blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
db35bccee94dc72ea2b03ff75a6e3b1036691f5b
efc9b70544c0bc108aaec0ed6a2aefdf208fd266
/swap_two_value.py
25897ecbcc46b07ca1f799983ab63bebbb923c35
[]
no_license
fxy1018/Leetcode
75fad14701703d6a6a36dd52c338ca56c5fa9eff
604efd2c53c369fb262f42f7f7f31997ea4d029b
refs/heads/master
2022-12-22T23:42:17.412776
2022-12-15T21:27:37
2022-12-15T21:27:37
78,082,899
1
0
null
null
null
null
UTF-8
Python
false
false
354
py
""" no extra space, swap two value """ ''' Created on Mar 18, 2017 @author: fanxueyi ''' #bit manipularion class Solution(object): ''' input: int, int rType: int, inte ''' def swap(self,a,b): a = a^b b = a^b a = a^b return(a,b) s = Solution() print(s.swap(3,4)) print(s.swap(0,-2))
81594cdf4cc52ad02830471a6e4c0a2e4016e45e
5655b699aafe9d3518534459ca7fb0e73cc66b06
/day5.py
f4633c8e733ed9bb124cb9cbcafc46d96011a843
[]
no_license
yohanswanepoel/adventofcode2017
cc62c04b00f3bf2692976f20d96437e7e9873ae0
f79c8f75f8c0e4c14294afa64fc592869a0bfd16
refs/heads/master
2021-08-28T13:33:22.411249
2017-12-12T09:55:51
2017-12-12T09:55:51
113,157,032
0
0
null
null
null
null
UTF-8
Python
false
false
719
py
import sys def day5(): steps = [0,3,0,1,-3] steps = [] with open('day5.txt') as f: mylist = f.read().splitlines() for l in mylist: steps.append(int(l)) print (steps) performTask(steps) def performTask( steps ): step_counter = 0 current_instruction = 0 next_instruction = 0 size = len(steps) while(True): if(current_instruction < len(steps) and current_instruction > -1): step_counter += 1 next_instruction += steps[current_instruction] steps[current_instruction] += 1 current_instruction = next_instruction else: break print(step_counter) if __name__ == '__main__': day5()
8e9f3948ab5c1e5a196edddb2fe11e19304dd0e5
1cd0c5706f5afcabccf28b59c15d306b114dd82a
/siteapi/migrations/0004_auto_20170220_2215.py
b448ea88ca4bcdc7a5f1e878f3326138726cde40
[]
no_license
jacobbridges/scribbli
fb1ed8633fc8ebcd7d989fbab2e051612bdc07d2
eb21ca9f5ee4c7caba5a25b76c6cdfe81af5d995
refs/heads/master
2021-01-12T10:32:38.466332
2018-01-27T19:48:39
2018-01-27T19:48:39
81,711,757
0
0
null
null
null
null
UTF-8
Python
false
false
720
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-02-20 22:15 from __future__ import unicode_literals import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('siteapi', '0003_auto_20170220_2213'), ] operations = [ migrations.AlterField( model_name='alphainvitation', name='date_expires', field=models.DateTimeField(default=datetime.datetime(2017, 2, 21, 22, 15, 51, 651428), verbose_name='date expires'), ), migrations.AlterField( model_name='alphainvitation', name='unik', field=models.CharField(max_length=36), ), ]
7056f3d1611086a2888f755ce101e11b34ac26bb
6c1d0916be8f26c82c2cab642a6ed0953efc2481
/src/arm_bringup/scripts/old_or_unused/sac.py
3c18813e56d52fd883c6d4153ce31a528f1a72f1
[]
no_license
dVeon-loch/ReinforcementLearning_Arm
d69a6e6c822fea9f92850b986156f62e5e1d3087
71215294af5ea030b4018f58040d9806589514c2
refs/heads/master
2023-02-18T02:00:52.978174
2021-01-14T13:49:39
2021-01-14T13:49:39
312,808,040
6
0
null
null
null
null
UTF-8
Python
false
false
2,563
py
from arm_pyenv import ArmEnv import numpy as np import rospy from tf_agents.environments import tf_py_environment from tf_agents.environments import utils from tf_agents.environments import wrappers from tf_agents.trajectories import time_step as ts from tf_agents.networks import actor_distribution_network, value_network import base64 #import imageio #import IPython import matplotlib.pyplot as plt import os import reverb import tempfile import PIL.Image import tensorflow as tf from tf_agents.agents.ddpg import critic_network from tf_agents.agents.sac import sac_agent from tf_agents.agents.sac import tanh_normal_projection_network from tf_agents.experimental.train import actor from tf_agents.experimental.train import learner from tf_agents.experimental.train import triggers from tf_agents.experimental.train.utils import spec_utils from tf_agents.experimental.train.utils import strategy_utils from tf_agents.experimental.train.utils import train_utils from tf_agents.metrics import py_metrics from tf_agents.networks import actor_distribution_network from tf_agents.policies import greedy_policy from tf_agents.policies import py_tf_eager_policy from tf_agents.policies import random_py_policy from tf_agents.replay_buffers import reverb_replay_buffer from tf_agents.replay_buffers import reverb_utils tempdir = tempfile.gettempdir() fc_layer_params = (100,) importance_ratio_clipping lambda_value train_timed_env = wrappers.TimeLimit( ArmEnv(), 1000 ) eval_timed_env = wrappers.TimeLimit( ArmEnv(), 1000 ) train_env = tf_py_environment(train_timed_env) eval_env = tf_py_environment(eval_timed_env) observation_tensor_spec, action_spec, time_step_tensor_spec = ( spec_utils.get_tensor_specs(train_env)) normalized_observation_tensor_spec = tf.nest.map_structure( lambda s: tf.TensorSpec( dtype=tf.float32, shape=s.shape, name=s.name ), observation_tensor_spec ) actor_net = actor_distribution_network.ActorDistributionNetwork( normalized_observation_tensor_spec, ...) value_net = value_network.ValueNetwork( normalized_observation_tensor_spec, ...) # Note that the agent still uses the original time_step_tensor_spec # from the environment. agent = ppo_clip_agent.PPOClipAgent( time_step_tensor_spec, action_spec, actor_net, value_net, ...) actor_fc_layer_params = (256, 256) critic_joint_fc_layer_params = (256, 256) log_interval = 5000 # @param {type:"integer"} num_eval_episodes = 20 # @param {type:"integer"} eval_interval = 10000 # @param {type:"integer"} policy_save_interval = 5000 # @param {type:"integer"}
84c9288217995f2610547ebe92e52a2f6e69d003
d5ee3688c0df793a765aa7fca25253ef450b82e9
/src/scs_mfr/opc_conf.py
a821e3faf7068277766ea4005206cbf8c299d8b0
[ "MIT" ]
permissive
seoss/scs_mfr
0e85146c57dfefd605967e7dd54c666bfefddf74
997dd2b57160df30ef8750abed7efa87831e4c66
refs/heads/master
2023-01-20T23:58:16.547082
2020-11-27T09:40:20
2020-11-27T09:40:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,256
py
#!/usr/bin/env python3 """ Created on 13 Jul 2016 @author: Bruno Beloff ([email protected]) DESCRIPTION The opc_conf utility is used to specify whether an Alphasense optical particle counter (OPC) is present and if so, which model is attached. An option is also available to override the host's default SPI bus and SPI chip select lines for the OPC. The specification also includes the number of seconds between readings by the OPC monitor sub-process. The maximum time between readings is 10 seconds, the minimum five. A 10 second period provides the highest precision, but sampling at this rate may be subject to clipping in extremely polluted environments. The --restart-on-zeroes flag can be used to test the OPC in some situations, by overriding the default behaviour, which is to restart the OPC if repeated zero readings are presented. Flags are included to add or remove data interpretation exegetes, together with the source of T / rH readings. Use of these is under development. Sampling is performed by the scs_dev/particulates_sampler utility. If an opc_conf.json document is not present, the scs_dev/particulates_sampler utility terminates. Note that the scs_dev/particulates_sampler process must be restarted for changes to take effect. The Alphasense OPC-N2, OPC-N3, OPC-R1, and Sensirion SPS30 models are supported. Alternate exegetes (data interpretation models) can be added or removed - available interpretations can be listed with the --help flag. SYNOPSIS opc_conf.py [-n NAME] [{ [-m MODEL] [-s SAMPLE_PERIOD] [-z { 0 | 1 }] [-p { 0 | 1 }] [-b BUS] [-a ADDRESS] [-i INFERENCE_UDS] [-e EXEGETE] [-r EXEGETE] | -d }] [-v] EXAMPLES ./opc_conf.py -m N2 -b 0 -a 1 -e ISLin/Urban/N2/v1 ./opc_conf.py -m S30 -b 1 DOCUMENT EXAMPLE {"model": "N3", "sample-period": 10, "restart-on-zeroes": true, "power-saving": false, "inf": "/home/scs/SCS/pipes/lambda-model-pmx-s1.uds", "exg": []} FILES ~/SCS/conf/opc_conf.json SEE ALSO scs_dev/particulates_sampler scs_mfr/opc_cleaning_interval REFERENCES https://github.com/south-coast-science/scs_core/blob/develop/src/scs_core/particulate/exegesis/exegete_catalogue.py BUGS The specification allows for a power saving mode - which enables the OPC to shut down between readings - but this is not currently implemented. """ import sys from scs_core.data.json import JSONify from scs_dfe.particulate.opc_conf import OPCConf from scs_host.sys.host import Host from scs_mfr.cmd.cmd_opc_conf import CmdOPCConf # -------------------------------------------------------------------------------------------------------------------- if __name__ == '__main__': incompatibles = [] # ---------------------------------------------------------------------------------------------------------------- # cmd... cmd = CmdOPCConf() if not cmd.is_valid(): cmd.print_help(sys.stderr) exit(2) if cmd.verbose: print("opc_conf: %s" % cmd, file=sys.stderr) sys.stderr.flush() # ---------------------------------------------------------------------------------------------------------------- # resources... # OPCConf... conf = OPCConf.load(Host, name=cmd.name) # ---------------------------------------------------------------------------------------------------------------- # run... if cmd.set(): if conf is None and not cmd.is_complete(): print("opc_conf: No configuration is stored - you must therefore set the required fields.", file=sys.stderr) cmd.print_help(sys.stderr) exit(2) model = cmd.model if cmd.model else conf.model sample_period = cmd.sample_period if cmd.sample_period else conf.sample_period restart_on_zeroes = cmd.restart_on_zeroes if cmd.restart_on_zeroes is not None else conf.restart_on_zeroes power_saving = cmd.power_saving if cmd.power_saving is not None else conf.power_saving if conf is None: conf = OPCConf(None, 10, True, False, None, None, None, []) # permit None for bus and address settings bus = conf.bus if cmd.bus is None else cmd.bus address = conf.address if cmd.address is None else cmd.address inference = conf.inference if cmd.inference is None else cmd.inference conf = OPCConf(model, sample_period, restart_on_zeroes, power_saving, bus, address, inference, conf.exegete_names) if cmd.use_exegete: conf.add_exegete(cmd.use_exegete) if cmd.remove_exegete: conf.discard_exegete(cmd.remove_exegete) # compatibility check... try: incompatibles = conf.incompatible_exegetes() except KeyError as ex: print("opc_conf: The following exegete is not valid: %s." % ex, file=sys.stderr) exit(1) if incompatibles: print("opc_conf: The following exegetes are not compatible with %s: %s." % (conf.model, ', '.join(incompatibles)), file=sys.stderr) exit(1) conf.save(Host) elif cmd.delete: conf.delete(Host, name=cmd.name) conf = None if conf: print(JSONify.dumps(conf))
6a1dc5ed224a04492551f23e2dc5763ece6cd56d
4bb9c661c33a9f057e05bf2a17e30c2eb633b0ee
/python_exec/Test/TextFileOrder.py
da8fea76d6b7262061719e15673a5dbfc39186ec
[]
no_license
Czy2GitHub/Python
3fa8089f10eb9fcfd5975d7ddcaa9dccbe742ce2
deb767ebf685f8c49446c49db92ffd808a995913
refs/heads/master
2022-07-14T05:40:54.061944
2019-12-27T12:42:36
2019-12-27T12:42:36
225,591,496
0
0
null
2022-06-21T23:41:29
2019-12-03T10:22:12
Python
UTF-8
Python
false
false
1,039
py
# coding:utf-8 # 测试文件的读写,与创建 # open()方法打开文件 # 使用with expression as file 的格式 # open()的参数:第一个为文件名 第二个为权限 # w:只写 w+:清空文件,只写 a:追加模式打开文件 a+:读写权限,若文件不存在,则创建 r:只读 with open("TextFile.txt","r") as file: # file.write(" 我曾难自拔于世界之大,也沉浸于其中梦话 ") # 写入内容,必须为w,w+,a,a+下有效 massage = file.readlines() # 读一行,仅r,r+下有效 for value in massage: print(value) # .read()方法 # 读取指定字符个数,不给参数默认全部字符 with open("TextFile.txt", "r") as file: # massage = file.read() massage1 = file.read(5) print(massage, " ", massage1) # .seek()方法 # 改变文件指针的位置 with open("TextFile.txt", "r") as file: file.seek(22) # 移动的是字节位 一个汉字两个字节 UNICODE print(file.read(8)) # 读取的是字符
1d4e4568720e0575719b81a9775a7b63dfcd1c08
88be5f5b633132a3b2b691541aa742c6f70bc366
/dancer/dancer/settings.py
55861e8ea0a4d151163afe086599ba115df0d95f
[]
no_license
lzj3278/360-OPS
8078748fc51a282643c7c56d79d1d79ad58d0ec5
c50d53b208aef12640fcd6ea18baeda10fe04d23
refs/heads/master
2020-06-11T09:32:37.890428
2016-12-08T01:40:52
2016-12-08T01:40:52
75,691,758
0
0
null
2016-12-06T03:40:42
2016-12-06T03:40:42
null
UTF-8
Python
false
false
3,274
py
""" Django settings for dancer project. Generated by 'django-admin startproject' using Django 1.9.6. For more information on this file, see https://docs.djangoproject.com/en/1.9/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.9/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.9/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '**n5r07ou!12r_uhwgy!ppbovn2%ao9y97e__h7v30a@rlg%m4' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'demo', ] MIDDLEWARE_CLASSES = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'dancer.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR,'demo/templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'dancer.wsgi.application' # Database # https://docs.djangoproject.com/en/1.9/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.9/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.9/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.9/howto/static-files/ STATIC_URL = '/static/' STATICFILES = os.path.join(BASE_DIR, 'demo/static')
8b0e177182553e777299a443085a2ae29cf7eaba
d3eb3bfbd07b282e23b414a88c50cb2a48223ac4
/final/num2.b.py
8719694d08c5f6c7b537db8416177d30e08f540d
[]
no_license
JosephBingham/math3732017
9f423b30c4abf3e6d7c5b0b0be75ecb30090a80d
4885265054648df0f648959a873476c160e9a46d
refs/heads/master
2021-05-08T00:17:19.691969
2017-12-11T22:13:32
2017-12-11T22:13:32
107,632,143
0
0
null
null
null
null
UTF-8
Python
false
false
1,302
py
#!/usr/bin/python from math import sin import numpy as np import matplotlib.pyplot as plt #solve -u''(x) = f(x), [xmin, xmax] def gauss(A): n = len(A) for i in range(0, n): maxEl = abs(A[i][i]) maxRow = i for k in range(i+1, n): if abs(A[k][i]) > maxEl: maxEl = abs(A[k][i]) maxRow = k for k in range(i, n+1): tmp = A[maxRow][k] A[maxRow][k] = A[i][k] A[i][k] = tmp for k in range(i+1, n): c = -A[k][i]/A[i][i] for j in range(i, n+1): if i == j: A[k][j] = 0 else: A[k][j] += c * A[i][j] x = [0 for i in range(n)] for i in range(n-1, -1, -1): x[i] = A[i][n]/A[i][i] for k in range(i-1, -1, -1): A[k][n] -= A[k][i] * x[i] return x n = 40 xmin = 0 xmax = 1 alpha = 0 beta = sin(2) x = np.linspace(float(xmin), float(xmax), n) h = (xmax - xmin)/2. u = [0] * (n+1) u[0] = alpha u[-1] = beta f = lambda x: 4*sin(2*x) A = 2*np.eye(n) - np.eye(n, k = 1) - np.eye(n, k = -1) rhs = map(f, x) rhs = map(lambda x: .5*x, rhs) rhs[0] += alpha rhs[-1] += beta An = np.c_[A,rhs] uu = gauss(An) plt.plot(x, uu, 'ro') plt.savefig('num2.b.40.png')
463c19066420695e6962096ac166f6fc925d6922
240aba0d30a93b31e12426b95deea240c4e6f883
/tree_model/scr.py
454c31e354c218fc6f24d652c38f4db0645ae643
[ "Apache-2.0" ]
permissive
EPgg92/solat
d001dd45ada3f859fba884dd77b0612e5f4bd356
18eb132fbfef39c67b3a41b5014e488da8d90307
refs/heads/master
2021-04-27T17:09:07.547378
2018-04-10T18:27:03
2018-04-10T18:27:03
122,315,744
0
0
null
null
null
null
UTF-8
Python
false
false
326
py
import os for x in range(1,10): print('clean tmp') os.system('bash cleantmp.sh') print(x) print('python generateFeatures.py {}'.format(x)) os.system('python generateFeatures.py {}'.format(x)) print('python xgb_train_cvBodyId.py {}'.format(x)) os.system('python xgb_train_cvBodyId.py {}'.format(x))
3a5e3a9076882a87027c00689734bedef960925d
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03425/s478084192.py
7e20b760b92578dea372ba9ffdd4d4f5431cd5bc
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
from itertools import combinations N = int(input()) A = [0 for _ in range(5)] for _ in range(N): a = input().strip() if a[0]=="M": A[0] += 1 elif a[0]=="A": A[1] += 1 elif a[0]=="R": A[2] += 1 elif a[0]=="C": A[3] += 1 elif a[0]=="H": A[4] += 1 cnt = 0 for x in combinations(range(5),3): cnt += A[x[0]]*A[x[1]]*A[x[2]] print(cnt)
70b83421da906c6fb4f01ff32342f572ebfc40c2
2f0796e2aba7e30cbd8e0cd7da00731ec57fd597
/Lab2/insertTableDHT_1.py
3993b45972b6364290681d1393dcb45f3d7d3f74
[ "MIT" ]
permissive
MStevenTowns/Advanced-Computer-Networks
34d2b146fce879a2fe1599c658d3f38d70245155
a7987cdea403a0892831b91d5695c0e65a475657
refs/heads/master
2020-04-13T16:24:10.208600
2018-12-27T18:25:58
2018-12-27T18:25:58
163,315,708
0
0
null
null
null
null
UTF-8
Python
false
false
308
py
import sqlite3 as lite import sys con=lite.connect('SensorsData.db') with con: cur=con.cursor() cur.execute("INSERT INTO DHT_data VALUES(datetime('now'), 20.5,30)") cur.execute("INSERT INTO DHT_data VALUES(datetime('now'), 28.5,40)") cur.execute("INSERT INTO DHT_data VALUES(datetime('now'), 30.5,50)")
163437f7bc5dcbf9e5d279128031d1d5a1aa8189
e1c15a8e8ae78184b09894024db98d946ab20de4
/BuildTools/Python/generate.py
dcee73ab95d1034445bab90afbd198657528e7ac
[]
no_license
Sunday111/D3D_Samples
d33721a36d2557a2aa4807305253be36afa6b06e
76851283b9f7950d0080deabae829c1751f9a179
refs/heads/master
2021-06-04T22:03:36.288475
2020-01-12T01:00:27
2020-01-12T01:00:27
118,942,545
0
0
null
null
null
null
UTF-8
Python
false
false
66
py
from build_tools import * generate_project(default_generator, [])
9c386ae35e39d738c13f3b989b48ca34d0c6f9a0
eef479eafa0645146246d10f56ed92470ca65ab2
/listtest2.py
ce8c6ef8366a94545c85fa14a23fede236b159e1
[]
no_license
swaminatarajan/sn
6b15d5eb1619251c863f395ce4acecd19d62f790
0816c1868c4ff838ab9be817d59b055d0f149558
refs/heads/master
2020-08-18T09:31:03.007094
2019-10-17T11:51:22
2019-10-17T11:51:22
215,774,795
0
0
null
null
null
null
UTF-8
Python
false
false
144
py
# -*- coding: utf-8 -*- astring = input("Enter the String:") alist = astring.split(",") print("alist:", alist) print("alist:", len(alist))
2d17b34a34f912e0caa9aefde207cbd96a75f9f7
78f1cc341cd6313d02b34d910eec4e9b2745506a
/p01_team_project/p02_team_source/base_ball_1.0.0.py
80e9963266f04648b0b5d9a5c83b40d1694b41e9
[]
no_license
python-cookbook/PythonStudy
a4855621d52eae77537bffb01aae7834a0656392
cdca17e9734479c760bef188dcb0e183edf8564a
refs/heads/master
2021-01-20T17:23:35.823875
2017-07-30T10:56:13
2017-07-30T10:56:13
90,873,920
2
0
null
null
null
null
UTF-8
Python
false
false
50,890
py
