blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
5cf854bdd02a84baf5207c995481de3cd741ec6b
076ee22413ccb5860885e5fbe50f3d2ff46b50b4
/module/Err.py
4b69be9633fbca079774bf553360e64012d42284
[]
no_license
jojo-cn/chat-svr
bca99f8046a0c202936a106b88beb89cf89de485
cfda32032cb5273e4cd97c843dcd54e188008161
refs/heads/master
2020-03-19T03:07:52.290534
2018-06-24T09:24:00
2018-06-24T09:24:00
135,698,666
0
0
null
null
null
null
UTF-8
Python
false
false
281
py
""" 错误代码 """ class Err(object): """ """ def __init__(self): super(Err, self).__init__() # User module handle error USER_LOGON_FAILED = 'Username or password is wrong' # User already logon USER_ALREADY_LOGON = 'The user is already logon'
c810b83e4d978275269dbf2edf81ba3749d40a39
9edaf93c833ba90ae9a903aa3c44c407a7e55198
/travelport/models/general_remark_3.py
37e4e5426aafa26b117cdb81d48dcfa92904cffc
[]
no_license
tefra/xsdata-samples
c50aab4828b8c7c4448dbdab9c67d1ebc519e292
ef027fe02e6a075d8ed676c86a80e9647d944571
refs/heads/main
2023-08-14T10:31:12.152696
2023-07-25T18:01:22
2023-07-25T18:01:22
222,543,692
6
1
null
2023-06-25T07:21:04
2019-11-18T21:00:37
Python
UTF-8
Python
false
false
4,367
py
from __future__ import annotations from dataclasses import dataclass, field from xsdata.models.datatype import XmlDate, XmlDateTime from travelport.models.type_direction_3 import TypeDirection3 from travelport.models.type_element_status_4 import TypeElementStatus4 from travelport.models.type_product_3 import TypeProduct3 __NAMESPACE__ = "http://www.travelport.com/schema/common_v33_0" @dataclass class GeneralRemark3: """A textual remark container to hold any printable text. (max 512 chars) Parameters ---------- remark_data Actual remarks data. booking_traveler_ref Reference to Booking Traveler. key category A category to group and organize the various remarks. This is not required, but it is recommended. type_in_gds supplier_type The type of product this reservation is relative to provider_reservation_info_ref Provider reservation reference key. provider_code supplier_code direction Direction Incoming or Outgoing of the GeneralRemark. create_date The date and time that this GeneralRemark was created. use_provider_native_mode Will be true when terminal process required, else false el_stat This attribute is used to show the action results of an element. Possible values are "A" (when elements have been added to the UR) and "M" (when existing elements have been modified). Response only. key_override If a duplicate key is found where we are adding elements in some cases like URAdd, then instead of erroring out set this attribute to true. """ class Meta: name = "GeneralRemark" namespace = "http://www.travelport.com/schema/common_v33_0" remark_data: None | str = field( default=None, metadata={ "name": "RemarkData", "type": "Element", "required": True, } ) booking_traveler_ref: list[str] = field( default_factory=list, metadata={ "name": "BookingTravelerRef", "type": "Element", "max_occurs": 999, } ) key: None | str = field( default=None, metadata={ "name": "Key", "type": "Attribute", } ) category: None | str = field( default=None, metadata={ "name": "Category", "type": "Attribute", "max_length": 10, } ) type_in_gds: None | str = field( default=None, metadata={ "name": "TypeInGds", "type": "Attribute", "max_length": 30, } ) supplier_type: None | TypeProduct3 = field( default=None, metadata={ "name": "SupplierType", "type": "Attribute", } ) provider_reservation_info_ref: None | str = field( default=None, metadata={ "name": "ProviderReservationInfoRef", "type": "Attribute", } ) provider_code: None | str = field( default=None, metadata={ "name": "ProviderCode", "type": "Attribute", "min_length": 2, "max_length": 5, } ) supplier_code: None | str = field( default=None, metadata={ "name": "SupplierCode", "type": "Attribute", "min_length": 2, "max_length": 5, } ) direction: None | TypeDirection3 = field( default=None, metadata={ "name": "Direction", "type": "Attribute", } ) create_date: None | XmlDateTime = field( default=None, metadata={ "name": "CreateDate", "type": "Attribute", } ) use_provider_native_mode: bool = field( default=False, metadata={ "name": "UseProviderNativeMode", "type": "Attribute", } ) el_stat: None | TypeElementStatus4 = field( default=None, metadata={ "name": "ElStat", "type": "Attribute", } ) key_override: None | bool = field( default=None, metadata={ "name": "KeyOverride", "type": "Attribute", } )
6da402554a5677cc3feb6dd00f350a495e2d3355
2dc9ee4a8c39d00c255f52e8af2486e7c2891a98
/sdk/synapse/azure-mgmt-synapse/azure/mgmt/synapse/aio/operations/_private_endpoint_connections_operations.py
742624e8eb6a11c2dcc7c8daf69f8f34d2441314
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
JoshuaLai/azure-sdk-for-python
fd780c2ab145a35ec0bf9519c4d08c928081e79c
07614796a332bcfeed35dddee9dbfc2f5487a39f
refs/heads/master
2023-04-04T17:49:58.177790
2021-04-06T21:31:48
2021-04-06T21:31:48
348,842,434
0
0
MIT
2021-03-17T20:24:55
2021-03-17T20:24:54
null
UTF-8
Python
false
false
23,467
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class PrivateEndpointConnectionsOperations: """PrivateEndpointConnectionsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.synapse.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def get( self, resource_group_name: str, workspace_name: str, private_endpoint_connection_name: str, **kwargs ) -> "_models.PrivateEndpointConnection": """Gets a private endpoint connection. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param private_endpoint_connection_name: The name of the private endpoint connection. :type private_endpoint_connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: PrivateEndpointConnection, or the result of cls(response) :rtype: ~azure.mgmt.synapse.models.PrivateEndpointConnection :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.PrivateEndpointConnection"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-03-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'workspaceName': self._serialize.url("workspace_name", workspace_name, 'str'), 'privateEndpointConnectionName': self._serialize.url("private_endpoint_connection_name", private_endpoint_connection_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('PrivateEndpointConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/privateEndpointConnections/{privateEndpointConnectionName}'} # type: ignore async def _create_initial( self, resource_group_name: str, workspace_name: str, private_endpoint_connection_name: str, request: "_models.PrivateEndpointConnection", **kwargs ) -> "_models.PrivateEndpointConnection": cls = kwargs.pop('cls', None) # type: ClsType["_models.PrivateEndpointConnection"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-03-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'workspaceName': self._serialize.url("workspace_name", workspace_name, 'str'), 'privateEndpointConnectionName': self._serialize.url("private_endpoint_connection_name", private_endpoint_connection_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(request, 'PrivateEndpointConnection') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('PrivateEndpointConnection', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('PrivateEndpointConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/privateEndpointConnections/{privateEndpointConnectionName}'} # type: ignore async def begin_create( self, resource_group_name: str, workspace_name: str, private_endpoint_connection_name: str, request: "_models.PrivateEndpointConnection", **kwargs ) -> AsyncLROPoller["_models.PrivateEndpointConnection"]: """Approve or reject a private endpoint connection. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param private_endpoint_connection_name: The name of the private endpoint connection. :type private_endpoint_connection_name: str :param request: Request body of private endpoint connection to create. :type request: ~azure.mgmt.synapse.models.PrivateEndpointConnection :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either PrivateEndpointConnection or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.synapse.models.PrivateEndpointConnection] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.PrivateEndpointConnection"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_initial( resource_group_name=resource_group_name, workspace_name=workspace_name, private_endpoint_connection_name=private_endpoint_connection_name, request=request, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('PrivateEndpointConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'workspaceName': self._serialize.url("workspace_name", workspace_name, 'str'), 'privateEndpointConnectionName': self._serialize.url("private_endpoint_connection_name", private_endpoint_connection_name, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/privateEndpointConnections/{privateEndpointConnectionName}'} # type: ignore async def _delete_initial( self, resource_group_name: str, workspace_name: str, private_endpoint_connection_name: str, **kwargs ) -> Optional["_models.OperationResource"]: cls = kwargs.pop('cls', None) # type: ClsType[Optional["_models.OperationResource"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-03-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'workspaceName': self._serialize.url("workspace_name", workspace_name, 'str'), 'privateEndpointConnectionName': self._serialize.url("private_endpoint_connection_name", private_endpoint_connection_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = None if response.status_code == 202: deserialized = self._deserialize('OperationResource', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/privateEndpointConnections/{privateEndpointConnectionName}'} # type: ignore async def begin_delete( self, resource_group_name: str, workspace_name: str, private_endpoint_connection_name: str, **kwargs ) -> AsyncLROPoller["_models.OperationResource"]: """Delete a private endpoint connection. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param private_endpoint_connection_name: The name of the private endpoint connection. :type private_endpoint_connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.OperationResource"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, workspace_name=workspace_name, private_endpoint_connection_name=private_endpoint_connection_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('OperationResource', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'workspaceName': self._serialize.url("workspace_name", workspace_name, 'str'), 'privateEndpointConnectionName': self._serialize.url("private_endpoint_connection_name", private_endpoint_connection_name, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/privateEndpointConnections/{privateEndpointConnectionName}'} # type: ignore def list( self, resource_group_name: str, workspace_name: str, **kwargs ) -> AsyncIterable["_models.PrivateEndpointConnectionList"]: """Lists private endpoint connection in workspace. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either PrivateEndpointConnectionList or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.synapse.models.PrivateEndpointConnectionList] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.PrivateEndpointConnectionList"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-03-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'workspaceName': self._serialize.url("workspace_name", workspace_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('PrivateEndpointConnectionList', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(_models.ErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/privateEndpointConnections'} # type: ignore
1c2d8c0ec9171bfd84af10d6470c3cc58490aa3e
f4c1280bb0ad92ed2e17024b15890b2bcfe86c38
/DWF-server/controller/task_scheduler.py
8b0c32fe8810d9ec395a27b50ab7c1bc131d0b16
[ "Apache-2.0" ]
permissive
aladics/DeepWaterFramework
5b5d9f8cc64f05cecc796f1c52d50e9ed20987e8
30e9c0145300e24834a3d4a7dde25002c638dd5a
refs/heads/master
2023-07-14T14:52:35.914260
2021-02-22T18:38:57
2021-02-22T18:38:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,916
py
from model import Priority from controller import task_store as ts class TaskScheduler: def __init__(self): self.running_experiments = [] self.running_immediate_experiments = [] def get_next(self): return self._get_exp_id(self.running_immediate_experiments) or self._get_exp_id(self.running_experiments) @staticmethod def _get_exp_id(exp_list): if not exp_list: return None res = exp_list[0] exp_list.pop(0) exp_list.append(res) return res def add_experiment(self, exp_id, priority): if exp_id in self.running_experiments or exp_id in self.running_immediate_experiments: return if priority < Priority.IMMEDIATE: self.running_experiments.append(exp_id) for _ in range(0, priority * priority): self.running_experiments.insert(0, exp_id) else: self.running_immediate_experiments.append(exp_id) def remove_experiment(self, exp_id): if exp_id not in self.running_experiments and exp_id not in self.running_immediate_experiments: return if exp_id in self.running_immediate_experiments: self.running_immediate_experiments.remove(exp_id) else: while exp_id in self.running_experiments: self.running_experiments.remove(exp_id) def change_exp_priority(self, exp_id, priority): self.remove_experiment(exp_id) self.add_experiment(exp_id, priority) def check_experiment(self, exp_id, priority): exp_has_task, _ = ts.search_task_by_order(exp_id) if exp_has_task: self.add_experiment(exp_id, priority) else: self.remove_experiment(exp_id) scheduler = TaskScheduler() def init(exp_list): for exp_id, exp in exp_list: scheduler.check_experiment(exp_id, exp.priority)
f05ef3db35b450b438b8fb35fa7352dd1b07cac9
6dcc0eca403f58dc48bab0131c5343080d67e548
/pushover2.py
2fba86343518cd3a66f38d7f7e15db104035618b
[]
no_license
cosmicc/galaxymodules
fd81f9ddac485030f593d02797e986b1be36c86d
e35faecf9c6873b4210011fd6158229632f1b074
refs/heads/master
2020-03-14T00:28:48.777772
2018-05-08T02:38:53
2018-05-08T02:38:53
131,357,498
0
0
null
null
null
null
UTF-8
Python
false
false
1,009
py
#!/usr/bin/python2 import logging import urllib import urllib2 from configparser import ConfigParser import json import logging configfile = '/etc/galaxymediatools.cfg' log = logging.getLogger(__name__) config = ConfigParser() config.read(configfile) def pushover(app_key, title='', msg=''): user_key = config.get('pushover', 'user_key') config = { 'api': 'https://api.pushover.net/1/messages.json', 'user': user_key, 'token': app_key } data = urllib.urlencode({ 'user': config['user'], 'token': config['token'], 'title': title, 'message': msg }) try: req = urllib2.Request(config['api'], data) response = urllib2.urlopen(req) except urllib2.HTTPError: log.error('Pushover notification failed. HTTPError') return False res = json.load(response) if res['status'] == 1: log.info('Pushover notification successfully sent') else: log.error('Pushover notification failed')
1f177c883e449841bbf202d21e9fa569fa6e0707
a478ef3c5ac85dc108859fcc4cf4902858a54fb8
/ML/maclib/bin/wheel
fe2c8f6bb880a4e49f000f82d0e5ec47b76dec8c
[]
no_license
ramtiwary/ML_Programs
57ab4328071837f3e56da7f4cb1fefb7693c0994
ace46bf1d493283a3f0a7d15538646c7514a7d0e
refs/heads/master
2020-06-02T20:34:24.975842
2019-06-13T06:24:06
2019-06-13T06:24:06
191,300,344
0
0
null
null
null
null
UTF-8
Python
false
false
238
#!/home/admin1/Desktop/ML/maclib/bin/python2 # -*- coding: utf-8 -*- import re import sys from wheel.cli import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
026ae6da65a3565ed41343c71461ca05cff9ab4f
cf80c258d031c9098e933fd72b4182f06c09971f
/cnn.py
79932b29edf7c9bca4c8cbbbefd58579d73e9545
[]
no_license
ceyhunozkaptan/Convolutional-Neural-Network
51041d447b3dcc43d4b1e00019640004a3697682
ded11d803183a2e4d26d39f8ea6adae769f1fc54
refs/heads/master
2022-03-30T15:58:52.508113
2020-04-19T01:50:21
2020-04-19T01:50:21
256,891,578
0
0
null
null
null
null
UTF-8
Python
false
false
7,972
py
# %% import standard PyTorch modules import torch import torch.nn as nn import torch.optim as optim # import torchvision module to handle image manipulation import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt import numpy as np from tqdm import tqdm if torch.cuda.is_available(): device = torch.device("cuda:0") print("PyTorch is running on GPU!") else: device = torch.device("cpu") print("PyTorch is running on CPU!") # %% CNN MODELS class CNN_model(nn.Module): def __init__(self): super().__init__() # define layers self.layer1_conv = nn.Sequential( nn.BatchNorm2d(num_features=1), # Keeping estimates of mean/variance during training to normalize data during testing/evaluation [https://arxiv.org/pdf/1502.03167.pdf] nn.Conv2d(in_channels=1, out_channels=32, kernel_size=5, padding=2), #1@28x28 -> 32@28x28 nn.ReLU(), nn.Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2), #32@28x28 -> 32@28x28 nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2), #32@28x28 -> 32@14x14 nn.Dropout(0.2)) # Overfitting is reduced by randomly omitting the feature detectors on every forward call [https://arxiv.org/abs/1207.0580] self.layer2_conv = nn.Sequential( nn.BatchNorm2d(num_features=32), nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2), #32@14x14 -> 64@14x14 nn.ReLU(), nn.Conv2d(in_channels=64, out_channels=64, kernel_size=5, padding=2), #64@14x14 -> 64@14x14 nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2), #64@14x14 -> 64@7x7 nn.Dropout(0.3)) self.layer3_fc = nn.Sequential( nn.BatchNorm2d(num_features=64), nn.Flatten(), nn.Linear(in_features=64*7*7, out_features=1000), nn.ReLU()) self.layer4_fc = nn.Sequential( nn.Linear(in_features=1000, out_features=100), nn.ReLU()) # don't need softmax here since we'll use cross-entropy as activation. self.layer5_out = nn.Linear(in_features=100, out_features=10) # define forward function def forward(self, t): t = self.layer1_conv(t) t = self.layer2_conv(t) t = self.layer3_fc(t) t = self.layer4_fc(t) t = self.layer5_out(t) return t # %% PARAMETERS & DATA lr = 0.001 batch_size = 100 epochs = 20 val_set_ratio = 0.1 criterion = nn.CrossEntropyLoss() # Using standard FashionMNIST dataset train_set = torchvision.datasets.FashionMNIST( root = './data/FashionMNIST', train = True, download = True, transform = transforms.Compose([ transforms.ToTensor() ]) ) # train_set, val_set = torch.utils.data.random_split(train_set, [int((1-val_set_ratio)*len(train_set)), int(val_set_ratio*len(train_set))]) train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True) # val_loader = torch.utils.data.DataLoader(val_set, batch_size=batch_size, shuffle=True) test_set = torchvision.datasets.FashionMNIST( root = './data/FashionMNIST', train = False, download = True, transform = transforms.Compose([ transforms.ToTensor() ]) ) test_loader = torch.utils.data.DataLoader(test_set, batch_size=1000, shuffle=False) # %% CNN TRAINING & VALIDATION CNN = CNN_model() CNN.to(device) optimizer = optim.Adam(CNN.parameters(), lr=lr) acc_cnn_train = np.zeros(epochs) loss_cnn_train = np.zeros(epochs) acc_cnn_val = np.zeros(epochs) loss_cnn_val = np.zeros(epochs) best_val_acc = 0 for epoch in range(epochs): #Training Phase CNN.train() # set the CNN to training mode count = 0 correct = 0 total_loss = 0 prog_bar = tqdm(train_loader, desc="Epoch %d (Training the model) " %(epoch), leave=False, ncols = 100) for images,labels in prog_bar: images, labels = images.to(device), labels.to(device) optimizer.zero_grad() # Zero out the gradients in the optimizer # forward + backward + optimize preds = CNN(images) # This calls the forward() function loss = criterion (preds, labels) # Calculate the loss loss.backward() # Backpropagate the gradients optimizer.step() # Update the parameters based on the backpropagation total_loss += loss count += labels.size(0) correct += preds.argmax(dim=1).eq(labels).sum().item() loss_cnn_train[epoch] = total_loss/len(train_loader) acc_cnn_train[epoch] = (correct/count)*100.0 print('Epoch %d : Training Accuracy = %.3f%%, Loss = %.3f (%.2fit/s)' % (epoch, acc_cnn_train[epoch], loss_cnn_train[epoch], 1/prog_bar.avg_time) ) # Validation Phase CNN.eval() # Set the CNN to test mode with torch.no_grad(): # Disables the autograd functionality in the model correct = 0 count = 0 total_loss = 0 for i, (images, labels) in enumerate(test_loader): images, labels = images.to(device), labels.to(device) preds = CNN(images) loss = criterion (preds, labels) total_loss += loss count += labels.size(0) correct += preds.argmax(dim=1).eq(labels).sum().item() loss_cnn_val[epoch] = total_loss/len(test_loader) acc_cnn_val[epoch] = (correct/count)*100.0 print('Validation Accuracy = %.3f%%, Loss = %.3f' % (acc_cnn_val[epoch], loss_cnn_val[epoch])) if (best_val_acc < acc_cnn_val[epoch]): best_val_acc = acc_cnn_val[epoch] torch.save(CNN, 'best_model') # %% CNN TESTING CNN_best = torch.load('best_model') CNN_best.to(device) CNN_best.eval() # Set the CNN_best to test mode acc_cnn_test_batch = np.zeros(len(test_loader)) loss_cnn_test_batch = np.zeros(len(test_loader)) with torch.no_grad(): # Disables the autograd functionality in the model correct = 0 count = 0 for i, (images, labels) in enumerate(test_loader): images, labels = images.to(device), labels.to(device) preds = CNN_best(images) loss = criterion (preds, labels) count += labels.size(0) correct += preds.argmax(dim=1).eq(labels).sum().item() acc_cnn_test_batch[i] = preds.argmax(dim=1).eq(labels).sum().item()/labels.size(0)*100.0 loss_cnn_test_batch[i] = loss print('Batch %d : Test Accuracy = %.3f%%, Loss = %.3f' % (i,acc_cnn_test_batch[i], loss_cnn_test_batch[i])) print('Overall Accuracy = %.3f%%' % ((correct/count)*100.0)) acc_cnn_test = (correct/count)*100 # %% PlOTTING RESULTS f_test = plt.figure(figsize=(8,5)) plt.plot(acc_cnn_test_batch) plt.title("Test Accuracy on Different Batches (Overall = %.3f%%)" %(acc_cnn_test)) plt.ylabel("Accuracy (%)") plt.xlabel('Batch Number') plt.grid(True, linestyle=':') plt.xticks(np.arange(0, len(test_loader))) plt.autoscale(enable=True, axis='x', tight=True) f_train = plt.figure(figsize=(8,5)) plt.plot(acc_cnn_train, label='Training Accuracy') plt.plot(acc_cnn_val, label='Validation Accuracy') plt.title("Training and Validation Accuracy") plt.ylabel("Accuracy (%)") plt.xlabel('Number of Epochs') plt.grid(True, linestyle=':') plt.xticks(np.arange(0, len(acc_cnn_train),step=2)) plt.autoscale(enable=True, axis='x', tight=True) f_train_loss = plt.figure(figsize=(8,5)) plt.plot(loss_cnn_train, label='Training Loss') plt.plot(loss_cnn_val, label='Validation Loss') plt.title("Training and Validation Loss") plt.ylabel("Cross Entropy Loss") plt.xlabel('Number of Epochs') plt.grid(True, linestyle=':') plt.xticks(np.arange(0, len(acc_cnn_train),step=2)) plt.autoscale(enable=True, axis='x', tight=True) plt.show()
066c3775bbd45fe401a7ff580b9ac70a1e898d56
1f27158da1b1c8af9a6f3cbb0964b16034e92c5b
/src/no_symptoms_classif.py
d70404cf6e129cdabcb298afd9ea9e30ecae69dd
[]
no_license
GaetanChambres/respiratory_classifier
d1791689102575505880f78d181e200a0a100a8d
c474e7ba533230747dd32c9c82675a6e8bb87ba1
refs/heads/master
2021-06-29T22:39:30.712593
2020-10-23T14:18:18
2020-10-23T14:18:18
178,048,636
0
0
null
null
null
null
UTF-8
Python
false
false
4,254
py
import pandas as pd import numpy as np import xgboost as xgb import csv as csv import sys # from sklearn.model_selection import train_test_split import sklearn.metrics as sklm import warnings warnings.filterwarnings("ignore") def csv_nb_cols(fname,delimiter): line = fname.readline() data = line.split(delimiter) nb_col = len(data) return nb_col def file_len(fname): with open(fname) as f: for i, l in enumerate(f): pass return i + 1 arguments = sys.argv dir = arguments[1] # input_train = "./experiments/data/equal_split/ft_train.csv" # info_train = "./experiments/data/equal_split/train.csv" # input_train = "./experiments/data/lookalike/ft_train.csv" # info_train = "./experiments/data/lookalike/train.csv" # input_train = "./experiments/data/all/ft_train.csv" # info_train = "./experiments/data/all/train.csv" # input_train = "./experiments/data/equal_split/ft_test.csv" # info_train = "./experiments/data/equal_split/test.csv" # input_train = "./experiments/data/lookalike/ft_test.csv" # info_train = "./experiments/data/lookalike/test.csv" # input_train = "./experiments/data/all/ft_test.csv" # info_train = "./experiments/data/all/test.csv" # input_train = "./experiments/data/horse_v3/ft_test.csv" # info_train = "./experiments/data/horse_v3/test.csv" input_train = dir+"ft_test.csv" info_train = dir+"test.csv" # ----------------------------------------------------------------------------- # input_test = "./experiments/data/equal_split/ft_test.csv" # info_test = "./experiments/data/equal_split/test.csv" # input_test = "./experiments/data/lookalike/ft_test.csv" # info_test = "./experiments/data/lookalike/test.csv" # input_test = "./experiments/data/all/ft_test.csv" # info_test = "./experiments/data/all/test.csv" # input_test = "./experiments/data/equal_split/ft_train.csv" # info_test = "./experiments/data/equal_split/train.csv" # input_test = "./experiments/data/lookalike/ft_train.csv" # info_test = "./experiments/data/lookalike/train.csv" # input_test = "./experiments/data/all/ft_train.csv" # info_test = "./experiments/data/all/train.csv" # input_test = "./experiments/data/horse_v3/ft_train.csv" # info_test = "./experiments/data/horse_v3/train.csv" input_test = dir+"ft_train.csv" info_test = dir+"train.csv" with open(input_train) as f1: nbcols_train = csv_nb_cols(f1,delimiter = ",") # print(nbcols_train) with open(input_test) as f2: nbcols_test = csv_nb_cols(f2,delimiter = ",") # print(nbcols_test) print("-- Loading train files") features_train = np.loadtxt(input_train, delimiter=",", skiprows = 0, usecols=range(1,nbcols_train)) # print(train_dataset) labels_train = np.loadtxt(info_train,delimiter = ',',skiprows = 0, usecols=range(1,2)) # labels = train_info[:,0:1] # labels count unique, counts = np.unique(labels_train, return_counts=True) print("Train class counter :"+str(dict(zip(unique, counts)))) print("-- Loading test files") features_test = np.loadtxt(input_test, delimiter=",", skiprows = 0, usecols=range(1,nbcols_test)) # print(features_test) labels_test = np.loadtxt(info_test,delimiter = ',', skiprows = 0, usecols=range(1,2)) # print(labels_test) # labels count unique, counts = np.unique(labels_test, return_counts=True) print("Test class counter :"+str(dict(zip(unique, counts)))) tree = xgb.XGBClassifiertree = xgb.XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=3, min_child_weight=1, missing=None, n_estimators=100, n_jobs=1, nthread=None, objective='binary:logistic', random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None, silent=True, subsample=1) print("-- Training model") tree.fit(features_train,labels_train) # xgb.plot_importance(tree,max_num_features = 25) from matplotlib import pyplot # xgb.plot_tree(model) # pyplot.show() print() preds = tree.predict(features_test) predictions = [round(value) for value in preds] print("-- Testing model") from sklearn.metrics import accuracy_score # print(preds) accuracy = accuracy_score(labels_test, preds) print("Accuracy: %.2f%%" % (accuracy * 100.0)) from sklearn.metrics import classification_report print(classification_report(labels_test, preds))
6a1ca19e78e7528364bc0b93d19a51ccb649f761
f4be3422b28dda8802ea75368d665d17b634b83f
/babo/__init__.py
5d6700be06951195e3f22bed513d5b4a0e966b6e
[]
no_license
carpedm20/babo
0bab8abee49058fb4c0c6ab629f174d8a85d50a7
1fae47214918b4a64fc305787fb6a4df07c49768
refs/heads/master
2020-04-15T16:12:10.274756
2014-08-15T12:00:33
2014-08-15T12:00:33
22,943,235
2
1
null
null
null
null
UTF-8
Python
false
false
429
py
# -*- coding: utf-8 -*- """ babo ~~~~ The world will have a generation of idiots.. by Albert Einstein :copyright: (c) 2014 by Taehoon Kim. :license: BSD, see LICENSE for more details. """ __copyright__ = 'Copyright 2014 by Taehoon Kim' __version__ = '0.0.1' __license__ = 'BSD' __author__ = 'Taehoon Kim' __author_email__ = '[email protected]' __url__ = 'http://github.com/carpedm20/babo' __all__ = [ ]
64627dc136bf1d70631a5615c7dcda6512f17bd4
d66cdcdf898744d3b697dffae0030bf6ed861fc3
/src/item_manager/urls.py
8b8746735ce07c072b443e8a8a51b8eebc32eb39
[]
no_license
lautarobarba/item-manager
9ab1ad69a8d91ca6e4ad1d8dbb29fb1386bae342
034ce075c5e5e246fed8fa9baf71ccfbffafc0ee
refs/heads/main
2023-03-15T03:36:25.027355
2021-03-05T22:18:11
2021-03-05T22:18:11
341,726,519
1
0
null
null
null
null
UTF-8
Python
false
false
911
py
"""item_manager URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from django.contrib.auth import views as auth_views urlpatterns = [ path('', include('app.urls')), #path('admin/', admin.site.urls), path('accounts/', include('django.contrib.auth.urls')), ]
7d2e47d7ad466c15c34f6e332fe816a049e752ba
157ccf908516e0707d88a30aa7048cdb68180154
/Experiment/PythonOperators.py
b8c11146645d46427a67836208658b787c143c4d
[]
no_license
BhuiyanMH/Python3
bed45ba55a7d0b71eec9b59da24e1ad01410e4ac
ef1615fd46e8b9793467a427c61eea9d161b75e3
refs/heads/master
2021-08-24T10:31:04.166448
2017-12-09T06:54:46
2017-12-09T06:54:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
610
py
#floor division print(15//6) #exponent print(2**5) #Bitwise not print(~2) #bitwise XOR print(3^4) #bitwise Left shift print(8<<1) #bitwise right shift print(32>>1) #Identity operator #is -> true if operands refers to the same object #is not -> True if operands does not refers to the same object #list are always different x = 5 y = 5 print(x is y) print(x is not y) #membership operator #in -> True if value or variable is found in the sequence #not in -> True if value/variable is not found in the sequence x = "hello world" y={1:'a', 2:'b', 3:'c'} print('h' in x) print('a' in y)#match the keys
7fd1c69b2e824a1d6bd46e9f2c6ba098cffdf4a6
0335a5fb8a553f243e29e5aee704238612c6dd11
/doc/Sphinx/_static/vecto_maxwellian_plasma_3d.py
7806e010b0d1477519f8bbc41a7559c245f7148c
[]
no_license
ALaDyn/Smilei
a91b093da10ae4953e5a8d3397846952029a9979
81d858dd97ecbceb71dac804ee009763d50eb836
refs/heads/master
2023-07-20T16:56:01.085438
2023-07-05T10:13:57
2023-07-05T10:13:57
62,309,652
5
0
null
2016-06-30T12:41:29
2016-06-30T12:41:28
null
UTF-8
Python
false
false
2,603
py
# __________________________________________________________ # # Maxwellian homogeneous plasma namelist for SMILEI # This script is used for the vectorization study # __________________________________________________________ import os import numpy as np c = 299792458 lambdar = 1e-6 wr = 2*np.pi*c/lambdar Te = 100./511. # electron & ion temperature in me c^2 Ti = 10./511. # electron & ion temperature in me c^2 n0 = 1. lambdap = 2*np.pi/n0 Lde = np.sqrt(Te) # Debye length in units of c/\omega_{pe} cell_length = [0.5*Lde,0.5*Lde,0.5*Lde] # timestep (0.95 x CFL) dt = 0.95 * cell_length[0]/np.sqrt(3.) # Number of particles per cells particles_per_cell = 10 # Vectorization vectorization = "adaptive" # Small patches that can fit in cache cells_per_patch = [8,8,8] # 24 cores per sockets so at least 48 patches per node to fill all cores # Depends on the architecture patches_per_node = [5,8,8] # Simulation time simulation_time = 100*dt # Particle initialization position_initialization = 'random' # Density profile def n0_(x,y,z): return n0 # Number of nodes nodes = [1,1,1] # Number of patches patches = [nodes[i]*patches_per_node[i] for i in range(3)] # grid length grid_length = [cells_per_patch[i]*patches[i]*cell_length[i] for i in range(3)] Main( geometry = "3Dcartesian", interpolation_order = 2, timestep = dt, simulation_time = simulation_time, cell_length = cell_length, grid_length = grid_length, number_of_patches = patches, EM_boundary_conditions = [ ["periodic"] ], patch_arrangement = "linearized_XYZ", ) Vectorization( mode = vectorization, ) Species( name = "proton", position_initialization = position_initialization, momentum_initialization = "mj", particles_per_cell = particles_per_cell, c_part_max = 1.0, mass = 1836.0, charge = 1.0, charge_density = n0, mean_velocity = [0., 0.0, 0.0], temperature = [Ti], pusher = "boris", boundary_conditions = [ ["periodic", "periodic"], ["periodic", "periodic"], ["periodic", "periodic"], ], ) Species( name = "electron", position_initialization = position_initialization, momentum_initialization = "mj", particles_per_cell = particles_per_cell, c_part_max = 1.0, mass = 1.0, charge = -1.0, charge_density = n0, mean_velocity = [0., 0.0, 0.0], temperature = [Te], pusher = "boris", boundary_conditions = [ ["periodic", "periodic"], ["periodic", "periodic"], ["periodic", "periodic"], ], )
e037a3f03bb035f9294a2db24cabd7bccc5d1501
96dcea595e7c16cec07b3f649afd65f3660a0bad
/homeassistant/components/demo/time.py
56ab715a7f7ed7eb6c4c24c99973845bd00f6ad4
[ "Apache-2.0" ]
permissive
home-assistant/core
3455eac2e9d925c92d30178643b1aaccf3a6484f
80caeafcb5b6e2f9da192d0ea6dd1a5b8244b743
refs/heads/dev
2023-08-31T15:41:06.299469
2023-08-31T14:50:53
2023-08-31T14:50:53
12,888,993
35,501
20,617
Apache-2.0
2023-09-14T21:50:15
2013-09-17T07:29:48
Python
UTF-8
Python
false
false
1,515
py
"""Demo platform that offers a fake time entity.""" from __future__ import annotations from datetime import time from homeassistant.components.time import TimeEntity from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant from homeassistant.helpers.device_registry import DeviceInfo from homeassistant.helpers.entity_platform import AddEntitiesCallback from . import DOMAIN async def async_setup_entry( hass: HomeAssistant, config_entry: ConfigEntry, async_add_entities: AddEntitiesCallback, ) -> None: """Set up the demo time platform.""" async_add_entities([DemoTime("time", "Time", time(12, 0, 0), "mdi:clock", False)]) class DemoTime(TimeEntity): """Representation of a Demo time entity.""" _attr_has_entity_name = True _attr_name = None _attr_should_poll = False def __init__( self, unique_id: str, device_name: str, state: time, icon: str, assumed_state: bool, ) -> None: """Initialize the Demo time entity.""" self._attr_assumed_state = assumed_state self._attr_icon = icon self._attr_native_value = state self._attr_unique_id = unique_id self._attr_device_info = DeviceInfo( identifiers={(DOMAIN, unique_id)}, name=device_name ) async def async_set_value(self, value: time) -> None: """Update the time.""" self._attr_native_value = value self.async_write_ha_state()
bc46fa92cc0e5aa96905e3ca9d4de129a510c935
d9759cc2d395670909fcfc6e077592d2a9f0f808
/venv/bin/flask
dd5fc33e65fa343038bb09cecdad066acd8eee4d
[]
no_license
milosnikic/DashProject
2aec93a6941a80803d9375111f6cbf6d46100a4b
60b5eb3ef9ab44826e9564274036d06c75364d6b
refs/heads/master
2022-12-11T12:08:44.263222
2019-06-05T15:39:58
2019-06-05T15:39:58
190,413,685
0
0
null
2022-12-08T05:13:06
2019-06-05T14:46:49
Python
UTF-8
Python
false
false
274
#!/home/milos/Desktop/python_projects/data_visualization_crowd/venv/bin/python3.6 # -*- coding: utf-8 -*- import re import sys from flask.cli import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
dcfd89b86c66a498d7c4394c360ef086735f3163
2d706b8bd69aa172277515e89ed01add51a604d5
/Projeto3_camadas/server.py
1101684c09ce0c9774a7fb77eeb11d942fa3f078
[]
no_license
guilhermecarvalhoacc/Camada_fisica
a17ae73e5065c09745c3ca32277906a23ddf3228
863fced4bfecd04358bad6258dfee8212cfd5af2
refs/heads/master
2023-04-03T12:00:54.245965
2021-04-08T19:52:34
2021-04-08T19:52:34
344,915,701
0
0
null
null
null
null
UTF-8
Python
false
false
5,165
py
##################################################### # Camada Física da Computação #Carareto #11/08/2020 #Aplicação #################################################### #esta é a camada superior, de aplicação do seu software de comunicação serial UART. #para acompanhar a execução e identificar erros, construa prints ao longo do código! from math import ceil from os import sendfile from enlace import * import time import numpy as np from funcoes import * # voce deverá descomentar e configurar a porta com através da qual ira fazer comunicaçao # para saber a sua porta, execute no terminal : # python -m serial.tools.list_ports # se estiver usando windows, o gerenciador de dispositivos informa a porta #use uma das 3 opcoes para atribuir à variável a porta usada serialName = "/dev/ttyACM1" # Ubuntu (variacao de) imageW = './img/recebidaCopia.jpg' def main(): try: #declaramos um objeto do tipo enlace com o nome "com". Essa é a camada inferior à aplicação. Observe que um parametro #para declarar esse objeto é o nome da porta. com2 = enlace(serialName) certo = (9).to_bytes(2, byteorder='big') print(f"ESSA É A RESPOSTA DO SERVIDOR FALANDO QUE O ENVIO DEU CERTO: {certo}") errado = (7).to_bytes(2, byteorder='big') print(f"ESSA É A RESPOSTA DO SERVIDOR FALANDO QUE O ENVIO DEU ERRADO: {errado}") confirmacao = cria_head(zero_bytes_id,zero_bytes,zero_bytes,certo) + EOP_bytes print(f"ESSE AKI EH A CONFIRMAÇÃO: {confirmacao}") negacao = cria_head(zero_bytes_id,zero_bytes,zero_bytes,errado) + EOP_bytes # Ativa comunicacao. Inicia os threads e a comunicação seiral com2.enable() #Se chegamos até aqui, a comunicação foi aberta com sucesso. Faça um print para informar. print('A comunicação foi aberta com sucesso!') recebe_handshake = com2.getData(14)[0] print("Recebeu hankdshake") print(f" ESSE EH O HANDSHAKE: {recebe_handshake}") time.sleep(0.2) com2.sendData(cria_handshake(is_handshake=True)) print("enviando resposta") print(f"esse eh o hankdshake: {recebe_handshake}") tipo_msg_handshake = recebe_handshake[8:10] #if tipo_msg_handshake == (2).to_bytes(2, byteorder='big'): # print("Handshake recebido com sucesso! Comunicação operacional") comando = True lista_payload = bytearray() id_pacote = 1 while comando: id_byte = (1).to_bytes(4, byteorder='big') time.sleep(0.5) recebe_head = com2.getData(10)[0] #print(recebe_head) recebe_id = recebe_head[0:4] #print(f"esse eh o id:{recebe_id}") recebe_num_pacotes = recebe_head[4:6] #print(f"esse eh o num de pacotes: {recebe_num_pacotes}") recebe_tamanho_payload = recebe_head[6:8] recebe_tipo_msg = recebe_head[8:10] tamanho_payload_int = int.from_bytes(recebe_tamanho_payload, byteorder='big') #print(f"esse eh o tamanho do payload em inteiro:{tamanho_payload_int}") recebe_payload = com2.getData(tamanho_payload_int)[0] recebe_EOP = com2.getData(4)[0] #print(f"esse eh o EOP: {recebe_EOP}") lista_payload.extend(recebe_payload) recebe_id_int = int.from_bytes(recebe_id, byteorder='big') recebe_num_pacotes_int = int.from_bytes(recebe_num_pacotes, byteorder='big') #print(f"Esse eh o id do pacote em int{recebe_id_int}") #print(id_pacote) if recebe_id_int != id_pacote: com2.sendData(negacao) #msg de erro enviada para client solicitando reenvio. print("id do pacote diferente") else: if len(recebe_payload) != tamanho_payload_int: print("TAMANHO DO PAYLOAD DIFERENTE") com2.sendData(negacao) else: if recebe_EOP != EOP_bytes: print("EDOP DIFERENTE") com2.sendData(negacao) else: com2.sendData(confirmacao) print("ENVIANDO CONFIRMAÇÃO DE RECEBIMENTO PRA O CLIENT") id_pacote += 1 if recebe_id_int == recebe_num_pacotes_int: print("Ultimo pacote recebido!") comando = False print("saiu do loop") print(lista_payload) print('Salvando dados dos arquivos: ') f = open(imageW, 'wb') f.write(lista_payload) # Encerra comunicação print("-------------------------") print("Comunicação encerrada") print("-------------------------") com2.disable() except Exception as erro: print("ops! :-\\") print(erro) com2.disable() #so roda o main quando for executado do terminal ... se for chamado dentro de outro modulo nao roda if __name__ == "__main__": main()
1e897b3e4ce74d5cb83c9c03a4eaab8cb37cd714
3f71801940fc9717126c2ed0c21d68baaf854c94
/modules/machine_learning/advanced_model/main.py
43b93fbb75e72e04eea59233eee96d0d5c62592d
[]
no_license
QMIND-Team/Sabermetrics
7cf548bf88b2a609d0f74d1207f7d49d80516246
9638a93bf36c936b43c0a546bec3ed5d1796862c
refs/heads/master
2020-04-05T13:48:06.322694
2019-03-31T17:36:30
2019-03-31T17:36:30
156,910,170
3
3
null
2019-03-31T17:43:22
2018-11-09T19:44:11
Jupyter Notebook
UTF-8
Python
false
false
2,468
py
import warnings import modules.machine_learning.main_model.help_main as help_main warnings.filterwarnings("ignore") import modules.machine_learning.advanced_model.main_advanced_functions as maf ''' Methods: LR = Linear Regression SVM = Support Vector Machine XGB = XGBOOST --------------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------------- _____________________________________________CONTROL START_________________________________________ ''' #Starting features for the model (currently the best for LR) #testedFeatures = ['G_y', 'GS', 'WAR_x', 'BB%','K/9', 'GB%', 'ERA','xFIP', 'LOB%'] #best combination for LR testedFeatures = ['L'] requiredColumns = ["Season","Team",] allFeatures = ['L', 'SV', 'G_x', 'GS', 'IP', 'SO', 'K/9', 'BB/9', 'HR/9', 'BABIP_x', 'LOB%', 'GB%', 'HR/FB', 'ERA', 'FIP', 'xFIP', 'WAR_x', 'G_y', 'PA', 'HR', 'R', 'RBI', 'SB', 'BB%', 'K%', 'ISO', 'BABIP_y', 'AVG', 'OBP', 'SLG', 'wOBA', 'wRC+', 'BsR', 'Off', 'Def', 'WAR_y'] targetFeature = "W" method = "LR" # --------------------------------------------Functions Start----------------------------------------------- #Train advancedModel = 1 if advancedModel ==1: seasonToPredict = 2016 testRange = 4 end = seasonToPredict start = end - (testRange*3) showProcess = 1 #features = ['G_y', 'OBP', 'IP', 'WAR_x', 'SB', 'AVG', 'HR/FB', 'K%', 'LOB%', 'xFIP', 'BB/9', 'Def', 'ERA', 'SLG', 'BABIP_x', 'PA', 'SV', 'R', 'Off', 'WAR_y', 'HR/9'] features = ['G_y'] #quick model ''' _________________________________________________CONTROL END_______________________________________ --------------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------''' requiredColumns.append(targetFeature) df = help_main.getAll(start, end) allFeatures = df.columns toTestFeatures = help_main.getSortedFeatures(testedFeatures, requiredColumns, allFeatures) if advancedModel ==1: maf.advancedModel(features,df,end,start,showProcess,testRange,targetFeature,method,testRange)
0b1ac565b5be40a5358caec120a9e5dace2871eb
e8bc60d7de7d70418fc13bf60c4d2d9905686fad
/node_modules/websocket/build/config.gypi
577cfb0c38de567c8bb35f5e590aec03117998ef
[ "Apache-2.0" ]
permissive
meizi8475/lotteryapp
ecf220e2a105621e6554d65b18739bf87a372090
6eea6c7fbc70996712cd3041eff731e08ec9203b
refs/heads/master
2021-01-01T16:00:22.989038
2012-12-27T02:52:40
2012-12-27T02:52:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,766
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "clang": 0, "gcc_version": 42, "host_arch": "x64", "node_install_npm": "true", "node_install_waf": "true", "node_prefix": "out/dist-osx/usr/local", "node_shared_openssl": "false", "node_shared_v8": "false", "node_shared_zlib": "false", "node_unsafe_optimizations": 0, "node_use_dtrace": "false", "node_use_etw": "false", "node_use_openssl": "true", "target_arch": "x64", "v8_no_strict_aliasing": 1, "v8_use_snapshot": "false", "nodedir": "/Users/wangyuxin/.node-gyp/0.8.14", "copy_dev_lib": "true", "save_dev": "", "viewer": "man", "browser": "", "rollback": "true", "usage": "", "globalignorefile": "/usr/local/etc/npmignore", "shell": "/bin/bash", "init_author_url": "", "parseable": "", "userignorefile": "/Users/wangyuxin/.npmignore", "sign_git_tag": "", "init_author_email": "", "cache_max": "null", "long": "", "ignore": "", "npat": "", "fetch_retries": "2", "registry": "https://registry.npmjs.org/", "versions": "", "message": "%s", "globalconfig": "/usr/local/etc/npmrc", "always_auth": "", "cache_lock_retries": "10", "proprietary_attribs": "true", "fetch_retry_mintimeout": "10000", "json": "", "coverage": "", "pre": "", "https_proxy": "", "engine_strict": "", "description": "true", "userconfig": "/Users/wangyuxin/.npmrc", "init_module": "/Users/wangyuxin/.npm-init.js", "npaturl": "http://npat.npmjs.org/", "user": "", "node_version": "v0.8.14", "save": "", "editor": "vi", "tag": "latest", "global": "", "username": "", "optional": "true", "force": "", "searchopts": "", "depth": "null", "searchsort": "name", "rebuild_bundle": "true", "yes": "", "unicode": "true", "fetch_retry_maxtimeout": "60000", "strict_ssl": "true", "group": "20", "fetch_retry_factor": "10", "dev": "", "version": "", "cache_lock_stale": "60000", "cache_min": "", "searchexclude": "", "cache": "/Users/wangyuxin/.npm", "color": "true", "save_optional": "", "user_agent": "node/v0.8.14", "cache_lock_wait": "10000", "production": "", "save_bundle": "", "umask": "18", "init_version": "0.0.0", "init_author_name": "", "git": "git", "unsafe_perm": "true", "tmp": "/var/folders/7v/2n4vn90x027dgn3tb2v8wbqm0000gp/T/", "onload_script": "", "prefix": "/usr/local", "link": "" } }
e64403cef75b958cb80399e2f3cbc03b75b6fc44
ffdc77394c5b5532b243cf3c33bd584cbdc65cb7
/mindspore/python/mindspore/ops/_op_impl/aicpu/adjust_contrastv2.py
480c1d4ad85d17196db9b50d3504b3bda9cc95b8
[ "Apache-2.0", "LicenseRef-scancode-proprietary-license", "MPL-1.0", "OpenSSL", "LGPL-3.0-only", "LicenseRef-scancode-warranty-disclaimer", "BSD-3-Clause-Open-MPI", "MIT", "MPL-2.0-no-copyleft-exception", "NTP", "BSD-3-Clause", "GPL-1.0-or-later", "0BSD", "MPL-2.0", "LicenseRef-scancode-free-unknown", "AGPL-3.0-only", "Libpng", "MPL-1.1", "IJG", "GPL-2.0-only", "BSL-1.0", "Zlib", "LicenseRef-scancode-public-domain", "LicenseRef-scancode-python-cwi", "BSD-2-Clause", "LicenseRef-scancode-gary-s-brown", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "Python-2.0", "LicenseRef-scancode-mit-nagy", "LicenseRef-scancode-other-copyleft", "LicenseRef-scancode-unknown-license-reference", "Unlicense" ]
permissive
mindspore-ai/mindspore
ca7d5bb51a3451c2705ff2e583a740589d80393b
54acb15d435533c815ee1bd9f6dc0b56b4d4cf83
refs/heads/master
2023-07-29T09:17:11.051569
2023-07-17T13:14:15
2023-07-17T13:14:15
239,714,835
4,178
768
Apache-2.0
2023-07-26T22:31:11
2020-02-11T08:43:48
C++
UTF-8
Python
false
false
1,309
py
# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """AdjustContrastv2 op""" from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType adjust_contrastv2_op_info = AiCPURegOp("AdjustContrastv2") \ .fusion_type("OPAQUE") \ .input(0, "images", "required") \ .input(1, "contrast_factor", "required") \ .output(0, "y", "required") \ .dtype_format(DataType.F16_Default, DataType.F32_Default, DataType.F16_Default) \ .dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \ .get_op_info() @op_info_register(adjust_contrastv2_op_info) def _adjust_contrastv2_aicpu(): """AdjustContrastv2 aicpu register""" return
6d814310509a8617c96fc6933c1b37729a338e20
e86c331b0b4c3f0fc17cfb652a31b010a02d2154
/smart_calculater.py
9a5673e8e05c58356b1a0ebe19aef2499f8f89ea
[]
no_license
Divyansh2611/smart_calculator
3fc58c4f521fe18ccd5a4d8e2eab84393f3c270d
d43bdab9cf72e98a811df097563cf1eedd68951e
refs/heads/main
2023-07-08T07:42:30.422824
2021-07-26T18:10:15
2021-07-26T18:10:15
389,727,067
0
0
null
null
null
null
UTF-8
Python
false
false
1,293
py
import tkinter from tkinter import * def fun(): info = e1.get() a=info.split() num=[] for i in range(len(a)): b=a[i] if b.isdigit(): num.append(int(b)) if 'add' in a or 'addition' in a: r=num[0]+num[1] result['text']=r elif 'subtract' in a or 'subtraction' in a: r=num[0]-num[1] result['text']=r elif 'multiply' in a or 'multiplication' in a: r=num[0]*num[1] result['text']=r elif 'divide' in a or 'division' in a: r=num[0]/num[1] result['text']=r elif 'mod' in a or 'modulous' in a: r=num[0]%num[1] result['text']=r else: result['text']='error' win=Tk() win.geometry('400x400') win.title('smart bugger') win.config(bg='black') l1=Label(win,text='I am a Smart calculator',width=20,padx=3) l1.place(x=123,y=30) l2=Label(win,text='My name is Pagger',padx=3) l2.place(x=145,y=70) l3=Label(win,text='How can i help you',padx=3) l3.place(x=145,y=150) e1=Entry(win,width=30) e1.place(x=110,y=180) b1=Button(win,text='Just this',borderwidth=10,command=fun) b1.place(x=170,y=210) result=Label(win,width=20,height=3,bg='white') result.place(x=130,y=260) win.mainloop()
5cf95e015512f4ee695276b29effe2912418a63f
5417c78be442575f3dece55e162914c90c14cef7
/test/dex_offsets.py
cb862314baad4813ece4fce0fce21a828851cfc5
[ "MIT" ]
permissive
Casperinous/Lena
1cbb286600c54f7a59c60ac6372cb8ca67d03980
202ed791ecf8e632b00fea8373d81df9b1f54d2c
refs/heads/master
2021-03-27T11:51:52.468554
2018-06-11T02:40:38
2018-06-11T02:40:38
107,802,298
2
0
null
null
null
null
UTF-8
Python
false
false
432
py
import sys from androguard.core.bytecodes import dvm from androguard.core.bytecodes import apk from androguard.core.bytecodes.dvm import TYPE_MAP_ITEM sys.path.append('../') from dex import Dex FILENAME_INPUT = "../app-debug.apk" print '[*] Getting map_list ....' a = apk.APK(FILENAME_INPUT) vm = dvm.DalvikVMFormat(a.get_dex()) print len(vm.get_all_fields()) print len(vm.map_list.get_item_type("TYPE_FIELD_ID_ITEM").get_obj())
a1250d373944bf65cff70e384219809151ab23bf
fadf50987ab3aaefc993f00187d8a833457e9e97
/torchstat/model_hook.py
3ff8d3a0ebcaae409b34f6e8da4cdb375d8cf88d
[ "MIT" ]
permissive
Hulalazz/torchstat
4cff14e2b272246d9fd7136b969eaab6165abfeb
b533d917ba8f2e0871a60c3ff73704e294b769eb
refs/heads/master
2020-04-04T08:59:07.626893
2018-11-01T09:21:35
2018-11-01T09:21:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,980
py
import time from collections import OrderedDict import numpy as np import torch import torch.nn as nn from torchstat import compute_madd from torchstat import compute_flops class ModelHook(object): def __init__(self, model, input_size): assert isinstance(model, nn.Module) assert isinstance(input_size, (list, tuple)) self._model = model self._input_size = input_size self._origin_call = dict() # sub module call hook self._hook_model() x = torch.rand(1, *self._input_size) # add module duration time self._model.eval() self._model(x) @staticmethod def _register_buffer(module): assert isinstance(module, nn.Module) if len(list(module.children())) > 0: return module.register_buffer('input_shape', torch.zeros(3).int()) module.register_buffer('output_shape', torch.zeros(3).int()) module.register_buffer('parameter_quantity', torch.zeros(1).int()) module.register_buffer('inference_memory', torch.zeros(1).long()) module.register_buffer('MAdd', torch.zeros(1).long()) module.register_buffer('duration', torch.zeros(1).float()) module.register_buffer('Flops', torch.zeros(1).long()) def _sub_module_call_hook(self): def wrap_call(module, *input, **kwargs): assert module.__class__ in self._origin_call start = time.time() output = self._origin_call[module.__class__](module, *input, **kwargs) end = time.time() module.duration = torch.from_numpy( np.array([end - start], dtype=np.float32)) module.input_shape = torch.from_numpy( np.array(input[0].size()[1:], dtype=np.int32)) module.output_shape = torch.from_numpy( np.array(output.size()[1:], dtype=np.int32)) parameter_quantity = 0 # iterate through parameters and count num params for name, p in module._parameters.items(): parameter_quantity += (0 if p is None else torch.numel(p.data)) module.parameter_quantity = torch.from_numpy( np.array([parameter_quantity], dtype=np.long)) inference_memory = 1 for s in output.size()[1:]: inference_memory *= s # memory += parameters_number # exclude parameter memory inference_memory = inference_memory * 4 / (1024 ** 2) # shown as MB unit module.inference_memory = torch.from_numpy( np.array([inference_memory], dtype=np.float32)) if len(input) == 1: madd = compute_madd(module, input[0], output) flops = compute_flops(module, input[0], output) elif len(input) > 1: madd = compute_madd(module, input, output) flops = compute_flops(module, input, output) else: # error madd = 0 flops = 0 module.MAdd = torch.from_numpy( np.array([madd], dtype=np.int64)) module.Flops = torch.from_numpy( np.array([flops], dtype=np.int64)) return output for module in self._model.modules(): if len(list(module.children())) == 0 and module.__class__ not in self._origin_call: self._origin_call[module.__class__] = module.__class__.__call__ module.__class__.__call__ = wrap_call def _hook_model(self): self._model.apply(self._register_buffer) self._sub_module_call_hook() @staticmethod def _retrieve_leaf_modules(model): leaf_modules = [] for name, m in model.named_modules(): if len(list(m.children())) == 0: leaf_modules.append((name, m)) return leaf_modules def retrieve_leaf_modules(self): return OrderedDict(self._retrieve_leaf_modules(self._model))
5aac12f50a7d3c33b9c2797a1d90192b97b9ea24
c78e61ccee6ac695d3f71f72fc3212fdd2c1d193
/cfed_timestep_comp.py
d2ac35905b1a4a0d651d5ae895ee6e77bc35a7ae
[]
no_license
bbw7561135/phd_code
28557e84228119dd204f9e16ca27d7c7cef81188
ef06c317115f0744a7941796c4092e489923ef4e
refs/heads/master
2021-06-13T02:35:08.475474
2017-02-26T21:12:17
2017-02-26T21:12:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
55,751
py
