blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
ea663b6b22d93520cc62ae3f93baa2a72b489749
360666ec687b8793a9560c086158877132a8bb95
/en685.621/pa2/iris_ml.py
f0710481f4831a865cdd72183d2ed90cfc214f45
[]
no_license
jakesciotto/jhu
d0c4f645876c030976db5b6f92613531ec741f13
8e528fc0804b837450b2e4cd5a4b4d4195249629
refs/heads/master
2023-05-11T10:21:05.948081
2023-05-01T18:22:54
2023-05-01T18:22:54
291,558,789
0
2
null
null
null
null
UTF-8
Python
false
false
12,912
py
# ----------------------------------------------------------- # iris_ml.py # # Jake Sciotto # EN685.621 Algorithms for Data Science # Johns Hopkins University # Summer 2020 # ----------------------------------------------------------- from sklearn.datasets import load_iris from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.mixture import GaussianMixture from sklearn.neural_network import MLPClassifier from sklearn.model_selection import train_test_split from sklearn.linear_model import Perceptron from sklearn.metrics import accuracy_score from sklearn import svm import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import numpy as np import sys import util # ------------------------------------------------------------- # Data Cleansing # ------------------------------------------------------------- dataset = pd.read_csv("input/iris_6_features_for_cleansing.csv") dataset.columns = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'feature-5', 'feature-6', 'class'] target_names = ['setosa', 'versicolor', 'virginica'] # check for null values blanks = util.find_blanks(dataset) rows, cols = dataset.shape[0], dataset.shape[1] # filling the blanks with the median for the time being for i in range(0, cols): dataset.iloc[:, i].fillna((dataset.iloc[:, i].median()), inplace=True) # initial visualization plt.figure(0) plt.title("Initial visualization") scatter = plt.scatter(dataset.iloc[:, 0], dataset.iloc[:, 1], c = dataset['class'], cmap = plt.cm.Set1, edgecolor = 'k') plt.legend(*scatter.legend_elements(), loc="best", title="Class") plt.xlabel('Sepal length') plt.ylabel('Sepal width') f = open("output/output.txt", "w") # ------------------------------------------------------------- # Feature Generation # ------------------------------------------------------------- # picking top two features [petal-length], [petal-width] (from pa1) to generate from X = dataset.iloc[:, 2:4] # separate classes setosa = X[dataset['class'] == 1] versi = X[dataset['class'] == 2] virgi = X[dataset['class'] == 3] # new lists for stats data setosa_mean, versi_mean, virgi_mean, setosa_std, versi_std, virgi_std, setosa_cov, versi_cov, virgi_cov = ([] for i in range(9)) # mean for i in range(0, 2): setosa_mean.append(round(np.mean(setosa.iloc[:, i]), 4)) versi_mean.append(round(np.mean(versi.iloc[:, i]), 4)) virgi_mean.append(round(np.mean(virgi.iloc[:, i]), 4)) # standard deviation for i in range(0, 2): setosa_std.append(round(np.std(setosa.iloc[:, i], ddof=1), 4)) versi_std.append(round(np.std(versi.iloc[:, i], ddof=1), 4)) virgi_std.append(round(np.std(virgi.iloc[:, i], ddof=1), 4)) # covariance setosa_cov = setosa.iloc[:, 0:2].cov() versi_cov = versi.iloc[:, 0:2].cov() virgi_cov = virgi.iloc[:, 0:2].cov() # generate additional observations new_setosa = pd.DataFrame(np.random.random_sample((50, 2))) new_versi = pd.DataFrame(np.random.random_sample((50, 2))) new_virgi = pd.DataFrame(np.random.random_sample((50, 2))) # generate new lists for std and mean of new values new_setosa_mean, new_setosa_std, new_versi_mean, new_versi_std, new_virgi_mean, new_virgi_std = ([] for i in range (6)) # copy setosa_scaled = new_setosa.copy() versi_scaled = new_versi.copy() virgi_scaled = new_virgi.copy() # find new means for i in range(0, 2): new_setosa_mean.append(np.mean(new_setosa.iloc[:, i])) new_versi_mean.append(np.mean(new_versi.iloc[:, i])) new_virgi_mean.append(np.mean(new_virgi.iloc[:, i])) # find new stds for i in range(0, 2): new_setosa_std.append(np.std(new_setosa.iloc[:, i], ddof=1)) new_versi_std.append(np.std(new_versi.iloc[:, i], ddof=1)) new_virgi_std.append(np.std(new_virgi.iloc[:, i], ddof=1)) # z-score normalization for i in range(0, 50): for j in range(0, 2): setosa_scaled.iloc[i, j] = (setosa_scaled.iloc[i, j] - new_setosa_mean[j]) / new_setosa_std[j] versi_scaled.iloc[i, j] = (versi_scaled.iloc[i, j] - new_versi_mean[j]) / new_versi_std[j] virgi_scaled.iloc[i, j] = (virgi_scaled.iloc[i, j] - new_virgi_mean[j]) / new_virgi_std[j] # multiply by the covariance setosa_scaled = setosa_scaled.dot(setosa_cov.values) versi_scaled = versi_scaled.dot(versi_cov.values) virgi_scaled = virgi_scaled.dot(virgi_cov.values) # add back the mean of the original data to scale data correctly for i in range(0, 50): for j in range(0, 2): setosa_scaled.iloc[i, j] = setosa_scaled.iloc[i, j] + setosa_mean[j] versi_scaled.iloc[i, j] = versi_scaled.iloc[i, j] + versi_mean[j] virgi_scaled.iloc[i, j] = virgi_scaled.iloc[i, j] + virgi_mean[j] # look at the generated features frames = [setosa_scaled, versi_scaled, virgi_scaled] result = pd.concat(frames).reset_index(drop = True) plt.figure(1) plt.title("Newly generated feature") scatter1 = plt.scatter(versi['petal-length'], versi['petal-width'], c='r') scatter2 = plt.scatter(versi_scaled.iloc[:, 0], versi_scaled.iloc[:, 1], c='b') plt.legend(['Old feature', 'New feature'], loc="best", title="Class") plt.xlabel('Petal Length') plt.ylabel('Petal Width') # insert new features into dataframe dataset.insert(6, 'feature-7', result[0]) dataset.insert(7, 'feature-8', result[1]) # ------------------------------------------------------------- # Feature Preprocessing / Outlier Removal # ------------------------------------------------------------- # visualization with box plot to see outliers plt.figure(2) plt.title("Boxplot showing outliers") dataset.boxplot() plt.xticks(rotation = 45) Q1 = dataset.quantile(.25) Q3 = dataset.quantile(.75) IQR = Q3 - Q1 """ This section is commeted out, but it was to explore changing out the outliers and seeing where they were located. I found that there were really only visible outliers in the sepal width class and I decided to move forward without removing them. I think they're a principal part of the dataset. There is even some speculation that they were generated by a different process before being added to the dataset. #print(dataset < (Q1 - 1.5 * IQR)) or (dataset > (Q3 + 1.5 * IQR)) median = dataset['sepal-width'].median() # replace the outliers with the median #dataset['sepal-width'] = np.where(dataset['sepal-width'] <= dataset['sepal-width'].quantile(.05), median, dataset['sepal-width']) #dataset['sepal-width'] = np.where(dataset['sepal-width'] >= dataset['sepal-width'].quantile(.95), median, dataset['sepal-width']) #print(dataset < (Q1 - 1.5 * IQR)) or (dataset > (Q3 + 1.5 * IQR)) #plt.subplot(1, 2, 2) #plt.title("After removing outliers") #dataset.boxplot() #plt.xticks(rotation = 45) """ # ------------------------------------------------------------- # Feature Ranking # ------------------------------------------------------------- array = dataset.values names = dataset.columns[0:8] features = array.shape[1] - 1 # separate data by features and class label X = array[:, 0:8] Y = array[:, 8] # comparing first two classes feature_selection = [1, 2] # distances bh_dist = [0] * features # find bhattacharyya distances of features and add result to bh_dist array for i, name in enumerate(names): X1 = np.array(X[:, i], dtype = np.float64)[Y == feature_selection[0]] X2 = np.array(X[:, i], dtype = np.float64)[Y == feature_selection[1]] bh_dist[i] = util.bhatta_cont(X1, X2) # show distances f.write("Feature ranking\n") f.write(util.LINE) for n, d in sorted(zip(names, bh_dist), key = lambda x: x[1], reverse = True): distance = str("Bhattacharyya distance for: ") + str(n) + " " + str(d) + "\n" f.write(distance) # ------------------------------------------------------------- # Principal Component Analysis # ------------------------------------------------------------- x = dataset.loc[:, names].values # data has to be scaled x = StandardScaler().fit_transform(x) pca = PCA(n_components = 2) principal_components = pca.fit_transform(x) principal_df = pd.DataFrame(data = principal_components, columns = ['principal-component-1', 'principal-component-2']) final_df = pd.concat([principal_df, dataset[['class']]], axis = 1) plt.figure(4) plt.xlabel('Principal Component 1') plt.ylabel('Principal Component 2') plt.title('2 component PCA') targets = [1, 2, 3] colors = ['r', 'g', 'b'] for target, color in zip(targets,colors): indicesToKeep = final_df['class'] == target plt.scatter(final_df.loc[indicesToKeep, 'principal-component-1'], final_df.loc[indicesToKeep, 'principal-component-2'], c = color, s = 50) plt.legend(targets, loc = 'best') # ------------------------------------------------------------- # Machine Learning Techniques # ------------------------------------------------------------- f.write("Machine learning techniques:\n") f.write(util.LINE) ################################################ # Expectation maximization ################################################ gmm = GaussianMixture(n_components = 3) X = dataset.iloc[:, :2] gmm.fit(X) labels = gmm.predict(X) # split up new dataframe by labels X['labels'] = labels d0 = X[X['labels'] == 0] d1 = X[X['labels'] == 1] d2 = X[X['labels'] == 2] preds = pd.concat([d0, d1, d2]).reset_index() preds['labels'] = preds['labels'] + 1 # count how many correct predictions we have correct_preds = np.where(dataset['class'] == preds['labels'], True, False) accuracy = np.count_nonzero(correct_preds) / 150 # plot plt.figure(5) plt.title("Expectation maximization") plt.scatter(d0.iloc[:, 0], d0.iloc[:, 1], edgecolors ='r', facecolors = "none", marker = "o") plt.scatter(d1.iloc[:, 0], d1.iloc[:, 1], edgecolors ='b', facecolors = "none", marker = "o") plt.scatter(d2.iloc[:, 0], d2.iloc[:, 1], edgecolors ='g', facecolors = "none", marker = "o") plt.scatter(X.iloc[0:50, 0], X.iloc[0:50, 1], c = 'r', marker = "x") plt.scatter(X.iloc[50:100, 0], X.iloc[50:100, 1], c = 'b', marker = "x") plt.scatter(X.iloc[100:150, 0], X.iloc[100:150, 1], c = 'g', marker = "x") f.write("\nMeans for EM:\n") f.write(str(gmm.means_)) f.write("\nLower bound for EM:\n") f.write(str(gmm.lower_bound_)) f.write("\nIterations to convergence:\n") f.write(str(gmm.n_iter_) + "\n") f.write("\nNumber of correct predictions\n") f.write(str(accuracy)) ################################################ # Linear Discriminant Analysis ################################################ X = dataset.iloc[:, 0:7] y = dataset.iloc[:, 8] lda = LinearDiscriminantAnalysis(n_components = 2) X_r = lda.fit(X, y).transform(X) # plot colors = ['navy', 'turquoise', 'darkorange'] plt.figure(6) plt.title('LDA of IRIS dataset') for color, i, target_name in zip(colors, [1, 2, 3], target_names): plt.scatter(X_r[y == i, 0], X_r[y == i, 1], alpha = .8, color = color, label = target_name) plt.legend(loc = 'best', shadow = False, scatterpoints = 1) ################################################ # MLPClassifier ################################################ # training and testing X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42) # try the perceptron first per = Perceptron(random_state = 1, max_iter = 30, tol = 0.001) per.fit(X_train, y_train) yhat_train_per = per.predict(X_train) yhat_test_per = per.predict(X_test) f.write("\nPerceptron prediction\n") f.write(util.LINE) f.write(str(accuracy_score(y_train, yhat_train_per)) + "\n") f.write(str(accuracy_score(y_test, yhat_test_per)) + "\n") """ Parameter choices: - 50 iterations - Stochastic gradient descent solver with a .1 learning rate, SGD converges well and we do not want to end up on the other side of the function - Activation function tanh converges well even on large datasets Hidden layers not used but can be specifed by: N_h = N_s / (alpha * (N_i + N_o) N_s = amount of samples in training data N_i = input layer neurons (features) N_o = output layer neurons alpha = scaling constant """ mlp = MLPClassifier(max_iter = 50, alpha = 1e-5, solver = 'sgd', verbose = 10, random_state = 1, learning_rate_init = .1, activation = 'tanh') mlp.fit(X_train, y_train) yhat_train_mlp = mlp.predict(X_train) yhat_test_mlp = mlp.predict(X_test) f.write("\nMLPClassifier\n") f.write(util.LINE) f.write(str(accuracy_score(y_train, yhat_train_mlp)) + "\n") f.write(str(accuracy_score(y_test, yhat_test_mlp)) + "\n") ################################################ # SVM ################################################ X = dataset.iloc[:, 0:2] y = dataset.iloc[:, 8] h = 0.02 # linear kernel model = svm.SVC(kernel = 'linear', C = 1.0).fit(X, y) x_min, x_max = X.iloc[:, 0].min() - 1, X.iloc[:, 0].max() + 1 y_min, y_max = X.iloc[:, 1].min() - 1, X.iloc[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # color plot plt.figure(7) plt.contour(xx, yy, Z) plt.scatter(X.iloc[:, 0], X.iloc[:, 1], c = y, edgecolors = 'k') plt.show()
ea02035d22a3e269d1369ed02fed370f7ef870cc
25aac706af2a67be7025fce81255f17c2b285f8e
/tersersemestre_vectores/vectores.py
f56f913be2a53ffdd7136465cc8df3ff1c1bf493
[]
no_license
orlandoacosta99/python
dc3fab8cb5b387de477345e9bdf5158e98f14a92
6080c71f0886e704efdf7fca6b673c586ecc9343
refs/heads/master
2020-04-24T10:13:15.748546
2019-05-28T15:55:23
2019-05-28T15:55:23
171,886,071
1
0
null
null
null
null
UTF-8
Python
false
false
6,103
py
import math import statistics def producto_escalar(escalar, vector): """ >>> producto_escalar(2, [1, 2, 3]) [2, 4, 6] >>> producto_escalar(5,[2, 5, 1]) [10, 25, 5] >>> producto_escalar(2, [2, 1]) [4, 2] :param escalar: dato que multiplicara al vector :param vector: datos a los cuales seran multiplicados :return: retorna una lista a la cual hemos hecho el cambio """ res = [] cont = 0 while cont < len(vector): res.append(escalar * vector[cont]) cont += 1 return res def producto_escalar(escalar, vector): """ (num, vector) -> vector >>> producto_escalar(2, [2, 1]) [4, 2] >>> producto_escalar(2, [1, 2, 3]) [2, 4, 6] >>> producto_escalar(5,[2, 5, 1]) [10, 25, 5] :param escalar: dato que multiplicara al vector :param vector: datos a los cuales seran multiplicados :return: retorna una lista a la cual hemos hecho el cambio """ res = [] cont = 0 for i in vector: res.append(vector[cont] * escalar) cont += 1 return res def suma_productos(nvector1, nvector2): """ (vector, vector) -> vector >>> suma_productos([1, 2, 3], [2, 1, 3]) [3, 3, 6] >>> suma_productos([4, 7, 1], [8, 5, 2]) [12, 12, 3] >>> suma_productos([2, 4, 2], [3, 2, 8]) [5, 6, 10] :param nvector1: ingresamos el primer vector para ser sumado :param nvector2: ingreso del segundo vector :return: se retornara un vector suma de los dos vectores anteriores """ resultado = [] contador = 0 while(contador < len(nvector1)): resultado.append(nvector1[contador] + nvector2[contador]) contador += 1 return resultado def producto_puntos (nvector1, nvector2): """ (vector, vector) -> vector >>> producto_puntos([1, 2, 3],[2, 1, 3]) 13 >>> producto_puntos([1, 2, -3], [-2, 4, 1]) 3 >>> producto_puntos([2, 1, 2], [2, 4, 1]) 10 :param nvector1: vector un el cual va ha ser multiplicado :param nvector2: vector dos el cual va ha ser multiplicado :return: se retornara la sumatoria total de los dos vectores multiplicados """ resultado = [] contador = 0 while (contador < len(nvector1)): resultado.append(nvector1[contador] * nvector2[contador]) contador += 1 Suma = 0 for i in resultado: Suma = Suma + i return Suma def elemento_mayor(nvector): """ (vector) -> num >>> elemento_mayor([1, 2, 4, 2, 3]) 4 >>> elemento_mayor([8, 5, 2]) 8 >>> elemento_mayor([9, 6, 3, 12]) 12 :param nvector: ingresamos un vector el cual va ser recorrido :return: retornamos el elemento mayor del vector """ cont = 0 for num in nvector: if num > cont: cont = num return cont def elemento_menor(nvector): """ (vector) -> num >>> elemento_menor([2, 4, 6, 7, 5]) 2 >>> elemento_menor([1, 2, 5, 1, 6]) 1 >>> elemento_menor([21, 42, 2, 12, 5]) 2 :param nvector: ingresamos un vector el cual va ser recorrido :return: retornamos el elemento menor del vector """ return min(nvector) def prom(nvector): """ (vector) -> num >>> prom([1, 2, 4, 2, 1, 2]) 2.0 >>> prom([2, 1, 3, 5, 6, 2]) 3.1666666666666665 >>> prom([2, 2, 2, 1, 5, 5, 6]) 3.2857142857142856 :param nvector: ingresamos un vector el cual sumamos :return: retornamos el resultado de la divicion """ resultado = [] contador = 0 while (contador < len(nvector)): resultado.append(nvector[contador]) contador += 1 Suma = 0 for i in resultado: Suma = Suma + i resultado_promedio= Suma/len(resultado) return resultado_promedio def desviacion_est(nvector): """ (vector) -> num >>> desviacion_est([2, 34, 3, 2 , 1, 4]) 12.940891262454324 >>> desviacion_est([2, 4, 5, 6, 8, 1, 2]) 2.516611478423583 >>> desviacion_est([3, 5, 6, 8, 1, 3]) 2.503331114069145 :param nvector: :return: """ return statistics.stdev(nvector) def elemento_igual(nvector): """ (vector) -> vector >>> elemento_igual([2, 5, 6, 7, 8]) 'no hay elementos repetidos' >>> elemento_igual([1, 2, 1, 5, 2, 1]) [1, 2] >>> elemento_igual([2, 1, 3, 3, 2]) [3, 2] :param nvector: ingresamos un vector :return: retornamos si el vector tiene elementos iguales o un str """ repetido = [] unico = [] for i in nvector: if i not in unico: unico.append(i) resultado=('no hay elementos repetidos') else: if i not in repetido: repetido.append(i) resultado = repetido return resultado def Norma_vec(nvector): """ (vector) -> num >>> Norma_vec([2, 4, 1, 5]) 6.782329983125268 >>> Norma_vec([2, 3, 2, 1]) 4.242640687119285 >>> Norma_vec([1, -3, 5, 2, 2]) 6.557438524302 :param nvector: ingresamos un vector el cual recorremos y sumamos :return: retornamos la factorizacion del vector """ añadido = [] contador = 0 while (contador < len(nvector)): añadido.append((nvector[contador])**2 ) contador += 1 Suma = 0 for i in añadido: Suma = Suma + i resultado_norma = math.sqrt(Suma) return resultado_norma def Moda_vec(nvector): """ (vector) -> vector >>> Moda_vec([1, 2, 5, 2, 1, 3, 1]) [1] >>> Moda_vec([2, 1, 2, 2, 5, 3, 3, 1]) [2] >>> Moda_vec([1, 2, 3, 4, 5, 2, 4, 3]) [2, 3, 4] :param nvector: ingresamos un vector el cual recoremos y pasamos los datos repetidos a countador :return: retornamos los datos que mas aparecen en el vector """ repeticiones = 0 for i in nvector: cont = nvector.count(i) if cont > repeticiones: repeticiones = cont modas = [] for i in nvector: cont = nvector.count(i) if cont == repeticiones and i not in modas: modas.append(i) return modas
530165d7b4ab11307df52f704542b8c2645200ab
d346c1e694e376c303f1b55808d90429a1ad3c3a
/easy/171.title_to_number.py
286464e4ead7a4e9d3260afe5591ae0245f05c03
[]
no_license
littleliona/leetcode
3d06bc27c0ef59b863a2119cd5222dc94ed57b56
789d8d5c9cfd90b872be4a4c35a34a766d95f282
refs/heads/master
2021-01-19T11:52:11.938391
2018-02-19T03:01:47
2018-02-19T03:01:47
88,000,832
0
0
null
null
null
null
UTF-8
Python
false
false
679
py
import string from functools import reduce class Solution(object): def titleToNumber(self, s): """ :type s: str :rtype: int """ #mine dict_ = list(string.ascii_uppercase) sum_ = 0 i = 1 for s_ in s: sum_ += (dict_.index(s_)+1) * 26 ** (len(s)-i) i+=1 return sum_ #easy_1 s = s[::-1] sum = 0 for exp, char in enumerate(s): sum += (ord(char) - 65 + 1) * (26 ** exp) return sum #easy_2 return reduce(lambda x,y:x*26+y,map(lambda x:ord(x)-ord('A')+1,s)) s = Solution() a = s.titleToNumber('AAB') print(a)
58ef573df239bbd37fb7eed6e14709be9c093eab
8d8e19a371e32417e460e822e19dca1164d8b19d
/tango_with_django_project/tango_with_django_project/settings.py
796f22db32c3ed64c514d78aa5df1228d36b5c73
[]
no_license
JCassiere/tango-django-rango
9291327881567188a6ebb4320fb5fe379164bc0d
ddb02c7d23450828230bd15e87ac004cf336e8f7
refs/heads/master
2021-01-11T16:00:37.657121
2017-03-24T00:54:13
2017-03-24T00:54:13
79,980,944
0
0
null
null
null
null
UTF-8
Python
false
false
3,463
py
""" Django settings for tango_with_django_project project. Generated by 'django-admin startproject' using Django 1.10.5. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) TEMPLATE_DIR = os.path.join(BASE_DIR, 'templates') STATIC_DIR = os.path.join(BASE_DIR, 'static') MEDIA_DIR = os.path.join(BASE_DIR, 'media') # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'u4p-@&vd#ux%4+=7fq!jwfx9pvidw!3_tw^k5w@p#$%h9k7+a3' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rango', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'tango_with_django_project.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [TEMPLATE_DIR, ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'django.template.context_processors.media', ], }, }, ] WSGI_APPLICATION = 'tango_with_django_project.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [STATIC_DIR, ] # Media files MEDIA_ROOT = MEDIA_DIR MEDIA_URL = '/media/'
484129dd68d44c1571c8e745f00a48b2ff2d626a
2da85bac6fef09678cf4fac2bab7c3d59c0e8f32
/juego.py
b03ef08df18479b0b5b5b1e64982bf6ba01b4c36
[]
no_license
TheMindBreaker/PyFinal
dc197f4e12bf2ce8e3b90288489f85bced805464
bda54f7d5e8cfd155c3992e2157384e203641f0b
refs/heads/master
2020-03-09T12:24:05.274261
2018-04-09T14:32:11
2018-04-09T14:32:11
128,784,981
0
0
null
null
null
null
UTF-8
Python
false
false
1,754
py
#Okol & Developingo import mono from random import choice lista_palabras = { 'cpu': 'Unidad central de procesamiento', 'sqli':'Es un error que te permite ejecutar consultas a la base de datos', 'php':'lenguaje de programacion para crear webs dinamicas', 'ruby on rails':'framework web de ruby', 'perl':'papa de PHP', 'django':'framework web de python', 'print':'funcion para imprimir en pantalla en casi cualquier lenguaje de scripting' } print (""" Vamos a jugar ahorcado!! Listo? """) raw_input('Enter para comenzar!') palabra = choice(lista_palabras.keys()) intentos_lista = ['_']*len(palabra) intentos_malos = 0 primer_juego = True while True: s = '' for i in intentos_lista: s += i+',' print s[:-1] #Imprimir la lista con la palabra del usuario print mono.mono[intentos_malos] if primer_juego: print lista_palabras[palabra] primer_juego = False intento = raw_input('Intenta: ') if intento == palabra: print "Felicidades!! ganaste!!" print 'La palabra es', palabra break elif intento in palabra and len(intento)==1: for i in range(len(palabra)): #Reemplazar las letras if palabra[i] == intento: intentos_lista[i] = intento #Comprobar que no haya ganado for i in intentos_lista: if i == '_': break else: print "Felicidades!! ganaste!!" print 'La palabra es', palabra break else: intentos_malos += 1 if intentos_malos == 6: print "PERDISTE!!" print mono.mono[6] break print 'Ups te quedan', 6-intentos_malos, 'intentos' print "FIN"
b7a736d7e56c2d8ef1f2dcbc2f94322cd31d1168
28559fbbf0af5af697d5e8c61e9a1359058ffd09
/properties_localizer.py
ddbf4f265762604e6880ed5c76a59f3d86188705
[]
no_license
ralphchristianeclipse/CSVLocalizer
4cb6d450f9df5d1a4db7782e0fe2c24c15e69dc1
e0488a5cab69a2cb55fe4fd6c22180a53fb5077d
refs/heads/master
2020-03-19T07:58:35.098485
2018-06-05T08:03:29
2018-06-05T08:03:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,837
py
# -*- coding: utf-8 -*- import os import sys import csv def start_localize_properties(CURRENT_DIR, BASE_PATH, IN_PATH, OUT_PATH, LANG_KEYS): base_out_dir = os.path.join(BASE_PATH, OUT_PATH) # top most if not os.path.exists(base_out_dir): os.makedirs(base_out_dir) # each languages for lang in LANG_KEYS: lang_path = os.path.join(base_out_dir, "{0}/".format(lang)) if not os.path.exists(lang_path): os.makedirs(lang_path) full_out_paths = [os.path.join(base_out_dir, "{0}/".format(langKey) + "string_{0}.properties".format(langKey)) for langKey in LANG_KEYS] allwrites = [open(out_path, 'w') for out_path in full_out_paths] for dirname, dirnames, filenames in os.walk(os.path.join(CURRENT_DIR, IN_PATH)): for f in filenames: filename, ext = os.path.splitext(f) if ext != '.csv': continue fullpath = os.path.join(dirname, f) print 'Localizing: ' + filename + ' ...' with open(fullpath, 'rb') as csvfile: [fwrite.write('// {0}\n'.format(filename)) for fwrite in allwrites] reader = csv.reader(csvfile, delimiter=',') iterrows = iter(reader); next(iterrows) # skip first line (it is header). for row in iterrows: row_key = row[0] # comment if row_key[:2] == '//': continue row_values = [row[i+1] for i in range(len(LANG_KEYS))] # if any row is empty, skip it! if any([value == "" for value in row_values]): [fwrite.write('\n') for idx, fwrite in enumerate(allwrites)] else: for idx, fwrite in enumerate(allwrites): current_value = row_values[idx] [fwrite.write('{key}={lang}\n'.format(key=row_key, lang=current_value))] [fwrite.close() for fwrite in allwrites]
24df9f3eff000842344a8569ab9b734af225eacd
5df8dd1803b6b2bdc163f93eda8b59cb85838db0
/Web_scraping/GetDownloaded/Scraping/torrentmovies.py
6d6a6094bbf7a5867cbfb11f4faf287fb56b5fad
[]
no_license
sahil-sahu/GetDOWNLOADED
2b9bba2ee2891266f1eea3338a49287c493e4315
812cc9a79af8f8c735666f06228d9a1c0a3c0945
refs/heads/main
2023-02-18T18:11:27.114691
2021-01-18T01:53:33
2021-01-18T01:53:33
330,064,184
1
0
null
null
null
null
UTF-8
Python
false
false
1,460
py
import scrapy from scrapy.crawler import CrawlerProcess from scrapy.utils.response import open_in_browser from scrapy.http import FormRequest dict = { # 'BOT_NAME' : 'hyper_scraping', # 'SPIDER_MODULES' : ['hyper_scraping.spiders'], # 'NEWSPIDER_MODULE' : 'hyper_scraping.spiders', 'ROBOTSTXT_OBEY': False, 'DOWNLOADER_MIDDLEWARES': { 'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware': None, 'scrapy_user_agents.middlewares.RandomUserAgentMiddleware': 40, }, } class QuotesSpider(scrapy.Spider): name = 'quotes' start_urls = [ 'https://torrentmovies.co/?s=lootcase&ixsl=1', ] '''def parse(self, response): for quote in response.css('.imag'): yield { 'name': quote.css('.search-live-field::attr("title")').get(), 'image': quote.css('.thumbnail img::attr("src")').get(), }''' def parse(self, response): open_in_browser(response) def parsjje(self, response): x = input('Enter the Movie you are searching : ') return FormRequest.from_response(response, formdata={'s': x}, callback=self.temp) '''next_page = response.css('.a-last a::attr("href")').get() if next_page is not None: yield response.follow(next_page, self.parse)''' process = CrawlerProcess(settings=dict) process.crawl(QuotesSpider) process.start()
43312ed31266bee7fde72db44c48a9ee9de84f09
902a2f9636d9a435e7b3cb54dc2dda24c12e7677
/s3_restore.py
c7fe00c263ca9279093435f6e580c839c381ac28
[ "MIT" ]
permissive
koolhand/s3_glacier_restore
853ed1850bccdca76d5b59fcb7250e5a2e7d6f61
0eea3dcebbd0f9fd9fa64f8e42be468b293d3fc4
refs/heads/master
2023-04-10T08:45:08.619778
2021-04-23T11:43:41
2021-04-23T11:43:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,865
py
#!/usr/bin/python3 import sys import time import boto3 import queue import logging import argparse import datetime import threading import multiprocessing from os import path from botocore.exceptions import ClientError AWS_PROFILE = 'default' PERCENT_QUEUE = queue.Queue() def setup_logger(logfile): logger = logging.getLogger(f's3_restore_{logfile}') logger.setLevel(logging.DEBUG) fh = logging.FileHandler(logfile) logger.addHandler(fh) return logger def read_file(fname): '''read file per line to array''' lines = [] with open(fname) as f: for i, l in enumerate(f): lines.append(l.replace('\n', '')) return lines def chunks(lst, n): '''generator, yield successive n-sized chunks from lst.''' for i in range(0, len(lst), n): yield lst[i:i + n] def diff(first, second): '''diff between two arrays''' second = set(second) return [item for item in first if item not in second] def refresh_credentials(thread_id=0): session = boto3.session.Session(profile_name=AWS_PROFILE) s3 = session.client('s3') return s3 def request_retrieval(progress_logger, availability_logger, files, bucket_name, retain_days, tier, chunk_index): ''' reqest object retrieval from supplied 'files' array 'files' array should contain s3 paths eg. 2018/06/10/file.txt ''' s3_client = refresh_credentials(chunk_index) counter = 0 for f in files: try: response = s3_client.restore_object( Bucket=bucket_name, Key=f, RestoreRequest={ 'Days': int(retain_days), 'GlacierJobParameters': { 'Tier': tier } } ) if response['ResponseMetadata']['HTTPStatusCode'] == 200: print(f'{f} already available to download') availability_logger.info(f) elif response['ResponseMetadata']['HTTPStatusCode'] == 202: progress_logger.info(f) except ClientError as e: code = e.response['Error']['Code'] if code == 'NoSuchKey': print(f'{f} not found, skipping') elif code == 'RestoreAlreadyInProgress': print(f'{f} restore already in progress, ignoring') progress_logger.info(f) elif code == 'ExpiredToken': s3_client = refresh_credentials(chunk_index) else: print(f'{f}: {e}') counter += 1 actual_percent = counter / len(files) PERCENT_QUEUE.put([chunk_index, actual_percent]) def check_files_availability(availability_logger, files, bucket_name, chunk_index): '''does a HEAD request on files array to check if s3 object restore is already complete or is still in progress''' s3_client = refresh_credentials(chunk_index) counter = 0 for f in files: try: response = s3_client.head_object(Bucket=bucket_name, Key=f) if 'x-amz-restore' in response['ResponseMetadata']['HTTPHeaders']: x_amz_restore = response['ResponseMetadata']['HTTPHeaders']['x-amz-restore'] if 'ongoing-request="false"' in x_amz_restore: # false = restore complete, true = restore still in progress availability_logger.info(f) except ClientError as e: code = e.response['Error']['Code'] if code == 'NoSuchKey': print(f'{f} not found, skipping') elif code == 'ExpiredToken': s3_client = refresh_credentials(chunk_index) else: print(f'Exception occured: {e}') counter += 1 actual_percent = counter / len(files) PERCENT_QUEUE.put([chunk_index, actual_percent]) def print_percent_queue(percent_dict): while PERCENT_QUEUE.empty() is False: data = PERCENT_QUEUE.get(timeout=0.1) percent_dict[data[0]] = data[1] out_str = '' total_percent = 0 for chunk_id, percent in percent_dict.items(): percent *= 100 total_percent += percent out_str += f' T{chunk_id}: {percent}% ' if(len(percent_dict) > 0): total_percent /= len(percent_dict) out_str = f'Total: {total_percent:.2f}% [{out_str}]' print(out_str) def main_generate_list(bucket): '''generates a file list from whole bucket (only files in glacier or deep_archive tier)''' output_filename = f'{bucket}.objects' if path.exists(output_filename): input_overwrite_continue = input(f'File {output_filename} already exists and will be overwritten\nContinue? y/[n]: ') if input_overwrite_continue != 'y': return s3_client = refresh_credentials() glacier_objects = [] print('Listing objects to file') try: paginator = s3_client.get_paginator('list_objects_v2') pages = paginator.paginate(Bucket=bucket) last_count = 0 for page in pages: for obj in page['Contents']: if obj['StorageClass'] == 'GLACIER' or obj['StorageClass'] == 'DEEP_ARCHIVE': glacier_objects.append(obj['Key']) if len(glacier_objects) >= last_count+1000: last_count = len(glacier_objects) print(f'Found: {last_count}') except ClientError as e: print(e) print(f'Total count: {len(glacier_objects)} glacier/deep_archive objects saved to {output_filename}') with open(output_filename, 'w') as output_list: for obj in glacier_objects: output_list.write(f'{obj}\n') def main_request_objects_restore(bucket, retain_for, retrieval_tier, thread_count): object_list_filename = f'{bucket}.objects' progress_logfile = f'{bucket}.progress' availability_logfile = f'{bucket}.available' progress_logger = setup_logger(progress_logfile) availability_logger = setup_logger(availability_logfile) progress_log = [] if path.exists(progress_logfile): progress_log = read_file(progress_logfile) availability_log = [] if path.exists(availability_logfile): availability_log = read_file(availability_logfile) print('') lines = read_file(object_list_filename) if len(progress_log) > 0: prev_len = len(lines) lines = diff(lines, progress_log) print(f'Progress log found. Skipping {prev_len - len(lines)} entries') if len(availability_log) > 0: prev_len = len(lines) lines = diff(lines, availability_log) print(f'Availability log found. Skipping {prev_len - len(lines)} entries (restore is complete on these files)') if len(lines) == 0: print('All objects already requested, nothing to do') sys.exit(1) print(f'Will have to process {len(lines)} files') if len(lines) < int(thread_count): thread_count = len(lines) split_by = max(int(len(lines) / int(thread_count)), 1) est_hours = len(lines)/int(thread_count)/5/60/60 # 5 -> single thread can request approx 5 objects/s est_hours_format = str(datetime.timedelta(hours=est_hours)).split('.')[0] print(f'{thread_count} threads, {split_by} files per thread') if input(f'This will take approximately { est_hours_format }\nContinue? (y/[n]): ') != 'y': sys.exit(1) threads = [] timer_start = time.time() chunk_index = 0 for chunk in chunks(lines, split_by): t = threading.Thread(target=request_retrieval, args=(progress_logger, availability_logger, chunk, bucket, retain_for, retrieval_tier, chunk_index), daemon=True) t.start() threads.append(t) chunk_index += 1 percent_dict = {} while any(thread.is_alive() for thread in threads): print_percent_queue(percent_dict) time.sleep(1) print_percent_queue(percent_dict) exec_time = str((time.time()-timer_start)).split('.')[0] print(f'Execution took {exec_time}s') def main_check_restore_status(bucket, thread_count): object_list_filename = f'{bucket}.objects' availability_logfile = f'bucket_{bucket}.available' availability_logger = setup_logger(availability_logfile) availability_log = [] file_list = [] if not path.exists(object_list_filename): print(f'{object_list_filename} not found. Cancelling') print('If you dont have any file with path list, run `Generate file list` option first') return print('') file_list = read_file(object_list_filename) if path.exists(availability_logfile): availability_log = read_file(availability_logfile) if len(availability_log) > 0: prev_len = len(file_list) file_list = diff(file_list, availability_log) print(f'Availability log found. Skipping {prev_len - len(file_list)} entries (these files are ready for download)') print(f'Will have to process {len(file_list)} files') split_by = max(int(len(file_list) / int(thread_count)), 1) est_hours = len(file_list)/int(thread_count)/14/60/60 # 5 -> single thread can request approx 14 objects/s est_hours_format = str(datetime.timedelta(hours=est_hours)).split('.')[0] print(f'{thread_count} threads, {split_by} files per thread') if input(f'This will take approximately { est_hours_format }\nContinue? (y/[n]): ') != 'y': sys.exit(1) threads = [] timer_start = time.time() chunk_index = 0 for chunk in chunks(file_list, split_by): t = threading.Thread(target=check_files_availability, args=(availability_logger, chunk, bucket, chunk_index), daemon=True) t.start() threads.append(t) chunk_index += 1 percent_dict = {} while any(thread.is_alive() for thread in threads): print_percent_queue(percent_dict) time.sleep(0.1) print_percent_queue(percent_dict) print(f'Execution took {time.time()-timer_start}') print('') new_availability_list = read_file(availability_logfile) new_file_list = read_file(object_list_filename) print(f'{len(new_availability_list)} files are restored and ready for download') print(f'{len(new_file_list)-len(new_availability_list)} files is still being restored') def main(): global AWS_PROFILE parser = argparse.ArgumentParser() parser.add_argument('--bucket', required=True) parser.add_argument('--aws-profile', default='default') subparsers = parser.add_subparsers(dest='subcommand', required=True) subparsers.add_parser('generate-object-list') request_parser = subparsers.add_parser('request-objects-restore') request_parser.add_argument('--retain-for', required=True, help='How long to keep objects restored') request_parser.add_argument('--retrieval-tier', default='Standard', choices=['Standard', 'Bulk', 'Expedited']) request_parser.add_argument('--thread-count', default=int(multiprocessing.cpu_count())) check_parser = subparsers.add_parser('check-objects-status') check_parser.add_argument('--thread-count', default=int(multiprocessing.cpu_count())) args = parser.parse_args() AWS_PROFILE = args.aws_profile if args.subcommand == 'generate-object-list': print('Command: Generate list of objects to restore from specified S3 bucket') main_generate_list(args.bucket) elif args.subcommand == 'request-objects-restore': print('Command: Request restoration of objects') main_request_objects_restore(args.bucket, args.retain_for, args.retrieval_tier, args.thread_count) elif args.subcommand == 'check-objects-status': print('Command: Check objects status to verify completeness') main_check_restore_status(args.bucket, args.thread_count) if __name__ == '__main__': main()
9ff7493a5a324afa3b22631ef92d3ba9fe9cc82d
2dc17d12ff6ea9794177c81aa4f385e4e09a4aa5
/archive/90SubsetsII.py
0f633535858662c676b52cec7c6c4552f462aadf
[]
no_license
doraemon1293/Leetcode
924b19f840085a80a9e8c0092d340b69aba7a764
48ba21799f63225c104f649c3871444a29ab978a
refs/heads/master
2022-10-01T16:20:07.588092
2022-09-08T02:44:56
2022-09-08T02:44:56
122,086,222
0
0
null
null
null
null
WINDOWS-1252
Python
false
false
596
py
# coding=utf-8 ''' Created on 2017�5�31� @author: Administrator ''' class Solution(object): def subsetsWithDup(self, nums): """ :type nums: List[int] :rtype: List[List[int]] """ self.ans = [] def dfs(cur, nums, st): self.ans.append(cur) # print cur for i in range(st + 1, len(nums)): dfs(cur + [nums[i]], nums, i) dfs([], nums, -1) self.ans = map(lambda x:list(x), self.ans) return self.ans nums = [1, 2, 2] print Solution().subsetsWithDup(nums)
93ffe572cb1bc35c608e4df022228398ffaf503a
968092a84a126f40df318450f5b5b8cfb8c5603e
/model.py
ebde0bf900729b68ba93e4048bf606db733a929f
[]
no_license
keep-innovation/ner
3174fd8ea88483a4e64347bb80edb2f5ee8005b6
7b67ac5aaf143ab16bcc37a5efc203bd5c5dda3c
refs/heads/main
2023-06-15T12:31:31.899933
2021-07-14T15:26:41
2021-07-14T15:26:41
385,986,642
0
0
null
null
