blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
d9337e2102d09d190b10a4807dffc96e72e6149c
84249d799ca6a29b564a6c080b9027225a1bc374
/buzzfeed/serializers.py
447f288396bb105b558f63c5225a80b6b755d389
[]
no_license
pruksmhc/buzzfeedAPI
8f9417fcbe16e66961cb4e21f5ec92b5b31d694d
228f37d0667771539cf87e023742fb2f5de3d874
refs/heads/master
2021-01-10T04:38:01.492874
2016-08-26T00:14:08
2016-08-26T00:14:08
46,350,448
2
0
null
null
null
null
UTF-8
Python
false
false
568
py
from rest_framework import serializers from buzzfeed.models import BuzzfeedSearch class BuzzfeedSerializer(serializers.Serializer): json= serializers.CharField(required=False, allow_blank=True, max_length=100), date= serializers.CharField(required=False, allow_blank=True, max_length=100) user = serializers.CharField(required=False, allow_blank=True, max_length=100) #this defines the fields that get serialized/deserialized. def create(self, validated_data): #define how instance sar ecreated. return BuzzfeedSearch.objects.create(**validated_data)
3d8d585292a746614efaa27e4e3e5a4191b41c1e
6730df75ff003ad2415331698650f69e65275b84
/publicacion/urls.py
49a2ff4c5ee016ce59dcbef60387d4fd596aaf0a
[]
no_license
jcomorera/AppDjango
e5df4598e0f4a3124c8902bd609e715fc2174efd
871b317702974476107e15b603165df903237271
refs/heads/master
2020-04-21T04:42:34.128916
2019-02-05T22:15:10
2019-02-05T22:15:10
169,320,534
0
0
null
null
null
null
UTF-8
Python
false
false
477
py
from django.urls import path from django.conf.urls import include, url from django.contrib.staticfiles.urls import static from django.conf import settings from django.contrib.staticfiles.urls import staticfiles_urlpatterns from . import views urlpatterns = [ path('', views.base, name='list'), path('detail/<int:id>/', views.publicacion_detalle, name='detail'), ]+ static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) urlpatterns += staticfiles_urlpatterns()
e0d573348dd1198f91672dd4f39b8bb4dfd79c7b
ee648ccfa67ee4ba888a1194fef039242a62a362
/verification/scripts/misc/rename_method_groups.py
5d6d64164113231ef13e82d663fa92e065c83e8d
[ "MIT" ]
permissive
fmidev/lagrangian-convolutional-neural-network
dd3c12d995778f293a4caed5a6e90a9e9c65ef9b
655e7dc62f28f142521d3abb7221e4b6860452a4
refs/heads/main
2023-08-22T02:16:39.498491
2023-08-16T05:44:15
2023-08-16T05:44:15
541,975,069
9
0
MIT
2023-08-16T05:44:16
2022-09-27T08:14:50
Python
UTF-8
Python
false
false
797
py
""" Small script to rename the method group in prediction hdf5 file. Hardcoded configuration. Bent Harnist, FMI - 23.02.2022 """ import h5py from tqdm import tqdm # HARD CODED CONFIGURATION fname = "prediction_db_lk_default.hdf5" path_template = "{time}/{method}" old_name = "extrapolation" new_name = "extrapolation_lk_default" with h5py.File(fname, 'a') as f : for t in f.keys(): old_path = path_template.format(time = t, method = old_name) new_path = path_template.format(time = t, method = new_name) f.move(source = old_path, dest = new_path) print(f"\n Success!\n Method group in {fname} renamed from {old_name} to {new_name}.")
87065e3c01c61fde025ccd0f6c5743fa9fcc8c8d
588682d3b6ce748edadda15f7febf32ad14f142b
/dp_easy/house_robber_using_dp.py
96f12eb634863686d43f905fac19e994df395ee8
[]
no_license
99rishita/Leetcode-Problems
f3fb0fd06b8e7a2740ff0f4956da6f6051c4b4d6
6502197ca1acc8a57a4c22ebf2aadda331fe655c
refs/heads/master
2022-12-19T00:53:23.578882
2020-09-25T18:05:59
2020-09-25T18:05:59
289,722,332
0
0
null
null
null
null
UTF-8
Python
false
false
414
py
class Solution: def rob(self, nums: List[int]) -> int: n = len(nums) if n == 0: return 0 if n == 1: return nums[0] if n == 2: return max(nums[0], nums[1]) dp = [0]*(n) dp[0] = nums[0] dp[1] = max(nums[0], nums[1]) for i in range(2, n): dp[i] = max(dp[i-1], dp[i-2] + nums[i]) return dp[n-1]
849dc1807fe16ecac5070e3121b7fd7e68273c1b
a298d0b4a3e9e12170651a6bf728093b4badfac7
/LeetCode/139-Word Break/wordBreak.py
9ae2c67ef2277e6e3d899e9566e0351c2fca0871
[]
no_license
gavinz0228/AlgoPractice
fc8ecd194ea2d26de59df45909838161c802b8cd
1cb183a326a0612a5cd941778500a8265e1d7255
refs/heads/master
2022-07-27T11:42:06.887668
2022-07-18T20:38:31
2022-07-18T20:38:31
172,929,652
1
0
null
null
null
null
UTF-8
Python
false
false
690
py
class Solution: def wordBreak(self, s: str, wordDict: List[str]) -> bool: des = len(s) - 1 visited = set() nex_start = [0] while nex_start: new_nex_start = [] for sp in nex_start: for w in wordDict: if s[sp:].startswith(w): p = sp + len(w) if p not in visited: visited.add(p) new_nex_start.append(p) nex_start = new_nex_start if des + 1 in visited: return True else: return False
1d669561c57756fea89e4c6a3c2fe3ed1e522b3d
35bb363d97e33861c76106251991410311f193ca
/maskrcnn_benchmark/structures/bounding_box.py
798ae6d1c5dc0ca06d657ca290fd22d24e9858d1
[ "MIT" ]
permissive
krumo/Domain-Adaptive-Faster-RCNN-PyTorch
82c17dda3d133d6cbae8b16d5a6653e8d1c38df5
0da7af8ae4e62d86fb97239026ef1875470e4ca0
refs/heads/master
2022-07-25T02:39:28.775147
2022-07-11T15:04:13
2022-07-11T15:04:13
211,833,935
298
77
MIT
2019-10-27T22:09:33
2019-09-30T10:22:00
Python
UTF-8
Python
false
false
9,645
py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch # transpose FLIP_LEFT_RIGHT = 0 FLIP_TOP_BOTTOM = 1 class BoxList(object): """ This class represents a set of bounding boxes. The bounding boxes are represented as a Nx4 Tensor. In order to uniquely determine the bounding boxes with respect to an image, we also store the corresponding image dimensions. They can contain extra information that is specific to each bounding box, such as labels. """ def __init__(self, bbox, image_size, mode="xyxy"): device = bbox.device if isinstance(bbox, torch.Tensor) else torch.device("cpu") bbox = torch.as_tensor(bbox, dtype=torch.float32, device=device) if bbox.ndimension() != 2: raise ValueError( "bbox should have 2 dimensions, got {}".format(bbox.ndimension()) ) if bbox.size(-1) != 4: raise ValueError( "last dimenion of bbox should have a " "size of 4, got {}".format(bbox.size(-1)) ) if mode not in ("xyxy", "xywh"): raise ValueError("mode should be 'xyxy' or 'xywh'") self.bbox = bbox self.size = image_size # (image_width, image_height) self.mode = mode self.extra_fields = {} def add_field(self, field, field_data): self.extra_fields[field] = field_data def get_field(self, field): return self.extra_fields[field] def has_field(self, field): return field in self.extra_fields def fields(self): return list(self.extra_fields.keys()) def _copy_extra_fields(self, bbox): for k, v in bbox.extra_fields.items(): self.extra_fields[k] = v def convert(self, mode): if mode not in ("xyxy", "xywh"): raise ValueError("mode should be 'xyxy' or 'xywh'") if mode == self.mode: return self # we only have two modes, so don't need to check # self.mode xmin, ymin, xmax, ymax = self._split_into_xyxy() if mode == "xyxy": bbox = torch.cat((xmin, ymin, xmax, ymax), dim=-1) bbox = BoxList(bbox, self.size, mode=mode) else: TO_REMOVE = 1 bbox = torch.cat( (xmin, ymin, xmax - xmin + TO_REMOVE, ymax - ymin + TO_REMOVE), dim=-1 ) bbox = BoxList(bbox, self.size, mode=mode) bbox._copy_extra_fields(self) return bbox def _split_into_xyxy(self): if self.mode == "xyxy": xmin, ymin, xmax, ymax = self.bbox.split(1, dim=-1) return xmin, ymin, xmax, ymax elif self.mode == "xywh": TO_REMOVE = 1 xmin, ymin, w, h = self.bbox.split(1, dim=-1) return ( xmin, ymin, xmin + (w - TO_REMOVE).clamp(min=0), ymin + (h - TO_REMOVE).clamp(min=0), ) else: raise RuntimeError("Should not be here") def resize(self, size, *args, **kwargs): """ Returns a resized copy of this bounding box :param size: The requested size in pixels, as a 2-tuple: (width, height). """ ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(size, self.size)) if ratios[0] == ratios[1]: ratio = ratios[0] scaled_box = self.bbox * ratio bbox = BoxList(scaled_box, size, mode=self.mode) # bbox._copy_extra_fields(self) for k, v in self.extra_fields.items(): if not isinstance(v, torch.Tensor): v = v.resize(size, *args, **kwargs) bbox.add_field(k, v) return bbox ratio_width, ratio_height = ratios xmin, ymin, xmax, ymax = self._split_into_xyxy() scaled_xmin = xmin * ratio_width scaled_xmax = xmax * ratio_width scaled_ymin = ymin * ratio_height scaled_ymax = ymax * ratio_height scaled_box = torch.cat( (scaled_xmin, scaled_ymin, scaled_xmax, scaled_ymax), dim=-1 ) bbox = BoxList(scaled_box, size, mode="xyxy") # bbox._copy_extra_fields(self) for k, v in self.extra_fields.items(): if not isinstance(v, torch.Tensor): v = v.resize(size, *args, **kwargs) bbox.add_field(k, v) return bbox.convert(self.mode) def transpose(self, method): """ Transpose bounding box (flip or rotate in 90 degree steps) :param method: One of :py:attr:`PIL.Image.FLIP_LEFT_RIGHT`, :py:attr:`PIL.Image.FLIP_TOP_BOTTOM`, :py:attr:`PIL.Image.ROTATE_90`, :py:attr:`PIL.Image.ROTATE_180`, :py:attr:`PIL.Image.ROTATE_270`, :py:attr:`PIL.Image.TRANSPOSE` or :py:attr:`PIL.Image.TRANSVERSE`. """ if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM): raise NotImplementedError( "Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented" ) image_width, image_height = self.size xmin, ymin, xmax, ymax = self._split_into_xyxy() if method == FLIP_LEFT_RIGHT: TO_REMOVE = 1 transposed_xmin = image_width - xmax - TO_REMOVE transposed_xmax = image_width - xmin - TO_REMOVE transposed_ymin = ymin transposed_ymax = ymax elif method == FLIP_TOP_BOTTOM: transposed_xmin = xmin transposed_xmax = xmax transposed_ymin = image_height - ymax transposed_ymax = image_height - ymin transposed_boxes = torch.cat( (transposed_xmin, transposed_ymin, transposed_xmax, transposed_ymax), dim=-1 ) bbox = BoxList(transposed_boxes, self.size, mode="xyxy") # bbox._copy_extra_fields(self) for k, v in self.extra_fields.items(): if not isinstance(v, torch.Tensor): v = v.transpose(method) bbox.add_field(k, v) return bbox.convert(self.mode) def crop(self, box): """ Cropss a rectangular region from this bounding box. The box is a 4-tuple defining the left, upper, right, and lower pixel coordinate. """ xmin, ymin, xmax, ymax = self._split_into_xyxy() w, h = box[2] - box[0], box[3] - box[1] cropped_xmin = (xmin - box[0]).clamp(min=0, max=w) cropped_ymin = (ymin - box[1]).clamp(min=0, max=h) cropped_xmax = (xmax - box[0]).clamp(min=0, max=w) cropped_ymax = (ymax - box[1]).clamp(min=0, max=h) # TODO should I filter empty boxes here? if False: is_empty = (cropped_xmin == cropped_xmax) | (cropped_ymin == cropped_ymax) cropped_box = torch.cat( (cropped_xmin, cropped_ymin, cropped_xmax, cropped_ymax), dim=-1 ) bbox = BoxList(cropped_box, (w, h), mode="xyxy") # bbox._copy_extra_fields(self) for k, v in self.extra_fields.items(): if not isinstance(v, torch.Tensor): v = v.crop(box) bbox.add_field(k, v) return bbox.convert(self.mode) # Tensor-like methods def to(self, device): bbox = BoxList(self.bbox.to(device), self.size, self.mode) for k, v in self.extra_fields.items(): if hasattr(v, "to"): v = v.to(device) bbox.add_field(k, v) return bbox def __getitem__(self, item): bbox = BoxList(self.bbox[item], self.size, self.mode) for k, v in self.extra_fields.items(): bbox.add_field(k, v[item]) return bbox def __len__(self): return self.bbox.shape[0] def clip_to_image(self, remove_empty=True): TO_REMOVE = 1 self.bbox[:, 0].clamp_(min=0, max=self.size[0] - TO_REMOVE) self.bbox[:, 1].clamp_(min=0, max=self.size[1] - TO_REMOVE) self.bbox[:, 2].clamp_(min=0, max=self.size[0] - TO_REMOVE) self.bbox[:, 3].clamp_(min=0, max=self.size[1] - TO_REMOVE) if remove_empty: box = self.bbox keep = (box[:, 3] > box[:, 1]) & (box[:, 2] > box[:, 0]) return self[keep] return self def area(self): box = self.bbox if self.mode == "xyxy": TO_REMOVE = 1 area = (box[:, 2] - box[:, 0] + TO_REMOVE) * (box[:, 3] - box[:, 1] + TO_REMOVE) elif self.mode == "xywh": area = box[:, 2] * box[:, 3] else: raise RuntimeError("Should not be here") return area def copy_with_fields(self, fields, skip_missing=False): bbox = BoxList(self.bbox, self.size, self.mode) if not isinstance(fields, (list, tuple)): fields = [fields] for field in fields: if self.has_field(field): bbox.add_field(field, self.get_field(field)) elif not skip_missing: raise KeyError("Field '{}' not found in {}".format(field, self)) return bbox def __repr__(self): s = self.__class__.__name__ + "(" s += "num_boxes={}, ".format(len(self)) s += "image_width={}, ".format(self.size[0]) s += "image_height={}, ".format(self.size[1]) s += "mode={})".format(self.mode) return s if __name__ == "__main__": bbox = BoxList([[0, 0, 10, 10], [0, 0, 5, 5]], (10, 10)) s_bbox = bbox.resize((5, 5)) print(s_bbox) print(s_bbox.bbox) t_bbox = bbox.transpose(0) print(t_bbox) print(t_bbox.bbox)
d3d43b27d7acb7f4ee49fbfa29facced3a76ae40
06e39442f10e2b03bc09dbdd78382bb2446c37ec
/muscle/transcriptID.py
d6a9fee4dcd4cccfbc10e5fb58d4487bf393a14d
[]
no_license
ShinHyeok/Transcriptome
23c656c3af141330931008f2aede84a09e467b5a
793f1b88f5b7a0c8e8229e8009d7e732fe6f18a6
refs/heads/master
2021-01-19T04:48:37.793909
2017-05-29T08:11:21
2017-05-29T08:11:21
84,444,007
0
0
null
null
null
null
UTF-8
Python
false
false
656
py
import os import sys import re import gzip filename_tbl = sys.argv[1] filename_tbl2 = sys.argv[2] def diction(name): f = open(name,'r') table = [] for line in f: table.append(line) return table f_tbl = diction(filename_tbl) f_tbl2 = diction(filename_tbl2) f_p = open('mart_result.txt','w') for line in f_tbl: Pname = line.split()[2] Tid = line.split()[3] for line in f_tbl2: Gname = line.split()[0] Pname2 = line.split()[1] Tname = line.split()[2] Seq = line.split()[3] if Pname == Pname2: f_p.write(Tname + '\t' + Pname + '\t' + Tid + '\t' + Gname + '\t' + Seq + '\n') f_tbl.close() f_tbl2.close() f_p.close()
9071b7fc995efcb5ee62e5f8c9bb6686f81995ad
0dfa97730b9ad9c077868a045d89cc0d4b09f433
/tests/integration/goldens/logging/samples/generated_samples/logging_generated_logging_v2_metrics_service_v2_delete_log_metric_async.py
d0cc9d1c89b506c8ea260ed70f9f4a35d27fd0db
[ "Apache-2.0" ]
permissive
anukaal/gapic-generator-python
546c303aaf2e722956133b07abb0fb1fe581962f
e3b06895fa179a2038ee2b28e43054e1df617975
refs/heads/master
2023-08-24T23:16:32.305652
2021-10-09T15:12:14
2021-10-09T15:12:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,525
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Generated code. DO NOT EDIT! # # Snippet for DeleteLogMetric # NOTE: This snippet has been automatically generated for illustrative purposes only. # It may require modifications to work in your environment. # To install the latest published package dependency, execute the following: # python3 -m pip install google-cloud-logging # [START logging_generated_logging_v2_MetricsServiceV2_DeleteLogMetric_async] from google.cloud import logging_v2 async def sample_delete_log_metric(): """Snippet for delete_log_metric""" # Create a client client = logging_v2.MetricsServiceV2AsyncClient() # Initialize request argument(s) request = logging_v2.DeleteLogMetricRequest( metric_name="projects/{project}/metrics/{metric}", ) # Make the request response = await client.delete_log_metric(request=request) # [END logging_generated_logging_v2_MetricsServiceV2_DeleteLogMetric_async]
f8f65e196f11b269fde20070eede28542672537f
c90ddd0930894c565197b739cd76140a7151fffd
/HLTrigger/Configuration/python/HLT_75e33/modules/ticlTrackstersTrk_cfi.py
637619941b75d5432b2f17d0999e370ad953eef6
[ "Apache-2.0" ]
permissive
p2l1pfp/cmssw
9cc6b111ff1935e49f86ec3da9f9b84fb13bbcdf
9f0a3a22fe451c25114134c30ac1f5c1261f3183
refs/heads/L1PF_12_5_X
2023-08-17T00:38:15.374760
2023-06-13T12:55:57
2023-06-13T12:55:57
127,881,751
6
1
Apache-2.0
2023-09-05T13:54:59
2018-04-03T09:10:17
C++
UTF-8
Python
false
false
3,346
py
import FWCore.ParameterSet.Config as cms ticlTrackstersTrk = cms.EDProducer("TrackstersProducer", detector = cms.string('HGCAL'), filtered_mask = cms.InputTag("filteredLayerClustersTrk","Trk"), itername = cms.string('Trk'), layer_clusters = cms.InputTag("hgcalLayerClusters"), layer_clusters_hfnose_tiles = cms.InputTag("ticlLayerTileHFNose"), layer_clusters_tiles = cms.InputTag("ticlLayerTileProducer"), mightGet = cms.optional.untracked.vstring, original_mask = cms.InputTag("ticlTrackstersEM"), patternRecognitionBy = cms.string('CA'), pluginPatternRecognitionByCA = cms.PSet( algo_verbosity = cms.int32(2), eid_input_name = cms.string('input'), eid_min_cluster_energy = cms.double(1), eid_n_clusters = cms.int32(10), eid_n_layers = cms.int32(50), eid_output_name_energy = cms.string('output/regressed_energy'), eid_output_name_id = cms.string('output/id_probabilities'), energy_em_over_total_threshold = cms.double(-1), etaLimitIncreaseWindow = cms.double(2.1), filter_on_categories = cms.vint32(2, 4), max_delta_time = cms.double(-1.0), max_longitudinal_sigmaPCA = cms.double(9999), max_missing_layers_in_trackster = cms.int32(9999), max_out_in_hops = cms.int32(10), min_cos_pointing = cms.double(0.798), min_cos_theta = cms.double(0.866), min_layers_per_trackster = cms.int32(10), oneTracksterPerTrackSeed = cms.bool(True), out_in_dfs = cms.bool(True), pid_threshold = cms.double(0), promoteEmptyRegionToTrackster = cms.bool(True), root_doublet_max_distance_from_seed_squared = cms.double(9999), shower_start_max_layer = cms.int32(9999), siblings_maxRSquared = cms.vdouble(0.0006, 0.0006, 0.0006), skip_layers = cms.int32(3), type = cms.string('CA') ), pluginPatternRecognitionByCLUE3D = cms.PSet( algo_verbosity = cms.int32(0), criticalDensity = cms.double(4), criticalEtaPhiDistance = cms.double(0.035), densityEtaPhiDistanceSqr = cms.double(0.0008), densityOnSameLayer = cms.bool(False), densitySiblingLayers = cms.int32(3), eid_input_name = cms.string('input'), eid_min_cluster_energy = cms.double(1), eid_n_clusters = cms.int32(10), eid_n_layers = cms.int32(50), eid_output_name_energy = cms.string('output/regressed_energy'), eid_output_name_id = cms.string('output/id_probabilities'), minNumLayerCluster = cms.int32(5), outlierMultiplier = cms.double(2), type = cms.string('CLUE3D') ), pluginPatternRecognitionByFastJet = cms.PSet( algo_verbosity = cms.int32(0), antikt_radius = cms.double(0.09), eid_input_name = cms.string('input'), eid_min_cluster_energy = cms.double(1), eid_n_clusters = cms.int32(10), eid_n_layers = cms.int32(50), eid_output_name_energy = cms.string('output/regressed_energy'), eid_output_name_id = cms.string('output/id_probabilities'), minNumLayerCluster = cms.int32(5), type = cms.string('FastJet') ), seeding_regions = cms.InputTag("ticlSeedingTrk"), time_layerclusters = cms.InputTag("hgcalLayerClusters","timeLayerCluster") )
ba48e1bb69449eddda61785c1c0dff4ee0a4329e
9a824bfddb08124cb7b16547ca3f8115f1e7e3ea
/pgatour_stats/spiders/stats.py
f2063ddaa659b4bc2b1d9f4c053c49850109d2a9
[]
no_license
zachgoll/pga-tour-stats
5962c278f64e5d8a766e9eda9eede2b8f9489845
d32232bdc551d77f172e580f5a4d85e9f00badba
refs/heads/master
2021-01-19T15:47:57.729009
2017-08-21T16:33:31
2017-08-21T16:33:31
100,972,189
2
0
null
null
null
null
UTF-8
Python
false
false
1,453
py
# -*- coding: utf-8 -*- import scrapy class StatsSpider(scrapy.Spider): name = 'stats' allowed_domains = ['pgatour.com'] def start_requests(self): stat_list = ['102', '103', '02437', '077', '329', '328', '327', '326', '419', '111', '130', '364', '119', '398', '399', '400', '484', '403'] years = ['02', '03', '04', '05', '06', '07', '08', '09', '10', '11', '12', '13', '14', '15', '16'] urls = ["http://pgatour.com/stats/stat." + key + ".20" + year + ".html" for year in years for key in stat_list] for url in urls: yield scrapy.Request(url = url, callback=self.parse) def parse(self, response): current_year = response.url.split('.')[-2] stat_title = response.xpath('//h3/text()')[-1].extract() average_stat = response.xpath('//*[contains(concat( " ", @class, " " ), \ concat( " ", "hidden-medium", " " )) \ and (((count(preceding-sibling::*) + 1) = 5) \ and parent::*)]/text()').extract() yield { 'Year': current_year, 'Stat': stat_title, 'First': average_stat[1], 'Top 10': average_stat[10], 'Top 25': average_stat[25], 'Top 100': average_stat[100], 'Last': average_stat[-1] }
bc283f771a4640fa7909f233dfab7e97af46bcc3
64832dd1e64cfc6de83c5abf099461eda50f648c
/search_info/urls.py
8587eaf61ed78cf4f3127e201604c8459a092c05
[]
no_license
showzvan/mysite
d7e79e16eb8c2d3598d00d1a96fa0b1940765913
32826c83915a2f95440c04ed20a7800d2c343ac1
refs/heads/master
2020-04-27T17:05:19.143296
2019-03-08T09:09:45
2019-03-08T09:09:45
174,504,656
0
0
null
null
null
null
UTF-8
Python
false
false
423
py
#-*-coding:utf-8-*- from django.urls import path from . import views app_name = 'search_info' urlpatterns = [ path('search/',views.search,name='search'), path('search_school/',views.searchSchool,name='search_school'), path('search_major/',views.searchMajor,name='search_major'), path('search_center/',views.searchCenter,name='search_center'), path('search_news/',views.searchNews,name='search_news'), ]
bb92bdfa55269584e0c9e90ffa918be6f93794fa
1366178f97e850622aa11a4ff2482fe6c08b4e42
/tests/test_Game.py
b5b07b5b7ea69e4c1410a3ed8ef929dbcca468a5
[]
no_license
eczeno/tetrisish
31747d876b0cd6df1870dd10cbccb28e6b8aca38
672b5f0051b9291706138e4ff8aef87f013345e1
refs/heads/master
2022-11-07T05:56:19.254660
2020-05-20T21:48:25
2020-05-20T21:48:25
272,504,924
0
0
null
null
null
null
UTF-8
Python
false
false
331
py
#!/home/zeno/Desktop/tetris/.tetris/bin/python import pytest from tetris.tetris.tetris import Game @pytest.fixture def game(): return Game() def test_init(game): assert len(game.grid) == 20 for row in game.grid: assert len(row) == 10 def test_is_valid_space(game): assert game.is_valid_space() == True
80118693dae894623c5c482a3cc431b9122f0762
2e2196761689898433f876b6f331105925111a63
/test/api_test.py
de3a56a8c2e384ba4098181c277cfcf2ea603933
[ "MIT" ]
permissive
Cornode/cornode.lib.py
5b6b494bbd8bb5180a2c9b3f64763ffebc523369
866230123a62acc235ca8f46e7b59fe08655049b
refs/heads/master
2021-01-01T16:03:12.164937
2017-07-19T21:55:57
2017-07-19T21:55:57
97,764,404
0
0
null
null
null
null
UTF-8
Python
false
false
3,727
py
# coding=utf-8 from __future__ import absolute_import, division, print_function, \ unicode_literals from unittest import TestCase from cornode import InvalidCommand, Strictcornode from cornode.adapter import MockAdapter from cornode.commands import CustomCommand from cornode.commands.core.get_node_info import GetNodeInfoCommand class CustomCommandTestCase(TestCase): def setUp(self): super(CustomCommandTestCase, self).setUp() self.name = 'helloWorld' self.adapter = MockAdapter() self.command = CustomCommand(self.adapter, self.name) def test_call(self): """ Sending a custom command. """ expected_response = {'message': 'Hello, cornode!'} self.adapter.seed_response('helloWorld', expected_response) response = self.command() self.assertEqual(response, expected_response) self.assertTrue(self.command.called) self.assertListEqual( self.adapter.requests, [{'command': 'helloWorld'}], ) def test_call_with_parameters(self): """ Sending a custom command with parameters. """ expected_response = {'message': 'Hello, cornode!'} self.adapter.seed_response('helloWorld', expected_response) response = self.command(foo='bar', baz='luhrmann') self.assertEqual(response, expected_response) self.assertTrue(self.command.called) self.assertListEqual( self.adapter.requests, [{'command': 'helloWorld', 'foo': 'bar', 'baz': 'luhrmann'}], ) def test_call_error_already_called(self): """ A command can only be called once. """ self.adapter.seed_response('helloWorld', {}) self.command() with self.assertRaises(RuntimeError): self.command(extra='params') self.assertDictEqual(self.command.request, {'command': 'helloWorld'}) def test_call_reset(self): """ Resetting a command allows it to be called more than once. """ self.adapter.seed_response('helloWorld', {'message': 'Hello, cornode!'}) self.command() self.command.reset() self.assertFalse(self.command.called) self.assertIsNone(self.command.request) self.assertIsNone(self.command.response) expected_response = {'message': 'Welcome back!'} self.adapter.seed_response('helloWorld', expected_response) response = self.command(foo='bar') self.assertDictEqual(response, expected_response) self.assertDictEqual(self.command.response, expected_response) self.assertDictEqual( self.command.request, { 'command': 'helloWorld', 'foo': 'bar', }, ) class cornodeApiTestCase(TestCase): def test_init_with_uri(self): """ Passing a URI to the initializer instead of an adapter instance. """ api = Strictcornode('mock://') self.assertIsInstance(api.adapter, MockAdapter) def test_registered_command(self): """ Preparing a documented command. """ api = Strictcornode(MockAdapter()) # We just need to make sure the correct command type is # instantiated; individual commands have their own unit tests. command = api.getNodeInfo self.assertIsInstance(command, GetNodeInfoCommand) def test_unregistered_command(self): """ Attempting to create an unsupported command. """ api = Strictcornode(MockAdapter()) with self.assertRaises(InvalidCommand): # noinspection PyStatementEffect api.helloWorld def test_create_command(self): """ Preparing an experimental/undocumented command. """ api = Strictcornode(MockAdapter()) custom_command = api.create_command('helloWorld') self.assertIsInstance(custom_command, CustomCommand) self.assertEqual(custom_command.command, 'helloWorld')
6067d491a3ef3fd9da12894d2846e8b148516edb
e3a2a99e206a634ae5dac7f25874af0a822df6eb
/app/migrations/0003_auto_20200818_2130.py
e2010821fd9afb88f5dccbd4e19086b649741184
[]
no_license
rohanaj/serviceapp_in_django
4a7cd749cc29133d6d2a12b2dda1cd1ee86156a5
ee4a3dbab33d6fd18b00ff3eba36866defbae5de
refs/heads/master
2022-12-14T04:54:58.027306
2020-09-06T08:44:24
2020-09-06T08:44:24
293,230,926
0
0
null
null
null
null
UTF-8
Python
false
false
391
py
# Generated by Django 2.1 on 2020-08-18 16:00 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app', '0002_auto_20200818_2126'), ] operations = [ migrations.AlterField( model_name='status', name='status', field=models.CharField(max_length=30, null=True), ), ]
181d43e24181783eb5951926b783acdfaaa1d589
35ff4e124ea73cd2630ddf25dfe019b4b4e3f5d6
/1049_LastStonesWeightII/1.py
94da9316791ede57cc7e265f444bd5df23a4a344
[]
no_license
H-Cong/LeetCode
0a2084a4845b5d7fac67c89bd72a2adf49f90c3d
d00993a88c6b34fcd79d0a6580fde5c523a2741d
refs/heads/master
2023-03-19T15:22:00.971461
2021-03-11T00:33:00
2021-03-11T00:33:00
303,265,129
0
0
null
null
null
null
UTF-8
Python
false
false
384
py
class Solution: def lastStoneWeightII(self, stones: List[int]) -> int: dp, sumA = {0}, sum(stones) for a in stones: dp = {a + x for x in dp} | {a - x for x in dp} return min(abs(x) for x in dp) # TC: O(ns) # SC: O(s) # s is the sum of stones # ref: https://leetcode.com/problems/last-stone-weight-ii/discuss/296350/
16002a260cceaa3bef438cbf82267cb2d1d93396
863af1e966de7852537cc904a08589e83b0f8d63
/models/post.py
d49ded2c0d5cca916904e0af90521ae4a4253ad0
[]
no_license
kjannette/python-terminal-blog
6ce8b11bc14f5dc7868557d9ee406122f7509ff2
64ae318a09b4b7c20ca31a6c8959e528147b3b30
refs/heads/master
2020-04-09T14:37:45.473824
2018-12-04T18:41:20
2018-12-04T18:41:20
160,402,593
0
0
null
null
null
null
UTF-8
Python
false
false
1,394
py
import uuid from database import Database import datetime class Post(object): def __init__(self, blog_id, title, content, author, date=datetime.datetime.utcnow(), id=None): self.blog_id = blog_id self.title = title self.content = content self.author = author self.created_date = date self.id = uuid.uuid4().hex if id is None else id def save_to_mongo(self): Database.insert(collection='posts', data=self.json()) def json(self): return { 'id': self.id, 'blog_id': self.blog_id, 'author': self.author, 'content': self.content, 'title': self.title, 'created_date': self.created_date } @classmethod def from_mongo(cls, id): post_data = Database.find_one(collection='posts', query={'id': id}) return cls(blog_id=post_data['blog_id'], title=post_data['title'], content=post_data['content'], author=post_data['author'], date=post_data['created_date'], id=post_data['id']) @staticmethod def from_blog(id): return [post for post in Database.find(collection='posts', query={'blog_id': id})]
797ed167a297b3b88f382d4fdaf56f788fa28eb7
c9c1ac74238bd9ce8598af9ec4a52baae3cd4c26
/pkg/cm-vnc/DEBIAN/postinst
5b31b5c6d984e669c1aeb297de47e049b40fabb0
[ "Apache-2.0" ]
permissive
cloudcache/cc1
4dbd9b5931483eed2d62459546c502c2d0ceb513
360392995a8aea37573dd772d809a006b78f575b
refs/heads/master
2021-01-24T04:13:54.670317
2014-06-06T08:17:46
2014-06-06T08:17:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,249
#!/usr/bin/python import sys import subprocess if __name__ == '__main__': if 'configure' in sys.argv: print "CM-VNC: Removing old .pyc files" subprocess.call("find /usr/lib/cc1/cm-vnc -name '*.pyc' -exec rm {} \\;", shell=True) subprocess.call("find /etc/cc1/cm-vnc -name '*.pyc' -exec rm {} \\;", shell=True) log = open('/var/log/cc1/clm_install.log', 'a') print "CM-VNC: Creating cc1 user" r = subprocess.call('cc1_setup_user create', shell=True, stdout=log, stderr=log) print "CM-VNC: Changing permissions" subprocess.call("chown -R cc1:cc1 /var/log/cc1/", shell=True, stdout=log, stderr=log) subprocess.call("chown -R cc1:cc1 /var/lib/cc1/", shell=True, stdout=log, stderr=log) subprocess.call("chown -R cc1:cc1 /etc/cc1/cm-vnc/", shell=True, stdout=log, stderr=log) subprocess.call("chmod a+x /usr/lib/cc1/cm-vnc/proxy.py", shell=True, stdout=log, stderr=log) print "CM-VNC: Creating default config" r = subprocess.call('cc1_cm_vnc_setup_config configure', shell=True, stdout=log, stderr=log) log.close() sys.exit(0) else: print "Use cc1 tools (cc1_...) to reconfigure services!" sys.exit(1)
c4531a2be80f3ce661a9ae2665f908493de8ced1
d9c1b6a641a5a788475ea7540a10a6276ace52e3
/odev.py
73ba2086c4bedb2e08792e139a87d57e85a7b72a
[]
no_license
metogpc/TopAtisiAlgoritmasi
301988fba71e75e1012d38ecb41e5fbc2da8cd95
a192d77286cd3b4a2daebe0e5e1b51a8b424af27
refs/heads/main
2023-03-31T17:28:21.396260
2021-04-03T19:44:18
2021-04-03T19:44:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,028
py
def top_tipi(x): if x=='B' or x=='b': return 0.7 elif x=='F' or x=='f': return 0.75 elif x=='V' or x=='v': return 0.9 else: print(" HATALI GIRIS YAPTINIZ!!") return 0 def top_hareketi(yukseklik , ziplama , katsayi): if katsayi==0: print("") else: ziplama = 0 yukseklik *= 100 toplam_mesafe = yukseklik x = True while x: yukseklik = yukseklik * katsayi toplam_mesafe += 2 * yukseklik ziplama += 1 if yukseklik < 10: x = False print("---------------------------") print("Toplam mesafe " , toplam_mesafe/100) print("ziplama sayisi" , ziplama) while True: yukseklik=int(input("Bir yukselik giriniz(m):")) top=input("top tipini giriniz(B/F/V):")[0] ziplama=0 top_hareketi(yukseklik , ziplama , top_tipi(top))
607a984076b4324bbad05afbb43b085966e82315
b3389ac9da5d2d72545c556ebc0c43b5517a06be
/pyMD/builder/velocities.py
b2d8eebc96ce24302644a0fc0c10be28b53c05a5
[ "MIT" ]
permissive
king-michael/python_MD_engine
cefbcb95cd0b7e73547bc4b456501ea230fe6e84
4bbcb86722fc8eb071e7db9061d765f935f8990e
refs/heads/master
2021-05-25T20:47:32.263264
2020-04-22T12:27:36
2020-04-22T12:27:36
253,913,726
0
0
null
null
null
null
UTF-8
Python
false
false
2,518
py
import numpy as np class Velocities: constants = { 'LJ': {'mvv2e': 1.0, 'boltz' : 1.0}, 'real': {'mvv2e': 2390.0573615334906, 'boltz' : 0.0019872067}, 'metal': {'mvv2e': 0.00010364269, 'boltz' : 8.617343e-05}, } def __init__(self, n_atoms, masses, temperature, units='LJ'): self.n_atoms = n_atoms self.masses = masses self.temperature = temperature self.velocities = self.create_velocities(n_atoms, masses, temperature) @classmethod def calculate_temperature(self, velocities, masses, extra_dof=0, units='LJ'): dof = velocities.size - extra_dof mvv2e = self.constants[units]['mvv2e'] boltz = self.constants[units]['boltz'] if dof > 0: tfactor = mvv2e / (dof * boltz) else: tfactor = 0.0 temperature = np.sum(np.power(velocities, 2).T * masses) temperature*= tfactor return temperature @classmethod def create_velocities(self, n_atoms: int, masses: np.ndarray, temperature: float, mode : str = 'gaussian', extra_dof=0, units='LJ'): """ Parameters ---------- n_atoms : int masses : np.ndarray Mass array of shape (n_atoms) temperature : float Temperature mode : str, optional mode can be 'normal' or 'gaussian' Returns ------- """ assert len(masses) == n_atoms, "Number of masses does not match the number of atoms" velocities = np.zeros((3, n_atoms), dtype=np.float64) if mode == 'gaussian': velocities[:] = np.random.normal(size=velocities.size).reshape((3, -1, )) elif mode == 'normal': velocities[:] = np.random.random(velocities.size).reshape(3, -1) -0.5 else: raise UserWarning('unknown "mode". Use "normal" or "gaussian"') velocities *= 1.0 / np.sqrt(masses) t = self.calculate_temperature(velocities.T, masses, extra_dof=extra_dof, units=units) Velocities.rescale(velocities.T,t, temperature) return velocities.T @staticmethod def rescale(velocities: np.ndarray, t_old: float, t_new: float): factor = np.sqrt(t_new / t_old) velocities *= factor return velocities create_velocities = Velocities.create_velocities
470f72141f0edfb3d699e50200846aa70985df85
d02ca3ae92041b6710df6dbcc85b6d658b50a7f8
/xrpl/core/binarycodec/types/uint16.py
59d8b669d43676002129de39503aa088ae483c5f
[ "ISC", "LicenseRef-scancode-unknown-license-reference" ]
permissive
brettmollin/xrpl-py
70899d76e3fec82265ea4e9f24c842c4374d7bee
2877b789b1ec507934b3c422a26d859d94925e32
refs/heads/master
2023-03-31T15:56:19.625422
2021-03-30T22:15:07
2021-03-30T22:15:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,063
py
"""Class for serializing and deserializing a 16-bit UInt. See `UInt Fields <https://xrpl.org/serialization.html#uint-fields>`_ """ from __future__ import annotations from typing import Optional, Type from typing_extensions import Final from xrpl.core.binarycodec.binary_wrappers.binary_parser import BinaryParser from xrpl.core.binarycodec.exceptions import XRPLBinaryCodecException from xrpl.core.binarycodec.types.uint import UInt _WIDTH: Final[int] = 2 # 16 / 8 class UInt16(UInt): """Class for serializing and deserializing a 16-bit UInt. See `UInt Fields <https://xrpl.org/serialization.html#uint-fields>`_ """ def __init__(self: UInt16, buffer: bytes = bytes(_WIDTH)) -> None: """Construct a new UInt16 type from a ``bytes`` value.""" super().__init__(buffer) @classmethod def from_parser( cls: Type[UInt16], parser: BinaryParser, _length_hint: Optional[int] = None ) -> UInt16: """ Construct a new UInt16 type from a BinaryParser. Args: parser: The BinaryParser to construct a UInt16 from. Returns: The UInt16 constructed from parser. """ return cls(parser.read(_WIDTH)) @classmethod def from_value(cls: Type[UInt16], value: int) -> UInt16: """ Construct a new UInt16 type from a number. Args: value: The value to consutrct a UInt16 from. Returns: The UInt16 constructed from value. Raises: XRPLBinaryCodecException: If a UInt16 can't be constructed from value. """ if not isinstance(value, int): raise XRPLBinaryCodecException( "Invalid type to construct a UInt16: expected int, " "received {value.__class__.__name__}." ) if isinstance(value, int): value_bytes = (value).to_bytes(_WIDTH, byteorder="big", signed=False) return cls(value_bytes) raise XRPLBinaryCodecException("Cannot construct UInt16 from given value")
c61a3e871232e755e995d2c2ef6405f009116757
7d50b07303df1541ce98205bc08bf48a7e0177da
/Laba1.py
6b39d9bc6d1d5e3e31a46df3f352cd6a40cd5771
[]
no_license
sburov/Python_Lab
46995953235b21f09e78eb8b65ae5c3022e22d32
61167e44803fb6177d4b8adbde22a4ac8d30aeec
refs/heads/main
2023-03-11T05:07:10.267823
2021-02-28T20:46:42
2021-02-28T20:46:42
343,207,888
0
0
null
2021-02-28T21:07:53
2021-02-28T20:30:37
Python
UTF-8
Python
false
false
1,101
py
class Radiator: radiators_class = 'Heating' def __init__(self, thremal_power, color, manufacturer, wheelbase): self.thremal_power = thremal_power self.color = color self.manufacturer = manufacturer self.wheelbase = wheelbase def __del__(self): return def __str__(self): return "\tthremal_power: {}\n \tcolor: {}\n \tmanufacturer: {}\n \twheelbase: {}".format(self.thremal_power, self.color, self.manufacturer, self.wheelbase) @staticmethod def RadiatorsClass(): return Radiator.radiators_class if __name__ == "__main__": radiator1 = Radiator("158 Watt", "White", "China", "80 Millimeters") print("The first radiator:\n", radiator1.__str__()) radiator2 = Radiator("186 Watt", "Brown", "USA", "96 Millimeters") print("The second radiator:\n", radiator2.__str__()) radiator3 = Radiator("198 Watt", "Silver", "Canada", "80 Millimeters") print("The third radiator:\n", radiator3.__str__()) print("Class of radiators: ", radiator1.RadiatorsClass())
bf4c1f232d1638b7190899afbb63f2f82ad429d5
6fa01095cefd0b19886ad5a14a26b71c892e05ed
/GAN/gan.py
17c88665c929797bb8c549147678f8ba654bdce1
[]
no_license
pgilitwala/computer_vision
9d277bd6d0f8744498910d68c522401aed413fe0
c466849ce66b9c05e4e1a7237da5d16c32bde3af
refs/heads/master
2022-09-22T03:29:21.332641
2020-05-15T17:03:57
2020-05-15T17:03:57
262,562,446
0
0
null
null
null
null
UTF-8
Python
false
false
4,664
py
# -*- coding: utf-8 -*- from __future__ import print_function import torch import torch.nn as nn import torch.nn.parallel import torch.optim as optim import torch.utils.data import torchvision.datasets as dset import torchvision.transforms as transforms import torchvision.utils as vutils from torch.autograd import Variable batchSize = 64 imageSize = 64 transform = transforms.Compose([transforms.Scale(imageSize), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),]) # We create a list of transformations (scaling, tensor conversion, normalization) to apply to the input images. dataset = dset.CIFAR10(root="./data", download=True, transform=transform) dataloader = torch.utils.data.DataLoader(dataset, batch_size = batchSize, shuffle = True, num_workers = 2) # We use dataLoader to get the images of the training set batch by batch def weights_init(m): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(0.0, 0.02) elif classname.find("BatchNorm") != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) class G(nn.Module): def __init__(self): super(G, self).__init__() self.main = nn.Sequential( nn.ConvTranspose2d(100, 512, 4, 1, 0, bias=False), nn.BatchNorm2d(512), nn.ReLU(True), nn.ConvTranspose2d(512, 256, 4, 2, 1, bias=False), nn.BatchNorm2d(256), nn.ReLU(True), nn.ConvTranspose2d(256, 128, 4, 2, 1, bias=False), nn.BatchNorm2d(128), nn.ReLU(True), nn.ConvTranspose2d(128, 64, 4, 2, 1, bias=False), nn.BatchNorm2d(64), nn.ReLU(True), nn.ConvTranspose2d(64, 3, 4, 2, 1, bias=False), nn.Tanh() ) def forward(self, input): output = self.main(input) return output netG = G() netG.apply(weights_init()) class D(nn.Module): def __init__(self): super(D, self).__init__() self.main = nn.Sequential( nn.Conv2d(3, 64, 4,2,1,bias=False), nn.LeakyReLU(0.2, True), nn.Conv2d(64, 128, 4, 2, 1, bias=False), nn.BatchNorm2d(128), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(128, 256, 4, 2, 1, bias=False), nn.BatchNorm2d(256), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(256, 512, 4, 2, 1, bias=False), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 1, 4, 1, 0, bias=False), nn.Sigmoid() ) def forward(self, input): output = self.main(input) return output.view(-1) netD = D() netD.apply(weights_init) criterion = nn.BCELoss() optimizerD = optim.Adam(netD.parameters(), lr=0.0002, betas=(0.5, 0.999)) optimizerG = optim.Adam(netG.parameters(), lr=0.0002, betas=(0.5, 0.999)) for epoch in range(25): for i, data in enumerate(dataloader, 0): netD.zero_grad() real, _ = data inputv = Variable(real) target = Variable(torch.ones(inputv.size()[0])) output = netD(inputv) errD_real = criterion(output, target) noise = Variable(torch.randn(inputv.size()[0], 100, 1, 1)) fake = netG(noise) target = Variable(torch.zeros(inputv.size()[0])) output = netD(fake.detach()) errD_fake = criterion(output, target) errD = errD_fake + errD_real errD.backward() optimizerD.step() netG.zero_grad() target = Variable(torch.ones(inputv.size()[0])) output = netD(fake) errG = criterion(output, target) errG.backward() optimizerG.step() print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f' % (epoch, 25, i, len(dataloader), errD.data[0], errG.data[0])) # We print les losses of the discriminator (Loss_D) and the generator (Loss_G). if i%100 == 0: vutils.save_image(real, '%s/real_samples.png' % "./results", normalize = True) # We save the real images of the minibatch. fake = netG(noise) # We get our fake generated images. vutils.save_image(fake.data, '%s/fake_samples_epoch_%03d.png' % ("./results", epoch), normalize = True) # We also save the fake generated images of the minibatch.
e52f3d87bb4a8c0bb6b141804dc039c4f7dfb913
54a0e9b2388671c6bb2f41fdc3fccf20eefed0a7
/workspace/migrations/0018_auto_20200425_2100.py
d54a42f48bba5aae34d04956dfb4a2f1b58099da
[]
no_license
shumnyj/TeacherWorkSpace
3a570d18e2abbb370303a82c5e5d14304004199b
1dd7e760c4e09fc7305313a21f3a3df18ba6729c
refs/heads/master
2021-05-23T12:51:14.926420
2020-05-27T17:09:24
2020-05-27T17:09:24
253,289,246
0
0
null
null
null
null
UTF-8
Python
false
false
573
py
# Generated by Django 2.2.5 on 2020-04-25 18:00 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('workspace', '0017_auto_20200424_2042'), ] operations = [ migrations.AlterField( model_name='controlentity', name='date_created', field=models.DateField(auto_now_add=True), ), migrations.AlterField( model_name='notification', name='created', field=models.DateTimeField(auto_now_add=True), ), ]
3309d54321ed3a037a8ea55aa4d15f22c82f19e7
e2a2c12cde1cc8afbb0a1687609e65b4029bc146
/deep/web/creds.py
84c69ade9bba7f47efb37ffb0c978b569ac6d26c
[]
no_license
MoysheBenRabi/lod_2020
3426cd25eeedafcd9857c152a05fbb93aba60b14
0bf38c7980717b52f3bf5791f8d40a7b8cdf08b0
refs/heads/master
2022-12-10T17:55:35.718300
2020-08-23T05:23:40
2020-08-23T05:23:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
559
py
""" @file config.py @brief read config in single place @details Copyright (c) @author Nikolay Vovk @since $Id: $ """ import requests import json from urllib.parse import quote_plus from tornado.web import RequestHandler, Application, StaticFileHandler from tornado_http_auth import DigestAuthMixin, BasicAuthMixin, auth_required import web.logs as logs DBG = logs.DBG ERR = logs.ERR import web.db as db import web.config as config cfg = config.read() credentials = cfg.get('credentials', { 'user1': 'pass1', 'user2': 'pass2', })
abc0011dbfb4ab488f7e3be8d5c79270e819b9c9
9cdab664a653b70d61d4d453d5fd3e1e5f37af62
/88.py
995361b2221cf9dbebbdbb54e6a870be1921fe18
[]
no_license
Devikd/devi
5ca77ad2a60470b470434cd13c1cbf87757ec0f1
60f0f7cdb09c43456003f47c837a494545c19e7f
refs/heads/master
2020-12-25T15:17:40.053844
2019-01-23T06:32:24
2019-01-23T06:32:24
66,335,503
0
1
null
null
null
null
UTF-8
Python
false
false
212
py
xx1,yy1=map(int,input().split(' ')) if xx1 > yy1: great = xx1 else: great = yy1 while(True): if((great % xx1 == 0) and (great % yy1 == 0)): lcm = great break great += 1 print(lcm)
a9aef3c9172ccf1a9be03463c66bcb1e40763907
f9c4045579889334fbb2368811da425a9e25c997
/source/drivers/power_method.py
e2dcc01c83a4ba57f6926d5c264a5469de6c6be0
[]
no_license
adityaramesh/svhn_experiments
a8ab6e67501d45b0fb532a2d2de23ada2107c63d
2560ed75f7a04fc7b4347e53d7a638100030d4ab
refs/heads/master
2016-09-05T11:28:13.246696
2015-07-18T05:00:26
2015-07-18T05:00:26
35,318,254
0
0
null
null
null
null
UTF-8
Python
false
false
459
py
import math import numpy as np from numpy.linalg import norm def max_eig(A): assert(len(A.shape) == 2) v = np.random.rand(A.shape[1]) for _ in range(1, 20): u = np.copy(v) v = A.dot(v) print(math.acos(u.dot(v) / (norm(u) * norm(v)))) v = v / norm(v) print(v) return v def main(): A = np.array([[2, -12], [1, -5]]) max_eig(A) print(np.linalg.eig(A)) if __name__ == "__main__": main()
067964cf776ed35f58639284268c0bef6e90517b
b3b443f0bc49bbb10c26b51fe89e6860d4ca3d3a
/venv/Lib/site-packages/tqdm/std.py
14ab11a0a8925fb0c62d034778a7727f705ee902
[ "MIT" ]
permissive
naveens33/ctreport-selenium
6b3a1cc93a6741a1d493c2452c1cf56c6d85c052
9553b5c4b8deb52e46cf0fb3e1ea7092028cf090
refs/heads/master
2022-12-23T04:55:12.226339
2020-08-29T19:22:00
2020-08-29T19:22:00
228,779,087
2
2
MIT
2022-12-18T22:53:51
2019-12-18T07:03:39
Python
UTF-8
Python
false
false
55,546
py
""" Customisable progressbar decorator for iterators. Includes a default (x)range iterator printing to stderr. Usage: >>> from tqdm import trange[, tqdm] >>> for i in trange(10): #same as: for i in tqdm(xrange(10)) ... ... """ from __future__ import absolute_import, division # compatibility functions and utilities from .utils import _supports_unicode, _environ_cols_wrapper, _range, _unich, \ _term_move_up, _unicode, WeakSet, _basestring, _OrderedDict, \ Comparable, _is_ascii, FormatReplace, disp_len, disp_trim, \ SimpleTextIOWrapper, CallbackIOWrapper from ._monitor import TMonitor # native libraries from contextlib import contextmanager import sys from numbers import Number from time import time # For parallelism safety import threading as th from warnings import warn __author__ = {"github.com/": ["noamraph", "obiwanus", "kmike", "hadim", "casperdcl", "lrq3000"]} __all__ = ['tqdm', 'trange', 'TqdmTypeError', 'TqdmKeyError', 'TqdmWarning', 'TqdmExperimentalWarning', 'TqdmDeprecationWarning', 'TqdmMonitorWarning'] class TqdmTypeError(TypeError): pass class TqdmKeyError(KeyError): pass class TqdmWarning(Warning): """base class for all tqdm warnings. Used for non-external-code-breaking errors, such as garbled printing. """ def __init__(self, msg, fp_write=None, *a, **k): if fp_write is not None: fp_write("\n" + self.__class__.__name__ + ": " + str(msg).rstrip() + '\n') else: super(TqdmWarning, self).__init__(msg, *a, **k) class TqdmExperimentalWarning(TqdmWarning, FutureWarning): """beta feature, unstable API and behaviour""" pass class TqdmDeprecationWarning(TqdmWarning, DeprecationWarning): # not suppressed if raised pass class TqdmMonitorWarning(TqdmWarning, RuntimeWarning): """tqdm monitor errors which do not affect external functionality""" pass class TqdmDefaultWriteLock(object): """ Provide a default write lock for thread and multiprocessing safety. Works only on platforms supporting `fork` (so Windows is excluded). You must initialise a `tqdm` or `TqdmDefaultWriteLock` instance before forking in order for the write lock to work. On Windows, you need to supply the lock from the parent to the children as an argument to joblib or the parallelism lib you use. """ def __init__(self): # Create global parallelism locks to avoid racing issues with parallel # bars works only if fork available (Linux/MacOSX, but not Windows) self.create_mp_lock() self.create_th_lock() cls = type(self) self.locks = [lk for lk in [cls.mp_lock, cls.th_lock] if lk is not None] def acquire(self, *a, **k): for lock in self.locks: lock.acquire(*a, **k) def release(self): for lock in self.locks[::-1]: # Release in inverse order of acquisition lock.release() def __enter__(self): self.acquire() def __exit__(self, *exc): self.release() @classmethod def create_mp_lock(cls): if not hasattr(cls, 'mp_lock'): try: from multiprocessing import RLock cls.mp_lock = RLock() # multiprocessing lock except ImportError: # pragma: no cover cls.mp_lock = None except OSError: # pragma: no cover cls.mp_lock = None @classmethod def create_th_lock(cls): if not hasattr(cls, 'th_lock'): try: cls.th_lock = th.RLock() # thread lock except OSError: # pragma: no cover cls.th_lock = None # Create a thread lock before instantiation so that no setup needs to be done # before running in a multithreaded environment. # Do not create the multiprocessing lock because it sets the multiprocessing # context and does not allow the user to use 'spawn' or 'forkserver' methods. TqdmDefaultWriteLock.create_th_lock() class Bar(object): """ `str.format`-able bar with format specifiers: `[width][type]` - `width` + unspecified (default): use `self.default_len` + `int >= 0`: overrides `self.default_len` + `int < 0`: subtract from `self.default_len` - `type` + `a`: ascii (`charset=self.ASCII` override) + `u`: unicode (`charset=self.UTF` override) + `b`: blank (`charset=" "` override) """ ASCII = " 123456789#" UTF = u" " + u''.join(map(_unich, range(0x258F, 0x2587, -1))) BLANK = " " def __init__(self, frac, default_len=10, charset=UTF): if not (0 <= frac <= 1): warn("clamping frac to range [0, 1]", TqdmWarning, stacklevel=2) frac = max(0, min(1, frac)) assert default_len > 0 self.frac = frac self.default_len = default_len self.charset = charset def __format__(self, format_spec): if format_spec: _type = format_spec[-1].lower() try: charset = dict(a=self.ASCII, u=self.UTF, b=self.BLANK)[_type] except KeyError: charset = self.charset else: format_spec = format_spec[:-1] if format_spec: N_BARS = int(format_spec) if N_BARS < 0: N_BARS += self.default_len else: N_BARS = self.default_len else: charset = self.charset N_BARS = self.default_len nsyms = len(charset) - 1 bar_length, frac_bar_length = divmod( int(self.frac * N_BARS * nsyms), nsyms) bar = charset[-1] * bar_length frac_bar = charset[frac_bar_length] # whitespace padding if bar_length < N_BARS: return bar + frac_bar + \ charset[0] * (N_BARS - bar_length - 1) return bar class tqdm(Comparable): """ Decorate an iterable object, returning an iterator which acts exactly like the original iterable, but prints a dynamically updating progressbar every time a value is requested. """ monitor_interval = 10 # set to 0 to disable the thread monitor = None @staticmethod def format_sizeof(num, suffix='', divisor=1000): """ Formats a number (greater than unity) with SI Order of Magnitude prefixes. Parameters ---------- num : float Number ( >= 1) to format. suffix : str, optional Post-postfix [default: '']. divisor : float, optional Divisor between prefixes [default: 1000]. Returns ------- out : str Number with Order of Magnitude SI unit postfix. """ for unit in ['', 'k', 'M', 'G', 'T', 'P', 'E', 'Z']: if abs(num) < 999.5: if abs(num) < 99.95: if abs(num) < 9.995: return '{0:1.2f}'.format(num) + unit + suffix return '{0:2.1f}'.format(num) + unit + suffix return '{0:3.0f}'.format(num) + unit + suffix num /= divisor return '{0:3.1f}Y'.format(num) + suffix @staticmethod def format_interval(t): """ Formats a number of seconds as a clock time, [H:]MM:SS Parameters ---------- t : int Number of seconds. Returns ------- out : str [H:]MM:SS """ mins, s = divmod(int(t), 60) h, m = divmod(mins, 60) if h: return '{0:d}:{1:02d}:{2:02d}'.format(h, m, s) else: return '{0:02d}:{1:02d}'.format(m, s) @staticmethod def format_num(n): """ Intelligent scientific notation (.3g). Parameters ---------- n : int or float or Numeric A Number. Returns ------- out : str Formatted number. """ f = '{0:.3g}'.format(n).replace('+0', '+').replace('-0', '-') n = str(n) return f if len(f) < len(n) else n @staticmethod def ema(x, mu=None, alpha=0.3): """ Exponential moving average: smoothing to give progressively lower weights to older values. Parameters ---------- x : float New value to include in EMA. mu : float, optional Previous EMA value. alpha : float, optional Smoothing factor in range [0, 1], [default: 0.3]. Increase to give more weight to recent values. Ranges from 0 (yields mu) to 1 (yields x). """ return x if mu is None else (alpha * x) + (1 - alpha) * mu @staticmethod def status_printer(file): """ Manage the printing and in-place updating of a line of characters. Note that if the string is longer than a line, then in-place updating may not work (it will print a new line at each refresh). """ fp = file fp_flush = getattr(fp, 'flush', lambda: None) # pragma: no cover def fp_write(s): fp.write(_unicode(s)) fp_flush() last_len = [0] def print_status(s): len_s = len(s) fp_write('\r' + s + (' ' * max(last_len[0] - len_s, 0))) last_len[0] = len_s return print_status @staticmethod def format_meter(n, total, elapsed, ncols=None, prefix='', ascii=False, unit='it', unit_scale=False, rate=None, bar_format=None, postfix=None, unit_divisor=1000, **extra_kwargs): """ Return a string-based progress bar given some parameters Parameters ---------- n : int or float Number of finished iterations. total : int or float The expected total number of iterations. If meaningless (None), only basic progress statistics are displayed (no ETA). elapsed : float Number of seconds passed since start. ncols : int, optional The width of the entire output message. If specified, dynamically resizes `{bar}` to stay within this bound [default: None]. If `0`, will not print any bar (only stats). The fallback is `{bar:10}`. prefix : str, optional Prefix message (included in total width) [default: '']. Use as {desc} in bar_format string. ascii : bool, optional or str, optional If not set, use unicode (smooth blocks) to fill the meter [default: False]. The fallback is to use ASCII characters " 123456789#". unit : str, optional The iteration unit [default: 'it']. unit_scale : bool or int or float, optional If 1 or True, the number of iterations will be printed with an appropriate SI metric prefix (k = 10^3, M = 10^6, etc.) [default: False]. If any other non-zero number, will scale `total` and `n`. rate : float, optional Manual override for iteration rate. If [default: None], uses n/elapsed. bar_format : str, optional Specify a custom bar string formatting. May impact performance. [default: '{l_bar}{bar}{r_bar}'], where l_bar='{desc}: {percentage:3.0f}%|' and r_bar='| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, ' '{rate_fmt}{postfix}]' Possible vars: l_bar, bar, r_bar, n, n_fmt, total, total_fmt, percentage, elapsed, elapsed_s, ncols, desc, unit, rate, rate_fmt, rate_noinv, rate_noinv_fmt, rate_inv, rate_inv_fmt, postfix, unit_divisor, remaining, remaining_s. Note that a trailing ": " is automatically removed after {desc} if the latter is empty. postfix : *, optional Similar to `prefix`, but placed at the end (e.g. for additional stats). Note: postfix is usually a string (not a dict) for this method, and will if possible be set to postfix = ', ' + postfix. However other types are supported (#382). unit_divisor : float, optional [default: 1000], ignored unless `unit_scale` is True. Returns ------- out : Formatted meter and stats, ready to display. """ # sanity check: total if total and n >= (total + 0.5): # allow float imprecision (#849) total = None # apply custom scale if necessary if unit_scale and unit_scale not in (True, 1): if total: total *= unit_scale n *= unit_scale if rate: rate *= unit_scale # by default rate = 1 / self.avg_time unit_scale = False elapsed_str = tqdm.format_interval(elapsed) # if unspecified, attempt to use rate = average speed # (we allow manual override since predicting time is an arcane art) if rate is None and elapsed: rate = n / elapsed inv_rate = 1 / rate if rate else None format_sizeof = tqdm.format_sizeof rate_noinv_fmt = ((format_sizeof(rate) if unit_scale else '{0:5.2f}'.format(rate)) if rate else '?') + unit + '/s' rate_inv_fmt = ((format_sizeof(inv_rate) if unit_scale else '{0:5.2f}'.format(inv_rate)) if inv_rate else '?') + 's/' + unit rate_fmt = rate_inv_fmt if inv_rate and inv_rate > 1 else rate_noinv_fmt if unit_scale: n_fmt = format_sizeof(n, divisor=unit_divisor) total_fmt = format_sizeof(total, divisor=unit_divisor) \ if total is not None else '?' else: n_fmt = str(n) total_fmt = str(total) if total is not None else '?' try: postfix = ', ' + postfix if postfix else '' except TypeError: pass remaining = (total - n) / rate if rate and total else 0 remaining_str = tqdm.format_interval(remaining) if rate else '?' # format the stats displayed to the left and right sides of the bar if prefix: # old prefix setup work around bool_prefix_colon_already = (prefix[-2:] == ": ") l_bar = prefix if bool_prefix_colon_already else prefix + ": " else: l_bar = '' r_bar = '| {0}/{1} [{2}<{3}, {4}{5}]'.format( n_fmt, total_fmt, elapsed_str, remaining_str, rate_fmt, postfix) # Custom bar formatting # Populate a dict with all available progress indicators format_dict = dict( # slight extension of self.format_dict n=n, n_fmt=n_fmt, total=total, total_fmt=total_fmt, elapsed=elapsed_str, elapsed_s=elapsed, ncols=ncols, desc=prefix or '', unit=unit, rate=inv_rate if inv_rate and inv_rate > 1 else rate, rate_fmt=rate_fmt, rate_noinv=rate, rate_noinv_fmt=rate_noinv_fmt, rate_inv=inv_rate, rate_inv_fmt=rate_inv_fmt, postfix=postfix, unit_divisor=unit_divisor, # plus more useful definitions remaining=remaining_str, remaining_s=remaining, l_bar=l_bar, r_bar=r_bar, **extra_kwargs) # total is known: we can predict some stats if total: # fractional and percentage progress frac = n / total percentage = frac * 100 l_bar += '{0:3.0f}%|'.format(percentage) if ncols == 0: return l_bar[:-1] + r_bar[1:] format_dict.update(l_bar=l_bar) if bar_format: format_dict.update(percentage=percentage) # auto-remove colon for empty `desc` if not prefix: bar_format = bar_format.replace("{desc}: ", '') else: bar_format = "{l_bar}{bar}{r_bar}" full_bar = FormatReplace() try: nobar = bar_format.format(bar=full_bar, **format_dict) except UnicodeEncodeError: bar_format = _unicode(bar_format) nobar = bar_format.format(bar=full_bar, **format_dict) if not full_bar.format_called: # no {bar}, we can just format and return return nobar # Formatting progress bar space available for bar's display full_bar = Bar( frac, max(1, ncols - disp_len(nobar)) if ncols else 10, charset=Bar.ASCII if ascii is True else ascii or Bar.UTF) if not _is_ascii(full_bar.charset) and _is_ascii(bar_format): bar_format = _unicode(bar_format) res = bar_format.format(bar=full_bar, **format_dict) return disp_trim(res, ncols) if ncols else res elif bar_format: # user-specified bar_format but no total l_bar += '|' format_dict.update(l_bar=l_bar, percentage=0) full_bar = FormatReplace() nobar = bar_format.format(bar=full_bar, **format_dict) if not full_bar.format_called: return nobar full_bar = Bar( 0, max(1, ncols - disp_len(nobar)) if ncols else 10, charset=Bar.BLANK) res = bar_format.format(bar=full_bar, **format_dict) return disp_trim(res, ncols) if ncols else res else: # no total: no progressbar, ETA, just progress stats return ((prefix + ": ") if prefix else '') + \ '{0}{1} [{2}, {3}{4}]'.format( n_fmt, unit, elapsed_str, rate_fmt, postfix) def __new__(cls, *args, **kwargs): # Create a new instance instance = object.__new__(cls) # Construct the lock if it does not exist with cls.get_lock(): # Add to the list of instances if not hasattr(cls, '_instances'): cls._instances = WeakSet() cls._instances.add(instance) # Create the monitoring thread if cls.monitor_interval and (cls.monitor is None or not cls.monitor.report()): try: cls.monitor = TMonitor(cls, cls.monitor_interval) except Exception as e: # pragma: nocover warn("tqdm:disabling monitor support" " (monitor_interval = 0) due to:\n" + str(e), TqdmMonitorWarning, stacklevel=2) cls.monitor_interval = 0 # Return the instance return instance @classmethod def _get_free_pos(cls, instance=None): """Skips specified instance.""" positions = set(abs(inst.pos) for inst in cls._instances if inst is not instance and hasattr(inst, "pos")) return min(set(range(len(positions) + 1)).difference(positions)) @classmethod def _decr_instances(cls, instance): """ Remove from list and reposition other bars so that newer bars won't overlap previous bars """ with cls._lock: try: cls._instances.remove(instance) except KeyError: # if not instance.gui: # pragma: no cover # raise pass # py2: maybe magically removed already # else: if not instance.gui: for inst in cls._instances: # negative `pos` means fixed if hasattr(inst, "pos") and inst.pos > abs(instance.pos): inst.clear(nolock=True) inst.pos -= 1 # TODO: check this doesn't overwrite another fixed bar # Kill monitor if no instances are left if not cls._instances and cls.monitor: try: cls.monitor.exit() del cls.monitor except AttributeError: # pragma: nocover pass else: cls.monitor = None @classmethod def write(cls, s, file=None, end="\n", nolock=False): """Print a message via tqdm (without overlap with bars).""" fp = file if file is not None else sys.stdout with cls.external_write_mode(file=file, nolock=nolock): # Write the message fp.write(s) fp.write(end) @classmethod @contextmanager def external_write_mode(cls, file=None, nolock=False): """ Disable tqdm within context and refresh tqdm when exits. Useful when writing to standard output stream """ fp = file if file is not None else sys.stdout if not nolock: cls.get_lock().acquire() # Clear all bars inst_cleared = [] for inst in getattr(cls, '_instances', []): # Clear instance if in the target output file # or if write output + tqdm output are both either # sys.stdout or sys.stderr (because both are mixed in terminal) if hasattr(inst, "start_t") and (inst.fp == fp or all( f in (sys.stdout, sys.stderr) for f in (fp, inst.fp))): inst.clear(nolock=True) inst_cleared.append(inst) yield # Force refresh display of bars we cleared for inst in inst_cleared: inst.refresh(nolock=True) if not nolock: cls._lock.release() @classmethod def set_lock(cls, lock): """Set the global lock.""" cls._lock = lock @classmethod def get_lock(cls): """Get the global lock. Construct it if it does not exist.""" if not hasattr(cls, '_lock'): cls._lock = TqdmDefaultWriteLock() return cls._lock @classmethod def pandas(tclass, *targs, **tkwargs): """ Registers the given `tqdm` class with pandas.core. ( frame.DataFrame | series.Series | groupby.(generic.)DataFrameGroupBy | groupby.