blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
1db25bdeb177e7112fd4df6cf720162c9a9839ce
422019d363c222c87b72f1d66e6ce6162440d08c
/wego/src/googlesheet.py
7c5681d078de408b7923a4de6a0a632d5378e2b1
[]
no_license
miteshgala92/applicationscraping
6a5b9e4efa956e19312c91a7d06d4e68463f1d47
e82ce1f3d3619d9042cfac5b30d248fd1960e1fb
refs/heads/main
2023-05-08T03:03:18.607843
2021-06-01T10:48:20
2021-06-01T10:48:20
301,666,706
0
0
null
null
null
null
UTF-8
Python
false
false
2,063
py
import json import pickle import os.path from googleapiclient.discovery import build from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request import pandas as pd # If modifying these scopes, delete the file token.pickle. SCOPES = ['https://www.googleapis.com/auth/spreadsheets.readonly'] # The ID and range of a sample spreadsheet. with open('wego_properties') as json_file: data = json.load(json_file) SAMPLE_SPREADSHEET_ID = data.get("SAMPLE_SPREADSHEET_ID") SAMPLE_RANGE_NAME = data.get("SAMPLE_RANGE_NAME") def routes_data(): """Shows basic usage of the Sheets API. Prints values from a sample spreadsheet. """ creds = None # The file token.pickle stores the user's access and refresh tokens, and is # created automatically when the authorization flow completes for the first # time. if os.path.exists(data.get("tokenpickel_location")): with open(data.get("tokenpickel_location"), 'rb') as token: creds = pickle.load(token) # If there are no (valid) credentials available, let the user log in. if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file(data.get('credentials_location'), SCOPES) creds = flow.run_local_server(port=0) # Save the credentials for the next run with open(data.get('tokenpickel_location'), 'wb') as token: pickle.dump(creds, token) service = build('sheets', 'v4', credentials=creds) # Call the Sheets API sheet = service.spreadsheets() result = sheet.values().get(spreadsheetId=SAMPLE_SPREADSHEET_ID, range=SAMPLE_RANGE_NAME).execute() values = result.get('values') df = pd.DataFrame(values[1:], columns=values[0]) df = df.loc[(df['Active'] == 'YES')] if not values: print('No data found.') df = '' return df else: return df
32113ab189b118bdbaf0079eb26ec17a64dd23ff
b23369a5067dd7db9660c303bb2099ae3fe55638
/algorithm/solutions/offer/test.py
6e1fd5c9341f39bf19a968486082cf9b91f6f1f6
[]
no_license
blackholemedia/writings
f65153f760c469764a9acbed12f0dbf37234f6f6
7d54bb2b37066c454990a11d1ca72bdd39d1122c
refs/heads/master
2021-06-11T17:07:38.773129
2021-03-28T10:16:44
2021-03-28T10:16:44
160,291,199
0
0
null
null
null
null
UTF-8
Python
false
false
404
py
#-*- coding=utf-8 -*- from functools import reduce import sys if sys.platform == 'linux': sys.path.append('/home/alta/ds') from mytree.binarytree import BinaryTree,TreeNode else: sys.path.append('c:\\users\\alta') from datastructure.mytree.binarytree import BinaryTree if __name__ == '__main__': b = BinaryTree() if b: print(1) else: print(2)
5710ed4d4a5418f66fe349adb978a247caf11b55
35e6376063265f3aebbe2d2147da9e61b5bb3ef3
/rod_align/_ext/rod_align/__init__.py
f73c1cc3eaee375d531e87ecb437d370d043bd2c
[ "MIT" ]
permissive
notantony/Grid-Anchor-based-Image-Cropping-Pytorch
2e6fdd4280726089b2e500cc48fa14254558bf5d
32a2dea9151c123c8e589bd196450f56cf3ef7d1
refs/heads/master
2021-05-25T19:29:33.876827
2020-09-17T17:22:58
2020-09-17T17:22:58
253,891,360
0
0
MIT
2020-04-07T19:23:56
2020-04-07T19:23:55
null
UTF-8
Python
false
false
383
py
from torch.utils.ffi import _wrap_function from ._rod_align import lib as _lib, ffi as _ffi __all__ = [] def _import_symbols(locals): for symbol in dir(_lib): fn = getattr(_lib, symbol) if callable(fn): locals[symbol] = _wrap_function(fn, _ffi) else: locals[symbol] = fn __all__.append(symbol) _import_symbols(locals())
dea6f94ad5d677551c991b4885863988669f1af5
44846980df148e1a0621e8a359a7fd357482fd74
/05-Inheritance/problem-5-Restaurant/project/food/cake.py
9c455dce1d126fdbf08463332d2acb717c199373
[ "MIT" ]
permissive
Beshkov/Python_OOP
2dbd3383126f226895b652c4feaf8d79d867d4f8
297edadb3e7801dfeee5752a20aae6aead8da610
refs/heads/main
2023-04-03T14:24:59.218856
2021-04-18T15:13:11
2021-04-18T15:13:11
341,330,079
1
0
null
null
null
null
UTF-8
Python
false
false
213
py
from project.food.dessert import Desert class Cake(Desert): PRICE = 5 GRAMS = 250 CALORIES = 1000 def __init__(self, name): super().__init__(name, Cake.PRICE, Cake.GRAMS, Cake.CALORIES)
9cebe181063772a441f7159a79ae936585a7fcd4
fdd70388fe6189aeba7c6a2a06313666906ea264
/gsConfigManager.py
fdf3a869fc6a6f741a55184be0d5ab5e6eb798de
[ "MIT" ]
permissive
accidentalrebel/gsConfigManager
e0312637304c2b52370875d204a2acc73a9dee32
03e5db7e80a41e82bce3291cf408fd0a2c8c9b8c
refs/heads/master
2020-04-04T14:03:03.278262
2018-04-02T12:37:05
2018-04-02T12:37:05
155,984,874
1
0
null
2018-11-03T13:18:35
2018-11-03T13:18:34
null
UTF-8
Python
false
false
2,690
py
#!/usr/bin/env python3 # Steve Callaghan <scalla[at]amazon.com> # 2018/03/16 import sys import auth import json import export import config def print_json (jsonMsg): print json.dumps(jsonMsg, indent=4, sort_keys=False) def fail_with_error (msg): print('Fatal Error: ' + msg) sys.exit() def print_help (filename): print('--- ' + filename + ' usage guide.') print('--- Configure and Help') print(' - ' + filename + ' configure') print(' - ' + filename + ' configApi -- Configure ApiKey.') print(' - ' + filename + ' configAuth -- Configure Credentails.') print(' - ' + filename + ' help -- Print this help screen.') print('--- Export Options') print(' - ' + filename + ' exportScripts -- Export Scrpts') print(' - ' + filename + ' exportManagementSnapshot -- Export the Management Screens') print(' - ' + filename + ' exportAll -- Export the entire current configuration') # Main if len(sys.argv) <= 1 or sys.argv[1] == 'help': print_help(sys.argv[0]) elif sys.argv[1] == 'configure': auth.configure() elif sys.argv[1] == 'configApi': auth.configureApi() elif sys.argv[1] == 'configAuth': auth.configureAuth() elif sys.argv[1] == 'sanitize': print('Sanitize not yet implemented.') else: if sys.argv[1] == 'getSnapshot': # Get Snapshot if (len(sys.argv) <= 2): fail_with_error('Invalid parameters. Missing parameter snapshotId.') print(config.get_snapshot(auth.get_configured_apikey(), sys.argv[2], auth.get_gs_access_token())) elif sys.argv[1] == 'getManagementScreens': # Get Management Screens print_json(config.get_management_screens(auth.get_configured_apikey(), auth.get_gs_access_token())) elif sys.argv[1] == 'getManagementSnippets': # Get Management Snippets print_json(config.get_management_snippets(auth.get_configured_apikey(), auth.get_gs_access_token())) elif sys.argv[1] == 'getManagementSnippet': # Get Management Snippet if len(sys.argv) <= 2: fail_with_error('Invalid parameters. Missing parameter snippet shortCode.') print_json(config.get_management_snippet(auth.get_configured_apikey(), sys.argv[2], auth.get_gs_access_token())) elif sys.argv[1] == 'exportScripts': export.export_scripts(auth.get_configured_apikey(), auth.get_gs_access_token()) elif sys.argv[1] == 'exportManagementSnapshot': # Export Management Screens export.export_management_snapshot(auth.get_configured_apikey(), auth.get_gs_access_token()) elif sys.argv[1] == 'exportAll': export.export_all(auth.get_configured_apikey(), auth.get_gs_access_token()) else: print_help(sys.argv[0])
426a56fc1b17445626f5aa5bf3af52c6f0fa5620
280a7abee07f47d96932ac1f7a67aa1950278db4
/kouchan-blog/urls.py
ad9c17afcabc450f5c38247198da7e785a4de91e
[ "MIT" ]
permissive
KoukiNAGATA/kouchan-blog
7bdb93f68cc0db87c6ceffed4c4ce72cb4c2ff82
51808388135eca32077ad05241a0587df0e08c25
refs/heads/main
2023-08-07T19:18:04.045900
2021-09-03T14:07:52
2021-09-03T14:07:52
366,347,065
0
0
MIT
2021-09-01T13:33:53
2021-05-11T10:46:12
JavaScript
UTF-8
Python
false
false
1,506
py
"""kouchan-blog URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from django.conf.urls import url, include from django.conf.urls.static import static from django.conf import settings from blog.views import PostDetailView, PostListView, NewsListView, BlogListView, AboutView urlpatterns = [ path('admin/', admin.site.urls), path('posts/<post_id>', PostDetailView.as_view(), name="post_detail"), path('', PostListView.as_view(), name="post_list"), path('news/', NewsListView.as_view(), name="news_list"), path('blog/', BlogListView.as_view(), name="blog_list"), path('about/', AboutView.as_view(), name="about"), url(r'mdeditor/', include('mdeditor.urls')) ] if settings.DEBUG: # static files (images, css, javascript, etc.) urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
8f426dfbfdc1c9bebf1194576c9f3d6d77e7d800
ba14294ecd07a6c5f06a8204b298e1dfeeef7938
/S14Q02_school_marks_with_read.py
60717b489a107565850d102137a9c8d5d0cc05dc
[]
no_license
deepak261/python-exe
50fd87f022d9e1b8e90661b1ce69df4ac53fbfa9
0bf575eebdbe4da0e3957b06aa7f0854286b73d1
refs/heads/master
2020-09-12T08:33:43.493309
2019-12-17T09:48:17
2019-12-17T09:48:17
222,369,729
0
0
null
null
null
null
UTF-8
Python
false
false
931
py
''' S14Q02 Create a text file called “students.txt”. Each line should be of the form “student_name : student_marks” - Write a Python program to read the contents from this file. - Print the names and marks of all students who have scored more than 90% marks, in ascending order of their marks. ''' def user_input(): name = input("enter the student's name:") marks = input("enter the total marks:") return name,marks def sec(x): return int(x[1]) with open ('students.txt') as file: FH = file.readlines() a_grade = [] for line in FH: slp_line = line.strip() print(slp_line) slp_line = slp_line.split(':') if int(slp_line[1])>=90: a_grade.append(slp_line) for i in a_grade: print(i) a_grade.sort(key = sec) print("sorted student marks list") for i in a_grade: print(i)
dc468ce1b9be09aaa942aaaf98afe386e2ed2f59
d20aa624e04cbd0c426a6b7281f3cc1ed88a75cc
/calculator-python/tests/test_parser.py
5a86d714431e1ead59048d5c74ccbb1052e303ea
[]
no_license
kenfj/calculators
8a0710818f030ee919908d85839e1d9228b3f9e2
287ccc46d9c3a63caae7ef1543c21cbf998853c7
refs/heads/master
2022-12-09T23:32:41.446162
2020-09-06T15:26:22
2020-09-06T15:29:17
293,289,920
0
0
null
null
null
null
UTF-8
Python
false
false
2,903
py
from tokens import Token, TokenType from parser_ import Parser from nodes import BinNode, NumberNode, UnaryNode def test_empty(): tokens = [] node = Parser(tokens).parse() assert node is None def test_number(): tokens = [Token(TokenType.NUMBER, 51.2)] node = Parser(tokens).parse() assert node == NumberNode(51.2) def test_plus(): tokens = [ Token(TokenType.NUMBER, 1), Token(TokenType.PLUS), Token(TokenType.NUMBER, 2), ] node = Parser(tokens).parse() assert node == BinNode(NumberNode(1), TokenType.PLUS, NumberNode(2)) def test_unary(): tokens = [ Token(TokenType.PLUS), Token(TokenType.NUMBER, 1), ] node = Parser(tokens).parse() assert node == UnaryNode(TokenType.PLUS, NumberNode(1)) tokens = [ Token(TokenType.MINUS), Token(TokenType.NUMBER, 1), ] node = Parser(tokens).parse() assert node == UnaryNode(TokenType.MINUS, NumberNode(1)) def test_individual_operations(): tokens = [ Token(TokenType.NUMBER, 27), Token(TokenType.PLUS), Token(TokenType.NUMBER, 14), ] node = Parser(tokens).parse() assert node == BinNode(NumberNode(27), TokenType.PLUS, NumberNode(14)) tokens = [ Token(TokenType.NUMBER, 27), Token(TokenType.MINUS), Token(TokenType.NUMBER, 14), ] node = Parser(tokens).parse() assert node == BinNode(NumberNode(27), TokenType.MINUS, NumberNode(14)) tokens = [ Token(TokenType.NUMBER, 27), Token(TokenType.MULTIPLY), Token(TokenType.NUMBER, 14), ] node = Parser(tokens).parse() assert node == BinNode(NumberNode(27), TokenType.MULTIPLY, NumberNode(14)) tokens = [ Token(TokenType.NUMBER, 27), Token(TokenType.DIVIDE), Token(TokenType.NUMBER, 14), ] node = Parser(tokens).parse() assert node == BinNode(NumberNode(27), TokenType.DIVIDE, NumberNode(14)) def test_full_expression(): # 27 + (43 / 36 - 48) * 51 tokens = [ Token(TokenType.NUMBER, 27), Token(TokenType.PLUS), Token(TokenType.LPAREN), Token(TokenType.NUMBER, 43), Token(TokenType.DIVIDE), Token(TokenType.NUMBER, 36), Token(TokenType.MINUS), Token(TokenType.NUMBER, 48), Token(TokenType.RPAREN), Token(TokenType.MULTIPLY), Token(TokenType.NUMBER, 51), ] node = Parser(tokens).parse() assert node == BinNode( NumberNode(27), TokenType.PLUS, BinNode( BinNode( BinNode( NumberNode(43), TokenType.DIVIDE, NumberNode(36), ), TokenType.MINUS, NumberNode(48), ), TokenType.MULTIPLY, NumberNode(51), ) )
8b2d77afecc99f3f0398cd4507fc5842784c22be
c6ff580f5642b26e1c29bca11b1c8f78522289a5
/aulaCanal/core/views.py
684da9e536b900712e2b162fa62ab995ea0662cd
[]
no_license
cpaivaj/estadoPensante_projetoDjango
aa12126a1d14f7540f34bb5228ef83d6761a3784
55a28e904ab511217dfa521316e461c0b8c00252
refs/heads/master
2022-10-21T09:22:05.532670
2020-06-19T22:13:00
2020-06-19T22:13:00
273,595,046
0
0
null
null
null
null
UTF-8
Python
false
false
183
py
from django.shortcuts import render # Create your views here. def home(request): template_name = 'home.html' context = {} return render(request, template_name, context)
c4015e599f027ed19397facf0d40c886fce19fe9
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_235/ch5_2019_09_30_20_38_17_649024.py
b8de2e39ea7eef630ab86123a0bf54f25a4961ab
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
490
py
from math import * def testa_primo(x): #retorna True se o número for primo d = 2 primo = True while d <= int(sqrt(x)): if x % d == 0: primo = False break elif x < 3: primo = False else: primo = True d = d + 1 return primo def maior_primo(x): num = int(x) if int(x) <= 1: return -1 while testa_primo(num) == False: num = num - 1 return num
4c4a941d44a281ad1162e35cf84b018d8526ec3a
818cb255f3f00080a7aa68282e65f4c1d0310c77
/django_flask_samples/try-django-19-master/src/posts/models.py
2199bb6459b2c49a295f14443e40c119e815f209
[ "MIT" ]
permissive
pmnyc/Data_Engineering_Collections
fdca0f9a3de71f5c9855e5bbb45c574d1062077d
b7d29cd4c134cb1252e5c45dd500d969fe0f6029
refs/heads/master
2021-06-24T22:15:32.913229
2020-11-08T10:12:04
2020-11-08T10:12:04
153,053,634
3
3
null
null
null
null
UTF-8
Python
false
false
2,922
py
from __future__ import unicode_literals from django.conf import settings from django.core.urlresolvers import reverse from django.db import models from django.db.models.signals import pre_save from django.utils import timezone from django.utils.text import slugify # Create your models here. # MVC MODEL VIEW CONTROLLER #Post.objects.all() #Post.objects.create(user=user, title="Some time") class PostManager(models.Manager): def active(self, *args, **kwargs): # Post.objects.all() = super(PostManager, self).all() return super(PostManager, self).filter(draft=False).filter(publish__lte=timezone.now()) def upload_location(instance, filename): #filebase, extension = filename.split(".") #return "%s/%s.%s" %(instance.id, instance.id, extension) PostModel = instance.__class__ new_id = PostModel.objects.order_by("id").last().id + 1 """ instance.__class__ gets the model Post. We must use this method because the model is defined below. Then create a queryset ordered by the "id"s of each object, Then we get the last object in the queryset with `.last()` Which will give us the most recently created Model instance We add 1 to it, so we get what should be the same id as the the post we are creating. """ return "%s/%s" %(new_id, filename) class Post(models.Model): user = models.ForeignKey(settings.AUTH_USER_MODEL, default=1) title = models.CharField(max_length=120) slug = models.SlugField(unique=True) image = models.ImageField(upload_to=upload_location, null=True, blank=True, width_field="width_field", height_field="height_field") height_field = models.IntegerField(default=0) width_field = models.IntegerField(default=0) content = models.TextField() draft = models.BooleanField(default=False) publish = models.DateField(auto_now=False, auto_now_add=False) updated = models.DateTimeField(auto_now=True, auto_now_add=False) timestamp = models.DateTimeField(auto_now=False, auto_now_add=True) objects = PostManager() def __unicode__(self): return self.title def __str__(self): return self.title def get_absolute_url(self): return reverse("posts:detail", kwargs={"slug": self.slug}) class Meta: ordering = ["-timestamp", "-updated"] def create_slug(instance, new_slug=None): slug = slugify(instance.title) if new_slug is not None: slug = new_slug qs = Post.objects.filter(slug=slug).order_by("-id") exists = qs.exists() if exists: new_slug = "%s-%s" %(slug, qs.first().id) return create_slug(instance, new_slug=new_slug) return slug def pre_save_post_receiver(sender, instance, *args, **kwargs): if not instance.slug: instance.slug = create_slug(instance) pre_save.connect(pre_save_post_receiver, sender=Post)
8b86f4a685ad52d85f4bb1ffabcb5cf186388c82
0a8026a21808540a31d3e5699657df744a8a0268
/euler/euler019.py
ccd99ff4cc8d9ae8e9cdc1c5e7569a84fe6bb95d
[]
no_license
wubek/ProjectEuler
10208dfd1b17da3408f9cb3e973a53172c88a955
7ce04b80136a77bfbe9c0bf4b7a6af3c560e8b19
refs/heads/master
2016-09-05T14:53:58.728372
2015-02-10T23:04:58
2015-02-10T23:04:58
23,163,013
0
1
null
null
null
null
UTF-8
Python
false
false
1,572
py
# author wukat ''' You are given the following information, but you may prefer to do some research for yourself. 1 Jan 1900 was a Monday. Thirty days has September, April, June and November. All the rest have thirty-one, Saving February alone, Which has twenty-eight, rain or shine. And on leap years, twenty-nine. A leap year occurs on any year evenly divisible by 4, but not on a century unless it is divisible by 400. How many Sundays fell on the first of the month during the twentieth century (1 Jan 1901 to 31 Dec 2000)? ''' def create_months_list(): return ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"] def create_length_of_months_dict(): return {"Jan": 31, "Feb": 28, "Mar": 31, "Apr": 30, "May": 31, "Jun": 30, "Jul": 31, "Aug": 31, "Sep": 30, "Oct": 31, "Nov": 30, "Dec": 31} def check_if_leap_year(year): return True if year % 4 == 0 and year % 400 != 0 else False def get_feb_length(year): return 29 if check_if_leap_year(year) else 28 def count_sundays_on_first_day_of_month_between_dates(): sundays = 0 first_day = 366 % 7 lengths = create_length_of_months_dict() for year in range(1901, 2001): lengths["Feb"] = get_feb_length(year) for month in create_months_list(): first_day += lengths[month] % 7 if first_day % 7 == 0: sundays += 1 if first_day % 7 == 0: # we've checked also 1 Jan 2001 sundays -= 1 return sundays if __name__ == "__main__": print(count_sundays_on_first_day_of_month_between_dates())
065a9bd04669a93db0587677142de9f98bddb0f5
1e37b2c02b462689e7468d58cacff1167951294a
/Exam statistics dobre pratyki.py
46b00a8c68b6281480d3af508ac0c4f388f18946
[]
no_license
MProMikolajczyk/Python-script
43f00706959996b1e97980adcba19d47103f4480
7512c8b1aac65ba6a652d81dfed301bf2fb7b830
refs/heads/master
2023-04-12T23:17:39.195642
2019-04-02T13:04:54
2019-04-02T13:04:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
433
py
#liczenie sumy grades = [100, 100, 90, 40, 80, 100, 85, 70, 90, 65, 90, 85, 50.5] def grades_sum(scores): count=0 for grades in scores: count+=grades return count print grades_sum(grades) #liczenie sredniej za pomoca funkcji w funkcji def grades_average(grades_input): average=grades_sum(grades_input)/float(len(grades_input)) #odolanie do zbiru z ktorego sie kozysta return average print grades_average(grades)
523cb48fc3b9e7896248ac276d639d62564eebd6
710c2f79b3327e35fce095bb7589bdb3485bb7e4
/vam.py
ed5ec229f582fca7fe7de87bc3edc8c7ff14eb89
[]
no_license
Tavisca-vvinod/Transportation-Problem
7408e9713c4ad0804da9012869feb45d9139ab60
6040eb6a2c34e166adfc78023de99e3e860d43aa
refs/heads/master
2022-03-08T07:12:18.807707
2019-11-02T20:45:58
2019-11-02T20:45:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,194
py
import sys import numpy as np requirement=[25,35,105,20] availability=[50,70,30,50] cost=[[4,6,8,13],[13,11,10,8],[14,4,10,13],[9,11,13,8]] r=4 c=4 total_requirement=0 total_availability=0 def p_cost(cost): for i in range(r): print(cost[i]) for i in range(0,len(requirement)): total_requirement+=requirement[i] for i in range(0,len(availability)): total_availability+=availability[i] if(total_requirement < total_availability): for i in range(r): cost[i].append(0) requirement.append(total_availability-total_requirement) c+=1 if(total_requirement > total_availability): temp=[0]*c cost.append(temp) availability.append(total_requirement-total_availability) r+=1 df=np.zeros((r,c)) print("Updated cost matrix ") print(cost) res=0 while(total_requirement >0): row=[float('-inf')]*r col=[float('-inf')]*c for i in range(r): mi=sys.maxsize ma=float('-inf') for j in range(c): if(cost[i][j]!=sys.maxsize): ma=max(ma,cost[i][j]) mi=min(mi,cost[i][j]) row[i]=ma-mi for j in range(c): mi=sys.maxsize ma=float('-inf') for i in range(r): if(cost[i][j]!=sys.maxsize): ma=max(ma,cost[i][j]) mi=min(mi,cost[i][j]) col[j]=ma-mi print("Calculated value of diff in max and min element in a row ",row) print("Calculated value of diff in max and min element in a col",col) ma=max(row) ma=max(ma,max(col)) rind=-1 cind=-1 if(ma in row): rind=row.index(max(row)) cind=cost[rind].index(min(cost[rind])) else: cind=col.index(max(col)) temp=[] for i in range(r): temp.append(cost[i][cind]) rind=temp.index(min(temp)) print("Index choosen ",rind,cind) diff=min(availability[rind],requirement[cind]) print("Allocated value to the index ",diff) res+=(cost[rind][cind]*diff) df[rind][cind]=diff if(diff==availability[rind]): for j in range(c): cost[rind][j]=sys.maxsize else: for i in range(r): cost[i][cind]=sys.maxsize total_requirement-=diff availability[rind]-=diff requirement[cind]-=diff #p_cost(cost) print("Total cost of transportation is ",res) print("Initial basic feasible solution is ") print(df)
50b72c5c85059bdeb4f6483199c42f82c27c6a4a
baf3996414315ffb60470c40c7ad797bf4e6897f
/12_back_dev/Flask/Udemy, Flask, Advanced REST API, codes/section04/56_creating_simple_translation_lib/start/schemas/confirmation.py
a417a6761f440dc49f74e7b019c97f6112032b71
[ "MIT" ]
permissive
thiago-allue/portfolio
8fbbecca7ce232567aebe97c19944f444508b7f4
0acd8253dc7c5150fef9b2d46eead3db83ca42de
refs/heads/main
2023-03-15T22:10:21.109707
2022-09-14T17:04:35
2022-09-14T17:04:35
207,919,073
0
0
null
2019-11-13T18:18:23
2019-09-11T22:40:46
Python
UTF-8
Python
false
false
310
py
from ma import ma from models.confirmation import ConfirmationModel class ConfirmationSchema(ma.SQLAlchemyAutoSchema): class Meta: model = ConfirmationModel load_instance = True load_only = ("user",) dump_only = ("id", "expired_at", "confirmed") include_fk = True
a7323c90e60c0cf20b56805548934dc7ff65e394
e138ae16efe8fcc87491972cd38377112b56570c
/fedex_selenium_headless.py
b716e5a069c71997da9919ecdb7445a18764b9a8
[]
no_license
Vatsalya-singhi/Web-Automation-Fedex
c9d5c9a4affddba2c33bab62ca788adabbaad856
b41b084018f62309b5dcd2f85b2ceff419996b8e
refs/heads/master
2021-09-10T21:16:01.850110
2018-04-02T09:15:33
2018-04-02T09:15:33
126,003,514
0
0
null
null
null
null
UTF-8
Python
false
false
8,413
py
import time,datetime,calendar import ezodf,pandas as pd from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.keys import Keys from selenium.webdriver.support.ui import Select from selenium.webdriver.common.action_chains import ActionChains from selenium.webdriver.chrome.options import Options from time import strptime from pandas import ExcelWriter from pandas import ExcelFile path='C:\\Users\\Samridi\\Downloads\\sample_records.ods' def getpd(path): doc = ezodf.opendoc(path) sheet = doc.sheets[0] df_dict = {} for i, row in enumerate(sheet.rows()): # row is a list of cells # assume the header is on the first row if i == 0: # columns as lists in a dictionary df_dict = {cell.value:[] for cell in row} # create index for the column headers col_index = {j:cell.value for j, cell in enumerate(row)} continue for j, cell in enumerate(row): # use header instead of column index df_dict[col_index[j]].append(cell.value) df = pd.DataFrame(df_dict) return(df) toaddarr=[] ndf=getpd(path) df=ndf.dropna() df=ndf[['trackingnumber','shipdate','country','shipcountry','pincode','shippincode','servicetype']].copy() count=0 df=df.head(50) for index, row in df.iterrows(): try: inDate=row['shipdate'] #get input #getting date from string to datetime format d = datetime.datetime.strptime(inDate, '%Y-%m-%d %H:%M:%S') shipdate='/'.join(str(x) for x in (d.day, d.month, d.year)) print("shipdate - "+str(inDate)) oo=[int(d.year),int(d.month),int(d.day)] #getting next day no dno=(datetime.datetime(oo[0],oo[1],oo[2])).weekday() def nextdate(no): d = datetime.date.today() while d.weekday() != no: d += datetime.timedelta(1) return d dno=nextdate(dno) dno=str(dno.strftime("%m-%d-%Y")).replace('-','/') print("next date with same dno - "+str(dno)) # scraping for data chromedriver= 'D:\\webdrivers\\chromedriver' options = Options() options.add_experimental_option("excludeSwitches",["ignore-certificate-errors"]) options.add_argument('--headless') options.add_argument('--disable-gpu') browser = webdriver.Chrome(chromedriver,chrome_options=options) browser.get('https://www.fedex.com/ratefinder/home') fromcountry = browser.find_element_by_name("origCountry") destCountry = browser.find_element_by_name("destCountry") el = browser.find_element_by_id('origCountryId') for option in el.find_elements_by_tag_name('option'): fromctry=row['country']#'IN' #get input if option.get_attribute("value") == fromctry: option.click() break ll = browser.find_element_by_id('destCountryId') for option in ll.find_elements_by_tag_name('option'): toctry=row['shipcountry']#'IN' #get input if option.get_attribute("value") == toctry: option.click() break try: #try zipcode else by city zplid = browser.find_element_by_id("origZipId") destzpid= browser.find_element_by_id("destZipId") zpin=str(row['pincode']) zpin= zpin.replace('.0','') destpin=str(row['shippincode']) destpin= destpin.replace('.0','') #send keys zplid.send_keys(zpin) #get input for pin destzpid.send_keys(destpin)#get input for pin except: try: ogcity= browser.find_element_by_id("origCityId") for option in ogcity.find_elements_by_tag_name('option'): toctry=row['city'] #get shipcity input if option.get_attribute("value") == toctry: option.click() break descity= browser.find_element_by_id("destCityId") for option in descity.find_elements_by_tag_name('option'): toctry=row['shipcity'] #get city input if option.get_attribute("value") == toctry: option.click() break except: pass no = browser.find_element_by_id("NumOfPackages") weigh=browser.find_element_by_id("totalPackageWeight") no.clear() no.send_keys("1") weigh.send_keys("10") pk = browser.find_element_by_name('receivedAtCode') for option in pk.find_elements_by_tag_name('option'): if option.text == 'Drop off at FedEx location': option.click() break browser.execute_script("document.getElementById('shipCalendarDate._date').value ='"+dno+"' ;") browser.find_element_by_id("ttTime").click() try: ll = browser.find_element_by_name('shipmentPurpose') for option in ll.find_elements_by_tag_name('option'): if option.text == 'Personal (Not sold)': option.click() break ll = browser.find_element_by_name('freightOnValue') for option in ll.find_elements_by_tag_name('option'): if option.text == 'Own risk': option.click() break except: pass try: tiv = browser.find_element_by_name("customsValue") tiv.send_keys("10") except: print("failed to set custom value") lfg = browser.find_element_by_name('packageForm.packageList[0].packageType') for option in lfg.find_elements_by_tag_name('option'): if option.text == "Your Packaging": option.click() break browser.find_element_by_class_name("buttonpurple").click() svtype=str(row['servicetype']) print(svtype) servicetype=svtype #get service type arr=[] flag=0 if browser.find_element_by_xpath("//td[@style='border-right: 1px solid #CFCFCF; vertical-align: middle;']//font[contains(@id,'"+servicetype+"')]"): ao=browser.find_element_by_xpath("//td[@style='border-right: 1px solid #CFCFCF; vertical-align: middle;']//font[contains(@id,'"+servicetype+"')]").text if "End of day" in ao: try: flag=int(ao[11]) except: flag=2 else: arr=str(ao).replace(',','').split(' ') arr=arr[1:4] if flag==0: arr[0]=str(strptime(arr[0],'%b').tm_mon) finaldate='/'.join(arr) print("date calculated from dno - "+str(finaldate)) date_format = "%m/%d/%Y" a = datetime.datetime.strptime(dno, date_format) b = datetime.datetime.strptime(finaldate, date_format) delta = b - a print("No of days taken = "+str(delta.days)) #calcuation for the estimated date erp=d+ datetime.timedelta(days=int(delta.days)) print("estimation date= "+str(erp)) toaddarr.append(str(erp)) print("------------------------------------------") else: erp=d+ datetime.timedelta(days=int(flag)) print("estimation date= "+str(erp)) toaddarr.append(str(erp)) print("------------------------------------------") browser.quit() except: print("error case failed") browser.quit() count+=1 toaddarr.append("error occured") print("------------------------------------------") pass print("no of exceptions= "+str(count)) print(df.shape) df['estimated date']=toaddarr print(df.shape) writer = ExcelWriter('fedex_estimate_date_cal.xlsx') df.to_excel(writer,'Sheet1',index=False) writer.save()
0e15d2c51b2d7c3b97dcf953ec8c6c90cb55246b
ac4b9385b7ad2063ea51237fbd8d1b74baffd016
/.history/google/s5_getparser_20210215174545.py
37f5cae91e71af167eb6607e6180fc9f178c3b26
[]
no_license
preethanpa/ssoemprep
76297ef21b1d4893f1ac2f307f60ec72fc3e7c6f
ce37127845253c768d01aeae85e5d0d1ade64516
refs/heads/main
2023-03-09T00:15:55.130818
2021-02-20T06:54:58
2021-02-20T06:54:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,689
py
import shutil from fonduer.parser.preprocessors import html_doc_preprocessor from sqlalchemy import exc import pdftotree import re from sen_parser_usable import * from config import config import json import os import posixpath import http.server import urllib.request, urllib.parse, urllib.error import cgi import shutil import mimetypes import re from io import BytesIO import json import uuid import sys import logging import errno from fonduer.parser.models import Document, Sentence, Table from fonduer.parser.preprocessors import HTMLDocPreprocessor from fonduer.parser import Parser from pprint import pprint from fonduer import Meta, init_logging from fonduer.candidates import CandidateExtractor from fonduer.candidates import MentionNgrams from fonduer.candidates import MentionExtractor from fonduer.candidates.models import Mention from fonduer.candidates.models import mention_subclass from fonduer.candidates.models import candidate_subclass from fonduer.candidates.matchers import RegexMatchSpan, DictionaryMatch, LambdaFunctionMatcher, Intersect, Union from fonduer.features import Featurizer import inspect import matchers as matchers from extract_html import * PII_KEYLIST = '/home/dsie/Developer/sandbox/3ray/3rml/kbc_process/model/pii-keylist.json' PARALLEL = 4 # assuming a quad-core machine # ATTRIBUTE = "ns8s_invoice_poc_stage" # check that the databases mentioned below already exist getdbref = __import__('s1_2_getdbref') # Will return <module '1_2_getdbref' from '/home/dsie/Developer/sandbox/3ray/server/backend/python/kbc_process/1_2_getdbref.py'> # pdf_path = '/home/dsie/Developer/sandbox/3ray/3rml/kbc_process/documents/pdf/' # docs_path = '/home/dsie/Developer/sandbox/3ray/3rml/kbc_process/documents/html/' # pdf_path = json.loads(sys.argv[1])['pdf_path'] # docs_path = json.loads(sys.argv[1])['html_path'] # job_id = json.loads(sys.argv[1])['job_id'] # exc_context = 'email_id' # doc_context = 'mock' # exc_context = json.loads(sys.argv[1])['context'] if len(sys.argv) > 0 and json.loads(sys.argv[1])['context'] is not None else None # doc_context = json.loads(sys.argv[1])['doc_name'] if len(sys.argv) > 0 and json.loads(sys.argv[1])['doc_name'] is not None else None # exc_context = 'phone_number' pdf_path = '/home/dsie/Developer/sandbox/3ray/3rml/kbc_process/drive_documents/efca2facee5f8df9/pdf/' docs_path = '/home/dsie/Developer/sandbox/3ray/3rml/kbc_process/drive_documents/efca2facee5f8df9/html/' job_id = 'efca2facee5f8df9' exc_context = None doc_context = None # Configure logging for Fonduer init_logging(log_dir="logs", level=logging.ERROR) max_docs = 1000 PARALLEL = 4 doc_preprocessor = None execution_stack = ["1. Get session object..."] try: session = getdbref.get_session() sessType = type(session) # Will return <class 'sqlalchemy.orm.session.Session'> execution_stack.append("Done.") execution_stack.append("2. Processing layout...") except Exception as session_exception: logging.error(f'{execution_stack}, session = getdbref.get_session(), {session_exception}') except exc.SQLAlchemyError as sql_exception: logging.error(f'{execution_stack}, session = getdbref.get_session(), {sql_exception}') def do_prepare_mentions_batch(candidate_mentions, config): # for index, data in enumerate(config): for index, data in config.items(): mention_subclass_list = list() max_ngrams = None for key in data.keys(): if key == 'Candidates': for c in data.get(key): if c not in candidate_mentions.keys(): #TODO verify this condition candidate_mentions[c] = { "mention_names": [], "mention_ngrams": [], "mention_matchers": [], "mention_subclass": [], "max_ngrams": [], "throttler_function": [] } candidate_mentions[c]['mention_names'].append(data['MentionName']) candidate_mentions[c]['mention_ngrams'].append(data['MentionNGrams']) candidate_mentions[c]['mention_matchers'].append(matchers.matcher[data.get('Context')]) if 'mention_subclass' in candidate_mentions[c].keys(): candidate_mentions[c]['mention_subclass'].append(mention_subclass(data['MentionName'])) else: candidate_mentions[c]['mention_subclass'] = [mention_subclass(data['MentionName'])] if 'max_ngrams' in candidate_mentions[c].keys(): candidate_mentions[c]['max_ngrams'].append(MentionNgrams(n_max=candidate_mentions[c].get('mention_ngrams'))) else: candidate_mentions[c]['max_ngrams'] = [MentionNgrams(n_max=candidate_mentions[c].get('mention_ngrams'))] # candidate_mentions[c]['throttler_function'] = data.get('ThrottlerFunctions')[0].get('tf') candidate_mentions[c]['throttler_function'] = [{data.get('ThrottlerFunctions')[0].get('tf')}] return candidate_mentions def do_prepare_mentions(candidate_mentions, config, context): mention_subclass_list = list() max_ngrams = None ctx = { "mention_names": [], "mention_ngrams": [], "mention_matchers": [], "mention_subclass": [], "max_ngrams": [], "throttler_function": None } ctx['mention_names'].append(config[context].get('MentionName')) ctx['mention_ngrams'].append(config[context]['MentionNGrams']) ctx['mention_matchers'].append(matchers.matcher[config[context].get('Context')]) ctx['mention_subclass'].append(mention_subclass(config[context]['MentionName'])) ctx['max_ngrams'].append(MentionNgrams(n_max=config[context].get('MaxNGrams'))) ctx['throttler_function'] = config[context].get('ThrottlerFunctions')[0].get('tf') candidate_mentions[context] = ctx return candidate_mentions def do_train(candidate_mentions): from sqlalchemy import desc docs = session.query(Document).order_by(Document.name).all() # docs = session.query(Document).order_by(desc(Document.id)).limit(1) total_mentions = session.query(Mention).count() splits = (1, 0.0, 0.0) train_cands = [] for candidate_key in candidate_mentions.keys(): train_docs = set() dev_docs = set() test_docs = set() '''print('Mention Subclass {}, Ngrams {} and Matchers {}' .format(candidate_mentions[candidate_key]['mention_subclass'], candidate_mentions[candidate_key]['max_ngrams'], candidate_mentions[candidate_key]['mention_matchers'])) ''' mention_extractor = MentionExtractor(session, candidate_mentions[candidate_key]['mention_subclass'], candidate_mentions[candidate_key]['max_ngrams'], candidate_mentions[candidate_key]['mention_matchers']) print(f'in do_train 171: docs {docs}') mention_extractor.apply(docs, , parallelism=PARALLEL, progress_bar=False) print(f'in do_train 173: candidate_mentions {candidate_mentions}') candidate_mentions[candidate_key]['candidate_subclass'] = candidate_subclass(candidate_key, candidate_mentions[candidate_key].get('mention_subclass'), table_name=candidate_mentions[candidate_key]['mention_names'][0]) candidate_extractor = CandidateExtractor(session, [candidate_mentions[candidate_key]['candidate_subclass']], throttlers=[candidate_mentions[candidate_key]['throttler_function']]) data = [(doc.name, doc) for doc in docs] data.sort(key=lambda x: x[0]) for i, (doc_name, doc) in enumerate(data): train_docs.add(doc) for i, docs in enumerate([train_docs, dev_docs, test_docs]): candidate_extractor.apply(docs, split=i, parallelism=PARALLEL) # train_cands = candidate_extractor.get_candidates(split = 0) # train_cands.append(candidate_extractor.get_candidates(split = 0)) candidate_mentions[candidate_key]['train_cands'] = candidate_extractor.get_candidates(split = 0) for index, item in enumerate(candidate_mentions[candidate_key]['train_cands']): if len(item) > 0: featurizer = Featurizer(session, [candidate_mentions[candidate_key]['candidate_subclass']]) featurizer.apply(split=0, train=True, parallelism=PARALLEL) # %time featurizer.apply(split=0, train=True, parallelism=PARALLEL) # %time F_train = featurizer.get_feature_matrices(candidate_mentions[candidate_key]['train_cands']) else: candidate_mentions[candidate_key]['train_cands'].pop(index) # candidate[candidate_key]['train_cands'] = train_cands return candidate_mentions def do_process_get_candidates(candidate_mentions=None): train_cands = do_train(candidate_mentions) return train_cands def handle_return(generator, func): contextInfoDict = yield from generator func(contextInfoDict) def get_context_async(sm, document_context='', search_context=''): pass # star_char_index = sm.char_start # end_char_index = sm.char_end # star_char_index = sm['applicant_name_context'].char_start # end_char_index = sm['applicant_name_context'].char_end # contextInfoDictionary = { # 'label': { # # 'spanMention': sm['applicant_name_context'], # 'document': sm[search_context].sentence.document.name, # 'documentId': sm[search_context].sentence.document.id, # 'sentence': sm[search_context].sentence.text, # 'contextValue': sm[search_context].sentence.text[star_char_index:end_char_index+1], # 'startChar': star_char_index, # 'endChar': end_char_index # }, # 'value': { # # 'spanMention': sm['applicant_name_context'], # 'document': sm[search_context].sentence.document.name, # 'documentId': sm[search_context].sentence.document.id, # 'sentence': sm[search_context].sentence.text, # 'contextValue': sm[search_context].sentence.text[star_char_index:end_char_index+1], # 'startChar': star_char_index, # 'endChar': end_char_index # } # } # yield contextInfoDictionary def print_values(value): print('returned: {}'.format(json.dumps(value))) def do_get_docs_values(candidates=None, document_context=None, search_context=None): ''' "<class 'fonduer.parser.models.document.Document'>" "<class 'fonduer.parser.models.section.Section'>" "<class 'fonduer.parser.models.sentence.Sentence'>" "<class 'fonduer.candidates.models.span_mention.SpanMention'>" "<class 'fonduer.candidates.models.mention.ApplicationNameLabel'>" ''' train_cands = None docs_and_values = [] all_docs_and_values = [] search_types = ['all_docs_and_pii', 'all_doc_and_'+search_context, 'all_pii_for_'+document_context, search_context+'_for_'+document_context] search_type = '' if document_context == None and search_context == None: '''Entire KB''' search_type = search_types[0] elif document_context == None and search_context is not None: ''' Send entire KB ''' search_type = search_types[1] elif document_context is not None and search_context == None: ''' Send KB for document''' search_type = search_types[2] else: ''' Send KB for match in Doc''' search_type = search_types[3] for index, item in enumerate(candidates): train_cands = candidates.get(item).get('train_cands') if train_cands is not None: for instances in train_cands: for candidate in instances: for key, value in enumerate(candidate): all_docs_and_values.append({ "documentName": value.context.sentence.document.name, "page": value.context.sentence.page, "piiFound": value.context.sentence.text }) for item in all_docs_and_values: if search_type == 0: docs_and_values.append(item) elif search_type == 1: ''' search_context is already filtered, hence do not filter any document ''' docs_and_values.append(item) elif search_type == 2: ''' only filter document name ''' docs_and_values.append(item) if item.get("documentName") in document_context else None else: ''' search_type is 3 search_context is already filtered, hence only filter document_name ''' docs_and_values.append(item) if item.get("documentName") in document_context else None # logging.info(f'docs_and_values: {docs_and_values}') return docs_and_values def train_and_test_experiment(document_context=None, context_label='', user=0, pdf_path=''): ''' context_value: context_label: user: pdf_path: ''' candidate_mentions = do_prepare_mentions({}, config, context_label) candidates = do_process_get_candidates(candidate_mentions) results = [] if candidates is not None: span_mention = None span_mention_list = do_get_docs_values(candidates, document_context, context_label) if len(span_mention_list) > 0: span_mention = span_mention_list[0] returned_contexts = handle_return(get_context_async(span_mention, document_context, context_label), print_values) for x in returned_contexts: results.append(x) else: # TODO pass return results def train_and_test(document_context=None, context_label='', user=0, pdf_path=''): ''' context_value: context_label: user: pdf_path: ''' # candidate_mentions = do_prepare_mentions({}, config, context_label) candidate_mentions = do_prepare_mentions_batch({}, config) candidates = do_process_get_candidates(candidate_mentions) results = [] if candidates is not None: results = do_get_docs_values(candidates, document_context, context_label) return results print(json.dumps({"result": train_and_test(document_context=doc_context, context_label=exc_context), "job_id": job_id }))
975465b086d16cb27f6ba2cd45f2c3a046e8636c
48527cb443a1d5129ddfc230feb6a66c2ffa5f92
/virtusa/twostrings.py
2917397d9e6f4666168bab74b5bfa1ba231dbee2
[]
no_license
arthtyagi/dailycode
13c557c76ccb4855bd12f17e543151addeea9523
ec026b438a484b26b467807822e059ba019fc8b4
refs/heads/master
2021-07-25T19:25:01.554898
2021-01-04T11:12:40
2021-01-04T11:12:40
233,267,702
2
0
null
2020-05-18T00:21:12
2020-01-11T17:12:30
Python
UTF-8
Python
false
false
304
py
def twoStrings(s1, s2): m1 = set(s1) m2 = set(s2) if set.intersection(m1,m2): return "YES" return "NO" if __name__ == '__main__': t = int(input()) for _ in range(t): first = input() second = input() print (twoStrings(first, second))
4edafb11a5ecab33e8f8e447c50016d11e29f1aa
223861dd0dda7a2e4c94c81171cd2d7fb4979659
/azure/mgmt/resource/subscriptions/operations/tenants_operations.py
24063db6f23095981c05cbf62a64edf3ba0195a1
[]
no_license
pexip/os-python-azure-mgmt-resource
99bc515e3ff4c1a07458fcd2de96bb48daab1eee
f09919899900adf389baf8f96ae7117ccdbd7f1a
refs/heads/master
2023-08-28T05:02:15.070287
2017-02-28T22:33:49
2017-02-28T22:33:49
54,351,762
0
0
null
null
null
null
UTF-8
Python
false
false
3,665
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.pipeline import ClientRawResponse from msrestazure.azure_exceptions import CloudError import uuid from .. import models class TenantsOperations(object): """TenantsOperations operations. :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An objec model deserializer. """ def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self.config = config def list( self, custom_headers=None, raw=False, **operation_config): """Gets the tenants for your account. :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :rtype: :class:`TenantIdDescriptionPaged <azure.mgmt.resource.subscriptions.models.TenantIdDescriptionPaged>` :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ def internal_paging(next_link=None, raw=False): if not next_link: # Construct URL url = '/tenants' # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.config.api_version", self.config.api_version, 'str') else: url = next_link query_parameters = {} # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send( request, header_parameters, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp return response # Deserialize response deserialized = models.TenantIdDescriptionPaged(internal_paging, self._deserialize.dependencies) if raw: header_dict = {} client_raw_response = models.TenantIdDescriptionPaged(internal_paging, self._deserialize.dependencies, header_dict) return client_raw_response return deserialized
5a3e12e7fb539f1bbd4918c5e539c2908bb07470
f73ca5563e8900e1fb7b9f29c94e695402ecb051
/relationships/exposure_nomination_relationship.py
232c1f96213d6743dffa68af4a6638cd78201862
[]
no_license
IceBucketScience/analysis
ad5b29307da714827a7970e55328a34fa4dda295
d08d2951e8ed0cb75b67125cf9296552cf097565
refs/heads/master
2021-01-20T07:47:23.730105
2015-05-29T06:39:54
2015-05-29T06:39:54
35,286,765
0
0
null
null
null
null
UTF-8
Python
false
false
1,977
py
from util.graph import Graph import pandas as pd import statsmodels.api as sm import numpy as np from util.significance import test_significance from util.plot import add_binary_jitter, get_binary_distribution, plot_binary_distribution, plot_normal_distributions import matplotlib as mpl import matplotlib.pyplot as plt mpl.interactive(False) g = Graph() def compute_exposure_pcts(g): participants = g.get_challenge_participants() participants_w_min_friends = [participant for participant in participants if len(participant.get_friends()) >= 50] raw_coord_pairs = [] for participant in participants_w_min_friends: coord_pair = {'exposure_pct': participant.get_exposure_pct(), 'participated': 1 if participant.completed_challenge() else 0} raw_coord_pairs.append(coord_pair) return pd.DataFrame(raw_coord_pairs) exposure_pcts = compute_exposure_pcts(g) binary_distribution = get_binary_distribution(exposure_pcts, 'exposure_pct', 'participated', 'completed', 'didnt_complete', 15) print binary_distribution #plot_binary_distribution(binary_distribution, 'exposure_pct', 'exposure_pct', 'pct_completed') ax = add_binary_jitter(exposure_pcts, 'exposure_pct', 'participated').plot(x='exposure_pct', y='participated', kind='scatter', alpha=0.3) # logit = sm.Logit(exposure_pcts['exposure_pct'], exposure_pcts['participated']) # reg_result = logit.fit() # print reg_result.summary() # x_vals = np.linspace(exposure_pcts['exposure_pct'].min(), exposure_pcts['exposure_pct'].max(), 20) # pd.DataFrame({'x': x_vals, 'y': logit.cdf(x_vals)}).plot(x='x', y='y', ax=ax) didnt_participate = exposure_pcts[exposure_pcts['participated'] == 0].loc[:, 'exposure_pct'] participated = exposure_pcts[exposure_pcts['participated'] == 1].loc[:, 'exposure_pct'] #plot_normal_distributions(participated, didnt_participate, 'participated', 'didnt_participate', 'exposure_pct', 'frequency') test_significance(didnt_participate, participated) plt.show()
