.748079 0.126999 1060 1 1.00241 0.683239 0.0669203 1092 1 1.00335 0.806189 0.0681945 1082 1 0.808654 0.691063 0.00570046 409 1 0.753507 0.999067 0.376979 137 1 0.245964 1.0013 0.128529 1068 1 0.246454 0.688429 0.0651924 1095 1 0.184921 0.752953 0.0634163 1099 1 0.310777 0.747783 0.0649566 1100 1 0.249842 0.811737 0.0632794 1190 1 0.186622 0.689196 0.129986 1194 1 0.307283 0.683845 0.127434 1222 1 0.187791 0.806994 0.129375 1225 1 0.252474 0.749581 0.127371 1226 1 0.309681 0.81007 0.120234 1101 1 0.371576 0.744219 -0.00363087 1293 1 0.378664 0.496974 0.246086 265 1 0.247646 0.996727 0.249661 1072 1 0.369296 0.690693 0.0619638 1103 1 0.433613 0.754171 0.0581964 1104 1 0.371264 0.80984 0.0589139 1198 1 0.440144 0.688379 0.12279 1229 1 0.374687 0.746731 0.120167 1230 1 0.436119 0.815155 0.124276 1076 1 0.502079 0.685228 0.0593723 1108 1 0.500755 0.813179 0.0634006 1233 1 0.499304 0.752537 0.125264 1080 1 0.621357 0.686178 0.0637758 1107 1 0.559168 0.752617 0.0645046 1112 1 0.626793 0.810939 0.0684798 1202 1 0.55926 0.686201 0.123938 1234 1 0.564318 0.805598 0.128323 1237 1 0.625215 0.74691 0.128546 1537 1 0.00274122 0.500286 0.499164 393 1 0.251358 0.998638 0.371931 1047 1 0.689216 0.498782 0.0665484 1051 1 0.809238 0.496261 0.0564394 1084 1 0.743047 0.685321 0.0674463 1111 1 0.684792 0.746714 0.0678823 1115 1 0.809065 0.757232 0.0670527 1116 1 0.745065 0.81423 0.0567814 1206 1 0.684954 0.685768 0.128552 1210 1 0.80764 0.697231 0.120688 1238 1 0.688746 0.819188 0.125594 1241 1 0.745725 0.756149 0.125884 1242 1 0.812065 0.811817 0.125665 1106 1 0.56675 0.813522 0.00640689 1217 1 0.997848 0.742219 0.126993 1427 1 0.561194 0.499119 0.438817 1088 1 0.873145 0.690694 0.0640473 1119 1 0.937519 0.745661 0.0669316 1120 1 0.876238 0.808928 0.0605601 1214 1 0.934427 0.684117 0.127624 1245 1 0.878051 0.755956 0.125821 1246 1 0.943115 0.810458 0.125687 1098 1 0.309169 0.811021 -0.00131428 1123 1 0.0579373 0.869975 0.0618113 1128 1 0.113657 0.936044 0.0618047 1250 1 0.0648534 0.938921 0.126193 1253 1 0.124408 0.868991 0.123931 1173 1 0.619513 0.499267 0.123325 1249 1 0.999987 0.87313 0.12364 1159 1 0.193651 0.494553 0.184425 1155 1 0.0640484 0.496249 0.183193 1127 1 0.185348 0.876413 0.0609179 1131 1 0.314633 0.87663 0.063058 1132 1 0.253834 0.934252 0.0645236 1254 1 0.178287 0.938467 0.121771 1257 1 0.250128 0.876505 0.124719 1258 1 0.317783 0.938107 0.127037 401 1 0.506645 0.998148 0.380388 1577 1 0.25055 0.617234 0.498654 1105 1 0.508277 0.750279 -0.000585374 1536 1 0.875048 0.937378 0.432266 151 1 0.690986 1.00547 0.190727 1535 1 0.94019 0.874544 0.439765 1135 1 0.438441 0.871127 0.0615206 1136 1 0.376324 0.937716 0.0621543 1261 1 0.372431 0.869888 0.12177 1262 1 0.435393 0.938659 0.124905 1140 1 0.495048 0.935859 0.0664102 145 1 0.499576 0.99803 0.123386 1534 1 0.941382 0.939124 0.376772 1089 1 0.999522 0.749082 0.00761306 1265 1 0.496639 0.875521 0.126324 1139 1 0.559927 0.878274 0.0649687 1144 1 0.628963 0.939348 0.0593487 1266 1 0.566951 0.940735 0.123855 1269 1 0.630127 0.879887 0.124949 1542 1 0.188165 0.559374 0.496681 1533 1 0.871457 0.877662 0.372772 1143 1 0.69543 0.880059 0.0648538 1147 1 0.81296 0.871707 0.0636934 1148 1 0.754757 0.940969 0.0682134 1270 1 0.691778 0.939808 0.125388 1273 1 0.756782 0.87571 0.129919 1274 1 0.814875 0.936912 0.126764 1538 1 0.065502 0.56284 0.503035 1585 1 0.501206 0.627062 0.503062 1124 1 1.00253 0.93757 0.0629476 1151 1 0.938267 0.876952 0.0599486 1152 1 0.873696 0.932712 0.0563983 1277 1 0.873313 0.873037 0.12424 1278 1 0.934328 0.939965 0.124381 1505 1 0.998236 0.876582 0.373352 31 1 0.940728 0.997651 0.0627973 1289 1 0.253961 0.49215 0.251077 1134 1 0.436736 0.935434 0.00108923 1130 1 0.310389 0.937918 -0.000371015 1160 1 0.126102 0.55731 0.183333 1187 1 0.0616289 0.623805 0.193741 1282 1 0.0627952 0.559055 0.246778 1288 1 0.128266 0.562475 0.318863 1315 1 0.067002 0.620112 0.317738 1317 1 0.12865 0.616831 0.246088 1532 1 0.7459 0.940293 0.439789 7 1 0.190957 0.995196 0.0612206 1164 1 0.254693 0.560065 0.183935 1191 1 0.188451 0.619426 0.182868 1195 1 0.316795 0.622385 0.190532 1286 1 0.184161 0.555544 0.249397 1290 1 0.315888 0.5546 0.246638 1292 1 0.250128 0.558142 0.304946 1319 1 0.193831 0.619631 0.311499 1321 1 0.248279 0.619908 0.248559 1323 1 0.312458 0.614506 0.307686 1531 1 0.807644 0.878728 0.43354 1168 1 0.375935 0.56493 0.184865 1199 1 0.435925 0.622812 0.18377 1294 1 0.436437 0.560536 0.247765 1296 1 0.377725 0.557376 0.310427 1325 1 0.378765 0.620165 0.251528 1327 1 0.434371 0.626753 0.313945 1300 1 0.502022 0.567076 0.311005 1329 1 0.496665 0.620482 0.248171 1172 1 0.504268 0.554552 0.192208 1176 1 0.623497 0.560414 0.188936 1203 1 0.561815 0.621642 0.184865 1298 1 0.564878 0.565347 0.250857 1304 1 0.624547 0.560472 0.312018 1331 1 0.571353 0.620591 0.313301 1333 1 0.621637 0.627023 0.248765 1180 1 0.750223 0.560981 0.188907 1207 1 0.686732 0.631335 0.196063 1211 1 0.807162 0.627987 0.188304 1302 1 0.685908 0.559729 0.249207 1306 1 0.81333 0.561511 0.249241 1308 1 0.74785 0.55916 0.311064 1335 1 0.682686 0.623901 0.314958 1337 1 0.7479 0.622689 0.247766 1339 1 0.807263 0.621769 0.312551 1530 1 0.815519 0.93791 0.371811 1529 1 0.744429 0.874888 0.377365 1284 1 1.00325 0.560132 0.313919 1313 1 0.99444 0.619386 0.247625 1156 1 0.997862 0.556929 0.186536 1184 1 0.870073 0.561268 0.187015 1215 1 0.932409 0.624627 0.185824 1310 1 0.937144 0.55467 0.253493 1312 1 0.867744 0.561356 0.313158 1341 1 0.869964 0.624458 0.250174 1343 1 0.935687 0.62515 0.312486 1192 1 0.124319 0.68462 0.195546 1219 1 0.0611993 0.746689 0.193226 1224 1 0.123311 0.80656 0.190648 1314 1 0.0602744 0.68823 0.256714 1320 1 0.121298 0.681717 0.317325 1346 1 0.0603237 0.810089 0.248326 1347 1 0.0574385 0.74881 0.316868 1349 1 0.116419 0.747347 0.251498 1352 1 0.117493 0.813202 0.311719 1188 1 0.994317 0.68335 0.194437 1196 1 0.255397 0.682745 0.190157 1223 1 0.191332 0.753857 0.191537 1227 1 0.316263 0.744404 0.182329 1228 1 0.251226 0.817824 0.188002 1318 1 0.188203 0.686135 0.251245 1322 1 0.311831 0.686582 0.256861 1324 1 0.252606 0.682484 0.314437 1350 1 0.186078 0.813149 0.251171 1351 1 0.184771 0.749112 0.310438 1353 1 0.25257 0.74883 0.251256 1354 1 0.312481 0.810752 0.255281 1355 1 0.314234 0.748812 0.313507 1356 1 0.248734 0.813998 0.310918 1200 1 0.374697 0.682923 0.179267 1231 1 0.432552 0.751237 0.184516 1232 1 0.373883 0.810593 0.190891 1326 1 0.436553 0.688016 0.245245 1328 1 0.373936 0.686144 0.312932 1357 1 0.369405 0.750514 0.250051 1358 1 0.435435 0.819907 0.250203 1359 1 0.43957 0.747358 0.311792 1360 1 0.37884 0.813227 0.317067 1332 1 0.499735 0.685709 0.311179 1236 1 0.496699 0.813909 0.18815 1361 1 0.49925 0.752695 0.243971 1204 1 0.498963 0.688948 0.187917 1364 1 0.507286 0.807512 0.310867 1208 1 0.625603 0.68742 0.186852 1235 1 0.567012 0.741454 0.18801 1240 1 0.625887 0.817558 0.186774 1330 1 0.559222 0.681315 0.251794 1336 1 0.626335 0.688338 0.314945 1362 1 0.568381 0.805431 0.246666 1363 1 0.568148 0.747584 0.311156 1365 1 0.628372 0.745542 0.250498 1368 1 0.623919 0.810968 0.313899 1212 1 0.750964 0.689023 0.183238 1239 1 0.689738 0.747947 0.181266 1243 1 0.813361 0.753195 0.184423 1244 1 0.753384 0.811166 0.188671 1334 1 0.690376 0.686501 0.252511 1338 1 0.809832 0.693499 0.246861 1340 1 0.747506 0.685297 0.315755 1366 1 0.688863 0.809906 0.244947 1367 1 0.687346 0.74916 0.318959 1369 1 0.746833 0.745273 0.249756 1370 1 0.809847 0.810257 0.254713 1371 1 0.813035 0.75098 0.314072 1372 1 0.745088 0.811869 0.312869 1345 1 -0.00171173 0.74735 0.253822 1316 1 -0.00204793 0.680046 0.31296 1220 1 0.997541 0.805535 0.188902 1348 1 0.000347573 0.811331 0.308845 1216 1 0.870122 0.685188 0.189318 1247 1 0.935158 0.751788 0.187414 1248 1 0.875802 0.815454 0.185604 1342 1 0.930317 0.688627 0.251715 1344 1 0.86458 0.684699 0.313957 1373 1 0.873267 0.753055 0.246676 1374 1 0.936566 0.811708 0.251651 1375 1 0.932638 0.74658 0.311733 1376 1 0.870324 0.811682 0.316764 1527 1 0.684956 0.874413 0.43845 1649 1 0.500266 0.876218 0.503793 1251 1 0.0596337 0.881204 0.190585 1256 1 0.125533 0.936617 0.186781 1378 1 0.0602787 0.936733 0.249866 1379 1 0.0619643 0.87677 0.310825 1381 1 0.128514 0.870631 0.252717 1384 1 0.123104 0.937454 0.31408 1142 1 0.688242 0.943279 -0.00430617 19 1 0.564948 1.00108 0.0625408 1255 1 0.188193 0.874447 0.183769 1259 1 0.312233 0.872397 0.186621 1260 1 0.250139 0.934915 0.183279 1382 1 0.186265 0.937355 0.250154 1383 1 0.187695 0.878919 0.312222 1385 1 0.246977 0.874594 0.249211 1386 1 0.3083 0.935437 0.250487 1387 1 0.313978 0.874054 0.312282 1388 1 0.25045 0.932903 0.311418 1425 1 0.497616 0.505532 0.372742 1578 1 0.320517 0.690088 0.500429 267 1 0.314801 1.0004 0.30963 1565 1 0.877383 0.500338 0.497095 1027 1 0.0636521 0.501528 0.0633553 1263 1 0.436487 0.879462 0.188967 1264 1 0.37378 0.937284 0.192624 1389 1 0.374658 0.876513 0.253277 1390 1 0.439902 0.942582 0.253061 1391 1 0.440308 0.876136 0.309845 1392 1 0.378832 0.934785 0.312458 1393 1 0.501311 0.878068 0.250363 1268 1 0.50057 0.937092 0.187358 1121 1 0.000931298 0.876775 -0.000444487 1526 1 0.685774 0.939056 0.374488 1396 1 0.506081 0.938747 0.31376 1267 1 0.560467 0.87086 0.188108 1272 1 0.628189 0.942257 0.187773 1394 1 0.563297 0.936517 0.253209 1395 1 0.56591 0.871063 0.313836 1397 1 0.622549 0.874006 0.250888 1400 1 0.626937 0.936152 0.306482 1524 1 0.504095 0.938557 0.439916 1521 1 0.503583 0.872555 0.377931 1271 1 0.683921 0.882536 0.18677 1275 1 0.813579 0.872706 0.186269 1276 1 0.753689 0.938944 0.189248 1398 1 0.69271 0.938314 0.250709 1399 1 0.688244 0.875862 0.314422 1401 1 0.748666 0.873279 0.245147 1402 1 0.809533 0.937687 0.250261 1403 1 0.810485 0.879447 0.311076 1404 1 0.749929 0.936819 0.312378 1377 1 0.998229 0.868202 0.246924 1380 1 0.998769 0.944859 0.313537 1252 1 0.996026 0.943444 0.184854 1279 1 0.939775 0.875221 0.185382 1280 1 0.874878 0.93962 0.192931 1405 1 0.87272 0.874657 0.246657 1406 1 0.937086 0.940356 0.249485 1407 1 0.940817 0.874847 0.307201 1408 1 0.876614 0.935037 0.309486 1525 1 0.62693 0.873325 0.380199 1410 1 0.0645601 0.560975 0.377657 1416 1 0.123823 0.558842 0.442744 1443 1 0.0635709 0.62838 0.436311 1445 1 0.126159 0.622809 0.380208 1528 1 0.6258 0.945438 0.439142 385 1 -0.000680605 1.00753 0.375186 1414 1 0.194005 0.559137 0.376235 1418 1 0.314431 0.559106 0.370721 1420 1 0.253536 0.55804 0.437865 1447 1 0.191181 0.619439 0.437357 1449 1 0.248675 0.624266 0.376787 1451 1 0.311855 0.619832 0.437469 1645 1 0.380315 0.875416 0.500985 1417 1 0.251869 0.500601 0.371844 1422 1 0.434192 0.566885 0.376307 1424 1 0.373821 0.559184 0.439906 1453 1 0.367867 0.622561 0.373549 1455 1 0.437766 0.630434 0.441122 1428 1 0.499676 0.567707 0.444763 1457 1 0.505572 0.620497 0.374826 1641 1 0.24709 0.877911 0.501195 1309 1 0.872251 0.497569 0.251179 1522 1 0.569118 0.935721 0.378685 1426 1 0.562405 0.558817 0.379512 1432 1 0.624465 0.564353 0.445163 1459 1 0.561808 0.621251 0.440574 1461 1 0.626663 0.618346 0.383709 1566 1 0.939501 0.562537 0.499474 1523 1 0.565538 0.876709 0.438157 257 1 -0.00153054 1.00149 0.246902 1430 1 0.68494 0.558457 0.380119 1434 1 0.817147 0.56225 0.376574 1436 1 0.753579 0.564423 0.435929 1463 1 0.68955 0.621136 0.438966 1465 1 0.746646 0.618687 0.374636 1467 1 0.815276 0.622406 0.434169 1412 1 1.00151 0.56062 0.43659 1441 1 1.00086 0.624247 0.377991 1438 1 0.937741 0.56248 0.376085 1440 1 0.876753 0.562304 0.441087 1469 1 0.874524 0.622354 0.376173 1471 1 0.938048 0.625026 0.437387 1039 1 0.434953 0.49796 0.0619928 1558 1 0.689146 0.569193 0.505054 1442 1 0.0613448 0.689095 0.378236 1448 1 0.127679 0.684015 0.438593 1474 1 0.0619438 0.809021 0.376606 1475 1 0.06491 0.745193 0.436822 1477 1 0.124914 0.749643 0.37164 1480 1 0.129076 0.812442 0.437572 1589 1 0.6232 0.629576 0.503599 1550 1 0.44053 0.568371 0.502282 1446 1 0.188227 0.684199 0.371806 1450 1 0.307469 0.690968 0.37656 1452 1 0.250593 0.690687 0.442655 1478 1 0.189877 0.816978 0.372272 1479 1 0.188878 0.752188 0.437476 1481 1 0.248725 0.75104 0.374027 1482 1 0.311486 0.81487 0.373052 1483 1 0.312466 0.750173 0.438185 1484 1 0.251418 0.812381 0.442054 407 1 0.688793 1.00338 0.437579 5 1 0.128202 0.998861 0.00527175 1519 1 0.437286 0.872613 0.432885 1520 1 0.379077 0.935246 0.431521 1454 1 0.440806 0.686829 0.376899 1456 1 0.376788 0.68987 0.43371 1485 1 0.378974 0.750195 0.375201 1486 1 0.439672 0.813312 0.368887 1487 1 0.436297 0.754861 0.438439 1488 1 0.370794 0.812649 0.440496 1460 1 0.494308 0.691536 0.44553 1518 1 0.445184 0.937741 0.375389 1492 1 0.502697 0.813982 0.442039 1489 1 0.502637 0.753648 0.377926 1491 1 0.561929 0.749732 0.437765 1493 1 0.623656 0.745901 0.379897 1458 1 0.564386 0.684176 0.381251 1464 1 0.625446 0.683829 0.44346 1496 1 0.6262 0.815004 0.442584 1490 1 0.564581 0.810939 0.377853 1495 1 0.685901 0.753305 0.441093 1497 1 0.744769 0.752087 0.378547 1498 1 0.80651 0.814722 0.376882 1499 1 0.809532 0.750574 0.437487 1500 1 0.747672 0.811507 0.438746 1494 1 0.68701 0.810803 0.37746 1468 1 0.748458 0.684994 0.434757 1466 1 0.806011 0.687297 0.372401 1462 1 0.686108 0.685306 0.379704 1546 1 0.314491 0.554289 0.498041 261 1 0.126306 0.993448 0.245125 1473 1 0.997465 0.739704 0.374786 1476 1 -0.00209529 0.809441 0.4334 1444 1 0.00130467 0.687016 0.440269 1470 1 0.935126 0.681205 0.377165 1501 1 0.87306 0.745096 0.372396 1503 1 0.930531 0.754356 0.433891 1472 1 0.868859 0.687697 0.438036 1504 1 0.871419 0.815089 0.431671 1502 1 0.940629 0.81356 0.372717 1517 1 0.379293 0.875828 0.373803 397 1 0.374158 0.998187 0.372268 1508 1 0.00220164 0.936949 0.437895 1509 1 0.11544 0.874937 0.375653 1506 1 0.0575626 0.935292 0.373989 1507 1 0.0607239 0.870375 0.435649 1512 1 0.121771 0.932397 0.437666 1614 1 0.439896 0.813154 0.498865 1157 1 0.125848 0.49379 0.123785 1515 1 0.313101 0.872877 0.438802 1165 1 0.377949 0.496537 0.127674 1516 1 0.24878 0.935245 0.434197 1586 1 0.559486 0.688992 0.502592 1514 1 0.314256 0.938003 0.374854 1513 1 0.251454 0.875638 0.371058 1510 1 0.18372 0.935901 0.375796 1511 1 0.188791 0.87382 0.433454 1621 1 0.623913 0.749788 0.502039 1569 1 1.00663 0.627446 0.497558 405 1 0.62405 0.996209 0.373036 1541 1 0.123932 0.496277 0.503142 1413 1 0.127822 0.498446 0.373081 529 1 0.497253 1.00346 0.497979 23 1 0.685591 1.00287 0.0607515 1163 1 0.315524 0.499005 0.187079 1573 1 0.12772 0.623099 0.499646 1642 1 0.314607 0.93604 0.497585 1646 1 0.439438 0.939413 0.49591 1602 1 0.0642046 0.803644 0.494233 1625 1 0.751892 0.753175 0.49965 1653 1 0.628623 0.878066 0.503309 1593 1 0.756251 0.627023 0.498618 1594 1 0.804427 0.688925 0.491615 1598 1 0.937688 0.687348 0.499568 1618 1 0.564214 0.814061 0.500653 25 1 0.748045 0.997944 -0.000893659 1554 1 0.562791 0.563282 0.502278 1066 1 0.311601 0.685443 0.00358461 1601 1 -0.00155632 0.749701 0.493638 1141 1 0.626821 0.870343 -0.00167437 1038 1 0.432873 0.561138 0.00277681 1658 1 0.81004 0.937559 0.496847 1606 1 0.185462 0.812422 0.493559 1613 1 0.37493 0.75436 0.503365 1581 1 0.375191 0.621435 0.499298 1094 1 0.190503 0.810796 0.00348395 1605 1 0.126915 0.745867 0.498692 1145 1 0.748883 0.873709 -0.000404696 1630 1 0.933621 0.809562 0.495843 1133 1 0.370208 0.873378 -0.00333735 1657 1 0.746851 0.87284 0.497704 1113 1 0.753165 0.749935 0.00339678 1102 1 0.434825 0.808964 -0.00652327 1070 1 0.44369 0.690203 -0.00219257 1046 1 0.687189 0.566405 -0.00365099 1074 1 0.563923 0.688823 0.00304393 541 1 0.875814 0.998728 0.499912 1073 1 0.498899 0.626645 0.000501698 1058 1 0.0654355 0.689991 0.00233811 1544 1 0.128267 0.557403 0.56296 1571 1 0.0647708 0.627006 0.562034 1666 1 0.0632546 0.566131 0.62109 1701 1 0.123763 0.624237 0.625193 1570 1 0.0635621 0.691062 0.501707 1697 1 1.00022 0.626657 0.621903 2020 1 0.00111242 0.93416 0.934626 1629 1 0.871764 0.753973 0.499508 1931 1 0.311613 0.505599 0.938439 1548 1 0.248756 0.5575 0.56539 1575 1 0.18652 0.623414 0.559859 1579 1 0.313261 0.622004 0.562715 1670 1 0.183381 0.561781 0.624348 1674 1 0.317303 0.563302 0.625214 1705 1 0.250133 0.625633 0.626532 653 1 0.369985 0.994037 0.621647 2048 1 0.873826 0.937941 0.941499 1033 1 0.250352 0.503705 1.00317 1552 1 0.37735 0.56284 0.559121 1583 1 0.439484 0.627604 0.564187 1678 1 0.440191 0.560179 0.629382 1709 1 0.37418 0.62789 0.625082 1556 1 0.497106 0.564433 0.563956 1574 1 0.185975 0.687048 0.498914 2047 1 0.941492 0.875606 0.935807 1683 1 0.566198 0.495454 0.691795 663 1 0.688589 0.99922 0.690688 901 1 0.122427 0.996111 0.8746 1539 1 0.0636449 0.49923 0.564726 1713 1 0.494158 0.629252 0.629501 1560 1 0.623646 0.563719 0.564265 1587 1 0.559159 0.626575 0.567512 1682 1 0.561992 0.561164 0.63118 1717 1 0.622122 0.624541 0.623652 1543 1 0.186324 0.497754 0.568693 2046 1 0.937915 0.93615 0.878747 1564 1 0.751703 0.564966 0.565339 1591 1 0.688081 0.625924 0.567393 1595 1 0.812524 0.622883 0.567664 1686 1 0.687735 0.562401 0.62913 1690 1 0.8107 0.560581 0.628074 1721 1 0.748882 0.621875 0.626774 789 1 0.62481 0.993454 0.750602 1662 1 0.935356 0.939786 0.495991 1685 1 0.627914 0.495355 0.627807 1679 1 0.439105 0.498285 0.68837 1540 1 1.00064 0.562935 0.557946 1568 1 0.873184 0.557642 0.564558 1599 1 0.941323 0.624183 0.561641 1694 1 0.941273 0.565594 0.6242 1725 1 0.881206 0.626583 0.628153 1795 1 0.0707284 0.506592 0.810313 2045 1 0.879993 0.873367 0.873813 783 1 0.433794 0.999041 0.813123 657 1 0.501665 1.00294 0.627803 1576 1 0.12413 0.686464 0.562323 1603 1 0.0620242 0.747406 0.560956 1608 1 0.12743 0.81191 0.55552 1698 1 0.0640901 0.690112 0.626264 1730 1 0.0607429 0.810556 0.61798 1733 1 0.125828 0.750866 0.626737 1150 1 0.939342 0.941724 0.99939 1057 1 1.00263 0.622405 1.00202 523 1 0.307814 1.00171 0.560076 1580 1 0.254982 0.689713 0.564061 1607 1 0.185649 0.749571 0.565857 1611 1 0.315654 0.752761 0.562865 1612 1 0.249339 0.813328 0.557007 1702 1 0.189049 0.690819 0.628358 1706 1 0.310552 0.693173 0.627405 1734 1 0.190257 0.817613 0.620359 1737 1 0.251863 0.751977 0.624066 1738 1 0.311017 0.823536 0.623071 1935 1 0.429215 0.506066 0.936547 1584 1 0.372768 0.692006 0.567188 1615 1 0.434667 0.751371 0.562891 1616 1 0.375799 0.817364 0.56796 1710 1 0.437381 0.691062 0.623682 1741 1 0.376969 0.753531 0.625763 1742 1 0.437531 0.813738 0.625048 1620 1 0.503863 0.812149 0.563391 1588 1 0.498972 0.684805 0.565802 1634 1 0.0568619 0.937156 0.499749 1745 1 0.500764 0.74869 0.621847 1592 1 0.622676 0.686876 0.561059 1619 1 0.565332 0.754401 0.562108 1624 1 0.623776 0.813767 0.559977 1714 1 0.563498 0.689224 0.626289 1746 1 0.562211 0.813932 0.621747 1749 1 0.630992 0.746431 0.620598 797 1 0.872334 0.995697 0.746016 1797 1 0.126027 0.505319 0.747877 1626 1 0.812084 0.815561 0.499215 517 1 0.122024 0.997309 0.494579 1596 1 0.751867 0.68513 0.560607 1623 1 0.688688 0.744577 0.559662 1627 1 0.814692 0.741527 0.565024 1628 1 0.752294 0.814808 0.560357 1718 1 0.691427 0.691181 0.625475 1722 1 0.812927 0.685457 0.630786 1750 1 0.686203 0.809766 0.619882 1753 1 0.751609 0.751838 0.623601 1754 1 0.809685 0.814484 0.626529 1675 1 0.314068 0.501167 0.691822 1923 1 0.0641867 0.499931 0.937523 1086 1 0.938028 0.685088 1.00399 1114 1 0.814085 0.812619 0.998566 1604 1 0.000766879 0.808042 0.555862 1729 1 0.99931 0.750243 0.621992 1572 1 0.999567 0.689635 0.563801 1600 1 0.878781 0.684301 0.563663 1631 1 0.937131 0.751425 0.559956 1632 1 0.869328 0.80902 0.567703 1726 1 0.940029 0.69376 0.620957 1757 1 0.876301 0.746548 0.624817 1758 1 0.937136 0.812806 0.622941 1681 1 0.501542 0.500583 0.628065 1635 1 0.0591774 0.870762 0.5602 1640 1 0.119684 0.936389 0.562442 1762 1 0.0595234 0.930512 0.628851 1765 1 0.124688 0.87314 0.622061 1819 1 0.818065 0.497584 0.815387 1639 1 0.187322 0.880105 0.561622 1643 1 0.31508 0.879081 0.559159 1644 1 0.247067 0.936043 0.559836 1766 1 0.182612 0.93785 0.626513 1769 1 0.245014 0.875203 0.623647 1770 1 0.306942 0.935897 0.621289 1647 1 0.44094 0.87529 0.565986 1648 1 0.378489 0.941886 0.557966 1773 1 0.373657 0.876911 0.628972 1774 1 0.438338 0.942692 0.626403 1652 1 0.50219 0.942826 0.565665 2044 1 0.752845 0.930396 0.937235 2043 1 0.8153 0.871907 0.939484 1777 1 0.503445 0.87585 0.627756 1651 1 0.556605 0.874723 0.562324 1656 1 0.618355 0.940472 0.565631 1778 1 0.559743 0.940383 0.630015 1781 1 0.62485 0.87695 0.62185 2042 1 0.817581 0.934008 0.874239 775 1 0.184183 0.995274 0.815038 2041 1 0.755083 0.872502 0.870203 921 1 0.753318 0.995086 0.878424 773 1 0.121045 0.998253 0.749215 1655 1 0.68948 0.876492 0.568242 1659 1 0.813011 0.875639 0.561105 1660 1 0.752678 0.936191 0.558843 1782 1 0.69133 0.940241 0.630532 1785 1 0.75634 0.879863 0.624484 1786 1 0.813135 0.940993 0.618432 1061 1 0.126841 0.628537 1.00293 1809 1 0.500953 0.500894 0.751555 1761 1 -0.0036927 0.876751 0.625008 1636 1 -0.00520314 0.936623 0.558063 1663 1 0.933199 0.876217 0.560128 1664 1 0.875133 0.936529 0.560846 1789 1 0.871458 0.873088 0.623752 1790 1 0.935729 0.935134 0.621615 1026 1 0.0611657 0.557841 1.00253 1801 1 0.252979 0.507725 0.750177 1672 1 0.122986 0.565119 0.684335 1699 1 0.0648323 0.627566 0.681649 1794 1 0.0620733 0.567082 0.750237 1800 1 0.127841 0.568566 0.810627 1827 1 0.0642382 0.630401 0.813336 1829 1 0.123843 0.630029 0.750878 1668 1 -0.0028643 0.560193 0.690268 2039 1 0.691408 0.871519 0.934363 1825 1 -0.000511279 0.626152 0.753659 1085 1 0.870826 0.624861 0.999185 1823 1 0.937065 0.502152 0.814921 659 1 0.560328 0.999568 0.688695 2038 1 0.694599 0.935543 0.878476 1676 1 0.249587 0.563498 0.685817 1703 1 0.183013 0.628899 0.686887 1707 1 0.309378 0.623341 0.690449 1798 1 0.184945 0.569185 0.747311 1802 1 0.314556 0.562149 0.749336 1804 1 0.243855 0.566259 0.813631 1831 1 0.186066 0.625445 0.815553 1833 1 0.252579 0.629979 0.751357 1835 1 0.310318 0.626785 0.81357 1633 1 -0.00120256 0.870745 0.501141 1815 1 0.691852 0.497308 0.815306 649 1 0.25158 1.00032 0.623572 1680 1 0.374472 0.56378 0.690574 1711 1 0.431949 0.62908 0.68796 1806 1 0.434648 0.565497 0.749906 1808 1 0.375005 0.562407 0.809611 1837 1 0.370382 0.629309 0.743347 1839 1 0.439759 0.6271 0.810485 1050 1 0.810704 0.556488 0.997536 2036 1 0.4989 0.937825 0.942668 1812 1 0.494266 0.565287 0.808873 1841 1 0.495414 0.627931 0.747062 1684 1 0.499157 0.565543 0.688681 1688 1 0.628544 0.567243 0.692071 1715 1 0.566291 0.625608 0.693315 1810 1 0.561237 0.564924 0.749902 1816 1 0.62182 0.56581 0.809693 1843 1 0.561843 0.631268 0.805981 1845 1 0.629004 0.629128 0.753953 1673 1 0.248252 0.495746 0.628653 2035 1 0.5619 0.872711 0.944071 777 1 0.251758 0.999479 0.750274 1692 1 0.74751 0.558706 0.693507 1719 1 0.691554 0.624935 0.686495 1723 1 0.817225 0.626587 0.68767 1814 1 0.693001 0.559049 0.756688 1818 1 0.812023 0.559996 0.747456 1820 1 0.753969 0.559971 0.814184 1847 1 0.688207 0.626411 0.814552 1849 1 0.752422 0.629087 0.747186 1851 1 0.811112 0.622278 0.809422 2034 1 0.565833 0.933188 0.885204 2037 1 0.629721 0.877048 0.879863 1661 1 0.87271 0.876355 0.49852 1796 1 1.00158 0.558625 0.813887 1696 1 0.878167 0.561214 0.686643 1727 1 0.936147 0.62736 0.690463 1822 1 0.941084 0.559634 0.749096 1824 1 0.867854 0.562438 0.809962 1853 1 0.875574 0.622484 0.747989 1855 1 0.939053 0.622764 0.815566 535 1 0.685448 1.00217 0.566666 1704 1 0.124396 0.690414 0.68725 1731 1 0.0600697 0.749649 0.68578 1736 1 0.126513 0.812626 0.683227 1826 1 0.0623773 0.687825 0.755068 1832 1 0.130106 0.689385 0.813438 1858 1 0.0677303 0.816495 0.750695 1859 1 0.0611663 0.749792 0.809624 1861 1 0.122603 0.752826 0.752373 1864 1 0.124502 0.808826 0.815651 1860 1 1.00252 0.8158 0.813279 1828 1 0.996849 0.692801 0.813453 1700 1 0.998833 0.690905 0.689003 1708 1 0.25048 0.694062 0.685282 1735 1 0.190446 0.753661 0.689717 1739 1 0.313428 0.754332 0.686338 1740 1 0.250142 0.816176 0.681768 1830 1 0.189411 0.687926 0.751892 1834 1 0.311952 0.693336 0.746938 1836 1 0.249294 0.682764 0.812493 1862 1 0.184259 0.814287 0.746255 1863 1 0.190015 0.755817 0.815966 1865 1 0.251193 0.752783 0.751304 1866 1 0.316564 0.8139 0.747659 1867 1 0.30942 0.749374 0.811283 1868 1 0.251889 0.811246 0.814408 1712 1 0.373345 0.690677 0.68393 1743 1 0.437318 0.751061 0.689745 1744 1 0.374457 0.809272 0.684953 1838 1 0.439049 0.688612 0.753365 1840 1 0.369471 0.68344 0.811557 1869 1 0.378663 0.748179 0.747492 1870 1 0.437783 0.811686 0.750833 1871 1 0.439247 0.750337 0.811928 1872 1 0.375879 0.808438 0.813521 1876 1 0.503619 0.815498 0.813329 1873 1 0.50518 0.751908 0.745108 1716 1 0.50326 0.689422 0.687743 1748 1 0.502954 0.809048 0.682524 1844 1 0.500556 0.687111 0.807391 1720 1 0.625915 0.682626 0.690077 1747 1 0.564988 0.753487 0.686867 1752 1 0.621753 0.81201 0.683374 1842 1 0.566945 0.691178 0.752208 1848 1 0.62797 0.687449 0.812749 1874 1 0.560369 0.815862 0.752785 1875 1 0.565863 0.756191 0.813189 1877 1 0.628229 0.752978 0.752509 1880 1 0.631122 0.817981 0.816291 1724 1 0.750903 0.6903 0.686085 1751 1 0.686228 0.754142 0.690421 1755 1 0.815978 0.753082 0.689727 1756 1 0.74718 0.814677 0.686836 1846 1 0.693976 0.686951 0.744782 1850 1 0.810528 0.684409 0.747285 1852 1 0.753223 0.687661 0.807949 1878 1 0.688063 0.814195 0.751328 1879 1 0.691321 0.753094 0.815087 1881 1 0.752654 0.747793 0.746822 1882 1 0.808653 0.814382 0.751287 1883 1 0.814301 0.74941 0.813512 1884 1 0.749385 0.810999 0.809484 1857 1 0.999601 0.748262 0.747681 1732 1 -0.00318708 0.813371 0.687474 1728 1 0.877512 0.691617 0.685992 1759 1 0.938074 0.754163 0.68973 1760 1 0.879165 0.811651 0.682614 1854 1 0.935843 0.684759 0.750626 1856 1 0.876907 0.682739 0.81607 1885 1 0.87413 0.752772 0.747487 1886 1 0.940993 0.812529 0.753799 1887 1 0.938133 0.752142 0.809856 1888 1 0.877761 0.808628 0.815433 1763 1 0.0628944 0.873781 0.686998 1768 1 0.117575 0.937796 0.68779 1890 1 0.0605841 0.93845 0.753026 1891 1 0.0640167 0.877062 0.811483 1893 1 0.124848 0.873237 0.753692 1896 1 0.127006 0.93539 0.810665 2040 1 0.628887 0.933626 0.941318 1889 1 1.00024 0.87532 0.745928 1764 1 -0.000103747 0.938615 0.687104 2033 1 0.498396 0.874364 0.871117 1547 1 0.321582 0.500636 0.565975 655 1 0.436207 0.999784 0.68721 1767 1 0.181771 0.87969 0.690067 1771 1 0.31341 0.876048 0.690904 1772 1 0.245481 0.938478 0.686387 1894 1 0.18421 0.93812 0.748346 1895 1 0.186219 0.870628 0.810948 1897 1 0.245573 0.873049 0.753412 1898 1 0.310171 0.931073 0.753036 1899 1 0.314073 0.87004 0.81217 1900 1 0.246803 0.932517 0.818979 785 1 0.501089 1.00464 0.753179 1030 1 0.185404 0.562545 1.00731 1775 1 0.440276 0.874133 0.690021 1776 1 0.374997 0.940386 0.686857 1901 1 0.376813 0.876326 0.745108 1902 1 0.433225 0.940169 0.751725 1903 1 0.435073 0.872907 0.808125 1904 1 0.373655 0.929475 0.811432 1780 1 0.500356 0.938291 0.688801 1908 1 0.494566 0.936206 0.810972 1945 1 0.751935 0.499134 0.875538 1081 1 0.749128 0.631106 0.997922 539 1 0.816087 1.00502 0.563176 1905 1 0.496074 0.873225 0.751004 1779 1 0.563432 0.875571 0.688027 1784 1 0.620456 0.936734 0.689661 1906 1 0.559667 0.937363 0.753651 1907 1 0.562155 0.880138 0.811494 1909 1 0.626213 0.87071 0.74883 1912 1 0.630837 0.935446 0.808255 1034 1 0.314626 0.56283 1.00367 1984 1 0.874641 0.686618 0.933599 1065 1 0.249816 0.626391 1.005 2013 1 0.875156 0.749388 0.87537 1783 1 0.683939 0.876963 0.683571 1787 1 0.814954 0.877421 0.68627 1788 1 0.748532 0.941491 0.689834 1910 1 0.686667 0.937685 0.74927 1911 1 0.690886 0.875884 0.814634 1913 1 0.748312 0.878654 0.74866 1914 1 0.813973 0.938407 0.75095 1915 1 0.816965 0.870161 0.814139 1916 1 0.75021 0.934754 0.812865 1892 1 0.00252703 0.938438 0.815303 1791 1 0.937998 0.874117 0.686094 1792 1 0.878128 0.937876 0.678219 1917 1 0.877463 0.871518 0.745239 1918 1 0.938077 0.937826 0.747695 1919 1 0.941929 0.877104 0.812181 1920 1 0.875774 0.934451 0.811622 2021 1 0.123944 0.871713 0.870539 1922 1 0.064199 0.564956 0.872877 1928 1 0.129366 0.562738 0.946117 1955 1 0.0628347 0.628637 0.944884 1957 1 0.124884 0.626399 0.879115 1953 1 0.00128432 0.627183 0.880253 1924 1 0.998543 0.561405 0.939576 1029 1 0.128022 0.500294 1.00134 2024 1 0.120867 0.935207 0.941832 2018 1 0.0678895 0.935873 0.87097 2019 1 0.0610592 0.874221 0.934794 1077 1 0.626599 0.62601 0.992381 905 1 0.249899 1.0008 0.871605 1926 1 0.188912 0.55981 0.878483 1930 1 0.308037 0.564358 0.870549 1932 1 0.247292 0.570683 0.943528 1959 1 0.181448 0.629739 0.939671 1961 1 0.244746 0.630171 0.877192 1963 1 0.311764 0.625354 0.935874 2029 1 0.373302 0.87578 0.877701 1934 1 0.43802 0.564622 0.871491 1936 1 0.370005 0.565163 0.936471 1965 1 0.376781 0.627414 0.871162 1967 1 0.440388 0.623486 0.934166 1940 1 0.49665 0.559087 0.935391 2025 1 0.244412 0.872582 0.874489 2030 1 0.436532 0.933609 0.87335 1969 1 0.503305 0.626638 0.873505 1938 1 0.557087 0.563022 0.871677 1944 1 0.627476 0.556477 0.934269 1971 1 0.558459 0.626418 0.936964 1973 1 0.620045 0.618432 0.874172 2032 1 0.371751 0.937978 0.935522 2014 1 0.938708 0.812106 0.873908 665 1 0.749583 1.00009 0.62481 1093 1 0.124498 0.74677 1.0032 1942 1 0.684831 0.561273 0.869178 1946 1 0.81286 0.561762 0.881876 1948 1 0.750441 0.561438 0.939637 1975 1 0.691802 0.627215 0.934346 1977 1 0.750429 0.626403 0.874075 1979 1 0.813983 0.627098 0.932803 531 1 0.561981 1.00584 0.565599 2031 1 0.442845 0.872362 0.935502 2026 1 0.311842 0.937102 0.874798 1980 1 0.750784 0.690392 0.938442 1978 1 0.811078 0.684079 0.874314 1950 1 0.934113 0.564598 0.876965 1952 1 0.874314 0.564543 0.938344 1981 1 0.873476 0.621788 0.875196 1983 1 0.93329 0.626549 0.936912 1062 1 0.185898 0.688543 1.00012 2017 1 0.000789519 0.872979 0.871064 1954 1 0.0654754 0.694454 0.869947 1960 1 0.120537 0.690411 0.939805 1986 1 0.0569147 0.810834 0.875663 1987 1 0.0600832 0.750739 0.937046 1989 1 0.125468 0.749713 0.875837 1992 1 0.126337 0.811834 0.942028 1988 1 0.999589 0.813748 0.939663 1985 1 0.996221 0.751877 0.876919 1956 1 1.00093 0.690338 0.939271 2015 1 0.941556 0.748165 0.937499 1958 1 0.185959 0.688736 0.876814 1962 1 0.31002 0.687976 0.87634 1964 1 0.250237 0.691955 0.940272 1990 1 0.185864 0.814056 0.876935 1991 1 0.186907 0.753193 0.939531 1993 1 0.253965 0.749537 0.873255 1994 1 0.312438 0.812927 0.876549 1995 1 0.309757 0.749601 0.936156 1996 1 0.248014 0.807961 0.938691 1939 1 0.561724 0.497994 0.928553 2016 1 0.879926 0.810229 0.934355 2027 1 0.311423 0.873622 0.938075 2000 1 0.371102 0.811004 0.939887 1999 1 0.438348 0.750557 0.936143 1998 1 0.436384 0.810181 0.874797 1997 1 0.367492 0.744998 0.874093 1968 1 0.373845 0.683995 0.935353 1966 1 0.440277 0.687646 0.868235 2001 1 0.507421 0.752297 0.872178 2023 1 0.187132 0.869992 0.938829 2022 1 0.181335 0.936902 0.88102 1982 1 0.9386 0.686962 0.8742 2004 1 0.50317 0.814585 0.933672 1972 1 0.500345 0.690162 0.931307 1970 1 0.568562 0.693663 0.870272 1976 1 0.626077 0.689623 0.93889 2002 1 0.568997 0.815 0.873522 2003 1 0.564644 0.750749 0.939156 2005 1 0.625919 0.75247 0.877993 2008 1 0.623737 0.813233 0.938647 1078 1 0.691098 0.688778 1.00386 2028 1 0.246837 0.939782 0.934915 2007 1 0.68301 0.74681 0.940434 2006 1 0.693655 0.808747 0.875041 2011 1 0.814019 0.748575 0.940721 2010 1 0.810555 0.810902 0.870424 2009 1 0.75164 0.745386 0.879836 2012 1 0.751059 0.807891 0.938505 1974 1 0.690773 0.68671 0.879135 903 1 0.184022 1.0005 0.940226 1110 1 0.684367 0.809874 0.998653 1126 1 0.187926 0.934981 0.999344 1146 1 0.808634 0.936296 0.999228 1069 1 0.380232 0.625572 0.99928 1090 1 0.0650927 0.811223 0.999598 1042 1 0.559075 0.561875 0.996322 1054 1 0.937724 0.563778 0.999069 1149 1 0.875377 0.865551 0.996475 1118 1 0.936208 0.809426 1.00374 1129 1 0.250485 0.871142 0.998272 1109 1 0.625134 0.748055 1.00497 533 1 0.626158 1.00544 0.499128 1654 1 0.691841 0.940983 0.502253 1125 1 0.125046 0.875711 0.99938 1650 1 0.560688 0.941457 0.502554 1117 1 0.877896 0.748421 0.998781 1097 1 0.248137 0.745956 1.0039 1609 1 0.247081 0.750711 0.502024 1617 1 0.503393 0.750585 0.506692 1622 1 0.683955 0.815722 0.502367 1597 1 0.87367 0.619843 0.504828 1637 1 0.125716 0.873128 0.503309 1638 1 0.181913 0.939225 0.49496 1582 1 0.434857 0.688173 0.507096 1562 1 0.807792 0.562784 0.506123 1590 1 0.691694 0.684579 0.501257 1037 1 0.372563 0.496608 1.00207 1610 1 0.313542 0.817933 0.506286
d7b8f8c2292943e3ede00ea4959fa4e0b8ea7ca8
fb4e9ddb628ae19634eb1d51f02fa33d093ca5d1
/tensorflow-master/tensorflow/contrib/learn/python/learn/estimators/head.py
952cdeb5ec1bc8907c36f26c32eb274254e15d8d
[ "Apache-2.0" ]
permissive
zhentaowang/machine-learning
68189bbc9bd052cecf068fb5fc7e88c04ec24e34
1dbba7bbe7f5c8c1449c312fb7e0c008581b90be
refs/heads/master
2021-06-14T14:08:51.889455
2017-03-20T02:10:43
2017-03-20T02:10:43
63,773,867
4
0
null
null
null
null
UTF-8
Python
false
false
67,051