null
null
UTF-8
Python
false
false
16,660
py
from config import Config import tensorflow as tf # import tensorflow.compat.v1 as tf if Config().import_name == 'electra': # eletra from tf_utils.electra.model.modeling import BertModel, BertConfig, get_assignment_map_from_checkpoint from tf_utils.electra.util import training_utils from tf_utils.electra import configure_finetuning elif Config().import_name == 'nazhe': from tf_utils.nezha.modeling import BertModel, BertConfig, get_assignment_map_from_checkpoint # Nezha else: from tf_utils.bert_modeling import BertModel, BertConfig, get_assignment_map_from_checkpoint # roberta from tensorflow.contrib.crf import crf_log_likelihood from tensorflow.contrib.layers.python.layers import initializers class Model: def __init__(self, config): self.config = config # 喂入模型的数据占位符 # self.input_x_word = tf.placeholder(tf.int32, [None, None], name="input_x_word") self.input_x_len = tf.placeholder(tf.int32, name='input_x_len') self.segment_ids = tf.placeholder(tf.int32, [config.batch_size, config.sequence_length], name="token_ids_type") # self.input_mask = tf.placeholder(tf.int32, [None, None], name='input_mask') # self.input_relation = tf.placeholder(tf.int32, [None, None], name='input_relation') # 实体NER的真实标签 self.input_x_word = tf.placeholder(tf.int32, [config.batch_size, config.sequence_length], name="input_x_word") self.input_mask = tf.placeholder(tf.int32, [config.batch_size, config.sequence_length], name='input_mask') self.input_relation = tf.placeholder(tf.int32, [config.batch_size, config.sequence_length], name='input_relation') # 实体NER的真实标签 self.keep_prob = tf.placeholder(tf.float32, name='dropout_keep_prob') self.is_training = tf.placeholder(tf.bool, None, name='is_training') # BERT Embedding self.init_embedding(bert_init=True) output_layer = self.word_embedding # 超参数设置 self.relation_num = self.config.relation_num self.initializer = initializers.xavier_initializer() self.embed_dense_dim = self.config.embed_dense_dim self.dropout = self.config.dropout self.model_type = self.config.model_type print('Run Model Type:', self.model_type) # idcnn的超参数 self.layers = [ { 'dilation': 1 }, { 'dilation': 1 }, { 'dilation': 2 }, ] self.filter_width = 3 self.num_filter = self.config.lstm_dim self.embedding_dim = self.embed_dense_dim self.repeat_times = 4 self.cnn_output_width = 0 # CRF超参数 used = tf.sign(tf.abs(self.input_x_word)) length = tf.reduce_sum(used, reduction_indices=1) self.lengths = tf.cast(length, tf.int32) self.batch_size = tf.shape(self.input_x_word)[0] self.num_steps = tf.shape(self.input_x_word)[-1] if self.model_type == 'bilstm': lstm_inputs = tf.nn.dropout(output_layer, self.config.dropout) # bi-directional lstm layer bilstm_cell_fw = tf.contrib.rnn.LSTMCell(self.config.lstm_dim, name='fw') # 参数可调试 bilstm_cell_bw = tf.contrib.rnn.LSTMCell(self.config.lstm_dim, name='bw') # 参数可调试 output_layer_1 = tf.nn.bidirectional_dynamic_rnn(cell_fw=bilstm_cell_fw, cell_bw=bilstm_cell_bw, inputs=lstm_inputs, sequence_length=None, dtype=tf.float32)[0] model_outputs = tf.concat([output_layer_1[0], output_layer_1[1]], axis=-1) self.logits = self.project_layer(model_outputs) elif self.model_type == 'gru': print(self.model_type) gru_inputs = tf.nn.dropout(output_layer, config.dropout) # bi-directional gru layer GRU_cell_fw = tf.contrib.rnn.GRUCell(config.gru_num) # 参数可调试 # 后向 GRU_cell_bw = tf.contrib.rnn.GRUCell(config.gru_num) # 参数可调试 output_layer_1 = tf.nn.bidirectional_dynamic_rnn(cell_fw=GRU_cell_fw, cell_bw=GRU_cell_bw, inputs=gru_inputs, sequence_length=None, dtype=tf.float32)[0] model_outputs = tf.concat([output_layer_1[0], output_layer_1[1]], axis=-1) self.logits = self.project_layer(model_outputs) elif self.model_type == 'idcnn': model_inputs = tf.nn.dropout(output_layer, self.dropout) model_outputs = self.IDCNN_layer(model_inputs) self.logits = self.project_layer_idcnn(model_outputs) else: raise KeyError # 计算损失 self.loss = self.loss_layer(self.logits, self.lengths) def project_layer(self, lstm_outputs, name=None): """ hidden layer between lstm layer and logits :param lstm_outputs: [batch_size, num_steps, emb_size] :return: [batch_size, num_steps, num_tags] """ with tf.name_scope("project" if not name else name): with tf.name_scope("hidden"): W = tf.get_variable("HW", shape=[self.config.lstm_dim * 2, self.config.lstm_dim], dtype=tf.float32, initializer=self.initializer) b = tf.get_variable("Hb", shape=[self.config.lstm_dim], dtype=tf.float32, initializer=tf.zeros_initializer()) output = tf.reshape(lstm_outputs, shape=[-1, self.config.lstm_dim * 2]) hidden = tf.tanh(tf.nn.xw_plus_b(output, W, b)) # project to score of tags with tf.name_scope("logits"): W = tf.get_variable("LW", shape=[self.config.lstm_dim, self.relation_num], dtype=tf.float32, initializer=self.initializer) b = tf.get_variable("Lb", shape=[self.relation_num], dtype=tf.float32, initializer=tf.zeros_initializer()) pred = tf.nn.xw_plus_b(hidden, W, b) return tf.reshape(pred, [-1, self.num_steps, self.relation_num], name='pred_logits') def IDCNN_layer(self, model_inputs, name=None): """ :param idcnn_inputs: [batch_size, num_steps, emb_size] :return: [batch_size, num_steps, cnn_output_width] """ model_inputs = tf.expand_dims(model_inputs, 1) with tf.variable_scope("idcnn" if not name else name): shape = [1, self.filter_width, self.embedding_dim, self.num_filter] print(shape) filter_weights = tf.get_variable( "idcnn_filter", shape=[1, self.filter_width, self.embedding_dim, self.num_filter], initializer=self.initializer ) layerInput = tf.nn.conv2d(model_inputs, filter_weights, strides=[1, 1, 1, 1], padding="SAME", name="init_layer") finalOutFromLayers = [] totalWidthForLastDim = 0 for j in range(self.repeat_times): for i in range(len(self.layers)): dilation = self.layers[i]['dilation'] isLast = True if i == (len(self.layers) - 1) else False with tf.variable_scope("atrous-conv-layer-%d" % i, reuse=tf.AUTO_REUSE): w = tf.get_variable( "filterW", shape=[1, self.filter_width, self.num_filter, self.num_filter], initializer=tf.contrib.layers.xavier_initializer()) b = tf.get_variable("filterB", shape=[self.num_filter]) conv = tf.nn.atrous_conv2d(layerInput, w, rate=dilation, padding="SAME") conv = tf.nn.bias_add(conv, b) conv = tf.nn.relu(conv) if isLast: finalOutFromLayers.append(conv) totalWidthForLastDim += self.num_filter layerInput = conv finalOut = tf.concat(axis=3, values=finalOutFromLayers) keepProb = tf.cond(self.is_training, lambda: 0.8, lambda: 1.0) # keepProb = 1.0 if reuse else 0.5 finalOut = tf.nn.dropout(finalOut, keepProb) finalOut = tf.squeeze(finalOut, [1]) finalOut = tf.reshape(finalOut, [-1, totalWidthForLastDim]) self.cnn_output_width = totalWidthForLastDim return finalOut def project_layer_idcnn(self, idcnn_outputs, name=None): """ :param lstm_outputs: [batch_size, num_steps, emb_size] :return: [batch_size, num_steps, num_tags] """ with tf.name_scope("project" if not name else name): # project to score of tags with tf.name_scope("logits"): W = tf.get_variable("PLW", shape=[self.cnn_output_width, self.relation_num], dtype=tf.float32, initializer=self.initializer) b = tf.get_variable("PLb", initializer=tf.constant(0.001, shape=[self.relation_num])) pred = tf.nn.xw_plus_b(idcnn_outputs, W, b) return tf.reshape(pred, [-1, self.num_steps, self.relation_num], name='pred_logits') def loss_layer(self, project_logits, lengths, name=None): """ 计算CRF的loss :param project_logits: [1, num_steps, num_tags] :return: scalar loss """ with tf.name_scope("crf_loss" if not name else name): small = -1000.0 # pad logits for crf loss start_logits = tf.concat( [small * tf.ones(shape=[self.batch_size, 1, self.relation_num]), tf.zeros(shape=[self.batch_size, 1, 1])], axis=-1) pad_logits = tf.cast(small * tf.ones([self.batch_size, self.num_steps, 1]), tf.float32) logits = tf.concat([project_logits, pad_logits], axis=-1) logits = tf.concat([start_logits, logits], axis=1) targets = tf.concat( [tf.cast(self.relation_num * tf.ones([self.batch_size, 1]), tf.int32), self.input_relation], axis=-1) self.trans = tf.get_variable( name="transitions", shape=[self.relation_num + 1, self.relation_num + 1], # 1 # shape=[self.relation_num, self.relation_num], # 1 initializer=self.initializer) log_likelihood, self.trans = crf_log_likelihood( inputs=logits, tag_indices=targets, # tag_indices=self.input_relation, transition_params=self.trans, # sequence_lengths=lengths sequence_lengths=lengths + 1 ) # + 1 return tf.reduce_mean(-log_likelihood, name='loss') def init_embedding(self, bert_init=True): """ 对BERT的Embedding降维 :param bert_init: :return: """ with tf.name_scope('embedding'): word_embedding = self.bert_embed(bert_init) print('self.embed_dense_dim:', self.config.embed_dense_dim) word_embedding = tf.layers.dense(word_embedding, self.config.embed_dense_dim, activation=tf.nn.relu) hidden_size = word_embedding.shape[-1].value self.word_embedding = word_embedding print(word_embedding.shape) self.output_layer_hidden_size = hidden_size def bert_embed(self, bert_init=True): """ 读取BERT的TF模型 :param bert_init: :return: """ bert_config_file = self.config.bert_config_file bert_config = BertConfig.from_json_file(bert_config_file) # batch_size, max_seq_length = get_shape_list(self.input_x_word) # bert_mask = tf.pad(self.input_mask, [[0, 0], [2, 0]], constant_values=1) # tensor左边填充2列 if self.config.import_name == 'electra': bert_config = training_utils.get_bert_config(configure_finetuning.FinetuningConfig( model_name=self.config.bert_file, data_dir=self.config.vocab_file )) model = BertModel( bert_config=bert_config, # electra is_training=self.is_training, # 微调 input_ids=self.input_x_word, input_mask=self.input_mask, token_type_ids=self.segment_ids, use_one_hot_embeddings=False) else: model = BertModel( config=bert_config, # nezha and roberta is_training=self.is_training, # 微调 input_ids=self.input_x_word, input_mask=self.input_mask, token_type_ids=self.segment_ids, use_one_hot_embeddings=False) layer_logits = [] print(model.get_all_encoder_layers()) if self.config.import_name == 'electra': layer_logits = tf.layers.dense( model.get_all_encoder_layers(), 1, kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), name="all_layer_logit" ) print('-' * 100) layer_dist = tf.nn.softmax(layer_logits) print(layer_dist.shape) layer_dist = tf.transpose(layer_dist, [1, 2, 3, 0]) # 转置矩阵 pooled_output = tf.matmul(layer_dist, tf.transpose(model.get_all_encoder_layers(), [1, 2, 0, 3])) print(pooled_output.shape) pooled_output = tf.squeeze(pooled_output, axis=2) pooled_layer = pooled_output print(pooled_layer.shape) char_bert_outputs = pooled_layer else: for i, layer in enumerate(model.all_encoder_layers): # nezha and roberta layer_logits.append( tf.layers.dense( layer, 1, kernel_initializer=tf.truncated_normal_initializer(stddev=0.02), name="layer_logit%d" % i ) ) layer_logits = tf.concat(layer_logits, axis=2) # 第三维度拼接 layer_dist = tf.nn.softmax(layer_logits) seq_out = tf.concat([tf.expand_dims(x, axis=2) for x in model.all_encoder_layers], axis=2) pooled_output = tf.matmul(tf.expand_dims(layer_dist, axis=2), seq_out) pooled_output = tf.squeeze(pooled_output, axis=2) pooled_layer = pooled_output # char_bert_outputs = pooled_laRERyer[:, 1: max_seq_length - 1, :] # [batch_size, seq_length, embedding_size] char_bert_outputs = pooled_layer if self.config.use_origin_bert: final_hidden_states = model.get_sequence_output() # 原生bert self.config.embed_dense_dim = 768 else: final_hidden_states = char_bert_outputs # 多层融合bert self.config.embed_dense_dim = 512 tvars = tf.trainable_variables() init_checkpoint = self.config.bert_file # './chinese_L-12_H-768_A-12/bert_model.ckpt' assignment_map, initialized_variable_names = get_assignment_map_from_checkpoint(tvars, init_checkpoint) if bert_init: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" print(" name = {}, shape = {}{}".format(var.name, var.shape, init_string)) print('init bert from checkpoint: {}'.format(init_checkpoint)) return final_hidden_states
c777f93db227dc48d35f338270200f1c54d3dda4
1e7f48c3cc9173525a7171afabcc3af934ef8e7a
/Server.py
0d9b91db99b983d410e8643c2ff6e488833de86b
[]
no_license
mcaim/Python-Email
a8bab4cb62abc20d3022bdc7dd16867efca4ccea
a2153550f86697fffd4d2f1354f330a0c34c87c3
refs/heads/master
2020-05-05T11:15:58.778559
2019-04-07T15:04:50
2019-04-07T15:04:50
179,982,141
1
0
null
null
null
null
UTF-8
Python
false
false
17,047
py
__author__ = 'Aidan McRitchie, [email protected], Onyen = mcaim' import re import sys import string #import _curses.ascii from socket import * special_characters = '"<>()[]\\.,;:@"' space = ' ' printset = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!\"#$%&'()*+,-./:;<=>?@[\]^_`{|}~ " syntax_501 = '501 Syntax error in parameters or arguments' syntax_500 = '500 Syntax error: command unrecognized' syntax_503 = '503 Bad sequence of commands' ok = '250 ok' data_ok = '354 Start mail input; end with <CRLF>.<CRLF>' def mailfromcmd(line_list, line): if line_list[0] != 'M': return False elif line_list[1] != 'A': return False elif line_list[2] != 'I': return False elif line_list[3] != 'L': return False if (whitespace(line_list[4]) == False): return i = 4 while whitespace(line_list[i]): i = i+1 if line_list[i] != 'F': return else: i = i+1 if line_list[i] != 'R': return else: i = i+1 if line_list[i] != 'O': return else: i = i+1 if line_list[i] != 'M': return else: i = i+1 if line_list[i] != ':': return else: i = i+1 while nullspace(line_list[i]): i = i+1 # returns false or the index if true current_index = rvspath(line_list, i) if not current_index: return if line_list[current_index] == '\n': return line[i+1:current_index - 1] nullindex = current_index #finds any nullspace after while nullspace(line_list[nullindex]): nullindex = nullindex + 1 if line_list[nullindex] != '\n': #print_error('CLRF') return False #print('250 ok') return line[i+1:current_index-1] def rcpttocmd(line_list, line): line_list = list(line) if line_list[0] != 'R': return False elif line_list[1] != 'C': return False elif line_list[2] != 'P': return False elif line_list[3] != 'T': return False if (whitespace(line_list[4]) == False): return False i = 4 while whitespace(line_list[i]): i = i + 1 if line_list[i] != 'T': return False else: i = i + 1 if line_list[i] != 'O': return False else: i = i + 1 if line_list[i] != ':': return False else: i = i+1 while nullspace(line_list[i]): i = i+1 # returns false or the index if true current_index = rvspath(line_list, i) if not current_index: return if line_list[current_index] == '\n': return line[i + 1:current_index - 1] nullindex = current_index # finds any nullspace after while nullspace(line_list[nullindex]): nullindex = nullindex + 1 if line_list[nullindex] != '\n': # print_error('CLRF') return False # print('250 ok') return line[i + 1:current_index - 1] def datacmd(line_list,line): line_list = list(line) if line_list[0] != 'D': return False elif line_list[1] != 'A': return False elif line_list[2] != 'T': return False elif line_list[3] != 'A': return False i = 4 if nullspace(line_list[4]): while nullspace(line_list[i]): i = i + 1 elif line_list[4] != '\n': print('500 Syntax error: command unrecognized') return False #while nullspace(line_list[i]): # i = i+1 if line_list[i] == '\n': return True else: print('501 Syntax error in parameters or arguments') return False def whitespace(token): if sp(token): return True else: return False def sp(token): if token == ' ' or token == '\t': return True else: return False def nullspace(token): if null(token) or whitespace(token): return True else: return False def null(token): if token == '': return True else: return False def rvspath(token,index): # if path true, return index, else return false return path(token,index) #can't have error here def path(token,index): current = index if token[index] != '<': #print_error('path') return False #if mailbox is valid returns current index, else returns false current = mailbox(token,current+1) if not current: return False # checks for last part of path if token[current] != '>': #print_error('path') return False return current + 1 def mailbox(token,index): current = index #check for local part has at least 1 char if not localpart(token[current]): #print_error('char') return False # looks for more valid chars in local part while localpart(token[current]): current = current + 1 #once the current index is not a valid char, checks to see if next index is @ if token[current] != '@': #print_error('mailbox') return False current += 1 # now looking at domain current = domain(token,current) # if some part of domain was false, return false, else return current index if not current: return False return current def localpart(char): specials = special_characters + space if char in specials: return False if len(char) != len(char.encode()): return False printables = string.printable if not (char in printables): return False if char == '\n': return False if char == '\t': return False # apparently doesn't work in python 2 '''if not char.isprintable(): return False''' return True def domain(token,index): current = index #check current index = letter if not letter(token[current]): #print_error('letter') return False # check next = letter/digit current += 1 while letter(token[current]) or digit(token[current]): current += 1 # check for ., if so, call domain again if token[current] == '.': current = domain(token,current+1) # if no ., return index return current def letter(token): pattern = re.compile('^[A-Za-z]') if str(re.match(pattern,token)) == 'None': return False else: return True def digit(token): pattern = re.compile('^[0-9]') if str(re.match(pattern,token)) == 'None': return False else: return True def print_error(error): print('ERROR -- '+error) def parse(): for line in sys.stdin: if line =='': break line_list = list(line) if '\n' in line: sys.stdout.write(line) mailfromcmd(line_list,line) else: break def mailcommand(line): line_list = list(line) if line_list[0] != 'M': return False elif line_list[1] != 'A': return False elif line_list[2] != 'I': return False elif line_list[3] != 'L': return False if (whitespace(line_list[4]) == False): return False i = 4 while whitespace(line_list[i]): i = i+1 if line_list[i] != 'F': return False else: i = i+1 if line_list[i] != 'R': return False else: i = i+1 if line_list[i] != 'O': return False else: i = i+1 if line_list[i] != 'M': return False else: i = i+1 if line_list[i] != ':': return False else: return True def rcptcommand(line): line_list = list(line) if line_list[0] != 'R': return False elif line_list[1] != 'C': return False elif line_list[2] != 'P': return False elif line_list[3] != 'T': return False if (whitespace(line_list[4]) == False): return False i = 4 while whitespace(line_list[i]): i = i + 1 if line_list[i] != 'T': return False else: i = i + 1 if line_list[i] != 'O': return False else: i = i + 1 if line_list[i] != ':': return False else: return True def datacommand(line): line_list = list(line) if line_list[0] != 'D': return False elif line_list[1] != 'A': return False elif line_list[2] != 'T': return False elif line_list[3] != 'A': return False else: return True def testrcpt(): line = read() line_list = list(line) sys.stdout.write(line) print(rcptcommand(line)) # waiting for valid mail command def waitformail(connectionSocket): # state starts in mail from state = 'mail from' while True: line = connectionSocket.recv(1024).decode() + '\n' if line == 'QUIT\n': quit_resp = '221 classroom.cs.unc.edu' connectionSocket.send(quit_resp.encode()) connectionSocket.close() #start_restart(get_serverSocket()) line_list = list(line) #print(line_list) #sys.stdout.write(line) if not mailcommand(line): if rcptcommand(line): connectionSocket.send(syntax_503.encode()) continue elif datacommand(line): connectionSocket.send(syntax_503.encode()) continue else: connectionSocket.send(syntax_500.encode()) continue if not mailfromcmd(line_list,line): connectionSocket.send(syntax_501.encode()) else: connectionSocket.send(ok.encode()) break return True,mailfromcmd(line_list,line) def waitforrcpt(connectionSocket): while True: line = connectionSocket.recv(1024).decode() + '\n' if line == 'QUIT\n': quit_resp = '221 classroom.cs.unc.edu' connectionSocket.send(quit_resp.encode()) connectionSocket.close() #start_restart(get_serverSocket()) line_list = list(line) if not rcptcommand(line): if mailcommand(line): connectionSocket.send(syntax_503.encode()) continue elif datacommand(line): connectionSocket.send(syntax_503.encode()) continue else: connectionSocket.send(syntax_500.encode()) continue if not rcpttocmd(line_list,line): connectionSocket.send(syntax_501.encode()) else: connectionSocket.send(ok.encode()) break return True,rcpttocmd(line_list,line) def socket_keeper(): return socket def waitforrcptordata(connectionSocket): data_or_rcpt = '' while True: line = connectionSocket.recv(1024).decode() + '\n' if line == 'QUIT\n': quit_resp = '221 classroom.cs.unc.edu' connectionSocket.send(quit_resp.encode()) connectionSocket.close() #start_restart(get_serverSocket()) line_list = list(line) if not rcptcommand(line): if mailcommand(line): connectionSocket.send(syntax_503.encode()) continue elif datacommand(line): if not datacmd(line_list, line): #print('500 Syntax error: command unrecognized') continue else: #print('250 OK') data_or_rcpt = "DATA" break else: connectionSocket.send(syntax_500.encode()) continue if not rcpttocmd(line_list,line): connectionSocket.send(syntax_501.encode()) else: data_or_rcpt = "RCPT" break return data_or_rcpt,rcpttocmd(line_list,line) def waitforDATA(connectionSocket): while True: line = connectionSocket.recv(1024).decode() line_list = list(line) if not datacommand(line): if rcptcommand(line): print('503 Bad sequence of commands') continue elif mailcommand(line): print('503 Bad sequence of commands') continue else: print('500 Syntax error: command unrecognized') continue if not datacommand(line_list,line): print('501 Syntax error in parameters or arguments') else: break return True ##### SUPER IMPORTANT FUNCTION #### # reads one line of stdin at a time # checks for EOF and kills program when found def read(): line = sys.stdin.readline() if line == '': sys.exit(0) return line # starts State Machine.... writes file then calls itself if valid email sequence reached def start(connectionSocket,serverSocket): #goal: pull out data from socket communication with client mailfrom = '' recipients = [] lines = '' # initialize mail from state bool, mailfrom = waitformail(connectionSocket) #keep checking until valid mail from while not bool: bool, mailfrom = waitformail(connectionSocket) bool, mailto = waitforrcpt(connectionSocket) # keep checking until valid rcpt to while not bool: bool, mailto = waitforrcpt(connectionSocket) # add rcpt to list of recipients recipients.append(mailto) # keep checking for either valid rcpt or valid data # if another rcpt keep checking until data while True: rcpt_or_data,mailto = waitforrcptordata(connectionSocket) # keep looking for valid rcpt or data command while rcpt_or_data != 'DATA' and rcpt_or_data != 'RCPT': rcpt_or_data = waitforrcptordata(connectionSocket) # if line == rcpt if rcpt_or_data == 'RCPT': recipients.append(mailto) connectionSocket.send(ok.encode()) # don't break cause could be more rcpt's # if line == data if rcpt_or_data == 'DATA': connectionSocket.send(data_ok.encode()) break # look for data and append to list data = connectionSocket.recv(1024).decode() lines = data.split('\n') connectionSocket.send(ok.encode()) # file stuff for recipient in recipients: split = recipient.split('@')[1] # make new file string for each recipient, writes string (file) to output at end file = '' # open new file...if already created, append new data to same file output = open("./forward/{split}".format(split=split), "a+") for line in lines: if line == '.': break file += line + '\n' output.write(file) output.close() #line = connectionSocket.recv(1024).decode() + '\n' quit_resp = '221 classroom.cs.unc.edu' connectionSocket.send(quit_resp.encode()) connectionSocket.close() start_restart(serverSocket) def data(connectionSocket): line = connectionSocket.recv(1024).decode() + '\n' print(line) if line == 'QUIT\n': quit_resp = '221 classroom.cs.unc.edu' connectionSocket.send(quit_resp.encode()) connectionSocket.close() server_start(get_port()) if line == '.\n': print('here') connectionSocket.send(ok.encode()) return True,'' return False,line def parse_helo(msg,serverSocket): if msg[0:5] != 'HELO ': serverSocket.close() start_restart(serverSocket) if domain(msg, 5) == False: serverSocket.close() start_restart(serverSocket) if msg[-1] != '\n': serverSocket.close() start_restart(serverSocket) serverSocket.send((msg.strip('\n') + 'pleased to meet you\n').encode()) # loops server def start_restart(serverSocket): connectionSocket, addr = serverSocket.accept() greeting = '220 classroom.cs.unc.edu' # sends greeting to client connectionSocket.send(greeting.encode()) # client send helo helo = connectionSocket.recv(1024).decode() parse_helo(helo,connectionSocket) start(connectionSocket,serverSocket) connectionSocket.close() start_restart(serverSocket) port = 8623 def set_port(port): port = port def get_port(): return port def server_start(port): serverPort = port serverSocket = socket(AF_INET, SOCK_STREAM) serverSocket.bind(('', serverPort)) serverSocket.listen(1) #print('Server is ready') start_restart(serverSocket) def main(): port = int(sys.argv[1]) set_port(port) server_start(port) # start state machine...everything handled by this function start(port) main() #print(False == False) ''' MAIL FROM:<K0~ @N2X5R2> MAIL FROM: <[email protected]> MAIL FROM: <4j@e5.F7.Dq> MAIL FROM: <g@c1x> MAIL FROM:</ s@T6t> MAIL FROM: <#@b3> MAIL FROM:<X@K5dJ> MAIL FROM: <[email protected]> MAIL FROM:<D@qx> MAIL FROM:<@S08> MAIL FROM:<[email protected]> '''
6dfbf07b6dea937b2bc5553d2aa83cbd9c13c8b0
9dfbe905aae1478318ca9a581a7e97e69b749d7d
/python/day04.py
48a3611dc7724429c24444617fac970a3bb42ce8
[]
no_license
chriscummings100/aoc2020
41c738b15731a0cd930a249586584cb1a943604e
592084ccf967f80c3a46f89bae7b7b0fe9fc1ff9
refs/heads/main
2023-01-29T05:23:33.917324
2020-12-12T17:17:26
2020-12-12T17:17:26
320,051,989
0
0
null
null
null
null
UTF-8
Python
false
false
2,632
py
import re curr_entry = {} all_entries = [] with open("day04input.txt") as f: while True: line = f.readline() if not line: break line = line.strip() if len(line) == 0: all_entries.append(curr_entry) curr_entry = {} else: line_entries = line.split(" ") for x in line_entries: matches = re.match(r"(\w\w\w)\:(.*)", x) curr_entry[matches.group(1)] = matches.group(2) all_entries.append(curr_entry) valid = 0 #byr (Birth Year) - four digits; at least 1920 and at most 2002. #iyr (Issue Year) - four digits; at least 2010 and at most 2020. #eyr (Expiration Year) - four digits; at least 2020 and at most 2030. #hgt (Height) - a number followed by either cm or in: #If cm, the number must be at least 150 and at most 193. #If in, the number must be at least 59 and at most 76. #hcl (Hair Color) - a # followed by exactly six characters 0-9 or a-f. #ecl (Eye Color) - exactly one of: amb blu brn gry grn hzl oth. #pid (Passport ID) - a nine-digit number, including leading zeroes. #cid (Country ID) - ignored, missing or not. def checkyear(val, min, max): if not val: return False if not re.match(r"^\d\d\d\d$",val): print(val) return False ival = int(val) if ival < min or ival > max: return False return True def checkheight(val): if not val: return False match = re.match(r"^(\d+)([a-z]{2})$", val) if not match: return False if match.group(2) == "cm": val = int(match.group(1)) return val >= 150 and val <= 193 elif match.group(2) == "in": val = int(match.group(1)) return val >= 59 and val <= 76 else: return False def checkhair(val): if not val: return False return re.match(r"^\#[0-9a-f]{6}$",val) def checkeye(val): if not val: return False return val in ["amb", "blu", "brn", "gry", "grn", "hzl", "oth"] def checkid(val): if not val: return False return re.match(r"^\d{9}$", val) for entry in all_entries: if not checkyear(entry.get("byr"), 1920, 2002): continue if not checkyear(entry.get("iyr"), 2010, 2020): continue if not checkyear(entry.get("eyr"), 2020, 2030): continue if not checkheight(entry.get("hgt")): continue if not checkhair(entry.get("hcl")): continue if not checkeye(entry.get("ecl")): continue if not checkid(entry.get("pid")): continue valid += 1 print(valid) #print(all_entries)
b296def624467a03808f1a77ad01caba6e298e77
2e335f7db34b0b80e114d02a3ae02ee485aa2560
/cozy/structures/arrays.py
c87f5ab3b8e1e0901cd7d5022477adb032b8ab3a
[ "Apache-2.0" ]
permissive
MostAwesomeDude/cozy
6a3d60d4a7da9bc95bcc4f5f20645ac3e0a8d725
e7b0ace2915c54b1176fc4d3eed289ede109a058
refs/heads/master
2020-03-24T11:17:51.860989
2018-07-26T22:33:37
2018-07-26T22:33:37
142,681,384
0
0
Apache-2.0
2018-07-28T13:56:19
2018-07-28T13:56:19
null
UTF-8
Python
false
false
564
py
from cozy.common import declare_case from cozy.syntax import Type, Exp, Stm TArray = declare_case(Type, "TArray", ["t"]) EArrayCapacity = declare_case(Exp, "EArrayCapacity", ["e"]) EArrayLen = declare_case(Exp, "EArrayLen", ["e"]) EArrayGet = declare_case(Exp, "EArrayGet", ["a", "i"]) EArrayIndexOf = declare_case(Exp, "EArrayIndexOf", ["a", "x"]) SArrayAlloc = declare_case(Stm, "SArrayAlloc", ["a", "capacity"]) SArrayReAlloc = declare_case(Stm, "SArrayReAlloc", ["a", "new_capacity"]) SEnsureCapacity = declare_case(Stm, "SEnsureCapacity", ["a", "capacity"])
755cb6cacb99a472555a45b426dd7575ffa1159f
395ab72edfc78710334b7c1a44550890ae474de9
/fitmodel.py
9dff86a557818cded390f213a1ea8d665b325450
[ "MIT" ]
permissive
deapplegate/wtgpipeline
20862a34c08a27dc3e09fde8f9185c590dceac43
9693e8562022cc97bf5a96427e22965e1a5e8497
refs/heads/master
2023-07-01T04:06:05.340473
2021-07-27T18:44:34
2021-07-27T18:44:34
100,309,025
1
2
null
2017-10-17T17:43:07
2017-08-14T20:59:18
Python
UTF-8
Python
false
false
8,782
py
################################### # Utilities for fitting models # # Based on solution by abeardmore found on http://code.google.com/p/pyminuit/issues/detail?id=6 # # Modified and extended by Douglas Applegate ################################### import numpy import minuit import math, inspect import scipy.stats as stats ############################### __cvs_id__ = "$Id: fitmodel.py,v 1.2 2010-07-02 23:08:47 dapple Exp $" ############################### ############################### # Statistical Distribution Look-up functions ############################### def chisq_exceeds_prob(chisq, dof): ''' Probability that chisq exceeds value, given degrees of freedom dof ''' return stats.chi2.sf(chisq, dof) ### def f_test_exceeds_prob(chisq_old, dof_old, chisq_new, dof_new): ''' Probability that the improvement in a fit by adding extra parameters is random ''' deltaDOF = dof_old - dof_new F = (chisq_old - chisq_new)/(deltaDOF*chisq_new/dof_new) return stats.f.sf(F, deltaDOF, dof_new) ############################### # Common Models ############################### def ConstantModel(x, a0): return a0 ####### def LinearModel(x, a0, a1): return a0 + a1*x ######## def QuadraticModel(x, a0, a1, a2): return a0 + a1*x + a2*x**2 ######## class PolynomialModel(object): """ Creates a polynomial model of the form a0 + a1*x + a2*x**2 + ... where the order parameter controls which orders are included """ def __init__(self, order): ''' order is a list of positive integers specifying polynomial order to include 0: constant, 1: linear, 2: quadratic, etc. Does not include lower order terms implicitly (ie specify [0,1,2], etc ''' self.order = order self.basis = {} for o in order: param = 'a%d' % o def base(x, a, order=o): return a*(x**order) self.basis[param] = base self.params=self.basis.keys() def __call__(self, x, *params, **keyword_params): for key, val in zip(self.params, params): keyword_params[key] = val sum = 0. for key, val in keyword_params.iteritems(): sum += self.basis[key](x, val) return sum ########### def PowerLawModel(x, alpha, beta): return alpha*x**beta ########### def GaussianModel(x, A, mu, sigma): z = (x - mu) / sigma return A*numpy.exp(-0.5*z**2) ############################### # Statistical Fuctions for Minimization ############################### def ChiSqStat(ydata, yerr, ymodel): """ Returns the chi-square given arrays of ydata, yerr, and ymodel values. """ chisquared = ((ydata - ymodel)/yerr)**2 stat = chisquared.sum() return stat #################### def CStat(ydata, yerr, ymodel): """ Returns the cstat a la xspec given arrays of data and model values. This is a -2.0 log likelihood statistic. """ lmodel = numpy.zeros(ymodel.size) lmodel[ymodel <= 0.0] = -32. lmodel[ymodel > 0.0] = numpy.log(ymodel[ymodel > 0.0]) ldata = numpy.zeros(ydata.size) ldata[ydata <= 0.0] = -32.0 ldata[ydata > 0.0] = numpy.log(ydata[ydata > 0.0]) # fitstat = ymodel - ydata + ydata * (ldata - lmodel) fitstat = ymodel + ydata * ((ldata - lmodel) - 1.0) stat = 2.0* fitstat.sum() return stat ############################### # Fitting Class -- Use to perform minimizations ############################### class FitModel: """ Fits a generic model (provided by the class Model to data (numpy arrays xdata and ydata), with a fit statistic provided by StatFunc. """ def __init__(self, xdata, ydata, yerr, model, statfunc = ChiSqStat, guess = []): self.xdata = numpy.array(xdata, dtype=numpy.float64) self.ydata = numpy.array(ydata, dtype=numpy.float64) self.yerr = numpy.array(yerr, dtype=numpy.float64) self.model = model self.statfunc = statfunc self.guess = guess self.fcn = FCN(self.xdata, self.ydata, self.yerr, model, statfunc) self.m = minuit.Minuit( self.fcn ) self.params = self.m.parameters if self.guess == []: self.guess = numpy.ones(len(self.params)) for param, value in zip(self.params, self.guess): self.m.values[param] = value self.m.errors[param] = math.fabs(value) * 0.05 self.m.strategy = 1 self.m.tol = 1.0 self.have_fit = False def fixed(self, fparams): """ Fix or unfix the parameters specified in the dictionary fparams, which contain True or False values. """ for key in fparams.keys(): self.m.fixed[key] = fparams[key] def limits(self, lparams): """ Set limits given by the parameters in the dictionary lparams. """ for key in lparams.keys(): self.m.limits[key] = lparams[key] def fit(self, printmode = 0): """ Call migrad to fit the model to the data. Set printmode = 1 to monitor the progress of the fitting. """ self.m.printMode = printmode self.par_vals = {} self.ymodel = None try : self.m.migrad() print "fval = %g, nfcn %d" % (self.m.fval, self.m.ncalls) self.m.migrad() print "fval = %g, nfcn %d" % (self.m.fval, self.m.ncalls) print "Fit parameters : " print self.m.values self.par_vals = self.m.values # calculate the best fit model self.ymodel = self.model( self.xdata, **self.m.values ) self.statval = self.m.fval self.have_fit = True except minuit.MinuitError : # reset have_fit if migrad fails self.have_fit = False def uncert(self, nsigma = 1.0): """ Calculate the parameter uncertainties at the nsigma**2 confidence level. E.g. for one parameter of interest nsigma = 1.0 for 68% 1.645 for 90% 2.0 for 95.45% 3.0 for 99.73% """ if not(self.have_fit) : print "Warning: uncert requires a valid fit." return # in case minos fails self.m.hesse() print "Hesse errors : " print self.m.errors self.par_err = {} for key in self.m.values.keys(): if (self.m.fixed[key] == True): continue try: self.m.minos(key, -nsigma) self.m.minos(key, nsigma) error = (self.m.merrors[key, -nsigma], self.m.merrors[key, nsigma]) except minuit.MinuitError : print "Caught MinuitError: Minos failed. using Hesse error." print "Only really valid for a well behaved fitting FCN !" error = self.m.errors[key] * nsigma self.par_err[key] = error print "Parameter errors :" print self.par_err def corr_matrix(self): """ Display the fit parameter correlation matrix." """ if not(self.have_fit) : print "Warning: uncert requires a valid fit." return print "Correlation matrix :" print numpy.array(self.m.matrix(correlation=True)) ##################################### # Utilities #################################### def FCN(x,y,yerr, model, statfunc): """ Calculates the fitting FCN for pyMinuit(2) given the data (xdata & ydata) and model (class Model, with a tuple of initial parameters, params), using the class StatFunc to calculate the statistic. """ #assumes model is a function with first arg being X values if inspect.isfunction(model): params = inspect.getargspec(model)[0][1:] elif hasattr(model, '__call__'): args = inspect.getargspec(model.__call__)[0] if len(args) < 3: paramAttr = inspect.getargspec(model.__call__)[1] params = getattr(model, paramAttr) else: params = args[2:] paramstring = ','.join(params) class_template = '''class fitclass(object): def __init__(self, x, y, yerr, model, statfunc): self.x = x self.y = y self.yerr = yerr self.model = model self.statfunc = statfunc def __call__(self, %s): return self.statfunc(self.y, self.y, self.model(self.x, %s)) ''' % (paramstring, paramstring) exec class_template return fitclass(x,y,yerr,model,statfunc)
f657b49a94c741116b559b970566f1865e4e630f
efec061962750decbb293c382871f71832f2c07a
/src/plonetheme/markiezenhof/setuphandlers.py
35c024fd67b68d24d72900301ec6ca67088be97b
[]
no_license
plone-ve/plonetheme.markiezenhof
8a2670b0ce5fd3c819e74f9db6934c64d3379b5b
b1cf9f6f452b423d1dcae26c7460cd380577a4d8
refs/heads/master
2023-08-28T00:43:17.625799
2016-06-10T12:29:49
2016-06-10T12:29:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
623
py
# -*- coding: utf-8 -*- from Products.CMFPlone.interfaces import INonInstallable from zope.interface import implementer @implementer(INonInstallable) class HiddenProfiles(object): def getNonInstallableProfiles(self): """Hide uninstall profile from site-creation and quickinstaller""" return [ 'plonetheme.markiezenhof:uninstall', ] def post_install(context): """Post install script""" # Do something at the end of the installation of this package. def uninstall(context): """Uninstall script""" # Do something at the end of the uninstallation of this package.
