blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
e07fa43a83bd2adf094cd9ebac21dd89d40d6130
bebaaeb46b31d6781f9d3ecad54a55cbbc7213fb
/cw03/cw6.py
977a1e77748b6b043928a73c03427b59b8c7a63e
[]
no_license
D3XXXt3R/PGiM
ce9681441d833f45cefee94565c1dd5fef1e9650
8eeecc3543be27788b760a6717a729b46883d055
refs/heads/master
2021-09-03T05:21:09.403913
2018-01-05T23:05:06
2018-01-05T23:05:06
106,942,201
0
0
null
null
null
null
UTF-8
Python
false
false
358
py
import os import cv2 img1 = cv2.imread(os.path.dirname(os.path.abspath(".")) + "\images" + "\eagle.jpg") img2 = cv2.imread(os.path.dirname(os.path.abspath(".")) + "\images" + "\image.jpg") result = cv2.divide(img1, img2) cv2.imshow("img1", img1) cv2.imshow("img2", img2) cv2.imshow("cv2.add img1 and img2", result) cv2.waitKey(0) cv2.destroyAllWindows()
7c2844d70a96688b97f5507202d86e90e17c7f8b
d3aab787246667a80373843ed165387277d590d4
/sdk/python/tests/integration/feature_repos/integration_test_repo_config.py
e4ff667764809f0a6222d8b25b4153235cf9980f
[ "Apache-2.0" ]
permissive
woop/feast-test
0302d30f8a6c0fb9b0e7e6d7d11c071a353a5ac2
0938060be08eff0eb94400384329a07fd17bd543
refs/heads/master
2022-03-09T20:41:50.933324
2022-03-05T06:03:38
2022-03-05T06:03:38
248,950,704
0
1
Apache-2.0
2020-03-21T11:07:54
2020-03-21T10:12:35
Java
UTF-8
Python
false
false
1,089
py
from dataclasses import dataclass from typing import Dict, Type, Union from tests.integration.feature_repos.universal.data_source_creator import ( DataSourceCreator, ) from tests.integration.feature_repos.universal.data_sources.file import ( FileDataSourceCreator, ) @dataclass(frozen=True) class IntegrationTestRepoConfig: """ This class should hold all possible parameters that may need to be varied by individual tests. """ provider: str = "local" online_store: Union[str, Dict] = "sqlite" offline_store_creator: Type[DataSourceCreator] = FileDataSourceCreator full_feature_names: bool = True infer_features: bool = False python_feature_server: bool = False def __repr__(self) -> str: return "-".join( [ f"Provider: {self.provider}", f"{self.offline_store_creator.__name__.split('.')[-1].rstrip('DataSourceCreator')}", self.online_store if isinstance(self.online_store, str) else self.online_store["type"], ] )
94096acaeabb4aaab31c981ee3428e6996c89c0c
8c7935dff5256f607823a25372960ca126a02661
/FPL_wildcard_team_selector/__init__.py
2e8523740904b59e9ef3f29c76e389fc3c1f45e9
[ "MIT" ]
permissive
abdul-gendy/FPL_wildcard_team_selector
13fd4375e3d88b9c9831ae731e6f630ad7bb7cee
e8dce9b655c44c665bb681d772ef0c215816ccd8
refs/heads/main
2023-02-09T19:44:14.968850
2021-01-09T15:50:19
2021-01-09T15:50:19
316,372,344
0
0
MIT
2021-01-09T15:46:20
2020-11-27T01:31:55
Python
UTF-8
Python
false
false
82
py
from .initiate_team_selection_pipeline import play_wildcard, generate_player_stats
0ace437a85db6e96650951783193984ca95813b5
c90081303077c4b61eea8fd3e358b3e4fdc9fe3e
/python/setup.py
d46141714a638ff7c5165fbbacb30938c7deec32
[]
no_license
deepankarm/jinad-clients
215bb8b678c9c0535f12043432d0a9caf9ddb90b
dfdf80613b37cbaaae47083e7f97527d57cf7642
refs/heads/main
2023-03-03T19:55:19.855216
2021-02-08T19:43:57
2021-02-08T19:43:57
337,189,609
1
0
null
null
null
null
UTF-8
Python
false
false
978
py
""" JinaD (Daemon) REST interface for managing distributed Jina # noqa: E501 The version of the OpenAPI document: 0.9.32 Generated by: https://openapi-generator.tech """ from setuptools import setup, find_packages # noqa: H301 NAME = "openapi-client" VERSION = "1.0.0" # To install the library, run the following # # python setup.py install # # prerequisite: setuptools # http://pypi.python.org/pypi/setuptools REQUIRES = [ "urllib3 >= 1.25.3", "python-dateutil", ] setup( name=NAME, version=VERSION, description="JinaD (Daemon)", author="OpenAPI Generator community", author_email="[email protected]", url="", keywords=["OpenAPI", "OpenAPI-Generator", "JinaD (Daemon)"], python_requires=">=3.6", install_requires=REQUIRES, packages=find_packages(exclude=["test", "tests"]), include_package_data=True, long_description="""\ REST interface for managing distributed Jina # noqa: E501 """ )
169d7cc14dc8f7dc5cef3961d36301b8c238a443
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/stdlib-big-1150.py
f0c360d921b9d495733e208728892b4243b4c859
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
8,992
py
# ChocoPy library functions def int_to_str(x: int) -> str: digits:[str] = None result:str = "" # Set-up digit mapping digits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] # Write sign if necessary if x < 0: result = "-" x = -x # Write digits using a recursive call if x >= 10: result = result + int_to_str(x // 10) result = result + digits[x % 10] return result def int_to_str2(x: int, x2: int) -> str: digits:[str] = None digits2:[str] = None result:str = "" result2:str = "" # Set-up digit mapping digits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] # Write sign if necessary if x < 0: result = "-" x = -x # Write digits using a recursive call if x >= 10: result = result + int_to_str(x // 10) result = result + digits[x % 10] return result def int_to_str3(x: int, x2: int, x3: int) -> str: digits:[str] = None digits2:[str] = None digits3:[str] = None result:str = "" result2:str = "" result3:str = "" # Set-up digit mapping digits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] # Write sign if necessary if x < 0: result = "-" x = -x # Write digits using a recursive call if x >= 10: result = result + int_to_str(x // 10) result = result + digits[x % 10] return result def int_to_str4(x: int, x2: int, x3: int, x4: int) -> str: digits:[str] = None digits2:[str] = None digits3:[str] = None digits4:[str] = None result:str = "" result2:str = "" result3:str = "" result4:str = "" # Set-up digit mapping digits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] # Write sign if necessary if x < 0: result = "-" x = -x # Write digits using a recursive call if x >= 10: result = result + int_to_str(x // 10) result = result + digits[x % 10] return result def int_to_str5(x: int, x2: int, x3: int, x4: int, x5: int) -> str: digits:[str] = None digits2:[str] = None digits3:[str] = None digits4:[str] = None digits5:[str] = None result:str = "" result2:str = "" result3:str = "" result4:str = "" result5:str = "" # Set-up digit mapping digits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] # Write sign if necessary if x < 0: result = "-" x = -x # Write digits using a recursive call if x >= 10: result = result + int_to_str(x // 10) result = result + digits[x % 10] return result def str_to_int(x: str) -> int: result:int = 0 digit:int = 0 char:str = "" sign:int = 1 first_char:bool = True # Parse digits for char in x: if char == "-": if not first_char: return 0 # Error sign = -1 elif char == "0": digit = 0 elif char == "1": digit = 1 elif char == "2": digit = 2 elif char == "3": digit = 3 elif $Exp: digit = 3 elif char == "4": digit = 4 elif char == "5": digit = 5 elif char == "6": digit = 6 elif char == "7": digit = 7 elif char == "8": digit = 8 elif char == "9": digit = 9 else: return 0 # On error first_char = False result = result * 10 + digit # Compute result return result * sign def str_to_int2(x: str, x2: str) -> int: result:int = 0 result2:int = 0 digit:int = 0 digit2:int = 0 char:str = "" char2:str = "" sign:int = 1 sign2:int = 1 first_char:bool = True first_char2:bool = True # Parse digits for char in x: if char == "-": if not first_char: return 0 # Error sign = -1 elif char == "0": digit = 0 elif char == "1": digit = 1 elif char == "2": digit = 2 elif char == "3": digit = 3 elif char == "3": digit = 3 elif char == "4": digit = 4 elif char == "5": digit = 5 elif char == "6": digit = 6 elif char == "7": digit = 7 elif char == "8": digit = 8 elif char == "9": digit = 9 else: return 0 # On error first_char = False result = result * 10 + digit # Compute result return result * sign def str_to_int3(x: str, x2: str, x3: str) -> int: result:int = 0 result2:int = 0 result3:int = 0 digit:int = 0 digit2:int = 0 digit3:int = 0 char:str = "" char2:str = "" char3:str = "" sign:int = 1 sign2:int = 1 sign3:int = 1 first_char:bool = True first_char2:bool = True first_char3:bool = True # Parse digits for char in x: if char == "-": if not first_char: return 0 # Error sign = -1 elif char == "0": digit = 0 elif char == "1": digit = 1 elif char == "2": digit = 2 elif char == "3": digit = 3 elif char == "3": digit = 3 elif char == "4": digit = 4 elif char == "5": digit = 5 elif char == "6": digit = 6 elif char == "7": digit = 7 elif char == "8": digit = 8 elif char == "9": digit = 9 else: return 0 # On error first_char = False result = result * 10 + digit # Compute result return result * sign def str_to_int4(x: str, x2: str, x3: str, x4: str) -> int: result:int = 0 result2:int = 0 result3:int = 0 result4:int = 0 digit:int = 0 digit2:int = 0 digit3:int = 0 digit4:int = 0 char:str = "" char2:str = "" char3:str = "" char4:str = "" sign:int = 1 sign2:int = 1 sign3:int = 1 sign4:int = 1 first_char:bool = True first_char2:bool = True first_char3:bool = True first_char4:bool = True # Parse digits for char in x: if char == "-": if not first_char: return 0 # Error sign = -1 elif char == "0": digit = 0 elif char == "1": digit = 1 elif char == "2": digit = 2 elif char == "3": digit = 3 elif char == "3": digit = 3 elif char == "4": digit = 4 elif char == "5": digit = 5 elif char == "6": digit = 6 elif char == "7": digit = 7 elif char == "8": digit = 8 elif char == "9": digit = 9 else: return 0 # On error first_char = False result = result * 10 + digit # Compute result return result * sign def str_to_int5(x: str, x2: str, x3: str, x4: str, x5: str) -> int: result:int = 0 result2:int = 0 result3:int = 0 result4:int = 0 result5:int = 0 digit:int = 0 digit2:int = 0 digit3:int = 0 digit4:int = 0 digit5:int = 0 char:str = "" char2:str = "" char3:str = "" char4:str = "" char5:str = "" sign:int = 1 sign2:int = 1 sign3:int = 1 sign4:int = 1 sign5:int = 1 first_char:bool = True first_char2:bool = True first_char3:bool = True first_char4:bool = True first_char5:bool = True # Parse digits for char in x: if char == "-": if not first_char: return 0 # Error sign = -1 elif char == "0": digit = 0 elif char == "1": digit = 1 elif char == "2": digit = 2 elif char == "3": digit = 3 elif char == "3": digit = 3 elif char == "4": digit = 4 elif char == "5": digit = 5 elif char == "6": digit = 6 elif char == "7": digit = 7 elif char == "8": digit = 8 elif char == "9": digit = 9 else: return 0 # On error first_char = False result = result * 10 + digit # Compute result return result * sign # Input parameters c:int = 42 c2:int = 42 c3:int = 42 c4:int = 42 c5:int = 42 n:int = 10 n2:int = 10 n3:int = 10 n4:int = 10 n5:int = 10 # Run [-nc, nc] with step size c s:str = "" s2:str = "" s3:str = "" s4:str = "" s5:str = "" i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 i = -n * c # Crunch while i <= n * c: s = int_to_str(i) print(s) i = str_to_int(s) + c
ffc1f5e25662f03a42ca4d8b62463a5ac471ce17
613ef791c47bad3bccc6c840147548ad0ae48351
/18term1/COMP9021/Assignment_1/readtest.py
e6d7b3d954a5022983aa541120b2028c1f93e53c
[]
no_license
andygaojw/COMP-COURSE
d02b3beef045f7a18cfc0636c54045f00f4091c3
f923f7aedaaea24dc894396533f79dfd298d13a3
refs/heads/master
2022-12-10T11:12:55.651087
2020-09-12T17:48:43
2020-09-12T17:48:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
516
py
import sys filename = input("") array = [] try: with open(filename) as file: line = file.readline() while line: line = line.strip('\n') line = list(line) while ' ' in line: line.remove(' ') array.append(line) line = file.readline() except FileNotFoundError: print("Can't find file!") sys.exit() for i in range(len(array)): for j in range(len(array[i])): array[i][j] = int(array[i][j]) print(array)
1d588f39142ab87ca6ee36bc0076d85cc7529753
f89d54420d4b0d86753afcf7d8db248cabaa4868
/venv/bin/django-admin.py
769730120a72404d2d010fd90c9f9b0fd5b4f303
[]
no_license
k121995/Eric
a58a247399588d3956cfeac25654f1c4f5f471d2
20f27a5f2ecd0249e2e13e245c5ce0a6ce168e03
refs/heads/master
2021-04-07T10:55:32.264499
2020-03-20T04:41:07
2020-03-20T04:41:07
248,669,134
0
0
null
null
null
null
UTF-8
Python
false
false
147
py
#!/home/user/Desktop/new/venv/bin/python from django.core import management if __name__ == "__main__": management.execute_from_command_line()
0977cd18f95a2dfb2553b1988fb052ae585579fd
c23d14c870ba0e3ecd739447018d890b80523fbb
/pyforchange/egg/resources/extensions.py
b8488b314b8cf4dff3a4fd01b830b422eb59166d
[ "MIT", "CC-BY-4.0" ]
permissive
PythonForChange/pyforchange
9e1cfb286bca2720c9cf4f2ff345aa70d09ce87e
2cc5afef227ac68147e291e447c57924586a0b12
refs/heads/master
2023-06-22T10:21:42.507358
2021-07-22T20:59:10
2021-07-22T20:59:10
374,409,188
1
0
null
null
null
null
UTF-8
Python
false
false
2,197
py
import os from pyforchange.egg.resources.modules import install # BEWARE: There is an import in line ~51 class Lang: def __init__(self,name: str): self.name=name self.extension="."+self.name self.root="/usr/bin/python "+name+self.extension def write(self,T: str,name: str): f=open(name+self.extension,"w") f.write(T) f.close() def append(self,T: str,name: str): f=open(name+self.extension,"a") f.write(T) f.close() def read(self, name: str): f=open(name+self.extension,"r") text=f.read() f.close() return text def execute(self,name: str): try: os.system(self.root) except: print("Execute error in: "+self.root) def delete(self,name: str): os.remove(name+self.extension) def getLines(self,name: str): h=open(name+self.extension,"r") lines=h.readlines() h.close() return lines def writeLines(self,lines,name: str): self.write("",name) for i in lines: self.append(i,name) # Extensions py=Lang("py") txt=Lang("txt") nqa=Lang("nqa") pfcf=Lang("pfcf") html=Lang("html") class Document(): def __init__(self, name: str, output: str ="index"): install("bs4") # BEWARE: There is an import here from bs4 import BeautifulSoup self.name=name doc=open(self.name+".html").read() self.soup=BeautifulSoup(doc,features="html.parser") self.output=output lines=html.getLines(self.name) html.writeLines(lines, self.output) def write(self, text: str, id: str): lines=html.getLines(self.output) for i in range(0,len(lines)): l=lines[i] words=l.split() if words[0]=="$egg" and id==words[1]: lines[i]=text+"\n" html.writeLines(lines,self.output) return lines def addTag(self,tag: str, content: str, id: str): return self.write(makeTag(self,tag, content),id) def makeTag(document,tag: str, content: str): new=document.soup.new_tag(tag) new.string=content return str(new)
704f69454fb77d18fbc3f25613f593f8968ae830
4c5b7f7f56105616344a3d5b59c60fe4f2756b01
/user/views.py
d6724afdda6732bfd5fd189f15aa7bb41fd531db
[ "MIT" ]
permissive
KrishnaVeer7712/India-National-Safety-Management-Web
2b79e1c19808864001c9b9cc7af01a6567219a7b
bfc60664b243b71c66265aa89fc4da8886b3d511
refs/heads/master
2023-01-09T03:31:27.556100
2020-11-12T06:29:23
2020-11-12T06:29:23
311,727,428
0
0
null
null
null
null
UTF-8
Python
false
false
3,096
py
from django.shortcuts import render,redirect from django.contrib import messages from django.contrib.auth import authenticate,login from django.contrib.auth.decorators import login_required from django.contrib.auth.forms import AuthenticationForm from .forms import UserRegisterForm from django.core.mail import send_mail from django.core.mail import EmailMultiAlternatives from django.template.loader import get_template from django.template import Context from django.http import HttpResponse ################################################################## ####################index####################################### def index(request): return render(request, 'user/index.html',{'title':'index'}) def read_file(request): f = open('D:/Sem Projects/Sem 7 projects/Capstone/India National Safety Management\India National Safety Management/text.txt', 'r') file_content = f.read() f.close() return HttpResponse(file_content, content_type="text/plain") ######################################################################## ########### register here ##################################### def register(request): if request.method == 'POST': form = UserRegisterForm(request.POST) or None if form.is_valid(): username = request.POST.get('username') #########################mail#################################### htmly = get_template('user/Email.html') d = { 'username': username } subject, from_email, to = 'hello', '[email protected]', '[email protected]' html_content = htmly.render(d) msg = EmailMultiAlternatives(subject, html_content, from_email, [to]) msg.attach_alternative(html_content, "text/html") try: msg.send() except: print("error in sending mail") ################################################################## form.save() username = form.cleaned_data.get('username') messages.success(request, f'Your account has been created! You are now able to log in') return redirect('login') else: form = UserRegisterForm() return render(request, 'user/register.html', {'form': form,'title':'reqister here'}) ################################################################################### ################login forms################################################### def Login(request): if request.method == 'POST': #AuthenticationForm_can_also_be_used__ username = request.POST.get('username') password = request.POST.get('password') user = authenticate(request, username=username, password=password) if user is not None: form = login(request,user) messages.success(request, f' wecome {username} !!') return redirect('index') else: messages.info(request, f'account done not exit plz sign in') form = AuthenticationForm() return render(request, 'user/login.html', {'form':form,'title':'log in'})
84006f624864e501e1d1e5bfd61e533585689919
b08d42933ac06045905d7c005ca9c114ed3aecc0
/src/coefSubset/evaluate/ranks/thirtyPercent/rank_1s4y_D.py
65f83a88199c4d9bcd5ca63bf3413fa8d2c6358d
[]
no_license
TanemuraKiyoto/PPI-native-detection-via-LR
d148d53f5eb60a4dda5318b371a3048e3f662725
897e7188b0da94e87126a4acc0c9a6ff44a64574
refs/heads/master
2022-12-05T11:59:01.014309
2020-08-10T00:41:17
2020-08-10T00:41:17
225,272,083
1
0
null
null
null
null
UTF-8
Python
false
false
3,392
py
# 9 July 2019 # Kiyoto Aramis Tanemura # Several metrics are used to assess the performance of the trained RF model, notably native ranking. This script returns a ranking of the native protein-protein complex among a decoy set. For convenience, I will define as a function and will call in a general performance assessment script. # Modified 11 July 2019 by Kiyoto Aramis Tanemura. To parallelize the process, I will replace the for loop for the testFileList to a multiprocessing pool. # Modified 9 September 2019 by Kiyoto Aramis Tanemura. I will use the function to perform the calculation on one CSV file only. Thus instead of a function to import in other scripts, they will be individual jobs parallelized as individual jobs in the queue. import os import pandas as pd import numpy as np import pickle os.chdir('/mnt/scratch/tanemur1/') # Read the model and trainFile testFile = '1s4y.csv' identifier = 'D' coefFrac = 0.3 testFilePath = '/mnt/scratch/tanemur1/CASF-PPI/nonb_descriptors/complete/' modelPath = '/mnt/home/tanemur1/6May2019/2019-11-11/results/coefSubset/thirtyPercent/' outputPath = '/mnt/home/tanemur1/6May2019/2019-11-11/results/coefSubset/evaluate/thirtyPercent/ranks/' pdbID = testFile[:4] with open(modelPath + 'model' + identifier + '.pkl', 'rb') as f: clf = pickle.load(f) result = pd.DataFrame() scoreList = [] df1 = pd.read_csv(testFilePath + testFile) dropList = ['Unnamed: 0', 'Unnamed: 0.1', 'ref'] df1 = df1.drop(dropList, axis = 1) df1 = df1.set_index('Pair_name') df1 = pd.DataFrame(df1.values.T, columns = df1.index, index = df1.columns) df1.fillna(0.0, inplace = True) #df1 = df1.reindex(sorted(df1.columns), axis = 1) # Keep coefficients within the given fraction when ordered by decreasing order of coefficient magnitude coefs = pd.read_csv('/mnt/home/tanemur1/6May2019/2019-11-11/results/medianCoefs.csv', index_col = 0, header = None, names = ['coefficients']) coefs['absVal'] = np.abs(coefs['coefficients']) coefs.sort_values(by = 'absVal', ascending = False, inplace = True) coefs = coefs[:int(14028 * coefFrac + 0.5)] keepList = list(coefs.index) del coefs df1 = df1[keepList] df1 = df1.reindex(sorted(df1.columns), axis = 1) with open(modelPath + 'standardScaler' + identifier + '.pkl', 'rb') as g: scaler = pickle.load(g) for i in range(len(df1)): # subtract from one row each row of the dataframe, then remove the trivial row[[i]] - row[[i]]. Also some input files have 'class' column. This is erroneous and is removed. df2 = pd.DataFrame(df1.iloc[[i]].values - df1.values, index = df1.index, columns = df1.columns) df2 = df2.drop(df1.iloc[[i]].index[0], axis = 0) # Standardize inut DF using the standard scaler used for training data. df2 = scaler.transform(df2) # Predict class of each comparison descriptor and sum the classes to obtain score. Higher score corresponds to more native-like complex predictions = clf.predict(df2) score = sum(predictions) scoreList.append(score) # Make a new DataFrame to store the score and corresponding descriptorID. Add rank as column. Note: lower rank corresponds to more native-like complex result = pd.DataFrame(data = {'score': scoreList}, index = df1.index.tolist()).sort_values(by = 'score', ascending = False) result['rank'] = range(1, len(result) + 1) with open(outputPath + pdbID + identifier + '.csv', 'w') as h: result.to_csv(h)
5151493f43a0b90174efde9a14fa9b6bcf09ea17
dd42972062dee3d4f59bf185173efa90d3f89e36
/tests/data_asset/test_expectation_decorators.py
427216e0c854e19f8ffd1a63ac8f2ffb461749b4
[ "Apache-2.0" ]
permissive
SwishAnalytics/great_expectations
7d63692826e904e05fd7a8b6c38284c8e1d451b4
31f3dc1d858f6c0235e7bd27f2af6c9bdf7fa775
refs/heads/develop
2022-04-19T12:31:15.304005
2020-04-18T00:16:21
2020-04-18T00:16:21
250,349,030
0
0
Apache-2.0
2020-03-26T19:28:56
2020-03-26T19:10:48
null
UTF-8
Python
false
false
18,695
py
from __future__ import division import pytest from great_expectations.core import ExpectationKwargs, ExpectationConfiguration, ExpectationValidationResult from great_expectations.data_asset import DataAsset from great_expectations.dataset import PandasDataset, MetaPandasDataset class ExpectationOnlyDataAsset(DataAsset): @DataAsset.expectation([]) def no_op_expectation(self, result_format=None, include_config=True, catch_exceptions=None, meta=None): return {"success": True} @DataAsset.expectation(['value']) def no_op_value_expectation(self, value=None, result_format=None, include_config=True, catch_exceptions=None, meta=None): return {"success": True} @DataAsset.expectation([]) def exception_expectation(self, result_format=None, include_config=True, catch_exceptions=None, meta=None): raise ValueError("Gotcha!") def test_expectation_decorator_build_config(): eds = ExpectationOnlyDataAsset() eds.no_op_expectation() eds.no_op_value_expectation('a') config = eds.get_expectation_suite() assert ExpectationConfiguration( expectation_type='no_op_expectation', kwargs={} ) == config.expectations[0] assert ExpectationConfiguration( expectation_type='no_op_value_expectation', kwargs=ExpectationKwargs({ 'value': 'a' }) ) == config.expectations[1] def test_expectation_decorator_include_config(): eds = ExpectationOnlyDataAsset() out = eds.no_op_value_expectation('a', include_config=True) assert ExpectationConfiguration( expectation_type='no_op_value_expectation', kwargs={ 'value': 'a', 'result_format': 'BASIC' } ) == out.expectation_config def test_expectation_decorator_meta(): metadata = {'meta_key': 'meta_value'} eds = ExpectationOnlyDataAsset() out = eds.no_op_value_expectation('a', meta=metadata) config = eds.get_expectation_suite() assert ExpectationValidationResult( success=True, meta=metadata, expectation_config=config.expectations[0] ) == out assert ExpectationConfiguration( expectation_type='no_op_value_expectation', kwargs={'value': 'a'}, meta=metadata ) == config.expectations[0] def test_expectation_decorator_catch_exceptions(): eds = ExpectationOnlyDataAsset() # Confirm that we would raise an error without catching exceptions with pytest.raises(ValueError): eds.exception_expectation(catch_exceptions=False) # Catch exceptions and validate results out = eds.exception_expectation(catch_exceptions=True) assert out.exception_info['raised_exception'] is True # Check only the first and last line of the traceback, since formatting can be platform dependent. assert 'Traceback (most recent call last):' == out.exception_info['exception_traceback'].split('\n')[0] assert 'ValueError: Gotcha!' == out.exception_info['exception_traceback'].split('\n')[-2] def test_pandas_column_map_decorator_partial_exception_counts(): df = PandasDataset({'a': [0, 1, 2, 3, 4]}) out = df.expect_column_values_to_be_between('a', 3, 4, result_format={'result_format': 'COMPLETE', 'partial_unexpected_count': 1}) assert 1 == len(out.result['partial_unexpected_counts']) assert 3 == len(out.result['unexpected_list']) def test_column_map_expectation_decorator(): # Create a new CustomPandasDataset to # (1) demonstrate that custom subclassing works, and # (2) Test expectation business logic without dependencies on any other functions. class CustomPandasDataset(PandasDataset): @MetaPandasDataset.column_map_expectation def expect_column_values_to_be_odd(self, column): return column.map(lambda x: x % 2) @MetaPandasDataset.column_map_expectation def expectation_that_crashes_on_sixes(self, column): return column.map(lambda x: (x-6)/0 != "duck") df = CustomPandasDataset({ 'all_odd': [1, 3, 5, 5, 5, 7, 9, 9, 9, 11], 'mostly_odd': [1, 3, 5, 7, 9, 2, 4, 1, 3, 5], 'all_even': [2, 4, 4, 6, 6, 6, 8, 8, 8, 8], 'odd_missing': [1, 3, 5, None, None, None, None, 1, 3, None], 'mixed_missing': [1, 3, 5, None, None, 2, 4, 1, 3, None], 'all_missing': [None, None, None, None, None, None, None, None, None, None] }) df.set_default_expectation_argument("result_format", "COMPLETE") df.set_default_expectation_argument("include_config", False) assert df.expect_column_values_to_be_odd("all_odd") == ExpectationValidationResult( result={'element_count': 10, 'missing_count': 0, 'missing_percent': 0.0, 'partial_unexpected_counts': [], 'partial_unexpected_index_list': [], 'partial_unexpected_list': [], 'unexpected_count': 0, 'unexpected_index_list': [], 'unexpected_list': [], 'unexpected_percent': 0.0, 'unexpected_percent_nonmissing': 0.0}, success=True ) assert df.expect_column_values_to_be_odd("all_missing") == ExpectationValidationResult( result={'element_count': 10, 'missing_count': 10, 'missing_percent': 100.0, 'partial_unexpected_counts': [], 'partial_unexpected_index_list': [], 'partial_unexpected_list': [], 'unexpected_count': 0, 'unexpected_index_list': [], 'unexpected_list': [], 'unexpected_percent': 0.0, 'unexpected_percent_nonmissing': None}, success=True ) assert df.expect_column_values_to_be_odd("odd_missing") == ExpectationValidationResult( result={'element_count': 10, 'missing_count': 5, 'missing_percent': 50.0, 'partial_unexpected_counts': [], 'partial_unexpected_index_list': [], 'partial_unexpected_list': [], 'unexpected_count': 0, 'unexpected_index_list': [], 'unexpected_list': [], 'unexpected_percent': 0.0, 'unexpected_percent_nonmissing': 0.0}, success=True ) assert df.expect_column_values_to_be_odd("mixed_missing") == ExpectationValidationResult( result={'element_count': 10, 'missing_count': 3, 'missing_percent': 30.0, 'partial_unexpected_counts': [{'value': 2., 'count': 1}, {'value': 4., 'count': 1}], 'partial_unexpected_index_list': [5, 6], 'partial_unexpected_list': [2., 4.], 'unexpected_count': 2, 'unexpected_index_list': [5, 6], 'unexpected_list': [2, 4], 'unexpected_percent': 20.0, 'unexpected_percent_nonmissing': (2/7 * 100)}, success=False ) assert df.expect_column_values_to_be_odd("mostly_odd") == ExpectationValidationResult( result={'element_count': 10, 'missing_count': 0, 'missing_percent': 0, 'partial_unexpected_counts': [{'value': 2., 'count': 1}, {'value': 4., 'count': 1}], 'partial_unexpected_index_list': [5, 6], 'partial_unexpected_list': [2., 4.], 'unexpected_count': 2, 'unexpected_index_list': [5, 6], 'unexpected_list': [2, 4], 'unexpected_percent': 20.0, 'unexpected_percent_nonmissing': 20.0}, success=False ) assert df.expect_column_values_to_be_odd("mostly_odd", mostly=.6) == ExpectationValidationResult( result={'element_count': 10, 'missing_count': 0, 'missing_percent': 0, 'partial_unexpected_counts': [{'value': 2., 'count': 1}, {'value': 4., 'count': 1}], 'partial_unexpected_index_list': [5, 6], 'partial_unexpected_list': [2., 4.], 'unexpected_count': 2, 'unexpected_index_list': [5, 6], 'unexpected_list': [2, 4], 'unexpected_percent': 20.0, 'unexpected_percent_nonmissing': 20.0}, success=True ) assert df.expect_column_values_to_be_odd("mostly_odd", result_format="BOOLEAN_ONLY") == \ ExpectationValidationResult(success=False) df.default_expectation_args["result_format"] = "BOOLEAN_ONLY" assert df.expect_column_values_to_be_odd("mostly_odd") == ExpectationValidationResult(success=False) df.default_expectation_args["result_format"] = "BASIC" assert df.expect_column_values_to_be_odd("mostly_odd", include_config=True) == ExpectationValidationResult( expectation_config=ExpectationConfiguration( expectation_type="expect_column_values_to_be_odd", kwargs={ "column": "mostly_odd", "result_format": "BASIC" } ), result={ 'element_count': 10, 'missing_count': 0, 'missing_percent': 0, 'partial_unexpected_list': [2, 4], 'unexpected_count': 2, 'unexpected_percent': 20.0, 'unexpected_percent_nonmissing': 20.0}, success=False ) def test_column_aggregate_expectation_decorator(): # Create a new CustomPandasDataset to # (1) demonstrate that custom subclassing works, and # (2) Test expectation business logic without dependencies on any other functions. class CustomPandasDataset(PandasDataset): @PandasDataset.column_aggregate_expectation def expect_column_median_to_be_odd(self, column): median = self.get_column_median(column) return {"success": median % 2, "result": {"observed_value": median}} df = CustomPandasDataset({ 'all_odd': [1, 3, 5, 7, 9], 'all_even': [2, 4, 6, 8, 10], 'odd_missing': [1, 3, 5, None, None], 'mixed_missing': [1, 2, None, None, 6], 'mixed_missing_2': [1, 3, None, None, 6], 'all_missing': [None, None, None, None, None, ], }) df.set_default_expectation_argument("result_format", "COMPLETE") df.set_default_expectation_argument("include_config", False) assert df.expect_column_median_to_be_odd("all_odd") == ExpectationValidationResult( result={'observed_value': 5, 'element_count': 5, 'missing_count': 0, 'missing_percent': 0}, success=True ) assert df.expect_column_median_to_be_odd("all_even") == ExpectationValidationResult( result={'observed_value': 6, 'element_count': 5, 'missing_count': 0, 'missing_percent': 0}, success=False ) assert df.expect_column_median_to_be_odd( "all_even", result_format="SUMMARY") == ExpectationValidationResult( result={'observed_value': 6, 'element_count': 5, 'missing_count': 0, 'missing_percent': 0}, success=False ) assert df.expect_column_median_to_be_odd( "all_even", result_format="BOOLEAN_ONLY") == ExpectationValidationResult(success=False) df.default_expectation_args["result_format"] = "BOOLEAN_ONLY" assert df.expect_column_median_to_be_odd("all_even") == ExpectationValidationResult(success=False) assert df.expect_column_median_to_be_odd("all_even", result_format="BASIC") == ExpectationValidationResult( result={'observed_value': 6, 'element_count': 5, 'missing_count': 0, 'missing_percent': 0}, success=False ) def test_column_pair_map_expectation_decorator(): # Create a new CustomPandasDataset to # (1) Demonstrate that custom subclassing works, and # (2) Test expectation business logic without dependencies on any other functions. class CustomPandasDataset(PandasDataset): @PandasDataset.column_pair_map_expectation def expect_column_pair_values_to_be_different(self, column_A, column_B, keep_missing="either", output_format=None, include_config=True, catch_exceptions=None ): return column_A != column_B df = CustomPandasDataset({ 'all_odd': [1, 3, 5, 7, 9], 'all_even': [2, 4, 6, 8, 10], 'odd_missing': [1, 3, 5, None, None], 'mixed_missing': [1, 2, None, None, 6], 'mixed_missing_2': [1, 3, None, None, 6], 'all_missing': [None, None, None, None, None, ], }) df.set_default_expectation_argument("result_format", "COMPLETE") df.set_default_expectation_argument("include_config", False) assert df.expect_column_pair_values_to_be_different( "all_odd", "all_even") == ExpectationValidationResult( success=True, result={ "element_count": 5, "missing_count": 0, "unexpected_count": 0, "missing_percent": 0.0, "unexpected_percent": 0.0, "unexpected_percent_nonmissing": 0.0, "unexpected_list": [], "unexpected_index_list": [], "partial_unexpected_list": [], "partial_unexpected_index_list": [], "partial_unexpected_counts": [], } ) assert df.expect_column_pair_values_to_be_different( "all_odd", "all_even", ignore_row_if="both_values_are_missing", ) == ExpectationValidationResult( success=True, result={ "element_count": 5, "missing_count": 0, "unexpected_count": 0, "missing_percent": 0.0, "unexpected_percent": 0.0, "unexpected_percent_nonmissing": 0.0, "unexpected_list": [], "unexpected_index_list": [], "partial_unexpected_list": [], "partial_unexpected_index_list": [], "partial_unexpected_counts": [], } ) assert df.expect_column_pair_values_to_be_different("all_odd", "odd_missing") == ExpectationValidationResult( success=False, result={ "element_count": 5, "missing_count": 0, "unexpected_count": 3, "missing_percent": 0.0, "unexpected_percent": 60.0, "unexpected_percent_nonmissing": 60.0, "unexpected_list": [(1, 1.), (3, 3.), (5, 5.)], "unexpected_index_list": [0, 1, 2], "partial_unexpected_list": [(1, 1.), (3, 3.), (5, 5.)], "partial_unexpected_index_list": [0, 1, 2], "partial_unexpected_counts": [ {'count': 1, 'value': (1, 1.)}, {'count': 1, 'value': (3, 3.)}, {'count': 1, 'value': (5, 5.)} ] } ) assert df.expect_column_pair_values_to_be_different( "all_odd", "odd_missing", ignore_row_if="both_values_are_missing") == ExpectationValidationResult( success=False, result={ "element_count": 5, "missing_count": 0, "unexpected_count": 3, "missing_percent": 0.0, "unexpected_percent": 60.0, "unexpected_percent_nonmissing": 60.0, "unexpected_list": [(1, 1.), (3, 3.), (5, 5.)], "unexpected_index_list": [0, 1, 2], "partial_unexpected_list": [(1, 1.), (3, 3.), (5, 5.)], "partial_unexpected_index_list": [0, 1, 2], "partial_unexpected_counts": [ {'count': 1, 'value': (1, 1.)}, {'count': 1, 'value': (3, 3.)}, {'count': 1, 'value': (5, 5.)} ] } ) assert df.expect_column_pair_values_to_be_different( "all_odd", "odd_missing", ignore_row_if="either_value_is_missing" ) == ExpectationValidationResult( success=False, result={ "element_count": 5, "missing_count": 2, "unexpected_count": 3, "missing_percent": 40.0, "unexpected_percent": 60.0, "unexpected_percent_nonmissing": 100.0, "unexpected_list": [(1, 1.), (3, 3.), (5, 5.)], "unexpected_index_list": [0, 1, 2], "partial_unexpected_list": [(1, 1.), (3, 3.), (5, 5.)], "partial_unexpected_index_list": [0, 1, 2], "partial_unexpected_counts": [ {'count': 1, 'value': (1, 1.)}, {'count': 1, 'value': (3, 3.)}, {'count': 1, 'value': (5, 5.)} ] } ) with pytest.raises(ValueError): df.expect_column_pair_values_to_be_different( "all_odd", "odd_missing", ignore_row_if="blahblahblah" ) # Test SUMMARY, BASIC, and BOOLEAN_ONLY output_formats assert df.expect_column_pair_values_to_be_different( "all_odd", "all_even", result_format="SUMMARY" ) == ExpectationValidationResult( success=True, result={ "element_count": 5, "missing_count": 0, "unexpected_count": 0, "missing_percent": 0.0, "unexpected_percent": 0.0, "unexpected_percent_nonmissing": 0.0, "partial_unexpected_list": [], "partial_unexpected_index_list": [], "partial_unexpected_counts": [], } ) assert df.expect_column_pair_values_to_be_different( "all_odd", "all_even", result_format="BASIC" ) == ExpectationValidationResult( success=True, result={ "element_count": 5, "missing_count": 0, "unexpected_count": 0, "missing_percent": 0.0, "unexpected_percent": 0.0, "unexpected_percent_nonmissing": 0.0, "partial_unexpected_list": [], } ) assert df.expect_column_pair_values_to_be_different( "all_odd", "all_even", result_format="BOOLEAN_ONLY" ) == ExpectationValidationResult(success=True)