1f14d36ff7919bb1e0fe13f29300a18c34b3c7df
5e20392dc4487c75e1e3061c1416a895317ca7c2
/navmenu/menus.py
c201e820b7ccfbfda8a750af2181a3d3001b545d
[ "MIT" ]
permissive
rashidsh/navmenu
7072f3cee55469ccbe7f79eb5ce81c86a3aab4bb
ec67b820462cc102417e214cd74eb7b1b97ad1f1
refs/heads/master
2023-08-18T02:20:26.021801
2021-10-03T16:56:54
2021-10-03T16:56:54
366,816,317
0
0
null
null
null
null
UTF-8
Python
false
false
6,112
py
import collections.abc from abc import ABC, abstractmethod from typing import Iterator, Optional, Sequence from .actions import Action from .contents import BaseContent from .items import BaseItem from .responses import Message from .keyboard import KeyboardButton, Keyboard class BaseMenu(ABC): """A generic menu. Args: aliases: A sequence of strings that act as shortcuts to the menu. """ __slots__ = 'aliases', def __init__(self, aliases: Optional[Sequence[str]] = None): if aliases is None: aliases = [] self.aliases = aliases @abstractmethod def select(self, action: str, payload=None) -> Optional[Iterator[Message]]: """Select an item based on action and payload and optionally return one or multiple messages. Args: action: A string indicating selected menu button. payload: An incoming message payload. Returns: None or a list of messages. """ pass @abstractmethod def get_message(self, payload: Optional[dict] = None) -> Message: """Get a message representing the menu. Args: payload: An incoming message payload. Returns: A message representing the menu. """ pass @abstractmethod def serialize(self) -> dict: """Serialize the class instance to a dictionary. Returns: A serialized class instance. """ res = {} if self.aliases: res['aliases'] = self.aliases return res def enter(self, payload: Optional[dict] = None) -> Optional[Message]: """Enter the menu and optionally return a message. Args: payload: An incoming message payload. Returns: None or a message. """ pass class Menu(BaseMenu): """A menu with fixed content and list of items. Args: content: The menu content. items: A sequence of menu items. default_action: The action to select when the provided action does not exist. aliases: A sequence of strings that act as shortcuts to the menu. """ __slots__ = 'content', 'items', 'default_action' def __init__( self, content: BaseContent, items: Optional[Sequence[BaseItem]] = None, default_action: Optional[Action] = None, aliases: Optional[Sequence[str]] = None, ) -> None: super().__init__(aliases) if items is None: items = [] self.content = content self.items = items self.default_action = default_action def __repr__(self) -> str: return f'Menu({self.content}, {self.items}, {repr(self.default_action)}, {self.aliases})' def select(self, action: str, payload: Optional[dict] = None) -> Optional[Iterator[Message]]: target_item = next(( i for i in self.items if (isinstance(i, BaseItem) and i.name == action and i.is_available(payload)) ), None) if target_item is None: if self.default_action: return self.default_action.process(payload), return return target_item.on_select(payload) def get_message(self, payload: Optional[dict] = None) -> Message: if payload is None: payload = {} keyboard = Keyboard() for item in self.items: if item.is_available(payload): kwargs = item.get_content() if kwargs['type'] == 'button': keyboard.add_button(KeyboardButton( kwargs['payload'], kwargs['text'].format(**payload), kwargs['color'], )) elif kwargs['type'] == 'line_break': keyboard.add_line() return Message(self.content, keyboard, payload) def add_item(self, item: BaseItem) -> None: """Add the item to the menu. Args: item: The item to add. Raises: RuntimeError: The menu's item list is immutable. """ try: self.items.append(item) except AttributeError: raise RuntimeError('The menu\'s item list is immutable') def serialize(self) -> dict: res = { **super().serialize(), 'content': { 'type': self.content.__class__.__name__, **self.content.serialize(), } } if self.items: res['items'] = [{ 'type': item.__class__.__name__, **item.serialize(), } for item in self.items] if self.default_action: res['default_action'] = { 'type': self.default_action.__class__.__name__, **self.default_action.serialize(), } return res class CustomMenu(BaseMenu): """A menu that is controlled by a custom class. Args: handler: A class containing "select", "get_message" and "enter" methods. aliases: A sequence of strings that act as shortcuts to the menu. """ __slots__ = 'handler', def __init__(self, handler, aliases: Optional[Sequence[str]] = None) -> None: super().__init__(aliases) self.handler = handler def __repr__(self) -> str: return f'CustomMenu({self.handler})' def select(self, action: str, payload: Optional[dict] = None) -> Optional[Iterator[Message]]: res = self.handler.select(action, payload) return res if isinstance(res, collections.abc.Sequence) else (res, ) def get_message(self, payload: Optional[dict] = None) -> Optional[Message]: return self.handler.get_message(payload) def serialize(self) -> dict: res = { **super().serialize(), 'handler': self.handler.__name__, } return res def enter(self, payload: Optional[dict] = None) -> Optional[Message]: return self.handler.enter(payload)
6c292a191edbad614fba3c6a8a5e4449118a6ce3
07e23e5fc0abbbf6aa19162545321562a0fd056a
/Basic Python/Basic_python/27_assert.py
bf30490f715333860c35512278a1cd02c27543d7
[]
no_license
Meet57/programming
12ed9f1da93b5aa09bd5eb7f03437b39ce6aabcc
65ee6468e592bacec13aa6eb381666350c24500a
refs/heads/master
2021-06-15T11:29:37.530931
2021-05-29T21:18:21
2021-05-29T21:18:21
195,511,057
4
0
null
null
null
null
UTF-8
Python
false
false
207
py
# Python 3 code to demonstrate # working of assert # initializing number a = 4 b = 0 # using assert to check for 0 print ("The value of a / b is : ") assert b != 0, "Divide by 0 error" print (a / b)
c3a326c658642bc0f0f992e7f5184c0e1f41e2dc
6cbfa2d9fc719ce73c2fff6696569170cf6a2cfe
/mp2/node_modules/bcrypt/build-tmp-napi-v3/config.gypi
033aefdb875e6d80a76ef216f13860a8f8e427ba
[ "MIT" ]
permissive
unisse-courses/s14-mp15
a68ea1f3936e6521d5e196df3e3847cd4a1664c2
9d92e78b8c266f1920b6ae0cacb16660973e4796
refs/heads/master
2022-12-26T01:03:54.074100
2021-03-19T12:21:27
2021-03-19T12:21:27
242,083,885
0
0
null
2022-12-07T13:45:32
2020-02-21T07:53:07
CSS
UTF-8
Python
false
false
6,469
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [], "msbuild_toolset": "v141", "msvs_windows_target_platform_version": "10.0.17763.0" }, "variables": { "asan": 0, "build_v8_with_gn": "false", "coverage": "false", "dcheck_always_on": 0, "debug_nghttp2": "false", "debug_node": "false", "enable_lto": "false", "enable_pgo_generate": "false", "enable_pgo_use": "false", "force_dynamic_crt": 0, "host_arch": "x64", "icu_data_in": "..\\..\\deps/icu-small\\source/data/in\\icudt67l.dat", "icu_default_data": "", "icu_endianness": "l", "icu_gyp_path": "tools/icu/icu-generic.gyp", "icu_locales": "en,root", "icu_path": "deps/icu-small", "icu_small": "true", "icu_ver_major": "67", "is_debug": 0, "napi_build_version": "3", "nasm_version": "2.14", "node_byteorder": "little", "node_debug_lib": "false", "node_enable_d8": "false", "node_install_npm": "true", "node_module_version": 72, "node_no_browser_globals": "false", "node_prefix": "/usr/local", "node_release_urlbase": "https://nodejs.org/download/release/", "node_shared": "false", "node_shared_brotli": "false", "node_shared_cares": "false", "node_shared_http_parser": "false", "node_shared_libuv": "false", "node_shared_nghttp2": "false", "node_shared_openssl": "false", "node_shared_zlib": "false", "node_tag": "", "node_target_type": "executable", "node_use_bundled_v8": "true", "node_use_dtrace": "false", "node_use_etw": "true", "node_use_node_code_cache": "true", "node_use_node_snapshot": "true", "node_use_openssl": "true", "node_use_v8_platform": "true", "node_with_ltcg": "true", "node_without_node_options": "false", "openssl_fips": "", "openssl_is_fips": "false", "ossfuzz": "false", "shlib_suffix": "so.72", "target_arch": "x64", "v8_enable_gdbjit": 0, "v8_enable_i18n_support": 1, "v8_enable_inspector": 1, "v8_enable_lite_mode": 0, "v8_enable_object_print": 1, "v8_no_strict_aliasing": 1, "v8_optimized_debug": 1, "v8_promise_internal_field_count": 1, "v8_random_seed": 0, "v8_trace_maps": 0, "v8_use_siphash": 1, "v8_use_snapshot": 1, "want_separate_host_toolset": 0, "nodedir": "C:\\Users\\Marius\\AppData\\Local\\node-gyp\\Cache\\12.19.0", "standalone_static_library": 1, "msbuild_path": "C:\\Program Files (x86)\\Microsoft Visual Studio\\2017\\BuildTools\\MSBuild\\15.0\\Bin\\MSBuild.exe", "fallback_to_build": "true", "module": "C:\\Users\\Marius\\Documents\\GitHub\\s14-mp15\\mp2\\node_modules\\bcrypt\\lib\\binding\\napi-v3\\bcrypt_lib.node", "module_name": "bcrypt_lib", "module_path": "C:\\Users\\Marius\\Documents\\GitHub\\s14-mp15\\mp2\\node_modules\\bcrypt\\lib\\binding\\napi-v3", "napi_version": "7", "node_abi_napi": "napi", "node_napi_label": "napi-v3", "access": "", "allow_same_version": "", "also": "", "always_auth": "", "audit": "true", "audit_level": "low", "auth_type": "legacy", "before": "", "bin_links": "true", "browser": "", "ca": "", "cache": "C:\\Users\\Marius\\AppData\\Roaming\\npm-cache", "cache_lock_retries": "10", "cache_lock_stale": "60000", "cache_lock_wait": "10000", "cache_max": "Infinity", "cache_min": "10", "cert": "", "cidr": "", "color": "true", "commit_hooks": "true", "depth": "Infinity", "description": "true", "dev": "", "dry_run": "", "editor": "notepad.exe", "engine_strict": "", "fetch_retries": "2", "fetch_retry_factor": "10", "fetch_retry_maxtimeout": "60000", "fetch_retry_mintimeout": "10000", "force": "", "format_package_lock": "true", "fund": "true", "git": "git", "git_tag_version": "true", "global": "", "globalconfig": "C:\\Users\\Marius\\AppData\\Roaming\\npm\\etc\\npmrc", "globalignorefile": "C:\\Users\\Marius\\AppData\\Roaming\\npm\\etc\\npmignore", "global_style": "", "group": "", "ham_it_up": "", "heading": "npm", "https_proxy": "", "if_present": "", "ignore_prepublish": "", "ignore_scripts": "", "init_author_email": "", "init_author_name": "", "init_author_url": "", "init_license": "ISC", "init_module": "C:\\Users\\Marius\\.npm-init.js", "init_version": "1.0.0", "json": "", "key": "", "legacy_bundling": "", "link": "", "local_address": "", "logs_max": "10", "long": "", "maxsockets": "50", "message": "%s", "metrics_registry": "https://registry.npmjs.org/", "node_gyp": "C:\\Program Files\\nodejs\\node_modules\\npm\\node_modules\\node-gyp\\bin\\node-gyp.js", "node_options": "", "node_version": "12.19.0", "offline": "", "onload_script": "", "only": "", "optional": "true", "otp": "", "package_lock": "true", "package_lock_only": "", "parseable": "", "prefer_offline": "", "prefer_online": "", "prefix": "C:\\Users\\Marius\\AppData\\Roaming\\npm", "preid": "", "production": "", "progress": "true", "read_only": "", "rebuild_bundle": "true", "registry": "https://registry.npmjs.org/", "rollback": "true", "save": "true", "save_bundle": "", "save_dev": "", "save_exact": "", "save_optional": "", "save_prefix": "^", "save_prod": "", "scope": "", "scripts_prepend_node_path": "warn-only", "script_shell": "", "searchexclude": "", "searchlimit": "20", "searchopts": "", "searchstaleness": "900", "send_metrics": "", "shell": "C:\\WINDOWS\\system32\\cmd.exe", "shrinkwrap": "true", "sign_git_commit": "", "sign_git_tag": "", "sso_poll_frequency": "500", "sso_type": "oauth", "strict_ssl": "true", "tag": "latest", "tag_version_prefix": "v", "timing": "", "tmp": "C:\\Users\\Marius\\AppData\\Local\\Temp", "umask": "0000", "unicode": "", "unsafe_perm": "true", "update_notifier": "true", "usage": "", "user": "", "userconfig": "C:\\Users\\Marius\\.npmrc", "user_agent": "npm/6.14.8 node/v12.19.0 win32 x64", "version": "", "versions": "", "viewer": "browser" } }
50f43bb978b74c849a33e544f6af9ebca0ac7070
c43109f27fc0432b8592f76106f9b9cfd971bf19
/game_functions.py
b93cb7251469b05db38a349da3ea3cf2ecb464ba
[]
no_license
Stark-Xue/alien_invasion
ca6d8cb76ac47a24d5482613fad7970347af0014
80e42448f613b98f9ac6de5687119beab8ad7d2e
refs/heads/master
2020-07-17T18:08:26.927976
2019-09-08T09:21:35
2019-09-08T09:21:35
206,065,299
0
0
null
null
null
null
UTF-8
Python
false
false
7,160
py
import sys import pygame from time import sleep from Bullet import Bullet from alien import Alien def check_keydown_events(event, ai_settings, screen, ship, bullets): if event.key == pygame.K_RIGHT: #向右移动飞船 ship.moving_right = True elif event.key == pygame.K_LEFT: ship.moving_left = True elif event.key == pygame.K_SPACE: fire_bullet(ai_settings, screen, ship, bullets) elif event.key == pygame.K_q: sys.exit() def check_keyup_events(event, ship): if event.key == pygame.K_RIGHT: ship.moving_right = False elif event.key == pygame.K_LEFT: ship.moving_left = False def check_events(ai_settings, screen, stats, sb, play_button, ship, aliens, bullets): """监视键盘事件和鼠标事件""" for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit() elif event.type == pygame.KEYDOWN: check_keydown_events(event, ai_settings, screen, ship, bullets) elif event.type == pygame.KEYUP: check_keyup_events(event, ship) elif event.type == pygame.MOUSEBUTTONDOWN: mouse_x, mouse_y = pygame.mouse.get_pos() check_play_button(ai_settings, screen, stats, sb, play_button, ship, aliens, bullets, mouse_x, mouse_y) def check_play_button(ai_settings, screen, stats, sb, play_button, ship, aliens, bullets, mouse_x, mouse_y): """玩家单击按钮开始游戏""" botton_clicked = play_button.rect.collidepoint(mouse_x, mouse_y) if botton_clicked and not stats.game_active: #重置游戏设置 ai_settings.initialize_dynamic_settings() #隐藏光标 pygame.mouse.set_visible(False) #重置游戏统计信息 stats.reset_stats() stats.game_active = True #重置计分牌信息 sb.prep_score() sb.prep_high_score() sb.prep_level() sb.prep_ships() #子弹和外星人清空 aliens.empty() bullets.empty() #新建一群外星人,新建一艘飞船放置于底部中间 create_fleet(ai_settings, screen, ship, aliens) ship.center_ship() def update_screen(ai_settings, screen, stats, sb, ship, aliens, bullets, play_button): """更新屏幕上的图像,并切换到新屏幕""" #每次循环时都重绘屏幕 screen.fill(ai_settings.bg_color) for bullet in bullets: bullet.draw_bullet() ship.blitme() #alien.blitme() aliens.draw(screen) #显示得分 sb.show_score() if not stats.game_active: play_button.draw_button() #让最近绘制的屏幕可见 pygame.display.flip() def update_bullets(ai_settings, screen, stats, sb, ship, aliens, bullets): """更新子弹的位置,删除已消失的子弹""" #更新子弹的位置 bullets.update() #删除已消失的子弹 for bullet in bullets.copy(): if bullet.rect.bottom <= 0: bullets.remove(bullet) #print(len(bullets)) check_bullets_aliens_collisions(ai_settings, screen, stats, sb, ship, aliens, bullets) def check_bullets_aliens_collisions(ai_settings, screen, stats, sb, ship, aliens, bullets): #检查是否有子弹击中类外星人 #如果是这样,就删除对应的子弹和外星人 collisions = pygame.sprite.groupcollide(bullets, aliens, True, True) if collisions: for alien in collisions.values(): stats.score += ai_settings.alien_points * len(alien) sb.prep_score() check_high_score(stats, sb) if len(aliens) == 0: #删除现有的子弹,并新建一群外星人 bullets.empty() ai_settings.increase_speed() stats.level += 1 sb.prep_level() create_fleet(ai_settings, screen, ship, aliens) def fire_bullet(ai_settings, screen, ship, bullets): """如果还没有达到限制,就发射一颗子弹""" if len(bullets) < ai_settings.bullet_allowed: #创建一颗子弹,并将其加入到编组bullets中 new_bullet = Bullet(ai_settings, screen, ship) bullets.add(new_bullet) def get_number_alien_x(ai_settings, alien_width): available_space_x = ai_settings.screen_width - 2 * alien_width number_alien_x = int(available_space_x / (2 * alien_width)) return number_alien_x def get_number_rows(ai_settings, ship_height, alien_height): """计算屏幕可以容耐多少行外星人""" available_space_y = ai_settings.screen_height - 3 * alien_height - ship_height number_alien_rows = int(available_space_y / (2 * alien_height)) return number_alien_rows def create_alien(ai_settings, screen, aliens, alien_number, row_number): alien = Alien(ai_settings, screen) alien_width = alien.rect.width alien.x = alien_width + 2 * alien_width * alien_number alien.rect.x = alien.x alien.rect.y = alien.rect.height + 2 * alien.rect.height * row_number aliens.add(alien) def create_fleet(ai_settings, screen, ship, aliens): """创建外星人群""" #创建一个外星人,并计算一行可以容耐多少个外星人 #外星人之间的间距就是外星人的宽度 alien = Alien(ai_settings, screen) #alien_width = alien.rect.width number_alien_x = get_number_alien_x(ai_settings, alien.rect.width) number_rows = get_number_rows(ai_settings, ship.rect.height, alien.rect.height) #创建外星人群 for number_row in range(number_rows): #创建第一行外星人 for alien_number in range(number_alien_x): create_alien(ai_settings, screen, aliens, alien_number, number_row) def check_fleet_edges(ai_settings, aliens): """有外行人到达边缘时采取相应的措施""" for alien in aliens.sprites(): if alien.check_edges(): change_fleet_direction(ai_settings, aliens) break def change_fleet_direction(ai_settings, aliens): for alien in aliens.sprites(): alien.rect.y += ai_settings.fleet_drop_speed ai_settings.fleet_direction *= -1 def update_aliens(ai_settings, stats, screen, sb, ship, aliens, bullets): """更新外星人群中所有外星人的位置""" """检查是否有外星人位于屏幕边缘""" check_fleet_edges(ai_settings, aliens) aliens.update() #检测外星人和飞船碰撞 if pygame.sprite.spritecollideany(ship, aliens): #print("ship hut!!!") ship_hit(ai_settings, stats, screen, sb, ship, aliens, bullets) #检查是否有外星人到达底部 check_aliens_bottom(ai_settings, stats, screen, sb, ship, aliens, bullets) def check_aliens_bottom(ai_settings, stats, screen, sb, ship, aliens, bullets): #检查是否有外星人到达底部 screen_rect = screen.get_rect() for alien in aliens.sprites(): if alien.rect.bottom >= screen_rect.bottom: #像处理外星人和飞船相撞一样处理 ship_hit(ai_settings, stats, screen, sb, ship, aliens, bullets) break def ship_hit(ai_settings, stats, screen, sb, ship, aliens, bullets): #响应被外星人撞到的飞船 #将ship_left减1 if stats.ship_left > 1: stats.ship_left -= 1 #更新计分牌 sb.prep_ships() #子弹和外星人清空 aliens.empty() bullets.empty() #新建一群外星人,新建一艘飞船放置于底部中间 create_fleet(ai_settings, screen, ship, aliens) ship.center_ship() #暂停0.5秒 sleep(0.5) else: stats.game_active = False pygame.mouse.set_visible(True) def check_high_score(stats, sb): """检查是否诞生类最高分""" if stats.score > stats.high_score: stats.high_score = stats.score sb.prep_high_score()
2350975098b4d2adf5f678bb5e030ce99685ae81
2b55b0b4b153e1235cef267bc4f68040ced69398
/node_modules/uws/build/config.gypi
e49284cf7390d90c9daf9573fec4b4dd50558f8e
[ "Zlib" ]
permissive
mfps/chatApp
25107be7d6810973e63683ab10e2c0b1c2f8f36e
6b0701e7ef58abaa1f3ee60b421fc1590dcbf07b
refs/heads/master
2021-05-07T00:25:49.245260
2017-11-09T15:09:43
2017-11-09T15:09:43
110,129,857
0
0
null
null
null
null
UTF-8
Python
false
false
2,462
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "asan": 0, "coverage": "false", "debug_devtools": "node", "debug_http2": "false", "debug_nghttp2": "false", "force_dynamic_crt": 0, "host_arch": "x64", "icu_data_file": "icudt59l.dat", "icu_data_in": "..\\..\\deps/icu-small\\source/data/in\\icudt59l.dat", "icu_endianness": "l", "icu_gyp_path": "tools/icu/icu-generic.gyp", "icu_locales": "en,root", "icu_path": "deps/icu-small", "icu_small": "true", "icu_ver_major": "59", "node_byteorder": "little", "node_enable_d8": "false", "node_enable_v8_vtunejit": "false", "node_install_npm": "true", "node_module_version": 57, "node_no_browser_globals": "false", "node_prefix": "/usr/local", "node_release_urlbase": "https://nodejs.org/download/release/", "node_shared": "false", "node_shared_cares": "false", "node_shared_http_parser": "false", "node_shared_libuv": "false", "node_shared_openssl": "false", "node_shared_zlib": "false", "node_tag": "", "node_use_bundled_v8": "true", "node_use_dtrace": "false", "node_use_etw": "true", "node_use_lttng": "false", "node_use_openssl": "true", "node_use_perfctr": "true", "node_use_v8_platform": "true", "node_without_node_options": "false", "openssl_fips": "", "openssl_no_asm": 0, "shlib_suffix": "so.57", "target_arch": "x64", "v8_enable_gdbjit": 0, "v8_enable_i18n_support": 1, "v8_enable_inspector": 1, "v8_no_strict_aliasing": 1, "v8_optimized_debug": 0, "v8_promise_internal_field_count": 1, "v8_random_seed": 0, "v8_trace_maps": 0, "v8_use_snapshot": "true", "want_separate_host_toolset": 0, "want_separate_host_toolset_mkpeephole": 0, "nodedir": "C:\\Users\\zim\\.node-gyp\\8.5.0", "standalone_static_library": 1, "ignore_optional": "", "ignore_scripts": "", "init_license": "MIT", "init_version": "1.0.0", "registry": "https://registry.yarnpkg.com", "save_prefix": "^", "strict_ssl": "true", "user_agent": "yarn/1.0.2 npm/? node/v8.5.0 win32 x64", "version_git_message": "v%s", "version_git_sign": "", "version_git_tag": "true", "version_tag_prefix": "v" } }
d22cbea1818d3165db14b5717ba1432b0f7a2fda
4059573793d0ee5b74c9dd919aa2945dad2fe426
/Practise_stacks_queues/animal_shelter.py
4bcc4ed0250752698c46cbac64b5eac41e6d2528
[]
no_license
nayanika2304/DataStructuresPractice
04ea6d9248a63983abdd2b983632ba5907eed9d4
f3c815ff113ce3977cc743360b77fb21c9f9b383
refs/heads/master
2022-12-08T05:28:22.897414
2020-08-29T18:17:57
2020-08-29T18:17:57
282,513,763
0
0
null
null
null
null
UTF-8
Python
false
false
2,898
py
''' An animal shelter, which holds only dogs and cats, operates on a strictly"first in, first out" basis. People must adopt either the "oldest" (based on arrival time) of all animals at the shelter, or they can select whether they would prefer a dog or a cat (and will receive the oldest animal of that type). They cannot select which specific animal they would like. Create the data structures to maintain this system and implement operations such as enqueue, dequeueAny, dequeueDog, and dequeueCat. You may use the built-in Linked List data structure. ''' class Animal(object): def __init__(self, animalName=None, animalType=None, next=None): self.animalName = animalName self.animalType = animalType self.next = next self.timestamp = 0 # to keep track of the order of arrival of the animals class AnimalShelter(object): def __init__(self): self.headCat = None self.tailCat = None self.headDog = None self.tailDog = None self.animalNumber = 0 def enqueue(self, animalName, animalType): self.animalNumber += 1 newAnimal = Animal(animalName, animalType) newAnimal.timestamp = self.animalNumber if animalType == 'cat': if not self.headCat: self.headCat = newAnimal if self.tailCat: self.tailCat.next = newAnimal self.tailCat = newAnimal elif animalType == 'dog': if not self.headDog: self.headDog = newAnimal if self.tailDog: self.tailDog.next = newAnimal self.tailDog = newAnimal def dequeueCat(self): if self.headCat: newAnimal = self.headCat self.headCat = newAnimal.next return str(newAnimal.animalName) else: return "No cat left!" def dequeueDog(self): if self.headDog: newAnimal = self.headDog self.headDog = newAnimal.next return str(newAnimal.animalName) else: return "No dog left!" def dequeueAny(self): if self.headCat and not self.headDog: return self.dequeueCat() elif not self.headCat and self.headDog: return self.dequeueDog() elif self.headCat: if self.headCat.timestamp < self.headDog.timestamp: return self.dequeueCat() else: return self.dequeueDog() else: return "No animal left!" def display(self): print('The list of cats : ') cats = self.headCat countCat = 1 while cats != None: print("#{} : {}.".format(countCat,cats.animalName)) cats = cats.next countCat += 1 print('\nThe list of dogs : ') dogs = self.headDog countDog = 1 while dogs: print("#{} : {}.".format(countDog,dogs.animalName)) dogs = dogs.next countDog += 1 if __name__ == "__main__": AS = AnimalShelter() AS.enqueue('mia', 'cat') AS.enqueue('tommy', 'dog') AS.enqueue('lisa', 'cat') AS.enqueue('bruno', 'dog') AS.enqueue('brando', 'dog') AS.enqueue('molly', 'cat') AS.display() print("\nSelect a cat") print(AS.dequeueCat()) print("\nSelect a dog") print(AS.dequeueDog()) print("\nSelect any animal") print(AS.dequeueAny())
199ddbd7a5a1fd27e5f784db9d5a6bfdb6c25fe0
2086a897538311fe25acfec950e68a447d12cb24
/Elementary/secret_message.py
538a8d0ddbdbf291db1aaaf4fdbee78c49bd3f5a
[]
no_license
ahrechanychenko/checkio
a9d1e154c7cd86bcad689cfabf2adc7f689d3f40
fbbe7f6681bfa420d90a6b117f427c1adcdc6bd8
refs/heads/master
2021-10-16T00:19:43.413789
2015-10-15T18:31:06
2015-10-15T18:31:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
468
py
__author__ = 'levor23' def find_message(text): return ''.join([x for x in text if x.isupper()]) if __name__ == '__main__': # These "asserts" using only for self-checking # and not necessary for auto-testing assert find_message(u"How are you? " u"Eh, ok. Low or Lower? Ohhh.") == "HELLO", "hello" assert find_message(u"hello world!") == "", "Nothing" assert find_message(u"HELLO WORLD!!!") == "HELLOWORLD", "Capitals"
dec31f9189b180e0f74278eb02c491a584c5b4c6
549270020f6c8724e2ef1b12e38d11b025579f8d
/recipes/openscenegraph/all/conanfile.py
5d6b6d3a14882b9a8393542db25bcd7838642b33
[ "MIT" ]
permissive
conan-io/conan-center-index
1bcec065ccd65aa38b1fed93fbd94d9d5fe6bc43
3b17e69bb4e5601a850b6e006e44775e690bac33
refs/heads/master
2023-08-31T11:34:45.403978
2023-08-31T11:13:23
2023-08-31T11:13:23
204,671,232
844
1,820
MIT
2023-09-14T21:22:42
2019-08-27T09:43:58
Python
UTF-8
Python
false
false
22,040
py
from conan import ConanFile from conan.tools.files import get, rmdir, rm, apply_conandata_patches from conan.tools.build import cross_building from conan.tools.scm import Version from conan.tools.apple import is_apple_os from conan.errors import ConanInvalidConfiguration from conans import CMake import os import functools required_conan_version = ">=1.50.0" class OpenSceneGraphConanFile(ConanFile): name = "openscenegraph" description = "OpenSceneGraph is an open source high performance 3D graphics toolkit" topics = ("openscenegraph", "graphics") url = "https://github.com/conan-io/conan-center-index" homepage = "http://www.openscenegraph.org" license = "LGPL-2.1-only", "WxWindows-exception-3.1" settings = "os", "arch", "compiler", "build_type" options = { "shared": [True, False], "fPIC": [True, False], "build_applications": [True, False], "enable_notify": [True, False], "enable_deprecated_api": [True, False], "enable_readfile": [True, False], "enable_ref_ptr_implicit_output_conversion": [True, False], "enable_ref_ptr_safe_dereference": [True, False], "enable_envvar_support": [True, False], "enable_windowing_system": [True, False], "enable_deprecated_serializers": [True, False], "use_fontconfig": [True, False], "with_asio": [True, False], "with_curl": [True, False], "with_dcmtk": [True, False], "with_freetype": [True, False], "with_gdal": [True, False], "with_gif": [True, False], "with_gta": [True, False], "with_jasper": [True, False], "with_jpeg": [True, False], "with_openexr": [True, False], "with_png": [True, False], "with_tiff": [True, False], "with_zlib": [True, False], "opengl_profile": ["gl1", "gl2", "gl3", "glCore", "gles1", "gles2", "gles3", "gles2+gles3"], } default_options = { "shared": False, "fPIC": True, "build_applications": False, "enable_notify": True, "enable_deprecated_api": False, "enable_readfile": True, "enable_ref_ptr_implicit_output_conversion": True, "enable_ref_ptr_safe_dereference": True, "enable_envvar_support": True, "enable_windowing_system": True, "enable_deprecated_serializers": False, "use_fontconfig": True, "with_asio": False, "with_curl": False, "with_dcmtk": False, "with_freetype": True, "with_gdal": False, "with_gif": True, "with_gta": False, "with_jasper": False, "with_jpeg": True, "with_openexr": False, "with_png": True, "with_tiff": True, "with_zlib": True, "opengl_profile": "gl2", } short_paths = True exports_sources = "CMakeLists.txt", "patches/*.patch" generators = "cmake", "cmake_find_package" @property def _source_subfolder(self): return "source_subfolder" def config_options(self): if self.settings.os == "Windows": del self.options.fPIC del self.options.with_asio # Default to false with fontconfig until it is supported on Windows self.options.use_fontconfig = False if is_apple_os(self): # osg uses imageio on Apple platforms del self.options.with_gif del self.options.with_jpeg del self.options.with_png # imageio supports tiff files so the tiff plugin isn't needed on Apple platforms self.options.with_tiff = False def configure(self): if self.options.shared: del self.options.fPIC if not self.options.with_zlib: # These require zlib support del self.options.with_openexr del self.options.with_png del self.options.with_dcmtk def validate(self): if self.options.get_safe("with_asio", False): raise ConanInvalidConfiguration("ASIO support in OSG is broken, see https://github.com/openscenegraph/OpenSceneGraph/issues/921") if hasattr(self, "settings_build") and cross_building(self): raise ConanInvalidConfiguration("openscenegraph recipe cannot be cross-built yet. Contributions are welcome.") def requirements(self): if self.options.enable_windowing_system and self.settings.os == "Linux": self.requires("xorg/system") self.requires("opengl/system") if self.options.use_fontconfig: self.requires("fontconfig/2.14.2") if self.options.get_safe("with_asio", False): # Should these be private requires? self.requires("asio/1.22.1") self.requires("boost/1.81.0") if self.options.with_curl: self.requires("libcurl/8.0.1") if self.options.get_safe("with_dcmtk"): self.requires("dcmtk/3.6.6") if self.options.with_freetype: self.requires("freetype/2.13.0") if self.options.with_gdal: self.requires("gdal/3.4.3") if self.options.get_safe("with_gif"): self.requires("giflib/5.2.1") if self.options.with_gta: self.requires("libgta/1.2.1") if self.options.with_jasper: self.requires("jasper/2.0.33") if self.options.get_safe("with_jpeg"): self.requires("libjpeg/9e") if self.options.get_safe("with_openexr"): self.requires("openexr/3.1.7") if self.options.get_safe("with_png"): self.requires("libpng/1.6.40") if self.options.with_tiff: self.requires("libtiff/4.5.1") if self.options.with_zlib: self.requires("zlib/1.2.13") def source(self): get(self, **self.conan_data["sources"][self.version], destination=self._source_subfolder, strip_root=True) def _patch_sources(self): apply_conandata_patches(self) for package in ("Fontconfig", "Freetype", "GDAL", "GIFLIB", "GTA", "Jasper", "OpenEXR"): # Prefer conan's find package scripts over osg's os.unlink(os.path.join(self._source_subfolder, "CMakeModules", "Find{}.cmake".format(package))) @functools.lru_cache(1) def _configured_cmake(self): cmake = CMake(self) cmake.definitions["USE_3RDPARTY_BIN"] = False cmake.definitions["DYNAMIC_OPENSCENEGRAPH"] = self.options.shared cmake.definitions["DYNAMIC_OPENTHREADS"] = self.options.shared cmake.definitions["BUILD_OSG_APPLICATIONS"] = self.options.build_applications cmake.definitions["BUILD_OSG_EXAMPLES"] = False cmake.definitions["OSG_NOTIFY_DISABLED"] = not self.options.enable_notify cmake.definitions["OSG_USE_DEPRECATED_API"] = self.options.enable_deprecated_api cmake.definitions["OSG_PROVIDE_READFILE"] = self.options.enable_readfile cmake.definitions["OSG_USE_REF_PTR_IMPLICIT_OUTPUT_CONVERSION"] = self.options.enable_ref_ptr_implicit_output_conversion cmake.definitions["OSG_USE_REF_PTR_SAFE_DEREFERENCE"] = self.options.enable_ref_ptr_safe_dereference cmake.definitions["OSG_ENVVAR_SUPPORTED"] = self.options.enable_envvar_support if not self.options.enable_windowing_system: cmake.definitions["OSG_WINDOWING_SYSTEM"] = None cmake.definitions["BUILD_OSG_DEPRECATED_SERIALIZERS"] = self.options.enable_deprecated_serializers cmake.definitions["OSG_TEXT_USE_FONTCONFIG"] = self.options.use_fontconfig cmake.definitions["OPENGL_PROFILE"] = str(self.options.opengl_profile).upper() # Disable option dependencies unless we have a package for them cmake.definitions["OSG_WITH_FREETYPE"] = self.options.with_freetype cmake.definitions["OSG_WITH_OPENEXR"] = self.options.get_safe("with_openexr", False) cmake.definitions["OSG_WITH_INVENTOR"] = False cmake.definitions["OSG_WITH_JASPER"] = self.options.with_jasper cmake.definitions["OSG_WITH_OPENCASCADE"] = False cmake.definitions["OSG_WITH_FBX"] = False cmake.definitions["OSG_WITH_ZLIB"] = self.options.with_zlib cmake.definitions["OSG_WITH_GDAL"] = self.options.with_gdal cmake.definitions["OSG_WITH_GTA"] = self.options.with_gta cmake.definitions["OSG_WITH_CURL"] = self.options.with_curl cmake.definitions["OSG_WITH_LIBVNCSERVER"] = False cmake.definitions["OSG_WITH_DCMTK"] = self.options.get_safe("with_dcmtk", False) cmake.definitions["OSG_WITH_FFMPEG"] = False cmake.definitions["OSG_WITH_DIRECTSHOW"] = False cmake.definitions["OSG_WITH_SDL"] = False cmake.definitions["OSG_WITH_POPPLER"] = False cmake.definitions["OSG_WITH_RSVG"] = False cmake.definitions["OSG_WITH_NVTT"] = False cmake.definitions["OSG_WITH_ASIO"] = self.options.get_safe("with_asio", False) cmake.definitions["OSG_WITH_ZEROCONF"] = False cmake.definitions["OSG_WITH_LIBLAS"] = False cmake.definitions["OSG_WITH_GIF"] = self.options.get_safe("with_gif", False) cmake.definitions["OSG_WITH_JPEG"] = self.options.get_safe("with_jpeg", False) cmake.definitions["OSG_WITH_PNG"] = self.options.get_safe("with_png", False) cmake.definitions["OSG_WITH_TIFF"] = self.options.with_tiff if self.settings.os == "Windows": # osg has optional quicktime support on Windows cmake.definitions["CMAKE_DISABLE_FIND_PACKAGE_QuickTime"] = True cmake.definitions["OSG_MSVC_VERSIONED_DLL"] = False cmake.configure() return cmake def build(self): self._patch_sources() self._configured_cmake().build() def package(self): self._configured_cmake().install() self.copy(pattern="LICENSE.txt", dst="licenses", src=self._source_subfolder) rmdir(self, os.path.join(self.package_folder, "lib", "pkgconfig")) rm(self, "*.pdb", self.package_folder, True) def package_info(self): # FindOpenSceneGraph.cmake is shipped with cmake and is a traditional cmake script # It doesn't setup targets and only provides a few variables: # - OPENSCENEGRAPH_FOUND # - OPENSCENEGRAPH_VERSION # - OPENSCENEGRAPH_INCLUDE_DIRS # - OPENSCENEGRAPH_LIBRARIES # Unfortunately, the cmake_find_package generators don't currently allow directly setting variables, # but it will set the last three of these if the name of the package is OPENSCENEGRAPH (it uses # the filename for the first, so OpenSceneGraph_FOUND gets set, not OPENSCENEGRAPH_FOUND) # TODO: set OPENSCENEGRAPH_FOUND in cmake_find_package and cmake_find_package_multi self.cpp_info.filenames["cmake_find_package"] = "OpenSceneGraph" self.cpp_info.filenames["cmake_find_package_multi"] = "OpenSceneGraph" self.cpp_info.names["cmake_find_package"] = "OPENSCENEGRAPH" self.cpp_info.names["cmake_find_package_multi"] = "OPENSCENEGRAPH" if self.settings.build_type == "Debug": postfix = "d" elif self.settings.build_type == "RelWithDebInfo": postfix = "rd" elif self.settings.build_type == "MinSizeRel": postfix = "s" else: postfix = "" def setup_plugin(plugin): lib = "osgdb_" + plugin plugin_library = self.cpp_info.components[lib] plugin_library.libs = [] if self.options.shared else [lib + postfix] plugin_library.requires = ["OpenThreads", "osg", "osgDB", "osgUtil"] if not self.options.shared: plugin_library.libdirs = [os.path.join("lib", "osgPlugins-{}".format(self.version))] return plugin_library def setup_serializers(lib): plugins = [] if lib not in ("osgDB", "osgWidget", "osgPresentation"): plugins.append("serializers_{}".format(lib.lower())) if self.options.enable_deprecated_serializers: if lib not in ("osgUtil", "osgDB", "osgGA", "osgManipulator", "osgUI", "osgPresentation"): plugins.append("deprecated_{}".format(lib.lower())) for plugin in plugins: setup_plugin(plugin).requires.append(lib) def setup_library(lib): library = self.cpp_info.components[lib] library.libs = [lib + postfix] library.names["pkg_config"] = "openscenegraph-{}".format(lib) setup_serializers(lib) return library # Core libraries # requires obtained from osg's source code # TODO: FindOpenThreads.cmake is shipped with CMake, so we should generate separate # files for it with cmake_find_package and cmake_find_package_multi library = self.cpp_info.components["OpenThreads"] library.libs = ["OpenThreads" + postfix] library.names["pkg_config"] = "openthreads" if self.settings.os == "Linux": library.system_libs = ["pthread"] library = setup_library("osg") library.requires = ["OpenThreads", "opengl::opengl"] if self.settings.os == "Linux": library.system_libs = ["m", "rt", "dl"] if not self.options.shared: library.defines.append("OSG_LIBRARY_STATIC") library = setup_library("osgDB") library.requires = ["osg", "osgUtil", "OpenThreads"] if self.settings.os == "Linux": library.system_libs = ["dl"] elif self.settings.os == "Macos": library.frameworks = ["Carbon", "Cocoa"] if self.options.with_zlib: library.requires.append("zlib::zlib") setup_library("osgUtil").requires = ["osg", "OpenThreads"] setup_library("osgGA").requires = ["osgDB", "osgUtil", "osg", "OpenThreads"] library = setup_library("osgText") library.requires = ["osgDB", "osg", "osgUtil", "OpenThreads"] if self.options.use_fontconfig: library.requires.append("fontconfig::fontconfig") library = setup_library("osgViewer") library.requires = ["osgGA", "osgText", "osgDB", "osgUtil", "osg"] if self.options.enable_windowing_system: if self.settings.os == "Linux": library.requires.append("xorg::xorg") elif is_apple_os(self): library.frameworks = ["Cocoa"] if self.settings.os == "Windows": library.system_libs = ["gdi32"] setup_library("osgAnimation").requires = ["osg", "osgText", "osgGA", "osgViewer", "OpenThreads"] setup_library("osgFX").requires = ["osgUtil", "osgDB", "osg", "OpenThreads"] setup_library("osgManipulator").requires = ["osgViewer", "osgGA", "osgUtil", "osg", "OpenThreads"] setup_library("osgParticle").requires = ["osgUtil", "osgDB", "osg", "OpenThreads"] setup_library("osgUI").requires = ["osgDB", "osgGA", "osgUtil", "osgText", "osgViewer", "osg", "OpenThreads"] setup_library("osgVolume").requires = ["osgGA", "osgDB", "osgUtil", "osg", "OpenThreads"] setup_library("osgShadow").requires = ["osgUtil", "osgDB", "osg", "OpenThreads"] setup_library("osgSim").requires = ["osgText", "osgUtil", "osgDB", "osg", "OpenThreads"] setup_library("osgTerrain").requires = ["osgUtil", "osgDB", "osg", "OpenThreads"] setup_library("osgWidget").requires = ["osgText", "osgViewer", "osgDB", "osg", "OpenThreads"] setup_library("osgPresentation").requires = ["osgViewer", "osgUI", "osgWidget", "osgManipulator", "osgVolume", "osgFX", "osgText", "osgGA", "osgUtil", "osgDB", "osg", "OpenThreads"] # Start of plugins # NodeKit/Psudo loader plugins setup_plugin("osga") setup_plugin("rot") setup_plugin("scale") setup_plugin("trans") setup_plugin("normals") setup_plugin("revisions") setup_plugin("osgviewer").requires.append("osgViewer") setup_plugin("osgshadow").requires.append("osgShadow") setup_plugin("osgterrain").requires.append("osgTerrain") # Main native plugins setup_plugin("osg") plugin = setup_plugin("ive") plugin.requires.extend(("osgSim", "osgFX", "osgText", "osgTerrain", "osgVolume")) if self.options.with_zlib: plugin.requires.append("zlib::zlib") # Viewer plugins setup_plugin("cfg").requires.append("osgViewer") # Shader plugins setup_plugin("glsl") # Image plugins setup_plugin("rgb") setup_plugin("bmp") setup_plugin("pnm") setup_plugin("dds") setup_plugin("tga") setup_plugin("hdr") setup_plugin("dot") setup_plugin("vtf") setup_plugin("ktx") if self.options.get_safe("with_jpeg"): setup_plugin("jpeg").requires.append("libjpeg::libjpeg") if self.options.with_jasper: setup_plugin("jp2").requires.append("jasper::jasper") if self.options.get_safe("with_openexr"): setup_plugin("exr").requires.append("openexr::openexr") if self.options.get_safe("with_gif"): setup_plugin("gif").requires.append("giflib::giflib") if self.options.get_safe("with_png"): setup_plugin("png").requires.extend(("libpng::libpng", "zlib::zlib")) if self.options.with_tiff: setup_plugin("tiff").requires.append("libtiff::libtiff") if self.options.with_gdal: setup_plugin("gdal").requires.extend(("osgTerrain", "gdal::gdal")) setup_plugin("ogr").requires.append("gdal::gdal") if self.options.with_gta: setup_plugin("gta").requires.append("libgta::libgta") # 3D Image plugins if self.options.get_safe("with_dcmtk"): plugin = setup_plugin("dicom") plugin.requires.extend(("osgVolume", "dcmtk::dcmtk")) if self.settings.os == "Windows": plugin.system_libs = ["wsock32", "ws2_32"] # 3rd party 3d plugins setup_plugin("3dc") setup_plugin("p3d").requires.extend(("osgGA", "osgText", "osgVolume", "osgFX", "osgViewer", "osgPresentation")) if self.options.with_curl: plugin = setup_plugin("curl") plugin.requires.append("libcurl::libcurl") if self.options.with_zlib: plugin.requires.append("zlib::zlib") if self.options.with_zlib: setup_plugin("gz").requires.append("zlib::zlib") # with_inventor # setup_plugin("iv") # with_collada # setup_plugin("dae") # with_fbx # setup_plugin("fbx") # with_opencascade # setup_plugin("opencascade") setup_plugin("bvh").requires.append("osgAnimation") setup_plugin("x") setup_plugin("dxf").requires.append("osgText") setup_plugin("openflight").requires.append("osgSim") setup_plugin("obj") setup_plugin("pic") setup_plugin("stl") setup_plugin("3ds") setup_plugin("ac") setup_plugin("pov") setup_plugin("logo") setup_plugin("lws") setup_plugin("md2") setup_plugin("osgtgz") setup_plugin("tgz") setup_plugin("shp").requires.extend(("osgSim", "osgTerrain")) setup_plugin("txf").requires.append("osgText") setup_plugin("bsp") setup_plugin("mdl") setup_plugin("gles").requires.extend(("osgUtil", "osgAnimation")) setup_plugin("osgjs").requires.extend(("osgAnimation", "osgSim")) setup_plugin("lwo").requires.append("osgFX") setup_plugin("ply") setup_plugin("txp").requires.extend(("osgSim", "osgText")) # with_ffmpeg # setup_plugin("ffmpeg") # with_gstreamer # setup_plugin("gstreamer") # with_directshow # setup_plugin("directshow") if is_apple_os(self): setup_plugin("imageio").frameworks = ["Accelerate"] if ((self.settings.os == "Macos" and self.settings.os.version and Version(self.settings.os.version) >= "10.8") or (self.settings.os == "iOS" and Version(self.settings.os.version) >= "6.0")): plugin = setup_plugin("avfoundation") plugin.requires.append("osgViewer") plugin.frameworks = ["AVFoundation", "Cocoa", "CoreVideo", "CoreMedia", "QuartzCore"] if self.settings.os == "Macos" and self.settings.os.version and Version(self.settings.os.version) <= "10.6" and self.settings.arch == "x86": setup_plugin("qt").frameworks = ["QuickTime"] if self.settings.os == "Macos" and self.settings.arch == "x86": plugin = setup_plugin("QTKit") plugin.requires.append("osgViewer") plugin.frameworks = ["QTKit", "Cocoa", "QuickTime", "CoreVideo"] # with_nvtt # setup_plugin("nvtt") if self.options.with_freetype: setup_plugin("freetype").requires.extend(("osgText", "freetype::freetype")) if self.options.with_zlib: setup_plugin("zip") # with_svg # setup_plugin("svg") # with_pdf/poppler # setup_plugin("pdf") # with_vnc # setup_plugin("vnc") setup_plugin("pvr") plugin = setup_plugin("osc") plugin.requires.append("osgGA") if self.settings.os == "Windows": plugin.system_libs = ["ws2_32", "winmm"] setup_plugin("trk") setup_plugin("tf") # with_blas # setup_plugin("las") setup_plugin("lua") # with_sdl # setup_plugin("sdl") if self.options.get_safe("with_asio", False): setup_plugin("resthttp").requires.extend(("osgPresentation", "asio::asio", "boost::boost")) # with_zeroconf # setup_plugin("zeroconf")
d4637ca674ee9122988a540c520dfb1108b8baeb
7473827589ddfc0e2ad8ccf19029f5666fedffc4
/Lab8.py
9a6a955c7e73ef4048a52b699a7d3274b81ffc28
[ "MIT" ]
permissive
aft0903/IA241
475cea78a24294bf32a2b433bd7775e1de7d6415
c8927706cc9eed40dcaa37f51c5ac6a3994c9334
refs/heads/main
2023-04-19T09:06:27.789028
2021-05-06T04:19:31
2021-05-06T04:19:31
331,729,653
0
0
null
null
null
null
UTF-8
Python
false
false
699
py
#Aileen Towner #IA 241 #Lab 8 #3.1 def count_words (input_str): return len(input_str.split()) # TEST: print(count_words('a string')) #3.2 demo_str = 'hello world' print(count_words(demo_str)) #3.3 def min_num (num_list): #function min_item = num_list[0] #define variables for num in num_list: #for every number in the list if type(num) is not str: if min_item >= num:# if the variable is less than the number as it goes thru the list min_item = nu min_item = num return (min_item) #3.4 demo_list = [1,2,3,4,5,6] print(min_num(demo_list)) #3.5 mix_list = [1,2,3,4,'a',5,6] print(min_num(mix_list))
a18cbd39063799664162c48d9bf060db4e12c07f
cafefb0b182567e5cabe22c44578bb712385e9f5
/lib/gcloud/bigtable/row.py
cb9ce2e67e3dd9f880a237df21a5ef52625a64e6
[ "BSD-3-Clause" ]
permissive
gtaylor/evennia-game-index
fe0088e97087c0aaa0c319084e28b2c992c2c00b
b47f27f4dff2a0c32991cee605d95911946ca9a5
refs/heads/master
2022-11-25T20:28:23.707056
2022-11-07T17:47:25
2022-11-07T17:47:25
55,206,601
2
2
BSD-3-Clause
2018-04-19T05:41:12
2016-04-01T05:40:15
Python
UTF-8
Python
false
false
34,378
py