#------------------------------------------------------------------------------# # # # This code is a Python script that reads in arrays of synchrotron intensity # # produced at different times in the evolution of the simulation, and # # calculates the normalised correlation functions, structure functions, # # and quadrupole ratios of the synchrotron intensity maps, for different # # lines of sight. Plots are then produced of the normalised correlation # # functions, structure functions, quadrupole ratios. This code is intended to # # be used with simulations produced by Christoph Federrath. # # # # Author: Chris Herron # # Start Date: 20/1/2016 # # # #------------------------------------------------------------------------------# # First import numpy for array handling, matplotlib for plotting, astropy.io # for fits manipulation, scipy.stats for calculating statistical quantities import numpy as np import matplotlib.pyplot as plt from astropy.io import fits from scipy import stats # Import the functions that calculate the structure and correlation functions # using FFT, as well as the function that calculates the radially averaged # structure or correlation functions. Also import the function that calculates # multipoles of the 2D structure functions, and the function that calculates the # magnitude and argument of the quadrupole ratio from sf_fft import sf_fft from cf_fft import cf_fft from sfr import sfr from calc_multipole_2D import calc_multipole_2D from calc_quad_ratio import calc_quad_ratio # Define a function that calculates the errors in statistics by breaking up # synchrotron images into quarters, calculating statistics for each quarter, and # then calculates the standard deviation of the statistics. def calc_err_bootstrap(sync_map, log = False): ''' Description This function divides the given images into quarters, and then calculates statistics for each quarter. The standard deviation of the calculated statistics is then returned, representing the error on each statistic. Required Input sync_map - The synchrotron intensity map. Should be a 2D Numpy array. log - A boolean value. If True, then the moments are calculated for the the logarithm of the PDF, and not the PDF itself Output mean_err - The error calculated for the mean of synchrotron intensity stdev_err - The error calculated for the standard deviation of the synchrotron intensity skew_err - The error calculated for the skewness of synchrotron intensity kurt_err - The error calculated for the kurtosis of synchrotron intensity m_err - The error calculated for the structure function slope of the synchrotron intensity residual_err - The error calculated for the residual of the linear fit to the structure function of synchrotron intensity int_quad_err - The error calculated for the integrated quadrupole ratio modulus of the synchrotron intensity quad_point_err - The error calculated for the value of the quadrupole ratio modulus at a point of synchrotron intensity ''' # Create an array that will hold the quarters of the synchrotron images quarter_arr = np.zeros((4,np.shape(sync_map)[0]/2,np.shape(sync_map)[1]/2)) # Add the quarters of the images into the array quarter_arr[0], quarter_arr[1] = np.split(np.split(sync_map,2,axis=0)[0],2,axis=1) quarter_arr[2], quarter_arr[3] = np.split(np.split(sync_map,2,axis=0)[1],2,axis=1) # Create arrays that will hold the calculated statistics for each quarter mean_val = np.zeros(np.shape(quarter_arr)[0]) stdev_val = np.zeros(np.shape(quarter_arr)[0]) skew_val = np.zeros(np.shape(quarter_arr)[0]) kurt_val = np.zeros(np.shape(quarter_arr)[0]) m_val = np.zeros(np.shape(quarter_arr)[0]) resid_val = np.zeros(np.shape(quarter_arr)[0]) int_quad_val = np.zeros(np.shape(quarter_arr)[0]) # Loop over the quarters, to calculate statistics for each one for i in range(np.shape(quarter_arr)[0]): # Extract the current image quarter from the array image = quarter_arr[i] # Flatten the image, so that we can calculate the skewness and kurtosis flat_image = image.flatten() # If we are calculating moments of the log PDFs, then calculate the # logarithm of the flat image if log == True: # In this case we are calculating the moments of the log PDFs, so # calculate the log PDFs flat_image = np.log10(flat_image) # Calculate the mean of the synchrotron intensity map mean_val[i] = np.mean(flat_image, dtype=np.float64) # Calculate the standard deviation of the synchrotron intensity map stdev_val[i] = np.std(flat_image, dtype=np.float64) # Calculate the biased skewness of the synchrotron intensity map skew_val[i] = stats.skew(flat_image) # Calculate the biased Fisher kurtosis of the synchrotron intensity # maps kurt_val[i] = stats.kurtosis(flat_image) # Calculate the structure function (two-dimensional) of the synchrotron # intensity map. Note that no_fluct = True is set, because we are not # subtracting the mean from the synchrotron maps before calculating the # structure function. strfn = sf_fft(image, no_fluct = True) # Radially average the calculated 2D structure function, using the # specified number of bins. rad_sf = sfr(strfn, num_bins, verbose = False) # Extract the calculated radially averaged structure function sf = rad_sf[1] # Extract the radius values used to calculate this structure function. sf_rad_arr = rad_sf[0] # Calculate the spectral index of the structure function calculated for # this value of gamma. Note that only the first third of the structure # function is used in the calculation, as this is the part that is # close to a straight line. spec_ind_data = np.polyfit(np.log10(\ sf_rad_arr[5:14]),\ np.log10(sf[5:14]), 1, full = True) # Extract the returned coefficients from the polynomial fit coeff = spec_ind_data[0] # Extract the sum of the residuals from the polynomial fit resid_val[i] = spec_ind_data[1] # Enter the value of m, the slope of the structure function minus 1, # into the corresponding array m_val[i] = coeff[0]-1.0 # Calculate the 2D structure function for this slice of the synchrotron # intensity data cube. Note that no_fluct = True is set, because we are # not subtracting the mean from the synchrotron maps before calculating # the structure function. We are also calculating the normalised # structure function, which only takes values between 0 and 2. norm_strfn = sf_fft(image, no_fluct = True, normalise = True) # Shift the 2D structure function so that the zero radial separation # entry is in the centre of the image. norm_strfn = np.fft.fftshift(norm_strfn) # Calculate the magnitude and argument of the quadrupole ratio quad_mod, quad_arg, quad_rad = calc_quad_ratio(norm_strfn, num_bins) # Integrate the magnitude of the quadrupole / monopole ratio from # one sixth of the way along the radial separation bins, until three # quarters of the way along the radial separation bins. This integration # is performed with respect to log separation (i.e. I am ignoring the # fact that the points are equally separated in log space, to calculate # the area under the quadrupole / monopole ratio plot when the x axis # is scaled logarithmically). I normalise the value that is returned by # dividing by the number of increments in log radial separation used in # the calculation. int_quad_val[i] = np.trapz(quad_mod[8:23], dx = 1.0)\ / (22 - 8) # At this point, the statistics have been calculated for each quarter # The next step is to calculate the standard error of the mean of each # statistic mean_err = np.std(mean_val) / np.sqrt(len(mean_val)) stdev_err = np.std(stdev_val) / np.sqrt(len(stdev_val)) skew_err = np.std(skew_val) / np.sqrt(len(skew_val)) kurt_err = np.std(kurt_val) / np.sqrt(len(kurt_val)) m_err = np.std(m_val) / np.sqrt(len(m_val)) residual_err = np.std(resid_val) / np.sqrt(len(resid_val)) int_quad_err = np.std(int_quad_val) / np.sqrt(len(int_quad_val)) # Now that all of the calculations have been performed, return the # calculated errors return mean_err,stdev_err,skew_err,kurt_err,m_err,residual_err, int_quad_err # Set a variable to hold the number of bins to use in calculating the # correlation functions num_bins = 25 # Create a variable that controls whether the moments of the log PDFs are # calculated log = True # Create a string for the directory that contains the simulated magnetic fields # and synchrotron intensity maps to use. simul_loc = '/Users/chrisherron/Documents/PhD/CFed_2016/' # Create a string for the specific simulated data sets to use in calculations. # The directories end in: # 512sM5Bs5886_20 (Solenoidal turbulence, timestep 20) # 512sM5Bs5886_25 (Solenoidal turbulence, timestep 25) # 512sM5Bs5886_30 (Solenoidal turbulence, timestep 30) # 512sM5Bs5886_35 (Solenoidal turbulence, timestep 35) # 512sM5Bs5886_40 (Solenoidal turbulence, timestep 40) # 512cM5Bs5886_20 (Compressive turbulence, timestep 20) # 512cM5Bs5886_25 (Compressive turbulence, timestep 25) # 512cM5Bs5886_30 (Compressive turbulence, timestep 30) # 512cM5Bs5886_35 (Compressive turbulence, timestep 35) # 512cM5Bs5886_40 (Compressive turbulence, timestep 40) spec_locs = ['512sM5Bs5886_20/', '512sM5Bs5886_25/', '512sM5Bs5886_30/',\ '512sM5Bs5886_35/', '512sM5Bs5886_40/', '512cM5Bs5886_20/', '512cM5Bs5886_25/',\ '512cM5Bs5886_30/', '512cM5Bs5886_35/', '512cM5Bs5886_40/'] # Create an array of strings, where each string gives the legend label for # a corresponding simulation sim_labels = ['Sol 20', 'Sol 25', 'Sol 30', 'Sol 35', 'Sol 40',\ 'Comp 20', 'Comp 25', 'Comp 30', 'Comp 35', 'Comp 40'] # Create a variable that holds the number of timesteps being used num_timestep = 5 # Create a variable that controls whether the line of sight is assumed to be # along the x, y or z axis of the data cube when constructing the synchrotron # maps. This can include 'x', 'y', or 'z'. Synchrotron maps are produced for # each line of sight included in the array line_o_sight = ['x', 'y', 'z'] # Create a variable that specifies the gamma values that will be used to produce # these synchrotron emission maps gamma = 2.0 # Create a three dimensional array that will hold all of the information # for the normalised correlation functions. The first index gives the simulation # the second gives the line of sight, and the third axis goes along radius. # The x, y and z axes are numbered with indices 0, 1 and 2 respectively norm_corr_arr = np.zeros((len(spec_locs), 3, num_bins)) # Create a three dimensional array that will just hold the radius values used # to make all of the normalised correlation functions. The first axis represents # the simulation used, the second represents the line of sight, and # the third axis goes over radius. # The x, y and z axes are numbered with indices 0, 1 and 2 respectively corr_rad_arr = np.zeros((len(spec_locs), 3, num_bins)) # Create a three dimensional array that will hold all of the information # for the structure functions. The first index gives the simulation # the second gives the line of sight, and the third axis goes along radius. # The x, y and z axes are numbered with indices 0, 1 and 2 respectively sf_arr = np.zeros((len(spec_locs), 3, num_bins)) # Create a three dimensional array that will just hold the radius values used # to make all of the structure functions. The first axis represents the # simulation used, the second represents the line of sight, and # the third axis goes over radius. # The x, y and z axes are numbered with indices 0, 1 and 2 respectively sf_rad_arr = np.zeros((len(spec_locs), 3, num_bins)) # Create a three dimensional array that will hold all of the information # for the magnitude of the quadrupole ratios. The first index gives the # simulation the second gives the line of sight, and the third axis goes # along radius. # The x, y and z axes are numbered with indices 0, 1 and 2 respectively quad_arr = np.zeros((len(spec_locs), 3, num_bins)) # Create a three dimensional array that will just hold the radius values used # to make all of the quadrupole ratios. The first axis represents the # simulation used, the second represents the line of sight, and # the third axis goes over radius. # The x, y and z axes are numbered with indices 0, 1 and 2 respectively quad_rad_arr = np.zeros((len(spec_locs), 3, num_bins)) # Create a three dimensional array that will hold all of the information # for the real part of the quadrupole ratios. The first index gives the # simulation the second gives the line of sight, and the third axis goes # along radius. # The x, y and z axes are numbered with indices 0, 1 and 2 respectively quad_real_arr = np.zeros((len(spec_locs), 3, num_bins)) # Create a three dimensional array that will hold all of the information # for the imaginary part of the quadrupole ratios. The first index gives the # simulation the second gives the line of sight, and the third axis goes # along radius. # The x, y and z axes are numbered with indices 0, 1 and 2 respectively quad_imag_arr = np.zeros((len(spec_locs), 3, num_bins)) # Create an empty array, where each entry specifies the calculated mean of # the synchrotron intensity image of the corresponding simulation for a # particular value of gamma. The first index gives the simulation, and the # second index gives the line of sight as (x,y,z). mean_arr = np.zeros((len(spec_locs),3)) # Create an empty array, where each entry specifies the calculated standard # deviation of the synchrotron intensity image of the corresponding simulation # for a particular value of gamma. The first index gives the simulation, and the # second index gives the line of sight as (x,y,z). stdev_arr = np.zeros((len(spec_locs),3)) # Create an empty array, where each entry specifies the calculated skewness of # the synchrotron intensity image of the corresponding simulation for a # particular value of gamma. The first index gives the simulation, and the # second index gives the line of sight as (x,y,z). # NOTE: We will calculate the biased skewness skew_arr = np.zeros((len(spec_locs),3)) # Create an empty array, where each entry specifies the calculated kurtosis of # the synchrotron intensity image of the corresponding simulation for a # particular value of gamma. The first index gives the simulation, and the # second index gives the line of sight as (x,y,z). # NOTE: We will calculate the biased Fisher kurtosis kurt_arr = np.zeros((len(spec_locs),3)) # Create an empty array, where each entry specifies the calculated slope of # the structure function of the synchrotron intensity image minus 1, of the # corresponding simulation, for a particular value of gamma. The first index # gives the simulation, and the second index gives the line of sight as (x,y,z). m_arr = np.zeros((len(spec_locs),3)) # Create an empty array, where each entry specifies the residuals of the # linear fit to the structure function, of the corresponding simulation, for a # particular value of gamma. The first index gives the simulation, and the # second index gives the line of sight as (x,y,z). residual_arr = np.zeros((len(spec_locs),3)) # Create an empty array, where each entry specifies the calculated integral of # the magnitude of the quadrupole / monopole ratio of the synchrotron intensity # image, for the corresponding simulation, for a particular value of gamma. # The first index gives the simulation, and the second index gives the line of # sight as (x,y,z). int_quad_arr = np.zeros((len(spec_locs),3)) # Create error arrays for each of the statistics. These errors are calculated # by the standard deviation of the statistics calculated for sub-images of the # synchrotron maps. The first index gives the simulation, and the # second index gives the line of sight as (x,y,z). mean_err_arr = np.zeros((len(spec_locs),3)) stdev_err_arr = np.zeros((len(spec_locs),3)) skew_err_arr = np.zeros((len(spec_locs),3)) kurt_err_arr = np.zeros((len(spec_locs),3)) m_err_arr = np.zeros((len(spec_locs),3)) residual_err_arr = np.zeros((len(spec_locs),3)) int_quad_err_arr = np.zeros((len(spec_locs),3)) # Loop over the different simulations that we are using to make the plot for i in range(len(spec_locs)): # Create a string for the full directory path to use in this calculation data_loc = simul_loc + spec_locs[i] # Loop over the lines of sight, to calculate the correlation function, # structure function and quadrupole ratio for each line of sight for j in range(3): # Open the FITS file that contains the synchrotron intensity maps for this # simulation sync_fits = fits.open(data_loc + 'synint_{}_gam{}.fits'.format(line_o_sight[j],gamma)) # Extract the data for the simulated synchrotron intensities sync_data = sync_fits[0].data # Print a message to the screen to show that the data has been loaded print 'Synchrotron intensity loaded successfully' # Flatten the synchrotron intensity map flat_sync = sync_data.flatten() # If we are calculating the moments of the log PDFs, then calculate the # logarithm of the synchrotron intensity values if log == True: # In this case we are calculating the moments of the log PDFs, so # calculate the log of the synchrotron intensities flat_sync = np.log10(flat_sync/ np.mean(flat_sync, dtype = np.float64)) # Calculate the mean of the synchrotron intensity map, and store the # result in the corresponding array mean_arr[i,j] = np.mean(flat_sync, dtype=np.float64) # Calculate the standard deviation of the synchrotron intensity map, and # store the result in the corresponding array stdev_arr[i,j] = np.std(flat_sync, dtype=np.float64) # Calculate the biased skewness of the synchrotron intensity map, and store # the result in the corresponding array skew_arr[i,j] = stats.skew(flat_sync) # Calculate the biased Fisher kurtosis of the synchrotron intensity # map, and store the result in the corresponding array kurt_arr[i,j] = stats.kurtosis(flat_sync) # Calculate the 2D correlation function for this slice of the synchrotron # intensity data cube. Note that no_fluct = True is set, because we are # not subtracting the mean from the synchrotron maps before calculating # the correlation function corr = cf_fft(sync_data, no_fluct = True) # Radially average the calculated 2D correlation function, using the # specified number of bins rad_corr = sfr(corr, num_bins, verbose = False) # Calculate the square of the mean of the synchrotron intensity values sync_sq_mean = np.power( np.mean(sync_data, dtype = np.float64), 2.0 ) # Calculate the mean of the synchrotron intensity values squared sync_mean_sq = np.mean( np.power(sync_data, 2.0), dtype = np.float64 ) # Calculate the normalised, radially averaged correlation function for # this value of gamma norm_rad_corr = (rad_corr[1] - sync_sq_mean) / (sync_mean_sq - sync_sq_mean) # Print a message to show that the correlation function of the # synchrotron intensity has been calculated for this line of sight print 'Correlation function of synchrotron intensity'\ + ' calculated for {} LOS'.format(line_o_sight[j]) # Insert the calculated normalised, radially averaged correlation function # into the matrix that stores all of the calculated correlation functions norm_corr_arr[i,j] = norm_rad_corr # Insert the radius values used to calculate this correlation function # into the matrix that stores the radius values corr_rad_arr[i,j] = rad_corr[0] # Print a message to show that the correlation function has been calculated print 'Normalised, radially averaged correlation function calculated for'\ + ' {} LOS'.format(line_o_sight[j]) # Calculate the structure function (two-dimensional) of the synchrotron # intensity map. Note that no_fluct = True is set, because we are not # subtracting the mean from the synchrotron maps before calculating the # structure function. strfn = sf_fft(sync_data, no_fluct = True) # Radially average the calculated 2D structure function, using the # specified number of bins. rad_sf = sfr(strfn, num_bins, verbose = False) # Extract the calculated radially averaged structure function sf_arr[i,j] = rad_sf[1] # Extract the radius values used to calculate this structure function sf_rad_arr[i,j] = rad_sf[0] # Calculate the spectral index of the structure function calculated for # this value of gamma. spec_ind_data = np.polyfit(np.log10(\ sf_rad_arr[i,j,5:14]),\ np.log10(sf_arr[i,j,5:14]), 1, full = True) # Extract the returned coefficients from the polynomial fit coeff = spec_ind_data[0] # Enter the value of m, the slope of the structure function minus 1, # into the corresponding array m_arr[i,j] = coeff[0]-1.0 # Enter the value of the residuals into the corresponding array residual_arr[i,j] = spec_ind_data[1] # Calculate the 2D structure function for this slice of the synchrotron # intensity data cube. Note that no_fluct = True is set, because we are # not subtracting the mean from the synchrotron maps before calculating # the structure function. We are also calculating the normalised # structure function, which only takes values between 0 and 2. norm_strfn = sf_fft(sync_data, no_fluct = True, normalise = True) # Shift the 2D structure function so that the zero radial separation # entry is in the centre of the image. norm_strfn = np.fft.fftshift(norm_strfn) # Calculate the magnitude and argument of the quadrupole ratio quad_mod, quad_arg, quad_rad = calc_quad_ratio(norm_strfn, num_bins) # Add the calculated modulus of the quadrupole ratio to the final array quad_arr[i,j] = quad_mod # Add the radius values used to calculate the quadrupole ratio to the # corresponding array quad_rad_arr[i,j] = quad_rad # Calculate the real part of the quadrupole ratio quad_real_arr[i,j] = quad_mod * np.cos(quad_arg) # Calculate the imaginary part of the quadrupole ratio quad_imag_arr[i,j] = quad_mod * np.sin(quad_arg) # Integrate the magnitude of the quadrupole / monopole ratio from one sixth # of the way along the radial separation bins, until three quarters of the # way along the radial separation bins. This integration is performed with # respect to log separation (i.e. I am ignoring the fact that the # points are equally separated in log space, to calculate the area under # the quadrupole / monopole ratio plot when the x axis is scaled # logarithmically). I normalise the value that is returned by dividing # by the number of increments in log radial separation used in the # calculation. int_quad_arr[i,j] = np.trapz(quad_mod[8:23], dx = 1.0) / (22 - 8) # Create errors for each of the statistics. These errors are only for the # statistics calculated from the y and z axes (perpendicular to the mean # magnetic field), and are calculated by the standard deviation of the # statistics calculated for sub-images of the synchrotron maps. mean_err_arr[i,j], stdev_err_arr[i,j], skew_err_arr[i,j],\ kurt_err_arr[i,j], m_err_arr[i,j],\ residual_err_arr[i,j], int_quad_err_arr[i,j]\ = calc_err_bootstrap(sync_data, log = log) # Close the fits files, to save memory sync_fits.close() # Print a message to show that the calculation has finished successfully # for this simulation print 'All statistics calculated for simulation {} LOS {}'.format(\ spec_locs[i], line_o_sight[j]) # When the code reaches this point, the normalised correlation functions, # structure functions, and quadrupole ratios have been saved for every # simulation, and every line of sight, so start making the final plots. # Create an array of marker symbols, so that the plot for each line of sight has # a different plot symbol symbol_arr = ['o','^','s','*','D'] # ----------------- Plots of normalised correlation functions ------------------ # Here we want to produce one plot with six subplots. There should be two rows # of subplots, with three subplots in each row. The left subplot will be the # normalised correlation functions for a line of sight along the x axis, the # centre plot will be for the y axis, and the right subplot will be the # normalised correlation functions for the z axis. In each plot the timesteps # of the solenoidal and compressive simulations will be compared, with # solenoidal simulations on the top row, and compressive on the bottom. # Create a figure to hold all of the subplots fig = plt.figure(1, figsize=(10,6), dpi = 300) # Create an axis for the first subplot to be produced, which is for the # x line of sight, solenoidal simulations ax1 = fig.add_subplot(231) # Loop over the simulations to produce plots for each simulation for i in range(num_timestep): # Plot the normalised correlation function for this simulation, for this # line of sight plt.plot(corr_rad_arr[i,0], norm_corr_arr[i,0], '-' + symbol_arr[i]) # Plot a faded dashed line to represent the line y = 0 plt.plot(np.linspace(0,1000,len(corr_rad_arr[0,0])), \ np.zeros(np.shape(corr_rad_arr[0,0])), 'k--', alpha = 0.5) # Make the x axis of the plot logarithmic ax1.set_xscale('log') # Make the x axis tick labels invisible plt.setp( ax1.get_xticklabels(), visible=False) # Create an axis for the second subplot to be produced, which is for the # y line of sight, solenoidal simulation. Make the y axis limits the same as # for the x axis plot ax2 = fig.add_subplot(232, sharey = ax1) # Loop over the simulations to produce plots for each simulation for i in range(num_timestep): # Plot the normalised correlation function for this simulation, for this # line of sight plt.plot(corr_rad_arr[i,1], norm_corr_arr[i,1], '-' + symbol_arr[i]) # Plot a faded dashed line to represent the line y = 0 plt.plot(np.linspace(0,1000,len(corr_rad_arr[0,1])), \ np.zeros(np.shape(corr_rad_arr[0,1])), 'k--', alpha = 0.5) # Make the x axis of the plot logarithmic ax2.set_xscale('log') # Make the x axis tick labels invisible plt.setp( ax2.get_xticklabels(), visible=False) # Make the y axis tick labels invisible plt.setp( ax2.get_yticklabels(), visible=False) # Create an axis for the third subplot to be produced, which is for the # z line of sight, solenoidal simulation. Make the y axis limits the same as for # the x axis plot ax3 = fig.add_subplot(233, sharey = ax1) # Loop over the simulations to produce plots for each simulation for i in range(num_timestep): # Plot the normalised correlation function for this simulation, for this # line of sight plt.plot(corr_rad_arr[i,2], norm_corr_arr[i,2], '-' + symbol_arr[i],\ label = '{}'.format(sim_labels[i])) # Plot a faded dashed line to represent the line y = 0 plt.plot(np.linspace(0,1000,len(corr_rad_arr[0,2])), \ np.zeros(np.shape(corr_rad_arr[0,2])), 'k--', alpha = 0.5) # Make the x axis of the plot logarithmic ax3.set_xscale('log') # Make the x axis tick labels invisible plt.setp( ax3.get_xticklabels(), visible=False) # Make the y axis tick labels invisible plt.setp( ax3.get_yticklabels(), visible=False) # Force the legend to appear on the plot plt.legend(fontsize = 8, numpoints=1) # Create an axis for the fourth subplot to be produced, which is for the # x line of sight, compressive simulations ax4 = fig.add_subplot(234, sharex = ax1) # Loop over the simulations to produce plots for each simulation for i in range(num_timestep, 2*num_timestep): # Plot the normalised correlation function for this simulation, for this # line of sight plt.plot(corr_rad_arr[i,0], norm_corr_arr[i,0], '-' + symbol_arr[i - num_timestep]) # Plot a faded dashed line to represent the line y = 0 plt.plot(np.linspace(0,1000,len(corr_rad_arr[0,0])), \ np.zeros(np.shape(corr_rad_arr[0,0])), 'k--', alpha = 0.5) # Make the x axis of the plot logarithmic ax4.set_xscale('log') # Create an axis for the fifth subplot to be produced, which is for the # y line of sight, compressive simulation. Make the y axis limits the same as # for the x axis plot ax5 = fig.add_subplot(235, sharex = ax2, sharey = ax4) # Loop over the simulations to produce plots for each simulation for i in range(num_timestep, 2*num_timestep): # Plot the normalised correlation function for this simulation, for this # line of sight plt.plot(corr_rad_arr[i,1], norm_corr_arr[i,1], '-' + symbol_arr[i - num_timestep]) # Plot a faded dashed line to represent the line y = 0 plt.plot(np.linspace(0,1000,len(corr_rad_arr[0,1])), \ np.zeros(np.shape(corr_rad_arr[0,1])), 'k--', alpha = 0.5) # Make the x axis of the plot logarithmic ax5.set_xscale('log') # Make the y axis tick labels invisible plt.setp( ax5.get_yticklabels(), visible=False) # Create an axis for the sixth subplot to be produced, which is for the # z line of sight, compressive simulation. Make the y axis limits the same as for # the x axis plot ax6 = fig.add_subplot(236, sharex = ax3, sharey = ax4) # Loop over the simulations to produce plots for each simulation for i in range(num_timestep, 2*num_timestep): # Plot the normalised correlation function for this simulation, for this # line of sight plt.plot(corr_rad_arr[i,2], norm_corr_arr[i,2], '-' + symbol_arr[i - num_timestep],\ label = '{}'.format(sim_labels[i])) # Plot a faded dashed line to represent the line y = 0 plt.plot(np.linspace(0,1000,len(corr_rad_arr[0,2])), \ np.zeros(np.shape(corr_rad_arr[0,2])), 'k--', alpha = 0.5) # Make the x axis of the plot logarithmic ax6.set_xscale('log') # Make the y axis tick labels invisible plt.setp( ax6.get_yticklabels(), visible=False) # Force the legend to appear on the plot plt.legend(fontsize = 8, numpoints=1) # Add a label to the x-axis plt.figtext(0.5, 0.0, 'Radial Separation [pixels]', ha = 'center', \ va = 'bottom', fontsize = 20) # Add a label to the y-axis plt.figtext(0.03, 0.5, 'NCF Sync Intensity', ha = 'left', \ va = 'center', fontsize = 20, rotation = 'vertical') # Add some text to the figure, to label the left plot as figure a plt.figtext(0.15, 0.94, 'a) Sol x-LOS', fontsize = 18) # Add some text to the figure, to label the centre plot as figure b plt.figtext(0.42, 0.94, 'b) Sol y-LOS', fontsize = 18) # Add some text to the figure, to label the right plot as figure c plt.figtext(0.7, 0.94, 'c) Sol z-LOS', fontsize = 18) # Add some text to the figure, to label the left plot as figure d plt.figtext(0.15, 0.475, 'd) Comp x-LOS', fontsize = 18) # Add some text to the figure, to label the centre plot as figure e plt.figtext(0.42, 0.475, 'e) Comp y-LOS', fontsize = 18) # Add some text to the figure, to label the right plot as figure f plt.figtext(0.7, 0.475, 'f) Comp z-LOS', fontsize = 18) # Make sure that all of the labels are clearly visible in the plot #plt.tight_layout() # Save the figure using the given filename and format plt.savefig(simul_loc + 'ncfs_all_sims_time_gam{}.eps'.format(gamma), format = 'eps') # Close the figure so that it does not stay in memory plt.close() #--------------------------- Structure Functions ------------------------------- # Here we want to produce one plot with six subplots. There should be two rows # of subplots, with three subplots in each row. The left subplot will be the # structure functions for a line of sight along the x axis, the centre plot will # be for the y axis, and the right subplot will be the structure functions for # the z axis. In each plot the solenoidal and compressive simulations will be # compared for different timesteps. The top row is for the solenoidal simulation # and the bottom row is for the compressive simulation. # Create a figure to hold all of the subplots fig = plt.figure(1, figsize=(10,6), dpi = 300) # Create an axis for the first subplot to be produced, which is for the # x line of sight, solenoidal simulation ax1 = fig.add_subplot(231) # Loop over the simulations to produce plots for each simulation for i in range(num_timestep): # Plot the structure function for this simulation, for this # line of sight plt.plot(sf_rad_arr[i,0], sf_arr[i,0], '-' + symbol_arr[i]) # Plot a faded dashed line to represent the line y = 0 plt.plot(np.linspace(0,1000,len(sf_rad_arr[0,0])), \ np.zeros(np.shape(sf_rad_arr[0,0])), 'k--', alpha = 0.5) # Make the x axis of the plot logarithmic ax1.set_xscale('log') # Make the y axis of the plot logarithmic ax1.set_yscale('log') # Make the x axis tick labels invisible plt.setp( ax1.get_xticklabels(), visible=False) # Create an axis for the second subplot to be produced, which is for the # y line of sight, solenoidal simulation. Make the y axis limits the same as for # the x axis plot ax2 = fig.add_subplot(232, sharey = ax1) # Loop over the simulations to produce plots for each simulation for i in range(num_timestep): # Plot the structure function for this simulation, for this # line of sight plt.plot(sf_rad_arr[i,1], sf_arr[i,1], '-' + symbol_arr[i]) # Plot a faded dashed line to represent the line y = 0 plt.plot(np.linspace(0,1000,len(sf_rad_arr[0,1])), \ np.zeros(np.shape(sf_rad_arr[0,1])), 'k--', alpha = 0.5) # Make the x axis of the plot logarithmic ax2.set_xscale('log') # Make the y axis of the plot logarithmic ax2.set_yscale('log') # Make the x axis tick labels invisible plt.setp( ax2.get_xticklabels(), visible=False) # Make the y axis tick labels invisible plt.setp( ax2.get_yticklabels(), visible=False) # Create an axis for the third subplot to be produced, which is for the # z line of sight, solenoidal simulation. Make the y axis limits the same as for # the x axis plot ax3 = fig.add_subplot(233, sharey = ax1) # Loop over the simulations to produce plots for each simulation for i in range(num_timestep): # Plot the structure function for this simulation, for this # line of sight plt.plot(sf_rad_arr[i,2], sf_arr[i,2], '-' + symbol_arr[i],\ label = '{}'.format(sim_labels[i])) # Plot a faded dashed line to represent the line y = 0 plt.plot(np.linspace(0,1000,len(sf_rad_arr[0,2])), \ np.zeros(np.shape(sf_rad_arr[0,2])), 'k--', alpha = 0.5) # Make the x axis of the plot logarithmic ax3.set_xscale('log') # Make the y axis of the plot logarithmic ax3.set_yscale('log') # Make the x axis tick labels invisible plt.setp( ax3.get_xticklabels(), visible=False) # Make the y axis tick labels invisible plt.setp( ax3.get_yticklabels(), visible=False) # Force the legend to appear on the plot plt.legend(loc = 4, fontsize = 8, numpoints=1) # Create an axis for the fourth subplot to be produced, which is for the # x line of sight, compressive simulation ax4 = fig.add_subplot(234, sharex = ax1) # Loop over the simulations to produce plots for each simulation for i in range(num_timestep, 2*num_timestep): # Plot the structure function for this simulation, for this # line of sight plt.plot(sf_rad_arr[i,0], sf_arr[i,0], '-' + symbol_arr[i - num_timestep]) # Plot a faded dashed line to represent the line y = 0 plt.plot(np.linspace(0,1000,len(sf_rad_arr[0,0])), \ np.zeros(np.shape(sf_rad_arr[0,0])), 'k--', alpha = 0.5) # Make the x axis of the plot logarithmic ax4.set_xscale('log') # Make the y axis of the plot logarithmic ax4.set_yscale('log') # Create an axis for the fifth subplot to be produced, which is for the # y line of sight, compressive simulation. Make the y axis limits the same as for # the x axis plot ax5 = fig.add_subplot(235, sharex = ax2, sharey = ax4) # Loop over the simulations to produce plots for each simulation for i in range(num_timestep, 2*num_timestep): # Plot the structure function for this simulation, for this # line of sight plt.plot(sf_rad_arr[i,1], sf_arr[i,1], '-' + symbol_arr[i - num_timestep]) # Plot a faded dashed line to represent the line y = 0 plt.plot(np.linspace(0,1000,len(sf_rad_arr[0,1])), \ np.zeros(np.shape(sf_rad_arr[0,1])), 'k--', alpha = 0.5) # Make the x axis of the plot logarithmic ax5.set_xscale('log') # Make the y axis of the plot logarithmic ax5.set_yscale('log') # Make the y axis tick labels invisible plt.setp( ax5.get_yticklabels(), visible=False) # Create an axis for the sixth subplot to be produced, which is for the # z line of sight, compressive simulation. Make the y axis limits the same as for # the x axis plot ax6 = fig.add_subplot(236, sharex = ax3, sharey = ax4) # Loop over the simulations to produce plots for each simulation for i in range(num_timestep, 2*num_timestep): # Plot the structure function for this simulation, for this # line of sight plt.plot(sf_rad_arr[i,2], sf_arr[i,2], '-' + symbol_arr[i - num_timestep],\ label = '{}'.format(sim_labels[i])) # Plot a faded dashed line to represent the line y = 0 plt.plot(np.linspace(0,1000,len(sf_rad_arr[0,2])), \ np.zeros(np.shape(sf_rad_arr[0,2])), 'k--', alpha = 0.5) # Make the x axis of the plot logarithmic ax6.set_xscale('log') # Make the y axis of the plot logarithmic ax6.set_yscale('log') # Make the y axis tick labels invisible plt.setp( ax6.get_yticklabels(), visible=False) # Force the legend to appear on the plot plt.legend(loc = 4, fontsize = 8, numpoints=1) # Add a label to the x-axis plt.figtext(0.5, 0.0, 'Radial Separation [pixels]', ha = 'center', \ va = 'bottom', fontsize = 20) # Add a label to the y-axis plt.figtext(0.03, 0.5, 'Structure Function Amplitude', ha = 'left', \ va = 'center', fontsize = 20, rotation = 'vertical') # Add some text to the figure, to label the left plot as figure a plt.figtext(0.15, 0.94, 'a) Sol x-LOS', fontsize = 18) # Add some text to the figure, to label the centre plot as figure b plt.figtext(0.42, 0.94, 'b) Sol y-LOS', fontsize = 18) # Add some text to the figure, to label the right plot as figure c plt.figtext(0.7, 0.94, 'c) Sol z-LOS', fontsize = 18) # Add some text to the figure, to label the left plot as figure d plt.figtext(0.15, 0.475, 'd) Comp x-LOS', fontsize = 18) # Add some text to the figure, to label the centre plot as figure e plt.figtext(0.42, 0.475, 'e) Comp y-LOS', fontsize = 18) # Add some text to the figure, to label the right plot as figure f plt.figtext(0.7, 0.475, 'f) Comp z-LOS', fontsize = 18) # Make sure that all of the labels are clearly visible in the plot #plt.tight_layout() # Save the figure using the given filename and format plt.savefig(simul_loc + 'sfs_all_sims_time_gam{}.eps'.format(gamma), format = 'eps') # Close the figure so that it does not stay in memory plt.close() #----------------------------- Quadrupole Ratios ------------------------------- # Here we want to produce one plot with six subplots. There should be two rows # of subplots, with three subplots in each row. The left subplot will be the # quadrupole ratio modulus for a line of sight along the x axis, the centre plot # will be for the y axis, and the right subplot will be the quadrupole ratio # modulus for the z axis. In each plot the solenoidal and compressive # simulations will be compared for different timesteps. The top row is for the # solenoidal simulation, and the bottom row for the compressive simulation. # Create a figure to hold all of the subplots fig = plt.figure(1, figsize=(10,6), dpi = 300) # Create an axis for the first subplot to be produced, which is for the # x line of sight, solenoidal simulation ax1 = fig.add_subplot(231) # Loop over the simulations to produce plots for each simulation for i in range(num_timestep): # Plot the quadrupole ratio modulus for this simulation, for this # line of sight plt.plot(quad_rad_arr[i,0], quad_arr[i,0], '-' + symbol_arr[i]) # Plot a faded dashed line to represent the line y = 0 plt.plot(np.linspace(0,1000,len(quad_rad_arr[0,0])), \ np.zeros(np.shape(quad_rad_arr[0,0])), 'k--', alpha = 0.5) # Make the x axis of the plot logarithmic ax1.set_xscale('log') # Make the x axis tick labels invisible plt.setp( ax1.get_xticklabels(), visible=False) # Create an axis for the second subplot to be produced, which is for the # y line of sight, solenoidal simulation. Make the y axis limits the same as for # the x axis plot ax2 = fig.add_subplot(232, sharey = ax1) # Loop over the simulations to produce plots for each simulation for i in range(num_timestep): # Plot the quadrupole ratio modulus for this simulation, for this # line of sight plt.plot(quad_rad_arr[i,1], quad_arr[i,1], '-' + symbol_arr[i]) # Plot a faded dashed line to represent the line y = 0 plt.plot(np.linspace(0,1000,len(quad_rad_arr[0,1])), \ np.zeros(np.shape(quad_rad_arr[0,1])), 'k--', alpha = 0.5) # Make the x axis of the plot logarithmic ax2.set_xscale('log') # Make the x axis tick labels invisible plt.setp( ax2.get_xticklabels(), visible=False) # Make the y axis tick labels invisible plt.setp( ax2.get_yticklabels(), visible=False) # Create an axis for the third subplot to be produced, which is for the # z line of sight, solenoidal simulation. Make the y axis limits the same as for # the x axis plot ax3 = fig.add_subplot(233, sharey = ax1) # Loop over the simulations to produce plots for each simulation for i in range(num_timestep): # Plot the quadrupole ratio modulus for this simulation, for this # line of sight plt.plot(quad_rad_arr[i,2], quad_arr[i,2], '-' + symbol_arr[i],\ label = '{}'.format(sim_labels[i])) # Plot a faded dashed line to represent the line y = 0 plt.plot(np.linspace(0,1000,len(quad_rad_arr[0,2])), \ np.zeros(np.shape(quad_rad_arr[0,2])), 'k--', alpha = 0.5) # Make the x axis of the plot logarithmic ax3.set_xscale('log') # Make the x axis tick labels invisible plt.setp( ax3.get_xticklabels(), visible=False) # Make the y axis tick labels invisible plt.setp( ax3.get_yticklabels(), visible=False) # Force the legend to appear on the plot plt.legend(fontsize = 8, numpoints=1) # Create an axis for the fourth subplot to be produced, which is for the # x line of sight, compressive simulation ax4 = fig.add_subplot(234, sharex = ax1) # Loop over the simulations to produce plots for each simulation for i in range(num_timestep, 2*num_timestep): # Plot the quadrupole ratio modulus for this simulation, for this # line of sight plt.plot(quad_rad_arr[i,0], quad_arr[i,0], '-' + symbol_arr[i - num_timestep]) # Plot a faded dashed line to represent the line y = 0 plt.plot(np.linspace(0,1000,len(quad_rad_arr[0,0])), \ np.zeros(np.shape(quad_rad_arr[0,0])), 'k--', alpha = 0.5) # Make the x axis of the plot logarithmic ax4.set_xscale('log') # Create an axis for the fifth subplot to be produced, which is for the # y line of sight, compressive simulation. Make the y axis limits the same as for # the x axis plot ax5 = fig.add_subplot(235, sharex = ax2, sharey = ax4) # Loop over the simulations to produce plots for each simulation for i in range(num_timestep, 2*num_timestep): # Plot the quadrupole ratio modulus for this simulation, for this # line of sight plt.plot(quad_rad_arr[i,1], quad_arr[i,1], '-' + symbol_arr[i - num_timestep]) # Plot a faded dashed line to represent the line y = 0 plt.plot(np.linspace(0,1000,len(quad_rad_arr[0,1])), \ np.zeros(np.shape(quad_rad_arr[0,1])), 'k--', alpha = 0.5) # Make the x axis of the plot logarithmic ax5.set_xscale('log') # Make the y axis tick labels invisible plt.setp( ax5.get_yticklabels(), visible=False) # Create an axis for the sixth subplot to be produced, which is for the # z line of sight, compressive simulation. Make the y axis limits the same as for # the x axis plot ax6 = fig.add_subplot(236, sharex = ax3, sharey = ax4) # Loop over the simulations to produce plots for each simulation for i in range(num_timestep, 2*num_timestep): # Plot the quadrupole ratio modulus for this simulation, for this # line of sight plt.plot(quad_rad_arr[i,2], quad_arr[i,2], '-' + symbol_arr[i - num_timestep],\ label = '{}'.format(sim_labels[i])) # Plot a faded dashed line to represent the line y = 0 plt.plot(np.linspace(0,1000,len(quad_rad_arr[0,2])), \ np.zeros(np.shape(quad_rad_arr[0,2])), 'k--', alpha = 0.5) # Make the x axis of the plot logarithmic ax6.set_xscale('log') # Make the y axis tick labels invisible plt.setp( ax6.get_yticklabels(), visible=False) # Force the legend to appear on the plot plt.legend(fontsize = 8, numpoints=1) # Add a label to the x-axis plt.figtext(0.5, 0.0, 'Radial Separation [pixels]', ha = 'center', \ va = 'bottom', fontsize = 20) # Add a label to the y-axis plt.figtext(0.03, 0.5, 'Quadrupole Ratio', ha = 'left', \ va = 'center', fontsize = 20, rotation = 'vertical') # Add some text to the figure, to label the left plot as figure a plt.figtext(0.15, 0.94, 'a) Sol x-LOS', fontsize = 18) # Add some text to the figure, to label the centre plot as figure b plt.figtext(0.42, 0.94, 'b) Sol y-LOS', fontsize = 18) # Add some text to the figure, to label the right plot as figure c plt.figtext(0.7, 0.94, 'c) Sol z-LOS', fontsize = 18) # Add some text to the figure, to label the left plot as figure d plt.figtext(0.15, 0.475, 'd) Comp x-LOS', fontsize = 18) # Add some text to the figure, to label the centre plot as figure e plt.figtext(0.42, 0.475, 'e) Comp y-LOS', fontsize = 18) # Add some text to the figure, to label the right plot as figure f plt.figtext(0.7, 0.475, 'f) Comp z-LOS', fontsize = 18) # Make sure that all of the labels are clearly visible in the plot #plt.tight_layout() # Save the figure using the given filename and format plt.savefig(simul_loc + 'quad_ratio_all_sims_time_gam{}.eps'.format(gamma), format = 'eps') # Close the figure so that it does not stay in memory plt.close() # #----------------------- Real and Imaginary Parts of Quad Ratio ---------------- # # Here we want to produce one plot with six subplots. There should be two rows # # of subplots, with three subplots in each row. The top row will be the real # # part of the quadrupole ratio, and the bottom row will be the imaginary part. # # The left column will be for a line of sight along the x axis, the centre # # column for a line of sight along the y axis, and the right column will be for # # a line of sight along the z axis. # # Create a figure to hold all of the subplots # fig = plt.figure(1, figsize=(10,6), dpi = 300) # # Create an axis for the first subplot to be produced, which is for the real # # part of the quadrupole ratio for a line of sight along the x axis # ax1 = fig.add_subplot(231) # # Loop over the simulations to produce plots for each simulation # for i in range(len(spec_locs)): # # Plot the quadrupole ratio for this simulation, for this line of sight # plt.plot(quad_rad_arr[i,0], quad_real_arr[i,0], '-' + symbol_arr[i]) # # Plot a faded dashed line to represent the line y = 0 # plt.plot(np.linspace(0,1000,len(quad_rad_arr[0,0])), \ # np.zeros(np.shape(quad_rad_arr[0,0])), 'k--', alpha = 0.5) # # Make the x axis of the plot logarithmic # ax1.set_xscale('log') # # Make the x axis tick labels invisible # plt.setp( ax1.get_xticklabels(), visible=False) # # Create an axis for the second subplot to be produced, which is for the real # # part of the quadrupole ratio for a line of sight along the y axis. Make the y # # axis limits the same as for the x axis plot # ax2 = fig.add_subplot(232, sharey = ax1) # # Loop over the simulations to produce plots for each simulation # for i in range(len(spec_locs)): # # Plot the quadrupole ratio for this simulation, for this line of sight # plt.plot(quad_rad_arr[i,1], quad_real_arr[i,1], '-' + symbol_arr[i]) # # Plot a faded dashed line to represent the line y = 0 # plt.plot(np.linspace(0,1000,len(quad_rad_arr[0,1])), \ # np.zeros(np.shape(quad_rad_arr[0,1])), 'k--', alpha = 0.5) # # Make the x axis of the plot logarithmic # ax2.set_xscale('log') # # Make the x axis tick labels invisible # plt.setp( ax2.get_xticklabels(), visible=False) # # Make the y axis tick labels invisible # plt.setp( ax2.get_yticklabels(), visible=False) # # Create an axis for the third subplot to be produced, which is for the real # # part of the quadrupole ratio for a line of sight along the z axis. Make the y # # axis limits the same as for the x axis plot # ax3 = fig.add_subplot(233, sharey = ax1) # # Loop over the simulations to produce plots for each simulation # for i in range(len(spec_locs)): # # Plot the quadrupole ratio for this simulation, for this line of sight # plt.plot(quad_rad_arr[i,2], quad_real_arr[i,2], '-' + symbol_arr[i],\ # label = '{}'.format(sim_labels[i])) # # Plot a faded dashed line to represent the line y = 0 # plt.plot(np.linspace(0,1000,len(quad_rad_arr[0,2])), \ # np.zeros(np.shape(quad_rad_arr[0,2])), 'k--', alpha = 0.5) # # Make the x axis of the plot logarithmic # ax3.set_xscale('log') # # Make the x axis tick labels invisible # plt.setp( ax3.get_xticklabels(), visible=False) # # Make the y axis tick labels invisible # plt.setp( ax3.get_yticklabels(), visible=False) # # Force the legend to appear on the plot # plt.legend(loc=4, fontsize = 9, numpoints=1) # # Create an axis for the fourth subplot to be produced, which is for the # # imaginary part of the quadrupole ratio for a line of sight along the x axis. # # Make the x axis limits the same as for the first plot # ax4 = fig.add_subplot(234, sharex = ax1, sharey = ax1) # # Loop over the simulations to produce plots for each simulation # for i in range(len(spec_locs)): # # Plot the quadrupole ratio for this simulation, for this line of sight # plt.plot(quad_rad_arr[i,0], quad_imag_arr[i,0], '-' + symbol_arr[i]) # # Plot a faded dashed line to represent the line y = 0 # plt.plot(np.linspace(0,1000,len(quad_rad_arr[0,0])), \ # np.zeros(np.shape(quad_rad_arr[0,0])), 'k--', alpha = 0.5) # # Make the x axis of the plot logarithmic # ax4.set_xscale('log') # # Create an axis for the fifth subplot to be produced, which is for the # # imaginary part of the quadrupole ratio for a line of sigth along the y axis. # # Make the x axis limits the same as for the second plot, and the y axis limits # # the same as for the fourth plot # ax5 = fig.add_subplot(235, sharex = ax2, sharey = ax4) # # Loop over the simulations to produce plots for each simulation # for i in range(len(spec_locs)): # # Plot the quadrupole ratio for this simulation, for this line of sight # plt.plot(quad_rad_arr[i,1], quad_imag_arr[i,1], '-' + symbol_arr[i]) # # Plot a faded dashed line to represent the line y = 0 # plt.plot(np.linspace(0,1000,len(quad_rad_arr[0,1])), \ # np.zeros(np.shape(quad_rad_arr[0,1])), 'k--', alpha = 0.5) # # Make the x axis of the plot logarithmic # ax5.set_xscale('log') # # Make the y axis tick labels invisible # plt.setp( ax5.get_yticklabels(), visible=False) # # Create an axis for the sixth subplot to be produced, which is for the # # imaginary part of the quadrupole ratio for a line of sigth along the z axis. # # Make the x axis limits the same as for the third plot, and the y axis limits # # the same as for the fourth plot # ax6 = fig.add_subplot(236, sharex = ax3, sharey = ax4) # # Loop over the simulations to produce plots for each simulation # for i in range(len(spec_locs)): # # Plot the quadrupole ratio for this simulation, for this line of sight # plt.plot(quad_rad_arr[i,2], quad_imag_arr[i,2], '-' + symbol_arr[i]) # # Plot a faded dashed line to represent the line y = 0 # plt.plot(np.linspace(0,1000,len(quad_rad_arr[0,2])), \ # np.zeros(np.shape(quad_rad_arr[0,2])), 'k--', alpha = 0.5) # # Make the x axis of the plot logarithmic # ax6.set_xscale('log') # # Make the y axis tick labels invisible # plt.setp( ax6.get_yticklabels(), visible=False) # # Add a label to the x-axis # plt.figtext(0.5, 0.0, 'Radial Separation [pixels]', ha = 'center', \ # va = 'bottom', fontsize = 20) # # Add a label to the y-axis # plt.figtext(0.03, 0.5, 'Quadrupole Ratio', ha = 'left', \ # va = 'center', fontsize = 20, rotation = 'vertical') # # Add some text to the figure, to label the left plot as figure a # plt.figtext(0.15, 0.94, 'a) x-LOS Real', fontsize = 18) # # Add some text to the figure, to label the centre plot as figure b # plt.figtext(0.42, 0.94, 'b) y-LOS Real', fontsize = 18) # # Add some text to the figure, to label the right plot as figure c # plt.figtext(0.7, 0.94, 'c) z-LOS Real', fontsize = 18) # # Add some text to the figure, to label the left plot as figure d # plt.figtext(0.15, 0.475, 'd) x-LOS Imag', fontsize = 18) # # Add some text to the figure, to label the centre plot as figure e # plt.figtext(0.42, 0.475, 'e) y-LOS Imag', fontsize = 18) # # Add some text to the figure, to label the right plot as figure f # plt.figtext(0.7, 0.475, 'f) z-LOS Imag', fontsize = 18) # # Make sure that all of the labels are clearly visible in the plot # #plt.tight_layout() # # Save the figure using the given filename and format # plt.savefig(simul_loc + 'real_imag_quad_all_sims_time_gam{}.eps'.format(gamma), format = 'eps') # # Close the figure so that it does not stay in memory # plt.close() #------------------------------------------------------------------------------- # Now that all of the statistics have been calculated, print them out to the # screen. Loop over all of the lines of sight, and the different simulations, # and print out results for the simulations for j in range(3): # For this line of sight, loop over the simulations for i in range(len(spec_locs)): # Print out the value of the mean for this line of sight print "{} {} LOS Mean: {} Error: {}".format(sim_labels[i], line_o_sight[j],\ mean_arr[i,j], mean_err_arr[i,j]) for j in range(3): # For this line of sight, loop over the simulations for i in range(len(spec_locs)): # Print out the value of the standard deviation for this line of sight print "{} {} LOS St Dev: {} Error: {}".format(sim_labels[i], line_o_sight[j],\ stdev_arr[i,j], stdev_err_arr[i,j]) for j in range(3): # For this line of sight, loop over the simulations for i in range(len(spec_locs)): # Print out the value of skewness for this line of sight print "{} {} LOS Skewness: {} Error: {}".format(sim_labels[i], line_o_sight[j],\ skew_arr[i,j], skew_err_arr[i,j]) for j in range(3): # For this line of sight, loop over the simulations for i in range(len(spec_locs)): # Print out the value of kurtosis for this line of sight print "{} {} LOS Kurtosis: {} Error: {}".format(sim_labels[i], line_o_sight[j],\ kurt_arr[i,j], kurt_err_arr[i,j]) for j in range(3): # For this line of sight, loop over the simulations for i in range(len(spec_locs)): # Print out the structure function slope for this line of sight print "{} {} LOS SF Slope: {} Error: {}".format(sim_labels[i], line_o_sight[j],\ m_arr[i,j], m_err_arr[i,j]) for j in range(3): # For this line of sight, loop over the simulations for i in range(len(spec_locs)): # Print out the residuals for this line of sight print "{} {} LOS Residuals: {} Error: {}".format(sim_labels[i], line_o_sight[j],\ residual_arr[i,j], residual_err_arr[i,j]) for j in range(3): # For this line of sight, loop over the simulations for i in range(len(spec_locs)): # Print out the value of the quadrupole ratio for this line of sight print "{} {} LOS Quad Ratio: {} Error: {}".format(sim_labels[i], line_o_sight[j],\ int_quad_arr[i,j], int_quad_err_arr[i,j])
59b02c1565c66a501284ae2b8e71274d82d42d8e
ce6cb09c21470d1981f1b459293d353407c8392e
/lib/jnpr/healthbot/swagger/models/command_rpc.py
95cb417debd31ead46f6fe1b6170628878d617e1
[ "Apache-2.0" ]
permissive
minefuto/healthbot-py-client
c4be4c9c3153ef64b37e5344bf84154e93e7b521
bb81452c974456af44299aebf32a73abeda8a943
refs/heads/master
2022-12-04T07:47:04.722993
2020-05-13T14:04:07
2020-05-13T14:04:07
290,145,286
0
0
Apache-2.0
2020-08-25T07:27:54
2020-08-25T07:27:53
null
UTF-8
Python
false
false
8,149
py
# coding: utf-8 """ Healthbot APIs API interface for Healthbot application # noqa: E501 OpenAPI spec version: 1.0.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class CommandRpc(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'args': 'dict(str, str)', 'filename': 'str', 'host': 'str', 'password': 'str', 'tablename': 'str', 'target': 'str', 'username': 'str' } attribute_map = { 'args': 'args', 'filename': 'filename', 'host': 'host', 'password': 'password', 'tablename': 'tablename', 'target': 'target', 'username': 'username' } def __init__(self, args=None, filename=None, host=None, password=None, tablename=None, target=None, username=None): # noqa: E501 """CommandRpc - a model defined in Swagger""" # noqa: E501 self._args = None self._filename = None self._host = None self._password = None self._tablename = None self._target = None self._username = None self.discriminator = None if args is not None: self.args = args self.filename = filename self.host = host self.password = password self.tablename = tablename if target is not None: self.target = target self.username = username @property def args(self): """Gets the args of this CommandRpc. # noqa: E501 Optional key/value pair arguments to table # noqa: E501 :return: The args of this CommandRpc. # noqa: E501 :rtype: dict(str, str) """ return self._args @args.setter def args(self, args): """Sets the args of this CommandRpc. Optional key/value pair arguments to table # noqa: E501 :param args: The args of this CommandRpc. # noqa: E501 :type: dict(str, str) """ self._args = args @property def filename(self): """Gets the filename of this CommandRpc. # noqa: E501 Command-rpc table filename in which the table is defined # noqa: E501 :return: The filename of this CommandRpc. # noqa: E501 :rtype: str """ return self._filename @filename.setter def filename(self, filename): """Sets the filename of this CommandRpc. Command-rpc table filename in which the table is defined # noqa: E501 :param filename: The filename of this CommandRpc. # noqa: E501 :type: str """ if filename is None: raise ValueError("Invalid value for `filename`, must not be `None`") # noqa: E501 self._filename = filename @property def host(self): """Gets the host of this CommandRpc. # noqa: E501 Host name or ip-address of the device in which command will be inspected # noqa: E501 :return: The host of this CommandRpc. # noqa: E501 :rtype: str """ return self._host @host.setter def host(self, host): """Sets the host of this CommandRpc. Host name or ip-address of the device in which command will be inspected # noqa: E501 :param host: The host of this CommandRpc. # noqa: E501 :type: str """ if host is None: raise ValueError("Invalid value for `host`, must not be `None`") # noqa: E501 self._host = host @property def password(self): """Gets the password of this CommandRpc. # noqa: E501 Password to connect to device # noqa: E501 :return: The password of this CommandRpc. # noqa: E501 :rtype: str """ return self._password @password.setter def password(self, password): """Sets the password of this CommandRpc. Password to connect to device # noqa: E501 :param password: The password of this CommandRpc. # noqa: E501 :type: str """ if password is None: raise ValueError("Invalid value for `password`, must not be `None`") # noqa: E501 self._password = password @property def tablename(self): """Gets the tablename of this CommandRpc. # noqa: E501 Command-rpc table name # noqa: E501 :return: The tablename of this CommandRpc. # noqa: E501 :rtype: str """ return self._tablename @tablename.setter def tablename(self, tablename): """Sets the tablename of this CommandRpc. Command-rpc table name # noqa: E501 :param tablename: The tablename of this CommandRpc. # noqa: E501 :type: str """ if tablename is None: raise ValueError("Invalid value for `tablename`, must not be `None`") # noqa: E501 self._tablename = tablename @property def target(self): """Gets the target of this CommandRpc. # noqa: E501 To run command on FPC, specifiy FPC target # noqa: E501 :return: The target of this CommandRpc. # noqa: E501 :rtype: str """ return self._target @target.setter def target(self, target): """Sets the target of this CommandRpc. To run command on FPC, specifiy FPC target # noqa: E501 :param target: The target of this CommandRpc. # noqa: E501 :type: str """ self._target = target @property def username(self): """Gets the username of this CommandRpc. # noqa: E501 Username to connect to device # noqa: E501 :return: The username of this CommandRpc. # noqa: E501 :rtype: str """ return self._username @username.setter def username(self, username): """Sets the username of this CommandRpc. Username to connect to device # noqa: E501 :param username: The username of this CommandRpc. # noqa: E501 :type: str """ if username is None: raise ValueError("Invalid value for `username`, must not be `None`") # noqa: E501 self._username = username def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(CommandRpc, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CommandRpc): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
0001b37bd0d1d6b08e473e5f1c41d7bc88ba50bd
48a8430d19c4d8d6fdcecf1cb9875d74b5efce6a
/CycleGAN/data_loader.py
7cf7d6a2fd0954c3313fa0ba7bc7a498ee9437a9
[]
no_license
orange-eng/GAN
af00f469b763893b2e474f8adb83460164c843e0
7a7fafa4c6e9aac0da73791ca646b6503c39b24f
refs/heads/main
2023-02-25T20:21:54.825164
2021-01-25T08:34:41
2021-01-25T08:34:41
324,327,944
0
0
null
null
null
null
UTF-8
Python
false
false
3,628
py
import cv2 from glob import glob # glob是python自己带的一个文件操作相关模块,用它可以查找符合自己目的的文件,就类似于Windows下的文件搜索 # https://www.cnblogs.com/lovemo1314/archive/2011/04/26/2029556.html import numpy as np import os import sys apath = os.path.abspath(os.path.dirname(sys.argv[0])) #得到文件下面的所有文件目录。果然很方便 path = glob(apath+"/datasets/monet2photo/*") print(path) class DataLoader(): def __init__(self,dataset_name,img_res=(128,128)): self.img_res = img_res self.dataset_name = dataset_name def load_data(self,domain,batch_size=1,is_testing = False): data_type = "train%s"% domain if not is_testing else "test%s"% domain path = glob(apath+"/datasets/%s/%s/*"%(self.dataset_name,data_type)) batch_images = np.random.choice(path,size=batch_size) imgs = [] for img_path in batch_images: img = self.imread(img_path) img = cv2.resize(img,self.img_res) #把图像变为128*128*3 img = np.array(img)/127.5 - 1 cv2.imshow("img",img) cv2.waitKey(0) imgs.append(img) return imgs def load_batch(self,batch_size=1,is_testing=False): data_type = "train" if not is_testing else "val" path_A = glob(apath +'./datasets/%s/%sA/*' % (self.dataset_name, data_type)) path_B = glob(apath +'./datasets/%s/%sB/*' % (self.dataset_name, data_type)) self.n_batches = int(min(len(path_A),len(path_B)) / batch_size ) print("min:",int(min(len(path_A),len(path_B)))) total_samples = self.n_batches * batch_size path_A = np.random.choice(path_A, total_samples, replace=False) path_B = np.random.choice(path_B, total_samples, replace=False) for i in range(self.n_batches - 1): batch_A = path_A[i*batch_size:(i+1)*batch_size] batch_B = path_B[i*batch_size:(i+1)*batch_size] imgs_A, imgs_B = [], [] for img_A,img_B in zip(batch_A,batch_B): ''' a = [1, 2, 3] b = [4, 5, 6] a_b_zip = zip(a, b) # 打包为元组的列表,而且元素个数与最短的列表一致 print("type of a_b_zip is %s" % type(a_b_zip)) # 输出zip函数的返回对象类型 a_b_zip = list(a_b_zip) # 因为zip函数返回一个zip类型对象,所以需要转换为list类型 print(a_b_zip) ''' img_A = self.imread(img_A) img_B = self.imread(img_B) img_A = cv2.resize(img_A,self.img_res) img_B = cv2.resize(img_B,self.img_res) imgs_A.append(img_A) imgs_B.append(img_B) imgs_A = np.array(imgs_A,dtype=np.float32)/127.5 - 1 imgs_B = np.array(imgs_B,dtype=np.float32)/127.5 - 1 yield imgs_A,imgs_B # 带yield的函数是一个生成器,而不是一个函数了, # 这个生成器有一个函数就是next函数,next就相当于“下一步”生成哪个数 # 这一次的next开始的地方是接着上一次的next停止的地方执行的 #把BGR格式的图片转化为RGB格式的图片 def imread(self,path): img = cv2.imread(path) img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB) return img # if __name__ == "__main__": # Data = DataLoader(dataset_name="monet2photo") # for batch_i,(imgs_A,imgs_B) in enumerate(Data.load_batch(50)): # print(batch_i)
bfbaca5b6b05cde10d06ec497cda64783dfb3cae
3f9981c4ead0f5edaf85a760076518e9e89415d1
/connectfour.py
e8685d371722aaa83a40fe97c2c928a1055bc79a
[ "MIT" ]
permissive
jthurst3/connectfour
5ab756df61a924e08941081e0d08093db8a3280c
43c58f67b2147cc75441ad19ae5618b51be015d4
refs/heads/master
2021-01-02T23:06:49.927372
2014-01-14T19:49:16
2014-01-14T19:49:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,339
py
# connectfour.py # runs the Connect Four program (makes the game interactive) # J. Hassler Thurston # Connect Four # December 30, 2013 from board import * from pattern import * from sequence import * from compute_moves import * import time # checks to see if user entered a valid integer # from http://stackoverflow.com/questions/1265665/python-check-if-a-string-represents-an-int-without-using-try-except def getInt(input_arg): try: user_input = raw_input(input_arg) return int(user_input) except ValueError: print "Did not enter a valid integer." return getInt(input_arg) # function that plays with a human def play_human(): # display a starting message print "Starting game of connect four..." # query the user whether they want to go first or second human_player = getInt("Do you want to go first or second? (Enter 1 or 2): ") # initialize the board board = Board(7,6) exit_status = 0 while(exit_status == 0): game_play(board, human_player) take_back = getInt("Press 1 to exit, or 0 to take back moves: ") if take_back == 1: exit_status = 1 else: num_moves = getInt("How many moves do you want to take back? ") board.take_back_moves(num_moves) # main stage of playing the game def game_play(playing_board, human_player): # alternate between querying a user for a move and moving while playing_board.winner == 0: if playing_board.turn == human_player: query_move(playing_board) else: make_move(playing_board) # queries the user for a move def query_move(playing_board): column = getInt("Your turn. Please enter your move (an open column between 1 and " + str(playing_board.columns) + ", 0 to take back moves): ") if column == 0: # we're taking back some moves num_moves = getInt("How many moves do you want to take back? ") playing_board.take_back_moves(num_moves) return True playing_board.move(column-1) return True # function that makes a move for the computer def make_move(playing_board): # wait 2 seconds time.sleep(1) # make a move compute_move(playing_board) # print the move print "Computer moved in column " + str(playing_board.move_history[-1]+1) # wait .5 seconds time.sleep(.5) return True # main function (for testing) def main(): board = Board(7,6) compute_move(board) print board.board if __name__ == '__main__': play_human()
8a6b6d32122534f3e8d72614bd118043a59200d6
69ef30768d930d1484cfba61b0d0a01eaf4baf28
/run_dv_seq2seq.py
d6ed8894d8091cbdfd89f61e2aa98fe653ac5018
[ "MIT" ]
permissive
vangogh0318/RWG_DV-Seq2Seq
d1195937610875392232e5387395c226e43312b3
c91fe7e9c9fd3754af794bdacd97b61ed243dd62
refs/heads/master
2020-06-21T01:02:47.472108
2019-06-13T22:40:18
2019-06-13T22:40:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,871
py
import utils.model_utils as mutil from utils.lang_utils import * from data_loaders import DVSeq2SeqDataLoader from model_dv_seq2seq import * from data.read_data import * from constants import * from params import prepare_params, merge_params from components import LRDecayOptimizer, get_masked_nll_criterion, get_nll_criterion def main(params): params.model_name = "dv_seq2seq" mutil.DEVICE_STR_OVERRIDE = params.device_str data_train = read_col_word_delim_data("data/dv_seq2seq_train.txt") data_valid = read_col_word_delim_data("data/dv_seq2seq_valid.txt") data_test = read_col_word_delim_data("data/dv_seq2seq_test.txt") w2c_src = build_w2c_from_seg_word_lists([t[0] + t[1] for t in data_train]) w2c_tgt = build_w2c_from_seg_word_lists([t[2] for t in data_train], limit=40000) # limit output vocab size print("data_train len: {}".format(len(data_train))) print("data_valid len: {}".format(len(data_valid))) print("data_test len: {}".format(len(data_test))) print("src w2c len: {}".format(len(w2c_src))) print("tgt w2c len: {}".format(len(w2c_tgt))) pre_built_w2v = None src_vocab_cache_file = "cache/dv_seq2seq_src_vocab.pkl" tgt_vocab_cache_file = "cache/dv_seq2seq_tgt_vocab.pkl" if os.path.isfile(src_vocab_cache_file): print("Loading src vocab from cache " + src_vocab_cache_file) src_vocab = pickle.load(open(src_vocab_cache_file, "rb")) else: print("Building src vocab") if pre_built_w2v is None: pre_built_w2v = load_gensim_word_vec(params.word_vec_file, cache_file=params.vocab_cache_file) src_vocab = W2VTrainableVocab(w2c_src, pre_built_w2v, embedding_dim=params.word_embedding_dim, rand_oov_embed=True, special_tokens=( PAD_TOKEN, OOV_TOKEN, ), light_weight=True) pickle.dump(src_vocab, open(src_vocab_cache_file, "wb"), protocol=4) params.src_vocab_size = len(src_vocab.w2i) print("src vocab size: ", params.src_vocab_size) if os.path.isfile(tgt_vocab_cache_file): print("Loading tgt vocab from cache " + tgt_vocab_cache_file) tgt_vocab = pickle.load(open(tgt_vocab_cache_file, "rb")) else: print("Building tgt vocab") if pre_built_w2v is None: pre_built_w2v = load_gensim_word_vec(params.word_vec_file, cache_file=params.vocab_cache_file) tgt_vocab = W2VTrainableVocab(w2c_tgt, pre_built_w2v, embedding_dim=params.word_embedding_dim, rand_oov_embed=False, special_tokens=( PAD_TOKEN, OOV_TOKEN, SOS_TOKEN, EOS_TOKEN, ), light_weight=True) pickle.dump(tgt_vocab, open(tgt_vocab_cache_file, "wb"), protocol=4) params.tgt_vocab_size = len(tgt_vocab.w2i) print("tgt vocab size: ", params.tgt_vocab_size) params.src_w2i = src_vocab.w2i params.src_i2w = src_vocab.i2w params.tgt_w2i = tgt_vocab.w2i params.tgt_i2w = tgt_vocab.i2w params.w2i = tgt_vocab.w2i params.i2w = tgt_vocab.i2w params.pad_idx = tgt_vocab.pad_idx params.oov_idx = tgt_vocab.oov_idx params.sos_idx = tgt_vocab.w2i[SOS_TOKEN] params.eos_idx = tgt_vocab.w2i[EOS_TOKEN] print("Preparing data loaders") train_loader = DVSeq2SeqDataLoader(params.batch_size, src_vocab, tgt_vocab, src_vocab, data_train) valid_loader = DVSeq2SeqDataLoader(params.batch_size, src_vocab, tgt_vocab, src_vocab, data_valid) test_loader = DVSeq2SeqDataLoader(params.batch_size, src_vocab, tgt_vocab, src_vocab, data_test) print("{} overlapped train/test instances detected".format(len(train_loader.get_overlapping_data(test_loader)))) print("{} overlapped train/valid instances detected".format(len(train_loader.get_overlapping_data(valid_loader)))) print("{} overlapped valid/test instances detected".format(len(valid_loader.get_overlapping_data(test_loader)))) print("Initializing " + params.model_name) criterion_gen = get_masked_nll_criterion(len(tgt_vocab)) criterion_cpy = get_nll_criterion() model = make_dv_seq2seq_model(src_vocab.w2v_mat if params.use_pretrained_embedding else None, tgt_vocab.w2v_mat if params.use_pretrained_embedding else None, params, len(src_vocab), len(tgt_vocab), same_word_embedding=params.same_word_embedding) model_opt = LRDecayOptimizer( torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=params.lrd_initial_lr, betas=(params.adam_betas_1, params.adam_betas_2), eps=params.adam_eps, weight_decay=params.adam_l2), initial_lr=params.lrd_initial_lr, shrink_factor=params.lrd_lr_decay_factor, min_lr=params.lrd_min_lr, past_scores_considered=params.lrd_past_lr_scores_considered, score_method="min", verbose=True, max_fail_limit=params.lrd_max_fail_limit) completed_epochs = 0 best_eval_result = 0 best_eval_epoch = 0 past_eval_results = [] if os.path.isfile(params.saved_model_file): print("Found saved model {}, loading".format(params.saved_model_file)) sd = mutil.model_load(params.saved_model_file) saved_params = sd[CHKPT_PARAMS] params = merge_params(saved_params, params) model.load_state_dict(sd[CHKPT_MODEL]) model_opt.load_state_dict(sd[CHKPT_OPTIMIZER]) best_eval_result = sd[CHKPT_BEST_EVAL_RESULT] best_eval_epoch = sd[CHKPT_BEST_EVAL_EPOCH] past_eval_results = sd[CHKPT_PAST_EVAL_RESULTS] completed_epochs = sd[CHKPT_COMPLETED_EPOCHS] print(model) print("Model name: {}".format(params.model_name)) n_params = sum(p.numel() for p in model.parameters() if p.requires_grad) print("Number of trainable parameters: {}".format(n_params)) if not os.path.isfile(params.saved_model_file) or \ (os.path.isfile(params.saved_model_file) and params.continue_training): print("Training") try: train_dv_seq2seq(params, model, train_loader, criterion_gen, criterion_cpy, model_opt, completed_epochs=completed_epochs, best_eval_result=best_eval_result, best_eval_epoch=best_eval_epoch, past_eval_results=past_eval_results, eval_loader=valid_loader) except KeyboardInterrupt: print("training interrupted") if len(test_loader) > 0: fn = params.saved_models_dir + params.model_name + "_best.pt" exclude_tokens = [SOS_TOKEN, EOS_TOKEN, PAD_TOKEN, "", " "] if os.path.isfile(fn): sd = mutil.model_load(fn) completed_epochs = sd[CHKPT_COMPLETED_EPOCHS] model.load_state_dict(sd[CHKPT_MODEL]) print("Loaded best model after {} epochs of training".format(completed_epochs)) with torch.no_grad(): model.eval() write_line_to_file("input|pred|truth|", f_path=params.model_name + "_test_results.txt") for batch in tqdm(test_loader, mininterval=2, desc="Test", leave=False, ascii=True): beam_rvs = dv_seq2seq_beam_decode_batch(model, batch, params.sos_idx, tgt_vocab.i2w, eos_idx=params.eos_idx, len_norm=params.bs_len_norm, gamma=params.bs_div_gamma, max_len=params.max_decoded_seq_len, beam_width=params.beam_width_test) for bi in range(batch[DK_BATCH_SIZE]): msg_str = "".join(batch[DK_SRC_SEG_LISTS][bi]) truth_rsp_seg = [w for w in batch[DK_TGT_SEG_LISTS][bi] if w not in exclude_tokens] truth_rsp_str = " ".join(truth_rsp_seg) truth_rsp_str = re.sub(" +", " ", truth_rsp_str) best_rv = [w for w in beam_rvs[bi][0][3] if w not in exclude_tokens] # word seg list rsp = " ".join(best_rv) write_line_to_file(msg_str + "|" + rsp + "|" + truth_rsp_str, params.model_name + "_test_results.txt") if __name__ == "__main__": args = prepare_params() main(args) print("done")