8b086ad20d35c4dda3e0b0be54da794780585885
c437ee09fa856327b66c78c0419ebf1848ad58fb
/PageBotNano-010-Template/pagebotnano_010/toolbox/__init__.py
db64f7c78b5c8ee4f74eb2d58d61dce227badce1
[ "MIT" ]
permissive
juandelperal/PageBotNano
6fea81d027bfe55d1888f55c66b2bcf17bb47ff5
7f0d82755d6eb6962f206e5dd0d08c40c0947bde
refs/heads/master
2022-11-12T05:14:53.019506
2020-07-01T11:17:13
2020-07-01T11:17:13
275,766,295
0
0
NOASSERTION
2020-06-29T07:50:27
2020-06-29T07:50:26
null
UTF-8
Python
false
false
3,056
py
#!/usr/bin/env python3 # -*- coding: UTF-8 -*- # ----------------------------------------------------------------------------- # # P A G E B O T N A N O # # Copyright (c) 2020+ Buro Petr van Blokland + Claudia Mens # www.pagebot.io # Licensed under MIT conditions # # Supporting DrawBot, www.drawbot.com # ----------------------------------------------------------------------------- # # This source makes it possible to import other sources # from this diretory/folder # import sys if __name__ == "__main__": sys.path.insert(0, "../..") # So we can import pagebotnano without installing. from pagebotnano_010.constants import PADDING def extensionOf(path): """Answer the extension of path. Answer None of there is no extension. >>> extensionOf('../../images/myImage.jpg') 'jpg' >>> extensionOf('aFile.PDF') # Answer a lowercase 'pdf' >>> extensionOf('aFile') is None # No extension True >>> extensionOf('../../aFile') is None # No extension on file name True """ parts = path.split('/')[-1].split('.') if len(parts) > 1: return parts[-1].lower() return None def fileNameOf(path): """Answer the file name part of the path. >>> fileNameOf('../../aFile.pdf') 'aFile.pdf' >>> fileNameOf('../../') is None # No file name True """ return path.split('/')[-1] or None # M E A S U R E S def mm(mm): """Convert from millimeter values to rounded points >>> mm(210) 595 >>> mm(297) 842 """ return int(round(mm * 72 * 0.039370)) # Approximated 1" = 25.400051mm def cm(cm): """Convert from millimeter values to rounded points >>> cm(21) 595 >>> cm(29.7) 842 """ return int(round(cm * 72 * 0.039370 * 10)) # Approximated 1" = 25.400051mm def makePadding(padding): """Check on the various ways that padding can be defined. >>> makePadding((10, 20, 30, 40)) (10, 20, 30, 40) >>> makePadding((10, 20)) (10, 20, 10, 20) >>> makePadding(50) (50, 50, 50, 50) """ if isinstance(padding, (list, tuple)): if len(padding) == 2: pt, pr = pb, pl = padding elif len(padding) == 4: pt, pr, pb, pl = padding else: # In case None or illegal value, then just use defailt raise ValueError('%s.padding: Not the right kind of padding "%s"' % (self.__class.__.__name__, padding)) elif padding is None or isinstance(padding, (int, float)): pt = pr = pb = pl = padding or PADDING else: # In case None or illegal value, then just use defailt raise ValueError('%s.padding: Not the right kind of padding "%s"' % (self.__class.__.__name__, padding)) if pt is None: pt = PADDING if pr is None: pr = PADDING if pb is None: pb = PADDING if pl is None: pl = PADDING return pt, pr, pb, pl if __name__ == "__main__": # Running this document will execute all >>> comments as test of this source. import doctest doctest.testmod()[0]
4f834e8074c6a53607cf96517f86c1115d219d69
c0f72c5ed3bbb9288f8796a612a675942a1f7c85
/mqtt_processor/pub.py
cad383b3ddec288fd2b7e7f651dc605e2cde1a4b
[ "MIT" ]
permissive
yourequiremorecitygas/process-server
542378a805158dd528b357dd7def90b6b3117515
d111f20d8a6a67b7ea6ef675671295b736924cd5
refs/heads/master
2020-05-01T18:03:06.902916
2019-06-11T15:58:00
2019-06-11T15:58:00
177,615,552
0
0
null
null
null
null
UTF-8
Python
false
false
264
py
import paho.mqtt.client as mqtt mqtt = mqtt.Client("python_pub") #Mqtt Client 오브젝트 생성 mqtt.connect("52.194.252.52", 1883) #MQTT 서버에 연결 mqtt.publish("topic", "AT") #토픽과 메세지 발행 mqtt.publish("topic", "BT") mqtt.loop(2)
6834331ec3c28cd177a9637e46c13aca13bbefe1
23e737a4d6855b92681406b87967127faab61db1
/Python Programs/Exp_17.py
6918f026d5e81eb7074179df47cd7404a9228d77
[]
no_license
KARTHIK-KG/COD-Lab
2558c061fec192a5e18403f1c470abd08bec62dc
cefb603d6440ffbb380cfc454a652c28e86759cd
refs/heads/main
2023-08-06T19:56:57.178697
2021-10-05T04:10:28
2021-10-05T04:10:28
389,884,272
11
3
null
null
null
null
UTF-8
Python
false
false
618
py
# Python program to find the gcd of two numbers # Step 1:Get 2 integer inputs from the user # Step 2:Next, use decision-making statements or use recursion to check if both the given numbers are divisible by any number (i) without leaving any remainder. # Step 3:If true, then GCD = i # Step 4:Print the GCD of the two numbers # Step 5:End of the program def hcf(a,b): if(b==0): return a else: return hcf(b,a%b) a=60 b=48 print("The gcd of 60 and 48 is : ",end="") print(hcf(60,48)) # Input : # Enter two numbers # 60 # 48 # Output : # The gcd of 60 and 48 is : 12
75415f8c142d19940438175484ca95e2698259e8
ec7b3664e31c0bbd995d75b16854c3712a81ce0b
/HandTrackingModule.py
ee63840507ff8f710c7b8cf87509cde576f912aa
[]
no_license
nokckanh/ControlVolume
c7bd0de0a8cd1c7db767644417256bb6bf3474be
32eb62b964a512f5b8a7dd58a19013ccbd355415
refs/heads/master
2023-05-09T23:56:02.952468
2021-06-03T09:23:51
2021-06-03T09:23:51
373,450,310
0
0
null
null
null
null
UTF-8
Python
false
false
3,018
py
import cv2 import mediapipe as mp import time import math class handDetector() : def __init__(self, mode = False, maxHands = 2,detectionCon=0.5, trackCon=0.5): self.mode = mode self.maxHands = maxHands self.detectionCon = detectionCon self.trackCon = trackCon self.mpHands = mp.solutions.hands self.hands = self.mpHands.Hands(self.mode, self.maxHands, self.detectionCon, self.trackCon) self.mpDraw = mp.solutions.drawing_utils self.tipIds = [4, 8, 12 ,16, 20] def findHands(self, img, draw=True): imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) self.results = self.hands.process(imgRGB) if self.results.multi_hand_landmarks: for handLms in self.results.multi_hand_landmarks: if draw: self.mpDraw.draw_landmarks(img, handLms,self.mpHands.HAND_CONNECTIONS) return img def findPositon(self, img , handNo = 0 , draw = True): xlist = [] ylist = [] bbox = [] self.lmList = [] if self.results.multi_hand_landmarks: myHands = self.results.multi_hand_landmarks[handNo] for id, lm in enumerate(myHands.landmark): h , w ,c = img.shape cx , cy = int(lm.x * w ), int(lm.y * h) xlist.append(cx) ylist.append(cy) self.lmList.append([id, cx, cy]) if draw: cv2.circle(img,(cx,cy),5, (255,0,255) , cv2.FILLED) xmin , xmax = min(xlist) , max(xlist) ymin , ymax = min(ylist) , max(ylist) bbox = xmin,ymin,xmax,ymax if draw: cv2.rectangle(img, (bbox[0]-20, bbox[1]-20), (bbox[2]+20, bbox[3]+20), (0,255,0),2) return self.lmList ,bbox def fingersUp(self): fingers = [] #Ngon cai if self.lmList[self.tipIds[0]][1] > self.lmList[self.tipIds[0] - 1][1]: fingers.append(0) else : fingers.append(1) # 4 fingers for id in range(1, 5) : if self.lmList[self.tipIds[id]][2] < self.lmList[self.tipIds[id] - 2][2]: fingers.append(1) else: fingers.append(0) return fingers def findDistance(self, p1,p2,img,draw=True): x1, y1 = self.lmList[p1][1], self.lmList[p1][2] x2, y2 = self.lmList[p2][1], self.lmList[p2][2] cx , cy = (x1 + x2) // 2, (y1 + y2) // 2 if draw : cv2.circle(img,(x1,y1),15,(255,0,255), cv2.FILLED ) cv2.circle(img,(x2,y2),15,(255,0,255), cv2.FILLED ) cv2.line(img, (x1,y1), (x2,y2), (255,0,255), 3) cv2.circle(img,(cx,cy),15,(255,0,255), cv2.FILLED ) length = math.hypot(x2 - x1 , y2-y1) return length, img, [x1, y1, x2 ,y2, cx ,cy]
c278d54c536e37d74902544d465054438ef73832
0571b10dfdd9d5727a858aa0b91f4e77a1bb486f
/test1.py
48b42f5310e1ad8c71d452784f2c67cd5ada6c2f
[ "MIT" ]
permissive
dcampanini/xgboost_classification
dddf6a04a6e0635d8c454c44191cbfbde58ac576
45a7ab760c5d5be1b6bcf14d0a8a39673071da64
refs/heads/master
2023-08-29T19:48:56.430208
2021-06-27T19:08:03
2021-06-27T19:08:03
377,159,700
0
0
null
null
null
null
UTF-8
Python
false
false
5,586
py
#%% import pandas as pd import numpy as np from numpy import loadtxt import time import pathlib import pickle from datetime import datetime from xgboost import XGBClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.metrics import plot_confusion_matrix from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt #%% def extract_features(num_pnm_data,fecha_macs,pnm_data): #%% generar arreglo para el set de entrenamiento field_num=3+4*num_pnm_data # =date+mac+clase + num_metrica*num_pnm_data set1= pd.DataFrame(0, index=range(len(fecha_macs)), columns=range(field_num)) # %% calcular metricas y armar dataset de entrenamiento for i in range(len(fecha_macs)): #i=3 # extraer para una mac y fecha especifica, todos los datos disponibles # por cada hora, idealmente serian 24 filas mac_data=pnm_data.loc[(pnm_data['MAC_ADDRESS']==fecha_macs.iloc[i][1]) & (pnm_data['DATE_FH']==fecha_macs.iloc[i][0])] #% etiquetar if mac_data['ESTADO'].iloc[0]=='CERRADO': set1.iloc[i,-1]=1 else: set1.iloc[i,-1]=0 # % calcular mean y var mean=mac_data.iloc[:,3:16].mean() var=mac_data.iloc[:,3:16].var() # %% calcular weighted moving average (wma) weights=np.flip(np.arange(1,len(mac_data)+1)) wma=mac_data.iloc[:,3:16].apply(lambda x: np.dot(x,weights)/sum(weights)) #%% guardar fecha y mac_address set1.iloc[i,0:2]=mac_data.iloc[0,[0,2]] #%% guardar mean, var, wma, mean-wma en set1 set1.iloc[i,2:2+len(mean)]=mean set1.iloc[i,2+len(mean):2+2*len(mean)]=var set1.iloc[i,2+2*len(mean):2+3*len(mean)]=wma set1.iloc[i,2+3*len(mean):2+4*len(mean)]=mean-wma # retornar arreglo con las features calculadas return set1 #%% ============================================================================= start = time.time() print('Cargando datos') reclama1=pd.read_csv('train/mac_reclama_dia_abril.csv',low_memory=False) reclama2=pd.read_csv('train/mac_reclama_dia_mayo.csv',low_memory=False) reclama3=pd.read_csv('train/mac_reclama_dia_junio.csv',low_memory=False) noreclama1=pd.read_csv('train/mac_no_reclama_label_abril.csv',low_memory=False) noreclama2=pd.read_csv('train/mac_no_reclama_label_mayo.csv',low_memory=False) noreclama3=pd.read_csv('train/mac_no_reclama_label_junio.csv',low_memory=False) df_train=[reclama2,noreclama2] df_test=[reclama1,reclama3,noreclama1,noreclama3] train=pd.concat(df_train) test=pd.concat(df_test) #%% #sub1=df2 train1=train.sample(1000) test1=test.sample(1000) #%% drop some columns train1=train1.drop(['FECHA_AFECTACION_00'], inplace=False, axis=1) test1=test1.drop(['FECHA_AFECTACION_00'], inplace=False, axis=1) #pnm_data=train1 #%% extraer dataframe con mac_address unicas #macs=sub1_ft.loc[:,['MAC_ADDRESS']].drop_duplicates().sort_values(by=['MAC_ADDRESS']) #%% extraer dataframe con (fecha,mac_address) fecha_macs_train=train1.loc[:,['DATE_FH', 'MAC_ADDRESS']].drop_duplicates().sort_values(by=['MAC_ADDRESS', 'DATE_FH']) fecha_macs_test=test1.loc[:,['DATE_FH', 'MAC_ADDRESS']].drop_duplicates().sort_values(by=['MAC_ADDRESS', 'DATE_FH']) # %% print('Inicio ejecucion feature engineering') num_pnm_data=13 train1=extract_features(num_pnm_data,fecha_macs_train,train1) test1=extract_features(num_pnm_data,fecha_macs_test,test1) print('Fin ejecucion feature engineering') #%% set2=train1.dropna() set3=test1.dropna() #%% ============================================================================= # Entrenar modelo print('Inicio entrenamiento modelo') x_train=set2.iloc[:,2:54] y_train=set2.iloc[:,54] x_test=set3.iloc[:,2:54] y_test=set3.iloc[:,54] #%% fit model on training data model = XGBClassifier() model.fit(x_train, y_train,verbose=True) print('Fin entrenamiento modelo') #%% make predictions for test data y_pred = model.predict(x_test) y_pred2=np.zeros(x_test.shape[0]) probas=model.predict_proba(x_test) #%% for i in range(len(probas)) : if probas[:,1][i] >0.9: y_pred2[i]=1 else: y_pred2[i]=0 # confusion matrix cm=confusion_matrix(y_test, y_pred2) tn, fp, fn, tp=confusion_matrix(y_test, y_pred2).ravel() print('tp=',tp,'fp=',fp,'tn=',tn,'fn=',fn) #%% predictions = [round(value) for value in y_pred] #%% evaluate predictions accuracy = accuracy_score(y_test, y_pred) print("Accuracy: %.2f%%" % (accuracy * 100.0)) print('Fin ejecucion modelo') # %% end = time.time() elapsed = (end - start) print('Tiempo en segundos',elapsed,'Tiempo en minutos',elapsed/60) #%% ============================================================================= #%% save results and model #make a directory today = datetime.now().strftime('%Y-%m-%d_%H:%M:%S') dir=pathlib.Path.cwd().joinpath('results'+today) pathlib.Path(dir).mkdir(parents=True, exist_ok=True) #%% save real labels and predicted y_test_np=y_test.to_numpy() output=pd.DataFrame({'real':y_test,'pred':y_pred}) output.to_csv(dir.joinpath('results.csv')) # save accuracy np.savetxt(dir.joinpath('accuracy.txt'),np.resize(np.array(accuracy),(1,1))) #%% save model model.save_model(dir.joinpath(today+'.model')) pickle.dump(model, open(dir.joinpath(today+'.pickle.dat'), "wb")) # %% confusion matrix plot_confusion_matrix(model, x_test, y_test, display_labels=['reclama', 'no reclama'], cmap=plt.cm.Blues) plt.savefig(dir.joinpath('confusion_matrix.jpg'),dpi=300) #plt.show()
d2fccd29e2c63b4b1fda9a9ccb9c8d23211b6530
fbbb93e9c8b07ff509d44088bd1ba8c31ccb9745
/app/main/views.py
7731ed9f3d68c200530957c602449cf9afaa04d3
[]
no_license
Muia23/pitchyy
ceda760988d0091b37e0b045b61e2c053b993695
a54e8c6086b52d5b0f82dbb722b3412fa392fd64
refs/heads/master
2022-11-29T14:33:31.499248
2020-07-19T09:17:13
2020-07-19T09:17:13
281,632,480
0
0
null
null
null
null
UTF-8
Python
false
false
759
py
from flask import render_template,request,redirect,url_for from . import main from flask_login import login_required @main.route('/') def index(): ''' View root page function returning index page ''' title = 'Soi | Where you express yourself' return render_template('index.html', title = title) @main.route('/comment') @login_required def index(): ''' View root page function returning index page ''' title = 'Soi | Where you express yourself' return render_template('index.html', title = title) @main.route('/posting') @login_required def index(): ''' View root page function returning index page ''' title = 'Soi | Where you express yourself' return render_template('index.html', title = title)
3e0ff04db8d41c0617cd8e5d9a4521b068448bce
c70748b3b90734e13de3125fe305510cd3345c1d
/44-isMatch.py
211833a97dbb4267b62e48f692cd356ead42d862
[]
no_license
sunshinewxz/leetcode
9fca9a005644b06a5d8da230aeec4c216ac0e436
d2e0fb4a55003d5c230fb8b2e13ac8b224b47a75
refs/heads/master
2021-07-19T08:15:22.159485
2019-01-22T14:04:25
2019-01-22T14:04:25
118,546,173
0
0
null
null
null
null
UTF-8
Python
false
false
919
py
class Solution(object): def isMatch(self, s, p): """ :type s: str :type p: str :rtype: bool """ s_p = 0 p_p = 0 last_p = -1 last_s = -1 while(s_p < len(s)): if p_p < len(p) and (s[s_p] == p[p_p] or p[p_p] == '?'): s_p += 1 p_p += 1 elif p_p < len(p) and p[p_p] == '*': last_s = s_p last_p = p_p p_p += 1 elif p_p > 0 and p[p_p-1] == '*': s_p += 1 elif last_p > -1: p_p = last_p s_p = last_s + 1 else: return False while(s_p < len(s)): return False while(p_p < len(p)): if p[p_p] == '*': p_p += 1 else: return False return True
d306754b0cdcc2e74315ec7c4b729095348e64ad
ffaeaf54e891c3dcca735347f27f1980f66b7a41
/python/6.net/1.UDP/3.udp_thread.py
61ab82af0f1f72b2aa7363beb316ed17c62e1c54
[ "Apache-2.0" ]
permissive
dunitian/BaseCode
9804e3d8ff1cb6d4d8cca96978b20d168072e8bf
4855ef4c6dd7c95d7239d2048832d8acfe26e084
refs/heads/master
2020-04-13T09:51:02.465773
2018-12-24T13:26:32
2018-12-24T13:26:32
137,184,193
0
0
Apache-2.0
2018-06-13T08:13:38
2018-06-13T08:13:38
null
UTF-8
Python
false
false
970
py
from socket import socket, AF_INET, SOCK_DGRAM from multiprocessing.dummy import Pool as ThreadPool def send_msg(udp_socket): while True: msg = input("输入需要发送的消息:\n") udp_socket.sendto(msg.encode("utf-8"), ("192.168.36.235", 8080)) def recv_msg(udp_socket): while True: data, info = udp_socket.recvfrom(1024) print(f"[来自{info[0]}:{info[1]}的消息]:\n{data.decode('utf-8')}") def main(): # 创建一个Socket with socket(AF_INET, SOCK_DGRAM) as udp_socket: # 绑定端口 udp_socket.bind(('', 5400)) # 创建一个线程池 pool = ThreadPool() # 接收消息 pool.apply_async(recv_msg, args=(udp_socket, )) # 发送消息 pool.apply_async(send_msg, args=(udp_socket, )) pool.close() # 不再添加任务 pool.join() # 等待线程池执行完毕 print("over") if __name__ == '__main__': main()
df692854b59b9541f96b9a2daaff92351946e434
1e00035f67485df7544d5b195bef4b765db3cdc2
/lidc_nodule_setup.py
9af14a10e04438a9bf19405c79a3f0b7ce36d7cb
[]
no_license
sinecode/ct-scan-ml
314cad2f645145868452d302321c6398fb52b0c1
c8e1d87aef7633565eb5968f092285224005cf98
refs/heads/master
2023-02-28T11:37:45.640393
2021-02-09T18:46:19
2021-02-09T18:46:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,902
py
import argparse from pathlib import Path import xml.etree.ElementTree as ET from statistics import median import numpy as np import pandas as pd import tensorflow as tf from tqdm import tqdm from utils import read_dcm, extract_patch, pad_to_shape, volume_to_example from config import ( LIDC_SMALL_NEG_TFRECORD, LIDC_SMALL_POS_TFRECORD, LIDC_BIG_NEG_TFRECORD, LIDC_BIG_POS_TFRECORD, LIDC_SMALL_UNLABELED_TFRECORD, LIDC_BIG_UNLABELED_TFRECORD, SMALL_PATCH_SHAPE, BIG_PATCH_SHAPE, ) def read_lidc_size_report(csv_file): "Read the CSV file obtained from http://www.via.cornell.edu/lidc/" df = pd.read_csv(csv_file, dtype={"case": str, "scan": str}) df["noduleIDs"] = ( df[["nodIDs", "Unnamed: 10", "Unnamed: 11", "Unnamed: 12"]] .fillna("") .values.tolist() ) df["noduleIDs"] = df["noduleIDs"].apply(lambda x: [e for e in x if e]) df = df.drop( columns=[ "volume", "eq. diam.", "nodIDs", "Unnamed: 8", "Unnamed: 10", "Unnamed: 11", "Unnamed: 12", "Unnamed: 13", "Unnamed: 14", "Unnamed: 15", ] ).rename( columns={ "x loc.": "xloc", "y loc.": "yloc", "slice no.": "zloc", "noduleIDs": "ids", } ) df = df[ df.ids.apply(len) >= 3 ] # keep the scan with at least 3 evaluations return df def get_malignancies(xml_file, nodule_ids): "Return a list of the assigned malignancies extracted from the XML" tree = ET.parse(xml_file) root = tree.getroot() prefix = "{http://www.nih.gov}" malignancies = [] for reading_session in root.findall(f"{prefix}readingSession"): for nodule in reading_session.findall(f"{prefix}unblindedReadNodule"): nodule_id = nodule.findall(f"{prefix}noduleID")[0].text if nodule_id in nodule_ids: malignancy = int( nodule.findall(f"*/{prefix}malignancy")[0].text ) if malignancy > 0: malignancies.append(malignancy) return malignancies def main(): parser = argparse.ArgumentParser( description="Extract the 3D patches containing the nodules and store them in TFRecord files.", ) parser.add_argument( "data_dir", help="Directory containing all the DCM files downloaded from https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI", ) parser.add_argument( "csv_file", help="CSV file obtained from http://www.via.cornell.edu/lidc", ) args = parser.parse_args() data_dir = Path(args.data_dir) nodules_df = read_lidc_size_report(args.csv_file) assert ( len(nodules_df.index) == 1387 ), f"The input CSV {args.csv_file} has not the expected size." with tf.io.TFRecordWriter( LIDC_SMALL_NEG_TFRECORD ) as small_neg_writer, tf.io.TFRecordWriter( LIDC_SMALL_POS_TFRECORD ) as small_pos_writer, tf.io.TFRecordWriter( LIDC_BIG_NEG_TFRECORD ) as big_neg_writer, tf.io.TFRecordWriter( LIDC_BIG_POS_TFRECORD ) as big_pos_writer, tf.io.TFRecordWriter( LIDC_SMALL_UNLABELED_TFRECORD ) as small_unlabeled_writer, tf.io.TFRecordWriter( LIDC_BIG_UNLABELED_TFRECORD ) as big_unlabeled_writer: for row in tqdm(nodules_df.itertuples(), total=len(nodules_df.index)): case = row.case scan_id = row.scan dcm_dir_glob = list( data_dir.glob(f"LIDC-IDRI-{case}/*/{scan_id}.*/") ) if len(dcm_dir_glob) == 0: print( f"WARNING ({scan_id=} {case=}): " "Scan not found. Skipping this scan ..." ) continue if len(dcm_dir_glob) > 1: print( f"WARNING ({scan_id=} {case=}): " "Found multiple scans with same ids. Skipping this scan ..." ) continue dcm_dir = dcm_dir_glob[0] scan = read_dcm(dcm_dir, reverse_z=True) xml_files = list(dcm_dir.glob("*.xml")) if len(xml_files) == 0: print( f"WARNING ({scan_id=} {case=}): " "Can't find a XML file. Skipping this scan ..." ) continue elif len(xml_files) > 1: print( f"WARNING ({scan_id=} {case=}): " "Found multiple XML files. Skipping this scan ..." ) continue xml_file = xml_files[0] nodule_ids = row.ids malignancies = get_malignancies(xml_file, nodule_ids) median_malignancy = median(malignancies) if median_malignancy < 3: big_writer = big_neg_writer small_writer = small_neg_writer elif median_malignancy > 3: big_writer = big_pos_writer small_writer = small_pos_writer else: # if the malignancies median is 3 then write the patch # as unlabeled big_writer = big_unlabeled_writer small_writer = small_unlabeled_writer big_patch = extract_patch( scan, (row.zloc, row.yloc, row.xloc), BIG_PATCH_SHAPE[:-1], ) big_patch = pad_to_shape(big_patch, BIG_PATCH_SHAPE[:-1]) big_patch = np.expand_dims(big_patch, axis=-1) if not big_patch.any(): print( f"WARNING ({scan_id=} {case=}): " "Patch contains only zeros. Skipping this patch ..." ) continue assert ( big_patch.shape == BIG_PATCH_SHAPE ), f"Wrong shape for scan {scan_id} in case {case}." big_patch = big_patch.astype(np.float32) big_example = volume_to_example(big_patch) big_writer.write(big_example.SerializeToString()) small_patch = extract_patch( scan, (row.zloc, row.yloc, row.xloc), SMALL_PATCH_SHAPE[:-1], ) small_patch = pad_to_shape(small_patch, SMALL_PATCH_SHAPE[:-1]) small_patch = np.expand_dims(small_patch, axis=-1) assert ( small_patch.shape == SMALL_PATCH_SHAPE ), f"Wrong shape for scan {scan_id} in case {case}." small_patch = small_patch.astype(np.float32) small_example = volume_to_example(small_patch) small_writer.write(small_example.SerializeToString()) if __name__ == "__main__": main()
cfbce743baa0c1fe1079ee32d823653ed757fea6
a6fe8aeaa30a22b65d98a2bb360b6d761a2e17fc
/venv/lib/python2.7/site-packages/kubernetes/client/models/v1alpha1_volume_attachment_source.py
c7f33ff1de036a2409698e7567f67c9fccabbe75
[ "MIT" ]
permissive
784134748/kubernetes-install
54a2a8e83e2f47f2064270649725899282b7b244
5df59632c2619632e422948b667fb68eab9ff5be
refs/heads/master
2022-12-15T13:52:43.486633
2019-03-27T13:01:06
2019-03-27T13:01:06
176,937,818
0
0
MIT
2022-05-25T01:56:18
2019-03-21T12:13:41
Python
UTF-8
Python
false
false
3,526
py
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.12.4 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class V1alpha1VolumeAttachmentSource(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'persistent_volume_name': 'str' } attribute_map = { 'persistent_volume_name': 'persistentVolumeName' } def __init__(self, persistent_volume_name=None): """ V1alpha1VolumeAttachmentSource - a model defined in Swagger """ self._persistent_volume_name = None self.discriminator = None if persistent_volume_name is not None: self.persistent_volume_name = persistent_volume_name @property def persistent_volume_name(self): """ Gets the persistent_volume_name of this V1alpha1VolumeAttachmentSource. Name of the persistent volume to attach. :return: The persistent_volume_name of this V1alpha1VolumeAttachmentSource. :rtype: str """ return self._persistent_volume_name @persistent_volume_name.setter def persistent_volume_name(self, persistent_volume_name): """ Sets the persistent_volume_name of this V1alpha1VolumeAttachmentSource. Name of the persistent volume to attach. :param persistent_volume_name: The persistent_volume_name of this V1alpha1VolumeAttachmentSource. :type: str """ self._persistent_volume_name = persistent_volume_name def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, V1alpha1VolumeAttachmentSource): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
e737df015e691b0a8ec14605360b790ddc906336
4cd9c222387b3057c2eaa621ab42c499b3c78790
/Week2/guess_my_number.py
d0fe9ff944f528025112b9d085ab57c54de1a51a
[]
no_license
Alhern/MITx-6.00.1x
269c7d23fa730be0b07d22403882b04fe593443e
3f5ff85f6c09abd763a4d750ffa32358354e6b99
refs/heads/master
2020-12-02T09:10:17.096673
2017-07-09T20:39:00
2017-07-09T20:39:00
96,708,185
0
0
null
null
null
null
UTF-8
Python
false
false
612
py
low = 0.0 high = 100 guess = (high + low) / 2.0 ans = '' print('Please think of a number between 0 and 100!') while ans != 'c': ans = input('Is your secret number ' + str(guess) + '?' + '\nEnter "h" to indicate the guess is too high. Enter "l" to indicate the guess is too low. Enter "c" to indicate I guessed correctly. ') if ans == 'h': high = guess elif ans == 'l': low = guess elif ans == 'c': print("Game over. Your secret number was: " + str(guess)) break else: print('Sorry, I did not understand your input.') guess = int((high + low) / 2)
c45abe95dc57a0148357504e44dbeff44b6b7f14
c0df167bde5c7058523779064b24ec8d4ce7d85f
/users/models.py
85b198c49b2dad468ff7e47a93d444118e882e2a
[]
no_license
dwierichs/groundstates
04e6b16d611a7f4c6ab97e757aee8c297e389be9
1c3ac693199d76edc9ae1299fc5fc39c4aab4df6
refs/heads/master
2020-09-09T02:51:12.980918
2019-12-30T19:37:57
2019-12-30T19:37:57
221,323,279
0
0
null
2019-11-27T19:45:42
2019-11-12T22:21:32
Python
UTF-8
Python
false
false
578
py
from django.db import models from django.contrib.auth.models import User class Message(models.Model): title = models.CharField( max_length=100, verbose_name='title' ) content = models.TextField( verbose_name='content' ) date_gen = models.DateTimeField( auto_now_add=True, verbose_name='written' ) date_mod = models.DateTimeField( auto_now=True, verbose_name='modified' ) author = models.ForeignKey( User, on_delete=models.CASCADE, verbose_name='author' ) def get_absolute_url(self): return reverse('message-detail', kwargs={'pk': self.pk})
896687158a03e59ecd7d16125d796285503b235f
2031771d8c226806a0b35c3579af990dd0747e64
/pyobjc-framework-ExternalAccessory/setup.py
62ec8784efd44a69d8b17b2c2194741ceda7124b
[ "MIT" ]
permissive
GreatFruitOmsk/pyobjc-mirror
a146b5363a5e39181f09761087fd854127c07c86
4f4cf0e4416ea67240633077e5665f5ed9724140
refs/heads/master
2018-12-22T12:38:52.382389
2018-11-12T09:54:18
2018-11-12T09:54:18
109,211,701
2
0
null
null
null
null
UTF-8
Python
false
false
1,133
py
''' Wrappers for the "ExternalAccessory" framework on macOS. These wrappers don't include documentation, please check Apple's documention for information on how to use this framework and PyObjC's documentation for general tips and tricks regarding the translation between Python and (Objective-)C frameworks ''' from pyobjc_setup import setup, Extension import os VERSION="5.1.1" setup( name='pyobjc-framework-ExternalAccessory', description = "Wrappers for the framework ExternalAccessory on macOS", min_os_level="10.13", packages = [ "ExternalAccessory" ], ext_modules = [ Extension("ExternalAccessory._ExternalAccessory", [ "Modules/_ExternalAccessory.m" ], extra_link_args=["-framework", "ExternalAccessory"], depends=[ os.path.join('Modules', fn) for fn in os.listdir('Modules') if fn.startswith('_ExternalAccessory') ] ), ], version=VERSION, install_requires = [ 'pyobjc-core>='+VERSION, 'pyobjc-framework-Cocoa>='+VERSION, ], long_description=__doc__, )
1053a9aeaa1f8564887592e20ef6ae75b81993a0
aec5e05795dafd41efccd569f89fbe69bdf6db6a
/If_and_circulation.py
79470bece896f0caea5cb18cf4b22ee0b32b2bd1
[ "MIT" ]
permissive
Becavalier/playground-python
959dcc52891b9b234b4c62531744f617249c289e
23139e8bab0f5c712d38f378364842262d17e520
refs/heads/master
2021-06-01T14:58:49.431239
2016-09-02T01:17:07
2016-09-02T01:17:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
606
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # If age = 3; if age >= 18: print('adult'); elif age >= 6: print('teenager'); else: print('kid'); s = input('birth: '); birth = int(s); if birth < 2000: print('00前'); else: print('00后'); # Circulation names = ['Michael', 'Bob', 'Tracy']; for name in names: print(name); sum = 0; for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]: sum = sum + x; print(sum); # Python method: range() sum = 0; for x in range(101): sum = sum + x; print(sum); # While sum = 0; n = 99; while n > 0: sum = sum + n; n = n - 2; print(sum);
fef89ba2bf0b93db2e7c4e1a586f5f04ac27f5d6
3974cb24002f537507a87f80d57e7c0f9904645a
/main.py
ff34d4792fde7c8ab34035eabe7446f4270bac69
[]
no_license
webargus/kivygenius
fc11ba51dbeb2e302b0125f678e3f68d8929e2c7
e304f49d75449bea902f2f3edbcaee7c83bbd6e2
refs/heads/master
2020-06-25T13:55:41.394416
2018-12-14T02:18:33
2018-12-14T02:18:33
199,328,893
0
0
null
null
null
null
UTF-8
Python
false
false
3,429
py
import kivy kivy.require('1.1.3') from kivy.core.audio import SoundLoader from random import randint from kivy.clock import Clock from kivy.app import App from kivy.uix.gridlayout import GridLayout class GeniusSounds: sounds = [SoundLoader.load('sound_0.wav'), SoundLoader.load('sound_1.wav'), SoundLoader.load('sound_2.wav'), SoundLoader.load('sound_3.wav'), SoundLoader.load('error.wav')] def __init__(self): for sound in self.sounds: sound.seek(0) sound.volume = 1 class GeniusSequence: def __init__(self): self.sequence = [] self.ix = 0 def seed(self): self.sequence.append(randint(0, 3)) def clear(self): del self.sequence[:] self.ix = 0 def reset(self): self.ix = 0 def is_last_seed(self): return self.ix == len(self.sequence) def next(self): if self.is_last_seed(): return self.ix += 1 def get(self): if self.is_last_seed(): return -1 return self.sequence[self.ix] def match(self, seed): if self.is_last_seed(): return False return self.sequence[self.ix] == int(seed) class GeniusGridLayout(GridLayout): def __init__(self, **kwargs): super(GeniusGridLayout, self).__init__(**kwargs) self.seq = GeniusSequence() self.isRepeating = False def btnReleased(self, btn_id): # discard player clicks when game repeating sequence if self.isRepeating: return; print("btn_id=", btn_id) # advance sequence index to next button id if player got it right; add a new id if # player reached the end of the sequence; end game if user got it wrong if self.seq.match(btn_id): GeniusSounds.sounds[int(btn_id)].play() self.seq.next() if self.seq.is_last_seed(): Clock.schedule_once(self.appendTouch, 2) else: GeniusSounds.sounds[-1].play() print("Game Over!") def startGame(self): self.seq.clear() # add first color button challenge to player self.appendTouch() # append another button press to the sequence and replay the whole sequence for the player def appendTouch(self, *dt): # generate new button random id between 0 and 3 and add it to the sequence self.seq.seed() # replay the sequence for the user self.seq.reset() self.isRepeating = True Clock.schedule_interval(self.replaySequence, .5) def replaySequence(self, *dt): if self.seq.is_last_seed(): # no more seeds Clock.unschedule(self.replaySequence) # point sequence index back to first button self.seq.reset() # enable player clicks self.isRepeating = False else: # get btn obj by id btn_id = self.seq.get() btn = self.ids['btn_' + str(btn_id)] # toggle btn if btn.state == 'normal': GeniusSounds.sounds[btn_id].play() btn.state = 'down' else: btn.state = 'normal' self.seq.next() class Genius(App): def build(self): return GeniusGridLayout() def on_pause(self): return True if __name__ == '__main__': Genius().run()
fd907b6e8117b67e9f3b9091624fa8f6a1ec6b66
5c2a9ff7f70ffa87604214786538dbd5ed6bd7a3
/029. Divide Two Integers.py
abf5a52d3b51c0609da9c26bb53857b4aa4fc5c7
[ "MIT" ]
permissive
patrick-luo/Leet-Code
470bb70db72772d2080d2b87f28a6ae44d35fdcf
989ec20c1069ce93e1d0e9ae4a4dfc59b1b1622a
refs/heads/master
2021-07-15T01:37:00.409882
2019-02-06T20:02:05
2019-02-06T20:02:05
130,917,638
0
0
null
null
null
null
UTF-8
Python
false
false
1,675
py
"""This solution uses addition repititively to find largest power n of 2 such that 2**n*b < a. Then you keep subtracting these multiples of b of the form 2**i*b for smaller powers until the remainder is smaller than b. Each time you subtract, take the previous quotient and multiply by two. If there is any remaining in the end, just multiply them all by 2 iteratively.""" class Solution(object): def divide(self, dividend, divisor): """ :type dividend: int :type divisor: int :rtype: int """ # e.g. a=100, b=3 a, b = dividend, divisor negative = False if (a>0) == (b>0) else True a = a if a>0 else -a b = b if b>0 else -b mult = [b] c = b while c + c <= a: c += c mult.append(c) # here len(mult)=6, then n=5, which is the largest n # s.t. 2**n*b < a # mult = [3,6,12,24,48,96] # Here is the main step. After getting i's # where 2**i*b < a, keeping substracing them # from a and add the 2**i to 'out'. i = 0 out = 0 while a >= b: i += 1 out += out # here is to iteratively calcuate 2**i if a >= mult[-i]: a -= mult[-i] out += 1 # If there is any remaining in the end, # keeping finishing the calculation of 2**i while i < len(mult): out += out i += 1 if negative: out = -out if out>2147483647 or out<-2147483648: return 2147483647 else: return out
aba12166b4f1331a6a7bd342c544440999563e5d
862869dce28929f24b8b354d60e6111968afd45d
/test.py
a74424bb5f9557b9ae0224752deb34ecd38d20d9
[]
no_license
Sidney2408/SentimentAnalysis
5a9893632019e52525b0b3ba7fd15d925161aac1
28aae96090e279c92503df41cfdf9faa741c25a8
refs/heads/master
2021-03-16T10:22:42.521107
2017-12-06T07:45:40
2017-12-06T07:45:40
111,277,068
1
0
null
null
null
null
UTF-8
Python
false
false
3,157
py