# Copyright 2015 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """User friendly container for Google Cloud Bigtable Row.""" import struct import six from gcloud._helpers import _datetime_from_microseconds from gcloud._helpers import _microseconds_from_datetime from gcloud._helpers import _to_bytes from gcloud.bigtable._generated import bigtable_data_pb2 as data_pb2 from gcloud.bigtable._generated import ( bigtable_service_messages_pb2 as messages_pb2) _PACK_I64 = struct.Struct('>q').pack MAX_MUTATIONS = 100000 """The maximum number of mutations that a row can accumulate.""" class Row(object): """Base representation of a Google Cloud Bigtable Row. This class has three subclasses corresponding to the three RPC methods for sending row mutations: * :class:`DirectRow` for ``MutateRow`` * :class:`ConditionalRow` for ``CheckAndMutateRow`` * :class:`AppendRow` for ``ReadModifyWriteRow`` :type row_key: bytes :param row_key: The key for the current row. :type table: :class:`Table <gcloud.bigtable.table.Table>` :param table: The table that owns the row. """ def __init__(self, row_key, table): self._row_key = _to_bytes(row_key) self._table = table class _SetDeleteRow(Row): """Row helper for setting or deleting cell values. Implements helper methods to add mutations to set or delete cell contents: * :meth:`set_cell` * :meth:`delete` * :meth:`delete_cell` * :meth:`delete_cells` :type row_key: bytes :param row_key: The key for the current row. :type table: :class:`Table <gcloud.bigtable.table.Table>` :param table: The table that owns the row. """ ALL_COLUMNS = object() """Sentinel value used to indicate all columns in a column family.""" def _get_mutations(self, state): """Gets the list of mutations for a given state. This method intended to be implemented by subclasses. ``state`` may not need to be used by all subclasses. :type state: bool :param state: The state that the mutation should be applied in. :raises: :class:`NotImplementedError <exceptions.NotImplementedError>` always. """ raise NotImplementedError def _set_cell(self, column_family_id, column, value, timestamp=None, state=None): """Helper for :meth:`set_cell` Adds a mutation to set the value in a specific cell. ``state`` is unused by :class:`DirectRow` but is used by subclasses. :type column_family_id: str :param column_family_id: The column family that contains the column. Must be of the form ``[_a-zA-Z0-9][-_.a-zA-Z0-9]*``. :type column: bytes :param column: The column within the column family where the cell is located. :type value: bytes or :class:`int` :param value: The value to set in the cell. If an integer is used, will be interpreted as a 64-bit big-endian signed integer (8 bytes). :type timestamp: :class:`datetime.datetime` :param timestamp: (Optional) The timestamp of the operation. :type state: bool :param state: (Optional) The state that is passed along to :meth:`_get_mutations`. """ column = _to_bytes(column) if isinstance(value, six.integer_types): value = _PACK_I64(value) value = _to_bytes(value) if timestamp is None: # Use -1 for current Bigtable server time. timestamp_micros = -1 else: timestamp_micros = _microseconds_from_datetime(timestamp) # Truncate to millisecond granularity. timestamp_micros -= (timestamp_micros % 1000) mutation_val = data_pb2.Mutation.SetCell( family_name=column_family_id, column_qualifier=column, timestamp_micros=timestamp_micros, value=value, ) mutation_pb = data_pb2.Mutation(set_cell=mutation_val) self._get_mutations(state).append(mutation_pb) def _delete(self, state=None): """Helper for :meth:`delete` Adds a delete mutation (for the entire row) to the accumulated mutations. ``state`` is unused by :class:`DirectRow` but is used by subclasses. :type state: bool :param state: (Optional) The state that is passed along to :meth:`_get_mutations`. """ mutation_val = data_pb2.Mutation.DeleteFromRow() mutation_pb = data_pb2.Mutation(delete_from_row=mutation_val) self._get_mutations(state).append(mutation_pb) def _delete_cells(self, column_family_id, columns, time_range=None, state=None): """Helper for :meth:`delete_cell` and :meth:`delete_cells`. ``state`` is unused by :class:`DirectRow` but is used by subclasses. :type column_family_id: str :param column_family_id: The column family that contains the column or columns with cells being deleted. Must be of the form ``[_a-zA-Z0-9][-_.a-zA-Z0-9]*``. :type columns: :class:`list` of :class:`str` / :func:`unicode <unicode>`, or :class:`object` :param columns: The columns within the column family that will have cells deleted. If :attr:`ALL_COLUMNS` is used then the entire column family will be deleted from the row. :type time_range: :class:`TimestampRange` :param time_range: (Optional) The range of time within which cells should be deleted. :type state: bool :param state: (Optional) The state that is passed along to :meth:`_get_mutations`. """ mutations_list = self._get_mutations(state) if columns is self.ALL_COLUMNS: mutation_val = data_pb2.Mutation.DeleteFromFamily( family_name=column_family_id, ) mutation_pb = data_pb2.Mutation(delete_from_family=mutation_val) mutations_list.append(mutation_pb) else: delete_kwargs = {} if time_range is not None: delete_kwargs['time_range'] = time_range.to_pb() to_append = [] for column in columns: column = _to_bytes(column) # time_range will never change if present, but the rest of # delete_kwargs will delete_kwargs.update( family_name=column_family_id, column_qualifier=column, ) mutation_val = data_pb2.Mutation.DeleteFromColumn( **delete_kwargs) mutation_pb = data_pb2.Mutation( delete_from_column=mutation_val) to_append.append(mutation_pb) # We don't add the mutations until all columns have been # processed without error. mutations_list.extend(to_append) class DirectRow(_SetDeleteRow): """Google Cloud Bigtable Row for sending "direct" mutations. These mutations directly set or delete cell contents: * :meth:`set_cell` * :meth:`delete` * :meth:`delete_cell` * :meth:`delete_cells` These methods can be used directly:: >>> row = table.row(b'row-key1') >>> row.set_cell(u'fam', b'col1', b'cell-val') >>> row.delete_cell(u'fam', b'col2') .. note:: A :class:`DirectRow` accumulates mutations locally via the :meth:`set_cell`, :meth:`delete`, :meth:`delete_cell` and :meth:`delete_cells` methods. To actually send these mutations to the Google Cloud Bigtable API, you must call :meth:`commit`. :type row_key: bytes :param row_key: The key for the current row. :type table: :class:`Table <gcloud.bigtable.table.Table>` :param table: The table that owns the row. """ def __init__(self, row_key, table): super(DirectRow, self).__init__(row_key, table) self._pb_mutations = [] def _get_mutations(self, state): # pylint: disable=unused-argument """Gets the list of mutations for a given state. ``state`` is unused by :class:`DirectRow` but is used by subclasses. :type state: bool :param state: The state that the mutation should be applied in. :rtype: list :returns: The list to add new mutations to (for the current state). """ return self._pb_mutations def set_cell(self, column_family_id, column, value, timestamp=None): """Sets a value in this row. The cell is determined by the ``row_key`` of this :class:`DirectRow` and the ``column``. The ``column`` must be in an existing :class:`.ColumnFamily` (as determined by ``column_family_id``). .. note:: This method adds a mutation to the accumulated mutations on this row, but does not make an API request. To actually send an API request (with the mutations) to the Google Cloud Bigtable API, call :meth:`commit`. :type column_family_id: str :param column_family_id: The column family that contains the column. Must be of the form ``[_a-zA-Z0-9][-_.a-zA-Z0-9]*``. :type column: bytes :param column: The column within the column family where the cell is located. :type value: bytes or :class:`int` :param value: The value to set in the cell. If an integer is used, will be interpreted as a 64-bit big-endian signed integer (8 bytes). :type timestamp: :class:`datetime.datetime` :param timestamp: (Optional) The timestamp of the operation. """ self._set_cell(column_family_id, column, value, timestamp=timestamp, state=None) def delete(self): """Deletes this row from the table. .. note:: This method adds a mutation to the accumulated mutations on this row, but does not make an API request. To actually send an API request (with the mutations) to the Google Cloud Bigtable API, call :meth:`commit`. """ self._delete(state=None) def delete_cell(self, column_family_id, column, time_range=None): """Deletes cell in this row. .. note:: This method adds a mutation to the accumulated mutations on this row, but does not make an API request. To actually send an API request (with the mutations) to the Google Cloud Bigtable API, call :meth:`commit`. :type column_family_id: str :param column_family_id: The column family that contains the column or columns with cells being deleted. Must be of the form ``[_a-zA-Z0-9][-_.a-zA-Z0-9]*``. :type column: bytes :param column: The column within the column family that will have a cell deleted. :type time_range: :class:`TimestampRange` :param time_range: (Optional) The range of time within which cells should be deleted. """ self._delete_cells(column_family_id, [column], time_range=time_range, state=None) def delete_cells(self, column_family_id, columns, time_range=None): """Deletes cells in this row. .. note:: This method adds a mutation to the accumulated mutations on this row, but does not make an API request. To actually send an API request (with the mutations) to the Google Cloud Bigtable API, call :meth:`commit`. :type column_family_id: str :param column_family_id: The column family that contains the column or columns with cells being deleted. Must be of the form ``[_a-zA-Z0-9][-_.a-zA-Z0-9]*``. :type columns: :class:`list` of :class:`str` / :func:`unicode <unicode>`, or :class:`object` :param columns: The columns within the column family that will have cells deleted. If :attr:`ALL_COLUMNS` is used then the entire column family will be deleted from the row. :type time_range: :class:`TimestampRange` :param time_range: (Optional) The range of time within which cells should be deleted. """ self._delete_cells(column_family_id, columns, time_range=time_range, state=None) def commit(self): """Makes a ``MutateRow`` API request. If no mutations have been created in the row, no request is made. Mutations are applied atomically and in order, meaning that earlier mutations can be masked / negated by later ones. Cells already present in the row are left unchanged unless explicitly changed by a mutation. After committing the accumulated mutations, resets the local mutations to an empty list. :raises: :class:`ValueError <exceptions.ValueError>` if the number of mutations exceeds the :data:`MAX_MUTATIONS`. """ mutations_list = self._get_mutations(None) num_mutations = len(mutations_list) if num_mutations == 0: return if num_mutations > MAX_MUTATIONS: raise ValueError('%d total mutations exceed the maximum allowable ' '%d.' % (num_mutations, MAX_MUTATIONS)) request_pb = messages_pb2.MutateRowRequest( table_name=self._table.name, row_key=self._row_key, mutations=mutations_list, ) # We expect a `google.protobuf.empty_pb2.Empty` client = self._table._cluster._client client._data_stub.MutateRow(request_pb, client.timeout_seconds) self.clear() def clear(self): """Removes all currently accumulated mutations on the current row.""" del self._pb_mutations[:] class ConditionalRow(_SetDeleteRow): """Google Cloud Bigtable Row for sending mutations conditionally. Each mutation has an associated state: :data:`True` or :data:`False`. When :meth:`commit`-ed, the mutations for the :data:`True` state will be applied if the filter matches any cells in the row, otherwise the :data:`False` state will be applied. A :class:`ConditionalRow` accumulates mutations in the same way a :class:`DirectRow` does: * :meth:`set_cell` * :meth:`delete` * :meth:`delete_cell` * :meth:`delete_cells` with the only change the extra ``state`` parameter:: >>> row_cond = table.row(b'row-key2', filter_=row_filter) >>> row_cond.set_cell(u'fam', b'col', b'cell-val', state=True) >>> row_cond.delete_cell(u'fam', b'col', state=False) .. note:: As with :class:`DirectRow`, to actually send these mutations to the Google Cloud Bigtable API, you must call :meth:`commit`. :type row_key: bytes :param row_key: The key for the current row. :type table: :class:`Table <gcloud.bigtable.table.Table>` :param table: The table that owns the row. :type filter_: :class:`.RowFilter` :param filter_: Filter to be used for conditional mutations. """ def __init__(self, row_key, table, filter_): super(ConditionalRow, self).__init__(row_key, table) self._filter = filter_ self._true_pb_mutations = [] self._false_pb_mutations = [] def _get_mutations(self, state): """Gets the list of mutations for a given state. Over-ridden so that the state can be used in: * :meth:`set_cell` * :meth:`delete` * :meth:`delete_cell` * :meth:`delete_cells` :type state: bool :param state: The state that the mutation should be applied in. :rtype: list :returns: The list to add new mutations to (for the current state). """ if state: return self._true_pb_mutations else: return self._false_pb_mutations def commit(self): """Makes a ``CheckAndMutateRow`` API request. If no mutations have been created in the row, no request is made. The mutations will be applied conditionally, based on whether the filter matches any cells in the :class:`ConditionalRow` or not. (Each method which adds a mutation has a ``state`` parameter for this purpose.) Mutations are applied atomically and in order, meaning that earlier mutations can be masked / negated by later ones. Cells already present in the row are left unchanged unless explicitly changed by a mutation. After committing the accumulated mutations, resets the local mutations. :rtype: bool :returns: Flag indicating if the filter was matched (which also indicates which set of mutations were applied by the server). :raises: :class:`ValueError <exceptions.ValueError>` if the number of mutations exceeds the :data:`MAX_MUTATIONS`. """ true_mutations = self._get_mutations(state=True) false_mutations = self._get_mutations(state=False) num_true_mutations = len(true_mutations) num_false_mutations = len(false_mutations) if num_true_mutations == 0 and num_false_mutations == 0: return if (num_true_mutations > MAX_MUTATIONS or num_false_mutations > MAX_MUTATIONS): raise ValueError( 'Exceed the maximum allowable mutations (%d). Had %s true ' 'mutations and %d false mutations.' % ( MAX_MUTATIONS, num_true_mutations, num_false_mutations)) request_pb = messages_pb2.CheckAndMutateRowRequest( table_name=self._table.name, row_key=self._row_key, predicate_filter=self._filter.to_pb(), true_mutations=true_mutations, false_mutations=false_mutations, ) # We expect a `.messages_pb2.CheckAndMutateRowResponse` client = self._table._cluster._client resp = client._data_stub.CheckAndMutateRow( request_pb, client.timeout_seconds) self.clear() return resp.predicate_matched # pylint: disable=arguments-differ def set_cell(self, column_family_id, column, value, timestamp=None, state=True): """Sets a value in this row. The cell is determined by the ``row_key`` of this :class:`ConditionalRow` and the ``column``. The ``column`` must be in an existing :class:`.ColumnFamily` (as determined by ``column_family_id``). .. note:: This method adds a mutation to the accumulated mutations on this row, but does not make an API request. To actually send an API request (with the mutations) to the Google Cloud Bigtable API, call :meth:`commit`. :type column_family_id: str :param column_family_id: The column family that contains the column. Must be of the form ``[_a-zA-Z0-9][-_.a-zA-Z0-9]*``. :type column: bytes :param column: The column within the column family where the cell is located. :type value: bytes or :class:`int` :param value: The value to set in the cell. If an integer is used, will be interpreted as a 64-bit big-endian signed integer (8 bytes). :type timestamp: :class:`datetime.datetime` :param timestamp: (Optional) The timestamp of the operation. :type state: bool :param state: (Optional) The state that the mutation should be applied in. Defaults to :data:`True`. """ self._set_cell(column_family_id, column, value, timestamp=timestamp, state=state) def delete(self, state=True): """Deletes this row from the table. .. note:: This method adds a mutation to the accumulated mutations on this row, but does not make an API request. To actually send an API request (with the mutations) to the Google Cloud Bigtable API, call :meth:`commit`. :type state: bool :param state: (Optional) The state that the mutation should be applied in. Defaults to :data:`True`. """ self._delete(state=state) def delete_cell(self, column_family_id, column, time_range=None, state=True): """Deletes cell in this row. .. note:: This method adds a mutation to the accumulated mutations on this row, but does not make an API request. To actually send an API request (with the mutations) to the Google Cloud Bigtable API, call :meth:`commit`. :type column_family_id: str :param column_family_id: The column family that contains the column or columns with cells being deleted. Must be of the form ``[_a-zA-Z0-9][-_.a-zA-Z0-9]*``. :type column: bytes :param column: The column within the column family that will have a cell deleted. :type time_range: :class:`TimestampRange` :param time_range: (Optional) The range of time within which cells should be deleted. :type state: bool :param state: (Optional) The state that the mutation should be applied in. Defaults to :data:`True`. """ self._delete_cells(column_family_id, [column], time_range=time_range, state=state) def delete_cells(self, column_family_id, columns, time_range=None, state=True): """Deletes cells in this row. .. note:: This method adds a mutation to the accumulated mutations on this row, but does not make an API request. To actually send an API request (with the mutations) to the Google Cloud Bigtable API, call :meth:`commit`. :type column_family_id: str :param column_family_id: The column family that contains the column or columns with cells being deleted. Must be of the form ``[_a-zA-Z0-9][-_.a-zA-Z0-9]*``. :type columns: :class:`list` of :class:`str` / :func:`unicode <unicode>`, or :class:`object` :param columns: The columns within the column family that will have cells deleted. If :attr:`ALL_COLUMNS` is used then the entire column family will be deleted from the row. :type time_range: :class:`TimestampRange` :param time_range: (Optional) The range of time within which cells should be deleted. :type state: bool :param state: (Optional) The state that the mutation should be applied in. Defaults to :data:`True`. """ self._delete_cells(column_family_id, columns, time_range=time_range, state=state) # pylint: enable=arguments-differ def clear(self): """Removes all currently accumulated mutations on the current row.""" del self._true_pb_mutations[:] del self._false_pb_mutations[:] class AppendRow(Row): """Google Cloud Bigtable Row for sending append mutations. These mutations are intended to augment the value of an existing cell and uses the methods: * :meth:`append_cell_value` * :meth:`increment_cell_value` The first works by appending bytes and the second by incrementing an integer (stored in the cell as 8 bytes). In either case, if the cell is empty, assumes the default empty value (empty string for bytes or and 0 for integer). :type row_key: bytes :param row_key: The key for the current row. :type table: :class:`Table <gcloud.bigtable.table.Table>` :param table: The table that owns the row. """ def __init__(self, row_key, table): super(AppendRow, self).__init__(row_key, table) self._rule_pb_list = [] def clear(self): """Removes all currently accumulated modifications on current row.""" del self._rule_pb_list[:] def append_cell_value(self, column_family_id, column, value): """Appends a value to an existing cell. .. note:: This method adds a read-modify rule protobuf to the accumulated read-modify rules on this row, but does not make an API request. To actually send an API request (with the rules) to the Google Cloud Bigtable API, call :meth:`commit`. :type column_family_id: str :param column_family_id: The column family that contains the column. Must be of the form ``[_a-zA-Z0-9][-_.a-zA-Z0-9]*``. :type column: bytes :param column: The column within the column family where the cell is located. :type value: bytes :param value: The value to append to the existing value in the cell. If the targeted cell is unset, it will be treated as containing the empty string. """ column = _to_bytes(column) value = _to_bytes(value) rule_pb = data_pb2.ReadModifyWriteRule(family_name=column_family_id, column_qualifier=column, append_value=value) self._rule_pb_list.append(rule_pb) def increment_cell_value(self, column_family_id, column, int_value): """Increments a value in an existing cell. Assumes the value in the cell is stored as a 64 bit integer serialized to bytes. .. note:: This method adds a read-modify rule protobuf to the accumulated read-modify rules on this row, but does not make an API request. To actually send an API request (with the rules) to the Google Cloud Bigtable API, call :meth:`commit`. :type column_family_id: str :param column_family_id: The column family that contains the column. Must be of the form ``[_a-zA-Z0-9][-_.a-zA-Z0-9]*``. :type column: bytes :param column: The column within the column family where the cell is located. :type int_value: int :param int_value: The value to increment the existing value in the cell by. If the targeted cell is unset, it will be treated as containing a zero. Otherwise, the targeted cell must contain an 8-byte value (interpreted as a 64-bit big-endian signed integer), or the entire request will fail. """ column = _to_bytes(column) rule_pb = data_pb2.ReadModifyWriteRule(family_name=column_family_id, column_qualifier=column, increment_amount=int_value) self._rule_pb_list.append(rule_pb) def commit(self): """Makes a ``ReadModifyWriteRow`` API request. This commits modifications made by :meth:`append_cell_value` and :meth:`increment_cell_value`. If no modifications were made, makes no API request and just returns ``{}``. Modifies a row atomically, reading the latest existing timestamp / value from the specified columns and writing a new value by appending / incrementing. The new cell created uses either the current server time or the highest timestamp of a cell in that column (if it exceeds the server time). After committing the accumulated mutations, resets the local mutations. .. code:: python >>> append_row.commit() { u'col-fam-id': { b'col-name1': [ (b'cell-val', datetime.datetime(...)), (b'cell-val-newer', datetime.datetime(...)), ], b'col-name2': [ (b'altcol-cell-val', datetime.datetime(...)), ], }, u'col-fam-id2': { b'col-name3-but-other-fam': [ (b'foo', datetime.datetime(...)), ], }, } :rtype: dict :returns: The new contents of all modified cells. Returned as a dictionary of column families, each of which holds a dictionary of columns. Each column contains a list of cells modified. Each cell is represented with a two-tuple with the value (in bytes) and the timestamp for the cell. :raises: :class:`ValueError <exceptions.ValueError>` if the number of mutations exceeds the :data:`MAX_MUTATIONS`. """ num_mutations = len(self._rule_pb_list) if num_mutations == 0: return {} if num_mutations > MAX_MUTATIONS: raise ValueError('%d total append mutations exceed the maximum ' 'allowable %d.' % (num_mutations, MAX_MUTATIONS)) request_pb = messages_pb2.ReadModifyWriteRowRequest( table_name=self._table.name, row_key=self._row_key, rules=self._rule_pb_list, ) # We expect a `.data_pb2.Row` client = self._table._cluster._client row_response = client._data_stub.ReadModifyWriteRow( request_pb, client.timeout_seconds) # Reset modifications after commit-ing request. self.clear() # NOTE: We expect row_response.key == self._row_key but don't check. return _parse_rmw_row_response(row_response) def _parse_rmw_row_response(row_response): """Parses the response to a ``ReadModifyWriteRow`` request. :type row_response: :class:`.data_pb2.Row` :param row_response: The response row (with only modified cells) from a ``ReadModifyWriteRow`` request. :rtype: dict :returns: The new contents of all modified cells. Returned as a dictionary of column families, each of which holds a dictionary of columns. Each column contains a list of cells modified. Each cell is represented with a two-tuple with the value (in bytes) and the timestamp for the cell. For example: .. code:: python { u'col-fam-id': { b'col-name1': [ (b'cell-val', datetime.datetime(...)), (b'cell-val-newer', datetime.datetime(...)), ], b'col-name2': [ (b'altcol-cell-val', datetime.datetime(...)), ], }, u'col-fam-id2': { b'col-name3-but-other-fam': [ (b'foo', datetime.datetime(...)), ], }, } """ result = {} for column_family in row_response.families: column_family_id, curr_family = _parse_family_pb(column_family) result[column_family_id] = curr_family return result def _parse_family_pb(family_pb): """Parses a Family protobuf into a dictionary. :type family_pb: :class:`._generated.bigtable_data_pb2.Family` :param family_pb: A protobuf :rtype: tuple :returns: A string and dictionary. The string is the name of the column family and the dictionary has column names (within the family) as keys and cell lists as values. Each cell is represented with a two-tuple with the value (in bytes) and the timestamp for the cell. For example: .. code:: python { b'col-name1': [ (b'cell-val', datetime.datetime(...)), (b'cell-val-newer', datetime.datetime(...)), ], b'col-name2': [ (b'altcol-cell-val', datetime.datetime(...)), ], } """ result = {} for column in family_pb.columns: result[column.qualifier] = cells = [] for cell in column.cells: val_pair = ( cell.value, _datetime_from_microseconds(cell.timestamp_micros), ) cells.append(val_pair) return family_pb.name, result
15c810e41d2e35212936b8338a7b64880501a161
65686dde7560955b2b30011304df350bfb2c7674
/publishconf.py
9800b4c9633b7964bd468cd94f69b25655eacf16
[ "MIT" ]
permissive
BenDoan/Ben-Doan-Portfolio
35bde70d1b4209d80058e5cdc67f8a09dbfc7311
38e9fd503907deea4d3a2dcc036a72057474af02
refs/heads/master
2016-09-01T07:37:21.607951
2014-02-19T04:40:47
2014-02-19T04:40:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
356
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # import sys sys.path.append('.') from pelicanconf import * SITEURL = 'http://www.bendoan.me' DELETE_OUTPUT_DIRECTORY = True # Following items are often useful when publishing # Uncomment following line for absolute URLs in production: #RELATIVE_URLS = False #DISQUS_SITENAME = "" #GOOGLE_ANALYTICS = ""
20308af37baed98882205bef8b536668b1c942b4
0edd5fc4975c112c010267ba235350d8e57e696b
/10_mongo/mongo.py
b069bb37efd5b9ffc1288ad8a35c8cd778d1289a
[]
no_license
hliu01/Softdev2019
33963111f502197a25bf300c066b3968e361e473
766d89a19cc679a68f6ff23ded7728abecbdc674
refs/heads/master
2022-12-10T07:00:21.025185
2020-04-21T12:11:16
2020-04-21T12:11:16
207,879,805
0
2
null
2022-12-08T07:25:08
2019-09-11T18:28:06
HTML
UTF-8
Python
false
false
2,807
py
#Peihua Huang, Henry Liu (Team Computers) #SoftDev1 pd1 #K10 -- Import/Export Bank #2020-02-28 # Name of Dataset: Current US Senators # Description: The dataset contains basic information on all the current US Senators # Hyperlink: https://www.govtrack.us/api/v2/role?current=true&role_type=senator # Brief Summary: We imported the dataset by first opening the file and then using loads from bson.json_util to convert the json file into a dictonary. We then inserted each of the senator entries into the mongodb one line at a time. from bson.json_util import loads from pymongo import MongoClient client = MongoClient() db = client.computers db.senators.drop() senators = db.senators file = open("primer-dataset.json", "r") content = loads(file.read())["objects"] for i in range(len(content)): senators.insert_one(content[i]) # for item in senators.find({}, {"person.name" : 1}): # print(item) def find_state(state): '''Returns all senators representing the specified state''' return senators.find({"state" : state}, {"_id" : 0, "person.name" : 1}) def find_party(party): '''Returns all senators in specified party''' return senators.find({"party" : party}, {"_id" : 0, "person.name" : 1}) def find_gender(gender): '''Returns all senators of specified gender''' return senators.find({"person.gender" : gender}, {"_id" : 0, "person.name" : 1}) def find_website(firstname): '''Returns website of all senators with a given first name''' return senators.find({"person.firstname" : firstname}, {"_id" : 0, "person.name" : 1, "website" : 1}) def find_description(lastname): '''Returns description of all senators with a given last name''' return senators.find({"person.lastname" : lastname}, {"_id" : 0, "person.name" : 1, "description" : 1}) def find_num_gender(gender, number): '''Return num number of senators of specified gender''' return senators.find({"person.gender" : gender}, {"_id" : 0, "person.name" : 1}).limit(number) print("-----FINDING ALL SENATORS IN NY-----") for item in find_state("NY"): print(item["person"]["name"]) print("-----FINDING ALL DEMOCRATIC SENATORS-----") for item in find_party("Democrat"): print(item["person"]["name"]) print("----FINDING ALL FEMALE SENATORS-----") for item in find_gender("female"): print(item["person"]["name"]) print("-----FINDING WEBSITE OF SENATORS WHOSE FIRST NAME IS KEVIN-----") for item in find_website("Kevin"): print(item["person"]["name"],":", item["website"]) print("-----FINDING DESCRIPTION OF SENATORS WHOSE LAST NAME IS ALEXANDER-----") for item in find_description("Alexander"): print(item["person"]["name"], ":", item["description"]) print("-----FINDING 5 MALE SENATORS-----") for item in find_num_gender("male", 5): print(item["person"]["name"])
287049a01cdc9d370dabf60d5f00c362488fd3f5
7b5828edda7751700ca7002b40a214e39e5f48a8
/EA/simulation/server_commands/crafting_commands.py
bda36e7403b1b53df74c775823d29c97068e6327
[]
no_license
daniela-venuta/Sims-4-Python-Script-Workspace
54c33dac02f84daed66f46b7307f222fede0fa62
f408b28fb34626b2e3b2953152343d591a328d66
refs/heads/main
2023-03-29T18:08:39.202803
2021-03-30T19:00:42
2021-03-30T19:00:42
353,111,243
1
0
null
null
null
null
UTF-8
Python
false
false
4,637
py
from carry.carry_postures import CarryingObject from crafting import recipe from crafting.crafting_interactions import create_craftable from crafting.crafting_process import CRAFTING_QUALITY_LIABILITY from crafting.recipe import Recipe from server_commands.argument_helpers import OptionalTargetParam, get_optional_target, TunableInstanceParam import crafting.crafting_process import services import sims4.commands from sims4.resources import Types from tag import Tag @sims4.commands.Command('crafting.shorten_phases', command_type=sims4.commands.CommandType.Automation) def shorten_phases(enabled:bool=None, _connection=None): output = sims4.commands.Output(_connection) if enabled is None: do_enabled = not crafting.crafting_process.shorten_all_phases else: do_enabled = enabled crafting.crafting_process.shorten_all_phases = do_enabled if enabled is None: if do_enabled: output('Crafting phases are shortened.') else: output('Crafting phases are normal length.') return True @sims4.commands.Command('crafting.get_recipes_with_tag', command_type=sims4.commands.CommandType.Automation) def get_recipes_with_tag(tag:Tag, _connection=None): output = sims4.commands.Output(_connection) automation_output = sims4.commands.AutomationOutput(_connection) recipes = services.get_instance_manager(sims4.resources.Types.RECIPE).get_ordered_types(only_subclasses_of=Recipe) automation_output('CraftingGetRecipesWithTag; Status:Begin') for (i, recipe) in enumerate(recipes): if tag not in recipe.recipe_tags: pass elif recipe.final_product.definition is None: pass else: automation_output('CraftingGetRecipesWithTag; Status:Data, RecipeId:{}, Recipe:{}, ProductId:{}'.format(recipe.guid64, recipe.__name__, recipe.final_product_definition_id)) output('{}:{}'.format(recipe.guid64, recipe.__name__)) automation_output('CraftingGetRecipesWithTag; Status:End') return True @sims4.commands.Command('crafting.create_recipe', command_type=sims4.commands.CommandType.Automation) def create_recipe(recipe:TunableInstanceParam(Types.RECIPE), opt_sim:OptionalTargetParam=None, _connection=None): output = sims4.commands.Output(_connection) automation_output = sims4.commands.AutomationOutput(_connection) sim = get_optional_target(opt_sim, _connection) if sim is None: output('No sim for recipe creation') automation_output('CraftingCreateRecipe; Status:No Sim') return False craftable = create_craftable(recipe, sim) if craftable is None: output('Failed To Create Craftable') automation_output('CraftingCreateRecipe; Status:Failed To Create Craftable') return False CarryingObject.snap_to_good_location_on_floor(craftable, starting_transform=sim.transform, starting_routing_surface=sim.routing_surface) automation_output('CraftingCreateRecipe; Status:Success, ObjectId:{}'.format(craftable.id)) return True @sims4.commands.Command('crafting.show_quality') def show_quality(opt_sim:OptionalTargetParam=None, _connection=None): sim = get_optional_target(opt_sim, _connection) if sim is None: sims4.commands.output('No sim for crafting.show_quality', _connection) return False crafting_liability = None for si in sim.si_state: crafting_liability = si.get_liability(CRAFTING_QUALITY_LIABILITY) if crafting_liability is not None: break if crafting_liability is None: sims4.commands.output('Sim {} is not doing any crafting interaction'.format(sim), _connection) return False (quality_state, quality_stats_value) = crafting_liability.get_quality_state_and_value() quality_state_strings = ['None', 'Poor', 'Normal', 'Outstanding'] quality_state = quality_state or 0 sims4.commands.output('Sim {} current crafting quality is {}({})'.format(sim, quality_state_strings[quality_state], quality_stats_value), _connection) return True @sims4.commands.Command('crafting.ingredients_required_toggle', command_type=sims4.commands.CommandType.Cheat) def toggle_ingredients_required(_connection=None): recipe.debug_ingredient_requirements = not recipe.debug_ingredient_requirements if recipe.debug_ingredient_requirements: message = 'Ingredient requirements have been enabled.' else: message = 'Ingredient requirements disabled. Craft at will.' sims4.commands.output(message, _connection)
d640bf3aac532615b91484e1cd51ded14014ffbe
17f1811abda6c828460b77f460671f9c2f464204
/30DaysLC/min_stack.py
a81298fa266de49863efd9b54f793c1d53e3772a
[]
no_license
rishabhranawat/challenge
f10f69fc30881a0571c4321b466a89aeeb06e568
e836343be5185f8843bb77197fccff250e9a77e3
refs/heads/master
2021-01-21T15:13:47.590675
2020-04-25T15:26:42
2020-04-25T15:26:42
91,833,947
0
0
null
null
null
null
UTF-8
Python
false
false
666
py
class MinStack(object): def __init__(self): """ initialize your data structure here. """ self.data = [] self.size = 0 def push(self, x): """ :type x: int :rtype: None """ self.data.append(x) self.size += 1 def pop(self): """ :rtype: None """ self.size -= 1 return self.data.pop(self.size) def top(self): """ :rtype: int """ print(self.size, self.data) return self.data[self.size] def getMin(self): """ :rtype: int """ return min(self.data) # Your MinStack object will be instantiated and called as such: # obj = MinStack() # obj.push(x) # obj.pop() # param_3 = obj.top() # param_4 = obj.getMin()
b8d525e33f60b7ccc184e2c1f10ad0dfe3ea2c1d
47ef11c80f1147940d5bd17d03bdf54a0cfb8648
/rundoozer/setup.py
0ed0a4580f83c3783ab85e48eb1022653514e4fc
[ "Apache-2.0" ]
permissive
jupierce/doozer
71b5f686437c802e775f3137e7b494fed1d756b8
564ad02f01ebdb55ed176c07e36986a8b0262857
refs/heads/master
2023-08-27T08:17:42.634261
2019-10-17T14:57:09
2019-10-17T14:57:09
215,615,398
0
0
Apache-2.0
2019-10-16T18:19:40
2019-10-16T18:19:40
null
UTF-8
Python
false
false
714
py
#!/usr/bin/env python # -*- coding: utf-8 -*- from setuptools import setup def _get_version(): from os.path import abspath, dirname, join filename = join(dirname(abspath(__file__)), '../doozerlib', 'VERSION') return open(filename).read().strip() setup( name="rundoozer", author="AOS ART Team", author_email="[email protected]", version=_get_version(), description="CLI tool for managing and automating Red Hat software releases", url="https://github.com/openshift/doozer", license="Red Hat Internal", packages=[], include_package_data=True, scripts=[ 'rundoozer' ], install_requires=['pydotconfig>=0.1.5'], dependency_links=[] )
5cb34e4746ad5de4d2bb25315c334f9b429ceef2
da4e01fd4e15e835a2cef4a3b9dee9ef582f1333
/mosquitto_byte.py
5b9f856d2dc02827d1f7a122e6a548c17dea4c1b
[ "Apache-2.0" ]
permissive
PBearson/MosquittoByte
f7a4708ce9f0c17c46cab925fce62003d0b892b3
f93684dc660382db91a6f9dd781fe65d0b902957
refs/heads/master
2023-07-07T14:26:42.882500
2021-04-24T22:06:15
2021-04-24T22:06:15
342,062,663
1
0
null
2021-04-07T16:17:19
2021-02-24T23:18:27
Python
UTF-8
Python
false
false
32,446
py
import socket import random import time import sys import argparse import math import os import os.path import select import subprocess import difflib import threading from os import path from datetime import datetime from difflib import SequenceMatcher # Remove bytes in a string # f : the fuzzable object # nb : the number of bytes to remove in f def remove(f, nb): for n in range(nb): base = random.randint(0, len(f)) f = f[0:base] + f[base + 1:] return f # Add bytes in a string # f : the fuzzable object # nb : the number of bytes to add to f def add(f, nb): for n in range(nb): base = random.randint(0, len(f)) byte = random.getrandbits(8).to_bytes(1, sys.byteorder) f = f[0:base] + byte + f[base:] return f # Mutate bytes in a string # f : the fuzzable object # nb : the number of bytes to mutate in f def mutate(f, nb): bits = random.sample(range(len(f)), min(nb, len(f))) for b in bits: byte = random.getrandbits(8).to_bytes(1, sys.byteorder) f = f[0:b] + byte + f[b + 1:] return f def get_payload(file): f = open(file, "r") packets = f.read().splitlines() selection = random.choice(packets) f.close() return bytearray.fromhex(selection) def get_all_payloads(): all_payloads = { "connect": get_payload("mqtt_corpus/CONNECT"), "connack": get_payload("mqtt_corpus/CONNACK"), "pingreq": get_payload("mqtt_corpus/PINGREQ"), "pingresp": get_payload("mqtt_corpus/PINGRESP"), "auth": get_payload("mqtt_corpus/AUTH"), "publish": get_payload("mqtt_corpus/PUBLISH"), "puback": get_payload("mqtt_corpus/PUBACK"), "pubrec": get_payload("mqtt_corpus/PUBREC"), "pubrel": get_payload("mqtt_corpus/PUBREL"), "pubcomp": get_payload("mqtt_corpus/PUBCOMP"), "subscribe": get_payload("mqtt_corpus/SUBSCRIBE"), "suback": get_payload("mqtt_corpus/SUBACK"), "unsubscribe": get_payload("mqtt_corpus/UNSUBSCRIBE"), "unsuback": get_payload("mqtt_corpus/UNSUBACK"), "disconnect": get_payload("mqtt_corpus/DISCONNECT"), "reserved": get_payload("mqtt_corpus/RESERVED") } return all_payloads # Return c / 100 * len(f), where c is a random number between a and b # a : a number between 0 and 100 # b : a number between a and 100 # f : the fuzzable object def select_param_value(f, a, b): if a == b: c = round(a / 100 * len(f)) else: c = random.choice(range(a, b)) c = round(c / 100 * len(f)) return c def fuzz_target(f, params): # Get number of bytes to mutate num_mutate_bytes = select_param_value(f, params["min_mutate"], params["max_mutate"]) # Get number of bytes to add if params["super_add_enable"] == 0: num_add_bytes = random.randint(params["super_add_min"], params["super_add_max"]) else: num_add_bytes = select_param_value(f, params["min_add"], params["max_add"]) # Get number of bytes to remove num_remove_bytes = select_param_value(f, params["min_remove"], params["max_remove"]) # Randomize which operations we do fuzz_opts = ["mutate", "add", "remove"] fuzz_rounds = random.randint(params["min_fuzz_rounds"], params["max_fuzz_rounds"]) for fr in range(fuzz_rounds): fuzz_selection = random.sample(fuzz_opts, random.randint(1, 3)) for s in fuzz_selection: if s == "mutate": f = mutate(f, num_mutate_bytes) elif s == "add": f = add(f, num_add_bytes) elif s == "remove": f = remove(f, num_remove_bytes) return f def source_payload_with_filestream_response(params): f = open(output_directory + "/filestream_responses.txt", "r") packets = f.readlines()[1:] selection_index = random.randint(0, len(packets) - 1) selection = packets[selection_index].split(",")[1] payload = bytearray.fromhex(selection) f.close() return fuzz_target(payload, params), selection_index def source_payload_with_network_response(params): f = open(output_directory + "/network_responses.txt", "r") packets = f.read().splitlines()[1:] selection_index = random.randint(0, len(packets) - 1) selection = packets[selection_index].split(",")[1] payload = bytearray.fromhex(selection) f.close() return fuzz_target(payload, params), selection_index def source_payload_with_crash(params): f = open(output_directory + "/crashes.txt", "r") packets = f.read().splitlines()[1:] selection_index = random.randint(0, len(packets) - 1) selection = packets[selection_index].split(",")[11] payload = bytearray.fromhex(selection) f.close() return fuzz_target(payload, params), selection_index # Return a tuple (a, b) where a and b are between abs_min and abs_max and a <= b def get_min_max(abs_min, abs_max): a = random.randint(abs_min, abs_max) b = random.randint(abs_min, abs_max) if a < b: return (a, b) return (b, a) def get_params(): min_mutate, max_mutate = get_min_max(0, 10 * fuzz_intensity) min_add, max_add = get_min_max(0, 10 * fuzz_intensity) super_add_min, super_add_max = get_min_max(0, 1000 * fuzz_intensity) super_add_enable = random.randint(0, 50) min_remove, max_remove = get_min_max(0, 10 * fuzz_intensity) min_fuzz_rounds, max_fuzz_rounds = get_min_max(0, fuzz_intensity) # However non-intuitive, a sourcing value of 0 means that the fuzzer WILL source from that target. For example, if sourcing_from_crash = 0 (i.e., source_frequency = 4), then we will source from the crashes log. if source_frequency == 0: sourcing_from_crash = 1 elif source_frequency == 1: sourcing_from_crash = random.randint(0, 100) elif source_frequency == 2: sourcing_from_crash = random.randint(0, 10) elif source_frequency == 3: sourcing_from_crash = random.randint(0, 1) else: sourcing_from_crash = 0 if network_response_frequency == 0: sourcing_from_network = 1 elif network_response_frequency == 1: sourcing_from_network = random.randint(0, 100) elif network_response_frequency == 2: sourcing_from_network = random.randint(0, 10) elif network_response_frequency == 3: sourcing_from_network = random.randint(0, 1) else: sourcing_from_network = 0 if filestream_response_frequency == 0: sourcing_from_filestream = 1 elif filestream_response_frequency == 1: sourcing_from_filestream = random.randint(0, 100) elif filestream_response_frequency == 2: sourcing_from_filestream = random.randint(0, 10) elif filestream_response_frequency == 3: sourcing_from_filestream = random.randint(0, 1) else: sourcing_from_filestream = 0 params = { "min_mutate": min_mutate, "max_mutate": max_mutate, "min_add": min_add, "max_add": max_add, "super_add_enable": super_add_enable, "super_add_min": super_add_min, "super_add_max": super_add_max, "min_remove": min_remove, "max_remove": max_remove, "min_fuzz_rounds": min_fuzz_rounds, "max_fuzz_rounds": max_fuzz_rounds, "sourcing_from_crash": sourcing_from_crash, "sourcing_from_network": sourcing_from_network, "sourcing_from_filestream": sourcing_from_filestream } return params def check_duplicate_source(payload): f = open(output_directory + "/crashes.txt", "r") packets = f.read().splitlines()[1:] f.close() for p in packets: curr = p.split(",")[11].strip(" ") if payload.hex() == curr: return True return False # Check for duplicate responses in the broker response log. # This includes responses that are too similar, but not exactly # duplicates. def check_duplicate_network_response(response): if not path.exists(output_directory + "/network_responses_raw.txt"): return False f = open(output_directory + "/network_responses_raw.txt", "r") packets = f.read().splitlines() f.close() for p in packets: similarity = SequenceMatcher(None, p, response.hex()).ratio() if similarity >= max_network_response_threshold: return True return False # Check for duplicate responses in the stream response log. # This includes responses that are too similar, but not exactly # duplicates. def check_duplicate_filestream_response(response): if not path.exists(output_directory + "/filestream_responses_raw.txt"): return False f = open(output_directory + "/filestream_responses_raw.txt", "r") packets = f.read().splitlines() f.close() for p in packets: similarity = SequenceMatcher(None, p, response).ratio() if similarity >= max_filestream_response_threshold: return True return False def get_last_index(): try: f = open(output_directory + "/crashes.txt", "r") last_entry = f.read().splitlines()[-1] last_index = last_entry.split(",")[0] f.close() return int(last_index) except (FileNotFoundError, ValueError): return -1 def handle_network_response(payload, response): if not path.exists(output_directory + "/network_responses.txt"): f = open(output_directory + "/network_responses.txt", "w") f.write("Timestamp, Payload, Response\n") f.close() duplicate_response = check_duplicate_network_response(response) f = open(output_directory + "/network_responses.txt", "r") f_len = len(f.read().splitlines()) f.close() if not duplicate_response and f_len < max_network_response_entries: f = open(output_directory + "/network_responses.txt", "a") f.write("%s, %s, %s\n" % (datetime.now(), payload.hex(), response.hex())) f.close() f = open(output_directory + "/network_responses_raw.txt", "a") f.write("%s\n" % response.hex()) f.close() def stream_response_has_keyword(resp, payload): f = open("keywords.txt", "r") keywords = f.read().splitlines() for k in keywords: if k.upper() in resp.upper(): return True return False def handle_filestream_response(proc): if not path.exists(output_directory + "/filestream_responses.txt"): f = open(output_directory + "/filestream_responses.txt", "w") f.write("Timestamp, Payload, Response\n") f.close() for line in iter(proc.stdout.readline, b''): # Remove in-line EOL characters line = line.decode("latin").replace(r"\n", "").replace(r"\r", "") if "current_payload" in globals(): has_keyword = stream_response_has_keyword(line, current_payload) duplicate_response = check_duplicate_filestream_response(line) logging_check = True if filestream_logging_preference < 2: logging_check = filestream_logging_preference & has_keyword if logging_check and not duplicate_response: f = open(output_directory + "/filestream_responses.txt", "a") f.write("%s, %s, %s" % (datetime.now(), current_payload.hex(), line)) f.close() f = open(output_directory + "/filestream_responses_raw.txt", "a") f.write(line) f.close() def start_broker(): try: proc = subprocess.Popen(broker_exe.split(), stdout=subprocess.PIPE, stderr=subprocess.STDOUT) if not no_filestream_response_log: broker_thread = threading.Thread(target=handle_filestream_response, args=(proc,)) broker_thread.start() if verbosity >= 1: print("Waiting for broker to start") while True: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: s.connect((host, port)) s.close() break except ConnectionRefusedError: time.sleep(0.1) except FileNotFoundError: print("The broker command/location you provided does not exist.") exit() def handle_crash(): if "last_fuzz" not in globals(): if verbosity >= 5: print("There was an error connecting to the broker.") try: start_broker() except NameError: print("No MQTT process appears to be running at %s:%s, and you have not defined a broker exe. You must do one or the other." % (host, port)) exit() else: if not path.exists(output_directory + "/crashes.txt"): f = open(output_directory + "/crashes.txt", "w") f.write("Index, Timestamp, Seed, Fuzz intensity, Construct intensity, Crash index, Network response index, Filestream response index, Crash source frequency, Network source frequency, Filestream source frequency, Payload\n") f.close() seed = last_fuzz["seed"] fi = last_fuzz["fuzz_intensity"] ci = last_fuzz["construct_intensity"] si = last_fuzz["crash_index"] nri = last_fuzz["network_response_index"] fri = last_fuzz["filestream_response_index"] sf = last_fuzz["source_frequency"] nrf = last_fuzz["network_response_frequency"] frf = last_fuzz["filestream_response_frequency"] payload = last_fuzz["payload"] if verbosity >= 1: print("The following payload crashed the program") print(payload.hex()) index = get_last_index() + 1 duplicate_source = check_duplicate_source(payload) if not duplicate_source: f = open(output_directory + "/crashes.txt", "a") f.write("%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s\n" % (index, datetime.now(), seed, fi, ci, si, nri, fri, sf, nrf, frf, payload.hex())) f.close() f = open(output_directory + "/crashes_raw.txt", "a") f.write("%s\n" % payload.hex()) f.close() if not restart_on_crash: exit() else: start_broker() # Construct the payload according the construct intensity def construct_payload(all_payloads): selected_payloads = [] if construct_intensity == 0: allowed_payloads = ["auth", "pingreq", "pubcomp", "publish", "pubrec", "pubrel", "subscribe", "unsubscribe"] payloads_subset = {e: all_payloads[e] for e in allowed_payloads} selected_payloads.append("connect") key, val = random.choice(list(payloads_subset.items())) selected_payloads.append(key) selected_payloads.append("disconnect") elif construct_intensity == 1: allowed_payloads = ["auth", "pingreq", "pubcomp", "publish", "pubrec", "pubrel", "subscribe", "unsubscribe"] payloads_subset = {e: all_payloads[e] for e in allowed_payloads} num_packets = random.randint(1, 5) selected_payloads = dict(random.sample(list(payloads_subset.items()), num_packets)).keys() elif construct_intensity == 2: num_packets = random.randint(1, 10) selected_payloads = dict(random.sample(list(all_payloads.items()), num_packets)).keys() else: num_packets = random.randint(1, 20) for n in range(num_packets): key, val = random.choice(list(all_payloads.items())) selected_payloads.append(key) enumerated_payloads = {} payload = b"" for s in selected_payloads: payload = payload + all_payloads[s] enumerated_payloads[s] = all_payloads[s] return (payload, enumerated_payloads) def fuzz_payloads(all_payloads, params): for a in all_payloads: all_payloads[a] = fuzz_target(all_payloads[a], params) return all_payloads # Fuzz MQTT c_len = -1 nr_len = -1 fr_len = -1 def fuzz(seed): global last_fuzz, current_payload, c_len, nr_len, fr_len random.seed(seed) params = get_params() if c_len < 2: # Get number of entries in crash file so far try: f = open(output_directory + "/crashes.txt", "r") c_len = len(f.read().splitlines()) f.close() except FileNotFoundError: c_len = -1 if nr_len < 2: # Get number of entries in network response file so far try: f = open(output_directory + "/network_responses.txt", "r") nr_len = len(f.read().splitlines()) f.close() except FileNotFoundError: nr_len = -1 if fr_len < 2: # Get number of entries in filestream response file so far try: f = open(output_directory + "/filestream_responses.txt", "r") fr_len = len(f.read().splitlines()) f.close() except FileNotFoundError: fr_len = -1 crash_index = None network_response_index = None filestream_response_index = None # Order of preference for sourcing: crash log > filestream log > network log # Don't source the fuzzer with anything if (c_len < 2 or not params["sourcing_from_crash"] == 0) and (nr_len < 2 or not params["sourcing_from_network"] == 0) and (fr_len < 2 or not params["sourcing_from_filestream"] == 0): all_payloads = fuzz_payloads(get_all_payloads(), params) payload, enumerated_payloads = construct_payload(all_payloads) # Source with previous crash elif c_len >= 2 and params["sourcing_from_crash"] == 0: payload, crash_index = source_payload_with_crash(params) # Source with filestream response elif fr_len >= 2 and params["sourcing_from_filestream"] == 0: payload, filestream_response_index = source_payload_with_filestream_response(params) # Source with network response else: payload, network_response_index = source_payload_with_network_response(params) if payload_only: print("\nCrash index: " + str(crash_index)) print("Network response index: " + str(network_response_index)) print("Filestream response index: " + str(filestream_response_frequency)) if not params["sourcing_from_crash"] == 0 and not params["sourcing_from_network"] == 0 and not params["sourcing_from_filestream"] == 0: print("\nFuzzed payload:\t" + payload.hex()) for p in enumerated_payloads: print("%s: %s" % (p, enumerated_payloads[p].hex())) else: print("\nFuzzed payload:\t" + payload.hex()) exit() current_payload = payload s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: s.connect((host, port)) s.send(payload) except ConnectionRefusedError: handle_crash() return except ConnectionResetError: return if(verbosity >= 4): print("Crash log index:\t", crash_index) print("Network log index:\t", network_response_index) print("Filestream log index:\t", filestream_response_index) if(verbosity >= 1): print("Fuzzed payload:\t\t", payload.hex()) ready = select.select([s], [], [], response_delay) if ready[0]: try: response = s.recv(1024) if not no_network_response_log: handle_network_response(payload, response) if verbosity >= 5: print("Network response:\t", response.hex()) except ConnectionResetError: if verbosity >= 4: print("Error:\t\t\t Broker reset connection.") else: if verbosity >= 4: print("Error:\t\t\tBroker was not ready for reading.") s.close() # Update the last fuzz params last_fuzz = { "seed": seed, "fuzz_intensity": fuzz_intensity, "construct_intensity": construct_intensity, "crash_index": crash_index, "network_response_index": network_response_index, "filestream_response_index": filestream_response_index, "source_frequency": source_frequency, "network_response_frequency": network_response_frequency, "filestream_response_frequency": filestream_response_frequency, "payload": payload } def main(argv): parser = argparse.ArgumentParser() parser.add_argument("-H", "--host", help = "Fuzzing target host. Default is localhost.") parser.add_argument("-P", "--port", help = "Fuzzing target port. Default is 1883.") parser.add_argument("-B", "--broker_exe", help = "Set the broker exe command/location. If the broker crashes, this can be used to restart it.") parser.add_argument("-R", "--restart_on_crash", help = "If set, the fuzzer will try to use the option provided by 'broker_exe' to restart the broker.", action = "store_true") parser.add_argument("-s", "--seed", help = "Set the seed. If not set by the user, the system time is used as the seed.") parser.add_argument("-fd", "--fuzz_delay", help = "Set the delay between each fuzzing attempt. Default is 0.1 seconds.") parser.add_argument("-I", "--index", help = "Source the fuzzer using an index in the crashes.txt log file.") parser.add_argument("-rd", "--response_delay", help="Set the delay between sending a packet and receiving the response from the broker. Default is whatever fuzz delay is set to.") parser.add_argument("-m", "--max_runs", help = "Set the number of fuzz attempts made. If not set, the fuzzer will run until the broker crashes.") parser.add_argument("-fi", "--fuzz_intensity", help = "Set the intensity of the fuzzer, from 0 to 10. 0 means packets are not fuzzed at all. Default is 3.") parser.add_argument("-ci", "--construct_intensity", help = "Set the intensity of the payload constructer, from 0 to 3. The constructor decides what order to send packets. For example, 0 means all packets begin with CONNECT and end wth DISCONNECT. Default is 0.") parser.add_argument("-sf", "--source_frequency", help = "Set the frequency of sourcing the fuzzer's input with a packet that previously triggered a crash, from 0 to 4. 0 means never source and 4 means always source. Default is 2.") parser.add_argument("-nrf", "--network_response_frequency", help = "Set the frequency of sourcing the fuzzer's input with a packet that previously triggered a unique network response from the broker, from 0 to 4. 0 means never source and 4 means always source. Default is 2.") parser.add_argument("-frf", "--filestream_response_frequency", help = "Set the frequency of sourcing the fuzzer's input with a packet that previously triggered an anamolous response to stdout or stderr, from 0 to 4. 0 means never source and 4 means always source. Default is 2.") parser.add_argument("-mnt", "--max_network_response_threshold", help = "Set the maximum similarity threshold for entries in the broker response file, from 0 to 1. For example, a threshold of 0.3 means entries will be NOT logged if they are at least 30 percent similar to any other entry. Default is 0.5.") parser.add_argument("-mft", "--max_filestream_response_threshold", help = "Set the maximum similarity threshold for entries in the filestream response file, from 0 to 1. Default is 0.5.") parser.add_argument("-mne", "--max_network_response_entries", help = "Set the maximum number of entries allowed in the broker responses file. Fuzzer will not write to this file if the number of entries exceeds this value. Default is 150.") parser.add_argument("-flp", "--filestream_logging_preference", help = "Set the preference of logging stdout/stderr responses from the broker. 0 means exclude responses that contain keywords in the keywords.txt file. 1 means exclude responses that do not contain keywords. 2 means do not exclude any responses. Default is 2.") parser.add_argument("-nnl", "--no_network_response_log", help = "If set, do not log network responses from the broker.", action="store_true") parser.add_argument("-nfl", "--no_filestream_response_log", help="If set, do not log filestream responses from the broker.", action="store_true") parser.add_argument("-afi", "--auto_fuzz_intensity", help = "If set, the fuzz intensity changes randomly every run.", action="store_true") parser.add_argument("-aci", "--auto_construct_intensity", help="If set, the construct intensity changes randomly every run.", action="store_true") parser.add_argument("-v", "--verbosity", help = "Set verbosity, from 0 to 5. 0 means nothing is printed. Default is 1.") parser.add_argument("-p", "--payload_only", help = "Do not fuzz. Simply return the payload before and after it is fuzzed. Also return the params.", action = "store_true") parser.add_argument("-rp", "--repeat_payload", help = "Send the same payload over and over again. This essentially just keeps the seed at a fixed value.", action = "store_true") parser.add_argument("-O", "--output_directory", help = "Set the output directory for files generated by the fuzzer. Default is 'outputs.") args = parser.parse_args() global host, port, broker_exe, fuzz_intensity, construct_intensity, source_frequency, network_response_frequency, filestream_response_frequency, construct_payload, payload_only, verbosity, response_delay, restart_on_crash, no_network_response_log, no_filestream_response_log, max_network_response_entries, max_network_response_threshold, max_filestream_response_threshold, output_directory, output_directory, filestream_logging_preference if(args.host): host = args.host else: host = "localhost" if(args.port): port = int(args.port) else: port = 1883 if args.output_directory: output_directory = args.output_directory else: output_directory = "outputs" if not path.exists(output_directory): os.mkdir(output_directory) # This arg means we just source from an index in crashes.txt. Handy for verifying a crash quickly. if args.index: crash_index = int(args.index) f = open(output_directory + "/crashes.txt", "r") selected_line = f.read().splitlines()[crash_index + 1].split(",") f.close() seed = int(selected_line[2]) fuzz_intensity = int(selected_line[3]) construct_intensity = int(selected_line[4]) source_frequency = int(selected_line[8]) network_response_frequency = int(selected_line[9]) filestream_response_frequency = int(selected_line[10]) else: if(args.seed): seed = int(args.seed) else: seed = math.floor(time.time()) if(args.fuzz_intensity): fuzz_intensity = int(args.fuzz_intensity) if fuzz_intensity > 10: fuzz_intensity = 10 if fuzz_intensity < 0: fuzz_intensity = 0 else: fuzz_intensity = 3 if(args.construct_intensity): construct_intensity = int(args.construct_intensity) if construct_intensity > 3: construct_intensity = 3 if construct_intensity < 0: construct_intensity = 0 else: construct_intensity = 0 if(args.source_frequency): source_frequency = int(args.source_frequency) if source_frequency < 0: source_frequency = 0 if source_frequency > 4: source_frequency = 4 else: source_frequency = 2 if(args.network_response_frequency): network_response_frequency = int(args.network_response_frequency) if network_response_frequency < 0: network_response_frequency = 0 if network_response_frequency > 4: network_response_frequency = 4 else: network_response_frequency = 2 if(args.filestream_response_frequency): filestream_response_frequency = int(args.filestream_response_frequency) if filestream_response_frequency < 0: filestream_response_frequency = 0 if filestream_response_frequency > 4: filestream_response_frequency = 4 else: filestream_response_frequency = 2 if(args.fuzz_delay): fuzz_delay = float(args.fuzz_delay) else: fuzz_delay = 0.1 if(args.response_delay): response_delay = float(args.response_delay) else: response_delay = fuzz_delay if(args.max_runs): max_runs = int(args.max_runs) if(args.auto_fuzz_intensity): auto_fuzz_intensity = True else: auto_fuzz_intensity = False if(args.auto_construct_intensity): auto_construct_intensity = True else: auto_construct_intensity = False if(args.verbosity): verbosity = int(args.verbosity) if verbosity > 5: verbosity = 5 if verbosity < 0: verbosity = 0 else: verbosity = 1 if(args.no_network_response_log): no_network_response_log = True else: no_network_response_log = False if(args.no_filestream_response_log): no_filestream_response_log = True else: no_filestream_response_log = False if(args.max_network_response_entries): max_network_response_entries = int(args.max_network_response_entries) else: max_network_response_entries = 150 if(args.max_network_response_threshold): max_network_response_threshold = float(args.max_network_response_threshold) if max_network_response_threshold < 0: max_network_response_threshold = 0 if max_network_response_threshold > 1: max_network_response_threshold = 1 else: max_network_response_threshold = 0.5 if(args.max_filestream_response_threshold): max_filestream_response_threshold = float(args.max_filestream_response_threshold) if max_filestream_response_threshold < 0: max_filestream_response_threshold = 0 if max_filestream_response_threshold > 1: max_filestream_response_threshold = 1 else: max_filestream_response_threshold = 0.5 if(args.filestream_logging_preference): filestream_logging_preference = int(args.filestream_logging_preference) if filestream_logging_preference < 0: filestream_logging_preference = 0 if filestream_logging_preference > 2: filestream_logging_preference = 2 else: filestream_logging_preference = 2 if(args.payload_only): payload_only = True random.seed(seed) params = get_params() print("\nYour params: ", params) else: payload_only = False if args.broker_exe and not payload_only: broker_exe = args.broker_exe start_broker() time.sleep(0.1) if(args.restart_on_crash): restart_on_crash = True if "broker_exe" not in globals(): print("You cannot restart on crash if the broker exe is not defined.") exit() else: restart_on_crash = False print("Hello fellow fuzzer :)") print("Host: %s, Port: %d" % (host, port)) print("Base seed: ", seed) print("Fuzz Intensity: ", fuzz_intensity) print("Construct intensity: ", construct_intensity) print("Source frequency: ", source_frequency) print("Network response frequency: ", network_response_frequency) print("Filestream response frequency: ", filestream_response_frequency) print("\n") total_runs = 1 while True: if verbosity >= 1 and not payload_only: print("\nRun:\t\t\t", total_runs) if verbosity >= 3: print("Seed:\t\t\t", seed) if verbosity >= 4: print("Fuzz intensity:\t\t", fuzz_intensity) print("Construct intensity:\t", construct_intensity) fuzz(seed) time.sleep(fuzz_delay) total_runs += 1 if not args.repeat_payload: seed += 1 if 'max_runs' in locals(): max_runs -= 1 if max_runs <= 0: exit() if auto_fuzz_intensity and not args.repeat_payload: fuzz_intensity = random.randint(0, 10) if auto_construct_intensity and not args.repeat_payload: construct_intensity = random.randint(0, 3) if __name__ == "__main__": main(sys.argv[1:])
9f0c67b333e7ed2b34add130f79369733d59c295
7dea1f39db25ba8f9899bd9bf23899442cdfd2fd
/course10/newDaysBetweenDates.py
7b61793ffab6ae9339040ba533249f38c6dfbffe
[]
no_license
skyhack1212/Udacity_cs101
5b3b1e899d7b7caf6792fc3a7f7c676003465cfa
a3fa82c11a3a53ccf13fa61da83099a3eab50a5f
refs/heads/master
2021-01-02T22:56:34.014802
2019-01-08T12:10:08
2019-01-08T12:10:08
99,428,221
1
0
null
null
null
null
UTF-8
Python
false
false
2,280
py
# Credit goes to Websten from forums # # Use Dave's suggestions to finish your daysBetweenDates # procedure. It will need to take into account leap years # in addition to the correct number of days in each month. def isLeapYear(year): if(year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): return True return False def daysInMonth(year, month): if month == 1 or month == 3 or month == 5 or month==7 or month==8 or month==10 or month==12: return 31 elif month == 2: if isLeapYear(year): return 29 else: return 28 else: return 30 def nextDay(year, month, day): """Simple version: assume every month has 30 days""" if day < daysInMonth(year, month): return year, month, day + 1 else: if month == 12: return year + 1, 1, 1 else: return year, month + 1, 1 def dateIsBefore(year1, month1, day1, year2, month2, day2): """Returns True if year1-month1-day1 is before year2-month2-day2. Otherwise, returns False.""" if year1 < year2: return True if year1 == year2: if month1 < month2: return True if month1 == month2: return day1 < day2 return False def daysBetweenDates(year1, month1, day1, year2, month2, day2): """Returns the number of days between year1/month1/day1 and year2/month2/day2. Assumes inputs are valid dates in Gregorian calendar.""" # program defensively! Add an assertion if the input is not valid! assert not dateIsBefore(year2, month2, day2, year1, month1, day1) days = 0 while dateIsBefore(year1, month1, day1, year2, month2, day2): year1, month1, day1 = nextDay(year1, month1, day1) days += 1 return days def test(): test_cases = [((2012,1,1,2012,2,28), 58), ((2012,1,1,2012,3,1), 60), ((2011,6,30,2012,6,30), 366), ((2011,1,1,2012,8,8), 585 ), ((1900,1,1,1999,12,31), 36523)] for (args, answer) in test_cases: result = daysBetweenDates(*args) if result != answer: print "Test with data:", args, "failed" else: print "Test case passed!" test()
25c9c41636dbbcb4310599cacbafa9f03bc91f59
75cdf50bd85457d6a87dd4f82f59713627e6868c
/{{cookiecutter.project_slug}}/tasks/common.py
449babb447d97ec7eff3e2b721ec4c19df8eb0e9
[ "GPL-1.0-or-later", "LGPL-2.1-or-later", "ISC", "BSD-3-Clause", "GPL-3.0-or-later", "Apache-2.0", "LicenseRef-scancode-free-unknown", "LGPL-2.0-or-later", "GPL-3.0-only", "MIT" ]
permissive
RainrainWu/cookiecutter-python-template
1d17c553cecac1514aee3858db8ac6d11c0a2769
5e4d4e8f8310a48117aab624f7cd3448d468c16d
refs/heads/master
2023-02-26T06:37:23.843159
2021-02-10T13:49:35
2021-02-10T13:49:35
332,129,150
0
0
MIT
2021-01-23T04:51:54
2021-01-23T04:44:09
null
UTF-8
Python
false
false
179
py
VENV_PREFIX = "{{ cookiecutter.dependency_management_tool }} run" _COMMON_TARGETS = ["{{ cookiecutter.project_slug }}", "tests"] COMMON_TARGETS_AS_STR = " ".join(_COMMON_TARGETS)
e2fb15687a2fb4606ef1097d0bad75b43d927800
c21bc0402cd6c5e337fcb72b3de65ff868c89127
/BagOfWords/util.py
eae9474dd3dc34c5710446689ae2efbdcda80660
[]
no_license
snayak04/SentimentAnalysis
cb4f1a45fc3f80fbe1e00807cad991281bb59988
d9653ad67cdf502dff28f04e70436937371d9177
refs/heads/master
2020-04-03T21:55:08.609373
2018-11-22T02:22:52
2018-11-22T02:22:52
155,587,013
0
0
null
2018-10-31T16:11:24
2018-10-31T16:11:23
null
UTF-8
Python
false
false
2,055
py
import string from nltk.corpus import stopwords from string import punctuation from os import listdir from collections import Counter ### Preprocessing Methods ### #Open file in read-only and extract content into variable 'content' def loadFile(filename): openFile = open(filename, 'r') content = openFile.read() openFile.close() return content #Tokenize file def tokenizeFile(filename): tokens = filename.split() #remove whitespace tokens = [x.strip(string.punctuation) for x in tokens] #remove punctuation tokens = [word for word in tokens if word.isalpha()] #remove none alphabetic words stopWords = set(stopwords.words('english')) #remove stop words tokens = [word for word in tokens if not word in stopWords] tokens = [word for word in tokens if len(word) > 1] #remove 1-letter tokens return tokens #Convert tokens to single strings for easier encoding def fileToLine(filename, vocab): content = loadFile(filename) tokens = tokenizeFile(content) tokens = [word for word in tokens if word in vocab] return ' '.join(tokens) #Load all reviews and start mapping words to counter def loadReviews(directory, vocab, is_train): lines = list() for filename in listdir(directory): if filename.startswith('cv9') and is_train: continue if not filename.startswith('cv9') and not is_train: continue path = directory + '/' + filename line = fileToLine(path, vocab) lines.append(line) return lines #Predict reviews based on MLP network def predictReview(review, vocab, tokenizer, model): #Split review into words and filter based on current vocab tokens = tokenizeFile(review) tokens = [word for word in tokens if word in vocab] lines = ' '.join(tokens) encode = tokenizer.texts_to_matrix([lines], mode='freq') #Predict review: 0 if positive, 1 if negative y = model.predict(encode, verbose=0) return round(y[0,0])
[ "snayak04" ]
snayak04
c00582835f9a6cc3ab53d75912e263e4440fa610
68b562a4450190133575ef6f6f1dbea799c8446f
/python/CHP_model_Casadi_v49.py
99e0a8cfe019ecb73c84b9c7581f5a2c0cf6be9d
[]
no_license
doanminhdang/chp_scheduling
ca356f8618ecde55b2b3ae34d4be305bb2244791
7dd0bd20f17d33b5059c819b8a9c5f56d3184912
refs/heads/master
2022-01-05T23:58:41.721515
2019-07-15T15:00:31
2019-07-15T15:00:31
110,808,675
2
1
null
null
null
null
UTF-8
Python
false
false
11,707
py
# coding: utf-8 # In[1]: import pylab as pl import casadi as ca import numpy as np print(ca.__version__) # In[2]: pl.close("all") # Parameters for experiments ## Duration and time points hours = 24 controls_actions_per_hour = 4 t0 = 0.0; tf = hours * 3600.0; N = hours * controls_actions_per_hour; time_points = pl.linspace(t0, tf, N + 1) dt = (tf - t0) / N # Duration of a time interval ## Number of storage layers in the HOT tank nlayer_htes = 90 ## Number of storage layers in the COLD tank nlayer_ctes = 40 # In[42]: # Physical parameters of the system T_amb = 1 Pth_LOAD_H = 1 Pth_LOAD_C = 1 v_dot_CC_H = 1 T_CC_H_FL = 1 v_dot_CC_C =1 T_CC_C_FL =1 Pth_CHP_Nominal = 9.6e3 # in W Pel_CHP_Nominal=1 CHP_eta_Thermal=1 CHP_eta_Electrical=1 CHP_Fuel_LHV=1 CHP_Fuel_HHV=12 ## AdCM v_dot_AdCM_LT_set=1 v_dot_AdCM_MT_set=1 v_dot_AdCM_HT_set=1 SF = 0 v_dot_HP_HT=1 v_dot_HP_MT=1 m_dot_HP_HT_FL_Set=1 m_dot_HP_MT_FL_Set=1 v_dot_OC1=1 v_dot_OC2=1 v_dot_CCM_MT=1 v_dot_CCM_LT=1 T_CCM_MT_RL=1 m_dot_CCM_MT_FL_Set=1 m_dot_CCM_LT_FL_Set=1 # Constants ## Heat exchangers A_HX12 = 1 A_HX1 = A_HX12 A_HX2 = A_HX12 A_HX3 = 1 U_HX12 = 1 U_HX1 = U_HX12 U_HX2 = U_HX12 U_HX3 =1 ## Outdoor coils A_OC =1 U_OC =1 RPM_max=1 rho_water=1 ## Tanks h=1 n=1 pi=3.14 rho=1 D=1.0 t=0.1 ## Hot load T_LOAD_H_CC_FL = 1 ## Cold load T_LOAD_C_CC_FL = 1 # In[37]: # Secondary parameters to be used in equations (with conversion) m_dot_CC_H = v_dot_CC_H*rho_water/3600 m_dot_CC_C = v_dot_CC_C*rho_water/3600 m_dot_AdCM_LT_Set = v_dot_AdCM_LT_set*rho_water/3600 m_dot_AdCM_MT_Set = v_dot_AdCM_MT_set*rho_water/3600 m_dot_AdCM_HT_Set = v_dot_AdCM_HT_set*rho_water/3600 m_dot_HP_HT = v_dot_HP_HT*rho_water/3600 m_dot_HP_MT = v_dot_HP_MT*rho_water/3600 m_dot_OC1 = v_dot_OC1*rho_water/3600 m_dot_OC2 = v_dot_OC2*rho_water/3600 m_dot_CCM_MT = v_dot_CCM_MT*rho_water/3600 m_dot_CCM_LT = v_dot_CCM_LT*rho_water/3600 ## Parameters for a layer in the HTES zi = h / n; mi = pi * (D / 2) ** 2 * zi * rho; di = D - 2 * t; Aamb = pi * D * zi; Alayer = pi * di ** 2 / 4; # In[ ]: # Some equations for intermediate quantities that are not real variables # Can be eliminated by hand # Pth_AdCM_LT = f(T_HTES_t, T_AdCM_MT_RL, T_CTES_t) # COP_AdCM = f(T_HTES_t, T_AdCM_MT_RL, T_CTES_t) # Pth_CCM_LT = # Pth_AdCM_HT = # Pth_AdCM_MT = # Pth_CCM_MT # In[31]: # Declaration of variables ## Number of control variables nu = 4 ## Number of state variables nx = 1 + nlayer_htes + nlayer_ctes ## Number of algebraic states (depending on the way we define variables) ny = 48 ## States and controls u = ca.SX.sym("u", nu) # Control x = ca.SX.sym("x", nx ) # Differential states: temperatures in the tank y = ca.SX.sym("x", ny) # Output variable # Input variables CHP_Switch = u[0] HP_Switch = u[1] AdCM_Switch = u[2] CCM_Switch = u[3] CHP_ON_int = u[0] RevHP_HP_ON_int = u[1] AdCM_ON_int = u[2] RevHP_CC_ON_int = u[3] # State variables Pth_CHP_x = x[0] T_HTES = ca.SX.sym("T_HTES", nlayer_htes) T_CTES = ca.SX.sym("T_CTES", nlayer_ctes) for k in range(nlayer_htes): T_HTES[k] = x[1+k] for k in range(nlayer_ctes): T_CTES[k] = x[1+nlayer_htes+k] # Output variables. We will re-order the component y[i] from 0, 1, ... mdot_FUEL = y[0] Pth_CHP = y[1] Pel_CHP = y[2] mdot_CHP_nonzero = y[3] mdot_CHP = y[4] T_CHP_FL = y[5] T_HTES_t = y[6] T_HTES_l = y[7] T_HTES_b = y[8] Pth_LOAD_H = y[42] mdot_LOAD_H = y[9] T_LOAD_H_FL = y[10] T_HX3_FL = y[11] Pel_HP = y[30] Pth_HP_HT = y[31] Pth_HP_MT = y[32] T_HP_HT_FL = y[12] T_HP_HT_RL = y[13] T_HP_MT_FL = y[14] T_HP_MT_RL = y[15] Pel_OC2 = y[33] v_dot_OC2 = y[41] T_OC2_FL = y[16] T_OC2_RL = y[17] T_AdCM_HT_FL = y[18] T_AdCM_MT_FL = y[19] T_AdCM_MT_RL = y[20] T_AdCM_LT_FL = y[21] Pel_AdCM = y[34] Pel_OC1 = y[35] v_dot_OC1 = y[40] T_OC1_FL = y[22] T_OC1_RL = y[23] T_CTES_t = y[24] T_CTES_b = y[25] Pel_CCM = y[36] Pth_CCM_LT = y[37] Pth_CCM_MT = y[38] T_CCM_LT_FL = y[26] T_CCM_MT_FL = y[27] Pth_LOAD_C = y[43] mdot_LOAD_C = y[28] T_LOAD_C_FL = y[29] Pel_OC3 = y[39] m_dot_CHP_set = y[44] T_LOAD_H_CC_RL = y[45] T_LOAD_C_CC_RL = y[46] #to_be_checked_and_added # In[6]: # Secondary variables v_dot_LOAD_H = mdot_LOAD_H / rho_water v_dot_LOAD_C = mdot_LOAD_C / rho_water # In[7]: # Initial values of variable at time t=0 ## Initial states Pth_CHP_x_t0 = 1 T_HTES_layer_top_t0 = 35.0 T_HTES_layer_bottom_t0 = 25.0 T_HTES_t0 = pl.linspace(T_HTES_layer_top_t0, T_HTES_layer_bottom_t0, nlayer_htes) T_CTES_layer_top_t0 = 25.0 T_CTES_layer_bottom_t0 = 10.0 T_CTES_t0 = pl.linspace(T_CTES_layer_top_t0, T_CTES_layer_bottom_t0, nlayer_ctes) x_0 = [Pth_CHP_x_t0] + list(T_HTES_t0) + list(T_CTES_t0) ## Initial controls chp_status_init = 0.0 * pl.ones(time_points.size - 1) u_init = chp_status_init # to check u_0 = [1, 1, 0, 0] # In[10]: # Equations # TODO: make the separate lists of equations from Open Modelica initiated model, # one file for differential equations, one file for algebraic equations ## Differential equations dxdt = [] ## Use equations like: # dxdt.append((1.0 / m_s_i) * status_CHP * (mdot_CHP_to_9 * T_out_CHP - mdot_9_to_8 * T_s[8])) # T_9_dot # ... # dxdt = ca.vertcat(*dxdt) ## Algebraic equation, left hand side = 0 f_z = [] ## Use equations like: # f_z.append(P_th_CC/c_p - mdot_6_to_LOAD * (T_s[5] - T_LOAD_RL)) # f_z = ca.vertcat(*f_z) # In[46]: ## Equations copied from Open Modelica initiated model, with variable names changed to Casadi name set #560.794 * der(Pth_CHP) + Pth_CHP = Pth_CHP * CHP_ON_int v_dot_CHP = 0.433352645 + -0.01514531 * T_HTES_b + 0.00024329 * T_HTES_b ** 2.0 CHP_H_W_T_M_FL_K = (T_HTES_b+273.15) + 0.2392344497607656 * Pth_CHP / m_dot_CHP_set v_dot_FUEL = 1000.0 * (Pel_CHP + Pth_CHP) / (853.5 * (CHP_eta_Thermal + CHP_eta_Electrical) * CHP_Fuel_HHV) Pth_CC = 4.18 * m_dot_CC_H * (T_LOAD_H_CC_FL - T_LOAD_H_CC_RL) Pth_CC = 4.18 * (v_dot_LOAD_H*rho_water/3600) * ((T_LOAD_H_FL+273.15) - (T_LOAD_H_CC_RL+273.15)) COP = -0.049623287373 + 0.01893348591 * T_CTES_t + 0.013340776694 * T_AdCM_HT_FL + 0.017822939671 * T_AdCM_MT_RL + -0.001280352166 * T_CTES_t ** 2.0 + -0.000190832894 * T_AdCM_HT_FL ** 2.0 + -0.001993352016 * T_AdCM_MT_RL ** 2.0 + T_CTES_t * (-0.000334095159 * T_AdCM_HT_FL + 0.001455689548 * T_AdCM_MT_RL) + 0.000569253554 * T_AdCM_HT_FL * T_AdCM_MT_RL + 1.3421174e-05 * T_CTES_t * T_AdCM_HT_FL * T_AdCM_MT_RL Pth_AdCM_LT = AdCM_ON_int * (4.07950934099 + 0.04152472361 * T_CTES_t + 0.160630808297 * T_AdCM_HT_FL + -0.859860168466 * T_AdCM_MT_RL + 0.003462744142 * T_CTES_t ** 2.0 + -0.001049096999 * T_AdCM_HT_FL ** 2.0 + 0.015142231276 * T_AdCM_MT_RL ** 2.0 + T_CTES_t * (0.016955368833 * T_AdCM_HT_FL + -0.016151596215 * T_AdCM_MT_RL) + -0.001917799045 * T_AdCM_HT_FL * T_AdCM_MT_RL + -0.000200778961 * T_CTES_t * T_AdCM_HT_FL * T_AdCM_MT_RL) Pth_AdCM_HT = Pth_AdCM_LT / COP - SF Pth_AdCM_MT = Pth_AdCM_HT + Pth_AdCM_LT T_AdCM_LT_FL_K = (T_CTES_t+273.15) + -0.2392344497607656 * Pth_AdCM_LT / m_dot_AdCM_LT_Set T_AdCM_MT_FL_K = (T_AdCM_MT_RL+273.15) + 0.2392344497607656 * Pth_AdCM_MT / m_dot_AdCM_MT_Set ADCM_C_W_T_M_HT_FL_K = (T_AdCM_HT_FL+273.15) + -0.2392344497607656 * Pth_AdCM_HT / m_dot_AdCM_HT_Set Pth_HP_HT = HP_Switch * (9.0 + 0.294510922 * T_HP_MT_FL + T_HP_HT_RL * (0.064700246 + 0.002953381 * T_HP_MT_FL) + -0.001625553 * T_HP_MT_FL ** 2.0 + -0.001627312 * T_HP_HT_RL ** 2.0) Pth_HP_MT = Pth_HP_HT - Pel_HP T_HP_HT_FL__K = (T_HP_HT_RL+273.15) + 0.2392344497607656 * Pth_HP_HT / m_dot_HP_HT_FL_Set RevHP_HC_W_T_M_LT_FL__K = (T_HP_MT_FL+273.15) + -0.2392344497607656 * Pth_HP_MT / m_dot_HP_MT_FL_Set Pel_HP = HP_Switch * (1.733202228 + -0.007333788 * T_HP_MT_FL + T_HP_HT_RL * (0.019283658 + 0.000450498 * T_HP_MT_FL) + -8.304799999999999e-05 * T_HP_MT_FL ** 2.0 + 0.000671146 * T_HP_HT_RL ** 2.0) Pth_CCM_LT = CCM_Switch * (9.0 + 0.308329176 * T_CCM_LT_FL + 0.045285097 * T_CCM_MT_RL + 0.002252906 * T_CCM_LT_FL * T_CCM_MT_RL + -0.001213212 * T_CCM_LT_FL ** 2.0 + -0.002264659 * T_CCM_MT_RL ** 2.0) Pel_CCM = CCM_Switch * (1.833202228 + -0.007333788 * T_CCM_LT_FL + 0.019283658 * T_CCM_MT_RL + 0.000450498 * T_CCM_LT_FL * T_CCM_MT_RL + -8.304799999999999e-05 * T_CCM_LT_FL ** 2.0 + 0.000671146 * T_CCM_MT_RL ** 2.0) Pth_CCM_MT = Pel_CCM + Pth_CCM_LT RevHP_HC_W_T_M_LT_FL_K = (T_CCM_LT_FL+273.15) + -0.2392344497607656 * Pth_CCM_LT / m_dot_CCM_LT_FL_Set T_CCM_MT_FL_K = (T_CCM_MT_RL+273.15) + 0.2392344497607656 * Pth_CCM_MT / m_dot_CCM_MT_FL_Set Pth_CC = 4.18 * m_dot_CC_C * (T_LOAD_C_CC_RL - T_LOAD_C_CC_FL) Pth_CC = 4.18 * (v_dot_LOAD_C*rho_water/3600) * ((T_LOAD_C_CC_RL+273.15) - (T_LOAD_C_FL+273.15)) #4.18 * mi * der(HTES_H_W_T_M_IT_K[1]) = Alayer * lambda_eff * (HTES_H_W_T_M_IT_K[2] - HTES_H_W_T_M_IT_K[1]) / zi + 4.18 * (m_dot_LOAD * (T_HTES_LOAD_RL_K - HTES_H_W_T_M_IT_K[1]) + m_dot_AdCM_HT * (T_HTES_AdCM_RL_K - HTES_H_W_T_M_IT_K[1]) + d_pos * m_dot[2] * (HTES_H_W_T_M_IT_K[2] - HTES_H_W_T_M_IT_K[1])) + -20.0 * Aamb * kappa * (HTES_H_W_T_M_IT_K[1] - T_amb_K) #4.18 * mi * der(HTES_H_W_T_M_IT_K[2]) = Alayer * lambda_eff * (HTES_H_W_T_M_IT_K[1] + -2.0 * HTES_H_W_T_M_IT_K[2] + HTES_H_W_T_M_IT_K[3]) / zi + 4.18 * m_dot[2] * (d_pos * (HTES_H_W_T_M_IT_K[3] - HTES_H_W_T_M_IT_K[2]) + d_neg * (HTES_H_W_T_M_IT_K[2] - HTES_H_W_T_M_IT_K[1])) + COIL_H_E_PT_M / /*Real*/(n) - Aamb * kappa * (HTES_H_W_T_M_IT_K[2] - T_amb_K) #Chot = 3.66736 * (v_dot_OC1*rho_water/3600) #Ccold = 1.005 * (v_dot_air_OC1*rho_water/3600) #Cmin = min(Chot, Ccold) #Cmax = max(Chot, Ccold) #qmax = Cmin * (T_OC1_RL - T) #q = eff * qmax #eff = (1.0 - exp(NTU * (Cr - 1.0))) / (1.0 - Cr * exp(NTU * (Cr - 1.0))) #RPM_max / RPM_real = Volt_max / Volt_real #Pel_max / Pel_OC1 = (RPM_max / RPM_real) ** 3.0 #v_dot_air_max / v_dot_air_real = RPM_max / RPM_real #Chot = 3.66736 * (v_dot_OC2*rho_water/3600) #Ccold = 1.005 * (v_dot_air_OC2*rho_water/3600) #Cmin = min(Chot, Ccold) #Cmax = max(Chot, Ccold) #qmax = Cmin * (T_OC2_RL - T) #q = eff * qmax #eff = (1.0 - exp(NTU * (Cr - 1.0))) / (1.0 - Cr * exp(NTU * (Cr - 1.0))) #RPM_max / RPM_real = Volt_max / Volt_real #Pel_max / Pel_OC2 = (RPM_max / RPM_real) ** 3.0 #v_dot_air_max / v_dot_air_real = RPM_max / RPM_real #Chot = 4.18 * m_dot_OC #Ccold = 1.005 * m_dot_air #Cmin = min(Chot, Ccold) #Cmax = max(Chot, Ccold) #qmax = Cmin * (T_CCM_MT_RL - T) #q = eff * qmax #eff = (1.0 - exp(NTU * (Cr - 1.0))) / (1.0 - Cr * exp(NTU * (Cr - 1.0))) #q = Chot * (T_CCM_MT_RL - T_CCM_MT_FL) #q = Ccold * (T_air_out - T) #RPM_max / RPM_real = Volt_max / Volt_real #Pel_max / Pel_OC3 = (RPM_max / RPM_real) ** 3.0 #v_dot_air_max / v_dot_air_real = RPM_max / RPM_real #4.18 * mi * der(CTES_H_W_T_M_IT_K[1]) = 4.18 * (m_dot_AdCM * (T_CTES_AdCM_In_K - CTES_H_W_T_M_IT_K[1]) + m_dot_RevHP * (T_CTES_RevHP_In_K - CTES_H_W_T_M_IT_K[1])) + Alayer * lambda_eff * (CTES_H_W_T_M_IT_K[2] - CTES_H_W_T_M_IT_K[1]) / zi + 4.18 * d_neg * m_dot[2] * (CTES_H_W_T_M_IT_K[1] - CTES_H_W_T_M_IT_K[2]) - Aamb * kappa * (CTES_H_W_T_M_IT_K[1] - T_amb_K) #4.18 * mi * der(CTES_H_W_T_M_IT_K[2]) = Alayer * lambda_eff * (CTES_H_W_T_M_IT_K[1] + -2.0 * CTES_H_W_T_M_IT_K[2] + CTES_H_W_T_M_IT_K[3]) / zi + 4.18 * m_dot[2] * (d_neg * (CTES_H_W_T_M_IT_K[2] - CTES_H_W_T_M_IT_K[3]) + d_pos * (CTES_H_W_T_M_IT_K[1] - CTES_H_W_T_M_IT_K[2])) - Aamb * kappa * (CTES_H_W_T_M_IT_K[2] - T_amb_K) # In[44]: # In[4]: # TODO: bring new equations into the form of an optimal control problem #### (below is untouched) # In[70]: # Constraints T_min_all = 0.0 T_max_all = 100.0 x_lbw = list(T_min_all*pl.ones(nlayer_htes)) x_ubw = list(T_max_all*pl.ones(nlayer_htes)) #zeros_z = list(0.0*pl.ones(f_z.numel())) #zeros_x = list(0.0*pl.ones(dxdt.numel())) # In[ ]:
6e4673accf9050042c9ffb31cffdb043d7572107
4e3a2a1053866ff1b3bfd5dc1a36291672d218dc
/0x05-python-exceptions/0-safe_print_list.py
0d196d4f1229af316330cc273c0c3c422d10427d
[]
no_license
RicardoBarretoR/holbertonschool-higher_level_programming
ec423d147e7e2632fefff7e433118cf588bd43dd
61103213102132a9764b72b4160df3fd71cce95c
refs/heads/master
2022-12-31T10:14:01.551769
2020-09-25T11:58:08
2020-09-25T11:58:08
259,455,529
0
0
null
null
null
null
UTF-8
Python
false
false
266
py
#!/usr/bin/python3 def safe_print_list(my_list=[], x=0): """prints x elements of a list""" i = 0 try: for i in range(x): print(my_list[i], end="") i += 1 print() except IndexError: print() return i
f28cefecd13bee7dd27faed4152428c0820398b0
5575ac1139172a6176c7b15542bb4d916548a0f3
/appFinal/migrations/0001_initial.py
5470f7b2dc77fabd6c1332bdbd2d2c48ddd071e4
[]
no_license
vordonez74/projectFinal
7a6b5634641a7e41887c7156d8fdfd6dd949064a
1447c1cfc6e26d93ab7bdfc398d740fe1c47754a
refs/heads/master
2023-06-16T10:56:55.328709
2021-07-08T01:51:01
2021-07-08T01:51:01
383,969,109
0
0
null
null
null
null
UTF-8
Python
false
false
1,578
py
# Generated by Django 3.2.5 on 2021-07-07 19:11 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Carrito', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('usuario', models.CharField(max_length=64)), ('listaProductos', models.CharField(max_length=64)), ('totalCarrito', models.CharField(max_length=64)), ], ), migrations.CreateModel( name='Categorias', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('descripcion', models.CharField(max_length=64)), ], ), migrations.CreateModel( name='Productos', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('titulo', models.CharField(max_length=64)), ('Imagen', models.CharField(max_length=64)), ('descripcion', models.CharField(max_length=64)), ('precio', models.CharField(max_length=64)), ('Categorias', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='catogory', to='appFinal.categorias')), ], ), ]
adceee9749b6eb09e03688c50cda464468776591
b65ce61b6c87ce877f24eef2e03883011a37d682
/src/models.py
678a367c74dfc27a7d15b92db55c7ca5baffcba1
[ "MIT" ]
permissive
yiyg510/DSNR
17d0ffd364a3abc40f03f4d8bb0be61dbdfa07c1
c352e561b9caebe11a6faccb7877176bc43a7e3f
refs/heads/master
2022-12-05T03:04:51.258751
2020-08-20T08:45:22
2020-08-20T08:45:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,008
py
import tensorflow as tf import numpy as np from tensorflow.contrib.rnn import LSTMCell, LSTMStateTuple from tensorflow.python.ops.rnn import bidirectional_dynamic_rnn as bi_rnn import networkx as nx class STNE(object): ############ def encoder(self,X,layers): for i in range(layers - 1): name_W = 'encoder_W_' + str(i) name_b = 'encoder_b_' + str(i) X = tf.nn.tanh(tf.matmul(X, self.W[name_W]) + self.b[name_b]) return X def decoder(self,X,layers): for i in range(layers - 1): name_W = 'decoder_W_' + str(i) name_b = 'decoder_b_' + str(i) X = tf.nn.tanh(tf.matmul(X, self.W[name_W]) + self.b[name_b]) return X def make_autoencoder_loss(self,X_new,X_re): def get_autoencoder_loss(X, newX): return tf.reduce_sum(tf.pow((newX - X), 2)) def get_reg_loss(weights, biases): reg = tf.add_n([tf.nn.l2_loss(w) for w in weights.values()]) reg += tf.add_n([tf.nn.l2_loss(b) for b in biases.values()]) return reg loss_autoencoder = get_autoencoder_loss(X_new, X_re) loss_reg = get_reg_loss(self.W, self.b) return self.config.alpha * loss_autoencoder + self.config.reg * loss_reg ################ def construct_traget_neighbors(self, nx_G, X, mode='EMN'): # construct target neighbor feature matrix X_target = np.zeros(X.shape) nodes = nx_G.nodes() if mode == 'OWN': # autoencoder for reconstructing itself return X elif mode == 'EMN': # autoencoder for reconstructing Elementwise Median Neighbor for node in nodes: neighbors = list(nx_G.neighbors(node)) if len(neighbors) == 0: X_target[node] = X[node] else: temp = np.array(X[node]) for n in neighbors: # # if FLAGS.weighted: # # # weighted sum # # # temp = np.vstack((temp, X[n] * edgeWeight)) # # pass # else: temp = np.vstack((temp, X[n])) temp = np.median(temp, axis=0) X_target[node] = temp return X_target ################# def __init__(self,config, hidden_dim, nx_G, X_1,node_num, fea_dim, seq_len, attention_size, depth=1, node_fea=None, node_fea_trainable=False): self.node_num, self.fea_dim, self.seq_len = node_num, fea_dim, seq_len self.attention_size = attention_size self.nx_G = nx_G self.X_1 = X_1 self.config = config self.keep_prob = tf.placeholder(tf.float32, name='keep_prob') self.input_seqs = tf.placeholder(tf.int32, shape=(None, self.seq_len), name='input_seq') print(self.input_seqs,'AZAZAZAAAAAAAAAAAAAAA') self.dropout = tf.placeholder(tf.float32, name='dropout') X_target = self.construct_traget_neighbors(self.nx_G, self.X_1, mode='EMN') print(X_target, '222222222222222222222222') X_target = tf.constant(X_target, dtype=tf.float32) self.layers = len(config.struct) struct = config.struct self.W = {} self.b = {} # encode module for i in range(self.layers - 1): name_W = 'encoder_W_' + str(i) name_b = 'encoder_b_' + str(i) print(struct[i], '55555555555555555555') print(struct[i + 1], '6666666666666666666') self.W[name_W] = tf.get_variable(name_W, [struct[i], struct[i + 1]], initializer=tf.contrib.layers.xavier_initializer()) print(self.W[name_W], 'AAAAAAAAAAAAAAAAAAAAAAA') self.b[name_b] = tf.get_variable(name_b, [struct[i + 1]], initializer=tf.zeros_initializer()) print(self.b[name_b], 'SSSSSSSSSSSSSSSSSSSSS') # decode module struct.reverse() for i in range(self.layers - 1): name_W = 'decoder_W_' + str(i) name_b = 'decoder_b_' + str(i) self.W[name_W] = tf.get_variable(name_W, [struct[i], struct[i + 1]], initializer=tf.contrib.layers.xavier_initializer()) self.b[name_b] = tf.get_variable(name_b, [struct[i + 1]], initializer=tf.zeros_initializer()) config.struct.reverse() ############## define input ################### self.Y1 = self.encoder(self.X_1,self.layers) self.X1_reconstruct = self.decoder(self.Y1, self.layers) self.loss_autoencoder_1 = self.make_autoencoder_loss(X_target, self.X1_reconstruct) input_seq_embed = tf.nn.embedding_lookup(self.Y1, self.input_seqs, name='input_embed_lookup') print(input_seq_embed, '44444444444444444NNNNNNNNNNNNNNNNNN4') # encoder encoder_cell_fw_0 = tf.contrib.rnn.DropoutWrapper(LSTMCell(hidden_dim), output_keep_prob=1 - self.dropout) encoder_cell_bw_0 = tf.contrib.rnn.DropoutWrapper(LSTMCell(hidden_dim), output_keep_prob=1 - self.dropout) if depth == 1: encoder_cell_fw_all = tf.contrib.rnn.MultiRNNCell([encoder_cell_fw_0]) encoder_cell_bw_all = tf.contrib.rnn.MultiRNNCell([encoder_cell_bw_0]) else: encoder_cell_fw_1 = tf.contrib.rnn.DropoutWrapper(LSTMCell(hidden_dim), output_keep_prob=1 - self.dropout) encoder_cell_bw_1 = tf.contrib.rnn.DropoutWrapper(LSTMCell(hidden_dim), output_keep_prob=1 - self.dropout) encoder_cell_fw_all = tf.contrib.rnn.MultiRNNCell([encoder_cell_fw_0] + [encoder_cell_fw_1] * (depth - 1)) encoder_cell_bw_all = tf.contrib.rnn.MultiRNNCell([encoder_cell_bw_0] + [encoder_cell_bw_1] * (depth - 1)) encoder_outputs, encoder_final = bi_rnn(encoder_cell_fw_all, encoder_cell_bw_all, inputs=input_seq_embed, dtype=tf.float32) ######################Attention self.encoder_output = tf.concat(encoder_outputs, 2) input_shape = self.encoder_output.shape # (batch_size, sequence_length, hidden_size) sequence_size = input_shape[1].value hidden_size = input_shape[2].value attention_w = tf.Variable(tf.truncated_normal([hidden_size, self.attention_size], stddev=0.1), name='attention_w') attention_b = tf.Variable(tf.constant(0.1, shape=[self.attention_size]), name='attention_b') attention_u = tf.Variable(tf.truncated_normal([self.attention_size], stddev=0.1), name='attention_u') z_list = [] for t in range(sequence_size): u_t = tf.tanh(tf.matmul(self.encoder_output[:, t, :], attention_w) + tf.reshape(attention_b, [1, -1])) z_t = tf.matmul(u_t, tf.reshape(attention_u, [-1, 1])) z_list.append(z_t) # Transform to batch_size * sequence_size attention_z = tf.concat(z_list, axis=1) alpha = tf.nn.softmax(attention_z) # print((self.encoder_output * tf.reshape(self.alpha, [-1, sequence_size, 1])), '++++++++++++++++++++++') attention_output = self.encoder_output * tf.reshape(alpha, [-1, sequence_size, 1]) final_output = tf.nn.dropout(attention_output, self.keep_prob) ###################### c_fw_list, h_fw_list, c_bw_list, h_bw_list = [], [], [], [] for d in range(depth): (c_fw, h_fw) = encoder_final[0][d] (c_bw, h_bw) = encoder_final[1][d] c_fw_list.append(c_fw) h_fw_list.append(h_fw) c_bw_list.append(c_bw) h_bw_list.append(h_bw) decoder_init_state = tf.concat(c_fw_list + c_bw_list, axis=-1), tf.concat(h_fw_list + h_bw_list, axis=-1) decoder_cell = tf.contrib.rnn.DropoutWrapper(LSTMCell(hidden_dim * 2), output_keep_prob=1 - self.dropout) decoder_init_state = LSTMStateTuple( tf.layers.dense(decoder_init_state[0], units=hidden_dim * 2, activation=None), tf.layers.dense(decoder_init_state[1], units=hidden_dim * 2, activation=None)) encoder_output_T = tf.transpose(final_output, [1, 0, 2]) new_state = decoder_init_state outputs_list = [] for i in range(seq_len): new_output, new_state = decoder_cell(tf.zeros(shape=tf.shape(encoder_output_T)[1:]), new_state) # None outputs_list.append(new_output) decoder_outputs = tf.stack(outputs_list, axis=0) # seq_len * batch_size * hidden_dim decoder_outputs = tf.transpose(decoder_outputs, [1, 0, 2]) # batch_size * seq_len * hidden_dim self.decoder_outputs = decoder_outputs output_preds = tf.layers.dense(decoder_outputs, units=self.node_num, activation=None) loss_ce = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=self.input_seqs, logits=output_preds) self.loss_ce = tf.reduce_mean(loss_ce, name='loss_ce') self.toll_loss=config.alpha*self.loss_ce+config.reg*self.loss_autoencoder_1 self.train_op = tf.train.RMSPropOptimizer(config.sg_learning_rate).minimize(self.toll_loss) class STNEConv(object): def conv_pool(self, in_tensor, filter_size, num_filters, s_length, embedding_size=256): with tf.name_scope("conv-maxpool-%s" % filter_size): # Convolution Layer filter_shape = [filter_size, embedding_size, 1, num_filters] W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W") b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b") # None, seq_len, word_dim, 1 conv = tf.nn.conv2d(in_tensor, W, strides=[1, 1, 1, 1], padding="VALID", name="conv") h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu") # Maxpooling over the outputs pooled = tf.nn.max_pool( h, ksize=[1, s_length - filter_size + 1, 1, 1], strides=[1, 1, 1, 1], padding='VALID', name="pool") # print(pooled) return pooled # None, 1, 1, num_filters def __init__(self, hidden_dim, node_num, fea_dim, seq_len, contnt_len, num_filters, word_dim, vocab_size, attention_size, depth=1, filter_sizes=[2, 4, 8]): self.node_num, self.fea_dim = node_num, fea_dim self.attention_size = attention_size self.seq_len = seq_len self.keep_prob = tf.placeholder(tf.float32, name='keep_prob') self.input_seqs = tf.placeholder(tf.int32, shape=(None, self.seq_len), name='input_seq') self.input_seq_content = tf.placeholder(tf.int32, shape=(None, self.seq_len, contnt_len), name='input_seq_content') self.dropout_rnn = tf.placeholder(tf.float32, name='dropout_rnn') self.dropout_word = tf.placeholder(tf.float32, name='dropout_word') self.word_embeds_W = tf.Variable(initial_value=tf.random_uniform(shape=(vocab_size, word_dim)), name='content_embed', trainable=True) contnt_embeds = tf.nn.embedding_lookup(self.word_embeds_W, self.input_seq_content, name='input_content_embed') contnt_embeds = tf.reshape(contnt_embeds, [-1, contnt_len, word_dim, 1]) print(contnt_embeds, '1111111111111111111111') pooled = [] for fsize in filter_sizes: # batch*seq_len, 1, num_filters tmp = self.conv_pool(contnt_embeds, fsize, num_filters, contnt_len, word_dim) pooled.append(tf.reshape(tmp, [-1, self.seq_len, num_filters])) input_seq_embed = tf.concat(pooled, axis=-1) # batch, seq_len, num_filters*len(filter_sizes) input_seq_embed = tf.nn.dropout(input_seq_embed, keep_prob=1 - self.dropout_word) print(input_seq_embed, '22222222222222222222222') encoder_cell_fw_0 = tf.contrib.rnn.DropoutWrapper(LSTMCell(hidden_dim), output_keep_prob=1 - self.dropout_rnn) encoder_cell_bw_0 = tf.contrib.rnn.DropoutWrapper(LSTMCell(hidden_dim), output_keep_prob=1 - self.dropout_rnn) if depth == 1: encoder_cell_fw_all = tf.contrib.rnn.MultiRNNCell([encoder_cell_fw_0]) encoder_cell_bw_all = tf.contrib.rnn.MultiRNNCell([encoder_cell_bw_0]) else: encoder_cell_fw_1 = tf.contrib.rnn.DropoutWrapper(LSTMCell(hidden_dim), output_keep_prob=1 - self.dropout_rnn) encoder_cell_bw_1 = tf.contrib.rnn.DropoutWrapper(LSTMCell(hidden_dim), output_keep_prob=1 - self.dropout_rnn) encoder_cell_fw_all = tf.contrib.rnn.MultiRNNCell([encoder_cell_fw_0] + [encoder_cell_fw_1] * (depth - 1)) encoder_cell_bw_all = tf.contrib.rnn.MultiRNNCell([encoder_cell_bw_0] + [encoder_cell_bw_1] * (depth - 1)) encoder_outputs, encoder_final = bi_rnn(encoder_cell_fw_all, encoder_cell_bw_all, inputs=input_seq_embed, dtype=tf.float32) ############################ self.encoder_output = tf.concat(encoder_outputs, 2) input_shape = self.encoder_output.shape # (batch_size, sequence_length, hidden_size) sequence_size = input_shape[1].value hidden_size = input_shape[2].value attention_w = tf.Variable(tf.truncated_normal([hidden_size, self.attention_size], stddev=0.1), name='attention_w') attention_b = tf.Variable(tf.constant(0.1, shape=[self.attention_size]), name='attention_b') attention_u = tf.Variable(tf.truncated_normal([self.attention_size], stddev=0.1), name='attention_u') z_list = [] for t in range(sequence_size): u_t = tf.tanh(tf.matmul(self.encoder_output[:, t, :], attention_w) + tf.reshape(attention_b, [1, -1])) z_t = tf.matmul(u_t, tf.reshape(attention_u, [-1, 1])) z_list.append(z_t) # Transform to batch_size * sequence_size attention_z = tf.concat(z_list, axis=1) self.alpha = tf.nn.softmax(attention_z) # print((self.encoder_output * tf.reshape(self.alpha, [-1, sequence_size, 1])), '++++++++++++++++++++++') attention_output = self.encoder_output * tf.reshape(self.alpha, [-1, sequence_size, 1]) self.final_output = tf.nn.dropout(attention_output, self.keep_prob) #################################### c_fw_list, h_fw_list, c_bw_list, h_bw_list = [], [], [], [] for d in range(depth): (c_fw, h_fw) = encoder_final[0][d] (c_bw, h_bw) = encoder_final[1][d] c_fw_list.append(c_fw) h_fw_list.append(h_fw) c_bw_list.append(c_bw) h_bw_list.append(h_bw) decoder_init_state = tf.concat(c_fw_list + c_bw_list, axis=-1), tf.concat(h_fw_list + h_bw_list, axis=-1) decoder_cell = tf.contrib.rnn.DropoutWrapper(LSTMCell(hidden_dim * 2), output_keep_prob=1 - self.dropout_rnn) decoder_init_state = LSTMStateTuple( tf.layers.dense(decoder_init_state[0], units=hidden_dim * 2, activation=None), tf.layers.dense(decoder_init_state[1], units=hidden_dim * 2, activation=None)) # self.encoder_output = tf.concat(encoder_outputs, axis=-1) # encoder_output_T = tf.transpose(self.encoder_output, [1, 0, 2]) # h encoder_output_T = tf.transpose(self.final_output, [1, 0, 2]) new_state = decoder_init_state outputs_list = [] for i in range(seq_len): new_output, new_state = decoder_cell(tf.zeros(shape=tf.shape(encoder_output_T)[1:]), new_state) # None outputs_list.append(new_output) decoder_outputs = tf.stack(outputs_list, axis=0) # seq_len * batch_size * hidden_dim decoder_outputs = tf.transpose(decoder_outputs, [1, 0, 2]) # batch_size * seq_len * hidden_dim ########################### input_shape = decoder_outputs.shape # (batch_size, sequence_length, hidden_size) sequence_size = input_shape[1].value hidden_size = input_shape[2].value attention_w = tf.Variable(tf.truncated_normal([hidden_size, self.attention_size], stddev=0.1), name='attention_w') attention_b = tf.Variable(tf.constant(0.1, shape=[self.attention_size]), name='attention_b') attention_u = tf.Variable(tf.truncated_normal([self.attention_size], stddev=0.1), name='attention_u') z_list = [] for t in range(sequence_size): u_t = tf.tanh(tf.matmul(decoder_outputs[:, t, :], attention_w) + tf.reshape(attention_b, [1, -1])) z_t = tf.matmul(u_t, tf.reshape(attention_u, [-1, 1])) z_list.append(z_t) # Transform to batch_size * sequence_size attention_z = tf.concat(z_list, axis=1) self.alpha = tf.nn.softmax(attention_z) # print((self.encoder_output * tf.reshape(self.alpha, [-1, sequence_size, 1])), '++++++++++++++++++++++') attention_output = decoder_outputs * tf.reshape(self.alpha, [-1, sequence_size, 1]) final_output_1 = tf.nn.dropout(attention_output, self.keep_prob) ##################### self.decoder_output = final_output_1 # decoder_outputs, _ = dynamic_rnn(decoder_cell, inputs=self.encoder_output, initial_state=decoder_init_state) output_preds = tf.layers.dense(final_output_1, units=self.node_num, activation=None) print(self.input_seqs, '@@@@@@@@@@@@@@@@@@@@') print(output_preds, '$$$$$$$$$$$$$$$$$$$$') loss_ce = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=self.input_seqs, logits=output_preds) self.loss_ce = tf.reduce_mean(loss_ce, name='loss_ce') self.global_step = tf.Variable(1, name="global_step", trainable=False)