4c4b8aaaada1da35461d159d800be8a304d45f8b
8a0d2c985ead725a209812a4dd2935373e1c05e7
/vt-subdomains.py
3ed074bb37465af3ab08df4710544621c6034213
[]
no_license
smed79/vt-subd-scraper
77fe7e7d34b2356c764a9c9db9cae3ec67919061
8ae04dc19a94845d7096833437b201a411dd40e0
refs/heads/master
2023-03-17T16:26:08.748594
2018-10-07T18:57:20
2018-10-07T18:57:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,019
py
#!/usr/bin/env python3 import requests from os import environ import os import sys import json def main(domain, apikey): url = 'https://www.virustotal.com/vtapi/v2/domain/report' params = {'apikey':apikey,'domain':domain} try: response = requests.get(url, params=params) jdata = response.json() domains = sorted(jdata['subdomains']) except(KeyError): print("No domains found for %s" % domain) exit(0) except(requests.ConnectionError): print("Could not connect to www.virtustotal.com", file=sys.stderr) exit(1) for domain in domains: print(domain) if __name__ == '__main__': if len(sys.argv) != 2: print("Usage: python3 vt-subdomains.py domain.com", file=sys.stderr) sys.exit(1) domain = sys.argv[1] if environ.get('VTAPIKEY'): apikey = os.environ['VTAPIKEY'] else: print("VTAPIKEY environment variable not set. Quitting.", file=sys.stderr) sys.exit(1) main(domain, apikey)
2f82445e68f7fd36002f38d4b614262803b8f378
de9af73c37ba970fcbda9594243ccd4dfa3ba66e
/torchtools/tt/__init__.py
9dab24e285b500dd5cc4c6cd713f668ce67609cc
[ "MIT" ]
permissive
TianyuanYu/BGNN-AAAI
8ae04e162e54dfc5c8ec20ef826524b906b1e01c
16bd260b93009be27932415e74ce1b3128215d92
refs/heads/master
2022-10-29T07:08:28.175190
2020-06-18T09:26:49
2020-06-18T09:26:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
271
py
from torchtools.tt.arg import _parse_opts from torchtools.tt.utils import * from torchtools.tt.layer import * from torchtools.tt.logger import * from torchtools.tt.stat import * from torchtools.tt.trainer import * # global command line arguments arg = _parse_opts()
6f755efdd77859e41445a0f5e96e81a88f8644f3
5246838f884449a95aadd8fed71d1b1fc29f333c
/two/2.1.py
3456c268a40c75ee9f1506f3c9fade20caf50a9f
[]
no_license
chenjb04/PythonCookbook
046396915f614c5090442f100adf8b0696e5de3e
9e906aab39f7799d6d53b768aac01616badd830f
refs/heads/master
2020-05-01T14:21:50.781637
2019-03-31T10:22:52
2019-03-31T10:22:52
177,517,740
0
0
null
null
null
null
UTF-8
Python
false
false
240
py
# -*- coding:utf-8 -*- __author__ = 'ChenJiaBao' __date__ = '2019/3/29 15:31' """ 对任意多的分隔符拆分字符串 re.split() """ import re line = 'absd fjkd; afed, fjrel,asdf, foo' ret = re.split(r'[;,\s]\s*', line) print(ret)
6e9c807ed2d9091213791471b2b26664ff2558fe
ee3b17d703903909628f23bbba862ec396ffd9e5
/create_dataset.py
bae188b263ca60324231776b83532ddd0af3e6e2
[]
no_license
Kanagaraj-NN/fault-localization
84b9e492f4ad382efee3601b4074e9b5b799ce05
cad86c74bb9c995438c74a2e534e9cd99c5f9e07
refs/heads/master
2020-03-13T15:35:29.650619
2018-10-29T13:52:44
2018-10-29T13:52:44
131,179,956
0
0
null
2018-04-26T16:03:16
2018-04-26T16:03:15
null
UTF-8
Python
false
false
5,327
py
import argparse import csv import os PROJECTS = ['Closure', 'Lang', 'Chart', 'Math', 'Mockito', 'Time'] PROJECT_BUGS = [ [str(x) for x in range(1, 134)], [str(x) for x in range(1, 66)], [str(x) for x in range(1, 27)], [str(x) for x in range(1, 107)], [str(x) for x in range(1, 39)], [str(x) for x in range(1, 28)] ] FORMULA = {'barinel', 'dstar2', 'jaccard', 'muse', 'ochiai', 'opt2', 'tarantula'} class Dataset(object): def __init__(self, formula, num_lines): self.base_formula = formula self.rows = {} self.num_lines = num_lines for project in PROJECTS: self.rows[project] = {} def to_csv(self, output_csv): """ Write dataset to output csv file Parameters ---------- output_csv : str Output file to write the dataset to """ output = [] columns = 'project,bug,' columns += ','.join(['line_%s' % (i+1) for i in range(self.num_lines)]) for formula in FORMULA: for i in range(self.num_lines): columns += ',line_%s_%s' % (i+1, formula) output.append(columns) for project in PROJECTS: for bug in self.rows[project]: output.append(self.rows[project][bug].to_csv()) with open(output_csv, 'w') as fwriter: fwriter.write('\n'.join(output)) def __len__(self): return self.num_lines class Row(object): """ The row class holds information about a specific row. Mainly, it holds information about the project, bug_id, lines affected, suspiciousness scores for each line given by that formula """ def __init__(self, project, bug_id): self.project = project self.bug_id = bug_id self.lines = [] self.data = {} for formula in FORMULA: self.data[formula] = [] def to_csv(self): lines_output = ','.join(self.lines) suspiciousness = [] for formula in FORMULA: susp = ','.join([str(x) for x in self.data[formula]]) suspiciousness.append(susp) return '%s,%s,%s,' % (self.project, self.bug_id, lines_output) + ','.join(suspiciousness) def add_rows_for_formula(dataset, data_dir, formula): """ Add rows for a particular formula to the dataset Parameters ---------- dataset : Dataset an object of the type dataset with dataset.lines already populated data_dir : str the data directory for the suspiciousness files formula : str formula to add for Returns ------- None """ for project, bugs in zip(PROJECTS, PROJECT_BUGS): for bug in bugs: data = {} input_file = os.path.join(data_dir, '%s-%s-%s-sorted-susp' % (project, bug, formula)) with open(input_file) as freader: csvreader = csv.DictReader(freader) for line in csvreader: data[line['Line']] = float(line['Suspiciousness']) for line in dataset.rows[project][bug].lines: if line in data: dataset.rows[project][bug].data[formula].append(data[line]) else: dataset.rows[project][bug].data[formula].append(0.0) def create_dataset(data_dir, formula, num_lines): """ Create a dataset object and add rows from the sorted suspiciousness value file to it Parameters ---------- data_dir : str the data directory for the suspiciousness files formula : str formula to use as the base num_lines : str number of lines to read from the csv Returns ------- Dataset a dataset object """ dataset = Dataset(formula, num_lines) for project, bugs in zip(PROJECTS, PROJECT_BUGS): for bug in bugs: row = Row(project=project, bug_id=bug) input_file = os.path.join(data_dir, '%s-%s-%s-sorted-susp' % (project, bug, formula)) with open(input_file) as freader: csvreader = csv.DictReader(freader) for line in csvreader: row.lines.append(line['Line']) row.data[formula].append(float(line['Suspiciousness'])) if len(row.lines) == num_lines: break dataset.rows[project][bug] = row return dataset if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-f', '--formula', required=True, choices=FORMULA, help='Base formula to use while creating the dataset') parser.add_argument('-d', '--data-dir', required=True, help='Data directory with all sorted suspiciousness values') parser.add_argument('-n', '--num-lines', required=True, type=int, help='Number of lines to consider') parser.add_argument('-o', '--output-dir', required=True, help='Output directory to write dataset to') args = parser.parse_args() dataset = create_dataset(args.data_dir, args.formula, args.num_lines) for formula in FORMULA: if formula != args.formula: add_rows_for_formula(dataset, args.data_dir, formula) dataset.to_csv(os.path.join(args.output_dir, 'dataset-%s-%s.csv' % (args.formula, args.num_lines)))
9bb4f05412faa3982c82de55fedc200a7790cc48
c06efd90533c51c2b29b7e92cd13723388de25ee
/actions/listRbacAuthorizationV1alpha1RoleForAllNamespaces.py
19afa194e46fdb73582c2cf0fc1d052e06ecc134
[]
no_license
ajohnstone/stackstorm-kubernetes
490e4a73daad3713d7c5b5b639d5f30ff1ab3e58
99ffad27f5947583a2ab1b56e80c06003d014c47
refs/heads/master
2021-01-11T23:29:49.642435
2016-12-07T13:20:34
2016-12-07T13:20:34
78,588,572
0
0
null
2017-01-11T00:48:59
2017-01-11T00:48:59
null
UTF-8
Python
false
false
1,017
py
from lib import k8s from st2actions.runners.pythonrunner import Action class listRbacAuthorizationV1alpha1RoleForAllNamespaces(Action): def run(self,config_override=None,fieldSelector=None,labelSelector=None,pretty=None,resourceVersion=None,timeoutSeconds=None,watch=None): myk8s = k8s.K8sClient(self.config) args = {} if config_override is not None: args['config_override'] = config_override if fieldSelector is not None: args['fieldSelector'] = fieldSelector if labelSelector is not None: args['labelSelector'] = labelSelector if pretty is not None: args['pretty'] = pretty if resourceVersion is not None: args['resourceVersion'] = resourceVersion if timeoutSeconds is not None: args['timeoutSeconds'] = timeoutSeconds if watch is not None: args['watch'] = watch return (True, myk8s.runAction('listRbacAuthorizationV1alpha1RoleForAllNamespaces', **args))
12d0188fb6fd2916853aa544d5ca05a6481a4047
9eed44fb62d895b083b648a01e27f4aa6fae2880
/cnn/mnist/mnist_main.py
4d2ad0ca4557ac5b566745810982950400545f48
[]
no_license
koibiki/tf_estimator_learn
6ac839fc4ce3a3d0f2cde8e97f0cfd73949d8490
d79d3a0d5b19d0c92bce24a656c1197b94c35b66
refs/heads/master
2020-05-07T14:27:14.721816
2019-04-10T14:09:29
2019-04-10T14:41:20
180,595,194
0
0
null
null
null
null
UTF-8
Python
false
false
2,892
py
import tensorflow as tf from cnn.mnist.net.cnn_net import MnistCnn import numpy as np tf.logging.set_verbosity(tf.logging.INFO) def cnn_model_fn(features, labels, mode): mnist_cnn = MnistCnn() logits = mnist_cnn(features) predictions = { # Generate predictions (for PREDICT and EVAL mode) "classes": tf.argmax(input=logits, axis=1, name="class_tensor"), # Add `softmax_tensor` to the graph. It is used for PREDICT and by the # `logging_hook`. "probabilities": tf.nn.softmax(logits, name="softmax_tensor") } loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits) if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec( tf.estimator.ModeKeys.PREDICT, predictions=logits, export_outputs={ "translate": tf.estimator.export.PredictOutput(logits) }) elif mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001) train_op = optimizer.minimize( loss=loss, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op) elif mode == tf.estimator.ModeKeys.EVAL: eval_metric_ops = { "accuracy": tf.metrics.accuracy( labels=labels, predictions=predictions["classes"])} return tf.estimator.EstimatorSpec( mode=mode, loss=loss, eval_metric_ops=eval_metric_ops) def main(unuse_argu): # Load training and eval data mnist = tf.contrib.learn.datasets.load_dataset("mnist") train_data = mnist.train.images # Returns np.array train_labels = np.asarray(mnist.train.labels, dtype=np.int32) eval_data = mnist.test.images # Returns np.array eval_labels = np.asarray(mnist.test.labels, dtype=np.int32) # Create the Estimator mnist_classifier = tf.estimator.Estimator( model_fn=cnn_model_fn, model_dir="/tmp/mnist_convnet_model") # Set up logging for predictions # Log the values in the "Softmax" tensor with label "probabilities" tensors_to_log = {"classes": "class_tensor"} logging_hook = tf.train.LoggingTensorHook(tensors=tensors_to_log, every_n_iter=50) # Train the model train_input_fn = tf.estimator.inputs.numpy_input_fn( x={"x": train_data}, y=train_labels, batch_size=512, num_epochs=None, shuffle=True) mnist_classifier.train(input_fn=train_input_fn, steps=20000, hooks=[logging_hook]) # Evaluate the model and print results eval_input_fn = tf.estimator.inputs.numpy_input_fn( x={"x": eval_data}, y=eval_labels, num_epochs=1, shuffle=False) eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn) print(eval_results) if __name__ == "__main__": tf.app.run()
ae51d1913b4b2065ba5070e60c6b33337f9e56d2
fc186ff017d25ba9391f4a26e9e707d74fb16093
/recursion/N-th-Fibonacci-Number/solution3.py
976806fa77467a843abe4200a408b02fc9ffaa84
[]
no_license
SivaAkhil/DataStructures-and-Algorithms
9178fbdb89eda717ea0df7a8693179decbb98c57
5b6e2b0b46ea59ee6e0f7c91f2b7d129780fd0d2
refs/heads/main
2023-06-29T00:22:21.633970
2021-08-03T09:46:48
2021-08-03T09:46:48
387,405,593
0
0
null
null
null
null
UTF-8
Python
false
false
343
py
# this is iterative solution # time O(N) # space O(1) def ntfib(n): lastTwo = [0, 1] counter = 3 while counter <= n: nextfib = lastTwo[0] + lastTwo[1] lastTwo[0] = lastTwo[1] lastTwo[1] = nextfib counter += 1 if n > 1: return lastTwo[1] else: lastTwo[0] print(ntfib(50))
9f1846dba8512da311219e14da9510b5ba99eba1
fe8360d9284d8156cd557d3a757645c11849cdd9
/models/coverage_tests.py
4e1b6442279a580d20a09444f28840390ef1316d
[]
no_license
hvanreenen/fhir-rest-server
5a1a5bcb9a3477d9f9d133c263f61ba202db5741
36ae55706aba0fdfcf084dbb24bd8c73929b3e0f
refs/heads/master
2021-01-10T23:45:06.793874
2016-10-20T09:57:04
2016-10-20T09:57:04
70,390,390
0
0
null
null
null
null
UTF-8
Python
false
false
3,403
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Generated from FHIR 1.0.2.7202 on 2016-10-07. # 2016, SMART Health IT. import os import io import unittest import json from . import coverage from .fhirdate import FHIRDate class CoverageTests(unittest.TestCase): def instantiate_from(self, filename): datadir = os.environ.get('FHIR_UNITTEST_DATADIR') or '' with io.open(os.path.join(datadir, filename), 'r', encoding='utf-8') as handle: js = json.load(handle) self.assertEqual("Coverage", js["resourceType"]) return coverage.Coverage(js) def testCoverage1(self): inst = self.instantiate_from("coverage-example-2.json") self.assertIsNotNone(inst, "Must have instantiated a Coverage instance") self.implCoverage1(inst) js = inst.as_json() self.assertEqual("Coverage", js["resourceType"]) inst2 = coverage.Coverage(js) self.implCoverage1(inst2) def implCoverage1(self, inst): self.assertEqual(inst.dependent, 1) self.assertEqual(inst.id, "7546D") self.assertEqual(inst.identifier[0].system, "http://xyz.com/codes/identifier") self.assertEqual(inst.identifier[0].value, "AB9876") self.assertEqual(inst.period.end.date, FHIRDate("2012-03-17").date) self.assertEqual(inst.period.end.as_json(), "2012-03-17") self.assertEqual(inst.period.start.date, FHIRDate("2011-03-17").date) self.assertEqual(inst.period.start.as_json(), "2011-03-17") self.assertEqual(inst.plan, "11024") self.assertEqual(inst.subPlan, "D15C9") self.assertEqual(inst.text.div, "<div>A human-readable rendering of the coverage</div>") self.assertEqual(inst.text.status, "generated") self.assertEqual(inst.type.code, "EHCPOL") self.assertEqual(inst.type.display, "extended healthcare") self.assertEqual(inst.type.system, "http://hl7.org/fhir/v3/ActCode") def testCoverage2(self): inst = self.instantiate_from("coverage-example.json") self.assertIsNotNone(inst, "Must have instantiated a Coverage instance") self.implCoverage2(inst) js = inst.as_json() self.assertEqual("Coverage", js["resourceType"]) inst2 = coverage.Coverage(js) self.implCoverage2(inst2) def implCoverage2(self, inst): self.assertEqual(inst.dependent, 1) self.assertEqual(inst.id, "9876B1") self.assertEqual(inst.identifier[0].system, "http://benefitsinc.com/certificate") self.assertEqual(inst.identifier[0].value, "12345") self.assertEqual(inst.period.end.date, FHIRDate("2012-05-23").date) self.assertEqual(inst.period.end.as_json(), "2012-05-23") self.assertEqual(inst.period.start.date, FHIRDate("2011-05-23").date) self.assertEqual(inst.period.start.as_json(), "2011-05-23") self.assertEqual(inst.plan, "CBI35") self.assertEqual(inst.sequence, 1) self.assertEqual(inst.subPlan, "123") self.assertEqual(inst.text.div, "<div>A human-readable rendering of the coverage</div>") self.assertEqual(inst.text.status, "generated") self.assertEqual(inst.type.code, "EHCPOL") self.assertEqual(inst.type.display, "extended healthcare") self.assertEqual(inst.type.system, "http://hl7.org/fhir/v3/ActCode")
c8f014085dc60b59132c67403fa5d7c84661e430
3152274ae39760dc1962504e2b4b9b39e885b338
/circle_area.py
754b8174d44d3a89cd89b15a7c912941b7fd8f16
[]
no_license
JoeltonLP/circlo_area
a8ce919bb2dea71be0aa694dfa0e96555fcc1d35
7b3ff55d505c7b06e9d3089cc05cf08d27f039aa
refs/heads/main
2023-04-09T12:54:59.556766
2021-04-13T19:39:31
2021-04-13T19:39:31
355,948,108
0
0
null
null
null
null
UTF-8
Python
false
false
416
py
#!/usr/bin/python3 import sys from math import pi def area_circle(raio): raio = pi * float(raio) ** 2 return raio def help(): print('needs an argument\n') print('sintaxe:') print('use: {} <raio>\n' .format(sys.argv[0])) if __name__ == '__main__': if len(sys.argv) < 2: help() else: area = area_circle(sys.argv[1]) print('Area Circle: {:.2f}' .format(area))
d511d554edfff742d4b47863aab36c2676babf88
aa0270b351402e421631ebc8b51e528448302fab
/sdk/network/azure-mgmt-network/generated_samples/network_manager_get.py
2dcc0bfecc4e973785a2db207ad947fb4a3f5f17
[ "MIT", "LGPL-2.1-or-later", "LicenseRef-scancode-generic-cla" ]
permissive
fangchen0601/azure-sdk-for-python
d04a22109d0ff8ff209c82e4154b7169b6cb2e53
c2e11d6682e368b2f062e714490d2de42e1fed36
refs/heads/master
2023-05-11T16:53:26.317418
2023-05-04T20:02:16
2023-05-04T20:02:16
300,440,803
0
0
MIT
2020-10-16T18:45:29
2020-10-01T22:27:56
null
UTF-8
Python
false
false
1,561
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from azure.identity import DefaultAzureCredential from azure.mgmt.network import NetworkManagementClient """ # PREREQUISITES pip install azure-identity pip install azure-mgmt-network # USAGE python network_manager_get.py Before run the sample, please set the values of the client ID, tenant ID and client secret of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET. For more info about how to get the value, please see: https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal """ def main(): client = NetworkManagementClient( credential=DefaultAzureCredential(), subscription_id="00000000-0000-0000-0000-000000000000", ) response = client.network_managers.get( resource_group_name="rg1", network_manager_name="testNetworkManager", ) print(response) # x-ms-original-file: specification/network/resource-manager/Microsoft.Network/stable/2022-09-01/examples/NetworkManagerGet.json if __name__ == "__main__": main()
7760fe3621617197d17783aec54d43f5126e894e
eea07e52aa5304b4a0613c625dc79f49c8356cc7
/deploy.py
dd29d1cfb5e3cc587531ea94e0d95daf7439105a
[ "MIT" ]
permissive
sanedragon/dot
3abf717288bbbf809e6a6122d8235b3a28f20c61
fb165af44a2dbd0813c3053710917cd7a0509193
refs/heads/master
2021-01-23T11:59:14.897176
2013-02-03T19:19:32
2013-02-03T19:19:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,246
py
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' Intelligently and interactively installs dot files from the same directory using symbolic links from the home directory. ''' import os import sys import shutil files_to_ignore = ( 'deploy.py', 'LICENSE', 'README.md' ) possible_ssh_private_key_files = ( 'id_rsa', 'id_dsa', 'hypodermia.pem' ) def main(): home_dir = os.path.expanduser('~') repo_dir = os.path.dirname(os.path.realpath(__file__)) print 'Home directory: %s' % home_dir print 'Repo directory: %s' % repo_dir dot_files = os.listdir(repo_dir) dot_files.sort() replace_all = False for dot_file in dot_files: if dot_file.startswith('.') or dot_file in files_to_ignore: continue # git shouldn't have a private key (correctly so) # so it needs to be moved aside and restored after if dot_file == '.ssh': for key_file in possible_ssh_private_key_files: full_key_file = os.path.join(home_dir, '.ssh', key_file) temp_key_file = os.path.join(home_dir, key_file) if os.path.exists(full_key_file): os.rename(full_key_file, temp_key_file) full_dot_file = os.path.join(repo_dir, dot_file) proposed_link_file = os.path.join(home_dir, '.' + dot_file) try: if os.path.exists(proposed_link_file): if os.path.islink(proposed_link_file): if os.readlink(proposed_link_file) == full_dot_file: print 'Skipping already deployed dot file: %s' % proposed_link_file continue if replace_all: answer = 'y' else: answer = raw_input('Overwrite? %s [ynaq]: ' % proposed_link_file).strip() if answer == 'q': print 'Quitting without overwriting %s' % proposed_link_file sys.exit() elif answer == 'n': print 'Skipping %s' % proposed_link_file continue elif answer in ('a', 'y'): if answer == 'a': replace_all = True print full_dot_file + ' => ' + proposed_link_file try: os.remove(proposed_link_file) except OSError: shutil.rmtree(proposed_link_file) os.symlink(full_dot_file, proposed_link_file) else: print 'Did not understand input. Quitting.' sys.exit() else: print full_dot_file + ' => ' + proposed_link_file os.symlink(full_dot_file, proposed_link_file) finally: if dot_file == '.ssh': for key_file in possible_ssh_private_key_files: full_key_file = os.path.join(home_dir, '.ssh', key_file) temp_key_file = os.path.join(home_dir, key_file) if os.path.exists(temp_key_file): os.rename(temp_key_file, full_key_file) if __name__ == '__main__': main()
108a2a5962b56c5693ee9fcf5027dd1c4c1a5272
f225c95cf67c0b9c1278ba2376197ab747c91ae1
/app_config/__init__.py
bea8bfcf231d0c4c783713ca61cd889f37025b98
[]
no_license
pkrasnyuk/python-RESTfull-WebService
fafb91394af93616596b7e826100000704f8dbf5
6789ddd646fcf79f10811ec6ab68d445490e41a9
refs/heads/master
2023-08-03T23:16:21.366715
2023-07-15T01:21:42
2023-07-25T08:47:02
189,635,904
2
1
null
2023-08-02T02:27:38
2019-05-31T17:49:24
Python
UTF-8
Python
false
false
2,494
py
import json import os from app_config.config import Config def load_configuration(config_file_path): if config_file_path and os.path.isfile(config_file_path): with open(config_file_path, "r") as config_file: try: load_result = json.dumps(json.load(config_file)) return __obj_creator(json.loads(load_result)) except Exception as e: print(e) return __obj_creator(None) def __obj_creator(json_object): config_host = None config_port = 0 config_connection_string = None config_db_name = None config_security_private_key = None config_token_expiry = 0 config_logging_name = None config_logging_file = None if json_object is not None: if 'app' in json_object and 'host' in json_object['app']: config_host = json_object['app']['host'] if 'app' in json_object and 'port' in json_object['app']: config_port = int(json_object['app']['port']) if 'db' in json_object and 'connectionString' in json_object['db']: config_connection_string = json_object['db']['connectionString'] if 'db' in json_object and 'dbName' in json_object['db']: config_db_name = json_object['db']['dbName'] if 'security' in json_object and 'privateKey' in json_object['security']: config_security_private_key = json_object['security']['privateKey'] if 'security' in json_object and 'tokenExpiry' in json_object['security']: config_token_expiry = json_object['security']['tokenExpiry'] if 'logging' in json_object and 'loggingName' in json_object['logging']: config_logging_name = json_object['logging']['loggingName'] if 'logging' in json_object and 'loggingFile' in json_object['logging']: config_logging_file = json_object['logging']['loggingFile'] return Config( host=config_host, port=config_port, connection_string=config_connection_string, db_name=config_db_name, private_key=config_security_private_key, token_expiry=config_token_expiry, logging_name=config_logging_name, logging_file=config_logging_file) def __main(): config_file_path = "../config.json" print(load_configuration(config_file_path)) if __name__ == '__main__': __main()
fb0fa69a4a05906e134ce9a2a9602ffc95ad2807
b9ff5e3bdc9be013590ef8438cc5b6c143e757f0
/code/products/migrations/0008_auto_20180620_2013.py
3e0a502566c25cb03b32c4078592be97e8be2e3e
[]
no_license
lethisa/django2ecom
b8792789337d6e727dda65b4307bc58a02cb43db
65373d1b057cabfac23b881c1f86f3eb4a59b570
refs/heads/master
2020-03-21T00:25:18.335192
2018-07-06T03:20:54
2018-07-06T03:20:54
137,892,500
0
0
null
null
null
null
UTF-8
Python
false
false
367
py
# Generated by Django 2.0.6 on 2018-06-20 13:13 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('products', '0007_product_slug'), ] operations = [ migrations.AlterField( model_name='product', name='slug', field=models.SlugField(), ), ]
f0fed322463f67b3e7e37bc823ba6f1b32059ddc
7cb3274199793f9c5f193d43c92d832e20668f89
/trainmodel.py
f441223bfbe3e8bea8a0cef9b82c40d9c3e88a8b
[]
no_license
anuj2110/FaceRecognition
51956c71ee197edbc48a4ddc2d668098add91c5e
fe419ebe79d2deb259bab29fb867d001b3af6cd3
refs/heads/master
2021-05-21T04:07:11.919720
2020-04-13T12:42:02
2020-04-13T12:42:02
252,535,702
0
0
null
null
null
null
UTF-8
Python
false
false
2,378
py
# -*- coding: utf-8 -*- """ Created on Fri Apr 3 13:21:54 2020 @author: Anuj """ from tensorflow.keras import layers as l from tensorflow.keras.models import Model,Sequential from tensorflow.keras.applications.vgg16 import VGG16 import numpy as np from tensorflow.keras.preprocessing.image import ImageDataGenerator import os from glob import glob from tensorflow.keras.preprocessing import image import matplotlib.pyplot as plt train_path = "./Images/train" test_path = "./Images/test" folders = os.listdir(train_path) labels = len(folders) target_size = [224,224] train_generator = ImageDataGenerator(rescale=1/255, horizontal_flip = True, shear_range = 0.2, zoom_range = 0.2) test_generator = ImageDataGenerator(rescale=1/255) vgg = VGG16(input_shape=target_size+[3], weights = 'imagenet', include_top=False) for layer in vgg.layers: layer.trainable = False x = l.Flatten()(vgg.output) prediction = l.Dense(labels,activation = 'softmax')(x) model = Model(inputs = vgg.input,outputs = prediction) model.summary() # tell the model what cost and optimization method to use model.compile( loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'] ) training_set = train_generator.flow_from_directory(train_path, target_size = (224, 224), batch_size = 32, class_mode = 'categorical') test_set = test_generator.flow_from_directory(test_path, target_size = (224, 224), batch_size = 32, class_mode = 'categorical') r = model.fit_generator( training_set, validation_data=test_set, epochs=5, steps_per_epoch=len(training_set), validation_steps=len(test_set) ) # loss plt.plot(r.history['loss'], label='train loss') plt.plot(r.history['val_loss'], label='val loss') plt.legend() plt.savefig('LossVal_loss.png') plt.show() # accuracies plt.plot(r.history['accuracy'], label='train acc') plt.plot(r.history['val_accuracy'], label='val acc') plt.legend() plt.savefig('AccVal_acc.png') plt.show() model.save('facefeatures_new_model.h5')
6878cac300bf18e2e450cd1656b0b26693b23a7b
f82757475ea13965581c2147ff57123b361c5d62
/gi-stubs/repository/Vulkan/BufferCreateInfo.py
5d76890125f871cb5c2cb76be92e0dd89aa0a4f7
[]
no_license
ttys3/pygobject-stubs
9b15d1b473db06f47e5ffba5ad0a31d6d1becb57
d0e6e93399212aada4386d2ce80344eb9a31db48
refs/heads/master
2022-09-23T12:58:44.526554
2020-06-06T04:15:00
2020-06-06T04:15:00
269,693,287
8
2
null
2020-06-05T15:57:54
2020-06-05T15:57:54
null
UTF-8
Python
false
false
4,209
py
# encoding: utf-8 # module gi.repository.Vulkan # from /usr/lib64/girepository-1.0/Vulkan-1.0.typelib # by generator 1.147 """ An object which wraps an introspection typelib. This wrapping creates a python module like representation of the typelib using gi repository as a foundation. Accessing attributes of the module will dynamically pull them in and create wrappers for the members. These members are then cached on this introspection module. """ # imports import gi as __gi class BufferCreateInfo(__gi.Struct): # no doc def __delattr__(self, *args, **kwargs): # real signature unknown """ Implement delattr(self, name). """ pass def __dir__(self, *args, **kwargs): # real signature unknown """ Default dir() implementation. """ pass def __eq__(self, *args, **kwargs): # real signature unknown """ Return self==value. """ pass def __format__(self, *args, **kwargs): # real signature unknown """ Default object formatter. """ pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __ge__(self, *args, **kwargs): # real signature unknown """ Return self>=value. """ pass def __gt__(self, *args, **kwargs): # real signature unknown """ Return self>value. """ pass def __hash__(self, *args, **kwargs): # real signature unknown """ Return hash(self). """ pass def __init_subclass__(self, *args, **kwargs): # real signature unknown """ This method is called when a class is subclassed. The default implementation does nothing. It may be overridden to extend subclasses. """ pass def __init__(self, *args, **kwargs): # real signature unknown pass def __le__(self, *args, **kwargs): # real signature unknown """ Return self<=value. """ pass def __lt__(self, *args, **kwargs): # real signature unknown """ Return self<value. """ pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass def __ne__(self, *args, **kwargs): # real signature unknown """ Return self!=value. """ pass def __reduce_ex__(self, *args, **kwargs): # real signature unknown """ Helper for pickle. """ pass def __reduce__(self, *args, **kwargs): # real signature unknown """ Helper for pickle. """ pass def __repr__(self, *args, **kwargs): # real signature unknown """ Return repr(self). """ pass def __setattr__(self, *args, **kwargs): # real signature unknown """ Implement setattr(self, name, value). """ pass def __sizeof__(self, *args, **kwargs): # real signature unknown """ Size of object in memory, in bytes. """ pass def __str__(self, *args, **kwargs): # real signature unknown """ Return str(self). """ pass def __subclasshook__(self, *args, **kwargs): # real signature unknown """ Abstract classes can override this to customize issubclass(). This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached). """ pass def __weakref__(self, *args, **kwargs): # real signature unknown pass __class__ = None # (!) real value is "<class 'gi.types.StructMeta'>" __dict__ = None # (!) real value is "mappingproxy({'__info__': StructInfo(BufferCreateInfo), '__module__': 'gi.repository.Vulkan', '__gtype__': <GType void (4)>, '__dict__': <attribute '__dict__' of 'BufferCreateInfo' objects>, '__weakref__': <attribute '__weakref__' of 'BufferCreateInfo' objects>, '__doc__': None})" __gtype__ = None # (!) real value is '<GType void (4)>' __info__ = StructInfo(BufferCreateInfo)
8cf6db9dd4b6aa7154a6d86c2408d2b5eaa07ed3
0db19410e9751790af8ce4a0a9332293e379c02f
/mmpose/datasets/transforms/__init__.py
7ccbf7dac2822a8b8d093366c2632ee81c9d88f9
[ "Apache-2.0" ]
permissive
open-mmlab/mmpose
2c9986521d35eee35d822fb255e8e68486026d94
537bd8e543ab463fb55120d5caaa1ae22d6aaf06
refs/heads/main
2023-08-30T19:44:21.349410
2023-07-04T13:18:22
2023-07-04T13:18:22
278,003,645
4,037
1,171
Apache-2.0
2023-09-14T09:44:55
2020-07-08T06:02:55
Python
UTF-8
Python
false
false
971
py
# Copyright (c) OpenMMLab. All rights reserved. from .bottomup_transforms import (BottomupGetHeatmapMask, BottomupRandomAffine, BottomupResize) from .common_transforms import (Albumentation, GenerateTarget, GetBBoxCenterScale, PhotometricDistortion, RandomBBoxTransform, RandomFlip, RandomHalfBody) from .converting import KeypointConverter from .formatting import PackPoseInputs from .loading import LoadImage from .pose3d_transforms import RandomFlipAroundRoot from .topdown_transforms import TopdownAffine __all__ = [ 'GetBBoxCenterScale', 'RandomBBoxTransform', 'RandomFlip', 'RandomHalfBody', 'TopdownAffine', 'Albumentation', 'PhotometricDistortion', 'PackPoseInputs', 'LoadImage', 'BottomupGetHeatmapMask', 'BottomupRandomAffine', 'BottomupResize', 'GenerateTarget', 'KeypointConverter', 'RandomFlipAroundRoot' ]
e4103af9c334ebda338051406002d470f160085f
e8bc319b26f4ca69e363b81194da3692fc9900b9
/120.三角形最小路径和.py
b799f63d281ad9d47b8119434723fd39a785e344
[]
no_license
chxii/leetcode
4b5c2d5acc4c10d93a3c1e2d9773d38590b5408f
a1c54a867ffdf0690e26e73999f8efc518fef442
refs/heads/master
2022-04-11T15:56:37.123797
2020-04-07T08:37:55
2020-04-07T08:37:55
238,866,316
0
0
null
null
null
null
UTF-8
Python
false
false
716
py
# # @lc app=leetcode.cn id=120 lang=python3 # # [120] 三角形最小路径和 # # @lc code=start class Solution: def minimumTotal(self, triangle: List[List[int]]) -> int: if not triangle or len(triangle) == 0: return 0 m = len(triangle) n = len(triangle[-1]) dp = [[float('inf')] * (n) for _ in range(m)] dp[0][0] = triangle[0][0] for i in range(1, m): for j in range(i+1): # print(i, j) if j - 1 >= 0: dp[i][j] = triangle[i][j] + min(dp[i-1][j-1], dp[i-1][j]) else: dp[i][j] = triangle[i][j] + dp[i-1][j] return min(dp[-1]) # @lc code=end
9f437daeae8ef5eed4fff4417f18ad21366df054
3ee0c019a7b10a7a78dfc07d61da5d2b3cf3ad27
/191113/swep_2117_홈방범서비스.py
8a97c9aad3e9acbaff3dc1f0a96086db81eb8033
[]
no_license
JiminLee411/algorithms
a32ebc9bb2ba4f68e7f80400a7bc26fd1c3a39c7
235834d1a50d5054f064bc248a066cb51c0835f5
refs/heads/master
2020-06-27T01:37:55.390510
2019-11-14T08:57:16
2019-11-14T08:57:16
199,811,134
0
0
null
null
null
null
UTF-8
Python
false
false
1,182
py
import sys sys.stdin = open('swep_2117.txt', 'r') from collections import deque delta = ((1, 0), (-1, 0), (0, 1), (0, -1)) def find(x, y): global homeCnt visited = [[0 for _ in range(N + 1)] for _ in range(N + 1)] visited[x][y] = 1 cnt = city[x][y] Q = deque() Q.append([r, c]) k = 1 while Q: x, y = Q.popleft() if visited[x][y] == N + 1: break for dx, dy in delta: nx, ny = x + dx, y + dy if nx < 0 or ny < 0 or nx >= N or ny >= N: continue if not visited[nx][ny]: visited[nx][ny] = visited[x][y] + 1 if visited[nx][ny] > k: k = visited[nx][ny] Q.append([nx, ny]) if city[nx][ny]: cnt += 1 if cnt*M - (k*k + (k-1)*(k-1)) >= 0 and homeCnt < cnt: homeCnt = cnt T = int(input()) for tc in range(1, T + 1): N, M = map(int, input().split()) city = [list(map(int, input().split())) for _ in range(N)] homeCnt= 1 for r in range(N): for c in range(N): find(r, c) print('#{} {}'. format(tc, homeCnt))
8db5bfa3d73b5f07725a2a441166c5d20a4219dc
15781159d59e07209382c0c560ec75497186bd27
/project2/plot.py
3253df8877ebf22f41f058e6227082c6035ea1c9
[]
no_license
dougshidong/mech516
cfad3569ef6fd50b0054bf913315d3cdfca0a62d
8358f5429881441dd9809170afeaf3db93c72e7b
refs/heads/master
2021-01-10T23:03:21.914212
2016-12-02T21:33:59
2016-12-02T21:33:59
70,628,442
2
0
null
null
null
null
UTF-8
Python
false
false
1,627
py
#!/usr/bin/env python import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages plt.rc('text', usetex=True) plt.rc('font', family='serif') fname = ['Godunov','HLLC','MacCormack'] inname = 'exact.dat' xe, re, ue, pe = np.loadtxt(inname, dtype = np.float64, skiprows=1, unpack=True) for caseid in range(3): inname = fname[caseid] + '.dat' outname = fname[caseid] + '.pdf' x, r, u, p = np.loadtxt(inname, dtype = np.float64, skiprows=1, unpack=True) pp = PdfPages(outname) fig, axarr = plt.subplots(3, sharex=True) axarr[0].set_title(fname[caseid]) axarr[0].plot(xe, re, '-k') axarr[0].plot(x, r, 'or',mec='r',mfc='none',ms=5) axarr[0].set_ylabel(r'\rho') axarr[1].plot(xe, ue, '-k') axarr[1].plot(x, u, 'og',mec='g',mfc='none',ms=5) axarr[1].set_ylabel(r'u') axarr[2].plot(xe, pe, '-k') axarr[2].plot(x, p, 'ob',mec='b',mfc='none',ms=5) axarr[2].set_ylabel(r'p') axarr[2].set_xlabel(r'x') axarr[0].set_ylim([0.75, 1.6]) axarr[1].set_ylim([-0.02, 0.40]) axarr[2].set_ylim([0.9, 2.1]) for i in range(3): axarr[i].axvline(x= 8.655,color='k',ls='-', label='Contact Surface') axarr[i].axvline(x= -41.75,color='k',ls='--',label='Left Rarefaction Head') axarr[i].axvline(x= -31.35,color='k',ls='-.',label='Left Rarefaction Tail') axarr[i].axvline(x= 35.35,color='k',ls=':', label='Right Shockwave') axarr[0].legend(loc=2, fontsize = 'xx-small') plt.tight_layout() pp.savefig(bbx_inches = 'tight') pp.close()
90472afe2ddab6686099aefea75222231352131e
45870a80cbe343efe95eb9e8d0bd47c8c88353d1
/特殊的函数/venv/Lib/site-packages/tensorflow/contrib/data/python/ops/interleave_ops.py
2485c0d22098deb12eed5864ddec8218fe5687a9
[]
no_license
pippichi/IntelliJ_PYTHON
3af7fbb2c8a3c2ff4c44e66736bbfb7aed51fe88
0bc6ded6fb5b5d9450920e4ed5e90a2b82eae7ca
refs/heads/master
2021-07-10T09:53:01.264372
2020-07-09T13:19:41
2020-07-09T13:19:41
159,319,825
0
0
null
null
null
null
UTF-8
Python
false
false
6,052
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Non-deterministic dataset transformations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.data.ops import readers from tensorflow.python.util import deprecation def parallel_interleave(map_func, cycle_length, block_length=1, sloppy=False, buffer_output_elements=None, prefetch_input_elements=None): """A parallel version of the `Dataset.interleave()` transformation. `parallel_interleave()` maps `map_func` across its input to produce nested datasets, and outputs their elements interleaved. Unlike @{tf.data.Dataset.interleave}, it gets elements from `cycle_length` nested datasets in parallel, which increases the throughput, especially in the presence of stragglers. Furthermore, the `sloppy` argument can be used to improve performance, by relaxing the requirement that the outputs are produced in a deterministic order, and allowing the implementation to skip over nested datasets whose elements are not readily available when requested. Example usage: ```python # Preprocess 4 files concurrently. filenames = tf.data.Dataset.list_files("/path/to/data/train*.tfrecords") dataset = filenames.apply( tf.contrib.data.parallel_interleave( lambda filename: tf.data.TFRecordDataset(filename), cycle_length=4)) ``` WARNING: If `sloppy` is `True`, the order of produced elements is not deterministic. Args: map_func: A function mapping a nested structure of tensors to a `Dataset`. cycle_length: The number of input `Dataset`s to interleave from in parallel. block_length: The number of consecutive elements to pull from an input `Dataset` before advancing to the next input `Dataset`. sloppy: If false, elements are produced in deterministic order. Otherwise, the implementation is allowed, for the sake of expediency, to produce elements in a non-deterministic order. buffer_output_elements: The number of elements each iterator being interleaved should buffer (similar to the `.prefetch()` transformation for each interleaved iterator). prefetch_input_elements: The number of input elements to transform to iterators before they are needed for interleaving. Returns: A `Dataset` transformation function, which can be passed to @{tf.data.Dataset.apply}. """ def _apply_fn(dataset): return readers.ParallelInterleaveDataset( dataset, map_func, cycle_length, block_length, sloppy, buffer_output_elements, prefetch_input_elements) return _apply_fn @deprecation.deprecated( None, "Use `tf.contrib.data.parallel_interleave(..., sloppy=True)`.") def sloppy_interleave(map_func, cycle_length, block_length=1): """A non-deterministic version of the `Dataset.interleave()` transformation. `sloppy_interleave()` maps `map_func` across `dataset`, and non-deterministically interleaves the results. The resulting dataset is almost identical to `interleave`. The key difference is that if retrieving a value from a given output iterator would cause `get_next` to block, that iterator will be skipped, and consumed when next available. If consuming from all iterators would cause the `get_next` call to block, the `get_next` call blocks until the first value is available. If the underlying datasets produce elements as fast as they are consumed, the `sloppy_interleave` transformation behaves identically to `interleave`. However, if an underlying dataset would block the consumer, `sloppy_interleave` can violate the round-robin order (that `interleave` strictly obeys), producing an element from a different underlying dataset instead. Example usage: ```python # Preprocess 4 files concurrently. filenames = tf.data.Dataset.list_files("/path/to/data/train*.tfrecords") dataset = filenames.apply( tf.contrib.data.sloppy_interleave( lambda filename: tf.data.TFRecordDataset(filename), cycle_length=4)) ``` WARNING: The order of elements in the resulting dataset is not deterministic. Use `Dataset.interleave()` if you want the elements to have a deterministic order. Args: map_func: A function mapping a nested structure of tensors (having shapes and types defined by `self.output_shapes` and `self.output_types`) to a `Dataset`. cycle_length: The number of input `Dataset`s to interleave from in parallel. block_length: The number of consecutive elements to pull from an input `Dataset` before advancing to the next input `Dataset`. Note: `sloppy_interleave` will skip the remainder of elements in the `block_length` in order to avoid blocking. Returns: A `Dataset` transformation function, which can be passed to @{tf.data.Dataset.apply}. """ def _apply_fn(dataset): return readers.ParallelInterleaveDataset( dataset, map_func, cycle_length, block_length, sloppy=True, buffer_output_elements=None, prefetch_input_elements=None) return _apply_fn
4f44ff65f94163b3fd4e6aed042fb3f16285a7c3
ae92e7e1a3e66059e81da62dca274ea664fa3568
/eight-queens/main_demo3.py
2367d71070d386ecdcadece789ef2d77ad5050a6