# -*- coding: utf-8 -*- """ Created on Sat Nov 18 15:09:39 2017 @author: Sidney """ testDict = {'完美': {'B-positive': {'count': 1}, 'O': {'count': 1}}, '幸福': {'O': {"count": 0}}} tagCount = {'B-positive':1,'O':2, 'B-negative':3} parameter = "exy" #max(testDict['a']["parameters"], key=testDict['a']["parameters"].get) def buildParameters(dictionary, tagCount): for key, value in dictionary.items(): parameters = {} for subKey,subvalue in value.items(): parameters[subKey] = subvalue["count"]/tagCount[subKey] dictionary[key]["parameters"] = parameters return dictionary #Backup function """ def nestedDictProcess(dictionary,key,subKey): if key not in dictionary: dictionary[key]={} dictionary[key][subKey] = {"count":0}#The 0 is wrong else: if subKey not in dictionary[key]: dictionary[key][subKey] = {"count":0} else: dictionary[key][subKey]["count"] = dictionary[key][subKey].get("count",0)+1 #Increment the count def buildParameters(dictionary, tagCount): for key, value in dictionary.items(): parameters = {} for subKey,subvalue in value.items(): parameters[subKey] = subvalue["count"]/tagCount[subKey] dictionary[key]["parameters"] = parameters return dictionary """ #TODO: decide if you want to do {count,paramter} structure def nestedDictProcess(dictionary,key,subKey): if key not in dictionary: dictionary[key]={} dictionary[key]["count"] = {subKey:1} else: dictionary[key]["count"][subKey] = dictionary[key]["count"].get(subKey,0)+1 #Increment the count def buildParameters(dictionary, tagCount): for key, value in dictionary.items(): parameters = {} for subKey,subvalue in value["count"].items(): parameters[subKey] = subvalue/tagCount[subKey] dictionary[key]["parameters"] = parameters return dictionary sentimentSets = ["START","STOP","O","B-positive","I-positive","B-neutral","I-neutral","B-negative","I-negative"] fileName = "EN" def detectAnomalies(fileDir): with open('{0}\modifiedTrain.txt'.format(fileDir), 'r',encoding='utf-8') as modTrainSet: trainSetString = modTrainSet.read() trainSetLines = trainSetString.splitlines(True) sentences = 0 index = 0 indices = "" for i in trainSetLines: index+= 1 data = i.split(" ") if(len(data)==2): word = data[0] tag = data[1].rstrip('\n') if(word == '' or tag not in sentimentSets): print("Corrupted data detected: {0}".format(i)) indices= indices +"{0} {1}\n".format(i,index) elif(i == '\n'): sentences +=1 else: print("Corrupted data detected: {0}".format(i)) indices= indices +"{0} {1}\n".format(i,index) indices= "Sentences {0}".format(sentences)+indices with open('{0}\\variables\errors.txt'.format(fileDir), 'w',encoding='utf-8') as outputFile: outputFile.write(indices) detectAnomalies("SG")
fe2a24b471a9649d963cd55489d71e9442b01624
cbc829f5787b770c9184b91ee470d058cc4cbe65
/tree/173_二叉搜索树迭代器.py
4cefd23be018f9de7418b1283f2d1b15bcd411b5
[]
no_license
SilvesSun/learn-algorithm-in-python
58815e7e85e767cbc4a9c21e36e7bdede4f32bef
5ba3465ba9c85955eac188e1e3793a981de712e7
refs/heads/master
2022-09-19T05:10:26.783943
2022-09-10T04:56:43
2022-09-10T04:56:43
115,470,779
0
0
null
null
null
null
UTF-8
Python
false
false
2,914
py
# 实现一个二叉搜索树迭代器类BSTIterator ,表示一个按中序遍历二叉搜索树(BST)的迭代器: # # # # BSTIterator(TreeNode root) 初始化 BSTIterator 类的一个对象。BST 的根节点 root 会作为构造函数的一部分给出 # 。指针应初始化为一个不存在于 BST 中的数字,且该数字小于 BST 中的任何元素。 # boolean hasNext() 如果向指针右侧遍历存在数字,则返回 true ;否则返回 false 。 # int next()将指针向右移动,然后返回指针处的数字。 # # # 注意,指针初始化为一个不存在于 BST 中的数字,所以对 next() 的首次调用将返回 BST 中的最小元素。 # # # # 你可以假设 next() 调用总是有效的,也就是说,当调用 next() 时,BST 的中序遍历中至少存在一个下一个数字。 # # # # 示例: # # # 输入 # ["BSTIterator", "next", "next", "hasNext", "next", "hasNext", "next", "hasNext # ", "next", "hasNext"] # [[[7, 3, 15, null, null, 9, 20]], [], [], [], [], [], [], [], [], []] # 输出 # [null, 3, 7, true, 9, true, 15, true, 20, false] # # 解释 # BSTIterator bSTIterator = new BSTIterator([7, 3, 15, null, null, 9, 20]); # bSTIterator.next(); // 返回 3 # bSTIterator.next(); // 返回 7 # bSTIterator.hasNext(); // 返回 True # bSTIterator.next(); // 返回 9 # bSTIterator.hasNext(); // 返回 True # bSTIterator.next(); // 返回 15 # bSTIterator.hasNext(); // 返回 True # bSTIterator.next(); // 返回 20 # bSTIterator.hasNext(); // 返回 False # # # # # 提示: # # # 树中节点的数目在范围 [1, 105] 内 # 0 <= Node.val <= 106 # 最多调用 105 次 hasNext 和 next 操作 # # # # # 进阶: # # # 你可以设计一个满足下述条件的解决方案吗?next() 和 hasNext() 操作均摊时间复杂度为 O(1) ,并使用 O(h) 内存。其中 h 是树的高 # 度。 # # Related Topics 栈 树 设计 二叉搜索树 二叉树 迭代器 # 👍 497 👎 0 # leetcode submit region begin(Prohibit modification and deletion) # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class BSTIterator: def __init__(self, root: TreeNode): self.idx = -1 self.arr = [] self.inorder(root) def inorder(self, root): if not root: return self.inorder(root.left) self.arr.append(root.val) self.inorder(root.right) def next(self) -> int: self.idx += 1 v = self.arr[self.idx] return v def hasNext(self) -> bool: return self.idx < len(self.arr) - 1 # Your BSTIterator object will be instantiated and called as such: # obj = BSTIterator(root) # param_1 = obj.next() # param_2 = obj.hasNext() # leetcode submit region end(Prohibit modification and deletion)
d0e08ebeff69ca3d2ee2546b4de3233781b110db
7db2169805e5bb907bb2abb90516e2e25ac197f7
/backgroundRemoval_video.py
366019dd9361a18acea5004198b970f8b185d332
[]
no_license
STARJAN-J/backgroundRemoval
ffc9d9ee328bd2e67d1955adf8615ecea3487e96
d285d90c1f88e9b405c4f73cf0570bd6b4d1d81e
refs/heads/master
2023-03-16T10:10:26.889664
2020-05-11T11:39:04
2020-05-11T11:39:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,569
py
import cv2 import numpy as np import sys def resize(dst,img): width = img.shape[1] height = img.shape[0] dim = (width, height) resized = cv2.resize(dst, dim, interpolation = cv2.INTER_AREA) return resized video = cv2.VideoCapture(1) oceanVideo = cv2.VideoCapture("ocean.mp4") success, ref_img = video.read() flag = 0 while(1): success, img = video.read() success2, bg = oceanVideo.read() bg = resize(bg,ref_img) if flag==0: ref_img = img # create a mask diff1=cv2.subtract(img,ref_img) diff2=cv2.subtract(ref_img,img) diff = diff1+diff2 diff[abs(diff)<13.0]=0 gray = cv2.cvtColor(diff.astype(np.uint8), cv2.COLOR_BGR2GRAY) gray[np.abs(gray) < 10] = 0 fgmask = gray.astype(np.uint8) fgmask[fgmask>0]=255 #invert the mask fgmask_inv = cv2.bitwise_not(fgmask) #use the masks to extract the relevant parts from FG and BG fgimg = cv2.bitwise_and(img,img,mask = fgmask) bgimg = cv2.bitwise_and(bg,bg,mask = fgmask_inv) #combine both the BG and the FG images dst = cv2.add(bgimg,fgimg) cv2.imshow('Background Removal',dst) key = cv2.waitKey(5) & 0xFF if ord('q') == key: break elif ord('d') == key: flag = 1 print("Background Captured") elif ord('r') == key: flag = 0 print("Ready to Capture new Background") cv2.destroyAllWindows() video.release() #return jpeg.tobytes()
72e86264e0ba09cd634e0fe560f491351c2e26a7
3da865a605e2513aadd3eace41b970fd7aad249a
/2001Mail/ia2001xpy/__init__.py
39ab89eb9ca72cc737742b1e27df1a910be7fd79
[ "Apache-2.0" ]
permissive
rafaelstyvie/2001mail
1d5a1b0651139a24e466eb27b2394653850c07e5
e3a777a885d62ec27d1f0ee56557a5d1b054f6ef
refs/heads/master
2020-06-29T02:10:38.147025
2016-11-22T09:38:23
2016-11-22T09:38:23
74,457,150
0
0
null
null
null
null
UTF-8
Python
false
false
37
py
""" ia2001x Cryptographic Tools. """
e2a89d771342738284db5d3d94106bd5ef73154d
2fa6b272e79ff938ddd38d96edc454d05d247baf
/project_body/srv/code/python/hazelcast/serialization/api.py
8b5108587cbcee64fc838f0400f4c2f8799c8f1c
[ "Apache-2.0" ]
permissive
ArthurConan/FunFic
e1b4d5bcd23636c4fb6999e9e0437bb7c879e9d1
ad8f7849a2aff995a5569b92dc1ed9d53e3b09d6
refs/heads/master
2021-01-21T06:52:28.212648
2017-05-28T21:57:13
2017-05-28T21:57:13
91,589,641
2
1
null
null
null
null
UTF-8
Python
false
false
9,256
py
""" User API and docs """ class ObjectDataOutput(object): def write_from(self, buff, offset=None, length=None): """ Writes the content of the buffer to this output stream :param buff: input buffer :param offset: offset of the buffer where copy begin :param length: length of data to be copied from the offset into stream """ raise NotImplementedError() def write_boolean(self, val): """ Writes a boolean value to this output stream single byte value 1 represent True, 0 represent False :param val: the boolean to be written """ raise NotImplementedError() def write_byte(self, val): raise NotImplementedError() def write_short(self, val): raise NotImplementedError() def write_char(self, val): raise NotImplementedError() def write_int(self, val): raise NotImplementedError() def write_long(self, val): raise NotImplementedError() def write_float(self, val): raise NotImplementedError() def write_double(self, val): raise NotImplementedError() def write_bytes(self, string): raise NotImplementedError() def write_chars(self, val): raise NotImplementedError() def write_utf(self, val): raise NotImplementedError() def write_byte_array(self, val): raise NotImplementedError() def write_boolean_array(self, val): raise NotImplementedError() def write_char_array(self, val): raise NotImplementedError() def write_int_array(self, val): raise NotImplementedError() def write_long_array(self, val): raise NotImplementedError() def write_double_array(self, val): raise NotImplementedError() def write_float_array(self, val): raise NotImplementedError() def write_short_array(self, val): raise NotImplementedError() def write_utf_array(self, val): raise NotImplementedError() def write_object(self, val): raise NotImplementedError() def write_data(self, val): raise NotImplementedError() def to_byte_array(self): raise NotImplementedError() def get_byte_order(self): raise NotImplementedError() class ObjectDataInput(object): def read_into(self, buff, offset=None, length=None): raise NotImplementedError() def skip_bytes(self, count): raise NotImplementedError() def read_boolean(self): raise NotImplementedError() def read_byte(self): raise NotImplementedError() def read_unsigned_byte(self): raise NotImplementedError() def read_short(self): raise NotImplementedError() def read_unsigned_short(self): raise NotImplementedError() def read_int(self): raise NotImplementedError() def read_long(self): raise NotImplementedError() def read_float(self): raise NotImplementedError() def read_double(self): raise NotImplementedError() def read_utf(self): raise NotImplementedError() def read_byte_array(self): raise NotImplementedError() def read_boolean_array(self): raise NotImplementedError() def read_char_array(self): raise NotImplementedError() def read_int_array(self): raise NotImplementedError() def read_long_array(self): raise NotImplementedError() def read_double_array(self): raise NotImplementedError() def read_float_array(self): raise NotImplementedError() def read_short_array(self): raise NotImplementedError() def read_utf_array(self): raise NotImplementedError() def read_object(self): raise NotImplementedError() def read_data(self): raise NotImplementedError() def get_byte_order(self): raise NotImplementedError() class IdentifiedDataSerializable(object): def write_data(self, object_data_output): raise NotImplementedError("read_data must be implemented to serialize this IdentifiedDataSerializable") def read_data(self, object_data_input): raise NotImplementedError("read_data must be implemented to deserialize this IdentifiedDataSerializable") def get_factory_id(self): raise NotImplementedError("This method must return the factory ID for this IdentifiedDataSerializable") def get_class_id(self): raise NotImplementedError("This method must return the class ID for this IdentifiedDataSerializable") class Portable(object): def write_portable(self, writer): raise NotImplementedError() def read_portable(self, reader): raise NotImplementedError() def get_factory_id(self): raise NotImplementedError() def get_class_id(self): raise NotImplementedError() class StreamSerializer(object): def write(self, out, obj): raise NotImplementedError("write method must be implemented") def read(self, inp): raise NotImplementedError("write method must be implemented") def get_type_id(self): raise NotImplementedError("get_type_id must be implemented") def destroy(self): raise NotImplementedError() class PortableReader(object): def get_version(self): raise NotImplementedError() def has_field(self, field_name): raise NotImplementedError() def get_field_names(self): raise NotImplementedError() def get_field_type(self, field_name): raise NotImplementedError() def get_field_class_id(self, field_name): raise NotImplementedError() def read_int(self, field_name): raise NotImplementedError() def read_long(self, field_name): raise NotImplementedError() def read_utf(self, field_name): raise NotImplementedError() def read_boolean(self, field_name): raise NotImplementedError() def read_byte(self, field_name): raise NotImplementedError() def read_char(self, field_name): raise NotImplementedError() def read_double(self, field_name): raise NotImplementedError() def read_float(self, field_name): raise NotImplementedError() def read_short(self, field_name): raise NotImplementedError() def read_portable(self, field_name): raise NotImplementedError() def read_byte_array(self, field_name): raise NotImplementedError() def read_boolean_array(self, field_name): raise NotImplementedError() def read_char_array(self, field_name): raise NotImplementedError() def read_int_array(self, field_name): raise NotImplementedError() def read_long_array(self, field_name): raise NotImplementedError() def read_double_array(self, field_name): raise NotImplementedError() def read_float_array(self, field_name): raise NotImplementedError() def read_short_array(self, field_name): raise NotImplementedError() def read_utf_array(self, field_name): raise NotImplementedError() def read_portable_array(self, field_name): raise NotImplementedError() def get_raw_data_input(self): raise NotImplementedError() class PortableWriter(object): def write_int(self, field_name, value): raise NotImplementedError() def write_long(self, field_name, value): raise NotImplementedError() def write_utf(self, field_name, value): raise NotImplementedError() def write_boolean(self, field_name, value): raise NotImplementedError() def write_byte(self, field_name, value): raise NotImplementedError() def write_char(self, field_name, value): raise NotImplementedError() def write_double(self, field_name, value): raise NotImplementedError() def write_float(self, field_name, value): raise NotImplementedError() def write_short(self, field_name, value): raise NotImplementedError() def write_portable(self, field_name, portable): raise NotImplementedError() def write_null_portable(self, field_name, factory_id, class_id): raise NotImplementedError() def write_byte_array(self, field_name, values): raise NotImplementedError() def write_boolean_array(self, field_name, values): raise NotImplementedError() def write_char_array(self, field_name, values): raise NotImplementedError() def write_int_array(self, field_name, values): raise NotImplementedError() def write_long_array(self, field_name, values): raise NotImplementedError() def write_double_array(self, field_name, values): raise NotImplementedError() def write_float_array(self, field_name, values): raise NotImplementedError() def write_short_array(self, field_name, values): raise NotImplementedError() def write_utf_array(self, field_name, values): raise NotImplementedError() def write_portable_array(self, field_name, values): raise NotImplementedError() def get_raw_data_output(self): raise NotImplementedError()
39371265fd7d53cd83ff9f02deb3c25e8b131682
aeb8c63067662f97abbe1bc0cbbc02cff572230d
/pavi95.py
0506cb70bdf838061bbeadeb3d6cf412385fcaff
[]
no_license
paviprajansai/pavi83.py
f1ba8551a3e4cdb111a5cc6dbd3319e756b2c3bf
3ee907fff76b8d9ae5940726e4ecbaaf1a9bad6f
refs/heads/master
2020-06-27T15:44:03.687416
2019-08-01T07:04:12
2019-08-01T07:04:12
199,990,323
0
0
null
null
null
null
UTF-8
Python
false
false
63
py
p1,t1,r1=map(int,input().split()) s1=(p1*t1*r1)//100 print(s1)
1a77f6bb4cd19e4a29d917748a1c4dad514e0bf8
090203cff03e2831acdc17a15ea5bc217dcfd57f
/2015/src/day_06.py
b0b7562ea19ed666c1c9a37de4ab74af492d7038
[ "MIT" ]
permissive
Stannislav/Advent-of-Code
77847889a95bad45f5d6fa32dfbcf984136d19ae
cdc1ea0f23a532fe1eb909beb2a64112456613b0
refs/heads/master
2023-01-12T11:22:56.846890
2023-01-01T18:56:05
2023-01-01T18:56:05
212,850,049
4
0
MIT
2021-04-30T17:44:50
2019-10-04T15:43:38
Python
UTF-8
Python
false
false
1,641
py
#!/usr/bin/env python3 field = [[0 for i in range(1000)] for j in range(1000)] with open("../input/input_06.txt") as f: for line in f: l = line.rstrip().split() if l[0] == "toggle": sx, sy = map(int, l[1].split(',')) ex, ey = map(int, l[3].split(',')) for y in range(sy, ey + 1): for x in range(sx, ex + 1): field[y][x] = 1 - field[y][x] else: sx, sy = map(int, l[2].split(',')) ex, ey = map(int, l[4].split(',')) for y in range(sy, ey + 1): for x in range(sx, ex + 1): field[y][x] = 1 if l[1] == "on" else 0 cnt = 0 for i in range(1000): cnt += field[i].count(1) print(cnt) field = [[0 for i in range(1000)] for j in range(1000)] with open("../input/input_06.txt") as f: for line in f: l = line.rstrip().split() if l[0] == "toggle": sx, sy = map(int, l[1].split(',')) ex, ey = map(int, l[3].split(',')) for y in range(sy, ey + 1): for x in range(sx, ex + 1): field[y][x] += 2 else: sx, sy = map(int, l[2].split(',')) ex, ey = map(int, l[4].split(',')) for y in range(sy, ey + 1): for x in range(sx, ex + 1): if l[1] == "on": field[y][x] += 1 else: field[y][x] -= 1 if field[y][x] < 0: field[y][x] = 0 cnt = 0 for i in range(1000): cnt += sum(field[i]) print(cnt)
f15516f5ce98ea2e188e13a9c510eba39b9141af
5779d964d5ee42b586697a640ff0f977e0fa1e55
/synclient/model/user_group.py
8ae95ea7eb5b838a175c05d951d6c240f4354232
[]
no_license
thomasyu888/synpy-sdk-client
03db42c3c8411c8c1f8808e1145d7c2a8bcc3df1
d1e19e26db5376c78c4ce0ff181ac3c4e0709cbb
refs/heads/main
2023-02-28T09:33:12.386220
2021-02-02T15:09:59
2021-02-02T15:09:59
333,744,741
3
0
null
2021-01-30T12:10:50
2021-01-28T11:57:48
Python
UTF-8
Python
false
false
7,476
py
""" Platform Repository Service Platform Repository Service - Sage Bionetworks Platform # noqa: E501 The version of the OpenAPI document: develop-SNAPSHOT Contact: [email protected] Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 import nulltype # noqa: F401 from synclient.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) class UserGroup(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { 'creation_date': (str,), # noqa: E501 'etag': (str,), # noqa: E501 'id': (str,), # noqa: E501 'is_individual': (bool,), # noqa: E501 'uri': (str,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'creation_date': 'creationDate', # noqa: E501 'etag': 'etag', # noqa: E501 'id': 'id', # noqa: E501 'is_individual': 'isIndividual', # noqa: E501 'uri': 'uri', # noqa: E501 } _composed_schemas = {} required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """UserGroup - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) creation_date (str): The date this user or group was created.. [optional] # noqa: E501 etag (str): Synapse employs an Optimistic Concurrency Control (OCC) scheme to handle concurrent updates. Since the E-Tag changes every time an entity is updated it is used to detect when a client's current representation of an entity is out-of-date. . [optional] # noqa: E501 id (str): The id of either the user or group.. [optional] # noqa: E501 is_individual (bool): True if this is a user, false if it is a group. [optional] # noqa: E501 uri (str): Uri. [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value)
6dc7a828dc8ee518b28381211c2f5c1c5ae541c9
8a9fa73357aa87ad5b14deb15668a411f487dbde
/getrawvideos.py
7cb5c958d17c0646dfb1d37babfdf01fc0efb3bc
[ "MIT" ]
permissive
wanghaisheng/another-autoytb-copycat
55980c8f1875b422db5c7b446c00a6ecc5062e49
91daa08d9e8eec164ce9160830927fbfecf9e68c
refs/heads/main
2023-08-19T01:35:06.459038
2021-10-15T11:20:04
2021-10-15T11:20:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,761
py
import requests import json import yt_dlp import os import subprocess results =[] session = requests.session() def stringify(obj: dict) -> dict: """turn every value in the dictionary to a string""" for k, v in obj.items(): if isinstance(v, dict): # if value is a dictionary, stringifiy recursively stringify(v) continue if not isinstance(v, str): if isinstance(v, bool): # False/True -> false/true obj[k] = str(v).lower() else: obj[k] = str(v) return obj with open('cookies.json') as f: cookie_list: list = json.load(f) # create the cookie jar from the first cookie cookie_jar = requests.utils.cookiejar_from_dict(stringify(cookie_list[0])) # append the rest of the cookies for cookie in cookie_list[1:]: requests.utils.add_dict_to_cookiejar(cookie_jar, stringify(cookie)) session.cookies = cookie_jar idlist=[] for i in range(1,20): payload = {'search_type': 'video', 'keyword': '阿瓦达索命咒','order':'pubdate','duration':'0','page':i} r = session.get('http://api.bilibili.com/x/web-interface/search/type', params=payload) # print(r.json().keys()) results.extend(r.json()["data"]["result"]) # result={"title":'阿瓦达索命咒 compilation'+str(i), # "tag":item['tag'], # "description":"automatically bot generate from internet.any copyright issue pls contact us\r\n"} if not os.path.exists('harry'+os.sep+str(i)): os.makedirs('harry'+os.sep+str(i)) os.chdir('harry'+os.sep+str(i)) for i,item in enumerate(r.json()["data"]["result"]): ydl_opts = {'retries': 10} with yt_dlp.YoutubeDL(ydl_opts) as ydl: print('donwloading----',item['arcurl']) # ydl.download(item['arcurl']) ydl.download([item['arcurl']]) with open('test.sh','w') as f: f.write('for f in *.flv ; do echo file \'$f\' >> list.txt; done && ffmpeg -f concat -safe 0 -i list.txt -s 1280x720 -crf 24 stitched-video.mp4 && rm list.txt') f.write('\r') f.write('for f in *.mp4 ; do echo file \'$f\' >> list.txt; done && ffmpeg -f concat -safe 0 -i list.txt -s 1280x720 -crf 24 stitched-video.mp4 && rm list.txt') subprocess.call(['sh', './test.sh']) os.chdir('../../') # 哈利波特 魔法覺醒,哈利波特魔法覺醒卡組,哈利波特 教學,索命咒,索命咒卡組,佛地魔卡組,啊哇呾喀呾啦,哈利波特 秒殺流, Action-adventure game,Action game,Role-playing video game,Strategy video game,Video game culture
a37803862dbe9a04b5150ba8f0352125c761e519
39c40326a457e463c96b5a822a0a9bd8b8b35848
/Unit6/word_list.py
64aa894ed3a4ee4014bd07dba35ec9eb1601d1a7
[]
no_license
zhangbios/LearnBlack
21d3ad5a52210da7b64d1adb3e13fbcd90e3b985
5fd11d62a0786c71403d05cc236ed11b8e861b21
refs/heads/master
2021-05-02T13:22:22.532178
2018-02-08T12:28:50
2018-02-08T12:28:50
120,758,485
2
0
null
null
null
null
UTF-8
Python
false
false
2,736
py
# encoding: utf-8 """ """ from burp import IBurpExtender from burp import IContextMenuFactory from javax.swing import JMenuItem from java.util import List, ArrayList from java.net import URL import re from datetime import datetime from HTMLParser import HTMLParser class TagStripper(HTMLParser): def __init__(self): HTMLParser.__init__(self) self.page_text = [] def handle_data(self, data): self.page_text.append(data) def handle_comment(self, data): self.handle_data(data) def strip(self, html): self.feed(html) return " ".join(self.page_text) class BurpExtender(IBurpExtender, IContextMenuFactory): def registerExtenderCallbacks(self,callbacks): self._callbacks = callbacks self._helpers = callbacks.getHelpers() self.context = None self.hosts = set() self.wordlist = set(["password"]) callbacks.setExtensionName("Bios wordlist") callbacks.registerContextMenuFactory(self) return def createMenuItems(self, context_menu): self.context = context_menu menu_list = ArrayList() menu_list.add(JMenuItem("Create Wordlist", actionPerformed=self.wordlist_menu)) return menu_list # 功能实现 def wordlist_menu(self,event): # 抓取用户点击的细节 http_traffic = self.context.getSelectedMessages() for traffic in http_traffic: http_service = traffic.getHttpService() host = http_service.getHost() self.hosts.add(host) http_response = traffic.getResponse() if http_response: self.get_words(http_response) self.display_wordlist() return def get_words(self, http_response): headers,body = http_response.tostring().split('\r\n\r\n',1) if headers.lower().find("content-type: text") == 1: return tag_stripper = TagStripper() page_text = tag_stripper.strip(body) words = re.findall("[a-zA-Z]\w{2,}",page_text) for word in words: if len(word) <= 12: self.wordlist.add(word.lower()) return def mangle(self, word): year = datetime.now().year suffixes = ["", "1", "!", year] mangled = [] for password in (word, word.capitalize()): for suffix in suffixes: mangled.append("{}{}".format(password,suffix)) return mangled def display_wordlist(self): print("#!comment: Bios Wordlist for site(s) {}",",".join(self.hosts)) for word in sorted(self.wordlist): for password in self.mangle(word): print(password) return
65e04b9e520a893fe0b6a0db678f1bfe2d40bb3a
182b3ea03761008ccf251d9591f910581370a8a6
/tests/unit_tests/test_commands_assign_ta_to_course.py
b62548a1efb2dba1de991fdc8391a3b531151f9f
[]
no_license
JaiXiong/ta_web_app
0d80640ade65112a936df18b73fe73a96e7f888c
389ea7a6784b958b793b2ff48edaf4136cbb81b2
refs/heads/master
2021-10-08T16:59:13.119946
2018-12-13T22:13:43
2018-12-13T22:13:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,205
py
from django.test import TestCase from website.models import Course, Account from ta_app.commands import Commands class TestCommandsAssignTaToCourse(TestCase): def setUp(self): self.Course1 = Course.objects.create(name="CS-337", section="004", days_of_week="M/W/F", start_time="11:00", end_time="11:50") self.Course1.save() self.Course2 = Course.objects.create(name="CS-361", section="003", days_of_week="M/W", start_time="11:00", end_time="13:15") self.Course2.save() self.Account1 = Account.objects.create(user="Ross", password="nonsense", role="Supervisor") self.Account1.save() self.Account2 = Account.objects.create(user="Joe", password="nonsense", role="TA") self.Account2.save() self.co = Commands() self.co.current_user = self.Account1 # test roles other than supervisor can not assign tas to courses def test_CommandsAssignTaToCourse1(self): self.co.current_user = Account() response = self.co.assign_ta_to_course('Joe', 'CS-361') self.assertEqual(response, "You do not have permissions to assign TAs to courses") # test assigning a user not in the data base def test_CommandsAssignTaToCourse2(self): response = self.co.assign_ta_to_course('Gus', 'CS-361') self.assertEqual(response, "This user is not present in the data base") # test assigning an TA to course not in the data base def test_CommandsAssignTaToCourse3(self): response = self.co.assign_ta_to_course('Joe', 'CS-999') self.assertEqual(response, "This course is not present in the data base") # test assigning TA to course that conflicts with their schedule def test_CommandsAssignTaToCourse4(self): self.co.assign_ta_to_course('Joe', 'CS-337') response = self.co.assign_ta_to_course('Joe', 'CS-361') self.assertEqual(response, "This course conflicts with the TA's current schedule") # test calling method without all valid parameters def test_CommandsAssignTaToCourse5(self): response = self.co.assign_instructor('Joe') self.assertEqual(response, "Please input valid arguments for both fields to create assign " "an instructor to a course") # test that instructor is added to course wit proper conditions def test_CommandsAssignTaToCourse6(self): response = self.co.assign_ta_to_course('Joe', 'CS-361') self.assertEqual(response, 'Joe has been added to as a TA to CS-361') assigned = Course.objects.filter(name='CS-361', tas=self.Account2).exists() self.assertEqual(True, assigned)
2faacdb507a4c8589c27ab84d6b3683d929c425e
ff451381a5d74e4bff58e9c2d5bf6e448a1d4637
/main.py
388d3310f87ad5b9dfc7670b3fc2e772a888015a
[]
no_license
Nowens17/web-caesar
3d37e299ffe8b1eb561298ef6823fcb8c5259d1c
c8050651a7e308752700065b0c8dd5949ca05170
refs/heads/master
2021-04-15T09:15:38.324600
2018-03-25T14:07:14
2018-03-25T14:07:14
126,695,621
0
0
null
null
null
null
UTF-8
Python
false
false
1,153
py
from flask import Flask, request from caesar import rotate_string app = Flask(__name__) app.config['DEBUG'] = True form = """ <!DOCTYPE html> <html> <head> <style> form {{ background-color: #eee; padding: 20px; margin: 0 auto; width: 540px; font: 16px sans-serif; border-radius: 10px; }} textarea {{ margin: 10px 0; width: 540px; height: 120px; }} </style> </head> <body> <form action="/" method="post"> <label for="rotate">Rotate by:</label> <input type="text" name="rot" value="0"/> </br> <textarea name="text">{0}</textarea> </br> <input type="submit"> </form> </body> </html> """ @app.route("/", methods=['POST']) def encrypt(): rot_data = int(request.form['rot']) text_data = request.form['text'] encrypted_string = rotate_string(text_data, rot_data) return form.format(encrypted_string) @app.route("/") def index(): return form.format("") app.run()
fc38d6f55c918759f81ddaf951a6d77536881d94
dd449ad8388847779b265f49f2339c9681376c60
/flask/c6_avatar/config.py
c04cb5719b0d47de5fe50590b3bf8103af2c1a85
[]
no_license
whoji/training-ground
478d76a8c274050eb910b28729ca1d1cdb47eae9
b107cc47c4a04bb8868c410ab207bacab5a86e4c
refs/heads/master
2020-05-16T16:13:26.788156
2019-12-04T01:56:01
2019-12-04T01:56:01
183,154,348
0
0
null
null
null
null
UTF-8
Python
false
false
512
py
import os basedir = os.path.abspath(os.path.dirname(__file__)) class Config(object): ''' it is in general a good practice to set configuration from environment variables, and provide a fallback value when the environment does not define the variable. ''' SECRET_KEY = os.environ.get('SECRET_KEY') or 'you-will-never-guess' SQLALCHEMY_DATABASE_URI = os.environ.get('DATABASE_URL') or \ 'sqlite:///' + os.path.join(basedir, 'app.db') SQLALCHEMY_TRACK_MODIFICATIONS = False
06766582c327781e0e4b313477641e0d7441f800
b3ed082c0413fb8eef32094ba0535bee7517ee87
/benchmarks/prepare-executables.py
ddac74d5dca04f6f152c44623045b50eb6bfaaab
[ "BSD-3-Clause" ]
permissive
sureyeaah/dex-lang
60ec1472aba962cd0896fdb65350ceba8daffc54
8806d9be61fcc44fe52fa6d3e8339a8bd15f7aef
refs/heads/main
2023-03-08T03:50:00.482085
2020-10-08T14:05:09
2020-10-09T15:32:49
318,612,484
0
0
BSD-3-Clause
2020-12-04T19:10:23
2020-12-04T19:10:22
null
UTF-8
Python
false
false
7,552
py
import sys import os import struct from pathlib import Path from itertools import product RODINIA_ROOT = Path('rodinia') / 'rodinia' PARBOIL_DATA_ROOT = Path('parboil') / 'data' if not RODINIA_ROOT.exists(): print("Rodinia benchmark suite missing. Please download it and place it in a " "`rodinia/rodinia` subdirectory.") sys.exit(1) if not PARBOIL_DATA_ROOT.exists(): print("Parboil benchmark suite missing. Please download the datasets and place them " "in a `parboil/data` subdirectory.") sys.exit(1) EXE_ROOT = Path('exe') RODINIA_EXE_ROOT = EXE_ROOT / 'rodinia' PARBOIL_EXE_ROOT = EXE_ROOT / 'parboil' # TODO: An easy way to do this would be to wrap the parameters in arrays, but # that doesn't work when the return type depends on any of them. PREVENT_PARAMETER_INLINING = True PRINT_OUTPUTS = False def prepare_rodinia_kmeans(): kmeans_data_path = RODINIA_ROOT / 'data' / 'kmeans' kmeans_data_files = [ (kmeans_data_path / '100', 10), (kmeans_data_path / '204800.txt', 8), (kmeans_data_path / 'kdd_cup', 5), ] kmeans_exe_path = RODINIA_EXE_ROOT / 'kmeans' kmeans_exe_path.mkdir(parents=True, exist_ok=True) for (df, k) in kmeans_data_files: with open(df, 'r') as f: lines = [l for l in f.read().split('\n') if l] vals = [map(ensure_float, l.split()[1:]) for l in lines] case_exe_path = kmeans_exe_path / (df.stem + '.dx') with open(case_exe_path, 'w') as f: emit_dex(f, 'rodinia', 'kmeans', [ ('points', format_matrix(vals)), ('k', k), ('threshold', 0), ('max_iterations', 500), ]) print(f'Created {case_exe_path}') def prepare_rodinia_hotspot(): data_path = RODINIA_ROOT / 'data' / 'hotspot' data_files = [(data_path / f'temp_{size}', data_path / f'power_{size}', size) for size in (64, 512, 1024)] exe_path = RODINIA_EXE_ROOT / 'hotspot' exe_path.mkdir(parents=True, exist_ok=True) for (tf, pf, size) in data_files: with open(tf, 'r') as f: tvals = [l for l in f.read().split('\n') if l] with open(pf, 'r') as f: pvals = [l for l in f.read().split('\n') if l] ts = list(chunk(tvals, size)) ps = list(chunk(pvals, size)) case_exe_path = exe_path / f'{size}.dx' with open(case_exe_path, 'w') as f: emit_dex(f, 'rodinia', 'hotspot', [ ('numIterations', 360), ('T', format_matrix(ts)), ('P', format_matrix(ps)) ]) print(f'Created {case_exe_path}') def prepare_rodinia_backprop(): exe_path = RODINIA_EXE_ROOT / 'backprop' exe_path.mkdir(parents=True, exist_ok=True) exe_path_ad = RODINIA_EXE_ROOT / 'backprop-ad' exe_path_ad.mkdir(parents=True, exist_ok=True) in_features = [512, 123] for inf, use_ad in product(in_features, (False, True)): outf = 1 hidf = 16 case_exe_path = (exe_path_ad if use_ad else exe_path) / f'{inf}_{hidf}_{outf}.dx' with open(case_exe_path, 'w') as f: emit_dex(f, 'rodinia', 'backprop', [ ('input', random_vec('in=>Float')), ('target', random_vec('out=>Float')), ('inputWeights', random_mat('{ b: Unit | w: in }=>hid=>Float')), ('hiddenWeights', random_mat('{ b: Unit | w: hid }=>out=>Float')), ('oldInputWeights', random_mat('{ b: Unit | w: in }=>hid=>Float')), ('oldHiddenWeights', random_mat('{ b: Unit | w: hid }=>out=>Float')), ], preamble=[ ('in', f'Fin {inf}'), ('hid', f'Fin {hidf}'), ('out', f'Fin {outf}'), ]) print(f'Created {case_exe_path}') def prepare_rodinia_pathfinder(): exe_path = RODINIA_EXE_ROOT / 'pathfinder' exe_path.mkdir(parents=True, exist_ok=True) world_sizes = [(100, 100000)] for rows, cols in world_sizes: case_exe_path = exe_path / f'{rows}_{cols}.dx' with open(case_exe_path, 'w') as f: emit_dex(f, 'rodinia', 'pathfinder', [ ('world', random_mat(f'(Fin {rows})=>(Fin {cols})=>Int', gen='randInt')), ]) print(f'Created {case_exe_path}') def prepare_parboil_mriq(): # NB: Run-time of this one shouldn't be data-dependent, so for now we just # generate random inputs of sizes matching the standard dataset. exe_path = PARBOIL_EXE_ROOT / 'mriq' exe_path.mkdir(parents=True, exist_ok=True) problem_sizes = [ (32768, 3072, 'small'), (262144, 2048, 'large'), ] for nx, nk, name in problem_sizes: case_exe_path = exe_path / (name + '.dx') with open(case_exe_path, 'w') as f: emit_dex(f, 'parboil', 'mriq', [ *[(f'k{c}', random_vec(f'(Fin {nk})=>Float')) for c in ('x', 'y', 'z')], *[(f'{c}', random_vec(f'(Fin {nx})=>Float')) for c in ('x', 'y', 'z')], *[(f'{c}', random_vec(f'(Fin {nk})=>Float')) for c in ('r', 'i')], ]) print(f'Created {case_exe_path}') def prepare_parboil_stencil(): exe_path = PARBOIL_EXE_ROOT / 'stencil' exe_path.mkdir(parents=True, exist_ok=True) problem_sizes = [ (128, 128, 32), (512, 512, 64), ] for x, y, z in problem_sizes: case_exe_path = exe_path / f'{x}_{y}_{z}.dx' with open(case_exe_path, 'w') as f: emit_dex(f, 'parboil', 'stencil', [ ('input', random_cube(f'(Fin {x})=>(Fin {y})=>(Fin {z})=>Float')), ]) print(f'Created {case_exe_path}') def prepare_parboil_histogram(): df_root = PARBOIL_DATA_ROOT / 'histo' exe_path = PARBOIL_EXE_ROOT / 'histogram' exe_path.mkdir(parents=True, exist_ok=True) data_files = [ (df_root / 'default' / 'input' / 'img.bin', 'default'), (df_root / 'large' / 'input' / 'img.bin', 'large'), ] for df, name in data_files: with open(df, 'rb') as f: stream = struct.iter_unpack('i', f.read()) img_width, = next(stream) img_height, = next(stream) hist_width, = next(stream) hist_height, = next(stream) hist_size = hist_width * hist_height data = [str(v[0]) for v in stream] assert len(data) == img_width * img_height img = list(chunk(data, img_width)) assert len(img) == img_height and len(img[0]) == img_width case_exe_path = exe_path / (name + '.dx') with open(case_exe_path, 'w') as f: emit_dex(f, 'parboil', 'histogram', [ ('hist_size', hist_size), ('input', format_matrix(img)), ]) print(f'Created {case_exe_path}') def random_vec(ty, gen='rand'): return f'((for i. {gen} (ixkey (newKey 0) i)) : ({ty}))' def random_mat(ty, gen='rand'): return f'((for i j. {gen} (ixkey (newKey 0) (i, j))) : ({ty}))' def random_cube(ty, gen='rand'): return f'((for i j k. {gen} (ixkey (newKey 0) (i, j, k))) : ({ty}))' def chunk(l, s): for i in range(0, len(l), s): yield l[i:i + s] def emit_dex(f, suite, name, params, *, preamble=[]): for n, v in preamble: f.write(f'{n} = {v}\n') for n, v in params: f.write(f'{n} = {v}\n') f.write('\n') f.write(f'include "{suite}/{name}.dx"\n') f.write('\n') f.write(f'%bench "{name}"\n') f.write(f'result = {name} {(" ".join(n for n, v in params))}\n') if PRINT_OUTPUTS: f.write('\n') f.write('result\n') def format_table(l, sep=','): return '[' + sep.join(l) + ']' def format_matrix(m): return format_table((format_table(cols) for cols in m), sep=',\n ') def ensure_float(s): if '.' not in s: return s + ".0" return s prepare_parboil_histogram() prepare_parboil_stencil() prepare_parboil_mriq() prepare_rodinia_pathfinder() prepare_rodinia_backprop() # Verified outputs prepare_rodinia_hotspot() prepare_rodinia_kmeans()