bd15d3f0a4cbeb2de64c1293f83467585556f5bd
854082acbfb37f089894820ccdc722159db1503e
/pra/texwrap_fill.py
dc74e98ebd8709d92f4dd5f275a2eec1290acaa1
[]
no_license
weekenlee/pythoncode
f9ddaada6c75e152a0be910600bb2dd27c539438
de8f882c612947ca69f1c9ca8aa5159799ff3a56
refs/heads/master
2021-06-29T17:58:16.813382
2020-09-15T14:32:02
2020-09-15T14:32:02
139,693,337
0
0
null
null
null
null
UTF-8
Python
false
false
286
py
#-*- coding:utf-8 -*- import textwrap sample_text = u'''helloworld hel 你好 lodjfjafhasdhfhsd;fja;ljsdflajdflajsdklfja;lsjflk;ajdfl;jkal;dfjl;jdadflk;kjakfdljajfk;ajflakjf;ajkfajfa;jfkdsjfskajf;ajdfj;akfj ''' print(textwrap.fill(sample_text, 18)) print(textwrap.dedent(sample_text))
23f642792dce9f9470a6cbd1725e8f3806b79997
63a0da0d4b8a607fcf761566dc57c755b6757f6d
/counting_sort.py
3784de74c6384131068576f87d08bf1cf9ba31be
[]
no_license
sharvani198/alg-lang
3d28d1482c930ece1de993113b82881086a1e8e7
803fafe97b0ea780e14a749e1bdda496b051fd24
refs/heads/master
2021-09-01T10:42:59.132309
2017-12-26T15:11:54
2017-12-26T15:11:54
115,417,682
0
0
null
null
null
null
UTF-8
Python
false
false
308
py
def counting_sort(a, k): c = [0]*(k+1) b = [0]*(len(a)+1) for i in range(0, len(a)): c[a[i]] = c[a[i]]+1 for i in range(1,k+1): c[i]=c[i]+c[i-1] for i in range(len(a)-1,-1,-1): b[c[a[i]]] = a[i] c[a[i]]-=1 return b[1:] # arr = [2, 5, 3, 0, 2, 3, 0, 3] # brr = counting_sort(arr, 5) # print brr
addaa3a239c37f452e9fe35c962b89e5bc2b4099
bc0d2a64097bffbd1b718e0b6620206068620efe
/Design_Patterns/Creational/Singleton/Singleton.py
f1350ba8456b6a648f65ad09d5cf8ce2489dff8f
[]
no_license
lonesloane/Python-Snippets
8ab7e502d8df33f07d4a46a9e3f57a1053325690
bc596d7be03c97782036ce8199aaf97dfc8bf0e2
refs/heads/master
2021-01-10T08:13:43.723208
2019-09-14T09:56:45
2019-09-14T09:56:45
49,678,474
1
1
null
null
null
null
UTF-8
Python
false
false
446
py
class Singleton: __instance = None def __new__(cls, val=None): if Singleton.__instance is None: Singleton.__instance = object.__new__(cls) Singleton.__instance.val = val return Singleton.__instance # === Usage === x = Singleton() x.val = 'burger' print('x val: %s ' % x.val) y = Singleton() y.val = 'chips' print('y val: %s ' % y.val) print('x val: %s ' % x.val) print('x == y ?') print(x == y)
[ "Nyarlatothep72" ]
Nyarlatothep72
840b8e9a17f3feac6bbf5fba76255e63dbd08862
0a14f1ede647d819b23fd7aecde054d5724342e6
/Whiteboard/longest_increasing.py
a64d153963c0c690981fd6475189dbc08a9bdc21
[]
no_license
jenihuang/Coding_problems
f1982dc3461cefe4ae2d1720cc84fcbb4c191815
136f685466911971c42604e11146ec55a8313371
refs/heads/master
2020-04-28T18:51:10.814217
2019-03-23T04:13:44
2019-03-23T04:13:44
175,491,775
3
0
null
null
null
null
UTF-8
Python
false
false
703
py
import unittest def longest_inc(nums): biggest = 0 count = 1 for i in range(len(nums) - 1): if nums[i + 1] > nums[i]: count += 1 else: if count > biggest: biggest = count count = 1 if count > biggest: biggest = count return biggest class Test(unittest.TestCase): data = [ ([0, 1, 2], 3), ([0, 2, 1, 3, 5, 10], 4), ([-6, 2, 8, -2, 0, -1], 3) ] def test_compress_string(self): for [test_case, expected] in self.data: result = longest_inc(test_case) self.assertEqual(result, expected) if __name__ == "__main__": unittest.main()
483255496643c01322415690e91adaeb614d1348
81e0867d2bdf9b1ea4c59d420a7ac8b563161a9e
/POO/exercises/tv_mini_project/main.py
8491cbee14c7bf910b578ed9cbb5e215e4b62f44
[]
no_license
Jeremias333/python_startlatam
0e7313578d5370a24ecf2ff71b742161f3488cb3
922a775d0bff5cb3b24a7e9a3ae0c8d8af5f0e90
refs/heads/master
2022-11-27T19:31:43.278467
2020-08-04T14:01:54
2020-08-04T14:01:54
271,123,557
4
0
null
null
null
null
UTF-8
Python
false
false
1,362
py
from tv_model import TV import os def main(): os.system('cls' if os.name == 'nt' else 'clear') #criação do objeto tv list_volume = list() list_channel = list() list_volume.append(1) list_volume.append(10) list_channel.append(2) list_channel.append(13) tv = TV(list_channel, list_volume) _pass = True while(_pass == True): menu(tv) print("repetiu") def menu(tv: TV): os.system('cls' if os.name == 'nt' else 'clear') print(f"Aviso: {tv.get_warn()}") if(tv.get_state() == True): print(f"Volume atual: {tv.get_volume()}") print(f"Canal atual: {tv.get_channel()}") option = int(input("\n 1 - Volume + \n 2 - Volume - \n 3 - Canal + \n 4 - Canal - \n 0 - Desligar \n")) tv.set_warn() if(option == 1): tv.volume_more() if(option == 2): tv.volume_minum() if(option == 3): tv.channel_more() if(option == 4): tv.channel.minum() if(option == 0): tv.off_tv() else: os.system('cls' if os.name == 'nt' else 'clear') print("Opção inválida.") else: os.system('cls' if os.name == 'nt' else 'clear') option = int(input("\n 1 - Ligar TV \n")) if(option == 1): tv.on_tv() main()
fe1e009d1cdaca2b9e6bebb73913ca819e8eb8c3
c1551488f58893d38221c692208ee07af7d30d09
/blaze/evaluator/simulator/request_queue.py
d9689d414f32124170f3e7441d1821917ac27b91
[ "MIT" ]
permissive
muralisr/blaze
3df2a73fea7eb9834a9689e21352504c83a7de5b
e0d183af441cfe63ba1346cd0d6d8ac76ff494ca
refs/heads/master
2020-09-12T18:58:16.498218
2020-04-10T06:16:50
2020-04-10T06:16:50
215,646,920
0
0
MIT
2019-10-16T21:22:07
2019-10-16T21:22:06
null
UTF-8
Python
false
false
9,496
py
""" This module defines some helper classes as data structures for the Simulator and RequestQueue. It also defines the RequestQueue, which simulates the network link. """ import copy from collections import defaultdict from typing import DefaultDict, Dict, List, NamedTuple, Optional, Set, Tuple from blaze.config.environment import Resource from blaze.preprocess.url import Url from .tcp_state import TCPState class Node(NamedTuple): """ A Node in the Simulator graph """ resource: Resource priority: int children: List["Node"] = [] parent: Optional["Node"] = None def __hash__(self): return hash(self.resource.url) def __eq__(self, other: "Node"): return self.resource == other.resource class QueueItem: """ An item in the RequestQueue """ def __init__(self, node: Node, size: int, origin: str, delay_ms: float = 0): self.node = node self.bytes_left = size self.origin = origin self.delay_ms_left = delay_ms self.time_spent_downloading = 0 class RequestQueue: """ RequestQueue simulates ongoing network requests and the amount of time it would take to complete them. """ def __init__(self, bandwidth_kbps: int, rtt_latency_ms: int, loss_prop: float): self.queue: List[QueueItem] = [] self.delayed: List[QueueItem] = [] self.connected_origins: Set[str] = set() self.node_to_queue_item_map: Dict[Node, QueueItem] = {} # convert kilobits per second (kbps) to bytes per second (Bps) self.link_bandwidth_bps = bandwidth_kbps * (1000 / 8) self.bandwidth_kbps = bandwidth_kbps self.rtt_latency_ms = rtt_latency_ms self.loss_prop = loss_prop # model TCP dynamics per domain self.tcp_state: DefaultDict[TCPState] = defaultdict(lambda: TCPState(loss_prop=self.loss_prop)) def __contains__(self, node: Node): """ :return: True if the given node is already scheduled for download """ return any(qi.node == node for qi in self.queue) or any(qi.node == node for qi in self.delayed) def __len__(self): return len(self.queue) + len(self.delayed) def copy(self) -> "RequestQueue": """ :return: a copy of the request queue """ rq = RequestQueue(self.bandwidth_kbps, self.rtt_latency_ms, self.loss_prop) rq.queue = [copy.copy(qi) for qi in self.queue] rq.delayed = [copy.copy(qi) for qi in self.delayed] rq.node_to_queue_item_map = { **{node: copy.copy(qi) for (node, qi) in self.node_to_queue_item_map.items()}, **{qi.node: qi for qi in rq.queue}, **{qi.node: qi for qi in rq.delayed}, } rq.connected_origins = set(self.connected_origins) rq.tcp_state = copy.deepcopy(self.tcp_state) return rq @property def bandwidth(self): """ Calculates the bandwidth available to each currently-ongoing request. This is calculated as the total link bandwidth split evenly amongst all of the currently- downloading files, but could be made more sophisticated by taking into account per-domain bandwidth limits. """ return self.link_bandwidth_bps / (len(self.queue) or 1) def add(self, node: Node): """ Adds an item to the queue for immediate download """ self.add_with_delay(node, 0) def remove(self, node: Node): """ Removes the given node from the request queue :param node: the node to remove """ self.queue = [qi for qi in self.queue if qi.node != node] self.delayed = [qi for qi in self.delayed if qi.node != node] def add_with_delay(self, node: Node, delay_ms: float, cached: bool = False): """ Adds an item to the queue but does not start it until the delay has occurred. Additionally, this method checks to see if a connection has been opened for the resource's origin. If not, it adds 2-RTT delay for the resource. :param node: The node to add to the request queue :param delay_ms: The milliseconds to delay the request before starting it (not including RTT) :param cached: Specifies if the given resource is cached and does not need to be downloaded """ domain = Url.parse(node.resource.url).domain if cached: delay_ms = max(0.0, delay_ms) queue_item = QueueItem(node, 0, domain, delay_ms) else: num_rtts = self.tcp_state[domain].round_trips_needed_for_bytes(node.resource.size) if domain not in self.connected_origins: num_rtts += 1 delay_ms = max(0.0, delay_ms + (num_rtts * self.rtt_latency_ms)) queue_item = QueueItem(node, node.resource.size, domain, delay_ms) if delay_ms <= 0: self.queue.append(queue_item) else: self.delayed.append(queue_item) self.node_to_queue_item_map[node] = queue_item def estimated_completion_time(self, node: Node) -> Tuple[float, float]: """ Runs through a copy of the request queue and returns the relative time offset at which the given node would have completed. :param node: The node to estimate the completion time of :return: 0 if the node is not in the request queue; the relative time offset of completion otherwise """ if node not in self: return 0, 0 rq = self.copy() total_time = 0 completed_nodes, step_ms = [], 0 while rq and node not in completed_nodes: completed_nodes, step_ms = rq.step() total_time += step_ms return total_time, rq.time_spent_downloading(node) def time_spent_downloading(self, node: Node) -> float: """ Returns the ms spent downloading the given node. It returns 0 if the node is not in the queue, has not been scheduled to download, or has not downloaded any bytes yet :param node: The node to get the time spent downloading for """ if node not in self.node_to_queue_item_map: return 0 return self.node_to_queue_item_map[node].time_spent_downloading def remaining_delay(self, node: Node) -> float: """ Returns the delay ms left for a node before it starts downloading """ if node not in self.node_to_queue_item_map: return 0 return self.node_to_queue_item_map[node].delay_ms_left def step(self) -> Tuple[List[Node], float]: """ Performs one step through of the request queue, which simulates downloading until one item finishes downloading (or more, if they finish at the same time). The method then removes the finished downloads from the request queue and reduces the number of bytes left to download for the remaining items correspondingly :return: a tuple where the first value is a list of simulator Nodes that finished downloading in this step; the second value is the time in milliseconds it took to download those items in this step """ # check if the queue is empty if not self.queue and not self.delayed: return [], 0.0 # find the item with the least number of bytes left to download if self.queue: bytes_to_download = min(qi.bytes_left for qi in self.queue) time_ms_to_download = 1000 * bytes_to_download / self.bandwidth # OR, if the queue is empty, find the next delayed item to enqueue else: time_ms_to_download = min(qi.delay_ms_left for qi in self.delayed) bytes_to_download = (time_ms_to_download * self.bandwidth) / 1000 # Reduce all delayed items by time_ms_to_download for item in self.delayed: item.delay_ms_left -= time_ms_to_download # Reduce all queue elements by bytes_to_download for item in self.queue: item.bytes_left -= bytes_to_download item.time_spent_downloading += time_ms_to_download # Update the idle time for each TCP state domains_downloaded_from = set(item.origin for item in self.queue) for domain, tcp_state in self.tcp_state.items(): if domain in domains_downloaded_from: tcp_state.add_bytes_sent(bytes_to_download) else: tcp_state.add_time_since_last_byte(time_ms_to_download) # Find all delayed items that are ready to be queued delayed_items_to_queue = [qi for qi in self.delayed if qi.delay_ms_left < 0.01] # Find all queued items that have been completed and are ready for removal completed_nodes = [qi.node for qi in self.queue if qi.bytes_left == 0] # add origins for newly-queued items for item in delayed_items_to_queue: self.connected_origins.add(item.origin) # update the delayed queue, removing items ready to be queued self.delayed = [qi for qi in self.delayed if qi.delay_ms_left >= 0.01] # update the queue, removing items that are done and adding delayed items ready to be queued self.queue = [qi for qi in self.queue if qi.bytes_left > 0] + delayed_items_to_queue # return nodes that finished downloading and the total time took in this step return completed_nodes, time_ms_to_download
66278b5a3570a1dcb7de95a66ba33ae891c66cd1
674fadca516b1711294030d002ffde00053a84cf
/Flash/losses/losses.py
ccd9f60c0e045b33acbb87f180c9a16de80d1fe2
[]
no_license
parth1620/Flash-trainer
9b9bb616d61ce5452e67ee7f0b0b2f0494bab1da
5ea43128b71c56c8e9ea850d950bf76ecc743697
refs/heads/master
2023-08-05T23:48:38.347116
2021-10-11T14:33:05
2021-10-11T14:33:05
415,963,574
0
0
null
null
null
null
UTF-8
Python
false
false
544
py
import torch from torch import nn import torch.nn.functional as F from torch.autograd import Variable ''' no losses are present at this moment. ''' class LabelSmoothingForBCE(nn.Module): def __init__(self, smoothing = 0.09): super(LabelSmoothingForBCE, self).__init__() self.smoothing = smoothing def forward(self,logits, labels): labels[labels == 1] = 1 - self.smoothing labels[labels == 0] = self.smoothing return F.binary_cross_entropy_with_logits(logits, labels)
a7e5f8c54d4ceab61f36ff05c961d5ff8c49e137
94ca446c0f17d640f45941fa7c83530ef2fbc099
/wrs-remote-clients-2.0.2/python-openstackclient-3.12.0/openstackclient/compute/v2/service.py
b5b9bd5e1e2ca06a11fa24ccba389fd67680455a
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
rmoorewrs/tic-windows-remote-clients
c1c2b8924e90ffd2951571bc098ec9873ffd3988
ae16ee78a720852304d79f8b86dfe44e920cc72d
refs/heads/master
2023-05-25T13:55:55.603100
2019-05-31T20:59:28
2019-05-31T20:59:28
189,649,925
0
0
NOASSERTION
2023-05-22T20:43:59
2019-05-31T19:46:28
Python
UTF-8
Python
false
false
6,968
py
# Copyright 2012-2013 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # """Service action implementations""" import logging from osc_lib.command import command from osc_lib import exceptions from osc_lib import utils from openstackclient.i18n import _ LOG = logging.getLogger(__name__) class DeleteService(command.Command): _description = _("Delete compute service(s)") def get_parser(self, prog_name): parser = super(DeleteService, self).get_parser(prog_name) parser.add_argument( "service", metavar="<service>", nargs='+', help=_("Compute service(s) to delete (ID only)") ) return parser def take_action(self, parsed_args): compute_client = self.app.client_manager.compute result = 0 for s in parsed_args.service: try: compute_client.services.delete(s) except Exception as e: result += 1 LOG.error(_("Failed to delete compute service with " "ID '%(service)s': %(e)s"), {'service': s, 'e': e}) if result > 0: total = len(parsed_args.service) msg = (_("%(result)s of %(total)s compute services failed " "to delete.") % {'result': result, 'total': total}) raise exceptions.CommandError(msg) class ListService(command.Lister): _description = _("List compute services") def get_parser(self, prog_name): parser = super(ListService, self).get_parser(prog_name) parser.add_argument( "--host", metavar="<host>", help=_("List services on specified host (name only)") ) parser.add_argument( "--service", metavar="<service>", help=_("List only specified service (name only)") ) parser.add_argument( "--long", action="store_true", default=False, help=_("List additional fields in output") ) return parser def take_action(self, parsed_args): compute_client = self.app.client_manager.compute if parsed_args.long: columns = ( "ID", "Binary", "Host", "Zone", "Status", "State", "Updated At", "Disabled Reason" ) else: columns = ( "ID", "Binary", "Host", "Zone", "Status", "State", "Updated At" ) data = compute_client.services.list(parsed_args.host, parsed_args.service) return (columns, (utils.get_item_properties( s, columns, ) for s in data)) class SetService(command.Command): _description = _("Set compute service properties") def get_parser(self, prog_name): parser = super(SetService, self).get_parser(prog_name) parser.add_argument( "host", metavar="<host>", help=_("Name of host") ) parser.add_argument( "service", metavar="<service>", help=_("Name of service (Binary name)") ) enabled_group = parser.add_mutually_exclusive_group() enabled_group.add_argument( "--enable", action="store_true", help=_("Enable service") ) enabled_group.add_argument( "--disable", action="store_true", help=_("Disable service") ) parser.add_argument( "--disable-reason", default=None, metavar="<reason>", help=_("Reason for disabling the service (in quotas). " "Should be used with --disable option.") ) up_down_group = parser.add_mutually_exclusive_group() up_down_group.add_argument( '--up', action='store_true', help=_('Force up service'), ) up_down_group.add_argument( '--down', action='store_true', help=_('Force down service'), ) return parser def take_action(self, parsed_args): compute_client = self.app.client_manager.compute cs = compute_client.services if (parsed_args.enable or not parsed_args.disable) and \ parsed_args.disable_reason: msg = _("Cannot specify option --disable-reason without " "--disable specified.") raise exceptions.CommandError(msg) result = 0 enabled = None try: if parsed_args.enable: enabled = True if parsed_args.disable: enabled = False if enabled is not None: if enabled: cs.enable(parsed_args.host, parsed_args.service) else: if parsed_args.disable_reason: cs.disable_log_reason(parsed_args.host, parsed_args.service, parsed_args.disable_reason) else: cs.disable(parsed_args.host, parsed_args.service) except Exception: status = "enabled" if enabled else "disabled" LOG.error("Failed to set service status to %s", status) result += 1 force_down = None try: if parsed_args.down: force_down = True if parsed_args.up: force_down = False if force_down is not None: cs.force_down(parsed_args.host, parsed_args.service, force_down=force_down) except Exception: state = "down" if force_down else "up" LOG.error("Failed to set service state to %s", state) result += 1 if result > 0: msg = _("Compute service %(service)s of host %(host)s failed to " "set.") % {"service": parsed_args.service, "host": parsed_args.host} raise exceptions.CommandError(msg)
228acccc4ecfe1b296b5b1504076f808619c76aa
ffc2aec4424ecba3963d7f8b56333796b2a7c07e
/plugins/youtube.py
1e12164a8b9b5fbe3474b1cc64e807892e4dde26
[]
no_license
adrian17/inzbot
c73d4635cdf0231d5bcabfeff7fe38fec33c479d
47981450bbc4af83bcc2f9178fdbcf8e1df09a17
refs/heads/master
2021-01-18T16:35:55.582410
2018-02-15T18:47:09
2018-03-09T22:33:49
29,621,285
2
0
null
null
null
null
UTF-8
Python
false
false
1,388
py
from plugin_base import * import logging import isodate import requests def color(message): return "\x033" + message + "\x03 " class YoutubePlugin(Plugin): """Prints data about a YouTube video from its link.""" @on_pubmsg @priority(80) @pattern(R"youtube\.com\/watch\?v=(?P<id>[-\w]+)") @pattern(R"youtube\.com\/v\/(?P<id>[-\w]+)") @pattern(R"youtu\.be\/(?P<id>[-\w]+)") def handle_line(self, bot, event): video_id = event.match.group("id") params = { "id": video_id, "key": bot.google_api_key, "part": "snippet,contentDetails", "fields": "items(snippet(title,channelTitle),contentDetails(duration))" } try: json = requests.get("https://www.googleapis.com/youtube/v3/videos", params=params).json() video_title = json["items"][0]["snippet"]["title"].strip() video_author = json["items"][0]["snippet"]["channelTitle"].strip() video_len = json["items"][0]["contentDetails"]["duration"] duration = isodate.parse_duration(video_len) except Exception: logging.exception("") bot.message("possible error, check it", target="adrian17") return False bot.message(color("↳ ") + "|{}| by {}, len: {}".format(video_title, video_author, str(duration))) return True
1dfa5e81c5286303ec01df6f942e3e040df4ca14
64d16fbfaa6061add61ba82ec7428fde79ce07cb
/devel/lib/python2.7/dist-packages/uuv_control_msgs/srv/_AddWaypoint.py
ad3a65813b860a4bba63d8ceafee242a1e77b06d
[]
no_license
bnb15/clearpath_ros
519da6013eff041896695416a5411b1ba07b1532
2ec03826bf44e17def364784636838a1b3fc64fe
refs/heads/master
2020-05-31T21:35:26.359260
2019-06-06T02:15:56
2019-06-06T02:15:56
190,498,514
0
1
null
null
null
null
UTF-8
Python
false
false
18,688
py
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from uuv_control_msgs/AddWaypointRequest.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct import geometry_msgs.msg import uuv_control_msgs.msg import std_msgs.msg class AddWaypointRequest(genpy.Message): _md5sum = "3a004c7bf8d1b045f54b4f0d0d7256f0" _type = "uuv_control_msgs/AddWaypointRequest" _has_header = False #flag to mark the presence of a Header object _full_text = """ uuv_control_msgs/Waypoint waypoint ================================================================================ MSG: uuv_control_msgs/Waypoint # Copyright (c) 2016 The UUV Simulator Authors. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. std_msgs/Header header geometry_msgs/Point point float64 max_forward_speed float64 heading_offset bool use_fixed_heading float64 radius_of_acceptance ================================================================================ MSG: std_msgs/Header # Standard metadata for higher-level stamped data types. # This is generally used to communicate timestamped data # in a particular coordinate frame. # # sequence ID: consecutively increasing ID uint32 seq #Two-integer timestamp that is expressed as: # * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs') # * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs') # time-handling sugar is provided by the client library time stamp #Frame this data is associated with string frame_id ================================================================================ MSG: geometry_msgs/Point # This contains the position of a point in free space float64 x float64 y float64 z """ __slots__ = ['waypoint'] _slot_types = ['uuv_control_msgs/Waypoint'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: waypoint :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(AddWaypointRequest, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.waypoint is None: self.waypoint = uuv_control_msgs.msg.Waypoint() else: self.waypoint = uuv_control_msgs.msg.Waypoint() def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self buff.write(_get_struct_3I().pack(_x.waypoint.header.seq, _x.waypoint.header.stamp.secs, _x.waypoint.header.stamp.nsecs)) _x = self.waypoint.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_5dBd().pack(_x.waypoint.point.x, _x.waypoint.point.y, _x.waypoint.point.z, _x.waypoint.max_forward_speed, _x.waypoint.heading_offset, _x.waypoint.use_fixed_heading, _x.waypoint.radius_of_acceptance)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: if self.waypoint is None: self.waypoint = uuv_control_msgs.msg.Waypoint() end = 0 _x = self start = end end += 12 (_x.waypoint.header.seq, _x.waypoint.header.stamp.secs, _x.waypoint.header.stamp.nsecs,) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.waypoint.header.frame_id = str[start:end].decode('utf-8') else: self.waypoint.header.frame_id = str[start:end] _x = self start = end end += 49 (_x.waypoint.point.x, _x.waypoint.point.y, _x.waypoint.point.z, _x.waypoint.max_forward_speed, _x.waypoint.heading_offset, _x.waypoint.use_fixed_heading, _x.waypoint.radius_of_acceptance,) = _get_struct_5dBd().unpack(str[start:end]) self.waypoint.use_fixed_heading = bool(self.waypoint.use_fixed_heading) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self buff.write(_get_struct_3I().pack(_x.waypoint.header.seq, _x.waypoint.header.stamp.secs, _x.waypoint.header.stamp.nsecs)) _x = self.waypoint.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_5dBd().pack(_x.waypoint.point.x, _x.waypoint.point.y, _x.waypoint.point.z, _x.waypoint.max_forward_speed, _x.waypoint.heading_offset, _x.waypoint.use_fixed_heading, _x.waypoint.radius_of_acceptance)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: if self.waypoint is None: self.waypoint = uuv_control_msgs.msg.Waypoint() end = 0 _x = self start = end end += 12 (_x.waypoint.header.seq, _x.waypoint.header.stamp.secs, _x.waypoint.header.stamp.nsecs,) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.waypoint.header.frame_id = str[start:end].decode('utf-8') else: self.waypoint.header.frame_id = str[start:end] _x = self start = end end += 49 (_x.waypoint.point.x, _x.waypoint.point.y, _x.waypoint.point.z, _x.waypoint.max_forward_speed, _x.waypoint.heading_offset, _x.waypoint.use_fixed_heading, _x.waypoint.radius_of_acceptance,) = _get_struct_5dBd().unpack(str[start:end]) self.waypoint.use_fixed_heading = bool(self.waypoint.use_fixed_heading) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_5dBd = None def _get_struct_5dBd(): global _struct_5dBd if _struct_5dBd is None: _struct_5dBd = struct.Struct("<5dBd") return _struct_5dBd _struct_3I = None def _get_struct_3I(): global _struct_3I if _struct_3I is None: _struct_3I = struct.Struct("<3I") return _struct_3I # This Python file uses the following encoding: utf-8 """autogenerated by genpy from uuv_control_msgs/AddWaypointResponse.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct import geometry_msgs.msg import uuv_control_msgs.msg import std_msgs.msg class AddWaypointResponse(genpy.Message): _md5sum = "48bd8f09705ced6872f0bda693e6f08c" _type = "uuv_control_msgs/AddWaypointResponse" _has_header = False #flag to mark the presence of a Header object _full_text = """bool success uuv_control_msgs/Waypoint[] waypoints ================================================================================ MSG: uuv_control_msgs/Waypoint # Copyright (c) 2016 The UUV Simulator Authors. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. std_msgs/Header header geometry_msgs/Point point float64 max_forward_speed float64 heading_offset bool use_fixed_heading float64 radius_of_acceptance ================================================================================ MSG: std_msgs/Header # Standard metadata for higher-level stamped data types. # This is generally used to communicate timestamped data # in a particular coordinate frame. # # sequence ID: consecutively increasing ID uint32 seq #Two-integer timestamp that is expressed as: # * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs') # * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs') # time-handling sugar is provided by the client library time stamp #Frame this data is associated with string frame_id ================================================================================ MSG: geometry_msgs/Point # This contains the position of a point in free space float64 x float64 y float64 z """ __slots__ = ['success','waypoints'] _slot_types = ['bool','uuv_control_msgs/Waypoint[]'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: success,waypoints :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(AddWaypointResponse, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.success is None: self.success = False if self.waypoints is None: self.waypoints = [] else: self.success = False self.waypoints = [] def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: buff.write(_get_struct_B().pack(self.success)) length = len(self.waypoints) buff.write(_struct_I.pack(length)) for val1 in self.waypoints: _v1 = val1.header buff.write(_get_struct_I().pack(_v1.seq)) _v2 = _v1.stamp _x = _v2 buff.write(_get_struct_2I().pack(_x.secs, _x.nsecs)) _x = _v1.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _v3 = val1.point _x = _v3 buff.write(_get_struct_3d().pack(_x.x, _x.y, _x.z)) _x = val1 buff.write(_get_struct_2dBd().pack(_x.max_forward_speed, _x.heading_offset, _x.use_fixed_heading, _x.radius_of_acceptance)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: if self.waypoints is None: self.waypoints = None end = 0 start = end end += 1 (self.success,) = _get_struct_B().unpack(str[start:end]) self.success = bool(self.success) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.waypoints = [] for i in range(0, length): val1 = uuv_control_msgs.msg.Waypoint() _v4 = val1.header start = end end += 4 (_v4.seq,) = _get_struct_I().unpack(str[start:end]) _v5 = _v4.stamp _x = _v5 start = end end += 8 (_x.secs, _x.nsecs,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: _v4.frame_id = str[start:end].decode('utf-8') else: _v4.frame_id = str[start:end] _v6 = val1.point _x = _v6 start = end end += 24 (_x.x, _x.y, _x.z,) = _get_struct_3d().unpack(str[start:end]) _x = val1 start = end end += 25 (_x.max_forward_speed, _x.heading_offset, _x.use_fixed_heading, _x.radius_of_acceptance,) = _get_struct_2dBd().unpack(str[start:end]) val1.use_fixed_heading = bool(val1.use_fixed_heading) self.waypoints.append(val1) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: buff.write(_get_struct_B().pack(self.success)) length = len(self.waypoints) buff.write(_struct_I.pack(length)) for val1 in self.waypoints: _v7 = val1.header buff.write(_get_struct_I().pack(_v7.seq)) _v8 = _v7.stamp _x = _v8 buff.write(_get_struct_2I().pack(_x.secs, _x.nsecs)) _x = _v7.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _v9 = val1.point _x = _v9 buff.write(_get_struct_3d().pack(_x.x, _x.y, _x.z)) _x = val1 buff.write(_get_struct_2dBd().pack(_x.max_forward_speed, _x.heading_offset, _x.use_fixed_heading, _x.radius_of_acceptance)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: if self.waypoints is None: self.waypoints = None end = 0 start = end end += 1 (self.success,) = _get_struct_B().unpack(str[start:end]) self.success = bool(self.success) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.waypoints = [] for i in range(0, length): val1 = uuv_control_msgs.msg.Waypoint() _v10 = val1.header start = end end += 4 (_v10.seq,) = _get_struct_I().unpack(str[start:end]) _v11 = _v10.stamp _x = _v11 start = end end += 8 (_x.secs, _x.nsecs,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: _v10.frame_id = str[start:end].decode('utf-8') else: _v10.frame_id = str[start:end] _v12 = val1.point _x = _v12 start = end end += 24 (_x.x, _x.y, _x.z,) = _get_struct_3d().unpack(str[start:end]) _x = val1 start = end end += 25 (_x.max_forward_speed, _x.heading_offset, _x.use_fixed_heading, _x.radius_of_acceptance,) = _get_struct_2dBd().unpack(str[start:end]) val1.use_fixed_heading = bool(val1.use_fixed_heading) self.waypoints.append(val1) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_B = None def _get_struct_B(): global _struct_B if _struct_B is None: _struct_B = struct.Struct("<B") return _struct_B _struct_2dBd = None def _get_struct_2dBd(): global _struct_2dBd if _struct_2dBd is None: _struct_2dBd = struct.Struct("<2dBd") return _struct_2dBd _struct_2I = None def _get_struct_2I(): global _struct_2I if _struct_2I is None: _struct_2I = struct.Struct("<2I") return _struct_2I _struct_3d = None def _get_struct_3d(): global _struct_3d if _struct_3d is None: _struct_3d = struct.Struct("<3d") return _struct_3d class AddWaypoint(object): _type = 'uuv_control_msgs/AddWaypoint' _md5sum = 'e853788769392728a6445812f447d75e' _request_class = AddWaypointRequest _response_class = AddWaypointResponse
16a7313728d0e9233eb8ec1d62cdc8ee92db5597
6df57f3e07b40d02cf908959582457525c49e26d
/05 Variables/variables-numbers.py
ec71636db49962963ef3861673b366ec2de65466
[]
no_license
Megamala/Learning-Python
9763caaf35a04ea0bd7643fe876e262294ae765a
c144682e3b4ce96fcd252b6cce4b3e73b480e04b
refs/heads/master
2021-01-17T10:33:12.933470
2016-06-13T17:49:59
2016-06-13T17:49:59
59,484,464
0
0
null
null
null
null
UTF-8
Python
false
false
147
py
#! C:\Python31\python def main(): num = round(42 / 9, 2), 42 % 9, float(42) print(type(num), num) if __name__ == "__main__": main()
15b3b8fe1ccf80c4f1bb2fce47f283106b2b63c5
665b63dee0016b3f219b26e0f6e3dd860c0977a6
/humset/utils/shdi.py
a3f658fd93031b189123bbe2bf4bffa9085bab71
[]
no_license
ChristopherAbram/ResearchProjectAutumn2020
517d3a15c160b366882ac7304c5e3ed279c9051d
4a954f774c24819e8fac0f8e32db457b22b59767
refs/heads/master
2023-01-30T16:46:44.029289
2020-12-12T00:48:19
2020-12-12T00:48:19
299,929,694
0
0
null
2020-11-25T16:22:33
2020-09-30T13:33:45
Jupyter Notebook
UTF-8
Python
false
false
572
py
import os import numpy as np import pandas as pd from humset.utils.definitions import get_project_path def get_shdi(country_iso_code='NGA'): hdi_path = os.path.join(get_project_path(), 'data', 'shdi', 'SHDI Complete 4.0 (1).csv') data = pd.read_csv(hdi_path, usecols=['iso_code', 'year', 'level', 'GDLCODE', 'shdi']) data = data.set_index('iso_code', drop=False) data = data.loc[ (data['iso_code'] == country_iso_code) & (data['year'] == 2018) & (data['level'] == 'Subnat')] return np.array(data.loc[:,['GDLCODE', 'shdi']])
8ebe30c87198cca38f7fa30971095fcd5e45d5d4
fed9ad8ad28bab27a3d4fa579c5a6bf0c2b8171e
/ml_hw2/perceptron_a.py
2ec33519b7a38f3efc12557e2dbab3d06d2e3da1
[]
no_license
egall/Machine_Learning
650bccd24b8ac32e07adfef5ae612d0112572603
616c1b150e63092aa5cba5eb931bb797096cae54
refs/heads/master
2021-01-19T10:26:11.157550
2014-11-27T02:46:59
2014-11-27T02:46:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,312
py
#!/usr/bin/python import random import numpy as np def preceptron_algo(): my_inst_array = generate_instances_list() w_array = [0,0,0,0,0,0,0,0,0,0,0] y = 0 x = 0 b = 0 mistakes = 0 for i in range(0,500): my_inst = my_inst_array[i] y = my_inst[0] a = np.dot(w_array, my_inst[1]) if (y*a <= 0): print "updating" w_array = w_array + np.dot(y, my_inst[1]) print "w_array = ", w_array # for j in range(0,11): # x = my_inst[1][j] # w = w_array[j] # a = w*x + b # if (y*a <= 0): # w_array[j] += w + x*y # mistakes += 1 def generate_instances_list(): # create an array to hold each of the 500 instance instance_array = [] for i in range(0,500): # list that will hold list of 11 random 0/1 values bin_list = [] # populate bin_list for j in range(0,11): binnum = random.randint(0,1) if binnum == 0: feature = -1 else: feature = 1 bin_list.append(feature) new_inst = (bin_list[0], bin_list) instance_array.append(new_inst) return instance_array if __name__ == "__main__": preceptron_algo()
356b4e875d79d72486affcd76b9f87afeceeec89
2bc23edccbc37963830b1520c7124249d14d468b
/PrimaryPositionCorrection.py
a0ee6a247ba93f6c0264bd02ddcebd03b68fe221
[ "MIT" ]
permissive
andregtorres/ISTTOK
a856351736d6b174c2eda4f5d9f7486c5bbf8c72
56c8c7d46ed3a473d0e5e26963197fa19e661f18
refs/heads/master
2021-08-02T06:07:54.821919
2021-07-21T20:12:45
2021-07-21T20:12:45
142,753,763
0
1
null
null
null
null
UTF-8
Python
false
false
6,673
py
#Andre Torres 5-11-2018 #run in terminal as root #computes the 'real' position of the primary field coils from field import * from getMirnov import * from scipy.constants import mu_0 import keyboard #SDAS shotP=44501 #Coil signals prim, times, tbs = getSignal(ch_prim, shotP) #mirnov signals times, dataP = getMirnovs(shotP,mirnv,True) iV=np.mean(prim[2100:5900]) ftP=-flatTops(dataP,5000,6000) #MINUS SIGN! P0=getMirnovFlux([62.,62.],[-13.,13.],[+1.,1.],14,biotSavart=False)*iV print("START") plt.ion() x=np.arange(12)+1 fig=plt.figure() ax=fig.add_subplot(211) plt.tight_layout() plt.ylabel("Mirnov Flux [uV s]") line0,=ax.plot(x,ftP*1e6, label="Measurement") line1,=ax.plot(x,P0*1e6, label="Original positions") line2,=ax.plot(x,P0*1e6, label="Optimized positions") plt.legend() ax2=fig.add_subplot(212, sharex=ax) plt.xlabel("Mirnov probe") plt.ylabel("Flux difference [uV s]") line20,=ax2.plot(x,(ftP-ftP)*1e6) line21,=ax2.plot(x,(ftP-P0)*1e6) line22,=ax2.plot(x,(ftP-P0)*1e6) d=[[0,-1],[0,+1],[0,0],[1.,1.]] initial=[[62.,62.],[-13.,13.]] coil=1 while( not keyboard.is_pressed("q")): if keyboard.is_pressed("1"): coil=1 if keyboard.is_pressed("2"): coil=2 if keyboard.is_pressed("3"): coil=3 if keyboard.is_pressed("4"): coil=4 if keyboard.is_pressed("5"): coil=5 if keyboard.is_pressed("a"): d[coil-1][0]+=0.1 if keyboard.is_pressed("z"): d[coil-1][0]-=0.1 if keyboard.is_pressed("s"): d[coil-1][0]+=0.5 if keyboard.is_pressed("x"): d[coil-1][0]-=0.5 if keyboard.is_pressed("d"): if coil in [1,2]: d[0][1]+=0.1 d[1][1]+=0.1 else: d[coil-1][1]+=0.1 if keyboard.is_pressed("c"): if coil in [1,2]: d[0][1]-=0.1 d[1][1]-=0.1 else: d[coil-1][1]-=0.1 if keyboard.is_pressed("f"): if coil in [1,2]: d[0][1]+=0.5 d[1][1]+=0.5 else: d[coil-1][1]+=0.5 if keyboard.is_pressed("v"): if coil in [1,2]: d[0][1]-=0.5 d[1][1]-=0.5 else: d[coil-1][1]-=0.5 if keyboard.is_pressed(" "): print d P=getMirnovFluxCorrected([62.+d[0][0],62.+d[1][0]],[-13.+d[0][1],13.+d[1][1]],[+1.,1.],14,d[3],biotSavart=False)*(iV+d[2][0]) line22.set_ydata((ftP-P)*1e6) line2.set_ydata(P*1e6) fig.canvas.draw() fig.canvas.flush_events() print d #[-0.1, -3.9], [2.7, 5.9], [3.5, -9.1], [2.4, 7.1] EM relacao a optimizacao horizontal #[-2.9, -6.2], [-2.6, 9.7], [3.5, -8.2], [2.2, 5.7] ''' #plots d=[[-1.3, 1.7], [-2.6, 0.7], [-38., 0]] #6/11 Pold=getMirnovFlux([62.+d[0][0],62.+d[1][0]],[-13.+d[0][1],13.+d[1][1]],[+1.,1.],14,biotSavart=False)*(iV+d[2][0]) d=[[-1.4, -1.1], [-1.4, 0.9], [-24.7, 0]] Pnew=getMirnovFlux([62.+d[0][0],62.+d[1][0]],[-13.+d[0][1],13.+d[1][1]],[+1.,1.],14,biotSavart=False)*(iV+d[2][0]) Pnew2=getMirnovFlux([62.+d[0][0],62.+d[1][0]],[-13.+d[0][1],13.+d[1][1]],[+1.,1.],14,biotSavart=True)*(iV+d[2][0]) d=[[-0.5, -1.0], [-0.5, 1.0], [-15, 0]] Pprof=getMirnovFlux([62.+d[0][0],62.+d[1][0]],[-13.+d[0][1],13.+d[1][1]],[+1.,1.],14,biotSavart=False)*(iV+d[2][0]) d=[[-0, -0], [-0, 0], [0, 0]] P0=getMirnovFlux([62.+d[0][0],62.+d[1][0]],[-13.+d[0][1],13.+d[1][1]],[+1.,1.],14,biotSavart=False)*(iV+d[2][0]) P0BS=getMirnovFlux([62.+d[0][0],62.+d[1][0]],[-13.+d[0][1],13.+d[1][1]],[+1.,1.],14,biotSavart=True)*(iV+d[2][0]) plt.figure() plt.plot(np.arange(12)+1,Pold*1e6 -ftP*1e6, label="Old optimization -Measured flux") plt.plot(np.arange(12)+1,Pnew*1e6 -ftP*1e6, label="New optimization -Measured flux") plt.plot(np.arange(12)+1,Pprof*1e6 -ftP*1e6, label="Professors optimization -Measured flux") plt.xlabel("Mirnov probe") plt.ylabel("Mirnov Flux [uV s]") plt.title ("Pulse #44501 - Mirnov flux with optimized coil position") plt.legend() plt.tight_layout() plt.savefig("plots/PrimOptim_44501_comparison_rel2.png") plt.figure() plt.plot(np.arange(12)+1,ftP*1e6, "-", label="Measured flux") plt.plot(np.arange(12)+1,Pnew*1e6,"-", label="New optimization") plt.plot(np.arange(12)+1,Pnew2*1e6,"-", label="New optimization BS") plt.plot(np.arange(12)+1,P0BS*1e6,"-", label="NO optimization BS") plt.plot(np.arange(12)+1,P0*1e6,"-", label="NO optimization") plt.xlabel("Mirnov probe") plt.ylabel("Mirnov Flux [uV s]") plt.title ("Pulse #44501 - Mirnov flux with optimized coil position") plt.legend() plt.tight_layout() plt.figure() plt.plot(np.arange(11)+1,np.diff(ftP)*1e6, "x", label="Measured flux") plt.plot(np.arange(11)+1,np.diff(Pold)*1e6,"x", label="Old optimization") plt.plot(np.arange(11)+1,np.diff(Pnew)*1e6,"x", label="New optimization") plt.plot(np.arange(11)+1,np.diff(Pprof)*1e6, "x",label="Professors optimization") plt.xlabel("Mirnov probe") plt.ylabel("Mirnov Flux [uV s]") plt.title ("Pulse #44501 - Mirnov flux with optimized coil position") plt.legend() plt.tight_layout() plt.savefig("plots/PrimOptim_44501_comparison_diff2.png") shotV=42952 #shot antigo vert, times, tbs = getSignal(ch_vert, shotV ) times, dataV = getMirnovs(shotV,mirnv,True) iV=np.mean(vert[1100:5900]) ftV=flatTops(dataV,4000,6000) V0=getMirnovFlux([58.,58.,35.,35.],[-7.,7.,-7.,7.],[-1.,-1.,1.,1.],5,biotSavart=False)*iV V2=getMirnovFlux([58.+d[0][0],58.+d[1][0],35.+d[2][0],35.+d[3][0]],[-7.+d[0][1],7.+d[1][1],-7+d[2][1],7.+d[3][1]],[-1.,-1.,1.,1.],5,biotSavart=False)*iV plt.figure() plt.plot(np.arange(12)+1,-ftV*1e6, label="Measured flux") plt.plot(np.arange(12)+1,V0*1e6, label="Original PF positions") plt.plot(np.arange(12)+1,V2*1e6, label="Optimized PF positions") plt.xlabel("Mirnov probe") plt.ylabel("Mirnov Flux [uV s]") plt.title ("Pulse #42952 - Mirnov flux with optimized coil position") plt.legend() plt.tight_layout() plt.savefig("plots/VerticalOptim_42952.png") shotV=44473 vert, times, tbs = getSignal(ch_vert, shotV ) times, dataV = getMirnovs(shotV,mirnv,True) plt.plot(vert) iV=np.mean(vert[1100:5900]) ftV=flatTops(dataV,4000,6000) V0=getMirnovFlux([58.,58.,35.,35.],[-7.,7.,-7.,7.],[-1.,-1.,1.,1.],5,biotSavart=False)*iV V2=getMirnovFlux([58.+d[0][0],58.+d[1][0],35.+d[2][0],35.+d[3][0]],[-7.+d[0][1],7.+d[1][1],-7+d[2][1],7.+d[3][1]],[-1.,-1.,1.,1.],5,biotSavart=False)*iV plt.figure() plt.plot(np.arange(12)+1,ftV*1e6, label="Measured flux") plt.plot(np.arange(12)+1,V0*1e6, label="Original PF positions") plt.plot(np.arange(12)+1,V2*1e6, label="Optimized PF positions") plt.xlabel("Mirnov probe") plt.ylabel("Mirnov Flux [uV s]") plt.title ("Pulse #44473 - Mirnov flux with optimized coil position") plt.legend() plt.tight_layout() plt.savefig("plots/VerticalOptim_44473.png") '''
