blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
09aa0e6424b150ea73e45f68fb4e799e0261c80c
f7ff5c9cb8693e8a06841eaddff8c1d3ab898ad9
/testing.py
75222f05e7ec4a5c684f4f21b5e0f08a58e94fac
[]
no_license
cro1100/sqlalchemy-challenge
c067fadc91f8f6a781e1cb49e906913934c70256
860c1ac4870c6d7f7ed37ac4b04e16413f8c66ec
refs/heads/main
2023-01-28T14:34:59.092250
2020-12-02T22:57:28
2020-12-02T22:57:28
310,405,472
0
0
null
null
null
null
UTF-8
Python
false
false
1,827
py
#!/usr/bin/env python # coding: utf-8 # get_ipython().run_line_magic('matplotlib', 'inline') from matplotlib import style style.use('fivethirtyeight') import matplotlib.pyplot as plt import numpy as np import pandas as pd import datetime as dt # # Reflect Tables into SQLAlchemy ORM # Python SQL toolkit and Object Relational Mapper import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func, inspect engine = create_engine("sqlite:///Resources/hawaii.sqlite") connection = engine.connect() # create a base Base = automap_base() # reflect an existing database into a new model Base.prepare(engine, reflect=True) # reflect the tables Base.classes.keys() Measurement = Base.classes.measurement Station = Base.classes.station # # Include inspector inspector = inspect(engine) ################################################# # Flask Setup ################################################# app = Flask(__name__) ################################################# # Flask Routes ################################################# @app.route("/") def welcome(): """List all available api routes.""" return ( f"Available Routes:<br/>" f"/api/v1.0/precipitation<br/>" f"/api/v1.0/stations<br/>" f"/api/v1.0/tobs<br/>" f"/api/v1.0/<start> <br/>" f"/api/v1.0/<start>/<end><br/>" ) # # Exploratory Climate Analysis @app.route("/api/v1.0/precipitation") def precipitation(): session = Session(engine) # Design a query to retrieve the last 12 months of precipitation data and plot the results title_df = pd.read_sql("SELECT prcp, max(date) as oldest_date FROM measurement", connection) return jsonify(title_df) if __name__ == '__main__': app.run(debug=True)
415f38765388035c4444c139c8ef46f53a74dc5d
2f545a9c55611d35b061c999f924b4bdb6fb8f20
/Analysing_twitter/Downloading_tweets.py
3652083f3c9cb32c141098d462bb18e726bb393e
[]
no_license
ConstanceSL/vigilant-octo-memory
2049ab79be0e1616bd1d206bc547610d8b330c26
c6bc431eeb81e5f7dd7573ceedfbe041476c1769
refs/heads/master
2020-03-17T19:00:39.023972
2018-09-04T09:48:54
2018-09-04T09:48:54
133,842,840
0
0
null
null
null
null
UTF-8
Python
false
false
7,842
py
import tweepy import pandas as pd import datetime import os import numpy as np # Importing the keys for the twitter API keys = pd.read_csv('/Users/Constance/keys/twitter_keys.csv', index_col=0) consumer_key = keys.loc['consumer_key'][0] consumer_secret = keys.loc['consumer_secret'][0] access_token = keys.loc['access_token'][0] access_token_secret = keys.loc['access_token_secret'][0] # Defining the main functions def download_tweets(query, limit): """ Downloads the tweets in the query. Because of the limit on the number of requests, can take a while. Doesn't include retweets, and has a random old date for the time limit (will get only 7 days of data anyway) :param query: hashtag to search :param limit: max number of tweets to download (it tends to crash above 100'000 tweets) :return: list of tweets (json format) """ tweets = [] auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth, wait_on_rate_limit=True) n = 0 m = 0 print('-' * 100 + '\nStarting download for ' + query) for tweet in tweepy.Cursor(api.search, q=query + ' -filter:retweets', count=100, lang="en", since="2017-06-28", include_rts=False, tweet_mode="extended").items(): tweets.append(tweet._json) n += 1 if n == 500: print('Tweets {}-{} downloaded'.format(m + n - 499, m + n)) n = 0 m += 500 if m + n == limit: break print('Downloaded {} tweets'.format(m + n)) return tweets def format_tweets(tweets, query, orientation): """ Formats the downloaded tweets into lists (to be converted to a dataframe), keeping only the relevant info. Not all fields exist in the json, so uses a lot of try/except to catch this and puts 'None' for the exceptions :param tweets: list of tweets (json format) :return: list of tweets (list format) with only the relevant fields """ formatted_tweets = [] for tweet in tweets: formatted_tweet = [] formatted_tweet.extend([tweet['created_at'], tweet['id'], tweet['full_text'], tweet['truncated'], tweet['display_text_range']]) try: formatted_tweet.append([tag['text'] for tag in tweet['entities']['hashtags']]) except Exception: formatted_tweet.append(np.nan) try: formatted_tweet.extend([[mention['screen_name'] for mention in tweet['entities']['user_mentions']], [mention['name'] for mention in tweet['entities']['user_mentions']]]) except Exception: formatted_tweet.extend([np.nan, np.nan]) try: formatted_tweet.append([link['url'] for link in tweet['entities']['urls']]) except Exception: formatted_tweet.append(np.nan) try: formatted_tweet.extend([[media['media_url'] for media in tweet['entities']['media']], [media['type'] for media in tweet['entities']['media']]]) except Exception: formatted_tweet.extend([np.nan, np.nan]) try: formatted_tweet.extend([[media['media_url'] for media in tweet['extended_entities']['media']], [media['type'] for media in tweet['extended_entities']['media']]]) except Exception: formatted_tweet.extend([np.nan, np.nan]) formatted_tweet.extend([tweet['in_reply_to_status_id'], tweet['in_reply_to_user_id'], tweet['in_reply_to_screen_name'], tweet['user']['id'], tweet['user']['name'], tweet['user']['screen_name'], tweet['user']['location'], tweet['user']['description'], tweet['user']['url'], tweet['user']['followers_count'], tweet['user']['friends_count'], tweet['user']['listed_count'], tweet['user']['created_at'], tweet['user']['favourites_count'], tweet['user']['verified'], tweet['user']['statuses_count'], tweet['user']['lang'], tweet['user']['contributors_enabled'], tweet['contributors'], tweet['is_quote_status'], tweet['retweet_count'], tweet['favorite_count'], tweet['favorited'], tweet['retweeted'], tweet['lang']]) try: formatted_tweet.append(tweet['possibly_sensitive']) except Exception: formatted_tweet.append(np.nan) formatted_tweet.append(query) formatted_tweet.append(orientation) formatted_tweet.append(datetime.datetime.now().strftime("%d-%m-%Y")) formatted_tweets.append(formatted_tweet) print('{} tweets formatted'.format(len(formatted_tweets))) return formatted_tweets def tweets_to_df(formatted_tweets): """ Turns the list of formatted tweets to a dataframe :param formatted_tweets: list of tweets (list format) with only the relevant fields :return: dataframe of formatted tweets """ col = ['created_at', 'id_number', 'text', 'truncated', 'text_range', 'hashtags', 'mentions_screen_names', 'mentions_names', 'links', 'media_urls', 'media_types', 'expanded_media_urls', 'expanded_media_types', 'reply_to_status_id', 'reply_to_user_id', 'reply_to_screen_name', 'user_id', 'user_name', 'user_screen_name', 'user_location', 'user_description', 'user_url', 'user_followers_count', 'user_friends_count', 'user_listed_count', 'user_created_at', 'user_favourites_count', 'user_verified', 'user_statuses_count', 'user_lang', 'user_contributors_enabled', 'contributors', 'is_quote_status', 'retweet_count', 'favorites_count', 'favorited', 'retweeted', 'lang', 'possibly_sensitive', 'query', 'orientation', 'date'] tweets_df = pd.DataFrame(formatted_tweets, columns=col) return tweets_df def save_df(tweets_df, path): """ Saves the dataframe to csv :param tweets_df: Dataframe of formatted tweets :param path: where to save the tweets :return: None """ tweets_df.dropna(subset=['text', 'id_number']) tweets_df.to_csv(path) print('Dataframe saved to file') def download_and_save_tweets(): """ General function that downloads, formats, and saves the tweets :param query: hashtag to query :param limit: max number of tweets to download :param path: where to save the csv :return: formatted data frame of tweets """ path = input('Please enter the path of the project directory: ') date = datetime.datetime.now().strftime("%d-%m-%Y") queries = [x for x in input('Hashtags to query (separated by " ,"): ').split(', ')] orientations = [x for x in input('Orientation of the hashtags (pro/against, separated by " ,"): ').split(', ')] limit = input('Maximum number of tweets to download: ') # Moving to the right directory and checking if a folder for raw data exists (creates it if not) os.chdir(path) if not os.path.exists('./raw_data'): os.makedirs('./raw_data') os.chdir('./raw_data') # Downloading and saving the data for query, orientation in zip(queries, orientations): tweets = download_tweets(query, limit) formatted_tweets = format_tweets(tweets, query, orientation) tweets_df = tweets_to_df(formatted_tweets) save_df(tweets_df, query + '_' + date + '.csv') print('All hashtags downloaded') return None if __name__ == "__main__": download_and_save_tweets()
265ebd4b01c92572c56ef4f7bfd68a340da1ad7b
1f67e01617c2893fd0f33b057a1a80b70976f489
/chapter2/get_cntour.py
fa8800cdec1c1c1c88319931799c4dca08e0754c
[]
no_license
yxl1761274146/studyssh
0f60d82faa914882329c2b162c100aa43002f58f
cc8c66719a251062939174ac831b622d48617443
refs/heads/master
2022-04-28T10:01:00.511832
2020-04-24T08:13:15
2020-04-24T08:13:15
257,182,160
0
2
null
2020-04-20T08:11:40
2020-04-20T05:38:40
HTML
UTF-8
Python
false
false
91
py
import requests url="http://www.centor.cn" response=requests.get(url) print(response.text)
77f896b78bdca51ae020b151b70c96935c627d4c
9ebc24d199d0031ba290001bdbfdebc969ecd8a9
/api.py
4295ff9603156e7ecd21e228f7608265bf75e704
[]
no_license
SorakaMafaka/Riot_API
0074b549f9d0ed917e35b29040aa4958e65fee13
9fdec116f28ea260b35c4eb8f4d1c286d1f99662
refs/heads/master
2023-03-06T00:26:58.423914
2021-02-24T16:10:05
2021-02-24T16:10:05
341,957,751
0
0
null
null
null
null
UTF-8
Python
false
false
2,485
py
# SοrakaMafaka # API-Key: API from riotwatcher import LolWatcher, ApiError import pandas as pd import cv2 # Global vars api_key = 'API KEY' watcher = LolWatcher(api_key) my_region = 'eun1' region = 'eune' # Check league's latest version latest = watcher.data_dragon.versions_for_region(region)['n']['champion'] # Champions static information static_champ_list = watcher.data_dragon.champions(latest, False, 'en_US') # General stats me = watcher.summoner.by_name(my_region, 'SοrakaMafaka') # print(me) # Rank stats #my_ranked_stats = watcher.league.by_summoner(my_region, me['id']) # print(my_ranked_stats) my_matches = watcher.match.matchlist_by_account(my_region, me['accountId']) # Fetch details of last match last_match = my_matches['matches'][0] match_detail = watcher.match.by_id(my_region, last_match['gameId']) participants = [] for row in match_detail['participants']: participants_row = {} participants_row['champion'] = row['championId'] #participants_row['spell1'] = row['spell1Id'] #participants_row['spell2'] = row['spell2Id'] participants_row['win'] = row['stats']['win'] participants_row['kills'] = row['stats']['kills'] participants_row['deaths'] = row['stats']['deaths'] participants_row['assists'] = row['stats']['assists'] #participants_row['totalDamageDealt'] = row['stats']['totalDamageDealt'] #participants_row['goldEarned'] = row['stats']['goldEarned'] #participants_row['champLevel'] = row['stats']['champLevel'] #participants_row['totalMinionsKilled'] = row['stats']['totalMinionsKilled'] #participants_row['item0'] = row['stats']['item0'] #participants_row['item1'] = row['stats']['item1'] participants.append(participants_row) participantIdentities = [] for row in match_detail['participantIdentities']: participantIdentities_row = {} participantIdentities_row['summonerName'] = row['player']['summonerName'] participantIdentities.append(participantIdentities_row) # Champion static list data to dictionary for looking up champ_dict = {} for key in static_champ_list['data']: row = static_champ_list['data'][key] champ_dict[row['key']] = row['id'] for row in participants: row['championName'] = champ_dict[str(row['champion'])] # print(match_detail.keys()) df = pd.DataFrame(participants) df1 = pd.DataFrame(participantIdentities) frames = [df, df1] result = pd.concat(frames, axis=1, join="inner") print(result.to_string()) # End of fetch deails of last match
faf3d095d3cc4af042fe18427706194245f0b483
83e45f7177a29cfc39a4eff83f9b83aebdf78048
/test/frequency/test_calculate.py
e931305a22795da8a9ad5b207bb9630ce36d3a18
[ "Apache-2.0" ]
permissive
UCL/twitter-user-fetch
f9c8ca641c5dfd7d37a8a6286773247d02f8443c
1677e4468ebc083046c641568b9770cb650d18a9
refs/heads/master
2021-07-14T18:43:56.383991
2017-10-20T08:28:52
2017-10-20T08:28:52
107,196,137
0
0
null
2017-10-20T08:28:53
2017-10-17T00:05:49
Python
UTF-8
Python
false
false
1,643
py
from app.frequency import calculate import unittest class TestCalculate(unittest.TestCase): dl = [ ['Tue Sep 19 11:53:24 +0000 2017', '#alltestsmatter1'], ['Thu Sep 21 11:53:24 +0000 2017', '#alltestsmatter2'], ['Thu Oct 19 11:53:24 +0000 2017', '#alltestsmatter1'], ['Thu Oct 19 11:53:24 +0000 2017', '#alltestsmatter1'], ['Thu Oct 19 11:53:24 +0000 2017', '#alltestsmatter2'], ['Thu Oct 19 11:53:24 +0000 2017', '#alltestsmatter2'], ['Thu Oct 19 11:53:24 +0000 2017', '#alltestsmatter2'], ] def test_get_monthly_frequency(self): expected = [ [2017, 9, '#alltestsmatter1', 1], [2017, 9, '#alltestsmatter2', 1], [2017, 10, '#alltestsmatter1', 2], [2017, 10, '#alltestsmatter2', 3] ] calc_df = calculate.Calculate(self.dl) self.assertListEqual(calc_df.get_monthly_frequency().values.tolist(), expected, "Must calculate frequency") def test_get_average_monthly_frequency(self): expected = [ ['#alltestsmatter1', 1.5], ['#alltestsmatter2', 2.0] ] calc_df = calculate.Calculate(self.dl) self.assertListEqual(calc_df.get_average_monthly_frequency().values.tolist(), expected, "Must calculate avg") def test_get_average_monthly_frequency_descending(self): expected = [ ['#alltestsmatter2', 2.0], ['#alltestsmatter1', 1.5] ] calc_df = calculate.Calculate(self.dl) self.assertListEqual(calc_df.get_average_monthly_frequency_descending().values.tolist(), expected, "Must sort")
6bfb52aa9f932793c3fb1ce5394829309aab7d4e
169d809f45dedcaa3c7b1b49912d8b025abe18d9
/challenge251_easy_re.py
516f39b9767f732d8d695bcffd712a849d351e4d
[]
no_license
bermec/challenges
8a82d1d38d1ed1a0fc3f258443bc0054efc977a6
9fb092f20f12b4eaa808e758f00f482a49346c88
refs/heads/master
2021-10-08T05:05:56.803332
2018-12-08T00:20:20
2018-12-08T00:20:20
109,448,713
0
0
null
null
null
null
UTF-8
Python
false
false
2,324
py
''' Nonograms, also known as Hanjie, Picross or Griddlers, are picture logic puzzles in which cells in a grid must be colored or left blank according to numbers at the side of the grid to reveal a hidden picture. In this puzzle type, the numbers are a form of discrete tomography that measures how many unbroken lines of filled-in squares there are in any given row or column. In a Nonogram you are given the number of elements in the rows and columns. A row/column where containing no element has a '0' all other rows/columns will have at least one number. Each number in a row/column represent sets of elements next to each other. If a row/column have multiple sets, the declaration of that row/column will have multiple numbers. These sets will always be at least 1 cell apart. An example 2 1 1 1 1 1 2 1 2 * * 1 2 * * * 0 2 1 * * * 2 * * Formal Inputs & Outputs Input description Today we will work with ASCII "art". The different character will serve as colors. If you want you can ofcourse color them in the output. * /| / | / | *---* Output description Output changes a bit, you will show the set of the same characters. Note 2 sets of different characters don't have to be seperated by an empty cell Columns: (*,1) (/,1) (/,1) (/,1) (|,3) (*,1) (-,2) (-,1) (-,1) (*,1) Rows: (*,1) (/,1) (|,1) (/,1) (|,1) (/,1) (|,1) (*,1) (-,3) (*,1) Ins 1 * /| / | / | *---* 2 /\ # /**\# /****\ /******\ /--------\ | | | || # | | || # | | || | *------* Bonus 1 Place the columns and rows in a grid like you would give to a puzzler (*,1) (/,1) (/,1) (/,1) (|,3) (*,1) (-,2) (-,1) (-,1) (*,1) (*,1) (/,1) (|,1) (/,1) (|,1) (/,1) (|,1) (*,1) (-,3) (*,1) Bonus 2 Now solve a ASCII puzzle. This should be a little bit ''' pattern = ''' (*,1) (/,1) (|,1) (/,1) (|,1) (/,1) (|,1) (*,1) (-,3) (*,1)''' pattern = pattern.splitlines() print(pattern) import re for x in range(0, 5): ans = re.findall('\s\s[\(\S\S\d\)]+', pattern[x]) ans = ans[0] ans = ans.split(' ') for item in ans: print(ans)
8b7072d1ba5a4ede933dd01a2384c3eaf6b82838
cbc41d6251f6cd9ddf802046d73f67f01baabf48
/tp0/copia_jimmy.py
2f958d68e8ccc14c85e1f0703bf8fcc671bffbe7
[]
no_license
jimsrc/bio16
cf004bd9413372214a567ab3abb6b82d52e2492c
a3f5452c9b133fbc3f7e2ba32d979a8dd2b01931
refs/heads/master
2020-08-04T20:14:34.420227
2016-08-25T20:59:46
2016-08-25T20:59:46
66,593,826
0
1
null
null
null
null
UTF-8
Python
false
false
596
py
import numpy as np import codecs import igraph import pandas as pd u = open(1, 'w', encoding='utf-8', closefd=False) data = pd.read_csv("lista_curso.csv",encoding='utf-8') data = data.replace(np.nan,0) names_data = data.drop(data.columns[range(14)] ,axis=1) print(names_data.columns,file=u) print(names_data,file=u) node_names = data['Nombre'].values print(node_names,file=u) values = names_data.values g = igraph.Graph.Adjacency(values.tolist()) g.es['weight'] = values[values.nonzero()] g.vs['labels'] = node_names print(g.degree(),file=u) igraph.plot(g, vertex_label=g.vs['labels'])
219150b5a382ba176958a98fcb77fe773104e5fa
53a262d3db0d5540991bd042e883b78fe8c87a05
/gis_rest_project/urls.py
d5a9c7ea79431819515bf284e8f0b21e19d6dc0c
[]
no_license
davy254/gis_rest_project
42e40f79439b6b966562fb8461ba00f136d53d17
049cd40975a09a92cbef1ab031136f0f5d1dca8f
refs/heads/master
2022-12-14T17:31:56.083232
2020-09-10T12:08:54
2020-09-10T12:08:54
295,836,409
0
0
null
null
null
null
UTF-8
Python
false
false
819
py
"""gis_rest_project URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,include urlpatterns = [ path('admin/', admin.site.urls), path('', include('nairobi_hospitals_api.urls')), ]
d34431680d74d350cfa028cb5ffe34f5d8fada99
dfce9280c3299bacae9563a3837519d1d23c2a5a
/chap13_files/item05_see_matrix.py
e76d6c77ac189e620ae263a097098bc561616d27
[]
no_license
DemianLuna/python-01-basics-2020-course
bda5b8efc7da54b1af7b27c549e7b6e7c70eba33
e499eb8e3cfc644dea175baaada7c923cc18739c
refs/heads/master
2022-12-22T19:16:05.809925
2020-09-26T18:34:04
2020-09-26T18:34:04
294,977,293
0
0
null
2020-09-12T16:01:14
2020-09-12T16:01:13
null
UTF-8
Python
false
false
690
py
""" Before start, go to the following direcction - [First 10 years of Google stock](https://goo.gl/3zaUlD) Download de csv file and renamed to google_stock_data.csv After that copy the header and the first 5 records and create the file google_stock_data_mini.csv """ from colorama import Fore, Style, init import platform my_system = platform.system() ## this is a ternary if is_windows = True if my_system == 'Windows' else False # Use convert True for windows systems init( convert=is_windows ) csv_path = 'google_stock_data.csv' csv_file = open( csv_path ) size = 0 for line in csv_file: print( f"{Fore.GREEN} {line}" ) size+=1 print( f"\nTotal lines are { size }" )
94bed5381ed0ed656b517ee6a6c890226eb4ca73
4537fb9c826c9cf67f1774300d5bf235f6992360
/Solutions/0042/Q_0042.py
344a43e6d0877cc20828777b687b119ad252f4d7
[]
no_license
Conzpite/ProjectEuler
1270300bc3f9dfe321fa7ade8342124a49d3b475
c21f401effc26dd74ad23913f5e85355c6810ba9
refs/heads/master
2022-11-23T16:52:54.507136
2020-07-19T13:44:34
2020-07-19T13:44:34
277,668,544
0
0
null
null
null
null
UTF-8
Python
false
false
845
py
import math #Return highest value for comparison def AddTriangleNumber(numSet, n): value = n * (n+1) // 2 numSet.add(value) return value #Set up triangle numbers by preloading some numbers currN = 1 largestValue = 0 numSet = set() for i in range(20): largestValue = AddTriangleNumber(numSet, currN) currN += 1 words = [] with open("p042_words.txt", "r") as f: words = f.readline().split(",") triangleWordsNum = 0 for word in words: wordValue = 0 wordshort = word.strip("\"") for char in wordshort: wordValue += (ord(char)- ord('A') + 1) #Add more to triangle numbers to contain possible values while wordValue > largestValue: largestValue = AddTriangleNumber(numSet, currN) currN += 1 if wordValue in numSet: triangleWordsNum += 1 print(triangleWordsNum)
4db72792a3d7ae6431c64ea43c349511e7c74b70
3ac98e9354f761927732d75f096a27334a7f2d6a
/superbench/benchmarks/return_code.py
74739d2b761aa05e71ea86652089e4f27b9e0824
[ "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
santakd/superbenchmark
e8a3ac900853e2fb75b76efa3088fc7bf877032a
2299d238dd52e8da1142f59673b4e8c35134b123
refs/heads/main
2023-04-09T16:54:14.552150
2021-04-21T03:58:55
2021-04-21T03:58:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
747
py
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. """A module for statuses of benchmarks.""" from superbench.benchmarks.context import Enum class ReturnCode(Enum): """The Enum class representing benchmark status.""" # Common return codes. SUCCESS = 0 INVALID_ARGUMENT = 1 INVALID_BENCHMARK_TYPE = 2 INVALID_BENCHMARK_RESULT = 3 # Return codes related with model benchmarks. NO_SUPPORTED_PRECISION = 10 MODEL_TRAIN_FAILURE = 11 MODEL_INFERENCE_FAILURE = 12 DISTRIBUTED_SETTING_INIT_FAILURE = 13 DISTRIBUTED_SETTING_DESTROY_FAILURE = 14 DATASET_GENERATION_FAILURE = 15 DATALOADER_INIT_FAILURE = 16 OPTIMIZER_CREATION_FAILURE = 17 MODEL_CREATION_FAILURE = 18
905cdae5fb8ee9fa03abad70fc7fb8b91b627ae6
720a8ffc5807d3d02a4c9f2d3c18f79fa7f66c45
/baseTest/reptile/pic_Test.py
04ea47a70048406c55e9c10ad658bc076de2fc88
[]
no_license
tbgdwjgit/python3
8123f87753b2469256843cf3257d0dc11744712a
ef7f54e492c73cf1e5533857b126fdd4eb1d8ca2
refs/heads/master
2021-04-06T00:36:31.333267
2019-09-16T08:07:49
2019-09-16T08:07:49
125,023,575
0
0
null
null
null
null
UTF-8
Python
false
false
1,247
py
__author__ = 'Test-YLL' # coding:utf-8 ''' reptile 英[ˈreptaɪl] 美[ˈrɛptɪl, -ˌtaɪl] n. 爬行动物; 卑鄙的人; adj.爬虫类的; 卑鄙的; [例句]Is not a reptile but a mammal. 并不是爬虫动物,而是哺乳动物。 ''' import re import urllib.request '''京东手机图 ''' ''' def craw(url,page): html1=urllib.request.urlopen(url).read() html1=str(html1) pat1='<div id="plist".+?<div class="page clearfix">' result1=re.compile(pat1).findall(html1) result1=result1[0] # pat2='<img width="220" height="220" data-img="1"data-lazy-img="//(.+?\.jpg)">' pat2='<img width="220" height="220" data-img="1" src="//(.+?\.jpg)">' imagelist=re.compile(pat2).findall(result1) x=1 for imageurl in imagelist: imagename='e:/test1221/'+str(page) + str(x) + ".jpg" imageurl="http://"+imageurl try: urllib.request.urlretrieve(imageurl,filename=imagename) except urllib.error.URLError as e: if hasattr(e,"code"): x+=1 if hasattr(e,"reason"): x+=1 x+=1 for i in range(1,7): url = "http://list.jd.com/list.html?cat=9987,653,655&page="+str(i) craw(url,i) ''' ''' test '''
29048e5c0449e12f3b2de6b9c46ec9062e2cf697
13a624bd01fa7bac79be91f1ea5a5d4ba006e3d3
/bioinfo_python/029.py
867939cbdb72bea33f509d57fcec7c0bf67da5ce
[]
no_license
KennethJHan/bioinfo-lecture-2107
3ab1800aef5e5f62a51ef07629fc84d1711c7c23
4a08814a6a7ccae4b9d81d9f5ad485399ddd9498
refs/heads/main
2023-06-24T18:46:46.026166
2021-07-30T11:04:39
2021-07-30T11:04:39
389,945,436
0
0
null
null
null
null
UTF-8
Python
false
false
72
py
Seq1 = "ATGTTATAG" res = "C" in Seq1 print(res) print("A" in Seq1)
8c059f5fb4903b8a5dab179210a0124b5dce14af
1fbeb08c86243de89fa3c855ae79959f421b8581
/movie_db.py
879bbfa9b8e082af6d3e71ec398c2eff51e6fe8e
[]
no_license
SYAN83/movie_review_analysis
e7fb14c804d9645b2109beabae05b12201c7a497
3577774bf533a75823ddf7f57278eed5c451f073
refs/heads/master
2021-06-06T01:28:50.134251
2015-06-26T18:32:12
2015-06-26T18:32:12
38,014,418
0
0
null
null
null
null
UTF-8
Python
false
false
1,382
py
# -*- coding: utf-8 -*- """ Created on Sun Jun 21 15:39:07 2015 @author: Shu-Macbook """ import movie_review as mr import pandas as pd import sqlite3 #movie_list = ["Inception","Interstellar 2014","Mad Max: Fury Road",\ # "WALL.E","PK","Eternal Sunshine of the Spotless Mind"] #movie_list = ["Its Such a Beautiful Day","marvels The Avengers",\ #"Guardians of the Galaxy","Donnie Darko","X-Men: Days of Future Past",\ #"Star Trek"] movie_list = ["Entourage"] #movie_list = ["Alone in the Dark","40 Days and Nights","Battlefield Earth",\ #"Super Shark","100 Degrees Below Zero","Airplane vs Volcano","Alien Abduction"] def scrape(): for movie in movie_list: mv = mr.MovieReview(movie) mv.tomatoReview() def getTableName(): conn = sqlite3.connect(mr.MovieReview.tomatodb) table = pd.read_sql("SELECT name FROM sqlite_master WHERE type='table';", \ con=conn) conn.close() return table def getReview(query): conn = sqlite3.connect(mr.MovieReview.tomatodb) try: data = pd.read_sql(query, con=conn) except sqlite3.DatabaseError as e: print e.message() return None except TypeError: return None conn.close() return data def main(): # scrape() print getTableName() print getReview("select * from movie_title") if __name__ == "__main__": main()
b7c4e916e1f6d81465c6f830d753a881a0a6b7e7
ad3e18b7c0045141dbed62e91419f3e126153f41
/TodoAPI/UserDetails/migrations/0002_auto_20210803_0114.py
4623c94912659a051917b9408031d23604541624
[]
no_license
Kakashi-23/TodoAppApi
5b58d82447e7434890c7d2f44799c9eb254446e4
4449325cbb99e5e17864cc3651eeaff94310465e
refs/heads/main
2023-07-11T00:31:12.107327
2021-08-15T20:39:41
2021-08-15T20:39:41
396,438,804
0
0
null
null
null
null
UTF-8
Python
false
false
546
py
# Generated by Django 3.2.5 on 2021-08-02 19:44 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('UserDetails', '0001_initial'), ] operations = [ migrations.AlterField( model_name='tododetails', name='title', field=models.CharField(max_length=225), ), migrations.AlterField( model_name='tododetails', name='todo_data', field=models.CharField(max_length=225), ), ]
7cfcfacde49b160679ab8f0831c59b01fccd91aa
1cb793903eac98d5ce8a7502ccf972f954dfc9c5
/HouseEstimator/admin.py
88396faf6fd8c0ab2d0d14dbcb1ccf68e99ee798
[]
no_license
incognitoSE/backend
8af21868d1df801fec25f9f108bfc18e51274ee9
4f7002dc68e6c0cb6c0459b8ab6b007017eedeb8
refs/heads/master
2023-06-12T09:24:49.767586
2021-07-03T23:27:04
2021-07-03T23:27:04
360,358,277
0
0
null
null
null
null
UTF-8
Python
false
false
88
py
from django.contrib import admin from .models import House admin.site.register(House)
ad7566b72ea8423788389fb72979e95b2a81b0b3
156f5b9dd349522e94bb2b0822b867ba092d93f3
/hash_generator.py
174429325e89313461b76aff80bc022527c32201
[]
no_license
ashfrol/py31_classes
85e64585502ac776d0712e87d23024856621484c
e8452c3c6c5a49667b8536d033d6fcf813712097
refs/heads/master
2022-11-13T01:47:45.305226
2020-07-12T18:06:22
2020-07-12T18:06:22
266,164,762
0
0
null
null
null
null
UTF-8
Python
false
false
348
py
from hashlib import md5 from os.path import join def hash_strings_from_file(filepath): with open(filepath, 'r', encoding='utf-8') as file_read: for line in file_read: hashed_line = md5(line.encode()).hexdigest() yield hashed_line for item in hash_strings_from_file('output/countrylink.txt'): print(item)
fe1882007038df7d006b3525c72f65d8fb6f1eac
cfb37a99d374d31dbf626dcab69ff1aff5ed6e44
/app-engine-twitter/responses.py
d9b50932173491fd0bf53cdcbaef9d684c54bc69
[]
no_license
nicolavic98/twittershade
73f8ff919d33e17d12690161465e641c80db8f10
c17923b6ffd2a63ae65121bf0b2c3a09d19b00d9
refs/heads/master
2021-01-01T20:44:57.502032
2017-08-04T15:39:45
2017-08-04T15:39:45
98,925,357
2
0
null
null
null
null
UTF-8
Python
false
false
581
py
below10k = ["TP someone's house", "Go to an abandoned warehouse", "Take a shower while wearing all your clothes", "Eat a raw egg", "Take a bite out of a bar of soap", "Give a hug to a random stranger"] tenKto25K = ["Slap the person next to you", "Inhale Sour Patch Kids sugar", "Order 100 pizzas and send them to your neighbor's house", "Go To Walmart & yell loud on the speaker", "Take a shot of hotsauce"] above25K = ["Cut someone's hair while they're asleep", "Take a bucket to 7-Eleven, fill it up and leave without paying", "Go to a public place and yell FIREEEEEE!!!!"]
a8c959d8e9f329313bd71de766b856523a873d00
28239578bb6bfa6c2d930ceb758a2d5ad6f96dbd
/app/models/transaction_output.py
eda00e41e71edcb20e5c02aecf6da7e7cf94b818
[]
no_license
YuitoSato/buidle-chain
43037601632a65acd7754fff69592a2beeb420d6
570b8c3414e496ea9da48c4ac7a08d56613c14a5
refs/heads/master
2020-04-17T12:15:59.243594
2019-01-22T11:37:14
2019-01-22T11:37:14
166,573,350
0
0
null
null
null
null
UTF-8
Python
false
false
2,845
py
import hashlib import uuid from functools import reduce from operator import add from app.models.exceptions.not_enough_balance_exception import NotEnoughBalanceException from app.models.transaction_input import TransactionInput from app.utils.constants import COINBASE_ADDRESS from Crypto.Cipher import PKCS1_OAEP from Crypto.PublicKey import RSA from Crypto.Hash import SHA256 class TransactionOutput: def __init__(self, transaction_output_id, amount, locking_script, sender_address, recipient_address): self.transaction_output_id = transaction_output_id self.amount = amount self.locking_script = locking_script self.sender_address = sender_address self.recipient_address = recipient_address @classmethod def build(cls, amount, sender_address, recipient_address, timestamp): transaction_output_id = hashlib.sha256((str(amount) + sender_address + recipient_address + str(timestamp)).encode('utf-8')).hexdigest() return TransactionOutput( transaction_output_id = transaction_output_id, amount = amount, locking_script = TransactionOutput.calc_locking_script(recipient_address, transaction_output_id), sender_address = sender_address, recipient_address = recipient_address ) def to_input(self, unlocking_script): return TransactionInput( transaction_input_id = uuid.uuid1().hex, transaction_output_id = self.transaction_output_id, unlocking_script = unlocking_script, amount = self.amount ) @classmethod def calc_locking_script(cls, recipient_address, transaction_output_id): if recipient_address == COINBASE_ADDRESS: return COINBASE_ADDRESS else: public_key_str = '-----BEGIN PUBLIC KEY-----\n'\ + recipient_address\ + '\n-----END PUBLIC KEY-----' public_key = RSA.importKey(public_key_str.encode('utf-8')) encryptor = PKCS1_OAEP.new(public_key, SHA256) encrypted = encryptor.encrypt(transaction_output_id.encode('utf-8')) return encrypted.decode('latin-1') @classmethod def calc_total_amount(cls, tx_outputs): if len(tx_outputs) == 0: return 0 tx_output_amounts = list(map(lambda tx_o: tx_o.amount, tx_outputs)) return reduce(add, tx_output_amounts) @classmethod def fetch_tx_outputs_over_amount(cls, target_amount, tx_outputs): result_tx_outputs = [] sum_amount = 0 for i in range(len(tx_outputs)): result_tx_outputs.append(tx_outputs[i]) sum_amount += tx_outputs[i].amount if sum_amount > target_amount: return result_tx_outputs raise NotEnoughBalanceException()
c96eae7c3f8bdf6cadee7eb9455b092a1192d4c4
65052e95e1e48dffa143abd8d0e0181658ed5752
/TeamUPLIFTCA/morenews.py
26f739aa2caedb8a90d15edc88519c903a78fe5c
[]
no_license
mkm1088/Positive-News-Finder
f3c2708a0fded0d5e0b166a0f51fd4ab7e3aa9dc
c89eadd6774881219578456bd6a056d21709fdcf
refs/heads/master
2020-04-21T08:01:47.231887
2019-02-06T13:22:13
2019-02-06T13:22:13
169,407,488
0
0
null
null
null
null
UTF-8
Python
false
false
1,376
py
import requests #from urllib3.request import urlopen from bs4 import BeautifulSoup as soup from selenium import webdriver from bs4 import BeautifulSoup as BS import re def newsFromCNBC(): main_url = "https://newsapi.org/v2/top-headlines?sources=the-hindu&apiKey=***************" open_cnbc_page = requests.get(main_url).json() print(len(open_cnbc_page),"is the length of the json return") article = open_cnbc_page["articles"] browser = webdriver.Chrome(executable_path='F:\chromedriver_win32\chromedriver.exe') for ar in article: browser.get(ar["url"]) print(ar["url"]) #ans='' html = browser.page_source soup = BS(html, 'html.parser') try: title = soup.find('h2',{'class':'intro'}).get_text() table1 = soup.find('div',{'class':re.compile('content-body')}) table = table1.find_all('p') #print(soup.find_all('div',{'class':re.compile('content-body')})[1].find_all('p')) for k in table: if k.string is not None: ans=ans+k.string #insertIntoDB(ar['publishedAt'],ar["title"], ans, "The Hindu", ar["url"]) print(ans) except: print("removing video articles") #driver if __name__ == '__main__': # function call newsFromCNBC()
07f746e0a6c9a0546c3d7a88aa78518545bbb39e
81f22c3c76e9136c27915ebb1b05b5cc8e539156
/hebChatbot/States.py
086b1a7a59dc934490fed318a3b5e6e4bddc78fc
[]
no_license
RnDteam/CCai
9a4870d9a0a6d88a579ddadc271779d246af3cea
8913edf078c9dea732578dbe3ca2d85e9a632d74
refs/heads/master
2021-01-11T17:59:28.500829
2017-02-20T11:31:11
2017-02-20T11:31:11
79,892,554
1
2
null
2017-02-14T10:09:10
2017-01-24T08:26:37
HTML
UTF-8
Python
false
false
264
py
from enum import Enum class States(Enum): EntityExtraction = 1 IntentRecognition = 2 ExecutingAction = 3 ActionDone = 4 @staticmethod def is_edge_state(state): return state == States.EntityExtraction or state == States.ActionDone
5b491aab07e6ef8e121b3f5e427d92718c934b8d
0e7ac0061f2d6d81a12946476a767d0c63e17155
/Define_Model/Pooling.py
85168020c13d5c929bf58ef20bc455fa7ca6b03c
[ "MIT" ]
permissive
forwiat/SpeakerVerifiaction-pytorch
b80afe6cfdc8d7a350f064fc49781de586064d68
feb8efe9b22a08f1995db02d77d022036d205573
refs/heads/master
2022-12-05T01:33:38.132016
2020-07-24T17:06:21
2020-07-24T17:06:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,291
py
#!/usr/bin/env python # encoding: utf-8 """ @Author: yangwenhao @Contact: [email protected] @Software: PyCharm @File: Pooling.py @Time: 2020/4/15 10:57 PM @Overview: """ import torch import torch.nn as nn class SelfAttentionPooling(nn.Module): def __init__(self, input_dim, hidden_dim): super(SelfAttentionPooling, self).__init__() self.hidden_dim = hidden_dim self.input_dim = input_dim self.attention_linear = nn.Linear(input_dim, self.hidden_dim) self.attention_activation = nn.Sigmoid() self.attention_vector = nn.Parameter(torch.rand(self.hidden_dim, 1)) self.attention_soft = nn.Tanh() def forward(self, x): """ :param x: [batch, length,feat_dim] vector :return: [batch, feat_dim] vector """ x = x.squeeze() assert len(x.shape) == 3 fx = self.attention_activation(self.attention_linear(x)) vf = fx.matmul(self.attention_vector) alpha = self.attention_soft(vf) alpha_ht = x.mul(alpha) mean = torch.sum(alpha_ht, dim=-2) return mean class AttentionStatisticPooling(nn.Module): def __init__(self, input_dim, hidden_dim): super(AttentionStatisticPooling, self).__init__() self.hidden_dim = hidden_dim self.input_dim = input_dim self.attention_linear = nn.Linear(input_dim, self.hidden_dim) self.attention_activation = nn.Sigmoid() self.attention_vector = nn.Parameter(torch.rand(self.hidden_dim, 1)) self.attention_soft = nn.Tanh() def forward(self, x): """ :param x: [length,feat_dim] vector :return: [feat_dim] vector """ if x.shape[1] == 1: x = x.squeeze(1) assert len(x.shape) == 3 fx = self.attention_activation(self.attention_linear(x)) vf = fx.matmul(self.attention_vector) alpha = self.attention_soft(vf) alpha_ht = x.mul(alpha) mean = torch.sum(alpha_ht, dim=-2, keepdim=True) sigma_power = torch.sum(torch.pow(x - mean, 2).mul(alpha), dim=-2).add_(1e-12) # alpha_ht_ht = x*x.mul(alpha) sigma = torch.sqrt(sigma_power) mean_sigma = torch.cat((mean.squeeze(1), sigma), 1) return mean_sigma
f11d8a1d3dde20793f358024f72b265acdbb6630
308c7d5dd37ca24096081edea6f73e79ce089da4
/51-100/84. 柱状图中最大的矩形.py
dae417f40d7fb2e5a16d31f1bbfb002823eabc5d
[]
no_license
fengges/leetcode
4953ca038b085cdb772054fa1483bf816dccb578
5d592440b214024cad342c497b381dbce19d8a70
refs/heads/master
2022-09-18T17:52:49.525234
2022-09-03T08:45:07
2022-09-03T08:45:07
132,389,747
0
0
null
null
null
null
UTF-8
Python
false
false
765
py
class Solution: def largestRectangleArea(self, heights): res = 0 st=[] heights.append(0) i=0 while i<len(heights): if len(st)==0 or heights[st[-1]] < heights[i]: st.append(i) i+=1 else: cur = st[-1] del st[-1] if len(st)==0: length=i else: length=i - st[-1] - 1 res = max(res, heights[cur] * length) return res s=Solution() test=[ {"input": [2,1,5,6,2,3], "output": 10}, ] for t in test: r=s.largestRectangleArea(t['input']) if r!=t['output']: print("error:"+str(t)+" out:"+str(r)) r = s.largestRectangleArea(t['input'])
c355d00f358671006e580deed575d744d53a8a2f
b88be390d375277294dc958a29f1f35ec05c7783
/player/migrations/0003_playersmodel.py
6728bef9709d50a4c82dbb96a9e54a897ae3dfd6
[]
no_license
rafaelcavasani/sort_my_team_new
92ecadc33ae7dde43a6dc672ce05490a63599d6c
fe003a6bf250991d8faf0b533398bc1f2ec0c768
refs/heads/master
2021-09-23T03:53:49.862685
2020-02-09T22:35:22
2020-02-09T22:35:22
238,510,867
0
0
null
2021-09-22T18:31:42
2020-02-05T17:40:23
Python
UTF-8
Python
false
false
628
py
# Generated by Django 3.0.3 on 2020-02-05 16:47 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('player', '0002_teammodel'), ] operations = [ migrations.CreateModel( name='PlayersModel', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('position', models.CharField(max_length=25)), ('importance', models.IntegerField()), ], ), ]
12b9d50b32c934ec5bed1e7f3ddf7a6bed070236
0e3ee223395e74cc1c80445d2c3e7fc61b1d5216
/networks/transformer/encoder.py
c12e2d219910b3a832224056f9cf924badc6f65d
[]
no_license
xduan7/DLTM
2c757843a7f8d8fca499f44af56fd09f7c9eee1c
36058ca72f4720005d324fcc400c6a805abf4753
refs/heads/master
2020-04-05T09:54:15.493338
2019-03-04T23:27:22
2019-03-04T23:27:22
156,780,067
0
0
null
null
null
null
UTF-8
Python
false
false
2,201
py
""" File Name: DLTM/encoder.py Author: Xiaotian Duan (xduan7) Email: [email protected] Date: 11/8/18 Python Version: 3.6.6 File Description: """ import torch.nn as nn from networks.transformer.embedding import Embedding from networks.transformer.encoder_layer import EncoderLayer from networks.transformer.positional_encoder import PositionalEncoder class Encoder(nn.Module): def __init__(self, dict_size: int, seq_length: int, base_feq: float, emb_scale: float, emb_dim: int, num_layers: int, num_heads: int, ff_mid_dim: int, pe_dropout: float = 0.0, mha_dropout: float = 0.0, ff_dropout: float = 0.0, enc_dropout: float = 0.0, epsilon: float = 1e-6): super().__init__() self.__embedding = Embedding(dict_size=dict_size, emb_dim=emb_dim) self.__positional_encoder = \ PositionalEncoder(seq_length=seq_length, emb_dim=emb_dim, emb_scale=emb_scale, dropout=pe_dropout, base_feq=base_feq) self.__encoder_layers = nn.ModuleList( [EncoderLayer(emb_dim=emb_dim, num_heads=num_heads, ff_mid_dim=ff_mid_dim, mha_dropout=mha_dropout, ff_dropout=ff_dropout, enc_dropout=enc_dropout, epsilon=epsilon) for _ in range(num_layers)]) self.__output_norm = nn.LayerNorm(normalized_shape=emb_dim, eps=epsilon) def forward(self, src_indexed_sentence, src_mask): h = self.__positional_encoder(self.__embedding(src_indexed_sentence)) for encoder_layer in self.__encoder_layers: h = encoder_layer(h, src_mask) return self.__output_norm(h)
72399c862381921816e9e4b50b98d88fc69a7001
9a5094444b6b343c184367f5be902fb0663aa340
/node_modules/gulp-sass/node_modules/node-sass/build/config.gypi
21beeef653b37154ab0f63b37e0ce1d906a36f50
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
sethwisniewski/agency-x
5b37bca61f3750c6a45326d9ce0d2f0b271820e6
5e2a9ef2f2d26a5fcb1e4567a506dc4c29e086e8
refs/heads/master
2020-03-30T18:05:13.605262
2018-10-10T11:29:24
2018-10-10T11:29:24
151,482,775
0
0
null
2018-10-10T11:29:25
2018-10-03T21:28:11
CSS
UTF-8
Python
false
false
4,640
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "asan": 0, "coverage": "false", "debug_devtools": "node", "debug_http2": "false", "debug_nghttp2": "false", "force_dynamic_crt": 0, "host_arch": "x64", "icu_data_file": "icudt60l.dat", "icu_data_in": "../../deps/icu-small/source/data/in/icudt60l.dat", "icu_endianness": "l", "icu_gyp_path": "tools/icu/icu-generic.gyp", "icu_locales": "en,root", "icu_path": "deps/icu-small", "icu_small": "true", "icu_ver_major": "60", "llvm_version": 0, "node_byteorder": "little", "node_enable_d8": "false", "node_enable_v8_vtunejit": "false", "node_install_npm": "true", "node_module_version": 57, "node_no_browser_globals": "false", "node_prefix": "/usr/local", "node_release_urlbase": "https://nodejs.org/download/release/", "node_shared": "false", "node_shared_cares": "false", "node_shared_http_parser": "false", "node_shared_libuv": "false", "node_shared_nghttp2": "false", "node_shared_openssl": "false", "node_shared_zlib": "false", "node_tag": "", "node_target_type": "executable", "node_use_bundled_v8": "true", "node_use_dtrace": "true", "node_use_etw": "false", "node_use_lttng": "false", "node_use_openssl": "true", "node_use_perfctr": "false", "node_use_v8_platform": "true", "node_without_node_options": "false", "openssl_fips": "", "openssl_no_asm": 0, "shlib_suffix": "57.dylib", "target_arch": "x64", "uv_parent_path": "/deps/uv/", "uv_use_dtrace": "true", "v8_enable_gdbjit": 0, "v8_enable_i18n_support": 1, "v8_enable_inspector": 1, "v8_no_strict_aliasing": 1, "v8_optimized_debug": 0, "v8_promise_internal_field_count": 1, "v8_random_seed": 0, "v8_trace_maps": 0, "v8_use_snapshot": "true", "want_separate_host_toolset": 0, "xcode_version": "7.0", "nodedir": "/Users/shadiaali/.node-gyp/8.11.3", "standalone_static_library": 1, "libsass_ext": "", "libsass_cflags": "", "libsass_ldflags": "", "libsass_library": "", "save_dev": "", "viewer": "man", "browser": "", "rollback": "true", "usage": "", "globalignorefile": "/Users/shadiaali/Desktop/homework/agency/etc/npmignore", "shell": "/bin/bash", "maxsockets": "50", "init_author_url": "", "shrinkwrap": "true", "parseable": "", "init_license": "ISC", "if_present": "", "sign_git_tag": "", "init_author_email": "", "cache_max": "Infinity", "long": "", "local_address": "", "git_tag_version": "true", "cert": "", "registry": "https://registry.npmjs.org/", "npat": "", "fetch_retries": "2", "versions": "", "message": "%s", "key": "", "globalconfig": "/Users/shadiaali/Desktop/homework/agency/etc/npmrc", "loaded": "", "always_auth": "", "spin": "true", "cache_lock_retries": "10", "heading": "npm", "proprietary_attribs": "true", "fetch_retry_mintimeout": "10000", "json": "", "access": "", "https_proxy": "", "engine_strict": "", "description": "true", "userconfig": "/Users/shadiaali/.npmrc", "init_module": "/Users/shadiaali/.npm-init.js", "user": "501", "node_version": "8.11.3", "save": "", "editor": "vi", "tag": "latest", "global": "", "optional": "true", "force": "", "bin_links": "true", "searchopts": "", "depth": "Infinity", "searchsort": "name", "rebuild_bundle": "true", "unicode": "true", "fetch_retry_maxtimeout": "60000", "tag_version_prefix": "v", "strict_ssl": "true", "save_prefix": "^", "ca": "", "save_exact": "", "group": "20", "fetch_retry_factor": "10", "dev": "", "version": "", "cache_lock_stale": "60000", "cache_min": "10", "searchexclude": "", "cache": "/Users/shadiaali/.npm", "color": "true", "save_optional": "", "ignore_scripts": "", "user_agent": "npm/2.15.12 node/v8.11.3 darwin x64", "cache_lock_wait": "10000", "production": "", "save_bundle": "", "umask": "0022", "init_version": "1.0.0", "scope": "", "init_author_name": "", "git": "git", "unsafe_perm": "true", "tmp": "/var/folders/nn/0fztryzj28153m6h0wj96vnh0000gn/T", "onload_script": "", "link": "", "prefix": "/Users/shadiaali/Desktop/homework/agency" } }
b2b258726dadc8f9172d3f68557313f7379335ff
8ea8c399175c3e00296365eb31f62e57913354ec
/venv/bin/pip3
be8913c154dd52e16633ce12f7f00f6c85c88587
[]
no_license
dfriveros11/Arquisoft
ec81bcb2b8dea9481ad4e53c26993623bff97666
9543352519e09bc96182730c2b4f950d3725ab1e
refs/heads/master
2021-07-16T06:34:06.797412
2018-05-03T00:43:47
2018-05-03T00:43:47
131,207,721
0
1
null
2020-05-12T00:29:37
2018-04-26T20:33:45
Python
UTF-8
Python
false
false
400
#!/home/arcadia/IdeaProjects/Arquisoft/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'pip==9.0.1','console_scripts','pip3' __requires__ = 'pip==9.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==9.0.1', 'console_scripts', 'pip3')() )
85c45e3b374f9d2207ceeb63ad4edc812bd52f9c
6245f2a57c849b50bf3528020a1a44f49b6ce6ba
/scripts/avsb/visualize.py
51104acb8b2c3ea9fc29d8399745835746c384e2
[ "MIT" ]
permissive
nanlovescan/frg
725222302311408326030fa280f2ad2ead5a2215
e789439f599eb884a6220ae5b471cf610b0c2b2a
refs/heads/master
2023-07-01T01:28:57.697151
2021-07-20T01:45:43
2021-07-20T01:45:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
425
py
'''显示结果''' import numpy from helpers.drawer import draw_heatmap def main(): '''入口''' lval = 5.20 rpath = 'heatmap8/avsb' uval = numpy.load('{0}/{1:.2f}U.npy'.format(rpath, lval)) draw_heatmap(uval[0, 0, 0, 0, :, :, 0]) draw_heatmap(uval[1, 1, 1, 1, :, :, 0]) draw_heatmap(uval[1, 0, 0, 1, :, :, 0]) draw_heatmap(uval[0, 1, 1, 0, :, :, 0]) if __name__ == '__main__': main()
66a65c7bfb388fbad1a797acd3f5aa5a3f32735f
fe764f99cc4f75d70bb42a4bfcc06a26db026c45
/solve.py
0f9ce5a3a6179ebe911b58ca811e37c212456ce6
[ "CC0-1.0" ]
permissive
atolopko/mastermind
a46a0ae59dedaffb095a6a8bd83ef50fe3c89c3c
388aecac3d7cacaaca81a4004f55e4547277f8c7
refs/heads/main
2023-01-22T21:23:37.164087
2020-12-07T14:42:53
2020-12-07T14:42:53
319,185,737
0
0
null
null
null
null
UTF-8
Python
false
false
2,967
py