py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Abstractions for the head(s) of a model. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import inspect import six from tensorflow.contrib import framework as framework_lib from tensorflow.contrib import layers as layers_lib # TODO(ptucker): Use tf.losses and tf.metrics. from tensorflow.contrib import losses as losses_lib from tensorflow.contrib import metrics as metrics_lib from tensorflow.contrib.learn.python.learn.estimators import constants from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.estimators import prediction_key from tensorflow.contrib.learn.python.learn.estimators.metric_key import MetricKey as mkey from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import logging_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import sparse_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.summary import summary from tensorflow.python.training import training # TODO(zakaria): add functions that creates a head and returns ModelOpFn def _regression_head(label_name=None, weight_column_name=None, label_dimension=1, enable_centered_bias=False, head_name=None): """Creates a _Head for linear regression. Args: label_name: String, name of the key in label dict. Can be null if label is a tensor (single headed models). weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. label_dimension: Number of regression labels per example. This is the size of the last dimension of the labels `Tensor` (typically, this has shape `[batch_size, label_dimension]`). enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. head_name: name of the head. If provided, predictions, summary and metrics keys will be suffixed by `"/" + head_name` and the default variable scope will be `head_name`. Returns: An instance of _Head """ return _RegressionHead( label_name=label_name, weight_column_name=weight_column_name, label_dimension=label_dimension, enable_centered_bias=enable_centered_bias, head_name=head_name, loss_fn=_mean_squared_loss, link_fn=array_ops.identity) def _poisson_regression_head(label_name=None, weight_column_name=None, label_dimension=1, enable_centered_bias=False, head_name=None): """Creates a _Head for linear regression. Args: label_name: String, name of the key in label dict. Can be null if label is a tensor (single headed models). weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. label_dimension: Number of regression labels per example. This is the size of the last dimension of the labels `Tensor` (typically, this has shape `[batch_size, label_dimension]`). enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. head_name: name of the head. If provided, predictions, summary and metrics keys will be suffixed by `"/" + head_name` and the default variable scope will be `head_name`. Returns: An instance of _Head """ return _RegressionHead( label_name=label_name, weight_column_name=weight_column_name, label_dimension=label_dimension, enable_centered_bias=enable_centered_bias, head_name=head_name, loss_fn=_poisson_loss, link_fn=math_ops.exp) # TODO(zakaria): Add logistic_regression_head def _multi_class_head(n_classes, label_name=None, weight_column_name=None, enable_centered_bias=False, head_name=None, thresholds=None, metric_class_ids=None, loss_fn=None): """Creates a _Head for multi class single label classification. The Head uses softmax cross entropy loss. Args: n_classes: Integer, number of classes, must be >= 2 label_name: String, name of the key in label dict. Can be null if label is a tensor (single headed models). weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. head_name: name of the head. If provided, predictions, summary and metrics keys will be suffixed by `"/" + head_name` and the default variable scope will be `head_name`. thresholds: thresholds for eval metrics, defaults to [.5] metric_class_ids: List of class IDs for which we should report per-class metrics. Must all be in the range `[0, n_classes)`. Invalid if `n_classes` is 2. loss_fn: Optional function that takes (`labels`, `logits`, `weights`) as parameter and returns a weighted scalar loss. `weights` should be optional. See `tf.losses` Returns: An instance of _MultiClassHead. Raises: ValueError: If `n_classes` is < 2, or `metric_class_ids` is provided when `n_classes` is 2. ValueError: If loss_fn does not have expected signature. """ if (n_classes is None) or (n_classes < 2): raise ValueError("n_classes must be > 1 for classification: %s." % n_classes) if loss_fn: _verify_loss_fn_args(loss_fn) loss_fn = _wrap_custom_loss_fn(loss_fn) if loss_fn else None if n_classes == 2: if metric_class_ids: raise ValueError("metric_class_ids invalid for n_classes==2.") return _BinaryLogisticHead( label_name=label_name, weight_column_name=weight_column_name, enable_centered_bias=enable_centered_bias, head_name=head_name, thresholds=thresholds, loss_fn=loss_fn) return _MultiClassHead( n_classes=n_classes, label_name=label_name, weight_column_name=weight_column_name, enable_centered_bias=enable_centered_bias, head_name=head_name, thresholds=thresholds, metric_class_ids=metric_class_ids, loss_fn=loss_fn) def _binary_svm_head( label_name=None, weight_column_name=None, enable_centered_bias=False, head_name=None, thresholds=None,): """Creates a `_Head` for binary classification with SVMs. The head uses binary hinge loss. Args: label_name: String, name of the key in label dict. Can be null if label is a tensor (single headed models). weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. head_name: name of the head. If provided, predictions, summary and metrics keys will be suffixed by `"/" + head_name` and the default variable scope will be `head_name`. thresholds: thresholds for eval metrics, defaults to [.5] Returns: An instance of `_Head`. """ return _BinarySvmHead( label_name=label_name, weight_column_name=weight_column_name, enable_centered_bias=enable_centered_bias, head_name=head_name, thresholds=thresholds) def _multi_label_head(n_classes, label_name=None, weight_column_name=None, enable_centered_bias=False, head_name=None, thresholds=None, metric_class_ids=None, loss_fn=None): """Creates a _Head for multi label classification. The Head uses sigmoid cross entropy loss. Args: n_classes: Integer, number of classes, must be >= 2 label_name: String, name of the key in label dict. Can be null if label is a tensor (single headed models). weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. head_name: name of the head. If provided, predictions, summary and metrics keys will be suffixed by `"/" + head_name` and the default variable scope will be `head_name`. thresholds: thresholds for eval metrics, defaults to [.5] metric_class_ids: List of class IDs for which we should report per-class metrics. Must all be in the range `[0, n_classes)`. loss_fn: Optional function that takes (`labels`, `logits`, `weights`) as parameter and returns a weighted scalar loss. `weights` should be optional. See `tf.losses` Returns: An instance of _MultiLabelHead. Raises: ValueError: If n_classes is < 2 ValueError: If loss_fn does not have expected signature. """ if n_classes < 2: raise ValueError("n_classes must be > 1 for classification.") if loss_fn: _verify_loss_fn_args(loss_fn) return _MultiLabelHead( n_classes=n_classes, label_name=label_name, weight_column_name=weight_column_name, enable_centered_bias=enable_centered_bias, head_name=head_name, thresholds=thresholds, metric_class_ids=metric_class_ids, loss_fn=_wrap_custom_loss_fn(loss_fn) if loss_fn else None) def _multi_head(heads, loss_weights=None): """Creates a MultiHead stemming from same logits/hidden layer. Args: heads: list of _Head objects. loss_weights: optional list of weights to be used to combine losses from each head. All losses are weighted equally if not provided. Returns: A _Head instance that combines multiple heads. Raises: ValueError: if heads and loss_weights have different size. """ if loss_weights: if len(loss_weights) != len(heads): raise ValueError("heads and loss_weights must have same size") def _weighted_loss_combiner(losses): if loss_weights: if len(losses) != len(loss_weights): raise ValueError("losses and loss_weights must have same size") weighted_losses = [] for loss, weight in zip(losses, loss_weights): weighted_losses.append(math_ops.multiply(loss, weight)) return math_ops.add_n(weighted_losses) else: return math_ops.add_n(losses) return _MultiHead(heads, loss_combiner=_weighted_loss_combiner) def no_op_train_fn(loss): del loss return control_flow_ops.no_op() # TODO(zakaria): Make the classes public once we are ready for users to subclass # them. See b/34751732 class _Head(object): """Interface for the head/top of a model. Given logits or output of a hidden layer, a Head knows how to compute predictions, loss, default metric and export signature. """ __metaclass__ = abc.ABCMeta @abc.abstractproperty def logits_dimension(self): """Size of the last dimension of the logits `Tensor`. Typically, logits is of shape `[batch_size, logits_dimension]`. Returns: Number of logits values per example. """ raise NotImplementedError("Calling an abstract method.") @abc.abstractmethod def create_model_fn_ops(self, features, mode, labels=None, train_op_fn=None, logits=None, logits_input=None, scope=None): """Returns ops for a model_fn. Exactly one of `logits` and `logits_input` must be provided. All args must be passed via name. Args: features: Input `dict` of `Tensor` objects. mode: Estimator's `ModeKeys`. labels: Labels `Tensor`, or `dict` of same. train_op_fn: Function that takes a scalar loss and returns an op to optimize with the loss. Must not be `None` in TRAIN mode. If you want to optimize loss yourself you can pass `no_op_train_fn`. logits: logits `Tensor`, or `dict` of same, to be used for the head. logits_input: `Tensor` from which to build logits. scope: Optional scope for `variable_scope`. Returns: `ModelFnOps`. Raises: ValueError: if `mode` is not recognized, or neither or both of `logits` and `logits_input` is provided. """ raise NotImplementedError("Calling an abstract method.") class _SingleHead(_Head): """Interface for a single head/top of a model.""" __metaclass__ = abc.ABCMeta def __init__( self, problem_type, logits_dimension, label_name=None, weight_column_name=None, head_name=None): if problem_type is None: raise ValueError("Invalid problem_type %s." % problem_type) if logits_dimension is None or logits_dimension < 1: raise ValueError("Invalid logits_dimension %s." % logits_dimension) self._problem_type = problem_type self._logits_dimension = logits_dimension self._label_name = label_name self._weight_column_name = weight_column_name self._head_name = head_name @property def logits_dimension(self): return self._logits_dimension @property def label_name(self): return self._label_name @property def weight_column_name(self): return self._weight_column_name @property def head_name(self): return self._head_name def _create_output_alternatives(self, predictions): """Creates output alternative for the Head. Args: predictions: a dict of {tensor_name: Tensor}, where 'tensor_name' is a symbolic name for an output Tensor possibly but not necessarily taken from `PredictionKey`, and 'Tensor' is the corresponding output Tensor itself. Returns: `dict` of {submodel_name: (problem_type, {tensor_name: Tensor})}, where 'submodel_name' is a submodel identifier that should be consistent across the pipeline (here likely taken from the head_name), 'problem_type' is a `ProblemType`, 'tensor_name' is a symbolic name for an output Tensor possibly but not necessarily taken from `PredictionKey`, and 'Tensor' is the corresponding output Tensor itself. """ return {self._head_name: (self._problem_type, predictions)} # TODO(zakaria): use contrib losses. def _mean_squared_loss(labels, logits, weights=None): with ops.name_scope(None, "mean_squared_loss", (logits, labels)) as name: logits = ops.convert_to_tensor(logits) labels = ops.convert_to_tensor(labels) # To prevent broadcasting inside "-". if len(labels.get_shape()) == 1: labels = array_ops.expand_dims(labels, dim=(1,)) # TODO(zakaria): make sure it does not recreate the broadcast bug. if len(logits.get_shape()) == 1: logits = array_ops.expand_dims(logits, dim=(1,)) logits.get_shape().assert_is_compatible_with(labels.get_shape()) loss = math_ops.square(logits - math_ops.to_float(labels), name=name) return _compute_weighted_loss(loss, weights) def _poisson_loss(labels, logits, weights=None): """Computes poisson loss from logits.""" with ops.name_scope(None, "_poisson_loss", (logits, labels)) as name: logits = ops.convert_to_tensor(logits) labels = ops.convert_to_tensor(labels) # To prevent broadcasting inside "-". if len(labels.get_shape()) == 1: labels = array_ops.expand_dims(labels, dim=(1,)) # TODO(zakaria): make sure it does not recreate the broadcast bug. if len(logits.get_shape()) == 1: logits = array_ops.expand_dims(logits, dim=(1,)) logits.get_shape().assert_is_compatible_with(labels.get_shape()) loss = nn.log_poisson_loss(labels, logits, compute_full_loss=True, name=name) return _compute_weighted_loss(loss, weights) def _logits(logits_input, logits, logits_dimension): """Validate logits args, and create `logits` if necessary. Exactly one of `logits_input` and `logits` must be provided. Args: logits_input: `Tensor` input to `logits`. logits: `Tensor` output. logits_dimension: Integer, last dimension of `logits`. This is used to create `logits` from `logits_input` if `logits` is `None`; otherwise, it's used to validate `logits`. Returns: `logits` `Tensor`. Raises: ValueError: if neither or both of `logits` and `logits_input` are supplied. """ if (logits_dimension is None) or (logits_dimension < 1): raise ValueError("Invalid logits_dimension %s." % logits_dimension) # If not provided, create logits. if logits is None: if logits_input is None: raise ValueError("Neither logits nor logits_input supplied.") return layers_lib.linear(logits_input, logits_dimension, scope="logits") if logits_input is not None: raise ValueError("Both logits and logits_input supplied.") logits = ops.convert_to_tensor(logits, name="logits") logits_dims = logits.get_shape().dims if logits_dims is not None: logits_dims[-1].assert_is_compatible_with(logits_dimension) return logits def _create_model_fn_ops(features, mode, transform_labels_fn, loss_fn, logits_to_predictions_fn, metrics_fn, create_output_alternatives_fn, default_variable_scope_name, labels=None, train_op_fn=None, logits=None, logits_input=None, logits_dimension=None, head_name=None, weight_column_name=None, enable_centered_bias=False): """Returns a `ModelFnOps` object.""" _check_mode_valid(mode) with variable_scope.variable_scope( None, default_name=head_name or default_variable_scope_name, values=(tuple(six.itervalues(features)) + (labels, logits, logits_input))): if (mode != model_fn.ModeKeys.INFER) and (labels is not None): labels = transform_labels_fn(labels) else: labels = None logits = _logits(logits_input, logits, logits_dimension) centered_bias = None if enable_centered_bias: centered_bias = _centered_bias(logits_dimension, head_name) logits = nn.bias_add(logits, centered_bias) predictions = logits_to_predictions_fn(logits) loss = None train_op = None eval_metric_ops = None if (mode != model_fn.ModeKeys.INFER) and (labels is not None): weight_tensor = _weight_tensor(features, weight_column_name) loss, weighted_average_loss = loss_fn(labels, logits, weight_tensor) logging_ops.scalar_summary( _summary_key(head_name, mkey.LOSS), weighted_average_loss) if mode == model_fn.ModeKeys.TRAIN: if train_op_fn is None: raise ValueError("train_op_fn can not be None in TRAIN mode") train_op = _train_op(loss, labels, train_op_fn, centered_bias, logits_dimension, loss_fn, weight_tensor) eval_metric_ops = metrics_fn( weighted_average_loss, predictions, labels, weight_tensor) return model_fn.ModelFnOps( mode=mode, predictions=predictions, loss=loss, train_op=train_op, eval_metric_ops=eval_metric_ops, output_alternatives=create_output_alternatives_fn(predictions)) class _RegressionHead(_SingleHead): """_Head for regression with a generalized linear model.""" def __init__(self, label_dimension, loss_fn, link_fn, label_name=None, weight_column_name=None, enable_centered_bias=False, head_name=None): """Head for regression. Args: label_dimension: Number of regression labels per example. This is the size of the last dimension of the labels `Tensor` (typically, this has shape `[batch_size, label_dimension]`). loss_fn: Loss function, takes logits and labels and returns loss. link_fn: Link function, takes a logits tensor and returns the output. label_name: String, name of the key in label dict. Can be null if label is a tensor (single headed models). weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. head_name: name of the head. Predictions, summary and metrics keys are suffixed by `"/" + head_name` and the default variable scope is `head_name`. """ super(_RegressionHead, self).__init__( problem_type=constants.ProblemType.LINEAR_REGRESSION, logits_dimension=label_dimension, label_name=label_name, weight_column_name=weight_column_name, head_name=head_name) self._loss_fn = loss_fn self._link_fn = link_fn self._enable_centered_bias = enable_centered_bias def create_model_fn_ops(self, features, mode, labels=None, train_op_fn=None, logits=None, logits_input=None, scope=None): """See `_Head`.""" return _create_model_fn_ops( features=features, mode=mode, transform_labels_fn=self._transform_labels, loss_fn=self._loss_fn, logits_to_predictions_fn=self._logits_to_predictions, metrics_fn=self._metrics, create_output_alternatives_fn=self._create_output_alternatives, default_variable_scope_name="regression_head", labels=labels, train_op_fn=train_op_fn, logits=logits, logits_input=logits_input, logits_dimension=self.logits_dimension, head_name=self.head_name, weight_column_name=self.weight_column_name, enable_centered_bias=self._enable_centered_bias) def _transform_labels(self, labels): """Applies transformations to labels tensor.""" labels_tensor = _to_labels_tensor(labels, self._label_name) _check_no_sparse_tensor(labels_tensor) return labels_tensor def _logits_to_predictions(self, logits): """Returns a dict of predictions. Args: logits: logits `Tensor` after applying possible centered bias. Returns: Dict of prediction `Tensor` keyed by `PredictionKey`. """ key = prediction_key.PredictionKey.SCORES with ops.name_scope(None, "predictions", (logits,)): if self.logits_dimension == 1: logits = array_ops.squeeze(logits, squeeze_dims=(1,), name=key) return {key: self._link_fn(logits)} def _metrics(self, eval_loss, predictions, labels, weights): """Returns a dict of metrics keyed by name.""" del predictions, labels, weights # Unused by this head. with ops.name_scope("metrics", values=[eval_loss]): return { _summary_key(self.head_name, mkey.LOSS): metrics_lib.streaming_mean(eval_loss)} def _log_loss_with_two_classes(labels, logits, weights=None): with ops.name_scope(None, "log_loss_with_two_classes", (logits, labels)) as name: logits = ops.convert_to_tensor(logits) labels = math_ops.to_float(labels) # TODO(ptucker): This will break for dynamic shapes. # sigmoid_cross_entropy_with_logits requires [batch_size, 1] labels. if len(labels.get_shape()) == 1: labels = array_ops.expand_dims(labels, dim=(1,)) loss = nn.sigmoid_cross_entropy_with_logits(labels=labels, logits=logits, name=name) return _compute_weighted_loss(loss, weights) def _one_class_to_two_class_logits(logits): return array_ops.concat((array_ops.zeros_like(logits), logits), 1) class _BinaryLogisticHead(_SingleHead): """_Head for binary logistic classifciation.""" def __init__(self, label_name=None, weight_column_name=None, enable_centered_bias=False, head_name=None, loss_fn=None, thresholds=None): """Base type for all single heads. Args: label_name: String, name of the key in label dict. Can be `None` if label is a tensor (single headed models). weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. head_name: name of the head. Predictions, summary, metrics keys are suffixed by `"/" + head_name` and the default variable scope is `head_name`. loss_fn: Loss function. thresholds: thresholds for eval. Raises: ValueError: if n_classes is invalid. """ super(_BinaryLogisticHead, self).__init__( problem_type=constants.ProblemType.LOGISTIC_REGRESSION, logits_dimension=1, label_name=label_name, weight_column_name=weight_column_name, head_name=head_name) self._thresholds = thresholds if thresholds else (.5,) self._loss_fn = loss_fn if loss_fn else _log_loss_with_two_classes self._enable_centered_bias = enable_centered_bias def create_model_fn_ops(self, features, mode, labels=None, train_op_fn=None, logits=None, logits_input=None, scope=None): """See `_Head`.""" return _create_model_fn_ops( features=features, mode=mode, transform_labels_fn=self._transform_labels, loss_fn=self._loss_fn, logits_to_predictions_fn=self._logits_to_predictions, metrics_fn=self._metrics, create_output_alternatives_fn=self._create_output_alternatives, default_variable_scope_name="binary_logistic_head", labels=labels, train_op_fn=train_op_fn, logits=logits, logits_input=logits_input, logits_dimension=self.logits_dimension, head_name=self.head_name, weight_column_name=self.weight_column_name, enable_centered_bias=self._enable_centered_bias) def _transform_labels(self, labels): """Applies transformations to labels tensor.""" labels_tensor = _to_labels_tensor(labels, self._label_name) _check_no_sparse_tensor(labels_tensor) return labels_tensor def _logits_to_predictions(self, logits): """Returns a dict of predictions. Args: logits: logits `Output` after applying possible centered bias. Returns: Dict of prediction `Output` keyed by `PredictionKey`. """ with ops.name_scope(None, "predictions", (logits,)): two_class_logits = _one_class_to_two_class_logits(logits) return { prediction_key.PredictionKey.LOGITS: logits, prediction_key.PredictionKey.LOGISTIC: math_ops.sigmoid( logits, name=prediction_key.PredictionKey.LOGISTIC), prediction_key.PredictionKey.PROBABILITIES: nn.softmax( two_class_logits, name=prediction_key.PredictionKey.PROBABILITIES), prediction_key.PredictionKey.CLASSES: math_ops.argmax( two_class_logits, 1, name=prediction_key.PredictionKey.CLASSES) } def _metrics(self, eval_loss, predictions, labels, weights): """Returns a dict of metrics keyed by name.""" with ops.name_scope("metrics", values=( [eval_loss, labels, weights] + list(six.itervalues(predictions)))): classes = predictions[prediction_key.PredictionKey.CLASSES] logistic = predictions[prediction_key.PredictionKey.LOGISTIC] metrics = {_summary_key(self.head_name, mkey.LOSS): metrics_lib.streaming_mean(eval_loss)} # TODO(b/29366811): This currently results in both an "accuracy" and an # "accuracy/threshold_0.500000_mean" metric for binary classification. metrics[_summary_key(self.head_name, mkey.ACCURACY)] = ( metrics_lib.streaming_accuracy(classes, labels, weights)) metrics[_summary_key(self.head_name, mkey.PREDICTION_MEAN)] = ( _predictions_streaming_mean(logistic, weights)) metrics[_summary_key(self.head_name, mkey.LABEL_MEAN)] = ( _indicator_labels_streaming_mean(labels, weights)) # Also include the streaming mean of the label as an accuracy baseline, as # a reminder to users. metrics[_summary_key(self.head_name, mkey.ACCURACY_BASELINE)] = ( _indicator_labels_streaming_mean(labels, weights)) metrics[_summary_key(self.head_name, mkey.AUC)] = ( _streaming_auc(logistic, labels, weights)) for threshold in self._thresholds: metrics[_summary_key( self.head_name, mkey.ACCURACY_MEAN % threshold)] = ( _streaming_accuracy_at_threshold(logistic, labels, weights, threshold)) # Precision for positive examples. metrics[_summary_key( self.head_name, mkey.PRECISION_MEAN % threshold)] = ( _streaming_precision_at_threshold(logistic, labels, weights, threshold)) # Recall for positive examples. metrics[_summary_key( self.head_name, mkey.RECALL_MEAN % threshold)] = ( _streaming_recall_at_threshold(logistic, labels, weights, threshold)) return metrics def _softmax_cross_entropy_loss(labels, logits, weights=None): with ops.name_scope( None, "softmax_cross_entropy_loss", (logits, labels,)) as name: labels = ops.convert_to_tensor(labels) # Check that we got integer for classification. if not labels.dtype.is_integer: raise ValueError("Labels dtype should be integer " "Instead got %s." % labels.dtype) # TODO(ptucker): This will break for dynamic shapes. # sparse_softmax_cross_entropy_with_logits requires [batch_size] labels. if len(labels.get_shape()) == 2: labels = array_ops.squeeze(labels, squeeze_dims=(1,)) loss = nn.sparse_softmax_cross_entropy_with_logits( labels=labels, logits=logits, name=name) return _compute_weighted_loss(loss, weights) class _MultiClassHead(_SingleHead): """_Head for classification.""" def __init__(self, n_classes, label_name=None, weight_column_name=None, enable_centered_bias=False, head_name=None, loss_fn=None, thresholds=None, metric_class_ids=None): """_Head for classification. Args: n_classes: Number of classes, must be greater than 2 (for 2 classes, use `_BinaryLogisticHead`). label_name: String, name of the key in label dict. Can be null if label is a tensor (single headed models). weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. head_name: name of the head. If provided, predictions, summary, metrics keys will be suffixed by `"/" + head_name` and the default variable scope will be `head_name`. loss_fn: Loss function. thresholds: thresholds for eval. metric_class_ids: List of class IDs for which we should report per-class metrics. Must all be in the range `[0, n_classes)`. Raises: ValueError: if `n_classes` or `metric_class_ids` is invalid. """ super(_MultiClassHead, self).__init__( problem_type=constants.ProblemType.CLASSIFICATION, logits_dimension=n_classes, label_name=label_name, weight_column_name=weight_column_name, head_name=head_name) if (n_classes is None) or (n_classes <= 2): raise ValueError("n_classes must be > 2: %s." % n_classes) self._thresholds = thresholds if thresholds else (.5,) self._loss_fn = loss_fn if loss_fn else _softmax_cross_entropy_loss self._enable_centered_bias = enable_centered_bias self._metric_class_ids = tuple([] if metric_class_ids is None else metric_class_ids) for class_id in self._metric_class_ids: if (class_id < 0) or (class_id >= n_classes): raise ValueError("Class ID %s not in [0, %s)." % (class_id, n_classes)) def create_model_fn_ops(self, features, mode, labels=None, train_op_fn=None, logits=None, logits_input=None, scope=None): """See `_Head`.""" return _create_model_fn_ops( features=features, mode=mode, transform_labels_fn=self._transform_labels, loss_fn=self._loss_fn, logits_to_predictions_fn=self._logits_to_predictions, metrics_fn=self._metrics, create_output_alternatives_fn=self._create_output_alternatives, default_variable_scope_name="multi_class_head", labels=labels, train_op_fn=train_op_fn, logits=logits, logits_input=logits_input, logits_dimension=self.logits_dimension, head_name=self.head_name, weight_column_name=self.weight_column_name, enable_centered_bias=self._enable_centered_bias) def _transform_labels(self, labels): """Applies transformations to labels tensor.""" labels_tensor = _to_labels_tensor(labels, self._label_name) _check_no_sparse_tensor(labels_tensor) return labels_tensor def _logits_to_predictions(self, logits): """Returns a dict of predictions. Args: logits: logits `Tensor` after applying possible centered bias. Returns: Dict of prediction `Tensor` keyed by `PredictionKey`. """ with ops.name_scope(None, "predictions", (logits,)): return { prediction_key.PredictionKey.LOGITS: logits, prediction_key.PredictionKey.PROBABILITIES: nn.softmax( logits, name=prediction_key.PredictionKey.PROBABILITIES), prediction_key.PredictionKey.CLASSES: math_ops.argmax( logits, 1, name=prediction_key.PredictionKey.CLASSES) } def _metrics(self, eval_loss, predictions, labels, weights): """Returns a dict of metrics keyed by name.""" with ops.name_scope("metrics", values=( [eval_loss, labels, weights] + list(six.itervalues(predictions)))): classes = predictions[prediction_key.PredictionKey.CLASSES] probabilities = predictions[prediction_key.PredictionKey.PROBABILITIES] logits = predictions[prediction_key.PredictionKey.LOGITS] metrics = {_summary_key(self.head_name, mkey.LOSS): metrics_lib.streaming_mean(eval_loss)} # TODO(b/29366811): This currently results in both an "accuracy" and an # "accuracy/threshold_0.500000_mean" metric for binary classification. metrics[_summary_key(self.head_name, mkey.ACCURACY)] = ( metrics_lib.streaming_accuracy(classes, labels, weights)) metrics[_summary_key(self.head_name, mkey.AUC)] = ( _streaming_auc_with_class_id_label( probabilities, labels, weights, self.logits_dimension)) for class_id in self._metric_class_ids: # TODO(ptucker): Add per-class accuracy, precision, recall. metrics[_summary_key( self.head_name, mkey.CLASS_PREDICTION_MEAN % class_id)] = ( _class_predictions_streaming_mean(classes, weights, class_id)) metrics[_summary_key( self.head_name, mkey.CLASS_LABEL_MEAN % class_id)] = ( _class_labels_streaming_mean(labels, weights, class_id)) metrics[_summary_key( self.head_name, mkey.CLASS_PROBABILITY_MEAN % class_id)] = ( _predictions_streaming_mean(probabilities, weights, class_id)) metrics[_summary_key( self.head_name, mkey.CLASS_LOGITS_MEAN % class_id)] = ( _predictions_streaming_mean(logits, weights, class_id)) metrics[_summary_key(self.head_name, mkey.CLASS_AUC % class_id)] = ( _class_streaming_auc(probabilities, labels, weights, class_id, self.logits_dimension)) return metrics def _to_labels_tensor(labels, label_name): """Returns label as a tensor. Args: labels: Label `Tensor` or `SparseTensor` or a dict containig labels. label_name: Label name if labels is a dict. Returns: Label `Tensor` or `SparseTensor`. """ labels = labels[label_name] if isinstance(labels, dict) else labels return framework_lib.convert_to_tensor_or_sparse_tensor(labels) def _check_no_sparse_tensor(x): """Raises ValueError if the given tensor is `SparseTensor`.""" if isinstance(x, sparse_tensor.SparseTensor): raise ValueError("SparseTensor is not supported.") def _sparse_labels_to_indicator(labels, num_classes): """If labels is `SparseTensor`, converts it to indicator `Tensor`. Args: labels: Label `Tensor` or `SparseTensor`. num_classes: Number of classes. Returns: Dense label `Tensor`. Raises: ValueError: If labels is `SparseTensot` and `num_classes` < 2. """ if isinstance(labels, sparse_tensor.SparseTensor): if num_classes < 2: raise ValueError("Must set num_classes >= 2 when passing labels as a " "SparseTensor.") return math_ops.to_int64( sparse_ops.sparse_to_indicator(labels, num_classes)) return labels def _assert_labels_rank(labels): return control_flow_ops.Assert( math_ops.less_equal(array_ops.rank(labels), 2), ("labels shape should be either [batch_size, 1] or [batch_size]",)) class _BinarySvmHead(_SingleHead): """_Head for binary classification using SVMs.""" def __init__(self, label_name, weight_column_name, enable_centered_bias, head_name, thresholds): def _loss_fn(labels, logits, weights=None): with ops.name_scope(None, "hinge_loss", (logits, labels)) as name: with ops.control_dependencies((_assert_labels_rank(labels),)): labels = array_ops.reshape(labels, shape=(-1, 1)) loss = losses_lib.hinge_loss(logits=logits, labels=labels, scope=name) return _compute_weighted_loss(loss, weights) super(_BinarySvmHead, self).__init__( problem_type=constants.ProblemType.LOGISTIC_REGRESSION, logits_dimension=1, label_name=label_name, weight_column_name=weight_column_name, head_name=head_name) self._thresholds = thresholds if thresholds else (.5,) self._loss_fn = _loss_fn self._enable_centered_bias = enable_centered_bias def create_model_fn_ops(self, features, mode, labels=None, train_op_fn=None, logits=None, logits_input=None, scope=None): """See `_Head`.""" return _create_model_fn_ops( features=features, mode=mode, transform_labels_fn=self._transform_labels, loss_fn=self._loss_fn, logits_to_predictions_fn=self._logits_to_predictions, metrics_fn=self._metrics, create_output_alternatives_fn=self._create_output_alternatives, default_variable_scope_name="binary_svm_head", labels=labels, train_op_fn=train_op_fn, logits=logits, logits_input=logits_input, logits_dimension=self.logits_dimension, head_name=self.head_name, weight_column_name=self.weight_column_name, enable_centered_bias=self._enable_centered_bias) def _transform_labels(self, labels): """Applies transformations to labels tensor.""" labels_tensor = _to_labels_tensor(labels, self._label_name) _check_no_sparse_tensor(labels_tensor) return labels_tensor def _logits_to_predictions(self, logits): """See `_MultiClassHead`.""" with ops.name_scope(None, "predictions", (logits,)): return { prediction_key.PredictionKey.LOGITS: logits, prediction_key.PredictionKey.CLASSES: math_ops.argmax( _one_class_to_two_class_logits(logits), 1, name=prediction_key.PredictionKey.CLASSES) } def _metrics(self, eval_loss, predictions, labels, weights): """See `_MultiClassHead`.""" with ops.name_scope("metrics", values=( [eval_loss, labels, weights] + list(six.itervalues(predictions)))): metrics = {_summary_key(self.head_name, mkey.LOSS): metrics_lib.streaming_mean(eval_loss)} # TODO(b/29366811): This currently results in both an "accuracy" and an # "accuracy/threshold_0.500000_mean" metric for binary classification. classes = predictions[prediction_key.PredictionKey.CLASSES] metrics[_summary_key(self.head_name, mkey.ACCURACY)] = ( metrics_lib.streaming_accuracy(classes, labels, weights)) # TODO(sibyl-vie3Poto): add more metrics relevant for svms. return metrics class _MultiLabelHead(_SingleHead): """_Head for multlabel classification.""" # TODO(zakaria): add signature and metric for multilabel. def __init__(self, n_classes, label_name, weight_column_name, enable_centered_bias, head_name, thresholds, metric_class_ids=None, loss_fn=None): super(_MultiLabelHead, self).__init__( problem_type=constants.ProblemType.CLASSIFICATION, logits_dimension=n_classes, label_name=label_name, weight_column_name=weight_column_name, head_name=head_name) self._thresholds = thresholds if thresholds else (.5,) self._loss_fn = loss_fn if loss_fn else _sigmoid_cross_entropy_loss self._enable_centered_bias = enable_centered_bias self._metric_class_ids = tuple([] if metric_class_ids is None else metric_class_ids) for class_id in self._metric_class_ids: if (class_id < 0) or (class_id >= n_classes): raise ValueError("Class ID %s not in [0, %s)." % (class_id, n_classes)) def create_model_fn_ops(self, features, mode, labels=None, train_op_fn=None, logits=None, logits_input=None, scope=None): """See `_Head`.""" return _create_model_fn_ops( features=features, mode=mode, transform_labels_fn=self._transform_labels, loss_fn=self._loss_fn, logits_to_predictions_fn=self._logits_to_predictions, metrics_fn=self._metrics, create_output_alternatives_fn=self._create_output_alternatives, default_variable_scope_name="multi_label_head", labels=labels, train_op_fn=train_op_fn, logits=logits, logits_input=logits_input, logits_dimension=self.logits_dimension, head_name=self.head_name, weight_column_name=self.weight_column_name, enable_centered_bias=self._enable_centered_bias) def _transform_labels(self, labels): """Applies transformations to labels tensor.""" labels_tensor = _to_labels_tensor(labels, self._label_name) labels_tensor = _sparse_labels_to_indicator(labels_tensor, self._logits_dimension) return labels_tensor def _logits_to_predictions(self, logits): """See `_MultiClassHead`.""" with ops.name_scope(None, "predictions", (logits,)): return { prediction_key.PredictionKey.LOGITS: logits, prediction_key.PredictionKey.PROBABILITIES: math_ops.sigmoid( logits, name=prediction_key.PredictionKey.PROBABILITIES), prediction_key.PredictionKey.CLASSES: math_ops.to_int64( math_ops.greater(logits, 0), name=prediction_key.PredictionKey.CLASSES) } def _metrics(self, eval_loss, predictions, labels, weights): """Returns a dict of metrics keyed by name.""" with ops.name_scope("metrics", values=( [eval_loss, labels, weights] + list(six.itervalues(predictions)))): classes = predictions[prediction_key.PredictionKey.CLASSES] probabilities = predictions[prediction_key.PredictionKey.PROBABILITIES] logits = predictions[prediction_key.PredictionKey.LOGITS] metrics = {_summary_key(self.head_name, mkey.LOSS): metrics_lib.streaming_mean(eval_loss)} # TODO(b/29366811): This currently results in both an "accuracy" and an # "accuracy/threshold_0.500000_mean" metric for binary classification. metrics[_summary_key(self.head_name, mkey.ACCURACY)] = ( metrics_lib.streaming_accuracy(classes, labels, weights)) metrics[_summary_key(self.head_name, mkey.AUC)] = _streaming_auc( probabilities, labels, weights) for class_id in self._metric_class_ids: # TODO(ptucker): Add per-class accuracy, precision, recall. metrics[_summary_key( self.head_name, mkey.CLASS_PREDICTION_MEAN % class_id)] = ( _predictions_streaming_mean(classes, weights, class_id)) metrics[_summary_key( self.head_name, mkey.CLASS_LABEL_MEAN % class_id)] = ( _indicator_labels_streaming_mean(labels, weights, class_id)) metrics[_summary_key( self.head_name, mkey.CLASS_PROBABILITY_MEAN % class_id)] = ( _predictions_streaming_mean(probabilities, weights, class_id)) metrics[_summary_key( self.head_name, mkey.CLASS_LOGITS_MEAN % class_id)] = ( _predictions_streaming_mean(logits, weights, class_id)) metrics[_summary_key(self.head_name, mkey.CLASS_AUC % class_id)] = ( _streaming_auc(probabilities, labels, weights, class_id)) return metrics class _MultiHead(_Head): """_Head to combine multiple _Head objects. All heads stem from the same logits/logit_input tensor. For training, combines losses of each heads according a function provided by user. For eval, adds a /head_name suffix to the keys in eval metrics. For inference, updates keys prediction dict to a 2-tuple, (head_name, prediction_key) """ def __init__(self, heads, loss_combiner): """_Head to combine multiple _Head objects. Args: heads: list of _Head objects. loss_combiner: function that takes a list of loss tensors for the heads and returns the final loss tensor for the multi head. Raises: ValueError: if any head does not have a name. """ self._logits_dimension = 0 for head in heads: # TODO(ptucker): Change this, and add head_name to MultiHead, to support # nested MultiHeads. if not isinstance(head, _SingleHead): raise ValueError("Members of MultiHead must be SingleHead.") if not head.head_name: raise ValueError("Members of MultiHead must have names.") self._logits_dimension += head.logits_dimension self._heads = heads self._loss_combiner = loss_combiner @property def logits_dimension(self): return self._logits_dimension def create_model_fn_ops(self, features, mode, labels=None, train_op_fn=None, logits=None, logits_input=None, scope=None): """See `_Head.create_model_fn_ops`. Args: features: Input `dict` of `Tensor` objects. mode: Estimator's `ModeKeys`. labels: Labels `Tensor`, or `dict` of same. train_op_fn: Function that takes a scalar loss and returns an op to optimize with the loss. logits: Concatenated logits for all heads or a dict of head name to logits tensor. If concatenated logits, it should have (batchsize, x) shape where x is the sum of `logits_dimension` of all the heads, i.e., same as `logits_dimension` of this class. create_model_fn_ops will split the logits tensor and pass logits of proper size to each head. This is useful if we want to be agnostic about whether you creating a single versus multihead. logits can also be a dict for convenience where you are creating the head specific logits explicitly and don't want to concatenate them yourself. logits_input: tensor to build logits from. scope: Optional scope for variable_scope. If provided, will be passed to all heads. Most users will want to set this to `None`, so each head constructs a separate variable_scope according to its `head_name`. Returns: `ModelFnOps`. Raises: ValueError: if `mode` is not recognized, or neither or both of `logits` and `logits_input` is provided. """ _check_mode_valid(mode) all_model_fn_ops = [] if logits is None: # Use logits_input. for head in self._heads: all_model_fn_ops.append( head.create_model_fn_ops( features=features, mode=mode, labels=labels, train_op_fn=no_op_train_fn, logits_input=logits_input, scope=scope)) else: head_logits_pairs = [] if isinstance(logits, dict): head_logits_pairs = [] for head in self._heads: head_logits_pairs.append((head, logits[head.head_name])) else: # Split logits for each head. head_logits_pairs = zip(self._heads, self._split_logits(logits)) for head, head_logits in head_logits_pairs: all_model_fn_ops.append( head.create_model_fn_ops( features=features, mode=mode, labels=labels, train_op_fn=no_op_train_fn, logits=head_logits, scope=scope)) if mode == model_fn.ModeKeys.TRAIN: if train_op_fn is None: raise ValueError("train_op_fn can not be None in TRAIN mode.") return self._combine_train(all_model_fn_ops, train_op_fn) if mode == model_fn.ModeKeys.INFER: return self._combine_infer(all_model_fn_ops) if mode == model_fn.ModeKeys.EVAL: return self._combine_eval(all_model_fn_ops) raise ValueError("mode=%s unrecognized" % str(mode)) def _split_logits(self, logits): """Splits logits for heads. Args: logits: the logits tensor. Returns: A list of logits for the individual heads. """ all_logits = [] begin = 0 for head in self._heads: current_logits_size = head.logits_dimension current_logits = array_ops.slice(logits, [0, begin], [-1, current_logits_size]) all_logits.append(current_logits) begin += current_logits_size return all_logits def _combine_train(self, all_model_fn_ops, train_op_fn): """Combines list of ModelFnOps for training. Args: all_model_fn_ops: list of ModelFnOps for the individual heads. train_op_fn: Function to create train op. See `create_model_fn_ops` documentaion for more details. Returns: ModelFnOps that combines all the heads. """ losses = [] additional_train_ops = [] for m in all_model_fn_ops: losses.append(m.loss) additional_train_ops.append(m.train_op) loss = self._loss_combiner(losses) train_op = train_op_fn(loss) train_op = control_flow_ops.group(train_op, *additional_train_ops) return model_fn.ModelFnOps( mode=model_fn.ModeKeys.TRAIN, loss=loss, train_op=train_op) def _combine_infer(self, all_model_fn_ops): """Combines list of ModelFnOps for inference. Args: all_model_fn_ops: list of ModelFnOps for the individual heads. Returns: ModelFnOps that combines all the heads. """ predictions = {} output_alternatives = {} for head, m in zip(self._heads, all_model_fn_ops): head_name = head.head_name output_alternatives[head_name] = m.output_alternatives[head_name] for k, v in m.predictions.items(): predictions[(head_name, k)] = v return model_fn.ModelFnOps( mode=model_fn.ModeKeys.INFER, predictions=predictions, output_alternatives=output_alternatives) def _combine_eval(self, all_model_fn_ops): """Combines list of ModelFnOps for eval. Args: all_model_fn_ops: list of ModelFnOps for the individual heads. Returns: ModelFnOps that combines all the heads. """ predictions = {} metrics = {} losses = [] for head, m in zip(self._heads, all_model_fn_ops): losses.append(m.loss) head_name = head.head_name for k, v in m.predictions.items(): predictions[(head_name, k)] = v for k, v in m.eval_metric_ops.items(): # metrics["%s/%s" % (k, head_name)] = v metrics[k] = v loss = self._loss_combiner(losses) return model_fn.ModelFnOps( mode=model_fn.ModeKeys.EVAL, predictions=predictions, loss=loss, eval_metric_ops=metrics) def _weight_tensor(features, weight_column_name): """Returns weights as 1d `Tensor`.""" if not weight_column_name: return None with ops.name_scope(None, "weight_tensor", tuple(six.itervalues(features))): return math_ops.to_float(features[weight_column_name]) # TODO(zakaria): This function is needed for backward compatibility and should # be removed when we migrate to core. def _compute_weighted_loss(loss_unweighted, weight, name="loss"): """Returns a tuple of (loss_train, loss_report). loss is used for gradient descent while weighted_average_loss is used for summaries to be backward compatible. loss is different from the loss reported on the tensorboard as we should respect the example weights when computing the gradient. L = sum_{i} w_{i} * l_{i} / B where B is the number of examples in the batch, l_{i}, w_{i} are individual losses, and example weight. Args: loss_unweighted: Unweighted loss weight: Weight tensor name: Optional name Returns: A tuple of losses. First one for training and the second one for reproting. """ with ops.name_scope(name, values=(loss_unweighted, weight)) as name_scope: if weight is None: loss = math_ops.reduce_mean(loss_unweighted, name=name_scope) return loss, loss with ops.name_scope(None, "weighted_loss", (loss_unweighted, weight)) as name: weighted_loss = math_ops.multiply( array_ops.reshape(loss_unweighted, shape=(-1,)), array_ops.reshape(weight, shape=(-1,)), name=name) # TODO(ptucker): This might be wrong if weights are broadcast to loss shape. # We should use tf.losses here. weighted_loss_mean = math_ops.reduce_mean(weighted_loss, name=name_scope) weighted_loss_normalized = math_ops.div( math_ops.reduce_sum(weighted_loss), math_ops.to_float(math_ops.reduce_sum(weight)), name="weighted_average_loss") return weighted_loss_mean, weighted_loss_normalized def _wrap_custom_loss_fn(loss_fn): def _wrapper(labels, logits, weights=None): if weights is None: loss = loss_fn(labels, logits) else: loss = loss_fn(labels, logits, weights) return loss, loss return _wrapper def _check_mode_valid(mode): """Raises ValueError if the given mode is invalid.""" if (mode != model_fn.ModeKeys.TRAIN and mode != model_fn.ModeKeys.INFER and mode != model_fn.ModeKeys.EVAL): raise ValueError("mode=%s unrecognized." % str(mode)) def _get_arguments(func): """Returns a spec of given func.""" if hasattr(func, "__code__"): # Regular function. return inspect.getargspec(func) elif hasattr(func, "__call__"): # Callable object. return _get_arguments(func.