(generic.)SeriesGroupBy ).progress_apply A new instance will be create every time `progress_apply` is called, and each instance will automatically close() upon completion. Parameters ---------- targs, tkwargs : arguments for the tqdm instance Examples -------- >>> import pandas as pd >>> import numpy as np >>> from tqdm import tqdm >>> from tqdm.gui import tqdm as tqdm_gui >>> >>> df = pd.DataFrame(np.random.randint(0, 100, (100000, 6))) >>> tqdm.pandas(ncols=50) # can use tqdm_gui, optional kwargs, etc >>> # Now you can use `progress_apply` instead of `apply` >>> df.groupby(0).progress_apply(lambda x: x**2) References ---------- https://stackoverflow.com/questions/18603270/ progress-indicator-during-pandas-operations-python """ from pandas.core.frame import DataFrame from pandas.core.series import Series try: from pandas import Panel except ImportError: # TODO: pandas>0.25.2 Panel = None try: # pandas>=0.18.0 from pandas.core.window import _Rolling_and_Expanding except ImportError: # pragma: no cover _Rolling_and_Expanding = None try: # pandas>=0.25.0 from pandas.core.groupby.generic import DataFrameGroupBy, \ SeriesGroupBy # , NDFrameGroupBy except ImportError: try: # pandas>=0.23.0 from pandas.core.groupby.groupby import DataFrameGroupBy, \ SeriesGroupBy except ImportError: from pandas.core.groupby import DataFrameGroupBy, \ SeriesGroupBy try: # pandas>=0.23.0 from pandas.core.groupby.groupby import GroupBy except ImportError: from pandas.core.groupby import GroupBy try: # pandas>=0.23.0 from pandas.core.groupby.groupby import PanelGroupBy except ImportError: try: from pandas.core.groupby import PanelGroupBy except ImportError: # pandas>=0.25.0 PanelGroupBy = None deprecated_t = [tkwargs.pop('deprecated_t', None)] def inner_generator(df_function='apply'): def inner(df, func, *args, **kwargs): """ Parameters ---------- df : (DataFrame|Series)[GroupBy] Data (may be grouped). func : function To be applied on the (grouped) data. **kwargs : optional Transmitted to `df.apply()`. """ # Precompute total iterations total = tkwargs.pop("total", getattr(df, 'ngroups', None)) if total is None: # not grouped if df_function == 'applymap': total = df.size elif isinstance(df, Series): total = len(df) elif _Rolling_and_Expanding is None or \ not isinstance(df, _Rolling_and_Expanding): # DataFrame or Panel axis = kwargs.get('axis', 0) if axis == 'index': axis = 0 elif axis == 'columns': axis = 1 # when axis=0, total is shape[axis1] total = df.size // df.shape[axis] # Init bar if deprecated_t[0] is not None: t = deprecated_t[0] deprecated_t[0] = None else: t = tclass(*targs, total=total, **tkwargs) if len(args) > 0: # *args intentionally not supported (see #244, #299) TqdmDeprecationWarning( "Except func, normal arguments are intentionally" + " not supported by" + " `(DataFrame|Series|GroupBy).progress_apply`." + " Use keyword arguments instead.", fp_write=getattr(t.fp, 'write', sys.stderr.write)) try: func = df._is_builtin_func(func) except TypeError: pass # Define bar updating wrapper def wrapper(*args, **kwargs): # update tbar correctly # it seems `pandas apply` calls `func` twice # on the first column/row to decide whether it can # take a fast or slow code path; so stop when t.total==t.n t.update(n=1 if not t.total or t.n < t.total else 0) return func(*args, **kwargs) # Apply the provided function (in **kwargs) # on the df using our wrapper (which provides bar updating) result = getattr(df, df_function)(wrapper, **kwargs) # Close bar and return pandas calculation result t.close() return result return inner # Monkeypatch pandas to provide easy methods # Enable custom tqdm progress in pandas! Series.progress_apply = inner_generator() SeriesGroupBy.progress_apply = inner_generator() Series.progress_map = inner_generator('map') SeriesGroupBy.progress_map = inner_generator('map') DataFrame.progress_apply = inner_generator() DataFrameGroupBy.progress_apply = inner_generator() DataFrame.progress_applymap = inner_generator('applymap') if Panel is not None: Panel.progress_apply = inner_generator() if PanelGroupBy is not None: PanelGroupBy.progress_apply = inner_generator() GroupBy.progress_apply = inner_generator() GroupBy.progress_aggregate = inner_generator('aggregate') GroupBy.progress_transform = inner_generator('transform') if _Rolling_and_Expanding is not None: # pragma: no cover _Rolling_and_Expanding.progress_apply = inner_generator() def __init__(self, iterable=None, desc=None, total=None, leave=True, file=None, ncols=None, mininterval=0.1, maxinterval=10.0, miniters=None, ascii=None, disable=False, unit='it', unit_scale=False, dynamic_ncols=False, smoothing=0.3, bar_format=None, initial=0, position=None, postfix=None, unit_divisor=1000, write_bytes=None, lock_args=None, gui=False, **kwargs): """ Parameters ---------- iterable : iterable, optional Iterable to decorate with a progressbar. Leave blank to manually manage the updates. desc : str, optional Prefix for the progressbar. total : int or float, optional The number of expected iterations. If unspecified, len(iterable) is used if possible. If float("inf") or as a last resort, only basic progress statistics are displayed (no ETA, no progressbar). If `gui` is True and this parameter needs subsequent updating, specify an initial arbitrary large positive number, e.g. 9e9. leave : bool, optional If [default: True], keeps all traces of the progressbar upon termination of iteration. If `None`, will leave only if `position` is `0`. file : `io.TextIOWrapper` or `io.StringIO`, optional Specifies where to output the progress messages (default: sys.stderr). Uses `file.write(str)` and `file.flush()` methods. For encoding, see `write_bytes`. ncols : int, optional The width of the entire output message. If specified, dynamically resizes the progressbar to stay within this bound. If unspecified, attempts to use environment width. The fallback is a meter width of 10 and no limit for the counter and statistics. If 0, will not print any meter (only stats). mininterval : float, optional Minimum progress display update interval [default: 0.1] seconds. maxinterval : float, optional Maximum progress display update interval [default: 10] seconds. Automatically adjusts `miniters` to correspond to `mininterval` after long display update lag. Only works if `dynamic_miniters` or monitor thread is enabled. miniters : int or float, optional Minimum progress display update interval, in iterations. If 0 and `dynamic_miniters`, will automatically adjust to equal `mininterval` (more CPU efficient, good for tight loops). If > 0, will skip display of specified number of iterations. Tweak this and `mininterval` to get very efficient loops. If your progress is erratic with both fast and slow iterations (network, skipping items, etc) you should set miniters=1. ascii : bool or str, optional If unspecified or False, use unicode (smooth blocks) to fill the meter. The fallback is to use ASCII characters " 123456789#". disable : bool, optional Whether to disable the entire progressbar wrapper [default: False]. If set to None, disable on non-TTY. unit : str, optional String that will be used to define the unit of each iteration [default: it]. unit_scale : bool or int or float, optional If 1 or True, the number of iterations will be reduced/scaled automatically and a metric prefix following the International System of Units standard will be added (kilo, mega, etc.) [default: False]. If any other non-zero number, will scale `total` and `n`. dynamic_ncols : bool, optional If set, constantly alters `ncols` to the environment (allowing for window resizes) [default: False]. smoothing : float, optional Exponential moving average smoothing factor for speed estimates (ignored in GUI mode). Ranges from 0 (average speed) to 1 (current/instantaneous speed) [default: 0.3]. bar_format : str, optional Specify a custom bar string formatting. May impact performance. [default: '{l_bar}{bar}{r_bar}'], where l_bar='{desc}: {percentage:3.0f}%|' and r_bar='| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, ' '{rate_fmt}{postfix}]' Possible vars: l_bar, bar, r_bar, n, n_fmt, total, total_fmt, percentage, elapsed, elapsed_s, ncols, desc, unit, rate, rate_fmt, rate_noinv, rate_noinv_fmt, rate_inv, rate_inv_fmt, postfix, unit_divisor, remaining, remaining_s. Note that a trailing ": " is automatically removed after {desc} if the latter is empty. initial : int or float, optional The initial counter value. Useful when restarting a progress bar [default: 0]. If using float, consider specifying `{n:.3f}` or similar in `bar_format`, or specifying `unit_scale`. position : int, optional Specify the line offset to print this bar (starting from 0) Automatic if unspecified. Useful to manage multiple bars at once (eg, from threads). postfix : dict or *, optional Specify additional stats to display at the end of the bar. Calls `set_postfix(**postfix)` if possible (dict). unit_divisor : float, optional [default: 1000], ignored unless `unit_scale` is True. write_bytes : bool, optional If (default: None) and `file` is unspecified, bytes will be written in Python 2. If `True` will also write bytes. In all other cases will default to unicode. lock_args : tuple, optional Passed to `refresh` for intermediate output (initialisation, iterating, and updating). gui : bool, optional WARNING: internal parameter - do not use. Use tqdm.gui.tqdm(...) instead. If set, will attempt to use matplotlib animations for a graphical output [default: False]. Returns ------- out : decorated iterator. """ if write_bytes is None: write_bytes = file is None and sys.version_info < (3,) if file is None: file = sys.stderr if write_bytes: # Despite coercing unicode into bytes, py2 sys.std* streams # should have bytes written to them. file = SimpleTextIOWrapper( file, encoding=getattr(file, 'encoding', None) or 'utf-8') if disable is None and hasattr(file, "isatty") and not file.isatty(): disable = True if total is None and iterable is not None: try: total = len(iterable) except (TypeError, AttributeError): total = None if total == float("inf"): # Infinite iterations, behave same as unknown total = None if disable: self.iterable = iterable self.disable = disable with self._lock: self.pos = self._get_free_pos(self) self._instances.remove(self) self.n = initial self.total = total return if kwargs: self.disable = True with self._lock: self.pos = self._get_free_pos(self) self._instances.remove(self) raise ( TqdmDeprecationWarning( "`nested` is deprecated and automated.\n" "Use `position` instead for manual control.\n", fp_write=getattr(file, 'write', sys.stderr.write)) if "nested" in kwargs else TqdmKeyError("Unknown argument(s): " + str(kwargs))) # Preprocess the arguments if ((ncols is None) and (file in (sys.stderr, sys.stdout))) or \ dynamic_ncols: # pragma: no cover if dynamic_ncols: dynamic_ncols = _environ_cols_wrapper() if dynamic_ncols: ncols = dynamic_ncols(file) else: _dynamic_ncols = _environ_cols_wrapper() if _dynamic_ncols: ncols = _dynamic_ncols(file) if miniters is None: miniters = 0 dynamic_miniters = True else: dynamic_miniters = False if mininterval is None: mininterval = 0 if maxinterval is None: maxinterval = 0 if ascii is None: ascii = not _supports_unicode(file) if bar_format and not ((ascii is True) or _is_ascii(ascii)): # Convert bar format into unicode since terminal uses unicode bar_format = _unicode(bar_format) if smoothing is None: smoothing = 0 # Store the arguments self.iterable = iterable self.desc = desc or '' self.total = total self.leave = leave self.fp = file self.ncols = ncols self.mininterval = mininterval self.maxinterval = maxinterval self.miniters = miniters self.dynamic_miniters = dynamic_miniters self.ascii = ascii self.disable = disable self.unit = unit self.unit_scale = unit_scale self.unit_divisor = unit_divisor self.lock_args = lock_args self.gui = gui self.dynamic_ncols = dynamic_ncols self.smoothing = smoothing self.avg_time = None self._time = time self.bar_format = bar_format self.postfix = None if postfix: try: self.set_postfix(refresh=False, **postfix) except TypeError: self.postfix = postfix # Init the iterations counters self.last_print_n = initial self.n = initial # if nested, at initial sp() call we replace '\r' by '\n' to # not overwrite the outer progress bar with self._lock: if position is None: self.pos = self._get_free_pos(self) else: # mark fixed positions as negative self.pos = -position if not gui: # Initialize the screen printer self.sp = self.status_printer(self.fp) self.refresh(lock_args=self.lock_args) # Init the time counter self.last_print_t = self._time() # NB: Avoid race conditions by setting start_t at the very end of init self.start_t = self.last_print_t def __bool__(self): if self.total is not None: return self.total > 0 if self.iterable is None: raise TypeError('bool() undefined when iterable == total == None') return bool(self.iterable) def __nonzero__(self): return self.__bool__() def __len__(self): return self.total if self.iterable is None else \ (self.iterable.shape[0] if hasattr(self.iterable, "shape") else len(self.iterable) if hasattr(self.iterable, "__len__") else getattr(self, "total", None)) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): try: self.close() except AttributeError: # maybe eager thread cleanup upon external error if (exc_type, exc_value, traceback) == (None, None, None): raise warn("AttributeError ignored", TqdmWarning, stacklevel=2) def __del__(self): self.close() def __repr__(self): return self.format_meter(**self.format_dict) @property def _comparable(self): return abs(getattr(self, "pos", 1 << 31)) def __hash__(self): return id(self) def __iter__(self): """Backward-compatibility to use: for x in tqdm(iterable)""" # Inlining instance variables as locals (speed optimisation) iterable = self.iterable # If the bar is disabled, then just walk the iterable # (note: keep this check outside the loop for performance) if self.disable: for obj in iterable: yield obj return mininterval = self.mininterval maxinterval = self.maxinterval miniters = self.miniters dynamic_miniters = self.dynamic_miniters last_print_t = self.last_print_t last_print_n = self.last_print_n n = self.n smoothing = self.smoothing avg_time = self.avg_time time = self._time if not hasattr(self, 'sp'): raise TqdmDeprecationWarning( "Please use `tqdm.gui.tqdm(...)` instead of" " `tqdm(..., gui=True)`\n", fp_write=getattr(self.fp, 'write', sys.stderr.write)) for obj in iterable: yield obj # Update and possibly print the progressbar. # Note: does not call self.update(1) for speed optimisation. n += 1 # check counter first to avoid calls to time() if n - last_print_n >= self.miniters: miniters = self.miniters # watch monitoring thread changes delta_t = time() - last_print_t if delta_t >= mininterval: cur_t = time() delta_it = n - last_print_n # EMA (not just overall average) if smoothing and delta_t and delta_it: rate = delta_t / delta_it avg_time = self.ema(rate, avg_time, smoothing) self.avg_time = avg_time self.n = n self.refresh(lock_args=self.lock_args) # If no `miniters` was specified, adjust automatically # to the max iteration rate seen so far between 2 prints if dynamic_miniters: if maxinterval and delta_t >= maxinterval: # Adjust miniters to time interval by rule of 3 if mininterval: # Set miniters to correspond to mininterval miniters = delta_it * mininterval / delta_t else: # Set miniters to correspond to maxinterval miniters = delta_it * maxinterval / delta_t elif smoothing: # EMA-weight miniters to converge # towards the timeframe of mininterval rate = delta_it if mininterval and delta_t: rate *= mininterval / delta_t miniters = self.ema(rate, miniters, smoothing) else: # Maximum nb of iterations between 2 prints miniters = max(miniters, delta_it) # Store old values for next call self.n = self.last_print_n = last_print_n = n self.last_print_t = last_print_t = cur_t self.miniters = miniters # Closing the progress bar. # Update some internal variables for close(). self.last_print_n = last_print_n self.n = n self.miniters = miniters self.close() def update(self, n=1): """ Manually update the progress bar, useful for streams such as reading files. E.g.: >>> t = tqdm(total=filesize) # Initialise >>> for current_buffer in stream: ... ... ... t.update(len(current_buffer)) >>> t.close() The last line is highly recommended, but possibly not necessary if `t.update()` will be called in such a way that `filesize` will be exactly reached and printed. Parameters ---------- n : int or float, optional Increment to add to the internal counter of iterations [default: 1]. If using float, consider specifying `{n:.3f}` or similar in `bar_format`, or specifying `unit_scale`. """ # N.B.: see __iter__() for more comments. if self.disable: return if n < 0: self.last_print_n += n # for auto-refresh logic to work self.n += n # check counter first to reduce calls to time() if self.n - self.last_print_n >= self.miniters: delta_t = self._time() - self.last_print_t if delta_t >= self.mininterval: cur_t = self._time() delta_it = self.n - self.last_print_n # >= n # elapsed = cur_t - self.start_t # EMA (not just overall average) if self.smoothing and delta_t and delta_it: rate = delta_t / delta_it self.avg_time = self.ema( rate, self.avg_time, self.smoothing) if not hasattr(self, "sp"): raise TqdmDeprecationWarning( "Please use `tqdm.gui.tqdm(...)`" " instead of `tqdm(..., gui=True)`\n", fp_write=getattr(self.fp, 'write', sys.stderr.write)) self.refresh(lock_args=self.lock_args) # If no `miniters` was specified, adjust automatically to the # maximum iteration rate seen so far between two prints. # e.g.: After running `tqdm.update(5)`, subsequent # calls to `tqdm.update()` will only cause an update after # at least 5 more iterations. if self.dynamic_miniters: if self.maxinterval and delta_t >= self.maxinterval: if self.mininterval: self.miniters = delta_it * self.mininterval \ / delta_t else: self.miniters = delta_it * self.maxinterval \ / delta_t elif self.smoothing: self.miniters = self.smoothing * delta_it * \ (self.mininterval / delta_t if self.mininterval and delta_t else 1) + \ (1 - self.smoothing) * self.miniters else: self.miniters = max(self.miniters, delta_it) # Store old values for next call self.last_print_n = self.n self.last_print_t = cur_t def close(self): """Cleanup and (if leave=False) close the progressbar.""" if self.disable: return # Prevent multiple closures self.disable = True # decrement instance pos and remove from internal set pos = abs(self.pos) self._decr_instances(self) # GUI mode if not hasattr(self, "sp"): return # annoyingly, _supports_unicode isn't good enough def fp_write(s): self.fp.write(_unicode(s)) try: fp_write('') except ValueError as e: if 'closed' in str(e): return raise # pragma: no cover leave = pos == 0 if self.leave is None else self.leave with self._lock: if leave: # stats for overall rate (no weighted average) self.avg_time = None self.display(pos=0) fp_write('\n') else: self.display(msg='', pos=pos) if not pos: fp_write('\r') def clear(self, nolock=False): """Clear current bar display.""" if self.disable: return if not nolock: self._lock.acquire() self.moveto(abs(self.pos)) self.sp('') self.fp.write('\r') # place cursor back at the beginning of line self.moveto(-abs(self.pos)) if not nolock: self._lock.release() def refresh(self, nolock=False, lock_args=None): """ Force refresh the display of this bar. Parameters ---------- nolock : bool, optional If `True`, does not lock. If [default: `False`]: calls `acquire()` on internal lock. lock_args : tuple, optional Passed to internal lock's `acquire()`. If specified, will only `display()` if `acquire()` returns `True`. """ if self.disable: return if not nolock: if lock_args: if not self._lock.acquire(*lock_args): return False else: self._lock.acquire() self.display() if not nolock: self._lock.release() return True def unpause(self): """Restart tqdm timer from last print time.""" cur_t = self._time() self.start_t += cur_t - self.last_print_t self.last_print_t = cur_t def reset(self, total=None): """ Resets to 0 iterations for repeated use. Consider combining with `leave=True`. Parameters ---------- total : int or float, optional. Total to use for the new bar. """ self.last_print_n = self.n = 0 self.last_print_t = self.start_t = self._time() if total is not None: self.total = total self.refresh() def set_description(self, desc=None, refresh=True): """ Set/modify description of the progress bar. Parameters ---------- desc : str, optional refresh : bool, optional Forces refresh [default: True]. """ self.desc = desc + ': ' if desc else '' if refresh: self.refresh() def set_description_str(self, desc=None, refresh=True): """Set/modify description without ': ' appended.""" self.desc = desc or '' if refresh: self.refresh() def set_postfix(self, ordered_dict=None, refresh=True, **kwargs): """ Set/modify postfix (additional stats) with automatic formatting based on datatype. Parameters ---------- ordered_dict : dict or OrderedDict, optional refresh : bool, optional Forces refresh [default: True]. kwargs : dict, optional """ # Sort in alphabetical order to be more deterministic postfix = _OrderedDict([] if ordered_dict is None else ordered_dict) for key in sorted(kwargs.keys()): postfix[key] = kwargs[key] # Preprocess stats according to datatype for key in postfix.keys(): # Number: limit the length of the string if isinstance(postfix[key], Number): postfix[key] = self.format_num(postfix[key]) # Else for any other type, try to get the string conversion elif not isinstance(postfix[key], _basestring): postfix[key] = str(postfix[key]) # Else if it's a string, don't need to preprocess anything # Stitch together to get the final postfix self.postfix = ', '.join(key + '=' + postfix[key].strip() for key in postfix.keys()) if refresh: self.refresh() def set_postfix_str(self, s='', refresh=True): """ Postfix without dictionary expansion, similar to prefix handling. """ self.postfix = str(s) if refresh: self.refresh() def moveto(self, n): # TODO: private method self.fp.write(_unicode('\n' * n + _term_move_up() * -n)) self.fp.flush() @property def format_dict(self): """Public API for read-only member access.""" return dict( n=self.n, total=self.total, elapsed=self._time() - self.start_t if hasattr(self, 'start_t') else 0, ncols=self.dynamic_ncols(self.fp) if self.dynamic_ncols else self.ncols, prefix=self.desc, ascii=self.ascii, unit=self.unit, unit_scale=self.unit_scale, rate=1 / self.avg_time if self.avg_time else None, bar_format=self.bar_format, postfix=self.postfix, unit_divisor=self.unit_divisor) def display(self, msg=None, pos=None): """ Use `self.sp` to display `msg` in the specified `pos`. Consider overloading this function when inheriting to use e.g.: `self.some_frontend(**self.format_dict)` instead of `self.sp`. Parameters ---------- msg : str, optional. What to display (default: `repr(self)`). pos : int, optional. Position to `moveto` (default: `abs(self.pos)`). """ if pos is None: pos = abs(self.pos) if pos: self.moveto(pos) self.sp(self.__repr__() if msg is None else msg) if pos: self.moveto(-pos) @classmethod @contextmanager def wrapattr(tclass, stream, method, total=None, bytes=True, **tkwargs): """ stream : file-like object. method : str, "read" or "write". The result of `read()` and the first argument of `write()` should have a `len()`. >>> with tqdm.wrapattr(file_obj, "read", total=file_obj.size) as fobj: ... while True: ... chunk = fobj.read(chunk_size) ... if not chunk: ... break """ with tclass(total=total, **tkwargs) as t: if bytes: t.unit = "B" t.unit_scale = True t.unit_divisor = 1024 yield CallbackIOWrapper(t.update, stream, method) def trange(*args, **kwargs): """ A shortcut for tqdm(xrange(*args), **kwargs). On Python3+ range is used instead of xrange. """ return tqdm(_range(*args), **kwargs)
871063080f473020dc6912e524d1273d901ce35c
bb7d547f547d5f903a0ce574841be5a45c0e1352
/HW08/tasks.py
0d995d547c7ab347c7672695dc281cef5502eca3
[]
no_license
itsanti/uii_py_dev
bfedf6a52739dd00af86612f896826e840c3935b
74f16c8ced10bdd4572fa212bae5ad38743bde67
refs/heads/master
2020-11-25T14:33:05.095744
2019-12-30T15:48:59
2019-12-30T15:48:59
228,716,679
1
0
null
null
null
null
UTF-8
Python
false
false
3,406
py
from time import time from functools import wraps from utils.tools import bytes2human import os import sys import psutil # 1. Написать декоратор, замеряющий время выполнение декорируемой функции. # используем @wraps, чтобы задать __name__ для декорируемой функции def timeit(f): @wraps(f) def wrapper(*args, **kwargs): start = time() return f(*args, **kwargs), time() - start return wrapper # 2. Сравнить время создания генератора и списка с элементами: # натуральные числа от 1 до 1000000 (создание объектов оформить в виде функций). @timeit def create_from_generator(a, b): return [x for x in range(a, b + 1)] @timeit def create_from_list(a, b): result = [] for i in range(a, b + 1): result.append(i) return result N = 1000000 print(f'N = {N}') result, sec = create_from_generator(1, N) print(f'{create_from_generator.__name__}: list_len={len(result)}, gen_time={sec:.4f} sec.') result, sec = create_from_list(1, N) print(f'{create_from_list.__name__:>21}: list_len={len(result)}, gen_time={sec:.4f} sec.') # 3. Написать декоратор, замеряющий объем оперативной памяти, потребляемый декорируемой функцией. def get_memory(f): @wraps(f) def wrapper(*args, **kwargs): proc = psutil.Process(os.getpid()) start = proc.memory_info().rss return f(*args, **kwargs), bytes2human(proc.memory_info().rss - start) return wrapper create_from_generator = get_memory(create_from_generator) result, memory = create_from_generator(1, N) print(f'{create_from_generator.__name__}: list_len={len(result[0])}, memory={memory}') create_from_list = get_memory(create_from_list) result, memory = create_from_list(1, N) print(f'{create_from_list.__name__:>21}: list_len={len(result[0])}, memory={memory}') @get_memory def create_from_func_generator(a, b): for x in range(a, b + 1): yield x result, memory = create_from_func_generator(1, N) print(f'{create_from_func_generator.__name__}: memory={memory}, result_memory={bytes2human(sys.getsizeof(result))}') '''OUT N = 1000000 create_from_generator: list_len=1000000, gen_time=0.0550 sec. create_from_list: list_len=1000000, gen_time=0.0910 sec. create_from_generator: list_len=1000000, memory=38.5M create_from_list: list_len=1000000, memory=38.4M N = 100000000 create_from_generator: list_len=100000000, gen_time=6.3599 sec. create_from_list: list_len=100000000, gen_time=10.3696 sec. create_from_generator: list_len=100000000, memory=3.8G create_from_list: list_len=100000000, memory=3.8G create_from_func_generator: memory=0B, result_memory=120B Вывод: 1. создание списков с помощью генератора (list comprehension) работает быстрее. 2. создание списка в памяти на 1000000 элементов потребляет 38 мегабайт памяти, а использование объекта-генератора позволяет сократить количество необходимой памяти до 120 байт (объект генератора) '''
61c4e91d406b03f4ffd25ceca3c172ae005c1448
7533d42ff0e5e6cf49ffc6aebc5e6ff8fc00d052
/All_Programs/JiangXi/jiangxi.py
88ff8c1cea57c1bf2befec6c78156ef0beeb239d
[]
no_license
oxw-118/shuiwu
0aee439e253f4e55a3ae5a565052740fc80bee22
19d1a08c5407df13dd1f3715c63774626372a4ac
refs/heads/master
2020-05-03T12:43:11.495555
2019-03-07T10:06:04
2019-03-07T10:06:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,646
py
# coding=utf-8 import PackageTool import re import os import traceback import gevent import gevent.monkey import datetime from lxml import html import urlparse import logging from xml.etree import ElementTree from tax import MyException, MySQL,MainFunc from tax.config import config_one, config_two from tax.MainFunc import requests class ShuiWu(MainFunc.MainFunc): def __init__(self,province,region,dishui_type=None): super(ShuiWu,self).__init__() self.pinyin='Jiang_Xi' self.region=region self.data={ 'col':'1', 'appid':'1', 'webid':'2', 'path':'/', 'columnid':config_one[province][region]['columnid'], 'sourceContentType':'1', 'unitid':config_one[province][region]['unitid'], 'webname':config_one[province][region]['webname'], 'permissiontype':'0' } self.url=config_one[province][region]['domain'] self.province=province result=urlparse.urlparse(self.url) print result self.href_ahead=result.scheme+'://'+result.netloc self.oldest_time='2015-01-01' def do_guoshui(self): root = self.get_root() lst_node = root.getiterator("totalrecord")[0].text params={ 'startrecord':'0', 'endrecord':str(int(lst_node)-1), 'perpage':str(lst_node) } root = self.get_root(params=params) results = root.getiterator("record") for node in results: self.deal_node(node) def get_root(self,params=None): print self.url if params: a=requests.post(self.url,data=self.data,params=params) else: a=requests.post(self.url,data=self.data) root = ElementTree.fromstring(a.text) return root def deal_node(self,node): self.title_time=re.findall("\d{4}-\d{2}-\d{2}",node.text)[0] if self.title_time>self.oldest_time: try: self.title=re.findall("title='(.*?)'",node.text)[0] except:self.title=re.findall('title="(.*?)"',node.text)[0] re_words=u'(?:欠税公告|欠税.*公告|欠缴税款|非正常户|欠费公告|关于清缴欠税的通告|非正户)' if re.search(u'%s' %(re_words,),self.title): if not self.is_exist(): href=re.findall("href='(.*?)'",node.text)[0] self.filename=href.split('/')[-1] real_href=self.href_ahead+href logging.info('-------'+real_href) self.look_for_a(real_href) def look_for_a(self,url): count=0 tree=self.get_tree(url) all_a=tree.xpath('//a/@href') for a in all_a: if a.endswith('.doc') or a.endswith('.xls') or a.endswith('.xlsx') or a.endswith('.docx'): count+=1 self.doc_url=self.href_ahead+a try: self.filename=re.findall('filename=(.*)',a)[0] except: self.filename=a.split('/')[-1] self.download() if count==0: self.doc_url = url self.download() if __name__ == '__main__': gevent.monkey.patch_all() tasks=[] today=datetime.date.today() file_name = os.path.basename(__file__).split('.')[0] MainFunc.MainFunc.write_log(file_name) print today # m='江西省' for n in config_one[m].keys(): shuiwu=ShuiWu(m,n) cc=shuiwu.do_guoshui tasks.append(gevent.spawn(cc)) gevent.joinall(tasks)
fd634b7303d63082eaff4aa3cbd3f25501db004c
cc805febad6425cf16d9a4dcda532ff2a24ecfec
/gDrive (03.08.19)/radar_boot_gsheets.py
64337a117618481c87d22a55c95a487c9427cf0e
[]
no_license
frosty939/lw
5e83c4c5ed384fa435a470cc06d623730f1ced80
a57d50266858920613354c244e645417c54ddefa
refs/heads/master
2020-05-04T14:43:23.633460
2019-09-20T08:47:49
2019-09-20T08:47:49
179,207,869
0
0
null
null
null
null
UTF-8
Python
false
false
2,097
py
# importing the requests library import csv import time import gspread import re import sys from oauth2client.service_account import ServiceAccountCredentials nagios_stat_file = sys.argv[1] google_worksheet_name = "Sheet1" google_workbook_name = "/boot Alert Tickets" scope = ['https://spreadsheets.google.com/feeds','https://www.googleapis.com/auth/drive'] credentials = ServiceAccountCredentials.from_json_keyfile_name("creds.json", scope) gc = gspread.authorize(credentials) wks = gc.open(google_workbook_name) sps = wks.worksheet(google_worksheet_name) stats={} adding_notes = False complete = False row_pos=2 api_calls = 0 time_start = round(time.time()) # creating a dictionary with the actor and nagio stats info with open(nagios_stat_file) as fp: for line in fp.readlines(): if ( not adding_notes ): line = line.replace("\n","") if (re.search("Account",line) != None): stats['account']=line[line.find(":")+2:] if (re.search("UID",line)!= None): stats['uid']=line[line.find(":")+2:] if (re.search("Priority",line)!= None): stats['priority']=line[line.find(":")+2:] if (re.search("Host",line)!= None): stats['host']=line[line.find(":")+2:] if (re.search("IP",line)!= None): stats['ip']=line[line.find(":")+2:] if ( re.search("Notes",line)!= None and not (re.search("Radar",line)!= None)): adding_notes = True stats['notes'] = "=" + line if ( re.search("Radar",line) != None): col_pos=1 for info in stats: sps.update_cell(row_pos,col_pos,str(stats[info])) api_calls+=1 col_pos += 1 stats[info]="" time.sleep(1) row_pos += 1 adding_notes = False if (adding_notes or re.search("Bad",line)): stats['notes'] += line for info in stats: sps.update_cell(row_pos,col_pos,str(stats[info])) col_pos += 1 stats[info]="" time.sleep(1)
ed2d3c54de34d9b50d8652f91880c29d14747cd6
0ad58e0d707651254a2ef7dfd54c15d4eb0603b1
/algorithms/greedy_algorithms/huffman_encoding.py
ba44f33b9d6b20e9f647ded4cc4b777ec75ce26c
[ "MIT" ]
permissive
weirdname404/courses
d484bf58e1b2b84bc0592f7ec06af77d717e55f3
611443422cc6acc1af563d9d7d07181e9984ddab
refs/heads/master
2020-05-29T09:26:37.846651
2019-08-12T17:06:09
2019-08-12T17:06:09
189,062,872
3
0
null
null
null
null
UTF-8
Python
false
false
1,915
py
import heapq from collections import Counter, namedtuple """ This program implements Huffman encoding with the help of Python heap. """ class Node(namedtuple("Node", ["left", "right"])): def walk(self, code, acc): self.left.walk(code, acc + '0') self.right.walk(code, acc + '1') class Leaf(namedtuple("Leaf", ["char"])): def walk(self, code, acc): code[self.char] = acc or '0' def huffman_encode(s): code = {} h = [] for ch, freq in Counter(s).items(): h.append((freq, len(h), Leaf(ch))) heapq.heapify(h) count = len(h) while len(h) > 1: freq1, _c1, left = heapq.heappop(h) freq2, _c2, right = heapq.heappop(h) heapq.heappush(h, (freq1 + freq2, count, Node(left, right))) count += 1 if h: [(_freq, _count, root)] = h root.walk(code, "") return code def huffman_decode(encoded, code): key = '' decoded = '' decode_code = {key: ch for ch, key in code.items()} for s in encoded: key += s if key in decode_code: decoded += decode_code[key] key = '' return decoded def main(): s = input() code = huffman_encode(s) encoded = "".join(code[ch] for ch in s) print(len(s), len(encoded)) for key in sorted(code): print(f'{code[key]}: {key}') print(encoded) def test(n_iter): import random as r import string import sys for _ in range(n_iter): length = r.randint(0, 32) s = "".join(r.choice(string.ascii_letters) for _ in range(length)) code = huffman_encode(s) encoded = "".join(code[ch] for ch in s) try: decoded = huffman_decode(encoded, code) assert s == decoded except AssertionError: sys.exit(f'{s}, {decoded}') print('ALL OK') if __name__ == "__main__": # test(1000) main()
5f8e4ddc7c7a402821aa65d4a9e77ec66e0e6a7b
67aaed7e8490561c157b1fb8dd3c7344e94a4d06
/home/models.py
93394331cb7b8da949f49ac85f16f6837c966093
[]
no_license
VEDANSHKUMAR/The_Readers_Heart
b554dcffc072bcaaf5a130f6ac5a2f972e87a400
86bfd1e47b38b6c42054747424856c9759e4b2f3
refs/heads/main
2023-06-14T20:26:52.162547
2021-07-12T17:28:49
2021-07-12T17:28:49
385,202,011
0
0
null
null
null
null
UTF-8
Python
false
false
485
py
from django.db import models # Create your models here. # This is the model in Home. class Contact(models.Model): sno = models.AutoField(primary_key=True) name= models.CharField(max_length=50) email= models.CharField(max_length=100) phone= models.CharField(max_length=13) content= models.TextField() timeStamp = models.DateTimeField(auto_now_add=True,blank=True) def __str__(self): return 'Message from ' + self.name + ' - ' + self.email
6dddc001f815f7c76070f5808ecebae5477f4e9a
44b0079ba7a3a21be1ec77cbc5f316cb4ad79f29
/Examples/NumPyExample.py
66d6e036e3aaf358e96c5e9e9fe2389409bacfd0
[ "MIT" ]
permissive
WzqProgrammer/DeepLearning
2faa6ea481f407b2dab9993ec97dba346c86808c
e619696c18e29ecf04fb94654f0baaf6ca965a41
refs/heads/master
2020-07-02T17:39:24.588972
2019-09-13T00:42:39
2019-09-13T00:42:39
194,270,848
0
0
null
null
null
null
UTF-8
Python
false
false
387
py
import numpy as np import matplotlib.pyplot as plt #生成数据 x = np.arange(0, 6, 0.1) #以0.1为单位,生成0到6的数据 y1 = np.sin(x) y2 = np.cos(x) #绘制图像 plt.plot(x, y1, label = "sin") plt.plot(x, y2, linestyle = "--", label = "cos") #用虚线绘制 plt.xlabel("x") #x轴标签 plt.xlabel("y") #y轴标签 plt.title('sin & cos') #标题 plt.legend() plt.show()
f6ea4462080e5a65473a6fc0f8c050a070bd7f56
1207d50126d4d59966573927c5eadd94db6aeb59
/svggen/library/legacy/Simulation.py
d8321b335dfcb676d698b0a9b6bad553578b8989
[]
no_license
christianwarloe/robotBuilder
aee03c189972f1d305c6e13d106b362b5d26d187
3f8fbc267ac7b9bbae534d1208278541a7b5eaa5
refs/heads/master
2021-06-13T02:42:24.834816
2017-04-07T01:01:52
2017-04-07T01:01:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
276
py
from svggen.api.component import Component from svggen.api.ports.SimulationPort import SimulationPort class Simulation(Component): def assemble(self): self.addInterface("sim", SimulationPort(self)) if __name__ == "__main__": h = Simulation() #h._make_test()
d696a9a539a215e0a30f4815358fe6bde131f4a5
8486a8342312585227ced1505ef0ed09d5edb9fa
/2_Python/Week7/ajax/apps/notes/migrations/0001_initial.py
bb968b55cd31170a57e324a2ee8bca5c8c939d5e
[]
no_license
nickchic/Coding_Dojo
acef3a8d33b4ab99f6b16738589c03699b58ea94
99c2047fe33862aa62b0c61875e5573b3149aaa4
refs/heads/master
2021-01-02T08:59:27.423365
2017-11-08T20:33:12
2017-11-08T20:33:12
99,114,282
1
0
null
null
null
null
UTF-8
Python
false
false
675
py
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2017-10-12 20:01 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Note', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('text', models.TextField()), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ], ), ]
3ff991fc53a02cfd81dd20519bbfc82a7466974b
1838f5da624e0da625ff0c00a642bbff10f9bde6
/guild/steps_main.py
dac3b109450ce28e5eae0512466f9afb922846c2
[ "Apache-2.0", "LicenseRef-scancode-free-unknown" ]
permissive
Jim-Holmstroem/guildai
75b57785654b98902aefcb50ace0f227ad95fd18
ed80e307fca20c0d607c600180cdb0854f42021d
refs/heads/master
2020-12-31T19:48:39.996994
2020-02-06T18:02:20
2020-02-06T18:02:20
239,023,692
0
0
Apache-2.0
2020-02-07T21:13:39
2020-02-07T21:13:39
null
UTF-8
Python
false
false
13,077
py
# Copyright 2017-2020 TensorHub, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division import logging import os import re import subprocess import sys import click import six import guild.log from guild import exit_code from guild import flag_util from guild import op_util from guild import opref as opreflib from guild import run as runlib from guild import run_check from guild import util log = None # intialized in _init_logging STEP_USED_PARAMS = ( "flags", "gpus", "label", "max_trials", "needed", "no_gpus", "opspec", "opt_flags", "optimizer", "random_seed", "stop_after", ) ################################################################### # State ################################################################### class Step(object): def __init__(self, data, parent_flags, parent_opref): data = _coerce_step_data(data) params = _parse_run(data) assert params["opspec"], params opspec_param = params["opspec"] self.op_spec = _apply_default_model(opspec_param, parent_opref) self.name = data.get("name") or opspec_param self.batch_files, flag_args = _split_batch_files(params["flags"]) self.flags = _init_step_flags(flag_args, parent_flags, self) self.checks = _init_checks(data) self.isolate_runs = bool(data.get("isolate-runs", True)) self.label = _resolve_param(params, "label", parent_flags) self.gpus = _resolve_param(params, "gpus", parent_flags) self.no_gpus = params["no_gpus"] self.stop_after = params["stop_after"] self.needed = params["needed"] self.optimizer = params["optimizer"] self.opt_flags = params["opt_flags"] self.max_trials = params["max_trials"] self.random_seed = params["random_seed"] def __str__(self): return self.name or self.op_spec def _coerce_step_data(data): if isinstance(data, six.string_types): data = {"run": data} elif isinstance(data, dict): data = dict(data) else: _error("invalid step data: %r" % data) if "flags" in data: data["flags"] = _coerce_flags_data(data["flags"]) return data def _coerce_flags_data(data): if isinstance(data, list): return data elif isinstance(data, dict): return flag_util.format_flags(data) else: _error("invalid flags value %r" % data) def _parse_run(data): from guild.commands.run import run as run_cmd run_spec = data.get("run", "").strip() if not run_spec: _error("invalid step %r: must define run" % data) args = util.shlex_split(run_spec) try: ctx = run_cmd.make_context("run", args) except click.exceptions.ClickException as e: _error("invalid run spec %r: %s" % (run_spec, e)) else: _apply_data_params(data, ctx, run_spec) return ctx.params def _apply_data_params(data, ctx, run_spec): """Apply applicable data to params. Warns if params contains unused values. """ defaults = {p.name: p.default for p in ctx.command.params} for name, val in sorted(ctx.params.items()): if name in STEP_USED_PARAMS: data_name = name.replace("_", "-") try: data_val = data[data_name] except KeyError: pass else: if data_val != defaults[name]: ctx.params[name] = data_val else: if val != defaults[name]: log.warning("run parameter %s used in %r ignored", name, run_spec) def _init_step_flags(flag_args, parent_flag_vals, step): flag_vals = _parse_flag_assigns(flag_args) _apply_parent_flags(parent_flag_vals, step, flag_vals) resolved = _resolve_flag_vals(flag_vals, parent_flag_vals) return _remove_undefined_flags(resolved) def _parse_flag_assigns(assigns): assert isinstance(assigns, list), assigns try: return op_util.parse_flag_assigns(assigns) except op_util.ArgValueError as e: _error("invalid argument '%s' - expected NAME=VAL" % e.arg) def _apply_parent_flags(parent_flag_vals, step, flag_vals): prefixes = [ step.op_spec + ":", step.name + ":", ] flag_vals.update(_prefixed_flag_vals(prefixes, parent_flag_vals)) def _prefixed_flag_vals(prefixes, flag_vals): """Returns a dict of prefixed flag values. Prefixes are stripped from matching flag names. The value for the first matching prefix from prefixes is used. """ prefixed = {} for prefix in prefixes: for full_name in flag_vals: if full_name.startswith(prefix): prefixed_name = full_name[len(prefix) :] prefixed.setdefault(prefixed_name, flag_vals[full_name]) return prefixed def _apply_default_model(step_opspec, parent_opref): step_opref = opreflib.OpRef.for_string(step_opspec) if not step_opref.model_name: step_opref = opreflib.OpRef( step_opref.pkg_type, step_opref.pkg_name, step_opref.pkg_version, parent_opref.model_name, step_opref.op_name, ) return step_opref.to_opspec() def _split_batch_files(flag_args): return op_util.split_batch_files(flag_args) def _resolve_flag_vals(flags, parent_flags): return {name: util.resolve_refs(val, parent_flags) for name, val in flags.items()} def _remove_undefined_flags(flag_vals): return {name: val for name, val in flag_vals.items() if val is not None} def _resolve_param(params, name, flags): resolved = util.resolve_refs(params[name], flags) if resolved is None: return resolved return str(resolved) def _init_checks(data): expect = data.get("expect") or [] if not isinstance(expect, list): expect = [expect] checks = [] for check_data in expect: try: check = run_check.init_check(check_data) except ValueError as e: log.warning("invalid check %r: %e", data, e) else: checks.append(check) return checks ################################################################### # Main ################################################################### def main(): _init_logging() _run_steps() def _init_logging(): level = int(os.getenv("LOG_LEVEL", logging.WARN)) format = os.getenv("LOG_FORMAT", "%(levelname)s: [%(name)s] %(message)s") guild.log.init_logging(level, {"_": format}) globals()["log"] = logging.getLogger("guild") def _run_steps(): run = _init_run() steps = _init_steps(run) if not steps: log.warning("no steps defined for run %s", run.id) return for step in steps: step_run = _run_step(step, run) _maybe_check_step_run(step, step_run) # ================================================================= # Init # ================================================================= def _init_run(): run_id, run_dir = _run_environ() return runlib.Run(run_id, run_dir) def _run_environ(): try: return os.environ["RUN_ID"], os.environ["RUN_DIR"] except KeyError as e: _internal_error("missing required env %s" % e.args[0]) def _init_steps(run): data = run.get("steps") if not data: return [] if not isinstance(data, list): _error("invalid steps data %r: expected list" % data) flags = run.get("flags") opref = run.opref return [Step(step_data, flags, opref) for step_data in data] # ================================================================= # Run step # ================================================================= def _run_step(step, parent_run): step_run = _init_step_run(parent_run) cmd = _init_step_cmd(step, step_run.path) _link_to_step_run(step, step_run.path, parent_run.path) env = dict(os.environ) env["NO_WARN_RUNDIR"] = "1" if step.isolate_runs: env["GUILD_RUNS_PARENT"] = parent_run.id cwd = os.getenv("CMD_DIR") log.info("running %s: %s", step, _format_step_cmd(cmd)) log.debug("step cwd %s", cwd) log.debug("step command: %s", cmd) log.debug("step env: %s", env) returncode = subprocess.call(cmd, env=env, cwd=cwd) if returncode != 0: sys.exit(returncode) return step_run def _init_step_run(parent_run): """Returns the run dir for a step run. Directory is based on a new, unique run ID but is not created. """ runs_dir = os.path.dirname(parent_run.path) step_run_id = runlib.mkid() step_run_dir = os.path.join(runs_dir, step_run_id) return runlib.Run(step_run_id, step_run_dir) def _init_step_cmd(step, step_run_dir): base_args = [ sys.executable, "-um", "guild.main_bootstrap", "run", "-y", "--force-flags", "--run-dir", step_run_dir, step.op_spec, ] step_options = _step_options(step) batch_file_args = _step_batch_file_args(step) flag_args = _step_flag_args(step) return base_args + step_options + batch_file_args + flag_args def _step_options(step): opts = [] if step.label: opts.extend(["--label", step.label]) if step.gpus is not None: opts.extend(["--gpus", step.gpus]) elif step.no_gpus: opts.append("--no-gpus") if step.stop_after: opts.extend(["--stop-after", str(step.stop_after)]) if step.needed: opts.append("--needed") if step.optimizer: opts.extend(["--optimizer", step.optimizer]) for flag in step.opt_flags: opts.extend(["--opt-flag", flag]) if step.max_trials: opts.extend(["--max-trials", str(step.max_trials)]) if step.random_seed is not None: opts.extend(["--random-seed", str(step.random_seed)]) return opts def _step_batch_file_args(step): return ["@%s" % file for file in step.batch_files] def _step_flag_args(step): return flag_util.format_flags(step.flags) def _link_to_step_run(step, step_run_dir, parent_run_dir): link_name = _step_link_name(step) link_path_base = os.path.join(parent_run_dir, link_name) link_path = _ensure_unique_link(link_path_base) os.symlink(step_run_dir, link_path) def _step_link_name(step): return re.sub(r"[ :/\\]", "_", str(step)) def _ensure_unique_link(path_base): v = 2 path = path_base while True: assert v < 1e6 if not os.path.lexists(path): return path path = "%s_%i" % (path_base, v) v += 1 def _format_step_cmd(cmd): # Show only opspec onward - assert front matter to catch changes # to cmd. assert cmd[0:7] == [ sys.executable, "-um", "guild.main_bootstrap", "run", "-y", "--force-flags", "--run-dir", ], cmd return " ".join([arg for arg in cmd[8:]]) def _maybe_check_step_run(step, run): if not step.checks: return if _run_skipped(run): log.info("skipping checks for %s", step.name) return checks_passed = _check_step_run(step, run) if not checks_passed: _error("stopping because a check failed", exit_code.TEST_FAILED) def _run_skipped(run): """Returns True if run was skipped. We infer that a run was skipped if it's directory doesn't exist. The rationale relies on the assertion that the step run creates the specified run directory only when the run is not skipped. """ return not os.path.exists(run.path) def _check_step_run(step, run): if not step.checks: return True passed = 0 failed = 0 for check in step.checks: try: check.check_run(run) except run_check.Failed as e: log.error("check failed: %s", e) failed += 1 else: passed += 1 log.info("%i of %i checks passed", passed, passed + failed) if failed > 0: log.error("%i check(s) failed - see above for details", failed) return failed == 0 ################################################################### # Error messages ################################################################### def _internal_error(msg): sys.stderr.write("guild.steps_main: %s\n" % msg) sys.exit(exit_code.INTERNAL_ERROR) def _error(msg, exit_code=exit_code.DEFAULT): sys.stderr.write("guild: %s\n" % msg) sys.exit(exit_code) if __name__ == "__main__": main()
b0e68147b2ea49e70419c08976b17d13dde1f95e
3c71ce7e0dce9d752a6bcb1f74972f475ba3c314
/Day12_3.py
9735f0a49b583f87fd6183798705959fe2958965
[]
no_license
L-xbin2020/PytorchStudy
7a45026848e834930f4e4276399ef3bda219a2fb
f09aafe003ad26c0edd17b9901804b266424a0e4
refs/heads/master
2023-06-12T22:24:38.799497
2021-07-03T13:35:31
2021-07-03T13:35:31
379,948,128
0
0
null
null
null
null
UTF-8
Python
false
false
1,733
py
import torch num_class = 4 input_size = 4 hidden_size = 8 embedding_size = 10 num_layers = 2 batch_size = 1 seq_len = 5 idx2char = ['e', 'h', 'l', 'o'] x_data = [1, 0, 2, 2, 3] y_data = [3, 1, 2, 3, 2] one_hot_lookup = [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]] x_one_hot = [one_hot_lookup[x] for x in x_data] # inputs = torch.Tensor(x_one_hot).view(-1, batch_size, input_size) # labels = torch.LongTensor(y_data).view(-1, 1) inputs = torch.LongTensor(x_data) labels = torch.LongTensor(y_data) print(inputs) class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() self.emb = torch.nn.Embedding(input_size, embedding_size) self.rnn = torch.nn.RNN(input_size=embedding_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = torch.nn.Linear(hidden_size, num_class) def forward(self, x): hidden = torch.zeros(num_layers, x.size(0), hidden_size) x = self.emb(x) # (batch, seqLen, embeddingSize) x, _ = self.rnn(x, hidden) x = self.fc(x) return x.view(-1, num_class) net = Model() criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(net.parameters(), lr=0.05) for epoch in range(15): optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() _, idx = outputs.max(dim=1) idx = idx.data.numpy() print('Prdicted:',''.join([idx2char[x] for x in idx]), end="") print(', Epoch [%d / 15] loss = %.3f' % (epoch + 1, loss.item()))
055a80f3c4715a2e12bb8a911d2314285ffc1eac
d30f5ebe8acbe707cd712c9123f3d085af396b16
/Cat.py
7888d36ee2d56e36ceceffcff9cfb64f8bc973b5
[]
no_license
GYIChen/Cat
d1210d4bac37ec2e538c5461001473235fa5e3bf
4d930a8fb1249c98cc44d0c7539306cff3abc351
refs/heads/master
2020-12-01T19:12:17.921074
2019-12-29T14:19:52
2019-12-29T14:19:52
230,738,026
0
0
null
null
null
null
UTF-8
Python
false
false
3,443
py
# -*- coding: utf-8 -*- """ Created on Sun Apr 29 09:09:27 2018 @author: 56576 """ import os from PIL import Image import numpy as np from keras.utils import np_utils #用于将Label向量化 from keras.models import Sequential from keras.layers.core import Dense,Dropout,Activation,Flatten from keras.optimizers import SGD,RMSprop,Adam from keras.layers import Conv2D,MaxPool2D from keras.models import load_model import PicPreProcess as ppp train_path = ppp.train_path test_path = ppp.test_path #test_path='D:/Cat/NewCat/' file_dict = ppp.file_path input_width = ppp.input_width input_height = ppp.input_height model_path = "D:/Cat1.1/model9.h5" #ppp.Init() #----------------训练集----------------------- #将目录下的照片转化为一个列表 images1 = os.listdir(train_path) #返回一个numpy数组类型的图片 def GetImages1(filename): #打开路径下的文件 并转化为RGB img = Image.open(train_path+filename).convert('RGB') return np.array(img) #x_train和y_train都是列表 分别保存了训练集的输入和输出 x_train = [] y_train = [] #将转化为数组的图片加入训练的列表 for i in images1: x_train.append(GetImages1(i)) x_train = np.array(x_train) #split('_')是将文件名以'_'分割 这样可以提取预处理完毕后的数据的标签(即分割后的数组的第一个部分) for filename in images1: y_train.append(int(filename.split('_')[0])) #将标签也加入数组 y_train = np.array(y_train) # ---------------测试集----------------------- #处理过程同上 images2 = os.listdir(test_path) x_test = [] y_test = [] def GetImages2(filename): img = Image.open(test_path+filename).convert('RGB') return np.array(img) for i in images2: x_test.append(GetImages2(i)) x_test = np.array(x_test) for filename in images2: y_test.append(int(filename.split('_')[0])) y_test = np.array(y_test) #将训练和测试的标签都由标签数字转化为向量 来进行交叉熵的优化 y_train = np_utils.to_categorical(y_train) y_test = np_utils.to_categorical(y_test) #将输入转化为浮点数 并位于0-1来提高准确率 x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 #-------------------神经网络------------------------ #卷积层1 深度为32 输入为预处理时生成的100x100的RGB图片 model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(input_width, input_height, 3))) model.add(Conv2D(32, (3, 3), activation='relu')) model.add(MaxPool2D(pool_size=(2,2),strides=(2,2),padding='same')) model.add(Dropout(0.25)) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPool2D(pool_size=(2,2),strides=(2,2),padding='same')) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(6, activation='softmax')) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) #model = load_model(file_dict+'model0.h5') #for i in range (2,10): # model.fit(x_train,y_train,batch_size=15,epochs=1) # print (i) # model.save(file_dict+'model'+str(i)+'.h5') # print ('\n') del model model = load_model(model_path) loss,acc = model.evaluate(x_test,y_test,batch_size=1) print ("loss:",loss) print ("acc:",acc)
474884d2663ea739fd328bb46491680706af870b
8d246b93b9a61399c17686ff340e3cc52c0a888b
/matrix.py
3149c2d6d3d7331053d73ebaba9b0032432bff06
[]
no_license
natansalda/isdcnd-matrix-class
965f77241d9720250485b010885e3d4c762b8a1e
1803fcb0127e2b955b9670e9ee4948c34b749f8b
refs/heads/master
2020-03-14T16:12:33.865082
2018-05-01T08:55:54
2018-05-01T08:55:54
131,693,292
0
0
null
null
null
null
UTF-8
Python
false
false
7,227
py
import math from math import sqrt import numbers def zeroes(height, width): """ Creates a matrix of zeroes. """ g = [[0.0 for _ in range(width)] for __ in range(height)] return Matrix(g) def identity(n): """ Creates a n x n identity matrix. """ I = zeroes(n, n) for i in range(n): I.g[i][i] = 1.0 return I class Matrix(object): # Constructor def __init__(self, grid): self.g = grid self.h = len(grid) self.w = len(grid[0]) # # Primary matrix math methods ############################# def determinant(self): """ Calculates the determinant of a 1x1 or 2x2 matrix. """ if not self.is_square(): raise(ValueError, "Cannot calculate determinant of non-square matrix.") if self.h > 2: raise(NotImplementedError, "Calculating determinant not implemented for matrices largerer than 2x2.") # TODO - your code here # if we have 1x1 Matrix determinant = 0 if self.h == 1: determinant = self.g[0] return determinant # if we have 2x2 Matrix: if self.h == 2: determinant = self.g[0][0] * self.g[1][1] - self.g[0][1] * self.g[1][0] return determinant print("the determinant of matrix: " + self + "is: " + determinant) def trace(self): """ Calculates the trace of a matrix (sum of diagonal entries). """ if not self.is_square(): raise(ValueError, "Cannot calculate the trace of a non-square matrix.") # TODO - your code here # initialize trace variable trace = 0 # loop through the columns in matrix for i in range(self.w): trace += self.g[i][i] return trace print("the trace of matrix: " + self + "is: " + trace) def inverse(self): """ Calculates the inverse of a 1x1 or 2x2 Matrix. """ if not self.is_square(): raise(ValueError, "Non-square Matrix does not have an inverse.") if self.h > 2: raise(NotImplementedError, "inversion not implemented for matrices larger than 2x2.") # TODO - your code here # if we have 1x1 Matrix if self.w == 1: return Matrix(1/self.g[0][0]) # if we have 2x2 Matrix if self.w == 2: inversedGrid = zeroes(self.w, self.h) inversedGrid[0][0] = self.g[1][1] * (1/self.determinant()) inversedGrid[0][1] = -self.g[0][1] * (1/self.determinant()) inversedGrid[1][0] = -self.g[1][0] * (1/self.determinant()) inversedGrid[1][1] = self.g[0][0] * (1/self.determinant()) return inversedGrid print("the inversed grid of matrix: " + self + "is: " + inversedGrid) def T(self): """ Returns a transposed copy of this Matrix. """ # TODO - your code here number_of_rows = self.w number_of_columns = self.h transposed_matrix = zeroes(number_of_rows, number_of_columns) for i in range(self.h): for j in range(self.w): original_value = self.g[i][j] transposed_matrix[j][i] = original_value return transposed_matrix print("the transposed copy of this Matrix: " + self + "is: " + transposed_matrix) def is_square(self): return self.h == self.w # # Begin Operator Overloading ############################ def __getitem__(self,idx): """ Defines the behavior of using square brackets [] on instances of this class. Example: > my_matrix = Matrix([ [1, 2], [3, 4] ]) > my_matrix[0] [1, 2] > my_matrix[0][0] 1 """ return self.g[idx] def __repr__(self): """ Defines the behavior of calling print on an instance of this class. """ s = "" for row in self.g: s += " ".join(["{} ".format(x) for x in row]) s += "\n" return s def __add__(self,other): """ Defines the behavior of the + operator """ if self.h != other.h or self.w != other.w: raise(ValueError, "Matrices can only be added if the dimensions are the same") # # TODO - your code here # added_grid = [] for i in range(self.h): new_row = [] for j in range(self.w): first_value = self.g[i][j] second_value = other.g[i][j] new_value = first_value + second_value new_row.append(new_value) added_grid.append(new_row) return Matrix(added_grid) print("The added matrix is: " + Matrix(added_grid)) def __neg__(self): """ Defines the behavior of - operator (NOT subtraction) Example: > my_matrix = Matrix([ [1, 2], [3, 4] ]) > negative = -my_matrix > print(negative) -1.0 -2.0 -3.0 -4.0 """ # # TODO - your code here # # let's create new matrix using zeroes() function new_matrix = zeroes(self.h, self.w) for i in range(self.h): for j in range(self.w): new_matrix[i][j] = self.g[i][j]*-1.0 return new_matrix print("The new matrix is: " + new_matrix) def __sub__(self, other): """ Defines the behavior of - operator (as subtraction) """ # # TODO - your code here # sub_matrix = self + (-other) return sub_matrix print("The new matrix is: " + sub_matrix) def __mul__(self, other): """ Defines the behavior of * operator (matrix multiplication) """ # # TODO - your code here # # let's create new matrix using zeroes() function grid = zeroes(self.h, other.w) for x in range(self.h): for y in range(other.w): for z in range(other.h): grid[x][y] += self.g[x][z] * other.g[z][y] return grid print("The new matrix is: " + grid) def __rmul__(self, other): """ Called when the thing on the left of the * is not a matrix. Example: > identity = Matrix([ [1,0], [0,1] ]) > doubled = 2 * identity > print(doubled) 2.0 0.0 0.0 2.0 """ if isinstance(other, numbers.Number): # # TODO - your code here # multiply_by_number_matrix = self for i in range(self.h): for j in range(self.w): multiply_by_number_matrix[i][j] *= other return multiply_by_number_matrix print("The new matrix is: " + multiply_by_number_matrix)
73a48ea26e3be2cbe1878f84f00111545c04c9f2
c299590232a59121423770328246883e7ff66fde
/Prep classes/day1.py
3805d83517b86707c258afc32f4d758d6c2d6207
[]
no_license
Gillt1/Python_Class
8cd6481ea65e4d56c98381cdd7540834bc469265
5e256a19f3e6cbe71f697938e0538524eecc1aeb
refs/heads/master
2023-08-11T02:25:59.117141
2021-10-05T14:05:43
2021-10-05T14:05:43
398,307,201
0
0
null
null
null
null
UTF-8
Python
false
false
517
py
# print("My name is", "Python.") # print('Monty Python.') # # print(0o123) # print(0x123) # print(0b1011) # # print(9%6%2) # # kilometers = 12.25 # miles = 7.38 # # miles_to_kilometers = miles*1.61 # kilometers_to_miles = kilometers/1.61 # # print(miles, "miles is", round(miles_to_kilometers, 2), "kilometers") # print(kilometers, "kilometers is", round(kilometers_to_miles, 2), "miles") # x = input("enter test data here:", ) # x = float(x) # y = 3*x**3 - 2*x**2 + 3*x -1 # write your code here # print("y =", y)
1da13a7abe102f60f46225cf67bc38ecbb4d1614
2db13a0dfa223b83813e1e36218b88a6c0ddf70d
/factory/build_dir.py
47f8bdacd9505f393736d2f56f78b247640475e1
[]
no_license
iblaauw/Factory
29e8ca8c3a43f07b03c2026a204dee8e31566446
2ec009d8bf11ab4d26996aba589c89027337946f
refs/heads/master
2021-01-01T20:21:03.367232
2017-09-23T18:42:53
2017-09-23T18:42:53
98,820,640
0
0
null
null
null
null
UTF-8
Python
false
false
804
py
import os from .utils import ensure_dir_exists known_files = set() # This set of files will not be placed in the build directory, but left at their normal path build_dir = "build" def translate_file(path): if path in known_files: return path current_dir = os.getcwd() abspath = os.path.abspath(path) if not abspath.startswith(current_dir): return path subpath = abspath[len(current_dir):] if subpath[0] == '/': subpath = subpath[1:] build_path = os.path.join(build_dir, subpath) ensure_dir_exists(build_path) return build_path def set_build_dir(new_dir): global build_dir build_dir = new_dir def get_build_dir(): return build_dir def ResetFiles(): known_files.clear() global build_dir set_build_dir("build")
239d6da3847f27608fc18ae31fae85e8ecae219c
428989cb9837b6fedeb95e4fcc0a89f705542b24
/erle/ros_catkin_ws/build_isolated/sensor_msgs/catkin_generated/pkg.develspace.context.pc.py
962d116bff1103c9be9555c3ddaba18e3740f052
[]
no_license
swift-nav/ros_rover
70406572cfcf413ce13cf6e6b47a43d5298d64fc
308f10114b35c70b933ee2a47be342e6c2f2887a
refs/heads/master
2020-04-14T22:51:38.911378
2016-07-08T21:44:22
2016-07-08T21:44:22
60,873,336
1
2
null
null
null
null
UTF-8
Python
false
false
701
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "/home/erle/ros_catkin_ws/devel_isolated/sensor_msgs/include;/home/erle/ros_catkin_ws/src/common_msgs/sensor_msgs/include;/usr/include".split(';') if "/home/erle/ros_catkin_ws/devel_isolated/sensor_msgs/include;/home/erle/ros_catkin_ws/src/common_msgs/sensor_msgs/include;/usr/include" != "" else [] PROJECT_CATKIN_DEPENDS = "geometry_msgs;message_runtime;std_msgs".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "sensor_msgs" PROJECT_SPACE_DIR = "/home/erle/ros_catkin_ws/devel_isolated/sensor_msgs" PROJECT_VERSION = "1.11.8"
6e8a3eca7927a9085efd586269d0b7f6a359ebe1
c2dfd9743d777e1f3102c5cf4bca5c4efd52e45b
/Assignments/EvenandOdd.py
068fa844776754d701b3c2e5a4c11451a35bb2f3
[]
no_license
bharath210/PythonLearning
8dc2212ff5604b687834366e0c33ede0cb6cf906
f5de2d527593886ff570808673ed4e989484126b
refs/heads/master
2022-12-03T05:28:53.708200
2020-08-12T15:09:00
2020-08-12T15:09:00
287,031,508
0
0
null
null
null
null
UTF-8
Python
false
false
369
py
nums = [] n = int(input("number of values")) for i in range(n): val = int(input('enter value')) nums.append(val) def evenOddCount(vals): even = 0 odd = 0 for i in vals: if(i % 2 == 0): even += 1 else: odd += 1 return even,odd even,odd = evenOddCount(nums) print("Even : {} Odd : {} ".format(even,odd))
0c1cdfc5c5aa0a537f3efafe3c64ae8d4370e2fb
798cfdb26135a9d6228c03ce7a63ed024d7f69c5
/scripts/fetch_aws_data.py
9b3ceb3b17d1d4d673a55a1e89a83831ecb9446d
[ "MIT" ]
permissive
nunojesus/HippoIgnited
0548fc4f54cbc8f415ba46b3627c985cdde74476
79316965f41f9cd7f1024de5eb34942cba285358
refs/heads/master
2020-03-20T21:24:44.211638
2018-06-18T10:44:30
2018-06-18T10:44:30
137,739,418
1
0
null
2018-06-18T10:40:06
2018-06-18T10:40:05
null
UTF-8
Python
false
false
5,512
py