fae2ea084bc5df24b62506cd59bd23ec8f37c2f0
1229ecf1a824e6e3b21b7334241efd739b8f87e9
/Dataleum Hackathon.py
d7f41ce057bfa7dffaba22706e041acfa9dcfe9e
[ "MIT" ]
permissive
ImonEmmanuel/Dataleum-virtual-hackathon
d2b7987836645eb112c1d3f2ef9672550cac5e95
f089323911dd78aeb26091441956613c48386b93
refs/heads/master
2022-07-13T13:09:59.927181
2020-05-16T03:35:39
2020-05-16T03:35:39
264,351,315
1
0
null
null
null
null
UTF-8
Python
false
false
5,823
py
#!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt sns.set() # In[2]: agent=pd.read_csv('Agents.csv') # In[3]: agent.head(4) # In[4]: agent.shape # In[5]: #Checked if there is any duplicated columns agent.duplicated().sum() # In[6]: #Infomation about the dataframe agent.info() # In[7]: #types of the data in which there are encoded agent.dtypes # In[8]: #Checking statistical values of our dataset agent.describe() # In[9]: #Converting the TransactionDate to datetime agent['TransactionDate']=pd.to_datetime(agent['TransactionDate']) agent['AccountOpenedDate']=pd.to_datetime(agent['AccountOpenedDate']) # In[10]: agent.dtypes # ## Basic EDA # In[11]: ''' Performed a grouby to assigned each Agent to it total amount of transaction done''' agent_groub=agent.groupby(by=agent['FullName']) x=np.round(agent_groub.sum()['TransactionAmount']) agent['total_amount']=agent['FullName'].map(x) # In[12]: #Each Transaction has a unique agent agent.total_amount.nunique() - agent.FullName.nunique() # In[13]: agent[agent.total_amount==299944121].head(5) # In[14]: agent_top_10=agent.groupby('FullName').sum().sort_values(by='TransactionAmount', ascending=False).head(10) plt.figure(figsize=(10,8)) plt.xlabel('Full Name') plt.ylabel('Transaction Amount') plt.xticks(rotation=20) plt.title('Transaction Amount by Agent Since Inception of Company') plt.plot(agent_top_10['TransactionAmount'], color='red', marker='+', linestyle=':') plt.show(); # ## Highest Sale in 2019 # In[15]: #create a column for the month column agent['month']=agent['TransactionDate'].dt.month agent['year']=agent['TransactionDate'].dt.year # In[16]: #Looping through the month column to form a new column quarter in the dataset quarter=[] for i in agent['month']: if i==1 or i==2 or i==3: quarter.append(1) elif i==4 or i==5 or i==6: quarter.append(2) elif i==7 or i==8 or i==9: quarter.append(3) elif i==10 or i==11 or i==12: quarter.append(4) agent['quarters']=quarter # In[17]: agent_2019_quarter4=agent[(agent['year']==2019) & (agent['quarters']==4)] # In[18]: agent_quarter_top_10=agent_2019_quarter4.groupby('FullName').sum().sort_values(by='TransactionAmount', ascending=False).head(10) plt.figure(figsize=(10,8)) plt.xlabel('Full Name') plt.ylabel('Transaction Amount') plt.xticks(rotation=30) plt.title('Transaction For 2019') plt.plot(agent_quarter_top_10['TransactionAmount'],color='green', marker='o', linestyle='dashed') plt.show(); # ## Agent Raj Verma # In[19]: agent_raj_verma=agent[agent['FullName']=='Raj Verma'] print('Shape of the dataset',agent_raj_verma.shape) agent_raj_verma.head(4) # In[20]: agent_sum=agent_raj_verma[agent_raj_verma['year']==2020]['TransactionAmount'].sum() agent_sum=np.round(agent_sum/1000000, decimals=2) print('Total Amount of Transaction Carried out by Agent Raj Verma for the First Quater of 2020:',agent_sum,'Million') # In[21]: quarter_1=agent_raj_verma[(agent_raj_verma['year']==2019) &(agent_raj_verma['quarters']==1)]['TransactionAmount'].sum() quarter_2=agent_raj_verma[(agent_raj_verma['year']==2019) &(agent_raj_verma['quarters']==2)]['TransactionAmount'].sum() quarter_3=agent_raj_verma[(agent_raj_verma['year']==2019) &(agent_raj_verma['quarters']==3)]['TransactionAmount'].sum() quarter_4=agent_raj_verma[(agent_raj_verma['year']==2019) &(agent_raj_verma['quarters']==4)]['TransactionAmount'].sum() (quarter_1, quarter_2, quarter_3, quarter_4)=np.round(quarter_1/1000000, decimals=2),np.round(quarter_2/1000000, decimals=2),np.round(quarter_3/1000000, decimals=2),np.round(quarter_4/1000000, decimals=2) print(f'Transaction for quarter 1 {quarter_1}Million') print(f'Transaction for quarter 2 {quarter_2}Million') print(f'Transaction for quarter 3 {quarter_3}Million') print(f'Transaction for quarter 4 {quarter_4}Million') # In[22]: #Created a new dataframe for the quarter columns quarter_data={'Quarter':['Quarter 1', 'Quarter 2', 'Quarter 3', 'Quarter 4'], 'Amount in Million':[19.67, 16.15, 15.29, 5.38]} quarter_data=pd.DataFrame(quarter_data) # In[23]: quarter_data.plot(x='Quarter', y='Amount in Million', kind='bar', legend=True,title='Transaction by Quarter of Agent Raj Virma'); # In[ ]: # In[ ]: # # SUPPLIER EVALUATION # In[24]: supplier=pd.read_csv('DSuppliers.csv') # In[25]: supplier.head(4) # In[26]: #Checked if there is any duplicated columns supplier.duplicated().sum() # In[27]: supplier.shape # In[28]: supplier.info() # In[29]: supplier.dtypes # In[30]: #Checking statistical values of our dataset supplier.describe() # In[31]: #Checking for the total number of supplier Name of all products print('Number of Suppliers:',supplier.SupplierName.nunique()) supplier.SupplierName.value_counts() # In[32]: #Checking for the total number of products print('Number of Unique Products:',supplier.SupplierCategoryName.nunique()) supplier.SupplierCategoryName.value_counts() # In[33]: supplier_name=supplier.groupby('SupplierName').sum().sort_values(by='TransactionAmount', ascending=False) supplier_name # In[34]: plt.figure(figsize=(10,8)) plt.xlabel('Full Name') plt.ylabel('Transaction Amount') plt.xticks(rotation=30) #plt.legend() plt.title('Transaction Amount of Supplies') plt.plot(supplier_name['TransactionAmount'],color='pink', marker='*', linestyle='dashed') plt.show(); # In[35]: total_amt=(supplier.TransactionAmount.sum())/1000000000 total_amt=np.round(total_amt, decimals=2) print('Total Money Spent on supplies:',total_amt,'Billion') # In[36]: agent.to_csv('Agents_new.csv') # In[ ]: # ## I hope it is comprehensive Enough # In[ ]:
20b26ad604fb71653761602a7d8bea355b90865c
2b409a23a3fa6ba70dd98c4c604237330ff77ead
/gatekeeper/settings.py
512aa92db12e72e660aaae7901b4f58345f81e93
[]
no_license
taobluesky/gatekeeper
fdcdeb352a66aa20c4676ce02f9ad0fce23d283a
eac91828b466720f24024173ec73d37572e3bd42
refs/heads/master
2021-01-23T13:30:06.594316
2013-08-13T13:01:10
2013-08-13T13:01:10
null
0
0
null
null
null
null
WINDOWS-1252
Python
false
false
7,349
py
# -*- coding: utf-8 -*- import os # Django settings for gatekeeper project. DEBUG = True TEMPLATE_DEBUG = DEBUG ALLOWED_HOSTS = [ '10.67.92.77', '127.0.0.1', ] DIRNAME = os.path.dirname(__file__).replace('\\','/') ADMINS = ( # ('Your Name', '[email protected]'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', # Add 'postgresql_psycopg2', 'postgresql', 'mysql', 'sqlite3' or 'oracle'. 'NAME': 'gatekeeper', # Or path to database file if using sqlite3. 'USER': 'H7104943', # Not used with sqlite3. 'PASSWORD': 'tjit123', # Not used with sqlite3. 'HOST': '127.0.0.1', # Set to empty string for localhost. Not used with sqlite3. 'PORT': '', # Set to empty string for default. Not used with sqlite3. } } # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # On Unix systems, a value of None will cause Django to use the same # timezone as the operating system. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = 'Asia/Shanghai'#'America/Chicago' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'zh-TW'#'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale USE_L10N = True # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/home/media/media.lawrence.com/media/" MEDIA_ROOT = DIRNAME + '/static/media/' # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://media.lawrence.com/media/", "http://example.com/media/" MEDIA_URL = '/media/' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/home/media/media.lawrence.com/static/" STATIC_ROOT = '' # URL prefix for static files. # Example: "http://media.lawrence.com/static/" STATIC_URL = '/static/' # URL prefix for admin static files -- CSS, JavaScript and images. # Make sure to use a trailing slash. # Examples: "http://foo.com/static/admin/", "/static/admin/". ADMIN_MEDIA_PREFIX = '/static/admin/' # Additional locations of static files STATICFILES_DIRS = ( DIRNAME + '/static/site_static', # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) # Make this unique, and don't share it with anybody. SECRET_KEY = 'zit@&pgr4lbs6ebk&r-gn=p$1tr958uqr^)qgmu!&9j9a4c+cv' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.transaction.TransactionMiddleware', ) ROOT_URLCONF = 'gatekeeper.urls' TEMPLATE_DIRS = ( DIRNAME + '/templates', 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', 'django.template.loaders.app_directories.load_template_source', # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', # Uncomment the next line to enable the admin: 'django.contrib.admin', # Uncomment the next line to enable admin documentation: # 'django.contrib.admindocs', #'gatekeeper.sign', #'gatekeeper.auth', #'gatekeeper.appform', 'gatekeeper.account', 'gatekeeper.application', 'gatekeeper.core', 'gatekeeper.mail', 'gatekeeper.message_center', 'gatekeeper.management', 'gatekeeper.pdf', 'bootstrap_toolkit', #'tinymce', ) # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, }, } TEMPLATE_CONTEXT_PROCESSORS = ( 'django.contrib.auth.context_processors.auth', 'django.core.context_processors.debug', 'django.core.context_processors.i18n', 'django.core.context_processors.media', 'django.core.context_processors.static', 'django.core.context_processors.request', # 'django.contrib.messages.context_processors.messages', ) gettext_noop = lambda s: s LANGUAGES = ( ('en', gettext_noop('English')), ('zh-cn', gettext_noop('Simplified Chinese')), ('zh-tw', gettext_noop('Traditional Chinese')), ) DOWNLOAD_ROOT = MEDIA_ROOT + '/share_files/' APP_PDF_ROOT = MEDIA_ROOT + '/app_pdf/' #SESSION_COOKIE_AGE = 60 EMAIL_HOST = 'smtp.qq.com' EMAIL_PORT = 25 # Message Center µÄÅäÖà MESSAGE_CENTER_URL = 'http://msgcenter.ecmms.foxconn:2571/Messaging.asmx?WSDL' MESSAGE_CENTER_USER = 'GateKeeperUid' MESSAGE_CENTER_PASSWORD= 'GateKeeperPwd' MESSAGE_CENTER_FROM_EMAIL = '[email protected]' # bootstrap ÔO¶¨ BOOTSTRAP_BASE_URL = STATIC_URL BOOTSTRAP_CSS_BASE_URL = BOOTSTRAP_BASE_URL + 'css/' BOOTSTRAP_CSS_URL = BOOTSTRAP_CSS_BASE_URL + 'bootstrap.css' BOOTSTRAP_JS_BASE_URL = BOOTSTRAP_BASE_URL + 'js/' # Enable for single bootstrap.js file #BOOTSTRAP_JS_URL = BOOTSTRAP_JS_BASE_URL + 'bootstrap.js'
76d616278649a3882297bca1ec53242a02e4fad1
348ce2ed37b439c793c764eb48cffa9fabb3e9bc
/probe_wrapper.py
d4221a037c6c00ab201b4440326d951d997fb3dc
[ "Apache-2.0" ]
permissive
fabianfreyer/unicorefuzz
fc771d06bc352b979f37f3adaca2c5b96cb0de4f
54c85d3c3b610f2d098eecc31b8937d73ea5903b
refs/heads/master
2020-07-14T05:33:30.002672
2019-08-29T20:45:17
2019-08-29T20:45:17
205,250,990
0
0
null
2019-08-29T21:09:58
2019-08-29T21:09:57
null
UTF-8
Python
false
false
4,944
py
#!/usr/bin/env python3 import os import socket import re import sys import time import shutil import inotify.adapters from datetime import datetime from sh import which from avatar2 import archs, Avatar, GDBTarget from utils import get_base, get_arch, all_regs, REQUEST_FOLDER, STATE_FOLDER, REJECTED_ENDING GDB_PATH = which("gdb") def dump(workdir, target, base_address): mem = target.read_memory(base_address, 0x1000, raw=True) with open(os.path.join(workdir, STATE_FOLDER, "{:016x}".format(base_address)), "wb") as f: f.write(mem) print("[*] {}: Dumped 0x{:016x}".format(datetime.now(), base_address)) def forward_requests(target, workdir, requests_path, output_path): filenames = os.listdir(requests_path) while len(filenames): for filename in filenames: base_address = get_base(int(filename, 16)) try: print("[+] {}: Received request for {:016x}".format(datetime.now(), base_address)) if not os.path.isfile(os.path.join(output_path, str(base_address))): dump(workdir, target, base_address) # we should restart afl now except KeyboardInterrupt as ex: print("cya") exit(0) except Exception as e: print("Could not get memory region at {}: {} (Found mem corruption?)".format( hex(base_address), repr(e))) with open(os.path.join(output_path, "{:016x}{}".format(base_address, REJECTED_ENDING)), 'a') as f: f.write(repr(e)) os.remove(os.path.join(requests_path, filename)) filenames = os.listdir(requests_path) def main(workdir, module=None, breakoffset=None, breakaddress=None, reset_state=True, arch="x64", gdb_port=1234): request_path = os.path.join(workdir, REQUEST_FOLDER) output_path = os.path.join(workdir, STATE_FOLDER) if arch != "x64": raise("Unsupported arch") if reset_state: try: shutil.rmtree(output_path) except: pass try: os.makedirs(output_path, exist_ok=True) except: pass if module: if breakaddress is not None: raise("Breakaddress and module supplied. They are not compatible.") if breakoffset is None: raise("Module but no breakoffset specified. Don't know where to break.") mem_addr = os.popen("./get_mod_addr.sh " + module).readlines() try: mem_addr = int(mem_addr[0], 16) except ValueError as ex: print("Error decoding module addr. Either module {} has not been loaded or something went wrong with ssh ({})".format(module, ex)) exit(-1) print("Module " + module + " is at memory address " + hex(mem_addr)) breakaddress = hex(mem_addr + breakoffset) else: breakaddress = hex(breakaddress) avatar = Avatar(arch=get_arch(arch), output_directory=os.path.join(workdir, "avatar")) target = avatar.add_target( GDBTarget, gdb_port=gdb_port, gdb_executable=GDB_PATH) target.init() target.set_breakpoint("*{}".format(breakaddress)) print("[*] Breakpoint set at {}".format(breakaddress)) print("[+] waiting for bp hit...") target.cont() target.wait() print("[+] hit! dumping registers and memory") # dump registers for reg in all_regs(get_arch(arch)): written = True reg_file = os.path.join(output_path, reg) with open(reg_file, "w") as f: try: val = target.read_register(reg) if isinstance(val, list): # Avatar special registers (xmm, ...) i32list = val val = 0 for shift, i32 in enumerate(i32list): val += (i32 << (shift * 32)) f.write(str(val)) except Exception as ex: #print("Ignoring {}: {}".format(reg, ex)) written = False if not written: os.unlink(reg_file) try: os.mkdir(request_path) except: pass forward_requests(target, workdir, request_path, output_path) print("[*] Initial dump complete. Listening for requests from ./harness.py.") i = inotify.adapters.Inotify() # only readily written files i.add_watch(request_path, mask=inotify.constants.IN_CLOSE_WRITE) for event in i.event_gen(yield_nones=False): #print("Request: ", event) forward_requests(target, workdir, request_path, output_path) print("[*] Exiting probe_wrapper (keyboard interrupt)") if __name__ == "__main__": import config main( module=config.MODULE, breakoffset=config.BREAKOFFSET, breakaddress=config.BREAKADDR, workdir=config.WORKDIR, arch=config.ARCH, gdb_port=config.GDB_PORT )
5076dc84170e0886f5e445b5068ebeb7b5a3d44b
14f1b75de10bdf052535fc6c2821802c3f058736
/selection_sort/selection_sort_blind.py
736e85f140b13a8e83b62f984d862ecda351e105
[]
no_license
asherif844/algorithms
a4fdaed64d1d61395e5f1ea12d0fda7d0f45d7a4
146617523dcf5e47f1134722eb3aa38ff02099c1
refs/heads/master
2022-06-10T06:26:39.689346
2022-05-16T16:44:22
2022-05-16T16:44:22
245,258,563
1
0
null
null
null
null
UTF-8
Python
false
false
613
py
def sorted_sort(array): original_index = 0 while original_index < len(array) - 1: smallest_index = original_index for i in range(smallest_index+1, len(array)): if array[i] < array[smallest_index]: smallest_index = i swap(smallest_index, original_index, array) original_index += 1 return array def swap(smallest_index, original_index, array): array[smallest_index], array[original_index] = array[original_index], array[smallest_index] # return array old_array = [5, 4, 3, 2, -5, -6, 10, 200, 36, 0] print(sorted_sort(old_array))
7ede8b2e4b1c7240868b9fbd8862209cc5388c58
31b85e2abc35fa633257cc372c8fa059c75241d9
/superset/models/core.py
8e7c1998b64e7d239f3201ea593391b7a9d81cb4
[ "Apache-2.0" ]
permissive
Zandut/Superset-Funnel
b28cf1c0768bfcf7ab630c622c7ca3755212bfe8
cff832b2d584f859ceb025349b615c25afa524b7
refs/heads/master
2022-12-04T07:10:29.164996
2020-08-24T08:05:16
2020-08-24T08:05:16
288,700,792
0
0
null
null
null
null
UTF-8
Python
false
false
45,993
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=C,R,W """A collection of ORM sqlalchemy models for Superset""" from contextlib import closing from copy import copy, deepcopy from datetime import datetime import json import logging import textwrap from typing import List from flask import escape, g, Markup, request from flask_appbuilder import Model from flask_appbuilder.models.decorators import renders from flask_appbuilder.security.sqla.models import User import numpy import pandas as pd import sqlalchemy as sqla from sqlalchemy import ( Boolean, Column, create_engine, DateTime, ForeignKey, Integer, MetaData, String, Table, Text, ) from sqlalchemy.engine import url from sqlalchemy.engine.url import make_url from sqlalchemy.orm import relationship, sessionmaker, subqueryload from sqlalchemy.orm.session import make_transient from sqlalchemy.pool import NullPool from sqlalchemy.schema import UniqueConstraint from sqlalchemy_utils import EncryptedType import sqlparse from superset import app, db, db_engine_specs, is_feature_enabled, security_manager from superset.connectors.connector_registry import ConnectorRegistry from superset.legacy import update_time_range from superset.models.helpers import AuditMixinNullable, ImportMixin from superset.models.tags import ChartUpdater, DashboardUpdater, FavStarUpdater from superset.models.user_attributes import UserAttribute from superset.utils import cache as cache_util, core as utils from superset.viz import viz_types from urllib import parse # noqa config = app.config custom_password_store = config.get("SQLALCHEMY_CUSTOM_PASSWORD_STORE") stats_logger = config.get("STATS_LOGGER") log_query = config.get("QUERY_LOGGER") metadata = Model.metadata # pylint: disable=no-member PASSWORD_MASK = "X" * 10 def set_related_perm(mapper, connection, target): # noqa src_class = target.cls_model id_ = target.datasource_id if id_: ds = db.session.query(src_class).filter_by(id=int(id_)).first() if ds: target.perm = ds.perm def copy_dashboard(mapper, connection, target): dashboard_id = config.get("DASHBOARD_TEMPLATE_ID") if dashboard_id is None: return Session = sessionmaker(autoflush=False) session = Session(bind=connection) new_user = session.query(User).filter_by(id=target.id).first() # copy template dashboard to user template = session.query(Dashboard).filter_by(id=int(dashboard_id)).first() dashboard = Dashboard( dashboard_title=template.dashboard_title, position_json=template.position_json, description=template.description, css=template.css, json_metadata=template.json_metadata, slices=template.slices, owners=[new_user], ) session.add(dashboard) session.commit() # set dashboard as the welcome dashboard extra_attributes = UserAttribute( user_id=target.id, welcome_dashboard_id=dashboard.id ) session.add(extra_attributes) session.commit() sqla.event.listen(User, "after_insert", copy_dashboard) class Url(Model, AuditMixinNullable): """Used for the short url feature""" __tablename__ = "url" id = Column(Integer, primary_key=True) url = Column(Text) class KeyValue(Model): """Used for any type of key-value store""" __tablename__ = "keyvalue" id = Column(Integer, primary_key=True) value = Column(Text, nullable=False) class CssTemplate(Model, AuditMixinNullable): """CSS templates for dashboards""" __tablename__ = "css_templates" id = Column(Integer, primary_key=True) template_name = Column(String(250)) css = Column(Text, default="") slice_user = Table( "slice_user", metadata, Column("id", Integer, primary_key=True), Column("user_id", Integer, ForeignKey("ab_user.id")), Column("slice_id", Integer, ForeignKey("slices.id")), ) class Slice(Model, AuditMixinNullable, ImportMixin): """A slice is essentially a report or a view on data""" __tablename__ = "slices" id = Column(Integer, primary_key=True) slice_name = Column(String(250)) datasource_id = Column(Integer) datasource_type = Column(String(200)) datasource_name = Column(String(2000)) viz_type = Column(String(250)) params = Column(Text) description = Column(Text) cache_timeout = Column(Integer) perm = Column(String(1000)) owners = relationship(security_manager.user_model, secondary=slice_user) export_fields = ( "slice_name", "datasource_type", "datasource_name", "viz_type", "params", "cache_timeout", ) def __repr__(self): return self.slice_name or str(self.id) @property def cls_model(self): return ConnectorRegistry.sources[self.datasource_type] @property def datasource(self): return self.get_datasource def clone(self): return Slice( slice_name=self.slice_name, datasource_id=self.datasource_id, datasource_type=self.datasource_type, datasource_name=self.datasource_name, viz_type=self.viz_type, params=self.params, description=self.description, cache_timeout=self.cache_timeout, ) @datasource.getter # type: ignore @utils.memoized def get_datasource(self): return db.session.query(self.cls_model).filter_by(id=self.datasource_id).first() @renders("datasource_name") def datasource_link(self): # pylint: disable=no-member datasource = self.datasource return datasource.link if datasource else None def datasource_name_text(self): # pylint: disable=no-member datasource = self.datasource return datasource.name if datasource else None @property def datasource_edit_url(self): # pylint: disable=no-member datasource = self.datasource return datasource.url if datasource else None @property # type: ignore @utils.memoized def viz(self): d = json.loads(self.params) viz_class = viz_types[self.viz_type] # pylint: disable=no-member return viz_class(datasource=self.datasource, form_data=d) @property def description_markeddown(self): return utils.markdown(self.description) @property def data(self): """Data used to render slice in templates""" d = {} self.token = "" try: d = self.viz.data self.token = d.get("token") except Exception as e: logging.exception(e) d["error"] = str(e) return { "datasource": self.datasource_name, "description": self.description, "description_markeddown": self.description_markeddown, "edit_url": self.edit_url, "form_data": self.form_data, "slice_id": self.id, "slice_name": self.slice_name, "slice_url": self.slice_url, "modified": self.modified(), "changed_on_humanized": self.changed_on_humanized, "changed_on": self.changed_on.isoformat(), } @property def json_data(self): return json.dumps(self.data) @property def form_data(self): form_data = {} try: form_data = json.loads(self.params) except Exception as e: logging.error("Malformed json in slice's params") logging.exception(e) form_data.update( { "slice_id": self.id, "viz_type": self.viz_type, "datasource": "{}__{}".format(self.datasource_id, self.datasource_type), } ) if self.cache_timeout: form_data["cache_timeout"] = self.cache_timeout update_time_range(form_data) return form_data def get_explore_url(self, base_url="/metrix/explore", overrides=None): overrides = overrides or {} form_data = {"slice_id": self.id} form_data.update(overrides) params = parse.quote(json.dumps(form_data)) return f"{base_url}/?form_data={params}" @property def slice_url(self): """Defines the url to access the slice""" return self.get_explore_url() @property def explore_json_url(self): """Defines the url to access the slice""" return self.get_explore_url("/metrix/explore_json") @property def edit_url(self): return "/chart/edit/{}".format(self.id) @property def chart(self): return self.slice_name or "<empty>" @property def slice_link(self): url = self.slice_url name = escape(self.chart) return Markup(f'<a href="{url}">{name}</a>') def get_viz(self, force=False): """Creates :py:class:viz.BaseViz object from the url_params_multidict. :return: object of the 'viz_type' type that is taken from the url_params_multidict or self.params. :rtype: :py:class:viz.BaseViz """ slice_params = json.loads(self.params) slice_params["slice_id"] = self.id slice_params["json"] = "false" slice_params["slice_name"] = self.slice_name slice_params["viz_type"] = self.viz_type if self.viz_type else "table" return viz_types[slice_params.get("viz_type")]( self.datasource, form_data=slice_params, force=force ) @property def icons(self): return f""" <a href="{self.datasource_edit_url}" data-toggle="tooltip" title="{self.datasource}"> <i class="fa fa-database"></i> </a> """ @classmethod def import_obj(cls, slc_to_import, slc_to_override, import_time=None): """Inserts or overrides slc in the database. remote_id and import_time fields in params_dict are set to track the slice origin and ensure correct overrides for multiple imports. Slice.perm is used to find the datasources and connect them. :param Slice slc_to_import: Slice object to import :param Slice slc_to_override: Slice to replace, id matches remote_id :returns: The resulting id for the imported slice :rtype: int """ session = db.session make_transient(slc_to_import) slc_to_import.dashboards = [] slc_to_import.alter_params(remote_id=slc_to_import.id, import_time=import_time) slc_to_import = slc_to_import.copy() slc_to_import.reset_ownership() params = slc_to_import.params_dict slc_to_import.datasource_id = ConnectorRegistry.get_datasource_by_name( session, slc_to_import.datasource_type, params["datasource_name"], params["schema"], params["database_name"], ).id if slc_to_override: slc_to_override.override(slc_to_import) session.flush() return slc_to_override.id session.add(slc_to_import) logging.info("Final slice: {}".format(slc_to_import.to_json())) session.flush() return slc_to_import.id @property def url(self): return "/metrix/explore/?form_data=%7B%22slice_id%22%3A%20{0}%7D".format( self.id ) sqla.event.listen(Slice, "before_insert", set_related_perm) sqla.event.listen(Slice, "before_update", set_related_perm) dashboard_slices = Table( "dashboard_slices", metadata, Column("id", Integer, primary_key=True), Column("dashboard_id", Integer, ForeignKey("dashboards.id")), Column("slice_id", Integer, ForeignKey("slices.id")), UniqueConstraint("dashboard_id", "slice_id"), ) dashboard_user = Table( "dashboard_user", metadata, Column("id", Integer, primary_key=True), Column("user_id", Integer, ForeignKey("ab_user.id")), Column("dashboard_id", Integer, ForeignKey("dashboards.id")), ) class Dashboard(Model, AuditMixinNullable, ImportMixin): """The dashboard object!""" __tablename__ = "dashboards" id = Column(Integer, primary_key=True) dashboard_title = Column(String(500)) position_json = Column(utils.MediumText()) description = Column(Text) css = Column(Text) json_metadata = Column(Text) slug = Column(String(255), unique=True) slices = relationship("Slice", secondary=dashboard_slices, backref="dashboards") owners = relationship(security_manager.user_model, secondary=dashboard_user) published = Column(Boolean, default=False) export_fields = ( "dashboard_title", "position_json", "json_metadata", "description", "css", "slug", ) def __repr__(self): return self.dashboard_title or str(self.id) @property def table_names(self): # pylint: disable=no-member return ", ".join({"{}".format(s.datasource.full_name) for s in self.slices}) @property def url(self): if self.json_metadata: # add default_filters to the preselect_filters of dashboard json_metadata = json.loads(self.json_metadata) default_filters = json_metadata.get("default_filters") # make sure default_filters is not empty and is valid if default_filters and default_filters != "{}": try: if json.loads(default_filters): filters = parse.quote(default_filters.encode("utf8")) return "/metrix/dashboard/{}/?preselect_filters={}".format( self.slug or self.id, filters ) except Exception: pass return "/metrix/dashboard/{}/".format(self.slug or self.id) @property def datasources(self): return {slc.datasource for slc in self.slices} @property def charts(self): return [slc.chart for slc in self.slices] @property def sqla_metadata(self): # pylint: disable=no-member metadata = MetaData(bind=self.get_sqla_engine()) return metadata.reflect() def dashboard_link(self): title = escape(self.dashboard_title or "<empty>") return Markup(f'<a href="{self.url}">{title}</a>') @property def data(self): positions = self.position_json if positions: positions = json.loads(positions) return { "id": self.id, "metadata": self.params_dict, "css": self.css, "dashboard_title": self.dashboard_title, "published": self.published, "slug": self.slug, "slices": [slc.data for slc in self.slices], "position_json": positions, } @property def params(self): return self.json_metadata @params.setter def params(self, value): self.json_metadata = value @property def position(self): if self.position_json: return json.loads(self.position_json) return {} @classmethod def import_obj(cls, dashboard_to_import, import_time=None): """Imports the dashboard from the object to the database. Once dashboard is imported, json_metadata field is extended and stores remote_id and import_time. It helps to decide if the dashboard has to be overridden or just copies over. Slices that belong to this dashboard will be wired to existing tables. This function can be used to import/export dashboards between multiple superset instances. Audit metadata isn't copied over. """ def alter_positions(dashboard, old_to_new_slc_id_dict): """ Updates slice_ids in the position json. Sample position_json data: { "DASHBOARD_VERSION_KEY": "v2", "DASHBOARD_ROOT_ID": { "type": "DASHBOARD_ROOT_TYPE", "id": "DASHBOARD_ROOT_ID", "children": ["DASHBOARD_GRID_ID"] }, "DASHBOARD_GRID_ID": { "type": "DASHBOARD_GRID_TYPE", "id": "DASHBOARD_GRID_ID", "children": ["DASHBOARD_CHART_TYPE-2"] }, "DASHBOARD_CHART_TYPE-2": { "type": "DASHBOARD_CHART_TYPE", "id": "DASHBOARD_CHART_TYPE-2", "children": [], "meta": { "width": 4, "height": 50, "chartId": 118 } }, } """ position_data = json.loads(dashboard.position_json) position_json = position_data.values() for value in position_json: if ( isinstance(value, dict) and value.get("meta") and value.get("meta").get("chartId") ): old_slice_id = value.get("meta").get("chartId") if old_slice_id in old_to_new_slc_id_dict: value["meta"]["chartId"] = old_to_new_slc_id_dict[old_slice_id] dashboard.position_json = json.dumps(position_data) logging.info( "Started import of the dashboard: {}".format(dashboard_to_import.to_json()) ) session = db.session logging.info("Dashboard has {} slices".format(len(dashboard_to_import.slices))) # copy slices object as Slice.import_slice will mutate the slice # and will remove the existing dashboard - slice association slices = copy(dashboard_to_import.slices) old_to_new_slc_id_dict = {} new_filter_immune_slices = [] new_timed_refresh_immune_slices = [] new_expanded_slices = {} i_params_dict = dashboard_to_import.params_dict remote_id_slice_map = { slc.params_dict["remote_id"]: slc for slc in session.query(Slice).all() if "remote_id" in slc.params_dict } for slc in slices: logging.info( "Importing slice {} from the dashboard: {}".format( slc.to_json(), dashboard_to_import.dashboard_title ) ) remote_slc = remote_id_slice_map.get(slc.id) new_slc_id = Slice.import_obj(slc, remote_slc, import_time=import_time) old_to_new_slc_id_dict[slc.id] = new_slc_id # update json metadata that deals with slice ids new_slc_id_str = "{}".format(new_slc_id) old_slc_id_str = "{}".format(slc.id) if ( "filter_immune_slices" in i_params_dict and old_slc_id_str in i_params_dict["filter_immune_slices"] ): new_filter_immune_slices.append(new_slc_id_str) if ( "timed_refresh_immune_slices" in i_params_dict and old_slc_id_str in i_params_dict["timed_refresh_immune_slices"] ): new_timed_refresh_immune_slices.append(new_slc_id_str) if ( "expanded_slices" in i_params_dict and old_slc_id_str in i_params_dict["expanded_slices"] ): new_expanded_slices[new_slc_id_str] = i_params_dict["expanded_slices"][ old_slc_id_str ] # override the dashboard existing_dashboard = None for dash in session.query(Dashboard).all(): if ( "remote_id" in dash.params_dict and dash.params_dict["remote_id"] == dashboard_to_import.id ): existing_dashboard = dash dashboard_to_import = dashboard_to_import.copy() dashboard_to_import.id = None dashboard_to_import.reset_ownership() # position_json can be empty for dashboards # with charts added from chart-edit page and without re-arranging if dashboard_to_import.position_json: alter_positions(dashboard_to_import, old_to_new_slc_id_dict) dashboard_to_import.alter_params(import_time=import_time) if new_expanded_slices: dashboard_to_import.alter_params(expanded_slices=new_expanded_slices) if new_filter_immune_slices: dashboard_to_import.alter_params( filter_immune_slices=new_filter_immune_slices ) if new_timed_refresh_immune_slices: dashboard_to_import.alter_params( timed_refresh_immune_slices=new_timed_refresh_immune_slices ) new_slices = ( session.query(Slice) .filter(Slice.id.in_(old_to_new_slc_id_dict.values())) .all() ) if existing_dashboard: existing_dashboard.override(dashboard_to_import) existing_dashboard.slices = new_slices session.flush() return existing_dashboard.id else: dashboard_to_import.slices = new_slices session.add(dashboard_to_import) session.flush() return dashboard_to_import.id @classmethod def export_dashboards(cls, dashboard_ids): copied_dashboards = [] datasource_ids = set() for dashboard_id in dashboard_ids: # make sure that dashboard_id is an integer dashboard_id = int(dashboard_id) dashboard = ( db.session.query(Dashboard) .options(subqueryload(Dashboard.slices)) .filter_by(id=dashboard_id) .first() ) # remove ids and relations (like owners, created by, slices, ...) copied_dashboard = dashboard.copy() for slc in dashboard.slices: datasource_ids.add((slc.datasource_id, slc.datasource_type)) copied_slc = slc.copy() # save original id into json # we need it to update dashboard's json metadata on import copied_slc.id = slc.id # add extra params for the import copied_slc.alter_params( remote_id=slc.id, datasource_name=slc.datasource.datasource_name, schema=slc.datasource.schema, database_name=slc.datasource.database.name, ) # set slices without creating ORM relations slices = copied_dashboard.__dict__.setdefault("slices", []) slices.append(copied_slc) copied_dashboard.alter_params(remote_id=dashboard_id) copied_dashboards.append(copied_dashboard) eager_datasources = [] for datasource_id, datasource_type in datasource_ids: eager_datasource = ConnectorRegistry.get_eager_datasource( db.session, datasource_type, datasource_id ) copied_datasource = eager_datasource.copy() copied_datasource.alter_params( remote_id=eager_datasource.id, database_name=eager_datasource.database.name, ) datasource_class = copied_datasource.__class__ for field_name in datasource_class.export_children: field_val = getattr(eager_datasource, field_name).copy() # set children without creating ORM relations copied_datasource.__dict__[field_name] = field_val eager_datasources.append(copied_datasource) return json.dumps( {"dashboards": copied_dashboards, "datasources": eager_datasources}, cls=utils.DashboardEncoder, indent=4, ) class Database(Model, AuditMixinNullable, ImportMixin): """An ORM object that stores Database related information""" __tablename__ = "dbs" type = "table" __table_args__ = (UniqueConstraint("database_name"),) id = Column(Integer, primary_key=True) verbose_name = Column(String(250), unique=True) # short unique name, used in permissions database_name = Column(String(250), unique=True, nullable=False) sqlalchemy_uri = Column(String(1024)) password = Column(EncryptedType(String(1024), config.get("SECRET_KEY"))) cache_timeout = Column(Integer) select_as_create_table_as = Column(Boolean, default=False) expose_in_sqllab = Column(Boolean, default=True) allow_run_async = Column(Boolean, default=False) allow_csv_upload = Column(Boolean, default=False) allow_ctas = Column(Boolean, default=False) allow_dml = Column(Boolean, default=False) force_ctas_schema = Column(String(250)) allow_multi_schema_metadata_fetch = Column(Boolean, default=False) extra = Column( Text, default=textwrap.dedent( """\ { "metadata_params": {}, "engine_params": {}, "metadata_cache_timeout": {}, "schemas_allowed_for_csv_upload": [] } """ ), ) perm = Column(String(1000)) impersonate_user = Column(Boolean, default=False) export_fields = ( "database_name", "sqlalchemy_uri", "cache_timeout", "expose_in_sqllab", "allow_run_async", "allow_ctas", "allow_csv_upload", "extra", ) export_children = ["tables"] def __repr__(self): return self.name @property def name(self): return self.verbose_name if self.verbose_name else self.database_name @property def allows_subquery(self): return self.db_engine_spec.allows_subqueries @property def allows_cost_estimate(self) -> bool: extra = self.get_extra() database_version = extra.get("version") cost_estimate_enabled = extra.get("cost_estimate_enabled") return ( self.db_engine_spec.get_allow_cost_estimate(database_version) and cost_estimate_enabled ) @property def data(self): return { "id": self.id, "name": self.database_name, "backend": self.backend, "allow_multi_schema_metadata_fetch": self.allow_multi_schema_metadata_fetch, "allows_subquery": self.allows_subquery, "allows_cost_estimate": self.allows_cost_estimate, } @property def unique_name(self): return self.database_name @property def url_object(self): return make_url(self.sqlalchemy_uri_decrypted) @property def backend(self): url = make_url(self.sqlalchemy_uri_decrypted) return url.get_backend_name() @property def metadata_cache_timeout(self): return self.get_extra().get("metadata_cache_timeout", {}) @property def schema_cache_enabled(self): return "schema_cache_timeout" in self.metadata_cache_timeout @property def schema_cache_timeout(self): return self.metadata_cache_timeout.get("schema_cache_timeout") @property def table_cache_enabled(self): return "table_cache_timeout" in self.metadata_cache_timeout @property def table_cache_timeout(self): return self.metadata_cache_timeout.get("table_cache_timeout") @property def default_schemas(self): return self.get_extra().get("default_schemas", []) @classmethod def get_password_masked_url_from_uri(cls, uri): url = make_url(uri) return cls.get_password_masked_url(url) @classmethod def get_password_masked_url(cls, url): url_copy = deepcopy(url) if url_copy.password is not None and url_copy.password != PASSWORD_MASK: url_copy.password = PASSWORD_MASK return url_copy def set_sqlalchemy_uri(self, uri): conn = sqla.engine.url.make_url(uri.strip()) if conn.password != PASSWORD_MASK and not custom_password_store: # do not over-write the password with the password mask self.password = conn.password conn.password = PASSWORD_MASK if conn.password else None self.sqlalchemy_uri = str(conn) # hides the password def get_effective_user(self, url, user_name=None): """ Get the effective user, especially during impersonation. :param url: SQL Alchemy URL object :param user_name: Default username :return: The effective username """ effective_username = None if self.impersonate_user: effective_username = url.username if user_name: effective_username = user_name elif ( hasattr(g, "user") and hasattr(g.user, "username") and g.user.username is not None ): effective_username = g.user.username return effective_username @utils.memoized(watch=("impersonate_user", "sqlalchemy_uri_decrypted", "extra")) def get_sqla_engine(self, schema=None, nullpool=True, user_name=None, source=None): extra = self.get_extra() url = make_url(self.sqlalchemy_uri_decrypted) url = self.db_engine_spec.adjust_database_uri(url, schema) effective_username = self.get_effective_user(url, user_name) # If using MySQL or Presto for example, will set url.username # If using Hive, will not do anything yet since that relies on a # configuration parameter instead. self.db_engine_spec.modify_url_for_impersonation( url, self.impersonate_user, effective_username ) masked_url = self.get_password_masked_url(url) logging.info("Database.get_sqla_engine(). Masked URL: {0}".format(masked_url)) params = extra.get("engine_params", {}) if nullpool: params["poolclass"] = NullPool # If using Hive, this will set hive.server2.proxy.user=$effective_username configuration = {} configuration.update( self.db_engine_spec.get_configuration_for_impersonation( str(url), self.impersonate_user, effective_username ) ) if configuration: d = params.get("connect_args", {}) d["configuration"] = configuration params["connect_args"] = d DB_CONNECTION_MUTATOR = config.get("DB_CONNECTION_MUTATOR") if DB_CONNECTION_MUTATOR: url, params = DB_CONNECTION_MUTATOR( url, params, effective_username, security_manager, source ) return create_engine(url, **params) def get_reserved_words(self): return self.get_dialect().preparer.reserved_words def get_quoter(self): return self.get_dialect().identifier_preparer.quote def get_df(self, sql, schema, mutator=None): sqls = [str(s).strip().strip(";") for s in sqlparse.parse(sql)] source_key = None if request and request.referrer: if "/metrix/dashboard/" in request.referrer: source_key = "dashboard" elif "/metrix/explore/" in request.referrer: source_key = "chart" engine = self.get_sqla_engine( schema=schema, source=utils.sources.get(source_key, None) ) username = utils.get_username() def needs_conversion(df_series): if df_series.empty: return False if isinstance(df_series[0], (list, dict)): return True return False def _log_query(sql): if log_query: log_query(engine.url, sql, schema, username, __name__, security_manager) with closing(engine.raw_connection()) as conn: with closing(conn.cursor()) as cursor: for sql in sqls[:-1]: _log_query(sql) self.db_engine_spec.execute(cursor, sql) cursor.fetchall() _log_query(sqls[-1]) self.db_engine_spec.execute(cursor, sqls[-1]) if cursor.description is not None: columns = [col_desc[0] for col_desc in cursor.description] else: columns = [] df = pd.DataFrame.from_records( data=list(cursor.fetchall()), columns=columns, coerce_float=True ) if mutator: df = mutator(df) for k, v in df.dtypes.items(): if v.type == numpy.object_ and needs_conversion(df[k]): df[k] = df[k].apply(utils.json_dumps_w_dates) return df def compile_sqla_query(self, qry, schema=None): engine = self.get_sqla_engine(schema=schema) sql = str(qry.compile(engine, compile_kwargs={"literal_binds": True})) if engine.dialect.identifier_preparer._double_percents: sql = sql.replace("%%", "%") return sql def select_star( self, table_name, schema=None, limit=100, show_cols=False, indent=True, latest_partition=False, cols=None, ): """Generates a ``select *`` statement in the proper dialect""" eng = self.get_sqla_engine( schema=schema, source=utils.sources.get("sql_lab", None) ) return self.db_engine_spec.select_star( self, table_name, schema=schema, engine=eng, limit=limit, show_cols=show_cols, indent=indent, latest_partition=latest_partition, cols=cols, ) def apply_limit_to_sql(self, sql, limit=1000): return self.db_engine_spec.apply_limit_to_sql(sql, limit, self) def safe_sqlalchemy_uri(self): return self.sqlalchemy_uri @property def inspector(self): engine = self.get_sqla_engine() return sqla.inspect(engine) @cache_util.memoized_func( key=lambda *args, **kwargs: "db:{}:schema:None:table_list", attribute_in_key="id", ) def get_all_table_names_in_database( self, cache: bool = False, cache_timeout: bool = None, force=False ) -> List[utils.DatasourceName]: """Parameters need to be passed as keyword arguments.""" if not self.allow_multi_schema_metadata_fetch: return [] return self.db_engine_spec.get_all_datasource_names(self, "table") @cache_util.memoized_func( key=lambda *args, **kwargs: "db:{}:schema:None:view_list", attribute_in_key="id" ) def get_all_view_names_in_database( self, cache: bool = False, cache_timeout: bool = None, force: bool = False ) -> List[utils.DatasourceName]: """Parameters need to be passed as keyword arguments.""" if not self.allow_multi_schema_metadata_fetch: return [] return self.db_engine_spec.get_all_datasource_names(self, "view") @cache_util.memoized_func( key=lambda *args, **kwargs: "db:{{}}:schema:{}:table_list".format( kwargs.get("schema") ), attribute_in_key="id", ) def get_all_table_names_in_schema( self, schema: str, cache: bool = False, cache_timeout: int = None, force: bool = False, ): """Parameters need to be passed as keyword arguments. For unused parameters, they are referenced in cache_util.memoized_func decorator. :param schema: schema name :param cache: whether cache is enabled for the function :param cache_timeout: timeout in seconds for the cache :param force: whether to force refresh the cache :return: list of tables """ try: tables = self.db_engine_spec.get_table_names( database=self, inspector=self.inspector, schema=schema ) return [ utils.DatasourceName(table=table, schema=schema) for table in tables ] except Exception as e: logging.exception(e) @cache_util.memoized_func( key=lambda *args, **kwargs: "db:{{}}:schema:{}:view_list".format( kwargs.get("schema") ), attribute_in_key="id", ) def get_all_view_names_in_schema( self, schema: str, cache: bool = False, cache_timeout: int = None, force: bool = False, ): """Parameters need to be passed as keyword arguments. For unused parameters, they are referenced in cache_util.memoized_func decorator. :param schema: schema name :param cache: whether cache is enabled for the function :param cache_timeout: timeout in seconds for the cache :param force: whether to force refresh the cache :return: list of views """ try: views = self.db_engine_spec.get_view_names( database=self, inspector=self.inspector, schema=schema ) return [utils.DatasourceName(table=view, schema=schema) for view in views] except Exception as e: logging.exception(e) @cache_util.memoized_func( key=lambda *args, **kwargs: "db:{}:schema_list", attribute_in_key="id" ) def get_all_schema_names( self, cache: bool = False, cache_timeout: int = None, force: bool = False ) -> List[str]: """Parameters need to be passed as keyword arguments. For unused parameters, they are referenced in cache_util.memoized_func decorator. :param cache: whether cache is enabled for the function :param cache_timeout: timeout in seconds for the cache :param force: whether to force refresh the cache :return: schema list """ return self.db_engine_spec.get_schema_names(self.inspector) @property def db_engine_spec(self): return db_engine_specs.engines.get(self.backend, db_engine_specs.BaseEngineSpec) @classmethod def get_db_engine_spec_for_backend(cls, backend): return db_engine_specs.engines.get(backend, db_engine_specs.BaseEngineSpec) def grains(self): """Defines time granularity database-specific expressions. The idea here is to make it easy for users to change the time grain from a datetime (maybe the source grain is arbitrary timestamps, daily or 5 minutes increments) to another, "truncated" datetime. Since each database has slightly different but similar datetime functions, this allows a mapping between database engines and actual functions. """ return self.db_engine_spec.get_time_grains() def get_extra(self): extra = {} if self.extra: try: extra = json.loads(self.extra) except Exception as e: logging.error(e) raise e return extra def get_table(self, table_name, schema=None): extra = self.get_extra() meta = MetaData(**extra.get("metadata_params", {})) return Table( table_name, meta, schema=schema or None, autoload=True, autoload_with=self.get_sqla_engine(), ) def get_columns(self, table_name, schema=None): return self.db_engine_spec.get_columns(self.inspector, table_name, schema) def get_indexes(self, table_name, schema=None): return self.inspector.get_indexes(table_name, schema) def get_pk_constraint(self, table_name, schema=None): return self.inspector.get_pk_constraint(table_name, schema) def get_foreign_keys(self, table_name, schema=None): return self.inspector.get_foreign_keys(table_name, schema) def get_schema_access_for_csv_upload(self): return self.get_extra().get("schemas_allowed_for_csv_upload", []) @property def sqlalchemy_uri_decrypted(self): conn = sqla.engine.url.make_url(self.sqlalchemy_uri) if custom_password_store: conn.password = custom_password_store(conn) else: conn.password = self.password return str(conn) @property def sql_url(self): return "/metrix/sql/{}/".format(self.id) def get_perm(self): return ("[{obj.database_name}].(id:{obj.id})").format(obj=self) def has_table(self, table): engine = self.get_sqla_engine() return engine.has_table(table.table_name, table.schema or None) def has_table_by_name(self, table_name, schema=None): engine = self.get_sqla_engine() return engine.has_table(table_name, schema) @utils.memoized def get_dialect(self): sqla_url = url.make_url(self.sqlalchemy_uri_decrypted) return sqla_url.get_dialect()() sqla.event.listen(Database, "after_insert", security_manager.set_perm) sqla.event.listen(Database, "after_update", security_manager.set_perm) class Log(Model): """ORM object used to log Superset actions to the database""" __tablename__ = "logs" id = Column(Integer, primary_key=True) action = Column(String(512)) user_id = Column(Integer, ForeignKey("ab_user.id")) dashboard_id = Column(Integer) slice_id = Column(Integer) json = Column(Text) user = relationship( security_manager.user_model, backref="logs", foreign_keys=[user_id] ) dttm = Column(DateTime, default=datetime.utcnow) duration_ms = Column(Integer) referrer = Column(String(1024)) class FavStar(Model): __tablename__ = "favstar" id = Column(Integer, primary_key=True) user_id = Column(Integer, ForeignKey("ab_user.id")) class_name = Column(String(50)) obj_id = Column(Integer) dttm = Column(DateTime, default=datetime.utcnow) class DatasourceAccessRequest(Model, AuditMixinNullable): """ORM model for the access requests for datasources and dbs.""" __tablename__ = "access_request" id = Column(Integer, primary_key=True) datasource_id = Column(Integer) datasource_type = Column(String(200)) ROLES_BLACKLIST = set(config.get("ROBOT_PERMISSION_ROLES", [])) @property def cls_model(self): return ConnectorRegistry.sources[self.datasource_type] @property def username(self): return self.creator() @property def datasource(self): return self.get_datasource @datasource.getter # type: ignore @utils.memoized def get_datasource(self): # pylint: disable=no-member ds = db.session.query(self.cls_model).filter_by(id=self.datasource_id).first() return ds @property def datasource_link(self): return self.datasource.link # pylint: disable=no-member @property def roles_with_datasource(self): action_list = "" perm = self.datasource.perm # pylint: disable=no-member pv = security_manager.find_permission_view_menu("datasource_access", perm) for r in pv.role: if r.name in self.ROLES_BLACKLIST: continue # pylint: disable=no-member url = ( f"/metrix/approve?datasource_type={self.datasource_type}&" f"datasource_id={self.datasource_id}&" f"created_by={self.created_by.username}&role_to_grant={r.name}" ) href = '<a href="{}">Grant {} Role</a>'.format(url, r.name) action_list = action_list + "<li>" + href + "</li>" return "<ul>" + action_list + "</ul>" @property def user_roles(self): action_list = "" for r in self.created_by.roles: # pylint: disable=no-member # pylint: disable=no-member url = ( f"/metrix/approve?datasource_type={self.datasource_type}&" f"datasource_id={self.datasource_id}&" f"created_by={self.created_by.username}&role_to_extend={r.name}" ) href = '<a href="{}">Extend {} Role</a>'.format(url, r.name) if r.name in self.ROLES_BLACKLIST: href = "{} Role".format(r.name) action_list = action_list + "<li>" + href + "</li>" return "<ul>" + action_list + "</ul>" # events for updating tags if is_feature_enabled("TAGGING_SYSTEM"): sqla.event.listen(Slice, "after_insert", ChartUpdater.after_insert) sqla.event.listen(Slice, "after_update", ChartUpdater.after_update) sqla.event.listen(Slice, "after_delete", ChartUpdater.after_delete) sqla.event.listen(Dashboard, "after_insert", DashboardUpdater.after_insert) sqla.event.listen(Dashboard, "after_update", DashboardUpdater.after_update) sqla.event.listen(Dashboard, "after_delete", DashboardUpdater.after_delete) sqla.event.listen(FavStar, "after_insert", FavStarUpdater.after_insert) sqla.event.listen(FavStar, "after_delete", FavStarUpdater.after_delete)
b4325c34ca7df66f80c392e2397c2f0e76593e7f
053b2c101bc3aad4132f46dd687d071176e2c332
/bidwire/tests/test_cityofboston_scraper.py
4e6ca2661b028da02526d8beb6f6349f7566503f
[ "MIT" ]
permissive
RagtagOpen/bidwire
1e58fb0f184b5ff3b88bcf4c091f8ceeb6d556fa
0de7ee2dce87127f69e0c4bdc2c7b080cd1d4a45
refs/heads/master
2021-01-23T06:55:45.588981
2018-01-14T20:26:31
2018-01-14T20:26:31
86,412,959
5
7
MIT
2019-04-30T15:10:51
2017-03-28T03:56:42
HTML
UTF-8
Python
false
false
424
py
import pytest from scrapers.cityofboston_scraper import CityOfBostonScraper from . import utils def test_scrape_results_page(): page_str = open(utils.get_abs_filename('cityofboston-results-page.html'), 'r').read() cityofboston_scraper = CityOfBostonScraper() bid_ids = cityofboston_scraper.scrape_results_page(page_str) assert len(bid_ids) == 79 assert "23315" in bid_ids assert "23360" in bid_ids
ed0647fd49b4f07b9905aa8cfcf2a943da682bc5
3c0b737c35cb41c38ffad4041f124ccaa5e7a874
/app/.~c9_invoke_4bHZ4W.py
0b377eef72d177116058619982d0b42c1b50f647
[]
no_license
kevelcampbell/info3180-project1
a4650c863a7793027566cbe907dd54855b0b7f84
d105e8837fb3594f4d3ea848d024093983507a21
refs/heads/master
2020-05-25T00:45:50.062536
2017-03-14T02:28:23
2017-03-14T02:28:23
84,894,166
0
0
null
null
null
null
UTF-8
Python
false
false
3,773
py
""" Flask Documentation: http://flask.pocoo.org/docs/ Jinja2 Documentation: http://jinja.pocoo.org/2/documentation/ Werkzeug Documentation: http://werkzeug.pocoo.org/documentation/ This file creates your application. """ import os import psycopg2 from datetime import datetime from random import randint from app import app,db from flask import render_template, request, redirect, url_for, flash, session, abort, jsonify,Response,json from models import UserProfile from werkzeug.utils import secure_filename ### # Routing for your application. ### @app.route('/') def home(): """Render website's home page.""" return render_template('home.html') @app.route('/about/') def about(): """Render the website's about page.""" return render_template('about.html') @app.route('/profile',methods=['POST','GET']) def profile(): """Render the website's profile page.""" file_folder = 'app/static/uploads' filename='no file' if request.method == 'POST': uid=620000000+randint(10000,99999) creation =datetime.now() fname=request.form.get('fname') lname=request.form.get('lname') bio=request.form.get('bio') file = request.files['profile_image'] filename = secure_filename(file.filename) file.save(os.path.join(file_folder, filename)) profile_image=filename age=request.form.get('age') gender=request.form.get('gender') user =UserProfile(id=uid,profile_creation=creation,first_name=fname, last_name=lname,bio=bio,imagename=profile_image,age=age,gender=gender) db.session.add(user) db.session.commit() flash("Information accepted") return redirect(url_for('home')) return render_template('profile.html') @app.route('/profiles',methods=['GET','POST']) def profiles(): """Render the website's profiles page.""" users =[] query='SELECT first_name,id FROM user_profile;' entries=db.session.execute(query) for entry in entries: uname,uid =entry[0],entry[1] users+=[{"username":uname,"userid":uid}] results =users return render_template('profiles.html',profiles=results) #return Response(JSON.parse(results), mimetype='application/json')#Content-Type: @app.route('/profile/<userid>',methods=['GET','POST']) def profile_id(userid): """Render the website's unique profile page.""" query="SELECT id,first_name,imagename,gender,age,profile_creation FROM user_profile WHERE id={0};".format(userid) uid,uname,profile_pic,gender,age,created_on = for user in profile_info: uid,uname,profile_pic,gender,age,created_on =user[0],user[1],user[2],user[3],user[4],user[5] result={"userid":uid,"username":uname, "image":profile_pic, "gender": gender, "age": age, "profile_created_on":created_on } return render_template('unique_profile.html',profile=result) ### # The functions below should be applicable to all Flask apps. ### @app.route('/<file_name>.txt') def send_text_file(file_name): """Send your static text file.""" file_dot_text = file_name + '.txt' return app.send_static_file(file_dot_text) @app.after_request def add_header(response): """ Add headers to both force latest IE rendering engine or Chrome Frame, and also to cache the rendered page for 10 minutes. """ response.headers['X-UA-Compatible'] = 'IE=Edge,chrome=1' response.headers['Cache-Control'] = 'public, max-age=0' return response @app.errorhandler(404) def page_not_found(error): """Custom 404 page.""" return render_template('404.html'), 404 if __name__ == '__main__': app.run(debug=True,host="0.0.0.0",port="8080")
be55d9627d221ef15a7208f8625d6dac784efb54
64ae307de1a6966ec948662df695cd09cefd5eff
/Day_6/mm_project/mm_project/tests/conftest.py
b924ef165574f9638d0da245dcbadd78736a65fc
[ "BSD-3-Clause" ]
permissive
janash/mm_project_sss2019
3a4d61c4f4dbe7eee5af401d831e7483480bb509
84f9da3efe335a7024213ddae6fd56113d4fda09
refs/heads/master
2020-05-19T23:03:53.143517
2019-07-26T23:03:08
2019-07-26T23:03:08
185,258,555
0
2
BSD-3-Clause
2019-07-09T17:33:19
2019-05-06T19:26:20
Python
UTF-8
Python
false
false
682
py
""" Fixtures for monte carlo tests """ # Import package, test suite, and other packages as needed import mm_project as mc import numpy as np import os import pytest import sys @pytest.fixture def nist_file(): current_directory = os.path.dirname(os.path.abspath(__file__)) nist_file = os.path.join(current_directory,'..', 'data', 'nist_sample_config1.txt') coordinates = mc.generate_initial_coordinates(method='file', fname=nist_file) return coordinates, nist_file @pytest.fixture def mc_box(nist_file): coordinates = nist_file[0][0] box_length = nist_file[0][1] fname = nist_file[1] test_box = mc.Box(box_length, coordinates) return test_box
0c333c2e1333ac21f072ca09b4dcd701240565d7
b631676cd50d395e23a9db68b9cc04fd125aff2e
/banned_users.py
a1df8e434ae9cd5a3aa92567aeb82c46c660afca
[]
no_license
souzalaercio2004/CodigosPython
8208c3bfd05bc98822ae8b083d94cab6c4a6df60
8f9462ac97f928bf3ad936078c58bd899fbd45df
refs/heads/master
2023-07-04T14:16:56.642889
2021-08-17T03:04:33
2021-08-17T03:04:33
397,054,908
0
0
null
null
null
null
UTF-8
Python
false
false
158
py
banned_users= ['andrew', 'carolina', 'david'] user= 'marie' if user not in banned_users: print (user.title()+ " , you can post a response if you wish.")