__call__) elif hasattr(func, "func"): # Partial function. return _get_arguments(func.func) def _verify_loss_fn_args(loss_fn): args = _get_arguments(loss_fn).args for arg_name in ["labels", "logits", "weights"]: if arg_name not in args: raise ValueError("Argument %s not found in loss_fn." % arg_name) def _centered_bias(logits_dimension, head_name=None): """Returns `logits`, optionally with centered bias applied. Args: logits_dimension: Last dimension of `logits`. Must be >= 1. head_name: Optional name of the head. Returns: Centered bias `Variable`. Raises: ValueError: if `logits_dimension` is invalid. """ if (logits_dimension is None) or (logits_dimension < 1): raise ValueError("Invalid logits_dimension %s." % logits_dimension) # Do not create a variable with variable_scope.get_variable, because that may # create a PartitionedVariable, which does not support indexing, so # summary.scalar will not work. centered_bias = variables.Variable( name="centered_bias_weight", initial_value=array_ops.zeros(shape=(logits_dimension,)), trainable=True) for dim in range(logits_dimension): if head_name: summary.scalar("centered_bias/bias_%d/%s" % (dim, head_name), centered_bias[dim]) else: summary.scalar("centered_bias/bias_%d" % dim, centered_bias[dim]) return centered_bias def _centered_bias_step(centered_bias, logits_dimension, labels, loss_fn, weights): """Creates and returns training op for centered bias.""" if (logits_dimension is None) or (logits_dimension < 1): raise ValueError("Invalid logits_dimension %s." % logits_dimension) with ops.name_scope(None, "centered_bias_step", (labels,)) as name: batch_size = array_ops.shape(labels)[0] logits = array_ops.reshape( array_ops.tile(centered_bias, (batch_size,)), (batch_size, logits_dimension)) with ops.name_scope(None, "centered_bias", (labels, logits)): centered_bias_loss = math_ops.reduce_mean( loss_fn(labels, logits, weights), name="training_loss") # Learn central bias by an optimizer. 0.1 is a convervative lr for a # single variable. return training.AdagradOptimizer(0.1).minimize( centered_bias_loss, var_list=(centered_bias,), name=name) def _summary_key(head_name, val): return "%s/%s" % (val, head_name) if head_name else val def _train_op(loss, labels, train_op_fn, centered_bias, logits_dimension, loss_fn, weights): """Returns op for the training step.""" if centered_bias is not None: centered_bias_step = _centered_bias_step(centered_bias, logits_dimension, labels, loss_fn, weights) else: centered_bias_step = None with ops.name_scope(None, "train_op", (loss, labels)): train_op = train_op_fn(loss) if centered_bias_step is not None: train_op = control_flow_ops.group(train_op, centered_bias_step) return train_op def _sigmoid_cross_entropy_loss(labels, logits, weights=None): with ops.name_scope(None, "sigmoid_cross_entropy_loss", (logits, labels)) as name: # sigmoid_cross_entropy_with_logits requires [batch_size, n_classes] labels. loss = nn.sigmoid_cross_entropy_with_logits( labels=math_ops.to_float(labels), logits=logits, name=name) return _compute_weighted_loss(loss, weights) def _float_weights_or_none(weights): if weights is None: return None with ops.name_scope(None, "float_weights", (weights,)) as name: return math_ops.to_float(weights, name=name) def _indicator_labels_streaming_mean(labels, weights=None, class_id=None): labels = ops.convert_to_tensor(labels) if class_id is not None: labels = labels[:, class_id] return metrics_lib.streaming_mean(labels, weights=weights) def _predictions_streaming_mean(predictions, weights=None, class_id=None): predictions = ops.convert_to_tensor(predictions) if weights is not None: weights = ops.convert_to_tensor(weights) if class_id is not None: predictions = predictions[:, class_id] return metrics_lib.streaming_mean(predictions, weights=weights) # TODO(ptucker): Add support for SparseTensor labels. def _class_id_labels_to_indicator(labels, num_classes): if (num_classes is None) or (num_classes < 2): raise ValueError("Invalid num_classes %s." % num_classes) with ops.control_dependencies((_assert_labels_rank(labels),)): labels = array_ops.reshape(labels, (-1,)) return array_ops.one_hot(labels, depth=num_classes, axis=-1) def _class_predictions_streaming_mean(predictions, weights, class_id): return metrics_lib.streaming_mean( array_ops.where( math_ops.equal( math_ops.to_int32(class_id), math_ops.to_int32(predictions)), array_ops.ones_like(predictions), array_ops.zeros_like(predictions)), weights=weights) def _class_labels_streaming_mean(labels, weights, class_id): return metrics_lib.streaming_mean( array_ops.where( math_ops.equal( math_ops.to_int32(class_id), math_ops.to_int32(labels)), array_ops.ones_like(labels), array_ops.zeros_like(labels)), weights=weights) def _class_streaming_auc(predictions, labels, weights, class_id, num_classes): indicator_labels = _class_id_labels_to_indicator( labels, num_classes=num_classes) return _streaming_auc(predictions, indicator_labels, weights, class_id) def _streaming_auc_with_class_id_label(predictions, labels, weights, num_classes): indicator_labels = _class_id_labels_to_indicator( labels, num_classes=num_classes) return _streaming_auc(predictions, indicator_labels, weights) def _streaming_auc(predictions, labels, weights=None, class_id=None): predictions = ops.convert_to_tensor(predictions) labels = ops.convert_to_tensor(labels) if class_id is not None: predictions = predictions[:, class_id] labels = labels[:, class_id] return metrics_lib.streaming_auc( predictions, math_ops.cast(labels, dtypes.bool), weights=_float_weights_or_none(weights)) def _assert_class_id(class_id, num_classes=None): """Average label value for class `class_id`.""" if (class_id is None) or (class_id < 0): raise ValueError("Invalid class_id %s." % class_id) if num_classes is not None: if num_classes < 2: raise ValueError("Invalid num_classes %s." % num_classes) if class_id >= num_classes: raise ValueError("Invalid class_id %s." % class_id) def _streaming_accuracy_at_threshold(predictions, labels, weights, threshold): threshold_predictions = math_ops.to_float( math_ops.greater_equal(predictions, threshold)) return metrics_lib.streaming_accuracy( predictions=threshold_predictions, labels=labels, weights=weights) def _streaming_precision_at_threshold(predictions, labels, weights, threshold): precision_tensor, update_op = metrics_lib.streaming_precision_at_thresholds( predictions, labels=labels, thresholds=(threshold,), weights=_float_weights_or_none(weights)) return array_ops.squeeze(precision_tensor), array_ops.squeeze(update_op) def _streaming_recall_at_threshold(predictions, labels, weights, threshold): precision_tensor, update_op = metrics_lib.streaming_recall_at_thresholds( predictions, labels=labels, thresholds=(threshold,), weights=_float_weights_or_none(weights)) return array_ops.squeeze(precision_tensor), array_ops.squeeze(update_op)
3f06029ceb9f9184313732f15f1334894534e149
18375af374e91e721fb16e5415bc4fc7540e5ced
/currency_exchange/views.py
cf8a2101498baf62f88fd5a950b8ec6f7712a9a2
[]
no_license
youssefelmasry/tahweela_app_demo
64d802df33ad6361a714a3119b3380b9afe98e4e
ee55b23e601f5e6580e9f051f6da89acab37d3a1
refs/heads/master
2023-02-25T23:05:08.853738
2021-01-29T17:55:33
2021-01-29T17:55:33
334,214,124
0
0
null
null
null
null
UTF-8
Python
false
false
793
py
from rest_framework.generics import ListAPIView from rest_framework.views import APIView from currency_exchange.serializers import RateExchangeSerializer from rest_framework.response import Response from currency_exchange.models import BaseCurrencies class BaseCurrenciesListView(APIView): def get(self, request): queryset = BaseCurrencies.objects.values_list('currency', flat=True) return Response({"currencies":queryset}) class RateExchangeView(ListAPIView): serializer_class = RateExchangeSerializer def list(self, request): base = request.query_params.get('base', None) serializer = self.get_serializer(data={"base":base}) serializer.is_valid(raise_exception=True) serializer.save() return Response(serializer.data)
f0202c853270176392aa90efe01b29e5549434cc
80ef89008f34f3e52d3045db2ef158e9ad09832a
/homework/tf_regression.py
60fc3016ff551928bf8cf1548a2f35d3ed9675e5
[]
no_license
phantomamoeba/ast383
7836a24f28d4a2e0a110b04a72080f4e9bbfb1d5
c68bb8c053d4c4dec6093c4a0349539423db7e2a
refs/heads/master
2021-09-13T09:13:34.283002
2018-04-27T16:31:47
2018-04-27T16:31:47
118,023,850
0
0
null
null
null
null
UTF-8
Python
false
false
6,646
py
import os import numpy as np import tensorflow as tf __all__ = ['linear_regression'] def linear_regression(x, y, gamma_w, gamma_b, minibatch_size, learning_rate, training_epochs, architecture, method): assert x.shape[0] == y.shape[0] assert architecture in ['neural', 'explicit'] assert method in ['sgd', 'adam'] x_dim = x.shape[1] y_dim = y.shape[1] #placeholder ... something that will later be used as an input to the graph #shape[None,x_dim] ... # of rows not specified ... will later supply one row or several or all # with SGD normally feed in some subset x_tf = tf.placeholder(dtype=tf.float32, shape=[None, x_dim]) y_tf = tf.placeholder(dtype=tf.float32, shape=[None, y_dim]) regularizer = tf.contrib.layers.l2_regularizer initializer = tf.contrib.layers.xavier_initializer() #random initial guesses for w and b ... but with small dispersion #random initial guesses for w and b ... but with small dispersion # initializer = tf.glorot_uniform_initializer() if architecture == 'neural': with tf.variable_scope('neural') as scope: #dense ... every input is connected to outputs? ... fully connected or dense layer #same, mathematically, as matrix multiplication (where each edge is an element in the output matrix) y_net = tf.layers.dense(inputs=x_tf, units=y_dim, kernel_initializer=initializer, bias_initializer=initializer, name='dense') #here 'dense' is just the name or label #convolution layers are NOT dense ... have some constraint that some edges must be the same # and there is a finite extent s|t as nodes get farther apart, they are NOT connected #TRAINABLE ... eg. fitable like w and b def apply_regularization(param, gamma): reg_vars = [var for var in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope.name) if param in var.name] return tf.contrib.layers.apply_regularization(regularizer=regularizer(scale=gamma), weights_list=reg_vars) obj = tf.nn.l2_loss(y_net - y_tf) obj += apply_regularization('kernel', gamma_w) obj += apply_regularization('bias', gamma_b) def w_extractor(sess): return sess.graph.get_tensor_by_name('neural/dense/kernel:0').eval().T def b_extractor(sess): return sess.graph.get_tensor_by_name('neural/dense/bias:0').eval() elif architecture == 'explicit': with tf.variable_scope('explicit'): def create_variable(name, shape, gamma): return tf.get_variable(name=name, shape=shape, dtype=tf.float32, initializer=initializer, regularizer=regularizer(scale=gamma)) w = create_variable(name='weights', shape=[y_dim, x_dim], gamma=gamma_w) b = create_variable(name='biases', shape=[y_dim], gamma=gamma_b) #this is NOT an assignment ... more of a declaration ... is a part of the graph y_exp = tf.matmul(x_tf, tf.transpose(w)) + b #the objective obj = tf.nn.l2_loss(y_exp - y_tf) + sum(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)) def w_extractor(sess): return sess.run(w) def b_extractor(sess): return sess.run(b) else: obj = w_extractor = b_extractor = None optimizer = {'sgd': tf.train.GradientDescentOptimizer, 'adam': tf.train.AdamOptimizer} optimizer = optimizer[method] optimizer = optimizer(learning_rate).minimize(obj) init_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) #each epoch is fitting one mini-batch for epoch in range(training_epochs): def minibatch_dict(): count = x.shape[0] #select a random mini-batch minibatch = np.random.choice(count, size=minibatch_size, replace=False) return {x_tf: x[minibatch], y_tf: y[minibatch]} #each of these is different (called the function twice) but might have some overlap train_dict = minibatch_dict() test_dict = minibatch_dict() sess.run(optimizer, feed_dict=train_dict) def is_power2(): return not epoch & (epoch - 1) #feed_dictionary is how to feed data in tf into placeholders #keys are placeholders #values are minibatches (matrices) if is_power2(): #see if objective is decreasingg obj_val = sess.run(obj, feed_dict=test_dict) print('epoch {} obj = {}'.format(epoch, obj_val)) w_fit = w_extractor(sess) b_fit = b_extractor(sess) return w_fit, b_fit def main(argv): assert (len(argv) == 1) x_dim = 4 y_dim = 8 nb_obs = 128 w_true = np.random.randn(y_dim, x_dim) b_true = np.random.randn(y_dim) x = np.random.randn(nb_obs, x_dim) y = x @ w_true.T + b_true #broadcasting (add vector to every row), @ is matrix mult. (python 3.5+) #want to recover w_true and b_true #gamma_w and _b are regularizers (could have different values) w_fit, b_fit = linear_regression(x, y, gamma_w=1e-4, gamma_b=1e-4, minibatch_size=16, learning_rate=1e-1, training_epochs=1000, architecture='explicit', method='adam') #tf can also calculate (don't have to use numpy) def error(a_fit, a_true): return np.max(np.absolute(a_fit - a_true) / (0.5 * (np.absolute(a_fit) + np.absolute(a_true)))) b_error = error(b_fit, b_true) w_error = error(w_fit, w_true) print('maximum relative error in b = {}'.format(b_error)) print('maximum relative error in w = {}'.format(w_error)) #produces the graph (need to install TensorBoard to view this) with tf.Session() as sess: _ = tf.summary.FileWriter(os.getcwd(), sess.graph) if __name__ == '__main__': tf.logging.set_verbosity(tf.logging.INFO) tf.app.run(main=main)
b5aaf890a1d7e6c6702ed2586719bf9dd36d1ebb
fd9ad90be33b4875a954fe93d62a485e1a1abdfa
/category/migrations/0002_alter_category_slug.py
dd16eed4e8f0a212df21c7d42e6b33299445d7e5
[]
no_license
Elbek-Dalaboyev/greatkart-django
e25beba3e7e688fbcd8367b8f24e05069bf31d03
9ff1f1c37891efe4d5fc426e96d634eedf8b3ce2
refs/heads/main
2023-04-27T00:37:10.112281
2021-06-09T08:59:26
2021-06-09T08:59:26
373,591,851
1
1
null
2021-06-09T08:59:27
2021-06-03T17:36:04
JavaScript
UTF-8
Python
false
false
390
py
# Generated by Django 3.2.3 on 2021-05-26 15:06 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('category', '0001_initial'), ] operations = [ migrations.AlterField( model_name='category', name='slug', field=models.SlugField(max_length=100, unique=True), ), ]
bd559fbd2c336eb6d115472c556cf088f0332d40
daad090dd655bec07a9a6d54ade3e5ed7045f68a
/hw5/pi.py
2d9e4d5c546bac80db15c4d9248f20fd04f75110
[]
no_license
lukemvu/cs450
3482cac68cf4d080048fd015861318665985717e
e02a924052886302eb12519702cba980d0fa283b
refs/heads/master
2023-03-22T15:34:11.487946
2021-03-16T17:22:24
2021-03-16T17:22:24
348,432,607
0
1
null
null
null
null
UTF-8
Python
false
false
2,117
py
# -*- coding: utf-8 -*- # Copyright 2015 Sameer Suhas Marathe # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # # # # Module description # ================== # Implements the 'Unbounded Spigot Algorithm for the Digits of Pi' by # Jeremy Gibbons. The paper describing this algorithm can be found at the # following URL: # http://www.cs.ox.ac.uk/jeremy.gibbons/publications/spigot.pdf # # This module implementes the alogrithm outlined in section 5 of the paper # based on the expression for Pi derived from Leibniz series. def __comp(a, b): (q,r,s,t) = a (u,v,w,x) = b return (q*u+r*w, q*v+r*x, s*u+t*w, s*v+t*x) def __extr(a, x): (q,r,s,t) = a return (q*x + r, s*x + t) def __prod (a, n): return __comp((10,-10*n, 0, 1), a) def __safe(b, n): a = __extr(b, 4) return n == a[0]//a[1] def __cons(z,z1): return __comp(z,z1) def __next(z): a = __extr(z,3) return a[0]//a[1] def __lfts(k): return (k, 4*k+2, 0, 2*k+1) def piGenLeibniz(): """A generator function that yields the digits of Pi """ k = 1 z = (1,0,0,1) while True: lft = __lfts(k) n = int(__next(z)) if __safe(z,n): z = __prod(z,n) yield n else: z = __cons(z,lft) k += 1 def getPiLeibniz(n): """Returns a list containing first n digits of Pi """ mypi = piGenLeibniz() result = [] if n > 0: result += [next(mypi) for i in range(n)] mypi.close() return result
fda3a1030b55d55ed9191c6305d8643fcbda2aa8
f8f78541796303975df16e97b38d0903ba2e363e
/Lesson6.13_Pandas.py
35defc36b6d0a1ff794618e7a64ae895e74c9846
[]
no_license
cb1118/dataAnalyst
19537dab4b65dd068c6d626e1e2fda03eee6f914
65f54ef03c8a78586e7c64dd10f84ce65c467b70
refs/heads/master
2020-03-23T22:19:16.351054
2018-08-27T03:40:15
2018-08-27T03:40:15
142,168,420
0
0
null
null
null
null
UTF-8
Python
false
false
3,322
py
# -*- coding: utf-8 -*- """ Created on Sun Apr 1 18:59:47 2018 @author: CB1118 """ import pandas as pd countries = ['Albania', 'Algeria', 'Andorra', 'Angola', 'Antigua and Barbuda', 'Argentina', 'Armenia', 'Australia', 'Austria', 'Azerbaijan', 'Bahamas', 'Bahrain', 'Bangladesh', 'Barbados', 'Belarus', 'Belgium', 'Belize', 'Benin', 'Bhutan', 'Bolivia'] life_expectancy_values = [74.7, 75. , 83.4, 57.6, 74.6, 75.4, 72.3, 81.5, 80.2, 70.3, 72.1, 76.4, 68.1, 75.2, 69.8, 79.4, 70.8, 62.7, 67.3, 70.6] gdp_values = [ 1681.61390973, 2155.48523109, 21495.80508273, 562.98768478, 13495.1274663 , 9388.68852258, 1424.19056199, 24765.54890176, 27036.48733192, 1945.63754911, 21721.61840978, 13373.21993972, 483.97086804, 9783.98417323, 2253.46411147, 25034.66692293, 3680.91642923, 366.04496652, 1175.92638695, 1132.21387981] # Life expectancy and gdp data in 2007 for 20 countries life_expectancy = pd.Series(life_expectancy_values) gdp = pd.Series(gdp_values) # Change False to True for each block of code to see what it does # Accessing elements and slicing if False: print(life_expectancy[0]) print(gdp[3:6]) # Looping if False: for country_life_expectancy in life_expectancy: print('Examining life expectancy {}'.format(country_life_expectancy)) # Pandas functions if False: print(life_expectancy.mean()) print(life_expectancy.std()) print(gdp.max()) print(gdp.sum()) # Vectorized operations and index arrays if False: a = pd.Series([1, 2, 3, 4]) b = pd.Series([1, 2, 1, 2]) print(a + b) print(a * 2) print(a >= 3) print(a[a >= 3]) def variable_correlation(variable1, variable2): ''' Fill in this function to calculate the number of data points for which the directions of variable1 and variable2 relative to the mean are the same, and the number of data points for which they are different. Direction here means whether each value is above or below its mean. You can classify cases where the value is equal to the mean for one or both variables however you like. Each argument will be a Pandas series. For example, if the inputs were pd.Series([1, 2, 3, 4]) and pd.Series([4, 5, 6, 7]), then the output would be (4, 0). This is because 1 and 4 are both below their means, 2 and 5 are both below, 3 and 6 are both above, and 4 and 7 are both above. On the other hand, if the inputs were pd.Series([1, 2, 3, 4]) and pd.Series([7, 6, 5, 4]), then the output would be (0, 4). This is because 1 is below its mean but 7 is above its mean, and so on. ''' both_above = (variable1 > variable1.mean()) & \ (variable2 > variable2.mean()) both_below = (variable1 < variable1.mean()) & \ (variable2 < variable2.mean()) same_direction = both_above | both_below num_same_direction = same_direction.sum() num_diff_direction = len(variable1) - num_same_direction return (num_same_direction, num_diff_direction) print(variable_correlation(life_expectancy, gdp)) print(life_expectancy.describe()) print(gdp.describe())
3ee0b16a3fa268a4f70f364d9ab5bc3b4fed2794
6630694f401f6f475dd81bb01ff9368db844ccff
/configs/repvgg/repvgg-B2_8xb32_in1k.py
b9a7d4ca5570518f0c4d0b81951e0e97c46606f9
[ "Apache-2.0" ]
permissive
open-mmlab/mmpretrain
98a4d6b3bb747efc3d50decebf84fc3ffa41076a
d2ccc44a2c8e5d49bb26187aff42f2abc90aee28
refs/heads/main
2023-08-30T19:11:24.771498
2023-08-23T02:45:18
2023-08-23T02:45:18
278,415,292
652
186
Apache-2.0
2023-09-08T08:01:40
2020-07-09T16:25:04
Python
UTF-8
Python
false
false
106
py
_base_ = './repvgg-A0_8xb32_in1k.py' model = dict(backbone=dict(arch='B2'), head=dict(in_channels=2560))
270526ead40fed7395ab36a2f0e5538850c9fcd5
43575c1324dc0760958a110d7f056bce88422a03
/listing/arrayqueue.py
fe91f1bc669035d14da292523bec642ed81d0941
[]
no_license
nicolas4d/Data-Structures-and-Algorithms-Using-Python
1ffd74d26f09de2057bdc53998a56e56ed77c1de
a879ce6fd4033867783ee487d57d459b029eb5f8
refs/heads/master
2020-09-24T12:48:30.726766
2019-12-31T03:15:44
2019-12-31T03:15:44
225,761,970
1
0
null
null
null
null
UTF-8
Python
false
false
1,219
py
# Implementation of the Queue ADT using a circular array. from array import Array class Queue : # Creates an empty queue. def __init__( self, maxSize ) : self._count = 0 self._front = 0 self._back = maxSize - 1 self._qArray = Array( maxSize ) # Returns True if the queue is empty. def isEmpty( self ) : return self._count == 0 # Returns True if the queue is full. def isFull( self ) : return self._count == len(self._qArray) # Returns the number of items in the queue. def __len__( self ) : return self._count # Adds the given item to the queue. def enqueue( self, item ): assert not self.isFull(), "Cannot enqueue to a full queue." maxSize = len(self._qArray) self._back = (self._back + 1) % maxSize self._qArray[self._back] = item self._count += 1 # Removes and returns the first item in the queue. def dequeue( self ): assert not self.isEmpty(), "Cannot dequeue from an empty queue." item = self._qArray[ self._front ] maxSize = len(self._qArray) self._front = (self._front + 1) % maxSize self._count -= 1 return item
1ced79828f6469f7bab445f3f426e7431206e4f3
ca5da7e25c0f4f96572dedf8831cb0f111490c28
/OK/Python/HackerRank/Practice/Loops.py
169f88823be1d26e6d51117e2eb78eb8634b3b7e
[]
no_license
317702550/THC
fecc44aa953f9f6b98cb7e1856ef12537f629393
f9fe9ddb2e55c5beab3eba8102915a7690524659
refs/heads/master
2020-07-05T08:53:11.087930
2019-12-10T15:54:35
2019-12-10T15:54:35
202,597,617
0
0
null
null
null
null
UTF-8
Python
false
false
182
py
#!/usr/bin/python3 # Maximiliano Proaño Bernal # 03/12/19 # Python 3.7.3 # Ciclos if __name__ == '__main__': n = int(input()) i = 0 while i != n: print(i**2) i = i + 1
331391003523c28eedd1e4d6b841574bbed2b7ce
d3eba05768f13fb77037f094c8cd5bee0a2ce920
/python/pyclaw/geotools/most2geoclaw.py
110907c350aefc6585d894e4ed02d90d25a31179
[ "BSD-3-Clause" ]
permissive
geoflows/geoclaw-4.x
cb262ffcc30b483e4e1bf0ba480f43408cb1b6fd
c8879d25405017b38392aa3b1ea422ff3e3604ea
refs/heads/master
2023-07-10T06:39:42.774585
2021-02-23T20:15:36
2021-02-23T20:15:36
6,094,587
1
2
BSD-3-Clause
2023-06-28T16:50:43
2012-10-05T18:18:31
Fortran
UTF-8
Python
false
false
3,350
py
""" Module for converting MOST data and output to GeoClaw format. """ import os, glob, re def most2tt3(fname): """ Converts MOST topo file to tt3 format. """ f = open(fname).readlines() mn = f[0].split() ncols = int(mn[0]) nrows = int(mn[1]) xll = float(f[1]) dx = float(f[2]) - xll xll = xll - 360. yll = float(f[nrows+ncols]) dy = float(f[nrows+ncols-1]) - yll if abs(dx-dy) > 1.e-6: print '*** WARNING: dx = ',dx,' dy = ',dy cellsize = dx fname2 = os.path.splitext(fname)[0] + '.asc' f2 = open(fname2,'w') f2.write('%s ncols\n%s nrows\n%s xll\n%s yll\n%s cellsize\n99999 nodata_value\n' \ % (ncols,nrows,xll,yll,cellsize)) f2.writelines(f[nrows+ncols+1:]) f2.close() print "Created ",fname2 def most2fortt(fnameprefix): """ Converts MOST output files to fort.t files. """ files = glob.glob(r'%s*' % fnameprefix) files.sort() s = r"%s(?P<hours>[0-9]*)h(?P<minutes>[0-9]*)m(?P<seconds>[0-9]*)s" \ % fnameprefix regexp = re.compile(s) frameno = 1 for fname in files: result = regexp.search(fname) try: hours = result.group("hours") minutes = result.group("minutes") seconds = result.group("seconds") except: print "*** Cannot parse fname: ",fname raise t = int(hours)*3600. + int(minutes)*60. + int(seconds) fortname = "fort.t" + str(frameno).zfill(4) f = open(fortname, 'w') f.write("%18.8e time\n" % t) f.write("%5i meqn\n" % 1) f.write("%5i ngrids\n" % 1) f.write("%5i ndim\n" % 0) f.write("%5i maux\n" % 2) f.close() print "Created %s from %s at time t = %s" % (fortname, fname, t) frameno = frameno + 1 def most2fortq(fnameprefix): """ Converts MOST output files to fort.q files. """ files = glob.glob(r'%s*' % fnameprefix) files.sort() frameno = 1 for fname in files: f = open(fname).readlines() mn = f[0].split() ncols = int(mn[0]) nrows = int(mn[1]) xll = float(f[1]) dx = float(f[2]) - xll xll = xll - 360. yll = float(f[nrows+ncols]) dy = float(f[nrows+ncols-1]) - yll if abs(dx-dy) > 1.e-6: print '*** WARNING: dx = ',dx,' dy = ',dy cellsize = dx fortname = 'fort.q' + str(frameno).zfill(4) f2 = open(fortname,'w') f2.write("%5i grid_number\n" % 1) f2.write("%5i AMR_level\n" % 1) f2.write("%5i mx\n" % ncols) f2.write("%5i my\n" % nrows) f2.write("%5i xlow\n" % xll) f2.write("%5i ylow\n" % yll) f2.write("%5i dx\n" % dx) f2.write("%5i dy\n" % dy) f2.write("\n") for k in range(len(f)-1, nrows+ncols, -1): for s in f[k].split(): z = float(s) f2.write("%18.8e\n" % z) f2.close() print "Created %s from %s" % (fortname,fname) frameno += 1 if __name__=='__main__': import sys most2tt3(sys.argv[1])
2c78b769a6a36326247be3501afa66070e7edcc9
4a4e0cc6a1fb19404e9139b77e3c1cdeb7352ee6
/自动写诗2/write_poem.py
b86a9968067863ab8ff3af02946713525b8ad660
[]
no_license
zouhuigang/tensorflow
11193b4f38b24e5635bb155c81afc9e564d1adae
f9d9b4bbcb53e5eeb192740be8470dda31a34af5
refs/heads/master
2021-08-28T12:01:47.718920
2017-12-12T06:04:32
2017-12-12T06:04:32
113,291,005
10
5
null
null
null
null
UTF-8
Python
false
false
6,342
py
import json import os, sys,time import logging import math import numpy as np import tensorflow as tf from char_rnn_model import CharRNNLM,SampleType from config_poem import config_sample from word2vec_helper import Word2Vec from rhyme_helper import RhymeWords class WritePoem(): def __init__(self,args): self.args = args logging.basicConfig(stream=sys.stdout, format='%(asctime)s %(levelname)s:%(message)s', level=logging.INFO, datefmt='%I:%M:%S') with open(os.path.join(self.args.model_dir, 'result.json'), 'r') as f: result = json.load(f) params = result['params'] best_model = result['best_model'] best_valid_ppl = result['best_valid_ppl'] if 'encoding' in result: self.args.encoding = result['encoding'] else: self.args.encoding = 'utf-8' base_path = args.data_dir w2v_file = os.path.join(base_path, "vectors_poem.bin") self.w2v = Word2Vec(w2v_file) RhymeWords.read_rhyme_words(os.path.join(base_path,'rhyme_words.txt')) if args.seed >= 0: np.random.seed(args.seed) logging.info('best_model: %s\n', best_model) self.sess = tf.Session() w2v_vocab_size = len(self.w2v.model.vocab) with tf.name_scope('evaluation'): self.model = CharRNNLM(is_training=False,w2v_model = self.w2v.model,vocab_size=w2v_vocab_size, infer=True, **params) saver = tf.train.Saver(name='model_saver') saver.restore(self.sess, best_model) def free_verse(self): ''' 自由诗 Returns: ''' sample = self.model.sample_seq(self.sess, 40, '[',sample_type= SampleType.weighted_sample) if not sample: return 'err occar!' print('free_verse:',sample) idx_end = sample.find(']') parts = sample.split('。') if len(parts) > 1: two_sentence_len = len(parts[0]) + len(parts[1]) if idx_end < 0 or two_sentence_len < idx_end: return sample[1:two_sentence_len + 2] return sample[1:idx_end] @staticmethod def assemble(sample): if sample: parts = sample.split('。') if len(parts) > 1: return '{}。{}。'.format(parts[0][1:],parts[1][:len(parts[0])]) return '' def rhyme_verse(self): ''' 押韵诗 Returns: ''' gen_len = 20 sample = self.model.sample_seq(self.sess, gen_len, start_text='[',sample_type= SampleType.weighted_sample) if not sample: return 'err occar!' print('rhyme_verse:',sample) parts = sample.split('。') if len(parts) > 0: start = parts[0] + '。' rhyme_ref_word = start[-2] rhyme_seq = len(start) - 3 sample = self.model.sample_seq(self.sess, gen_len , start, sample_type= SampleType.weighted_sample,rhyme_ref =rhyme_ref_word,rhyme_idx = rhyme_seq ) print(sample) return WritePoem.assemble(sample) return sample[1:] def hide_words(self,given_text): ''' 藏字诗 Args: given_text: Returns: ''' if(not given_text): return self.rhyme_verse() givens = ['',''] split_len = math.ceil(len(given_text)/2) givens[0] = given_text[:split_len] givens[1] = given_text[split_len:] gen_len = 20 sample = self.model.sample_seq(self.sess, gen_len, start_text='[',sample_type= SampleType.select_given,given=givens[0]) if not sample: return 'err occar!' print('rhyme_verse:',sample) parts = sample.split('。') if len(parts) > 0: start = parts[0] + '。' rhyme_ref_word = start[-2] rhyme_seq = len(start) - 3 # gen_len = len(start) - 1 sample = self.model.sample_seq(self.sess, gen_len , start, sample_type= SampleType.select_given,given=givens[1],rhyme_ref =rhyme_ref_word,rhyme_idx = rhyme_seq ) print(sample) return WritePoem.assemble(sample) return sample[1:] def cangtou(self,given_text): ''' 藏头诗 Returns: ''' if(not given_text): return self.rhyme_verse() start = '' rhyme_ref_word = '' rhyme_seq = 0 # for i,word in enumerate(given_text): for i in range(4): word = '' if i < len(given_text): word = given_text[i] if i == 0: start = '[' + word else: start += word before_idx = len(start) if(i != 3): sample = self.model.sample_seq(self.sess, self.args.length, start, sample_type= SampleType.weighted_sample ) else: if not word: rhyme_seq += 1 sample = self.model.sample_seq(self.sess, self.args.length, start, sample_type= SampleType.max_prob,rhyme_ref =rhyme_ref_word,rhyme_idx = rhyme_seq ) print('Sampled text is:\n\n%s' % sample) sample = sample[before_idx:] idx1 = sample.find(',') idx2 = sample.find('。') min_idx = min(idx1,idx2) if min_idx == -1: if idx1 > -1 : min_idx = idx1 else: min_idx =idx2 if min_idx > 0: # last_sample.append(sample[:min_idx + 1]) start ='{}{}'.format(start, sample[:min_idx + 1]) if i == 1: rhyme_seq = min_idx - 1 rhyme_ref_word = sample[rhyme_seq] print('last_sample text is:\n\n%s' % start) return WritePoem.assemble(start) def start_model(): now = int(time.time()) args = config_sample('--model_dir output_poem --length 16 --seed {}'.format(now)) writer = WritePoem(args) return writer if __name__ == '__main__': writer = start_model()
888b5fcafa91cb7b2ebdcb7e5c1c67b2ae52449b
ead27e8ab8433d7c15bf81f51c18029cee6d39ac
/neutron_diagnose/__init__.py
df9c144b676c044d7b1feeb4f6a93063a65e5059
[ "Apache-2.0" ]
permissive
zhuzhichaoTM/neutron-diagnose
7b42c1679cc648474c06919a6c16243dcf080d1c
223d0d5edaf77a8264ce06d68adaa1b329bb9f1b
refs/heads/master
2020-05-15T08:41:44.551121
2017-04-13T06:55:43
2017-04-13T06:55:43
182,163,864
0
0
null
null
null
null
UTF-8
Python
false
false
771
py
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # __all__ = ['__version__'] import pbr.version version_info = pbr.version.VersionInfo('neutron-diagnose') try: __version__ = version_info.version_string() except AttributeError: __version__ = None
2a363433acaaec2e11b27accea62497c51739654
305369594545fca818bbb8e0254f97a3ec50ccfd
/32c09a6e325db19533e2e272caed35fd.py
d09d0f72a2fbc88aec3ddb22bb95fb0c3d343f56
[]
no_license
jkitchin/ACS-2016-data-sharing
c1950cf31f3bdb380e41427febb1888fb394a3ff
c23fc008d24aa637d2864d02533de2bf6bac7de7
refs/heads/master
2021-01-10T09:49:40.550918
2016-03-15T02:05:45
2016-03-15T02:05:45
53,690,308
0
1
null
null
null
null
UTF-8
Python
false
false
46
py
return [x for x in data if x[1] == 'anatase']
6333b09aba873b5e01d30fc103a78cbe1fe4e540
fa2d32a77ebd558ffe54eea67504308fa1ac2d2c
/learn.strings_lists_tuples_sets/convertstring2list.py
49f94079f5c63f303f9fb141816fcc83b042643f
[]
no_license
prpllrhd/morePYTHON
329362c18a447f913fa1f73c06fd0451b1a79009
739f64eb5462de532a8f1788ebe7631cb155f565
refs/heads/master
2021-06-05T19:59:43.276455
2019-01-20T19:53:34
2019-01-20T19:53:34
14,663,754
0
1
null
2015-07-08T06:12:08
2013-11-24T15:38:51
Python
UTF-8
Python
false
false
87
py
#!/usr/bin/env python3 a = "sameer rakhee yuvi avni aai" b = list(a.split()) print (b)
2d21df815a992618fea1b1c56a61c64f357a3169
cb75140ebed613adea538bad2b0de29c67db9213
/mundo3dicionario4.py
9fa3434ba392346299146c757d3c24be598229f0
[]
no_license
AndsuLucas/exercicios-python
bdbacda7144a38d0d4852a05b15dadac6c830a88
b78eceb1f7c73a02dfc3cd7175e851fee19bf972
refs/heads/master
2020-04-07T01:09:28.691794
2018-11-17T17:15:06
2018-11-17T17:15:06
157,932,756
0
0
null
null
null
null
UTF-8
Python
false
false
1,066
py
from time import sleep #quantas pessoas foram cadasradas,média de idade, quntas mulheres,pessoas acima da media f = 0 funcao = str contador = 0 cadastrototal = [] dc = dict() soma = 0 am = 0 while True: contador+=1 dc['nome'] = str(input('nome:')) while True: dc['sexo'] = str(input('sexo: [M/F]')).upper()[0] if dc['sexo'] == "M" or dc['sexo'] == "F": break dc['idade'] = int(input('idade:')) cadastrototal.append(dc.copy()) funcao = str(input('deseja continuar? [s/n]')) if funcao == "n": break for c in (cadastrototal): soma+= c['idade'] if c['sexo'] == "F": f+=1 media =float( soma/contador) sleep(1) print(f'Foram cadastradas {contador} pessoas.') sleep(1) print(f'Média de idade: {media}.') sleep(1) print(f'Foram cadastradas {f} mulheres.') sleep(1) print('Pessoas acima da média>') for c in (cadastrototal): if c['idade']>media: sleep(1) print(f'{c["nome"]} com {c["idade"]} anos') am+=1 print(f'Ao todo {am} pessoas acima da média.')