#!/usr/bin/env python3 __author__ = "Dilawar Singh" __copyright__ = "Copyright 2016, Dilawar singh <[email protected]>" __credits__ = ["NCBS Bangalore"] __license__ = "GNU GPL" __version__ = "1.0.0" __maintainer__ = "Dilawra Singh" __email__ = "[email protected]" __status__ = "Development/Production" import sys import os import datetime from db_connect import db_ from global_data import * import itertools import networkx as nx def spec_short( spec ): return ''.join( [ x.strip()[0] for x in spec.split( ) ] ) def getSpecialization( cur, piOrHost ): cur.execute( "SELECT specialization FROM faculty WHERE email='%s'" % piOrHost ) a = cur.fetchone( ) return a['specialization'] def init( cur ): """ Create a temporaty table for scheduling AWS """ global db_ cur.execute( 'DROP TABLE IF EXISTS aws_temp_schedule' ) cur.execute( ''' CREATE TABLE IF NOT EXISTS aws_temp_schedule ( speaker VARCHAR(40) PRIMARY KEY, date DATE NOT NULL ) ''' ) db_.commit( ) cur.execute( """ SELECT * FROM logins WHERE eligible_for_aws='YES' AND status='ACTIVE' ORDER BY login """ ) for a in cur.fetchall( ): speakers_[ a['login'].lower() ] = a spec = a['specialization'] if spec is None: pi = a['pi_or_host'] if pi is None: continue spec = getSpecialization( cur, pi ) spec = spec or 'UNSPECIFIED' specialization_[ a['login'] ] = spec cur.execute( """SELECT * FROM holidays ORDER BY date""") for a in cur.fetchall( ): if a[ 'schedule_talk_or_aws' ] == 'NO': holidays_[ a['date'] ] = a def get_data( ): global db_ try: cur = db_.cursor( dictionary = True ) except Exception as e: print( '''If complain is about dictionary keyword. Install https://pypi.python.org/pypi/mysql-connector-python-rf/2.2.2 using easy_install''' ) quit( ) init( cur ) # Entries in this table are usually in future. cur.execute( 'SELECT * FROM upcoming_aws' ) for a in cur.fetchall( ): aws_[ a[ 'speaker' ] ].append( a ) upcoming_aws_[ a['speaker'].lower( ) ] = a['date'] # Keep the number of slots occupied at this day. upcoming_aws_slots_[ a['date'] ].append( a['speaker'] ) # Now get all the previous AWSs happened so far. cur.execute( 'SELECT * FROM annual_work_seminars' ) for a in cur.fetchall( ): aws_[ a[ 'speaker' ].lower() ].append( a ) for a in aws_: # Sort a list in place. aws_[a].sort( key = lambda x : x['date'] ) # print( a, [ x['date'] for x in aws_[a] ] ) # Select all aws scheduling requests which have been approved. cur.execute( "SELECT * FROM aws_scheduling_request WHERE status='APPROVED'" ) for a in cur.fetchall( ): aws_scheduling_requests_[ a[ 'speaker' ].lower( ) ] = a # Now pepare output file. speakers = speaker_data( ) slots = slots_data( ) graph = nx.DiGraph( ) graph.add_node( 'source' ) graph.add_node( 'sink' ) for s in speakers: graph.add_node( s, **speakers[s] ) graph.add_edge( 'source', s, weight = 0, capacity = 1, cost = 0 ) for date, i in slots: graph.add_node( (date,i), date = '%s' % date, index = i ) graph.add_edge( (date,i), 'sink', weight=0, capacity = 1, cost = 0 ) return graph def slots_data( ): today = datetime.date.today( ) monday0 = today + datetime.timedelta( days = 7 - today.weekday( ) ) validSlots = [ ] for dayi in range( 60 ): monday = monday0 + datetime.timedelta( days = 7 * dayi ) if monday in holidays_: print( 'Monday %s is holiday' % monday ) continue nSlots = 3 if monday in upcoming_aws_slots_: nAWS = len( upcoming_aws_slots_[monday] ) print( '%d AWSs are scheduled on this date %s' % (nAWS, monday )) nSlots -= nAWS for sloti in range(0, nSlots ): validSlots.append( (monday,sloti) ) return validSlots def speaker_data( ): speakers = { } keys = tuple( 'login,pi_or_host,specialization,nAWS,last_aws_on'.split( ',')) for l in speakers_: if l in upcoming_aws_: print( '-> Name is in upcoming AWS. Ignoring' ) continue piOrHost = speakers_[l].get('pi_or_host', 'UNKNOWN') vals = [ ] vals.append(l) vals.append( '%s' % piOrHost ) spec = spec_short( specialization_.get( l, 'UNKNOWN' ) ) vals.append( spec ) nAws = len( aws_.get( l, [] ) ) vals.append( '%d' % nAws ) vals.append( '%s' % lastAwsDate( l ) ) d = dict( zip(keys, vals) ) speakers[ l ] = d return speakers def lastAwsDate( speaker ): if speaker in aws_: awss = [ aws['date'] for aws in aws_[ speaker ] ] return sorted( awss )[-1] else: # joined date. return speakers_[speaker][ 'joined_on' ] def main( ): global db_ data = get_data( ) db_.close( ) outfile = '_aws_data.gml' if len( sys.argv ) > 1: outfile = sys.argv[1] nx.write_graphml( data, outfile ) print( 'Wrote graphml to %s' % outfile ) if __name__ == '__main__': main( )
787c678c43e432a2b35b976043067acbfd52115f
75402b6c851a12ae41359fdd83e89d2160c308af
/zentral/contrib/mdm/forms.py
7aa53ae26b0622c2703c47135a545d469bfa1415
[ "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-commercial-license" ]
permissive
neocode12/zentral
7b05aeeb823a5a3d7d268cc2b01e0bf1a5e4be71
9ecc8d8334148627fcccaa875f100adacd7a018b
refs/heads/main
2023-04-09T12:06:45.355559
2023-03-15T14:05:05
2023-03-15T14:05:05
327,651,549
0
0
Apache-2.0
2021-01-07T15:30:00
2021-01-07T15:30:00
null
UTF-8
Python
false
false
29,637
py
import base64 import hashlib import json import logging import plistlib from dateutil import parser from django import forms from django.db import transaction from django.db.models import Q from realms.utils import build_password_hash_dict from .app_manifest import build_enterprise_app_manifest from .apps_books import AppsBooksClient from .crypto import load_push_certificate_and_key from .declarations import update_blueprint_declaration_items from .dep import decrypt_dep_token from .dep_client import DEPClient from .models import (Artifact, ArtifactType, ArtifactVersion, BlueprintArtifact, Channel, DEPDevice, DEPOrganization, DEPEnrollment, DEPToken, DEPVirtualServer, EnrolledDevice, EnterpriseApp, Platform, SCEPConfig, OTAEnrollment, UserEnrollment, PushCertificate, Profile, Location, LocationAsset, StoreApp) logger = logging.getLogger("zentral.contrib.mdm.forms") class OTAEnrollmentForm(forms.ModelForm): class Meta: model = OTAEnrollment fields = ("name", "realm", "push_certificate", "scep_config", "scep_verification", "blueprint") class UserEnrollmentForm(forms.ModelForm): class Meta: model = UserEnrollment fields = ("name", "realm", "push_certificate", "scep_config", "scep_verification", "blueprint") class UserEnrollmentEnrollForm(forms.Form): managed_apple_id = forms.EmailField(label="Email", required=True) class PushCertificateForm(forms.ModelForm): certificate_file = forms.FileField(required=True) key_file = forms.FileField(required=True) key_password = forms.CharField(widget=forms.PasswordInput, required=False) class Meta: model = PushCertificate fields = ("name",) def clean(self): cleaned_data = super().clean() certificate_file = cleaned_data.pop("certificate_file", None) key_file = cleaned_data.pop("key_file", None) key_password = cleaned_data.pop("key_password", None) if certificate_file and key_file: try: push_certificate_d = load_push_certificate_and_key( certificate_file.read(), key_file.read(), key_password ) except ValueError as e: raise forms.ValidationError(str(e)) except Exception: raise forms.ValidationError("Could not load certificate or key file") if self.instance.topic: if push_certificate_d["topic"] != self.instance.topic: raise forms.ValidationError("The new certificate has a different topic") else: if PushCertificate.objects.filter(topic=push_certificate_d["topic"]): raise forms.ValidationError("A difference certificate with the same topic already exists") cleaned_data["push_certificate_d"] = push_certificate_d return cleaned_data def save(self): push_certificate_d = self.cleaned_data.pop("push_certificate_d") self.instance.name = self.cleaned_data["name"] for k, v in push_certificate_d.items(): if k == "private_key": self.instance.set_private_key(v) else: setattr(self.instance, k, v) self.instance.save() return self.instance class EnrolledDeviceSearchForm(forms.Form): q = forms.CharField(required=False, widget=forms.TextInput(attrs={"placeholder": "Serial number, UDID", "autofocus": True})) def get_queryset(self): qs = EnrolledDevice.objects.all().order_by("-updated_at") q = self.cleaned_data.get("q") if q: qs = qs.filter(Q(serial_number__icontains=q) | Q(udid__icontains=q)) return qs class EncryptedDEPTokenForm(forms.ModelForm): encrypted_token = forms.FileField(label="Server token", required=False) class Meta: model = DEPToken fields = [] def clean(self): encrypted_token = self.cleaned_data["encrypted_token"] if encrypted_token: payload = encrypted_token.read() try: data = decrypt_dep_token(self.instance, payload) kwargs = {k: data.get(k) for k in ("consumer_key", "consumer_secret", "access_token", "access_secret")} account_d = DEPClient(**kwargs).get_account() except Exception: self.add_error("encrypted_token", "Could not read or use encrypted token") else: self.cleaned_data["decrypted_dep_token"] = data self.cleaned_data["account"] = account_d else: self.add_error("encrypted_token", "This field is mandatory") return self.cleaned_data def save(self): # token dep_token = super().save() for k, v in self.cleaned_data["decrypted_dep_token"].items(): if k == "access_secret": dep_token.set_access_secret(v) elif k == "consumer_secret": dep_token.set_consumer_secret(v) else: setattr(dep_token, k, v) dep_token.save() account_d = self.cleaned_data["account"] # organization organization, _ = DEPOrganization.objects.update_or_create( identifier=account_d.pop("org_id"), defaults={"name": account_d.pop("org_name"), "admin_id": account_d.pop("admin_id"), "email": account_d.pop("org_email"), "phone": account_d.pop("org_phone"), "address": account_d.pop("org_address"), "type": account_d.pop("org_type"), "version": account_d.pop("org_version")} ) # virtual server account_d = self.cleaned_data["account"] server_uuid = account_d.pop("server_uuid") defaults = {"name": account_d["server_name"], "organization": organization, "token": dep_token} try: virtual_server = DEPVirtualServer.objects.get(uuid=server_uuid) except DEPVirtualServer.DoesNotExist: DEPVirtualServer.objects.create(uuid=server_uuid, **defaults) else: # we do not use update_or_create to be able to remove the old dep token old_token = virtual_server.token for attr, val in defaults.items(): setattr(virtual_server, attr, val) virtual_server.save() if old_token and old_token != dep_token: old_token.delete() return dep_token class CreateDEPEnrollmentForm(forms.ModelForm): admin_password = forms.CharField(required=False, widget=forms.PasswordInput) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) field_order = [ "push_certificate", "scep_config", "scep_verification", "blueprint", "virtual_server", "name", "allow_pairing", "is_supervised", "is_mandatory", "is_mdm_removable", "is_multi_user", "await_device_configured", "auto_advance_setup", "include_tls_certificates", "support_phone_number", "support_email_address", "org_magic", "department", "language", "region" ] for pane, initial in self.Meta.model.SKIPPABLE_SETUP_PANES: if self.instance.pk: initial = pane in self.instance.skip_setup_items self.fields[pane] = forms.BooleanField(label="Skip {} pane".format(pane), initial=initial, required=False) field_order.append(pane) field_order.extend(["realm", "use_realm_user", "realm_user_is_admin", "admin_full_name", "admin_short_name", "admin_password"]) self.order_fields(field_order) self.fields["language"].choices = sorted(self.fields["language"].choices, key=lambda t: (t[1], t[0])) self.fields["region"].choices = sorted(self.fields["region"].choices, key=lambda t: (t[1], t[0])) class Meta: model = DEPEnrollment fields = "__all__" def clean_is_mdm_removable(self): is_mdm_removable = self.cleaned_data.get("is_mdm_removable") is_supervised = self.cleaned_data.get("is_supervised") if not is_mdm_removable and not is_supervised: raise forms.ValidationError("Can only be set to False if 'Is supervised' is set to True") return is_mdm_removable def clean_use_realm_user(self): realm = self.cleaned_data.get("realm") use_realm_user = self.cleaned_data.get("use_realm_user") if use_realm_user and not realm: raise forms.ValidationError("This option is only valid if a 'realm' is selected") return use_realm_user def clean_realm_user_is_admin(self): use_realm_user = self.cleaned_data.get("use_realm_user") realm_user_is_admin = self.cleaned_data.get("realm_user_is_admin") if realm_user_is_admin and not use_realm_user: raise forms.ValidationError("This option is only valid if the 'use realm user' option is ticked too") return realm_user_is_admin def clean_admin_password(self): password = self.cleaned_data.get("admin_password") if password: self.cleaned_data["admin_password_hash"] = build_password_hash_dict(password) def admin_info_incomplete(self): return len([attr for attr in ( self.cleaned_data.get(i) for i in ("admin_full_name", "admin_short_name", "admin_password_hash") ) if attr]) in (1, 2) def clean(self): super().clean() skip_setup_items = [] for pane, initial in self.Meta.model.SKIPPABLE_SETUP_PANES: if self.cleaned_data.get(pane, False): skip_setup_items.append(pane) if self.admin_info_incomplete(): raise forms.ValidationError("Admin information incomplete") self.cleaned_data['skip_setup_items'] = skip_setup_items def save(self, *args, **kwargs): commit = kwargs.pop("commit", True) kwargs["commit"] = False dep_profile = super().save(**kwargs) dep_profile.skip_setup_items = self.cleaned_data["skip_setup_items"] dep_profile.admin_password_hash = self.cleaned_data.get("admin_password_hash") if commit: dep_profile.save() return dep_profile class UpdateDEPEnrollmentForm(CreateDEPEnrollmentForm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields["language"].choices = sorted(self.fields["language"].choices, key=lambda t: (t[1], t[0])) self.fields["region"].choices = sorted(self.fields["region"].choices, key=lambda t: (t[1], t[0])) class Meta: model = DEPEnrollment exclude = ("virtual_server",) def clean_admin_password(self): password = self.cleaned_data.get("admin_password") if password: self.cleaned_data["admin_password_hash"] = build_password_hash_dict(password) else: self.cleaned_data["admin_password_hash"] = self.instance.admin_password_hash class AssignDEPDeviceEnrollmentForm(forms.ModelForm): class Meta: model = DEPDevice fields = ("enrollment",) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if self.instance.pk: profile_f = self.fields["enrollment"] profile_f.queryset = profile_f.queryset.filter(virtual_server=self.instance.virtual_server) class UploadEnterpriseAppForm(forms.Form): package = forms.FileField(required=True, help_text="macOS distribution package (.pkg)") def clean(self): package = self.cleaned_data.get("package") if package: try: title, product_id, product_version, manifest, bundles = build_enterprise_app_manifest(package) except Exception as e: raise forms.ValidationError(f"Invalid package: {e}") if title is None: title = product_id name = f"{title} - {product_version}" if ( Artifact.objects.exclude( artifactversion__enterprise_app__product_id=product_id, artifactversion__enterprise_app__product_version=product_version ).filter(name=name).count() ): raise forms.ValidationError( "An artifact with the same name but a different product already exists" ) self.cleaned_data["name"] = name self.cleaned_data["filename"] = package.name self.cleaned_data["product_id"] = product_id self.cleaned_data["product_version"] = product_version self.cleaned_data["manifest"] = manifest self.cleaned_data["bundles"] = bundles return self.cleaned_data def save(self): cleaned_data = self.cleaned_data product_id = cleaned_data["product_id"] product_version = cleaned_data["product_version"] name = cleaned_data.pop("name") operation = None enterprise_apps = (EnterpriseApp.objects.select_for_update() .filter(product_id=product_id, product_version=product_version) .select_related("artifact_version__artifact")) enterprise_app = enterprise_apps.order_by("-artifact_version__version").first() if enterprise_app is None: operation = "created" artifact = Artifact.objects.create(name=name, type=ArtifactType.EnterpriseApp.name, channel=Channel.Device.name, platforms=[Platform.macOS.name]) artifact_version = ArtifactVersion.objects.create(artifact=artifact, version=1) EnterpriseApp.objects.create(artifact_version=artifact_version, **cleaned_data) else: artifact = enterprise_app.artifact_version.artifact if enterprise_app.manifest != cleaned_data["manifest"]: operation = "updated" artifact_version = ArtifactVersion.objects.create(artifact=artifact, version=enterprise_app.artifact_version.version + 1) EnterpriseApp.objects.create(artifact_version=artifact_version, **cleaned_data) artifact.name = name artifact.trashed_at = None artifact.save() return artifact, operation class UploadProfileForm(forms.Form): source_file = forms.FileField(required=True, help_text="configuration profile file (.mobileconfig)") def clean(self): source_file = self.cleaned_data.get("source_file") if source_file: try: payload = plistlib.load(source_file) except Exception: self.add_error("source_file", "This file is not a plist.") return self.cleaned_data # identifier try: self.cleaned_data["payload_identifier"] = payload_identifier = payload["PayloadIdentifier"] except KeyError: self.add_error("source_file", "Missing PayloadIdentifier.") return self.cleaned_data # existing profile self.cleaned_data["profile"] = profile = ( Profile.objects.select_for_update() .filter(payload_identifier=payload_identifier) .select_related("artifact_version__artifact") .first() ) # channel payload_scope = payload.get("PayloadScope", "User") if payload_scope == "System": channel = Channel.Device.name elif payload_scope == "User": channel = Channel.User.name else: self.add_error("source_file", f"Unknown PayloadScope: {payload_scope}.") return self.cleaned_data if profile and channel != profile.artifact_version.artifact.channel: self.add_error( "source_file", "Existing profile with same payload identifier has a different channel." ) return self.cleaned_data self.cleaned_data["channel"] = channel # uuid try: self.cleaned_data["payload_uuid"] = payload["PayloadUUID"] except KeyError: self.add_error("source_file", "Missing PayloadUUID.") return self.cleaned_data # other keys for payload_key, obj_key in (("PayloadDisplayName", "payload_display_name"), ("PayloadDescription", "payload_description")): self.cleaned_data[obj_key] = payload.get(payload_key) or "" # name check name = self.cleaned_data.get("payload_display_name") or self.cleaned_data["payload_uuid"] if ( Artifact.objects.exclude( artifactversion__profile__payload_identifier=self.cleaned_data["payload_identifier"] ).filter(name=name).count() ): self.add_error( "source_file", "An artifact with the same name but a different payload identifier already exists." ) return self.cleaned_data self.cleaned_data["name"] = name # source source_file = self.cleaned_data.pop("source_file") source_file.seek(0) self.cleaned_data["source"] = source_file.read() self.cleaned_data["filename"] = source_file.name return self.cleaned_data def save(self): cleaned_data = self.cleaned_data name = cleaned_data.pop("name") channel = cleaned_data.pop("channel") profile = cleaned_data.pop("profile") operation = None if profile is None: operation = "created" artifact = Artifact.objects.create(name=name, type=ArtifactType.Profile.name, channel=channel, platforms=Platform.all_values()) artifact_version = ArtifactVersion.objects.create(artifact=artifact, version=1) Profile.objects.create(artifact_version=artifact_version, **cleaned_data) else: artifact = profile.artifact_version.artifact if profile.source.tobytes() != cleaned_data["source"]: operation = "updated" artifact_version = ArtifactVersion.objects.create(artifact=artifact, version=profile.artifact_version.version + 1) Profile.objects.create(artifact_version=artifact_version, **cleaned_data) artifact.name = name artifact.channel = channel artifact.trashed_at = None artifact.save() elif artifact.trashed_at: artifact.trashed_at = None artifact.save() for blueprint_artifact in artifact.blueprintartifact_set.select_related("blueprint").all(): update_blueprint_declaration_items(blueprint_artifact.blueprint, commit=True) return artifact, operation class PlatformsWidget(forms.CheckboxSelectMultiple): def __init__(self, attrs=None, choices=()): super().__init__(attrs, choices=Platform.choices()) def format_value(self, value): if isinstance(value, str) and value: value = [v.strip() for v in value.split(",")] return super().format_value(value) class UpdateArtifactForm(forms.ModelForm): class Meta: model = Artifact fields = ("platforms",) widgets = {"platforms": PlatformsWidget} class BlueprintArtifactForm(forms.ModelForm): class Meta: model = BlueprintArtifact fields = ("blueprint", "priority", "install_before_setup_assistant", "auto_update") def __init__(self, *args, **kwargs): self.artifact = kwargs.pop("artifact") super().__init__(*args, **kwargs) current_blueprint_pk = None if self.instance.pk: current_blueprint_pk = self.instance.blueprint.pk exluded_bpa_pk = [ bpa.blueprint.pk for bpa in self.artifact.blueprintartifact_set.all() if not bpa.blueprint.pk == current_blueprint_pk ] bpqs = self.fields["blueprint"].queryset bpqs = bpqs.exclude(pk__in=exluded_bpa_pk) self.fields["blueprint"].queryset = bpqs def save(self, *args, **kwargs): self.instance.artifact = self.artifact return super().save(*args, **kwargs) class SCEPConfigForm(forms.ModelForm): class Meta: model = SCEPConfig fields = "__all__" class LocationForm(forms.ModelForm): server_token_file = forms.FileField( required=True, help_text="Server token (*.vpptoken), downloaded from the Apple business manager." ) class Meta: model = Location fields = [] def clean(self): server_token_file = self.cleaned_data["server_token_file"] if not server_token_file: return raw_server_token = server_token_file.read() server_token = raw_server_token.decode("utf-8") # base64 + json test try: server_token_json = json.loads(base64.b64decode(raw_server_token)) except ValueError: self.add_error("server_token_file", "Not a valid server token") return # token hash server_token_hash = hashlib.sha1(raw_server_token).hexdigest() test_qs = Location.objects.filter(server_token_hash=server_token_hash) if self.instance.pk: test_qs = test_qs.exclude(pk=self.instance.pk) if test_qs.count(): self.add_error("server_token_file", "A location with the same server token already exists.") return self.cleaned_data["server_token_hash"] = server_token_hash try: self.cleaned_data["organization_name"] = server_token_json["orgName"] except Exception: self.add_error("server_token_file", "Could not get organization name.") return ab_client = AppsBooksClient(server_token) try: config = ab_client.get_client_config() except Exception: msg = "Could not get client information" logger.exception(msg) self.add_error("server_token_file", msg) return for config_attr, model_attr in (("countryISO2ACode", "country_code"), ("uId", "library_uid"), ("locationName", "name"), ("defaultPlatform", "platform"), ("websiteURL", "website_url")): val = config.get(config_attr) if not isinstance(val, str): self.add_error("server_token_file", f"Missing or bad {config_attr}.") else: self.cleaned_data[model_attr] = val try: self.cleaned_data["server_token_expiration_date"] = parser.parse(config["tokenExpirationDate"]) except KeyError: self.add_error("server_token_file", "Missing tokenExpirationDate.") return except Exception: msg = "Could not parse server token expiration date." logger.exception(msg) self.add_error("server_token_file", msg) return self.cleaned_data["server_token"] = server_token return self.cleaned_data def save(self): location = super().save(commit=False) for attr in ("server_token_hash", "server_token_expiration_date", "organization_name", "country_code", "library_uid", "name", "platform", "website_url"): setattr(location, attr, self.cleaned_data[attr]) notification_auth_token = location.set_notification_auth_token() location.save() location.set_server_token(self.cleaned_data["server_token"]) location.save() def update_client_config(): ab_client = AppsBooksClient.from_location(location) ab_client.update_client_config(notification_auth_token) # TODO: retry transaction.on_commit(update_client_config) return location class StoreAppForm(forms.ModelForm): configuration = forms.CharField( required=False, widget=forms.Textarea(attrs={"rows": 10}), help_text="The property list representation of the managed app configuration." ) class Meta: model = StoreApp fields = ( "associated_domains", "associated_domains_enable_direct_downloads", "removable", "vpn_uuid", "content_filter_uuid", "dns_proxy_uuid", "remove_on_unenroll", "prevent_backup" ) widgets = { "vpn_uuid": forms.TextInput, "content_filter_uuid": forms.TextInput, "dns_proxy_uuid": forms.TextInput } def clean_configuration(self): configuration = self.cleaned_data.pop("configuration") if configuration: if configuration.startswith("<dict>"): # to make it easier for the users configuration = f'<plist version="1.0">{configuration}</plist>' try: loaded_configuration = plistlib.loads(configuration.encode("utf-8")) except Exception: raise forms.ValidationError("Invalid property list") if not isinstance(loaded_configuration, dict): raise forms.ValidationError("Not a dictionary") configuration = plistlib.dumps(loaded_configuration) return configuration def clean(self): super().clean() # update configuration configuration = self.cleaned_data.get("configuration") if configuration: self.instance.configuration = configuration else: self.instance.configuration = None class LocationAssetChoiceField(forms.ModelChoiceField): def label_from_instance(self, obj): return str(obj.location) class CreateAssetArtifactForm(StoreAppForm): location_asset = LocationAssetChoiceField(label="Location", queryset=LocationAsset.objects.none(), required=True) name = forms.CharField(required=True) field_order = ( "location_asset", "name", "removable", "remove_on_unenroll", "prevent_backup", "configuration", "associated_domains", "associated_domains_enable_direct_downloads", "vpn_uuid", "content_filter_uuid", "dns_proxy_uuid" "configuration", ) class Meta(StoreAppForm.Meta): fields = ( "location_asset", "associated_domains", "associated_domains_enable_direct_downloads", "removable", "vpn_uuid", "content_filter_uuid", "dns_proxy_uuid", "remove_on_unenroll", "prevent_backup" ) def clean_name(self): name = self.cleaned_data.get("name") if Artifact.objects.filter(name=name).count(): raise forms.ValidationError("An artifact with this name already exists") return name def __init__(self, *args, **kwargs): self.asset = kwargs.pop("asset") super().__init__(*args, **kwargs) # location qs self.fields["location_asset"].queryset = self.asset.locationasset_set.all() # default name name = self.asset.name for i in range(1, 11): if Artifact.objects.filter(name=name).count() == 0: break name = f"{self.asset.name} ({i})" else: logger.error("Could not find unique name for asset %s", self.asset.pk) name = self.asset.name self.fields["name"].initial = name def save(self): artifact = Artifact.objects.create( name=self.cleaned_data["name"], type=ArtifactType.StoreApp.name, channel=Channel.Device.name, platforms=self.asset.supported_platforms, ) artifact_version = ArtifactVersion.objects.create( artifact=artifact, ) store_app = super().save(commit=False) store_app.artifact_version = artifact_version store_app.save() return store_app
9fbef7fb8b455016bf7a16b47c1eb1263256544f
011157c49983db38489f26f51db7fe22f8519afc
/problems/977.py
035f621ca2688c4bba3cd595ee1a4ef4aab09562
[]
no_license
chasecolford/Leetcode
c0054774d99e7294419039f580c1590495f950b3
dded74e0c6e7a6c8c8df58bed3640864d0ae3b91
refs/heads/master
2023-08-04T11:33:18.003570
2021-09-10T21:06:55
2021-09-10T21:06:55
283,154,381
0
0
null
null
null
null
UTF-8
Python
false
false
618
py
""" Given an array of integers A sorted in non-decreasing order, return an array of the squares of each number, also in sorted non-decreasing order. Example 1: Input: [-4,-1,0,3,10] Output: [0,1,9,16,100] Example 2: Input: [-7,-3,2,3,11] Output: [4,9,9,49,121] Note: 1 <= A.length <= 10000 -10000 <= A[i] <= 10000 A is sorted in non-decreasing order. """ class Solution(object): def sortedSquares(self, A): """ :type A: List[int] :rtype: List[int] """ temp = [] for i in A: temp.append(i**2) return sorted(temp)
67e7e62ac85175645e06c74f6e4061d903339161
26d065c72e4f8dccaf47c67cedd77228fcf12127
/gps/gps.py
6d7e924fd0b0824081c62d1d360f805312e1a548
[]
no_license
lucaskotres/Expert-Systems
a22ebbfa8aec71b15d3a34c47054a56adb7915dd
2ef749879a7b44554eee5a07d3dc4f2af3863ae1
refs/heads/master
2022-12-01T12:59:58.695572
2020-08-24T01:07:41
2020-08-24T01:07:41
289,792,500
0
0
null
null
null
null
UTF-8
Python
false
false
1,592
py
def gps(initial_states, goal_states, operators): prefix = 'Executando ' for operator in operators: operator['add'].append(prefix + operator['action']) final_states = achieve_all(initial_states, operators, goal_states, []) if not final_states: return None return [state for state in final_states if state.startswith(prefix)] def achieve_all(states, ops, goals, goal_stack): for goal in goals: states = achieve(states, ops, goal, goal_stack) if not states: return None for goal in goals: if goal not in states: return None return states def achieve(states, operators, goal, goal_stack): debug(len(goal_stack), 'Achieving: %s' % goal) if goal in states: return states if goal in goal_stack: return None for op in operators: if goal not in op['add']: continue result = apply_operator(op, states, operators, goal, goal_stack) if result: return result def apply_operator(operator, states, ops, goal, goal_stack): debug(len(goal_stack), 'Consider: %s' % operator['action']) result = achieve_all(states, ops, operator['preconds'], [goal] + goal_stack) if not result: return None debug(len(goal_stack), 'Action: %s' % operator['action']) add_list, delete_list = operator['add'], operator['delete'] return [state for state in result if state not in delete_list] + add_list import logging def debug(level, msg): logging.debug(' %s %s' % (level * ' ', msg))
620786b8f15687edf3669042c8154777773f288f
9bdc6b5b88ed3d9bf631210e5232afce10d9f51b
/maze.py
3b1b56f91b25c5480689927cb10df60f53d1f746
[]
no_license
ghe/maze
7b65a40381cff86e2a8d108b3f80caaad5a0ae3f
2e52b69e328059962f4777c2a5f12b3dfa9ae0a8
refs/heads/master
2016-09-05T15:42:31.528763
2014-10-29T03:14:10
2014-10-29T03:14:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,829
py
import random class Room(object): directions = ["North", "South", "East", "West", "Up", "Down"] next_id = 65 def __init__(self): self._hallways = {} self._name = chr(Room.next_id) Room.next_id += 1 def __str__(self): s = "%s: " % (self.name,) for d in self._hallways: s += "%s -> %s, " % (d, self.adjacent(d).name) return s @property def name(self): return self._name def connect(self, direction, room): if direction in Room.directions: if not direction in self._hallways: self._hallways[direction] = room return True return False def connected_dirs(self): return list(set(Room.directions).intersection(self._hallways)) def free_dirs(self): return list(set(Room.directions).difference(self._hallways)) def can_connect(self): return len(self.free_dirs) > 0 def rand_connect(self, room): free = self.free_dirs() if len(free) > 0: freedir = random.choice(free) return self.connect(freedir, room) return False def adjacent(self, direction): if direction in Room.directions: if direction in self._hallways: return self._hallways[direction] return None rooms = [Room() for _ in range(4)] def bidir_connect(room_a, room_b): if room_a.can_connect: if room_b.rand_connect(room_a): return room_a.rand_connect(room_b) return False #connect all rooms in a chain last_room = None for room in rooms: if last_room: bidir_connect(last_room, room) last_room = room #add some more connections for room in rooms: bidir_connect(room, random.choice(rooms)) for room in rooms: print(room)
33e8f7f92f2887a69a0c5b50443e0f1c5b971d3a
83c5f79fb96c02d1b10c5b55cd843a3941dbc3ab
/oldPythonScripts/reading_in_files_fuzz_attempt2.py
06038869bffbc653a9d02ba38a8017ba97cb26c7
[]
no_license
mnfienen/fuzztest
be9bcaea79298dffd469770f3c3373c7328c7944
7067cfffed2a175bfaeb29bfe400021037e35e5a
refs/heads/master
2016-09-01T18:54:46.539895
2012-11-01T16:29:22
2012-11-01T16:29:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,035
py
import numpy as np import csv import shapefile as shp import os from fuzzywuzzy import fuzz from fuzzywuzzy import process def parse_fields(allfields): # make an empty list fields_list = [] # loop over the input fields list and pull out the names for cf in allfields: fields_list.append(cf[0].lower()) # give back a list of just the names return np.array(fields_list) #reader_input = csv.reader(open('glfwc_export.txt','rb'),delimiter = ',',quotechar='"') # make a path that doesn't care if it's on windoze or a superior operating system like linux mac or anyone else inpath = os.path.join('glfwc_experimental_shapefile','GLIFWC_points') inpath2 = os.path.join('Fish_experimental_test_sites','wdnr_sites') # make a shapefile object from the shapefile root name inshape = shp.Reader(inpath) inshape2 = shp.Reader(inpath2) # we can pull out various object properties allfields = inshape.fields allrecords = inshape.records() allfields2 = inshape2.fields allrecords2 = inshape2.records() # yank out the FIELD NAMES ONLY from the crufty fields list # call parse_fields function justfields = parse_fields(allfields) #print justfields # print to test the squeezingly wheritude np.set_printoptions(precision=2, suppress=True) #print allrecords[0][np.squeeze(np.where(justfields=='site_descr'.lower()))-1] # pull all the Comments # first make an empty list for results comments_only = [] for cr in allrecords: comments_only.append(cr[np.squeeze(np.where(justfields=='comments'.lower()))-1]) # use fuzzy ratio to compare nested string lists def fuzz_it (fieldNames1, fieldNames2): for value in fieldNames1: for subvalue in fieldNames1: print subvalue[0], type(subvalue[0]) fuzz.ratio(subvalue[0], subvalue[0]) #for value in fieldNames1, fieldNames2: #for subvalue in fieldNames1, fieldNames2: #print subvalue[0][1][2] #print value, type(value) def first_file_fields(allrecords): # pull all site descriptions site_description_only = [] for cr in allrecords: site_description_only.append(cr[np.squeeze(np.where(justfields=='site_descr'.lower()))-1]) # pull all site names site_name_only = [] for cr in allrecords: site_name_only.append(cr[np.squeeze(np.where(justfields=='site_name'.lower()))-1]) # pull all waterbodies waterbody_only = [] for cr in allrecords: waterbody_only.append(cr[np.squeeze(np.where(justfields=='waterbody_'.lower()))-1]) # nest up the field lists into a nice list of lists all_sites = zip(site_description_only, site_name_only, waterbody_only) for i in all_sites: print i #print len(all_sites),"ALL relevant fields" #print all_sites, type(all_sites) global fieldNames1 fieldNames1 = all_sites def second_file_fields(allrecords2): # pull all site descriptions site_description_only = [] for cr in allrecords2: site_description_only.append(cr[np.squeeze(np.where(justfields=='site_descr'.lower()))-1]) # pull all site names site_name_only = [] for cr in allrecords2: site_name_only.append(cr[np.squeeze(np.where(justfields=='site_name'.lower()))-1]) # pull all waterbodies waterbody_only = [] for cr in allrecords2: waterbody_only.append(cr[np.squeeze(np.where(justfields=='waterbody_'.lower()))-1]) # nest up the field lists into a nice list of lists all_sites = zip(site_description_only, site_name_only, waterbody_only) global fieldNames2 fieldNames2 = all_sites fuzz_it(fieldNames1, fieldNames2) first_file_fields(allrecords) second_file_fields(allrecords2)
73010681591a7f85d82ed79e2c13ddcc3221d9e9
7543bd745b3637138cb5d14ee1fe7d9791f88385
/week 6/problem set 6: readability/readability.py
6cba57027c7a1d45a11c2ca971d60a52424bff48
[]
no_license
ModruKinstealer/CS50ProblemSets
43a72e75575c6b32805a4556adbd1ef3b4837627
888b0d186f657eb6308ce14b2630864f6b4cdb31
refs/heads/master
2022-10-11T13:20:44.222634
2022-09-20T00:25:48
2022-09-20T00:25:48
171,741,915
0
0
null
null
null
null
UTF-8
Python
false
false
672
py
# TODO from cs50 import get_string from sys import exit text = get_string("Text: ") letters = 0 words = len(text.split()) sentences = text.count("?") + text.count(".") + text.count("!") for letter in text: if letter.isalpha(): letters += 1 # Coleman-Liau index is computed as 0.0588 * L - 0.296 * S - 15.8 # L is the average number of letters per 100 words in the text # S is the average number of sentences per 100 words in the text. L = (letters / words) * 100 S = (sentences / words) * 100 index = 0.0588 * L - 0.296 * S - 15.8 if index < 1: print("Before Grade 1") elif index > 16: print("Grade 16+") else: print(f"Grade {round(index)}")
060d93de1b98a3827caea4b362264c3f865e5bf1
bcf39edb9d991527ea79df8a6d52cc1253c4178b
/RandomForest/load_salaryprediction.py
4ec7f11459d0dddee57c364fd835b02d979e2e55
[]
no_license
dmt3182/DMT_MASTER_REPO
73c8ff184d182b2ae0ac3c0e40e93a51dd9ca567
c5484c927e0b26f622ee73ee897524ed16901055
refs/heads/main
2023-04-29T07:32:59.686018
2021-05-16T11:11:02
2021-05-16T11:11:02
355,144,838
0
0
null
2021-05-01T16:17:57
2021-04-06T10:16:53
Python
UTF-8
Python
false
false
1,372
py
import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.tree import export_graphviz from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score import matplotlib.pyplot as plt import joblib data = pd.read_csv(r'E:\1.DEEPAK Data Science\GITREPO\DMT_MASTER_REPO\RandomForest\Salary.csv') X = data['YearsExperience'].values.reshape(-1,1) Y = data['Salary'] X_train, X_test, Y_train,Y_test = train_test_split( X,Y,test_size = 0.2,random_state = 42 ) joblib_model = joblib.load('savemodel.pkl') # # Predict y_pred = joblib_model.predict(X_test) print (y_pred) s = joblib_model.score(Y_test.values.reshape(-1,1),y_pred.reshape(-1,1)) print ('Score :',s) df=pd.DataFrame({'Actual':Y_test, 'Predicted':y_pred}) print (df) print('MAE :' , mean_absolute_error(Y_test,y_pred)) print('MSE :' , mean_squared_error(Y_test,y_pred)) print('R2 :' , r2_score(Y_test,y_pred)) # Feature importance importance = joblib_model.feature_importances_ # summarize feature importance for i,v in enumerate(importance): print('Feature: %0d, Score: %.5f' % (i,v)) # # plot feature importance # plt.bar([x for x in range(len(importance))], importance) # plt.show()
f390bf894bb179ecd6b1f1424fcc5d1d824ce593
a5be28057bb55e0ebc4a25fce90143ad50c77f5c
/Data processing, runs generator and utility file/FunctionApproximator.py
af38ac61c7d9148c02e260052c7c0c2071fec486
[]
no_license
vijetadeshpande/meta-environment
fa76d1c9dbb220c376a2a8f7b3b8b50c0b9a0b41
87eb12826a11e57e3ef09baf616959dae1c38fc8
refs/heads/master
2023-02-04T14:59:03.826016
2020-12-14T19:08:33
2020-12-14T19:08:33
263,530,317
0
0
null
null
null
null
UTF-8
Python
false
false
5,626
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun May 24 02:45:04 2020 @author: vijetadeshpande """ import torch import torch.nn as nn import sys sys.path.insert(1, r'/Users/vijetadeshpande/Documents/GitHub/meta-environment/RNN GRU') sys.path.insert(1, r'/Users/vijetadeshpande/Documents/GitHub/meta-environment/Transformer') sys.path.insert(1, r'/Users/vijetadeshpande/Documents/GitHub/meta-environment/RNN LSTM') sys.path.insert(1, r'/Users/vijetadeshpande/Documents/GitHub/meta-environment/RNN Vanilla') from GRUModel import Model as GRUModel from GRUEvaluate import evaluate as GRUEval from TransformerEncoder import Encoder as TEnc from TransformerDecoder import Decoder as TDec from TransformerModel import Model as TModel from TransformerEvaluate import evaluate as TEval from VanillaModel import Model as VanillaModel from VanillaEvaluate import evaluate as VanillaEval from LSTMModel import Model as LSTMModel from LSTMEvaluate import evaluate as LSTMEval class GRUApproximator(nn.Module): def __init__(self, filepath): super().__init__() # here we make a computational graph suited optimal RNN model # then we load the .pt file and we are all set # create model INPUT_DIM, OUTPUT_DIM = 8, 3 HID_DIM, N_LAYERS, DROPOUT = 24, 2, 0 DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = GRUModel(INPUT_DIM, HID_DIM, OUTPUT_DIM, N_LAYERS, DROPOUT, DEVICE) model = model.to(DEVICE) # load file model.load_state_dict(torch.load(filepath)) model.eval() # set sttribute self.model = model # self.criterion = nn.MSELoss().to(DEVICE) #nn.SmoothL1Loss().to(DEVICE) return def forward(self, input_data, z_path, DEVICE): # check shape # input_tensor = [BATCH, SEQ_LEN, INPUT_DIM] #EXAMPLES, SRC_LEN, INPUT_DIM = input_tensor[0].shape # predict prediction = GRUEval(self.model, input_data, self.criterion, DEVICE, z_path) return prediction class TransformerApproximator(nn.Module): def __init__(self, filepath): super().__init__() # create model INPUT_DIM, OUTPUT_DIM = 8, 3 N_HEADS_ENC, N_HEADS_DEC, N_LAYERS, DROPOUT = 8, 3, 1, 0.05 DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # initialize encoder, decoder and seq2seq model classes encoder = TEnc(INPUT_DIM, OUTPUT_DIM, N_HEADS_ENC, N_LAYERS, DROPOUT) decoder = TDec(OUTPUT_DIM, N_HEADS_DEC, N_LAYERS, DROPOUT) model = TModel(encoder, decoder) model = model.to(DEVICE) # load parameters model.load_state_dict(torch.load(filepath)) model.eval() # set attribute self.model = model self.criterion = nn.MSELoss().to(DEVICE) return def forward(self, input_data, z_path, DEVICE): # predicr prediction = TEval(self.model, input_data, self.criterion, DEVICE, z_path) return prediction class VanillaApproximator(nn.Module): def __init__(self, filepath): super().__init__() # here we make a computational graph suited optimal RNN model # then we load the .pt file and we are all set # create model INPUT_DIM, OUTPUT_DIM = 8, 3 HID_DIM, N_LAYERS, DROPOUT = 32, 2, 0 DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = VanillaModel(INPUT_DIM, HID_DIM, OUTPUT_DIM, N_LAYERS, DROPOUT, DEVICE) model = model.to(DEVICE) # load file model.load_state_dict(torch.load(filepath)) model.eval() # set sttribute self.model = model # self.criterion = nn.MSELoss().to(DEVICE) #nn.SmoothL1Loss().to(DEVICE) return def forward(self, input_data, z_path, DEVICE): # check shape # input_tensor = [BATCH, SEQ_LEN, INPUT_DIM] #EXAMPLES, SRC_LEN, INPUT_DIM = input_tensor[0].shape # predict prediction = VanillaEval(self.model, input_data, self.criterion, DEVICE, z_path) return prediction class LSTMApproximator(nn.Module): def __init__(self, filepath): super().__init__() # here we make a computational graph suited optimal RNN model # then we load the .pt file and we are all set # create model INPUT_DIM, OUTPUT_DIM = 8, 3 HID_DIM, N_LAYERS, DROPOUT = 16, 2, 0 DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = LSTMModel(INPUT_DIM, HID_DIM, OUTPUT_DIM, N_LAYERS, DROPOUT, DEVICE) model = model.to(DEVICE) # load file model.load_state_dict(torch.load(filepath)) model.eval() # set sttribute self.model = model # self.criterion = nn.MSELoss().to(DEVICE) #nn.SmoothL1Loss().to(DEVICE) def forward(self, input_data, z_path, DEVICE): # check shape # input_tensor = [BATCH, SEQ_LEN, INPUT_DIM] #EXAMPLES, SRC_LEN, INPUT_DIM = input_tensor[0].shape # predict prediction = LSTMEval(self.model, input_data, self.criterion, DEVICE, z_path) return prediction
a926f0874a57cd89c4d221f631eb494992969736
27e27dbf548b1d2688a0501cb4b5c58ae6745ffd
/Veranstaltungen/apps.py
66c54886abf50ff8dc86d9bd4ae70a621ee56859
[ "MIT" ]
permissive
valuehack/scholarium.at
e751f81583a24eb687ee4a5babb466ecdc902652
b81220ab18ae6db057132ae2cc43afc22545e5e6
refs/heads/master
2022-12-13T05:56:52.002885
2018-11-23T13:22:13
2018-11-23T13:22:13
84,197,454
1
4
MIT
2022-12-08T00:39:44
2017-03-07T12:38:23
Python
UTF-8
Python
false
false
105
py
from django.apps import AppConfig class VeranstaltungenConfig(AppConfig): name = 'Veranstaltungen'
74f430010ddc429b42ea3e7cb62b1e5722297a7b
ded4ebb64405d1127b6aa6b89c3cc46488f99810
/Selenium/Implicit_Wait.py
c7419162010f46653105fd97cf6026b8a73e76e7
[]
no_license
Mushtaq-Hussain/Best_Practice_of_AutomationTest
0bbbcf81541dfa01edabd5d8f15651180b91943b
5513f02394cb7e3fadcdfd17da0ce3eb302042c4
refs/heads/main
2023-02-25T01:24:16.379602
2021-01-21T16:11:33
2021-01-21T16:11:33
331,680,511
0
0
null
null
null
null
UTF-8
Python
false
false
643
py
from selenium import webdriver from selenium.webdriver.common.by import By import time class ImplicitWait(): def test(self): driver = webdriver.Chrome(executable_path=r"C:\Users\mushtaq.hussain\PycharmProjects\Selenium\driver\chromedriver.exe") driver.maximize_window() driver.get("https://learn.letskodeit.com/p/practice") driver.implicitly_wait(10) loginLink = driver.find_element(By.XPATH, "//div[@id='navbar']//a[@href='/sign_in']") loginLink.click() emailField = driver.find_element(By.ID, "user_email") emailField.send_keys("test") ff = ImplicitWait() ff.test()
2e0f274be0cf1698b720e80ef936afa5f41ae5b9
5b9e88b380e671be712a733a511932314114bfaa
/switch.py
3093e9ff40ffa4a76f8c74cda14b4335989380d4
[]
no_license
jasoneka/code_carrots
fd32e487e340c8efc41dd1cd6747fd9006608f83
c88d9855af7b7da5918425c162c9823d33625792
refs/heads/master
2021-01-10T10:36:59.885174
2016-01-03T22:12:55
2016-01-03T22:12:55
48,961,923
0
0
null
null
null
null
UTF-8
Python
false
false
737
py
# This class provides the functionality we want. You only need to look at # this if you want to know how this works. It only needs to be defined # once, no need to muck around with its internals. class switch(object): def __init__(self, value): self.value = value self.fall = False def __iter__(self): """Return the match method once, then stop""" yield self.match raise StopIteration def match(self, *args): """Indicate whether or not to enter a case suite""" if self.fall or not args: return True elif self.value in args: # changed for v1.5, see below self.fall = True return True else: return False
bb5fb0d3300035b2515c8a8f07d0d2e77578c6e6
d85cd9218f13b4d42ef014daae0498766c1b6f18
/user_enterpoint.py
21c1e6112f9078d325b3d1a359ea5a067968f4d9
[]
no_license
zhongsheng-sudo/CrazyAss
90067f8dc0f318b9aa6ab6d46c566f58a3d66cc7
a091485d8bed2a43ad93760fed557c3925cb7e3c
refs/heads/master
2020-08-11T13:12:39.480678
2019-10-12T05:17:37
2019-10-12T05:17:37
214,570,324
0
0
null
null
null
null
UTF-8
Python
false
false
5,030
py
#_author: hasee #date: 2019/10/7 import getpass,os from django.contrib.auth import authenticate import subprocess import hashlib,time class UserPortal(object): """用户命令行端交互入口""" def __init__(self): self.user = None def user_auth(self): """完成用户交互""" retry_count = 0 while retry_count < 3: username = input("Username:").strip() if len(username) == 0:continue password = getpass.getpass("Password:").strip() if len(password)== 0: print("Password cannot be null.") continue user = authenticate(username= username, password = password) if user: self.user = user #print("welcome login...") return else: print("Invalid username or password!") retry_count += 1 else: exit("Too many attempts.") def interactive(self): """交互函数""" self.user_auth() if self.user: exit_flag = False while not exit_flag: for index,host_group in enumerate(self.user.host_groups.all()): print("%s. %s[%s]" %(index,host_group.name, host_group.bind_hosts.all().count())) print("%s. Ungrouped Hosts[%s]"%(index+1, self.user.bind_hosts.select_related().count()) ) user_input = input("Choose Group:").strip() if len(user_input) == 0:continue if user_input.isdigit(): user_input = int(user_input) if user_input >= 0 and user_input < self.user.host_groups.all().count() : selected_hostgroup = self.user.host_groups.all()[user_input] elif user_input == self.user.host_groups.all().count() :#选中了未分组的那组主机 selected_hostgroup = self.user #之所以可以这样,是因为self.user里也有一个bind_hosts,跟HostGroup.bind_hosts指向的表一样 else: print("invalid host group") continue while True: for index,bind_host in enumerate(selected_hostgroup.bind_hosts.all()): print("%s. %s(%s user:%s)" % (index, bind_host.host.hostname, bind_host.host.ip_addr, bind_host.host_user.username)) user_input2 = input("Choose Host:").strip() if len(user_input2) == 0: continue if user_input2.isdigit(): user_input2 = int(user_input2) if user_input2 >= 0 and user_input2 < selected_hostgroup.bind_hosts.all().count() : selected_bindhost = selected_hostgroup.bind_hosts.all()[user_input2] print("logging host",selected_bindhost) md5_str = hashlib.md5(str(time.time()).encode()).hexdigest() login_cmd ='sshpass -p {password} /usr/local/openssh8/bin/ssh {user}@{ip_addr} -o "StrictHostKeyChecking no" -Z {md5_str}'.format(password=selected_bindhost.host_user.password, user=selected_bindhost.host_user.username, ip_addr=selected_bindhost.host.ip_addr, md5_str = md5_str) print(login_cmd) session_tracker_script=settings.SESSION_TRACKER_SCRIPT tracker_obj=subprocess.Popen("%s %s"%(session_tracker_script,md5_str),shell=True,stdout=subprocess.PIPE,stderr=subprocess.PIPE) models.SessionLog.objects.create(user=self.user,bind_host=selected_bindhost,session_tag=md5_str) ssh_instance = subprocess.run(login_cmd,shell=True) print("------------logout---------") print("out",tracker_obj.stdout.read()) print("err",tracker_obj.stderr.read().decode()) if user_input2 == "b": break if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "CrazyAss.settings") import django django.setup() from django.conf import settings from audit import models portal = UserPortal() portal.interactive()
4e24f321f536b7e455988e96ee9e8a930f4d65d0
7d99585ae8003adec03d360d0587fe2229175514
/dataset.py
6a1fcc58d5be228b78c1f1dd9cd600668ed08d62
[]
no_license
serginogues/convolutional_autoencoder
6634a8c11cd349479bfa4838cfa3390e14417a57
ef469d3e3698cb08536af627d839aecf0d8a54ec
refs/heads/main
2023-09-05T08:42:01.294182
2021-11-16T20:05:58
2021-11-16T20:05:58
424,561,749
0
1
null
null
null
null
UTF-8
Python
false
false
5,276
py
""" Dataset class to work with CIFAR-10 torchvision.transforms.ToTensor: Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] """ import torch from torchvision import datasets from torch.utils.data.dataset import random_split from torch.utils.data import DataLoader, ConcatDataset from torchvision import transforms import matplotlib.pyplot as plt import numpy as np from config import * def load_CIFAR10(standarize=False): """ Load CIFAR10 dataset :param standarize: if True, data is normalized with mean = 0 and st deviation = 1 :return: train_loader, test_loader, valid_loader, classes """ print("...loading train and test datasets") # transforms.ToTensor() already scales from PIL Images with range [0, 255] to Tensors with range [0, 1] train_dataset = datasets.CIFAR10(root=DATA_PATH, train=True, download=True, transform=transforms.ToTensor()) test_dataset = datasets.CIFAR10(root=DATA_PATH, train=False, download=True, transform=transforms.ToTensor()) classes = train_dataset.classes if standarize: print("...computing mean and std for standarization") train_transform = get_transform(train_dataset) test_transform = get_transform(test_dataset) print("...re-loading train and test normalised datasets") train_dataset = datasets.CIFAR10(root=DATA_PATH, train=True, download=True, transform=train_transform) test_dataset = datasets.CIFAR10(root=DATA_PATH, train=False, download=True, transform=test_transform) print("...concatenating and splitting") concat_dataset = ConcatDataset([train_dataset, test_dataset]) len_ = len(concat_dataset) train_set, test_set, valid_set = random_split(concat_dataset, [round(len_ * TRAIN_SIZE), round(len_ * TEST_SIZE), round(len_ * VALIDATION_SIZE)]) print("") print("Train samples:", len(train_set)) print("Test samples:", len(test_set)) print("Validation samples:", len(valid_set)) total_samp = len(train_set) + len(test_set) + len(valid_set) print("Sample distribution: " + str(round((len(train_set) / total_samp) * 100)) + "% train, " + str(round((len(test_set) / total_samp) * 100)) + "% test, " + str(round((len(valid_set) / total_samp) * 100)) + "% validation") train_loader = DataLoader(train_set, batch_size=BATCH_SIZE, num_workers=0, shuffle=True, drop_last=True) test_loader = DataLoader(test_set, batch_size=BATCH_SIZE, num_workers=0, shuffle=False) valid_loader = DataLoader(valid_set, batch_size=BATCH_SIZE, num_workers=0, shuffle=False) if standarize: # print mean and std print("Mean = ", next(iter(train_loader))[0].mean()) print("Std = ", next(iter(train_loader))[0].std()) return train_loader, test_loader, valid_loader, classes def get_transform(dataset): """ - ToTensor: transform PIL images to Tensors. Turns the data into a 32-bit floating-point per channel, scaling the values down from 0.0 to 1.0 - Normalize: normalize data across the 3 rgb channels compute mean and st deviation of each RGB channel and normalize values by doing: v'[c] = (v[c] - mean[c])/stdev[c] where c is the channel index https://www.manning.com/books/deep-learning-with-pytorch 'Keeping the data in the same range (0-1 or -1-1) means it’s more likely that neurons have nonzero gradients thus, faster learning. Also, normalizing each channel so that it has the same distribution will ensure that channel information can be mixed and updated through gradient descent using the same learning rate.' The values of mean and stdev must be computed offline.' """ # we can work with the whole dataset because is small (60k samples) mean, std = get_mean_std(dataset) transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((mean[0].item(), mean[1].item(), mean[2].item()), (std[0].item(), std[1].item(), std[2].item())) ]) return transform def get_mean_std(dataset): """ :param dataset: a dataset where samples are tensors (not PIL images!) :return: """ all_samples = torch.stack([img_t for img_t, _ in dataset], dim=3) # here view(3, -1) keeps the first dimension and merges the rest into 1024 elements. So 3 x 1024 vector reshaped = all_samples.view(3, -1) mean = reshaped.mean(dim=1) std = reshaped.std(dim=1) return mean, std def plot_img_dataloader(dataloader): Xs, Ys = iter(dataloader).next() images = Xs.numpy() images = images / 2 + 0.5 plt.imshow(np.transpose(images[0], (1, 2, 0))) plt.show() def plot_img_dataset(dataset, idx=120): """ print label and plot image :param idx: sample index :param dataset: torch.utils.data.Dataset object """ # show samples img, label = dataset[idx] print("image label:", dataset.classes[label]) # since we already used the transform, type(img) = torch.Tensor print(img.shape) # plot with original axis before converting PIL Image to Tensor, otherwise an Exception arises # C × H × W to H × W × C plt.imshow(img.permute(1, 2, 0)) plt.show()
5310f6e313d1735a1628ce83e8b4b91c644ccf1e
0c7ff0ec35ba2bb38f99ef6ecb261ec33466dd52
/Day5/e1.py
856fb2751777b59a9b6e020c6e2d67feceed42ca
[]
no_license
TheKinshu/100-Days-Python
15cbacc608ee349cc9733a7032e10a359bebb731
293ad6b3e5f5208da84efbc5b2d2d395a5a53421
refs/heads/master
2023-04-18T08:21:30.361800
2021-05-02T18:48:39
2021-05-02T18:48:39
351,582,416
0
0
null
null
null
null
UTF-8
Python
false
false
380
py
# 🚨 Don't change the code below 👇 student_heights = input("Input a list of student heights ").split() for n in range(0, len(student_heights)): student_heights[n] = int(student_heights[n]) # 🚨 Don't change the code above 👆 average = sum(student_heights)/len(student_heights) average = int(round(average, 0)) print(average) #Write your code below this row 👇
d685fdf5a33893a73983249d78950dde67df297a
78e09e343e91e3706120983b477ea452f83bf29e
/metadata-ingestion/src/datahub/ingestion/source/nifi.py
d4c3c0d1278e0f382e4b10de5bf960bab1be343f
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference", "BSD-2-Clause", "MIT" ]
permissive
sandertan/datahub
7cda1dba7d8d0a5fda6501b8f53056ffb647edba
46810e0df934d6cbf589895d3a58b84e2715749e
refs/heads/master
2023-03-16T15:56:18.636988
2023-02-14T19:32:03
2023-02-14T19:32:03
146,737,346
0
0
null
2018-09-06T10:07:51
2018-08-30T11:03:24
null
UTF-8
Python
false
false
43,251
py