''' 확실히 게임 엔진에 loop문이 들어가면 안되는 것 같음. 그래서 해결책이 멀티스레드를 이용해서 돌려라, 콜백함수를 써라 이거인것 같은데... 어떻게 사용하는지 모름 http://stupidpythonideas.blogspot.kr/2013/10/why-your-gui-app-freezes.html ''' from tkinter import Frame, Canvas, Label, Button, LEFT, ALL, Tk, TOP import random,re,time,csv import ctypes ############# 기록을 저장할 경로 설정 ################### #지은 #태흠 ~ ##### 저장할 경로는 항상 새로운 경로일 것! ########## ### 실시간 선수 기록 저장 #### save_player_path = "c:\\data\\baseball_save_player2.csv" ### 최종 경기 기록 저장 ### save_result_path = "c:\\data\\baseball_save_result.csv" ############ 파일을 load할 경로 설정 ################### ##### load할 파일이 없으면 None 으로 설정! ########### ### 게임을 이어서 할 경우 실시간 경기 기록 불러오기 ### load_player_path = "c:\\data\\baseball_save_player1.csv" ### 기록 분석을 위한 최종 경기 기록 데이터가 필요할 경우 ### load_result_path = None # ~ 태흠 ######################################################## #판정관련 #0 : 헛스윙 #0 : 파울 #1 : 단타 #2 : 2루타 #3 : 3루타 #4 : 홈런 ################################################################################################### ## 기록 관련 클래스 ################################################################################################### class Record: def __init__(self): self.__hit = 0 # 안타 수 self.__bob = 0 # 볼넷 수 융 self.__homerun = 0 # 홈런 수 self.__atbat = 0 # 타수 self.__avg = 0.0 # 타율 @property def hit(self): return self.__hit @hit.setter def hit(self, hit): self.__hit = hit @property def bob(self): return self.__bob @bob.setter def bob(self,bob): self.__bob = bob @property def homerun(self): return self.__homerun @homerun.setter def homerun(self, homerun): self.__homerun = homerun @property def atbat(self): return self.__atbat @atbat.setter def atbat(self, atbat): self.__atbat = atbat @property def avg(self): return self.__avg @avg.setter def avg(self, avg): self.__avg = avg # 타자 기록 관련 메서드 def batter_record(self, hit, bob, homerun): self.hit += hit self.bob += bob self.homerun += homerun self.atbat += 1 self.avg = self.hit / self.atbat ################################################################################################### ## 선수 관련 클래스 ################################################################################################### class Player: def __init__(self, team_name, number, name): self.__team_name = team_name # 팀 이름 self.__number = number # 타순 self.__name = name # 이름 self.__record = Record() # 기록 @property def team_name(self): return self.__team_name @property def number(self): return self.__number @property def name(self): return self.__name @property def record(self): return self.__record @property def player_info(self): return self.__team_name + ', ' + str(self.__number) + ', ' + self.__name # 선수 타율 관련 메서드 def hit_and_run(self, hit, bob, homerun): self.__record.batter_record(hit, bob,homerun) ################################################################################################### ## 팀 관련 클래스 ################################################################################################### class Team: def __init__(self, team_name, players): self.__team_name = team_name # 팀 이름 self.__player_list = self.init_player(players) # 해당 팀 소속 선수들 정보 @property def team_name(self): return self.__team_name @property def player_list(self): return self.__player_list # 선수단 초기화 def init_player(self, players): temp = [] for player in players: number, name = list(player.items())[0] temp.append(Player(self.__team_name, number, name)) return temp def show_players(self): for player in self.__player_list: print(player.player_info) ################################################################################################### ## 저장 및 불러오기 관련 클래스 -원주/지은 ##################################################################################################### """ d:/data/ 폴더 만들어야 합니다. """ ''' 제껀 없어도 돼용 - 지은 ''' class Saveandload: DATA_SET = 0 FILE_PATH = 'c:/data/' CHECK = 0 LOAD_YN = False print('LOAD_YN = ', LOAD_YN) @staticmethod def make_data_set(cnt, game_info, adv, score, batter_number): ''' :param player_info: 선수정보 :param cnt: 스트라이크, 아웃, 볼 개수 :param game_info: 등등.. :param adv: :return: 여기서 실시간 데이터를 수집하는 곳이니까, 선수 누적하는 거 여기에서 처리할 수 있도록 제껄 빼서 넣으시거나 제 메소드에 넣으시거나 하면 될 것 같아요. ''' DATA_SET = [] cnt = [str(data) for data in cnt] # S B O game_info = [str(data) for data in game_info] # 이닝, 체인지 adv = [str(data) for data in adv] # 어드밴스 score = [str(data) for data in score] # 점수 batter_number = [str(data) for data in batter_number] # 배터 순서 DATA_SET.append([game_info, adv, cnt, score, batter_number]) Saveandload.save(DATA_SET) # 여기에서 저장한 이유는, 따로 세이브 버튼 활성화 되는게 아니라서, 계속 데이터를 쓰고 지우고 때문에 하고 있어요. @staticmethod def save(DATA_SET): with open(Saveandload.FILE_PATH + "test.csv", "wt", encoding="utf-8") as f: print('여기', DATA_SET) for row in DATA_SET: for idx, value in enumerate(row, 1): if idx == 1: print(value) f.write(value[0] + '\n') f.write(value[1] + '\n') if idx == 2: print(value) f.write(value[0] + "," + value[1] + "," + value[2] + '\n') if idx == 3: print(value) f.write(value[0] + "," + value[1] + "," + value[2] + '\n') if idx == 4: print(value) f.write(value[0] + "," + value[1] + '\n') if idx == 5: print(value) f.write(value[0] + "," + value[1] + '\n') @staticmethod def load(): # Saveandload.make_data_set() INNING = 0 adv = 0 CHANGE = 0 STRIKE_CNT = 0 # 스트라이크 개수 BALL_CNT = 0 # 볼 개수 융 OUT_CNT = 0 # 아웃 개수 SCORE = 0 # [home, away] BATTER_NUMBER = 0 import csv f = open(Saveandload.FILE_PATH + 'test.csv') # 파일명이 바뀌어야 할 것. reader = csv.reader(f, delimiter=',') for idx, line in enumerate(reader, 1): if idx == 1: INNING = int(line[0]) elif idx == 2: CHANGE = int(line[0]) elif idx == 3: adv = [int(i) for i in line] elif idx == 4: STRIKE_CNT = int(line[0]) BALL_CNT = int(line[1]) OUT_CNT = int(line[2]) elif idx == 5: SCORE = [int(i) for i in line] else: BATTER_NUMBER = [int(i) for i in line] return [INNING, CHANGE, adv, STRIKE_CNT, BALL_CNT, OUT_CNT, SCORE, BATTER_NUMBER] @staticmethod def load_to_start_game(): if Game.LOAD_CHK == True and Saveandload.LOAD_YN == True: temp = Saveandload.load() # list # INNING = 0 Game.INNING = temp[0] # CHANGE = 0 # 0 : hometeam, 1 : awayteam Game.CHANGE = temp[1] # ADVANCE = [0, 0, 0] # 진루 상황 Game.ADVANCE = temp[2] Game.STRIKE_CNT = temp[3] Game.BALL_CNT = temp[4] Game.OUT_CNT = temp[5] # SCORE = [0, 0] # [home, away] Game.SCORE = temp[6] # BATTER_NUMBER = [1, 1] # [home, away] 타자 순번 Game.BATTER_NUMBER = temp[7] @staticmethod def load_chk(): if Saveandload.LOAD_YN == False: Saveandload.LOAD_YN = True print(Saveandload.LOAD_YN) else: pass @staticmethod def save_record(save_path, *save_col): # 지은 csvFile = open(save_path, 'a') try: writer = csv.writer(csvFile) writer.writerow(save_col) finally: csvFile.close() @staticmethod def load_record(hometeam, home, away, load_path): # 지은 if Saveandload.LOAD_YN == True: try: if load_path == None: print("불러올 파일이 없습니다. 새 게임을 시작합니다.") return Main.start_game else: # load한 csv파일을 records 리스트에 담기 records = [records for records in csv.reader(open(load_path, 'r')) if len(records) != 0] print(records) # records 리스트를 선수별로 unpacking for record in records: curr_team = home if record[0] == hometeam else away player_list = curr_team.player_list player = player_list[int(record[1]) - 1] # 선수를 순서대로 player에 할당 _, _, _, atbat, hit, bob, homerun, avg = record player.record.atbat = int(atbat) player.record.hit = int(hit) player.record.bob = int(bob) player.record.homerun = int(homerun) player.record.avg = float(avg) return Main.Loadgame except FileNotFoundError: print('파일 위치를 잘못 입력하셨습니다.') # ~ 태흠 ################################################################################################### ## 게임 관련 클래스 ################################################################################################### class Game(object): TEAM_LIST = { '한화': ({1: '정근우'}, {2: '이용규'}, {3: '송광민'}, {4: '최진행'}, {5: '하주석'}, {6: '장민석'}, {7: '로사리오'}, {8: '이양기'}, {9: '최재훈'}), '롯데': ({1: '나경민'}, {2: '손아섭'}, {3: '최준석'}, {4: '이대호'}, {5: '강민호'}, {6: '김문호'}, {7: '정훈'}, {8: '번즈'}, {9: '신본기'}), '삼성': ({1: '박해민'}, {2: '강한울'}, {3: '구자욱'}, {4: '이승엽'}, {5: '이원석'}, {6: '조동찬'}, {7: '김헌곤'}, {8: '이지영'}, {9: '김정혁'}), 'KIA': ({1: '버나디나'}, {2: '이명기'}, {3: '나지완'}, {4: '최형우'}, {5: '이범호'}, {6: '안치홍'}, {7: '서동욱'}, {8: '김민식'}, {9: '김선빈'}), 'SK': ({1: '노수광'}, {2: '정진기'}, {3: '최정'}, {4: '김동엽'}, {5: '한동민'}, {6: '이재원'}, {7: '박정권'}, {8: '김성현'}, {9: '박승욱'}), 'LG': ({1: '이형종'}, {2: '김용의'}, {3: '박용택'}, {4: '히메네스'}, {5: '오지환'}, {6: '양석환'}, {7: '임훈'}, {8: '정상호'}, {9: '손주인'}), '두산': ({1: '허경민'}, {2: '최주환'}, {3: '민병헌'}, {4: '김재환'}, {5: '에반스'}, {6: '양의지'}, {7: '김재호'}, {8: '신성현'}, {9: '정진호'}), '넥센': ({1: '이정후'}, {2: '김하성'}, {3: '서건창'}, {4: '윤석민'}, {5: '허정협'}, {6: '채태인'}, {7: '김민성'}, {8: '박정음'}, {9: '주효상'}), 'KT': ({1: '심우준'}, {2: '정현'}, {3: '박경수'}, {4: '유한준'}, {5: '장성우'}, {6: '윤요섭'}, {7: '김사연'}, {8: '오태곤'}, {9: '김진곤'}), 'NC': ({1: '김성욱'}, {2: '모창민'}, {3: '나성범'}, {4: '스크럭스'}, {5: '권희동'}, {6: '박석민'}, {7: '지석훈'}, {8: '김태군'}, {9: '이상호'}) } INNING = 1 # 1 이닝부터 시작 CHANGE = 0 # 0 : hometeam, 1 : awayteam STRIKE_CNT = 0 # 스트라이크 개수 BALL_CNT = 0 #볼 개수 융 OUT_CNT = 0 # 아웃 개수 ADVANCE = [0, 0, 0] # 진루 상황 SCORE = [0, 0] # [home, away] BATTER_NUMBER = [1, 1] # [home, away] 타자 순번 LOAD_CHK = True #태흠 MATRIX = 5 LOCATION = {0: [0, 0], 1: [0, 1], 2: [0, 2], 3: [0, 3], 4: [0, 4], 5: [1, 0], 6: [1, 1], 7: [1, 2], 8: [1, 3], 9: [1, 4], 10: [2, 0], 11: [2, 1], 12: [2, 2], 13: [2, 3], 14: [2, 4], 15: [3, 0], 16: [3, 1], 17: [3, 2], 18: [3, 3], 19: [3, 4], 20: [4, 0], 21: [4, 1], 22: [4, 2], 23: [4, 3], 24: [4, 4] } #던지는 위치의 좌표를 리스트로 저장. ANNOUNCE= '' def __init__(self, master, game_team_list, root): print('Home Team : ' + game_team_list[0]+' : ', Game.TEAM_LIST[game_team_list[0]]) print('Away Team : ' + game_team_list[1]+' : ', Game.TEAM_LIST[game_team_list[1]]) self.__hometeam = Team(game_team_list[0], Game.TEAM_LIST[game_team_list[0]]) self.__awayteam = Team(game_team_list[1], Game.TEAM_LIST[game_team_list[1]]) self.game_team_list = game_team_list #태흠 self.root = root @property def hometeam(self): return self.__hometeam @property def awayteam(self): return self.__awayteam # 게임 수행 메서드 def start_game(self): pass # 팀별 선수 기록 출력 def show_record(self): print('===================================================================================================================') print('== {} | {} =='.format(self.hometeam.team_name.center(52, ' ') if re.search('[a-zA-Z]+', self.hometeam.team_name) is not None else self.hometeam.team_name.center(50, ' '), self.awayteam.team_name.center(52, ' ') if re.search('[a-zA-Z]+', self.awayteam.team_name) is not None else self.awayteam.team_name.center(50, ' '))) print('== {} | {} =='.format(('('+str(Game.SCORE[0])+')').center(52, ' '), ('('+str(Game.SCORE[1])+')').center(52, ' '))) print('===================================================================================================================') print('== {} | {} | {} | {} | {} | {} '.format('이름'.center(8, ' '), '타율'.center(5, ' '), '타석'.center(4, ' '), '안타'.center(3, ' '), '홈런'.center(3, ' '), '볼넷'.center(3, ' ')), end='') print('| {} | {} | {} | {} | {} | {} =='.format('이름'.center(8, ' '), '타율'.center(5, ' '), '타석'.center(4, ' '), '안타'.center(3, ' '), '홈런'.center(3, ' '), '볼넷'.center(3, ' '))) print('===================================================================================================================') hometeam_players = self.hometeam.player_list awayteam_players = self.awayteam.player_list for i in range(9): hp = hometeam_players[i] hp_rec = hp.record ap = awayteam_players[i] ap_rec = ap.record save_hp=[self.hometeam.team_name, hp.name, hp_rec.avg, hp_rec.atbat, hp_rec.hit, hp_rec.homerun, hp_rec.bob ] # 지은 save_ap=[self.awayteam.team_name, ap.name, ap_rec.avg, ap_rec.atbat, ap_rec.hit, ap_rec.homerun, ap_rec.bob ] # 지은 self.save_record("c:\\data\\baseball_save_result2.csv", *save_hp) # 지은 self.save_record("c:\\data\\baseball_save_result2.csv", *save_ap) # 지은 print('== {} | {} | {} | {} | {} | {} |'.format(hp.name.center(6+(4-len(hp.name)), ' '), str(hp_rec.avg).center(7, ' '), str(hp_rec.atbat).center(6, ' '), str(hp_rec.hit).center(5, ' '), str(hp_rec.homerun).center(5, ' '), str(hp_rec.bob).center(5,' ')), end='') print(' {} | {} | {} | {} | {} | {} =='.format(ap.name.center(6+(4-len(ap.name)), ' '), str(ap_rec.avg).center(7, ' '), str(ap_rec.atbat).center(6, ' '), str(ap_rec.hit).center(5, ' '), str(ap_rec.homerun).center(5, ' ') , str(ap_rec.bob).center(5, ' '))) print('===================================================================================================================') # 공격 수행 메서드 def attack(self): #태흠 pass # 진루 및 득점 설정하는 메서드 def advance_setting(self, hit_cnt, base_num, bob=False, double_play=False, sb=False): if hit_cnt == 4: # 홈런인 경우 Game.SCORE[Game.CHANGE] += (Game.ADVANCE.count(1)+1) Game.ADVANCE = [0, 0, 0] elif hit_cnt == -1: # 태흠 pass elif double_play is True: # 태흠 for i in range(len(Game.ADVANCE), 0, -1): if Game.ADVANCE[i-1] == 1: Game.ADVANCE[i-1] = 0 break # 여기서 병살주자 비워주고 시작 for i in range(len(Game.ADVANCE), 0, -1): if Game.ADVANCE[i-1] == 1: if (i + hit_cnt) > 3: # 기존에 출루한 선수들 중 득점 가능한 선수들에 대한 진루 설정 예, 1루+3루타 / 2루+2루타 / 3루+1루타 Game.SCORE[Game.CHANGE] += 1 # 득점 해주고 Game.ADVANCE[i - 1] = 0 # 자리 다시 비워주고 else: # 기존 출루한 선수들 중 득점권에 있지 않은 선수들에 대한 진루 설정 Game.ADVANCE[i - 1 + hit_cnt] = 1 Game.ADVANCE[i - 1] = 0 else: if bob==False: #볼넷이 아닐때 if sb == False: # 볼넷도 아니고 도루도 아니고, hit_cnt만 필요함, 이 줄만 태흠 for i in range(len(Game.ADVANCE), 0, -1): if Game.ADVANCE[i-1] == 1: if (i + hit_cnt) > 3: # 기존에 출루한 선수들 중 득점 가능한 선수들에 대한 진루 설정 Game.SCORE[Game.CHANGE] += 1 Game.ADVANCE[i-1] = 0 else: # 기존 출루한 선수들 중 득점권에 있지 않은 선수들에 대한 진루 설정 Game.ADVANCE[i-1 + hit_cnt] = 1 Game.ADVANCE[i-1] = 0 Game.ADVANCE[hit_cnt-1] = 1 # 타석에 있던 선수에 대한 진루 설정 elif sb == True: # 도루인 경우!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!, 태흠 if (base_num + hit_cnt) > 3: Game.SCORE[Game.CHANGE] += 1 # 즉 3루에 서있으면 득점이란 소리, 위하고 코드 깔맞춤 Game.ADVANCE[base_num - 1] = 0 else: Game.ADVANCE[base_num - 1 + hit_cnt] = 1 # 진루상황 넣어주고 Game.ADVANCE[base_num - 1] = 0 # 서있던 곳 빼주고 elif bob==True: #볼넷일때 if Game.ADVANCE[0]==1: #1루에 주자가 있을때. if Game.ADVANCE[1]==0 and Game.ADVANCE[2]==1:#1,3루 일때 Game.ADVANCE[1]=1 else: #그 외의 경우 for i in range(len(Game.ADVANCE), 0, -1): if Game.ADVANCE[i-1] == 1: if (i + hit_cnt) > 3: # 기존에 출루한 선수들 중 득점 가능한 선수들에 대한 진루 설정 Game.SCORE[Game.CHANGE] += 1 Game.ADVANCE[i-1] = 0 else: # 기존 출루한 선수들 중 득점권에 있지 않은 선수들에 대한 진루 설정 Game.ADVANCE[i-1 + hit_cnt] = 1 Game.ADVANCE[i-1] = 0 Game.ADVANCE[hit_cnt-1] = 1 # 타석에 있던 선수에 대한 진루 설정 else: #1루에 주자가 없을때는 1루에만 주자를 채워 넣는다. Game.ADVANCE[0] = 1 # 컴퓨터가 생성한 랜덤 수와 플레이어가 입력한 숫자가 얼마나 맞는지 판단 def hit_judgment(self, random_ball, hit_numbers): #(공던질위치, 구질) #융 cnt = 0 Foul = False Double_Play = False # 태흠 fly_ball = False # 태흠 UPDOWN = abs(Game.LOCATION[random_ball[1]][0] - Game.LOCATION[hit_numbers[1]][0]) #투수와 타자의 선택한 공 위치의 높낮이차이 #융 #UPDOWN = abs(Game.LOCATION[random_ball[1]][0] - Main.Y1) # 투수와 타자의 선택한 공 위치의 높낮이차이 #융 L_OR_R = abs(Game.LOCATION[random_ball[1]][1] - Game.LOCATION[hit_numbers[1]][1]) #투수와 타자의 선택한 공 위치의 좌우차이 #융 #L_OR_R = abs(Game.LOCATION[random_ball[1]][1] - Main.X1) #투수와 타자의 선택한 공 위치의 좌우차이 #융 if random_ball[0] == hit_numbers[0]: #투수가 던진 공의 구질과 타자가 선택한 구질이 같을 때 #융 if random_ball[1] == hit_numbers[1]:#위치가 같으니까 홈런 #융 cnt += 4 elif UPDOWN == 0:#높낮이가 같은 선상일 때 #융 if L_OR_R == 1: #좌우로 1칸 차이 #융 Game.ANNOUNCE = '3루타~' cnt += 3 if self.doble_play_OUT() is True: # 태흠 Double_Play = True elif L_OR_R == 2: #좌우로 2칸 차이 #융 Game.ANNOUNCE = '2루타~' cnt += 2 if self.doble_play_OUT() is True: # 태흠 Double_Play = True elif L_OR_R >= 3: #좌우로 3칸 차이 #융 Game.ANNOUNCE = '1루타~' cnt += 1 if self.doble_play_OUT() is True: # 태흠 Double_Play = True elif UPDOWN == 1:#높낮이 차이가 하나일때 #융 if L_OR_R ==1: Game.ANNOUNCE = '2루타~' cnt += 2 if self.doble_play_OUT() is True: # 태흠 Double_Play = True elif L_OR_R ==2: Game.ANNOUNCE = '1루타~' cnt += 1 if self.doble_play_OUT() is True: # 태흠 Double_Play = True elif L_OR_R >= 3: Game.ANNOUNCE = '파울' cnt += 0 Foul = True elif UPDOWN >= 2:#높낮이가 두개이상 차이날때 #융 Game.ANNOUNCE = '헛스윙~!' cnt += 0 else: #투수가 던진 공의 구질과 타자가 선택한 구질이 다를 때 융 if random_ball[0] == hit_numbers[0]:#위치가 같지만 구질은 다르니 3루타 융 cnt += 3 if self.flyball_OUT() is True: # 플라이볼 판정 cnt = -1 # 0이면 스트라이크 판정 나서 -1로 해줌 elif UPDOWN == 0:#높낮이가 같은 선상일 때 #융 if L_OR_R == 1: Game.ANNOUNCE = '2루타~' cnt += 2 if self.doble_play_OUT() is True: # 태흠 Double_Play = True elif L_OR_R == 2: Game.ANNOUNCE = '1루타~' cnt += 1 if self.doble_play_OUT() is True: # 태흠 Double_Play = True elif L_OR_R >= 3: Game.ANNOUNCE = '파울 ㅜㅜ' cnt += 0 Foul = True elif UPDOWN == 1:#높낮이 차이가 하나일때 융 if L_OR_R ==1: Game.ANNOUNCE = '1루타~' cnt += 1 if self.doble_play_OUT() is True: # 태흠 Double_Play = True elif L_OR_R ==2: Game.ANNOUNCE = '파울ㅠㅠ' cnt += 0 Foul = True elif L_OR_R >= 3: Game.ANNOUNCE = '헛스윙' cnt += 0 elif UPDOWN >= 2:#높낮이가 두개이상 차이날때 융 Game.ANNOUNCE = '헛스윙~!' cnt += 0 return cnt, Foul, Double_Play, fly_ball def doble_play_OUT(self): # 태흠 self.r1 = random.random() if self.r1 < 0.25: return True return False def flyball_OUT(self): # 태흠 self.r2 = random.random() if self.r2 < 0.1: return True return False #선수가 입력한 숫자 확인 #융 def hit_number_check(self,hit_numbers): #구질(0~1),위치(0~24)가 들어옴 융 if len(hit_numbers) == 2: if (hit_numbers[0] >= 0 and hit_numbers[0] <= 1) and (hit_numbers[1] >= 0 and hit_numbers[1] <= 24): return True else: return False # 선수 선택 def select_player(self, number, player_list): for player in player_list: if number == player.number: return player # 랜덤으로 숫자 생성(1~20) def throws_numbers(self): while True: random_loc = random.randint(0, 24) # 0 ~ 24 중에 랜덤 수를 출력 random_ball= random.randint(0, 1) # return random_ball, random_loc class Main(Game): HITORNOT = -1 FORB = -1 BALLLOC = -1 COLOR = ["white", "red"] def __init__(self, master, game_team_list, root): super().__init__(master,game_team_list,root) self.root = root self.game = Game(master, game_team_list, root) self.frame = Frame(master) self.frame.pack(fill="both", expand=True) self.canvas = Canvas(self.frame, width=1000, height=600) self.canvas.pack(fill="both", expand=True) # self.label = Label(self.frame, text='야구 게임', height=6, bg='white', fg='black') # self.label.pack(fill="both", expand=True) # self.label.place(x=0, y=0, width=1000, height=100, bordermode='outside') self.frameb = Frame(self.frame) self.frameb.pack(fill="both", expand=True) self.newgame = Button(self.frameb, text='New Game', height=4, command=self.start_game, bg='purple', fg='white') self.newgame.pack(fill="both", expand=True, side=LEFT) self.loadgame = Button(self.frameb, text='Load Game', height=4, command=self.Loadgame, bg='white', fg='purple') self.loadgame.pack(fill="both", expand=True, side=LEFT) self.hit = Button(self.frameb, text='타격', width=5, height=2, command=self.Hitbutton, bg='orange', fg='white') self.hit.pack(fill="both", expand=True) self.nohit = Button(self.frameb, text='타격안함', width=5, height=2, command=self.Nohitbutton, bg='orange', fg='white') self.nohit.pack(fill="both", expand=True, side=TOP) self.stolen_base = Button(self.frameb, text='도루', width=5, height=2, command=self.Stolenbasebutton, bg='orange', fg='white') self.stolen_base.pack(fill="both", expand=True, side=TOP) self.fastball = Button(self.frameb, text='직구', width=5, height=2, command=self.FastBall, bg='purple', fg='white') self.fastball.pack(fill="both", expand=True, side=TOP) self.breakingball = Button(self.frameb, text='변화구', width=5, height=2, command=self.BreakingBall, bg='purple', fg='white') self.breakingball.pack(fill="both", expand=True, side=TOP) self.canvas.bind("<ButtonPress-1>", self.Throwandhit) #self.canvas.bind("<Motion>", self.board) self.ball_color=[] self.strike_color=[] self.out_color=[] self.board() def attack(self): curr_team = self.hometeam if Game.CHANGE == 0 else self.awayteam player_list = curr_team.player_list MATRIX = 5 PITCH_LOCATION = "| " + "{:^6s} | " * MATRIX #투구 영역 융 PITCH_LOCATION = (PITCH_LOCATION + '\n') * MATRIX #융 PITCH_LOCATION = "---------" * MATRIX + "\n" + PITCH_LOCATION + "---------" * MATRIX #융 hit_numbers = [] if Game.OUT_CNT < 3: player = self.select_player(Game.BATTER_NUMBER[Game.CHANGE], player_list) # print('====================================================================================================') Game.ANNOUNCE += '\n' + '[{}] {}번 타자[{}] 타석에 들어섭니다.