29bc3192a686ccae8db44c3e1d6e73ecf673b46d
6dbfd83c4641d798934a7eb1c5f45757d6504ebe
/cloud/fs/redis/user.py
d1e12468a7051964f76203be6c7100fdfca9d109
[]
no_license
xuanyuan1332/simple_cloud
015e5eba38e82b3e0c78f44e535fd5bc0ff441dc
ffbbaa22816d79ae45c3475e25e352129a70057d
refs/heads/master
2022-11-22T21:01:29.130241
2020-07-14T11:39:00
2020-07-14T11:39:00
280,647,428
0
0
null
2020-07-18T12:00:52
2020-07-18T12:00:52
null
UTF-8
Python
false
false
663
py
'''用户相关 ''' import json from .base import BaseRedis class UserRedis(BaseRedis): '''用户操作reids ''' user = '{username}' sign_in = 'sign-in-{project_id}' def get_sign_in(self, project_id): sign_in = self.sign_in.format(project_id=project_id) nums = self.redis.get(sign_in) if nums: nums = int(self.redis.get(sign_in).decode()) return nums if nums > 0 else 0 return 0 def get_user(self, username): try: res = self.redis.get(self.user.format(username=username)) return json.loads(res) except Exception: return {}
ac5953399a647183382fd235afa3078fcf3f2cf8
7c9f28e371e8dfa9290c05a48a9d924484b4b18c
/1.py
e742ff9920b98902a4a6413dc4ff9b62916929d0
[]
no_license
Pavithralakshmi/corekata
1f9d963da44a6fdcdedaf2e39452545f6cc52e9b
06d1c7bba25681ce12e2ab93ce461228afb6b984
refs/heads/master
2021-04-30T01:53:37.414318
2018-10-11T17:58:39
2018-10-11T17:58:39
121,491,600
0
0
null
null
null
null
UTF-8
Python
false
false
63
py
s1=input("eter anything") s2=input("enter somthing") print(s2)
1df2674dd840f1c05f994f93ddba2e65067ae23e
3c639c452fac96b882fe2c26b47545079dd174ec
/RunEventNumberFilter/test/RunEventNumberFilter.py
480e8087c369be7a4aee8a4529e23d65edb9612d
[]
no_license
cms-nd-user/RunEventNumberFilter
84825ffdee1cd6aee5a695b21b66d84043859b41
b47f4144a2e7a91baa726151319e090a45c5cd63
refs/heads/master
2021-01-21T13:08:39.958774
2013-08-20T16:15:36
2013-08-20T16:15:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,022
py
# Auto generated configuration file # using: # Revision: 1.168.2.1 # Source: /cvs_server/repositories/CMSSW/CMSSW/Configuration/PyReleaseValidation/python/ConfigBuilder.py,v # with command line options: SingleGammaPt35_cfi.py -s GEN,SIM,DIGI,DIGI2RAW,RAW2DIGI,RECO -n 2 --conditions FrontierConditions_GlobalTag,MC_36Y_V10::All --eventcontent RECOSIM --no_exec import FWCore.ParameterSet.Config as cms process = cms.Process('GetEvents') #### Turn off printing every event #### process.load('FWCore.MessageService.MessageLogger_cfi') process.MessageLogger.cerr.FwkReport.reportEvery = cms.untracked.int32(1000) # import of standard configurations #process.load('Configuration.StandardSequences.Services_cff') #process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_cff') #process.load('Configuration.EventContent.EventContent_cff') #process.options = cms.untracked.PSet( wantSummary = cms.untracked.bool(True) ) #process.GlobalTag.globaltag = 'MC_3XY_V26::All' #process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(10) ) # Input source process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring( 'file:/afs/crc.nd.edu/user/j/jslaunwh/RAW/8EE30C05-18E9-E211-A9A7-002618943810.root' )) process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) #Event Selection process.selectEventsByRunEventNumber = cms.EDFilter("RunEventNumberFilter", debug = cms.bool(False), filename = cms.string('inputs.txt') ) # Output definition process.outputA = cms.OutputModule("PoolOutputModule", #fastCloning = cms.untracked.bool(False), fileName = cms.untracked.string('SkimRunEvent.root'), SelectEvents = cms.untracked.PSet ( SelectEvents = cms.vstring('selectByRunEvent') ) ) # Path and EndPath definitions process.selectByRunEvent = cms.Path(process.selectEventsByRunEventNumber) process.Aoutput = cms.EndPath(process.outputA)
e1bfa27cf691a0b6ee3d8d8a074da682433cef02
f20931826a557f0d884f8b46de259840c29b7428
/meiduo_mall/meiduo_mall/utils/authenticate.py
2079f8c659a70dbebbb5291a0c6b7c9cbcc4867e
[]
no_license
zy723/meiduo_project
38ccecc2fa1d61f2eb848ebc572dd43d45a534c8
f50a8105c63554b57419cb3494c3d323bb343f9c
refs/heads/master
2022-12-15T02:34:42.578549
2020-05-20T16:56:27
2020-05-20T16:56:27
248,264,846
0
0
null
2022-12-12T20:28:41
2020-03-18T15:08:40
TSQL
UTF-8
Python
false
false
2,024
py
""" 增加支持管理员用户登录账号 JWT扩展的登录视图,在收到用户名与密码时,也是调用Django的认证系统中提供的authenticate()来检查用户名与密码是否正确。 我们可以通过修改Django认证系统的认证后端(主要是authenticate方法)来支持登录账号既可以是用户名也可以是手机号。 修改Django认证系统的认证后端需要继承django.contrib.auth.backends.ModelBackend,并重写authenticate方法。 authenticate(self, request, username=None, password=None, **kwargs)方法的参数说明: request 本次认证的请求对象 username 本次认证提供的用户账号 password 本次认证提供的密码 我们想要让管理员用户才能登录我们的admin后台,这时我们就要修改django原有的用户验证方法。 重写authenticate方法的思路: 根据username参数查找用户User对象,在查询条件中在加上is_staff=True的条件 若查找到User对象,调用User对象的check_password方法检查密码是否正确 """ from django.contrib.auth.backends import ModelBackend from users.models import User class MeiduoModelBackend(ModelBackend): def authenticate(self, request, username=None, password=None, **kwargs): # 判断是否通过vue组件发送请求 if request is None: try: user = User.objects.get(username=username, is_staff=True) except: return None # 检查密码 if user.check_password(password): return user else: # 变量username的值,可以是用户名,也可以是手机号,需要判断,再查询 try: user = User.objects.get(username=username) except: # 如果未查到数据,则返回None,用于后续判断 return None # 判断密码 if user.check_password(password): return user else: return None
a582113ccd4d7aff4595ecaf83c5980d1e086ed2
ece386649b39403cbb23e4c4071178e178311343
/blog/admin.py
46814e609e37e1a6f18bc9b715de4f5ff9a253f8
[]
no_license
GadinganJayHarley06/my_first_blog
c743352178f570400aa2ba256c4bec9530eb0a76
b2e5921475c161565bc214290eacd47a237041de
refs/heads/master
2021-09-06T01:51:10.285943
2018-02-01T12:31:19
2018-02-01T12:31:19
119,833,353
0
0
null
null
null
null
UTF-8
Python
false
false
212
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.contrib import admin # Register your models here. from django.contrib import admin from .models import Post admin.site.register(Post)
6618cc7ee42d5c64ce1da566bff7ac57a6f4fe95
86317245051f5256751ca3ac186eaffccf55af52
/src/menu.py
9e2bc6d87931c718dff91cfadeb55fabe57dd88a
[]
no_license
SaulCastel/LFP_PROY1
aae34f98b2e784484fb284800515e6eb1d1857bf
f27d3d7c7c6c7ba13774b4dcaaa79370cfdf65f7
refs/heads/main
2023-03-31T01:33:19.910787
2021-03-22T07:48:05
2021-03-22T07:48:05
348,588,069
0
0
null
null
null
null
UTF-8
Python
false
false
692
py
class Item: def __init__(self, id:str, name:str, price:str,desc:str) -> None: self.id = id self.name = name self.price = price self.desc = desc class Section: def __init__(self, name:str) -> None: self.name = name self.items = [] def newItem(self,item:Item): self.items.append(item) class Menu: def __init__(self, name:str) -> None: self.name = name self.sect = [] def newSect(self,sec:Section): self.sect.append(sec) def getItem(self,id:str): for section in self.sect: for item in section.items: if id == item.id: return item
c446ccc3868b590d3af20686969206a7817c1464
a3ff213f844fa494ba2ba06d26b4e7ba77fa7a58
/django_patterns/management/__init__.py
b9b47da6d3b268a3cc8c8f9d7cdfcbbc09ce161d
[]
no_license
monetizeio/django-patterns
f757771c46859b9157b48d0f875a397239706702
9b5567cbc0d4ed58a9ff074bccc9026982daf307
refs/heads/master
2021-01-13T01:50:56.949546
2013-03-19T23:23:18
2013-03-19T23:23:18
5,908,449
1
1
null
null
null
null
UTF-8
Python
false
false
2,044
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # === django_patterns.management ------------------------------------------=== # Copyright © 2011-2012, RokuSigma Inc. and contributors. See AUTHORS for more # details. # # Some rights reserved. # # Redistribution and use in source and binary forms of the software as well as # documentation, with or without modification, are permitted provided that the # following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * The names of the copyright holders or contributors may not be used to # endorse or promote products derived from this software without specific # prior written permission. # # THIS SOFTWARE AND DOCUMENTATION IS PROVIDED BY THE COPYRIGHT HOLDERS AND # CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT # NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A # PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE AND # DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ===----------------------------------------------------------------------=== # ===----------------------------------------------------------------------=== # End of File # ===----------------------------------------------------------------------===
ba287699cf45b5845e4ef5418bb4df38b2b91214
fb265f7443acf7c72e3a7d95e2be5a268ecd8443
/rcwa/test/fastRunner.py
68958164b6b599d0dc72f99e7be7ab2fdd7527df
[ "MIT" ]
permissive
itsjmj/rcwa
71f1bd6bfbff1bb2cc630b6b35a23d1f919c329d
a946c3819e5e52ad9c92a8a73c48360749b06196
refs/heads/master
2023-08-25T19:04:44.699749
2021-05-12T15:25:56
2021-05-12T15:25:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,190
py
""" Run all the core unit tests, not the lengthy and major integration tests """ import context import unittest import sys import testCrystal import testHarmonics import testLayer import testMaterial import testMatrices1x1Harmonics import testMatrices3x3Harmonics import testNetlistParser import testSolver1x1Harmonics import testSolver3x3Harmonics import testSource loader = unittest.TestLoader() suite = unittest.TestSuite() suite.addTests(loader.loadTestsFromModule(testCrystal)) suite.addTests(loader.loadTestsFromModule(testHarmonics)) suite.addTests(loader.loadTestsFromModule(testLayer)) suite.addTests(loader.loadTestsFromModule(testMaterial)) suite.addTests(loader.loadTestsFromModule(testSource)) suite.addTests(loader.loadTestsFromModule(testMatrices1x1Harmonics)) suite.addTests(loader.loadTestsFromModule(testMatrices3x3Harmonics)) suite.addTests(loader.loadTestsFromModule(testNetlistParser)) suite.addTests(loader.loadTestsFromModule(testSolver1x1Harmonics)) runner = unittest.TextTestRunner(verbosity=3) result = runner.run(suite) numberFailures = len(result.errors) numberErrors= len(result.failures) numberIssues = numberFailures + numberErrors sys.exit(numberIssues)
f17124384ece9a83dcb41df9bd0ab948cf7e0c16
8409cbba351dc3572949e933ea2e265c44452844
/hsn_v1/densecrf.py
ddc2fd145b1d2ef2d2d89d3e17d3ee796e8775df
[ "MIT" ]
permissive
Kitatine/hsn_v1
ffa239659745fc11083cbc61dd5d9e0c014c7a10
8cc524a7932deead6ff87fc5945522cf310b9fcd
refs/heads/master
2022-09-06T19:03:09.757180
2020-06-01T16:26:46
2020-06-01T16:26:46
268,572,420
0
0
MIT
2020-06-01T16:20:33
2020-06-01T16:20:32
null
UTF-8
Python
false
false
2,870
py
import os import numpy as np import pydensecrf.densecrf as dcrf from pydensecrf.utils import unary_from_softmax import matplotlib matplotlib.use("TkAgg") import matplotlib.pyplot as plt class DenseCRF: """Class for implementing a dense CRF""" def __init__(self): self.gauss_sxy = 3 self.gauss_compat = 30 self.bilat_sxy = 10 self.bilat_srgb = 20 self.bilat_compat = 50 self.n_infer = 5 def load_config(self, path): """Load dense CRF configurations from file""" if os.path.exists(path): config = np.load(path) self.gauss_sxy, self.gauss_compat, self.bilat_sxy, self.bilat_srgb, self.bilat_compat, self.n_config = \ config[0] else: print('Warning: dense CRF config file ' + path + ' does not exist - using defaults') def process(self, probs, images): """ Run dense CRF, given probability map and input image Parameters ---------- probs : numpy 4D array The class probability maps, in batch images : numpy 4D array The original input images, in batch Returns ------- maxconf_crf : numpy 3D array The discrete class segmentation map from dense CRF, in batch crf : numpy 4D array The continuous class probability map from dense CRF, in batch """ # Set up variable sizes num_input_images = probs.shape[0] num_classes = probs.shape[1] size = images.shape[1:3] crf = np.zeros((num_input_images, num_classes, size[0], size[1])) for iter_input_image in range(num_input_images): pass_class_inds = np.where(np.sum(np.sum(probs[iter_input_image], axis=1), axis=1) > 0) # Set up dense CRF 2D d = dcrf.DenseCRF2D(size[1], size[0], len(pass_class_inds[0])) cur_probs = probs[iter_input_image, pass_class_inds[0]] # Unary energy U = np.ascontiguousarray(unary_from_softmax(cur_probs)) d.setUnaryEnergy(U) # Penalize small, isolated segments # (sxy are PosXStd, PosYStd) d.addPairwiseGaussian(sxy=self.gauss_sxy, compat=self.gauss_compat) # Incorporate local colour-dependent features # (sxy are Bi_X_Std and Bi_Y_Std, # srgb are Bi_R_Std, Bi_G_Std, Bi_B_Std) d.addPairwiseBilateral(sxy=self.bilat_sxy, srgb=self.bilat_srgb, rgbim=np.uint8(images[iter_input_image]), compat=self.bilat_compat) # Do inference Q = d.inference(self.n_infer) crf[iter_input_image, pass_class_inds] = np.array(Q).reshape((len(pass_class_inds[0]), size[0], size[1])) maxconf_crf = np.argmax(crf, axis=1) return maxconf_crf, crf
9a4a7f80301f045fa5e68ed1f5e0ef3af3e86480
00d4b8f0e974692af26da891a2ed0612d989abf0
/script/program.py
36fedeb83629aafae8369e4ff3dcb65972151391
[ "MIT" ]
permissive
meteorolog90/PROGRAM
a8697d6781fb935b2b3545ef10bd2aad11e6d9df
93ab22ef9c0cfb7cd0c833c08c5c7ed6318291ab
refs/heads/master
2021-07-16T07:22:50.436225
2019-02-19T20:52:19
2019-02-19T20:52:19
147,817,658
0
1
null
2018-11-05T21:53:32
2018-09-07T12:00:53
Python
UTF-8
Python
false
false
5,990
py
#! /home/martin/anaconda3/bin/python3.6 import pandas as pd import numpy as np import cartopy.crs as ccrs import cartopy.feature as cfeature from matplotlib.colors import BoundaryNorm import matplotlib.pyplot as plt from metpy.gridding.gridding_functions import interpolate, remove_nan_observations def main (): while True: prompt = 'Izaberite opciju : \n 1.SREDNJE DNEVNE VREDNOSTI ZA TEMPERATURU' prompt += '\n 2.SREDNJE MESEČNE VREDNOSTI ZA TEMPERATURU \n 3.KORDINATE TAČKE \n 4.IZLAZ \n >> ' s = input(prompt) if not s: # Ako je string prazan, prekid break cmd = int(s) if cmd == 4: break if cmd == 1: dnevni_podaci() if cmd == 2: mesecni_podaci() if cmd == 3: kordinate_tacke() def mesecni_podaci(): print ('Izaberite šta želite:') prompt1 = '\n 1.ZAPIS U csv.file \n 2.CRTANJE POLJA \n >>' d = input(prompt1) smd = int(d) if smd == 1: zapis_m() if smd == 2: crtanje_m() def dnevni_podaci(): print ('Izaberite šta želite:') prompt1 = '\n 1.ZAPIS U csv.file \n 2.CRTANJE POLJA \n >>' d = input(prompt1) smd = int(d) if smd == 1: zapis_d() if smd == 2: crtanje_d() def kordinate_tacke(): s = pd.read_csv('/home/martin//Master_rad/CARPATGRID_TA_M.ser',sep ='\s+') d = pd.read_csv('/home/martin/Master_rad/PredtandfilaGrid.dat', sep ='\s+') y = int(input('Unesite godinu: ' ' ')) m = int(input('Unesite mesec:' ' ')) x1 = s.loc[y,m] d1 = d.drop(['index'],axis=1) a = d1.set_index(['lon','lat']) lon = d1['lon'].values lat = d1['lat'].values country = d1['country'].values altitude = d1['altitude'].values temp = x1.values #pravljenje DataFrame oblika r = { 'lon': lon, 'lat':lat, 'country':country,'altitude':altitude, 'temp':temp} podaci = pd.DataFrame(r,columns=['lon','lat','temp','country','altitude']) indexi = podaci.set_index(['lon','lat']) xx = float(input('Unesite longitudu u rasponu od 17.0-27.0:')) yy = float(input('Unesite latitudu u rasponu od 50.0-44.0:')) print (indexi.loc[xx,yy]) def zapis_m(): data1 = pd.read_csv('/home/martin/Master_rad/CARPATGRID_TA_M.ser',sep ='\s+') y = int(input('Unesite godinu: '' ')) m = int(input('Unesite mesec: '' ')) x1 = data1.loc[y,m] izlazna_dadoteka = open('podaci.csv','w') izlazna_dadoteka.write(str(x1)) izlazna_dadoteka.close() def crtanje_m(): to_proj = ccrs.AlbersEqualArea(central_longitude=-1., central_latitude=10.) #load cordinates fname = '/home/martin/Master_rad/PredtandfilaGrid.dat' #col_names = ['index','lon','lat','country','altitude'] ovo koristimo ako nemama definisane imena kolona #load temp df = pd.read_fwf(fname,na_values='MM') lon = df['lon'].values lat = df['lat'].values xp, yp, _ = to_proj.transform_points(ccrs.Geodetic(), lon, lat).T data1 = pd.read_csv('/home/martin/Master_rad/CARPATGRID_TA_M.ser',sep ='\s+') y = int(input('Unesite godinu: '' ')) m = int(input('Unesite mesec: '' ')) x1 = data1.loc[y,m] x_masked, y_masked, t = remove_nan_observations(xp, yp, x1.values) tempx, tempy, temp = interpolate(x_masked, y_masked, t, interp_type='barnes', minimum_neighbors=8, search_radius=150000, hres=30000) temp = np.ma.masked_where(np.isnan(temp), temp) levels = list(range(-20, 20, 1)) cmap = plt.get_cmap('viridis') norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) fig = plt.figure(figsize=(20, 10)) view = fig.add_subplot(1, 1, 1, projection=to_proj) view.set_extent([27.0, 16.9, 49.5, 44.5]) view.add_feature(cfeature.STATES.with_scale('50m')) view.add_feature(cfeature.OCEAN) view.add_feature(cfeature.COASTLINE.with_scale('50m')) view.add_feature(cfeature.BORDERS, linestyle=':') mmb = view.pcolormesh(tempx, tempy, temp, cmap=cmap, norm=norm) fig.colorbar(mmb, shrink=.4, pad=0.02, boundaries=levels) view.set_title('Srednja temperatura') plt.show() def zapis_d(): data1 = pd.read_csv('/home/martin/Master_rad/CARPATGRID_TA_D.ser',sep ='\s+') y = int(input('Unesite godinu: '' ')) m = int(input('Unesite mesec: '' ')) d = int(input('Unesite dan : '' ')) x1 = data1.loc[y,m,d] test = open('podaci.csv','w') test.write(str(x1)) test.close() def crtanje_d(): to_proj = ccrs.AlbersEqualArea(central_longitude=-1., central_latitude=10.) fname = '/home/martin/Master_rad/PredtandfilaGrid.dat' df = pd.read_fwf(fname,na_values='MM') lon = df['lon'].values lat = df['lat'].values xp, yp, _ = to_proj.transform_points(ccrs.Geodetic(), lon, lat).T data1 = pd.read_csv('/home/martin/Master_rad/CARPATGRID_TA_D.ser',sep ='\s+') y = int(input('Unesite godinu: '' ')) m = int(input('Unesite mesec: '' ')) d = int(input('Unesite dan : '' ')) x1 = data1.loc[y,m,d] x_masked, y_masked, t = remove_nan_observations(xp, yp, x1.values) tempx, tempy, temp = interpolate(x_masked, y_masked, t, interp_type='barnes', minimum_neighbors=8, search_radius=150000, hres=30000) temp = np.ma.masked_where(np.isnan(temp), temp) levels = list(range(-20, 20, 1)) cmap = plt.get_cmap('viridis') norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) fig = plt.figure(figsize=(20, 10)) view = fig.add_subplot(1, 1, 1, projection=to_proj) view.set_extent([27.0, 16.9, 49.5, 44.5]) view.add_feature(cfeature.STATES.with_scale('50m')) view.add_feature(cfeature.OCEAN) view.add_feature(cfeature.COASTLINE.with_scale('50m')) view.add_feature(cfeature.BORDERS, linestyle=':') mmb = view.pcolormesh(tempx, tempy, temp, cmap=cmap, norm=norm) fig.colorbar(mmb, shrink=.4, pad=0.02, boundaries=levels) view.set_title('Srednja temperatura') plt.show() main()
9e819a87ebc1032db2785b8533da9e1f29cd9fe5
f62e4c46fb0f98879fb63977fa29631b02e3928c
/16 задание/РекурсФункцСТекст_005.py
555d533ac95655abf5e3a748654d72868d9b32bc
[]
no_license
SeveralCamper/USE-2020-2021
c34f4d7a2c3e0f51529141781f523b63242a835d
ac1122649f2fd431a91af5dda5662492e2565109
refs/heads/master
2023-09-03T13:36:05.822568
2021-10-27T12:54:10
2021-10-27T12:54:10
392,303,515
0
0
null
null
null
null
UTF-8
Python
false
false
454
py
# Задание 16 № 9163 # Ниже на пяти языках программирования записан рекурсивный алгоритм F. # Чему равна сумма всех чисел, напечатанных на экране при выполнении вызова F(1)? count = 0 def F(n): global count count += n print(n) if n < 4: F(n + 1) F(n + 3) print(F(1), count) # Ответ: 25
38f7ec7f0bfb8a30bba8a7a34b7649c99e83b107
f91e85aaad8cbe48c819a15fc2f7d728a1ab50a1
/chapter21-case_study/pyimagesearch/utils/captchahelper.py
2a7163debbb6e4c4e3cb9bbbac24500607c290f8
[]
no_license
amuLee/StarterBundle
ac9c28cffc8494ac9957e014304bf2de8be5a6d1
861fe66d9bab55390c7faca5026769697fc51307
refs/heads/master
2020-05-23T14:05:18.849342
2019-05-15T09:42:34
2019-05-15T09:42:34
186,793,654
3
1
null
null
null
null
UTF-8
Python
false
false
984
py
# import the necessary packages import imutils import cv2 def preprocess(image, width, height): # grab the dimensions of the image, then initialize # the padding values (h, w) = image.shape[:2] # if the width is greater than the height then resize along # the width if w > h: image = imutils.resize(image, width=width) # otherwise, the height is greater than the width so resize # along the height else: image = imutils.resize(image, height=height) # determine the padding values for the width and height to # obtain the target dimensions padW = int((width - image.shape[1]) / 2.0) padH = int((height - image.shape[0]) / 2.0) # pad the image then apply one more resizing to handle any # rounding issues image = cv2.copyMakeBorder(image, padH, padH, padW, padW, cv2.BORDER_REPLICATE) image = cv2.resize(image, (width, height)) # return the pre-processed image return image
baf15faab8930e47cb6f8e16e1a1e395a3a4b8b9
2283ba3286f90d8ed8213050e18a11f57f84e320
/App/ToDoList/toDoAccess.py
24f6e9213db251923f859095cd65dc57de0fdcea
[]
no_license
Wills-Personal-Projects/LifeOrganizer
ab508861e7ed699d3c51b95ea85015eac0fe3a80
8b2a84912a41e72597d6d6bdce36ad841b3c8fc4
refs/heads/master
2023-03-06T08:14:37.576149
2021-02-11T21:55:56
2021-02-11T21:55:56
330,888,967
0
0
null
null
null
null
UTF-8
Python
false
false
1,839
py
#!/usr/bin/python3 from ..Path.filePaths import getScreenPath, getToDoPath, getBaseToDoPath, getNamesPath from ..Screen.screenAccess import getScreen,setScreen def getToDoListDim(n): tDListFile = open(getToDoPath(n), "r") dim = tDListFile.readline().rstrip().split() return dim def getToDoList(n): tDListFile = open(getToDoPath(n), "r") dim = tDListFile.readline().rstrip() numTD = int(tDListFile.readline()) i = 0 tDL = [] while(i < numTD): tD = list(tDListFile.readline().rstrip()) tDL.append([]) j = 0 while(j < len(tD)): tDL[i].append(tD[j]) j = j + 1 i = i + 1 tDListFile.close() return tDL def setToDoList(n, t, add): tDListFile = open(getToDoPath(n), "r") dim = tDListFile.readline().rstrip() numTD = int(tDListFile.readline()) tDListFile.close() tDListFile = open(getToDoPath(n), "w") tDListFile.write(dim+"\n") if(add): tDListFile.write(str(numTD+1)+"\n") else: tDListFile.write(str(numTD-1)+"\n") i = 0 while(i < len(t)): tD = ''.join(t[i]) tDListFile.write(tD+"\n") i = i + 1 tDListFile.close() return def saveToDoList(dim, name): nameList = open(getNamesPath(), "a") nameList.write(name+"\n") nameList.close() toDoFile = open(getBaseToDoPath()+name+".txt", "w") i = 0 while(i < 4): toDoFile.write(str(dim[i])+" ") i = i + 1 toDoFile.write("\n") toDoFile.write("0") toDoFile.close() return def deleteToDoList( n ): nameList = open(getNamesPath(), "r") names = nameList.readlines() nameList.close() nameList = open(getNamesPath(), "w") for name in names: if(name.rstrip() != n): nameList.write(name) nameList.close() return
300d9ae15924aa6d8ac27e9aeaf6236d61811704
482f24b9eda8ca802ef6f04d9f3cf8c1a79a9af2
/dags/02_pemex_proveedores_contratos.py
d91735162881a333b7d6e5e856cecce044ceb361
[ "MIT" ]
permissive
erikriver/mixtli-etc
773896c831290a7b74374bc89983c87a033baac3
0c8e991cb6d92f0a3c87f41f7688a6a327e2472d
refs/heads/master
2020-03-07T12:53:11.506416
2018-04-05T12:59:44
2018-04-05T12:59:44
127,487,455
2
0
null
null
null
null
UTF-8
Python
false
false
2,935
py
# -*- coding: utf-8 -*- # # Copyright (c) 2018 Erik Rivera # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import logging import airflow from airflow.models import DAG from airflow.operators.python_operator import PythonOperator args = { 'owner': 'airflow', 'start_date': airflow.utils.dates.days_ago(2) } dag = DAG( dag_id='02_pemex_proveedores_contratos', default_args=args, schedule_interval='@monthly') def extraer_proveedores(): """ Obtiene archivo en excel del portal Sistema de información pública de proveedores y contratistas y lo guarda en el sistema de archivos """ # TODO Guardar en S3 logging.info("extraer_proveedores") pass def extraer_contratos(): """ Obtiene archivo en excel del portal Sistema de información pública de proveedores y contratistas y lo guarda en el sistema de archivos """ # TODO Guardar en S3 pass def cargar_proveedores(): """ Carga en la base de datos los archivos descargados del portal de Sistema de información pública de proveedores y contratistas """ pass def cargar_contratos(): """ Carga en la base de datos los archivos descargados del portal de Sistema de información pública de proveedores y contratistas """ pass e_proveedores = PythonOperator( task_id='extraer_proveedores', provide_context=True, python_callable=extraer_proveedores, dag=dag) c_proveedores = PythonOperator( task_id='cargar_proveedores', provide_context=True, python_callable=cargar_proveedores, dag=dag) e_contratos = PythonOperator( task_id='extraer_contratos', provide_context=True, python_callable=extraer_contratos, dag=dag) c_contratos = PythonOperator( task_id='cargar_contratos', provide_context=True, python_callable=cargar_contratos, dag=dag) e_proveedores >> c_proveedores >> e_contratos >> c_contratos
a387bd8541f6ae4169b7b9ac79fbcd17e4dbf771
84153ccd9d502d1e086000d66e58eaf756f52ed1
/tweetme2-web/node_modules/watchpack-chokidar2/node_modules/fsevents/build/config.gypi
f499035769cb92132bf631e258809b1c8655ae7f
[ "MIT" ]
permissive
ezorfa/TweetMe
a86d6714595a1cd57054fadb62bd67d27448a995
ff7843d79ba685265f32cab7fabb7f2336122dcc
refs/heads/master
2022-12-14T14:57:37.897380
2020-08-23T21:52:08
2020-08-23T21:52:08
288,664,127
0
0
null
null
null
null
UTF-8
Python
false
false
5,654
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "asan": 0, "build_v8_with_gn": "false", "coverage": "false", "dcheck_always_on": 0, "debug_nghttp2": "false", "debug_node": "false", "enable_lto": "false", "enable_pgo_generate": "false", "enable_pgo_use": "false", "force_dynamic_crt": 0, "host_arch": "x64", "icu_data_in": "../../deps/icu-small/source/data/in/icudt67l.dat", "icu_default_data": "", "icu_endianness": "l", "icu_gyp_path": "tools/icu/icu-generic.gyp", "icu_locales": "en,root", "icu_path": "deps/icu-small", "icu_small": "true", "icu_ver_major": "67", "is_debug": 0, "llvm_version": "11.0", "napi_build_version": "6", "node_byteorder": "little", "node_debug_lib": "false", "node_enable_d8": "false", "node_install_npm": "true", "node_module_version": 72, "node_no_browser_globals": "false", "node_prefix": "/usr/local", "node_release_urlbase": "https://nodejs.org/download/release/", "node_shared": "false", "node_shared_brotli": "false", "node_shared_cares": "false", "node_shared_http_parser": "false", "node_shared_libuv": "false", "node_shared_nghttp2": "false", "node_shared_openssl": "false", "node_shared_zlib": "false", "node_tag": "", "node_target_type": "executable", "node_use_bundled_v8": "true", "node_use_dtrace": "true", "node_use_etw": "false", "node_use_node_code_cache": "true", "node_use_node_snapshot": "true", "node_use_openssl": "true", "node_use_v8_platform": "true", "node_with_ltcg": "false", "node_without_node_options": "false", "openssl_fips": "", "openssl_is_fips": "false", "shlib_suffix": "72.dylib", "target_arch": "x64", "v8_enable_gdbjit": 0, "v8_enable_i18n_support": 1, "v8_enable_inspector": 1, "v8_enable_lite_mode": 0, "v8_no_strict_aliasing": 1, "v8_optimized_debug": 1, "v8_promise_internal_field_count": 1, "v8_random_seed": 0, "v8_trace_maps": 0, "v8_use_siphash": 1, "v8_use_snapshot": 1, "want_separate_host_toolset": 0, "xcode_version": "11.0", "nodedir": "/Users/mohammed/Library/Caches/node-gyp/12.18.3", "standalone_static_library": 1, "dry_run": "", "legacy_bundling": "", "save_dev": "", "browser": "", "commit_hooks": "true", "only": "", "viewer": "man", "also": "", "rollback": "true", "sign_git_commit": "", "audit": "true", "usage": "", "globalignorefile": "/usr/local/etc/npmignore", "init_author_url": "", "maxsockets": "50", "shell": "/bin/bash", "metrics_registry": "https://registry.npmjs.org/", "parseable": "", "shrinkwrap": "true", "init_license": "ISC", "timing": "", "if_present": "", "cache_max": "Infinity", "init_author_email": "", "sign_git_tag": "", "cert": "", "git_tag_version": "true", "local_address": "", "long": "", "preid": "", "fetch_retries": "2", "registry": "https://registry.npmjs.org/", "key": "", "message": "%s", "versions": "", "globalconfig": "/usr/local/etc/npmrc", "always_auth": "", "logs_max": "10", "prefer_online": "", "cache_lock_retries": "10", "global_style": "", "update_notifier": "true", "audit_level": "low", "heading": "npm", "fetch_retry_mintimeout": "10000", "offline": "", "read_only": "", "searchlimit": "20", "access": "", "json": "", "allow_same_version": "", "description": "true", "engine_strict": "", "https_proxy": "", "init_module": "/Users/mohammed/.npm-init.js", "userconfig": "/Users/mohammed/.npmrc", "cidr": "", "node_version": "12.18.3", "user": "", "save": "true", "auth_type": "legacy", "editor": "vi", "ignore_prepublish": "", "script_shell": "", "tag": "latest", "before": "", "global": "", "progress": "true", "ham_it_up": "", "optional": "true", "searchstaleness": "900", "bin_links": "true", "force": "", "save_prod": "", "searchopts": "", "depth": "Infinity", "node_gyp": "/usr/local/lib/node_modules/npm/node_modules/node-gyp/bin/node-gyp.js", "rebuild_bundle": "true", "sso_poll_frequency": "500", "unicode": "true", "fetch_retry_maxtimeout": "60000", "ca": "", "save_prefix": "^", "scripts_prepend_node_path": "warn-only", "sso_type": "oauth", "strict_ssl": "true", "tag_version_prefix": "v", "save_exact": "true", "dev": "", "fetch_retry_factor": "10", "group": "20", "cache_lock_stale": "60000", "prefer_offline": "", "version": "", "cache_min": "10", "otp": "", "cache": "/Users/mohammed/.npm", "searchexclude": "", "color": "true", "package_lock": "true", "fund": "true", "package_lock_only": "", "save_optional": "", "user_agent": "npm/6.14.6 node/v12.18.3 darwin x64", "ignore_scripts": "", "cache_lock_wait": "10000", "production": "", "save_bundle": "", "send_metrics": "", "init_version": "1.0.0", "node_options": "", "umask": "0022", "scope": "", "git": "git", "init_author_name": "", "onload_script": "", "tmp": "/var/folders/m6/y_cyz1b925jgkv6m34y67grr0000gn/T", "unsafe_perm": "true", "format_package_lock": "true", "link": "", "prefix": "/usr/local" } }
[ "" ]
3a2ad1e33b7dc2a198f28492c836efb94a98b834
3562fa51db47b1b1e97785191f0c04644d47c283
/python/plat3/2152.py
62489943de0aeb7ac35dc6bf78cf5e4aa950e1b3
[]
no_license
seono/algorithm
c74181d564525e3a0214824c4a619c51cd52a042
78a252b29290eaa1ea076d76cd83e5dbbb7d8d89
refs/heads/master
2021-07-13T07:13:41.523888
2021-04-24T14:05:00
2021-04-24T14:05:00
244,609,427
0
0
null
null
null
null
UTF-8
Python
false
false
1,697
py
import sys from collections import deque sys.setrecursionlimit(100000) input = sys.stdin.readline N, M, S, T = map(int,input().split()) adj = [[] for _ in range(N+1)] for i in range(M): s,t = map(int,input().split()) adj[s].append(t) cnt,SN = 0,0 dfsn = [0]*(N+1) scc_arr = [] scc_num = [0]*(N+1) finished = [False]*(N+1) st = [] def scc(idx): global cnt,SN dfsn[idx] = cnt+1 cnt+=1 st.append(idx) result = dfsn[idx] for nx in adj[idx]: if dfsn[nx]==0:result = min(result,scc(nx)) elif not finished[nx]: result = min(result, dfsn[nx]) if result == dfsn[idx]: curSCC = [] while True: t = st.pop() curSCC.append(t) finished[t]=True scc_num[t]=SN if t==idx:break scc_arr.append(curSCC) SN+=1 return result for i in range(1,N+1): if dfsn[i]==0:scc(i) new_adj = [[] for _ in range(SN)] indgree = [0]*SN finished = [0]*SN new_s,new_t = scc_num[S],scc_num[T] for i,tmp in enumerate(scc_arr): for n in tmp: for nx in adj[n]: if scc_num[nx]==i:continue new_adj[i].append(scc_num[nx]) indgree[scc_num[nx]]+=1 def dfs(): can = [False]*SN can[new_s]=True finished[new_s]=len(scc_arr[new_s]) q = deque([]) for i in range(SN): if not indgree[i]: q.append(i) while q: n = q.popleft() for nx in new_adj[n]: if can[n]: finished[nx]=max(finished[nx],finished[n]+len(scc_arr[nx])) can[nx]=True indgree[nx]-=1 if indgree[nx]==0: q.append(nx) return finished[new_t] print(dfs())
ed2bd9596b3c087bafd28769728ffae53934a728
e12e1e738d06dbbcdb7f3d051614e7aa493f795d
/mysite/config/settings.py
41635b0505022517d3d2ca9886160f51f35e9721
[]
no_license
suhjohn/ec2-deploy-mysite
34c13e1ae3ff33ca14a6223ee8036432ea98d460
fb3c33cb64ecfa673f16da0385942f76bde748a1
refs/heads/master
2021-07-19T17:57:53.701059
2017-10-27T05:33:27
2017-10-27T05:33:27
108,366,401
0
0
null
null
null
null
UTF-8
Python
false
false
3,380
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 1.11.6. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '8!yz3f*(+w^kkhls0sl3)lfngzupjo(rsydyr2(89ci7!av(_w' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [ 'localhost', '.ap-northeast-2.compute.amazonaws.com', ] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'config.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'config.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' STATIC_DIR = os.path.join(BASE_DIR, "static") #Django에서 정적파일을 검색하고 가져올 폴더 목 STATICFILES_DIRS = [ STATIC_DIR, ] MEDIA_ROOT = os.path.join(BASE_DIR, "media") MEDIA_URL = '/media/'
9292b50897599760a3af3e865199ee693377afc0
bca910213912e3f74e28b3da920695eabf9bab1c
/sat/list_articles_test.py
7b6c3905d6be9e414f0bbc7044ab53b5d88b91b0
[]
no_license
francescobenintende/hub-blog
e9f2850ad030ea3af7051d15a9ee186b770391ee
f8960f229c3806fc1c6989f3ab7b6192f46c982f
refs/heads/master
2023-06-23T18:10:34.593326
2021-07-20T07:04:01
2021-07-20T07:04:01
387,029,336
0
0
null
null
null
null
UTF-8
Python
false
false
2,639
py
from hub_blog import app class TestListArticles: def test_list_articles_returns_articles_with_specified_tags(self): with app.test_client() as c: article_to_create_one = { 'title': 'Article One', 'content': 'Lots of interesting content.', 'tags': ['marketing'], 'user_id': 'fran', } create_response_one = c.post('/articles', json=article_to_create_one) assert create_response_one.status_code == 201 article_to_create_two = { 'title': 'Article Two', 'content': 'Lots of interesting content.', 'tags': ['learning', 'marketing'], 'user_id': 'mark', } create_response_two = c.post('/articles', json=article_to_create_two) assert create_response_two.status_code == 201 article_id_one = create_response_one.json['article_id'] article_id_two = create_response_two.json['article_id'] list_response = c.get(f'/articles', json={'tags': ['marketing']}) assert list_response.status_code == 200 assert len(list_response.json) == 2 assert article_id_one in list_response.json assert article_id_two in list_response.json def test_list_articles_returns_articles_with_specified_keywords(self): with app.test_client() as c: article_to_create_one = { 'title': 'This is the way', 'content': 'Lots of interesting content.', 'tags': ['tech', 'finance'], 'user_id': 'fran', } create_response_one = c.post('/articles', json=article_to_create_one) assert create_response_one.status_code == 201 article_to_create_two = { 'title': 'That is the way', 'content': 'Lots of interesting content.', 'tags': ['finance', 'travelling'], 'user_id': 'mark', } create_response_two = c.post('/articles', json=article_to_create_two) assert create_response_two.status_code == 201 article_id_one = create_response_one.json['article_id'] article_id_two = create_response_two.json['article_id'] list_response = c.get(f'/articles', json={'keywords': ['is', 'the', 'way']}) assert list_response.status_code == 200 assert len(list_response.json) == 2 assert article_id_one in list_response.json assert article_id_two in list_response.json
ea8178226894384605a4056cb9263a40ae392b4f
eecd9cb2117aee5f8a41a38e07697524c5908003
/concourse/client/api.py
6364f9311bca6d38d5e26f4f165613ef1eb30a26
[ "BSD-3-Clause", "MIT", "Apache-2.0" ]
permissive
adracus/cc-utils
426608fb2c7184e5f68c9073da9e7f1535e025ce
dcd1ff544d8b18a391188903789d1cac929f50f9
refs/heads/master
2020-04-25T23:30:25.454654
2019-02-27T14:31:19
2019-02-27T14:31:19
173,148,221
0
0
Apache-2.0
2019-02-28T16:36:09
2019-02-28T16:36:09
null
UTF-8
Python
false
false
8,926
py