import json import logging import ssl import time from dataclasses import dataclass, field from datetime import datetime, timedelta, timezone from enum import Enum from typing import Callable, Dict, Iterable, List, Optional, Tuple from urllib.parse import urljoin import requests from dateutil import parser from packaging import version from pydantic.fields import Field from requests.adapters import HTTPAdapter import datahub.emitter.mce_builder as builder from datahub.configuration.common import AllowDenyPattern from datahub.configuration.source_common import EnvBasedSourceConfigBase from datahub.emitter.mcp import MetadataChangeProposalWrapper from datahub.ingestion.api.common import PipelineContext from datahub.ingestion.api.decorators import ( SupportStatus, config_class, platform_name, support_status, ) from datahub.ingestion.api.source import Source, SourceReport from datahub.ingestion.api.workunit import MetadataWorkUnit from datahub.metadata.schema_classes import ( DataFlowInfoClass, DataJobInfoClass, DataJobInputOutputClass, DataPlatformInstanceClass, DatasetPropertiesClass, ) logger = logging.getLogger(__name__) NIFI = "nifi" # Python requests does not support passing password for key file, # The same can be achieved by mounting ssl context # as described here - https://github.com/psf/requests/issues/2519 # and here - https://github.com/psf/requests/issues/1573 class SSLAdapter(HTTPAdapter): def __init__(self, certfile, keyfile, password=None): self.context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH) self.context.load_cert_chain( certfile=certfile, keyfile=keyfile, password=password ) super().__init__() def init_poolmanager(self, *args, **kwargs): kwargs["ssl_context"] = self.context return super().init_poolmanager(*args, **kwargs) class NifiAuthType(Enum): NO_AUTH = "NO_AUTH" SINGLE_USER = "SINGLE_USER" CLIENT_CERT = "CLIENT_CERT" class NifiSourceConfig(EnvBasedSourceConfigBase): site_url: str = Field(description="URI to connect") auth: NifiAuthType = Field( default=NifiAuthType.NO_AUTH, description="Nifi authentication. must be one of : NO_AUTH, SINGLE_USER, CLIENT_CERT", ) provenance_days: int = Field( default=7, description="time window to analyze provenance events for external datasets", ) # Fetch provenance events for past 1 week process_group_pattern: AllowDenyPattern = Field( default=AllowDenyPattern.allow_all(), description="regex patterns for filtering process groups", ) # Required for nifi deployments using Remote Process Groups site_name: str = Field( default="default", description="Site name to identify this site with, useful when using input and output ports receiving remote connections", ) site_url_to_site_name: Dict[str, str] = Field( default={}, description="Lookup to find site_name for site_url, required if using remote process groups in nifi flow", ) # Required to be set if auth is of type SINGLE_USER username: Optional[str] = Field( default=None, description='Nifi username, must be set for auth = "SINGLE_USER"' ) password: Optional[str] = Field( default=None, description='Nifi password, must be set for auth = "SINGLE_USER"' ) # Required to be set if auth is of type CLIENT_CERT client_cert_file: Optional[str] = Field( default=None, description='Path to PEM file containing the public certificates for the user/client identity, must be set for auth = "CLIENT_CERT"', ) client_key_file: Optional[str] = Field( default=None, description="Path to PEM file containing the client’s secret key" ) client_key_password: Optional[str] = Field( default=None, description="The password to decrypt the client_key_file" ) # Required to be set if nifi server certificate is not signed by # root CA trusted by client system, e.g. self-signed certificates ca_file: Optional[str] = Field( default=None, description="Path to PEM file containing certs for the root CA(s) for the NiFi", ) TOKEN_ENDPOINT = "/nifi-api/access/token" ABOUT_ENDPOINT = "/nifi-api/flow/about" CLUSTER_ENDPOINT = "/nifi-api/flow/cluster/summary" PG_ENDPOINT = "/nifi-api/flow/process-groups/" PROVENANCE_ENDPOINT = "/nifi-api/provenance/" class NifiType(Enum): PROCESSOR = "PROCESSOR" FUNNEL = "FUNNEL" INPUT_PORT = "INPUT_PORT" OUTPUT_PORT = "OUTPUT_PORT" REMOTE_INPUT_PORT = "REMOTE_INPUT_PORT" REMOTE_OUTPUT_PORT = "REMOTE_OUTPUT_PORT" class NifiEventType: CREATE = "CREATE" FETCH = "FETCH" SEND = "SEND" RECEIVE = "RECEIVE" class NifiProcessorType: ListS3 = "org.apache.nifi.processors.aws.s3.ListS3" FetchS3Object = "org.apache.nifi.processors.aws.s3.FetchS3Object" PutS3Object = "org.apache.nifi.processors.aws.s3.PutS3Object" ListSFTP = "org.apache.nifi.processors.standard.ListSFTP" FetchSFTP = "org.apache.nifi.processors.standard.FetchSFTP" GetSFTP = "org.apache.nifi.processors.standard.GetSFTP" PutSFTP = "org.apache.nifi.processors.standard.PutSFTP" # To support new processor type, # 1. add an entry in KNOWN_INGRESS_EGRESS_PROCESORS # 2. Implement provenance event analyzer to find external dataset and # map it in provenance_event_to_lineage_map class NifiProcessorProvenanceEventAnalyzer: env: str KNOWN_INGRESS_EGRESS_PROCESORS = { NifiProcessorType.ListS3: NifiEventType.CREATE, NifiProcessorType.FetchS3Object: NifiEventType.FETCH, NifiProcessorType.PutS3Object: NifiEventType.SEND, NifiProcessorType.ListSFTP: NifiEventType.CREATE, NifiProcessorType.FetchSFTP: NifiEventType.FETCH, NifiProcessorType.GetSFTP: NifiEventType.RECEIVE, NifiProcessorType.PutSFTP: NifiEventType.SEND, } def __init__(self) -> None: # Map of Nifi processor type to the provenance event analyzer to find lineage self.provenance_event_to_lineage_map: Dict[ str, Callable[[Dict], ExternalDataset] ] = { NifiProcessorType.ListS3: self.process_s3_provenance_event, NifiProcessorType.FetchS3Object: self.process_s3_provenance_event, NifiProcessorType.PutS3Object: self.process_s3_provenance_event, NifiProcessorType.ListSFTP: self.process_sftp_provenance_event, NifiProcessorType.FetchSFTP: self.process_sftp_provenance_event, NifiProcessorType.GetSFTP: self.process_sftp_provenance_event, NifiProcessorType.PutSFTP: self.process_sftp_provenance_event, } def process_s3_provenance_event(self, event): attributes = event.get("attributes", []) s3_bucket = get_attribute_value(attributes, "s3.bucket") s3_key = get_attribute_value(attributes, "s3.key") if not s3_key: s3_key = get_attribute_value(attributes, "filename") s3_url = f"s3://{s3_bucket}/{s3_key}" s3_url = s3_url[: s3_url.rindex("/")] dataset_name = s3_url.replace("s3://", "").replace("/", ".") platform = "s3" dataset_urn = builder.make_dataset_urn(platform, dataset_name, self.env) return ExternalDataset( platform, dataset_name, dict(s3_uri=s3_url), dataset_urn, ) def process_sftp_provenance_event(self, event): attributes = event.get("attributes", []) remote_host = get_attribute_value(attributes, "sftp.remote.host") path = get_attribute_value(attributes, "path") filename = get_attribute_value(attributes, "filename") absolute_path = f"sftp://{remote_host}/{path}/{filename}" if remote_host is None or path is None or filename is None: absolute_path = event.get("transitUri") absolute_path = absolute_path.replace("/./", "/") if absolute_path.endswith("/."): absolute_path = absolute_path[:-2] absolute_path = absolute_path[: absolute_path.rindex("/")] dataset_name = absolute_path.replace("sftp://", "").replace("/", ".") platform = "file" dataset_urn = builder.make_dataset_urn(platform, dataset_name, self.env) return ExternalDataset( platform, dataset_name, dict(uri=absolute_path), dataset_urn, ) @dataclass class ExternalDataset: platform: str dataset_name: str dataset_properties: Dict[str, str] dataset_urn: str @dataclass class NifiComponent: id: str name: str type: str parent_group_id: str nifi_type: NifiType comments: Optional[str] = None status: Optional[str] = None # present only for nifi remote ports and processors inlets: Dict[str, ExternalDataset] = field(default_factory=dict) outlets: Dict[str, ExternalDataset] = field(default_factory=dict) # present only for processors config: Optional[Dict] = None # present only for nifi remote ports target_uris: Optional[str] = None parent_rpg_id: Optional[str] = None # Last successful event time last_event_time: Optional[str] = None @dataclass class NifiProcessGroup: id: str name: str parent_group_id: Optional[str] @dataclass class NifiRemoteProcessGroup: id: str name: str parent_group_id: str remote_ports: Dict[str, NifiComponent] @dataclass class NifiFlow: version: Optional[str] clustered: Optional[bool] root_process_group: NifiProcessGroup components: Dict[str, NifiComponent] = field(default_factory=dict) remotely_accessible_ports: Dict[str, NifiComponent] = field(default_factory=dict) connections: List[Tuple[str, str]] = field(default_factory=list) processGroups: Dict[str, NifiProcessGroup] = field(default_factory=dict) remoteProcessGroups: Dict[str, NifiRemoteProcessGroup] = field(default_factory=dict) remote_ports: Dict[str, NifiComponent] = field(default_factory=dict) def get_attribute_value(attr_lst: List[dict], attr_name: str) -> Optional[str]: match = [entry for entry in attr_lst if entry["name"] == attr_name] if len(match) > 0: return match[0]["value"] return None @dataclass class NifiSourceReport(SourceReport): filtered: List[str] = field(default_factory=list) def report_dropped(self, ent_name: str) -> None: self.filtered.append(ent_name) # allowRemoteAccess @platform_name("NiFi", id="nifi") @config_class(NifiSourceConfig) @support_status(SupportStatus.CERTIFIED) class NifiSource(Source): """ This plugin extracts the following: - NiFi flow as `DataFlow` entity - Ingress, egress processors, remote input and output ports as `DataJob` entity - Input and output ports receiving remote connections as `Dataset` entity - Lineage information between external datasets and ingress/egress processors by analyzing provenance events Current limitations: - Limited ingress/egress processors are supported - S3: `ListS3`, `FetchS3Object`, `PutS3Object` - SFTP: `ListSFTP`, `FetchSFTP`, `GetSFTP`, `PutSFTP` """ config: NifiSourceConfig report: NifiSourceReport def __init__(self, config: NifiSourceConfig, ctx: PipelineContext) -> None: super().__init__(ctx) self.config = config self.report = NifiSourceReport() self.session = requests.Session() if self.config.ca_file is not None: self.session.verify = self.config.ca_file if self.config.site_url_to_site_name is None: self.config.site_url_to_site_name = {} if ( urljoin(self.config.site_url, "/nifi/") not in self.config.site_url_to_site_name ): self.config.site_url_to_site_name[ urljoin(self.config.site_url, "/nifi/") ] = self.config.site_name if self.config.auth is NifiAuthType.CLIENT_CERT: logger.debug("Setting client certificates in requests ssl context") assert ( self.config.client_cert_file is not None ), "Config client_cert_file is required for CLIENT_CERT auth" self.session.mount( urljoin(self.config.site_url, "/nifi-api/"), SSLAdapter( certfile=self.config.client_cert_file, keyfile=self.config.client_key_file, password=self.config.client_key_password, ), ) if self.config.auth is NifiAuthType.SINGLE_USER: assert ( self.config.username is not None ), "Config username is required for SINGLE_USER auth" assert ( self.config.password is not None ), "Config password is required for SINGLE_USER auth" token_response = self.session.post( url=urljoin(self.config.site_url, TOKEN_ENDPOINT), data={ "username": self.config.username, "password": self.config.password, }, ) if not token_response.ok: logger.error("Failed to get token") self.report.report_failure(self.config.site_url, "Failed to get token") self.session.headers.update( { "Authorization": "Bearer " + token_response.text, # "Accept": "application/json", "Content-Type": "application/json", } ) else: self.session.headers.update( { # "Accept": "application/json", "Content-Type": "application/json", } ) @classmethod def create(cls, config_dict: dict, ctx: PipelineContext) -> "Source": config = NifiSourceConfig.parse_obj(config_dict) return cls(config, ctx) def get_report(self) -> SourceReport: return self.report def update_flow(self, pg_flow_dto: Dict) -> None: # noqa: C901 breadcrumb_dto = pg_flow_dto.get("breadcrumb", {}).get("breadcrumb", {}) nifi_pg = NifiProcessGroup( breadcrumb_dto.get("id"), breadcrumb_dto.get("name"), pg_flow_dto.get("parentGroupId"), ) self.nifi_flow.processGroups[nifi_pg.id] = nifi_pg if not self.config.process_group_pattern.allowed(nifi_pg.name): self.report.report_dropped(f"{nifi_pg.name}.*") return flow_dto = pg_flow_dto.get("flow", {}) for processor in flow_dto.get("processors", []): component = processor.get("component") self.nifi_flow.components[component.get("id")] = NifiComponent( component.get("id"), component.get("name"), component.get("type"), component.get("parentGroupId"), NifiType.PROCESSOR, config=component.get("config"), comments=component.get("config", {}).get("comments"), status=component.get("status", {}).get("runStatus"), ) for funnel in flow_dto.get("funnels", []): component = funnel.get("component") self.nifi_flow.components[component.get("id")] = NifiComponent( component.get("id"), component.get("name"), component.get("type"), component.get("parentGroupId"), NifiType.FUNNEL, comments=component.get("comments"), status=component.get("status", {}).get("runStatus"), ) logger.debug(f"Adding funnel {component.get('id')}") for connection in flow_dto.get("connections", []): # Exclude self - recursive relationships if connection.get("sourceId") != connection.get("destinationId"): self.nifi_flow.connections.append( (connection.get("sourceId"), connection.get("destinationId")) ) for inputPort in flow_dto.get("inputPorts", []): component = inputPort.get("component") if inputPort.get("allowRemoteAccess"): self.nifi_flow.remotely_accessible_ports[ component.get("id") ] = NifiComponent( component.get("id"), component.get("name"), component.get("type"), component.get("parentGroupId"), NifiType.INPUT_PORT, comments=component.get("comments"), status=component.get("status", {}).get("runStatus"), ) logger.debug(f"Adding remotely accessible port {component.get('id')}") else: self.nifi_flow.components[component.get("id")] = NifiComponent( component.get("id"), component.get("name"), component.get("type"), component.get("parentGroupId"), NifiType.INPUT_PORT, comments=component.get("comments"), status=component.get("status", {}).get("runStatus"), ) logger.debug(f"Adding port {component.get('id')}") for outputPort in flow_dto.get("outputPorts", []): component = outputPort.get("component") if outputPort.get("allowRemoteAccess"): self.nifi_flow.remotely_accessible_ports[ component.get("id") ] = NifiComponent( component.get("id"), component.get("name"), component.get("type"), component.get("parentGroupId"), NifiType.OUTPUT_PORT, comments=component.get("comments"), status=component.get("status", {}).get("runStatus"), ) logger.debug(f"Adding remotely accessible port {component.get('id')}") else: self.nifi_flow.components[component.get("id")] = NifiComponent( component.get("id"), component.get("name"), component.get("type"), component.get("parentGroupId"), NifiType.OUTPUT_PORT, comments=component.get("comments"), status=component.get("status", {}).get("runStatus"), ) logger.debug(f"Adding report port {component.get('id')}") for rpg in flow_dto.get("remoteProcessGroups", []): rpg_component = rpg.get("component", {}) remote_ports = {} contents = rpg_component.get("contents", {}) for component in contents.get("outputPorts", []): if component.get("connected", False): remote_ports[component.get("id")] = NifiComponent( component.get("id"), component.get("name"), component.get("type"), rpg_component.get("parentGroupId"), NifiType.REMOTE_OUTPUT_PORT, target_uris=rpg_component.get("targetUris"), parent_rpg_id=rpg_component.get("id"), comments=component.get("comments"), status=component.get("status", {}).get("runStatus"), ) logger.debug(f"Adding remote output port {component.get('id')}") for component in contents.get("inputPorts", []): if component.get("connected", False): remote_ports[component.get("id")] = NifiComponent( component.get("id"), component.get("name"), component.get("type"), rpg_component.get("parentGroupId"), NifiType.REMOTE_INPUT_PORT, target_uris=rpg_component.get("targetUris"), parent_rpg_id=rpg_component.get("id"), comments=component.get("comments"), status=component.get("status", {}).get("runStatus"), ) logger.debug(f"Adding remote input port {component.get('id')}") nifi_rpg = NifiRemoteProcessGroup( rpg_component.get("id"), rpg_component.get("name"), component.get("parentGroupId"), remote_ports, ) logger.debug(f"Adding remote process group {rpg_component.get('id')}") self.nifi_flow.components.update(remote_ports) self.nifi_flow.remoteProcessGroups[nifi_rpg.id] = nifi_rpg for pg in flow_dto.get("processGroups", []): pg_response = self.session.get( url=urljoin(self.config.site_url, PG_ENDPOINT) + pg.get("id") ) if not pg_response.ok: self.report_warning( self.config.site_url, "Failed to get process group flow " + pg.get("id"), ) continue pg_flow_dto = pg_response.json().get("processGroupFlow", {}) self.update_flow(pg_flow_dto) def update_flow_keep_only_ingress_egress(self): components_to_del: List[NifiComponent] = [] for component in self.nifi_flow.components.values(): if ( component.nifi_type is NifiType.PROCESSOR and component.type not in NifiProcessorProvenanceEventAnalyzer.KNOWN_INGRESS_EGRESS_PROCESORS.keys() ) or component.nifi_type not in [ NifiType.PROCESSOR, NifiType.REMOTE_INPUT_PORT, NifiType.REMOTE_OUTPUT_PORT, ]: components_to_del.append(component) incoming = list( filter(lambda x: x[1] == component.id, self.nifi_flow.connections) ) outgoing = list( filter(lambda x: x[0] == component.id, self.nifi_flow.connections) ) # Create new connections from incoming to outgoing for i in incoming: for j in outgoing: self.nifi_flow.connections.append((i[0], j[1])) # Remove older connections, as we already created # new connections bypassing component to be deleted for i in incoming: self.nifi_flow.connections.remove(i) for j in outgoing: self.nifi_flow.connections.remove(j) for c in components_to_del: if c.nifi_type is NifiType.PROCESSOR and ( c.name.startswith("Get") or c.name.startswith("List") or c.name.startswith("Fetch") or c.name.startswith("Put") ): self.report_warning( self.config.site_url, f"Dropping NiFi Processor of type {c.type}, id {c.id}, name {c.name} from lineage view. \ This is likely an Ingress or Egress node which may be reading to/writing from external datasets \ However not currently supported in datahub", ) else: logger.debug( f"Dropping NiFi Component of type {c.type}, id {c.id}, name {c.name} from lineage view." ) del self.nifi_flow.components[c.id] def create_nifi_flow(self): about_response = self.session.get( url=urljoin(self.config.site_url, ABOUT_ENDPOINT) ) nifi_version: Optional[str] = None if about_response.ok: nifi_version = about_response.json().get("about", {}).get("version") else: logger.warning("Failed to fetch version for nifi") cluster_response = self.session.get( url=urljoin(self.config.site_url, CLUSTER_ENDPOINT) ) clustered: Optional[bool] = None if cluster_response.ok: clustered = ( cluster_response.json().get("clusterSummary", {}).get("clustered") ) else: logger.warning("Failed to fetch cluster summary for flow") pg_response = self.session.get( url=urljoin(self.config.site_url, PG_ENDPOINT) + "root" ) if not pg_response.ok: logger.error("Failed to get root process group flow") self.report.report_failure( self.config.site_url, "Failed to get of root process group flow" ) pg_flow_dto = pg_response.json().get("processGroupFlow", {}) breadcrumb_dto = pg_flow_dto.get("breadcrumb", {}).get("breadcrumb", {}) self.nifi_flow = NifiFlow( version=nifi_version, clustered=clustered, root_process_group=NifiProcessGroup( breadcrumb_dto.get("id"), breadcrumb_dto.get("name"), pg_flow_dto.get("parentGroupId"), ), ) self.update_flow(pg_flow_dto) self.update_flow_keep_only_ingress_egress() def fetch_provenance_events( self, processor: NifiComponent, eventType: str, startDate: datetime, endDate: Optional[datetime] = None, ) -> Iterable[Dict]: logger.debug( f"Fetching {eventType} provenance events for {processor.id}\ of processor type {processor.type}, Start date: {startDate}, End date: {endDate}" ) older_version: bool = self.nifi_flow.version is not None and version.parse( self.nifi_flow.version ) < version.parse("1.13.0") if older_version: searchTerms = { "ProcessorID": processor.id, "EventType": eventType, } else: searchTerms = { "ProcessorID": {"value": processor.id}, # type: ignore "EventType": {"value": eventType}, # type: ignore } payload = json.dumps( { "provenance": { "request": { "maxResults": 1000, "summarize": False, "searchTerms": searchTerms, "startDate": startDate.strftime("%m/%d/%Y %H:%M:%S %Z"), "endDate": ( endDate.strftime("%m/%d/%Y %H:%M:%S %Z") if endDate else None ), } } } ) logger.debug(payload) provenance_response = self.session.post( url=urljoin(self.config.site_url, PROVENANCE_ENDPOINT), data=payload ) if provenance_response.ok: provenance = provenance_response.json().get("provenance", {}) provenance_uri = provenance.get("uri") provenance_response = self.session.get(provenance_uri) if provenance_response.ok: provenance = provenance_response.json().get("provenance", {}) attempts = 5 # wait for at most 5 attempts 5*1= 5 seconds while (not provenance.get("finished", False)) and attempts > 0: logger.warning( f"Provenance query not completed, attempts left : {attempts}" ) # wait until the uri returns percentcomplete 100 time.sleep(1) provenance_response = self.session.get(provenance_uri) attempts -= 1 if provenance_response.ok: provenance = provenance_response.json().get("provenance", {}) events = provenance.get("results", {}).get("provenanceEvents", []) last_event_time: Optional[datetime] = None oldest_event_time: Optional[datetime] = None for event in events: event_time = parser.parse(event.get("eventTime")) # datetime.strptime( # event.get("eventTime"), "%m/%d/%Y %H:%M:%S.%f %Z" # ) if not last_event_time or event_time > last_event_time: last_event_time = event_time if not oldest_event_time or event_time < oldest_event_time: oldest_event_time = event_time yield event processor.last_event_time = str(last_event_time) self.delete_provenance(provenance_uri) total = provenance.get("results", {}).get("total") totalCount = provenance.get("results", {}).get("totalCount") if total != str(totalCount): yield from self.fetch_provenance_events( processor, eventType, startDate, oldest_event_time ) else: self.report_warning( self.config.site_url, f"provenance events could not be fetched for processor \ {processor.id} of type {processor.name}", ) logger.warning(provenance_response.text) return def report_warning(self, key: str, reason: str) -> None: logger.warning(f"{key}: {reason}") self.report.report_warning(key, reason) def delete_provenance(self, provenance_uri): delete_response = self.session.delete(provenance_uri) if not delete_response.ok: logger.error("failed to delete provenance ", provenance_uri) def construct_workunits(self) -> Iterable[MetadataWorkUnit]: # noqa: C901 rootpg = self.nifi_flow.root_process_group flow_name = rootpg.name # self.config.site_name flow_urn = builder.make_data_flow_urn(NIFI, rootpg.id, self.config.env) flow_properties = {} if self.nifi_flow.clustered is not None: flow_properties["clustered"] = str(self.nifi_flow.clustered) if self.nifi_flow.version is not None: flow_properties["version"] = str(self.nifi_flow.version) yield from self.construct_flow_workunits( flow_urn, flow_name, self.make_external_url(rootpg.id), flow_properties ) for component in self.nifi_flow.components.values(): job_name = component.name job_urn = builder.make_data_job_urn_with_flow(flow_urn, component.id) incoming = list( filter(lambda x: x[1] == component.id, self.nifi_flow.connections) ) outgoing = list( filter(lambda x: x[0] == component.id, self.nifi_flow.connections) ) inputJobs = [] jobProperties = None if component.nifi_type is NifiType.PROCESSOR: jobProperties = { k: str(v) for k, v in component.config.items() # type: ignore if k in [ "schedulingPeriod", "schedulingStrategy", "executionNode", "concurrentlySchedulableTaskCount", ] } jobProperties["properties"] = json.dumps( component.config.get("properties") # type: ignore ) if component.last_event_time is not None: jobProperties["last_event_time"] = component.last_event_time for dataset in component.inlets.values(): yield from self.construct_dataset_workunits( dataset.platform, dataset.dataset_name, dataset.dataset_urn, datasetProperties=dataset.dataset_properties, ) for dataset in component.outlets.values(): yield from self.construct_dataset_workunits( dataset.platform, dataset.dataset_name, dataset.dataset_urn, datasetProperties=dataset.dataset_properties, ) for edge in incoming: incoming_from = edge[0] if incoming_from in self.nifi_flow.remotely_accessible_ports.keys(): dataset_name = f"{self.config.site_name}.{self.nifi_flow.remotely_accessible_ports[incoming_from].name}" dataset_urn = builder.make_dataset_urn( NIFI, dataset_name, self.config.env ) component.inlets[dataset_urn] = ExternalDataset( NIFI, dataset_name, dict(nifi_uri=self.config.site_url), dataset_urn, ) else: inputJobs.append( builder.make_data_job_urn_with_flow(flow_urn, incoming_from) ) for edge in outgoing: outgoing_to = edge[1] if outgoing_to in self.nifi_flow.remotely_accessible_ports.keys(): dataset_name = f"{self.config.site_name}.{self.nifi_flow.remotely_accessible_ports[outgoing_to].name}" dataset_urn = builder.make_dataset_urn( NIFI, dataset_name, self.config.env ) component.outlets[dataset_urn] = ExternalDataset( NIFI, dataset_name, dict(nifi_uri=self.config.site_url), dataset_urn, ) if component.nifi_type is NifiType.REMOTE_INPUT_PORT: # TODO - if target_uris is not set, but http proxy is used in RPG site_urls = component.target_uris.split(",") # type: ignore for site_url in site_urls: if site_url not in self.config.site_url_to_site_name: self.report_warning( site_url, f"Site with url {site_url} is being used in flow but\ corresponding site name is not configured via site_url_to_site_name.\ This may result in broken lineage.", ) else: site_name = self.config.site_url_to_site_name[site_url] dataset_name = f"{site_name}.{component.name}" dataset_urn = builder.make_dataset_urn( NIFI, dataset_name, self.config.env ) component.outlets[dataset_urn] = ExternalDataset( NIFI, dataset_name, dict(nifi_uri=site_url), dataset_urn ) break if component.nifi_type is NifiType.REMOTE_OUTPUT_PORT: site_urls = component.target_uris.split(",") # type: ignore for site_url in site_urls: if site_url not in self.config.site_url_to_site_name: self.report_warning( self.config.site_url, f"Site with url {site_url} is being used in flow but\ corresponding site name is not configured via site_url_to_site_name.\ This may result in broken lineage.", ) else: site_name = self.config.site_url_to_site_name[site_url] dataset_name = f"{site_name}.{component.name}" dataset_urn = builder.make_dataset_urn( NIFI, dataset_name, self.config.env ) component.inlets[dataset_urn] = ExternalDataset( NIFI, dataset_name, dict(nifi_uri=site_url), dataset_urn ) break yield from self.construct_job_workunits( job_urn, job_name, external_url=self.make_external_url( component.parent_group_id, component.id, component.parent_rpg_id ), job_type=NIFI.upper() + "_" + component.nifi_type.value, description=component.comments, job_properties=jobProperties, inlets=list(component.inlets.keys()), outlets=list(component.outlets.keys()), inputJobs=inputJobs, status=component.status, ) for port in self.nifi_flow.remotely_accessible_ports.values(): dataset_name = f"{self.config.site_name}.{port.name}" dataset_platform = NIFI yield from self.construct_dataset_workunits( dataset_platform, dataset_name, external_url=self.make_external_url(port.parent_group_id, port.id), ) def process_provenance_events(self): startDate = datetime.now(timezone.utc) - timedelta( days=self.config.provenance_days ) eventAnalyzer = NifiProcessorProvenanceEventAnalyzer() eventAnalyzer.env = self.config.env for component in self.nifi_flow.components.values(): if component.nifi_type is NifiType.PROCESSOR: eventType = eventAnalyzer.KNOWN_INGRESS_EGRESS_PROCESORS[component.type] events = self.fetch_provenance_events(component, eventType, startDate) for event in events: dataset = eventAnalyzer.provenance_event_to_lineage_map[ component.type ](event) if eventType in [ NifiEventType.CREATE, NifiEventType.FETCH, NifiEventType.RECEIVE, ]: component.inlets[dataset.dataset_urn] = dataset else: component.outlets[dataset.dataset_urn] = dataset def get_workunits(self) -> Iterable[MetadataWorkUnit]: # Creates nifi_flow by invoking /flow rest api and saves as self.nifi_flow self.create_nifi_flow() # Updates inlets and outlets of nifi_flow.components by invoking /provenance rest api self.process_provenance_events() # Reads and translates entities from self.nifi_flow into mcps yield from self.construct_workunits() def make_external_url( self, parent_group_id: str, component_id: Optional[str] = "", parent_rpg_id: Optional[str] = None, ) -> str: if parent_rpg_id is not None: component_id = parent_rpg_id return urljoin( self.config.site_url, f"/nifi/?processGroupId={parent_group_id}&componentIds={component_id}", ) def construct_flow_workunits( self, flow_urn: str, flow_name: str, external_url: str, flow_properties: Optional[Dict[str, str]] = None, ) -> Iterable[MetadataWorkUnit]: mcp = MetadataChangeProposalWrapper( entityUrn=flow_urn, aspect=DataFlowInfoClass( name=flow_name, customProperties=flow_properties, externalUrl=external_url, ), ) for proposal in [mcp]: wu = MetadataWorkUnit( id=f"{NIFI}.{flow_name}.{proposal.aspectName}", mcp=proposal ) self.report.report_workunit(wu) yield wu def construct_job_workunits( self, job_urn: str, job_name: str, external_url: str, job_type: str, description: Optional[str], job_properties: Optional[Dict[str, str]] = None, inlets: List[str] = [], outlets: List[str] = [], inputJobs: List[str] = [], status: Optional[str] = None, ) -> Iterable[MetadataWorkUnit]: if job_properties: job_properties = {k: v for k, v in job_properties.items() if v is not None} mcp = MetadataChangeProposalWrapper( entityUrn=job_urn, aspect=DataJobInfoClass( name=job_name, type=job_type, description=description, customProperties=job_properties, externalUrl=external_url, status=status, ), ) wu = MetadataWorkUnit( id=f"{NIFI}.{job_name}.{mcp.aspectName}", mcp=mcp, ) self.report.report_workunit(wu) yield wu inlets.sort() outlets.sort() inputJobs.sort() mcp = MetadataChangeProposalWrapper( entityUrn=job_urn, aspect=DataJobInputOutputClass( inputDatasets=inlets, outputDatasets=outlets, inputDatajobs=inputJobs ), ) wu = MetadataWorkUnit( id=f"{NIFI}.{job_name}.{mcp.aspectName}", mcp=mcp, ) self.report.report_workunit(wu) yield wu def construct_dataset_workunits( self, dataset_platform: str, dataset_name: str, dataset_urn: Optional[str] = None, external_url: Optional[str] = None, datasetProperties: Optional[Dict[str, str]] = None, ) -> Iterable[MetadataWorkUnit]: if not dataset_urn: dataset_urn = builder.make_dataset_urn( dataset_platform, dataset_name, self.config.env ) mcp = MetadataChangeProposalWrapper( entityUrn=dataset_urn, aspect=DataPlatformInstanceClass( platform=builder.make_data_platform_urn(dataset_platform) ), ) platform = ( dataset_platform[dataset_platform.rindex(":") + 1 :] if dataset_platform.startswith("urn:") else dataset_platform ) wu = MetadataWorkUnit(id=f"{platform}.{dataset_name}.{mcp.aspectName}", mcp=mcp) self.report.report_workunit(wu) yield wu mcp = MetadataChangeProposalWrapper( entityUrn=dataset_urn, aspect=DatasetPropertiesClass( externalUrl=external_url, customProperties=datasetProperties ), ) wu = MetadataWorkUnit(id=f"{platform}.{dataset_name}.{mcp.aspectName}", mcp=mcp) self.report.report_workunit(wu) yield wu
4f5e5904ce00031faa7806ac96e6a40d08997a71
12b857508d2019a3e98c51a3a74317ae1bdaffba
/app/core/tests/test_commands.py
94e26ec57fcb12bb67d5b0433e020fe8b9406d2d
[]
no_license
robwa10/recipe-api
78d19f560d8d9e13a438485dab189b71d26edd7c
a180bbde0990befd9c8b2c1a3db2d6af44170ef5
refs/heads/main
2023-07-20T05:10:48.064301
2021-09-08T15:07:52
2021-09-08T15:07:52
358,300,842
0
0
null
null
null
null
UTF-8
Python
false
false
815
py
from unittest.mock import patch from django.core.management import call_command from django.db.utils import OperationalError from django.test import TestCase class CommandTests(TestCase): def test_wait_for_db_ready(self): """Test waiting for when db is avaliable""" with patch('django.db.utils.ConnectionHandler.__getitem__') as gi: gi.retun_value = True call_command('wait_for_db') self.assertEqual(gi.call_count, 1) @patch('time.sleep', return_value=True) def test_wait_for_db(self, ts): """Test waiting for db""" with patch('django.db.utils.ConnectionHandler.__getitem__') as gi: gi.side_effect = [OperationalError] * 5 + [True] call_command('wait_for_db') self.assertEqual(gi.call_count, 6)
ac2b95962eb2b69aa3a49d68911172431d9d1a85
1af217d712239d33cba828ad053a77085d84e92a
/Lovely Loveseats.py
c6411338ed4585dae9dfd7c2f4daa99033814633
[]
no_license
henryprosser/Codecademy-Computer-Science-Projects
b4769c2d235537aa025a32505c8cae72a4090c20
3b8b99dd435d4e833858d56ef5faced039abca06
refs/heads/main
2023-02-08T09:35:51.370218
2020-12-13T13:04:21
2020-12-13T13:04:21
321,066,398
0
0
null
null
null
null
UTF-8
Python
false
false
1,106
py
### Lovely Loveseats Items ### lovely_loveseat_description = "Lovely Loveseat. Tufted polyester blend on wood. 32 inches high x 40 inches wide x 30 inches deep. Red or white." lovely_loveseat_price = 254.00 stylish_settee_description = "Stylish Settee. Faux leather on birch. 29.50 inches high x 54.75 inches wide x 28 inches deep. Black." stylish_settee_price = 180.50 luxurious_lamp_description = "Luxurious Lamp. Glass and iron. 36 inches tall. Brown with cream shade." luxurious_lamp_price = 52.15 # Sales Tax sales_tax = 0.088 customer_one_total = 0 customer_one_itemization = "" customer_one_total += lovely_loveseat_price customer_one_itemization += lovely_loveseat_description customer_one_total += luxurious_lamp_price customer_one_itemization += luxurious_lamp_description customer_one_tax = customer_one_total * sales_tax customer_one_total += customer_one_tax # Print out Customer One Items print("Customer One Items: ") print(customer_one_itemization) # Print out Customer One Total print("Customer One Total: ") print(customer_one_total)
d523fb173a6b5d2bbc2d1621bb82076c316b6427
da9a01faf674fa064f067ff58a53743f6a77c534
/wallboard-import.py
b0480174094a79130302208550967748e4f91a1a
[ "MIT-0" ]
permissive
MysteriousSonOfGod/aws-serverless-connect-wallboard
9cb491f45c5e2d42b4110711d4a32cc9fb7182ba
423bae868bd3326dc56ce7b372ce68426f6a1185
refs/heads/master
2022-02-28T04:07:03.613492
2019-09-25T02:30:10
2019-09-25T02:30:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,142
py
#!/usr/bin/python # # Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy of this # software and associated documentation files (the "Software"), to deal in the Software # without restriction, including without limitation the rights to use, copy, modify, # merge, publish, distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A # PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # import yaml import sys import signal import os import time import boto3 from botocore.exceptions import ClientError # # Function definitions # def Interrupt(signal, frame): print("\n") sys.exit(0) def UpdateSettings(Config, Settings): if "Defaults" in Config: Defaults = Config["Defaults"] if "TextColour" in Defaults: Settings["TextColour"] = {"S":Defaults["TextColour"]} if "TextColor" in Defaults: Settings["TextColour"] = {"S":Defaults["TextColor"]} if "BackgroundColour" in Defaults: Settings["BackgroundColour"] = {"S":Defaults["BackgroundColour"]} if "BackgroundColor" in Defaults: Settings["BackgroundColour"] = {"S":Defaults["BackgroundColor"]} if "TextSize" in Defaults: Settings["TextSize"] = {"S":str(Defaults["TextSize"])} if "Font" in Defaults: Settings["Font"] = {"S":Defaults["Font"]} if "WarningBackgroundColour" in Defaults: Settings["WarningBackgroundColour"] = {"S":Defaults["WarningBackgroundColour"]} if "WarningBackgroundColor" in Defaults: Settings["WarningBackgroundColour"] = {"S":Defaults["WarningBackgroundColor"]} if "AlertBackgroundColour" in Defaults: Settings["AlertBackgroundColour"] = {"S":Defaults["AlertBackgroundColour"]} if "AlertBackgroundColor" in Defaults: Settings["AlertBackgroundColour"] = {"S":Defaults["AlertBackgroundColor"]} def GetCalculations(CalculationsConfig): Calculations = [] for Calc in CalculationsConfig: if "Formula" not in Calc: print("Missing formula calculation in "+Calc["ReferenceName"]) sys.exit(1) Calculations.append({"Name":{"S":str(Calc["Calculation"])}, "Formula":{"S":Calc["Formula"]}}) return(Calculations) def GetThresholds(ThresholdConfig): Thresholds = [] for Threshold in ThresholdConfig: if "Reference" not in Threshold: print("Missing reference in threshold "+Threshold["ReferenceName"]) sys.exit(1) if "WarnBelow" not in Threshold and "AlertBelow" not in Threshold and \ "WarnAbove" not in Threshold and "AlertAbove" not in Threshold: print("No actual threshold set in threshold "+Threshold["ReferenceName"]) sys.exit(1) Item = {} Item["Name"] = {"S":str(Threshold["Threshold"])} # Stringify just in case this is a numeric Item["Reference"] = {"S":Threshold["Reference"]} if "WarnBelow" in Threshold: Item["WarnBelow"] = {"S":str(Threshold["WarnBelow"])} if "AlertBelow" in Threshold: Item["AlertBelow"] = {"S":str(Threshold["AlertBelow"])} if "WarnAbove" in Threshold: Item["WarnAbove"] = {"S":str(Threshold["WarnAbove"])} if "AlertAbove" in Threshold: Item["AlertAbove"] = {"S":str(Threshold["AlertAbove"])} Thresholds.append(Item) return(Thresholds) def GetAgentStates(AgentConfig): StateColours = [] for Item in AgentConfig: State = {} State["StateName"] = {"S":Item["State"].lower()} if "Colour" in Item: State["BackgroundColour"] = {"S":Item["Colour"].lower()} if "Color" in Item: State["BackgroundColour"] = {"S":Item["Color"].lower()} StateColours.append(State) return(StateColours) def GetDataSources(SourceConfig): Sources = [] for Item in SourceConfig: SourceInfo = {} SourceInfo["Name"] = {"S":Item["Source"]} SourceInfo["Reference"] = {"S":Item["Reference"]} Sources.append(SourceInfo) return(Sources) def GetCells(RowConfig): Cells = [] Columns = 0 Rows = 0 for Row in RowConfig: if "Row" not in Row: print("Missing row number") sys.exit(1) if "Cells" not in Row: print("Missing cell definitions on row "+str(Row["Row"])) sys.exit(1) # # We capture the maximum number of columns because it makes # our lives easier to know this during the render function # if len(Row["Cells"]) > Columns: Columns = len(Row["Cells"]) for Cell in Row["Cells"]: if "Cell" not in Cell: print("Missing cell number on row "+str(Row["Row"])) sys.exit(1) if int(Row["Row"]) > Rows: Rows = int(Row["Row"]) Item = {} Item["Address"] = {"S":"R"+str(Row["Row"])+"C"+str(Cell["Cell"])} if "Text" in Cell: Item["Text"] = {"S":Cell["Text"]} if "Reference" in Cell: Item["Reference"] = {"S":Cell["Reference"]} if "TextColour" in Cell: Item["TextColour"] = {"S":Cell["TextColour"]} if "TextColor" in Cell: Item["TextColour"] = {"S":Cell["TextColor"]} if "BackgroundColour" in Cell: Item["BackgroundColour"] = {"S":Cell["BackgroundColour"]} if "BackgroundColor" in Cell: Item["BackgroundColour"] = {"S":Cell["BackgroundColor"]} if "TextSize" in Cell: Item["TextSize"] = {"S":str(Cell["TextSize"])} if "ThresholdReference" in Cell: Item["ThresholdReference"] = {"S":Cell["ThresholdReference"]} if "Rows" in Cell: Item["Rows"] = {"S":str(Cell["Rows"])} if "Cells" in Cell: Item["Cells"] = {"S":str(Cell["Cells"])} Cells.append(Item) return(Cells,Rows,Columns) def SaveToDynamoDB(WallboardName,Records,RecordType): Count = 0 Dynamo = boto3.client("dynamodb") for Item in Records: Item["Identifier"] = {"S":WallboardName} if RecordType != "Settings": Item["RecordType"] = {"S":RecordType+str(Count)} Count += 1 else: Item["RecordType"] = {"S":RecordType} try: Dynamo.put_item(TableName=DDBTableName, Item=Item) except ClientError as e: print("DynamoDB error: "+e.response["Error"]["Message"]) def CreateDDBTable(): Dynamo = boto3.client("dynamodb") try: Response = Dynamo.describe_table(TableName=DDBTableName) except: Table = Dynamo.create_table(TableName=DDBTableName, KeySchema=[{"AttributeName":"Identifier", "KeyType":"HASH"}, {"AttributeName":"RecordType", "KeyType":"RANGE"}], AttributeDefinitions=[{"AttributeName":"Identifier", "AttributeType":"S"}, {"AttributeName":"RecordType", "AttributeType":"S"}], ProvisionedThroughput={"ReadCapacityUnits":5, "WriteCapacityUnits":5}) Table = Dynamo.describe_table(TableName=DDBTableName) while Table["Table"]["TableStatus"] != "ACTIVE": print("Waiting for table creation. State: %s" % (Table["Table"]["TableStatus"])) time.sleep(10) Table = Dynamo.describe_table(TableName=DDBTableName) # # Mainline code # # Basic setup and argument check # signal.signal(signal.SIGINT, Interrupt) if len(sys.argv) != 2: print("Usage: wallboard-import.py wallboarddefinition.yaml") sys.exit(1) # # Read the YAML file # with open(sys.argv[1]) as Input: try: Config = yaml.load(Input) except yaml.YAMLError as e: print(e) sys.exit(1) # # Set up variables and defaults # Settings = {} Calculations = [] Thresholds = [] AgentStates = {} Cells = [] DataSources = [] MaxColumns = 0 MaxRows = 0 DDBTableName = "ConnectWallboard" if "WallboardTable" in os.environ: DDBTableName = os.environ["WallboardTable"] CreateDDBTable() Settings["WarningBackgroundColour"] = {"S":"Yellow"} Settings["AlertBackgroundColour"] = {"S":"Red"} # # Input validation # if "Identifier" not in Config: print("Missing Identifier tag") sys.exit(1) if "Rows" not in Config: print("Missing row definitions") sys.exit(1) # # Somewhat validated now - let's parse the input # UpdateSettings(Config, Settings) if "Calculations" in Config: Calculations = GetCalculations(Config["Calculations"]) if "Thresholds" in Config: Thresholds = GetThresholds(Config["Thresholds"]) if "AgentStates" in Config: AgentStates = GetAgentStates(Config["AgentStates"]) if "Sources" in Config: DataSources = GetDataSources(Config["Sources"]) (Cells, MaxRows, MaxColumns) = GetCells(Config["Rows"]) if MaxRows == 0: print("No rows were found") sys.exit(1) if MaxColumns == 0: print("No cells were found") sys.exit(1) Settings["Columns"] = {"S":str(MaxColumns)} Settings["Rows"] = {"S":str(MaxRows)} SaveToDynamoDB(Config["Identifier"], [Settings], "Settings") SaveToDynamoDB(Config["Identifier"], Thresholds, "Threshold") SaveToDynamoDB(Config["Identifier"], Calculations, "Calculation") SaveToDynamoDB(Config["Identifier"], Cells, "Cell") SaveToDynamoDB(Config["Identifier"], AgentStates, "AgentState") SaveToDynamoDB(Config["Identifier"], DataSources, "DataSource")
f9e9b2943ccb15b94b8b42c726468487b409d19b
14270abc8fd50fa175bddd20026375c341529665
/code.py
dac36207a33e958de205081ea63a4a10a8f5d50b
[]
no_license
jiyunyang/final-exam-code
78fad55720dfc9a0c613008f9993a52ac20f883b
ba91ce47ce81d3b33edac976b33fa0c96f773ea7
refs/heads/master
2020-04-12T15:56:45.567013
2018-12-20T15:45:16
2018-12-20T15:46:08
162,597,411
0
0
null
null
null
null
UTF-8
Python
false
false
6,363
py
import pandas as pd import numpy as np # 데이터가 있는 엑셀 파일 읽어오는 코드 df = pd.read_excel('movie.xlsx',sheet_name='sheet0') print(df) # 컬럼명 확인 df.columns # 데이터 입력하기 전에 어떤 항목이 있고, 그것을 어떻게 입력을 해야되는지 알려주는 것 print("*********************************************************************************************************") print("[영화명, 감독, 개봉일, 영화형태, 국적, 전국스크린수, 전국매출액, 전국관객수, 장르, 등급]") print("중 1개 이상 검색어를 입력하세요.\n") print("# 영화형태 :〔 단편, 옴니버스, 장편 〕중 검색하세요.") print("# 장 르 :〔 SF, 가족, 공연, 공포, 다큐멘터리, 드라마, 멜로/로맨스, 뮤지컬, 미스터리, 범죄, 사극,") print(" 서부극, 성인물, 스릴러, 애니메이션, 액션, 어드벤처, 전쟁, 코미디, 판타지 〕중 검색하세요.") print("# 등 급 :〔 12세관람가, 12세이상관람가, 15세관람가, 15세이상관람가, 18세관람가, 기타, 전체관람가,") print(" 제한상영가, 청소년관람불가 〕 중 검색하세요.") print("*********************************************************************************************************") # 영화명을 movie_name_list를 생성하여 거기에 데이터를 받은 후 저장하는 코드 movie_name_list = [] movie_name_list = df['영화명'] # 영화형태을 movie_type_list를 생성하여 거기에 데이터를 받은 후 저장하는 코드 movie_type_list = [] movie_type_list = df['영화형태'] # 국적을 movie_country_list를 생성하여 거기에 데이터를 받은 후 저장하는 코드 movie_country_list = [] movie_country_list = df['국적'] # 장르를 genre_list를 생성하여 거기에 데이터를 받은 후 저장하는 코드 genre_list = [] genre_list = df['장르'] # 등급을 movie_age_list를 생성하여 거기에 데이터를 받은 후 저장하는 코드 movie_age_list = [] movie_type_list = df['등급'] # 영화명을 입력 받아서 1차원 행렬을 다차원 행렬로 변환해주는 코드 def call_movie_name() : a_list =[] a = '' a = input("영화제목을 입력하세요 :") a_list = a.split() A = np.array(a_list) # print("A =", A) # print("A.ndim =",A.ndim) # print("A.shape =",A.shape) print("\n") no1 = A.ndim no2 = A.shape[0] A.shape = no2, no1 # 검색어를 입력 받아 영화명 컬럼에서 일치하는 값을 찾는 코드 for X1 in range(0, len(a_list)): for Y1 in range(0, 12752): answer = df.at[Y1, '영화명'] if A[X1] == answer: print(df.loc[[Y1]]) return # 영화형태를 입력 받아서 1차원 행렬을 다차원 행렬로 변환해주는 코드 def call_movie_type() : b_list =[] b = '' b = input("영화형태를 입력하세요 :") b_list = b.split() B = np.array(b_list) # print("B.ndim =",B.ndim) # print("B.shape =",B.shape) # print("B =",B) print("\n") no3 = B.ndim no4 = B.shape[0] B.shape = no4, no3 # 검색어를 입력 받아 영화형태 컬럼에서 일치하는 값을 찾는 코드 for X2 in range(0, len(b_list)): for Y2 in range(0, 12752): answer = df.at[Y2, '영화형태'] if B[X2] == answer: print(df.loc[[Y2]]) return # 국적을 입력 받아서 1차원 행렬을 다차원 행렬로 변환해주는 코드 def call_movie_country() : c_list =[] c = '' c = input("국적을 입력하세요 :") c_list = c.split() C = np.array(c_list) print("\n") no5 = C.ndim no6 = C.shape[0] C.shape = no6, no5 # 검색어를 입력 받아 국적 컬럼에서 일치하는 값을 찾는 코드 for X3 in range(0, len(c_list)): for Y3 in range(0, 12752): answer = df.at[Y3, '국적'] if C[X3] == answer: print(df.loc[[Y3]]) return # 장르를 입력 받아서 1차원 행렬을 다차원 행렬로 변환해주는 코드 def call_genre() : d_list = [] d = '' d = input("장르를 입력하세요 :") d_list = d.split() D = np.array(d_list) print("\n") no7 = D.ndim no8 = D.shape[0] D.shape = no8, no7 # 검색어를 입력 받아 장르 컬럼에서 일치하는 값을 찾는 코드 g = 0 flag = g for X4 in range(0,len(d_list)) : for Y4 in range(0,12752): answer = df.at[Y4, '장르'] if D[X4] == answer : print(df.loc[[Y4]]) if flag == g : print("없음") return # 등급을 입력 받아서 1차원 행렬을 다차원 행렬로 변환해주는 코드 def call_movie_age() : e_list =[] e = '' e = input("등급을 입력하세요 :") e_list = e.split() E = np.array(e_list) # print("E.ndim =",E.ndim) # print("E.shape =",E.shape) # print("E =",E) print("\n") no9 = E.ndim no10 = E.shape[0] E.shape = no10, no9 # 검색어를 입력 받아 등급 컬럼에서 일치하는 값을 찾는 코드 for X5 in range(0, 12753): # E[X5] # print(E[X5]) for Y5 in range(0, 12753): if E[X5] == movie_age_list[Y5]: print("있음") else: Y5 = Y5 + 1 return # 여러 가지 입력 값 중 어떤 것을 찾을건지 물어보는 코드 question = [] question = input("어떤 것을 찾고 싶으신가요?" "영화명, 영화형태, 국적, 장르, 등급 중 입력하세요. : ") question_index = ["영화명", "영화형태", "국적", "장르", "등급"] for r in question_index : if question == "영화명" : call_movie_name() elif question == "영화형태" : call_movie_type() elif question == "국적" : call_movie_country() elif question == "장르" : call_genre() elif question == "등급" : call_movie_age() else : print("찾고 싶은 것을 다시 입력하세요.") question = input("어떤 것을 찾고 싶으신가요?" "영화명, 영화형태, 국적, 장르, 등급 중 입력하세요. : ")
28d16a95a7654b735dd314ccf8811baeb980f1c9
9328148bacec19b5bb726828ba36ee6844be4b1e
/thrump/ifeng/ifeng/items.py
68636e644188eb2ccedc22a400a8cb6d68f95fed
[]
no_license
chenzuoli/scrapy
f6e83572681956546cc062ff0867d9debd8edc40
94a218274831cf8a556768f143ec193867f5dfa8
refs/heads/master
2020-04-16T03:38:19.494868
2019-03-07T00:30:24
2019-03-07T00:30:24
165,238,580
0
0
null
null
null
null
UTF-8
Python
false
false
302
py
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://doc.scrapy.org/en/latest/topics/items.html import scrapy class IfengItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() html = scrapy.Field()
5c7a418721b647d34b668e03b1eb4c253e2ee006
2c143ba64032f65c7f7bf1cbd567a1dcf13d5bb1
/SQL/第二高的薪水.py
5297fdc8e37bd996231a0dd8276a6f6ccab45462
[]
no_license
tx991020/MyLeetcode
5b6121d32260fb30b12cc8146e44e6c6da03ad89
cfe4f087dfeb258caebbc29fc366570ac170a68c
refs/heads/master
2020-04-09T21:43:41.403553
2019-03-27T18:54:35
2019-03-27T18:54:35
160,611,089
0
0
null
null
null
null
UTF-8
Python
false
false
595
py
''' 编写一个 SQL 查询,获取 Employee 表中第二高的薪水(Salary) 。 +----+--------+ | Id | Salary | +----+--------+ | 1 | 100 | | 2 | 200 | | 3 | 300 | +----+--------+ 例如上述 Employee 表,SQL查询应该返回 200 作为第二高的薪水。如果不存在第二高的薪水,那么查询应返回 null。 +---------------------+ | SecondHighestSalary | +---------------------+ | 200 | +---------------------+ ''' ''' select IFNULL((select Distinct Salary from Employee order by Salary DESC limit 1,1),null) as SecondHighestSalary; '''
c979902db626a94f569e02694bd867a213a599ea
d43184572d1b6c76df8efe9eac69ddf386af4e4e
/HelloWorldFlask/venv/bin/pip3
0c25b303e45de737ec6117990b23fa563b7a1740
[]
no_license
Alanhliu/flask_demo
b7aa9a94e908b20a42afd50e396f3905c721fb16
2aa3b31ac73e27caf59e22135b50b7842c8fb78f
refs/heads/master
2022-12-11T18:15:30.809735
2018-09-07T07:14:09
2018-09-07T07:14:09
145,682,864
0
0
null
2022-12-08T02:47:47
2018-08-22T08:56:26
Python
UTF-8
Python
false
false
261
#!/Users/siasun/PycharmProjects/HelloWorldFlask/venv/bin/python # -*- coding: utf-8 -*- import re import sys from pip._internal import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
f303f581cf4290e32862c3144f0b6ad34a657e84
afcf65a67664617786dcd5cf60240722a141ecff
/schoolsystem/settings.py
aa1b55a0141d0ab60cf2012b465eb56e23f0cc02
[]
no_license
Veronicahwambui/SchoolSystem
381c9a1e88ecd31ae424476628b5383e73c75ab0
4cb3e81b1bc1670e60e047c2a29e382f78a1776b
refs/heads/master
2023-08-15T10:30:49.846334
2021-10-11T09:47:18
2021-10-11T09:47:18
380,294,113
1
0
null
null
null
null
UTF-8
Python
false
false
3,940
py
""" Django settings for schoolsystem project. Generated by 'django-admin startproject' using Django 3.2.4. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ import os from pathlib import Path import django_heroku import dj_database_url # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-epe)8!(6$uck4tf4j_%vs=1iplq6f_0d5=*sp#(g)fs%b)cdc%' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['0.0.0.0', 'localhost', '127.0.0.1', '.herokuschoolsystem.com'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'student', 'Trainer', 'Course', 'Event', 'core', 'api', 'rest_framework', 'whitenoise.runserver_nostatic', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', ] ROOT_URLCONF = 'schoolsystem.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'schoolsystem.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'schoolsystem', 'USER' : 'njengavero', 'PASSWORD': 'njenga3881', 'HOST': 'localhost', 'PORT':'' } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS=[os.path.join(BASE_DIR,'static')] MEDIA_ROOT="Images/" # STATIC_ROOT=os.path.join(BASE_DIR,'static/Images') STATIC_ROOT=os.path.join(BASE_DIR,'media') STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles") # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' django_heroku.settings(locals())
39a61eea065ceb59bb7a08646c76413e1dcfde6a
2b7afa059380665ecd1c112a502d6a27021ad257
/djangoApp/djangoApp/settings.py
ecec553c4b85ad90138980742a56a1ed0a40260d
[]
no_license
huhugon/spring_maven
f32323e3599b0c0f7cc08f1b703cc23429f97281
7d7c03947b0499eb2a06bad05fb3ea97c1c04e5a
refs/heads/master
2021-01-01T05:47:22.929270
2015-07-19T04:18:08
2015-07-19T04:18:08
39,322,132
0
0
null
null
null
null
UTF-8
Python
false
false
2,739
py
""" Django settings for djangoApp project. Generated by 'django-admin startproject' using Django 1.8.2. For more information on this file, see https://docs.djangoproject.com/en/1.8/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.8/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'ul&*tonmq2&*npoh#py98hha$q@018=buacj@(l$#fge-ga7p6' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'photo' ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', ) ROOT_URLCONF = 'djangoApp.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'djangoApp.wsgi.application' # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'django', 'USER': 'calvin', 'PASSWORD': '!imsi00', 'HOST': '127.0.0.1', 'PORT': '3306', } } # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/ STATIC_URL = '/static/'
7182ed9ce35f16120f1079795d73ee4d7bf32f25
62eaa871e4e825a0a8c3a014b5d08fcf976aedef
/nbs/renum.py
93448e4776c14d527ddd247487d02254b78f4fdf
[ "Apache-2.0" ]
permissive
timeseriesAI/tsai
f1006b37062a328edabb2fae3e8361dcda0fc68b
06ab2a9c6870b311fa0efe4cb3fc4df0009d1965
refs/heads/main
2023-07-19T22:11:06.425058
2023-07-13T07:06:16
2023-07-13T07:06:16
211,822,289
3,526
458
Apache-2.0
2023-06-15T13:57:12
2019-09-30T09:18:31
Jupyter Notebook
UTF-8
Python
false
false
404
py
#!/usr/bin/env python "Rename ipynb files starting at 01" import re import os from pathlib import Path dir_path = os.path.dirname(os.path.realpath(__file__)) os.chdir(dir_path) i = 1 for p in sorted(list(Path().glob('*.ipynb'))): pre = re.findall(r'^(\d+)[a-z]?[A-Z]?_(.*)', str(p)) if not pre: continue new = f'{i:03d}_{pre[0][1]}' print(p, new) os.rename(p, new) i+=1
066a78af26ccc2d3e5cfcf6e21edabd2bde00b1b
51d525529e7ff8add891590067c74a3edd5dbc57
/turtle.py
77217489c4bce254023e26dffe44dd6db8702475
[ "MIT" ]
permissive
btsai-dev/coco-viewer
034c6df85b11c7d15f388a2035a73ec4470daf05
57bab068dd4116bedf361689e184296e77600360
refs/heads/main
2023-04-30T05:29:12.046581
2021-05-02T21:22:59
2021-05-02T21:22:59
338,417,183
0
1
MIT
2021-02-12T19:46:14
2021-02-12T19:46:14
null
UTF-8
Python
false
false
143,098
py
# # turtle.py: a Tkinter based turtle graphics module for Python # Version 1.1b - 4. 5. 2009 # # Copyright (C) 2006 - 2010 Gregor Lingl # email: [email protected] # # This software is provided 'as-is', without any express or implied # warranty. In no event will the authors be held liable for any damages # arising from the use of this software. # # Permission is granted to anyone to use this software for any purpose, # including commercial applications, and to alter it and redistribute it # freely, subject to the following restrictions: # # 1. The origin of this software must not be misrepresented; you must not # claim that you wrote the original software. If you use this software # in a product, an acknowledgment in the product documentation would be # appreciated but is not required. # 2. Altered source versions must be plainly marked as such, and must not be # misrepresented as being the original software. # 3. This notice may not be removed or altered from any source distribution. """ Turtle graphics is a popular way for introducing programming to kids. It was part of the original Logo programming language developed by Wally Feurzig and Seymour Papert in 1966. Imagine a robotic turtle starting at (0, 0) in the x-y plane. Give it the command turtle.forward(15), and it moves (on-screen!) 15 pixels in the direction it is facing, drawing a line as it moves. Give it the command turtle.left(25), and it rotates in-place 25 degrees clockwise. By combining together these and similar commands, intricate shapes and pictures can easily be drawn. ----- turtle.py This module is an extended reimplementation of turtle.py from the Python standard distribution up to Python 2.5. (See: http://www.python.org) It tries to keep the merits of turtle.py and to be (nearly) 100% compatible with it. This means in the first place to enable the learning programmer to use all the commands, classes and methods interactively when using the module from within IDLE run with the -n switch. Roughly it has the following features added: - Better animation of the turtle movements, especially of turning the turtle. So the turtles can more easily be used as a visual feedback instrument by the (beginning) programmer. - Different turtle shapes, gif-images as turtle shapes, user defined and user controllable turtle shapes, among them compound (multicolored) shapes. Turtle shapes can be stretched and tilted, which makes turtles very versatile geometrical objects. - Fine control over turtle movement and screen updates via delay(), and enhanced tracer() and speed() methods. - Aliases for the most commonly used commands, like fd for forward etc., following the early Logo traditions. This reduces the boring work of typing long sequences of commands, which often occur in a natural way when kids try to program fancy pictures on their first encounter with turtle graphics. - Turtles now have an undo()-method with configurable undo-buffer. - Some simple commands/methods for creating event driven programs (mouse-, key-, timer-events). Especially useful for programming games. - A scrollable Canvas class. The default scrollable Canvas can be extended interactively as needed while playing around with the turtle(s). - A TurtleScreen class with methods controlling background color or background image, window and canvas size and other properties of the TurtleScreen. - There is a method, setworldcoordinates(), to install a user defined coordinate-system for the TurtleScreen. - The implementation uses a 2-vector class named Vec2D, derived from tuple. This class is public, so it can be imported by the application programmer, which makes certain types of computations very natural and compact. - Appearance of the TurtleScreen and the Turtles at startup/import can be configured by means of a turtle.cfg configuration file. The default configuration mimics the appearance of the old turtle module. - If configured appropriately the module reads in docstrings from a docstring dictionary in some different language, supplied separately and replaces the English ones by those read in. There is a utility function write_docstringdict() to write a dictionary with the original (English) docstrings to disc, so it can serve as a template for translations. Behind the scenes there are some features included with possible extensions in in mind. These will be commented and documented elsewhere. """ _ver = "turtle 1.1b- - for Python 3.1 - 4. 5. 2009" # print(_ver) import tkinter as TK import types import math import time import os import inspect from os.path import isfile, split, join from copy import deepcopy from tkinter import simpledialog _tg_classes = ['ScrolledCanvas', 'TurtleScreen', 'Screen', 'RawTurtle', 'Turtle', 'RawPen', 'Pen', 'Shape', 'Vec2D'] _tg_screen_functions = ['addshape', 'bgcolor', 'bgpic', 'bye', 'clearscreen', 'colormode', 'delay', 'exitonclick', 'getcanvas', 'getshapes', 'listen', 'mainloop', 'mode', 'numinput', 'onkey', 'onkeypress', 'onkeyrelease', 'onscreenclick', 'ontimer', 'register_shape', 'resetscreen', 'screensize', 'setup', 'setworldcoordinates', 'textinput', 'title', 'tracer', 'turtles', 'update', 'window_height', 'window_width'] _tg_turtle_functions = ['back', 'backward', 'begin_fill', 'begin_poly', 'bk', 'circle', 'clear', 'clearstamp', 'clearstamps', 'clone', 'color', 'degrees', 'distance', 'dot', 'down', 'end_fill', 'end_poly', 'fd', 'fillcolor', 'filling', 'forward', 'get_poly', 'getpen', 'getscreen', 'get_shapepoly', 'getturtle', 'goto', 'heading', 'hideturtle', 'home', 'ht', 'isdown', 'isvisible', 'left', 'lt', 'onclick', 'ondrag', 'onrelease', 'pd', 'pen', 'pencolor', 'pendown', 'pensize', 'penup', 'pos', 'position', 'pu', 'radians', 'right', 'reset', 'resizemode', 'rt', 'seth', 'setheading', 'setpos', 'setposition', 'settiltangle', 'setundobuffer', 'setx', 'sety', 'shape', 'shapesize', 'shapetransform', 'shearfactor', 'showturtle', 'speed', 'st', 'stamp', 'tilt', 'tiltangle', 'towards', 'turtlesize', 'undo', 'undobufferentries', 'up', 'width', 'write', 'xcor', 'ycor'] _tg_utilities = ['write_docstringdict', 'done'] __all__ = (_tg_classes + _tg_screen_functions + _tg_turtle_functions + _tg_utilities) # + _math_functions) _alias_list = ['addshape', 'backward', 'bk', 'fd', 'ht', 'lt', 'pd', 'pos', 'pu', 'rt', 'seth', 'setpos', 'setposition', 'st', 'turtlesize', 'up', 'width'] _CFG = {"width" : 0.5, # Screen "height" : 0.75, "canvwidth" : 400, "canvheight": 300, "leftright": None, "topbottom": None, "mode": "standard", # TurtleScreen "colormode": 1.0, "delay": 10, "undobuffersize": 1000, # RawTurtle "shape": "classic", "pencolor" : "black", "fillcolor" : "black", "resizemode" : "noresize", "visible" : True, "language": "english", # docstrings "exampleturtle": "turtle", "examplescreen": "screen", "title": "Python Turtle Graphics", "using_IDLE": False } def config_dict(filename): """Convert content of config-file into dictionary.""" with open(filename, "r") as f: cfglines = f.readlines() cfgdict = {} for line in cfglines: line = line.strip() if not line or line.startswith("#"): continue try: key, value = line.split("=") except: print("Bad line in config-file %s:\n%s" % (filename,line)) continue key = key.strip() value = value.strip() if value in ["True", "False", "None", "''", '""']: value = eval(value) else: try: if "." in value: value = float(value) else: value = int(value) except: pass # value need not be converted cfgdict[key] = value return cfgdict def readconfig(cfgdict): """Read config-files, change configuration-dict accordingly. If there is a turtle.cfg file in the current working directory, read it from there. If this contains an importconfig-value, say 'myway', construct filename turtle_mayway.cfg else use turtle.cfg and read it from the import-directory, where turtle.py is located. Update configuration dictionary first according to config-file, in the import directory, then according to config-file in the current working directory. If no config-file is found, the default configuration is used. """ default_cfg = "turtle.cfg" cfgdict1 = {} cfgdict2 = {} if isfile(default_cfg): cfgdict1 = config_dict(default_cfg) if "importconfig" in cfgdict1: default_cfg = "turtle_%s.cfg" % cfgdict1["importconfig"] try: head, tail = split(__file__) cfg_file2 = join(head, default_cfg) except: cfg_file2 = "" if isfile(cfg_file2): cfgdict2 = config_dict(cfg_file2) _CFG.update(cfgdict2) _CFG.update(cfgdict1) try: readconfig(_CFG) except: print ("No configfile read, reason unknown") class Vec2D(tuple): """A 2 dimensional vector class, used as a helper class for implementing turtle graphics. May be useful for turtle graphics programs also. Derived from tuple, so a vector is a tuple! Provides (for a, b vectors, k number): a+b vector addition a-b vector subtraction a*b inner product k*a and a*k multiplication with scalar |a| absolute value of a a.rotate(angle) rotation """ def __new__(cls, x, y): return tuple.__new__(cls, (x, y)) def __add__(self, other): return Vec2D(self[0]+other[0], self[1]+other[1]) def __mul__(self, other): if isinstance(other, Vec2D): return self[0]*other[0]+self[1]*other[1] return Vec2D(self[0]*other, self[1]*other) def __rmul__(self, other): if isinstance(other, int) or isinstance(other, float): return Vec2D(self[0]*other, self[1]*other) def __sub__(self, other): return Vec2D(self[0]-other[0], self[1]-other[1]) def __neg__(self): return Vec2D(-self[0], -self[1]) def __abs__(self): return (self[0]**2 + self[1]**2)**0.5 def rotate(self, angle): """rotate self counterclockwise by angle """ perp = Vec2D(-self[1], self[0]) angle = angle * math.pi / 180.0 c, s = math.cos(angle), math.sin(angle) return Vec2D(self[0]*c+perp[0]*s, self[1]*c+perp[1]*s) def __getnewargs__(self): return (self[0], self[1]) def __repr__(self): return "(%.2f,%.2f)" % self ############################################################################## ### From here up to line : Tkinter - Interface for turtle.py ### ### May be replaced by an interface to some different graphics toolkit ### ############################################################################## ## helper functions for Scrolled Canvas, to forward Canvas-methods ## to ScrolledCanvas class def __methodDict(cls, _dict): """helper function for Scrolled Canvas""" baseList = list(cls.__bases__) baseList.reverse() for _super in baseList: __methodDict(_super, _dict) for key, value in cls.__dict__.items(): if type(value) == types.FunctionType: _dict[key] = value def __methods(cls): """helper function for Scrolled Canvas""" _dict = {} __methodDict(cls, _dict) return _dict.keys() __stringBody = ( 'def %(method)s(self, *args, **kw): return ' + 'self.%(attribute)s.%(method)s(*args, **kw)') def __forwardmethods(fromClass, toClass, toPart, exclude = ()): ### MANY CHANGES ### _dict_1 = {} __methodDict(toClass, _dict_1) _dict = {} mfc = __methods(fromClass) for ex in _dict_1.keys(): if ex[:1] == '_' or ex[-1:] == '_' or ex in exclude or ex in mfc: pass else: _dict[ex] = _dict_1[ex] for method, func in _dict.items(): d = {'method': method, 'func': func} if isinstance(toPart, str): execString = \ __stringBody % {'method' : method, 'attribute' : toPart} exec(execString, d) setattr(fromClass, method, d[method]) ### NEWU! class ScrolledCanvas(TK.Frame): """Modeled after the scrolled canvas class from Grayons's Tkinter book. Used as the default canvas, which pops up automatically when using turtle graphics functions or the Turtle class. """ def __init__(self, master, width=500, height=350, canvwidth=600, canvheight=500): TK.Frame.__init__(self, master, width=width, height=height) self._rootwindow = self.winfo_toplevel() self.width, self.height = width, height self.canvwidth, self.canvheight = canvwidth, canvheight self.bg = "white" self._canvas = TK.Canvas(master, width=width, height=height, bg=self.bg, relief=TK.SUNKEN, borderwidth=2) self.hscroll = TK.Scrollbar(master, command=self._canvas.xview, orient=TK.HORIZONTAL) self.vscroll = TK.Scrollbar(master, command=self._canvas.yview) self._canvas.configure(xscrollcommand=self.hscroll.set, yscrollcommand=self.vscroll.set) self.rowconfigure(0, weight=1, minsize=0) self.columnconfigure(0, weight=1, minsize=0) self._canvas.grid(padx=1, in_ = self, pady=1, row=0, column=0, rowspan=1, columnspan=1, sticky='news') self.vscroll.grid(padx=1, in_ = self, pady=1, row=0, column=1, rowspan=1, columnspan=1, sticky='news') self.hscroll.grid(padx=1, in_ = self, pady=1, row=1, column=0, rowspan=1, columnspan=1, sticky='news') self.reset() self._rootwindow.bind('<Configure>', self.onResize) def reset(self, canvwidth=None, canvheight=None, bg = None): """Adjust canvas and scrollbars according to given canvas size.""" if canvwidth: self.canvwidth = canvwidth if canvheight: self.canvheight = canvheight if bg: self.bg = bg self._canvas.config(bg=bg, scrollregion=(-self.canvwidth//2, -self.canvheight//2, self.canvwidth//2, self.canvheight//2)) self._canvas.xview_moveto(0.5*(self.canvwidth - self.width + 30) / self.canvwidth) self._canvas.yview_moveto(0.5*(self.canvheight- self.height + 30) / self.canvheight) self.adjustScrolls() def adjustScrolls(self): """ Adjust scrollbars according to window- and canvas-size. """ cwidth = self._canvas.winfo_width() cheight = self._canvas.winfo_height() self._canvas.xview_moveto(0.5*(self.canvwidth-cwidth)/self.canvwidth) self._canvas.yview_moveto(0.5*(self.canvheight-cheight)/self.canvheight) if cwidth < self.canvwidth or cheight < self.canvheight: self.hscroll.grid(padx=1, in_ = self, pady=1, row=1, column=0, rowspan=1, columnspan=1, sticky='news') self.vscroll.grid(padx=1, in_ = self, pady=1, row=0, column=1, rowspan=1, columnspan=1, sticky='news') else: self.hscroll.grid_forget() self.vscroll.grid_forget() def onResize(self, event): """self-explanatory""" self.adjustScrolls() def bbox(self, *args): """ 'forward' method, which canvas itself has inherited... """ return self._canvas.bbox(*args) def cget(self, *args, **kwargs): """ 'forward' method, which canvas itself has inherited... """ return self._canvas.cget(*args, **kwargs) def config(self, *args, **kwargs): """ 'forward' method, which canvas itself has inherited... """ self._canvas.config(*args, **kwargs) def bind(self, *args, **kwargs): """ 'forward' method, which canvas itself has inherited... """ self._canvas.bind(*args, **kwargs) def unbind(self, *args, **kwargs): """ 'forward' method, which canvas itself has inherited... """ self._canvas.unbind(*args, **kwargs) def focus_force(self): """ 'forward' method, which canvas itself has inherited... """ self._canvas.focus_force() __forwardmethods(ScrolledCanvas, TK.Canvas, '_canvas') class _Root(TK.Tk): """Root class for Screen based on Tkinter.""" def __init__(self): TK.Tk.