6c46a926d9225e406176b89f40a567506cb3720f
a6764755670483fd938c290cd4178669ee703585
/toolkit/vector2d.py
c7523a76a8e557c0558b07f877ffc2639ac4fce3
[]
no_license
PumpkinJimmy/pygamepp
27b1a54100ac0703532cfa0ef80a2207ae6d3f1f
d30c729c797c4d18ee50b340363772493d4cf272
refs/heads/master
2021-01-20T10:24:27.425173
2017-09-09T00:16:28
2017-09-09T00:16:28
101,634,079
0
0
null
null
null
null
UTF-8
Python
false
false
10,379
py
################## http://www.pygame.org/wiki/2DVectorClass ################## import operator import math class Vec2d(object): """2d vector class, supports vector and scalar operators, and also provides a bunch of high level functions """ __slots__ = ['x', 'y'] def __init__(self, x_or_pair, y=None): if y == None: self.x = x_or_pair[0] self.y = x_or_pair[1] else: self.x = x_or_pair self.y = y def __len__(self): return 2 def __getitem__(self, key): if key == 0: return self.x elif key == 1: return self.y else: raise IndexError("Invalid subscript " + str(key) + " to Vec2d") def __setitem__(self, key, value): if key == 0: self.x = value elif key == 1: self.y = value else: raise IndexError("Invalid subscript " + str(key) + " to Vec2d") # String representaion (for debugging) def __repr__(self): return 'Vec2d(%s, %s)' % (self.x, self.y) # Comparison def __eq__(self, other): if hasattr(other, "__getitem__") and len(other) == 2: return self.x == other[0] and self.y == other[1] else: return False def __ne__(self, other): if hasattr(other, "__getitem__") and len(other) == 2: return self.x != other[0] or self.y != other[1] else: return True def __nonzero__(self): return bool(self.x or self.y) # Generic operator handlers def _o2(self, other, f): "Any two-operator operation where the left operand is a Vec2d" if isinstance(other, Vec2d): return Vec2d(f(self.x, other.x), f(self.y, other.y)) elif hasattr(other, "__getitem__"): return Vec2d(f(self.x, other[0]), f(self.y, other[1])) else: return Vec2d(f(self.x, other), f(self.y, other)) def _r_o2(self, other, f): "Any two-operator operation where the right operand is a Vec2d" if hasattr(other, "__getitem__"): return Vec2d(f(other[0], self.x), f(other[1], self.y)) else: return Vec2d(f(other, self.x), f(other, self.y)) def _io(self, other, f): "inplace operator" if hasattr(other, "__getitem__"): self.x = f(self.x, other[0]) self.y = f(self.y, other[1]) else: self.x = f(self.x, other) self.y = f(self.y, other) return self # Addition def __add__(self, other): if isinstance(other, Vec2d): return Vec2d(self.x + other.x, self.y + other.y) elif hasattr(other, "__getitem__"): return Vec2d(self.x + other[0], self.y + other[1]) else: return Vec2d(self.x + other, self.y + other) __radd__ = __add__ def __iadd__(self, other): if isinstance(other, Vec2d): self.x += other.x self.y += other.y elif hasattr(other, "__getitem__"): self.x += other[0] self.y += other[1] else: self.x += other self.y += other return self # Subtraction def __sub__(self, other): if isinstance(other, Vec2d): return Vec2d(self.x - other.x, self.y - other.y) elif hasattr(other, "__getitem__"): return Vec2d(self.x - other[0], self.y - other[1]) else: return Vec2d(self.x - other, self.y - other) def __rsub__(self, other): if isinstance(other, Vec2d): return Vec2d(other.x - self.x, other.y - self.y) if hasattr(other, "__getitem__"): return Vec2d(other[0] - self.x, other[1] - self.y) else: return Vec2d(other - self.x, other - self.y) def __isub__(self, other): if isinstance(other, Vec2d): self.x -= other.x self.y -= other.y elif hasattr(other, "__getitem__"): self.x -= other[0] self.y -= other[1] else: self.x -= other self.y -= other return self # Multiplication def __mul__(self, other): if isinstance(other, Vec2d): return Vec2d(self.x * other.x, self.y * other.y) if hasattr(other, "__getitem__"): return Vec2d(self.x * other[0], self.y * other[1]) else: return Vec2d(self.x * other, self.y * other) __rmul__ = __mul__ def __imul__(self, other): if isinstance(other, Vec2d): self.x *= other.x self.y *= other.y elif hasattr(other, "__getitem__"): self.x *= other[0] self.y *= other[1] else: self.x *= other self.y *= other return self # Division def __div__(self, other): return self._o2(other, operator.div) def __rdiv__(self, other): return self._r_o2(other, operator.div) def __idiv__(self, other): return self._io(other, operator.div) def __floordiv__(self, other): return self._o2(other, operator.floordiv) def __rfloordiv__(self, other): return self._r_o2(other, operator.floordiv) def __ifloordiv__(self, other): return self._io(other, operator.floordiv) def __truediv__(self, other): return self._o2(other, operator.truediv) def __rtruediv__(self, other): return self._r_o2(other, operator.truediv) def __itruediv__(self, other): return self._io(other, operator.floordiv) # Modulo def __mod__(self, other): return self._o2(other, operator.mod) def __rmod__(self, other): return self._r_o2(other, operator.mod) def __divmod__(self, other): return self._o2(other, operator.divmod) def __rdivmod__(self, other): return self._r_o2(other, operator.divmod) # Exponentation def __pow__(self, other): return self._o2(other, operator.pow) def __rpow__(self, other): return self._r_o2(other, operator.pow) # Bitwise operators def __lshift__(self, other): return self._o2(other, operator.lshift) def __rlshift__(self, other): return self._r_o2(other, operator.lshift) def __rshift__(self, other): return self._o2(other, operator.rshift) def __rrshift__(self, other): return self._r_o2(other, operator.rshift) def __and__(self, other): return self._o2(other, operator.and_) __rand__ = __and__ def __or__(self, other): return self._o2(other, operator.or_) __ror__ = __or__ def __xor__(self, other): return self._o2(other, operator.xor) __rxor__ = __xor__ # Unary operations def __neg__(self): return Vec2d(operator.neg(self.x), operator.neg(self.y)) def __pos__(self): return Vec2d(operator.pos(self.x), operator.pos(self.y)) def __abs__(self): return Vec2d(abs(self.x), abs(self.y)) def __invert__(self): return Vec2d(-self.x, -self.y) # vectory functions def get_length_sqrd(self): return self.x ** 2 + self.y ** 2 def get_length(self): return math.sqrt(self.x ** 2 + self.y ** 2) def __setlength(self, value): length = self.get_length() self.x *= value / length self.y *= value / length length = property(get_length, __setlength, None, "gets or sets the magnitude of the vector") def rotate(self, angle_degrees): radians = math.radians(angle_degrees) cos = math.cos(radians) sin = math.sin(radians) x = self.x * cos - self.y * sin y = self.x * sin + self.y * cos self.x = x self.y = y def rotated(self, angle_degrees): radians = math.radians(angle_degrees) cos = math.cos(radians) sin = math.sin(radians) x = self.x * cos - self.y * sin y = self.x * sin + self.y * cos return Vec2d(x, y) def get_angle(self): if (self.get_length_sqrd() == 0): return 0 return math.degrees(math.atan2(self.y, self.x)) def __setangle(self, angle_degrees): self.x = self.length self.y = 0 self.rotate(angle_degrees) angle = property(get_angle, __setangle, None, "gets or sets the angle of a vector") def get_angle_between(self, other): cross = self.x * other[1] - self.y * other[0] dot = self.x * other[0] + self.y * other[1] return math.degrees(math.atan2(cross, dot)) def normalized(self): length = self.length if length != 0: return self / length return Vec2d(self) def normalize_return_length(self): length = self.length if length != 0: self.x /= length self.y /= length return length def perpendicular(self): return Vec2d(-self.y, self.x) def perpendicular_normal(self): length = self.length if length != 0: return Vec2d(-self.y / length, self.x / length) return Vec2d(self) def dot(self, other): return float(self.x * other[0] + self.y * other[1]) def get_distance(self, other): return math.sqrt((self.x - other[0]) ** 2 + (self.y - other[1]) ** 2) def get_dist_sqrd(self, other): return (self.x - other[0]) ** 2 + (self.y - other[1]) ** 2 def projection(self, other): other_length_sqrd = other[0] * other[0] + other[1] * other[1] projected_length_times_other_length = self.dot(other) return other * (projected_length_times_other_length / other_length_sqrd) def cross(self, other): return self.x * other[1] - self.y * other[0] def interpolate_to(self, other, range): return Vec2d(self.x + (other[0] - self.x) * range, self.y + (other[1] - self.y) * range) def convert_to_basis(self, x_vector, y_vector): return Vec2d(self.dot(x_vector) / x_vector.get_length_sqrd(), self.dot(y_vector) / y_vector.get_length_sqrd()) def __getstate__(self): return [self.x, self.y] def __setstate__(self, dict): self.x, self.y = dict
dac0fb04c810b23f6daa4d74eb866acd12e58597
6fec54ad58eb2ca49c0efb5af17c39729de1077e
/i2c_motorcontrol.py
2432e777072ad606d2d1c40367958732e415a447
[]
no_license
yongkingdom/sanitizationondemandrobot_with_deliverysecured
8c543c3a3dbf51d5c7f6671792c5f842452a6c2e
95bcc9cd4367add8bd892aeb1d5e21c22fe42414
refs/heads/master
2023-04-26T05:00:16.833427
2021-06-05T13:15:12
2021-06-05T13:15:12
277,834,628
1
0
null
null
null
null
UTF-8
Python
false
false
3,952
py
from smbus2 import SMBus import time address = 0x0A read_on = 1 read_off = 0 write_reg = 0 # 0 = i2c writing is disable for motor control # 1 = i2c writing is enable for motor control # 2 = rf is disable for motor control # 3 = rf is enable for motor control # 4 = readRFChannel5 is enable for motor control read def motor_read_block(regread = read_on,num=10): with SMBus(1) as bus: # Read a block of 16 bytes from address 80, offset 0 block = bus.read_i2c_block_data(address, regread, num) # Returned value is a list of 16 bytes #print(block) return(block,num) def motor_write_block(regwrite = 0,data = [0,1,2,3,4]): with SMBus(1) as bus: # Write a byte to address 80, offset 0 bus.write_i2c_block_data(address, regwrite, data) def rf_disable(write_reg = 2): with SMBus(1) as bus: bus.write_i2c_block_data(address, write_reg, [44]) time.sleep(0.01) def rf_enable(write_reg = 3): with SMBus(1) as bus: bus.write_i2c_block_data(address, write_reg, [88]) time.sleep(0.01) def motor_forward(speed = 10,waitime=0.1,write_reg = 1): with SMBus(1) as bus: bus.write_i2c_block_data(address, write_reg, [8,speed]) time.sleep(waitime) def motor_reverse(speed = 10,waitime=0.1,write_reg = 1): with SMBus(1) as bus: bus.write_i2c_block_data(address, write_reg, [2,speed]) time.sleep(waitime) def motor_stop(deceleration = 0,write_reg = 1): with SMBus(1) as bus: bus.write_i2c_block_data(address, write_reg, [5,deceleration]) if(deceleration>100): time.sleep(2) elif ((deceleration>10) & (deceleration<100)): time.sleep(1) else: time.sleep(0) def motor_left(speed = 10,waitime=0.1,write_reg = 1): with SMBus(1) as bus: bus.write_i2c_block_data(address, write_reg, [4,speed]) time.sleep(waitime) def motor_right(speed = 10,waitime=0.1,write_reg = 1): with SMBus(1) as bus: bus.write_i2c_block_data(address, write_reg, [6,speed]) time.sleep(waitime) def motor_cw(speed = 10,waitime=0.1,write_reg = 1): with SMBus(1) as bus: bus.write_i2c_block_data(address, write_reg, [10,speed]) time.sleep(waitime) def motor_ccw(speed = 10,waitime=0.1,write_reg = 1): with SMBus(1) as bus: bus.write_i2c_block_data(address, write_reg, [11,speed]) time.sleep(waitime) def motor_fwdspinleft(speed = 10,waitime=0.1,write_reg = 1): with SMBus(1) as bus: bus.write_i2c_block_data(address, write_reg, [15,speed]) time.sleep(waitime) def motor_fwdspinright(speed = 10,waitime=0.1,write_reg = 1): with SMBus(1) as bus: bus.write_i2c_block_data(address, write_reg, [16,speed]) time.sleep(waitime) def motor_rwdspinleft(speed = 10,waitime=0.1,write_reg = 1): with SMBus(1) as bus: bus.write_i2c_block_data(address, write_reg, [17,speed]) time.sleep(waitime) def motor_rwdspinright(speed = 10,waitime=0.1,write_reg = 1): with SMBus(1) as bus: bus.write_i2c_block_data(address, write_reg, [18,speed]) time.sleep(waitime) def readRF_enable(write_reg = 4): with SMBus(1) as bus: bus.write_i2c_block_data(address, write_reg, [1]) time.sleep(0.01) def readRFChannel5(regread = read_on,num=1): with SMBus(1) as bus: block = bus.read_i2c_block_data(address, regread, num) # Returned value is a list of 16 bytes #print(block) return(block,num) time.sleep(0.01) rf_disable() #disable Radio before run control from RPI. if(__name__=='__main__'): motor_fwdspinleft(45,1) motor_fwdspinright(45,1) motor_rwdspinleft(45,1) motor_rwdspinright(45,1) motor_stop(15) # rf_enable() # readRF_enable() # time.sleep(0.1) # for i in range(20): # print(readRFChannel5()) # time.sleep(0.1)
415ddf32d382ad1784dd763a346699f3e9498114
fa63ea75ac7e25a424aee501c955ffce18b030b5
/tests/basics/class_instance_override.py
1ebd61d062f0acca4a70464b1ce79ac18242394a
[ "MIT" ]
permissive
HangCoder/micropython-simulator
ee72145b55c21ebc20c5ca38a95e9df26871e29a
7fb13eeef4a85f21cae36f1d502bcc53880e1815
refs/heads/master
2022-02-17T22:59:59.079722
2019-09-09T12:19:38
2019-09-09T12:19:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
183
py
# test that we can override a class method with an instance method class A: def foo(self): return 1 a = A() print(a.foo()) a.foo = lambda:2 print(a.foo()) print("PASS")
348c0d76e8311e454ffeb8f380f781cdd3e04f9e
ab60b97b72d596c0833d8b1c424a69737e768813
/general/forms.py
4c619967f6ee67ae00d697a7589c106eef09cdd8
[]
no_license
Richa-09/Car-Pool-Management-System
c5ce55acafb0de01b89440aca955a15259ac6901
bf9cccf5be8bf1e814046cc41264ae4cd9d91c1a
refs/heads/master
2021-09-24T03:55:41.446611
2020-03-13T16:19:26
2020-03-13T16:19:26
245,968,529
0
0
null
null
null
null
UTF-8
Python
false
false
1,844
py
from django import forms class DateInput(forms.DateInput): input_type = 'date' class TimeInput(forms.TimeInput): input_type = 'time' class OfferForm(forms.Form): destination1 = forms.CharField(label="From", widget = forms.TextInput( attrs = { 'class' : 'form-control', 'placeholder' : 'Enter start of journey...', 'label' : 'From' } )) destination2 = forms.CharField(label="To", widget = forms.TextInput( attrs = { 'class' : 'form-control', 'placeholder' : 'Enter end of journey...', 'label' : 'To' } )) date = forms.DateField(label="Date of Journey", widget = DateInput( attrs = { 'class' : 'form-control', 'placeholder' : 'Enter date of journey', 'label' : 'Date of Journey' } )) time = forms.TimeField(label="Time of Journey",widget= TimeInput( attrs = { 'class' : 'form-control', 'placeholder' : 'Enter start of journey...', 'label' : 'Time of Journey' } )) carModel = forms.CharField(label="Model of vehicle", widget=forms.TextInput( attrs = { 'class' : 'form-control', 'placeholder' : 'Specify car model', 'label' : 'From' } )) seatsAvailable = forms.IntegerField(label="Number of seats available", widget=forms.TextInput( attrs = { 'class' : 'form-control', 'placeholder' : 'Specify total extra seats', 'label' : 'From' } )) cost = forms.IntegerField(label="Cost per Person", widget=forms.TextInput( attrs = { 'class' : 'form-control', 'placeholder' : 'Total charge in Rupees', 'label' : 'From' } ))
6c50bbd84ea20f575427c4cfbb5e4458c4e27aa5
22a5d684341cee8f1095c3fe193f01f40f8121db
/2019/Qualification/B. You Can Go Your Own Way/2019-q-b.py
7c1a25eb2456f2f3582410a44bbae9eefdcc4e0f
[]
no_license
andy1li/codejam
161b1db6faab372a4c2c4ce5956942387c650bed
3aa6ab1673064b8c80b5f56422bd496b372b30f3
refs/heads/master
2022-06-28T02:42:53.980149
2022-06-27T20:15:11
2022-06-27T20:15:11
53,395,936
6
4
null
null
null
null
UTF-8
Python
false
false
485
py
# 2019 Qualification Round - B. You Can Go Your Own Way # https://codingcompetitions.withgoogle.com/codejam/round/0000000000051705/00000000000881da def solve(p) -> str: return ''.join( 'E' if move=='S' else 'S' for move in p ) #------------------------------------------------------------------------------# for case in range(1, int(input())+1): _, p = input(), input() result = solve(p) output = 'Case #%d: %s' %(case, result) print(output)
d1ce267d0a88bfa1444e2fff0194b5aa2cd274cd
78d35bb7876a3460d4398e1cb3554b06e36c720a
/sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_11_01/aio/operations/_vpn_connections_operations.py
a69c4f47e8deefb250db906418d47320e65733b4
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
catchsrinivas/azure-sdk-for-python
e35f59b60318a31b3c940a7a3a07b61b28118aa5
596227a7738a5342274486e30489239d539b11d1
refs/heads/main
2023-08-27T09:08:07.986249
2021-11-11T11:13:35
2021-11-11T11:13:35
427,045,896
0
0
MIT
2021-11-11T15:14:31
2021-11-11T15:14:31
null
UTF-8
Python
false
false
36,272
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class VpnConnectionsOperations: """VpnConnectionsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_11_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def get( self, resource_group_name: str, gateway_name: str, connection_name: str, **kwargs: Any ) -> "_models.VpnConnection": """Retrieves the details of a vpn connection. :param resource_group_name: The resource group name of the VpnGateway. :type resource_group_name: str :param gateway_name: The name of the gateway. :type gateway_name: str :param connection_name: The name of the vpn connection. :type connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: VpnConnection, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_11_01.models.VpnConnection :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.VpnConnection"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), 'connectionName': self._serialize.url("connection_name", connection_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('VpnConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/vpnConnections/{connectionName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, gateway_name: str, connection_name: str, vpn_connection_parameters: "_models.VpnConnection", **kwargs: Any ) -> "_models.VpnConnection": cls = kwargs.pop('cls', None) # type: ClsType["_models.VpnConnection"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), 'connectionName': self._serialize.url("connection_name", connection_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(vpn_connection_parameters, 'VpnConnection') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('VpnConnection', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('VpnConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/vpnConnections/{connectionName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, gateway_name: str, connection_name: str, vpn_connection_parameters: "_models.VpnConnection", **kwargs: Any ) -> AsyncLROPoller["_models.VpnConnection"]: """Creates a vpn connection to a scalable vpn gateway if it doesn't exist else updates the existing connection. :param resource_group_name: The resource group name of the VpnGateway. :type resource_group_name: str :param gateway_name: The name of the gateway. :type gateway_name: str :param connection_name: The name of the connection. :type connection_name: str :param vpn_connection_parameters: Parameters supplied to create or Update a VPN Connection. :type vpn_connection_parameters: ~azure.mgmt.network.v2020_11_01.models.VpnConnection :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either VpnConnection or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2020_11_01.models.VpnConnection] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.VpnConnection"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, gateway_name=gateway_name, connection_name=connection_name, vpn_connection_parameters=vpn_connection_parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('VpnConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), 'connectionName': self._serialize.url("connection_name", connection_name, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/vpnConnections/{connectionName}'} # type: ignore async def _delete_initial( self, resource_group_name: str, gateway_name: str, connection_name: str, **kwargs: Any ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), 'connectionName': self._serialize.url("connection_name", connection_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/vpnConnections/{connectionName}'} # type: ignore async def begin_delete( self, resource_group_name: str, gateway_name: str, connection_name: str, **kwargs: Any ) -> AsyncLROPoller[None]: """Deletes a vpn connection. :param resource_group_name: The resource group name of the VpnGateway. :type resource_group_name: str :param gateway_name: The name of the gateway. :type gateway_name: str :param connection_name: The name of the connection. :type connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, gateway_name=gateway_name, connection_name=connection_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), 'connectionName': self._serialize.url("connection_name", connection_name, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/vpnConnections/{connectionName}'} # type: ignore async def _start_packet_capture_initial( self, resource_group_name: str, gateway_name: str, vpn_connection_name: str, parameters: Optional["_models.VpnConnectionPacketCaptureStartParameters"] = None, **kwargs: Any ) -> Optional[str]: cls = kwargs.pop('cls', None) # type: ClsType[Optional[str]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._start_packet_capture_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), 'vpnConnectionName': self._serialize.url("vpn_connection_name", vpn_connection_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] if parameters is not None: body_content = self._serialize.body(parameters, 'VpnConnectionPacketCaptureStartParameters') else: body_content = None body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _start_packet_capture_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/vpnConnections/{vpnConnectionName}/startpacketcapture'} # type: ignore async def begin_start_packet_capture( self, resource_group_name: str, gateway_name: str, vpn_connection_name: str, parameters: Optional["_models.VpnConnectionPacketCaptureStartParameters"] = None, **kwargs: Any ) -> AsyncLROPoller[str]: """Starts packet capture on Vpn connection in the specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param gateway_name: The name of the gateway. :type gateway_name: str :param vpn_connection_name: The name of the vpn connection. :type vpn_connection_name: str :param parameters: Vpn Connection packet capture parameters supplied to start packet capture on gateway connection. :type parameters: ~azure.mgmt.network.v2020_11_01.models.VpnConnectionPacketCaptureStartParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either str or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[str] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[str] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._start_packet_capture_initial( resource_group_name=resource_group_name, gateway_name=gateway_name, vpn_connection_name=vpn_connection_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), 'vpnConnectionName': self._serialize.url("vpn_connection_name", vpn_connection_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_start_packet_capture.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/vpnConnections/{vpnConnectionName}/startpacketcapture'} # type: ignore async def _stop_packet_capture_initial( self, resource_group_name: str, gateway_name: str, vpn_connection_name: str, parameters: Optional["_models.VpnConnectionPacketCaptureStopParameters"] = None, **kwargs: Any ) -> Optional[str]: cls = kwargs.pop('cls', None) # type: ClsType[Optional[str]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._stop_packet_capture_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), 'vpnConnectionName': self._serialize.url("vpn_connection_name", vpn_connection_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] if parameters is not None: body_content = self._serialize.body(parameters, 'VpnConnectionPacketCaptureStopParameters') else: body_content = None body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _stop_packet_capture_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/vpnConnections/{vpnConnectionName}/stoppacketcapture'} # type: ignore async def begin_stop_packet_capture( self, resource_group_name: str, gateway_name: str, vpn_connection_name: str, parameters: Optional["_models.VpnConnectionPacketCaptureStopParameters"] = None, **kwargs: Any ) -> AsyncLROPoller[str]: """Stops packet capture on Vpn connection in the specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param gateway_name: The name of the gateway. :type gateway_name: str :param vpn_connection_name: The name of the vpn connection. :type vpn_connection_name: str :param parameters: Vpn Connection packet capture parameters supplied to stop packet capture on gateway connection. :type parameters: ~azure.mgmt.network.v2020_11_01.models.VpnConnectionPacketCaptureStopParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either str or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[str] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[str] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._stop_packet_capture_initial( resource_group_name=resource_group_name, gateway_name=gateway_name, vpn_connection_name=vpn_connection_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), 'vpnConnectionName': self._serialize.url("vpn_connection_name", vpn_connection_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_stop_packet_capture.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/vpnConnections/{vpnConnectionName}/stoppacketcapture'} # type: ignore def list_by_vpn_gateway( self, resource_group_name: str, gateway_name: str, **kwargs: Any ) -> AsyncIterable["_models.ListVpnConnectionsResult"]: """Retrieves all vpn connections for a particular virtual wan vpn gateway. :param resource_group_name: The resource group name of the VpnGateway. :type resource_group_name: str :param gateway_name: The name of the gateway. :type gateway_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ListVpnConnectionsResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2020_11_01.models.ListVpnConnectionsResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ListVpnConnectionsResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_vpn_gateway.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('ListVpnConnectionsResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_by_vpn_gateway.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/vpnConnections'} # type: ignore
e8036859d6eb86ecf2842b24e7d7974337d97760
583db8851c609f03f722884557cfc67de0ce564e
/pysmapi/interfaces/VMRELOCATE_Image_Attributes.py
80284c22530f022bfd3a85ce3cb8de7f622ba371
[ "Apache-2.0" ]
permissive
lllucius/pysmapi
ab0b4409bfda6a61dab7805e2033d71d09a96493
c0d802edb58e835e4d48cb9c28ccfccfe5b5c686
refs/heads/master
2020-04-20T18:07:46.699611
2019-06-25T04:27:41
2019-06-25T04:27:41
169,009,326
0
0
null
null
null
null
UTF-8
Python
false
false
2,070
py
# Copyright 2018-2019 Leland Lucius # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http:#www.apache.org/licenses/LICENSE-2.0 # # Unless required domain_name applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import struct from pysmapi.smapi import * class VMRELOCATE_Image_Attributes(Request): def __init__(self, relocation_setting = "", domain_name = "", archforce = "", **kwargs): super(VMRELOCATE_Image_Attributes, self).__init__(**kwargs) # Request parameters self._relocation_setting = relocation_setting self._domain_name = domain_name self._archforce = archforce @property def relocation_setting(self): return self._relocation_setting @relocation_setting.setter def relocation_setting(self, value): self._relocation_setting = value @property def domain_name(self): return self._domain_name @domain_name.setter def domain_name(self, value): self._domain_name = value @property def archforce(self): return self._archforce @archforce.setter def archforce(self, value): self._archforce = value def pack(self): buf = "" # relocation_setting=value (string,2-3,char26) buf += f"relocation_setting={self._relocation_setting}\x00" # domain_name=value (string,0-8,char42) if len(self._domain_name) > 0: buf += f"domain_name={self._domain_name}\x00" # archforce=value (string,0-3,char26) if len(self._archforce) > 0: buf += f"archforce={self._archforce}\x00" return s2b(buf)
72d7ed4c9a7d93991c9ae22fdc5bf27081241d55
b8e594b62094039547eb2068d584e5f3df3bdbc6
/filterandgroup.py
37bd98345f80ee783a9c9f17a9f75c3152c7c2c7
[]
no_license
hgelfond/assignments
b5ae27d70b69e157d63bad485b5038d36cc124b3
673b8748c98f1dd6e3cac73ce2a068e3a0342082
refs/heads/master
2021-10-10T20:35:06.598235
2019-01-16T19:49:10
2019-01-16T19:49:10
164,486,225
0
0
null
2019-01-08T23:57:45
2019-01-07T19:59:46
Python
UTF-8
Python
false
false
737
py
from pprint import pprint cars = [ {"model": "Yaris", "make": "Toyota", "color": "red"}, {"model": "Auris", "make": "Toyota", "color": "red"}, {"model": "Camry", "make": "Toyota", "color": "green"}, {"model": "Prius", "make": "Toyota", "color": "yellow"}, {"model": "Civic", "make": "Honda", "color": "red"}, {"model": "Model 3", "make": "Tesla", "color": "red"} ] # filter to red cars red_cars = [] for car in cars: if car['color'] == 'red': red_cars.append(car) # group by make red_cars_by_make = {} for car in red_cars: make = car['make'] if make in red_cars_by_make: red_cars_by_make[make].append(car) else: red_cars_by_make[make] = [car] pprint(red_cars_by_make)
04b2b23ecc92dc86537e3f3f2dd8b526dead7b52
de156134a1b22eef9f766f06e9d0b51eefbb5de8
/018 doubleChars.py
a7ea620ccc73ee8f1e0a8ee1a843e50c0fa4e58a
[]
no_license
6chelo6/python-dev-fund
da00a8575e3453d860a75c21d4105956e9dda6c3
dc6bef4921038aed5eeb10385d8ed921fc66036c
refs/heads/master
2020-08-19T01:39:39.220670
2019-10-17T18:35:19
2019-10-17T18:35:19
215,860,370
0
0
null
2019-10-17T18:35:22
2019-10-17T18:31:42
null
UTF-8
Python
false
false
119
py
#!/usr/bin/env python def double_char(str): a = "" for i in str: a += i*2 return a print double_char('Marcelo')
[ "Marcelo [email protected]" ]
fa3a5f89cbe61e9cc2841cf568ba9590707d9f1b
9ac99a99dc8f79f52fbbe3e8a5b311b518fe45d9
/apps/performance/api/HCSSYS_Departments.py
2c65525475a54e449c8bcf2577f5509aeb1051f7
[]
no_license
nttlong/quicky-01
eb61620e01f04909d564244c46a03ca2b69dfecc
0f5610aa7027429bdd9ca9b45899a472c372c6cc
refs/heads/master
2020-03-25T17:45:31.633347
2018-11-27T15:02:30
2018-11-27T15:02:30
143,994,145
0
0
null
null
null
null
UTF-8
Python
false
false
11,381
py
# -*- coding: utf-8 -*- from bson import ObjectId import models import datetime import logging import threading import common logger = logging.getLogger(__name__) global lock lock = threading.Lock() from Query import DepartmentGroup from hcs_authorization import action_type, authorization import qmongo @authorization.authorise(common = True) def get_list(args): items = qmongo.models.HCSSYS_Departments.aggregate.project( department_code = 1, department_name = 1, parent_code = 1 ) return items.get_list() @authorization.authorise(action = action_type.Action.READ) def get_department_by_dept_code(args): try: if args['data'] != None and args['data'].has_key('department_code'): items =qmongo.models.HCSSYS_Departments.aggregate.project( department_code = 1, department_name = 1, department_name2 = 1, department_alias = 1, parent_code = 1, level = 1, level_code = 1, department_tel = 1, department_fax = 1, department_email = 1, department_address = 1, nation_code = 1, province_code = 1, district_code = 1, is_company = 1, is_fund = 1, is_fund_bonus = 1, decision_no = 1, decision_date = 1, effect_date = 1, license_no = 1, tax_code = 1, lock_date = 1, logo_image = 1, manager_code = 1, secretary_code = 1, ordinal = 1, lock = 1, note = 1, region_code = 1, domain_code = 1, signed_by = 1 ).match("department_code == {0}", args['data']['department_code']) return items.get_item() raise(Exception("not found department_code")) except Exception as ex: raise(ex) def get_list_department_by_parent_code(args): searchText = args['data'].get('search', '') pageSize = args['data'].get('pageSize', 0) pageIndex = args['data'].get('pageIndex', 20) sort = args['data'].get('sort', 20) pageIndex = (lambda pIndex: pIndex if pIndex != None else 0)(pageIndex) pageSize = (lambda pSize: pSize if pSize != None else 20)(pageSize) ret=qmongo.models.HCSSYS_Departments.aggregate.project( department_code = 1, department_name = 1, department_alias = 1, department_tel = 1, level_code = 1, lock = 1 ) ret.match("level_code == {0}", args['data']['where']['department_code']) ret = common.filter_lock(ret, args) if(searchText != None): ret.match("contains(department_code, @name) or contains(department_name, @name)" + \ "or contains(department_alias, @name) or contains(department_tel, @name)",name=searchText.strip()) if(sort != None): ret.sort(sort) return ret.get_page(pageIndex, pageSize) @authorization.authorise(action = action_type.Action.READ) def get_tree(args): ret=DepartmentGroup.get_department_group() return ret.get_list() @authorization.authorise(common = True) def get_department_group(): ret=qmongo.models.HCSSYS_Departments.aggregate ret.left_join(models.auth_user_info(), "created_by", "username", "uc") ret.left_join(models.auth_user_info(), "modified_by", "username", "um") ret.project( _id = "_id", department_code = "department_code", factor_group_name = "factor_group_name", factor_group_name2 = "factor_group_name2", parent_code = "parent_code", level = "level", level_code = "level_code", ordinal = "ordinal", note = "note", lock = "lock", created_by="uc.login_account", created_on= "created_on", modified_on="switch(case(modified_on!='',modified_on),'')", modified_by="switch(case(modified_by!='',um.login_account),'')", ) ret.sort(dict( ordinal = 1 )) return ret @authorization.authorise(action = action_type.Action.CREATE) def insert(args): try: lock.acquire() ret = {} if args['data'] != None: if not args['data'].has_key('department_code') or not args['data'].has_key('department_name'): field_list = [] if not args['data'].has_key('department_code'): field_list.append("department_code") if not args['data'].has_key('department_name'): field_list.append("department_name") lock.release() return { "error":{ "fields":field_list, "code":"missing" } } data = set_dict_data(args) if args['data'].has_key('parent_code') and args['data']["parent_code"] != None : parent_dept = qmongo.models.HCSSYS_Departments.aggregate.project( department_code=1, level=1, level_code=1 ).match("department_code == {0}", args['data']['parent_code']).get_item() data['level'] = parent_dept['level'] + 1 data['level_code'] = parent_dept['level_code'] + [args['data']['department_code']] ret = qmongo.models.HCSSYS_Departments.insert(data) lock.release() return ret lock.release() return dict( error = "request parameter is not exist" ) except Exception as ex: lock.release() raise(ex) @authorization.authorise(action = action_type.Action.WRITE) def update(args): try: lock.acquire() ret = {} if args['data'] != None: data = set_dict_data(args) ret = qmongo.models.HCSSYS_Departments.update(data, "department_code == @department_code", department_code = args['data']['department_code']) lock.release() return ret lock.release() return dict( error = "request parameter is not exist" ) except Exception as ex: lock.release() raise(ex) @authorization.authorise(action = action_type.Action.DELETE) def delete(args): try: lock.acquire() ret = {} if args['data'] != None: ret = qmongo.models.HCSSYS_Departments.delete("department_code in {0}", [x["department_code"]for x in args['data']]) lock.release() return ret lock.release() return dict( error = "request parameter is not exist" ) except Exception as ex: lock.release() raise(ex) @authorization.authorise(common = True) def set_dict_data(args): data = dict( department_code = args['data']['department_code'], department_name = args['data']['department_name'], department_name2 = (lambda x: x['department_name2'] if x.has_key('department_name2') else None)(args['data']), department_alias = (lambda x: x['department_alias'] if x.has_key('department_alias') else None)(args['data']), parent_code = (lambda x: x['parent_code'] if x.has_key('parent_code') else None)(args['data']), level = (lambda x: x['level'] if x.has_key('level') else None)(args['data']), level_code = (lambda x: x['level_code'] if x.has_key('level_code') else None)(args['data']), department_tel = (lambda x: x['department_tel'] if x.has_key('department_tel') else None)(args['data']), department_fax = (lambda x: x['department_fax'] if x.has_key('department_fax') else None)(args['data']), department_email = (lambda x: x['department_email'] if x.has_key('department_email') else None)(args['data']), department_address = (lambda x: x['department_address'] if x.has_key('department_address') else None)(args['data']), nation_code = (lambda x: x['nation_code'] if x.has_key('nation_code') else None)(args['data']), province_code = (lambda x: x['province_code'] if x.has_key('province_code') else None)(args['data']), district_code = (lambda x: x['district_code'] if x.has_key('district_code') else None)(args['data']), is_company = (lambda x: x['is_company'] if x.has_key('is_company') else None)(args['data']), is_fund = (lambda x: x['is_fund'] if x.has_key('is_fund') else None)(args['data']), is_fund_bonus = (lambda x: x['is_fund_bonus'] if x.has_key('is_fund_bonus') else None)(args['data']), decision_no = (lambda x: x['decision_no'] if x.has_key('decision_no') else None)(args['data']), decision_date = (lambda x: x['decision_date'] if x.has_key('decision_date') else None)(args['data']), effect_date = (lambda x: x['effect_date'] if x.has_key('effect_date') else None)(args['data']), license_no = (lambda x: x['license_no'] if x.has_key('license_no') else None)(args['data']), tax_code = (lambda x: x['tax_code'] if x.has_key('tax_code') else None)(args['data']), lock_date = (lambda x: x['lock_date'] if x.has_key('lock_date') else None)(args['data']), logo_image = (lambda x: x['logo_image'] if x.has_key('logo_image') else None)(args['data']), manager_code = (lambda x: x['manager_code'] if x.has_key('manager_code') else None)(args['data']), secretary_code = (lambda x: x['secretary_code'] if x.has_key('secretary_code') else None)(args['data']), ordinal = (lambda x: x['ordinal'] if x.has_key('ordinal') else None)(args['data']), lock = (lambda x: x['lock'] if x.has_key('lock') else None)(args['data']), note = (lambda x: x['note'] if x.has_key('note') else None)(args['data']), region_code = (lambda x: x['region_code'] if x.has_key('region_code') else None)(args['data']), domain_code = (lambda x: x['domain_code'] if x.has_key('domain_code') else None)(args['data']), signed_by = (lambda x: x['signed_by'] if x.has_key('signed_by') else None)(args['data']) ) return data def getRootDepartment(args): ret = {} collection = common.get_collection('HCSSYS_Departments').aggregate([ {"$match": { "$and": [{'parent_code': None}, {'level':1}] }}, {"$project": { "parent_code":1, "department_code":1, "department_name":1, "level_code":1, "level":1, "ordinal":1 }}, ]) ret = list(collection) return ret
cd369342bfc0279dbec7e630389ff1ade7de3026
2c5e83885f6802305f7d6cb3b75462c4e52a41a1
/blog/forms.py
46b1206e87fa68dee59b3c3b553fc5b551c5fe61
[]
no_license
carlmachaalany/MyBlog
51db139391610f213ef265eb084f4607b44fbf09
9342a8fcad29699ecd283977f04829c48693097e
refs/heads/master
2023-02-26T18:18:20.679981
2021-02-08T15:07:06
2021-02-08T15:07:06
337,112,253
0
0
null
null
null
null
UTF-8
Python
false
false
891
py
from django import forms from blog.models import Post, Comment class PostForm(forms.ModelForm): class Meta(): model = Post fields = ('author', 'title', 'text') # Here we are assigning classes to some of the fields in Post. Adding the # attrs in widgets is equivalent to adding attributes inside of an html tag # like class, style, href, etc. widgets = { 'title':forms.TextInput(attrs={'class':'textinputclass'}), 'text':forms.Textarea(attrs={'class':'editable medium-editor-textarea postcontent'}) } class CommentForm(forms.ModelForm): class Meta(): model = Comment fields = ('author', 'text') widgets = { 'author':forms.TextInput(attrs={'class':'textinputclass'}), 'text':forms.Textarea(attrs={'class':'editable medium-editor-textarea'}) }
3c33c27bdb417291386c9e4e246ff8868bfaa73f
4ef95e264c6ebf59051b209ed4e586b49f2d958a
/process_batch.py
e6948a793566063626355eeb8354328abf7c722f
[]
no_license
quanchaozhao/digitalTibetanSymbolDemo
99e1ef0c9b437064dd83c70b5ae8d04b55503cf9
c5a1bde31607f62c63a93915bea196538d14cb1f
refs/heads/master
2020-03-21T17:26:41.843938
2018-06-28T05:44:32
2018-06-28T05:44:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,357
py