from random import randrange import sys import numpy as np # code repr is 4-char string, with each color as digit 0-5 COLORS = 6 CODE_LEN = 4 MAX_CODES = COLORS ** CODE_LEN ALL_CODES = [list(np.base_repr(code, 6).rjust(CODE_LEN, '0')) for code in range(0, MAX_CODES)] def next_code_query(admissible_codes) -> list: """ As the code breaker, generate the next code query (guess). Do this by simply guessing one of the remaining admissible_codes! """ return admissible_codes[randrange(len(admissible_codes))] def query_response(query, code) -> (int, int): correct = 0 included = 0 for c, q in zip(query, code): if c == q: correct += 1 code = list(code) for q in query: if q in code: code.remove(q) included += 1 return correct, included - correct def is_code_admissible(candidate_code, query, resp_correct, resp_misplaced) -> bool: # For determining admissibility of a candidate code, the player's # query becomes the code, and candidate code becomes the query correct, misplaced = query_response(query=candidate_code, code=query) return correct == resp_correct and misplaced == resp_misplaced def prune(query, resp_correct, resp_misplaced, admissible_codes) -> list: new_admissible_codes = [] for candidate_code in admissible_codes: if is_code_admissible(candidate_code, query, resp_correct, resp_misplaced): new_admissible_codes.append(candidate_code) # print(f'admit {code}') return new_admissible_codes def play_round(code, admissible_codes) -> list: query = next_code_query(admissible_codes) num_correct, num_misplaced = query_response(query, code) new_admissible_codes = prune(query, num_correct, num_misplaced, admissible_codes) # print(f'code={code}, query={query}, correct={num_correct}, misplaced={num_misplaced}, admissible_codes={len(new_admissible_codes)}') # Ensure progress is made assert len(new_admissible_codes) < len(admissible_codes) # print(new_admissible_codes) return new_admissible_codes if __name__ == "__main__": admissible_codes = ALL_CODES rounds_taken = [] for code in ALL_CODES: # print('=' * 80) # print(f'Trying to break code {code}') round = 1 admissible_codes = ALL_CODES while len(admissible_codes) > 1: # print(f'ROUND {round}') admissible_codes = play_round(code, admissible_codes) round += 1 # print(f'CODE: {code}') # print(f'QUERY: {admissible_codes[0]}') assert len(admissible_codes) == 1 assert admissible_codes[0] == code # print(f'{code} BROKEN in {round} rounds!') rounds_taken.append(round) print(np.histogram(rounds_taken, bins=10, range=(0, 10))) print(f"Min turns required={min(rounds_taken)}") print(f"Max turns required={max(rounds_taken)}")
0d4454aa7c7bb30c66477f6a76d147030978da18
7a48540ac332c51e2a7d9bbf8e06d20b8300945a
/detection/train.py
17ff0ca5f443946f4affbe7ed30c9cf5a45423b6
[]
no_license
Sophia-team/OCR-CARS-PLATES
6ae29072f64bf9e9547e52a26b39da01d120c392
25594a40d1422880f4861583f0772c4d27fcf85b
refs/heads/master
2022-11-15T13:11:01.599622
2020-07-10T10:54:06
2020-07-10T10:54:06
278,608,125
0
0
null
null
null
null
UTF-8
Python
false
false
7,672
py
import os import sys from argparse import ArgumentParser import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import tqdm import torchvision from dataset import DetectionDataset from unet import UNet from torch import optim from torch.utils.data import DataLoader from transform import * from torchvision import transforms import segmentation_models_pytorch as smp import ssl ssl._create_default_https_context = ssl._create_unverified_context sys.path.insert(0, os.path.abspath((os.path.dirname(__file__)) + '/../')) from utils import get_logger, dice_coeff, dice_loss def eval_net(net, dataset, device): net.eval() tot = 0. with torch.no_grad(): for i, b in tqdm.tqdm(enumerate(dataset), total=len(dataset)): imgs, true_masks = b result = net(imgs.to(device)) masks_pred = result[:, 0].squeeze(1) # (b, 1, h, w) -> (b, h, w) masks_pred = (F.sigmoid(masks_pred) > 0.5).float() tot += dice_coeff(masks_pred.cpu(), true_masks).item() return tot / len(dataset) def train(net, optimizer, criterion, scheduler, train_dataloader, val_dataloader, logger, args=None, device=None): num_batches = len(train_dataloader) best_model_info = {'epoch': -1, 'val_dice': 0., 'train_dice': 0., 'train_loss': 0.} for epoch in range(args.epochs): logger.info('Starting epoch {}/{}.'.format(epoch + 1, args.epochs)) net.train() if scheduler is not None: scheduler.step(epoch) epoch_loss = 0. tqdm_iter = tqdm.tqdm(enumerate(train_dataloader), total=len(train_dataloader)) mean_bce, mean_dice = [], [] for i, batch in tqdm_iter: imgs, true_masks = batch result = net(imgs.to(device)) masks_pred = result[:, 0] masks_probs = F.sigmoid(masks_pred) bce_val, dice_val = criterion(masks_probs.cpu().view(-1), true_masks.view(-1)) loss = bce_val + dice_val mean_bce.append(bce_val.item()) mean_dice.append(dice_val.item()) epoch_loss += loss.item() tqdm_iter.set_description('mean loss: {:.4f}'.format(epoch_loss / (i + 1))) optimizer.zero_grad() loss.backward() optimizer.step() logger.info('Epoch finished! Loss: {:.5f} ({:.5f} | {:.5f})'.format(epoch_loss / num_batches, np.mean(mean_bce), np.mean(mean_dice))) val_dice = eval_net(net, val_dataloader, device=device) if val_dice > best_model_info['val_dice']: best_model_info['val_dice'] = val_dice best_model_info['train_loss'] = epoch_loss / num_batches best_model_info['epoch'] = epoch torch.save(net.state_dict(), os.path.join(args.output_dir, f'{args.model}_CP-best_epoch-{epoch}.pth')) logger.info('Validation Dice Coeff: {:.5f} (best)'.format(val_dice)) else: logger.info('Validation Dice Coeff: {:.5f} (best {:.5f})'.format(val_dice, best_model_info['val_dice'])) torch.save(net.state_dict(), os.path.join(args.output_dir, f'{args.model}_best_epoch-{epoch}.pth')) def main(): parser = ArgumentParser() parser.add_argument('-d', '--data_path', dest='data_path', type=str, default=None ,help='path to the data') parser.add_argument('-e', '--epochs', dest='epochs', default=20, type=int, help='number of epochs') parser.add_argument('-b', '--batch_size', dest='batch_size', default=40, type=int, help='batch size') parser.add_argument('-s', '--image_size', dest='image_size', default=256, type=int, help='input image size') parser.add_argument('-lr', '--learning_rate', dest='lr', default=0.0001, type=float, help='learning rate') parser.add_argument('-wd', '--weight_decay', dest='weight_decay', default=5e-4, type=float, help='weight decay') parser.add_argument('-lrs', '--learning_rate_step', dest='lr_step', default=10, type=int, help='learning rate step') parser.add_argument('-lrg', '--learning_rate_gamma', dest='lr_gamma', default=0.5, type=float, help='learning rate gamma') parser.add_argument('-m', '--model', dest='model', default='fpn',) parser.add_argument('-w', '--weight_bce', default=0.5, type=float, help='weight BCE loss') parser.add_argument('-l', '--load', dest='load', default=False, help='load file model') parser.add_argument('-v', '--val_split', dest='val_split', default=0.7, help='train/val split') parser.add_argument('-o', '--output_dir', dest='output_dir', default='./output', help='dir to save log and models') args = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) logger = get_logger(os.path.join(args.output_dir, 'train.log')) logger.info('Start training with params:') for arg, value in sorted(vars(args).items()): logger.info("Argument %s: %r", arg, value) # net = UNet() # TODO: to use move novel arch or/and more lightweight blocks (mobilenet) to enlarge the batch_size # net = smp.FPN('mobilenet_v2', encoder_weights='imagenet', classes=2) net = smp.FPN('se_resnet50', encoder_weights='imagenet', classes=2) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if args.load: net.load_state_dict(torch.load(args.load)) logger.info('Model type: {}'.format(net.__class__.__name__)) net.to(device) optimizer = optim.Adam(net.parameters(), lr=args.lr, weight_decay=args.weight_decay) criterion = lambda x, y: (args.weight_bce * nn.BCELoss()(x, y), (1. - args.weight_bce) * dice_loss(x, y)) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step, gamma=args.lr_gamma) \ if args.lr_step > 0 else None train_transforms = Compose([ Crop(min_size=1 - 1 / 3., min_ratio=1.0, max_ratio=1.0, p=0.5), Flip(p=0.05), RandomRotate(), Pad(max_size=0.6, p=0.25), Resize(size=(args.image_size, args.image_size), keep_aspect=True), ScaleToZeroOne(), ]) val_transforms = Compose([ Resize(size=(args.image_size, args.image_size)), ScaleToZeroOne(), ]) train_dataset = DetectionDataset(args.data_path, os.path.join(args.data_path, 'train_mask.json'), transforms=train_transforms) val_dataset = DetectionDataset(args.data_path, None, transforms=val_transforms) train_size = int(len(train_dataset) * args.val_split) val_dataset.image_names = train_dataset.image_names[train_size:] val_dataset.mask_names = train_dataset.mask_names[train_size:] train_dataset.image_names = train_dataset.image_names[:train_size] train_dataset.mask_names = train_dataset.mask_names[:train_size] train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=8, shuffle=True, drop_last=True) val_dataloader = DataLoader(val_dataset, batch_size=args.batch_size, num_workers=4, shuffle=False, drop_last=False) logger.info('Number of batches of train/val=%d/%d', len(train_dataloader), len(val_dataloader)) try: train(net, optimizer, criterion, scheduler, train_dataloader, val_dataloader, logger=logger, args=args, device=device) except KeyboardInterrupt: torch.save(net.state_dict(), os.path.join(args.output_dir, f'{args.model}_INTERRUPTED.pth')) logger.info('Saved interrupt') sys.exit(0) if __name__ == '__main__': main()
478392f69605aa14e27129e23f3c8df664336ea2
2d82d4c6574bd6d32f2cf1c781615f7951f55f66
/muntjac/addon/weelayout/wee_layout_application.py
9fbb1c28bf11aa6d2409b487f217f9d1eff263f8
[ "Apache-2.0" ]
permissive
metaperl/muntjac
f83f745ee03942a61af92ee7fba7285aa9c46f3c
8db97712edd81b4d25deaaa48587d2a08010f2c8
refs/heads/master
2021-01-15T22:04:25.057862
2012-11-09T03:52:59
2012-11-09T03:52:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,183
py
from muntjac.api \ import Application, Window, VerticalLayout, HorizontalLayout, \ NativeButton, TextField, Alignment, Label from muntjac.ui.button \ import IClickListener from muntjac.addon.weelayout.wee_layout \ import WeeLayout, Direction class WeelayoutApplication(Application): def __init__(self): super(WeelayoutApplication, self).__init__() self._core = False self._vertical = False def init(self): mainWindow = Window('Weelayout Application') self.setMainWindow(mainWindow) # mainWindow.setContent(self.splitRecursive(2)) # mainWindow.setContent(self.undefinedWithRelativeSizes()) # mainWindow.setContent(self.splitView()) # mainWindow.setContent(self.createVertical(2)) # mainWindow.setContent(self.createCoreVertical(2)) # mainWindow.setContent(self.createHorizontal(2)) mainWindow.setContent(self.createCoreHorizontal(2)) self.setTheme('test') def splitRecursive(self, deep): l = None if self._core: l = VerticalLayout() if self._vertical else HorizontalLayout() else: if self._vertical: l = WeeLayout(Direction.VERTICAL) else: l = WeeLayout(Direction.HORIZONTAL) l.setSizeFull() if self._core: c = l b = NativeButton('One') b.setSizeFull() c.addComponent(b) c.setExpandRatio(b, 1) if deep > 0: deep -= 1 c2 = self.splitRecursive(deep) c.addComponent(c2) c.setExpandRatio(c2, 9) else: wl = l wl.setClipping(True) b = NativeButton('Button') b.setSizeFull() if self._vertical: b.setHeight('10%') else: b.setWidth('10%') l.addComponent(b) if deep > 0: deep -= 1 w = self.splitRecursive(deep) if self._vertical: w.setHeight('90%') else: w.setWidth('90%') l.addComponent(w) else: b.setSizeFull() return l def undefinedWithRelativeSizes(self): wl = WeeLayout(Direction.VERTICAL) wl.setHeight('100%') wlong = NativeButton('With long caption', LongClickListener()) wl.addComponent(wlong, '100%', '30px', Alignment.TOP_LEFT) b = NativeButton('Two') b.addStyleName('test') wl.addComponent(b, '100%', '100%', Alignment.TOP_LEFT) wl.setSmartRelativeSizes(True) return wl def splitView(self): wl = WeeLayout(Direction.HORIZONTAL) wl.setSizeFull() one = NativeButton('One', OneClickListener()) wl.addComponent(one, '100px', '30px', Alignment.TOP_RIGHT) wl.addComponent(Label(''), '14px', '14px', Alignment.TOP_CENTER) wl.addComponent(NativeButton('Two'), '100%', '100%', Alignment.TOP_CENTER) # wl.setClipping(true) return wl def createVertical(self, recurse): wl = WeeLayout(Direction.VERTICAL) wl.setSizeFull() # wl.setWidth("100%") # wl.setHeight("50%") wl.addComponent(TextField('Left'), Alignment.TOP_LEFT) wl.addComponent(TextField('Center'), Alignment.TOP_CENTER) tf = TextField('Right') tf.setWidth('50%') wl.addComponent(tf, Alignment.TOP_RIGHT) if recurse > 0: recurse -= 1 wl.addComponent(self.createHorizontal(recurse)) return wl def createHorizontal(self, recurse): wl = WeeLayout(Direction.HORIZONTAL) wl.setSizeFull() # wl.setHeight("100%"); wl.addComponent(TextField('Top'), Alignment.TOP_LEFT) wl.addComponent(TextField('Middle'), Alignment.MIDDLE_LEFT) tf = TextField('Bottom') tf.setHeight('50%') wl.addComponent(tf, Alignment.BOTTOM_LEFT) if recurse > 0: recurse -= 1 wl.addComponent(self.createVertical(recurse)) return wl def createCoreVertical(self, recurse): """Same with core layouts""" l = VerticalLayout() l.setSizeFull() tf = TextField('Left') l.addComponent(tf) l.setComponentAlignment(tf, Alignment.TOP_LEFT) tf = TextField('Center') l.addComponent(tf) l.setComponentAlignment(tf, Alignment.TOP_CENTER) tf = TextField('Right') l.addComponent(tf) tf.setWidth('50%') l.setComponentAlignment(tf, Alignment.TOP_RIGHT) if recurse > 0: recurse -= 1 createCoreHorizontal = self.createCoreHorizontal(recurse) l.addComponent(createCoreHorizontal) l.setExpandRatio(createCoreHorizontal, 1) return l def createCoreHorizontal(self, recurse): l = HorizontalLayout() l.setSizeFull() tf = TextField('Top') l.addComponent(tf) l.setComponentAlignment(tf, Alignment.TOP_LEFT) tf = TextField('Middle') l.addComponent(tf) l.setComponentAlignment(tf, Alignment.MIDDLE_LEFT) tf = TextField('Bottom') l.addComponent(tf) tf.setWidth('50%') l.setComponentAlignment(tf, Alignment.BOTTOM_LEFT) if recurse > 0: recurse -= 1 createCoreVertical = self.createCoreVertical(recurse) l.addComponent(createCoreVertical) l.setExpandRatio(createCoreVertical, 1) return l class LongClickListener(IClickListener): def buttonClick(self, event): if event.getButton().getCaption() is None: event.getButton().setCaption('Long caption') else: event.getButton().setCaption(None) class OneClickListener(IClickListener): def buttonClick(self, event): event.getButton().setWidth('300px') if __name__ == '__main__': from muntjac.main import muntjac muntjac(WeelayoutApplication, nogui=True, forever=True, debug=True)
0e97feb704d3f04968e8895281546cf9d069744c
275fc5b32727ba2ae9d4390d3222cb7544544203
/evaluate/model_mlp.py
ea682ad27844995fa80177780b14cc9be44bb26a
[]
no_license
kpzhang/vec2link
3ec1475eebd6df0b030864ecf0a914a14dac735c
fdda251c92871409a336d0c10f2c75e19f461673
refs/heads/master
2020-04-15T19:07:46.013229
2020-01-29T17:56:24
2020-01-29T17:56:24
164,939,188
4
1
null
null
null
null
UTF-8
Python
false
false
6,293
py
# coding: utf-8 import tensorflow as tf import numpy as np from sklearn.metrics import roc_auc_score # run four_methods.py first class Mlp: def __init__(self, sess, inputs_data, outputs_data, test_inputs, test_labels, output_dim, lr=0.0001, batch_size=128, run_time=100000, learning_rate_decay_factor=0.98, output_interval=200): self._sess = sess self._inputs_data = inputs_data self._output_dim = output_dim self._outputs_data = outputs_data self._test_inputs_data = test_inputs self._test_labels_data = test_labels self._x = tf.placeholder(tf.float32, [None, len(inputs_data[0])]) self._y = tf.placeholder(tf.int32, [None, self._output_dim]) self._inputs_num = len(self._inputs_data) # self._lr = lr self.learning_rate = tf.Variable( float(lr), trainable=False, dtype=tf.float32) self.learning_rate_decay_op = self.learning_rate.assign( self.learning_rate * learning_rate_decay_factor) self._current_index = 0 self._batch_size = batch_size self._run_time = run_time self._output_interval = output_interval self._build_net() def _build_net(self): l0 = tf.layers.dense(self._x, 128, tf.nn.sigmoid) l1 = tf.layers.dense(l0, 64, tf.nn.sigmoid) l2 = tf.layers.dense(l1, 32, tf.nn.sigmoid) self._output = tf.nn.sigmoid(tf.layers.dense(l2, self._output_dim)) # output layer self.loss = tf.losses.sigmoid_cross_entropy(multi_class_labels=self._y, logits=self._output) # compute cost self.train_op = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss) def _get_batch(self): result_x = [] result_y = [] if self._current_index + self._batch_size <= self._inputs_num: result_x = self._inputs_data[self._current_index:self._current_index + self._batch_size] result_y = self._outputs_data[self._current_index:self._current_index + self._batch_size] self._current_index += self._batch_size else: result_x = list(self._inputs_data[self._current_index:]) result_y = list(self._outputs_data[self._current_index:]) length = self._batch_size - len(result_x) for i in range(length): result_x.append(self._inputs_data[i]) result_y.append(self._outputs_data[i]) self._current_index = length assert len(result_x) == len(result_y) == self._batch_size # return result_x, result_y return result_x, [[i] for i in result_y] def _get_test(self): return self._test_inputs_data, [[i] for i in self._test_labels_data] def _get_train(self): return self._inputs_data, [[i] for i in self._outputs_data] def tran_net(self): total_loss = 0 loss_history = [0., 0., 0.] for i in range(self._run_time): x_batch, y_batch = self._get_batch() try: lr_, _loss, _, _output = self._sess.run([self.learning_rate, self.loss, self.train_op, self._output], {self._x: x_batch, self._y: y_batch}) except Exception,e: print total_loss += _loss if i != 0 and i % self._output_interval == 0: current_loss = total_loss / self._output_interval total_loss = 0 if i > 1000 and current_loss > max(loss_history): self._sess.run(self.learning_rate_decay_op) loss_history[i % 3] = current_loss # auc x_train, y_train = self._get_train() _train_output = self._sess.run([self._output], {self._x: x_train, self._y: y_train}) train_score = [] for tr_out in _train_output[0].tolist(): for tr_o in tr_out: train_score.append(tr_o) train_true = [] for y_tr in y_train: for y in y_tr: train_true.append(y) train_auc = roc_auc_score(train_true,train_score) # x_test,y_test = self._get_test() _test_loss, _test_output = self._sess.run([self.loss, self._output], {self._x: x_test, self._y: y_test}) test_score = [] for te_out in _test_output.tolist(): for te_o in te_out: test_score.append(te_o) # true_pos_count = 0 test_true = [] for y_te in y_test: for y_t in y_te: test_true.append(y_t) if y_t == 1: true_pos_count += 1 else: pass test_auc = roc_auc_score(test_true,test_score) print 'step:', i, 'lr:', lr_, 'train_loss:', current_loss, \ 'train_auc:', train_auc, 'test_loss:', _test_loss, 'test_auc:', test_auc def predict(self, inputs): return self._sess.run(self._output, {self._x: inputs}) train_inputs = [] train_labels = [] test_inputs = [] test_labels = [] file_train = '../data/red_vec_train.txt' file_test = '../data/red_vec_test.txt' f_tr = open(file_train) for line in f_tr.readlines(): train_inputs.append(list(line.split(' ')[:-1])) train_labels.append(int(line[-2])) f_tr.close() f_te = open(file_test) for line in f_te.readlines(): test_inputs.append(list(line.split(' ')[:-1])) test_labels.append(int(line[-2])) f_te.close() config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) tf_model = Mlp(sess, train_inputs, train_labels, test_inputs, test_labels, 1, lr=0.0003, run_time=100000, batch_size=64, learning_rate_decay_factor=0.9) saver = tf.train.Saver() sess.run(tf.global_variables_initializer()) try: for it in range(100000): tf_model.tran_net() except KeyboardInterrupt: print save_path = saver.save(sess,'../Model/save_model.ckpt')
a35f7f17c325450fd3f72aa5da2507ce62d3fb68
96b44dc0df4cc0e9059da1c79d6d2468740939b1
/downloads/code/LintCode/Majority-Number.py
ba5587fb3f949e0cfe40e3cac3fbbd45d26f9882
[]
no_license
sdytlm/sdytlm.github.io
5cb9fcc93fc5d2a287c4f0d1920ab83c34b3f68d
0506ca9039db2ba253eb311c23b544d164c6bbda
refs/heads/master
2021-01-24T11:08:54.257293
2019-05-06T03:59:17
2019-05-06T03:59:17
27,394,945
0
0
null
null
null
null
UTF-8
Python
false
false
530
py
class Solution: """ @param nums: A list of integers @return: The majority number """ def majorityNumber(self, nums): # write your code here hash_map = dict() for i in nums: if hash_map.has_key(i): hash_map[i] += 1 else: hash_map[i] = 1 max = 0 result = 0 for i in nums: if hash_map[i] > max: max = hash_map[i] result = i return result
f05fd839d4e468ea11af460eb32bff753a8f404c
4fb44d59c82b15fdfd22c9c0a84490f1fb66a750
/venv/lib/python3.6/site-packages/pip-19.0.3-py3.6.egg/pip/_internal/configuration.py
bdf06a4759d29bbf3a0210b07bcb42fd11390022
[]
no_license
thevirg/InvoiceProgram
2e04d72a1c1e9f48f027ae6bbbd72289eb571d6a
248464183bc65dcb9de99120c0e9279eb4fac8a5
refs/heads/master
2021-02-18T22:47:20.670377
2020-03-05T19:25:05
2020-03-05T19:25:05
245,246,351
0
0
null
null
null
null
UTF-8
Python
false
false
13,247
py
"""Configuration management setup Some terminology: - name As written in config files. - value Value associated with a name - key Name combined with it's section (section.name) - variant A single word describing where the configuration key-value pair came from """ import locale import logging import os from pip._vendor import six from pip._vendor.six.moves import configparser from pip._internal.exceptions import ( ConfigurationError, ConfigurationFileCouldNotBeLoaded, ) from pip._internal.locations import ( legacy_config_file, new_config_file, running_under_virtualenv, site_config_files, venv_config_file, ) from pip._internal.utils.misc import ensure_dir, enum from pip._internal.utils.typing import MYPY_CHECK_RUNNING if MYPY_CHECK_RUNNING: from typing import ( # noqa: F401 Any, Dict, Iterable, List, NewType, Optional, Tuple ) RawConfigParser = configparser.RawConfigParser # Shorthand Kind = NewType("Kind", str) logger = logging.getLogger(__name__) # NOTE: Maybe use the optionx attribute to normalize keynames. def _normalize_name(name): # type: (str) -> str """Make a name consistent regardless of source (environment or file) """ name = name.lower().replace('_', '-') if name.startswith('--'): name = name[2:] # only prefer long opts return name def _disassemble_key(name): # type: (str) -> List[str] return name.split(".", 1) # The kinds of configurations there are. kinds = enum( USER="user", # User Specific GLOBAL="global", # System Wide VENV="venv", # Virtual Environment Specific ENV="env", # from PIP_CONFIG_FILE ENV_VAR="env-var", # from Environment Variables ) class Configuration(object): """Handles management of configuration. Provides an interface to accessing and managing configuration files. This class converts provides an API that takes "section.key-name" style keys and stores the value associated with it as "key-name" under the section "section". This allows for a clean interface wherein the both the section and the key-name are preserved in an easy to manage form in the configuration files and the data stored is also nice. """ def __init__(self, isolated, load_only=None): # type: (bool, Kind) -> None super(Configuration, self).__init__() _valid_load_only = [kinds.USER, kinds.GLOBAL, kinds.VENV, None] if load_only not in _valid_load_only: raise ConfigurationError( "Got invalid value for load_only - should be one of {}".format( ", ".join(map(repr, _valid_load_only[:-1])) ) ) self.isolated = isolated # type: bool self.load_only = load_only # type: Optional[Kind] # The order here determines the override order. self._override_order = [ kinds.GLOBAL, kinds.USER, kinds.VENV, kinds.ENV, kinds.ENV_VAR ] self._ignore_env_names = ["version", "help"] # Because we keep track of where we got the data from self._parsers = { variant: [] for variant in self._override_order } # type: Dict[Kind, List[Tuple[str, RawConfigParser]]] self._config = { variant: {} for variant in self._override_order } # type: Dict[Kind, Dict[str, Any]] self._modified_parsers = [] # type: List[Tuple[str, RawConfigParser]] def load(self): # type: () -> None """Loads configuration from configuration files and environment """ self._load_config_files() if not self.isolated: self._load_environment_vars() def get_file_to_edit(self): # type: () -> Optional[str] """Returns the file with highest priority in configuration """ assert self.load_only is not None, \ "Need to be specified a file to be editing" try: return self._get_parser_to_modify()[0] except IndexError: return None def items(self): # type: () -> Iterable[Tuple[str, Any]] """Returns key-value pairs like dict.items() representing the loaded configuration """ return self._dictionary.items() def get_value(self, key): # type: (str) -> Any """Get a value from the configuration. """ try: return self._dictionary[key] except KeyError: raise ConfigurationError("No such key - {}".format(key)) def set_value(self, key, value): # type: (str, Any) -> None """Modify a value in the configuration. """ self._ensure_have_load_only() fname, parser = self._get_parser_to_modify() if parser is not None: section, name = _disassemble_key(key) # Modify the parser and the configuration if not parser.has_section(section): parser.add_section(section) parser.set(section, name, value) self._config[self.load_only][key] = value self._mark_as_modified(fname, parser) def unset_value(self, key): # type: (str) -> None """Unset a value in the configuration. """ self._ensure_have_load_only() if key not in self._config[self.load_only]: raise ConfigurationError("No such key - {}".format(key)) fname, parser = self._get_parser_to_modify() if parser is not None: section, name = _disassemble_key(key) # Remove the key in the parser modified_something = False if parser.has_section(section): # Returns whether the option was removed or not modified_something = parser.remove_option(section, name) if modified_something: # name removed from parser, section may now be empty section_iter = iter(parser.items(section)) try: val = six.next(section_iter) except StopIteration: val = None if val is None: parser.remove_section(section) self._mark_as_modified(fname, parser) else: raise ConfigurationError( "Fatal Internal error [id=1]. Please report as a bug." ) del self._config[self.load_only][key] def save(self): # type: () -> None """Save the currentin-memory state. """ self._ensure_have_load_only() for fname, parser in self._modified_parsers: logger.info("Writing to %s", fname) # Ensure directory exists. ensure_dir(os.path.dirname(fname)) with open(fname, "w") as f: parser.write(f) # type: ignore # # Private routines # def _ensure_have_load_only(self): # type: () -> None if self.load_only is None: raise ConfigurationError("Needed a specific file to be modifying.") logger.debug("Will be working with %s variant only", self.load_only) @property def _dictionary(self): # type: () -> Dict[str, Any] """A dictionary representing the loaded configuration. """ # NOTE: Dictionaries are not populated if not loaded. So, conditionals # are not needed here. retval = {} for variant in self._override_order: retval.update(self._config[variant]) return retval def _load_config_files(self): # type: () -> None """Loads configuration from configuration files """ config_files = dict(self._iter_config_files()) if config_files[kinds.ENV][0:1] == [os.devnull]: logger.debug( "Skipping loading configuration files due to " "environment's PIP_CONFIG_FILE being os.devnull" ) return for variant, files in config_files.items(): for fname in files: # If there's specific variant set in `load_only`, load only # that variant, not the others. if self.load_only is not None and variant != self.load_only: logger.debug( "Skipping file '%s' (variant: %s)", fname, variant ) continue parser = self._load_file(variant, fname) # Keeping track of the parsers used self._parsers[variant].append((fname, parser)) def _load_file(self, variant, fname): # type: (Kind, str) -> RawConfigParser logger.debug("For variant '%s', will try loading '%s'", variant, fname) parser = self._construct_parser(fname) for section in parser.sections(): items = parser.items(section) self._config[variant].update(self._normalized_keys(section, items)) return parser def _construct_parser(self, fname): # type: (str) -> RawConfigParser parser = configparser.RawConfigParser() # If there is no such file, don't bother reading it but create the # parser anyway, to hold the data. # Doing this is useful when modifying and saving files, where we don't # need to construct a parser. if os.path.exists(fname): try: parser.read(fname) except UnicodeDecodeError: # See https://github.com/pypa/pip/issues/4963 raise ConfigurationFileCouldNotBeLoaded( reason="contains invalid {} characters".format( locale.getpreferredencoding(False) ), fname=fname, ) except configparser.Error as error: # See https://github.com/pypa/pip/issues/4893 raise ConfigurationFileCouldNotBeLoaded(error=error) return parser def _load_environment_vars(self): # type: () -> None """Loads configuration from environment variables """ self._config[kinds.ENV_VAR].update( self._normalized_keys(":env:", self._get_environ_vars()) ) def _normalized_keys(self, section, items): # type: (str, Iterable[Tuple[str, Any]]) -> Dict[str, Any] """Normalizes items to construct a dictionary with normalized keys. This routine is where the names become keys and are made the same regardless of source - configuration files or environment. """ normalized = {} for name, val in items: key = section + "." + _normalize_name(name) normalized[key] = val return normalized def _get_environ_vars(self): # type: () -> Iterable[Tuple[str, str]] """Returns a generator with all environmental vars with prefix PIP_""" for key, val in os.environ.items(): should_be_yielded = ( key.startswith("PIP_") and key[4:].lower() not in self._ignore_env_names ) if should_be_yielded: yield key[4:].lower(), val # XXX: This is patched in the tests. def _iter_config_files(self): # type: () -> Iterable[Tuple[Kind, List[str]]] """Yields variant and configuration files associated with it. This should be treated like items of a dictionary. """ # SMELL: Move the conditions out of this function # environment variables have the lowest priority config_file = os.environ.get('PIP_CONFIG_FILE', None) if config_file is not None: yield kinds.ENV, [config_file] else: yield kinds.ENV, [] # at the base we have any global configuration yield kinds.GLOBAL, list(site_config_files) # per-user configuration next should_load_user_config = not self.isolated and not ( config_file and os.path.exists(config_file) ) if should_load_user_config: # The legacy config file is overridden by the new config file yield kinds.USER, [legacy_config_file, new_config_file] # finally virtualenv configuration first trumping others if running_under_virtualenv(): yield kinds.VENV, [venv_config_file] def _get_parser_to_modify(self): # type: () -> Tuple[str, RawConfigParser] # Determine which parser to modify parsers = self._parsers[self.load_only] if not parsers: # This should not happen if everything works correctly. raise ConfigurationError( "Fatal Internal error [id=2]. Please report as a bug." ) # Use the highest priority parser. return parsers[-1] # XXX: This is patched in the tests. def _mark_as_modified(self, fname, parser): # type: (str, RawConfigParser) -> None file_parser_tuple = (fname, parser) if file_parser_tuple not in self._modified_parsers: self._modified_parsers.append(file_parser_tuple)
532f1188a9ed5536a02984ae1bc71401b1cfc649
c0cf737b53fa32e1c88a1b39a188ccc63c879fc9
/day-02/day-02.py
447cc166272e4d13f98da564e1903160f272fa94
[]
no_license
aoutzen/advent-of-code
5dd7af6e575fce923c10901e4a16e42b853fdfdc
04f5ea70568d2ad517742489021985015f202ec5
refs/heads/master
2020-11-24T18:37:38.507845
2019-12-17T01:51:27
2019-12-17T01:51:27
228,294,486
0
0
null
null
null
null
UTF-8
Python
false
false
8,566
py
# --- Day 2: 1202 Program Alarm --- # On the way to your gravity assist around the Moon, your ship computer beeps angrily about a # "1202 program alarm". On the radio, an Elf is already explaining how to handle the situation: # "Don't worry, that's perfectly norma--" The ship computer bursts into flames. # You notify the Elves that the computer's magic smoke seems to have escaped. "That computer # ran Intcode programs like the gravity assist program it was working on; surely there are # enough spare parts up there to build a new Intcode computer!" # An Intcode program is a list of integers separated by commas (like 1,0,0,3,99). To run one, # start by looking at the first integer (called position 0). Here, you will find an opcode - # either 1, 2, or 99. The opcode indicates what to do; for example, 99 means that the program # is finished and should immediately halt. Encountering an unknown opcode means something went # wrong. # Opcode 1 adds together numbers read from two positions and stores the result in a third # position. The three integers immediately after the opcode tell you these three positions - # the first two indicate the positions from which you should read the input values, and the # third indicates the position at which the output should be stored. # For example, if your Intcode computer encounters 1,10,20,30, it should read the values at # positions 10 and 20, add those values, and then overwrite the value at position 30 with their # sum. # Opcode 2 works exactly like opcode 1, except it multiplies the two inputs instead of adding # them. Again, the three integers after the opcode indicate where the inputs and outputs are, # not their values. # Once you're done processing an opcode, move to the next one by stepping forward 4 positions. # For example, suppose you have the following program: # 1,9,10,3,2,3,11,0,99,30,40,50 # For the purposes of illustration, here is the same program split into multiple lines: # 1,9,10,3, # 2,3,11,0, # 99, # 30,40,50 # The first four integers, 1,9,10,3, are at positions 0, 1, 2, and 3. Together, they represent # the first opcode (1, addition), the positions of the two inputs (9 and 10), and the position # of the output (3). To handle this opcode, you first need to get the values at the input # positions: position 9 contains 30, and position 10 contains 40. Add these numbers together # to get 70. Then, store this value at the output position; here, the output position (3) is # at position 3, so it overwrites itself. Afterward, the program looks like this: # 1,9,10,70, # 2,3,11,0, # 99, # 30,40,50 # Step forward 4 positions to reach the next opcode, 2. This opcode works just like the # previous, but it multiplies instead of adding. The inputs are at positions 3 and 11; these # positions contain 70 and 50 respectively. Multiplying these produces 3500; this is stored # at position 0: # 3500,9,10,70, # 2,3,11,0, # 99, # 30,40,50 # Stepping forward 4 more positions arrives at opcode 99, halting the program. # Here are the initial and final states of a few more small programs: # 1,0,0,0,99 becomes 2,0,0,0,99 (1 + 1 = 2). # 2,3,0,3,99 becomes 2,3,0,6,99 (3 * 2 = 6). # 2,4,4,5,99,0 becomes 2,4,4,5,99,9801 (99 * 99 = 9801). # 1,1,1,4,99,5,6,0,99 becomes 30,1,1,4,2,5,6,0,99. # Once you have a working computer, the first step is to restore the gravity assist program # (your puzzle input) to the "1202 program alarm" state it had just before the last computer # caught fire. To do this, before running the program, replace position 1 with the value 12 # and replace position 2 with the value 2. What value is left at position 0 after the program # halts? # --- Part Two --- # "Good, the new computer seems to be working correctly! Keep it nearby during this mission - # you'll probably use it again. Real Intcode computers support many more features than your new # one, but we'll let you know what they are as you need them." # "However, your current priority should be to complete your gravity assist around the Moon. # For this mission to succeed, we should settle on some terminology for the parts you've already # built." # Intcode programs are given as a list of integers; these values are used as the initial state # for the computer's memory. When you run an Intcode program, make sure to start by initializing # memory to the program's values. A position in memory is called an address (for example, the # first value in memory is at "address 0"). # Opcodes (like 1, 2, or 99) mark the beginning of an instruction. The values used immediately # after an opcode, if any, are called the instruction's parameters. For example, in the # instruction 1,2,3,4, 1 is the opcode; 2, 3, and 4 are the parameters. The instruction 99 # contains only an opcode and has no parameters. # The address of the current instruction is called the instruction pointer; it starts at 0. # After an instruction finishes, the instruction pointer increases by the number of values in # the instruction; until you add more instructions to the computer, this is always 4 (1 opcode # + 3 parameters) for the add and multiply instructions. (The halt instruction would increase # the instruction pointer by 1, but it halts the program instead.) # "With terminology out of the way, we're ready to proceed. To complete the gravity assist, you # need to determine what pair of inputs produces the output 19690720." # The inputs should still be provided to the program by replacing the values at addresses 1 and # 2, just like before. In this program, the value placed in address 1 is called the noun, and # the value placed in address 2 is called the verb. Each of the two input values will be # between 0 and 99, inclusive. # Once the program has halted, its output is available at address 0, also just like before. # Each time you try a pair of inputs, make sure you first reset the computer's memory to the # values in the program (your puzzle input) - in other words, don't reuse memory from a # previous attempt. # Find the input noun and verb that cause the program to produce the output 19690720. What is # 100 * noun + verb? (For example, if noun=12 and verb=2, the answer would be 1202.) import os def open_file_from_same_directory(filename): cur_dir = os.path.dirname(__file__) input_path = os.path.join(cur_dir, filename) input_file = open(input_path) return input_file def intcode_program_from_str(program_string): split_program = program_string.split(',') intcode_program = [int(i) for i in split_program] return intcode_program def run_intcode_program(intcode_program): program_index = 0 while intcode_program[program_index] != 99: if intcode_program[program_index] == 1: # addition operand1_index = intcode_program[program_index + 1] operand2_index = intcode_program[program_index + 2] sum = intcode_program[operand1_index] + intcode_program[operand2_index] result_index = intcode_program[program_index + 3] intcode_program[result_index] = sum program_index += 4 elif intcode_program[program_index] == 2: # multiplication operand1_index = intcode_program[program_index + 1] operand2_index = intcode_program[program_index + 2] prod = intcode_program[operand1_index] * intcode_program[operand2_index] result_index = intcode_program[program_index + 3] intcode_program[result_index] = prod program_index += 4 pass else: print('Something went wrong!') break return intcode_program input_file = open_file_from_same_directory("day-02-input.txt") intcode_program = intcode_program_from_str(input_file.read()) initial_intcode_program = intcode_program.copy() noun = None verb = None for i in range(100): for j in range(100): intcode_program[1] = i intcode_program[2] = j intcode_program_post_run = run_intcode_program(intcode_program) if intcode_program_post_run[0] == 19690720: noun = intcode_program[1] verb = intcode_program[2] break else: intcode_program = initial_intcode_program.copy() if noun and verb: break answer = (100 * noun) + verb print(answer) # intcode_program[1] = 12 # intcode_program[2] = 2 # intcode_program_post_run = run_intcode_program(intcode_program) # print(intcode_program_post_run[0])
3841c04c4a9890bd1483de5b35dec315e5f3f246
6cb5b4e56b727b98b234b04c519ec6f41b4e3701
/Primary/Str/isAnagram.py
dcf67eca0ad025ad770b081c66bcf312fc93e12e
[]
no_license
doubleLLL3/Leetcode-Exercise-Codes
fd90b9addcad11412aacdfb577afbe481547624b
190a85d59d16dee929ca025dafdee7747c5abc87
refs/heads/master
2022-08-28T18:17:05.716623
2020-06-01T06:52:41
2020-06-01T06:52:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,990
py
def isAnagram(s, t): ''' 1.先使用长度作为第一条件筛选 2.用两个字典存储字符和出现次数 3.判断两个字典是否相同 ''' # if len(s) != len(t): # return False # dict_s = {} # dict_t = {} # for i in range(len(s)): # dict_s[s[i]] = dict_s.get(s[i], 0) + 1 # dict_t[t[i]] = dict_t.get(t[i], 0) + 1 # if dict_s == dict_t: # return True # return False ''' 排序后比较是否相等: ''' # if len(s) != len(t): # return False # return sorted(s) == sorted(t) ''' 放入字典时,一个加一个减,则只需要一个字典 ''' # if len(s) != len(t): # return False # dict = {} # for i in range(len(s)): # dict[s[i]] = dict.get(s[i], 0) + 1 # dict[t[i]] = dict.get(t[i], 0) - 1 # for i in dict.values(): # if i != 0: # return False # return True ''' 先遍历完一个字符串放入一个字典,再用另一个字符串来减,如果小于0则直接返回False ''' # if len(s) != len(t): # return False # dict = {} # for i in s: # dict[i] = dict.get(i, 0) + 1 # for i in t: # dict[i] = dict.get(i, 0) - 1 # if dict[i] < 0: # return False # return True ''' 使用集合记录出现过的字符,遍历集合,计数是否相等(最佳!) ''' if len(s) != len(t): return False set_s = set(s) if set_s == set(t): for i in set_s: if s.count(i) != t.count(i): return False return True else: return False s = "rat" t = "car" print(isAnagram(s, t))
53de61303078f02960067e5d6cd8fc4046ef4b5c
64ddafcdca09310c14582916dd82c35f2b7a431b
/privx_api/base.py
9fa805ec642fa602354a597bbec2b4daed1f5e8f
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
cnguyenc/privx-sdk-for-python
b6463ce09bfbf6b209c4957fd02baa52127542da
8baf4fd2abe126b0c550558240fd26643206e076
refs/heads/master
2023-04-24T18:53:35.028170
2021-04-26T09:19:06
2021-04-26T09:19:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,448
py
import base64 import http.client import json import ssl import urllib.parse import urllib.request from typing import Union from http.client import HTTPException from privx_api.exceptions import InternalAPIException from privx_api.enums import UrlEnum def format_path_components(format_str: str, **kw) -> str: components = {k: urllib.parse.quote(v, safe="") for k, v in kw.items()} return format_str.format(**components) class Connection: def __init__(self, connection_info): self.host = connection_info["host"] self.port = connection_info["port"] self.ca_cert = connection_info["ca_cert"] self._connection = None def __enter__(self): self._connection = http.client.HTTPSConnection( self.host, port=self.port, context=self.get_context() ) return self._connection def __exit__(self, exc_type, exc_val, exc_tb): self._connection.close() def get_context(self) -> ssl.SSLContext: return ssl.create_default_context(cadata=self.ca_cert) class BasePrivXAPI: """ Base class of PrivXAPI. """ def __init__( self, hostname, hostport, ca_cert, oauth_client_id, oauth_client_secret ): self._access_token = "" self._oauth_client_id = oauth_client_id self._oauth_client_secret = oauth_client_secret self._connection_info = { "host": hostname, "port": hostport, "ca_cert": ca_cert, } @classmethod def _get_url(cls, name: str) -> str: url = UrlEnum.get(name) if not url: raise InternalAPIException("URL missing: ", name) return url @classmethod def _build_url(cls, name: str, path_params=None, query_params=None) -> str: path_params = path_params or {} query_params = query_params or {} url = cls._get_url(name) if path_params: url = format_path_components(url, **path_params) if query_params: params = urllib.parse.urlencode(query_params) url = "{}?{}".format(url, params) return url def _authenticate(self, username: str, password: str): with Connection(self._connection_info) as conn: token_request = { "grant_type": "password", "username": username, "password": password, } basic_auth = base64.b64encode( "{}:{}".format(self._oauth_client_id, self._oauth_client_secret).encode( "utf-8" ) ) headers = { "Content-type": "application/x-www-form-urlencoded", "Authorization": "Basic {}".format(basic_auth.decode("utf-8")), } try: conn.request( "POST", self._get_url(UrlEnum.AUTH.TOKEN), body=urllib.parse.urlencode(token_request), headers=headers, ) except (OSError, HTTPException) as e: raise InternalAPIException(str(e)) response = conn.getresponse() if response.status != 200: raise InternalAPIException("Invalid response: ", response.status) data = response.read() self._access_token = json.loads(data).get("access_token") if self._access_token == "": raise InternalAPIException("Failed to get access token") def _get_headers(self) -> dict: return { "Content-type": "application/json", "Authorization": "Bearer {}".format(self._access_token), } def _get_search_params(self, **kwargs: Union[str, int]) -> dict: params = {key: val for key, val in kwargs.items() if val} return params if any(params) else {} def _http_get(self, urlname: str, path_params=None, query_params=None) -> tuple: path_params = path_params or {} query_params = query_params or {} with Connection(self._connection_info) as conn: try: conn.request( "GET", self._build_url(urlname, path_params, query_params), headers=self._get_headers(), ) except (OSError, HTTPException) as e: raise InternalAPIException(str(e)) response = conn.getresponse() return response.status, response.read() def _http_get_no_auth(self, urlname: str) -> tuple: headers = self._get_headers() del headers["Authorization"] with Connection(self._connection_info) as conn: try: conn.request( "GET", self._build_url(urlname), headers=headers, ) except (OSError, HTTPException) as e: raise InternalAPIException(str(e)) response = conn.getresponse() return response.status, response.read() def _http_post( self, urlname: str, body=None, path_params=None, query_params=None ) -> tuple: body = body or {} path_params = path_params or {} query_params = query_params or {} with Connection(self._connection_info) as conn: try: conn.request( "POST", self._build_url(urlname, path_params, query_params), headers=self._get_headers(), body=self._make_body_params(body), ) except (OSError, HTTPException) as e: raise InternalAPIException(str(e)) response = conn.getresponse() return response.status, response.read() def _http_put( self, urlname: str, body=None, path_params=None, query_params=None ) -> tuple: body = body or {} path_params = path_params or {} query_params = query_params or {} with Connection(self._connection_info) as conn: try: conn.request( "PUT", self._build_url(urlname, path_params, query_params), headers=self._get_headers(), body=self._make_body_params(body), ) except (OSError, HTTPException) as e: raise InternalAPIException(str(e)) response = conn.getresponse() return response.status, response.read() def _http_delete( self, urlname: str, body=None, path_params=None, query_params=None ) -> tuple: body = body or {} path_params = path_params or {} query_params = query_params or {} with Connection(self._connection_info) as conn: try: conn.request( "DELETE", self._build_url(urlname, path_params, query_params), headers=self._get_headers(), body=self._make_body_params(body), ) except (OSError, HTTPException) as e: raise InternalAPIException(str(e)) response = conn.getresponse() return response.status, response.read() @staticmethod def _make_body_params(data: Union[dict, str]) -> str: return data if isinstance(data, str) else json.dumps(data)