__init__(self) def setupcanvas(self, width, height, cwidth, cheight): self._canvas = ScrolledCanvas(self, width, height, cwidth, cheight) self._canvas.pack(expand=1, fill="both") def _getcanvas(self): return self._canvas def set_geometry(self, width, height, startx, starty): self.geometry("%dx%d%+d%+d"%(width, height, startx, starty)) def ondestroy(self, destroy): self.wm_protocol("WM_DELETE_WINDOW", destroy) def win_width(self): return self.winfo_screenwidth() def win_height(self): return self.winfo_screenheight() Canvas = TK.Canvas class TurtleScreenBase(object): """Provide the basic graphics functionality. Interface between Tkinter and turtle.py. To port turtle.py to some different graphics toolkit a corresponding TurtleScreenBase class has to be implemented. """ @staticmethod def _blankimage(): """return a blank image object """ img = TK.PhotoImage(width=1, height=1) img.blank() return img @staticmethod def _image(filename): """return an image object containing the imagedata from a gif-file named filename. """ return TK.PhotoImage(file=filename) def __init__(self, cv): self.cv = cv if isinstance(cv, ScrolledCanvas): w = self.cv.canvwidth h = self.cv.canvheight else: # expected: ordinary TK.Canvas w = int(self.cv.cget("width")) h = int(self.cv.cget("height")) self.cv.config(scrollregion = (-w//2, -h//2, w//2, h//2 )) self.canvwidth = w self.canvheight = h self.xscale = self.yscale = 1.0 def _createpoly(self): """Create an invisible polygon item on canvas self.cv) """ return self.cv.create_polygon((0, 0, 0, 0, 0, 0), fill="", outline="") def _drawpoly(self, polyitem, coordlist, fill=None, outline=None, width=None, top=False): """Configure polygonitem polyitem according to provided arguments: coordlist is sequence of coordinates fill is filling color outline is outline color top is a boolean value, which specifies if polyitem will be put on top of the canvas' displaylist so it will not be covered by other items. """ cl = [] for x, y in coordlist: cl.append(x * self.xscale) cl.append(-y * self.yscale) self.cv.coords(polyitem, *cl) if fill is not None: self.cv.itemconfigure(polyitem, fill=fill) if outline is not None: self.cv.itemconfigure(polyitem, outline=outline) if width is not None: self.cv.itemconfigure(polyitem, width=width) if top: self.cv.tag_raise(polyitem) def _createline(self): """Create an invisible line item on canvas self.cv) """ return self.cv.create_line(0, 0, 0, 0, fill="", width=2, capstyle = TK.ROUND) def _drawline(self, lineitem, coordlist=None, fill=None, width=None, top=False): """Configure lineitem according to provided arguments: coordlist is sequence of coordinates fill is drawing color width is width of drawn line. top is a boolean value, which specifies if polyitem will be put on top of the canvas' displaylist so it will not be covered by other items. """ if coordlist is not None: cl = [] for x, y in coordlist: cl.append(x * self.xscale) cl.append(-y * self.yscale) self.cv.coords(lineitem, *cl) if fill is not None: self.cv.itemconfigure(lineitem, fill=fill) if width is not None: self.cv.itemconfigure(lineitem, width=width) if top: self.cv.tag_raise(lineitem) def _delete(self, item): """Delete graphics item from canvas. If item is"all" delete all graphics items. """ self.cv.delete(item) def _update(self): """Redraw graphics items on canvas """ self.cv.update() def _delay(self, delay): """Delay subsequent canvas actions for delay ms.""" self.cv.after(delay) def _iscolorstring(self, color): """Check if the string color is a legal Tkinter color string. """ try: rgb = self.cv.winfo_rgb(color) ok = True except TK.TclError: ok = False return ok def _bgcolor(self, color=None): """Set canvas' backgroundcolor if color is not None, else return backgroundcolor.""" if color is not None: self.cv.config(bg = color) self._update() else: return self.cv.cget("bg") def _write(self, pos, txt, align, font, pencolor): """Write txt at pos in canvas with specified font and color. Return text item and x-coord of right bottom corner of text's bounding box.""" x, y = pos x = x * self.xscale y = y * self.yscale anchor = {"left":"sw", "center":"s", "right":"se" } item = self.cv.create_text(x-1, -y, text = txt, anchor = anchor[align], fill = pencolor, font = font) x0, y0, x1, y1 = self.cv.bbox(item) self.cv.update() return item, x1-1 ## def _dot(self, pos, size, color): ## """may be implemented for some other graphics toolkit""" def _onclick(self, item, fun, num=1, add=None): """Bind fun to mouse-click event on turtle. fun must be a function with two arguments, the coordinates of the clicked point on the canvas. num, the number of the mouse-button defaults to 1 """ if fun is None: self.cv.tag_unbind(item, "<Button-%s>" % num) else: def eventfun(event): x, y = (self.cv.canvasx(event.x)/self.xscale, -self.cv.canvasy(event.y)/self.yscale) fun(x, y) self.cv.tag_bind(item, "<Button-%s>" % num, eventfun, add) def _onrelease(self, item, fun, num=1, add=None): """Bind fun to mouse-button-release event on turtle. fun must be a function with two arguments, the coordinates of the point on the canvas where mouse button is released. num, the number of the mouse-button defaults to 1 If a turtle is clicked, first _onclick-event will be performed, then _onscreensclick-event. """ if fun is None: self.cv.tag_unbind(item, "<Button%s-ButtonRelease>" % num) else: def eventfun(event): x, y = (self.cv.canvasx(event.x)/self.xscale, -self.cv.canvasy(event.y)/self.yscale) fun(x, y) self.cv.tag_bind(item, "<Button%s-ButtonRelease>" % num, eventfun, add) def _ondrag(self, item, fun, num=1, add=None): """Bind fun to mouse-move-event (with pressed mouse button) on turtle. fun must be a function with two arguments, the coordinates of the actual mouse position on the canvas. num, the number of the mouse-button defaults to 1 Every sequence of mouse-move-events on a turtle is preceded by a mouse-click event on that turtle. """ if fun is None: self.cv.tag_unbind(item, "<Button%s-Motion>" % num) else: def eventfun(event): try: x, y = (self.cv.canvasx(event.x)/self.xscale, -self.cv.canvasy(event.y)/self.yscale) fun(x, y) except: pass self.cv.tag_bind(item, "<Button%s-Motion>" % num, eventfun, add) def _onscreenclick(self, fun, num=1, add=None): """Bind fun to mouse-click event on canvas. fun must be a function with two arguments, the coordinates of the clicked point on the canvas. num, the number of the mouse-button defaults to 1 If a turtle is clicked, first _onclick-event will be performed, then _onscreensclick-event. """ if fun is None: self.cv.unbind("<Button-%s>" % num) else: def eventfun(event): x, y = (self.cv.canvasx(event.x)/self.xscale, -self.cv.canvasy(event.y)/self.yscale) fun(x, y) self.cv.bind("<Button-%s>" % num, eventfun, add) def _onkeyrelease(self, fun, key): """Bind fun to key-release event of key. Canvas must have focus. See method listen """ if fun is None: self.cv.unbind("<KeyRelease-%s>" % key, None) else: def eventfun(event): fun() self.cv.bind("<KeyRelease-%s>" % key, eventfun) def _onkeypress(self, fun, key=None): """If key is given, bind fun to key-press event of key. Otherwise bind fun to any key-press. Canvas must have focus. See method listen. """ if fun is None: if key is None: self.cv.unbind("<KeyPress>", None) else: self.cv.unbind("<KeyPress-%s>" % key, None) else: def eventfun(event): fun() if key is None: self.cv.bind("<KeyPress>", eventfun) else: self.cv.bind("<KeyPress-%s>" % key, eventfun) def _listen(self): """Set focus on canvas (in order to collect key-events) """ self.cv.focus_force() def _ontimer(self, fun, t): """Install a timer, which calls fun after t milliseconds. """ if t == 0: self.cv.after_idle(fun) else: self.cv.after(t, fun) def _createimage(self, image): """Create and return image item on canvas. """ return self.cv.create_image(0, 0, image=image) def _drawimage(self, item, pos, image): """Configure image item as to draw image object at position (x,y) on canvas) """ x, y = pos self.cv.coords(item, (x * self.xscale, -y * self.yscale)) self.cv.itemconfig(item, image=image) def _setbgpic(self, item, image): """Configure image item as to draw image object at center of canvas. Set item to the first item in the displaylist, so it will be drawn below any other item .""" self.cv.itemconfig(item, image=image) self.cv.tag_lower(item) def _type(self, item): """Return 'line' or 'polygon' or 'image' depending on type of item. """ return self.cv.type(item) def _pointlist(self, item): """returns list of coordinate-pairs of points of item Example (for insiders): >>> from turtle import * >>> getscreen()._pointlist(getturtle().turtle._item) [(0.0, 9.9999999999999982), (0.0, -9.9999999999999982), (9.9999999999999982, 0.0)] >>> """ cl = self.cv.coords(item) pl = [(cl[i], -cl[i+1]) for i in range(0, len(cl), 2)] return pl def _setscrollregion(self, srx1, sry1, srx2, sry2): self.cv.config(scrollregion=(srx1, sry1, srx2, sry2)) def _rescale(self, xscalefactor, yscalefactor): items = self.cv.find_all() for item in items: coordinates = list(self.cv.coords(item)) newcoordlist = [] while coordinates: x, y = coordinates[:2] newcoordlist.append(x * xscalefactor) newcoordlist.append(y * yscalefactor) coordinates = coordinates[2:] self.cv.coords(item, *newcoordlist) def _resize(self, canvwidth=None, canvheight=None, bg=None): """Resize the canvas the turtles are drawing on. Does not alter the drawing window. """ # needs amendment if not isinstance(self.cv, ScrolledCanvas): return self.canvwidth, self.canvheight if canvwidth is canvheight is bg is None: return self.cv.canvwidth, self.cv.canvheight if canvwidth is not None: self.canvwidth = canvwidth if canvheight is not None: self.canvheight = canvheight self.cv.reset(canvwidth, canvheight, bg) def _window_size(self): """ Return the width and height of the turtle window. """ width = self.cv.winfo_width() if width <= 1: # the window isn't managed by a geometry manager width = self.cv['width'] height = self.cv.winfo_height() if height <= 1: # the window isn't managed by a geometry manager height = self.cv['height'] return width, height def mainloop(self): """Starts event loop - calling Tkinter's mainloop function. No argument. Must be last statement in a turtle graphics program. Must NOT be used if a script is run from within IDLE in -n mode (No subprocess) - for interactive use of turtle graphics. Example (for a TurtleScreen instance named screen): >>> screen.mainloop() """ TK.mainloop() def textinput(self, title, prompt): """Pop up a dialog window for input of a string. Arguments: title is the title of the dialog window, prompt is a text mostly describing what information to input. Return the string input If the dialog is canceled, return None. Example (for a TurtleScreen instance named screen): >>> screen.textinput("NIM", "Name of first player:") """ return simpledialog.askstring(title, prompt) def numinput(self, title, prompt, default=None, minval=None, maxval=None): """Pop up a dialog window for input of a number. Arguments: title is the title of the dialog window, prompt is a text mostly describing what numerical information to input. default: default value minval: minimum value for imput maxval: maximum value for input The number input must be in the range minval .. maxval if these are given. If not, a hint is issued and the dialog remains open for correction. Return the number input. If the dialog is canceled, return None. Example (for a TurtleScreen instance named screen): >>> screen.numinput("Poker", "Your stakes:", 1000, minval=10, maxval=10000) """ return simpledialog.askfloat(title, prompt, initialvalue=default, minvalue=minval, maxvalue=maxval) ############################################################################## ### End of Tkinter - interface ### ############################################################################## class Terminator (Exception): """Will be raised in TurtleScreen.update, if _RUNNING becomes False. Thus stops execution of turtle graphics script. Main purpose: use in in the Demo-Viewer turtle.Demo.py. """ pass class TurtleGraphicsError(Exception): """Some TurtleGraphics Error """ class Shape(object): """Data structure modeling shapes. attribute _type is one of "polygon", "image", "compound" attribute _data is - depending on _type a poygon-tuple, an image or a list constructed using the addcomponent method. """ def __init__(self, type_, data=None): self._type = type_ if type_ == "polygon": if isinstance(data, list): data = tuple(data) elif type_ == "image": if isinstance(data, str): if data.lower().endswith(".gif") and isfile(data): data = TurtleScreen._image(data) # else data assumed to be Photoimage elif type_ == "compound": data = [] else: raise TurtleGraphicsError("There is no shape type %s" % type_) self._data = data def addcomponent(self, poly, fill, outline=None): """Add component to a shape of type compound. Arguments: poly is a polygon, i. e. a tuple of number pairs. fill is the fillcolor of the component, outline is the outline color of the component. call (for a Shapeobject namend s): -- s.addcomponent(((0,0), (10,10), (-10,10)), "red", "blue") Example: >>> poly = ((0,0),(10,-5),(0,10),(-10,-5)) >>> s = Shape("compound") >>> s.addcomponent(poly, "red", "blue") ### .. add more components and then use register_shape() """ if self._type != "compound": raise TurtleGraphicsError("Cannot add component to %s Shape" % self._type) if outline is None: outline = fill self._data.append([poly, fill, outline]) class Tbuffer(object): """Ring buffer used as undobuffer for RawTurtle objects.""" def __init__(self, bufsize=10): self.bufsize = bufsize self.buffer = [[None]] * bufsize self.ptr = -1 self.cumulate = False def reset(self, bufsize=None): if bufsize is None: for i in range(self.bufsize): self.buffer[i] = [None] else: self.bufsize = bufsize self.buffer = [[None]] * bufsize self.ptr = -1 def push(self, item): if self.bufsize > 0: if not self.cumulate: self.ptr = (self.ptr + 1) % self.bufsize self.buffer[self.ptr] = item else: self.buffer[self.ptr].append(item) def pop(self): if self.bufsize > 0: item = self.buffer[self.ptr] if item is None: return None else: self.buffer[self.ptr] = [None] self.ptr = (self.ptr - 1) % self.bufsize return (item) def nr_of_items(self): return self.bufsize - self.buffer.count([None]) def __repr__(self): return str(self.buffer) + " " + str(self.ptr) class TurtleScreen(TurtleScreenBase): """Provides screen oriented methods like setbg etc. Only relies upon the methods of TurtleScreenBase and NOT upon components of the underlying graphics toolkit - which is Tkinter in this case. """ _RUNNING = True def __init__(self, cv, mode=_CFG["mode"], colormode=_CFG["colormode"], delay=_CFG["delay"]): self._shapes = { "arrow" : Shape("polygon", ((-10,0), (10,0), (0,10))), "turtle" : Shape("polygon", ((0,16), (-2,14), (-1,10), (-4,7), (-7,9), (-9,8), (-6,5), (-7,1), (-5,-3), (-8,-6), (-6,-8), (-4,-5), (0,-7), (4,-5), (6,-8), (8,-6), (5,-3), (7,1), (6,5), (9,8), (7,9), (4,7), (1,10), (2,14))), "circle" : Shape("polygon", ((10,0), (9.51,3.09), (8.09,5.88), (5.88,8.09), (3.09,9.51), (0,10), (-3.09,9.51), (-5.88,8.09), (-8.09,5.88), (-9.51,3.09), (-10,0), (-9.51,-3.09), (-8.09,-5.88), (-5.88,-8.09), (-3.09,-9.51), (-0.00,-10.00), (3.09,-9.51), (5.88,-8.09), (8.09,-5.88), (9.51,-3.09))), "square" : Shape("polygon", ((10,-10), (10,10), (-10,10), (-10,-10))), "triangle" : Shape("polygon", ((10,-5.77), (0,11.55), (-10,-5.77))), "classic": Shape("polygon", ((0,0),(-5,-9),(0,-7),(5,-9))), "blank" : Shape("image", self._blankimage()) } self._bgpics = {"nopic" : ""} TurtleScreenBase.__init__(self, cv) self._mode = mode self._delayvalue = delay self._colormode = _CFG["colormode"] self._keys = [] self.clear() def clear(self): """Delete all drawings and all turtles from the TurtleScreen. No argument. Reset empty TurtleScreen to its initial state: white background, no backgroundimage, no eventbindings and tracing on. Example (for a TurtleScreen instance named screen): screen.clear() Note: this method is not available as function. """ self._delayvalue = _CFG["delay"] self._colormode = _CFG["colormode"] self._delete("all") self._bgpic = self._createimage("") self._bgpicname = "nopic" self._tracing = 1 self._updatecounter = 0 self._turtles = [] self.bgcolor("white") for btn in 1, 2, 3: self.onclick(None, btn) self.onkeypress(None) for key in self._keys[:]: self.onkey(None, key) self.onkeypress(None, key) Turtle._pen = None def mode(self, mode=None): """Set turtle-mode ('standard', 'logo' or 'world') and perform reset. Optional argument: mode -- on of the strings 'standard', 'logo' or 'world' Mode 'standard' is compatible with turtle.py. Mode 'logo' is compatible with most Logo-Turtle-Graphics. Mode 'world' uses userdefined 'worldcoordinates'. *Attention*: in this mode angles appear distorted if x/y unit-ratio doesn't equal 1. If mode is not given, return the current mode. Mode Initial turtle heading positive angles ------------|-------------------------|------------------- 'standard' to the right (east) counterclockwise 'logo' upward (north) clockwise Examples: >>> mode('logo') # resets turtle heading to north >>> mode() 'logo' """ if mode is None: return self._mode mode = mode.lower() if mode not in ["standard", "logo", "world"]: raise TurtleGraphicsError("No turtle-graphics-mode %s" % mode) self._mode = mode if mode in ["standard", "logo"]: self._setscrollregion(-self.canvwidth//2, -self.canvheight//2, self.canvwidth//2, self.canvheight//2) self.xscale = self.yscale = 1.0 self.reset() def setworldcoordinates(self, llx, lly, urx, ury): """Set up a user defined coordinate-system. Arguments: llx -- a number, x-coordinate of lower left corner of canvas lly -- a number, y-coordinate of lower left corner of canvas urx -- a number, x-coordinate of upper right corner of canvas ury -- a number, y-coordinate of upper right corner of canvas Set up user coodinat-system and switch to mode 'world' if necessary. This performs a screen.reset. If mode 'world' is already active, all drawings are redrawn according to the new coordinates. But ATTENTION: in user-defined coordinatesystems angles may appear distorted. (see Screen.mode()) Example (for a TurtleScreen instance named screen): >>> screen.setworldcoordinates(-10,-0.5,50,1.5) >>> for _ in range(36): left(10) forward(0.5) """ if self.mode() != "world": self.mode("world") xspan = float(urx - llx) yspan = float(ury - lly) wx, wy = self._window_size() self.screensize(wx-20, wy-20) oldxscale, oldyscale = self.xscale, self.yscale self.xscale = self.canvwidth / xspan self.yscale = self.canvheight / yspan srx1 = llx * self.xscale sry1 = -ury * self.yscale srx2 = self.canvwidth + srx1 sry2 = self.canvheight + sry1 self._setscrollregion(srx1, sry1, srx2, sry2) self._rescale(self.xscale/oldxscale, self.yscale/oldyscale) self.update() def register_shape(self, name, shape=None): """Adds a turtle shape to TurtleScreen's shapelist. Arguments: (1) name is the name of a gif-file and shape is None. Installs the corresponding image shape. !! Image-shapes DO NOT rotate when turning the turtle, !! so they do not display the heading of the turtle! (2) name is an arbitrary string and shape is a tuple of pairs of coordinates. Installs the corresponding polygon shape (3) name is an arbitrary string and shape is a (compound) Shape object. Installs the corresponding compound shape. To use a shape, you have to issue the command shape(shapename). call: register_shape("turtle.gif") --or: register_shape("tri", ((0,0), (10,10), (-10,10))) Example (for a TurtleScreen instance named screen): >>> screen.register_shape("triangle", ((5,-3),(0,5),(-5,-3))) """ if shape is None: # image if name.lower().endswith(".gif"): shape = Shape("image", self._image(name)) else: raise TurtleGraphicsError("Bad arguments for register_shape.\n" + "Use help(register_shape)" ) elif isinstance(shape, tuple): shape = Shape("polygon", shape) ## else shape assumed to be Shape-instance self._shapes[name] = shape def _colorstr(self, color): """Return color string corresponding to args. Argument may be a string or a tuple of three numbers corresponding to actual colormode, i.e. in the range 0<=n<=colormode. If the argument doesn't represent a color, an error is raised. """ if len(color) == 1: color = color[0] if isinstance(color, str): if self._iscolorstring(color) or color == "": return color else: raise TurtleGraphicsError("bad color string: %s" % str(color)) try: r, g, b = color except: raise TurtleGraphicsError("bad color arguments: %s" % str(color)) if self._colormode == 1.0: r, g, b = [round(255.0*x) for x in (r, g, b)] if not ((0 <= r <= 255) and (0 <= g <= 255) and (0 <= b <= 255)): raise TurtleGraphicsError("bad color sequence: %s" % str(color)) return "#%02x%02x%02x" % (r, g, b) def _color(self, cstr): if not cstr.startswith("#"): return cstr if len(cstr) == 7: cl = [int(cstr[i:i+2], 16) for i in (1, 3, 5)] elif len(cstr) == 4: cl = [16*int(cstr[h], 16) for h in cstr[1:]] else: raise TurtleGraphicsError("bad colorstring: %s" % cstr) return tuple([c * self._colormode/255 for c in cl]) def colormode(self, cmode=None): """Return the colormode or set it to 1.0 or 255. Optional argument: cmode -- one of the values 1.0 or 255 r, g, b values of colortriples have to be in range 0..cmode. Example (for a TurtleScreen instance named screen): >>> screen.colormode() 1.0 >>> screen.colormode(255) >>> turtle.pencolor(240,160,80) """ if cmode is None: return self._colormode if cmode == 1.0: self._colormode = float(cmode) elif cmode == 255: self._colormode = int(cmode) def reset(self): """Reset all Turtles on the Screen to their initial state. No argument. Example (for a TurtleScreen instance named screen): >>> screen.reset() """ for turtle in self._turtles: turtle._setmode(self._mode) turtle.reset() def turtles(self): """Return the list of turtles on the screen. Example (for a TurtleScreen instance named screen): >>> screen.turtles() [<turtle.Turtle object at 0x00E11FB0>] """ return self._turtles def bgcolor(self, *args): """Set or return backgroundcolor of the TurtleScreen. Arguments (if given): a color string or three numbers in the range 0..colormode or a 3-tuple of such numbers. Example (for a TurtleScreen instance named screen): >>> screen.bgcolor("orange") >>> screen.bgcolor() 'orange' >>> screen.bgcolor(0.5,0,0.5) >>> screen.bgcolor() '#800080' """ if args: color = self._colorstr(args) else: color = None color = self._bgcolor(color) if color is not None: color = self._color(color) return color def tracer(self, n=None, delay=None): """Turns turtle animation on/off and set delay for update drawings. Optional arguments: n -- nonnegative integer delay -- nonnegative integer If n is given, only each n-th regular screen update is really performed. (Can be used to accelerate the drawing of complex graphics.) Second arguments sets delay value (see RawTurtle.delay()) Example (for a TurtleScreen instance named screen): >>> screen.tracer(8, 25) >>> dist = 2 >>> for i in range(200): fd(dist) rt(90) dist += 2 """ if n is None: return self._tracing self._tracing = int(n) self._updatecounter = 0 if delay is not None: self._delayvalue = int(delay) if self._tracing: self.update() def delay(self, delay=None): """ Return or set the drawing delay in milliseconds. Optional argument: delay -- positive integer Example (for a TurtleScreen instance named screen): >>> screen.delay(15) >>> screen.delay() 15 """ if delay is None: return self._delayvalue self._delayvalue = int(delay) def _incrementudc(self): "Increment upadate counter.""" if not TurtleScreen._RUNNING: TurtleScreen._RUNNNING = True raise Terminator if self._tracing > 0: self._updatecounter += 1 self._updatecounter %= self._tracing def update(self): """Perform a TurtleScreen update. """ tracing = self._tracing self._tracing = True for t in self.turtles(): t._update_data() t._drawturtle() self._tracing = tracing self._update() def window_width(self): """ Return the width of the turtle window. Example (for a TurtleScreen instance named screen): >>> screen.window_width() 640 """ return self._window_size()[0] def window_height(self): """ Return the height of the turtle window. Example (for a TurtleScreen instance named screen): >>> screen.window_height() 480 """ return self._window_size()[1] def getcanvas(self): """Return the Canvas of this TurtleScreen. No argument. Example (for a Screen instance named screen): >>> cv = screen.getcanvas() >>> cv <turtle.ScrolledCanvas instance at 0x010742D8> """ return self.cv def getshapes(self): """Return a list of names of all currently available turtle shapes. No argument. Example (for a TurtleScreen instance named screen): >>> screen.getshapes() ['arrow', 'blank', 'circle', ... , 'turtle'] """ return sorted(self._shapes.keys()) def onclick(self, fun, btn=1, add=None): """Bind fun to mouse-click event on canvas. Arguments: fun -- a function with two arguments, the coordinates of the clicked point on the canvas. num -- the number of the mouse-button, defaults to 1 Example (for a TurtleScreen instance named screen and a Turtle instance named turtle): >>> screen.onclick(turtle.goto) ### Subsequently clicking into the TurtleScreen will ### make the turtle move to the clicked point. >>> screen.onclick(None) ### event-binding will be removed """ self._onscreenclick(fun, btn, add) def onkey(self, fun, key): """Bind fun to key-release event of key. Arguments: fun -- a function with no arguments key -- a string: key (e.g. "a") or key-symbol (e.g. "space") In order to be able to register key-events, TurtleScreen must have focus. (See method listen.) Example (for a TurtleScreen instance named screen and a Turtle instance named turtle): >>> def f(): fd(50) lt(60) >>> screen.onkey(f, "Up") >>> screen.listen() ### Subsequently the turtle can be moved by ### repeatedly pressing the up-arrow key, ### consequently drawing a hexagon """ if fun is None: if key in self._keys: self._keys.remove(key) elif key not in self._keys: self._keys.append(key) self._onkeyrelease(fun, key) def onkeypress(self, fun, key=None): """Bind fun to key-press event of key if key is given, or to any key-press-event if no key is given. Arguments: fun -- a function with no arguments key -- a string: key (e.g. "a") or key-symbol (e.g. "space") In order to be able to register key-events, TurtleScreen must have focus. (See method listen.) Example (for a TurtleScreen instance named screen and a Turtle instance named turtle): >>> def f(): fd(50) >>> screen.onkey(f, "Up") >>> screen.listen() ### Subsequently the turtle can be moved by ### repeatedly pressing the up-arrow key, ### or by keeping pressed the up-arrow key. ### consequently drawing a hexagon. """ if fun is None: if key in self._keys: self._keys.remove(key) elif key is not None and key not in self._keys: self._keys.append(key) self._onkeypress(fun, key) def listen(self, xdummy=None, ydummy=None): """Set focus on TurtleScreen (in order to collect key-events) No arguments. Dummy arguments are provided in order to be able to pass listen to the onclick method. Example (for a TurtleScreen instance named screen): >>> screen.listen() """ self._listen() def ontimer(self, fun, t=0): """Install a timer, which calls fun after t milliseconds. Arguments: fun -- a function with no arguments. t -- a number >= 0 Example (for a TurtleScreen instance named screen): >>> running = True >>> def f(): if running: fd(50) lt(60) screen.ontimer(f, 250) >>> f() ### makes the turtle marching around >>> running = False """ self._ontimer(fun, t) def bgpic(self, picname=None): """Set background image or return name of current backgroundimage. Optional argument: picname -- a string, name of a gif-file or "nopic". If picname is a filename, set the corresponing image as background. If picname is "nopic", delete backgroundimage, if present. If picname is None, return the filename of the current backgroundimage. Example (for a TurtleScreen instance named screen): >>> screen.bgpic() 'nopic' >>> screen.bgpic("landscape.gif") >>> screen.bgpic() 'landscape.gif' """ if picname is None: return self._bgpicname if picname not in self._bgpics: self._bgpics[picname] = self._image(picname) self._setbgpic(self._bgpic, self._bgpics[picname]) self._bgpicname = picname def screensize(self, canvwidth=None, canvheight=None, bg=None): """Resize the canvas the turtles are drawing on. Optional arguments: canvwidth -- positive integer, new width of canvas in pixels canvheight -- positive integer, new height of canvas in pixels bg -- colorstring or color-tupel, new backgroundcolor If no arguments are given, return current (canvaswidth, canvasheight) Do not alter the drawing window. To observe hidden parts of the canvas use the scrollbars. (Can make visible those parts of a drawing, which were outside the canvas before!) Example (for a Turtle instance named turtle): >>> turtle.screensize(2000,1500) ### e. g. to search for an erroneously escaped turtle ;-) """ return self._resize(canvwidth, canvheight, bg) onscreenclick = onclick resetscreen = reset clearscreen = clear addshape = register_shape onkeyrelease = onkey class TNavigator(object): """Navigation part of the RawTurtle. Implements methods for turtle movement. """ START_ORIENTATION = { "standard": Vec2D(1.0, 0.0), "world" : Vec2D(1.0, 0.0), "logo" : Vec2D(0.0, 1.0) } DEFAULT_MODE = "standard" DEFAULT_ANGLEOFFSET = 0 DEFAULT_ANGLEORIENT = 1 def __init__(self, mode=DEFAULT_MODE): self._angleOffset = self.DEFAULT_ANGLEOFFSET self._angleOrient = self.DEFAULT_ANGLEORIENT self._mode = mode self.undobuffer = None self.degrees() self._mode = None self._setmode(mode) TNavigator.reset(self) def reset(self): """reset turtle to its initial values Will be overwritten by parent class """ self._position = Vec2D(0.0, 0.0) self._orient = TNavigator.START_ORIENTATION[self._mode] def _setmode(self, mode=None): """Set turtle-mode to 'standard', 'world' or 'logo'. """ if mode is None: return self._mode if mode not in ["standard", "logo", "world"]: return self._mode = mode if mode in ["standard", "world"]: self._angleOffset = 0 self._angleOrient = 1 else: # mode == "logo": self._angleOffset = self._fullcircle/4. self._angleOrient = -1 def _setDegreesPerAU(self, fullcircle): """Helper function for degrees() and radians()""" self._fullcircle = fullcircle self._degreesPerAU = 360/fullcircle if self._mode == "standard": self._angleOffset = 0 else: self._angleOffset = fullcircle/4. def degrees(self, fullcircle=360.0): """ Set angle measurement units to degrees. Optional argument: fullcircle - a number Set angle measurement units, i. e. set number of 'degrees' for a full circle. Dafault value is 360 degrees. Example (for a Turtle instance named turtle): >>> turtle.left(90) >>> turtle.heading() 90 Change angle measurement unit to grad (also known as gon, grade, or gradian and equals 1/100-th of the right angle.) >>> turtle.degrees(400.0) >>> turtle.heading() 100 """ self._setDegreesPerAU(fullcircle) def radians(self): """ Set the angle measurement units to radians. No arguments. Example (for a Turtle instance named turtle): >>> turtle.heading() 90 >>> turtle.radians() >>> turtle.heading() 1.5707963267948966 """ self._setDegreesPerAU(2*math.pi) def _go(self, distance): """move turtle forward by specified distance""" ende = self._position + self._orient * distance self._goto(ende) def _rotate(self, angle): """Turn turtle counterclockwise by specified angle if angle > 0.""" angle *= self._degreesPerAU self._orient = self._orient.rotate(angle) def _goto(self, end): """move turtle to position end.""" self._position = end def forward(self, distance): """Move the turtle forward by the specified distance. Aliases: forward | fd Argument: distance -- a number (integer or float) Move the turtle forward by the specified distance, in the direction the turtle is headed. Example (for a Turtle instance named turtle): >>> turtle.position() (0.00, 0.00) >>> turtle.forward(25) >>> turtle.position() (25.00,0.00) >>> turtle.forward(-75) >>> turtle.position() (-50.00,0.00) """ self._go(distance) def back(self, distance): """Move the turtle backward by distance. Aliases: back | backward | bk Argument: distance -- a number Move the turtle backward by distance ,opposite to the direction the turtle is headed. Do not change the turtle's heading. Example (for a Turtle instance named turtle): >>> turtle.position() (0.00, 0.00) >>> turtle.backward(30) >>> turtle.position() (-30.00, 0.00) """ self._go(-distance) def right(self, angle): """Turn turtle right by angle units. Aliases: right | rt Argument: angle -- a number (integer or float) Turn turtle right by angle units. (Units are by default degrees, but can be set via the degrees() and radians() functions.) Angle orientation depends on mode. (See this.) Example (for a Turtle instance named turtle): >>> turtle.heading() 22.0 >>> turtle.right(45) >>> turtle.heading() 337.0 """ self._rotate(-angle) def left(self, angle): """Turn turtle left by angle units. Aliases: left | lt Argument: angle -- a number (integer or float) Turn turtle left by angle units. (Units are by default degrees, but can be set via the degrees() and radians() functions.) Angle orientation depends on mode. (See this.) Example (for a Turtle instance named turtle): >>> turtle.heading() 22.0 >>> turtle.left(45) >>> turtle.heading() 67.0 """ self._rotate(angle) def pos(self): """Return the turtle's current location (x,y), as a Vec2D-vector. Aliases: pos | position No arguments. Example (for a Turtle instance named turtle): >>> turtle.pos() (0.00, 240.00) """ return self._position def xcor(self): """ Return the turtle's x coordinate. No arguments. Example (for a Turtle instance named turtle): >>> reset() >>> turtle.left(60) >>> turtle.forward(100) >>> print turtle.xcor() 50.0 """ return self._position[0] def ycor(self): """ Return the turtle's y coordinate --- No arguments. Example (for a Turtle instance named turtle): >>> reset() >>> turtle.left(60) >>> turtle.forward(100) >>> print turtle.ycor() 86.6025403784 """ return self._position[1] def goto(self, x, y=None): """Move turtle to an absolute position. Aliases: setpos | setposition | goto: Arguments: x -- a number or a pair/vector of numbers y -- a number None call: goto(x, y) # two coordinates --or: goto((x, y)) # a pair (tuple) of coordinates --or: goto(vec) # e.g. as returned by pos() Move turtle to an absolute position. If the pen is down, a line will be drawn. The turtle's orientation does not change. Example (for a Turtle instance named turtle): >>> tp = turtle.pos() >>> tp (0.00, 0.00) >>> turtle.setpos(60,30) >>> turtle.pos() (60.00,30.00) >>> turtle.setpos((20,80)) >>> turtle.pos() (20.00,80.00) >>> turtle.setpos(tp) >>> turtle.pos() (0.00,0.00) """ if y is None: self._goto(Vec2D(*x)) else: self._goto(Vec2D(x, y)) def home(self): """Move turtle to the origin - coordinates (0,0). No arguments. Move turtle to the origin - coordinates (0,0) and set its heading to its start-orientation (which depends on mode). Example (for a Turtle instance named turtle): >>> turtle.home() """ self.goto(0, 0) self.setheading(0) def setx(self, x): """Set the turtle's first coordinate to x Argument: x -- a number (integer or float) Set the turtle's first coordinate to x, leave second coordinate unchanged. Example (for a Turtle instance named turtle): >>> turtle.position() (0.00, 240.00) >>> turtle.setx(10) >>> turtle.position() (10.00, 240.00) """ self._goto(Vec2D(x, self._position[1])) def sety(self, y): """Set the turtle's second coordinate to y Argument: y -- a number (integer or float) Set the turtle's first coordinate to x, second coordinate remains unchanged. Example (for a Turtle instance named turtle): >>> turtle.position() (0.00, 40.00) >>> turtle.sety(-10) >>> turtle.position() (0.00, -10.00) """ self._goto(Vec2D(self._position[0], y)) def distance(self, x, y=None): """Return the distance from the turtle to (x,y) in turtle step units. Arguments: x -- a number or a pair/vector of numbers or a turtle instance y -- a number None None call: distance(x, y) # two coordinates --or: distance((x, y)) # a pair (tuple) of coordinates --or: distance(vec) # e.g. as returned by pos() --or: distance(mypen) # where mypen is another turtle Example (for a Turtle instance named turtle): >>> turtle.pos() (0.00, 0.00) >>> turtle.distance(30,40) 50.0 >>> pen = Turtle() >>> pen.forward(77) >>> turtle.distance(pen) 77.0 """ if y is not None: pos = Vec2D(x, y) if isinstance(x, Vec2D): pos = x elif isinstance(x, tuple): pos = Vec2D(*x) elif isinstance(x, TNavigator): pos = x._position return abs(pos - self._position) def towards(self, x, y=None): """Return the angle of the line from the turtle's position to (x, y). Arguments: x -- a number or a pair/vector of numbers or a turtle instance y -- a number None None call: distance(x, y) # two coordinates --or: distance((x, y)) # a pair (tuple) of coordinates --or: distance(vec) # e.g. as returned by pos() --or: distance(mypen) # where mypen is another turtle Return the angle, between the line from turtle-position to position specified by x, y and the turtle's start orientation. (Depends on modes - "standard" or "logo") Example (for a Turtle instance named turtle): >>> turtle.pos() (10.00, 10.00) >>> turtle.towards(0,0) 225.0 """ if y is not None: pos = Vec2D(x, y) if isinstance(x, Vec2D): pos = x elif isinstance(x, tuple): pos = Vec2D(*x) elif isinstance(x, TNavigator): pos = x._position x, y = pos - self._position result = round(math.atan2(y, x)*180.0/math.pi, 10) % 360.0 result /= self._degreesPerAU return (self._angleOffset + self._angleOrient*result) % self._fullcircle def heading(self): """ Return the turtle's current heading. No arguments. Example (for a Turtle instance named turtle): >>> turtle.left(67) >>> turtle.heading() 67.0 """ x, y = self._orient result = round(math.atan2(y, x)*180.0/math.pi, 10) % 360.0 result /= self._degreesPerAU return (self._angleOffset + self._angleOrient*result) % self._fullcircle def setheading(self, to_angle): """Set the orientation of the turtle to to_angle. Aliases: setheading | seth Argument: to_angle -- a number (integer or float) Set the orientation of the turtle to to_angle. Here are some common directions in degrees: standard - mode: logo-mode: -------------------|-------------------- 0 - east 0 - north 90 - north 90 - east 180 - west 180 - south 270 - south 270 - west Example (for a Turtle instance named turtle): >>> turtle.setheading(90) >>> turtle.heading() 90 """ angle = (to_angle - self.heading())*self._angleOrient full = self._fullcircle angle = (angle+full/2.)%full - full/2. self._rotate(angle) def circle(self, radius, extent = None, steps = None): """ Draw a circle with given radius. Arguments: radius -- a number extent (optional) -- a number steps (optional) -- an integer Draw a circle with given radius. The center is radius units left of the turtle; extent - an angle - determines which part of the circle is drawn. If extent is not given, draw the entire circle. If extent is not a full circle, one endpoint of the arc is the current pen position. Draw the arc in counterclockwise direction if radius is positive, otherwise in clockwise direction. Finally the direction of the turtle is changed by the amount of extent. As the circle is approximated by an inscribed regular polygon, steps determines the number of steps to use. If not given, it will be calculated automatically. Maybe used to draw regular polygons. call: circle(radius) # full circle --or: circle(radius, extent) # arc --or: circle(radius, extent, steps) --or: circle(radius, steps=6) # 6-sided polygon Example (for a Turtle instance named turtle): >>> turtle.circle(50) >>> turtle.circle(120, 180) # semicircle """ if self.undobuffer: self.undobuffer.push(["seq"]) self.undobuffer.cumulate = True speed = self.speed() if extent is None: extent = self._fullcircle if steps is None: frac = abs(extent)/self._fullcircle steps = 1+int(min(11+abs(radius)/6.0, 59.0)*frac) w = 1.0 * extent / steps w2 = 0.5 * w l = 2.0 * radius * math.sin(w2*math.pi/180.0*self._degreesPerAU) if radius < 0: l, w, w2 = -l, -w, -w2 tr = self._tracer() dl = self._delay() if speed == 0: self._tracer(0, 0) else: self.speed(0) self._rotate(w2) for i in range(steps): self.speed(speed) self._go(l) self.speed(0) self._rotate(w) self._rotate(-w2) if speed == 0: self._tracer(tr, dl) self.speed(speed) if self.undobuffer: self.undobuffer.cumulate = False ## three dummy methods to be implemented by child class: def speed(self, s=0): """dummy method - to be overwritten by child class""" def _tracer(self, a=None, b=None): """dummy method - to be overwritten by child class""" def _delay(self, n=None): """dummy method - to be overwritten by child class""" fd = forward bk = back backward = back rt = right lt = left position = pos setpos = goto setposition = goto seth = setheading class TPen(object): """Drawing part of the RawTurtle. Implements drawing properties. """ def __init__(self, resizemode=_CFG["resizemode"]): self._resizemode = resizemode # or "user" or "noresize" self.undobuffer = None TPen._reset(self) def _reset(self, pencolor=_CFG["pencolor"], fillcolor=_CFG["fillcolor"]): self._pensize = 1 self._shown = True self._pencolor = pencolor self._fillcolor = fillcolor self._drawing = True self._speed = 3 self._stretchfactor = (1., 1.) self._shearfactor = 0. self._tilt = 0. self._shapetrafo = (1., 0., 0., 1.) self._outlinewidth = 1 def resizemode(self, rmode=None): """Set resizemode to one of the values: "auto", "user", "noresize". (Optional) Argument: rmode -- one of the strings "auto", "user", "noresize" Different resizemodes have the following effects: - "auto" adapts the appearance of the turtle corresponding to the value of pensize. - "user" adapts the appearance of the turtle according to the values of stretchfactor and outlinewidth (outline), which are set by shapesize() - "noresize" no adaption of the turtle's appearance takes place. If no argument is given, return current resizemode. resizemode("user") is called by a call of shapesize with arguments. Examples (for a Turtle instance named turtle): >>> turtle.resizemode("noresize") >>> turtle.resizemode() 'noresize' """ if rmode is None: return self._resizemode rmode = rmode.lower() if rmode in ["auto", "user", "noresize"]: self.pen(resizemode=rmode) def pensize(self, width=None): """Set or return the line thickness. Aliases: pensize | width Argument: width -- positive number Set the line thickness to width or return it. If resizemode is set to "auto" and turtleshape is a polygon, that polygon is drawn with the same line thickness. If no argument is given, current pensize is returned. Example (for a Turtle instance named turtle): >>> turtle.pensize() 1 turtle.pensize(10) # from here on lines of width 10 are drawn """ if width is None: return self._pensize self.pen(pensize=width) def penup(self): """Pull the pen up -- no drawing when moving. Aliases: penup | pu | up No argument Example (for a Turtle instance named turtle): >>> turtle.penup() """ if not self._drawing: return self.pen(pendown=False) def pendown(self): """Pull the pen down -- drawing when moving. Aliases: pendown | pd | down No argument. Example (for a Turtle instance named turtle): >>> turtle.pendown() """ if self._drawing: return self.pen(pendown=True) def isdown(self): """Return True if pen is down, False if it's up. No argument. Example (for a Turtle instance named turtle): >>> turtle.penup() >>> turtle.isdown() False >>> turtle.pendown() >>> turtle.isdown() True """ return self._drawing def speed(self, speed=None): """ Return or set the turtle's speed. Optional argument: speed -- an integer in the range 0..10 or a speedstring (see below) Set the turtle's speed to an integer value in the range 0 .. 10. If no argument is given: return current speed. If input is a number greater than 10 or smaller than 0.5, speed is set to 0. Speedstrings are mapped to speedvalues in the following way: 'fastest' : 0 'fast' : 10 'normal' : 6 'slow' : 3 'slowest' : 1 speeds from 1 to 10 enforce increasingly faster animation of line drawing and turtle turning. Attention: speed = 0 : *no* animation takes place. forward/back makes turtle jump and likewise left/right make the turtle turn instantly. Example (for a Turtle instance named turtle): >>> turtle.speed(3) """ speeds = {'fastest':0, 'fast':10, 'normal':6, 'slow':3, 'slowest':1 } if speed is None: return self._speed if speed in speeds: speed = speeds[speed] elif 0.5 < speed < 10.5: speed = int(round(speed)) else: speed = 0 self.pen(speed=speed) def color(self, *args): """Return or set the pencolor and fillcolor. Arguments: Several input formats are allowed. They use 0, 1, 2, or 3 arguments as follows: color() Return the current pencolor and the current fillcolor as a pair of color specification strings as are returned by pencolor and fillcolor. color(colorstring), color((r,g,b)), color(r,g,b) inputs as in pencolor, set both, fillcolor and pencolor, to the given value. color(colorstring1, colorstring2), color((r1,g1,b1), (r2,g2,b2)) equivalent to pencolor(colorstring1) and fillcolor(colorstring2) and analogously, if the other input format is used. If turtleshape is a polygon, outline and interior of that polygon is drawn with the newly set colors. For mor info see: pencolor, fillcolor Example (for a Turtle instance named turtle): >>> turtle.color('red', 'green') >>> turtle.color() ('red', 'green') >>> colormode(255) >>> color((40, 80, 120), (160, 200, 240)) >>> color() ('#285078', '#a0c8f0') """ if args: l = len(args) if l == 1: pcolor = fcolor = args[0] elif l == 2: pcolor, fcolor = args elif l == 3: pcolor = fcolor = args pcolor = self._colorstr(pcolor) fcolor = self._colorstr(fcolor) self.pen(pencolor=pcolor, fillcolor=fcolor) else: return self._color(self._pencolor), self._color(self._fillcolor) def pencolor(self, *args): """ Return or set the pencolor. Arguments: Four input formats are allowed: - pencolor() Return the current pencolor as color specification string, possibly in hex-number format (see example). May be used as input to another color/pencolor/fillcolor call. - pencolor(colorstring) s is a Tk color specification string, such as "red" or "yellow" - pencolor((r, g, b)) *a tuple* of r, g, and b, which represent, an RGB color, and each of r, g, and b are in the range 0..colormode, where colormode is either 1.0 or 255 - pencolor(r, g, b) r, g, and b represent an RGB color, and each of r, g, and b are in the range 0..colormode If turtleshape is a polygon, the outline of that polygon is drawn with the newly set pencolor. Example (for a Turtle instance named turtle): >>> turtle.pencolor('brown') >>> tup = (0.2, 0.8, 0.55) >>> turtle.pencolor(tup) >>> turtle.pencolor() '#33cc8c' """ if args: color = self._colorstr(args) if color == self._pencolor: return self.pen(pencolor=color) else: return self._color(self._pencolor) def fillcolor(self, *args): """ Return or set the fillcolor. Arguments: Four input formats are allowed: - fillcolor() Return the current fillcolor as color specification string, possibly in hex-number format (see example). May be used as input to another color/pencolor/fillcolor call. - fillcolor(colorstring) s is a Tk color specification string, such as "red" or "yellow" - fillcolor((r, g, b)) *a tuple* of r, g, and b, which represent, an RGB color, and each of r, g, and b are in the range 0..colormode, where colormode is either 1.0 or 255 - fillcolor(r, g, b) r, g, and b represent an RGB color, and each of r, g, and b are in the range 0..colormode If turtleshape is a polygon, the interior of that polygon is drawn with the newly set fillcolor. Example (for a Turtle instance named turtle): >>> turtle.fillcolor('violet') >>> col = turtle.pencolor() >>> turtle.fillcolor(col) >>> turtle.fillcolor(0, .5, 0) """ if args: color = self._colorstr(args) if color == self._fillcolor: return self.pen(fillcolor=color) else: return self._color(self._fillcolor) def showturtle(self): """Makes the turtle visible. Aliases: showturtle | st No argument. Example (for a Turtle instance named turtle): >>> turtle.hideturtle() >>> turtle.showturtle() """ self.pen(shown=True) def hideturtle(self): """Makes the turtle invisible. Aliases: hideturtle | ht No argument. It's a good idea to do this while you're in the middle of a complicated drawing, because hiding the turtle speeds up the drawing observably. Example (for a Turtle instance named turtle): >>> turtle.hideturtle() """ self.pen(shown=False) def isvisible(self): """Return True if the Turtle is shown, False if it's hidden. No argument. Example (for a Turtle instance named turtle): >>> turtle.hideturtle() >>> print turtle.isvisible(): False """ return self._shown def pen(self, pen=None, **pendict): """Return or set the pen's attributes. Arguments: pen -- a dictionary with some or all of the below listed keys. **pendict -- one or more keyword-arguments with the below listed keys as keywords. Return or set the pen's attributes in a 'pen-dictionary' with the following key/value pairs: "shown" : True/False "pendown" : True/False "pencolor" : color-string or color-tuple "fillcolor" : color-string or color-tuple "pensize" : positive number "speed" : number in range 0..10 "resizemode" : "auto" or "user" or "noresize" "stretchfactor": (positive number, positive number) "shearfactor": number "outline" : positive number "tilt" : number This dictionary can be used as argument for a subsequent pen()-call to restore the former pen-state. Moreover one or more of these attributes can be provided as keyword-arguments. This can be used to set several pen attributes in one statement. Examples (for a Turtle instance named turtle): >>> turtle.pen(fillcolor="black", pencolor="red", pensize=10) >>> turtle.pen() {'pensize': 10, 'shown': True, 'resizemode': 'auto', 'outline': 1, 'pencolor': 'red', 'pendown': True, 'fillcolor': 'black', 'stretchfactor': (1,1), 'speed': 3, 'shearfactor': 0.0} >>> penstate=turtle.pen() >>> turtle.color("yellow","") >>> turtle.penup() >>> turtle.pen() {'pensize': 10, 'shown': True, 'resizemode': 'auto', 'outline': 1, 'pencolor': 'yellow', 'pendown': False, 'fillcolor': '', 'stretchfactor': (1,1), 'speed': 3, 'shearfactor': 0.0} >>> p.pen(penstate, fillcolor="green") >>> p.pen() {'pensize': 10, 'shown': True, 'resizemode': 'auto', 'outline': 1, 'pencolor': 'red', 'pendown': True, 'fillcolor': 'green', 'stretchfactor': (1,1), 'speed': 3, 'shearfactor': 0.0} """ _pd = {"shown" : self._shown, "pendown" : self._drawing, "pencolor" : self._pencolor, "fillcolor" : self._fillcolor, "pensize" : self._pensize, "speed" : self._speed, "resizemode" : self._resizemode, "stretchfactor" : self._stretchfactor, "shearfactor" : self._shearfactor, "outline" : self._outlinewidth, "tilt" : self._tilt } if not (pen or pendict): return _pd if isinstance(pen, dict): p = pen else: p = {} p.update(pendict) _p_buf = {} for key in p: _p_buf[key] = _pd[key] if self.undobuffer: self.undobuffer.push(("pen", _p_buf)) newLine = False if "pendown" in p: if self._drawing != p["pendown"]: newLine = True if "pencolor" in p: if isinstance(p["pencolor"], tuple): p["pencolor"] = self._colorstr((p["pencolor"],)) if self._pencolor != p["pencolor"]: newLine = True if "pensize" in p: if self._pensize != p["pensize"]: newLine = True if newLine: self._newLine() if "pendown" in p: self._drawing = p["pendown"] if "pencolor" in p: self._pencolor = p["pencolor"] if "pensize" in p: self._pensize = p["pensize"] if "fillcolor" in p: if isinstance(p["fillcolor"], tuple): p["fillcolor"] = self._colorstr((p["fillcolor"],)) self._fillcolor = p["fillcolor"] if "speed" in p: self._speed = p["speed"] if "resizemode" in p: self._resizemode = p["resizemode"] if "stretchfactor" in p: sf = p["stretchfactor"] if isinstance(sf, (int, float)): sf = (sf, sf) self._stretchfactor = sf if "shearfactor" in p: self._shearfactor = p["shearfactor"] if "outline" in p: self._outlinewidth = p["outline"] if "shown" in p: self._shown = p["shown"] if "tilt" in p: self._tilt = p["tilt"] if "stretchfactor" in p or "tilt" in p or "shearfactor" in p: scx, scy = self._stretchfactor shf = self._shearfactor sa, ca = math.sin(self._tilt), math.cos(self._tilt) self._shapetrafo = ( scx*ca, scy*(shf*ca + sa), -scx*sa, scy*(ca - shf*sa)) self._update() ## three dummy methods to be implemented by child class: def _newLine(self, usePos = True): """dummy method - to be overwritten by child class""" def _update(self, count=True, forced=False): """dummy method - to be overwritten by child class""" def _color(self, args): """dummy method - to be overwritten by child class""" def _colorstr(self, args): """dummy method - to be overwritten by child class""" width = pensize up = penup pu = penup pd = pendown down = pendown st = showturtle ht = hideturtle class _TurtleImage(object): """Helper class: Datatype to store Turtle attributes """ def __init__(self, screen, shapeIndex): self.screen = screen self._type = None self._setshape(shapeIndex) def _setshape(self, shapeIndex): screen = self.screen self.shapeIndex = shapeIndex if self._type == "polygon" == screen._shapes[shapeIndex]._type: return if self._type == "image" == screen._shapes[shapeIndex]._type: return if self._type in ["image", "polygon"]: screen._delete(self._item) elif self._type == "compound": for item in self._item: screen._delete(item) self._type = screen._shapes[shapeIndex]._type if self._type == "polygon": self._item = screen._createpoly() elif self._type == "image": self._item = screen._createimage(screen._shapes["blank"]._data) elif self._type == "compound": self._item = [screen._createpoly() for item in screen._shapes[shapeIndex]._data] class RawTurtle(TPen, TNavigator): """Animation part of the RawTurtle. Puts RawTurtle upon a TurtleScreen and provides tools for its animation. """ screens = [] def __init__(self, canvas=None, shape=_CFG["shape"], undobuffersize=_CFG["undobuffersize"], visible=_CFG["visible"]): if isinstance(canvas, _Screen): self.screen = canvas elif isinstance(canvas, TurtleScreen): if canvas not in RawTurtle.screens: RawTurtle.screens.append(canvas) self.screen = canvas elif isinstance(canvas, (ScrolledCanvas, Canvas)): for screen in RawTurtle.screens: if screen.cv == canvas: self.screen = screen break else: self.screen = TurtleScreen(canvas) RawTurtle.screens.append(self.screen) else: raise TurtleGraphicsError("bad cavas argument %s" % canvas) screen = self.screen TNavigator.__init__(self, screen.mode()) TPen.__init__(self) screen._turtles.append(self) self.drawingLineItem = screen._createline() self.turtle = _TurtleImage(screen, shape) self._poly = None self._creatingPoly = False self._fillitem = self._fillpath = None self._shown = visible self._hidden_from_screen = False self.currentLineItem = screen._createline() self.currentLine = [self._position] self.items = [self.currentLineItem] self.stampItems = [] self._undobuffersize = undobuffersize self.undobuffer = Tbuffer(undobuffersize) self._update() def reset(self): """Delete the turtle's drawings and restore its default values. No argument. , Delete the turtle's drawings from the screen, re-center the turtle and set variables to the default values. Example (for a Turtle instance named turtle): >>> turtle.position() (0.00,-22.00) >>> turtle.heading() 100.0 >>> turtle.reset() >>> turtle.position() (0.00,0.00) >>> turtle.heading() 0.0 """ TNavigator.reset(self) TPen._reset(self) self._clear() self._drawturtle() self._update() def setundobuffer(self, size): """Set or disable undobuffer. Argument: size -- an integer or None If size is an integer an empty undobuffer of given size is installed. Size gives the maximum number of turtle-actions that can be undone by the undo() function. If size is None, no undobuffer is present. Example (for a Turtle instance named turtle): >>> turtle.setundobuffer(42) """ if size is None: self.undobuffer = None else: self.undobuffer = Tbuffer(size) def undobufferentries(self): """Return count of entries in the undobuffer. No argument. Example (for a Turtle instance named turtle): >>> while undobufferentries(): undo() """ if self.undobuffer is None: return 0 return self.undobuffer.nr_of_items() def _clear(self): """Delete all of pen's drawings""" self._fillitem = self._fillpath = None for item in self.items: self.screen._delete(item) self.currentLineItem = self.screen._createline() self.currentLine = [] if self._drawing: self.currentLine.append(self._position) self.items = [self.currentLineItem] self.clearstamps() self.setundobuffer(self._undobuffersize) def clear(self): """Delete the turtle's drawings from the screen. Do not move turtle. No arguments. Delete the turtle's drawings from the screen. Do not move turtle. State and position of the turtle as well as drawings of other turtles are not affected. Examples (for a Turtle instance named turtle): >>> turtle.clear() """ self._clear() self._update() def _update_data(self): self.screen._incrementudc() if self.screen._updatecounter != 0: return if len(self.currentLine)>1: self.screen._drawline(self.currentLineItem, self.currentLine, self._pencolor, self._pensize) def _update(self): """Perform a Turtle-data update. """ screen = self.screen if screen._tracing == 0: return elif screen._tracing == 1: self._update_data() self._drawturtle() screen._update() # TurtleScreenBase screen._delay(screen._delayvalue) # TurtleScreenBase else: self._update_data() if screen._updatecounter == 0: for t in screen.turtles(): t._drawturtle() screen._update() def _tracer(self, flag=None, delay=None): """Turns turtle animation on/off and set delay for update drawings. Optional arguments: n -- nonnegative integer delay -- nonnegative integer If n is given, only each n-th regular screen update is really performed. (Can be used to accelerate the drawing of complex graphics.) Second arguments sets delay value (see RawTurtle.delay()) Example (for a Turtle instance named turtle): >>> turtle.tracer(8, 25) >>> dist = 2 >>> for i in range(200): turtle.fd(dist) turtle.rt(90) dist += 2 """ return self.screen.tracer(flag, delay) def _color(self, args): return self.screen._color(args) def _colorstr(self, args): return self.screen._colorstr(args) def _cc(self, args): """Convert colortriples to hexstrings. """ if isinstance(args, str): return args try: r, g, b = args except: raise TurtleGraphicsError("bad color arguments: %s" % str(args)) if self.screen._colormode == 1.0: r, g, b = [round(255.0*x) for x in (r, g, b)] if not ((0 <= r <= 255) and (0 <= g <= 255) and (0 <= b <= 255)): raise TurtleGraphicsError("bad color sequence: %s" % str(args)) return "#%02x%02x%02x" % (r, g, b) def clone(self): """Create and return a clone of the turtle. No argument. Create and return a clone of the turtle with same position, heading and turtle properties. Example (for a Turtle instance named mick): mick = Turtle() joe = mick.clone() """ screen = self.screen self._newLine(self._drawing) turtle = self.turtle self.screen = None self.turtle = None # too make self deepcopy-able q = deepcopy(self) self.screen = screen self.turtle = turtle q.screen = screen q.turtle = _TurtleImage(screen, self.turtle.shapeIndex) screen._turtles.append(q) ttype = screen._shapes[self.turtle.shapeIndex]._type if ttype == "polygon": q.turtle._item = screen._createpoly() elif ttype == "image": q.turtle._item = screen._createimage(screen._shapes["blank"]._data) elif ttype == "compound": q.turtle._item = [screen._createpoly() for item in screen._shapes[self.turtle.shapeIndex]._data] q.currentLineItem = screen._createline() q._update() return q def shape(self, name=None): """Set turtle shape to shape with given name / return current shapename. Optional argument: name -- a string, which is a valid shapename Set turtle shape to shape with given name or, if name is not given, return name of current shape. Shape with name must exist in the TurtleScreen's shape dictionary. Initially there are the following polygon shapes: 'arrow', 'turtle', 'circle', 'square', 'triangle', 'classic'. To learn about how to deal with shapes see Screen-method register_shape. Example (for a Turtle instance named turtle): >>> turtle.shape() 'arrow' >>> turtle.shape("turtle") >>> turtle.shape() 'turtle' """ if name is None: return self.turtle.shapeIndex if not name in self.screen.getshapes(): raise TurtleGraphicsError("There is no shape named %s" % name) self.turtle._setshape(name) self._update() def shapesize(self, stretch_wid=None, stretch_len=None, outline=None): """Set/return turtle's stretchfactors/outline. Set resizemode to "user". Optinonal arguments: stretch_wid : positive number stretch_len : positive number outline : positive number Return or set the pen's attributes x/y-stretchfactors and/or outline. Set resizemode to "user". If and only if resizemode is set to "user", the turtle will be displayed stretched according to its stretchfactors: stretch_wid is stretchfactor perpendicular to orientation stretch_len is stretchfactor in direction of turtles orientation. outline determines the width of the shapes's outline. Examples (for a Turtle instance named turtle): >>> turtle.resizemode("user") >>> turtle.shapesize(5, 5, 12) >>> turtle.shapesize(outline=8) """ if stretch_wid is stretch_len is outline is None: stretch_wid, stretch_len = self._stretchfactor return stretch_wid, stretch_len, self._outlinewidth if stretch_wid == 0 or stretch_len == 0: raise TurtleGraphicsError("stretch_wid/stretch_len must not be zero") if stretch_wid is not None: if stretch_len is None: stretchfactor = stretch_wid, stretch_wid else: stretchfactor = stretch_wid, stretch_len elif stretch_len is not None: stretchfactor = self._stretchfactor[0], stretch_len else: stretchfactor = self._stretchfactor if outline is None: outline = self._outlinewidth self.pen(resizemode="user", stretchfactor=stretchfactor, outline=outline) def shearfactor(self, shear=None): """Set or return the current shearfactor. Optional argument: shear -- number, tangent of the shear angle Shear the turtleshape according to the given shearfactor shear, which is the tangent of the shear angle. DO NOT change the turtle's heading (direction of movement). If shear is not given: return the current shearfactor, i. e. the tangent of the shear angle, by which lines parallel to the heading of the turtle are sheared. Examples (for a Turtle instance named turtle): >>> turtle.shape("circle") >>> turtle.shapesize(5,2) >>> turtle.shearfactor(0.5) >>> turtle.shearfactor() >>> 0.5 """ if shear is None: return self._shearfactor self.pen(resizemode="user", shearfactor=shear) def settiltangle(self, angle): """Rotate the turtleshape to point in the specified direction Argument: angle -- number Rotate the turtleshape to point in the direction specified by angle, regardless of its current tilt-angle. DO NOT change the turtle's heading (direction of movement). Examples (for a Turtle instance named turtle): >>> turtle.shape("circle") >>> turtle.shapesize(5,2) >>> turtle.settiltangle(45) >>> stamp() >>> turtle.fd(50) >>> turtle.settiltangle(-45) >>> stamp() >>> turtle.fd(50) """ tilt = -angle * self._degreesPerAU * self._angleOrient tilt = (tilt * math.pi / 180.0) % (2*math.pi) self.pen(resizemode="user", tilt=tilt) def tiltangle(self, angle=None): """Set or return the current tilt-angle. Optional argument: angle -- number Rotate the turtleshape to point in the direction specified by angle, regardless of its current tilt-angle. DO NOT change the turtle's heading (direction of movement). If angle is not given: return the current tilt-angle, i. e. the angle between the orientation of the turtleshape and the heading of the turtle (its direction of movement). Deprecated since Python 3.1 Examples (for a Turtle instance named turtle): >>> turtle.shape("circle") >>> turtle.shapesize(5,2) >>> turtle.tilt(45) >>> turtle.tiltangle() >>> """ if angle is None: tilt = -self._tilt * (180.0/math.pi) * self._angleOrient return (tilt / self._degreesPerAU) % self._fullcircle else: self.settiltangle(angle) def tilt(self, angle): """Rotate the turtleshape by angle. Argument: angle - a number Rotate the turtleshape by angle from its current tilt-angle, but do NOT change the turtle's heading (direction of movement). Examples (for a Turtle instance named turtle): >>> turtle.shape("circle") >>> turtle.shapesize(5,2) >>> turtle.tilt(30) >>> turtle.fd(50) >>> turtle.tilt(30) >>> turtle.fd(50) """ self.settiltangle(angle + self.tiltangle()) def shapetransform(self, t11=None, t12=None, t21=None, t22=None): """Set or return the current transformation matrix of the turtle shape. Optional arguments: t11, t12, t21, t22 -- numbers. If none of the matrix elements are given, return the transformation matrix. Otherwise set the given elements and transform the turtleshape according to the matrix consisting of first row t11, t12 and second row t21, 22. Modify stretchfactor, shearfactor and tiltangle according to the given matrix. Examples (for a Turtle instance named turtle): >>> turtle.shape("square") >>> turtle.shapesize(4,2) >>> turtle.shearfactor(-0.5) >>> turtle.shapetransform() >>> (4.0, -1.0, -0.0, 2.0) """ if t11 is t12 is t21 is t22 is None: return self._shapetrafo m11, m12, m21, m22 = self._shapetrafo if t11 is not None: m11 = t11 if t12 is not None: m12 = t12 if t21 is not None: m21 = t21 if t22 is not None: m22 = t22 if t11 * t22 - t12 * t21 == 0: raise TurtleGraphicsError("Bad shape transform matrix: must not be singular") self._shapetrafo = (m11, m12, m21, m22) alfa = math.atan2(-m21, m11) % (2 * math.pi) sa, ca = math.sin(alfa), math.cos(alfa) a11, a12, a21, a22 = (ca*m11 - sa*m21, ca*m12 - sa*m22, sa*m11 + ca*m21, sa*m12 + ca*m22) self._stretchfactor = a11, a22 self._shearfactor = a12/a22 self._tilt = alfa self._update() def _polytrafo(self, poly): """Computes transformed polygon shapes from a shape according to current position and heading. """ screen = self.screen p0, p1 = self._position e0, e1 = self._orient e = Vec2D(e0, e1 * screen.yscale / screen.xscale) e0, e1 = (1.0 / abs(e)) * e return [(p0+(e1*x+e0*y)/screen.xscale, p1+(-e0*x+e1*y)/screen.yscale) for (x, y) in poly] def get_shapepoly(self): """Return the current shape polygon as tuple of coordinate pairs. No argument. Examples (for a Turtle instance named turtle): >>> turtle.shape("square") >>> turtle.shapetransform(4, -1, 0, 2) >>> turtle.get_shapepoly() ((50, -20), (30, 20), (-50, 20), (-30, -20)) """ shape = self.screen._shapes[self.turtle.shapeIndex] if shape._type == "polygon": return self._getshapepoly(shape._data, shape._type == "compound") # else return None def _getshapepoly(self, polygon, compound=False): """Calculate transformed shape polygon according to resizemode and shapetransform. """ if self._resizemode == "user" or compound: t11, t12, t21, t22 = self._shapetrafo elif self._resizemode == "auto": l = max(1, self._pensize/5.0) t11, t12, t21, t22 = l, 0, 0, l elif self._resizemode == "noresize": return polygon return tuple([(t11*x + t12*y, t21*x + t22*y) for (x, y) in polygon]) def _drawturtle(self): """Manages the correct rendering of the turtle with respect to its shape, resizemode, stretch and tilt etc.""" screen = self.screen shape = screen._shapes[self.turtle.shapeIndex] ttype = shape._type titem = self.turtle._item if self._shown and screen._updatecounter == 0 and screen._tracing > 0: self._hidden_from_screen = False tshape = shape._data if ttype == "polygon": if self._resizemode == "noresize": w = 1 elif self._resizemode == "auto": w = self._pensize else: w =self._outlinewidth shape = self._polytrafo(self._getshapepoly(tshape)) fc, oc = self._fillcolor, self._pencolor screen._drawpoly(titem, shape, fill=fc, outline=oc, width=w, top=True) elif ttype == "image": screen._drawimage(titem, self._position, tshape) elif ttype == "compound": for item, (poly, fc, oc) in zip(titem, tshape): poly = self._polytrafo(self._getshapepoly(poly, True)) screen._drawpoly(item, poly, fill=self._cc(fc), outline=self._cc(oc), width=self._outlinewidth, top=True) else: if self._hidden_from_screen: return if ttype == "polygon": screen._drawpoly(titem, ((0, 0), (0, 0), (0, 0)), "", "") elif ttype == "image": screen._drawimage(titem, self._position, screen._shapes["blank"]._data) elif ttype == "compound": for item in titem: screen._drawpoly(item, ((0, 0), (0, 0), (0, 0)), "", "") self._hidden_from_screen = True ############################## stamp stuff ############################### def stamp(self): """Stamp a copy of the turtleshape onto the canvas and return its id. No argument. Stamp a copy of the turtle shape onto the canvas at the current turtle position. Return a stamp_id for that stamp, which can be used to delete it by calling clearstamp(stamp_id). Example (for a Turtle instance named turtle): >>> turtle.color("blue") >>> turtle.stamp() 13 >>> turtle.fd(50) """ screen = self.screen shape = screen._shapes[self.turtle.shapeIndex] ttype = shape._type tshape = shape._data if ttype == "polygon": stitem = screen._createpoly() if self._resizemode == "noresize": w = 1 elif self._resizemode == "auto": w = self._pensize else: w =self._outlinewidth shape = self._polytrafo(self._getshapepoly(tshape)) fc, oc = self._fillcolor, self._pencolor screen._drawpoly(stitem, shape, fill=fc, outline=oc, width=w, top=True) elif ttype == "image": stitem = screen._createimage("") screen._drawimage(stitem, self._position, tshape) elif ttype == "compound": stitem = [] for element in tshape: item = screen._createpoly() stitem.append(item) stitem = tuple(stitem) for item, (poly, fc, oc) in zip(stitem, tshape): poly = self._polytrafo(self._getshapepoly(poly, True)) screen._drawpoly(item, poly, fill=self._cc(fc), outline=self._cc(oc), width=self._outlinewidth, top=True) self.stampItems.append(stitem) self.undobuffer.push(("stamp", stitem)) return stitem def _clearstamp(self, stampid): """does the work for clearstamp() and clearstamps() """ if stampid in self.stampItems: if isinstance(stampid, tuple): for subitem in stampid: self.screen._delete(subitem) else: self.screen._delete(stampid) self.stampItems.remove(stampid) # Delete stampitem from undobuffer if necessary # if clearstamp is called directly. item = ("stamp", stampid) buf = self.undobuffer if item not in buf.buffer: return index = buf.buffer.index(item) buf.buffer.remove(item) if index <= buf.ptr: buf.ptr = (buf.ptr - 1) % buf.bufsize buf.buffer.insert((buf.ptr+1)%buf.bufsize, [None]) def clearstamp(self, stampid): """Delete stamp with given stampid Argument: stampid - an integer, must be return value of previous stamp() call. Example (for a Turtle instance named turtle): >>> turtle.color("blue") >>> astamp = turtle.stamp() >>> turtle.fd(50) >>> turtle.clearstamp(astamp) """ self._clearstamp(stampid) self._update() def clearstamps(self, n=None): """Delete all or first/last n of turtle's stamps. Optional argument: n -- an integer If n is None, delete all of pen's stamps, else if n > 0 delete first n stamps else if n < 0 delete last n stamps. Example (for a Turtle instance named turtle): >>> for i in range(8): turtle.stamp(); turtle.fd(30) ... >>> turtle.clearstamps(2) >>> turtle.clearstamps(-2) >>> turtle.clearstamps() """ if n is None: toDelete = self.stampItems[:] elif n >= 0: toDelete = self.stampItems[:n] else: toDelete = self.stampItems[n:] for item in toDelete: self._clearstamp(item) self._update() def _goto(self, end): """Move the pen to the point end, thereby drawing a line if pen is down. All other methodes for turtle movement depend on this one. """ ## Version with undo-stuff go_modes = ( self._drawing, self._pencolor, self._pensize, isinstance(self._fillpath, list)) screen = self.screen undo_entry = ("go", self._position, end, go_modes, (self.currentLineItem, self.currentLine[:], screen._pointlist(self.currentLineItem), self.items[:]) ) if self.undobuffer: self.undobuffer.push(undo_entry) start = self._position if self._speed and screen._tracing == 1: diff = (end-start) diffsq = (diff[0]*screen.xscale)**2 + (diff[1]*screen.yscale)**2 nhops = 1+int((diffsq**0.5)/(3*(1.1**self._speed)*self._speed)) delta = diff * (1.0/nhops) for n in range(1, nhops): if n == 1: top = True else: top = False self._position = start + delta * n if self._drawing: screen._drawline(self.drawingLineItem, (start, self._position), self._pencolor, self._pensize, top) self._update() if self._drawing: screen._drawline(self.drawingLineItem, ((0, 0), (0, 0)), fill="", width=self._pensize) # Turtle now at end, if self._drawing: # now update currentLine self.currentLine.append(end) if isinstance(self._fillpath, list): self._fillpath.append(end) ###### vererbung!!!!!!!!!!!!!!!!!!!!!! self._position = end if self._creatingPoly: self._poly.append(end) if len(self.currentLine) > 42: # 42! answer to the ultimate question # of life, the universe and everything self._newLine() self._update() #count=True) def _undogoto(self, entry): """Reverse a _goto. Used for undo() """ old, new, go_modes, coodata = entry drawing, pc, ps, filling = go_modes cLI, cL, pl, items = coodata screen = self.screen if abs(self._position - new) > 0.5: print ("undogoto: HALLO-DA-STIMMT-WAS-NICHT!") # restore former situation self.currentLineItem = cLI self.currentLine = cL if pl == [(0, 0), (0, 0)]: usepc = "" else: usepc = pc screen._drawline(cLI, pl, fill=usepc, width=ps) todelete = [i for i in self.items if (i not in items) and (screen._type(i) == "line")] for i in todelete: screen._delete(i) self.items.remove(i) start = old if self._speed and screen._tracing == 1: diff = old - new diffsq = (diff[0]*screen.xscale)**2 + (diff[1]*screen.yscale)**2 nhops = 1+int((diffsq**0.5)/(3*(1.1**self._speed)*self._speed)) delta = diff * (1.0/nhops) for n in range(1, nhops): if n == 1: top = True else: top = False self._position = new + delta * n if drawing: screen._drawline(self.drawingLineItem, (start, self._position), pc, ps, top) self._update() if drawing: screen._drawline(self.drawingLineItem, ((0, 0), (0, 0)), fill="", width=ps) # Turtle now at position old, self._position = old ## if undo is done during crating a polygon, the last vertex ## will be deleted. if the polygon is entirel deleted, ## creatigPoly will be set to False. ## Polygons created before the last one will not be affected by undo() if self._creatingPoly: if len(self._poly) > 0: self._poly.pop() if self._poly == []: self._creatingPoly = False self._poly = None if filling: if self._fillpath == []: self._fillpath = None print("Unwahrscheinlich in _undogoto!") elif self._fillpath is not None: self._fillpath.pop() self._update() #count=True) def _rotate(self, angle): """Turns pen clockwise by angle. """ if self.undobuffer: self.undobuffer.push(("rot", angle, self._degreesPerAU)) angle *= self._degreesPerAU neworient = self._orient.rotate(angle) tracing = self.screen._tracing if tracing == 1 and self._speed > 0: anglevel = 3.0 * self._speed steps = 1 + int(abs(angle)/anglevel) delta = 1.0*angle/steps for _ in range(steps): self._orient = self._orient.rotate(delta) self._update() self._orient = neworient self._update() def _newLine(self, usePos=True): """Closes current line item and starts a new one. Remark: if current line became too long, animation performance (via _drawline) slowed down considerably. """ if len(self.currentLine) > 1: self.screen._drawline(self.currentLineItem, self.currentLine, self._pencolor, self._pensize) self.currentLineItem = self.screen._createline() self.items.append(self.currentLineItem) else: self.screen._drawline(self.currentLineItem, top=True) self.currentLine = [] if usePos: self.currentLine = [self._position] def filling(self): """Return fillstate (True if filling, False else). No argument. Example (for a Turtle instance named turtle): >>> turtle.begin_fill() >>> if turtle.filling(): turtle.pensize(5) else: turtle.pensize(3) """ return isinstance(self._fillpath, list) def begin_fill(self): """Called just before drawing a shape to be filled. No argument. Example (for a Turtle instance named turtle): >>> turtle.color("black", "red") >>> turtle.begin_fill() >>> turtle.circle(60) >>> turtle.end_fill() """ if not self.filling(): self._fillitem = self.screen._createpoly() self.items.append(self._fillitem) self._fillpath = [self._position] self._newLine() if self.undobuffer: self.undobuffer.push(("beginfill", self._fillitem)) self._update() def end_fill(self): """Fill the shape drawn after the call begin_fill(). No argument. Example (for a Turtle instance named turtle): >>> turtle.color("black", "red") >>> turtle.begin_fill() >>> turtle.circle(60) >>> turtle.end_fill() """ if self.filling(): if len(self._fillpath) > 2: self.screen._drawpoly(self._fillitem, self._fillpath, fill=self._fillcolor) if self.undobuffer: self.undobuffer.push(("dofill", self._fillitem)) self._fillitem = self._fillpath = None self._update() def dot(self, size=None, *color): """Draw a dot with diameter size, using color. Optional argumentS: size -- an integer >= 1 (if given) color -- a colorstring or a numeric color tuple Draw a circular dot with diameter size, using color. If size is not given, the maximum of pensize+4 and 2*pensize is used. Example (for a Turtle instance named turtle): >>> turtle.dot() >>> turtle.fd(50); turtle.dot(20, "blue"); turtle.fd(50) """ if not color: if isinstance(size, (str, tuple)): color = self._colorstr(size) size = self._pensize + max(self._pensize, 4) else: color = self._pencolor if not size: size = self._pensize + max(self._pensize, 4) else: if size is None: size = self._pensize + max(self._pensize, 4) color = self._colorstr(color) if hasattr(self.screen, "_dot"): item = self.screen._dot(self._position, size, color) self.items.append(item) if self.undobuffer: self.undobuffer.push(("dot", item)) else: pen = self.pen() if self.undobuffer: self.undobuffer.push(["seq"]) self.undobuffer.cumulate = True try: if self.resizemode() == 'auto': self.ht() self.pendown() self.pensize(size) self.pencolor(color) self.forward(0) finally: self.pen(pen) if self.undobuffer: self.undobuffer.cumulate = False def _write(self, txt, align, font): """Performs the writing for write() """ item, end = self.screen._write(self._position, txt, align, font, self._pencolor) self.items.append(item) if self.undobuffer: self.undobuffer.push(("wri", item)) return end def write(self, arg, move=False, align="left", font=("Arial", 8, "normal")): """Write text at the current turtle position. Arguments: arg -- info, which is to be written to the TurtleScreen move (optional) -- True/False align (optional) -- one of the strings "left", "center" or right" font (optional) -- a triple (fontname, fontsize, fonttype) Write text - the string representation of arg - at the current turtle position according to align ("left", "center" or right") and with the given font. If move is True, the pen is moved to the bottom-right corner of the text. By default, move is False. Example (for a Turtle instance named turtle): >>> turtle.write('Home = ', True, align="center") >>> turtle.write((0,0), True) """ if self.undobuffer: self.undobuffer.push(["seq"]) self.undobuffer.cumulate = True end = self._write(str(arg), align.lower(), font) if move: x, y = self.pos() self.setpos(end, y) if self.undobuffer: self.undobuffer.cumulate = False def begin_poly(self): """Start recording the vertices of a polygon. No argument. Start recording the vertices of a polygon. Current turtle position is first point of polygon. Example (for a Turtle instance named turtle): >>> turtle.begin_poly() """ self._poly = [self._position] self._creatingPoly = True def end_poly(self): """Stop recording the vertices of a polygon. No argument. Stop recording the vertices of a polygon. Current turtle position is last point of polygon. This will be connected with the first point. Example (for a Turtle instance named turtle): >>> turtle.end_poly() """ self._creatingPoly = False def get_poly(self): """Return the lastly recorded polygon. No argument. Example (for a Turtle instance named turtle): >>> p = turtle.get_poly() >>> turtle.register_shape("myFavouriteShape", p) """ ## check if there is any poly? if self._poly is not None: return tuple(self._poly) def getscreen(self): """Return the TurtleScreen object, the turtle is drawing on. No argument. Return the TurtleScreen object, the turtle is drawing on. So TurtleScreen-methods can be called for that object. Example (for a Turtle instance named turtle): >>> ts = turtle.getscreen() >>> ts <turtle.TurtleScreen object at 0x0106B770> >>> ts.bgcolor("pink") """ return self.screen def getturtle(self): """Return the Turtleobject itself. No argument. Only reasonable use: as a function to return the 'anonymous turtle': Example: >>> pet = getturtle() >>> pet.fd(50) >>> pet <turtle.Turtle object at 0x0187D810> >>> turtles() [<turtle.Turtle object at 0x0187D810>] """ return self getpen = getturtle ################################################################ ### screen oriented methods recurring to methods of TurtleScreen ################################################################ def _delay(self, delay=None): """Set delay value which determines speed of turtle animation. """ return self.screen.delay(delay) def onclick(self, fun, btn=1, add=None): """Bind fun to mouse-click event on this turtle on canvas. Arguments: fun -- a function with two arguments, to which will be assigned the coordinates of the clicked point on the canvas. num -- number of the mouse-button defaults to 1 (left mouse button). add -- True or False. If True, new binding will be added, otherwise it will replace a former binding. Example for the anonymous turtle, i. e. the procedural way: >>> def turn(x, y): left(360) >>> onclick(turn) # Now clicking into the turtle will turn it. >>> onclick(None) # event-binding will be removed """ self.screen._onclick(self.turtle._item, fun, btn, add) self._update() def onrelease(self, fun, btn=1, add=None): """Bind fun to mouse-button-release event on this turtle on canvas. Arguments: fun -- a function with two arguments, to which will be assigned the coordinates of the clicked point on the canvas. num -- number of the mouse-button defaults to 1 (left mouse button). Example (for a MyTurtle instance named joe): >>> class MyTurtle(Turtle): def glow(self,x,y): self.fillcolor("red") def unglow(self,x,y): self.fillcolor("") >>> joe = MyTurtle() >>> joe.onclick(joe.glow) >>> joe.onrelease(joe.unglow) ### clicking on joe turns fillcolor red, ### unclicking turns it to transparent. """ self.screen._onrelease(self.turtle._item, fun, btn, add) self._update() def ondrag(self, fun, btn=1, add=None): """Bind fun to mouse-move event on this turtle on canvas. Arguments: fun -- a function with two arguments, to which will be assigned the coordinates of the clicked point on the canvas. num -- number of the mouse-button defaults to 1 (left mouse button). Every sequence of mouse-move-events on a turtle is preceded by a mouse-click event on that turtle. Example (for a Turtle instance named turtle): >>> turtle.ondrag(turtle.goto) ### Subsequently clicking and dragging a Turtle will ### move it across the screen thereby producing handdrawings ### (if pen is down). """ self.screen._ondrag(self.turtle._item, fun, btn, add) def _undo(self, action, data): """Does the main part of the work for undo() """ if self.undobuffer is None: return if action == "rot": angle, degPAU = data self._rotate(-angle*degPAU/self._degreesPerAU) dummy = self.undobuffer.pop() elif action == "stamp": stitem = data[0] self.clearstamp(stitem) elif action == "go": self._undogoto(data) elif action in ["wri", "dot"]: item = data[0] self.screen._delete(item) self.items.remove(item) elif action == "dofill": item = data[0] self.screen._drawpoly(item, ((0, 0),(0, 0),(0, 0)), fill="", outline="") elif action == "beginfill": item = data[0] self._fillitem = self._fillpath = None if item in self.items: self.screen._delete(item) self.items.remove(item) elif action == "pen": TPen.pen(self, data[0]) self.undobuffer.pop() def undo(self): """undo (repeatedly) the last turtle action. No argument. undo (repeatedly) the last turtle action. Number of available undo actions is determined by the size of the undobuffer. Example (for a Turtle instance named turtle): >>> for i in range(4): turtle.fd(50); turtle.lt(80) >>> for i in range(8): turtle.undo() """ if self.undobuffer is None: return item = self.undobuffer.pop() action = item[0] data = item[1:] if action == "seq": while data: item = data.pop() self._undo(item[0], item[1:]) else: self._undo(action, data) turtlesize = shapesize RawPen = RawTurtle ### Screen - Singleton ######################## def Screen(): """Return the singleton screen object. If none exists at the moment, create a new one and return it, else return the existing one.""" if Turtle._screen is None: Turtle._screen = _Screen() return Turtle._screen class _Screen(TurtleScreen): _root = None _canvas = None _title = _CFG["title"] def __init__(self): # XXX there is no need for this code to be conditional, # as there will be only a single _Screen instance, anyway # XXX actually, the turtle demo is injecting root window, # so perhaps the conditional creation of a root should be # preserved (perhaps by passing it as an optional parameter) if _Screen._root is None: _Screen._root = self._root = _Root() self._root.title(_Screen._title) self._root.ondestroy(self._destroy) if _Screen._canvas is None: width = _CFG["width"] height = _CFG["height"] canvwidth = _CFG["canvwidth"] canvheight = _CFG["canvheight"] leftright = _CFG["leftright"] topbottom = _CFG["topbottom"] self._root.setupcanvas(width, height, canvwidth, canvheight) _Screen._canvas = self._root._getcanvas() TurtleScreen.__init__(self, _Screen._canvas) self.setup(width, height, leftright, topbottom) def setup(self, width=_CFG["width"], height=_CFG["height"], startx=_CFG["leftright"], starty=_CFG["topbottom"]): """ Set the size and position of the main window. Arguments: width: as integer a size in pixels, as float a fraction of the screen. Default is 50% of screen. height: as integer the height in pixels, as float a fraction of the screen. Default is 75% of screen. startx: if positive, starting position in pixels from the left edge of the screen, if negative from the right edge Default, startx=None is to center window horizontally. starty: if positive, starting position in pixels from the top edge of the screen, if negative from the bottom edge Default, starty=None is to center window vertically. Examples (for a Screen instance named screen): >>> screen.setup (width=200, height=200, startx=0, starty=0) sets window to 200x200 pixels, in upper left of screen >>> screen.setup(width=.75, height=0.5, startx=None, starty=None) sets window to 75% of screen by 50% of screen and centers """ if not hasattr(self._root, "set_geometry"): return sw = self._root.win_width() sh = self._root.win_height() if isinstance(width, float) and 0 <= width <= 1: width = sw*width if startx is None: startx = (sw - width) / 2 if isinstance(height, float) and 0 <= height <= 1: height = sh*height if starty is None: starty = (sh - height) / 2 self._root.set_geometry(width, height, startx, starty) self.update() def title(self, titlestring): """Set title of turtle-window Argument: titlestring -- a string, to appear in the titlebar of the turtle graphics window. This is a method of Screen-class. Not available for TurtleScreen- objects. Example (for a Screen instance named screen): >>> screen.title("Welcome to the turtle-zoo!") """ if _Screen._root is not None: _Screen._root.title(titlestring) _Screen._title = titlestring def _destroy(self): root = self._root if root is _Screen._root: Turtle._pen = None Turtle._screen = None _Screen._root = None _Screen._canvas = None TurtleScreen._RUNNING = True root.destroy() def bye(self): """Shut the turtlegraphics window. Example (for a TurtleScreen instance named screen): >>> screen.bye() """ self._destroy() def exitonclick(self): """Go into mainloop until the mouse is clicked. No arguments. Bind bye() method to mouseclick on TurtleScreen. If "using_IDLE" - value in configuration dictionary is False (default value), enter mainloop. If IDLE with -n switch (no subprocess) is used, this value should be set to True in turtle.cfg. In this case IDLE's mainloop is active also for the client script. This is a method of the Screen-class and not available for TurtleScreen instances. Example (for a Screen instance named screen): >>> screen.exitonclick() """ def exitGracefully(x, y): """Screen.bye() with two dummy-parameters""" self.bye() self.onclick(exitGracefully) if _CFG["using_IDLE"]: return try: mainloop() except AttributeError: exit(0) class Turtle(RawTurtle): """RawTurtle auto-crating (scrolled) canvas. When a Turtle object is created or a function derived from some Turtle method is called a TurtleScreen object is automatically created. """ _pen = None _screen = None def __init__(self, shape=_CFG["shape"], undobuffersize=_CFG["undobuffersize"], visible=_CFG["visible"]): if Turtle._screen is None: Turtle._screen = Screen() RawTurtle.__init__(self, Turtle._screen, shape=shape, undobuffersize=undobuffersize, visible=visible) Pen = Turtle def _getpen(): """Create the 'anonymous' turtle if not already present.""" if Turtle._pen is None: Turtle._pen = Turtle() return Turtle._pen def _getscreen(): """Create a TurtleScreen if not already present.""" if Turtle._screen is None: Turtle._screen = Screen() return Turtle._screen def write_docstringdict(filename="turtle_docstringdict"): """Create and write docstring-dictionary to file. Optional argument: filename -- a string, used as filename default value is turtle_docstringdict Has to be called explicitely, (not used by the turtle-graphics classes) The docstring dictionary will be written to the Python script <filname>.py It is intended to serve as a template for translation of the docstrings into different languages. """ docsdict = {} for methodname in _tg_screen_functions: key = "_Screen."+methodname docsdict[key] = eval(key).__doc__ for methodname in _tg_turtle_functions: key = "Turtle."+methodname docsdict[key] = eval(key).__doc__ f = open("%s.py" % filename,"w") keys = sorted([x for x in docsdict.keys() if x.split('.')[1] not in _alias_list]) f.write('docsdict = {\n\n') for key in keys[:-1]: f.write('%s :\n' % repr(key)) f.write(' """%s\n""",\n\n' % docsdict[key]) key = keys[-1] f.write('%s :\n' % repr(key)) f.write(' """%s\n"""\n\n' % docsdict[key]) f.write("}\n") f.close() def read_docstrings(lang): """Read in docstrings from lang-specific docstring dictionary. Transfer docstrings, translated to lang, from a dictionary-file to the methods of classes Screen and Turtle and - in revised form - to the corresponding functions. """ modname = "turtle_docstringdict_%(language)s" % {'language':lang.lower()} module = __import__(modname) docsdict = module.docsdict for key in docsdict: try: # eval(key).im_func.__doc__ = docsdict[key] eval(key).__doc__ = docsdict[key] except: print("Bad docstring-entry: %s" % key) _LANGUAGE = _CFG["language"] try: if _LANGUAGE != "english": read_docstrings(_LANGUAGE) except ImportError: print("Cannot find docsdict for", _LANGUAGE) except: print ("Unknown Error when trying to import %s-docstring-dictionary" % _LANGUAGE) def getmethparlist(ob): """Get strings describing the arguments for the given object Returns a pair of strings representing function parameter lists including parenthesis. The first string is suitable for use in function definition and the second is suitable for use in function call. The "self" parameter is not included. """ defText = callText = "" # bit of a hack for methods - turn it into a function # but we drop the "self" param. # Try and build one for Python defined functions args, varargs, varkw = inspect.getargs(ob.__code__) items2 = args[1:] realArgs = args[1:] defaults = ob.__defaults__ or [] defaults = ["=%r" % (value,) for value in defaults] defaults = [""] * (len(realArgs)-len(defaults)) + defaults items1 = [arg + dflt for arg, dflt in zip(realArgs, defaults)] if varargs is not None: items1.append("*" + varargs) items2.append("*" + varargs) if varkw is not None: items1.append("**" + varkw) items2.append("**" + varkw) defText = ", ".join(items1) defText = "(%s)" % defText callText = ", ".join(items2) callText = "(%s)" % callText return defText, callText def _turtle_docrevise(docstr): """To reduce docstrings from RawTurtle class for functions """ import re if docstr is None: return None turtlename = _CFG["exampleturtle"] newdocstr = docstr.replace("%s." % turtlename,"") parexp = re.compile(r' \(.+ %s\):' % turtlename) newdocstr = parexp.sub(":", newdocstr) return newdocstr def _screen_docrevise(docstr): """To reduce docstrings from TurtleScreen class for functions """ import re if docstr is None: return None screenname = _CFG["examplescreen"] newdocstr = docstr.replace("%s." % screenname,"") parexp = re.compile(r' \(.+ %s\):' % screenname) newdocstr = parexp.sub(":", newdocstr) return newdocstr ## The following mechanism makes all methods of RawTurtle and Turtle available ## as functions. So we can enhance, change, add, delete methods to these ## classes and do not need to change anything here. for methodname in _tg_screen_functions: pl1, pl2 = getmethparlist(eval('_Screen.' + methodname)) if pl1 == "": print(">>>>>>", pl1, pl2) continue defstr = ("def %(key)s%(pl1)s: return _getscreen().%(key)s%(pl2)s" % {'key':methodname, 'pl1':pl1, 'pl2':pl2}) exec(defstr) eval(methodname).__doc__ = _screen_docrevise(eval('_Screen.'+methodname).__doc__) for methodname in _tg_turtle_functions: pl1, pl2 = getmethparlist(eval('Turtle.' + methodname)) if pl1 == "": print(">>>>>>", pl1, pl2) continue defstr = ("def %(key)s%(pl1)s: return _getpen().%(key)s%(pl2)s" % {'key':methodname, 'pl1':pl1, 'pl2':pl2}) exec(defstr) eval(methodname).__doc__ = _turtle_docrevise(eval('Turtle.'+methodname).__doc__) done = mainloop if __name__ == "__main__": def switchpen(): if isdown(): pu() else: pd() def demo1(): """Demo of old turtle.py - module""" reset() tracer(True) up() backward(100) down() # draw 3 squares; the last filled width(3) for i in range(3): if i == 2: begin_fill() for _ in range(4): forward(20) left(90) if i == 2: color("maroon") end_fill() up() forward(30) down() width(1) color("black") # move out of the way tracer(False) up() right(90) forward(100) right(90) forward(100) right(180) down() # some text write("startstart", 1) write("start", 1) color("red") # staircase for i in range(5): forward(20) left(90) forward(20) right(90) # filled staircase tracer(True) begin_fill() for i in range(5): forward(20) left(90) forward(20) right(90) end_fill() # more text def demo2(): """Demo of some new features.""" speed(1) st() pensize(3) setheading(towards(0, 0)) radius = distance(0, 0)/2.0 rt(90) for _ in range(18): switchpen() circle(radius, 10) write("wait a moment...") while undobufferentries(): undo() reset() lt(90) colormode(255) laenge = 10 pencolor("green") pensize(3) lt(180) for i in range(-2, 16): if i > 0: begin_fill() fillcolor(255-15*i, 0, 15*i) for _ in range(3): fd(laenge) lt(120) end_fill() laenge += 10 lt(15) speed((speed()+1)%12) #end_fill() lt(120) pu() fd(70) rt(30) pd() color("red","yellow") speed(0) begin_fill() for _ in range(4): circle(50, 90) rt(90) fd(30) rt(90) end_fill() lt(90) pu() fd(30) pd() shape("turtle") tri = getturtle() tri.resizemode("auto") turtle = Turtle() turtle.resizemode("auto") turtle.shape("turtle") turtle.reset() turtle.left(90) turtle.speed(0) turtle.up() turtle.goto(280, 40) turtle.lt(30) turtle.down() turtle.speed(6) turtle.color("blue","orange") turtle.pensize(2) tri.speed(6) setheading(towards(turtle)) count = 1 while tri.distance(turtle) > 4: turtle.fd(3.5) turtle.lt(0.6) tri.setheading(tri.towards(turtle)) tri.fd(4) if count % 20 == 0: turtle.stamp() tri.stamp() switchpen() count += 1 tri.write("CAUGHT! ", font=("Arial", 16, "bold"), align="right") tri.pencolor("black") tri.pencolor("red") def baba(xdummy, ydummy): clearscreen() bye() time.sleep(2) while undobufferentries(): tri.undo() turtle.undo() tri.fd(50) tri.write(" Click me!", font = ("Courier", 12, "bold") ) tri.onclick(baba, 1) demo1() demo2() exitonclick()
6c8c336cb02605b572c852d0c5d06f95343dd29c
c5dd04970499e8a22240397836eccdf6d4d59b2b
/myproject/views.py
ba9a92b766a262c1e999b7b24fd5f52a8b3721d7
[]
no_license
WaryWolf/findacrafter-web
c4de5379d85094ae6a7bd27146b692dcfdb10094
1f9ee87a6a08aa36dc90d1c295b47ce77d4113dd
refs/heads/master
2021-01-25T03:48:34.227824
2014-11-10T00:43:39
2014-11-10T00:43:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,099
py
from pyramid.i18n import TranslationStringFactory from pyramid.response import Response from pyramid.view import view_config from pyramid.renderers import render_to_response from db import Armory import time def faq(request): #print request.client_addr return render_to_response( 'templates/faq.jinja2', { 'a': 1 }, request = request ) def recipes(request): text = request.params.get('term', '') db = Armory() recs = [str(element) for (element,) in db.getAllRecipes()] db.close() return [x for x in recs if text.lower() in x.lower()] def error(errstr): return Response("Error: " + errstr) def search(request): db = Armory() realms = db.getRealms() db.close() return render_to_response( 'templates/search-new.jinja2', { 'realms': realms }, request = request ) def results(request): servid = request.matchdict['server'] faction = request.matchdict['faction'] recipe = request.matchdict['recipe'] db = Armory() if not db.doesRealmExist2(servid): return error("Invalid Realm") if faction not in ['A', 'H', 'B']: return error("Invalid Faction") recipeids = db.getRecipeID(recipe) if len(recipeids) == 0: return error("That search matched 0 recipes :(") if len(recipeids) > 1: #return error() #make this redirect to a "did you mean...?" page return render_to_response( 'templates/results-new.jinja2', { 'toobroad': True, 'res': recipeids, 'resnum': len(recipeids), 'servid': servid, 'faction': faction }, request = request ) recipeid = recipeids[0][0] recipename = recipeids[0][1] if faction == 'B': faction = '%' connects = db.getRealmConnections(servid) if len(connects) == 0: connects = [(db.getRealmName(servid)[0],servid)] res = [] totalcount = 0 showcount = 0 for realm in connects: realmid = realm[1] realmname = realm[0] realmcrafters = db.getRealmCrafters(realmid, recipeid, faction) for crafter in realmcrafters: totalcount += 1 if showcount == 100: continue res.append((crafter[0], time.ctime(int(crafter[1])), time.ctime(int(crafter[2])), crafter[3], realmname)) showcount += 1 db.close() if len(res) == 0: return error("We couldn't find any crafters for that item on your server. Sorry!") return render_to_response( 'templates/results-new.jinja2', { 'res': res, 'recipeid': recipeid, 'recipename': recipename, 'count': totalcount }, request = request )
020f6ba95c246f4001622880ac00796c24b6e62e
ba2829830b35fa51917e86fabf274196fc0a04f1
/Alien_Invasion/bullet.py
0275bf9dc343e9e82b658d0841b67ffccf9c796a
[]
no_license
Welpyfish/python
5dca9583928d94479ac9dbf9a9b076d3ce36896b
d3caf0c16abc5be5a9011dd61639e86188fa507d
refs/heads/master
2021-12-25T06:01:24.946401
2021-12-20T14:43:02
2021-12-20T14:43:02
253,290,562
0
0
null
null
null
null
UTF-8
Python
false
false
1,062
py
import pygame from pygame.sprite import Sprite class Bullet(Sprite): """A class to manage bullets fired from the ship""" def __init__(self, ai_game): """Create a bullet object at the ship's current position.""" super().__init__() self.screen = ai_game.screen self.settings = ai_game.settings self.color = self.settings.bullet_color # Create a bullet rect at (0, 0) and then set correct position. self.rect = pygame.Rect(0, 0, self.settings.bullet_width, self.settings.bullet_height) self.rect.midtop = ai_game.ship.rect.midtop # Store the bullet's position as a decimal value. self.y = float(self.rect.y) def update(self): """Move the bullet up the screen.""" # Update the decimal position of the bullet. self.y -= self.settings.bullet_speed # Update the rect position self.rect.y = self.y def draw_bullet(self): """Draw the bullet to the screen.""" pygame.draw.rect(self.screen, self.color, self.rect)
81a1159b32031f1e45daa05415840674d3b923dc
b8ebac1c26f0bac56db5ce0331c6dd476d8c76eb
/0029.DivideTwoIntegers.py
f986aade3fc7a94bab79e073713cec2dbc06b702
[]
no_license
iLtc/LeetCodePython
7fbfc16292c85af95c00f9cc7531f17a29c8b957
67fed821e1488d164b6e5218aee803ac9fa93b93
refs/heads/master
2023-02-21T22:18:45.342863
2021-01-24T03:42:36
2021-01-24T03:42:36
323,800,655
0
0
null
null
null
null
UTF-8
Python
false
false
782
py
class Solution: def divide(self, dividend: int, divisor: int) -> int: if dividend == -2 ** 31 and divisor == -1: return 2 ** 31 - 1 negative = False if dividend < 0: negative = not negative dividend = - dividend if divisor < 0: negative = not negative divisor = - divisor memory = {} count = 1 total = divisor while total <= dividend: memory[count] = total total += total count += count result = 0 for count, total in reversed(memory.items()): if total <= dividend: result += count dividend -= total return - result if negative else result
e7b790cd9c0e154da4b7517b407c40060421a495
98f184d758f99ce6490a0bfc0cc5a8a016ffa07b
/HackerRank/HackerRank_Diagonal_Difference.py
d6f07c827f45d6137bc1a4b9c0ab872c9b751551
[]
no_license
leehb0531/problemsolving
115dfe4c844c4d9d009971f4f38c1de103e28792
eb230677fb431261ce171926ff17f917bdf83d68
refs/heads/master
2023-02-06T13:57:05.274004
2020-12-24T22:05:34
2020-12-24T22:05:34
279,533,723
0
1
null
2020-08-13T04:02:39
2020-07-14T08:56:27
Python
UTF-8
Python
false
false
768
py
#!/bin/python3 import math import os import random import re import sys # # Complete the 'diagonalDifference' function below. # # The function is expected to return an INTEGER. # The function accepts 2D_INTEGER_ARRAY arr as parameter. # def diagonalDifference(arr): result = 0 length = len(arr)-1 for i in range(len(arr)): result += arr[i][i] result -= arr[i][length] length -= 1 return abs(result) # Write your code here if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') n = int(input().strip()) arr = [] for _ in range(n): arr.append(list(map(int, input().rstrip().split()))) result = diagonalDifference(arr) fptr.write(str(result) + '\n') fptr.close()
d4c76811ae02e5656c6798a6a0d1db42b0e691d3
dc88075fc9ea51d279d288993c61bda3b7099c10
/eureka/lib/hiloerr.py
eed648f0414ac2af84714a0197fdacc426564e8f
[ "LicenseRef-scancode-warranty-disclaimer", "MIT" ]
permissive
AarynnCarter/Eureka
941456a80408fcc4cccdefebd105f655374faa05
bb17db92cfddf694ba4c509e8296a5b7b3c619f3
refs/heads/main
2023-06-02T12:55:20.551727
2021-06-25T23:50:13
2021-06-25T23:50:13
379,359,328
0
0
MIT
2021-06-22T18:03:58
2021-06-22T18:03:58
null
UTF-8
Python
false
false
3,877
py
""" NAME: HILOERR PURPOSE: This function computes two-sided error bars for a set of values. It treats Data as a representative set of measurements of a quantity, and returns the distance in parameter space from Value (default: MEDIAN(Data)) to the low and high bounds of the given CONFidence interval centered on Value. CONF defaults to the Gaussian 1-sigma confidence. CATEGORY: Statistics. CALLING SEQUENCE: Result = HILOERR(Data, Value) INPUTS: Data: An array of any non-complex numerical type and size containing representative measurements of a quantity. Bootstrap Monte-Carlo results are often used here. Value: The nominal value of the dataset. Optional. If not defined, Value is set to MEDIAN(Data) IN THE CALLER. KEYWORD PARAMETERS: CONF: Half the confidence interval desired. I.e., the distance in probability space from Value to the lower and upper error bounds. Optional. If not set, CONF is set to erf(1d/sqrt(2d)) / 2d = 0.34134475 IN THE CALLER. IVAL: (returned) The index of the nominal value. This is an interpolated quantity, so it may not be an integer. ILO: (returned) The index of the lower error bound. This is an interpolated quantity, so it may not be an integer. IHI: (returned) The index of the upper error bound. This is an interpolated quantity, so it may not be an integer. OUTPUTS: This function returns a 2-element array giving the distances in parameter space from Value to the lower and upper bounds of the confidence (error) interval. PROCEDURE: The function sorts the data, finds (by spline interpolation) the index of the nominal value, counts up and down an appropriate number of points to find the indices of the lower and upper confidence interval bounds, and interpolates to find the corresponding parameter values. EXAMPLE: data = randomn(seed, 1000000, /double) * 2d + 5d value = median(data) print, value, hiloerr(data, value) MODIFICATION HISTORY: Written by: Joseph Harrington, Cornell. 2006-04-25 [email protected] Removed nonunique values from data when finding ival Kevin Stevenson, UCF 2008-06-04 [email protected] Rewrote in python Kevin Stevenson, UCF 2008-07-08 [email protected] Added axis keyword Kevin Stevenson, UChicago 2014-01-08 """ def hiloerr(data, value = None, conf = 0.34134475): import numpy as np if value == None: value = np.median(data) sdat = np.unique(data) # sorted, unique values ndat = len(sdat) # number of points idat = np.arange(ndat) ival = np.interp([value], sdat, idat) ilo = ival - conf * ndat # interpolated index of low value ihi = ival + conf * ndat # interpolated index of high value loval = np.interp(ilo, idat, sdat) hival = np.interp(ihi, idat, sdat) loerr = loval - value hierr = hival - value return loerr[0], hierr[0] def hiloerr2D(data, value = None, conf = 0.34134475,axis=0): ''' ''' import numpy as np axis1 = axis axis2 = (axis+1)%2 if value == None: value = np.median(data,axis=axis1) sdat = np.sort(data,axis=axis1) # sorted values ndat = np.shape(sdat) # number of points if axis1 < axis2: sdat = sdat.T idat = np.arange(ndat[axis1]) loval = np.zeros(ndat[axis2]) hival = np.zeros(ndat[axis2]) for i in range(ndat[axis2]): ival = np.interp(value[i], sdat[i], idat) ilo = ival - conf * ndat[axis1] # interpolated index of low value ihi = ival + conf * ndat[axis1] # interpolated index of high value loval[i] = np.interp(ilo, idat, sdat[i]) hival[i] = np.interp(ihi, idat, sdat[i]) loerr = loval - value hierr = hival - value return loerr, hierr
aac4544b92197a517401bbcf3d375390df0f3689
8001e6a88312e9b2966909a817031027efdf9c3c
/scripts/setsep.py
48ec2e97a316e1b51dd8fff444a331fd3342e5b1
[ "MIT" ]
permissive
rhong3/Neutrophil
e7e67f6773e1d943b0872afe272f1609b0948d0a
97efb7cc01dc7b1bb06e29a824352d493bb4add5
refs/heads/master
2021-07-05T00:53:26.606819
2020-07-31T15:16:57
2020-07-31T15:16:57
140,477,754
2
0
null
null
null
null
UTF-8
Python
false
false
1,248
py
""" Prepare sample split Created on 05/07/2020 @author: RH """ import pandas as pd def set_sep(path, cut=0.3): trlist = [] telist = [] valist = [] dic = pd.read_csv('../../sampled_label_ready.csv', header=0) dic = dic.dropna() unq = list(dic.slide.unique()) validation = unq[:int(len(unq) * cut / 2)] valist.append(dic[dic['slide'].isin(validation)]) test = unq[int(len(unq) * cut / 2):int(len(unq) * cut)] telist.append(dic[dic['slide'].isin(test)]) train = unq[int(len(unq) * cut):] trlist.append(dic[dic['slide'].isin(train)]) test = pd.concat(telist) train = pd.concat(trlist) validation = pd.concat(valist) tepd = pd.DataFrame(test, columns=['slide', 'path', 'label']) tepd = tepd[['slide', 'path', 'label']] vapd = pd.DataFrame(validation.sample(frac=1), columns=['slide', 'path', 'label']) vapd = vapd[['slide', 'path', 'label']] trpd = pd.DataFrame(train.sample(frac=1), columns=['slide', 'path', 'label']) trpd = trpd[['slide', 'path', 'label']] tepd.to_csv(path + '/te_sample.csv', header=True, index=False) trpd.to_csv(path + '/tr_sample.csv', header=True, index=False) vapd.to_csv(path + '/va_sample.csv', header=True, index=False)
4c4a49028f4ef33794a21b4e930dab8ace2ba98a
3e24611b7315b5ad588b2128570f1341b9c968e8
/pacbiolib/thirdparty/pythonpkgs/numpy/numpy_1.9.2/lib/python2.7/site-packages/numpy/distutils/tests/test_misc_util.py
1d94cce4f9a446602ea4d652551dc01c0b278231
[ "BSD-2-Clause" ]
permissive
bioCKO/lpp_Script
dc327be88c7d12243e25557f7da68d963917aa90
0cb2eedb48d4afa25abc2ed7231eb1fdd9baecc2
refs/heads/master
2022-02-27T12:35:05.979231
2019-08-27T05:56:33
2019-08-27T05:56:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,092
py
#! python from __future__ import division, absolute_import, print_function from numpy.testing import * from numpy.distutils.misc_util import appendpath, minrelpath, \ gpaths, get_shared_lib_extension from os.path import join, sep, dirname ajoin = lambda *paths: join(*((sep,)+paths)) class TestAppendpath(TestCase): def test_1(self): assert_equal(appendpath('prefix', 'name'), join('prefix', 'name')) assert_equal(appendpath('/prefix', 'name'), ajoin('prefix', 'name')) assert_equal(appendpath('/prefix', '/name'), ajoin('prefix', 'name')) assert_equal(appendpath('prefix', '/name'), join('prefix', 'name')) def test_2(self): assert_equal(appendpath('prefix/sub', 'name'), join('prefix', 'sub', 'name')) assert_equal(appendpath('prefix/sub', 'sup/name'), join('prefix', 'sub', 'sup', 'name')) assert_equal(appendpath('/prefix/sub', '/prefix/name'), ajoin('prefix', 'sub', 'name')) def test_3(self): assert_equal(appendpath('/prefix/sub', '/prefix/sup/name'), ajoin('prefix', 'sub', 'sup', 'name')) assert_equal(appendpath('/prefix/sub/sub2', '/prefix/sup/sup2/name'), ajoin('prefix', 'sub', 'sub2', 'sup', 'sup2', 'name')) assert_equal(appendpath('/prefix/sub/sub2', '/prefix/sub/sup/name'), ajoin('prefix', 'sub', 'sub2', 'sup', 'name')) class TestMinrelpath(TestCase): def test_1(self): n = lambda path: path.replace('/', sep) assert_equal(minrelpath(n('aa/bb')), n('aa/bb')) assert_equal(minrelpath('..'), '..') assert_equal(minrelpath(n('aa/..')), '') assert_equal(minrelpath(n('aa/../bb')), 'bb') assert_equal(minrelpath(n('aa/bb/..')), 'aa') assert_equal(minrelpath(n('aa/bb/../..')), '') assert_equal(minrelpath(n('aa/bb/../cc/../dd')), n('aa/dd')) assert_equal(minrelpath(n('.././..')), n('../..')) assert_equal(minrelpath(n('aa/bb/.././../dd')), n('dd')) class TestGpaths(TestCase): def test_gpaths(self): local_path = minrelpath(join(dirname(__file__), '..')) ls = gpaths('command/*.py', local_path) assert_(join(local_path, 'command', 'build_src.py') in ls, repr(ls)) f = gpaths('system_info.py', local_path) assert_(join(local_path, 'system_info.py')==f[0], repr(f)) class TestSharedExtension(TestCase): def test_get_shared_lib_extension(self): import sys ext = get_shared_lib_extension(is_python_ext=False) if sys.platform.startswith('linux'): assert_equal(ext, '.so') elif sys.platform.startswith('gnukfreebsd'): assert_equal(ext, '.so') elif sys.platform.startswith('darwin'): assert_equal(ext, '.dylib') elif sys.platform.startswith('win'): assert_equal(ext, '.dll') # just check for no crash assert_(get_shared_lib_extension(is_python_ext=True)) if __name__ == "__main__": run_module_suite()
0016dfecabc8f4703006c562cb1830759b8d09f0
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/nnuninvit.py
b685fb2e70cc37ddf8c39aef951b7792608f3af0
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
335
py
ii = [('BentJDO2.py', 1), ('CoolWHM2.py', 1), ('GodwWSL2.py', 1), ('SadlMLP.py', 1), ('CarlTFR.py', 2), ('CoolWHM.py', 1), ('LandWPA.py', 1), ('AinsWRR.py', 1), ('SoutRD2.py', 1), ('FitzRNS4.py', 2), ('CoolWHM3.py', 2), ('FitzRNS.py', 2), ('BentJRP.py', 1), ('LyttELD3.py', 1), ('StorJCC.py', 1), ('ClarGE3.py', 3), ('FitzRNS2.py', 4)]
a6d280517aa13ff2286782889883671f512780fc
795c2d7e2188f2ecb3e72bbb4053726856009c0d
/cosmic/mid_point_norm.py
dc35014fc1e912c5516995bc63fffda6fb829d4d
[ "Apache-2.0" ]
permissive
markmuetz/cosmic
3a4ef310cb9cb92b81ff57b74bb1511841f790a5
f215c499bfc8f1d717dea6aa78a58632a4e89113
refs/heads/master
2023-08-01T10:55:52.596575
2021-09-20T19:26:33
2021-09-20T19:26:33
217,045,140
0
1
null
null
null
null
UTF-8
Python
false
false
2,328
py
import numpy as np from numpy import ma from matplotlib import cbook from matplotlib.colors import Normalize class MidPointNorm(Normalize): # See https://stackoverflow.com/a/7746125/54557 def __init__(self, midpoint=0, vmin=None, vmax=None, clip=False): Normalize.__init__(self, vmin, vmax, clip) self.midpoint = midpoint def __call__(self, value, clip=None): if clip is None: clip = self.clip result, is_scalar = self.process_value(value) self.autoscale_None(result) vmin, vmax, midpoint = self.vmin, self.vmax, self.midpoint if not (vmin < midpoint < vmax): raise ValueError("midpoint must be between maxvalue and minvalue.") elif vmin == vmax: result.fill(0) # Or should it be all masked? Or 0.5? elif vmin > vmax: raise ValueError("maxvalue must be bigger than minvalue") else: vmin = float(vmin) vmax = float(vmax) if clip: mask = ma.getmask(result) result = ma.array(np.clip(result.filled(vmax), vmin, vmax), mask=mask) # ma division is very slow; we can take a shortcut resdat = result.data # First scale to -1 to 1 range, than to from 0 to 1. resdat -= midpoint resdat[resdat > 0] /= abs(vmax - midpoint) resdat[resdat < 0] /= abs(vmin - midpoint) resdat /= 2. resdat += 0.5 result = ma.array(resdat, mask=result.mask, copy=False) if is_scalar: result = result[0] return result def inverse(self, value): if not self.scaled(): raise ValueError("Not invertible until scaled") vmin, vmax, midpoint = self.vmin, self.vmax, self.midpoint if cbook.iterable(value): val = ma.asarray(value) val = 2 * (val-0.5) val[val > 0] *= abs(vmax - midpoint) val[val < 0] *= abs(vmin - midpoint) val += midpoint return val else: val = 2 * (value - 0.5) if val < 0: return val * abs(vmin - midpoint) + midpoint else: return val * abs(vmax - midpoint) + midpoint
b3ebe561bbaf02cde6bf104ccd343e4934fb3c27
f6af8b2ebeae16ff443e08b90508d88461bfc521
/to-do.py
946031eaff78d7931a072f02d077eb67c22d3b74
[]
no_license
mitch-io/JetBrains
0a8d92c9a30460c64b89bc3a1b848558acb02c0e
d75aea34be05e574a3e2b99845f16921e2048be7
refs/heads/master
2022-12-31T12:01:54.656062
2020-10-23T04:04:57
2020-10-23T04:04:57
278,274,506
0
0
null
null
null
null
UTF-8
Python
false
false
4,824
py
# All imports from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, Date from sqlalchemy.orm import sessionmaker from datetime import datetime, timedelta # create engine engine = create_engine('sqlite:///todo.db?check_same_thread=False') # describe table Base = declarative_base() class Tasks(Base): __tablename__ = 'task' id = Column(Integer, primary_key=True) task = Column(String) deadline = Column(Date, default=datetime.today()) def __repr__(self): return (f'{self.id}. {self.task}') # create table 'task' in db 'todo.db' Base.metadata.create_all(engine) Session = sessionmaker(bind=engine) # method to get today's tasks def read_today(): # create session read_session = Session() #today_tasks = read_session.query(Tasks).filter_by(Tasks.deadline == datetime.today()) today = datetime.today() today_tasks = read_session.query(Tasks).all() print('Today ' + today.strftime("%#d %b") + ':') if len(today_tasks) == 0: print('Nothing to do!') else: for task in today_tasks: print(task) print() read_session.commit() # method to get week's tasks def read_week(): # create session read_session = Session() today = datetime.today() end_of_the_week = today + timedelta(days=6) week_tasks = read_session.query(Tasks).filter(Tasks.deadline <= end_of_the_week, Tasks.deadline >= today.date()).order_by(Tasks.deadline) for x in range(0, 7): current_day = today + timedelta(days=x) print('{}:'.format(current_day.strftime('%A %d %b'))) count = 1 there_was_a_task = False for task in week_tasks: if task.deadline == current_day.date(): print('{}. {}'.format(count, task.task)) print() there_was_a_task = True count += 1 if there_was_a_task != True: print('Nothing to do!') print() read_session.commit() def read_all(): # create session read_session = Session() all_tasks = read_session.query(Tasks).filter().order_by(Tasks.deadline) print('All tasks:') for task in all_tasks: print(str(task.id) + '. ' + task.task + '. ' + task.deadline.strftime("%#d %b")) print() read_session.commit() def read_missed(): # create session read_session = Session() today = datetime.today() missed_tasks = read_session.query(Tasks).filter(Tasks.deadline < today.date()).order_by(Tasks.deadline) print('Missed tasks:') for task in missed_tasks: print(str(task.id) + '. ' + task.task + '. ' + task.deadline.strftime("%#d %b")) print() read_session.commit() # method to update db def add_task(task_name, task_deadline): update_session = Session() new_task = Tasks(task=task_name, deadline=task_deadline) update_session.add(new_task) update_session.commit() print('The task has been added!') # method to update db def delete_task(): # create session update_session = Session() all_tasks = update_session.query(Tasks).filter().order_by(Tasks.deadline) todo = False to_delete = 0 for task in all_tasks: todo = True if todo == False: print('Nothing to do!') else: print('Choose the number of the task you want to delete:') for task in all_tasks: print(str(task.id) + '. ' + task.task + '. ' + task.deadline.strftime("%#d %b")) to_delete = int(input()) specific_row = all_tasks[to_delete-1] update_session.delete(specific_row) print('The task has been deleted!') print() update_session.commit() #---- main program execution starts here---- while(True): print("1) Today's tasks") print("2) Week's tasks") print("3) All tasks") print("4) Missed tasks") print("5) Add task") print("6) Delete task") print("0) Exit") choice = int(input()) if choice == 1: print() read_today() elif choice == 2: print() read_week() elif choice == 3: print() read_all() elif choice == 4: print() read_missed() elif choice == 5: print('Enter task') task_name = input() print('Enter deadline') deadline_str = input() deadline_format = datetime.strptime(deadline_str, "%Y-%m-%d") add_task(task_name,task_deadline=datetime.date(deadline_format)) elif choice == 6: print() delete_task() elif choice == 0: print() print('Bye!') break
9b3eeaf3a7baffc0bdfdf4bec62ad338a74ae4c4
2116d41bc28555bf6cb82f5a845a34de6c68d234
/05-natural-language-processing-fundamentals-in-python/4-building-a-fake-news-classifier/03-CountVectorizer-for-text-classification.py
c7e89dbf27b49570c54be1d4c9b2bde2f32c4711
[]
no_license
tfuzi/DataCamp
7084f47ec13f91b307b98d9ce3496f1119120a27
dfea4eb56d9171ef9ee2553c4f169600cbddca9e
refs/heads/master
2023-08-09T03:10:28.251624
2019-02-22T21:22:06
2019-02-22T21:22:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,150
py
""" CountVectorizer for text classification It's time to begin building your text classifier! The data has been loaded into a DataFrame called df. Explore it in the IPython Shell to investigate what columns you can use. The .head() method is particularly informative. In this exercise, you'll use pandas alongside scikit-learn to create a sparse text vectorizer you can use to train and test a simple supervised model. To begin, you'll set up a CountVectorizer and investigate some of its features. INSTRUCTIONS 100XP Possible Answers Import CountVectorizer from sklearn.feature_extraction.text and train_test_split from sklearn.model_selection. Create a Series y to use for the labels by assigning the .label attribute of df to y. Using df["text"] (features) and y (labels), create training and test sets using train_test_split(). Use a test_size of 0.33 and a random_state of 53. Create a CountVectorizer object called count_vectorizer. Ensure you specify the keyword argument stop_words="english" so that stop words are removed. Fit and transform the training data X_train using the .fit_transform() method. Do the same with the test data X_test, except using the .transform() method. Print the first 10 features of the count_vectorizer using its .get_feature_names() method. """ # Import the necessary modules from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer # Print the head of df print(df.head()) # Create a series to store the labels: y y = df.label # Create training and test sets X_train, X_test, y_train, y_test = train_test_split(df["text"], y, test_size=0.33, random_state=53) # Initialize a CountVectorizer object: count_vectorizer count_vectorizer = CountVectorizer(stop_words='english') # Transform the training data using only the 'text' column values: count_train count_train = count_vectorizer.fit_transform(X_train.values) # Transform the test data using only the 'text' column values: count_test count_test = count_vectorizer.transform(X_test.values) # Print the first 10 features of the count_vectorizer print(count_vectorizer.get_feature_names()[:10])
2108350f34a6977f7d3ca23b432fe55f8291869c
bdde256489bdb400cb3030f0127d67d6dfa632d0
/Keras/2020-11-10/keras08_val.py
87e227e340fb7d57f9743c6dd0b38d19129cc70f
[]
no_license
Vaan525/Bit_seoul
04c9555811b18a3598eecb79fa59fd552000e9ed
60acb552802bce85aed1d04db7a8acb0370fa3d9
refs/heads/master
2023-01-06T15:17:33.436178
2020-11-10T09:42:33
2020-11-10T09:42:33
311,254,620
0
0
null
2020-11-10T09:42:35
2020-11-09T07:18:33
Python
UTF-8
Python
false
false
1,395
py
import numpy as np # 1. 데이터 x_train = np.array([1,2,3,4,5,6,7,8,9,10]) # 테스트 하고싶은 데이터 y_train = np.array([1,2,3,4,5,6,7,8,9,10]) x_val = np.array([11,12,13,14,15]) # 검증용 데이터 y_val = np.array([11,12,13,14,15]) #x_pred = np.array([16,17,18]) # 예측하고 싶은 데이터 x_test = np.array([16,17,18,19,20]) y_test = np.array([16,17,18,19,20]) # train, test, val = 6 : 2 : 2 from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense # 2. 모델 구성 model = Sequential() model.add(Dense(20, input_dim=1)) model.add(Dense(70)) model.add(Dense(200)) model.add(Dense(70)) model.add(Dense(20)) model.add(Dense(1)) # 3. 컴파일, 훈련 model.compile(loss='mse', optimizer='adam', metrics=['mse']) model.fit(x_train, y_train, epochs=100, validation_data=(x_val, y_val)) # 4. 평가, 예측 # loss, acc = model.evaluate(x, y) loss, mse = model.evaluate(x_test, y_test, batch_size=1) print("loss : ", loss) print("acc : ", mse) # 4. 예측 y_predict = model.predict(x_test) print("결과물 : \n : ", y_predict) # RMSE from sklearn.metrics import mean_squared_error def RMSE(y_test, y_predict): return np.sqrt(mean_squared_error(y_test, y_predict)) print("RMSE : ", RMSE(y_test, y_predict)) # R2 from sklearn.metrics import r2_score r2 = r2_score(y_test, y_predict) print("R2 : ", r2)
378a723595ccae9179bb45c15e7c834c5b569232
fd23009998b2a3859094f7fd937601b60f9f286b
/membershipfunction.py
822f24cf02524b8a86ed60cf392ab57e5f8b0c53
[]
no_license
ravids/ryerson-mrp
d92164f956474973e7d4be4b1a724ae18bb6ae33
b6867c7a8e189006e4753ef2b40ddb67c911dc3e
refs/heads/master
2022-12-02T01:57:38.854542
2020-08-14T21:52:05
2020-08-14T21:52:05
284,830,641
0
0
null
null
null
null
UTF-8
Python
false
false
755
py
# -*- coding: utf-8 -*- """ Created on Mon Mar 31 15:41:58 2014 @author: tim.meggs """ from skfuzzy import gaussmf, gbellmf, sigmf class MemFuncs: 'Common base class for all employees' funcDict = {'gaussmf': gaussmf, 'gbellmf': gbellmf, 'sigmf': sigmf} def __init__(self, MFList): self.MFList = MFList def evaluateMF(self, rowInput): if len(rowInput) != len(self.MFList): print("Number of variables does not match number of rule sets: " + " Expected " + str(len(rowInput)) + ", but only " + str(len(self.MFList)) + " membership functions defined") return [[self.funcDict[self.MFList[i][k][0]](rowInput[i],**self.MFList[i][k][1]) for k in range(len(self.MFList[i]))] for i in range(len(rowInput))]
195c47dfd62cdc4b7d62af99a21336417ce49bd1
c071eb46184635818e8349ce9c2a78d6c6e460fc
/system/python_stubs/-745935208/PyQt5/QtGui/QPolygon.py
612c81e27c75cf5f9c7410d056a20153ffc499ab
[]
no_license
sidbmw/PyCharm-Settings
a71bc594c83829a1522e215155686381b8ac5c6e
083f9fe945ee5358346e5d86b17130d521d1b954
refs/heads/master
2020-04-05T14:24:03.216082
2018-12-28T02:29:29
2018-12-28T02:29:29
156,927,399
0
0
null
null
null
null
UTF-8
Python
false
false
8,062
py
# encoding: utf-8 # module PyQt5.QtGui # from C:\Users\siddh\AppData\Local\Programs\Python\Python37\lib\site-packages\PyQt5\QtGui.pyd # by generator 1.146 # no doc # imports import PyQt5.QtCore as __PyQt5_QtCore import sip as __sip class QPolygon(__sip.simplewrapper): """ QPolygon() QPolygon(QPolygon) QPolygon(Iterable[QPoint]) QPolygon(QRect, closed: bool = False) QPolygon(int) QPolygon(List[int]) QPolygon(Any) """ def append(self, QPoint): # real signature unknown; restored from __doc__ """ append(self, QPoint) """ pass def at(self, p_int): # real signature unknown; restored from __doc__ """ at(self, int) -> QPoint """ pass def boundingRect(self): # real signature unknown; restored from __doc__ """ boundingRect(self) -> QRect """ pass def clear(self): # real signature unknown; restored from __doc__ """ clear(self) """ pass def contains(self, QPoint): # real signature unknown; restored from __doc__ """ contains(self, QPoint) -> bool """ return False def containsPoint(self, QPoint, Qt_FillRule): # real signature unknown; restored from __doc__ """ containsPoint(self, QPoint, Qt.FillRule) -> bool """ return False def count(self, QPoint=None): # real signature unknown; restored from __doc__ with multiple overloads """ count(self, QPoint) -> int count(self) -> int """ return 0 def data(self): # real signature unknown; restored from __doc__ """ data(self) -> sip.voidptr """ pass def fill(self, QPoint, size=-1): # real signature unknown; restored from __doc__ """ fill(self, QPoint, size: int = -1) """ pass def first(self): # real signature unknown; restored from __doc__ """ first(self) -> QPoint """ pass def indexOf(self, QPoint, from_=0): # real signature unknown; restored from __doc__ """ indexOf(self, QPoint, from_: int = 0) -> int """ return 0 def insert(self, p_int, QPoint): # real signature unknown; restored from __doc__ """ insert(self, int, QPoint) """ pass def intersected(self, QPolygon): # real signature unknown; restored from __doc__ """ intersected(self, QPolygon) -> QPolygon """ return QPolygon def intersects(self, QPolygon): # real signature unknown; restored from __doc__ """ intersects(self, QPolygon) -> bool """ return False def isEmpty(self): # real signature unknown; restored from __doc__ """ isEmpty(self) -> bool """ return False def last(self): # real signature unknown; restored from __doc__ """ last(self) -> QPoint """ pass def lastIndexOf(self, QPoint, from_=-1): # real signature unknown; restored from __doc__ """ lastIndexOf(self, QPoint, from_: int = -1) -> int """ return 0 def mid(self, p_int, length=-1): # real signature unknown; restored from __doc__ """ mid(self, int, length: int = -1) -> QPolygon """ return QPolygon def point(self, p_int): # real signature unknown; restored from __doc__ """ point(self, int) -> QPoint """ pass def prepend(self, QPoint): # real signature unknown; restored from __doc__ """ prepend(self, QPoint) """ pass def putPoints(self, p_int, p_int_1, *__args): # real signature unknown; restored from __doc__ with multiple overloads """ putPoints(self, int, int, int, *) putPoints(self, int, int, QPolygon, from_: int = 0) """ pass def remove(self, p_int, p_int_1=None): # real signature unknown; restored from __doc__ with multiple overloads """ remove(self, int) remove(self, int, int) """ pass def replace(self, p_int, QPoint): # real signature unknown; restored from __doc__ """ replace(self, int, QPoint) """ pass def setPoint(self, p_int, *__args): # real signature unknown; restored from __doc__ with multiple overloads """ setPoint(self, int, QPoint) setPoint(self, int, int, int) """ pass def setPoints(self, *__args): # real signature unknown; restored from __doc__ with multiple overloads """ setPoints(self, List[int]) setPoints(self, int, int, *) """ pass def size(self): # real signature unknown; restored from __doc__ """ size(self) -> int """ return 0 def subtracted(self, QPolygon): # real signature unknown; restored from __doc__ """ subtracted(self, QPolygon) -> QPolygon """ return QPolygon def swap(self, QPolygon): # real signature unknown; restored from __doc__ """ swap(self, QPolygon) """ pass def translate(self, *__args): # real signature unknown; restored from __doc__ with multiple overloads """ translate(self, int, int) translate(self, QPoint) """ pass def translated(self, *__args): # real signature unknown; restored from __doc__ with multiple overloads """ translated(self, int, int) -> QPolygon translated(self, QPoint) -> QPolygon """ return QPolygon def united(self, QPolygon): # real signature unknown; restored from __doc__ """ united(self, QPolygon) -> QPolygon """ return QPolygon def value(self, p_int, QPoint=None): # real signature unknown; restored from __doc__ with multiple overloads """ value(self, int) -> QPoint value(self, int, QPoint) -> QPoint """ pass def __add__(self, *args, **kwargs): # real signature unknown """ Return self+value. """ pass def __contains__(self, *args, **kwargs): # real signature unknown """ Return key in self. """ pass def __delitem__(self, *args, **kwargs): # real signature unknown """ Delete self[key]. """ pass def __eq__(self, *args, **kwargs): # real signature unknown """ Return self==value. """ pass def __getitem__(self, *args, **kwargs): # real signature unknown """ Return self[key]. """ pass def __ge__(self, *args, **kwargs): # real signature unknown """ Return self>=value. """ pass def __gt__(self, *args, **kwargs): # real signature unknown """ Return self>value. """ pass def __iadd__(self, *args, **kwargs): # real signature unknown """ Implement self+=value. """ pass def __init__(self, *__args): # real signature unknown; restored from __doc__ with multiple overloads pass def __len__(self, *args, **kwargs): # real signature unknown """ Return len(self). """ pass def __le__(self, *args, **kwargs): # real signature unknown """ Return self<=value. """ pass def __lshift__(self, *args, **kwargs): # real signature unknown """ Return self<<value. """ pass def __lt__(self, *args, **kwargs): # real signature unknown """ Return self<value. """ pass def __mul__(self, *args, **kwargs): # real signature unknown """ Return self*value. """ pass def __ne__(self, *args, **kwargs): # real signature unknown """ Return self!=value. """ pass def __reduce__(self, *args, **kwargs): # real signature unknown pass def __rlshift__(self, *args, **kwargs): # real signature unknown """ Return value<<self. """ pass def __rmul__(self, *args, **kwargs): # real signature unknown """ Return value*self. """ pass def __setitem__(self, *args, **kwargs): # real signature unknown """ Set self[key] to value. """ pass __weakref__ = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """list of weak references to the object (if defined)""" __hash__ = None
bbb7f1c83f7359a38d4466e00142b058246b28e4
35434cd441fd21073299b491336921d5b0921e02
/common/migrations/0002_auto_20190622_1347.py
dd6397c361de387c614d9215c7cc0c34d65c3e16
[]
no_license
liyustar/cube
2948ad82bf979951424a457a6fdffb4192db5101