# coding:utf-8 from __future__ import print_function,division from pic_process.img_process import line_extract, char_extract IN_PATH = "/home/lyx2/img_in" CHAR_OUT_PATH = r"D:\Users\Riolu\Desktop\aabbcc" CLASSIFY_OUT_PATH = R"D:\npq" MERGED_PATH = r"D:\merged" SORTED_PATH = r"D:\sorted" WRAP_SIZE = 60 # 这里用的数据是经过倾斜校正,噪点去除,文本区域检测后的数据 # 生成文本并进行初步的归类 归类的方法是按照 余弦相似度 import os from shutil import copyfile,rmtree,copytree import numpy as np from skimage import io from skimage import transform from skimage import util from sklearn.metrics.pairwise import cosine_similarity TH = 0.9 # 比较两个图片的余弦相似度 def cosine_similarity_2(img1,img2): img1 = np.asarray(img1) img2 = np.asarray(img2) return cosine_similarity(img1.reshape((1,-1)), img2.reshape((1,-1))).ravel()[0] # 将文件夹下相似度大于 TH 的文件归并成一类,相同类的路径名称相同,用于对于切分好的文字进行分类。 # 可以替换成其他分类方法 def classify_image_by_cosine_similarity(path_in=CHAR_OUT_PATH,path_out=CLASSIFY_OUT_PATH): counter = 0 sample_img_list = [] sample_file_name_list = [] total = len(os.listdir(path_in)) for i,file_name in enumerate(os.listdir(path_in)): img_path = path_in + os.path.sep + file_name if not os.path.isdir(img_path): img1 = io.imread(img_path, as_grey=True) img1 = util.invert(img1) img1 = transform.resize(img1, (100, 100),mode="edge") for index, img in enumerate(sample_img_list): if cosine_similarity_2(img, img1) > TH: sample_file_name_list[index].append(file_name) break else: img1 = transform.resize(img1, (100, 100),mode="edge") sample_img_list.append(img1) sample_file_name_list.append([file_name]) counter += 1 if i % 10 == 0: print("%d of %d" % (i,total)) for i, file_names in enumerate(sample_file_name_list): out_dir = path_out + os.path.sep + str(i) os.mkdir(out_dir) for file_name in file_names: src = path_in + os.path.sep + file_name dst = out_dir + os.path.sep + file_name copyfile(src, dst) return sample_img_list # 将目录下的文件按照目录名称生成数据集 100个作为训练集,20个作为测试集 def extract_exp_data_by_path_name(path_in,wrap_size=100,to_npz=True): data = None for file_dir in os.listdir(path_in): img_dir_path = os.path.join(path_in,file_dir) if os.path.isdir(img_dir_path): files = os.listdir(img_dir_path) file_numbers = len(files) print(file_numbers) if file_numbers < 15: if data is None: data = [] for file in files: img_file_path = os.path.join(img_dir_path,file) img = io.imread(img_file_path,as_grey=True) img = util.invert(img) data.append(img) print("need copy to 15") while file_numbers < 15: pass if file_numbers < 30: print("need to blur") if file_numbers < 60: print("need to rotation") if file_numbers < 120: print("need to add noise") pass # 将目录下的目录中的文件按照目录的名称标记数据并生成数据集 def label_image_by_path_name(path_in,index_list=None,shuffle=True,wrap=True,wrap_size=60,to_npz=True): ''' 将path_in目录下的图片文件按照目录,生成数据集 :param path_in: 已经按照文件目录分好的图片 :param shuffle: 是否打乱 :param index_list 如果给定 index_list则会按照index_list中编码出现的顺序,将数据目标label标为数据 :param to_npz 是否导出到npz文件 :return: 例如: 路径名为 'a','b','c' index_list=['b','c','a'] 则'a'路径下的所有的样本将被标记为2,'b'为0,'c'为1 ''' data = [] for file_dir in os.listdir(path_in): img_dir_path = path_in + os.path.sep + file_dir if os.path.isdir(img_dir_path): label = file_dir if index_list is not None: try: label = index_list.index(file_dir) except Exception as e: print(e) for i, file_name in enumerate(os.listdir(img_dir_path)): img_file_path = img_dir_path + os.path.sep + file_name if not os.path.isdir(img_file_path): img = io.imread(img_file_path,as_grey=True) img = util.invert(img) if wrap: img = transform.resize(img,(wrap_size,wrap_size),mode='reflect') data.append([img,label]) if i > 100: break # 打乱数据 if shuffle: np.random.shuffle(data) x_data = [] y_data = [] for img,label in data: x_data.append(img) y_data.append(label) if to_npz: x_train = np.asarray(x_data) y_train = np.asarray(y_data) print(x_train.shape) print(y_train.shape) np.savez("D:\\data.npz",x_train=x_train,y_train=y_train) return (x_data,y_data) # 从目录中读取图片 def batch_extract_char_2_file(image_file_path=IN_PATH,out_to_folder=True,char_out_path = CHAR_OUT_PATH): ''' # 从目录中读取图片,按图片名输出切分的字符到给定路径中 :param image_file_path: 输入的图片的路径 :param char_out_path: 输出路径 :return: ''' img_file_names = os.listdir(image_file_path) page_list = [] for file_name in img_file_names: img_path = image_file_path + os.path.sep + file_name if not os.path.isdir(img_path): img_org = io.imread(img_path, as_grey=True) img = np.where(img_org > 128, 1, 0) line_imgs = line_extract(img) path_name = os.path.splitext(file_name)[0] if out_to_folder: os.mkdir(char_out_path + os.path.sep + path_name) line_list = [] for i, line_img in enumerate(line_imgs): char_position_arr = char_extract(line_img, [[0, line_img.shape[0], 0, line_img.shape[1]]]) char_list = [] for j, char_position in enumerate(char_position_arr[0]): start_row, end_row, start_col, end_col = char_position sub_img = line_img[start_row:end_row, start_col:end_col] sub_img = np.where(sub_img == 1, 255, 0) if (end_row-start_row) * (end_col - start_col) > 50: if out_to_folder: save_str = char_out_path + \ os.path.sep + \ path_name + \ os.path.sep + \ os.path.splitext(file_name)[0] + \ "_" + str(i) + "_" + str(j) + ".png" io.imsave(save_str, sub_img) char_list.append(sub_img) line_list.append(char_list) page_list.append(line_list) return page_list,img_file_names def classify_folder(path_in=CHAR_OUT_PATH,out_path=CLASSIFY_OUT_PATH): ''' 按照文件夹中的图片,对每个文件夹的图片进行分类 :param path_in: :param out_path: :return: ''' file_names = os.listdir(path_in) for file_name in file_names: char_file_path = path_in + os.path.sep + file_name char_file_out_path = out_path + os.path.sep + file_name if os.path.exists(char_file_out_path): rmtree(char_file_out_path) os.mkdir(char_file_out_path) sample_img_list = classify_image_by_cosine_similarity(path_in=char_file_path,path_out=char_file_out_path) np.save(char_file_out_path+os.path.sep+file_name,sample_img_list) def merge_classified_chars(path_in=CLASSIFY_OUT_PATH, path_out=MERGED_PATH): ''' 将已分类的文件夹合并 :param path_in: :param path_out: :return: ''' path_in = r"D:\npq" path_out = MERGED_PATH sample_img_list_merged = None class_num = 0 if os.path.exists(path_out): rmtree(path_out) total= len(os.listdir(path_in)) for i,file_name in enumerate(os.listdir(path_in)): print("%d of %d" % (i, total)) file_char_path = path_in + os.path.sep + file_name if i == 0: sample_img_list_merged = np.load(file_char_path+os.path.sep+file_name+".npy") class_num = sample_img_list_merged.shape[0] for char_class_path_name in os.listdir(file_char_path): input_folder_full_path = file_char_path + os.path.sep + char_class_path_name out_folder_full_path = path_out + os.path.sep + char_class_path_name if os.path.isdir(input_folder_full_path): copytree(input_folder_full_path, out_folder_full_path) else: sample_img_list_new = np.load(file_char_path + os.path.sep + file_name + ".npy") for j, img_new in enumerate(sample_img_list_new): input_folder_full_path = file_char_path + os.path.sep + str(j) for k, img_merged in enumerate(sample_img_list_merged): out_folder_full_path = path_out + os.path.sep + str(k) if cosine_similarity_2(img_new,img_merged) > TH: for char_file_name in os.listdir(input_folder_full_path): copyfile(input_folder_full_path + os.path.sep + char_file_name,out_folder_full_path+ os.path.sep + char_file_name) break else: np.concatenate((sample_img_list_merged,[img_new])) class_num += 1 out_folder_full_path = path_out + os.path.sep + str(class_num) copytree(input_folder_full_path, out_folder_full_path) def extract_top_n_sample(path_in=MERGED_PATH,path_out=SORTED_PATH,N = 500): dir_list = [] for i, folder_name in enumerate(os.listdir(path_in)): folder_path = path_in + os.path.sep + folder_name num = len(os.listdir(folder_path)) dir_list.append((int(folder_name),num)) dir_list_new = sorted(dir_list,key=lambda x:x[1],reverse=True) arr = np.asarray(dir_list_new) arr_extract = arr[arr[:,1] > 2] if os.path.exists(path_out): rmtree(path_out) os.mkdir(path_out) for i, v in arr_extract: src = path_in + os.path.sep + str(i) dst = path_out + os.path.sep + str(i) copytree(src,dst) # 使用已经训练好的编码器对样本进行编码 def encode_sample(encoder_file_path="encoder.h5",sample_file_path=r"D:\data.npz"): import keras x_train = np.load(sample_file_path)['x_train'] x_train = np.reshape(x_train,(-1,60,60,1)) encoder = keras.models.load_model(encoder_file_path) x_train_coded = encoder.predict(x_train) np.savez("D:/encoded_data.npz",x_train_coded) def predict_image_with_consine_similarity(encoder_data_file_path=r"D:\encoded_data.npz", encoder_file_path="encoder.h5", rec_input_path=r"D:\Users\Riolu\Desktop\新建文件夹 (2)"): ''' 通过余弦相似度 标记 rec_input_path 中的数据 :param encoder_data_file_path: 已经使用 encoder 编码的数据 :param encoder_file_path: encoder 模型文件 :param rec_input_path: 识别的目录下的文件 :return: # TODO 将识别的文件归类 ''' import keras unrecognize_picture_dir = "D:\\img_out" x_train,y_train = np.load("D:/data.npz")['x_train'],np.load("D:/data.npz")['y_train'] encoder = keras.models.load_model(encoder_file_path) t = len(os.listdir(rec_input_path)) utfcode_str_list = [] x_train_coded = np.load(encoder_data_file_path)['arr_0'] for i,file_name in enumerate(os.listdir(rec_input_path)): full_path = rec_input_path + os.path.sep + file_name img = io.imread(full_path,as_grey=True) img_resize = transform.resize(util.invert(img),(60,60),mode='reflect') img2 = np.reshape(img_resize,(1,60,60,1)) encoded_img = encoder.predict(img2) lbs = [] for img_t in x_train_coded: lbs.append(cosine_similarity_2(encoded_img,img_t)) mx = np.argmax(lbs) tibetan_word_code = [] with open("words_Titan.txt") as f: for line in f.readlines(): tibetan_word_code.append(line.strip()) if lbs[mx] > 0.9: rec_str = tibetan_word_code[y_train[mx]] print(rec_str,file_name) utfcode_str_list.append(rec_str) else: utfcode_str_list.append('*') io.imsave(unrecognize_picture_dir+os.path.sep+file_name,img) # print("%d / %d" % (i,t)) print(utfcode_str_list) def predict_classified_image(encoder_data_file_path=r"D:\encoded_data.npz", encoder_file_path="encoder.h5", rec_input_path=r"D:\img_test", out_put_path = r"D:\img_out" ): ''' 用于分类已经经过初步分类好的未进行人工标记的数据。由于模型已经训练好,此方法可以不用 :param encoder_data_file_path: :param encoder_file_path: :param rec_input_path: :param out_put_path: :return: ''' labeled_data = np.load("D:/data.npz") x_train,y_train = labeled_data['x_train'],labeled_data['y_train'] import keras encoder = keras.models.load_model(encoder_file_path) input_folders = os.listdir(rec_input_path) x_train_coded = np.load(encoder_data_file_path)['arr_0'] tibetan_word_code = [] with open("words_Titan.txt") as f: for line in f.readlines(): tibetan_word_code.append(line.strip()) for i,folder in enumerate(input_folders): img_folder_full_path = rec_input_path + os.sep + folder img_name = os.listdir(img_folder_full_path)[0] rec_img_path = rec_input_path + os.sep + folder + os.sep + img_name img = io.imread(rec_img_path,as_grey=True) img_resize = transform.resize(util.invert(img),(60,60),mode='reflect') img2 = np.reshape(img_resize,(1,60,60,1)) encoded_img = encoder.predict(img2) lbs = [] for img_t in x_train_coded: lbs.append(cosine_similarity_2(encoded_img,img_t)) mx = np.argmax(lbs) if lbs[mx] > 0.9: out_classified_path = tibetan_word_code[y_train[mx]] else: out_classified_path = "unrecognized" for img_file in os.listdir(img_folder_full_path): img_full_path = os.path.join(img_folder_full_path, img_file) img_out_put_path = os.path.join(out_put_path, out_classified_path) if not os.path.exists(img_out_put_path): os.mkdir(img_out_put_path) copyfile(img_full_path, os.path.join(img_out_put_path, img_file)) print("%d of %d" % (i,len(input_folders))) def classifiy_chars_by_pages(path_in='/home/lyx2/img_in',path_out=r"/home/lyx2/img_out"): encoder_file_path = "./encoder.h5" encoder_data_file_path = r"./encoded_data.npz" labeled_data = np.load(r"./data.npz") temp_folder = r'./temp__' x_train, y_train = labeled_data['x_train'], labeled_data['y_train'] if os.path.exists(temp_folder): rmtree(temp_folder) os.mkdir(temp_folder) batch_extract_char_2_file(char_out_path=temp_folder) import keras encoder = keras.models.load_model(encoder_file_path) x_train_coded = np.load(encoder_data_file_path)['arr_0'] tibetan_word_code = [] with open("words_Titan.txt") as f: for line in f.readlines(): tibetan_word_code.append(line.strip()) image_to_recog_list = os.listdir(temp_folder) for i,image_file_name in enumerate(image_to_recog_list): page_path = os.path.join(temp_folder,image_file_name) t = len(os.listdir(page_path)) for j,img_name in enumerate(os.listdir(page_path)): img_path = os.path.join(page_path,img_name) charactor_img = io.imread(img_path,as_grey=True) img_resize = transform.resize(util.invert(charactor_img), (60, 60), mode='reflect') img2 = np.reshape(img_resize, (1, 60, 60, 1)) encoded_img = encoder.predict(img2) lbs = [] for img_t in x_train_coded: lbs.append(cosine_similarity_2(encoded_img, img_t)) mx = np.argmax(lbs) if lbs[mx] > 0.9: out_classified_path = tibetan_word_code[y_train[mx]] else: out_classified_path = "unrecognized" img_out_put_path = os.path.join(path_out, out_classified_path) if not os.path.exists(img_out_put_path): os.mkdir(img_out_put_path) img_out_put_path = os.path.join(img_out_put_path,img_name) copyfile(img_path,img_out_put_path) print("Page %d, %d of %d" % (i,j,t)) rmtree(temp_folder) if __name__ == '__main__': extract_exp_data_by_path_name(path_in=r'D:\Users\Riolu\Desktop\merged_ultimate2017-06-08',wrap_size=100) # encode_sample() # label_image_by_path_name() # batch_extract_char_2_file() # tibetan_word_code = [] # with open("words_Titan.txt") as f: # for line in f.readlines(): # tibetan_word_code.append(line.strip()) # # x_train,y_train = label_image_by_path_name("D:\labeled_data_4_exp",tibetan_word_code,True) # # img = x_train[0] # label = y_train[0] # plt.imshow(img,cmap='gray') # plt.title(tibetan_word_code[label]) # plt.show()
cf6e8391100bc3d21839923f4764aa442d4027d4
731f50dd747c488fab19d19f1502c5439c4ccfc1
/feedback/reviews/migrations/0001_initial.py
0ba05987a064a36d643b7bbd03491e038b7d684a
[]
no_license
deepakdeedar/Django
b710e0f34540fabd8e492fd854066f7b052920f5
a8235217cfde06712a65717ad8849a5e5387370c
refs/heads/master
2023-05-06T22:23:37.910663
2021-06-01T12:32:48
2021-06-01T12:32:48
361,150,332
2
0
null
null
null
null
UTF-8
Python
false
false
595
py
# Generated by Django 3.1.7 on 2021-05-30 12:40 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Review', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('user_name', models.CharField(max_length=100)), ('review_text', models.TextField()), ('rating', models.IntegerField()), ], ), ]
5e7d8d53d398f90c3415f6261c9339941249e345
3c266f16d058e8d404727d6844d456b05e918423
/While loop.py
97ad28f32c80d0163b17a2faa55ae189fef309b2
[]
no_license
Tracker71/Astr119-Week-1
056b12fec309a7bbc761f8a743e7f92edcc33992
85c78083914cc07a7d745002f601079bd8044725
refs/heads/master
2020-05-05T01:26:33.691541
2019-04-24T15:22:19
2019-04-24T15:22:19
179,603,051
0
0
null
null
null
null
UTF-8
Python
false
false
608
py
# -*- coding: utf-8 -*- """ while loop consider object thrown up into the air Find maximum height """ import numpy as np import matplotlib.pyplot as plt v0= 5 #m/s g = 9.8 n = 2000 # time steps a_t = np.linspace( 0, 1, n) #computations y = v0*a_t - .5*g*a_t**2 print( a_t) print ( y) # find max heght in while loop i=1 # y[-1] last entry in array while y[i] > y[i-1]: largest_height = y[i] i += 1 print( "max. height: %10.2f"%( largest_height)) plt.plot( a_t, y) plt.show() #To show graph better type in console "auto", to bring it back to console "inline"
6c67aca905fda078d0b41a88abc92769843fefb5
015efec4aff1d0daec5dca64b158014eca8899ac
/Amazon/critical_connections.py
05db60184734036980bf32f667e442ec5d358818
[]
no_license
sayali-nakashe/Practice_coding_questions
cccf0802d81e19d7575533eef912c6952df36c23
d885366f2770bbc2abd9a1021769b4dd9bfefb54
refs/heads/master
2020-06-20T09:59:33.921810
2019-12-03T04:21:25
2019-12-03T04:21:25
197,086,705
0
0
null
null
null
null
UTF-8
Python
false
false
1,427
py
from collections import defaultdict class Solution(object): def criticalConnections(self, n, connections): """ :type n: int :type connections: List[List[int]] :rtype: List[List[int]] """ disc = [None for _ in range(n+1)] low = [None for _ in range(n+1)] graph = defaultdict(list) for c in connections: graph[c[0]].append(c[1]) graph[c[1]].append(c[0]) self.time = 0 bridges = [] def dfs(node, parent): if disc[node] is None: disc[node] = self.time low[node] = self.time self.time += 1 for n in graph[node]: if disc[n] is None: dfs(n, node) if parent is not None: l = min([low[i] for i in graph[node] if i!=parent]+[low[node]]) else: l = min(low[i] for i in graph[node]+[low[node]]) low[node] = l dfs(1, None) for v in connections: if disc[v[0]]<low[v[1]] or disc[v[1]]<low[v[0]]: bridges.append(v) return bridges if __name__ == '__main__': n = 9 edges = [[1, 2], [1, 3], [2, 3], [3, 4], [3, 6], [4, 5], [6, 7], [6, 9], [7, 8], [8, 9]] solution = Solution() print solution.criticalConnections(n, edges)
ebf9c99ce045eb4ca45a1040dcbb3b7260122a6f
e46a34140916bd7b943c70535e2e87f290dd5724
/ForestTest/ForestTest.py
e82c138654d854007a5987ee004b8ffb70281c92
[]
no_license
Madi89/Fractal-Tree
db6a25a755bdfec747e875eae9ea10fca2ee6964
2c219f14e1b0127c7ce3fdbd8d5d0354e1f2469d
refs/heads/master
2023-07-28T11:35:11.189106
2021-09-10T16:11:17
2021-09-10T16:11:17
405,140,141
0
0
null
null
null
null
UTF-8
Python
false
false
1,206
py
import turtle turtle.title("Fractal tree") #changes the title of the TurtleScreen turtle.bgcolor("black") #changes the background color of the TurtleScreen a=turtle.Turtle() #initializes a variable 'a', which we use throughout the program to refer to turtle a.lt(90) #the turtle rotates 90 degrees to the left (start position > after 90 degrees ^) a.shape("turtle") #changes the shape of the turtle ("turtle","circle" etc.) a.shapesize(0.8) #increase or decrease the size of the onscreen turtle a.pencolor("blue") #changes the outline color of the turtle a.fillcolor("black") #changes the fill color of the turtle a.speed("fastest") #speed of our turtle cursor #call the tree function inside the tree frunction def tree(num): while num>10: a.fd(num) #the turtle moves forward (60 pixel) a.lt(30) #turns 30 degrees to the left tree(4*num/5) a.rt(60) #turns 60 degrees to the right tree(4*num/5) a.lt(30) #turns 30 degrees to the left a.bk(num) #the turtle moves backwards by distance return tree(60) #stop execution turtle.done()
8e3c8cb9ebe5542d32da283fe8b8d56411898e13
7d90d2ce27c6ee0af74391b09909edbd45fdc2f0
/renix_py_api/api_gen/Dot3ahStartLoopBackCommand_Autogen.py
c2ad76c47f9cefd64511bdef10260bb7ad6ac909
[]
no_license
gaoxingyu-hub/54testframework-master-e284
d7ea0d4a715b65c8652430e963a86b9522a7237a
57dd2197e7d91b8ad8fb2bd0e3503f10afa08544
refs/heads/master
2023-04-30T05:50:41.542402
2021-05-28T09:19:37
2021-05-28T09:19:37
309,922,838
0
0
null
null
null
null
UTF-8
Python
false
false
1,169
py
""" Auto-generated File Create Time: 2019-12-27 02:33:27 """ from .ROMEnum_Autogen import * from renix_py_api.renix_common_api import * from renix_py_api import rom_manager from .ROMCommand_Autogen import ROMCommand @rom_manager.rom class Dot3ahStartLoopBackCommand(ROMCommand): def __init__(self, Dot3ahConfigs=None, **kwargs): self._Dot3ahConfigs = Dot3ahConfigs # 802.3ah Protocol Configs properties = kwargs.copy() if Dot3ahConfigs is not None: properties['Dot3ahConfigs'] = Dot3ahConfigs # call base class function, and it will send message to renix server to create a class. super(Dot3ahStartLoopBackCommand, self).__init__(**properties) @property def Dot3ahConfigs(self): """ get the value of property _Dot3ahConfigs """ return self._Dot3ahConfigs @Dot3ahConfigs.setter def Dot3ahConfigs(self, value): self._Dot3ahConfigs = value def _set_dot3ahconfigs_with_str(self, value): tmp_value = value.strip() if tmp_value.startswith('{'): tmp_value = tmp_value[1:-1] self._Dot3ahConfigs = tmp_value.split()
548fe0be0c448638017bc8c742a173431fadef31
44cedd413bc869f67c0336aa8b69b5a3f12f16da
/www/cgi-bin/user.py
fddbfc03f5cfb43499ed44afb92a3d498fc4a890
[]
no_license
ShampaSinha/PythonCGI-Automation-with-Ansible
7a333bb65d8591d85de28f4511196ed8de8497c6
4dc4585cd23363eff627deffa19c046cb0886778
refs/heads/master
2020-12-26T10:45:39.978764
2020-01-31T18:00:38
2020-01-31T18:00:38
237,485,734
0
0
null
2020-01-31T18:00:39
2020-01-31T17:54:16
Python
UTF-8
Python
false
false
402
py
#!/usr/bin/python36 import subprocess import cgi print("context-type: text/html") print() var=cgi.FieldStorage() a=var.getvalue("n") b=var.getvalue("p") x=subprocess.getoutput("sudo useradd {}".format(a)) print(x) y=subprocess.getoutput('id {}'.format(a)) print(y) z1=subprocess.getstatusoutput("echo '{}' | sudo passwd {} --stdin".format(b,a)) if(z1[0]==0): print("It worked:\n") else: print("GOT")
c6ec0ca892dcb0cde388ea4178e0c97c3f70b87f
ea089c8f997382ea0b09f5f08eb79e9a5f76707b
/tests/test_save.py
d1fe0584c69d87b8dc3e346ecf73a4e0535f1444
[]
permissive
QPC-github/wextracto
09489a07dde44583bbc07d19a8a06c22f0698b99
9c789b1c98d95a1e87dbedfd1541a8688d128f5c
refs/heads/master
2023-07-06T08:26:06.647509
2017-10-24T18:54:38
2017-10-24T18:54:38
662,192,705
1
1
BSD-3-Clause
2023-07-04T14:54:07
2023-07-04T14:54:01
null
UTF-8
Python
false
false
1,954
py
import os import errno import pytest from six import next, BytesIO from wex.readable import EXT_WEXIN #from wex.save import save_url_from_path, save_output_from_readable # # #def read_chunks(readable, size=2**16): # chunks = [] # while True: # chunk = readable.read(size) # if not chunk: # break # chunks.append(chunk) # return b''.join(chunks) # # #def test_save_url_from_path(tmpdir): # url_from_path = save_url_from_path(tmpdir.strpath) # url = url_from_path('http://httpbin.org/get?this=that') # for readable in url.get(): # read_chunks(readable) # files = [os.path.join(dirpath, filename) # for dirpath, dirnames, filenames in os.walk(tmpdir.strpath) # for filename in filenames] # assert len(files) == 1 # assert os.path.basename(files[0]) == '0' + EXT_WEXIN # # #def test_save_url_from_path_oserror(tmpdir): # ro = tmpdir.mkdir('ro') # st = os.stat(ro.strpath) # os.chmod(ro.strpath, 0444) # try: # url_from_path = save_url_from_path(ro.strpath) # url = url_from_path('http://httpbin.org/get?this=that') # with pytest.raises(OSError) as excinfo: # next(url.get()) # finally: # # Need to change it back or else it won't get cleaned up :( # os.chmod(ro.strpath, st.st_mode) # assert excinfo.value.errno == errno.EACCES # # #def test_save_output_from_readable(tmpdir): # stdout = BytesIO() # wexin = tmpdir.join('0.wexin') # wexout = tmpdir.join('0.wexout') # with wexin.open('w') as fp: # fp.write('foo') # with save_output_from_readable(wexin.open('r'), stdout) as write: # write(('this', 'that')) # assert wexout.open('r').read() == 'this\t"that"\n' # # #def test_save_output_from_readable_no_name(tmpdir): # stdout = BytesIO() # readable = BytesIO('foo') # with save_output_from_readable(readable, stdout) as write: # write(('this', 'that'))
68f874ebfa0efe7aa5cac94356e1bf0cfdd3e695
c2cc46057130a2520c4b74b04204af77f5bdeea6
/Assign3-kpca.py
06c4939da94094c6e4b85799105e0484673f7961
[]
no_license
yangs21/Data-Mining
401e8a70ac85f02d48e33fafa99b46a0cd5194ab
674a9210b9e2837fef7662141edd978cd394de6f
refs/heads/main
2023-08-14T11:06:45.113216
2021-10-06T14:09:53
2021-10-06T14:09:53
414,228,010
0
0
null
null
null
null
UTF-8
Python
false
false
5,238
py
import pandas as pd import numpy as np import math import seaborn as sns import matplotlib.pyplot as plt alpha = 0.95 ''' print("###### Linear Kernel ######") # Load in entire dataset first: data = pd.read_csv("energydata_complete.csv", sep=',', header=None) # Convert the matrix into a matrix and drop the first and last columns: data = np.array(data) attribute = data[0, 1:28] data = data[1:data.shape[0], 1:28] data = data.astype('float32') n = data.shape[0] d = data.shape[1] # Step1. Compute the linear kernel matrix: n = 5000 K_linear = np.zeros([n, n], dtype=np.float32) for i in range(0, n): for j in range(0, n): K_linear[i, j] = np.dot(data[i, :], data[j, :].transpose()) print("The linear kernel is:") print(K_linear, "\n") # Step2. Center the linear kernel matrix: # Create the n*n identity matrix: I = np.identity(n) # Create the n*n 1's matrix: one_matrix = np.ones([n, n], dtype=np.float32) # Compute the centered linear kernel: K_linear_center = (I - one_matrix/n) @ K_linear @ (I - one_matrix/n) #print(K_linear_center.shape) # Step3-4. Get the eigenvalues and eigenvectors of centered linear kernel matrix: # Calculate the eigenvectors and eigen values: eigen_vals, eigen_vecs = np.linalg.eig(K_linear_center) # Sort the eigen values from largest to smallest: idx = eigen_vals.argsort()[::-1] eigen_vals = eigen_vals[idx] eigen_vecs = eigen_vecs[:, idx] #print(eigen_vals) #print(eigen_vecs) # Step5. Compute variance for each component: unit_eigen_vals = eigen_vals/n # Step6-7. Compute fraction of total variance: # Compute fraction and choose dimensionality: sum_eig = 0 for i in range(0, len(unit_eigen_vals)): sum_eig = sum_eig + unit_eigen_vals[i] frac = sum_eig/unit_eigen_vals.sum() if (frac >= alpha): r = i break print("In linear kernel PCA, the number of dimensions required to capture alpha=0.95 is:") print("r = %d.\n" %(r+1)) print("The three dominant eigenvalues are %f, %f and %f.\n" %(unit_eigen_vals[0], unit_eigen_vals[1], unit_eigen_vals[2])) # Step8. Get the first r unit eigenvectors that capture alpha=0.95: unit_eigen_vecs = np.zeros([n, r+1], dtype=np.float32) for i in range(0, r+1): unit_eigen_vecs[:, i] = math.sqrt(1/eigen_vals[i]) * eigen_vecs[:, i] #print(unit_eigen_vecs) # Step 9. Get reduced basis for the first 2 PCs: Cr = unit_eigen_vecs[:, 0:2] print("The two dominant PCs are:") print("u1:") print(Cr[:, 0]) print("u2:") print(Cr[:, 1], "\n") # Step10. Get the reduced dimensionality data: A_linear = np.empty([n, 2], dtype=np.float32) A_linear = K_linear_center @ Cr print("In linear kernel, the projected data onto the two dominant PCs is:") print(A_linear) # Created scattered plot for A_linear: sns.scatterplot(x=A_linear[:, 0], y=A_linear[:, 1]) plt.title("Linear Kernel: Projection onto Two Dominant PCs") plt.show() ''' # ------------------------------------------------------------------------------------- # Apply regular PCA with covariance matrix print("###### Regular PCA ######") # Load in data file: data = pd.read_csv("energydata_complete.csv", sep=',', header=None) # Convert the matrix into a matrix and drop the first and last columns: data = np.array(data) attribute = data[0, 1:28] data = data[1:data.shape[0], 1:28] data = data.astype('float32') # Calculate mean vector and centered data matrix: nrows = data.shape[0] ncols = data.shape[1] mean_vector = np.sum(data, axis=0)/nrows centered_data = data - mean_vector # Calculate total variance: squared_norm = np.empty(data.shape[0], dtype=np.float32) for i in range(0, data.shape[0]): norm = np.linalg.norm(centered_data[i, :]) squared_norm[i] = norm * norm total_var = squared_norm.sum()/data.shape[0] # Calculate the Covariance Matrix: sum_inner = np.empty([ncols, ncols], dtype=np.float32) for i in range(0, ncols): for j in range(0, ncols): zt = (centered_data[:, j]).transpose() z = (centered_data[:, i]) sum_inner[i, j] = np.dot(z,zt) cov = sum_inner/nrows # Calculate the eigenvectors and eigen values: eigen_vals, eigen_vecs = np.linalg.eig(cov) # Sort the eigen values from largest to smallest: idx = eigen_vals.argsort()[::-1] eigen_vals = eigen_vals[idx] eigen_vecs = eigen_vecs[:, idx] # Compute fraction and choose dimensionality: sum_eig = 0 for i in range(0, len(eigen_vals)): sum_eig = sum_eig + eigen_vals[i] frac = sum_eig/eigen_vals.sum() if (frac >= alpha): r = i break print("In regular PCA, the number of dimensions required to capture alpha=0.95 is:") print("r = %d.\n" %(r+1)) # Generate reduced basis for the first two PCs: Ur = eigen_vecs[:, 0:2] # Get reduced dimensionality data: A_regular = np.empty([nrows, 2], dtype=np.float32) for i in range(0, nrows): A_regular[i, :] = Ur.transpose() @ centered_data[i, :] print("In regular PCA, the three largest eigenvalues are: %f, %f and %f.\n" %(eigen_vals[0], eigen_vals[1], eigen_vals[2])) print("The two dominant regular PCs are:") print(Ur, "\n") print("In regular PCA, the projected data onto the two dominant PCs is:") print(A_regular) # Created scattered plot for regular PCA: sns.scatterplot(x=A_regular[:, 0], y=A_regular[:, 1]) plt.title("Regular PCA: Projection onto Two Dominant PCs") plt.show()
e32f13276fd6abb002fc129f39f6daa2d9db5997
64e457b38f2a3f0db80e55543571eb07954302af
/kafka_server.py
d2081d5665acb0203fdb21028deeab2e5bb6416b
[]
no_license
CharlesJonah/SF-crime-statistics-with-spark-streaming-1
a120e5915fea6c05f8425493e39b2943cad3545e
af83fc8a427ce861abab0359b716714160ca4450
refs/heads/master
2022-12-26T16:27:49.715591
2020-10-11T00:42:00
2020-10-11T00:42:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
580
py
import producer_server def run_kafka_server(): # TODO get the json file path input_file = "police-department-calls-for-service.json" # TODO fill in blanks producer = producer_server.ProducerServer( input_file=input_file, topic="sf.crime.statistics.topic", bootstrap_servers="localhost:9092", client_id=None ) #if producer.bootstrap_connected(): # print("Connected to bootstrap") return producer def feed(): producer = run_kafka_server() producer.generate_data() if __name__ == "__main__": feed()
d7ed48e2f144dfdde2a16148fa870c38f09c3a64
ba597f50f938dea39a0e980b8fbcca8749016996
/app_main.py
1f02414353bcd40e3f406b5354a1090254a74be5
[]
no_license
zhu-dev/idcard_ocr
be00d03649f6b68b1ff8fdd5476f2090aa14d20a
0314d28d593d62c1d02d2a1650115616eb8ae5f5
refs/heads/master
2022-12-06T23:04:16.393841
2020-03-22T06:34:22
2020-03-22T06:34:22
249,125,951
1
0
null
2022-11-22T04:59:20
2020-03-22T06:24:24
Python
UTF-8
Python
false
false
3,581
py
# -*- coding: utf-8 -*- # import idcardocr from PIL import Image, ImageTk from PIL.ImageTk import PhotoImage import findidcard import recognizeidcard import tkinter as tk import cv2 def process(img_name): try: idfind = findidcard.findidcard() idcard_img = idfind.find(img_name) result_dict = recognizeidcard.idcardocr(idcard_img) result_dict['error'] = 0 except Exception as e: result_dict = {'error': 1} print(e) return result_dict if __name__ == '__main__': idcardimagepath = 'images/gfm.jpg' # 实例化object,建立窗口window window = tk.Tk() # 给窗口的可视化起名字 window.title('身份证字符识别工具:高傅敏') # 设定窗口的大小(长 * 宽) window.geometry('700x700') # 这里的乘是小x # 在图形界面上设定标签 title = tk.Label(window, text='身份证字符识别工具', bg='green', font=('Arial', 12), width=30, height=2).pack(side="top", fill='x') # 说明: bg为背景,font为字体,width为长,height为高,这里的长和高是字符的长和高,比如height=2,就是标签有2个字符这么高 img = Image.open(idcardimagepath) photo = ImageTk.PhotoImage(img) img_label = tk.Label(window, image=photo) img_label.pack() name_str = tk.StringVar() nation_str = tk.StringVar() sex_str = tk.StringVar() birth_str = tk.StringVar() address_str = tk.StringVar() idnum_str = tk.StringVar() name_label = tk.Label(window, textvariable=name_str, bg='green', font=('Arial', 12), width=30, height=2).pack(fill='x') nation_label = tk.Label(window, textvariable=nation_str, bg='green', font=('Arial', 12), width=30, height=2).pack(fill='x') sex_label = tk.Label(window, textvariable=sex_str, bg='green', font=('Arial', 12), width=30, height=2).pack(fill='x') birth_label = tk.Label(window, textvariable=birth_str, bg='green', font=('Arial', 12), width=30, height=2).pack(fill='x') address_label = tk.Label(window, textvariable=address_str, bg='green', font=('Arial', 12), width=30, height=2).pack(fill='x') idnum_label = tk.Label(window, textvariable=idnum_str, bg='green', font=('Arial', 12), width=30, height=2).pack(fill='x') info = process(idcardimagepath) error = info['error'] if error == 0: name = info['name'] nation = info['nation'] sex = info['sex'] birth = info['birth'] address = info['address'] idnum = info['idnum'] print('*' * 30) print('姓名: ' + name) print('民族: ' + nation) print('性别: ' + sex) print('生日: ' + birth) print('地址: ' + address) print('公民身份证号码: ' + idnum) print('*' * 30) name_str.set(name) nation_str.set(nation) sex_str.set(sex) birth_str.set(birth) address_str.set(address) idnum_str.set(idnum) else: print(info) #主窗口循环显示 window.mainloop() # 注意,loop因为是循环的意思,window.mainloop就会让window不断的刷新,如果没有mainloop,就是一个静态的window,传入进去的值就不会有循环,mainloop就相当于一个很大的while循环,有个while,每点击一次就会更新一次,所以我们必须要有循环 # 所有的窗口文件都必须有类似的mainloop函数,mainloop是窗口文件的关键的关键。
8c80086394b1c7e7b1dc6a5bd735aaea141e42e5
25a798b43dc891260f40011c3fd30a0a079ad76c
/detect.py
a806adeac6936145afd653ba671a72884211c499
[]
no_license
fuyunguagua/watermark_sender
473c8293d481a471c01f71c029ea5e48bfa75684
5329c9e5b6fa7b32a3a00e918f8fa9be16410deb
refs/heads/master
2020-04-09T04:37:09.488937
2018-12-02T08:57:58
2018-12-02T08:57:58
160,029,784
0
0
null
null
null
null
UTF-8
Python
false
false
708
py
try: import scapy.all as scapy except ImportError: import scapy try: # This import works from the project directory import scapy_http.http except ImportError: # If you installed this package via pip, you just need to execute this from scapy.layers import http from scapy.all import * pcap = rdpcap('C:/Desktop/detect.pcap')[TCP] for i in range(len(pcap)): try: raw = str(pcap[i][Raw]) # if 'a=' in raw and 'b=' in raw and 'c=' and 'd=' in raw: if 'wangyang' in raw: print pcap[i][Raw] print pcap[i]['IP'].src,'----',pcap[i]['IP'].dst # print(raw) # print(raw[0:raw.find('a=')]) except: continue
29e4f545719e43f2a49b80ffdf16616925d10a45
2494b93425260afe2826b27cde13fe24fc8d85c7
/main.py
d0ab5dfd951fff2bdd2394c9285337a4acc9350d
[]
no_license
ankituf/Speech-Recognition-System
3dac44af5c2f96d3fb3a47704229a16901a57f1a
011a3a7bde4285645a2d9162b18921e0534c3896
refs/heads/master
2021-01-23T08:34:12.681493
2017-09-05T22:38:05
2017-09-05T22:38:05
102,534,984
1
0
null
null
null
null
UTF-8
Python
false
false
394
py
from tester import * import os word=[] for file in os.listdir("test_files"): if file.endswith(".wav"): base=os.path.basename(file) word.append(os.path.splitext(base)[0]) # print word for i in range(0,len(word)): filename = "test_files/"+word[i]+".wav" print "said word :", word[i] output=feedToNetwork(extractFeature(filename), testInit()) print ""
803fc33371c41205e3598194d1c1f91265ad7010
e0ce113811e5fc5e49c49d620284a54fbd7ed17b
/firstPythonScript.py
cded3dabb6e1817075ca2d4965a3a3b56ca13436
[]
no_license
ztanverakul/SWC_Workshop
9d6a37947cb67a617aa4ed0a104a8b4fc31524f7
b38314a50af5bcb395eff722fb31e674d2f0a83d
refs/heads/master
2020-05-29T16:34:54.319734
2019-05-29T21:21:52
2019-05-29T21:21:52
189,252,234
0
0
null
null
null
null
UTF-8
Python
false
false
299
py
# Author: Zach Tan # Date: 05/29/2019 # Description: First Python Script Workshop # Collaborators: tsk tsk import numpy as np from math import pi, sqrt, cos PRIMES = [2, 3, 5, 7, 11, 13, 17, 19] def sumOfAllPrimes(): return sum(PRIMES) if __name__ == "__main__": x = sumOfAllPrimes() print(x)
76a61090fc74d8ed5225d817554cbcbc9dcb39b6
bb33e6be8316f35decbb2b81badf2b6dcf7df515
/source/res/scripts/client/gui/impl/lobby/mode_selector/tooltips/simply_format_tooltip.py
26dbba5d74d1f6d2d0d538cdcda996ec56235958
[]
no_license
StranikS-Scan/WorldOfTanks-Decompiled
999c9567de38c32c760ab72c21c00ea7bc20990c
d2fe9c195825ececc728e87a02983908b7ea9199
refs/heads/1.18
2023-08-25T17:39:27.718097
2022-09-22T06:49:44
2022-09-22T06:49:44
148,696,315
103
39
null
2022-09-14T17:50:03
2018-09-13T20:49:11
Python
UTF-8
Python
false
false
890
py
# Python bytecode 2.7 (decompiled from Python 2.7) # Embedded file name: scripts/client/gui/impl/lobby/mode_selector/tooltips/simply_format_tooltip.py from gui.impl.gen import R from gui.impl.pub import ViewImpl from frameworks.wulf import ViewSettings from gui.impl.gen.view_models.windows.simple_tooltip_content_model import SimpleTooltipContentModel class SimplyFormatTooltipView(ViewImpl): def __init__(self, header, body): settings = ViewSettings(R.views.lobby.mode_selector.tooltips.SimplyFormatTooltip(), model=SimpleTooltipContentModel()) settings.args = (header, body) super(SimplyFormatTooltipView, self).__init__(settings) @property def viewModel(self): return super(SimplyFormatTooltipView, self).getViewModel() def _onLoading(self, header, body): self.viewModel.setHeader(header) self.viewModel.setBody(body)
23dda399322e76d00571fdb6a25bdae6312b289c
dec1c2390df41f93e43cea6d78aee433facfef6a
/XChfut/spiders/xchfut.py
0e6335e5698ef18307fefd976afaa96d1e8eb2fc
[]
no_license
w376692784/XChfut
183d8a716ce255a302ccc9daf2d9c05e091e8e00
ef4d5f64c4c794894060a79287be87108c09572e
refs/heads/master
2020-03-07T18:38:33.537361
2018-04-01T16:08:24
2018-04-01T16:08:24
127,646,576
0
0
null
null
null
null
UTF-8
Python
false
false
1,968
py
# -*- coding: utf-8 -*- import scrapy from XChfut.items import XchfutItem class XchfutSpider(scrapy.Spider): name = 'xchfut' allowed_domains = ['xc.hfut.edu.cn'] # start_urls = ['http://xc.hfut.edu.cn/120/list'] baseURL = 'http://xc.hfut.edu.cn/120/list' offset = 1 start_urls = [baseURL + str(offset) + '.htm'] print(start_urls) def parse(self, response): # print(response.body.decode('utf-8')) url_list = response.xpath('//a[@class=" articlelist1_a_title "]') # print(url_list) for url in url_list: # print(url.xpath('./@href').extract()[0]) if 'news.hfut.edu.cn' not in url.xpath('./@href').extract()[0]: # print('http://xc.hfut.edu.cn/' + url.xpath('./@href').extract()[0]) yield scrapy.Request('http://xc.hfut.edu.cn/' + url.xpath('./@href').extract()[0] ,callback=self.parse_image) # print(response.xpath('//a[@title="进入下一页"]/@disabled').extract()) if response.xpath('//a[@title="进入下一页"]/@disabled').extract() != ['disabled']: self.offset += 1 yield scrapy.Request(self.baseURL + str(self.offset) + '.htm',callback=self.parse) else:return def parse_image(self,response): item = XchfutItem() # print(response.body.decode('utf-8')) item['title_name'] = response.xpath('//h1[@class="atitle"]/text()').extract()[0].strip() item['publish_data'] = response.xpath('//span[@class="posttime"]/text()').extract()[0][5:] # print(item) image_links = response.xpath('//p/img/@src | //span/img/@src').extract() # print(image_links) item['image_link'] = [] for image_link in image_links: if '.jpg' in image_link or '.png' in image_link: item['image_link'].append('http://xc.hfut.edu.cn'+image_link) yield item # print(item)
952e9a66bd22c3f99c23a479012139aa46c0c990
4578b30c433510cf370d51475ec11cac9c3de1cb
/serpent/wamp_components/dashboard_api_component.py
d5d6ba83642cf2c066df0bb44b7f6cf853798e4b
[ "MIT" ]
permissive
SerpentAI/SerpentAI
0a5b2d567b50388722c3a3c5152555ce94256c49
00a487dd088c6ca2528d025f3273c0a796efe210
refs/heads/dev
2023-03-08T14:14:07.171435
2020-05-22T22:34:09
2020-05-22T22:34:09
88,444,621
7,216
950
MIT
2020-07-15T00:41:35
2017-04-16T21:48:39
Python
UTF-8
Python
false
false
5,508
py
import asyncio from autobahn.asyncio.wamp import ApplicationSession, ApplicationRunner from autobahn.wamp.types import RegisterOptions, SubscribeOptions from autobahn.wamp import auth from serpent.config import config from pony.orm import * from serpent.dashboard.models import * import json class DashboardAPIComponent: @classmethod def run(cls): print(f"Starting {cls.__name__}...") url = "ws://%s:%s" % (config["crossbar"]["host"], config["crossbar"]["port"]) runner = ApplicationRunner(url=url, realm=config["crossbar"]["realm"]) runner.run(DashboardAPIWAMPComponent) class DashboardAPIWAMPComponent(ApplicationSession): def __init__(self, c=None): super().__init__(c) def onConnect(self): self.join(config["crossbar"]["realm"], ["wampcra"], config["crossbar"]["auth"]["username"]) def onDisconnect(self): print("Disconnected from Crossbar!") def onChallenge(self, challenge): secret = config["crossbar"]["auth"]["password"] signature = auth.compute_wcs(secret.encode('utf8'), challenge.extra['challenge'].encode('utf8')) return signature.decode('ascii') async def onJoin(self, details): @db_session def list_dashboards(): dashboards = Dashboard.select(lambda d: True).order_by(lambda d: d.name)[:] return {"dashboards": [dashboard.as_list_json() for dashboard in dashboards]} @db_session def fetch_dashboard(uuid): dashboard = Dashboard.get(uuid=UUID(uuid)) if dashboard is None: return {"error": f"No Dashboard found with uuid '{uuid}'..."} return {"dashboard": dashboard.as_json()} @db_session def create_dashboard(dashboard_data): dashboard = Dashboard.get(name=dashboard_data.get("name")) if dashboard is not None: return {"error": f"A Dashboard with name '{dashboard.name}' already exists..."} dashboard = Dashboard.create(dashboard_data) return {"dashboard": dashboard.as_list_json()} @db_session def delete_dashboard(uuid): dashboard = Dashboard.get(uuid=UUID(uuid)) if dashboard is None: return {"error": f"No Dashboard found with uuid '{uuid}'..."} dashboard.delete() commit() return {"dashboard": None} @db_session def create_dashboard_metric(dashboard_uuid, metric_data): dashboard = Dashboard.get(uuid=UUID(dashboard_uuid)) if dashboard is None: return {"error": f"No Dashboard found with uuid '{dashboard_uuid}'..."} metric = Metric(**{ **metric_data, "dashboard": dashboard, "x": 0, "y": 0, "w": 9, "h": 5 }) commit() return {"metric": metric.as_json()} @db_session def update_dashboard_metric(dashboard_uuid, metric_data): dashboard = Dashboard.get(uuid=UUID(dashboard_uuid)) if dashboard is None: return {"error": f"No Dashboard found with uuid '{dashboard_uuid}'..."} metric_uuid = metric_data.pop("uuid") metric = Metric.get(uuid=UUID(metric_uuid)) if metric is None: return {"error": f"No Metric found with uuid '{metric_uuid}'..."} metric.set(**metric_data) commit() return {"metric": metric.as_json()} @db_session def delete_dashboard_metric(uuid): metric = Metric.get(uuid=UUID(uuid)) if metric is None: return {"error": f"No Dashboard Metric found with uuid '{uuid}'..."} metric.delete() commit() return {"metric": None} @db_session def save_dashboard_layout(uuid, layout): dashboard = Dashboard.get(uuid=UUID(uuid)) if dashboard is None: return {"error": f"No Dashboard found with uuid '{uuid}'..."} dashboard.save_layout(layout) return {"dashboard": dashboard.as_json()} await self.register(list_dashboards, f"{config['crossbar']['realm']}.list_dashboards", options=RegisterOptions(invoke="roundrobin")) await self.register(fetch_dashboard, f"{config['crossbar']['realm']}.fetch_dashboard", options=RegisterOptions(invoke="roundrobin")) await self.register(create_dashboard, f"{config['crossbar']['realm']}.create_dashboard", options=RegisterOptions(invoke="roundrobin")) await self.register(delete_dashboard, f"{config['crossbar']['realm']}.delete_dashboard", options=RegisterOptions(invoke="roundrobin")) await self.register(create_dashboard_metric, f"{config['crossbar']['realm']}.create_dashboard_metric", options=RegisterOptions(invoke="roundrobin")) await self.register(update_dashboard_metric, f"{config['crossbar']['realm']}.update_dashboard_metric", options=RegisterOptions(invoke="roundrobin")) await self.register(delete_dashboard_metric, f"{config['crossbar']['realm']}.delete_dashboard_metric", options=RegisterOptions(invoke="roundrobin")) await self.register(save_dashboard_layout, f"{config['crossbar']['realm']}.save_dashboard_layout", options=RegisterOptions(invoke="roundrobin")) if __name__ == "__main__": DashboardAPIComponent.run()
455d0c34150b8e6b7ed81c6e60b50af4c973c050
2fb074eca893dd9ab67f430b8d8d142f7d565abd
/train.py
7b1971074812f7540037070421fa8508d95e0a88
[]
no_license
jireh-father/tensorflow-object-detection-framework
63ec7225a68973ac024db90ed809dd91c6085151
21d2d849be31b28c7d2e34a6f589d501e1351699
refs/heads/master
2020-03-27T10:06:44.428006
2018-08-31T09:08:01
2018-08-31T09:08:01
146,396,050
0
0
null
null
null
null
UTF-8
Python
false
false
2,470
py
import tensorflow as tf from data.pascal_voc import pascal_voc from model import yolo max_iter = 10000 pascal = pascal_voc('train') inputs = tf.placeholder(tf.float32, [None, 448, 448, 3]) labels = tf.placeholder(tf.float32, [None, 7, 7, 5 + 20]) is_training = tf.placeholder(tf.bool, shape=(), name="is_training") logits = yolo.build_model(inputs, is_training) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=labels)) predict = tf.argmax(logits, 1) accuracy = tf.reduce_mean(tf.cast(tf.equal(predict, tf.argmax(labels, 1)), tf.float32)) train = tf.train.AdamOptimizer(learning_rate, beta1=0.9, beta2=0.999, epsilon=1.0).minimize(loss) init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) for step in range(1, max_iter): tr_x, tr_y = pascal.get() feed_dict = {inputs: tr_x, labels: tr_y, is_training: True} _, accuracy_result, loss_result = sess.run([train, accuracy, loss], feed_dict={inputs: tr_x, labels: tr_y, is_training: True}) print('%d train accuracy: %f, loss: %f' % (step, accuracy_result, loss_result)) if step % 100 == 0 and step > 0: valid_x, valid_y = data_sets.validation.next_batch(batch_size) valid_x = valid_x.reshape((batch_size, 28, 28, 1)) accuracy_result, loss_result = sess.run([accuracy, loss], feed_dict={inputs: valid_x, labels: valid_y, is_training: True}) print('%d validation accuracy: %f, loss: %f' % (step, accuracy_result, loss_result)) for step in range(1, max_iter + 1): tr_x, tr_y = pascal.get() feed_dict = {inputs: tr_x, labels: tr_y} summary_str, loss, _ = self.sess.run( [self.summary_op, self.net.total_loss, self.train_op], feed_dict=feed_dict) train_timer.toc() log_str = '''{} Epoch: {}, Step: {}, Learning rate: {},''' ''' Loss: {:5.3f}\nSpeed: {:.3f}s/iter,''' '''' Load: {:.3f}s/iter, Remain: {}'''.format( datetime.datetime.now().strftime('%m-%d %H:%M:%S'), self.data.epoch, int(step), round(self.learning_rate.eval(session=self.sess), 6), loss, train_timer.average_time, load_timer.average_time, train_timer.remain(step, self.max_iter)) print(log_str) self.writer.add_summary(summary_str, step)
97afb1da589398dcd9a82433e3d4866fe5bf319c
cb9f7b356bd0c06a88bf0ef3a3cabf6d7a8ecc03
/tests/testSemiEmpiricalPrior.py
57a03d12630f467bcd37d69ab58cfb352f7b7f5e
[]
no_license
jonathansick-shadow/meas_modelfit
ceace53cd8acf5723b860f80a4e8745e63a5857d
def2b87bb69b5d9cdd9d734520246b92a8a0ff29
refs/heads/master
2021-01-12T12:02:59.873544
2016-03-10T06:25:46
2016-03-10T06:25:46
45,875,371
0
0
null
2015-11-10T00:00:55
2015-11-10T00:00:55
null
UTF-8
Python
false
false
4,792
py
#!/usr/bin/env python # # LSST Data Management System # Copyright 2008-2013 LSST Corporation. # # This product includes software developed by the # LSST Project (http://www.lsst.org/). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the LSST License Statement and # the GNU General Public License along with this program. If not, # see <http://www.lsstcorp.org/LegalNotices/>. # import unittest import os import numpy import lsst.utils.tests import lsst.shapelet import lsst.afw.geom.ellipses import lsst.meas.modelfit try: import scipy.integrate except ImportError: scipy = None numpy.random.seed(500) lsst.pex.logging.Debug("meas.modelfit.SemiEmpiricalPrior", 10) class SemiEmpiricalPriorTestCase(lsst.utils.tests.TestCase): NUM_DIFF_STEP = 1E-4 def setUp(self): # a prior with broad ramps and non-zero slope; broad ramps makes evaluating numerical # derivatives easier, and we want to do that to check the analytic ones self.ctrl = lsst.meas.modelfit.SemiEmpiricalPrior.Control() self.ctrl.ellipticityCore = 4.0 self.ctrl.ellipticitySigma = 10.0 self.ctrl.logRadiusMinOuter = self.ctrl.logRadiusMinInner - 8.0 self.ctrl.logRadiusMu = 2.0 self.ctrl.logRadiusSigma = 5.0 self.ctrl.logRadiusNu = 2.0 self.prior = lsst.meas.modelfit.SemiEmpiricalPrior(self.ctrl) self.amplitudes = numpy.array([1.0], dtype=lsst.meas.modelfit.Scalar) dtype = numpy.dtype([("eta1", float), ("eta2", float), ("lnR", float), ("p", float), ("d_eta1", float), ("d_eta2", float), ("d_lnR", float), ("d2_eta1_eta1", float), ("d2_eta1_eta2", float), ("d2_eta1_lnR", float), ("d2_eta2_eta2", float), ("d2_eta2_lnR", float), ("d2_lnR_lnR", float)]) self.data = numpy.loadtxt("tests/data/SEP.txt", dtype=dtype) def tearDown(self): del self.prior del self.amplitudes def testEvaluate(self): for row in self.data: p = self.prior.evaluate(numpy.array([row["eta1"], row["eta2"], row["lnR"]]), self.amplitudes) self.assertClose(row["p"], p) def testGradient(self): for row in self.data: grad = numpy.zeros(4, dtype=float) hess = numpy.zeros((4,4), dtype=float) self.prior.evaluateDerivatives( numpy.array([row["eta1"], row["eta2"], row["lnR"]]), self.amplitudes, grad[:3], grad[3:], hess[:3,:3], hess[3:, 3:], hess[:3,3:] ) self.assertClose(row["d_eta1"], grad[0]) self.assertClose(row["d_eta2"], grad[1]) self.assertClose(row["d_lnR"], grad[2]) def testHessian(self): for row in self.data: grad = numpy.zeros(4, dtype=float) hess = numpy.zeros((4,4), dtype=float) self.prior.evaluateDerivatives( numpy.array([row["eta1"], row["eta2"], row["lnR"]]), self.amplitudes, grad[:3], grad[3:], hess[:3,:3], hess[3:, 3:], hess[:3,3:] ) self.assertClose(row["d2_eta1_eta1"], hess[0,0]) self.assertClose(row["d2_eta1_eta2"], hess[0,1]) self.assertClose(row["d2_eta1_lnR"], hess[0,2]) self.assertClose(row["d2_eta2_eta2"], hess[1,1]) self.assertClose(row["d2_eta2_lnR"], hess[1,2]) self.assertClose(row["d2_lnR_lnR"], hess[2,2]) def evaluatePrior(self, eta1, eta2, lnR): b = numpy.broadcast(eta1, eta2, lnR) p = numpy.zeros(b.shape, dtype=lsst.meas.modelfit.Scalar) for i, (eta1i, eta2i, lnRi) in enumerate(b): p.flat[i] = self.prior.evaluate(numpy.array([eta1i, eta2i, lnRi]), self.amplitudes) return p def suite(): """Returns a suite containing all the test cases in this module.""" lsst.utils.tests.init() suites = [] suites += unittest.makeSuite(SemiEmpiricalPriorTestCase) suites += unittest.makeSuite(lsst.utils.tests.MemoryTestCase) return unittest.TestSuite(suites) def run(shouldExit=False): """Run the tests""" lsst.utils.tests.run(suite(), shouldExit) if __name__ == "__main__": run(True)
09d60b3f73b86b0125b906dfd570b06727b86988
ffd9601a04a6b00c9a0f972a93837e536d93aad2
/posts/tests.py
371e51fc48dd2aac74edf4f6375d6bd3cdea90dc
[]
no_license
cb-demos/microblog-backend
c2d1f28c08596cde05496dda72ae07603c4ed330
127d47bcdefb25de57ba876a72c25826b1cc0af0
refs/heads/master
2023-02-05T06:16:02.593819
2023-01-27T18:24:51
2023-01-27T18:24:51
240,112,247
1
62
null
2023-01-27T18:24:53
2020-02-12T20:49:32
Python
UTF-8
Python
false
false
1,023
py
from django.test import TestCase from django.urls import reverse from rest_framework.test import APITestCase from .models import Post, User class PostTestCase(TestCase): def setUp(self) -> None: User.objects.create(username="dinkleberg") def test_create_post(self): user = User.objects.get(username="dinkleberg") Post.objects.create(user=user, message="Hello, world!") post = Post.objects.get(user=user) self.assertEqual(post.message, "Hello, world!") class PostAPITests(APITestCase): def setUp(self) -> None: user = User.objects.create(username="dinkleberg") Post.objects.create(user=user, message="Hello, universe!") Post.objects.create(user=user, message="Hello, world!") def test_get_posts(self): url = reverse("post-list") response = self.client.get(url, format="json") self.assertEqual(response.data[1]["message"], "Hello, universe!") self.assertEqual(response.data[0]["message"], "Hello, world!")