\n 현재 타석 : {}번 타자[{}], 타율 : {}, 볼넷 : {}, 홈런 : {}'.format(curr_team.team_name, player.number, player.name,player.number, player.name, player.record.avg, player.record.bob, player.record.homerun) # print('====================================================================================================\n') self.board() random_numbers = self.throws_numbers() # 컴퓨터가 랜덤으로 숫자 2개 생성(구질[0](0~1), 던질위치[1](0~24)) # print('== [전광판] =========================================================================================') # print('== {} | {} : {}'.format(Game.ADVANCE[1], self.hometeam.team_name, Game.SCORE[0])) # print('== {} {} | {} : {}'.format(Game.ADVANCE[2], Game.ADVANCE[0], self.awayteam.team_name, Game.SCORE[1])) # print('== [OUT : {}, BALL : {}, STRIKE : {}]'.format(Game.OUT_CNT, Game.BALL_CNT, Game.STRIKE_CNT)) # print('====================================================================================================') # print(PITCH_LOCATION.format(*[str(idx) for idx in range(26)])) #투구 영역 5 * 5 출력 융 # print('====================================================================================================') # print('== 현재 타석 : {}번 타자[{}], 타율 : {}, 볼넷 : {}, 홈런 : {}'.format(player.number, player.name, player.record.avg, player.record.bob, player.record.homerun)) while True: PLAYER_INFO = [curr_team.team_name, player.number, player.name, player.record.atbat, player.record.hit, player.record.bob, player.record.homerun, player.record.avg] #태흠 CNT = [Game.STRIKE_CNT, Game.BALL_CNT, Game.OUT_CNT] GAME_INFO = [Game.INNING, Game.CHANGE] ADV = Game.ADVANCE SCORE = Game.SCORE BATTER_NUMBER = Game.BATTER_NUMBER Saveandload.make_data_set(CNT, GAME_INFO, ADV, SCORE, BATTER_NUMBER) #태흠 Saveandload.save_record(save_player_path, *PLAYER_INFO) #지은 #태흠 Main.FORB = -1 Main.BALLLOC = -1 Main.HITORNOT = -1 while True: self.root.update() if Main.HITORNOT != -1: # hit_yn = int(input('타격을 하시겠습니까?(타격 : 1 타격안함 : 0)')) hit_yn = Main.HITORNOT # print(hit_yn) break else: #print('Hit 여부 선택하세요.') #print(Main.HITORNOT) # self.attack() time.sleep(0.05) continue if hit_yn == 1 :#################타격 시############################ #융 while True : self.root.update() time.sleep(0.05) #hit_numbers = [Main.FORB, Main.BALLLOC] if Main.FORB != -1 and Main.BALLLOC != -1 : # print('▶ 컴퓨터가 발생 시킨 숫자 : {}\n'.format(random_numbers)) hit_numbers = [Main.FORB, Main.BALLLOC] # print(hit_numbers) # if self.hit_number_check(hit_numbers) is False: # raise Exception() hit_cnt = self.hit_judgment(random_numbers, hit_numbers) # 안타 판별 print('hit_cnt : ', hit_cnt) # print(hit_cnt,'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!') break # else : # print('== ▣ 잘못된 숫자가 입력되었습니다.') # print(hit_numbers) # print('====================================================================================================') # print('▶ 컴퓨터가 발생 시킨 숫자 : {}\n'.format(random_numbers)) # continue if hit_cnt[0] == 0: # strike !!! if hit_cnt[1] == False: # 파울이 아닐 때 융 Game.STRIKE_CNT += 1 Game.ANNOUNCE = '스트라이크!!!' self.board() if Game.STRIKE_CNT == 3: Game.ANNOUNCE = '삼진 아웃!!!' Game.STRIKE_CNT = 0 Game.OUT_CNT += 1 player.hit_and_run(0,0,0) break if hit_cnt[1] == True:#파울일 때 if Game.STRIKE_CNT <= 1: #스트라이크 카운트가 1 이하일때는 원래대로 진행 융 Game.STRIKE_CNT += 1 Game.ANNOUNCE = '파울!!!' self.board() if Game.STRIKE_CNT == 3: Game.ANNOUNCE = '삼진 아웃!!!' self.board() Game.STRIKE_CNT = 0 Game.OUT_CNT += 1 player.hit_and_run(0, 0, 0) break # if Game.STRIKE_CNT == 2: #스트라이크 카운트가 2일때가 문제. 2일때는 파울이어도 스트라이크 카운트가 늘어나선 안됨 융 # Game.ANNOUNCE = '파울이므로 아웃이 아닙니다. 다시 치세요!!!!' else: Game.STRIKE_CNT = 0 if hit_cnt[0] != 4: if hit_cnt[0] == -1: # 플라이볼일때, 태흠 Game.OUT_CNT += 1 Game.ANNOUNCE = '== ▣ 높게 뜬공! 그대로 외야수에 잡혀 아웃됩니다. \n' player.hit_and_run(1 if hit_cnt[0] > 0 else 0, 0, 1 if hit_cnt[0] == 4 else 0) self.advance_setting(hit_cnt[0], None, False, False, False) self.board() break elif hit_cnt[2] == True and 1 in Game.ADVANCE: # 출루인줄 알았지만 병살타ㅜ({}루타, 병살타 판단), 태흠 Game.STRIKE_CNT = 0 Game.BALL_CNT = 0 Game.OUT_CNT += 2 player.hit_and_run(1 if hit_cnt[0] > 0 else 0, 0, 1 if hit_cnt[0] == 4 else 0) # 진루타, 볼넷, 홈런 Game.ANNOUNCE = '== ▣ 병살타!!! 아~ 이게 무슨일입니까!! \n' self.advance_setting(hit_cnt[0], None, False, True, False) self.board() break Game.ANNOUNCE = '{}루타!!!'.format(hit_cnt[0]) player.hit_and_run(1 if hit_cnt[0] > 0 else 0, 0, 1 if hit_cnt[0] == 4 else 0) self.board() else: # 홈런일 때 Game.ANNOUNCE = '홈런!!!' player.hit_and_run(1 if hit_cnt[0] > 0 else 0, 0, 1 if hit_cnt[0] == 4 else 0) self.board() self.advance_setting(hit_cnt[0], None, False, False, False) break elif hit_yn == 0:######타격안하고 지켜보기 시전########################### 융 #컴퓨터가 던진 공이 볼일때 융 if (random_numbers[1] >= 0 and random_numbers[1] <= 4) or (random_numbers[1] % 5 == 0) or (random_numbers[1] >= 20) or ((random_numbers[1]-4) % 5 ==0) or ((random_numbers[1]-3) % 5 == 0): Game.BALL_CNT += 1 Game.ANNOUNCE = '볼 !!!!!!!!!!!!!!!!!!!!!!' self.board() if Game.BALL_CNT == 4: Game.ANNOUNCE = '볼넷 1루출루 !!!!!!!!!!!!!!!!!!!!!! 투수가 정신을 못차리네요!' self.advance_setting(1, None, True, False, False) self.board() Game.STRIKE_CNT = 0 Game.BALL_CNT = 0 player.hit_and_run(0,1,0) break #컴퓨터가 던진 공이 스트라이크 일 때 융 if random_numbers[1] in [6, 7, 11, 12, 16, 17]: Game.STRIKE_CNT += 1 Game.ANNOUNCE = '스트라이크!!!!!!!!!!!!!' self.board() if Game.STRIKE_CNT == 3: Game.ANNOUNCE = '방망이도 못 휘두르고 삼진!!!!!!!!!!!!!! 제구력이 훌륭하군요!' Game.STRIKE_CNT = 0 Game.BALL_CNT = 0 Game.OUT_CNT += 1 player.hit_and_run(0, 0, 0) self.board() break elif hit_yn == 2: # 도루선택, 태흠 if Game.ADVANCE in [[0, 0, 0], [0, 0, 1], [0, 1, 1], [1, 1, 1]]: Game.ANNOUNCE = '====================================================================================================\n' \ '★★★★★★★★도루 가능한 주자가 없습니다.★★★★★★★★' self.board() self.attack() else: rn = random.random() while 1: base_num = int(input('도루시킬 주자를 선택하세요[1, 2] : {} / {}'.format( '1루주자' if Game.ADVANCE[0] == 1 and Game.ADVANCE[1] == 0 else '도루 불가', '2루주자' if Game.ADVANCE[1] == 1 and Game.ADVANCE[2] == 0 else '도루 불가'))) if Game.ADVANCE[base_num - 1] == 1 and Game.ADVANCE[base_num] == 0: Game.ANNOUNCE = '도루 가능' self.board() break else: print('도루불가라고 난독증이냐?') self.board() continue if rn < 0.3: # 도루 성공확률, 태흠 self.advance_setting(1, base_num, False, False, True) print('도루성공, 게임창을 확인해주세용~') Game.ANNOUNCE = '도루성공, Stolen Base' self.board() break else: # 도루 실패할 경우, 태흠 Game.ANNOUNCE = '도루실패, Caught Stealing' Game.OUT_CNT += 1 Game.ADVANCE[base_num - 1] = 0 self.board() break else : continue PLAYER_INFO = [curr_team.team_name, player.number, player.name, player.record.atbat, player.record.hit, player.record.bob, player.record.homerun, player.record.avg] #태흠 Saveandload.save_record(save_player_path, *PLAYER_INFO) # 지은 #태흠 if Game.BATTER_NUMBER[Game.CHANGE] == 9: Game.BATTER_NUMBER[Game.CHANGE] = 1 else: Game.BATTER_NUMBER[Game.CHANGE] += 1 self.attack() else: Game.CHANGE += 1 Game.STRIKE_CNT = 0 Game.BALL_CNT = 0 Game.OUT_CNT = 0 Game.ADVANCE = [0, 0, 0] self.board() def start_game(self): Saveandload.load_to_start_game() #태흠 Saveandload.load_record(self.game_team_list[0], self.hometeam, self.awayteam, load_player_path) #지은 #태흠 Game.LOAD_CHK = False #태흠 if Game.INNING <= 3: #게임을 진행할 이닝을 설정. 현재는 1이닝만 진행하게끔 되어 있음. # print('====================================================================================================') Game.ANNOUNCE = '{} 이닝 {} 팀 공격 시작합니다.'.format(Game.INNING, self.game.hometeam.team_name if Game.CHANGE == 0 else self.game.awayteam.team_name) # print('====================================================================================================\n') self.board() self.attack() if Game.CHANGE == 2: # 이닝 교체 Game.INNING += 1 Game.CHANGE = 0 self.start_game() # print('============================================================================================================') Game.ANNOUNCE = '게임 종료!!!' # print('============================================================================================================\n') self.game.show_record() def Loadgame(self): Saveandload.load_chk() self.start_game() def board(self): hometeam = self.game.hometeam.team_name awayteam = self.game.awayteam.team_name homescore = self.game.SCORE[0] awayscore = self.game.SCORE[1] announce = self.game.ANNOUNCE inning = self.game.INNING change = self.game.CHANGE attackordefence = [["공격", "수비"] if change == 0 else ["수비", "공격"]] scoreformat = '{} : {} ({}) | {}이닝 | ({}) {} : {}' if self.game.BALL_CNT==0: self.ball_color=["white","white","white"] elif self.game.BALL_CNT==1: self.ball_color=["orange","white","white"] elif self.game.BALL_CNT==2: self.ball_color=["orange","orange","white"] elif self.game.BALL_CNT==3: self.ball_color=["orange","orange","orange"] if self.game.STRIKE_CNT==0: self.strike_color=['white','white'] elif self.game.STRIKE_CNT==1: self.strike_color=["blue","white"] elif self.game.STRIKE_CNT==2: self.strike_color=["blue","blue"] if self.game.OUT_CNT==0: self.out_color=['white','white'] elif self.game.OUT_CNT==1: self.out_color=["red","white"] elif self.game.OUT_CNT==2: self.out_color=["red","red"] #Ball 존 self.canvas.create_rectangle(500, 0, 1000, 600, outline="black") self.canvas.create_rectangle(500, 0, 1000, 100, outline="black") self.canvas.create_rectangle(600, 600, 700, 0, outline="black") self.canvas.create_rectangle(500, 100, 1000, 200, outline="black") self.canvas.create_rectangle(500, 100, 1000, 200, outline="black") self.canvas.create_rectangle(600, 300, 900, 500, fill="yellow") self.canvas.create_rectangle(700, 600, 800, 0 ,outline="black") self.canvas.create_rectangle(500, 200, 1000, 300, outline="black") self.canvas.create_rectangle(800, 600, 900, 0, outline="black") self.canvas.create_rectangle(500, 300, 1000, 400, outline="black") self.canvas.create_rectangle(900, 600, 1000, 0, outline="black") self.canvas.create_rectangle(500, 400, 1000, 500, outline="black") self.canvas.create_rectangle(500, 600, 1000, 600, outline="black") self.canvas.create_rectangle(0, 100, 480, 600, fill="green") self.canvas.create_rectangle(220, 300, 260, 340, fill="white") #진루 선 self.canvas.create_line(240, 135, 35, 330, width=4, fill="white") self.canvas.create_line(240, 135, 445, 330, width=4, fill="white") self.canvas.create_line(40, 330, 240, 515, width=4, fill="white") self.canvas.create_line(445, 330, 240, 515, width=4, fill="white") self.canvas.create_oval(225, 120, 255, 150, fill=Main.COLOR[self.game.ADVANCE[1]]) # 2루 self.canvas.create_oval(20, 315, 50, 345, fill=Main.COLOR[self.game.ADVANCE[2]]) # 3루 self.canvas.create_oval(430, 315, 460, 345, fill=Main.COLOR[self.game.ADVANCE[0]]) # 1루 self.canvas.create_oval(225, 500, 255, 530, fill="white") self.canvas.create_text(350, 490, font=("Courier", 12), text="B") self.canvas.create_oval(370, 480, 390, 500, fill=self.ball_color[0])#볼 self.canvas.create_oval(405, 480, 425, 500, fill=self.ball_color[1])#볼 self.canvas.create_oval(440, 480, 460, 500, fill=self.ball_color[2])#볼 self.canvas.create_text(350, 525, font=("Courier", 12), text="S") self.canvas.create_oval(370, 515, 390, 535, fill=self.strike_color[0])#스트라이크 self.canvas.create_oval(405, 515, 425, 535, fill=self.strike_color[1]) # 스트라이크 self.canvas.create_text(350, 560, font=("Courier", 12), text="O") self.canvas.create_oval(370, 550, 390, 570, fill=self.out_color[0]) # 아웃 self.canvas.create_oval(405, 550, 425, 570, fill=self.out_color[1]) # 아웃 self.label = Label(self.frame, text=scoreformat.format(hometeam, homescore, attackordefence[0][0], inning, attackordefence[0][1], awayscore, awayteam), height=6, bg='white', fg='black') self.label.config(font=("Courier", 20)) self.label.pack(fill="both", expand=True) self.label.place(x=0, y=0, width=1000, height=38, bordermode='outside') self.label = Label(self.frame, text=announce, height=6, bg='white', fg='black') self.label.config(font=("Courier", 10)) self.label.pack(fill="both", expand=True) self.label.place(x=0, y=30, width=1000, height=70, bordermode='outside') def Throwandhit(self,event): loclist = [[5 * i + j for j in range(5)] for i in range(5)] for k in range(500, 1000, 100): for j in range(100, 600, 100): if event.x in range(k, k + 100) and event.y in range(j, j + 100): X1 = int((k - 500) / 100) Y1 = int((j - 100) / 100) # print('마우스 위치 좌표', X1, Y1) # print('리턴 좌표', loclist[Y1][X1]) Main.BALLLOC = loclist[Y1][X1] self.board() def Hitbutton(self): # print('hit') Main.HITORNOT = 1 self.board() def Nohitbutton(self): print('no hit') Main.HITORNOT = 0 self.board() def Stolenbasebutton(self): print('stolen base') Main.HITORNOT = 2 print(Main.HITORNOT) self.board() def FastBall(self): # print('Fastball') Main.FORB = 1 self.board() def BreakingBall(self): # print('Brakingball') Main.FORB = 0 self.board() if __name__ == '__main__': while True: try: game_team_list = [] print('====================================================================================================') print('한화 / ', '롯데 / ', '삼성 / ', 'KIA / ', 'SK / ', 'LG / ', '두산 / ', '넥센 / ', 'KT / ', 'NC / ') game_team_list = input('=> 게임을 진행할 두 팀을 입력하세요 : ').split(' ') print('====================================================================================================') if (game_team_list[0] in Game.TEAM_LIST) and (game_team_list[1] in Game.TEAM_LIST): print('게임이 시작되었습니다. 작업표시줄에 실행된 게임콘솔창을 확인해주세요~\n') break else: ctypes.windll.user32.MessageBoxW(None, '팀명을 잘못 입력하셨습니다.', "Error", 0) except: ctypes.windll.user32.MessageBoxW(None, '팀명을 잘못 입력하셨습니다.', "Error", 0) root = Tk() app = Main(root, game_team_list, root) root.mainloop()
0a472f6e96a00dfe4c19d566f86199c70912b332
195fdf812bd2bc6170bbe46174950d70641b55a0
/datastream/__init__.py
749076dc121bff3050789b1051782f5074da5f87
[]
no_license
ohwong/jy_manager
7c1dda37b819065d1c80eb670af94b04da33d81c
a0098e54004150c1be0f521407727705a77a86d9
refs/heads/master
2021-07-03T17:16:19.859188
2018-12-01T10:58:44
2018-12-01T10:58:44
95,996,307
0
0
null
null
null
null
UTF-8
Python
false
false
336
py
from django.apps import AppConfig import os default_app_config = 'datastream.DataStreamConfig' VERBOSE_APP_NAME = "数据管理" def get_current_app_name(_file): return os.path.split(os.path.dirname(_file))[-1] class DataStreamConfig(AppConfig): name = get_current_app_name(__file__) verbose_name = VERBOSE_APP_NAME
615955adb580e1338842797759b11d768ece2b85
0c33849e47952664b6c93218627181b57094f0b8
/run.py
55f8eb402a4aae71a59a6bc74fd721c3ce45f62e
[]
no_license
GabeMeister/router-app
2b514223fe6114ceda1a22c2fa11eb438b1e2167
85c06c609a7359771b7865dee3d30abcf4e63321
refs/heads/master
2021-08-28T00:30:54.446857
2017-12-10T21:34:03
2017-12-10T21:34:03
113,784,301
0
0
null
null
null
null
UTF-8
Python
false
false
177
py
""" Run the app in debug mode """ # pylint: disable=C0103,C0111,C0413,C0412,C0411,C0330 from flask import Flask, render_template from backend import app app.run(debug=True)
66247010991d0515b20060847c80edb1cd76d051
5326cd6af9dc2a1466c31ff763468eee9abce702
/blogengine/urls.py
2eb9a214e3750e4dd549d2e3097e502c7cba18d4
[]
no_license
dgiart/fblog
8f14aa22fcb0cf8886a6ba1ff417530392459060
3f90bc229c3ba3bbf4706b1e1365f2fcb0600723
refs/heads/master
2020-06-02T10:05:33.748467
2019-05-26T14:06:21
2019-05-26T14:06:21
191,122,623
0
0
null
null
null
null
UTF-8
Python
false
false
976
py
"""blogengine URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from django.urls import include from .views import redirect_blog, hello urlpatterns = [ path('',redirect_blog), path('admin/', admin.site.urls), path('blog/', include('blog.urls')), path('hi/',hello), path('accounts/', include('django.contrib.auth.urls')) ]
45b28c612e1bd492c10238a493208446a0ab44c6
6f3f5c797fd60c360971af808c6bd2f3a1b54ceb
/MYAPPNAME/children/admin.py
c3e65894cd2aea186271ccbcdef7712d76838ca8
[]
no_license
oscarsj/django-react-template
f2e798f0c0b9231598161dfa509583aa108c9094
79f8750c9232f08636b402ac99d7518d9cda8768
refs/heads/master
2023-01-04T16:24:32.496367
2020-11-02T18:17:04
2020-11-02T18:17:04
305,813,598
0
0
null
null
null
null
UTF-8
Python
false
false
527
py
from django.contrib import admin from children.models import (Child, Parent, RegisteredChild, Course, Season, Monitor, PaymentMethods, Payments, Days, PricesPerDay) admin.site.register(Child) admin.site.register(Parent) admin.site.register(RegisteredChild) admin.site.register(Course) admin.site.register(Season) admin.site.register(Monitor) admin.site.register(PaymentMethods) admin.site.register(Payments) admin.site.register(Days) admin.site.register(PricesPerDay)
24cfd9890765970054c84fe09a54642c03bcf6f8
78b48272ba74fee13b40b0cce8aad2406c1a77f5
/core/utils/loggers/app_logger.py
60968ce64bcfe74c4eb2f6790bcdb836ac04c703
[ "MIT" ]
permissive
glassyweirdo/fastapi-boilerplate
97e78360658048a57e7f7e3e0ae1cd1bab5186fb
753261df16b0ae1ad6d67cff52c1da0f4243b8dc
refs/heads/master
2023-08-18T13:24:20.180143
2021-10-03T23:17:10
2021-10-03T23:17:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
57
py
import logging app_logger = logging.getLogger(__name__)
c5230e396bd6c2e75f84e8b9d4d5048b07a1534d
7903809bf9f34c58af8879d9275ded0b5e661dce
/PasswordDataEncryption/shaserver.py
e5df84003e6843372bb33e43572e452b34e8dcd7
[]
no_license
nikhalster/ComputerLab3
1abf31e763b9835512257e4ad7385e2237557284
855bcd8122875481b923bbf9c08b81210dd940d6
refs/heads/master
2021-01-20T00:27:41.072863
2017-04-25T05:36:19
2017-04-25T05:36:19
89,131,115
1
0
null
null
null
null
UTF-8
Python
false
false
709
py
import hashlib import socket import os import base64 registeredPassword = raw_input("Enter registered password") #salt = os.urandom(32).decode() salt = base64.urlsafe_b64encode(os.urandom(32)) print("Salt is {}".format(salt)) digest = hashlib.sha1(salt + registeredPassword) digest = digest.hexdigest() ss = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0) ss.bind(("", 5000)) ss.listen(5) clientsocket, address = ss.accept() receivedPasswordDigestInKbs = clientsocket.recv(1024) print("Digest is {}".format(digest)) print("Recieved is {}".format(receivedPasswordDigestInKbs)) if digest == receivedPasswordDigestInKbs: print("match") else: print("no match") clientsocket.close() ss.close()
8336c642c46de7acd13d8feb2bf4e88ba38d55a8
271c613f8fcad47a4c2cfeec0a2e11e3eace5466
/pwndb-convert.py
e39ae23bf9fbc776fb95c1c04e01776067a7da53
[]
no_license
vysecurity/PWNDB
d3b226f9cca9b200c77cfa09bfce5319a6e34400
9576108102e17bb479b031999f4ae731ad9700a6
refs/heads/master
2020-04-14T19:50:33.858517
2019-01-04T07:19:53
2019-01-04T07:19:53
164,072,400
5
2
null
null
null
null
UTF-8
Python
false
false
504
py
import sys with open(sys.argv[1]) as fp: line = fp.readline().strip() start = 0 user = "" domain = "" password = "" while line: if "[luser]" in line: start = 1 user = line.split("=> ")[1] if "[domain]" in line: if start == 1: domain = line.split("=> ")[1] start = 2 if "[password]" in line: if start == 2: password = line.split("=> ")[1] print user.strip() + "@" + domain.strip() + ":" + password.strip() start = 0 user = "" # print line line = fp.readline()
ad5ae115186a694489f6794a6279b0b75e037ee8
051c3ee44478265c4510530888335335ec9f7fdf
/ML_Applications/SVM/Mutants/code/SVM_rbf/DigitRecognitionApp_47.py
2be1dd52e2ea4cb532d52028ef938535d52fe789
[]
no_license
PinjiaHe/VerifyML
b581c016012c62d8439adfce0caef4f098b36d5e