# Copyright (c) 2019 SAP SE or an SAP affiliate company. All rights reserved. This file is licensed # under the Apache Software License, v. 2 except as noted otherwise in the LICENSE file # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import warnings from abc import abstractmethod from ensure import ensure_annotations from urllib3.exceptions import InsecureRequestWarning from .routes import ( ConcourseApiRoutesBase, ) from .model import ( Build, BuildPlan, BuildEvents, SetPipelineResult, PipelineConfig, ResourceVersion, ) from model.concourse import ( ConcourseTeamCredentials, ) from http_requests import AuthenticatedRequestBuilder from util import not_empty warnings.filterwarnings('ignore', 'Unverified HTTPS request is being made.*', InsecureRequestWarning) def select_attr(name: str): return lambda o: o.get(name) class ConcourseApiBase(object): ''' Implements a subset of concourse REST API functionality. After creation, `login` ought to be invoked at least once to allow for the execution of requests that required autorization. @param base_url: concourse endpoint (e.g. https://ci.concourse.ci) @param team_name: the team name used for authentication @param verify_ssl: whether or not certificate validation is to be done ''' @ensure_annotations def __init__( self, routes: ConcourseApiRoutesBase, request_builder: AuthenticatedRequestBuilder, verify_ssl=False, ): self.routes = routes self.request_builder = request_builder self.verify_ssl = verify_ssl @ensure_annotations def _get(self, url: str): return self.request_builder.get(url, return_type='json') @ensure_annotations def _put(self, url: str, body: str, headers={}, use_auth_token=True): return self.request_builder.put(url, body=body, headers=headers) @ensure_annotations def _post(self, url: str, body: str="", headers={}): return self.request_builder.post(url, body=body, headers=headers) @ensure_annotations def _delete(self, url: str): return self.request_builder.delete(url) @abstractmethod def login(self, team: str, username: str, passwd: str): raise NotImplementedError @ensure_annotations def set_pipeline(self, name: str, pipeline_definition): previous_version = self.pipeline_config_version(name) headers = {'x-concourse-config-version': previous_version} url = self.routes.pipeline_cfg(name) self._put(url, str(pipeline_definition), headers=headers) return SetPipelineResult.CREATED if previous_version is None else SetPipelineResult.UPDATED @ensure_annotations def delete_pipeline(self, name: str): url = self.routes.pipeline(pipeline_name=name) self._delete(url) def pipelines(self): pipelines_url = self.routes.pipelines() response = self._get(pipelines_url) return map(select_attr('name'), response) def order_pipelines(self, pipeline_names): url = self.routes.order_pipelines() self._put(url, json.dumps(pipeline_names)) @ensure_annotations def pipeline_cfg(self, pipeline_name: str): pipeline_cfg_url = self.routes.pipeline_cfg(pipeline_name) response = self._get(pipeline_cfg_url) not_empty(response) return PipelineConfig(response, concourse_api=self, name=pipeline_name) def pipeline_resources(self, pipeline_names): if isinstance(pipeline_names, str): pipeline_names = [pipeline_names] resources = map(lambda name: self.pipeline_cfg(pipeline_name=name).resources, pipeline_names) for resource_list in resources: yield from resource_list @ensure_annotations def pipeline_config_version(self, pipeline_name: str): pipeline_cfg_url = self.routes.pipeline_cfg(pipeline_name) response = self.request_builder.get( pipeline_cfg_url, return_type=None, check_http_code=False ) if response.status_code == 404: return None # pipeline did not exist yet # ensure we did receive an error other than 404 self.request_builder._check_http_code(response, pipeline_cfg_url) return response.headers['X-Concourse-Config-Version'] @ensure_annotations def unpause_pipeline(self, pipeline_name: str): unpause_url = self.routes.unpause_pipeline(pipeline_name) self.request_builder.put( unpause_url, body="" ) @ensure_annotations def expose_pipeline(self, pipeline_name: str): expose_url = self.routes.expose_pipeline(pipeline_name) self.request_builder.put( expose_url, body="", ) @ensure_annotations def job_builds(self, pipeline_name: str, job_name: str): ''' Returns a list of Build objects for the specified job. The list is sorted by the build number, newest build last ''' builds_url = self.routes.job_builds(pipeline_name, job_name) response = self._get(builds_url) builds = [Build(build_dict, self) for build_dict in response] builds = sorted(builds, key=lambda b: b.id()) return builds @ensure_annotations def job_build(self, pipeline_name: str, job_name: str, build_name: str): build_url = self.routes.job_build(pipeline_name, job_name, build_name) response = self._get(build_url) return Build(response, self) @ensure_annotations def trigger_build(self, pipeline_name: str, job_name: str): trigger_url = self.routes.job_builds(pipeline_name, job_name) self._post(trigger_url) @ensure_annotations def build_plan(self, build_id): build_plan_url = self.routes.build_plan(build_id) response = self._get(build_plan_url) return BuildPlan(response, self) @ensure_annotations def build_events(self, build_id): build_plan_url = self.routes.build_events(build_id) # TODO: this request never seems to send an "EOF" # (probably to support streaming) # --> properly handle this special case response = self.request_builder.get( build_plan_url, return_type=None, stream=True # passed to sseclient ) return BuildEvents(response, self) @ensure_annotations def trigger_resource_check(self, pipeline_name: str, resource_name: str): url = self.routes.resource_check(pipeline_name=pipeline_name, resource_name=resource_name) # Resource checks are triggered by a POST with an empty JSON-document as body against # the resource's check-url self._post(url, body='{}') @ensure_annotations def resource_versions(self, pipeline_name: str, resource_name: str): url = self.routes.resource_versions(pipeline_name=pipeline_name, resource_name=resource_name) response = self._get(url) return [ResourceVersion(raw=raw, concourse_api=None) for raw in response] class ConcourseApiV4(ConcourseApiBase): def login(self, username: str, passwd: str): login_url = self.routes.login() form_data = "grant_type=password&password=" + passwd + \ "&scope=openid+profile+email+federated%3Aid+groups&username=" + username response = self._post( url=login_url, body=form_data, headers={"content-type": "application/x-www-form-urlencoded"} ) auth_token = response.json()['access_token'] self.request_builder = AuthenticatedRequestBuilder( auth_token=auth_token, verify_ssl=self.verify_ssl ) return auth_token def set_team(self, team_credentials: ConcourseTeamCredentials): body = {} body['auth'] = { "users": [ "local:" + team_credentials.username() ] } if team_credentials.has_github_oauth_credentials(): body['auth'].update({ "groups": [ "github:" + team_credentials.github_auth_team() ] }) team_url = self.routes.team_url(team_credentials.teamname()) self._put(team_url, json.dumps(body))
c663cfef1a695d5be22587d9ff42d87025c79fdc
9edaf93c833ba90ae9a903aa3c44c407a7e55198
/netex/models/destination_display_variant_ref.py
3255e0537fdd4c971133e232146768cd1aa74573
[]
no_license
tefra/xsdata-samples
c50aab4828b8c7c4448dbdab9c67d1ebc519e292
ef027fe02e6a075d8ed676c86a80e9647d944571
refs/heads/main
2023-08-14T10:31:12.152696
2023-07-25T18:01:22
2023-07-25T18:01:22
222,543,692
6
1
null
2023-06-25T07:21:04
2019-11-18T21:00:37
Python
UTF-8
Python
false
false
332
py
from dataclasses import dataclass from .destination_display_variant_ref_structure import DestinationDisplayVariantRefStructure __NAMESPACE__ = "http://www.netex.org.uk/netex" @dataclass class DestinationDisplayVariantRef(DestinationDisplayVariantRefStructure): class Meta: namespace = "http://www.netex.org.uk/netex"
0d038bc8a4bea84b0f0d51230a42d848d9d9ce14
5c1e5935129b4d0f5626f64bd62e3370b0553262
/vendor/deadline/custom/plugins/GlobalJobPreLoad.py
d1287dd2131f2cf667340d1bd133e38875f5b207
[ "MIT" ]
permissive
dangerstudios/OpenPype
c72f9d6d3a4a964697fa77712c116cfd2949b696
f82ed5e127340e852a7517ff1e13e2524ee6e704
refs/heads/main
2023-04-21T00:25:02.364398
2021-04-13T22:10:36
2021-04-13T22:10:36
362,811,887
0
0
null
2021-04-29T12:35:54
2021-04-29T12:35:53
null
UTF-8
Python
false
false
6,060
py
# -*- coding: utf-8 -*- import os import tempfile import time import subprocess import json import platform from Deadline.Scripting import RepositoryUtils, FileUtils def inject_openpype_environment(deadlinePlugin): job = deadlinePlugin.GetJob() job = RepositoryUtils.GetJob(job.JobId, True) # invalidates cache print("inject_openpype_environment start") try: exe_list = job.GetJobExtraInfoKeyValue("openpype_executables") openpype_app = FileUtils.SearchFileList(exe_list) if openpype_app == "": raise RuntimeError( "OpenPype executable was not found " + "in the semicolon separated list \"" + exe_list + "\". " + "The path to the render executable can be configured " + "from the Plugin Configuration in the Deadline Monitor.") # tempfile.TemporaryFile cannot be used because of locking export_url = os.path.join(tempfile.gettempdir(), time.strftime('%Y%m%d%H%M%S'), 'env.json') # add HHMMSS + delete later print("export_url {}".format(export_url)) args = [ openpype_app, 'extractenvironments', export_url ] add_args = {} add_args['project'] = \ job.GetJobEnvironmentKeyValue('AVALON_PROJECT') add_args['asset'] = job.GetJobEnvironmentKeyValue('AVALON_ASSET') add_args['task'] = job.GetJobEnvironmentKeyValue('AVALON_TASK') add_args['app'] = job.GetJobEnvironmentKeyValue('AVALON_APP_NAME') if all(add_args.values()): for key, value in add_args.items(): args.append("--{}".format(key)) args.append(value) else: msg = "Required env vars: AVALON_PROJECT, AVALON_ASSET, " + \ "AVALON_TASK, AVALON_APP_NAME" raise RuntimeError(msg) print("args::{}".format(args)) exit_code = subprocess.call(args, shell=True) if exit_code != 0: raise RuntimeError("Publishing failed, check worker's log") with open(export_url) as fp: contents = json.load(fp) for key, value in contents.items(): deadlinePlugin.SetEnvironmentVariable(key, value) os.remove(export_url) print("inject_openpype_environment end") except Exception: import traceback print(traceback.format_exc()) print("inject_openpype_environment failed") RepositoryUtils.FailJob(job) raise def pype_command_line(executable, arguments, workingDirectory): """Remap paths in comand line argument string. Using Deadline rempper it will remap all path found in command-line. Args: executable (str): path to executable arguments (str): arguments passed to executable workingDirectory (str): working directory path Returns: Tuple(executable, arguments, workingDirectory) """ print("-" * 40) print("executable: {}".format(executable)) print("arguments: {}".format(arguments)) print("workingDirectory: {}".format(workingDirectory)) print("-" * 40) print("Remapping arguments ...") arguments = RepositoryUtils.CheckPathMapping(arguments) print("* {}".format(arguments)) print("-" * 40) return executable, arguments, workingDirectory def pype(deadlinePlugin): """Remaps `PYPE_METADATA_FILE` and `PYPE_PYTHON_EXE` environment vars. `PYPE_METADATA_FILE` is used on farm to point to rendered data. This path originates on platform from which this job was published. To be able to publish on different platform, this path needs to be remapped. `PYPE_PYTHON_EXE` can be used to specify custom location of python interpreter to use for Pype. This is remappeda also if present even though it probably doesn't make much sense. Arguments: deadlinePlugin: Deadline job plugin passed by Deadline """ job = deadlinePlugin.GetJob() # PYPE should be here, not OPENPYPE - backward compatibility!! pype_metadata = job.GetJobEnvironmentKeyValue("PYPE_METADATA_FILE") pype_python = job.GetJobEnvironmentKeyValue("PYPE_PYTHON_EXE") # test if it is pype publish job. if pype_metadata: pype_metadata = RepositoryUtils.CheckPathMapping(pype_metadata) if platform.system().lower() == "linux": pype_metadata = pype_metadata.replace("\\", "/") print("- remapping PYPE_METADATA_FILE: {}".format(pype_metadata)) job.SetJobEnvironmentKeyValue("PYPE_METADATA_FILE", pype_metadata) deadlinePlugin.SetProcessEnvironmentVariable( "PYPE_METADATA_FILE", pype_metadata) if pype_python: pype_python = RepositoryUtils.CheckPathMapping(pype_python) if platform.system().lower() == "linux": pype_python = pype_python.replace("\\", "/") print("- remapping PYPE_PYTHON_EXE: {}".format(pype_python)) job.SetJobEnvironmentKeyValue("PYPE_PYTHON_EXE", pype_python) deadlinePlugin.SetProcessEnvironmentVariable( "PYPE_PYTHON_EXE", pype_python) deadlinePlugin.ModifyCommandLineCallback += pype_command_line def __main__(deadlinePlugin): job = deadlinePlugin.GetJob() job = RepositoryUtils.GetJob(job.JobId, True) # invalidates cache openpype_render_job = \ job.GetJobEnvironmentKeyValue('OPENPYPE_RENDER_JOB') or '0' openpype_publish_job = \ job.GetJobEnvironmentKeyValue('OPENPYPE_PUBLISH_JOB') or '0' if openpype_publish_job == '1' and openpype_render_job == '1': raise RuntimeError("Misconfiguration. Job couldn't be both " + "render and publish.") if openpype_publish_job == '1': print("Publish job, skipping inject.") return elif openpype_render_job == '1': inject_openpype_environment(deadlinePlugin) else: pype(deadlinePlugin) # backward compatibility with Pype2
5e70589d8b5f904dfb860f482ccaa3caf4c7ec29
8685c7b28fcaf26505ec4210ff69f30ed0884d80
/tools/c7n_gcp/c7n_gcp/actions/cscc.py
32b0c5015f39db0b3979318624ad86139f3e2225
[ "Apache-2.0" ]
permissive
AnatoliiHromov/cloud-custodian
9026d490b1c8aabcdab07c5d95a3e7bdda11ce7b
54b48040c0de8a34cea4c48209ca7e395285465b
refs/heads/master
2022-10-13T15:56:48.654462
2020-06-04T16:32:25
2020-06-04T16:32:25
269,630,235
2
0
Apache-2.0
2020-06-05T12:35:17
2020-06-05T12:35:14
null
UTF-8
Python
false
false
8,032
py
# Copyright 2018-2019 Capital One Services, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import json import hashlib from urllib.parse import urlparse from c7n.exceptions import PolicyExecutionError, PolicyValidationError from c7n.utils import local_session, type_schema from .core import MethodAction from c7n_gcp.provider import resources as gcp_resources class PostFinding(MethodAction): """Post finding for matched resources to Cloud Security Command Center. :Example: .. code-block:: yaml policies: - name: gcp-instances-with-label resource: gcp.instance filters: - "tag:name": "bad-instance" actions: - type: post-finding org-domain: example.io category: MEDIUM_INTERNET_SECURITY The source for custodian can either be specified inline to the policy, or custodian can generate one at runtime if it doesn't exist given a org-domain or org-id. Finding updates are not currently supported, due to upstream api issues. """ schema = type_schema( 'post-finding', **{ 'source': { 'type': 'string', 'description': 'qualified name of source to post to CSCC as'}, 'org-domain': {'type': 'string'}, 'org-id': {'type': 'integer'}, 'category': {'type': 'string'}}) schema_alias = True method_spec = {'op': 'create', 'result': 'name', 'annotation_key': 'c7n:Finding'} # create throws error if already exists, patch method has bad docs. ignore_error_codes = (409,) CustodianSourceName = 'CloudCustodian' DefaultCategory = 'Custodian' Service = 'securitycenter' ServiceVersion = 'v1beta1' _source = None def validate(self): if not any([self.data.get(k) for k in ('source', 'org-domain', 'org-id')]): raise PolicyValidationError( "policy:%s CSCC post-finding requires one of source, org-domain, org-id" % ( self.manager.ctx.policy.name)) def process(self, resources): self.initialize_source() return super(PostFinding, self).process(resources) def get_client(self, session, model): return session.client( self.Service, self.ServiceVersion, 'organizations.sources.findings') def get_resource_params(self, model, resource): return self.get_finding(resource) def initialize_source(self): # Ideally we'll be given a source, but we'll attempt to auto create it # if given an org_domain or org_id. if self._source: return self._source elif 'source' in self.data: self._source = self.data['source'] return self._source session = local_session(self.manager.session_factory) # Resolve Organization Id if 'org-id' in self.data: org_id = self.data['org-id'] else: orgs = session.client('cloudresourcemanager', 'v1', 'organizations') res = orgs.execute_query( 'search', {'body': { 'filter': 'domain:%s' % self.data['org-domain']}}).get( 'organizations') if not res: raise PolicyExecutionError("Could not determine organization id") org_id = res[0]['name'].rsplit('/', 1)[-1] # Resolve Source client = session.client(self.Service, self.ServiceVersion, 'organizations.sources') source = None res = [s for s in client.execute_query( 'list', {'parent': 'organizations/{}'.format(org_id)}).get('sources') if s['displayName'] == self.CustodianSourceName] if res: source = res[0]['name'] if source is None: source = client.execute_command( 'create', {'parent': 'organizations/{}'.format(org_id), 'body': { 'displayName': self.CustodianSourceName, 'description': 'Cloud Management Rules Engine'}}).get('name') self.log.info( "policy:%s resolved cscc source: %s, update policy with this source value", self.manager.ctx.policy.name, source) self._source = source return self._source def get_name(self, r): """Given an arbitrary resource attempt to resolve back to a qualified name.""" namer = ResourceNameAdapters[self.manager.resource_type.service] return namer(r) def get_finding(self, resource): policy = self.manager.ctx.policy resource_name = self.get_name(resource) # ideally we could be using shake, but its py3.6+ only finding_id = hashlib.sha256( b"%s%s" % ( policy.name.encode('utf8'), resource_name.encode('utf8'))).hexdigest()[:32] finding = { 'name': '{}/findings/{}'.format(self._source, finding_id), 'resourceName': resource_name, 'state': 'ACTIVE', 'category': self.data.get('category', self.DefaultCategory), 'eventTime': datetime.datetime.utcnow().isoformat('T') + 'Z', 'sourceProperties': { 'resource_type': self.manager.type, 'title': policy.data.get('title', policy.name), 'policy_name': policy.name, 'policy': json.dumps(policy.data) } } request = { 'parent': self._source, 'findingId': finding_id[:31], 'body': finding} return request @classmethod def register_resource(klass, registry, resource_class): if resource_class.resource_type.service not in ResourceNameAdapters: return if 'post-finding' in resource_class.action_registry: return resource_class.action_registry.register('post-finding', klass) # CSCC uses its own notion of resource id, if we want our findings on # a resource to be linked from the asset view we need to post w/ the # same resource name. If this conceptulization of resource name is # standard, then we should move these to resource types with # appropriate hierarchies by service. def name_compute(r): prefix = urlparse(r['selfLink']).path.strip('/').split('/')[2:][:-1] return "//compute.googleapis.com/{}/{}".format( "/".join(prefix), r['id']) def name_iam(r): return "//iam.googleapis.com/projects/{}/serviceAccounts/{}".format( r['projectId'], r['uniqueId']) def name_resourcemanager(r): rid = r.get('projectNumber') if rid is not None: rtype = 'projects' else: rid = r.get('organizationId') rtype = 'organizations' return "//cloudresourcemanager.googleapis.com/{}/{}".format( rtype, rid) def name_container(r): return "//container.googleapis.com/{}".format( "/".join(urlparse(r['selfLink']).path.strip('/').split('/')[1:])) def name_storage(r): return "//storage.googleapis.com/{}".format(r['name']) def name_appengine(r): return "//appengine.googleapis.com/{}".format(r['name']) ResourceNameAdapters = { 'appengine': name_appengine, 'cloudresourcemanager': name_resourcemanager, 'compute': name_compute, 'container': name_container, 'iam': name_iam, 'storage': name_storage, } gcp_resources.subscribe(PostFinding.register_resource)
51bc17d770c472514c34e571a0a26ef96a715551
f9235e935286e8b1b0d86957ebf843179ee1f733
/PasswordLocker/platform.py
38cabbd9ae56024350f327d77848bfab89a8fcab
[]
no_license
Oladunsi/automate_the_boring_stuff
4a37203dec24f4c898161e7e517dd02184e247ef
72963c38b42992c83826f141b0990c1aaf1abfac
refs/heads/master
2023-02-20T01:52:28.796959
2021-01-19T14:02:57
2021-01-19T14:02:57
282,612,632
0
0
null
null
null
null
UTF-8
Python
false
false
1,235
py
import csv import pandas as pd def platform(): UserLocker = {} Begin = True while Begin: platform = input("Enter the name of the platform You want to save its' username and password!!! ").upper() if platform != "": UserLocker["Platform"] = platform UserName = input(f"Enter The UserName You used on {platform}: ") if UserName != "": UserLocker["UserName"] = UserName Password = input(f"Enter the Password You used on {platform}: ") if Password != "": UserLocker["Password"] = Password Begin = False return UserLocker else: continue else: continue else: continue if __name__ == "__main__": # the input is intended to be converted into pandas dataframe userlocker_data = platform() with open('PasswordBank.csv', 'a+', newline='') as write_obj: fieldnames = ['Platform','UserName','Password'] writer = csv.DictWriter(write_obj,fieldnames=fieldnames) writer.writerow(userlocker_data)
e27268bc22f9a86622a304e5caac2b5d7ec1d426
ac8b9ab24164f5f282e9eaad2b2453690e5871c7
/app.py
f54b84b37867cc222edf5c1d5bbfb3047cc0d0c7
[]
no_license
Akrosys/M1_Python_EDA
811cad373c49fea4a007db4213188162d1e199c9
7b17b05c5f2afc4da8042585fb385643cb288f18
refs/heads/master
2023-01-30T02:21:19.783569
2020-12-02T15:59:53
2020-12-02T15:59:53
313,864,238
0
0
null
null
null
null
UTF-8
Python
false
false
683
py
from flask import Flaskr import os import socket # Connect to Redis redis = Redis(host="redis", db=0, socket_connect_timeout=2, socket_timeout=2) app = Flask(__name__) @app.route("/") def hello(): try: visites = redis.incr("compteur") except RedisError: visites = "<i>Erreur de connection Redis, compteur desactive</i>" html = "<h3>Bonjour {nom}!</h3>" \ "<b>Hostname:</b> {hostname}<br/>" \ "<b>Visites:</b> {visites} <br/>" \ "<p>Abonne toi!</p>" return html.format(nom=os.getenv("NOM", "youtube"), hostname=socket.gethostname(), visites=visites) if __name__ == "__main__": app.run(host='0.0.0.0', port=80)
beebfb738ee3a7772df0488cef9794e2a300da83
2a197966a829ceb02f240f85d70f1c276efd91a3
/MCP3008_VOC.py
adbd4db4c0f32e40230d0b0275e1e0704bd64273
[]
no_license
Tinymaxi/Luftmessdaten
16443a9e0276699569ff7a24942fa4538729a535
274859f0cc0758b40b2e8f0796a96699bf4ffa1e
refs/heads/master
2020-07-13T06:17:53.996156
2019-08-28T20:08:33
2019-08-28T20:08:33
205,014,194
0
0
null
null
null
null
UTF-8
Python
false
false
615
py
import busio import digitalio import board import adafruit_mcp3xxx.mcp3008 as MCP import time from time import sleep from adafruit_mcp3xxx.analog_in import AnalogIn #spi = busio.SPI(clock=board.SCK, MISO=board.MISO, MOSI=board.MOSI) spi = busio.SPI(clock=board.D21, MISO=board.D19, MOSI=board.D20) cs = digitalio.DigitalInOut(board.D25) mcp = MCP.MCP3008(spi, cs) channel = AnalogIn(mcp, MCP.P0) ##print('VOC Raw ADC Value: ', channel.value) ##print('VOC ADC Voltage: ' + str(channel.voltage) + 'V') def MCP3008_VOC(): MCP3008_VOC = channel.value sleep(1) return MCP3008_VOC #print(MCP3008_VOC())
b4819e1ec3e683284917e6a9291f28ae1220f9c7
85a9ffeccb64f6159adbd164ff98edf4ac315e33
/pysnmp-with-texts/DELL-NETWORKING-TC.py
a5184bbe6b70262343039230a6f6eb6c4efb5c16
[ "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-proprietary-license", "LicenseRef-scancode-unknown-license-reference" ]
permissive
agustinhenze/mibs.snmplabs.com
5d7d5d4da84424c5f5a1ed2752f5043ae00019fb
1fc5c07860542b89212f4c8ab807057d9a9206c7
refs/heads/master
2020-12-26T12:41:41.132395
2019-08-16T15:51:41
2019-08-16T15:53:57
237,512,469
0
0
Apache-2.0
2020-01-31T20:41:36
2020-01-31T20:41:35
null
UTF-8
Python
false
false
18,834
py
# # PySNMP MIB module DELL-NETWORKING-TC (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/DELL-NETWORKING-TC # Produced by pysmi-0.3.4 at Wed May 1 12:37:51 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # ObjectIdentifier, OctetString, Integer = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "OctetString", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueRangeConstraint, ConstraintsIntersection, ConstraintsUnion, ValueSizeConstraint, SingleValueConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "ConstraintsIntersection", "ConstraintsUnion", "ValueSizeConstraint", "SingleValueConstraint") dellNetModules, = mibBuilder.importSymbols("DELL-NETWORKING-SMI", "dellNetModules") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") ModuleIdentity, ObjectIdentity, Unsigned32, MibScalar, MibTable, MibTableRow, MibTableColumn, IpAddress, Counter64, MibIdentifier, iso, Gauge32, TimeTicks, Bits, Counter32, NotificationType, Integer32 = mibBuilder.importSymbols("SNMPv2-SMI", "ModuleIdentity", "ObjectIdentity", "Unsigned32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "IpAddress", "Counter64", "MibIdentifier", "iso", "Gauge32", "TimeTicks", "Bits", "Counter32", "NotificationType", "Integer32") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") dellNetTextualConventions = ModuleIdentity((1, 3, 6, 1, 4, 1, 6027, 4, 2)) dellNetTextualConventions.setRevisions(('2009-04-07 12:00', '2008-09-16 12:00', '2008-09-02 12:00', '2007-06-28 12:00',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: dellNetTextualConventions.setRevisionsDescriptions(('Added new Nemesis card type.', 'Added ExaScale chassis mode and Nemesis card type.', 'Added DellNetCardOperStatus.', 'Added DellNetChassisType and DellNetHundredthdB.',)) if mibBuilder.loadTexts: dellNetTextualConventions.setLastUpdated('200904071200Z') if mibBuilder.loadTexts: dellNetTextualConventions.setOrganization('Dell Inc') if mibBuilder.loadTexts: dellNetTextualConventions.setContactInfo('http://www.dell.com/support') if mibBuilder.loadTexts: dellNetTextualConventions.setDescription('The Textual Convention of Dell Networking OS MIB.') class DellNetChassisType(TextualConvention, Integer32): description = 'Dell Networking OS chassis type.' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48)) namedValues = NamedValues(("e1200", 1), ("e600", 2), ("e300", 3), ("e150", 4), ("e610", 5), ("c150", 6), ("c300", 7), ("e1200i", 8), ("s2410cp", 9), ("s2410p", 10), ("s50", 11), ("s50e", 12), ("s50v", 13), ("s50nac", 14), ("s50ndc", 15), ("s25pdc", 16), ("s25pac", 17), ("s25v", 18), ("s25n", 19), ("s60", 20), ("s55", 21), ("s4810", 22), ("s6410", 23), ("z9000", 24), ("m-MXL", 25), ("m-IOA", 26), ("s4820", 27), ("s6000", 28), ("s5000", 29), ("s-FN410S-IOA", 30), ("s-FN410T-IOA", 31), ("s-FN2210S-IOA", 32), ("z9500", 33), ("c9010", 34), ("c1048p", 35), ("s4048on", 36), ("s4810on", 37), ("s6000on", 38), ("s3048on", 39), ("z9100", 40), ("s6100", 41), ("s3148p", 42), ("s3124p", 43), ("s3124f", 44), ("s3124", 45), ("s3148", 46), ("s4048ton", 47), ("s6010", 48)) class DellNetInterfaceType(TextualConvention, Integer32): description = 'Interface types supported by the Dell Networking OS line cards. ' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)) namedValues = NamedValues(("ethernetManagement", 1), ("ethernet100M", 2), ("ethernet1GB", 3), ("ethernet1GBCopper", 4), ("ethernet10GB", 5), ("ethernet10GBCopper", 6), ("sonetOC3OC12", 7), ("sonetOC48OC96", 8), ("sonetOC192", 9), ("ethernet40GB", 10)) class DellNetSystemPortType(TextualConvention, Integer32): description = 'Port type available in Dell Networking OS series of products.' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 99)) namedValues = NamedValues(("portSerial", 1), ("portAux", 2), ("portFastEther", 3), ("port0210E2TV", 4), ("port0210E2TE", 5), ("port2401E24S", 6), ("port2401E24L", 7), ("port12OC12OC3", 8), ("port01OC192", 9), ("port2401E24SEC", 10), ("port2401E24LEC", 11), ("port0210E2TY", 12), ("port0210E2TU", 13), ("port0110EW1YB", 14), ("port0110EW1YC", 15), ("port02S48YC2", 16), ("port0110EX1YB", 17), ("port0110EX1YC", 18), ("port1201F12PB", 19), ("port1201F12PC", 20), ("port0110EX1EB", 21), ("port0110EX1EC", 22), ("port0110EX1YBL", 23), ("port0210EX2YD", 24), ("port0210EX2ED", 25), ("port0210EX2ZD-DEP", 26), ("port0210EW2YD", 27), ("port0110EX1YD", 28), ("port0110EX1ED", 29), ("port0110EX1ZD", 30), ("port0110EW1YD", 31), ("port2401E24PD", 32), ("port0210EX2YD2", 33), ("port0210EX2YE", 34), ("port0110EX1YD2", 35), ("port0110EX1YE", 36), ("port0210EW2YD2", 37), ("port0210EW2YE", 38), ("port0110EW1YE", 39), ("port01OC192SE", 40), ("port2401E24TD", 41), ("port2401E24PE", 42), ("port1201F12PC2", 43), ("port0210EX2ZD", 44), ("port0210EW2YD3", 45), ("port0210EX2ZE", 46), ("port1201F12PE", 47), ("port2401E24PD2", 48), ("port1201E12TD3", 49), ("port0210EX2YD3", 50), ("port0110EX1YD3", 51), ("port1201E12PD3", 52), ("port02S48YE2", 53), ("port0110EX1YE3", 54), ("port1201E12PE3", 55), ("port4801E48PF", 56), ("port2401E24PF3", 57), ("port4801E48TF3", 58), ("port4801E48TF", 59), ("port0410EXW4PF", 60), ("port0210EXW2PF3", 61), ("port9001E90MF", 62), ("port4801E48T1F", 63), ("port1610EXW16PF", 64), ("port0810EXW8PF", 65), ("port0410EXW4PG", 66), ("port4801E48PG", 67), ("port4801E48TG", 68), ("port0210EXW2PG3", 69), ("port2401E24PG3", 70), ("port2401E24TG3", 71), ("port04S48P4G", 72), ("port04S48P4G3", 73), ("port1610EXW16PG", 74), ("port0810EXW8PG3", 75), ("port9001E90MH", 76), ("port1010EXW10SH", 77), ("port1010EXW10SJ", 78), ("port9001E90MJ", 79), ("port5001E50PH", 80), ("port5001E50PJ", 81), ("port1010EXW10PH", 82), ("port1010EXW10PJ", 83), ("port4010EXW40SH", 84), ("port4010EXW40SJ", 85), ("portUnknown", 99)) class DellNetSystemCardType(TextualConvention, Integer32): description = 'The processor card supported by the Dell Networking OS products .' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 200, 201, 202, 203, 204, 205, 206, 207, 208, 250, 259)) namedValues = NamedValues(("notPresented", 0), ("lc0210E2TV", 1), ("lc0210E2TE", 2), ("lc2401E24S", 3), ("lc2401E24L", 4), ("lc12OC12OC3", 5), ("lc01OC192", 6), ("lcReserve", 7), ("lc2401E24SEC", 8), ("lc2401E24lEc", 9), ("lc0210E2TY", 10), ("lc0210E2TU", 11), ("lc0110EW1YB", 12), ("lc0110EW1YC", 13), ("lc02S48YC2", 14), ("lc0110EX1YB", 15), ("lc0110EX1YC", 16), ("lc1201F12PB", 17), ("lc1201F12PC", 18), ("lc0110EX1EB", 19), ("lc0110EX1EC", 20), ("lc0110EX1YBL", 21), ("lc0210EX2YD", 22), ("lc0210EX2ED", 23), ("lc0210EX2ZDdep", 24), ("lc0210EW2YD", 25), ("lc0110EX1YD", 26), ("lc0110EX1ED", 27), ("lc0110EX1ZD", 28), ("lc0110EW1YD", 29), ("lc2401E24PD", 30), ("lc0210EX2YD2", 31), ("lc0210EX2YE", 32), ("lc0110EX1YD2", 33), ("lc0110EX1YE", 34), ("lc0210EW2YD2", 35), ("lc0210EW2YE", 36), ("lc0110EW1YE", 37), ("lc01OC192SE", 38), ("lc2401E24TD", 39), ("lc2401E24PE", 40), ("lc1201F12PC2", 41), ("lc0210EX2ZD", 42), ("lc0210EW2YD3", 43), ("lc0210EX2ZE", 44), ("lc1201F12PE", 45), ("lc2401E24PD2", 46), ("lc0210EX2ZD2", 47), ("lc1201E12TD3", 48), ("lc0210EX2YD3", 49), ("lc0110EX1YD3", 50), ("lc1201E12PD3", 51), ("lc02S48YE2", 52), ("lc0110EX1YE3", 53), ("lc1201E12PE3", 54), ("lc4801E48PF", 55), ("lc2401E24PF3", 56), ("lc4801E48TF3", 57), ("lc4801E48TF", 58), ("lc0410EXW4PF", 59), ("lc0210EXW2PF3", 60), ("lc9001E90MF", 61), ("lc4801E48T1F", 62), ("lc1610EXW16PF", 63), ("lc0810EXW8PF", 64), ("lc0410EXW4PG", 65), ("lc4801E48PG", 66), ("lc4801E48TG", 67), ("lc0210EXW2PG3", 68), ("lc2401E24PG3", 69), ("lc2401E24TG3", 70), ("lc04S48P4G", 71), ("lc04S48P4G3", 72), ("lc1610EXW16PG", 73), ("lc0810EXW8PG3", 74), ("lc9001E90MH", 75), ("lc1010EXW10SH", 76), ("lc1010EXW10SJ", 77), ("lc9001E90MJ", 78), ("lc5001E50PH", 79), ("lc5001E50PJ", 80), ("lc1010EXW10PH", 81), ("lc1010EXW10PJ", 82), ("lc4010EXW40SH", 83), ("lc4010EXW40SJ", 84), ("z9500LC12", 85), ("z9500LC36", 86), ("z9500LC48", 87), ("c9000LC24X10GCu", 88), ("c9000LC24X10GOptics", 89), ("c9000LC6X40G", 90), ("rpmCard", 200), ("rpmCardEB", 201), ("rpmCardED", 202), ("rpmCardEE", 203), ("rpmCardEE3", 204), ("rpmCardEF", 205), ("rpmCardEF3", 206), ("rpmCardEH", 207), ("supCard", 208), ("sfmCard", 250), ("cardUnknown", 259)) class DellNetCardOperStatus(TextualConvention, Integer32): description = "The operational status provides further condition of the card. If AdminStatus is changed to 'up', then the valid state is 'ready' - the card is present and ready and operational packets can be passed If AdminStatus is changed to 'down', the states can be as followed: 'cardNotmatch'- the card does not matche what is configured 'cardProblem' - the card detects hardware problems 'diagMode' - the card in the diagnostic mode 'cardAbsent' - the card is not present 'offline' - the card is not used." status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6)) namedValues = NamedValues(("ready", 1), ("cardNotmatch", 2), ("cardProblem", 3), ("diagMode", 4), ("cardAbsent", 5), ("offline", 6)) class DellNetIfType(TextualConvention, Integer32): description = 'Port type available in Dell Networking OS products.' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 99)) namedValues = NamedValues(("portSerial", 1), ("portFastEther", 2), ("portGigEther", 3), ("port10GigEther", 4), ("port40GigEther", 5), ("portFibreChannel", 6), ("portAux", 7), ("portUnknown", 99)) class DellNetCSeriesCardType(TextualConvention, Integer32): description = 'The processor card supported by the Dell Networking OS C-Series system products .' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(0, 99, 1024, 1026, 1027, 1028, 1280, 1284, 2049, 200)) namedValues = NamedValues(("notPresented", 0), ("cardUnknown", 99), ("lc4802E48TB", 1024), ("lc0410EX4PB", 1026), ("lc4801E48PB", 1027), ("lc4610E46TB", 1028), ("lc4802E48VB", 1280), ("lc4610E46VB", 1284), ("lc0810EX8PB", 2049), ("rpmCard", 200)) class DellNetProcessorModuleType(TextualConvention, Integer32): description = 'The processor modules supported by the Dell Networking OS card.' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6)) namedValues = NamedValues(("controlProcessor", 1), ("routingProcessor1", 2), ("routingProcessor2", 3), ("linecardProcessor", 4), ("rpmProcessor", 5), ("routingProcessor", 6)) class DellNetSlotState(TextualConvention, Integer32): description = 'A bit string that represents the status of the slot in a E1200 chassis. Slot# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 | | | | | Least Significant bit <-----+ | +-----> Most Significant bit The slot numbers starts with the most significant bit. The most significant bit represents slot number 1 and the least significant bit is slot 16. A bit string that represents the status of the slot in a E600 chassis. Slot# 1 2 3 4 5 6 7 8 9 1 1 1 0 1 1 1 0 1 | | | V | Least Significant bit | +-----> Most Significant bit The slot numbers starts with the most significant bit. The most significant bit represents slot number 1 and the least significant bit is slot 9. Each slot occupies a bit. The value 1 indicates slot is in used and 0 indicates slot is empty.' status = 'current' subtypeSpec = Integer32.subtypeSpec + ValueRangeConstraint(0, 65535) class DellNetSlotID(TextualConvention, Integer32): description = 'Dell Networking OS Chassis Slot ID. ' status = 'current' class DellNetSwDate(DisplayString): description = 'The date format is MM/DD/YYYY. MM = Month DD = Day YYYY = Year For example, January 24, 2002 would be displayed as: 01/24/2002 ' status = 'current' class DellNetMfgDate(DisplayString): description = 'The manufacturing date format is PPWWYYYY PP = Plant #(ie, what building made the board;01= Sanmina Bldg 4,02=Sanmina Bldg 2) WW = Week number (01 = First full week of the year ie, Sunday through Saturday) YYYY = Year For example, 01482001 would have been produced at Samina Bldg 4 during the first week of December, 2001. ' status = 'current' class PortList(TextualConvention, OctetString): description = "Each octet within this value specifies a set of eight ports, with the first octet specifying ports 1 through 8, the second octet specifying ports 9 through 16, etc. Within each octet, the most significant bit represents the lowest numbered port, and the least significant bit represents the highest numbered port. Thus, each port of the bridge is represented by a single bit within the value of this object. If that bit has a value of '1' then that port is included in the set of ports; the port is not included if its bit has a value of '0'." status = 'current' class DellNetVlanID(TextualConvention, Integer32): description = 'Dell Networking OS VLAN ID. A value used to index per-VLAN tables: values of 0 and 4095 are not permitted; if the value is between 1 and 4094 inclusive, it represents an IEEE 802.1Q VLAN-ID with global scope within a given bridged domain (see VlanId textual convention). If the value is greater than 4095 then it represents a VLAN with scope local to the particular agent, i.e. one without a global VLAN-ID assigned to it. Such VLANs are outside the scope of IEEE 802.1Q but it is convenient to be able to manage them in the same way using this MIB.' status = 'current' class DellNetChassisMode(TextualConvention, Integer32): description = 'The chassis mode in Dell Networking series of products.' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 5, 6)) namedValues = NamedValues(("nonJumbo", 0), ("etherScale", 1), ("mixed", 2), ("teraScale", 3), ("cseries1", 4), ("sseries1", 5), ("exaScale", 6)) class DellNetQueueID(TextualConvention, Integer32): description = 'Dell Networking OS Queue ID. ' status = 'current' class DellNetPortPipeID(TextualConvention, Integer32): description = 'Dell Networking OS PortPipe ID. ' status = 'current' class DellNetCycloneVersion(TextualConvention, Integer32): description = 'the Dell Networking OS Cyclone based hardware version' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3)) namedValues = NamedValues(("onePointFive", 1), ("twoPointZero", 2), ("threePointZero", 3)) class DellNetCamPartitionType(TextualConvention, Integer32): description = 'The CAM partition supported in the Dell Networking OS line card. The sequecing used here is Layer 2 Ingress CAM range is 1 - 30 Layer 2 Egress CAM range is 31 - 60 Layer 3 Ingress CAM range is 61 - 90 Layer 3 Egress CAM range is 91 - 120 Layer 3 Host abd LPM CAM (BCM specific) range is 121 - 150 ' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3, 31, 61, 62, 63, 64, 65, 66, 67, 91, 121, 122)) namedValues = NamedValues(("layer2AclIngress", 1), ("layer2AclPvstIngress", 2), ("layer2FibIngress", 3), ("layer2FibEgress", 31), ("layer3AclIngress", 61), ("layer3FibIngress", 62), ("layer3SysFlowIngress", 63), ("layer3TrcListIngress", 64), ("layer3McastFibIngress", 65), ("layer3QosIngress", 66), ("layer3PbrIngress", 67), ("layer3AclEgress", 91), ("layer3ExtHost", 121), ("layer3ExtLPM", 122)) class DellNetHundredthdB(TextualConvention, Integer32): description = 'This data type represents power levels that are normally expressed in dB. Units are in hundredths of a dB; for example, -7.23 dB will be represented as -723.' status = 'current' displayHint = 'd-2' class DellNetDeviceType(TextualConvention, Integer32): description = 'The device category running the Dell Networking OS' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6)) namedValues = NamedValues(("chassis", 1), ("stack", 2), ("rpm", 3), ("supervisor", 4), ("linecard", 5), ("port-extender", 6)) class DellNetPEOperStatus(TextualConvention, Integer32): description = 'The operational status of the port extender' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2)) namedValues = NamedValues(("up", 1), ("down", 2)) mibBuilder.exportSymbols("DELL-NETWORKING-TC", dellNetTextualConventions=dellNetTextualConventions, DellNetSwDate=DellNetSwDate, DellNetPEOperStatus=DellNetPEOperStatus, DellNetInterfaceType=DellNetInterfaceType, DellNetPortPipeID=DellNetPortPipeID, DellNetCamPartitionType=DellNetCamPartitionType, DellNetIfType=DellNetIfType, DellNetCardOperStatus=DellNetCardOperStatus, DellNetSlotID=DellNetSlotID, DellNetCSeriesCardType=DellNetCSeriesCardType, PortList=PortList, DellNetVlanID=DellNetVlanID, DellNetDeviceType=DellNetDeviceType, DellNetChassisMode=DellNetChassisMode, PYSNMP_MODULE_ID=dellNetTextualConventions, DellNetCycloneVersion=DellNetCycloneVersion, DellNetMfgDate=DellNetMfgDate, DellNetQueueID=DellNetQueueID, DellNetSlotState=DellNetSlotState, DellNetSystemPortType=DellNetSystemPortType, DellNetHundredthdB=DellNetHundredthdB, DellNetChassisType=DellNetChassisType, DellNetProcessorModuleType=DellNetProcessorModuleType, DellNetSystemCardType=DellNetSystemCardType)
a32df99969cc2b00821ca9dfd9e146584b61aad7