26ee7bcef0591e0555bd2838881e925565b67435
86d980c3ec7e4201454e229c1216b7a9be294d0a
/Quiz.py
92e1e0350f410d4b4a9684b459d234981a4e5d21
[]
no_license
rupalidhumne/Perceptrons-and-Decision-Trees
3d3e57749f0119babc5d6661ae76f74a27ca2d97
8768554ba42c9811ea2469b93a2007e90d87e63b
refs/heads/master
2021-09-01T12:47:50.993500
2017-12-27T03:01:20
2017-12-27T03:01:20
115,473,680
0
0
null
null
null
null
UTF-8
Python
false
false
7,851
py
global NumNodes trains=[] import csv global CLASS_idx testDS={} trainDS={} ds={} import math import random global root trainVals=set() global headers global headers2 totAccuracy=[] nn=[] #if I reach a question mark then count it as a no class Node: def __init__(self, state,parent, children, soln,freq,path): #state is my category, path is what route I took to get here (yes or no), parent is previously visited category, solution is am I done or going yn... self.state=state #state is node or category self.parent=parent self.children=children self.soln=soln #republican or democrat self.freq=freq self.path=path def __str__(self, level=0): ret = "\t"*level+repr(self.state)+ repr(self.soln)+"\n" for child in self.children: ret += child.__str__(level+1) return ret def __repr__(self): return '<tree node representation>' def generateTrain(file): global CLASS_idx global headers with open(file) as csvfile: reader = csv.reader(csvfile) headers=next(reader)[1:] #this includes the last party column so might want to get rid for row in reader: trainDS.update({row[0]:row[1:]}) csvfile.close() CLASS_idx=len(headers)-1 #number of categories def generateTest(file): global headers2 with open(file) as csvfile: reader = csv.reader(csvfile) headers2=next(reader)[1:] #this includes the last party column so might want to get rid for row in reader: testDS.update({row[0]:row[1:]}) csvfile.close() def openCSV(file): #will make test and tree global CLASS_idx global headers with open(file) as csvfile: reader = csv.reader(csvfile) headers=next(reader)[1:] #this includes the last party column so might want to get rid i=1 for row in reader: if i<436: ds.update({row[0]:row[1:]}) i=i+1 else: break csvfile.close() CLASS_idx=len(headers)-1 #number of categories def predict(start):#for person, traverse through my tree to get the correct answer correct=0 p=0 incorrect=[] for key in testDS: person=testDS[key] path=traverseTree(start, person,[]) if path==['A7', 'Sometimes', 'A1', 'Sometimes', 'A2', 'Never', 'A6']: p=p+1 if soln is not "FAIL" and soln==person[len(person)-1]: correct=correct+1 else: incorrect.append(person) print(len(incorrect)) numQues(incorrect) print(p) return correct/len(testDS.keys())*100 #make a method that just returns the soln def numQues(arr): n=0 for row in arr: if '?' in row: n=n+1 print(n) def val_list(data,column): #print(data.values()) return [val[column] for val in data.values()] #for list in data set return the last column so yes/no def freq_dist(data_dict): vals=val_list(data_dict,CLASS_idx) #last column #print(vals) return{a: vals.count(a) for a in set(vals)} #numbers of yes versus number of no overall def val_set(data,column): #set of the categories return set(val_list(data,column)) def freq_entropy(freq_dict): f=list(freq_dict.values()) s=sum(f) p=[i/s for i in f] return (-sum([i * math.log(i,2) for i in p if i>0])) def traverseTree(currNode, person,path): questionList=[] if currNode.soln is None: cat=currNode.state if cat in headers: path.append(cat) responseI=person[headers.index(cat)] for child in currNode.children: if responseI=='?': path.append(child) prediction=traverseTree(child,person) questionList.append(prediction) elif child.state==responseI: if child.soln is not None: return child.soln else: path.append(child) return traverseTree(child, person) if responseI=='?': if questionList[0] != questionList[1]: r=random.randint(0,1) return questionList[r] else: return questionList[0] else: for child in currNode.children: #child of a subcategory is a category if child.soln is None: path.append(child) return traverseTree(child,person) else: return currNode.soln else: return currNode.soln def extract(data,column,value): #return rows with cat s (V15) for which sub cat =yes and then rows where in V15 the subcat is no return {a:data[a] for a in data if data[a][column]==value} def parameter_entropy(data,col): length=len(data) total=0 for v in val_set(data,col): eds=extract(data,col,v) l=len(eds) e=freq_entropy(freq_dist(eds)) total=total+ (l/length*e) return total def make_tree(n,trainDS,level): global numNodes initial_h=freq_entropy(freq_dist(trainDS)) #dictionary entropy print(initial_h) best=max((initial_h-parameter_entropy(trainDS,i),i) for i in range(CLASS_idx)) p=best[1] if level==0: n.state=headers[p] else: catNode=Node("", None, [],None,None,[]) catNode.state=headers[p] #mainCategory catNode.parent=n n.children.append(catNode) # currNode=catNode #WILL THIS CHANGE THE VALUES FOR N AS WELL numNodes=numNodes+1 for v in val_set(trainDS,p): subCatNode=Node("", None, [],None,None,[]) subCatNode.state=v # subCatNode.parent=currNode if level==0: subCatNode.parent=n n.children.append(subCatNode) else: subCatNode.parent=catNode catNode.children.append(subCatNode) # currNode.children.append(subCatNode) new_ds=extract(trainDS,p,v) freqs=freq_dist(new_ds) #node.set children each of these things subCatNode.freq=freqs if freq_entropy(freqs)<0.0000001: subCatNode.soln=getSoln(subCatNode,new_ds) else: make_tree(subCatNode, new_ds,level+1) numNodes=numNodes+1 return numNodes def getSoln(n,new_ds): #print(n.state) soln="" sCategory=n.state parent=n.parent for key in new_ds: data=new_ds[key] if data[headers.index(parent.state)]==sCategory: #if the data for that category matches the subcategory value (y/n) soln=data[len(data)-1] break return soln fileTrain='quizA_train.csv' fileTest='quizA_test.csv' generateTrain(fileTrain) generateTest(fileTest) #testDS.update({0:['?', '?', 'Sometimes', 'Never', 'Never', 'Never', 'Sometimes', 'Sometimes','?', '?', 'Never', 'Sometimes', 'Never', 'Sometimes', 'Never', 'Sometimes', 'Never', 'Never', 'Sometimes']}) root=Node("", None, [],None,None,[]) numNodes=1 n=make_tree(root, trainDS, 0) print(str(root)) acc=predict(root) #openCSV(file) """ for i in range (0,20): numNodes=1 generateTrain() generateTest() root=Node("", None, [],None,None) #path would be response of my parent before me n=make_tree(root, trainDS, 0) acc=predict(root) print(acc) #print(str(root)) nn.append(n) tSize=tSize+10 """ print(n) #print(acc) #print(totAccuracy) #2 files, test train,
c026df261b9fe18e1441c5ac0ff698fa9e98fbb0
f3b233e5053e28fa95c549017bd75a30456eb50c
/p38a_input/L2U/2U-2Q_MD_NVT_rerun/set_1ns_equi_2.py
b3c77f65a18691de8b4767e75d70e78db63cc808
[]
no_license
AnguseZhang/Input_TI
ddf2ed40ff1c0aa24eea3275b83d4d405b50b820
50ada0833890be9e261c967d00948f998313cb60
refs/heads/master
2021-05-25T15:02:38.858785
2020-02-18T16:57:04
2020-02-18T16:57:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
752
py
import os dir = '/mnt/scratch/songlin3/run/p38a/L2U/MD_NVT_rerun/ti_one-step/2U_2Q/' filesdir = dir + 'files/' temp_equiin = filesdir + 'temp_equi_2.in' temp_pbs = filesdir + 'temp_1ns_equi_2.pbs' lambd = [ 0.00922, 0.04794, 0.11505, 0.20634, 0.31608, 0.43738, 0.56262, 0.68392, 0.79366, 0.88495, 0.95206, 0.99078] for j in lambd: os.chdir("%6.5f" %(j)) workdir = dir + "%6.5f" %(j) + '/' #equiin eqin = workdir + "%6.5f_equi_2.in" %(j) os.system("cp %s %s" %(temp_equiin, eqin)) os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, eqin)) #PBS pbs = workdir + "%6.5f_1ns_equi_2.pbs" %(j) os.system("cp %s %s" %(temp_pbs, pbs)) os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, pbs)) #submit pbs #os.system("qsub %s" %(pbs)) os.chdir(dir)
9f29b589276529f8f51a0be792b49a3e6ed48456
7e3028dcfd18acd1f8268af56be08d4d9a8cf0c8
/IniReader.py
09a3848051af87fd88d77a9b8007543a8badc9d7
[]
no_license
mbits-os/solver
04299313f673296abf5512d9827f5dad979a5269
640c60b7ee86004e7ba2ccd3ff9cdb889c45d90a
refs/heads/master
2021-01-23T19:38:02.340673
2014-03-13T12:01:43
2014-03-13T12:01:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,392
py
from ConfigFile import \ PrintOut, PrintMessage, PrintError, PrintWarning, PrintExc, \ Location, Field, Section, FileContext, Macros import sys, os, tempfile, shutil, getopt from xml.parsers.expat import ParserCreate from string import Formatter kOpt = 0 kReq = 1 #list of well-known platforms, that will not deploy #lower-case, please vs_desktop_platforms = ( "win32", "x64", "ia64" ) def PrintTemplate(out, templates, name, host, *args, **kwargs): for t in Formatter().parse(str(templates[name])): #print #print t #print out.write(t[0]) if t[1] != None: try: if isinstance(t[1], (int, long)): val = args[t[1]] else: val = kwargs[t[1]] except: if isinstance(t[1], (int, long)): val = host[t[1]] else: val = getattr(host, t[1]) conv = t[3] if conv == None: conv = 's' if conv == 's': val = str(val) elif conv == 'r': val = repr(val) elif conv == 'c': val(out, templates) val = '' out.write(val) def is_true(value): prop = value.lower().strip() return prop == "1" or prop == "yes" or prop == "true" class IniProgram: force = 0 skip = 0 input_filename = 0 output_filename = 0 inputs = [] #list of all include files to mtime check default_section_name = None def __init__(self): pass def other_updated(self): return False def set_output(self, fname): self.output_filename = fname def set_default_section(self, name): self.default_section_name = name def read(self, vstudio, mask, fname, loc = None, ignoreIO = False): self.input_filename = fname self.inputs = [fname] self.loc = Location(fname, 1) self.mask = mask self.vstudio = vstudio self.translation = { "ver": vstudio, "_ver": '_'+vstudio, "ver0": vstudio, "_ver0": '_'+vstudio } if len(vstudio) == 1: self.translation["ver0"] = '0' + vstudio; self.translation["_ver0"] = '_0' + vstudio macros = Macros() for k in self.predefs.macros: macros.macros[k] = self.predefs.macros[k] macros.add_macro("__configfile__", "3", Location("<predefined>", 0)) macros.add_macro("__vs__", vstudio, Location("<predefined>", 0)) _ctx = FileContext(fname, macros, self.default_section_name) try: _ctx.parse_file() except IOError, err: if ignoreIO: if loc: loc.Warn("Could not open %s" % fname) else: PrintWarning("<command line>", 0, "Could not open %s" % fname) raise elif loc: PrintExc(loc.fname, loc.lineno) else: PrintExc("<command line>", 0) except SystemExit, err: raise except: PrintExc(_ctx.fname, 1) for f in _ctx.imports: self.inputs.append(f.fname) for f in _ctx.includes: self.inputs.append(f.fname) _ctx.handle_imports() self._macros = Macros() self.append_defines(_ctx) self.sections = {} for sec in _ctx.sections: sec = _ctx.sections[sec] _sec = Section(sec, sec.name) for idx in sec.index: fld = sec.items[idx] _fld = Field(fld, \ self._macros.resolve(fld.name),\ self._macros.resolve(fld.value)) sec.append(_fld) self.sections[sec.name.lower()] = sec del self._macros self.read_config() def append_defines(self, _ctx): #overridable pass def append_define(self, name, value): self._macros.add_macro(name, value, Location(self.input_filename, 1)) def get_section(self, name, opt): _name = str(name).lower() if _name in self.sections: return self.sections[_name] if opt == kOpt: return None self.loc.Error("Could not find section '%s'" % name) def get_item(self, sec, name, errmsg = None, opt = kReq): _name = name name = name.lower() if name in sec.items: return sec.items[name] if opt == kOpt: return None if type(errmsg) not in (str, unicode): errmsg = "%s:%s item missing" % (sec.name, _name) self.loc.Error(errmsg) def get_array(self, sec, name, errmsg = None): if type(errmsg) not in (str, unicode): errmsg = "%s:%s list missing" % (sec.name, name) return self.get_item(sec, name, errmsg).value.split(";") def get_optional_item(self, sec, name): return self.get_item(sec, name, opt=kOpt) def write(self): if self.output_filename == 0: self.update_filename() if self.output_filename == 0: return [] orig_output_name = self.output_filename updated = [] path, fname = os.path.split(orig_output_name) name, ext = fname.rsplit(".", 1) fname = os.path.join(path, self.mask.format(name=name, **self.translation) + "." + ext) self.output_filename = fname if self.write_one(): updated.append(fname) self.output_filename = 0 return updated def same_content(self, left, right): try: l = open(left, 'rb') r = open(right, 'rb') while 1: lline = l.readline() rline = r.readline() if not lline: if rline: return False return True if lline != rline: return False except: return False def write_one(self): if not self.force: try: to = os.path.getmtime(self.output_filename) older = True for i in self.inputs: if os.path.getmtime(i) > to: older = False; break if older: return False #no update needed except: #some access was broken - huge chance, #it's because output desn't exsits yet pass _loc = Location(self.input_filename, 1) _loc.Message("building %s" % os.path.basename(self.output_filename)) tmp = tempfile.mkstemp('',\ os.path.basename(self.output_filename)+'.tmp-',\ os.path.dirname(self.output_filename)) out = open(tmp[1], 'w') self.write_out(out) out.close() if os.path.exists(self.output_filename): if self.skip and self.same_content(self.output_filename, tmp[1]): _loc.Message("output not changed, skipping") os.close(tmp[0]) os.remove(tmp[1]) return False bak = tempfile.mkstemp('',\ os.path.basename(self.output_filename)+'.back-',\ os.path.dirname(self.output_filename)) os.close(bak[0]) shutil.copyfile(self.output_filename, bak[1]) os.close(tmp[0]) shutil.move(tmp[1], self.output_filename) return True def usage(self, argv, reason=0): if reason: PrintOut("%s\n" % reason) PrintOut(\ "usage:\n "+os.path.basename(argv[0])+""" [options] config options: (h)elp (o)utput (f)orce (s)kip (d)ef macro to be added to predefined list vs [comma separated, allowed values: 8,9,10] mask should contain {name} and one of {ver}, {_ver}, {ver0} and {_ver0} [def=${name}${_0ver}] {ver} will be empty, if vs has only one version {_ver} will also be empty, but if the version is to be used, it will have underscore prepended to version {ver0} and {_ver0} are the same as {ver} and {ver0}, but will create 08 and _08 instead of 8 and _8 (to be used, when vs also contains 10) """) def main(self, kind, argv, loc = None, ignoreIO = False): try: opts, args = getopt.getopt(argv[1:], \ "ho:fsd:", \ ["help", "output=", "force", "skip", "D=", "def=", "mellow", "vs=", "mask="]) except getopt.GetoptError, err: self.usage(argv, str(err)) return 2 mellow = 0 vs = ["9"] vs2 = None mask2 = None self.predefs = Macros() for o, a in opts: if o in ("-h", "--help"): self.usage(argv) return 0 elif o in ("-o", "--output"): self.set_output(a) elif o in ("-f", "--force"): self.force = 1 elif o in ("-s", "--skip"): self.skip = 1 elif o == "--mellow": mellow = 1 elif o == "--mask": mask2 = a elif o == "--vs": if vs2 == None: vs2 = [] vs2 += a.split(",") elif o in ("-d", "--D", "--def"): d = a.split("=", 1) value='' name = d[0].strip() d = d[1:] if len(d): value = d[0].strip() self.predefs.add_macro(name, value, Location("<command-line>", 0)) if vs2 != None: vs = vs2 #print self.predefs if len(args) == 0: self.usage(argv, "input missing") return 2 elif len(args) > 1 and self.output_filename: self.usage(argv, "to many inputs") return 2 if mask2 != None: mask = mask2 mask2 = None else: if len(vs) == 1: mask = "{name}" else: mask = "{name}{_ver0}" re = [] for arg in args: for studio in vs: try: self.read(studio, mask, arg, loc, ignoreIO) updated = self.write() for u in updated: re.append(u) except IOError, err: if not ignoreIO: raise if not mellow: for r in re: PrintOut(\ "%s: warning: %s '%s' has been updated and must be reloaded\n" %\ (self.input_filename, kind, r)) if len(re) or self.other_updated(): return 1 return 0 class VCProjInfo: class BailExpat(Exception): def __init__(self): pass def __init__(self): self.name = "" self.guid = 0 def expat_se(self, name, attrs): assert name == "VisualStudioProject" self.guid = attrs["ProjectGUID"] self.name = attrs["Name"] raise VCProjInfo.BailExpat() def get(self, vcproj): try: f = open(vcproj) except: return (None, 0) p = ParserCreate() p.StartElementHandler = self.expat_se try: p.ParseFile(f) except VCProjInfo.BailExpat: pass except: return (None, 0) f.close() return (self.name, self.guid) class CSProjInfo: class BailExpat(Exception): def __init__(self): pass def __init__(self): self.name = "" self.guid = 0 self.text = "" def expat_se(self, name, attrs): self.text = "" def expat_ee(self, name): if name == "PropertyGroup": raise CSProjInfo.BailExpat() elif name == "AssemblyName": self.name = self.text elif name == "ProjectGuid": self.guid = self.text def expat_cd(self, text): self.text += text def get(self, csproj): try: f = open(csproj) except: return (None, 0) p = ParserCreate() p.StartElementHandler = self.expat_se p.EndElementHandler = self.expat_ee p.CharacterDataHandler = self.expat_cd try: p.ParseFile(f) except CSProjInfo.BailExpat: pass except: return (None, 0) f.close() return (self.name, self.guid)
ac6e8a3c6bcc8819ec62e8ea30d218e242058332
0007122ec169c11037cf1007e822e02702317a5d
/ml/subprocess_wrapper.py
466590be76abb5102d595ddb3cdab5ee4cbed26c
[]
no_license
themarzbar247/CCTV_Cam
aac442d60fd3fce2b947f81af9cef5097409ada6
099c1879a469e5355e9b63b147f7cbff737c6897
refs/heads/main
2023-06-01T05:22:47.192175
2021-06-23T13:58:50
2021-06-23T13:58:50
329,317,747
0
0
null
2021-06-23T13:58:51
2021-01-13T13:32:07
Python
UTF-8
Python
false
false
3,669
py
import subprocess import sys import pickle from queue import Queue, Empty from threading import Thread from struct import Struct ON_POSIX = 'posix' in sys.builtin_module_names HEADER = Struct("!L") def send(obj, file=sys.stdout.buffer): """Send a pickled message over the given channel.""" payload = pickle.dumps(obj, -1) file.write(HEADER.pack(len(payload))) file.write(payload) file.flush() def recieve(file=sys.stdin.buffer): """Receive a pickled message over the given channel. Returns: object: A deserialised object from the file buffer. """ header = read_file(file, HEADER.size) payload = read_file(file, *HEADER.unpack(header)) return pickle.loads(payload) def read_file(file, size): """Read a fixed size buffer from the file. Returns: [Byte]: bytes from file buffer. """ parts = [] while size > 0: part = file.read(size) if not part: raise EOFError parts.append(part) size -= len(part) return b''.join(parts) class SubprocessWrapper: """Encapsulates subproccess to allow for easier communication between parent and child processes. Args: module_file (String): A path like for a python script to run as a sub proccess. """ def __init__(self, module_file): self.module_file_name = module_file self.process = None self.in_q = Queue() self.out_q = Queue() def start(self, *args): """Starts the threads and subproccess Returns: SubprocessWrapper: returns self """ print(f"Starting: {self.module_file_name}{args}") self.process = subprocess.Popen([sys.executable, self.module_file_name, *args], stdin=subprocess.PIPE, stdout=subprocess.PIPE, close_fds=ON_POSIX) self.recever = Thread(target=self._enqueue_output, daemon=True) self.sender = Thread(target=self._enqueue_input, daemon=True) self.sender.start() self.recever.start() return self def send(self,obj): """Sends an object to the child process. Args: obj (object): the object to send to the child process """ self.in_q.put(obj) def read(self, wait=False): """Reads from the child process Args: wait (bool, optional): Should this block the thread. Defaults to False. Raises: e: pass through exceptions from child processes. Returns: obj (object): the object the child process has sent. """ try: obj = self.out_q.get(wait) except Empty: return None else: if isinstance(obj, Exception): raise obj return obj def _enqueue_output(self): """while the child process is running, it will wait for a message and add it to the output enqueue for the main thread to pick up. """ try: while self.process.poll() is None: self.out_q.put(recieve(self.process.stdout)) except Exception as e: self.out_q.put_nowait(e) self.process.stdout.close() def _enqueue_input(self): """while the child process is running, it will wait for a message in the input enqueue and send it to the child process. """ try: while self.process.poll() is None: send(self.in_q.get(), self.process.stdin) except Exception as e: pass self.process.stdout.close()
65e56979950079da89c6f081f7033b2c4a160d7a
72368c0515f47cbea81413bad6b525eb8170f3d1
/osbuild/mounts.py
7f46b89cb76393f998229b80a27a422c9514c66f
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
teg/osbuild
187bbcab1505b76eb3a5349fd4c2bdc048aba886
8bc4bff80c5d615a4ec5435f537d77e827bebbfa
refs/heads/main
2022-06-01T05:50:05.051190
2021-11-19T08:50:15
2022-01-25T11:23:36
452,252,955
0
0
Apache-2.0
2022-01-26T11:41:44
2022-01-26T11:41:43
null
UTF-8
Python
false
false
4,174
py
""" Mount Handling for pipeline stages Allows stages to access file systems provided by devices. This makes mount handling transparent to the stages, i.e. the individual stages do not need any code for different file system types and the underlying devices. """ import abc import hashlib import json import os import subprocess from typing import Dict from osbuild import host from osbuild.devices import DeviceManager class Mount: """ A single mount with its corresponding options """ def __init__(self, name, info, device, target, options: Dict): self.name = name self.info = info self.device = device self.target = target self.options = options self.id = self.calc_id() def calc_id(self): m = hashlib.sha256() m.update(json.dumps(self.info.name, sort_keys=True).encode()) if self.device: m.update(json.dumps(self.device.id, sort_keys=True).encode()) if self.target: m.update(json.dumps(self.target, sort_keys=True).encode()) m.update(json.dumps(self.options, sort_keys=True).encode()) return m.hexdigest() class MountManager: """Manager for Mounts Uses a `host.ServiceManager` to activate `Mount` instances. Takes a `DeviceManager` to access devices and a directory called `root`, which is the root of all the specified mount points. """ def __init__(self, devices: DeviceManager, root: str) -> None: self.devices = devices self.root = root self.mounts = {} def mount(self, mount: Mount) -> Dict: source = self.devices.device_abspath(mount.device) args = { "source": source, "target": mount.target, "root": self.root, "tree": self.devices.tree, "options": mount.options, } mgr = self.devices.service_manager client = mgr.start(f"mount/{mount.name}", mount.info.path) path = client.call("mount", args) if not path: res = {} self.mounts[mount.name] = res return res if not path.startswith(self.root): raise RuntimeError(f"returned path '{path}' has wrong prefix") path = os.path.relpath(path, self.root) self.mounts[mount.name] = path return {"path": path} class MountService(host.Service): """Mount host service""" @abc.abstractmethod def mount(self, args: Dict): """Mount a device""" @abc.abstractmethod def umount(self): """Unmount all mounted resources""" def stop(self): self.umount() def dispatch(self, method: str, args, _fds): if method == "mount": r = self.mount(args) return r, None raise host.ProtocolError("Unknown method") class FileSystemMountService(MountService): """Specialized mount host service for file system mounts""" def __init__(self, args): super().__init__(args) self.mountpoint = None self.check = False @abc.abstractmethod def translate_options(self, options: Dict): return [] def mount(self, args: Dict): source = args["source"] target = args["target"] root = args["root"] options = args["options"] mountpoint = os.path.join(root, target.lstrip("/")) args = self.translate_options(options) os.makedirs(mountpoint, exist_ok=True) self.mountpoint = mountpoint subprocess.run( ["mount"] + args + [ "--source", source, "--target", mountpoint ], check=True) self.check = True return mountpoint def umount(self): if not self.mountpoint: return self.sync() print("umounting") # We ignore errors here on purpose subprocess.run(["umount", self.mountpoint], check=self.check) self.mountpoint = None def sync(self): subprocess.run(["sync", "-f", self.mountpoint], check=self.check)
7bb8400b870908871347973d08509a7f99913fa8
abb0b8c04bbb5a91fd50c6540a864de66e624ba9
/Analysis/bec_rabi_flop_3state.py
2088a04782010c315fb602c4fc77a26ef4b66cad
[]
no_license
anavaldesc/Chern
eb292ceda0ab99c11ac2c157766d863bd9b341f8
b2985ca11a4309bc27b12e852aa1d77caaf5b650
refs/heads/master
2021-01-20T22:05:53.449553
2017-11-16T14:54:26
2017-11-16T14:54:26
101,799,269
0
0
null
null
null
null
UTF-8
Python
false
false
9,147
py
# -*- coding: utf-8 -*- """ Created on Wed Jul 5 17:39:08 2017 @author: banano """ import sys sys.path.append('/Users/banano/databandit') import numpy as np import matplotlib.pyplot as plt import h5py import os import pandas as pd from fnmatch import fnmatch import databandit as db from scipy.sparse.linalg import expm def matchfiles(dir): for root, dirs, files in os.walk(dir): for file in files: if fnmatch(file, '*.h5'): yield root, file break # break after listing top level dir def getfolder(date, sequence): date = pd.to_datetime(str(date)) folder = 'data/' + date.strftime('%Y/%m/%d') + '/{:04d}'.format(sequence) return folder camera = 'XY_Flea3' date = 20170823 sequence = 183# 151 redo_prepare = False sequence_type = 'bec_rabi_flop_3state' #x = [78, 329, 534] #y = [281, 344, 247] #start in z #x = [80, 331, 530] #y = [178, 241, 151] #start in x x = [124, 375, 579] y = [231, 292, 202] #start in y wx = 120 wy = 30 w = 30 ods = [] iod = [] p0 = [] p1 = [] p2 = [] psum = [] folder = getfolder(date, sequence) outfile = '{}_{}_{:04d}.h5'.format(sequence_type, date, sequence) Raman_pulse_time = [] fracs = [] try: with h5py.File('results/' + outfile, 'r') as f: f['data'] except KeyError: redo_prepare = True except IOError: redo_prepare = True try: with h5py.File('results/' + outfile, 'r') as f: f['data'] except KeyError: redo_prepare = True except IOError: redo_prepare = True if redo_prepare: print('Preparing {} data...'.format(sequence_type)) for r, file in matchfiles(folder): with h5py.File(os.path.join(r, file), 'r') as h5_file: # print('banana') try: img = h5_file['data']['images' + camera]['Raw'][:] attrs = h5_file['globals'].attrs img = np.float64(img) atoms = img[0] - img[2] probe = img[1] - img[2] od = -np.log(((atoms < 1) + atoms) / ((probe < 1) + probe)) iod.append(np.ma.masked_invalid(od).sum()) # attrs = h5_file['results/rois_od'].1attrs Raman_pulse_time.append(attrs['Raman_pulse_time']) # print(attrs[:]) except Exception as e: print(e) # print('There are no {} images in this file'.format(camera)) try: attrs = h5_file['results/rois_od'].attrs p0.append(attrs['roi_0']) p1.append(attrs['roi_1']) p2.append(attrs['roi_2']) psum.append(attrs['roi_0'] + attrs['roi_1'] + attrs['roi_2']) except: print('There are no rois in this shot') # df = pd.DataFrame() df['Raman_pulse_time'] = Raman_pulse_time df['integratedOD'] = iod df['p0'] = p0 df['p1'] = p1 df['p2'] = p2 df['psum'] = psum # df['p{}'.format(i)] = p0 fracs = np.array(fracs) ods = np.array(ods) # for i in range(3): # df['p{}'.format(2-i)] = ods[:,i] # for i in range(50): # df['frac'] = fraction[:,1:1+2].mean() # print(fraction[:,1:1+4].mean()) # print(fr action[:,i:i+4].mean()) # df['delta_xyz'] = delta_xyz df = df.dropna() df = df.sort_values(by='Raman_pulse_time') # df = df[ df.integratedOD > df.integratedOD.mean() * 1 ] # df.to_hdf('results/' + outfile, 'data', mode='w') else: df = pd.read_hdf('results/' + outfile, 'data') #except Exception as e: # print(e) # print('Empty data file') #%% color = ['b', 'k', 'r'] for i in range(3): plt.plot(df['Raman_pulse_time'], df['p{}'.format(i)]/ df['psum'], color[i] + 'o') plt.xlabel('Raman pulse time') plt.ylabel('Fraction') #plt.xlim([0, 500]) #%% def evolve(t, H, psi0, kwargs): dt = np.diff(t) Hlist = np.array([H(ti, *kwargs) for ti in t[:-1]+dt/2]) Ulist = [] psiList = [psi0] Plist = [np.abs(psi0)**2] for dti, Hi in zip(dt, Hlist): Ui = expm(-1j*Hi*dti) psi = np.dot(Ui, psiList[-1]) Ulist.append(Ui) psiList.append(psi) Plist.append(np.abs(psi)**2) Ulist = np.array(Ulist) psiList = np.array(psiList) Plist = np.array(Plist) return psiList, Plist, Ulist def H_RashbaRF_full(t, ramp_rate, qx, qy, Omega1, Omega2, Omega3, omega1, omega2, omega3, E1, E2, E3, ramp): if ramp and t <= 1 / ramp_rate: Omega1 = Omega1 * 2 * np.pi * t * ramp_rate Omega2 = Omega2 * 2 * np.pi * t * ramp_rate Omega3 = Omega3 * 2 * np.pi * t * ramp_rate else: Omega1 = Omega1 * 2 * np.pi Omega2 = Omega2 * 2 * np.pi Omega3 = Omega3 * 2 * np.pi k1_x = np.cos(2 * np.pi / 3) * np.sqrt(2) k1_y = -np.sin(2 * np.pi / 3) * np.sqrt(2) k2_x = np.cos(2 * np.pi * 2/ 3) * np.sqrt(2) k2_y = -np.sin(2 * np.pi * 2/ 3) * np.sqrt(2) k3_x = np.cos(2 * np.pi) k3_y = -np.sin(2 * np.pi) k1_x = np.cos(2 * np.pi / (360./135)) k1_y = -np.sin(2 * np.pi / (360./135)) k2_x = np.cos(2 * np.pi / 1.6) k2_y = -np.sin(2 * np.pi / 1.6) k3_x = np.cos(2 * np.pi) k3_y = -np.sin(2 * np.pi) H = np.array([[E1 + (qx+k1_x)**2 + (qy+k1_y)**2, 1.0j*Omega1*np.cos(omega1*t), Omega3*np.cos(omega3*t)], [-1.0j*Omega1*np.cos(omega1*t),E2 + (qx+k2_x)**2 + (qy+k2_y)**2, -1.0j*Omega2*np.cos(omega2*t)], [Omega3*np.cos(omega3*t), 1.0j*Omega2*np.cos(omega2*t),E3 + (qx+k3_x)**2 + (qy+k3_y)**2]]) H = np.array(H, dtype='complex') return H def H_RashbaRF(t, qx, qy, Omega1, Omega2, Omega3, delta1=0, delta2=0, delta3=0): Omega1 = Omega1 * 2 * np.pi Omega2 = Omega2 * 2 * np.pi Omega3 = Omega3 * 2 * np.pi k1_x = np.cos(2 * np.pi / 3) * np.sqrt(2) k1_y = -np.sin(2 * np.pi / 3) * np.sqrt(2) k2_x = np.cos(2 * np.pi * 2/ 3) * np.sqrt(2) k2_y = -np.sin(2 * np.pi * 2/ 3) * np.sqrt(2) k3_x = np.cos(2 * np.pi) k3_y = -np.sin(2 * np.pi) # k1_x = np.cos(2 * np.pi / (360./135)) k1_y = -np.sin(2 * np.pi / (360./135)) k2_x = np.cos(2 * np.pi / 1.6) k2_y = -np.sin(2 * np.pi / 1.6) k3_x = np.cos(2 * np.pi) k3_y = -np.sin(2 * np.pi) # H = np.array([[(qx+k1_x)**2 + (qy+k1_y)**2+delta1 + delta3, 1.0j*Omega1, Omega3], # [-1.0j*Omega1, (qx+k2_x)**2 + (qy+k2_y)**2-delta1+delta2, -1.0j*Omega2], # [Omega3, 1.0j*Omega2, (qx+k3_x)**2 + (qy+k3_y)**2-delta2-delta3]]) H = np.array([[(qx+k1_x)**2 + (qy+k1_y)**2+delta1 + delta3, Omega1, Omega3], [Omega1, (qx+k2_x)**2 + (qy+k2_y)**2-delta1+delta2, Omega2], [Omega3, Omega2, (qx+k3_x)**2 + (qy+k3_y)**2-delta2-delta3]]) H = np.array(H, dtype='complex') return H Omega = 3.2 Omega1 = Omega * 1. Omega2 = Omega * 0.9 Omega3 = Omega * 1.1 E1 = 0 E2 = 224 E3 = 224 + 140 delta1 = 0 delta2 = 0 delta3 = 0 omega1 = E2 - E1 omega2 = E3 - E2 omega3 = E3 - E1 qx = 0 qy = 0 ramp_rate = 1 args_floquet = [qx, qy, Omega1, Omega2, Omega3, delta1, delta2, delta3] args_full = [ramp_rate, qx, qy, 2* Omega1, 2* Omega2, 2*Omega3, omega1, omega2, omega3, E1, E2, E3, False] psi0 = np.array([1, 0, 0], dtype='complex') t = df['Raman_pulse_time']*1e-3 #kwargs = [qx, qy, omega_zx, omega_xy, omega_yz, Omega_zx, Omega_xy, Omega_yz] #kwargs_full = [qx, qy, 2* Omega1, 2* Omega, 2*Omega3, omega1, omega2, # omega3, E1, E2, E3] P_full = evolve(t, H_RashbaRF_full, psi0, args_full)[1] P_Floquet = evolve(t, H_RashbaRF, psi0, args_floquet)[1] #%% label = ['z', 'x', 'y'] for i in range(3): # plt.plot(t*1e3, P_full[:,i], color[i]) plt.plot(t*1e3, P_Floquet[:,i], color[i] + '--', label=label[i] + ' rwa') plt.xlabel('Pulse time [hbar/E_R]') plt.ylabel('Probability') #plt.legend() #sorted_fractions = [] #for i in range(wx): # sorted_fractions.append(df['frac{}'.format(i)]) # plt.plot(df['Raman_pulse_time'], df['frac{}'.format(i)]) # plt.ylim([0,1]) # plt.xlabel('Raman pulse time [us]') # plt.ylabel('Fraction') #plt.show() # #sorted_fractions = np.array(sorted_fractions) #psd_vec = [] #for i in range(len(sorted_fractions[:,0])): # frac_ft = np.fft.fftshift( np.fft.fft(sorted_fractions[i]-sorted_fractions[i].mean())) # N = len(frac_ft) # psd = np.abs(frac_ft[N/2::])**2 ## plt.plot(psd) # psd_vec.append(psd/psd.max()) # #psd = np.array(psd_vec) #psd /= psd.max() #N = len(sorted_fractions[:,0]) #fet = df.as_matrix().T[0] #d = fet[1] - fet[0] #d = d*1e-6 #freqs = np.fft.fftfreq(N, d)[0:N/2]*1e-3 #plt.pcolormesh(psd.T, vmin=0, vmax=1, cmap='YlGn') #plt.xlabel('pixel') #plt.ylabel('Frequency [kHz]') #plt.yticks(range(0, N/2, N/10), ['%.1f'%freqs[::int(N/10)][i] for i in range(0,5)]) #plt.axis('Tight')
edd79dabbe37979eddc9265b68061e477fbc0a8f
de41c4ee70f0ff41c198794cd204b7025d745ce9
/tests/test_repository.py
1c0fcb979a475b5a0d773ffdb3cf868d99ded20c
[]
no_license
liluo/linguist
30b6957ba3bc8f116a7500f2a0a7bfd32cd368cf
d65d34be638e7314f6f63d024f1c6cb940121f53
refs/heads/master
2021-01-16T00:57:48.797495
2013-11-19T15:35:49
2013-11-19T15:35:49
11,943,348
3
5
null
2013-11-19T15:09:30
2013-08-07T06:46:35
Python
UTF-8
Python
false
false
893
py
# -*- coding: utf-8 -*- from pygments.lexers import find_lexer_class from framework import LinguistTestBase, main, ROOT_DIR from libs.repository import Repository from libs.language import Language class TestRepository(LinguistTestBase): def repo(self, base_path): return Repository.from_directory(base_path) def linguist_repo(self): return self.repo(ROOT_DIR) def test_linguist_language(self): assert self.linguist_repo().language == Language.find_by_name('Python') def test_linguist_languages(self): assert self.linguist_repo().languages[Language.find_by_name('Python')] > 2000 def test_linguist_size(self): assert self.linguist_repo().size > 3000 def test_binary_override(self): assert self.repo(ROOT_DIR + '/samples/Nimrod').language == Language.find_by_name('Nimrod') if __name__ == '__main__': main()
c8d12fe384351eefbc7005f84e44367ebb3c90b8
270537e8095d7e86ccf4c672d992d3c7c0dea339
/build/20130906/UUBlog/UUBlog/core/ubasemodel.py
78467082aa0c6640972cb7a95659c43f13140aa9
[]
no_license
Missyliang1/UUBlog
5d566045a28e4f03a97b473be106ecd9f2c4835d
db287da6de7acd970c431a5e417a89c6285d677a
refs/heads/master
2021-01-18T07:40:42.032139
2013-09-18T05:54:06
2013-09-18T05:54:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
414
py
#-*- coding:utf-8 -*- from django.db import models class UBaseModel(models.Model): class Meta: abstract =True def getModelResult(model,count=None,*orders,**wheres): ret=model.objects.filter(**wheres) for order in orders: ret=ret.order_by(order) if count: return ret[:count] return ret def Test(self): return self
cc8fa5ed8c3057249d6ea406fc6e8a5ae4dc625d
abc2b1b09440de924792cb1b50594cc7fefd6d05
/deployment_queue/views.py
2a0157df00bf1107cb19edc8377df98de644efed
[]
no_license
SJSU272Spring2019/Project-Group-5
46e4642289d81ee5d46b7772d63d8f5a5a525375
48ee3457f8696524e7bd5e5ed5d68a52a7b2929c
refs/heads/master
2020-04-25T19:34:16.965936
2019-05-12T04:42:15
2019-05-12T04:42:15
173,024,873
2
0
null
null
null
null
UTF-8
Python
false
false
2,108
py
from django.shortcuts import render from deployment_detail.models import DeploymentDetail from django.shortcuts import redirect from authenticate.models import UserProfile def deployment_queue(request): if not request.user.is_authenticated: user_message = "Please login to access the Training Management System" return render(request, 'login.html', {'user_message': user_message}) deployment_records = DeploymentDetail.objects.filter(deployment_status='Open').order_by('project_code', 'course_order') return render(request, 'deployment_queue.html', {'deployment_records': deployment_records, 'profile_info':UserProfile.objects.get(username=request.user.username)}) def update_deployment_queue(request): if not request.user.is_authenticated: user_message = "Please login to access the Training Management System" return render(request, 'login.html', {'user_message': user_message}) if request.POST.get('cancel_deployment_queue'): return redirect('/queue') if request.POST.get('save_deployment_queue'): deployment_records = save_deployment_queue(request) return render(request, 'deployment_queue.html', {'deployment_records': deployment_records, 'profile_info':UserProfile.objects.get(username=request.user.username)}) if request.POST.get('save_exit_deployment_queue'): deployment_records = save_deployment_queue(request) return redirect('/queue') def save_deployment_queue(request): if not request.user.is_authenticated: user_message = "Please login to access the Training Management System" return render(request, 'login.html', {'user_message': user_message}) my_checkboxes = request.POST.getlist('Completed') for item in my_checkboxes: temp_deployment_record = DeploymentDetail.objects.get(deliverable_id=item) temp_deployment_record.deployment_status = 'Complete' temp_deployment_record.save() deployment_records = DeploymentDetail.objects.filter(deployment_status='Open').order_by('project_code','course_order') return deployment_records
fb5c6da20a7f06bc3f7ae9e52b83c9776894e320
05bcba01ccadacdcb50930d8a14ca866d4860aa3
/每日一码/1.4.py
d562765773e791296e3d3948d1f59bf072f06599
[]
no_license
bai3/arithmetic
1de9057a376cc9025a30e8eed069c1657b297fb3
0688e44ba2ec9cdd18661602f60ddd011e8e077d
refs/heads/master
2021-09-14T12:37:05.125808
2018-05-14T02:27:48
2018-05-14T02:27:48
106,187,428
0
0
null
null
null
null
UTF-8
Python
false
false
332
py
# -*- coding:utf-8 -*- class Solution: def jumpFloor(self, number): if number <= 0: return 0 elif number <= 2: return number else: b = 1 c = 2 for i in range(3, number+1): c = c + b b = c - b return c
d4a02a75781865a75f8f07caad950b79ddaf844c
a283608134d59391f88d877d642bb23ba4015fcb
/core/window_controller/window_controller.py
70985fdf8b05e03a2c81c02787129acf94d69bc5
[ "MIT" ]
permissive
wo1fsea/TheOldChineseRoom
6daf371e65c3626981c9eec70677a0372c6da16c
19e52d86a9720bb8701149a47126f8e7975320b5
refs/heads/master
2021-10-08T19:04:10.497774
2018-12-16T15:37:06
2018-12-16T15:37:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,580
py
# -*- coding: utf-8 -*- """---------------------------------------------------------------------------- Author: Huang Quanyong (wo1fSea) [email protected] Date: 2017/10/4 Description: window_controller.py ----------------------------------------------------------------------------""" import sys class WindowController(object): def __init__(self): self.adapter = self._load_adapter()() def locate_window(self, name): return self.adapter.locate_window(name) def move_window(self, window_id, x, y): self.adapter.move_window(window_id, x, y) def resize_window(self, window_id, width, height): self.adapter.resize_window(window_id, width, height) def focus_window(self, window_id): self.adapter.focus_window(window_id) def is_window_focused(self, window_id): return self.adapter.is_window_focused(window_id) def get_focused_window_name(self): return self.adapter.get_focused_window_name() def get_window_geometry(self, window_id): return self.adapter.get_window_geometry(window_id) def _load_adapter(self): if sys.platform == "darwin": from .window_controller_darwin import WindowControllerDarwin return WindowControllerDarwin elif sys.platform == "win32": from .window_controller_win32 import WindowControllerWin32 return WindowControllerWin32 elif sys.platform in ["linux", "linux2"]: raise NotImplementedError() else: raise NotImplementedError()
27e6878286735e53449181168380113412444fa9
c58b04695593fe579ff5681c215807a70fb02661
/team7/pytorch_0.4_classification/example-ngraph_1.py
9a7278d2cb08fc57818c280d95fbfd1bc1e13ea7
[]
no_license
Mowd/nctu_dl_final
2322d660834b33c544db7dd1d0607c77338774e6
e2d9628e9f2a00c37fa18af69390a391d3a83b60
refs/heads/master
2020-04-15T06:46:58.568984
2019-01-10T16:03:29
2019-01-10T16:03:29
164,472,916
0
0
null
null
null
null
UTF-8
Python
false
false
5,802
py
from benchmark import benchmarking import torch import torchvision import torchvision.transforms as transforms from torchvision.models.resnet import resnet18 import os import sys #data_dir = os.environ['TESTDATADIR'] #assert data_dir is not None, "No data directory" #from models import ResNeXt29_2x64d from collections import OrderedDict import time import numpy as np from models import resnet20_cifar import torch.utils.data as data from PIL import Image import onnx import ngraph as ng from ngraph_onnx.onnx_importer.importer import import_onnx_model BATCH_SIZE = 960 ONNX_MODEL = "./checkpoint/f1_model.onnx" im_h = 32 im_w = 32 #ngraph onnx_protobuf = onnx.load(ONNX_MODEL) ng_model = import_onnx_model(onnx_protobuf)[0] runtime = ng.runtime(backend_name='CPU') resnet = runtime.computation(ng_model['output'], *ng_model['inputs']) model = resnet20_cifar() inputs = [] targets = [] @benchmarking(team=7, task=0, model=model, preprocess_fn=None) def inference(model, test_loader,**kwargs): total = 0 correct = 0 assert kwargs['device'] != None, 'Device error' device = kwargs['device'] if device == "cpu": print("device = ",device) #for inputs, targets in testloader: for idx in range(len(test_loader)): inputs[idx], targets[idx] = inputs[idx].to(device).numpy(), targets[idx].to(device).numpy() outputs = resnet(inputs[idx]) pred = np.argmax(outputs,axis=1) total += len(targets[idx]) if(targets[idx].shape != pred.shape): correct += np.equal(targets[idx],pred[0:len(targets)]).sum() else: correct += np.equal(targets[idx],pred).sum() #print("correct=" ,correct ) else: print("device = ",device) model.to(device) checkpoint = torch.load('./checkpoint/ckpt_last-V4.t7') new_state_dict = OrderedDict() for k, v in checkpoint['state_dict'].items(): name = k[7:] # remove `module.` new_state_dict[name] = v # load params model.load_state_dict(new_state_dict) model.eval() with torch.no_grad(): for batch_idx, (input_, target_) in enumerate(test_loader): input_, target_ = input_.to(device), target_.to(device) output_ = model(input_) _, predicted = output_.max(1) total += target_.size(0) correct += predicted.eq(target_).sum().item() #print("correct=",correct) #total = len(test_loader) * BATCH_SIZE acc = 100.*correct/total print(acc) return acc class CINIC10(data.Dataset): classes =['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] def __init__(self, root, train=True,transform=None, target_transform=None): self.root = os.path.expanduser(root) self.transform = transform self.target_transform = target_transform self.train = train # training set or test set self.img = [] self.lab = [] file_name = self.root # print(file_name) # now load the numpy arrays if os.path.exists(file_name): data= np.load(file_name) self.img = data['img'] self.lab = data['label'] else: print("It can't find .np") #self.test_data = self.test_data.transpose((0, 2, 3, 1)) # convert to HWC def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, lab= self.img[index], self.lab[index] # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: lab = self.target_transform(lab) return img, lab def __len__(self): return len(self.img) def __repr__(self): fmt_str = 'Dataset ' + self.__class__.__name__ + '\n' fmt_str += ' Number of datapoints: {}\n'.format(self.__len__()) tmp = 'train' if self.train is True else 'test' fmt_str += ' Split: {}\n'.format(tmp) fmt_str += ' Root Location: {}\n'.format(self.root) tmp = ' Transforms (if any): ' fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) tmp = ' Target Transforms (if any): ' fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) return fmt_str if __name__=='__main__': #cinic_directory = os.environ['TESTDATADIR'] #assert cinic_directory is not None, "No data directory" #cinic_directory = './data/cinic-10' test_dir = './test_img.npz' cinic_mean = [0.47889522, 0.47227842, 0.43047404] cinic_std = [0.24205776, 0.23828046, 0.25874835] transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=cinic_mean, std=cinic_std)]) #testset = torchvision.datasets.ImageFolder(root=(cinic_directory + '/test'), transform=transform) #testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False, num_workers=4,drop_last=True) testset = CINIC10(root=test_dir,transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=BATCH_SIZE, shuffle=False, num_workers=4,drop_last=True) for ins, ts in testloader: inputs.append(ins) targets.append(ts) inference(model, testloader)
95fef40a5dc2a68a14ca2b5b5e61ee8198383dcd
952daeb7e254e863fc57459b87ca29b745c8ce94
/Amazon/purchasing/serializer.py
1d302f484744ec8824783db41c73fd9cbfe0f5b5
[]
no_license
yjesefcu/AmazonSeller
2fbce7e08cbd0e8dff996d28e94f789d56441ddb
ca155dd81c0583eecd5128433291dc2b3f16f80d
refs/heads/master
2021-01-22T06:01:53.656798
2018-01-28T13:39:49
2018-01-28T13:39:49
92,515,839
0
1
null
null
null
null
UTF-8
Python
false
false
1,148
py
__author__ = 'liucaiyun' from rest_framework import serializers from products.serializer import ProductSerializer from models import * class DateTimeFormat(serializers.DateTimeField): def to_representation(self, value): if not value: return '' return value.strftime('%Y-%m-%d %H:%M') class ContractSerializer(serializers.ModelSerializer): class Meta: model = Contract fields = '__all__' class OrderStatusSerializer(serializers.ModelSerializer): class Meta: model = OrderStatus fields = '__all__' class PurchasingOrderSerializer(serializers.ModelSerializer): product = ProductSerializer(read_only=True) create_time = DateTimeFormat(read_only=True) contract = ContractSerializer(read_only=True) status = OrderStatusSerializer() status_id = serializers.IntegerField() class Meta: model = PurchasingOrder fields = '__all__' class InboundSerializer(serializers.ModelSerializer): inbound_time = DateTimeFormat() status = OrderStatusSerializer() class Meta: model = InboundProducts fields = '__all__'
104286c34947124afae89f5f9066ce8775935aa8
e4cb0a704203c54d8c7eeb4e9881b71b96976bea
/outsourceScraper/main.py
ab8d86195cb1c1964a798ff7d0155c8e352f6d42
[]
no_license
artemutin/outsourceScraper
a170ee53e56e317e3872a2d66408a247fea9a146
54196af06f03dca8f8aa2e39aa1dada78a21d171
refs/heads/master
2020-04-14T05:23:39.516288
2016-06-23T14:58:52
2016-06-23T14:58:52
61,720,521
0
0
null
null
null
null
UTF-8
Python
false
false
1,672
py