3bd7c49e45720c1cdfe0af4ac7dd35b201056e65
refs/heads/master
2020-03-25T19:40:39.996370
2018-01-30T08:58:58
2018-01-30T08:58:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,166
py
""" Created on Fri May 26 15:20:01 2017 #Digit Recognition for V & V #Following note added by RR Note: 1. The actual digits data from the http://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits is different than the one referred in this sklearn example 2. For more info, refer this link http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html and the above one. 3. The digits data referred by this Sklearn example can be downloaded from the following link. https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/datasets/data/digits.csv.gz """ import matplotlib.pyplot as plt from sklearn import datasets, svm, metrics import numpy as np import _pickle as cPickle digits = np.loadtxt('digits_Train.csv', delimiter=',') digits_images_flat = digits[:,:(-1)] digits_images = digits_images_flat.view() digits_images.shape = ((-1), 8, 8) digits_target = digits[:,(-1)].astype(np.int) digits_test = np.loadtxt('digits_Test.csv', delimiter=',') digits_test_images_flat = digits_test[:,:(-1)] digits_test_images = digits_test_images_flat.view() digits_test_images.shape = ((-1), 8, 8) digits_test_target = digits_test[:,(-1)].astype(np.int) images_and_labels = list(zip(digits_images, digits_target)) n_samples = len(digits_images) classifier = svm.SVC(gamma=0.001) classifier.fit(digits_images_flat, digits_target) expected = digits_test_target predicted = classifier.predict(digits_test_images_flat) print('Classification report for classifier %s:\n%s\n' % ( classifier, metrics.classification_report(expected, predicted))) print('Confusion matrix:\n%s' % metrics.confusion_matrix(expected, predicted)) print("accuracy:", metrics.accuracy_score(expected, predicted)) images_and_predictions = list(zip(digits_test_images, predicted)) np.savetxt('output.txt', classifier.decision_function(digits_test_images_flat)) outputData = {'data_array': metrics.confusion_matrix(expected, predicted)} with open('output.pkl', 'wb') as outputFile: cPickle.dump(outputData, outputFile) with open('model.pkl', 'mutpy') as modelFile: cPickle.dump(classifier, modelFile)
dd9a63e1aaad0dc5bdcdff237e138d25cdbc9716
c4eecf1885da13b4c240eec7a73e657cead8c483
/V1.0/NeuralNet_TEMP.py
36ac6c5ab365b0620028bb74737503d3efdae252
[]
no_license
BarryDing/Hongxin
d16d2c5f8fc568c7705b5c542e6f46d4c73eb65a
8f76dcfb988cb1ad3c9e110cdaeca035db2b9745
refs/heads/master
2020-03-17T22:48:33.979170
2018-05-19T02:09:38
2018-05-19T02:09:38
134,018,930
0
0
null
null
null
null
UTF-8
Python
false
false
123,207
py
#!/usr/bin/python # -*- coding: UTF-8 -*- ######## Copyright 成都信息过程大学 李方平 ######## Time 2018年4月26日 ######## Function 将输入的矩阵 经过这个脚本,转换为w温度 #################### 输入Inputdata为一个60*n的矩阵,输出y1为一个93*n的矩阵 ######=================测试可读一列或两列数据================================== import numpy as np def NeutalNet(Inputdata): #######Map Minimum and Maximum Input Processing Function def mapminmax_apply(data, **setting): offset = np.array(setting['xoffset']) if Q != 1: offset = np.tile(offset, (Q, 1)) ####b = tile(a,(m,n)):即是把a数组里面的元素复制n次放进一个数组c中,然后再把数组c复制m次放进一个数组b中 offset = np.transpose(offset) y = data - offset xgain = np.array(setting['gain']) if Q != 1: xgain = np.tile(xgain, (Q, 1)) xgain = np.transpose(xgain) y = y * xgain y = y + setting['ymin'] return y def tansig_apply(n): y = 2 / (1 + np.power(np.e, -2 * n)) - 1 return y def mapminmax_reverse(data, **setting): y = data - setting['ymin'] xgain = np.array(setting['gain']) if Q != 1: xgain = np.tile(xgain, (Q, 1)) xgain = np.transpose(xgain) y = y / xgain offset = np.array(setting['xoffset']) if Q != 1: offset = np.tile(offset, (Q, 1)) offset = np.transpose(offset) y = y + offset return y x1_step2 = { 'xoffset': [7.85,7.31,6.5,6.44,6.22,6.51,8.49,100.42,138.13,232.69,258.44,262.64,263.14,263.5,990.7,11,-9.7], 'gain': [0.00782533844588778,0.00781280518770264,0.00782595085302864,0.00788115222445522,0.00788177339901478,0.00780579189758801,0.00767194752387894,0.0103423311614438,0.012831205491756,0.0306138068268789,0.0486263068319961,0.0507485409794468,0.0503778337531486,0.0501378791677112,0.0464037122969839,0.0232558139534884,0.043859649122807], 'ymin': -1} # ##### Layer 1 b1 = [-0.24083009551663642211,-0.14078377292955926436,0.037983014160748840293,-0.074333816557691542726,0.14154445141039964651,-0.0075244133357378886404,-0.33136118470348324694,0.46889821863452291195,-0.64524066169211391486,-0.069553726027309262236,0.005242702738335228152,0.027025157665727723988,-0.58458731534837793387,-0.069069713842964494677,0.12903777925320741859,0.51152078566952863259,0.064549108158987525408,-0.036002500654198334173,-0.050716511122690620395,-2.1473121219685888938,-0.33501988254435799419,-0.13607479606422079321,-0.49490461397340790306,-0.2645660060116201695,-0.17195518474156684663,0.83509712243608202886,-0.45495062916988848745,-0.29836031042794763923,-0.030809067713133443667,0.22058072072966183885,0.55227492236912245627,-0.26612692803609089287,-0.11153234666121367158,-0.31377083628661306403,-0.82448012426084738014,0.0030760326108590432814,0.11125530189257358538,-0.44615780239078067781,0.81313276307321313841,0.024317030591851584997,-0.05331798178548300543,0.094749730699039316772,0.12265884395199685986] IW1_1 = [-0.1513276944642346078,-0.023394275620704660379,0.076802097580919811981,0.0066466235889355122779,0.042925156409081559328,-0.041786603588628283557,-0.11620849522461611236,-0.081224744570633264362,0.12875188797267761442,-0.12805150714205357221,-0.4571303574569796635,-0.34348452118252548182,-0.15066748529877246887,0.21003737009954481785,-0.2671193157842211563,-0.098243340319960625884,0.087164960326012216885,0.027018461511456998841,0.1302082870952153415,0.14087934313998259905,0.083898677158883841476,0.26209333932295891811,0.20355460952751414094,0.11252416727001825214,0.067987724007552097216,-0.049691559619072400711,-0.4640657808880943036,-0.5099268584841234464,-0.37532277685383858001,-0.22841411984484735753,-0.075887505183453815572,0.083071166196183474084,-0.04088741002567602284,0.27183604262443650246,0.039572224575712154626,-0.22765791196907583793,-0.18852875663831622499,-0.12548482523559834068,-0.21174905033354601835,-0.13810883838978482707,0.012224664594466218975,0.17247673253583278852,0.10460334352356617793,0.29207210963018864769,-0.21270437800210401091,0.35673231554056183956,0.28356261266434479307,0.40597433000817778614,-0.49732185993055866291,0.43113142446323104995,-0.04507334522579201086,-0.020504215954026350222,0.10048891435571481734,0.078351603477878534187,-0.020455994020510910592,0.10164300024268442535,0.039501316409239026206,-0.047134613441388487076,-0.031977534851264158289,0.047128246501721010597,-0.2270809911950966431,-0.2021412016398164424,-0.2796015984365087248,-0.14583381329044908803,-0.041744169058177189868,0.11540190527969404477,-0.096037756921411601696,0.0477804714268557848,0.14971520625537834692,-0.073541132932441730108,-0.023998130749014731644,-0.1018493636069505992,-0.028818283363064051139,-0.074219300846414232309,-0.17429608384697101164,-0.30270435125479389082,-0.0074178880442019633559,0.032266750525888884815,-0.83876519766325152716,-0.43786091259553067134,-0.19050249677819242056,0.2776975135376727466,0.47313055589002689372,-0.51232169100471136591,-0.049391748246377285836,-0.034032872327888069597,-0.50743138699081136167,-0.082034311401998710744,0.20561363970005902546,-0.035408132505788489364,0.077010980295023109821,0.27291200125056136461,-0.26933025786484232622,0.034044241292392682374,0.88437493429724101102,-0.43935778828733934587,0.12517348424649679672,-0.0048068857216742102989,0.28169457017656696074,-0.22237676004534906449,0.23973615097929526496,-0.46879851808273970137,0.1177566589899457089,0.25515539884747856503,-0.23662460991443670655,-0.36758984910159497872,-0.018017310069364755182,0.04275449167913941001,0.082709564380393535421,0.27854316270607792916,-0.20325336855278822168,-0.85478219921734721609,0.5295201708474555069,0.39527327857733524086,0.18135464139742146772,-0.36740282249160477468,0.059165884007404592748,-0.1170053753937616986,-0.22454760858018765757,0.052820732076675730449,0.03171010789097691851,-0.035690054576104204842,-0.05240709427657538888,-0.0063092022019452936865,0.01107289055826831542,0.063505153498233976594,0.16100673073286281278,-0.046625488660483022096,-0.30252539318758081555,-0.22538442384153223319,0.22497754747223724925,0.24800499000673018046,0.57500222278765455997,-0.074983530964247896433,-0.31601369792577954643,0.56859463863063453015,0.96772555112984048886,-0.83670194334148584314,-0.43681105558288041424,0.014530415820621162687,-0.48116589241142276867,-0.25021337197894055748,0.11644738061459476708,-0.41117329091650661743,-0.064768774995969266572,2.2048530832455082162,-1.3088165341320117108,0.30849633169311474479,0.15453572404814786001,0.99469297357820773975,1.109420162985415681,0.35460083043230133937,0.076300232536618939339,-0.069751235227440561149,0.064423342458327620408,0.084009470563879223848,-0.023884914452718303962,0.094935913013530937032,0.016663236999549243395,-0.077679104328824202796,-0.061249804645584306206,0.070952479738130361242,-0.24905418898569886554,-0.38768946040811286258,-0.32141095212124615177,-0.12303715374997395426,0.1393206680445953638,-0.013749519555990595554,-0.039360671550860551471,0.038605896482903037659,0.13086474958288088488,-0.1133188333169555112,-0.20435285320918869512,-0.11060962547766511888,-0.12968345813396875421,-0.023696229861146663603,0.11087662874036875726,0.024137465409564826807,-0.20868389134994830281,0.033659420481735959074,0.18720363395767961046,0.3978071252043781092,0.11933175199655376986,-0.16234582321118301573,-0.24862324687793918576,-0.00070544420471547238799,-0.069924960602272434596,0.11636733407290049402,-0.012910578174806250015,-0.048574559771120566498,-0.018909544359069638958,-0.082191022515184050667,-0.077773425174390314885,-0.082660652200983175675,-0.051496236770907831415,-0.14212588998587621925,0.076846287195683898874,0.036085159527414548131,0.056116693099279267576,0.067614057516241846124,0.077528892828834516937,-0.22706024009350606052,0.11319605410909258647,0.32773312371681467825,0.36372921662592178071,0.33374241508144980584,0.52176479888886362346,0.33328579127424551309,-0.023308146293803920501,-0.23084785918644590286,-0.48905249615060608637,-1.3763518716140179521,-0.86662863211654650453,0.16465180033124265924,-0.088652703243128003208,-0.53533115911997708469,0.018484462903005108303,0.49174052071395724095,-0.14283645487185822609,-0.52290565461167148875,0.4484494093767897871,0.39244355282131154761,-0.21791724765020026311,-0.24372698482010332621,-0.12587701995710223746,-0.24826046284853447998,-0.11890410456536576467,0.055217108828921487862,-0.044349505148387133313,-0.19377204600062952755,0.38042345706513797099,-0.26434686946507429672,0.19611284714708376864,0.066151726354755455151,-0.021038708016458153999,-0.47966963587660044199,0.31188250926890465076,0.11532325259200311429,0.2054970198201166165,0.15571957247995565909,0.10616113528382303821,0.088989997272990339905,0.077049825720077472213,0.11249158676118101163,0.23807366855861836208,0.94265327153281586181,0.71908110973408523314,-0.30735980939802765022,-0.93101427640463574331,-0.5310154623614917746,-0.44173063652551336489,-0.37562031377815324751,1.0205141041713940986,-0.75833397255044909802,-0.56800265659837545495,0.67920792167032240094,0.056525821814371587926,-0.14529437249534798982,-0.0075928272090198924496,0.32749678684488414682,0.48701755744543290261,0.64179523518349068656,0.04970779109584006622,-0.29209202849152698933,-0.95904692168045602152,-1.1562225560313073025,0.40695131165418185759,0.2663466599483607089,0.21183863650648251942,-0.30422435691931598578,0.49392695278529730185,-0.25569258669477185064,0.31397642117542479134,0.18347586879693661421,-0.017443398322575832948,0.035882194671521573659,0.13149274570007157825,0.22512822244437136199,0.30055866007362436187,0.42412072785380022788,0.042044767166065692698,-0.05619060884700874392,0.29333718408496134433,0.35537835161386610583,0.408744107702839643,0.25694293003690149568,-0.25156811406322077129,-0.10947226458697155438,-0.22995211704356802174,0.054972074833870128441,0.27570119374905682763,-0.059122950810598970395,-0.27727595302145924272,0.07450600641446950001,0.02056160624663217959,-0.089632520216444286354,0.18029256933685894326,-0.063667483572461339159,-0.77015175929881640737,-0.15331192943015092833,0.0039290592346125589179,0.13596262805206904556,0.17516981631866504476,-0.050844891356328990317,-0.047701158881294239422,-0.060510023101627070929,0.21984723171445028078,-0.28110987092205003135,-0.12107780788665167826,0.078213311774790073017,-0.18573441652199046414,-0.076575515750460218523,0.11097920177391934482,0.022844640952099821984,0.053727388201479556185,0.82385777471363552671,-0.028658622774604753519,0.12226310731799668041,-0.041346982088975858805,-0.13244750106323177619,-0.07773211147380609809,0.042154657399641998206,-0.17677170377708548155,1.1434737451623948612,-0.81548745321501958649,-0.7769817146367526961,-0.065887767614598025112,-0.23222282979439262673,0.31339846127209214366,0.89677672815926312566,-0.27764395429495714041,-1.1732164696424363104,1.7266966088209916297,0.29648307495542502998,0.93722957115310479015,0.79924583731113163498,0.43510437747433305944,0.06506929994467688938,-0.39174500871410894431,0.21170906236922729104,0.41984676734147619026,-0.23458760227977493162,-0.30489753979023087593,-0.27006111946930883017,-0.40434876504490552263,-0.26460138666181420852,-0.0041166415648106911493,0.080500520609941256245,-0.023443662164037856743,0.45029346472745823693,-0.48030988870526752921,0.49460589213320899082,0.48765333332186105997,0.63221175293118170302,-0.22544220105631618267,0.87741755723824410573,0.099913976805107010404,-0.65447714454543526319,0.19854601089185514029,-0.34095468993749705744,-0.50696825752339846893,0.27216264734936301828,0.33488904962982263269,0.26363986742024070331,0.55288522160412456596,0.018531084778346605668,-1.7096594603767460985,0.79347742977909074824,0.60611624383054019116,0.73133678302349769407,0.20160861235278459969,0.4511888533565561743,0.17476181132719972866,-1.3025188485846945774,0.51882335942861479428,0.18526910285347628071,-0.33882011850843313239,-0.28431191156738977455,-0.18262432858404609171,-0.057577149174682824839,0.11349318483811655922,0.41940944271365943052,-0.29040285270816779128,0.19543212703920942452,1.2689122930130747324,0.59036207575985488738,0.30855934239653531881,-0.80433332474240504251,-0.042331440340455703253,-0.035583554898777881859,0.27279464939959507941,0.28771661160451761363,-0.70026676467902282397,-0.27072304180873368873,0.14530284723953348913,-0.15041236995928991549,0.068224808864189356861,0.37335884126120177928,-0.24376967817055772425,-0.14035715567290843464,1.0595716398137207115,-1.0824635567545741743,0.23204914694078104809,0.11959765996167619206,0.55576654774208933407,-0.3238487227960063497,0.20003273193936027541,-0.30219666683647733452,-0.38971132737578778604,-0.013431372357134237563,0.15842928701969824501,0.092881959150853204976,0.19896506337073860404,0.12567830697013171459,0.011269154630952842033,0.015347175533225655697,0.13452278406912401842,-0.49275818505957086346,-0.86683184077754582564,-0.13756164085542413322,0.21899469038707802815,0.9789638608774267059,0.56005805177784273585,-0.060932666767706505917,-0.26248888919207979953,1.3374404865012072818,-1.0091290304708853132,-0.93271490255124211988,-0.5519559576077995855,-0.7446380142525870216,-0.24971715488560786156,0.48608692209039272569,-0.043720297270440092174,-0.32279533052617087607,1.7920037836237190376,-1.4108771880579307201,-0.69597543913098813828,-0.62626504218218803643,-0.75960863694346336672,0.13740233343340813033,0.61230732973749757431,0.059602207863370518237,0.47370595654664116037,-0.51607204815670004727,-0.55076963020313307595,-0.27497129556928595617,-0.27279306269098058113,-0.063644295903309777707,0.142297627791698994,-0.1421605819323304154,-0.19794263467698985925,0.89970779499574338178,-1.5193198740334679098,-0.66916325130748066652,-0.2833469316129353377,-0.029424600382158251632,0.99753744170148450632,-0.7612625154938783556,0.3807042250818905571,-0.53238088053975729519,-0.093980910001620773797,0.070691685141617346955,0.08117634780179859566,0.057402693238717522606,-0.017229061760013000826,-0.11474553235653557615,-0.025778383479488343327,0.14769087498605545927,-0.23441833816670451518,0.24669452642064096382,-0.38443186642893301119,-0.39164196874881140875,-0.34403240016624564435,0.070484521472225183936,-0.17805406052325256638,-0.66000196395370447355,-0.18674009904265564952,-0.15321279678397367596,-0.027084944194651319055,-0.028473099259325309468,0.054485661519457266599,0.062153762033122485209,0.068144143995722702978,-0.14533490819376820857,-0.025501445931936209816,-0.041711477375895388009,-0.52965552579992491999,0.072540858013600648113,0.072146370326700168252,0.37391036167751318109,0.010607832228228827529,-0.087903934679184420053,-0.13591185347641654424,-0.29202802892810725277,-0.2553973495307438335,-0.19241296364003088182,-0.08688239479594260517,0.039864138762701693819,0.14997724152263927633,0.3012739779283410968,0.11863283184382436564,-0.1613028478790469733,-0.62694478756913885054,-0.6295758729905075457,0.57644025828884726259,0.29804604086837366284,0.52948841934424895062,0.14297633927591291148,-0.31935833186698964203,0.13578464024793687748,-0.50620218564963836982,-0.18364732320814763922,-0.24355881250605573851,-0.40898602257609761867,0.040926799523985438189,0.082530632096593559144,0.12299579217758434269,0.46559066907429591531,0.66976374528301951816,-0.1792368084123569516,-0.68066565745404616905,-0.0098639221593051183701,0.26880518911667355964,0.6014963517156913797,0.77347552060381730143,0.58958949653202274988,-0.16402278438109585412,-0.26854644040028735619,0.020651092746828508123,0.095702801457875644187,0.061767572364822304065,0.19911058609346826698,0.1300799867392888054,0.07298695627419309051,0.17787017447807204618,0.18972411343160794361,-0.3883821516616677294,-0.38576789811113443296,-0.27718961244657586152,-0.17283195874017195925,0.061624577480367030702,-0.1672304403962601993,-0.3784402238550496067,-0.15069651838017592005,0.36626328198914076539,0.38330131051681587406,-0.56955942789238966917,-0.84581575731254932116,0.1824787836919713746,0.3878491315761624092,0.46160914377967660061,0.99608919956892305603,-0.16228561417103923303,-2.2123478803475618015,-0.76165168140377847994,0.50383390289146179342,0.46302087063725078098,-0.023474293374004917556,-0.32455069746015419163,0.0045811711299630023669,0.64363222614793513809,-1.6925801712857460046,0.26141750105003763727,0.075826594349227269265,0.021103207234245177637,0.17635612238187470258,-0.11375807468692471225,-0.47102746019192298643,0.97961120690591740878,0.85448713678684096173,-1.6657368119626756453,1.0407250629978068712,-0.655832449038417864,0.21368443043273388504,-0.093257480633291908734,-0.039950348566412136053,1.1234474623961248074,0.36156626927150692374,0.64665148801351124419,0.14941314865697166714,-0.62602034683461749154,-0.67623577648929089623,-0.12313046608456046371,0.058331627279004240327,0.22538315709183101565,0.41047944