e1178d40768143ba64bb0408256b99e52cf2f234
9009629a5fdd8f5cdd7454fc43d010a288871a28
/multi_layer_perceptron.py
51838c6803e76f638d56ba57205fa376c1515b10
[]
no_license
dunderwood88/theano-playground
17b61cbe609b79b7d57da3b3050aad061486ee48
503c3f1d770bbf1764fe35e69eb20819bb4baf9b
refs/heads/master
2021-04-12T10:03:30.991312
2018-03-23T15:20:24
2018-03-23T15:20:24
126,502,640
0
0
null
null
null
null
UTF-8
Python
false
false
4,768
py
import numpy as np import matplotlib.pyplot as plt import theano from theano import tensor as T class Layer: def __init__(self, weights_init, bias_init, activation): ''' Individual layer constructor :param weights_init: initialized weight matrix connecting nodes between layers :param bias_init: initialized bias vector for the layer :param activation: activation function for the layer's output ''' dim_output, dim_input = weights_init.shape assert bias_init.shape == (dim_output,) self.weights = theano.shared(value=weights_init.astype(theano.config.floatX), name='weights', borrow=True) self.bias = theano.shared(value=bias_init.reshape(dim_output, 1).astype(theano.config.floatX), name='bias', borrow=True, broadcastable=(False, True)) self.activation = activation self.params = [self.weights, self.bias] def output(self, x): ''' Computes an output based on processing an input vector through a weight matrix, adding a bias, and then feeding through an activation function: a(Wx + b) Note: activation is element-wise for output vector :param x: input feature vector :return: the final computational output of the layer (a vector) ''' lin_output = T.dot(self.weights, x) + self.bias return lin_output if self.activation is None else self.activation(lin_output) class MLP: def __init__(self, topology): ''' Multilayer perceptron constructor :param topology: description of layer sequence defining the MLP ''' self.layers = [] for n_input, n_output in zip(topology[:-1], topology[1:]): self.layers.append(Layer(np.random.randn(n_output, n_input), np.ones(n_output), T.nnet.sigmoid)) self.params = [] for layer in self.layers: self.params += layer.params def output(self, x): ''' Computes an output based on processing an input vector through multiple layers of the MLP :param x: input feature vector :return: the final computational output of the MLP ''' # recursively compute the output through each layer for layer in self.layers: x = layer.output(x) return x def error(self, x, y): ''' Cost function to be minimized using gradient descent method :param x: input :param y: target output :return: error function ''' return T.sum(-(y * T.log(self.output(x)) + (1 - y) * T.log(1 - self.output(x)))) def gradient_updates(self, cost, learning_rate): ''' Provides the updates to weight and bias parameters in the MLP :param cost: cost function for determining derivatives w.r.t. parameters :param learning_rate: rate of gradient descent :return: updated parameter list ''' updates = [] for param in self.params: updates.append((param, param - learning_rate * T.grad(cost, param))) return updates # EXAMPLE: XOR Function inputs = np.vstack(np.array([[0, 0, 1, 1], [0, 1, 0, 1]])).astype(theano.config.floatX) targets = np.array([1, 0, 0, 1]).astype(theano.config.floatX) # First, set the size of each layer (and the number of layers) # Input layer size is training data dimensionality (2) # Output size is just 1-d: 0 or 1 # Finally, let the hidden layers be twice the size of the input. # If we wanted more layers, just add another layer size to this list. # topology = [inputs.shape[0], inputs.shape[0]*2, 1] topology = [2, 3, 3, 1] mlp = MLP(topology) # Create Theano variables for the MLP input and targets mlp_input = T.matrix('mlp_input') mlp_target = T.vector('mlp_target') # Learning rate learning_rate = 0.01 # Create definition for computing the cost of the network given an input cost = mlp.error(mlp_input, mlp_target) # Create a theano function for training the network - parameters are updated based on the cost definition train = theano.function([mlp_input, mlp_target], cost, updates=mlp.gradient_updates(cost, learning_rate)) # Create a theano function for computing the MLP output given some input mlp_output = theano.function([mlp_input], mlp.output(mlp_input)) iteration = 0 cost = [] max_iteration = 30000 while iteration < max_iteration: current_cost = train(inputs, targets) cost.append(current_cost) iteration += 1 output = mlp_output(inputs) for i in range(len(inputs[1])): print('The output for x1 = %d | x2 = %d is %.2f' % (inputs[0][i], inputs[1][i], output[0][i])) # plot the cost minimization: plt.plot(cost) plt.show()
ad054ac451ef06373f179e21b87ed7d2fab498a0
3d9cd521db737f32bd7de1dd6cbb05b5f219c329
/14_1.py
4ad6019429325169bee9a64ab905cb8fb4625f16
[]
no_license
shesha4572/11
233348b542dded0da9b3069b643c62253706bf92
aa33864dec1901030da82370b0b167a875991705
refs/heads/master
2020-08-03T21:36:33.744192
2020-02-02T15:40:47
2020-02-02T15:40:47
211,893,716
1
0
null
null
null
null
UTF-8
Python
false
false
559
py
def disp(s): print("Selected operation : Display the string") print(s) def cpy_str(s): str1 = "" print("Selected operation : Copy the string") print("String before copying :" ,str1) str1 = s print("String after copying :" ,str1) def concat_str(): print("Selected operation : Concatenate the string") str1 = "Hello " str2 = "How are you?" print("String 1 :" ,str1) print("String 2 :" ,str2) print("After concatenation : " ,(str1 + str2)) a = input("Enter the string : ") disp(a) cpy_str(a) concat_str()
59a9a8b45ff2d4b0170b6627f7c1223a314ecfea
c75a0628053ab5e0f79640a38465d024716437b9
/Turtle Project/Pattern Project/Pattern3.py
75d982542f41a6ff53e94e07e647caf85279b5e1
[]
no_license
mohit11R/Turtle-Projects
147591978f8c8a985154642149a38569a286c1c9
74141113ec4f59b62f96be68f3b5a16e72070ea6
refs/heads/main
2023-03-22T09:57:21.175773
2021-03-17T08:27:45
2021-03-17T08:27:45
329,230,245
1
0
null
null
null
null
UTF-8
Python
false
false
442
py
# INSIDE OUT SQUARES import turtle pattern=turtle.Screen() pattern.bgcolor("light grey") shape = turtle.Turtle() shape.color("blue") shape.width(5) def shapeOFSquare(size): for _ in range(4): shape.forward(size) shape.left(90) size = size +5 shapeOFSquare(6) shapeOFSquare(26) shapeOFSquare(46) shapeOFSquare(66) shapeOFSquare(86) shapeOFSquare(106) shapeOFSquare(126) shapeOFSquare(146)
9e886d74f75b734efd48e17ef284b61748d29972
b5fd5d41ce9d0b5e7ac885d2571b86a7351ff304
/test.py
fc0b7f5a6b6a9d763626198741577f29b78acbf3
[]
no_license
welias13/AI_HW3
222cad204a88fc7f18836d00cc0268127980ade7
8a03c2677bb6438f71e00e3bb1c7704490ab7f5a
refs/heads/master
2021-01-13T03:48:01.151949
2016-12-29T19:04:31
2016-12-29T19:04:31
77,216,541
0
0
null
null
null
null
UTF-8
Python
false
false
4,334
py
from blaze.expr.reductions import count import run_game import numpy as np import csv import vars # global PAWN_WEIGHT # PAWN_WEIGHT = 1 # global KING_WEIGHT # vars.a = 1.5 # vars.b = 2 # vars.c = 2 # vars.d = 1 # vars.e = 2 # vars.f = 0 # vars.g = 0 # result = 'tie' # while result=='tie': # game = run_game.GameRunner(2, 3, 5, "y", "AI3_204360267_308311356.better_h_player", "simple_player") # result = game.run() # if result == "tie": # print("it's a tie !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") # a = 1.5 # b = 2 # c = 2 # d = 1 # e = 2 result_dict = {} a = 1.5 b = 2 c = 2 for f in np.arange(1, 2.5, 0.5): for g in np.arange(1, 2.5, 0.5): for e in range(1, 3): vars.a = a vars.b = b vars.c = c vars.d = 3 - e vars.e = e vars.f = f vars.g = g for i in range(1, 5): listx = ''.join( [str(a), '|', str(b), '|', str(c), '|', str(3 - e), '|', str(e), '|', str(f), '|', str(g)]) game = run_game.GameRunner(2, 3, 5, "n", "AI3_204360267_308311356.better_h_player", "simple_player") result = game.run() if result != 'tie': result = result[0] if listx in result_dict: result_dict[listx][result] += 1 else: result_dict[listx] = {'red': 0, 'black': 0, 'tie': 0} result_dict[listx][result] += 1 with open('results.csv', 'w', newline='') as out: csv_out = csv.writer(out) for params_index in result_dict.keys(): red_res = result_dict[params_index]['red'] black_res = result_dict[params_index]['black'] tie_res = result_dict[params_index]['tie'] row = [params_index, red_res, black_res, tie_res] # row = [params_index, 'red', red_res,'black',black_res,'tie',tie_res] csv_out.writerow(row) exit(0) result_dict = {} for i in range(10): listx = ''.join([str(a), '|', str(b), '|', str(c), '|', str(d), '|', str(e)]) game = run_game.GameRunner(2, 3, 5, "n", "AI3_204360267_308311356.better_h_player", "simple_player") result = game.run() if result != 'tie': result = result[0] if listx in result_dict: result_dict[listx][result] += 1 else: result_dict[listx] = {'red': 0, 'black': 0, 'tie': 0} result_dict[listx][result] += 1 print(result_dict) exit(0) counter = 0 result_dict = {} for a in np.arange(1, 2.5, 0.5): for b in np.arange(1, 2.5, 0.5): for c in np.arange(1, 2.5, 0.5): for d in np.arange(1, 2.5, 0.5): for e in np.arange(1, 2.5, 0.5): vars.a = a vars.b = b vars.c = c vars.d = d vars.e = e for i in range(1, 5): listx = ''.join([str(a), '|', str(b), '|', str(c), '|', str(d), '|', str(e)]) game = run_game.GameRunner(2, 3, 5, "n", "AI3_204360267_308311356.better_h_player", "simple_player") result = game.run() if result != 'tie': result = result[0] if listx in result_dict: result_dict[listx][result] += 1 else: result_dict[listx] = {'red': 0, 'black': 0, 'tie': 0} result_dict[listx][result] += 1 # break # break # break # break # break with open('results.csv', 'w', newline='') as out: csv_out = csv.writer(out) for params_index in result_dict.keys(): red_res = result_dict[params_index]['red'] black_res = result_dict[params_index]['black'] tie_res = result_dict[params_index]['tie'] row = [params_index, red_res, black_res, tie_res] # row = [params_index, 'red', red_res,'black',black_res,'tie',tie_res] csv_out.writerow(row)
15a141f4f9422aa5fae65ea0a3ca5efebdf34467
d0ece6a2f09da681bfe8af22e34a520592317fa4
/Discord Bots/DiscordBot/cogs/devcmds.py
00c45511952fb676f6fb8fd0584333a45fbae4be
[ "MIT" ]
permissive
SeymoTheDev/skittles-stuff
d59e599d877935b260fa36d11f44401bdd5ae192
f9eba3efd0577045085418391b7154f3fd121f70
refs/heads/main
2023-01-02T12:30:14.439006
2020-11-02T02:36:21
2020-11-02T02:36:21
309,169,247
0
0
null
null
null
null
UTF-8
Python
false
false
274
py
import discord from discord.ext import commands client = commands.Bot(command_prefix = '-') class Developers(commands.Cog): def __int__(self, client): self.client = client def setup(client): client.add_cog(Developers(client))
47e0e8d9dc9f021eef73a93f67eabb84336aeaca
b88f0e2210c8adc1001a3ce18ac8b0bf5fdbbcc6
/src/coincap_top100.py
f0335f6ba40d7d8cd65885df55aef1af86de6d26
[]
no_license
timwfitnum/cryptoCur
37c308ddbb1f66588b7bf582b7e8a39b92d4145f
266a6d82c03686c3c79dfe7e31287141fcfc042b
refs/heads/main
2023-01-07T18:46:50.837107
2020-10-20T11:17:37
2020-10-20T11:17:37
303,454,159
0
0
null
null
null
null
UTF-8
Python
false
false
3,684
py
import os import json from requests import Request, Session from requests.exceptions import ConnectionError, Timeout, TooManyRedirects from datetime import datetime from prettytable import PrettyTable from colorama import Fore, Back, Style convert = 'USD' listings_url = 'https://pro-api.coinmarketcap.com/v1/cryptocurrency/listings/latest?sort=' global_metric = 'https://pro-api.coinmarketcap.com/v1/global-metrics/quotes/latest' headers = { 'Accepts': 'application/json', 'X-CMC_PRO_API_KEY': 'YOUR_API_KEY', } session = Session() session.headers.update(headers) convert = str(input("Please select currency for portfolio: ")) conversion = '?convert=' + convert global_metric = global_metric + conversion try: response = session.get(global_metric) except (ConnectionError, Timeout, TooManyRedirects) as e: print(e) data = json.loads(response.text) #print(json.dumps(data, sort_keys=True, indent=4)) data = data['data'] global_cap = int(data['quote'][convert]['total_market_cap']) global_cap_string = '{:,}'.format(global_cap) while True: print() print("CoinmarketCap Explorer Menu") print("The global market cap is $" + global_cap_string) print() print("1 - Top 100 sorted by price") print("2 - Top 100 sorted by 24 hour change") print("3 - Top 100 sorted by 24 hour volume") print("0 - Exit") print() choice = input("Please choose 1 - 3!") if choice == '1': listings_url += 'price' if choice == '2': listings_url += 'percent_change_24h' if choice == '3': listings_url += 'volume_24h' if choice == '0': break try: response = session.get(listings_url) except (ConnectionError, Timeout, TooManyRedirects) as e: print(e) data = json.loads(response.text) data = data['data'] table = PrettyTable(['CMC Rank','Asset','Price','Market Cap', 'Volume', '1hr Change', 'Daily Change', 'Weekly Change']) print() for currency in data: rank = currency['cmc_rank'] name = currency['name'] symbol = currency['symbol'] quotes = currency['quote'][convert] market_cap = quotes['market_cap'] hour_change = quotes['percent_change_1h'] day_change = quotes['percent_change_24h'] week_change = quotes['percent_change_7d'] price = quotes['price'] volume = quotes['volume_24h'] # could return none type so must check if hour_change is not None: if hour_change > 0: hour_change = Back.GREEN + str(hour_change) + '%' + Style.RESET_ALL else: hour_change = Back.RED + str(hour_change) + '%' + Style.RESET_ALL if day_change is not None: if day_change > 0: day_change = Back.GREEN + str(day_change) + '%' + Style.RESET_ALL else: day_change = Back.RED + str(day_change) + '%' + Style.RESET_ALL if week_change is not None: if week_change > 0: week_change = Back.GREEN + str(week_change) + '%' + Style.RESET_ALL else: week_change = Back.RED + str(week_change) +'%' + Style.RESET_ALL if volume is not None: volume_string = '{:,}'.format(volume) if market_cap is not None: market_cap_string = '{:,}'.format(market_cap) table.add_row([rank, name + '{' + symbol + '}', '$' + str(price), '$' + market_cap_string, '$' + volume_string, str(hour_change), str(day_change), str(week_change)]) print() print(table) print() choice = input("Again? (y/n)") if choice == 'n': break
139ae4368f9dcc52c84dcbfbcab84a8112ca406a
727987094c01eaf41343464567a52fbb705f6701
/yabgp/message/attribute/nlri/__init__.py
c67e29f0a1e9105cce0eecd0e3eebb32ea38ff2a
[ "Apache-2.0" ]
permissive
xinwu/yabgp
1377d11e4e42f259dd66bb08060b74d0683a1796
ae7cc871a4a8a67d08eef2abc82cf1397f2601c3
refs/heads/master
2021-01-13T03:05:33.031083
2016-12-14T16:27:23
2016-12-14T16:27:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,558
py
# Copyright 2016 Cisco Systems, Inc. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import struct import binascii import netaddr class NLRI(object): @classmethod def parse(cls, *args): raise NotImplementedError @classmethod def construct(cls, *args): raise NotImplementedError @staticmethod def construct_prefix_v4(masklen, prefix_str): ip_hex = struct.pack('!I', netaddr.IPNetwork(prefix_str).value) if 16 < masklen <= 24: ip_hex = ip_hex[0:3] elif 8 < masklen <= 16: ip_hex = ip_hex[0:2] elif masklen <= 8: ip_hex = ip_hex[0:1] return ip_hex @staticmethod def construct_prefix_v6(prefix): mask = int(prefix.split('/')[1]) prefix_hex = binascii.unhexlify(hex(netaddr.IPNetwork(prefix).ip)[2:]) offset = mask / 8 offset_re = mask % 8 if offset == 0: return prefix_hex[0: 1] return prefix_hex[0: offset + offset_re]
443e1f9749ae03b2af77501c83c2aa1172bf7c7a
ff1bea11066c6c1359bb054f989c5125ad882b93
/Source Code/basic/2/led_button.py
da5831ae966a031c061d8feb4691c4a8d5920a67
[]
no_license
ecodingstory/ESP32_MicroPython
d8ece55023a322df71e62e449c676d2f889077f0
35c2e005ce6a4cd3dab5b26ce4d3809646a53e21
refs/heads/main
2023-01-20T16:49:34.446582
2020-12-06T01:06:06
2020-12-06T01:06:06
318,746,707
0
0
null
null
null
null
UTF-8
Python
false
false
266
py
from machine import Pin led_0= Pin(16, Pin.OUT) led_1 = Pin(17, Pin.OUT) button_0 = Pin(4, Pin.IN) button_1 = Pin(5, Pin.IN) while True: if(button_0.value()): led_0.on() else: led_0.off() if(button_1.value()): led_1.on() else: led_1.off()
64f78170e1c9f94014471c5cd831ff57aae3e3b4
5c785ceb1d8442a1dc1d7755cc53784259131ed7
/users/models.py
3b18749a9e8834f424a6e39dcfe4264bd94188c1
[]
no_license
deepaligpt000/NomadCoders_Airbnb
3975c82d91f1b7589e0256bd354ac6116765d996
57caf8d5c9dd285eacd101a9f3dc6d55fc74f87f
refs/heads/master
2022-09-30T01:33:27.464189
2020-06-08T06:04:45
2020-06-08T06:04:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,127
py
from django.contrib.auth.models import AbstractUser from django.db import models # Create your models here. class User(AbstractUser): """ Custom User Model """ GENDER_MALE = "male" GENDER_FEMALE = "female" GENDER_OTHER = "other" GENDER_CHOICES = ( (GENDER_MALE, "Male"), (GENDER_FEMALE, "Female"), (GENDER_OTHER, "Other"), ) LANGUAGE_ENGLISH = "en" LANGUAGE_KOREAN = "kr" LANGUAGE_CHOICES = ( (LANGUAGE_ENGLISH, "English"), (LANGUAGE_KOREAN, "Korean"), ) CURRENCY_USD = "usd" CURRENCY_KRW = "krw" CURRENCY_CHOICES = ( (CURRENCY_USD, "USD"), (CURRENCY_KRW, "KRW"), ) avatar = models.ImageField(blank=True) gender = models.CharField(choices=GENDER_CHOICES, max_length=10, blank=True) bio = models.TextField(blank=True) birthdate = models.DateField(blank=True, null=True) language = models.CharField(max_length=2, blank=True, choices=LANGUAGE_CHOICES) currency = models.CharField(max_length=3, blank=True, choices=CURRENCY_CHOICES) superhost = models.BooleanField(default=False)
f4e41340c6a91271c699988573ccb9305183e8e3
7b2ff067a21a3229072c7e8172f1a5735931aa4d
/build/build.py
e13356656480ec27014b3c28970e6a416cb27c45
[]
no_license
maclovin/interAgentes
22d1a101aa5e7a2decf0be3688acf179d8c7ab25
fc23d4ec903d8d97e230179441e6237e002169d3
refs/heads/master
2016-08-04T11:57:43.048378
2013-02-08T20:12:25
2013-02-08T20:12:25
3,902,458
0
1
null
null
null
null
UTF-8
Python
false
false
6,850
py
#!/usr/bin/python import os,sys def makedir(diretorio): print 'Criando diretorio %s' %(diretorio) if not os.path.isdir(diretorio): os.mkdir(diretorio) def makefile(local,conteudo): f = open(local, 'w') f.write(conteudo) f.close print 'Criando arquivo %s' %(local) def usage(): usage = """ Modo de usar: python build.py [nome_do_ambiente_ou_banco_de_dados] Ex: python build.py clienteX """ return usage def generate(client): scrapPy = """ import tweetstream import pymongo import time import sys import os import string from classes.tweets import * from pymongo import Connection #inicia conexao com MongoDB (host e porta) myConnection = Connection('127.0.0.1', 27017) db = myConnection."""+client+""" #passar como parametro nos objetos dbTweet = db."""+client+""" #instancia o objeto tweets myTweet = tweets(dbTweet) #le arquivo externo de termos a serem utilizados nas buscas f = open('terms.txt', 'r') lines = string.split(f.read(), '\\n') f.close myTerms = [] for line in lines: if not line == '': myTerms.append(line) people = [1000] with tweetstream.FilterStream("neuromancer_br", "q1w2e3r4", track=myTerms, follow=people) as stream: for tweet in stream: dateToday = time.strftime("%Y-%m-%d") hour = time.strftime("%H") myTweet.setDateScrap(dateToday) myTweet.setHourScrap(hour) myTweet.setSeguidores(tweet['user']['followers_count']) myTweet.setRts(tweet['retweet_count']) myTweet.setMensagem(tweet['text']) myTweet.setDateTime(tweet['created_at']) myTweet.setAutor(tweet['user']['screen_name']) myTweet.setLocation(tweet['user']['location']) myTweet.setStatusCount(tweet['user']['statuses_count']) myTweet.setCreatedAt(tweet['user']['created_at']) myTweet.setHashTags(tweet['entities']['hashtags']) myTweet.setEntitles(tweet['entities']['urls']) myTweet.setMencoes(tweet['entities']['user_mentions']) myTweet.setAutorOriginal(tweet['in_reply_to_screen_name']) myTweet.save() print tweet['user']['created_at'], " - " print tweet['user']['screen_name'], ":\\n" print tweet['text'], "\\n\\n" """ tsvPy = """ import sys reload(sys) sys.setdefaultencoding("utf-8") import os from pymongo import Connection from datetime import date myConnection = Connection('127.0.0.1', 27017) db = myConnection."""+client+""" #passar como parametro nos objetos dbTweet = db."""+client+""" def usage(): usage = \"\"\" Modo de usar: python tsv.py [nome do diretorio] [data] python tsv.py [nome do diretorio] [data] [hora_cheia] Ex: python tsv.py joao 2012-03-28 python tsv.py joao 2012-03-28 14 \"\"\" return usage def toTSV(client, date, hour, content): if hour == None: fname = '%s/%s.tsv' %(client, date) else: fname = '%s/%s_%s.tsv' %(client, date, hour) try: f = open(fname, 'w') f.write(content) f.close except: if not os.path.isdir(client): os.mkdir(client) f = open(fname, 'w') f.write(content) f.close def search(client, date, hour): content = '' if not date == None and not hour == None: myTweets = dbTweet.find({ "hourScrap":hour, "dateScrap":date }) elif not date == None: myTweets = dbTweet.find({ "dateScrap":date }) try: for myTweet in myTweets: content += "%s\\t%s\\t%s\\t%s\\t%s\\t%s\\t%s\\t%s\\t%s\\t%s\\t%s\\t%s\\t%s\\t%s\\t%s\\t%s\\t%s\\n" %(myTweet['dateScrap'], myTweet['hourScrap'], myTweet['seguidores'], myTweet['rts'], myTweet['mensagem'], myTweet['teor'], myTweet['obs'], myTweet['url'], myTweet['dateTime'], myTweet['autor'], myTweet['location'], myTweet['statusCount'], myTweet['createdAt'], myTweet['hashTags'], myTweet['entitles'], myTweet['mencoes'], myTweet['autorOriginal']) except: print 'Nao ha dados' print "Conteudo: %s\\n\\n" %(content) toTSV(client, date, hour, content) if __name__ == "__main__": action = None date = None hour = None try: action = sys.argv[1] date = sys.argv[2] except: print usage() try: hour = sys.argv[3] except: hour = None if not action == None and not date == None: search(action,date,hour) """ databasePy = """ import pymongo from pymongo import Connection class database: def __init__(self): self.connection = Connection('127.0.0.1', 27017) self.db = self.connection."""+client+""" self.dbTweet = self.db."""+client+""" return 'lol' """ tweetsPy = """ import pymongo from pymongo import Connection class tweets(): def __init__(self,db): "Classe para Streamming API do Twitter" self.dbTweet = db self.dateScrap = '' self.hourScrap = '' self.seguidores = '' self.rts = '' self.mensagem = '' self.teor = '' self.obs = '' self.url = '' self.dateTime = '' self.autor = '' self.location = '' self.statusCount = '' self.createdAt = '' self.hashTags = '' self.entitles = '' self.mencoes = '' self.autorOriginal = '' def setDateScrap(self, dateScrap): self.dateScrap = dateScrap def setHourScrap(self, hourScrap): self.hourScrap = hourScrap def setSeguidores(self, seguidores): self.seguidores = seguidores def setRts(self, rts): self.rts = rts; def setMensagem(self, mensagem): self.mensagem = mensagem def setTeor(self, teor): self.teor = teor def setObs(self, obs): self.obs = obs def setUrl(self, url): self.url = url def setDateTime(self, dateTime): self.dateTime = dateTime def setAutor(self, autor): self.autor = autor def setLocation(self, location): self.location = location def setStatusCount(self, statusCount): self.statusCount = statusCount def setCreatedAt(self, createdAt): self.createdAt = createdAt def setHashTags(self, hashTags): self.hashTags = hashTags def setEntitles(self, entitles): self.entitles = entitles def setMencoes(self, mencoes): self.mencoes = mencoes def setAutorOriginal(self, autorOriginal): self.autorOriginal = autorOriginal def save(self): self.dbTweet.insert({"dateScrap":self.dateScrap, "hourScrap":self.hourScrap, "seguidores":self.seguidores, "rts":self.rts, "mensagem":self.mensagem, "teor":self.teor, "obs":self.obs, "url":self.url, "dateTime":self.dateTime, "autor":self.autor, "location":self.location, "statusCount":self.statusCount, "createdAt":self.createdAt, "hashTags":self.hashTags, "entitles":self.entitles, "mencoes":self.mencoes, "autorOriginal":self.autorOriginal }) """ makefile('scrap.py',scrapPy) makefile('terms.txt','') makefile('tsv.py',tsvPy) makedir('classes') makefile('classes/__init__.py','') makefile('classes/database.py',databasePy) makefile('classes/tweets.py',tweetsPy) if __name__ == "__main__": client = None try: client = sys.argv[1] generate(client) except: print usage()
b412bf90b49df2ddca1fa8eb2a34f01c20753966
936a0a1c7a09414a4e41343769fa8656af7a573b
/code/input.py
068aa4382bffbd32b2ebe8a3baa2e3bed7fa88e7
[]
no_license
ramco-labs/automated-feature-engineering
b2b77c6497e14edc0e1328f57c04254c8a05b168
a2c54753a5f66be4e2398303bfa108acc687b3a7
refs/heads/master
2022-11-28T21:06:25.492891
2020-09-26T00:50:03
2020-09-26T00:50:03
210,266,856
1
1
null
2022-11-22T03:36:16
2019-09-23T04:49:01
Python
UTF-8
Python
false
false
616
py
import pandas as pd class UserInput: @staticmethod def input_process(path, uid, outputs): try: df = pd.read_csv(path) for output in outputs: try: keys = list(df.keys()) keys.index(output) except ValueError: print("error key not found :", output) return df, uid, outputs except IOError: print("File not found", path) #user_input = UserInput() #print(user_input.input_process("../data/autocoding_aviation-autocoding.csv", "1234", ['test', 'fb_id']))
969ded313c78856f06db9a768ee20f8972c9ab0e
7e30d941277b01a73e3537c9a81d3ddf6ddb11ac
/sudoku-solver.py
708bca2660864cb4aa748e5eff8984e549066eb9
[]
no_license
krishna13-dev/Sudoku-Solver
bdc43662eb123c0fae9e7648ff387f4173337f3b
356a0f015da97cc70d37d282c64a94ecb950a87a
refs/heads/master
2022-12-13T02:49:37.800577
2020-09-15T07:10:36
2020-09-15T07:10:36
295,603,817
0
0
null
null
null
null
UTF-8
Python
false
false
1,593
py
board = [[0, 4, 9, 0, 0, 0, 0, 0, 5], [0, 0, 0, 8, 3, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 8], [0, 0, 0, 0, 9, 0, 8, 1, 0], [0, 0, 0, 0, 0, 7, 6, 0, 0], [0, 0, 1, 0, 0, 0, 3, 0, 0], [7, 8, 0, 4, 1, 0, 0, 0, 9], [2, 9, 4, 7, 0, 0, 0, 0, 0], [6, 0, 0, 9, 0, 0, 0, 0, 0]] # solve board def solve_board(board): find = find_empty(board) if not find: return True else: row, col = find for i in range(1, 10): if check_valid(board, i, (row, col)): board[row][col] = i if solve_board(board): return True board[row][col] = 0 return False # check if valid def check_valid(board, num, pos): # row for i in range(len(board[0])): if board[pos[0]][i] == num and pos[1] != i: return False # coloum for i in range(len(board[0])): if board[i][pos[1]] == num and pos[0] != i: return False # 3*3 box box_x = pos[1] // 3 box_y = pos[0] // 3 for i in range(box_y*3, box_y*3 + 3): for j in range(box_x*3, box_x*3 + 3): if board[i][j] == num and (i,j) != pos: return False return True # find empty space def find_empty(board): for i in range(len(board)): for j in range(len(board)): if board[i][j] == 0: return(i, j) return None # printing board def print_board(board): for i in range(len(board)): if i % 3 == 0 and i != 0: print('- - - - - - - - - - - -') for j in range(len(board[i])): if j % 3 == 0 and j != 0: print(' | ', end = '') if j == 8: print(board[i][j]) else: print(str(board[i][j]) + ' ', end= '') print_board(board) solve_board(board) print() print() print_board(board)
9a0f2585c8786ae68cdb437ea210b0230321d96c
f71aecb0e91fe877af3ec652c7f6753a1e7b5ccd
/RemoveComments_MID_722.py
5fd160cab533466e6146d8361f29931987c5447a
[]
no_license
953250587/leetcode-python
036ad83154bf1fce130d41220cf2267856c7770d
679a2b246b8b6bb7fc55ed1c8096d3047d6d4461
refs/heads/master
2020-04-29T12:01:47.084644
2019-03-29T15:50:45
2019-03-29T15:50:45
176,122,880
2
0
null
null
null
null
UTF-8
Python
false
false
8,195
py
""" Given a C++ program, remove comments from it. The program source is an array where source[i] is the i-th line of the source code. This represents the result of splitting the original source code string by the newline character \n. In C++, there are two types of comments, line comments, and block comments. The string // denotes a line comment, which represents that it and rest of the characters to the right of it in the same line should be ignored. The string /* denotes a block comment, which represents that all characters until the next (non-overlapping) occurrence of */ should be ignored. (Here, occurrences happen in reading order: line by line from left to right.) To be clear, the string /*/ does not yet end the block comment, as the ending would be overlapping the beginning. The first effective comment takes precedence over others: if the string // occurs in a block comment, it is ignored. Similarly, if the string /* occurs in a line or block comment, it is also ignored. If a certain line of code is empty after removing comments, you must not output that line: each string in the answer list will be non-empty. There will be no control characters, single quote, or double quote characters. For example, source = "string s = "/* Not a comment. */";" will not be a test case. (Also, nothing else such as defines or macros will interfere with the comments.) It is guaranteed that every open block comment will eventually be closed, so /* outside of a line or block comment always starts a new comment. Finally, implicit newline characters can be deleted by block comments. Please see the examples below for details. After removing the comments from the source code, return the source code in the same format. Example 1: Input: source = ["/*Test program */", "int main()", "{ ", " // variable declaration ", "int a, b, c;", "/* This is a test", " multiline ", " comment for ", " testing */", "a = b + c;", "}"] The line by line code is visualized as below: /*Test program */ int main() { // variable declaration int a, b, c; /* This is a test multiline comment for testing */ a = b + c; } Output: ["int main()","{ "," ","int a, b, c;","a = b + c;","}"] The line by line code is visualized as below: int main() { int a, b, c; a = b + c; } Explanation: The string /* denotes a block comment, including line 1 and lines 6-9. The string // denotes line 4 as comments. Example 2: Input: source = ["a/*comment", "line", "more_comment*/b"] Output: ["ab"] Explanation: The original source string is "a/*comment\nline\nmore_comment*/b", where we have bolded the newline characters. After deletion, the implicit newline characters are deleted, leaving the string "ab", which when delimited by newline characters becomes ["ab"]. Note: The length of source is in the range [1, 100]. The length of source[i] is in the range [0, 80]. Every open block comment is eventually closed. There are no single-quote, double-quote, or control characters in the source code. """ class Solution(object): def removeComments(self, source): """ :type source: List[str] :rtype: List[str] 32ms """ result = [] block = False union = False start = 0 while start < len(source): line = source[start] start += 1 if not block and '//' in line and '/*' in line: s = line.split('//', 1) if '/*' not in s[0]: s = line.split('//', 1) if len(s[0]) >= 1: if union: result[-1] += s[0] union = False else: result.append(s[0]) union = False else: block = True s = line.split('/*', 1) if len(s[0]) >= 1: if union: result[-1] += s[0] else: union = True result.append(s[0]) source.insert(start, s[1]) elif not block and '//' in line: s = line.split('//', 1) if len(s[0]) >= 1: if union: result[-1] += s[0] else: result.append(s[0]) union = False elif not block and '/*' in line: block = True s = line.split('/*', 1) if len(s[0]) >= 1: if union: result[-1] += s[0] else: union = True result.append(s[0]) source.insert(start, s[1]) elif block and '*/' in line: end = line.split('*/', 1)[1] source.insert(start, end) block = False elif not block: if union: result[-1] += line union = False else: if len(line) >= 1: result.append(line) print(source, union, block) print(result) return result # source = ["/*Test program */", # "int main()", # "{ ", # " // variable declaration ", # "int a, b, c;", # "", # "/* This is a test", # " multiline ", # " comment for ", # " testing */", # "a = b + c;", # "}"] # a = Solution().removeComments(source) # for i in a: # print(i) # # source = ["a/*comment", "line", "more_comment*/b"] # a = Solution().removeComments(source) # for i in a: # print(i) # # source = ["a//*b//*c","blank","d/*/e*//f"] # a = Solution().removeComments(source) # for i in a: # print(i) # # source = ["a/*/b//*c","blank","d/*/e*//f"] # a = Solution().removeComments(source) # for i in a: # print(i) # # source = ["class test{", # "public: ", # " int x = 1;", # " /*double y = 1;*/", # " char c;", "};"] # a = Solution().removeComments(source) # for i in a: # print(i) source = ['d/*/aee*//d/********/'] a = Solution().removeComments(source) for i in a: print(i) def _find_comment(line): for i, ch in enumerate(line): if ch == '/' and i + 1 < len(line): ch = line[i + 1] if ch == '/' or ch == '*': return i return -1 # O(n) time. O(1) space. class Solution(object): def removeComments(self, source): """ :type source: List[str] :rtype: List[str] 36ms """ row = 0 while row < len(source): line = source[row] lo = _find_comment(line) if lo == -1: row += 1 continue if line[lo + 1] == '/': if lo == 0: source.pop(row) else: source[row] = line[:lo] row += 1 continue hi = line.find('*/', lo + 2) if hi != -1: if lo == 0 and hi + 2 == len(line): source.pop(row) else: source[row] = line[:lo] + line[hi + 2:] continue if lo == 0: source.pop(row) else: source[row] = line[:lo] row += 1 while row < len(source): line = source[row] hi = line.find('*/') if hi == -1: source.pop(row) continue if hi + 2 == len(line): source.pop(row) else: if lo == 0: source[row] = line[hi + 2:] else: source.pop(row) row -= 1 source[row] += line[hi + 2:] break return source
4159a5dae0418564d7a15b83606762600f9c6bef
4f383578dc1809c565f1fa85cc10e8f736479f63
/G1_Selenium.py
a0d4018fe557872273e4ab601531364e833b4cab
[]
no_license
leonardosoler/selenium-task-mercadolivre
d186ccc140d558a0611ca0d29130be8e4b4591c0
e3fc905ebeff59ea7e52258d297454b7f94aa9c7
refs/heads/master
2023-07-30T20:27:01.027894
2021-10-04T03:24:09
2021-10-04T03:24:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
584
py
import requests from bs4 import BeautifulSoup response = requests.get('https://g1.globo.com/') content = response.content site = BeautifulSoup(content, 'html.parser') #HTML da noticia noticias = site.findAll('div', attrs={'class' : 'feed-post-body'} ) for noticia in noticias: #Titulo titulo = noticia.find('a', attrs= {'class': 'feed-post-link'}) subtitulo = noticia.find('a', attrs={'class': 'feed-post-body-title'}) if (subtitulo): print("Subtitulo : " + subtitulo.text) #print(noticia.prettify()) print("Titulo : " + titulo.text)
94464e03510f90f38a1e437322c2d19f586c970e
e13434a945f17c46f8c162fd6652798232d55e25
/main.py
b78565c7dd0b4a6929730c90a6087a36dab0a9e0
[]
no_license
pomeroyd/test-flask-app
e9f043e578d9d80e825f11c4977acf555664a191
85a9a0d2863108bde551c6da88a9f988eeea7614
refs/heads/main
2023-01-13T07:01:45.723359
2020-11-20T10:42:55
2020-11-20T10:42:55
314,525,237
0
0
null
null
null
null
UTF-8
Python
false
false
201
py
from flask import Flask, request from emoji import emojize app = Flask(__name__) @app.route('/') def hello(): name = request.args.get('name', 'World') return emojize("Hello " + name +"!")
bc21e2df44ce367bd5aa9caedada1fd31027667e
3748795418a9e9294b829ec86c01ea227cc0991e
/exps/synthetic_data.py
012442a48e127c2eb648357e0606a4aa88f585fe
[ "MIT" ]
permissive
ranigb/Set-Tree
16aad4eb188caf2878d0dab4345979bcbcc9cd47
fa3971f9a8ef98dbfd0f6de654efcde3006a197b
refs/heads/main
2023-09-04T02:03:12.147211
2021-11-08T21:50:05
2021-11-08T21:50:05
406,342,399
0
0
MIT
2021-09-14T11:39:35
2021-09-14T11:39:34
null
UTF-8
Python
false
false
7,655
py
import numpy as np import random from settree.set_data import SetDataset ######################################################################################################################## # EXP 1: First quarter ######################################################################################################################## def get_first_quarter_data(num_samples, min_items_set=2, max_items_set=10, dim=2): def inject_samples_in_first_quarter(set_of_samples, min=1, max=1, dim=2): num = random.choice(range(min, max + 1)) pos_points = np.random.uniform(low=0, high=1, size=(num, dim)) set_of_samples[:num, :] = pos_points return set_of_samples def sample_point_not_from_first_quarter(dim=2): # sample a quarter (not the first) while True: r = np.random.uniform(-1, 1, dim) if sum(r >= 0) < dim: break return tuple(r) def sample_set(num, dim): return np.stack([sample_point_not_from_first_quarter(dim) for _ in range(num)]) s_1 = [sample_set(random.choice(range(min_items_set, max_items_set)), dim) for _ in range(num_samples // 2)] s_2 = [sample_set(random.choice(range(min_items_set, max_items_set)), dim) for _ in range(num_samples // 2)] s_2 = [inject_samples_in_first_quarter(i, min=1, max=1, dim=dim) for i in s_2] x = s_1 + s_2 y = np.concatenate([np.zeros(len(s_1)), np.ones(len(s_2))]).astype(np.int64) return x, y ######################################################################################################################## # EXP 2: Stats ######################################################################################################################## def get_data_uniform_vs_normal(n, set_size): neg = [] for _ in range(n//2): if np.random.rand() > 0.5: ids = np.array([0] * (set_size // 2) + [1] * (set_size // 2)) else: ids = np.array([0] * (set_size // 2) + [1] * (set_size // 2)) neg.append(np.stack([np.concatenate([np.random.normal(loc=0.0, scale=1.0, size=(set_size // 2,)), np.random.uniform(low=-1.0, high=1.0, size=(set_size // 2,))]), ids], axis=1)) pos = [] for _ in range(n//4): if np.random.rand() > 0.5: ids = np.array([0] * (set_size // 2) + [1] * (set_size // 2)) else: ids = np.array([0] * (set_size // 2) + [1] * (set_size // 2)) pos.append(np.stack([np.random.normal(loc=0.0, scale=1.0, size=(set_size,)), ids], axis=1)) pos.append(np.stack([np.random.uniform(low=-1.0, high=1.0, size=(set_size,)), ids], axis=1)) y = np.array([0] * (n // 2) + [1] * (n // 2)) x = pos + neg return x, y def get_data_laplace_vs_normal(n, set_size): neg = [] for _ in range(n//2): if np.random.rand() > 0.5: ids = np.array([0] * (set_size // 2) + [1] * (set_size // 2)) else: ids = np.array([0] * (set_size // 2) + [1] * (set_size // 2)) neg.append(np.stack([np.concatenate([np.random.normal(loc=0.0, scale=1.0, size=(set_size // 2,)), np.random.laplace(loc=0.0, scale=1.0, size=(set_size // 2,))]), ids], axis=1)) pos = [] for _ in range(n//4): if np.random.rand() > 0.5: ids = np.array([0] * (set_size // 2) + [1] * (set_size // 2)) else: ids = np.array([0] * (set_size // 2) + [1] * (set_size // 2)) pos.append(np.stack([np.random.normal(loc=0.0, scale=1.0, size=(set_size,)), ids], axis=1)) pos.append(np.stack([np.random.laplace(loc=0.0, scale=1.0, size=(set_size,)), ids], axis=1)) y = np.array([0] * (n // 2) + [1] * (n // 2)) x = pos + neg return x, y def get_data_different_mu_normal(n, set_size): neg = [] for _ in range(n//2): if np.random.rand() > 0.5: ids = np.array([0] * (set_size // 2) + [1] * (set_size // 2)) else: ids = np.array([0] * (set_size // 2) + [1] * (set_size // 2)) neg.append(np.stack([np.concatenate([np.random.normal(loc=np.random.randn(), scale=1.0, size=(set_size // 2,)), np.random.normal(loc=np.random.randn(), scale=1.0, size=(set_size // 2,))]), ids], axis=1)) pos = [] for _ in range(n//4): if np.random.rand() > 0.5: ids = np.array([0] * (set_size // 2) + [1] * (set_size // 2)) else: ids = np.array([0] * (set_size // 2) + [1] * (set_size // 2)) mu = np.random.randn() pos.append(np.stack([np.random.normal(loc=mu, scale=1.0, size=(set_size,)), ids], axis=1)) pos.append(np.stack([np.random.normal(loc=mu, scale=1.0, size=(set_size,)), ids], axis=1)) y = np.array([0] * (n // 2) + [1] * (n // 2)) x = pos + neg return x, y def get_data_different_sigma_normal(n, set_size): neg = [] for _ in range(n//2): if np.random.rand() > 0.5: ids = np.array([0] * (set_size // 2) + [1] * (set_size // 2)) else: ids = np.array([0] * (set_size // 2) + [1] * (set_size // 2)) neg.append(np.stack([np.concatenate([np.random.normal(loc=0.0, scale=np.abs(np.random.randn()), size=(set_size // 2,)), np.random.normal(loc=0.0, scale=np.abs(np.random.randn()), size=(set_size // 2,))]), ids], axis=1)) pos = [] for _ in range(n//4): if np.random.rand() > 0.5: ids = np.array([0] * (set_size // 2) + [1] * (set_size // 2)) else: ids = np.array([0] * (set_size // 2) + [1] * (set_size // 2)) sig = np.abs(np.random.randn()) pos.append(np.stack([np.random.normal(loc=0.0, scale=sig, size=(set_size,)), ids], axis=1)) pos.append(np.stack([np.random.normal(loc=0.0, scale=sig, size=(set_size,)), ids], axis=1)) y = np.array([0] * (n // 2) + [1] * (n // 2)) x = pos + neg return x, y def get_data_by_task(task_name, params): if task_name == 'different_uniform_normal': # 1) different distributions x_train, y_train = get_data_uniform_vs_normal(params['n_train'], params['set_size']) ds_train = SetDataset(records=x_train, is_init=True) x_test, y_test = get_data_uniform_vs_normal(params['n_test'], params['set_size']) ds_test = SetDataset(records=x_test, is_init=True) elif task_name == 'different_laplace_normal': # 1) different distributions x_train, y_train = get_data_laplace_vs_normal(params['n_train'], params['set_size']) ds_train = SetDataset(records=x_train, is_init=True) x_test, y_test = get_data_laplace_vs_normal(params['n_test'], params['set_size']) ds_test = SetDataset(records=x_test, is_init=True) elif task_name == 'different_mean': # 2) different mean x_train, y_train = get_data_different_mu_normal(params['n_train'], params['set_size']) ds_train = SetDataset(records=x_train, is_init=True) x_test, y_test = get_data_different_mu_normal(params['n_test'], params['set_size']) ds_test = SetDataset(records=x_test, is_init=True) elif task_name == 'different_std': # 3) different sigma x_train, y_train = get_data_different_sigma_normal(params['n_train'], params['set_size']) ds_train = SetDataset(records=x_train, is_init=True) x_test, y_test = get_data_different_sigma_normal(params['n_test'], params['set_size']) ds_test = SetDataset(records=x_test, is_init=True) else: raise ValueError return ds_train, y_train, ds_test, y_test
5438edc9a22551e8091a4992b211263f519f6cce
8e939e0f075a14377d87e0eb7729e4f0818f1df9
/zarc/models_2017-08-04-06:42:45.py
0831485aa5117c669efb76a2c672493a20217ba0
[ "MIT" ]
permissive
mimcomp/caseke
072d076c9442c19916d8f71ec25fa45676031914
3c0749a431bb2e2c82bcb292d528c748bea8b1ba
refs/heads/master
2020-06-02T15:42:24.159728
2019-06-03T16:34:09
2019-06-03T16:34:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
53,466
py
# coding: utf-8 # AUTOGENERATED BY gen_script.sh from kp2.py # Copyright (C) Nyimbi Odero, Fri Aug 4 06:40:31 EAT 2017 from sqlalchemy import func from flask_appbuilder import Model from flask_appbuilder.models.mixins import AuditMixin, FileColumn, ImageColumn, UserExtensionMixin from flask_appbuilder.models.decorators import renders from flask_appbuilder.filemanager import ImageManager from sqlalchemy_utils import aggregated, force_auto_coercion from sqlalchemy.orm import relationship, query, defer, deferred from sqlalchemy import (Column, Integer, String, ForeignKey, Sequence, Float, Text, BigInteger, Date, DateTime, Time, Boolean, Index, CheckConstraint, UniqueConstraint,ForeignKeyConstraint, Numeric, LargeBinary , Table) from datetime import timedelta, datetime, date from sqlalchemy.dialects.postgresql import * from sqlalchemy.sql import func from .mixins import * # Here is how to extend the User model #class UserExtended(Model, UserExtensionMixin): # contact_group_id = Column(Integer, ForeignKey('contact_group.id'), nullable=True) # contact_group = relationship('ContactGroup') # UTILITY CLASSES import arrow, enum import enum # Initialize sqlalchemy_utils #force_auto_coercion() class Lawyer(PersonMixin, ContactMixin, AuditMixin, Model): __tablename__ = 'Lawyers' def ViewName(self): return self.__class__.__name__ +'View' def photo_img(self): im = ImageManager() vn = self.ViewName() if self.photo: return Markup('<a href="' + url_for(vn+'.show', pk=str(self.id)) + '" class="thumbnail"><img src="' + im.get_url(self.photo) + '" alt="Photo" class="img-rounded img-responsive"></a>') else: return Markup('<a href="' + url_for(vn, pk=str(self.id)) + '" class="thumbnail"><img src="//:0" alt="Photo" class="img-responsive"></a>') def photo_img_thumbnail(self): im = ImageManager() vn = self.ViewName() if self.photo: return Markup('<a href="' + url_for(vn+'.show', pk=str(self.id)) + '" class="thumbnail"><img src="' + im.get_url_thumbnail(self.photo) + '" alt="Photo" class="img-rounded img-responsive"></a>') else: return Markup('<a href="' + url_for(vn, pk=str(self.id)) + '" class="thumbnail"><img src="//:0" alt="Photo" class="img-responsive"></a>') def print_button(self): vn = self.ViewName() #pdf = render_pdf(url_for(vn, pk=str(self.id))) #pdf = pdfkit.from_string(url_for(vn, pk=str(self.id))) #response = make_response(pdf) #response.headers['Content-Type'] = 'application/pdf' #response.headers['Content-Disposition'] = 'inline; filename=output.pdf' return Markup( '<a href="' + url_for(vn) + '" class="btn btn-sm btn-primary" data-toggle="tooltip" rel="tooltip"'+ 'title="Print">' + '<i class="fa fa-edit"></i>' + '</a>') def audio_play(self): vn = self.ViewName() return Markup( '<audio controls>' + '<source src="' + url_for(vn) + '" type="audio/mpeg"'> +'<i class="fa fa-volume-up"></i>' + 'Your browser does not support the audio element.' + '</audio>' ) # edit_form_extra_fields = {'field2': TextField('field2', # widget=BS3TextFieldROWidget())} id = Column(Integer, primary_key=True, autoincrement=True) law_firm = Column(ForeignKey(u'lawfirm.id'), index=True) gender = Column(ForeignKey(u'gender.id'), index=True) barnumber = Column(String(20)) admissiondate = Column(Date) gender1 = relationship(u'Gender', primaryjoin='Lawyer.gender == Gender.id', backref=u'lawyers') lawfirm = relationship(u'Lawfirm', primaryjoin='Lawyer.law_firm == Lawfirm.id', backref=u'lawyers') class Medevent(ActivityMixin, AuditMixin, Model): __tablename__ = 'Medevent' id = Column(Integer, primary_key=True, autoincrement=True) class Bail(AuditMixin, Model): __tablename__ = 'bail' id = Column(Integer, primary_key=True, autoincrement=True) hearing = Column(ForeignKey(u'hearing.id'), nullable=False, index=True) defendant = Column(ForeignKey(u'defendant.id'), nullable=False, index=True) amountgranted = Column(Numeric(12, 2)) noofsureties = Column(Integer, nullable=False) paid = Column(Boolean) paydate = Column(Date) defendant1 = relationship(u'Defendant', primaryjoin='Bail.defendant == Defendant.id', backref=u'bails') hearing1 = relationship(u'Hearing', primaryjoin='Bail.hearing == Hearing.id', backref=u'bails') surety = relationship(u'Surety', secondary='bail_surety', backref=u'bails') bail_surety = Table( 'bail_surety', Model.metadata, Column('bail', ForeignKey(u'bail.id'), primary_key=True, nullable=False), Column('surety', ForeignKey(u'surety.id'), primary_key=True, nullable=False, index=True) ) class Case(AuditMixin, Model): __tablename__ = 'case' id = Column(Integer, primary_key=True, autoincrement=True) casename = Column(String(200), nullable=False) initialreport = Column(Text, nullable=False) priority = Column(Integer, nullable=False) investigationassigmentdate = Column(DateTime) investigationassignmentnote = Column(Text, nullable=False) investigationplan = Column(Text, nullable=False) investigationsummary = Column(Text, nullable=False) investigationreview = Column(Text) agadvicerequested = Column(Boolean) agadvicedate = Column(Date) agadvice = Column(Text, nullable=False) chargesheet = Column(Text, nullable=False) sendtotrial = Column(Boolean, nullable=False) docketnumber = Column(String(100)) nameofcase = Column(String(400)) chargedate = Column(DateTime) judgement = Column(Text, nullable=False) judgementdate = Column(DateTime) sentencelengthyr = Column(Integer) sentencelengthmnth = Column(Integer) senetencelenghtdays = Column(Integer) sentencestartdate = Column(Date) sentenceexpirydate = Column(Date) fineamount = Column(Numeric(12, 2)) caseappealed = Column(Boolean) appealdate = Column(DateTime) appealexpiry = Column(Date) caseclosed = Column(Boolean) closedate = Column(Date) policestation = relationship(u'Policestation', secondary='case_policestation', backref=u'cases') natureofsuit = relationship(u'Natureofsuit', secondary='case_natureofsuit', backref=u'cases') plaintiff = relationship(u'Plaintiff', secondary='case_plaintiff', backref=u'cases') witness = relationship(u'Witnes', secondary='case_witness', backref=u'cases') prosecutor = relationship(u'Prosecutor', secondary='case_prosecutor', backref=u'prosecutor_cases') policeofficer = relationship(u'Policeofficer', secondary='case_policeofficer', backref=u'policeofficer_cases') policeofficer1 = relationship(u'Policeofficer', secondary='case_policeofficer_2', backref=u'policeofficer_cases_0') casecategory = relationship(u'Casecategory', secondary='case_casecategory', backref=u'cases') defendant = relationship(u'Defendant', secondary='case_defendant', backref=u'cases') prosecutor1 = relationship(u'Prosecutor', secondary='case_prosecutor_2', backref=u'prosecutor_cases_0') causeofaction = relationship(u'Causeofaction', secondary='case_causeofaction', backref=u'cases') case_casecategory = Table( 'case_casecategory', Model.metadata, Column('case', ForeignKey(u'case.id'), primary_key=True, nullable=False), Column('casecategory', ForeignKey(u'casecategory.id'), primary_key=True, nullable=False, index=True) ) case_causeofaction = Table( 'case_causeofaction', Model.metadata, Column('case', ForeignKey(u'case.id'), primary_key=True, nullable=False), Column('causeofaction', ForeignKey(u'causeofaction.id'), primary_key=True, nullable=False, index=True) ) case_defendant = Table( 'case_defendant', Model.metadata, Column('case', ForeignKey(u'case.id'), primary_key=True, nullable=False), Column('defendant', ForeignKey(u'defendant.id'), primary_key=True, nullable=False, index=True) ) case_natureofsuit = Table( 'case_natureofsuit', Model.metadata, Column('case', ForeignKey(u'case.id'), primary_key=True, nullable=False), Column('natureofsuit', ForeignKey(u'natureofsuit.id'), primary_key=True, nullable=False, index=True) ) case_plaintiff = Table( 'case_plaintiff', Model.metadata, Column('case', ForeignKey(u'case.id'), primary_key=True, nullable=False), Column('plaintiff', ForeignKey(u'plaintiff.id'), primary_key=True, nullable=False, index=True) ) case_policeofficer = Table( 'case_policeofficer', Model.metadata, Column('case', ForeignKey(u'case.id'), primary_key=True, nullable=False), Column('policeofficer', ForeignKey(u'policeofficer.id'), primary_key=True, nullable=False, index=True) ) case_policeofficer_2 = Table( 'case_policeofficer_2', Model.metadata, Column('case', ForeignKey(u'case.id'), primary_key=True, nullable=False), Column('policeofficer', ForeignKey(u'policeofficer.id'), primary_key=True, nullable=False, index=True) ) case_policestation = Table( 'case_policestation', Model.metadata, Column('case', ForeignKey(u'case.id'), primary_key=True, nullable=False), Column('policestation', ForeignKey(u'policestation.id'), primary_key=True, nullable=False, index=True) ) case_prosecutor = Table( 'case_prosecutor', Model.metadata, Column('case', ForeignKey(u'case.id'), primary_key=True, nullable=False), Column('prosecutor', ForeignKey(u'prosecutor.id'), primary_key=True, nullable=False, index=True) ) case_prosecutor_2 = Table( 'case_prosecutor_2', Model.metadata, Column('case', ForeignKey(u'case.id'), primary_key=True, nullable=False), Column('prosecutor', ForeignKey(u'prosecutor.id'), primary_key=True, nullable=False, index=True) ) case_witness = Table( 'case_witness', Model.metadata, Column('case', ForeignKey(u'case.id'), primary_key=True, nullable=False), Column('witness', ForeignKey(u'witness.id'), primary_key=True, nullable=False, index=True) ) class Casecategory(RefTypeMixin, AuditMixin, Model): __tablename__ = 'casecategory' id = Column(Integer, primary_key=True, autoincrement=True) indictable = Column(Boolean) class Causeofaction(RefTypeMixin, AuditMixin, Model): __tablename__ = 'causeofaction' id = Column(Integer, primary_key=True, autoincrement=True) criminal = Column(Boolean, nullable=False) parent_coa = Column(ForeignKey(u'causeofaction.id'), index=True) parent = relationship(u'Causeofaction', remote_side=[id], primaryjoin='Causeofaction.parent_coa == Causeofaction.id', backref=u'causeofactions') filing = relationship(u'Filing', secondary='causeofaction_filing', backref=u'causeofactions') hearing = relationship(u'Hearing', secondary='causeofaction_hearing', backref=u'causeofactions') causeofaction_filing = Table( 'causeofaction_filing', Model.metadata, Column('causeofaction', ForeignKey(u'causeofaction.id'), primary_key=True, nullable=False), Column('filing', ForeignKey(u'filing.id'), primary_key=True, nullable=False, index=True) ) causeofaction_hearing = Table( 'causeofaction_hearing', Model.metadata, Column('causeofaction', ForeignKey(u'causeofaction.id'), primary_key=True, nullable=False), Column('hearing', ForeignKey(u'hearing.id'), primary_key=True, nullable=False, index=True) ) class Cell(RefTypeMixin, AuditMixin, Model): __tablename__ = 'cell' id = Column(Integer, primary_key=True, autoincrement=True) prison = Column(ForeignKey(u'prison.id'), nullable=False, index=True) prison1 = relationship(u'Prison', primaryjoin='Cell.prison == Prison.id', backref=u'cells') class Commitaltype(RefTypeMixin, AuditMixin, Model): __tablename__ = 'commitaltype' id = Column(Integer, primary_key=True, autoincrement=True) prisoncommital = relationship(u'Prisoncommital', secondary='commitaltype_prisoncommital', backref=u'commitaltypes') commitaltype_prisoncommital = Table( 'commitaltype_prisoncommital', Model.metadata, Column('commitaltype', ForeignKey(u'commitaltype.id'), primary_key=True, nullable=False), Column('prisoncommital_prison', Integer, primary_key=True, nullable=False), Column('prisoncommital_warrantno', String(100), primary_key=True, nullable=False), ForeignKeyConstraint(['prisoncommital_prison', 'prisoncommital_warrantno'], [u'prisoncommital.prison', u'prisoncommital.warrantno']), Index('idx_commitaltype_prisoncommital', 'prisoncommital_prison', 'prisoncommital_warrantno') ) class Constituency(RefTypeMixin, AuditMixin, Model): __tablename__ = 'constituency' id = Column(Integer, primary_key=True, autoincrement=True) county = Column(ForeignKey(u'county.id'), nullable=False, index=True) town = Column(ForeignKey(u'town.id'), index=True) county1 = relationship(u'County', primaryjoin='Constituency.county == County.id', backref=u'constituencies') town1 = relationship(u'Town', primaryjoin='Constituency.town == Town.id', backref=u'constituencies') class County(AuditMixin, Model): __tablename__ = 'county' id = Column(Integer, primary_key=True, autoincrement=True) class Court(PlaceMixin, RefTypeMixin, AuditMixin, Model): __tablename__ = 'court' id = Column(Integer, primary_key=True, autoincrement=True) court_station = Column(ForeignKey(u'courtstation.id'), nullable=False, index=True) courtstation = relationship(u'Courtstation', primaryjoin='Court.court_station == Courtstation.id', backref=u'courts') class Courtlevel(RefTypeMixin, AuditMixin, Model): __tablename__ = 'courtlevel' id = Column(Integer, primary_key=True, autoincrement=True) class Courtstation(PlaceMixin, AuditMixin, Model): __tablename__ = 'courtstation' id = Column(Integer, primary_key=True, autoincrement=True) residentmagistrate = Column(String(100)) registrar = Column(String(100), nullable=False) court_level = Column(ForeignKey(u'courtlevel.id'), nullable=False, index=True) num_of_courts = Column(Integer) town = Column(ForeignKey(u'town.id'), nullable=False, index=True) courtlevel = relationship(u'Courtlevel', primaryjoin='Courtstation.court_level == Courtlevel.id', backref=u'courtstations') town1 = relationship(u'Town', primaryjoin='Courtstation.town == Town.id', backref=u'courtstations') class Defendant(PersonMedicalMixin, PersonDocMixin, BiometricMixin, EmploymentMixin, PersonMixin, ContactMixin, AuditMixin, Model): __tablename__ = 'defendant' def ViewName(self): return self.__class__.__name__ +'View' def photo_img(self): im = ImageManager() vn = self.ViewName() if self.photo: return Markup('<a href="' + url_for(vn+'.show', pk=str(self.id)) + '" class="thumbnail"><img src="' + im.get_url(self.photo) + '" alt="Photo" class="img-rounded img-responsive"></a>') else: return Markup('<a href="' + url_for(vn, pk=str(self.id)) + '" class="thumbnail"><img src="//:0" alt="Photo" class="img-responsive"></a>') def photo_img_thumbnail(self): im = ImageManager() vn = self.ViewName() if self.photo: return Markup('<a href="' + url_for(vn+'.show', pk=str(self.id)) + '" class="thumbnail"><img src="' + im.get_url_thumbnail(self.photo) + '" alt="Photo" class="img-rounded img-responsive"></a>') else: return Markup('<a href="' + url_for(vn, pk=str(self.id)) + '" class="thumbnail"><img src="//:0" alt="Photo" class="img-responsive"></a>') def print_button(self): vn = self.ViewName() #pdf = render_pdf(url_for(vn, pk=str(self.id))) #pdf = pdfkit.from_string(url_for(vn, pk=str(self.id))) #response = make_response(pdf) #response.headers['Content-Type'] = 'application/pdf' #response.headers['Content-Disposition'] = 'inline; filename=output.pdf' return Markup( '<a href="' + url_for(vn) + '" class="btn btn-sm btn-primary" data-toggle="tooltip" rel="tooltip"'+ 'title="Print">' + '<i class="fa fa-edit"></i>' + '</a>') def audio_play(self): vn = self.ViewName() return Markup( '<audio controls>' + '<source src="' + url_for(vn) + '" type="audio/mpeg"'> +'<i class="fa fa-volume-up"></i>' + 'Your browser does not support the audio element.' + '</audio>' ) # edit_form_extra_fields = {'field2': TextField('field2', # widget=BS3TextFieldROWidget())} id = Column(Integer, primary_key=True, autoincrement=True) juvenile = Column(Boolean) gender = Column(ForeignKey(u'gender.id'), nullable=False, index=True) cell = Column(ForeignKey(u'cell.id'), nullable=False, index=True) cell1 = relationship(u'Cell', primaryjoin='Defendant.cell == Cell.id', backref=u'defendants') gender1 = relationship(u'Gender', primaryjoin='Defendant.gender == Gender.id', backref=u'defendants') Medevent = relationship(u'Medevent', secondary='defendant_medevent', backref=u'defendants') hearing = relationship(u'Hearing', secondary='defendant_hearing', backref=u'defendants') defendant_hearing = Table( 'defendant_hearing', Model.metadata, Column('defendant', ForeignKey(u'defendant.id'), primary_key=True, nullable=False), Column('hearing', ForeignKey(u'hearing.id'), primary_key=True, nullable=False, index=True) ) defendant_medevent = Table( 'defendant_medevent', Model.metadata, Column('defendant', ForeignKey(u'defendant.id'), primary_key=True, nullable=False), Column('medevent', ForeignKey(u'Medevent.id'), primary_key=True, nullable=False, index=True) ) class Discipline(ActivityMixin, AuditMixin, Model): __tablename__ = 'discipline' id = Column(Integer, primary_key=True, autoincrement=True) defendant = Column(ForeignKey(u'defendant.id'), nullable=False, index=True) defendant1 = relationship(u'Defendant', primaryjoin='Discipline.defendant == Defendant.id', backref=u'disciplines') class Doctemplate(DocMixin, RefTypeMixin, AuditMixin, Model): __tablename__ = 'doctemplate' id = Column(Integer, primary_key=True, autoincrement=True) class Document(DocMixin, AuditMixin, Model): __tablename__ = 'document' id = Column(Integer, primary_key=True, autoincrement=True) doc_template = Column(ForeignKey(u'doctemplate.id'), index=True) confidential = Column(Boolean) pagecount = Column(Integer) filing = Column(ForeignKey(u'filing.id'), nullable=False, index=True) locked = Column(Boolean) doctemplate = relationship(u'Doctemplate', primaryjoin='Document.doc_template == Doctemplate.id', backref=u'documents') filing1 = relationship(u'Filing', primaryjoin='Document.filing == Filing.id', backref=u'documents') class Filing(AuditMixin, Model): __tablename__ = 'filing' id = Column(Integer, primary_key=True, autoincrement=True) uploaddate = Column(DateTime) pagecount = Column(Integer) totalfees = Column(Numeric(12, 2), nullable=False) filing_attorney = Column(ForeignKey(u'Lawyers.id'), nullable=False, index=True) filing_prosecutor = Column(ForeignKey(u'prosecutor.id'), nullable=False, index=True) assessedfees = Column(Numeric(12, 2)) receiptverified = Column(Boolean) amountpaid = Column(Numeric(12, 2)) feebalance = Column(Numeric(12, 2)) paymenthistory = Column(Text, nullable=False) case = Column(ForeignKey(u'case.id'), nullable=False, index=True) urgent = Column(Boolean) urgentreason = Column(Text, nullable=False) case1 = relationship(u'Case', primaryjoin='Filing.case == Case.id', backref=u'filings') Lawyer = relationship(u'Lawyer', primaryjoin='Filing.filing_attorney == Lawyer.id', backref=u'filings') prosecutor = relationship(u'Prosecutor', primaryjoin='Filing.filing_prosecutor == Prosecutor.id', backref=u'filings') filingtype = relationship(u'Filingtype', secondary='filing_filingtype', backref=u'filings') payment = relationship(u'Payment', secondary='filing_payment', backref=u'filings') filing_filingtype = Table( 'filing_filingtype', Model.metadata, Column('filing', ForeignKey(u'filing.id'), primary_key=True, nullable=False), Column('filingtype', ForeignKey(u'filingtype.id'), primary_key=True, nullable=False, index=True) ) filing_payment = Table( 'filing_payment', Model.metadata, Column('filing', ForeignKey(u'filing.id'), primary_key=True, nullable=False), Column('payment', ForeignKey(u'payment.id'), primary_key=True, nullable=False, index=True) ) class Filingtype(RefTypeMixin, AuditMixin, Model): __tablename__ = 'filingtype' id = Column(Integer, primary_key=True, autoincrement=True) fees = Column(Numeric(12, 2)) perpagecost = Column(Numeric(12, 2)) paid_per_page = Column(Boolean) class Gender(RefTypeMixin, AuditMixin, Model): __tablename__ = 'gender' id = Column(Integer, primary_key=True, autoincrement=True) name = Column(String(20), nullable=False, unique=True) class Hearing(ActivityMixin, AuditMixin, Model): __tablename__ = 'hearing' id = Column(Integer, primary_key=True, autoincrement=True) hearingdate = Column(DateTime, nullable=False) adjourned = Column(Boolean) case = Column(ForeignKey(u'case.id'), nullable=False, index=True) court = Column(ForeignKey(u'court.id'), nullable=False, index=True) remandwarrant = Column(Text) hearing_type = Column(ForeignKey(u'hearingtype.id'), nullable=False, index=True) remanddays = Column(Integer) remanddate = Column(Date) remandwarrantexpirydate = Column(Date) nexthearingdate = Column(Date) finalhearing = Column(Boolean, nullable=False) transcript = Column(Text) audio = Column(LargeBinary) video = Column(LargeBinary) case1 = relationship(u'Case', primaryjoin='Hearing.case == Case.id', backref=u'hearings') court1 = relationship(u'Court', primaryjoin='Hearing.court == Court.id', backref=u'hearings') hearingtype = relationship(u'Hearingtype', primaryjoin='Hearing.hearing_type == Hearingtype.id', backref=u'hearings') prosecutor = relationship(u'Prosecutor', secondary='hearing_prosecutor', backref=u'hearings') policeofficer = relationship(u'Policeofficer', secondary='hearing_policeofficer', backref=u'hearings') witness = relationship(u'Witnes', secondary='hearing_witness', backref=u'hearings') Lawyers = relationship(u'Lawyer', secondary='hearing_lawyer', backref=u'hearings') judicialofficer = relationship(u'Judicialofficer', secondary='hearing_judicialofficer', backref=u'hearings') hearing_judicialofficer = Table( 'hearing_judicialofficer', Model.metadata, Column('hearing', ForeignKey(u'hearing.id'), primary_key=True, nullable=False), Column('judicialofficer', ForeignKey(u'judicialofficer.id'), primary_key=True, nullable=False, index=True) ) hearing_lawyer = Table( 'hearing_lawyer', Model.metadata, Column('hearing', ForeignKey(u'hearing.id'), primary_key=True, nullable=False), Column('lawyer', ForeignKey(u'Lawyers.id'), primary_key=True, nullable=False, index=True) ) hearing_policeofficer = Table( 'hearing_policeofficer', Model.metadata, Column('hearing', ForeignKey(u'hearing.id'), primary_key=True, nullable=False), Column('policeofficer', ForeignKey(u'policeofficer.id'), primary_key=True, nullable=False, index=True) ) hearing_prosecutor = Table( 'hearing_prosecutor', Model.metadata, Column('hearing', ForeignKey(u'hearing.id'), primary_key=True, nullable=False), Column('prosecutor', ForeignKey(u'prosecutor.id'), primary_key=True, nullable=False, index=True) ) hearing_witness = Table( 'hearing_witness', Model.metadata, Column('hearing', ForeignKey(u'hearing.id'), primary_key=True, nullable=False), Column('witness', ForeignKey(u'witness.id'), primary_key=True, nullable=False, index=True) ) class Hearingtype(RefTypeMixin, AuditMixin, Model): __tablename__ = 'hearingtype' id = Column(Integer, primary_key=True, autoincrement=True) class Investigation(PlaceMixin, AuditMixin, Model): __tablename__ = 'investigation' id = Column(Integer, primary_key=True, autoincrement=True) case = Column(ForeignKey(u'case.id'), nullable=False, index=True) actiondate = Column(DateTime, nullable=False) evidence = Column(Text, nullable=False) narrative = Column(Text, nullable=False) weather = Column(Text, nullable=False) location = Column(Text, nullable=False) case1 = relationship(u'Case', primaryjoin='Investigation.case == Case.id', backref=u'investigations') policeofficer = relationship(u'Policeofficer', secondary='investigation_policeofficer', backref=u'investigations') witness = relationship(u'Witnes', secondary='investigation_witness', backref=u'investigations') investigation_policeofficer = Table( 'investigation_policeofficer', Model.metadata, Column('investigation', ForeignKey(u'investigation.id'), primary_key=True, nullable=False), Column('policeofficer', ForeignKey(u'policeofficer.id'), primary_key=True, nullable=False, index=True) ) investigation_witness = Table( 'investigation_witness', Model.metadata, Column('investigation', ForeignKey(u'investigation.id'), primary_key=True, nullable=False), Column('witness', ForeignKey(u'witness.id'), primary_key=True, nullable=False, index=True) ) class JoRank(RefTypeMixin, AuditMixin, Model): __tablename__ = 'jo_rank' id = Column(Integer, primary_key=True, autoincrement=True) appelation = Column(Text, nullable=False) informaladdress = Column(Text, nullable=False) class Judicialofficer(PersonMixin, ContactMixin, AuditMixin, Model): __tablename__ = 'judicialofficer' def ViewName(self): return self.