[]
no_license
nasihs/omelette
a90b6f80e4025be8bbfd608953773f5e1e862836
135e199c12d53d36ec05e3a1b615a478aab71611
refs/heads/master
2021-09-20T12:15:56.344038
2018-08-09T13:53:27
2018-08-09T13:53:27
141,831,224
0
0
null
null
null
null
UTF-8
Python
false
false
6,620
py
# -*- coding:utf-8 -*- """ 自动前进 加入了多线程通信 加入了自动计算步数 """ import cv2 import numpy as np import sys import subprocess import identify_demo as id from multiprocessing import Process, Queue def count_blocks(): pass def move_forward(temp, fwd, q): flag = 1 while True: coor = q.get(True) if temp == 0: # 停车 ser.write([0x5A]) # 头帧 ser.write([0x01]) # 方向 ser.write([0x00]) # 速度 break # 平移 if fwd: # 前进 ser.write([0x5A]) # 头帧 ser.write([0x0]) pass else: # 后退 # ser.write() # ser.write() pass # 判断是否下一格 if flag == 1 and (coor[1] == center[1]): flag = 0 temp -= 1 #print (temp) if coor[1] != center[1]: flag = 1 else: flag = 0 def move_right(temp, rht, q): flag = 1 while True: coor = q.get(True) if temp == 0: # 停车 # ser.write() # ser.write() break # 平移 if rht: # 右移 # ser.write() # ser.write() pass else: # 左移 # ser.write() # ser.write() pass # 判断是否下一格 if flag == 1 and (coor[1] == center[1]): flag = 0 temp -= 1 #print (temp) if coor[1] != center[1]: flag = 1 else: flag = 0 def recognize(q): print ("camera initializing...") cap0 = cv2.VideoCapture(0) cap0.set(3,320) cap0.set(4,240) if cap0.isOpened: print ("cameras are opened") else: print ("cameras are not opened") print ("program exiting...") sys.exit() print ("FPS0:", cap0.get(5)) print ("cameras successfully initialized") while True: try: ret0, frame0 = cap0.read() except: print ("cap0.read failed") cap0.release() sys.exit() #ret, frame = cap0.read() #frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) try: cv2.imshow("camera0", frame0) except: print ("capture failed") cap0.release() print ("exiting...") sys.exit() try: diff1, diff2 = (id.identify_mid(frame0)) except: print("identify_mid failed") cap0.release() sys.exit() if diff1 > 255: diff1 = 255 d1 = int(diff1) d2 = int(diff2) #coor = (d1, d2) #print (coor) q.put((d1, d2)) if cv2.waitKey(5) & 0xFF == ord("q"): cap0.release() cv2.destroyAllWindows() break ret, frame = cap0.read() print (ret) #frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) cv2.imshow("camera01", frame) diff1, diff2 = id.identify_mid(frame) #print(diff1) if diff1 > 255: diff1 = 255 d1 = int(diff1) d2 = int(diff2) print (d1,d2) #list = [] ser.write([0xA5]) ser.write([d1]) ser.write([d2]) #time.sleep(0.2) q.put((d1, d2)) if cv2.waitKey(1) == ord("q"): cap0.release() cv2.destroyAllWindows() break def auto_move(q): for i in steps: # coor = q.get(True) forward = i[0] < 0 temp_x = abs(i[0]) right = i[1] > 0 temp_y = abs(i[1]) move_forward(temp_x, forward, q) move_right(temp_y, right, q) ''' print (i) while True: # dx, dy为正:向左或下平移 if i[0] != 0: temp = abs(i[0]) for k in range(temp): # 向左移动 # ser.write (OxA5) ''' if __name__ == "__main__": # 设定摄像头中心坐标 center = (160, 120) ser = serial.Serial('/dev/ttyAMA0', 115200, timeout = 3) """ #初始化摄像头、串口 cap1 = cv2.VideoCapture(0) cap1.set(3,300) cap1.set(4,300) #ser = serial.Serial("dev/ttyS0", 115200, timeout = 3) ''' #识别起点 ret, frame = cap1.read() origin = [id.identify_num(frame)] ''' """ # origin为入场位置 origin = [57] #输入路径 #route = [41, 55, 39, 22] route1 = [42, 26, 32, 8] # 总路径 route = origin + route1 print ("总路径为:", route) # 棋盘坐标系 map = {"1": (1, 1), "2": (2, 1), "3": (3, 1), "4": (4, 1), "5": (5, 1), "6": (6, 1), "7": (7, 1), "8": (8, 1), "9": (1, 2), "10": (2, 2), "11": (3, 2), "12": (4, 2), "13": (5, 2), "14": (6 ,2), "15": (7, 2), "16": (8, 2), "17": (1, 3), "18": (2, 3), "19": (3, 3), "20": (4, 3), "21": (5, 3), "22": (6, 3), "23": (7, 3), "24": (8, 3), "25": (1, 4), "26": (2, 4), "27": (3, 4), "28": (4, 4), "29": (5, 4), "30": (6, 4), "31": (7, 4), "32": (8, 4), "33": (1, 5), "34": (2, 5), "35": (3, 5), "36": (4, 5), "37": (5, 5), "38": (6, 5), "39": (7, 5), "40": (8, 5), "41": (1, 6), "42": (2, 6), "43": (3, 6), "44": (4, 6), "45": (5, 6), "46": (6, 6), "47": (7, 6), "48": (8, 6), "49": (1, 7), "50": (2, 7), "51": (3, 7), "52": (4, 7), "53": (5, 7), "54": (6, 7), "55": (7, 7), "56": (8, 7), "57": (1, 8), "58": (2, 8), "59": (3, 8), "60": (4, 8), "61": (5, 8), "62": (6, 8), "63": (7, 8), "64": (8, 8)} # 从route中一个坐标移动到下一个坐标为一个step steps = [] for i in range(1, len(route)): x2 = map[str(route[i])][0] x1 = map[str(route[i - 1])][0] dx = x2 - x1 y2 = map[str(route[i])][1] y1 = map[str(route[i - 1])][1] dy = y2 - y1 steps.append((dx, dy)) # dx, dy为每次移动时x, y轴移动的格数 print ("步骤:", steps) q = Queue() p_rec = Process(target = recognize, args = (q,)) p_mov = Process(target = auto_move, args = (q, steps)) p_rec.start() p_mov.start() p_mov.join() p_rec.terminate() print ("done") sys.exit()
81a97264c5de5a15b96cb8468452246dc403a2ef
1157e03573c8a1310e7145a3d6426ab79bdc4681
/utils/label_check.py
35e9db3dc3f2acbca3d68d2ff1345fb33da87d0a
[]
no_license
Interesting6/SegySegUNet
3a5d2568398e72032cbed03c89ff60737c9dca4b
91dc6475dd0c94d4e727a4dc2a7802a2d559832c
refs/heads/main
2023-02-23T10:41:27.232883
2021-01-17T04:30:20
2021-01-17T04:30:20
330,310,111
0
0
null
null
null
null
UTF-8
Python
false
false
473
py
import matplotlib.pyplot as plt import numpy as np import segyio import os data_dir = "/home/cym/Datasets/StData-12/F3_block/" data_path = os.path.join(data_dir, "F3Seis_IL190_490_Amplitude.segy") label_path = os.path.join(data_dir, "F3Seis_IL190_490_Label.segy") data_cube = np.transpose(segyio.cube(data_path), (0,2,1)) label_cube = np.transpose(segyio.cube(label_path), (0,2,1)) label2 = label_cube[1] print(label2[:50, :10]) print("-------") print(label2[:50, -10:])
39bc582e2ac16c9c823548cbeff5e7f1e3705111
2893460027b0f109f8d0e2a6aaf3b2f03befd642
/media.py
df39668871b60ce68997834c86305c3a006cbf48
[]
no_license
ldsz6524/Programs
f7f4efba9fe2b2f428a4cdce65bbd861c5c153f8
ea6310a1fe52642e629875ba7d2f215c5a4c2b12
refs/heads/master
2022-04-11T17:59:57.119771
2020-03-12T05:17:29
2020-03-12T05:17:29
113,326,209
3
0
null
null
null
null
UTF-8
Python
false
false
621
py
import webbrowser class Movie(): '''This class provides a way to store movie related information''' def __init__(self, movie_title, poster_image, trailer_youtube): '''This method is uesd to initialise the object''' '''Line 8 to 10 are the definition of instance variables''' self.title = movie_title self.poster_image_url = poster_image self.trailer_youtube_url = trailer_youtube def show_trailer(self): '''Show the trailer of the movie''' webbrowser.open(self.trailer_youtube_url)
c84a441156c8b3291af36939bd3f090075b2f96c
afa85dbb2e496b6357ffe4e163163cea76095e35
/113mon.py
8c3432a3c6bde889f77d36084b139c3e4f950b00
[]
no_license
RaghulHari/pythonprogramming
f276d0669fe40d5c7bc0bff27f7192e3547a2375
29bdff7c6c038494ce396503acec832ac7bf888a
refs/heads/master
2020-05-30T06:28:39.459731
2019-10-03T07:33:08
2019-10-03T07:33:08
189,580,304
0
2
null
null
null
null
UTF-8
Python
false
false
209
py
l=input() l=l.split("/") a=l[0] b=l[1] c=l[1] e=len(a) f=len(b) g=len(c) if e==2 and f==2 and g==4 and int(l[0])>0 and int(l[0])<32 and int(l[1])>=1 and int(l[1])<13: print("yes") else: print("no")
8212533adce5b873f82bb889796cd14c74185f25
fd18d9737b8a48c452272cc525397757e3b05bd3
/wirfi_app/migrations/0022_presetfilter.py
fd6a4d698ad24dfe8cd1e47cd182e762ebe7da62
[]
no_license
rameshdhungana/wirfi-backend
7551081bf1ccac4d6b8977b6f778001f5f96e9b2
a1afcb3543dfbbe582383532174e3f84a30712b6
refs/heads/main
2023-01-02T13:23:44.041954
2019-01-31T10:17:05
2019-01-31T10:17:05
305,905,796
0
0
null
null
null
null
UTF-8
Python
false
false
995
py
# Generated by Django 2.0.7 on 2018-09-07 08:42 from django.conf import settings import django.contrib.postgres.fields from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('wirfi_app', '0021_remove_device_priority'), ] operations = [ migrations.CreateModel( name='PresetFilter', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('filter_type', models.PositiveIntegerField()), ('filter_keys', django.contrib.postgres.fields.ArrayField(base_field=models.IntegerField(), size=None)), ('sort_type', models.PositiveIntegerField()), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
8d1500fc9d9743384c3cf312d133450010f67d6f
8afae7ea1b1129edbcba6558cc0e1197fcf9d868
/data/acs_pums/analyze_energy.py
98f1a3cf52cd7af1f8eb309dec83f39c915a7376
[]
no_license
mjstevens777/energy-portal
bb3f89d4fcb29f778df2940d394995fe274b59c4
4dbd59972091058320da00818b2256e4a16826aa
refs/heads/master
2021-01-21T04:44:33.205235
2016-06-08T22:40:35
2016-06-08T22:40:35
55,736,179
0
0
null
null
null
null
UTF-8
Python
false
false
1,153
py
import csv from collections import defaultdict vars = ['ELEP', 'GASP', 'FULP'] data = {} for var in vars: data[var] = defaultdict(float) data[var + '_weight'] = defaultdict(float) puma_ids = set() with open('acs_pums/data/energy_usage_individual.csv') as f: for i, row in enumerate(csv.DictReader(f)): if i % 10000 == 0: print('.', end='', flush=True) puma_id = row['puma_id'] puma_ids.add(puma_id) for var in ['ELEP', 'GASP', 'FULP']: value = row[var] if value.isdigit() and int(value) >= 4: weight = float(row['WGTP']) data[var][puma_id] += float(value) * weight data[var + '_weight'][puma_id] += weight with open('acs_pums/energy_by_puma.csv', 'w') as f: writer = csv.DictWriter(f, ['puma_id'] + vars) writer.writeheader() for puma_id in puma_ids: row = {'puma_id': puma_id} for var in vars: if puma_id in data[var]: row[var] = data[var][puma_id] / data[var + '_weight'][puma_id] else: row[var] = None writer.writerow(row)
2670bf4dde4523bdc076aa6d44c2a8acca432221
91d101db50816f2cda918998fd1b70396f27a143
/mllib_trial_pca.py
5a1866eacaa8c8d3eb96b253c080fd33c5b7d80e
[]
no_license
shah-deven/Reducing-Inequalities
b6d93068b4125b58362fe095cb5001d0b0d3b236
d67b24e8ecd4f5547f06e622351130c644efd126
refs/heads/master
2020-03-10T17:12:44.198588
2018-04-14T07:52:30
2018-04-14T07:52:30
129,494,482
0
0
null
null
null
null
UTF-8
Python
false
false
2,210
py
from pyspark import SparkContext, SQLContext from pyspark.mllib.regression import LabeledPoint, RidgeRegressionWithSGD from pyspark.mllib.linalg.distributed import RowMatrix from pyspark.mllib.linalg import Vector import numpy as np def parsePoint(line): values = [] # if line.split(",")[1] != 'income': for x in line.replace(",", " ").split(" "): try: values.append(float(x)) except: pass if len(values) != 0: return LabeledPoint(values[0], values[1:]) '''values = [float(x) for x in line.replace(",", " ").split(" ")] return LabeledPoint(values[0], values[1:])''' sc = SparkContext() sql = SQLContext(sc) #train_data = sc.textFile("./reduced-inequalities/flattened_with_years.csv") #data = sc.read.format("csv").option("header", "true").load("./flattened_2002_1000.csv") train_data = (sql.read.format("csv").option("header","true").load('./flattened_with_years.csv')) train_data_y = train_data[train_data.columns[0]] train_data = train_data[train_data.columns[1:]] row_data = train_data.rdd vector_data = row_data.map(lambda x: np.array(x)) #parsed_data_train = train_data.map(parsePoint) #print(vector_data.collect()) matrix = RowMatrix(vector_data) #print(matrix.collect()) pc = matrix.computePrincipalComponents(7) #print(pc) projected_data_train = matrix.multiply(pc) #print("here:", projected_data_train) train_data_y = train_data_y.rdd projected_data_train = projected_data_train.rdd train_data = train_data_y.join(projected_data_train) print(train_data.collect()) df_train = projected_data_train.map(lambda x: LabeledPoint(x[0], x[1:])) #print(df_train) model = RidgeRegressionWithSGD.train(df_train) print(model.weights) print(parsedData.take(3)) test_data = sc.textFile("./reduced-inequalities/flattened_2016_with_year.csv") parsed_data_test = test_data.map(parsePoint) test_matrix = RowMatrix(parsed_data_test) projected_data_test = test_matrix.multiply(pc) valuesAndPreds = projected_data_test.map(lambda p: (p[0], model.predict(p[1:]))) print(valuesAndPreds.take(3)) mse = valuesAndPreds.map(lambda v, p: (v - p)**2).reduce(lambda x,y: x + y) / valuesAndPreds.count() print("Mean Squared Error: ", mse)
6191ce97580edf97f30469eba4fddaa91ca01a42
6a46949273edb67a5962f88a85c93612c0cb4810
/constants.py
abea9333fe550eb4920a795a163c2698779e608a
[]
no_license
Jonasori/Outdated-Disk-Modeling
1c3e22bfca4b6b4e6882a8887b3fb9fac1d7529f
1964a2f543870cb112421eb32ed3a725e0acf842
refs/heads/master
2020-03-11T01:16:22.500038
2018-09-27T03:36:02
2018-09-27T03:36:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,032
py
"""A place to put all the junky equations I don't want elsewhere. FOR GRID SEARCH. """ from astropy.constants import c from astropy.io import fits import numpy as np import datetime c = c.to('km/s').value mol = 'hco' # These frequencies come from Splatalogue and are different than those # embedded in, for example, the uvf file imported as hdr below # which gives restfreq(hco) = 356.72278845870005 lines = {'hco': {'restfreq': 356.73422300, 'jnum': 3, 'rms': 1, 'chanstep_freq': 1 * 0.000488281, 'baseline_cutoff': 0, 'chan0_freq': 355.791034, 'spwID': 1}, 'hcn': {'restfreq': 354.50547590, 'jnum': 3, 'rms': 1, 'chanstep_freq': 1 * 0.000488281, 'baseline_cutoff': 0, 'chan0_freq': 354.2837, 'spwID': 0}, 'co': {'restfreq': 345.79598990, 'jnum': 2, 'rms': 1, 'chanstep_freq': -1 * 0.000488281, 'baseline_cutoff': 35, 'chan0_freq': 346.114523, 'spwID': 2}, 'cs': {'restfreq': 342.88285030, 'jnum': 6, 'rms': 1, 'chanstep_freq': -1 * 0.000488281, 'baseline_cutoff': 30, 'chan0_freq': 344.237292, 'spwID': 3} } """ headers = {'hco': {'im': fits.getheader('./data/hco/hco.fits'), 'vis': fits.getheader('./data/hco/hco.uvf')}, 'hcn': {'im': fits.getheader('./data/hcn/hcn.fits'), 'vis': fits.getheader('./data/hco/hcn.uvf')}, 'co': {'im': fits.getheader('./data/co/co.fits'), 'vis': fits.getheader('./data/co/co.uvf')}, 'cs': {'im': fits.getheader('./data//cs.fits'), 'vis': fits.getheader('./data/cs/cs.uvf')} } """ # DATA FILE NAME def get_data_path(mol, short_vis_only=False): """Get the path to the data files for a given line.""" dataPath = './data/' + mol + '/' + mol if short_vis_only is True: dataPath += '-short' + str(lines[mol]['baseline_cutoff']) return dataPath dataPath = get_data_path(mol, short_vis_only=False) # What day is it? Used to ID files. months = ['jan', 'feb', 'march', 'april', 'may', 'june', 'july', 'aug', 'sep', 'oct', 'nov', 'dec'] td = datetime.datetime.now() today = months[td.month - 1] + str(td.day) # DEFAULT VALUES # Column density [low, high] col_dens = [1.3e21/(1.59e21), 1e30/(1.59e21)] # Freeze out temp (K) Tfo = 19 # Midplane temperature (K) Tmid = 15 # Atmospheric temperature (K) Tatm = 100 # Temp structure power law index ( T(r) ~ r^qq ) Tqq = -0.5 # Stellar mass, in solar masses [a,b] m_star = [3.5, 0.4] # Disk mass, in solar masses [a,b] m_disk = [0.078, 0.028] # Inner disk radius, in AU r_in = [1., 1.] # Outer disk radius, in AU r_out = [500, 300] # Handedness of rotation rotHand = [-1, -1] # Offsets (from center), in arcseconds # centering_for_olay.cgdisp is the file that actually makes the green crosses! # Williams values: offsets = [[-0.0298, 0.072], [-1.0456, -0.1879]] # Fit values: offsets = [[0.0002, 0.032], [-1.006, -0.318]] # Williams vals: vsys = [10.55, 10.85] vsys = [9.95, 10.75] other_params = [col_dens, Tfo, Tmid, m_star, m_disk, r_in, rotHand, offsets] def obs_stuff(mol): """Get freqs, restfreq, obsv, chanstep, both n_chans, and both chanmins. Just putting this stuff in a function because it's ugly and line-dependent. """ jnum = lines[mol]['jnum'] # Dig some observational params out of the data file. hdr = fits.getheader(dataPath + '.uvf') restfreq = lines[mol]['restfreq'] # restfreq = hdr['CRVAL4'] * 1e-9 # Get the frequencies and velocities of each step # {[arange(nchans) + 1 - chanNum] * chanStepFreq) + ChanNumFreq} * Hz2GHz # [-25,...,25] * d_nu + ref_chan_freq freqs = ( (np.arange(hdr['naxis4']) + 1 - hdr['crpix4']) * hdr['cdelt4'] + hdr['crval4']) * 1e-9 obsv = c * (restfreq-freqs)/restfreq chan_dir = lines[mol]['chanstep_freq']/np.abs(lines[mol]['chanstep_freq']) chanstep = -1 * chan_dir * np.abs(obsv[1]-obsv[0]) # chanstep = c * (lines[mol]['chanstep_freq']/lines[mol]['restfreq']) # Find the largest distance between a point on the velocity grid and sysv # Double it to cover both directions, convert from velocity to chans # The raytracing code will interpolate this (larger) grid onto the smaller # grid defined by nchans automatically. nchans_a = int(2*np.ceil(np.abs(obsv-vsys[0]).max()/np.abs(chanstep))+1) nchans_b = int(2*np.ceil(np.abs(obsv-vsys[1]).max()/np.abs(chanstep))+1) chanmin_a = -(nchans_a/2.-.5) * chanstep chanmin_b = -(nchans_b/2.-.5) * chanstep n_chans, chanmins = [nchans_a, nchans_b], [chanmin_a, chanmin_b] return [vsys, restfreq, freqs, obsv, chanstep, n_chans, chanmins, jnum] # The end
ad0a0089f5111ace12566437673580d3d18754df
851b465959f5afbdae433714c2cc0000b8cb2b09
/MINI2/member/models.py
981439578adc5fc95b6dcf39652d3821718661cb
[]
no_license
haeinyy/webproject_communitysite
944cf7b09b9a746297c8f53f4fb837641246ffc0
47ebbcb47fe348592d66e9574044d058a72c030e
refs/heads/main
2023-06-20T05:03:44.311740
2021-07-19T08:58:41
2021-07-19T08:58:41
379,854,526
1
0
null
null
null
null
UTF-8
Python
false
false
1,286
py
from django.db import models # Create your models here. # pk = user_phone class Member(models.Model): user_name = models.CharField(max_length=15, verbose_name="사용자이름") user_pw = models.CharField(max_length=15, verbose_name="비밀번호") user_phone = models.CharField(max_length=15, verbose_name="휴대폰번호", primary_key=True) c_date = models.DateTimeField() # 날짜 - 자동으로 넣어줄것이다. def __str__(self): return self.user_phone # 별도로 테이블명을 지정하고 싶을 때 class Meta: db_table = 'member_member' # SQLite에 보이는 테이블이름 ### 추가된부분 ### # 프로필 추가 class Profile(models.Model): user_name = models.OneToOneField(Member, on_delete=models.CASCADE) # User - Profile을 1:1로 연결 ;; phone으로 해야되나 description = models.TextField(blank=True) nickname = models.CharField(max_length=40, blank=True) image = models.ImageField(blank=True) #,upload_to="profile/%Y/%m" # imagefield 이용하려면 pip install pillow 패키지 설치 # blank=True 값 채워넣지 않아도 되는 속성
f408b88581308159c47ed8e101bf9fac61db48b9
29beed260f7292a65b1a2ad9cbe710255029005f
/blog/migrations/0001_initial.py
67a643c0cbc1a9d830c2f3ac2665822521917154
[]
no_license
petervargaofficial/prvniblog
11b2f98c3c378a858f2ca29bdfde5c4f78526fb2
9c16ab08166df04c1b1e521ee9776ee390cc0198
refs/heads/master
2020-06-10T03:06:29.053911
2016-12-10T15:27:26
2016-12-10T15:27:26
76,111,654
0
0
null
null
null
null
UTF-8
Python
false
false
1,051
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2016-12-10 13:51 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('text', models.TextField()), ('created_date', models.DateTimeField(default=django.utils.timezone.now)), ('published_date', models.DateTimeField(blank=True, null=True)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
f1910d4e4c8d87f5aeb016310db8387103e97414
19d6b5b3692bd8bd62f3c1638c725a68c35f5469
/blog.py
d33c62fa373353475f2d526a6c5b77c3b897478c
[]
no_license
jinkangcheng/Python
1345999e69288569377025c0dfbb49809151ceb8
211ea738d7e9cd0c95432e42b8baabcc1a88db00
refs/heads/master
2021-01-10T09:06:44.063828
2016-01-05T15:02:33
2016-01-05T15:02:33
48,080,197
0
0
null
null
null
null
GB18030
Python
false
false
2,423
py
#!/usr/bin/python #coding:utf8 from flask import Flask, render_template, url_for, request,redirect,make_response,session import os,MySQLdb app = Flask(__name__) app.secret_key='afjlsjfowflajflkajfkjfkaljf' user_list = ['admin','anonymous','py'] imagepath = os.path.join(os.getcwd(),"static/images") @app.route('/') def index(): username = request.cookies.get('username') if not username: username = u'请先登录' islogin = session.get('islogin') nav_list = [u'首页',u'经济',u'文化',u'科技',u'娱乐'] blog = {'title':'welcome to my blog','content':'hello, welcome to my blog.'} blogtag = {'javascript':10,"python":20,"shell":5} img = url_for('static', filename="images/cat.jpg") return render_template('index.html', nav_list=nav_list, username=username, blog = blog, blogtag = blogtag, img=img, islogin=islogin) @app.route('/reg', methods=['GET','POST']) def regist(): if request.method == 'POST': username = request.form['username'] conn = MySQLdb.connect(user='root',passwd='admin',host='127.0.0.1') conn.select_db('blog') curr = conn.cursor() sql = 'insert into `user` (`id`,`username`) values (%d,"%s")' % (1,username) curr.execute(sql) conn.commit() curr.close() conn.close() return "user %s regist ok!" % request.form['username'] else: #request.args['username'] return render_template('regist.html') @app.route('/upload', methods=['GET','POST']) def upload(): if request.method == 'POST': username = request.form['username'] file = request.files['img'] filename = file.filename file.save(os.path.join(imagepath,filename)) return "<img src='static/images/%s' alt=''/>" % filename else: return render_template('upload.html') @app.route('/login/', methods=['GET','POST']) def login(): if request.method == 'POST': username = request.form.get('username') if username in user_list: response = make_response(redirect('/')) response.set_cookie('username', value=username, max_age=300) session['islogin'] = '1' return response else: session['islogin'] = '0' return redirect('/login/') else: return render_template('login.html') if __name__ == '__main__': app.run(debug=True,host='0.0.0.0',port=5000)
d65aabe6a818c51ba0ee19a2b996ca3bf098aaea
f13ef014a60930f7571faa4e817ba393605e1d15
/sistema/sistema/urls.py
82ed756e7fc089a0531c445caafae3c00606dfe0
[]
no_license
Robert321/Sistema2Sprint2
b977e7947eb07ff406b9df4347a23b4dbaa7c3c1
663dac6ecc967fb6b675f5525fe16c0b253bd2ad
refs/heads/master
2021-01-19T00:24:23.649139
2014-07-09T13:27:54
2014-07-09T13:27:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,842
py
from django.conf.urls import patterns, include, url from django.conf import settings from django.contrib import admin from django.conf.urls.static import static from django.views.generic import RedirectView admin.autodiscover() from sistema.apps.registro.views import * urlpatterns = patterns('', url(r'^media/(?P<path>.*)$','django.views.static.serve',{'document_root':settings.MEDIA_ROOT,}), ) urlpatterns += patterns( 'sistema.apps.registro.views', # Examples: # url(r'^$', 'sistema.views.home', name='home'), # url(r'^blog/', include('blog.urls')), url(r'^admin/', include(admin.site.urls)), url(r'^$','index_view',name='vista_principal'), #url(r'^contacto/$','contacto_view',name='vista_contacto'), url(r'^vercontacto/$','VerContacto',name='ver_contacto'), url(r'^agregarestudiante/','addEstudiante',name='vista_estudiante'), url(r'^menuestudiante/(?P<id>\d+)/$','MenuEstudiante',name='vista_menuestudiante'), url(r'^menudocente/(?P<id>\d+)/$','MenuDocente',name='vista_menudocente'), url(r'^agregardocente/','addDocente',name='vista_docente'), url(r'^loginEstudiante/$','login_view_Estudiante',name='vista_login_estudiante'), url(r'^logoutEstudiante/$','logout_view_Estudiante',name='vista_logout_estudiante'), url(r'^loginDocente/$','login_view_Docente',name='vista_login_docente'), url(r'^logoutDocente/$','logout_view_Docente',name='vista_logout_docente'), url(r'^editarestudiante/(?P<id>\d+)/$',editar_estudiante), url(r'^editardocente/(?P<id>\d+)/$',editar_docente), url(r'^vermaterias/(?P<id>\d+)/$',VerMaterias), url(r'^agregarrelcarest/(?P<id>\d+)/$',addRelCarEst), url(r'^agregarrelestmat/(?P<id>\d+)/$',addRelEstMat), url(r'^agregarrelestmat/(?P<id>\d+)/$',addRelEstMat), url(r'^programacion/(?P<id>\d+)/$',programacion), url(r'^carrera/$','addCarrera',name='vista_carrera'), url(r'^agregarmateria/$',addMateria), url(r'^agregarnotas/$',addNotas), url(r'^agregarrelcarmat/$',addRelCarMat), url(r'^registro/exito/$',exito), url(r'^ver/carreras/$','VerCarrera',name='vista_carrera2'), url(r'^autor/$',"addAutor",name='Autor'), url(r'^login/$','login_view',name='vista_login'), url(r'^logout/$','logout_view',name='vista_logout'), url(r'^menudirector/$',"MenuDirector",name="vista_menu_director"), url(r'^agregarrelcardoc/$',AsignacionDocente), url(r'^agregarreldocmat/$',AsignacionDocenteMateria), url(r'^nota/$',notas), #url(r'^mapas/$',mapas), #url(r'^uploads/$','upload_file',name="uploads"), #url(r'^list/$','upload_file',name="uploads"), ) urlpatterns += patterns('sistema.apps.registro.views', url(r'^list/$', 'list', name='list'), url(r'^libros/$', 'libros', name='libros'), ) + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
7b4edb1a9aaa2df00d07914dfe7aad3f4f5d8a26
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02407/s010066877.py
e8955e076ce82566c91dd3f2b32b6e8cc5421855
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
201
py
n = input() a = list(map(lambda x : int(x), input().split(" "))) for i, a_ in enumerate(reversed(a)): if i == 0: print("%d" % a_, end="") else: print(" %d" % a_, end="") print()
14079e30fa26cf1e221d4368be6681f4a6455963
2cc638b403001e9418ffdd9aeaa367a81e11faa8
/code/DeepGPs/models/GP/GPlib.py
be4815bb680d4427711bb89a3dd843c139b2dc69
[]
no_license
mhavasi/MPhil_Project
f0a51d5efcaa141a2b839c13502a2fae79f5dc6c
312122922d0b364ab34350015aab61e71a9812ee
refs/heads/master
2021-03-27T19:44:38.783555
2017-10-06T14:23:55
2017-10-06T14:23:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,876
py
from ..AbstractModel import AbstractModel import GPy import time import tensorflow as tf import numpy as np class GPlib(AbstractModel): # The training_targets are the Y's which are real numbers def __init__(self, training_data, training_targets, modelParams): self.training_data = training_data self.training_targets = training_targets self.n_points = training_data.shape[0] self.input_d = training_data.shape[1] self.output_d = training_targets.shape[1] self.kern = 'rbf' if ('kern' in modelParams): self.kern = modelParams['kern'] self.reset() def reset(self): self.models = [] for i in range(0, self.output_d): if (self.kern == 'matern'): kernel = GPy.kern.Matern52(input_dim=self.input_d, ARD=True) else: kernel = GPy.kern.RBF(input_dim=self.input_d, ARD=True) model = GPy.models.GPRegression(self.training_data, self.training_targets[:, i:i+1],kernel) model.optimize_restarts(num_restarts = 10) model.optimize(messages=False) #print(kernel) self.models.append(model) def addPoint(self, x, y): self.training_data = np.vstack((x, self.training_data)) self.training_targets = np.vstack((y, self.training_targets)) self.reset() def predictBatch(self, test_data): means = np.array([[]]*test_data.shape[0]) vars = np.array([[]]*test_data.shape[0]) for model in self.models: mean, var = model.predict(test_data, full_cov=False) means = np.concatenate((means, mean), axis=1) vars = np.concatenate((vars, var.reshape((-1, 1))), axis=1) return means, vars
b9717f3483c03ebfdc8246efed5f98a7a5d0adfc
523ddad20a1a541be5bb0fa55dc4df21e85e644a
/neuralNet.py
8b867f9327607bd6b6c244ae0f2f1a97296d60dd
[]
no_license
alv16106/NeuralNet
b1d353e738fe82a0982598be76b96c82a3aae6c4
45257fa3b4453e26cdac19b92e8ba9d1dd8fb008
refs/heads/master
2020-05-17T05:17:22.434786
2019-05-10T03:28:00
2019-05-10T03:28:00
183,530,045
0
0
null
null
null
null
UTF-8
Python
false
false
3,441
py
import numpy as np import utils import data import pickle class Network(object): def __init__(self, shape): # Cuantas layers queremos self.num_layers = len(shape) self.shape = shape # Inicialización random de pesos self.weights = [np.random.randn(y, x+1) for x, y in zip(shape[:-1], shape[1:])] def GD(self, x, y, alpha, max_iter = 10000, treshold = 0.001): iterations = 0 current_cost = 100000 # Llegamos a las iteraciones maximas o nuestro costo es mas peque;o que el threshold while((iterations < max_iter) and (current_cost > treshold)): current_cost, deltas = self.backProp(x, y, 10) # Actualizamos pesos self.weights[0] = self.weights[0] - (alpha * deltas[0]) self.weights[1] = self.weights[1] - (alpha * deltas[1]) s = np.concatenate((np.ravel(deltas[0]), np.ravel(deltas[1]))) current_cost = np.linalg.norm(s) iterations += 1 print('Iteration' + str(iterations)) return self.weights def Cost(self, h, y, lmbda): m = len(y) # Funcion de costo y*log(h) - (1-y)*log(1-h) J = (np.multiply(-y, np.log(h)) - np.multiply((1 - y), np.log(1 - h))).sum() / m # Tomar en cuenta el learning rate + lmda/2m * suma de thetas^2 J += (float(lmbda) / (2 * m)) * (np.sum(np.power(self.weights[0][:, 1:], 2)) + np.sum(np.power(self.weights[1][:, 1:], 2))) return J def feedForward(self, X): m = X.shape[0] # Bias ones = np.ones((m,1)) # A;adir el bias a1 = np.hstack((ones, X)) z2 = a1 @ self.weights[0].T a2 = np.hstack((ones, utils.sigmoid(z2))) z3 = a2 @ self.weights[1].T # Sacar la hipotesis h = utils.sigmoid(z3) return a1, z2, a2, z3, h def predict(self, X): h = self.feedForward(X)[4] return h def loadWeights(self, new_weights): self.weights = new_weights def backProp(self, X, y, lmbda): ones = np.ones(1) a1, z2, a2, z3, h = self.feedForward(X) J = self.Cost(h,y,lmbda) m = X.shape[0] delta1 = np.zeros(self.weights[0].shape) # (3, 6) delta2 = np.zeros(self.weights[1].shape) # (3, 4) ones = np.ones((m,1)) diff = h - y z2 = np.hstack((ones, z2)) # (5,4) d2 = np.multiply(np.dot(self.weights[1].T, diff.T).T, utils.sigmoid_prime(z2)) # (5000, 26) delta1 += np.dot((d2[:, 1:]).T, a1) delta2 += np.dot(diff.T, a2) delta1 = delta1 / m delta2 = delta2 / m # Añadir la regularización, pero no al bias delta1[:, 1:] = delta1[:, 1:] + (self.weights[0][:, 1:] * lmbda) / m delta2[:, 1:] = delta2[:, 1:] + (self.weights[1][:, 1:] * lmbda) / m return J, [delta1, delta2] net = Network([784, 100, 10]) x, y, test, y_t, cv, y_cv = data.load_data(2000, 200) print(test.shape) y_d = utils.vectorized_result(y, 10) weights = net.GD(x, y_d, 1, 20, 0.39) print('Test accuracy') print(utils.get_accuracy(net.predict(test), y_t)) print('CV accuracy') print(utils.get_accuracy(net.predict(cv), y_cv)) pickle.dump(weights, open('weights2.npy', "wb")) """ x, y, test, y_t, cv, y_cv = data.load_data(2000, 200) net = Network([784, 25, 10]) weights = np.load('weights4.npy', allow_pickle=True) net.loadWeights(weights) y_d = utils.vectorized_result(y, 10) net.GD(x, y_d, 1, 300, 0.1) print('Test accuracy') print(utils.get_accuracy(net.predict(test), y_t)) print('CV accuracy') print(utils.get_accuracy(net.predict(cv), y_cv)) pickle.dump(weights, open('weights5.npy', "wb")) """
804cea13ed938a7fde7a5ed8b23008394fe60ae2
d1633816e7ab93b4a00e37946dce2f93eddd66ae
/ps1/ps1.py
54cb6a7c74672788c960134ada6232c24f2767a1
[]
no_license
RitterGT/ComputerVision
d15affc7b25df9f646ea4c3cb958c8013c09e6a2
ad27ac548385365f3302314d4a78b1397b7eb072
refs/heads/master
2021-01-22T01:58:05.347050
2015-11-08T22:31:27
2015-11-08T22:31:27
42,410,753
1
1
null
null
null
null
UTF-8
Python
false
false
3,196
py
import cv2 import numpy as np def part1(): cv2.imwrite("output/ps1-1-a-1.png", cv2.imread("input/Image1.png")) cv2.imwrite("output/ps1-1-a-2.png", cv2.imread("input/Image2.png")) return def part2(): image1 = cv2.imread("output/ps1-1-a-1.png") b,g,r = cv2.split(image1) #Swap red and blue cv2.imwrite("output/ps1-2-a-1.png", cv2.merge((r,g,b))) #store green channel cv2.imwrite("output/ps1-2-b-1.png", g) #store red channel cv2.imwrite("output/ps1-2-c-1.png", r) return def part3(): image1 = cv2.imread("output/ps1-1-a-1.png") image2 = cv2.imread("output/ps1-1-a-2.png") img1_blue, img1_green, img1_red = cv2.split(image1) img2_blue, img2_green, img2_red = cv2.split(image2) #get the center of each green channel img1_centerHeight = img1_green.shape[0] / 2 img1_centerWidth = img1_green.shape[1] / 2 img2_centerHeight = img2_green.shape[0] / 2 img2_centerWidth = img2_green.shape[1] / 2 centerSquare = img1_green[img1_centerHeight - 50 : img1_centerHeight + 50 : 1, img1_centerWidth-50 : img1_centerWidth+50 : 1] img2_green[img2_centerHeight - 50 : img2_centerHeight + 50 : 1, img2_centerWidth-50 : img2_centerWidth+50 : 1] = centerSquare cv2.imwrite("output/ps1-3-a-1.png", img2_green) return def part4(): image1 = cv2.imread("output/ps1-1-a-1.png") img1_blue, img1_green, img1_red = cv2.split(image1) min = np.min(img1_green) max = np.max(img1_green) mean = np.mean(img1_green) std = np.std(img1_green) #Subtract the mean from all pixels, # then divide by standard deviation, # then multiply by 10 (if your image is 0 to 255) # or by 0.05 (if your image ranges from 0.0 to 1.0). Now add the mean back in. img1_green = img1_green.astype(np.float64) out = ((((img1_green - mean)/std) * 10) + mean) out = out.clip(0, 255).astype(np.uint8) cv2.imwrite("output/ps1-4-b-1.png", out) shift = np.copy(img1_green) shift = np.roll(shift, -2, axis=1) shift[:, -2] = 0 shift[:, -1] = 0 cv2.imwrite("output/ps1-4-c-1.png", shift) # Subtract the shifted version of img1_green from the original img1_green, and save the difference image. diff = np.clip((img1_green - shift), 0, 255).astype(np.uint8) cv2.imwrite("output/ps1-4-d-1.png", diff) def part5(): image1 = cv2.imread("output/ps1-1-a-1.png") img1_blue, img1_green, img1_red = cv2.split(image1) sigma = 16 rand_num = np.random.randn(img1_green.shape[0], img1_green.shape[1]) * sigma img1_green_alter = np.copy(img1_green) img1_green_alter = img1_green_alter.astype(np.float64) img1_green_alter += rand_num img1_green_alter = img1_green_alter.clip(0, 255).astype(np.uint8) cv2.imwrite("output/ps1-5-a-1.png",cv2.merge((img1_blue, img1_green_alter, img1_red))) img1_blue_alter = np.copy(img1_blue) img1_blue_alter = img1_blue_alter.astype(np.float64) img1_blue_alter += rand_num img1_blue_alter = img1_blue_alter.clip(0,255).astype(np.uint8) cv2.imwrite("output/ps1-5-b-1.png",cv2.merge((img1_blue_alter, img1_green, img1_red))) return part1() part2() part3() part4() part5()
d9e35c58ef81da07d57d505c560402b03b7a66eb
85b7431db3b2f90ec7749a3f7d7755bd9f09092d
/SeleniumEssentialTraining/04_02/Radiobuttons.py
0348d096fecfa768c2b52f0776eef06b29e9c0b6
[]
no_license
tcd1558/ScriptingForTesters
db4f8260123459a9406fbbbe4306c76817d83589
2a6aa6aa6dedc18cb74c7dd0987d170854f27588
refs/heads/main
2023-04-07T05:22:22.808921
2021-04-14T22:45:24
2021-04-14T22:45:24
342,373,670
0
0
null
null
null
null
UTF-8
Python
false
false
1,952
py
# This script opens a webdriver (Chrome) to access # the test website https://formy-project.herokuapp.com # enters a string and clicks on a button # Then it sleeps for 60 seconds and closes the browser # webdriver is needed to start the browser driver e.g. chromedriver from selenium import webdriver # Add the sleep function from time import sleep # Add special characters, e.g. RETURN to control web pages from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.action_chains import ActionChains from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC # Set a variable where to find the chromedriver executable. ChromeDriver='/Users/marco/PycharmProjects/ScriptingForTesters_TM/chromedriver' HTML='https://formy-project.herokuapp.com/radiobutton' # Create a new instance of ChromeDriver driver = webdriver.Chrome(executable_path=ChromeDriver) # And now use the driver to open the google website driver.get(HTML) # Find the text input element by its name Radiobutton1 = driver.find_element_by_id('radio-button-1') Radiobutton2 = driver.find_element_by_css_selector("input[value='option2']") Radiobutton3 = driver.find_element_by_xpath('/html/body/div/div[3]/input') sleep(5) Radiobutton2.click() sleep(5) Radiobutton3.click() sleep(5) Radiobutton1.click() sleep(5) HTML='https://formy-project.herokuapp.com/checkbox' driver.get(HTML) checkbox1 = driver.find_element_by_id('checkbox-1') checkbox2 = driver.find_element_by_css_selector("input[value='checkbox-2']") checkbox3 = driver.find_element_by_xpath("//*[@id=\"checkbox-3\"]") sleep(5) checkbox1.click() sleep(5) checkbox2.click() sleep(5) checkbox3.click() sleep(5) checkbox1.click() sleep(5) checkbox2.click() sleep(5) checkbox3.click() sleep(5) # sleep 60 seconds to observe the result print("Sleeping for visual insprection") sleep(60) driver.quit()
369c85f97223d4a424164aea2c749e27cfaff3c0
32fc5324804cb67fe93102121cef95160d95e997
/main/form/tree/wrapper.py
061dcb6e49f23d0d0e8ef0732a4912a0d17ffe34
[]
no_license
fu2re/jsondb
69b982db395f184ba24811cfb6d29b40ba899e16
bd870a8df97a37c96df1a00c605dae6cf4a3636e
refs/heads/master
2021-01-19T22:01:45.389053
2012-08-27T08:31:23
2012-08-27T08:31:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,565
py
# -*- coding: utf-8 -*- from PyQt4 import QtCore, QtGui, Qt from project import QProjectItem from table import QProjectTableItem from data.projects_manager import projectManager class QProjectTree(QtGui.QTreeWidget): """ Левая панель, дерево вида: проект -> таблица """ def __init__(self, root, parent): QtGui.QTreeWidget.__init__(self, parent) self.root = root self.setHeaderLabel(u'Проекты') def _currentItem(self): item = self.currentItem() if not item: item = self.topLevelItem(0) elif item.parent(): item = item.parent() return item def contextMenuEvent(self, event): """ Context menu of project item, shows with right click """ item = self.itemAt(event.pos()) if item: menu = item._build_menu(self) self._caction = menu.exec_(self.mapToGlobal(event.pos())) menu._do(self._caction) def _update(self): """ Обновляет данные о проектах и их таблицах перестраивает их отображение """ self.clear() for project in projectManager.projects: try: name = '%s [%s]' % (project.name, project.data.summary()[0]) except: name = project.name item = QProjectItem(self.root, self, [name]) item._project = project if not hasattr(project, 'data'): item._disable() elif not project.data: item._disable() else: project.data.project_name = self.root.stg.value( "proj/%s/name" % project.name, project.name ).toPyObject() for k, v in project.data.table.items(): table = QProjectTableItem(self.root, self, [str(k)]) table._table = v table._project = project item.addChild(table) self.addTopLevelItem(item) self.show_warnings(project) self.sortByColumn(0, QtCore.Qt.AscendingOrder) def show_warnings(self, project): for table_name, table_errors in project.data.errors.items(): for doc_id, doc_errors in table_errors.items(): for error in doc_errors: self.root._message('WARNING: Document %s.%s has error in field %s' % (table_name, doc_id, error))
22718770c683b7f8769e1f964ec84b760f44aa20
0420c3de754604feac524cda55d23fa0c1fa1306
/Sublime Text 2/Backup/20130223154609/sublemacspro/sbp_mark.py
08f2049cae66e67bfb73486c3b90aa157d1416ff
[ "BSD-3-Clause" ]
permissive
jgeller819/dotfiles
93341ea4040d8a942b6391b2c92f5299c6950261
c78153a57b0ab6ad95bcb0f23a522a0135e8b7a8
refs/heads/master
2021-01-25T03:27:30.841815
2014-06-24T03:55:32
2014-06-24T03:55:32
20,668,049
0
0
null
null
null
null
UTF-8
Python
false
false
3,069
py
import sublime import sublime_plugin # Remove any existing marks # class SbpCancelMarkCommand(sublime_plugin.TextCommand): def run(self, edit, **args): m = self.view.get_regions("mark") # Get current selection: currentSel = self.view.sel()[0] if m: self.view.erase_regions("mark") self.view.sel().clear() self.view.sel().add(sublime.Region(currentSel.b, currentSel.b)) class SbpSetMarkCommand(sublime_plugin.TextCommand): def run(self, edit): m = self.view.get_regions("mark") self.view.run_command("sbp_cancel_mark") mark = [s for s in self.view.sel()] if m != mark: self.view.add_regions("mark", mark, "mark", "dot", sublime.HIDDEN | sublime.PERSISTENT) class SbpSwapWithMarkCommand(sublime_plugin.TextCommand): def run(self, edit): old_mark = self.view.get_regions("mark") mark = [s for s in self.view.sel()] self.view.add_regions("mark", mark, "mark", "dot", sublime.HIDDEN | sublime.PERSISTENT) if len(old_mark): self.view.sel().clear() for r in old_mark: self.view.sel().add(r) class SbpSelectToMarkCommand(sublime_plugin.TextCommand): def run(self, edit): mark = self.view.get_regions("mark") num = min(len(mark), len(self.view.sel())) regions = [] for i in xrange(num): regions.append(self.view.sel()[i].cover(mark[i])) for i in xrange(num, len(self.view.sel())): regions.append(self.view.sel()[i]) self.view.sel().clear() for r in regions: self.view.sel().add(r) class SbpDeleteToMark(sublime_plugin.TextCommand): def run(self, edit): self.view.run_command("copy") self.view.run_command("sbp_add_to_kill_ring", {"forward": False}) #self.view.run_command("sbp_select_to_mark") self.view.run_command("left_delete") self.view.run_command("sbp_cancel_mark") # # If a mark has been set, color the region between the mark and the point # class SbpEmacsMarkDetector(sublime_plugin.EventListener): def __init__(self, *args, **kwargs): sublime_plugin.EventListener.__init__(self, *args, **kwargs) # When text is modified, we cancel the mark. def on_modified(self, view): #view.erase_regions("mark") pass def on_selection_modified(self, view): mark = view.get_regions("mark") num = min(len(mark), len(view.sel())) regions = [] for i in xrange(num): regions.append(view.sel()[i].cover(mark[i])) for i in xrange(num, len(view.sel())): regions.append(view.sel()[i]) view.sel().clear() for r in regions: view.sel().add(r) def on_query_context(self, view, key, operator, operand, match_all): if key == "sbp_emacs_has_mark": if operator == sublime.OP_EQUAL: return len(view.get_regions("mark")) > 0