533981839399,-0.4359547161592004505,-0.97433155173440277874,0.17894165622558885764,0.65720550714649483837,0.43749328793143138494,-0.1709361254460860513,0.1704039572492768162,0.10892439440252529859,-0.60044657701571513275,0.14323711329896821054,0.081525206059433641403,0.004930449627490757214,0.03336223044669485438,-0.1286743071462334298,-0.13709632777591437836,-0.17254162851767787523,-0.095364561869941480432,-0.1194881400802356719,0.30489298617540133707,0.7628869645987043091,0.05751988461330265201,0.022068559151304685539,-0.30968909981406478327,0.11932510610971139298,-0.043402064775241055994,0.19038953766551927616,0.091319652417026539459,-0.038461132589722550612,0.0098271924774839796574,0.062305849728740203552,-0.065035824347902046472,-0.037057679352285342878,0.0067611428624225122438,-0.0051861541967160116468,-0.051834732951177429905,0.12968322750494340467,-0.18513353529432896583,0.18269666857060121168,0.24180631379663930502,0.45835478396591916583,-0.047407876940054147208,0.096157181510117942236,-0.038777214131443304979,-0.063906853119100603955,0.14938604193075119553,-0.23519093912552027636,-0.2802178320805319145,-0.077870930847716651746,-0.089149106116944015765,-0.16399440393652695014,-0.032571106202734456669,-0.47441676828607587391,-1.0463824609269765098,0.42748892338873251129,-0.15177391938716766617,-0.10039559800311198545,-0.75937906007888034132,0.69335354728150533354,-0.003400414241837769469,-0.62032171297450278136,0.95734471217169958557,-0.75808239860920711983,-0.54341659055772384423,-0.17003193116198830892,-0.21198464225474314415,0.047656791730260654461,0.35315570272510909966,-0.35668935524663603065,-0.15103640596006592811,1.810664974392297788,-0.69213092097251727175,-0.46478424799027201475,-0.4675024763856601151,-0.12233399837663895549,-0.97236654442019543332,0.27051272691136668547,-0.29997973331172123057,0.13952540124685272604,0.0051556131226842905405,-0.017686522309460467328,-0.10262289936742920171,0.063240962348520834979,0.048919307050753396693,0.024418899509861209662,-0.076805450161984867297,0.038718552859553993784,-0.13256041519803871132,-0.65313135177387859898,-0.25064974053845118229,-0.094178662644677377247,0.17013685025909797144,-0.012746982282456688698,-0.02395817720437131218,0.10604890231431454706,0.0026756211844708374659,0.029227013021601473686,0.015775726877941875781,-0.069584126044063332461,0.089959585594792168539,0.054305636089819836476,0.018678857990941419298,0.025874117702089756421,0.041210724551878373523,-0.30974493219090165619,-0.56874711623160856266,-0.23918732106791276704,-0.10799848776224356406,0.12997006855057485764,-0.060000078085006472439,-0.015300065906766783033,0.060976363892333851346,0.9862942055230300431,0.19690667550519055928,-0.026201723600955705018,-0.1208302611887551864,-0.20263208363930843015,-0.14454474693558541643,-0.079508707332549027891,-0.31300175403810592822,-0.34479851261454280698,0.68499426011880515386,-0.16553640163864671853,0.21328199117711832411,0.28309650595028368336,0.052268136626006878043,0.011889126903577573735,0.63355884205951296106,1.290691593504947221,0.019217346484682200358,-0.027476640926737402187,-0.038491279803557217065,-0.0025765816551961834291,-0.19409390713589536048,-0.16720871631541453506,-0.1492443967421589468,-0.18610434046241661199,0.0067718561620238454379,0.54371973425878228348,0.70664042142467109464,0.26416717045003168529,0.17159140665232494594,-0.025445032317933512223,0.15018678250690725706,-0.040847903932826550022,-0.24558629796274142332] temp1 = np.array(IW1_1) IW1_1 = temp1.reshape((43, 17)) # ####### Layer 2 b2 = [0.02992756614134727336,0.0020177830919498483328,-0.011317192919325206463,-0.019782363435328940288,-0.016035028468548821051,-0.015601947248009864072,-0.0065540830219884653463,-0.016332161950257700206,-0.010952090928589381866,-0.014833764335665558867,-0.022740497400578922604,-0.018559543648269338778,-0.013998658443446495431,-0.021889575388722343902,-0.01874695116108886922,-0.019566146074233688179,-0.024582845053004946656,-0.021350396253950632008,-0.032899960429792506067,-0.025025308722854081728,-0.016705796123595476055,-0.011680643033834982661,-0.020524622062853697252,-0.015814418857220326198,-0.019587154667366615812,-0.022645886490078818293,-0.014838775445901146097,-0.023006102494960566085,-0.013878883222503921382,-0.014746257329480882275,-0.012004020603244975468,-0.011167927717343808722,-0.0061892170196985027072,-0.0049230413190097365578,-0.022911966094344527606,-0.023929499717950258181,-0.010052625453973633787,-0.021362565251306458308,-0.036909594899498993081,-0.068397699768125860831,-0.073531722976929614344,-0.078405439509067267889,-0.073143516312259751477,-0.04566788222318330509,-0.043017751022649985959,-0.043653826270736488524,-0.035470779466794465085,-0.011085256213819788193,0.022752556460691977791,0.069973329757038862931,0.063970407491800093669,0.041419351576331163434,0.019217904260906193414,0.0243588442777537377,0.017980129650535591618,0.016158268333480229478,0.024867085349366768732,0.036589186237740232988,0.03813945656810321938,0.034454995453454102805,0.05416345385220816544,0.059321695143723186805,0.080078100129457679968,0.073408760152133337162,0.10100629415064353578,0.10475924085538837471,0.14285032041300385619,0.13250291314515577623,0.1040829601237344415,0.057405896552483806627,0.071017593381322560719,0.065727685029290633389,0.043270218776706836916,0.04764978844235644162,0.041258723046447606797,0.011782496369474286177,-0.018608631897656276177,-0.048916038509218086328,-0.085467950843700568608,-0.049332555053138944789,-0.013077305241717860143,0.00156963481177336368,-0.022604278075564070843,-0.049994661234014352302,-0.027878885532392483348,-0.014354588137429229178,-0.013558482409228887061,-0.036500474609252313296,-0.03463819130370368593,0.0089320543887336130429,0.011094556466008839365,0.06303906277267208591,0.085617844870157097659] LW2_1 = [-0.047649748183048054595,0.064408764342227003974,0.02378962229704813594,-0.067631747436760161762,-0.07245310373828127426,-0.13610619555715791629,-0.22201167113251080165,0.088651685125090029516,0.088231676796594965539,-0.061640586612233490282,-0.017804769484660070561,0.24293638904224582054,0.041962600050662088313,0.11475394342053014951,0.020600804141801747765,-0.103235253358448964,-0.047533400092426361661,-0.11240315060873767861,-0.061799958842161349659,0.087538132955193165285,-0.087428756815166625005,-0.10274718521350968692,-0.0035756132977757346808,0.079586808174422554729,-4.2783270254492626605e-05,0.017666786915879060388,0.035432948023248207747,0.053788038537523306937,-0.032810071239204652294,0.047294374377310016699,-0.13724151287751065742,-0.12534101541511583067,0.31427269179312294911,0.10271313035055078255,-0.40918043052031649598,0.15044571952275326288,0.10329811547100477276,0.049292090825123244247,-0.24632243599214850849,-0.042590315044561774527,-0.068406827503415104652,0.069294597356167747515,0.0048210005395116052943,-0.059011125857546684048,0.020630956117298402536,0.028873028855150702221,-0.071848500876202814336,-0.045742397732993572701,-0.1249739745610679853,-0.19523336974403324162,0.080421205055266647976,0.10111660980693620848,-0.060301459441026598884,-0.0062407494716533121887,0.19309977172641523691,0.036117098727556876114,0.10542568178634824372,-0.0021803096695494064358,-0.066834892675850840482,0.019544973063027014371,-0.082836491487424793179,-0.034993347989905186635,0.089965453698444677877,-0.13689109788621434127,-0.0926234648315806125,0.0071395573946132721149,0.10446822342351275159,0.054194577734263622848,0.030751003788628921559,0.028459889454360398631,0.0054840022609846756849,-0.0065397722359630608424,0.099441283059187396409,-0.15909051832958037709,-0.12160975009112628964,0.28259223781083314675,0.10563003745493923513,-0.31277709739863424065,0.11239640561505388761,0.15209732729094085912,0.047253157208303822601,-0.20474630418485073591,-0.046266995327525567427,-0.060662613264919069966,0.051139234514665385389,0.017146657849891031727,-0.057966173430323029991,-0.013942907744067076226,0.018485543391388796486,-0.073737599786013047209,-0.037141545795942448871,-0.13081647398028597995,-0.17685610918070207576,0.13056491726880278814,0.096876767206053288062,-0.051708274014939298313,-0.0020494551982005539993,0.19341872294602607818,0.027971372194940290895,0.11161734257646159507,-0.016581295376096087668,-0.056808385750181406015,0.05713963010020681188,-0.050745776715790121003,-0.0060280300198326964428,0.098819856875986974987,-0.17114566581259080258,-0.11239983090717642344,-0.041375496805993131066,0.12767199694194150683,0.087792341102385984541,0.011852162742453516489,0.0096307028186813151138,-0.017947341300224319699,-0.00088342965924146353053,0.10882340106097733445,-0.12655636201504455451,-0.11171513351241767198,0.24711275564202359045,0.1061115590450826679,-0.2126922603727500749,0.083836884045349183148,0.17027929861061355532,0.04034953550930615862,-0.19532790102306812896,-0.032601374613853519036,-0.047656687410838276253,0.057221266149193032724,0.034659112068395975248,-0.064197280085663055438,-0.02168863609343412574,0.02452782784773906849,-0.064960376569039010586,-0.038075485638312728254,-0.11962314325250525404,-0.14611489466883129107,0.17321352905086695451,0.10050565565094628229,-0.042682290068371209202,0.0013181587137613493335,0.16111836963852493865,0.025797154440435888373,0.11095144202374357389,-0.031696771271968418593,-0.063014683455857173344,0.093767449039703201774,-0.0079816538381436586552,0.0049049409404684418332,0.10654787795416088836,-0.17179631685632695826,-0.097924528421096793118,-0.072330753494317015506,0.13267097977449823776,0.12006701697081692548,-0.0031159463078205438744,0.0086421044509644318748,-0.067257490089533744637,0.0077642031435499400671,0.10468506916597569711,-0.10099047254924141404,-0.10833635313258253852,0.22466381135003501979,0.095238378129188075438,-0.14199413277170677694,0.060942180367647036388,0.18854463041748312224,0.033198504543840393066,-0.15702361216158641777,-0.022049641625726427302,-0.036803211632354650151,0.051800948737997856708,0.038132661482708954392,-0.07147153031500935727,-0.049546291212563410566,0.029888604401193348548,-0.073725180574192458738,-0.041182923829413610461,-0.08591908286458652122,-0.097467041476493834762,0.16244509931168746308,0.10005736736285300581,-0.051743879065344187962,0.02441412229733981934,0.13005956124273082564,0.016195512722765190161,0.092318605059954109149,-0.030910954954781407616,-0.03247970107778119786,0.089146725046555713723,0.0068755291443431554993,-0.0089279168584815507548,0.10250534761835020103,-0.13425234610648381639,-0.13556849520756067418,-0.074097838902942858574,0.14004478991645066821,0.16312351705703431737,-0.0058975560996164123201,0.016033694065413651303,-0.085058881163408761594,0.037130394720302550837,0.12311425854705372596,-0.082318449846914901191,-0.083338985634375764566,0.19828801764952752595,0.072518119905615047172,-0.07579672474992857345,0.034717176000727406615,0.18290885590897709712,0.008741388275624491222,-0.14163710474363017111,-0.039184518820601456357,-0.040384938729129821189,0.038480667289400152797,0.048190774668602796849,-0.07892480724026067207,-0.073336198462244275853,0.045548694625722842277,-0.080078934662219228291,-0.046342304711018293684,-0.055591426456591985783,-0.060918234574203894427,0.15636637877975620436,0.11472974204717818758,-0.057615349204218742341,0.047219134886491764824,0.093850159645888706073,0.010713641936560306181,0.078623281277124368316,-0.018346104615898424506,0.0090192133368845444491,0.075524565181027777938,0.039780143934213030299,0.0017097620909240496268,0.089063778683446587214,-0.082629725329255623856,-0.16607904127614986356,-0.07212045285716299492,0.14782566593610418915,0.18761536250586496877,-0.012115620284857296293,0.021312995510531770882,-0.077987280982933504525,0.054922695411830257939,0.15596308496774505259,-0.074900147007139789013,-0.065639379928085536675,0.17538386143767142888,0.044922410573298966752,-0.027778765493996656483,0.0013417103808681216277,0.18980399100779413168,-0.017847075266724483217,-0.1362548250475614231,-0.048345771262278708358,-0.044887385278012364997,0.012431204064361123587,0.064753156889119381501,-0.089817138367962207068,-0.078085792611464824309,0.067315683135347595401,-0.07984943477562737868,-0.057577718758572225821,-0.047113249459746209258,-0.030235450752868184982,0.16970203346284790102,0.11800451857590804616,-0.061330021673671318572,0.052877672577413090127,0.061170889141184237037,2.5604299152656403212e-05,0.062093274935969298978,-0.01912697219716032182,0.027314752209852227044,0.080832197569625507949,0.061581576348284927658,-0.0079350552024137835372,0.085381334780895434822,-0.048885981166708475376,-0.17913271066407449039,-0.063280069768341759562,0.15536925201523418827,0.21252068745716537479,-0.012650475695899691606,0.016730766691229425475,-0.090177287217228369043,0.059489636300253008472,0.18521642653873673923,-0.073212467915969650645,-0.059261415306559046823,0.15215163726159314228,0.030734335077705510209,0.0097362864796013554036,-0.013094459070290113273,0.19189772756694090106,-0.021862431631505887392,-0.12100875905277688749,-0.046740433064821784725,-0.042691327802047540629,-0.023434924681993998807,0.069909648686576730814,-0.093174870171235685268,-0.087465363080138219809,0.062234067071814100358,-0.076642531360342047719,-0.058692959332956241847,-0.045543776089363934012,-0.012327380731851736093,0.18000802745363023161,0.10839209457852963525,-0.056369871088707522444,0.059717984918407913952,0.042979929194811333781,-0.003628858309660892411,0.056356737040575533015,-0.021912898543661872564,0.03747517067679209668,0.10189544677299701425,0.062934221056317546372,-0.0068878462938840789506,0.090266710770577449074,-0.014655688265387267766,-0.16842351401291907886,-0.05099962556513867179,0.13490797628868492208,0.22560461415459814871,-0.00426847064125769355,0.016456098900602501162,-0.098487465010371866292,0.064555273506141708229,0.20256561656895896717,-0.067416953670582313585,-0.053615950031725236047,0.14103884659163909432,0.027335314738954369362,0.024592211265103167822,-0.022479613128582529025,0.2056442041580214819,-0.019770655833279745378,-0.11037655540945166821,-0.05227833021503373867,-0.037833773890042513011,-0.044102914312900601268,0.065990191755082069913,-0.10268803050473229721,-0.086399422525990837718,0.050386121878549572362,-0.08400844264650478288,-0.065605347231778007866,-0.038345893725474818059,-0.013950363833831859808,0.17284975411246969457,0.10758671479830132778,-0.063406960825654015701,0.063218309444063550129,0.038902448200435292558,-0.0093539075832750721851,0.043528068455526279512,-0.026792637229350973332,0.047045741227479273561,0.10166741960617249607,0.057877313952339984326,0.001735565763438885788,0.085230588715811100853,0.00020310794411775804497,-0.14142191801522788208,-0.018249848387039125513,0.13745134017184384989,0.22334780990875521822,0.0091097152038963451204,0.013813939982195194006,-0.095510493649673330885,0.067502359619545690417,0.22435117636016718712,-0.082504127855678816017,-0.049630386516920164952,0.13984648008475911163,0.023020951220591313879,0.034892617688853690139,-0.031284043207670128584,0.19428748658101199775,-0.018390134589842600799,-0.1112274479037849706,-0.062242019245868834831,-0.039702202087915743067,-0.062743867757341253988,0.0622001518858345398,-0.10510491065624856521,-0.076265181162951251048,0.059024520468059830935,-0.080821297073120412779,-0.071743179907955437202,-0.015606336822730661543,0.0064411478727110591663,0.17633047512213784191,0.11377532938273154928,-0.064013908015113779593,0.07047550103333606597,0.021756736867727659301,-0.014070776389458260897,0.044813047104505912555,-0.021059988228769744439,0.04331514834885020343,0.1132706776772539059,0.054950699682234788179,-0.011451368089230475403,0.081911064497148314278,0.015471008051841126513,-0.12017193903910609876,0.002552336780764083695,0.13422506383714677414,0.22243562534638883221,0.0170796527996261438,0.0087581907603049465039,-0.092878757488640037443,0.078744848909456044428,0.22043819310271445255,-0.09522829190264797683,-0.057732010927196202033,0.12771062656989856654,0.0083523539824164570733,0.042101852883978593822,-0.029019033979260751982,0.19833174824809809977,-0.0062257278712739977378,-0.092862717992091614594,-0.0571379611068477955,-0.037134627523652943837,-0.075306912744097911916,0.056580609333863184085,-0.1034799052008780057,-0.082779688240066248706,0.048580717633528634758,-0.090297992862741233155,-0.068928916789653529862,-0.0074968176413295469981,0.019697297050257533274,0.15423158415827725731,0.089776127369020408686,-0.074773742437229867575,0.070192255510036133392,0.026769226411520300607,-0.01554398587411076442,0.024280509154860040189,-0.0050682976417914284151,0.030879959386351619327,0.1263888573757135092,0.039985511404690546322,-0.0058123948073356855246,0.071015472826672532136,0.066591266498312720601,-0.12107707651427018769,0.014062402060361590614,0.13635200312217873875,0.21970214487633604739,0.018678820347951465008,0.013225342202601148706,-0.076237905468686320565,0.079210649672486810324,0.23285826053231739596,-0.079444545095190860495,-0.061402317307849320349,0.10805772150929597586,-0.0053216989184100040033,0.071726813881515846805,-0.036598400708193333519,0.18247111976875374229,-0.01131895143309243415,-0.0854028223392803848,-0.076469431571949228466,-0.047384745555528150207,-0.079311254350325391393,0.063799394763418684762,-0.10462546283486343079,-0.075814198439302288302,0.039550093385646641064,-0.090976347871004822898,-0.083650232546117975208,0.0048102552883639293491,0.038094079316212330066,0.14725688296744410266,0.074615198118592074294,-0.079011704986467035106,0.08182949741102756025,0.020345585298724367523,-0.027958748180010716683,0.034991967503522632132,0.0095881796434017889375,0.018351104579664139632,0.13226757775087655267,0.045028361717084672278,0.0052939182929442754957,0.057524998512779881854,0.10896299717020430098,-0.10429330038696574268,0.02458234629346842115,0.12459981011168662357,0.16385135019821031599,0.015539844120433106769,0.015013844528110909318,-0.059956466349525151804,0.077912179743157908285,0.22471595939611341275,-0.069549737792008459181,-0.052360060439482596084,0.090367373730033784263,-0.022066036648104400686,0.097365580003220764116,-0.02681226181500484182,0.1603815845457173539,-0.0017753485560891100331,-0.1043898945906413106,-0.087169187060365305175,-0.058687241843456840196,-0.09804300996070061669,0.057313207586884538924,-0.097381078293069509022,-0.070693901516152485298,0.071882954879321406261,-0.091544383348410710011,-0.1099261761373744456,0.027493423408626427307,0.063055891517642598254,0.14856091052729816782,0.058235356223104640938,-0.083470118608742663313,0.097162167042340999434,0.017669380952635010962,-0.045578987624527438072,0.041622390849522350464,0.028487972847658572101,0.022797144039374224456,0.12977591772632721123,0.041935873964063376251,-0.0099935698758529516866,0.065172208205981380091,0.12641672063041567431,-0.10003193624113916604,0.054315516369280440745,0.11789130438045669624,0.14233586920309768131,0.035807172933857919772,0.017960287159705132926,-0.05034727072504698725,0.076747475639330056674,0.22772284708043560864,-0.060462812305669494384,-0.065885119387727744678,0.071599009915410641303,-0.040461032462686501165,0.10889126226127646135,-0.023540254654185