__class__.__name__ +'View' def photo_img(self): im = ImageManager() vn = self.ViewName() if self.photo: return Markup('<a href="' + url_for(vn+'.show', pk=str(self.id)) + '" class="thumbnail"><img src="' + im.get_url(self.photo) + '" alt="Photo" class="img-rounded img-responsive"></a>') else: return Markup('<a href="' + url_for(vn, pk=str(self.id)) + '" class="thumbnail"><img src="//:0" alt="Photo" class="img-responsive"></a>') def photo_img_thumbnail(self): im = ImageManager() vn = self.ViewName() if self.photo: return Markup('<a href="' + url_for(vn+'.show', pk=str(self.id)) + '" class="thumbnail"><img src="' + im.get_url_thumbnail(self.photo) + '" alt="Photo" class="img-rounded img-responsive"></a>') else: return Markup('<a href="' + url_for(vn, pk=str(self.id)) + '" class="thumbnail"><img src="//:0" alt="Photo" class="img-responsive"></a>') def print_button(self): vn = self.ViewName() #pdf = render_pdf(url_for(vn, pk=str(self.id))) #pdf = pdfkit.from_string(url_for(vn, pk=str(self.id))) #response = make_response(pdf) #response.headers['Content-Type'] = 'application/pdf' #response.headers['Content-Disposition'] = 'inline; filename=output.pdf' return Markup( '<a href="' + url_for(vn) + '" class="btn btn-sm btn-primary" data-toggle="tooltip" rel="tooltip"'+ 'title="Print">' + '<i class="fa fa-edit"></i>' + '</a>') def audio_play(self): vn = self.ViewName() return Markup( '<audio controls>' + '<source src="' + url_for(vn) + '" type="audio/mpeg"'> +'<i class="fa fa-volume-up"></i>' + 'Your browser does not support the audio element.' + '</audio>' ) # edit_form_extra_fields = {'field2': TextField('field2', # widget=BS3TextFieldROWidget())} id = Column(Integer, primary_key=True, autoincrement=True) j_o__rank = Column(ForeignKey(u'jo_rank.id'), nullable=False, index=True) gender = Column(ForeignKey(u'gender.id'), index=True) court = Column(ForeignKey(u'court.id'), nullable=False, index=True) court1 = relationship(u'Court', primaryjoin='Judicialofficer.court == Court.id', backref=u'judicialofficers') gender1 = relationship(u'Gender', primaryjoin='Judicialofficer.gender == Gender.id', backref=u'judicialofficers') jo_rank = relationship(u'JoRank', primaryjoin='Judicialofficer.j_o__rank == JoRank.id', backref=u'judicialofficers') class Lawfirm(PlaceMixin, RefTypeMixin, AuditMixin, Model): __tablename__ = 'lawfirm' id = Column(Integer, primary_key=True, autoincrement=True) class Natureofsuit(RefTypeMixin, AuditMixin, Model): __tablename__ = 'natureofsuit' id = Column(Integer, primary_key=True, autoincrement=True) class Payment(AuditMixin, Model): __tablename__ = 'payment' id = Column(Integer, primary_key=True, autoincrement=True) amountpaid = Column(Numeric(12, 2)) datepaid = Column(DateTime) paymentreference = Column(String(80), nullable=False) paymentconfirmed = Column(Boolean) paidby = Column(Text, nullable=False) msisdn = Column(Text) receiptnumber = Column(String(100), nullable=False) ispartial = Column(Boolean) bail = Column(ForeignKey(u'bail.id'), index=True) billrefnumber = Column(Text, nullable=False) payment_method = Column(ForeignKey(u'paymentmethod.id'), nullable=False, index=True) paymentdescription = Column(Text, nullable=False) case = Column(ForeignKey(u'case.id'), nullable=False, index=True) bail1 = relationship(u'Bail', primaryjoin='Payment.bail == Bail.id', backref=u'payments') case1 = relationship(u'Case', primaryjoin='Payment.case == Case.id', backref=u'payments') paymentmethod = relationship(u'Paymentmethod', primaryjoin='Payment.payment_method == Paymentmethod.id', backref=u'payments') class Paymentmethod(RefTypeMixin, AuditMixin, Model): __tablename__ = 'paymentmethod' id = Column(Integer, primary_key=True, autoincrement=True) key = Column(Text, nullable=False) secret = Column(Text, nullable=False) portal = Column(Text, nullable=False) tillnumber = Column(Text, nullable=False) shortcode = Column(Text, nullable=False) class Plaintiff(PersonMixin, ContactMixin, AuditMixin, Model): __tablename__ = 'plaintiff' def ViewName(self): return self.__class__.__name__ +'View' def photo_img(self): im = ImageManager() vn = self.ViewName() if self.photo: return Markup('<a href="' + url_for(vn+'.show', pk=str(self.id)) + '" class="thumbnail"><img src="' + im.get_url(self.photo) + '" alt="Photo" class="img-rounded img-responsive"></a>') else: return Markup('<a href="' + url_for(vn, pk=str(self.id)) + '" class="thumbnail"><img src="//:0" alt="Photo" class="img-responsive"></a>') def photo_img_thumbnail(self): im = ImageManager() vn = self.ViewName() if self.photo: return Markup('<a href="' + url_for(vn+'.show', pk=str(self.id)) + '" class="thumbnail"><img src="' + im.get_url_thumbnail(self.photo) + '" alt="Photo" class="img-rounded img-responsive"></a>') else: return Markup('<a href="' + url_for(vn, pk=str(self.id)) + '" class="thumbnail"><img src="//:0" alt="Photo" class="img-responsive"></a>') def print_button(self): vn = self.ViewName() #pdf = render_pdf(url_for(vn, pk=str(self.id))) #pdf = pdfkit.from_string(url_for(vn, pk=str(self.id))) #response = make_response(pdf) #response.headers['Content-Type'] = 'application/pdf' #response.headers['Content-Disposition'] = 'inline; filename=output.pdf' return Markup( '<a href="' + url_for(vn) + '" class="btn btn-sm btn-primary" data-toggle="tooltip" rel="tooltip"'+ 'title="Print">' + '<i class="fa fa-edit"></i>' + '</a>') def audio_play(self): vn = self.ViewName() return Markup( '<audio controls>' + '<source src="' + url_for(vn) + '" type="audio/mpeg"'> +'<i class="fa fa-volume-up"></i>' + 'Your browser does not support the audio element.' + '</audio>' ) # edit_form_extra_fields = {'field2': TextField('field2', # widget=BS3TextFieldROWidget())} id = Column(Integer, primary_key=True, autoincrement=True) gender = Column(ForeignKey(u'gender.id'), index=True) juvenile = Column(Boolean) gender1 = relationship(u'Gender', primaryjoin='Plaintiff.gender == Gender.id', backref=u'plaintiffs') class Policeofficer(PersonMixin, ContactMixin, AuditMixin, Model): __tablename__ = 'policeofficer' def ViewName(self): return self.__class__.__name__ +'View' def photo_img(self): im = ImageManager() vn = self.ViewName() if self.photo: return Markup('<a href="' + url_for(vn+'.show', pk=str(self.id)) + '" class="thumbnail"><img src="' + im.get_url(self.photo) + '" alt="Photo" class="img-rounded img-responsive"></a>') else: return Markup('<a href="' + url_for(vn, pk=str(self.id)) + '" class="thumbnail"><img src="//:0" alt="Photo" class="img-responsive"></a>') def photo_img_thumbnail(self): im = ImageManager() vn = self.ViewName() if self.photo: return Markup('<a href="' + url_for(vn+'.show', pk=str(self.id)) + '" class="thumbnail"><img src="' + im.get_url_thumbnail(self.photo) + '" alt="Photo" class="img-rounded img-responsive"></a>') else: return Markup('<a href="' + url_for(vn, pk=str(self.id)) + '" class="thumbnail"><img src="//:0" alt="Photo" class="img-responsive"></a>') def print_button(self): vn = self.ViewName() #pdf = render_pdf(url_for(vn, pk=str(self.id))) #pdf = pdfkit.from_string(url_for(vn, pk=str(self.id))) #response = make_response(pdf) #response.headers['Content-Type'] = 'application/pdf' #response.headers['Content-Disposition'] = 'inline; filename=output.pdf' return Markup( '<a href="' + url_for(vn) + '" class="btn btn-sm btn-primary" data-toggle="tooltip" rel="tooltip"'+ 'title="Print">' + '<i class="fa fa-edit"></i>' + '</a>') def audio_play(self): vn = self.ViewName() return Markup( '<audio controls>' + '<source src="' + url_for(vn) + '" type="audio/mpeg"'> +'<i class="fa fa-volume-up"></i>' + 'Your browser does not support the audio element.' + '</audio>' ) # edit_form_extra_fields = {'field2': TextField('field2', # widget=BS3TextFieldROWidget())} id = Column(Integer, primary_key=True, autoincrement=True) police_rank = Column(ForeignKey(u'policerank.id'), nullable=False, index=True) gender = Column(ForeignKey(u'gender.id'), nullable=False, index=True) servicenumber = Column(Text) gender1 = relationship(u'Gender', primaryjoin='Policeofficer.gender == Gender.id', backref=u'policeofficers') policerank = relationship(u'Policerank', primaryjoin='Policeofficer.police_rank == Policerank.id', backref=u'policeofficers') policerole = relationship(u'Policerole', secondary='policeofficer_policerole', backref=u'policeofficers') policeofficer_policerole = Table( 'policeofficer_policerole', Model.metadata, Column('policeofficer', ForeignKey(u'policeofficer.id'), primary_key=True, nullable=False), Column('policerole', ForeignKey(u'policerole.id'), primary_key=True, nullable=False, index=True) ) class Policerank(RefTypeMixin, AuditMixin, Model): __tablename__ = 'policerank' id = Column(Integer, primary_key=True, autoincrement=True) class Policerole(RefTypeMixin, AuditMixin, Model): __tablename__ = 'policerole' id = Column(Integer, primary_key=True, autoincrement=True) class Policestation(PlaceMixin, AuditMixin, Model): __tablename__ = 'policestation' id = Column(Integer, primary_key=True, autoincrement=True) town = Column(ForeignKey(u'town.id'), nullable=False, index=True) officercommanding = Column(String(100)) police_station_type = Column(ForeignKey(u'policestationtype.id'), nullable=False, index=True) policestationtype = relationship(u'Policestationtype', primaryjoin='Policestation.police_station_type == Policestationtype.id', backref=u'policestations') town1 = relationship(u'Town', primaryjoin='Policestation.town == Town.id', backref=u'policestations') class Policestationtype(RefTypeMixin, AuditMixin, Model): __tablename__ = 'policestationtype' id = Column(Integer, primary_key=True, autoincrement=True) class Prison(PlaceMixin, AuditMixin, Model): __tablename__ = 'prison' id = Column(Integer, primary_key=True, autoincrement=True) town = Column(ForeignKey(u'town.id'), nullable=False, index=True) warden = Column(String(100)) capacity = Column(Integer) population = Column(Integer) cellcount = Column(Integer) town1 = relationship(u'Town', primaryjoin='Prison.town == Town.id', backref=u'prisons') securityrank = relationship(u'Securityrank', secondary='prison_securityrank', backref=u'prisons') prison_securityrank = Table( 'prison_securityrank', Model.metadata, Column('prison', ForeignKey(u'prison.id'), primary_key=True, nullable=False), Column('securityrank', ForeignKey(u'securityrank.id'), primary_key=True, nullable=False, index=True) ) class Prisoncommital(ActivityMixin, AuditMixin, Model): __tablename__ = 'prisoncommital' prison = Column(ForeignKey(u'prison.id'), primary_key=True, nullable=False) warrantno = Column(String(100), primary_key=True, nullable=False) defendant = Column(ForeignKey(u'defendant.id'), nullable=False, index=True) hearing = Column(ForeignKey(u'hearing.id'), nullable=False, index=True) warrantduration = Column(Integer, nullable=False) warrantdate = Column(DateTime) warrant = Column(Text, nullable=False) warrantexpiry = Column(DateTime, nullable=False) history = Column(Text, nullable=False) earliestrelease = Column(Date) releasedate = Column(DateTime) property = Column(Text) itemcount = Column(Integer) releasenotes = Column(Text) commitalnotes = Column(Text) police_officer_commiting = Column(ForeignKey(u'policeofficer.id'), nullable=False, index=True) defendant1 = relationship(u'Defendant', primaryjoin='Prisoncommital.defendant == Defendant.id', backref=u'prisoncommitals') hearing1 = relationship(u'Hearing', primaryjoin='Prisoncommital.hearing == Hearing.id', backref=u'prisoncommitals') policeofficer = relationship(u'Policeofficer', primaryjoin='Prisoncommital.police_officer_commiting == Policeofficer.id', backref=u'prisoncommitals') prison1 = relationship(u'Prison', primaryjoin='Prisoncommital.prison == Prison.id', backref=u'prisoncommitals') warder = relationship(u'Warder', secondary='prisoncommital_warder', backref=u'prisoncommitals') prisoncommital_warder = Table( 'prisoncommital_warder', Model.metadata, Column('prisoncommital_prison', Integer, primary_key=True, nullable=False), Column('prisoncommital_warrantno', String(100), primary_key=True, nullable=False), Column('warder', ForeignKey(u'warder.id'), primary_key=True, nullable=False, index=True), ForeignKeyConstraint(['prisoncommital_prison', 'prisoncommital_warrantno'], [u'prisoncommital.prison', u'prisoncommital.warrantno']) ) class Prosecutor(PersonMixin, ContactMixin, AuditMixin, Model): __tablename__ = 'prosecutor' def ViewName(self): return self.__class__.__name__ +'View' def photo_img(self): im = ImageManager() vn = self.ViewName() if self.photo: return Markup('<a href="' + url_for(vn+'.show', pk=str(self.id)) + '" class="thumbnail"><img src="' + im.get_url(self.photo) + '" alt="Photo" class="img-rounded img-responsive"></a>') else: return Markup('<a href="' + url_for(vn, pk=str(self.id)) + '" class="thumbnail"><img src="//:0" alt="Photo" class="img-responsive"></a>') def photo_img_thumbnail(self): im = ImageManager() vn = self.ViewName() if self.photo: return Markup('<a href="' + url_for(vn+'.show', pk=str(self.id)) + '" class="thumbnail"><img src="' + im.get_url_thumbnail(self.photo) + '" alt="Photo" class="img-rounded img-responsive"></a>') else: return Markup('<a href="' + url_for(vn, pk=str(self.id)) + '" class="thumbnail"><img src="//:0" alt="Photo" class="img-responsive"></a>') def print_button(self): vn = self.ViewName() #pdf = render_pdf(url_for(vn, pk=str(self.id))) #pdf = pdfkit.from_string(url_for(vn, pk=str(self.id))) #response = make_response(pdf) #response.headers['Content-Type'] = 'application/pdf' #response.headers['Content-Disposition'] = 'inline; filename=output.pdf' return Markup( '<a href="' + url_for(vn) + '" class="btn btn-sm btn-primary" data-toggle="tooltip" rel="tooltip"'+ 'title="Print">' + '<i class="fa fa-edit"></i>' + '</a>') def audio_play(self): vn = self.ViewName() return Markup( '<audio controls>' + '<source src="' + url_for(vn) + '" type="audio/mpeg"'> +'<i class="fa fa-volume-up"></i>' + 'Your browser does not support the audio element.' + '</audio>' ) # edit_form_extra_fields = {'field2': TextField('field2', # widget=BS3TextFieldROWidget())} id = Column(Integer, primary_key=True, autoincrement=True) gender = Column(ForeignKey(u'gender.id'), index=True) gender1 = relationship(u'Gender', primaryjoin='Prosecutor.gender == Gender.id', backref=u'prosecutors') prosecutorteam = relationship(u'Prosecutorteam', secondary='prosecutor_prosecutorteam', backref=u'prosecutors') prosecutor_prosecutorteam = Table( 'prosecutor_prosecutorteam', Model.metadata, Column('prosecutor', ForeignKey(u'prosecutor.id'), primary_key=True, nullable=False), Column('prosecutorteam', ForeignKey(u'prosecutorteam.id'), primary_key=True, nullable=False, index=True) ) class Prosecutorteam(RefTypeMixin, AuditMixin, Model): __tablename__ = 'prosecutorteam' id = Column(Integer, primary_key=True, autoincrement=True) class Securityrank(RefTypeMixin, AuditMixin, Model): __tablename__ = 'securityrank' id = Column(Integer, primary_key=True, autoincrement=True) class Subcounty(AuditMixin, Model): __tablename__ = 'subcounty' id = Column(Integer, primary_key=True, autoincrement=True) county = Column(ForeignKey(u'county.id'), nullable=False, index=True) county1 = relationship(u'County', primaryjoin='Subcounty.county == County.id', backref=u'subcounties') class Surety(PersonMixin, ContactMixin, AuditMixin, Model): __tablename__ = 'surety' def ViewName(self): return self.__class__.__name__ +'View' def photo_img(self): im = ImageManager() vn = self.ViewName() if self.photo: return Markup('<a href="' + url_for(vn+'.show', pk=str(self.id)) + '" class="thumbnail"><img src="' + im.get_url(self.photo) + '" alt="Photo" class="img-rounded img-responsive"></a>') else: return Markup('<a href="' + url_for(vn, pk=str(self.id)) + '" class="thumbnail"><img src="//:0" alt="Photo" class="img-responsive"></a>') def photo_img_thumbnail(self): im = ImageManager() vn = self.ViewName() if self.photo: return Markup('<a href="' + url_for(vn+'.show', pk=str(self.id)) + '" class="thumbnail"><img src="' + im.get_url_thumbnail(self.photo) + '" alt="Photo" class="img-rounded img-responsive"></a>') else: return Markup('<a href="' + url_for(vn, pk=str(self.id)) + '" class="thumbnail"><img src="//:0" alt="Photo" class="img-responsive"></a>') def print_button(self): vn = self.ViewName() #pdf = render_pdf(url_for(vn, pk=str(self.id))) #pdf = pdfkit.from_string(url_for(vn, pk=str(self.id))) #response = make_response(pdf) #response.headers['Content-Type'] = 'application/pdf' #response.headers['Content-Disposition'] = 'inline; filename=output.pdf' return Markup( '<a href="' + url_for(vn) + '" class="btn btn-sm btn-primary" data-toggle="tooltip" rel="tooltip"'+ 'title="Print">' + '<i class="fa fa-edit"></i>' + '</a>') def audio_play(self): vn = self.ViewName() return Markup( '<audio controls>' + '<source src="' + url_for(vn) + '" type="audio/mpeg"'> +'<i class="fa fa-volume-up"></i>' + 'Your browser does not support the audio element.' + '</audio>' ) # edit_form_extra_fields = {'field2': TextField('field2', # widget=BS3TextFieldROWidget())} id = Column(Integer, primary_key=True, autoincrement=True) gender = Column(ForeignKey(u'gender.id'), index=True) gender1 = relationship(u'Gender', primaryjoin='Surety.gender == Gender.id', backref=u'sureties') class Town(RefTypeMixin, AuditMixin, Model): __tablename__ = 'town' id = Column(Integer, primary_key=True, autoincrement=True) subcounty = Column(ForeignKey(u'subcounty.id'), nullable=False, index=True) subcounty1 = relationship(u'Subcounty', primaryjoin='Town.subcounty == Subcounty.id', backref=u'towns') class Visit(ActivityMixin, AuditMixin, Model): __tablename__ = 'visit' vistors = Column(ForeignKey(u'vistor.id'), primary_key=True, nullable=False) defendants = Column(ForeignKey(u'defendant.id'), primary_key=True, nullable=False, index=True) visitdate = Column(DateTime) visitnotes = Column(Text) visitduration = Column(INTERVAL) defendant = relationship(u'Defendant', primaryjoin='Visit.defendants == Defendant.id', backref=u'visits') vistor = relationship(u'Vistor', primaryjoin='Visit.vistors == Vistor.id', backref=u'visits') class Vistor(AuditMixin, Model): __tablename__ = 'vistor' id = Column(Integer, primary_key=True, autoincrement=True) gender = Column(ForeignKey(u'gender.id'), nullable=False, index=True) gender1 = relationship(u'Gender', primaryjoin='Vistor.gender == Gender.id', backref=u'vistors') class Warder(PersonMixin, ContactMixin, AuditMixin, Model): __tablename__ = 'warder' def ViewName(self): return self.__class__.__name__ +'View' def photo_img(self): im = ImageManager() vn = self.ViewName() if self.photo: return Markup('<a href="' + url_for(vn+'.show', pk=str(self.id)) + '" class="thumbnail"><img src="' + im.get_url(self.photo) + '" alt="Photo" class="img-rounded img-responsive"></a>') else: return Markup('<a href="' + url_for(vn, pk=str(self.id)) + '" class="thumbnail"><img src="//:0" alt="Photo" class="img-responsive"></a>') def photo_img_thumbnail(self): im = ImageManager() vn = self.ViewName() if self.photo: return Markup('<a href="' + url_for(vn+'.show', pk=str(self.id)) + '" class="thumbnail"><img src="' + im.get_url_thumbnail(self.photo) + '" alt="Photo" class="img-rounded img-responsive"></a>') else: return Markup('<a href="' + url_for(vn, pk=str(self.id)) + '" class="thumbnail"><img src="//:0" alt="Photo" class="img-responsive"></a>') def print_button(self): vn = self.ViewName() #pdf = render_pdf(url_for(vn, pk=str(self.id))) #pdf = pdfkit.from_string(url_for(vn, pk=str(self.id))) #response = make_response(pdf) #response.headers['Content-Type'] = 'application/pdf' #response.headers['Content-Disposition'] = 'inline; filename=output.pdf' return Markup( '<a href="' + url_for(vn) + '" class="btn btn-sm btn-primary" data-toggle="tooltip" rel="tooltip"'+ 'title="Print">' + '<i class="fa fa-edit"></i>' + '</a>') def audio_play(self): vn = self.ViewName() return Markup( '<audio controls>' + '<source src="' + url_for(vn) + '" type="audio/mpeg"'> +'<i class="fa fa-volume-up"></i>' + 'Your browser does not support the audio element.' + '</audio>' ) # edit_form_extra_fields = {'field2': TextField('field2', # widget=BS3TextFieldROWidget())} id = Column(Integer, primary_key=True, autoincrement=True) prison = Column(ForeignKey(u'prison.id'), nullable=False, index=True) warder_rank = Column(ForeignKey(u'warderrank.id'), nullable=False, index=True) prison1 = relationship(u'Prison', primaryjoin='Warder.prison == Prison.id', backref=u'warders') warderrank = relationship(u'Warderrank', primaryjoin='Warder.warder_rank == Warderrank.id', backref=u'warders') class Warderrank(RefTypeMixin, AuditMixin, Model): __tablename__ = 'warderrank' id = Column(Integer, primary_key=True, autoincrement=True) class Witnes(PersonMixin, ContactMixin, AuditMixin, Model): __tablename__ = 'witness' def ViewName(self): return self.__class__.__name__ +'View' def photo_img(self): im = ImageManager() vn = self.ViewName() if self.photo: return Markup('<a href="' + url_for(vn+'.show', pk=str(self.id)) + '" class="thumbnail"><img src="' + im.get_url(self.photo) + '" alt="Photo" class="img-rounded img-responsive"></a>') else: return Markup('<a href="' + url_for(vn, pk=str(self.id)) + '" class="thumbnail"><img src="//:0" alt="Photo" class="img-responsive"></a>') def photo_img_thumbnail(self): im = ImageManager() vn = self.ViewName() if self.photo: return Markup('<a href="' + url_for(vn+'.show', pk=str(self.id)) + '" class="thumbnail"><img src="' + im.get_url_thumbnail(self.photo) + '" alt="Photo" class="img-rounded img-responsive"></a>') else: return Markup('<a href="' + url_for(vn, pk=str(self.id)) + '" class="thumbnail"><img src="//:0" alt="Photo" class="img-responsive"></a>') def print_button(self): vn = self.ViewName() #pdf = render_pdf(url_for(vn, pk=str(self.id))) #pdf = pdfkit.from_string(url_for(vn, pk=str(self.id))) #response = make_response(pdf) #response.headers['Content-Type'] = 'application/pdf' #response.headers['Content-Disposition'] = 'inline; filename=output.pdf' return Markup( '<a href="' + url_for(vn) + '" class="btn btn-sm btn-primary" data-toggle="tooltip" rel="tooltip"'+ 'title="Print">' + '<i class="fa fa-edit"></i>' + '</a>') def audio_play(self): vn = self.ViewName() return Markup( '<audio controls>' + '<source src="' + url_for(vn) + '" type="audio/mpeg"'> +'<i class="fa fa-volume-up"></i>' + 'Your browser does not support the audio element.' + '</audio>' ) # edit_form_extra_fields = {'field2': TextField('field2', # widget=BS3TextFieldROWidget())} id = Column(Integer, primary_key=True, autoincrement=True) fordefense = Column(Boolean) gender = Column(ForeignKey(u'gender.id'), nullable=False, index=True) gender1 = relationship(u'Gender', primaryjoin='Witnes.gender == Gender.id', backref=u'witness')
6a3989acf13637b1fe0ed5d2c37313685f921920
3043ef47d3863bb59fe91c7f76c789dfd375620a
/mysql-from-python13.py
8a77946f304e4bd275570d1b14f36804262c6753
[]
no_license
mlr314159/mysql1
73997fbd0759a1032570b31537baefde59822921
382659edc40ccfd04a7a2a42fc26beaa68364d21
refs/heads/master
2021-06-12T16:43:15.794554
2020-04-13T12:42:59
2020-04-13T12:42:59
254,359,715
0
0
null
null
null
null
UTF-8
Python
false
false
615
py
import os import pymysql # get username # (modify this variable if runn ing on a different environment) username = os.getenv('C9_USER') connection = pymysql.connect(host='localhost', user=username, password='', db='Chinook') try: # Run a query with connection.cursor() as cursor: row = cursor.executemany('DELETE FROM Friends WHERE name= %s;', ['bob','Jim']) connection.commit() finally: # Close the connection. regardless of whether the above was successfull connection.close()
bee4204a5db0269f46a9888c9764dad47764fa6f
f09a017e6af77eed1e604db1c4396e762162f3f5
/democoder/apps/core/views.py
0f072fdbc30191031d69f28890bfbd51443113c5
[]
no_license
yrik/democoder
de710fb524053f4160d82ca1d37ccbd2e813e708
43a4104498b2ab3ac3ef681c802b01d624663d6f
refs/heads/master
2018-12-29T17:06:59.532604
2015-03-14T16:37:57
2015-03-14T16:37:57
38,677,604
0
0
null
null
null
null
UTF-8
Python
false
false
2,390
py
from django.shortcuts import redirect, render from django.utils.translation import ugettext as _ from django.http import Http404 from django.core.urlresolvers import reverse from django.contrib import messages from django.views.generic import ( DetailView, CreateView, UpdateView, DeleteView, ListView ) from pure_pagination.mixins import PaginationMixin from braces.views import OrderableListMixin from enhanced_cbv.views import ListFilteredView from allauth.account.utils import complete_signup from .decorators import ForbiddenUser from .forms import LoginForm from .forms import SignUpUserForm from core.models import ( Article, User, ) from core.forms import ( ArticleCreateForm, ) from core.filters import ( ArticleListViewFilter, UserListViewFilter, ) @ForbiddenUser(forbidden_usertypes=[u'AnonymousUser']) class ArticleCreateView(CreateView): """Article create view""" model = Article form_class = ArticleCreateForm template_name = "article-create.html" def get_success_url(self): messages.success(self.request, _("Article succesfully created")) return reverse("article-list", args=[]) class ArticleListView(OrderableListMixin, ListFilteredView, PaginationMixin): """Article list view""" model = Article template_name = "article-list.html" paginate_by = 10 orderable_columns = ["description", "title", ] orderable_columns_default = "id" filter_set = ArticleListViewFilter def auth(request): login_form = LoginForm() signup_form_user = SignUpUserForm(prefix="user", request=request) redirect_url = '/' redirect_url = request.GET.get('next', redirect_url) if request.method == 'POST' and 'login_form' in request.POST: login_form = LoginForm(request.POST) if login_form.is_valid(): return login_form.login(request, redirect_url=redirect_url) if request.method == 'POST' and 'signup_user_form' in request.POST: signup_form_user = SignUpUserForm( request.POST, prefix="user", request=request) if signup_form_user.is_valid(): user = signup_form_user.save(request) return complete_signup(request, user, False, redirect_url) return render(request, "auth.html", { "login_form": login_form, "signup_form_user": signup_form_user, })
0803fc25829844f46b023753be5543d2e6a87e9c
d25cbb984047591a539c63c2de18f9820f724ee2
/P003_Bucle_008For Contador pares impares.py
fac201ab65f8dd3044fad3abf42164563904feab
[]
no_license
jesuscm18/1-Evaluacion
8149c00e99f8e4878d6c082799d79a7c5d5d62ca
01c5106c643074ef4e36732295d4ebfd8c8a2c6c
refs/heads/master
2020-04-08T05:55:35.314176
2018-12-19T15:57:02
2018-12-19T15:57:02
148,601,571
0
0
null
null
null
null
UTF-8
Python
false
false
433
py
def contador_par_impar(): n=input("Hasta que numero deseas contar? ") npares=0 nimpares=0 for n in range(1,n+1): if(n%2==0): print str(n)," es par" npares=npares+1 else: print str(n)," es impar" nimpares=nimpares+1 print "He contado ",npares, "numeros pares." print "He contado ",nimpares, " numeros impares." contador_par_impar()
f1f693729c6bf591f84820488f8cb11648fbac54
bb943b09e60f219b27059171aaec9e0bb228b462
/test.py
9dcd730761acc7f4879e41a6eb0c06085ead955f
[]
no_license
Kienyew/Russian-Chinese-Vocabulary
0fb7869da681a530f6b3d6275d460346a10a1a8d
39a93e53d55937dbdeb53cd100561f495130b4a4
refs/heads/master
2022-11-30T10:25:59.458845
2020-07-16T07:44:10
2020-07-16T07:44:19
279,328,499
0
0
null
null
null
null
UTF-8
Python
false
false
3,177
py
#!/usr/bin/env python3 import unittest from extract import * class Test(unittest.TestCase): def test_separate_ru_zh_chap(self): inputs = [ 'а而(1)', 'а而(1)', 'автомобиль汽车(18)', 'алло喂!(打电话时招呼用语)(7)', 'болеть[未]疼,痛(13)', 'артист[阳],артистка[阴]演员(13)', 'аудитория(大学)教室(6)', 'бегать[未,不定向]跑(18)', 'наступать//наступить(某种时间)来临,到来(17)', 'очередь (ж.) 次序;队列 (5)', 'покойный (сущ.) 亡者,死者 (12)', 'поехать[完](乘车、船等)前往,出发(15)', 'пятёрка数字5;(学校成绩)五分(12)' ] expects = [ ('а', '而', '(1)'), ('а', '而', '(1)'), ('автомобиль', '汽车', '(18)'), ('алло', '喂!(打电话时招呼用语)', '(7)'), ('болеть[未]', '疼,痛', '(13)'), ('артист[阳],артистка[阴]', '演员', '(13)'), ('аудитория', '(大学)教室', '(6)'), ('бегать[未,不定向]', '跑', '(18)'), ('наступать//наступить', '(某种时间)来临,到来', '(17)'), ('очередь (ж.)', '次序;队列', '(5)'), ('покойный (сущ.)', '亡者,死者', '(12)'), ('поехать[完]', '(乘车、船等)前往,出发', '(15)'), ('пятёрка', '数字5;(学校成绩)五分', '(12)'), ] for input, expect in zip(inputs, expects): self.assertEqual(separate_ru_zh_chap(input), expect) def test_parse_ru_entry(self): # RuEntry(word, annotations, gender, accent_index) inputs = [ 'а', 'автомобиль', 'алло', 'болеть[未]', 'артист[阳]', 'бегать[未,不定向]', 'очередь (ж.)', 'покойный (сущ.)', 'эмоциона´льно (нареч.)', ] expects = [ RuEntry('а', [], None, None), RuEntry('автомобиль', [], None, None), RuEntry('алло', [], None, None), RuEntry('болеть', ['[未]'], None, None), RuEntry('артист', ['[阳]'], None, None), RuEntry('бегать', ['[未,不定向]'], None, None), RuEntry('очередь', [], FEMALE, None), RuEntry('покойный', ['(сущ.)'], None, None), RuEntry('эмоционально', ['(нареч.)'], None, 7), ] for input, expect in zip(inputs, expects): self.assertEqual(parse_ru_entry(input), expect) if __name__ == '__main__': unittest.main()
4078a1a4d378355f5f8216e7f2bfad9dd57aa9f5
10851762fcfedbe79a9f4f4374fb68085c05e06e
/homepage/admin.py
a6f5d2bed93aabd26fa7c5c61faddddf4b3afbcf
[]
no_license
epetrov1/MG-Ausbau-GmbH
b676c02310e7fe04b25d4cf18f3d8b9e9c21a274
083d224fce7af7353badeeadbf50c9f3bb2809a8
refs/heads/main
2023-05-13T14:28:12.466219
2021-06-04T15:13:12
2021-06-04T15:13:12
371,602,915
0
0
null
null
null
null
UTF-8
Python
false
false
400
py
from django.contrib import admin #admin.site.register(HomePage) from django_summernote.admin import SummernoteModelAdmin from .models import HomePage class HomeAboutAdmin(SummernoteModelAdmin): exclude = ('preporyka1', 'preporyka2', 'preporyka3',) list_display = ('header',) summernote_fields = ('about_us', 'about_us_de', 'about_us_en') admin.site.register(HomePage, HomeAboutAdmin)
b9527ab17bba32b89da47f525605d586b5a3b1fb
65a1c12e31a776cd4d098aac8e2f40a5393cd8b8
/Code/4.process&predict_data/code_v7.0.py
7b11fb2ddb0403a61d60a8579fad5ab7d57a4c52
[]
no_license
YoOjii/Tianchi_DiabetesPredict
78d7e7fa51ba91711068b49784e7129a23fae48d
933f95707458dcb154565e2d346753987b13d5ab
refs/heads/master
2022-01-09T15:43:59.522786
2019-05-07T04:50:36
2019-05-07T04:50:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,647
py
# coding=utf-8 ''' Author:chenhao Date: Jan 26 ,2017 Description: Use the train_Drop_Delete_Log_Poly_Ratio.csv in LGB model ''' import time import datetime import numpy as np import pandas as pd import lightgbm as lgb from dateutil.parser import parse from sklearn.cross_validation import KFold from sklearn.metrics import mean_squared_error from scipy import stats data_path = 'data/' train = pd.read_csv(data_path + 'train_Drop_Delete_Log_Poly_Ratio_for_B.csv', encoding='gb2312') test = pd.read_csv(data_path + 'test_Drop_Delete_Log_Poly_Ratio_for_B.csv', encoding='gb2312') predictors = [f for f in train.columns if f not in ['血糖']] #print(train[predictors]) def evalerror(pred, df): label = df.get_label().values.copy() score = mean_squared_error(label, pred) * 0.5 return ('0.5mse', score, False) print('开始训练...') #原版调参数据 params = { 'learning_rate': 0.01, 'boosting_type': 'gbdt', 'objective': 'regression', 'metric': 'mse', 'sub_feature': 0.7, 'num_leaves': 60, 'colsample_bytree': 0.7, 'feature_fraction': 0.7, 'min_data': 100, 'min_hessian': 1, 'verbose': -1, } print('开始CV 5折训练...') t0 = time.time() train_preds = np.zeros(train.shape[0]) #产生相应的id数为行数5列全零数据 test_preds = np.zeros((test.shape[0], 5)) kf = KFold(len(train), n_folds=5, shuffle=True, random_state=520) for i, (train_index, test_index) in enumerate(kf): print('第{}次训练...'.format(i)) train_feat1 = train.iloc[train_index] train_feat2 = train.iloc[test_index] lgb_train1 = lgb.Dataset(train_feat1[predictors], train_feat1['血糖']) lgb_train2 = lgb.Dataset(train_feat2[predictors], train_feat2['血糖']) gbm = lgb.train(params, lgb_train1, num_boost_round=3000, valid_sets=lgb_train2, verbose_eval=100, feval=evalerror, early_stopping_rounds=100) feat_imp = pd.Series(gbm.feature_importance(), index=predictors).sort_values(ascending=False) train_preds[test_index] += gbm.predict(train_feat2[predictors]) test_preds[:, i] = gbm.predict(test[predictors]) print('线下得分: {}'.format(mean_squared_error(train['血糖'], train_preds) * 0.5)) print('CV训练用时{}秒'.format(time.time() - t0)) submission = pd.DataFrame({'pred': test_preds.mean(axis=1)}) submission.to_csv(r'sub{}.csv'.format(datetime.datetime.now().strftime('%Y%m%d_%H%M%S')), header=None,index=False, float_format='%.3f')
50f086fd6e0a40d5eab3d18fd4d577b2909cf7a7
156c52604f36479beae565137f02493cf794912c
/blast_filter_100.py
c58cb44c79c9f875fbb4b42c9ecf12867767e920
[]
no_license
hildeingvildhummel/NIOZ-ring-formation
ac936855e95abdc5c6f11325c4316853df324a47
c542eb82d54ff7fd31426e884e3ce27909c132d8
refs/heads/master
2022-11-22T07:20:26.930647
2020-07-28T14:53:53
2020-07-28T14:53:53
283,243,330
0
0
null
null
null
null
UTF-8
Python
false
false
3,179
py
import argparse ap = argparse.ArgumentParser(description = 'Remove the genes if all the samples have a 100% identity to the reference database.') ap.add_argument('-b', '--blast', nargs='+', required = True, help = 'The file(s) containing the blast output') ap.add_argument('-index', '--index', required = True, help = 'The index of the column containing the pIDENT, starting the count with zero. So, the first column is 0, the second column is 1, etc.') ap.add_argument('-o', '--output', required = True, help = 'The output name of the list containing the IDs to keep. The output is saved as list file') args, leftovers = ap.parse_known_args() #Create 2 empty dictionaries dict = {} dict_list = {} #Iterate over the blast output files for f in args.blast: #Print the name of the blast output file print(f) #Create an empty list key_list = [] #Open the blast output file in read modus blast = open(f, 'r') #Read the Blast output file per line, creating a list blast = blast.read().splitlines() #Select the column within the blast file containing the pIDENT blast_ident = [s.split('\t')[int(args.index)] for s in blast] #Select the gene ID of PROKKA of the reference database ID = [s.split('\t')[1] for s in blast] #Select the gene ID of PROKKA of the query ID_u = [s.split('\t')[0] for s in blast] #Iterate over both gene names (reference and query) and the pIDENT for i, j, k in zip(ID, blast_ident, ID_u): #Check if the reference ID is already in the empty list if i in key_list: #If so, append the ID of the query to the dictionary with the given reference ID as reference dict_list[i].append(k) continue #If the refrence ID is already noted within the second dictionary.. if i in dict: #Add the given pIDENT to the already existing value of the key given the reference ID dict[i] = float(dict[i]) + float(j) #Append the query ID to the dictionary given the reference ID dict_list[i].append(k) #Append the reference ID to the list key_list.append(i) else: #If the reference ID is not saved in either the list or the first dictionary.. # Add the pIDENT to the dictionary with the reference ID as key dict[i] = float(j) # Add the query ID as a list to the dictionary with the reference ID as key dict_list[i] = [k] #Save the reference ID to the list key_list.append(i) #Create a new dictionary, only containing the values and keys if the value is unequal to the number of samples * 100 d = { k : v for k,v in dict.items() if v != len(args.blast) * 100} #Save the query ID values if their corresponding key is present within the filtered dictionary d ID_list = [dict_list[x] for x in list(d.keys())] #Flatten the list flatten_list = [val for sublist in ID_list for val in sublist] #Save the output with open(args.output + '.list', 'w') as f: for item in list(set(flatten_list)): f.write("%s\n" % item)
447e8064c4c28d908ba8b874cbb244f4b82aa242
9fa567346bc31d985f31ba8387d7135a1c8321ba
/Where's Wally.py
21ab63f2a2c6f41fb48facec57d1bfce4293a897
[]
no_license
MrPogson/Treasure
6389c55c82bb2346f906ba441dccc93522077228
d66b8f37a7fb3a99c8aa22feb36868cf067054ef
refs/heads/master
2021-01-01T04:12:29.334512
2016-04-27T07:04:54
2016-04-27T07:04:54
57,034,764
0
0
null
null
null
null
UTF-8
Python
false
false
4,616
py
#import libraries import random import time #Define global variables global Pos global grid global grid2 global score #set score to 0 score = 0 #set starting position to 30 Pos=30 #Main function def main(): global grid #make the variable 'grid' available global grid2#make the variable 'grid2' available play =input("\nDo you want to 'Play' or 'Quit'? ").upper() #Ask if they want to play if play == "PLAY": #if they choose to play grid =["W","W","W","W","O","O","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X"]#set up the grid random.shuffle(grid)#randomise the positions grid2=["X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X","X",]#set up the blank grid grid2.insert(Pos,"P")#put a P in the bottom left corner movement()#go to function 'movement' elif play == "QUIT":#if they choose quit game_over()#go to function else:#of they put anything else in print("Error - Please choose 'Play' or 'Quit'")#tell them to try again main()#go to function def print_grid_2():#grid with game elements, hidden by default global grid print("\n") matrix=[grid [i:i+6]for i in range (0,len(grid),6)] for a,b,c,d,e,f in matrix: print (a,b,c,d,e,f) def print_grid():# - grid of X's global grid2 print("\n") matrix2=[grid2 [j:j+6]for j in range (0,len(grid2),6)] for a,b,c,d,e,f in matrix2: print (a,b,c,d,e,f) def movement(): global grid global grid2 global Pos print_grid() #print_grid_2() #uncomment to show position of game elements move=input("\nDo you want to go 'Up', 'Down', 'Left' or 'Right'?\n") move=move.upper() if move == ("UP"): qty = int(input("\nHow far up?\n")) old_p=Pos Pos=Pos+((qty)*-6) if qty == 0: print("\nPlease choose a number between 1-6!") Pos=old_p movement() if Pos <0: print ("\nThat's too far up! You've gone off the board!\nTry again!") Pos=old_p movement() print("\n#####################\nnew Position =",Pos) check_score() grid2[Pos] = "P" grid2[old_p]="-" elif move == ("DOWN"): qty = int(input("\nHow far down?\n")) old_p=Pos Pos=Pos+((qty)*6) if qty == 0: print("\nPlease choose a number between 1-6!") Pos=old_p movement() if Pos >35: print ("\nThat's too far up! You've gone off the board!\nTry again!") Pos=old_p movement() print("\nnew Position =",Pos) check_score() grid2[Pos] = "P" grid2[old_p]="-" elif move == ("RIGHT"): qty = int(input("\nHow far right?\n")) old_p=Pos Pos=Pos+(qty) if qty == 0: print("\nPlease choose a number between 1-6!") Pos=old_p movement() print("\n#########################\nnew Position =",Pos) check_score() grid2[Pos] = "P" grid2[old_p]="-" elif move == ("LEFT"): qty = int(input("\nHow far left?\n")) old_p=Pos Pos=Pos-(qty) if qty == 0: print("\nPlease choose a number between 1-6!") Pos=old_p movement() print("\n########################\nnew Position =",Pos) check_score() grid2[Pos] = "P" grid2[old_p]="-" else: print ("choose 'Up', 'Down', 'Left' or 'Right'") movement() def check_score(): global Pos global score global grid if (grid[Pos])not in ["W","O"]: print("\nMiss!\n") print ("Score = ",score,"\n####################") elif (grid[Pos])=="W": print("\nYou found A Wally!! 100 points!\n") score=score+100 print ("Score = ",score,"\n################################") grid[Pos]="X" if (grid[Pos])=="O": print("\nYou hit Oddlaw! You lose!\n") score=0 print ("Score = ",score,"\n################################") def game_over(): print ("##############\nGame Over!\nThank you for playing!\n#############\n") time.sleep(5) exit() print ("Welcome!") main()
dd570b50aacbe9917550509619ad2e260c97469c
6e4bc4663adf0ed369cd5ca068a10d1ef35eef05
/mysql-test2.py
2253ee0278076ddc72ab00de16e0378faef5fce2
[]
no_license
makgab/Python-examples
b8227612108d9484a3868500adfdaacae74f4436
5fb1a5d2b953c6b58bb9e02f94bbe76508a63226
refs/heads/master
2020-04-13T05:04:54.979651
2018-12-24T10:56:17
2018-12-24T10:56:17
162,981,182
0
0
null
null
null
null
UTF-8
Python
false
false
353
py
# mysql demo import mysql.connector # conncetion: mydb = mysql.connector.connect( host="localhost", user="root", passwd="", database="mysql" ) print(mydb) print ("SELECT SQL...") # SELECT SQL mycursor = mydb.cursor() mycursor.execute("SELECT * FROM pythonDB.customers") myresult = mycursor.fetchall() for x in myresult: print(x) # end
d49fd565d9ed77cf4480dddda0ed1c4da82fceff
46be20cc55a4e48c0281f6340d7e8d381c1f12cf
/day3/part1_d3_v1.py
260e2ceb564c247c8eb1bad40468d697ed295213
[ "MIT" ]
permissive
MarinaPin/adventofcode-2018
5c32ff7a7b224d76b2982044b6e7b5cf80a9e85e
9fd6242258b1546c4858e4da7b6d04453bffe25d
refs/heads/master
2020-04-09T07:05:28.776280
2018-12-14T08:47:08
2018-12-14T08:47:08
160,140,158
0
0
null
null
null
null
UTF-8
Python
false
false
852
py
import numpy import re N = 1000 def extract_info(line): j = re.findall("\d+", line) j = map(int, j) x,y,w,h =j[0], j[1], j[2], j[3], j[4] return x,y,w,h def fill_matrix(file_path): matrix = numpy.zeros((N,N)) with open(file_path) as f: for line in f: x,y,w,h = extract_info(line) for j in range(y,y+h): for i in range(x, x+w): if matrix[j][i] == 1 or matrix[j][i] ==8: matrix[j][i] = 8 else: matrix[j][i] = 1 return matrix def count_Xs(matrix): n = 0 for j in range(N): for i in range(N): if matrix[i][j] == 8: n += 1 return n matrix = fill_matrix('input.txt') num_Xs = count_Xs(matrix) print num_Xs
1d71cdd16103283b54ddbfae586dbd58e635dea8
7c28640e152dad3843423d04c96a3a37015bd9ba
/Examples/Game Tutorial/Tutorial Part 6.py
0b571e28753411ea66a52d103d7f671bc5c1d42d
[]
no_license
DocVaughan/Pythonista
251bbfd69203cf91f3d6a6bf20d478efd74a61a0
7d482c7db2c7b4daae10289b765f09a4f348a50c
refs/heads/master
2021-01-20T20:48:32.603993
2017-12-31T10:33:48
2017-12-31T10:33:48
61,178,643
7
0
null
null
null
null
UTF-8
Python
false
false
6,233
py
# coding: utf-8 ''' Part 6 -- Meteors Incoming! ☄️ Collecting coins is fun, but did you notice the distinct lack of... challenge? Let's change that now, and add some meteors to the mix. The mechanism is essentially the same as with the coins, but when the alien collides with a meteor, the game is over. To make the game a bit harder, the speed at which coins and meteors fall to the ground now increases slightly over time. ''' from scene import * import sound import random A = Action def cmp(a, b): return ((a > b) - (a < b)) standing_texture = Texture('plf:AlienGreen_front') walk_textures = [Texture('plf:AlienGreen_walk1'), Texture('plf:AlienGreen_walk2')] # ---[1] # Because the alien can be hit by a meteor, we need one additional texture for the unhappy alien: hit_texture = Texture('plf:AlienGreen_hit') class Coin (SpriteNode): def __init__(self, **kwargs): SpriteNode.__init__(self, 'plf:Item_CoinGold', **kwargs) # ---[2] # As with the coins, we use a custom subclass of SpriteNode to represent the meteors. For some variety, the texture of the meteor is chosen randomly. class Meteor (SpriteNode): def __init__(self, **kwargs): img = random.choice(['spc:MeteorBrownBig1', 'spc:MeteorBrownBig2']) SpriteNode.__init__(self, img, **kwargs) class Game (Scene): def setup(self): self.background_color = '#004f82' self.ground = Node(parent=self) x = 0 while x <= self.size.w + 64: tile = SpriteNode('plf:Ground_PlanetHalf_mid', position=(x, 0)) self.ground.add_child(tile) x += 64 self.player = SpriteNode(standing_texture) self.player.anchor_point = (0.5, 0) self.add_child(self.player) score_font = ('Futura', 40) self.score_label = LabelNode('0', score_font, parent=self) self.score_label.position = (self.size.w/2, self.size.h - 70) self.score_label.z_position = 1 self.items = [] # ---[3] # Because the game can end now, we need a method to restart it. # Some of the initialization logic that was previously in `setup()` is now in `new_game()`, so it can be repeated without having to close the game first. self.new_game() def new_game(self): # Reset everything to its initial state... for item in self.items: item.remove_from_parent() self.items = [] self.score = 0 self.score_label.text = '0' self.walk_step = -1 self.player.position = (self.size.w/2, 32) self.player.texture = standing_texture self.speed = 1.0 # ---[4] # The game_over attribute is set to True when the alien gets hit by a meteor. We use this to stop player movement and collision checking (the update method simply does nothing when game_over is True). self.game_over = False def update(self): if self.game_over: return self.update_player() self.check_item_collisions() if random.random() < 0.05 * self.speed: self.spawn_item() def update_player(self): g = gravity() if abs(g.x) > 0.05: self.player.x_scale = cmp(g.x, 0) x = self.player.position.x max_speed = 40 x = max(0, min(self.size.w, x + g.x * max_speed)) self.player.position = x, 32 step = int(self.player.position.x / 40) % 2 if step != self.walk_step: self.player.texture = walk_textures[step] sound.play_effect('rpg:Footstep00', 0.05, 1.0 + 0.5 * step) self.walk_step = step else: self.player.texture = standing_texture self.walk_step = -1 def check_item_collisions(self): # ---[5] # The hit testing is essentially the same as before, but now distinguishes between coins and meteors (simply by checking the class of the item). # When a meteor hits, the game is over (see the `player_hit()` method below). player_hitbox = Rect(self.player.position.x - 20, 32, 40, 65) for item in list(self.items): if item.frame.intersects(player_hitbox): if isinstance(item, Coin): self.collect_item(item) elif isinstance(item, Meteor): self.player_hit() elif not item.parent: self.items.remove(item) def player_hit(self): # ---[6] # This is. alled from `check_item_collisions()` when the alien collides with a meteor. The alien simply drops off the screen, and after 2 seconds, a new game is started. self.game_over = True sound.play_effect('arcade:Explosion_1') self.player.texture = hit_texture self.player.run_action(A.move_by(0, -150)) # Note: The duration of the `wait` action is multiplied by the current game speed, so that it always takes exactly 2 seconds, regardless of how fast the rest of the game is running. self.run_action(A.sequence(A.wait(2*self.speed), A.call(self.new_game))) def spawn_item(self): if random.random() < 0.3: # ---[7] # Whenever a new item is created, there's now a 30% chance that it is a meteor instead of a coin. # Their behavior is very similar to that of the coins, but instead of moving straight down, they may come in at an angle. To accomplish this, the x coordinate of the final position is simply chosen randomly. meteor = Meteor(parent=self) meteor.position = (random.uniform(20, self.size.w-20), self.size.h + 30) d = random.uniform(2.0, 4.0) actions = [A.move_to(random.uniform(0, self.size.w), -100, d), A.remove()] meteor.run_action(A.sequence(actions)) self.items.append(meteor) else: coin = Coin(parent=self) coin.position = (random.uniform(20, self.size.w-20), self.size.h + 30) d = random.uniform(2.0, 4.0) actions = [A.move_by(0, -(self.size.h + 60), d), A.remove()] coin.run_action(A.sequence(actions)) self.items.append(coin) # ---[8] # To make things a bit more interesting, the entire game gets slightly faster whenever a new item is spawned. The `speed` attribute is essentially a multiplier for the duration of all actions in the scene. Note that this is actually an attribute of `Node`, so you could apply different speeds for different groups of nodes. Since all items are added directly to the scene in this example, we don't make use of that here though. self.speed = min(3, self.speed + 0.005) def collect_item(self, item, value=10): sound.play_effect('digital:PowerUp7') item.remove_from_parent() self.items.remove(item) self.score += value self.score_label.text = str(self.score) if __name__ == '__main__': run(Game(), PORTRAIT, show_fps=True)
12902024fb5d9e8618c638334d18e08b1035a528
180d0b6eb0fddfdac35b503a48119d1aaab37bcb
/usst_info/search/search_indexes.py
2c3c8c32ac4295eec1427a6f7769ceabfdd6f35f
[]
no_license
liupengmolly/jelly
7f2bd4c755b6bc007a653ec53ea8354a2394f52d
227607169a3a2f06fac7006a4394f41dfa238022
refs/heads/master
2021-01-18T16:49:06.836643
2017-11-21T14:30:07
2017-11-21T14:30:07
100,468,094
0
1
null
2017-09-01T06:04:16
2017-08-16T08:44:25
Python
UTF-8
Python
false
false
585
py
import datetime from haystack import indexes from search.models import Jwcinfo class JwcinfoIndex(indexes.SearchIndex, indexes.Indexable): text = indexes.CharField(document=True, use_template=True) title=indexes.CharField(model_attr='title',boost=1.125) url = indexes.CharField(model_attr='url') site=indexes.CharField(model_attr='site',faceted=True) download=indexes.IntegerField(model_attr='download') pubtime=indexes.DateField(model_attr='pubtime') glances=indexes.IntegerField(model_attr='glances') def get_model(self): return Jwcinfo
0864a55af4f109e92a6b1185d04837dc723f87a7
e5d130e183b5dea1b7aad23a047c703fa0d2b3bf
/lightbus/transports/__init__.py
d0a7d70c722ce0c3f6df21091b256155c18899f5
[ "Apache-2.0" ]
permissive
adamcharnock/lightbus
4a86428b8203bfe98f77a32375ac961ef398ce16
cf892779a9a9a8f69c789ffa83c24acfb7f9a336
refs/heads/master
2023-08-26T04:19:39.395735
2023-08-23T11:07:44
2023-08-23T11:07:44
94,617,214
193
22
Apache-2.0
2023-08-10T21:21:51
2017-06-17T10:39:23
Python
UTF-8
Python
false
false
534
py
from lightbus.transports.base import ( RpcTransport, ResultTransport, EventTransport, SchemaTransport, Transport, ) from lightbus.transports.debug import ( DebugRpcTransport, DebugResultTransport, DebugEventTransport, DebugSchemaTransport, ) from lightbus.transports.redis.rpc import RedisRpcTransport from lightbus.transports.redis.result import RedisResultTransport from lightbus.transports.redis.event import RedisEventTransport from lightbus.transports.redis.schema import RedisSchemaTransport
6cd57a50d097a963f425239544f4443e7fd08746
1733d497d4056ea1f5f3a5d78f45615d7c07dabd
/Week 1/week1.py
a8bf2d7f2e72e29f8f1d12898cb7306cbda480f5
[]
no_license
VMCSC/Junior-20-21
d0f3e0caedcf44c6a485d01caaa35f2a83980db3
428937d0984f21e968a6fbd5c8aa8820e5bcc72e
refs/heads/master
2023-02-15T05:24:30.556876
2021-01-14T02:36:27
2021-01-14T02:36:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,740
py
print("Hello World!") # Outputs "Hello World!" # Variables - stores information # Stored with name, but with restrictions (any letters, numbers, and underscore) # Variables cannot start with numbers, but shouldn't start with underscore # Example of invalid variable: 1234abc # Variables are also case sensitive: abc is different ABC # Example of assigning variables stringVariable = "string variable" # Use double or single quote numberVariable = 123 # No set largest number floatVariable = 3.1415 # Decimals # Comparison - Comparing variables, returns boolean (True or False) 1 == 1 # Equality - compares if 2 things are equal 1 != 1 # Not equality - compares if 2 things aren't equal 1 <= 1 # Less than or equal to 1 >= 1 # Greater than or equal to 1 < 2 # Less than 1 > 2 # Greater than 1 >= 0.3 # Can also mix types # == only checks if properties are equal, not the same 1 is 1 # Checks if both are the same # Strings can be used in comparison # Each character is connected to a number, which allows comparison "Hello" > "Apple" # True, as Hello is further down than Apple in a dictionary "Apple" == "apple" # False, letters case sensitive, and each number share different values ord("A") # Gets the number of letter A, which is 65 ord("a") # Gets the letter of letter a, which is 97 # Operations test = True # Variable that stores True test = not test # Inverts the variable, which is now false # String operations # Use square brackets [] test = "massey" test[1] # Gets character at 1st position, starts counting at 0 rather than 1, value is 'a' test[0:2] # Gets characters from 0th position up to, but not including the 2nd position, value is 'ma' test[3:] # Gets from 3rd position to the end, value is 'sey' test[:3] # Gets from the beginning, up to, but not including the 3rd position, value is 'mas' test[::2] # Starts beginning to end, but only grabs every other letter, value is 'mse' # Syntax: test[start:end:step] # Can also go backwards in string operation test[-1] # Gets character at the end, value is 'y' test[-1:-5:-1] # Gets from the end, up to, but not including the 5th character from the end, with a step going backwards, value is 'yess' test[::-1] # Goes from beginning to end, but goes backwards, value is 'yessam' # Input - gets input from the user test = input() # Gets input from user, as a string print(test * 5) # Gets the input, but 5 times, can multiply strings, but it appears 5 times # Can cast variables, which changes it, e.g. int() to int, float() to float, or bool() to boolean print(int(test) * 5) # Converts test into an integer, and multiplies it by 5 # Input gets the whole line, rather than seperating by space line1 = input() # Gets input in line 1 line2 = input() # Gets input in line 2 (you cannot go backwards to get data) # You can also add a prompt in input (DO NOT USE DURING CONTESTS) input("Enter a prompt in here") # Loops times = int(input("How many times would you like to multiply?")) number = 10 # Example of a for loop for i in range(times): # i is your counter, that goes through range(), which goes through a range of values number = number * 10 # Reassigns number to 10 times number number *= 10 # Same as doing number = number * 10 number = number + 10 # Reassigns number to 10 + number number += 10 # Same as doing number = number + 10 range(0, times, 2) # Similar to string splicing, where you have start, stop, step # Example of a while loop, not all information is given, rather just a condition number = 0 while number != 10: # Will constantly run, while the number isn't 10 print("hello") number = int(input("Enter a number")) # Commenting # Ignored by the computer # This is a single line comment '''This is a multiline comment'''
1c39974b28c415eb6d3f895052348a4790754e61
9c61b955cbee4509c3e89a02e6d0420e60a3d1c6
/D4 Insertion Sort/insertionSort.py
7031ea5d24e88a6bbed196c9ef134938c2582052
[]
no_license
ErmiyasG/CompititveProgramming
53f3a9fc2b65a51addde9f339d7ee95740ec71c0
927b0a0115c4baf59c62ea7a17280afc303c4cb8
refs/heads/master
2020-09-15T07:59:27.365879
2019-11-27T00:52:54
2019-11-27T00:52:54
223,387,268
0
0
null
null
null
null
UTF-8
Python
false
false
365
py
import random def insertionSort(): numbers = [i for i in range(1, 10001)] numbers = random.sample(numbers, len(numbers)) for i in range(len(numbers)): for j in range(len(numbers)): if numbers[i] < numbers[j]: numbers[i], numbers[j] = numbers[j], numbers[i] print(numbers) return insertionSort()
9323eda82837b3b74d35a54415c599d65c1b11d8
451d80ff37337a13e9d8cb3500057acedda10ffd
/script.py
73ec82f3f62731a3a128e7a635780a15dbf2c529
[]
no_license
cbfsocial/Python-Cisco-mac-ip-paring
f30f617529476a60f97b5c68851f4d791b776983
8508f4ceb064bb4118f9bb5652612b992201bd04
refs/heads/main
2023-03-01T00:49:04.381991
2021-01-29T10:44:11
2021-01-29T10:44:11
323,436,765
0
0
null
null
null
null
UTF-8
Python
false
false
1,999
py
import paramiko ip = [all device's ip] usr = "" pwd = "" def hostname_parser(host): client = paramiko.SSHClient() client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) client.connect(hostname=host, username=usr, password=pwd, look_for_keys=False, allow_agent=False) stdin, stdout, stderr = client.exec_command('sh run | i hostname') return stdout.readlines()[0].replace('hostname ', '').replace('\r\n', '') def arp_line_parser(line): spl = list(filter(lambda s: s != '', line.split(' '))) return spl[1], spl[3] def arp_parser(host): client = paramiko.SSHClient() client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) client.connect(hostname=host, username=usr, password=pwd, look_for_keys=False, allow_agent=False) stdin, stdout, stderr = client.exec_command('show arp') lines = stdout.readlines()[4:] return list(map(arp_line_parser, lines)) def line_parser(line): return line.split(' ')[1], line.split(' ')[-1].replace('\r\n', '') def port_parser(host, port): client = paramiko.SSHClient() client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) client.connect(hostname=host, username=usr, password=pwd, look_for_keys=False, allow_agent=False) stdin, stdout, stderr = client.exec_command("show mac address-table int Fa0/" + str(port)) lines = stdout.readlines() if len(lines) > 5: return list(map(line_parser, lines[5:-1])) client.close() arp_table = arp_parser('CORE IP where all arp collected') for host in ip: hostname = hostname_parser(host) f = open("hostname_done.txt", 'a') for port in range(1, 49): parsed = port_parser(host, port) if parsed is not None: for parsed_elem in parsed: arp = list(filter(lambda a: a[1] == parsed_elem[0], arp_table)) if len(arp) > 0: f.write(hostname + ',' + parsed_elem[1] + ',' + parsed_elem[0] + ',' + arp[0][0] + '\n') f.close()