bfa5ff371b08bf2ccfce79a077f18b3492b05cc8
bad3aedebe6858ee5973e5ee218533027d42ec52
/nedbankprivatewealth/spiders/spider.py
234d865ab57a5dfaa2d47dfc93534f845f2a7199
[]
no_license
hristo-grudev/nedbankprivatewealth
2683106d16c1d1aade81a4494da66bc92cceb41c
ebfbadabb58e1b000af8f2df18981c010ace8237
refs/heads/main
2023-02-24T03:47:25.304128
2021-02-04T06:40:47
2021-02-04T06:40:47
335,863,455
0
0
null
null
null
null
UTF-8
Python
false
false
1,176
py
import scrapy from scrapy.loader import ItemLoader from ..items import NedbankprivatewealthItem from itemloaders.processors import TakeFirst class CentralbankSpider(scrapy.Spider): name = 'nedbankprivatewealth' start_urls = ['https://nedbankprivatewealth.com/insights/'] def parse(self, response): post_links = response.xpath('//div[@class="jet-engine-listing-overlay-wrap"]/div/div/div/section/div/div/div/div/div/section//a') yield from response.follow_all(post_links, self.parse_post) def parse_post(self, response): title = response.xpath('//h1//text()').get() description = response.xpath('/html/body/div[2]/div/div/section[2]/div/div/div[2]/div/div//text()[normalize-space() and not(ancestor::table)]').getall() description = [p.strip() for p in description] description = ' '.join(description).strip() date = response.xpath('//div[@class="jet-listing-dynamic-field__content"]/text()').get() item = ItemLoader(item=NedbankprivatewealthItem(), response=response) item.default_output_processor = TakeFirst() item.add_value('title', title) item.add_value('description', description) item.add_value('date', date) return item.load_item()
bada4df5ac2615720beb0b77628fc1019d21639a
41fa204c476bf466cb4fe9deb85843d7fdbd4c4b
/test_api/migrations/0004_post_image.py
754f536d8970af03a4d3d07e7c2224fddd4cbc4a
[]
no_license
hagull/farm_deploy
9506b1d6dcbc513e8c4d97e9c1c8ba477fc07dd2
3609a33949e9deb5742263e4dd5f6c783ea5fda8
refs/heads/master
2022-12-15T00:35:00.572945
2018-12-08T06:11:04
2018-12-08T06:11:04
160,857,990
0
0
null
2022-12-08T01:28:03
2018-12-07T17:56:19
Python
UTF-8
Python
false
false
393
py
# Generated by Django 2.0.7 on 2018-11-29 16:27 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('test_api', '0003_remove_post_photo'), ] operations = [ migrations.AddField( model_name='post', name='image', field=models.ImageField(blank=True, upload_to=''), ), ]
e4b5c8363171b127cdc24bc75e373ff087a01603
40a8f14a73385118c442db9d2153674e64341428
/hannah.py
3d1aabe32be9092f7cb5e88826def25318b2fcd3
[]
no_license
JoshNHales/Textgame
b1c6c9c7f3c9f3754dcc70cb1cfcb481737d092f
534949be70f5a9245bed04ec397fffc3a1cfccfe
refs/heads/main
2023-02-25T20:00:18.638835
2021-02-02T12:03:02
2021-02-02T12:03:02
335,274,267
0
0
null
null
null
null
UTF-8
Python
false
false
3,719
py
import time def guards(): print ("You hide behind the trees and escape from sight of the guards, running toward a moat you noticed earlier.") time.sleep(1) print ("You can either swim away to hopefully escape faster, or slowly look around the water for more clues, which will inevitably waste more time.") time.sleep(1) look_or_swim = input("Will you either: A) look around or B) swim?") if look_or_swim.upper() == "A": moat() elif look_or_swim.upper() == "B": croc_attack() else: ("Your input was invalid, try again!") def moat(): print("You look around and your impeccible senses notice a strange ripple in the water...") time.sleep(1) print (""" _.'^^'. _ .-' ((@)) '. ./\/\/\/\/\/\,.---._ ..'o'...-' ~~~ '~/\/\/\/\/\/\_.---. `-. : /\/\/\/\,-' `-.__ ^VvvvvvvvvvvVvVv | `-._ ;^^^^^^^^^^^` / `\ / `-._ ````````` '.` `\ ( `'-._ .-----'` /\ \ )--.______.______._______/ (((------'`` '--------'(((----' """) print ("AAAAAHHHHHH IT'S A CROCODILEEEEE") def crocodile(): print ("You panic at the sight of the beast before you and realise that there are only 3 options to choose from.") time.sleep(1) print ("You can either A) RUN FOR YOUR LIFE, B) Distract the creatures whilst you flee or C) Sneak past them quietly.") time.sleep(1) run_distract_sneak = input ("Will you choose A, B or C?") if run_distract_sneak.upper() == "A": print("The crocodiles are too fast for you and gobble you up before you can escape! GAME OVER") elif run_distract_sneak.upper() == "B": print ("You find a secret doorway which leads to your freedom") elif run_distract_sneak.upper() == "C": print ("You find an empty room with a note saying 'you can't run from your past...' The door suddenly slams shut and you black out.") else: ("Your input was invalid, try again!") def doors() : print ("You notice 3 doors in front of you, each with a mysterious marking etched on the front of it. Door 1 has a sun marking, door 2 a moon marking and door 3 a star marking.") door_picked = input ("Do you choose either door 1, 2 or 3? >") if door_picked == "1": print ("You picked door number 1...") elif door_picked == "2": print ("You picked door number 2...") elif door_picked == "3": print ("You picked door number 3...") def room_1(): print ("A sliver of light appears through the doorframe - could it be? As the door opens you see the outside world and run to freedom. YOU WIN") def room_2(): print("The room is filled with an abundance of letters and images.") print("Upon looking closer you realise that these letters are written in handwriting very familiar to your own.") print("How peculiar!") print("Horror dawns on you as you come to learn you were part of a top secret organisation.") print("One letter in particular highlights that you have had your memory wiped by them so you don't reveal any of their secrets.") print("The secret agency speak to you through microphones attached to the wall - they have been watching you the entire time.") print("'You were never supposed to find out our plans...'") print("The room is blown up to destroy all evidence, including you. GAME OVER") def room_3(): print ("You are back where you started in the basement where you first awoke.") guards()
5efe7c96c849f2e88108d81bac384cdf96a38647
be7ab772fff390e7ec289b3b757a96f192c5a006
/Quantum_Chemistry_Module/Quantum_Chemistry_Module/integrals.py
7977071f6799b1c187afa192e1c9016113260cd9
[]
no_license
adabbott/Quantum-Chemistry-Codes
7942083047c397928cc05999c034fbc5226156b0
a4d0c88b2b420406344f923a8303372ebbb2237e
refs/heads/master
2020-12-03T00:02:37.975709
2017-10-09T19:57:45
2017-10-09T19:57:45
95,979,183
1
0
null
null
null
null
UTF-8
Python
false
false
9,753
py
import psi4 import numpy as np import molecule def obara_saika_recursion(PA, PB, alpha, AMa, AMb): """ Performs Obara-Saika recursion routine to fill in all integral cartesian components recursively Used to construct overlap, kinetic, and dipole integral x, y, z component arrays Parameters ---------- PA: wighted coordinate vector on atom A PB: weighted coordinate vector on atom B alpha: orbital exponent AMa: angular momentum of A AMb: angular momentum of B """ if len(PA) != 3 or len(PB) != 3: raise "PA and PB must be xyz coordinates." # Allocate space x, y, and z matrices # We add one because the equation for the kinetic energy # integrals require terms one beyond those in the overlap x = np.zeros((AMa + 1, AMb + 1)) y = np.zeros((AMa + 1, AMb + 1)) z = np.zeros((AMa + 1, AMb + 1)) # Define 1/2alpha factor for convenience oo2a = 1.0 / (2.0 * alpha) # Set initial conditions (0a|0b) to 1.0 for each cartesian component x[0, 0] = y[0, 0] = z[0, 0] = 1.0 # BEGIN RECURSION # Fill in the [0,1] position with PB if AMb > 0: x[0, 1] = PB[0] y[0, 1] = PB[1] z[0, 1] = PB[2] # Fill in the rest of row zero for b in range(1, AMb): x[0, b + 1] = PB[0] * x[0, b] + b * oo2a * x[0, b - 1] y[0, b + 1] = PB[1] * y[0, b] + b * oo2a * y[0, b - 1] z[0, b + 1] = PB[2] * z[0, b] + b * oo2a * z[0, b - 1] # Now, we have for each cartesian component # | 1.0 PB # #| # | 0 0 0 0| # | 0 0 0 0| # | 0 0 0 0| # Upward recursion in a for all b's # Fill in the [1,0] position with PA if AMa > 0: x[1, 0] = PA[0] y[1, 0] = PA[1] z[1, 0] = PA[2] # Now, we have for each cartesian component # | 1.0 PB # #| # | PA 0 0 0| # | 0 0 0 0| # | 0 0 0 0| # Fill in the rest of row one for b in range(1, AMb + 1): x[1, b] = PA[0] * x[0, b] + b * oo2a * x[0, b - 1] y[1, b] = PA[1] * y[0, b] + b * oo2a * y[0, b - 1] z[1, b] = PA[2] * z[0, b] + b * oo2a * z[0, b - 1] # Now, we have for each cartesian component # | 1.0 PB # #| # | PA # # #| # | 0 0 0 0| # | 0 0 0 0| # Fill in the rest of column 0 for a in range(1, AMa): x[a + 1, 0] = PA[0] * x[a, 0] + a * oo2a * x[a - 1, 0] y[a + 1, 0] = PA[1] * y[a, 0] + a * oo2a * y[a - 1, 0] z[a + 1, 0] = PA[2] * z[a, 0] + a * oo2a * z[a - 1, 0] # Now, we have for each cartesian component # | 1.0 PB # #| # | PA # # #| # | # 0 0 0| # | # 0 0 0| # Fill in the rest of the a'th row for b in range(1, AMb + 1): x[a + 1, b] = PA[0] * x[a, b] + a * oo2a * x[a - 1, b] + b * oo2a * x[a, b - 1] y[a + 1, b] = PA[1] * y[a, b] + a * oo2a * y[a - 1, b] + b * oo2a * y[a, b - 1] z[a + 1, b] = PA[2] * z[a, b] + a * oo2a * z[a - 1, b] + b * oo2a * z[a, b - 1] # Now, we have for each cartesian component # | 1.0 PB # #| # | PA # # #| # | # # # #| # | # # # #| # Return the results return (x, y, z) def compute_integrals(mol): """ Computes the integrals for hartree fock Parameters ---------- A Molecule object Returns ------- Overlap, Kinetic, Potential, and 2-electron integrals in a tuple """ basis = mol.basis # make space to store the overlap, kinetic, and dipole integral matrices S = np.zeros((basis.nao(),basis.nao())) T = np.zeros((basis.nao(),basis.nao())) Dx = np.zeros((basis.nao(),basis.nao())) Dy = np.zeros((basis.nao(),basis.nao())) Dz = np.zeros((basis.nao(),basis.nao())) # loop over the shells, basis.nshell is the number of shells for i in range(basis.nshell()): for j in range(basis.nshell()): # basis.shell is a shell (1s, 2s, 2p, etc.) # for water, there are 5 shells: (H: 1s, H: 1s, O: 1s, 2s, 2p) ishell = basis.shell(i) jshell = basis.shell(j) # each shell has some number of primitives which make up each component of a shell # sto-3g has 3 primitives for every component of every shell. nprimi = ishell.nprimitive nprimj = jshell.nprimitive # loop over the primitives within a shell for a in range(nprimi): for b in range(nprimj): expa = ishell.exp(a) # exponents expb = jshell.exp(b) coefa = ishell.coef(a) # coefficients coefb = jshell.coef(b) AMa = ishell.am # angular momenta AMb = jshell.am # defining centers for each basis function # mol.x() returns the x coordinate of the atom given by ishell.ncenter # we use this to define a coordinate vector for our centers A = np.array([mol.geometry.x(ishell.ncenter), mol.geometry.y(ishell.ncenter), mol.geometry.z(ishell.ncenter)]) B = np.array([mol.geometry.x(jshell.ncenter), mol.geometry.y(jshell.ncenter), mol.geometry.z(jshell.ncenter)]) alpha = expa + expb zeta = (expa * expb) / alpha P = (expa * A + expb * B) / alpha PA = P - A PB = P - B AB = A - B start = (np.pi / alpha)**(3 / 2) * np.exp(-zeta * (AB[0]**2 + AB[1]**2 + AB[2]**2)) # call the recursion x, y, z = obara_saika_recursion(PA, PB, alpha, AMa+1, AMb+1) # Basis function index where the shell begins i_idx = ishell.function_index j_idx = jshell.function_index # We use counters to keep track of which component (e.g., p_x, p_y, p_z) # within the shell we are on counta = 0 for p in range(AMa + 1): la = AMa - p # Let l take on all values, and p be the leftover a.m. for q in range(p + 1): ma = p - q # distribute all leftover a.m. to m and n na = q countb = 0 for r in range(AMb + 1): lb = AMb - r # Let l take on all values, and r the leftover a.m. for s in range(r + 1): mb = r - s # distribute all leftover a.m. to m and n nb = s S[i_idx + counta, j_idx + countb] += start \ * coefa \ * coefb \ * x[la,lb] \ * y[ma,mb] \ * z[na,nb] Tx = (1 / 2) * (la * lb * x[la - 1, lb - 1] + 4 * expa * expb * x[la + 1, lb + 1] \ - 2 * expa * lb * x[la + 1, lb - 1] - 2 * expb * la * x[la - 1, lb + 1]) \ * y[ma, mb] * z[na, nb] Ty = (1 / 2) * (ma * mb * y[ma - 1, mb - 1] + 4 * expa * expb * y[ma + 1, mb + 1] \ - 2 * expa * mb * y[ma + 1, mb - 1] - 2 * expb * ma * y[ma - 1, mb + 1]) \ * x[la, lb] * z[na, nb] Tz = (1 / 2) * (na * nb * z[na - 1, nb - 1] + 4 * expa * expb * z[na + 1, nb + 1] \ - 2 * expa * nb * z[na + 1, nb - 1] - 2 * expb * na * z[na - 1, nb + 1]) \ * x[la, lb] * y[ma, mb] T[i_idx + counta, j_idx + countb] += start * coefa * coefb * (Tx + Ty + Tz) dx = (x[la + 1, lb] + A[0] * x[la, lb]) * y[ma, mb] * z[na, nb] dy = (y[ma + 1, mb] + A[1] * y[ma, mb]) * x[la, lb] * z[na, nb] dz = (z[na + 1, nb] + A[2] * z[na, nb]) * x[la, lb] * y[ma, mb] Dx[i_idx + counta, j_idx + countb] += start * coefa * coefb * dx Dy[i_idx + counta, j_idx + countb] += start * coefa * coefb * dy Dz[i_idx + counta, j_idx + countb] += start * coefa * coefb * dz countb += 1 counta += 1 mints = psi4.core.MintsHelper(basis) # Repulsion and two electron integrals are too hard to implement efficiently. Give up. V = mints.ao_potential().to_array() I = mints.ao_eri().to_array() return S, T, V, I
b918dc04443cb9a0487a0dc88494dc203026ba04
3670f46666214ef5e1ce6765e47b24758f3614a9
/oneflow/python/onnx/flow2onnx.py
eb6a28b9f6f89bc89bd0997f5913badf7895c364
[ "Apache-2.0" ]
permissive
ashing-zhang/oneflow
0b8bb478ccd6cabea2dca0864defddab231919bf
70db228a4d361c916f8f8d85e908795b479e5d20
refs/heads/master
2022-12-14T21:13:46.752535
2020-09-07T03:08:52
2020-09-07T03:08:52
293,535,931
1
0
Apache-2.0
2020-09-07T13:28:25
2020-09-07T13:28:24
null
UTF-8
Python
false
false
11,725
py
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT license. # oneflow.python.onnx.oneflow.python.onnx - rewrite oneflow graph to onnx graph from __future__ import division from __future__ import print_function from __future__ import unicode_literals from __future__ import absolute_import import collections import itertools import logging import os import os.path import sys import traceback from typing import Text, Optional, Dict, Callable, List import numpy as np from onnx import helper, onnx_pb import oneflow import oneflow.python.framework.c_api_util as c_api_util import oneflow.python.framework.session_context as session_ctx from oneflow.python.oneflow_export import oneflow_export import oneflow.python.onnx from oneflow.python.onnx import constants, schemas, util, handler, optimizer from oneflow.python.onnx.graph import Graph import oneflow.python.onnx.onnx_opset # pylint: disable=unused-import logger = logging.getLogger(__name__) def FlowToOnnxNaive(graph, shape_override): """ Convert node from oneflow format to onnx format. Convert the oneflow nodes into an onnx graph with minimal rewrites so we can use the onnx graph as intermediate graph. The input/output/attr of each node are kept here and will be converted in other following functions. """ dtypes = {} for lbn in graph.helper.lbn2logical_blob_desc: lbd = graph.helper.lbn2logical_blob_desc[lbn] if lbn not in shape_override: shape_override[lbn] = list(lbd.body.shape.dim) dtypes[lbn] = util.Flow2OnnxDtype(lbd.body.data_type) # some stats op_cnt = collections.Counter() attr_cnt = collections.Counter() onnx_nodes = [] def is_user_op(node): return node.WhichOneof("op_type") == "user_conf" def get_op_conf(node): conf_type = node.WhichOneof("op_type") conf = getattr(node, conf_type) return conf def get_op_type(node): if is_user_op(node): return node.user_conf.op_type_name return node.WhichOneof("op_type")[:-5] def get_inputs(node): if is_user_op(node): ibns = handler.flow_op.ibn4op_type(get_op_type(node)) if ibns is None: return list( itertools.chain(*[x.s for x in node.user_conf.input.values()]) ) ipts = [] for ibn in ibns: for key, val in node.user_conf.input.items(): if key == ibn: assert len(val.s) == 1 ipts.append(val.s[0]) break else: raise ValueError( "ibn {} of node {} (type {}) not found".format( ibn, node.name, get_op_type(node) ) ) return ipts else: conf = get_op_conf(node) # it cannot cover all legacy op but it's enough if hasattr(conf, "in"): op_in = getattr(conf, "in") if isinstance(op_in, str): return [op_in] else: return op_in else: return [] def get_outputs(node): if is_user_op(node): obns = handler.flow_op.obn4op_type(get_op_type(node)) if obns is None: assert all([len(x.s) == 1 for x in node.user_conf.output.values()]) return [x.s[0] for x in node.user_conf.output.values()] outputs = [] for obn in obns: for key, val in node.user_conf.output.items(): if key == obn: assert len(val.s) == 1 outputs.append(val.s[0]) break else: raise ValueError( "obn {} of node {} (type {}) not found".format( obn, node.name, get_op_type(node) ) ) else: conf = get_op_conf(node) # it cannot cover all legacy op but it's enough if hasattr(conf, "out"): out = getattr(conf, "out") if isinstance(out, str): outputs = [out] else: outputs = out else: outputs = [] outputs = ["{}/{}".format(node.name, output) for output in outputs] return outputs # minimal conversion of attributes for node in graph.net.op: attr = {} op_cnt[get_op_type(node)] += 1 attrs = node.user_conf.attr.keys() if is_user_op(node) else [] for a in attrs: attr_cnt[a] += 1 if a == "dtype": attr[a] = util.Flow2OnnxDtype(util.get_flow_node_attr(node, "dtype")) else: attr[a] = util.get_flow_node_attr(node, a) try: op_type = get_op_type(node) input_names = get_inputs(node) output_names = get_outputs(node) onnx_node = helper.make_node( op_type, input_names, output_names, name=node.name, **attr ) onnx_nodes.append(onnx_node) except Exception as ex: logger.error("pass1 convert failed for %s, ex=%s", node, ex) raise return onnx_nodes, op_cnt, attr_cnt, dtypes, shape_override def FlowOnnxMapping(g, ops_mapping): logger.debug("Mapping Oneflow node to ONNX node(s)") mapped_op = collections.Counter() unmapped_op = collections.Counter() exceptions = [] ops = list(g.get_nodes()) for node in ops: logger.debug("Process node: %s\n%s", node.name, node.summary) if node.skip_conversion: logger.debug("explicitly skip node " + node.name) continue op = node.type map_info = ops_mapping.get(op) if map_info is None: unmapped_op[op] += 1 logger.error("oneflow op [%s: %s] is not supported", node.name, op) continue mapped_op[op] += 1 func, onnx_op, kwargs = map_info if onnx_op is not None: node.type = onnx_op try: func(g, node, **kwargs) node.skip_conversion = True except Exception as ex: logger.error( "Failed to convert node %s\n%s", node.name, node.summary, exc_info=1 ) exceptions.append(ex) return mapped_op, unmapped_op, exceptions def TopologicalSort(g, continue_on_error): ops = g.get_nodes() if not continue_on_error: g.TopologicalSort(ops) else: try: g.TopologicalSort(ops) except: # pylint: disable=bare-except # if we continue on error, ignore graph cycles so we can report all missing ops pass @session_ctx.try_init_default_session @oneflow_export("onnx.export") def Export( job_func: Callable, model_save_dir: Text, onnx_filename: Text, continue_on_error: bool = False, opset: Optional[int] = None, extra_opset: Optional[int] = None, shape_override: Optional[Dict[Text, List[int]]] = None, external_data: bool = False, ): r"""Export a oneflow model into ONNX format. Args: job_func: The job function model_save_dir: The directory containing oneflow model weights. Users are expected to call check_point.save(dir), wait for the model saving finishing, and pass the argument 'dir' as model_save_dir. onnx_filename: a string for the output filename continue_on_error: if an op can't be processed (aka there is no mapping), continue opset: the opset to be used (int, default is oneflow.python.onnx.constants.PREFERRED_OPSET) extra_opset: list of extra opset's, for example the opset's used by custom ops shape_override: dict with inputs that override the shapes given by oneflow external_data: Save weights as ONNX external data, usually to bypass the 2GB file size limit of protobuf. """ assert os.getenv("ENABLE_USER_OP") != "False" assert os.path.isdir(model_save_dir) job_set = c_api_util.GetJobSet() job_name = job_func.__name__ for job in job_set.job: if job.job_conf.job_name == job_name: onnx_graph = ProcessFlowGraph( job, model_save_dir, continue_on_error=continue_on_error, opset=opset, extra_opset=extra_opset, shape_override=shape_override, ) onnx_graph = optimizer.OptimizeGraph(onnx_graph) model_proto = onnx_graph.MakeModel( job_name, onnx_filename, external_data=external_data ) with open(onnx_filename, "wb") as f: try: f.write(model_proto.SerializeToString()) except ValueError as e: raise ValueError( "Error occured when running model_proto.SerializeToString(). If the model is larger than 2GB, please specify external_data=True when calling flow.onnx.export. Original error message:\n{}".format( e ) ) return raise ValueError('Cannot find job "{}" in jobset'.format(job_name)) def ProcessFlowGraph( flow_graph, model_save_dir, continue_on_error=False, opset=None, extra_opset=None, shape_override=None, ): opset = util.FindOpset(opset) logger.info("Using opset <onnx, %s>", opset) if opset > schemas.get_max_supported_opset_version(): logger.warning( "Currently installed onnx package %s is too low to support opset %s, " "please upgrade onnx package to avoid potential conversion issue.", util.get_onnx_version(), opset, ) if shape_override is None: shape_override = {} (onnx_nodes, op_cnt, attr_cnt, dtypes, output_shapes,) = FlowToOnnxNaive( flow_graph, shape_override ) g = Graph(onnx_nodes, model_save_dir, output_shapes, dtypes, opset, extra_opset,) # create ops mapping for the desired opsets ops_mapping = handler.flow_op.CreateMapping(g.opset, g.extra_opset) # some nodes may already copied into inner Graph, so remove them from main Graph. TopologicalSort(g, continue_on_error) mapped_op, unmapped_op, exceptions = FlowOnnxMapping(g, ops_mapping) if unmapped_op: logger.error("Unsupported ops: %s", unmapped_op) if exceptions and not continue_on_error: raise exceptions[0] # onnx requires topological sorting TopologicalSort(g, continue_on_error) g.UpdateProto() logger.debug( "Summay Stats:\n" "\toneflow ops: {}\n" "\toneflow attr: {}\n" "\tonnx mapped: {}\n" "\tonnx unmapped: {}".format(op_cnt, attr_cnt, mapped_op, unmapped_op) ) return g
39413d80c0324f3a64e68c37da15be92d9800182
4b2b37d70dbc7959a340736d2b5dcf5a2d53c19f
/data/CurrencySymbols.py
18d2f1c0195755417198f6f8ff7e9e31a3f01a39
[]
no_license
brunoqs/world-cities-mongodb
de5a16fa41d31bcc32df80d90a2f06f5723a4bb1
b84ac4068d70ce613377e2dce3888e14e91886a9
refs/heads/master
2022-04-19T19:58:29.452822
2020-03-26T19:28:24
2020-03-26T19:30:32
250,352,313
0
0
null
2020-03-26T19:26:47
2020-03-26T19:26:46
null
UTF-8
Python
false
false
2,286
py
CURRENCY_SYMBOLS = { "AED": "د.إ", "AFN": "؋", "ALL": "L", "AMD": "դր.", "ANG": "ƒ", "AOA": "Kz", "ARS": "$", "AUD": "$", "AWG": "ƒ", "AZN": "m", "BAM": "KM", "BBD": "$", "BDT": "৳", "BGN": "лв", "BHD": "ب.د", "BIF": "Fr", "BMD": "$", "BND": "$", "BOB": "Bs.", "BRL": "R$", "BSD": "$", "BTN": "Nu", "BWP": "P", "BYR": "Br", "BZD": "$", "CAD": "$", "CDF": "Fr", "CHF": "Fr", "CLP": "$", "CNY": "¥", "COP": "$", "CRC": "₡", "CUP": "$", "CVE": "$, Esc", "CZK": "Kč", "DJF": "Fr", "DKK": "kr", "DOP": "$", "DZD": "د.ج", "EEK": "KR", "EGP": "£,ج.م", "ERN": "Nfk", "ETB": "Br", "EUR": "€", "FJD": "$", "FKP": "£", "GBP": "£", "GEL": "ლ", "GHS": "₵", "GIP": "£", "GMD": "D", "GNF": "Fr", "GTQ": "Q", "GYD": "$", "HKD": "$", "HNL": "L", "HRK": "kn", "HTG": "G", "HUF": "Ft", "IDR": "Rp", "ILS": "₪", "INR": "₨", "IQD": "ع.د", "IRR": "﷼", "ISK": "kr", "JMD": "$", "JOD": "د.ا", "JPY": "¥", "KES": "Sh", "KGS": "лв", "KHR": "៛", "KMF": "Fr", "KPW": "₩", "KRW": "₩", "KWD": "د.ك", "KYD": "$", "KZT": "Т", "LAK": "₭", "LBP": "ل.ل", "LKR": "ரூ", "LRD": "$", "LSL": "L", "LTL": "Lt", "LVL": "Ls", "LYD": "ل.د", "MAD": "د.م.", "MDL": "L", "MGA": "Ar", "MKD": "ден", "MMK": "K", "MNT": "₮", "MOP": "P", "MRO": "UM", "MUR": "₨", "MVR": "ރ.", "MWK": "MK", "MXN": "$", "MYR": "RM", "MZN": "MT", "NAD": "$", "NGN": "₦", "NIO": "C$", "NOK": "kr", "NPR": "₨", "NZD": "$", "OMR": "ر.ع.", "PAB": "B/.", "PEN": "S/.", "PGK": "K", "PHP": "₱", "PKR": "₨", "PLN": "zł", "PYG": "₲", "QAR": "ر.ق", "RON": "RON", "RSD": "RSD", "RUB": "р.", "RWF": "Fr", "SAR": "ر.س", "SBD": "$", "SCR": "₨", "SDG": "S$", "SEK": "kr", "SGD": "$", "SHP": "£", "SLL": "Le", "SOS": "Sh", "SRD": "$", "STD": "Db", "SYP": "£, ل.س", "SZL": "L", "THB": "฿", "TJS": "ЅМ", "TMT": "m", "TND": "د.ت", "TOP": "T$", "TRY": "₤", "TTD": "$", "TWD": "$", "TZS": "Sh", "UAH": "₴", "UGX": "Sh", "USD": "$", "UYU": "$", "UZS": "лв", "VEF": "Bs", "VND": "₫", "VUV": "Vt", "WST": "T", "XAF": "Fr", "XCD": "$", "XOF": "Fr", "XPF": "Fr", "YER": "﷼", "ZAR": "R", "ZMK": "ZK", "ZWL": "$", }
b35ec13793a4249fefe3e3d0a0d66070e12c7018
a97950354333339cefea7dee152915bbfd2207f7
/First steps in Python for the CDI course/lab0CDI_4.py
9372bf69f07de8728a8030900c03ef38576a63f7
[]
no_license
Fibernalia/CDI
92366ab1829e0d20f0e9876f4d64ec8503451998
569b91408ebf81813fc1cd507e2556ddd1e3bef4
refs/heads/master
2020-12-03T00:07:22.621629
2017-07-01T23:31:29
2017-07-01T23:31:29
95,990,286
2
0
null
null
null
null
UTF-8
Python
false
false
885
py
def decode(bstr,C): output = "" aux = "" for bit in bstr: if not aux: letter = [tupla[0] for tupla in C if tupla[1] == bit] else: letter = [tupla[0] for tupla in C if tupla[1] == aux+bit] if not letter: aux += bit else: output += str(letter).strip("'[]'") aux = "" return output def main(): bstr = '10100011011111100010011110101100101011101011100010011110010111001101111010010010110010011110000110101100111010111001111100010001011100110' C = [('a', '11100'),('d', '11101'),('e', '00'),('f', '111100'),('g', '1011'), ('j', '010'),('m', '111101'),('n', '100'),('p', '111110'),('s', '1010'), ('t', '110'),('u', '011'),('z', '111111')] decoding = decode(bstr,C) print(decoding) main() ''' setzejutgesdunjutjatmengenfetgedunpenjat '''
648af8987d7edd9ccf4f4543106244e033244c02
fe474e37f5900e90e9c98c3cc35b0f2702db848e
/algo/src-go/archive/train.py
7d4893e38d88ddc166aa3c7d90b94d2acdeed76a
[ "MIT" ]
permissive
RunanWang/somewhere
81c910ee151ac820bfd3b3f859dfbc1751c28d22
0ba93a3f5f91042b4910171dda981f6c863ee581
refs/heads/master
2023-01-13T18:03:06.810551
2020-11-14T11:10:59
2020-11-14T11:10:59
220,627,728
0
0
null
null
null
null
UTF-8
Python
false
false
4,216
py
#!/usr/bin/env python # coding: utf-8 # In[54]: import pymongo import pandas as pd myclient = pymongo.MongoClient("mongodb://182.92.196.182:27017/") mydb = myclient["kit"] rec_col = mydb["records"] item_col = mydb["items"] user_col = mydb["users"] store_col = mydb["stores"] records = rec_col.find({},{"_id":0, "query":0}) items = item_col.find() users = user_col.find() stores = store_col.find() # for item in stores: # print(item) df_rec = pd.DataFrame(list(records)) df_item = pd.DataFrame(list(items)) df_user = pd.DataFrame(list(users)) df_store = pd.DataFrame(list(stores)) # print(df_rec) # print(df_item) # print(df_user) # print(df_store) # In[55]: # print(df_rec) df_item = df_item.rename(columns={'_id':'item_id'}) df_item.set_index(['item_id'],inplace=True) # print(df_item) df_user = df_user.rename(columns={'_id':'user_id'}) df_user.set_index(['user_id'],inplace=True) df_store = df_store.rename(columns={'_id':'store_id','timestamp':'store_timestamp'}) df_store.set_index(['store_id'],inplace=True) # In[56]: df_result = df_rec.set_index(['item_id']) df_result = pd.concat([df_result, df_item], axis = 1, join='inner') df_result = df_result.reset_index() # print(df_result) df_result.set_index(['user_id'],inplace=True) # print(df_result) df_result = pd.concat([df_result, df_user], axis = 1, join='inner') df_result = df_result.reset_index() # print(df_user) # print(df_result) df_result.set_index(['store_id'],inplace=True) df_result = pd.concat([df_result, df_store], axis = 1, join='inner') df_result = df_result.reset_index() # df_result.drop(['item_id']) df_result.to_csv("./result.csv",encoding='gbk') # In[57]: header_id = [ "store_id", "user_id", "item_id" ] header_cate = [ "item_brand", "item_name", "user_gender", "store_city" ] header_cont=[ "item_price", "item_salecount", "item_score", "store_level", "item_timestamp", "store_timestamp" ] header_cont_user=[ "user_age", "user_historysum" ] header_time=[ "timestamp", "item_timestamp", "user_timestamp", "store_timestamp" ] header_label=[ "is_trade" ] df_cont = df_result[header_cont] df_cont_user = df_result[header_cont_user] df_id = df_result[header_id] df_cate = df_result[header_cate] df_time = df_result[header_time] df_label = df_result[header_label] # In[58]: from sklearn import preprocessing scaler = preprocessing.MinMaxScaler(feature_range=(0, 1)) scaled = scaler.fit_transform(df_cont) df_cont = pd.DataFrame(scaled) print(df_cont) # In[59]: df_cate = pd.get_dummies(df_cate) print(df_cate) frame = [df_cont,df_cont_user, df_cate] X = pd.concat(frame, axis=1) y = df_label # In[62]: from keras.models import Model from keras.layers import Input, Dense, Lambda, multiply from keras import backend as K from keras import regularizers import utils as utils import h5py MODEL_PATH = './mlr_model.h5' def keras_sum_layer_output_shape(input_shape): # a function calculate the shape(equal to 1 in the sum func) shape = list(input_shape) assert len(shape) == 2 shape[-1] = 1 return tuple(shape) def keras_sum_layer(x): # a function to take sum of the layers return K.sum(x, axis=1, keepdims=True) wide_m = 12 input_wide = Input(shape=(X.shape[1], )) # 第二层为LR和权重层,采用l2正则化项 wide_divide = Dense(wide_m, activation='softmax', bias_regularizer=regularizers.l2(0.01))(input_wide) wide_fit = Dense(wide_m, activation='sigmoid', bias_regularizer=regularizers.l2(0.01))(input_wide) wide_ele = multiply([wide_divide, wide_fit]) out = Lambda(keras_sum_layer, output_shape=keras_sum_layer_output_shape)(wide_ele) model = Model(inputs=input_wide, outputs=out) model.compile(optimizer='adam', loss='mean_squared_error', metrics=['accuracy']) model.fit(X, y, epochs=10, batch_size=2, callbacks=[ utils.roc_callback(training_data=[X, y], validation_data=[X, y]) ]) model.save(MODEL_PATH) # model_json = model.to_json() # with open('model.json', 'w') as file: # file.write(model_json) # model.save_weights('model.json.h5') print("训练完毕")
b2f924ba5a1716e08f73ad21a4493d819683c942
8899e36880a4e883e24df38e6f4f875696e5b3ca
/3/snake/snake_Joystick_detail.py
6e1f7c43e993f4b0449feb0da57d3bbf4f2dbabb
[]
no_license
alexliradesign/Examples
6dcf9d9bc81f0a6a5cfcc713d31a342693f6a8b4
d859dce23e30b6d52b0fe97339db177f8dbe93b9
refs/heads/master
2023-07-16T18:45:44.579076
2021-08-18T13:56:51
2021-08-18T13:56:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,693
py
from pycm import * import time import math _RATIO = 1000 m_anJoystick = [] m_nCnt_Motor = 13 class CVar: IsTorqOn = False nScreenWidth = 0 nScreenHeight = 0 nTouch_XY_X0 = 0 nTouch_XY_Y0 = 0 nTouch_Pos0 = 0 nTouch_Pos_X0 = 0 nTouch_Pos_Y0 = 0 nTouch_XY_X1 = 0 nTouch_XY_Y1 = 0 nTouch_Pos1 = 0 nTouch_Pos_X1 = 0 nTouch_Pos_Y1 = 0 nButton_0 = -1 nButton_1 = -1 nBack_Background = 0 btn0 = None btn1 = None class CTimer: nTimer = 0 IsTimer = False def __init__(self): self.nTimer = 0 self.IsTimer = 0 def Set(self): self.IsTimer = True self.nTimer = millis() def Get(self): if self.IsTimer : return millis() - self.nTimer return 0 def Destroy(self): self.IsTimer = False m_nInterval = 6 # 6 m_anIDs = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26] m_IsTorqOn = False def Rad2Deg(rad): return rad * 180.0 / math.pi def Deg2Rad(Angle): return Angle * math.pi / 180.0 def Sin(fAngle): return math.sin(Deg2Rad(fAngle)) def Cos(fAngle): return math.cos(Deg2Rad(fAngle)) def CalcS(fSlide_Angle, fTurn_Angle = 0, fTilt_Interval=3,nLine_Limit=6, nLine = 1, nCol = 0): nLine = nLine-1 fMod = ((nLine + nCol) % nLine_Limit) % fTilt_Interval fTmp = ((nLine + nCol) % nLine_Limit) // fTilt_Interval if(fMod<fTilt_Interval-2): return 0 fDir = pow(-1,((fTilt_Interval-fTmp)+1)) fResult = fDir*fSlide_Angle if (fTurn_Angle > 0) and (fDir > 0): fResult -= fTurn_Angle elif (fTurn_Angle < 0) and (fDir < 0): fResult -= fTurn_Angle return fResult def CalcT(fTilt_Angle, fTilt_Interval=3,nLine_Limit=6, nLine=1,nCol=0): nLine = nLine-1 fTmp = ((nLine + nCol) % nLine_Limit) % fTilt_Interval if(fTmp<fTilt_Interval-2): return 0 return pow(-1,(fTilt_Interval-fTmp+1))*fTilt_Angle def CalcSnake(nIndex, nTime_ms, fAngle_Turn = 0, IsBackward = False, nCnt_Motor = 13, fAngle_Head_Up = 10, fAngle_Body_Up_Down = 10, fAngle_Body_Left_Right = 70): #print(nTime_ms, fAngle_Head_Up, fAngle_Body_Up_Down, fAngle_Body_Left_Right) nLine_First = 1 nLine_Last = m_nInterval nLine_Limit = m_nInterval fTilt_Interval = m_nInterval/2 #nT = 2 nLine = 0 i = nIndex #for i in range(nLine_First, nLine_Last+1): if IsBackward == False : nLine = nLine_Last - i + 1 else : nLine = i afBody_T=[] afBody_T.append(fAngle_Head_Up) for nCol in range(0,nCnt_Motor): fTmp = CalcT(fAngle_Body_Up_Down,fTilt_Interval,nLine_Limit, nLine, nCnt_Motor-nCol) #print(fTmp) afBody_T.append(fTmp) # Head afBody_T[0] = afBody_T[0] - afBody_T[1]/2 #Tail afBody_T[len(afBody_T) - 1] = afBody_T[len(afBody_T) - 1] - afBody_T[len(afBody_T) - 2] / 2 afBody_S=[] afBody_S.append(0) for nCol in range(1,nCnt_Motor): fTmp = CalcS(fAngle_Body_Left_Right,fAngle_Turn,fTilt_Interval,nLine_Limit, nLine, nCnt_Motor-nCol) #print(fTmp) afBody_S.append(fTmp) afBody_S[0] = -afBody_S[2] afBody = [] afBody.append(nTime_ms) for nCol in range(0,nCnt_Motor): afBody.append(afBody_T[nCol]) afBody.append(afBody_S[nCol]) #print(nLine,afBody) #delay(100) return afBody # 각도를 모터에서 사용하는 Data 로 바꾸어 주는 함수(float -> int) def CalcAngle2Raw(fAngle) : if fAngle == None : fAngle = 0.0 return (int)(round(fAngle * 4096.0 / 360.0 + 2048.0)) def CalcRaw2Angle(nRaw) : if nRaw == None : nRaw = 0 return (float)(360.0 * ((nRaw - 2048.0) / 4096.0)) def Setup_Speed(nID, nValue) : DXL(nID).write32(112, nValue) # 112 : profile velocity def Writes(IDs, nAddress, values, size = 4, fPercent = 1.0): #profile 속도 조정 Setup_Speed(254, int(values[0] * fPercent)) #syncwrite etc.write8(1200,0) etc.write16(1202,nAddress) etc.write8(1204,size) nMot_First = 5 nMot_Cnt = 1 nPos = 1 for i in IDs: nID = i etc.write8(1205,nID) etc.write32(1206,CalcAngle2Raw(values[nPos])) etc.write8(1200,1) nPos = nPos + 1 etc.write8(1200,2) def Move(IDs, values, fPercent = 1.0, fPercent_Delay = 1.0) : if (fPercent_Delay == 0): fPercent_Delay = fPercent Writes(IDs, 116, values, 4, fPercent) Wait((int)(round(values[0] * fPercent_Delay))) def Wait(nMilliseconds) : tmr = CTimer() tmr.Set() while(tmr.Get() < nMilliseconds) : # if btnList != None: # #스마트폰의 터치 입력을 확인 # GetTouch_Down() # # 버튼 눌림 체크 - 터치의 소비 # nNum0, nNum1, Event_Dn0, Event_Dn1, Event_Up0, Event_Up1, Btn0, Btn1 = GetButton(btnList) CheckJoystick() #pass #delay(1) #tmr = None def TorqAll(IsOn, IsSound = None): TorqOnOff(-1, IsOn, IsSound) def TorqOnOff(nNum, IsOn, IsSound = None): if (IsOn == True) : if IsSound == True : buzzer.melody(14) if (nNum >= 0) : DXL(nNum).torque_on() else : dxlbus.torque_on() m_IsTorqOn = True else : m_IsTorqOn = False if IsSound == True : buzzer.melody(15) #모션을 바로 종료 시킴 #Motion_Play(-3) #모션이 종료됨을 기다림 #waitMotionStop() if (nNum >= 0) : DXL(nNum).torque_off() else : dxlbus.torque_off() def GetTouch_Down(): XY_X0 = 0 XY_Y0 = 0 Pos_X0 = 0 Pos_Y0 = 0 Pos0 = 0 XY_X1 = 0 XY_Y1 = 0 Pos_X1 = 0 Pos_Y1 = 0 Pos1 = 0 Tmp = smart.read64(10470) nTouch0 = Tmp[0] & 0xffffffff nTouch1 = Tmp[1] & 0xffffffff IsChanged = False if (nTouch0 > 0) : XY_X0 = nTouch0 & 0x0000FFFF XY_Y0 = (nTouch0 >> 16) & 0x0000FFFF Pos_X0 = (int)((XY_X0 / CVar.nScreenWidth) * 5 + 1) Pos_Y0 = (int)((XY_Y0 / CVar.nScreenHeight) * 5 + 1) Pos0 = Pos_X0 + (Pos_Y0 - 1) * 5 XY_X0 = (int)(XY_X0 * _RATIO / CVar.nScreenWidth) XY_Y0 = (int)(XY_Y0 * _RATIO / CVar.nScreenHeight) if (nTouch1 > 0) : XY_X1 = nTouch1 & 0x0000FFFF XY_Y1 = (nTouch1 >> 16) & 0x0000FFFF Pos_X1 = (int)((XY_X1 / CVar.nScreenWidth) * 5 + 1) Pos_Y1 = (int)((XY_Y1 / CVar.nScreenHeight) * 5 + 1) Pos1 = Pos_X1 + (Pos_Y1 - 1) * 5 XY_X1 = (int)(XY_X1 * _RATIO / CVar.nScreenWidth) XY_Y1 = (int)(XY_Y1 * _RATIO / CVar.nScreenHeight) CVar.nTouch_Pos0 = Pos0 CVar.nTouch_Pos_X0 = Pos_X0 CVar.nTouch_Pos_Y0 = Pos_Y0 CVar.nTouch_XY_X0 = XY_X0 CVar.nTouch_XY_Y0 = XY_Y0 CVar.nTouch_Pos1 = Pos1 CVar.nTouch_Pos_X1 = Pos_X1 CVar.nTouch_Pos_Y1 = Pos_Y1 CVar.nTouch_XY_X1 = XY_X1 CVar.nTouch_XY_Y1 = XY_Y1 else : CVar.nTouch_Pos0 = 0 CVar.nTouch_Pos_X0 = 0 CVar.nTouch_Pos_Y0 = 0 CVar.nTouch_XY_X0 = 0 CVar.nTouch_XY_Y0 = 0 CVar.nTouch_Pos1 = 0 CVar.nTouch_Pos_X1 = 0 CVar.nTouch_Pos_Y1 = 0 CVar.nTouch_XY_X1 = 0 CVar.nTouch_XY_Y1 = 0 def GetResolution(): for i in range(0, 100): screen = smart.read32(10460) CVar.nScreenWidth = screen & 0x0000FFFF CVar.nScreenHeight = (screen & 0xFFFF0000) >> 16 if CVar.nScreenWidth > 0 and CVar.nScreenWidth < 65535 and CVar.nScreenHeight > 0 and CVar.nScreenHeight < 65535: break def Show_Background(nValue): if (nValue != CVar.nBack_Background): smart.display.back_image(nValue) CVar.nBack_Background = nValue def rotate(aMotion, nCnt, nStart = 0, nEnd = 0): if not aMotion: return aMotion nCnt %= len(aMotion) if not nCnt: return aMotion left = aMotion[nStart:-nCnt] if nEnd <= nStart: nEnd = len(aMotion) right = aMotion[-nCnt:nEnd] return right + left def CheckJoystick(): global m_anJoystick n1 = etc.read16(61) # 데이터 #n3 = etc.read8(63) # 도착했는지 확인 nVal1 = n1 & 0xff nVal2 = n1 >> 8 & 0xff #print("nVal2={0}".format(nVal2)) if (nVal2 > 0): if (nVal1 < len(m_anJoystick)): m_anJoystick[nVal1] = ((nVal2 - 120) / 128) ################################################################ ################################################################ ################################################################ console(USB) #console(BLE) # 토크를 Off 하고 액츄에이터의 설정 및 컨트롤러의 설정을 로봇에 맞게 수정한다. TorqAll(False) # controller direction : 0-vertical(Humanoid), 1-Horizontal eeprom.imu_type(1) # profile -> velocity-based #DXL(254).write8(10, 4) # 0 -> velocity-based profile, 4 -> time-based profile # Secondary ID(255: No Use, 0 ~ 252: ID) #DXL(254).write8(12, 255) # 255 -> No Use(Clear) # Operation Mode(1:velocity[wheel], 3:position) #DXL(254).mode(3) # position # 토크를 Off 하고 액츄에이터의 설정을 모두 Time-based profile 로 변경한다. #TorqAll(False) #DXL(254).write8(10, 4) # 0 -> velocity-based profile, 4 -> time-based profile # Flysky Controller 를 위한 UART Setting etc.write8(43,1) # 0 : BLE, 1 : UArt, 2 : USB etc.write8(88,0) # 0 : False, 1 : 저전압일때 경고음 TorqAll(True) for i in range(0, 6): m_anJoystick.append(0) # for j in range(1, 5): # for i in range(1, m_nInterval+1): # #print(CalcSnake(i, 1000)) # Move(m_anIDs, CalcSnake(i, 300, -40), 1.0, 0.9) # #Move(m_anIDs, [1000, 0, -85, -65, 30]) nMotionIndex = 0 aData = [] aMotion = [] anIDs = [] IsPhone = False IsJoystick = True m_nSpeed = 300 m_fTurn = 0 # m_lstMotion = [m_nInterval] # m_lstMotion.clear() IsFirst = True IsChanging = False # 0: Normal, 1: gradually m_nControlMode = 1 aMotion.append(m_nSpeed) for i in range(0, 26): nRaw = 0 nRaw = DXL(i + 1).present_position() aMotion.append(CalcRaw2Angle(nRaw)) while(True) : if (IsPhone == False) and (IsJoystick == False) : if (smart.is_connected() == True): smart.wait_connected() smart.display.screen_orientation(2) delay(500) GetResolution() Show_Background(1) IsPhone = True else : IsMove = False m_fTurn = 0 if (IsJoystick == False): GetTouch_Down() if (CVar.nTouch_Pos_X0 > 0) or (IsJoystick == True): fTurn_Value = 70 if (IsJoystick == False): if (CVar.nTouch_Pos_X0 == 2) and (CVar.nTouch_Pos_Y0 == 3): # 전진 IsMove = True m_fTurn = 0 nMotionIndex = (nMotionIndex + 1) % m_nInterval elif (CVar.nTouch_Pos_X0 == 1) and (CVar.nTouch_Pos_Y0 == 3): # 전진 좌 IsMove = True m_fTurn = -fTurn_Value nMotionIndex = (nMotionIndex + 1) % m_nInterval elif (CVar.nTouch_Pos_X0 == 3) and (CVar.nTouch_Pos_Y0 == 3): # 전진 우 IsMove = True m_fTurn = fTurn_Value nMotionIndex = (nMotionIndex + 1) % m_nInterval elif (CVar.nTouch_Pos_X0 == 2) and (CVar.nTouch_Pos_Y0 == 5): # 후진 IsMove = True m_fTurn = 0 nMotionIndex = (nMotionIndex - 1) elif (CVar.nTouch_Pos_X0 == 1) and (CVar.nTouch_Pos_Y0 == 5): # 후진 좌 IsMove = True m_fTurn = -fTurn_Value nMotionIndex = (nMotionIndex - 1) elif (CVar.nTouch_Pos_X0 == 3) and (CVar.nTouch_Pos_Y0 == 5): # 후진 우 IsMove = True m_fTurn = fTurn_Value nMotionIndex = (nMotionIndex - 1) nKey_F = 1 #2 nKey_W = 0 #3 nKey_F2 = 2 nKey_W2 = 3 nKey_Rot_L = 4 nKey_Rot_R = 5 fAngle_Head_Up = 10 fAngle_Body_Up_Down = 10 fAngle_Body_Left_Right = 70 IsForward = True n1 = etc.read16(61) # 데이터 #n3 = etc.read8(63) # 도착했는지 확인 nVal1 = n1 & 0xff nVal2 = n1 >> 8 & 0xff #print("nVal2={0}".format(nVal2)) if (nVal2 > 0): if (nVal1 < len(m_anJoystick)): m_anJoystick[nVal1] = ((nVal2 - 120) / 128) fW = (m_anJoystick[nKey_W] - 0.5) if (fW < 0.1) and (fW > -0.1): fW = 0.0 if (m_anJoystick[nKey_F] > 0.9): #전진 IsMove = True IsForward = True nMotionIndex = (nMotionIndex + 1) % m_nInterval m_fTurn = fTurn_Value * fW # aMotion.append(aMotion.pop(3)) # aMotion.append(aMotion.pop(3)) elif (m_anJoystick[nKey_F] < 0.1): IsMove = True IsForward = False nMotionIndex = (nMotionIndex - 1) m_fTurn = fTurn_Value * fW # aMotion.insert(3, aMotion.pop()) # aMotion.insert(3, aMotion.pop()) if nMotionIndex < 0: nMotionIndex = m_nInterval - 1 #print(m_anJoystick) if (IsMove == True): aData = CalcSnake(nMotionIndex + 1, m_nSpeed + 700 * (1.0 - m_anJoystick[nKey_Rot_L]), m_fTurn, False, m_nCnt_Motor, fAngle_Head_Up + 20 * (m_anJoystick[nKey_W2] - 0.5), fAngle_Body_Up_Down + 20 * m_anJoystick[nKey_Rot_R], fAngle_Body_Left_Right - 40 * (1.0 - m_anJoystick[nKey_F2])) nCheckSpecialValue = m_anJoystick[0] + m_anJoystick[1] + m_anJoystick[2] + m_anJoystick[3] + m_anJoystick[4] + m_anJoystick[5] #print(nCheckSpecialValue) if (nCheckSpecialValue < 0.3) : if (IsChanging == False): #print(nCheckSpecialValue) # 0: Normal, 1: gradually if (m_nControlMode == 0): m_nControlMode = 1 buzzer.melody(14) dxlbus.reboot() buzzer.melody(1) delay(1500) TorqAll(True) else: m_nControlMode = 0 buzzer.melody(15) dxlbus.reboot() buzzer.melody(1) delay(1500) TorqAll(True) IsChanging = True else: IsChanging = False if (m_nControlMode == 0): aMotion = aData[:] else: if IsFirst == True: IsFirst = False aMotion = aData[:] if (IsForward == True): aMotion.append(aMotion.pop(3)) aMotion.append(aMotion.pop(3)) else: aMotion.insert(1, aMotion.pop()) aMotion.insert(1, aMotion.pop()) aMotion[0] = aData[0] # Time aMotion[1] = aData[1] # Head Up aMotion[2] = aData[2] # Head Dir aMotion[3] = aData[3] # T[0] aMotion[4] = aData[4] # S[0] # aMotion[25] = 0 # aTmp = aMotion[:] # aTmp[25] = 0 Move(m_anIDs, aMotion, 1.0, 0.8) # Move(m_anIDs, aTmp, 1.0, 0.8) # Move(m_anIDs, aData, 1.0, 0.8)
21c757132b5efe4d0f056e1b1c85ed1f16fb2d31
55f5e9c2b9c380f96df08fbc84bd22f62a1b5e1e
/test/test_del_project.py
535c23be5c330c0b09b60882dce4cf5a60aaaf3c
[]
no_license
Pav4l/python_training_mantis
253796d9e0fd093c6ff126c30ee1527273e02ef2
854c6316602d708e38aeba6703678022011b6736
refs/heads/main
2023-02-08T11:30:21.814222
2020-12-28T21:37:13
2020-12-28T21:37:13
324,232,007
0
0
null
null
null
null
UTF-8
Python
false
false
791
py
from model.project import Project import random import time def test_delete_project(app, db): app.session.login(username="administrator", password="root") if len(db.get_project_list()) == 0: app.project.create_new_project( Project(name="project_new", description="description_of_project", status="development", view_state="public")) old_project_list = db.get_project_list() project_delete = random.choice(old_project_list) app.project.delete_project_by_name(project_delete.name) new_project_list = db.get_project_list() app.session.logout() old_project_list.remove(project_delete) assert old_project_list == new_project_list assert sorted(old_project_list, key=Project.id_or_max) == sorted(new_project_list, key=Project.id_or_max)
022a339815b4954a268433d73ec778c395697598
91d550f23c8716eb06171f41f2fd54d3e2d17a04
/TODO/TODO/urls.py
75325eecc7589786bd31fb38b63530acaaef9d7b
[]
no_license
johannesWestenhoeferGit/scalors-assignment-backend-todo
b5c5470b6d9112452f1a82732ee946f1108e1df9
362d974430f85e52086d79fc4220290c751a1c08
refs/heads/master
2020-04-07T10:51:13.982057
2018-11-19T23:24:20
2018-11-19T23:24:20
158,300,412
0
0
null
null
null
null
UTF-8
Python
false
false
1,124
py
"""TODO URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from rest_framework import routers from TODOapp import views router = routers.DefaultRouter() router.register( r'boards', views.BoardViewSet ) router.register( r'todos', views.TodoViewSet ) urlpatterns = [ path( 'admin/', admin.site.urls ), path( '', include('TODOapp.urls') ), # handle other access in our urls.py in TODOapp path( 'api-auth/', include('rest_framework.urls', namespace = 'rest_framework') ), ]
8b96e9d557d751f2c9526a8cb1b5538429eb1fd4
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_320/ch27_2019_08_25_20_47_12_525740.py
c391f466c3525e388a6b3bf0875801b34bc00de8
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
195
py
pigas = int(input('Quantos cigarros você fuma por dia: ')) anos = int(input('A quantos anos você fuma: ')) * 365 roubo = pigas * anos dia = 24 * 60 roubo = roubo * (10/dia) print(round(roubo))