import sys sys.path.append(".") from outsourceScraper.Catalog import full_scrape from outsourceScraper.utils import setupLog from logging import exception, info from sys import exc_info from os.path import expanduser import traceback import datetime as dt import argparse import os def main(path=expanduser('~'), max_threads=10, logTofile=True): try: if not path: path = expanduser('~') if not max_threads: max_threads = 10 setupLog(logToFile=logTofile, path=path) info('Доступные параметры main: path=<Путь до желаемой папки для сохранения файла>') current_time = dt.datetime.now().strftime('%d-%m-%H-%M') full_scrape(os.path.join(path,'results-{}.csv'.format(current_time)), max_threads) except BaseException as e: exception('I caught an exception in main func! This should never ever been happen!:(. But Here it is: {}; callstask: {}'. format(str(e), traceback.print_tb(exc_info()[2]))) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Scrape some parts of vl.ru and 2gis catalogs') parser.add_argument('-p', dest='path', help='Specify folder to store files in.') parser.add_argument('-t', dest='max_threads', type=int, help="Specify number of threads to use.") parser.add_argument('-l', dest='logTofile', action='store_false', help="Set this flag to disable logging into file.") args = parser.parse_args() args = vars(args) if args.get('path', False): args['path'] = str(args['path']) main(**args)
acee49631bfcc0689e388480765c6dbf8cf16025
ee890ca4c28bb6e23cc96b69e83d87cdcafebf7c
/towerofhanoi.py
e59572da9bb254a42af276afaf5f1ce8ce185ec2
[]
no_license
deepandas11/Python-ADS
6778b5501967379006b2c4f1d4429a60651d816d
352e54e550e78ac7e2c1cf62e29520b823dbf462
refs/heads/master
2020-04-26T00:42:28.791873
2019-03-06T07:08:42
2019-03-06T07:08:42
173,187,085
0
0
null
null
null
null
UTF-8
Python
false
false
307
py
def moveDisk(fp, tp): print("Moving disk from "+str(fp)+" to "+str(tp)+".") def moveTower(height,fromP, withP, toP): if height>=1: moveTower(height-1, fromP,toP,withP) moveDisk(fromP,toP) moveTower(height-1, withP, fromP, toP) moveTower(4, "A", "B", "C")
9bc990a63d2e3801b4ea704ddc416f4fa47663e5
7cba457b2bb23b79cb17d46a81d50a5c4b6b1b09
/backprop.py
766f1445a85ed22d4e5d788e00ce1d50e0f45521
[]
no_license
josh-dh/CNN-framework
44e5cf7d8bac752fdf1f30f58e09762d179e7f16
bbd1cc58b764ff46c784272538655fc2c47bcb12
refs/heads/master
2021-01-16T02:51:50.326886
2018-02-07T02:26:22
2018-02-07T02:26:22
99,988,244
0
0
null
null
null
null
UTF-8
Python
false
false
2,256
py
#Backprop Module import numpy as np def final_layer_error(predictions, labels, weighted_input): """ calculate the error of the final layer """ def d_loss_quadratic_d_activations(predictions, labels): """ derivative of quadratic loss with respect to activations """ return np.subtract(predictions, labels) def d_softmax_activations_d_weighted_input(weighted_input): """ derivate of softmax activations with respect to weighted inputs UNSURE IF CORRECT """ output = np.zeros((weighted_input.size,)) c = np.sum(np.exp(weighted_input)) #constant representing softmax denominator for i in range(weighted_input.size): ctemp = c - np.exp(weighted_input[i]) output[i] = (ctemp * np.exp(weighted_input[i]))/np.power((ctemp * np.exp(weighted_input[i])),2) return output #hadamard product of two functions: return np.multiply(d_loss_quadratic_d_activations(predictions, labels), d_softmax_activations_d_weighted_input(weighted_input)) def lower_layer_error(currentweights,currenterror,lowerinput): """ calculate the error of the layer lower to the last calculated layer """ def relu_prime(lowerinput): #UNSURE IF CORRECT return np.minimum(lowerinput, 0) return np.multiply(np.multiply(np.transpose(currentweights),currenterror),relu_prime(lowerinput)) def d_loss_d_weight(): """ return an array of loss derivatives with respect to their weights """ pass #TEMP def d_loss_d_bias(error_for_layer): """ return an array of loss derivatives with respect to their biases THIS FUNCTION ONLY SERVES THE PURPOSE OF DOCUMENTATION """ return error_for_layer def loss_quadratic(predictions, labels): """ quadratic loss function for one-hot labels and softmax predictions """ return np.sum(np.square(np.subtract(labels, predictions)))/(np.exp2(labels.size)) def loss_cross_entropy(predictions, labels): """ cross entropy loss designed to work with one-hot labels and softmax predictions UNTESTED; UNUSED """ output = 0 for i in range(len(predictions)): output -= labels[i] * np.log(predictions[i]) return output/i def stochastic_gradient_descent(batch, parameters, parameter_derivatives, step_size): """ single stochastic gradient descent iteration for parameters performed over a batch """ pass
927b0fc5f3b203bab957dfcd205dc23da901a874
eb54a6dfa7bf958fdc145c011062657b6bd2b24c
/163music_spider.py
39ab1e330da8571661b7b309f7c19ea5c75b4c39
[]
no_license
youmulove/163musicpinlun_spider
e8b7e23afc76ffdccb94c56aa558e095598fb547
c62dd0b647bc4302f69c87f75d7eddebd49107f7
refs/heads/master
2020-03-22T06:42:23.431354
2018-07-04T01:11:38
2018-07-04T01:11:38
139,652,177
0
0
null
null
null
null
UTF-8
Python
false
false
7,428
py
#!/usr/bin/env python2.7 # -*- coding: utf-8 -*- ''' @Description: 网易云音乐评论爬虫,可以完整爬取整个评论 部分参考了@平胸小仙女的文章(地址:https://www.zhihu.com/question/36081767) post加密部分也给出了,可以参考原帖: 作者:平胸小仙女 链接:https://www.zhihu.com/question/36081767/answer/140287795 来源:知乎 ''' from Crypto.Cipher import AES import base64 import requests import json import codecs import time # 头部信息 headers = { 'Host':"music.163.com", 'Accept-Language':"zh-CN,zh;q=0.8,en-US;q=0.5,en;q=0.3", 'Accept-Encoding':"gzip, deflate", 'Content-Type':"application/x-www-form-urlencoded", 'Cookie':"_ntes_nnid=754361b04b121e078dee797cdb30e0fd,1486026808627; _ntes_nuid=754361b04b121e078dee797cdb30e0fd; JSESSIONID-WYYY=yfqt9ofhY%5CIYNkXW71TqY5OtSZyjE%2FoswGgtl4dMv3Oa7%5CQ50T%2FVaee%2FMSsCifHE0TGtRMYhSPpr20i%5CRO%2BO%2B9pbbJnrUvGzkibhNqw3Tlgn%5Coil%2FrW7zFZZWSA3K9gD77MPSVH6fnv5hIT8ms70MNB3CxK5r3ecj3tFMlWFbFOZmGw%5C%3A1490677541180; _iuqxldmzr_=32; vjuids=c8ca7976.15a029d006a.0.51373751e63af8; vjlast=1486102528.1490172479.21; __gads=ID=a9eed5e3cae4d252:T=1486102537:S=ALNI_Mb5XX2vlkjsiU5cIy91-ToUDoFxIw; vinfo_n_f_l_n3=411a2def7f75a62e.1.1.1486349441669.1486349607905.1490173828142; [email protected]|1489375076|1|study|00&99|null&null&null#hub&420100#10#0#0|155439&1|study_client|[email protected]; NTES_CMT_USER_INFO=84794134%7Cm155****4439%7Chttps%3A%2F%2Fsimg.ws.126.net%2Fe%2Fimg5.cache.netease.com%2Ftie%2Fimages%2Fyun%2Fphoto_default_62.png.39x39.100.jpg%7Cfalse%7CbTE1NTI3NTk0NDM5QDE2My5jb20%3D; usertrack=c+5+hljHgU0T1FDmA66MAg==; Province=027; City=027; _ga=GA1.2.1549851014.1489469781; __utma=94650624.1549851014.1489469781.1490664577.1490672820.8; __utmc=94650624; __utmz=94650624.1490661822.6.2.utmcsr=baidu|utmccn=(organic)|utmcmd=organic; playerid=81568911; __utmb=94650624.23.10.1490672820", 'Connection':"keep-alive", 'Referer':'http://music.163.com/' } # 设置代理服务器 proxies= { 'http:':'http://121.232.146.184', 'https:':'https://144.255.48.197' } # offset的取值为:(评论页数-1)*20,total第一页为true,其余页为false # first_param = '{rid:"", offset:"0", total:"true", limit:"20", csrf_token:""}' # 第一个参数 second_param = "010001" # 第二个参数 # 第三个参数 third_param = "00e0b509f6259df8642dbc35662901477df22677ec152b5ff68ace615bb7b725152b3ab17a876aea8a5aa76d2e417629ec4ee341f56135fccf695280104e0312ecbda92557c93870114af6c9d05c4f7f0c3685b7a46bee255932575cce10b424d813cfe4875d3e82047b97ddef52741d546b8e289dc6935b3ece0462db0a22b8e7" # 第四个参数 forth_param = "0CoJUm6Qyw8W8jud" # 获取参数 def get_params(page): # page为传入页数 iv = "0102030405060708" first_key = forth_param second_key = 16 * 'F' if(page == 1): # 如果为第一页 first_param = '{rid:"", offset:"0", total:"true", limit:"20", csrf_token:""}' h_encText = AES_encrypt(first_param, first_key, iv) else: offset = str((page-1)*20) first_param = '{rid:"", offset:"%s", total:"%s", limit:"20", csrf_token:""}' %(offset,'false') h_encText = AES_encrypt(first_param, first_key, iv) h_encText = AES_encrypt(h_encText, second_key, iv) return h_encText # 获取 encSecKey def get_encSecKey(): encSecKey = "257348aecb5e556c066de214e531faadd1c55d814f9be95fd06d6bff9f4c7a41f831f6394d5a3fd2e3881736d94a02ca919d952872e7d0a50ebfa1769a7a62d512f5f1ca21aec60bc3819a9c3ffca5eca9a0dba6d6f7249b06f5965ecfff3695b54e1c28f3f624750ed39e7de08fc8493242e26dbc4484a01c76f739e135637c" return encSecKey # 解密过程 def AES_encrypt(text, key, iv): pad = 16 - len(text) % 16 text = text + pad * chr(pad) encryptor = AES.new(key, AES.MODE_CBC, iv) encrypt_text = encryptor.encrypt(text) encrypt_text = base64.b64encode(encrypt_text) return encrypt_text # 获得评论json数据 def get_json(url, params, encSecKey): data = { "params": params, "encSecKey": encSecKey } response = requests.post(url, headers=headers, data=data,proxies = proxies) return response.content # 抓取热门评论,返回热评列表 def get_hot_comments(url): hot_comments_list = [] hot_comments_list.append(u"用户ID 用户昵称 用户头像地址 评论时间 点赞总数 评论内容\n") params = get_params(1) # 第一页 encSecKey = get_encSecKey() json_text = get_json(url,params,encSecKey) json_dict = json.loads(json_text) hot_comments = json_dict['hotComments'] # 热门评论 print("共有%d条热门评论!" % len(hot_comments)) for item in hot_comments: comment = item['content'] # 评论内容 likedCount = item['likedCount'] # 点赞总数 comment_time = item['time'] # 评论时间(时间戳) userID = item['user']['userID'] # 评论者id nickname = item['user']['nickname'] # 昵称 avatarUrl = item['user']['avatarUrl'] # 头像地址 comment_info = userID + " " + nickname + " " + avatarUrl + " " + comment_time + " " + likedCount + " " + comment + u"\n" hot_comments_list.append(comment_info) return hot_comments_list # 抓取某一首歌的全部评论 def get_all_comments(url): all_comments_list = [] # 存放所有评论 all_comments_list.append(u"用户ID 用户昵称 用户头像地址 评论时间 点赞总数 评论内容\n") # 头部信息 params = get_params(1) encSecKey = get_encSecKey() json_text = get_json(url,params,encSecKey) json_dict = json.loads(json_text) comments_num = int(json_dict['total']) if(comments_num % 20 == 0): page = comments_num / 20 else: page = int(comments_num / 20) + 1 print("共有%d页评论!" % page) for i in range(page): # 逐页抓取 params = get_params(i+1) encSecKey = get_encSecKey() json_text = get_json(url,params,encSecKey) json_dict = json.loads(json_text) if i == 0: print("共有%d条评论!" % comments_num) # 全部评论总数 for item in json_dict['comments']: comment = item['content'] # 评论内容 likedCount = item['likedCount'] # 点赞总数 comment_time = item['time'] # 评论时间(时间戳) userID = item['user']['userId'] # 评论者id nickname = item['user']['nickname'] # 昵称 avatarUrl = item['user']['avatarUrl'] # 头像地址 comment_info = unicode(userID) + u" " + nickname + u" " + avatarUrl + u" " + unicode(comment_time) + u" " + unicode(likedCount) + u" " + comment + u"\n" all_comments_list.append(comment_info) print("第%d页抓取完毕!" % (i+1)) return all_comments_list # 将评论写入文本文件 def save_to_file(list,filename): with codecs.open(filename,'a',encoding='utf-8') as f: f.writelines(list) print("写入文件成功!") if __name__ == "__main__": start_time = time.time() # 开始时间 url = "http://music.163.com/weapi/v1/resource/comments/R_SO_4_186016/?csrf_token=" filename = u"晴天.txt" all_comments_list = get_all_comments(url) save_to_file(all_comments_list,filename) end_time = time.time() #结束时间 print("程序耗时%f秒." % (end_time - start_time))
60b0ba41b564ea65de3d21e92281b00dbe37aebc
d27091244f97969d5084c568f0e2c4040f18baa6
/{{cookiecutter.project_slug}}/tasks.py
0d881d7e4c671cbea56d5aa2b2d26b144b44a0a4
[ "MIT" ]
permissive
i2biz/cookiecutter-python-pylint
26d997d6f1928045e8568f9e722b0dffe1d4bb11
ba07cd620d982cb11161fee808025257176c62c3
refs/heads/master
2021-07-07T13:00:30.758374
2019-06-17T14:13:42
2019-06-17T14:13:42
98,869,317
0
0
MIT
2021-04-20T18:14:25
2017-07-31T08:59:58
Python
UTF-8
Python
false
false
537
py
# coding=utf-8 from invoke import task @task def style(ctx): ctx.run( "black --check {{cookiecutter.project_slug}} {{cookiecutter.project_slug}}_test" ) @task def lint(ctx): ctx.run( "pylint {{cookiecutter.project_slug}} {{cookiecutter.project_slug}}_test -r n" ) @task def test(ctx): ctx.run( "py.test -v --cov {{cookiecutter.project_slug}} --cov-report=html --cov-report=term-missing {{cookiecutter.project_slug}}_test" ) @task(pre=[test, style, lint]) def check(ctx): pass
c77f81ced232aaf35321ab772ccc4cc15336acb6
71bfc12150b66a3dea788368176eea11179bff0c
/main.py
46e2788fa7abf2daa476d7dee4d4bcc61e6a243f
[]
no_license
qc5111/RA
d5526c5d07bb9c90c5ae0ece0e6c1b3ff1bb1979
c5d95a1eb04218b6eb488730685f0cdcb9134577
refs/heads/master
2020-03-22T18:28:08.492812
2018-07-11T07:59:31
2018-07-11T07:59:31
140,462,261
1
0
null
null
null
null
UTF-8
Python
false
false
2,374
py
import os,aes256,rsa_lib,rsa,hashlib def ra_encrypt(r_file_name,block_size,pub_key): (path,filename) = os.path.split(r_file_name) if path: path=path+"\\" md5=hashlib.md5() w_file_name=path+str(int(time.time()*1000))+".ra.tmp" w=open(w_file_name, 'wb') r=open(r_file_name, 'rb') #开始处理头 pwd1=aes256.get_random_key() pwd2=aes256.get_random_key() rsa_crypted=rsa.encrypt(pwd1+pwd2,pub_key) rsa_size=len(rsa_crypted) file_name_size=len(filename) head=bytes("RA",encoding='utf-8')+block_size.to_bytes(4, byteorder='big')+rsa_size.to_bytes(2, byteorder='big')+rsa_crypted md5.update(head) w.write(head) #头写入完毕 #开始处理第一部分加密共512个字节 data=r.read(511-file_name_size) first_block=file_name_size.to_bytes(1, byteorder='big')+bytes(filename,encoding='utf-8')+data first_block=aes256.aes_cbc_encrypt(first_block,pwd1) md5.update(first_block) w.write(first_block) #第一部分加密处理&写入完毕 #第二部分(主部分)加密&处理写入开始 data=r.read(block_size) while data: data=aes256.aes_cbc_encrypt(data,pwd2) md5.update(data) w.write(data) data=r.read(block_size) r.close() w.close() md5_value=md5.hexdigest() os.rename(w_file_name,path+md5_value) return md5_value def ra_decrypt(r_file_name,prv_key): (path,filename) = os.path.split(r_file_name) if path: path=path+"\\" md5=hashlib.md5() r=open(r_file_name, 'rb') #读入头 data=r.read(8) if data[0:2].decode()!="RA": return("该文件不是RSA-AES加密文件") block_size=int.from_bytes(data[2:6],byteorder='big', signed=False) rsa_size=int.from_bytes(data[6:8],byteorder='big', signed=False) #读入加密的rsa数据 data=r.read(rsa_size) passwd=rsa.decrypt(data,prv_key) pwd1=passwd[0:32] pwd2=passwd[32:64] data=r.read(544) data=aes256.aes_cbc_decrypt(data,pwd1) file_name_size=int.from_bytes(data[0:1],byteorder='big', signed=False) filename=data[1:1+file_name_size].decode("utf-8") w_file_name=path+filename if os.path.exists(w_file_name): return("文件:"+w_file_name+"已存在,请删除或重命名原文件") w=open(w_file_name, 'wb') w.write(data[1+file_name_size:]) data=r.read(block_size+32) while data: data=aes256.aes_cbc_decrypt(data,pwd2) w.write(data) data=r.read(block_size+32) r.close() w.close()
6dd2cfb8ffa27592008f6df6cc0c027517ba095b
64b26ce32c9f1b3ce7fe5c57a45b06aca7b9c511
/实验一/171860537_实验一/stackoverflow/doc2vec.py
bcdbd3b4f07b11a577d7a4d47dc48409bd514e15
[]
no_license
wego1236/SREE
584b155b523e2f93a01fa9eaaccadd12f7d074ce
edd1c4f6f357c81dd1aa4765ea509cc59701088b
refs/heads/main
2023-03-21T18:21:37.249559
2021-03-17T14:45:22
2021-03-17T14:45:22
307,331,706
0
1
null
null
null
null
UTF-8
Python
false
false
1,048
py
import sys import logging import os import gensim # 引入doc2vec from gensim.models import Doc2Vec curPath = os.path.abspath(os.path.dirname(__file__)) rootPath = os.path.split(curPath)[0] sys.path.append(rootPath) # 引入日志配置 logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) # 加载数据 documents = [] # 使用count当做每个句子的“标签”,标签和每个句子是一一对应的 count = 0 with open('title.txt', 'r', encoding='utf-8') as f: for line in f: title = line # 切词,返回的结果是列表类型 words = title.split() # 这里documents里的每个元素是二元组,具体可以查看函数文档 documents.append(gensim.models.doc2vec.TaggedDocument(words, [str(count)])) count += 1 if count % 10000 == 0: logging.info('{} has loaded...'.format(count)) # 模型训练 model = Doc2Vec(documents, dm=1, size=100, window=8, min_count=5, workers=4) # 保存模型 model.save('title.model')
35af1d18981e1a0ce05538dca938add529273b43
3ce1ebbbf3e69e7c3bafd2cd359c63e85c960e5b
/src/models/RCNN_elmo.py
5a2a87876dc8f6b03d0a3641fe671196e6965907
[]
no_license
IreneZihuiLi/TopicAttentionMedicalAD
2afb75b2be0965d9601c5d459224eb5fc2535a44
8d5ccdabbae6ad0c7abef9765ae3441b565615da
refs/heads/master
2020-08-20T18:35:13.410327
2019-12-03T17:23:58
2019-12-03T17:23:58
216,054,583
14
2
null
null
null
null
UTF-8
Python
false
false
4,982
py
# _*_ coding: utf-8 _*_ ''' This is the one using ELMO! ''' import torch import torch.nn as nn from torch.autograd import Variable from torch.nn import functional as F from allennlp.modules.elmo import Elmo, batch_to_ids options_file = "/home/lily/zl379/Playing/bilm-tf/mmc_new/options.json" weight_file = "/home/lily/zl379/Playing/bilm-tf/dump/weights.hdf5" class RCNN_elmo(nn.Module): def __init__(self, config): super(RCNN_elmo, self).__init__() """ Arguments --------- batch_size : Size of the batch which is same as the batch_size of the data returned by the TorchText BucketIterator output_size : 2 = (pos, neg) hidden_sie : Size of the hidden_state of the LSTM vocab_size : Size of the vocabulary containing unique words embedding_length : Embedding dimension of GloVe word embeddings weights : Pre-trained GloVe word_embeddings which we will use to create our word_embedding look-up table """ self.batch_size = config.batch_size self.output_size = config.num_classes self.hidden_size = config.embedding_dim self.vocab_size = config.vocab_size self.embedding_length = config.embedding_dim self.elmo = config.elmo if self.elmo is True: # elmo print(self.elmo,'++++' * 30) self.elmo = Elmo(options_file, weight_file, config.elmo_level, dropout=0, requires_grad=False) # default is False else: print (self.elmo,'---'* 30) self.embedding = nn.Embedding(self.vocab_size, self.embedding_length) # Initializing the look-up table. # self.word_embeddings.weight = nn.Parameter(self.weights, requires_grad=True) # Assigning the look-up table to the pre-trained GloVe word embedding. self.dropout = 0.8 self.lstm = nn.LSTM(self.embedding_length, self.hidden_size, dropout=self.dropout, bidirectional=True) self.W2 = nn.Linear(2 * self.hidden_size + self.embedding_length, self.hidden_size) self.label = nn.Linear(self.hidden_size, self.output_size) def forward(self, input_sentences, batch_size=None): """ Parameters ---------- input_sentence: input_sentence of shape = (batch_size, num_sequences) batch_size : default = None. Used only for prediction on a single sentence after training (batch_size = 1) Returns ------- Output of the linear layer containing logits for positive & negative class which receives its input as the final_hidden_state of the LSTM final_output.shape = (batch_size, output_size) """ """ The idea of the paper "Recurrent Convolutional Neural Networks for Text Classification" is that we pass the embedding vector of the text sequences through a bidirectional LSTM and then for each sequence, our final embedding vector is the concatenation of its own GloVe embedding and the left and right contextual embedding which in bidirectional LSTM is same as the corresponding hidden state. This final embedding is passed through a linear layer which maps this long concatenated encoding vector back to the hidden_size vector. After this step, we use a max pooling layer across all sequences of texts. This converts any varying length text into a fixed dimension tensor of size (batch_size, hidden_size) and finally we map this to the output layer. """ if self.elmo is True: elmo_embedding = self.elmo(input_sentences) sents = elmo_embedding['elmo_representations'][-1] input = sents.permute(1, 0, 2) else: input = self.embedding(input_sentences).permute(1, 0, 2) # input = self.word_embeddings( # input_sentence) # embedded input of shape = (batch_size, num_sequences, embedding_length) # input = input.permute(1, 0, 2) # input.size() = (num_sequences, batch_size, embedding_length) if batch_size is None: h_0 = Variable(torch.zeros(2, self.batch_size, self.hidden_size).cuda()) # Initial hidden state of the LSTM c_0 = Variable(torch.zeros(2, self.batch_size, self.hidden_size).cuda()) # Initial cell state of the LSTM else: h_0 = Variable(torch.zeros(2, batch_size, self.hidden_size).cuda()) c_0 = Variable(torch.zeros(2, batch_size, self.hidden_size).cuda()) output, (final_hidden_state, final_cell_state) = self.lstm(input, (h_0, c_0)) final_encoding = torch.cat((output, input), 2).permute(1, 0, 2) y = self.W2(final_encoding) # y.size() = (batch_size, num_sequences, hidden_size) y = y.permute(0, 2, 1) # y.size() = (batch_size, hidden_size, num_sequences) y = F.max_pool1d(y, y.size()[2]) # y.size() = (batch_size, hidden_size, 1) y = y.squeeze(2) logits = self.label(y) return logits
336b50fad3e7231e3b5b30f884847f23185931fe
8557f0621d75848afddd65b1a5cce12449772e0a
/app/routes.py
b7cba988184e473476a98744d335ccd7a30f5ed9
[]
no_license
halversondm/microblog
5fd2f835db83d90b46bc136c5815a94e7e38cd74
c621844acef4549dca547b81c6f7ca5570020751
refs/heads/master
2023-08-08T06:13:55.578623
2019-11-02T14:12:25
2019-11-02T14:12:25
219,163,332
1
0
null
null
null
null
UTF-8
Python
false
false
3,256
py
from datetime import datetime from flask import render_template, flash, redirect, url_for, request from flask_login import current_user, login_user, logout_user, login_required from werkzeug.urls import url_parse from app import app, db from app.forms import LoginForm, RegistrationForm, EditProfileForm from app.models import User @app.route('/') @app.route('/index') @login_required def index(): posts = [ { 'author': {'username': 'John'}, 'body': 'Beautiful day in Portland!' }, { 'author': {'username': 'Susan'}, 'body': 'The Avengers movie was so cool!' } ] return render_template('index.html', title='Home', posts=posts) @app.route('/login', methods=['GET', 'POST']) def login(): if current_user.is_authenticated: return redirect(url_for('index')) form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(username=form.username.data).first() if user is None or not user.check_password(form.password.data): flash('Invalid username or password') return redirect(url_for('login')) login_user(user, remember=form.remember_me.data) next_page = request.args.get('next') if not next_page or url_parse(next_page).netloc != '': next_page = url_for('index') return redirect(next_page) return render_template('login.html', title='Sign In', form=form) @app.route('/logout') def logout(): logout_user() return redirect(url_for('index')) @app.route('/register', methods=['GET', 'POST']) def register(): if current_user.is_authenticated: return redirect(url_for('index')) form = RegistrationForm() if form.validate_on_submit(): user = User(username=form.username.data, email=form.email.data) user.set_password(form.password.data) db.session.add(user) db.session.commit() flash('Congratulations, you are now a registered user!') return redirect(url_for('login')) return render_template('register.html', title='Register', form=form) @app.route('/user/<username>') @login_required def user(username): user = User.query.filter_by(username=username).first_or_404() posts = [ {'author': user, 'body': 'Test post #1'}, {'author': user, 'body': 'Test post #2'} ] return render_template('user.html', user=user, posts=posts) @app.route('/edit_profile', methods=['GET', 'POST']) @login_required def edit_profile(): form = EditProfileForm(current_user.username) if form.validate_on_submit(): current_user.username = form.username.data current_user.about_me = form.about_me.data db.session.commit() flash('Your changes have been saved.') return redirect(url_for('edit_profile')) elif request.method == 'GET': form.username.data = current_user.username form.about_me.data = current_user.about_me return render_template('edit_profile.html', title='Edit Profile', form=form) @app.before_request def before_request(): if current_user.is_authenticated: current_user.last_seen = datetime.utcnow() db.session.commit()
e61797bb2a81da08a2b58f8a43a84c3f54913716
0556889bc09ccebacb6091a0e6ef7dcc07598ad7
/python/step5_tco.py
cbb92c975d71c2fb4c7a71ffb22419a372b17de2
[]
no_license
mkhoeini/mal
0b475dc45f9ad256cca1b8be5a0049ece81c1a13
0de08030ebf15d58f626d822692159f2ef1a0649
refs/heads/master
2020-12-11T01:46:38.956456
2015-01-08T17:53:00
2015-01-08T17:53:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,775
py
import sys, traceback import mal_readline import mal_types as types import reader, printer from env import Env import core # read def READ(str): return reader.read_str(str) # eval def eval_ast(ast, env): if types._symbol_Q(ast): return env.get(ast) elif types._list_Q(ast): return types._list(*map(lambda a: EVAL(a, env), ast)) elif types._vector_Q(ast): return types._vector(*map(lambda a: EVAL(a, env), ast)) elif types._hash_map_Q(ast): keyvals = [] for k in ast.keys(): keyvals.append(EVAL(k, env)) keyvals.append(EVAL(ast[k], env)) return types._hash_map(*keyvals) else: return ast # primitive value, return unchanged def EVAL(ast, env): while True: #print("EVAL %s" % printer._pr_str(ast)) if not types._list_Q(ast): return eval_ast(ast, env) # apply list if len(ast) == 0: return ast a0 = ast[0] if "def!" == a0: a1, a2 = ast[1], ast[2] res = EVAL(a2, env) return env.set(a1, res) elif "let*" == a0: a1, a2 = ast[1], ast[2] let_env = Env(env) for i in range(0, len(a1), 2): let_env.set(a1[i], EVAL(a1[i+1], let_env)) ast = a2 env = let_env # Continue loop (TCO) elif "do" == a0: eval_ast(ast[1:-1], env) ast = ast[-1] # Continue loop (TCO) elif "if" == a0: a1, a2 = ast[1], ast[2] cond = EVAL(a1, env) if cond is None or cond is False: if len(ast) > 3: ast = ast[3] else: ast = None else: ast = a2 # Continue loop (TCO) elif "fn*" == a0: a1, a2 = ast[1], ast[2] return types._function(EVAL, Env, a2, env, a1) else: el = eval_ast(ast, env) f = el[0] if hasattr(f, '__ast__'): ast = f.__ast__ env = f.__gen_env__(el[1:]) else: return f(*el[1:]) # print def PRINT(exp): return printer._pr_str(exp) # repl repl_env = Env() def REP(str): return PRINT(EVAL(READ(str), repl_env)) # core.py: defined using python for k, v in core.ns.items(): repl_env.set(k, v) # core.mal: defined using the language itself REP("(def! not (fn* (a) (if a false true)))") # repl loop while True: try: line = mal_readline.readline("user> ") if line == None: break if line == "": continue print(REP(line)) except reader.Blank: continue except Exception as e: print("".join(traceback.format_exception(*sys.exc_info())))
af8dafba7bb90bef6fb05a2448c570252ae0ea10
c7a4193e2f2835307a288dff24305d0702af6873
/misc/comprehension.py
1a188ef9e3456510ca886e50443282b2a5a2107b
[]
no_license
n3k0fi5t/pythonLearn
15ffa6269d417c500b5b01806537832e45972916
5b6807c8fb4e353a3722df18852ac44625298056
refs/heads/master
2020-05-25T02:35:26.196590
2019-01-07T06:49:01
2019-01-07T06:49:01
84,902,079
1
0
null
null
null
null
UTF-8
Python
false
false
193
py
#!/usr/bin/env python # -*- coding: utf-8 -*- #list comprehension a = [i for i in xrange(10)] print a #dic comprehension b = {key:val for key,val in [(i,i**2) for i in xrange(10)]} print b
a6dbe76b742a764e70d0d2ab068d6cbd11481fb5
a8a97b1a9f4b136c39522e1a5e2ef6fbe3d33f9f
/analysis/flux_selection/beta.py
588a63df2b5778c352ba74cf3c5ba66ca24d155b
[]
no_license
stephenmwilkins/optimum-selection
99900aa721215ad068c13ffe227e0c37b77bdc95
2c07421eec42d36f9f9ec5c5e0118773191d1ce5
refs/heads/master
2022-11-05T00:55:38.228129
2020-06-25T15:26:28
2020-06-25T15:26:28
272,703,973
0
0
null
null
null
null
UTF-8
Python
false
false
4,407
py
import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.cm as cm import FLARE cosmo = FLARE.default_cosmo() import FLARE.SED.models as models import FLARE.plt as fplt import FLARE.photom as photo import FLARE.surveys import FLARE.filters import FLARE.plt as fplt import h5py cmap = mpl.cm.magma # norm = mpl.colors.Normalize(vmin=0, vmax=10) # # --- define filters for colour-colour diagram selection_filters = [['Webb.NIRCam.F090W', 'Webb.NIRCam.F115W','Webb.NIRCam.F150W'], ['Webb.NIRCam.F115W','Webb.NIRCam.F150W','Webb.NIRCam.F200W']] # selection_filters = [['Webb.NIRCam.F090W', 'Webb.NIRCam.F115W','Webb.NIRCam.F150W']] all_filters = [] for s in selection_filters: all_filters += s all_filters = list(set(all_filters)) # --- define selection regions selections = [(0.7, 0.0, 0.8, 1.2),(0.7, 0.0, 0.8, 1.2)] # flat f_nu noise noise = {f: 1. for f in all_filters} # nJy noise = FLARE.surveys.surveys['Webb10k'].fields['base'].depths # nJy print(noise) noise = {key:value for key,value in noise.items()} SNR_detection = 100. cat = h5py.File('../../data/beta_lum.hdf5', 'r') # contains only \beta, z, and fluxes # fig = plt.figure() # left = 0.15 # bottom = 0.15 # width = 0.8 # height = 0.8 # # ax = fig.add_axes((left, bottom, width, height)) # ax.set_facecolor('0.0') fig, axes = plt.subplots(1, 2, sharey=True, figsize = (4, 2)) fig.subplots_adjust(left=0.1, bottom=0.2, right=0.95, top=0.95, wspace=0, hspace=0) for i, ax in zip(range(len(selection_filters)), axes): filters = selection_filters[i] flux_limit = SNR_detection * noise[filters[-1]] # nJy in final band print(f'magnitude limit: {photo.flux_to_m(flux_limit)}') sel = selections[i] N = len(cat['z'][:]) fluxes = {f: cat[f][:] for f in filters} # f_nu/nJy for f in filters: fluxes[f] += noise[f]*np.random.randn(N) c1 = fluxes[filters[0]]/fluxes[filters[1]] # break colour (mag) - usually on y-axis c2 = fluxes[filters[-2]]/fluxes[filters[-1]] # slope colour (mag) - usually on x-axis s_all = (fluxes[filters[-1]]>flux_limit) s = (c2>sel[0])&(c1<sel[2]*(c2-sel[0])+sel[1])&(c1<sel[2]*(sel[3]-sel[0])+sel[1])&s_all ranges = [[6, 11.99], [-3, 1]] bins = [20,20] H_detected, xedges, yedges = np.histogram2d(cat['z'][s_all], cat['beta'][s_all], bins=bins, range=ranges) H_selected, xedges, yedges = np.histogram2d(cat['z'][s], cat['beta'][s], bins=bins, range=ranges) H_all, xedges, yedges = np.histogram2d(cat['z'][:], cat['beta'][:], bins=bins, range=ranges) R = H_selected.T/H_all.T ax.imshow(R, extent = [*ranges[0], *ranges[1]], origin='lower', cmap = cmap, aspect = 'auto', alpha = 1.0) ax.set_xlabel(r'$\rm z$') axes[0].set_ylabel(r'$\rm \beta$') fig.savefig(f'figures/beta.pdf') fig.clf() fig = plt.figure(figsize = (3, 3)) left = 0.2 bottom = 0.2 width = 0.75 height = 0.75 ax = fig.add_axes((left, bottom, width, height)) H_detected = {} H_selected = {} for i in range(len(selection_filters)): filters = selection_filters[i] flux_limit = SNR_detection * noise[filters[-1]] # nJy in final band print(f'magnitude limit: {photo.flux_to_m(flux_limit)}') sel = selections[i] N = len(cat['z'][:]) fluxes = {f: cat[f][:] for f in filters} # f_nu/nJy for f in filters: fluxes[f] += noise[f]*np.random.randn(N) c1 = fluxes[filters[0]]/fluxes[filters[1]] # break colour (mag) - usually on y-axis c2 = fluxes[filters[-2]]/fluxes[filters[-1]] # slope colour (mag) - usually on x-axis s_all = (fluxes[filters[-1]]>flux_limit) s = (c2>sel[0])&(c1<sel[2]*(c2-sel[0])+sel[1])&(c1<sel[2]*(sel[3]-sel[0])+sel[1])&s_all ranges = [[6, 11.99], [-3, 1]] bins = [20,20] H_detected[i], xedges, yedges = np.histogram2d(cat['z'][s_all], cat['beta'][s_all], bins=bins, range=ranges) H_selected[i], xedges, yedges = np.histogram2d(cat['z'][s], cat['beta'][s], bins=bins, range=ranges) H_all, xedges, yedges = np.histogram2d(cat['z'][:], cat['beta'][:], bins=bins, range=ranges) R = (H_selected[0]+H_selected[1])/H_all # R = (H_detected[0]+H_detected[1])/H_all ax.imshow(R.T, extent = [*ranges[0], *ranges[1]], origin='lower', cmap = cmap, aspect = 'auto', alpha = 1.0) ax.set_xlabel(r'$\rm z$') ax.set_ylabel(r'$\rm \beta$') fig.savefig(f'figures/beta_joint.pdf') fig.clf()
5e3658bca27393e2631a0f8f2f2c6ee58daf9337
407cb37f5c826840263a9755589c23a40b07ebed
/phones/migrations/0001_initial.py
9858f175087205af37baf43159347430e8fcdc68
[]
no_license
r1zon/dj_dip
b53b9f4b2c59aa3e952b12106ab22421c89aec17
60a8caa238c4aaf5badb8376e1510473c1d4961d
refs/heads/master
2022-12-10T22:35:30.883903
2020-09-14T14:21:01
2020-09-14T14:21:01
293,579,293
0
0
null
null
null
null
UTF-8
Python
false
false
2,829
py
# Generated by Django 2.2.10 on 2020-09-11 13:57 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Order', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('is_ordered', models.BooleanField(default=False)), ], ), migrations.CreateModel( name='Product', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(blank=True, max_length=50, null=True)), ('product_type', models.CharField(blank=True, max_length=50, null=True)), ('img', models.ImageField(upload_to='products/')), ('slug', models.SlugField(blank=True, null=True, unique=True, verbose_name='slug')), ], options={ 'ordering': ['id'], }, ), migrations.CreateModel( name='Review', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(blank=True, max_length=50, null=True)), ('text', models.TextField()), ('rate', models.IntegerField(blank=True, default=0, null=True)), ('product', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='phones.Product')), ], ), migrations.CreateModel( name='ProductCounts', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('count', models.IntegerField(default=1)), ('order', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='product_counts', to='phones.Order')), ('product', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='product_counts', to='phones.Product')), ], ), migrations.AddField( model_name='order', name='products', field=models.ManyToManyField(related_name='orders', through='phones.ProductCounts', to='phones.Product'), ), migrations.AddField( model_name='order', name='user', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), ]
18070692b9d88bc2d548cfc41d82881611e741e0
6afc1214961b6461ed9f73111f6aa43bf9142339
/myhod_wrapper/code/funcdef.py
0bc800cfac0cd48c6c4106da8396d908744d5428
[]
no_license
sp-shah/H0_pipeline
bb60c6c01323d75fb2abd98badcf39840f9fc920
99c6f26b5a708b756b503e23003f207230dfe46e
refs/heads/main
2023-07-18T12:51:53.470467
2021-09-02T03:29:50
2021-09-02T03:29:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,506
py
import numpy as np import h5py import matplotlib.pyplot as plt import hod_wrapper as hodWrap import sys from matplotlib import rc rc('text', usetex=True) rc("text.latex", unicode = True) rc("font", size =16., family = 'serif') def read_cat(path): f = h5py.File(path, "r") s = f["sim1"] pos = s["pos"][:] vel = s["vel"][:] abs_mag = s["abs_mag"][:] halo_ind = s["halo_ind"][:] is_cen = s["is_cen"][:] halo_mass = s["halo_mass"][:] remove_gal = s["remove_gal"][:] remove_subhalo = s["remove_subhalo"][:] gal_ind_change = s["gal_ind_change"][:] sub_ind_change = s["sub_ind_change"][:] hod_dict = dict(pos = pos, vel = vel, abs_mag=abs_mag, halo_ind = halo_ind, is_cen = is_cen, halo_mass = halo_mass) tag = dict(remove_gal = remove_gal, remove_subhalo = remove_subhalo, gal_ind_change = gal_ind_change, sub_ind_change = sub_ind_change) return hod_dict, tag def read_sim(path_to_sim): sim_cat = hodWrap.halo_cat(path_to_sim) plt.figure() plt.hist(sim_cat.SubhaloMass, log = True, bins = 50) plt.ylabel(r"Number of Subhalos") plt.xlabel(r"Mass") plt.savefig("../plots/massTestSubhalos.png", bbox_inches = "tight") plt.show() centralInd = sim_cat.GroupFirstSub[sim_cat.GroupNsubs > 0] centralMass = sim_cat.SubhaloMass[centralInd] centralHaloInd = sim_cat.SubhaloGrNr[centralInd] sim_dict = hodWrap.remove_firstsub(sim_cat) sim_dict["centralMass"] = centralMass sim_dict["centralHaloInd"] = centralHaloInd #----------------------------------------- loneHaloInd = np.where(sim_cat.GroupNsubs == 0)[0] print(sim_cat.GroupMass[loneHaloInd]) #-------------------------------------------- sim_dict["loneHaloInd"] = loneHaloInd #------------------------------------------- #creating a dictionary for the group that can be used maybe #writing this dictionary into the mock_cat file groupDict = dict(groupMass = sim_cat.GroupMass, groupPos = sim_cat.GroupPos, groupVel = sim_cat.GroupVel) return sim_dict, groupDict def edit_cat(hod_dict, sim_dict, tag): is_cen = np.copy(hod_dict["is_cen"]) isSat = np.where(is_cen == 0)[0] isCen = np.where(is_cen == 1)[0] #------------------------------------------------------------- #assign the mass of central satellites to central galaxies hod_dict["SubhaloMass"] = np.full(len(hod_dict["abs_mag"]), -1.) hod_HaloInd_centrals = hod_dict["halo_ind"][isCen] loneHaloInd = sim_dict["loneHaloInd"] #--the arrays below serve as indices to match the masses of the central galaxies hod_HaloInd_centrals = np.delete(hod_HaloInd_centrals, loneHaloInd) sim_HaloInd_centrals = sim_dict["centralHaloInd"] print(len(hod_HaloInd_centrals)) print(len(sim_HaloInd_centrals)) sys.exit() hod_dict["SubhaloMass"][hod_HaloInd_centrals] = sim_dict["centralMass"] print("Number of centrals in simulation with 0 mass") print(len(np.where(sim_dict["centralMass"] == 0.)[0])) hod_dict["SubhaloMass"][loneHaloInd] = hod_dict["halo_mass"][loneHaloInd] print("galaxies in hod with halo mass and equal to 0") print(len(np.where(hod_dict["halo_mass"][loneHaloInd] == 0.)[0])) #------------------------------------------------------------------- gal_ind_change = tag["gal_ind_change"].astype("int") sub_ind_change = tag["sub_ind_change"].astype("int") hod_dict["pos"][isSat][gal_ind_change] = sim_dict["pos"][sub_ind_change] hod_dict["vel"][isSat][gal_ind_change] = sim_dict["vel"][sub_ind_change] hod_dict["SubhaloMass"][isSat][gal_ind_change] = sim_dict["mass"][sub_ind_change] print("Number of satellites in simulation with 0 mass") print(len(np.where(sim_dict["mass"][sub_ind_change] == 0.)[0])) print("Total number of galaxies in mock") print(len(hod_dict["abs_mag"])) print("Total number of galaxies that are getting prop changes") print(len(gal_ind_change)) print("Total mass assignment") a = len(sim_dict["mass"][sub_ind_change]) print("a") print(a) b = len(sim_dict["centralMass"]) print("b") print(b) print("Centrals in hOd + lone halos") print(len(hod_dict["SubhaloMass"][hod_HaloInd_centrals]) + len(loneHaloInd)) c = len(hod_dict["halo_mass"][loneHaloInd]) print(a+b+c) plt.figure() plt.hist(hod_dict["SubhaloMass"], bins = 50, log = True) plt.ylabel(r"Number of Galaxies") plt.xlabel(r"Mass") plt.savefig("../plots/massTestGalaxies_beforeRemoval.png", bbox_inches = "tight") plt.show() remove_gal = tag["remove_gal"].astype("int") + len(isCen) #collecting only sat gal #print(len(hod_dict["abs_mag"])) #print(len(remove_gal)) abs_mag = hod_dict["abs_mag"] removed_abs_mag = abs_mag[remove_gal] #print(removed_abs_mag) ''' plt.figure() plt.hist(removed_abs_mag, bins = 50) plt.yscale("log") plt.ylabel(r"Number\ of\ galaxies\ removed") plt.xlabel(r"$\mathrm{M_r}$") #plt.show() plt.savefig("../plots/galRemoved_dist.png", bbox_inches = "tight") ''' for key in hod_dict: hod_dict[key] = np.delete(hod_dict[key], remove_gal, axis = 0) print("Number of galaxies being removed") print(len(remove_gal)) print("Total number of galaxies remaining") print(len(hod_dict["abs_mag"])) print("Total number of galaxies with 0 mass") print(len(np.where(hod_dict["SubhaloMass"] == 0.)[0])) print("Total number of halos with 0 mass") print(len(np.where(hod_dict["halo_mass"] == 0.)[0])) plt.figure() plt.hist(hod_dict["SubhaloMass"], bins = 50, log = True) plt.ylabel(r"Number of galaxies") plt.xlabel(r"Mass") plt.savefig("../plots/massTestGalaxies_afterRemoval.png", bbox_inches = "tight") plt.show() remove_subhalo = tag["remove_subhalo"].astype("int") print(len(remove_subhalo)) print(len(sim_dict["mass"])) for key in sim_dict: sim_dict[key] = np.delete(sim_dict[key], remove_subhalo, axis = 0) print("Total number of galaxies in sim dic") print(len(sim_dict["mass"])) sys.exit() return hod_dict def write_newCat(mockEdited, path_to_mockEdited): f = h5py.File(path_to_mockEdited, "a") s = f.create_group("sim1") for key in mockEdited: key = s.create_dataset(key, data = mockEdited[key])
15ec9b50a88b09460a9b8d7b4366e8046bcc58af
067bc0691f8db2754607cc6a2e3ba3d230151d90
/run_s2s_image_digit.py
4362a7ce0cd235551b7e28e4b457ff60b63b6cfe
[]
no_license
tristanguigue/vib_s2s
bf9579c5a57c731df54979390f9f654003de5a0d
46149200a7571dee67954d58dfbb180dd5f14327
refs/heads/master
2021-06-27T01:54:31.895545
2017-09-08T10:08:38
2017-09-08T10:08:38
94,911,512
1
0
null
null
null
null
UTF-8
Python
false
false
6,616
py
"""Apply the variational information bottleneck to predict the labels of a sequence of MNIST images.""" from tensorflow.examples.tutorials.mnist import input_data from networks import Seq2Labels from learners import DiscreteLossLearner from tools import Batcher import argparse import time import os import numpy as np DATA_DIR = '/tmp/tensorflow/mnist/input_data' CHECKPOINT_PATH = 'checkpoints/' DIR = os.path.dirname(os.path.realpath(__file__)) + '/' SAMPLE_EVERY = 100 NB_PRED_SAMPLES = 4 def main(beta, learning_rate, seq_length, layers, train_samples, test_samples, epochs, hidden1_units, hidden2_units, bottleneck_size, label_selected, batch_size, test_batch, save_checkpoints, nb_samples, update_marginal, dropout): mnist = input_data.read_data_sets(DATA_DIR, one_hot=True) run_name = 's2s_imdigit_' + str(int(time.time())) input_size = mnist.train.images.shape[1] output_size = mnist.train.labels.shape[1] train_data = mnist.train.images test_data = mnist.test.images train_labels = mnist.train.labels test_labels = mnist.test.labels if not train_samples: train_samples = int(train_data.shape[0] / seq_length) if not test_samples: test_samples = int(test_data.shape[0] / seq_length) train_data = train_data[:train_samples * seq_length, :] test_data = test_data[:test_samples * seq_length, :] train_labels = train_labels[:train_samples * seq_length, :] test_labels = test_labels[:test_samples * seq_length, :] train_data = np.array(np.split(train_data, train_samples)) test_data = np.array(np.split(test_data, test_samples)) train_labels = np.array(np.split(train_labels, train_samples)) test_labels = np.array(np.split(test_labels, test_samples)) train_loader = Batcher(train_data, train_labels, batch_size) test_loader = Batcher(test_data, test_labels, test_batch) seq2seq = Seq2Labels(seq_length, hidden1_units, hidden2_units, bottleneck_size, input_size, output_size, layers, nb_samples, update_marginal=update_marginal, dropout=dropout) learner = DiscreteLossLearner(seq2seq, beta, learning_rate, batch_size, run_name, reduce_seq=True) best_loss = None best_accuracy = 0 for epoch in range(epochs): print('\nEpoch:', epoch) start = time.time() train_loader.reset_batch_pointer() total_loss = 0 for i in range(train_loader.num_batches): batch_xs, batch_ys = train_loader.next_batch() current_loss, loss_summary = learner.train_network(batch_xs, batch_ys, learning_rate) total_loss += current_loss learner.writer.add_summary(loss_summary, epoch * train_loader.num_batches + i) learner.training_saver.save(learner.sess, DIR + CHECKPOINT_PATH + run_name) learner.saver.restore(learner.test_sess, DIR + CHECKPOINT_PATH + run_name) train_loss, train_accuracy = learner.test_network(train_loader, epoch=None) test_loss, test_accuracy = learner.test_network(test_loader, epoch) if SAMPLE_EVERY is not None and not epoch % SAMPLE_EVERY: train_samples = learner.predict_sequence( train_data[:NB_PRED_SAMPLES], train_labels[:NB_PRED_SAMPLES]) test_samples = learner.predict_sequence( test_data[:NB_PRED_SAMPLES], test_labels[:NB_PRED_SAMPLES]) print(train_samples) print(test_samples) print('Time: ', time.time() - start) print('Loss: ', total_loss / train_loader.num_batches) print('Train accuracy: ', train_accuracy, ', test accuracy: ', test_accuracy) print('Train loss: ', train_loss, ', test loss: ', test_loss) if test_accuracy > best_accuracy: best_accuracy = test_accuracy print('-----') print('### Best accuracy ###') print('-----') if best_loss is None or test_loss < best_loss: if save_checkpoints: learner.saver.save(learner.sess, DIR + CHECKPOINT_PATH + run_name) best_loss = test_loss print('-----') print('### Best loss ###') print('-----') learner.sess.close() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--beta', type=float, default=0.001, help='the value of beta, mutual information regulariser') parser.add_argument('--rate', type=float, default=0.0001, help='the learning rate for the Adam optimiser') parser.add_argument('--length', type=int, help='length of sequence') parser.add_argument('--layers', type=int, default=1, help='number of rnn layers') parser.add_argument('--train', type=int, help='train samples') parser.add_argument('--test', type=int, help='test samples') parser.add_argument('--epochs', type=int, default=5000, help='number of epochs to run') parser.add_argument('--hidden1', type=int, default=128, help='hidden units of encoder') parser.add_argument('--hidden2', type=int, default=16, help='hidden units of decoder') parser.add_argument('--bottleneck', type=int, default=32, help='bottleneck size') parser.add_argument('--label', type=int, help='label of images selected') parser.add_argument('--batch', type=int, default=100, help='batch size') parser.add_argument('--test_batch', type=int, default=500, help='batch size') parser.add_argument('--checkpoint', type=int, default=0, help='save checkpoints') parser.add_argument('--samples', type=int, default=12, help='number of samples to get posterior expectation') parser.add_argument('--update_marginal', type=int, default=0, help='marginal has learnable variable mean and variance') parser.add_argument('--dropout', type=int, default=0, help='dropout regulariser') args = parser.parse_args() main(args.beta, args.rate, args.length, args.layers, args.train, args.test, args.epochs, args.hidden1, args.hidden2, args.bottleneck, args.label, args.batch, args.test_batch, bool(args.checkpoint), args.samples, bool(args.update_marginal), bool(args.dropout))
c38778bbf98df1850395ea59fc8b6ea5eb4ad7e1
310b4ea73685ae061d8531030e2bcc6e023019c1
/app/migrations/0003_auto_20190910_2158.py
67586ce38e6300642968ecbb33839eb2c268c8a5
[]
no_license
Kirill882/news_blog
a8b6f0e284658f5ad404977d54ffc771103cb50a
691ff92a5bc8c622d87f09949198331a3923159a
refs/heads/master
2023-04-26T20:07:52.307715
2019-11-01T10:51:47
2019-11-01T10:51:47
218,967,092
0
0
null
2023-04-21T20:39:41
2019-11-01T10:47:00
Python
UTF-8
Python
false
false
387
py
# Generated by Django 2.2.5 on 2019-09-10 18:58 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('app', '0002_comment_approved_comment'), ] operations = [ migrations.RenameField( model_name='comment', old_name='approved_comment', new_name='approved_comments', ), ]
0e195bf69220bc5cfcdf17a5a47617fb4f551f3b
fa19df33728779d9a662542a674be6554af1feba
/src/main/java/nl/Ipsen5Server/Service/kik-bot-api-unofficial/examples/kik_unofficial/protobuf/groups/v2/group_service_pb2.py
ba231b404a8416c8469d6f44b7819a72f55c37bd
[ "Apache-2.0", "MIT" ]
permissive
anthonyscheeres/Ipen5BackendGroep11
3abfe0e07ec1d240a8e0b2db79a4f8d2f26bd59f
e2675c2ac6580f0a6f1d9e5f755f19405d17e514
refs/heads/master
2022-11-15T07:08:22.619268
2020-06-23T09:10:33
2020-06-23T09:10:33
263,292,703
0
0
null
null
null
null
UTF-8
Python
false
true
51,098