594624,0.14920005305913386362,0.014009564042969949171,-0.12448766326840621232,-0.072514003847040500728,-0.054717052301549738702,-0.12119449638992589591,0.049428899823542031544,-0.099349184049220468085,-0.077643745626521015746,0.064897317674917728847,-0.095287628467511098496,-0.13563341355687902334,0.033290661887891391524,0.069942827761021300614,0.146404991595933065,0.038765113507788578895,-0.086223213095070902479,0.10610443641071590215,0.020603039039746629674,-0.059879971744708770931,0.048532095143729095388,0.048254743207383189729,0.035290684894947452199,0.12759210562042647141,0.035232103747182476339,-0.0080285841410919576294,0.080610964723052264125,0.15579516615283142689,-0.083995564075946355098,0.057669216712821519399,0.10975262330447355108,0.12085193243805629482,0.062659438148258306267,0.029068873016445631596,-0.038382337068922169065,0.074929413568319280792,0.2451248955406701846,-0.06646937305821862263,-0.067661482557655222569,0.063171885881845260546,-0.047540582611092181697,0.10574959866204000636,-0.023629554640017109285,0.14330957626103724145,0.025582684596466936239,-0.14055028537568417524,-0.08101758613156119504,-0.061578555444705578015,-0.12728801741749204424,0.054969487011432227597,-0.10218986416634753822,-0.076604740676336366412,0.055999391712229451556,-0.096138088727398568478,-0.15095056987833344042,0.031933428517457257412,0.074655210845618019677,0.13525351462171661399,0.020585943767866349274,-0.089693272919919020403,0.10679804640944565164,0.02849913152322508525,-0.067339102313656806764,0.047951224549830806509,0.050363596552883305169,0.032980993037353766029,0.12225220807035006021,0.022864667326139100079,-0.018411731581621126885,0.085304392754745828054,0.16755278545700064141,-0.076036829111328918529,0.066791912072663772726,0.10947895927632543545,0.1129754439912408065,0.076174581040953370792,0.023420903004226820143,-0.029716630729397858907,0.069539744246341059219,0.24484795625819816278,-0.066936554591778982259,-0.071942841383074107586,0.057565888303675163962,-0.050967446168336510981,0.10376655045544611045,-0.018375794193176791386,0.13440069574356883209,0.034338179178011213333,-0.15330594800408200995,-0.084793867852201942892,-0.064209010416862194459,-0.13249989511076853965,0.054863431699811400499,-0.10616707081164729332,-0.074930872425128774994,0.058949054714919034426,-0.09526615439840592503,-0.15836707485903100956,0.032915110919796694566,0.079952035781169675244,0.12014159464249278553,0.0069328949866479050793,-0.092166837767046871921,0.11081352905742189452,0.025691076918375650023,-0.070139430082796175303,0.0478285735881480642,0.049970610156689208858,0.027726353350048364016,0.11887370622223857042,0.023463448503961224778,-0.016306777543115293788,0.083992498804655868483,0.17071644388210174825,-0.059504225946311259388,0.085927841582262146081,0.095605983622684437284,0.086022927952092653747,0.079832630695582523783,0.020712573973936356658,-0.018141917004703821126,0.062188587995066373082,0.23001233364547185589,-0.064492316956995920929,-0.071991867072437307207,0.052544468156626333855,-0.058091359972922917976,0.10910206167391250931,-0.011652476174680972965,0.12933061706904699917,0.044725839753488025319,-0.15975789020504613247,-0.083491436267110502589,-0.06594366920525671083,-0.13391140334432163894,0.057639359699101173906,-0.092977571202503023207,-0.088933006467510511417,0.064609478993850916195,-0.095297151046216915793,-0.16743207949514093968,0.030321556610951504174,0.084385506895997802745,0.08773360166790471204,-0.0055556019060472392607,-0.09152502228179094923,0.11210224545806303509,0.033454602096648120013,-0.07199308957811205445,0.049846888465041379324,0.049687222500606344211,0.030837438710977119194,0.10955968973626131757,0.025412704781540295523,0.0045017084387971367451,0.085696717228349733597,0.1576634213585816624,-0.043279250549237410772,0.099533389919982881433,0.09333449493872358893,0.050101952848115617611,0.084778711518116792178,0.024208712419354374429,-0.012755884444076917919,0.053995717029451328894,0.22976816137771921555,-0.053504365158102029643,-0.071764738592804466766,0.05063476591080237621,-0.068831142117785029666,0.11120265507606759414,-0.0096450637781427366046,0.11495113634597170504,0.049377974915084776875,-0.17022902762805833254,-0.084297517488528789231,-0.068876795043563615595,-0.12052916566760761563,0.068904767959987456294,-0.09555068287980275632,-0.091689761233661223883,0.081558537843744824403,-0.091642758292507869866,-0.17724463355017466837,0.02353567586998954464,0.091542687429554209233,0.065163535495186553081,-0.023282413714557970152,-0.091155902086065485057,0.11477224470948647894,0.024219499771710655683,-0.079558078463841053196,0.048656716753947698573,0.041279280750840023628,0.028265630844964331064,0.10285552868491412704,0.024297122480274543216,0.00024154702316241870265,0.086094366325800045225,0.14829891240153786347,-0.025055548565475489753,0.12713013391590780032,0.078372550249328015726,0.012011487874153575425,0.09356937660711467375,0.026383743384678168958,-0.018039738884395629254,0.042563660902609039283,0.22924184987939202895,-0.045016539057894509879,-0.058576527015917236041,0.041376746897626083543,-0.073311982933318337041,0.10980536318280054164,-0.0028659679531906913884,0.10856598828409405599,0.057884272734157776741,-0.183614047512243167,-0.077271683524543277599,-0.065290934425979302302,-0.12352335665628939865,0.065963289880425962641,-0.096420909923108061301,-0.10141543502019260969,0.075972496409202394663,-0.091453989024402701502,-0.17813683998930651686,0.015955969823050555195,0.099632324330801713685,0.045799743400732249865,-0.038677677525371927103,-0.094028934937355618251,0.11734695338024228595,0.029578353354925101398,-0.08462649053898940732,0.055583003523452766126,0.034574114511798800797,0.030198558737064177399,0.10142518530877404903,0.015629186642093648857,0.0079034711049253431742,0.090822752522009386755,0.14201852250057425686,-0.0030457950950746968261,0.15969502581399067087,0.060467470561094686932,-0.0067131326200190188924,0.11301267822190272372,0.030142895079573052419,-0.016678566090334811384,0.026966510524126512116,0.22446043737746421143,-0.038030632511735648627,-0.060209508661347409253,0.049458010839756372246,-0.081793940420944677427,0.11720028484856423456,0.0028253272917493008065,0.085507385137989319612,0.059104684193375799095,-0.18294750673991533318,-0.087237631180493505068,-0.067560164752158216595,-0.11734609580918951843,0.062094620003240869055,-0.10257999887003969863,-0.1023846586451447882,0.089029539923066280949,-0.090309317654862816815,-0.17242561762211167098,0.0061197949244178638864,0.097643688143863538453,0.038228129482935364891,-0.05147937136223069976,-0.092711159082057001402,0.12169238343437714656,0.029128807272095130765,-0.088371041824864118852,0.064624866444042070035,0.038032993578782411936,0.047247910235285850433,0.098344954932974806838,0.016602929402087022309,0.028908583855406854574,0.09602957808929263317,0.14006026389605377713,0.027429724066269232235,0.18723264021725760653,0.039576850159679911878,-0.049712556601887440688,0.13045827976421392469,0.035195147639200154155,-0.0028804458250010103564,-0.00067129749627077052454,0.23653073352002684793,-0.044505097174959741546,-0.054910685255668119364,0.046031494440548527403,-0.080442059746585192759,0.1193751119702420177,0.0068887029983926142615,0.077057145068300594848,0.05881269435232896331,-0.20416898022019316916,-0.082599649256986332202,-0.062055946899750219492,-0.11713265117905556634,0.053146849466895206004,-0.10537241484784623524,-0.10244320536850765047,0.077226222132636912487,-0.090892196590747140195,-0.17898259775895014601,0.0077177617971665732691,0.10435734548991684734,0.016940710460078493849,-0.088328285085874633231,-0.098248453104166064143,0.12598138008632056573,0.03037104129451425466,-0.08242668238160021088,0.063233178348246932288,0.031137662899814788631,0.040942389685068455996,0.098453932872561641942,-0.0099872116054381902123,0.047977304132526876757,0.098565631690198884929,0.13750339513911000178,0.05739943373918272862,0.2197762866667699877,0.017027095542906954539,-0.10557147871747779577,0.14547908573977882951,0.042214217500041582853,0.015866146047569546634,-0.014730114399105315517,0.21929131684770455935,-0.040120756463415521709,-0.057095492866831423773,0.047976449846638763441,-0.072761703564645299758,0.12848712054725727749,0.017881272286668633414,0.039427720134228023963,0.063842643371215659909,-0.2387515442595508075,-0.082414859939715562342,-0.062762065933932575934,-0.098313589634762471592,0.052541715647670086953,-0.10327306783908259125,-0.10736322054163392747,0.076513850937886651593,-0.085510161832214062749,-0.18036606457883019861,0.0015272043508058850969,0.12419075563896547765,0.0086789438991750622598,-0.11728210612607942176,-0.10037219405349320778,0.12640114845417710354,0.018055073971531589161,-0.079555974698207618245,0.050493744035184542907,0.021503336914377939315,0.037540162971975300776,0.10160984789648683235,-0.021145712160456697076,0.031405899922614166631,0.10448954225437434573,0.12259920788371453382,0.062322296982367283991,0.24350722775742569826,-0.001971394971538231386,-0.12138945368328549201,0.15611779778352818937,0.035487776828718439748,0.024488540685465777502,-0.0087289332215680585231,0.19747426742924306664,-0.037940158805528638453,-0.05905794670850386674,0.034618403262800370723,-0.053872750043729059066,0.11655202038798327668,0.028963046267872685074,0.039563891520157670745,0.076343522101657415591,-0.24931524008456959485,-0.085666975081705565298,-0.068804314019559886795,-0.090933999180084032488,0.058900366067072384979,-0.085672994313175807046,-0.11843655377954140362,0.078427508036396975655,-0.090302415019822751541,-0.19008070440480659413,-0.0097039093748918000409,0.1030535887023720093,-0.028126744045952993545,-0.12291564135820343129,-0.10459767213619462767,0.11990550262087386335,0.040016089991398266779,-0.074431405457590027464,0.062958244279167296931,0.028890174095555391093,0.025466087130532999439,0.093072171994541180728,-0.028674231136799857578,0.053575203799839120344,0.11511090839192013313,0.099332244738170982767,0.086384385111733713591,0.22387272552566769845,0.010307546590664538877,-0.14800665696876022515,0.15751685537118625957,0.025361115130521069694,0.036583245541120898436,-0.023001917811852321677,0.17513057676926080397,-0.025091171401801330709,-0.081226971804214440076,0.053004790023987398417,-0.06800586171767539212,0.088268279646241551428,0.032730951274384544047,0.02113730761495580604,0.096696100547650473689,-0.25264612863343233196,-0.086490957234782631091,-0.077320322546524322682,-0.074235959195067882654,0.076868265065652072177,-0.087240055863907567391,-0.12077539450928367892,0.061393939291618390697,-0.087339284379670381608,-0.19282216867253804127,-0.015283787163392247715,0.095211732827071571261,-0.044710266168607959436,-0.13765726560216953733,-0.1030421122147105184,0.11517795447118940599,0.044489973393852459693,-0.070344633466378342357,0.073428477900617947216,0.011976567438685626482,0.013858132377207376881,0.090558210611744058283,-0.031857547801427466005,0.0583923417767193767,0.12167751001711625547,0.081086711914990658445,0.11166030158951455176,0.2401425519700906841,-0.0049410963748290955694,-0.16682454986237171823,0.16697432252220409388,0.0090309783470569737068,0.036414483626132018723,-0.021973278519527905672,0.14101189505874225927,-0.035681280346466261177,-0.083688175263296055162,0.038183939564821953172,-0.06622745096619321592,0.082382784110554233004,0.039714045163920269621,0.008624768616562283538,0.10914193560236487568,-0.25675888853282391455,-0.08598603219244527196,-0.078994632104076506485,-0.072446056619565338264,0.080846182956447520951,-0.093444157517061268714,-0.12537746601803140267,0.060195058622386492242,-0.086738320529430215644,-0.19124854188092668683,-0.010627692994961831022,0.097317776455950619208,-0.071109974286648891528,-0.15623060243534397928,-0.10746364255206827809,0.11952742213667921778,0.032668387081860969512,-0.05805705293923196092,0.064191482927848125817,0.00070638534141993693932,-0.014150741557308152418,0.095021480043518846692,-0.04003247560814241629,0.057893208436299997688,0.12602458140156544419,0.062593482228948962853,0.12355602848589757048,0.24905558224101906339,-0.031488810331576709556,-0.19502943288005278322,0.16689949046632462926,0.0027514634991575685763,0.038431891021581121581,-0.033563327135648905741,0.10012806509430788315,-0.022777762848617013475,-0.08223594602867131953,0.047760183647065489188,-0.055233113188847424158,0.079433220203352944422,0.051807363577191428705,-6.6141336854033195083e-05,0.12266203455916650789,-0.25530932637130282492,-0.088436242793915820215,-0.083603728501079513369,-0.066096123950739812947,0.094548592393978003745,-0.089449138501041206006,-0.12903711085922112134,0.057509956164779003907,-0.081363601916462066632,-0.19859292511684165095,-0.0066271165840884353401,0.10004011198246885728,-0.094421500982685258041,-0.15166562244183251495,-0.10895065817807056407,0.11946318887998598479,0.02699124821965259019,-0.050193302913559674494,0.058858263308449405848,-0.013948359134373757365,-0.040719561345283081244,0.08578024555019100883,-0.044304995544933757634,0.044669126237531504853,0.11999216275919559471,0.038278631606607792237,0.13806320578596867343,0.25225136407683096396,-0.035410421960940303976,-0.20759485820356485264,0.15119701087171125153,-0.0075694442640101052694,0.041402741496568348789,-0.040449089737404873846,0.051021631223257722654,-0.019787032199009815109,-0.086826834686507439742,0.059126914047333417601,-0.055601198719878688892,0.07082726565802283103,0.068404552457877326743,-0.0097203842831501945793,0.13269635403604182478,-0.23960862203089330902,-0.083879667191816012495,-0.090564769176387449612,-0.060310748631055378921,0.10999924328393435868,-0.090159443299139316319,-0.13991266013448511174,0.019027700899720292882,-0.085694417099937567062,-0.18571569307508214997,-0.0050057132537725109941,0.091797989763632042992,-0.11180241031604090662,-0.17155804996638893134,-0.11203071902831833462,0.11441660042381437967,0.040395515493136045782,-0.037114053402104323076,0.059414904171724305937,-0.024691705654344267562,-0.065271184012207245084,0.086566347598834636479,-0.065790672858482016072,0.070149933880048587209,0.11862175752601884782,0.022180180849769901008,0.14463907690032001829,0.24090588937038917572,-0.037412201871010963838,-0.23394192474147373906,0.14405435723946719007,-0.018992579454380029147,0.049938013864675508124,-0.046074572139504228752,0.016811073493833011971,-0.0084590938182161172498,-0.080083309728041743303,0.06281077500440303274,-0.042417479803930062399,0.081191553667342070133,0.073919957637469668743,-0.035440227649818897837,0.13382325420216936718,-0.25006072049251115708,-0.10066264764222239425,-0.09929324877548055539,-0.036240328243272536268,0.12297419169204795719,-0.095394206286094074265,-0.1345499074411169449,0.023071246473176019315,-0.079207873463907688127,-0.18464725807247617251,-0.022266234634177282936,0.10042546330797551268,-0.12616309810143719328,-0.18475795279608805965,-0.11357521761140293437,0.10392400187668460187,0.033562842854188860986,-0.036988634653097603178,0.043278169842958465197,-0.050948893570053957469,-0.083316583862454718368,0.083272951462559724467,-0.059402487401950233858,0.064061266415487247428,0.12419678834027987613,-0.018266867852609648681,0.15801370451223553659,0.25499649287479358994,-0.058395207096090646914,-0.23856325194330080253,0.14161271630862962145,-0.032194362471153190053,0.050044861245435140473,-0.055610356845154682026,-0.0068357556939615798236,-0.01221599964670782093,-0.087808035683565349716,0.057848911669588942708,-0.026300010805595130936,0.075515492194114783309,0.084426327491542954573,-0.036597137558716720529,0.14411731435197625006,-0.23254460345628272244,-0.098880913808747639138,-0.10392628533113468237,-0.021550360666471320148,0.12797366689788339245,-0.094799413300031484808,-0.15154557305707297421,-0.00087602365310858281138,-0.081589709177015898312,-0.18409461913909211384,-0.026900319100634832725,0.11475466697334255062,-0.1299578344169711186,-0.18897440334187673439,-0.11665528875533513753,0.10329749837071398877,0.042046316542351545864,-0.044510435566964524912,0.044570069605963553994,-0.057398237276124211559,-0.093432199349809674782,0.078519988250449312961,-0.065751149503951542008,0.073433498151150133904,0.12871603866156069995,-0.050653519317916374798,0.15523060651983655589,0.26340864809807296165,-0.08184552965752564524,-0.24829224456235313157,0.13635155968066059451,-0.052050462473445156808,0.053901410459761836536,-0.046849223271679743541,-0.037264404757101708687,-0.0081647630842327772321,-0.092502954357368855076,0.061870453957613556761,-0.016234220242992043748,0.092217794935558150549,0.092257811559866578777,-0.052088178062681421421,0.1609245076724069301,-0.21920663712735022344,-0.1146092021721229065,-0.11231393301284790798,-0.01061904744917670923,0.13741840620963091668,-0.098860062950935842507,-0.15059727701281830359,-0.0040969511322905350151,-0.075138185192963793946,-0.1967500813514543867,-0.024878748469986444736,0.1269781963036750172,-0.14040090428795493072,-0.19526624218085866791,-0.11817500141775630351,0.10384291968469532008,0.030683759815794520165,-0.05252379110927996031,0.038473243600908056672,-0.065341568301006153208,-0.11258693547403951507,0.066763540974717677789,-0.075547990723888694409,0.055699768028660036345,0.13499384679432840928,-0.078240433136449419327,0.16144438684998271838,0.26291526262807174419,-0.092726873020359742994,-0.25847772687487996501,0.13103730806757721283,-0.05322911259308999582,0.045893081732334799205,-0.050065473355025383317,-0.06733105192063972011,-0.0029170572432247999194,-0.098469915015529943525,0.070528110036118696335,-0.011502785608427894617,0.093317911694676666801,0.10597308242023258107,-0.048471637039345601139,0.17639313014895352527,-0.20521795088306901689,-0.10991750146147304112,-0.11454143855751590386,0.0039040340768845206883,0.14516104365854326508,-0.10090928318423475485,-0.15816424019367761322,-0.0056489020566831511447,-0.076953747524874618891,-0.20095792349401414567,-0.034116207879212816223,0.1248141531960283851,-0.15463553861027234948,-0.19908952945623123454,-0.118409316467772599,0.10452403425446478435,0.039465886545953919595,-0.053051606574272477945,0.03326749585543353066,-0.066926474307328218116,-0.12867149190758819799,0.056975931030481180573,-0.07957317982741070328,0.05702377711885189826,0.13601044538462578326,-0.10627062020961321187,0.16670429061672220605,0.26466450736746099937,-0.10134844363808011292,-0.2677235787209480411,0.12478881899503592445,-0.060460746728165266906,0.046246705724628460465,-0.065424507327589670469,-0.087230691240592489466,-0.0012268667886882540959,-0.099826547974092155746,0.069553214981347463719,-0.0041518711565171062539,0.090198830525484205434,0.1081477461583814359,-0.046317725147588126311,0.1921036884773699438,-0.19446220422586471543,-0.10894544556784163669,-0.11635257688266058274,0.017898430113837810601,0.15210650210276402405,-0.10601497196577837345,-0.16572964443296364645,-0.013282941353186064962,-0.079772809297980265542,-0.21080488458232973792,-0.053211919736930290981,0.13322148090725902114,-0.16698373420337492279,-0.20745735367455561682,-0.11837473710576172647,0.10626857236754247427,0.045182150061696700616,-0.052249315509317509343,0.033164901399960838857,