ed63b9b615c0f1484746e87b54a0c0b233ddf5c2
/tests/test_parser.py
90b755aedee63b62e364f59f3cb3c53381aaf2e0
[ "MIT" ]
permissive
timofurrer/embedeval
ae02026da6cd5601b16afe1cbb543552cbf461ac
08a69c950c9a0ac59a8a0ca728af2627c7bcc43a
refs/heads/master
2020-07-29T10:41:56.322842
2020-01-20T10:32:46
2020-01-20T10:32:51
209,766,108
5
0
null
null
null
null
UTF-8
Python
false
false
2,581
py
""" embedeval ~~~~~~~~~ NLP Embedding Evaluation Tool :copyright: (c) 2019 by Timo Furrer <[email protected]> :license: MIT, see LICENSE for more details. """ import textwrap import uuid import numpy as np import pytest from embedeval.parsers.word2vec_gensim import load_embedding as gensim_load_embedding from embedeval.parsers.word2vec_simple import load_embedding as simple_load_embedding def create_tmp_word_embedding(path, embedding_content): """Create a temporary Word Embedding file""" # FIXME(TF): maybe refactor interface so that file system can be avoided in unit tests. created_file = path / str(uuid.uuid4()) with open(created_file, "w", encoding="utf-8") as embedding_file: embedding_file.write(textwrap.dedent(embedding_content).strip()) return created_file @pytest.mark.parametrize( "load_embedding_func", [ pytest.param(simple_load_embedding, id="simple parser"), pytest.param(gensim_load_embedding, id="gensim parser"), ], ) def test_should_parse_word2vec_with_single_entry(load_embedding_func, tmp_path): """Loading a Word2Vec Embedding should pass for single word""" # GIVEN word2vec_path = create_tmp_word_embedding( tmp_path, """ 1 2 word 1.0 2.0 """, ) # WHEN embedding = load_embedding_func(word2vec_path) # THEN assert embedding.get_words() == ["word"] assert np.array_equal(embedding.get_word_vector("word"), np.array([1.0, 2.0])) @pytest.mark.parametrize( "load_embedding_func", [ pytest.param(simple_load_embedding, id="simple parser"), pytest.param(gensim_load_embedding, id="gensim parser"), ], ) def test_should_parse_word2vec_with_multiple_entires(load_embedding_func, tmp_path): """Loading a Word2Vec Embedding should pass for multiple word entries""" # GIVEN word2vec_path = create_tmp_word_embedding( tmp_path, """ 4 2 word1 1.0 2.0 word2 3.0 4.0 word3 5.0 6.0 word4 7.0 8.0 """, ) # WHEN embedding = load_embedding_func(word2vec_path) # THEN assert embedding.get_words() == ["word1", "word2", "word3", "word4"] assert np.array_equal(embedding.get_word_vector("word1"), np.array([1.0, 2.0])) assert np.array_equal(embedding.get_word_vector("word2"), np.array([3.0, 4.0])) assert np.array_equal(embedding.get_word_vector("word3"), np.array([5.0, 6.0])) assert np.array_equal(embedding.get_word_vector("word4"), np.array([7.0, 8.0]))
b4b13074223e847e9ab9ad0da398eb22f327322b
5b8325ad8ec8e87fe85a74ada8f064b0a3ed8b94
/main.py
3d1afd8c64df97b7e9f99d3584ece9b90c09f0ec
[]
no_license
Ilyaslat/teensinAI_equipe6
a9e48fe0a9d7ef5567c057dbf30b5fa88ed917db
4d60eb9fffe646f759d916579e2a1dce771a3e99
refs/heads/main
2023-08-13T18:31:11.203045
2021-10-11T19:53:09
2021-10-11T19:53:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,667
py
import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers # Define our training input and output data with type 16 bit float # Each input maps to an output X = tf.constant([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=tf.float16) Y = tf.constant([[0], [1], [1], [0]], dtype=tf.float16) # Create a new Sequential Model model = keras.Sequential() # Add our layers model.add(layers.Dense( 4, # Amount of Neurons input_dim=2, # Define an input dimension because this is the first layer activation='relu' # Use relu activation function because all inputs are positive )) model.add(layers.Dense( 1, # Amount of Neurons. We want one output activation='sigmoid' # Use sigmoid because we want to output a binary classification )) # Compile our layers into a model model.compile( loss='mean_squared_error', # The loss function that is being minimized optimizer='adam', # Our optimization function # Metrics are different values that you want the model to track while training metrics=['binary_accuracy'] ) # Our function to take in two numerical inputs and output the relevant boolean def cleanPredict(a, b): inputTens = tf.constant([[a, b]]) # model.predict(input) yields a 2d tensor return round(model.predict(inputTens)[0][0]) == 1 # Will yield a random value because model isn't yet trained print(cleanPredict(1, 0)) model.fit( X, # Input training data Y, # Output training data epochs=2000, # Amount of iterations we want to train for verbose=1 # Amount of detail you want shown in terminal while training ) print(cleanPredict(1, 0)) # Should Yield True
32b305acaf5f83143bcdae4ddd616f2adcd7642a
686248eaf40284ed593768057c58aeebaeae1497
/cg.py
9e0807e3b58cd3dd8e51a7fcd66bf9cd276a3220
[]
no_license
chyyuu/kernel-call-graph
76e6d3b4599886b3eac46083457fad472dc7d9a8
76fb610220bfae24f686f0bd37d8d806bf374548
refs/heads/master
2021-07-11T12:31:06.361565
2017-10-15T16:05:39
2017-10-15T16:05:39
106,992,794
3
0
null
null
null
null
UTF-8
Python
false
false
537
py
# -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ import networkx as nx import matplotlib.pyplot as plt #G=nx.path_graph(4) #nx.write_adjlist(G, "/chycode/kernel-call-graph/g2.txt") #G=nx.read_adjlist("/chycode/kernel-call-graph/g2.txt", create_using=nx.DiGraph()) #nx.write_adjlist(G, "/chycode/kernel-call-graph/g.txt") G=nx.read_adjlist("/chycode/kernel-call-graph/g.txt", nodetype=str, create_using=nx.DiGraph()) #nx.draw(G) #plt.savefig("path.png") print "Nodes: ", G.nodes() print "Edges: ", G.edges()
7968b2e1e5caed24d71f1e3153d7880c5f146136
ea9704f1bddb32cc608525147f5d414184063de5
/app/api/tokens.py
a98a8df86f54b70cf34ef45c2a98af54f62b59ba
[]
no_license
bastienbeurier/partners-web
f7fbcdf473873c76fe1b487e788e5c0391aef6a5
2903ccacd89f1c699e35df07d093cd7219ffadaf
refs/heads/master
2022-12-13T07:52:38.645855
2018-12-25T10:52:03
2018-12-25T10:52:03
161,174,359
0
0
null
2022-12-08T01:28:19
2018-12-10T12:49:59
Python
UTF-8
Python
false
false
495
py
from flask import jsonify, g from app import db from app.api import bp from app.api.auth import basic_auth, token_auth @bp.route('/tokens', methods=['POST']) @basic_auth.login_required def get_token(): token = g.current_user.get_token() db.session.commit() return jsonify({'token': token}) @bp.route('/tokens', methods=['DELETE']) @token_auth.login_required def revoke_token(): g.current_user.revoke_token() db.session.commit() return jsonify({'message': 'success'})
813f053bea3bd35889f9553328b8c671b5afb626
f23959561944599f02943350429eb76d8ad4cf81
/hangman.py
b82bbc9228432b32684e559efabda769a60ab9bd
[]
no_license
yuuNishimura/hangman
822b7df229215c6c4462bf1db775553473606e0b
9b7f98cc6df93d9ce0fefd96916b5ed6f9ec9678
refs/heads/master
2023-06-17T18:11:22.030088
2021-07-13T09:26:07
2021-07-13T09:26:07
385,514,400
0
0
null
null
null
null
UTF-8
Python
false
false
1,138
py
import random def hangman(): a = ["cat", "dog"] n = random.randint(0, 1) word = a[n] wrong = 0 stages = ["", "________ ", "| | ", "| 0 ", "| /|\ ", "| | ", "| / \ " ] rletters = list(word) board = ["_"] * len(word) win = False print("ハングマンへようこそ!") while wrong < len(stages) - 1: print("\n") msg = "1文字を予想してね" char = input(msg) if char in rletters: cind = rletters.index(char) board[cind] = char rletters[cind] = "$" else: wrong += 1 print(" ".join(board)) e = wrong + 1 print("\n".join(stages[0:e])) if "_" not in board: print("あなたの勝ち!") print(" ".join(board)) win = True break if not win: print("\n".join(stages[0:wrong + 1])) print("あなたの負け!正解は{}。".format(word)) hangman()
1e7fd967ad595fb9792cb574c9219de21724fb93
ac652ff7636d4c3336918d0f96aa8ea1bba3ab28
/fastvid/posts/serializers/postmodel.py
c0152d21e28e0e4c646800e2244e7b172f680400
[]
no_license
pn101/fastvid
eebff58e9dd6b967a52361713ed34462e0713d88
9f57c577c558906e3fd5c3ab44f112588ae84ed2
refs/heads/develop
2021-01-20T18:58:34.398325
2016-07-05T09:29:49
2016-07-05T09:29:49
61,545,668
0
0
null
2016-06-20T13:14:42
2016-06-20T12:22:08
null
UTF-8
Python
false
false
412
py
from rest_framework import serializers from posts.models import Post class PostModelSerializer(serializers.ModelSerializer): username = serializers.CharField(source='user.username') class Meta: model = Post fields = [ 'pk', 'username', 'title', 'content', 'youtube_original_url', 'youtube_embed_url', ]
5dd69b1619ff38f19f642f1981ad84e205ad6583
49f6ecfbf4cf66b0867311ce7d4ba5f690410b2f
/greeter_client.py
bc93f9ed2c90fa240e53385b66881e941c070aaa
[]
no_license
jha8/grpc
b93d434d6c1c58517de52a4158092069cc29c900
0d24e265addfd25806b807c0457a275bc1805887
refs/heads/master
2021-09-24T15:27:00.380727
2018-10-10T22:25:00
2018-10-10T22:25:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,235
py
# Copyright 2015 gRPC authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The Python implementation of the GRPC helloworld.Greeter client.""" from __future__ import print_function import grpc import reverse_pb2 import reverse_pb2_grpc def run(): # NOTE(gRPC Python Team): .close() is possible on a channel and should be # used in circumstances in which the with statement does not fit the needs # of the code. with grpc.insecure_channel('localhost:50051') as channel: stub = reverse_pb2_grpc.integer_messageStub(channel) response = stub.SendInteger(reverse_pb2.requestInteger(value = 32)) print("Greeter client received: " + str(response.value)) if __name__ == '__main__': run()
b9744336db4592f260f93b389841d5b72c0fcc0d
960d14fb31f37adf70607e9cb0e986c7764a7bf8
/pizza.py
229035f4f512b90d84a0691b358e4a52b2c68c50
[]
no_license
alexcar/PythonExercises
7a33e47f7adbcbcb7239b138db1ef6ae04d57c2b
5f21089b8b9758da948496acc1420869361c58c4
refs/heads/master
2023-07-27T01:59:16.110629
2021-09-15T19:13:34
2021-09-15T19:13:34
406,729,057
0
0
null
null
null
null
UTF-8
Python
false
false
215
py
def make_pizza(size, *toppings): """Summarize the pizza we are about to make""" print(f"\nMaking a {size}-inch pizza with the following toppings:") for topping in toppings: print(f"- {topping}")
33b855bde50b1d0eaf72ec0bde4d3cd78ab60fc0
f2a97b4077d3988e2413ec7e6406ae6a5bc41ecb
/assignment 2/wormup-2/string_match.py
0f5e76cd9048ef3d343254ebd85a3ec18e6b6c74
[]
no_license
Sahyoun98/CS498
0cdc05add4faa061d6f88d7c6b270781ecf9d81f
073de710d75a241b021ff93c9da504c5d49b8469
refs/heads/master
2020-03-30T14:17:43.993681
2018-10-15T03:29:44
2018-10-15T03:29:44
151,308,452
0
0
null
null
null
null
UTF-8
Python
false
false
160
py
def string_match(a, b): length = len(a) if length > len(b): length = len(b) x = [1 for i in range(length - 1) if a[i:i+2] == b[i:i+2]] return len(x)
03f01b12540d4dda0403bbe2e399a4ae7b21bdfd
76caf7060397c9b697e61613a40bd4d27dd93128
/manage.py
9105de0fd8553cd0f7e1d10ee894681e49aaf073
[]
no_license
balaprasadmb/Eblogger
a0bb0f894e876ca86290bb70291271f43b64c5a3
115f931fb55914477db142909c755fc4cb431537
refs/heads/master
2022-12-02T19:10:22.442511
2020-02-25T12:27:55
2020-02-25T12:27:55
89,342,554
0
0
null
2022-11-22T04:28:20
2017-04-25T09:29:32
CSS
UTF-8
Python
false
false
260
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "eblogger.BootCamp.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
c35af357be8ae118dde3133aaaff753973cb786b
f756eedd0fd4cee9b369978d1e20287dd579e4da
/InmoovScript/services/7_Inmoov.py
ac1ef25dc0796c3cb41c2579757db642007edf0a
[]
no_license
linuxrodo/inmoov
cf02421443d6976f153a64c898e2c209e32cc246
fe8391d6d59ccdf6bdf5b382872fdf4bf77f4b09
refs/heads/master
2021-01-21T09:06:52.835689
2017-02-23T04:07:38
2017-02-23T04:07:38
82,861,443
0
0
null
2017-02-22T23:05:24
2017-02-22T23:05:24
null
UTF-8
Python
false
false
934
py
# ############################################################################## # INMOOV SERVICE # ############################################################################## # ############################################################################## # MRL SERVICE CALL # ############################################################################## inMoov=i01 #varduinoright = Runtime.start("varduinoright","VirtualArduino") #varduinoright.connect(MyRightPort) #varduinoleft = Runtime.start("varduinoleft","VirtualArduino") #varduinoleft.connect(MyLeftPort) #Inmoov Left / right arduino connect if ScriptType=="RightSide" or ScriptType=="Full": right = Runtime.createAndStart("i01.right", "Arduino") RightPortIsConnected=CheckArduinos(right,MyRightPort) if ScriptType=="LeftSide" or ScriptType=="Full": left = Runtime.createAndStart("i01.left", "Arduino") LeftPortIsConnected=CheckArduinos(left,MyLeftPort)
427df9e17f2ecf2d62cae9972583d48410810886
46def0fe8f0c3106e7abd5675730ec1905dc3a29
/customer_transfer/models.py
3327a7c616316ce3f47c0e570c86c8bfa172087d
[]
no_license
PillaiManish/Bank-Website-Django-
23c88d4e694f8534918b58ed9cf31e246acaf020
dd63deb94b52f429a6ff3560a4d5f522e9a56c1c
refs/heads/master
2022-11-29T04:53:17.784472
2020-08-17T13:33:51
2020-08-17T13:33:51
245,742,928
0
0
null
null
null
null
UTF-8
Python
false
false
320
py
from django.db import models # Create your models here. class customer_transfer(models.Model): self_userid = models.IntegerField() to_userid = models.IntegerField() date = models.DateField(auto_now=True) to_amount = models.IntegerField() def __str__(self): return str(self.self_userid)
f5c2f6f667942466f986c459ee041e49ea69a197
c1975972f4ebf8ce40515a0f09a6cb4aca951d94
/venv/Scripts/easy_install-3.8-script.py
d2540252aaa23d2747328ccf4c55798dc84f918e
[]
no_license
anqier-lala/PO_001
e30eb77b9a4be2614831b32ec47b8aa75fde87f6
0f0a437b2b4d1d7b393d41af1a1afcef92975d41
refs/heads/master
2022-07-03T19:00:51.789440
2020-05-19T15:29:57
2020-05-19T15:29:57
259,664,322
0
0
null
null
null
null
UTF-8
Python
false
false
438
py
#!D:\Git_code\PO_001\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install-3.8' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install-3.8')() )
1523aeb6c776c3d3f4d1591ad4e5cc42e0987fcf
fe149dc01dd185f43197038c97d6cc049fb6ba68
/blog/migrations/0004_auto_20190419_0845.py
7b8c4632fef3d25a4ea6ad97561f8a19c285b5b1
[]
no_license
LBarry97/mysite
eee6e0971d394cf20f75d99919e067944b5ec714
5715add5c362e90e731afc6544007aafdfa6e0a3
refs/heads/master
2020-05-02T23:10:37.837629
2019-04-19T09:21:36
2019-04-19T09:21:36
178,274,075
0
0
null
null
null
null
UTF-8
Python
false
false
1,273
py
# Generated by Django 2.1.7 on 2019-04-19 08:45 from django.db import migrations, models import django.db.models.deletion import modelcluster.contrib.taggit import modelcluster.fields class Migration(migrations.Migration): dependencies = [ ('taggit', '0002_auto_20150616_2121'), ('blog', '0003_blogpagegalleryimage'), ] operations = [ migrations.CreateModel( name='BlogPageTag', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('content_object', modelcluster.fields.ParentalKey(on_delete=django.db.models.deletion.CASCADE, related_name='tagged_items', to='blog.BlogPage')), ('tag', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='blog_blogpagetag_items', to='taggit.Tag')), ], options={ 'abstract': False, }, ), migrations.AddField( model_name='blogpage', name='tags', field=modelcluster.contrib.taggit.ClusterTaggableManager(blank=True, help_text='A comma-separated list of tags.', through='blog.BlogPageTag', to='taggit.Tag', verbose_name='Tags'), ), ]
a11834a8740c99d04887a515be714497458a6f92
33b3ab4ac3f1c4f8db6be538777a9d16c0c9045d
/textmine.py
8f197587fa7ca7523dfaaa48ba51603e19610c63
[ "MIT" ]
permissive
fredryce/stocker
fbe643d3406fbf63af6a13562afd8822e65e244a
041fbe8348f7a035a607a214477cf423c4259171
refs/heads/main
2023-07-12T20:00:54.328703
2021-08-03T22:13:33
2021-08-03T22:13:33
392,459,545
0
0
null
null
null
null
UTF-8
Python
false
false
5,964
py
import spacy import sqlite3 import pandas as pd import json import robin_stocks as r import yfinance as yf import re, string from os import makedirs, getcwd, path import threading from datetime import datetime, timedelta #for the user, associate the user with the most recent stock he/she disccussed about #we can use the basic youtube trading algo for long term invtestment #use kelly formula, based the percentage on the faith of the discord chat #https://www.youtube.com/watch?v=Hi-zhLgP_TQ&ab_channel=%E5%BC%82%E7%95%8C%E7%95%AA%E8%8C%84%E8%AF%B4%E7%BE%8E%E8%82%A1 #https://www.youtube.com/watch?v=FZ9Kf1xfA40&ab_channel=%E5%BC%82%E7%95%8C%E7%95%AA%E8%8C%84%E8%AF%B4%E7%BE%8E%E8%82%A1 #theory of large numbers maybe each user in discord's call is following a prob distribution ''' high cred: first to call out stock shortest duration highest gain low number of people call out the same stock #returns prob of wining vs prob of losing and the amount to win and lose maxmize profit pass in kelly for each investment interval #the formula should mimic the behavior of a sigmoid function where x is the result from the parameters and y is the cred score #\frac{6}{\frac{1}{6}+e^{-x}\ } low: ''' # import logging class VideoModel(object): #uses youtube model with kelly and discord chat faith determination def __init__(self): pass def kelly_formula(self): pass #this user can be removed each user its own table with #this allows to see which user have more influence on the stock market price is more accurate class NLPstock(object): def __init__(self, db_name="stocks.db"): self.nlp = spacy.load("en_core_web_sm") self.db_name = db_name self._current_time = datetime.now() self._date = self.current_time.date() @property def current_time(self): return self._current_time @current_time.setter def current_time(self, ct): #self.start_hours = ct.replace(hour=9, minute=30, second=0, microsecond=0) #self.end_hours = ct.replace(hour=16, minute=00, second=0, microsecond=0) if (ct.hour >= 5) and (ct.hour < 14): self._date = (ct + timedelta(days=-1)).date() logging.info(f"setting time.. current hour is {ct.hour}, {self._date} ") self._current_time = ct def update_stock_table(self, stock_tk, message, c): c.execute("SELECT * FROM %s WHERE today = ?" % (stock_tk), (str(self._date),)) rows = c.fetchall() logging.info(f"try to fetch for {str(self._date)} stock is {stock_tk} result {rows}") if rows: c.execute("UPDATE %s SET today_count = today_count + 1 WHERE today = ?" % (stock_tk), (str(self._date),)) logging.info(f"find existing {str(self._date)} for stock {stock_tk}") else: #first time of the day c.execute('INSERT INTO %s VALUES (?,?,?,?,?)'% (stock_tk), ( self._date, 0, None, message['author']['id'], message['timestamp'] )) logging.info(f"NO existing {str(self._date)} for stock {stock_tk} creating..... ") def insert_stock(self, stock_tk, tk_value, message): logging.info(f"inserting stock {stock_tk}.......") dbdir = path.join(getcwd(), 'data') if not path.exists(dbdir): makedirs(dbdir) dbfile = path.join(dbdir, self.db_name) db = sqlite3.connect(dbfile) c = db.cursor() c.execute('''CREATE TABLE IF NOT EXISTS stocks ( ticker TEXT NOT NULL PRIMARY KEY, name TEXT, count INTEGER, call_user TEXT, call_price REAL, call_time TEXT )''') c.execute('INSERT INTO %s VALUES (?,?,?,?,?,?)'% ("stocks"), ( stock_tk, tk_value.info['longName'], 0, message['author']['id'], tk_value.history('1d')['Close'][0], message['timestamp'] )) #when the stock is already made sure to be true c.execute('''CREATE TABLE IF NOT EXISTS %s ( today TEXT NOT NULL PRIMARY KEY, today_count INTEGER, top_user TEXT, first_call TEXT, call_time TEXT )''' %(stock_tk)) self.update_stock_table(stock_tk, message, c) logging.info(f"{stock_tk} Insert Sucess") db.commit() db.close() def stock_in_table(self, stock_tk, message): logging.info(f"Finding stock {stock_tk} in tab") dbdir = path.join(getcwd(), 'data') if not path.exists(dbdir): makedirs(dbdir) dbfile = path.join(dbdir, self.db_name) db = sqlite3.connect(dbfile) c = db.cursor() c.execute('''CREATE TABLE IF NOT EXISTS stocks ( ticker TEXT NOT NULL PRIMARY KEY, name TEXT, count INTEGER, call_user TEXT, call_price REAL, call_time TEXT )''') c.execute("SELECT * FROM stocks WHERE ticker = ?", (stock_tk,)) rows = c.fetchall() if rows: c.execute("UPDATE stocks SET count = count + 1 WHERE ticker = ?", (stock_tk,)) self.update_stock_table(stock_tk, message, c) db.commit() db.close() return True else: db.close() return False def get_stocks(self, message): string_value = message['content'] self.doc = self.nlp(string_value) stock_list = [x.text for x in self.doc.ents if x.label_ == "ORG"] stock_list += re.findall("[A-Z]{2,}", string_value) stock_list = set(stock_list) stock_string = [] for stock in stock_list: processed_stock = self.process_org(stock, message) if processed_stock: stock_string.append(processed_stock) return stock_string def process_org(self, stock, message):#for processing the org into a ticker stock =stock.strip() stock = " ".join(re.findall("[a-zA-Z]+", stock)) if (len(stock) > 4) or (len(stock) < 2): #print(f"Failed: {stock}") pass else: try: if self.stock_in_table(stock, message): logging.info(f"{stock} already in table") return stock tk = yf.Ticker(stock) #t = threading.Thread() self.insert_stock(stock, tk, message) return stock except KeyError: logging.info(f"Yahoo cant find {stock}") except Exception as e: logging.info(f'Weird stock bugg {stock}') #this means either it contains the $ or its not a stock we are looking for if __name__ == "__main__": pass
1e3299112d0d4a422e71d7d55d2a4869b4e74dc6
917e376668f325c0452fe05fcf3f6348a6ac4336
/tests/xla_interpreter_test.py
d3b758aa0cb0e09d3959f3ad74c8e0192d75cc0a
[ "Apache-2.0" ]
permissive
wusixer/jax
5f8d78a89679db74d0d62806725cc820246d4b4e
66de981e1dfbe04a41b2c003f171fea7bb92585f
refs/heads/main
2023-06-15T09:10:45.599555
2021-07-06T01:58:11
2021-07-06T01:58:11
383,305,925
0
0
NOASSERTION
2021-07-06T01:32:55
2021-07-06T01:32:55
null
UTF-8
Python
false
false
1,252
py
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from absl.testing import absltest from jax import test_util as jtu from jax._src import api from jax.interpreters import xla class XlaInterpreterTest(jtu.JaxTestCase): @unittest.skipIf(not xla._ALLOW_ARG_PRUNING, "Test requires jaxlib 0.1.66") def test_prune_jit_args(self): def f(*args): return args[0] closed_jaxpr = api.make_jaxpr(f)(*range(10)) pruned_jaxpr, kept_const_idx, kept_var_idx = xla._prune_unused_inputs( closed_jaxpr.jaxpr) assert len(pruned_jaxpr.invars) == 1 assert kept_const_idx == set() assert kept_var_idx == {0} if __name__ == '__main__': absltest.main(testLoader=jtu.JaxTestLoader())
6f47ad10c4d8add20d063805aae912c0a742a686
9e988c0dfbea15cd23a3de860cb0c88c3dcdbd97
/sdBs/AllRun/bd_-11162/sdB_bd_-11162_lc.py
b076fadab2c00cc4cf60f263d06b3a4df11907ba
[]
no_license
tboudreaux/SummerSTScICode
73b2e5839b10c0bf733808f4316d34be91c5a3bd
4dd1ffbb09e0a599257d21872f9d62b5420028b0
refs/heads/master
2021-01-20T18:07:44.723496
2016-08-08T16:49:53
2016-08-08T16:49:53
65,221,159
0
0
null
null
null
null
UTF-8
Python
false
false
341
py
from gPhoton.gAperture import gAperture def main(): gAperture(band="NUV", skypos=[13.062792,-10.662778], stepsz=30., csvfile="/data2/fleming/GPHOTON_OUTPU/LIGHTCURVES/sdBs/sdB_bd_-11162/sdB_bd_-11162_lc.csv", maxgap=1000., overwrite=True, radius=0.00555556, annulus=[0.005972227,0.0103888972], verbose=3) if __name__ == "__main__": main()
90040b20dd66779595a0aa99340b7c09f6b8acaf
235da299e64f217d5fc581bbe20d2020b989ea45
/server/api/mongo/mongo.py
5c31178c466ab317e207089a97118722ec687a55
[]
no_license
DAWZayas-Projects/CORTINA-GUDE-JACOBO
5f902c225e3bf78ba74758abe1c92168bca5b561
10c9cfd10fbbdade3a2c048c985aa289b1aa826f
refs/heads/master
2021-01-12T01:40:13.236300
2017-06-19T19:38:36
2017-06-19T19:38:36
78,414,986
0
1
null
null
null
null
UTF-8
Python
false
false
215
py
from pymongo import MongoClient try: client = MongoClient() db = client.AIPowerDB print ("Connected successfully!!!") except Exception as ex: print ("Could not connect to MongoDB: %s" % ex) client
d67eb25ac2e4909f2eeb6a8ba705f13acca87cad
9ce6a0eaba9f82d536ca4348a1594f90f5d67638
/zException.py
33d0d6ef5a48bf8d56b71c83d909615745a662ae
[]
no_license
Jeevankv/LearnPython
028d57ac7b6b68d129e9769541ae509df8ef204d
504b96795b6ccd107f0b176adc142246f9a26094
refs/heads/master
2022-12-21T15:53:27.669206
2020-09-01T10:36:38
2020-09-01T10:36:38
279,399,567
0
0
null
null
null
null
UTF-8
Python
false
false
236
py
#Exception Handling a=int(input("Enter A\n")) b=int(input("Enter B\n")) def Divide(a,b): try: c=a/b return c except Exception as e: print(e) x = Divide(a, b) print(x)
8432bf99fe707d484f269c98c4d0077f351f625e
e931efb116e93cc2b92b472a7cf37bbf7be0598f
/DB_project/manage.py
16f16eb5e9813dc12720e594bb6ee70b08668355
[]
no_license
ghazalb76/DB_project
f4a2dd38c5e2be4a1ac5335ca468f0f541b08f88
ac1edafffcc40f2779cbd0180534a22dc586d4f8
refs/heads/master
2021-01-04T20:23:18.186963
2020-02-15T16:25:09
2020-02-15T16:25:09
240,747,130
1
0
null
null
null
null
UTF-8
Python
false
false
630
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'DB_project.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
cfc2f2d584cba1ecced6cada0df5775d6baf7951
e8b23cacc1856e87319491200c2b24778fcd6699
/Blackjack/blackjack.py
1cfeddf18158a678cc2bc60cf68bcf08acc53d22
[]
no_license
ACNoonan/PythonMasterclass
69fa204fea1588458853172483b2b85075ac9829
479cfb4c1bc55e4c3480b214fa4028e0f1ed9f2a
refs/heads/master
2022-12-13T04:28:57.573020
2020-09-19T17:23:47
2020-09-19T17:23:47
263,746,150
0
0
null
null
null
null
UTF-8
Python
false
false
6,830
py
import random try: import tkinter except ImportError: # python 2 import Tkinter as tkinter player_hit_count = 0 def load_images(card_images): suits=['heart', 'club', 'diamond', 'spade'] face_cards = ['jack', 'queen', 'king'] if tkinter.TkVersion >= 8.6: extension = 'png' else: extension = 'ppm' # for each suit, retrieve the image for the cars for suit in suits: # first the number cards 1 to 10 for card in range(1, 11): name = 'cards/{}_{}.{}'.format(str(card), suit, extension) image = tkinter.PhotoImage(file=name) card_images.append((card, image,)) # then face cards for card in face_cards: name = 'cards/{}_{}.{}'.format(str(card), suit, extension) image = tkinter.PhotoImage(file=name) card_images.append((10, image,)) def _deal_card(frame): # pop the next cards off the top of the deck next_card = deck.pop(0) # and add it to the back of the pack deck.append(next_card) # add the image to a Label and display the label tkinter.Label(frame, image=next_card[1], relief='raised').pack(side='left') # return the card's face value return next_card def score_hand(hand): # Calculate the total score of all cards in the list # Only one ace can be 11, which changes to 1 if the hand goes bust score = 0 ace = False for next_card in hand: card_value = next_card[0] if card_value == 1 and not ace: card_value = 11 ace = True score += card_value # Check for ace at bust if score > 21 and ace: score -= 10 ace = False return score def deal_dealer(): global dealer_record global player_record dealer_score = score_hand(dealer_hand) while 0 < dealer_score < 17: dealer_hand.append(_deal_card(dealer_card_frame)) dealer_score = score_hand(dealer_hand) dealer_score_label.set(dealer_score) player_score = score_hand(player_hand) if player_score > 21: result_text.set('Dealer Wins!') dealer_record += 1 dealer_record_label.set(dealer_record) elif dealer_score > 21 or dealer_score < player_score: result_text.set('Player Wins!') player_record += 1 player_record_label.set(player_record) elif dealer_score > player_score: result_text.set('Dealer Wins!') dealer_record += 1 dealer_record_label.set(dealer_record) else: result_text.set('Draw!') def deal_player(): global player_record global dealer_record global player_hit_count player_hand.append(_deal_card(player_card_frame)) player_score = score_hand(player_hand) player_hit_count += 2 player_score_label.set(player_score) if player_score == 21 and player_hit_count == 2: result_text.set('Blackjack!') player_record += 1 player_record_label.set(player_record) elif player_score > 21: result_text.set('Dealer Wins!') dealer_record += 1 dealer_record_label.set(dealer_record) def initial_deal(): deal_player() dealer_hand.append(_deal_card(dealer_card_frame)) dealer_score_label.set(score_hand(dealer_hand)) deal_player() def new_game(): global dealer_card_frame global player_card_frame global dealer_hand global player_hand global player_hit_count # Create a new deck of cards and shuffle 'em deck = list(cards) random.shuffle(deck) # embedded frame to hold the card images dealer_card_frame.destroy() dealer_card_frame = tkinter.Frame(card_frame, background='green') dealer_card_frame.grid(row=0, column=1, sticky='ew', rowspan=2) player_card_frame.destroy() player_card_frame = tkinter.Frame(card_frame, background='green') player_card_frame.grid(row=2, column=1, sticky='ew', rowspan=2) result_text.set('') # Create the lists to store the dealer's & player's hands dealer_hand = [] player_hand = [] initial_deal() def play(): initial_deal() mainWindow.mainloop() # Instantiate screen and frames for the dealer and player mainWindow = tkinter.Tk() mainWindow.title('Black Jack') mainWindow.geometry('640x480') mainWindow.configure(background='green') result_text = tkinter.StringVar() result = tkinter.Label(mainWindow, textvariable=result_text) result.grid(row=0, column=0, columnspan=3) card_frame = tkinter.Frame(mainWindow, relief='sunken', borderwidth=1, background='green') card_frame.grid(row=1, column=0, sticky='ew', columnspan=3, rowspan=2) dealer_score_label = tkinter.IntVar() tkinter.Label(card_frame, text='Dealer', background='green', fg='white').grid(row=0, column=0) tkinter.Label(card_frame, textvariable=dealer_score_label, background='green', fg='white').grid(row=1, column=0) # embedded frame holds the dealer's card images dealer_card_frame = tkinter.Frame(card_frame, background='green') dealer_card_frame.grid(row=0, column=1, sticky='ew', rowspan=2) player_score_label = tkinter.IntVar() tkinter.Label(card_frame, text='Player', background='green', fg='white').grid(row=2, column=0) tkinter.Label(card_frame, textvariable=player_score_label, background='green', fg='white').grid(row=3, column=0) # embedded frame holds the player's card images player_card_frame = tkinter.Frame(card_frame, background='green') player_card_frame.grid(row=2, column=1, sticky='ew', rowspan=2) dealer_record_label = tkinter.IntVar() tkinter.Label(card_frame, text='Dealer Wins', background='green', fg='white').grid(row=0, column=4) tkinter.Label(card_frame, textvariable=dealer_record_label, background='green', fg='white').grid(row=1, column=4) player_record_label = tkinter.IntVar() tkinter.Label(card_frame, text='Player Wins', background='green', fg='white').grid(row=2, column=4) tkinter.Label(card_frame, textvariable=player_record_label, background='green', fg='white').grid(row=3, column=4) button_frame = tkinter.Frame(mainWindow) button_frame.grid(row=3, column=0, columnspan=2, sticky='w') dealer_button = tkinter.Button(button_frame, text='Dealer', command=deal_dealer) dealer_button.grid(row=0, column=0) player_button = tkinter.Button(button_frame, text='Player', command=deal_player) player_button.grid(row=0, column=1) new_game_button = tkinter.Button(button_frame, text='New Game', command=new_game) new_game_button.grid(row=0, column=2) # load cards cards = [] load_images(cards) print(cards) # Create a new deck of cards and shuffle 'em deck = list(cards) + list(cards) + list(cards) random.shuffle(deck) # Create the lists to store the dealer's & player's hands dealer_hand = [] player_hand = [] # Create win record dealer_record = 0 player_record = 0 if __name__ == '__main__': play()
2324633dffd51ed394a8b21d1ac6260a2f93d21b
598caea4a632c7fbf1598a341b192fe19329f5cc
/bi-gram/test-new.py
e6b18bf534aea2ca91c274d2e78d16ef4e51f2d9
[]
no_license
vijaym123/EECS-337-TweetAnalysis
c8917f6ab88413e9b9b67885e9d6d2db6b68cc09
3cba4c16b56832f2a91e81cc022c11ae3002622e
refs/heads/master
2020-05-22T14:34:28.410722
2014-02-25T19:10:13
2014-02-25T19:10:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,389
py