dcd389c1f2d0c0d6c5d4bc6e8bf9480fd938e5db
6f361cb8e428af590240ebbab955ab2e33cc44d4
/BasicFlask/url.py
047527e8c0c034cc18bfbdac0cfd71b3684a060f
[]
no_license
bibaveaarti/FlaskDemo
ed9e3d9e78837eec654a3e2ebd5b1e366533e6c4
f38cedd7ec75a7a719b821cd0dbd7c060caa7b04
refs/heads/master
2020-04-18T06:58:53.309837
2019-01-24T10:18:27
2019-01-24T10:18:27
167,344,115
0
0
null
null
null
null
UTF-8
Python
false
false
182
py
from flask import Flask,render_template app=Flask(__name__) @app.route('/') def index(): return render_template('index.html') if __name__=="__main__": app.run(debug=True)
[ "bibaveaarti" ]
bibaveaarti
70df9fc2ce7886f3f681eb0cad792ae2d1b85a03
ede03f3c5232b5e7a85b27ac0f09fe7470d0f355
/mylotto/apps.py
77301f71f8ce87197c1a8c8ce0aa65f0ffa66a56
[]
no_license
ahnbu/askcompany
30d3c5ac4d2aee7d45c7210cb4d8a8dfbd2b99cf
7b04c4255506cb768f850e73c8d975c2dd05d3e4
refs/heads/master
2020-04-01T08:51:19.524570
2018-11-14T06:59:42
2018-11-14T06:59:42
153,049,522
0
0
null
null
null
null
UTF-8
Python
false
false
94
py
from django.apps import AppConfig class MylottoConfig(AppConfig): name = 'mylotto'
f026bfb37d95f92aa95ec53e521af68a4165cd83
049cf15e75b7ae37f49f0338eef9d6a2a2ed14b4
/epyk_server/system/cli/command_line_fncs.py
2b979b4c8cea6c80abc097f809cdb2c972ce919c
[]
no_license
epykachu/epyk-engine
a8aec77cd4804ab84609e296b145d67dcc9429aa
264e1c705e25dc94625b903c45c381d69db49f30
refs/heads/master
2020-11-24T08:46:31.488220
2019-12-14T19:01:08
2019-12-14T19:01:08
228,059,222
0
0
null
null
null
null
UTF-8
Python
false
false
535
py
""" """ import sys import argparse import pkg_resources import shutil import os def main(): """""" parser_map = {} arg_parser = argparse.ArgumentParser(prog='epyk-engine') subparser = arg_parser.add_subparsers(title='Commands', dest='command') subparser.required = True for func, parser_init in parser_map.items(): new_parser = subparser.add_parser(func, help=parser_init[1]) parser_init[0](new_parser) args = arg_parser.parse_args(sys.argv[1:]) return args.func(args) if __name__ == '__main__': main()
d4dff6e1a4bbe4895ee775b9a4c5f27ba12a0d0d
2a5c0c49319989a24f9c9f18530f109bc48a8df1
/CursesEnded/FirstYear/Python(Algorithmics)/list1/ex2.py
e6d6b6e0e7460b934227c30b5f5b4f0fac782fe5
[]
no_license
Kamil-IT/Studies
0ada6dd92d7ecdbd0a3164c7c80080dd715ce8fc
d70343b2b7818ce303d816443bb15d21e03b42e0
refs/heads/master
2022-12-22T01:55:35.047783
2022-10-20T18:55:29
2022-10-20T18:55:29
217,039,987
0
1
null
2022-12-10T06:03:55
2019-10-23T11:24:33
Jupyter Notebook
UTF-8
Python
false
false
476
py
import numpy as np def create_random_matrix_marks(stud_quantity, sub_quantity): return np.random.choice(np.arange(2., 6., 0.5), size=(stud_quantity, sub_quantity)) rows = 4 columns = 4 matrix1 = create_random_matrix_marks(rows, columns) matrix2 = create_random_matrix_marks(rows, columns) symmetric_length = 0 for row in range(0, rows): for col in range(0, columns): symmetric_length += abs(matrix1[row, col] - matrix2[row, col]) print(symmetric_length)
6dbcf814a18717c624b7c80b81bffc433c263780
5aaaac7248081119b4691878e2f1756aa5aba481
/blog_back/manage.py
eaaff1943d75074aa9ad796bd1e9e87b2e963f16
[]
no_license
Heyday7/blog_back
43602b28da28468bfde7bca0e4fac2be5e1fb374
a214c0c7be7b32d16ccfd85df0d36e3d99eb13b1
refs/heads/master
2023-05-04T02:41:38.730643
2021-05-15T09:32:21
2021-05-15T09:32:21
358,890,342
0
0
null
null
null
null
UTF-8
Python
false
false
665
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'blog_back.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
13953a0f2fd27e1d596a732d066f09bce61ff34a
ffd2c9831079767b8242ff06b53360079e6b3f16
/predict.py
0bf183a4d7d133bfeb1c7929e7f5a47acecf24af
[]
no_license
dlam4h/Unet_pytorch
6084637d23f4c322e032b0cd885bb23fd812c697
1410ea8d091ce1b3fff23fed94ff7b75bb0e8b6f
refs/heads/master
2020-03-25T17:08:06.174774
2018-08-08T05:38:05
2018-08-08T05:38:05
143,964,542
1
0
null
null
null
null
UTF-8
Python
false
false
1,507
py
# -*- coding: UTF-8 -*- import torch from model import Unet, Unet_bn from torch.autograd import Variable from PIL import Image import torch.nn.functional as F import numpy as np import os import glob use_gpu = torch.cuda.is_available() print(use_gpu) if use_gpu: torch.cuda.set_device(0) model = Unet_bn() model_weight = '2018-08-04 06-23-38 Unet_bn.pt' if use_gpu: model.cuda() model.load_state_dict(torch.load(model_weight)) else: model.load_state_dict(torch.load(model_weight,map_location='cpu')) data_path = './test_data/test' save_path = './test_data/test' img_type = 'jpg' img_list = glob.glob(data_path+"/*."+img_type) for imgname in img_list: midname = imgname.split('\\')[-1] img = Image.open(data_path+"/"+midname) img = np.array(img,dtype=np.float32) img = np.transpose(img,(2,0,1)) img = torch.from_numpy(img).unsqueeze(0) if use_gpu: img = img.cuda() outputs = model(img) outputs = F.sigmoid(outputs).squeeze(0).squeeze().cpu().detach().numpy() else: outputs = model(img) outputs = F.sigmoid(outputs).squeeze(0).squeeze().data.numpy() dlam = Image.fromarray((outputs * 255).astype(np.uint8)) # dlam.show() # print(save_path+'/'+midname.split('.')[0]+'.tif') dlam.save(save_path+'/'+midname.split('.')[0]+'.tif') print(midname.split('.')[0]+'.tif') # outputs = model(Variable(img,volatile=True)) # image = outputs.detach().numpy() # a=Image.fromarray(int(image[0])) # a.save('a.jpg')
[ "l" ]
l
cddbcc6aec5e14b2780fdf3276260697db1be33f
bee2bf79ecbeaaf39a2b0f39f5def5d98ff389aa
/tasks/zfs-deps-debian.py
41aeb324a43d7d59853d8faa4fb7196b5120aa69
[]
no_license
gunnarbeutner/zfsci
d50e16f63c3f608fe15f8bf378204fcf3d3807c8
184464ed6f354f4456ab2ce2ace471c24cfe6789
refs/heads/master
2020-06-04T12:27:58.974553
2011-06-05T10:24:08
2011-06-05T10:24:08
1,671,387
0
0
null
null
null
null
UTF-8
Python
false
false
485
py
from joblib import Task, TaskResult class ZFSDepDebianTask(Task): description = "ZFS dependencies installation" stage = "test" provides = ['zfs-builddeps'] def run(self): if os.system("aptitude install -y git-core module-assistant uuid-dev zlib1g-dev gawk") != 0: return TaskResult.FAILED return TaskResult.PASSED def should_run(self): return (self.job.attributes['fs-type'] == 'zfs' and self.job.attributes['distribution'] == 'debian') ZFSDepDebianTask.register()
780b8a6d9743014a8c87552d2dfb7d9c1f5a4f51
68d75679f12c13a2b5f127d8e069fd85a3f943e5
/tools/convert_model.py
5b25e77d879abe2afcb56ac60eefc2d89bf151e5
[]
no_license
kun1989/pth-easy
ba81b2fb25636cfea347646a83952f3986366bc7
4147868c395dc522bb5ed8360df1453e5c52a9fc
refs/heads/master
2022-09-08T06:46:11.891439
2020-06-02T06:54:14
2020-06-02T06:54:14
249,013,163
1
0
null
null
null
null
UTF-8
Python
false
false
2,277
py
import argparse import torch from gluoncv.model_zoo import get_model as get_gluon_model from pth_easy.pytorch_gluoncv_model_zoo import get_model as get_torch_model import numpy as np import mxnet as mx import os def parse_args(): parser = argparse.ArgumentParser(description='covert gluoncv to pytorch model.') parser.add_argument('--network', type=str, default='resnet50_v1', help="network name") parser.add_argument('--save-path', type=str, default='model', help='Path of the model') args = parser.parse_args() return args def convert(name, save_path): if not os.path.exists(save_path): os.makedirs(save_path) print('convert {}\n'.format(name)) gluon_net = get_gluon_model(name, pretrained=True) gluon_params = gluon_net._collect_params_with_prefix() gluon_params_keys = list(gluon_params.keys()) torch_net = get_torch_model(name) torch_params = torch_net.state_dict() torch_params_keys = list(torch_params.keys()) torch_params_keys = [key for key in torch_params_keys if not key.endswith("num_batches_tracked")] assert (len(gluon_params_keys) >= len(torch_params_keys)) for i, (gl_key, th_key) in enumerate(zip(gluon_params_keys, torch_params_keys)): t = torch_params[th_key].shape g = gluon_params[gl_key].shape assert (torch_params[th_key].shape == gluon_params[gl_key].shape) torch_params[th_key].data.copy_(torch.from_numpy(gluon_params[gl_key]._data[0].asnumpy())) torch_net.eval() img_data = np.random.randint(0, 255, (1, 3, 224, 224)) img_data = img_data.astype(np.float32) / 255.0 gl_out = gluon_net(mx.nd.array(img_data)).asnumpy() th_out = torch_net(torch.from_numpy(img_data)).detach().numpy() print('pytorch: min {}, max: {}, mean: {}'.format(th_out.min(), th_out.max(), th_out.mean())) print('gluoncv: min {}, max: {}, mean: {}'.format(gl_out.min(), gl_out.max(), gl_out.mean())) error = gl_out - th_out print('error: min {}, max: {}, mean: {}'.format(error.min(), error.max(), error.mean())) print('save {} model\n'.format(name)) torch.save(obj=torch_net.state_dict(), f="{}/{}.pth".format(save_path, name)) if __name__ == '__main__': args = parse_args() convert(args.network, args.save_path)
9ab95a3976eb86e3e08c526e6650342d5cd746f1
fc678a0a5ede80f593a29ea8f43911236ed1b862
/247-StrobogrammaticNumberII.py
9fad0fec8759836f4849e4c0a8a3e1ad655112ea
[]
no_license
dq-code/leetcode
4be0b1b154f8467aa0c07e08b5e0b6bd93863e62
14dcf9029486283b5e4685d95ebfe9979ade03c3
refs/heads/master
2020-12-13T15:57:30.171516
2017-11-07T17:43:19
2017-11-07T17:43:19
35,846,262
0
0
null
null
null
null
UTF-8
Python
false
false
340
py
class Solution(object): def findStrobogrammatic(self, n): """ :type n: int :rtype: List[str] """ res = ['0', '1', '8'] if n % 2 else [''] while n > 1: n -= 2 res = [a + num + b for a, b in ['00', '11', '88', '69', '96'][n < 2:] for num in res] return res
d562a0fbe8ab34e4d043229a0cb3d20e19ae2375
d358106b304757d13da40ff7be4df6293af06990
/functions/face_index.py
5f0d9d095a2d8086f41e735ccc355b3049351b98
[ "Apache-2.0" ]
permissive
arapulido/face-recognition-serverless-app
1693f5b48f8c72ff974c90a43b4116ad64f98f3a
e7ae37a9bf7618a3a15d277ce30af3fc6ac52e01
refs/heads/master
2023-02-06T06:26:53.149777
2022-05-06T13:19:23
2022-05-06T13:19:23
213,391,123
2
3
Apache-2.0
2023-01-27T04:41:54
2019-10-07T13:30:02
Python
UTF-8
Python
false
false
1,535
py
import json import logging import os from datadog_lambda.metric import lambda_metric from datadog_lambda.wrapper import datadog_lambda_wrapper import boto3 # Set logger logger = logging.getLogger() logger.setLevel(logging.INFO) @datadog_lambda_wrapper def handler(event, context): params = json.loads(event['Records'][0]['Sns']['Message']) if 'srcBucket' not in params or 'name' not in params: logger.error("Validation failed. Missing parameters") raise Exception("Missing parameters") rekognition_client = boto3.client('rekognition') sns_client = boto3.client('sns') collection_id = os.environ['REKOGNITION_COLLECTION_ID'] data = rekognition_client.index_faces( CollectionId=collection_id, DetectionAttributes=[], ExternalImageId=params['userId'], Image={ 'S3Object': { 'Bucket': params['srcBucket'], 'Name': params['name'], } } ) params['faceId'] = data['FaceRecords'][0]['Face']['FaceId'] # Count an image indexed lambda_metric( "face_recognition.images_indexed", 1, tags=['face_id:'+params['faceId'], 'bucket:'+params['srcBucket'], 'image_name:'+params['name'], 'user:'+params['userId']] ) sns_client.publish( TopicArn=os.environ['FACE_DETECTION_PERSIST_TOPIC'], Message=json.dumps(params)) response = { "statusCode": 200, "body": json.dumps(data) } return response
6134962ce9c8843beee87adc985dcc6ea8159d35
154b888942d26e754280463383caa5bb51d11a9a
/Python/PyYouTube/venv/Scripts/easy_install-script.py
e432e3646cb744ada3ffe9b25a9e1ed5ec305df0
[]
no_license
learn-devcat/playground
7a34c07ffdae9208a673a1d5a40f6323f07b6c23
e3488472840af991e86233ab54de082e506ee860
refs/heads/master
2020-03-27T03:34:13.170818
2018-09-12T22:44:59
2018-09-12T22:44:59
145,872,482
0
0
null
null
null
null
UTF-8
Python
false
false
479
py
#!"D:\OneDrive-RC\OneDrive\__GIT REPOS__\playground\Python\PyYouTube\venv\Scripts\python.exe" # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==39.1.0','console_scripts','easy_install' __requires__ = 'setuptools==39.1.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==39.1.0', 'console_scripts', 'easy_install')() )
607677a8f624cc9c48ba2bd29abad65151a36ede
9ac0866eee361bfee730ae87d2f413b5ad82e23a
/examples/register.py
f605f62516afc5c8603b2896b60fe51e14076501
[ "BSD-2-Clause" ]
permissive
jeffmahler/lfd
e6cb2c309eec6276d51372eca0170ccb72c4a2b0
ecc6b934db098c0b1af9946454917b6dc911cb74
refs/heads/master
2020-12-26T00:35:37.302745
2015-01-15T17:27:10
2015-01-15T17:27:10
27,498,626
1
0
null
null
null
null
UTF-8
Python
false
false
1,775
py
#!/usr/bin/env python from __future__ import division import numpy as np from lfd.environment.simulation import StaticSimulation from lfd.environment.simulation_object import BoxSimulationObject from lfd.registration.registration import TpsRpmRegistrationFactory from lfd.registration.plotting_openrave import registration_plot_cb from lfd.demonstration.demonstration import Demonstration, SceneState np.random.seed(0) table_height = 0.77 table = BoxSimulationObject("table", [1, 0, table_height-.1], [.85, .85, .1], dynamic=False) sim = StaticSimulation() sim.add_objects([table]) sim.create_viewer() def generate_cloud(x_center_pert=0, max_noise=0.02): # generates 40 cm by 60 cm cloud with optional pertubation along the x-axis grid = np.array(np.meshgrid(np.linspace(-.2,.2,21), np.linspace(-.3,.3,31))).T.reshape((-1,2)) grid = np.c_[grid, np.zeros(len(grid))] + np.array([.5, 0, table_height+max_noise]) cloud = grid + x_center_pert * np.c_[(0.3 - np.abs(grid[:,1]-0))/0.3, np.zeros((len(grid),2))] + (np.random.random((len(grid), 3)) - 0.5) * 2 * max_noise return cloud demos = {} for x_center_pert in np.arange(-0.1, 0.6, 0.1): demo_name = "demo_{}".format(x_center_pert) demo_cloud = generate_cloud(x_center_pert=x_center_pert) demo_scene_state = SceneState(demo_cloud, downsample_size=0.025) demo = Demonstration(demo_name, demo_scene_state, None) demos[demo_name] = demo test_cloud = generate_cloud(x_center_pert=0.2) test_scene_state = SceneState(test_cloud, downsample_size=0.025) plot_cb = lambda i, i_em, x_nd, y_md, xtarg_nd, wt_n, f, corr_nm, rad: registration_plot_cb(sim, x_nd, y_md, f) reg_factory = TpsRpmRegistrationFactory(demos) regs = reg_factory.batch_register(test_scene_state, callback=plot_cb)
de51256b47b7914d5af0f62a042ec0c6296fb9e1
7af013dcf89b7f6c3aff4fbfdcd3281e481b103b
/Variables/swimming.py
9e3e462a848d71ec65bcba7180436e54356152ee
[]
no_license
Rodrigoh2702/Minecraft-Python
13925bbfba09cbd748b913e42110eef5dbdcb4e9
582c57ee21b16691cfd7d1070bba3b9a9d90626c
refs/heads/master
2020-04-29T13:45:32.190096
2019-03-19T23:05:05
2019-03-19T23:05:05
176,177,349
0
1
null
null
null
null
UTF-8
Python
false
false
301
py
from mcpi.minecraft import Minecraft mc=Minecraft.create() pos=mc.player.getTilePos() x=pos.x y=pos.y z=pos.z blockType=mc.getBlock(x,y,z) mc.postToChat(blockType==9) #Si quieres ver si estas completamente debajo del agua, #Crea una variable que almacene y+1 y comparala con 9 tambien
8fd8097c291f2403be1a995dba902a981588c9b7
f0fa368ad60685cd1a593c2aa1effdf19649c48d
/app.py
e97ebaf150311c3fd5b9410b3545034d17e4acb9
[]
no_license
adithyawn/knomi-v1-deployment
17d3bcf2c57765b87c2c3af3d428c808c2131912
13144e342e1a347f7ffc4a74e59751c735d6ec80
refs/heads/master
2023-06-18T04:37:20.188799
2021-07-22T02:26:46
2021-07-22T02:26:46
388,303,633
0
0
null
null
null
null
UTF-8
Python
false
false
15,285
py
from flask import Flask, request, render_template, url_for, redirect, flash import requests import json from datetime import datetime from flask_sqlalchemy import SQLAlchemy from flask_migrate import Migrate from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, BooleanField, TextAreaField from wtforms.fields.core import SelectField from wtforms.validators import length, InputRequired, EqualTo from werkzeug.security import generate_password_hash, check_password_hash from flask_login import LoginManager, UserMixin, login_user, login_required, current_user,logout_user from sqlalchemy.exc import IntegrityError from sqlalchemy import or_ app = Flask(__name__) app.config['SECRET_KEY'] = 'ghjdfdsfxxxx' app.config['SQLALCHEMY_DATABASE_URI']='mysql+pymysql://db-droplet1-admin:[email protected]:25060/db-knomi' db = SQLAlchemy(app) migrate = Migrate(app,db) login_manager = LoginManager(app) #mengarahkan ke def login kalo masuk profile tanpa login login_manager.login_view = 'login' ######### DATABASE ################### #Add User Mixin for Login class User(UserMixin, db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(100)) username = db.Column(db.String(30), unique=True) password = db.Column(db.String(150)) status = db.Column(db.Integer) class Content(db.Model): id = db.Column(db.Integer, primary_key=True) keyword = db.Column(db.String(150), unique=True) answer = db.Column(db.Text) category_content = db.Column(db.String(150)) category_content = db.Column(db.String(150)) content_date = db.Column(db.DateTime) class Category(db.Model): id = db.Column(db.Integer, primary_key=True) category = db.Column(db.String(100), unique=True) #user_id is default id by login manager @login_manager.user_loader def load_user(user_id): return User.query.get(int(user_id)) ######### FORM ################### class LoginForm(FlaskForm): username = StringField('Username :', validators=[InputRequired(message='Username is required!'), length(max=30, message='Characters can\'t be more than 30!')]) password = PasswordField('Password :', validators=[InputRequired(message='Password is required!')]) remember = BooleanField('Remember Me') class AddUserForm(FlaskForm) : name = StringField('Full Name:', validators=[InputRequired(message='Full name is required!'), length(max=100, message='Character can\'t be more than 100!')]) username = StringField('Username:', validators=[InputRequired(message='Username is required!'), length(max=30, message='Character can\'t be more than 30!')]) password = PasswordField('Password:', validators=[InputRequired(message='Password is required!'), length(max=150, message='Character can\'t be more than 150'), EqualTo('password_confirm', message='Password must match!')]) password_confirm = PasswordField('Repeat Password:', validators=[InputRequired(message='Password is required!'), length(max=150, message='Character can\'t be more than 150!'),]) status = SelectField('status', choices=[(1,"Admin"),(2,"User")]) class AddContentForm(FlaskForm) : keywords = StringField('Keyword:', validators=[InputRequired(message='Keyword is required!')]) answer = TextAreaField('Answer:', validators=[InputRequired(message='Answer is required!')]) select_category = SelectField('select_category', choices=[]) select_page = SelectField('page', choices=[(5,5),(10,10)], default=(5,5)) class AddCategoryForm(FlaskForm) : category = StringField('Full Name:', validators=[InputRequired(message='Category is required!'), length(max=100, message='Character can\'t be more than 100!')]) ################################### ####### #INDEX ############ @app.route('/') def index(): form = LoginForm() return render_template('index.html', form=form) @app.route('/login', methods=['GET','POST']) def login(): form = LoginForm() if request.method == 'POST': #form.validate_on_submit(): user = User.query.filter_by(username=form.username.data).first() # print(user) if not user: return render_template('index.html', form=form, message='Login Required!') if check_password_hash (user.password, form.password.data): login_user(user, remember=form.remember.data) return redirect(url_for('knowledgebase')) return render_template('index.html', form=form, message='Login Failed!') return render_template('index.html', form=form) @app.route('/logout') @login_required def logout(): logout_user() return redirect(url_for('index')) ####### #SETTINGS ############ @app.route('/settings') @login_required def settings(): form = AddUserForm() query_user = User.query.all() return render_template('settings.html', form=form, query_user=query_user) @app.route('/adduser', methods=['GET','POST']) @login_required def adduser(): form = AddUserForm() #this is for query in render template query_user = User.query.all() if form.validate_on_submit(): try : new_user = User(name=form.name.data, username=form.username.data, password=generate_password_hash(form.password.data), status=form.status.data) db.session.add(new_user) db.session.commit() flash('User successfully added !','success') except IntegrityError : db.session.rollback() flash('Username is duplicated !','danger') return redirect(url_for('settings')) else : flash('Add user error !','danger') return render_template('settings.html', form=form, query_user=query_user) @app.route('/deleteuser/<int:id>', methods=['GET','POST']) @login_required def deleteuser(id): query_id = User.query.filter_by(id=id).first() db.session.delete(query_id) db.session.commit() return redirect(url_for('settings')) @app.route('/edituser/<int:id>', methods=['GET']) @login_required def edituser(id): form = AddUserForm() query_user = User.query.all() query_edit_by_id = User.query.filter_by(id=id).first() # print(query_edit_by_id.name) # print(type(query_edit_by_id)) #untuk edit form ketika render template dengan query sesuai id-nya form.name.data = query_edit_by_id.name form.username.data = query_edit_by_id.username # form.status.data = query_id.status return render_template('settings.html', form=form, query_user=query_user) #query user biar muncul semua di list template settings.html ####### #KNOWLEDGEBASE ############ @app.route('/knowledgebase', methods=['GET','POST'], defaults={"page":1}) @app.route('/knowledgebase/<int:page>',methods=['GET','POST']) @login_required def knowledgebase(page): form = AddContentForm() page = page pages = 5 # source = [('mangga',),('apel',),('jeruk',)] convert to List query_keyword = Content.query.with_entities(Content.keyword).all() source = [j for i in query_keyword for j in i] # print((source)) contents = Content.query.order_by(Content.content_date.desc()).paginate(page,pages,error_out=False) # source = [j for i in query_keyword for j in i] # print((source)) query_category = Category.query.with_entities(Category.category).all() query_category = [j for i in query_category for j in i] form.select_category.choices = query_category update_answer = 0 if request.method == 'POST': page = 5 pages = contents.total if request.form.get('tag-all') : # tag = request.form['tag-all'] #kalau mau langsung ambil datanya pakai ['tag'] bukan request.form.tag atau bisa pakai form.tag.data kalau pakai wtforms tag = request.form.get('tag-all') search = "%{}%".format(tag) contents = Content.query.filter(or_(Content.keyword.like(search),Content.answer.like(search))).paginate(per_page=pages,error_out=True) elif request.form.get('tag-keyword') : tag = request.form.get('tag-keyword') search = "%{}%".format(tag) contents = Content.query.filter(Content.keyword.like(search)).paginate(per_page=pages,error_out=True) elif request.form.get('tag-answer') : tag = request.form.get('tag-answer') search = "%{}%".format(tag) contents = Content.query.filter(Content.answer.like(search)).paginate(per_page=pages,error_out=True) elif request.form.get('select_category') : search = request.form.get('select_category') contents = Content.query.filter(Content.category_content.like(search)).paginate(per_page=pages,error_out=True) return render_template('knowledgebase.html',current_user=current_user, source=source, contents=contents, form=form, update_answer=update_answer) @app.route('/addcontent', methods=['POST']) @login_required def addcontent(): form = AddContentForm() if request.method == 'POST': getkeywords = request.form.get('keywords') getkeywordssplit = getkeywords.split(",") # output = ['konten',' konten update',' konten update mingguan'] # BUT there is space lead ' konten update' keywords = [] for i in getkeywordssplit: print(i) s = i.lstrip() keywords.append(s) # output = ['konten','konten update','konten update mingguan'] for i in keywords: answer = form.answer.data category_content = form.select_category.data try : addcontent = Content(keyword=i, answer=answer, category_content=category_content, content_date=datetime.now()) db.session.add(addcontent) db.session.commit() flash("Keyword '{}' is succesfully added!".format(i),"success") except IntegrityError : db.session.rollback() flash("Keyword '{}' is available, you can't duplicate!".format(i),"danger") return redirect(url_for('knowledgebase')) @app.route('/updatecontent', methods=['POST']) @login_required def updatecontent(): form = AddContentForm() query_contents = Content.query.filter_by(keyword=form.keywords.data).first() if request.method == 'POST': query_contents.answer = form.answer.data query_contents.category_content = form.select_category.data db.session.commit() flash("Keyword '{}' is updated".format(form.keywords.data),"success") return redirect(url_for('knowledgebase')) @app.route('/deletecontent/<int:id>', methods=['GET','POST']) @login_required def deletecontent(id): contents = Content.query.filter_by(id=id).first() db.session.delete(contents) db.session.commit() return redirect(url_for('knowledgebase')) @app.route('/deletecontentselected', methods=['POST']) @login_required def deletecontentselected(): if request.method == 'POST': selectedcontents = request.form.getlist('selectedcheckbox') # print(selectedcontents) for i in selectedcontents: contentselected = Content.query.filter_by(id=i).first() db.session.delete(contentselected) db.session.commit() return redirect(url_for('knowledgebase')) @app.route('/editcontent/', methods=['GET','POST'], defaults={"page":1}) #pg @app.route('/editcontent/<int:page>/<int:id>', methods=['GET','POST']) @login_required def editcontent(page,id): #pg form = AddContentForm() page = page #pg pages = 5 #pg query_keyword = Content.query.with_entities(Content.keyword).all() source = [j for i in query_keyword for j in i] # print((source)) query_category = Category.query.with_entities(Category.category).all() query_category = [j for i in query_category for j in i] contents = Content.query.order_by(Content.content_date.desc()).paginate(page,pages,error_out=False) #pg contents_edit_by_id = Content.query.filter_by(id=id).first() form.keywords.data = contents_edit_by_id.keyword form.answer.data = contents_edit_by_id.answer #to give dropdown list option form.select_category.choices = query_category #to input default value from query form.select_category.data = contents_edit_by_id.category_content update_answer = 1 return render_template('knowledgebase.html', contents=contents, form=form,source=source, update_answer=update_answer) #query user biar muncul semua di list template settings.html ####### #CATEGORY ############ @app.route('/category') @login_required def category(): form = AddCategoryForm() query_category = Category.query.all() return render_template('category.html', form=form, query_category=query_category, list_category=query_category) @app.route('/addcategory', methods=['GET','POST']) @login_required def addcategory(): form = AddCategoryForm() #this is for query in render template query_category = Category.query.all() if form.validate_on_submit(): try : new_category = Category(category=form.category.data) db.session.add(new_category) db.session.commit() flash('Category successfully added !','success') except IntegrityError : db.session.rollback() flash('Category is duplicated !','danger') return redirect(url_for('category')) else : flash('Add user error !','danger') return render_template('category.html', form=form, query_category=query_category) @app.route('/deletecategory/<int:id>', methods=['GET','POST']) @login_required def deletecategory(id): query_id = Category.query.filter_by(id=id).first() db.session.delete(query_id) db.session.commit() return redirect(url_for('category')) @app.route('/editcategory/<int:id>', methods=['GET']) @login_required def editcategory(id): form = AddCategoryForm() query_category = Category.query.all() query_edit_by_id = Category.query.filter_by(id=id).first() form.category.data = query_edit_by_id.category return render_template('category.html', form=form, query_category=query_category) #query category biar muncul semua di list template category.html @app.route('/webhook', methods=['POST']) def webhook(): r = request.form['data'] j = eval(r) print(j) ask = j['text'].lower() # query_answer = Content.query.filter_by(keyword=ask).all() query_keyword = Content.query.with_entities(Content.keyword).all() # output = [('konten',),('konten update',),('konten update mingguan',)] source = [j for i in query_keyword for j in i] # output = ['konten','konten update','konten update mingguan'] if ask in source: check_answer = Content.query.filter(Content.keyword.like(ask)).all() for i in check_answer: reply = i.answer else : default_answer = Content.query.filter(Content.keyword.like('defaultanswer')).all() for i in default_answer: reply = i.answer return {'autoreply':reply} if __name__ == '__main__': app.run(debug=True)
b94dc6a66eb355fc0c8483affd2eb4f2e9472452
949fe26133c6fca2fed271a6af3b72827cb57a21
/hm_03_创建游戏窗口.py
3966580bd87a68169c16cee55cab9eb7fb68f600
[]
no_license
luzhengshu/pygame
b7c37e6e9f7a8aa613d92bd979fdf1f1505d0195
74241f04a3ee599c14d02e28babf035d32287f8f
refs/heads/master
2020-07-16T09:20:39.509335
2019-09-02T02:34:46
2019-09-02T02:34:46
205,762,751
0
0
null
null
null
null
UTF-8
Python
false
false
134
py
import pygame pygame.init() #创建游戏窗口 screen = pygame.display.set_mode((480,700)) while True: pass pygame.quit()
2da0d17fccea0d88c67b78668de83e5f1b8b0cfd
9466dd56f270f86b133a82f49683a18535eea2b0
/salt_code_examples/eapi/job_w_pillar.py
4f425380454de9167728fc9ace5161474f61d8fc
[]
no_license
duboc/vra-repo
3cfde9aefba30de9902315bc80ffd7e2e539b2d8
26bde2fcaf404c4b35dad495d9aa1629f60c0c97
refs/heads/master
2022-05-01T12:28:00.507744
2022-04-26T20:16:14
2022-04-26T20:16:14
237,105,663
3
3
null
null
null
null
UTF-8
Python
false
false
654
py
from sseapiclient.tornado import SyncClient client = SyncClient.connect('https://localhost', 'root', 'salt', ssl_validate_cert=False) client.api.cmd.route_cmd(cmd='runner', fun='state.orch', masters='salt', # cluster ID arg={'arg': ["myorch"], # orchestration state 'kwarg': { "pillar": { # inline pillar data "targets":"minion1", "foo":"bar", "fruit":"apples" }
c36677f1e55f79a9361cade5160ee723c4a6b6c0
941a107603ea825053636f2fe8e59b5321fd1f4d
/9/9.6.py
d657e051a2d847b12f9fe398735db4cfbf467e76
[]
no_license
LYTXJY/python
f8fa72e6138aa8a1865ffd32cf0ccfcea7709a73
ce6c21b04fbc061475ac4207685535e4086156f6
refs/heads/main
2023-02-18T04:49:51.483317
2021-01-18T08:07:57
2021-01-18T08:07:57
330,585,945
0
0
null
null
null
null
UTF-8
Python
false
false
797
py
#重载运算符 def test_1(): """ """ class Myclass(): """ 重载运算符 """ def __init__(self, name, age): self.name = name self.age = age def __str__(self): return "name:"+self.name + ";age:"+str(self.age) __repr__ = __str__ def __lt__(self, record): if self.age < record.age: return True else: return False def __add__(self, record): return Myclass(self.name, self.age + record.age) myc = Myclass("anna", 58) myc1 = Myclass("gray", 22) print(repr(myc)) print(myc) print(str(myc)) print(myc<myc1) print(myc+myc1) if __name__ == "__main__": test_1()
3851d46c9fab57c79ec762a76ce92f3eca0e286e
df998ba3511a4ce89bf7b9aa2bab9142aaa4581d
/steelframe/caret.py
7c1e9efec9fdc63838e0bb372800fe03ea04a55f
[]
no_license
iampri/chatLinePy
3986a2761352e1f5e1c136da69a1e8bad223674d
ab30599715210c987dcb9394cac02121ca5a5357
refs/heads/master
2020-12-02T19:41:15.315631
2017-06-17T11:42:21
2017-06-17T11:42:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,627
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.utils import timezone import pytz from lxml import html import requests import sys import logging logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logger = logging.getLogger('django') class Caret(): def time(self): ict = pytz.timezone('Asia/Bangkok') return timezone.now().astimezone(ict).strftime('%H:%M %p') def date(self): ict = pytz.timezone('Asia/Bangkok') return timezone.now().astimezone(ict).strftime('%A, %d %B %Y') def lottery(self): page = requests.get('http://lotto.mthai.com/tag/%E0%B8%AB%E0%B8%A7%E0%B8%A2%E0%B8%A3%E0%B8%B1%E0%B8%90%E0%B8%9A%E0%B8%B2%E0%B8%A5') tree = html.fromstring(page.content) period = tree.xpath('//p[@class="small-title show-for-small-only text-center hide-for-print"]/text()')[0][8:] prize1 = tree.xpath('//div[@id="prize-1"]/div/div/span/text()') prizel2 = tree.xpath('//div[@id="prize-l2"]/div/div/span/text()') prizef3 = tree.xpath('//div[@id="prize-f3"]/div/span/span/text()') prizel3 = tree.xpath('//div[@id="prize-l3"]/div/span/span/text()') prizen1 = tree.xpath('//div[@id="prize-n1"]/div/span/span/text()') return 'งวดวันที่ '+ period + ", รางวัลที่ 1 " + prize1[0] + ', เลขท้าย 2 ตัว ' + prizel2[0] + ', เลขหน้า 3 ตัว ' + prizef3[0] + ', เลขท้าย 3 ตัว ' + prizel3[0] + ', รางวัลข้างเคียงรางวัลที่ 1 ' + prizen1[0]
202a700ec11275da22c3aceb5b4395991f4bd643
36ab0757d3f1e296871570d7ad384fa6bd2eb9f1
/dodger/sentences/test.py
62a11c4a55dbc009372599f20c7f8da2b29e9156
[]
no_license
khalidess24/Intro-to-CS-2018
fe95cbc0e708ea1579d30e84148f4c304c6e7a9f
fc43521ffdc0ec1845941dbdc0c3d411e87e79a3
refs/heads/master
2020-04-11T09:45:07.317684
2018-12-14T19:57:48
2018-12-14T19:57:48
161,690,450
0
0
null
null
null
null
UTF-8
Python
false
false
400
py
import os path = os.getcwd() sentencelist = os.listdir(path) sentencelist.remove('.DS_Store') sentencelist.remove('test.py') # print(sentencelist.index('test.py')) # print(sentencelist) sentences = [] for i in sentencelist: city = open(path+"/"+i,'r') #encoding='utf-8' for line in city: x = line.rstrip().split(",") sentences.append({x[0]:x[1]}) print(sentences[0])
bb79818277eeda215be00f03da0ae1edb2cf43e9
99986c5471051806f9bd66f35d1a52dd497df52b
/src/v5/context/context/settings.py
e145932ba71b3fc2c50f26e4da5341caad665d3d
[ "MIT" ]
permissive
Strangemother/project-conceptnet-graphing
00b1ca87718efc5342ff47d7355e352b3efcf5b1
3fd1b3188088090c71c95b1a660770482123ce22