1c39eb8596175f5d0c56bad1b995f7e05dfbe5d0
refs/heads/master
2022-12-15T07:11:07.371030
2019-06-23T10:20:28
2019-06-23T10:20:28
193,177,852
0
0
null
2022-12-08T05:48:12
2019-06-22T01:29:05
Python
UTF-8
Python
false
false
1,097
py
# Generated by Django 2.2.2 on 2019-06-22 13:47 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('common', '0001_initial'), ] operations = [ migrations.AddField( model_name='paramconfig', name='creator', field=models.ForeignKey(blank=True, db_constraint=False, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='paramconfig_set', related_query_name='paramconfig', to=settings.AUTH_USER_MODEL), ), migrations.AlterField( model_name='paramconfig', name='key', field=models.CharField(max_length=100, unique=True), ), migrations.AddField( model_name='paramconfig', name='id', field=models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), preserve_default=False, ), ]
b45fbda2e9e72240e143a19f2b3b9996bdab660d
cc3385ad008196cb07c66af5efcc84ce0ea00398
/sentiment_analysis/pcfgcp.py
efc679743a19326515f834eaa81ec93c29717a36
[]
no_license
mjeffries-pivotal/cloudnativeroadshow
8d8d6b6777185a107b6c4ce2ceb7e82bb7d6b092
88e388644cdff7ed24783b593b69e4c6f59e7d57
refs/heads/master
2021-01-18T16:39:21.703059
2017-03-30T22:11:13
2017-03-30T22:11:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,703
py
import json import os from operator import itemgetter import base64 from google.cloud import language #from google.cloud import vision #from google.cloud.vision.image import Image from google.oauth2.service_account import Credentials """Base class for accessing Google Cloud Platform services from Python apps deployed to PCF. This class implements the authentication part. Here are the various service names, as defined in https://github.com/GoogleCloudPlatform/gcp-service-broker/blob/master/brokerapi/brokers/models/service_broker.go const StorageName = "google-storage" const BigqueryName = "google-bigquery" const BigtableName = "google-bigtable" const CloudsqlName = "google-cloudsql" const PubsubName = "google-pubsub" const MlName = "google-ml-apis" """ class PcfGcp: def __init__(self): self.VCAP_SERVICES = None self.clients = { 'google-storage': None , 'google-bigquery': None , 'google-bigtable': None , 'google-cloudsql': None , 'google-pubsub': None , 'language': None , 'vision': None } self.projectId = None self.bucketName = None # Storage def className(self): return self.__class__.__name__ def getClient(self, name): return self.clients.get(name) def setClient(self, name, val): self.clients[name] = val def get_service_instance_dict(self, serviceName): # 'google-storage', etc. vcapStr = os.environ.get('VCAP_SERVICES') if vcapStr is None: raise Exception('VCAP_SERVICES not found in environment variables (necessary for credentials)') vcap = json.loads(vcapStr) svcs = None try: svcs = vcap[serviceName][0] except: raise Exception('No instance of ' + serviceName + ' available') return svcs """serviceName is one of the keys in clients """ def get_google_cloud_credentials(self, serviceName): """Returns oauth2 credentials of type google.oauth2.service_account.Credentials """ service_info = self.get_service_instance_dict(serviceName) pkey_data = base64.decodestring(service_info['credentials']['PrivateKeyData']) pkey_dict = json.loads(pkey_data) self.credentials = Credentials.from_service_account_info(pkey_dict) # Get additional fields self.projectId = service_info['credentials']['ProjectId'] if 'bucket_name' in service_info['credentials']: self.bucketName = service_info['credentials']['bucket_name'] return self.credentials """This can't be generic since the Client varies across services""" def getClient(self, serviceName): if self.clients[serviceName] is None: self.clients[serviceName] = language.Client(self.get_google_cloud_credentials(serviceName)) return self.clients[serviceName] """Ref. https://cloud.google.com/natural-language/docs/sentiment-tutorial score ranges from -1.0 to 1.0 magnitude ranges from 0.0 to Infinite (depends on length of document) """ def getLanguage(self): if self.clients['language'] is None: self.clients['language'] = language.Client(self.get_google_cloud_credentials('google-ml-apis')) #print 'projectId: %s' % self.projectId return self.clients['language'] """Ref. https://cloud.google.com/vision/docs/reference/libraries#client-libraries-install-python""" # def getVision(self): # if self.clients['vision'] is None: # self.clients['vision'] = vision.Client(project=self.projectId, # credentials=self.get_google_cloud_credentials('google-ml-apis')) # return self.clients['vision'] def getStorage(self): pass def getBigQuery(self): pass def getBigtable(self): pass def getCloudSql(self): pass def getPubSub(self): pass
fc0bc268c193d1a0b5b1738a09c6d40d21974a8e
32179c2b88bebd842ca21747f7ad163c310e0845
/src/loss/loss_functions.py
0e316f45f0520943222e59dea7da8c4862e4c0f1
[]
no_license
TimingSpace/PADVO2
dc529a04ea2a430047e7de6ac8009a79e77baee5
b19f137af01f9e276c3d133dce7b71f704de055d
refs/heads/master
2022-11-22T02:45:17.070083
2020-07-28T16:02:18
2020-07-28T16:02:18
282,482,176
0
0
null
null
null
null
UTF-8
Python
false
false
7,074
py
from torch import nn from torch.autograd import Variable import torch import numpy as np celoss = nn.CrossEntropyLoss() # predict_result b c h w # ground truth b c 1 1 # attention b 1 h w def SingleShotAttentionLoss(predict_result,ground_truth,attention,mask=[0,1,2,3,4,5]): diff = ground_truth[:,mask]-predict_result[:,mask] diff_s = diff.pow(2) #loss = diff_s*torch.exp(attention)+0.1*torch.abs(attention) loss = diff_s*torch.exp(attention)+0.1*attention.pow(2) loss = loss/(loss.size()[0]*loss.size()[2]*loss.size()[3]) loss = loss.sum() return loss def WeightedMSELoss(predict_result,ground_truth,weights=torch.FloatTensor([1,1,1,100,100,100])): diff = ground_truth-predict_result diff_s = diff.pow(2) loss = diff_s*weights loss = loss/loss.size()[0] loss = loss.sum() return loss # ground vehicle loss def GVLoss(predict_result,ground_truth): diff = ground_truth[:,[2,4]]-predict_result #diff = ground_truth-predict_result diff_s = diff.pow(2) loss = diff_s loss = loss/loss.size()[0] loss = loss.sum() return loss def MSELoss(predict_result,ground_truth,mask=[0,1,2,3,4,5]): diff = ground_truth[:,mask]-predict_result[:,mask] #diff = ground_truth-predict_result diff_s = diff.pow(2) loss = diff_s loss = loss/loss.size()[0] loss = loss.sum() return loss def ReliabilityMetric(predict_result,ground_truth,attention): ground_truth = ground_truth.view(ground_truth.size(0),6,1,1) diff = ground_truth-predict_result diff_s = diff.pow(2) loss = diff_s.sum(1).view(ground_truth.size(0),-1) loss /= torch.sum(loss) attention = attention.view(ground_truth.size(0),-1) attention_exp = -attention*torch.exp(-attention) attention_exp/=torch.sum(attention_exp) div= torch.nn.functional.kl_div(torch.log(attention_exp),loss) return div def PatchLoss(predict_result,ground_truth): ground_truth = ground_truth.view(ground_truth.size(0),6,1,1) diff = ground_truth-predict_result diff_s = diff.pow(2) loss = diff_s.sum(1) return loss def SingleShotLoss(predict_result,ground_truth,mask=[0,1,2,3,4,5]): diff = ground_truth[:,mask]-predict_result[:,mask] diff_s = diff.pow(2) loss = diff_s loss = loss/(loss.size()[0]*loss.size()[2]*loss.size()[3]) loss = loss.sum() return loss def GroupWithATTLoss(f_12,f_g_12,att_12,b_21,b_g_21,att_21,f_23,f_g_23,att_23,b_32,b_g_32,att_32,f_13,f_g_13,att_13,b_31,b_g_31,att_31,mask=[0,1,2,3,4,5]): f_g_12 = f_g_12.view(f_g_12.size(0),6,1,1) #f_g_13 = f_g_13.view(f_g_12.size(0),6,1,1) #f_g_23 = f_g_23.view(f_g_12.size(0),6,1,1) b_g_21 = b_g_21.view(f_g_12.size(0),6,1,1) #b_g_32 = b_g_32.view(f_g_12.size(0),6,1,1) #b_g_31 = b_g_31.view(f_g_12.size(0),6,1,1) f_12_loss = SingleShotAttentionLoss(f_12,f_g_12,att_12,mask) #f_23_loss = SingleShotAttentionLoss(f_23,f_g_23,att_23) #f_13_loss = SingleShotAttentionLoss(f_13,f_g_13,att_13) b_21_loss = SingleShotAttentionLoss(b_21,b_g_21,att_21,mask) #b_32_loss = SingleShotAttentionLoss(b_32,b_g_32,att_32) #b_31_loss = SingleShotAttentionLoss(b_31,b_g_31,att_31) loss = f_12_loss+b_21_loss return loss def ScaleLoss(f_12,g_12): scale_g = torch.sqrt(torch.sum(g_12[:,0:3]*g_12[:,0:3],1).view(g_12.shape[0],1)) diff = scale_g - f_12 diff_s = diff.pow(2) loss = diff_s loss = loss.mean() return loss def GroupScaleLoss(f_12,f_g_12,b_21,b_g_21): f_12 = f_12.mean(3).mean(2) b_21 = b_21.mean(3).mean(2) f_12_loss = ScaleLoss(f_12,f_g_12) b_21_loss = ScaleLoss(b_21,b_g_21) loss = f_12_loss+b_21_loss return loss def GroupGVLoss(f_12,f_g_12,b_21,b_g_21): f_12_loss = GVLoss(f_12,f_g_12) b_21_loss = GVLoss(b_21,b_g_21) loss = f_12_loss+b_21_loss return loss def GroupLoss(f_12,f_g_12,b_21,b_g_21,f_23,f_g_23,b_32,b_g_32,f_13,f_g_13,b_31,b_g_31,mask=[0,1,2,3,4,5]): f_12 = f_12.mean(3).mean(2) #f_13 = f_13.mean(3).mean(2) #f_23 = f_23.mean(3).mean(2) b_21 = b_21.mean(3).mean(2) #b_32 = b_32.mean(3).mean(2) #b_31 = b_31.mean(3).mean(2) f_12_loss = MSELoss(f_12,f_g_12,mask) #f_23_loss = MSELoss(f_23,f_g_23) #f_13_loss = MSELoss(f_13,f_g_13) b_21_loss = MSELoss(b_21,b_g_21,mask) #b_32_loss = MSELoss(b_32,b_g_32) #b_31_loss = MSELoss(b_31,b_g_31) loss = f_12_loss+b_21_loss return loss def disc_loss(result,groundtruth): r = result[0] t = result[1] #print(r.shape,t.shape,groundtruth.shape) r = r.mean((2,3)) r_diff = groundtruth[:,4]-r #diff = ground_truth-predict_result diff_s = r_diff.pow(2) loss = diff_s loss = loss/loss.size()[0] loss_r = loss.sum() #print(r.shape,t.shape,groundtruth.shape) #print(loss_r) z = groundtruth[:,2] #z += 0.05 #z *= 10 z += 0.4 z = z.long() #print(z) loss_t = celoss(t,z) #print(loss_t) return loss_t def GroupWithSSLoss(f_12,f_g_12,b_21,b_g_21,f_23,f_g_23,b_32,b_g_32,f_13,f_g_13,b_31,b_g_31,mask=[0,1,2,3,4,5]): f_g_12 = f_g_12.view(f_g_12.size(0),6,1,1) #f_g_13 = f_g_13.view(f_g_12.size(0),6,1,1) #f_g_23 = f_g_23.view(f_g_12.size(0),6,1,1) b_g_21 = b_g_21.view(f_g_12.size(0),6,1,1) #b_g_32 = b_g_32.view(f_g_12.size(0),6,1,1) #b_g_31 = b_g_31.view(f_g_12.size(0),6,1,1) f_12_loss = SingleShotLoss(f_12,f_g_12,mask) #f_23_loss = SingleShotLoss(f_23,f_g_23) #f_13_loss = SingleShotLoss(f_13,f_g_13) b_21_loss = SingleShotLoss(b_21,b_g_21,mask) #b_32_loss = SingleShotLoss(b_32,b_g_32) #b_31_loss = SingleShotLoss(b_31,b_g_31) loss = f_12_loss+b_21_loss return loss def GroupWithMSELoss(f_12,f_g_12,b_21,b_g_21,f_23,f_g_23,b_32,b_g_32,f_13,f_g_13,b_31,b_g_31,weights=torch.FloatTensor([1,1,1,100,100,100])): f_12_loss = WeightedMSELoss(f_12,f_g_12,weights) f_23_loss = WeightedMSELoss(f_23,f_g_23,weights) f_13_loss = WeightedMSELoss(f_13,f_g_13,weights) b_21_loss = WeightedMSELoss(b_21,b_g_21,weights) b_32_loss = WeightedMSELoss(b_32,b_g_32,weights) b_31_loss = WeightedMSELoss(b_31,b_g_31,weights) #loss = forward_mse_loss+backward_mse_loss+cycle_loss loss = f_12_loss+b_21_loss #loss = f_12_loss #loss = f_12_loss+f_23_loss+0.3*f_13_loss+b_21_loss+b_32_loss+0.3*b_31_loss #loss = backward_mse_loss #loss = forward_mse_loss return loss def FullSequenceLoss(predict,groundtruth): diff = groundtruth - predict diff=diff*diff diff = diff/diff.shape[0] loss = np.sum(diff) return loss if __name__ == '__main__': predict_result = torch.autograd.Variable(torch.FloatTensor(4,6,30,100).zero_()) ground_truth = torch.autograd.Variable(torch.FloatTensor(4,6).zero_(),requires_grad=True) #loss = MSELoss(predict_result,ground_truth) loss = GroupLoss(predict_result,ground_truth,predict_result,ground_truth,predict_result,ground_truth,predict_result,ground_truth,predict_result,ground_truth,predict_result,ground_truth) print(loss)
439ec9062ebb4fe2660056dafa23ccf81014f54a
f85efe1dd356642cef0a8862c6a10d1f1e0fada8
/generate_model.py
d7c31e7d0dfa0aec990f3f94f2599bd7314b8209
[ "Apache-2.0" ]
permissive
euCanSHare/model_generation
5fb49c72fef70533524fe691e933d27ee4f071a4
8e0bbeabc1b78ca6da2e1473338b2e993268d892
refs/heads/master
2022-06-26T07:55:28.480104
2020-05-08T15:45:40
2020-05-08T15:45:40
262,355,786
0
0
Apache-2.0
2020-05-08T19:27:13
2020-05-08T15:12:06
Python
UTF-8
Python
false
false
11,551
py
import sys,os,logging,random,pickle,datetime,joblib import pandas as pd import numpy as np #Preprocessing from sklearn.preprocessing._data import MinMaxScaler,RobustScaler #Feature selection and dimensionality reduction from sklearn.feature_selection import SelectKBest, chi2 from sklearn.decomposition import PCA, NMF #from mlxtend.feature_selection import SequentialFeatureSelector as SFS #Machine Learning Models from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.linear_model import LogisticRegression from sklearn import tree #Model selection and Validation from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split from sklearn.model_selection import StratifiedKFold from sklearn.pipeline import Pipeline #Performance Metrics from sklearn.metrics import classification_report, accuracy_score, make_scorer from sklearn.metrics import auc from sklearn.metrics import plot_roc_curve from sklearn.inspection import permutation_importance #plot library import matplotlib.pyplot as plt import matplotlib.patches as mpatches plt.style.use("seaborn") #dummy dataset from sklearn.datasets import load_breast_cancer #pdf template import pdfkit from pdf.summary_template import * # set logging config logging.basicConfig( filename='machine_learning_report_log.log', level=logging.INFO, format='%(asctime)s.%(msecs)03d %(levelname)s %(module)s - %(funcName)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S', ) #VRE logger from utils import logger def save_pdf(path): options = { 'disable-smart-shrinking': '', 'quiet': '', 'margin-top': '0.1in', 'margin-right': '0in', 'margin-bottom': '0in', 'margin-left': '0in', } pdfkit.from_string(body,path, options = options,css = os.path.join(os.getcwd(),'pdf','style.css')) def generate_random_color(): c = tuple(np.random.randint(256, size=4)/255) c_eush = (c[0],c[1]/5,1-c[0],np.min([c[3]*3, 1.0])) return c_eush def run(file_dataset = None, classifier = 'logistic_regression', max_features = 10, n_folds = 5, output_file = 'default_summary.pdf'): logging.info('Running generate_model.py') logging.info('Current working directory: {}'.format(os.getcwd())) logging.info('classifier {}'.format(classifier)) logging.info('max_features {}'.format(max_features)) logging.info('n_folds {}'.format(n_folds)) logger.info('Running generate_model.py') logger.info('Current working directory: {}'.format(os.getcwd())) logger.info('classifier {}'.format(classifier)) logger.info('max_features {}'.format(max_features)) logger.info('n_folds {}'.format(n_folds)) classifiers = { 'logistic_regression': LogisticRegression(max_iter=2000,random_state = 42) } execution_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") results = pd.DataFrame(columns=('file_in', 'n_features', 'mean_acc', 'std_acc', 'mean_f1', 'mean_pre', 'mean_rec', 'clf')) if file_dataset is not None: logging.info('file_dataset loaded correctly{}'.format(file_dataset)) df = pd.read_csv(file_dataset) data = np.array(df) ids = data[:,0] y = data[:,1] X = data[:,2:] features_names = list(df.columns)[2:] else: logging.info('file_dataset {} not found, loading dummy dataset'.format(file_dataset)) logger.info('file_dataset {} not found, loading dummy dataset'.format(file_dataset)) X, y = load_breast_cancer(return_X_y=True) X = np.array(X) y = np.array(y) features_names = list(load_breast_cancer(return_X_y=False)['feature_names']) """Battery of classifiers with model-agnostic feature selection""" for n_features in list(range(1,max_features)): logging.info('Performing analysis with the {} best features'.format(n_features)) logger.info('Performing analysis with the {} best features'.format(n_features)) # Variables for average classification report originalclass = [] predictedclass = [] #Make our customer score def classification_report_with_accuracy_score(y_true, y_pred): originalclass.extend(y_true) predictedclass.extend(y_pred) return accuracy_score(y_true, y_pred) # return accuracy score cv = StratifiedKFold(n_splits=n_folds, shuffle=True, random_state=42) if n_features > X.shape[1]: continue pipe = Pipeline([ ('scaler', MinMaxScaler()), ('reduce_dim', SelectKBest(chi2, k = n_features)), ('classification', classifiers[classifier]) ]) # Nested CV with parameter optimization folds_score = cross_val_score(pipe, X=X, y=y, cv=cv, scoring=make_scorer(classification_report_with_accuracy_score)) # Average values in classification report for all folds in a K-fold Cross-validation cl_report = classification_report(originalclass, predictedclass, output_dict = True) #joblib.dump(sfs1, './results/'+execution_time+'/sfs'+str(sfs_k)+'_'+clf[1]+file_dataset+name_feids+'_sfsobj.model') #joblib.dump(clf[0], './results/'+execution_time+'/sfs'+str(sfs_k)+'_'+clf[1]+file_dataset+name_feids+'_clfobj.model') results = results.append(pd.Series({'file_in':file_dataset, 'n_features':str(n_features), 'std_acc':np.std(folds_score), 'mean_acc':cl_report['accuracy'], 'mean_f1':cl_report['macro avg']['f1-score'], 'mean_pre':cl_report['macro avg']['precision'], 'mean_rec':cl_report['macro avg']['recall'], 'clf':classifier}), ignore_index = True ) #TO-DO select the minimum number of features when the same accuracy is reached best_n_features = int(results[results.mean_acc == results.mean_acc.max()].iloc[0].n_features) logging.info('Optimal number of features found: {}'.format(best_n_features)) logger.info('Optimal number of features found: {}'.format(best_n_features)) pipe = Pipeline([ ('scaler', MinMaxScaler()), ('reduce_dim', SelectKBest(chi2, k = best_n_features)), ('classification', classifiers[classifier]) ]) logging.info('Generating ROC auc plot and computing feature importances...') logger.info('Generating ROC auc plot and computing feature importances...') tprs = [] aucs = [] importances_mean = [] importances = [] mean_fpr = np.linspace(0, 1, 100) fig, ax = plt.subplots() for i, (train, test) in enumerate(cv.split(X, y)): pipe.fit(X[train], y[train]) viz = plot_roc_curve(pipe, X[test], y[test], name='ROC fold {}'.format(i), alpha=0.3, lw=1, ax=ax) interp_tpr = np.interp(mean_fpr, viz.fpr, viz.tpr) interp_tpr[0] = 0.0 tprs.append(interp_tpr) aucs.append(viz.roc_auc) perm_imp = permutation_importance(pipe, X[test], y[test], n_repeats=10, random_state=42, n_jobs=-1) importances_mean.append(perm_imp.importances_mean) importances.append(perm_imp.importances) # importances per feature per subject ax.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r', label='Chance', alpha=.8) mean_tpr = np.mean(tprs, axis=0) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) std_auc = np.std(aucs) ax.plot(mean_fpr, mean_tpr, color='b', label=r'Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % (mean_auc, std_auc), lw=2, alpha=.8) std_tpr = np.std(tprs, axis=0) tprs_upper = np.minimum(mean_tpr + std_tpr, 1) tprs_lower = np.maximum(mean_tpr - std_tpr, 0) ax.fill_between(mean_fpr, tprs_lower, tprs_upper, color='grey', alpha=.2, label=r'$\pm$ 1 std. dev.') ax.set(xlim=[-0.05, 1.05], ylim=[-0.05, 1.05]) #,title="ROC for CV{} with {} optimal selected features".format(n_folds,best_n_features)) ax.legend(loc="lower right") fig.set_size_inches(6, 6) fig.tight_layout() #plt.show() path_roc = os.path.join(os.getcwd(),'pdf','figures',"roc-curve.png") logging.info('Saving ROC AUC plot in {}...'.format(path_roc)) logger.info('Saving ROC AUC plot in {}...'.format(path_roc)) fig.savefig(path_roc) logging.info('Generating feature importances plot...') logger.info('Generating feature importances plot...') mean_relevances = np.mean(np.array(importances_mean),axis = 0) sorted_idx = np.squeeze(np.flip(mean_relevances.argsort()))[:best_n_features] importances = np.mean(importances,axis = 2).T names = [features_names[ind] for ind in sorted_idx] fig, ax = plt.subplots() bplot = ax.boxplot(importances[sorted_idx].T, vert=True, labels=list(range(len(names))),patch_artist=True) #ax.set_title("Selected features importance and variance across folds") ax.set_ylabel('Importance and variance across folds') ax.set_xlabel('Feature Number') legend_handles = [] for feat in range(len(names)): name = names[feat] color = generate_random_color() bplot['boxes'][feat].set_facecolor(color) legend_handles.append(mpatches.Patch( label=name,color=color)) ax.legend(loc="upper right",handles=legend_handles) fig.set_size_inches(6, 6) fig.tight_layout() #plt.show() path_rel = os.path.join(os.getcwd(),'pdf','figures',"feat-rel.png") logging.info('Saving feature importances plot in {}...'.format(path_rel)) logger.info('Saving feature importances plot in {}...'.format(path_rel)) fig.savefig(path_rel) try: logging.info('Generating pdf summary...') logger.info('Generating pdf summary...') #TO-DO passing a dictionary to replace key information in the html string save_pdf(output_file) except Exception: logging.info(sys.exc_info()[1]) logger.info(sys.exc_info()[1]) logging.info('Pdf summary generated in {}...'.format(output_file)) logger.info('Pdf summary generated in {}...'.format(output_file)) run()
3829807beef07b648386a173d4c50a71d313af9e
dec487349b4a874eacda2ef818db779186496d70
/Conv3DModel.py
c01d6e5aa81dab18f605bca5258142ecab190e70
[]
no_license
HYUNJI09/PD_FP-CIT_classification
ff7b65574a51ad2a0485ea5f6cf89426ad88d127
7ec480ba4e6843c899fc578e35746dc51969d8d3
refs/heads/master
2023-09-02T09:06:15.849009
2021-11-13T08:08:20
2021-11-13T08:08:20
427,600,740
0
0
null
null
null
null
UTF-8
Python
false
false
72,790
py
import os import sys import operator import pandas as pd import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm import cv2 from sklearn.preprocessing import StandardScaler from sklearn.model_selection import StratifiedShuffleSplit, KFold from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, classification_report, confusion_matrix from sklearn.utils import class_weight import tensorflow as tf from Resnet3D import Resnet3D from conv3x3_3D import CNN3D from DenseNet3D import DenseNet3D from Inception3DModel import Inception3D from model import * config = tf.ConfigProto() config.gpu_options.allow_growth = True session = tf.Session(config=config) from keras import backend as K print(K.tensorflow_backend._get_available_gpus()) # keras modules from keras.callbacks import EarlyStopping from keras.utils.np_utils import to_categorical from keras.utils import print_summary from keras.utils import plot_model from keras.preprocessing.image import ImageDataGenerator from keras.models import load_model # keras modules to design a model_name from keras import backend as K from keras.models import Model from keras.layers.convolutional import Conv3D, ZeroPadding3D from keras.layers.convolutional import MaxPooling3D, AveragePooling3D from keras.layers import GlobalAveragePooling3D from keras.layers import Dropout, Input from keras.layers import Flatten, add, concatenate from keras.layers import Dense, Concatenate, Lambda, Add from keras.layers.normalization import BatchNormalization # batch Normalization for managing internal covariant shift. from keras.layers import Activation from keras.utils import plot_model from keras.optimizers import Adam # customized modules from img_utils import thresholding_matrix # from model_name import create_3d_cnn_model from preprocess import StandardScalingData from ImageDataIO import ImageDataIO from set_directory import set_directory from data_load_utils import save_pred_label from custom_exception import * from Interpolation3D import ImageInterpolator from retrieve import make_col_list_from_excel from img_utils import draw_img_on_grid, draw_img_on_grid_v2 from npy_utils import npy_mat_saver from Logger import Logger from TimeLogger import TimeLogger from CustomModelSavingScheduler import CustomModelSavingScheduler from LossLoggerScheduler import LossLoggerScheduler from CustomEarlyStopping import CustomEarlyStopping from CustomLearningRateScheduler import CustomLearningRateScheduler class Conv3DModel(): # Model parameter & experimental configuration def __init__(self, lr_rate=0.00005, num_classes=None, input_shape = None , channel_size=None, num_epochs=100, root_dir="./", model_save_dir="models", result_save_dir="results", experiment_name=None, batch_size=64, cv_file=None, numAdditionalFeatures=None, model_reload_path=None, tk_plot=None): self._lr_rate = lr_rate self._num_classes=num_classes self._num_epochs = num_epochs self._input_shape = input_shape self._channel_size = channel_size # root dir self._root_dir = root_dir set_directory(self._root_dir) self._experiment_name = experiment_name if self._experiment_name is not None: self._root_dir = os.path.normpath(os.path.join(self._root_dir, self._experiment_name)) set_directory(self._root_dir) self._model_save_dir = model_save_dir self._result_save_dir = result_save_dir self._train_batch_size = batch_size self._test_batch_size = batch_size self._cv_file = cv_file self._numAdditionalFeatures = numAdditionalFeatures self._model = None self._model_reload_path = model_reload_path set_directory(self._root_dir) if not os.path.isdir(os.path.join(self._root_dir, self._model_save_dir)): os.mkdir(os.path.join(self._root_dir, self._model_save_dir)) if not os.path.isdir(os.path.join(self._root_dir, self._result_save_dir)): os.mkdir(os.path.join(self._root_dir, self._result_save_dir)) self._tk_plot = tk_plot # load model_name input_shape = (self._input_shape[0], self._input_shape[1], self._input_shape[2], self._channel_size) self._model = self.loadModel(input_shape=input_shape, load_path=self._model_reload_path) def updateInput(self, datas=None, labels=None, data_filenames=None, label_name=None, class_name=None): if datas is not None: self._3D_data = datas if labels is not None: self._label = labels self._num_classes = len(np.unique(labels)) if label_name is not None: self._label_name = label_name if data_filenames is not None: self._3D_data_filename = data_filenames if class_name is not None: self._class_name = class_name return # load 3D image def load3DImage(self, data_dir, extension, dataDim, instanceIsOneFile, data_dir_child, view=None, bounding_box=None): """ :param data_dir: :param extension: :param is2D: :param view: :param data_dir_child: "labeled" or "sample", argument "labeled" means data_dir is the parent directory including labeled directory of sample files argument "sample" means data_dir consists of a set of sample datas(files) directly :return: """ # ???? if data_dir_child == "labeled": child_dirs = os.listdir(data_dir) self._num_classes = len(child_dirs) child_dirs.sort() data_dir_child_path = [os.path.join(data_dir, child) for child in child_dirs] print("data_dir_child_path", data_dir_child_path) elif data_dir_child == "sample": data_dir_child_path = [data_dir] print("data_dir_child_path", data_dir_child_path) elif data_dir_child == None: data_dir_child_path = [data_dir] print("load3DImage -> data_dir_child is None") print("data_dir_child_path", data_dir_child_path) #CustomException("Argument data_dir_child need to be defined!") self._3D_data = [] self._3D_data_filename = [] self._label = [] self._label_name = [] self._class_name = [] for ind, class_dir in enumerate(data_dir_child_path): print("debug load3DImage, read class_dir data", ind, class_dir) #img_data_path_list = [os.path.join(class_dir, img_data) for img_data in os.listdir(class_dir)] #print("debug", img_data_path_list) self._class_name.append(os.path.basename(class_dir)) idio = ImageDataIO(extension, dataDim=dataDim, instanceIsOneFile=instanceIsOneFile, modeling="3D", view=view) _data, _filename = idio.read_files_from_dir(class_dir) _data = idio._resizing_channel(_data, resize_size=None, channel_size=self._channel_size) if bounding_box is not None: _data = idio.convertUint8(_data, forNP=False) _data = idio._cropping(_data, bounding_box) _data_len = len(_data) # train_bapl1 = np.array([np.array(train_bapl1_) for train_bapl1_ in train_bapl1]) _data = idio.convert_PIL_to_numpy(_data) print(os.path.basename(class_dir), "class", _data.shape) self._3D_data.append(_data) self._3D_data_filename.append(_filename) self._label.append([ind]*_data_len) self._label_name.append([os.path.basename(class_dir)]*_data_len) self._3D_data = np.concatenate(self._3D_data) self._3D_data_filename = np.concatenate(self._3D_data_filename) self._label = np.concatenate(self._label) self._label_name = np.concatenate(self._label_name) imgip = ImageInterpolator(is2D=False, num_channel=1, target_size=self._input_shape) self._3D_data = [imgip.interpolateImage(img) for img in self._3D_data] if self._3D_data[0].shape[-1] != 1 or self._3D_data[0].shape[-1] != 3: self._3D_data = np.array(self._3D_data)[:, :, :, :, None] def extract_index_from_excel(self, excel_path, task="cv", fold=None): if task=="CV" or task=="cv": train_excel_path = "cv_file_train.xlsx" train_excel_path = os.path.join(excel_path, train_excel_path) test_excel_path = "cv_file_test.xlsx" test_excel_path = os.path.join(excel_path, test_excel_path) pd_train_df = pd.read_excel(train_excel_path) pd_test_df = pd.read_excel(test_excel_path) return pd_train_df["train_"+str(fold)], pd_test_df["test_"+str(fold)] else : raise CustomException("[!] not implemented yet") return def loadModel(self, input_shape, load_path=None): # if self._model is not None: # self._model = load_model(os.path.join(self._root_dir, self._model_save_dir, load_path, "model_name.h5")) if load_path is None: # new experience if self._num_classes is None: CustomException("num_classes argument is mandatory when load_path is None") # self._model = create_3d_densenet_model(self._lr_rate, self._num_classes, input_shape = input_shape) #self._model = create_3d_inception_model(self._lr_rate, self._num_classes, input_shape = input_shape) self._model = create_PDNet_model(self._lr_rate, self._num_classes, input_shape = input_shape) else: # reload(;retrain) or test phase print("[!] load_path is given, loading model") print("load_path : ", load_path) self._model = load_model(load_path) if self._model is None: raise Cust_ModelNotFound("model_name was found out with None from loadModel()") else : return self._model def loadFeaturesCombinedModel(self, load_path = None, input_shape=None): if load_path is None and input_shape is None: raise CustomException("either load_path or input_shape have to be decided!") def create_feature_combined_model(lr_rate, num_classes, numAdditionalFeatures): # resnet3D # res3d_model = Resnet3D(numClasses=num_classes) # model_name = res3d_model.resnet(input_shape=(64, 64, 64, 1), DropoutRate=0.2, zero_pad_1st=False) # _cnn_model = res3d_model.resnet(input_shape=input_shape, DropoutRate=0.2, zero_pad_1st=False, feature_output=True) # 3x3 conv 3D # conv3dmodel = CNN3D(numClasses=num_classes) # model_name = conv3dmodel.cnn3d(input_shape) # DenseNet3D # blocks = [6, 12, 24, 16] # densenet3d = DenseNet3D(blocks, input_shape) # densenet3d_model = densenet3d.densenet(num_classes, init_num_filters=64, init_filter_size=7, pooling="avg") # Inception3D inception3d = Inception3D(input_shape) inception3d_model = inception3d.inception3d(num_classes) cnn_model_input = Input(shape=input_shape) # gap_output = _cnn_model.get_layer("GAP") gap_output = conv3dmodel(cnn_model_input, num_classes) print("gap_output", gap_output) # gap_output = densenet3d_model(num_classes) # additional model_name utilize additional features features_input = Input(shape=(numAdditionalFeatures,)) features_output = Dense(numAdditionalFeatures)(features_input) # equivalent to added = keras.layers.add([x1, x2]) concat = Concatenate(axis=-1)([gap_output, features_output]) out = Dense(self._num_classes, activation="softmax")(concat) model = Model(inputs=[cnn_model_input, features_input], outputs=out) optimizer = Adam(lr=lr_rate) model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) return model if load_path is None: # new experience self._model = create_feature_combined_model(self._lr_rate, self._num_classes, self._numAdditionalFeatures) else: # reload(;retrain) or test phase self._model = load_model(load_path) if self._model is None: raise Cust_ModelNotFound("model_name was found out with None from loadModel()") else : return self._model def loadExcelFeaturesModel(self, load_path = None): def create_excel_feature_model(lr_rate, num_classes, numAdditionalFeatures): # additional model_name utilize additional features features_input = Input(shape=(numAdditionalFeatures,)) features_output = Dense(numAdditionalFeatures)(features_input) # equivalent to added = keras.layers.add([x1, x2]) out = Dense(num_classes, activation="softmax")(features_output) model = Model(inputs=features_input, outputs=out) optimizer = Adam(lr=lr_rate) model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) return model if load_path is None: # new experience self._model = create_excel_feature_model(self._lr_rate, self._num_classes, self._numAdditionalFeatures) else: # reload(;retrain) or test phase self._model = load_model(load_path) if self._model is None: raise Cust_ModelNotFound("model_name was found out with None from loadModel()") else : return self._model def loadAdditionalFeaturesForCombinedModel(self, excel_filepath, id_column_name, columns=[], filename_parser = None): """ :param excel_filepath: excel file saving sample's features labeled with filename :param id_column_name: column name indicating id on the excel file :param columns: column names to be used as features :param filename_parser: parser to match filename to the id column name on the excel file :return: """ """ self._3D_data_filename 'FBB_BRAIN_ST_ANONYMIZED_190502134706_CN_ID0350.nii' 'FBB_BRAIN_ST_ANONYMIZED_190502134706_CN_ID0351.nii'] """ if filename_parser is None: filename_parser = lambda x : x if len(columns) == 0 or id_column_name is None: raise CustomException("columns must be used") # print(self._3D_data_filename) #pd_feature_list = pd.read_excel(excel_filepath) #make_col_list_from_excel(excel_filepath, ["PatientID(new)", "BAPL score"]) col_dict = make_col_list_from_excel(excel_filepath, columns) print(col_dict) features_sorted_by_filename = [] for _filename in self._3D_data_filename: _filename = os.path.splitext(_filename)[0] parsed_filename = filename_parser(_filename) parsed_filename_item_index = col_dict[id_column_name].index(parsed_filename) parsed_filename_feature = [] for _col_ind, _col in enumerate(columns): if _col == id_column_name: continue parsed_filename_item_value = col_dict[_col][parsed_filename_item_index] parsed_filename_feature.append(parsed_filename_item_value) features_sorted_by_filename.append(np.array(parsed_filename_feature)) self._features_sorted_by_filename = np.array(features_sorted_by_filename) return self._features_sorted_by_filename def _preprocess(self, data, isTrain=False, experiment_name=None, save_path=None): if save_path is None: if experiment_name is not None: if not os.path.isdir(os.path.join(self._root_dir, self._model_save_dir, experiment_name)): os.mkdir(os.path.join(self._root_dir, self._model_save_dir, experiment_name)) save_path = os.path.join(self._root_dir, self._model_save_dir, experiment_name, "standardscaler.pkl") else : save_path = os.path.join(self._root_dir, self._model_save_dir, "standardscaler.pkl") _, preprocessed_data = StandardScalingData(data, save_path=save_path, train=isTrain, keep_dim=True) return preprocessed_data def train_model(self, X_train, y_train, X_val=None, y_val=None, class_weight=None, epochs=100, print_step=10, tk_plot=None): steps = int(len(X_train) / self._train_batch_size) history = [] for epoch in range(epochs): # Training model #######################################################################3 print("Epoch:", epoch) history_in_epoch = [] for _ in range(steps): # Select a random batch of images idx = np.random.randint(0, len(X_train), self._train_batch_size) X_train_batch, y_train_batch = X_train[idx], y_train[idx] # self._model.trainable = True train_loss_acc = self._model.train_on_batch(X_train_batch, y_train_batch, class_weight=class_weight) # train_loss_acc = self._model.train_on_batch(X_train_batch, y_train_batch) if X_val is not None: val_loss_acc = self._model.test_on_batch(X_val, y_val) # records # record = (epoch, train_loss_acc[0], 100 * train_loss_acc[1], val_loss_acc[0], 100 * val_loss_acc[1]) # report = "%5d [D loss: %.3f, acc.: %.2f%%]" % record history_in_epoch.append( [train_loss_acc[0], 100 * train_loss_acc[1], val_loss_acc[0], 100 * val_loss_acc[1]]) else: # records # record = (epoch, train_loss_acc[0], 100 * train_loss_acc[1]) # report = "%5d [D loss: %.3f, acc.: %.2f%%]" % record history_in_epoch.append([train_loss_acc[0], 100 * train_loss_acc[1]]) mean_loss_acc = np.array(history_in_epoch).mean(axis=0) if X_val is not None: report = "%5d [train loss: %.3f, train acc.: %.2f%%, val loss: %.3f, val acc.: %.2f%%]" % ( epoch, mean_loss_acc[0], mean_loss_acc[1], mean_loss_acc[2], mean_loss_acc[3]) else: report = "%5d [train loss: %.3f, train acc.: %.2f%%]" % (epoch, mean_loss_acc[0], mean_loss_acc[1]) if epoch % print_step == 0: print(report) history.append(mean_loss_acc) if tk_plot is not None: if X_val is not None: history_np = np.array(history) tk_plot.init_trend_plot(history_np[:, 0], history_np[:, 2], history_np[:, 1], history_np[:, 3]) else: history_np = np.array(history) tk_plot.init_trend_plot(history_np[:, 0], history_np[:, 2]) return history # train and evaluate model_name : [model_name validation] def train_eval(self, train_data, train_label, val_data, val_label, experiment_name, save_model_name=None): if not os.path.isdir(os.path.join(self._root_dir, self._model_save_dir, experiment_name)): os.mkdir(os.path.join(self._root_dir, self._model_save_dir, experiment_name)) if not os.path.isdir(os.path.join(self._root_dir, self._result_save_dir, experiment_name)): os.mkdir(os.path.join(self._root_dir, self._result_save_dir, experiment_name)) # train_data = self._preprocess(train_data, isTrain=True, experiment_name=experiment_name) # val_data = self._preprocess(val_data, isTrain=False, experiment_name=experiment_name) categorical_train_label = to_categorical(train_label, self._num_classes) categorical_val_label = to_categorical(val_label, self._num_classes) # datagen_train = ImageDataGenerator() # datagen_test = ImageDataGenerator() # # ImageDataGenerator for Outer Loop # generator_train = datagen_train.flow(x=train_data, y=categorical_train_label, batch_size=self._train_batch_size, shuffle=True) # generator_test = datagen_test.flow(x=val_data, y=categorical_eval_label, batch_size=self._test_batch_size, shuffle=False) save_filepath = os.path.join(self._root_dir, self._result_save_dir, experiment_name, "final_selected_model_structure.txt") def _model_summary_log(line, save_filepath): with open(save_filepath, "a") as f: f.write(line+"\n") return print_summary(self._model, line_length=None, positions=None, print_fn=lambda line: _model_summary_log(line, save_filepath)) # model_plot_savepath = os.path.join(self._root_dir, self._result_save_dir, # "final_selected_model_structure.png") #plot_model(self._model, model_plot_savepath) # Early Stopping #earlystopping = EarlyStopping(monitor='val_loss', patience=10) # tb_hist = keras.callbacks.TensorBoard(log_dir='./results/outer_loop/CV'+str(ind+1)+'graph', histogram_freq=0, write_graph=True, write_images=True) class_weights = class_weight.compute_class_weight('balanced', np.unique(train_label), train_label) class_weight_dict = dict(enumerate(class_weights)) print("class_weight_dict", class_weight_dict) log_save_path = os.path.join(self._root_dir, self._result_save_dir, experiment_name, "logs") if not os.path.isdir(log_save_path): os.mkdir(log_save_path) lr_log_save_path = os.path.join(self._root_dir, self._result_save_dir, experiment_name, "lr_logs") if not os.path.isdir(lr_log_save_path): os.mkdir(lr_log_save_path) acync_stopping_txtpath = os.path.join(log_save_path, r'async_txt.txt') customlogger = Logger(log_save_path) if self._tk_plot is None : history = self._model.fit(train_data, categorical_train_label, batch_size=self._train_batch_size, epochs=self._num_epochs, shuffle=True, validation_data=(val_data, categorical_val_label), class_weight=class_weight_dict, callbacks=[ LossLoggerScheduler(customlogger), CustomEarlyStopping(patience=50, txtpath_to_check=acync_stopping_txtpath, model_save_path=None), CustomLearningRateScheduler(window_size=10, log_save_path=lr_log_save_path, stzcr_threshold=0.05) ]) train_acc_list = history.history['acc'] train_loss_list = history.history['loss'] val_acc_list = history.history['val_acc'] val_loss_list = history.history['val_loss'] else : history = self.train_model(train_data, categorical_train_label, val_data, categorical_val_label, class_weight=class_weight_dict, epochs=self._num_epochs, print_step=10, tk_plot=self._tk_plot) history = np.array(history) train_loss_list = history[:, 0] train_acc_list = history[:, 1] val_loss_list = history[:, 2] val_acc_list = history[:, 3] trend_dict = dict() trend_dict["train_acc_list"] = train_acc_list trend_dict["train_loss_list"] = train_loss_list trend_dict["test_acc_list"] = val_acc_list trend_dict["test_loss_list"] = val_loss_list trend_df = pd.DataFrame(trend_dict) trend_df.to_excel(os.path.join(self._root_dir, self._model_save_dir, experiment_name, "trend_log.xlsx")) # save history log for checking trend info later trend_save_path = os.path.join(self._root_dir, self._result_save_dir, experiment_name, "trend_figure.png") self._plot_trend(trend_dict, save_path=trend_save_path) # accuracy = history.history['val_acc'][-1] # val_loss = history.history['val_loss'][-1] print("Accuracy: {0:.4%}".format(val_acc_list[-1])) print("Val Loss: {0:.4}".format(val_loss_list[-1])) # name of model to save # save_model_name = self._experiment_name + "_" + "_".join((str(_dim) for _dim in self._input_shape)) save_model_name = self._root_dir + "_" + "_".join((str(_dim) for _dim in self._input_shape)) self.saveModel(experiment_name = experiment_name, save_model_name = save_model_name) return train_acc_list[-1], train_loss_list[-1], val_acc_list[-1], val_loss_list[-1] # train and evaluate model_name : [model_name validation] def train_eval_add_info_ver(self, train_data, train_label, val_data, val_label, experiment_name): if not os.path.isdir(os.path.join(self._root_dir, self._model_save_dir, experiment_name)): os.mkdir(os.path.join(self._root_dir, self._model_save_dir, experiment_name)) if not os.path.isdir(os.path.join(self._root_dir, self._result_save_dir, experiment_name)): os.mkdir(os.path.join(self._root_dir, self._result_save_dir, experiment_name)) conv_train_data = self._preprocess(train_data[0], isTrain=True, experiment_name=experiment_name+"_conv") conv_val_data = self._preprocess(val_data[0], isTrain=False, experiment_name=experiment_name+"_conv") series_train_data = self._preprocess(train_data[1], isTrain=True, experiment_name=experiment_name + "_series") series_val_data = self._preprocess(val_data[1], isTrain=False, experiment_name=experiment_name + "_series") train_data = (conv_train_data, series_train_data) val_data = (conv_val_data, series_val_data) categorical_train_label = to_categorical(train_label, self._num_classes) categorical_val_label = to_categorical(val_label, self._num_classes) # datagen_train = ImageDataGenerator() # datagen_test = ImageDataGenerator() # # # ImageDataGenerator for Outer Loop # generator_train = datagen_train.flow(x=train_data, y=categorical_train_label, batch_size=self._train_batch_size, shuffle=True) # generator_test = datagen_test.flow(x=val_data, y=categorical_eval_label, batch_size=self._test_batch_size, shuffle=False) # save_filepath = os.path.join(self._root_dir, self._result_save_dir, experiment_name, "final_selected_model_structure.txt") def _model_summary_log(line, save_filepath): with open(save_filepath, "a") as f: f.write(line + "\n") return print_summary(self._model, line_length=None, positions=None, print_fn=lambda line: _model_summary_log(line, save_filepath)) # model_plot_savepath = os.path.join(self._root_dir, self._result_save_dir, # "final_selected_model_structure.png") # plot_model(self._model, model_plot_savepath) # Early Stopping #earlystopping = EarlyStopping(monitor='val_loss', patience=10) from sklearn.utils import class_weight class_weights = class_weight.compute_class_weight('balanced', np.unique(train_label), train_label) class_weight_dict = dict(enumerate(class_weights)) print("class_weight_dict", class_weight_dict) # {0: 4.666666666666667, 1: 0.56} # tb_hist = keras.callbacks.TensorBoard(log_dir='./results/outer_loop/CV'+str(ind+1)+'graph', histogram_freq=0, write_graph=True, write_images=True) steps = int(len(train_label) / self._train_batch_size) train_loss_list = [] train_acc_list = [] test_loss_list = [] test_acc_list = [] for epoch in tqdm(range(self._num_epochs)): print("# Epoch:", epoch) for _ in range(steps): # Select a random batch of images idx = np.random.randint(0, len(train_data), self._train_batch_size) imgs, features, labels = train_data[0][idx], train_data[1][idx], categorical_train_label[idx] #print("labels shape", labels.shape) # (64,) # Train & Test the model_name train_loss = self._model.train_on_batch(x=[imgs, features], y=labels, class_weight=class_weight_dict) test_loss = self._model.test_on_batch(x=[val_data[0], val_data[1]], y=categorical_val_label) train_loss_list.append(train_loss[0]) train_acc_list.append(train_loss[1]) test_loss_list.append(test_loss[0]) test_acc_list.append(test_loss[1]) # history = self._model.fit(train_data, categorical_train_label, batch_size=self._train_batch_size, # epochs=self._num_epochs, shuffle=True, # validation_data=(val_data, categorical_val_label), callbacks=[earlystopping]) # train_acc_list = history.history['acc'] # train_loss_list = history.history['loss'] # val_acc_list = history.history['val_acc'] # val_loss_list = history.history['val_loss'] trend_dict = dict() trend_dict["train_acc_list"] = train_acc_list trend_dict["train_loss_list"] = train_loss_list trend_dict["test_acc_list"] = test_acc_list trend_dict["test_loss_list"] = test_loss_list trend_df = pd.DataFrame(trend_dict) trend_df.to_excel(os.path.join(self._root_dir, self._model_save_dir, experiment_name, "trend_log.xlsx")) # save history log for checking trend info later trend_save_path = os.path.join(self._root_dir, self._result_save_dir, experiment_name, "trend_figure.png") self._plot_trend(trend_dict, save_path=trend_save_path) # accuracy = history.history['val_acc'][-1] # val_loss = history.history['val_loss'][-1] print("Accuracy: {0:.4%}".format(test_acc_list[-1])) print("Val Loss: {0:.4}".format(test_loss_list[-1])) return train_acc_list[-1], train_loss_list[-1], test_acc_list[-1], test_loss_list[-1] # output of CV is probably best appoximate performance for selected model_name def train_eval_CV(self, num_cv=10): model_acc = [] model_loss = [] #default_cv_file_path = os.path.join(self._root_dir, self._result_save_dir, "cv_file.xlsx") default_cv_file_path = None #default_cv_file_path = True #print("debug", self._label) #pd_cv_index_train, pd_cv_index_test = self._create_cv_file(self._3D_data, self._label, num_k = num_cv, save_path=default_cv_file_path) kf = KFold(n_splits=num_cv, random_state=1) # cv_index_train = dict() # cv_index_test = dict() # sss_inner.get_n_splits(data, label) # for ind, (train_index, test_index) in enumerate(sss_inner.split(data, label)): for ind, (train_index, test_index) in enumerate(kf.split(self._3D_data, self._label)): #for ind in range(num_cv): print("#CV:", ind) # train_index = pd_cv_index_train["train_"+str(ind)].tolist() # test_index = pd_cv_index_test["test_" + str(ind)].tolist() X_train = self._3D_data[train_index] y_train = self._label[train_index] X_test = self._3D_data[test_index] y_test = self._label[test_index] print("X_train", X_train.shape) print("y_train", y_train.shape) print("X_test", X_test.shape) print("y_test", y_test.shape) if self._train_batch_size > len(X_train): self._train_batch_size = len(X_train) if self._test_batch_size > len(X_test): self._test_batch_size = len(X_test) # for additional clinical information # add_X_train = self._features_sorted_by_filename[train_index] # X_train = (X_train, add_X_train) # add_X_test = self._features_sorted_by_filename[test_index] # X_test = (X_test, add_X_test) test_filename = self._3D_data_filename[test_index] # name of model to save # save_model_name = self._experiment_name + "_" + "_".join((str(_dim) for _dim in self._input_shape)) + ".h5" save_model_name = self._root_dir + "_" + "_".join((str(_dim) for _dim in self._input_shape)) + ".h5" _, _, val_acc, val_loss = self.train_eval(X_train, y_train, X_test, y_test, experiment_name="experiment_CV_"+str(ind), save_model_name=save_model_name) preds = self.test(X_test, y_test, experiment_name="experiment_CV_"+str(ind), filename_list=test_filename) #_, _, val_acc, val_loss = self.train_eval_add_info_ver(X_train, y_train, X_test, y_test, experiment_name="experiment_CV_" + str(ind)) #self.test_add_info_ver(X_test, y_test, experiment_name="experiment_CV_" + str(ind), filename_list=test_filename) print("[!] preds", preds.shape) # (89, 2), softmax_output as a last layer of model_name # CAM_save_dir = os.path.join(self._root_dir, self._result_save_dir, "CAM_log_"+str(ind)) # if not os.path.isdir(CAM_save_dir): # os.mkdir(CAM_save_dir) # self._visualize_3D_CAM(X_test, y_test, preds, test_filename, CAM_save_dir, featuremap_name="mixed0", # resize_size = (64,95,79), experiment_name_for_preprocess="experiment_CV_"+str(ind)) # self._visualize_3D_CAM(X_test, y_test, preds, test_filename, CAM_save_dir, # featuremap_name="conv5_block16_concat", # resize_size=(64, 95, 79), experiment_name_for_preprocess="experiment_CV_" + str(ind)) model_acc.append(val_acc) model_loss.append(val_loss) print("Final Acc:", np.mean(model_acc)) print("Final Loss:", np.mean(model_loss)) return np.mean(model_acc), np.mean(model_loss) # output of CV is probably best approximate performance and optimized model_name def train_eval_NCV(self, train_data, train_label, val_data, val_label, num_cv=10, cv_file=None, model_save_dir=None): model_acc = None model_loss = None best_model = None return model_acc, model_loss, best_model # save model_name # def _save_model(self, filename): # save_path = os.path.join(self._root_dir, self._model_save_dir, filename) # self._model.save(save_path) # return def saveModel(self, experiment_name=None, save_model_name = None): if save_model_name is None: save_model_name = "model_name.h5" if experiment_name : self._model.save(os.path.join(self._root_dir, self._model_save_dir, experiment_name, save_model_name)) else : self._model.save(os.path.join(self._root_dir, self._model_save_dir, save_model_name)) # test model_name with label data, because this phase is literally 'test' def test(self, val_data, val_label, experiment_name, filename_list, preprocess_save_path=None): if preprocess_save_path is not None: val_data = self._preprocess(val_data, isTrain=False, experiment_name=experiment_name, save_path=preprocess_save_path) categorical_test_label = to_categorical(val_label, self._num_classes) # datagen_test = ImageDataGenerator() # generator_test = datagen_test.flow(x=self._3D_data, y=categorical_test_label, batch_size=self._test_batch_size, shuffle=False) preds = self._model.predict(x=val_data, verbose=1) # (N, num_classes) print("preds", np.array(preds).shape) # (89, 2) # pred_proba = np.array(pred).max(axis=1) # (N, ) pred_ind_list = np.array(preds).argmax(axis=1) # (N, ) label_ind_list = np.array(categorical_test_label).argmax(axis=1) # (N, ) if not os.path.isdir(os.path.join(self._root_dir, self._result_save_dir, experiment_name)): os.mkdir(os.path.join(self._root_dir, self._result_save_dir, experiment_name)) # sample_based_analysis result sample_based_analysis_save_filename = os.path.join(self._root_dir, self._result_save_dir, experiment_name, "sample_based_analysis.xlsx") save_pred_label(categorical_test_label, preds, save_filepath=sample_based_analysis_save_filename, onehot_label = True, filename_list = filename_list) # y_test_ : (N, Num_classes) conf_m = confusion_matrix(label_ind_list, pred_ind_list) print("CV #", "confusion matrix") print(conf_m) accuracy = accuracy_score(y_true=label_ind_list, y_pred=pred_ind_list) val_f1_score = f1_score(y_true=label_ind_list, y_pred=pred_ind_list) # logging the conf_m result_save_filename = os.path.join(self._root_dir, self._result_save_dir, experiment_name, "performance_report.txt") with open(result_save_filename, "w") as f: f.write("Accuracy : " + str(accuracy) + '\n') f.write("F1-score : " + str(val_f1_score) + '\n') for row in conf_m: f.write("%s\n" % row) target_names = np.unique(self._label_name) result = classification_report(label_ind_list, pred_ind_list, target_names=target_names) print("Test Phase result") print(result) with open(result_save_filename, "a") as f: f.write("%s\n" % result) return preds # test model_name with label data def test_add_info_ver(self, val_data, val_label, filename_list, experiment_name, load_path=None): if load_path is not None: self.loadModel(input_shape=(64, 32, 32, 1), load_path=load_path) conv_test_data = self._preprocess(val_data[0], isTrain=False, experiment_name=experiment_name+"_conv") feature_test_data = self._preprocess(val_data[1], isTrain=False, experiment_name=experiment_name+"_series") categorical_test_label = to_categorical(val_label, self._num_classes) # datagen_test = ImageDataGenerator() # generator_test = datagen_test.flow(x=self._3D_data, y=categorical_test_label, batch_size=self._test_batch_size, shuffle=False) #preds = self._model.predict(x=self._3D_data, verbose=1) # (N, num_classes) preds = self._model.predict_on_batch(x=[conv_test_data, feature_test_data]) print("preds", np.array(preds).shape) # pred_proba = np.array(pred).max(axis=1) # (N, ) pred_ind_list = np.array(preds).argmax(axis=1) # (N, ) label_ind_list = np.array(categorical_test_label).argmax(axis=1) # (N, ) # sample_based_analysis result sample_based_analysis_save_filename = os.path.join(self._root_dir, self._result_save_dir, experiment_name, "sample_based_analysis.xlsx") save_pred_label(label_ind_list, pred_ind_list, save_filepath=sample_based_analysis_save_filename, onehot_label=False, filename_list=filename_list) # y_test_ : (N, Num_classes) conf_m = confusion_matrix(label_ind_list, pred_ind_list) print("CV #", "confusion matrix") print(conf_m) accuracy = accuracy_score(y_true=label_ind_list, y_pred=pred_ind_list) # logging the conf_m result_save_filename = os.path.join(self._root_dir, self._result_save_dir, experiment_name, "performance_report.txt") with open(result_save_filename, "w") as f: f.write("Accuracy : " + str(accuracy) + '\n') for row in conf_m: f.write("%s\n" % row) #target_names = np.unique(self._label_name) target_names = self._class_name result = classification_report(label_ind_list, pred_ind_list, target_names=target_names) print("Test Phase result") print(result) with open(result_save_filename, "a") as f: f.write("%s\n" % result) return # predict data without label, because this phase is literally 'predict' and can be used for deployment def predict(self, val_data, experiment_name, load_path=None, preprocess_save_path=None): if load_path is not None and self._model is None: self.loadModel(input_shape=(64, 64, 64, 1), load_path=load_path) val_data = self._preprocess(val_data, isTrain=False, experiment_name=experiment_name, save_path=preprocess_save_path) # datagen_test = ImageDataGenerator() # generator_test = datagen_test.flow(x=self._3D_data, y=categorical_test_label, batch_size=self._test_batch_size, shuffle=False) preds = self._model.predict(x=val_data, verbose=1) # (N, num_classes) print("preds", np.array(preds).shape) return preds def visualize_3D_CAM_from_data(self, input_data, extension, featuremap_name, preprocess_save_path, reload_data = True, data_dir_child="labeled", reload_model_path=None, heatmap_resize_size=None): """ :param input_data: when reload_data is True, input_data is a directory. if not, input_data is a tuple of matrice like (X_data, label, filename) :param extension: :param CAM_save_dir: :param featuremap_name: :param preprocess_save_path: to load a step of preprocess :param reload_data: if True, this module update self._3D_data from the "input_data" which is labeled. if False, input_data is matrice :param data_dir_child: :param reload_model_path: this parameter is used to load model_name when self._model object doesn't exist and user didn't call loadModel() function before this function, :return: only predictions to provide service (that's why this function doen't requare 'label' parameter. """ if reload_data and data_dir_child is "labeled": conv3dmodel.load3DImage(input_data, extension=extension, data_dir_child="labeled", dataDim=dataDim, instanceIsOneFile=True, view=view) X_data = self._3D_data label = self._label filename = self._3D_data_filename elif reload_data and data_dir_child is None: conv3dmodel.load3DImage(input_data, extension=extension, dataDim=dataDim, instanceIsOneFile=True, view=view) X_data = self._3D_data label = self._label filename = self._3D_data_filename elif reload_data is False: CustomException("[!] not considered yet! ") X_data = input_data[0] label = input_data[1] filename = input_data[2] #preds = self.test(X_data, label, experiment_name="experiment_TV", filename_list=filename, preprocess_save_path=preprocess_save_path) preds = self.predict(X_data, experiment_name=None, load_path=reload_model_path, preprocess_save_path=preprocess_save_path) CAM_save_dir = os.path.join(self._root_dir, self._result_save_dir, "CAM") if not os.path.isdir(CAM_save_dir): os.mkdir(CAM_save_dir) self._visualize_3D_CAM(X_data, label, preds, filename, CAM_save_dir, featuremap_name=featuremap_name, resize_size=heatmap_resize_size, preprocess_save_path=preprocess_save_path) return """ # show CAM - only convolutional feature space - with clinical variables """ # save 3D CAM for train_eval phase def _visualize_3D_CAM(self, imgs_list, imgs_label, _preds, imgs_filename, CAM_save_dir, featuremap_name, resize_size=None, experiment_name_for_preprocess=None, preprocess_save_path=None): print("[!] visualizing 3D CAM") print("imgs_list", imgs_list.shape) print("imgs_label", imgs_label.shape) print("_preds", _preds.shape) # preprocessing if experiment_name_for_preprocess : preprocessed_imgs_list = self._preprocess(imgs_list, isTrain=False, experiment_name=experiment_name_for_preprocess) elif preprocess_save_path: preprocessed_imgs_list = self._preprocess(imgs_list, isTrain=False, save_path=preprocess_save_path) else : preprocessed_imgs_list = imgs_list # def get_output_layer(model, layer_name): # # # get the symbolic outputs of each "key" layer (we gave them unique names). # # layer_dict = dict([(layer.name, layer) for layer in model_name.layers]) # # # print("layer dict", layer_dict) # # layer = layer_dict[layer_name] # # return layer # for layer in model.layers: # if layer.name == layer_name: # return layer #get_output = K.function([self._model.layers[0].input], [final_conv_layer.output, self._model.layers[-1].output]) class_heatmap_dict = dict() for ind2, (img, label, filename) in enumerate(zip(preprocessed_imgs_list, imgs_label, imgs_filename)): original_img = np.array([img]) #print("original_img shape", original_img.shape) # (1, 64, 32, 32, 1) #print("original_img min max", original_img.min(), original_img.max()) #[conv_outputs, predictions] = get_output([original_img]) #print("conv_outputs", np.array(conv_outputs).shape) # (1, 16, 8, 8, 128), (1, 4, 4, 4, 256) #print("predictions", np.array(predictions).shape) # (1, 3) # print("from get_output()", predictions) # [[0. 