import re import json import nltk from nltk.corpus import wordnet as wn from collections import defaultdict import math from lxml import html import requests import sys import unicodedata year = raw_input("Golden Globes year: ") pagename = "http://www.goldenglobes.com/awards/" + year print "\n" page = requests.get(pagename) tree = html.fromstring(page.text) winners = tree.xpath('//div[@class="views-field views-field-nominee-name gold"]/text()') noms = tree.xpath('//div[@class="views-field views-field-nominee-name grey"]/text()') nominees = [] for z in winners: nominees.append(z.replace("-"," ")) for z in noms: z = z.replace(u"\xe9","e") nominees.append(z) def levenshtein(s1, s2): if len(s1) < len(s2): return levenshtein(s2, s1) # len(s1) >= len(s2) if len(s2) == 0: return len(s1) previous_row = xrange(len(s2) + 1) for i, c1 in enumerate(s1): current_row = [i + 1] for j, c2 in enumerate(s2): insertions = previous_row[j + 1] + 1 # j+1 instead of j since previous_row and current_row are one character longer deletions = current_row[j] + 1 # than s2 substitutions = previous_row[j] + (c1 != c2) current_row.append(min(insertions, deletions, substitutions)) previous_row = current_row return previous_row[-1] def issubstr(substr, mystr, start_index=0): try: for letter in substr: start_index = mystr.index(letter, start_index) + 1 return True except: return False def bigrams(words): wprev = None for w in words: if wprev!=None and w != "golden" and w != "Golden" and w != "globe" and w != "Globe" and w != "globes" and w != "Globes" and w != "goldenglobes": yield (wprev, w) wprev = w def getFreqDistribution(filename,freqDict): f = open(filename,'r') base = defaultdict(int) count = 0 for line in f: count += 1 tweet = json.loads(line) for word in tweet: base[word]+=1 #print count for word in freqDict: #print len(freqDict.keys())-1/base[word] freqDict[word]=math.log10(freqDict[word])*1.0*math.log10(len(freqDict.keys())-1/base[word]) return freqDict def buildHistogram(filename,tags): f = open(filename,'r') freqDict = defaultdict(int) #print filename,tags #porter = nltk.PorterStemmer() for line in f: tweet = json.loads(line) if len(tweet)>=2 and all(any(e in word for word in tweet) for e in tags): #print tweet bigramList = bigrams(tweet) for i in bigramList: freqDict[i[0]+" "+i[1]] += 1 return freqDict def getAnswer(filename,tags): freqDict = buildHistogram(filename,tags) freqList = sorted([(freqDict[key],key) for key in freqDict],reverse=True) return freqList def filterResults(result,tags): newResult = [] for i in result: if i[1].split(" ")[0] in tags or i[1].split(" ")[1] in tags: continue newResult.append(i) return newResult def getName(theWinner): minimum = 99 best = None for i in nominees: if issubstr(theWinner.lower(), i.lower()): temp = levenshtein(i.lower(),theWinner.lower()) if temp < minimum: best = i minimum = temp if best == None: firstWinner = theWinner.split()[0] for i in nominees: if issubstr(firstWinner.lower(), i.lower()): temp = levenshtein(i.lower(),firstWinner.lower()) if temp < minimum: best = i minimum = temp firstWinner = theWinner.split()[1] for i in nominees: if issubstr(firstWinner.lower(), i.lower()): temp = levenshtein(i.lower(),firstWinner.lower()) if temp < minimum: best = i minimum = temp if best == None: return theWinner return best def guessWinner(results): return getName(results[0][1].encode('ascii', 'ignore')) def guessSecond(results): return getName(results[3][1].encode('ascii', 'ignore')) def guessNoms(results): print "Nominees might be: " print getName(results[1][1].encode('ascii', 'ignore')) print getName(results[2][1].encode('ascii', 'ignore')) print getName(results[3][1].encode('ascii', 'ignore')) print getName(results[4][1].encode('ascii', 'ignore')) return None if __name__ == "__main__": filename = "goldenglobes-processedTweets.json" question = "best picture drama" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nBest Picture - Drama: " temp = guessWinner(results) print temp print guessNoms(results) question = "present best picture drama " + temp.lower() porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nPresenter for Best Picture - Drama: " print results[0][1].encode('ascii', 'ignore') question = "best actor drama" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nBest Actor - Drama: " temp = guessWinner(results) print temp print guessNoms(results) question = "presents present best actor" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nPresenter for Best Actor - Drama: " print guessWinner(results) question = "best actress drama" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nBest Actress - Drama: " temp = guessWinner(results) print temp print guessNoms(results) question = "presents present " + temp.lower() porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nPresenter for Best Actress - Drama: " print guessWinner(results) # Fix # No presenter question = "best picture comedy musical" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nBest Picture - Comedy or Musical: " print guessWinner(results) print guessNoms(results) question = "best actor comedy" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nBest Actor - Comedy or Musical: " temp = guessWinner(results) print temp print guessNoms(results) question = "presents presenter best actress comedy musical" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nPresenter for Best Actor - Comedy or Musical: " print results[0][1].encode('ascii', 'ignore') question = "best actress comedy" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nBest Actress - Comedy or Musical: " print guessWinner(results) print guessNoms(results) question = "presents presenter best actress comedy musical" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nPresenter for Best Actress - Comedy or Musical: " print guessWinner(results) question = "best supporting actor" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nBest Supporting Actor: " temp = guessWinner(results) print temp print guessNoms(results) question = "presents presenter best supporting actor" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nPresenter for Best Supporting Actor: " print guessWinner(results) # No presenter question = "best supporting actress" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nBest Supporting Actress: " temp = guessWinner(results) print temp print guessNoms(results) question = "best director" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nBest Director: " print guessWinner(results) print guessNoms(results) question = "presents presenter best director" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nPresenter for Best Director: " print guessWinner(results) question = "best screenplay" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nBest Screenplay: " print guessWinner(results) print guessNoms(results) question = "presents present screenplay" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nPresenter for Best Screenplay: " print guessWinner(results) # No presenter question = "best original song" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nBest Original Song: " temp = guessWinner(results) print temp print guessNoms(results) # No presenter question = "best actor television series drama" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nBest Actor in a Television Series - Drama: " temp = guessWinner(results) print temp print guessNoms(results) # No presenter question = "best actress television series drama" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nBest Actress in a Television Series - Drama: " print guessWinner(results) print guessNoms(results) # No presenter question = "best actor television series comedy" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nBest Actor in a Television Series - Comedy: " print guessWinner(results) print guessNoms(results) # No presenter question = "best actress performance comedy series" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nBest Actress in a Television Series - Comedy: " print guessWinner(results) print guessNoms(results) # No presenter question = "best actor miniseries" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nBest Actor - Miniseries or Television Film: " temp = guessWinner(results) print temp print guessNoms(results) # No presenter question = "best actress miniseries motion picture television" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nBest Actress - Miniseries or Television Film: " temp = guessWinner(results) print temp print guessNoms(results) # No presenter question = "best supporting actor miniseries motion picture" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nBest Supporting Actor - Miniseries or Television Film: " temp = guessWinner(results) print temp print guessNoms(results) # No presenter question = "best supporting actress miniseries" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:20],tags) print "\nBest Supporting Actress - Miniseries or Television Film: " temp = guessWinner(results) print temp print guessNoms(results) question = "host hosts" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:40],tags) print "\nHosts: " print guessWinner(results) print guessSecond(results) question = "best dress" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:40],tags) print "\nBest Dress: " print results[0][1].encode('ascii', 'ignore') question = "speech" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:40],tags) print "\nNoteworthy Speech: " print guessWinner(results) question = "awesome" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:40],tags) print "\nPeople Thought He/She Was Awesome: " print results[0][1].encode('ascii', 'ignore') question = "hated" porter = nltk.PorterStemmer() tags = [porter.stem(i) for i in question.split()] results = filterResults(getAnswer(filename,tags)[:40],tags) print "\nPeople Hated: " print guessWinner(results)
9df31fb3505037651d94f77ee635edd5db359530
710c6104124e57f778701291d573e746bbc559f3
/teambuildingapp/env/bin/virtualenv
a574068755fad926eb2cb1903956c89cd0f2fa64
[]
no_license
ckjoon/teambuilding
711791952828529ac4c5a44d23a883ae66680836
ee49e95e1cd56f4e7d8efbb46ab1c38b200c08a6
refs/heads/master
2020-04-09T13:33:33.205704
2016-12-04T20:20:25
2016-12-04T20:20:25
68,007,148
2
0
null
2016-12-04T20:20:25
2016-09-12T12:31:40
HTML
UTF-8
Python
false
false
255
#!/Users/JChoi/teambuilding/teambuildingapp/env/bin/python3.4 # -*- coding: utf-8 -*- import re import sys from virtualenv import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
7f574f502fc6e92a306eb7d28de67fe32e7f5549
3e3038c14e081bb110a702bcd385b54cd41a6261
/879/879.py
f9e5434cbee5596262fbd6fb2addf7800dec5024
[]
no_license
michael153/leetcode
0f1535ae511f74fd60f479ed644c677de7ece1cb
4be3b0d6892028f6abff1e0ec9c05e0b1e721c0b
refs/heads/master
2020-07-04T09:09:12.192768
2019-08-13T23:35:57
2019-08-13T23:35:57
202,235,595
0
0
null
null
null
null
UTF-8
Python
false
false
878
py
class Solution(object): def profitableSchemes(self, G, P, group, profit): """ :type G: int :type P: int :type group: List[int] :type profit: List[int] :rtype: int """ mod = (10**9 + 7) dp = [[0 for __ in range(G + 1)] for ___ in range(P+1)] dp[0][0] = 1 for c in range(len(group)): freeze = [r[:] for r in dp] reqppl = group[c] prof = profit[c] for k in range(P + 1): for p in range(G - reqppl, -1, -1): b = min(k + prof, P) freeze[b][p + reqppl] += (dp[k][p] % mod) freeze[b][p + reqppl] %= mod dp = freeze ans = 0 for p in range(G + 1): ans += dp[P][p] ans %= mod return ans
304cf36358cb78ff18c9f2fa5b28c3e25c49d023
8b3426e770056ae7d3d946dc2dc324bbaab4391c
/collatz.py
0b9ac12199daace07475c0a719d631f4fefff323
[]
no_license
ctrl101/journey
9743896ca64cf2a2913823ffab4213b4e1988b5e
893f8ce08005c5e89f4b5ccba870f8b726ae21f8
refs/heads/master
2023-01-13T15:08:14.346450
2020-11-17T01:12:54
2020-11-17T01:12:54
313,557,148
0
0
null
null
null
null
UTF-8
Python
false
false
297
py
def collatz(number): if number % 2 == 0: print(number // 2) elif number % 2 == 1: print(number += 1) try: number = int(input("Enter number :")) while number > 1: collatz(number) number = number // 2 except: print("must be an interger")
71626b5ee0ccfe0ba075fb9842f193a99eeca3fa
030b801cb9bed35be80bb305d60c155f806513a5
/regex/regex.py
ef3129779cd88011001158299266d448c4056e85
[]
no_license
Yerkonite/py4e
67dea6f2843266cf789cc05ae1c9ed7f96614fae
dfaf2a8c4eaf0575762a810b79bb332128bbdef9
refs/heads/main
2023-01-03T17:29:40.070949
2020-11-02T11:29:22
2020-11-02T11:29:22
306,399,198
0
0
null
null
null
null
UTF-8
Python
false
false
403
py
# Search for lines that start with 'X' followed by any non # whitespace characters and ':' # followed by a space and any number. # The number can include a decimal. import re fname = input("Enter file:") hand = open(fname) y = [] for line in hand: line = line.rstrip() x = re.findall('[0-9]+', line) if len(x) > 0: y = y + x jiyn = 0 for z in y: jiyn = jiyn + int(z) print(jiyn)
ea844bd080f216727d29578c7e83e37d9e5000c6
e949a970f404a501d54ec0ea5cce6a9d8b0abc3e
/10chapter13某城市财政收入影响因素分析及预测模型(未完成)/code/chapter13Adaptive_Lasso变量选择模型.py
6df38f606feb93dbacdf4287cdd433851b38653b
[]
no_license
xuhande/Data-analysis-and-mine-using-python
3b20a25b9fc2d88e1e29d71b38a9a7589a92ff12
34a97afdc60a52d4ef72c5edf6f715182ddb57f7
refs/heads/master
2023-09-06T06:52:05.505839
2019-03-31T08:32:04
2019-03-31T08:32:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,106
py
"""模型参数 x1:社会从业人数; x2: 在岗职工工资总额;x3: 社会消费品零售总额; x4: 城镇居民人均可支配收入 x5: 城镇居民人均消费性支出;x6: 年末总人口;x7: 全社会固定资产投资额; x8: 地区生产总值 x9: 第一产业产值; x10: 税收; x11: 居民消费价格指数;x12: 第三产业与第二产业产值比 x13:居民消费水平;y: 财政收入 """ import pandas as pd from sklearn.linear_model import Lasso import numpy as np data = pd.read_csv('../../data2/C13_data1.csv') # print(data) model = Lasso(alpha=10, max_iter=10000) model.fit(data.iloc[:, :13], data['y']) print(model.coef_) # [-1.85085555e-04 -3.15519378e-01 4.32896206e-01 -3.15753523e-02 # 7.58007814e-02 4.03145358e-04 2.41255896e-01 -3.70482514e-02 # -2.55448330e+00 4.41363280e-01 5.69277642e+00 -0.00000000e+00 # -3.98946837e-02] result = pd.DataFrame({'特征': data.columns[:13], '系数': model.coef_}) result = result.set_index('特征') result = result.T print(result) # result.to_excel('../outputfiles/Apaptive_lasso变量选择模型系数表.xls')
4c1f5b0e0a57e6c3f61c17a248587224aafe2656
9910a1e38dc02abd0e0684b83601c950598aa179
/Bookmarks/models.py
c2045fe8ca931b508736934afbd17c660fd23bfc
[]
no_license
crispad/Bookmark-app
2197b8bc25b927f02a7c61512203759e82e7e34b
4430240799a0b67d7f196cf256b2a2a1676d9829
refs/heads/master
2020-03-21T14:18:07.095404
2018-06-27T07:33:36
2018-06-27T07:33:36
138,650,471
0
0
null
null
null
null
UTF-8
Python
false
false
542
py
from django.db import models from uuid import uuid4 from django.contrib.auth.models import User class Bookmark(models.Model): id = models.UUIDField(primary_key=True, default=uuid4, editable=False) title = models.CharField(max_length=200) url = models.URLField(unique=True) created_at = models.DateTimeField(auto_now_add=True) last_modified = models.DateTimeField(auto_now=True) category = models.CharField(max_length=20) class PersonalBookmark(Bookmark): user = models.ForeignKey(User, on_delete=models.CASCADE)
84d255ed685f170cc51fdbac351069866c092930
64740d39a04f00730ad078280ef30707bcba2129
/blog/migrations/0004_auto_20170210_1408.py
efc9de3c452c324f5d9cbcebedd10da9b56e16be
[ "MIT" ]
permissive
sighill/blog
1f4b4985146a7cf97ab186d23d8f14bd596e2c39
7ab126549398daf9dbf996a2ee9f96d7f3b44868
refs/heads/master
2021-01-13T17:12:00.540574
2017-02-20T13:18:58
2017-02-20T13:18:58
81,751,232
0
0
null
null
null
null
UTF-8
Python
false
false
1,559
py
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2017-02-10 13:08 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0003_auto_20170130_1440'), ] operations = [ migrations.CreateModel( name='Galery', fields=[ ('uid', models.AutoField(db_index=True, primary_key=True, serialize=False)), ('title', models.CharField(max_length=100)), ('legend', models.CharField(blank=True, max_length=500, null=True)), ], ), migrations.CreateModel( name='Image', fields=[ ('uid', models.AutoField(db_index=True, primary_key=True, serialize=False)), ('title', models.CharField(max_length=255)), ('thumbnail', models.CharField(blank=True, max_length=500, null=True)), ('full_img', models.CharField(blank=True, max_length=500, null=True)), ('external_link', models.CharField(blank=True, max_length=500, null=True)), ('legend', models.CharField(blank=True, max_length=500, null=True)), ], ), migrations.RenameModel( old_name='Media', new_name='Video', ), migrations.AddField( model_name='galery', name='img_content', field=models.ManyToManyField(blank=True, related_name='galery_content', to='blog.Image'), ), ]
5d7a771e779f0b24d4bc1ae2bf01ac98e9d0c325
9423dd5312d6c05f61ec902a26ff627c6ef58f97
/Python/functions/get_middle_point.py
6d5bb3a5c5f3d271d454c9c6da74dc57df5a617c
[]
no_license
NehvedovichVlad/small_tasks
01c093b07d521da59c559591559d61e81829df0f
1c4085e3a2f0a4530c82f57b98f0f83b18e68567
refs/heads/main
2023-03-17T15:49:04.480092
2021-03-11T20:29:05
2021-03-11T20:29:05
308,935,905
0
0
null
null
null
null
UTF-8
Python
false
false
1,013
py
"""" Середина отрезка Напишите функцию get_middle_point(x1, y1, x2, y2), которая принимает в качестве аргументов координаты концов отрезка (x_1; \, y_1)(x 1;y1) и (x_2; \, y_2)(x2;y2) и возвращает координаты точки являющейся серединой данного отрезка. """ # ------------------------------------------------------------------------------------------------- # 1)вариант def get_middle_point(x1, y1, x2, y2): return (x1+x2)/2, (y1+y2)/2 x_1, y_1 = int(input()), int(input()) x_2, y_2 = int(input()), int(input()) x, y = get_middle_point(x_1, y_1, x_2, y_2) print(x, y) # ------------------------------------------------------------------------------------------------- # 2)вариант def get_middle_point(x1, y1, x2, y2): return (x1 + x2) / 2, (y1 + y2) / 2 print(*get_middle_point(int(input()), int(input()), int(input()), int(input())))
a092eb7078a59ea3dcfd2d364d4380b098066ba6
c6da89d2af85263fe73cdaa74735c95deae3e951
/not_used/mod_fair_stochastic_dominance.py
cf2721fadb06eef2fc9fb44c976063a54ae0e97e
[]
no_license
antonm94/Fairness_in_Bandits
7489fb97f94c1b2116756ab76f1ac705687e088d
f37960efd1ef84e5d21f9c402393851f6c050305
refs/heads/master
2021-09-10T21:48:21.001625
2018-04-02T21:46:39
2018-04-02T21:46:39
106,277,769
0
0
null
null
null
null
UTF-8
Python
false
false
7,165
py
import random import numpy as np from thompson_sampling.calc_c import c_alg2 from fairness_calc import smooth_fairness class ModFairStochasticDominance(object): def __init__(self, bandits, T, e1, e2, delta, lam, distance): self.k = bandits.k self.arm = bandits.arms self.r_theta = bandits.theta self.T = T self.e1 = e1 self.e2 = e2 self.delta = delta self.lam = lam self.distance = distance self.s = np.full(self.k, .5) self.f = np.full(self.k, .5) self.not_smooth_fair = np.zeros(self.T) self.smooth_fair = np.zeros(self.T) self.fairness_regret = np.zeros(self.T) self.theta = np.zeros((self.T, self.k)) self.n = np.zeros((self.T, self.k)) self.pi = np.zeros((self.T,self.k)) self.p_star = [float(i) / sum(self.r_theta) for i in self.r_theta] self.rounds_exploring = 0 self.rounds_exploiting = 0 self.average_smooth_fair = np.zeros((len(e1), len(e2), len(delta), self.T, )) self.average_not_smooth_fair = np.zeros((len(e1), len(e2), len(delta), self.T, )) self.average_fair_ratio = np.zeros((len(e1), len(e2), len(delta), self.T)) self.average_fairness_regret = np.zeros((len(e2), len(delta), T)) self.regret = np.zeros((len(e2),len(delta), T)) self.average_n = np.zeros((len(e2), len(delta), self.T, self.k)) if lam == 0.: self.name = 'Thompson Sampling' elif lam == 1.: self.name = 'Fair Stochastic Dominance Thompson Sampling' else: self.name = 'Thompson Sampling - Fair Stochastic Dominance Thompson Sampling trade-off' \ ' with Lambda = {}'.format(self.lam) def reset(self): self.s = np.full(self.k, .5) self.f = np.full(self.k, .5) self.not_smooth_fair = np.zeros(self.T) self.smooth_fair = np.zeros(self.T) self.fairness_regret = np.zeros(self.T) self.n = np.zeros((self.T, self.k)) self.rounds_exploring = 0 self.rounds_exploiting = 0 def update_smooth_fairness(self, e1, e2): for t in range(self.T): [self.not_smooth_fair[t], self.smooth_fair[t]] = smooth_fairness(e1, e2, self.theta[t], self.r_theta, self.distance) def update_fairness_regret(self): for t in range(self.T): # print self.pi[t] # print self.p_star self.fairness_regret[t] = sum([max(self.p_star[i] - self.pi[t][i], 0.) for i in range(self.k)]) def get_not_fair_ratio(self): return np.divide(self.average_not_smooth_fair, self.average_not_smooth_fair + self.average_smooth_fair) def get_fair_ratio(self): return np.divide(self.average_smooth_fair, self.average_not_smooth_fair + self.average_smooth_fair) def get_rounds(self): return self.rounds_exploring, self.rounds_exploiting def get_regret(self, n_average): distance_to_max = max(self.r_theta) - self.r_theta for j in range(len(self.e2)): for d in range(len(self.delta)): self.regret[j][d] = np.apply_along_axis(lambda x: sum(x * distance_to_max), 1, n_average[j][d]) def run(self, e2, delta): for t in range(self.T): b = np.random.binomial(1, [self.lam])[0] if b == 1: # O(t)={i:n_j,i(t) <=C(e2,delta)} if t > 0: self.n[t] = self.n[t - 1] o = set() for i in range(self.k): if self.n[t, i] <= c_alg2(e2, delta, self.r_theta, i, self.k): o.add(i) if len(o) == 0: # exploition self.rounds_exploiting = self.rounds_exploiting + 1 self.theta[t] = np.random.beta(self.s, self.f, self.k) # guessed bernoulli reward for each arm guessed_r = np.random.binomial(1, self.theta[t]) # selected arm with random tie - breaking a = np.random.choice(np.where(guessed_r == guessed_r.max())[0]) self.pi[t] = self.theta[t] / sum(self.theta[t]) else: # exploration self.rounds_exploring = self.rounds_exploring + 1 self.theta[t] = np.full(self.k, .5) a = np.random.choice(o) for i in o: self.pi[t][i] = 1./len(o) print pi[t] else: self.theta[t] = np.random.beta(self.s, self.f, self.k) max_theta = np.where(self.theta[t] == self.theta[t].max())[0] a = np.random.choice(max_theta) for i in range(self.k): if i in max_theta: self.pi[t][i] = 1. / len(max_theta) else: self.pi[t][i] = 0. # real bernoulli reward for each arm reward = random.choice(self.arm[a]) if reward: self.s[a] = self.s[a] + 1 else: self.f[a] = self.f[a] + 1 if t > 0: self.n[t] = self.n[t - 1] self.n[t][a] = self.n[t][a] + 1 print 'Rounds Exploring: {}'.format(self.rounds_exploring) print 'Rounds Exploiting: {}'.format(self.rounds_exploiting) def analyse(self, n_iterations): for it in range(int(n_iterations)): for j in range(len(self.e2)): for d in range(len(self.delta)): self.run(self.e2[j], self.delta[d]) self.update_fairness_regret() self.average_fairness_regret[j][d] = self.average_fairness_regret[j][d] + np.add.accumulate( self.fairness_regret) self.average_n[j][d] = self.average_n[j][d] + self.n for i in range(len(self.e1)): self.update_smooth_fairness(self.e1[i], self.e2[j]) self.average_smooth_fair[i][j][d] = self.average_smooth_fair[i][j][d] + np.add.accumulate(self.smooth_fair) self.average_not_smooth_fair[i][j][d] = self.average_not_smooth_fair[i][j][d] + np.add.accumulate(self.not_smooth_fair) self.reset() self.average_n = np.divide(self.average_n, n_iterations) self.get_regret(self.average_n) self.average_fairness_regret = np.divide(self.average_fairness_regret, n_iterations) self.average_smooth_fair = np.divide(self.average_smooth_fair, n_iterations) self.average_not_smooth_fair = np.divide(self.average_not_smooth_fair, n_iterations) for i in range(len(self.e1)): for j in range(len(self.e2)): self.average_fair_ratio[i][j] = np.divide(self.average_smooth_fair[i][j], self.average_not_smooth_fair[i][j] + self.average_smooth_fair[i][j])
2b2276e3dd8f08b1dbd9b020b05b911e0447b425
ec2a196f582effd10d1f1c80a99748597371294b
/2018/cyb_notify/models/model.py
21736203da773772afb38cd45f7f15213c62d7fc
[]
no_license
baiqianyi/starfish
71bffd4f2718a7b50c4ff7e6d66afd18dbccff4c
89e63a0dc06f4cb73b87fae44206cda275f12fbd
refs/heads/master
2020-03-25T13:48:10.978468
2018-08-26T00:27:48
2018-08-26T00:27:48
143,843,514
2
0
null
null
null
null
UTF-8
Python
false
false
6,878
py
import datetime import utils.email_notify as en import pymysql class model: def __init__(self,log=None): self.logger = log self.begin_delta_time = datetime.timedelta(seconds=360) self.std_buy = -0.826 self.std_sell = 0.37 # 0.34453064057819965, -0.58066720314595333 self.amEnd = datetime.datetime.combine(datetime.datetime.now().date(), datetime.time(hour=11, minute=30, second=30)) self.pmBegin = datetime.datetime.combine(datetime.datetime.now().date(), datetime.time(hour=13, minute=0, second=0)) self.last_report_time = None self.tmp_six_indst = None self.max_diff = 0 self.min_diff = 0 self.diff_change_0_time = 0 self.base_change_0_time = 0 self.base_factor = 0 self.tmp_diff = 0 self.base = 0 self.max_diff_time = None self.min_diff_time = None self.analysis_cursor = pymysql.connect(host='127.0.0.1', port=3306, user='root', password='1111', db='analysis') self.diff_list = [] #1为500,2为50,3为不做操作,0为空仓 # 0.38850739380403643, -0.3196062508549381, 0.18273999548929595, 0.25591966139562783 #0.3885, -0.31960, 0.18274, 0.256 def position(self,six_indst = 0.2,cyb_real=None, sz50_real=None,cyb_b=0.73,sz50_b=0.73,cyb_industry=0.0): if self.tmp_six_indst != six_indst: sz50_diff = sz50_real - six_indst + sz50_b self.tmp_six_indst = six_indst # cyb_six_industry = 0.256 * cyb_real - (1-0.183)*six_indst + cyb_b + 0.183*cyb_industry#- cyb_b2 # 0.37, -0.826, 0.266 cyb_diff = 0.266 * cyb_real + (- six_indst + cyb_b)# + 0.2415 * cyb_industry # base_cyb_diff = self.base_diff(cyb_diff) self.diff_list.append(cyb_diff) if len(self.diff_list) > 10: del self.diff_list[0] cyb_diff = self.weight_mean(self.diff_list) self.store_analysis(cyb_real, cyb_industry, 0, six_indst, cyb_b) self.store_m(cyb_diff) sell_notify = False buy_notify = False msg = "" if cyb_diff > self.std_sell: sell_notify = True if cyb_diff < self.std_buy: buy_notify = True if sell_notify: msg = " <font color=\"red\">sell_point_time : "+datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')+"</font>" en.email_notify(title="sell notify", msg=msg) import time time.sleep(30) if buy_notify: msg = " <font size=\"5\" face=\"verdana\" color=\"red\">buy_point_time : " + datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') + "</font>" en.email_notify(title="buy notify", msg=msg) import time time.sleep(30) msg = msg + "vmware <br> cyb_diff : " + str(cyb_diff) + "<br> cyb_min_diff : " + str(self.min_diff) +" , cyb_min_diff_time : " + str(self.min_diff_time) +"<br> cyb_max_diff : " + str(self.max_diff) +" , cyb_max_diff_time : " + str(self.max_diff_time) +"<br> cyb_std_sell : " + str(self.std_sell) +"<br> cyb_std_buy : " + str(self.std_buy)+" <br> cyb_industry : " + str(cyb_industry) + "<br> six_indst : "+str(six_indst)+"<br> six_i : " + str(six_indst) + "<br> a50_diff : " + str(sz50_diff) + " <br> sz50_real : " + str(sz50_real) + "<br> cyb_real : " + str(cyb_real) + "<br> cyb_b : " + str(cyb_b) + "<br> sz50_b : " + str(sz50_b) if (self.last_report_time == None or self.last_report_time + datetime.timedelta(seconds=300) < datetime.datetime.now()) and datetime.datetime.now() > datetime.datetime.combine(datetime.datetime.now().date(), datetime.time(hour=9, minute=36, second=0)): self.last_report_time = datetime.datetime.now() en.email_notify(title="5 minutes notify",msg=msg) self.logger.info(msg) def weight_mean(self,list, mean_num=5): mean = 0.0 t_list = [] if len(list) > mean_num: t_list = list[-1 * mean_num:] else: t_list = list if len(t_list) > 0: i_sum = 0 for i in range(len(t_list)): i_sum = i_sum + i + 1 for i in range(len(t_list)): mean = mean + float(i + 1) / float(i_sum) * t_list[i] else: return 0 return mean def var(self,list): if len(list) > 50: mean = 0 vs = 0 for l in list: vs = vs + (l-mean)**2 re = (vs/float(len(list)))**0.5 return re else: return 1 def store_m(self,cyb_diff): if self.max_diff < cyb_diff: self.max_diff = cyb_diff self.max_diff_time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') if self.min_diff > cyb_diff: self.min_diff = cyb_diff self.min_diff_time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') def base_diff(self,diff): self.base_factor = self.base_factor + diff now = datetime.datetime.now() if now > datetime.datetime.combine(now.date(),datetime.time(hour=9,minute=40,second=0)): if self.tmp_diff * diff < 0: self.diff_change_0_time = self.diff_change_0_time + 1 if diff * self.base_factor < 0: self.base_change_0_time = self.base_change_0_time + 1 self.tmp_diff = diff return 0 if self.base_change_0_time > 0 and diff * self.base_factor > 0 and self.base == 0: self.base = diff/2.0 else: return diff self.tmp_diff = diff if diff * self.base_factor > 0: return diff - self.base else : return 0 def store_analysis(self,cyb,cyb_industry_diff, cyb_six_industry_diff,six_indst,cyb_b): try: sql = "replace into analysis_data (datetime, cyb,cyb_industry_diff, cyb_six_industry_diff,six_indst,cyb_b) VALUES (%s,%s,%s,%s,%s,%s);" self.analysis_cursor.cursor().execute(sql,(datetime.datetime.now(), cyb,cyb_industry_diff, cyb_six_industry_diff,six_indst,cyb_b)) self.analysis_cursor.commit() except Exception as e: # 发生错误时回滚 print(e) self.analysis_cursor.rollback() if __name__ == "__main__": m = model() print(m.base_diff(-1)) print(m.base_diff(-1)) m.position(six_indst=-1,cyb_real=1,sz50_real=-1,cyb_b=0.7,sz50_b = 0.6,cyb_industry=1) m.position(six_indst=-1.1, cyb_real=1, sz50_real=-1, cyb_b=0.7, sz50_b=0.6, cyb_industry=1) m.position(six_indst=-1, cyb_real=1, sz50_real=-1, cyb_b=0.7, sz50_b=0.6, cyb_industry=1)
acce8e1a21ccf28ffadc38b8002f50cdbcf6987b
afdda9b5185826747814dd82fdf74f809cfa62ef
/Python/tdw/librarian.py
ce2301ec287ecfd7eebbf45a81bb85c00ca3ed8d
[ "BSD-2-Clause" ]
permissive
lijin929/tdw
e011b831c650a383a22e7e16d934c7940416fcd0
957cff2b400fbd24e31bbae886c307ecb7a74cdb
refs/heads/master
2023-08-14T22:35:29.172322
2021-09-14T13:52:30
2021-09-14T13:52:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,269
py
import json from typing import List, Dict, TypeVar, Union, Generic, Optional, Tuple import pkg_resources from pathlib import Path import platform from secrets import token_hex class _Record: """ Abstract class for a metadata record. """ _PLATFORM = platform.system() def __init__(self, data: Optional[dict] = None): """ :param data: JSON data for the record. If None, the record will initialize with default values. """ if data is None: self.name: str = "" self.urls: Dict[str, str] = {"Windows": "", "Darwin": "", "Linux": ""} else: self.name = data["name"] self.urls: Dict[str, str] = data["urls"] def get_url(self) -> str: """ Returns the URL of the asset bundle for this platform. This is a wrapper for record.urls. """ return self.urls[_Record._PLATFORM] def get_serializable(self) -> dict: """ Returns the serializable dictionary of this record. """ return self.__dict__ class ModelRecord(_Record): """ A record of a model asset bundle. """ def __init__(self, data: Optional[dict] = None): super().__init__(data) if data is None: self.wnid: str = "" self.wcategory: str = "" self.scale_factor: float = 1 self.do_not_use: bool = False self.do_not_use_reason: str = "" self.flex: bool = False self.substructure: List[dict] = [] self.bounds: Dict[str, Dict[str, float]] = {"back": {"x": 0, "y": 0, "z": 0}, "bottom": {"x": 0, "y": 0, "z": 0}, "center": {"x": 0, "y": 0, "z": 0}, "front": {"x": 0, "y": 0, "z": 0}, "left": {"x": 0, "y": 0, "z": 0}, "right": {"x": 0, "y": 0, "z": 0}, "top": {"x": 0, "y": 0, "z": 0}} self.canonical_rotation: Dict[str, float] = {"x": 0, "y": 0, "z": 0} self.physics_quality: float = -1 self.asset_bundle_sizes: Dict[str, int] = {"Windows": -1, "Darwin": -1, "Linux": -1} self.composite_object = False else: self.wnid: str = data["wnid"] self.wcategory: str = data["wcategory"] self.scale_factor: float = data["scale_factor"] self.do_not_use: bool = data["do_not_use"] self.do_not_use_reason: str = data["do_not_use_reason"] self.flex: bool = data["flex"] self.substructure: List[dict] = data["substructure"] self.bounds: Dict[str, Dict[str, float]] = data["bounds"] self.canonical_rotation: Dict[str, float] = data["canonical_rotation"] self.physics_quality: float = data["physics_quality"] self.asset_bundle_sizes: Dict[str, int] = data["asset_bundle_sizes"] self.composite_object: bool = data["composite_object"] class MaterialRecord(_Record): """ A record of a visual material asset bundle. """ def __init__(self, data: Optional[dict] = None): super().__init__(data) if data is None: self.type: str = "Ceramic" else: self.type: str = data["type"] class SceneRecord(_Record): """ A record of a scene asset bundle. """ def __init__(self, data: Optional[dict] = None): super().__init__(data) if data is None: self.description: str = "" self.hdri: bool = False self.location: str = "" else: self.description: str = data["description"] self.hdri: bool = data["hdri"] self.location: str = data["location"] class HDRISkyboxRecord(_Record): """ A record of an HDRI skybox asset bundle. """ def __init__(self, data: Optional[dict] = None): super().__init__(data) if data is None: self.color_temperature: float = 0 self.sun_elevation: float = 0 self.sun_initial_angle: float = 0 self.sun_intensity: float = 0 self.initial_skybox_rotation: float = 0 self.exposure: float = 0 self.location: str = "" else: self.color_temperature: float = data["color_temperature"] self.sun_elevation: float = data["sun_elevation"] self.sun_initial_angle: float = data["sun_initial_angle"] self.sun_intensity: float = data["sun_intensity"] self.initial_skybox_rotation: float = data["initial_skybox_rotation"] self.exposure: float = data["exposure"] self.location: str = data["location"] class HumanoidAnimationRecord(_Record): """ A record for a humanoid animation asset bundle. """ def __init__(self, data: Optional[dict] = None): super().__init__(data) if data is None: self.duration: float = 0 self.loop: bool = False self.framerate: int = 0 else: self.duration: float = data["duration"] self.loop: bool = data["loop"] self.framerate: int = data["framerate"] def get_num_frames(self) -> int: """ Returns the number of frames, given the duration and framerate. """ return int(self.duration * self.framerate) class HumanoidRecord(_Record): """ A record for a humanoid asset bundle. """ def __init__(self, data: Optional[dict] = None): super().__init__(data) class RobotRecord(_Record): """ A record for a robot asset bundle. """ def __init__(self, data: Optional[dict] = None): super().