refs/heads/master
2020-03-23T02:20:54.532613
2019-08-01T01:03:27
2019-08-01T01:03:27
140,969,798
0
0
MIT
2019-10-21T16:47:52
2018-07-14T18:43:18
JavaScript
UTF-8
Python
false
false
3,227
py
""" Django settings for context project. Generated by 'django-admin startproject' using Django 2.2.3. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'dxo4ou=jhi@xivxh8y($wu9l-sx%zj_3_%vik)cp)_nnzunz$m' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'first', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'context.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'context.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/'
b996dba7060ff95f4cea7a9b5b45c502415af7df
f3e6f25e6ae78c3ae7f24bf50e3fe865f9156dc0
/xlsx2plj/xlsx2plj/xlsxtool.py
f29a0a866f600d1110350f91fee4e5cfae096fd5
[ "Apache-2.0" ]
permissive
XP669/XLS2PLJ
9eb24d044f03213979cb1e4bae9a88ebf9a740e3
40b48470d3ec686344486001a8264f8270ced0ac
refs/heads/master
2020-04-18T03:56:23.151015
2019-01-23T16:08:55
2019-01-23T16:14:04
167,219,598
4
4
null
null
null
null
GB18030
Python
false
false
5,104
py
#-*- coding: gb2312 -*- """ 工具 """ import os import sys import xlsxError from config import * from xml.dom.minidom import * def exportMenu(msgIndex, YCallback = None, NCallback = None, OCallback = None): """ 简单的询问Y(yes),N(no), Y:pass,N:exit, Other:continue now assume 输入 Y """ if YCallback: YCallback() return # xlsxError.info_input(msgIndex) # msg = "------------请输入Y(yes), N(no)" # if OCallback: # msg += ',other(o)' # print( msg,'------------------' ) # print( "您的输入:" ) # input_command = raw_input() # while(input_command): # if input_command.lower() == "y" or input_command == '\r': # if YCallback:YCallback() # return # elif input_command.lower() == "n": # if NCallback:NCallback() # sys.exit(1) # elif input_command.lower() == "o": # if OCallback:OCallback() # return # else: # print( "是Y还是N:", ) # input_command = raw_input() def checkExtName(filePath, extName): """ 检测扩展名,请将.也丢进来 """ if filePath == "" or extName == '': return fileName = os.path.split(filePath)[-1] return fileName.rfind(extName) >= 0 def __checkPath(dirPath): """ 必须有driverName E:,D: == """ driveName = os.path.splitdrive(dirPath)[0] if not os.path.isdir(driveName): raise xlsxError.xe(EXPORT_ERROR_CPATH, (dirPath, )) __onCheckPath(dirPath) return def __onCheckPath(dirPath): """ 递归创建目录 """ if not os.path.isdir(dirPath): prvdir = os.path.split(dirPath)[0] if not os.path.isdir(prvdir): __onCheckPath(prvdir) os.mkdir(dirPath) def createDir(dirPath): """ 创建目录 """ __checkPath(dirPath) #__checkOkCreate(dirPath) return def getFileMTime(fileName): return os.stat(fileName)[-2] ###########字符串处理#################### def inputList(var_list): """ """ for element in var_list: if isinstance(element, list): inputList(element) elif isinstance(element, str): inputElement(element) def inputElement(element): """ 对字串编码处理 """ if isinstance(element, str): #element.strip().replace print( element )#.encode(FILE_CODE), #else: #print( element), return def str2List(error_str, pywinerr_list): """ 字符串 -> list,不检测括号的匹配 """ begin_pos = error_str.find('(') next_pos = error_str.find(')') mid_pos = begin_pos if begin_pos > -1 and next_pos > -1: pywinerr_list.append([]) suberr_list = pywinerr_list[-1] while next_pos > -1: mid_pos = error_str.find('(', mid_pos+1, next_pos) if mid_pos > -1: next_pos = error_str.find(')', next_pos+1) else: break str2List(error_str[begin_pos+1:next_pos], suberr_list) str2List(error_str[:begin_pos-1] + error_str[next_pos+1:], suberr_list) else: for strVal in error_str.split(","): pywinerr_list.append(strVal) def val2Str(data): if isinstance(data, float): return str(int(data)) if isinstance(data, bytes): return data.decode("utf-8") else: return data ################################################ def list_to_text(ls): return tuple_to_text(ls) def tuple_to_text(t): text = '(' for x in t: v = value_to_text(x) text += v + ', ' text += ')' return text def dict_to_text_py(d): text = '{\n' for k, v in d.items(): text += "%s:%s,\n" % (k,v) text += '}\n' return text depth = 1 def dict_to_text_lua(d): global depth text = '{' if depth ==1: text += '\n' for k, v in d.items(): depth += 1 v = value_to_text_lua(v) if v != 'None': if k == None : if depth == 2: text += '\t' + v + ',\n' else: text += v + "," else: k = value_to_text_lua(k) if depth == 2: text += '\t[' + k + ']=' + v + ',\n' else: text += '[' + k + ']=' +v + "," depth -= 1 text += '}' if depth ==1: text += '\n' return text def value_to_text_lua(v): if isinstance(v, str): return "'" + v.replace('\'', '\\\'') + "'" if isinstance(v, bytes): return v.decode("utf-8") if isinstance(v, dict): return dict_to_text_lua(v) if isinstance(v, list): return list_to_text_lua(v) if isinstance(v, tuple): return tuple_to_text_lua(v) if isinstance(v, bool): if v==True: return 'true' else: return 'false' return str(v) def list_to_text_lua(ls): return tuple_to_text_lua(ls) def tuple_to_text_lua(t): text = '{' for x in t: v = value_to_text_lua(x) text += v + ', ' text += '}' return text def value_to_text(v): if isinstance(v, str): return "'" + v.replace('\'', '\\\'') + "'" if isinstance(v, bytes): return v.decode("utf-8") if isinstance(v, dict): return dict_to_text(v) if isinstance(v, list): return list_to_text(v) if isinstance(v, tuple): return tuple_to_text(v) return str(v) #######################code############################ def toGBK(val): if isinstance(val, str): return val.encode("utf-8") return val def GTOUC(val): return val def STOU(val): """ SYS_CODE -> utf-8 """ return val def UTOF(val): """ utf-8 -> FILE_CODE """ return val def FTOU(val): """ FILE_CODE ->UTF-8 """ return val
c4a415c300ba3143dbb10888062575bebca50457
45b72f5149bcce54a2b0d15ea5077cb3dac030ce
/light bulb/C_HNSWFLAT.py
8447054b16d206ba35c9e029d0feb03879f9fbd8
[]
no_license
davidmikulovsky/NIDS-detector
603e8b69f8df631d3f1896f9a25823182fc157e7
d1bf0df2ca59979488d674d1b645dd5747ccc302
refs/heads/master
2022-09-16T08:17:40.071862
2020-05-18T22:33:49
2020-05-18T22:33:49
264,273,525
0
0
null
null
null
null
UTF-8
Python
false
false
5,341
py
#!/usr/bin/python import time import numpy as np import faiss import os import sys import getopt def main(sys): np.seterr(over='ignore') m = len(sys) print ("The script has the name %s" % (sys[0])) print("initiate: %s " % (sys[0])) print ("Number of arguments: ", m, " arguments.") input_file_dataset = sys[1] input_file_queries = sys[2] #k = int(sys[3]) var = sys[4] run = sys[5] ground_truth_D = sys[6] ground_truth_I = sys[7] error = float(sys[8]) print("check of the arguments") for i in range(m): print("arguments: %s " % (sys[i])) dataset = os.path.realpath(input_file_dataset) queryset = os.path.realpath(input_file_queries) groundtruth_D = os.path.realpath(ground_truth_D) groundtruth_I = os.path.realpath(ground_truth_I) #ground_truth = os.path.realpath(output_file_gt) a_vectors = np.loadtxt(dataset).astype(np.float32) query_set = np.loadtxt(queryset).astype(np.float32) GT_D = np.loadtxt(groundtruth_D).astype(np.float32) GT_I = np.loadtxt(groundtruth_I).astype(np.float32) k = len(GT_D[0]) n_db = len(a_vectors) d = len(a_vectors[0]) #dimension of database n_q = len(query_set) fo = len(a_vectors) nlist = int(float(fo) / k) #number of clusters nlist = 2* nlist nprobe = int((k/2)+1) #how many times repeat search print("check of dimensions") print("param n_db", n_db) print("param d", d) print("param k", k) print("param n_q", n_q) print("param nlist", nlist) print("param nprobe", nprobe) print("param error", error) print("faiss ...") start1 = time.clock() index = faiss.IndexHNSWFlat(d, 32) # training is not needed # this is the default, higher is more accurate and slower to # construct index.hnsw.efConstruction = 128 print("add") # to see progress index.verbose = True index.add(a_vectors) stop1 = time.clock() #----#start search start2 = time.clock() index.hnsw.search_bounded_queue = True index.hnsw.efSearch = 128 D, I = index.search(query_set, k) # actual search stop2 = time.clock() #---#end #run recall recall_i = recall_similar_match( GT_I, I) recall_d = recall_with_error( GT_D, D, error) stringname_D = 'D' + sys[0][1:9] + '_' + var +'.txt' stringname_I = 'I' + sys[0][1:9] + '_' + var +'.txt' np.savetxt(stringname_D, D) np.savetxt(stringname_I, I) time1 = stop1 - start1 time2 = stop2 - start2 #run, filename, index_time, build_time, recall_D, recall_I, n_db, n_q, d, k print_time(run, sys[0], time1, time2, recall_d, recall_i, n_db, n_q, d, k, error) print("finish") #------# #helper functions #------# def print_time(run, filename, index_time, build_time, recall_D, recall_I, n_db, n_q, d, k , error): # print("finish (total cpu time): ", (time.clock() - start)/60) total_time = index_time + build_time speed = int(n_db/ total_time) #instr = "'{0}', '{1}', '{2}', '{3}', '{4}', '{5}', '{6}'".format(softname, procversion, int(percent), exe, description, company, procurl) with open('outputfile.txt', 'a') as file: file.write( "{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11} , {12} \n".format( run, filename, index_time, build_time, total_time, speed, recall_D, recall_I, n_db, n_q, d, k, error)) #recall function for values #recall function for values def recall_similar_match( GT_I, I): if len(I) != len(GT_I) or len(I[0]) != len(GT_I[0]): print("dimensions of ground truth are not equal to the result ") return "error" counter = 0 for i in range(len(I)): for j in range(len(I[i])): # check each value in I and, if they are contained in the list of GT_I[i] # if not count error #print(" ", GT_I[i][j], I[i][j]) if I[i][j] not in GT_I[i]: counter = counter + 1 #print("wrong values found ", counter) dimension = len(GT_I) * len(GT_I[0]) print("total values in gt_I vs. errors ", dimension, counter) rec = float(dimension) - float(counter) #print(" rec", rec) rec = (rec/float(dimension))*100 #print(" rec", rec) #print ("recall by correct index: ", recall) print ("recall by correct index: ", rec, " %") return rec #recall function for values def recall_with_error( GT_D, D, error): if len(D) != len(GT_D) or len(D[0]) != len(GT_D[0]): print("dimensions of ground truth are not equal to the result ") return "error" counter = 0 sum1 = 0 sum2 = 0 for i in range(len(D)): sum1 = np.sum(D[i]) sum2 = np.sum(GT_D[i]) sum2 = sum2 * (1+error) #print(np.sqrt(sum1), np.sqrt(sum2)) if sum1 > sum2: #print (sum (D[i]), sum ((GT_D[i] * (1 + error)))) #print (sum1, sum2) counter = counter + 1 sum1 = 0 sum2 = 0 dimension = len(D)* len(D[0]) rows = len(D) recall = (((float(rows) - float(counter)) / float(rows) ) * 100) print("Total recall for D {0} \n".format(recall)) print ("total values in gt vs. errors ", rows, counter) return recall if __name__ == "__main__": main(sys.argv[0:])
430f9a2e0283749bef2a1729386ed9aea46c6881
90eeee8c1b675cf8a819bb3e7ba5fe2ffcff1152
/LogTest.py
655c7e23a6ae14707756010c899cfa628b1606b0
[]
no_license
psu-powerlab/EGoT-ME
5d7b49450a9521059732d483f18592334fe961c8
fa804b56faffcfb3e3de780b01053dbbb0974d0e
refs/heads/main
2023-05-11T00:47:30.321817
2021-04-05T19:17:44
2021-04-05T19:17:44
354,949,394
0
0
null
2021-04-09T21:20:53
2021-04-05T19:30:58
null
UTF-8
Python
false
false
6,707
py
''' This is a test script that will either develop into or be replaced by the eventual 'Log API' as designed for the EGot Modeling Environment (ME). ~Sean Keene, Portland State University, 2021 [email protected] ''' from gridappsd import GridAPPSD, goss from gridappsd import topics as t from gridappsd.simulation import Simulation from gridappsd.topics import simulation_input_topic, simulation_output_topic, simulation_log_topic import time import json import pandas as pd import csv global simulation_id, end_program, flag, w flag = 0 def callback(headers, message): global end_program, flag, w publish_to_topic = simulation_input_topic(simulation_id) if type(message) == str: message = json.loads(message) if 'message' not in message: if message['processStatus'] == 'COMPLETE' or \ message['processStatus']=='CLOSED': print('The End') gapps.query_object_dictionary(model_mrid, None, '_08175e8f-b762-4c9b-92c4-07f369f69bd4') end_program = True else: #Uncomment for troubleshooting #print(message) ''' Only runs the first output query. Grabs the keys from the message, looks them up for their real names, and writes the header with the real names while still using the mrids as headers for dictwriter purposes. ''' if flag == 0: header_mrids = message['message']['measurements'].keys() header_names = [] print(header_mrids) for i in header_mrids: lookup_mrid = next(item for item in meas_object_list if item['measid'] == i) lookup_name = lookup_mrid['name'] header_names.append(lookup_name) w = csv.DictWriter(f, header_mrids) print(header_names) header_names_dict = dict(zip(list(header_mrids),header_names)) w.writerow(header_names_dict) flag = 1 else: pass print(type(message)) w.writerow(message['message']['measurements']) def callback2(headers, message): global end_program publish_to_topic = simulation_log_topic(simulation_id) if type(message) == str: message = json.loads(message) print(message) if 'message' not in message: if message['processStatus'] == 'COMPLETE' or \ message['processStatus']=='CLOSED': print('The End') end_program = True else: print(message) #Connect to GridAPPS gapps = GridAPPSD("('localhost', 61613)", username='system', password='manager') #Define topic and message for id query topic = t.REQUEST_POWERGRID_DATA message = { "requestType": "QUERY_MODEL_NAMES", "resultFormat": "JSON" } #Query the model names. We know the mrid already, but this gives us our simulation id as well. x = gapps.get_response(topic, message) simulation_id = x["id"] model_mrid = "_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62" #for 13 node feeder # #Playing around with queries. This gets us object IDs from the 13 node model. # topic = "goss.gridappsd.process.request.data.powergridmodel" # message = { # "requestType": "QUERY_OBJECT_IDS", # "resultFormat": "JSON", # "modelId": model_mrid # } # # object_dict = gapps.get_response(topic, message) # print('Object dictionary: \n') # print(object_dict) # print('\n') # object_mrid_list = object_dict['data']['objectIds'] # print('Object List: \n') # print(object_mrid_list) #Initialize lookup list for measurement mrid names topic = "goss.gridappsd.process.request.data.powergridmodel" message = { "modelId": model_mrid, "requestType": "QUERY_OBJECT_MEASUREMENTS", "resultFormat": "JSON", } object_meas = gapps.get_response(topic, message) meas_object_list = object_meas['data'] #Example for how to grab a name given a measurement id testvar = next(item for item in meas_object_list if item['measid'] == '_08175e8f-b762-4c9b-92c4-07f369f69bd4') print(testvar) name = testvar['name'] print(name) #Playing around with simulations. See if I can get a 13 node, 120 second simulation running. topic = t.REQUEST_SIMULATION run_config_13 = { "power_system_config": { "GeographicalRegion_name": "_73C512BD-7249-4F50-50DA-D93849B89C43", "SubGeographicalRegion_name": "_ABEB635F-729D-24BF-B8A4-E2EF268D8B9E", "Line_name": "_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62" }, "application_config": { "applications": [] }, "simulation_config": { "start_time": "1570041113", "duration": "21", "simulator" : "GridLAB-D", "timestep_frequency": "1000", "timestep_increment": "1000", "run_realtime": True, "simulation_name": "ieee123", "power_flow_solver_method": "NR", "model_creation_config":{ "load_scaling_factor": "1", "schedule_name": "ieeezipload", "z_fraction": "0", "i_fraction": "1", "p_fraction": "0", "randomize_zipload_fractions": False, "use_houses": False } }, # #Test Config is optional! This example is copied from the hackathon for syntax comparison # "test_config": { # "events": [{ # "message": { # "forward_differences": [ # { # "object": "_6C1FDA90-1F4E-4716-BC90-1CCB59A6D5A9", # "attribute": "Switch.open", # "value": 1 # } # ], # "reverse_differences": [ # { # "object": "_6C1FDA90-1F4E-4716-BC90-1CCB59A6D5A9", # "attribute": "Switch.open", # "value": 0 # } # ] # }, # "event_type": "ScheduledCommandEvent", # "occuredDateTime": 1570041140, # "stopDateTime": 1570041200 # }] # }, } #Start the simulation.... gapps_sim = GridAPPSD() simulation = Simulation(gapps_sim, run_config_13) simulation.start_simulation() simulation_id = simulation.simulation_id print(simulation_id) #Test the callback function sim_output_topic = simulation_output_topic(simulation_id) f = open('csvwritertest.csv', 'w') gapps.subscribe(sim_output_topic, callback) sim_log_topic = simulation_log_topic(simulation_id) gapps.subscribe(sim_log_topic, callback2) def _main(): global end_program end_program = False print('test') while not end_program: time.sleep(0.1) if end_program: f.close() print('bye') if __name__ == "__main__": _main()
e7a59d520063d29f9bbcf51ad325fcc390863548
80b489a53f7f211a09920affa5998a0724d83e71
/webapp/app/main/__init__.py
886ede6fcf69db65c60813f7f98f6d2bb63254f9
[]
no_license
mustafatasdemir/apkinspector
d9ec9d85da5e0014edaf0d98119561bf3f87dffc
1bd0d044b7daef4efda21c985393f8d73722a074
refs/heads/master
2016-09-06T03:25:49.212735
2014-12-12T03:52:56
2014-12-12T03:52:56
24,392,752
3
0
null
2014-10-28T03:57:43
2014-09-23T23:10:55
Java
UTF-8
Python
false
false
660
py
# Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. # Import Statements from flask import Blueprint main = Blueprint('main', __name__) from . import views, errors
00d65bebe2889190bd8e0b186f9d2adff0b3397d
d25ce8e431af70e699ca420dd6f0968cf82afea0
/Baekjoon/Backtracking/15649.py
b2ae286eacc65300f1feb876d67b5fd9adc21deb
[]
no_license
taehee-kim-dev/Problem-solving
d30fe67673056ba75cdb14ae4ec68be040afeea7
c0fb94500a0a43fafcf0a5878ae4e6e3f362ec27
refs/heads/master
2021-09-28T10:47:43.286288
2021-09-14T17:05:09
2021-09-14T17:05:09
203,376,052
0
0
null
null
null
null
UTF-8
Python
false
false
1,226
py
import sys def solve(level): # 매개변수 = 트리 레벨 if level == M: # 트리의 레벨이 M과 같아지면 result list 모두 출력 for i in result: print(i, end=' ') # 공백구분 print() # result list 모두 출력하고 개행 return else: for i in range(1, N+1): # 1부터 N까지 한 레벨 if not visited[i]: # i번째 숫자를 선택 안했다면, visited[i] = True # 선택으로 바꾸고, result.append(i) # 결과 리스트에 i를 append solve(level + 1) # 다음 레벨의 노드들 탐색 ''' 다음 레벨을 탐색하는 함수에서 리턴되었을 때, 다음 레벨에서 현재 레벨로 돌아왔으므로 visited 리스트에서 선택했던 숫자에 대한 boolean값을 True에서 False로 변경 그리고 result list에서 맨 뒷값 제거 ''' visited[i] = False result.pop() # 그리고 다음 노드를 검사함 N, M = map(int, sys.stdin.readline().split()) visited = [False for _ in range(N+1)] result = [] solve(0)
034c61b89e3d11daded3410ec3be279a44cdaf8f
8cecbbad4062a87b8a9ef68339f2228bcd8d053f
/2013-09-27/直线.py
c6e23faa9e70b653282717059a6a21d9e8d769eb
[]
no_license
XianYX/Python-
0a5fe645fe20b5d480d8f13d9d5c7e3e79d23016
ae79ce935b84de59caaa82acf535e0c89f130e79
refs/heads/master
2020-12-30T23:23:21.526941
2014-10-17T17:38:48
2014-10-17T17:38:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,491
py
# -*- coding: utf-8 -*- """ Spyder Editor python 2.7 This program is to draw a line with the given coordinates and calculate the length between them. It's made by Duan Yi. Student number:1130310226 E-mail:[email protected] version:1.1 date:2013-9-27 03:09:54 """ x1,y1=eval(raw_input("please enter the coordinates of the first point:")) #input the coordinates of the first point x2,y2=eval(raw_input("please enter the coordinates of the second point:")) #input the coordinates of the second point length=((x1-x2)**2+(y1-y2)**2)**0.5 #calculate the length between the two point import turtle #import turtle module turtle.pensize(2) #set pen size to 2 pixels turtle.penup() #pull the pen up turtle.goto(x1,y1) #put the pen to (x1,y1) turtle.pendown() #pull the pen down turtle.goto(x2,y2) #draw the line turtle.penup() #pull the pen up turtle.goto(x1,y1-10) #put the pen to the top of the first point turtle.pendown() #pull the pen down turtle.write((x1,y1),False) #write the coordinate of the first point turtle.penup() #pull the pen up turtle.goto(x2,y2+10) #put the pen to the top of the second point turtle.pendown() #pull the pen down turtle.write((x2,y2),False) #write the coordinate of the second point turtle.penup() #pull the pen up turtle.goto(0.5*(x1+x2)+10,0.5*(y1+y2)+10) #put the pen at the middle of the line turtle.pendown() #pull the pen down turtle.write("the length of the line is : "+str(length),False,align="left") #write the length of the line
67327a4756371c5388c16ae850222b175ec36862
379117f3152210e3d463f38fd77ba5954b286f9a
/smpt_attachment.py
7949d66e1751348308e8ac17bd881b83b89b40fb
[]
no_license
gultomian/pisecuritysystem
9471fc84ea5bf7cb960e6724ec086249652d3c53
6c3ee45239f1e223d489c280c7ef6487593c0b73
refs/heads/master
2022-12-12T21:24:07.461486
2020-09-09T10:01:24
2020-09-09T10:01:24
249,036,062
0
0
null
null
null
null
UTF-8
Python
false
false
2,006
py
import os, glob import email, smtplib, ssl from email import encoders from email.mime.base import MIMEBase from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText if int(endtime-starttime)>=60: starttime=time.time() daftar_file = glob.glob('Takdikenal/'+'/*.jpg') file_terbaru = max(daftar_file, key=os.path.getctime) subject = "Seseorang tidak dikenal berada didepan pintu" body = "This is an email with attachment sent from Python" sender_email = "[email protected]" receiver_email = "[email protected]" password = 'gultom123' # Create a multipart message and set headers message = MIMEMultipart() message["From"] = sender_email message["To"] = receiver_email message["Subject"] = subject message["Bcc"] = receiver_email # Recommended for mass emails # Add body to email message.attach(MIMEText(body, "plain")) filename = file_terbaru # In same directory as script # Open PDF file in binary mode with open(filename, "rb") as attachment: # Add file as application/octet-stream # Email client can usually download this automatically as attachment part = MIMEBase("application", "octet-stream") part.set_payload(attachment.read()) # Encode file in ASCII characters to send by email encoders.encode_base64(part) # Add header as key/value pair to attachment part part.add_header( "Content-Disposition", f"attachment; filename= {filename}", ) # Add attachment to message and convert message to string message.attach(part) text = message.as_string() # Log in to server using secure context and send email context = ssl.create_default_context() with smtplib.SMTP_SSL("smtp.gmail.com", 465, context=context) as server: server.login(sender_email, password) server.sendmail(sender_email, receiver_email, text)
b46bcfcde0bf2c4c8d5d4dcd19f9df7a40a4baa8
409a9a748ff385fe51e5a4d390395fb023a31dca
/aws.py
1377a0c88a912b2f6133ba1115066048e7640a53
[ "MIT" ]
permissive
sinoosco/AWS-Uploader
3355b97994880afd0c0a55fb74530439f11d9b1e
d6f4174e25838e3798756197bcfd3947a5bac9e7
refs/heads/main
2023-07-05T19:11:54.124573
2021-08-06T20:58:13
2021-08-06T20:58:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,430
py
import os import logging import boto3 from botocore.exceptions import ClientError logging.basicConfig(level=logging.INFO) def get_s3_resource(*, endpoint_url, aws_access_key_id, aws_secret_access_key): try: s3_resource = boto3.resource( "s3", endpoint_url=endpoint_url, aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, ) return s3_resource except Exception as e: logging.info(e) def get_base_name(path): if not os.path.isdir(path): raise ValueError("Directory is not valid or doesn't exist.") try: base_name = os.path.basename(os.path.normpath(path)) return base_name except Exception as e: logging.error(e) def upload(*, bucket_name, s3_resource, directory, ACL): try: bucket = s3_resource.Bucket(bucket_name) base_name = get_base_name(directory) count = 0 print() print(f"Uploading files to {bucket_name}...") print() for dirname, dirs, files in os.walk(directory): for filename in files: dirname = dirname if dirname.endswith("/") else dirname + "/" object_name = dirname.split(base_name)[-1][1:] file_path = dirname + filename object_name = object_name + filename with open(file_path, "rb") as file: bucket.put_object( ACL=ACL, Body=file, Key=object_name ) print(f"Uploaded '{object_name}'") count += 1 print() print(f"{count} files uploaded.") except ClientError as e: logging.error(e) def main(): directory = input("Directory: ") endpoint_url = input("Endpoint URL: ") aws_access_key_id = input("AWS access key: ") aws_secret_access_key = input("AWS secret key: ") acl = input("ACL: ") bucket_name = input("Bucket name: ") s3_resource = get_s3_resource( endpoint_url=endpoint_url, aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, ) upload( bucket_name=bucket_name, s3_resource=s3_resource, directory=directory, ACL=acl, ) if __name__ == "__main__": main()
e2d4dc5f52241370cce0140f72b800f0d94fc3ca
3d2f1e46e697c8e935fa4172a117594fb5f83e06
/list_query.py
ed445f4bbd69c986af29bcd049b909499e09f759
[]
no_license
PrasannaVenkadesh/Repeat-counter
cb2a0ef5754a3be59c93cdf9263819033b84e366
98661d8e3d1a49cc174e4c39ae9ff97d7af7ead5
refs/heads/master
2020-03-30T21:32:32.486748
2013-01-10T09:51:53
2013-01-10T09:51:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,102
py
#!/usr/bin/python #A Program to get input as a list and display the number of times the words occured in the list along with the word, regardless of case. Filter out and remove punctions. import re import string #main module starts here def main(): #Input Part starts here number_of_words = input("Enter number of words: ") list_data = [] print "Enter the words 1 per line by pressing Enter after each word" for i in range(0,number_of_words): list_data.append(raw_input("Enter Word: ")) #Input part Ends here & Processing starts here converted_string = " ".join(list_data) converted_string = converted_string.lower() for c in string.punctuation: converted_string = converted_string.replace(c,"") relisted_data = converted_string.split() dict_data = {}; for item in relisted_data: if dict_data.has_key(item): dict_data[item] = dict_data[item] + 1 else: dict_data[item] = 1 #Processing Ends here and Output starts below for i in dict_data: print i, dict_data[i] #Output Ends here #main module ends here if __name__ == "__main__": main() #Calling main module
0487d2de2cc28c9c08f3c0b7c74b40c5609e8228
81b848a8944a9fd26a2e80e07894d86a9d4ce861
/python/04. Sets/008. Set difference() Operation.py
da0ad46116033dfbce5d2645235a52525a37da52
[]
no_license
Labannya969/Hackerrank-practice
c719cdf362c501b00ec6a84505758e4ee7cfc694
7a76e36b860633cbb0d965e19710be09730b3e9e
refs/heads/main
2023-03-22T16:14:44.501407
2021-03-11T14:24:06
2021-03-11T14:24:06
346,398,667
0
0
null
null
null
null
UTF-8
Python
false
false
260
py
# Enter your code here. Read input from STDIN. Print output to STDOUT n=int(input()) set1= set(map(int,input().split())) n=int(input()) set2= set(map(int,input().split())) count=0 sum=0 set3= set1.intersection(set2) res=set1.difference(set3) print(len(res))
59638a7c44b257a3393e174cc395f551766b9d9b
12ad72a994d5899854324a7854ef8cb99d24c822
/src/hc.recipe.django/hc/recipe/django/__init__.py
9e84a0ae85c0a345acaa41783d6bb5fa46ffa74d
[]
no_license
hcwebdev/hc.recipe.django
6648ed35b599e34aaf1f76277ff8e9c17f46b691
8ecc3d4cd57d6f7a57e0b88b919f0e927bdb3907
refs/heads/master
2020-04-21T16:34:21.099336
2009-11-20T16:55:28
2009-11-20T16:55:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
43
py
from hc.recipe.django.recipe import Recipe
3115c97bd689389dd23eb5b1eac7eb30f025e4a5
62f3825654e80d63172f67a144d2c237a11c2d12
/chapter3_pythonwebdriverAPI/sec03_3.14.0.py
1a0798737c9db15e52d12ade3ed408b4fa633fcc
[]
no_license
skyaiolos/selenium2_python
128ca6237bf744b4f293047ae8eab14ea8d6298b
2edd2105237ddce183baca39b38b7799f688e592
refs/heads/master
2021-01-01T17:59:17.803131
2017-07-31T15:30:08
2017-07-31T15:30:08
98,211,624
0
0
null
null
null
null
UTF-8
Python
false
false
976
py
__author__ = "Jianguo Jin ([email protected])" # !/usr/bin/python3 # -*- coding:utf-8 -*- # Created by Jianguo on 2017/7/28 """ Description: 第十四节 分页处理 对于 web 页面上的分页功能,我们一般做做以下操作: ? 获取总页数 ? 翻页操作(上一页,下一页) 对于有些分页功能提供上一页,下一页按钮,以及可以输入具体页面数跳转功能不在本例的讨论范围 """ from selenium import webdriver import time, os driver = webdriver.Chrome() driver.get("http://www.baidu.com") driver.implicitly_wait(10) # 搜索 driver.find_element_by_id("kw").send_keys("selenium") driver.find_element_by_id("su").click() time.sleep(3) # 将页面滚动条拖到底部 js = "var q=document.documentElement.scrollTop=10000" driver.execute_script(js) time.sleep(3) # 将滚动条移动到页面的顶部 js_ = "var q=document.documentElement.scrollTop=0" driver.execute_script(js_) time.sleep(3)
1dcbf3912d75add43aef622fe710efc1fe663551
faabe34af6297530617395bcc6811350765da847
/platforms/leetcode/IntersectionofTwoLinkedLists.py
2c79b3b318933cc3c5d54aafd59a33988fafebfa
[]
no_license
pqnguyen/CompetitiveProgramming
44a542aea299bd553dd022a9e737e087285b8b6d
27330e7ff79c4ac883d7e1fcdf2f0d30939c3f78
refs/heads/master
2021-07-21T12:15:47.366599
2021-06-27T14:58:48
2021-06-27T14:58:48
132,837,831
0
0
null
null
null
null
UTF-8
Python
false
false
968
py
# https://leetcode.com/explore/learn/card/linked-list/214/two-pointer-technique/1215/ # Definition for singly-linked list. # class ListNode(object): # def __init__(self, x): # self.val = x # self.next = None class Solution(object): def getIntersectionNode(self, headA, headB): """ :type head1, head1: ListNode :rtype: ListNode """ la, tailA = self.getLength(headA) lb, tailB = self.getLength(headB) if tailA != tailB: return None while la > lb: headA = headA.next la -= 1 while lb > la: headB = headB.next lb -= 1 while headA != headB: headA = headA.next headB = headB.next return headA def getLength(self, head): length = 0 while head and head.next: length += 1 head = head.next if head: length += 1 return length, head
363701b069422fe54a898b6efcb681361138fa40
d6c04b7c6e823f2c00806f3e662728203dc0ba41
/bot-trade/exchanges/Model/TradingSymbol.py
b3e8b418a78ee0e72dc41cf135ccd4859b74628a
[]
no_license
yathishbl60/bot-trade
9e14de7ee7df6822b2c8ccedf8df79d44cf3e452
60d9fe3f19874410ca7b8b9c8dea8ecc945f5d1e
refs/heads/master
2022-12-12T21:01:50.098763
2020-04-06T10:37:49
2020-04-06T10:37:49
248,813,994
0
0
null
2022-12-08T03:51:07
2020-03-20T17:26:29
Python
UTF-8
Python
false
false
71
py
class TradingSymbol: def __init__(self): self.symbol = ""
ba180da8366a1c4dc186e7e6d77e49b2a59441f6
3ce0179378c82797a4c02aaf7a1a3bb485b36e3b
/polici.py
5031632fec55ea6f290b3109c18b975ccd3dac3e
[]
no_license
pedroleon21/intro-prog-comp
3ccb4edcb2c4e62ea7d747f19a14f1affc1bb4cf
78987afa70915279fbdc1955751f836cb1c43de1
refs/heads/master
2020-09-08T21:15:56.331139
2019-12-17T17:20:37
2019-12-17T17:20:37
221,243,609
0
0
null
null
null
null
UTF-8
Python
false
false
179
py
qtd=int() string=input() police=case=0 for i in range(0,len(string)): if(string[i] == -1 and police==0): crime+=1 if(string[i]== 1): police+=1 print(crime)
397e9d6b78cd7d94329a85281f462a17c4a43b7b
ccc056a86af7d3209101e427286e441d7f8020af
/cifar/cat/to-format.py
653c043e98b6b560a7c4252e914b6d8a07389d69
[]
no_license
kkleidal/tensorflow-tutorials
6a31b592dcf56f6f2d2ab1bb50f650dc9f5383ce
4ff34b816d2a3530855fd97080b26316ed584185
refs/heads/master
2021-01-12T05:59:40.899093
2017-01-06T00:19:12
2017-01-06T00:19:12
77,267,987
0
0
null
null
null
null
UTF-8
Python
false
false
441
py
import numpy as np from PIL import Image CAT_LABEL = 3 im = Image.open("cat-small.png") #Can be many different formats. pix = im.load() width, height = im.size out = np.zeros((3, 32, 32), int) for y in xrange(height): for x in xrange(width): for c, val in enumerate(pix[x,y]): out[c, 4 + y, 4 + x] = val raw = [CAT_LABEL] + out.flatten().tolist() with open("cat-small.bin", "wb") as f: f.write(bytearray(raw))
9504b7b448b237c26b47dee53167b5ead3bebe15
cb5fdb8b7c64cf6c4292b355f68e106e6d6c95c3
/实验二/exp2.5.py
c60e24529154606e28759107b150e621a7339113
[]
no_license
13076883047/Data-Mining
5e87334a5dde48341649198105ae9ad512f9dc99
e20349703a21bf60b0d7409c07df6e3637181197
refs/heads/main
2023-02-07T18:50:43.183496
2020-12-26T08:14:20
2020-12-26T08:14:20
324,275,719
0
0
null
null
null
null
UTF-8
Python
false
false
5,167
py
# 5. 根据相关矩阵,找到距离每个样本最近的三个样本,得到100x3的矩阵(每一行为对应三个样本的ID)输出到txt文件中,以\t,\n间隔 import pandas as pd import numpy as np import seaborn as sn import math import matplotlib.pyplot as plt pd.set_option('display.max_rows',None) # 显示全部行 pd.set_option('display.max_colum',None) # 显示全部列 def mean_list(list)->float: ## 返回列表的平均值,计算时跳过空缺值 sum = float(0) n = float(len(list)) for num in list: if math.isnan(num): n -= 1 continue sum += num # list 中没有有效值 if n == 0: return float('nan') mean = sum / n return mean def SD_list(list,mean): ''' 返回列表的标准差,计算时跳过空缺值 ''' #均值为nan直接返回nan if math.isnan(mean): return float('nan') sumX2=float(0) n = float(len(list)) for num in list: #跳过空缺值 if math.isnan(num): n-=1 continue sumX2 += pow(num,2) SD_list = math.sqrt(sumX2/n - pow(mean,2)) return SD_list def z_score(df,colList=None): #如果没有给出列名则对整个dataframe作z-score归一化 if colList is None: #获取dataframe列名列表 colLabel = df.columns.values.tolist() for label in colLabel: cList = df[label].tolist() cMean = mean_list(cList) cSD = SD_list(cList,cMean) cList = df[label].tolist() rowIndex = df.index.values.tolist() i=0 for index in rowIndex: new_num = round((cList[i]-cMean)/cSD,5) i+=1 df.loc[index,label] = new_num return #否则只对指定列进行z-score归一化 for label in colList: cList = df[label].tolist() cMean = mean_list(cList) cSD = SD_list(cList,cMean) df[label].fillna(cMean,inplace=True) cList = df[label].tolist() rowIndex = df.index.values.tolist() i=0 for index in rowIndex: new_num = round((cList[index]-cMean)/cSD,5) i+=1 df.loc[index,label] = new_num return def corMatrix(df): colLabels = df.columns.values.tolist() #列数量,这里做维度 dimension = df.shape[1] #行数量,这里做样本数量 sampleNum = df.shape[0] #用于存储每个维度平均值的list col_mean = [] #求每个列的平均值,调用mean_list(list)函数 for column in colLabels: c_mean = mean_list(df[column].values.tolist()) col_mean.append(round((c_mean),8)) #开始求相关矩阵 correlationMatrix = [] for i in range(dimension): valuesRow = [] for j in range(dimension): icol = df.iloc[:,i].tolist() jcol = df.iloc[:,j].tolist() for k in range(sampleNum): icol[k] = round(icol[k]-col_mean[i],7) jcol[k] = round(jcol[k]-col_mean[j],7) result = 0 for index in range(sampleNum): result+=icol[index]*jcol[index] result = round(result/(sampleNum-1),6) valuesRow.append(result) correlationMatrix.append(valuesRow) return correlationMatrix if __name__ == '__main__': #读取合并后的数据 df = pd.read_csv('D:\大三上\数据挖掘\data.csv') #去除完全空缺的列 isnan = df.isnull().all() dropCol = isnan[isnan.values==True].index.tolist() df.drop(columns=dropCol,inplace=True) #提取成绩数值数据 dfScore = df.iloc[:,5:16] #z-score归一化 z_score(dfScore) #进行矩阵的转置 dfScore = dfScore.T #将转置后的矩阵列名类型转换为string dfScore.columns = dfScore.columns.map(str) #再对矩阵进行z-score归一化 z_score(dfScore) # print(dfScore) resultMatrix = corMatrix(dfScore) nprm = np.array(resultMatrix) dfresult = pd.DataFrame(data = nprm) #print(dfresult) row = dfresult.shape[0] col = dfresult.shape[1] list_b = [[0 for i in range(3)] for j in range(row)] list_c = [[0 for i in range(3)] for j in range(row)] for r in range(row): for c in range(col): if r != c: if dfresult[r][c] > list_b[r][0]: list_b[r][0] = dfresult[r][c] list_c[r][0] = df['ID'][c] elif dfresult[r][c] > list_b[r][1]: list_b[r][1] = dfresult[r][c] list_c[r][1] = df['ID'][c] elif dfresult[r][c] > list_b[r][2]: list_b[r][2] = dfresult[r][c] list_c[r][2] = df['ID'][c] #print(list_b) su = np.array(list_b) su_c = np.array(list_c) # print(su) dfsu = pd.DataFrame(data = su) dfsu_c = pd.DataFrame(data = su_c) print(dfsu_c) dfsu_c.to_csv('D:\大三上\数据挖掘\exp2.5.txt',sep = "\t") # print(df['ID'][1])
d2fdd8d26b96274701770b2711e7425e1e6fdb17