67d2259610e25b0d69794e33f601aaf958ab1d9b
ef68592777e356bd268410803195a4bc45f3c976
/NN.py
780afb1efde5e7fe85b06679b9d37f34b6e03035
[]
no_license
msieb1/multilayer-perceptron
a2ce7cc417d9d87f8067ddcad078fc75def0d0c7
9e0f8b5a490a9221dc352cdea3078a9d5b29e6ab
refs/heads/master
2021-08-08T03:33:19.458366
2017-11-09T13:45:20
2017-11-09T13:45:20
109,531,361
0
0
null
null
null
null
UTF-8
Python
false
false
28,026
py
import math import random import numpy as np import csv import re import matplotlib.pyplot as plt class NN: """ create a neural networks as class object """ def __init__(self, n_nodes, inputs): """ :param n_nodes: array with number of nodes in each layer. length(n_nodes - 2) thus equals the number of hidden layers. first entry is number of input nodes, last entry output nodes inputs: Array of dim=784 vectors """ ############## Hyper parameters ################## self.l_rate = 0.1 self.beta_1 = 0.9 self.beta_2 = 0.98 self.eps = 0.0000001 self.lambd = 0.1 self.batch_size = 100 ####################################### """ Here, the following can be specified: - activation function (and derivative) - output function - optimizer (Standard, Momentum, Adam) - batch normalization on or off """ self.activation_fun = self.sigmoid self.activation_fun_g = self.d_sigmoid self.output_fun = self.softmax #Specify optimizer: Adam, Standard or Momentum (Standard with Momentum) self.optimization_function = 'Standard' self.batchnorm_on = False self.lrate_decay_on = False ###################################### n = self.batch_size self.layers = np.size(n_nodes)-1 #Parameters W self.W = {0: np.zeros(n_nodes[0])} self.W_g = {0: np.zeros(n_nodes[0])} #bias b self.b = {0: np.zeros(n_nodes[0])} self.b_g = {0: np.zeros(n_nodes[0])} # batch norm parameters gamma and beta self.gamma = {0: np.zeros(n_nodes[0])} self.gamma_g = {0: np.zeros(n_nodes[0])} self.beta = {0: np.zeros(n_nodes[0])} self.beta_g = {0: np.zeros(n_nodes[0])} #activations a self.a = {0: np.zeros((n_nodes[0],n))} self.a_g = {0: np.zeros(n_nodes[0])} # gradients just defined for one sample as of now #hidden layers h (h[self.layers] := output layer) self.h = {0: np.zeros((n_nodes[0],n))} self.h_g = {0: np.zeros(n_nodes[0])} # batch norm layer including gradient, output, mean and variance of batch self.bn = {0: np.zeros((n_nodes[0],n))} self.bn_g = {0: np.zeros(n_nodes[0])} self.bn_mean = {0: np.zeros(n_nodes[0])} self.bn_var = {0: np.zeros(n_nodes[0])} # params for early stopping self.best_params = {'W': 0, 'b': 0, 'gamma': 0, 'beta': 0, 'best_ii': 0} self.best_ii = 0 for i in np.arange(1, self.layers+1): """ init weights """ self.W[i] = np.zeros((n_nodes[i],n_nodes[i-1])) self.W_g[i] = np.zeros((n_nodes[i],n_nodes[i-1])) self.b[i] = np.zeros((n_nodes[i],1)) self.b_g[i] = np.zeros(n_nodes[i]) self.gamma[i] = np.zeros((n_nodes[i], 1)) self.beta[i] = np.zeros((n_nodes[i], 1)) self.gamma_g[i] = np.zeros(n_nodes[i]) self.beta_g[i] = np.zeros(n_nodes[i]) self.a[i] = np.zeros((n_nodes[i], n)) self.bn[i] = np.zeros((n_nodes[i], n)) self.bn_mean[i] = np.zeros(n_nodes[i]) self.bn_var[i] = np.zeros(n_nodes[i]) self.h[i] = np.zeros((n_nodes[i], n)) self.a_g[i] = np.zeros(n_nodes[i]) self.bn_g[i] = np.zeros(n_nodes[i]) self.h_g[i] = np.zeros(n_nodes[i]) con = np.sqrt(6)/np.sqrt(len(self.h[i])+len(self.h[i-1])) row, col = self.W[i].shape np.random.seed() self.W[i][:, :] = np.reshape(np.random.uniform(-con, con, row*col), [row,col]) self.b[i][:] = 0.1 self.gamma[i] = np.zeros((n_nodes[i], 2)) self.beta[i] = np.zeros((n_nodes[i], 2)) if i == 1: self.W[1] = np.load('W_RBM200.npy') def set_hyperparams(self, l_rate, beta_1, beta_2, eps, lambd, batch_size, act, act_g, out, opt, batch_on, lrate_decay_on): self.l_rate = l_rate self.beta_1 = beta_1 self.beta_2 = beta_2 self.eps = eps self.lambd = lambd self.batch_size = batch_size self.activation_fun = act self.activation_fun_g = act_g self.output_fun = out self.optimization_function = opt self.batchnorm_on = batch_on self.lrate_decay_on = lrate_decay_on def forward_activations(self, inputs): """ :param inputs: :return: yields output as return value """ if ~self.batchnorm_on: n_layers = self.layers self.h[0] = inputs self.a[1] = np.dot(self.W[1], inputs)+ self.b[1] self.h[1] = self.activation_fun(self.a[1]) for i in np.arange(2, n_layers): self.a[i] = np.dot(self.W[i], self.h[i-1])+self.b[i] self.h[i] = self.activation_fun(self.a[i]) self.a[n_layers] = np.dot(self.W[n_layers], self.h[n_layers-1])+self.b[n_layers] self.h[n_layers] = self.output_fun(self.a[n_layers]) return self.h[n_layers] else: n_layers = self.layers self.h[0] = inputs self.a[1] = np.dot(self.W[1], inputs) + self.b[1] self.bn[1], self.bn_mean[1], self.bn_var[1] = self.batchnorm(self.a[1], 1) self.h[1] = self.activation_fun(self.bn[1]) for i in np.arange(2, n_layers): self.a[i] = np.dot(self.W[i], self.h[i - 1]) + self.b[i] self.bn[i], self.bn_mean[i], self.bn_var[i] = self.batchnorm(self.a[i], i) self.h[i] = self.activation_fun(self.bn[i]) self.a[n_layers] = np.dot(self.W[n_layers], self.h[n_layers - 1]) + self.b[n_layers] self.bn[n_layers], self.bn_mean[n_layers], self.bn_var[n_layers] = self.batchnorm(self.a[n_layers], n_layers) self.h[n_layers] = self.output_fun(self.bn[n_layers]) return self.h[n_layers] def calculate_loss(self, x_train, y_train): try: dim, n = x_train.shape except: dim = len(x_train) n = 1 loss = 0 weight_loss = 0 self.forward_activations(x_train) output = self.h[self.layers] #for i in range(1, self.layers+1): # weight_loss += np.sum(self.W[i]) + np.sum(self.b[i]) for i in range(0, n): ind = np.where(y_train[:,i]==1) f = output[ind, i] if f < 0.0001: f = 0.0001 loss -= np.log(f) return loss/n def backprop(self, x_data, y_data): """ :param x_data: single data input :param y_data: single data label (one-hot) :param index: index of current data point :return: """ batch_size = x_data.shape[1] if ~self.batchnorm_on: n_layers = self.layers output = self.h[self.layers] e = y_data #serves as indicator function W_g = {**self.W_g} b_g = {**self.b_g} for j in np.arange(batch_size): self.a_g[n_layers] = (-(e-output))[:, j] for i in np.arange(self.layers, 0, -1): self.W_g[i] = np.outer(self.a_g[i], self.h[i-1][:, j]) self.b_g[i] = self.a_g[i] self.h_g[i-1] = np.dot(self.W[i].T, self.a_g[i]) self.a_g[i-1] = self.h_g[i-1] * self.activation_fun_g(self.a[i-1][:, j]) W_g[i] += self.W_g[i]/batch_size b_g[i] += self.b_g[i]/batch_size self.W_g = {**W_g} self.b_g = {**b_g} return else: n_layers = self.layers output = self.h[self.layers] e = y_data #serves as indicator function W_g = {**self.W_g} b_g = {**self.b_g} for j in np.arange(batch_size): self.bn_g[n_layers] = (-(e-output))[:, j] self.a_g[n_layers], self.gamma_g[n_layers], self.beta_g[n_layers] = self.batchnorm_backward(self.bn_g[n_layers], n_layers) for i in np.arange(self.layers, 0, -1): self.W_g[i] = np.outer(self.a_g[i], self.h[i-1][:, j]) self.b_g[i] = self.a_g[i] self.h_g[i-1] = np.dot(self.W[i].T, self.a_g[i]) self.bn_g[i-1] = self.h_g[i-1] * self.activation_fun_g(self.bn[i-1][:, j]) self.a_g[i-1], self.gamma_g[i-1], self.beta_g[i-1] = self.batchnorm_backward(self.bn_g[i-1], i-1) W_g[i] += self.W_g[i]/batch_size b_g[i] += self.b_g[i]/batch_size self.W_g = {**W_g} self.b_g = {**b_g} return def update_params(self, m_prev, v_prev, opt_fun): beta_1 = self.beta_1 beta_2 = self.beta_2 eps = self.eps lambd = self.lambd l_rate = self.l_rate if opt_fun == 'Standard': for i in np.arange(1, self.layers+1): grad = np.hstack([self.W_g[i], np.atleast_2d(self.b_g[i]).T, self.gamma_g[i], self.beta_g[i]]) self.W[i] -= l_rate*self.W_g[i] self.b[i] -= l_rate*np.atleast_2d(self.b_g[i]).T self.gamma[i] -= l_rate*self.gamma_g[i] self.beta[i] -= l_rate*self.beta_g[i] return m_prev, v_prev if opt_fun == 'Momentum': for i in np.arange(1, self.layers+1): grad = np.hstack([self.W_g[i], np.atleast_2d(self.b_g[i]).T,np.atleast_2d(self.gamma_g[i]).T,np.atleast_2d(self.beta_g[i]).T]) delta = grad - beta_1*m_prev[i] m_prev[i] = delta self.W[i] -= l_rate*(delta[:, :-3] + self.lambd*self.W[i]) self.b[i] -= l_rate*(np.atleast_2d(delta[:, -3]).T + self.lambd*self.b[i]) self.gamma[i] -= l_rate*(np.atleast_2d(delta[:, -2]).T + self.lambd*self.gamma[i]) self.beta[i] -= l_rate*(np.atleast_2d(delta[:, -1]).T + self.lambd*self.beta[i]) return m_prev, v_prev # works # if opt_fun == 'Adam': # for i in np.arange(1, self.layers+1): # grad = np.hstack([self.W_g[i], np.atleast_2d(self.b_g[i]).T]) # rows, cols = grad.shape # m = beta_1*m_prev + (1-beta_1)*grad # #m = delta # v = beta_2*v_prev + (1-beta_2)*grad**2 # #m = m / (1-beta_1) # #v = v / (1-beta_2) # self.W[i] -= l_rate*m[:, :-1]/(np.sqrt(v[:, :-1]) + eps) # self.b[i] -= np.atleast_2d(l_rate*(m[:, -1])/(np.sqrt((v[:, -1])) + eps)).T # return m, v if opt_fun == 'Adam': for i in np.arange(1, self.layers+1): grad = np.hstack([self.W_g[i], np.atleast_2d(self.b_g[i]).T,np.atleast_2d(self.gamma_g[i]).T,np.atleast_2d(self.beta_g[i]).T]) delta = -beta_1*m_prev[i] + (1-beta_1)*grad m_prev[i] = delta v_prev[i] = beta_2*v_prev[i] + (1-beta_2)*grad**2 m_prev[i] = m_prev[i] * (1-beta_1) #inquire those v_prev[i] = v_prev[i] * (1-beta_2) self.W[i] -= l_rate*(m_prev[i][:, :-3]/(np.sqrt(v_prev[i][:, :-3]) + eps)+self.lambd*self.W[i]) self.b[i] -= l_rate*(np.atleast_2d(m_prev[i][:, -3])/(np.sqrt(v_prev[i][:, -3]) + eps).T + self.lambd*self.b[i]) self.gamma[i] -= l_rate*(np.atleast_2d(delta[:, -2]).T(np.sqrt(v_prev[i][:, -2]) + eps).T + self.lambd*self.gamma[i]) self.beta[i] -= l_rate*(np.atleast_2d(delta[:, -1]).T/(np.sqrt(v_prev[i][:, -1]) + eps).T+ self.lambd*self.beta[i]) def train(self, n_epochs, data): """ train the network with backprop :param l_rate: :param n_epochs: :return: """ opt_fun = self.optimization_function l_rate = self.l_rate batch_size = self.batch_size # m stores gradient, v stores second moment gradient (copying W is just for dictionary dimonesion, aka layers) # the actual m and v dict will be filled with all gradients w.r.t W, b, gamma and beta m = {**self.W_g} v = {**self.W_g} for i in range(1, self.layers + 1): m[i] = np.hstack([self.W_g[i], np.atleast_2d(self.b_g[i]).T,np.atleast_2d(self.gamma_g[i]).T,np.atleast_2d(self.beta_g[i]).T ])*0 v[i] = np.hstack([self.W_g[i], np.atleast_2d(self.b_g[i]).T,np.atleast_2d(self.gamma_g[i]).T,np.atleast_2d(self.beta_g[i]).T]) * 0 x_train = data['x_train'] y_train = data['y_train'] x_valid = data['x_valid'] y_valid = data['y_valid'] dim, n_samples = x_train.shape ####### TRACK LOSS ############## loss_tracker = {'train': np.zeros((n_epochs+1, 1)), 'valid': np.zeros((n_epochs+1, 1))} loss_tracker['train'][0, 0] = self.calculate_loss(x_train, y_train) loss_tracker['valid'][0, 0] = self.calculate_loss(x_valid, y_valid) ###################### ###### TRACK CLASSIFICATION ERROR ############## error_tracker = {'train': np.zeros((n_epochs+1, 1)), 'valid': np.zeros((n_epochs+1, 1))} self.forward_activations(x_train) y_hat = self.h[self.layers] error_tracker['train'][0,0] = classification_error(y_hat, y_train) self.forward_activations(x_valid) y_hat2 = self.h[self.layers] error_tracker['valid'][0,0] = classification_error(y_hat2, y_valid) ########################### ### EARlY STOPPING PARAMS ### ii = 0 jj = 0 vv = 100000 pp = 10000 nn = 10 for epoch in np.arange(n_epochs): randomize = np.arange(x_train.shape[1]) np.random.shuffle(randomize) x_train = x_train[:, randomize][:, :] y_train = y_train[:, randomize][:, :] for j in np.arange(int(n_samples/batch_size)): #get output for current batch self.forward_activations((x_train[:, j*batch_size:(j+1)*batch_size])) #Make 784,1 instead of 784, self.backprop(x_train[:, j*batch_size:(j+1)*batch_size], y_train[:, j*batch_size:(j+1)*batch_size]) #fix index passing m, v = self.update_params(m, v, opt_fun) ## EARLY STOPPING ii += 1 if (int(ii / nn) == 1) and (jj != pp): v_prime = self.calculate_loss(x_valid, y_valid) if v_prime < vv: jj = 0 self.best_params['W'] = self.W self.best_params['b'] = self.b self.best_params['gamma'] = self.gamma self.best_params['beta'] = self.beta self.best_ii = ii self.best_params['best_ii'] = self.best_ii vv = v_prime else: jj += 1 ################################## if (n_samples -int(n_samples/batch_size)*batch_size) != 0: # get data if batch does not divide perfectly sample set self.forward_activations((x_train[:, int(n_samples/batch_size)*batch_size:])) # Make 784,1 instead of 784, self.backprop(x_train[:, int(n_samples/batch_size)*batch_size:], y_train[:, int(n_samples/batch_size)*batch_size:]) m, v = self.update_params(m, v, opt_fun) ### EARLY STOPPING ### ii += 1 if (int(ii / nn) == 1) and (jj != pp): ii += nn v_prime = self.calculate_loss(x_valid, y_valid) if v_prime < vv: jj = 0 self.best_params['W'] = self.W self.best_params['b'] = self.b self.best_params['gamma'] = self.gamma self.best_params['beta'] = self.beta self.best_ii = ii self.best_params['best_ii'] = self.best_ii vv = v_prime else: jj += 1 ################# #update error and loss dictionaries loss_tracker['train'][epoch+1, 0] = self.calculate_loss(x_train, y_train) loss_tracker['valid'][epoch+1, 0] = self.calculate_loss(x_valid, y_valid) y_hat = self.forward_activations(x_valid) error_tracker['valid'][epoch+1, 0] = classification_error(y_hat, y_valid) y_hat2 = self.forward_activations(x_train) error_tracker['train'][epoch + 1, 0] = classification_error(y_hat2, y_train) ################################## print("Epoch %s: error is %s" % (epoch + 1, loss_tracker['train'][epoch+1, 0])) #decrease learning rate if hitting a plateau if (np.abs(error_tracker['valid'][epoch+1, 0] - error_tracker['valid'][epoch, 0]) < 0.002) and self.lrate_decay_on: self.l_rate /= 1.5 return loss_tracker, error_tracker def batchnorm(self, batch, curr_layer): i = curr_layer eps = 0.00000001 dim, n = batch.shape m = np.sum(batch, 1)/n var = np.var(batch, 1)/n x_hat = (batch - m)/(np.sqrt(var + eps)) y = self.gamma[i]*x_hat + self.beta[i] return y, m, var def batchnorm_backward(self, dout, curr_layer): eps = self.eps i = curr_layer # get the dimensions of the input/output dim, n = dout.shape # step9 dbeta = np.sum(dout, 1) dgammax = dout # not necessary, but more understandable # step8 dgamma = np.sum(dgammax * self.bn[i], 1) dxhat = dgammax * self.gamma[i] # step7 divar = np.sum(dxhat * self.bn_mean[i], 1) dxmu1 = dxhat * 1/self.bn_var[i] # step6 dsqrtvar = -1. / (np.sqrt(self.bn_var[i] + eps) ** 2) * divar # step5 dvar = 0.5 * 1. / np.sqrt(self.bn_var[i] + eps) * dsqrtvar # step4 dsq = 1. / n * np.ones((dim , n)) * dvar # step3 dxmu2 = 2 * self.bn[i] * dsq # step2 dx1 = (dxmu1 + dxmu2) dmu = -1 * np.sum(dxmu1 + dxmu2, 1) # step1 dx2 = 1. / n * np.ones((dim, n)) * dmu # step0 dx = dx1 + dx2 return dx, dgamma, dbeta #### Activation and Output functions #### def sigmoid(self, a): np.clip(a,-300,300) return 1/(1+np.exp(-a)) def d_sigmoid(self, a): return self.sigmoid(a)*(1-self.sigmoid(a)) def relu(self, a): buff = np.copy(a) return np.maximum(a, buff*0) def d_relu(self, a): res = np.copy(a) res[np.where(a > 0)] = 1 res[np.where(a <= 0)] = 0 return res def tanh(self, a): return np.tanh(a) def d_tanh(self, a): return 1 - np.tanh(a) ** 2 def softmax(self, a): m = np.max(a,0) out = np.exp(a - m - np.log(np.sum(np.exp(a - m),0))) return out ######################################### def check_gradient(self, eps, layer, ind1, ind2, x_train, y_train): W_o = self.W b_o = self.b real_grad = self.W_g[layer][ind1, ind2] self.W[layer][ind1,ind2] += eps loss_plus = self.calculate_loss(x_train, y_train) self.W[layer][ind1,ind2] -= 2*eps loss_minus = self.calculate_loss(x_train, y_train) grad = (loss_plus - loss_minus)/(2*eps) error = np.abs(grad-real_grad) if real_grad > 0.1: a = 0 return error, grad ########################## def load_data(): with open('/home/max/PyCharm/PycharmProjects/10-707/hw1/data/digitstrain.txt') as f: reader = csv.reader(f, delimiter=" ") d = list(reader) x_train = np.zeros((784,3000)) y_train = np.zeros((10,3000)) for i in range(0, len(d)): s = d[i][0] p = re.compile(r'\d+\.\d+') # Compile a pattern to capture float values data = [float(i) for i in p.findall(s)] # Convert strings to float p = re.compile(r'\d+') # Compile a pattern to capture float values label = [int(i) for i in p.findall(s)] x_train[:,i] = data y_train[label[-1],i] = 1 np.save('x_train.npy', x_train) np.save('y_train.npy', y_train) with open('/home/max/PyCharm/PycharmProjects/10-707/hw1/data/digitstest.txt') as f: reader = csv.reader(f, delimiter=" ") d = list(reader) x_test = np.zeros((784, 3000)) y_test = np.zeros((10, 3000)) for i in range(0, len(d)): s = d[i][0] p = re.compile(r'\d+\.\d+') # Compile a pattern to capture float values data = [float(i) for i in p.findall(s)] # Convert strings to float p = re.compile(r'\d+') # Compile a pattern to capture float values label = [int(i) for i in p.findall(s)] x_test[:, i] = data y_test[label[-1], i] = 1 np.save('x_test.npy', x_test) np.save('y_test.npy', y_test) with open('/home/max/PyCharm/PycharmProjects/10-707/hw1/data/digitsvalid.txt') as f: reader = csv.reader(f, delimiter=" ") d = list(reader) x_valid = np.zeros((784, 1000)) y_valid = np.zeros((10, 1000)) for i in range(0, len(d)): s = d[i][0] p = re.compile(r'\d+\.\d+') # Compile a pattern to capture float values data = [float(i) for i in p.findall(s)] # Convert strings to float p = re.compile(r'\d+') # Compile a pattern to capture float values label = [int(i) for i in p.findall(s)] x_valid[:, i] = data y_valid[label[-1], i] = 1 np.save('x_valid.npy', x_valid) np.save('y_valid.npy', y_valid) dat = {'x_train': x_train} dat['y_train'] = y_train dat['x_test'] = x_test dat['y_test'] = y_test dat['x_valid'] = x_valid dat['y_valid'] = y_valid return dat def plotting(path, save_to_file=False): path_to_save = path plt.figure(1) plt.clf() plt.plot(np.arange(1,n_epochs+1),loss_tracker['train'][1:], 'ro-', markersize=4, label='train') plt.plot(np.arange(1,n_epochs+1),loss_tracker['valid'][1:], 'yo-', markersize=4, label='valid') plt.xlabel('epoch') plt.ylabel('loss') #plt.title('cross-entropy') plt.legend(loc='upper left') if save_to_file: name = 'graph_loss_RBM200' path = path_to_save + name plt.savefig(path) plt.figure(2) plt.clf() plt.plot(np.arange(1,n_epochs+1),error_tracker['train'][1:], 'bo-', markersize=4, label='train') plt.plot(np.arange(1,n_epochs+1),error_tracker['valid'][1:], 'go-', markersize=4, label='valid') plt.xlabel('epoch') plt.ylabel('error') #plt.title('classification error') plt.legend(loc='upper left') if save_to_file: name = 'graph_error_RBM200' path = path_to_save + name plt.savefig(path) #plt.show() def visualize_params(net): #make sure you got good params! plt.figure(1) plt.clf() for i in range(0, 100): plt.subplot(10, 10, i+1) buff = np.reshape(net.W[1][i, :], [28, 28]) plt.imshow(buff, cmap='gray') plt.tick_params(axis='both', left='off', right='off', which='both', bottom='off', top='off', labelbottom='off', labeltop='off') plt.subplots_adjust(wspace=0, hspace=0) plt.xticks([]) plt.yticks([]) plt.tight_layout() name = 'visualized_params2' path_to_save = '/home/max/PyCharm/PycharmProjects/10-707/hw1/figures/' path = path_to_save + name plt.savefig(path) an = 0 def normalize(arr): delta = 0.00000001 arr_norm = (arr - np.array([np.mean(arr, 1)]).T) / (np.array([np.std(arr, 1)]).T + delta) # normalize data return arr_norm def classification_error(prediction, label): try: n = label.shape[1] except: n = 1 row, col = prediction.shape prediction += np.reshape(np.random.uniform(-0.0001, 0.0001, row * col), [row, col]) def array_row_intersection(a, b): tmp = np.prod(np.swapaxes(a[:, :, None], 1, 2) == b, axis=2) return a[np.sum(np.cumsum(tmp, axis=0) * tmp == 1, axis=1).astype(bool)] ind_pred = np.argwhere(prediction == np.max(prediction, axis=0)) ind_corr = np.argwhere(label) n_correct = array_row_intersection(ind_pred, ind_corr).shape[0] return (n-n_correct)/n #################################### if __name__ == '__main__': # ONLY LOAD IF .npy files not stored!! # data = load_data() #normalize if needed x_train = (np.load('x_train.npy')) y_train = (np.load('y_train.npy')) x_valid = (np.load('x_valid.npy')) y_valid = (np.load('y_valid.npy')) x_test = (np.load('x_test.npy')) y_test = (np.load('y_test.npy')) # store data in a dictionary data = {'x_train': x_train, 'y_train': y_train, 'x_valid': x_valid, 'y_valid': y_valid, 'x_test': x_test, 'y_valid': y_valid} ###################################### for i in range(8,9): #specifiy net architecture: .e.g.: 784 inputs, first hidden layer 500 nodes, second one 300 nodes, output 10 net = NN([784,100,10], x_train) # specify initial learning rate l_rate = 0.1 # momentum parameter beta_1 = 0.9 # RMSProp/Adam parameter beta_2 = 0.98 # variance square root regularizer eps = 0.0000001 # regularizer lambd = 0.1 # batch sample size batch_size = 64 # activation function: net.sigmoid, net.relu, net.tanh activation_fun = net.sigmoid # activation function derivative: net.d_sigmoid, net.d_relu, net.d_tanh activation_fun_g = net.d_sigmoid # output function: net.softmax output_fun = net.softmax # Specify optimizer: Adam, Standard or Momentum (Standard with Momentum) optimization_function = 'Momentum' # batch normalization on or off batchnorm_on = False # learning rate decay on or off (divides main learning rate by 1.5 if validation error stays constant lrate_decay_on = True # number of training epochs n_epochs = 100 # path to save figure and data path = '/home/max/PyCharm/PycharmProjects/10-707/hw2/figures/pretraining/' #################################### # initialize network and execute training net.set_hyperparams(l_rate, beta_1, beta_2, eps, lambd, batch_size, activation_fun, activation_fun_g, output_fun, optimization_function, batchnorm_on, lrate_decay_on) loss_tracker, error_tracker = net.train(n_epochs, data) # calculate loss on test set # loss_train = net.calculate_loss(x_train, y_train) # out = net.h[net.layers] # err_train = classification_error(out, y_train) # loss_valid = net.calculate_loss(x_valid, y_valid) # out = net.h[net.layers] # err_valid = classification_error(out, y_valid) # loss_test = net.calculate_loss(x_test, y_test) # out = net.h[net.layers] # err_test = classification_error(out, y_test) # # np.save(path + 'err_train.npy', err_train) # np.save(path + 'loss_train.npy', loss_train) # np.save(path + 'err_valid.npy', err_valid) # np.save(path + 'loss_valid.npy', loss_valid) # np.save(path + 'err_test.npy', err_test) # np.save(path + 'loss_test.npy', loss_test) # np.save(path + 'W.npy', net.W[1]) plotting(path) # visualize_params(net) plt.show()
165dab7e57e2a352300f0576717c1cdae8927d4b
5e2dddce9c67d5b54d203776acd38d425dbd3398
/spacy/lang/es/syntax_iterators.py
869f404e040edf4e143bf6e80dab2eaac4390688
[ "MIT" ]
permissive
yuxuan2015/spacy_zh_model
8164a608b825844e9c58d946dcc8698853075e37
e89e00497ab3dad0dd034933e25bc2c3f7888737
refs/heads/master
2020-05-15T11:07:52.906139
2019-08-27T08:28:11
2019-08-27T08:28:11
182,213,671
1
0
null
2019-04-19T06:27:18
2019-04-19T06:27:17
null
UTF-8
Python
false
false
1,695
py
# coding: utf8 from __future__ import unicode_literals from ...symbols import NOUN, PROPN, PRON, VERB, AUX def noun_chunks(obj): doc = obj.doc np_label = doc.vocab.strings.add('NP') left_labels = ['det', 'fixed', 'neg'] # ['nunmod', 'det', 'appos', 'fixed'] right_labels = ['flat', 'fixed', 'compound', 'neg'] stop_labels = ['punct'] np_left_deps = [doc.vocab.strings[label] for label in left_labels] np_right_deps = [doc.vocab.strings[label] for label in right_labels] stop_deps = [doc.vocab.strings[label] for label in stop_labels] def noun_bounds(root): left_bound = root for token in reversed(list(root.lefts)): if token.dep in np_left_deps: left_bound = token right_bound = root for token in root.rights: if (token.dep in np_right_deps): left, right = noun_bounds(token) if list(filter(lambda t: is_verb_token(t) or t.dep in stop_deps, doc[left_bound.i: right.i])): break else: right_bound = right return left_bound, right_bound token = doc[0] while token and token.i < len(doc): if token.pos in [PROPN, NOUN, PRON]: left, right = noun_bounds(token) yield left.i, right.i+1, np_label token = right token = next_token(token) def is_verb_token(token): return token.pos in [VERB, AUX] def next_token(token): try: return token.nbor() except: return None SYNTAX_ITERATORS = { 'noun_chunks': noun_chunks }
5f187621e0c1861126cb19a1ffcd3ae9705e5b59
ea9e1222a128df7f0652f331065533d61798ae16
/unit4/4.5.improving_the_index.py
0726f55cf9399b8dc45155c0638820b7ed27534c
[]
no_license
AK88-RM/Udacity-CS101
5ff11d32a2da9bb80987d2e4078a40cb64c95b71
2e71f204e982aa6831824d9bab343db629a967cc
refs/heads/master
2020-04-06T06:38:29.659575
2014-08-28T13:07:09
2014-08-28T13:07:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,684
py
def add_to_index(index, keyword, url): for entry in index: if entry[0] == keyword: if url not in entry[1]: entry[1].append(url) return # not found, add new keyword to index index.append([keyword, [url]]) def get_page(url): try: if url == "http://www.udacity.com/cs101x/index.html": return '''<html> <body> This is a test page for learning to crawl! <p> It is a good idea to <a href="http://www.udacity.com/cs101x/crawling.html"> learn to crawl</a> before you try to <a href="http://www.udacity.com/cs101x/walking.html">walk</a> or <a href="http://www.udacity.com/cs101x/flying.html">fly</a>.</p></body> </html>''' elif url == "http://www.udacity.com/cs101x/crawling.html": return '''<html> <body> I have not learned to crawl yet, but I am quite good at <a href="http://www.udacity.com/cs101x/kicking.html">kicking</a>. </body> </html>''' elif url == "http://www.udacity.com/cs101x/walking.html": return '''<html> <body> I cant get enough <a href="http://www.udacity.com/cs101x/index.html">crawling</a></body></html>''' elif url == "http://www.udacity.com/cs101x/flying.html": return '''<html> <body>The magic words are Squeamish Ossifrage!</body></html>''' except: return "" return "" def union(a, b): for e in b: if e not in a: a.append(e) def get_next_target(page): start_link = page.find('<a href=') if start_link == -1: return None, 0 start_quote = page.find('"', start_link) end_quote = page.find('"', start_quote + 1) url = page[start_quote + 1:end_quote] return url, end_quote def get_all_links(page): links = [] while True: url, endpos = get_next_target(page) if url: links.append(url) page = page[endpos:] else: break return links def crawl_web(seed): tocrawl = [seed] crawled = [] index = [] while tocrawl: page = tocrawl.pop() if page not in crawled: content = get_page(page) add_page_to_index(index, page, content) union(tocrawl, get_all_links(content)) crawled.append(page) return index def add_page_to_index(index, url, content): words = content.split() for word in words: add_to_index(index, word, url) def lookup(index, keyword): for entry in index: if entry[0] == keyword: return entry[1] return None index = crawl_web("http://www.udacity.com/cs101x/index.html") print lookup(index,"is") #>>> ['http://www.udacity.com/cs101x/index.html']
c1376eb883c5a0451dce7d372ae147efe9b2a0d9
4d2942cb8b7a6c15c1d09c36e4a881cd8d54b981
/삼성 SW 역량 테스트 기출 문제/17837_새로운게임2.py
297d12891eb3d9b4099c498c743fd3381587bdf3
[]
no_license
Novicett/codingtest_with_python
4ebbceedce42ea5c27bebbacaec0046a7fc7cce8
9cfb1a1be81acd69bf73d2f3698145c74e305dc0
refs/heads/master
2023-05-30T02:03:08.620929
2021-06-20T03:22:24
2021-06-20T03:22:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,869
py
import sys from collections import defaultdict dx = [0, 0, 0, -1, 1] dy = [0, 1, -1, 0, 0] reverse = {1:2, 2:1, 3:4, 4:3} input = sys.stdin.readline N, k = map(int, input().split()) board_color = [] for _ in range(N): board_color.append(list(map(int, input().split()))) horses = defaultdict() horse_on_board = [[[] for _ in range(N)] for _ in range(N)] for i in range(k): x, y, d = map(int, input().split()) horses[i] = [x-1, y-1, d] horse_on_board[x-1][y-1].append(i) def in_bound(x,y): if x in range(N) and y in range(N): return True return False def move_white(h): x, y, d = horses[h] nx, ny = x+dx[d], y+dy[d] idx = horse_on_board[x][y].index(h) if len(horse_on_board[nx][ny]) + len(horse_on_board[x][y][idx:]) >= 4: return False for moving in horse_on_board[x][y][idx:]: horses[moving][0] = nx horses[moving][1] = ny horse_on_board[nx][ny] += horse_on_board[x][y][idx:] horse_on_board[x][y] = horse_on_board[x][y][:idx] return True def move_red(h): x, y, d = horses[h] nx, ny = x+dx[d], y+dy[d] idx = horse_on_board[x][y].index(h) if len(horse_on_board[nx][ny]) + len(horse_on_board[x][y][idx:]) >= 4: return False for moving in horse_on_board[x][y][idx:]: horses[moving][0] = nx horses[moving][1] = ny horse_on_board[nx][ny] += list(reversed(horse_on_board[x][y][idx:])) horse_on_board[x][y] = horse_on_board[x][y][:idx] return True def move_blue(h): flag = True x, y, d = horses[h] horses[h][2] = reverse[d] nx, ny = x+dx[horses[h][2]], y+dy[horses[h][2]] if in_bound(nx, ny) and board_color[nx][ny] != 2: # 범위를 벗어나지 않고 파란 칸이 아니면 if board_color[nx][ny] == 0: flag = move_white(h) else: flag = move_red(h) return flag count = 1 while True: flag = True if count > 1000: break for h in horses.keys(): # 모든 말에 대해서 이동 x, y, d = horses[h] nx, ny = x+dx[d], y+dy[d] if in_bound(nx, ny): if board_color[nx][ny] == 0: # 흰색이면 if move_white(h) == False: flag = False break elif board_color[nx][ny] == 1: # 빨간색이면 if move_red(h) == False: flag = False break else: # 파란색이면 if move_blue(h) == False: flag = False break else: # 방향 바꾸고 한칸 이동 if move_blue(h) == False: flag = False break if flag == False: break count += 1 if count > 1000: print(-1) else: print(count)
4450db57e64db6586c682bfbdf846ffb456d9e4e
4d718292ec9f90444eeda13d18febb10757da894
/mission 11/classement.py
e50dc9fbba32e99394191730b85603be4aa7080f
[]
no_license
rverschuren/Info
b40fb04a6260dacfc95d12e63c99abd82b140e06
c9aa0bdc1b026c8ba8134b878b5fae7d49d75e19
refs/heads/master
2020-04-16T07:29:49.847812
2019-01-14T14:50:18
2019-01-14T14:50:18
165,389,281
1
2
null
2019-01-12T18:56:01
2019-01-12T13:12:46
Python
UTF-8
Python
false
false
3,812
py
class Classement : """ Une implémentation primitive de classement, non ordonnée et de capacité fixe. @author Kim Mens @version 02 Décembre 2018 """ __maxcapacity = 10 def __init__(self): """ @pre: - @post: un classement vide de taille 0 a été créé """ self.__resultats = {} # dictionnaire de résultats actuelle (clé = coureur; valeur = résultat) self.__size = 0 # nombre de résultats actuel (initialement 0, maximum __maxcapacity) def size(self): """ Méthode accesseur. Retourne la taille de ce classement. @pre: - @post: Le nombre de résultats actuellement stockés dans ce classement a été retourné. """ return self.__size def add(self,r): """ Ajoute un résultat r dans ce classement. @pre: r est une instance de la classe Resultat @post: Le résultat r a été inséré selon l'ordre du classement. En cas d'ex-aequo, r est inséré après les autres résultats de même ordre. ATTENTION : L'implémentation actuelle ne respecte pas encore la post-condition! Le résultat est simplement ajouté à la dictionnaire, sans tenir compte de l'ordre. Une dictionnaire ne donne pas de garanties sur l'ordre des éléments. """ if self.size() >= self.__maxcapacity : raise Error("Capacity of classement exceeded") else : self.__size += 1 self.__resultats[r.coureur()] = r def get(self,c): """ Retourne le résultat d'un coureur donné. @pre c est un Coureur @post retourne le premier (meilleur) Resultat r du coureur c dans le classement. Retourne None si le coureur ne figure pas (encore) dans le classement. """ return self.__resultats.get(c) def get_position(self,c): """ Retourne la meilleure position d'un coureur dans ce classement. @pre c est un Coureur @post retourne un entier représentant la position du coureur c dans ce classement, à partir de 1 pour la tête de ce classement. Si le coureur figure plusieurs fois dans le classement, la première (meilleure) position est retournée. Retourne -1 si le coureur ne figure pas dans le classement. ATTENTION : L'implémentation actuelle ne respecte pas encore la post-condition! Etant donné que la dictionnaire de résultats ne connaît pas de position, pour le moment cette méthode retourne toujours "***position inconnue***". A vous de la corriger en utilisant une liste chaînée ordonnée comme structure de données, plutôt qu'une simple dictionnaire. """ return "***position inconnue***" def remove(self,c): """ Retire un résultat du classement. @pre c est un Coureur @post retire le premier (meilleur) résultat pour le coureur c du classement. c est comparé au sens de __eq__. Retourne c si un résultat a été retiré, of False si c n'est pas trouvé dans la liste. """ self.__size -= 1 return self.__resultats.pop(c,False) def __str__(self): """ Méthode magique Retourne une représentation string de cet objet. @pre: - @post: Retourne une représentation de ce classement sous forme d'un string, avec une ligne par résultat. """ s = "" d = self.__resultats for c in d: s += " " + str(self.get_position(c)) + " > " + str(d[c]) + "\n" return s
2c97ff281efd8d8c1aa5ca18d5eaf702ae7ce0d6
b47309ab12aecb683797b3c5490e8f926818ec90
/plugin.video.movie25/resources/libs/live/nhl.py
bfc51a813385908a599ab7bae51391dcb3030680
[]
no_license
alejusar/starthere
fb41d631afa1a7e610c22999b721db2fd5260729
a12c17369a15dacac06fd0b9c348435587058c02
refs/heads/master
2021-01-10T14:23:32.197067
2015-11-01T00:21:55
2015-11-01T00:21:55
44,849,967
0
0
null
null
null
null
UTF-8
Python
false
false
7,303
py
import urllib,urllib2,re,cookielib,os,sys import xbmc, xbmcgui, xbmcaddon, xbmcplugin,time from resources.libs import main #Mash Up - by Mash2k3 2012. from t0mm0.common.addon import Addon addon_id = 'plugin.video.movie25' selfAddon = xbmcaddon.Addon(id=addon_id) addon = Addon('plugin.video.movie25', sys.argv) art = main.art def MAINNHL(murl): source_media = {} from datetime import datetime datex=datetime.now().strftime('%Y%m%d') xml='http://live.nhl.com/GameData/SeasonSchedule-20142015.json' link=main.OPENURL(xml) link=link.replace('\r','').replace('\n','').replace('\t','').replace('&nbsp;','').replace(' ','') main.addDir('[COLOR red]Archived Games[/COLOR]','Archived',394,art+'/nhl.png') if 'Archived' not in murl: main.addLink("[COLOR red]Live Games Windows Only, Requires some modifications to get working visit forum.[/COLOR]",'','') match=re.compile('{"id":(.+?),"est":"(.+?)","a":"(.+?)","h":"(.+?)"}',re.DOTALL).findall(link) for id,timed,ateam,hteam in match: split= re.search('(.+?)\s(\d+:\d+):\d+',timed) split1=str(split.group(1)) split2=str(split.group(2)) if 'Archived' in murl: if int(split1)<=int(datex): dates= re.search('(\d{4})(\d{2})(\d{2})',split1) date=str(dates.group(2))+"/"+str(dates.group(3))+"/"+str(dates.group(1)) timed = time.strftime("%I:%M %p", time.strptime(split2, "%H:%M")) main.addDir(ateam+' at '+hteam+' [COLOR red]('+timed+')[/COLOR] [COLOR blue]('+date+')[/COLOR]',id,395,art+'/nhl.png') else: if datex == split1: dates= re.search('(\d{4})(\d{2})(\d{2})',split1) date=str(dates.group(2))+"/"+str(dates.group(3))+"/"+str(dates.group(1)) timed = time.strftime("%I:%M %p", time.strptime(split2, "%H:%M")) main.addDir(ateam+' at '+hteam+' [COLOR red]('+timed+')[/COLOR] [COLOR blue]('+date+')[/COLOR]',id,395,art+'/nhl.png') def LISTSTREAMS(mname,murl): mname=main.removeColoredText(mname) id= re.search('(\d{4})(\d{2})(\d{4})',murl) xml='http://smb.cdnak.neulion.com/fs/nhl/mobile/feed_new/data/streams/'+str(id.group(1))+'/ipad/'+str(id.group(2))+'_'+str(id.group(3))+'.json' link=main.OPENURL(xml) link=link.replace('\r','').replace('\n','').replace('\t','').replace('&nbsp;','').replace(' ','') match=re.compile('"vod-condensed":{"bitrate0":"([^"]+)"},"vod-continuous":{"bitrate0":"([^"]+)","image":"([^"]+)"},"vod-whole":{"bitrate0":"([^"]+)"}',re.DOTALL).findall(link) for cond,cont,thumb,whole in match: if '_h_condensed' in cond: main.addPlayc(mname+' [COLOR blue]Home Condensed[/COLOR]',cond,396,thumb,'','','','','') else: main.addPlayc(mname+' [COLOR blue]Away Condensed[/COLOR]',cond,396,thumb,'','','','','') if '_h_continuous' in cont: main.addPlayc(mname+' [COLOR blue]Home Continuous[/COLOR]',cont,396,thumb,'','','','','') else: main.addPlayc(mname+' [COLOR blue]Away Continuous[/COLOR]',cont,396,thumb,'','','','','') if '_h_whole' in whole: main.addPlayc(mname+' [COLOR blue]Home Whole[/COLOR]',whole,396,thumb,'','','','','') else: main.addPlayc(mname+' [COLOR blue]Away Whole[/COLOR]',whole,396,thumb,'','','','','') match2=re.compile('"away".+?"live":{"bitrate0":"([^"]+)"},.+?"image":"([^"]+)"',re.DOTALL).findall(link) for live,thumb in match2: main.addPlayc(mname+' [COLOR blue]Away Live[/COLOR]',live+'x0xe'+str(murl),396,thumb,'','','','','') match3=re.compile('"home".+?"live":{"bitrate0":"([^"]+)"},.+?"image":"([^"]+)"',re.DOTALL).findall(link) for live,thumb in match3: main.addPlayc(mname+' [COLOR blue]Home LIVE[/COLOR]',live+'x0xe'+str(murl),396,thumb,'','','','','') def LINK(mname,murl,thumb): #main.GA(mname,"Watched") ok=True namelist=[] urllist=[] playlist = xbmc.PlayList(xbmc.PLAYLIST_VIDEO) playlist.clear() if '_whole' in murl: link=main.OPENURL(murl) link=link.replace('\r','').replace('\n','').replace('\t','').replace('&nbsp;','').replace(' ','') part= re.findall('/([^/]+)ipad.mp4.m3u8',murl)[0] match=re.compile('BANDWIDTH=.+?'+part+'(.+?)_ipad.mp4.m3u8',re.DOTALL).findall(link) for band in sorted(match): namelist.append(band) dialog = xbmcgui.Dialog() answer =dialog.select("Pick A Bandwidth", namelist) if answer != -1: nurl=murl.split('ipad.mp4.m3u8')[0] stream_url=nurl+namelist[int(answer)]+'_ipad.mp4.m3u8'+'|User-Agent=PS4 libhttp/1.76 (PlayStation 4)' else: return elif '/live/' in murl: import subprocess jarfile = xbmc.translatePath('special://home/addons/plugin.video.movie25/resources/libs/live/FuckNeulionV2.jar') if 'Home' in mname: Side='home' if 'Away' in mname: Side='away' SelectGame=murl.split('x0xe')[1] murl=murl.split('x0xe')[0] startupinfo = None if os.name == 'nt': startupinfo = subprocess.STARTUPINFO() startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW command=['java','-jar',jarfile,SelectGame,Side] proxy_hack_process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, startupinfo=startupinfo) xbmc.sleep(1000) link=main.OPENURL(murl) link=link.replace('\r','').replace('\n','').replace('\t','').replace('&nbsp;','').replace(' ','') part= re.findall('/([^/]+)ipad.m3u8',murl)[0] match=re.compile('BANDWIDTH=.+?'+part+'(.+?)_ipad.m3u8',re.DOTALL).findall(link) for band in sorted(match): namelist.append(band) dialog = xbmcgui.Dialog() answer =dialog.select("Pick A Bandwidth", namelist) if answer != -1: nurl=murl.split('ipad.m3u8')[0] stream_url=nurl+namelist[int(answer)]+'_ipad.m3u8'+'|User-Agent=PS4 libhttp/1.76 (PlayStation 4)' else: return else: stream_url = murl+'|User-Agent=PS4 libhttp/1.76 (PlayStation 4)' listitem = xbmcgui.ListItem(thumbnailImage=thumb) infoL={'Title': mname, 'Genre': 'Live'} from resources.universal import playbackengine player = playbackengine.PlayWithoutQueueSupport(resolved_url=stream_url, addon_id=addon_id, video_type='movie', title=mname,season='', episode='', year='',img=thumb,infolabels=infoL, watchedCallbackwithParams='',imdb_id='') #WatchHistory if selfAddon.getSetting("whistory") == "true": from resources.universal import watchhistory wh = watchhistory.WatchHistory('plugin.video.movie25') wh.add_item(mname+' '+'[COLOR green]NHL[/COLOR]', sys.argv[0]+sys.argv[2], infolabels='', img=thumb, fanart='', is_folder=False) return ok
9a658ef90f5b3a387e050f4f3798f53757a8de54
fca4b400cc9c08b028ee427e5bb66fc1441d226d
/vatsava/Gautham/get_data_test.py
46b9ebb23cfe406baecf69d639c2bfbbf915c9ee
[]
no_license
vatsava-rac/RPibackup
29db15864f97d7f7e10fcdbbb1b893a8522982d8
db19ca031e99d7e797b384eab72d752489a1d3ac
refs/heads/master
2022-04-24T17:48:03.866461
2020-04-21T11:01:31
2020-04-21T11:01:31
257,565,788
0
0
null
null
null
null
UTF-8
Python
false
false
2,159
py
import tkinter as tk # python 3 from tkinter import font as tkfont # python 3 from tkinter import * class BSS_App(Tk): def __init__(self): Tk.__init__(self) container = tk.Frame(self) self.app_data = {"UUID": StringVar(), "Connection_status": StringVar() } container.pack(side="top", fill="both", expand = True) self.frames = {} for F in (PageOne, PageTwo): frame = F(container, self) self.frames[F] = frame frame.grid(row=0, column=0, sticky = NSEW) self.show_frame(PageOne) def show_frame(self, cont): frame = self.frames[cont] frame.tkraise() class PageOne(tk.Frame): def __init__(self, parent, controller): self.controller = controller tk.Frame.__init__(self, parent) tk.Label(self, text='PageOne').grid(padx=(20,20), pady=(20,20)) self.make_widget(controller) def make_widget(self, controller): self.some_input = StringVar self.some_entry = tk.Entry(self, textvariable=self.controller.app_data["UUID"], width=8) self.some_entry.grid() button1 = tk.Button(self, text='Next Page', command=lambda: controller.show_frame(PageTwo)) button1.grid() class PageTwo(tk.Frame): def __init__(self, parent, controller): self.controller = controller tk.Frame.__init__(self, parent) tk.Label(self, text='PageTwo').grid(padx=(20,20), pady=(20,20)) button1 = tk.Button(self, text='Previous Page', command=lambda: controller.show_frame(PageOne)) button1.grid() button2 = tk.Button(self, text='press to print', command=self.print_it) button2.grid() def print_it(self): value = self.controller.app_data["UUID"].get() tk.Label(self, text="%s"% value).grid(padx=(30,30), pady=(30,30)) print(value) #What do I put here #to print the value of some_input from PageOne app = BSS_App() app.title('Multi-Page Test App') app.mainloop()
[ "“[email protected]”" ]
923853a7f7ac4c46fa45ea951fc1ffaed37f58f2
b667ef7f22f8141898917533ec0a3305dc461e6c
/wsgi_server/dynamic/mini_frame.py
98463d55659246a3c6b1387d4e2facb220576fdc
[]
no_license
supermouse123/python-network_frame
6c2b30cecf85fec7ac92371f3346678ffa7e84b2
a9023051459c1ab845618ecb1fbe0c9b68eb87af
refs/heads/main
2023-02-26T01:43:46.753288
2021-01-27T05:52:14
2021-01-27T05:52:14
333,292,775
1
0
null
null
null
null
UTF-8
Python
false
false
954
py
# @Time : 2021/1/27 # @Author : sunyingqiang # @Email : [email protected] import re URL_DICT = dict() def route(url): def set_func(func): URL_DICT[url] = func def wapper(*arg, **kwargs): return func(*arg, **kwargs) return wapper return set_func @route('/index.html') def index(): return '这是主页' @route('/login.html') def login(): with open('./templates/qunee_test.html') as f: conetent = f.read() return conetent @route(r'/add/\d+\.html') def add(): return 'add ok .....' def application(env, start_response): start_response('200 OK', [('Content-Type', 'text/html; charset=UTF-8')]) file_name = env['PATH_INFO'] try: for url, func in URL_DICT.items(): ret = re.match(url, file_name) if ret: return func() # func = URL_DICT[file_name] # return func() except: return '404 NOT FOUND'
9551d519b20dfcc4061ff956e357f5bdb2481c6d
7cd8ee14711eaf33cee0d9e06e78a974fc579242
/Linkedin/Linkedin/spiders/linkedin_distinct_12logincount.py
73e600bb84ee61402c91c2f94e2db905b9cf883c
[]
no_license
Chandler-Song/pi
c618117dfdd9a7496a57c69f029851e94787f591
aebc6d65b79ed43c66e7e1bf16d6d9f31b470372
refs/heads/master
2022-03-13T02:44:30.452673
2019-02-19T09:38:45
2019-02-19T09:38:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,482
py
from linkedin_voyager_functions import * class Companylidsurls(object): def __init__(self, *args, **kwargs): self.con, self.cur = get_mysql_connection(DB_HOST, 'FACEBOOK', '') #self.qu1 = 'select profile_sk , connections_profile_url from linkedin_connections where date(modified_at)>"2017-04-17" and date(modified_at)<"2017-08-21" and member_id = "%s"' self.qu1 = "select distinct member_id from linkedin_meta where date(modified_at) < '2017-08-20'" self.qu2 = "select distinct member_id from linkedin_connections where date(modified_at) > '2017-08-20'" self.query2 = "select connections_profile_url, member_id, sk from FACEBOOK.linkedin_connections where date(modified_at) >= '2017-08-20'" self.excel_file_name = 'linkedin_connections_profiles_%s.csv'%str(datetime.datetime.now().date()) if os.path.isfile(self.excel_file_name): os.system('rm %s'%self.excel_file_name) oupf = open(self.excel_file_name, 'ab+') self.todays_excel_file = csv.writer(oupf) self.headers = ['Linkedin_Profile_url', 'member_id'] self.todays_excel_file.writerow(self.headers) def main(self): """with open('duplicate_members', 'r') as f: rows = f.readlines() for inde, row in enumerate(rows): row = row.strip('\n') one_ = fetchmany(self.cur, self.qu1 % row) pf_sk = '<>'.join([i[0] for i in one_]) pf_url = '<>'.join([i[0] for i in one_]) file("duplicate_member_info","ab+").write("%s, %s, %s\n" % (row, pf_sk, pf_url))""" re1 = fetchall(self.cur, self.qu1) re2 = fetchall(self.cur, self.qu2) re2 = [str(i[0]) for i in re2] re1 = [str(i[0]) for i in re1] new_list = [] for i in re1: if i in re2: new_list.append(i) print len(new_list) total_distinct_list = [] total_connection_records = fetchall(self.cur, self.query2) for tocr in total_connection_records: linkedin_profilef, member_id, connection_sk = tocr if member_id in new_list: continue total_distinct_list.append((linkedin_profilef, member_id)) print len(total_distinct_list), 'total_length' print len(set(total_distinct_list)), 'total_distinct_lenth' total_distinct_list = set(total_distinct_list) for tdl in total_distinct_list: lk_url, mem_id = tdl values = [lk_url, mem_id] values = [normalize(i) for i in values] self.todays_excel_file.writerow(values) if __name__ == '__main__': Companylidsurls().main()
da11800eb90e67c80528836a5601e3bda8546b4b
7dcf487ae09659e3a711e08bd7a9057b1abc43b4
/newcolumn.py
c9c8f80706e6b5c747358f9fc0ccca9964dc302b
[]
no_license
vaibhavbhat123/Reservoir-characterization
6d769ce2b3e3067b5cd04df070b91df01ffddf10
5e61f4a57a6561106b8989574eff8ce58a580875
refs/heads/master
2020-05-18T17:45:22.638535
2019-06-05T16:33:18
2019-06-05T16:33:18
184,565,283
0
0
null
null
null
null
UTF-8
Python
false
false
202
py
import pandas as pd import numpy as np data = pd.read_csv("E:/file7.csv") print(data.head()) data['Probability'] = np.where(data['POR']>6,'yes','no') print(data.head()) data.to_csv("E:/file97.csv")
2ec6f9f43065ad0d28c012eb412b7a9fe4bbb343
5cc6203602d2d0dc89b9b1204e6f1e0ce4e17825
/lafopafo/confirmed/6/prediction.py
2f387dfe8f595a4441df5bf7857c6bb1f12d97c5
[]
no_license
arezooh/COVID-19-prediction
200dd520626fd280bd69d2ba7799d593207b3d67
eb3edd1494b87abaf39c19e5fc0cdb10604e12e3
refs/heads/main
2023-04-15T06:17:23.817219
2021-04-26T21:49:46
2021-04-26T21:49:46
313,310,295
1
1
null
null
null
null
UTF-8
Python
false
false
87,103
py
from makeHistoricalData import makeHistoricalData from models import GBM, GLM, KNN, NN, MM_GLM, GBM_grid_search, NN_grid_search, MM_NN import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl mpl.use('Agg') from sklearn.metrics import mean_squared_error, mean_absolute_error from sklearn.model_selection import train_test_split import seaborn as sns from matplotlib import colors as mcolors from pexecute.process import ProcessLoom import time from sys import argv import sys from math import floor, sqrt import os # import dill import glob import shutil import zipfile import email, smtplib, ssl from email import encoders from email.mime.base import MIMEBase from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText import mimetypes import subprocess as cmd import shelve import matplotlib.pyplot as plt import random import datetime import statistics import tensorflow as tf from numpy.random import seed seed(1) tf.random.set_seed(1) plt.rcParams.update({'figure.max_open_warning': 0}) pivot = 'country' r = 6 * 7 # the following day to predict numberOfSelectedCounties = -1 target_mode = 'weeklyaverage' spatial_mode = 'country' numberOfSelectedCountiesname = 1535 push_flag = 0 # set the size of test set. validation and train sets will have 30/70 proportion from the remaining days (optional), # the default values are |test_set| = |val_set| = r, |train_set| = the remaining days test_size = 21 # maxHistory = 2 * 7 maxHistory = min((19 * 7 - ((2*r) -7) - ((int(argv[1]) - 6) * 7)), 5 * 7) maxC = 100 # maximum number of covariates to be considered data_address = (os.path.dirname(os.path.dirname(os.path.dirname(os.getcwd())))+'/data/').replace('\\','/') ######################################################### split data to train, val, test def splitData(numberOfCounties, main_data, target, spatial_mode, mode): numberOfCounties = len(main_data['county_fips'].unique()) main_data = main_data.sort_values(by=['date of day t', 'county_fips']) target = target.sort_values(by=['date of day t', 'county_fips']) # we set the base number of days to the minimum number of days existed between the counties # and then compute the validation size for the non-default state. baseNumberOfDays = (main_data.groupby(['county_fips']).size()).min() test_size = r if target_mode == 'weeklyaverage': test_size = 1 val_size = 1 # val_size = round(0.3 * (baseNumberOfDays - test_size)) else: test_size = 21 # val_size = 1 # val_size = round(0.3 * (baseNumberOfDays - test_size)) if mode == 'val': # if not future_mode: # the default state # X_train_train = main_data.iloc[:-2 * (r * numberOfCounties), :].sort_values( # by=['county_fips', 'date of day t']) # X_train_val = main_data.iloc[-2 * (r * numberOfCounties):-(r * numberOfCounties), :].sort_values( # by=['county_fips', 'date of day t']) # X_test = main_data.tail(r * numberOfCounties).sort_values(by=['county_fips', 'date of day t']) # y_train_train = target.iloc[:-2 * (r * numberOfCounties), :].sort_values( # by=['county_fips', 'date of day t']) # y_train_val = target.iloc[-2 * (r * numberOfCounties):-(r * numberOfCounties), :].sort_values( # by=['county_fips', 'date of day t']) # y_test = target.tail(r * numberOfCounties).sort_values(by=['county_fips', 'date of day t']) # else: X_test = main_data.tail(test_size * numberOfCounties).copy() X_train_val = main_data.iloc[:-((test_size + r-1) * numberOfCounties)].tail(val_size * numberOfCounties).copy() X_train_train = main_data.iloc[:-((val_size + test_size + r-1) * numberOfCounties)].copy() y_test = target.tail(test_size * numberOfCounties).copy() y_train_val = target.iloc[:-((test_size + r-1) * numberOfCounties)].tail(val_size * numberOfCounties).copy() y_train_train = target.iloc[:-((val_size + test_size + r-1) * numberOfCounties)].copy() return X_train_train, X_train_val, X_test, y_train_train, y_train_val, y_test if mode == 'test': # if not future_mode: # X_train = main_data.iloc[:-(r * numberOfCounties), :].sort_values(by=['county_fips', 'date of day t']) # X_test = main_data.tail(r * numberOfCounties).sort_values(by=['county_fips', 'date of day t']) # y_train = target.iloc[:-(r * numberOfCounties), :].sort_values(by=['county_fips', 'date of day t']) # y_test = target.tail(r * numberOfCounties).sort_values(by=['county_fips', 'date of day t']) # else: X_test = main_data.tail(test_size * numberOfCounties).copy() X_train = main_data.iloc[:-((test_size + r-1) * numberOfCounties)].copy() y_test = target.tail(test_size * numberOfCounties).copy() y_train = target.iloc[:-((test_size + r-1) * numberOfCounties)] return X_train, X_test, y_train, y_test ########################################################### clean data def clean_data(data, numberOfSelectedCounties, spatial_mode): global numberOfDays data = data.sort_values(by=['county_fips', 'date of day t']) # select the number of counties we want to use # numberOfSelectedCounties = numberOfCounties if numberOfSelectedCounties == -1: numberOfSelectedCounties = len(data['county_fips'].unique()) using_data = data[(data['county_fips'] <= data['county_fips'].unique()[numberOfSelectedCounties - 1])] using_data = using_data.reset_index(drop=True) if (spatial_mode == 'county') or (spatial_mode == 'country'): if pivot == 'county': main_data = using_data.drop(['county_name', 'state_fips', 'state_name'], axis=1) # , 'date of day t' elif pivot == 'state': main_data = using_data.drop(['county_name'], axis=1) # , 'date of day t' elif pivot == 'country': main_data = using_data elif (spatial_mode == 'state'): main_data = using_data.drop(['county_name', 'state_name'], axis=1) numberOfDays = len(using_data['date of day t'].unique()) return main_data ########################################################### preprocess def preprocess(main_data, spatial_mode, validationFlag): if spatial_mode == 'state': target = pd.DataFrame(main_data[['date of day t', 'county_fips', 'state_fips', 'Target']]) else: target = pd.DataFrame(main_data[['date of day t', 'county_fips', 'Target']]) main_data = main_data.drop(['Target'], axis=1) # produce train, validation and test data if validationFlag: # validationFlag is 1 if we want to have a validation set and 0 otherwise X_train_train, X_train_val, X_test, y_train_train, y_train_val, y_test = splitData(numberOfSelectedCounties, main_data, target, spatial_mode, 'val') return X_train_train, X_train_val, X_test, y_train_train, y_train_val, y_test else: X_train, X_test, y_train, y_test = splitData(numberOfSelectedCounties, main_data, target, spatial_mode, 'test') return X_train, X_test, y_train, y_test ################################ MASE_denominator def mase_denominator(r, h, data, target_name, target_mode, numberOfSelectedCounties, spatial_mode): if numberOfSelectedCounties == -1: numberOfSelectedCounties = len(data['county_fips'].unique()) X_train_train, X_train_val, X_test, y_train_train_date, y_train_val_date, y_test_date = preprocess(data, spatial_mode, 1) train_val_df = (y_train_train_date.append(y_train_val_date).reset_index(drop=True)).sort_values(by=['date of day t', 'county_fips']) val_test_df = (train_val_df.append(y_test_date).reset_index(drop=True)).sort_values(by=['date of day t', 'county_fips']) train_val = train_val_df.tail(len(y_train_train_date)) train_train = train_val_df.iloc[:-r,:].tail(len(y_train_train_date)) test = val_test_df.tail(len(y_test_date)) train = val_test_df.iloc[:-r,:].tail(len(y_test_date)) train = train.tail(len(test)).rename(columns={'Target': 'train-Target', 'date of day t': 'train-date'}) train_train = train_train.tail(len(train_val)).rename( columns={'Target': 'train-Target', 'date of day t': 'train-date'}) train_val = train_val.rename(columns={'Target': 'val-Target', 'date of day t': 'val-date'}) test = test.rename(columns={'Target': 'test-Target', 'date of day t': 'test-date'}) df_for_train_val_MASE_denominator = pd.concat( [train_train.reset_index(drop=True), train_val.reset_index(drop=True)], axis=1) df_for_train_val_MASE_denominator['absolute-error'] = abs(df_for_train_val_MASE_denominator['val-Target'] - df_for_train_val_MASE_denominator['train-Target']) df_for_val_test_MASE_denominator = pd.concat([train.reset_index(drop=True), test.reset_index(drop=True)], axis=1) df_for_val_test_MASE_denominator['absolute-error'] = abs(df_for_val_test_MASE_denominator['test-Target'] - df_for_val_test_MASE_denominator['train-Target']) train_val_MASE_denominator = df_for_train_val_MASE_denominator['absolute-error'].mean() val_test_MASE_denominator = df_for_val_test_MASE_denominator['absolute-error'].mean() # we need to have mase denominator based on target values for whole country (sum of target for all counties) # this will be used for calculation of country error df_for_train_val_MASE_denominator_country = df_for_train_val_MASE_denominator.groupby(['val-date']).sum() df_for_train_val_MASE_denominator_country['absolute-error'] = abs( df_for_train_val_MASE_denominator_country['val-Target'] - df_for_train_val_MASE_denominator_country['train-Target']) df_for_val_test_MASE_denominator_country = df_for_val_test_MASE_denominator.groupby(['test-date']).sum() df_for_val_test_MASE_denominator_country['absolute-error'] = abs( df_for_val_test_MASE_denominator_country['test-Target'] - df_for_val_test_MASE_denominator_country['train-Target']) train_val_MASE_denominator_country = df_for_train_val_MASE_denominator_country['absolute-error'].mean() val_test_MASE_denominator_country = df_for_val_test_MASE_denominator_country['absolute-error'].mean() return train_val_MASE_denominator, val_test_MASE_denominator, train_val_MASE_denominator_country, val_test_MASE_denominator_country ########################################################### run non-mixed methods in parallel def parallel_run(method, X_train_train, X_train_val, y_train_train, y_train_val, best_loss, c): y_prediction, y_prediction_train = None, None if method == 'GBM': y_prediction, y_prediction_train = GBM(X_train_train, X_train_val, y_train_train, best_loss['GBM']) elif method == 'GLM': y_prediction, y_prediction_train = GLM(X_train_train, X_train_val, y_train_train) elif method == 'KNN': y_prediction, y_prediction_train = KNN(X_train_train, X_train_val, y_train_train) elif method == 'NN': y_prediction, y_prediction_train = NN(X_train_train, X_train_val, y_train_train, y_train_val, best_loss['NN']) return y_prediction, y_prediction_train ########################################################### run mixed methods in parallel def mixed_parallel_run(method, X_train, X_test, y_train, y_test, best_loss): y_prediction, y_prediction_train = None, None if method == 'MM_GLM': y_prediction, y_prediction_train = MM_GLM(X_train, X_test, y_train) elif method == 'MM_NN': y_prediction, y_prediction_train = MM_NN(X_train, X_test, y_train, y_test, best_loss[method]) return y_prediction, y_prediction_train ########################################################### run algorithms in parallel except mixed models def run_algorithms(X_train_dict, X_val_dict, y_train_dict, y_val_dict, best_loss, c, spatial_mode, county_fips): from models import GBM, GLM, KNN, NN t1 = time.time() methods = ['GBM', 'GLM', 'KNN', 'NN'] X_train = {method: None for method in methods} X_val = {method: None for method in methods} y_train = {method: None for method in methods} y_val = {method: None for method in methods} loom = ProcessLoom(max_runner_cap=4) # add the functions to the multiprocessing object, loom if spatial_mode == 'country': for method in methods: X_train[method] = X_train_dict[method].drop(['county_fips', 'date of day t'], axis=1) X_val[method] = X_val_dict[method].drop(['county_fips', 'date of day t'], axis=1) y_train[method] = np.array(y_train_dict[method]['Target']).reshape(-1) y_val[method] = np.array(y_val_dict[method]['Target']).reshape(-1) loom.add_function(GBM, [X_train['GBM'], X_val['GBM'], y_train['GBM'], best_loss['GBM']], {}) loom.add_function(GLM, [X_train['GLM'], X_val['GLM'], y_train['GLM']], {}) loom.add_function(KNN, [X_train['KNN'], X_val['KNN'], y_train['KNN']], {}) loom.add_function(NN, [X_train['NN'], X_val['NN'], y_train['NN'], y_val['NN'], best_loss['NN']], {}) if spatial_mode == 'county': for method in methods: X_train[method] = X_train_dict[method] X_train[method] = X_train[method][X_train[method]['county_fips'] == county_fips].drop( ['county_fips', 'date of day t'], axis=1) X_val[method] = X_val_dict[method] X_val[method] = X_val[method][X_val[method]['county_fips'] == county_fips].drop( ['county_fips', 'date of day t'], axis=1) y_train[method] = y_train_dict[method] y_train[method] = y_train[method][y_train[method]['county_fips'] == county_fips].drop( ['county_fips', 'date of day t'], axis=1) y_val[method] = y_val_dict[method] y_val[method] = y_val[method][y_val[method]['county_fips'] == county_fips].drop( ['county_fips', 'date of day t'], axis=1) y_train[method] = np.array(y_train[method]['Target']).reshape(-1) y_val[method] = np.array(y_val[method]['Target']).reshape(-1) loom.add_function(GBM, [X_train['GBM'], X_val['GBM'], y_train['GBM'], best_loss['GBM']], {}) loom.add_function(GLM, [X_train['GLM'], X_val['GLM'], y_train['GLM']], {}) loom.add_function(KNN, [X_train['KNN'], X_val['KNN'], y_train['KNN']], {}) loom.add_function(NN, [X_train['NN'], X_val['NN'], y_train['NN'], y_val['NN'], best_loss['NN']], {}) # run the processes in parallel output = loom.execute() t2 = time.time() print('total time - run algorithms: ', t2 - t1) return output[0]['output'], output[1]['output'], output[2]['output'], output[3]['output'] ########################################################### run mixed models in parallel def run_mixed_models(X_train_MM, X_test_MM, y_train_MM, y_test_MM, best_loss): from models import GBM, GLM, KNN, NN, MM_GLM t1 = time.time() loom = ProcessLoom(max_runner_cap=2) # add the functions to the multiprocessing object, loom loom.add_function(MM_GLM, [X_train_MM['MM_GLM'], X_test_MM['MM_GLM'], y_train_MM['MM_GLM']], {}) loom.add_function(MM_NN, [X_train_MM['MM_NN'], X_test_MM['MM_NN'], y_train_MM['MM_NN'], y_test_MM['MM_NN'], best_loss['MM_NN']], {}) # run the processes in parallel output = loom.execute() t2 = time.time() print('total time - run mixed models: ', t2 - t1) return output[0]['output'], output[1]['output'] ####################################################################### update best loss def