3dd1b32431110ef79c1c370c4226d35bac027777
082f4fc478b554d2257440edb1a31a17bb805c72
/Video-Person-ReID/data_util/create_metadata_files.py
da1002a9970c0e823708a02852a4d91496d9cc36
[ "MIT" ]
permissive
anurag3/2019-CVPR-AIC-Track-2-UWIPL
0d637c9fe707609bec29dbe3b36704caa50b4f36
61ee2c96611e10fe51a52033b1cd0e2804d544ca
refs/heads/master
2021-03-04T20:42:47.246524
2020-04-04T00:06:20
2020-04-04T00:06:20
246,063,049
0
0
MIT
2020-04-04T00:06:22
2020-03-09T14:49:53
null
UTF-8
Python
false
false
3,103
py
from os import listdir, mkdir from os.path import join, split, isfile, isdir image_sets = [ 'query', 'test', ] dummys = [ '', #'_dummy', ] models = [ 'v2m100', ] aic_track2_dir = '/path_to_aic19-track2-reid/' for model in models: for image_set in image_sets: for dummy in dummys: print((model, image_set, dummy)) # parse metadata probability from file metadatas = [] with open(aic_track2_dir + 'prob_%s_%s.txt'%(model, image_set), 'r') as f: for i, line in enumerate(f): line = line.strip() if i % 4 == 0: metadatas.append([]) else: l = line.rfind('[') r = line.find(']') if l == -1 and r == -1: metadatas[-1].append(line.strip()) elif l < r: metadatas[-1].append(line[l+1:r].strip()) else: print('invalid line: ' + line) if len(metadatas[-1]) == 0: metadatas = metadatas[:-1] print('images in metadatas: %d' % len(metadatas)) # read image filenames from file img_orders = {} with open(aic_track2_dir + 'imglist_%s_%s.txt'%(model, image_set), 'r') as f: for i, line in enumerate(f): pos = line.find('.jpg') imgid = line[pos-6:pos] #print(imgid) if imgid in img_orders: print('duplicate images: '+imgid) img_orders[imgid] = i print('images in image list: %d' % len(img_orders)) image_path = aic_track2_dir + 'image_%s_deepreid%s' % (image_set, dummy) metadata_path = aic_track2_dir + 'metadata_%s_%s_deepreid%s' % (model, image_set, dummy) mkdir(metadata_path) pids = [f for f in listdir(image_path) if isdir(join(image_path, f))] pids.sort() for pid in pids: print(pid) pid_path = join(metadata_path, pid) pid_path_img = join(image_path, pid) mkdir(pid_path) cids = [f for f in listdir(pid_path_img) if isdir(join(pid_path_img, f))] for cid in cids: cid_path = join(pid_path, cid) cid_path_img = join(pid_path_img, cid) mkdir(cid_path) imgs = [f for f in listdir(cid_path_img) if isfile(join(cid_path_img, f)) and f[-4:] == '.jpg'] for img in imgs: imgname = img[:-4] imgid = imgname.split('_')[-1] metadata_file = join(cid_path, imgname+'.txt') with open(metadata_file, 'w') as file: for metadata in metadatas[img_orders[imgid]]: file.write(metadata+'\n')
0a8f1ad2849f4fd538ae144669fe95ff27917f08
d41d18d3ea6edd2ec478b500386375a8693f1392
/plotly/validators/layout/_showlegend.py
627f4d0cd8ad3a72ac09cad8f153f99e1ff91981
[ "MIT" ]
permissive
miladrux/plotly.py
38921dd6618650d03be9891d6078e771ffccc99a
dbb79e43e2cc6c5762251537d24bad1dab930fff
refs/heads/master
2020-03-27T01:46:57.497871
2018-08-20T22:37:38
2018-08-20T22:37:38
145,742,203
1
0
MIT
2018-08-22T17:37:07
2018-08-22T17:37:07
null
UTF-8
Python
false
false
422
py
import _plotly_utils.basevalidators class ShowlegendValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__( self, plotly_name='showlegend', parent_name='layout', **kwargs ): super(ShowlegendValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type='legend', role='info', **kwargs )
f0c6c67f26d32148b533776cf2bb3ab0dec518e8
bd4d9fdf6deaa88d98493e1db50fccf785b09a0d
/Nest2PagerDuty.py
77501f71c9bc15d9fdc9bec4c2ebf212fd4befd4
[]
no_license
ophirr/Nest2PagerDuty
42ebae1c8a07a8163cbaf03065c43ace58ea1915
3716214d3384304792222cc89adad38a691a5b20
refs/heads/master
2021-05-19T17:24:09.964814
2020-04-20T03:31:28
2020-04-20T03:31:28
252,046,817
0
0
null
null
null
null
UTF-8
Python
false
false
3,716
py
import gmail import json import requests import re from sekret import api_key, GNAME, GP, ROUTING_KEY, INCIDENT_KEY extsub = '' nest_url = '' try: from BeautifulSoup import BeautifulSoup except ImportError: from bs4 import BeautifulSoup # Login to gmail, yes this mechanism is insecure g = gmail.login(GNAME, GP) def trigger_nest_incident(): # Triggers a PagerDuty incident without a previously generated incident key # Uses Events V2 API - documentation: https://v2.developer.pagerduty.com/docs/send-an-event-events-api-v2 header = { "Content-Type": "application/json" } payload = { # Payload is built with the least amount of fields required to trigger an incident "routing_key": ROUTING_KEY, "event_action": "trigger", "dedup_key": INCIDENT_KEY, "payload": { "summary": extsub, "source": "Nest Camera Infra", "severity": "warning", "class": "security" }, "links": [{ "href": nest_url, "text": ">>> CLICK HERE to view the footage <<<" }] } response = requests.post('https://events.pagerduty.com/v2/enqueue', data=json.dumps(payload), headers=header) if response.json()["status"] == "success": print('Incident Created') else: print(response.text) # print error message if not successful def trigger_sar_incident(): # Triggers a PagerDuty incident without a previously generated incident key # Uses Events V2 API - documentation: https://v2.developer.pagerduty.com/docs/send-an-event-events-api-v2 header = { "Content-Type": "application/json" } payload = { # Payload is built with the least amount of fields required to trigger an incident "routing_key": ROUTING_KEY, "event_action": "trigger", "dedup_key": INCIDENT_KEY, "payload": { "summary": extsub, "source": "KCSAR", "severity": "critical", "class": "search and rescue" } } response = requests.post('https://events.pagerduty.com/v2/enqueue', data=json.dumps(payload), headers=header) if response.json()["status"] == "success": print('Incident Created') else: print(response.text) # print error message if not successful if not (g.logged_in): print '\n' + 'not logged in' else : print '\n' + 'logged in, yay' unread = g.mailbox('NestAlerts').mail(unread = 'True', prefetch = 'True') unread = g.mailbox('NestAlerts').mail(unread = 'True') for number in unread: number.fetch() nest_html = number.html if number.fr == "Team20th <[email protected]>": if nest_html is not None: soup = BeautifulSoup(nest_html, features="html.parser") for link in soup.findAll('a', attrs={'href': re.compile("^https://home.nest.com/camera")}): # print link.get('href') nest_url = link.get('href') spans = soup.find_all('span') for span in spans: extsub = span.text break # # Let's check out any attachments #goodies = number.attachments #image = goodies[0] #print "URL - '" + nest_url + "'" #print "SUBJECT - '" + extsub + "'" trigger_nest_incident() else: if (number.subject == "[ESAR]") or ("King County" in number.subject): extsub = number.body trigger_sar_incident() # Mark message as read number.read() if not unread: print "No new alerts, exiting" + "\n"
51b265658ed77898b0443e969d95d3fb4c4e3a52
4329dea0118b0665551695c50f6fcf4e58cd60e1
/BenchmarkingThesis/dataStructures/CTData.py
2535684c14de3b5b328626a02cdba29fc676fa48
[]
no_license
SirEdrick/Spectral-CT-Thesis
5a5586bdd0068140a21a888d40fed12206556da7
e7ace4eb01bb85a89cb30eebf7edc0b552a5a307
refs/heads/main
2023-06-04T22:42:05.867100
2021-06-27T18:36:07
2021-06-27T18:36:07
380,811,472
0
0
null
null
null
null
UTF-8
Python
false
false
40,348
py
''' Created on 19 sept. 2018 @author: Wail Mustafa ''' import sys import os import string import h5py #from libtiff import TIFF from PIL import Image import numpy import itertools import warnings import time import matplotlib.pyplot as plt import matplotlib.colors as mcolors import imageio class CTData(object): def __init__(self, datapath_head, sub_dir, file_name): self.datapath_head = datapath_head self.sub_dir = sub_dir self.file_name = file_name #self.file_ext = 'h5' # data order inside the class should be unified # any manipulation of dimeisons should be done right before it is needed # also, when loaded we should ensure that the dimensions are respected # projection data: [Energy][Pixel][Slice][Angle] # reconstuction data: [X][Y][Slice][Energy] # This how it seems to be done now but we can consider change that to make Energey and Slice at the same dimension for both projection & reconstruction self.data = None # consider make this protected self.z_load_slice = slice(None,None,None) # for partial (random access) loading self.load_channels = slice(None,None,None) # for partial (random access) loading self.load_angles = slice(None,None,None) # for partial (random access) loading self.processed_dir = 'processed' # put everything under 'processed' directory def setLoadSliceZ(self, start, stop, step=None): if stop <0: return self.z_load_slice = slice(start, stop, step) def setLoadChannels(self, start, stop, step=None): if stop <0: return self.load_channels = slice(start, stop, step) def getDirPath(self): return self.datapath_head + os.path.sep + self.processed_dir + os.path.sep + self.sub_dir def getFilePath(self, file_ext): return self.getDirPath() + os.path.sep + self.file_name + "." + file_ext #def useH5(self): # self.file_ext = 'h5' #def useMat(self): # self.file_ext = 'mat' def loadData(self, file_ext): if file_ext is None: file_ext = "h5" if "h5" in file_ext: try: self.loadDataH5(self.getFilePath(file_ext)) except: print(self.getFilePath(file_ext)) warnings.warn('Cound not open file, trying .mat') #self.loadDataMat() elif "mat" in file_ext: self.loadDataMat() else: raise ValueError('File extension is not recognized.') print (self.__class__.__name__ + " loaded dims" + str(self.data.shape)) #-------------------------------checked def loadDataH5Silce(self, value): self.data = numpy.array(value[self.load_channels,self.z_load_slice,:], order='F').transpose() def loadDataH5(self, data_path): print ('loading: '+data_path) print("here...") f = h5py.File(data_path,'r') print(f) value = f['data']['value'] print ("file data shape: " + str(value.shape)) #raise SystemExit #self.data = numpy.array(value[:,self.z_load_slice,:], order='F').transpose() self.loadDataH5Silce(value) #self.data = numpy.array(value[:,1:5,:], order='F').transpose() #self.data = self.data.reshape((1,) + self.data.shape) #self.data = numpy.array(value[:,self.z_load_slice,:,:], order='F').transpose() print ("loaded data shape: " + str(self.data.shape)) print("THIS WAS THE SHAPE OF H5 DATA LOADED") f.close() return True def saveData(self, file_ext = None): minVal = numpy.nanmin(self.data) maxVal = numpy.nanmax(self.data) print("saveData minVal: " + str(minVal)) print("saveData maxVal: " + str(maxVal)) if file_ext is None: file_ext = "h5" dir_path = self.getDirPath() if not os.path.exists(dir_path): os.makedirs(dir_path) if "h5" in file_ext: self.saveDataH5(self.getFilePath(file_ext)) elif "tiff" or 'png' in file_ext: dir_path_images = dir_path + '/' + self.file_name if not os.path.exists(dir_path_images): os.makedirs(dir_path_images) self.saveDataAsImages(dir_path_images, file_ext) else: raise ValueError('File extension is not recognized.') def saveDataH5(self, data_path): f = h5py.File(data_path,'w') data_group = f.create_group('data') data_group.create_dataset('value', data=self.data.transpose()) f.close() #@abc.abstractmethod #TODO: consider using abc package to define functions as abstract def loadDataMat(self): raise NotImplementedError("Please Implement this method") # The following methods has to be abstract now because reconstruction data has a different dimensionality def convertTo4D(self): raise NotImplementedError("Please Implement this method") def selectSlices(self, slices): raise NotImplementedError("Please Implement this method") def selectChannels(self, channels): raise NotImplementedError("Please Implement this method") def averageChannels(self): raise NotImplementedError("Please Implement this method") def removeNans(self): raise NotImplementedError("Please Implement this method") def __del__(self): del self.data def saveImageAsTiff(self, channelPath, I, sliceIndex): fname = channelPath + os.path.sep + ("image_z%04d.tif" % (sliceIndex)) sliceFile = TIFF.open(fname, 'w') sliceFile.write_image(I.astype(numpy.float16)) sliceFile.close() def saveImageAsGreyScale(self, channelPath, I, sliceIndex): #self.i = self.i+1 fname = channelPath + os.path.sep + ("image_z%04d.png" % (sliceIndex) ) #fname = channelPath + os.path.sep + '_'+ ("image_z%04d_%01d.png" % (sliceIndex, self.i) ) #I8 = (((I - I.min()) / (I.max() - I.min())) * 255.9).astype(numpy.uint8) #I = I.clip(min=0) #I8 = (I*255.9).astype(numpy.uint8) I8 = (((I - I.min()) / (I.max() - I.min())) * 256).astype(numpy.uint8) I8 = 255-I8 img = Image.fromarray(I8) img.save(fname) def show_image_ch_basic(self, ax, plot_slice_id, ch, plot_max): myplt = ax.imshow(self.data[:,:,plot_slice_id,ch].squeeze(), cmap='gist_yarg',norm=mcolors.PowerNorm(gamma=0.6)) #for spine in ax.spines.values(): # if ch == 8 or ch == 20: # spine.set_edgecolor('red') myplt.set_clim(0,plot_max) ax.set_xticks([]) ax.set_yticks([]) #plt.colorbar(myplt, ax=ax) #ax.axis('off') #generate_patches(patches, patches_colors, ax) return myplt def show_image_ch_mont(self, ax, plot_slice_id, ch, plot_max): myplot = self.show_image_ch_basic(ax, plot_slice_id, ch, plot_max) #sub_text = 'TV = ' + str(int(image_data.TV[plot_slice_id,ch])) #sub_text = sub_text + '\n' + 'MAE = ' + str(int(100*image_data.MAE[plot_slice_id,ch])) #sub_text = sub_text + '\n' + 'SSIM = ' + str(int(100*image_data.SSIM[plot_slice_id,ch])) #ax.set_xlabel(sub_text) ax.set_visible(True) return myplot def plot_images_montage(self, axs, row_no, plot_slice_id, plot_max, kevs_used, ch_step=4): #image_data.data = image_data.data[2:98,2:98,:,:] ch= self.data.shape[3] #print(image_data.data.shape) #print(ch) fig_counter = 0 for ch_i in itertools.islice(itertools.count(),0,ch,ch_step): #print(ch_i) ax = axs[row_no,fig_counter] #ax = plt.subplot(fig_rows, fig_cols, fig_counter) energy = str(kevs_used[ch_i]) + ' keV' myplot = self.show_image_ch_mont(ax, plot_slice_id, ch_i, plot_max) if fig_counter==0: if not hasattr(self, 'Lname'): self.Lname = '' ax.set_ylabel(self.Lname, fontsize=12) if row_no==0: ax.set_title(energy, fontsize=12) fig_counter+=1 return myplot def save_images_montage_slice(self, plot_slice_id, kevs_used): ch_step = 1 #ch = 15#30 #imagenr = plot_slice_id fig_rows = 2 fig_cols = 32 #fig_data = plt.figure() fig, axs = plt.subplots(fig_rows,fig_cols, dpi=100) slice_text = ("_slice_z%04d" % (plot_slice_id)) fig.suptitle('slice: '+slice_text, y=0.1) fig_data = fig fig.set_figheight(2) fig.set_figwidth(40) numpy.vectorize(lambda axs:axs.set_visible(False))(axs) p_min, plot_max = numpy.percentile(self.data[:,:,plot_slice_id,:], (5, 99.9)) myplot = self.plot_images_montage(axs, 0, plot_slice_id, plot_max, kevs_used, ch_step=ch_step) fig.colorbar(myplot, ax=axs.ravel().tolist(), fraction=0.046, pad=0.04) #dir_path = self.getDirPath() #save_path = dir_path+os.path.sep+self.Lname+slice_text+'.png' #print(save_path) #fig.savefig(save_path, bbox_inches='tight') fig_data.canvas.draw() plot_image = numpy.frombuffer(fig_data.canvas.tostring_rgb(), dtype=numpy.uint8) print(plot_image.shape) plot_image = plot_image.reshape(fig_data.canvas.get_width_height()[::-1] + (3,)) print(plot_image.shape) return plot_image def save_images_montage(self): slice_no = self.data.shape[2] #slice_no = 2 print(slice_no) ch_no = self.data.shape[3] kevs = numpy.round(numpy.linspace(start=20, stop=160, num=128),decimals=1) channels_used = list(numpy.linspace(start=self.load_channels.start, stop=self.load_channels.stop, num=ch_no).astype(int)) kevs_used = kevs[channels_used] plot_images = list() for slice_i in itertools.islice(itertools.count(),0,slice_no,1): plot_image = self.save_images_montage_slice(slice_i, kevs_used) plot_images.append(plot_image) fps = 100 imageio.mimwrite(self.getDirPath()+ '/reconstruction_movie' + '.gif', plot_images, fps=fps) class ProjectionData(CTData): def reduceProjNo(self, new_no, geostruct): projection_resolution = geostruct["range_angle"]/geostruct["nproj"]; # angles between consecutive projections before reduction projection_resolution_new = geostruct["range_angle"]/new_no; sampling_step = projection_resolution_new/projection_resolution; new_indices = [0] * new_no for j in range(new_no): new_indices[j] = int(sampling_step*j) #print(new_indices) #new_indices = round(new_indices); #print(new_indices) self.data = self.data[:,:,:,new_indices] geostruct["nproj"] = new_no def setLoadAngles(self, geostruct, ang_no, ang_start=0, ang_sep=None): if ang_sep == None: projection_resolution = geostruct["range_angle"]/geostruct["nproj"] # angles between consecutive projections before reduction print("projection_resolution",projection_resolution) projection_resolution_new = geostruct["range_angle"]/ang_no print("projection_resolution_new",projection_resolution_new) ang_sep = int(projection_resolution_new/projection_resolution) print("ang_sep",ang_sep) #ang_start = 1; #ang_sep = 15; #ang_no = 12; ang_span = ang_sep*(ang_no-1)+ang_start ang_span = int(ang_span) #ang_start = 359-ang_span #ang_span = 359 self.load_angles = slice(ang_start, ang_span+1, ang_sep) geostruct["nproj"] = ang_no geostruct["range_angle"] = ang_span print("load_angles",self.load_angles) print(geostruct) def loadDataH5Silce(self, value): self.data = numpy.array(value[self.load_angles, self.z_load_slice,:,self.load_channels], order='F').transpose() def convertTo4D(self): if len(self.data.shape) == 3: # 2D data self.data = self.data.reshape((self.data.shape[0], self.data.shape[1], 1 , self.data.shape[2])) print(self.__class__.__name__ + " coverted to 4D, new dims" + str(self.data.shape)) def selectSlices(self, slices = [200]): if set(slices).issubset(set(range(0, self.data.shape[2]))): self.data = self.data[:,:,slices,:] def selectChannels(self, channels = [63]): if set(channels).issubset(set(range(0, self.data.shape[0]))): self.data = self.data[channels,:,:,:] else: raise SystemExit def averageChannels(self): self.data = self.data.mean(0, keepdims = True) def removeNansChris(self): # christian impelmentation # remove Nans and Infs nshape = self.data.shape valueCorrections = numpy.zeros(nshape[0],dtype=numpy.long) nanArray = numpy.isnan(self.data) infArray = numpy.isinf(self.data) for E_index in itertools.islice(itertools.count(),0,nshape[0]): mask = numpy.isfinite(self.data[E_index,:,:,:]) maxVal = numpy.nanmax(self.data[E_index,:,:,:][mask]) for D_index in itertools.islice(itertools.count(),0,nshape[1]): for Z_index in itertools.islice(itertools.count(),0,nshape[2]): for P_index in itertools.islice(itertools.count(),0,nshape[3]): if infArray[E_index,D_index,Z_index,P_index]==True: #self.data[E_index,D_index,Z_index,P_index]=-2000 self.data[E_index,D_index,Z_index,P_index]=maxVal valueCorrections[E_index]+=1 if nanArray[E_index,D_index,Z_index,P_index]==True: self.data[E_index,D_index,Z_index,P_index]=0 valueCorrections[E_index]+=1 def removeNans(self): minVal = numpy.nanmin(self.data) maxVal = numpy.nanmax(self.data) print("before removeNans minVal: " + str(minVal)) print("before removeNans maxVal: " + str(maxVal)) # remove Nans and Infs nshape = self.data.shape for E_index in itertools.islice(itertools.count(),0,nshape[0]): mask = numpy.isfinite(self.data[E_index,:,:,:]) maxVal = numpy.nanmax(self.data[E_index,:,:,:][mask]) #minVal = numpy.nanmin(self.data[E_index,:,:,:][mask]) nanArray = numpy.isnan(self.data[E_index,:,:,:]) infArray = numpy.isinf(self.data[E_index,:,:,:]) #negInfArray = numpy.isneginf(self.data[E_index,:,:,:]) self.data[E_index,:,:,:][nanArray] = 0 self.data[E_index,:,:,:][infArray] = maxVal #self.data[E_index,:,:,:][negInfArray] = minVal self.data[self.data < 0.0] = 0 minVal = numpy.nanmin(self.data) maxVal = numpy.nanmax(self.data) print("after removeNans minVal: " + str(minVal)) print("after removeNans maxVal: " + str(maxVal)) def plotAsImage(self): import pylab pylab.figure(1) pylab.imshow(self.data[10,200,:,:].squeeze()) pylab.show() def saveDataAsImages(self, data_path, file_ext): print (self.data.shape) numChannels = self.data.shape[0] numSlices = self.data.shape[2] for channelIndex in itertools.islice(itertools.count(),0,numChannels): channelPath = data_path+os.path.sep+("channel_%04d" % (channelIndex)) if(os.path.exists(channelPath) == False): os.mkdir(channelPath) for sliceIndex in itertools.islice(itertools.count(),0,numSlices): I = self.data[channelIndex,:,sliceIndex,:] if "tiff" in file_ext: self.saveImageAsTiff(channelPath,I,sliceIndex) if "png" in file_ext: self.saveImageAsGreyScale(channelPath,I,sliceIndex) class RawData(ProjectionData): def __init__(self, datapath_head, file_name = "raw"): super(RawData,self).__init__(datapath_head = datapath_head, sub_dir="raw", file_name = file_name) def loadData(self, file_ext = None): super(RawData,self).loadData(file_ext) #print ("corrected data loaded dims" + str(self.data.shape)) self.convertTo4D() def getNumberOfSlices(self, filepath): import struct #nlines=1 #nslices=1 #nlinesPerSlice=1 with open(filepath, "rb") as binary_file: binary_file.seek(60); nlines_bytes = binary_file.read(4) #nslices = int.from_bytes(nslices_bytes, signed=True) nlines = struct.unpack("@I",nlines_bytes)[0] return nlines def loadDataMultix(self,geostruct): import glob import re #import loadRawData_Cstyle from dataStructures import loadRawData_Cstyle fnames = glob.glob1(self.datapath_head, "*.bin") if(len(fnames)<2): exit(1); # sort the names digits = re.compile(r'(\d+)') def tokenize(filename): return tuple(int(token) if match else token for token, match in ((fragment, digits.search(fragment)) for fragment in digits.split(filename))) # Now you can sort your file names like so: fnames.sort(key=tokenize) nproj = int(geostruct["nproj"]) nenergy = int(128) ndet = int(geostruct["ndet"]) nslices = 1 #==> ???? nslices = ???? <===# nlines = self.getNumberOfSlices(self.datapath_head+os.path.sep+fnames[0]) linesPerSlice=1 linesPerSlice = nlines #if(geostruct.has_key("nSliceLines")): if not ('vol' in geostruct): linesPerSlice = nlines elif 'nSliceLines' in geostruct: if(geostruct["vol"] and (geostruct["nSliceLines"]!=None)): geostruct["nSliceLines"]=int(geostruct["nSliceLines"]) linesPerSlice = geostruct["nSliceLines"] if(linesPerSlice>1): nslices = int(nlines / linesPerSlice) else: nslices = nlines # we need to get the number of slices to resize the field correctly. Any way to determine this upfront ? # self.data = numpy.zeros((nenergy,ndet,nslices,nproj+1), dtype=numpy.double, order="F") #raw_data = octave.load_raw_tomography(datapath_head,geostruct) #raw_data,data_param = octave.feval("load_raw_tomography", datapath_head, geostruct, nout=2) #rather replicate 'load_raw_data' file in python, working on file-by-file basis volData = False if(geostruct["vol"]>0): volData=True #get all files with .bin ending in folder 'datapath_head' for i in range(0, len(fnames)): ## OCTAVE SOLUTION ## #loaded = octave.read_multix_bin_files(datapath_head, fnames[i]) #raw_data[:,:,:,i]=octave.process_multi_lines(loaded["mltdata"], loaded["DataPara"]["NumIntTime"],volData) ## PYTHON NATIVE SOLUTION reader = loadRawData_Cstyle.loadRawData_Cstyle() ##reader.read_multix_bin_file(os.path.join(datapath_head, fnames[i]), linesPerSlice) ##reader.process_multi_lines(True) ##raw_data[:,:,:,i]=reader.getRawData() # print(nslices) print(linesPerSlice) ret = reader.read_multix_bin_file(os.path.join(self.datapath_head, fnames[i])) if ret==False: print ("Error reading file '"+fnames[i]+"'. EXITING ...") exit(1) reader.process_multi_lines(True) reader.average_lines(nslices, linesPerSlice) # if(linesPerSlice>1): # cnt=0 # binVal = linesPerSlice # lineData = reader.getRawData() # dims = lineData.shape # for sliceIndex in itertools.islice(itertools.count(),0,nslices): # stIndex = cnt # edIndex = min(cnt+binVal, dims[2]) # #raw_data[:,:,sliceIndex,i] = numpy.squeeze(numpy.median(reader.getRawData()[:,:,stIndex:edIndex], axis=2)) # raw_data[:,:,sliceIndex,i] = numpy.nanmean(lineData[:,:,stIndex:edIndex], axis=2, keepdims=False) # cnt = cnt+binVal # else: # raw_data[:,:,:,i]=reader.getRawData() #raw_data[:,:,:,i]=reader.getRawData() data_avg = reader.getAveragedData_FortranOrder() print ("data_avg.shape: ", data_avg.shape) import pylab pylab.figure(1) pylab.imshow(data_avg.squeeze()) pylab.show() self.data[:,:,:,i]=data_avg print ("read projection %d ..." % (i)) #raw_data = numpy.squeeze(raw_data) class CorrectedData(ProjectionData): def __init__(self, datapath_head, file_name = "corrected"): super(CorrectedData,self).__init__(datapath_head = datapath_head, sub_dir="corrected", file_name = file_name) def loadData(self, file_ext = None): super(CorrectedData,self).loadData(file_ext) #print ("corrected data loaded dims" + str(self.data.shape)) self.convertTo4D() #start = time.time() #self.data = numpy.array(numpy.transpose(self.data, [0,1,3,2])) # TODO: why we do this here?? If needed for correction do the transpose right bef #shape = self.data.shape #print(self.data.shape) #import pylab #pylab.gray() #pylab.figure(1) #print(self.data.shape) #print(self.data[40,:,:,0].shape) #pylab.imshow(self.data[40,:,:,100].squeeze()) #pylab.show() #end = time.time() #print("transpose: "+str(end - start)) #print ("corrected data new dims" + str(self.data.shape)) def loadDataMat(self): self.data = octave.load_corrected_data(self.datapath_head) class SinogramData(ProjectionData): def __init__(self, datapath_head, file_name = "sinogram"): super(SinogramData,self).__init__(datapath_head = datapath_head, sub_dir="sinogram", file_name = file_name) def loadData(self, file_ext = None): super(SinogramData,self).loadData(file_ext) self.convertTo4D() start = time.time() #self.removeNans() end = time.time() #print("remove Nans: "+str(end - start)) minVal = numpy.nanmin(self.data) print("minVal: " + str(minVal)) def loadDataMat(self): #print("loadDataMat: ") #self.data = octave.load_sinogram_data(self.datapath_head) self.data = octave.load_data(self.datapath_head, 'sinogram', 'sinogram'); minVal = numpy.nanmin(self.data) print("minVal: " + str(minVal)) #print( self.data.dtype) def compute(self,ProjectionData): #corrected_data = numpy.array(numpy.transpose(corrected_data, [0,1,3,2])) #print "correction shape after permutation: "+str(corrected_data.shape) #should be: <e><d><p><s> sinoShape = (ProjectionData.data.shape[0], ProjectionData.data.shape[1], ProjectionData.data.shape[2], ProjectionData.data.shape[3]-1) self.data = numpy.zeros(sinoShape, dtype=numpy.double, order="F") for sliceIndex in itertools.islice(itertools.count(),0,ProjectionData.data.shape[2]): data_slice = ProjectionData.data[:,:,sliceIndex,:] if sliceIndex == 0: print ("Slice shape: "+str(data_slice.shape)) #sliceShape = (slice.shape[0], slice.shape[1], 1, slice.shape[2]-1) #slice_reshaped = numpy.squeeze(slice) # - here in Python, a mid-index field is already squeezed #sinogram_slice = octave.compute_sinograms(slice_reshaped) #sinogram_slice = numpy.expand_dims(sinogram_slice, 2) #sinogram_data[:,:,sliceIndex,:] = numpy.reshape(sinogram_slice, sliceShape, 'F') sinogram_slice = octave.compute_sinograms(data_slice) #sinogram_slice = octave.compute_sinograms3D(slice) #sinogram_slice = numpy.reshape(sinogram_slice, slice.shape, order='F') #print sinogram_slice.shape #flat_field = data_slice[:,:,0]; #flat_field_rep = numpy.repeat(flat_field[:, :, numpy.newaxis], data_slice.shape[2]-1, axis=2) #print(flat_field_rep.shape) #data_slice_norm = data_slice[:,:,1:]/flat_field_rep #sinogram_slice = -numpy.log(1e-8+data_slice_norm) self.data[:,:,sliceIndex,:] = sinogram_slice def add_nooise(self, n=0): #print(self.data.shape[1:]) #raise SystemExit data_ = numpy.copy(self.data) ##self.data[[8,20],:,:,:] = self.data[[8,20],:,:,:] + numpy.random.normal(0,n, size=(2,self.data.shape[1],self.data.shape[2],self.data.shape[3])) data_[[8,20],:,:,:] = self.data[[8,20],:,:,:] + numpy.random.normal(0,n, size=(2,self.data.shape[1],self.data.shape[2],self.data.shape[3])) return data_ class ImageData(CTData): def averageChannels(self): self.data = self.data.mean(3, keepdims = True) def dumpAllImagesInDir(self, dir_path): if(os.path.exists(dir_path) == False): os.mkdir(dir_path) numChannels = self.data.shape[3] for channelIndex in itertools.islice(itertools.count(),0,numChannels): #channelPath = data_path+os.path.sep+("channel_%04d" % (channelIndex)) numSlices = self.data.shape[2] for sliceIndex in itertools.islice(itertools.count(),0,numSlices): fname = dir_path+os.path.sep+self.file_name+'_'+str(channelIndex).zfill(3)+'_'+str(sliceIndex).zfill(3)+'.png' I = self.data[:,:,sliceIndex,channelIndex] I8 = (((I - I.min()) / (I.max() - I.min())) * 256).astype(numpy.uint8) I8 = 255-I8 img = Image.fromarray(I8) img.save(fname) def saveDataAs2DImages(self, file_ext, channelIndex, channelPath): numSlices = self.data.shape[2] for sliceIndex in itertools.islice(itertools.count(),0,numSlices): I = self.data[:,:,sliceIndex,channelIndex] if "tiff" in file_ext: self.saveImageAsTiff(channelPath,I,sliceIndex) if "png" in file_ext: self.saveImageAsGreyScale(channelPath,I,sliceIndex) def saveDataAs3DImage(self, data_path, channelIndex): fname = data_path + os.path.sep + ("image_channel%04d.mhd" % (channelIndex)) dimArray = numpy.array([self.data.shape[0], self.data.shape[1], self.data.shape[2]], dtype=numpy.uintc) spaceArray = numpy.ones(3, dtype=numpy.float32) arrayLen = self.data.shape[0]*self.data.shape[1]*self.data.shape[2] selectedArray = numpy.reshape(self.data[:,:,:,channelIndex], arrayLen, 'F') # sliceFile = mhd.MhdFile() # sliceFile.SetDimensions(dimArray) # sliceFile.SetSpacing(spaceArray) # sliceFile.setDataAsDouble(selectedArray.astype(numpy.double)) # sliceFile.setFilename(fname) # sliceFile.writeFile() def saveDataAsImages(self, data_path, file_ext): print (self.data.shape) numChannels = self.data.shape[3] #numSlices = self.data.shape[2] for channelIndex in itertools.islice(itertools.count(),0,numChannels): if "tiff" in file_ext or "png" in file_ext: channelPath = data_path+os.path.sep+("channel_%04d" % (channelIndex)) if(os.path.exists(channelPath) == False): os.mkdir(channelPath) self.saveDataAs2DImages(file_ext, channelIndex, channelPath) if "mhd" in file_ext: self.saveDataAs3DImage(data_path, channelIndex) def compute_TV(self): numSlices = self.data.shape[2] numChannels = self.data.shape[3] self.TV = numpy.zeros(shape=(numSlices,numChannels)) self.TV_s = numpy.zeros(numSlices) for sliceIndex in itertools.islice(itertools.count(),0,numSlices): #TV_c = numpy.zeros(numChannels) for channelIndex in itertools.islice(itertools.count(),0,numChannels): image = self.data[:,:,sliceIndex,channelIndex] g_x, g_y = numpy.gradient(image) g_norm2 = g_x**2 + g_y**2 TV_ = numpy.sum(numpy.sqrt(g_norm2)) self.TV[sliceIndex,channelIndex] = TV_ #print(w.shape) #import matplotlib.pyplot as plt #print (image.shape) #plt.figure() #plt.imshow(image, cmap='gray') #plt.show() TV_c_norm2 = self.TV[sliceIndex,:]**2 self.TV_s[sliceIndex] = numpy.sqrt(numpy.sum(TV_c_norm2)) def compute_error(self, ref): print(self.data.shape) print(ref.data.shape) assert (self.data.shape == ref.data.shape),"shape should be equal in both sets!" numSlices = self.data.shape[2] numChannels = self.data.shape[3] dist = numpy.linalg.norm(self.data-ref.data) print(dist) #self.TV = numpy.zeros(shape=(numSlices,numChannels)) #self.TV_s = numpy.zeros(numSlices) self.SSIM = numpy.zeros(shape=(numSlices,numChannels)) self.SSIM_s = numpy.zeros(numSlices) self.MAE = numpy.zeros(shape=(numSlices,numChannels)) self.MAE_s = numpy.zeros(numSlices) for sliceIndex in itertools.islice(itertools.count(),0,numSlices): #TV_c = numpy.zeros(numChannels) for channelIndex in itertools.islice(itertools.count(),0,numChannels): image = self.data[:,:,sliceIndex,channelIndex] image_ref = ref.data[:,:,sliceIndex,channelIndex] #g_x, g_y = numpy.gradient(image) #g_norm2 = g_x**2 + g_y**2 #TV_ = numpy.sum(numpy.sqrt(g_norm2)) #self.TV[sliceIndex,channelIndex] = TV_ #self.MAE[sliceIndex,channelIndex] = numpy.linalg.norm(image-image_ref,ord=1) self.MAE[sliceIndex,channelIndex] = mae(image,image_ref) self.SSIM[sliceIndex,channelIndex] = ssim(image,image_ref) #print(w.shape) #import matplotlib.pyplot as plt #print (image.shape) #plt.figure() #plt.imshow(image, cmap='gray') #plt.show() #TV_c_norm2 = self.TV[sliceIndex,:]**2 #TV_c_norm1 = abs(self.TV[sliceIndex,:]) #self.TV_s[sliceIndex] = numpy.sqrt(numpy.sum(TV_c_norm2)) self.MAE_s[sliceIndex] = numpy.mean(self.MAE[sliceIndex,:]) self.SSIM_s[sliceIndex] = numpy.mean(self.SSIM[sliceIndex,:]) #self.TV_s[sliceIndex] = numpy.sum(TV_c_norm1) #print(TV_c) #print(self.TV_s) #print(self.TV) #raise SystemExit #return TV_c, TV_s def get_metric(self, error_type, slice_id): if error_type == 'TV': return numpy.log(self.TV_s[slice_id]), numpy.log(self.TV[slice_id,:].squeeze()) elif error_type == 'MAE': return self.MAE_s[slice_id], self.MAE[slice_id,:].squeeze() #return -numpy.log(self.MAE_s[slice_id]), -numpy.log(self.MAE[slice_id,:].squeeze()) elif error_type == 'SSIM': #return -numpy.log(self.SSIM_s[slice_id]), -numpy.log(self.SSIM[slice_id,:].squeeze()) return self.SSIM_s[slice_id], self.SSIM[slice_id,:].squeeze() class ReconstructionData(ImageData): def __init__(self, datapath_head, file_name = "reconstruction"): super(ReconstructionData,self).__init__(datapath_head = datapath_head, sub_dir="reconstructed", file_name = file_name) def rearrange_data_dl(self): #print("rearrange_data_dl:") #print(self.data.shape) #self.data = self.data.transpose((2, 0, 1, 3)) #print(self.data.shape) #self.data = self.data.transpose() #print(self.data.shape) self.data = self.data.transpose((3, 1, 0, 2)) #print(self.data.shape) #raise SystemExit #def loadDataH5Silce(self, value): #self.data = numpy.array(value[:,self.z_load_slice,:,:], order='F').transpose() # def loadDataH5(self, data_path): # f = h5py.File(data_path,'r') # self.data = numpy.array(f['data']['value'], order='F').transpose() # f.close() # return True def saveDataForDL(self,save_dir): self.rearrange_data_dl() self.datapath_head = save_dir self.sub_dir = 'images/' self.saveData() def setLegendInfo(self, name, color, style='-'): self.Lname = name self.Lcolor = color self.Lstyle = style class LabelData(CTData): def __init__(self, datapath_head, file_name = "segmented"): super(LabelData,self).__init__(datapath_head = datapath_head, sub_dir="segmented", file_name = file_name) #def getDirPath(self): #return self.datapath_head + os.path.sep + "manualSegmentation" + os.path.sep def loadData(self, file_ext = None): super(LabelData,self).loadData(file_ext) def loadDataH5Silce(self, value): self.data = numpy.array(value[self.z_load_slice,:,:], order='F').transpose() def saveDataAsImages(self, data_path, file_ext): print (self.data.shape) print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!shape printed") self.data = self.data +1 #numChannels = self.data.shape[0] numSlices = self.data.shape[2] #for channelIndex in itertools.islice(itertools.count(),0,numChannels): #channelPath = data_path+os.path.sep+("channel_%04d" % (channelIndex)) #if(os.path.exists(channelPath) == False): #os.mkdir(channelPath) for sliceIndex in itertools.islice(itertools.count(),0,numSlices): I = self.data[:,:,sliceIndex] if "tiff" in file_ext: self.saveImageAsTiff(data_path,I,0) if "png" in file_ext: self.saveImageAsGreyScale(data_path,I,sliceIndex) def loadLabelMap(self): file = self.datapath_head + "/processed/segmented/"+'label_map.txt' with open(file) as f: content = f.readlines() #print(content) self.label_names = [''] * len(content) self.label_ids = [0] * len(content) for seg_id in itertools.islice(itertools.count(), 0, len(content)): content = [x.split('\n')[0] for x in content] contents = content[seg_id].split(' ') #label_name = content[seg_id].split(' ')[1] self.label_ids[seg_id] = int(contents[0]) self.label_names[seg_id] = contents[1] #content = [x.split(':')[0] for x in content] #content = [x.split('\n')[0] for x in content] #return content print(self.label_names) print(self.label_ids) #----------------------------------------------------------not used def extractSegmentValues(self, reconstruction_data): ch_no = reconstruction_data.data.shape[3] self.data_all = numpy.zeros((1,ch_no)) self.label_all = ['None'] self.data_mean = numpy.zeros((len(self.label_ids),ch_no)) self.data_std = numpy.zeros((len(self.label_ids),ch_no)) print("len(self.label_ids))",len(self.label_ids)) for seg_id in itertools.islice(itertools.count(), 0, len(self.label_ids)): print("label_id is:") print(self.label_ids[seg_id]) x, y, z = numpy.where(self.data==(self.label_ids[seg_id]+1)) #print(x,y,z) print(reconstruction_data.data.shape) recons_data_seg = reconstruction_data.data[x,y,z,:] recons_data_seg = recons_data_seg.squeeze() print(recons_data_seg.shape) import matplotlib.pyplot as plt plt.plot(x, x, label='linear') x = numpy.arange(1,33) plt.plot(x,recons_data_seg[:100,:].transpose()) plt.show() #recons_data_seg = recons_data_seg.transpose() self.data_mean[seg_id,:] = numpy.mean(recons_data_seg, axis = 0) self.data_std[seg_id,:] = numpy.std(recons_data_seg, axis = 0) self.data_all = numpy.vstack((self.data_all, recons_data_seg)) self.label_all = numpy.hstack((self.label_all, [self.label_names[seg_id]]*recons_data_seg.shape[0])) print("------------1234-------------") print(recons_data_seg.shape) self.data_all = self.data_all[1:,] self.label_all = self.label_all[1:] #-------------------------------------------------------------not used def saveExtractedValue(self): numpy.savetxt(self.datapath_head + "/processed/segmented/"+"LAC_all.csv", self.data_all, delimiter=",") numpy.savetxt(self.datapath_head + "/processed/segmented/"+"labels_all.txt", self.label_all, delimiter=" ", fmt="%s") numpy.savetxt(self.datapath_head + "/processed/segmented/"+"LAC_mean.csv", self.data_mean, delimiter=",") numpy.savetxt(self.datapath_head + "/processed/segmented/"+"LAC_std.csv", self.data_std, delimiter=",") numpy.savetxt(self.datapath_head + "/processed/segmented/"+"labels_mean.txt", self.label_names, delimiter=" ", fmt="%s") class SynthImages(ImageData): def __init__(self, datapath_head, file_name = "images"): super(SynthImages,self).__init__(datapath_head = datapath_head, sub_dir="images", file_name = file_name) def loadData(self, file_ext = None): super(SynthImages,self).loadData(file_ext) def loadDataH5(self, data_path): f = h5py.File(data_path,'r') self.data = numpy.array(f['data']['value'], order='F').transpose((1, 2, 0, 3)) f.close() return True def getDirPath(self): print("getDirPath") print("self.datapath_head :" + self.datapath_head) print("self.sub_dir :" + self.sub_dir) print("self.file_name :" + self.file_name) print (self.datapath_head + os.path.sep + self.sub_dir + self.file_name) return self.datapath_head + os.path.sep + self.sub_dir + self.file_name
03e89042f9e43ee0f4a84569e259fbf7739b5baa
0f0440c398ce75044c0e54b12d6c0bc5d1e7a167
/sitepr/votacao/models.py
29d4c61720428aa026f4d758364f806a59e3b476
[]
no_license
ElSulphur/DIAM
8511b15681861c5198479bfdf18455656a5b60ba
726f4df785ee5b7b6c58d961b4bb6621de55052f
refs/heads/master
2023-03-31T20:23:38.345012
2021-04-10T22:57:46
2021-04-10T22:57:46
356,336,623
0
0
null
null
null
null
UTF-8
Python
false
false
698
py
from django.db import models # Create your models here. from django.utils import timezone from six import string_types import datetime class Questao(models.Model): questao_texto = models.CharField(max_length=200) pub_data = models.DateTimeField('data de publicacao') def __str__(self): return self.questao_texto def foi_publicada_recentemente(self): return self.pub_data >= timezone.now() - datetime.timedelta(days=1) class Opcao(models.Model): questao = models.ForeignKey(Questao, on_delete=models.CASCADE) opcao_texto = models.CharField(max_length=200) votos = models.IntegerField(default=0) def __str__(self): return self.opcao_texto
82dce29d8fa0ff40bc86b3b1042df98f9ff565eb
cdc410b6025ae28e8184b6f92a7e324337fca320
/dynamicprogramming/even_length.py
156d355542766fa2c0e93d54d9e47d9b77d26cff
[]
no_license
superwololo/codingpractice
e9ffbe0b4673879ecda45072c5cfa3822ac28ef5