py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: groups/v2/group_service.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() import kik_unofficial.protobuf.protobuf_validation_pb2 as protobuf__validation__pb2 from kik_unofficial.protobuf.common.v2 import model_pb2 as common_dot_v2_dot_model__pb2 from kik_unofficial.protobuf.messaging.v2 import model_pb2 as messaging_dot_v2_dot_model__pb2 from kik_unofficial.protobuf.groups.v2 import groups_common_pb2 as groups_dot_v2_dot_groups__common__pb2 from kik_unofficial.protobuf.chats.v2 import chat_info_pb2 as chats_dot_v2_dot_chat__info__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='groups/v2/group_service.proto', package='mobile.groups.v2', syntax='proto3', serialized_pb=_b('\n\x1dgroups/v2/group_service.proto\x12\x10mobile.groups.v2\x1a\x19protobuf_validation.proto\x1a\x15\x63ommon/v2/model.proto\x1a\x18messaging/v2/model.proto\x1a\x1dgroups/v2/groups_common.proto\x1a\x18\x63hats/v2/chat_info.proto\"\x81\x01\n\x17GetGroupInfoFullRequest\x12*\n\x07\x63hat_id\x18\x01 \x01(\x0b\x32\x11.common.v2.ChatIdB\x06\xca\x9d%\x02\x08\x01\x12:\n\x14requestor_persona_id\x18\x02 \x01(\x0b\x32\x14.common.v2.PersonaIdB\x06\xca\x9d%\x02\x08\x01\"\xac\x01\n\x18GetGroupInfoFullResponse\x12\x41\n\x06result\x18\x01 \x01(\x0e\x32\x31.mobile.groups.v2.GetGroupInfoFullResponse.Result\x12,\n\x04info\x18\x02 \x01(\x0b\x32\x1e.common.chats.v2.GroupInfoFull\"\x1f\n\x06Result\x12\x06\n\x02OK\x10\x00\x12\r\n\tNOT_FOUND\x10\x01\"\x8c\x01\n\"GetBannedGroupMembersStreamRequest\x12*\n\x07\x63hat_id\x18\x01 \x01(\x0b\x32\x11.common.v2.ChatIdB\x06\xca\x9d%\x02\x08\x01\x12:\n\x14requestor_persona_id\x18\x02 \x01(\x0b\x32\x14.common.v2.PersonaIdB\x06\xca\x9d%\x02\x08\x01\"\xe1\x01\n#GetBannedGroupMembersStreamResponse\x12L\n\x06result\x18\x01 \x01(\x0e\x32<.mobile.groups.v2.GetBannedGroupMembersStreamResponse.Result\x12K\n\x14\x62\x61nned_group_members\x18\x02 \x03(\x0b\x32#.mobile.groups.v2.BannedGroupMemberB\x08\xca\x9d%\x04\x80\x01\x80\x08\"\x1f\n\x06Result\x12\x06\n\x02OK\x10\x00\x12\r\n\tNOT_FOUND\x10\x01\"E\n\x11\x42\x61nnedGroupMember\x12\x30\n\npersona_id\x18\x01 \x01(\x0b\x32\x14.common.v2.PersonaIdB\x06\xca\x9d%\x02\x08\x01\"\x9f\x02\n\x12\x43reateGroupRequest\x12\x30\n\ncreator_id\x18\x01 \x01(\x0b\x32\x14.common.v2.PersonaIdB\x06\xca\x9d%\x02\x08\x01\x12\x37\n\x0finitial_members\x18\x02 \x03(\x0b\x32\x14.common.v2.PersonaIdB\x08\xca\x9d%\x04\x80\x01\x80\x08\x12/\n\ngroup_name\x18\x03 \x01(\x0b\x32\x1b.mobile.groups.v2.GroupName\x12@\n\x13public_group_fields\x18\x04 \x01(\x0b\x32#.common.groups.v2.PublicGroupFields\x12+\n\nrequest_id\x18\x05 \x01(\x0b\x32\x0f.common.v2.UuidB\x06\xca\x9d%\x02\x08\x01\"\x82\x03\n\x13\x43reateGroupResponse\x12<\n\x06result\x18\x01 \x01(\x0e\x32,.mobile.groups.v2.CreateGroupResponse.Result\x12\'\n\x04\x63hat\x18\x02 \x01(\x0b\x32\x19.common.messaging.v2.Chat\x12P\n\x11restricted_fields\x18\x03 \x03(\x0e\x32\x35.mobile.groups.v2.CreateGroupResponse.RestrictedField\"k\n\x06Result\x12\x06\n\x02OK\x10\x00\x12\x16\n\x12\x43REATION_ID_EXISTS\x10\x01\x12\x16\n\x12POLICY_RESTRICTION\x10\x02\x12\x16\n\x12HASHTAG_NOT_UNIQUE\x10\x03\x12\x11\n\rNOT_PERMITTED\x10\x04\"E\n\x0fRestrictedField\x12\x0f\n\x0bUNSPECIFIED\x10\x00\x12\x0e\n\nGROUP_NAME\x10\x01\x12\x11\n\rGROUP_HASHTAG\x10\x02\"*\n\tGroupName\x12\x1d\n\ngroup_name\x18\x01 \x01(\tB\t\xca\x9d%\x05\x08\x01 \xfa\x01\"p\n\x11LeaveGroupRequest\x12*\n\x07\x63hat_id\x18\x01 \x01(\x0b\x32\x11.common.v2.ChatIdB\x06\xca\x9d%\x02\x08\x01\x12/\n\tleaver_id\x18\x02 \x01(\x0b\x32\x14.common.v2.PersonaIdB\x06\xca\x9d%\x02\x08\x01\"c\n\x12LeaveGroupResponse\x12;\n\x06result\x18\x01 \x01(\x0e\x32+.mobile.groups.v2.LeaveGroupResponse.Result\"\x10\n\x06Result\x12\x06\n\x02OK\x10\x00\"\xaa\x01\n\x11\x41\x64\x64ToGroupRequest\x12*\n\x07\x63hat_id\x18\x01 \x01(\x0b\x32\x11.common.v2.ChatIdB\x06\xca\x9d%\x02\x08\x01\x12.\n\x08\x61\x64\x64\x65r_id\x18\x02 \x01(\x0b\x32\x14.common.v2.PersonaIdB\x06\xca\x9d%\x02\x08\x01\x12\x39\n\x0enew_member_ids\x18\x03 \x03(\x0b\x32\x14.common.v2.PersonaIdB\x0b\xca\x9d%\x07\x08\x01x\x01\x80\x01\x64\"\x93\x03\n\x12\x41\x64\x64ToGroupResponse\x12;\n\x06result\x18\x01 \x01(\x0e\x32+.mobile.groups.v2.AddToGroupResponse.Result\x12L\n\x0f\x66\x61ilure_details\x18\x02 \x03(\x0b\x32\x33.mobile.groups.v2.AddToGroupResponse.FailureDetails\x1a\xcc\x01\n\x0e\x46\x61ilureDetails\x12(\n\npersona_id\x18\x01 \x01(\x0b\x32\x14.common.v2.PersonaId\x12J\n\x06reason\x18\x02 \x01(\x0e\x32:.mobile.groups.v2.AddToGroupResponse.FailureDetails.Reason\"D\n\x06Reason\x12\x0b\n\x07UNKNOWN\x10\x00\x12\n\n\x06\x42\x41NNED\x10\x01\x12\x0e\n\nGROUP_FULL\x10\x02\x12\x11\n\rNOT_PERMITTED\x10\x03\"#\n\x06Result\x12\x06\n\x02OK\x10\x00\x12\x11\n\rNOT_PERMITTED\x10\x01\"\xae\x01\n\x16RemoveFromGroupRequest\x12*\n\x07\x63hat_id\x18\x01 \x01(\x0b\x32\x11.common.v2.ChatIdB\x06\xca\x9d%\x02\x08\x01\x12\x30\n\nremover_id\x18\x02 \x01(\x0b\x32\x14.common.v2.PersonaIdB\x06\xca\x9d%\x02\x08\x01\x12\x36\n\x0bremovee_ids\x18\x03 \x03(\x0b\x32\x14.common.v2.PersonaIdB\x0b\xca\x9d%\x07\x08\x01x\x01\x80\x01\x64\"\x8b\x03\n\x17RemoveFromGroupResponse\x12@\n\x06result\x18\x01 \x01(\x0e\x32\x30.mobile.groups.v2.RemoveFromGroupResponse.Result\x12Q\n\x0f\x66\x61ilure_details\x18\x02 \x03(\x0b\x32\x38.mobile.groups.v2.RemoveFromGroupResponse.FailureDetails\x1a\xb5\x01\n\x0e\x46\x61ilureDetails\x12(\n\npersona_id\x18\x01 \x01(\x0b\x32\x14.common.v2.PersonaId\x12O\n\x06reason\x18\x02 \x01(\x0e\x32?.mobile.groups.v2.RemoveFromGroupResponse.FailureDetails.Reason\"(\n\x06Reason\x12\x0b\n\x07UNKNOWN\x10\x00\x12\x11\n\rNOT_PERMITTED\x10\x01\"#\n\x06Result\x12\x06\n\x02OK\x10\x00\x12\x11\n\rNOT_PERMITTED\x10\x01\x32\x83\x05\n\x05Group\x12k\n\x10GetGroupInfoFull\x12).mobile.groups.v2.GetGroupInfoFullRequest\x1a*.mobile.groups.v2.GetGroupInfoFullResponse\"\x00\x12\x8e\x01\n\x1bGetBannedGroupMembersStream\x12\x34.mobile.groups.v2.GetBannedGroupMembersStreamRequest\x1a\x35.mobile.groups.v2.GetBannedGroupMembersStreamResponse\"\x00\x30\x01\x12\\\n\x0b\x43reateGroup\x12$.mobile.groups.v2.CreateGroupRequest\x1a%.mobile.groups.v2.CreateGroupResponse\"\x00\x12Y\n\nLeaveGroup\x12#.mobile.groups.v2.LeaveGroupRequest\x1a$.mobile.groups.v2.LeaveGroupResponse\"\x00\x12Y\n\nAddToGroup\x12#.mobile.groups.v2.AddToGroupRequest\x1a$.mobile.groups.v2.AddToGroupResponse\"\x00\x12h\n\x0fRemoveFromGroup\x12(.mobile.groups.v2.RemoveFromGroupRequest\x1a).mobile.groups.v2.RemoveFromGroupResponse\"\x00\x42w\n\x15\x63om.kik.gen.groups.v2ZJgithub.com/kikinteractive/xiphias-api-mobile/generated/go/groups/v2;groups\xa2\x02\x11KPBMobileGroupsV2b\x06proto3') , dependencies=[protobuf__validation__pb2.DESCRIPTOR,common_dot_v2_dot_model__pb2.DESCRIPTOR,messaging_dot_v2_dot_model__pb2.DESCRIPTOR,groups_dot_v2_dot_groups__common__pb2.DESCRIPTOR,chats_dot_v2_dot_chat__info__pb2.DESCRIPTOR,]) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _GETGROUPINFOFULLRESPONSE_RESULT = _descriptor.EnumDescriptor( name='Result', full_name='mobile.groups.v2.GetGroupInfoFullResponse.Result', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='OK', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='NOT_FOUND', index=1, number=1, options=None, type=None), ], containing_type=None, options=None, serialized_start=458, serialized_end=489, ) _sym_db.RegisterEnumDescriptor(_GETGROUPINFOFULLRESPONSE_RESULT) _GETBANNEDGROUPMEMBERSSTREAMRESPONSE_RESULT = _descriptor.EnumDescriptor( name='Result', full_name='mobile.groups.v2.GetBannedGroupMembersStreamResponse.Result', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='OK', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='NOT_FOUND', index=1, number=1, options=None, type=None), ], containing_type=None, options=None, serialized_start=458, serialized_end=489, ) _sym_db.RegisterEnumDescriptor(_GETBANNEDGROUPMEMBERSSTREAMRESPONSE_RESULT) _CREATEGROUPRESPONSE_RESULT = _descriptor.EnumDescriptor( name='Result', full_name='mobile.groups.v2.CreateGroupResponse.Result', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='OK', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='CREATION_ID_EXISTS', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='POLICY_RESTRICTION', index=2, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='HASHTAG_NOT_UNIQUE', index=3, number=3, options=None, type=None), _descriptor.EnumValueDescriptor( name='NOT_PERMITTED', index=4, number=4, options=None, type=None), ], containing_type=None, options=None, serialized_start=1432, serialized_end=1539, ) _sym_db.RegisterEnumDescriptor(_CREATEGROUPRESPONSE_RESULT) _CREATEGROUPRESPONSE_RESTRICTEDFIELD = _descriptor.EnumDescriptor( name='RestrictedField', full_name='mobile.groups.v2.CreateGroupResponse.RestrictedField', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='UNSPECIFIED', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='GROUP_NAME', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='GROUP_HASHTAG', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=1541, serialized_end=1610, ) _sym_db.RegisterEnumDescriptor(_CREATEGROUPRESPONSE_RESTRICTEDFIELD) _LEAVEGROUPRESPONSE_RESULT = _descriptor.EnumDescriptor( name='Result', full_name='mobile.groups.v2.LeaveGroupResponse.Result', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='OK', index=0, number=0, options=None, type=None), ], containing_type=None, options=None, serialized_start=458, serialized_end=474, ) _sym_db.RegisterEnumDescriptor(_LEAVEGROUPRESPONSE_RESULT) _ADDTOGROUPRESPONSE_FAILUREDETAILS_REASON = _descriptor.EnumDescriptor( name='Reason', full_name='mobile.groups.v2.AddToGroupResponse.FailureDetails.Reason', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='UNKNOWN', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='BANNED', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='GROUP_FULL', index=2, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='NOT_PERMITTED', index=3, number=3, options=None, type=None), ], containing_type=None, options=None, serialized_start=2343, serialized_end=2411, ) _sym_db.RegisterEnumDescriptor(_ADDTOGROUPRESPONSE_FAILUREDETAILS_REASON) _ADDTOGROUPRESPONSE_RESULT = _descriptor.EnumDescriptor( name='Result', full_name='mobile.groups.v2.AddToGroupResponse.Result', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='OK', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='NOT_PERMITTED', index=1, number=1, options=None, type=None), ], containing_type=None, options=None, serialized_start=2413, serialized_end=2448, ) _sym_db.RegisterEnumDescriptor(_ADDTOGROUPRESPONSE_RESULT) _REMOVEFROMGROUPRESPONSE_FAILUREDETAILS_REASON = _descriptor.EnumDescriptor( name='Reason', full_name='mobile.groups.v2.RemoveFromGroupResponse.FailureDetails.Reason', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='UNKNOWN', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='NOT_PERMITTED', index=1, number=1, options=None, type=None), ], containing_type=None, options=None, serialized_start=2946, serialized_end=2986, ) _sym_db.RegisterEnumDescriptor(_REMOVEFROMGROUPRESPONSE_FAILUREDETAILS_REASON) _REMOVEFROMGROUPRESPONSE_RESULT = _descriptor.EnumDescriptor( name='Result', full_name='mobile.groups.v2.RemoveFromGroupResponse.Result', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='OK', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='NOT_PERMITTED', index=1, number=1, options=None, type=None), ], containing_type=None, options=None, serialized_start=2413, serialized_end=2448, ) _sym_db.RegisterEnumDescriptor(_REMOVEFROMGROUPRESPONSE_RESULT) _GETGROUPINFOFULLREQUEST = _descriptor.Descriptor( name='GetGroupInfoFullRequest', full_name='mobile.groups.v2.GetGroupInfoFullRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='chat_id', full_name='mobile.groups.v2.GetGroupInfoFullRequest.chat_id', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\002\010\001'))), _descriptor.FieldDescriptor( name='requestor_persona_id', full_name='mobile.groups.v2.GetGroupInfoFullRequest.requestor_persona_id', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\002\010\001'))), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=185, serialized_end=314, ) _GETGROUPINFOFULLRESPONSE = _descriptor.Descriptor( name='GetGroupInfoFullResponse', full_name='mobile.groups.v2.GetGroupInfoFullResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='result', full_name='mobile.groups.v2.GetGroupInfoFullResponse.result', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='info', full_name='mobile.groups.v2.GetGroupInfoFullResponse.info', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _GETGROUPINFOFULLRESPONSE_RESULT, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=317, serialized_end=489, ) _GETBANNEDGROUPMEMBERSSTREAMREQUEST = _descriptor.Descriptor( name='GetBannedGroupMembersStreamRequest', full_name='mobile.groups.v2.GetBannedGroupMembersStreamRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='chat_id', full_name='mobile.groups.v2.GetBannedGroupMembersStreamRequest.chat_id', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\002\010\001'))), _descriptor.FieldDescriptor( name='requestor_persona_id', full_name='mobile.groups.v2.GetBannedGroupMembersStreamRequest.requestor_persona_id', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\002\010\001'))), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=492, serialized_end=632, ) _GETBANNEDGROUPMEMBERSSTREAMRESPONSE = _descriptor.Descriptor( name='GetBannedGroupMembersStreamResponse', full_name='mobile.groups.v2.GetBannedGroupMembersStreamResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='result', full_name='mobile.groups.v2.GetBannedGroupMembersStreamResponse.result', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='banned_group_members', full_name='mobile.groups.v2.GetBannedGroupMembersStreamResponse.banned_group_members', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\004\200\001\200\010'))), ], extensions=[ ], nested_types=[], enum_types=[ _GETBANNEDGROUPMEMBERSSTREAMRESPONSE_RESULT, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=635, serialized_end=860, ) _BANNEDGROUPMEMBER = _descriptor.Descriptor( name='BannedGroupMember', full_name='mobile.groups.v2.BannedGroupMember', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='persona_id', full_name='mobile.groups.v2.BannedGroupMember.persona_id', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\002\010\001'))), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=862, serialized_end=931, ) _CREATEGROUPREQUEST = _descriptor.Descriptor( name='CreateGroupRequest', full_name='mobile.groups.v2.CreateGroupRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='creator_id', full_name='mobile.groups.v2.CreateGroupRequest.creator_id', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\002\010\001'))), _descriptor.FieldDescriptor( name='initial_members', full_name='mobile.groups.v2.CreateGroupRequest.initial_members', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\004\200\001\200\010'))), _descriptor.FieldDescriptor( name='group_name', full_name='mobile.groups.v2.CreateGroupRequest.group_name', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='public_group_fields', full_name='mobile.groups.v2.CreateGroupRequest.public_group_fields', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='request_id', full_name='mobile.groups.v2.CreateGroupRequest.request_id', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\002\010\001'))), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=934, serialized_end=1221, ) _CREATEGROUPRESPONSE = _descriptor.Descriptor( name='CreateGroupResponse', full_name='mobile.groups.v2.CreateGroupResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='result', full_name='mobile.groups.v2.CreateGroupResponse.result', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='chat', full_name='mobile.groups.v2.CreateGroupResponse.chat', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='restricted_fields', full_name='mobile.groups.v2.CreateGroupResponse.restricted_fields', index=2, number=3, type=14, cpp_type=8, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _CREATEGROUPRESPONSE_RESULT, _CREATEGROUPRESPONSE_RESTRICTEDFIELD, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1224, serialized_end=1610, ) _GROUPNAME = _descriptor.Descriptor( name='GroupName', full_name='mobile.groups.v2.GroupName', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='group_name', full_name='mobile.groups.v2.GroupName.group_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\005\010\001 \372\001'))), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1612, serialized_end=1654, ) _LEAVEGROUPREQUEST = _descriptor.Descriptor( name='LeaveGroupRequest', full_name='mobile.groups.v2.LeaveGroupRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='chat_id', full_name='mobile.groups.v2.LeaveGroupRequest.chat_id', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\002\010\001'))), _descriptor.FieldDescriptor( name='leaver_id', full_name='mobile.groups.v2.LeaveGroupRequest.leaver_id', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\002\010\001'))), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1656, serialized_end=1768, ) _LEAVEGROUPRESPONSE = _descriptor.Descriptor( name='LeaveGroupResponse', full_name='mobile.groups.v2.LeaveGroupResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='result', full_name='mobile.groups.v2.LeaveGroupResponse.result', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _LEAVEGROUPRESPONSE_RESULT, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1770, serialized_end=1869, ) _ADDTOGROUPREQUEST = _descriptor.Descriptor( name='AddToGroupRequest', full_name='mobile.groups.v2.AddToGroupRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='chat_id', full_name='mobile.groups.v2.AddToGroupRequest.chat_id', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\002\010\001'))), _descriptor.FieldDescriptor( name='adder_id', full_name='mobile.groups.v2.AddToGroupRequest.adder_id', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\002\010\001'))), _descriptor.FieldDescriptor( name='new_member_ids', full_name='mobile.groups.v2.AddToGroupRequest.new_member_ids', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\007\010\001x\001\200\001d'))), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1872, serialized_end=2042, ) _ADDTOGROUPRESPONSE_FAILUREDETAILS = _descriptor.Descriptor( name='FailureDetails', full_name='mobile.groups.v2.AddToGroupResponse.FailureDetails', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='persona_id', full_name='mobile.groups.v2.AddToGroupResponse.FailureDetails.persona_id', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='reason', full_name='mobile.groups.v2.AddToGroupResponse.FailureDetails.reason', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _ADDTOGROUPRESPONSE_FAILUREDETAILS_REASON, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2207, serialized_end=2411, ) _ADDTOGROUPRESPONSE = _descriptor.Descriptor( name='AddToGroupResponse', full_name='mobile.groups.v2.AddToGroupResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='result', full_name='mobile.groups.v2.AddToGroupResponse.result', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='failure_details', full_name='mobile.groups.v2.AddToGroupResponse.failure_details', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[_ADDTOGROUPRESPONSE_FAILUREDETAILS, ], enum_types=[ _ADDTOGROUPRESPONSE_RESULT, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2045, serialized_end=2448, ) _REMOVEFROMGROUPREQUEST = _descriptor.Descriptor( name='RemoveFromGroupRequest', full_name='mobile.groups.v2.RemoveFromGroupRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='chat_id', full_name='mobile.groups.v2.RemoveFromGroupRequest.chat_id', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\002\010\001'))), _descriptor.FieldDescriptor( name='remover_id', full_name='mobile.groups.v2.RemoveFromGroupRequest.remover_id', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\002\010\001'))), _descriptor.FieldDescriptor( name='removee_ids', full_name='mobile.groups.v2.RemoveFromGroupRequest.removee_ids', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\007\010\001x\001\200\001d'))), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2451, serialized_end=2625, ) _REMOVEFROMGROUPRESPONSE_FAILUREDETAILS = _descriptor.Descriptor( name='FailureDetails', full_name='mobile.groups.v2.RemoveFromGroupResponse.FailureDetails', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='persona_id', full_name='mobile.groups.v2.RemoveFromGroupResponse.FailureDetails.persona_id', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='reason', full_name='mobile.groups.v2.RemoveFromGroupResponse.FailureDetails.reason', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _REMOVEFROMGROUPRESPONSE_FAILUREDETAILS_REASON, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2805, serialized_end=2986, ) _REMOVEFROMGROUPRESPONSE = _descriptor.Descriptor( name='RemoveFromGroupResponse', full_name='mobile.groups.v2.RemoveFromGroupResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='result', full_name='mobile.groups.v2.RemoveFromGroupResponse.result', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='failure_details', full_name='mobile.groups.v2.RemoveFromGroupResponse.failure_details', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[_REMOVEFROMGROUPRESPONSE_FAILUREDETAILS, ], enum_types=[ _REMOVEFROMGROUPRESPONSE_RESULT, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2628, serialized_end=3023, ) _GETGROUPINFOFULLREQUEST.fields_by_name['chat_id'].message_type = common_dot_v2_dot_model__pb2._CHATID _GETGROUPINFOFULLREQUEST.fields_by_name['requestor_persona_id'].message_type = common_dot_v2_dot_model__pb2._PERSONAID _GETGROUPINFOFULLRESPONSE.fields_by_name['result'].enum_type = _GETGROUPINFOFULLRESPONSE_RESULT _GETGROUPINFOFULLRESPONSE.fields_by_name['info'].message_type = chats_dot_v2_dot_chat__info__pb2._GROUPINFOFULL _GETGROUPINFOFULLRESPONSE_RESULT.containing_type = _GETGROUPINFOFULLRESPONSE _GETBANNEDGROUPMEMBERSSTREAMREQUEST.fields_by_name['chat_id'].message_type = common_dot_v2_dot_model__pb2._CHATID _GETBANNEDGROUPMEMBERSSTREAMREQUEST.fields_by_name['requestor_persona_id'].message_type = common_dot_v2_dot_model__pb2._PERSONAID _GETBANNEDGROUPMEMBERSSTREAMRESPONSE.fields_by_name['result'].enum_type = _GETBANNEDGROUPMEMBERSSTREAMRESPONSE_RESULT _GETBANNEDGROUPMEMBERSSTREAMRESPONSE.fields_by_name['banned_group_members'].message_type = _BANNEDGROUPMEMBER _GETBANNEDGROUPMEMBERSSTREAMRESPONSE_RESULT.containing_type = _GETBANNEDGROUPMEMBERSSTREAMRESPONSE _BANNEDGROUPMEMBER.fields_by_name['persona_id'].message_type = common_dot_v2_dot_model__pb2._PERSONAID _CREATEGROUPREQUEST.fields_by_name['creator_id'].message_type = common_dot_v2_dot_model__pb2._PERSONAID _CREATEGROUPREQUEST.fields_by_name['initial_members'].message_type = common_dot_v2_dot_model__pb2._PERSONAID _CREATEGROUPREQUEST.fields_by_name['group_name'].message_type = _GROUPNAME _CREATEGROUPREQUEST.fields_by_name['public_group_fields'].message_type = groups_dot_v2_dot_groups__common__pb2._PUBLICGROUPFIELDS _CREATEGROUPREQUEST.fields_by_name['request_id'].message_type = common_dot_v2_dot_model__pb2._UUID _CREATEGROUPRESPONSE.fields_by_name['result'].enum_type = _CREATEGROUPRESPONSE_RESULT _CREATEGROUPRESPONSE.fields_by_name['chat'].message_type = messaging_dot_v2_dot_model__pb2._CHAT _CREATEGROUPRESPONSE.fields_by_name['restricted_fields'].enum_type = _CREATEGROUPRESPONSE_RESTRICTEDFIELD _CREATEGROUPRESPONSE_RESULT.containing_type = _CREATEGROUPRESPONSE _CREATEGROUPRESPONSE_RESTRICTEDFIELD.containing_type = _CREATEGROUPRESPONSE _LEAVEGROUPREQUEST.fields_by_name['chat_id'].message_type = common_dot_v2_dot_model__pb2._CHATID _LEAVEGROUPREQUEST.fields_by_name['leaver_id'].message_type = common_dot_v2_dot_model__pb2._PERSONAID _LEAVEGROUPRESPONSE.fields_by_name['result'].enum_type = _LEAVEGROUPRESPONSE_RESULT _LEAVEGROUPRESPONSE_RESULT.containing_type = _LEAVEGROUPRESPONSE _ADDTOGROUPREQUEST.fields_by_name['chat_id'].message_type = common_dot_v2_dot_model__pb2._CHATID _ADDTOGROUPREQUEST.fields_by_name['adder_id'].message_type = common_dot_v2_dot_model__pb2._PERSONAID _ADDTOGROUPREQUEST.fields_by_name['new_member_ids'].message_type = common_dot_v2_dot_model__pb2._PERSONAID _ADDTOGROUPRESPONSE_FAILUREDETAILS.fields_by_name['persona_id'].message_type = common_dot_v2_dot_model__pb2._PERSONAID _ADDTOGROUPRESPONSE_FAILUREDETAILS.fields_by_name['reason'].enum_type = _ADDTOGROUPRESPONSE_FAILUREDETAILS_REASON _ADDTOGROUPRESPONSE_FAILUREDETAILS.containing_type = _ADDTOGROUPRESPONSE _ADDTOGROUPRESPONSE_FAILUREDETAILS_REASON.containing_type = _ADDTOGROUPRESPONSE_FAILUREDETAILS _ADDTOGROUPRESPONSE.fields_by_name['result'].enum_type = _ADDTOGROUPRESPONSE_RESULT _ADDTOGROUPRESPONSE.fields_by_name['failure_details'].message_type = _ADDTOGROUPRESPONSE_FAILUREDETAILS _ADDTOGROUPRESPONSE_RESULT.containing_type = _ADDTOGROUPRESPONSE _REMOVEFROMGROUPREQUEST.fields_by_name['chat_id'].message_type = common_dot_v2_dot_model__pb2._CHATID _REMOVEFROMGROUPREQUEST.fields_by_name['remover_id'].message_type = common_dot_v2_dot_model__pb2._PERSONAID _REMOVEFROMGROUPREQUEST.fields_by_name['removee_ids'].message_type = common_dot_v2_dot_model__pb2._PERSONAID _REMOVEFROMGROUPRESPONSE_FAILUREDETAILS.fields_by_name['persona_id'].message_type = common_dot_v2_dot_model__pb2._PERSONAID _REMOVEFROMGROUPRESPONSE_FAILUREDETAILS.fields_by_name['reason'].enum_type = _REMOVEFROMGROUPRESPONSE_FAILUREDETAILS_REASON _REMOVEFROMGROUPRESPONSE_FAILUREDETAILS.containing_type = _REMOVEFROMGROUPRESPONSE _REMOVEFROMGROUPRESPONSE_FAILUREDETAILS_REASON.containing_type = _REMOVEFROMGROUPRESPONSE_FAILUREDETAILS _REMOVEFROMGROUPRESPONSE.fields_by_name['result'].enum_type = _REMOVEFROMGROUPRESPONSE_RESULT _REMOVEFROMGROUPRESPONSE.fields_by_name['failure_details'].message_type = _REMOVEFROMGROUPRESPONSE_FAILUREDETAILS _REMOVEFROMGROUPRESPONSE_RESULT.containing_type = _REMOVEFROMGROUPRESPONSE DESCRIPTOR.message_types_by_name['GetGroupInfoFullRequest'] = _GETGROUPINFOFULLREQUEST DESCRIPTOR.message_types_by_name['GetGroupInfoFullResponse'] = _GETGROUPINFOFULLRESPONSE DESCRIPTOR.message_types_by_name['GetBannedGroupMembersStreamRequest'] = _GETBANNEDGROUPMEMBERSSTREAMREQUEST DESCRIPTOR.message_types_by_name['GetBannedGroupMembersStreamResponse'] = _GETBANNEDGROUPMEMBERSSTREAMRESPONSE DESCRIPTOR.message_types_by_name['BannedGroupMember'] = _BANNEDGROUPMEMBER DESCRIPTOR.message_types_by_name['CreateGroupRequest'] = _CREATEGROUPREQUEST DESCRIPTOR.message_types_by_name['CreateGroupResponse'] = _CREATEGROUPRESPONSE DESCRIPTOR.message_types_by_name['GroupName'] = _GROUPNAME DESCRIPTOR.message_types_by_name['LeaveGroupRequest'] = _LEAVEGROUPREQUEST DESCRIPTOR.message_types_by_name['LeaveGroupResponse'] = _LEAVEGROUPRESPONSE DESCRIPTOR.message_types_by_name['AddToGroupRequest'] = _ADDTOGROUPREQUEST DESCRIPTOR.message_types_by_name['AddToGroupResponse'] = _ADDTOGROUPRESPONSE DESCRIPTOR.message_types_by_name['RemoveFromGroupRequest'] = _REMOVEFROMGROUPREQUEST DESCRIPTOR.message_types_by_name['RemoveFromGroupResponse'] = _REMOVEFROMGROUPRESPONSE GetGroupInfoFullRequest = _reflection.GeneratedProtocolMessageType('GetGroupInfoFullRequest', (_message.Message,), dict( DESCRIPTOR = _GETGROUPINFOFULLREQUEST, __module__ = 'groups.v2.group_service_pb2' # @@protoc_insertion_point(class_scope:mobile.groups.v2.GetGroupInfoFullRequest) )) _sym_db.RegisterMessage(GetGroupInfoFullRequest) GetGroupInfoFullResponse = _reflection.GeneratedProtocolMessageType('GetGroupInfoFullResponse', (_message.Message,), dict( DESCRIPTOR = _GETGROUPINFOFULLRESPONSE, __module__ = 'groups.v2.group_service_pb2' # @@protoc_insertion_point(class_scope:mobile.groups.v2.GetGroupInfoFullResponse) )) _sym_db.RegisterMessage(GetGroupInfoFullResponse) GetBannedGroupMembersStreamRequest = _reflection.GeneratedProtocolMessageType('GetBannedGroupMembersStreamRequest', (_message.Message,), dict( DESCRIPTOR = _GETBANNEDGROUPMEMBERSSTREAMREQUEST, __module__ = 'groups.v2.group_service_pb2' # @@protoc_insertion_point(class_scope:mobile.groups.v2.GetBannedGroupMembersStreamRequest) )) _sym_db.RegisterMessage(GetBannedGroupMembersStreamRequest) GetBannedGroupMembersStreamResponse = _reflection.GeneratedProtocolMessageType('GetBannedGroupMembersStreamResponse', (_message.Message,), dict( DESCRIPTOR = _GETBANNEDGROUPMEMBERSSTREAMRESPONSE, __module__ = 'groups.v2.group_service_pb2' # @@protoc_insertion_point(class_scope:mobile.groups.v2.GetBannedGroupMembersStreamResponse) )) _sym_db.RegisterMessage(GetBannedGroupMembersStreamResponse) BannedGroupMember = _reflection.GeneratedProtocolMessageType('BannedGroupMember', (_message.Message,), dict( DESCRIPTOR = _BANNEDGROUPMEMBER, __module__ = 'groups.v2.group_service_pb2' # @@protoc_insertion_point(class_scope:mobile.groups.v2.BannedGroupMember) )) _sym_db.RegisterMessage(BannedGroupMember) CreateGroupRequest = _reflection.GeneratedProtocolMessageType('CreateGroupRequest', (_message.Message,), dict( DESCRIPTOR = _CREATEGROUPREQUEST, __module__ = 'groups.v2.group_service_pb2' # @@protoc_insertion_point(class_scope:mobile.groups.v2.CreateGroupRequest) )) _sym_db.RegisterMessage(CreateGroupRequest) CreateGroupResponse = _reflection.GeneratedProtocolMessageType('CreateGroupResponse', (_message.Message,), dict( DESCRIPTOR = _CREATEGROUPRESPONSE, __module__ = 'groups.v2.group_service_pb2' # @@protoc_insertion_point(class_scope:mobile.groups.v2.CreateGroupResponse) )) _sym_db.RegisterMessage(CreateGroupResponse) GroupName = _reflection.GeneratedProtocolMessageType('GroupName', (_message.Message,), dict( DESCRIPTOR = _GROUPNAME, __module__ = 'groups.v2.group_service_pb2' # @@protoc_insertion_point(class_scope:mobile.groups.v2.GroupName) )) _sym_db.RegisterMessage(GroupName) LeaveGroupRequest = _reflection.GeneratedProtocolMessageType('LeaveGroupRequest', (_message.Message,), dict( DESCRIPTOR = _LEAVEGROUPREQUEST, __module__ = 'groups.v2.group_service_pb2' # @@protoc_insertion_point(class_scope:mobile.groups.v2.LeaveGroupRequest) )) _sym_db.RegisterMessage(LeaveGroupRequest) LeaveGroupResponse = _reflection.GeneratedProtocolMessageType('LeaveGroupResponse', (_message.Message,), dict( DESCRIPTOR = _LEAVEGROUPRESPONSE, __module__ = 'groups.v2.group_service_pb2' # @@protoc_insertion_point(class_scope:mobile.groups.v2.LeaveGroupResponse) )) _sym_db.RegisterMessage(LeaveGroupResponse) AddToGroupRequest = _reflection.GeneratedProtocolMessageType('AddToGroupRequest', (_message.Message,), dict( DESCRIPTOR = _ADDTOGROUPREQUEST, __module__ = 'groups.v2.group_service_pb2' # @@protoc_insertion_point(class_scope:mobile.groups.v2.AddToGroupRequest) )) _sym_db.RegisterMessage(AddToGroupRequest) AddToGroupResponse = _reflection.GeneratedProtocolMessageType('AddToGroupResponse', (_message.Message,), dict( FailureDetails = _reflection.GeneratedProtocolMessageType('FailureDetails', (_message.Message,), dict( DESCRIPTOR = _ADDTOGROUPRESPONSE_FAILUREDETAILS, __module__ = 'groups.v2.group_service_pb2' # @@protoc_insertion_point(class_scope:mobile.groups.v2.AddToGroupResponse.FailureDetails) )) , DESCRIPTOR = _ADDTOGROUPRESPONSE, __module__ = 'groups.v2.group_service_pb2' # @@protoc_insertion_point(class_scope:mobile.groups.v2.AddToGroupResponse) )) _sym_db.RegisterMessage(AddToGroupResponse) _sym_db.RegisterMessage(AddToGroupResponse.FailureDetails) RemoveFromGroupRequest = _reflection.GeneratedProtocolMessageType('RemoveFromGroupRequest', (_message.Message,), dict( DESCRIPTOR = _REMOVEFROMGROUPREQUEST, __module__ = 'groups.v2.group_service_pb2' # @@protoc_insertion_point(class_scope:mobile.groups.v2.RemoveFromGroupRequest) )) _sym_db.RegisterMessage(RemoveFromGroupRequest) RemoveFromGroupResponse = _reflection.GeneratedProtocolMessageType('RemoveFromGroupResponse', (_message.Message,), dict( FailureDetails = _reflection.GeneratedProtocolMessageType('FailureDetails', (_message.Message,), dict( DESCRIPTOR = _REMOVEFROMGROUPRESPONSE_FAILUREDETAILS, __module__ = 'groups.v2.group_service_pb2' # @@protoc_insertion_point(class_scope:mobile.groups.v2.RemoveFromGroupResponse.FailureDetails) )) , DESCRIPTOR = _REMOVEFROMGROUPRESPONSE, __module__ = 'groups.v2.group_service_pb2' # @@protoc_insertion_point(class_scope:mobile.groups.v2.RemoveFromGroupResponse) )) _sym_db.RegisterMessage(RemoveFromGroupResponse) _sym_db.RegisterMessage(RemoveFromGroupResponse.FailureDetails) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('\n\025com.kik.gen.groups.v2ZJgithub.com/kikinteractive/xiphias-api-mobile/generated/go/groups/v2;groups\242\002\021KPBMobileGroupsV2')) _GETGROUPINFOFULLREQUEST.fields_by_name['chat_id'].has_options = True _GETGROUPINFOFULLREQUEST.fields_by_name['chat_id']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\002\010\001')) _GETGROUPINFOFULLREQUEST.fields_by_name['requestor_persona_id'].has_options = True _GETGROUPINFOFULLREQUEST.fields_by_name['requestor_persona_id']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\002\010\001')) _GETBANNEDGROUPMEMBERSSTREAMREQUEST.fields_by_name['chat_id'].has_options = True _GETBANNEDGROUPMEMBERSSTREAMREQUEST.fields_by_name['chat_id']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\002\010\001')) _GETBANNEDGROUPMEMBERSSTREAMREQUEST.fields_by_name['requestor_persona_id'].has_options = True _GETBANNEDGROUPMEMBERSSTREAMREQUEST.fields_by_name['requestor_persona_id']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\002\010\001')) _GETBANNEDGROUPMEMBERSSTREAMRESPONSE.fields_by_name['banned_group_members'].has_options = True _GETBANNEDGROUPMEMBERSSTREAMRESPONSE.fields_by_name['banned_group_members']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\004\200\001\200\010')) _BANNEDGROUPMEMBER.fields_by_name['persona_id'].has_options = True _BANNEDGROUPMEMBER.fields_by_name['persona_id']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\002\010\001')) _CREATEGROUPREQUEST.fields_by_name['creator_id'].has_options = True _CREATEGROUPREQUEST.fields_by_name['creator_id']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\002\010\001')) _CREATEGROUPREQUEST.fields_by_name['initial_members'].has_options = True _CREATEGROUPREQUEST.fields_by_name['initial_members']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\004\200\001\200\010')) _CREATEGROUPREQUEST.fields_by_name['request_id'].has_options = True _CREATEGROUPREQUEST.fields_by_name['request_id']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\002\010\001')) _GROUPNAME.fields_by_name['group_name'].has_options = True _GROUPNAME.fields_by_name['group_name']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\005\010\001 \372\001')) _LEAVEGROUPREQUEST.fields_by_name['chat_id'].has_options = True _LEAVEGROUPREQUEST.fields_by_name['chat_id']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\002\010\001')) _LEAVEGROUPREQUEST.fields_by_name['leaver_id'].has_options = True _LEAVEGROUPREQUEST.fields_by_name['leaver_id']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\002\010\001')) _ADDTOGROUPREQUEST.fields_by_name['chat_id'].has_options = True _ADDTOGROUPREQUEST.fields_by_name['chat_id']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\002\010\001')) _ADDTOGROUPREQUEST.fields_by_name['adder_id'].has_options = True _ADDTOGROUPREQUEST.fields_by_name['adder_id']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\002\010\001')) _ADDTOGROUPREQUEST.fields_by_name['new_member_ids'].has_options = True _ADDTOGROUPREQUEST.fields_by_name['new_member_ids']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\007\010\001x\001\200\001d')) _REMOVEFROMGROUPREQUEST.fields_by_name['chat_id'].has_options = True _REMOVEFROMGROUPREQUEST.fields_by_name['chat_id']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\002\010\001')) _REMOVEFROMGROUPREQUEST.fields_by_name['remover_id'].has_options = True _REMOVEFROMGROUPREQUEST.fields_by_name['remover_id']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\002\010\001')) _REMOVEFROMGROUPREQUEST.fields_by_name['removee_ids'].has_options = True _REMOVEFROMGROUPREQUEST.fields_by_name['removee_ids']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\312\235%\007\010\001x\001\200\001d')) # @@protoc_insertion_point(module_scope)
c1480def64eb483f4e4fc918b25fb7381d35c616
19973144ec11438c8bc4c973473033ee877e1ad3
/tuples/named_tuples_modifying_and_extending.py
9ac0a122c05ed86ec52cc8c8849be7adcf3bdeaa
[]
no_license
kuzmich321/python-core
b6d1720c1a0202e5d40032ed9f4b96aec1d284df
cd137980c8c5677a72f3e9c0703a1f3f06ef37e5
refs/heads/main
2023-04-16T19:10:42.450055
2021-04-24T06:52:43
2021-04-24T06:52:43
332,165,313
0
0
null
null
null
null
UTF-8
Python
false
false
1,846
py
from collections import namedtuple # Named Tuples are Immutable # So how can we "change" one or more values inside the tuple? # Just like with strings, we have to create a new tuple, with the modified values Point2D = namedtuple('Point2D', 'x y') pt = Point2D(0, 0) pt = Point2D(100, pt.y) print(pt) # Maybe slicing or unpacking? Stock = namedtuple('Stock', 'symbol year month day open high low close') stock = Stock('DJIA', 2021, 1, 25, 26_313, 26_322, 26_410, 26_393) current = stock[:7] *current, _ = stock stock = Stock(*current, 26_555) print(stock) # We can also use the <_make> class method - but we need to create an iterable that # contains all the values first current = stock[:7] new_values = current + (26_444,) stock = Stock._make(new_values) print(stock) # This still has drawbacks # What if we wanted ti change a value in the middle, say day? pre = stock[:3] post = stock[4:] new_values = pre + (26,) + post stock = Stock(*new_values) print(stock) # But event this still has drawbacks! # How about modifying both the day and the high values? # The <_replace> instance method stock = stock._replace(day=27, high=27_000, close=26_777) print(stock) # Extending a Named Tuple # Sometimes we want to create named tuple that extends another named tuple, appending one or more fields Stock = namedtuple('Stock', 'symbol year month day open high low close') # We want to create a new named tuple class, StockExt that adds a single field, prev_close # When dealing with classes, this is sometimes done by using subclassing. # But this not easy to do with named tuples # And there is a cleaner way of doing it anyway new_fields = Stock._fields + ('prev_close',) StockExt = namedtuple('StockExt', new_fields) stock = Stock('DJIA', 2021, 1, 25, 26_313, 26_322, 26_410, 26_393) stock_ext = StockExt(*stock, 26_000) print(stock_ext)
af4c49328bbfed02acdb365d357d20e4a58a6be9
bad62c2b0dfad33197db55b44efeec0bab405634
/sdk/iothub/azure-mgmt-iothub/azure/mgmt/iothub/v2021_03_31/operations/_operations.py
84e5a71475974e9361d744abcd9b2b494f011e56
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
test-repo-billy/azure-sdk-for-python
20c5a2486456e02456de17515704cb064ff19833
cece86a8548cb5f575e5419864d631673be0a244
refs/heads/master
2022-10-25T02:28:39.022559
2022-10-18T06:05:46
2022-10-18T06:05:46
182,325,031
0
0
MIT
2019-07-25T22:28:52
2019-04-19T20:59:15
Python
UTF-8
Python
false
false
6,149
py
# pylint: disable=too-many-lines # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, Callable, Dict, Iterable, Optional, TypeVar from urllib.parse import parse_qs, urljoin, urlparse from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error, ) from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models as _models from ..._serialization import Serializer from .._vendor import _convert_request T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] _SERIALIZER = Serializer() _SERIALIZER.client_side_validation = False def build_list_request(**kwargs: Any) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop("api_version", _params.pop("api-version", "2021-03-31")) # type: str accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop("template_url", "/providers/Microsoft.Devices/operations") # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) class Operations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.iothub.v2021_03_31.IotHubClient`'s :attr:`operations` attribute. """ models = _models def __init__(self, *args, **kwargs): input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace def list(self, **kwargs: Any) -> Iterable["_models.Operation"]: """Lists all of the available IoT Hub REST API operations. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either Operation or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.iothub.v2021_03_31.models.Operation] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop("api_version", _params.pop("api-version", "2021-03-31")) # type: str cls = kwargs.pop("cls", None) # type: ClsType[_models.OperationListResult] error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_list_request( api_version=api_version, template_url=self.list.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore else: # make call to next link with the client's api-version _parsed_next_link = urlparse(next_link) _next_request_params = case_insensitive_dict(parse_qs(_parsed_next_link.query)) _next_request_params["api-version"] = self._config.api_version request = HttpRequest("GET", urljoin(next_link, _parsed_next_link.path), params=_next_request_params) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore request.method = "GET" return request def extract_data(pipeline_response): deserialized = self._deserialize("OperationListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorDetails, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged(get_next, extract_data) list.metadata = {"url": "/providers/Microsoft.Devices/operations"} # type: ignore
1ad3c1b95cd561d50dbb80b504710344c5e194ba
3c529285a0029436ec63185c5c3bd2484ab18a15
/jwst/regtest/test_fgs_image2.py
3eabd0340ed05c28372673a4ecdf25744df29eb4
[ "BSD-2-Clause" ]
permissive
ARKA1112/jwst-1
7d2c30aaf1e58c26731f0c64b6b94f734b8989a9
63b5caa69dbe102245d703feb635a33f72e47e75
refs/heads/master
2023-04-10T17:58:54.212100
2021-04-21T23:34:27
2021-04-21T23:34:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
963
py
import pytest from astropy.io.fits.diff import FITSDiff from jwst.stpipe import Step @pytest.fixture(scope="module") def run_fgs_image2(rtdata_module): rtdata = rtdata_module rtdata.get_data("fgs/image2/jw86500007001_02101_00001_GUIDER2_rate.fits") args = ["calwebb_image2", rtdata.input, "--steps.flat_field.save_results=True", "--steps.resample.save_results=True"] Step.from_cmdline(args) @pytest.mark.bigdata @pytest.mark.parametrize("suffix", ['flat_field', 'cal', 'i2d']) def test_fgs_image2(run_fgs_image2, rtdata_module, fitsdiff_default_kwargs, suffix): """Regression test for FGS data in the image2 pipeline""" rtdata = rtdata_module output = f"jw86500007001_02101_00001_GUIDER2_{suffix}.fits" rtdata.output = output rtdata.get_truth(f"truth/test_fgs_image2/{output}") diff = FITSDiff(rtdata.output, rtdata.truth, **fitsdiff_default_kwargs) assert diff.identical, diff.report()
e9746ca8aa1b22d1059d49bd4430f3ce70b24f96
26d33a53ee00b5c10134da72529caa945c20ef8d
/23_group_of_statement_with_UDF.py
9294e6eda6e6c300257f9be3e6192e293d5bace5
[]
no_license
Shinakshi09/Python
560cc802eeb6ebb850707fd0ed9f18493b89522e
033e35622d0263d5f8aaa5c9aabff33c01137455
refs/heads/main
2023-06-18T20:55:54.941772
2021-07-19T15:00:55
2021-07-19T15:00:55
387,363,080
0
0
null
null
null
null
UTF-8
Python
false
false
356
py
""" Printing a group of statements by combining them into a user defined a function """ def print_group_of_statement(i): """ Printing a group of statement""" print("__________________") print(" I am bloody superman once again") print(" I am Q ") print(" Super bond girls") for i in range(10): print_group_of_statement(i)
4dae29235c8e5a38aad40c087fb29bfbb50c2257
c005fd84d7153fb26c42ba205270869033a7f339
/sinfonier-backend-api/clustering/storm/StormUI.py
1c515bca149c7dd8f5f3479396c63f9fe726d898
[ "Apache-2.0" ]
permissive
aspgems/fiware-sinfonier
7a5df99f33f9e99cbfaf7b2b5f596a01d63589b2
8dac57bef88f19fc79bdde5edfbb2dd37f1d1fba
refs/heads/master
2021-01-11T03:08:48.874844
2016-10-18T11:10:46
2016-10-18T11:10:46
70,148,771
0
0
null
2016-10-18T15:40:54
2016-10-06T11:45:35
Java
UTF-8
Python
false
false
11,531
py