1.]] same with softmax outputs # print("from _preds", _preds[ind2]) # [0.547228 0.45277202], outputs of keras models' predict() function # print("filename", filename) #conv_outputs = conv_outputs[0, :, :, :, :] # (D, H, W, C) ; (16, 8, 8, 128) origin_heatmap_c = [] for _c_ind in range(self._num_classes): # iteration on each class # Create the class activation map. # cam = np.zeros(dtype = np.float32, shape = conv_outputs.shape[1:3]) # H, W - 14,14 #cam = np.zeros(dtype=np.float32, shape=conv_outputs.shape[0:2+1]) _class_output = self._model.output[:, _c_ind] # (N, num_classes) # Get the last layer's feature map final_conv_layer = self.get_output_layer(self._model, featuremap_name) # (1, D, H, W, C) # Get the last layer's input weights to the softmax. grads = K.gradients(_class_output, final_conv_layer.output)[0] # 특성 맵 채널별 그래디언트 평균 값이 담긴 (512,) 크기의 벡터 pooled_grads = K.mean(grads, axis=(0, 1, 2, 3)) # (C, ) iterate = K.function([self._model.input], [pooled_grads, final_conv_layer.output[0]]) pooled_grads_value, conv_layer_output_value = iterate([original_img]) for i, w in enumerate(range(len(pooled_grads_value))): # 512 iter #for i, w in enumerate(std_last_class_weights[:, _c_ind]): # cam += w * conv_outputs[i, :, :] # sumarize 16,16 on 512 iter with 512 weight for 1 label class #cam += np.abs(w) * np.abs(conv_outputs[:, :, :, i]) # sumarize 16,16 on 512 iter with 512 weight for 1 label class # normalize each of feature map from last convolutional feature bank #conv_feature_map = conv_outputs[:, :, :, i] #cam += w * normed_feature_map[:,:,:, i] conv_layer_output_value[:, :, :, i] *= pooled_grads_value[i] # cam += np.abs(w) * normed_feature_map[:,:,:, i] #cam += np.abs(w) * conv_outputs[:, :, :, i] #cam += w * conv_outputs[:, :, :, i] heatmap = np.mean(conv_layer_output_value, axis=-1) heatmap = np.maximum(heatmap, 0) heatmap /= np.max(heatmap) origin_heatmap_c.append(heatmap) origin_heatmap_c = np.array(origin_heatmap_c) print("origin_heatmap_c", origin_heatmap_c.shape) # (3, 4, 4, 4) #min_val = min(origin_heatmap_c[0].min(), origin_heatmap_c[1].min(), origin_heatmap_c[2].min()) # min_val = min([origin_heatmap_c[_c_ind].min() for _c_ind in range(self._num_classes)]) # most_wide_range = max((origin_heatmap_c[0].max() - origin_heatmap_c[0].min()), # (origin_heatmap_c[1].max() - origin_heatmap_c[1].min()), # (origin_heatmap_c[2].max() - origin_heatmap_c[2].min())) # most_wide_range = max([origin_heatmap_c[_c_ind].max() - origin_heatmap_c[_c_ind].min() for _c_ind in range(self._num_classes)]) #most_wide_range = max([_c_heatmap.max() - _c_heatmap.min() for _c_heatmap in origin_heatmap_c]) #max_val = max([origin_heatmap_c[_c_ind].max() for _c_ind in range(self._num_classes)]) #most_wide_range = max_val - min_val #min_val = origin_heatmap_c.min() #most_wide_range = origin_heatmap_c.max() - min_val norm_heatmap = [] # norm each heatmap to [0, 1] for h_ind, hm in enumerate(origin_heatmap_c): #tmp_hm = np.copy(hm) # min_val_regional_focus = tmp_hm.min() # range_val_regional_focus = tmp_hm.max() - tmp_hm.min() # tmp_hm -= min_val_regional_focus # tmp_hm = tmp_hm / range_val_regional_focus # min_val = hm.min() # most_wide_range = hm.max()-hm.min() # tmp_hm -= min_val # tmp_hm /= most_wide_range # print("heatmap histogram") # plt.hist(hm.ravel(), bins=256, fc='k', ec='k') # plt.show() #hm = cv2.resize(hm, (64, 64)) if resize_size is not None: imgip = ImageInterpolator(is2D=False, num_channel=1, target_size=resize_size) hm = imgip.interpolateImage(hm) #tmp_hm = imgip.interpolateImage(tmp_hm) # min_val_after_resize = tmp_hm.min() # most_wide_range_after_resize = tmp_hm.max() - tmp_hm.min() # tmp_hm -= min_val_after_resize # tmp_hm /= most_wide_range_after_resize #print("hm shape", np.array(hm).shape) # (64, 97, 75) #print("img shape", np.array(img).shape) # (64, 97, 75, 1) # heatmap = cv2.applyColorMap(np.uint8(255 * hm), cv2.COLORMAP_JET) # heatmap[np.where(hm < 0.4)] = 0 # thresholding # norm_heatmap.append(heatmap) #heatmap = np.array([cv2.cvtColor(cv2.applyColorMap(np.uint8(255*hm_d), cv2.COLORMAP_JET), cv2.COLOR_BGR2RGB) for hm_d in tmp_hm]) # why...?? do i have to do 1-hm? #print("[!] debug heatmap shape", heatmap.shape) # for d_ind, heatmap_d in enumerate(heatmap): # heatmap_d[np.where(hm[d_ind] < 0.4)] = 0 # creating mask # threshold = tmp_hm.min() + (tmp_hm.max() - tmp_hm.min()) * 0.7 # (D, H, W) # bool_mask = tmp_hm > threshold # region to show # int_mask = bool_mask.astype(np.uint8) # int_color_mask = np.array([int_mask, int_mask, int_mask]) # (3, D, H, W) # int_color_mask = np.transpose(int_color_mask, axes=(1, 2, 3, 0)) # # heatmap = heatmap * int_color_mask #heatmap[np.where(tmp_hm<0.4)] = 0 # print("heatmap index", h_ind) # print("heatmap shape", heatmap.shape) # heatmap shape (64, 97, 75, 3) # print("heatmap min, max", heatmap.min(), heatmap.max()) # heatmap min, max 0 255 norm_heatmap.append(hm) #norm_heatmap.append(tmp_hm) # visualization # idio = ImageDataIO(extension="nii", is2D=False, view="axial") # idio.show_one_img(hm, cmap=plt.get_cmap('jet')) # idio.show_one_img(heatmap, cmap=plt.get_cmap('jet')) # plt.imshow(heatmap, cmap=plt.get_cmap('jet')) # plt.colorbar(ticks=[0, 63, 127, 255], orientation='vertical') # plt.show() # plt.imshow(hm) # plt.show() # heatmap[np.where(cam < 0.2)] = 0 # img = heatmap*0.5 + original_img norm_heatmap = np.array(norm_heatmap) # for elem_hm in norm_heatmap: # elem_hm[0, 0, 0, :] = 255 # elem_hm[1, 0, 0, :] = 0 for _c_ind in range(self._num_classes): try : class_heatmap_dict[str(_c_ind)].append(norm_heatmap[_c_ind]) except KeyError as ke: class_heatmap_dict[str(_c_ind)]=[] class_heatmap_dict[str(_c_ind)].append(norm_heatmap[_c_ind]) # for dict_ind in range(len(class_heatmap_dict)): # for dict_ind_cls_hm in class_heatmap_dict[str(dict_ind)]: # dict_ind_cls_hm[0, 0, 0, :] = 255 # dict_ind_cls_hm[1, 0, 0, :] = 0 mean_subtracted_heatmap = dict() # create heatmap for each patient # ind2: index for patient for ind2, (img, label, img_filename) in enumerate(zip(imgs_list, imgs_label, imgs_filename)): imgip = ImageInterpolator(is2D=False, num_channel=1, target_size=resize_size) resized_img = imgip.interpolateImage(img) # (64, 97, 79, 1) # 1. descending sort 2. combine! (the number of classes - 1)* # sorted_class_heatmap = sorted(class_heatmap_dict.items(), key=operator.itemgetter(1), reverse = True) class_heatmap_to_sort = [(class_heatmap_dict[str(_c_ind)][ind2], _preds[ind2][_c_ind]) for _c_ind in range(self._num_classes)] # [(class_heatmap for img, pred), (), ()] sorted_class_heatmap = sorted(class_heatmap_to_sort, key=lambda x:x[1], reverse = True) # #img_cbined = np.zeros((resize_size[0], resize_size[1], resize_size[2], 3), dtype="float32") # resize_size ; (D, H, W) img_cbined = np.zeros(resize_size, dtype="float32") # resize_size ; (D, H, W) for _c_ind in range(self._num_classes): if _c_ind == 0: img_cbined += (self._num_classes-1) * sorted_class_heatmap[_c_ind][0] else: img_cbined -= sorted_class_heatmap[_c_ind][0] # img2 += img_cbined # img_cbined /= np.max(np.abs(img_cbined)) #img_cbined = img_cbined / np.max(np.abs(img_cbined)) img_cbined = img_cbined / np.max(np.maximum(img_cbined, 0)) img_cbined = np.clip(img_cbined, 0, 1) img_cbined *= 255 img_cbined = np.uint8(img_cbined) # if not os.path.isdir(os.path.join(CAM_save_dir, "npy_img_cbined_" + str(label))): # os.mkdir(os.path.join(CAM_save_dir, "npy_img_cbined_" + str(label))) # npy_save_path = os.path.join(CAM_save_dir, "npy_img_cbined_" + str(label)) # save_filename = imgs_filename[ind2] + "_heatmap_.npy" # npy_mat_saver(img_cbined, os.path.join(npy_save_path, save_filename)) if not os.path.isdir(os.path.join(CAM_save_dir, "npy_img_origin_" + str(label))): os.mkdir(os.path.join(CAM_save_dir, "npy_img_origin_" + str(label))) npy_save_path = os.path.join(CAM_save_dir, "npy_img_origin_" + str(label)) save_filename = imgs_filename[ind2] + "_origin_.npy" npy_mat_saver(resized_img, os.path.join(npy_save_path, save_filename)) img_cbined = thresholding_matrix(mat_to_mask=img_cbined, std_mat=None, c_ratio=0.4) #img_cbined[:, 0, 0] = 0 model_pred = np.argmax(_preds[ind2]) try: mean_subtracted_heatmap[str(model_pred)].append(img_cbined) except KeyError as ke: mean_subtracted_heatmap[str(model_pred)] = [] mean_subtracted_heatmap[str(model_pred)].append(img_cbined) # try: # mean_subtracted_heatmap[str(model_pred)].append(img_cbined) # except KeyError as ke: # mean_subtracted_heatmap[str(model_pred)] = [] # mean_subtracted_heatmap[str(model_pred)].append(img_cbined) # Save Class Activation Map according to the each label if not os.path.isdir(os.path.join(CAM_save_dir, str(label))): os.mkdir(os.path.join(os.path.join(CAM_save_dir, str(label)))) CAM_save_path = os.path.join(CAM_save_dir, str(label), img_filename + "_CAM_" + self._class_name[0] + self._class_name[ 1] + "_combined" + ".png") # proposed heatmap img1 = resized_img[:, :, :, 0] img1 = img1.astype(np.uint8) img1[:, 0, 0] = 0 img1[:, 0, 1] = 255 # plt.imshow(img1[32], cmap='gist_gray') # plt.show() # # ind = np.argmax([_img_cbined.max() for _img_cbined in img_cbined]) # (D, H, W) # plt.imshow(img_cbined[ind], cmap=plt.get_cmap('jet'), alpha=0.5) # plt.show() predictions_ = [str(round(item_ * 100, 2)) for item_ in _preds[ind2]] _title = "CAM: difference" + ", " + "GT:" + self._class_name[label] + ", " + \ " ".join([c_name + ":" + predictions_[ind] for ind, c_name in enumerate(self._class_name)]) # draw_img_on_grid([img1, img_cbined], # save_path=CAM_save_path, is2D=False, _input_img_alpha=None, _overlap_img_alpha=0.4, _title=_title, # _input_img_cmap="gist_gray", _overlap_img_cmap=plt.get_cmap("jet")) draw_img_on_grid_v2([img1, img_cbined], save_path=CAM_save_path, is2D=False, _input_img_alpha=None, _overlap_img_alpha=0.4, _title=_title, _input_img_cmap="gist_gray", _overlap_img_cmap=plt.get_cmap("jet")) # index for CAM for _c_ind in range(self._num_classes): predictions_ = [str(round(item_*100, 2)) for item_ in _preds[ind2]] #print("debug predictions", predictions_) # ['0.0', '1.0', '0.0'] _title = "CAM:"+self._class_name[_c_ind]+", "+"GT:"+self._class_name[label]+", "+\ " ".join([c_name+":"+predictions_[ind] for ind, c_name in enumerate(self._class_name)]) #print("debug", _title) # Save Class Activation Map according to the each label if not os.path.isdir(os.path.join(CAM_save_dir, str(label))): os.mkdir(os.path.join(os.path.join(CAM_save_dir, str(label)))) CAM_save_path = os.path.join(CAM_save_dir, str(label), img_filename+"_CAM_"+self._class_name[_c_ind]+".png") img1 = resized_img[:, :, :, 0] # (D, H, W) img1 = img1.astype(np.uint8) img1[:, 0, 0] = 0 img1[:, 0, 1] = 255 img2 = class_heatmap_dict[str(_c_ind)][ind2] #print("[!] debug img2 min max", img2.min(), img2.max()) #ind = np.argmax([_img_cbined.max() for _img_cbined in img2]) # (D, H, W) # draw_img_on_grid([img2], # save_path=None, is2D=False, _input_img_alpha=None, _overlap_img_alpha=None, # _title="test", _input_img_cmap=plt.get_cmap("jet")) if not os.path.isdir(os.path.join(CAM_save_dir, "npy_" + str(label))): os.mkdir(os.path.join(CAM_save_dir, "npy_" + str(label))) npy_save_path = os.path.join(CAM_save_dir, "npy_" + str(label)) save_filename = imgs_filename[ind2] + str(_c_ind)+"_heatmap_.npy" npy_mat_saver(img2, os.path.join(npy_save_path, save_filename)) #img2 = [thresholding_matrix(mat_to_mask=_img2, std_mat=None, c_ratio=0.7) for _img2 in img2] if not os.path.isdir(os.path.join(CAM_save_dir, "npy_img_origin_" + str(label))): os.mkdir(os.path.join(CAM_save_dir, "npy_img_origin_" + str(label))) npy_save_path = os.path.join(CAM_save_dir, "npy_img_origin_" + str(label)) save_filename = imgs_filename[ind2] + "_origin_.npy" npy_mat_saver(img1, os.path.join(npy_save_path, save_filename)) img2 = thresholding_matrix(mat_to_mask=img2, std_mat=None, c_ratio=0.4) #img2 = np.array(img2) #img2[0,:,:,:]=0 #img2[:, 0, 0] = 0 #print("[!] debug img2 min max", img2.min(), img2.max()) # draw_img_on_grid([img2], # save_path=None, is2D=False, _input_img_alpha=None, _overlap_img_alpha=None, # _title="test", _input_img_cmap=plt.get_cmap("jet")) # original heatmap draw_img_on_grid_v2([img1, img2], save_path=CAM_save_path, is2D=False, _input_img_alpha=None, _overlap_img_alpha=0.4, _title=_title, _input_img_cmap="gist_gray", _overlap_img_cmap=plt.get_cmap("jet")) #img2 = np.zeros((64, 97, _c_ind), dtype="float32") # print("img debug", np.array(img).shape) # pred_ind = _preds[ind2].argmax() # if label == pred_ind : # # Save Class Activation Map only for a correct prediction # if not os.path.isdir(os.path.join(CAM_save_dir, "correct_" + str(label))): # os.mkdir(os.path.join(os.path.join(CAM_save_dir, "correct_" + str(label)))) # CAM_save_path = os.path.join(CAM_save_dir, "correct_" + str(label), # img_filename + "_CAM_" + self._class_name[_c_ind] + ".png") # draw_img_on_grid([img1, img2], # save_path=CAM_save_path, is2D=False, _input_img_alpha=None, _overlap_img_alpha=0.4, _title=_title # ,_input_img_cmap = "gist_gray", _overlap_img_cmap = plt.get_cmap("jet")) # # elif label != pred_ind : # # Save Class Activation Map only for a incorrect prediction # if not os.path.isdir(os.path.join(CAM_save_dir, "incorrect_" + str(label))): # os.mkdir(os.path.join(os.path.join(CAM_save_dir, "incorrect_" + str(label)))) # CAM_save_path = os.path.join(CAM_save_dir, "incorrect_" + str(label), # img_filename + "_CAM_" + self._class_name[_c_ind] + ".png") # draw_img_on_grid([img1, img2], # save_path=CAM_save_path, is2D=False, _input_img_alpha=None, _overlap_img_alpha=0.4, _title=_title, # _input_img_cmap="gist_gray", _overlap_img_cmap=plt.get_cmap("jet")) # Save Mean CAM for each of class label for _c_ind in range(self._num_classes): mean_cam_c = np.array(class_heatmap_dict[str(_c_ind)]).mean(axis=0) print("mean_cam_c", mean_cam_c.shape) _title = "rawdata + Mean CAM for each of class label" + str(_c_ind) rawdata_mean_CAM_save_path = os.path.join(CAM_save_dir, "rawdata+mean_CAM_"+self._class_name[_c_ind]+".png") img = imgip.interpolateImage(imgs_list[0]) # print("img debug", np.array(img).shape) img1 = img[:, :, :, 0] img1 = img1.astype(np.uint8) img1[:, 0, 0] = 0 img1[:, 0, 1] = 255 draw_img_on_grid_v2([img1, mean_cam_c], save_path=rawdata_mean_CAM_save_path, is2D=False, _input_img_alpha=None, _overlap_img_alpha=0.4, _title=_title, _input_img_cmap="gist_gray", _overlap_img_cmap=plt.get_cmap("jet")) _title = "Mean CAM for each of class label"+str(_c_ind) mean_CAM_save_path = os.path.join(CAM_save_dir, "mean_CAM_" + self._class_name[_c_ind] + ".png") draw_img_on_grid_v2([mean_cam_c], save_path=mean_CAM_save_path, is2D=False, _input_img_alpha=None, _overlap_img_alpha=0.4, _title=_title, _input_img_cmap="gist_gray", _overlap_img_cmap=plt.get_cmap("jet")) # Save Mean subtracted CAM for each of prediction of model_name for _p_ind in range(self._num_classes): mean_cam_p = np.array(mean_subtracted_heatmap[str(_p_ind)]).mean(axis=0) print("mean_cam_p", mean_cam_p.shape) _title = "rawdata + Mean subtracted CAM for each of class label" + str(_p_ind) rawdata_mean_subtracted_CAM_save_path = os.path.join(CAM_save_dir, "rawdata+mean_subtracted_CAM_" + self._class_name[_p_ind] + ".png") img = imgip.interpolateImage(imgs_list[0]) # print("img debug", np.array(img).shape) img1 = img[:, :, :, 0] img1 = img1.astype(np.uint8) img1[:, 0, 0] = 0 img1[:, 0, 1] = 255 draw_img_on_grid_v2([img1, mean_cam_p], save_path=rawdata_mean_subtracted_CAM_save_path, is2D=False, _input_img_alpha=None, _overlap_img_alpha=0.4, _title=_title, _input_img_cmap="gist_gray", _overlap_img_cmap=plt.get_cmap("jet")) _title = "Mean subtracted CAM for each of class label" + str(_p_ind) mean_subtracted_CAM_save_path = os.path.join(CAM_save_dir, "mean_subtracted_CAM_" + self._class_name[_p_ind] + ".png") draw_img_on_grid_v2([mean_cam_p], save_path=mean_subtracted_CAM_save_path, is2D=False, _input_img_alpha=None, _overlap_img_alpha=0.4, _title=_title, _input_img_cmap="gist_gray", _overlap_img_cmap=plt.get_cmap("jet")) del class_heatmap_dict return def _create_cv_file(self, data, label, num_k = 4, save_path=None): if save_path is None : test_size = 1.0 / float(num_k) #sss_inner = StratifiedShuffleSplit(n_splits=num_k, test_size=test_size, random_state=1) # random_state is generated using np.random sss_inner = StratifiedShuffleSplit(n_splits=num_k, test_size=test_size, random_state=1) kf = KFold(n_splits=num_k) cv_index_train = dict() cv_index_test = dict() # sss_inner.get_n_splits(data, label) #for ind, (train_index, test_index) in enumerate(sss_inner.split(data, label)): for ind, (train_index, test_index) in enumerate(kf.split(data, label)): print("train", len(train_index)) print("test", len(test_index)) cv_index_train["train_"+str(ind)] = train_index.tolist() cv_index_test["test_"+str(ind)] = test_index.tolist() pd_cv_index_train = pd.DataFrame(cv_index_train) pd_cv_index_train.to_excel(os.path.join(self._root_dir, self._result_save_dir, "cv_file_train.xlsx")) pd_cv_index_test = pd.DataFrame(cv_index_test) pd_cv_index_test.to_excel(os.path.join(self._root_dir, self._result_save_dir, "cv_file_test.xlsx")) else: pd_cv_index_train = pd.read_excel(os.path.join(self._root_dir, self._result_save_dir, "cv_file_train.xlsx")) pd_cv_index_test = pd.read_excel(os.path.join(self._root_dir, self._result_save_dir, "cv_file_test.xlsx")) return pd_cv_index_train, pd_cv_index_test def _plot_trend(self, trend_dict, save_path): # for item in trend_dict.items(): # key value pair i.g. "train_acc": 90.0 # plt.plot(item[1], label=item[0]) # plt.legend('upper right') # plt.savefig(save_path) fig, loss_ax = plt.subplots() acc_ax = loss_ax.twinx() loss_ax.plot(trend_dict["train_loss_list"], 'y', label='train loss') loss_ax.plot(trend_dict["test_loss_list"], 'r', label='val loss') acc_ax.plot(trend_dict["train_acc_list"], 'b', label='train acc') acc_ax.plot(trend_dict["test_acc_list"], 'g', label='val acc') loss_ax.set_xlabel('epoch') loss_ax.set_ylabel('loss') acc_ax.set_ylabel('accuray') loss_ax.legend(loc='upper left') acc_ax.legend(loc='lower left') plt.savefig(save_path) plt.close("all") return def _measure_acc(self, pred_ind_list, label_ind_list): return def get_output_layer(self, model, layer_name): # # get the symbolic outputs of each "key" layer (we gave them unique names). # layer_dict = dict([(layer.name, layer) for layer in model_name.layers]) # # print("layer dict", layer_dict) # layer = layer_dict[layer_name] # return layer for layer in model.layers: if layer.name == layer_name: return layer def calculate_3D_CAM(self, X_data, _model, num_classes, featuremap_name, resize_size=None, experiment_name_for_preprocess=None, preprocess_save_path=None): # preprocessing if experiment_name_for_preprocess: preprocessed_imgs_list = self._preprocess(X_data, isTrain=False, experiment_name=experiment_name_for_preprocess) elif preprocess_save_path: preprocessed_imgs_list = self._preprocess(X_data, isTrain=False, save_path=preprocess_save_path) else: preprocessed_imgs_list = X_data cams = [] # (N, C, D, H, W) for ind, img in enumerate(preprocessed_imgs_list): original_img = np.array([img]) origin_heatmap_c = [] for _c_ind in range(num_classes): # iteration on each class _class_output = self._model.output[:, _c_ind] # (N, num_classes) # Get the last layer's feature map final_conv_layer = self.get_output_layer(_model, featuremap_name) # (1, D, H, W, C) # Get the last layer's input weights to the softmax. grads = K.gradients(_class_output, final_conv_layer.output)[0] # gradients function considers list of gradients pooled_grads = K.mean(grads, axis=(0, 1, 2, 3)) # (C, ) iterate = K.function([self._model.input], [pooled_grads, final_conv_layer.output[0]]) pooled_grads_value, conv_layer_output_value = iterate([original_img]) for i, w in enumerate(range(len(pooled_grads_value))): conv_layer_output_value[:, :, :, i] *= pooled_grads_value[i] heatmap = np.mean(conv_layer_output_value, axis=-1) heatmap = np.maximum(heatmap, 0) heatmap /= np.max(heatmap) origin_heatmap_c.append(heatmap) origin_heatmap_c = np.array(origin_heatmap_c) print("origin_heatmap_c", origin_heatmap_c.shape) # (3, 4, 4, 4) if resize_size is not None: resized_heatmap = [] # norm each heatmap to [0, 1] for h_ind, hm in enumerate(origin_heatmap_c): imgip = ImageInterpolator(is2D=False, num_channel=1, target_size=resize_size) hm = imgip.interpolateImage(hm) resized_heatmap.append(hm) origin_heatmap_c = np.array(resized_heatmap) cams.append(origin_heatmap_c) return np.array(cams)
4e09e9ab402842bb82f4da39ba8ec96246fa05a2
9a92cf81495006f9ee6ffcfb60a66bc2ac5eb258
/main.py
9ceb3d6c44f78ec9dbf87cbd3ba8fd307fae3eaf
[]
no_license
Haburto/ConwaysGameOfLife
f63dc5c387c737d6f4305702dabdd4c4ff4ea03e
50ad79dd68049dbc51cb67b0802c1750c70d505d
refs/heads/master
2022-07-27T22:48:36.711000
2020-05-21T18:22:37
2020-05-21T18:22:37
264,438,339
0
0
null
null
null
null
UTF-8
Python
false
false
16,677
py
import pygame import tkinter from tkinter import messagebox # I am not sure if my game_init solution is the best solution, but it definitely helps to fight the clutter # That some of my function calls have had # It also helps me to only have one part of the code that I need to change for options like colour and size class GameInitialization(object): width = 800 height = width screen_size = (width, height) rows = 50 columns = rows axis_length = (rows, columns) size_between_rows = screen_size[0] // rows size_between_columns = screen_size[1] // columns color_window = (100, 100, 100) color_lines = (60, 60, 60) color_live_cells = (150, 150, 0) game_started = False exit_program = False reset_initiated = False mouse_button_pressed = False set_cell_status_live = True # TODO: Check if that is the right approach # It does look and feel so wrong though def set_window(self, window): self.window = window def set_my_grid(self, my_grid): self.my_grid = my_grid def set_cell_at_new_mouse_position(self, cell): self.cell_at_new_mouse_position = cell # TODO: Think about more UI-related functions # Do I want a generation counter, live and dead cell counter? etc... class Cell(object): def __init__(self, position): self.position = position self.live = False # Check other possible names for the class Grid and the function draw_grid class Grid(object): def __init__(self, axis_length): self.rows = axis_length[0] self.columns = axis_length[1] self.grid = self.create_grid() # Careful, grid is used like this: self.grid[y][x] self.live_cells = set() self.cells_touched_by_life = list() self.cells_to_be_born = set() self.cells_about_to_die = set() def create_grid(self): grid = [[Cell((x, y)) for x in range(self.columns)] for y in range(self.rows)] return grid def set_cell_live(self, position): cell = self.grid[position[1]][position[0]] cell.live = True self.live_cells.add(cell) def set_cell_dead(self, position): cell = self.grid[position[1]][position[0]] # Maybe check if the cell was already dead # Because then this method call should not be happening cell.live = False # x.remove() will throw an error when the item is not in the set # Not sure if I want to handle such an error self.live_cells.discard(cell) def get_live_cells_set(self): return self.live_cells def get_neighbours(self, game_init, cell): position = cell.position neighbours = set() for y_modifier in range(-1, 2): for x_modifier in range(-1, 2): if x_modifier == 0 and y_modifier == 0: continue if self.is_neighbour_possible(game_init, cell, x_modifier, y_modifier): neighbours.add( self.grid[position[1] + y_modifier][position[0] + x_modifier] ) return neighbours def is_neighbour_possible(self, game_init, cell, x_modifier, y_modifier): position = cell.position # X if position[0] + x_modifier > game_init.rows - 1: return False if position[0] + x_modifier < 0: return False # Y if position[1] + y_modifier > game_init.rows - 1: return False if position[1] + y_modifier < 0: return False return True def check_neighbours_status(self, neighbours): live_counter = 0 for neighbour in neighbours: if neighbour.live: live_counter = live_counter + 1 else: self.cells_touched_by_life.append(neighbour) return live_counter def check_survival(self, live_counter): if live_counter == 2 or live_counter == 3: return True else: return False def check_reproduction(self): cells_touched_by_life_no_duplicates = list(set(self.cells_touched_by_life)) for cell in cells_touched_by_life_no_duplicates: if self.cells_touched_by_life.count(cell) == 3: self.cells_to_be_born.add(cell) def manage_live_and_dead_cells(self): for cell in self.cells_to_be_born: self.set_cell_live(cell.position) for cell in self.cells_about_to_die: self.set_cell_dead(cell.position) self.cells_touched_by_life.clear() self.cells_to_be_born.clear() self.cells_about_to_die.clear() def check_rules(self, game_init): for cell in self.live_cells: neighbours = self.get_neighbours(game_init, cell) live_counter = self.check_neighbours_status(neighbours) if not self.check_survival(live_counter): self.cells_about_to_die.add(cell) self.check_reproduction() self.manage_live_and_dead_cells() def reset_game(self): current_live_cells = self.live_cells.copy() for cell in current_live_cells: self.set_cell_dead(cell.position) self.cells_touched_by_life = list() self.cells_to_be_born = set() self.cells_about_to_die = set() def draw_live_cells(window, my_grid, game_init): color_live_cells = game_init.color_live_cells size_between_rows = game_init.size_between_rows size_between_columns = game_init.size_between_columns live_cells_set = my_grid.get_live_cells_set() for cell in live_cells_set: x_start = cell.position[0] * size_between_columns + 1 y_start = cell.position[1] * size_between_rows + 1 width = size_between_columns - 1 height = size_between_rows - 1 pygame.draw.rect(window, color_live_cells, ( x_start, y_start, width, height )) def draw_border(window, game_init): screen_size = game_init.screen_size color_lines = game_init.color_lines # Upper left corner to the upper right corner pygame.draw.line(window, color_lines, (0, 0), (screen_size[0], 0)) # Upper left corner to the lower left corner pygame.draw.line(window, color_lines, (0, 0), (0, screen_size[1])) # Lower right corner to the upper right corner pygame.draw.line(window, color_lines, (screen_size[0], screen_size[1]), (screen_size[0], 0)) # Lower right corner to the lower left corner pygame.draw.line(window, color_lines, (screen_size[0], screen_size[1]), (0, screen_size[1])) def draw_grid(window, game_init): screen_size = game_init.screen_size rows = game_init.rows columns = game_init.columns size_between_rows = game_init.size_between_rows size_between_columns = game_init.size_between_columns color_lines = game_init.color_lines for row in range(1, rows + 1): pygame.draw.line(window, color_lines, (0, row * size_between_rows), (screen_size[0], row * size_between_rows)) for column in range(1, columns + 1): pygame.draw.line(window, color_lines, (column * size_between_columns, 0), (column * size_between_columns, screen_size[1])) def get_grid_position(game_init, mouse_pos): position = [0, 0] corrected_mouse_pos = list() # TODO: Remove this correction as it is not actually needed # If the mouse is held and dragged over the border # X if mouse_pos[0] < 0: corrected_mouse_pos.append(0) elif mouse_pos[0] > game_init.width: corrected_mouse_pos.append(game_init.width) else: corrected_mouse_pos.append(mouse_pos[0]) # Y if mouse_pos[1] < 0: corrected_mouse_pos.append(0) elif mouse_pos[1] > game_init.width: corrected_mouse_pos.append(game_init.height) else: corrected_mouse_pos.append(mouse_pos[1]) # Actual pixel position to grid position calculation position[0] = corrected_mouse_pos[0] // game_init.size_between_rows position[1] = corrected_mouse_pos[1] // game_init.size_between_columns return tuple(position) # While in running pygame one of the 4 pygame.even.X functions HAS to be called # Else the OS will think that the game has crashed # You should also implement the QUIT event first, so that you can comfortably quit the project def event_handler(game_init): for event in pygame.event.get(): if event.type == pygame.QUIT: game_init.game_started = False game_init.exit_program = True break # TODO: Test if keys has to be outside of the for loop keys = pygame.key.get_pressed() if keys[pygame.K_r]: game_init.reset_initiated = True game_init.game_started = False game_init.mouse_button_pressed = False break elif keys[pygame.K_SPACE]: # TODO: Test this with 'not' instead of '^=' # That should be a better Python style I guess game_init.game_started ^= True game_init.mouse_button_pressed = False # TODO: careful, sometimes when I often clicked with the mouse, the next spacebar input was not read # If the time between the click and the spacebar was too small if not game_init.game_started: if event.type == pygame.MOUSEBUTTONUP: game_init.mouse_button_pressed = False # I think I do not have to, but should I reset the other flags when mouse_button goes up ? if event.type == pygame.MOUSEBUTTONDOWN: grid_position = get_grid_position(game_init, event.dict["pos"]) game_init.mouse_button_pressed = True process_cell_conversion(game_init, grid_position, True) if event.type == pygame.MOUSEMOTION and game_init.mouse_button_pressed: grid_position = get_grid_position(game_init, event.dict["pos"]) process_cell_conversion(game_init, grid_position, False) # TODO: I probably should think about which functions I want to be methods and vice versa def process_cell_conversion(game_init, grid_position, mouse_button_down): if not game_init.mouse_button_pressed: print("ERROR: process_cell_conversion() called without 'mouse_button_pressed' flag begin true") return grid = game_init.my_grid.grid cell = grid[grid_position[1]][grid_position[0]] if mouse_button_down: game_init.set_cell_status_live = not cell.live game_init.set_cell_at_new_mouse_position(cell) else: # Check if the pixel-position is still inside the clicked cell if game_init.cell_at_new_mouse_position == cell: return else: game_init.set_cell_at_new_mouse_position(cell) # Compare cell status # Change if needed if game_init.set_cell_status_live: if not cell.live: game_init.my_grid.set_cell_live(cell.position) else: if cell.live: game_init.my_grid.set_cell_dead(cell.position) def redraw_window(window, my_grid, game_init): window.fill(game_init.color_window) draw_grid(window, game_init) draw_border(window, game_init) draw_live_cells(window, my_grid, game_init) pygame.display.update() def activate_still_lifes(my_grid): # Block my_grid.set_cell_live((3, 3)) my_grid.set_cell_live((3, 4)) my_grid.set_cell_live((4, 3)) my_grid.set_cell_live((4, 4)) # Bee-hive my_grid.set_cell_live((10, 10)) my_grid.set_cell_live((11, 10)) my_grid.set_cell_live((9, 11)) my_grid.set_cell_live((12, 11)) my_grid.set_cell_live((10, 12)) my_grid.set_cell_live((11, 12)) # Loaf my_grid.set_cell_live((20, 20)) my_grid.set_cell_live((21, 20)) my_grid.set_cell_live((19, 21)) my_grid.set_cell_live((22, 21)) my_grid.set_cell_live((20, 22)) my_grid.set_cell_live((22, 22)) my_grid.set_cell_live((21, 23)) # Boat my_grid.set_cell_live((30, 30)) my_grid.set_cell_live((31, 30)) my_grid.set_cell_live((30, 31)) my_grid.set_cell_live((32, 31)) my_grid.set_cell_live((31, 32)) # Tub my_grid.set_cell_live((40, 40)) my_grid.set_cell_live((39, 41)) my_grid.set_cell_live((41, 41)) my_grid.set_cell_live((40, 42)) def activate_oscillators(my_grid): # Blinker (period 2) my_grid.set_cell_live((13, 3)) my_grid.set_cell_live((13, 4)) my_grid.set_cell_live((13, 5)) # Toad (period 2) my_grid.set_cell_live((20, 10)) my_grid.set_cell_live((21, 10)) my_grid.set_cell_live((22, 10)) my_grid.set_cell_live((19, 11)) my_grid.set_cell_live((20, 11)) my_grid.set_cell_live((21, 11)) # Beacon (period 2) my_grid.set_cell_live((40, 30)) my_grid.set_cell_live((41, 30)) my_grid.set_cell_live((40, 31)) my_grid.set_cell_live((42, 33)) my_grid.set_cell_live((43, 33)) my_grid.set_cell_live((43, 32)) # TODO: center this window on the actual pygame-window def welcome_window(): root = tkinter.Tk() root.attributes("-topmost", True) root.withdraw() # Hides the main tk window subject = "Important information" content = "Thanks for playing this game!" \ "\n\n" \ "How to play?" \ "\n\n" \ "There are 3 rules that decide what happens in the game." \ "\n1. If a cell has 2 or 3 neighbours it will survive (next generation)" \ "\n2. If a cell has less than 2 (underpopulation)." \ "\n or more than 3 (overpopulation) cells nearby it dies." \ "\n3. Any dead cell with exactly 3 neighbours will become live (reproduction)." \ "\n\n" \ "Hotkeys:" \ "\nUse the mouse and click on cells to set them live" \ "\nPress 'spacebar' to start and pause the simulation" \ "\nPress 'r' to reset the game and open this window once again" \ "\n\n" \ "Pressing on 'Ok' will start the game!" messagebox.showinfo(subject, content) try: root.destroy() # TODO: Find out which exceptions could occur here and further # specify them, so that this try_except clause is not too broad except: pass def main(): # TODO: center the pygame window on screen when it starts pygame.init() game_init = GameInitialization() # TODO: Check if this is the right approach window = pygame.display.set_mode(game_init.screen_size) game_init.set_window(window) my_grid = Grid(game_init.axis_length) game_init.set_my_grid(my_grid) # TODO: remove this test part, after user-input implementation # Or maybe implement a way to choose these as presets in the pre-phase # Still lifes activate_still_lifes(my_grid) # Oscillators activate_oscillators(my_grid) # Corner test my_grid.set_cell_live((0, 0)) my_grid.set_cell_live((game_init.columns - 1, 0)) my_grid.set_cell_live((0, game_init.rows - 1)) my_grid.set_cell_live((game_init.columns - 1, game_init.rows - 1)) my_grid.set_cell_live((5, 5)) my_grid.set_cell_live((5, 6)) my_grid.set_cell_live((6, 5)) my_grid.set_cell_live((6, 6)) redraw_window(window, my_grid, game_init) # Not sure if I should use tkinter or try it with pygame! welcome_window() loop_counter = 0 # TODO: Maybe add the program_response_time and cell_activity_delay_factor to game_init # Also maybe change that ridiculous long names to something shorter program_response_time = 5 cell_activity_delay_factor = 100 while not game_init.exit_program: # If pygame.time.wait(x) is not accurate enough, try pygame.time.delay(x) pygame.time.wait(program_response_time) event_handler(game_init) if game_init.game_started: loop_counter = loop_counter + 1 if loop_counter == cell_activity_delay_factor: loop_counter = 0 my_grid.check_rules(game_init) if game_init.reset_initiated: game_init.reset_initiated = False my_grid.reset_game() redraw_window(window, my_grid, game_init) welcome_window() continue redraw_window(window, my_grid, game_init) pygame.quit() exit() main()
8a1fec061394b19970ba9343a8c7a90ec4eb7554
037472eacfb1bc8d61692e52fce5e47ab11c6d4d
/pwkit/sherpa.py
bfb5aa332bea9198b883316a32ade380197f4e82
[ "MIT" ]
permissive
pkgw/pwkit
2aa5bdde99399183a424ee6d821bd0fc9f5371f6
ff0ac3d9cc563b441143cf73f282dd4ae98c7a51
refs/heads/master
2023-08-03T03:12:47.502647
2023-07-21T03:14:13
2023-07-21T03:14:13
19,895,334
24
8
MIT
2023-08-17T17:05:15
2014-05-17T20:15:04
Python
UTF-8
Python
false
false
25,865
py
# -*- mode: python; coding: utf-8 -*- # Copyright 2017 Peter Williams <[email protected]> and collaborators. # Licensed under the MIT License. """This module contains helpers for modeling X-ray spectra with the `Sherpa <http://cxc.harvard.edu/sherpa/>`_ package. """ from __future__ import absolute_import, division, print_function __all__ = ''' PowerLawApecDemModel make_fixed_temp_multi_apec expand_rmf_matrix derive_identity_rmf derive_identity_arf get_source_qq_data get_bkg_qq_data make_qq_plot make_multi_qq_plots make_spectrum_plot make_multi_spectrum_plots '''.split() import numpy as np from sherpa.astro import ui from sherpa.astro.xspec import XSAdditiveModel, _xspec from sherpa.models import Parameter from sherpa.models.parameter import hugeval # Some helpful models DEFAULT_KT_ARRAY = np.logspace(-1.5, 1, 20) class PowerLawApecDemModel(XSAdditiveModel): """A model with contributions from APEC plasmas at a range of temperatures, scaling with temperature. Constructor arguments are: *name* The Sherpa name of the resulting model instance. *kt_array* = None An array of temperatures to use for the plasma models. If left at the default of None, a hard-coded default is used that spans temperatures of ~0.03 to 10 keV with logarithmic spacing. The contribution at each temperature scales with kT as a power law. The model parameters are: *gfac* The power-law normalization parameter. The contribution at temperature *kT* is ``norm * kT**gfac``. *Abundanc* The standard APEC abundance parameter. *redshift* The standard APEC redshift parameter. *norm* The standard overall normalization parameter. This model is only efficient to compute if *Abundanc* and *redshift* are frozen. """ def __init__(self, name, kt_array=None): if kt_array is None: kt_array = DEFAULT_KT_ARRAY else: kt_array = np.atleast_1d(np.asfarray(kt_array)) self.gfac = Parameter(name, 'gfac', 0.5, 1e-4, 1e4, 1e-6, 1e6) self.Abundanc = Parameter(name, 'Abundanc', 1., 0., 5., 0.0, hugeval, frozen=True) self.redshift = Parameter(name, 'redshift', 0., -0.999, 10., -0.999, hugeval, frozen=True) self.norm = Parameter(name, 'norm', 1.0, 0.0, 1e24, 0.0, hugeval) self._kt_array = kt_array self._cur_cache_key = None self._cached_vals = None XSAdditiveModel.__init__(self, name, (self.gfac, self.Abundanc, self.redshift, self.norm)) def _calc(self, params, *args, **kwargs): gfac, abund, redshift, norm = params cache_key = (abund, redshift) if self._cur_cache_key != cache_key: self._cached_vals = [None] * self._kt_array.size for i in range(self._kt_array.size): apec_params = [self._kt_array[i], abund, redshift, 1.] self._cached_vals[i] = _xspec.xsaped(apec_params, *args, **kwargs) self._cur_cache_key = cache_key self._cached_vals = np.array(self._cached_vals).T scales = norm * self._kt_array**gfac return (self._cached_vals * scales).sum(axis=1) ui.add_model(PowerLawApecDemModel) def make_fixed_temp_multi_apec(kTs, name_template='apec%d', norm=None): """Create a model summing multiple APEC components at fixed temperatures. *kTs* An iterable of temperatures for the components, in keV. *name_template* = 'apec%d' A template to use for the names of each component; it is string-formatted with the 0-based component number as an argument. *norm* = None An initial normalization to be used for every component, or None to use the Sherpa default. Returns: A tuple ``(total_model, sub_models)``, where *total_model* is a Sherpa model representing the sum of the APEC components and *sub_models* is a list of the individual models. This function creates a vector of APEC model components and sums them. Their *kT* parameters are set and then frozen (using :func:`sherpa.astro.ui.freeze`), so that upon exit from this function, the amplitude of each component is the only free parameter. """ total_model = None sub_models = [] for i, kT in enumerate(kTs): component = ui.xsapec(name_template % i) component.kT = kT ui.freeze(component.kT) if norm is not None: component.norm = norm sub_models.append(component) if total_model is None: total_model = component else: total_model = total_model + component return total_model, sub_models def expand_rmf_matrix(rmf): """Expand an RMF matrix stored in compressed form. *rmf* An RMF object as might be returned by ``sherpa.astro.ui.get_rmf()``. Returns: A non-sparse RMF matrix. The Response Matrix Function (RMF) of an X-ray telescope like Chandra can be stored in a sparse format as defined in `OGIP Calibration Memo CAL/GEN/92-002 <https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html>`_. For visualization and analysis purposes, it can be useful to de-sparsify the matrices stored in this way. This function does that, returning a two-dimensional Numpy array. """ n_chan = rmf.e_min.size n_energy = rmf.n_grp.size expanded = np.zeros((n_energy, n_chan)) mtx_ofs = 0 grp_ofs = 0 for i in range(n_energy): for j in range(rmf.n_grp[i]): f = rmf.f_chan[grp_ofs] n = rmf.n_chan[grp_ofs] expanded[i,f:f+n] = rmf.matrix[mtx_ofs:mtx_ofs+n] mtx_ofs += n grp_ofs += 1 return expanded def derive_identity_rmf(name, rmf): """Create an "identity" RMF that does not mix energies. *name* The name of the RMF object to be created; passed to Sherpa. *rmf* An existing RMF object on which to base this one. Returns: A new RMF1D object that has a response matrix that is as close to diagonal as we can get in energy space, and that has a constant sensitivity as a function of detector channel. In many X-ray observations, the relevant background signal does not behave like an astrophysical source that is filtered through the telescope's response functions. However, I have been unable to get current Sherpa (version 4.9) to behave how I want when working with backround models that are *not* filtered through these response functions. This function constructs an "identity" RMF response matrix that provides the best possible approximation of a passthrough "instrumental response": it mixes energies as little as possible and has a uniform sensitivity as a function of detector channel. """ from sherpa.astro.data import DataRMF from sherpa.astro.instrument import RMF1D # The "x" axis of the desired matrix -- the columnar direction; axis 1 -- # is "channels". There are n_chan of them and each maps to a notional # energy range specified by "e_min" and "e_max". # # The "y" axis of the desired matrix -- the row direction; axis 1 -- is # honest-to-goodness energy. There are tot_n_energy energy bins, each # occupying a range specified by "energ_lo" and "energ_hi". # # We want every channel that maps to a valid output energy to have a # nonzero entry in the matrix. The relative sizes of n_energy and n_cell # can vary, as can the bounds of which regions of each axis can be validly # mapped to each other. So this problem is basically equivalent to that of # drawing an arbitrary pixelated line on bitmap, without anti-aliasing. # # The output matrix is represented in a row-based sparse format. # # - There is a integer vector "n_grp" of size "n_energy". It gives the # number of "groups" needed to fill in each row of the matrix. Let # "tot_groups = sum(n_grp)". For a given row, "n_grp[row_index]" may # be zero, indicating that the row is all zeros. # - There are integer vectors "f_chan" and "n_chan", each of size # "tot_groups", that define each group. "f_chan" gives the index of # the first channel column populated by the group; "n_chan" gives the # number of columns populated by the group. Note that there can # be multiple groups for a single row, so successive group records # may fill in different pieces of the same row. # - Let "tot_cells = sum(n_chan)". # - There is a vector "matrix" of size "tot_cells" that stores the actual # matrix data. This is just a concatenation of all the data corresponding # to each group. # - Unpopulated matrix entries are zero. # # See expand_rmf_matrix() for a sloppy implementation of how to unpack # this sparse format. n_chan = rmf.e_min.size n_energy = rmf.energ_lo.size c_lo_offset = rmf.e_min[0] c_lo_slope = (rmf.e_min[-1] - c_lo_offset) / (n_chan - 1) c_hi_offset = rmf.e_max[0] c_hi_slope = (rmf.e_max[-1] - c_hi_offset) / (n_chan - 1) e_lo_offset = rmf.energ_lo[0] e_lo_slope = (rmf.energ_lo[-1] - e_lo_offset) / (n_energy - 1) e_hi_offset = rmf.energ_hi[0] e_hi_slope = (rmf.energ_hi[-1] - e_hi_offset) / (n_energy - 1) all_e_indices = np.arange(n_energy) all_e_los = e_lo_slope * all_e_indices + e_lo_offset start_chans = np.floor((all_e_los - c_lo_offset) / c_lo_slope).astype(int) all_e_his = e_hi_slope * all_e_indices + e_hi_offset stop_chans = np.ceil((all_e_his - c_hi_offset) / c_hi_slope).astype(int) first_e_index_on_channel_grid = 0 while stop_chans[first_e_index_on_channel_grid] < 0: first_e_index_on_channel_grid += 1 last_e_index_on_channel_grid = n_energy - 1 while start_chans[last_e_index_on_channel_grid] >= n_chan: last_e_index_on_channel_grid -= 1 n_nonzero_rows = last_e_index_on_channel_grid + 1 - first_e_index_on_channel_grid e_slice = slice(first_e_index_on_channel_grid, last_e_index_on_channel_grid + 1) n_grp = np.zeros(n_energy, dtype=int) n_grp[e_slice] = 1 start_chans = np.maximum(start_chans[e_slice], 0) stop_chans = np.minimum(stop_chans[e_slice], n_chan - 1) # We now have a first cut at a row-oriented expression of our "identity" # RMF. However, it's conservative. Trim down to eliminate overlaps between # sequences. for i in range(n_nonzero_rows - 1): my_end = stop_chans[i] next_start = start_chans[i+1] if next_start <= my_end: stop_chans[i] = max(start_chans[i], next_start - 1) # Results are funky unless the sums along the vertical axis are constant. # Ideally the sum along the *horizontal* axis would add up to 1 (since, # ideally, each row is a probability distribution), but it is not # generally possible to fulfill both of these constraints simultaneously. # The latter constraint does not seem to matter in practice so we ignore it. # Due to the funky encoding of the matrix, we need to build a helper table # to meet the vertical-sum constraint. counts = np.zeros(n_chan, dtype=int) for i in range(n_nonzero_rows): counts[start_chans[i]:stop_chans[i]+1] += 1 counts[:start_chans.min()] = 1 counts[stop_chans.max()+1:] = 1 assert (counts > 0).all() # We can now build the matrix. f_chan = start_chans rmfnchan = stop_chans + 1 - f_chan assert (rmfnchan > 0).all() matrix = np.zeros(rmfnchan.sum()) amounts = 1. / counts ofs = 0 for i in range(n_nonzero_rows): f = f_chan[i] n = rmfnchan[i] matrix[ofs:ofs+n] = amounts[f:f+n] ofs += n # All that's left to do is create the Python objects. drmf = DataRMF( name, rmf.detchans, rmf.energ_lo, rmf.energ_hi, n_grp, f_chan, rmfnchan, matrix, offset = 0, e_min = rmf.e_min, e_max = rmf.e_max, header = None ) return RMF1D(drmf, pha=rmf._pha) def derive_identity_arf(name, arf): """Create an "identity" ARF that has uniform sensitivity. *name* The name of the ARF object to be created; passed to Sherpa. *arf* An existing ARF object on which to base this one. Returns: A new ARF1D object that has a uniform spectral response vector. In many X-ray observations, the relevant background signal does not behave like an astrophysical source that is filtered through the telescope's response functions. However, I have been unable to get current Sherpa (version 4.9) to behave how I want when working with backround models that are *not* filtered through these response functions. This function constructs an "identity" ARF response function that has uniform sensitivity as a function of detector channel. """ from sherpa.astro.data import DataARF from sherpa.astro.instrument import ARF1D darf = DataARF( name, arf.energ_lo, arf.energ_hi, np.ones(arf.specresp.shape), arf.bin_lo, arf.bin_hi, arf.exposure, header = None, ) return ARF1D(darf, pha=arf._pha) def get_source_qq_data(id=None): """Get data for a quantile-quantile plot of the source data and model. *id* The dataset id for which to get the data; defaults if unspecified. Returns: An ndarray of shape ``(3, npts)``. The first slice is the energy axis in keV; the second is the observed values in each bin (counts, or rate, or rate per keV, etc.); the third is the corresponding model value in each bin. The inputs are implicit; the data are obtained from the current state of the Sherpa ``ui`` module. """ sdata = ui.get_data(id=id) kev = sdata.get_x() obs_data = sdata.counts model_data = ui.get_model(id=id)(kev) return np.vstack((kev, obs_data, model_data)) def get_bkg_qq_data(id=None, bkg_id=None): """Get data for a quantile-quantile plot of the background data and model. *id* The dataset id for which to get the data; defaults if unspecified. *bkg_id* The identifier of the background; defaults if unspecified. Returns: An ndarray of shape ``(3, npts)``. The first slice is the energy axis in keV; the second is the observed values in each bin (counts, or rate, or rate per keV, etc.); the third is the corresponding model value in each bin. The inputs are implicit; the data are obtained from the current state of the Sherpa ``ui`` module. """ bdata = ui.get_bkg(id=id, bkg_id=bkg_id) kev = bdata.get_x() obs_data = bdata.counts model_data = ui.get_bkg_model(id=id, bkg_id=bkg_id)(kev) return np.vstack((kev, obs_data, model_data)) def make_qq_plot(kev, obs, mdl, unit, key_text): """Make a quantile-quantile plot comparing events and a model. *kev* A 1D, sorted array of event energy bins measured in keV. *obs* A 1D array giving the number or rate of events in each bin. *mdl* A 1D array giving the modeled number or rate of events in each bin. *unit* Text describing the unit in which *obs* and *mdl* are measured; will be shown on the plot axes. *key_text* Text describing the quantile-quantile comparison quantity; will be shown on the plot legend. Returns: An :class:`omega.RectPlot` instance. *TODO*: nothing about this is Sherpa-specific. Same goes for some of the plotting routines in :mod:`pkwit.environments.casa.data`; might be reasonable to add a submodule for generic X-ray-y plotting routines. """ import omega as om kev = np.asarray(kev) obs = np.asarray(obs) mdl = np.asarray(mdl) c_obs = np.cumsum(obs) c_mdl = np.cumsum(mdl) mx = max(c_obs[-1], c_mdl[-1]) p = om.RectPlot() p.addXY([0, mx], [0, mx], '1:1') p.addXY(c_mdl, c_obs, key_text) # HACK: this range of numbers is chosen to give reasonable sampling for my # sources, which are typically quite soft. locs = np.array([0, 0.05, 0.08, 0.11, 0.17, 0.3, 0.4, 0.7, 1]) * (kev.size - 2) c0 = mx * 1.05 c1 = mx * 1.1 for loc in locs: i0 = int(np.floor(loc)) frac = loc - i0 kevval = (1 - frac) * kev[i0] + frac * kev[i0+1] mdlval = (1 - frac) * c_mdl[i0] + frac * c_mdl[i0+1] obsval = (1 - frac) * c_obs[i0] + frac * c_obs[i0+1] p.addXY([mdlval, mdlval], [c0, c1], '%.2f keV' % kevval, dsn=2) p.addXY([c0, c1], [obsval, obsval], None, dsn=2) p.setLabels('Cumulative model ' + unit, 'Cumulative data ' + unit) p.defaultKeyOverlay.vAlign = 0.3 return p def make_multi_qq_plots(arrays, key_text): """Make a quantile-quantile plot comparing multiple sets of events and models. *arrays* X. *key_text* Text describing the quantile-quantile comparison quantity; will be shown on the plot legend. Returns: An :class:`omega.RectPlot` instance. *TODO*: nothing about this is Sherpa-specific. Same goes for some of the plotting routines in :mod:`pkwit.environments.casa.data`; might be reasonable to add a submodule for generic X-ray-y plotting routines. *TODO*: Some gross code duplication here. """ import omega as om p = om.RectPlot() p.addXY([0, 1.], [0, 1.], '1:1') for index, array in enumerate(arrays): kev, obs, mdl = array c_obs = np.cumsum(obs) c_mdl = np.cumsum(mdl) mx = 0.5 * (c_obs[-1] + c_mdl[-1]) c_obs /= mx c_mdl /= mx p.addXY(c_mdl, c_obs, '%s #%d' % (key_text, index)) # HACK: this range of numbers is chosen to give reasonable sampling for my # sources, which are typically quite soft. # # Note: this reuses the variables from the last loop iteration. locs = np.array([0, 0.05, 0.08, 0.11, 0.17, 0.3, 0.4, 0.7, 1]) * (kev.size - 2) c0 = 1.05 c1 = 1.1 for loc in locs: i0 = int(np.floor(loc)) frac = loc - i0 kevval = (1 - frac) * kev[i0] + frac * kev[i0+1] mdlval = (1 - frac) * c_mdl[i0] + frac * c_mdl[i0+1] obsval = (1 - frac) * c_obs[i0] + frac * c_obs[i0+1] p.addXY([mdlval, mdlval], [c0, c1], '%.2f keV' % kevval, dsn=2) p.addXY([c0, c1], [obsval, obsval], None, dsn=2) p.setLabels('Cumulative rescaled model', 'Cumulative rescaled data') p.defaultKeyOverlay.vAlign = 0.3 return p def make_spectrum_plot(model_plot, data_plot, desc, xmin_clamp=0.01, min_valid_x=None, max_valid_x=None): """Make a plot of a spectral model and data. *model_plot* A model plot object returned by Sherpa from a call like `ui.get_model_plot()` or `ui.get_bkg_model_plot()`. *data_plot* A data plot object returned by Sherpa from a call like `ui.get_source_plot()` or `ui.get_bkg_plot()`. *desc* Text describing the origin of the data; will be shown in the plot legend (with "Model" and "Data" appended). *xmin_clamp* The smallest "x" (energy axis) value that will be plotted; default is 0.01. This is needed to allow the plot to be shown on a logarithmic scale if the energy axes of the model go all the way to 0. *min_valid_x* Either None, or the smallest "x" (energy axis) value in which the model and data are valid; this could correspond to a range specified in the "notice" command during analysis. If specified, a gray band will be added to the plot showing the invalidated regions. *max_valid_x* Like *min_valid_x* but for the largest "x" (energy axis) value in which the model and data are valid. Returns: A tuple ``(plot, xlow, xhigh)``, where *plot* an OmegaPlot RectPlot instance, *xlow* is the left edge of the plot bounds, and *xhigh* is the right edge of the plot bounds. """ import omega as om model_x = np.concatenate((model_plot.xlo, [model_plot.xhi[-1]])) model_x[0] = max(model_x[0], xmin_clamp) model_y = np.concatenate((model_plot.y, [0.])) # Sigh, sometimes Sherpa gives us bad values. is_bad = ~np.isfinite(model_y) if is_bad.sum(): from .cli import warn warn('bad Sherpa model Y value(s) at: %r', np.where(is_bad)[0]) model_y[is_bad] = 0 data_left_edges = data_plot.x - 0.5 * data_plot.xerr data_left_edges[0] = max(data_left_edges[0], xmin_clamp) data_hist_x = np.concatenate((data_left_edges, [data_plot.x[-1] + 0.5 * data_plot.xerr[-1]])) data_hist_y = np.concatenate((data_plot.y, [0.])) log_bounds_pad_factor = 0.9 xlow = model_x[0] * log_bounds_pad_factor xhigh = model_x[-1] / log_bounds_pad_factor p = om.RectPlot() if min_valid_x is not None: p.add(om.rect.XBand(1e-3 * xlow, min_valid_x, keyText=None), zheight=-1, dsn=1) if max_valid_x is not None: p.add(om.rect.XBand(max_valid_x, xhigh * 1e3, keyText=None), zheight=-1, dsn=1) csp = om.rect.ContinuousSteppedPainter(keyText=desc + ' Model') csp.setFloats(model_x, model_y) p.add(csp) csp = om.rect.ContinuousSteppedPainter(keyText=None) csp.setFloats(data_hist_x, data_hist_y) p.add(csp) p.addXYErr(data_plot.x, data_plot.y, data_plot.yerr, desc + ' Data', lines=0, dsn=1) p.setLabels(data_plot.xlabel, data_plot.ylabel) p.setLinLogAxes(True, False) p.setBounds (xlow, xhigh) return p, xlow, xhigh def make_multi_spectrum_plots(model_plot, plotids, data_getter, desc, xmin_clamp=0.01, min_valid_x=None, max_valid_x=None): """Make a plot of multiple spectral models and data. *model_plot* A model plot object returned by Sherpa from a call like ``ui.get_model_plot()`` or ``ui.get_bkg_model_plot()``. *data_plots* An iterable of data plot objects returned by Sherpa from calls like ``ui.get_source_plot(id)`` or ``ui.get_bkg_plot(id)``. *desc* Text describing the origin of the data; will be shown in the plot legend (with "Model" and "Data #<number>" appended). *xmin_clamp* The smallest "x" (energy axis) value that will be plotted; default is 0.01. This is needed to allow the plot to be shown on a logarithmic scale if the energy axes of the model go all the way to 0. *min_valid_x* Either None, or the smallest "x" (energy axis) value in which the model and data are valid; this could correspond to a range specified in the "notice" command during analysis. If specified, a gray band will be added to the plot showing the invalidated regions. *max_valid_x* Like *min_valid_x* but for the largest "x" (energy axis) value in which the model and data are valid. Returns: A tuple ``(plot, xlow, xhigh)``, where *plot* an OmegaPlot RectPlot instance, *xlow* is the left edge of the plot bounds, and *xhigh* is the right edge of the plot bounds. TODO: not happy about the code duplication with :func:`make_spectrum_plot` but here we are. """ import omega as om from omega.stamps import DataThemedStamp, WithYErrorBars model_x = np.concatenate((model_plot.xlo, [model_plot.xhi[-1]])) model_x[0] = max(model_x[0], xmin_clamp) model_y = np.concatenate((model_plot.y, [0.])) # Sigh, sometimes Sherpa gives us bad values. is_bad = ~np.isfinite(model_y) if is_bad.sum(): from .cli import warn warn('bad Sherpa model Y value(s) at: %r', np.where(is_bad)[0]) model_y[is_bad] = 0 p = om.RectPlot() data_csps = [] data_lines = [] xlow = xhigh = None for index, plotid in enumerate(plotids): data_plot = data_getter(plotid) data_left_edges = data_plot.x - 0.5 * data_plot.xerr data_left_edges[0] = max(data_left_edges[0], xmin_clamp) data_hist_x = np.concatenate((data_left_edges, [data_plot.x[-1] + 0.5 * data_plot.xerr[-1]])) data_hist_y = np.concatenate((data_plot.y, [0.])) if xlow is None: xlow = model_x[0] xhigh = model_x[-1] else: xlow = min(xlow, model_x[0]) xhigh = max(xhigh, model_x[-1]) csp = om.rect.ContinuousSteppedPainter(keyText=None) csp.setFloats(data_hist_x, data_hist_y) data_csps.append(csp) inner_stamp = DataThemedStamp(None) stamp = WithYErrorBars(inner_stamp) lines = om.rect.XYDataPainter( lines = False, pointStamp = stamp, keyText = '%s Data #%d' % (desc, index) ) lines.setFloats(data_plot.x, data_plot.y, data_plot.y + data_plot.yerr, data_plot.y - data_plot.yerr) inner_stamp.setHolder(lines) data_lines.append(lines) log_bounds_pad_factor = 0.9 xlow *= log_bounds_pad_factor xhigh /= log_bounds_pad_factor if min_valid_x is not None: p.add(om.rect.XBand(1e-3 * xlow, min_valid_x, keyText=None), zheight=-1, dsn=1) if max_valid_x is not None: p.add(om.rect.XBand(max_valid_x, xhigh * 1e3, keyText=None), zheight=-1, dsn=1) model_csp = om.rect.ContinuousSteppedPainter(keyText=desc + ' Model') model_csp.setFloats(model_x, model_y) p.add(model_csp) for index, (data_csp, lines) in enumerate(zip(data_csps, data_lines)): p.add(data_csp, dsn=index + 1) p.add(lines, dsn=index + 1) p.setLabels(data_plot.xlabel, data_plot.ylabel) # data_plot = last one from the for loop p.setLinLogAxes(True, False) p.setBounds (xlow, xhigh) return p, xlow, xhigh
3d53d4bb40c4268b088868ff8984f18d7124d394
818173671edf15d7c6d775ed003bcd35608233f9
/waflib/extras/fluid.py
28fbfd2776e9d6d9868249bacd8c53ced6b340e8
[]
no_license
zsx/waf
a1e87e079e22443ae3ed98e08cefc705b5f73906
66d1c6ede4ceda66a98dbbf9dd473f1d5c5752ba
refs/heads/master
2021-01-13T12:56:12.379186
2010-07-12T17:27:13
2010-07-12T17:27:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
856
py
#!/usr/bin/python # encoding: utf-8 # Grygoriy Fuchedzhy 2009 """ Compile fluid files (fltk graphic library). Use the 'fluid' feature in conjuction with the 'cxx' feature. """ from waflib import Task from waflib.TaskGen import extension class fluid(Task.Task): color = 'BLUE' ext_out = ['.h'] run_str = '${FLUID} -c -o ${TGT[0].abspath(env)} -h ${TGT[1].abspath()} ${SRC}' @extension('.fl') def fluid(self, node): """add the .fl to the source list; the cxx file generated will be compiled when possible""" cpp = node.change_ext('.cpp') hpp = node.change_ext('.hpp') self.create_task('fluid', node, [cpp, hpp]) if 'cxx' in self.features: self.source.append(cpp) def configure(conf): conf.find_program('fluid', var='FLUID') conf.check_cfg(path='fltk-config', package='', args='--cxxflags --ldflags', uselib_store='FLTK', mandatory=True)
[ "tnagy1024@f0382ac9-c320-0410-b3f0-b508d59f5a85" ]
tnagy1024@f0382ac9-c320-0410-b3f0-b508d59f5a85
48de20fc8323234c249ebd7b875a5f7ae2bd275c
8bb63e2a80173a3158eab9a521a7f5e17d16c947
/test_scripts/mimo_project/test_batch.py
69e4321927336da6d0df9f90a5a9b62b5cf363b7
[]
no_license
pascaie/python_test_private
c0541c4b70441d365b14def662a308617bda4b5f
03af3d4a0599869e466fdae16ab07848b9f0c889
refs/heads/master
2020-04-08T03:34:17.139424
2018-12-21T01:03:28
2018-12-21T01:03:28
158,981,277
0
0
null
null
null
null
UTF-8
Python
false
false
1,539
py
# pictures location: C:\Users\pascaie\Pictures import os # work with files and the Operating System from datetime import datetime folder = r"C:\Users\pascaie\Pictures\pictures_download" # "r" is for "raw string" location = input("Photo location: ") # asks the user to input a location which will be added to the new filename files = os.listdir(folder) # creates a list of the elements within the folder for filename in files: if not filename.startswith('.'): # do not consider the "."-named files/directories file = os.path.join(folder, filename) # joins the folder with the file extension = os.path.splitext(file) # split the file and its extension, i.e. returns a 2-element list # print(extension) m_time = os.path.getmtime(file) # get the last modification time # print(m_time) # this returns the seconds passed since January 1st, 1970 real_time = datetime.fromtimestamp(m_time) # get the last modification time in a readable format # print(real_time) f_time = datetime.strftime(real_time, "%Y%m%d_%H%M%S") # here you can edit the output format of the date # print(f_time) new_filename = location + "_" + f_time + extension[1] # compose the new new_filename # OBS: express the extension as the second element of the extension variable new_file = os.path.join(folder, new_filename) # get the path and name of the new file os.rename(file, new_file) # here, the files are effectively renamed with the new names
ed55f165177b62a572dd5f14ba39bcca8cf7496e
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02659/s368852702.py
9a8d0466876ef1d34613c066aa5e8c5f12f432d7
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
79
py
a,b = input().split() a = int(a) b = int("".join(b.split("."))) print(a*b//100)
417ec970032c0b5a7d2d5f7859da0e1c583efa67
8d3adc636d0ea114490f66420123f08fae3483e2
/tutorial/python_advance/multiple_job.py
c018e41f44603fcb82465dc75e72a66346df0513
[]
no_license
sengeiou/python_intern
a7658873de7e01c14ee8061a1401b7bee9aff350
73caa984d1429dc1882446432075ccf986380308
refs/heads/master
2023-02-02T19:00:05.204600
2020-12-23T23:41:11
2020-12-23T23:41:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
131
py
# -*- coding=utf-8 -*- """ 该文件主要练习Python多线程的使用 Author : Cucumber Date : 10/22/20 """
10fcbced63f004253d5e1ff2975551c9f3875eb9
8cf978166ba469d789bc125189c67fda56e26f52
/venv/bin/pylupdate5
c9bd440d6bd2fd83f63cfc58868cb978ed5bb735
[]
no_license
soraWontForget/QuirkyVikavolt
3c5657923c5145b6f1e1509cb4c8c491f1b8b5d7
56d5af0f5b7cd4fcac9893e5aacb684c3587515b
refs/heads/master
2020-05-25T08:30:47.160183
2019-05-28T21:16:53
2019-05-28T21:16:53
187,712,255
0
0
null
null
null
null
UTF-8
Python
false
false
257
#!/Users/sora/Projects/QuirkyVikavolt/venv/bin/python # -*- coding: utf-8 -*- import re import sys from PyQt5.pylupdate_main import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
b816eb86977a2da6e487ea2ed2972230e405415f
d3efc82dfa61fb82e47c82d52c838b38b076084c
/Autocase_Result/GEM/YW_CYBMM_SZSJ_392_1.py
0526e7bb0d7cacf744ce16914885c815a8094da4
[]
no_license
nantongzyg/xtp_test
58ce9f328f62a3ea5904e6ed907a169ef2df9258
ca9ab5cee03d7a2f457a95fb0f4762013caa5f9f
refs/heads/master
2022-11-30T08:57:45.345460
2020-07-30T01:43:30
2020-07-30T01:43:30
280,388,441
0
0
null
null
null
null
UTF-8
Python
false
false
3,079
py
#!/usr/bin/python # -*- encoding: utf-8 -*- import sys sys.path.append("/home/yhl2/workspace/xtp_test/xtp/api") from xtp_test_case import * sys.path.append("/home/yhl2/workspace/xtp_test/service") from ServiceConfig import * from mainService import * from QueryStkPriceQty import * from log import * sys.path.append("/home/yhl2/workspace/xtp_test/mysql") from CaseParmInsertMysql import * sys.path.append("/home/yhl2/workspace/xtp_test/utils") from QueryOrderErrorMsg import queryOrderErrorMsg class YW_CYBMM_SZSJ_392_1(xtp_test_case): # YW_CYBMM_SZSJ_392_1 def test_YW_CYBMM_SZSJ_392_1(self): title = '交易日对方最优转限价-T+0买→T+0卖(未持有证券代码)' # 定义当前测试用例的期待值 # 期望状态:初始、未成交、部成、全成、部撤已报、部撤、已报待撤、已撤、废单、撤废、内部撤单 # xtp_ID和cancel_xtpID默认为0,不需要变动 case_goal = { '期望状态': '废单', 'errorID': 11010121, 'errorMSG': queryOrderErrorMsg(11010121), '是否生成报单': '是', '是否是撤废': '否', 'xtp_ID': 0, 'cancel_xtpID': 0, } logger.warning(title) # 定义委托参数信息------------------------------------------ # 参数:证券代码、市场、证券类型、证券状态、交易状态、买卖方向(B买S卖)、期望状态、Api stkparm = QueryStkPriceQty('300116', '2', '2', '2', '0', 'B', case_goal['期望状态'], Api) # 如果下单参数获取失败,则用例失败 if stkparm['返回结果'] is False: rs = { '用例测试结果': stkparm['返回结果'], '测试错误原因': '获取下单参数失败,' + stkparm['错误原因'], } self.assertEqual(rs['用例测试结果'], True) else: wt_reqs = { 'business_type': Api.const.XTP_BUSINESS_TYPE['XTP_BUSINESS_TYPE_CASH'], 'order_client_id':2, 'market': Api.const.XTP_MARKET_TYPE['XTP_MKT_SZ_A'], 'ticker': stkparm['证券代码'], 'side': Api.const.XTP_SIDE_TYPE['XTP_SIDE_SELL'], 'price_type': Api.const.XTP_PRICE_TYPE['XTP_PRICE_REVERSE_BEST_LIMIT'], 'price': stkparm['涨停价'], 'quantity': 1000, 'position_effect': Api.const.XTP_POSITION_EFFECT_TYPE['XTP_POSITION_EFFECT_INIT'] } ParmIni(Api, case_goal['期望状态'], wt_reqs['price_type']) CaseParmInsertMysql(case_goal, wt_reqs) rs = serviceTest(Api, case_goal, wt_reqs) logger.warning('执行结果为' + str(rs['用例测试结果']) + ',' + str(rs['用例错误源']) + ',' + str(rs['用例错误原因'])) self.assertEqual(rs['用例测试结果'], True) # 0 if __name__ == '__main__': unittest.main()
93d59d9fc54cacf0f27df38051f0f003723c7ae8
cf287ec28cee69ff1e0060f01e5fd74f9d1f3e87
/venv/Scripts/pip-script.py
c0723f02d2f371b9cd458ab3529a3a2e19c358eb
[]
no_license
CookyChou/leetcode
1325b9be4d937401dfd8af278481abd6dae53bb4
73768b4fd9bcddc7e207450cff9091342a42f607
refs/heads/master
2020-05-07T08:08:16.244991
2019-04-09T07:39:06
2019-04-09T07:39:06
180,311,925
0
0
null
null
null
null
UTF-8
Python
false
false
384
py
#!D:\leetcode\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip')() )
8f57897c877404183d9f16f2cee0aa40e810a153
8d22d3784377165a57d5bea3896d6b6898e33d12
/django_portfolio_site/urls.py
e6434e5388f5fcc22375c19ace1a714f729dd61d
[ "MIT" ]
permissive
gbungbung/django-portfolio-site
0440969a08ff1364a2dc2f26a2e9fa24e2a558a3
7810211e157eac3c76bf139e2b65dc4a73d90cbc
refs/heads/master
2022-04-28T00:42:28.000930
2019-10-09T14:42:15
2019-10-09T14:42:15
211,950,587
0
0
MIT
2022-04-22T22:25:26
2019-09-30T20:28:32
JavaScript
UTF-8
Python
false
false
184
py
from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('', include('portfolio.urls'), name='portfolio') ]
a63ddf10b5dbe3cdaf65d13bf66221200c99a607
3ab9618e43aca5193e3538e35dd9452e4b598fc5
/__openerp__.py
9a7c092d9d3fe2ceaa5ae94b19e684e7d8270c6e
[]
no_license
cgsoftware/ImportParArticoli
60a3cd3561a102a025ac8f00aaa005b5ffc3be5c
4294bb4787091b9dc680120a1b231b1a87b42f55
refs/heads/master
2021-01-01T19:29:49.889526
2011-07-26T14:39:46
2011-07-26T14:39:46
2,107,348
0
0
null
null
null
null
UTF-8
Python
false
false
1,485
py
# -*- encoding: utf-8 -*- ############################################################################## # # Copyright (C) 2009 Italian Community (http://www). # All Rights Reserved # $Id$ # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## { 'name': 'IMPORT CATALOGHI FORNITORI', 'version': '0.1', 'category': 'Localisation/Italy', 'description': """Importazione Cataloghi Articoli da Fornitori, formati csv/txt per ogni campo articolo chiede un numero colonna del file da importare""", 'author': 'C & G Software sas', 'website': 'http://www.cgsoftware.it', "depends" : ['base','account','base_vat','product'], "update_xml" : ['partner.xml','partner_wizard.xml','security/ir.model.access.csv'], "active": False, "installable": True }