0106c04e2b3ec74f5a55467c6bee100e52fd3970
refs/heads/master
2020-12-26T12:31:35.239153
2020-01-31T20:28:25
2020-01-31T20:28:25
237,511,151
0
0
null
null
null
null
UTF-8
Python
false
false
2,521
py
""" arr1 = [1, 2, 3, 1, 2, 3] arr2 = [1, 5, 3, 8, 0, 2, 3] def longest_even(arr, index): cumsum -> [1, 6, 9, 17, 0, 19, 22] k = 1 k = 2 """ https://livecode.amazon.jobs/session/aca517f3-53c6-4c69-befb-5236c3ae399f The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other. Given an integer n, return the number of distinct solutions to the n-queens puzzle. Example : Input: 4 Output: 2 Explanation: There are two distinct solutions to the 4-queens puzzle as shown below. [ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ] """ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 """ import copy class Board(object): def __init__(self, n): self.n = n self.horizontal = [0] * n self.vertical = [0] * n self.diag_up = [0] * (2*n - 1) # Tricky self.diag_down = [0] * (2*n - 1) # Tricky self.num_queens = 0 self.visited = set([]) self.complete_solutions = [] def _set_queen(self, row, col, value): self.horizontal[row] = value self.vertical[col] = value self.diag_up[row + col] = value self.diag_down[n - row + col - 1] = value #Might need to double check this def add(self, row, col): self._set_queen(row, col, 1) self.num_queens = self.num_queens + 1 self.visited.add((row, col)) if self.num_queens == n: self.complete_solutions.append(copy.copy(self.visited)) def remove(self, row, col): self._set_queen(row, col, 0) self.num_queens = self.num_queens - 1 self.visited.remove((row, col)) def is_valid(self, row, col): return all([ self.horizontal[row] == 0 self.vertical[col] == 0 self.diag_up[row + col] == 0 self.diag_down[n - row + col - 1] == 0 ]) def all_valid(self): valid = [] for row in xrange(self.n): for col in xrange(self.n): if self.is_valid(row, col): valid.append((row, col)) return valid def solution(n): board = Board(n) solutions(board) return len(board.complete_solutions) def solutions(board): next_queens = board.all_valid() for row, col in next_queens: board.add(row, col) solutions(board) board.remove(row, col
43a474811ccf00c5c702c89371ec5c28d26e0e29
fe328aa4eaf907be3808d2e5a5815fb336f38d09
/src/RunBot.py
81a926a15205afa52f9759662378b85786a3640c
[ "MIT" ]
permissive
Ashvio/ProPlayerInfoBot
b3845113531fae19cd7a1d550ded9d50f1031d62
5da07962ecf1480db1b51e3192ecd095db8fa89c
refs/heads/master
2021-01-13T00:55:39.583643
2016-09-02T21:04:56
2016-09-02T21:04:56
48,395,769
0
0
null
2016-09-02T21:04:57
2015-12-21T21:45:18
null
UTF-8
Python
false
false
2,899
py
from src.DatabaseManager import DatabaseManager, load_db, is_video, get_url from src.Player import to_comment, Video, Player import praw import time import re def save(manager, filename): manager.save_db(filename) def get_players(title, db): words = re.split(" |'", title) # for value in db.values(): # print(value.name) # print(value.region) player_names = [] for word in words: if word.lower() in db.keys(): player_names.append(word.lower()) if len(player_names) is 0: return None else: players = [] for player in player_names: players.append(db[player]) return players def run_bot(): UA = "Pro Player Info-- Helps players on /r/leagueoflegends learn about pro players and see their old plays. " \ "Contact /u/ashivio." login = "ProPlayerInfoBot" pw = "fake_password" filename = "../Databases/dict-2-25-16.db" time0 = time.time() r = praw.Reddit(UA) r.login(login, pw, disable_warning=True) # database.find_videos() print("Loading database...", end="") manager = load_db(filename) print("[DONE]") db = manager.database # manager.done_submissions = [] print("Reading submissions...") for s in praw.helpers.submission_stream(r, "bottesting", limit=1): print("Reading next submission: " + s.title) time1 = time.time() # Backup database every 5 minutes if time1 - time0 > 300: time0 = time1 if not is_video(s): continue if manager.is_done(s): continue title = s.title.lower() players = get_players(title=title, db=db) if players is None: print("failed") continue head = "Hello! I am a new bot to help you find information and resources about your favorite pro players" \ ". I noticed your post mentioned at least one pro player, so I have put together some information and " \ "past videos about them. \n\n **Player(s) found in this post:**\n\n" body = to_comment(players) + "#\n\n" tail = "***\nmeep moop. \n\n Feedback or questions? Is this posted on " \ "something that doesn't have to do with pro players? Message me or my owner, /u/ashivio, or just reply" \ "to this comment." print("Replying to submission at " + s.permalink + "...", end="") video = Video(s.title, get_url(s), players, s.score) # noinspection PyTypeChecker for player in players: player.add_video(video) s.add_comment(head + body + tail) print("[DONE]") manager.add_submission(s) save(manager, filename) if __name__ == "__main__": while True: try: run_bot() except Exception: print(str(Exception))
33c0fe675935c71160a22f399c58efd34b7b34b8
4305377e2d58954adcfc5991c80f5dd3bd2bfab6
/cgi-bin/profileDBManager.py
3118db001607b872abd1d6ee2f04202413468cf3
[]
no_license
gypdtc/CSC_410_website
5fb5048381698b71c05087aa09709dee4bfb0218
81de0241d5a5cf56d55af58a13e68cd6213b68e3
refs/heads/master
2021-01-13T11:17:09.727218
2016-12-24T01:40:52
2016-12-24T01:40:52
77,259,436
1
0
null
null
null
null
UTF-8
Python
false
false
2,120
py
import pymysql from dbconnector import connect from datetime import datetime def update(user_ID , post_data): update_sql = 'UPDATE user_account set nickname = %s , email_address = %s where user_ID = %s' # print user_ID #connect to DB con = connect() if con == None: return 'Error' try: with con.cursor() as cursor: cursor.execute(update_sql,(post_data['nickname'], post_data['email_address'], user_ID )); # print "!!!!!!!!!!!!!!!!!!!!" con.commit() con.close() return True except Exception as e: print e # print "#####################" con.close() return False def change_password(user_ID, password , salt): insert_sql = 'UPDATE user_account SET password = %s , salt = %s where user_ID = %s' #connect to DB con = connect() if con == None: return 'Error' try: with con.cursor() as cursor: cursor.execute(insert_sql,(password,salt,user_ID)); con.commit() con.close() return True except Exception as e: print e con.close() return False # query_post - retrieve old posts def query_profile(username): #query post ordered by post date query_sql = 'SELECT user_ID,email_address,nickname FROM user_account WHERE user_ID = %s' results = None #connect to DB con = connect() if con == None: return 'Error' try: with con.cursor(pymysql.cursors.DictCursor) as cursor: count = cursor.execute(query_sql,(username)); con.commit() if count > 0: results = cursor.fetchall(); con.close() return results except Exception as e: print e con.close() return None # def update(user_ID , post_data): # update_sql = 'UPDATE user_account set nickname = %s , email_address = %s where user_ID = %s' # print post_data # #connect to DB # con = connect() # if con == None: # return 'Error' # try: # with con.cursor() as cursor: # cursor.execute(update_sql,(post_data['nickname'], # post_data['email_address'] # user_ID # )); # con.commit() # con.close() # return True # except Exception as e: # print e # con.close() # return False
43a65b4c9ab7a04e313f976ac7e7cc37d94dab2b
cfc46fd56c16ac9c010bcf0c1eb50da3047d1b2b
/tests/metrics/test_num_capability_types_count.py
51dddd5c9cf6c11bab8bb61b7dd79b78f12e4e20
[ "Apache-2.0" ]
permissive
radon-h2020/radon-tosca-metrics
d93ef5b3dc53c7863ba98a985919237fe6c4aadf
d0a10e10f2d897299a04f69290f09d5589bc039f
refs/heads/master
2021-08-24T13:53:43.207745
2021-07-06T08:44:00
2021-07-06T08:44:00
242,997,596
3
0
Apache-2.0
2021-03-29T13:47:46
2020-02-25T12:45:05
Python
UTF-8
Python
false
false
905
py
import unittest from parameterized import parameterized_class from toscametrics.blueprint.num_capability_types import NumCapabilityTypes yaml_0 = 'tosca_definitions_version: tosca_simple_yaml_1_0' yaml_2 = ''' tosca_definitions_version: yorc_tosca_simple_yaml_1_0 capability_types: tosca.capabilities.Root: description: The TOSCA root Capability Type all other TOSCA base Capability Types derive from tosca.capabilities.Node: derived_from: tosca.capabilities.Root description: The Node capability indicates the base capabilities of a TOSCA Node Type. ''' @parameterized_class([ {'yaml': yaml_0, 'expected': 0}, {'yaml': yaml_2, 'expected': 2} ]) class TestNumCapabilityTypesCount(unittest.TestCase): def setUp(self): self.blueprint = self.yaml.expandtabs(2) def test(self): self.assertEqual(NumCapabilityTypes(self.blueprint).count(), self.expected)
53e06503760a12ac6ce4123864321dd77ff2a55a
2ec8c8e6786af00fde9b3842e6e0e0f97ee6b4e2
/resumeparser/RP_RestAPI/urls.py
76ae5802c112b98050c885161b7111f90a3b198b
[ "MIT" ]
permissive
job-hax/resume-parser
6e842a277152fc513c80f38c6b714712d3209d06
4793702f24581d88ca021379341a652e42514659
refs/heads/master
2022-04-27T07:25:30.128013
2019-12-25T01:51:40
2019-12-25T01:51:40
221,457,165
19
11
MIT
2022-04-22T22:43:37
2019-11-13T12:43:58
Python
UTF-8
Python
false
false
225
py
from django.urls import path from rest_framework.urlpatterns import format_suffix_patterns from RP_RestAPI import views urlpatterns = [ path('', views.resume_parser), ] urlpatterns = format_suffix_patterns(urlpatterns)
d37066a5a6bf7f763b5b3e013e4fd15fa44146dd
e970c6bfb725a038a17600763db44e21e2591f18
/ex43_classes.py
9c23e10614c52b0286a29fe6cd006b1511725e08
[]
no_license
gabyborja/learnpython
5b9dede94c7bbf2087d79833c4dd0ee099b29d23
13bccb5723c125e28646da694cafec4f581ba55f
refs/heads/main
2023-03-08T02:14:44.447713
2021-02-17T11:22:58
2021-02-17T11:22:58
329,461,347
0
0
null
null
null
null
UTF-8
Python
false
false
10,425
py
from sys import exit from random import randint from textwrap import dedent class Scene(object): def enter(self): print("This scene is not yet configured.") print("Subclass it and implement enter().") exit(1) pass class Engine(object): def __init__(self, scene_map): print(f"Engine __init__") self.scene_map = scene_map print(f"Engine __init__ {scene_map}") def play(self): current_scene = self.scene_map.opening_scene() # Get the opening scene from the map that you specify print(f"Engine.play current scene {current_scene}") last_scene = self.scene_map.next_scene('finished') # Get the last scene from the map that you specify print(f"Engine.play last scene {last_scene}") while current_scene != last_scene: # Loop through this loop if you haven't reached the last scene print(f"Engine current_scene {current_scene}") next_scene_name = current_scene.enter() # enter current scene and return next scene print(f"Engine next_scene_name {next_scene_name}") current_scene = self.scene_map.next_scene(next_scene_name) # get the next scene accordinng to the scene map and set to current scene print(f"Engine current_scene {current_scene}") # be sure to print out the last scene current_scene.enter() # prints out the last scene after exiting the while loop class Death(Scene): quips = [ "You died. You kinda suck at this.", "Your Mom would be proud... if she were smarter.", "Such a loser.", "I have a small puppy that's better at this.", "You're worse than your Dad's jokes." ] def enter(self): print(Death.quips[randint(0, len(self.quips)-1)]) exit(1) class CentralCorridor(Scene): def enter(self): print(dedent(""" The Gothons of Planet Percal #26 have invaded your ship and destroyed your entire crew. You are the last surviving member and your last mission is to get the neutron destruct bomb from the Weapons Armory, put it in the bridge, and blow the ship up after getting into an escape pod. You're running down the central corridor to the Weapons Armory when a Gothon jumps out, red scaly skin, dark grimy teeth, and evil clown costume flowing around his hate filled body. He's blocking the door to the Armory and about to pull a weapon to blast you. """)) action = input("> ") if action == "shoot!": print(dedent(""" Quick on the draw you yank out your blaster and fire it at the Gothon. His clown costume is flowing and moving around his body, which throws off your aim. Your laser hits his costume but misses him entirely. This completely ruins his brand new costume his mother bought him, which makes him fly into an insane rage and blast you repeatedly inthe face until you are dead. Then he eats you. """)) print("returning 'death'") return 'death' elif action == "dodge!": print(dedent(""" Like a world class boxer you dodge, weave, slip and slide righ as the Gothon's blaster cranks a laser past your head. In the middle of your artful dodge your foot slips and you bang your head on the metal wall and pass out. You wake up shortly after only to die as the Gothon stomps on nyour head and eats you. """)) print("returning 'death'") return 'death' elif action == "tell a joke": print(dedent(""" Lucky for you they made you learn Gothon insults in the academy. You tell the one Gothon joke you know: Lbakdfaf jasldkf jasdfl ;akf ajsfd;a , asldfkj asdfj asd;fjasdlfkj. The Gothon stops, tries not to laugh, then busts out laughing and can't move. While he's laughing you run up and shoot him square in the head putting him down, then jump through the Weapon Armory door. """)) print("returning 'laser_weapon_armory'") return 'laser_weapon_armory' else: print("Does not compute!") return 'central_corridor' class LaserWeaponArmory(Scene): def enter(self): print(dedent(""" You do a dive roll into the Weapon Armory, crouch and scan the room for more Gothons that might be hidding. It's dead quiet, too quiet. You stand up and run to the far side of the room and find the neutron bomb in its container. There's a keypad lock on the box and you need the code to get the bomb out. If you get the code wrong 10 times then hte lock closes forever and you can't get the bomb. The code is 3 digits. """)) code = f"{randint(1,9)}{randint(1,9)}{randint(1,9)}" print(code) guess = input("[keypad]> ") guesses = 0 while guess != code and guesses < 10: print("WRONG!") guesses += 1 guess = input("[keypad]> ") if guess == code: print(dedent(""" The container clicks open and the seal breaks, letting gas out. You grab the neutron bomb and run as fast as you can to the bridge where you must place it in the right spot. """)) print("returning the_bridge") return 'the_bridge' else: print(dedent(""" The lock buzzes one last time and then you hear a sickening melting sound as the mechanism is fused together. You decide to sit there, and finally the Gothons blow up the ship from their ship and you die. """)) print("returning 'death'") return 'death' class TheBridge(Scene): def enter(self): print(dedent(""" You burst onto the Bridge with the neutron destruct bomb under your arm and surprise 5 Gothons who are trying to take control of the ship. Each of them has an even uglier clown costume than the last. They haven't pulled their weapons out yet, as they see the active bomb under your arm and don't want to set it off. """)) action = input("> ") if action == "throw the bomb": print(dedent(""" In a panic you throw the bomb at the group of Gothons and make a leap for the door. Right as you drop it a Gothon shoots you right in the back killing you. As you did you see another Gothon frantically try to disarm the bomb. You die knowing they will probably blow up when it goes off. """)) return 'death' elif action == "slowly place the bomb": print(dedent(""" You point your blaster at the bomb under you arm and the Gothons put their hands up and start to sweat. You inch backward to the door, open it, and then carefully place the bomb on the floor, pointing you blaster at it. You then jump back through the door, punch the close button and blast the lock so the Gothons can't get out. Now that the bomb is place you run to the escape pod to get off this tin can. """)) return 'escape_pod' else: print("Does not compute!") return "the_bridge" class EscapePod(Scene): def enter(self): print(dedent(""" You rush through the ship desperately try ing to make it to the escape pod before the whole ship explodes. It seems like hardly any Gothons are on the ship, so your run is clear of interference. You get to the chamber with the escape pods, and nown eed to pick one to take. Some of them could be damaged but you don't have time to look. There's 5 pods, which one do you take? """)) good_pod = randint(1,5) print(good_pod) guess = input("[pod #]> ") if int(guess) != good_pod: print(dedent(""" You jump into pod {guess} and hit the eject butotn. The pod escapes out into the void of space, then implodes as the hull ruptures, crushing your body into jam jelly. """)) return 'death' else: print(dedent(f""" You jump into pod {guess} and hit the eject button. The pod easily slides out into space heading to the planet below. As it flies to the planet, you look back and see your ship implode then explode like a bright star, taking out the Gothon ship at the same time. You won! """)) return 'finished' class Finished(Scene): def enter(self): print("You're finished. Well done.") return 'finished' class Map(object): scenes = { 'central_corridor': CentralCorridor(), 'laser_weapon_armory': LaserWeaponArmory(), 'the_bridge': TheBridge(), 'escape_pod': EscapePod(), 'death': Death(), 'finished': Finished() } def __init__(self, start_scene): print(f"Map start_scene {start_scene}") self.start_scene = start_scene def next_scene(self, scene_name): val = Map.scenes.get(scene_name) print(f"Map next_scene {val}") return val def opening_scene(self): print(f"Map opening_scene {self.start_scene}") print(f"Returning {self.next_scene(self.start_scene)}") return self.next_scene(self.start_scene) a_map = Map('central_corridor') a_game = Engine(a_map) a_game.play()
c5ba575380e28a585c9ac4e8e03714922bac52c8
8300081ddc9d64c22fdf4cce6fdac1fbdf8c04f1
/config/settings/local.py
14fa955e6ac315db9b91b1df3a847b41310d0bda
[ "MIT" ]
permissive
didils/patearn1
4234fe5cafce3f3beb435007f2ca971550837901
332d94acdce55ae15233b19d3fd6e2beea8c5122
refs/heads/master
2021-06-04T21:16:49.227953
2018-08-28T15:17:03
2018-08-28T15:17:03
146,205,150
0
0
MIT
2021-06-01T22:37:57
2018-08-26T18:16:01
Python
UTF-8
Python
false
false
2,587
py
from .base import * # noqa from .base import env # GENERAL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#debug DEBUG = True # https://docs.djangoproject.com/en/dev/ref/settings/#secret-key SECRET_KEY = env('DJANGO_SECRET_KEY', default='3W7RByHcPZqJQx7yBF4Cv8IHtgms1D5ULF8qaydOVFBzIUinbkuFGtMt3iv4BMJF') # https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts ALLOWED_HOSTS = [ "localhost", "0.0.0.0", "127.0.0.1", ] # CACHES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#caches CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION': '' } } # TEMPLATES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#templates TEMPLATES[0]['OPTIONS']['debug'] = DEBUG # noqa F405 # EMAIL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#email-backend EMAIL_BACKEND = env('DJANGO_EMAIL_BACKEND', default='django.core.mail.backends.console.EmailBackend') # https://docs.djangoproject.com/en/dev/ref/settings/#email-host EMAIL_HOST = 'localhost' # https://docs.djangoproject.com/en/dev/ref/settings/#email-port EMAIL_PORT = 1025 # django-debug-toolbar # ------------------------------------------------------------------------------ # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#prerequisites INSTALLED_APPS += ['debug_toolbar'] # noqa F405 # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#middleware MIDDLEWARE += ['debug_toolbar.middleware.DebugToolbarMiddleware'] # noqa F405 # https://django-debug-toolbar.readthedocs.io/en/latest/configuration.html#debug-toolbar-config DEBUG_TOOLBAR_CONFIG = { 'DISABLE_PANELS': [ 'debug_toolbar.panels.redirects.RedirectsPanel', ], 'SHOW_TEMPLATE_CONTEXT': True, } # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#internal-ips INTERNAL_IPS = ['127.0.0.1', '10.0.2.2'] # django-extensions # ------------------------------------------------------------------------------ # https://django-extensions.readthedocs.io/en/latest/installation_instructions.html#configuration INSTALLED_APPS += ['django_extensions'] # noqa F405 # Your stuff... # ------------------------------------------------------------------------------
23b62f0334b9a37e1575aa80724c0edee2a6e52b
7680dbfce22b31835107403514f1489a8afcf3df
/Exercícios_parte_1/exercício__029.py
4386d4d6650ace06a10d4a8400fb756767315b53
[]
no_license
EstephanoBartenski/Aprendendo_Python
c0022d545af00c14e6778f6a80f666de31a7659e
69b4c2e07511a0bd91ac19df59aa9dafdf28fda3
refs/heads/master
2022-11-27T17:14:00.949163
2020-08-03T22:11:19
2020-08-03T22:11:19
284,564,300
0
0
null
null
null
null
UTF-8
Python
false
false
380
py
# radar eletrônico v = float(input('Qual é a velocidade atual do seu carro em km/h? ')) multa = ((v-80)*7) if v<= 80.0: print('Tenha um bom dia! Dirija com segurança!') else: print('VOCÊ FOI MULTADO! Excedeu o limite de velocidade que é de 80 km/h\nVocê deve pagar uma multa de R${:.2f}!'.format(multa)) print('Tenha um bom dia! Dirija com segurança!')
e3c68f4ac6e886779865be178261a082ad6cca6f
48832d27da16256ee62c364add45f21b968ee669
/res_bw/scripts/common/lib/distutils/command/install_egg_info.py
0085fdca385a9fd1a67ca687b00ca2114190c80d
[]
no_license
webiumsk/WOT-0.9.15.1
0752d5bbd7c6fafdd7f714af939ae7bcf654faf7
17ca3550fef25e430534d079876a14fbbcccb9b4
refs/heads/master
2021-01-20T18:24:10.349144
2016-08-04T18:08:34
2016-08-04T18:08:34
64,955,694
0
0
null
null
null
null
WINDOWS-1250
Python
false
false
2,730
py
# 2016.08.04 19:58:52 Střední Evropa (letní čas) # Embedded file name: scripts/common/Lib/distutils/command/install_egg_info.py """distutils.command.install_egg_info Implements the Distutils 'install_egg_info' command, for installing a package's PKG-INFO metadata.""" from distutils.cmd import Command from distutils import log, dir_util import os, sys, re class install_egg_info(Command): """Install an .egg-info file for the package""" description = "Install package's PKG-INFO metadata as an .egg-info file" user_options = [('install-dir=', 'd', 'directory to install to')] def initialize_options(self): self.install_dir = None return def finalize_options(self): self.set_undefined_options('install_lib', ('install_dir', 'install_dir')) basename = '%s-%s-py%s.egg-info' % (to_filename(safe_name(self.distribution.get_name())), to_filename(safe_version(self.distribution.get_version())), sys.version[:3]) self.target = os.path.join(self.install_dir, basename) self.outputs = [self.target] def run(self): target = self.target if os.path.isdir(target) and not os.path.islink(target): dir_util.remove_tree(target, dry_run=self.dry_run) elif os.path.exists(target): self.execute(os.unlink, (self.target,), 'Removing ' + target) elif not os.path.isdir(self.install_dir): self.execute(os.makedirs, (self.install_dir,), 'Creating ' + self.install_dir) log.info('Writing %s', target) if not self.dry_run: f = open(target, 'w') self.distribution.metadata.write_pkg_file(f) f.close() def get_outputs(self): return self.outputs def safe_name(name): """Convert an arbitrary string to a standard distribution name Any runs of non-alphanumeric/. characters are replaced with a single '-'. """ return re.sub('[^A-Za-z0-9.]+', '-', name) def safe_version(version): """Convert an arbitrary string to a standard version string Spaces become dots, and all other non-alphanumeric characters become dashes, with runs of multiple dashes condensed to a single dash. """ version = version.replace(' ', '.') return re.sub('[^A-Za-z0-9.]+', '-', version) def to_filename(name): """Convert a project or version name to its filename-escaped form Any '-' characters are currently replaced with '_'. """ return name.replace('-', '_') # okay decompyling c:\Users\PC\wotsources\files\originals\res_bw\scripts\common\lib\distutils\command\install_egg_info.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2016.08.04 19:58:52 Střední Evropa (letní čas)
8e3ec9c35c3f22fd3e972293f675185cb418958e
75d0009170fe44c315ce72a8c29e712ade3848c3
/9_Outter_Function/_random_pop.py
47f2d189c7f4a4c61652331e96df35c2ab7a60e0
[]
no_license
moon4311/sp
d6a65d5b95bc51332b9a80a1410ffb6854a99f61
207758d4f4f7c28fa1cd9f277825313257782433
refs/heads/master
2021-09-14T07:20:49.257372
2018-05-09T13:28:42
2018-05-09T13:28:42
116,090,677
0
0
null
null
null
null
UTF-8
Python
false
false
332
py
import random def random_pop(data): # number = random.randint(0 , len(data)-1 ) number = random.choice(data) # return data.pop(number) data.remove(number) return number if __name__ == "__main__": data = [1,2,3,4,5] random.shuffle(data) # data 섞기 (셔플) while data : print(random_pop(data))
3d89834b623f58e1db722a58a6c10d0aab51a050
670ce29ecc090e25f4f97ced4cd57ca622b100aa
/171-excel-sheet-column-number.py
63106fc2cab019a23e82922c299f843b40ac143e
[]
no_license
Dinesh-Sivanandam/LeetCode
94dcff32d6652e085c262d0a11ca51345e9d1fde
b9298bbba8a5d36e352aba9efbd4d2875c35a49b
refs/heads/master
2023-04-20T01:31:26.516015
2021-05-20T00:57:33
2021-05-20T00:57:33
290,481,529
1
0
null
null
null
null
UTF-8
Python
false
false
389
py
class Solution(object): def titleToNumber(self, s): """ :type s: str :rtype: int """ result = 0 for letter in s: result = result * 26 + (ord(letter) - ord("A") + 1) return result if __name__ == '__main__': sol = Solution() s = "ZY" result = sol.titleToNumber(s) print(result)
43489505ae9946941ddd6047e32d0228478da0fb
eee3ae1b9ff636fa23529b607cef12280691056b
/mysite/settings.py
8b09ff37fbf3cc55011ffeac330ab209f0a2560c
[]
no_license
suryakandikonda/my-first-blog
bf68793ee6715f620f737f64964bbcefbef869d4
fb92fb118463651f0c1aefabd67a0a82a1ac2f18
refs/heads/master
2021-05-26T09:05:31.864895
2020-04-08T14:35:14
2020-04-08T14:35:14
254,069,539
0
0
null
null
null
null
UTF-8
Python
false
false
3,173
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 3.0.5. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '4s-^ggl)n^#(a6ri*hm_b*t)7l)tyvv(gj3ox8u)(t1m%x$yy2' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'blog.apps.BlogConfig', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Asia/Calcutta' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static')
c3167f44e52789fcb1bd320316272ce7c9a2f0ae
673e829dda9583c8dd2ac8d958ba1dc304bffeaf
/data/multilingual/Latn.COT/Serif_8/pdf_to_json_test_Latn.COT_Serif_8.py
e4aedda09a59d48663e36d901911e8ca7937caf0
[ "BSD-3-Clause" ]
permissive
antoinecarme/pdf_to_json_tests
58bab9f6ba263531e69f793233ddc4d33b783b7e
d57a024fde862e698d916a1178f285883d7a3b2f
refs/heads/master
2021-01-26T08:41:47.327804
2020-02-27T15:54:48
2020-02-27T15:54:48
243,359,934
2
1
null
null
null
null
UTF-8
Python
false
false
303
py
import pdf_to_json as p2j import json url = "file:data/multilingual/Latn.COT/Serif_8/udhr_Latn.COT_Serif_8.pdf" lConverter = p2j.pdf_to_json.pdf_to_json_converter() lConverter.mImageHashOnly = True lDict = lConverter.convert(url) print(json.dumps(lDict, indent=4, ensure_ascii=False, sort_keys=True))
3def6d57e5465af715fc2d59609c2a22eb819f2b
3f856dc08cd450cfd3f4df5a68aa43498e2b88b9
/venv/Lib/site-packages/boto3/__init__.py
2d2f4418beaaed00b503e7beb1466bc73d31f753
[]
no_license
choudharyamit26/textTospeech
e5ac58625e1dab9e7db847bb3b42d7d6284c4948
24711e7a313dcf1916e213cf1e987c7535a4feca
refs/heads/main
2023-02-23T02:55:42.240045
2021-01-25T11:45:54
2021-01-25T11:45:54
302,002,910
0
0
null
null
null
null
UTF-8
Python
false
false
3,340
py
# Copyright 2014 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import logging from boto3.session import Session __author__ = 'Amazon Web Services' __version__ = '1.15.12' # The default Boto3 session; autoloaded when needed. DEFAULT_SESSION = None def setup_default_session(**kwargs): """ Set up a default session, passing through any parameters to the session constructor. There is no need to call this unless you wish to pass custom parameters, because a default session will be created for you. """ global DEFAULT_SESSION DEFAULT_SESSION = Session(**kwargs) def set_stream_logger(name='boto3', level=logging.DEBUG, format_string=None): """ Add a stream handler for the given name and level to the logging module. By default, this logs all boto3 messages to ``stdout``. >>> import boto3 >>> boto3.set_stream_logger('boto3.resources', logging.INFO) For debugging purposes a good choice is to set the stream logger to ``''`` which is equivalent to saying "log everything". .. WARNING:: Be aware that when logging anything from ``'botocore'`` the full wire trace will appear in your logs. If your payloads contain sensitive data this should not be used in production. :type name: string :param name: Log name :type level: int :param level: Logging level, e.g. ``logging.INFO`` :type format_string: str :param format_string: Log message format """ if format_string is None: format_string = "%(asctime)s %(name)s [%(levelname)s] %(message)s" logger = logging.getLogger(name) logger.setLevel(level) handler = logging.StreamHandler() handler.setLevel(level) formatter = logging.Formatter(format_string) handler.setFormatter(formatter) logger.addHandler(handler) def _get_default_session(): """ Get the default session, creating one if needed. :rtype: :py:class:`~boto3.session.Session` :return: The default session """ if DEFAULT_SESSION is None: setup_default_session() return DEFAULT_SESSION def client(*args, **kwargs): """ Create a low-level service client by name using the default session. See :py:meth:`boto3.session.Session.client`. """ return _get_default_session().client(*args, **kwargs) def resource(*args, **kwargs): """ Create a resource service client by name using the default session. See :py:meth:`boto3.session.Session.resource`. """ return _get_default_session().resource(*args, **kwargs) # Set up logging to ``/dev/null`` like a library is supposed to. # http://docs.python.org/3.3/howto/logging.html#configuring-logging-for-a-library class NullHandler(logging.Handler): def emit(self, record): pass logging.getLogger('boto3').addHandler(NullHandler())
100ddc11054c0255d41bbb2c33745df5e14e4b4c
a46d135ba8fd7bd40f0b7d7a96c72be446025719
/packages/python/plotly/plotly/validators/sankey/link/_targetsrc.py
4e42976ca8999da96195282be5eaa6a49248ed35
[ "MIT" ]
permissive
hugovk/plotly.py
5e763fe96f225d964c4fcd1dea79dbefa50b4692
cfad7862594b35965c0e000813bd7805e8494a5b
refs/heads/master
2022-05-10T12:17:38.797994
2021-12-21T03:49:19
2021-12-21T03:49:19
234,146,634
0
0
MIT
2020-01-15T18:33:43
2020-01-15T18:33:41
null
UTF-8
Python
false
false
403
py
import _plotly_utils.basevalidators class TargetsrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__(self, plotly_name="targetsrc", parent_name="sankey.link", **kwargs): super(TargetsrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), **kwargs )
5dac70dadcc3b9398003e47c74b4b2e2c18ab7a4
15b4f3daf1a7858c0bfd020a8de41165b132564d
/bin/correction.py
538aadb740d044c625b187f2edafac19457ddf4c
[]
no_license
Daalma7/Fairness-with-Many-Objective-Optimization
dd3eae0ae185021c0c28779d98a01c9b86aff4f7
9661e9ece243be43a6ea770027f4da7d2cf8c040
refs/heads/master
2023-07-12T05:24:11.144703
2021-08-17T17:05:02
2021-08-17T17:05:02
384,517,212
0
0
null
null
null
null
UTF-8
Python
false
false
6,216
py
import pandas as pd from math import ceil import random import csv import sys import warnings import importlib import os import re import numpy as np from collections import OrderedDict as od warnings.filterwarnings("ignore") sys.path.append("..") from general.ml import * from general.individual import * from general.problem import Problem from algorithms.nsga2.utils import NSGA2Utils from general.population import Population from general.ml import * alg = dat = var = obj = mod = False #Possible parameters given #objectives_results_dict = {'gmean_inv': 'error_val', 'dem_fpr': 'dem_fpr_val', 'dem_ppv': 'dem_ppv_val', 'dem_pnr': 'dem_pnr_val'} objectives_results_dict = {'gmean_inv': 'error', 'dem_fpr': 'dem_fp', 'dem_ppv': 'dem_ppv', 'dem_pnr': 'dem_pnr'} objectives_results_norm_dict = {'num_leaves': 'num_leaves', 'data_weight_avg_depth': 'data_weight_avg_depth'} variables_range = [(20, 200),(0.0001, 0.1), (0.001, 100000), (0, 1), (1, 9)] strobj = "gmean_inv__dem_fpr__dem_ppv__dem_pnr" strextra = "" objectives = [gmean_inv, dem_fpr,dem_ppv, dem_pnr] extraobj = [] obj extra = "" for alg in ["nsga2", "smsemoa", "grea"]: for data in ["adult", "german", "propublica_recidivism", "propublica_violent_recidivism", "ricci"]: if data == "adult" or data == "propublica_recidivism" or data == "propublica_violent_recidivism": var = "race" if data == "ricci": var = "Race" if data == "german": var = "age" pareto_fronts=[] all_indivs = [] pareto_optimal =[] for seed in range(100, 110): read = pd.read_csv('../results/' + alg + '/individuals/individuals_' + data + '_seed_' + str(seed) + '_var_' + var + '_gen_300_indiv_150_model_LR_obj_' + strobj + strextra + '.csv') pareto_fronts.append(read) pareto_fronts = pd.concat(pareto_fronts) #Union of all pareto fronts got in each run pareto_fronts.reset_index(drop=True, inplace=True) #Reset index because for each run all rows have repeated ones for index, row in pareto_fronts.iterrows(): #We create an individual object associated with each row indiv = IndividualLR() hyperparameters = ['max_iter', 'tol', 'lambda', 'l1_ratio', 'class_weight'] indiv.features = [row[x] for x in hyperparameters] indiv.id = row['id'] indiv.domination_count = 0 indiv.features = od(zip(hyperparameters, indiv.features)) indiv.objectives = [] for x in objectives: # We will insert all objectives, normalizing every objective that should be obj = objectives_results_dict.get(x.__name__, "None") if not obj == "None": #The objective doesn't need to be normalized to the range [0,1] indiv.objectives.append(float(row[obj])) else: #In other case obj = objectives_results_norm_dict.get(x.__name__) indiv.objectives.append(float(row[obj]) / pareto_fronts[obj].max()) #The same with extra objectives indiv.extra = [] if not extraobj == None: for x in extraobj: # We will insert all objectives, normalizing every objective that should be ext = objectives_results_dict.get(x.__name__, "None") if not ext == "None": #The objective doesn't need to be normalized to the range [0,1] indiv.extra.append(float(row[ext])) else: #In other case ext = objectives_results_norm_dict.get(x.__name__) indiv.extra.append(float(row[ext]) / pareto_fronts[ext].max()) indiv.creation_mode = row['creation_mode'] all_indivs.append(indiv) print(len(all_indivs)) for indiv in all_indivs: #Now we calculate all the individuals non dominated by any other (pareto front) print() print(i) for other_indiv in all_indivs: if other_indiv.dominates(indiv): indiv.domination_count += 1 #Indiv is dominated by the second if indiv.domination_count < 10: #Could be done easily more efficiently, but could be interesting pareto_optimal.append(indiv) pareto_optimal_df = [] for p in pareto_optimal: #We select individuals from the files corresponding to the pareto front ones (we filter by id) curr_id = p.id #BUT IF THERE ARE MORE THAN 1 INDIVIDUAL WITH THE SAME ID THEY WILL ALL BE ADDED, EVEN THOUGHT ONLY 1 OF THEM IS A PARETO OPTIMAL SOLUTION found = False #Which is by the way really unlikely since there are 36^10 possibilities for an id for index, row in pareto_fronts.iterrows(): if row['id'] == curr_id: pareto_optimal_df.append(pd.DataFrame({x : row[x] for x in pareto_fronts.columns.tolist()}, index=[0])) #We introduce here the not-normalized version of them found = True if not found: pareto_optimal.remove(p) #We extract them to a file pareto_optimal_df = pd.concat(pareto_optimal_df) pareto_optimal_df.drop_duplicates(subset=(['seed']+hyperparameters), keep='first').dropna() pareto_optimal_df.to_csv('../results/' + alg + '/individuals/general_individuals_pareto_' + data + '_baseseed_100_nruns_10_var_' + var + '_gen_300_indiv_150_model_LR_obj_' + strobj + strextra + '.csv', index = False, header = True, columns = list(pareto_fronts.keys())) print("----")
b2ccb3486375934a7ce2ca85148e21351487cf9a
b738a0edcd7f23af475d913b91df18ca39c9e6fe
/lclCluster.py
c495a79f608edccbfb9f83bfd7027e0a2a6399fb
[]
no_license
erodrig9/Amazon-Recommendation-Analysis
b2d70df50fed5f9c165ff7868b15410baa70c94b
5b4477a307a684b3561f1b85794dbfb46283d0e6
refs/heads/master
2021-01-20T12:04:44.723628
2011-08-05T02:51:40
2011-08-05T02:51:40
2,158,225
0
0
null
null
null
null
UTF-8
Python
false
false
2,757
py
import sys def possiblePairs(n): return n*(n-1) - (((n-1)*n)/2) inOutDegree = {1: 0} adjNodes = {1: [0,0]} fileName = sys.argv[1] if len(sys.argv) < 2: print 'One file name must be specified' quit() IFILE = open(fileName, 'r') line = IFILE.readline().strip() while line[0] == '#': line = IFILE.readline().strip() edge = line.split() if len(edge) != 2: quit() curr = edge[0] adj = edge[1] inOutDegree[int(curr)] = 1 inOutDegree[int(adj)] = 1 adjNodes[int(curr)] = set([int(adj)]) adjNodes[int(adj)] = set([int(curr)]) for line in IFILE: line = line.strip() edge = line.split() if len(edge) != 2: continue curr = edge[0] adj = edge[1] if curr == '#': continue if int(curr) in inOutDegree: inOutDegree[int(curr)] += 1 else: inOutDegree[int(curr)] = 1 if int(adj) in inOutDegree: inOutDegree[int(adj)] += 1 else: inOutDegree[int(adj)] = 1 if int(curr) in adjNodes: adjNodes[int(curr)].add(int(adj)) else: adjNodes[int(curr)] = set([int(adj)]) if int(adj) in adjNodes: adjNodes[int(adj)].add(int(curr)) else: adjNodes[int(adj)] = set([int(curr)]) IFILE.close() outputFile = 'results_' + fileName OFILE = open(outputFile, 'w') #OFILE.write(str('node,lcc,gcc\n')) items = inOutDegree.items() items.sort() for key, value in items: numAdj = 0 if key in adjNodes: numAdj = len(adjNodes[key]) pairs = possiblePairs(numAdj) connectedPairs = 0 actualEdges = 0 if numAdj > 0: adjNodesList = list(adjNodes[key]) for i in range(0, numAdj-1): node1 = adjNodesList[i] for j in range(i+1, numAdj): node2 = adjNodesList[j] if node2 in adjNodes: for node in adjNodes[node2]: if(node == node1): connectedPairs += 1 break for node1 in adjNodesList: for node2 in adjNodesList: if node1 == node2: continue if node2 in adjNodes: for node in adjNodes[node2]: if(node == node1): actualEdges += 1 break possibleEdges = value*(value-1) lcc = 0 if possibleEdges > 0: lcc = float(float(actualEdges) / float(possibleEdges)) gcc = 0 if pairs > 0: gcc = float(connectedPairs)/float(pairs) OFILE.write(str(key) + ',' + str(lcc) + ',' + str(gcc) + '\n') OFILE.close() print 'Done'
3a9466a85877955598211cf8c720848236b693ae
e45fef67477bb265f0b69e63ecb5517106525e8b
/calculator.py
e1dcde888b4da05d6cea78e7ac2464de9646eb9e
[]
no_license
lenskikh/cass
0a6c72d75b6b41da066f05c3511016dd54e4e307
f84ce7328db26bf1d82ddd26caf0a84d07e96b4c
refs/heads/master
2023-07-29T11:04:14.997261
2023-07-17T19:53:33
2023-07-17T19:53:33
194,334,196
1
1
null
null
null
null
UTF-8
Python
false
false
8,780
py