import json from utils.HTTPHandler import HTTPHandler from config.config import conf from error.ErrorHandler import TopologyNotInCluster class StormUI: @staticmethod def baseurl(): return "http://{}:{}".format(conf.STORM_UI_HOST,conf.STORM_UI_PORT ) # GET Operations ###################################### # /api/v1/cluster/configuration (GET) # Returns the cluster configuration. ###################################### @staticmethod def getClusterConfiguration(): url = StormUI.baseurl() + "/api/v1/cluster/configuration" return HTTPHandler.getJson(url) ###################################### # /api/v1/cluster/summary (GET) # Returns cluster summary information such as nimbus uptime or number of supervisors. ###################################### @staticmethod def getClusterSummary(): url = StormUI.baseurl() + "/api/v1/cluster/summary" return HTTPHandler.getJson(url) ###################################### # /api/v1/supervisor/summary (GET) # Returns summary information for all supervisors. ###################################### @staticmethod def getSupervisorSummary(): url = StormUI.baseurl() + "/api/v1/supervisor/summary" return HTTPHandler.getJson(url) ###################################### # /api/v1/topology/summary (GET) # Returns summary information for all topologies. ###################################### @staticmethod def getTopologySummary(): url = StormUI.baseurl() + "/api/v1/topology/summary" return HTTPHandler.getJson(url) ###################################### # /api/v1/topology/:id (GET) # Returns topology information and statistics. Substitute id with topology id. ###################################### @staticmethod def getTopology(topologyid): url = StormUI.baseurl() + "/api/v1/topology/" + topologyid return HTTPHandler.getJson(url) ###################################### # /api/v1/topology/:id/component/:component (GET) # Returns detailed metrics and executor information ###################################### @staticmethod def getTopologyComponent(topologyid, componentid): url = StormUI.baseurl() + "/api/v1/topology/" + topologyid + "/component/" + componentid return HTTPHandler.getJson(url) # POST Operations ###################################### # /api/v1/uploadTopology (POST) # uploads a topology. ###################################### @staticmethod def uploadTopology(topologyConfig, topologyJar): ''' >>> StormUI.uploadTopology("config","my.jar") 'Not implemented yet in this version' ''' return "Not implemented yet in this version" # url = StormUI.baseurl+"/api/v1/uploadTopology" # return HTTPHandler.get(url).json() ###################################### # /api/v1/topology/:id/activate (POST) # Activates a topology. ###################################### @staticmethod def activateTopology(topologyid): url = StormUI.baseurl() + "/api/v1/topology/" + topologyid + "/activate" return HTTPHandler.postJson(url) ###################################### # /api/v1/topology/:id/activate (POST) # Activates a topology. ###################################### @staticmethod def activateTopologyByName(topology_name): id = StormUI.getTopologyIdByName(topology_name) if id is not None: return StormUI.activateTopology(id) ###################################### # /api/v1/topology/:id/deactivate (POST) # Deactivates a topology. ###################################### @staticmethod def deactivateTopology(topologyid): url = StormUI.baseurl() + "/api/v1/topology/" + topologyid + "/deactivate" return HTTPHandler.postJson(url) ###################################### # /api/v1/topology/:id/deactivate (POST) # Deactivates a topology. ###################################### @staticmethod def deactivateTopologyByName(topology_name): id = StormUI.getTopologyIdByName(topology_name) return StormUI.deactivateTopology(id) ###################################### # /api/v1/topology/:id/rebalance/:wait-time (POST) # Rebalances a topology. # rebalanceOptions = {"rebalanceOptions": {"numWorkers": 2, "executors": { "spout" : "5", "split": 7, "count": 5 }}, "callback":"foo"} ###################################### @staticmethod def rebalanceTopology(topologyid, wait_time, rebalanceOptions={}): url = StormUI.baseurl() + "/api/v1/topology/" + topologyid + "/rebalance/" + wait_time headers = {"Content-Type": "application/json"} return HTTPHandler.postJson(url, data=json.dumps(rebalanceOptions), headers=headers) ###################################### # /api/v1/topology/:id/kill/:wait-time (POST) # Kills a topology. ###################################### @staticmethod def killTopology(topologyid, wait_time): url = StormUI.baseurl() + "/api/v1/topology/" + topologyid + "/kill/" + str(wait_time) return HTTPHandler.postJson(url) ###################################### # /api/v1/topology/:id/deactivate (POST) # Deactivates a topology. ###################################### @staticmethod def killTopologyByName(topology_name,wait_time=0 ): id = StormUI.getTopologyIdByName(topology_name) if id is not None: return StormUI.killTopology(id,wait_time) return None ###################################### # /api/v1/topology/:id/visualization (GET) # Get topology visualization data. ###################################### @staticmethod def getTopologyVisualization(topologyid): url = StormUI.baseurl() + "/api/v1/topology/" + topologyid + "/visualization" return HTTPHandler.getJson(url) ###################################### ###################################### # Get topology summary by name (GET) # This function makes 1 StormUI API query ###################################### @staticmethod def getTopologySummaryByName(topologyname): response = StormUI.getTopologySummary() topologies = response["topologies"] for topo in topologies: if topo["name"] == topologyname: return topo return {} ###################################### # Get topology detail by name (GET) # This function makes 2 StormUI API queries ###################################### @staticmethod def getTopologyByName(topologyname): response = StormUI.getTopologySummary() topologies = response["topologies"] for topo in topologies: if topo["name"] == topologyname: response = StormUI.getTopology(topo["id"]) return response raise TopologyNotInCluster ###################################### # Get topology detail by name (GET) # This function makes 2 StormUI API queries ###################################### @staticmethod def getTopologyIdByName(topology_name): response = StormUI.getTopologySummary() topologies = response["topologies"] for topo in topologies: if topo["name"] == topology_name: return topo["id"] raise TopologyNotInCluster ###################################### # Get worker by ID (GET) # This function makes 2 StormUI API queries ###################################### ## Return workers list from all spouts and all executors of the topology. Without duplicates. @staticmethod def getWorkersByTopologyID(topologyid): topo = StormUI.getTopology(topologyid) return StormUI.getWorkersByTopology(topo) ###################################### # Get worker by Name (GET) # This function makes 3 StormUI API queries ###################################### ## Return workers list from all spouts and all executors of the topology. Without duplicates. @staticmethod def getWorkersByTopologyName(topologyname): topo = StormUI.getTopologyByName(topologyname) return StormUI.getWorkersByTopology(topo) ###################################### # Get workers by Topology # ###################################### ## Return workers list from all spouts and all executors of the topology. Without duplicates. @staticmethod def getWorkersByTopology(topo): spoutids = [spout["spoutId"] for spout in topo["spouts"]] workersLinks = list() for spoutid in spoutids: component = StormUI.getTopologyComponent(topo["id"], spoutid) for executor in component["executorStats"]: workersLinks.append(executor["workerLogLink"]) return list(set(workersLinks)) ###################################### # Get worker by Name (GET) # This function makes 3 StormUI API queries ###################################### ## Return workers list from all spouts and all executors of the topology. Without duplicates. @staticmethod def getWorkersByTopologyId(topology_id): topo = StormUI.getTopology(topology_id) spoutids = [spout["spoutId"] for spout in topo["spouts"]] workersLinks = list() for spoutid in spoutids: component = StormUI.getTopologyComponent(topo["id"], spoutid) for executor in component["executorStats"]: workersLinks.append(executor["workerLogLink"]) return list(set(workersLinks)) ###################################### # Get error in topology by topology Name (GET) # This function makes 2 StormUI API queries ###################################### @staticmethod def getErrorInTopologyByName(topologyname): topo = StormUI.getTopologyByName(topologyname) if topo: # Return True if there is an error in any module of the topology and False if not return any(module["lastError"] for module in (topo["spouts"] + topo["bolts"])) ###################################### # Get error details in topology by topology Name (GET) # This function makes 2 StormUI API queries ###################################### @staticmethod def getErrorDetailsInTopologyByName(topologyname): topo = StormUI.getTopologyByName(topologyname) return [{module["spoutId"]: module["lastError"]} for module in topo["spouts"]] + [ {module["boltId"]: module["lastError"]} for module in topo["bolts"]] if topo else None ###################################### # Get topology visualization by name (GET) # This function makes 1 StormUI API query ###################################### @staticmethod def getTopologyVisualizationByName(topologyname): response = StormUI.getTopologySummary() topologies = response["topologies"] for topo in topologies: if topo["name"] == topologyname: response = StormUI.getTopologyVisualization(topo["id"]) return response return {} @staticmethod def getFile(file_name,num_lines): url = file_name+ "&tail=" + str(num_lines) return HTTPHandler.get(url)
b8b6a6d2a24f72e6e26a34f9dabbad7a00dcbd5d
f2f9c70d0e333286ff56c65217575ceeada4ddb6
/reinforcement learning/zad.py
d109e7ea4e94314f81dc113803b231fd5dfd2bae
[]
no_license
maciejsz95/WNO-2
47532ebcc8095f7ad778fc5cf7dfe3bda102e52f
24a327efc841a4d3a34efe4ce8cfba2aa1272e4a
refs/heads/master
2020-03-18T20:25:48.524877
2018-05-28T22:37:42
2018-05-28T22:37:42
135,215,234
0
0
null
null
null
null
UTF-8
Python
false
false
13,624
py
import numpy as np import gym from gym import wrappers import tensorflow as tf import json, sys, os from os import path import random from collections import deque env_to_use = 'Pendulum-v0' # hyperparameters gamma = 0.99 # reward discount factor h1_actor = 8 # hidden layer 1 size for the actor h2_actor = 8 # hidden layer 2 size for the actor h3_actor = 8 # hidden layer 3 size for the actor h1_critic = 8 # hidden layer 1 size for the critic h2_critic = 8 # hidden layer 2 size for the critic h3_critic = 8 # hidden layer 3 size for the critic lr_actor = 1e-3 # learning rate for the actor lr_critic = 1e-3 # learning rate for the critic lr_decay = 1 # learning rate decay (per episode) l2_reg_actor = 1e-6 # L2 regularization factor for the actor l2_reg_critic = 1e-6 # L2 regularization factor for the critic dropout_actor = 0 # dropout rate for actor (0 = no dropout) dropout_critic = 0 # dropout rate for critic (0 = no dropout) num_episodes = 15000 # number of episodes max_steps_ep = 10000 # default max number of steps per episode (unless env has a lower hardcoded limit) tau = 1e-2 # soft target update rate train_every = 1 # number of steps to run the policy (and collect experience) before updating network weights replay_memory_capacity = int(1e5) # capacity of experience replay memory minibatch_size = 1024 # size of minibatch from experience replay memory for updates initial_noise_scale = 0.1 # scale of the exploration noise process (1.0 is the range of each action dimension) noise_decay = 0.99 # decay rate (per episode) of the scale of the exploration noise process exploration_mu = 0.0 # mu parameter for the exploration noise process: dXt = theta*(mu-Xt)*dt + sigma*dWt exploration_theta = 0.15 # theta parameter for the exploration noise process: dXt = theta*(mu-Xt)*dt + sigma*dWt exploration_sigma = 0.2 # sigma parameter for the exploration noise process: dXt = theta*(mu-Xt )*dt + sigma*dWt # game parameters env = gym.make(env_to_use) state_dim = np.prod(np.array(env.observation_space.shape)) # Get total number of dimensions in state action_dim = np.prod(np.array(env.action_space.shape)) # Assuming continuous action space # set seeds to 0 env.seed(0) np.random.seed(0) # prepare monitorings outdir = '/tmp/ddpg-agent-results' #env = wrappers.Monitor(env, outdir, force=True) def writefile(fname, s): with open(path.join(outdir, fname), 'w') as fh: fh.write(s) info = {} info['env_id'] = env.spec.id info['params'] = dict( gamma=gamma, h1_actor=h1_actor, h2_actor=h2_actor, h3_actor=h3_actor, h1_critic=h1_critic, h2_critic=h2_critic, h3_critic=h3_critic, lr_actor=lr_actor, lr_critic=lr_critic, lr_decay=lr_decay, l2_reg_actor=l2_reg_actor, l2_reg_critic=l2_reg_critic, dropout_actor=dropout_actor, dropout_critic=dropout_critic, num_episodes=num_episodes, max_steps_ep=max_steps_ep, tau=tau, train_every=train_every, replay_memory_capacity=replay_memory_capacity, minibatch_size=minibatch_size, initial_noise_scale=initial_noise_scale, noise_decay=noise_decay, exploration_mu=exploration_mu, exploration_theta=exploration_theta, exploration_sigma=exploration_sigma ) np.set_printoptions(threshold=np.nan) replay_memory = deque(maxlen=replay_memory_capacity) # used for O(1) popleft() operation def add_to_memory(experience): replay_memory.append(experience) def sample_from_memory(minibatch_size): return random.sample(replay_memory, minibatch_size) ##################################################################################################### ## Tensorflow tf.reset_default_graph() # placeholders state_ph = tf.placeholder(dtype=tf.float32, shape=[None, state_dim]) action_ph = tf.placeholder(dtype=tf.float32, shape=[None, action_dim]) reward_ph = tf.placeholder(dtype=tf.float32, shape=[None]) next_state_ph = tf.placeholder(dtype=tf.float32, shape=[None, state_dim]) is_not_terminal_ph = tf.placeholder(dtype=tf.float32, shape=[None]) # indicators (go into target computation) is_training_ph = tf.placeholder(dtype=tf.bool, shape=()) # for dropout # episode counter episodes = tf.Variable(0.0, trainable=False, name='episodes') episode_inc_op = episodes.assign_add(1) # will use this to initialize both the actor network its slowly-changing target network with same structure def generate_actor_network(s, trainable, reuse): hidden = tf.layers.dense(s, h1_actor, activation=tf.nn.relu, trainable=trainable, name='dense', reuse=reuse) hidden_drop = tf.layers.dropout(hidden, rate=dropout_actor, training=trainable & is_training_ph) hidden_2 = tf.layers.dense(hidden_drop, h2_actor, activation=tf.nn.relu, trainable=trainable, name='dense_1', reuse=reuse) hidden_drop_2 = tf.layers.dropout(hidden_2, rate=dropout_actor, training=trainable & is_training_ph) hidden_3 = tf.layers.dense(hidden_drop_2, h3_actor, activation=tf.nn.relu, trainable=trainable, name='dense_2', reuse=reuse) hidden_drop_3 = tf.layers.dropout(hidden_3, rate=dropout_actor, training=trainable & is_training_ph) actions_unscaled = tf.layers.dense(hidden_drop_3, action_dim, trainable=trainable, name='dense_3', reuse=reuse) actions = env.action_space.low + tf.nn.sigmoid(actions_unscaled) * ( env.action_space.high - env.action_space.low) # bound the actions to the valid range return actions # actor network with tf.variable_scope('actor'): # Policy's outputted action for each state_ph (for generating actions and training the critic) actions = generate_actor_network(state_ph, trainable=True, reuse=False) # slow target actor network with tf.variable_scope('slow_target_actor', reuse=False): # Slow target policy's outputted action for each next_state_ph (for training the critic) # use stop_gradient to treat the output values as constant targets when doing backprop slow_target_next_actions = tf.stop_gradient(generate_actor_network(next_state_ph, trainable=False, reuse=False)) # will use this to initialize both the critic network its slowly-changing target network with same structure def generate_critic_network(s, a, trainable, reuse): state_action = tf.concat([s, a], axis=1) hidden = tf.layers.dense(state_action, h1_critic, activation=tf.nn.relu, trainable=trainable, name='dense', reuse=reuse) hidden_drop = tf.layers.dropout(hidden, rate=dropout_critic, training=trainable & is_training_ph) hidden_2 = tf.layers.dense(hidden_drop, h2_critic, activation=tf.nn.relu, trainable=trainable, name='dense_1', reuse=reuse) hidden_drop_2 = tf.layers.dropout(hidden_2, rate=dropout_critic, training=trainable & is_training_ph) hidden_3 = tf.layers.dense(hidden_drop_2, h3_critic, activation=tf.nn.relu, trainable=trainable, name='dense_2', reuse=reuse) hidden_drop_3 = tf.layers.dropout(hidden_3, rate=dropout_critic, training=trainable & is_training_ph) q_values = tf.layers.dense(hidden_drop_3, 1, trainable=trainable, name='dense_3', reuse=reuse) return q_values with tf.variable_scope('critic') as scope: # Critic applied to state_ph and a given action (for training critic) q_values_of_given_actions = generate_critic_network(state_ph, action_ph, trainable=True, reuse=False) # Critic applied to state_ph and the current policy's outputted actions for state_ph (for training actor via deterministic policy gradient) q_values_of_suggested_actions = generate_critic_network(state_ph, actions, trainable=True, reuse=True) # slow target critic network with tf.variable_scope('slow_target_critic', reuse=False): # Slow target critic applied to slow target actor's outputted actions for next_state_ph (for training critic) slow_q_values_next = tf.stop_gradient( generate_critic_network(next_state_ph, slow_target_next_actions, trainable=False, reuse=False)) # isolate vars for each network actor_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='actor') slow_target_actor_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='slow_target_actor') critic_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='critic') slow_target_critic_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='slow_target_critic') # update values for slowly-changing targets towards current actor and critic update_slow_target_ops = [] for i, slow_target_actor_var in enumerate(slow_target_actor_vars): update_slow_target_actor_op = slow_target_actor_var.assign(tau * actor_vars[i] + (1 - tau) * slow_target_actor_var) update_slow_target_ops.append(update_slow_target_actor_op) for i, slow_target_var in enumerate(slow_target_critic_vars): update_slow_target_critic_op = slow_target_var.assign(tau * critic_vars[i] + (1 - tau) * slow_target_var) update_slow_target_ops.append(update_slow_target_critic_op) update_slow_targets_op = tf.group(*update_slow_target_ops, name='update_slow_targets') # One step TD targets y_i for (s,a) from experience replay # = r_i + gamma*Q_slow(s',mu_slow(s')) if s' is not terminal # = r_i if s' terminal targets = tf.expand_dims(reward_ph, 1) + tf.expand_dims(is_not_terminal_ph, 1) * gamma * slow_q_values_next # 1-step temporal difference errors td_errors = targets - q_values_of_given_actions # critic loss function (mean-square value error with regularization) critic_loss = tf.reduce_mean(tf.square(td_errors)) for var in critic_vars: if not 'bias' in var.name: critic_loss += l2_reg_critic * 0.5 * tf.nn.l2_loss(var) # critic optimizer critic_train_op = tf.train.AdamOptimizer(lr_critic * lr_decay ** episodes).minimize(critic_loss) # actor loss function (mean Q-values under current policy with regularization) actor_loss = -1 * tf.reduce_mean(q_values_of_suggested_actions) for var in actor_vars: if not 'bias' in var.name: actor_loss += l2_reg_actor * 0.5 * tf.nn.l2_loss(var) # actor optimizer # the gradient of the mean Q-values wrt actor params is the deterministic policy gradient (keeping critic params fixed) actor_train_op = tf.train.AdamOptimizer(lr_actor * lr_decay ** episodes).minimize(actor_loss, var_list=actor_vars) # initialize session sess = tf.Session() sess.run(tf.global_variables_initializer()) ##################################################################################################### ## Training total_steps = 0 for ep in range(num_episodes): total_reward = 0 steps_in_ep = 0 # Initialize exploration noise process noise_process = np.zeros(action_dim) noise_scale = (initial_noise_scale * noise_decay ** ep) * (env.action_space.high - env.action_space.low) # Initial state observation = env.reset() #if ep % 10 == 0: env.render() if ep % 5 == 0: env.render() for t in range(max_steps_ep): # choose action based on deterministic policy action_for_state, = sess.run(actions, feed_dict={state_ph: observation[None], is_training_ph: False}) # add temporally-correlated exploration noise to action (using an Ornstein-Uhlenbeck process) # print(action_for_state) noise_process = exploration_theta * (exploration_mu - noise_process) + exploration_sigma * np.random.randn( action_dim) # print(noise_scale*noise_process) action_for_state += noise_scale * noise_process # take step next_observation, reward, done, _info = env.step(action_for_state) #if ep % 40 == 0: env.render() if ep % 5 == 0: env.render() total_reward += reward add_to_memory((observation, action_for_state, reward, next_observation, # is next_observation a terminal state? # 0.0 if done and not env.env._past_limit() else 1.0)) 0.0 if done else 1.0)) # update network weights to fit a minibatch of experience if total_steps % train_every == 0 and len(replay_memory) >= minibatch_size: # grab N (s,a,r,s') tuples from replay memory minibatch = sample_from_memory(minibatch_size) # update the critic and actor params using mean-square value error and deterministic policy gradient, respectively _, _ = sess.run([critic_train_op, actor_train_op], feed_dict={ state_ph: np.asarray([elem[0] for elem in minibatch]), action_ph: np.asarray([elem[1] for elem in minibatch]), reward_ph: np.asarray([elem[2] for elem in minibatch]), next_state_ph: np.asarray([elem[3] for elem in minibatch]), is_not_terminal_ph: np.asarray([elem[4] for elem in minibatch]), is_training_ph: True}) # update slow actor and critic targets towards current actor and critic _ = sess.run(update_slow_targets_op) observation = next_observation total_steps += 1 steps_in_ep += 1 if done: # Increment episode counter _ = sess.run(episode_inc_op) break #print('Episode %2i, Reward: %7.3f, Steps: %i, Final noise scale: %7.3f' % ( # ep, total_reward, steps_in_ep, noise_scale)) print('Episode %2i' % (ep)) # Finalize and upload results writefile('info.json', json.dumps(info)) env.close()
e425346780022da8a5f60b47f83874eabb99ecd7
e3900b74d7ac56ed215f35612b61b1b465fdae1f
/deepzen/api/base/layer/norm/dropout.py
0fefc6c4b541fe1c2e97bc8b65d23d913ddb92f6
[]
no_license
knighton/deepzen
ae3bf9405344a917e4be480ac9d2887a7397ce5b
e60e8441d05789979e87ef87c8d2844c7d70ba72
refs/heads/master
2020-03-10T17:49:19.224002
2018-08-16T07:08:25
2018-08-16T07:08:25
126,268,280
0
0
null
null
null
null
UTF-8
Python
false
false
1,693
py
class BaseDropoutAPI(object): def _dropout_mask_shape(self, x_shape, keep_spatial_axis=None): if keep_spatial_axis is None: keep_spatial_axes = [] elif isinstance(keep_spatial_axis, int): keep_spatial_axes = [keep_spatial_axis] elif isinstance(keep_spatial_axis, (list, tuple)): keep_spatial_axes = keep_spatial_axis else: assert False mask_shape = [1] * len(x_shape) mask_shape[0] = x_shape[0] for axis in keep_spatial_axes: mask_shape[1 + axis] = x_shape[1 + axis] return tuple(mask_shape) def dropout(self, x, is_training, rate=0.5, keep_spatial_axis=None, xsnd=None): if not is_training: return x if xsnd is not None: assert self.spatial_ndim(x) == xsnd mask_shape = self._dropout_mask_shape(self.shape(x), keep_spatial_axis) mask = self.random_binomial( mask_shape, 1 - rate, self.dtype(x), self.device(x)) mask = self.constant(mask) return x * mask / (1 - rate) def dropout0d(self, x, is_training, rate=0.5, keep_spatial_axis=None): return self.dropout(x, is_training, rate, keep_spatial_axis, 0) def dropout1d(self, x, is_training, rate=0.5, keep_spatial_axis=None): return self.dropout(x, is_training, rate, keep_spatial_axis, 1) def dropout2d(self, x, is_training, rate=0.5, keep_spatial_axis=None): return self.dropout(x, is_training, rate, keep_spatial_axis, 2) def dropout3d(self, x, is_training, rate=0.5, keep_spatial_axis=None): return self.dropout(x, is_training, rate, keep_spatial_axis, 3)
716e3562ae637f4edc50528a02bd8174c192ab40
7d71acdf6e8954452ce0910c229ce866ad373efd
/Web_Server/led.py
35e6d34308f839c21094705938aef6baa8f54978
[]
no_license
cverbitzki/SeniorProject
1a432074634b2695dec4c366853dca6a874fa774
b6896ad9798d25e56267abe36152e82850f4f3d0
refs/heads/master
2020-12-24T07:45:17.606666
2017-03-06T21:58:13
2017-03-06T21:58:13
58,071,607
0
0
null
null
null
null
UTF-8
Python
false
false
1,148
py
#!/usr/python import RPi.GPIO as GPIO import time import sqlite3 # blinking function def blink(pin): GPIO.output(pin,GPIO.HIGH) time.sleep(1) GPIO.output(pin,GPIO.LOW) time.sleep(1) return GPIO.setwarnings(False) # to use Raspberry Pi board pin numbers GPIO.setmode(GPIO.BOARD) # set up GPIO output channel GPIO.setup(11, GPIO.OUT) # blink GPIO17 50 times GPIO.setup(13, GPIO.OUT) while True: file = open('state','r') text = file.readline() if text == 'A': GPIO.output(11,True) GPIO.output(13,False) elif text == 'D': GPIO.output(11,False) GPIO.output(13,True) file.close() ''' while True: db = sqlite3.connect('activity.db') cursor = db.execute(" select status from activity ORDER BY rowid DESC LIMIT 1") for row in cursor: if row[0] == "locked": GPIO.output(11,True) GPIO.output(13,False) elif row[0] == "unlocked": GPIO.output(11,False) GPIO.output(13,True) db.close() time.sleep(2) ''' ''' for i in range(0,1000): blink(11) blink(13) ''' GPIO.cleanup()
c022c602e2a4697d0a16386b80833b7a667fed92
2969ee2b6c579348870c346eb3edcaec7eac4fd3
/mcnets/tempering.py
c8bcf852aa6b740a6537c02e4080196176aa012a
[]
no_license
stuhlmueller/mcnets
500143476509af1dfc137ba278189480648983d4
f564db53c7d85dce1fb365e8e704bd261e3ec5f1
refs/heads/master
2020-04-04T13:35:17.394491
2014-02-06T01:55:24
2014-02-06T01:55:24
15,242,129
1
0
null
2014-02-06T01:55:26
2013-12-17T01:34:19
Python
UTF-8
Python
false
false
14,131
py
## Copyright 2013 Google Inc. All Rights Reserved. ## ## Licensed under the Apache License, Version 2.0 (the ) ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an AS IS BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. """Tempered Markov chains, with fixed and adaptively set temperatures. TODO(stuhlmueller): Refactor TemperedChain and NetworkChain to share more code (e.g., by building a ReplicaStatsMixin class). """ from __future__ import division import numpy as np from scipy import interpolate from mcnets import mcmc from mcnets import utils class TemperedChain(mcmc.MetropolisHastingsChain): """A compound chain that interleaves elementary transitions with swaps.""" def __init__(self, chains, nsteps_per_sweep, nswaps_per_sweep, rng=None): """Initializes tempered chain based on component chains. Args: chains: list of component chains, in increasing order of temperature nsteps_per_sweep: the number of transitions to apply to each component chain before we propose to swap neighboring pairs of chains. nswaps_per_sweep: the number of swaps to execute each time the network chain transition method is called. rng: a random stream (utils.RandomState). """ assert len(chains) > 1, len(chains) self.CheckTemperatureOrder(chains) self.chains = chains self.nsteps_per_sweep = nsteps_per_sweep self.nswaps_per_sweep = nswaps_per_sweep super(TemperedChain, self).__init__(rng=rng) def InitializeState(self): """The chain doesn't keep state beyond the state of its component chains.""" for chain in self.chains: chain.InitializeState() def InitializeStatistics(self): """Keeps track of statistics for each rank in the temperature ladder. Statistics: transitions: the number of transitions; each transition consists of len(self.chains)*nsteps_per_sweep base moves and len(self.chains)-1 swap moves. swaps_proposed: map chain index to number of swap proposals with neighbor at next-higher temperature swaps_accepted: map chain index to number of accepted swaps with neighbor at next-higher temperature """ n = len(self.chains) self.statistics = utils.SimpleNamespace( transitions=0, swaps_proposed=np.zeros(n-1), swaps_accepted=np.zeros(n-1) ) for chain in self.chains: chain.InitializeStatistics() def CheckTemperatureOrder(self, chains): """Verifies that chains are given in ascending order of temperatures.""" for chain1, chain2 in utils.Pairwise(chains): assert hasattr(chain1, "temp") assert hasattr(chain2, "temp") assert chain1.temp < chain2.temp, (chain1.temp, chain2.temp) def SwapTransition(self, chain1, chain2, level): """Proposes to swap the states of two chains, accepts according to MH rule. Args: chain1: first chain to take part in swap chain2: second chain to take part in swap level: index of the lower-temperature chain Returns: swap_accepted: a Boolean indicating whether the swap was accepted """ assert chain1 != chain2 self.statistics.swaps_proposed[level] += 1 logp_old = (chain1.LogProbability(chain1.state) + chain2.LogProbability(chain2.state)) logp_new = (chain1.LogProbability(chain2.state) + chain2.LogProbability(chain1.state)) log_acceptance_ratio = logp_new - logp_old swap_accepted = (log_acceptance_ratio >= utils.LOG_PROB_1 or self.rng.log_flip(log_acceptance_ratio)) if swap_accepted: self.statistics.swaps_accepted[level] += 1 chain1.state, chain2.state = chain2.state, chain1.state return swap_accepted def BaseTransition(self): """Applies transition operator to component chains.""" for chain in self.chains: chain.TransitionN(self.nsteps_per_sweep) def Transition(self): """Executes nsteps_per_sweep local transitions for each chain, then swaps. Swap strategy: Repeat nswaps_per_sweep times: pick an edge in the temperature ladder at random, propose to swap the chains connected by this edge. """ self.BaseTransition() for _ in xrange(self.nswaps_per_sweep): level = self.rng.randint(len(self.chains)-1) self.SwapTransition(self.chains[level], self.chains[level+1], level) self.statistics.transitions += 1 @property def state(self): """Only the state of the base chain is visible externally.""" return self.chains[0].state @property def temps(self): """Returns the list of temperatures of the component chains (ascending).""" return [chain.temp for chain in self.chains] def ComputeAdaptedTemperatures(temps, hist, epsilon=.001): """Given statistics about replica behavior, computes new temperatures. This function is based on the presentation of the Feedback-Optimized Parallel Tempering algorithm in [1]. The algorithm requires that the histogram describing the fraction of replicas flowing upwards (for each temperature) is monotonically decreasing in temperature. To ensure this, we mix in epsilon of a linearly decreasing histogram. [1] Robust Parameter Selection for Parallel Tempering Firas Hamze, Neil Dickson, Kamran Karimi (2010) http://arxiv.org/abs/1004.2840 Args: temps: a list of temperatures (positive floating-point numbers, strictly increasing) hist: for each temperature, the fraction of replicas that are on the way up (decreasing, in [0, 1]) epsilon: a number in [0, 1] that determines how strongly we mix a linearly decreasing function into hist (to ensure that it is strictly monotonically decreasing, and hence invertible) Returns: new_temps: an adapted list of temperatures """ n = len(temps) assert n > 1 assert len(hist) == n, (len(hist), n) for temp1, temp2 in utils.Pairwise(temps): assert temp1 > 0, temp1 assert temp1 < temp2, (temp1, temp2) for p1, p2 in utils.Pairwise(hist): assert 0 <= p1 <= 1, p1 assert p1 >= p2, (p1, p2) # Create a linearly spaced list of numbers in [0, 1] with n elements. # For example, for n=5, linear_hist = [1.0, 0.75, 0.5, 0.25, 0.0]. linear_hist = [x/(n-1) for x in reversed(range(n))] stricly_monotonic_hist = utils.Mix(hist, linear_hist, epsilon) fraction_to_temp = interpolate.interp1d( list(reversed(stricly_monotonic_hist)), list(reversed(temps))) new_temps = [temps[0]] for i in reversed(range(2, n)): new_temps.append(float(fraction_to_temp((i-1)/(n-1)))) new_temps.append(temps[-1]) return new_temps class AdaptiveTemperedChain(TemperedChain): """Adaptive tempering for Markov Chains based on [1] and [2]. We want to maximize the rate of round trips that each replica (state) performs between the two extremal temperatures. We collect for each temperature statistics about how many replicas we have observed that have visited the lowest temperature most recently (replicas that are "on the way up"), and how many have visited the highest temperature more recently ("on the way down"). These statistics allow us to calculate for each temperature the fraction of replicas which have visited one of the extremal temperatures most recently. Ideally, this fraction decreases linearly over the range of temperatures. Therefore, adaptation rearranges the temperatures based on the observed fractions such that we would have observed a linear decrease if we had observed the actual fractions together with the rearranged temperatures. To ensure that the empirical histogram of fractions is strictly monotonically decreasing as temperatures grow (a condition necessary for the algorithm), we mix in epsilon of a list of linearly decreasing fractions. [1] Feedback-optimized parallel tempering Monte Carlo Helmut G. Katzgraber, Simon Trebst, David A. Huse, Matthias Troyer (2006) http://arxiv.org/abs/cond-mat/0602085 [2] Robust Parameter Selection for Parallel Tempering Firas Hamze, Neil Dickson, Kamran Karimi (2010) http://arxiv.org/abs/1004.2840 """ def __init__(self, chains, nsteps_per_sweep, nswaps_per_sweep, burn_roundtrips=0, rng=None): """Initializes tempered chain based on component chains. Args: chains: list of component chains, in increasing order of temperature nsteps_per_sweep: the number of transitions to apply to each component chain before we propose to swap neighboring pairs of chains. nswaps_per_sweep: the number of swaps to execute each time the network chain transition method is called. burn_roundtrips: the number of replica roundtrips required before we start updating statistics about replica direction averages rng: a random stream (utils.RandomState) """ super(AdaptiveTemperedChain, self).__init__( chains, nsteps_per_sweep, nswaps_per_sweep, rng=rng) self.burn_roundtrips = burn_roundtrips def InitializeStatistics(self): """Initializes acceptance and replica behavior acceptance statisics. Statistics: transitions: the number of transitions; each transition consists of len(self.chains)*self.nsteps_per_sweep base moves and len(self.chains)-1 swap moves. swaps_proposed: maps chain index to number of swap proposals with next-higher neighbor swaps_accepted: maps chain index to number of accepted swaps with next-higher neighbor replica: a record with statistics that describe the behavior of replica, i.e., the movement of states across different temperatures (see InitializeReplicaStatistics). """ n = len(self.chains) self.statistics = utils.SimpleNamespace( transitions=0, swaps_proposed=np.zeros(n-1), swaps_accepted=np.zeros(n-1), replica=None) self.InitializeReplicaStatistics() for chain in self.chains: chain.InitializeStatistics() def InitializeReplicaStatistics(self): """Initializes replica behavior statistics. Statistics: ids: maps chain index to id of replica currently located at chain directions: maps replica id to {-1, 0, 1}, depending on whether replica last visited bottom-most chain (1, "upwards"), top chain (-1, "downwards"), or neither (0). tracker: maps chain index to a list that stores for every replica the direction it has been observed moving in most recently by chain hist: for each chain, cumulative moving average of fraction of replica observed moving upwards hist_n: for each chain, the number of observations that made it into the moving average roundtrips: the total number of replica that made it all the way from the top to the bottom """ n = len(self.chains) replica_stats = utils.SimpleNamespace( ids=range(n), directions=np.zeros(n), tracker=[[0]*n for _ in range(n)], hist=np.zeros(n), hist_n=np.zeros(n), roundtrips=0) replica_stats.directions[0] = 1 replica_stats.directions[-1] = -1 replica_stats.hist[0] = 1 self.statistics.replica = replica_stats def ResetReplicaStatistics(self): """Resets replica statistics to initial state.""" self.InitializeReplicaStatistics() def UpdateReplicaStatistics(self, swap_accepted, level): """Updates information about replica behavior after a swap. Args: swap_accepted: a Boolean indicating whether the swap was accepted. level: the index of the swap chain with lower temperature """ if not swap_accepted: return r = self.statistics.replica n = len(self.chains) # Swap the replica ids. r.ids[level], r.ids[level+1] = r.ids[level+1], r.ids[level] # Update roundtrips and directions of the replicas at top/bottom chains. if r.directions[r.ids[0]] == -1: r.roundtrips += 1 r.directions[r.ids[0]] = 1 r.directions[r.ids[-1]] = -1 # Update tracker: store direction of new replicas at level, level+1. for k in (level, level+1): r.tracker[k][r.ids[k]] = r.directions[r.ids[k]] # Update moving average of replica directions (fraction moving up). for i in range(n): if self.statistics.replica.roundtrips > self.burn_roundtrips: n_up = r.tracker[i].count(1) n_down = r.tracker[i].count(-1) assert 0 < n_up + n_down <= n p = n_up / (n_up + n_down) r.hist[i] += (p - r.hist[i]) / (r.hist_n[i] + 1) r.hist_n[i] += 1 def TransitionsPerRoundtrip(self, stats=None): """Returns number of transitions necessary for a single roundtrip. A single transition encompasses len(self.chains) * self.nsteps_per_sweep base steps and self.nswaps_per_sweep swaps. Args: stats: statistics of a NetworkChain. Returns: score: average number of transitions per roundtrip. """ stats = stats if stats else self.statistics if not stats.replica.roundtrips: return float("inf") return stats.transitions / stats.replica.roundtrips def SwapTransition(self, chain1, chain2, level): """Proposes to swap states of two chains, accept according to MH rule.""" swap_accepted = super(AdaptiveTemperedChain, self).SwapTransition( chain1, chain2, level) self.UpdateReplicaStatistics(swap_accepted, level) def AdaptTemperatures(self): """Computes and sets new temperatures based on replica statistics.""" new_temps = ComputeAdaptedTemperatures( self.temps, self.statistics.replica.hist) for chain, new_temp in zip(self.chains, new_temps): chain.temp = new_temp
13e837f8a0c0ff0d32762df56f54b0d1fdea8bb9
3539f98e7b54e58622cabb745117a861817c1e1c
/main.py
d7192d5b91d0bdbff5de41c5cfbfb06bf2599d85
[]
no_license
youfeng243/mongo-dump
285e03349f261c56e9755d103ea0e10f81c23676
966d5933eed0f78d60ecd95d103686df17c92e08
refs/heads/master
2020-12-02T19:16:46.047885
2018-02-07T08:25:14
2018-02-07T08:25:14
96,317,664
0
0
null
null
null
null
UTF-8
Python
false
false
8,491
py
#!/usr/bin/env python # encoding: utf-8 """ @author: youfeng @email: [email protected] @license: Apache Licence @file: main.py @time: 2017/7/1 12:27 """ import json import os import subprocess import sys import time import tools from config import app_data_config, sleep_time, check_period, data_sync_config, dump_table_flag, dump_path, \ dump_status_file_name, dump_tmp_path from logger import Logger from mongo import MongDb log = Logger("mongo-dump.log").get_logger() app_data = MongDb(app_data_config['host'], app_data_config['port'], app_data_config['db'], app_data_config['username'], app_data_config['password'], log=log) data_sync = MongDb(data_sync_config['host'], data_sync_config['port'], data_sync_config['db'], data_sync_config['username'], data_sync_config['password'], log=log) TABLE_CONFIG = "table.config" # 获得所有的表信息 def get_all_table_name(): table_set = set() with open(TABLE_CONFIG) as p_file: for line in p_file: table_name = line.strip().strip("\r").strip("\n") table_set.add(table_name) return list(table_set) # 运行命令 def run_cmd(cmd): log.info(cmd) p = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) while True: line = p.stdout.readline() log.info(line) if line: sys.stdout.flush() else: break p.wait() # 删除所有任务 def remove_all_task(): for table_name in data_sync.collection_names(): if dump_table_flag in table_name: data_sync.drop(table_name) log.info("删除所有表成功, 开始休眠10s") exit() # 记录导出文件状态 def record_status_file(date, dump_table_list): full_path = dump_path + date + "/" status_file_path = full_path + dump_status_file_name # 已经存在表的信息 exists_table_set = set() # 读取状态文件信息 if os.path.exists(status_file_path): with open(status_file_path) as p_file: for line in p_file: file_name = line.strip().strip("\r").strip("\n") table_name = file_name.split(".")[0] exists_table_set.add(table_name) # 如果文件以及存在 则不再写入 # if os.path.exists(status_file_path): # return if len(exists_table_set) <= 0: # 确保批次文件夹是否已经存在 run_cmd("mkdir -p {path}".format(path=dump_path + date)) is_all_in_file = True for table_name in dump_table_list: if table_name not in exists_table_set: is_all_in_file = False break # 开始记录状态信息 if not is_all_in_file: with open(status_file_path, mode="w") as p_file: for name in dump_table_list: p_file.write(name + ".zip" + "\r\n") # 分解任务 def split_dump_task(): log.info("分解任务开始...") start_time = time.time() table_list = get_all_table_name() dump_table_list = list() for app_data_table in table_list: dump_table_list.append(app_data_table) # 生成任务信息 for period in xrange(1, check_period + 1): # 获得日期信息 _id = tools.get_one_day(period) # 写入列表信息 record_status_file(_id, dump_table_list) for app_data_table in table_list: dump_table_name = dump_table_flag + app_data_table search_item = data_sync.find_one(dump_table_name, {"_id": _id}) if search_item is None: task_item = { "_id": _id, "finish": False, "createTime": tools.get_now_time(), "updateTime": tools.get_now_time(), "startTime": tools.get_start_time(_id), "endTime": tools.get_end_time(_id) } data_sync.insert(dump_table_name, task_item) continue log.info("分解任务执行完成..") end_time = time.time() log.info('分解任务消耗时间: {t}s'.format(t=end_time - start_time)) # 当前单进程执行导出任务 def execute_dump_task(): log.info("导出任务开始...") start_exec_time = time.time() # 获得全部表信息 table_list = get_all_table_name() # 根据日期开始导出数据 for period in xrange(check_period, 0, -1): # 获得日期信息 _id = tools.get_one_day(period) # 遍历表导出 for app_data_table in table_list: dump_table_name = dump_table_flag + app_data_table task_item = data_sync.find_one(dump_table_name, {'_id': _id}) if task_item is None: continue if task_item['finish']: continue # 获得未完成的任务列表信息 # for task_item in data_sync.traverse(dump_table_name, {'finish': False}): start_time = task_item["startTime"] end_time = task_item["endTime"] date = task_item["_id"] # 导出临时路径 dump_date_tmp_path = dump_tmp_path + date + "/" run_cmd("mkdir -p {path}".format(path=dump_date_tmp_path)) # 删除已经存在的数据 run_cmd("rm -rf {source}{table}.json".format( source=dump_date_tmp_path, table=app_data_table)) # 删除存在的压缩包 run_cmd("rm -rf {source}{table}.zip".format( source=dump_date_tmp_path, table=app_data_table)) cmd = "./mongoexport -h " + app_data_config["host"] + ":" + str(app_data_config["port"]) + " -d " + \ app_data_config[ "db"] + " -c " + app_data_table + " -u " + app_data_config["username"] + " -p " + app_data_config[ "password"] + " -o " + dump_date_tmp_path + app_data_table + ".json" + " -q " cmd += "'" + json.dumps( {"$and": [{"_utime": {"$gte": start_time}}, {"_utime": {"$lte": end_time}}]}) + "'" # 开始执行导出任务 run_cmd(cmd) # 移动文件 target_path = dump_path + date + "/" run_cmd("mkdir -p {path}".format(path=target_path)) # 压缩数据 run_cmd("zip {source}{table}.zip {source}{table}.json".format( source=dump_date_tmp_path, table=app_data_table)) # 移动数据 run_cmd("mv -f {source}{table}.zip {target_path}".format( source=dump_date_tmp_path, table=app_data_table, target_path=target_path)) # 删除文件 run_cmd("rm -rf {source}{table}.json".format( source=dump_date_tmp_path, table=app_data_table)) # 删除存在的压缩包 run_cmd("rm -rf {source}{table}.zip".format( source=dump_date_tmp_path, table=app_data_table)) task_item["finish"] = True task_item["updateTime"] = tools.get_now_time() # 记录状态 data_sync.insert_batch_data(dump_table_name, [task_item]) log.info("导出任务执行完成..") end_exec_time = time.time() log.info('导出任务消耗时间: {t}s'.format(t=end_exec_time - start_exec_time)) # 创建索引 def ensure_index(): table_list = get_all_table_name() for app_data_table in table_list: dump_table_name = dump_table_flag + app_data_table data_sync.create_index(dump_table_name, [('finish', MongDb.ASCENDING)]) def main(): # remove_all_task() while True: try: start_time = time.time() log.info("开始执行dump任务..") # 分解任务 split_dump_task() # 创建索引 ensure_index() # 执行导出任务 execute_dump_task() log.info("dump任务执行完成..") end_time = time.time() log.info('dump任务消耗时间: {t}s'.format(t=end_time - start_time)) # 休眠时间 time.sleep(sleep_time) except Exception as e: log.exception(e) # 休眠时间 time.sleep(sleep_time) if __name__ == '__main__': main()
01bc570da861c7c1e88b64e8ad0b6c96647329ec
5d3c7539ba982e58d8cf249fb1f55cf4e248c730
/Create Maximum Number.py
6e3493a83a1bcf3c614abb3a73cdf337e80fe2d4
[]
no_license
jinxin0924/LeetCode
b95bc4321d0a0589d66c18fa5bb17e5d38b2f436
bdf5518fb387dfa599964425354115dfad49eb00
refs/heads/master
2020-04-05T14:04:59.839117
2016-09-19T09:44:27
2016-09-19T09:44:27
42,444,294
1
0
null
null
null
null
UTF-8
Python
false
false
1,879
py
__author__ = 'Xing' # Given two arrays of length m and n with digits 0-9 representing two numbers. # Create the maximum number of length k <= m + n from digits of the two. # The relative order of the digits from the same array must be preserved. # Return an array of the k digits. You should try to optimize your time and space complexity. # Example 1: # nums1 = [3, 4, 6, 5] # nums2 = [9, 1, 2, 5, 8, 3] # k = 5 # return [9, 8, 6, 5, 3] # # Example 2: # nums1 = [6, 7] # nums2 = [6, 0, 4] # k = 5 # return [6, 7, 6, 0, 4] class Solution(object): def maxNumber(self, nums1, nums2, k): """ :type nums1: List[int] :type nums2: List[int] :type k: int :rtype: List[int] """ def maxList(nums,k): drop = len(nums) - k out = [] for num in nums: while drop and out and out[-1] < num: out.pop() drop -= 1 out.append(num) return out[:k] def merge(nums1,nums2): return [max(nums1,nums2).pop(0) for _ in nums1+nums2] # return [max(a, b).pop(0) for _ in a+b] return max(merge(maxList(nums1, i), maxList(nums2, k-i)) for i in range(k+1) if i <= len(nums1) and k-i <= len(nums2)) s=Solution() print(s.maxNumber([3, 4, 6, 5],[9, 1, 2, 5, 8, 3],5)) # print(s.maxNumber([6,7],[6,0,4],5)) # print(s.maxNumber([3,9],[8,9],3)) # print(s.maxNumber([6,6,8],[5,0,9],3)) # print(s.maxNumber([3,4,6,5],[9,1,2,5,8,3],5)) # print(s.maxList([6,6,8],2)) # print(s.maxList([9,1,2,5,8,3],3)) def test(): import random n=random.randint(0,5) m=random.randint(0,5) k=random.randint(0,n+m) nums1=[random.randint(0,9) for i in range(n)] nums2=[random.randint(0,9) for i in range(m)] print(nums1,nums2,k,s.maxNumber(nums1,nums2,k))
59f12fb2cc85e4f4266e067f7685062e16ceef87
8175f5bcd468236d4739bf4c5e3b6d8e26a65b2e
/Tarea1 - Ensamblador_Maquina/Expresiones regulares/venv/Scripts/pip3-script.py
1bc6ae06628cedaf9ff542dfa649f74abc2a8450
[]
no_license
FernandoFigueroa14/Multiprocesadores
5678b7450f64822df2b513de0add553abc9463dc
4210eca16aa86aee755d239aadf499e3e8e4c09d
refs/heads/main
2023-07-10T01:51:17.223370
2021-08-15T17:41:29
2021-08-15T17:41:29
395,199,126
0
0
null
null
null
null
UTF-8
Python
false
false
425
py
#!"D:\Lenguajes y traductores\Expresiones regulares\venv\Scripts\python.exe" # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip3' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip3')() )
719032921ebe700cca37282e531011fdbb1c0f6b
c6dcecd43edf7ee1488be38779a59b41781b8371
/06. Index Numbers/index.py
36af556092a1b430f841ff225aa9542e4f5b6bcb
[ "MIT" ]
permissive
joshtsengsh/Learn-Coding-with-Python
c56ead768cc9fff38b33e992b6d6368c9ab821d0
9280c41f919f60c33a5d7d0a8bc454877692feec
refs/heads/master
2022-09-11T03:20:46.364526
2020-06-04T14:25:47
2020-06-04T14:25:47
260,665,568
0
0
null
null
null
null
UTF-8
Python
false
false
413
py
#created by Josh Tseng, 1 May 2020 #This file introduces the concept of index numbers, which are important when handling certain types of data in Python #In this example, we would be looking at the indexes in strings sample_string = "This is my string." #Show the value in the string at index position 0 print(sample_string[0]) #Exercise: #Change the number in the bracket to: -1, 2, 9, and 34. #What changes?