-0.065645888798868540226,-0.14047943424517783662,0.052301556633918132311,-0.076826644840504124123,0.064043725917071553377,0.12984459926532024299,-0.11009905781910710176,0.16660637609292297534,0.25601477186850996048,-0.11434070411294262881,-0.28224076387303098645,0.11127247816208087061,-0.066476733836679499645,0.052222425997929040886,-0.081179330280819569921,-0.11126835723305485149,0.0074544781708179479532,-0.087063943458985160184,0.068153908316218397845,-0.0001118861891199365681,0.098752740101028718689,0.11288586339249512269,-0.036048729162402551318,0.20440688617540694882,-0.19113854463040447218,-0.12373273904951807844,-0.12276301472315458152,0.019841370164073744708,0.15679415317255768203,-0.1217771257506422844,-0.16520527297582143778,-0.030693791684096680128,-0.087067226141098602588,-0.22021508070543294178,-0.051030322411669340466,0.12979113681247536616,-0.17146377734383702607,-0.21658174727080922728,-0.12612752861130280269,0.11211728028207595953,0.048097597749586204485,-0.060753972771500491801,0.023699449665424386635,-0.06347391741148461497,-0.14176795068291889179,0.031958081662785228771,-0.085592071896387081353,0.058868571091632446168,0.12193466378369768877,-0.12230028429563165326,0.16649663251092003402,0.25158597436224761079,-0.11290228559852186208,-0.29585935081532677149,0.10113358451283072093,-0.065087326493702066244,0.070862755527355242302,-0.088069643123717455957,-0.11116260418324661052,0.0020911244982839386104,-0.081089397060817955398,0.071568047307759119491,0.0098279035972639906815,0.10466436606601851877,0.12299147489484704709,-0.037397756101571179299,0.20352992296674529693,-0.20116216497382105599,-0.12702955307964625131,-0.1272514412390010341,0.037508155186923193558,0.16450239598722513068,-0.12809862943610161867,-0.16663067263789821393,-0.027244663460296268676,-0.084824653103185584935,-0.23079596722389136843,-0.056764787252102301418,0.13668852428547439981,-0.17858006979670057457,-0.22655015051311860885,-0.12633985091807217738,0.11686079899171430974,0.033399384331443356111,-0.058572038451186546337,0.016644407256727115213,-0.063435428314522174231,-0.15189375989055586835,0.025299872401912011644,-0.085056508381124662499,0.05255573193953584632,0.11789627044777421794,-0.12516910586437407504,0.17544277421045284537,0.26690778668994680212,-0.12894883999713796507,-0.29342287016610202333,0.10242999168314341485,-0.058514179152639220205,0.073644430520693346387,-0.096544095426628770418,-0.1300159393621529158,0.0031268238746453309168,-0.083107651183045819221,0.080559926336475642938,0.016998745255365120543,0.094788615301230949584,0.12865554579231527899,-0.028972383365255951343,0.20530701300137246812,-0.19652754620741372249,-0.12460537759595559371,-0.12818801835663398703,0.043521979287675684189,0.17350269614569566179,-0.12701581540853551511,-0.17961482271862042048,-0.025321987653048431965,-0.080057945667052696215,-0.23790243828708790286,-0.075047294634121380907,0.13498824308764745261,-0.19581059753993046435,-0.24677874230895943675,-0.12705604592794789154,0.11172909638135111732,0.018387562302584890828,-0.05697537793651083482,0.0086956342169400534237,-0.062447119134887672798,-0.16549267142158896604,0.02938034067875059871,-0.07078631522103506768,0.046516409482527776298,0.11687525097125807394,-0.12615107336282943562,0.16987559127077864196,0.27224457016978631518,-0.14765341525617745044,-0.30078786393240281027,0.095789247486061879222,-0.057484353229875918834,0.074330687604458087203,-0.11024978472731243595,-0.1482839767410377152,0.016448717269805075702,-0.080927966005691368001,0.089454384765107489152,0.031080099749785858321,0.090046842960848305637,0.13925343634727538333,-0.038894695594580835918,0.21877122142377683489,-0.19971640658979605831,-0.12816542453403120816,-0.13640985365737773316,0.048791174980680404594,0.19670080505731238341,-0.12841271997896192003,-0.17821790163616629821,-0.021340611088919072408,-0.079870051084627996518,-0.22847106544433359865,-0.076920941947836010688,0.13328653462073244973,-0.19473807271914972405,-0.25748657690819271027,-0.12734201458144789321,0.11035929277620359912,0.017786265938350555998,-0.053003350148401129349,0.010566196515397278596,-0.054911280035459544835,-0.18103057814174006168,0.044120356993381959487,-0.073341853031071338465,0.048759810422586237488,0.11737947965165267117,-0.12251491738871495008,0.15821023961879376873,0.26610108018641165373,-0.14606360002277193888,-0.29465715485642696159,0.092296710561446920762,-0.058106595613115111232,0.06122843934544325295,-0.1155095523518484546,-0.14964426845936659727,0.013875171356527056521,-0.077650833915913528016,0.07255557084281132052,0.047848709590792834478,0.090296306961781189204,0.14031587987944041385,-0.040041438708286296311,0.22923430731674157568,-0.19608204976671686492,-0.13307384768486382742,-0.13643198240776149843,0.044714241980674085397,0.19754637857800350087,-0.13714027616332399861,-0.17580917543912621959,-0.019156582557339599943,-0.081181575668518801692,-0.22467615147714467549,-0.076663018954912523495,0.14065890191339786019,-0.18896067020172119255,-0.26255340088971862444,-0.12912852693153015204,0.10987743921152270943,0.015385774522949341447,-0.052037890913148379668,0.0061618477647458020849,-0.05363798419805309442,-0.19093126300874754819,0.05165628189031534756,-0.076512560741747545623,0.055831152563308034109,0.1197815472349517546,-0.12051348300631238575,0.14418562872093940164,0.2623588409098210894,-0.14732410619440827748,-0.29309966589660468861,0.09101680541439387262,-0.062330357879116449205,0.053331919357938607773,-0.12074526094762484674,-0.15773259913881287897,0.0092957009909901654188,-0.078249973419215135273,0.062898446499273660826,0.057362048946687213546,0.10693344885386341092,0.13882707261920093633,-0.042895984855228851129,0.23423811787347822988,-0.19455471623414091753,-0.13512176480597615225,-0.13658608159154334016,0.034042438789408255295,0.19610001842954852269,-0.14926114424008274373,-0.18639701677067446739,-0.035568243217345869855,-0.079554199416833837333,-0.20714682484486920955,-0.076153422851573060459,0.15025201548205546764,-0.18903181073978836402,-0.27000712545977312296,-0.12855463973923525467,0.11721838027303317642,-0.00013584205613421658325,-0.046684660044319432892,-0.00064903818170731109212,-0.055570202629056111854,-0.2106052786599586224,0.075142086516365141913,-0.060721444422667171514,0.053424975927740661619,0.12208412020548883858,-0.13103668970194548571,0.12052596396431408676,0.24775137960777404711,-0.15718937927487799944,-0.28627503781765850643,0.080781107010953742686,-0.069574576602111526391,0.026109050320846524662,-0.1207494128838910441,-0.17291064659935709291,0.0062040278619759098994,-0.06705797546241798468,0.039192510483446504899,0.087375569405563555114,0.11463769045027014104,0.14467914216028690544,-0.026400311217595846813,0.24956535007946886728,-0.17116339754972589859,-0.14601025146360976925,-0.14602378929606435465,0.030056098235823162923,0.2139280781791515762,-0.15663704263137739892,-0.18334539678267111618,-0.041913775694203125877,-0.084148447323470959569,-0.19850709707360275624,-0.079720501636457191674,0.13708965701154657291,-0.17971101294835398199,-0.27286491689580216757,-0.13673745665278161376,0.11483169336269302696,0.013577564320640025247,-0.050587490286788820704,-0.0014729597593039413673,-0.044056983427747227478,-0.22913281999110748921,0.080045883651588198293,-0.06109554330598688382,0.043590361257036996934,0.11682601692910712932,-0.1441488763124713357,0.1186982444270889836,0.25612211696300274388,-0.14877350886787646389,-0.2842104828828687646,0.073271127102925506791,-0.074066362974938862451,0.033189131694807125217,-0.12569860915041380922,-0.18976505402326782068,-0.021159187851574896844,-0.080375848553166401311,0.02347808559959565014,0.11539597772047012481,0.11023607567728987977,0.16230212283551181951,-0.034887956031421009373,0.26071565699613274969,-0.16701185407423890794,-0.15303699002124424022,-0.15685633747953464656,0.021286436891778837133,0.22513871748675703954,-0.15804559226122852356,-0.18889041226797387285,-0.037529657411848549309,-0.083346100531200492667,-0.17428098812584144617,-0.08169827969228556086,0.12207969640682046764,-0.17005165661303203728,-0.27552779315590908427,-0.13931742804460439666,0.10940666086822800618,0.01612581446599684748,-0.040807220307482787447,-0.0052934995076082862545,-0.0312598532820548905,-0.25013566558350103231,0.076120980667033460998,-0.06616000640958413781,0.04723478989542371359,0.11460026585356929141,-0.16500811431966513898,0.11360887039864331349,0.25915771464475034769,-0.143687771505480677,-0.28896174488629577937,0.059543567001347191825,-0.087934041037389859552,0.038709052936264719269,-0.1360536583381573017,-0.20720146864781407992,-0.046209129461958278751,-0.091357284843451097567,0.0076791588733136594003,0.16131396611127701846,0.086479676278913578114,0.17481900307404382722,-0.032027548081291379312,0.26420358742525296147,-0.16747407965316296607,-0.15879419310462358772,-0.16569804003042867824,0.0078992892522351289275,0.24387362788655886359,-0.16511187347426828365,-0.18988026053995366027,-0.04998053852054608337,-0.09470950902636801616,-0.1333474017699679548,-0.074581728193999302645,0.091676828914459149167,-0.18853739127728461056,-0.27875154967584098165,-0.14413720192418263966,0.11237846778795769487,0.029412274263995241003,-0.0041796316567070234543,0.0028671476604270476965,-0.006453297046094551119,-0.25682164514604682859,0.082239975195668224561,-0.087193633126964126268,0.056313823970058768387,0.09811209017831033774,-0.17424663418073479959,0.11876457147720703711,0.22822827096480630127,-0.14185920615753877527,-0.2788330173145819324,0.044040871895214737941,-0.091172397283369968624,0.045540057014700145721,-0.14307689124851513673,-0.22623717031981593895,-0.056529845840962135439,-0.10310585430614967184,-0.0014705607423407384554,0.18816820085991703415,0.05861945310162381545,0.18521378900349999563,-0.014254098869619405768,0.24506081950999911157,-0.17215582858216876838,-0.17856781181953368387,-0.17355874182900499214,0.015844204765000015345,0.2494772249279592069,-0.17308767625666546253,-0.15401960570927553107,-0.04815246105853890346,-0.088777027720965837054,-0.1109120370156314872,-0.091749053706213473669,0.073980326767550730338,-0.18972414478393045956,-0.26575645845049389315,-0.14545048092289095121,0.10136065206225415569,0.029745956646101173043,0.026435804495835428518,0.0041271383384748399833,0.010933364191199371543,-0.27121038833364591314,0.10424025470337408561,-0.094998328450531008271,0.025926561282197942843,0.09055664769377158585,-0.1544732467384017649,0.15307586320380517364,0.21112541037514412356,-0.16191704018104924323,-0.25681248454497668243,0.041504458809972874511,-0.083660318335467359629,0.038892504240268910287,-0.15475305704570552212,-0.26598155908328746655,-0.084081303973156107379,-0.13989865362323863907,0.0048743503812809863343,0.20270251871626218665,0.013993365441167726279,0.21385057779109073461,0.013398385527646772264,0.23603877837852210719,-0.14156735558266531072,-0.18436215605477127011,-0.17993042570389050638,0.0082534575956230878113,0.22941878287935157932,-0.18069968656815602048,-0.12575088400074849182,-0.047401755222053240657,-0.093450617984252110082,-0.080308678269982905484,-0.09831110247187917206,0.03207072243436809994,-0.19719221741631903777,-0.25262152857333991518,-0.14527497753924215051,0.093146632127816958446,0.052203999417051095977,0.045838391771634547089,0.025572567911488753439,0.033719941714370794961,-0.27888724071292964046,0.12304963328636998876,-0.0905193567654674347,0.041849034827394999969,0.074949576086500324656,-0.15039445492716407848,0.17094463277039328997,0.20489009136911401354,-0.1508301515714603469,-0.25261999830232517716,0.038613005365336877661,-0.081823034755962364972,0.044613798460734627183,-0.17003663785063694025,-0.27093115767500042246,-0.10986659391402635311,-0.15117160229236223379,0.0028042561188384926285,0.21284263739602576893,-0.010604894230942137068,0.22445890284909661427,0.02181331929070487799,0.23253626665646190408,-0.14779258606470524473,-0.18682331272205149331,-0.17983889529012508923,0.0015276529886068394067,0.21062793540414537219,-0.18113753655872449899,-0.12304114617025094236,-0.032305073055776241386,-0.091623418459882838283,-0.054415072118596460871,-0.11408555197432643236,0.027490950312838331737,-0.18898094490414252267,-0.25668516093415394419,-0.14412724817050670545,0.083039409333255750911,0.060129413818844221207,0.045254319990490114722,0.035180779823186854316,0.050883076669489137045,-0.27009368950926510022,0.13829312193720283419,-0.078520809553906140144,0.039568343888996708457,0.068902262708633005284,-0.15879168121452066909,0.1454335882862616558,0.24136878463096436698,-0.15989336329356673705,-0.22517904186941381517,0.040082852769300174323,-0.08904461070911802445,0.049655551562324283521,-0.16898515799443955543,-0.27362037741946421132,-0.13839136088221731802,-0.17278499572963201825,-0.022188333719968502539,0.24490321337271686586,-0.0071607776442756086721,0.2325067981756268054,0.031338378082146407799,0.24325253788898992813,-0.1573563592044210091,-0.17399442258199693256,-0.17287969359843927131,-0.006629730099031528115,0.20929774618416219223,-0.17786675418569175555,-0.1318467624809346872,-0.021008594915196909803,-0.088364023078279160806,-0.045301118273501451983,-0.12152399910124950244,0.019980536895744912401,-0.18948045879156977245,-0.24781921122654798628,-0.13807940791292053206,0.080858994657919514015,0.059070731888683822297,0.058110903598000598902,0.037972171941767572656,0.063553807951028815082,-0.25890558538025637558,0.13569099320513974827,-0.070134271629622199629,0.037539722149948537289,0.057343386024897607944,-0.16286009118009742158,0.14847919727839381521,0.2571065671375371009,-0.16585738732308705212,-0.20226093266365111067,0.029582743824370181379,-0.082008736175149365977,0.049981814282328132504,-0.18499361384591048174,-0.26454082681789908849,-0.16627348150651430347,-0.17348203139836307352,-0.049327877611858826634,0.26769848115148942025,-0.028173664578033833644,0.23067679019633391402,0.048420989642772679917,0.23936149075516827134,-0.14879729690550061449,-0.17053058257579989387,-0.17002782843509051114,-0.0087863388499902217443,0.21262538637648112361,-0.18508087246156781913,-0.11543276800620311251,-0.03361986106261759949,-0.086958522506001792451,-0.02777424812313709912,-0.11780919614957907626,0.0053402433425548522655,-0.19366413386928812979,-0.23370791718274391835,-0.1388147266352751652,0.074204347822115893085,0.052536779268934123699,0.071453229631828402146,0.034106871017912737676,0.043923803958601952135,-0.26267410215840475418,0.12664947406281071296,-0.074545919225837906086,0.038915059928319867266,0.045197970907623716275,-0.16375118516774728183,0.15371985278406063991,0.2754156875538892324,-0.16556259913383733484,-0.20045492863596553468,0.021284470400135223345,-0.091430595572689704609,0.058636599584545923136,-0.18950746203913060306,-0.26707797328862981079,-0.17770601472314184743,-0.16604937498509683702,-0.050613877634455940735,0.27288050674804509299,-0.035028052509448133478,0.23764531830672316892,0.048919776614811567861,0.23004928896531376403,-0.13298259965500602853,-0.18307828121442193403,-0.17247522034737466923,-0.014009360120961038276,0.19666587543847255382,-0.17790176625855522174,-0.093852309270974390576,-0.042058986367963291375,-0.085320022589434274529,-0.016246254179305967547,-0.1195670595975362599,-0.010125341412789276227,-0.1745566476063895589,-0.20672712041475629907,-0.13722276160034965753,0.065363063603247020805,0.075982080613856806117,0.068399688041616377165,0.047716753552106236369,0.040437178147209512646,-0.27184189556975457691,0.11898737569153282345,-0.074011687441905588125,0.050319570197463317496,0.030990016540822819258,-0.16770271577143006092,0.16756369051151098759,0.29143331513854242587,-0.16393705409748965396,-0.20621388868527290583,0.0093660217375602476675,-0.097979783665173084128,0.083659693189790093615,-0.19256979298766926934,-0.27971470855714930526,-0.19042082158365070121,-0.18421449050756971699,-0.043088667613319510397,0.27080434831798111395,-0.042604250368016120809,0.24832520987030640147,0.036112462480384834029,0.22146502394147193904,-0.11707238873458361561,-0.18105930507014950104,-0.17084877899811751201,-0.021244007031497695592,0.17562555674469865208,-0.16833314988540543089,-0.075616205595847502119,-0.059205455822221551843,-0.080606791292671953197,0.0073891735932594222389,-0.14001258661854151799,-0.019053411851546058625,-0.1325847448123233796,-0.17520788592689132135,-0.13035228192807793435,0.043323467874289652013,0.08535341619075893782,0.081145128353170253854,0.050384599139771987786,0.030971848167406546698,-0.25492406398967187853,0.11401718185386096327,-0.069252510686924131922,0.047810849321655232713,0.013416194265022420018,-0.17907050652677147795,0.16257011657355563417,0.30480994279839573879,-0.16985146399441333753,-0.18487266328958462669,-0.011039267012343791097,-0.11149364401639233479,0.10885038980964602262,-0.17600688307842790592,-0.30029165729203166624,-0.23530475405025075286,-0.20195329684191704045,-0.075619515084384289483,0.29910413710097633055,-0.058797828884898699353,0.25791210552293364344,0.049832997609702882336,0.21434167066729939433,-0.091605745452023781827,-0.18302398509969958207,-0.17031621461280840868,-0.032310214682809278164,0.16014496597864655292,-0.15699327128597784231,-0.06782085493038714219,-0.058594758622136901283,-0.072442084813132329169,0.011458467120600585032,-0.15070868903883685719,-0.021221729720817306825,-0.091186865487910884198,-0.16006273788446023776,-0.12048316659098642911,0.028277626842069272101,0.094202664971328162191,0.079530260396926732991,0.058624660180539682475,0.036189865626610751015,-0.25262241909174715238,0.11339324517576578055,-0.045207593873696008679,0.045432219365337297989,0.013016387722250008854,-0.19359745719672458164,0.11219053323550808032,0.30222438740614915309,-0.16173660230860423259,-0.16939447011956404454,-0.019417960060109207276,-0.11647549699555892477,0.12313543537346005596,-0.16295672128229318765,-0.31976698072716119858,-0.27930634890646649504,-0.21332640842164871109,-0.13635822251545995365,0.3327021978662222379,-0.067408958535858543026,0.26596545089100825932,0.058106645095838321824,0.22950501602786010924,-0.099180290582303418101,-0.16154610965300605918,-0.16423310803312701767,-0.03101169433778926815,0.15508687770968851427,-0.10547249191894797482,-0.084885771745699875601,-0.083180873865301749315,-0.065734108934173043903,-0.0046807560319168219423,-0.1251062103173126161,-0.021862853874839955487,-0.04304953397790167724,-0.086534229150530217467,-0.10181374855737811147,0.020648627699629329424,0.11210060394633920844,0.12393038112779786175,0.056270459609237398479,0.017868576950729523484,-0.18503740981641950136,0.040952514433013439965,-0.053185680486709269177,0.071584924769023061675,-0.022292478388360001396,-0.20110409530790196442,0.053936881701987474114,0.29449789096340778238,-0.1628410399928288399,-0.16682543431138574519,-0.043818461788858148465,-0.14758697101504619775,0.20148715265596170432,-0.17590123668637355769,-0.31445234026557217222,-0.35036574604214149042,-0.19080964503726671744,-0.23358497578924314331,0.33054867610971244707,-0.093320724239576602344,0.26181375512370935743,0.037888728096726172201,0.19006273473618728875,-0.12323269686123390632,-0.14613808362090435766,-0.14