update_best_loss(model_type, spatial_mode, county_fips, best_loss, X_train_train_to_use, X_train_val_to_use, y_train_train, \ y_train_val, y_prediction_train, y_prediction, covariates, \ numberOfCovariates, max_c): h = 1 if model_type == 'mixed_model': loom = ProcessLoom(max_runner_cap=1) c = numberOfCovariates if numberOfCovariates > max_c: c = max_c y_predictions_test, y_predictions_train = [], [] if spatial_mode == 'county': # Construct the outputs for the testing dataset of the 'MM' methods y_predictions_test.extend( [y_prediction[county_fips]['GBM'][(h, c)], y_prediction[county_fips]['GLM'][(h, c)], y_prediction[county_fips]['KNN'][(h, c)], y_prediction[county_fips]['NN'][(h, c)]]) elif spatial_mode == 'country': y_predictions_test.extend([y_prediction['GBM'][(h, c)], y_prediction['GLM'][(h, c)], y_prediction['KNN'][(h, c)], y_prediction['NN'][(h, c)]]) y_prediction_test_np = np.array(y_predictions_test).reshape(len(y_predictions_test), -1) X_test_mixedModel = pd.DataFrame(y_prediction_test_np.transpose()) if spatial_mode == 'county': # Construct the outputs for the training dataset of the 'MM' methods y_predictions_train.extend( [y_prediction_train[county_fips]['GBM'][(h, c)], y_prediction_train[county_fips]['GLM'][(h, c)], y_prediction_train[county_fips]['KNN'][(h, c)], y_prediction_train[county_fips]['NN'][(h, c)]]) elif spatial_mode == 'country': y_predictions_train.extend([y_prediction_train['GBM'][(h, c)], y_prediction_train['GLM'][(h, c)], y_prediction_train['KNN'][(h, c)], y_prediction_train['NN'][(h, c)]]) y_prediction_train_np = np.array(y_predictions_train).reshape(len(y_predictions_train), -1) X_train_mixedModel = pd.DataFrame(y_prediction_train_np.transpose()) loom.add_function(NN_grid_search, [X_train_mixedModel, y_train_train, X_test_mixedModel, y_train_val], {}) best_loss_output = loom.execute() best_loss['MM_NN'] = best_loss_output[0]['output'] if model_type == 'none_mixed_model': print('check 292') loom = ProcessLoom(max_runner_cap=2) if spatial_mode == 'country': loom.add_function(GBM_grid_search, [X_train_train_to_use['GBM'][covariates], y_train_train, X_train_val_to_use['GBM'][covariates], y_train_val], {}) loom.add_function(NN_grid_search, [X_train_train_to_use['NN'][covariates], y_train_train, X_train_val_to_use['NN'][covariates], y_train_val], {}) if spatial_mode == 'county': loom.add_function(GBM_grid_search, [X_train_train_to_use[county_fips][h]['GBM'][covariates], y_train_train, X_train_val_to_use[county_fips][h]['GBM'][covariates], y_train_val], {}) loom.add_function(NN_grid_search, [X_train_train_to_use[county_fips][h]['NN'][covariates], y_train_train, X_train_val_to_use[county_fips][h]['NN'][covariates], y_train_val], {}) best_loss_output = loom.execute() best_loss['GBM'], best_loss['NN'] = best_loss_output[0]['output'], best_loss_output[1]['output'] return best_loss ########################################################### def get_best_loss_mode(counties_best_loss_list): methods_with_loss = ['GBM', 'NN', 'MM_NN'] best_loss = {method: None for method in methods_with_loss} for method in methods_with_loss: counties_best_loss_array = np.array(counties_best_loss_list[method]) # when we choose number_of_selected_counties smaller than number of different losses # some times its not possibel to find mode if len(np.unique(counties_best_loss_array)) == len(counties_best_loss_array): best_loss[method] = random.choice(counties_best_loss_list[method]) else: best_loss[method] = statistics.mode(counties_best_loss_list[method]) return (best_loss) ########################################################### generate data for best h and c def generate_data(h, numberOfCovariates, covariates_names, numberOfSelectedCounties): data = makeHistoricalData(h, r, test_size, 'confirmed', 'mrmr', spatial_mode, target_mode, data_address, future_features, pivot, int(argv[1])) data = clean_data(data, numberOfSelectedCounties, spatial_mode) X_train, X_test, y_train, y_test = preprocess(data, spatial_mode, 0) covariates = [covariates_names[i] for i in range(numberOfCovariates)] best_covariates = force_features.copy() indx_c = 0 for covar in covariates: # iterate through sorted covariates indx_c += 1 for covariate in data.columns: # add all historical covariates of this covariate and create a feature pure_name = covar.split(' ')[0] cov_temp = covariate.split(' ')[0] if pure_name == cov_temp and pure_name not in force_features: best_covariates.append(covariate) best_covariates += ['county_fips', 'date of day t'] # we add this two columns to use when we want break data to county_data X_train = X_train[best_covariates] X_test = X_test[best_covariates] return X_train, X_test, y_train, y_test ########################################################### plot validation results def plot_results(row, col, numberOfCovariates, methods, history, errors, mode): mpl.style.use('seaborn') plt.rc('font', size=20) fig, ax = plt.subplots(row, col, figsize=(40, 40)) colors = dict(mcolors.BASE_COLORS, **mcolors.CSS4_COLORS) # Sort colors by hue, saturation, value and name. by_hsv = sorted((tuple(mcolors.rgb_to_hsv(mcolors.to_rgba(color)[:3])), name) for name, color in colors.items()) sorted_names = [name for hsv, name in by_hsv] colorset = set(sorted_names[::-1]) for item in colorset: if ('white' in item) or ('light' in item): colorset = colorset - {item} colors = list(colorset - {'lavenderblush', 'aliceblue', 'lavender', 'azure', 'mintcream', 'honeydew', 'beige', 'ivory', 'snow', 'w'}) # colors = ['tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan', # 'tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple'] ind = 0 for i in range(row): for j in range(col): color = 0 for h in history: errors_h = [] # x label: covariates covariates_list = [c for c in range(1, numberOfCovariates + 1)][:maxC] # y label: errors for c in range(1, numberOfCovariates + 1): errors_h.append(errors[methods[ind]][(h, c)]) if c == maxC: break ax[i, j].plot(covariates_list, errors_h, colors[color * 2], label="h = " + str(h)) ax[i, j].set_xlabel("Number Of Covariates") ax[i, j].set_ylabel(mode) ax[i, j].set_title(str(methods[ind])) ax[i, j].legend() ax[i, j].set_xticks(covariates_list) color += 1 ind += 1 address = validation_address + 'plots_of_errors/' if not os.path.exists(address): os.makedirs(address) plt.savefig(address + str(mode) + '.pdf') ########################################################### plot table for final results def plot_table(table_data, col_labels, row_labels, name, mode): fig = plt.figure() # dpi=50 figsize=(30, 10) ax = fig.add_subplot(111) colWidths = [0.1, 0.1, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25] address = '' if mode == 'val': # colWidths.pop() address = validation_address + 'tables/' if not os.path.exists(address): os.makedirs(address) else: address = test_address + 'tables/' if not os.path.exists(address): os.makedirs(address) the_table = plt.table(cellText=table_data, colWidths=colWidths, rowLabels=row_labels, colLabels=col_labels, loc='center', cellLoc='center') the_table.auto_set_font_size(False) the_table.set_fontsize(9) the_table.scale(1.5, 1.5) ax.axis('off') plt.savefig(address + name + '.pdf', bbox_inches='tight') csv_table = pd.DataFrame(table_data, columns=col_labels) csv_table['method'] = list(row_labels) csv_table.to_csv(address + name +'.csv', index = False) ########################################################### plotting mean errors (first error) def plot_targets(method, x_axis, df, main_address): mpl.style.use('default') plt.rc('font', size=40) fig, ax = plt.subplots(figsize=(60, 20)) ax.plot(x_axis, df['average of targets'], label='Target') ax.plot(x_axis, df['average of predictions'], label='Prediction') ax.set_xlabel('date', fontsize=40) ax.set_ylabel('real and predicted targets for ' + str(method), fontsize=40) ax.legend() address = main_address + 'procedure_of_prediction/' if not os.path.exists(address): os.makedirs(address) plt.savefig(address + 'procedure_' + str(method) + '.pdf') ########################################################### box plots and violin plots def box_violin_plot(X, Y, figsizes, fontsizes, name, address): mpl.style.use('default') # box plot fig = plt.figure(figsize=figsizes['box']) plt.rc('font', size=fontsizes['box']) plt.locator_params(axis='y', nbins=20) sns.boxplot(x=X, y=Y) plt.savefig(address + str(name) + 'boxplot.pdf') plt.close() # violin plot fig = plt.figure(figsize=figsizes['violin']) plt.rc('font', size=fontsizes['violin']) plt.locator_params(axis='y', nbins=20) sns.violinplot(x=X, y=Y) plt.savefig(address + str(name) + 'violinplot.pdf') plt.close() ########################################################### plot prediction and real values def real_prediction_plot(df, r, test_size, target_name, target_mode, best_h, maxHistory, spatial_mode, methods, future_mode, numberOfSelectedCounties): address = test_address + 'plots_of_real_prediction_values/' if not os.path.exists(address): os.makedirs(address) if target_mode == 'weeklyaverage': label_prefix = 'Weekly averaged \n n' elif target_mode == 'weeklymovingaverage': label_prefix = 'weekly moving averaged \n n' elif target_mode == 'differential': label_prefix = 'differential \n n' elif target_mode == 'logarithmic': label_prefix = 'logarithmic \n n' elif target_mode == 'cumulative': label_prefix = 'cumulative \n n' else: label_prefix = 'N' if target_name == 'confirmed': label_suffix = 'cases' else: label_suffix = 's' for method in methods: method_prediction_df = df[method] # this df contain real and predicted target values if pivot == 'county': county_name_df = pd.read_csv(data_address + 'fixed-data.csv')[ ['county_fips', 'county_name']] # we need county names for plot label elif pivot == 'state': county_name_df = pd.read_csv(data_address + 'fixed-data.csv')[ ['state_fips', 'state_name']] # we need county names for plot label county_name_df.rename(columns={'state_fips': 'county_fips', 'state_name': 'county_name'}, inplace=True) county_name_df.drop_duplicates(subset=["county_fips", "county_name"], keep='first', inplace=True) df_for_plot = pd.merge(method_prediction_df, county_name_df, how='left') if target_mode != 'weeklyaverage': df_for_plot['date'] = df_for_plot['date of day t'].apply( lambda x: datetime.datetime.strptime(x, '%m/%d/%y') + datetime.timedelta(days=r)) df_for_plot['weekday'] = df_for_plot['date'].apply(lambda x: x.weekday()) df_for_plot['date'] = df_for_plot['date'].apply(lambda x: datetime.datetime.strftime(x, '%m/%d/%y')) else: df_for_plot['date'] = df_for_plot['date of day t'].apply(lambda x: 'week ' + str(x + r)) df_for_plot.loc[df_for_plot['prediction'] < 0, 'prediction'] = 0 counties = [] for i in [36061, 40117, 51059]: # newyork + two random county if len(df_for_plot[df_for_plot['county_fips'] == i]) > 0: counties.append(i) else: counties = counties + random.sample(df_for_plot['county_fips'].unique().tolist(), 1) length = list() for county in counties: length.append(len(df_for_plot[df_for_plot['county_fips'] == county])) plot_with = max(length) + 20 fig, ax = plt.subplots(figsize=(plot_with, 75)) mpl.style.use('default') plt.rc('font', size=45) for index, county in enumerate(counties): plt.subplot(311 + index) county_df_for_plot = df_for_plot.loc[df_for_plot['county_fips'] == county] plt.plot(county_df_for_plot['date'][:-(r - 1)], county_df_for_plot['prediction'].round()[:-(r - 1)], label='Train prediction', color='forestgreen', linewidth=2.0) plt.plot(county_df_for_plot['date'][-r:], county_df_for_plot['prediction'].round()[-r:], label='Test prediction', color='dodgerblue', linewidth=2.0) plt.plot(county_df_for_plot['date'], county_df_for_plot['Target'].round(), label='Real values', color='black', linewidth=2.0) # if target_mode != 'cumulative': # plt.plot(county_df_for_plot['date'][-r:],county_df_for_plot['Target'].round()[-(2*r):-r],'-.',color='gray',label='Naive prediction',linewidth=2.0) if target_mode != 'weeklyaverage': county_df_for_plot = county_df_for_plot.reset_index(drop=True) weekend_index = county_df_for_plot[county_df_for_plot['weekday'].isin([5, 6])].index for i in weekend_index: plt.gca().get_xticklabels()[i].set_color("red") plt.xticks(rotation=65) fig.subplots_adjust(hspace=0.4) plt.ylabel(label_prefix + 'umber of ' + target_name + label_suffix) countyname = df_for_plot.loc[df_for_plot['county_fips'] == county, 'county_name'].unique() plt.title(df_for_plot.loc[df_for_plot['county_fips'] == county, 'county_name'].unique()[0]) plt.legend() plt.xlabel('Date') plt.savefig(address + str(method) + ' real_prediction_values.pdf') plt.close() ########################################################### get errors for each model in each h and c def get_errors(h, c, method, y_prediction, y_prediction_train, y_test_date, y_train_date, regular_data, MASE_denominator, numberOfSelectedCounties, target_name, mode): # y_test_date and y_train_date are a dataframes with columns ['date of day t', 'county_fips', 'Target'] # set negative predictions to zero y_prediction[y_prediction < 0] = 0 # country_errors show error for prediction of target variable for whole country country_errors = {error: None for error in ['meanAbsoluteError', 'percentageOfAbsoluteError', 'adj_r_squared', 'second_error', 'MASE']} # state_errors = {state_fips: {error: None # for error in ['meanAbsoluteError', 'percentageOfAbsoluteError', 'adj_r_squared', 'second_error', 'MASE']} # for state_fips in [1, 2]} # next 8 lines sort y_prediction and y_prediction_train like output of preprocess function # we need to sort predictions because in county and state mode their order may be cluttered y_train_date['prediction'] = y_prediction_train y_train_date = y_train_date.sort_values(by=['county_fips', 'date of day t']) y_prediction_train = list(y_train_date['prediction']) y_train_date = y_train_date.drop(['prediction'], axis=1) y_test_date['prediction'] = y_prediction y_test_date = y_test_date.sort_values(by=['county_fips', 'date of day t']) y_prediction = list(y_test_date['prediction']) y_test_date = y_test_date.drop(['prediction'], axis=1) y_test = np.array(y_test_date['Target']).reshape(-1) if numberOfSelectedCounties == -1: numberOfSelectedCounties = len(y_test_date['county_fips'].unique()) # we need data with regular target to return modified target to its original state # in validation mode we read regular data in main function and passed to get_error to avoid redundancy # but in test mode its not possible because each method has different h(best_h) if mode == 'test': regular_data = makeHistoricalData(h, r, test_size, target_name, 'mrmr', spatial_mode, 'regular', data_address, future_features, pivot, int(argv[1])) regular_data = clean_data(regular_data, numberOfSelectedCounties, spatial_mode) temp_1, temp_2, regular_y_train_date, regular_y_test_date = preprocess(regular_data, spatial_mode, 0) if mode == 'val': temp_1, temp_2, temp_3, regular_y_train_date, regular_y_test_date, temp_4 = preprocess(regular_data, spatial_mode, 1) # if target mode is cumulative we need to return the target variable to its original state if target_mode == 'cumulative': cumulative_data = y_train_date.append(y_test_date) cumulative_data['prediction'] = list(y_train_date['Target']) + list(y_prediction) cumulative_data = cumulative_data.sort_values(by=['date of day t', 'county_fips']) reverse_dates = cumulative_data['date of day t'].unique()[-(r + 1):][::-1] for index in range(len(reverse_dates)): date = reverse_dates[index] past_date = reverse_dates[index + 1] cumulative_data.loc[cumulative_data['date of day t'] == date, 'Target'] = list( np.array(cumulative_data.loc[cumulative_data['date of day t'] == date, 'Target']) - np.array( cumulative_data.loc[cumulative_data['date of day t'] == past_date, 'Target'])) cumulative_data.loc[cumulative_data['date of day t'] == date, 'prediction'] = list( np.array(cumulative_data.loc[cumulative_data['date of day t'] == date, 'prediction']) - np.array( cumulative_data.loc[cumulative_data['date of day t'] == past_date, 'prediction'])) if index == len(reverse_dates) - 2: break cumulative_data = cumulative_data.sort_values(by=['date of day t', 'county_fips']) y_test_date = cumulative_data.tail(r * numberOfSelectedCounties) y_test = np.array(y_test_date['Target']).reshape(-1) y_prediction = np.array(cumulative_data.tail(r * numberOfSelectedCounties)['prediction']).reshape(-1) # if target mode is logarithmic we need to return the target variable to its original state if target_mode == 'logarithmic': y_test = np.array(np.round(np.exp(y_test) - 1)).reshape(-1) y_test_date['Target'] = list(np.round(np.exp(y_test_date['Target']) - 1)) y_prediction = np.array(np.exp(y_prediction) - 1).reshape(-1) # if target mode is moving average we need to return the target variable to its original state if target_mode == 'weeklymovingaverage': # past values of targets that will be use for return the weeklymovingaverage target (predicted) # to original state to calculate errors regular_real_predicted_target = regular_y_train_date.append( regular_y_test_date) # dataframe with columns ['date of day t', 'county_fips', 'Target'] regular_real_predicted_target['prediction'] = list(regular_y_train_date['Target']) + list(y_prediction) regular_real_predicted_target = regular_real_predicted_target.sort_values(by=['date of day t', 'county_fips']) regular_real_predicted_target = regular_real_predicted_target.tail((r + 6) * numberOfSelectedCounties) dates = regular_real_predicted_target['date of day t'].unique() for index in range(len(dates)): ind = index + 6 date = dates[ind] regular_real_predicted_target.loc[ regular_real_predicted_target['date of day t'] == date, 'prediction'] = list(7 * np.array( regular_real_predicted_target.loc[ regular_real_predicted_target['date of day t'] == date, 'prediction'])) for i in range(6): past_date = dates[ind - (i + 1)] regular_real_predicted_target.loc[ regular_real_predicted_target['date of day t'] == date, 'prediction'] = list(np.array( regular_real_predicted_target.loc[ regular_real_predicted_target['date of day t'] == date, 'prediction']) - np.array( regular_real_predicted_target.loc[ regular_real_predicted_target['date of day t'] == past_date, 'prediction'])) if ind == len(dates) - 1: break y_test_date = regular_real_predicted_target.tail(r * numberOfSelectedCounties) y_test = np.array(y_test_date['Target']).reshape(-1) y_prediction = np.array(regular_real_predicted_target.tail(r * numberOfSelectedCounties)['prediction']).reshape( -1) # if target mode is differential we need to return the target variable to its original state if target_mode == 'differential': # past values of targets that will be use for return the differential target (predicted) # to original state to calculate errors regular_real_predicted_target = regular_y_train_date.append( regular_y_test_date) # dataframe with columns ['date of day t', 'county_fips', 'Target'] regular_real_predicted_target['prediction'] = list(regular_y_train_date['Target']) + list(y_prediction) regular_real_predicted_target = regular_real_predicted_target.sort_values(by=['date of day t', 'county_fips']) regular_real_predicted_target = regular_real_predicted_target.tail((r + 1) * numberOfSelectedCounties) dates = regular_real_predicted_target['date of day t'].unique() for index in range(len(dates)): date = dates[index + 1] past_date = dates[index] regular_real_predicted_target.loc[ regular_real_predicted_target['date of day t'] == date, 'prediction'] = list(np.array( regular_real_predicted_target.loc[ regular_real_predicted_target['date of day t'] == date, 'prediction']) + np.array( regular_real_predicted_target.loc[ regular_real_predicted_target['date of day t'] == past_date, 'prediction'])) if index == len(dates) - 2: break y_test_date = regular_real_predicted_target.tail(r * numberOfSelectedCounties) y_test = np.array(y_test_date['Target']).reshape(-1) y_prediction = np.array(regular_real_predicted_target.tail(r * numberOfSelectedCounties)['prediction']).reshape( -1) # make predictions rounded to their closest number y_prediction = np.array(y_prediction) if target_mode != 'weeklyaverage': y_prediction = np.round(y_prediction) # for calculating the country error we must sum up all the county's target values to get country target value y_test_date['prediction'] = y_prediction # y_test_date['state_fips'] = y_test_date['county_fips'].map(lambda x: int(str(x)[:2]) if len(str(x)) == 5 else int(str(x)[:1])) # print(150 * '*') # print(y_test_date.shape) # print(y_test_date.columns.values) # print(y_test_date.tail()) # print(150 * '*') y_test_date_country = y_test_date.groupby(['date of day t']).sum() y_test_country = np.array(y_test_date_country['Target']).reshape(-1) y_prediction_country = np.array(y_test_date_country['prediction']).reshape(-1) ############################################################# # write outputs into a file orig_stdout = sys.stdout f = open(env_address + 'out.txt', 'a') sys.stdout = f meanAbsoluteError = mean_absolute_error(y_test, y_prediction) print("Mean Absolute Error of ", method, " for h =", h, "and #covariates =", c, ": %.2f" % meanAbsoluteError) sumOfAbsoluteError = sum(abs(y_test - y_prediction)) percentageOfAbsoluteError = np.mean((abs(y_test - y_prediction)/y_test)*100) #(sumOfAbsoluteError / sum(y_test)) * 100 # we change zero targets into 1 and add 1 to their predictions y_test_temp = y_test.copy() y_test_temp[y_test == 0] = 1 y_prediction_temp = y_prediction.copy() y_prediction_temp[y_test == 0] += 1 # meanPercentageOfAbsoluteError = sum((abs(y_prediction_temp - y_test_temp) / y_test_temp) * 100) / len(y_test) print("Percentage of Absolute Error of ", method, " for h =", h, "and #covariates =", c, ": %.2f" % percentageOfAbsoluteError) rootMeanSquaredError = sqrt(mean_squared_error(y_test, y_prediction)) print("Root Mean Squared Error of ", method, " for h =", h, "and #covariates =", c, ": %.2f" % rootMeanSquaredError) second_error = sum(abs(y_prediction - y_test)) ### compute adjusted R squared error # SS_Residual = sum((y_test - y_prediction.reshape(-1)) ** 2) # SS_Total = sum((y_test - np.mean(y_test)) ** 2) # r_squared = 1 - (float(SS_Residual)) / SS_Total adj_r_squared = 1# - (1 - r_squared) * (len(y_test) - 1) / (len(y_test) - c - 1) print("Adjusted R Squared Error of ", method, " for h =", h, "and #covariates =", c, ": %.2f" % adj_r_squared) MASE_numerator = sum(abs(y_prediction_temp - y_test_temp)) / len(y_test) MASE = MASE_numerator / MASE_denominator['county'] print("MASE Error of ", method, " for h =", h, "and #covariates =", c, ": %.2f" % MASE) print("-----------------------------------------------------------------------------------------") # calculate whole country error country_errors['meanAbsoluteError'] = mean_absolute_error(y_test_country, y_prediction_country) sumOfAbsoluteError = sum(abs(y_test_country - y_prediction_country)) country_errors['percentageOfAbsoluteError'] = np.mean((abs(y_test - y_prediction)/y_test)*100) #(sumOfAbsoluteError / sum(y_test_country)) * 100 y_test_temp_country = y_test_country.copy() y_test_temp_country[y_test_country == 0] = 1 y_prediction_temp_country = y_prediction_country.copy() y_prediction_temp_country[y_test_country == 0] += 1 # meanPercentageOfAbsoluteError = sum((abs(y_prediction_temp - y_test_temp) / y_test_temp) * 100) / len(y_test) ### compute adjusted R squared error # SS_Residual = sum((y_test_country - y_prediction_country.reshape(-1)) ** 2) # SS_Total = sum((y_test_country - np.mean(y_test_country)) ** 2) # r_squared = 1 - (float(SS_Residual)) / SS_Total if len(y_test_country) - c - 1 > 0: country_errors['adj_r_squared'] = 1 # - (1 - r_squared) * (len(y_test_country) - 1) / ( #len(y_test_country) - c - 1) else: country_errors['adj_r_squared'] = 1 MASE_numerator = sum(abs(y_prediction_temp_country - y_test_temp_country)) / len(y_test_country) country_errors['MASE'] = MASE_numerator / MASE_denominator['country'] country_errors['second_error'] = (sum(y_prediction_country - y_test_country) / sum(y_test_country)) * 100 # save outputs in 'out.txt' sys.stdout = orig_stdout f.close() # for the test mode we compute some additional errors, we need 'date of day t' column so we use the main dataframe # we add our prediction, the difference between prediction and target ('error' column), # the absolute difference between prediction and target ('absolute_error' column), # the precentage of this difference (('percentage_error' column) -> we change zero targets into 1 and add 1 to their predictions), # and second_error as follows and save these in 'all_errors' file # then we compute the average of percentage_errors (and other values) in each day and save them in # 'first_error' file if mode == 'test': # write outputs into a file orig_stdout = sys.stdout f = open(env_address + 'out.txt', 'a') sys.stdout = f first_error_address = test_address + 'averages_of_errors_in_each_day/' all_errors_address = test_address + 'all_errors/' + str(method) + '/' if not os.path.exists(first_error_address): os.makedirs(first_error_address) if not os.path.exists(all_errors_address): os.makedirs(all_errors_address) dataframe = pd.DataFrame(y_test_date, copy=True) dataframe['prediction'] = y_prediction dataframe['error'] = y_prediction - y_test dataframe['absoulte_error'] = abs(y_prediction - y_test) y_test_temp = y_test.copy() y_test_temp[y_test == 0] = 1 y_prediction_temp = y_prediction.copy() y_prediction_temp[y_test == 0] += 1 dataframe['percentage_error'] = ((abs(y_prediction_temp - y_test_temp)) / y_test_temp) * 100 second_error = (sum(dataframe['error']) / sum(y_test)) * 100 dataframe.to_csv(all_errors_address + 'all_errors_' + str(method) + '.csv') box_violin_plot(dataframe['date of day t'], dataframe['percentage_error'], figsizes={'box': (60, 30), 'violin': (100, 50)}, fontsizes={'box': 40, 'violin': 60}, name=str(method) + '_percentage_errors_in_each_day_', address=all_errors_address) box_violin_plot(dataframe['date of day t'], dataframe['error'], figsizes={'box': (20, 10), 'violin': (50, 30)}, fontsizes={'box': 15, 'violin': 30}, name=str(method) + '_pure_errors_in_each_day_', address=all_errors_address) dataframe['county_fips'] = dataframe['county_fips'].astype(float) if numberOfSelectedCounties == -1: numberOfSelectedCounties = len(dataframe['county_fips']) first_error = pd.DataFrame((dataframe.groupby(['date of day t']).sum() / numberOfSelectedCounties)) first_error.columns = ['fips', 'average of targets', 'average of predictions', 'average of errors', 'average of absoulte_errors', 'average of percentage_errors'] first_error = first_error.drop(['fips'], axis=1) first_error.to_csv(first_error_address + 'first_error_' + str(method) + '.csv') plot_targets(method, first_error.index, first_error, first_error_address) # save outputs in 'out.txt' sys.stdout = orig_stdout f.close() return meanAbsoluteError, percentageOfAbsoluteError, adj_r_squared, second_error, MASE, country_errors ########################################################### push results to github def push(message): if push_flag == 1: try: cmd.run("git pull", check=True, shell=True) print("everything has been pulled") cmd.run("git add .", check=True, shell=True) cmd.run(f"git commit -m '{message}'", check=True, shell=True) cmd.run("git push", check=True, shell=True) print('pushed.') except: print('could not push') ########################################################### zip some of the results def make_zip(selected_for_email, subject): for source_root in selected_for_email: for i in [x[0] for x in os.walk(source_root)]: address = mail_address + '//' + '/'.join(i.split('/')[3:]) # print(address) if not os.path.exists(address): os.makedirs(address) for pdffile in glob.iglob(os.path.join(i, "*.pdf")): shutil.copy(pdffile, address) shutil.make_archive(subject, 'zip', mail_address) ########################################################### mail some of the results def send_email(*attachments): subject = "Server results" body = " " sender_email = "[email protected]" receiver_email = ["[email protected]"] # ,"[email protected]" CC_email = [] # "[email protected]" password = "S.123456.S" # Create a multipart message and set headers message = MIMEMultipart() message["From"] = sender_email message["To"] = ','.join(receiver_email) # receiver_email message["Subject"] = subject message["CC"] = ','.join(CC_email) # Recommended for mass emails # Add body to email message.attach(MIMEText(body, "plain")) # Add attachments for file_name in attachments: f = open(file_name, 'rb') ctype, encoding = mimetypes.guess_type(file_name) if ctype is None or encoding is not None: ctype = 'application/octet-stream' maintype, subtype = ctype.split('/', 1) # in case of a text file if maintype == 'text': part = MIMEText(f.read(), _subtype=subtype) # any other file else: part = MIMEBase(maintype, subtype) part.set_payload(f.read()) encoders.encode_base64(part) part.add_header('Content-Disposition', 'attachment; filename="%s"' % os.path.basename(file_name)) message.attach(part) f.close() text = message.as_string() # Log in to server using secure context and send email context = ssl.create_default_context() with smtplib.SMTP_SSL("smtp.gmail.com", 465, context=context) as server: server.login(sender_email, password) server.sendmail(sender_email, receiver_email + CC_email, text) ########################################################## flatten def flatten(data=None, h=None, c=None, method=None, covariates_list=None, state=1): if state == 1: result = [] for county_fips in data: result += list(data[county_fips][method][(h, c)]) elif state == 2: result = [] for county_fips in data: result += list(data[county_fips][(h, c)]) elif state == 3: result = pd.DataFrame(columns=covariates_list) for county_fips in data: result = pd.concat([result, data[county_fips][h][method][covariates_list]], ignore_index=True) elif state == 4: for county_fips in data: result = pd.DataFrame(columns=data[county_fips].columns.values) break for county_fips in data: result = pd.concat([result, data[county_fips]], ignore_index=True) elif state == 5: result = [] for county_fips in data: result += list(data[county_fips]) result = np.array(result) elif state == 6: result = [] for county_fips in data: result += list(data[county_fips][method]) return result ############################################################ # we define test as function to call it when h equal to half the maxHistory or when none of the models have improved in current h def test_process(h, r, test_size, target_name, spatial_mode, target_mode, best_h, best_c, historical_X_train, \ historical_X_test, historical_y_train_date, historical_y_test_date, best_loss, \ numberOfSelectedCounties, covariates_names, maxHistory, train_val_MASE_denominator, \ val_test_MASE_denominator, future_mode, test_address, env_address, mail_address): columns_table_t = ['best_h', 'best_c', 'mean absolute error', 'percentage of absolute error', 'adjusted R squared error', 'second error', 'mean absolute scaled error'] columns_table = ['best_h', 'best_c', 'mean absolute error', 'percentage of absolute error', 'adjusted R squared error', 'sum of absolute error', 'mean absolute scaled error'] methods = ['GBM', 'GLM', 'KNN', 'NN', 'MM_GLM', 'MM_NN'] none_mixed_methods = ['GBM', 'GLM', 'KNN', 'NN'] mixed_methods = ['MM_GLM', 'MM_NN'] df_for_prediction_plot = {method: None for method in methods} y_prediction = {} y_prediction_train = {} # run non-mixed methods on the whole training set with their best h and c X_train_dict, X_test_dict, y_train_dict, y_test_dict = {}, {}, {}, {} GBM, GLM, KNN, NN = run_algorithms(historical_X_train, historical_X_test, historical_y_train_date, historical_y_test_date, best_loss, 0, spatial_mode, None) y_prediction['GBM'], y_prediction_train['GBM'] = GBM y_prediction['GLM'], y_prediction_train['GLM'] = GLM y_prediction['KNN'], y_prediction_train['KNN'] = KNN y_prediction['NN'], y_prediction_train['NN'] = NN table_data = [] country_table_data = [] for method in none_mixed_methods: meanAbsoluteError, percentageOfAbsoluteError, adj_r_squared, second_error, meanAbsoluteScaledError, country_errors = get_errors( best_h[method]['MAPE'], best_c[method]['MAPE'], method, y_prediction[method], y_prediction_train[method], historical_y_test_date[method], historical_y_train_date[method], None, val_test_MASE_denominator[best_h[method]['MAPE']], numberOfSelectedCounties, target_name, mode='test') table_data.append([best_h[method]['MAPE'], best_c[method]['MAPE'], round(meanAbsoluteError, 2), round(percentageOfAbsoluteError, 2), round(adj_r_squared, 2), round(second_error, 2), round(meanAbsoluteScaledError, 2)]) country_table_data.append( [best_h[method]['MAPE'], best_c[method]['MAPE'], round(country_errors['meanAbsoluteError'], 2), round(country_errors['percentageOfAbsoluteError'], 2), round(country_errors['adj_r_squared'], 2), round(country_errors['second_error'], 2), round(country_errors['MASE'], 2)]) push('a new table added') for method in none_mixed_methods: method_real_pred_df = historical_y_train_date[method].append(historical_y_test_date[method]) prediction = list(y_prediction_train[method]) + list(y_prediction[method]) method_real_pred_df['prediction'] = prediction df_for_prediction_plot[method] = method_real_pred_df # generate data for non-mixed methods with the best h and c of mixed models and fit mixed models on them # (with the whole training set) y_predictions = {'MM_GLM': [], 'MM_NN': []} y_prediction = {} # table_data = [] X_train_MM_dict, X_test_MM_dict, y_train_MM_dict, y_test_MM_dict = {}, {}, {}, {} y_train, y_test = {}, {} y_test_date = {} for mixed_method in mixed_methods: X_train, X_test, y_train_date, y_test_date[mixed_method] = generate_data(best_h[mixed_method]['MAPE'], best_c[mixed_method]['MAPE'], covariates_names, numberOfSelectedCounties) y_test_date_temp = y_test_date[mixed_method] y_train[mixed_method] = y_train_date y_test[mixed_method] = y_test_date_temp mixed_model_covariates_names = list(X_train.columns) X_train_to_use = {method: None for method in methods} X_test_to_use = {method: None for method in methods} for method in none_mixed_methods: X_train_to_use[method] = X_train.copy() X_test_to_use[method] = X_test.copy() if method in models_to_log: # make temporal and some fixed covariates logarithmic negative_features = ['temperature', 'Retail', 'Grocery', 'Parks', 'Transit', 'Workplace', 'Residential'] for covar in mixed_model_covariates_names: if (' t' in covar) and (covar.split(' ')[0] not in negative_features) and ( covar not in ['county_fips', 'date of day t']): X_train_to_use[method][covar] = np.log((X_train_to_use[method][covar] + 1).astype(float)) X_test_to_use[method][covar] = np.log((X_test_to_use[method][covar] + 1).astype(float)) fix_log_list = ['total_population', 'population_density', 'area', 'median_household_income', 'houses_density', 'airport_distance', 'deaths_per_100000'] for covar in fix_log_list: if covar in mixed_model_covariates_names: X_train_to_use[method][covar] = np.log((X_train_to_use[method][covar] + 1).astype(float)) X_test_to_use[method][covar] = np.log((X_test_to_use[method][covar] + 1).astype(float)) X_train_dict[method] = X_train_to_use[method] X_test_dict[method] = X_test_to_use[method] y_train_dict[method] = y_train[mixed_method] y_test_dict[method] = y_test[mixed_method] GBM, GLM, KNN, NN = run_algorithms(X_train_dict, X_test_dict, y_train_dict, y_test_dict, best_loss, 0, spatial_mode, None) y_prediction['GBM'], y_prediction_train['GBM'] = GBM y_prediction['GLM'], y_prediction_train['GLM'] = GLM y_prediction['KNN'], y_prediction_train['KNN'] = KNN y_prediction['NN'], y_prediction_train['NN'] = NN y_predictions_test, y_predictions_train = [], [] # Construct the outputs for the testing dataset of the 'MM' methods y_predictions_test.extend([y_prediction['GBM'], y_prediction['GLM'], y_prediction['KNN'], y_prediction['NN']]) y_prediction_test_np = np.array(y_predictions_test).reshape(len(y_predictions_test), -1) X_test_mixedModel = pd.DataFrame(y_prediction_test_np.transpose()) # Construct the outputs for the training dataset of the 'MM' methods y_predictions_train.extend( [y_prediction_train['GBM'], y_prediction_train['GLM'], y_prediction_train['KNN'], y_prediction_train['NN']]) y_prediction_train_np = np.array(y_predictions_train).reshape(len(y_predictions_train), -1) X_train_mixedModel = pd.DataFrame(y_prediction_train_np.transpose()) X_train_MM_dict[mixed_method] = X_train_mixedModel X_test_MM_dict[mixed_method] = X_test_mixedModel y_train_MM_dict[mixed_method] = y_train[mixed_method] y_test_MM_dict[mixed_method] = y_test[mixed_method] y_test_MM_dict[mixed_method] = np.array(y_test_MM_dict[mixed_method]['Target']).reshape(-1) y_train_MM_dict[mixed_method] = np.array(y_train_MM_dict[mixed_method]['Target']).reshape(-1) # # save the entire session # filename = env_address + 'test.out' # my_shelf = shelve.open(filename, 'n') # 'n' for new # for key in dir(): # try: # my_shelf[key] = locals()[key] # except: # print('ERROR shelving: {0}'.format(key)) # my_shelf.close() # mixed model with linear regression and neural network MM_GLM, MM_NN = run_mixed_models(X_train_MM_dict, X_test_MM_dict, y_train_MM_dict, y_test_MM_dict, best_loss) y_prediction['MM_GLM'], y_prediction_train['MM_GLM'] = MM_GLM y_prediction['MM_NN'], y_prediction_train['MM_NN'] = MM_NN for mixed_method in mixed_methods: meanAbsoluteError, percentageOfAbsoluteError, adj_r_squared, second_error, meanAbsoluteScaledError, country_errors = get_errors( best_h[mixed_method]['MAPE'], best_c[mixed_method]['MAPE'], mixed_method, y_prediction[mixed_method], y_prediction_train[mixed_method], y_test_date[mixed_method], y_train[mixed_method], None, val_test_MASE_denominator[best_h[mixed_method]['MAPE']], numberOfSelectedCounties, target_name, mode='test') table_data.append([best_h[mixed_method]['MAPE'], best_c[mixed_method]['MAPE'], round(meanAbsoluteError, 2), round(percentageOfAbsoluteError, 2), round(adj_r_squared, 2), round(second_error, 2), round(meanAbsoluteScaledError, 2)]) country_table_data.append( [best_h[mixed_method]['MAPE'], best_c[mixed_method]['MAPE'], round(country_errors['meanAbsoluteError'], 2), round(country_errors['percentageOfAbsoluteError'], 2), round(country_errors['adj_r_squared'], 2), round(country_errors['second_error'], 2), round(country_errors['MASE'], 2)]) table_name = 'table_of_best_test_results' plot_table(table_data, columns_table_t, methods, table_name, mode='test') table_name = 'table_of_country_best_test_results' plot_table(country_table_data, columns_table_t, methods, table_name, mode='test') push('a new table added') for method in mixed_methods: method_real_pred_df = y_train[method].append(y_test[method]) prediction = list(y_prediction_train[method]) + list(y_prediction[method]) method_real_pred_df['prediction'] = prediction df_for_prediction_plot[method] = method_real_pred_df if pivot != 'country' : real_prediction_plot(df_for_prediction_plot, r, test_size, target_name, target_mode, best_h, maxHistory, spatial_mode, methods, future_mode, numberOfSelectedCounties) # mail the test results selected_for_email = [test_address + '/tables', test_address + '/all_errors/NN', test_address + '/all_errors/KNN', test_address + '/plots_of_real_prediction_values'] # zip_file_name = 'test results for h =' + str(maxHistory) + ' #counties=' + str(numberOfSelectedCountiesname) # make_zip(selected_for_email, zip_file_name) # # send_email(zip_file_name + '.zip') # # save the entire session # filename = env_address + 'test.out' # my_shelf = shelve.open(filename, 'n') # 'n' for new # for key in dir(): # try: # my_shelf[key] = locals()[key] # except: # print('ERROR shelving: {0}'.format(key)) # my_shelf.close() ########################################################### main def main(maxHistory): print("main started") history = [i for i in range(1, maxHistory + 1)] print("history: ", history) methods = ['GBM', 'GLM', 'KNN', 'NN', 'MM_GLM', 'MM_NN'] none_mixed_methods = ['GBM', 'GLM', 'KNN', 'NN'] # none_mixed_methods = ['GBM'] mixed_methods = ['MM_GLM', 'MM_NN'] target_name = 'confirmed' base_data = makeHistoricalData(0, r, test_size, target_name, 'mrmr', spatial_mode, target_mode, data_address, future_features, pivot, int(argv[1])) print("base data before clean shape: ", base_data.shape) base_data_before_clean_columns = base_data.columns.values base_data = clean_data(base_data, numberOfSelectedCounties, spatial_mode) print("base data after clean shape: ", base_data.shape) print("base data cleaned columns: ", [c for c in base_data_before_clean_columns if c not in base_data.columns.values]) covariates_names = list(base_data.columns) covariates_names.remove('Target') covariates_names.remove('date of day t') covariates_names.remove('county_fips') # covariates_names.remove('daily-country-test-per-1000 t') numberOfCovariates = len(covariates_names) print('number of covariates: ', numberOfCovariates) # print(covariates_names) y_prediction = {'GBM': {}, 'GLM': {}, 'KNN': {}, 'NN': {}, 'MM_GLM': {}, 'MM_NN': {}} y_prediction_train = {'GBM': {}, 'GLM': {}, 'KNN': {}, 'NN': {}, 'MM_GLM': {}, 'MM_NN': {}} error_names = ['MAPE', 'MAE', 'adj-R2', 'sec', 'MASE'] complete_error_names = {'MAPE': 'Percentage Of Absolute Error', 'MAE': 'Mean Absolute Error', 'MASE': 'Mean Absolute Scaled Error', 'adj-R2': 'Adjusted R Squared Error', 'sec': 'Sum Of Absolute Error'} validation_errors = {error: {method: {} for method in methods} for error in error_names} minError = {method: {error: int(1e10) for error in error_names} for method in methods} best_h = {method: {error: 0 for error in error_names} for method in methods} best_c = {method: {error: 0 for error in error_names} for method in methods} # best_loss = {method: None for method in ['GBM', 'NN', 'MM_NN']} best_loss = {'GBM': 'poisson', 'MM_NN': 'MeanAbsoluteError', 'NN': 'poisson'} columns_table_t = ['best_h', 'best_c', 'mean absolute error', 'percentage of absolute error', 'adjusted R squared error', 'second error', 'mean absolute scaled error'] # table columns names columns_table = ['best_h', 'best_c', 'mean absolute error', 'percentage of absolute error', 'adjusted R squared error', 'sum of absolute error', 'mean absolute scaled error'] # table columns names train_val_MASE_denominator = {h: {key: None for key in ['county', 'country']} for h in history} val_test_MASE_denominator = {h: {key: None for key in ['county', 'country']} for h in history} historical_X_train = {} # X_train for best h and c historical_X_test = {} # X_test for best h and c historical_y_train = {} # y_train for best h and c historical_y_test = {} # y_test for best h and c historical_y_train_date = {} # y_train for best h and c with dates info historical_y_test_date = {} # y_test for best h and c with dates info parallel_outputs = {} for h in history: print(100 * "#") print("h =", h) data = makeHistoricalData(h, r, test_size, target_name, 'mrmr', spatial_mode, target_mode, data_address, future_features, pivot, int(argv[1])) print("data before clean shape:", data.shape) # pre-process and split the data, 'date's have dates info data = clean_data(data, numberOfSelectedCounties, spatial_mode) print("data after clean shape:", data.shape) X_train_train_to_use = {method: None for method in methods} X_train_val_to_use = {method: None for method in methods} X_test_to_use = {method: None for method in methods} X_train_train, X_train_val, X_test, y_train_train_date, y_train_val_date, y_test_date = preprocess(data, spatial_mode, 1) # print([c for c in data.columns.values if c not in X_train_train]) # print("X_train_train shape:", X_train_train.shape) # print("X_train_val shape:", X_train_val.shape) # print("X_test shape:", X_test.shape) # print("y_train_train_date shape:", y_train_train_date.shape) # print("y_train_val_date shape:", y_train_val_date.shape) # print("y_test_date shape:", y_test_date.shape) # print("y columns:", y_test_date.columns.values) if target_mode not in ['regular', 'weeklyaverage']: # we need regular data to return predicted values to first state regular_data = makeHistoricalData(h, r, test_size, target_name, 'mrmr', spatial_mode, 'regular', data_address, future_features, pivot, int(argv[1])) regular_data = clean_data(regular_data, numberOfSelectedCounties, spatial_mode) else: regular_data = data print("regular_data shape:", regular_data.shape) train_val_MASE_denominator[h]['county'], val_test_MASE_denominator[h]['county'], train_val_MASE_denominator[h][ 'country'], val_test_MASE_denominator[h]['country'] = mase_denominator(r, h, regular_data, target_name, target_mode, numberOfSelectedCounties, spatial_mode) # print(train_val_MASE_denominator) for method in methods: X_train_train_to_use[method] = X_train_train.copy() X_train_val_to_use[method] = X_train_val.copy() X_test_to_use[method] = X_test.copy() if method in models_to_log: # make temporal and some fixed covariates logarithmic negative_features = ['temperature', 'Retail', 'Grocery', 'Parks', 'Transit', 'Workplace', 'Residential'] for covar in covariates_names: if (' t' in covar) and (covar.split(' ')[0] not in negative_features): # print(covar) X_train_train_to_use[method][covar] = np.log( (X_train_train_to_use[method][covar] + 1).astype(float)) X_train_val_to_use[method][covar] = np.log( (X_train_val_to_use[method][covar] + 1).astype(float)) X_test_to_use[method][covar] = np.log((X_test_to_use[method][covar] + 1).astype(float)) fix_log_list = ['total_population', 'population_density', 'area', 'median_household_income', 'houses_density', 'airport_distance', 'deaths_per_100000'] for covar in fix_log_list: if covar in covariates_names: X_train_train_to_use[method][covar] = np.log( (X_train_train_to_use[method][covar] + 1).astype(float)) X_train_val_to_use[method][covar] = np.log( (X_train_val_to_use[method][covar] + 1).astype(float)) X_test_to_use[method][covar] = np.log((X_test_to_use[method][covar] + 1).astype(float)) y_train_date = (pd.DataFrame(y_train_train_date).append(pd.DataFrame(y_train_val_date))).reset_index(drop=True) y_train_train = np.array(y_train_train_date['Target']).reshape(-1) y_train_val = np.array(y_train_val_date['Target']).reshape(-1) y_test = np.array(y_test_date['Target']).reshape(-1) y_train = np.array( (pd.DataFrame(y_train_train).append(pd.DataFrame(y_train_val))).reset_index(drop=True)).reshape(-1) print("y_train shape:", y_train.shape) print("y_test shape:", y_test.shape) # find best loss # print(best_loss) # if (h == 1): # best_loss = update_best_loss('none_mixed_model', spatial_mode, None, best_loss, X_train_train_to_use, # X_train_val_to_use, \ # y_train_train, y_train_val, None, None, # data.columns.drop(['Target', 'date of day t', 'county_fips']), \ # numberOfCovariates, maxC) print(best_loss) print('force_features len: ', len(force_features)) covariates_list = [] covariates_list = force_features.copy() print('covariates_list len:', len(covariates_list)) # covariates are sorted by their correlation with Target. We start from the first important covariate and # in each loop we add the next important one loom = ProcessLoom(max_runner_cap=len(base_data.columns) * len(none_mixed_methods) + 5) indx_c = 0 for c in covariates_names: # iterate through sorted covariates indx_c += 1 # print('h=', h, ' c=', indx_c) for covariate in data.columns: # add all historical covariates of this covariate and create a feature pure_name = c.split(' ')[0] cov_temp = covariate.split(' ')[0] if pure_name == cov_temp and pure_name not in force_features: covariates_list.append(covariate) # print('covariates_list:', covariates_list) for method in none_mixed_methods: X_train_train_temp = X_train_train_to_use[method][covariates_list] X_train_val_temp = X_train_val_to_use[method][covariates_list] # print(X_train_train_temp.columns.values) # print('X_train_train_temp shape:', X_train_train_temp.shape) # print('X_train_val_temp shape:', X_train_val_temp.shape) # print('y_train_train shape:', y_train_train.shape) # print('y_train_val shape:', y_train_val.shape) loom.add_function(parallel_run, [method, X_train_train_temp, X_train_val_temp, y_train_train, y_train_val, best_loss, indx_c]) if indx_c >= maxC: break print('covariates_list len:', len(covariates_list)) print('covariates_list:', covariates_list) # run the processes in parallel parallel_outputs['non_mixed'] = loom.execute() ind = 0 for c in range(1, numberOfCovariates + 1): for method in none_mixed_methods: y_prediction[method][(h, c)], y_prediction_train[method][(h, c)] = parallel_outputs['non_mixed'][ind][ 'output'] ind += 1 if c == maxC: break # for method in none_mixed_methods: # print(y_prediction[method].keys()) # print(np.isnan(y_prediction[method][(h, 4)])) # print(y_prediction[method][(h, 4)].shape) # # save the entire session for each h and c # filename = env_address + 'validation.out' # my_shelf = shelve.open(filename, 'n') # 'n' for new # for key in dir(): # try: # my_shelf[key] = locals()[key] # except: # print('ERROR shelving: {0}'.format(key)) # my_shelf.close() # find best loss # if h == 1: # best_loss = update_best_loss('mixed_model', spatial_mode, None, best_loss, None, None, y_train_train, \ # y_train_val, y_prediction_train, y_prediction, None, \ # numberOfCovariates, maxC) print(best_loss) # initiate loom for parallel processing loom = ProcessLoom(max_runner_cap=len(base_data.columns) * len(mixed_methods) + 5) indx_c = 0 for c in range(1, numberOfCovariates + 1): indx_c += 1 for mixed_method in mixed_methods: y_predictions_test, y_predictions_train = [], [] # Construct the outputs for the testing dataset of the 'MM' methods y_predictions_test.extend([y_prediction['GBM'][(h, c)], y_prediction['GLM'][(h, c)], y_prediction['KNN'][(h, c)], y_prediction['NN'][(h, c)]]) y_prediction_test_np = np.array(y_predictions_test).reshape(len(y_predictions_test), -1) X_test_mixedModel = pd.DataFrame(y_prediction_test_np.transpose()) # Construct the outputs for the training dataset of the 'MM' methods y_predictions_train.extend([y_prediction_train['GBM'][(h, c)], y_prediction_train['GLM'][(h, c)], y_prediction_train['KNN'][(h, c)], y_prediction_train['NN'][(h, c)]]) y_prediction_train_np = np.array(y_predictions_train).reshape(len(y_predictions_train), -1) X_train_mixedModel = pd.DataFrame(y_prediction_train_np.transpose()) loom.add_function(mixed_parallel_run, [mixed_method, X_train_mixedModel, X_test_mixedModel, y_train_train, y_train_val, best_loss]) if c == maxC: break # run the processes in parallel parallel_outputs['mixed'] = loom.execute() ind = 0 for c in range(1, numberOfCovariates + 1): for mixed_method in mixed_methods: y_prediction[mixed_method][(h, c)], y_prediction_train[mixed_method][(h, c)] = \ parallel_outputs['mixed'][ind]['output'] y_prediction[mixed_method][(h, c)] = np.array(y_prediction[mixed_method][(h, c)]).ravel() y_prediction_train[mixed_method][(h, c)] = np.array(y_prediction_train[mixed_method][(h, c)]).ravel() ind += 1 if c == maxC: break # for method in mixed_methods: # print(y_prediction[method].keys()) # print(np.isnan(y_prediction[method][(h, 4)])) # print(y_prediction[method][(h, 4)].shape) # # save the entire session for each h and c # filename = env_address + 'validation.out' # my_shelf = shelve.open(filename, 'n') # 'n' for new # for key in dir(): # try: # my_shelf[key] = locals()[key] # except: # print('ERROR shelving: {0}'.format(key)) # my_shelf.close() number_of_improved_methods = 0 # we count number_of_improved_methods to run test if no method have improved in current h indx_c = 0 print('force_features len: ', len(force_features)) covariates_list = [] covariates_list = force_features.copy() covariates_list.append('county_fips') covariates_list.append('date of day t') print('covariates_list len: ', len(covariates_list)) # covariates_list = ['county_fips', 'date of day t'] # covariates_list.extend(force_features.copy()) for c in covariates_names: # iterate through sorted covariates indx_c += 1 for covariate in data.columns: # add all historical covariates of this covariate and create a feature pure_name = c.split(' ')[0] cov_temp = covariate.split(' ')[0] if pure_name == cov_temp and pure_name not in force_features: covariates_list.append(covariate) y_val = np.array(y_train_val_date['Target']).reshape(-1) for method in methods: X_train_train_temp = X_train_train_to_use[method][covariates_list] X_train_val_temp = X_train_val_to_use[method][covariates_list] X_test_temp = X_test_to_use[method][covariates_list] validation_errors['MAE'][method][(h, indx_c)], validation_errors['MAPE'][method][(h, indx_c)], \ validation_errors['adj-R2'][method][(h, indx_c)], validation_errors['sec'][method][(h, indx_c)], \ validation_errors['MASE'][method][(h, indx_c)], country_errors = \ get_errors(h, indx_c, method, y_prediction[method][(h, indx_c)], y_prediction_train[method][(h, indx_c)], y_train_val_date, y_train_train_date, regular_data, train_val_MASE_denominator[h], numberOfSelectedCounties, target_name, mode='val') # find best errors for error in error_names: if validation_errors[error][method][(h, indx_c)] < minError[method][error]: minError[method][error] = validation_errors[error][method][(h, indx_c)] best_h[method][error] = h # we should not consider force_features best_c[method][error] = indx_c if error == 'MAPE': number_of_improved_methods += 1 if error == 'MAPE' and method != 'MM_GLM' and method != 'MM_NN': historical_X_train[method] = (X_train_train_temp.append(X_train_val_temp)).reset_index( drop=True) historical_X_test[method] = X_test_temp historical_y_train[method] = y_train historical_y_test[method] = y_test historical_y_train_date[method] = y_train_date historical_y_test_date[method] = y_test_date if indx_c == maxC: break # # save the entire session for each h and c # filename = env_address + 'validation.out' # my_shelf = shelve.open(filename, 'n') # 'n' for new # for key in dir(): # try: # my_shelf[key] = locals()[key] # except: # print('ERROR shelving: {0}'.format(key)) # my_shelf.close() # # save the entire session for each h # filename = env_address + 'validation.out' # my_shelf = shelve.open(filename, 'n') # 'n' for new # for key in dir(): # try: # my_shelf[key] = locals()[key] # except: # print('ERROR shelving: {0}'.format(key)) # my_shelf.close() # push the file of outputs push('logs of h=' + str(h) + ' added') # we run test if none of models have improved in curent h or if we passed half of maxhistory if (number_of_improved_methods == -1): ########################### print('jump to test process') test_process(h, r, test_size, target_name, spatial_mode, target_mode, best_h, best_c, historical_X_train, \ historical_X_test, historical_y_train_date, historical_y_test_date, best_loss, \ numberOfSelectedCounties, covariates_names, maxHistory, train_val_MASE_denominator, \ val_test_MASE_denominator, future_mode, test_address, env_address, mail_address) # plot table for best results table_data = [] for method in methods: table_data.append([best_h[method]['MAPE'], best_c[method]['MAPE'], round(minError[method]['MAE'], 2), round(minError[method]['MAPE'], 2), round(minError[method]['adj-R2'], 2), round(minError[method]['sec'], 2), round(minError[method]['MASE'], 2)]) table_name = 'tabel_of_best_validation_results' plot_table(table_data, columns_table, methods, table_name, mode='val') # plot the results of methods on validation set for error in error_names: plot_results(3, 2, numberOfCovariates, methods, history, validation_errors[error], complete_error_names[error]) # mail the validation results selected_for_email = [validation_address] # zip_file_name = 'validation results for h =' + str(maxHistory) + ' #counties=' + str(numberOfSelectedCountiesname) # make_zip(selected_for_email, zip_file_name) # send_email(zip_file_name + '.zip') push('plots added') ################################################################################################################# test zone test_process(h, r, test_size, target_name, spatial_mode, target_mode, best_h, best_c, historical_X_train, \ historical_X_test, historical_y_train_date, historical_y_test_date, best_loss, \ numberOfSelectedCounties, covariates_names, maxHistory, train_val_MASE_denominator, \ val_test_MASE_denominator, future_mode, test_address, env_address, mail_address) print(best_loss) if __name__ == "__main__": begin = time.time() if maxHistory < 1: print('Maximum History Must Be Positive!') sys.exit() future_mode = False future_features = [] if r >= 28: # future_mode = True future_features = ['social-distancing-travel-distance-grade', 'social-distancing-encounters-grade', 'social-distancing-total-grade'] # sorted by their mrmr rank if target_mode in ['weeklyaverage','augmentedweeklyaverage']: r //= 7 maxHistory //= 7 test_size //= 7 force_features = [] force_mode = 0 # with force_mode we determine how many future feature have to be forced (be used in all eterations) if future_mode: for f in range(force_mode): force_features.append('future-' + future_features[f]) # make directories for saving the results validation_address = './' + str(argv[1]) + '/' + 'results/counties=' + str(numberOfSelectedCountiesname) + ' max_history=' + str( maxHistory) + '/validation/' test_address = './' + str(argv[1]) + '/' + 'results/counties=' + str(numberOfSelectedCountiesname) + ' max_history=' + str( maxHistory) + '/test/' env_address = './' + str(argv[1]) + '/' + 'results/counties=' + str(numberOfSelectedCountiesname) + ' max_history=' + str( maxHistory) + '/session_parameters/' mail_address = './' + str(argv[1]) + '/' + 'results/counties=' + str(numberOfSelectedCountiesname) + ' max_history=' + str( maxHistory) + '/email' if not os.path.exists(mail_address): os.makedirs(mail_address) if not os.path.exists(test_address): os.makedirs(test_address) if not os.path.exists(validation_address): os.makedirs(validation_address) if not os.path.exists(env_address): os.makedirs(env_address) push('new folders added') models_to_log = ['NN', 'GLM', 'GBM'] # models we want to make the features logarithmic for them, we remove KNN main(maxHistory) end = time.time() push('final results added') print("The total time of execution in minutes: ", round((end - begin) / 60, 2))
a95badfd54dbd2302101d0cf2b2569e911d8f07a
2cb037e15ffd1c97a1c85acfb95dc63cebe1e961
/MoEL/main.py
d4bb3c2e3a7e23c1b91e7572e013ea44cf54be11
[ "MIT" ]
permissive
Ravikiran2402/MoEL
4f399d6d1219782c79ae463f09f52558e3bbce6a
9fde3a8a3744521b822b46915515a22de3d4c053
refs/heads/master
2021-05-17T12:51:00.019321
2020-04-20T12:49:40
2020-04-20T12:49:40
250,785,533
0
0
null
null
null
null
UTF-8
Python
false
false
5,589
py
from utils.data_loader import prepare_data_seq from utils import config from model.transformer import Transformer from model.transformer_mulexpert import Transformer_experts from model.common_layer import evaluate, count_parameters, make_infinite import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.init import xavier_uniform_ from copy import deepcopy from tqdm import tqdm import os import time import numpy as np import math from tensorboardX import SummaryWriter torch.manual_seed(0) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False np.random.seed(0) data_loader_tra, data_loader_val, data_loader_tst, vocab, program_number = prepare_data_seq(batch_size=config.batch_size) #config.test = True f=open("log.txt","w") f.write("Iteration loss_val ppl_val bce_val acc_val bleu_g bleu_b\n") f.close() tf=open("train_log.txt","w") tf.write("Iteration loss ppl bce_val acc_val\n") tf.close() if(config.test): print("Test model",config.model) if(config.model == "trs"): model = Transformer(vocab,decoder_number=program_number, model_file_path=config.save_path, is_eval=True) elif(config.model == "experts"): model = Transformer_experts(vocab,decoder_number=program_number, model_file_path=config.save_path, is_eval=True) if (config.USE_CUDA): model.cuda() model = model.eval() #print(model.summary()) loss_test, ppl_test, bce_test, acc_test, bleu_score_g, bleu_score_b= evaluate(model, data_loader_tst ,ty="test", max_dec_step=50) print("Exiting test loop") exit(0) if(config.model == "trs"): model = Transformer(vocab,decoder_number=program_number) for n, p in model.named_parameters(): if p.dim() > 1 and (n !="embedding.lut.weight" and config.pretrain_emb): xavier_uniform_(p) elif(config.model == "experts"): model = Transformer_experts(vocab,decoder_number=program_number) for n, p in model.named_parameters(): if p.dim() > 1 and (n !="embedding.lut.weight" and config.pretrain_emb): xavier_uniform_(p) print("MODEL USED",config.model) print("TRAINABLE PARAMETERS",count_parameters(model)) print("Config.Oracle : ", config.oracle) check_iter = 2000 try: if (config.USE_CUDA): model.cuda() model = model.train() best_ppl = 1000 patient = 0 writer = SummaryWriter(log_dir="save/log/") weights_best = deepcopy(model.state_dict()) data_iter = make_infinite(data_loader_tra) for n_iter in tqdm(range(1000000)): loss, ppl, bce, acc = model.train_one_batch(next(data_iter),n_iter) writer.add_scalars('loss', {'loss_train': loss}, n_iter) writer.add_scalars('ppl', {'ppl_train': ppl}, n_iter) writer.add_scalars('bce', {'bce_train': bce}, n_iter) writer.add_scalars('accuracy', {'acc_train': acc}, n_iter) tf=open("train_log.txt","a") tf.write(str(n_iter)+" ") tf.write(str(loss)+" ") tf.write(str(ppl)+" ") tf.write(str(bce)+" ") tf.write(str(acc)+"\n") tf.close() if(config.noam): writer.add_scalars('lr', {'learning_rate': model.optimizer._rate}, n_iter) if((n_iter+1)%check_iter==0): model = model.eval() model.epoch = n_iter model.__id__logger = 0 loss_val, ppl_val, bce_val, acc_val, bleu_score_g, bleu_score_b= evaluate(model, data_loader_val ,ty="valid", max_dec_step=50) writer.add_scalars('loss', {'loss_valid': loss_val}, n_iter) writer.add_scalars('ppl', {'ppl_valid': ppl_val}, n_iter) writer.add_scalars('bce', {'bce_valid': bce_val}, n_iter) writer.add_scalars('accuracy', {'acc_valid': acc_val}, n_iter) model = model.train() #torch.save(model, "saved_models_testing/saved_model{}_2603_0.3.pt".format(n_iter+1)) model.save_model(ppl_val,n_iter,0 ,0,bleu_score_g,bleu_score_b) f=open("log.txt","a") f.write(str(n_iter)+" ") f.write(str(loss_val)+" ") f.write(str(ppl_val)+" ") f.write(str(bce_val)+" ") f.write(str(acc_val)+" ") f.write(str(bleu_score_g)+" ") f.write(str(bleu_score_b)+"\n") f.close() #if (config.model == "experts" and n_iter<13000): # continue # if(ppl_val <= best_ppl): # best_ppl = ppl_val # patient = 0 # model.save_model(best_ppl,n_iter,0 ,0,bleu_score_g,bleu_score_b) # weights_best = deepcopy(model.state_dict()) #else: # patient += 1 # if(patient > 2): break except KeyboardInterrupt: print('-' * 89) print('Exiting from training early') print("After the Exiting from training early\n") ## TESTING model.load_state_dict({ name: weights_best[name] for name in weights_best }) print("After the load_state_dict \n\n") model.eval() print("After the eval \n\n") model.epoch = 100 print("Data_loader_tst : ",data_loader_tst) loss_test, ppl_test, bce_test, acc_test, bleu_score_g, bleu_score_b= evaluate(model, data_loader_tst ,ty="test", max_dec_step=50) print("After the evaluate \n\n") file_summary = "saved_models_testing/"+"summary.txt" with open(file_summary, 'a+') as the_file: the_file.write("EVAL\tLoss\tPPL\tAccuracy\tBleu_g\tBleu_b\n") the_file.write("{}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.2f}\t{:.2f}\n".format("test",loss_test,ppl_test, acc_test, bleu_score_g,bleu_score_b)) the_file.write("\n\n")