fb732b0205be0b5e00e9bca5e70a59983b215959
/qa_grover_grove.py
2fa184f0c9b4996cc9b8067a87f081c1c830b5ea
[]
no_license
ghellstern/quantum
573af5a9d46f87b5dda0f7781dfc2a33d90ee513
d0561d888e0fb87363419562bae5f4d79503d71b
refs/heads/master
2020-05-25T06:59:08.451151
2019-01-27T10:43:23
2019-01-27T10:43:23
187,677,419
1
0
null
2019-05-20T16:32:29
2019-05-20T16:32:29
null
UTF-8
Python
false
false
754
py
import numpy as np from grove.amplification.grover import Grover from pyquil import get_qc # Bitstring Map as an algorithm input SEARCHED_STRING = "1011010" N = len(SEARCHED_STRING) mapping = {} for b in range(2 ** N): pad_str = np.binary_repr(b, N) if pad_str == SEARCHED_STRING: mapping[pad_str] = -1 else: mapping[pad_str] = 1 # Connection qc = get_qc('9q-qvm') #============================================================================== # Grove: Grove's Search Algorithm #============================================================================== # Run algo = Grover() ret_string = algo.find_bitstring(qc, bitstring_map=mapping) print("The searched string is: {}".format(ret_string))
2762d5b3bb66fcbaf71e5dcfe6f251939746ccd3
a3f2e68ac99394eac00d1f38b96a184a2e37cc2c
/src/com/zimu/python/base/for.py
860396bc13594a01597ca122c13849a1e6303513
[]
no_license
chenlunyiran/python
aec84fe7b90bd39b217674f7f1e74ad61eae9d52
9dac1f9dacbe6155f850a1c454293103ce02c3eb
refs/heads/master
2021-08-08T11:33:10.910275
2017-11-10T07:29:49
2017-11-10T07:29:49
110,198,135
0
0
null
null
null
null
UTF-8
Python
false
false
125
py
numList = [1,2,3,4,5] sum = 0 for x in numList: print(x) sum = sum + x print ("sum:") print (sum) print (sum)
2f29d0cd97f0be44eb260b6fa5f19ca891c4cd03
1348ae98762eab4befb6d48bda156e105dd219f6
/plotting_files/plot_b_val_vs_col_den.py
b7e1cbc3ed311b5634db8e88eb798f012df102ec
[]
no_license
xnaxe29/Voigt_HIH2_abs_fitter
bd37278d9d2536c4dd20be9eeace6093cd6bd63a
4de2df54201812c013dae3e6ca9543c6db9f2ce7
refs/heads/master
2020-12-13T05:58:46.085471
2020-01-17T17:44:31
2020-01-17T17:44:31
234,329,712
0
0
null
null
null
null
UTF-8
Python
false
false
7,171
py
import matplotlib.pyplot as plt import numpy as np import sys import matplotlib.ticker as ticker b_val_plot = np.array([1., 2.,3.,4.,5.,6.,7.,8.,9.,10.]) size_of_font = 20 file_name_b_val = str(sys.argv[1]) file_name_b_val_err = str(sys.argv[2]) #print (file_name_b_val) #print (file_name_b_val_err) #quit() b_val_new_array = np.loadtxt(file_name_b_val) b_val_new_array_err = np.loadtxt(file_name_b_val_err) b_val_new_array = np.nan_to_num(b_val_new_array) b_val_new_array_err = np.nan_to_num(b_val_new_array_err) #print (b_val_new_array) #print (b_val_new_array_err) #quit() logN_HI_fit_array3 = b_val_new_array[:-1,0] logN_HI_fit_array_err3 = b_val_new_array_err[:-1,0] logN_H2J0_fit_array3 = b_val_new_array[:-1,1] logN_H2J0_fit_err_array3 = b_val_new_array_err[:-1,1] logN_H2J1_fit_array3 = b_val_new_array[:-1,2] logN_H2J1_fit_err_array3 = b_val_new_array_err[:-1,2] logN_H2J2_fit_array3 = b_val_new_array[:-1,3] logN_H2J2_fit_err_array3 = b_val_new_array_err[:-1,3] logN_H2J3_fit_array3 = b_val_new_array[:-1,4] logN_H2J3_fit_err_array3 = b_val_new_array_err[:-1,4] logN_H2J4_fit_array3 = b_val_new_array[:-1,5] logN_H2J4_fit_err_array3 = b_val_new_array_err[:-1,5] logN_H2J5_fit_array3 = b_val_new_array[:-1,6] logN_H2J5_fit_err_array3 = b_val_new_array_err[:-1,6] logN_H2J6_fit_array3 = b_val_new_array[:-1,7] logN_H2J6_fit_err_array3 = b_val_new_array_err[:-1,7] logN_H2J7_fit_array3 = b_val_new_array[:-1,8] logN_H2J7_fit_err_array3 = b_val_new_array_err[:-1,8] logN_HDJ0_fit_array3 = b_val_new_array[:-1,9] logN_HDJ0_fit_err_array3 = b_val_new_array_err[:-1,9] logN_HDJ1_fit_array3 = b_val_new_array[:-1,10] logN_HDJ1_fit_err_array3 = b_val_new_array_err[:-1,10] logN_HDJ2_fit_array3 = b_val_new_array[:-1,11] logN_HDJ2_fit_err_array3 = b_val_new_array_err[:-1,11] b_fit_array3 = b_val_new_array[:-1,12] b_fit_err_array3 = b_val_new_array_err[:-1,12] f, ((ax1, ax2, ax3, ax4), (ax5, ax6, ax7, ax8)) = plt.subplots(2, 4, sharex='col', sharey='row', figsize=(16, 8), dpi=300) #f, axarr = plt.subplots(5, 5, sharex='col', sharey='row') #print (logN_H2J0_fit_array3) ax1.errorbar(b_val_plot, logN_H2J0_fit_array3, yerr=logN_H2J0_fit_err_array3) ax1.set_title('H2J0', fontsize=1.5*size_of_font) ax1.set_ylabel('logN', fontsize=size_of_font) ax1.set_ylim(logN_H2J0_fit_array3.min()-5, logN_H2J0_fit_array3.max()+5) #print (logN_H2J0_fit_array3) ax2.errorbar(b_val_plot, logN_H2J1_fit_array3, yerr=logN_H2J1_fit_err_array3) ax2.set_title('H2J1', fontsize=1.5*size_of_font) ax3.errorbar(b_val_plot, logN_H2J2_fit_array3, yerr=logN_H2J2_fit_err_array3) ax3.set_title('H2J2', fontsize=1.5*size_of_font) ax4.errorbar(b_val_plot, logN_H2J3_fit_array3, yerr=logN_H2J3_fit_err_array3) ax4.set_title('H2J3', fontsize=1.5*size_of_font) ax5.errorbar(b_val_plot, logN_H2J4_fit_array3, yerr=logN_H2J4_fit_err_array3) ax5.set_title('H2J4', fontsize=1.5*size_of_font) ax5.set_ylabel('logN', fontsize=size_of_font) ax5.set_ylim(logN_H2J4_fit_array3.min()-5, logN_H2J4_fit_array3.max()+5) ax6.errorbar(b_val_plot, logN_H2J5_fit_array3, yerr=logN_H2J5_fit_err_array3) ax6.set_title('H2J5', fontsize=1.5*size_of_font) ax7.errorbar(b_val_plot, logN_H2J6_fit_array3, yerr=logN_H2J6_fit_err_array3) ax7.set_title('H2J6', fontsize=1.5*size_of_font) ax5.set_xlabel(r'b value (Km s$^{-1}$)', fontsize=size_of_font) ax6.set_xlabel(r'b value (Km s$^{-1}$)', fontsize=size_of_font) ax7.set_xlabel(r'b value (Km s$^{-1}$)', fontsize=size_of_font) ax8.set_xlabel(r'b value (Km s$^{-1}$)', fontsize=size_of_font) saved_filename = file_name_b_val[:-11] + 'vs_col_den.pdf' ax1.margins(y=.1, x=.1) ax2.margins(y=.1, x=.1) ax3.margins(y=.1, x=.1) ax4.margins(y=.1, x=.1) ax5.margins(y=.1, x=.1) ax6.margins(y=.1, x=.1) ax7.margins(y=.1, x=.1) ax8.margins(y=.1, x=.1) ''' ax1.yaxis.set_major_locator(ticker.MultipleLocator(1)) ax1.yaxis.set_minor_locator(ticker.MultipleLocator(0.2)) ax1.xaxis.set_major_locator(ticker.MultipleLocator(2)) ax1.xaxis.set_minor_locator(ticker.MultipleLocator(0.5)) ax2.yaxis.set_major_locator(ticker.MultipleLocator(1)) ax2.yaxis.set_minor_locator(ticker.MultipleLocator(0.2)) ax2.xaxis.set_major_locator(ticker.MultipleLocator(2)) ax2.xaxis.set_minor_locator(ticker.MultipleLocator(0.5)) ax3.yaxis.set_major_locator(ticker.MultipleLocator(1)) ax3.yaxis.set_minor_locator(ticker.MultipleLocator(0.2)) ax3.xaxis.set_major_locator(ticker.MultipleLocator(2)) ax3.xaxis.set_minor_locator(ticker.MultipleLocator(0.5)) ax4.yaxis.set_major_locator(ticker.MultipleLocator(1)) ax4.yaxis.set_minor_locator(ticker.MultipleLocator(0.2)) ax4.xaxis.set_major_locator(ticker.MultipleLocator(2)) ax4.xaxis.set_minor_locator(ticker.MultipleLocator(0.5)) ax5.yaxis.set_major_locator(ticker.MultipleLocator(0.5)) ax5.yaxis.set_minor_locator(ticker.MultipleLocator(0.1)) ax5.xaxis.set_major_locator(ticker.MultipleLocator(2)) ax5.xaxis.set_minor_locator(ticker.MultipleLocator(0.5)) ax6.yaxis.set_major_locator(ticker.MultipleLocator(0.5)) ax6.yaxis.set_minor_locator(ticker.MultipleLocator(0.1)) ax6.xaxis.set_major_locator(ticker.MultipleLocator(2)) ax6.xaxis.set_minor_locator(ticker.MultipleLocator(0.5)) ax7.yaxis.set_major_locator(ticker.MultipleLocator(0.5)) ax7.yaxis.set_minor_locator(ticker.MultipleLocator(0.1)) ax7.xaxis.set_major_locator(ticker.MultipleLocator(2)) ax7.xaxis.set_minor_locator(ticker.MultipleLocator(0.5)) ax8.yaxis.set_major_locator(ticker.MultipleLocator(0.5)) ax8.yaxis.set_minor_locator(ticker.MultipleLocator(0.1)) ax8.xaxis.set_major_locator(ticker.MultipleLocator(2)) ax8.xaxis.set_minor_locator(ticker.MultipleLocator(0.5)) ''' ax1.tick_params(axis = 'both', which = 'major', direction='in', length=10, width=2, colors='k') ax2.tick_params(axis = 'both', which = 'major', direction='in', length=10, width=2, colors='k') ax3.tick_params(axis = 'both', which = 'major', direction='in', length=10, width=2, colors='k') ax4.tick_params(axis = 'both', which = 'major', direction='in', length=10, width=2, colors='k') ax5.tick_params(axis = 'both', which = 'major', direction='in', length=10, width=2, colors='k') ax6.tick_params(axis = 'both', which = 'major', direction='in', length=10, width=2, colors='k') ax7.tick_params(axis = 'both', which = 'major', direction='in', length=10, width=2, colors='k') ax8.tick_params(axis = 'both', which = 'major', direction='in', length=10, width=2, colors='k') ax1.tick_params(axis = 'both', which = 'minor', direction='in', length=5, width=1, colors='k') ax2.tick_params(axis = 'both', which = 'minor', direction='in', length=5, width=1, colors='k') ax3.tick_params(axis = 'both', which = 'minor', direction='in', length=5, width=1, colors='k') ax4.tick_params(axis = 'both', which = 'minor', direction='in', length=5, width=1, colors='k') ax5.tick_params(axis = 'both', which = 'minor', direction='in', length=5, width=1, colors='k') ax6.tick_params(axis = 'both', which = 'minor', direction='in', length=5, width=1, colors='k') ax7.tick_params(axis = 'both', which = 'minor', direction='in', length=5, width=1, colors='k') ax8.tick_params(axis = 'both', which = 'minor', direction='in', length=5, width=1, colors='k') plt.savefig(saved_filename) print ('saved') quit()
aaf7e92372fffd28588ddef6f81552b2d62a3937
287b58e78286c6f3226f330af5082dcbe7132bed
/blog/migrations/0003_auto_20170512_1513.py
a53e1da7a92e23768af6c6087279c89afc483299
[]
no_license
maridigiolo/django-exercise
0a5f16431dda379b9ae97ac3df7a36a4b8ea243b
386e283bdf51671412cbf7d6d3d09b5514a35838
refs/heads/master
2021-01-20T14:39:31.369322
2017-05-16T14:08:46
2017-05-16T14:08:46
90,642,730
0
0
null
null
null
null
UTF-8
Python
false
false
782
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.1 on 2017-05-12 15:13 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0002_auto_20170511_1853'), ] operations = [ migrations.CreateModel( name='Tag', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('slug', models.SlugField(unique=True)), ], ), migrations.AddField( model_name='post', name='tags', field=models.ManyToManyField(to='blog.Tag'), ), ]
c7a6d0a4440e9eb6c1af76f5603c4cbae2e68521
ee88c4690ce952ef7d07b29c78963b9904275630
/config/urls.py
2685435794c2cf31ff22c2dcc1c12b7d4fc737d1
[ "MIT" ]
permissive
luiscberrocal/acp-calendar-dev-project
53a88a61002dcd3058fd0ef9fdaa8aa8a1fefec6
d259a9db613136c3567a1e6e5750fc74d27f08c6
refs/heads/master
2021-01-17T17:46:43.163262
2016-12-29T13:32:49
2016-12-29T13:32:49
69,179,587
0
0
null
null
null
null
UTF-8
Python
false
false
1,615
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.conf import settings from django.conf.urls import include, url from django.conf.urls.static import static from django.contrib import admin from django.views.generic import TemplateView from django.views import defaults as default_views urlpatterns = [ url(r'^$', TemplateView.as_view(template_name='pages/home.html'), name='home'), url(r'^about/$', TemplateView.as_view(template_name='pages/about.html'), name='about'), # Django Admin, use {% url 'admin:index' %} url(settings.ADMIN_URL, include(admin.site.urls)), # User management url(r'^users/', include('acp_calendar_project.users.urls', namespace='users')), url(r'^calendar/', include('acp_calendar.urls', namespace='calendar')), url(r'^accounts/', include('allauth.urls')), # Your stuff: custom urls includes go here ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) if settings.DEBUG: # This allows the error pages to be debugged during development, just visit # these url in browser to see how these error pages look like. urlpatterns += [ url(r'^400/$', default_views.bad_request, kwargs={'exception': Exception('Bad Request!')}), url(r'^403/$', default_views.permission_denied, kwargs={'exception': Exception('Permission Denied')}), url(r'^404/$', default_views.page_not_found, kwargs={'exception': Exception('Page not Found')}), url(r'^500/$', default_views.server_error), ] import debug_toolbar urlpatterns += [url(r'^__debug__/', include(debug_toolbar.urls))]
f68997466b45549f925dca7694946614ad7d4fd5
965e163df916b01d647953f2b1431d265683f6ca
/desktop_local_tests/linux/test_linux_ip_responder_disrupt_interface.py
9c530092e4332d08a2aad027c5f16ab34a6f3077
[ "MIT" ]
permissive
expressvpn/expressvpn_leak_testing
6505c39228d396caff0c2df3777009c6fbdf3127
9e4cee899ac04f7820ac351fa55efdc0c01370ba
refs/heads/master
2023-08-18T06:33:33.931040
2021-10-11T03:02:50
2021-10-11T03:02:50
112,572,905
244
48
MIT
2021-01-19T16:02:18
2017-11-30T06:18:40
Python
UTF-8
Python
false
false
421
py
from desktop_local_tests.local_ip_responder_test_case_with_disrupter import LocalIPResponderTestCaseWithDisrupter from desktop_local_tests.linux.linux_interface_disrupter import LinuxInterfaceDisrupter class TestLinuxIPResponderDisruptInterface(LocalIPResponderTestCaseWithDisrupter): # TODO: Docs def __init__(self, devices, parameters): super().__init__(LinuxInterfaceDisrupter, devices, parameters)
57b1b4a7c48e79845070c55ebb0b34375345e2f7
9df9b12e7e97c290b473398e5b9bac23ceb28fa5
/src/MainTask/main.py
793c8ecf5bdd9965da39d28ff6dacd2158cd8bbe
[]
no_license
wangjsfm/VoiceAlerm
5bfa2486ff4d6fbd664e2bbda37d762a682aee20
a72b282a9f0cee5e2a7dfc1a9d655d2989817a69
refs/heads/master
2020-04-30T05:11:29.813610
2019-03-21T11:10:26
2019-03-21T11:10:26
176,623,185
0
0
null
null
null
null
UTF-8
Python
false
false
1,020
py
#coding=utf-8 #Version: V 1.0 author: 'WangSheng' date: '2019/3/20 8:31' import threading,time from src.ServiceTask.VoiceService import VoiceTask from src.ServiceTask.TemDiffMonitorService import tempratureDiffMonit from src.ServiceTask.ModInitService import TempModelInit from src.ServiceTask.TemMoniService import TempratureMonitor VoiceText= ['系统已上线,开始监测锅炉壁温....',] def test(vo): while True: print(vo) time.sleep(2) if __name__ == '__main__': #各区域模型 areaModelMap = TempModelInit() #声音报警 voieThread = threading.Thread( target=VoiceTask, args=(VoiceText,) ) #温差监控 diffMonitorThread = threading.Thread(target=tempratureDiffMonit, args=(VoiceText,)) #壁温监控 tempMoniThread = threading.Thread(target=TempratureMonitor, args=(areaModelMap,VoiceText)) # testThread = threading.Thread( target=test, args=(VoiceText,) ) voieThread.start() tempMoniThread.start() diffMonitorThread.start()
8191099a12f2c8606ff0b7c7276cf7adb63063ac
eaa07ce37e8a01aed0207f6707facc9675ee4245
/liczby_pierwsze.py
c5bbfec1dd2fb6fc98aa312d2d1a82c42fd01921
[]
no_license
jpalmowswroc/NOKIA_Python
f0a77e9a6edaf3553c2c8ecb267a2fc3fe9b8717
076e0a69cd592e0132738f5e53670fe13f2603c8
refs/heads/master
2020-03-25T10:50:06.349810
2018-10-08T13:55:45
2018-10-08T13:55:45
143,707,183
0
0
null
null
null
null
UTF-8
Python
false
false
284
py
d = int(input("Podaj liczbe.")) liczby = [] for i in range(d): liczby.append(i) for x in liczby: for i in range(2, x): if x % i == 0: print (x, " dzieli się przez ", i) break else: print (x, " jest liczbą pierwszą")
fd786edc5e091c8188505bf10510de95901f757a
12df960cb9633cc00fbd970eeee612a5f2166bcc
/hfpy2e-all/hfpy2e-all/ch04/mystery2.py
cce8aa5e081ce3b84689f52f298bb78304fdfc09
[]
no_license
lpizarro2391/HEAD-FIRST-PYTHON
0e54cde2c2639be4c59d8295be4f0b6d95048958
8fb1740f8a35b2f39f921dfe8fac69e23c0bcbab
refs/heads/master
2023-03-26T05:26:36.416336
2021-03-30T03:32:31
2021-03-30T03:32:31
315,743,520
1
0
null
null
null
null
UTF-8
Python
false
false
266
py
def double(arg): print('Before: ', arg) print(id(arg)) arg = arg * 2 print('After: ', arg) print(id(arg)) def change(arg): print('Before: ', arg) print(id(arg)) arg.append('More data') print('After: ', arg) print(id(arg))
a486b8053059c903fcbae7ee683707681e94c97e
90fb55320c81259cb199b9a8900e11b2ba63da4f
/1/summing.py
ba2262a8a15fe42c75e98c7269c79b194026bcb2
[]
no_license
pogross/bitesofpy
f9bd8ada790d56952026a938b1a34c20562fdd38
801f878f997544382e0d8650fa6b6b1b09fa5b81
refs/heads/master
2020-05-19T07:31:44.556896
2020-01-26T12:48:28
2020-01-26T12:48:28
184,899,394
1
1
null
null
null
null
UTF-8
Python
false
false
111
py
def sum_numbers(numbers=None): if numbers is None: numbers = range(1, 101) return sum(numbers)
23114f378d9fd15c2b284f1816308b838765ea0b
fcc6c2eeac4ae38c4fca73dcc2d7a6cc86cf7244
/rac/know/urls.py
48e5fb5936505f6b4d2bfd219e181d6952e5c854
[]
no_license
1122Rishabh/Knowladge-Website
6a939c7420f4accb75cb1f1333eb57bc295f90da
663ec6a7561ab1f9ffa95a4ff5d741d9d3f9e318
refs/heads/main
2023-03-20T19:33:17.855721
2021-03-15T08:26:22
2021-03-15T08:26:22
347,732,417
0
0
null
null
null
null
UTF-8
Python
false
false
934
py
from django.urls import path from . import views urlpatterns = [ path("",views.index,name="KnowHome"), path("index/",views.index,name="indexus"), path("contact/",views.contact,name="ContactUs"), path("about/",views.about,name="AboutUs"), path("php/",views.php,name="phpus"), path("javascript/",views.javascript,name="ContactUs"), path("C/",views.C,name="ContactUs"), path("Cn/",views.Cn,name="ContactUs"), path("ml/",views.ml,name="ContactUs"), path("ai/",views.ai,name="ContactUs"), path("java/",views.java,name="ContactUs"), path("python/",views.python,name="ContactUs"), path("ide/",views.ide,name="ContactUs"), path("javaide/",views.javaide,name="ContactUs"), path("phpide/",views.phpide,name="ContactUs"), path("javascriptide/",views.javascriptide,name="ContactUs"), path("cide/",views.cide,name="ContactUs"), path("cnide/",views.cnide,name="ContactUs"), ]
a543b07fa98c6571db483bd6b367a1e42481d991
9e30fe3e8a6cd951d4f197bec869681e5eac85b1
/HFPN model/integrated-model/integrated_HFPN.py
b3193afb4b6bb20bca8b2c26b0f4689cb8508094
[ "BSD-3-Clause" ]
permissive
PN-Alzheimers-Parkinsons/PN_Alzheimers_Parkinsons
0bdf67bc84805499345eb973c60289e6cafa1291
8e9a3a8151069757475808c48511c9d7486ea334
refs/heads/main
2023-03-01T02:33:47.205003
2021-02-04T10:37:06
2021-02-04T10:37:06
308,452,006
0
0
null
null
null
null
UTF-8
Python
false
false
52,948
py
import os import sys cwd = os.getcwd() root_folder = os.sep+"team-project" sys.path.insert(0, cwd[:(cwd.index(root_folder)+len(root_folder))] + os.sep+"utils"+os.sep) # Import class to work with hybrid functional Petri nets from hfpn import HFPN # Import parameters, rate equations, initial tokens and firing conditions from parameters import * from rate_functions import * from initial_tokens import * from firing_conditions import * def add_integrated_cholesterol_homeostasis(hfpn): ## Places # Cholesterol-ApoE hfpn.add_place(it_p_ApoEchol_extra,place_id="p_ApoEchol_extra", label="ApoE-chol complex extra", continuous=True) hfpn.add_place(it_p_ApoEchol_EE,place_id="p_ApoEchol_EE", label="ApoE-chol complex EE", continuous=True) # Cholesterol in different organelles hfpn.add_place(it_p_chol_LE,place_id="p_chol_LE", label="Chol LE", continuous=True) hfpn.add_place(it_p_chol_mito,place_id="p_chol_mito", label="Chol mito", continuous=True) hfpn.add_place(it_p_chol_ER,place_id="p_chol_ER", label="Chol ER", continuous=True) hfpn.add_place(it_p_chol_PM,place_id="p_chol_PM", label="Chol PM", continuous=True) # Oxysterols hfpn.add_place(it_p_24OHchol_extra,place_id="p_24OHchol_extra", label="24OHchol extra", continuous=True) hfpn.add_place(it_p_24OHchol_intra,place_id="p_24OHchol_intra", label="24OHchol intra", continuous=True) hfpn.add_place(it_p_27OHchol_extra,place_id="p_27OHchol_extra", label="27OHchol extra", continuous=True) hfpn.add_place(it_p_27OHchol_intra,place_id="p_27OHchol_intra", label="27OHchol intra", continuous=True) hfpn.add_place(it_p_7HOCA,place_id="p_7HOCA", label="7-HOCA", continuous=True) hfpn.add_place(it_p_preg,place_id="p_preg", label="Pregnenolon", continuous=True) # PD specific places in cholesterol homeostasis hfpn.add_place(it_p_GBA1, "p_GBA1","GBA1", continuous = False) # Connections to other networks hfpn.add_place(it_p_LB, "p_LB", "Lewy body", continuous = True) hfpn.add_place(it_p_SNCA_act, "p_SNCA_act","SNCA - active", continuous = True) hfpn.add_place(it_p_VPS35, "p_VPS35", "VPS35", continuous = True) hfpn.add_place(it_p_SNCA_olig, "p_SNCA_olig", "SNCA - Oligomerised", continuous = True) hfpn.add_place(it_p_NPC1_LE, place_id="p_NPC1_LE", label="Mutated NPC1 in LE", continuous=True) hfpn.add_place(it_p_ROS_mito, place_id="p_ROS_mito", label="Conc of ROS in mito", continuous=True) hfpn.add_place(it_p_Ca_cyto, "p_Ca_cyto", "Ca - cytosol", continuous = True) hfpn.add_place(it_p_tauP, 'p_tauP', 'Phosphorylated tau') # Added apoptosis subnet hfpn.add_place(it_p_PERK_ER, place_id="p_PERK_ER", label="Conc of PERK in ER", continuous=True) ## Transitions # Cholesterol Endocytosis hfpn.add_transition_with_speed_function( transition_id = "t_LDLR_endocyto", label = "LDLR endocyto", input_place_ids = ["p_ApoEchol_extra", "p_chol_ER", "p_LB"], firing_condition = fc_t_LDLR_endocyto, reaction_speed_function = r_t_LDLR_endocyto, consumption_coefficients = [0,0,0], output_place_ids = ["p_chol_LE"], #"p_ApoEchol_EE" production_coefficients = [354]) # 1 # Transport Cholesterol from LE to ER hfpn.add_transition_with_speed_function( transition_id = "t_chol_trans_LE_ER", label = "Chol transport LE-ER", input_place_ids = ["p_chol_LE", "p_NPC1_LE"], firing_condition = fc_t_chol_trans_LE_ER, reaction_speed_function = r_t_chol_trans_LE_ER, consumption_coefficients = [1, 0], output_place_ids = ["p_chol_ER"], production_coefficients = [1]) # Transport Cholesterol from LE to mito hfpn.add_transition_with_speed_function( transition_id = "t_chol_trans_LE_mito", label = "Chol transport LE-mito", input_place_ids = ["p_chol_LE", "p_PERK_ER"], firing_condition = fc_t_chol_trans_LE_mito, reaction_speed_function = r_t_chol_trans_LE_mito, consumption_coefficients = [1, 0], output_place_ids = ["p_chol_mito"], production_coefficients = [1]) # Transport Cholesterol from LE to PM hfpn.add_transition_with_speed_function( transition_id = "t_chol_trans_LE_PM", label = "Chol transport LE-PM", input_place_ids = ["p_chol_LE"], firing_condition = fc_t_chol_trans_LE_PM, reaction_speed_function = r_t_chol_trans_LE_PM, consumption_coefficients = [1], output_place_ids = ["p_chol_PM"], production_coefficients = [1]) # Transport Cholesterol from PM to ER hfpn.add_transition_with_speed_function( transition_id = "t_chol_trans_PM_ER", label = "Chol transport PM-ER", input_place_ids = ["p_chol_PM"], firing_condition = fc_t_chol_trans_PM_ER, reaction_speed_function = r_t_chol_trans_PM_ER, consumption_coefficients = [1], output_place_ids = ["p_chol_ER"], production_coefficients = [1]) # Transport Cholesterol from ER to PM hfpn.add_transition_with_speed_function( transition_id = "t_chol_trans_ER_PM", label = "Chol transport ER-PM", input_place_ids = ["p_chol_ER"], firing_condition = fc_t_chol_trans_ER_PM, reaction_speed_function = r_t_chol_trans_ER_PM, consumption_coefficients = [1], output_place_ids = ["p_chol_PM"], production_coefficients = [1]) # Transport Cholesterol from ER to mito hfpn.add_transition_with_speed_function( transition_id = "t_chol_trans_ER_mito", label = "Chol transport ER-mito", input_place_ids = ["p_chol_ER", "p_PERK_ER"], firing_condition = fc_t_chol_trans_ER_mito, reaction_speed_function = r_t_chol_trans_ER_mito, consumption_coefficients = [1, 0], output_place_ids = ["p_chol_mito"], production_coefficients = [1]) # Metabolisation of chol by CYP27A1 hfpn.add_transition_with_michaelis_menten( transition_id = "t_CYP27A1_metab", label = "Chol metab CYP27A1", Km = Km_t_CYP27A1_metab, vmax = vmax_t_CYP27A1_metab, input_place_ids = ["p_chol_mito"], substrate_id = "p_chol_mito", consumption_coefficients = [1], output_place_ids = ["p_27OHchol_intra"], production_coefficients = [1], vmax_scaling_function = vmax_scaling_t_CYP27A1_metab) # Metabolism of chol by CYP11A1 hfpn.add_transition_with_michaelis_menten( transition_id = "t_CYP11A1_metab", label = "Chol metab CYP11A1", Km = Km_t_CYP11A1_metab, vmax = vmax_t_CYP11A1_metab, input_place_ids = ["p_chol_mito"], substrate_id = "p_chol_mito", consumption_coefficients = [1], output_place_ids = ["p_preg"], production_coefficients = [1], vmax_scaling_function = vmax_scaling_t_CYP11A1_metab) # Metabolisation of 27OHchol by CYP7B1 hfpn.add_transition_with_michaelis_menten( transition_id = "t_CYP7B1_metab", label = "27OHchol metab CYP7B1", Km = Km_t_CYP7B1_metab, vmax = vmax_t_CYP7B1_metab, input_place_ids = ["p_27OHchol_intra"], substrate_id = "p_27OHchol_intra", consumption_coefficients = [1], output_place_ids = ["p_7HOCA"], production_coefficients = [1], vmax_scaling_function = vmax_scaling_t_CYP7B1_metab) # Endocytosis of 27OHchol hfpn.add_transition_with_speed_function( transition_id = "t_27OHchol_endocyto", label = "27OHchol endocyto", input_place_ids = ["p_27OHchol_extra"], firing_condition = fc_t_27OHchol_endocyto, reaction_speed_function = r_t_27OHchol_endocyto, consumption_coefficients = [1], output_place_ids = ["p_27OHchol_intra", "p_27OHchol_extra"], production_coefficients = [1,1]) # Metabolisation of chol by CYP46A1 hfpn.add_transition_with_michaelis_menten( transition_id = "t_CYP46A1_metab", label = "Chol metab CYP46A1", Km = Km_t_CYP46A1_metab, vmax = vmax_t_CYP46A1_metab, input_place_ids = ["p_chol_ER"], substrate_id = "p_chol_ER", consumption_coefficients = [1], output_place_ids = ["p_24OHchol_intra"], production_coefficients = [1], vmax_scaling_function = vmax_scaling_t_CYP46A1_metab) # Exocytosis of 24OHchol hfpn.add_transition_with_speed_function( transition_id = "t_24OHchol_exocyto", label = "24OHchol exocyto", input_place_ids = ["p_24OHchol_intra"], firing_condition = fc_t_24OHchol_exocyto, reaction_speed_function = r_t_24OHchol_exocyto, consumption_coefficients = [1], output_place_ids = ["p_24OHchol_extra"], production_coefficients = [1]) # Transport of Chol into ECM hfpn.add_transition_with_speed_function( transition_id = "t_chol_trans_PM_ECM", label = "Chol transport PM-ECM", input_place_ids = ["p_chol_PM", "p_24OHchol_intra"], firing_condition = fc_t_chol_trans_PM_ECM, reaction_speed_function = r_t_chol_trans_PM_ECM, consumption_coefficients = [1,0], output_place_ids = [], production_coefficients = []) # PD specific transitions hfpn.add_transition_with_speed_function( transition_id = 't_SNCA_bind_ApoEchol_extra', label = 'Extracellular binding of SNCA to chol', input_place_ids = ['p_ApoEchol_extra','p_SNCA_act'], firing_condition = fc_t_SNCA_bind_ApoEchol_extra, reaction_speed_function = r_t_SNCA_bind_ApoEchol_extra, consumption_coefficients = [0,1], output_place_ids = ['p_SNCA_olig'], production_coefficients = [1]) hfpn.add_transition_with_speed_function( transition_id = 't_chol_LE_upreg', label = 'Upregulation of chol in LE', input_place_ids = ['p_GBA1'], firing_condition = fc_t_chol_LE_upreg, reaction_speed_function = r_t_chol_LE_upreg, consumption_coefficients = [0], # GBA1 is an enzyme output_place_ids = ['p_chol_LE'], production_coefficients = [1]) ### Lewy body pathology def add_integrated_lewy_body_pathology(hfpn): # Places hfpn.add_place(it_p_SNCA_act, "p_SNCA_act","SNCA - active", continuous = True) hfpn.add_place(it_p_VPS35, "p_VPS35", "VPS35", continuous = True) hfpn.add_place(it_p_SNCA_inact, "p_SNCA_inact", "SNCA - inactive", continuous = True) hfpn.add_place(it_p_SNCA_olig, "p_SNCA_olig", "SNCA - Oligomerised", continuous = True) hfpn.add_place(it_p_LB, "p_LB", "Lewy body", continuous = True) hfpn.add_place(it_p_Fe2, "p_Fe2", "Fe2 iron pool", continuous = True) # Connections to other networks hfpn.add_place(it_p_LRRK2_mut, "p_LRRK2_mut","LRRK2 - mutated", continuous = True) hfpn.add_place(it_p_27OHchol_intra, "p_27OHchol_intra","27-OH chol - intracellular", continuous = True) hfpn.add_place(it_p_DJ1, "p_DJ1","DJ1 mutant", continuous = True) hfpn.add_place(it_p_Ca_cyto, "p_Ca_cyto", "Ca - cytosol", continuous = True) hfpn.add_place(it_p_ROS_mito, "p_ROS_mito", "ROS - mitochondria", continuous = True) hfpn.add_place(it_p_tauP, 'p_tauP', 'Phosphorylated tau') hfpn.add_place(it_p_LAMP2A, place_id="p_LAMP2A", label = "Drug LAMP2A", continuous = True) #therapeutic PD # Transitions hfpn.add_transition_with_speed_function( transition_id = 't_SNCA_degr', label = 'SNCA degradation by CMA', input_place_ids = ['p_SNCA_act','p_VPS35','p_LRRK2_mut','p_27OHchol_intra','p_DJ1', 'p_LAMP2A'], firing_condition = fc_t_SNCA_degr, reaction_speed_function = r_t_SNCA_degr, consumption_coefficients = [1,0,0,0,0,0], output_place_ids = ['p_SNCA_inact'], production_coefficients = [1]) hfpn.add_transition_with_speed_function( transition_id = 't_SNCA_aggr', label = 'SNCA aggregation', input_place_ids = ['p_SNCA_act','p_Ca_cyto','p_ROS_mito', 'p_tauP'], firing_condition = fc_t_SNCA_aggr, reaction_speed_function = r_t_SNCA_aggr, consumption_coefficients = [30,0,0, 0], #should be reviewed if Ca is consumed output_place_ids = ['p_SNCA_olig'], production_coefficients = [1]) hfpn.add_transition_with_speed_function( transition_id = 't_SNCA_fibril', label = 'SNCA fibrillation', input_place_ids = ['p_SNCA_olig'], firing_condition = fc_t_SNCA_fibril, reaction_speed_function = r_t_SNCA_fibril, consumption_coefficients = [100], output_place_ids = ['p_LB'], production_coefficients = [1]) hfpn.add_transition_with_speed_function( transition_id = 't_IRE', label = 'IRE', input_place_ids = ['p_Fe2'], firing_condition = fc_t_IRE, reaction_speed_function = r_t_IRE, consumption_coefficients = [0], output_place_ids = ['p_SNCA_act'], production_coefficients = [1]) ### Tau Pathology def add_integrated_tau_pathology(hfpn): ### Adding places # hfpn.add_place(initial_tokens=1, place_id='', label='', continous=True) hfpn.add_place(it_p_GSK3b_inact, 'p_GSK3b_inact', 'Inactive GSK3 Beta kinase') hfpn.add_place(it_p_GSK3b_act, 'p_GSK3b_act', 'Active GSK3 Beta kinase') hfpn.add_place(it_p_tauP, 'p_tauP', 'Phosphorylated tau') hfpn.add_place(it_p_tau, 'p_tau', 'Unphosphorylated tau (microtubule)') # from other sub-nets: hfpn.add_place(it_p_ApoE, 'p_ApoE', 'ApoE genotype') # from Abeta hfpn.add_place(it_p_Ab, 'p_Ab', 'Abeta') # from Abeta # connections to other networks hfpn.add_place(it_p_SNCA_act, "p_SNCA_act","SNCA - active", continuous = True) hfpn.add_place(it_p_chol_LE,place_id="p_chol_LE", label="Chol LE", continuous=True) ### Adding transitions hfpn.add_transition_with_speed_function(transition_id = 't_GSK3b_exp_deg', label = 'GSK3beta expression and degradation', input_place_ids = ['p_GSK3b_inact'], firing_condition = fc_t_GSK3b_exp_deg, reaction_speed_function = r_t_GSK3b_exp_deg, consumption_coefficients = [0], output_place_ids = ['p_GSK3b_inact'], production_coefficients = [1]) hfpn.add_transition_with_speed_function(transition_id = 't_actv_GSK3b', label = 'GSK3beta activation', input_place_ids = ['p_GSK3b_inact', 'p_ApoE', 'p_Ab'], firing_condition = fc_t_actv_GSK3b, reaction_speed_function = r_t_actv_GSK3b, consumption_coefficients = [1, 0, 0], output_place_ids = ['p_GSK3b_act'], production_coefficients = [1]) hfpn.add_transition_with_speed_function(transition_id = 't_inactv_GSK3b', label = 'GSK3beta inactivation', input_place_ids = ['p_GSK3b_act'], firing_condition = fc_t_inactv_GSK3b, reaction_speed_function = r_t_inactv_GSK3b, consumption_coefficients = [1], output_place_ids = ['p_GSK3b_inact'], production_coefficients = [1]) hfpn.add_transition_with_michaelis_menten(transition_id = 't_phos_tau', label = 'Phosphorylation of tau', Km = Km_t_phos_tau, vmax = kcat_t_phos_tau, input_place_ids = ['p_tau', 'p_GSK3b_act', 'p_SNCA_act','p_chol_LE'], substrate_id = 'p_tau', consumption_coefficients = [1, 0, 0, 0], output_place_ids = ['p_tauP'], production_coefficients = [1], vmax_scaling_function = vmax_scaling_t_phos_tau) hfpn.add_transition_with_michaelis_menten(transition_id = 't_dephos_tauP', label = 'Dephosphorylation of tau protein', Km = Km_t_dephos_tauP, vmax = vmax_t_dephos_tauP, input_place_ids = ['p_tauP'], substrate_id = 'p_tauP', consumption_coefficients = [1], output_place_ids = ['p_tau'], production_coefficients = [1], vmax_scaling_function = vmax_scaling_t_dephos_tauP) ### Abeta Pathology def add_integrated_abeta_pathology(hfpn): # Adding places hfpn.add_place(it_p_asec, 'p_asec', 'alpha secretase') hfpn.add_place(it_p_APP_pm, 'p_APP_pm', 'APP in plasma membrane') # input hfpn.add_place(it_p_sAPPa, 'p_sAPPa', 'Soluble APP alpha') hfpn.add_place(it_p_CTF83, 'p_CTF83', 'CTF83') hfpn.add_place(it_p_APP_endo, 'p_APP_endo', 'APP in endosomes') hfpn.add_place(it_p_bsec, 'p_bsec', 'beta secretase') hfpn.add_place(it_p_sAPPb, 'p_sAPPb', 'Soluble APP beta') hfpn.add_place(it_p_CTF99, 'p_CTF99', 'CTF99') hfpn.add_place(it_p_gsec, 'p_gsec', 'gamma secretase') hfpn.add_place(it_p_AICD, 'p_AICD', 'AICD') hfpn.add_place(it_p_Ab, 'p_Ab', 'Abeta') hfpn.add_place(it_p_ApoE, 'p_ApoE', 'ApoE genotype') # gene, risk factor in AD hfpn.add_place(it_p_age, 'p_age', 'Age risk factor') # 80 years old, risk factor in AD for BACE1 activity increase # from other sub-nets: hfpn.add_place(it_p_chol_PM, 'p_chol_PM', 'Cholesterol plasma membrane') # from cholesterol homeostasis hfpn.add_place(it_p_24OHchol_intra, 'p_24OHchol_intra', 'Intracellular 24 OH Cholesterol') # from cholesterol homeostasis hfpn.add_place(it_p_27OHchol_intra, 'p_27OHchol_intra', 'Intracellular 27 OH Cholesterol') # from cholesterol homeostasis hfpn.add_place(it_p_RTN3_axon, 'p_RTN3_axon', 'monomeric RTN3 (axonal)') # from ER retraction hfpn.add_place(it_p_cas3, 'p_cas3', 'Active caspase-3') # from energy metabolism hfpn.add_place(it_p_ROS_mito, 'p_ROS_mito', 'Mitochondrial ROS') # from energy metabolism ### Adding transitions hfpn.add_transition_with_michaelis_menten(transition_id = 't_APP_asec_cleav', label = 'Alpha cleavage of APP', Km = Km_t_APP_asec_cleav, vmax = kcat_t_APP_asec_cleav, input_place_ids = ['p_APP_pm', 'p_asec', 'p_chol_PM'], substrate_id = 'p_APP_pm', consumption_coefficients = [1, 0, 0], output_place_ids = ['p_sAPPa', 'p_CTF83'], production_coefficients = [1, 1], vmax_scaling_function = vmax_scaling_t_APP_asec_cleav) hfpn.add_transition_with_speed_function(transition_id = 't_asec_exp', label = 'Alpha secretase expression', input_place_ids = ['p_24OHchol_intra'], firing_condition = fc_t_asec_exp, reaction_speed_function = r_t_asec_exp, consumption_coefficients = [0], output_place_ids = ['p_asec'], # none production_coefficients = [1]) hfpn.add_transition_with_speed_function(transition_id = 't_asec_degr', label = 'Alpha secretase degradation', input_place_ids = ['p_asec'], firing_condition = fc_t_asec_degr, reaction_speed_function = r_t_asec_degr, consumption_coefficients = [1], output_place_ids = [], # none production_coefficients = []) # none hfpn.add_transition_with_speed_function(transition_id = 't_APP_exp', label = 'APP expression rate', input_place_ids = ['p_ApoE', 'p_ROS_mito'], firing_condition = fc_t_APP_exp, reaction_speed_function = r_t_APP_exp, consumption_coefficients = [0, 0], output_place_ids = ['p_APP_pm'], production_coefficients = [1]) hfpn.add_transition_with_speed_function(transition_id = 't_APP_endocyto', label = 'endocytosis', input_place_ids = ['p_APP_pm', 'p_ApoE'], firing_condition = fc_t_APP_endocyto, reaction_speed_function = r_t_APP_endocyto, consumption_coefficients = [1, 0], output_place_ids = ['p_APP_endo'], production_coefficients = [1]) hfpn.add_transition_with_speed_function(transition_id = 't_APP_endo_event', label = 'APP-utilizing cellular events', input_place_ids = ['p_APP_endo'], firing_condition = fc_t_APP_endo_event, reaction_speed_function = r_t_APP_endo_event, consumption_coefficients = [1], output_place_ids = [], production_coefficients = []) hfpn.add_transition_with_michaelis_menten(transition_id = 't_APP_bsec_cleav', label = 'Beta cleavage of APP', Km = Km_t_APP_bsec_cleav, vmax = kcat_t_APP_bsec_cleav, input_place_ids = ['p_APP_endo', 'p_bsec', 'p_chol_PM', 'p_age'], substrate_id = 'p_APP_endo', consumption_coefficients = [1, 0, 0, 0], output_place_ids = ['p_sAPPb', 'p_CTF99'], production_coefficients = [1, 1], vmax_scaling_function = vmax_scaling_t_APP_bsec_cleav) hfpn.add_transition_with_speed_function( transition_id = 't_bsec_exp', label = 'Beta secretase expression', input_place_ids = ['p_ROS_mito', 'p_27OHchol_intra', 'p_RTN3_axon'], firing_condition = fc_t_bsec_exp, reaction_speed_function = r_t_bsec_exp, consumption_coefficients = [0, 0, 0], output_place_ids = ['p_bsec'], # none production_coefficients = [1]) # none hfpn.add_transition_with_speed_function( transition_id = 't_bsec_degr', label = 'Beta secretase degradation', input_place_ids = ['p_bsec'], firing_condition = fc_t_bsec_degr, reaction_speed_function = r_t_bsec_degr, consumption_coefficients = [1], output_place_ids = [], # none production_coefficients = []) # none hfpn.add_transition_with_michaelis_menten(transition_id = 't_CTF99_gsec_cleav', label = 'Gamma secretase cleavage of CTF99', Km = Km_t_CTF99_gsec_cleav, vmax = kcat_t_CTF99_gsec_cleav, input_place_ids = ['p_CTF99', 'p_gsec', 'p_chol_PM'], substrate_id = 'p_CTF99', consumption_coefficients = [1, 0, 0], output_place_ids = ['p_Ab', 'p_AICD'], production_coefficients = [1, 1], vmax_scaling_function = vmax_scaling_t_CTF99_gsec_cleav) hfpn.add_transition_with_speed_function( transition_id = 't_gsec_exp', label = 'Gamma secretase expression', input_place_ids = ['p_ROS_mito'], firing_condition = fc_t_gsec_exp, reaction_speed_function = r_t_gsec_exp, consumption_coefficients = [0], output_place_ids = ['p_gsec'], # none production_coefficients = [1]) # none hfpn.add_transition_with_speed_function( transition_id = 't_gsec_degr', label = 'Gamma secretase degradation', input_place_ids = ['p_gsec'], firing_condition = fc_t_gsec_degr, reaction_speed_function = r_t_gsec_degr, consumption_coefficients = [1], output_place_ids = [], # none production_coefficients = []) # none hfpn.add_transition_with_speed_function(transition_id = 't_Ab_degr', label = 'Ab degradation', input_place_ids = ['p_Ab'], firing_condition = fc_t_Ab_degr, reaction_speed_function = r_t_Ab_degr, consumption_coefficients = [1], output_place_ids = [], production_coefficients = []) def add_integrated_ER_retraction_collapse(hfpn): ### Add places for each chemical species # Monomeric RTN3 (cycling between axonal and perinuclear regions) hfpn.add_place(it_p_RTN3_axon, place_id="p_RTN3_axon", label="monomeric RTN3 (axonal)", continuous=True) hfpn.add_place(it_p_RTN3_PN, place_id="p_RTN3_PN", label="monomeric RTN3 (perinuclear)", continuous=True) # HMW RTN3 (cycling between different cellular compartments) hfpn.add_place(it_p_RTN3_HMW_cyto, place_id="p_RTN3_HMW_cyto", label="HMW RTN3 (cytosol)", continuous=True) hfpn.add_place(it_p_RTN3_HMW_auto, place_id="p_RTN3_HMW_auto", label="HMW RTN3 (autophagosome)", continuous=True) hfpn.add_place(it_p_RTN3_HMW_lyso, place_id="p_RTN3_HMW_lyso", label="HMW RTN3 (degraded in lysosome)", continuous=True) hfpn.add_place(it_p_RTN3_HMW_dys1, place_id="p_RTN3_HMW_dys1", label="HMW RTN3 (type I/III dystrophic neurites)", continuous=True) hfpn.add_place(it_p_RTN3_HMW_dys2, place_id="p_RTN3_HMW_dys2", label="HMW RTN3 (type II dystrophic neurites)", continuous=True) # Energy metabolism: ATP consumption hfpn.add_place(it_p_ATP, place_id="p_ATP", label="ATP", continuous=True) hfpn.add_place(it_p_ADP, place_id="p_ADP", label="ADP", continuous=True) # Two places that are NOT part of this subpathway, but are temporarily added for establishing proper connections # They will be removed upon merging of subpathways hfpn.add_place(it_p_Ab, place_id="p_Ab", label = "Abeta peptide", continuous = True) hfpn.add_place(it_p_tau, place_id="p_tau", label = "Unphosphorylated tau", continuous = True) hfpn.add_place(it_p_chol_LE, place_id="p_chol_LE", label = "Cholesterol in late endosomes", continuous = True) # Connections to other pathways hfpn.add_place(it_p_LB, "p_LB", "Lewy body", continuous = True) hfpn.add_place(it_p_LRRK2_mut, "p_LRRK2_mut","LRRK2 - mutated", continuous = True) hfpn.add_transition_with_speed_function( transition_id = 't_RTN3_exp', label = 'Expression rate of RTN3', input_place_ids = [], firing_condition = fc_t_RTN3_exp, reaction_speed_function = r_t_RTN3_exp, consumption_coefficients = [], output_place_ids = ['p_RTN3_PN'], production_coefficients = [1]) hfpn.add_transition_with_speed_function( transition_id = 't_LE_retro', label = 'retrograde transport of LEs & ER', input_place_ids = ['p_ATP','p_chol_LE','p_RTN3_axon', 'p_tau','p_LRRK2_mut','p_LB'], firing_condition = fc_t_LE_retro, reaction_speed_function = r_t_LE_retro, # get later from PD consumption_coefficients = [ATPcons_t_LE_trans, 0, 1, 0, 0, 0], # tune these coefficients based on PD output_place_ids = ['p_ADP','p_RTN3_PN'], production_coefficients = [ATPcons_t_LE_trans, 1]) # tune these coefficients based on PD hfpn.add_transition_with_speed_function( transition_id = 't_LE_antero', label = 'anterograde transport of LEs & ER', input_place_ids = ['p_ATP','p_RTN3_PN', 'p_tau'], # didn't connect p_tau yet firing_condition = fc_t_LE_antero, reaction_speed_function = r_t_LE_antero, # get later from NPCD consumption_coefficients = [ATPcons_t_LE_trans, 1, 0], # tune these coefficients based on PD output_place_ids = ['p_ADP','p_RTN3_axon'], production_coefficients = [ATPcons_t_LE_trans, 1]) # tune these coefficients based on PD hfpn.add_transition_with_speed_function( transition_id = 't_RTN3_aggregation', label = 'aggregation of monomeric RTN3 into HMW RTN3', input_place_ids = ['p_RTN3_axon', 'p_RTN3_PN', 'p_Ab'], firing_condition = fc_t_RTN3_aggregation, # tune aggregation limit later reaction_speed_function = r_t_RTN3_aggregation, consumption_coefficients = [1, 1, 0], output_place_ids = ['p_RTN3_HMW_cyto'], production_coefficients = [1]) hfpn.add_transition_with_speed_function( transition_id = 't_RTN3_auto', label = 'functional autophagy of HMW RTN3', input_place_ids = ['p_RTN3_HMW_cyto', 'p_RTN3_axon'], firing_condition = fc_t_RTN3_auto, reaction_speed_function = r_t_RTN3_auto, consumption_coefficients = [1, 0], output_place_ids = ['p_RTN3_HMW_auto'], production_coefficients = [1]) hfpn.add_transition_with_speed_function( transition_id = 't_RTN3_lyso', label = 'functional delivery of HMW RTN3 to the lysosome', input_place_ids = ['p_RTN3_HMW_auto', 'p_tau'], firing_condition = fc_t_RTN3_lyso, reaction_speed_function = r_t_RTN3_lyso, consumption_coefficients = [1, 0], output_place_ids = ['p_RTN3_HMW_lyso'], production_coefficients = [1]) hfpn.add_transition_with_speed_function( transition_id = 't_RTN3_dys_auto', label = 'dysfunctional autophagy of HMW RTN3', input_place_ids = ['p_RTN3_HMW_cyto', 'p_RTN3_axon'], firing_condition = fc_t_RTN3_dys_auto, reaction_speed_function = r_t_RTN3_dys_auto, consumption_coefficients = [1, 0], output_place_ids = ['p_RTN3_HMW_dys1'], production_coefficients = [1]) # tune later when data are incorporated hfpn.add_transition_with_speed_function( transition_id = 't_RTN3_dys_lyso', label = 'dysfunctional delivery of HMW RTN3 to the lysosome', input_place_ids = ['p_RTN3_HMW_auto', 'p_RTN3_HMW_dys1', 'p_tau'], firing_condition = fc_t_RTN3_dys_lyso, reaction_speed_function = r_t_RTN3_dys_lyso, consumption_coefficients = [1, 0, 0], output_place_ids = ['p_RTN3_HMW_dys2'], production_coefficients = [1]) # tune later when data are incorporated def add_integrated_energy_metabolism(hfpn): ### Places hfpn.add_place(it_p_cas3, place_id="p_cas3", label="Active caspase-3", continuous=True) hfpn.add_place(it_p_ATP, place_id="p_ATP", label="Conc of ATP in mito", continuous=True) hfpn.add_place(it_p_ADP, place_id="p_ADP", label="Conc of ADP in mito", continuous=True) hfpn.add_place(it_p_reduc_mito, place_id="p_reduc_mito", label="Conc of reducing agents (NADH, FADH) in mito", continuous=True) hfpn.add_place(it_p_ROS_mito, place_id="p_ROS_mito", label="Conc of ROS in mito", continuous=True) hfpn.add_place(it_p_H2O_mito, place_id="p_H2O_mito", label="Conc of H2O in mito", continuous=True) # Places from other sub-nets hfpn.add_place(it_p_Ca_mito, "p_Ca_mito", "Ca - mitochondria", continuous = True) hfpn.add_place(it_p_chol_mito, place_id="p_chol_mito", label="Chol mito", continuous=True) # Added from other subnets hfpn.add_place(it_p_Ab, 'p_Ab', 'Abeta') hfpn.add_place(it_p_LRRK2_mut, "p_LRRK2_mut","LRRK2 - mutated", continuous = True) hfpn.add_place(it_p_LB, "p_LB", "Lewy body", continuous = True) hfpn.add_place(it_p_chol_LE, place_id="p_chol_LE", label = "Cholesterol in late endosomes", continuous = True) hfpn.add_place(it_p_DJ1, "p_DJ1", "DJ1 mutant", continuous = True) # PD specific # Transitions hfpn.add_transition_with_speed_function( transition_id = 't_krebs', label = 'Krebs cycle', input_place_ids = ['p_ADP', 'p_Ca_mito', "p_Ab"], firing_condition = fc_t_krebs, reaction_speed_function = r_t_krebs, consumption_coefficients = [1, 0, 0], output_place_ids = ['p_reduc_mito', 'p_ATP'], production_coefficients = [4,1]) hfpn.add_transition_with_speed_function( transition_id = 't_ATP_hydro_mito', label = 'ATP hydrolysis by cellular processes', input_place_ids = ['p_ATP'], firing_condition = fc_t_ATP_hydro_mito, reaction_speed_function = r_t_ATP_hydro_mito, consumption_coefficients = [1], output_place_ids = ['p_ADP'], production_coefficients = [1]) hfpn.add_transition_with_speed_function( transition_id = 't_ETC', label = 'Electron transport chain', input_place_ids = ['p_reduc_mito', 'p_ADP', 'p_Ca_mito', 'p_ROS_mito', 'p_chol_mito', 'p_Ab'], firing_condition = fc_t_ETC, reaction_speed_function = r_t_ETC, consumption_coefficients = [22/3.96, 440, 0, 0, 0, 0], output_place_ids = ['p_ATP', 'p_ROS_mito'], production_coefficients = [440, 0.06]) hfpn.add_transition_with_speed_function( transition_id = 't_ROS_metab', label = 'ROS neutralisation', input_place_ids = ['p_ROS_mito','p_chol_mito','p_LB','p_DJ1'], firing_condition = fc_t_ROS_metab, reaction_speed_function = r_t_ROS_metab, consumption_coefficients = [1,0,0,0], output_place_ids = ['p_H2O_mito'], production_coefficients = [1]) # Output transitions: Cas3 for apoptosis hfpn.add_transition_with_speed_function( transition_id = 't_mito_dysfunc', label = 'Mitochondrial complex 1 dysfunction', input_place_ids = ['p_ROS_mito', 'p_Ab'], firing_condition = fc_t_mito_dysfunc, reaction_speed_function = r_t_mito_dysfunc, consumption_coefficients = [1, 0], output_place_ids = ['p_cas3'], production_coefficients = [1]) # Cas3 inactivation hfpn.add_transition_with_speed_function( transition_id = 't_cas3_inact', label = 'Caspase-3 inactivation', input_place_ids = ['p_cas3'], firing_condition = fc_t_cas3_inact, reaction_speed_function = r_t_cas3_inact, consumption_coefficients = [1], output_place_ids = [], production_coefficients = []) hfpn.add_transition_with_speed_function( transition_id = 't_ROS_gener_Ab', label = 'ROS generation by Abeta', input_place_ids = ['p_Ab'], firing_condition = fc_t_ROS_gener_Ab, reaction_speed_function = r_t_ROS_gener_Ab, consumption_coefficients = [0], output_place_ids = ["p_ROS_mito"], production_coefficients = [1]) # NPCD-specific transition hfpn.add_transition_with_speed_function( transition_id = 't_TRADD_actv', label = 'Activation of TRADD', input_place_ids = ['p_chol_LE'], firing_condition = fc_t_TRADD_actv, reaction_speed_function = r_t_TRADD_actv, consumption_coefficients = [0], #k_t_TRADD_actv * a['p_chol_LE']**(0.2) output_place_ids = ['p_cas3'], production_coefficients = [1]) def add_integrated_calcium_homeostasis(hfpn): ### Add places hfpn.add_place(it_p_Ca_cyto, "p_Ca_cyto", "Ca - cytosol", continuous = True) hfpn.add_place(it_p_Ca_mito, "p_Ca_mito", "Ca - mitochondria", continuous = True) hfpn.add_place(it_p_Ca_ER, "p_Ca_ER", "Ca - ER", continuous = True) hfpn.add_place(it_p_ADP, "p_ADP","ADP - Calcium ER import", continuous = True) hfpn.add_place(it_p_ATP, "p_ATP","ATP - Calcium ER import", continuous = True) # Discrete on/of-switches calcium pacemaking hfpn.add_place(1, "p_Ca_extra", "on1 - Ca - extracellular", continuous = False) hfpn.add_place(0, "p_on2","on2", continuous = False) hfpn.add_place(0, "p_on3","on3", continuous = False) hfpn.add_place(0, "p_on4","on4", continuous = False) # NPCD-specific hfpn.add_place(initial_tokens=it_p_Ca_LE, place_id="p_Ca_LE", label="Ca conc in LE", continuous=True) # Connections to other pathways hfpn.add_place(it_p_LRRK2_mut, "p_LRRK2_mut","LRRK2 - mutated", continuous = True) hfpn.add_place(it_p_NPC1_LE, place_id="p_NPC1_LE", label="Mutated NPC1 in LE", continuous=True) hfpn.add_place(it_p_chol_LE,place_id="p_chol_LE", label="Chol LE", continuous=True) hfpn.add_place(it_p_PERK_ER, place_id="p_PERK_ER", label="Conc of PERK in ER", continuous=True) ### Add transitions hfpn.add_transition_with_speed_function( transition_id = 't_Ca_imp', label = 'VGCC/NMDA import channels', input_place_ids = ['p_Ca_extra'], firing_condition = fc_t_Ca_imp, reaction_speed_function = r_t_Ca_imp, consumption_coefficients = [0], # Need to review this output_place_ids = ['p_Ca_cyto'], production_coefficients = [1]) # Need to review this hfpn.add_transition_with_speed_function( transition_id = 't_mCU', label = 'Ca import into mitochondria via mCU', input_place_ids = ['p_Ca_cyto', 'p_Ca_mito'], firing_condition = fc_t_mCU, reaction_speed_function = r_t_mCU, consumption_coefficients = [1,0], output_place_ids = ['p_Ca_mito'], production_coefficients = [1]) hfpn.add_transition_with_speed_function( transition_id = 't_MAM', label = 'Ca transport from ER to mitochondria', input_place_ids = ['p_Ca_ER', 'p_Ca_mito'], firing_condition = fc_t_MAM, reaction_speed_function = r_t_MAM, consumption_coefficients = [1,0], output_place_ids = ['p_Ca_mito'], production_coefficients = [1]) hfpn.add_transition_with_speed_function( transition_id = 't_RyR_IP3R', label = 'Ca export from ER', input_place_ids = ['p_Ca_extra', 'p_Ca_ER', 'p_PERK_ER'], firing_condition = fc_t_RyR_IP3R, reaction_speed_function = r_t_RyR_IP3R, consumption_coefficients = [0,1,0], output_place_ids = ['p_Ca_cyto'], production_coefficients = [1]) hfpn.add_transition_with_speed_function( transition_id = 't_SERCA', label = 'Ca import to ER', input_place_ids = ['p_Ca_cyto','p_ATP','p_NPC1_LE'], firing_condition = fc_t_SERCA, reaction_speed_function = r_t_SERCA, consumption_coefficients = [1,0.5,0], output_place_ids = ['p_Ca_ER','p_ADP'], production_coefficients = [1,0.5]) # Need to review this hfpn.add_transition_with_speed_function( transition_id = 't_NCX_PMCA', label = 'Ca efflux to extracellular space', input_place_ids = ['p_Ca_cyto','p_on3','p_NPC1_LE'], firing_condition = lambda a: a['p_on3']==1, reaction_speed_function = r_t_NCX_PMCA, consumption_coefficients = [1,0,0], output_place_ids = [], production_coefficients = []) hfpn.add_transition_with_speed_function( transition_id = 't_mNCLX', label = 'Ca export from mitochondria via mNCLX', input_place_ids = ['p_Ca_mito', 'p_LRRK2_mut'], firing_condition = fc_t_mNCLX, reaction_speed_function = r_t_mNCLX, consumption_coefficients = [1, 0], output_place_ids = ['p_Ca_cyto'], production_coefficients = [1]) # Discrete on/of-switches calcium pacemaking hfpn.add_transition_with_speed_function( transition_id = 't_A', label = 'A', input_place_ids = ['p_on4'], firing_condition = lambda a: a['p_on4']==1, reaction_speed_function = lambda a: 1, consumption_coefficients = [1], output_place_ids = ['p_Ca_extra'], production_coefficients = [1], delay=0.5) hfpn.add_transition_with_speed_function( transition_id = 't_B', label = 'B', input_place_ids = ['p_Ca_extra'], firing_condition = lambda a: a['p_Ca_extra']==1, reaction_speed_function = lambda a: 1, consumption_coefficients = [1], output_place_ids = ['p_on2'], production_coefficients = [1], delay=0.5) hfpn.add_transition_with_speed_function( transition_id = 't_C', label = 'C', input_place_ids = ['p_on2'], firing_condition = lambda a: a['p_on2']==1, reaction_speed_function = lambda a: 1, consumption_coefficients = [1], output_place_ids = ['p_on3'], production_coefficients = [1], delay=0) hfpn.add_transition_with_speed_function( transition_id = 't_D', label = 'D', input_place_ids = ['p_on3'], firing_condition = lambda a: a['p_on3']==1, reaction_speed_function = lambda a: 1, consumption_coefficients = [1], output_place_ids = ['p_on4'], production_coefficients = [1], delay=0.5) # Link to energy metabolism in that it needs ATP replenishment hfpn.add_transition_with_mass_action( transition_id = 't_NaK_ATPase', label = 'NaK ATPase', rate_constant = k_t_NaK_ATPase, input_place_ids = ['p_ATP', 'p_on3'], firing_condition = lambda a: a['p_on3']==1, consumption_coefficients = [1,0], output_place_ids = ['p_ADP'], production_coefficients = [1]) # NPCD-specific transitions hfpn.add_transition_with_speed_function( transition_id = 't_Ca_cyto_LE', label = 'NAADP facilitated transport of Ca from cyto to LE', input_place_ids = ['p_NPC1_LE', 'p_Ca_cyto'], firing_condition = fc_t_Ca_cyto_LE, reaction_speed_function = r_t_Ca_cyto_LE, consumption_coefficients = [0,1], output_place_ids = ['p_Ca_LE'], production_coefficients = [1]) hfpn.add_transition_with_speed_function( transition_id = 't_TRPML1', label = 'TRPML1 facilitated transport of Ca from LE to cyto', input_place_ids = ['p_Ca_LE', 'p_chol_LE'], firing_condition = fc_t_TRPML1, reaction_speed_function = r_t_TRPML1, consumption_coefficients = [1,0], output_place_ids = ['p_Ca_cyto'], production_coefficients = [1]) def add_therapeutics(hfpn): ## Places hfpn.add_place(initial_tokens=it_p_NAC, place_id="p_NAC", label="Conc of NAC", continuous=True) hfpn.add_transition(transition_id = 't_ROS_metab', label = 'Oxidation of proteins/lipids involved in ETC', input_place_ids = ['p_ROS_mito', 'p_chol_mito', 'p_NAC'], firing_condition = fc_t_ROS_metab, consumption_speed_functions = [lambda a : k_t_ROS_metab * a['p_ROS_mito'] / a['p_chol_mito']**(1.5) * (a['p_NAC'] == 0) + k_t_ROS_metab * a['p_ROS_mito'] / a['p_chol_mito']**(1.5) * (1 + a['p_NAC'] / 1000) * (a['p_NAC'] > 0), lambda a : 0, lambda a : 0], output_place_ids = ['p_H2O_mito'], production_speed_functions = [lambda a : k_t_ROS_metab * a['p_ROS_mito'] / a['p_chol_mito']**(1.5) * (a['p_NAC'] == 0) + k_t_ROS_metab * a['p_ROS_mito'] / a['p_chol_mito']**(1.5) * a['p_NAC'] / 1000 * (a['p_NAC'] > 0)]) #NAC does NOT describe the molecule count but rather a artificial concentration in which one toke will increase the rate of ROS_metab by 0.1%
8096ec71ed9d6f5d130eb22797cc799e0e2853b4
587eed32179cdbf10b4626a3a238d5923af7459c
/deep_learning/eager.py
843bc8349093cfc3f5e0b2f8652b017bd5de8a5b
[]
no_license
shushanxingzhe/python_learning
fad57fcf607efe81f769d276a6c4390726c5f1bb
7fe26ad612790328edab1627e6c1c144a21d79fc
refs/heads/master
2022-09-12T15:11:50.377981
2022-08-04T05:43:51
2022-08-04T05:43:51
96,225,151
1
0
null
null
null
null
UTF-8
Python
false
false
1,796
py
import numpy as np import pandas as pd import tensorflow as tf import matplotlib.pyplot as plt a = [1,2,3,4,5,6] print(a[:-2]) print(a[2:]) tf.keras.layers.Embedding() exit() tf.enable_eager_execution() tf.logging.set_verbosity(tf.logging.ERROR) tf.set_random_seed(123) # Load dataset. dftrain = pd.read_csv('https://storage.googleapis.com/tfbt/titanic_train.csv') dfeval = pd.read_csv('https://storage.googleapis.com/tfbt/titanic_eval.csv') y_train = dftrain.pop('survived') y_eval = dfeval.pop('survived') dftrain['class'].value_counts().plot(kind='barh') fc = tf.feature_column CATEGORICAL_COLUMNS = ['sex', 'n_siblings_spouses', 'parch', 'class', 'deck', 'embark_town', 'alone'] NUMERIC_COLUMNS = ['age', 'fare'] def one_hot_cat_column(feature_name, vocab): return fc.indicator_column(fc.categorical_column_with_vocabulary_list(feature_name, vocab)) feature_columns = [] for feature_name in CATEGORICAL_COLUMNS: # Need to one-hot encode categorical features. vocabulary = dftrain[feature_name].unique() feature_columns.append(one_hot_cat_column(feature_name, vocabulary)) for feature_name in NUMERIC_COLUMNS: feature_columns.append(fc.numeric_column(feature_name, dtype=tf.float32)) example = dftrain.head(1) class_fc = one_hot_cat_column('class', ('First', 'Second', 'Third')) print('Feature value: "{}"'.format(example['class'].iloc[0])) print('One-hot encoded: ', fc.input_layer({'class': pd.Series(['Second'])}, [class_fc]).numpy()) tf.data.Dataset.from_tensor_slices() tf.keras.preprocessing.image.ImageDataGenerator() tf.keras.layers.Lambda() plt.subplot() tf.keras.applications.vgg19.VGG19() tf.nn.rnn_cell.MultiRNNCell() tf.estimator.Estimator() tf.keras.Model() tf.estimator.DNNClassifier() tf.layers.dense() tf.train.shuffle_batch()
1053793324eeab8a4a8b7f8c0312e7bda71cd5f4
f1f7781fd5290e4755dc0d451caeacdceb022de2
/dataviva/apps/scholar/models.py
7c4caadf6c407782cda8ebc1a0cc0ebb3a5fea62
[ "MIT" ]
permissive
jaotta/dataviva-site
62a4f73d288c68bbb469155dfcb93dbc992fc98b
663d98b1c692bf2f5f22e4a71564d104396fff46
refs/heads/master
2021-01-18T01:24:10.321142
2016-05-17T18:13:57
2016-05-17T18:13:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,821
py
from dataviva import db from sqlalchemy import ForeignKey article_keyword_table = db.Table( 'scholar_article_keyword', db.Column('article_id', db.Integer(), db.ForeignKey('scholar_article.id')), db.Column('keyword_id', db.Integer(), db.ForeignKey('scholar_keyword.id')) ) class Article(db.Model): __tablename__ = 'scholar_article' id = db.Column(db.Integer, primary_key=True) title = db.Column(db.String(400)) abstract = db.Column(db.Text()) theme = db.Column(db.String(250)) postage_date = db.Column(db.DateTime) approval_status = db.Column(db.Boolean) authors = db.relationship('AuthorScholar', backref='scholar_article', lazy='eager') keywords = db.relationship('KeyWord', secondary=article_keyword_table) def authors_str(self): author_names = [author.name for author in self.authors] return ', '.join(author_names) def keywords_str(self): keyword_names = [keyword.name for keyword in self.keywords] return ', '.join(keyword_names) def date_str(self): return self.postage_date.strftime('%d/%m/%Y') def __repr__(self): return '<Article %r>' % (self.title) class AuthorScholar(db.Model): __tablename__ = 'scholar_author' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(50)) article_id = db.Column(db.Integer, ForeignKey('scholar_article.id')) def __init__(self, name=None): self.name = name def __repr__(self): return '<AuthorScholar %r>' % (self.name) class KeyWord(db.Model): __tablename__ = 'scholar_keyword' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(50)) def __init__(self, name=None): self.name = name def __repr__(self): return '<Keyword %r>' % (self.name)
26420ea46b9cbaa38d39ae739afaead6359c11e5
3f395a44a8e1255de5eebfe936c170fd2b1e36ef
/tkinter_for_cards.py
b703acb98fcc5914fc97140f0d91b457c7af0a8c
[]
no_license
cmd16/game-bs
cf094d14c0a1ec3f3f7812bdb7f0b3ecf2fe2a3c
6cd89a393dcb90f4fd97025ef93472690f74f0d5
refs/heads/master
2020-06-21T10:07:29.492562
2016-12-21T18:40:46
2016-12-21T18:40:46
74,793,510
0
0
null
null
null
null
UTF-8
Python
false
false
5,097
py
"""Catherine DeJager (cmd38) 12/15/2016 CS 106 Final Project: BS A widget to set up the game by getting user input (names, computer player options, etc.) and then creating Player objects using the given input as parameters.""" from tkinter import * from player import * from world import * from deck import * class SetupWidget: """A widget to set up the game by getting user input (names, computer player options, etc.) and then creating Player objects using the given input as parameters.""" def __init__(self, world=None, master=None): self._window = master self._window.title("Setup") self._world = world self._playername = StringVar() self._playerentry = Entry(self._window, textvariable=self._playername) self._playerentry.pack() self._cpuvar = IntVar() self._cpuoption = Checkbutton(self._window, variable=self._cpuvar, text='Computer player?', command=self.toggleCpuOptions) self._playername.set("Enter name here") self._addplayerbutton = Button(self._window, text="Add player", command=self.createPlayer) self._addplayerbutton.pack(side=BOTTOM) self._invalidlabel = Label(self._window) self._validlabel = Label(self._window) self._difficultyvar = IntVar() self._difficultyslider = Scale(self._window, variable=self._difficultyvar, label='Difficulty level:', orient=HORIZONTAL, from_=1, to=5, sliderlength=15) self._riskvar = IntVar() self._riskslider = Scale(self._window, variable=self._riskvar, label='Risk level:', orient=HORIZONTAL, from_=1, to=5, sliderlength=15) self._randomvar = IntVar() self._randomslider = Scale(self._window, variable=self._randomvar, label='Randomness level:', orient=HORIZONTAL, from_=1, to=5, sliderlength=15) self._pbvar = BooleanVar() self._pbcheckbox = Checkbutton(self._window, variable=self._pbvar, text='Do you want the computer to tell you when it has successfully lied?') self._verbosevar = BooleanVar() self._verbosecheckbox = Checkbutton(self._window, variable=self._verbosevar, text='Turn on verbose output?') self._verbosecheckbox.pack() self._cpuoption.pack() def createPlayer(self): # first need to check that all inputs are valid """Checks that the user has entered valid input. If the input is invalid, show an error message. If the input is valid, create a player with the given input and add it to self's world's list of players.""" self._invalidlabel.pack_forget() self._validlabel.pack_forget() if not self._playername.get().isalpha(): # check to see if the name is alphanumeric characters self._invalidlabel['text'] = "Invalid input: please use only letters with no spaces." self._invalidlabel.pack() return for item in self._world.getPlayerList(): if self._playername.get() == item.name: self._invalidlabel['text'] = "Invalid input: another player already has the name %s." % item.name self._invalidlabel.pack() return self._addplayerbutton['state'] = NORMAL self._validlabel.config(text='Player added: ' + self._playername.get()) self._validlabel.pack() if self._cpuvar.get() == 1: self._world.createPlayer(self._playername.get(), self._verbosevar.get(), self._difficultyvar.get(), self._riskvar.get(), self._pbvar.get(), self._randomvar.get()) else: self._world.createPlayer(self._playername.get(), self._verbosevar.get()) def toggleCpuOptions(self): """If the cpu checkbox is checked, show the cpu options. If the cpu checkbox is unchecked, hide the cpu options.""" if self._cpuvar.get() == 1: self._difficultyslider.pack() self._riskslider.pack() self._pbcheckbox.pack() self._randomslider.pack() else: self._difficultyslider.pack_forget() self._riskslider.pack_forget() self._pbcheckbox.pack_forget() self._randomslider.pack_forget() def printcpuvalues(self): """Prints the values of the input for the cpu options. This method used for debugging only.""" print('difficulty:', self._difficultyvar.get(), 'risk:', self._riskvar.get(), 'pb:', self._pbvar.get(), 'verbose:', self._verbosevar.get()) if "__name__" == "__main__": this_world = World() this_world._playerlist.append(Player("Joe")) root = Tk() myApp = SetupWidget(world=this_world, master=root) root.mainloop() print(myApp._world.getPlayerNameStrings()) for item in this_world._playerlist: print(type(item)) print(myApp._world.getCpuStrings()) myApp.printcpuvalues() #else: this_world = World() root = Tk() myApp = SetupWidget(world=this_world, master=root) root.mainloop()
6ff5dcd49a138f3324b728e08c573bab44fb4edb
d051f3fe9fda31b72fa0ddce67aa1f4293c7c37c
/cloud/inference/prune_idle_machines.py
a22ef00461da7c89de8be940f0c2e86b4b3a221f
[ "BSD-3-Clause" ]
permissive
davmre/sigvisa
4e535215b6623310d8f5da64258f6fa9a378f9fd
91a1f163b8f3a258dfb78d88a07f2a11da41bd04
refs/heads/master
2021-03-24T10:24:52.307389
2018-01-05T19:33:23
2018-01-05T19:33:23
2,321,239
0
0
null
null
null
null
UTF-8
Python
false
false
1,552
py
import os import subprocess32 as subprocess import time import numpy as np import shutil import uuid import cPickle as pickle from optparse import OptionParser from sigvisa.utils.fileutils import mkdir_p from sigvisa.learn.extract_fits_from_jointgp import extract_jointgp_fits from sigvisa.cloud.inference.remote_job_management import running_processes from collections import defaultdict from fabric.api import env env.user = 'vagrant' env.key_filename = '/home/dmoore/.ssh/fabric_is_terrible.key' def get_idle_hosts(jobfile): with open(jobfile, "rb") as f: jobs = pickle.load(f) pids_by_host = defaultdict(set) for (jobid, cmd, sta, evidfile, host, pid) in jobs: pids_by_host[host].add(pid) idle_hosts = [] for host, pids in pids_by_host.items(): try: running_pids = running_processes(host) except: print "no response from", host, "skipping" continue alive=False for pid in pids: if pid in running_pids: alive = True break if not alive: idle_hosts.append(host) return idle_hosts def main(): parser = OptionParser() parser.add_option("--jobfile", dest="jobfile", default="", type="str", help="file in which to record job progress") (options, args) = parser.parse_args() idle_hosts = get_idle_hosts(options.jobfile) for host in idle_hosts: print host print "done" if __name__ == "__main__": main()
d8570678c24b0c3f9928ad28d6c32dc0f742e9ff
8c72454604a27bd607df55bb7f9fcc65e83d4428
/3_trainer/classification_models/resnet152_train.py
bb5b254a96dd2a27627fc711b5b8808761f856a5
[]
no_license
Guluna/vbd_cxr
8c8adcb634769c6ea87bf5b4a5b267772b888d58
6519c9080effea89a0ff79b71a05d203fcc849ea
refs/heads/main
2023-04-03T15:35:33.581852
2021-04-16T06:24:34
2021-04-16T06:24:34
358,491,349
0
0
null
2021-04-16T05:55:58
2021-04-16T05:55:57
null
UTF-8
Python
false
false
15,423
py