c409eb09079f579e2f14e64adf5125cb958596e3
4fc7805a55135224c068e9e2ff67983d3a626569
/Week 6 [JSON,SOA]/json1.py
a826f30dc0bdf0c1e5468b1c91dc8aabfe8a589f
[]
no_license
Pryangan/Using-Python-to-Access-Web-Data
0da06571fc067c9aaaf25db9d7fb3a190ee1f0d7
561ad34bf00207b41c71a475da55ba866ac12874
refs/heads/master
2020-04-15T05:22:36.136422
2019-01-07T10:59:41
2019-01-07T10:59:41
164,419,100
0
0
null
null
null
null
UTF-8
Python
false
false
322
py
import json data = '''{ "name" : "Pryangan", "phone" : { "type" : "intl", "number" : "9876543210" }, "email" : { "hide" : "yes" } }''' info = json.loads(data) print('Name:',info["name"]) print('Hide:',info['email']['hide'])
58a5ac993e18950c414a11b2bd8fdc06e517b292
bbc3ba50910f57d00c54d9c16103853dedc9c78a
/src/CreateInsByHooks.py
1e28875c8a049f5a9e06493c9af22b8021a78da2
[ "Apache-2.0" ]
permissive
wjtlt3/pyloader
4bcc98a028e17ba6a54b4033c915463e8374c9bf
2be0919ab80dbb38b1fdd7969c31647be20e8fa9
refs/heads/master
2021-10-08T20:09:17.191412
2018-12-17T08:23:56
2018-12-17T08:23:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
535
py
''' Created on 2018年10月30日 @author: yinyayun ''' from loader.hook.DynamicLoadByHooks import DynamicLoadByHooks if __name__ == '__main__': base = '../package/demo' dynamic = DynamicLoadByHooks(base) print("-----create 001.ImportDemo") ins1 = dynamic.create_ins('001', 'ImportDemo', 'ImportDemo') print(ins1.zz()) print("-----create 002.ImportDemo") ins2 = dynamic.create_ins('002', 'ImportDemo', 'ImportDemo') print(ins2.zz()) print('run ins1:', ins1.zz()) print('run ins2:', ins2.zz())
3e2a108c6f256bcf94bf27c819c5affb28ecfab2
1e09bc56bf2904b349df1873e11da3d527437880
/lecture-08/stringfn.py
ef0277ea4f2fa1625465ed088e5402016831126e
[]
no_license
codeforcauseorg-archive/DSA-Live-Python-Jun-0621
f3444f5671cb4985644c7432517477c3585c70fb
e4fe544178d7851c24755242390f39675b99fabe
refs/heads/main
2023-08-09T08:31:41.449120
2021-09-14T16:44:39
2021-09-14T16:44:39
384,725,085
4
2
null
null
null
null
UTF-8
Python
false
false
193
py
line = "Hello {}, Its {} to meet you." # print(line.index("o")) # print(line.format("Amit", "good")) out = "we are so happy. and then again.".capitalize() print(out) # line.endswith("yu.")
a1d938d10d362c370e273a1a5d6abc819fdfd4f6
0089c10e2fde9538415623ec2f6b6c213d4b81db
/ex_2_spyder.py
c4356d9992de1ff4f2e547d38f6da10cbf259389
[]
no_license
isuru-m/RL_labs
c7546b4e5b430cc7899069b53c5670f064a56728
b2cf1344b9d7388cfe644190c6e0655ef92cc2e0
refs/heads/master
2020-04-25T04:02:07.227518
2019-03-24T02:01:00
2019-03-24T02:01:00
172,497,097
0
0
null
null
null
null
UTF-8
Python
false
false
3,968
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Mar 1 06:02:53 2019 @author: Isuru """ import numpy as np class Gridworld: def __init__(self): self.num_rows = 5 self.num_cols = 5 self.num_fields = self.num_cols * self.num_rows self.gold_reward = 10 self.bomb_reward = -10 self.gold_positions = np.array([23]) self.bomb_positions = np.array([18]) self.terminal_states = np.concatenate((self.gold_positions, self.bomb_positions)) self.V = np.zeros(shape=self.num_fields) self.rewards = np.ones(shape=self.num_fields) * (-1) self.rewards[self.bomb_positions] = self.rewards[self.bomb_positions] + self.bomb_reward self.rewards[self.gold_positions] = self.rewards[self.gold_positions] + self.gold_reward def GetAvailableActions(self,s): ''' This method outputs the available actions for a given state''' available_actions = np.full((1,4), False, dtype=bool) self.s_n = s + self.num_cols self.s_e = s + 1 self.s_s = s - self.num_cols self.s_w = s - 1 if self.s_n < self.num_fields: available_actions[0,0] = True if self.s_e % self.num_cols > 0: available_actions[0,1] = True if self.s_s >= 0: available_actions[0,2] = True if self.s_w % self.num_cols < self.num_cols - 1: available_actions[0,3] = True return available_actions def OneStepLookAhead(self, s, possible_actions, gamma=1, e=0.2): ''' This method calculates the value of neighbouring states for a given state putting e=0 (deterministic) yeilds the same result as excercise 1 ''' if not possible_actions[0,0]: self.s_n = s if not possible_actions[0,1]: self.s_e = s if not possible_actions[0,2]: self.s_s = s if not possible_actions[0,3]: self.s_w = s NESW_Cells = np.zeros(4) all_actions = np.array([self.s_n, self.s_e, self.s_s, self.s_w]) for i in range(len(all_actions)): NESW_Cells[i] = self.rewards[all_actions[i]] + gamma*((1-e)*self.V[all_actions[i]]+0.25*e*(self.V[self.s_n] + self.V[self.s_e] + self.V[self.s_s] + self.V[self.s_w])) return NESW_Cells def GetPolicy(self, value): ''' This method finds the optimal policy based on a converged value function''' policy_init = np.zeros(25, dtype=str) max_vals = np.zeros(25) arg_vals = np.zeros(25) for j in range(len(value)): pos_actions = self.GetAvailableActions(j) max_vals = self.OneStepLookAhead(j, pos_actions) arg_vals[j] = np.argmax(max_vals) if arg_vals[j] == 0: policy_init[j]='n' elif arg_vals[j] == 1: policy_init[j] = 'e' elif arg_vals[j] == 2: policy_init[j] = 's' elif arg_vals[j] == 3: policy_init[j] = 'w' return policy_init grid = Gridworld() theta = 1e-10 delta=np.zeros(grid.num_fields) counter =0 while 1: for state in range(grid.num_fields): if state in grid.terminal_states: continue v = grid.V[state] available_actions = grid.GetAvailableActions(state) bellman_value_old = grid.OneStepLookAhead(state, available_actions) grid.V[state] = np.max(bellman_value_old) delta[state] = abs(v - grid.V[state]) d = np.amax(delta) counter += 1 if d < theta: break v = grid.V v_disp = grid.V.reshape(5,5) print(np.flip(v_disp,0)) policy = grid.GetPolicy(v) pol_disp = policy.reshape(5,5) print(np.flip(pol_disp,0))
51495f4dae656f1832ef0dbee351dfe3ff503ca3
e23749ca0f78c3e2ecfca58352ad65f3c4d487bb
/Face-Recognition/picture_menu/local_main.py
da580ed14c821c7fc325ddbce72561bb4e578b15
[]
no_license
davichiar/2018_KidsHaru-FaceRecognition
a923c8bcc1a83d549d55ddcaa8e4da37bc366d4a
5c2d43202dae45ae49b302104533900c2fd48bec
refs/heads/master
2020-03-23T19:13:28.142373
2019-01-22T05:56:29
2019-01-22T05:56:29
141,961,423
0
1
null
null
null
null
UTF-8
Python
false
false
2,851
py
import json import requests import os import sys import shutil import urllib.request import numpy as np import pandas as pd from pandas import Series, DataFrame from utility import path, download, pickle from picture_util import detecting, clustering, saving def local_play(): # ========================================= # 이미지 다운로드 url = path.getDirname("image") data = download.getLinkDownload(url) # ========================================= # 이미지 저장 url = path.getDirname("pickle_data") + "/picture_pickle.pickle" data_temp, data = saving.picture_saving(url, data) # print(len(data), len(data_temp)) # ========================================= # 재 로드 하기 data = pickle.ReadPickle(url) print('pickle 로드 완료!') index_url = path.getDirname("pickle_data") + "/index_pickle.pickle" box_url = path.getDirname("pickle_data") + "/box_pickle.pickle" encoding_url = path.getDirname("pickle_data") + "/encoding_pickle.pickle" indexE_url = path.getDirname("pickle_data") + "/indexE_pickle.pickle" encodings_url = path.getDirname("pickle_data") + "/encodings_pickle.pickle" index = saving.util_saving("index", index_url) box = saving.util_saving("box", box_url) encoding = saving.util_saving("encoding", encoding_url) indexE = saving.util_saving("indexE", indexE_url) encodings = saving.util_saving("encodings", encodings_url) # ========================================= # 이미지 detecting # data.loc[data.index == 1, 'encoding'] = 'complete' data_temp = data.loc[data['encoding'] == "empty"] result = data_temp.index for x in range(len(data)): if x in result: box_t, encoding_t = detecting.faceDetect(data.ix[x]) if len(box_t) > 0 and len(encoding_t) > 0: index.append(x) box.append(box_t) encoding.append(encoding_t) temp_len = len(index) - 1 for y in range(len(box[temp_len])): indexE.append(str(x) + "." + str(y)) encodings.append( encoding[temp_len][y] ) data.loc[data.index == x, 'box'] = len(box[temp_len]) data.loc[data.index == x, 'encoding'] = "complete" clustering.cluster(data, indexE, encodings) else: data.loc[data.index == x, 'box'] = -1 data.loc[data.index == x, 'encoding'] = "Fail" # ========================================= # 저장하기 pickle.WritePickle(url, data) pickle.WritePickle(index_url, index) pickle.WritePickle(box_url, box) pickle.WritePickle(encoding_url, encoding) pickle.WritePickle(indexE_url, indexE) pickle.WritePickle(encodings_url, encodings) print(data)
7f41409c32f68944f9c19faceb81e9904a6b9f4d
2ef5c8fe070db835f944250be648d32c9ffe208f
/backjoon/10818.py
fa6c8147a70a384755ee8763baa009391dcbc088
[]
no_license
Hyoukjoo/study-algo
dfde817fdccfd7f6fe03a35d9b08e8b7de6f3ef0
fd99ee7b03910226b03eba369319c7d2ba5824ed
refs/heads/main
2023-04-20T05:16:55.867061
2021-05-09T12:24:03
2021-05-09T12:24:03
358,767,728
0
0
null
null
null
null
UTF-8
Python
false
false
92
py
n = int(input()) nums = list(map(int, input().split())) print(f'{min(nums)} {max(nums)}')
04ff18cb3a28a6777a34d20828fd38fb9815439b
8aa352851122a6ba3cd4d11e0ad89a10058f5206
/mysite/mysite/urls.py
953baa1c0eadcffe5be08b693cc1c20fe35c3237
[]
no_license
marchell93/django_news
3f8d7134ee4d1df40897e9dc0a4bd5bac51ebb07
7d2db7b0de497206ed4357ca25de55460605b59f
refs/heads/main
2023-01-02T07:29:40.159772
2020-10-27T08:39:33
2020-10-27T08:39:33
307,632,242
0
0
null
null
null
null
UTF-8
Python
false
false
1,226
py
"""mysite URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.conf import settings from django.conf.urls.static import static from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('ckeditor/', include('ckeditor_uploader.urls')), path('captcha/', include('captcha.urls')), path('', include('news.urls')), ] if settings.DEBUG: import debug_toolbar urlpatterns = [ path('__debug__/', include(debug_toolbar.urls)), ] + urlpatterns urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
421a98d91f2a1ef9d1ef0c88cb7e72d9f3a0a075
0bf6b37f856d3fb7e0970b58c6f4cf49fbd74b35
/preprocess.py
8c3b9b71639be580838a01fffb51e2006995fe95
[]
no_license
Skinny-Joey/Retrieval-Automatic-Comment-System
a08a67679bfabcf021b8f253bb4ec392dc09afb4
d925397152bf9a31b2a0a419ef1a0c94e543b565
refs/heads/master
2022-04-03T06:05:31.859650
2018-11-21T15:11:04
2018-11-21T15:11:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,390
py
# -*- coding: utf-8 -*- import os import cPickle import json import jieba # 加载数据只需修改此函数即可 def train_data(path): print 'start process ', path data = [] with open(path, 'r') as f: for line in f.readlines(): line = line.strip().split('\t') post = line[0].split() comm_true = line[1].split() comm_false = line[2].split() if len(post) > 30 or len(comm_true) > 30 or len(comm_false) > 30: print(len(post), len(comm_true), len(comm_false)) if len(post) == 0 or len(comm_true) == 0 or len(comm_false) == 0: print(len(post), len(comm_true), len(comm_false)) data.append([post, comm_true, comm_false]) return data def dev_data(path): print 'start process ', path data = [] with open(path, 'r') as f: for line in f.readlines(): if line == "--------------------------------------------\n": continue if line[:4] == "post": post = line.strip().split()[1:] elif line[:4] == "comm": comm = line.strip().split()[1:] data.append([post, comm, "1"]) elif line[:8] == "mismatch": mis_comm = line.strip().split()[1:] data.append([post, mis_comm, "0"]) return data def build_word_count(data): wordCount = {} def add_count(lst): for word in lst: if word not in wordCount: wordCount[word] = 0 wordCount[word] += 1 for one in data: [add_count(x) for x in one[0:3]] print 'word type size ', len(wordCount)-2 return wordCount def build_word2id(wordCount, threshold=10): word2id = {'<PAD>': 0, '<UNK>': 1} if os.path.exists("data/vocab_50000.txt"): with open("data/vocab_50000.txt", 'r') as fr: for word in fr.readlines(): word2id[word.strip()] = len(word2id) else: for word in wordCount: if wordCount[word] >= threshold: if word not in word2id: word2id[word] = len(word2id) # 将词拆成字对英文不适用 ''' else: chars = list(word) for char in chars: if char not in word2id: word2id[char] = len(word2id) ''' print 'processed word size ', len(word2id) return word2id def transform_train_to_id(raw_data, word2id): data = [] def map_word_to_id(word): output = [] if word in word2id: output.append(word2id[word]) # 将词拆成字对英文不适用 else: ''' chars = list(word) for char in chars: if char in word2id: output.append(word2id[char]) else: ''' # UNK token output.append(1) return output def map_sent_to_id(sent): output = [] for word in sent: output.extend(map_word_to_id(word)) return output for one in raw_data: post = map_sent_to_id(one[0]) comm1 = map_sent_to_id(one[1]) comm2 = map_sent_to_id(one[2]) data.append([post, comm1, comm2]) return data def transform_dev_to_id(raw_data, word2id): data = [] def map_word_to_id(word): output = [] if word in word2id: output.append(word2id[word]) # 将词拆成字对英文不适用 else: ''' chars = list(word) for char in chars: if char in word2id: output.append(word2id[char]) else: ''' # UNK token output.append(1) return output def map_sent_to_id(sent): output = [] for word in sent: output.extend(map_word_to_id(word)) return output for one in raw_data: post = map_sent_to_id(one[0]) comm = map_sent_to_id(one[1]) flag = one[2] data.append([post, comm, flag]) return data def process_data(data_path, threshold): train_file_path = data_path + 'train.txt' dev_file_path = data_path + 'dev.txt' test_file_path = data_path + 'test.txt' path_lst = [train_file_path, dev_file_path, test_file_path] output_path = [data_path + x for x in ['train.pickle', 'dev.pickle', 'test.pickle']] return _process_data(path_lst, threshold, output_path) def _process_data(path_lst, word_min_count=5, output_file_path=[]): raw_data = [] train_file_path = path_lst[0] raw_data.append(train_data(train_file_path)) dev_file_path = path_lst[1] raw_data.append(dev_data(dev_file_path)) word_count = build_word_count([y for x in raw_data for y in x]) test_file_path = path_lst[2] raw_data.append(dev_data(test_file_path)) with open('data/word-count.obj', 'wb') as f: cPickle.dump(word_count, f) word2id = build_word2id(word_count, word_min_count) with open('data/word2id.obj', 'wb') as f: cPickle.dump(word2id, f) i = 0 for one_raw_data, one_output_file_path in zip(raw_data, output_file_path): with open(one_output_file_path, 'wb') as f: if i == 0: one_data = transform_train_to_id(one_raw_data, word2id) else: one_data = transform_dev_to_id(one_raw_data, word2id) i += 1 cPickle.dump(one_data, f) return len(word2id) def build_word_embedding(): with open('/home/sunyawei/glove.840B.300d.txt', 'r') as fr: glove_word_emb = dict() for line in fr.readlines(): word = line.strip().split()[0] glove_word_emb[word] = line with open('data/vocab_50002.txt', 'r') as fr: word_embedding = str() for line in fr.readlines(): word = line.strip() if word in glove_word_emb: word_embedding += glove_word_emb[word] else: emb = [word] + ['0']*300 word_embedding += ' '.join(emb) + '\n' with open('data/word_emb_50002.txt', 'w') as fw: fw.write(word_embedding) if __name__ == '__main__': process_data('data/', 5) # build_word_embedding()
a38bc5dad2aaa1bda7ad1e5a463b3066f2dd7422
290499258919c5ca039cc725bbc5d0a47511f1ef
/pbtotflite.py
cdcbf5a2a694a2c46335cb28fffdbf4ecc8886b4
[]
no_license
Medicmind/grading_demo
d4f22eefa8131faa64768a830ad2e4ca80c8a044
f53b1f3093966ee17be9e03b69ddd0a8a4a63ba3
refs/heads/master
2022-12-11T04:08:56.217525
2022-12-03T00:06:26
2022-12-03T00:06:26
140,697,675
0
0
null
null
null
null
UTF-8
Python
false
false
663
py
#Convert a Medicmind grading classifier frozen_model.pb file into a keras tflite model import tensorflow as tf from tensorflow_addons.optimizers import LAMB import glob import sys tf.keras.optimizers.Lamb = LAMB if True: converter = tf.compat.v1.lite.TFLiteConverter.from_frozen_graph('camera/data/frozen_model.pb', input_arrays = ['Reshape'],output_arrays = ['inception_v3/logits/logits/xw_plus_b']) converter.target_spec.supported_ops = [ tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS ] print('converting') tflite_model = converter.convert() print('writing') with open('pruned.lite', "wb") as f: f.write(tflite_model)
5789883cf8c75a130c8dc57f3ab2e517f8d42824
eab9d48cfc6318ab3c94a6156662826209db27f4
/server-src/NNModels/allPairs.py
94f2904ae6d15729b3223743ebbdc3a98ebbc1bc
[]
no_license
schasins/unstructured-data-scraping-extension
715d77d832bb5ffe185ebfddfe11848e24955c60
ebdbb758f665b596d45b084662583665ac443e2f
refs/heads/master
2021-01-21T21:47:26.042228
2016-03-14T16:09:42
2016-03-14T16:09:42
42,411,510
0
1
null
null
null
null
UTF-8
Python
false
false
35,306
py
#!/usr/bin/python from operator import attrgetter import libfann import re import copy import sys import array import csv import os import itertools import time import random import math # ********************************************************************** # Data structure for documents, for dealing with single-node # features that depend on other textboxes in the same document # ********************************************************************** def values(list, attrName): return map(attrgetter(attrName),list) def highest(list, attrName): attrVals = values(list, attrName) return max(attrVals) def lowest(list, attrName): attrVals = values(list, attrName) return min(attrVals) def isNumber(x): return (isinstance(x, (int, long, float, complex)) and not isinstance(x,bool)) class Document: def __init__(self, boxList, name): self.boxList = boxList self.name = name def addSingleNodeFeaturesOneDocument(self): # for numerical features, compare each value to the range of values in the document self.addSmallestLargestRanksForNumerical() # for some features, compare to the docHeight, docWidth self.addPercentagesForWidthAndHeightRelated() def addSmallestLargestRanksForNumerical(self): # for numerical features, compare each value to the range of values in the document # first collect the range of values in the document # TODO: the below relies on the assumption that all numeric values are shared by all boxes # if that ever changes, update this ranges = {} firstBox = self.boxList[0] firstBoxFeatures = firstBox.getFeatures() for feature in firstBoxFeatures: if (isNumber(firstBox.getFeature(feature)) and not feature.startswith("wordfreq")): # we don't want to add ranks and so on for wordfreqs rangeSet = set() for box in self.boxList: rangeSet.add(box.getFeature(feature)) ranges[feature] = sorted(list(rangeSet)) # then add a feature that gives the ranking for feature in firstBoxFeatures: if (isNumber(firstBox.getFeature(feature)) and not feature.startswith("wordfreq")): rangeLs = ranges[feature] rangeLsLen = len(rangeLs) for box in self.boxList: index = rangeLs.index(box.getFeature(feature)) box.addFeature(feature+"-smallest-rank", index + 1) box.addFeature(feature+"-largest-rank", rangeLsLen - index) def addPercentagesForWidthAndHeightRelated(self): # first figure out some whole-document stuff docTop = lowest(self.boxList, "top") docLeft = lowest(self.boxList, "left") docHeight = highest(self.boxList, "bottom") - docTop docWidth = highest(self.boxList, "right") - docLeft # for some features, compare to the docHeight, docWidth for box in self.boxList: for feature in ["right", "left"]: box.addFeature(feature+"-relative", float(box.getFeature(feature))-docLeft) for feature in ["right-relative", "left-relative", "width"]: box.addFeature(feature+"-percent", float(box.getFeature(feature))/docWidth) for feature in ["top", "bottom"]: box.addFeature(feature+"-relative", float(box.getFeature(feature))-docTop) for feature in ["top-relative", "bottom-relative", "height"]: box.addFeature(feature+"-percent", float(box.getFeature(feature))/docHeight) def allBoxesFeatures(self): return reduce(lambda acc, box : acc.union(box.getFeatures()), self.boxList, set()) # ********************************************************************** # Data structure for textboxes, tracking single-node features # ********************************************************************** class Box: def __init__(self, left, top, right, bottom, text, label, otherFeaturesDict, name="dontcare"): self.left = left self.top = top self.right = right self.bottom = bottom self.text = text self.label = label self.otherFeaturesDict = otherFeaturesDict self.features = {} self.numFeatureVector = array.array('f') self.name = name self.addFeatures() def addFeatures(self): for coord in ["left","top","right","bottom"]: self.addFeature(coord, attrgetter(coord)(self)) self.addFeature("width", self.right-self.left) self.addFeature("height", self.bottom-self.top) self.addWordFeatures() for feature in self.otherFeaturesDict: self.addFeature(feature, self.otherFeaturesDict[feature]) def __str__(self): return self.name def addFeature(self, featureName, value): self.features[featureName] = value def hasFeature(self, featureName): return featureName in self.features def getFeature(self, featureName): return self.features[featureName] def getFeatureSafe(self, featureName): if self.hasFeature(featureName): return self.getFeature(featureName) else: return 0 def getFeatures(self): return self.features.keys() def addWordFeatures(self): wordsStr = self.text.strip().lower() words = re.split("[\s\.,\-\/\#\!\$%\^&\*\;\:\{\}=\-\_\`\~\(\)]*", wordsStr) numWords = len(words) self.addFeature("numwords", numWords) wordFreqs = {} for word in words: wordFreqs[word] = wordFreqs.get(word, 0) + 1 for word in wordFreqs: self.addFeature("wordfreq-"+word, wordFreqs[word]) self.addFeature("numuniquewords", len(wordFreqs.keys())) def setNumFeatureVector(self, numFeatureList): a = array.array('f') for feature in numFeatureList: if not self.hasFeature(feature): if feature.startswith("wordfreq"): #special case because for that we want to just set the count to 0 a.append(0) else: print "Freak out! One of our boxes doesn't have a numeric feature so we don't know what value to put in. Feature:", feature exit(1) else: try: a.append(self.getFeature(feature)) except: print feature print self.getFeature(feature) exit() self.numFeatureVector = a def wholeSingleBoxFeatureVector(self): vec = list(self.numFeatureVector) return vec # ********************************************************************** # CSV details # ********************************************************************** class CSVHandling(): @staticmethod def canInterpretAsFloat(s): try: float(s) return True except ValueError: return False @staticmethod def csvToBoxlists(csvname): csvfile = open(csvname, "rb") reader = csv.reader(csvfile, delimiter=",", escapechar='\\', quotechar="\"") documents = {} boxIdCounter = 0 firstRow = True columnTitles = [] numColumns = 0 specialElements = ["doc", "left", "top", "right", "bottom", "text", "label"] for row in reader: if firstRow: firstRow = False columnTitles = row numColumns = len(columnTitles) for specialElement in specialElements: if specialElement not in columnTitles: print "Freak out! One of the column titles we really need isn't present:", specialElement else: sVals = {} oVals = {} for i in range(numColumns): valType = columnTitles[i] if valType in ["font-family","font-style","font-weight","color","background-color","font_family", "column"]: # for now we don't have a good way of turning these into booleans or numeric features # todo: decide how to actually deal with categorical things like this continue targetDict = oVals if valType in specialElements: targetDict = sVals val = row[i] if (len(row)) != numColumns: raise Exception("Malformed dataset file. Number of cells is not consistent across rows.") if valType not in ["text", "doc", "label"] and CSVHandling.canInterpretAsFloat(val): val = float(val) elif valType not in ["text", "doc", "label"]: # for now we need everything to be numbers, so... if val == "TRUE" or val == "True": val = 1 elif val == "FALSE" or val == "False": val = -1 else: val = 0 targetDict[valType] = val if sVals["left"] < 0 or sVals["top"] < 0: # for now, filter out boxes that appear offscreen here. might want to filter these earlier continue box = Box(sVals["left"], sVals["top"], sVals["right"], sVals["bottom"], sVals["text"], sVals["label"], oVals, str(boxIdCounter)) boxIdCounter += 1 boxList = documents.get(sVals["doc"], []) boxList.append(box) documents[sVals["doc"]] = boxList documentList = [] for feature in documents: newDocument = Document(documents[feature], feature) newDocument.addSingleNodeFeaturesOneDocument() # there are some features that depend on the whole doc, so let's add those now documentList.append(newDocument) return documentList # ********************************************************************** # Data structures for custom filter synthesis # ********************************************************************** class FilterComponent(): def __init__(self, colIndex, lessEq, threshold, numFiltered): self.colIndex = colIndex self.lessEq = lessEq self.threshold = threshold self.numFiltered = numFiltered def __str__(self): op = ">=" if self.lessEq: op = "<=" return "row["+str(self.colIndex)+"] "+op+" "+str(self.threshold) def stringWithHeadings(self, headings): op = ">=" if self.lessEq: op = "<=" return "row["+headings[self.colIndex]+"] "+op+" "+str(self.threshold) def accepts(self, row): if self.lessEq: return row[self.colIndex] <= self.threshold else: return row[self.colIndex] >= self.threshold class Filter(): def __init__(self, filterComponentList): self.filterComponentList = filterComponentList def __str__(self): return " or ".join(map(str, self.filterComponentList)) def stringWithHeadings(self, headings): return " or ".join(map(lambda x: x.stringWithHeadings(headings), self.filterComponentList)) def numFiltered(self, dataset): numFilteredCounter = 0 for row in dataset: if self.accepts(row): numFilteredCounter += 1 return numFilteredCounter def test(self, dataset): numDatasetRows = len(dataset) numFilteredCounter = 0 numFilteredThatHaveLabel = 0 for row in dataset: if self.accepts(row): numFilteredCounter += 1 if row[0] != noLabelString: numFilteredThatHaveLabel += 1 print "num rows in test set", numDatasetRows print "num rows in test set that are filtered", numFilteredCounter print "num rows in test set that are filtered but shouldn't be (have labels)", numFilteredThatHaveLabel def accepts(self, row): for filterComponent in self.filterComponentList: if filterComponent.accepts(row): return True # we're ORing, so return true if any accept return False # this is a weird filter, because the filtered things are the things we're throwing out -- remember, we made the filter for getting rid of "nolabel" items def filterDataset(self, dataset): outputDataset = [] for row in dataset: if not self.accepts(row): outputDataset.append(row) return outputDataset # ********************************************************************** # Custom filter synthesis # ********************************************************************** def synthesizeFilter(dataset, numericalColIndexes): # first let's decide how many "nolabel" items we want to filter labelCount = 0 nolabelCount = 0 for row in dataset: if row[0] != noLabelString: labelCount += 1 else: nolabelCount += 1 targetNumFiltered = nolabelCount - (2 * labelCount) # there should be at most 2 nolabels per label in the output dataset print "number of rows in dataset:", len(dataset) print "number of rows with labels:", labelCount print "target number of rows to filter:", targetNumFiltered possibleFilters = [] bestFilterSoFar = None bestFilterScore = 0 for currColIndex in numericalColIndexes: # loop for finding the lowest col val associated with a label, highest col val associated with label lowestLabel = sys.maxint highestLabel = - sys.maxint for row in dataset: label = row[0] if label != noLabelString: currVal = row[currColIndex] if currVal < lowestLabel: lowestLabel = currVal elif currVal > highestLabel: highestLabel = currVal # loop for counting rows with col vals below lowestLabel, finding highest val below lowestLabel, counting rows with col vals above highestLabel, finding lowest val above highestLabel startNum = 0 # the number of nolabel values at the start of the sorted col, before the first labeled value endNum = 0 # the number of nolabel values at the end of the sorted col, after the last labeled value startThreshold = - sys.maxint # don't actually want to use the labeled val as the threshold. better to be cautious, use the highest val associated with a nolabel endThreshold = sys.maxint # don't actually want to use the labeled val as the threshold. better to be cautious, use the lowest val associated with a nolabel for row in dataset: currVal = row[currColIndex] if currVal < lowestLabel: startNum += 1 if currVal > startThreshold: startThreshold = currVal elif currVal > highestLabel: endNum += 1 if currVal < endThreshold: endThreshold = currVal if startNum > 0: newFilter = FilterComponent(currColIndex, True, startThreshold, startNum) possibleFilters.append(newFilter) if startNum > bestFilterScore: bestFilterSoFar = newFilter bestFilterScore = startNum if endNum > 0: newFilter = FilterComponent(currColIndex, False, endThreshold, endNum) possibleFilters.append(newFilter) if endNum > bestFilterScore: bestFilterSoFar = newFilter bestFilterScore = endNum print "best single filter score:", bestFilterScore # if a single filter is sufficient, let's go for that if bestFilterSoFar.numFiltered > targetNumFiltered: return Filter([bestFilterSoFar]) bestFilterSoFar = Filter([bestFilterSoFar]) # let's try using more than one maxComponents = 3 # don't want to go beyond 3 for fear of overfitting # we'll try better combinations sooner if we first sort the list of possible filters # this is worth it since testing combinations on a large dataset is pretty expensive possibleFilters.sort(key=lambda x: x.numFiltered, reverse=True) for i in range(2, maxComponents + 1): filterCombos = itertools.combinations(possibleFilters, i) for filterCombo in filterCombos: if filterCombo[0].numFiltered < bestFilterScore/i: # recall that we sorted the list first, and combinations retains sorting: ABCD -> AB, AC, AD, BC, BD, CD # so if we get a filter where the first component filters less than half of what we need, and only 2 # components are allowed, we know we can call off this search break # same idea here -- can't do better than the sum sumFiltered = 0 for component in filterCombo: sumFiltered += component.numFiltered if sumFiltered < bestFilterScore: continue f = Filter(list(filterCombo)) numFiltered = f.numFiltered(dataset) if numFiltered > bestFilterScore: bestFilterScore = numFiltered bestFilterSoFar = f print "best filter with no more than", i, "components:", bestFilterScore if bestFilterScore > targetNumFiltered: return bestFilterSoFar return bestFilterSoFar # ********************************************************************** # Helpers # ********************************************************************** def splitDocumentsIntoTrainingAndTestingSets(docList, trainingPortion): numDocuments = len(docList) splitPoint = int(trainingPortion*numDocuments) trainingDocuments = docList[:splitPoint] testingDocuments = docList[splitPoint:] return trainingDocuments, testingDocuments # converts a set of documents to feature vectors def datasetToRelation(docList, features): data = [] firstRow = ["label", "docName"] + features data.append(firstRow) i = 0 for doc in docList: i += 1 for box in doc.boxList: box.setNumFeatureVector(features) row = [box.label, doc.name] featureVec = box.wholeSingleBoxFeatureVector() row = row + featureVec data.append(row) return data def popularSingleBoxFeatures(docList, targetPercentDocuments): # first go through each document and figure out the single-node features for the document featureLists = [] for doc in docList: featureLists.append(doc.allBoxesFeatures()) # decide on the filtered set of single-node features that is interesting to us, based on how many # different document use each single-node feature featureScores = {} for featureList in featureLists: for feature in featureList: featureScores[feature] = featureScores.get(feature, 0) + 1 numberOfDocumentsThreshold = int(len(docList)*targetPercentDocuments) popularFeatures = [k for k, v in featureScores.items() if v >= numberOfDocumentsThreshold] print "decided on a feature set with", len(popularFeatures), "features" return popularFeatures class LabelHandler(): labelsToLabelIds = {} labelIdsToLabels = [] numLabels = 0 def __init__(self, labelLs): self.labelIdsToLabels = labelLs for i in range(len(labelLs)): self.labelsToLabelIds[labelLs[i]] = i self.numLabels = len(labelLs) def getOneInNRepForLabel(self, label): labelVec = [-1]*self.numLabels labelVec[self.labelsToLabelIds[label]] = 1 return labelVec def getXInNRepForLabels(self, labelLs): labelVec = [-1]*self.numLabels for label in labelLs: labelVec[self.labelsToLabelIds[label]] = 1 return labelVec def closestLabel(self, labelVec): winningIndex = labelVec.index(max(labelVec)) return self.labelAtIndex(winningIndex) def labelsFromNetAnswer(self, labelVec): indices = [i for i, x in enumerate(labelVec) if x > 0] labels = map(lambda x: self.labelAtIndex(x), indices) return labels def getLabelForOneInNRep(self, labelVec): index = labelVec.index(1) return self.labelAtIndex(index) def getLabelsForXInNRep(self, labelVec): indices = [i for i, x in enumerate(labelVec) if x == 1] labels = map(lambda x: self.labelAtIndex(x), indices) return labels def labelAtIndex(self, index): return self.labelIdsToLabels[index] def getLabelsFromDataset(dataset): labelSet = set() for row in dataset: labelStr = row[0] labels = labelStr.split("|") for label in labels: labelSet.add(label) return list(labelSet) def relationToDocuments(datasetRaw, labelHandler): documents = {} for row in datasetRaw: docName = row[1] docRows = documents.get(docName, []) try: label = labelHandler.getXInNRepForLabels(row[0].split("|")) except: print "Hey! This is bad. You saw a label that labelHandler doesn't have.", row[0] continue docRows.append((row[2:], label)) documents[docName] = docRows return documents # convert the purely relational form to (input, output) pairs, convert output to vector form def saveDatasetMemConscious(datasetRaw, trainingSetFilename, labelHandler): # we want to make an input vector from each pair of textboxes in each document documentsNums = relationToDocuments(datasetRaw, labelHandler) # doing all the string conversions for each pair is silly. let's avoid that documents = {} for key in documentsNums: strPairs = [] pairs = documentsNums[key] for pair in pairs: inputStr = " ".join(map(lambda x: str(x), pair[0])) outputStr = " ".join(map(lambda x: str(x), pair[1])) strPairs.append((inputStr,outputStr)) documents[key] = strPairs # let's get the data we need for starting the output file randomKey = documentsNums.keys()[0] inputSize = len(documentsNums[randomKey][0][0]) * 2 # times 2 because we'll be sticking together 2 diff boxes for each row outputSize = len(documentsNums[randomKey][0][1]) * 2 # let's just estimate how large this will actually be... numDatapoints = 0 for document in documents: numBoxes = len(documents[document]) numDatapoints += numBoxes*(numBoxes - 1) print "expected number of datapoints in final dataset:", numDatapoints fileHandle = NNWrapper.startDatasetFile(numDatapoints, inputSize, outputSize, trainingSetFilename) batchSize = 10000 outputDataset = [] docsSoFar = 0 boxCounter = 0 counter = 0 for document in documents: boxes = documents[document] boxPairs = itertools.permutations(boxes, 2) # is there a nice way to do this with combinations instead of permuations? or do we want the largest dataset we can get? probably yes. for pair in boxPairs: boxCounter += 1 outputDataset.append(([pair[0][0],pair[1][0]], [pair[0][1],pair[1][1]])) # (input, output) if boxCounter == batchSize: print "data points so far:", (counter + 1) * batchSize NNWrapper.addToDatasetFile(fileHandle, outputDataset) counter += 1 boxCounter = 0 outputDataset = [] # clear it out, because this can get huge even for one document docsSoFar += 1 print "documents so far (out of", len(documents.keys()), "):", docsSoFar # and let's flush out anything left in here NNWrapper.addToDatasetFile(fileHandle, outputDataset) print "last addition to dataset file. total data points:", counter * batchSize + len(outputDataset) print "predicted num datapoints:", numDatapoints fileHandle.close() return inputSize, outputSize def convertColumnToRange(dataset, colIndex, newMin, newMax): rangeAllowed = newMax - newMin values = map(lambda row: row[colIndex], dataset) oldMax = max(values) oldMin = min(values) oldRange = (oldMax - oldMin) if oldRange == 0: # print "new constant col after filtering", colIndex raise Exception("trying to convert a constant column to a range") for j in range(len(dataset)): dataset[j][colIndex] = (float((dataset[j][colIndex] - oldMin) * rangeAllowed) / oldRange) + newMin return (oldMin, oldMax) # the same as the normal convertColumnToRange, but uses fixed oldrange, so anything out of the target oldrange gets pushed into that range first def convertColumnToRangeCutoff(dataset, colIndex, newMin, newMax, oldMin, oldMax): rangeAllowed = newMax - newMin oldRange = (oldMax - oldMin) for i in range(len(dataset)): if dataset[i][colIndex] > oldMax: dataset[i][colIndex] = oldMax elif dataset[i][colIndex] < oldMin: dataset[i][colIndex] = oldMin dataset[i][colIndex] = (float((dataset[i][colIndex] - oldMin) * rangeAllowed) / oldRange) + newMin def scaleRelation(datasetRaw, ranges=None): dataset = datasetRaw[1:] if ranges == None: ranges = [] for i in range(2, len(dataset[0])): # start at 2 because we don't do this for labels or document names oldRange = convertColumnToRange(dataset, i, -1, 1) ranges.append(oldRange) else: for i in range(2, len(dataset[0])): # start at 2 because we don't do this for labels or document names currColRange = ranges[i-2] convertColumnToRangeCutoff(dataset, i, -1, 1, currColRange[0], currColRange[1]) return dataset, ranges def removeConstantColumns(dataset): constantIndexes = [] for i in range(len(dataset[0])): firstVal = dataset[1][i] # first row is headers constantCol = True for j in range(2,len(dataset)): if firstVal != dataset[j][i]: constantCol = False break if constantCol: constantIndexes.append(i) return removeColumns(dataset, constantIndexes), constantIndexes def removeColumns(dataset, indexes): sortedIndexes = sorted(indexes, reverse=True) #print sortedIndexes for row in dataset: for index in sortedIndexes: try: del row[index] except Exception: print "row len", len(row) print "index to remove", index print "last row len", len(dataset[-1]) raise Exception("gah") return dataset # ********************************************************************** # NN and NN-related functionality # ********************************************************************** class NNWrapper(): connection_rate = 1 learning_rate = 0.05 iterations_between_reports = 1 testingSummaryFilename = "testingSummary.csv" totalTested = 0 totalCorrect = 0 numThatActuallyHaveLabel = None numThatActuallyHaveLabelCorrectlyLabeled = None @staticmethod def saveDatasetToFile(datasetPairs, filename): numPairs = len(datasetPairs) inputSize = len(datasetPairs[0][0]) outputSize = len(datasetPairs[0][1]) fileStrs = [str(numPairs)+" "+str(inputSize)+" "+str(outputSize)] for pair in datasetPairs: fileStrs.append(" ".join(map(lambda x: str(x), pair[0]))) fileStrs.append(" ".join(map(lambda x: str(x), pair[1]))) f = open(filename, "w") f.write("\n".join(fileStrs)) f.close() @staticmethod def saveDatasetToFileStringLists(datasetPairs, inputSize, outputSize, filename): numPairs = len(datasetPairs) fileStrs = [str(numPairs)+" "+str(inputSize)+" "+str(outputSize)] for pair in datasetPairs: fileStrs.append(" ".join(pair[0])) fileStrs.append(" ".join(pair[1])) f = open(filename, "w") f.write("\n".join(fileStrs)) f.close() @staticmethod def startDatasetFile(numPairs, inputSize, outputSize, filename): f = open(filename, "w") f.write(str(numPairs)+" "+str(inputSize)+" "+str(outputSize)+"\n") return f @staticmethod def addToDatasetFile(fileHandle, datasetPairs): fileStrs = [] for pair in datasetPairs: fileStrs.append(" ".join(pair[0])) fileStrs.append(" ".join(pair[1])) fileHandle.write("\n".join(fileStrs)) # todo: actually make this ready @staticmethod def saveDatasetToFileAlreadyString(numPairs, inputSize, outputSize, string, filename): f = open(filename, "w") numPairs = len(datasetPairs) inputSize = len(datasetPairs[0][0]) outputSize = len(datasetPairs[0][1]) f.write(str(numPairs)+" "+str(inputSize)+" "+str(outputSize)+"\n") for pair in datasetPairs: f.write(" ".join(map(lambda x: str(x), pair[0]))+"\n") f.write(" ".join(map(lambda x: str(x), pair[1]))+"\n") f.close() @staticmethod def mergeSingleDocumentTrainingFiles(filenames, finalFilename): totalNumExamples = 0 inputSize = 0 outputSize = 0 for filename in filenames: with open(filename, 'r') as f: firstLine = f.readline() items = firstLine.split(" ") numInputOutputPairs = int(items[0]) totalNumExamples += numInputOutputPairs inputSize = int(items[1]) outputSize = int(items[2]) try: os.remove(finalFilename) except: print "already no such file" outputfile = open(finalFilename, "w") outputfile.write(str(totalNumExamples)+" "+str(inputSize)+" "+str(outputSize)+"\n") for filename in filenames: print filename with open(filename) as f: fileStr = f.read() endFirstLine = fileStr.index("\n") remainingStr = fileStr[endFirstLine+1:] outputfile.write(remainingStr+"\n") os.remove(filename) # can take so much space! outputfile.close() @staticmethod def trainNetwork(dataFilename, netFilename, layerSizes, max_iterations, desired_error): # layerSizes should look something like this: (numInput, 200, 80, 40, 20, 10, numOutput) ann = libfann.neural_net() #ann.create_sparse_array(NNWrapper.connection_rate, (numInput, 6, 4, numOutput)) #TODO: is this what we want? # the one that works in 40 seconds 4, 10, 6, 1. the one that trained in 30 secs was 6,6 ann.create_standard_array(layerSizes) ann.set_learning_rate(NNWrapper.learning_rate) # rprop doesn't use learning rate ann.set_activation_function_output(libfann.SIGMOID_SYMMETRIC_STEPWISE) #ann.set_training_algorithm(libfann.TRAIN_RPROP) ann.set_training_algorithm(libfann.TRAIN_QUICKPROP) ann.set_bit_fail_limit(.3) #ann.randomize_weights(0,0) t0 = time.time() ann.train_on_file(dataFilename, max_iterations, NNWrapper.iterations_between_reports, desired_error) t1 = time.time() seconds = t1-t0 print "Seconds: ", seconds m, s = divmod(seconds, 60) h, m = divmod(m, 60) print "Time to train:" print "%d:%02d:%02d" % (h, m, s) ann.save(netFilename) @staticmethod def testNet(datasetRaw, netFilename, labelHandler): if NNWrapper.numThatActuallyHaveLabel == None: NNWrapper.numThatActuallyHaveLabel = {} NNWrapper.numThatActuallyHaveLabelCorrectlyLabeled = {} try: os.remove(testingSummaryFilename) except: print "already no such file" testingSummaryFile = open(NNWrapper.testingSummaryFilename, "a") ann = libfann.neural_net() ann.create_from_file(netFilename) #ann.print_connections() labelLen = labelHandler.numLabels stats = {} documents = relationToDocuments(datasetRaw, labelHandler) for document in documents: print document boxes = documents[document] boxPairs = itertools.permutations(boxes, 2) for pair in boxPairs: featureVec = pair[0][0]+pair[1][0] actualLabelsBox1 = labelHandler.getLabelsForXInNRep(pair[0][1]) actualLabelsBox2 = labelHandler.getLabelsForXInNRep(pair[1][1]) result = ann.run(featureVec) testingSummaryFile.write(str(pair[0][1])+"\t;"+str(pair[1][1])+"\t;"+str(result)) guessedLabelsBox1 = labelHandler.labelsFromNetAnswer(result[:labelLen]) guessedLabelsBox2 = labelHandler.labelsFromNetAnswer(result[labelLen:]) for actualLabelBox1 in actualLabelsBox1: box1Stats = stats.get(actualLabelBox1, {"left": {}, "right": {}}) for guessedLabelBox1 in guessedLabelsBox1: box1Stats["left"][guessedLabelBox1] = box1Stats["left"].get(guessedLabelBox1, 0) + 1 stats[actualLabelBox1] = box1Stats for actualLabelBox2 in actualLabelsBox2: box2Stats = stats.get(actualLabelBox2, {"left": {}, "right": {}}) for guessedLabelBox2 in guessedLabelsBox2: box2Stats["right"][guessedLabelBox2] = box2Stats["right"].get(guessedLabelBox2, 0) + 1 stats[actualLabelBox2] = box2Stats for key in stats: print key, "left" print "*******************" for label in labelHandler.labelIdsToLabels: count = stats[key]["left"].get(label, 0) print label, "\t\t\t", count print key, "right" print "*******************" for label in labelHandler.labelIdsToLabels: count = stats[key]["right"].get(label, 0) print label, "\t\t\t", count # ********************************************************************** # High level structure # ********************************************************************** def makeSingleNodeNumericFeatureVectors(filename, trainingsetFilename, netFilename, testOnly): docList = CSVHandling.csvToBoxlists(filename) # each boxList corresponds to a document trainingDocuments, testingDocuments = splitDocumentsIntoTrainingAndTestingSets(docList, .8) # go back to .8 once done testing # get everything we need to make feature vectors from both training and testing data popularFeatures = popularSingleBoxFeatures(trainingDocuments, .1) # go back to .07 once done testing trainingFeatureVectors = datasetToRelation(trainingDocuments, popularFeatures) testingFeatureVectors = datasetToRelation(testingDocuments, popularFeatures) # let's synthesize a filter numericalColIndexes = range(2, 2 + len(popularFeatures)) # recall first two rows are label and doc name. todo: do this more cleanly in future noLabelFilter = synthesizeFilter(trainingFeatureVectors[1:], numericalColIndexes) # cut off that first row, since that's just the headings print noLabelFilter print noLabelFilter.stringWithHeadings(trainingFeatureVectors[0]) noLabelFilter.test(testingFeatureVectors[1:]) # now that we have a filter, we're ready to filter both the training set and the test set trainingFeatureVectors = [trainingFeatureVectors[0]] + noLabelFilter.filterDataset(trainingFeatureVectors[1:]) testingFeatureVectors = [testingFeatureVectors[0]] + noLabelFilter.filterDataset(testingFeatureVectors[1:]) print "len before", len(trainingFeatureVectors[0]) trainingFeatureVectors, columnsToRemove = removeConstantColumns(trainingFeatureVectors) print "identified", len(columnsToRemove), "constant columns" print "len after", len(trainingFeatureVectors[0]) print "len before", len(testingFeatureVectors[0]) testingFeatureVectors = removeColumns(testingFeatureVectors, columnsToRemove) print "removed constant columns from test set" print "len after", len(testingFeatureVectors[0]) # now we need to process the data for the NN -- scale everything to the [-1,1] range trainingFeatureVectors, ranges = scaleRelation(trainingFeatureVectors) testingFeatureVectors, ranges = scaleRelation(testingFeatureVectors, ranges) print "scaled" labelHandler = LabelHandler(getLabelsFromDataset(trainingFeatureVectors)) if not testOnly: # now let's actually save the training set to file numInput, numOutput = saveDatasetMemConscious(trainingFeatureVectors, trainingsetFilename, labelHandler) print "saved data" # now that we've saved the datasets we need, let's actually run the NN on them desired_error = 0.015 max_iterations = 500 layerStructure = makeLayerStructure(numInput, numOutput, 20) NNWrapper.trainNetwork(trainingsetFilename, netFilename, layerStructure, max_iterations, desired_error) NNWrapper.testNet(testingFeatureVectors, netFilename, labelHandler) #noLabelString = "nolabel" noLabelString = "null" def makeLayerStructure(numInput, numOutput, numHiddenLayers): start = numInput/3 # otherwise it can just get so big... end = numOutput*2 denominator = ((start / end) ** (1.0 / (numHiddenLayers))) currLayerSize = start layerSizes = [numInput, start] for i in range(numHiddenLayers - 1): currLayerSize = currLayerSize / denominator layerSizes.append(int(math.ceil(currLayerSize))) layerSizes.append(numOutput) print layerSizes return layerSizes def main(): testOnly = False makeSingleNodeNumericFeatureVectors("cvDataset.csv", "trainingSetCV.data", "netCV.net", testOnly) #makeSingleNodeNumericFeatureVectors("webDatasetFullCleaned.csv", "trainingSet.data", "net.net") main()