23f3a9b619600c2c45f879384f3a51dda94f5c3e
38466811d0e12a8f755bae58d7244622ef5f4d9b
/leetcode/200/141_linked_list_cycle.py
9e5262a7110cf85407e3ce7e9183543e977219f0
[]
no_license
andysitu/algo-problems
4ab5a2b6591f0c0d84174b69598f30bc354ff8aa
35c88dc747e7afa4fdd51d538bc80c4712eb1172
refs/heads/master
2023-06-24T15:55:39.019652
2021-02-26T20:31:07
2021-02-26T20:31:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
602
py
# Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def hasCycle(self, head: ListNode) -> bool: if head == None: return False forward1 = head forward2 = head while True: forward2 = forward2.next if forward2 == None: return False forward2 = forward2.next if forward2 == None: return False forward1 = forward1.next if forward1 == forward2:
12da0c9ef7c319623e61c8a07547828aeb19c71f
f9c2461c22ab458a8a6f2a4e2b0a81de3cf8a8eb
/Project/Code/target_generator.py
11b541f2117fd0bee0c60e198f85c823bf709ca3
[]
no_license
terrenceedmonds/BassGenerator
f368ac844e32dee6bd0c0ab0e9138f1930371d8d
4df3ebd6e440ea5d8db73df012dc0fd657de3daa
refs/heads/master
2021-06-06T03:14:55.996062
2016-08-16T21:39:25
2016-08-17T18:05:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
881
py
import pickle import numpy as np def X_y_split(split_number, matrix): '''SPLIT NUMBER = 32: This splits the bass line in 2 equal halves: The first 32 16ths determine the 33rd 16th note then moves down for a total of 32 X, y pairs per bass line.''' '''SPLIT NUMBER = 48: This splits the bass line in 3/4: The first 48 16ths determine the 49th 16th note then moves down for a total of 16 X, y pairs per bass line.''' X_list = [] y_list = [] for line in matrix: for i in xrange(64 - split_number): X = line[i:i + split_number] y = line[i + split_number] X_list.append(X) y_list.append(y) X_array = np.array(X_list) y_array = np.array(y_list) return X_array, y_array if __name__ == '__main__': X, y = X_y_split(32, divide_features=True) print len(X) print len(y)
8a06868b655739e92f853e34bd8de4d8bf56462c
ad04d0321197886ed2ccbf38e715181ee1b9bf64
/tasks/201409_roadbed_centerline/time_test.py
0b0891e2149663ee0704a6985d73f745e940cc37
[]
no_license
nygeog/taxi
20a4b525b46538bfd26807d03c3066de2739d8ef
f5b6de8455a25300624b87746460cb49ad942161
refs/heads/master
2016-09-11T06:59:52.782254
2015-04-28T19:42:54
2015-04-28T19:42:54
22,586,515
0
0
null
null
null
null
UTF-8
Python
false
false
175
py
import arcpy, time, datetime, csv, sys, traceback from arcpy import env env.overwriteOutput = True import glob from datetime import datetime print str(datetime.now())
[ "daniel.martin.sheehan@gmailcom" ]
daniel.martin.sheehan@gmailcom
6ab964904330fa8d9bc2040184817fda24ed9179
cda795c607c4b65027006e96ad79d3a0b34e0d95
/imgdraw.py
5a636135dce82aee155b08b3a8ad0866ef3f67ce
[]
no_license
kamaljahangir/10thmayML
9b1638b6ca8d83921d23b28be80183b11b0e810d
ac1efa37c5c438ba62fd10ae1588b6d363aa2254
refs/heads/master
2020-06-05T10:19:15.217004
2018-06-21T02:17:21
2018-06-21T02:17:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
766
py
#!/usr/bin/python3 import cv2,time import numpy as np import matplotlib.pyplot as plt # reading images img=cv2.imread('dogs.jpg',cv2.IMREAD_COLOR) #img=np.zeros((512,512,3),np.uint8) #img=img[0:100,0:200] print(img.shape) time.sleep(1) cv2.line(img,(10,20),(200,200),(255,0,0),5) cv2.rectangle(img,(150,150),(350,350),(20,30,200),2) cv2.circle(img,(400,200),100,(220,130,200),-1) cv2.circle(img,(400,200),100,(220,130,200),-1) font=cv2.FONT_HERSHEY_SIMPLEX # start_point,font,font_size cv2.putText(img,'GOOGLE',(10,150),font,3,(0,0,255),10,cv2.LINE_AA) cv2.imshow('draw',img) k=cv2.waitKey(0) if k == 27 : # for esc button cv2.destroyAllWindows() elif k == ord('s') : cv2.imwrite('save.jpg',img1) cv2.destroyAllWindows()
3be5af56db9452ae4f52966fd2ebab0bcda7af70
6c1ca203fef93643ea0e4d5ef11d19f54d041504
/airflow_python_sdk/model/dag_collection_all_of.py
d8f0c3977266455d63558894d437e8944922bafc
[ "MIT" ]
permissive
marmikreal/airflow-python-sdk
0ad03d7213101dc4d4a4dbbf654d8c1c4f78e395
70b5d08955a9e218fa6163b0612856e09eedce63
refs/heads/master
2023-03-26T19:53:21.083972
2021-04-02T16:31:18
2021-04-02T16:31:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,221
py
""" Airflow API (Stable) # Overview To facilitate management, Apache Airflow supports a range of REST API endpoints across its objects. This section provides an overview of the API design, methods, and supported use cases. Most of the endpoints accept `JSON` as input and return `JSON` responses. This means that you must usually add the following headers to your request: ``` Content-type: application/json Accept: application/json ``` ## Resources The term `resource` refers to a single type of object in the Airflow metadata. An API is broken up by its endpoint's corresponding resource. The name of a resource is typically plural and expressed in camelCase. Example: `dagRuns`. Resource names are used as part of endpoint URLs, as well as in API parameters and responses. ## CRUD Operations The platform supports **C**reate, **R**ead, **U**pdate, and **D**elete operations on most resources. You can review the standards for these operations and their standard parameters below. Some endpoints have special behavior as exceptions. ### Create To create a resource, you typically submit an HTTP `POST` request with the resource's required metadata in the request body. The response returns a `201 Created` response code upon success with the resource's metadata, including its internal `id`, in the response body. ### Read The HTTP `GET` request can be used to read a resource or to list a number of resources. A resource's `id` can be submitted in the request parameters to read a specific resource. The response usually returns a `200 OK` response code upon success, with the resource's metadata in the response body. If a `GET` request does not include a specific resource `id`, it is treated as a list request. The response usually returns a `200 OK` response code upon success, with an object containing a list of resources' metadata in the response body. When reading resources, some common query parameters are usually available. e.g.: ``` v1/connections?limit=25&offset=25 ``` |Query Parameter|Type|Description| |---------------|----|-----------| |limit|integer|Maximum number of objects to fetch. Usually 25 by default| |offset|integer|Offset after which to start returning objects. For use with limit query parameter.| ### Update Updating a resource requires the resource `id`, and is typically done using an HTTP `PATCH` request, with the fields to modify in the request body. The response usually returns a `200 OK` response code upon success, with information about the modified resource in the response body. ### Delete Deleting a resource requires the resource `id` and is typically executing via an HTTP `DELETE` request. The response usually returns a `204 No Content` response code upon success. ## Conventions - Resource names are plural and expressed in camelCase. - Names are consistent between URL parameter name and field name. - Field names are in snake_case. ```json { \"name\": \"string\", \"slots\": 0, \"occupied_slots\": 0, \"used_slots\": 0, \"queued_slots\": 0, \"open_slots\": 0 } ``` ### Update Mask Update mask is available as a query parameter in patch endpoints. It is used to notify the API which fields you want to update. Using `update_mask` makes it easier to update objects by helping the server know which fields to update in an object instead of updating all fields. The update request ignores any fields that aren't specified in the field mask, leaving them with their current values. Example: ``` resource = request.get('/resource/my-id').json() resource['my_field'] = 'new-value' request.patch('/resource/my-id?update_mask=my_field', data=json.dumps(resource)) ``` ## Versioning and Endpoint Lifecycle - API versioning is not synchronized to specific releases of the Apache Airflow. - APIs are designed to be backward compatible. - Any changes to the API will first go through a deprecation phase. # Summary of Changes | Airflow version | Description | |-|-| | v2.0 | Initial release | # Trying the API You can use a third party client, such as [curl](https://curl.haxx.se/), [HTTPie](https://httpie.org/), [Postman](https://www.postman.com/) or [the Insomnia rest client](https://insomnia.rest/) to test the Apache Airflow API. Note that you will need to pass credentials data. For e.g., here is how to pause a DAG with [curl](https://curl.haxx.se/), when basic authorization is used: ```bash curl -X POST 'https://example.com/api/v1/dags/{dag_id}?update_mask=is_paused' \\ -H 'Content-Type: application/json' \\ --user \"username:password\" \\ -d '{ \"is_paused\": true }' ``` Using a graphical tool such as [Postman](https://www.postman.com/) or [Insomnia](https://insomnia.rest/), it is possible to import the API specifications directly: 1. Download the API specification by clicking the **Download** button at top of this document 2. Import the JSON specification in the graphical tool of your choice. - In *Postman*, you can click the **import** button at the top - With *Insomnia*, you can just drag-and-drop the file on the UI Note that with *Postman*, you can also generate code snippets by selecting a request and clicking on the **Code** button. # Authentication To be able to meet the requirements of many organizations, Airflow supports many authentication methods, and it is even possible to add your own method. If you want to check which auth backend is currently set, you can use `airflow config get-value api auth_backend` command as in the example below. ```bash $ airflow config get-value api auth_backend airflow.api.auth.backend.basic_auth ``` The default is to deny all requests. For details on configuring the authentication, see [API Authorization](https://airflow.apache.org/docs/apache-airflow/stable/security/api.html). # Errors We follow the error response format proposed in [RFC 7807](https://tools.ietf.org/html/rfc7807) also known as Problem Details for HTTP APIs. As with our normal API responses, your client must be prepared to gracefully handle additional members of the response. ## Unauthenticated This indicates that the request has not been applied because it lacks valid authentication credentials for the target resource. Please check that you have valid credentials. ## PermissionDenied This response means that the server understood the request but refuses to authorize it because it lacks sufficient rights to the resource. It happens when you do not have the necessary permission to execute the action you performed. You need to get the appropriate permissions in other to resolve this error. ## BadRequest This response means that the server cannot or will not process the request due to something that is perceived to be a client error (e.g., malformed request syntax, invalid request message framing, or deceptive request routing). To resolve this, please ensure that your syntax is correct. ## NotFound This client error response indicates that the server cannot find the requested resource. ## MethodNotAllowed Indicates that the request method is known by the server but is not supported by the target resource. ## NotAcceptable The target resource does not have a current representation that would be acceptable to the user agent, according to the proactive negotiation header fields received in the request, and the server is unwilling to supply a default representation. ## AlreadyExists The request could not be completed due to a conflict with the current state of the target resource, meaning that the resource already exists ## Unknown This means that the server encountered an unexpected condition that prevented it from fulfilling the request. # noqa: E501 The version of the OpenAPI document: 1.0.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 import nulltype # noqa: F401 from airflow_python_sdk.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) def lazy_import(): from airflow_python_sdk.model.dag import DAG globals()['DAG'] = DAG class DAGCollectionAllOf(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'dags': ([DAG],), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'dags': 'dags', # noqa: E501 } _composed_schemas = {} required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """DAGCollectionAllOf - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) dags ([DAG]): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value)
bb6bf34f2ba9f5ee7aa802041d3c119fe086696b
b88bab8d5146f35c84b08c065f8d325b32c78421
/Functions Advanced - Exercise/Min Max Sum.py
0e86867375fdf297c90c7d5115b20621e3fd9ab7
[ "MIT" ]
permissive
DiyanKalaydzhiev23/Advanced---Python
f929436b8a54e8a6e431882d7c818d152f01a01b
ed2c60bb887c49e5a87624719633e2b8432f6f6b
refs/heads/main
2023-06-09T19:20:16.063345
2021-06-26T10:27:49
2021-06-26T10:27:49
357,164,435
1
1
null
null
null
null
UTF-8
Python
false
false
174
py
nums = [int(n) for n in input().split()] print(f"The minimum number is {min(nums)}") print(f"The maximum number is {max(nums)}") print(f"The sum number is: {sum(nums)}")
a7e316b3e4294deab2c4be72af3994d2504b8d49
ccf94dcb6b1500fcbbd56964ae8c4832a496b8b3
/python/baiduads-sdk-auto/test/test_update_creative_response_wrapper.py
cca6a9dbe84cb7e4f9ee1164d8a578b819dd20ce
[ "Apache-2.0" ]
permissive
baidu/baiduads-sdk
24c36b5cf3da9362ec5c8ecd417ff280421198ff
176363de5e8a4e98aaca039e4300703c3964c1c7
refs/heads/main
2023-06-08T15:40:24.787863
2023-05-20T03:40:51
2023-05-20T03:40:51
446,718,177
16
11
Apache-2.0
2023-06-02T05:19:40
2022-01-11T07:23:17
Python
UTF-8
Python
false
false
1,076
py
""" dev2 api schema 'dev2.baidu.com' api schema # noqa: E501 Generated by: https://openapi-generator.tech """ import sys import unittest import baiduads from baiduads.common.model.api_response_header import ApiResponseHeader from baiduads.creative.model.update_creative_response_wrapper_body import UpdateCreativeResponseWrapperBody globals()['ApiResponseHeader'] = ApiResponseHeader globals()['UpdateCreativeResponseWrapperBody'] = UpdateCreativeResponseWrapperBody from baiduads.creative.model.update_creative_response_wrapper import UpdateCreativeResponseWrapper class TestUpdateCreativeResponseWrapper(unittest.TestCase): """UpdateCreativeResponseWrapper unit test stubs""" def setUp(self): pass def tearDown(self): pass def testUpdateCreativeResponseWrapper(self): """Test UpdateCreativeResponseWrapper""" # FIXME: construct object with mandatory attributes with example values # model = UpdateCreativeResponseWrapper() # noqa: E501 pass if __name__ == '__main__': unittest.main()
8eb8984f35bfb3da7d3dba72c285b6487d85fc09
5725113fd0e49a2ce139f61f933aee5321bb2ebe
/models/LanguageModels.py
d3c60d67467828a3c5ce73439654e36534eea0bc
[]
no_license
SaqibMamoon/VG-Bert
b3225088b5df9b5b689d6aa168943117d4b2c096
89a7a563096cf2729a1a8c8c75d8a36a822f56a1
refs/heads/main
2023-08-28T12:23:16.553825
2021-10-27T05:02:54
2021-10-27T05:02:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,834
py
import torch import torch.nn as nn from transformers import BertTokenizer, BertModel, BertForMaskedLM, BertConfig from collections import OrderedDict class Bert_base(nn.Module): def __init__(self, dropout_rate=0.3): super(Bert_base, self).__init__() config = BertConfig.from_pretrained('bert-base-uncased') config.hidden_dropout_prob = dropout_rate config.attention_probs_dropout_prob = dropout_rate seed_model = BertModel(config) base_model = BertModel.from_pretrained('bert-base-uncased') # load weight from base model to seed model new_state_dict = OrderedDict() for k, v in base_model.state_dict().items(): name = k # remove `module.` new_state_dict[name] = v # load params seed_model.load_state_dict(new_state_dict) self.language_model = seed_model def forward(self, x, x_type, x_mask): outputs = self.language_model(x, token_type_ids=x_type, attention_mask=x_mask) encoded_layers = outputs[0] return encoded_layers class Bert_object(nn.Module): def __init__(self, embedding_dim=768, dropout_rate=0.1): super(Bert_object, self).__init__() config = BertConfig.from_pretrained('bert-base-uncased') config.hidden_dropout_prob = dropout_rate config.attention_probs_dropout_prob = dropout_rate seed_model = BertModel(config) base_model = BertModel.from_pretrained('bert-base-uncased') base_model.to('cpu') # load weight from base model to seed model new_state_dict = OrderedDict() for k, v in base_model.state_dict().items(): name = k # remove `module.` new_state_dict[name] = v # load params seed_model.load_state_dict(new_state_dict) self.language_model = seed_model self.embedding_dim = embedding_dim def forward(self, x, x_segments_tensors, x_token_mask, x_mask): batch_num = x.size()[0] obj_num = x.size()[1] seq_len = x.size()[2] feature_size = self.embedding_dim # flatten batch input to make each phrase (attribute + object) as independent input sequence for Bert x = x.view(batch_num*obj_num,seq_len) x_segments_tensors = x_segments_tensors.view(batch_num*obj_num,seq_len) x_token_mask = x_token_mask.view(batch_num*obj_num,seq_len) outputs = self.language_model(input_ids=x, token_type_ids=x_segments_tensors, attention_mask=x_token_mask) # pooling outputs = outputs[0] * x_token_mask.unsqueeze(-1) outputs = torch.mean(outputs,dim=1) # pool language representation as (attribute + object) outputs = outputs.view(batch_num, obj_num, feature_size) outputs = outputs * x_mask.unsqueeze(-1) return outputs
0e5255d021aeda561c8b57f0a5c987ba0541f366
57a8b30e515239f0e4626425a757bc67d2ea1b57
/py2neo/legacy/index.py
d30a293ad0052f2ffd55cbca7af332d83e85815b
[ "Apache-2.0" ]
permissive
devocasion/py2neo
adbf02d505ae8bcd0726f69db5e15642f7e107ae
34d4cb1e4582f695734d55329f28a6c278d951ee
refs/heads/master
2022-09-20T02:52:13.346363
2014-09-12T21:58:11
2014-09-12T22:01:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,934
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2011-2014, Nigel Small # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division, unicode_literals from py2neo.legacy.batch import LegacyWriteBatch from py2neo.core import Service, Node, Relationship, Resource, ResourceTemplate from py2neo.packages.jsonstream import assembled, grouped from py2neo.packages.httpstream.numbers import CREATED from py2neo.packages.httpstream.packages.urimagic import percent_encode, URI __all__ = ["Index"] class Index(Service): """ Searchable database index which can contain either nodes or relationships. .. seealso:: :py:func:`Graph.get_or_create_index` """ __instances = {} def __new__(cls, content_type, uri, name=None): """ Fetch a cached instance if one is available, otherwise create, cache and return a new instance. :param uri: URI of the cached resource :return: a resource instance """ inst = super(Index, cls).__new__(cls) return cls.__instances.setdefault(uri, inst) def __init__(self, content_type, uri, name=None): Service.__init__(self) self._content_type = content_type key_value_pos = uri.find("/{key}/{value}") if key_value_pos >= 0: self._searcher = ResourceTemplate(uri) self.bind(uri[:key_value_pos]) else: self.bind(uri) self._searcher = ResourceTemplate(uri.string + "/{key}/{value}") uri = self.resource.uri if self.graph.neo4j_version >= (1, 9): self._create_or_fail = Resource(uri.resolve("?uniqueness=create_or_fail")) self._get_or_create = Resource(uri.resolve("?uniqueness=get_or_create")) else: self._create_or_fail = None self._get_or_create = Resource(uri.resolve("?unique")) self._query_template = ResourceTemplate(uri.string + "{?query,order}") self._name = name or uri.path.segments[-1] self.__searcher_stem_cache = {} def __repr__(self): return "{0}({1}, {2})".format( self.__class__.__name__, self._content_type.__name__, repr(self.uri.string) ) def _searcher_stem_for_key(self, key): if key not in self.__searcher_stem_cache: stem = self._searcher.uri_template.string.partition("{key}")[0] self.__searcher_stem_cache[key] = stem + percent_encode(key) + "/" return self.__searcher_stem_cache[key] def add(self, key, value, entity): """ Add an entity to this index under the `key`:`value` pair supplied:: # create a node and obtain a reference to the "People" node index alice, = graph.create({"name": "Alice Smith"}) people = graph.get_or_create_index(neo4j.Node, "People") # add the node to the index people.add("family_name", "Smith", alice) Note that while Neo4j indexes allow multiple entities to be added under a particular key:value, the same entity may only be represented once; this method is therefore idempotent. """ self.resource.post({ "key": key, "value": value, "uri": entity.uri.string, }) return entity def add_if_none(self, key, value, entity): """ Add an entity to this index under the `key`:`value` pair supplied if no entry already exists at that point:: # obtain a reference to the "Rooms" node index and # add node `alice` to room 100 if empty rooms = graph.get_or_create_index(neo4j.Node, "Rooms") rooms.add_if_none("room", 100, alice) If added, this method returns the entity, otherwise :py:const:`None` is returned. """ rs = self._get_or_create.post({ "key": key, "value": value, "uri": entity.uri.string, }) if rs.status_code == CREATED: return entity else: return None @property def content_type(self): """ Return the type of entity contained within this index. Will return either :py:class:`Node` or :py:class:`Relationship`. """ return self._content_type @property def name(self): """ Return the name of this index. """ return self._name def get(self, key, value): """ Fetch a list of all entities from the index which are associated with the `key`:`value` pair supplied:: # obtain a reference to the "People" node index and # get all nodes where `family_name` equals "Smith" people = graph.get_or_create_index(neo4j.Node, "People") smiths = people.get("family_name", "Smith") .. """ return [ self.graph.hydrate(assembled(result)) for i, result in grouped(self._searcher.expand(key=key, value=value).get()) ] def create(self, key, value, abstract): """ Create and index a new node or relationship using the abstract provided. """ batch = LegacyWriteBatch(self.graph) if self._content_type is Node: batch.create(abstract) batch.add_to_index(Node, self, key, value, 0) elif self._content_type is Relationship: batch.create(abstract) batch.add_to_index(Relationship, self, key, value, 0) else: raise TypeError(self._content_type) entity, index_entry = batch.submit() return entity def _create_unique(self, key, value, abstract): """ Internal method to support `get_or_create` and `create_if_none`. """ if self._content_type is Node: body = { "key": key, "value": value, "properties": abstract } elif self._content_type is Relationship: body = { "key": key, "value": value, "start": abstract[0].uri.string, "type": abstract[1], "end": abstract[2].uri.string, "properties": abstract[3] if len(abstract) > 3 else None } else: raise TypeError(self._content_type) return self._get_or_create.post(body) def get_or_create(self, key, value, abstract): """ Fetch a single entity from the index which is associated with the `key`:`value` pair supplied, creating a new entity with the supplied details if none exists:: # obtain a reference to the "Contacts" node index and # ensure that Alice exists therein contacts = graph.get_or_create_index(neo4j.Node, "Contacts") alice = contacts.get_or_create("name", "SMITH, Alice", { "given_name": "Alice Jane", "family_name": "Smith", "phone": "01234 567 890", "mobile": "07890 123 456" }) # obtain a reference to the "Friendships" relationship index and # ensure that Alice and Bob's friendship is registered (`alice` # and `bob` refer to existing nodes) friendships = graph.get_or_create_index(neo4j.Relationship, "Friendships") alice_and_bob = friendships.get_or_create( "friends", "Alice & Bob", (alice, "KNOWS", bob) ) .. """ return self.graph.hydrate(assembled(self._create_unique(key, value, abstract))) def create_if_none(self, key, value, abstract): """ Create a new entity with the specified details within the current index, under the `key`:`value` pair supplied, if no such entity already exists. If creation occurs, the new entity will be returned, otherwise :py:const:`None` will be returned:: # obtain a reference to the "Contacts" node index and # create a node for Alice if one does not already exist contacts = graph.get_or_create_index(neo4j.Node, "Contacts") alice = contacts.create_if_none("name", "SMITH, Alice", { "given_name": "Alice Jane", "family_name": "Smith", "phone": "01234 567 890", "mobile": "07890 123 456" }) .. """ rs = self._create_unique(key, value, abstract) if rs.status_code == CREATED: return self.graph.hydrate(assembled(rs)) else: return None def remove(self, key=None, value=None, entity=None): """ Remove any entries from the index which match the parameters supplied. The allowed parameter combinations are: `key`, `value`, `entity` remove a specific entity indexed under a given key-value pair `key`, `value` remove all entities indexed under a given key-value pair `key`, `entity` remove a specific entity indexed against a given key but with any value `entity` remove all occurrences of a specific entity regardless of key and value """ if key and value and entity: t = ResourceTemplate(self.resource.uri.string + "/{key}/{value}/{entity}") t.expand(key=key, value=value, entity=entity._id).delete() elif key and value: uris = [ URI(entity.resource.metadata["indexed"]) for entity in self.get(key, value) ] batch = LegacyWriteBatch(self.graph) for uri in uris: batch.append_delete(uri) batch.run() elif key and entity: t = ResourceTemplate(self.resource.uri.string + "/{key}/{entity}") t.expand(key=key, entity=entity._id).delete() elif entity: t = ResourceTemplate(self.resource.uri.string + "/{entity}") t.expand(entity=entity._id).delete() else: raise TypeError("Illegal parameter combination for index removal") def query(self, query): """ Query the index according to the supplied query criteria, returning a list of matched entities:: # obtain a reference to the "People" node index and # get all nodes where `family_name` equals "Smith" people = graph.get_or_create_index(neo4j.Node, "People") s_people = people.query("family_name:S*") The query syntax used should be appropriate for the configuration of the index being queried. For indexes with default configuration, this should be Apache Lucene query syntax. """ resource = self._query_template.expand(query=query) for i, result in grouped(resource.get()): yield self.graph.hydrate(assembled(result)) def _query_with_score(self, query, order): resource = self._query_template.expand(query=query, order=order) for i, result in grouped(resource.get()): meta = assembled(result) yield self.graph.hydrate(meta), meta["score"] def query_by_index(self, query): return self._query_with_score(query, "index") def query_by_relevance(self, query): return self._query_with_score(query, "relevance") def query_by_score(self, query): return self._query_with_score(query, "score")
54f9c26e1c1a8e2e8d1f6c35b715163db168de74
ac3227ef8da077bfb871f8e515bda92ac96385f9
/pressure17.py
3631628a3c32772c9b545461956a5c1f062cb4a9
[]
no_license
anlitsai/ngc2146-moment
07dac25a981b404a55e00b5a17f314861324efd0
6060239f1919bb7c316dfe93465d1f5fa240bd56
refs/heads/master
2022-05-20T18:05:26.343243
2020-04-12T21:15:30
2020-04-12T21:15:30
255,170,762
0
0
null
null
null
null
UTF-8
Python
false
false
10,365
py
#!/usr/bin/env python # NGC 2146 # --- import constant ------------------------- # import math #import pyfits # --- constant -------------------------------- # c=3.0e10 # light speed pc=3.26*c*365*86400 kpc=pc*1.0e3 ev=1.6e-12 G=6.67e-8 # gravitational constant k_B=1.38e-16 # boltzmann constant Msun=1.99e33 # solar mass Msun_pc2=Msun/pc**2 Lsun=3.9e33 # solar luminosity N_A=6.02e23 # Avogadro constant m_p=1.67e-24 E_ion_ev=13.6 # [eV] E_bnd_ev=4.52 # [eV] # --- parameter ------------------------------- # print "============" print "NGC 2146" print "============" print "parameters" print "------------" i_deg=70.0 i_pi=i_deg/180.0*math.pi sin_i=math.sin(i_pi) cos_i=math.cos(i_pi) D_Mpc=17.2 X_CO2H2=1.4/3.0 H22mol=1.36 XH=X_CO2H2*H22mol print "inclination",i_pi,sin_i,cos_i v_motf_kms=200.0 # km/s (Tsai et al. 2009) v_sound_kms=1.0e3 T_mol=30.0 # K (Tsai et al. 2009) T_xotf=1.0e6 # K EI=8.0e62 # cm^-3 (Inui et al. 2005) R_xotf_pc=6.3*1000*4.8/3.5 # (Inui et al. 2005) R_xotf=R_xotf_pc*pc V_xotf=(4.0/3.0*math.pi)*R_xotf**3 # (Inui et al. 2005) V_xotf_Inui=(4.0/3.0*math.pi)*(6.3e3*pc)**3 # (Inui et al. 2005) fill=0.01 # (Inui et al. 2005) print "filling factor =", fill n_mol=100.0 # cm^-3 (Tsai et al. 2009) rho_mol=n_mol/N_A n_xotf=(EI/V_xotf/fill)**(0.5) # cm^-3 (Iuni et al. 2005) print "n_xotf =", n_xotf, "[cm^-3]" print "n_xotf (Inui) =", 5.1e-3*fill**(-0.5), "[cm^-3]" print "n_mol =", n_mol, "[cm^-3]" print "rho_mol", '%.2e' %(rho_mol), "[g cm^-3]" kT_xotf_ev=0.5e3 kT_xotf=kT_xotf_ev*ev print "kT [ev] of xray outflow =", kT_xotf_ev,"ev" print "kT [erg] of xray outflow =", kT_xotf,"erg" print "V_xotf =", V_xotf print "V_xotf (Inui) =", V_xotf_Inui M_xotf=n_xotf*m_p*V_xotf*fill M_xotf_Msun=M_xotf/Msun M_xotf_Msun_Inui=1.3e8*fill**0.5 M_xotf_Inui=M_xotf_Msun_Inui*Msun M_galdsk_Msun=8.67e10 M_galdsk_Msun=2.18e11 M_galdsk=M_galdsk_Msun*Msun L_xotf=1.3e40 # (Inui et al. 2005) E_xotf=1.0e56 # (Inui et al. 2005) print "L_xotf =", L_xotf, "[erg/s]" print "E_xotf =", E_xotf, "[erg]" effi_x_thrm=0.3 # (Strickland & Stevens 2000) effi_x_mech=0.01 # (Strickland & Stevens 2000) R_motf=2.0e3*pc # (Tsai et al. 2009) SFR=10.0 # Msun/yr (Greve et al. 2000) SNrate= 0.15 # yr^-1 (Tarchi et al. 2000) print "SN rate =", SNrate, "[yr^-1]" effi_mass2rad=0.001 # (Thompson et al. 2005) as2pc=80.0 px2as=0.2 bm2as2=3.3*2.8 R_starburst_pc=700.0 # (@tau=1# Thompson et al. 2005) # R_starburst_pc=1000.0 # (our data) R_starburst_pc_greve=1250.0 # (Greve 2000) R_conti_pc=2560.0/2 # (our data) (/iapetus/data/satoki_data/ngc2146/20100130.conti89GHz ) V_starburst_pc3_greve=2.0e10 # (Greve 2000) z_starburst_pc=40.0 # (our calculation) (iapetus:/iapetus/thesis/phd/calculation/veldisp13.sh) z_starburst_pc_greve=500.0 # (Greve 2000) #z_starburst_pc_greve=500.0 # (Greve 2000) tau=10.0 d_mpc=17.2 # Mpc alpha=1.0 # (Chevalier 1985) beta=1.0 # (Chevalier 1985) a1=0.3 # Tsai 2009 b1=0.32 # Tsai 2009 c1=256.39 # Tsai 2009 timescale=1.0e7 # [yr] ; ourdata v_rms_kms=11.16 v_rms=v_rms_kms*1.0e5 def surf_den_dyn(r_kpc): v_kms=r_kpc*c1/(r_kpc**a1+r_kpc**(1-b1))/sin_i v=v_kms*1.0e5 r=r_kpc*kpc r_pc=r_kpc*1000 m_dyn=r*v**2/G # Orange book p.958 m_dyn_Msun=m_dyn/Msun sd_dyn=m_dyn/(math.pi*r**2) sd_dyn_Msunpc2=m_dyn_Msun/(math.pi*r_pc**2) # sd_dyn_Msunpc2=sd_dyn/Msun_pc2 z_pc=(v_rms**2/(2*math.pi*G*sd_dyn))/pc print '%.2f' %(sd_dyn_Msunpc2),"[Msun/pc2] (r <",r_kpc,"kpc ; z =",'%.2f' %(z_pc),"pc)",'%.2f' %v_kms,"[km/s]", '%.2e' %(m_dyn_Msun),"[Msun]" return sd_dyn_Msunpc2 sd05=surf_den_dyn(0.5) sd08=surf_den_dyn(0.8) sd10=surf_den_dyn(1.0) sd12=surf_den_dyn(1.2) sd_dyn=sd12 sd15=surf_den_dyn(1.5) sd24=surf_den_dyn(2.4) sd28=surf_den_dyn(2.8) sd30=surf_den_dyn(3.0) sd32=surf_den_dyn(3.2) #sd35=surf_den_dyn(3.5) #sd50=surf_den_dyn(5) #sd100=surf_den_dyn(10) # --- gravitational pressure (Gunn & Gott 1972) ------- # #def surf_den_kazushi(S_CO_JyBmMSpx,px,i_deg,D_Mpc): def surf_den_kazushi(S_CO_JyBmMS,px,type): n_as=px*px2as**2 n_bm=n_as/bm2as2 S_CO=S_CO_JyBmMS/1000*n_bm I_CO=S_CO/n_as sd_Msunpc2=(5.0e2*cos_i*I_CO)*XH M_gas_Msun=(1.18e4*D_Mpc**2*S_CO)*XH#*cos_i M_gas=M_gas_Msun*Msun print '%.2f' %I_CO,"[Jy km/s as-2]", '%.2e' %S_CO,"[Jy km/s]",'%.0f' %n_as,"[as2]",'%.0f' %n_bm,"[beam]",'%.2f' %sd_Msunpc2,"[Msun/pc2]",'%.2e' %M_gas_Msun,"[Msun]",type return sd_Msunpc2,M_gas sd=surf_den_kazushi(4.1472E+02,11022,"motf") sd=surf_den_kazushi(1.429E+03,84370,"motf") sd=surf_den_kazushi(7.481E+02,46830,"motf") sd=surf_den_kazushi(1.327E+03,69990,"motf") sd=surf_den_kazushi(6.669E+02,57300,"motf") sd_motf_Msunpc2=sd[0] M_motf=sd[1] sd=surf_den_kazushi(1.1243E+04,38685,"unkown") sd=surf_den_kazushi(1.3559E+04,30802,"45as") sd=surf_den_kazushi(1.3182E+04,31100,"mdsk") sd=surf_den_kazushi(2.054E+04,186790,"mdsk") sd=surf_den_kazushi(2.111E+04,180400,"mdsk") sd=surf_den_kazushi(3.730E+03,53030,"mbbl") sd=surf_den_kazushi(3.356E+04,64050,"0.8kpc") sd=surf_den_kazushi(3.652E+04,54540,"0.8kpc") sd=surf_den_kazushi(3.049E+04,93940,"1.2kpc") sd=surf_den_kazushi(2.431E+04,128520,"1.2kpc") sd=surf_den_kazushi(2.139E+04,166460,"1.6kpc") sd=surf_den_kazushi(1.723E+04,214640,"1.6kpc") sd=surf_den_kazushi(1.579E+04,256930,"2.4kpc") sd=surf_den_kazushi(1.381E+04,301520,"2.4kpc") sd=surf_den_kazushi(1.466E+04,281700,"2.4kpc") sd=surf_den_kazushi(1.364E+04,306950,"2.8kpc") sd=surf_den_kazushi(1.364E+04,306950,"tvbox;30as") sd_motf=sd_motf_Msunpc2*Msun_pc2 sd_xotf=sd_motf*(n_xotf/n_mol)*(M_xotf/M_motf) sd_xotf_Msunpc2=sd_xotf*Msun_pc2 print "------------" print "calculation results" print "------------" print "+[ grav P = 2*pi*G*(surf_den_xry)*(surf_den_dynamical_mass) ]+" def p_grav(sd,type): gravP=2*math.pi*G*sd*sd_dyn*Msun_pc2 print " o", type, "grav P:", '%.2e' %(gravP) return gravP p_grav_motf=p_grav(sd_motf,"mol. outflow") p_grav_xotf=p_grav(sd_xotf, "xray outflow") # unit checked # --- ram pressure (Gunn & Gott 1972) ----------------- # print "------------" print "+[ ram P = rho*(relative velocity)^2 ]+" def v_esc(M_Msun,R_kpc): v=math.sqrt(2*G*M_Msun*Msun/(R_kpc*1.0e3*pc))/1.0e5 print "escape velocity",v,"[km/s]" return v v_2kpc=v_esc(8.67e10,2) v_1kpc=v_esc(8.67e10,1) #E_bnd_ion_particle=(E_bnd_ev+E_ion_ev)*ev #E_bnd_ion_mass=E_bnd_ion_particle*N_A*M_xotf_g def ramP(effi_x1,effi_x2,type1,type2): print " ", type1, effi_x1 print " ", type2, effi_x2 effi_x=effi_x1*effi_x2 E_ttl=E_xotf/effi_x print " total Energy =",'%.2f' %(E_ttl), "[erg]" E_mech=E_ttl*(1-effi_x) v_xry_kms=math.sqrt(E_mech*2/M_xotf)/1.0e5 print " v_xry = ", '%.2f' %(v_xry_kms), "[km/s]" v_rel_kms=v_xry_kms-v_motf_kms v_rel=v_rel_kms*1.0e5 p=rho_mol*v_rel**2 p_K=p/k_B print " v_rel = ", '%.2f' %(v_rel_kms), "[km/s]" print " o ram P: ", '%.2e' %(p),"[dyne cm^-2]" print " o ram P: ", '%.2e' %(p_K), "[K cm^-3]" return p # unit checked type2="Lx increasing factor" print "the total energy released by SNe and stellar winds (doesn't include the K.E)" p_ram1=ramP(0.1,1,"thermalization efficiency (lower)",type2) p_ram1=ramP(0.3,1,"thermalization efficiency",type2) p_ram1=ramP(0.5,1,"thermalization efficiency",type2) p_ram1=ramP(1,1,"thermalization efficiency (upper)",type2) print "radiating the mechanical energy supplied by the starburst" p_ram1=ramP(0.01,10,"starburst energy injection rate (thin-disk)",type2) p_ram1=ramP(0.05,3,"starburst energy injection rate (thick-disk, lower)",type2) p_ram1=ramP(0.2,3,"starburst energy injection rate (thick-disk, upper)",type2) # --- SN explosions pressure effect on hot ISM (Thompson et al 2005) -- # print "------------" print "+[ shock P = 10^-12*E_xry^(17/14)*n_mol^(-4/7)*SNrate/Vol ]+" def A_pc2(R): A=math.pi*R**2 # print "Starburst Area = ", '%.2e' %(A) , "[pc^2]" return A def V_pc3(R,z): V=math.pi*R**2*z return V # SNrate_V=SNrate/V_starburst V_conti=V_pc3(R_conti_pc,z_starburst_pc) V_greve1=V_pc3(R_starburst_pc_greve,z_starburst_pc_greve) V_greve2=2.0e10 # (Greve 2000) E_init=E_xotf n_ambi=n_mol def p_SNhot(V,type): rate_V=SNrate/V P=1.0e-12*(E_init/1.0e51)**(17.0/14)*(n_ambi/0.01)**(-4.0/7)*(rate_V/1.0e-13) # [erg cm^-3] print " data from", type print " starburst Volume = ", '%.2e' %(V), "[pc^3]" print " o SN shock-heated P: ", '%.2e' %(P) # print "SN explosion P (shock-heated hot ISM): ", P return P # E_init [erg] # n_ambi [cm^-3] # SNrate_V [yr^-1 pc^-3] # SNrate_V=SNrateate per volume p_SNhot_conti=p_SNhot(V_conti,"89GHz Continuum") p_SNhot_greve1=p_SNhot(V_greve1,"Greve 2000 (1)") p_SNhot_greve2=p_SNhot(V_greve2, "Greve 2000 (2)") # unit checked # --- thermal pressure -------------------------------- # print "------------" print "+[ thermal P = n*k*T ]+" p_thm_mol=n_mol*k_B*T_mol p1=1000*k_B*100 p2=100*k_B*10 print "pppp",p1,p2 p_thm_xotf=2*n_xotf*kT_xotf p_thm_xotf_inui=4.9e-12*fill**(-0.5) print " o molecular gas thermal P: ", p_thm_mol print " o ionized gas thermal P: ", '%.2e' %(p_thm_xotf) print " o ionized gas thermal P (Inui): ", p_thm_xotf_inui # unit checked # --- radiation pressure (Thompson et al 2005) -------- # print "------------" print "+[ radiation P = effic*SFR/Area*c ]+" # SFR_A=SFR/(A_starburst) A_starburst=A_pc2(R_conti_pc)*pc**2 SFR_A=SFR/(A_starburst) # when tau << 1 p_rad_thin=c*effi_mass2rad*SFR_A # when tau >= 1 p_rad_thick=c*effi_mass2rad*SFR_A*(1.0/2)*tau #print " o optically thin radiation P: ", '%.2e' %(p_rad_thin) print " o optically thick radiation P: ", '%.2e' %(p_rad_thick) # unit checked # --- SN explosion pressure affect on cold ISM (Thompson et al 2005) -- # print "------------" print "+[ SN explosion P = 5*n_mol^(-1/4)*E_xry^(13/14)*P_rad ]+" # E_init=E_xotf # n_ambi=n_mol p_SN_cold=5*(n_ambi/1.0)**(-1.0/4)*(E_init/1.0e51)**(13.0/14)*p_rad_thick print " o SN explosion P (cold ISM): ", '%.2e' %(p_SN_cold) print "------------" # unit checked # --------------------------------------------- # # --- reference ------------------------------- # # Chevalier et al. 2001, ApJ, 558, L27 # Chevalier et al. 1985, Nature, 317, 44 # Greve et al. 2000, AA, 364, 409 # Gunn & Gott 1972, ApJ, 176, 1 # Inui et al. 2005, P: ASJ, 57, 135 # Sakamoto et al. 1995, AJ, 110, 2075 # Strickland & Stevens 2000, MNRAS, 314, 511 # Tarchi et al. 2000, 358, 95 # Tsai et al. 2009, P: ASJ, 61, 237 # Thompson et al. 2005, ApJ, 630, 167 # Vollmer et al. 2001, ApJ, 561, 708 # Vollmer et al. 2005, AA, 441, 473 exit
228b011f6c42454451196d21cac044fbf57031d5
9df267922befa6405ee4bca2066763507703f50f
/luckBalance.py
710bc3b3f80dd9a93e6ed17a9973c67d6d761a69
[]
no_license
sujiea/hackerrank-codility
6b807506edc8cec46bb1cc9ffc922caa41435f69
d8a8d903227ecf892ba2a7aba497245812e0de62
refs/heads/main
2023-04-01T11:41:04.453250
2021-04-02T14:04:59
2021-04-02T14:04:59
345,200,902
0
0
null
null
null
null
UTF-8
Python
false
false
554
py
def luckBalance(k, contests): loss = 0 contests.sort(key=lambda a: a[0]) lossnum = 0 for i in range(len(contests)-1, -1, -1): curl = contests[i][0] if contests[i][1] == 1: if lossnum < k: lossnum += 1 loss += curl else: loss -= curl else: loss += curl return loss print(luckBalance(5,[[13,1],[10,1],[9,1],[8,1], [13,1], [12,1], [18,1], [13,1]])) print(luckBalance(3,[[5,1], [2,1], [1,1], [8,1], [10,0], [5,0]]))
f38c1c3c095e858982af91a7da7943c0b9f6fb8a
91a35132e1aa7235615b5735899fa5522647369a
/visualization/assign.py
c1696f9fef42cc09c58d44f73f33a4b7a057a427
[]
no_license
bana513/TextSummarization
ceb7857d9d3eeebb061d2feab5a5efe03dcc2300
80a6da328095eb4381361b1afb52074b2bc60383
refs/heads/master
2020-12-31T10:20:06.845664
2020-05-23T22:25:05
2020-05-23T22:25:05
238,997,311
1
0
null
null
null
null
UTF-8
Python
false
false
1,039
py
from langdetect import detect from transformers import BertTokenizer import pandas as pd def assign_lang(x): try: res = detect(x) except Exception as e: res = "unk" return res def contains_ekezet(x): if 'á' in x: return True elif 'é' in x: return True elif 'í' in x: return True elif 'ó' in x: return True elif 'ú' in x: return True elif 'ü' in x: return True elif 'ü' in x: return True elif 'ö' in x: return True elif 'ő' in x: return True return False tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased', do_lower_case=False) def tokenize(x): content, summary = x if pd.isna(content) or pd.isna(summary): return None, None content = tokenizer.encode(content) if 20 < len(content) <= 512: summary = tokenizer.encode(summary) if 8 < len(summary) <= len(content) // 2: return content, summary return None, None
9f77a46db14ad5aed4ec12a3273abab3140a8cc8
33118eb668f600e7635e72b6caaf47cc893741ce
/Day3/day3.py
7aa407edbcc53f2bd1e23f5e0cd3247919c7b8c9
[]
no_license
darpan45/100DaysofCode
c5010bf55ac1330a837212020172c1044895f5f6
afcd7edbabb77525fb583843b09fc21e94c5d8bc
refs/heads/master
2023-04-07T07:34:16.483521
2021-04-21T15:57:47
2021-04-21T15:57:47
355,512,802
0
0
null
null
null
null
UTF-8
Python
false
false
6,530
py
##Basic If Else Statement # print("Welcome to RollerCoaster!") # height=int(input("What is your height ? ")) # if height >= 120 : # print("You are eligible for rollercoaster") # else: # print("You are not eligible for rollercoaster") ##Odd or Even Number # num=int(input("Enter a number : ")) # if num % 2==0: # print("Number is even.") # else: # print("Number is odd.") ##Nested If Else # print("Welcome to RollerCoaster!") # height=int(input("What is your height ? ")) # if height >= 120 : # print("You are eligible for rollercoaster") # age=int(input("What is your age ? ")) # if age >18: # print("You need to pay 12$") # elif age >12 and age <18 : # print("You need to pay 7$") # else: # print("You need to pay 5$") # else: # print("You are not eligible for rollercoaster") #BMI Calculator 2.0 # weight=float(input("Enter your weight in kgs : ")) # height=float(input("Enter your height in m : ")) # bmi=weight/height**2 # bmi_round =float("{:.2f}".format(bmi)) # print(bmi_round) # if bmi_round < 18.5: # print("You are underweight.") # elif bmi_round >=18.5 and bmi_round <25: # print("You have normal weight.") # elif bmi_round >=25 and bmi_round <30: # print("You are overweight.") # elif bmi_round >=30 and bmi_round <35: # print("You are obese.") # elif bmi_round >= 35: # print("You are clinically obese.") #Leap year or not # year =int(input("Enter a year : ")) # if year %4 ==0 : # if year % 400 !=0 and year %100 ==0: # print(f"{year} is not a leap year ") # else: # print(f"{year} is a leap year ") # else: # print(f"{year} is not a leap year ") #PIZZA ORDER # print("Welcome to Python Pizza Deliveries!!") # size=input("What size pizza do you want ? S, M or L ") # add_pepperoni = input("Do you want pepperoni ? Y or N ") # extra_cheese=input("Do you want extra cheese ? Y or N ") # bill=0 # if size == "S" : # bill +=15 # if add_pepperoni == "Y" : # bill +=2 # if extra_cheese == "Y": # bill +=1 # elif size == "M" : # bill +=20 # if add_pepperoni == "Y" : # bill +=3 # if extra_cheese == "Y": # bill +=1 # elif size == "L" : # bill +=25 # if add_pepperoni == "Y" : # bill +=3 # if extra_cheese == "Y": # bill +=1 # print(f"Total bill is {bill} .") ##LOVE CALCULATOR # print("Welcome to Love Calculator!") # name1=(input("Enter your name : ")) # name2=(input("Enter their name : ")) # lower_name1=name1.lower() # lower_name2=name2.lower() # T=lower_name1.count('t')+lower_name2.count('t') # R=lower_name1.count('r')+lower_name2.count('r') # U=lower_name1.count('u')+lower_name2.count('u') # E=lower_name1.count('e')+lower_name2.count('e') # print(f"T occurs {T} times .") # print(f"R occurs {R} times .") # print(f"U occurs {U} times .") # print(f"E occurs {E} times .") # TRUE=T+R+U+E # print(f"Total {TRUE}") # L=lower_name1.count('l')+lower_name2.count('l') # O=lower_name1.count('o')+lower_name2.count('o') # V=lower_name1.count('v')+lower_name2.count('v') # E=lower_name1.count('e')+lower_name2.count('e') # print(f"L occurs {L} times .") # print(f"O occurs {O} times .") # print(f"V occurs {V} times .") # print(f"E occurs {E} times .") # LOVE=L+O+V+E # print(f"Total {LOVE}") # score=str(TRUE)+str(LOVE) # scr=int(score) # # print(f"Your score is {score}") # if scr<10 or scr>90: # print(f"Your score is {scr} ,you go together like coke and mentos.") # elif scr >40 and scr <50 : # print(f"Your score is {scr} , you are alright together.") # else: # print(f"Your score is {scr}.") ##TREASURE ISLAND GAME # print(''' # ******************************************************************************* # | | | | # _________|________________.=""_;=.______________|_____________________|_______ # | | ,-"_,="" `"=.| | # |___________________|__"=._o`"-._ `"=.______________|___________________ # | `"=._o`"=._ _`"=._ | # _________|_____________________:=._o "=._."_.-="'"=.__________________|_______ # | | __.--" , ; `"=._o." ,-"""-._ ". | # |___________________|_._" ,. .` ` `` , `"-._"-._ ". '__|___________________ # | |o`"=._` , "` `; .". , "-._"-._; ; | # _________|___________| ;`-.o`"=._; ." ` '`."\` . "-._ /_______________|_______ # | | |o; `"-.o`"=._`` '` " ,__.--o; | # |___________________|_| ; (#) `-.o `"=.`_.--"_o.-; ;___|___________________ # ____/______/______/___|o;._ " `".o|o_.--" ;o;____/______/______/____ # /______/______/______/_"=._o--._ ; | ; ; ;/______/______/______/_ # ____/______/______/______/__"=._o--._ ;o|o; _._;o;____/______/______/____ # /______/______/______/______/____"=._o._; | ;_.--"o.--"_/______/______/______/_ # ____/______/______/______/______/_____"=.o|o_.--""___/______/______/______/____ # /______/______/______/______/______/______/______/______/______/______/_____ / # ******************************************************************************* # ''') # print("Welcome to Treasure Island !!") # print("Your mission is to find the treasure.") # direction=input("You're at a cross road.Where do you want to go. Type 'left' or 'right' ") # if direction == 'left': # lake=input("You come to a lake.There is an island in the middle of lake. Type 'wait' to wait for the boat. Type 'swim' to swim across . ") # if lake =="wait": # door =input("You arrive at an island unharmed . There is a house with 3 doors. One red,one yellow and one blue.Which colour do you choose? ") # if door == "red": # print("You are burned in fire.") # print("GAME OVER!") # elif door =="blue": # print("You have been eaten by Beasts.") # print("GAME OVER!") # elif door=="yellow": # print("Amazing!! You have won the game .") # else: # print("GAME OVER!!") # else: # print("You have been attacked by trout.") # print("GAME OVER!") # else: # print("You have fallen into hole.") # print("GAME OVER!") # print("CONGRATULATIONS DAY3 COMPLETE!!!!!!!!!!!")
4c9202401909ac467c699ae421769fbf548167c7
32bbbaf51f8951352aa4d9dcc9e96268a0caeed8
/src/utilty/sql_connection.py
28db10f01247a2fa10c8a9a016a89518fc2c0f1d
[]
no_license
saurav01235/incubyte-task
0e1f8b0e97e34fe1ec960fd13bddb114a2b5bc5f
9b1f569ed7f67e149356a4d5c02d29fca3b59d77
refs/heads/main
2023-06-02T05:00:20.975028
2021-06-20T20:20:47
2021-06-20T20:20:47
378,730,792
0
0
null
2021-06-20T20:20:47
2021-06-20T20:06:12
null
UTF-8
Python
false
false
441
py
import mysql.connector class MySqlConnection: def __init__(self, host, user_name, password, db_name): self.mydb = mysql.connector.connect( host=host, user=user_name, password=password, database=db_name ) def get_connection(self): return self.mydb def get_cursor(self): return self.mydb.cursor() def commit(self): self.mydb.commit()
6a02b1b9b4039b5905a62c954a5fa994a2226388
d0397940ac1267c40db974e54ddf3181380370d7
/website_personal/urls.py
f42508d6a7c4accf845696fde4ac9dc67cae0b76
[]
no_license
ngvan98/WebPersonal
c632e4b7bd4de5d5915c05747ed953c46bbcab9d
06a8b039547c44c3faab210aa0c78ccb6a3e8f6e
refs/heads/master
2023-05-02T14:17:04.278066
2021-05-25T14:30:46
2021-05-25T14:30:46
370,722,210
0
0
null
null
null
null
UTF-8
Python
false
false
802
py
"""website_personal URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('', include('base.urls')) ]
c343d8ab5d38217cccb70f3d7d86c16fa61d74e1
cdf541125b94bb01a4068d1a7b4d171139e5ef00
/eml2txt.pye
ced4f4b58385dcd1bec7e04847b7d1dc675a521e
[ "MIT" ]
permissive
u1and0/eml2txt
3f8ac2b19065001963d197ef6a4e9f3153db3afa
52eb53fc708fb3de478f2113f8abdae9f1ce58d3
refs/heads/master
2023-05-30T22:37:54.096578
2021-06-08T01:47:23
2021-06-08T01:47:23
278,624,957
0
0
null
null
null
null
UTF-8
Python
false
false
5,807
pye
#!/usr/bin/env python3 # coding:utf-8 """ emlファイルを元に扱いやすい様にデータを取得します。 Usage: $ python -m eml2txt foo.eml bar.eml ... # => Dump to foo.txt, bar.txt $ python -m eml2txt *.eml - # => Concat whole eml and dump to STDOUT """ import sys import re from dateutil.parser import parse import email from email.header import decode_header VERSION = "eml2ext v2.1.0" class MailParser: """ メールファイルのパスを受け取り、それを解析するクラス """ def __init__(self, mail_file_path): self.mail_file_path = mail_file_path # emlファイルからemail.message.Messageインスタンスの取得 with open(mail_file_path, 'rb') as email_file: self.email_message = email.message_from_bytes(email_file.read()) self.subject = None self.to_address = None self.cc_address = None self.from_address = None self.date = None self.body = "" # 添付ファイル関連の情報 # {name: file_name, data: data} self.attach_file_list = [] # emlの解釈 self._parse() def get_attr_data(self): """ メールデータの取得 """ result = """\ DATE: {} FROM: {} TO: {} CC: {} ----------------------- SUBJECT: {} BODY: {} ----------------------- ATTACH_FILE_NAME: {} """.format(self.date, self.from_address, self.to_address, self.cc_address, self.subject, self.body, ",".join([x["name"] for x in self.attach_file_list])) return result def _parse(self): """ メールファイルの解析 __init__内で呼び出している """ self.subject = self._get_decoded_header("Subject") self.to_address = self._get_decoded_header("To") self.cc_address = self._get_decoded_header("Cc") self.from_address = self._get_decoded_header("From") self.date = parse( self._get_decoded_header("Date"), dayfirst=True, fuzzy=True, ).isoformat() # メッセージ本文部分の処理 for part in self.email_message.walk(): # ContentTypeがmultipartの場合は実際のコンテンツはさらに # 中のpartにあるので読み飛ばす if part.get_content_maintype() == 'multipart': continue # ファイル名の取得 attach_fname = part.get_filename() # ファイル名がない場合は本文のはず if not attach_fname: charset = part.get_content_charset() if charset: self.body += part.get_payload(decode=True).decode( str(charset), errors="replace") else: # ファイル名があるならそれは添付ファイルなので # データを取得する self.attach_file_list.append({ "name": attach_fname, "data": part.get_payload(decode=True) }) def _get_decoded_header(self, key_name): """ ヘッダーオブジェクトからデコード済の結果を取得する """ ret = "" # 該当項目がないkeyは空文字を戻す raw_obj = self.email_message.get(key_name) if raw_obj is None: return "" # デコードした結果をunicodeにする for fragment, encoding in decode_header(raw_obj): if not hasattr(fragment, "decode"): ret += fragment continue # encodeがなければとりあえずUTF-8でデコードする ret += fragment.decode(encoding if encoding else 'UTF-8', errors='replace') return ret @staticmethod def help(exitcode): """Show help""" print(__doc__) sys.exit(exitcode) @staticmethod def version(): """Show version""" print(VERSION) sys.exit(0) @classmethod def dump2stdout(cls, argv): """Dump messages to STDOUT""" argv.remove('-') for filename in argv[1:]: result = cls(filename).get_attr_data() print(result) @classmethod def dump2txt(cls, argv): """Dump messages to TEXT""" try: for filename in argv[1:]: parser = cls(filename) invalid_str = r"[\\/:*?\"<>|]" # Not allowed to use filename # Remove invalid text subject = re.sub(invalid_str, "", parser.subject) # Remove local time "+09:00", "-" title_date = parser.date[:-len("+09:00")].replace("-", "") # Remove invalid strings date = re.sub(invalid_str, "", title_date) result = parser.get_attr_data() # Overwrite same date+subject eml with open(f'{date}_{subject}.txt', 'w', encoding='utf-8') as _f: _f.write(result) except BaseException as e: with open('eml2ext_error.txt', 'w', encoding='utf-8') as _f: print(f'error {e}') # _f.write(e) def main(): """Entry point""" if len(sys.argv) < 2: # No args MailParser.help(1) elif sys.argv[1] == '-v' or sys.argv[1] == '--version': MailParser.version() elif sys.argv[1] == '-h' or sys.argv[1] == '--help': MailParser.help(0) elif '-' in sys.argv: MailParser.dump2stdout(sys.argv) else: MailParser.dump2txt(sys.argv) if __name__ == "__main__": main()
49d99d025201045a3100ae9ab2515e297887e22a
9b10d8482a7af9c90766747f5f2ddc343871d5fa
/Gemtek/AutoTest/Sprinkler-Auto-Test/appium/modules/android/main_screen.py
53dfab1b87c290967aa74c0b91465fb24e0c9366
[]
no_license
DarcyChang/MyProjects
86d33f5cf8bdfd4b21e64922e4eb25c1afc3c135
47efb2dfe13ace264f8943b59b701f39f23c4c17
refs/heads/master
2021-05-12T12:43:39.255082
2020-09-23T06:42:03
2020-09-23T06:42:03
117,419,269
0
2
null
null
null
null
UTF-8
Python
false
false
2,525
py
import unittest from time import sleep from appium import webdriver import android.verify.exist import android.verify.next_page from appium.webdriver.common.touch_action import TouchAction def add_device(self): el = self.driver.find_element_by_id("com.blackloud.wetti:id/ivAddSprinkler") self.assertIsNotNone(el) el.click() sleep(1) def choose_device(self): # TODO timeout 30 seconds el = self.driver.find_element_by_id("com.blackloud.wetti:id/ivThum") # "com.blackloud.wetti:id/tvName" is too. self.assertIsNotNone(el) action = TouchAction(self.driver) i = 1 while(1): try: action.tap(el).perform() # el.click() sleep(1) try: android.verify.next_page.verify_binging_success(self) except: android.verify.next_page.verify_binging_network_success(self) break except: sleep(1) i += 1 if(i == 30): print("[Gemtek] choose device TIME OUT !") break sleep(1) # TODO : 1. There are four point can touch that choose sprinkler function. # two are recourse-id, another are class. # Maybe we can do it by random. # 2. Binging two or more devices. def my_account(self): el = self.driver.find_element_by_id("com.blackloud.wetti:id/imvAbLeft") self.assertIsNotNone(el) el.click() sleep(2) def buy_blackloud_sprinkler(self): el = self.driver.find_element_by_id("com.blackloud.wetti:id/tvBuyNetti") self.assertIsNotNone(el) el.click() sleep(5) def user_manual(self): el = self.driver.find_element_by_id("com.blackloud.wetti:id/tvUserManual") self.assertIsNotNone(el) el.click() sleep(5) def feature_introduction(self): el = self.driver.find_element_by_id("com.blackloud.wetti:id/tvTourGuide") self.assertIsNotNone(el) el.click() sleep(1) def contact_us(self): el = self.driver.find_element_by_id("com.blackloud.wetti:id/tvContactUs") self.assertIsNotNone(el) el.click() sleep(5) def about_blackloud(self): el = self.driver.find_element_by_id("com.blackloud.wetti:id/tvAbout") self.assertIsNotNone(el) el.click() sleep(5) def legal_and_privacy_policy(self): el = self.driver.find_element_by_id("com.blackloud.wetti:id/tvUnderText") self.assertIsNotNone(el) el.click() sleep(5) if __name__ == '__main__': print("[Gemtek] main_screen.py")
ebbc23d30dbea2dafb4b6a71b92a5ccb4c9bb341
d1c352676563b2decacfad19120001959b043f05
/superset/migrations/versions/a33a03f16c4a_add_extra_column_to_savedquery.py
07e0b05a1c0c6e035dd0a4931949130430b03579
[ "Apache-2.0", "CC-BY-4.0", "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
permissive
Affirm/incubator-superset
c9a09a10289b4ebf8a09284a483bca93725a4b51
421183d3f46c48215e88e9d7d285f2dc6c7ccfe6
refs/heads/master
2023-07-06T11:34:38.538178
2019-05-22T23:39:01
2019-05-22T23:39:01
128,005,001
1
3
Apache-2.0
2023-03-20T19:49:14
2018-04-04T04:02:42
JavaScript
UTF-8
Python
false
false
2,090
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Add extra column to SavedQuery Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to You under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Revision ID: a33a03f16c4a Revises: fb13d49b72f9 Create Date: 2019-01-14 16:00:26.344439 """ # revision identifiers, used by Alembic. revision = 'a33a03f16c4a' down_revision = 'fb13d49b72f9' from alembic import op import sqlalchemy as sa def upgrade(): with op.batch_alter_table('saved_query') as batch_op: batch_op.add_column(sa.Column('extra_json', sa.Text(), nullable=True)) def downgrade(): with op.batch_alter_table('saved_query') as batch_op: batch_op.drop_column('extra_json')
16599cd9a30d5c2433b18282333b8ef74be14640
e39a35e314e4dd4ecad543f8fbb5a704d9b4edec
/pipeline/data/hierarchical.py
90511c7c08089bfcdad9214dd2ac4cae4fcc2abd
[]
no_license
11mhg/OpenImageCompetition
f422e6e2034360ff6215546b47965327f2d16b5c
604c6fc206009b476208c02f4d1cad7b9a87057b
refs/heads/master
2020-03-24T18:45:08.519916
2018-11-10T00:55:22
2018-11-10T00:55:22
142,898,816
0
0
null
null
null
null
UTF-8
Python
false
false
1,638
py
class Tree(object): def __init__(self,hierarchy_dict=None): self.hierarchy_dict = hierarchy_dict self.root_node = Node(name='root',level=0) self.parse_level(sub=self.hierarchy_dict,parent=self.root_node) def parse_level(self,sub=None,parent=None): if 'LabelName' in sub: ind = parent.add_child(sub['LabelName']) if 'Subcategory' in sub: l = sub['Subcategory'] for elem in l: self.parse_level(elem,parent.children[ind]) def max_level(self,n): if n.leaf: return n.level values = [] for c in n.children: values.append(self.max_level(c)) return max(values) def get_num_level(self,n=None,level=0): if not n: n=self.root_node.children[0] s = 0 if n.level <= level: s+=1 for child in n.children: s+= self.get_num_level(child,level) return s def get_class_list(self,n=None,level=0): if not n: n = self.root_node.children[0] if n.level <= level: cl = [n.name] else: cl = [] for child in n.children: cl += self.get_class_list(child,level) return cl class Node(object): def __init__(self,name=None,level=0): self.name=name self.level=level self.children=[] self.leaf = True def add_child(self,child_name): self.leaf = False node = Node(name=child_name,level=self.level+1) self.children.append(node) return len(self.children)-1
478aba4708b468d17b216fbe2e5cd9462bb06649
7ce02f61e90efaa3811420bab40227c6d82ec7c4
/PDD/heartrate_monitor.py
54139090b034130e9d385a11e76d7a96914e8c65
[]
no_license
Leonlidawn/raspberrypi-flask-project
e00600310709dab2fe1354b62e4032bb186e5d76
4e17969a384cf3eb7899b2d39c94c40ec8c01185
refs/heads/main
2023-02-03T12:50:15.842881
2020-12-08T03:26:27
2020-12-08T03:26:27
309,027,034
0
0
null
null
null
null
UTF-8
Python
false
false
3,352
py
from max30102 import MAX30102 import hrcalc import threading import time import numpy as np import os import json import datetime class HeartRateMonitor(object): """ A class that encapsulates the max30102 device into a thread """ LOOP_TIME = 0.01 def __init__(self, print_raw=False, print_result=False): self.bpm = 0 if print_raw is True: print('IR, Red') self.print_raw = print_raw self.print_result = print_result def run_sensor(self): sensor = MAX30102() ir_data = [] red_data = [] bpms = [] path_to_script = os.path.dirname(os.path.abspath(__file__)) #print(path_to_script) try: os.mkdir("logs") except: pass new_file_path = os.path.join(path_to_script,"logs") #print(new_file_path) # run until told to stop while not self._thread.stopped: # check if any data is available num_bytes = sensor.get_data_present() if num_bytes > 0: # grab all the data and stash it into arrays while num_bytes > 0: red, ir = sensor.read_fifo() num_bytes -= 1 ir_data.append(ir) red_data.append(red) if self.print_raw: print("{0}, {1}".format(ir, red)) while len(ir_data) > 100: ir_data.pop(0) red_data.pop(0) if len(ir_data) == 100: bpm, valid_bpm, spo2, valid_spo2 = hrcalc.calc_hr_and_spo2(ir_data, red_data) if valid_bpm: bpms.append(bpm) while len(bpms) > 4: bpms.pop(0) self.bpm = np.mean(bpms) if (np.mean(ir_data) < 50000 and np.mean(red_data) < 50000): self.bpm = 0 if self.print_result: print("Finger not detected") if self.print_result: print("BPM: {0}, SpO2: {1}".format(self.bpm, spo2)) if not ((spo2 == -999) or (np.mean(ir_data) < 50000 and np.mean(red_data) < 50000)): data = {} data['Time'] = str(datetime.datetime.now()) data['BPM'] = bpm data['SPO2'] = spo2 json_data = json.dumps(data) with open(os.path.join(new_file_path, 'spo2log.json'), 'a') as f: json.dump(data,f) f.write("\n") # json.dump("\n",f) #f.write("SPO2: "+ str(spo2) +"\n") time.sleep(self.LOOP_TIME) sensor.shutdown() def start_sensor(self): self._thread = threading.Thread(target=self.run_sensor) self._thread.stopped = False self._thread.start() def stop_sensor(self, timeout=2.0): self._thread.stopped = True self.bpm = 0 self._thread.join(timeout)