# %% -------------------- import os import sys from datetime import datetime from dotenv import load_dotenv # local # env_file = "D:/GWU/4 Spring 2021/6501 Capstone/VBD CXR/PyCharm " \ # "Workspace/vbd_cxr/6_environment_files/local.env " # cerberus env_file = "/home/ssebastian94/vbd_cxr/6_environment_files/cerberus.env" load_dotenv(env_file) # add HOME DIR to PYTHONPATH sys.path.append(os.getenv("HOME_DIR")) # %% --------------------START HERE # https://www.kaggle.com/corochann/vinbigdata-2-class-classifier-complete-pipeline import albumentations from common.classifier_models import initialize_model, get_param_to_optimize, \ set_parameter_requires_grad from common.utilities import UnNormalize import numpy as np import torch import torchvision from torch.utils.data import DataLoader, WeightedRandomSampler from common.CustomDatasets import VBD_CXR_2_Class_Train from collections import Counter from torch.utils import tensorboard from pathlib import Path import shutil # %% --------------------set seeds # seed = 42 # torch.manual_seed(seed) # torch.cuda.manual_seed(seed) # np.random.seed(seed) # random.seed(seed) # torch.backends.cudnn.deterministic = True # %% --------------------DIRECTORIES and VARIABLES IMAGE_DIR = os.getenv("IMAGE_DIR") MERGED_DIR = os.getenv("MERGED_DIR") SAVED_MODEL_DIR = os.getenv("SAVED_MODEL_DIR") TENSORBOARD_DIR = os.getenv("TENSORBOARD_DIR") # model name model_name = "resnet152" # %% --------------------TENSORBOARD DIRECTORY INITIALIZATION train_tensorboard_dir = f"{TENSORBOARD_DIR}/2_class_classifier/{model_name}/train" validation_tensorboard_dir = f"{TENSORBOARD_DIR}/2_class_classifier/{model_name}/validation" # if logs already exist then delete them train_dirpath = Path(train_tensorboard_dir) if train_dirpath.exists() and train_dirpath.is_dir(): shutil.rmtree(train_dirpath) validation_dirpath = Path(validation_tensorboard_dir) if validation_dirpath.exists() and validation_dirpath.is_dir(): shutil.rmtree(validation_dirpath) # create new tensorboard events directories train_writer = tensorboard.SummaryWriter(train_tensorboard_dir) validation_writer = tensorboard.SummaryWriter(validation_tensorboard_dir) # %% --------------------Data transformations using albumentations # https://albumentations.ai/docs/api_reference/augmentations/transforms/ train_transformer = albumentations.Compose([ # augmentation operations albumentations.augmentations.transforms.RandomBrightnessContrast(p=0.3), albumentations.augmentations.transforms.ShiftScaleRotate(rotate_limit=5, p=0.4), # horizontal flipping albumentations.augmentations.transforms.HorizontalFlip(p=0.4), # resize operation albumentations.Resize(height=512, width=512, always_apply=True), # this normalization is performed based on ImageNet statistics per channel # mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225) albumentations.augmentations.transforms.Normalize() ]) validation_transformer = albumentations.Compose([ # resize operation albumentations.Resize(height=512, width=512, always_apply=True), # this normalization is performed based on ImageNet statistics per channel # mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225) albumentations.augmentations.transforms.Normalize() ]) # %% --------------------DATASET # 1 = abnormal # 0 = normal train_data_set = VBD_CXR_2_Class_Train(IMAGE_DIR, MERGED_DIR + "/512/unmerged/90_percent_train" "/2_class_classifier" "/90_percent/train_df.csv", majority_transformations=train_transformer) validation_data_set = VBD_CXR_2_Class_Train(IMAGE_DIR, MERGED_DIR + "/512/unmerged/90_percent_train" "/2_class_classifier" "/10_percent/holdout_df.csv", majority_transformations=validation_transformer) # %% --------------------WEIGHTED RANDOM SAMPLER # weighted random sampler to handle class imbalance # https://discuss.pytorch.org/t/how-to-handle-imbalanced-classes/11264/2 # Get all the target classes target_list = train_data_set.targets # get the count class_counts = Counter(target_list) # Get the class weights. Class weights are the reciprocal of the number of items per class class_weight = 1. / np.array(list(class_counts.values())) # assign weights to each target target_weight = [] for t in target_list: target_weight.append(class_weight[int(t)]) # create sampler based on weights sampler = WeightedRandomSampler(weights=target_weight, num_samples=len(train_data_set), replacement=True) # %% --------------------DATALOADER BATCH_SIZE = 8 workers = int(os.getenv("NUM_WORKERS")) # # perform weighted random sampler for training only. NOTE: sampler shuffles the data by default train_data_loader = torch.utils.data.DataLoader( train_data_set, batch_size=BATCH_SIZE, num_workers=workers, sampler=sampler) validation_data_loader = torch.utils.data.DataLoader( validation_data_set, batch_size=BATCH_SIZE, shuffle=True, num_workers=workers) # %% --------------------WEIGHTS FOR LOSS target_list = train_data_set.targets class_counts = Counter(target_list) # https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html # negative/positive, thus giving more weightage to positive class pos_weight = class_counts[0] / class_counts[1] # convert to Tensor vector where number of elements in vector = number of classes # we have 1 class: 0 = Normal, 1 = Abnormal pos_weight = torch.as_tensor(pos_weight, dtype=float) # %% --------------------CRITERION # https://stackoverflow.com/questions/53628622/loss-function-its-inputs-for-binary-classification-pytorch # https://visualstudiomagazine.com/Articles/2020/11/04/pytorch-training.aspx?Page=2 # https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html criterion = torch.nn.BCEWithLogitsLoss(pos_weight=pos_weight) # %% --------------------UnNormalize unnormalizer = UnNormalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) # %% -------------------- # OVERFITTER # train_image_ids, train_image, train_target = iter(train_data_loader).next() # validation_image_ids, validation_image, validation_target = iter(validation_data_loader).next() # %% -------------------- # define device device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') print(device) # %% --------------------MODEL INSTANCE # feature_extract_param = True means all layers frozen except the last user added layers # feature_extract_param = False means all layers unfrozen and entire network learns new weights # and biases feature_extract_param = True # 0 = normal CXR or 1 = abnormal CXR # single label binary classifier num_classes = 1 # input_size is minimum constraint model, params_to_update = initialize_model(model_name, num_classes, feature_extract_param, use_pretrained=True) # %% --------------------HYPER-PARAMETERS TOTAL_EPOCHS = 30 REDUCED_LR = 1e-4 # for first 5 EPOCHS train with all layers frozen except last, after that train with lowered LR # with all layers unfrozen INITIAL_EPOCHS = 5 INITIAL_LR = REDUCED_LR * 100 # %% --------------------OPTIMIZER optimizer = torch.optim.Adam(params_to_update, lr=INITIAL_LR) # %% --------------------move to device model.to(device) # %% --------------------TRAINING LOOP print_iteration_frequency = 50 freeze_all_flag = True train_iter = 0 val_iter = 0 # track train loss, validation loss, train accuracy, validation accuracy val_acc_history_arr = [] train_acc_history_arr = [] train_loss_arr = [] valid_loss_arr = [] # condition to save model lowest_loss = 10000000 best_model_found_epoch = 0 # if directory does not exist then create it saved_model_dir = Path(f"{SAVED_MODEL_DIR}/2_class_classifier/{model_name}") if not saved_model_dir.exists(): os.makedirs(saved_model_dir) saved_model_path = f"{saved_model_dir}/{model_name}.pt" print("Program started") # start time start = datetime.now() # https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html for epoch in range(TOTAL_EPOCHS): print('Epoch {}/{}'.format(epoch, TOTAL_EPOCHS - 1)) print('-' * 10) if (epoch >= INITIAL_EPOCHS) and freeze_all_flag: # do below tasks only once when current epoch > INITIAL EPOCH freeze_all_flag = False # unfreeze all layers set_parameter_requires_grad(model, False) # get parameters to optimize params = get_param_to_optimize(model, False) # update optimizer and reduce LR optimizer = torch.optim.Adam(params, lr=REDUCED_LR) # ----------------------TRAINING PHASE---------------------- model.train() # to track loss and accuracy for training phase at iteration level running_loss = 0.0 running_corrects = 0 # image grid flag train_epoch_flag = True # iterate the data # overfitting code # for _, images, targets in zip([train_image_ids], [train_image], [train_target]): for _, images, targets in train_data_loader: # send the input to device images = images.to(device) targets = targets.to(device) # visualize only the first batch in epoch to tensorboard if train_epoch_flag: # revert the normalization unnormalized_images = unnormalizer(images) # add images to tensorboard img_grid = torchvision.utils.make_grid(unnormalized_images) train_writer.add_image("train", img_tensor=img_grid, global_step=epoch) # turn off image_flag for other batches for current epoch train_epoch_flag = False # optimizer.zero_grad() is critically important because it resets all weight and bias # gradients to 0 # we are updating W and B for each batch, thus zero the gradients in each batch optimizer.zero_grad() # forward pass # track the history in training mode with torch.set_grad_enabled(True): # make prediction outputs = model(images) # find loss train_loss = criterion(outputs.view(-1), targets) # converting logits to probabilities and keeping threshold of 0.5 # https://discuss.pytorch.org/t/multilabel-classification-how-to-binarize-scores-how-to-learn-thresholds/25396 preds = (torch.sigmoid(outputs.view(-1)) > 0.5).to(torch.float32) # loss.backward() method uses the back-propagation algorithm to compute all the # gradients associated with the weights and biases that a part of the network # containing loss_val train_loss.backward() # optimizer.step() statement uses the newly computed gradients to update all the # weights and biases in the neural network so that computed output values will get # closer to the target values optimizer.step() # iteration level statistics running_loss += train_loss.item() * images.size(0) running_corrects += torch.sum(preds == targets.data) if train_iter % print_iteration_frequency == 0: print( f'Train Iteration #{train_iter}:: {train_loss.item()} Acc: {torch.sum(preds == targets.data).item() / (len(preds))}') train_iter += 1 # epoch level statistics take average of batch epoch_loss = running_loss / len(train_data_loader.dataset) epoch_acc = running_corrects.double() / len(train_data_loader.dataset) print('Epoch Training:: Loss: {:.4f} Acc: {:.4f}'.format(epoch_loss, epoch_acc)) # track using tensorboard train_writer.add_scalar("loss", epoch_loss, global_step=epoch) train_writer.add_scalar("accuracy", epoch_acc, global_step=epoch) train_loss_arr.append(epoch_loss) train_acc_history_arr.append(epoch_acc.item()) # ----------------------VALIDATION PHASE---------------------- # https://visualstudiomagazine.com/Articles/2020/11/24/pytorch-accuracy.aspx?Page=2 model.eval() # to track loss and accuracy for validation phase at iteration level running_loss = 0.0 running_corrects = 0 # iterate the data # overfitting code # for _, images, targets in zip([validation_image_ids], [validation_image], [validation_target]): for _, images, targets in validation_data_loader: # send the input to device images = images.to(device) targets = targets.to(device) # forward pass # dont track the history in validation mode with torch.set_grad_enabled(False): # make prediction outputs = model(images) # find loss val_loss = criterion(outputs.view(-1), targets) # converting logits to probabilities and keeping threshold of 0.5 # https://discuss.pytorch.org/t/multilabel-classification-how-to-binarize-scores-how-to-learn-thresholds/25396 preds = (torch.sigmoid(outputs.view(-1)) > 0.5).to(torch.float32) # iteration level statistics running_loss += val_loss.item() * images.size(0) running_corrects += torch.sum(preds == targets.data) if val_iter % print_iteration_frequency == 0: print( f'Validation Iteration #{val_iter}:: {val_loss.item()} Acc: {torch.sum(preds == targets.data).item() / (len(preds))}') val_iter += 1 # epoch level statistics take average of batch epoch_loss = running_loss / len(validation_data_loader.dataset) epoch_acc = running_corrects.double() / len(validation_data_loader.dataset) print('Epoch Validation:: Loss: {:.4f} Acc: {:.4f}'.format(epoch_loss, epoch_acc)) # track using tensorboard validation_writer.add_scalar("loss", epoch_loss, global_step=epoch) validation_writer.add_scalar("accuracy", epoch_acc, global_step=epoch) valid_loss_arr.append(epoch_loss) val_acc_history_arr.append(epoch_acc.item()) # save model based on lowest epoch validation loss if epoch_loss <= lowest_loss: lowest_loss = epoch_loss best_model_found_epoch = epoch # save model state based on best val accuracy per epoch # https://debuggercafe.com/effective-model-saving-and-resuming-training-in-pytorch/ torch.save({ 'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'loss': criterion, }, saved_model_path) print('Lowest Validation Acc: {:4f} at epoch:{}'.format(lowest_loss, best_model_found_epoch)) print("End time:" + str(datetime.now() - start)) print("Program Complete") # tensorboard cleanup train_writer.flush() validation_writer.flush() train_writer.close() validation_writer.close() # %% -------------------- # Average Loss print("Average Train Loss:" + str(np.mean(train_loss_arr))) print("Average Validation Loss:" + str(np.mean(valid_loss_arr))) # Average Accuracy print("Average Train Accuracy:" + str(np.mean(train_acc_history_arr))) print("Average Validation Accuracy:" + str(np.mean(val_acc_history_arr)))
b6e6c452b9b6e587e65296e1eeab0b78f2e8931e
0f0cb36c4d0afdd36072be37238b60a040623fdd
/cmds/task.py
b9b188d9fcd969f8d01d7b54852b6759b4124764
[]
no_license
hijimmy87/dcCWBReportBot
484cb5f99ab4a88a297de1bf0e6696e46d4c8259
634c1b850556d50c4b1715b2d8171d7e10d94a30
refs/heads/main
2023-08-11T14:57:59.511470
2021-09-30T13:24:57
2021-09-30T13:24:57
412,072,524
1
0
null
null
null
null
UTF-8
Python
false
false
3,686
py
import discord from discord.ext import commands from core import Cog_Extension from api.weather import getCWB import asyncio, json from datetime import datetime, timedelta class task(Cog_Extension): def __init__(self, bot): super().__init__(bot) async def weather(): await self.bot.wait_until_ready() with open('time.json', 'r', encoding = 'utf-8') as time: time = json.load(time) channel = bot.get_channel(self.channels['weather']) while not bot.is_closed(): for datail in ['E-A0015-001', 'E-A0016-001']: data = getCWB(datail) if data is not None and data['time'] != time[datail]: time[datail] = data['time'] content = data['content'] embed = discord.Embed(color = self.color()) embed.title = data['title'] embed.set_image(url = data['image']) embed.set_footer(**data['footer']) for field in data['field']: embed.add_field(**field) await channel.send(content, embed=embed) await asyncio.sleep(1) for datail in ['W-C0033-002']: data = getCWB(datail) if data is not None and data['time'] != time[datail]: time[datail] = data['time'] embed = discord.Embed( title = data['title'], description = data['description'], timestamp = data['timestamp'], color = self.color() ) embed.set_footer(**data['footer']) for field in data['field']: embed.add_field(**field) await channel.send(embed=embed) await asyncio.sleep(1) with open('time.json', 'w', encoding = 'utf-8') as file: json.dump(time, file, indent = 4) async def tellTime(): def is_me(m): return m.author == bot.user await self.bot.wait_until_ready() while not bot.is_closed(): now = datetime.utcnow() + timedelta(hours = 8) if now.minute % 5 == 0 and now.second <= 5: channel = bot.get_channel(self.channels["time"]) await channel.purge(limit = 1, check = is_me) await channel.send(now.strftime('%H 時 %M 分 %S 秒')) await asyncio.sleep(5) await asyncio.sleep(1) async def morning(): await self.bot.wait_until_ready() while not bot.is_closed(): now = datetime.utcnow() + timedelta(hours = 8) if now.hour == 6 and now.minute == 0 and now.second <= 5: channel = bot.get_channel(self.channels["morning"]) await channel.send('おはよう世界\nGood Morning World!') await asyncio.sleep(5) await asyncio.sleep(1) self.bot.loop.create_task(weather()) # self.bot.loop.create_task(tellTime()) self.bot.loop.create_task(morning()) def setup(bot): bot.add_cog(task(bot))
68076011454e47960d4ce0e65fcbc57c1ec41a99
e6f9cb89af849f52fd318d467d91abbf198f2ea6
/B_MOO_004_NSGA3_0810_PS/d_NSGA2_PMROA_no_encoding_pandas_numpy.py
a5ac99da00d494ffd4c4e6164bba551184446656
[]
no_license
chinawindofmay/multi-objective-optimization-NSGA2
5cf0319f5a04e27d2adbe47c3ca11bee83c8083a
5fb711d909967c61ab423fd3cc30c09065b44d3d
refs/heads/master
2021-07-19T10:38:36.458471
2021-07-03T07:54:49
2021-07-03T07:54:49
240,712,509
10
1
null
null
null
null
UTF-8
Python
false
false
14,824
py
#coding:utf-8 """ 关于整个算法的基本说明: 算法功能:实现对可达性和公平性的帕累托解求解过程。 算法参照: # Program Name: NSGA-II.py # Description: This is a python implementation of Prof. Kalyanmoy Deb's popular NSGA-II algorithm # Author: Haris Ali Khan # Supervisor: Prof. Manoj Kumar Tiwari 算法的改造过程: 第一步:20200129-20200130,资料收集,NSGA基本原理再理解,调试原有的代码(发现没法验证对错)于是乎github上重新寻找代码 理解基础的NSGA-II.py,单个x,两个简单数学函数目标,数学制图,详细见SGAII-traditional.py 第二步:20200131,将NSGA-II.py算法改成求解x1,x2,三个数学曲面目标,数学制图,详细见NSGAII-math-valiation.py 这一步非常重要,因为这一步决定了对算法理解和改造的基础正确性问题 实现了三个曲面的求解,验证了准确性,且实现了制图表达,便于接下来的改造 第三步:20200201-20200202,改成:26个x,可达性和公平性两个数学目标,需要修改initial_population、crossover、mutation、fitness、accessbility数据读取等 过程中主要解决了几个问题:limitation改造问题;fitness计算慢的问题;去掉了编码和解码的过程(从而简化了问题的可读性) 测试50种群,300代的结果 将小数位结果整数化 2030医生数量预测 第四步:将原有基于Python list的存储和运算机制修改为基于pandas和Numpy的机制,从而增加运行效率 2020年3月8日,完成了pandas和numpy的存储和修改,发现pandas效率为一次运行fitness时间在10S 晚上,鼓起勇气,将其修改为numpy的,具体查看图片:d_numpy存储机制.jpg,一次运行fitness的时间在0.03S 第五步:重新思考确立论文题目:高数量Or高质量 医疗资源优化配置帕累托解求解过程,将马太效应和分级医疗引入到本次的论文题目中 阅读论文,增加第三个评价指标, 目前需要做四件事情:整理代码并提交到Github、分级医疗的基础数据检查、Huff模型再审视、修改模型的代码 第五步:思考变长NSGA; 第六步:思考Q-NSGA2; 第七步:思考其他的目标优化问题求解; """ import random import matplotlib.pyplot as plt import numpy as np from e_fitness_gravity_equality import * from numpy import * from sklearn import preprocessing import a_mongo_operater import time """ 用于初始化Population #softmax函数 """ def softmax_function(t_list): try: z_exp = [math.exp(i) for i in t_list] sum_z_exp = sum(z_exp) softmax_list = [round(i / sum_z_exp, 3) for i in z_exp] return np.array(softmax_list) except: return """ 生成随机分配概率List """ def softmax_random(): x_list=np.array([random.random() for i in range(0, SOLUTION_LEN)]) list_z_score = preprocessing.scale(1 / x_list) # 这里1和10和100对其结果没有影响 # print("z_score", list_z_score) softmax_probability = softmax_function(list_z_score) return softmax_probability """ 名称:初始化种群函数 作用:初始化原始种群 """ def initial_population(): population = np.empty(shape=[POP_SIZE, SOLUTION_LEN],dtype=np.float32) for i in range(POP_SIZE): solution=np.array([round(LIMINTATION * probability, 3) for probability in softmax_random()],dtype=np.float32) population[i,:]=solution return population """ 交叉算子,实现两个solution交叉 """ def crossover_mutation_limitation(solution_a, solution_b): ##第1列和第2列存放概率,第3存放交换结果,第4列出发1或0,表示TRUE和FALSE, new_solution_sign = np.random.random((SOLUTION_LEN,4)) #第一步交叉 for i in range(0, SOLUTION_LEN): if new_solution_sign[i,0]<CROSSOVER_PROB_THRESHOLD: new_solution_sign[i,2]=solution_b[i] new_solution_sign[i,3]=1 else: new_solution_sign[i, 2] = solution_a[i] new_solution_sign[i, 3] = 0 # 第二步变异 for i in range(0, SOLUTION_LEN): if new_solution_sign[i,1] < MUTATION_PROB__THRESHOLD: x = round(MIN_X + (MAX_X - MIN_X) * random.random()+0.1,3) new_solution_sign[i, 2] =x new_solution_sign[i, 3] =1 #第三步 求解总值 sum_x = np.sum(new_solution_sign[:,2]) sum_no_adjust_x = 0 for i in range(0, SOLUTION_LEN): if new_solution_sign[i][3] == 0: sum_no_adjust_x+=new_solution_sign[i,2] #第四步:完成交叉和变异之后,要对整体做一次Limitation adjust_parameter= (LIMINTATION - sum_no_adjust_x) / (sum_x - sum_no_adjust_x) new_solution = np.empty(shape=(SOLUTION_LEN,), dtype=np.float32) #adjust_parameter>1,则表示要对TRUE的x做放大操作,乘 #adjust_parameter<1,则表示要对TRUE的x做缩小操作,乘 for i in range(0, SOLUTION_LEN): if new_solution_sign[i,3]==1: #开始调整数值 new_solution[i] = round(new_solution_sign[i,2]*adjust_parameter,3) else: new_solution[i] = new_solution_sign[i,2] return new_solution """ 基于Numpy存储,计算适应度,包括了可达性和公平性两个子函数 """ def fitness_numpy(demands_numpy, population,DEMANDS_COUNT,access_type): y1_values_double = np.empty(shape=(np.shape(population)[0],),dtype=np.float32) y2_values_double = np.empty(shape=(np.shape(population)[0],),dtype=np.float32) for i_solution in range(np.shape(population)[0]): #这一步计算出了当前solution下,每个医院的gravtiy值 solution=population[i_solution,:] #开始时间 # start_time = time.time() if access_type=="g": update_every_single_provider_gravity_value_numpy(demands_numpy, solution, DEMANDS_COUNT) # elif access_type=="h": # update_every_single_hospital_h2sfca_value_numpy(demands_numpy, solution, DEMANDS_COUNT) # 可达性适应度值,该值越大越好 y1_values_double[i_solution]=np.nansum(demands_numpy[:,0,0,1]) #获取到每一个的gravity value 之所以用nan,是为了过滤掉nan的值 # 计算公平性数值,该值越小表示越公平 # y2_values_double[i_solution]=np.cov(demands_numpy[:,0,0,1]) 这是未考虑人口数影响的公平性方程 y2_values_double[i_solution]=calculate_global_accessibility_equality_numpy(demands_numpy) # 结束时间 # end_time1 = time.time() # print('calculate_gravity_value() Running time: %s Seconds' % (end_time1 - start_time)) return y1_values_double, y2_values_double """ NSG2的基础组成部分 #Function to find index of list """ def get_index_of(a, list_obj): for i in range(0, len(list_obj)): if list_obj[i] == a: return i return -1 """ NSG2的基础组成部分 #Function to sort by values """ def sort_by_values(front, y_values): sorted_list = [] while(len(sorted_list)!=len(front)): if get_index_of(min(y_values), y_values) in front: sorted_list.append(get_index_of(min(y_values), y_values)) y_values[get_index_of(min(y_values), y_values)] = math.inf return sorted_list """ NSG2的基础组成部分 #Function to carry out NSGA-II's fast non dominated sort """ def fast_non_dominated_sort(y1_values, y2_values): S=[[] for i in range(0, np.shape(y1_values)[0])] fronts = [[]] n=[0 for i in range(0, np.shape(y1_values)[0])] rank = [0 for i in range(0, np.shape(y1_values)[0])] for p in range(0, np.shape(y1_values)[0]): S[p]=[] n[p]=0 for q in range(0, np.shape(y1_values)[0]): # 这是目标函数,y1求大值,y2求小值 if (y1_values[p] > y1_values[q] and y2_values[p] < y2_values[q] ) : if q not in S[p]: # 个体p的支配集合Sp计算 S[p].append(q) elif (y1_values[p] < y1_values[q] and y2_values[p] > y2_values[q] ) : # 被支配度Np计算 # Np越大,则说明p个体越差 n[p] = n[p] + 1 if n[p]==0: rank[p] = 0 if p not in fronts[0]: fronts[0].append(p) i = 0 while(fronts[i] != []): Q=[] for p in fronts[i]: for q in S[p]: n[q] =n[q] - 1 if( n[q]==0): rank[q]=i+1 if q not in Q: Q.append(q) i = i+1 fronts.append(Q) del fronts[len(fronts)-1] return fronts """ NSGA2的基础组成部分 #Function to calculate crowding distance """ def crowding_distance(y1_values, y2_values, front): distance = [0 for i in range(0,len(front))] #根据y1的值做一次排序 sorted1 = sort_by_values(front, y1_values[:]) #根据y2的值做一次排序 sorted2 = sort_by_values(front, y2_values[:]) #第一个个体和最后一个个体,定义为无限远 distance[0] = DISTANCE_INFINTE distance[len(front) - 1] = DISTANCE_INFINTE #计算中间个体的距离 for k in range(1,len(front)-1): distance[k] = distance[k]+ (y1_values[sorted1[k + 1]] - y2_values[sorted1[k - 1]]) / (max(y1_values) - min(y1_values)+DELATE) for k in range(1,len(front)-1): distance[k] = distance[k]+ (y1_values[sorted2[k + 1]] - y2_values[sorted2[k - 1]]) / (max(y2_values) - min(y2_values)+DELATE) return distance """ #二维制图表达 """ def draw_2d_plot(y1_values,y2_values): fig = plt.figure(figsize=(12, 12)) ax11 = fig.add_subplot(111) ax11.set_xlabel('y1', fontsize=15) ax11.set_ylabel('y2', fontsize=15) ax11.scatter(y1_values, y2_values) plt.show() """ #NSGA2的主函数 """ def execute_nsga2_numpy(demands_np,DEMANDS_COUNT,access_type="g"): # 初始化种群 population = [[],[],[]] population_ar = initial_population() iteration_no = 0 #大的循环 while (iteration_no < ITERATION_NUM): print(iteration_no) # 生成两倍的后代,然后用于选择 population_double=np.empty(shape=[POP_SIZE*2, SOLUTION_LEN],dtype=np.float32) population_double[0:POP_SIZE:1,:] = population_ar.copy() for i_new in range(POP_SIZE,POP_SIZE*2): a1 = random.randint(0, POP_SIZE - 1) b1 = random.randint(0, POP_SIZE - 1) # 通过crossover/limitation/mutation的方式生成新的soultion population_double[i_new,:]=crossover_mutation_limitation(population_ar[a1], population_ar[b1]) # 评价适应度值 y1_values_double, y2_values_double = fitness_numpy(demands_np, population_double,DEMANDS_COUNT,access_type=access_type) #test # 打印过程结果 for index_x in range(0, POP_SIZE*2,4): print("x={0},y1={1},y2={2}".format(population_double[index_x], round(y1_values_double[index_x], 3), round(y2_values_double[index_x], 3)), end="\n") # 非支配解排序 # 目标:y1--大,y2--小 non_do_sorted_double_fronts = fast_non_dominated_sort(y1_values_double.copy(), y2_values_double.copy()) # 拥挤度计算 c_distance_double = [] for i in range(0, len(non_do_sorted_double_fronts)): c_distance_double.append(crowding_distance(y1_values_double.copy(), y2_values_double.copy(),non_do_sorted_double_fronts[i][:])) # 生成新的一代 index_list_new_popu = [] for i in range(0, len(non_do_sorted_double_fronts)): non_dominated_sorted_solution2_1 = [get_index_of(non_do_sorted_double_fronts[i][j], non_do_sorted_double_fronts[i]) for j in range(0, len(non_do_sorted_double_fronts[i]))] front22 = sort_by_values(non_dominated_sorted_solution2_1[:], c_distance_double[i][:]) front = [non_do_sorted_double_fronts[i][front22[j]] for j in range(0, len(non_do_sorted_double_fronts[i]))] front.reverse() for index in front: index_list_new_popu.append(index) if (len(index_list_new_popu) == POP_SIZE): break if (len(index_list_new_popu) == POP_SIZE): break population_ar = [population_double[i] for i in index_list_new_popu] iteration_no = iteration_no + 1 #结束大的循环 # 输出当前代的结果,当前代是上代的最优结果 y1_values, y2_values = fitness_numpy(demands_np,np.array(population_ar),DEMANDS_COUNT,access_type=access_type) # 打印结果 for index_x in range(0,POP_SIZE): print("x={0},y1={1},y2={2}".format(population_ar[index_x], round(y1_values[index_x], 3), round(y2_values[index_x], 3)), end="\n") # 将最后一代的fitness结果打印出来 draw_2d_plot( y1_values, y2_values) """ 主函数,基于numpy,包括了MongoDB对象操作、调取NSGA2优化算法 """ def main_function_numpy_gravity(): # 初始化mongo对象 mongo_operater_obj = a_mongo_operater.MongoOperater(DB_NAME, COLLECTION_NAME) # 获取到所有的记录 demands_np = mongo_operater_obj.find_records_format_numpy_1(0, DEMANDS_COUNT, PROVIDERS_COUNT) # 创建和计算vj,便于后面可达性计算复用,放入了demands_np array中; calculate_provider_vj_numpy_gravity(demands_np, DEMANDS_COUNT, PROVIDERS_COUNT) # 调取NSGA2函数 execute_nsga2_numpy(demands_np,DEMANDS_COUNT,access_type="g") #公用的全局变量 #交叉算子概率 CROSSOVER_PROB_THRESHOLD =0.45 #变异算子概率 MUTATION_PROB__THRESHOLD=0.1 #拥挤度距离防止分母为0 DELATE=2e-7 #拥挤度距离极大值 DISTANCE_INFINTE=444444444 #解空间的约束系数,2030年的儿科医生数量不超过700,左右限制区间为690-710 MAX_X=10 #最低值限制 MIN_X=1 #增加医生的数量 LIMINTATION=100 # 种群规模,一般为双数,便于交叉操作 POP_SIZE=100 #进化代数 ITERATION_NUM=20 #一个染色体含多个DNA,一个DNA含多个Gene,按这样的组织逻辑,解的空间从一维延伸到了二维 #染色体长度(特指含多少个DNA) SOLUTION_LEN=40 #1个solution 对应的1个 chromesome #需求点,即小区,的个数 DEMANDS_COUNT=184 #供给点,即充电桩,的个数,与SOLUTION_COUNT保持一致 PROVIDERS_COUNT=40 #MONGODB数据库的配置 DB_NAME="admin" COLLECTION_NAME="moo_ps" if __name__=="__main__": main_function_numpy_gravity()
716c09f6750529329620391f51c69fdaddde1b25
6a88ecf98454852c2d2014da9333534b3a066910
/ga2016_final_project-master/ga2016_final_project-master/src/run.py
acf405829b84b93ce977ad9bdc2dcdd7f1e7ad67
[ "MIT" ]
permissive
cbbjames/GA2016
d37b7fdb88ebbf0a24e929df8a755d7724594f40
a6a06ad3beeb64697ee8c0690ad6651d77ac122e
refs/heads/master
2021-01-18T13:10:39.966270
2017-02-03T02:56:48
2017-02-03T02:56:48
80,728,984
0
0
null
null
null
null
UTF-8
Python
false
false
809
py
import cost_function as cf import genetic_programming as gp import monte_carlo as mc import pic # global setting x = 50 y = 50 target_image = pic.pic2rgb("../data/0703.jpg", x, y) cf.set_target_image(target_image) # gp horizontal = gp.cut('H',2) vertical = gp.cut('V',2) env = gp.enviroment([horizontal, vertical], ["L color"], target_image, size = 100, maxcut = 15, maxdepth = 3) s_gp, cost_gp = env.envolve(maxgen = 10) print("Best solution in GP: ", cost_gp) print(s_gp) pic.rgb2pic(cf.to_array(s_gp, x, y, 1), 'LAB', "../data/output/0703_gp.png") print("NFE(GP) = ", env.get_nfe()) # mc s_mc, cost_mc = mc.monte_carlo(env.get_nfe(), 5, target_image) print("Best solution in MC: ", cost_mc) print(s_mc) pic.rgb2pic(cf.to_array(s_mc, x, y, 1), 'LAB', "../data/output/0703_mc.png")
2bde8a3befdc778156a7218cbb0ab8f1fa8bfe96
95495baeb47fd40b9a7ecb372b79d3847aa7a139
/swagger_client/models/i_neighbor_filter_list.py
4547f5160a2b9f912a8e71d8e80a789d7afe5262
[]
no_license
pt1988/fmc-api
b1d8ff110e12c13aa94d737f3fae9174578b019c
075f229585fcf9bd9486600200ff9efea5371912
refs/heads/main
2023-01-07T09:22:07.685524
2020-10-30T03:21:24
2020-10-30T03:21:24
308,226,669
0
0
null
null
null
null
UTF-8
Python
false
false
7,160
py
# coding: utf-8 """ Cisco Firepower Management Center Open API Specification **Specifies the REST URLs and methods supported in the Cisco Firepower Management Center API. Refer to the version specific [REST API Quick Start Guide](https://www.cisco.com/c/en/us/support/security/defense-center/products-programming-reference-guides-list.html) for additional information.** # noqa: E501 OpenAPI spec version: 1.0.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class INeighborFilterList(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'filter_update_action': 'str', 'name': 'str', 'as_path_list': 'IReference', 'links': 'ILinks', 'id': 'str', 'type': 'str' } attribute_map = { 'filter_update_action': 'filterUpdateAction', 'name': 'name', 'as_path_list': 'asPathList', 'links': 'links', 'id': 'id', 'type': 'type' } def __init__(self, filter_update_action=None, name=None, as_path_list=None, links=None, id=None, type=None): # noqa: E501 """INeighborFilterList - a model defined in Swagger""" # noqa: E501 self._filter_update_action = None self._name = None self._as_path_list = None self._links = None self._id = None self._type = None self.discriminator = None if filter_update_action is not None: self.filter_update_action = filter_update_action if name is not None: self.name = name if as_path_list is not None: self.as_path_list = as_path_list if links is not None: self.links = links if id is not None: self.id = id if type is not None: self.type = type @property def filter_update_action(self): """Gets the filter_update_action of this INeighborFilterList. # noqa: E501 :return: The filter_update_action of this INeighborFilterList. # noqa: E501 :rtype: str """ return self._filter_update_action @filter_update_action.setter def filter_update_action(self, filter_update_action): """Sets the filter_update_action of this INeighborFilterList. :param filter_update_action: The filter_update_action of this INeighborFilterList. # noqa: E501 :type: str """ allowed_values = ["IN", "OUT"] # noqa: E501 if filter_update_action not in allowed_values: raise ValueError( "Invalid value for `filter_update_action` ({0}), must be one of {1}" # noqa: E501 .format(filter_update_action, allowed_values) ) self._filter_update_action = filter_update_action @property def name(self): """Gets the name of this INeighborFilterList. # noqa: E501 :return: The name of this INeighborFilterList. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this INeighborFilterList. :param name: The name of this INeighborFilterList. # noqa: E501 :type: str """ self._name = name @property def as_path_list(self): """Gets the as_path_list of this INeighborFilterList. # noqa: E501 :return: The as_path_list of this INeighborFilterList. # noqa: E501 :rtype: IReference """ return self._as_path_list @as_path_list.setter def as_path_list(self, as_path_list): """Sets the as_path_list of this INeighborFilterList. :param as_path_list: The as_path_list of this INeighborFilterList. # noqa: E501 :type: IReference """ self._as_path_list = as_path_list @property def links(self): """Gets the links of this INeighborFilterList. # noqa: E501 :return: The links of this INeighborFilterList. # noqa: E501 :rtype: ILinks """ return self._links @links.setter def links(self, links): """Sets the links of this INeighborFilterList. :param links: The links of this INeighborFilterList. # noqa: E501 :type: ILinks """ self._links = links @property def id(self): """Gets the id of this INeighborFilterList. # noqa: E501 :return: The id of this INeighborFilterList. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this INeighborFilterList. :param id: The id of this INeighborFilterList. # noqa: E501 :type: str """ self._id = id @property def type(self): """Gets the type of this INeighborFilterList. # noqa: E501 :return: The type of this INeighborFilterList. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this INeighborFilterList. :param type: The type of this INeighborFilterList. # noqa: E501 :type: str """ self._type = type def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(INeighborFilterList, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, INeighborFilterList): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
9dbc3b6ded0ce3d6c631589afa169837f05a64cd
a857d1911a118b8aa62ffeaa8f154c8325cdc939
/toontown/coghq/DistributedLawOfficeFloor.py
4b2ce5f87d907f8e5164c336752062e61c895ad3
[ "MIT" ]
permissive
DioExtreme/TT-CL-Edition
761d3463c829ec51f6bd2818a28b667c670c44b6
6b85ca8352a57e11f89337e1c381754d45af02ea
refs/heads/main
2023-06-01T16:37:49.924935
2021-06-24T02:25:22
2021-06-24T02:25:22
379,310,849
0
0
MIT
2021-06-22T15:07:31
2021-06-22T15:07:30
null
UTF-8
Python
false
false
7,428
py
from panda3d.core import * from toontown.toonbase.ToontownGlobals import * from direct.distributed.ClockDelta import * from direct.interval.IntervalGlobal import * import random from otp.level import DistributedLevel from direct.directnotify import DirectNotifyGlobal import LawOfficeBase import FactoryEntityCreator import FactorySpecs from otp.level import LevelSpec from otp.level import LevelConstants from toontown.toonbase import TTLocalizer from toontown.coghq import FactoryCameraViews if __dev__: from otp.level import EditorGlobals class DistributedLawOfficeFloor(DistributedLevel.DistributedLevel, LawOfficeBase.LawOfficeBase): notify = DirectNotifyGlobal.directNotify.newCategory('DistributedLawOffice') def __init__(self, cr): DistributedLevel.DistributedLevel.__init__(self, cr) LawOfficeBase.LawOfficeBase.__init__(self) self.suitIds = [] self.suits = [] self.reserveSuits = [] self.joiningReserves = [] self.suitsInitialized = 0 self.goonClipPlanes = {} def createEntityCreator(self): return FactoryEntityCreator.FactoryEntityCreator(level=self) def generate(self): self.notify.debug('generate') DistributedLevel.DistributedLevel.generate(self) self.factoryViews = FactoryCameraViews.FactoryCameraViews(self) base.localAvatar.chatMgr.chatInputSpeedChat.addFactoryMenu() if __dev__: bboard.post(EditorGlobals.EditTargetPostName, self) self.accept('SOSPanelEnter', self.handleSOSPanel) def delete(self): DistributedLevel.DistributedLevel.delete(self) base.localAvatar.chatMgr.chatInputSpeedChat.removeFactoryMenu() self.factoryViews.delete() del self.factoryViews self.ignore('SOSPanelEnter') if __dev__: bboard.removeIfEqual(EditorGlobals.EditTargetPostName, self) def setLawOfficeId(self, id): LawOfficeBase.LawOfficeBase.setLawOfficeId(self, id) def setForemanConfronted(self, avId): if avId == base.localAvatar.doId: return av = base.cr.identifyFriend(avId) if av is None: return base.localAvatar.setSystemMessage(avId, TTLocalizer.ForemanConfrontedMsg % av.getName()) return def setDefeated(self): self.notify.info('setDefeated') messenger.send('FactoryWinEvent') def levelAnnounceGenerate(self): self.notify.debug('levelAnnounceGenerate') DistributedLevel.DistributedLevel.levelAnnounceGenerate(self) specModule = FactorySpecs.getFactorySpecModule(self.lawOfficeId) factorySpec = LevelSpec.LevelSpec(specModule) if __dev__: typeReg = self.getEntityTypeReg() factorySpec.setEntityTypeReg(typeReg) DistributedLevel.DistributedLevel.initializeLevel(self, factorySpec) def privGotSpec(self, levelSpec): if __dev__: if not levelSpec.hasEntityTypeReg(): typeReg = self.getEntityTypeReg() levelSpec.setEntityTypeReg(typeReg) firstSetZoneDoneEvent = self.cr.getNextSetZoneDoneEvent() def handleFirstSetZoneDone(): base.factoryReady = 1 messenger.send('FactoryReady') self.acceptOnce(firstSetZoneDoneEvent, handleFirstSetZoneDone) modelCount = len(levelSpec.getAllEntIds()) loader.beginBulkLoad('factory', TTLocalizer.HeadingToFactoryTitle % TTLocalizer.FactoryNames[self.lawOfficeId], modelCount, 1, TTLocalizer.TIP_COGHQ) DistributedLevel.DistributedLevel.privGotSpec(self, levelSpec) loader.endBulkLoad('factory') messenger.send('LawOffice_Spec_Loaded') def printPos(self = self): pos = base.localAvatar.getPos(self.getZoneNode(self.lastToonZone)) h = base.localAvatar.getH(self.getZoneNode(self.lastToonZone)) print 'factory pos: %s, h: %s, zone %s' % (repr(pos), h, self.lastToonZone) posStr = 'X: %.3f' % pos[0] + '\nY: %.3f' % pos[1] + '\nZ: %.3f' % pos[2] + '\nH: %.3f' % h + '\nZone: %s' % str(self.lastToonZone) base.localAvatar.setChat(posStr, CFThought, 0) self.accept('f2', printPos) base.localAvatar.setCameraCollisionsCanMove(1) self.acceptOnce('leavingFactory', self.announceLeaving) def handleSOSPanel(self, panel): avIds = [] for avId in self.avIdList: if base.cr.doId2do.get(avId): avIds.append(avId) panel.setFactoryToonIdList(avIds) def handleFloorDone(self): self.sendUpdate('readyForNextFloor') def disable(self): self.notify.debug('disable') base.localAvatar.setCameraCollisionsCanMove(0) if hasattr(self, 'suits'): del self.suits if hasattr(self, 'relatedObjectMgrRequest') and self.relatedObjectMgrRequest: self.cr.relatedObjectMgr.abortRequest(self.relatedObjectMgrRequest) del self.relatedObjectMgrRequest DistributedLevel.DistributedLevel.disable(self) def setSuits(self, suitIds, reserveSuitIds): oldSuitIds = list(self.suitIds) self.suitIds = suitIds self.reserveSuitIds = reserveSuitIds newSuitIds = [] for suitId in self.suitIds: if suitId not in oldSuitIds: newSuitIds.append(suitId) if len(newSuitIds): def bringOutOfReserve(suits): for suit in suits: suit.comeOutOfReserve() self.relatedObjectMgrRequest = self.cr.relatedObjectMgr.requestObjects(newSuitIds, bringOutOfReserve) def reservesJoining(self): pass def getCogSpec(self, cogId): cogSpecModule = FactorySpecs.getCogSpecModule(self.lawOfficeId) return cogSpecModule.CogData[cogId] def getReserveCogSpec(self, cogId): cogSpecModule = FactorySpecs.getCogSpecModule(self.lawOfficeId) return cogSpecModule.ReserveCogData[cogId] def getBattleCellSpec(self, battleCellId): cogSpecModule = FactorySpecs.getCogSpecModule(self.lawOfficeId) return cogSpecModule.BattleCells[battleCellId] def getFloorOuchLevel(self): return 2 def getGoonPathId(self): return 'sellbotFactory' def getTaskZoneId(self): return self.lawOfficeId def getBossTaunt(self): return TTLocalizer.FactoryBossTaunt def getBossBattleTaunt(self): return TTLocalizer.FactoryBossBattleTaunt def placeLocalToon(self): initialZoneEnt = None if self.entranceId in self.entranceId2entity: epEnt = self.entranceId2entity[self.entranceId] initialZoneEnt = self.getEntity(epEnt.getZoneEntId()) elif self.EmulateEntrancePoint: self.notify.debug('unknown entranceId %s' % self.entranceId) self.notify.debug('showing all zones') self.setColorZones(1) zoneEntIds = list(self.entType2ids['zone']) zoneEntIds.remove(LevelConstants.UberZoneEntId) if len(zoneEntIds): zoneEntId = random.choice(zoneEntIds) initialZoneEnt = self.getEntity(zoneEntId) else: initialZoneEnt = self.getEntity(LevelConstants.UberZoneEntId) if initialZoneEnt is not None: self.enterZone(initialZoneEnt.entId) return