d15f7f874707565cc02a4efbcddec8e03367b55d
3cd2de2d088afd4908cf2bb9b87953d86b6e76b8
/intcode/test.py
a18884550793019c34ea7ac9529e908a2af3c14c
[]
no_license
pedrokiefer/adventofcode2019
055c4cb84afe598ec064d8a48b2384fa14d02de2
56a2bc4102a69f7511c00ea3f23dca258b100bc5
refs/heads/master
2020-09-30T02:08:30.163519
2019-12-28T02:08:21
2019-12-28T02:08:21
227,174,502
0
0
null
null
null
null
UTF-8
Python
false
false
3,453
py
from unittest.mock import Mock from .cpu import IntComputer def test_simple_program(): program = [1, 0, 0, 0, 99] c = IntComputer(program) c.run_program() assert c.p == [2, 0, 0, 0, 99] def test_multiply_program(): program = [2, 3, 0, 3, 99] c = IntComputer(program) c.run_program() assert c.p == [2, 3, 0, 6, 99] def test_complex_1(): program = [2, 4, 4, 5, 99, 0] c = IntComputer(program) c.run_program() assert c.p == [2, 4, 4, 5, 99, 9801] def test_complex_2(): program = [1, 1, 1, 4, 99, 5, 6, 0, 99] c = IntComputer(program) c.run_program() assert c.p == [30, 1, 1, 4, 2, 5, 6, 0, 99] def test_complex_3(): program = [1101, 100, -1, 4, 0] c = IntComputer(program) c.run_program() assert c.p == [1101, 100, -1, 4, 99] def test_position_mode_input_equals_8(): program = [3, 9, 8, 9, 10, 9, 4, 9, 99, -1, 8] c = IntComputer(program) def output(a): assert a == 1 def input(): return 8 c.output = output c.input = input c.run_program() assert c.p == [3, 9, 8, 9, 10, 9, 4, 9, 99, 1, 8] def test_position_mode_input_less_than_8(): program = [3, 9, 7, 9, 10, 9, 4, 9, 99, -1, 8] c = IntComputer(program) def output(a): assert a == 0 def input(): return 8 c.output = output c.input = input c.run_program() assert c.p == [3, 9, 7, 9, 10, 9, 4, 9, 99, 0, 8] def test_immediate_mode_input_equals_8(): program = [3, 9, 8, 9, 10, 9, 4, 9, 99, -1, 8] c = IntComputer(program) def output(a): assert a == 1 def input(): return 8 c.output = output c.input = input c.run_program() assert c.p == [3, 9, 8, 9, 10, 9, 4, 9, 99, 1, 8] def test_immediate_mode_input_less_than_8(): program = [3, 9, 7, 9, 10, 9, 4, 9, 99, -1, 8] c = IntComputer(program) def output(a): assert a == 0 def input(): return 8 c.output = output c.input = input c.run_program() assert c.p == [3, 9, 7, 9, 10, 9, 4, 9, 99, 0, 8] def test_offset_1(): program = [109, 19, 99] c = IntComputer(program) c.offset = 2000 c.output = Mock() c.run_program() assert c.offset == 2019 def test_offset_2(): program = [109, 19, 204, -34, 99] c = IntComputer(program) c.offset = 2000 c.output = Mock() c.run_program() assert c.offset == 2019 assert c.output.call_count == 1 def test_quine(): program = [109, 1, 204, -1, 1001, 100, 1, 100, 1008, 100, 16, 101, 1006, 101, 0, 99] c = IntComputer(program) c.output = Mock() c.run_program() assert c.output.call_count == 16 call_values = [call[0][0] for call in c.output.call_args_list] assert call_values == [ 109, 1, 204, -1, 1001, 100, 1, 100, 1008, 100, 16, 101, 1006, 101, 0, 99, ] def test_16bit_number(): program = [1102, 34915192, 34915192, 7, 4, 7, 99, 0] c = IntComputer(program) def output(a): assert a == 1219070632396864 c.output = output c.run_program() def test_print_large_number(): program = [104, 1125899906842624, 99] c = IntComputer(program) def output(a): assert a == 1125899906842624 def input(): return 8 c.output = output c.input = input c.run_program()
d0335d56677c85543a5999292c7d92942cb7f4ad
c0204acff3fd9d276ab315dd4134eb228bbadf2d
/116_version1.py
c1f8fa3a3245d3c8286a0952069cf20d5a7846d1
[]
no_license
haruto0519/haruto_hirai
bee95366adde7702e276679d7d5832ddf2cce54f
8668a7bee65d109f5a0afa6357f5a45337cb7bc4
refs/heads/main
2023-08-23T21:21:40.078199
2021-10-27T20:55:12
2021-10-27T20:55:12
421,956,481
1
2
null
null
null
null
UTF-8
Python
false
false
452
py
# a116_buggy_image.py import turtle as trtl # instead of a descriptive name of the turtle such as painter, # a less useful variable name x is used spider = trtl.Turtle() spider.pensize(40) spider.circle(20) n_legs = 6 lengh = 70 angle = 360 / n_legs spider.pensize(5) n = 0 while (n < n_legs ): spider.goto(0,0) spider.setheading(angle*n) spider.forward(lengh) n = n + 1 spider.hideturtle() wn = trtl.Screen() wn.mainloop()
8618008c2deaeda1af5852467c436db706c5400b
ff31d31493bc75de2bc1a206ebf13ca91d937f9b
/Master.py
262c03f98f9ca9c3cf97d0d9d5e37e28159287a1
[ "MIT" ]
permissive
Researchnix/HackThe6ix
c96bcc8d892747e94a483c23d09862b02d23f962
85057a0eede9ef4e30f3246221071e028946cbc0
refs/heads/master
2020-09-21T12:56:45.390518
2016-10-22T22:48:55
2016-10-22T22:48:55
66,153,079
2
0
null
null
null
null
UTF-8
Python
false
false
16,983
py
# # Master.py # HackThe6ix # # Created by Jeffrey, Maliha and Lennart on 2016-08-20. # Copyright 2016 Researchnix. All rights reserved. # import sys from random import * import Map import Car import RoutePlanner # the main traffic coordinator class Master: ''' constants''' maxRunTime = 10000 verbose = True ''' time stepping ''' m = Map.Map() # Map... cars = [] # List of cars on the map navi = RoutePlanner.RoutePlanner() # Navigation device # Position from which you can't progress to the next one blocked = [] # trafficLights is a dictionary containing a dictionary with keys Red and Green returning a list of Red and Green files ''' traffic lights''' trafficLights = {} # Give each intersection the state of either # 1X always green # 2X always green, maybe later randomly red due to pedestrians crossing # 3X TODO # 4X horizontal, vertical, hleft, vleft # or RED, meaning everything is red # all GREEN is an unusual state... interState = {} # Evaluation helpers evaluation = {} numberOfCars = 2 travelLength = {} ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##### # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### INITIALIZATION ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##### # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##### # def __init__(self): self.initialize() def initialize(self): print "Initializing the Master with a map from text files and one car" # Load the intersections first self.loadIntersections() # Load the streets self.loadStreets() # Initialize the navi self.navi.setMap(self.m) # Initialize incomingStreets in the map self.m.calcIncomingStreets() # Initialize all traffic lights to red :D self.initializeTrafficLights() self.updateBlocked() self.initializeInterState() # Initialize so far only one car # start, destination, name #car1 = Car.Car(5, 30, "Porsche ") #car2 = Car.Car(19, 18, "Volkswagen") #car3 = Car.Car(27, 11, "A") #car4 = Car.Car(11, 5, "B") #car5 = Car.Car(30, 12, "C") #car6 = Car.Car(8, 26, "D") #car7 = Car.Car(11, 27, "E") #self.cars.append(car1) #self.cars.append(car2) #self.cars.append(car3) #self.cars.append(car4) #self.cars.append(car5) #self.cars.append(car6) #self.cars.append(car7) self.initializeRandomCars(20) # Calculate all the routes of the cars self.calculateRoutes() # Prepare the evaluation of the efficiency self.numberOfCars = len(self.cars) for c in self.cars: self.travelLength[c.name] = len(c.fineRoute) # Initialize blocked positions # A) by cars for c in self.cars: self.blocked.append(c.curPos) print '... done!' def initializeRandomCars(self, n): everywhere = self.m.intersections.keys() available = self.m.intersections.keys() for x in range(n): start = available[randint(0,len(available)-1)] finish = everywhere[randint(0,len(everywhere)-1)] name = "car" + str(x) if not start == finish: self.cars.append( Car.Car(start, finish, name) ) available.remove(start) def initializeInterState(self): # make everything TL that has 2 roards or less GREEN for i in self.m.intersections: if self.m.character[i] <= 2: self.interState[i] = "GREEN" else: self.interState[i] = "RED" self.updateInterState() def initializeTrafficLights(self): for i in self.m.intersections: state = {} state['Green'] = [] state['Red'] = self.m.incoming[i] self.trafficLights[i] = state def loadIntersections(self): f = open('inter.txt', 'r') for line in f: line = line.split() self.m.addIntersection(int(line[0]), float(line[1]), float(line[2])) f.close() ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##### # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### MAKING DATA AVAILABLE ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##### # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##### # #def getInitializionData(self): ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##### # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### LOADING DATA ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##### # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##### # def loadStreets(self): # First add streets in right orientation # Format of ori.txt is # to from1 from2 from3 ... f = open('ori.txt', 'r') for line in f: line = line.split() to = int(line.pop(0)) for remaining in line: self.m.addStreet(int(remaining), to, 0) f.close() # Now load the lengths from dist.txt #f = open('dist.txt', 'r') #for line in f: # line = line.split() #self.m.setDist(int(line[0]), int(line[1]), int(line[2])) #f.close() ''' Trick: every dist = 10 ''' for x in self.m.streets: x[-1] = 10 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##### # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### OUTPUT METHODS ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##### # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##### # def printCars(self): for c in self.cars: print c.name + " on " + str(c.curPos) + " with route " + str(c.fineRoute[:5]) def printState(self): print '\nThe current state of the program is' print '\n### intersections: ' print self.m.intersections print '### streets: ' print self.m.streets print '### incoming: ' print self.m.incoming print '### character: ' print self.m.character print '### traffic lights: ' print self.trafficLights print '### Intersection states: ' print self.interState print '### cars: ' self.printCars() print '\n' ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##### # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ROUTE CALCULATION ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##### # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##### # def calculateRoutes(self): # Give every car a coarse route for c in self.cars: c.coarseRoute = self.navi.calcCoarseRoute(c.start, c.destination) #for c in self.cars: # print c.name + ' coarse ' + str(c.coarseRoute) # Give every car a fine route based on its coarse route # move this function to Routeplanner later for c in self.cars: c.fineRoute = self.navi.calcFineRoute(c.coarseRoute) #for c in self.cars: # print c.name + ' fine ' + str(c.fineRoute) # Update general car information # That is, find initial direction of travel from coarse route, # update nextIntersection and calculate therewith the street # and curPos the car should be on. for c in self.cars: c.nextIntersection = c.coarseRoute[1] street = self.m.findStreet(c.start, c.nextIntersection) c.curPos = (street, 0) ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##### # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### STEPPING FUNCTIONS ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##### # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##### # # Do as many as maxRunTime steps to try to get every car to its destination def run(self, total): #print "\n\n" #print "######################################################################" #print "TIME STEPPING STARTS HERE" #print "######################################################################" #print "\n\n" ######################### # Insert the model here # ######################### #self.useModel1(8, total) self.useModel2(11, 11, total) if len(self.cars) == 0: sys.exit("All cars reached their destination") self.timeStep() if self.verbose: self.printCars() print self.interState # Check if any car reached its destination for c in self.cars[::-1]: if c.destinationReached: self.evaluation[c.name] = total self.blocked.remove(c.curPos) self.cars.remove(c) #print "\n\n" #print "######################################################################" #print "All cars are done ... or the time is up " #print "Evaluation of the time it took each car " + str(self.evaluation) #print "Total time a car was using fuel = " + str(sum(self.evaluation.values())) #print "Relative inefficiency = " + str(sum(self.evaluation.values()) / self.numberOfCars) #print "\n\n" #diff = [self.evaluation.values()[c] -self.travelLength.values()[c] for c in range(len(self.evaluation))] #print "Time a car was standing still =" + str(diff) #print "Overall time a car was waiting for a traffic light = " + str(sum(diff)) def canProgress(self, car): return not (car.nextPos() in self.blocked) # One time step in which every car that can potentially progress progresses. def timeStep(self): for c in self.cars: if not c.destinationReached: if self.canProgress(c): # We have a ghosting problem, due to time, ignore the error... # This error appears exactly when the traffic lights free an # intersection that is still occupied by a car. Hence when the car # moves on, it can't free its last position that's already free if c.curPos in self.blocked: # clear the spot that the car was on self.blocked.remove(c.curPos) c.oldPos = c.curPos c.curPos = c.fineRoute.pop(0) # move car forward by one unit self.blocked.append(c.curPos) # call dips on the current position c.needsUpdate = True if len(c.fineRoute) == 0: c.destinationReached = True ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##### # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### TRAFFIC LIGHT FUNCTIONs### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##### # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##### # def updateBlocked(self): for i in self.m.intersections.keys(): # We need to remove all blocks from this intersections that are in Green # and add all the ones that are in Red for g in self.trafficLights[i]['Green']: street = self.m.lastPos(g) if street in self.blocked: # Remove (g, last elem of g) self.blocked.remove(street) for r in self.trafficLights[i]['Red']: street = self.m.lastPos(r) if street not in self.blocked: # Add (r, last elem of r) self.blocked.append(street) # To change the sign of a traffic light use this format # (inter = intersection_index, street = street_index of incoming street) def turnGreen(self, inter, street): self.trafficLights[inter]['Red'].remove(street) self.trafficLights[inter]['Green'].append(street) self.updateBlocked() def turnRed(self, inter, street): self.trafficLights[inter]['Green'].remove(street) self.trafficLights[inter]['Red'].append(street) self.updateBlocked() def updateInterState(self): for i in self.interState.keys(): if self.interState[i] == 'RED': self.trafficLights[i]['Green'] = [] self.trafficLights[i]['Red'] = self.m.incoming[i] if self.interState[i] == 'GREEN': self.trafficLights[i]['Red'] = [] self.trafficLights[i]['Green'] = self.m.incoming[i] if self.interState[i] == 'horizontal': # len(incoming[i]) = 4 required reds = [] greens = [] nghs = self.m.incoming[i] reds.append(nghs[0]) reds.append(nghs[2]) greens.append(nghs[1]) greens.append(nghs[3]) self.trafficLights[i]['Red'] = reds self.trafficLights[i]['Green'] = greens if self.interState[i] == 'vertical': # len(incoming[i]) = 4 required reds = [] greens = [] nghs = self.m.incoming[i] reds.append(nghs[1]) reds.append(nghs[3]) greens.append(nghs[0]) greens.append(nghs[2]) self.trafficLights[i]['Red'] = reds self.trafficLights[i]['Green'] = greens if self.interState[i] == 'hleft': # len(incoming[i]) = 4 required pass if self.interState[i] == 'vleft': # len(incoming[i]) = 4 required pass self.updateBlocked() def changeInterState(self, inter, mode): self.interState[inter] = mode self.updateInterState() #Flips state from horizontal to vertical and vice versa def flipInterState(self, inter): if self.interState[inter] == 'horizontal': self.interState[inter] = 'vertical' else: # default for RED or GREEN self.interState[inter] = 'horizontal' self.updateInterState() ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##### # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### TRAFFIC MODELS ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##### # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##### # # Model 1 sets every intersection for some interval par to horizontal and then reversed def useModel1(self, par, curTime): # One line solution, haha !! signal = [int(float(i)/par) % 2 for i in range(self.maxRunTime)] if signal[curTime] == 0: for i in self.m.fourFoldInter: self.changeInterState(i, 'horizontal') else: for i in self.m.fourFoldInter: self.changeInterState(i, 'vertical') # Random Model flips every par1 interval par2 of the fourFoldInter def useModel2(self, par1, par2, curTime): signal = [0 for y in range(self.maxRunTime)] for i in range(self.maxRunTime): if i%par1 == 0: signal[i] = 1 if signal[curTime] == 1: for x in range(par2): i = randint(0,len(self.m.fourFoldInter)-1) self.flipInterState(self.m.fourFoldInter[i])
dcc9d8b7a1b36caead18840a6d9efa1039e3f5ce
09e8a0935bb6c96bb42616b6931d2ea37b4288a7
/MovuinoUSB_2015/MovementRecognition_LibSVM_Python/PLAY_AppFitNS_01.py
e74f515d1a47962f322b6f88538c97e1dce7e7e1
[]
no_license
hssnadr/Movuino
817a36058b93c8a4f13e142a0faac4a69991c5fd
aa4b9fb9435aadd0d45661bbb0663061f0047287
refs/heads/master
2020-06-09T09:09:47.424345
2017-12-15T13:05:09
2017-12-15T13:05:09
76,047,127
1
0
null
null
null
null
UTF-8
Python
false
false
5,725
py
import math import time import numpy as np from svmutil import * #Not necessary import serial #to get our sensor data import pygame #to close session by closing pygame window #Local script import getFeatures_Detection #Initialize graphic window pygame.display.init() fig = pygame.display.set_mode((640, 480)) #Open main window #Initialize serial communication with the sensor # ser = serial.Serial('COM7',38400, timeout=1) # for Windows ser = serial.Serial('/dev/cu.usbmodem1421',38400, timeout=1) # for Mac #Check sensor configuration ser.write("i") dataSensor = ser.readline().split() print dataSensor ## # INITIALIZE CAPTURE # Get logistic regression model parameters FOR DETECTION mDetection = svm_load_model('WM_SVMmodel_Detection.model') # based on libsvm library npzfile = np.load('SVMVariable_Detection/SVMparameters.npz') rangeInput_Detection = npzfile['rangeInput'] meanInput_Detection = npzfile['meanInput'] Ureduce_Detection = npzfile['Ureduce'] # Real time parameters delay = 0.01 # delay between each row from the sensor sizeDataWindow_Detection = 40 # number of data store at each moment for movement detection timeStart = time.time() #time from 1st of January 1970 (second) # Moving average Data matrix parameters N = 5; # range for moving average dataCollect = np.empty((N,7)) # matrix containing sensors datas to compute moving average dataCollect[:] = np.NaN dataCollect_MMean = np.empty((sizeDataWindow_Detection,7)) # matrix containing sensors moving average datas on the observation window dataCollect_MMean[:] = np.NaN cRegulator = 0 #Regulator counter cRegulatorMax = 10 #Regulate number of time data get analysed (cRegulator go back to 0 if cRegulator > cRegulatorMax) ##---------------------------------------------------------------------------- # START PLAY MODE # Send command to sensor (l = Live mode) ser.write("l") time.sleep(0.1) print("start!") isFig = True #check if main window is still open while(isFig): # time.sleep(delay) # allow time delay between measures # Scan serial port data = ser.readline().split() curTime = time.time()-timeStart # get current time # Data format verification before manipulation if (len(data)==7 and (data[0]=="l" or data[0]=="r")): # Extract values from serial data accX = float(data[1]) accY = float(data[2]) accZ = float(data[3]) gyrX = float(data[4]) gyrY = float(data[5]) gyrZ = float(data[6]) # Store into data window matrix dataCollect = np.concatenate((dataCollect[1:,:] , [[accX, accY, accZ, gyrX, gyrY, gyrZ, curTime]]),axis=0); # Moving average (store into dataCollect_MMean) if (np.where(np.isnan(dataCollect))[0].size == 0) : # mean average if enough data meanDat_ = (1/float(N))*np.sum(dataCollect[:,:6],axis=0) # mean average on data (not on time) meanDat_ = np.concatenate((meanDat_ , [dataCollect[-1,6]]),axis=1) # add time dataCollect_MMean = np.concatenate((dataCollect_MMean[1:,:], [meanDat_]),axis=0) # matrix containing filtered sensors datas on the observation window cRegulator += 1 # print cRegulator, curTime # Analyze data only if dataCollect_Mean is full of data if (np.where(np.isnan(dataCollect_MMean))[0].size == 0 and cRegulator >= cRegulatorMax) : # if there's no more NaN (dataCollect is full) the window is evaluated # Movement DETECTION (on dataCollect_MMean) cRegulator = 0 # Get features X = getFeatures_Detection.getFeatures_Detection(dataCollect_MMean) # Features normalization based on parameters of the model Xnorm = np.empty(X.shape) Xnorm[:] = np.NAN for i in range(0,len(X)): if (rangeInput_Detection[i] != 0) : # avoid infinite case (when rangeInput=0) Xnorm[i] = (X[i] - meanInput_Detection[i])/rangeInput_Detection[i] else: Xnorm[i]=0 #Features reduction Z = np.dot(Ureduce_Detection.T,Xnorm) Z = np.concatenate(([1],Z),axis=0).tolist() #add bias units dicZ = [{x: Z[x] for x in range(0,len(Z))}] # Get output estimation p_label, p_acc, p_val = svm_predict([1], dicZ, mDetection,'-q') p_label = p_label[0] print p_label, curTime # Check output estimation if p_label>0.5 : print 'DETECTION : ', p_val # Resize dataCollect_MMean on Detection window dataCollect_MMean = np.empty((sizeDataWindow_Detection,7)) dataCollect_MMean[:] = np.NaN ser.flushInput() #empty serial # Manage serial issues elif not data : print "serial is empty" elif data[0]=="L": # manage specific case (cf. sensor) print "sensor sending bytes: session terminated" break elif data[0]=="M": # manage specific case (cf. sensor) print "M error" # Close window to terminate session for event in pygame.event.get(): #check for event if(event.type==pygame.QUIT or (event.type==pygame.KEYDOWN and event.key==pygame.K_ESCAPE)): #press escape to leave the while loop isFig=False pygame.quit() ##---------------------------------------------------------------------------- #close serial communication with sensor print("stop!") ser.write("q") # stop sending data from movuino ser.close() print "\nYOU MUST DEFEAT SHENG LONG TO STAND A CHANCE"
b947e26aedcbe4d02c260f1b1f68502685c232fb
a2f753285b0c270168e260d72a08cf0fcfc77b22
/firstApp/app_V1.py
50bdc011ecf1fd511ce0aeb71e1a5df39ff6406b
[]
no_license
IzumiHoshi/My-Python-Code
cc7df2d1ac5e4f5481f7cf9647b95f648a722aa3
73ba606f1c9be8f9651971da9be4c83903f6f903
refs/heads/master
2021-01-16T23:03:32.111385
2020-06-22T06:29:40
2020-06-22T06:29:40
71,847,496
0
0
null
null
null
null
UTF-8
Python
false
false
621
py
import logging; logging.basicConfig(level=logging.INFO) import asyncio, os, json, time from datetime import datetime from aiohttp import web def index(request): return web.Response(body=b'<h1>Awesome</h1>', content_type='text/html', charset='utf-8') @asyncio.coroutine def init(loop): app = web.Application(loop=loop) app.router.add_route('GET', '/', index) srv = yield from loop.create_server(app.make_handler(), '127.0.0.1', 9000) logging.info('server started at http://127.0.0.1:9000...') return srv loop = asyncio.get_event_loop() loop.run_until_complete(init(loop)) loop.run_forever()
abd6aba250f267573bacd3daf43a21b2c1952ce2
22fe6ed51715486ebbc09e404504ed4d7a28c37d
/python-katas/PN2RangeSum.py
efe3460738df4c950e68422a3ee4ffe022739815
[]
no_license
Jethet/Practice-more
1dd3ff19dcb3342a543ea1553a1a6fb0264b9c38
8488a679730e3406329ef30b4f438d41dd3167d6
refs/heads/master
2023-01-28T14:51:39.283741
2023-01-06T10:14:41
2023-01-06T10:14:41
160,946,017
1
1
null
null
null
null
UTF-8
Python
false
false
275
py
# Given a range of numbers, iterate from 0-th to end number and # print the sum of the current number and previous numbers def range_sum(nums): sum_old = 0 for i in range(nums): sum = sum_old + i print(sum) sum_old = i print(range_sum(10))
b66326ad63b412657ddd4448b5320a22614e8070
143d912d73d8f75a0a235b027c5212475ac54981
/detect_model/yolo_net.py
7aaabb389168f214e6b576b3cc9a610ed154b1dd
[]
no_license
SolarSword/Camera-Object-Detection
fc3d60f7df89ef582907d8dc5f4dd578eca05001
ca9aeaecab6516ffbd81c33b48319f988e6ed617
refs/heads/master
2020-05-15T15:17:05.640295
2019-04-20T06:30:31
2019-04-20T06:30:31
182,368,691
1
0
null
null
null
null
UTF-8
Python
false
false
10,031
py
import copy import numpy as np import tensorflow as tf import cv2 #import config as cfg from . import config as cfg class YOLONet(): def __init__(self): # initialize all parameters self.weights_file = cfg.WEIGHTS_FILE self.classes = cfg.CLASSES self.num_classes = len(self.classes) self.image_size = cfg.IMAGE_SIZE self.cell = cfg.CELL self.boxes_per_cell = cfg.BOXES_PER_CELL self.alpha = cfg.ALPHA self.threshold = cfg.THRESHOLD self.iou_threshold = cfg.IOU_THRESHOLD # final_objects is a list to store the detected objects in an image # self.final_objects = [] self.build_network() #self.detect_from_image(image) def set_image(self,image): self.image = image # final_objects is a list to store the detected objects in an image # if we reset a new image, we need to reset this list, too self.final_objects = [] self.final_classes_names = [] # network part def build_network(self): with tf.Graph().as_default() as yolo_net_graph: self.x = tf.placeholder('float32',[None,self.image_size,self.image_size,3]) self.conv_1 = self.conv_layer(1,self.x,64,7,2) self.pool_2 = self.pooling_layer(2,self.conv_1,2,2) self.conv_3 = self.conv_layer(3,self.pool_2,192,3,1) self.pool_4 = self.pooling_layer(4,self.conv_3,2,2) self.conv_5 = self.conv_layer(5,self.pool_4,128,1,1) self.conv_6 = self.conv_layer(6,self.conv_5,256,3,1) self.conv_7 = self.conv_layer(7,self.conv_6,256,1,1) self.conv_8 = self.conv_layer(8,self.conv_7,512,3,1) self.pool_9 = self.pooling_layer(9,self.conv_8,2,2) self.conv_10 = self.conv_layer(10,self.pool_9,256,1,1) self.conv_11 = self.conv_layer(11,self.conv_10,512,3,1) self.conv_12 = self.conv_layer(12,self.conv_11,256,1,1) self.conv_13 = self.conv_layer(13,self.conv_12,512,3,1) self.conv_14 = self.conv_layer(14,self.conv_13,256,1,1) self.conv_15 = self.conv_layer(15,self.conv_14,512,3,1) self.conv_16 = self.conv_layer(16,self.conv_15,256,1,1) self.conv_17 = self.conv_layer(17,self.conv_16,512,3,1) self.conv_18 = self.conv_layer(18,self.conv_17,512,1,1) self.conv_19 = self.conv_layer(19,self.conv_18,1024,3,1) self.pool_20 = self.pooling_layer(20,self.conv_19,2,2) self.conv_21 = self.conv_layer(21,self.pool_20,512,1,1) self.conv_22 = self.conv_layer(22,self.conv_21,1024,3,1) self.conv_23 = self.conv_layer(23,self.conv_22,512,1,1) self.conv_24 = self.conv_layer(24,self.conv_23,1024,3,1) self.conv_25 = self.conv_layer(25,self.conv_24,1024,3,1) self.conv_26 = self.conv_layer(26,self.conv_25,1024,3,2) self.conv_27 = self.conv_layer(27,self.conv_26,1024,3,1) self.conv_28 = self.conv_layer(28,self.conv_27,1024,3,1) self.fc_29 = self.fc_layer(29,self.conv_28,512,flat=True,linear=False) self.fc_30 = self.fc_layer(30,self.fc_29,4096,flat=False,linear=False) #skip dropout_31 self.fc_32 = self.fc_layer(32,self.fc_30,1470,flat=False,linear=True) self.sess = tf.Session(graph = yolo_net_graph) #tf.initialize_all_variables() #THIS FUNCTION IS DEPRECATED. It will be removed after 2017-03-02. Instructions for updating: Use tf.global_variables_initializer instead. self.sess.run(tf.global_variables_initializer()) self.saver = tf.train.Saver() self.saver.restore(self.sess,self.weights_file) def conv_layer(self,idx,inputs,filters,size,stride): channels = inputs.get_shape()[3] weight = tf.Variable(tf.truncated_normal([size,size,int(channels),filters], stddev=0.1)) biases = tf.Variable(tf.constant(0.1, shape=[filters])) pad_size = size//2 pad_mat = np.array([[0,0],[pad_size,pad_size],[pad_size,pad_size],[0,0]]) inputs_pad = tf.pad(inputs,pad_mat) conv = tf.nn.conv2d(inputs_pad, weight, strides=[1, stride, stride, 1], padding='VALID',name=str(idx)+'_conv') conv_biased = tf.add(conv,biases,name=str(idx)+'_conv_biased') return tf.maximum(self.alpha*conv_biased,conv_biased,name=str(idx)+'_leaky_relu')#activation def pooling_layer(self,idx,inputs,size,stride): return tf.nn.max_pool(inputs, ksize=[1, size, size, 1],strides=[1, stride, stride, 1], padding='SAME',name=str(idx)+'_pool') def fc_layer(self,idx,inputs,hiddens,flat = False,linear = False): input_shape = inputs.get_shape().as_list() if flat: dim = input_shape[1]*input_shape[2]*input_shape[3] inputs_transposed = tf.transpose(inputs,(0,3,1,2)) inputs_processed = tf.reshape(inputs_transposed, [-1,dim]) else: dim = input_shape[1] inputs_processed = inputs weight = tf.Variable(tf.truncated_normal([dim,hiddens], stddev=0.1)) biases = tf.Variable(tf.constant(0.1, shape=[hiddens])) if linear : return tf.add(tf.matmul(inputs_processed,weight),biases,name=str(idx)+'_fc') ip = tf.add(tf.matmul(inputs_processed,weight),biases) return tf.maximum(self.alpha*ip,ip,name=str(idx)+'_fc') # detection part def detect_from_cvmat(self,img): self.h_img,self.w_img,_ = img.shape img_resized = cv2.resize(img, (self.image_size, self.image_size)) img_RGB = cv2.cvtColor(img_resized,cv2.COLOR_BGR2RGB) img_resized_np = np.asarray( img_RGB ) inputs = np.zeros((1,448,448,3),dtype='float32') inputs[0] = (img_resized_np/255.0)*2.0-1.0 in_dict = {self.x: inputs} net_output = self.sess.run(self.fc_32,feed_dict=in_dict) self.result = self.interpret_output(net_output[0]) self.generate_bounding_box(img) def detect_from_image(self): img = self.image self.detect_from_cvmat(img) def interpret_output(self,output): probs = np.zeros((7,7,2,20)) class_probs = np.reshape(output[0:980],(7,7,20)) scales = np.reshape(output[980:1078],(7,7,2)) boxes = np.reshape(output[1078:],(7,7,2,4)) offset = np.transpose(np.reshape(np.array([np.arange(7)]*14),(2,7,7)),(1,2,0)) boxes[:,:,:,0] += offset boxes[:,:,:,1] += np.transpose(offset,(1,0,2)) boxes[:,:,:,0:2] = boxes[:,:,:,0:2] / 7.0 boxes[:,:,:,2] = np.multiply(boxes[:,:,:,2],boxes[:,:,:,2]) boxes[:,:,:,3] = np.multiply(boxes[:,:,:,3],boxes[:,:,:,3]) boxes[:,:,:,0] *= self.w_img boxes[:,:,:,1] *= self.h_img boxes[:,:,:,2] *= self.w_img boxes[:,:,:,3] *= self.h_img for i in range(2): for j in range(20): probs[:,:,i,j] = np.multiply(class_probs[:,:,j],scales[:,:,i]) filter_mat_probs = np.array(probs>=self.threshold,dtype='bool') filter_mat_boxes = np.nonzero(filter_mat_probs) boxes_filtered = boxes[filter_mat_boxes[0],filter_mat_boxes[1],filter_mat_boxes[2]] probs_filtered = probs[filter_mat_probs] classes_num_filtered = np.argmax(filter_mat_probs,axis=3)[filter_mat_boxes[0],filter_mat_boxes[1],filter_mat_boxes[2]] argsort = np.array(np.argsort(probs_filtered))[::-1] boxes_filtered = boxes_filtered[argsort] probs_filtered = probs_filtered[argsort] classes_num_filtered = classes_num_filtered[argsort] for i in range(len(boxes_filtered)): if probs_filtered[i] == 0 : continue for j in range(i+1,len(boxes_filtered)): if self.iou(boxes_filtered[i],boxes_filtered[j]) > self.iou_threshold : probs_filtered[j] = 0.0 filter_iou = np.array(probs_filtered>0.0,dtype='bool') boxes_filtered = boxes_filtered[filter_iou] probs_filtered = probs_filtered[filter_iou] classes_num_filtered = classes_num_filtered[filter_iou] result = [] for i in range(len(boxes_filtered)): result.append([self.classes[classes_num_filtered[i]],boxes_filtered[i][0],boxes_filtered[i][1],boxes_filtered[i][2],boxes_filtered[i][3],probs_filtered[i]]) return result def iou(self,box1,box2): tb = min(box1[0]+0.5*box1[2],box2[0]+0.5*box2[2])-max(box1[0]-0.5*box1[2],box2[0]-0.5*box2[2]) lr = min(box1[1]+0.5*box1[3],box2[1]+0.5*box2[3])-max(box1[1]-0.5*box1[3],box2[1]-0.5*box2[3]) if tb < 0 or lr < 0 : intersection = 0 else : intersection = tb*lr return intersection / (box1[2]*box1[3] + box2[2]*box2[3] - intersection) def generate_bounding_box(self,image): self.final_with_bounding_box = copy.deepcopy(image) # the number of objects detected self.num_objects = len(self.result) for i in range(self.num_objects): left_up_x = int(self.result[i][1] - self.result[i][3]/2) left_up_y = int(self.result[i][2] - self.result[i][4]/2) right_down_x = int(self.result[i][1] + self.result[i][3]/2) right_down_y = int(self.result[i][2] + self.result[i][4]/2) self.final_objects.append(image[left_up_y:right_down_y,left_up_x:right_down_x]) self.final_classes_names.append(self.result[i][0]) cv2.rectangle(self.final_with_bounding_box,(left_up_x,left_up_y),(right_down_x,right_down_y),(0,0,255),2) # to add some note above the objects, the second parameter is the text # adding the idx 'i' is to see whether the order of objects is relatively unchanged # but still hard to say cv2.putText(self.final_with_bounding_box,self.result[i][0] + " " + str(i), (left_up_x,left_up_y),cv2.FONT_HERSHEY_COMPLEX,0.5,(0,0,255),1)
fd5a18ddc398096b45e83773bf591eedc129469d
5269e071cca7d3ed6c12bf3d4672ed80c99208b3
/testa.py
604f1f6347f6f8531145c723da5ec7a44a4a3f13
[]
no_license
VictorJaque/SukobanPython
7856071d059e65b27fd59b5b059dc2e63a0ca135
98f39a72165b106e294f2b3b6b55d1eda8e74635
refs/heads/main
2023-03-25T18:12:53.276222
2021-03-12T12:30:00
2021-03-12T12:30:00
347,057,506
0
0
null
null
null
null
UTF-8
Python
false
false
883
py
def create_level_1(level): x = 0 y = 0 teck = [] with open("first_level.sokoban") as f: for rad in f: for tecken in rad: x = x + 1 if tecken == '\n': y = y + 1 x = 0 if tecken != " ": teck.append({'symb': tecken, 'posy': y, 'posx': x}) return(teck) def display_level(teck): rad1 = [ ] rad2 = [] displaylevel = rad1 + rad2 i = 0 for l in teck: while i < teck[i]['posx']: rad1.append(" ") i = i + 1 if teck[i]['posy'] == 0: #rad1.append((" "*teck[0]['posx'])) rad1.append([teck[i]['symb'], teck[i]['posx']]) else: rad2.append({'symb', 'posx'}) i = i + 1 return(rad1) return(rad2) return(displaylevel) level = 1 teck = create_level_1(level) teck = display_level(teck) print(teck)
94986732f3b504318a4e2610f8c4c6c1ce8cc693
087d0c6d58dca56148033662a0f6841482615b2a
/crawler/spiders/focusedscrape/disprot.py
d299d8ac5591ad235f95d5e343c09639337ab54d
[ "Apache-2.0" ]
permissive
biothings/biothings.crawler
52c1aa7ab13b9cebcf6b4366ec8f96c54101656e
5d5c7d089b1e2e4344dfff34c077cd70ff46e5cc
refs/heads/master
2022-02-13T14:10:10.354966
2021-08-31T23:07:36
2021-08-31T23:07:36
209,951,853
0
5
Apache-2.0
2022-02-03T17:36:06
2019-09-21T08:39:50
Python
UTF-8
Python
false
false
1,377
py
import requests from scrapy.spiders import Spider from scrapy_selenium.http import SeleniumRequest from selenium.webdriver.support.expected_conditions import presence_of_element_located from selenium.webdriver.common.by import By from ..helper import JsonLdMixin class DisProtSpider(Spider, JsonLdMixin): name = 'disprot' # DisProt has robots.txt and sitemap.xml # but they also have a publicly documented API # FIXME: use API and the sitemap, but sitemap is preferred when only one can be # implemented. currently because SitemapSpider has to yield Request, we are # forced to use the API only and rely on the page url pattern not changing # on the other hand, they use client side rendering, which is very annoying custom_settings = { 'DOWNLOADER_MIDDLEWARES': { 'scrapy_selenium.SeleniumMiddleware': 800, } } def start_requests(self): ids = requests.get('https://disprot.org/api/list_ids').json()['disprot_ids'] for disprot_id in ids: yield SeleniumRequest( url=f'http://disprot.org/{disprot_id}', callback=self.extract_jsonld, wait_time=10, wait_until=presence_of_element_located( (By.XPATH, '//script[@type="application/ld+json"]') ) )
d4e8e220a67ba05abe839b534b6f318d04f9c75a
08a1e46bab043055d56ae0e8914a3045562b2ac4
/Edmodo/searchEngine/scraping.py
4e0cb2b86e3f46b1f5be3df1910d58775c54c4b1
[ "BSD-3-Clause" ]
permissive
calchulus/Product-Search-Engine
67eea389076dd2199f7d3842b9c87cd6b43e9c55
ebf9c7bbf4e7083e25698a563f35a3d5781f794e
refs/heads/master
2021-01-10T00:46:53.560734
2016-04-06T18:25:10
2016-04-06T18:25:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,745
py
import json import urllib2 import MySQLdb from searchEngine.models import product_info count=0 def getJSONUtil(url): """ This method will pull data from Edmodo api and using models push data into 'searchEngine_product_info' table. """ global count data = json.load(urllib2.urlopen(url)) products=data["products"] ## get _source,_index,_id from products for i in range(len(products)): _index=products[i]["_index"] _id=products[i]["_id"] fields=products[i]["fields"] print("\n Id : {0}").format(_id) print("\n Index : {0}").format(_index) ### get nested data in _source long_desc_html=fields["long_desc_html"][0] seller_thumb_url=fields["seller_thumb_url"][0] resource_types=fields["resource_types"][0] content_type=fields["content_type"][0] long_desc=fields["long_desc"][0] title=fields["title"][0] greads_review_url=fields["greads_review_url"][0] url=fields["url"][0] edm_score=fields["edm_score"][0] avg_rating=fields["avg_rating"][0] creation_date=fields["creation_date"][0] #print("\n long_desc_html : {0} \n seller_thumb_url : {1} \n resource_types : {2}").format(long_desc_html[0],seller_thumb_url[0],resource_types[0]) #print("\n content_type : {0} \n long_desc : {1} \n title : {2} \n greads_review_url : {3}").format(content_type[0],long_desc[0],title[0],greads_review_url[0]) #print("\n url : {0} \n edm_score : {1} \n avg_rating : {2} \n creation_date : {3}").format(url[0],edm_score[0],avg_rating[0],creation_date[0]) try: p1=product_info(index=_index,product_id=_id,long_desc_html=long_desc_html,seller_thumb_url=seller_thumb_url,resource_types=resource_types,\ content_type=content_type,long_desc=long_desc,title=title,url=url,edm_score=edm_score,avg_rating=avg_rating,creation_date=creation_date) p1.save() except Exception,e: print("\n ERROR : Insert unsuccessful... ") print str(e) print("\n Insert Success ...") count+=1 def getJSONdata(): """ This will build url using search term and call getJSONUtil """ base_url="https://spotlight.edmodo.com/api/search/?q=" query_term_list=["math","mitosis", "fractions","history","arts","holidays","cooking","dance","drama","music","graphical arts","programming","web design","game design","phonics", "reading","poetry","writting","chinese","german","english","latin","french","arabic","spanish","italian","calculus","decimals","statistics","geometry","religion","coaching","arithmetic"] for query_term in query_term_list: try: url=base_url+query_term getJSONUtil(url) except Exception,e: print("ERROR at : {0}").format(query_term) print str(e) print("\n **** Total products *** : {0}").format(count) # if __name__=="__main__": # getJSONdata() # #MySQLConn()