import tkinter as tk #Sound activation results in a slower response to key presses #If you want to hear keystroke clicks, remove the comments on three lines #import winsound #sound_of_click = 'sounds/click.wav' window = tk.Tk() window.title("CASS calculator") x = 390 y = 280 numbers = {".":tk.PhotoImage(file = r"images/dot.gif"), "-":tk.PhotoImage(file = r"images/minus.gif"), "gallons":tk.PhotoImage(file = r"images/gallons.gif"), "miles":tk.PhotoImage(file = r"images/miles.gif"), "celsius":tk.PhotoImage(file = r"images/celsius.gif"), "pounds":tk.PhotoImage(file = r"images/pounds.gif")} mini_numbers = {"+":tk.PhotoImage(file = r"images/mini_plus.gif"), "-":tk.PhotoImage(file = r"images/mini_minus.gif"), "*":tk.PhotoImage(file = r"images/mini_x.gif"), "/":tk.PhotoImage(file = r"images/mini_divide.gif"), ".":tk.PhotoImage(file = r"images/mini_dot.gif")} #digits from 0 to 9 and empty screen as 10 for counter in range(11): numbers[str(counter)] = tk.PhotoImage(file = r"images/"+str(counter)+".gif") mini_numbers[str(counter)] = tk.PhotoImage(file = r"images/m"+str(counter)+".gif") memory = {"first_slot":"","second_slot":"", "third_slot":"", "total":"","result":""} def button_of_number(num): if memory["second_slot"] == "": memory["first_slot"]+= num screen(memory["first_slot"],photo = numbers[num]) else: memory["third_slot"]+= num screen(memory["third_slot"],photo = numbers[num]) def check_button_opt(): if memory["result"] != "" and memory["first_slot"] == "": memory["first_slot"] = memory["result"] def operation(opt): empty_screen() if memory["second_slot"] == "" and memory["third_slot"] == "": memory["second_slot"] = opt empty_screen() #if user press operation after equal elif memory["third_slot"] != "": first_zero() def first_zero(): memory["first_slot"],memory["second_slot"],memory["third_slot"],memory["total"] = "","","","" empty_screen() mini_empty() canvas.create_image(120,y, image=numbers["0"]) #zero on a screen def equal(): memory["total"] = memory["first_slot"] + memory["second_slot"] + memory["third_slot"] match memory["second_slot"]: case "%": memory["total"] = memory["first_slot"]+"/100"+"*"+memory["third_slot"] case "Volume": memory["total"] = memory["first_slot"]+"/"+"3.785411784" case "Temperature": memory["total"] = memory["first_slot"]+"*1.8"+"+32" case "Pounds": memory["total"] = memory["first_slot"]+"*2.2046" case "Length": memory["total"] = memory["first_slot"]+"*0.62137" case "Root": counter = 1 root = 0 while root <= int(memory["first_slot"]): counter+= 0.1 root = counter * counter memory["total"] = str(counter) empty_screen() mini_empty() memory["result"] = str(eval(memory["total"])) photo = "" #first_zero() screen(memory["result"],photo) mini() def mini(): mini_empty() if memory["second_slot"] == "+" or memory["second_slot"] == "-" or memory["second_slot"] == "*" or memory["second_slot"] == "/": x = 125 znak = memory["first_slot"]+memory["second_slot"]+memory["third_slot"] for i in znak[:19]: canvas.create_image(x,198, image=mini_numbers[str(i)]) x+=15 if memory["second_slot"] == "Volume": canvas.create_image(220,198, image=numbers["gallons"]) elif memory["second_slot"] == "Length": canvas.create_image(180,198, image=numbers["miles"]) elif memory["second_slot"] == "Temperature": canvas.create_image(260,198, image=numbers["celsius"]) elif memory["second_slot"] == "Pounds": canvas.create_image(270,198, image=numbers["pounds"]) def screen(result,photo): #prevent 10 digits (limitaion of a screen) cut = result[:9] empty_screen() x = 110 for i in cut: canvas.create_image(x,y, image=numbers[str(i)]) x+=35 def empty_screen(): canvas.create_image(252,280, image=numbers["10"]) def mini_empty(): canvas.create_image(252,198, image=mini_numbers["10"]) def left_click(event): if event.x > 45 and event.x < 124 and event.y > 706 and event.y < 760: button_of_number(num = "1") if event.x > 155 and event.x < 236 and event.y > 706 and event.y < 760: button_of_number(num = "2") if event.x > 267 and event.x < 347 and event.y > 706 and event.y < 760: button_of_number(num = "3") if event.x > 46 and event.x < 121 and event.y > 628 and event.y < 680: button_of_number(num = "4") if event.x > 155 and event.x < 236 and event.y > 628 and event.y < 680: button_of_number(num = "5") if event.x > 267 and event.x < 347 and event.y > 628 and event.y < 680: button_of_number(num = "6") if event.x > 46 and event.x < 121 and event.y > 549 and event.y < 600: button_of_number(num = "7") if event.x > 155 and event.x < 236 and event.y > 549 and event.y < 600: button_of_number(num = "8") if event.x > 267 and event.x < 347 and event.y > 549 and event.y < 600: button_of_number(num = "9") if event.x > 45 and event.x < 124 and event.y > 788 and event.y < 834: button_of_number(num = "0") #Dot if event.x > 160 and event.x < 232 and event.y > 788 and event.y < 834: if memory["second_slot"] == "": if "." in memory["first_slot"][:2]: pass else: memory["first_slot"]+= "." screen(memory["first_slot"],photo = numbers["."]) else: if "." in memory["third_slot"][:2]: pass else: memory["third_slot"]+= "." screen(memory["third_slot"],photo = numbers["."]) #negative number if event.x > 156 and event.x < 233 and event.y > 468 and event.y < 519: if memory["second_slot"] == "": if "-" in memory["first_slot"]: pass else: memory["first_slot"] = "-"+ memory["first_slot"] screen(memory["first_slot"],photo = numbers["-"]) else: if "-" in memory["third_slot"]: pass else: memory["third_slot"] = "-" + memory["third_slot"] screen(memory["third_slot"],photo = numbers["-"]) if event.x > 267 and event.x < 347 and event.y > 786 and event.y < 839: check_button_opt() operation(opt="+") mini() if event.x > 379 and event.x < 454 and event.y > 627 and event.y < 678: mini() check_button_opt() operation(opt="-") mini() if event.x > 379 and event.x < 454 and event.y > 549 and event.y < 600: mini() check_button_opt() operation(opt="*") mini() if event.x > 379 and event.x < 454 and event.y > 469 and event.y < 525: check_button_opt() operation(opt="/") mini() #percent if event.x > 271 and event.x < 345 and event.y > 469 and event.y < 525: memory["second_slot"] = "%" equal() #Volume if event.x > 400 and event.x < 456 and event.y > 400 and event.y < 435: memory["second_slot"] = "Volume" equal() #Temperature if event.x > 222 and event.x < 273 and event.y > 400 and event.y < 435: memory["second_slot"] = "Temperature" equal() #Weight if event.x > 136 and event.x < 189 and event.y > 400 and event.y < 435: memory["second_slot"] = "Pounds" equal() #Length if event.x > 47 and event.x < 100 and event.y > 400 and event.y < 435: memory["second_slot"] = "Length" equal() #root if event.x > 313 and event.x < 369 and event.y > 400 and event.y < 435: memory["second_slot"] = "Root" equal() #equal button if event.x > 379 and event.x < 454 and event.y > 707 and event.y < 839: equal() #ac/c button if event.x > 54 and event.x < 118 and event.y > 471 and event.y < 524: first_zero() #winsound.PlaySound(sound_of_click, winsound.SND_FILENAME) canvas = tk.Canvas(window , height=900, width=502) canvas.grid(row = 0, column = 0) calculator_background = tk.PhotoImage(file = 'images/bg.gif') canvas.create_image(253,450, image=calculator_background) first_zero() window.bind("<Button-1>", left_click) canvas.pack() window.mainloop()
3a94e53dca1597278dc61bdfb447167934a00193
77b246d2dc02fb1faba5df8803dadbda483a03c9
/test.py
a1ae48249f1c306a960e2c199886ed0d51445ff3
[]
no_license
Vergangenheit/RestAPI
3a62c1dcbbc444c9b312af481f58e89666db8363
ec8513ee2466e281cb4bd9acbd90892007be50c5
refs/heads/master
2022-11-19T08:36:04.444962
2020-07-23T14:31:07
2020-07-23T14:31:07
281,750,741
0
0
null
null
null
null
UTF-8
Python
false
false
436
py
import requests BASE = "http://127.0.0.1:5000/" # data = [{'likes':20, 'name':'Lollo', 'views':123}, # {'likes':4, 'name':'Pillo', 'views':45}, # {'likes':204, 'name':'Calo', 'views':235}] # for i in range(len(data)): # response = requests.put(BASE + 'video/' + str(i), data[i]) # print(response.json()) # input() response = requests.patch(BASE + 'video/2', {"views":99, 'likes':1001}) print(response.json())
ba8e27733b696dda064fe948e3719ab2450b6ba8
c70c7aae620cd725ce3f94943ba82d399098ef80
/app/neuralNetworkMod/learning/starter2.py
caccde51d3b51a2b6e2afc7b159bdf8bb25bac59
[]
no_license
ra2003/Ciphey
ca90eebcc6b11cd6dd527c49d8411326ddd53752
4fed962b6b839d21835f94738461e737441f02fa
refs/heads/master
2021-02-05T00:31:52.562122
2019-12-30T13:28:36
2019-12-30T13:28:36
243,722,593
1
0
null
2020-02-28T09:15:34
2020-02-28T09:15:33
null
UTF-8
Python
false
false
1,531
py
import tensorflow as tf # deep learning library. Tensors are just multi-dimensional arrays mnist = tf.keras.datasets.mnist # mnist is a dataset of 28x28 images of handwritten digits and their labels (x_train, y_train),(x_test, y_test) = mnist.load_data() # unpacks images to x_train/x_test and labels to y_train/y_test x_train = tf.keras.utils.normalize(x_train, axis=1) # scales data between 0 and 1 x_test = tf.keras.utils.normalize(x_test, axis=1) # scales data between 0 and 1 model = tf.keras.models.Sequential() # a basic feed-forward model model.add(tf.keras.layers.Flatten()) # takes our 28x28 and makes it 1x784 model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu)) # a simple fully-connected layer, 128 units, relu activation model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu)) # a simple fully-connected layer, 128 units, relu activation model.add(tf.keras.layers.Dense(10, activation=tf.nn.softmax)) # our output layer. 10 units for 10 classes. Softmax for probability distribution model.compile(optimizer='adam', # Good default optimizer to start with loss='sparse_categorical_crossentropy', # how will we calculate our "error." Neural network aims to minimize loss. metrics=['accuracy']) # what to track model.fit(x_train, y_train, epochs=3) # train the model val_loss, val_acc = model.evaluate(x_test, y_test) # evaluate the out of sample data with model print(val_loss) # model's loss (error) print(val_acc) # model's accuracy
f20b66793a778f5a890d39576989a7578d983703
8b7c8d5d8603b9532293460f8d320a7b85c03959
/revenge/native_exception.py
381074b93d959e7c44342091db2f4a9d1541b66e
[]
no_license
freemanZYQ/revenge
035abcb2940e07b1b522caa76e2fadc5fdc3c7ab
96cd24560010c472b7183519f636d7047fba7c53
refs/heads/master
2020-07-27T20:29:54.464726
2019-09-13T02:20:59
2019-09-13T02:20:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,459
py
from . import Colorer import logging logger = logging.getLogger(__name__) import typing import frida import colorama colorama.init() import os from termcolor import cprint, colored from prettytable import PrettyTable here = os.path.dirname(os.path.abspath(__file__)) class NativeBacktrace(object): def __init__(self, process, backtrace): """Represents a backtrace. I.e.: what called what. Args: backtrace (list): List of instruction pointers """ self._backtrace = backtrace class NativeException(object): TYPES = ['abort', 'access-violation', 'illegal-instruction', 'arithmetic', 'breakpoint', 'system'] def __init__(self, context, backtrace=None, type=None, memory_operation=None, memory_address=None): """Represent a native CPU exception. Args: context: Frida-util cpu context backtrace: native backtrace object type (str): What type of exception is this. memory_operation (str, optional): Type of memory operation (read/write/execute) memory_address (int, optional): Address that was accessed when exception occurred. """ self.context = context self.backtrace = backtrace self.type = type self.memory_operation = memory_operation self.memory_address = memory_address def __repr__(self): attrs = ['NativeException', self._process.memory.describe_address(self.address), self.type] return '<' + ' '.join(attrs) + '>' def __str__(self): s = "Native Exception\n" s += "~~~~~~~~~~~~~~~~\n" s += self.type + " at " + self._process.memory.describe_address(self.address) + "\n" if self.memory_operation is not None: s += "Memory " + self.memory_operation + " " + hex(self.memory_address) + "\n\n" else: s += "\n" s += str(self.context) s += "\n" # If we can't execute the memory location, don't print it if self.memory_operation != "execute": s += "\n" + str(self._process.memory[self.address].instruction_block) return s @classmethod def _from_frida_dict(cls, process, exception, backtrace): """Build a NativeException object directly from a frida dict.""" assert isinstance(exception, dict) assert isinstance(backtrace, list) backtrace = NativeBacktrace(process, backtrace) return cls( context = CPUContext(process, **exception['context']), backtrace = backtrace, type = exception['type'], memory_operation = exception['memory']['operation'] if 'memory' in exception else None, memory_address = common.auto_int(exception['memory']['address']) if 'memory' in exception else None, ) @property def _process(self): return self.context._process @property def type(self): """str: What type of native exception? One of """ return self.__type @type.setter def type(self, type): type = type.lower() assert type in NativeException.TYPES, 'Unexpected native exception type of {}'.format(type) self.__type = type @property def address(self): """int: Address of this exception.""" return self.context.ip @property def memory_address(self): """int: Address of memory exception.""" return self.__memory_address @memory_address.setter def memory_address(self, memory_address): assert isinstance(memory_address, (int, type(None))) self.__memory_address = memory_address @property def memory_operation(self): """str: Type of memory operation performed at exception. Enum: read, write, execute""" return self.__memory_operation @memory_operation.setter def memory_operation(self, memory_operation): if isinstance(memory_operation, str): memory_operation = memory_operation.lower() assert memory_operation in ['read', 'write', 'execute', None], "Unexpected memory_operation of '{}'".format(memory_operation) self.__memory_operation = memory_operation from .tracer.contexts import Context as CPUContext from . import common NativeException.type.__doc__ += ', '.join(NativeException.TYPES)
8a72a1ce79731e27b566a353ffb0ab6d393bfdd5
eb6738286948946905ff076ccdfc83c5a811f62a
/app.py
97f06d1656a7c2ef818da34e9ab10f7a64a296e2
[]
no_license
TretanAll/belajar-flask
020591e9e7124ce000f77d25565ebcfe6b8498f6
9102052ae49a7866763f3a6c669df5614b8c9c11
refs/heads/master
2020-05-18T16:48:28.770385
2019-05-08T05:08:15
2019-05-08T05:08:15
184,536,186
0
0
null
null
null
null
UTF-8
Python
false
false
769
py
from flask import Flask, render_template, request app = Flask(__name__) #: route untuk index @app.route('/') def home(): search = request.args.get('search') if not search: #:memanggil templates yang sudah dibuat return render_template('index.html') return 'Hasil dari kata kunci search adalah = '+search #: route untuk url tambahan + parameter @app.route('/profile/<username>') def show_profile(username): #: memanggil profil.html dengan parameter username return render_template('profil.html', username=username) #: key = value @app.route('/login', methods=['GET','POST']) def show_login(): if request.method == 'POST': return 'Email kamu adalah '+ request.form['email'] return render_template('login.html')
1aa152002ee24ec974bb466baa4c482491acd0b8
d1d5caf663266106d367a2557c82dfc0de167691
/Part 6/client/main.py
437ed26de8ac45c954d5d0c33c1575b9e876cff8
[]
no_license
navin20/TalkieTut
e4d15ac631da2bac77ea465da87d8cc33f912163
3fcab1100a84a61a2c89fe29244ebd9f6e5a4258
refs/heads/master
2020-12-04T02:40:32.433411
2018-12-06T03:03:29
2018-12-06T03:03:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,378
py
#!/usr/bin/python # -*- coding: utf-8 -*- from kivy.lang import Builder from kivy.app import App from kivy.uix.screenmanager import ScreenManager, Screen from kivy import Config Config.set('graphics', 'multisamples', '0') from kivy.utils import get_color_from_hex import List from List import MDList from label import MDLabel from kivy.uix.popup import Popup from kivy.uix.image import AsyncImage from navigationdrawer import NavigationDrawer ############ import socket import threading import json import string import random from os.path import expanduser import os import requests global s s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) host = '192.168.42.11' port = 5005 ####### global name name = 'Kiran' was_here = False path_images = "."#expanduser('~\\Pictures') avail_image_extensions = ['*.jpg', '*.png', '*.gif'] # filter avail_image_extensions_selection = ['.jpg', '.png', '.gif'] Builder.load_string(""" #:import get_color_from_hex __main__.get_color_from_hex #:import path_images __main__.path_images #:import avail_image_extensions __main__.avail_image_extensions <Chat>: NavigationDrawer: id: nav_draw GridLayout: cols: 1 Label: text: "sample" Button: text: "text" on_release: root.manager.current = "image_select_screen" nav_draw.toggle_state() GridLayout: rows: 2 GridLayout: cols: 1 rows: 0 canvas: Color: rgba: get_color_from_hex("#ffffff") Rectangle: pos: self.pos size: self.size ScrollView: do_scroll_x: False MDList: id: ml GridLayout: size_hint_y: None height: 40 spacing: 15 rows: 1 cols: 2 canvas: Color: rgba: (0.746,0.8,0.86,1) Rectangle: pos: self.pos size: self.size TextInput: id: message hint_text: "Type here" multiline: False on_text_validate: root.send_message(message.text) TextInput: id: pvt_name hint_text: "name of person to pvt" multiline: False <ImageSelectScreen>: GridLayout: rows: 3 cols: 1 BoxLayout: size_hint_y: None Button: text: "Icon View" on_release: filechooser.view_mode = "icon" Button: text: "List View" on_release: filechooser.view_mode = "list" BoxLayout: canvas: Color: rgba: get_color_from_hex("#000000") Rectangle: pos: self.pos size: self.size FileChooser: id: filechooser path: path_images filters: avail_image_extensions on_selection: root.select(filechooser.selection) FileChooserIconLayout FileChooserListLayout BoxLayout: size_hint_y: None height: 30 spacing: 10 canvas: Color: rgba: get_color_from_hex("#ffffff") Rectangle: pos: self.pos size: self.size Button: text: "Send" on_release: root.send_it() Button: text: "Back" on_release: root.manager.current = "main_screen" """) class Chat(Screen): global s def __init__(self, **kwargs): super(Chat, self).__init__(**kwargs) self.ml = self.ids['ml'] self.pvt_name = self.ids['pvt_name'] def add_two_line(self, from_who, msg_to_add): self.ml.add_widget(List.TwoLineListItem( text=msg_to_add, secondary_text=from_who, markup=True, text_size=(self.width, None), size_hint_y=None, font_size=self.height / 23, )) def on_enter(self): # only run this once, not everytime we switch back to it(main_screen) global was_here if was_here == False: was_here = True s.connect((host, port)) welcome = s.recv(512) # self.msg_log.text += str(welcome + "\n") self.add_two_line('Admin', welcome) temp_template = {'name': name} s.send(json.dumps(temp_template)) threading.Thread(target=self.handle_messages).start() def send_message(self, to_send_out): try: if self.pvt_name.text != '': type_msg = 'private_message' pvt_receiver = self.pvt_name.text else: type_msg = 'broadcast' pvt_receiver = '' template = {} template['msg_type'] = type_msg template['from'] = name template['msg'] = to_send_out template['pvt_receiver'] = pvt_receiver s.send(json.dumps(template)) except Exception, e: print 'Error sending: ', e def download_file_arbi(self, url): local_filename = url.split('/')[-1] # NOTE the stream=True parameter r = requests.get(url, stream=True) with open(local_filename, 'wb') as f: for chunk in r.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks f.write(chunk) # f.flush() commented by recommendation from J.F.Sebastian return local_filename def handle_image_download(self, url_img): # create file downloader function for arbitrary files print 'starting downlad' saved_img = self.download_file_arbi(url_img) self.add_two_line('self', 'File saved as ' + saved_img) print 'download complete' self.pop_image_saved(saved_img) def pop_image_saved(self, src): the_pic = AsyncImage(source=src) self.pop1(the_pic) def pop1(self, src): popup = Popup(title='Image loading', content=src) popup.open() def handle_messages(self): while True: try: data = json.loads(s.recv(1024)) if data['msg_type'] == 'broadcast': # self.msg_log.text += data["from"] + " - " + data["msg"] + "\n" self.add_two_line(data['from'], data['msg']) if data['msg_type'] == 'image': # thread it threading.Thread(target=self.handle_image_download, args=(data['link'], )).start() except Exception, e: print e class A: # class to return the name def get_the_name(self): return name class ImageSelectScreen(Screen): global s def select(self, filename): try: self.filename = filename[0] self.preview_img(self.filename) except Exception, e: print e def preview_img(self, src): # do image popup import popup & async image later popup = Popup(title='Preview', content=AsyncImage(source=src)) popup.open() def upload_image( self, fname, urlll, some_dict, ): with open(fname, 'rb') as f: files = {'testname': f} r = requests.post(urlll, files=files) # import requests s.send(json.dumps(some_dict)) self.remove_file(fname) # delete the temp file def remove_file(self, fname): try: os.remove(fname) print 'temp file removed' except Exception, e: print e def send_it(self): # this is upload part print 'upload part' if len(self.filename) > 5: try: host = 'http://192.168.42.11/' url_for_img = host + 'man_images.php' url_for_img_no_php = host + 'img/' print 'inside' c_extension = os.path.splitext(self.filename)[1] # get file extension if c_extension in avail_image_extensions_selection: extesion = c_extension # create temp file for randomness of filename my_name = A().get_the_name() temp_img_file = my_name + '-' \ + ''.join([random.choice(string.ascii_letters + string.digits) for n in xrange(7)]) \ + extesion with open(self.filename, 'rb') as f: orag = f.read() # read image with open(temp_img_file, 'wb') as fb: fb.write(orag) # write image to temp file link_img = url_for_img_no_php + temp_img_file some_dict = {'msg_type': 'image', 'link': link_img, 'from': my_name} threading.Thread(target=self.upload_image, args=(temp_img_file, url_for_img, some_dict)).start() sm.current = 'main_screen' except Exception, e: print e class Talkie(App): def build(self): return sm sm = ScreenManager() sm.add_widget(Chat(name='main_screen')) sm.add_widget(ImageSelectScreen(name='image_select_screen')) if __name__ == '__main__': Talkie().run()
8baed9fb3e23ad004c4f3dedc0a4b1acbf3ddce0
acab53339f2ec0a656dd297d185d7dd5dd9821fa
/all/findLowestCommonAncestor.py
76be497f2f11df909f15a90a4a8e07d474b4fd84
[]
no_license
shrutisaxena0617/Data_Structures_and_Algorithms
a355b127f2e5850e485aa784561ba7190432e14a
31641f04a7c9dfa0b8c5ca1f5c92c56d6f22b239
refs/heads/master
2021-05-03T13:04:08.578505
2019-07-08T02:28:09
2019-07-08T02:28:09
120,508,581
1
0
null
2018-02-06T19:05:28
2018-02-06T18:59:10
null
UTF-8
Python
false
false
931
py
class Node: def __init__(self, data): self.data = data self.left = None self.right = None def findLowestCommonAncestor(root, node1, node2): path1, path2 = [], [] if not findPath(root, node1.data, path1) or not findPath(root, node2.data, path2): return -1 i = 0 while i < len(path1) and i < len(path2): if path1[i] != path2[i]: break i += 1 return path1[i-1] def findPath(root, nodeData, path): if root is None: return False path.append(root.data) if root.data == nodeData: return True if (root.left and findPath(root.left, nodeData, path)) or (root.right and findPath(root.right, nodeData, path)): return True path.pop() return False root = Node(10) root.left = Node(20) root.right = Node(30) root.left.left = Node(15) root.left.right = Node(25) root.right.left = Node(27) root.right.right = Node(35) print(findLowestCommonAncestor(root, root.left, root.right))
efd7e00ff85405fefa382fd9e4b1e1fe36de907b
726d8518a8c7a38b0db6ba9d4326cec172a6dde6
/0501. Find Mode in Binary Search Tree/Solution.py
808554b5b1825dcc00a81a5bd808278ae5eb3276
[]
no_license
faterazer/LeetCode
ed01ef62edbcfba60f5e88aad401bd00a48b4489
d7ba416d22becfa8f2a2ae4eee04c86617cd9332
refs/heads/master
2023-08-25T19:14:03.494255
2023-08-25T03:34:44
2023-08-25T03:34:44
128,856,315
4
0
null
null
null
null
UTF-8
Python
false
false
1,120
py
from typing import List class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def __init__(self): self.pre = None self.ret = [] self.ret_count, self.max_count, self.cur_count = 0, 0, 0 def findMode(self, root: TreeNode) -> List[int]: self.inOrder(root) self.pre = None self.ret = [0] * self.ret_count self.ret_count, self.cur_count = 0, 0 self.inOrder(root) return self.ret def inOrder(self, root: TreeNode) -> None: if not root: return self.inOrder(root.left) if self.pre and self.pre.val == root.val: self.cur_count += 1 else: self.cur_count = 1 if self.cur_count > self.max_count: self.max_count = self.cur_count self.ret_count = 1 elif self.cur_count == self.max_count: if len(self.ret): self.ret[self.ret_count] = root.val self.ret_count += 1 self.pre = root self.inOrder(root.right)
fbc91cbcf1923091f1650547f04392faef815546
965a7d9f81c051b9f56ea08fe048a3935f10ced6
/lclbindings/lclpython/TCustomButtonunit.py
f41c0045361708d399deab0567d319aa2958953b
[]
no_license
mabudrais/lazarus-ccr
1fd074078d04c869fe0a5a5140a1871b66e5c16d
be1510ff5bb5adae34fa91781c61f43650779f04
refs/heads/master
2020-12-25T11:41:40.836166
2015-08-14T07:26:17
2015-08-14T07:26:17
40,607,784
0
0
null
2015-08-12T15:16:48
2015-08-12T15:16:48
null
UTF-8
Python
false
false
1,332
py
import PyMinMod from TButtonControlunit import* class TCustomButton(TButtonControl): def Create(self,TheOwner): r=PyMinMod.TCustomButtonCreate(self.pointer,TheOwner.pointer) ro=TCustomButton() ro.pointer=r return ro def Click(self): r=PyMinMod.TCustomButtonClick(self.pointer) def ExecuteDefaultAction(self): r=PyMinMod.TCustomButtonExecuteDefaultAction(self.pointer) def ExecuteCancelAction(self): r=PyMinMod.TCustomButtonExecuteCancelAction(self.pointer) def ActiveDefaultControlChanged(self,NewControl): r=PyMinMod.TCustomButtonActiveDefaultControlChanged(self.pointer,NewControl.pointer) def UpdateRolesForForm(self): r=PyMinMod.TCustomButtonUpdateRolesForForm(self.pointer) def getActive(self): r=PyMinMod.TCustomButtongetActive(self.pointer) return r def setDefault(self,a1): r=PyMinMod.TCustomButtonsetDefault(self.pointer,a1) def getDefault(self): r=PyMinMod.TCustomButtongetDefault(self.pointer) return r Default=property(getDefault,setDefault) def setCancel(self,a1): r=PyMinMod.TCustomButtonsetCancel(self.pointer,a1) def getCancel(self): r=PyMinMod.TCustomButtongetCancel(self.pointer) return r Cancel=property(getCancel,setCancel)
359b9da5690e878c8d9deee3140376753253f023
385f8d8ed7ab17e6217ab33485157e620cfcd51c
/base/16_进程与线程/02_线程.py
40551ed2beb05e2cdf3f22f6a83368c304ff2240
[]
no_license
simeon49/python-practices
78937992671a5447e11bc5cbc283201ad5b716a6
130f9845c6ab4c049fcbc549ee298c6e9576c2dc
refs/heads/master
2021-07-15T06:21:38.442779
2020-06-04T07:04:38
2020-06-04T07:04:38
159,765,263
0
0
null
null
null
null
UTF-8
Python
false
false
3,710
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # python 标准库提供了两个模块: _thread(低级模块) threading(高级模块 对_thread进行封装) import time import random import _thread import threading def job(thread_type): start = time.time() thread_name = '' if thread_type == '_thread': thread_name = _thread.get_ident() else: thread_name = threading.current_thread().name print('thread %s is running...' % thread_name) time.sleep(random.random()) print('thread %s is end. time used: %s' % (thread_name, time.time() - start)) ################################################### # _thread ################################################### print('============= _thread =============') _thread.start_new_thread(job, ('_thread',)) # 如果主线程结束, 创建的子线程也会结束 time.sleep(1) ################################################### # threading ################################################### print('============= threading =============') t = threading.Thread(target=job, name='job_thread', args=('threading', )) t.start() t.join() # 等待子线程结束 ################################################### # threading 锁 ################################################### print('============= threading.Lock =============') balance = 0 lock = threading.Lock() def run_thread(n): for i in range(1000000): lock.acquire() try: global balance balance += n balance -= n finally: pass lock.release() t = threading.Thread(target=run_thread, args=(3,)) t2 = threading.Thread(target=run_thread, args=(5,)) t.start() t2.start() t.join() t2.join() print('balance: %s' % balance) ################################################### # threading.local: 虽然是全局变量,但每个线程都只能读写自己线程的独立副本,互不干扰。 # ThreadLocal解决了参数在一个线程中各个函数之间互相传递的问题。 ################################################### print('============= threading.Lock =============') local_info = threading.local() def printUserInfo(): print(local_info.user) def run_thread2(name, phone): local_info.user = {'name': name, 'phone': phone} printUserInfo() t1 = threading.Thread(target=run_thread2, args=('Tom', '1364409918')) t2 = threading.Thread(target=run_thread2, args=('Jack', '15828205867')) t1.start() t2.start() t1.join() t2.join() ################################################### # GIL: python的线程虽然是真正的线程, 但解释器(官方的CPython)有一个GIL锁(Golabel interpreter look) # 在python任何线程执行前必须先获得GIL锁, 然后每执行100条字节码, 解释器就自动释放GIL锁, 让其它线程可以 # 执行, 所以在单个进程中即使有多个线程 这些线程也只能交替执行, 注意 每个进程有这个GIL锁 ################################################### import multiprocessing def loop(): x = 0 while True: x = x ^ 1 # 多线程死循环在多核CPU下 只能占用100%左右 for i in range(multiprocessing.cpu_count()): t = threading.Thread(target=loop) t.start() # 解决pyhon GIL问题的办法 # 1.使用用多进程: 多进程不存在这个问题 可以占到 CPU核数*100% p = multiprocessing.Pool(multiprocessing.cpu_count()) for i in range(multiprocessing.cpu_count()): p.apply_async(loop) p.close() # p.join() # 2.使用多线程load C modle 执行 import ctypes lib = ctypes.cdll.LoadLibrary('./base/16_进程与线程/liba.so') for i in range(multiprocessing.cpu_count()): t = threading.Thread(target=lib.loop) t.start()
815c603a59208f188e4e1771b1bd9f90f728af1e
24fefc553716d5b6420cd08bcc19d98f78e32a71
/OSP_1.py
55497598f971c2187505559c25d856bbccd75a73
[]
no_license
Raywang0211/Orthogonal-Subspace-Projection
5e927b1fdcb48f7c2dc3f00425f5ac4fe24c366d
231ecf355bfc9fcde7216ee348e88db575326a4f
refs/heads/master
2020-06-17T05:15:05.130439
2019-07-08T12:46:02
2019-07-08T12:46:02
195,808,952
1
0
null
null
null
null
UTF-8
Python
false
false
2,164
py
import numpy as np import matplotlib.pyplot as plt from numpy.linalg import inv from scipy import signal import random def Make_signal(s): t=np.arange(0,1,0.01)*2*np.pi #初始化時間並轉成角度顯示(2p=360度) sin=1+np.sin(t) #製造正弦波 make sin wave square=1+signal.square(t) #製造方波 make square wave triangle=signal.sawtooth(2*np.pi*t) #製造三角波 make triangle mixA=sin+square #將正弦波及方波混和 mix sin and square mixB=sin+square+triangle #將正弦波 方波 及 三角波 混和 mix sin square and triangle mix plt.subplot(221)#============================================= show the mix1 plt.title('mixA') plt.plot(t,mixA) plt.subplot(222) plt.title('mixB') plt.plot(t,mixB)#============================================= show the mix1 u=np.zeros([100,2],float) # d=np.zeros([100,1],float) for i in range(100): u[i][0]=sin[i] u[i][1]=square[i] d[i][0]=triangle[i] return u,d,np.array(mixA),np.array(mixB) def Make_PuT(u): uT=np.transpose(u) uTu=uT.dot(u) uTu_inverce=inv(uTu) # print(uTu_inverce) uTu_inverce_uT=uTu_inverce.dot(uT) id_matrix=np.identity(100) u_uTu_invers_uT=u.dot(uTu_inverce_uT) PuT=id_matrix-u_uTu_invers_uT #identity matrix - pseudo_inverse return PuT def OSP(d,u,x): PuT=Make_PuT(u) PuTR=np.transpose(x.dot(PuT)) # R the spectral (PuT*R) PuTR_TR=np.transpose(d) # transpose of D OSP_result=PuTR_TR.dot(PuTR) #the result of mix3 return OSP_result if __name__=='__main__': sample_signal=100 u , d , mixA , mixB = Make_signal(sample_signal) #call our every signal sample_number=10 #make 10 random case to detect input_data=[mixA,mixB] dict={0:'mixA',1:'mixB'} seed = [random.randint(0,1) for x in range(sample_number)] test_space=[dict[i] for i in seed] print(test_space) testcase=[input_data[x] for x in seed] ans=[OSP(d,u,x) for x in testcase] plt.subplot(223) plt.plot(ans) plt.show()
3b0474b73ac383434f9c830cadaaaa8ced9e74bf
0c9bcafe1ad47b967c51e52f43693ddd8f35c2ef
/myCode.py
b21de49064354b50039e2197eb9c69d083a823bc
[]
no_license
FilipinoJonas/myCode
a5f1b57c5765b17dd653c23f1c12ef861d89874a
efb08cfb4ffaac010ac394cd951d53133a86f99c
refs/heads/master
2020-03-13T16:12:23.376253
2018-04-26T18:02:35
2018-04-26T18:12:32
131,191,431
0
0
null
null
null
null
UTF-8
Python
false
false
141
py
print ("H") print ("E") print ("L") print ("L") print ("O") print ("") print ("W") print ("O") print ("R") print ("L") print ("D")
15fece6a426be27c6103e892920a63d3e689447f
afe810cbf8e8f14a1ece9bbe757e7001701c39a3
/weatherservice.py
e4441a6887d13ad9db697fb6a3e5be3a9bab28ea
[]
no_license
ginnikhanna/WeatherApp
3b5a4e5d2ee51681faf54227a08f38dd51c3d961
c9d6751460e688d891494fec1150367301267eb2
refs/heads/master
2021-01-05T05:52:47.709737
2020-02-16T20:29:58
2020-02-16T20:29:58
240,904,750
0
0
null
null
null
null
UTF-8
Python
false
false
1,919
py
import weatherapiclient from weatherapiclient import WeatherInfo import openweather_apiclient class WeatherService: def __init__(self, city, weather_apiclient = openweather_apiclient.OpenWeatherApiClient): self._city = city self._weatherapiclient = weather_apiclient def city(self): return self._city def get_weather(self): weather = self._weatherapiclient.current_weather(self._city) if weather.temp_unit is 'celsius': return weather elif weather.temp_unit is 'kelvin': return self._convert_from_kelvin(weather) else: return self._convert_from_fahrenheit(weather) def get_temperature(self): return self.get_weather().temp def get_temperature_feels_like(self): return self.get_weather().feels_like def _convert_from_fahrenheit(self, weather :WeatherInfo): temp_celsius = int((weather.temp - 32)/1.8) temp_feels_like = int((weather.feels_like - 32)/1.8) new_weather = WeatherInfo(temp_celsius, temp_feels_like, weather.temp_min, weather.temp_max, weather.pressure, weather.humidity, 'celsius') return new_weather def _convert_from_kelvin(self, weather: WeatherInfo): temp_celsius = int(weather.temp - 273.15) temp_feels_like = int(weather.feels_like - 273.15) new_weather = WeatherInfo(temp_celsius, temp_feels_like, weather.temp_min, weather.temp_max, weather.pressure, weather.humidity, 'celsius') return new_weather
7d346bcd38ae3d28823754ad8174065e4599a0a3
63cf47ff7a2bf9b1c73d1874dc7182473e392d95
/0x05-python-exceptions/0-safe_print_list.py
bfbb4f5e9b981e500deff16d25cf09d3a9733514
[]
no_license
paurbano/holbertonschool-higher_level_programming
cddbf9fd7145e3ba059df3d155312e0d9845abea
2c055b5240ddd5298996400d8f2a7bc4d33c0ea4
refs/heads/master
2020-09-29T04:14:33.125185
2020-05-16T05:18:42
2020-05-16T05:18:42
226,903,807
0
0
null
null
null
null
UTF-8
Python
false
false
288
py
#!/usr/bin/python3 def safe_print_list(my_list=[], x=0): try: cont = 0 while cont < x: print("{:d}".format(my_list[cont]), end="") cont = cont + 1 print("") return cont except IndexError: print() return cont
255f9fd73a162984b372c7afaaba667bb6e51176
5a5fd75627d8119cf2484fb319208d482ee86f70
/Python/forTest.py
35caa681c568530a0298f44d00bee96e34f8ebfa
[]
no_license
cgscreamer/UdemyProjects
9fb7daa2e86daf6ee603452f20cbf4d71551bdfb
b0a428fc88de0c1b8c6113ea8a8ca20afe187fa9
refs/heads/master
2020-04-16T14:02:01.166670
2019-06-04T10:17:08
2019-06-04T10:17:08
165,652,293
0
0
null
null
null
null
UTF-8
Python
false
false
219
py
number = "9,234,567,789,567" cleanedNumber = "" for char in number: if char in "0123456789": cleanedNumber = cleanedNumber + char newNumber = int(cleanedNumber) print("The number is {}".format(newNumber))
6538dae5234e2367ccdb23d6f142688adf723e44
a4c144caa7e002d173641d6e7818b5e7932caf16
/drf_chart_of_account/migrations/0013_auto_20201015_1924.py
eec7de6dcfe66eac7c041b292ce204d7abe8345f
[ "MIT" ]
permissive
skoobytechforimpact/drf_chart_of_account
43a4dc55e132b5fb3e40609d9ab6714194cc29ba
a9c8243ed2231d38d7fb4fd5323a9f0ffadab5f2
refs/heads/master
2022-12-28T09:05:26.881381
2020-10-17T09:59:05
2020-10-17T09:59:05
302,094,331
0
0
null
2020-10-17T09:59:06
2020-10-07T16:22:44
Python
UTF-8
Python
false
false
1,505
py
# Generated by Django 3.1.2 on 2020-10-15 19:24 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('drf_chart_of_account', '0012_auto_20201015_1924'), ] operations = [ migrations.AlterField( model_name='layerfivemodel', name='ref_no', field=models.CharField(default='5ef0cd3d-588d-4af8-8479-68be01a204cd', max_length=80, unique=True, verbose_name='Reference No.'), ), migrations.AlterField( model_name='layerfourmodel', name='ref_no', field=models.CharField(default='5ef0cd3d-588d-4af8-8479-68be01a204cd', max_length=80, unique=True, verbose_name='Reference No.'), ), migrations.AlterField( model_name='layeronemodel', name='ref_no', field=models.CharField(default='5ef0cd3d-588d-4af8-8479-68be01a204cd', max_length=80, unique=True, verbose_name='Reference No.'), ), migrations.AlterField( model_name='layerthreemodel', name='ref_no', field=models.CharField(default='5ef0cd3d-588d-4af8-8479-68be01a204cd', max_length=80, unique=True, verbose_name='Reference No.'), ), migrations.AlterField( model_name='layertwomodel', name='ref_no', field=models.CharField(default='5ef0cd3d-588d-4af8-8479-68be01a204cd', max_length=80, unique=True, verbose_name='Reference No.'), ), ]
9c3e561c05ad7084a0fc8afc891b85a747eb8b7c
eb4e686d5cc25a48591238e7d42b8c88f0c73700
/edison/urls.py
314905bd3c54e4fceb2ee6fa563480c27f29bbae
[]
no_license
ead-ru/edison-test
933677c72e0d6415404282ecc55c6b233f47995b
d50582b7b3acecb3d0bb74ccb4ce6265458f6850
refs/heads/main
2023-06-05T01:50:09.832051
2021-06-28T06:49:06
2021-06-28T06:49:06
380,065,673
0
0
null
null
null
null
UTF-8
Python
false
false
1,289
py
"""edison URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.conf import settings from django.contrib import admin from django.urls import path, include, re_path from django.conf.urls.static import static from django.contrib.staticfiles import views as static_views from . import views urlpatterns = [ path('', views.index, name='index'), path('accounts/', include('django.contrib.auth.urls')), path('games/', include('games.urls')), path('users/', include('users.urls')), path('admin/', admin.site.urls), ] if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) urlpatterns += [re_path(r'^static/(?P<path>.*)$', static_views.serve), ]
ca95ba1e5c60662d2effcbff8f9000c073bb79f8
c402e39720dce456f97fb596ed555f422c12b181
/Problems/udemy/reverse_string.py
57074e9ce2713471b99849e8351339d3697719af
[]
no_license
esau91/Python
af076ab4fd28fdff37cbfa9560769f18292c8a74
7df895e86c614bcf5ceb9030c34301a70826b9ae
refs/heads/main
2021-11-17T14:34:04.584707
2021-10-20T04:02:16
2021-10-20T04:02:16
314,422,938
0
1
null
null
null
null
UTF-8
Python
false
false
324
py
#Reverse a string def reverse_string(my_string): my_words = my_string.split(' ') reversed_words = [] for word in my_words: reversed_words.insert(0, word[::-1]) return ' '.join(reversed_words) if __name__ == '__main__': my_string = 'Hello My Name is Esaú' print(reverse_string(my_string))
bea952f31b540393fda7966d18a311d387f994f3
7edc9a47324f59b5b7299a1665da6d1ea7868d06
/test.py
a4eff73229ec562136a16da917ea77a25d1c1dbe
[]
no_license
ycdhqzhiai/PaddleOCR-demo
85adadeaa4aefcc67e17ca74edffa06c314d5401
51e045ed5023b3d9cadf3042432e9e7836ef922f
refs/heads/main
2023-03-08T13:17:25.518698
2021-02-24T02:51:38
2021-02-24T02:51:38
341,465,294
3
1
null
null
null
null
UTF-8
Python
false
false
1,478
py
import argparse import yaml import cv2 import numpy as np from PIL import ImageFont, ImageDraw, Image from core.PaddleOCR import PaddleOCR def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--params", type=str, default='data/params.yaml') return parser.parse_args() def draw_result(img, result): img_rec = np.ones_like(img, np.uint8)*255 img_pil = Image.fromarray(img_rec) draw = ImageDraw.Draw(img_pil) fontpath = "font/simsun.ttc" font = ImageFont.truetype(fontpath, 16) for info in result: bbox, rec_info = info pts=np.array(bbox, np.int32) pts=pts.reshape((-1,1,2)) cv2.polylines(img,[pts],True,(0,255,0),2) txt = rec_info[0] + str(rec_info[1]) draw.text(tuple(pts[0][0]), txt, font=font, fill =(0,255,0)) bk_img = np.array(img_pil) draw_img = np.hstack([img,bk_img]) return draw_img if __name__ == '__main__': args = parse_args() with open(args.params) as f: data_dict = yaml.load(f, Loader=yaml.FullLoader) # data dict ocr_engine = PaddleOCR(data_dict) img = cv2.imread(data_dict['image_dir']) result = ocr_engine.ocr(img, det=data_dict['det'], rec=data_dict['rec'], cls=data_dict['use_angle_cls']) draw_img = draw_result(img, result) cv2.imwrite('result.jpg', draw_img) cv2.imshow("img", draw_img) cv2.waitKey(0)
70ecfde020b40b26f350d100c40a2ab6967e5e2b
0b1e91048726d39ae01a08e16e25af80209e09d5
/src/Qb_node/qbrobotics-qbdevice-ros-internal/qb_device_msgs/catkin_generated/pkg.develspace.context.pc.py
9c2c34f881f9402a7ca74b7c5c42599a841ad332
[ "BSD-3-Clause" ]
permissive
CentroEPiaggio/SoftLEGS-ROS_Package
e49e8d61a60c068f15b78c82950beddff30f0280
23f0f405dccdec1df43bb2d448e12a37a712ab51
refs/heads/master
2020-04-11T04:08:44.328439
2019-04-11T14:11:29
2019-04-11T14:11:29
161,502,560
0
2
null
2019-04-11T14:11:31
2018-12-12T14:49:41
null
UTF-8
Python
false
false
665
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "/home/riccardo/catkin_ws/devel/include;/home/riccardo/catkin_ws/src/Qb_node/qbrobotics-qbdevice-ros-internal/qb_device_msgs/include".split(';') if "/home/riccardo/catkin_ws/devel/include;/home/riccardo/catkin_ws/src/Qb_node/qbrobotics-qbdevice-ros-internal/qb_device_msgs/include" != "" else [] PROJECT_CATKIN_DEPENDS = "std_msgs;message_runtime".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "qb_device_msgs" PROJECT_SPACE_DIR = "/home/riccardo/catkin_ws/devel" PROJECT_VERSION = "0.11.3"
a81bd154aac7ad9219f75bf433e0f82c1aaad35e
b6dc025a739f5fe75a6c7dc91f282b87e20edb51
/Model/NN/ReducedSet/RandSample/urinary_tract/urinary_tract.py
698a15eb22054f5ed316a7b653339129cfbb1109
[]
no_license
leon1003/QSMART