__init__(data) self.source: str = data["source"] self.immovable: bool = data["immovable"] self.targets: dict = data["targets"] T = TypeVar("T", bound=_Record) class _Librarian(Generic[T]): """ Base abstract class for a metadata librarian. """ def __init__(self, library: str = ""): """ :param library: The absolute path to the library .json file. If empty, a default path in the tdw module will be used. """ if library == "": self.library = pkg_resources.resource_filename(__name__, "metadata_libraries/" + self.get_default_library()) else: module_path = pkg_resources.resource_filename(__name__, "metadata_libraries/" + library) if Path(module_path).exists(): self.library = module_path else: self.library = library with open(self.library, "rt") as f: self.data = json.load(f) self.description = self.data["description"] self.records: List[T] = [] for key in self.data["records"]: record = self._generate_record(self.data["records"][key]) temp_urls = dict() # De-localize URLs for p in record.urls: # Set an absolute path. absolute = False for prefix in ["file:///", "http://", "https://"]: if record.urls[p].startswith(prefix): temp_urls[p] = record.urls[p] absolute = True # De-localize a local path. if not absolute: temp_urls[p] = f"file:///{str(Path(self.library).parent.joinpath(record.urls[p]).resolve())}" temp_urls[p] = temp_urls[p].replace("\\", "/") record.urls = temp_urls self.records.append(record) def get_default_library(self) -> str: """ Returns the default library path (which is always the first in the list of `get_library_filenames()`) """ return self.get_library_filenames()[0] @staticmethod def create_library(description: str, path: str) -> None: """ Create a new library JSON file. :param path: The absolute filepath to the .json records database file. :param description: A brief description of the library. """ path = Path(path) data = {"description": description, "records": {}} path.write_text(json.dumps(data), encoding="utf-8") print(f"Created new library: {path}") @staticmethod def get_library_filenames() -> List[str]: """ Returns a list of the filenames of the libraries of this type in the tdw module. """ raise Exception() def get_record(self, name: str) -> Optional[T]: """ Returns a record with the specified name. If that record can't be found, returns None. :param name: The name of the record. """ records = [r for r in self.records if r.name == name] if len(records) == 0: return None else: return records[0] def search_records(self, search: str) -> List[T]: """ Returns a list of records whose names include the search keyword. :param search: The string to search for in the model name. """ return [r for r in self.records if search in r.name] def add_or_update_record(self, record: T, overwrite: bool, write: bool = True, quiet: bool = True) -> bool: """ Add a new record or update an existing record. :param record: The record. :param overwrite: If true, overwrite the record if it already exists. :param write: If true, write the library data to disk (overwriting the existing file). :param quiet: If true, silently correct the model name if need be. """ # Valid the name of the record. name_ok, name, problems = self.get_valid_record_name(record.name, overwrite) record.name = name if not name_ok and not quiet: print(f"Renaming this record to {name} because:") for p in problems: print(f"\t{p}") added = False if len([r for r in self.records if r.name == record.name]) > 0: # If this record exists and we want to overwrite, update the record. if overwrite: records_list = [r for r in self.records if r.name != record.name] records_list.append(record) added = True # Add the record. else: self.records.append(record) added = True # Write to disk. if added: if record.name in self.data["records"]: self.data["records"][record.name] = record.get_serializable() else: self.data["records"].update({record.name: record.get_serializable()}) if write: self.write() return added def remove_record(self, record: Union[str, T], write: bool = True) -> bool: """ Remove a record. Returns true if the record was removed. :param record: The record or the name of the record. :param write: If true, write the library data to disk (overwriting the existing file). """ if isinstance(record, str): record_name = record else: record_name = record.name records_list = [r for r in self.records if r.name != record_name] removed = len(records_list) < len(self.records) if removed: del self.data["records"][record_name] self.records = records_list if write: self.write() return removed def write(self, pretty=True) -> None: """ Write the data to disk. :param pretty: Pretty print. """ with open(self.library, "wt") as f: if pretty: json.dump(self.data, f, sort_keys=True, indent=4) else: json.dump(self.data, f) def get_valid_record_name(self, name: str, overwrite: bool) -> Tuple[bool, str, List[str]]: """ Generates a valid record name. Returns: true if the name is good as-is, the new name, and a list of problems with the old name. :param name: The name of a record we'd like to add. :param overwrite: If true, raise an exception if the record doesn't exist. Otherwise, overwrite. If False: If the record exists, suggest a new name. """ record_names = [r.name for r in self.records] if overwrite and name not in record_names: return False, name, [f"Can't override a record named {name} because no such record exists!"] good_name = name[:] ok = True problems: List[str] = [] good_name = good_name.replace(" ", "_") if good_name != name: ok = False problems.append("Name has spaces. They have been replaced with underscores.") good_name = good_name.lower() if good_name != name: ok = False problems.append("Name has uppercase letters. They are now all lowercase.") if not overwrite and good_name in record_names: ok = False while good_name in record_names: good_name = good_name + token_hex(2) problems.append(f"A record named {name} already exists, and we don't want to overwrite it.") return ok, good_name, problems def _generate_record(self, data: dict) -> T: """ Generate a record of type T from JSON data. :param data: The record JSON data. """ raise Exception("Not defined.") class ModelLibrarian(_Librarian[ModelRecord]): """ Librarian class for model metadata. """ def get_model_wnids_and_wcategories(self) -> Dict[str, str]: """ Returns a dictionary of all model wnids and categories. Key=wnid Value=category """ wnids: Dict[str, str] = {} for model in self.records: if model.wnid in wnids: if wnids[model.wnid] != model.wcategory: print(f"WARNING: Model {model.name} wcategory is {model.wcategory} (expected: {wnids[model.wnid]})") else: wnids.update({model.wnid: model.wcategory}) return wnids def get_model_wnids(self) -> List[str]: """ Returns a list of all unique wnids in the database, sorted numerically. """ return sorted(set([r.wnid for r in self.records])) def get_all_models_in_wnid(self, wnid: str) -> List[ModelRecord]: """ Returns a list of all models with the same wnid. :param wnid: The WordNet ID. """ return [r for r in self.records if r.wnid == wnid] def get_flex_models(self) -> List[ModelRecord]: """ Returns a list of all Flex-compatible models. """ return [r for r in self.records if r.flex] @staticmethod def get_library_filenames() -> List[str]: return ["models_core.json", "models_full.json", "models_special.json", "models_flex.json"] def _generate_record(self, data: dict) -> T: return ModelRecord(data) class MaterialLibrarian(_Librarian[MaterialRecord]): """ Librarian class for material metadata. """ def get_all_materials_of_type(self, material_type: str) -> List[MaterialRecord]: """ Returns a list of all material records of a given type. :param material_type: The type of material. """ return [r for r in self.records if r.type == material_type] def get_material_types(self) -> List[str]: """ Returns a list of all types of materials, sorted alphabetically. """ return sorted(set([r.type for r in self.records])) @staticmethod def get_library_filenames() -> List[str]: return ["materials_med.json", "materials_low.json", "materials_high.json"] def _generate_record(self, data: dict) -> T: return MaterialRecord(data) class SceneLibrarian(_Librarian[SceneRecord]): """ Librarian class for scene metadata. """ @staticmethod def get_library_filenames() -> List[str]: return ["scenes.json"] def _generate_record(self, data: dict) -> T: return SceneRecord(data) class HDRISkyboxLibrarian(_Librarian[HDRISkyboxRecord]): """ Librarian class for HDRI skybox metadata. """ @staticmethod def get_library_filenames() -> List[str]: return ["hdri_skyboxes.json"] def _generate_record(self, data: dict) -> T: return HDRISkyboxRecord(data) class HumanoidAnimationLibrarian(_Librarian[HumanoidAnimationRecord]): """ Librarian class for humanoid animation metadata. """ @staticmethod def get_library_filenames() -> List[str]: return ["humanoid_animations.json"] def _generate_record(self, data: dict) -> T: return HumanoidAnimationRecord(data) class HumanoidLibrarian(_Librarian[HumanoidRecord]): """ Librarian class for humanoid metadata. """ @staticmethod def get_library_filenames() -> List[str]: return ["humanoids.json"] def _generate_record(self, data: dict) -> T: return HumanoidRecord(data) class RobotLibrarian(_Librarian[RobotRecord]): """ Librarian class for robot metadata. """ @staticmethod def get_library_filenames() -> List[str]: return ["robots.json"] def _generate_record(self, data: dict) -> T: return RobotRecord(data)
01cfcefe303540943ca361d2cab65b79310ffdd5
fb7e69d5dfe309c90b7eba06e5cfef3ecaa141a7
/v2.0/exercise9.7.2.py
46f4e072ff6b6e30b2f25cfa775728f2170965da
[]
no_license
ajsaule/Python
9e74c46b8f804faaaa18c2506f01d9d09d6f7a8d
d3546001822e6a514411e5ed5369f6b2cc18cee4
refs/heads/master
2020-05-09T16:12:22.800696
2020-03-15T23:02:58
2020-03-15T23:02:58
181,262,464
0
0
null
null
null
null
UTF-8
Python
false
false
198
py
file = open(input('Please type filename to open: ')) read = file.read() count = dict() for line in read: if line.startswith('From'): select = dict(str(line[34:36])) print(count)
a6f533ee1a748cadb33dd88731d1d874b6732849
b138195f988aa6ce71ad35fc4d5707c2127739bb
/sesc_mate/wsgi.py
6b7c2401184455e99900682d72ae1d9ac59abd21
[]
no_license
WoodieDudy/SESC_MATE-backend
46866cf449ab9b7be2401088967d593b4db396e9
e46df5d9d6f8bca798965618963ba27a31e2dd23
refs/heads/master
2023-04-17T02:05:46.836769
2021-04-22T12:20:09
2021-04-22T12:20:09
359,822,475
0
0
null
null
null
null
UTF-8
Python
false
false
395
py
""" WSGI config for sesc_mate project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'sesc_mate.settings') application = get_wsgi_application()
26413742d0a2765fe4de84c03b8f3b80530d12a0
ba0e5bd46a81a0bbbaabc9f1bdb5ed08f04b5d1e
/boards/models.py
6cd9eba0dbbba05989ef57081d24a9ac4eadf5a2
[]
no_license
okok0415/Cheating_Detection
2bdecbae289d946723269cd3cf9e47c63f9b5f14
4bdf63e987f32b3b511f361c6e5224da5a682205
refs/heads/main
2023-04-24T18:59:27.406963
2021-05-04T10:23:37
2021-05-04T10:23:37
353,056,284
0
0
null
null
null
null
UTF-8
Python
false
false
400
py
from django.db import models from users import models as user_models class Board(models.Model): """ Board Model Definition """ title = models.CharField(max_length=200) content = models.TextField() user = models.ForeignKey( user_models.User, on_delete=models.SET_NULL, null=True, default="1" ) def __str__(self): return self.title
681900145067710e4f147f7537e281b59275efcb
e1a0a211adfdeaac830607ef01922ad2d7c602b5
/cifar10.py
0072978dc078387e4f3e6a51c60651a0d7d019ca
[]
no_license
yixu34/tftest
7a0f294072ef491d3750917ce42afd09db561bf8
45efd9854faf217180350b4a9a42a2ad417e2c3d
refs/heads/master
2022-12-09T12:38:07.948849
2020-08-24T00:23:08
2020-08-24T00:23:08
289,611,252
0
0
null
null
null
null
UTF-8
Python
false
false
803
py
import tensorflow as tf from tensorflow.keras import layers (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 model = tf.keras.models.Sequential([ layers.Conv2D( filters=32, kernel_size=(3, 3), activation='relu', input_shape=(32, 32, 3) ), layers.MaxPooling2D((2, 2)), layers.Conv2D(64, (3, 3), activation='relu'), layers.MaxPooling2D((2, 2)), layers.Conv2D(64, (3, 3), activation='relu'), layers.Flatten(), layers.Dense(64, activation='relu'), layers.Dense(10) ]) loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) model.compile(optimizer='adam', loss=loss_fn, metrics=['accuracy']) model.fit(x_train, y_train, epochs=5)
fa81b6f980eefe4e61b156f0138eb67cf63c9040
34ec71e93a70c951e02f54f764ab401b9f739a70
/FIEK-UDP/UDP_Klient.py
cab73eb248a6e06527dca912c336ca9003958618
[]
no_license
FortesaHysenaj/Socket-Programming
b2057e66c7250cbdd69fe0d7d9a51c15e193b2b5
753a2a9313ff9d3796d6a30d70a923fe69b94631
refs/heads/master
2020-05-05T08:49:31.819994
2019-04-29T23:57:30
2019-04-29T23:57:30
179,879,523
0
0
null
null
null
null
UTF-8
Python
false
false
1,054
py
import socket host = 'localhost' port = 12000 print("----------------------------UDP KLIENTI-----------------------") socketClient = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) print("Zgjedhni nje metode: \nIPADRESA\nNUMRIIPORTIT\nHOST\nBASHKETINGELLORE (+shkruaj nje fjale-fjali)\n" "\nPRINTIMI (+shkruaj nje fjale/fjali)\nPALINDROME (+shkruaj nje fjale-fjali)\nDUPLIKIMI (+shkruaj nje fjale-fjali)\n" "KOHA\nLOJA\nFIBONACCI (nr>2)\nKONVERTIMI [(KilowattToHorsepower, HorsepowerToKilowatt,\n " "DegreesToRadians, RadiansToDegrees,\n GallonsToLiters, LitersToGallons)+vlera]") print("--------------------------------------------------------------") message = input("OPERACIONI >>> ") while (message != 'Q' and (message != "")): socketClient.sendto(message.encode(), (host, port)) data = socketClient.recv(128) ''' if not data: print("Kjo mundesi nuk ekziston") message=input("OPERACIONI >>> ") continue ''' print(data) message = input("OPERACIONI >>> ") socketClient.close();
defeb5a0a197d38f8b8809a81f0557ed0285e0b3
dcf4df0c24fb2ba4f44ccc3e625e56aeabce5d9f
/calificaciones/urls.py
021f927d58bdbab25719afd8c89f3099886c7c26
[]
no_license
arelyibarrrivas13/calificaciones_Django
19f5acfe051079d86fb4194f1f2487a2cdc34ddb
ead6a96db2f838ba045bb73f2683ceb6bf04c7ac
refs/heads/master
2022-07-29T13:43:46.827219
2020-06-18T01:50:29
2020-06-18T01:50:29
273,113,800
0
0
null
null
null
null
UTF-8
Python
false
false
1,109
py
"""calificaciones URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from gestionCalificaciones import views urlpatterns = [ path('admin/', admin.site.urls), path('consulta/', views.consulta), path('busqueda/', views.busqueda), path('ingreso/', views.ingreso), path('nuevoingreso/', views.nuevoingreso), path('buscar_calificacion_materia/', views.buscar_calificacion_materia), path('buscar_calificacion_alumno/', views.buscar_calificacion_alumno), ]
ddf9ff835fbc973f18c4f56f5c0ff7440397ec56
2ab444e427955d3dbf1f8c0947837c7d73e66a0a
/25-刘杰-北京/第九周/datasets/__init__.py
b57add28328dba5e5f4d023c2bafaed95b186619
[]
no_license
Yang-chen205/badou-Turing
6bfc0a4622cb0882f89117e73e2868d40601e7ff
f2a1b2f8b6b292815d92a294d49954616d3624d5
refs/heads/main
2023-08-07T03:57:07.471322
2021-09-26T08:20:10
2021-09-26T08:20:10
380,449,981
1
0
null
2021-06-26T08:12:02
2021-06-26T08:12:02
null
UTF-8
Python
false
false
157
py
#!/usr/bin/python # -*- coding: utf-8 -*- ''' @Project :badou-Turing @File :__init__.py.py @Author :luigi @Date :2021/8/31 4:18 下午 '''
4c8658c14906c41768a4f2f85fcae70ef46c9d23
c78c1919b78751e88a8fa6816c27b6b173ba245f
/06_1_loss_and_optimizer.py
224cac213a97ce3b013893ec7525074da72eab1c
[ "MIT" ]
permissive
umit-ai/pytorchTutorial
742055e6abccc167f3bc821e800afca34ea0e769
aa2573f1e829e7f1201e53dbb9df351785229fac
refs/heads/master
2022-04-21T13:53:06.504027
2020-04-13T17:01:38
2020-04-13T17:01:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,015
py
# 1) Design model (input, output, forward pass with different layers) # 2) Construct loss and optimizer # 3) Training loop # - Forward = compute prediction and loss # - Backward = compute gradients # - Update weights import torch import torch.nn as nn # Linear regression # f = w * x # here : f = 2 * x # 0) Training samples, watch the shape! X = torch.tensor([[1], [2], [3], [4]], dtype=torch.float32) Y = torch.tensor([[2], [4], [6], [8]], dtype=torch.float32) n_samples, n_features = X.shape print(f'#samples: {n_samples}, #features: {n_features}') # 0) create a test sample X_test = torch.tensor([5], dtype=torch.float32) # 1) Design Model, the model has to implement the forward pass! # Here we can use a built-in model from PyTorch input_size = n_features output_size = n_features # we can call this model with samples X model = nn.Linear(input_size, output_size) ''' class LinearRegression(nn.Module): def __init__(self, input_dim, output_dim): super(LinearRegression, self).__init__() # define diferent layers self.lin = nn.Linear(input_dim, output_dim) def forward(self, x): return self.lin(x) model = LinearRegression(input_size, output_size) ''' print(f'Prediction before training: f(5) = {model(X_test).item():.3f}') # 2) Define loss and optimizer learning_rate = 0.01 n_iters = 100 loss = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) # 3) Training loop for epoch in range(n_iters): # predict = forward pass with our model y_predicted = model(X) # loss l = loss(Y, y_predicted) # calculate gradients = backward pass l.backward() # update weights optimizer.step() # zero the gradients after updating optimizer.zero_grad() if epoch % 10 == 0: [w, b] = model.parameters() # unpack parameters print('epoch ', epoch+1, ': w = ', w[0][0].item(), ' loss = ', l) print(f'Prediction after training: f(5) = {model(X_test).item():.3f}')
cec69182b84e9aa6bff4f48d54f59182d811ddf5
de847b2e9a5236887fb6a164fedc0e0c86b84e6c
/pythonturorial/workshopprograms/userinput.py
0b0ce93aae289361bd5e6a95386c281114c27be5
[]
no_license
raghuprasadks/pythonmicrosoftexam
9a6bcafcdbc5bb6727278f421bb1a31dc5b7427b
68dacab8aa98d0ff39f1f36c3ce8e666be3760a0
refs/heads/master
2020-09-15T02:51:06.809959
2020-02-12T01:18:42
2020-02-12T01:18:42
223,330,626
1
0
null
null
null
null
UTF-8
Python
false
false
475
py
name = input("Enter your name") print(type(name)) print('your name is ',name) age = int(input("enter your age")) print('your age is ',age) nextyear = age +1 print('your age after one year',nextyear) amount = float(input("Enter the payment made for purchase of fruits")) print('float conversion',amount) print("Enter names of your friends") friends = eval(input("Enter names as a list")) print('evaluated as list ',type(friends)) print('here comes your friends ',friends)
2c8c9cb25515b039215ca4a231c839dec248cb22
236e6d7c644d8e0f8c2e0e1d0bf222a31163abbb
/shop/models/user.py
7e0ea29f83a39f9800174060bdfb42b14a90c995
[]
no_license
itsluja/digi
6687c91f149f4bdb15987e576c069b8851d9c715
047cdf40d33263c7e9b9e7b8d54bd499e339c5bd
refs/heads/main
2023-03-15T05:45:56.020204
2021-03-18T19:38:42
2021-03-18T19:38:42
345,308,631
0
0
null
null
null
null
UTF-8
Python
false
false
489
py
from django.db import models class User(models.Model): name = models.CharField(max_length= 50) active = models.BooleanField(default=True) email = models.CharField(max_length= 100 , unique= True) password = models.CharField(max_length= 500) phone = models.CharField(max_length= 10) city = models.CharField(max_length= 200,null=True,blank=True) gender = models.CharField(max_length=10,default="") def __str__(self): return self.name
96c4eded58823e78c863134df63303135ce70051
69dcbd7053449b2522448545927604cc8c8e16f7
/exporter.py
c3ecf3da53e86efc5ada4dc01ec89350b4fb2eb8
[]
no_license
namikiri/vk-dialogue-export
29d701b6be086d4122d3fced8f3f6da646985746
0293715f73db611e2545959c9375b9b898d207cc
refs/heads/master
2020-03-27T15:16:10.176653
2018-08-30T06:59:19
2018-08-30T06:59:19
146,707,475
1
0
null
2018-08-30T06:45:50
2018-08-30T06:45:50
null
UTF-8
Python
false
false
15,592
py
import os import urllib from progress import * from utils import * class ExportContext: def __init__(self, user_fetcher, depth=0, users=None): self.depth = depth self.user_fetcher = user_fetcher self.users = users if users is not None else dict() def add_user(self, user_id, exporter=None): if user_id and user_id not in self.users: self.users[user_id] = self.user_fetcher.get_data(user_id, exporter) def next_level(self): return ExportContext(self.user_fetcher, self.depth, self.users) class UserFetcher: def __init__(self, api): self.api = api self.cache = dict() def get_data(self, user_id, exporter=None): if not (user_id in self.cache): if user_id < 0: groups = self.api.call("groups.getById", [("group_id", str(-user_id))]) data = groups[0] downloaded = None if exporter is not None: downloaded = exporter.download_image(data) self.cache[user_id] = { 'name': data['name'], 'first_name': data['name'], 'last_name': '', 'link': 'https://vk.com/%s' % data['screen_name'], 'filename': downloaded } else: users = self.api.call("users.get", [("user_ids", str(user_id)), ("fields", "photo_50")]) data = users[0] downloaded = None if exporter is not None: downloaded = exporter.download_image(data) self.cache[user_id] = { 'name': '%s %s' % (data['first_name'], data['last_name']), 'first_name': data['first_name'], 'last_name': data['last_name'], 'link': 'https://vk.com/id%s' % data['id'], 'filename': downloaded } return self.cache[user_id] progress = Progress() class DialogExporter: def __init__(self, api, dlg_type, dlg_id, options): self.api = api self.type = dlg_type self.id = dlg_id self.attach_dir = str(self.id) self.output_dir = options.output_dir self.options = options self.user_fetcher = UserFetcher(api) self.json_out = { 'messages': [] } def find_largest(self, obj, key_override='photo_'): def get_photo_keys(): for k, v in iter(obj.items()): if k.startswith(key_override): yield k[len(key_override):] return "%s%s" % (key_override, max(map(lambda k: int(k), get_photo_keys()))) def download_file(self, url, out_filename, auto_image_ext=False, size=-1): if not url: # blocked documents or audio files go here return None abs_attach_dir = os.path.join(self.output_dir, self.attach_dir) if not os.path.exists(abs_attach_dir): os.makedirs(abs_attach_dir) elif not os.path.isdir(abs_attach_dir): raise OSError("Unable to create attachments directory %s" % abs_attach_dir) rel_out_path = esc("%s/%s" % (self.attach_dir, out_filename)) abs_out_path = os.path.join(self.output_dir, rel_out_path) has_ext = len(os.path.splitext(rel_out_path)[1]) > 0 if has_ext and os.path.exists(abs_out_path) and os.stat(abs_out_path).st_size > 0: return rel_out_path # file was already downloaded? elif not has_ext and auto_image_ext: downloaded_image = has_downloaded_image(abs_attach_dir, out_filename) if downloaded_image is not None: return os.path.join(self.attach_dir, downloaded_image) def update_progress(): display_filename = out_filename if auto_image_ext and not has_ext: display_filename = out_filename + '.jpg' # we cannot determine it right now, but jpg is common, so... if size > 0: display_filename += ', ' + fmt_size(size) progress.step_msg('%s -> %s' % (url, display_filename)) def try_download(src_url): nonlocal out_filename nonlocal rel_out_path nonlocal abs_out_path nonlocal has_ext try: request = urllib.request.urlopen(src_url, timeout=20) if not has_ext and auto_image_ext and 'Content-Type' in request.info(): ext = '.' + guess_image_ext(request.info()['Content-Type']) out_filename = out_filename + ext rel_out_path = rel_out_path + ext abs_out_path = abs_out_path + ext has_ext = True update_progress() with open(abs_out_path, 'wb') as f: f.write(request.read()) return True except Exception: return None update_progress() try: try_count = 0 while try_count < 3: # sys.stdout.write("Downloading photo %s\n" % (message["id"])) if try_download(url): return rel_out_path try_count += 1 finally: progress.clear_step_msg() progress.error("Failed to retrieve file (%s) after 3 attempts, skipping\n" % url) return None def download_image(self, attachment, key_override="photo_"): filename = str(attachment['id']) url = attachment[self.find_largest(attachment, key_override)] return self.download_file(url, filename, True) def fetch_messages(self): offset = 0 selector = 'user_id' if self.type == 'user' else 'peer_id' author_id = self.id if self.type == 'user' else (2000000000 + self.id if self.type == 'chat' else -self.id) while True: messages = self.api.call('messages.getHistory', [('offset', offset), ('count', 200), (selector, author_id), ('rev', 1)]) if len(messages['items']) == 0: break for msg in messages['items']: yield (msg, messages['count']) offset += len(messages['items']) def handle_link(self, context, link): downloaded = None if 'photo' in link: downloaded = self.download_image(link['photo']) return { 'type': 'link', 'url': link.get('url', ''), 'title': link.get('title', ''), 'caption': link.get('caption', ''), 'description': link.get('description', ''), 'filename': downloaded } def handle_photo(self, context, photo): downloaded = self.download_image(photo) return { 'type': 'photo', 'filename': downloaded, 'url': self.find_largest(photo), 'description': photo.get('text', ''), 'owner_id': photo.get('owner_id', 0), 'width': photo.get('width', 0), 'height': photo.get('height', 0), 'date': photo.get('date', 0), 'id': photo.get('id', 0), 'album_id': photo.get('album_id', 0) } def handle_sticker(self, context, sticker): # find the largest sticker image file largest = None if 'images' in sticker: for image in sticker['images']: if largest is None or image['width'] > largest['width']: largest = image url = largest['url'] if largest is not None else '' downloaded = self.download_file(url, str(sticker.get('sticker_id', 0)), True) if largest is not None else None return { 'type': 'sticker', 'filename': downloaded, 'url': url } def handle_video(self, context, video): video_thumb = self.download_image(video) context.add_user(video.get('owner_id', 0), self) return { 'type': 'video', 'description': video.get('description', ''), 'url': "https://vk.com/video%s_%s" % (video.get('owner_id', 0), video.get('id', 0)), 'title': video.get("title", ''), 'duration': video.get("duration", 0), 'views': video.get('views', 0), 'comments': video.get('comments', 0), 'thumbnail_filename': video_thumb, 'platform': video.get('platform', '?'), 'date': video.get('date', 0), 'owner_id': video.get('owner_id', 0) } def handle_wall(self, context, wall): if 'from_id' in wall: context.add_user(wall['from_id'], self) if 'to_id' in wall: context.add_user(wall['to_id'], self) exported_post = { 'type': 'post', 'from_id': wall.get('from_id', 0), 'to_id': wall.get('to_id', 0), 'post_type': wall.get('post_type', ''), 'date': wall.get('date', 0), 'text': wall.get('text', ''), 'url': "https://vk.com/wall%s_%s" % (wall.get('from_id', 0), wall.get('id', 0)), 'views': wall.get('views', {}).get('count', 0), 'likes': wall.get('likes', {}).get('count', 0), 'comments': wall.get('comments', {}).get('count', 0), 'reposts': wall.get('reposts', {}).get('count', 0), 'source': wall.get('post_source', {'type': 'api', 'platform': 'unknown'}) } if "attachments" in wall: exported_post['attachments'] = self.export_attachments(context.next_level(), wall['attachments']) if "copy_history" in wall: # this is a repost for repost in wall['copy_history']: exported_post['repost'] = [] post_type = repost.get('post_type', '') if post_type == "post": exported_post['repost'].append(self.handle_wall(context.next_level(), repost)) else: progress.error("No handler for post type: %s\n" % post_type) return exported_post def handle_audio(self, context, audio): filename = '%s.mp3' % audio.get('id', 0) url = audio.get('url', '') downloaded = None if self.options.arguments.audio and context.depth <= self.options.arguments.audio_depth: if not url or "audio_api_unavailable.mp3" in url: progress.error("Audio file [%s - %s] is no more available, skipping\n" % (audio.get('artist', ''), audio.get('title', ''))) else: downloaded = self.download_file(url, filename) return { 'type': 'audio', 'artist': audio.get('artist', ''), 'title': audio.get('title', ''), 'duration': audio.get('duration', 0), 'filename': downloaded, 'url': url } def handle_voice_msg(self, context, audio_msg): filename = '%s.%s' %(audio_msg.get('id', 0), audio_msg.get('ext', 'mp3')) msg_preview = audio_msg.get('preview', {}).get('audio_msg', {}) url = msg_preview.get('link_mp3') or msg_preview.get('link_ogg') or '' downloaded = None if not self.options.arguments.no_voice: if url: downloaded = self.download_file(url, filename) else: progress.error("Voice message is no more available, skipping\n") return { 'type': 'voice', 'filename': downloaded, 'url': url, 'duration': msg_preview.get('duration', 0), 'id': audio_msg.get('id', 0), 'owner_id': audio_msg.get('owner_id', 0), 'date': audio_msg.get('date', 0) } def handle_doc(self, context, doc): if 'preview' in doc and 'audio_msg' in doc['preview']: return self.handle_voice_msg(context, doc) filename = '%s.%s' % (doc.get('id', 0), doc.get('ext', 'unknown')) url = doc.get('url', '') downloaded = None if self.options.arguments.docs and context.depth <= self.options.arguments.docs_depth: if url: downloaded = self.download_file(url, filename, False, doc.get('size', -1)) else: progress.error("Document [%s] is no more available, skipping\n" % doc.get('title', '')) return { 'type': 'doc', 'filename': downloaded, 'url': url, 'title': doc.get('title', ''), 'size': doc.get('size', 0), 'ext': doc.get('ext', '') } def handle_gift(self, context, gift): gift_thumb = self.download_image(gift, 'thumb_') return { 'type': 'gift', 'thumbnail': gift_thumb } def handle_unknown(self, context, attachment): return { 'type': attachment['type'] } def export_attachments(self, context, attachments): known_types = ('photo', 'video', 'audio', 'doc', 'wall', 'sticker', 'link', 'gift') results = [] for att in attachments: if att['type'] in known_types: results.append(getattr(self, 'handle_' + att['type'])(context, att[att['type']])) else: results.append(self.handle_unknown(context, att)) return results def export_message(self, ctx, vk_msg): # write message head exported_msg = { 'date': vk_msg.get('date', 0), 'message': vk_msg.get('body', ''), 'is_important': vk_msg.get('important', False), 'is_updated': 'update_time' in vk_msg and vk_msg['update_time'] } is_updated = False if 'update_time' in vk_msg and vk_msg['update_time']: is_updated = True exported_msg['updated_at'] = vk_msg['update_time'] exported_msg['is_updated'] = is_updated sender_id = vk_msg.get('from_id', 0) or vk_msg.get('user_id', 0) ctx.add_user(sender_id, self) exported_msg['sender'] = { 'id': sender_id } # handle forwarded messages if len(vk_msg.get('fwd_messages', [])) > 0: exported_msg['forwarded'] = [] for fwd_msg in vk_msg['fwd_messages']: exported_msg['forwarded'].append(self.export_message(ctx, fwd_msg)) # handle attachments if 'attachments' in vk_msg: exported_msg['attachments'] = self.export_attachments(ctx, vk_msg['attachments']) if 'action' in vk_msg: exported_msg['action'] = vk_msg['action'] if 'action_text' in vk_msg: exported_msg['action_text'] = vk_msg['action_text'] if 'action_mid' in vk_msg: exported_msg['action_mid'] = vk_msg['action_mid'] if self.options.arguments.save_raw: exported_msg['raw'] = vk_msg return exported_msg def export(self): cur_step = 0 ctx = ExportContext(self.user_fetcher) for msg, total in self.fetch_messages(): if cur_step == 0: progress.update(0, total) exported_msg = self.export_message(ctx, msg) self.json_out['messages'].append(exported_msg) cur_step += 1 progress.update(cur_step, total) self.json_out['users'] = ctx.users return self.json_out
4d7ed2a1a08f6964c45a24c6f61dfc5c70731d1c
b9de1691e91ea5dba082ae3e3bd876a6fe4a2d45
/cogs/worksheets.py
0dbf614affdb86f7fdd627cb046cdac9d069e887
[ "MIT" ]
permissive
Developing-Studio/ci-Administrator
ee313758219222e6a2c338bd8d8ac018ba578871
087748cb73b3c0edd186f82987b4ffedbe198ac4
refs/heads/main
2023-02-07T10:23:06.317291
2020-12-28T21:58:10
2020-12-28T21:58:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,209
py
import datetime import io import operator import os import random import re from typing import List from typing import Optional from typing import Tuple import discord from discord.ext import commands from discord.ext import flags from discord.ext import tasks from base import custom from converters import OperationConverter from errors import WorksheetsError from objects import Operation from objects import MST def positive_int(arg: str): arg = int(arg) if arg > 0: return arg raise commands.BadArgument("integer must be positive") class Worksheets(custom.Cog): def __init__(self, bot): self.bot = bot operation = OperationConverter.OPERATORS["mul"] self.message: str = None self.question_format = re.compile( r"(?P<x>[0-9]{1,2})\s*" r"(?P<operator>[\+-x÷])\s*" r"(?P<y>[0-9]{1,2})\s*=\s*" r"(?P<answer>[0-9]{1,3})?" ) self.MST = MST() self.bot.loop.create_task(self.__ainit__()) self._remind.start(operation, questions=30) def cog_unload(self): self._remind.cancel() async def __ainit__(self): await self.bot.wait_until_ready() self.message = f"{self.kai.mention} Study" @property def bot_channel(self): return self.bot.home.get_channel(531807782916194314) @property def kai(self): return self.bot.home.get_member(297874688145752066) def _get_next_target_date(self): now = datetime.datetime.now(tz=self.MST) target = datetime.datetime(now.year, now.month, now.day, hour=12, tzinfo=self.MST) if now < target: return target return target + datetime.timedelta(days=1) def create_worksheet(self, operation: Operation, questions: int = 30): now = datetime.datetime.now() filename = now.strftime("%d-%m-%Y.txt") stream = io.BytesIO() for _ in range(questions): x = random.randint(1, 12) y = random.randint(1, 12) answer = operation(x, y) stream.write(str.encode(f"{x} {operation.symbol} {y} = {answer}\n")) stream.write(str.encode("\nTime: \n")) stream.seek(0) return discord.File(stream, filename) async def validate_worksheets(self, operation: Optional[Operation], attachments: List[discord.Attachment]): stream = io.BytesIO() success = 0 total = 0 attachment = attachments[0] name, _ = os.path.splitext(attachment.filename) filename = f"{name}-ANSWERS.txt" content = await attachment.read() if content[:3] == b"\xef\xbb\xbf": content = content[3:] content = content.decode() for line in content.split("\n"): question_found = self.question_format.match(line) if question_found: append = line.strip() total += 1 # UNTESTED if operation is None: operation = discord.utils.get( OperationConverter.OPERATORS.values(), symbol=question_found.group("operator") ) # UNTESTED args = ("x", "y", "answer") x, y, response = map(int, question_found.group(*args)) answer = operation(x, y) if response == answer: success += 1 else: append += f" ❌ {answer}" stream.write(str.encode(f"{append}\n")) stream.write(str.encode(f"\nResults: {success}/{total}\n")) stream.seek(0) return discord.File(stream, filename) @tasks.loop() async def _remind(self, operation: Operation, questions: int): date = self._get_next_target_date() await discord.utils.sleep_until(date) file = self.create_worksheet(operation, questions) await self.bot_channel.send(self.message, file=file) @_remind.before_loop async def _before_remind(self): await self.bot.wait_for_display() print("Running _remind.start()") @flags.add_flag("--questions", type=positive_int, default=30) @flags.add_flag("--validate", action="store_true") @flags.command() async def worksheets(self, ctx, operation: Optional[OperationConverter], **flags): content: Optional[str] = self.message if flags["validate"]: content = None if not ctx.message.attachments: raise WorksheetsError("no attachment found") file = await self.validate_worksheets(operation, ctx.message.attachments) else: file = self.create_worksheet(operation, flags["questions"]) await ctx.send(content, file=file) def setup(bot): bot.add_cog(Worksheets(bot))
2196349d34fe90de1d957e98c7117e16312f2e30
d5080d96e40525f6d3cbf3f97910234fb4c35ee2
/program/classifierExp.py
12c35c44b61ff4c502d0903d0bc4a31aaf1442f0
[]
no_license
kojotek/contest_at_least_we_tried_public
2e1d60ae86f3a72340495d2d8d9d8f57f37ef506
dc9959f3aee618b7b65a9b0bd17f2499d8529b39
refs/heads/master
2020-06-15T05:23:02.547145
2016-12-10T16:30:58
2016-12-10T16:30:58
75,324,728
0
0
null
null
null
null
UTF-8
Python
false
false
746
py
print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. Y = iris.target h = .02 # step size in the mesh logreg = linear_model.LogisticRegression(C=1e5) # we create an instance of Neighbours Classifier and fit the data. logreg.fit(X, Y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = logreg.predict(X)
ef4cf60a83f3320c1d17fdc3aa26f2e066eb5006
d2cc300faf038c018ad6612bb93dbb5defb83e2d
/tests/test_utils.py
4b61c414166027f3ffbfe007bf6f9802a88e6c10
[]
no_license
paliwal90/winning_price_pred
addadeca5285b22c8ef02b2d5958177bcd22d598
c126ac40a1ed13baabe096e5ff55072b428d1a55
refs/heads/master
2020-04-17T04:16:50.272407
2017-11-14T05:00:17
2017-11-14T05:00:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
555
py
import numpy as np from scipy.sparse import csr_matrix from nose.tools import assert_equal, assert_true from winning_price_pred import utils as testee def test_add_bias(): # scipy.sparse.csr_matrix X = csr_matrix([[1,2],[2,3],[3,4]]) got = testee.add_bias(X) expected = csr_matrix([[1,1,2],[1,2,3],[1,3,4]]) assert_equal((got - expected).nnz, 0) # numpy.matrix X = np.matrix([[1,2],[2,3],[3,4]]) got = testee.add_bias(X) expected = np.matrix([[1,1,2],[1,2,3],[1,3,4]]) assert_true(np.array_equal(got, expected))
af45066f57cba7e2d31be99095220cd6aaec789a
353e4113d9763ef04ed49de02cf16e4a25a27aed
/mysite/ads/forms.py
c1636aae456e52f70a7726abd0e06cdefe0e089d
[]
no_license
niveditaprity/Django-for-Everybody
31ea1093b6f09a77769f05e17ae5ffa95ba449a2
a9ce3b5a584a32790342f2c4ff53676b3112a32d
refs/heads/master
2022-12-23T20:23:05.194503
2020-09-28T11:32:56
2020-09-28T11:32:56
299,275,681
1
0
null
null
null
null
UTF-8
Python
false
false
2,258
py
from django import forms from ads.models import Ad from django.core.files.uploadedfile import InMemoryUploadedFile from ads.humanize import naturalsize # Create the form class. class CreateForm(forms.ModelForm): max_upload_limit = 2 * 1024 * 1024 max_upload_limit_text = naturalsize(max_upload_limit) # Call this 'picture' so it gets copied from the form to the in-memory model # It will not be the "bytes", it will be the "InMemoryUploadedFile" # because we need to pull out things like content_type picture = forms.FileField(required=False, label='File to Upload <= '+max_upload_limit_text) upload_field_name = 'picture' # Hint: this will need to be changed for use in the ads application :) class Meta: model = Ad fields = ['title', 'text', 'price', 'picture'] # Picture is manual # Validate the size of the picture def clean(self) : cleaned_data = super().clean() ad = cleaned_data.get('picture') if ad is None : return if len(ad) > self.max_upload_limit: self.add_error('picture', "File must be < "+self.max_upload_limit_text+" bytes") # Convert uploaded File object to a picture def save(self, commit=True) : instance = super(CreateForm, self).save(commit=False) # We only need to adjust picture if it is a freshly uploaded file f = instance.picture # Make a copy if isinstance(f, InMemoryUploadedFile): # Extract data from the form to the model bytearr = f.read(); instance.content_type = f.content_type instance.picture = bytearr # Overwrite with the actual image data if commit: instance.save() return instance class CommentForm(forms.Form): comment = forms.CharField(required=True, max_length=500, min_length=3, strip=True) # https://docs.djangoproject.com/en/3.0/topics/http/file-uploads/ # https://stackoverflow.com/questions/2472422/django-file-upload-size-limit # https://stackoverflow.com/questions/32007311/how-to-change-data-in-django-modelform # https://docs.djangoproject.com/en/3.0/ref/forms/validation/#cleaning-and-validating-fields-that-depend-on-each-other
[ "niveditaprity@gmail" ]
niveditaprity@gmail