edc31dd2c4e6505108180debbe0cca22eff088f7
489ac208fe3fd08c7e65375d40367ea52458338e
refs/heads/master
2023-03-23T19:37:36.780320
2021-03-13T19:08:18
2021-03-13T19:08:18
174,651,478
1
0
null
null
null
null
UTF-8
Python
false
false
35,764
py
from __future__ import division import jmp_score as jmp from math import * import numpy as np """ ================================================================== Copyright(C) 2018 SAS Institute Inc.All rights reserved. Notice: The following permissions are granted provided that the above copyright and this notice appear in the score code and any related documentation. Permission to copy, modify and distribute the score code generated using JMP(R) software is limited to customers of SAS Institute Inc. ("SAS") and successive third parties, all without any warranty, express or implied, or any other obligation by SAS. SAS and all other SAS Institute Inc. product and service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. Except as contained in this notice, the name of the SAS Institute Inc. and JMP shall not be used in the advertising or promotion of products or services without prior written authorization from SAS Institute Inc. ================================================================== """ """ Python code generated by JMP v14.1.0 """ def getModelMetadata(): return {"creator": u"Neural", "modelName": u"", "predicted": u"IC50", "table": u"urinary_tract", "version": u"14.1.0", "timestamp": u"2020-09-16T05:27:28Z"} def getInputMetadata(): return { u"EXP_ABL1_X_EXP_WASF1": "float", u"EXP_BMP2K_X_EXP_NUMB": "float", u"EXP_BMP2K_X_EXP_RALBP1": "float", u"EXP_COQ8A": "float", u"EXP_EIF2AK2": "float", u"EXP_GRK2_X_EXP_OR5AC2": "float", u"EXP_GRK2_X_EXP_OR6A2": "float", u"EXP_GRK2_X_EXP_P2RY11": "float", u"EXP_MAP2K5": "float", u"EXP_PHKG2_X_EXP_PHKA1": "float", u"EXP_STK25_X_EXP_PDCD10": "float", u"EXP_TRPM6": "float", u"Fingerprint_576": "float", u"Fingerprint_611": "float", u"Fingerprint_617": "float", u"Fingerprint_625": "float", u"Fingerprint_629": "float", u"Fingerprint_635": "float", u"Fingerprint_643": "float", u"Fingerprint_644": "float", u"Fingerprint_646": "float", u"Fingerprint_650": "float", u"Fingerprint_656": "float", u"Fingerprint_658": "float", u"Fingerprint_659": "float", u"Fingerprint_667": "float", u"Fingerprint_672": "float", u"Fingerprint_677": "float", u"Fingerprint_679": "float", u"Fingerprint_685": "float", u"Fingerprint_697": "float", u"Fingerprint_698": "float", u"Fingerprint_704": "float", u"Fingerprint_707": "float", u"Fingerprint_709": "float", u"Fingerprint_710": "float", u"Fingerprint_712": "float", u"Fingerprint_714": "float", u"Fingerprint_776": "float", u"Fingerprint_779": "float", u"Fingerprint_784": "float", u"Fingerprint_791": "float", u"Fingerprint_797": "float", u"Fingerprint_798": "float", u"Fingerprint_800": "float", u"Fingerprint_801": "float", u"Fingerprint_803": "float", u"Fingerprint_812": "float", u"Fingerprint_813": "float", u"Fingerprint_818": "float", u"Fingerprint_819": "float", u"Fingerprint_820": "float", u"Fingerprint_821": "float", u"Fingerprint_822": "float", u"Fingerprint_825": "float", u"Fingerprint_826": "float", u"Fingerprint_830": "float", u"Fingerprint_833": "float", u"Fingerprint_834": "float", u"From_Sanger": "float", u"GO_0090263": "float", u"PKA_140_POL_X_Fingerprint_646": "float", u"PKA_252_ASA_X_Fingerprint_576": "float", u"PKA_265_ASA_X_Fingerprint_659": "float", u"PKA_265_CSV_X_Fingerprint_659": "float", u"PKA_265_EXP_X_Fingerprint_659": "float", u"PKA_265_HYD_X_Fingerprint_659": "float", u"PKA_265_X_Fingerprint_659": "float" } def getOutputMetadata(): return { u"Predicted IC50_1": "float" } def score(indata, outdata): # H1_1 # H1_2 # H1_3 # H1_4 # H1_5 # H1_6 # H1_7 # H1_8 # H1_9 H1_1 = tanh((-17.4489638289197 + -0.03384063616984 * indata[u"EXP_ABL1_X_EXP_WASF1"] + -0.208638861976683 * indata[u"EXP_BMP2K_X_EXP_NUMB"] + 0.0112268824476951 * indata[u"EXP_BMP2K_X_EXP_RALBP1"] + -2.84486247922276 * indata[u"EXP_COQ8A"] + 1.46439114900473 * indata[u"EXP_EIF2AK2"] + 0.854579596812174 * indata[u"EXP_GRK2_X_EXP_OR5AC2"] + -0.102277427773119 * indata[u"EXP_GRK2_X_EXP_OR6A2"] + 0.186233557052793 * indata[u"EXP_GRK2_X_EXP_P2RY11"] + 1.59976686529793 * indata[u"EXP_MAP2K5"] + -0.0131646940829501 * indata[u"EXP_PHKG2_X_EXP_PHKA1"] + 0.0722827528160879 * indata[u"EXP_STK25_X_EXP_PDCD10"] + 1.59018404018633 * indata[u"EXP_TRPM6"] + 3.72797692945958 * indata[u"Fingerprint_576"] + -1.27695035149801 * indata[u"Fingerprint_611"] + -4.04307959505601 * indata[u"Fingerprint_617"] + -3.30530920008048 * indata[u"Fingerprint_625"] + -2.42676474343724 * indata[u"Fingerprint_629"] + 7.10892020270393 * indata[u"Fingerprint_635"] + 1.37739376524462 * indata[u"Fingerprint_643"] + -1.18991146970314 * indata[u"Fingerprint_644"] + -5.09920200771214 * indata[u"Fingerprint_646"] + -3.23242660804352 * indata[u"Fingerprint_650"] + 0.724196385908929 * indata[u"Fingerprint_656"] + -1.28335167117176 * indata[u"Fingerprint_658"] + 5.16119243246201 * indata[u"Fingerprint_659"] + -2.67257026746771 * indata[u"Fingerprint_667"] + 2.38337139259445 * indata[u"Fingerprint_672"] + -1.00675063304502 * indata[u"Fingerprint_677"] + 1.4057403092101 * indata[u"Fingerprint_679"] + -4.7148635794299 * indata[u"Fingerprint_685"] + -1.45436697250638 * indata[u"Fingerprint_697"] + -2.55442483239196 * indata[u"Fingerprint_698"] + 0.198196456310837 * indata[u"Fingerprint_704"] + 1.6779037429678 * indata[u"Fingerprint_707"] + -5.85535880859836 * indata[u"Fingerprint_709"] + 1.84360285833278 * indata[u"Fingerprint_710"] + 0.732919905273196 * indata[u"Fingerprint_712"] + -2.36687590794109 * indata[u"Fingerprint_714"] + -4.18919871328833 * indata[u"Fingerprint_776"] + 0.16147992603471 * indata[u"Fingerprint_779"] + -1.11951592207865 * indata[u"Fingerprint_784"] + 5.95887555339273 * indata[u"Fingerprint_791"] + -1.03813560156293 * indata[u"Fingerprint_797"] + -4.72508560671303 * indata[u"Fingerprint_798"] + 1.30693199269184 * indata[u"Fingerprint_800"] + 8.15246448323 * indata[u"Fingerprint_801"] + -0.0238341134003004 * indata[u"Fingerprint_803"] + 3.1762434675568 * indata[u"Fingerprint_812"] + -7.03638991089316 * indata[u"Fingerprint_813"] + -1.84078021310589 * indata[u"Fingerprint_818"] + -6.38812597315488 * indata[u"Fingerprint_819"] + 2.35387610871315 * indata[u"Fingerprint_820"] + -0.394640863117228 * indata[u"Fingerprint_821"] + -1.80235508239219 * indata[u"Fingerprint_822"] + -8.36188375640651 * indata[u"Fingerprint_825"] + -1.6322817681689 * indata[u"Fingerprint_826"] + -4.55751148765807 * indata[u"Fingerprint_830"] + -0.190923465919727 * indata[u"Fingerprint_833"] + 4.23496663893606 * indata[u"Fingerprint_834"] + 1.4748403456486 * indata[u"From_Sanger"] + 0.40160490216547 * indata[u"GO_0090263"] + -1.49583052356579 * indata[u"PKA_140_POL_X_Fingerprint_646"] + -0.00236364131765016 * indata[u"PKA_252_ASA_X_Fingerprint_576"] + 0.822697278045898 * indata[u"PKA_265_ASA_X_Fingerprint_659"] + 5.11342730975192 * indata[u"PKA_265_CSV_X_Fingerprint_659"] + -0.158228094742972 * indata[u"PKA_265_EXP_X_Fingerprint_659"] + -11.1801992984983 * indata[u"PKA_265_HYD_X_Fingerprint_659"] + 4.59466841919073 * indata[u"PKA_265_X_Fingerprint_659"])) H1_2 = tanh((1.1484942089278 + -0.0162618858922618 * indata[u"EXP_ABL1_X_EXP_WASF1"] + -0.0829724176196426 * indata[u"EXP_BMP2K_X_EXP_NUMB"] + 0.0347543326274715 * indata[u"EXP_BMP2K_X_EXP_RALBP1"] + -1.03533156619363 * indata[u"EXP_COQ8A"] + -0.686945891047771 * indata[u"EXP_EIF2AK2"] + -0.389285200844639 * indata[u"EXP_GRK2_X_EXP_OR5AC2"] + 0.100264698140447 * indata[u"EXP_GRK2_X_EXP_OR6A2"] + 0.105946899508099 * indata[u"EXP_GRK2_X_EXP_P2RY11"] + -0.239932235355953 * indata[u"EXP_MAP2K5"] + 0.0413006905598837 * indata[u"EXP_PHKG2_X_EXP_PHKA1"] + 0.0895647637187592 * indata[u"EXP_STK25_X_EXP_PDCD10"] + 1.3280160951838 * indata[u"EXP_TRPM6"] + 2.11861822753346 * indata[u"Fingerprint_576"] + -0.0350731611982862 * indata[u"Fingerprint_611"] + 5.36480417297934 * indata[u"Fingerprint_617"] + -3.70468778388924 * indata[u"Fingerprint_625"] + -2.60761526504623 * indata[u"Fingerprint_629"] + -3.68429899972343 * indata[u"Fingerprint_635"] + 2.68762193354246 * indata[u"Fingerprint_643"] + -2.19869451052286 * indata[u"Fingerprint_644"] + -0.477852258458967 * indata[u"Fingerprint_646"] + -5.26542720567128 * indata[u"Fingerprint_650"] + -0.296332752939709 * indata[u"Fingerprint_656"] + -4.58337701068446 * indata[u"Fingerprint_658"] + 3.04258773587418 * indata[u"Fingerprint_659"] + -6.08564109433186 * indata[u"Fingerprint_667"] + 1.67599449036197 * indata[u"Fingerprint_672"] + 0.856659973259716 * indata[u"Fingerprint_677"] + -5.18274747032375 * indata[u"Fingerprint_679"] + 1.92550451329634 * indata[u"Fingerprint_685"] + 0.0334642749284108 * indata[u"Fingerprint_697"] + 2.47674238247782 * indata[u"Fingerprint_698"] + -1.11727363683382 * indata[u"Fingerprint_704"] + 3.20644445933306 * indata[u"Fingerprint_707"] + -5.27207277915552 * indata[u"Fingerprint_709"] + 4.1200507535679 * indata[u"Fingerprint_710"] + -2.56452564621884 * indata[u"Fingerprint_712"] + -2.16120496430367 * indata[u"Fingerprint_714"] + -4.39339962657206 * indata[u"Fingerprint_776"] + -0.338272351992453 * indata[u"Fingerprint_779"] + 3.43724831075093 * indata[u"Fingerprint_784"] + 3.80919927303853 * indata[u"Fingerprint_791"] + 6.1851892040954 * indata[u"Fingerprint_797"] + -5.22642039710149 * indata[u"Fingerprint_798"] + 2.61275359580007 * indata[u"Fingerprint_800"] + -6.7769743763636 * indata[u"Fingerprint_801"] + -0.534728049841321 * indata[u"Fingerprint_803"] + -1.65519584422273 * indata[u"Fingerprint_812"] + 5.20213938583666 * indata[u"Fingerprint_813"] + -0.653665234449419 * indata[u"Fingerprint_818"] + -2.92716584214204 * indata[u"Fingerprint_819"] + -4.05834657810018 * indata[u"Fingerprint_820"] + 4.21932331113117 * indata[u"Fingerprint_821"] + -2.20647426183707 * indata[u"Fingerprint_822"] + 3.59406619010863 * indata[u"Fingerprint_825"] + -3.30486044747335 * indata[u"Fingerprint_826"] + 0.278491157489118 * indata[u"Fingerprint_830"] + 1.93876027096119 * indata[u"Fingerprint_833"] + 4.85264323866483 * indata[u"Fingerprint_834"] + 5.37880642519667 * indata[u"From_Sanger"] + -1.0058134286674 * indata[u"GO_0090263"] + 1.14379428245569 * indata[u"PKA_140_POL_X_Fingerprint_646"] + -0.122333417968633 * indata[u"PKA_252_ASA_X_Fingerprint_576"] + -1.33799296372706 * indata[u"PKA_265_ASA_X_Fingerprint_659"] + 5.01530971378832 * indata[u"PKA_265_CSV_X_Fingerprint_659"] + -0.157116747376008 * indata[u"PKA_265_EXP_X_Fingerprint_659"] + 10.7875829247962 * indata[u"PKA_265_HYD_X_Fingerprint_659"] + -0.643590402379127 * indata[u"PKA_265_X_Fingerprint_659"])) H1_3 = tanh((-13.0941070403987 + 0.000568930885183191 * indata[u"EXP_ABL1_X_EXP_WASF1"] + 0.121860751321488 * indata[u"EXP_BMP2K_X_EXP_NUMB"] + -0.0891484569633032 * indata[u"EXP_BMP2K_X_EXP_RALBP1"] + 1.17796827929625 * indata[u"EXP_COQ8A"] + 2.01349326741265 * indata[u"EXP_EIF2AK2"] + 0.647036484636149 * indata[u"EXP_GRK2_X_EXP_OR5AC2"] + -0.0432273254575424 * indata[u"EXP_GRK2_X_EXP_OR6A2"] + -0.0412474009096219 * indata[u"EXP_GRK2_X_EXP_P2RY11"] + -1.17169861238972 * indata[u"EXP_MAP2K5"] + 0.0445346271803952 * indata[u"EXP_PHKG2_X_EXP_PHKA1"] + 0.063768459442039 * indata[u"EXP_STK25_X_EXP_PDCD10"] + -2.63683780625312 * indata[u"EXP_TRPM6"] + -0.758070202703703 * indata[u"Fingerprint_576"] + -5.51920619863918 * indata[u"Fingerprint_611"] + 0.652670352785891 * indata[u"Fingerprint_617"] + 10.1722508129093 * indata[u"Fingerprint_625"] + 9.19017791601047 * indata[u"Fingerprint_629"] + 4.90769959106624 * indata[u"Fingerprint_635"] + 1.32217897702809 * indata[u"Fingerprint_643"] + 0.10145973051792 * indata[u"Fingerprint_644"] + -1.10104131324684 * indata[u"Fingerprint_646"] + -0.29471410675063 * indata[u"Fingerprint_650"] + -0.299118558914153 * indata[u"Fingerprint_656"] + -0.134641074796954 * indata[u"Fingerprint_658"] + -0.611047190569502 * indata[u"Fingerprint_659"] + 3.6064346103244 * indata[u"Fingerprint_667"] + -2.73872183310964 * indata[u"Fingerprint_672"] + 3.70350734366661 * indata[u"Fingerprint_677"] + -0.758556854523389 * indata[u"Fingerprint_679"] + -1.76158938202798 * indata[u"Fingerprint_685"] + -0.564913694767512 * indata[u"Fingerprint_697"] + -0.513474058099561 * indata[u"Fingerprint_698"] + -2.38936298298804 * indata[u"Fingerprint_704"] + -0.334883084027033 * indata[u"Fingerprint_707"] + -7.20756788279249 * indata[u"Fingerprint_709"] + 1.71986853431909 * indata[u"Fingerprint_710"] + -0.177133351016768 * indata[u"Fingerprint_712"] + 5.32073513156621 * indata[u"Fingerprint_714"] + -0.0660423803464357 * indata[u"Fingerprint_776"] + -2.35410302140335 * indata[u"Fingerprint_779"] + -2.27392552947926 * indata[u"Fingerprint_784"] + -0.716921916159666 * indata[u"Fingerprint_791"] + -3.84700550971286 * indata[u"Fingerprint_797"] + 0.437646222118036 * indata[u"Fingerprint_798"] + 2.26141715520416 * indata[u"Fingerprint_800"] + -3.11527800547533 * indata[u"Fingerprint_801"] + 3.53477478471799 * indata[u"Fingerprint_803"] + 2.66435334953056 * indata[u"Fingerprint_812"] + -7.22848366703184 * indata[u"Fingerprint_813"] + -2.40278429877311 * indata[u"Fingerprint_818"] + 0.948148803995416 * indata[u"Fingerprint_819"] + -2.44316220455496 * indata[u"Fingerprint_820"] + -0.044877505140785 * indata[u"Fingerprint_821"] + -5.29461533905343 * indata[u"Fingerprint_822"] + -8.4174135262537 * indata[u"Fingerprint_825"] + -2.29408936209563 * indata[u"Fingerprint_826"] + -2.42986745446713 * indata[u"Fingerprint_830"] + -3.20236830868059 * indata[u"Fingerprint_833"] + 0.324349579009568 * indata[u"Fingerprint_834"] + 0.790586622661874 * indata[u"From_Sanger"] + 0.647835167316177 * indata[u"GO_0090263"] + -1.32835517611991 * indata[u"PKA_140_POL_X_Fingerprint_646"] + 0.102395058104991 * indata[u"PKA_252_ASA_X_Fingerprint_576"] + -0.875492275938549 * indata[u"PKA_265_ASA_X_Fingerprint_659"] + 8.51070952302791 * indata[u"PKA_265_CSV_X_Fingerprint_659"] + 0.46267938474533 * indata[u"PKA_265_EXP_X_Fingerprint_659"] + 10.5529436337986 * indata[u"PKA_265_HYD_X_Fingerprint_659"] + -0.228484884473288 * indata[u"PKA_265_X_Fingerprint_659"])) H1_4 = tanh((-11.1605071745731 + 0.176016599576983 * indata[u"EXP_ABL1_X_EXP_WASF1"] + -0.112240882622797 * indata[u"EXP_BMP2K_X_EXP_NUMB"] + -0.029960630762318 * indata[u"EXP_BMP2K_X_EXP_RALBP1"] + -0.558045715469371 * indata[u"EXP_COQ8A"] + 0.46636557213299 * indata[u"EXP_EIF2AK2"] + -0.0618781122626189 * indata[u"EXP_GRK2_X_EXP_OR5AC2"] + -0.499070332320946 * indata[u"EXP_GRK2_X_EXP_OR6A2"] + -0.303473881160214 * indata[u"EXP_GRK2_X_EXP_P2RY11"] + 1.98518482903797 * indata[u"EXP_MAP2K5"] + -0.231470128338823 * indata[u"EXP_PHKG2_X_EXP_PHKA1"] + 0.0367988943136206 * indata[u"EXP_STK25_X_EXP_PDCD10"] + 4.9492703679406 * indata[u"EXP_TRPM6"] + -3.17035864724319 * indata[u"Fingerprint_576"] + -3.80230755588932 * indata[u"Fingerprint_611"] + -6.45960814767695 * indata[u"Fingerprint_617"] + -0.0812221190437555 * indata[u"Fingerprint_625"] + -5.06061419002125 * indata[u"Fingerprint_629"] + -4.48453091038449 * indata[u"Fingerprint_635"] + -0.283172979794127 * indata[u"Fingerprint_643"] + 3.02142460436491 * indata[u"Fingerprint_644"] + 1.16696269376958 * indata[u"Fingerprint_646"] + -4.13712651528967 * indata[u"Fingerprint_650"] + 1.48881776251114 * indata[u"Fingerprint_656"] + 1.1481174352067 * indata[u"Fingerprint_658"] + 2.47556288383927 * indata[u"Fingerprint_659"] + -4.92046935169853 * indata[u"Fingerprint_667"] + -1.78952572750795 * indata[u"Fingerprint_672"] + 1.08915267739236 * indata[u"Fingerprint_677"] + 5.30660608131007 * indata[u"Fingerprint_679"] + 4.40292672440906 * indata[u"Fingerprint_685"] + -2.85214985194855 * indata[u"Fingerprint_697"] + 0.46428668249775 * indata[u"Fingerprint_698"] + -0.813832825414222 * indata[u"Fingerprint_704"] + 2.00710561885785 * indata[u"Fingerprint_707"] + -7.71010035880635 * indata[u"Fingerprint_709"] + 4.44841259828568 * indata[u"Fingerprint_710"] + 0.704053459346146 * indata[u"Fingerprint_712"] + 4.75143090845596 * indata[u"Fingerprint_714"] + 0.3508662786825 * indata[u"Fingerprint_776"] + -0.853954268798953 * indata[u"Fingerprint_779"] + 4.94753325050791 * indata[u"Fingerprint_784"] + -1.23726890617328 * indata[u"Fingerprint_791"] + -1.17388281490852 * indata[u"Fingerprint_797"] + 3.30050297761045 * indata[u"Fingerprint_798"] + 1.62108863575325 * indata[u"Fingerprint_800"] + 3.86187273542481 * indata[u"Fingerprint_801"] + 0.357654353247603 * indata[u"Fingerprint_803"] + 0.667842394540125 * indata[u"Fingerprint_812"] + 3.12615120919728 * indata[u"Fingerprint_813"] + -2.49541270387021 * indata[u"Fingerprint_818"] + -3.44162532456695 * indata[u"Fingerprint_819"] + -0.931104554931348 * indata[u"Fingerprint_820"] + 3.41573650501573 * indata[u"Fingerprint_821"] + -6.69044773200817 * indata[u"Fingerprint_822"] + -3.10658822508563 * indata[u"Fingerprint_825"] + -2.31784436478966 * indata[u"Fingerprint_826"] + 3.66013672212917 * indata[u"Fingerprint_830"] + 0.563593396728432 * indata[u"Fingerprint_833"] + 3.23942481155161 * indata[u"Fingerprint_834"] + 1.38085621383956 * indata[u"From_Sanger"] + -2.35120636416128 * indata[u"GO_0090263"] + 0.498511977576595 * indata[u"PKA_140_POL_X_Fingerprint_646"] + -0.0760250214916024 * indata[u"PKA_252_ASA_X_Fingerprint_576"] + -0.1043005465958 * indata[u"PKA_265_ASA_X_Fingerprint_659"] + -3.69254866250787 * indata[u"PKA_265_CSV_X_Fingerprint_659"] + -3.50668967359532 * indata[u"PKA_265_EXP_X_Fingerprint_659"] + -15.3626158134211 * indata[u"PKA_265_HYD_X_Fingerprint_659"] + -6.1331137103435 * indata[u"PKA_265_X_Fingerprint_659"])) H1_5 = tanh((-26.0485970114031 + 0.0331413942345078 * indata[u"EXP_ABL1_X_EXP_WASF1"] + 0.0346721495740685 * indata[u"EXP_BMP2K_X_EXP_NUMB"] + 0.0546729895157554 * indata[u"EXP_BMP2K_X_EXP_RALBP1"] + 2.46370301542054 * indata[u"EXP_COQ8A"] + 0.407473368180815 * indata[u"EXP_EIF2AK2"] + 0.791697049302302 * indata[u"EXP_GRK2_X_EXP_OR5AC2"] + 0.68164358465167 * indata[u"EXP_GRK2_X_EXP_OR6A2"] + -0.162797474848947 * indata[u"EXP_GRK2_X_EXP_P2RY11"] + 0.92782818275872 * indata[u"EXP_MAP2K5"] + -0.138246565074377 * indata[u"EXP_PHKG2_X_EXP_PHKA1"] + -0.0841843869265326 * indata[u"EXP_STK25_X_EXP_PDCD10"] + -1.10848470532257 * indata[u"EXP_TRPM6"] + -1.15636231494057 * indata[u"Fingerprint_576"] + 0.281315474746373 * indata[u"Fingerprint_611"] + -1.41801506442782 * indata[u"Fingerprint_617"] + -2.19209598928381 * indata[u"Fingerprint_625"] + 0.917552027523811 * indata[u"Fingerprint_629"] + 6.56762574608614 * indata[u"Fingerprint_635"] + 1.2263944200165 * indata[u"Fingerprint_643"] + -4.19077587597146 * indata[u"Fingerprint_644"] + -3.67012326925445 * indata[u"Fingerprint_646"] + 3.38590117810992 * indata[u"Fingerprint_650"] + -1.63018732915361 * indata[u"Fingerprint_656"] + -0.194349148482062 * indata[u"Fingerprint_658"] + -5.56581160238152 * indata[u"Fingerprint_659"] + -1.53459339152853 * indata[u"Fingerprint_667"] + -2.59958380541973 * indata[u"Fingerprint_672"] + -2.45037168013498 * indata[u"Fingerprint_677"] + -3.1704149936032 * indata[u"Fingerprint_679"] + 7.52699204135275 * indata[u"Fingerprint_685"] + 2.34184615273399 * indata[u"Fingerprint_697"] + 0.966202321236134 * indata[u"Fingerprint_698"] + 0.917890647435834 * indata[u"Fingerprint_704"] + 2.18186924608136 * indata[u"Fingerprint_707"] + 0.714697746498247 * indata[u"Fingerprint_709"] + 6.67521610475157 * indata[u"Fingerprint_710"] + 1.28854936637591 * indata[u"Fingerprint_712"] + 1.57428220088359 * indata[u"Fingerprint_714"] + 0.478567827387103 * indata[u"Fingerprint_776"] + -2.59281444305733 * indata[u"Fingerprint_779"] + 0.845987985919079 * indata[u"Fingerprint_784"] + -0.174551114790143 * indata[u"Fingerprint_791"] + -2.14288008246369 * indata[u"Fingerprint_797"] + 0.361149741642908 * indata[u"Fingerprint_798"] + 4.88597551423651 * indata[u"Fingerprint_800"] + -5.27431655691027 * indata[u"Fingerprint_801"] + -1.28398064164104 * indata[u"Fingerprint_803"] + 4.6266882629994 * indata[u"Fingerprint_812"] + -10.6331264135529 * indata[u"Fingerprint_813"] + -4.67081006350422 * indata[u"Fingerprint_818"] + 7.50933428761638 * indata[u"Fingerprint_819"] + 0.759403988010153 * indata[u"Fingerprint_820"] + 2.13146759806505 * indata[u"Fingerprint_821"] + -5.55129428911944 * indata[u"Fingerprint_822"] + 7.99156679501701 * indata[u"Fingerprint_825"] + -0.518231665746639 * indata[u"Fingerprint_826"] + -0.517032992141317 * indata[u"Fingerprint_830"] + -4.158510318919 * indata[u"Fingerprint_833"] + -1.97865391197133 * indata[u"Fingerprint_834"] + -1.64556565005169 * indata[u"From_Sanger"] + 0.822669939166975 * indata[u"GO_0090263"] + -0.375737318099766 * indata[u"PKA_140_POL_X_Fingerprint_646"] + -0.691028649462493 * indata[u"PKA_252_ASA_X_Fingerprint_576"] + 0.662850745894362 * indata[u"PKA_265_ASA_X_Fingerprint_659"] + -2.08903562862821 * indata[u"PKA_265_CSV_X_Fingerprint_659"] + 0.492812687333098 * indata[u"PKA_265_EXP_X_Fingerprint_659"] + 6.58387096613873 * indata[u"PKA_265_HYD_X_Fingerprint_659"] + 2.18374093182191 * indata[u"PKA_265_X_Fingerprint_659"])) H1_6 = tanh((-16.4877218165091 + -0.147344003793052 * indata[u"EXP_ABL1_X_EXP_WASF1"] + -0.00903144836277075 * indata[u"EXP_BMP2K_X_EXP_NUMB"] + 0.106402358719174 * indata[u"EXP_BMP2K_X_EXP_RALBP1"] + 2.45059799405463 * indata[u"EXP_COQ8A"] + -0.865054787026143 * indata[u"EXP_EIF2AK2"] + 1.58888164327313 * indata[u"EXP_GRK2_X_EXP_OR5AC2"] + -1.07704420875003 * indata[u"EXP_GRK2_X_EXP_OR6A2"] + 1.195918557426 * indata[u"EXP_GRK2_X_EXP_P2RY11"] + 1.88012995895299 * indata[u"EXP_MAP2K5"] + -0.0732293981875795 * indata[u"EXP_PHKG2_X_EXP_PHKA1"] + 0.0875477185800213 * indata[u"EXP_STK25_X_EXP_PDCD10"] + -7.7708556996494 * indata[u"EXP_TRPM6"] + 0.41156366548254 * indata[u"Fingerprint_576"] + 2.02913848385012 * indata[u"Fingerprint_611"] + 1.44829651270362 * indata[u"Fingerprint_617"] + 2.51935945019468 * indata[u"Fingerprint_625"] + 5.59737313725016 * indata[u"Fingerprint_629"] + 3.62490167703353 * indata[u"Fingerprint_635"] + -1.46789138347118 * indata[u"Fingerprint_643"] + 1.22142174385628 * indata[u"Fingerprint_644"] + 1.14549275279329 * indata[u"Fingerprint_646"] + 5.43892488732554 * indata[u"Fingerprint_650"] + 3.67179715096721 * indata[u"Fingerprint_656"] + -1.23295219218177 * indata[u"Fingerprint_658"] + -1.7474934001924 * indata[u"Fingerprint_659"] + -7.0995782733703 * indata[u"Fingerprint_667"] + 2.95947485061653 * indata[u"Fingerprint_672"] + 4.41295193086363 * indata[u"Fingerprint_677"] + -3.58264239062851 * indata[u"Fingerprint_679"] + 5.32552946655342 * indata[u"Fingerprint_685"] + -0.459264732161095 * indata[u"Fingerprint_697"] + 1.10137102546857 * indata[u"Fingerprint_698"] + 3.3709787763769 * indata[u"Fingerprint_704"] + 2.09915869113592 * indata[u"Fingerprint_707"] + 1.05331708815621 * indata[u"Fingerprint_709"] + -8.0196848563701 * indata[u"Fingerprint_710"] + -0.0525164832301289 * indata[u"Fingerprint_712"] + 3.2642328525921 * indata[u"Fingerprint_714"] + -1.97733541224889 * indata[u"Fingerprint_776"] + 1.46442643565701 * indata[u"Fingerprint_779"] + -3.2028829150695 * indata[u"Fingerprint_784"] + -0.607453867918589 * indata[u"Fingerprint_791"] + 1.68087882015833 * indata[u"Fingerprint_797"] + 2.01887501302137 * indata[u"Fingerprint_798"] + 1.69163118582029 * indata[u"Fingerprint_800"] + -13.8305362881614 * indata[u"Fingerprint_801"] + -0.812676385726852 * indata[u"Fingerprint_803"] + -0.993260514965094 * indata[u"Fingerprint_812"] + 5.21593496353491 * indata[u"Fingerprint_813"] + 3.28736100959644 * indata[u"Fingerprint_818"] + -5.42899552382674 * indata[u"Fingerprint_819"] + -4.61862024726102 * indata[u"Fingerprint_820"] + -0.0664665762878172 * indata[u"Fingerprint_821"] + -9.07021382309341 * indata[u"Fingerprint_822"] + -3.57514590509758 * indata[u"Fingerprint_825"] + 1.07918436995299 * indata[u"Fingerprint_826"] + 0.348504978219423 * indata[u"Fingerprint_830"] + -7.88821236783586 * indata[u"Fingerprint_833"] + 2.62866074390727 * indata[u"Fingerprint_834"] + -1.75231567063239 * indata[u"From_Sanger"] + 0.578206673030751 * indata[u"GO_0090263"] + 0.389605446335451 * indata[u"PKA_140_POL_X_Fingerprint_646"] + -0.0974332053142329 * indata[u"PKA_252_ASA_X_Fingerprint_576"] + 1.954618830946 * indata[u"PKA_265_ASA_X_Fingerprint_659"] + -1.49151906348657 * indata[u"PKA_265_CSV_X_Fingerprint_659"] + -0.26851975372125 * indata[u"PKA_265_EXP_X_Fingerprint_659"] + -2.15792080737236 * indata[u"PKA_265_HYD_X_Fingerprint_659"] + 1.96655232321754 * indata[u"PKA_265_X_Fingerprint_659"])) H1_7 = tanh((-40.2102714377397 + 0.129157165630173 * indata[u"EXP_ABL1_X_EXP_WASF1"] + -0.395010166709183 * indata[u"EXP_BMP2K_X_EXP_NUMB"] + 0.0134135349227413 * indata[u"EXP_BMP2K_X_EXP_RALBP1"] + 3.61129489446125 * indata[u"EXP_COQ8A"] + 0.418972612936108 * indata[u"EXP_EIF2AK2"] + 0.189637990342247 * indata[u"EXP_GRK2_X_EXP_OR5AC2"] + 1.43546262919402 * indata[u"EXP_GRK2_X_EXP_OR6A2"] + -0.563788281945154 * indata[u"EXP_GRK2_X_EXP_P2RY11"] + 0.983218949517404 * indata[u"EXP_MAP2K5"] + -0.110531907587942 * indata[u"EXP_PHKG2_X_EXP_PHKA1"] + -0.000755874736391343 * indata[u"EXP_STK25_X_EXP_PDCD10"] + 1.68882990656312 * indata[u"EXP_TRPM6"] + 0.761486822540793 * indata[u"Fingerprint_576"] + 0.0879340475934506 * indata[u"Fingerprint_611"] + -2.56000617017738 * indata[u"Fingerprint_617"] + 1.12747439245435 * indata[u"Fingerprint_625"] + -1.39053729570057 * indata[u"Fingerprint_629"] + 5.86818005688356 * indata[u"Fingerprint_635"] + 2.23099376997261 * indata[u"Fingerprint_643"] + 2.27654257923562 * indata[u"Fingerprint_644"] + 2.65714074912595 * indata[u"Fingerprint_646"] + -5.36624952912004 * indata[u"Fingerprint_650"] + -5.3644007202718 * indata[u"Fingerprint_656"] + -0.399194385295165 * indata[u"Fingerprint_658"] + -1.72288148116535 * indata[u"Fingerprint_659"] + 3.26466143227626 * indata[u"Fingerprint_667"] + -0.197483178972642 * indata[u"Fingerprint_672"] + 11.3353362456324 * indata[u"Fingerprint_677"] + -3.14162471512631 * indata[u"Fingerprint_679"] + 0.0289386131420476 * indata[u"Fingerprint_685"] + 0.861581776760126 * indata[u"Fingerprint_697"] + 3.30224538381924 * indata[u"Fingerprint_698"] + 2.00843605681069 * indata[u"Fingerprint_704"] + 2.6190358157179 * indata[u"Fingerprint_707"] + 0.368948379823907 * indata[u"Fingerprint_709"] + 3.66294862527094 * indata[u"Fingerprint_710"] + -3.22716600615212 * indata[u"Fingerprint_712"] + -0.700218821838725 * indata[u"Fingerprint_714"] + -0.597985082633684 * indata[u"Fingerprint_776"] + -0.347496496886741 * indata[u"Fingerprint_779"] + -0.773960544682966 * indata[u"Fingerprint_784"] + 3.74740172883821 * indata[u"Fingerprint_791"] + 3.50884092637044 * indata[u"Fingerprint_797"] + 0.698377915994339 * indata[u"Fingerprint_798"] + 2.46612114352196 * indata[u"Fingerprint_800"] + 5.18930777710737 * indata[u"Fingerprint_801"] + -1.86544104482818 * indata[u"Fingerprint_803"] + -7.01117554187091 * indata[u"Fingerprint_812"] + -3.71314850872473 * indata[u"Fingerprint_813"] + -2.80710798447972 * indata[u"Fingerprint_818"] + -0.806245900733964 * indata[u"Fingerprint_819"] + -1.99433427208779 * indata[u"Fingerprint_820"] + 0.164133504243564 * indata[u"Fingerprint_821"] + -1.69826296472606 * indata[u"Fingerprint_822"] + 4.02001386112892 * indata[u"Fingerprint_825"] + -0.892685284485493 * indata[u"Fingerprint_826"] + -3.05332426019241 * indata[u"Fingerprint_830"] + -0.981368989890439 * indata[u"Fingerprint_833"] + 2.39708592378143 * indata[u"Fingerprint_834"] + -3.4045947743675 * indata[u"From_Sanger"] + 0.62355602810359 * indata[u"GO_0090263"] + -2.07449709700857 * indata[u"PKA_140_POL_X_Fingerprint_646"] + -0.555035441897514 * indata[u"PKA_252_ASA_X_Fingerprint_576"] + 1.91669355154768 * indata[u"PKA_265_ASA_X_Fingerprint_659"] + 3.48645421256402 * indata[u"PKA_265_CSV_X_Fingerprint_659"] + 0.00905014101270096 * indata[u"PKA_265_EXP_X_Fingerprint_659"] + 20.5796567969056 * indata[u"PKA_265_HYD_X_Fingerprint_659"] + -2.38581476720624 * indata[u"PKA_265_X_Fingerprint_659"])) H1_8 = tanh((-49.3554966584402 + -0.0954345529930431 * indata[u"EXP_ABL1_X_EXP_WASF1"] + 0.0326839334148208 * indata[u"EXP_BMP2K_X_EXP_NUMB"] + 0.0180536090323104 * indata[u"EXP_BMP2K_X_EXP_RALBP1"] + -0.85888186718544 * indata[u"EXP_COQ8A"] + 1.72516712647535 * indata[u"EXP_EIF2AK2"] + 0.413024400484081 * indata[u"EXP_GRK2_X_EXP_OR5AC2"] + 0.912723840220051 * indata[u"EXP_GRK2_X_EXP_OR6A2"] + -0.360759605205901 * indata[u"EXP_GRK2_X_EXP_P2RY11"] + 1.91178544777373 * indata[u"EXP_MAP2K5"] + 0.0314349871902432 * indata[u"EXP_PHKG2_X_EXP_PHKA1"] + 0.0989792626246006 * indata[u"EXP_STK25_X_EXP_PDCD10"] + 0.597653226188894 * indata[u"EXP_TRPM6"] + 1.58956418979806 * indata[u"Fingerprint_576"] + 1.46375025222909 * indata[u"Fingerprint_611"] + 5.40000713448029 * indata[u"Fingerprint_617"] + -2.15164341751039 * indata[u"Fingerprint_625"] + 4.21383667831044 * indata[u"Fingerprint_629"] + -1.03939931501941 * indata[u"Fingerprint_635"] + -2.05600852315238 * indata[u"Fingerprint_643"] + 1.21462170023416 * indata[u"Fingerprint_644"] + 2.37144983454974 * indata[u"Fingerprint_646"] + 0.0845976046926738 * indata[u"Fingerprint_650"] + 1.81954769848885 * indata[u"Fingerprint_656"] + 1.38782445352937 * indata[u"Fingerprint_658"] + 3.21597127479634 * indata[u"Fingerprint_659"] + 5.23174494699555 * indata[u"Fingerprint_667"] + -0.401195347239477 * indata[u"Fingerprint_672"] + 1.63360756607459 * indata[u"Fingerprint_677"] + 17.0027200573104 * indata[u"Fingerprint_679"] + 4.51465713931606 * indata[u"Fingerprint_685"] + 2.17711818044357 * indata[u"Fingerprint_697"] + 1.51985551960078 * indata[u"Fingerprint_698"] + 1.45260089599339 * indata[u"Fingerprint_704"] + 3.11031973507035 * indata[u"Fingerprint_707"] + -6.36435013509164 * indata[u"Fingerprint_709"] + -0.452674256428442 * indata[u"Fingerprint_710"] + -6.64228829771112 * indata[u"Fingerprint_712"] + 1.82110110857119 * indata[u"Fingerprint_714"] + -1.71624205317893 * indata[u"Fingerprint_776"] + 2.27340231243943 * indata[u"Fingerprint_779"] + -3.13557588381317 * indata[u"Fingerprint_784"] + -5.68922211046879 * indata[u"Fingerprint_791"] + 1.17555382880294 * indata[u"Fingerprint_797"] + 2.16037287181947 * indata[u"Fingerprint_798"] + 1.3176468458715 * indata[u"Fingerprint_800"] + -1.39222477883734 * indata[u"Fingerprint_801"] + -3.38684995181639 * indata[u"Fingerprint_803"] + -7.10433994103236 * indata[u"Fingerprint_812"] + -7.81669707773047 * indata[u"Fingerprint_813"] + 0.807699329210617 * indata[u"Fingerprint_818"] + 0.0539155779860813 * indata[u"Fingerprint_819"] + -0.0244637727785953 * indata[u"Fingerprint_820"] + -4.05180123601464 * indata[u"Fingerprint_821"] + 6.49015545457672 * indata[u"Fingerprint_822"] + -12.1417344129344 * indata[u"Fingerprint_825"] + 7.74409637190409 * indata[u"Fingerprint_826"] + -3.63759489387357 * indata[u"Fingerprint_830"] + 9.25227253286294 * indata[u"Fingerprint_833"] + -3.0326898939039 * indata[u"Fingerprint_834"] + -4.76573589812309 * indata[u"From_Sanger"] + -0.129552187845017 * indata[u"GO_0090263"] + 0.223467390365249 * indata[u"PKA_140_POL_X_Fingerprint_646"] + 0.119489518342948 * indata[u"PKA_252_ASA_X_Fingerprint_576"] + 2.50167696786905 * indata[u"PKA_265_ASA_X_Fingerprint_659"] + 7.41464029784492 * indata[u"PKA_265_CSV_X_Fingerprint_659"] + 0.509368082621991 * indata[u"PKA_265_EXP_X_Fingerprint_659"] + -21.6654819584849 * indata[u"PKA_265_HYD_X_Fingerprint_659"] + 1.90917032059619 * indata[u"PKA_265_X_Fingerprint_659"])) H1_9 = tanh((96.4648466035971 + -0.242040239169766 * indata[u"EXP_ABL1_X_EXP_WASF1"] + 0.0684395761444439 * indata[u"EXP_BMP2K_X_EXP_NUMB"] + 0.0225305650046428 * indata[u"EXP_BMP2K_X_EXP_RALBP1"] + -0.336804979684824 * indata[u"EXP_COQ8A"] + -0.29331231149263 * indata[u"EXP_EIF2AK2"] + -0.665111578097951 * indata[u"EXP_GRK2_X_EXP_OR5AC2"] + -0.566747554999088 * indata[u"EXP_GRK2_X_EXP_OR6A2"] + 0.441835231233196 * indata[u"EXP_GRK2_X_EXP_P2RY11"] + -6.91430559280384 * indata[u"EXP_MAP2K5"] + 0.166885288683713 * indata[u"EXP_PHKG2_X_EXP_PHKA1"] + -0.113718385348762 * indata[u"EXP_STK25_X_EXP_PDCD10"] + -15.2590724537449 * indata[u"EXP_TRPM6"] + -1.47592094617421 * indata[u"Fingerprint_576"] + -3.99403249046543 * indata[u"Fingerprint_611"] + -1.35153610330597 * indata[u"Fingerprint_617"] + 6.05540848541821 * indata[u"Fingerprint_625"] + 2.17092499301711 * indata[u"Fingerprint_629"] + -0.687165240905041 * indata[u"Fingerprint_635"] + -0.532221665659998 * indata[u"Fingerprint_643"] + 3.75198616759509 * indata[u"Fingerprint_644"] + -1.6999140208278 * indata[u"Fingerprint_646"] + -0.230495664023956 * indata[u"Fingerprint_650"] + 1.34939311868337 * indata[u"Fingerprint_656"] + 0.537448183735122 * indata[u"Fingerprint_658"] + 2.50046328081472 * indata[u"Fingerprint_659"] + 1.20126819111821 * indata[u"Fingerprint_667"] + 0.658417490583646 * indata[u"Fingerprint_672"] + -2.61322899338759 * indata[u"Fingerprint_677"] + -7.54433149789617 * indata[u"Fingerprint_679"] + 0.225616528564852 * indata[u"Fingerprint_685"] + 4.36777355165044 * indata[u"Fingerprint_697"] + 1.08448680192337 * indata[u"Fingerprint_698"] + -1.69904715519135 * indata[u"Fingerprint_704"] + -0.167441293970086 * indata[u"Fingerprint_707"] + 1.05325138550523 * indata[u"Fingerprint_709"] + 1.24285312499201 * indata[u"Fingerprint_710"] + -2.43118835774479 * indata[u"Fingerprint_712"] + -1.89537466193851 * indata[u"Fingerprint_714"] + 3.93524666084115 * indata[u"Fingerprint_776"] + -1.48238338150549 * indata[u"Fingerprint_779"] + 0.124991528615425 * indata[u"Fingerprint_784"] + -0.860486842671832 * indata[u"Fingerprint_791"] + 0.0154833829486507 * indata[u"Fingerprint_797"] + 5.21985971518557 * indata[u"Fingerprint_798"] + -4.45497395123947 * indata[u"Fingerprint_800"] + 6.20262038437467 * indata[u"Fingerprint_801"] + 5.69000146259566 * indata[u"Fingerprint_803"] + -1.70302030322866 * indata[u"Fingerprint_812"] + 8.61514035777202 * indata[u"Fingerprint_813"] + -4.08109235695615 * indata[u"Fingerprint_818"] + 7.19526525774381 * indata[u"Fingerprint_819"] + -2.49907970478611 * indata[u"Fingerprint_820"] + 1.33785486800663 * indata[u"Fingerprint_821"] + -3.01188111532797 * indata[u"Fingerprint_822"] + 14.0509690796081 * indata[u"Fingerprint_825"] + 1.92217645341121 * indata[u"Fingerprint_826"] + 1.82324778860255 * indata[u"Fingerprint_830"] + 0.822273843167425 * indata[u"Fingerprint_833"] + 7.34690920074209 * indata[u"Fingerprint_834"] + -0.351386871300694 * indata[u"From_Sanger"] + -1.19999109206893 * indata[u"GO_0090263"] + -0.960292109125361 * indata[u"PKA_140_POL_X_Fingerprint_646"] + -0.182090884182275 * indata[u"PKA_252_ASA_X_Fingerprint_576"] + 0.233422334486717 * indata[u"PKA_265_ASA_X_Fingerprint_659"] + 10.7471462671223 * indata[u"PKA_265_CSV_X_Fingerprint_659"] + -0.217021744010681 * indata[u"PKA_265_EXP_X_Fingerprint_659"] + -0.00770240307786153 * indata[u"PKA_265_HYD_X_Fingerprint_659"] + -0.432977400939573 * indata[u"PKA_265_X_Fingerprint_659"])) outdata[u"Predicted IC50_1"] = 2.35201493592557 + 1.26810528750201 * H1_1 + -1.19477373312071 * H1_2 + -0.81157819938711 * H1_3 + 0.74945458463904 * H1_4 + 1.14579216381282 * H1_5 + -0.725707869504081 * H1_6 + -0.558535572433184 * H1_7 + 0.958219843383584 * H1_8 + 0.841951708395723 * H1_9 return outdata[u"Predicted IC50_1"]
236a021fff78d1002577bb143ebe22a10e70a9c0
b5ba12d4dcb240ba6069964380f6a3aede79f448
/assessments/migrations/0001_initial.py
2239db1cf11d367868abd78fefe5fa79e660e53b
[]
no_license
70-6C-65-61-73-75-72-65h/erp
9e1a6f20a15d16794043f583022b1e04a9435b20
0e088c767d0d0c0e5515be703ed71252d55b70d9
refs/heads/master
2022-03-27T21:12:52.305257
2019-12-17T15:41:59
2019-12-17T15:41:59
224,333,874
0
0
null
null
null
null
UTF-8
Python
false
false
1,123
py
# Generated by Django 2.2.6 on 2019-12-03 17:42 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('company_operations', '0001_initial'), ('accounts', '0001_initial'), ] operations = [ migrations.CreateModel( name='Assessment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('assess', models.IntegerField()), ('created', models.DateField()), ('client', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='assesments', to='accounts.Client')), ('pharmacy', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='assesments', to='company_operations.WareHouse')), ('worker', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='assesments', to='accounts.Worker')), ], ), ]
d29d485bf02a0c8cf68758d59a9ad5251572abcd
5bd69424f2f526d2a3d396121477eaa8ecab3605
/python3/machine_learning/tensor/deep_network_XOR/deep_network.py
516efbf1d36edcc4310e05fae5daa1c23cf8318a
[]
no_license
Sn-Kinos/toy_box
c7aec0f7e67c4e41d1eaff255cf7c64b44b926f6
bccfa3012e6ece58cd2a50940d2ecced03e4d38c
refs/heads/master
2020-05-27T09:31:16.440670
2017-06-17T19:05:52
2017-06-17T19:05:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,531
py
import tensorflow as tf import numpy as np xy = np.loadtxt('train.txt', unpack=True, dtype='float32') x_data = np.transpose(xy[0:-1]) y_data = np.reshape(xy[-1], (4, 1)) print(x_data) print(y_data) X = tf.placeholder(tf.float32, name='X-input') Y = tf.placeholder(tf.float32, name='Y-input') y_hist = tf.histogram_summary('y', Y) W1 = tf.Variable(tf.random_uniform([2, 5], -1.0, 1.0), name='Weight1') W2 = tf.Variable(tf.random_uniform([5, 4], -1.0, 1.0), name='Weight2') W3 = tf.Variable(tf.random_uniform([4, 1], -1.0, 1.0), name='Weight3') w1_hist = tf.histogram_summary('weights1', W1) w2_hist = tf.histogram_summary('weights2', W2) w3_hist = tf.histogram_summary('weights3', W3) b1 = tf.Variable(tf.zeros([5]), name="Bias1") b2 = tf.Variable(tf.zeros([4]), name="Bias2") b3 = tf.Variable(tf.zeros([1]), name="Bias3") b1_hist = tf.histogram_summary('biases1', b1) b2_hist = tf.histogram_summary('biases2', b2) b3_hist = tf.histogram_summary('biases3', b3) with tf.name_scope('layer2') as scope: L2 = tf.sigmoid(tf.matmul(X, W1) + b1) with tf.name_scope('layer3') as scope: L3 = tf.sigmoid(tf.matmul(L2, W2) + b2) with tf.name_scope('layer4') as scope: hypothesis = tf.sigmoid(tf.matmul(L3, W3) + b3) with tf.name_scope('cost') as scope: cost = -tf.reduce_mean(Y*tf.log(hypothesis) + (1-Y)*tf.log(1-hypothesis)) cost_summ = tf.scalar_summary('cost', cost) a = tf.Variable(0.1) with tf.name_scope('train') as scope: optimizer = tf.train.GradientDescentOptimizer(a) train = optimizer.minimize(cost) correct_prediction = tf.equal(tf.floor(hypothesis+0.5), Y) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) accuracy_summ = tf.scalar_summary('accuracy', accuracy) init = tf.initialize_all_variables() with tf.Session() as sess: sess.run(init) # python3 /usr/local/bin/tensorboard --logdir=./logs/xor_logs/ merged = tf.merge_all_summaries() writer = tf.train.SummaryWriter("./logs/xor_logs", sess.graph_def) for step in range(10000): sess.run(train, feed_dict={X:x_data, Y:y_data}) if step % 1000 == 0: summary = sess.run(merged, feed_dict={X:x_data, Y:y_data}) writer.add_summary(summary, step) print(step, sess.run(cost, feed_dict={X:x_data, Y:y_data}), sess.run(W1), sess.run(W2), sess.run(W3)) # Test model print(sess.run([hypothesis, tf.floor(hypothesis+0.5), correct_prediction, accuracy], feed_dict={X:x_data, Y:y_data})) print("Accuracy: ", accuracy.eval({X:x_data, Y:y_data}))
5e281f3953e260e9561c2040ebfd0bee86bdbbbe
d306ab21f0960a5c44012ee84bc795284415cac8
/seventeenth_of_december.py
5483d0ce4adfaeb4bd350365d1b18976ed1990ed
[]
no_license
MartinMekk/julekalender
64d2ba01f3f780b447231a7a582f33e770ee64a8
4f20b96f77cb3e2801977128d3e464c494618520
refs/heads/master
2020-05-24T14:02:54.312528
2014-12-24T18:30:25
2014-12-24T18:30:25
27,596,079
1
0
null
null
null
null
UTF-8
Python
false
false
1,054
py
__author__ = 'martinsolheim' import copy def state_machine(from_state): if from_state == 1: return 6, 8 elif from_state == 2: return 7, 9 elif from_state == 3: return 4, 8 elif from_state == 4: return 0, 3, 9 elif from_state == 6: return 0, 1, 7 elif from_state == 7: return 2, 6 elif from_state == 8: return 1, 3 elif from_state == 9: return 2, 4 elif from_state == 0: return 4, 6 else: return -1 node_list = [[1]] while len(node_list[0]) < 10: list_length = len(node_list) for i in range(0, list_length): sub_list = node_list[i] next_move = list(state_machine(sub_list[-1])) new_node = copy.copy(sub_list) new_node.append(next_move[1]) node_list.append(new_node) if len(next_move) > 2: new_node = copy.copy(sub_list) new_node.append(next_move[2]) node_list.append(new_node) sub_list.append(next_move[0]) print(len(node_list))