756890991613785813,-0.033989979402639737549,0.13931663488776635518,-0.10657907192693294451,-0.081460912614076105842,-0.10889312727586794582,-0.073687290868836380353,-0.012052489764853806589,-0.11443467590431324887,-0.03066633215109438107,-0.042271273178554946703,-0.06351767292472812465,-0.10898153101575661084,0.015562112387347925777,0.10571951058480810737,0.15174483225802962161,0.026442404846441173311,0.002106570289238960357,-0.19844976755951745928,0.022227946093842480824,-0.079753372017390661286,0.078625806989364124822,-0.031876697773661796798,-0.19528232996115299502,0.031838758459124517908,0.30581915603099762979,-0.16899537478796342049,-0.1558805951470794704,-0.046269413610850053387,-0.16158177127516254457,0.21726228687290569108,-0.1886028920030743683,-0.30447632896114984469,-0.38643342860467311262,-0.17887312961018711488,-0.25600976158110877456,0.3485244214992581635,-0.12785835006366222388,0.2497749721618105212,0.026585048172431242908,0.1917922242462519189,-0.11776989930508430238,-0.17578193204338340982,-0.15777083811127703972,-0.040790121419963611127,0.13404715570677666614,-0.11510403431667724783,-0.081598613721388602027,-0.10424084217907318706,-0.076779060113077737815,-0.016163700868089964091,-0.097206521097307568846,-0.042630519104589724433,-0.079956157949735595647,-0.047006540100299289142,-0.11175096478614147955,0.014867882926843442939,0.07928170928107544646,0.18798876911781989274,0.0082240274135781214759,-0.0011457149612586795765,-0.22011883275826207851,0.024346911924828365525,-0.095443907717843751159,0.061470438137034497106,-0.041371058174513287986,-0.17024772914337452101,0.0018772404567793002199,0.27815407471431580211,-0.16395300904872911474,-0.15082571973948391553,-0.056341431692481673543,-0.15167075357154138904,0.19897030450945837887,-0.18449555191382774333,-0.29192400060971412934,-0.3689640787627110341,-0.14990857136534402327,-0.27620728140777017767,0.33051787333683257941,-0.15081883985627744793,0.24668602565238112456,0.041595270406108712791,0.18375818300149673878,-0.085952860017140822468,-0.1849303445224050324,-0.16019745269479865324,-0.041458459149206670913,0.13567658852829905802,-0.11322343931140642359,-0.094038098808287090558,-0.12047792230518007683,-0.068322504515989201934,0.0051768061690175412246,-0.10065201380300700662,-0.050042920702091132912,-0.075077320132997046875,-0.044191547001595013477,-0.10570645399497273498,-0.0064779621993275139993,0.05974630918723352474,0.22258146808280368512,-0.021215836613605265626,-0.021869487260482996238,-0.22602688193985034926,0.027457461157702638122,-0.10803231832736309714,0.057756309384457124589,-0.026541368996327325408,-0.16660874733779473811,-0.0071445208096451275417,0.26768968219577665701,-0.17354859097233726883,-0.14392157986028764061,-0.06214775341164619632,-0.13885094117532681413,0.16727389710204243478,-0.18489512778635242007,-0.29736390440923987644,-0.35976677071639845407,-0.13599745262884038732,-0.3072870626309382458,0.34523566546515899178,-0.15873326454313085865,0.24057291956692791746,0.036818616735052031586,0.17141011429701236146,-0.035391338029750980809,-0.18374191698445102583,-0.15676169529572756001,-0.019016548423239805488,0.15157110901011652815,-0.094102495587182130588,-0.10883918483866696081,-0.13958815545686026338,-0.054341419502038856848,-0.0093954610148286425708,-0.081953684565610265822,-0.051899782313632875086,-0.031837005217579150695,-0.044623216457502112853,-0.090200698749755989225,-0.022792074039810223535,0.048942431547213643972,0.23237936387863986076,-0.027361528675278128098,-0.018365559462401325613,-0.24118684461320469281,0.0063816929904171463064,-0.10304525281633095113,0.076524024707458476735,-0.020196499586194609915,-0.1396867436021821951,-0.045404545199979412518,0.25615718642620088907,-0.15142267268610962172,-0.12276294994123911064,-0.063464932992320477467,-0.14423133621920733449,0.19013631062744670852,-0.17732674917276713966,-0.31006009650815335998,-0.33356202106413146424,-0.1355318018465379859,-0.3334545176800667865,0.33050893471376568966,-0.16552526393025479567,0.22855369649298531987,0.032673019546287894455,0.1518964541327009754,-0.03965555422954859105,-0.16206204912746444147,-0.1449507000203218432,-0.017970734637938343137,0.17714080468648049638,-0.0712414269310722853,-0.11233678685688672227,-0.14134882688705510678,-0.046215538482655776908,-0.038244295976218908861,-0.042707612224420918312,-0.042194892953366272548,0.013583057826240160434,-0.040353012018203557321,-0.083868355137106512243,-0.030085589607793485067,0.036350178576898636851,0.24941942856160645436,-0.029368353645889987147,-0.0055384244372218040253,-0.2487180488039375803,-0.032598578500983521611,-0.11011202278569059976,0.077222057216431966298,-0.015878906696278269339,-0.10483776737043271066,-0.1101449556546964248,0.22710966161038206867,-0.11050301760151355623,-0.088994573706710378147,-0.063962378188650387267,-0.15041634234628803446,0.2130531568084287064,-0.16621252664691024692,-0.32193862924961763605,-0.29314750113221571537,-0.15352076149232074531,-0.37660463323837567451,0.29824737990313149316,-0.16171591965323353635,0.2128410381294789655,0.030586708298104666598,0.11634907641146388646,-0.055325130481249769343,-0.14445380893511622356,-0.1373134791599908977,-0.043178019199420145102,0.18756817598326316898,-0.056811300085131133386,-0.1094031858315797634,-0.094406423631767738547,-0.053106484651378696449,-0.031239749270722573515,0.0054447847652096892715,-0.047830093213845681355,0.0087497280843105516152,-0.015209906446702215616,-0.081241908678997762361,-0.0063384233682060708154,0.039804615764796713595,0.26841621027854484227,-0.0031676714012642106025,0.014145489075262288395,-0.22009680528415095924,-0.058943092030631777378,-0.12442272831523941423,0.086189830243766057949,-0.016145648640176431254,-0.070868314953965866332,-0.14899932217133668444,0.21579956141899950262,-0.081233122480316832803,-0.10986421075186865448,-0.053981983343119467611,-0.13021305993213863617,0.19736535323448978207,-0.15010501967867478923,-0.29416035455389527575,-0.27722061646365192544,-0.12491015656682497026,-0.43015418089462381657,0.26545586099971457683,-0.17827696886649854746,0.18962724980203263248,0.032469383374361636407,0.086664522704208143966,-0.079441247024571851054,-0.14055161621544187689,-0.12895722684392965651,-0.086763245057773857871,0.15319786705013699324,-0.042754886132468070126,-0.11236011505192612658,-0.062953134223846074491,-0.058779851685436292075,-0.035883307450423257423,0.026720854033480841844,-0.059050461723278283022,0.022088906999292431954,0.01882755057397466833,-0.07434309391707183412,0.00073401687309234298507,0.053967229239794953233,0.26945483926970620336,0.014073501425179027816,0.02361740686023492547,-0.20726759260447447097,-0.077842733291387147809,-0.12298817651112561866,0.099187250179306213349,0.00041255282450282132652,-0.056542551761331036331,-0.18650563901249361809,0.19749878412547794415,-0.057748453006988678671,-0.10689195132387860343,-0.029314748516274368589,-0.097311229957296144222,0.18258886467338542037,-0.13860803311907185509,-0.27560819657660146076,-0.26906235867146571783,-0.10320817599566228795,-0.46767157491877220377,0.23294403417638889775,-0.18592007247201505771,0.16549217297845800201,0.043606630737725651792,0.060587419121581137516,-0.070657247576133161426,-0.13410331067394762328,-0.11899981154728642152,-0.09825490739294602538,0.13113572211446780647,-0.043295814359288913031,-0.11418590113811689923,-0.039496880972355555284,-0.062109411497830967208,-0.047175455055784847047,0.073437613418075919913,-0.071160353557748481923,-0.016750135245304650922,0.046421141103402188688,-0.078363011455926528948,0.012387842858488363335,0.022637221262792061455,0.26487328487040479041,-0.0020166979620845877988,0.038779664884374454026,-0.1974299854899491391,-0.10057609147629945068,-0.14541841470179273088,0.087712458625575875915,0.011999362917118977512,-0.019622622897576137702,-0.2029637624858114664,0.21646104406515698226,-0.037418654097205392151,-0.10361750181590356767,0.014379683482787179033,-0.044174451850921302165,0.15475844027662216673,-0.11423484064481793931,-0.22292918935004477077,-0.29319110204360432359,-0.081045883266383039745,-0.47814969338044721603,0.20782760434944064221,-0.2210034425872849928,0.14340901709931938579,0.042624804931678271502,0.038176910024051852188,-0.071687444218662965678,-0.13530404404192275525,-0.11688121306319418369,-0.090444294481006201614,0.12003733685217668481,-0.017857774063261080272,-0.13536615847674368651,-0.0097251688013541195271,-0.066953765161201855838,-0.05410105032193113922,0.098613983740585026139,-0.090299731309647732203,-0.022671769702399237334,0.037729547736495533394,-0.076871604084758973774,0.015826763193662690687,0.018938697295537796489,0.27651128970920479944,0.0061193222218986287678,0.065992453449837937263,-0.18622809048286090294,-0.092957007867389168654,-0.16085218732145314946,0.1110306170427580591,0.040809174607609431662,0.012516345326798274107,-0.24892359634321711837,0.18495698511457134283,-0.0043755790724495551361,-0.097989487364128616265,0.057766649188524109293,-0.024441100291515995696,0.15409568340175561207,-0.097543715710926029439,-0.1946738714501044798,-0.27548899352323469314,-0.078568259928122691216,-0.51259784946534081573,0.18490191481285569997,-0.24213569065091930521,0.11683255808021679456,0.02461543615645949909,0.028259992914976727468,-0.11439121785092623562,-0.13372823743672196395,-0.10951607553050544952,-0.09112785509351682689,0.12270805329278627882,-0.0087560912302087415271,-0.14113904662719345406,0.013715982919831101738,-0.072154875053074662983,-0.028018336642981329226,0.10017176460829897711,-0.11781624213685749913,0.002516110317225729847,0.045342557060458386908,-0.0725859724250268179,0.010987349877887100241,0.031363509006283048219,0.28470190476671480839,0.020172209189940577129,0.11566417809093425262,-0.14730057190487735874,-0.099909550601194108133,-0.15254500706748658212,0.15001288666570680719,0.055643213832826866894,0.068355886817091912611,-0.26878742681522971303,0.13092329747832193165,0.033568593250987342758,-0.10380483768256322519,0.079228683089375695481,0.0066192638030689171513,0.16223160184869930833,-0.088356122037251239032,-0.15462220979629440198,-0.2666028659668009948,-0.072446143577295452065,-0.5637344751816401045,0.15927451110489534991,-0.24969343560470613763,0.10182944305750599168,0.031777947764324993019,-0.015555562406376755372,-0.1222948232234202931,-0.12499417594123569952,-0.10488536855503548251,-0.098618233911047972762,0.13123374461651302059,0.0053195597302344811361,-0.1434163276497041617,0.042849931441296305878,-0.066253344852480633431,-0.049506324822856731527,0.1188370536997026411,-0.12562633396236608241,0.021706236481840147923,0.081830261878917120999,-0.066366095177965309104,0.0072422421283877954842,0.010967285720587712991,0.30658277593019062079,0.0066653055039204251939,0.11606206539841942837,-0.14788109322853615346,-0.1050768204040801318,-0.16205739867017301958,0.13851213715247215341,0.082455805385218156056,0.11056036773525601546,-0.29259616815828970449,0.07938461743951150118,0.049034836932710081092,-0.075771899860693991968,0.096338130877316255352,0.035187954358831326218,0.14122178191717965623,-0.066981627833661350202,-0.18286209477381440425,-0.26922500754632006092,-0.063950607766245101682,-0.5707209363735278318,0.13224547419402274406,-0.26814778584076925938,0.083649975878968024778,0.036362997765151040819,-0.030397760289459022087,-0.097242501763658950598,-0.10684950126485416588,-0.092446526721349536748,-0.10339416295911844912,0.14182002910904795145,0.00739123402892444617,-0.14412916534411010505,0.060950397653431132028,-0.069323494278227898446,-0.045316474699750065869,0.12544385039840560969,-0.15259093184322264358,0.031170365327015555484,0.089911567247872192787,-0.064815053963275234827,-0.0005931183267100853182,0.011858753332025242025,0.32319585038788783971,0.012567356381578371344,0.14589446974707814819,-0.15335053911475984845,-0.081728547925517494588,-0.16657820184259936047,0.15328924271409713476,0.093975586091150739576,0.15687619600485583349,-0.28766968483399552037,0.039296961451408179977,0.059235131692150326532,-0.055495105957507999406,0.11642003984888656121,0.063820131366017995855,0.13180835567259827079,-0.062427736904417031882,-0.18755048421660741598,-0.2677529935001296546,-0.071693793127290794676,-0.57482043005202965169,0.11696208238645779132,-0.28366012685639840907,0.073763136894600664362,0.027483591916769363472,-0.043919532101746976138,-0.098229559271256886022,-0.10523553371084876096,-0.089315417690723791777,-0.10747115950491871461,0.14250106545437846162,0.006123492807904890034,-0.13684876559179853794,0.095324209826543923607,-0.066452548997762123095,-0.069643393459417876623,0.14449587911751951563,-0.14987303288535569479,0.058617878098420853061,0.096845512874755679267,-0.057507734407676536215,0.0019731728852021759163,-0.013610446417888538012,0.32829331040977532963,0.0098531195433853926979,0.16697230960620981777,-0.14323222266353305421,-0.078132375131750322894,-0.15273520884120136976,0.15622074468654809087,0.11141387069242293661,0.2024965973487641846,-0.32102400221311916395,-0.028367473812366060526,0.076931379147674353036,-0.036107025070302570247,0.1316601478898353772,0.090699597725096281486,0.10286217610803480293,-0.057256668785200484639,-0.16460796418663306562,-0.26360691821815707137,-0.052054435573111131064,-0.61658374552779593447,0.095185716982149837229,-0.26766643338677098551,0.063005669382585977045,0.039966039951946495667,-0.06262259654043743351,-0.10360420840287452859,-0.096217292608501273077,-0.083610361912398886708,-0.11791210020702221073,0.12803718723192220041,0.015227109558917380217,-0.13097373097455969337,0.12278537831291770621,-0.06414082794787226427,-0.12471238808040219226,0.15953370467310365455,-0.15094719576454052046,0.053727241664116458242,0.11610259737766183419,-0.051171960921446213444,0.0076449877743573878969,-0.028159202373359313448,0.31093042914046598035,0.00057743663867421070497,0.16736073140661891778,-0.12182804188952973956,-0.074150009565422267399,-0.14717499869944156154,0.14138031261087138923,0.12855992412833602834,0.24912753275289131749,-0.32345828413689886593,-0.05842831491962372642,0.090118326292962916413,-0.020255884188060294809,0.14657357038628582302,0.12098693782102139249,0.074981067325578923399,-0.058167178634075757115,-0.095824432950209093018,-0.26092608849284182337,-0.030494758951641044026,-0.62132712777968324147,0.052740460647505683911,-0.27554942450489039452,0.038120545088609958384,0.027871410852462828733,-0.056350125913118595533,-0.086371431416385313629,-0.078269392835771375849,-0.070520756870832437824,-0.11911692506297670568,0.12111279725494761283,0.024210203354581027319,-0.11685425578192722151,0.15408038008515054229,-0.060905558897819192521,-0.15682767241445128015,0.17948032058748625284,-0.17869139510318782227,0.038667060567222535927,0.14748778109396840086,-0.041567045221622703211,0.0029645194654357620752,-0.04309351401325948322,0.31578519074203437178,-0.0078878898426942116451,0.16285864624762572128,-0.11857647666007589682,-0.08064997169327368931,-0.15628464183854856584,0.1163436510028368065,0.15615968779676742129,0.28221333843060936175,-0.3166221791488311732,-0.096997683269321566257,0.10682705034215284057,0.0074620379714079882599,0.16501416824637690772,0.14697658950400846467,0.037366537145979455969,-0.036097253893086954368,-0.083696584050712632963,-0.27509496068481897879,-0.010348119301350834284,-0.61130268989223246479,0.011773969275046512056,-0.31170901749063306685,0.015288072955939289305,0.039728667761452521323,-0.05420563649627767322,-0.057486982085944965393,-0.064903530207621462633,-0.056616143208709203416,-0.12311254688425468662,0.10507505561138182071,0.033290946254753407685,-0.12453566291949813571,0.16575648963465564045,-0.07577173606154305463,-0.14105391904491054733,0.22474822479581882395,-0.19094190893435863954,0.027020664765716521233,0.1812689563955733052,-0.047715944434037663169,0.020206484305897859377,-0.031550336598752615203,0.31991148201621877334,0.0013674028638092550116,0.17838066015020176414,-0.092189089977444640955,-0.093779704213486761444,-0.17975738841097138598,0.11134500227236632242,0.16616257287201696702,0.2776553397823778857,-0.34505806347649942145,-0.12337439647025291722,0.13790832953223822188,0.016216390412515421793,0.18164600146233136901,0.16655438464399277554,0.0328726110721162465,-0.011738947998697204372,-0.040140181374246318435,-0.28207359846515639434,-0.0079254318508707212454,-0.62617282752560110559,-0.019059854320635706559,-0.32977394076815313984,-0.013697338948721493601,0.051299763727322998663,-0.079057922935914057283,-0.040593748233816694115,-0.072100843002011374971,-0.061164088629099194749,-0.12133761402272967567,0.084430660421966244322,0.040626165037951494918,-0.11982267831327501895,0.19549133619669303852,-0.098338598005994926066,-0.14452047402616108318,0.26377649659088797662,-0.22171980816598682584,-0.0054947415339306575344,0.24266338019382013846,-0.051090417397983069192,0.044516751450101380017,-0.0021675180644596479113,0.33869221376368685572,0.025281947848343051116,0.19086255032967092138,-0.053772002085326585374,-0.12658046045556223258,-0.21195571916955785463,0.10548194652435431695,0.16269159422772405676,0.26289687681792989205,-0.36055864765064765676,-0.19379519000849809718,0.1946130431939102623,0.032559651107746799548,0.18259250361673673435,0.16066075684029260118,0.01962624239013512073,0.024003615828330143039,-0.028335888222668484393,-0.30032344859319065611,0.016145904186068746333,-0.63851728955160136358,-0.060489637198361353998,-0.35499246809213769183,-0.047024794710072773118,0.09513155344876246533,-0.10775077098355086147,-0.070483170733838682032,-0.071010037450881122179,-0.052229935663893015119,-0.14455051172618588184,0.056386077267590109519,0.051229486664486248437,-0.11248258861135518316,0.22668564917364220079,-0.10214071787933513835,-0.16890624603882622989,0.24692736366494277833,-0.24665222041775897166,0.0015470837419230187761,0.27796753761407017036,-0.048635005251277778349,0.040131234278178620767,0.035181894976126754093,0.31831446911276672918,0.054071316534122212949,0.21531166154460648632,-0.011941443715943227816,-0.17014385971188372704,-0.19789043435736167198,0.097018870008900567892,0.17663544180047982546,0.25350597222413617793,-0.33854509799584819874,-0.23831412514444449968,0.20482297904724308668,0.044958676703656823281,0.20506776028545933843,0.18470170079794107076,0.0083891525375312039903,0.025399690806050527481,-0.017528093773312929116,-0.32589609663173296772,0.0003324827059639500512,-0.65118318562022214913,-0.095658603276159090423,-0.39198047235658500798,-0.038414879376371446895,0.12305190222926915,-0.13427359402311619951,-0.066723556976698683574,-0.060759936008111449512,-0.05449934944924572644,-0.16556317379640186904,0.054019814657218390153,0.058059149558541925384,-0.11306844159865764299,0.22625444048619591797,-0.0918601013024835239,-0.17003687853597024282,0.24007246096846360239,-0.27247259424930325711,-0.027647088614531804135,0.31796241184776713462,-0.039952367997207645367,0.033126456253536530616,0.05141321687376124161,0.32245074208060003906,0.072296553287820072842,0.20325780533957363283,-0.011355218656176781569,-0.18875681495380747243,-0.1934645565509045817,0.098312312460650100321,0.17914051411344306119,0.23051492561074604648,-0.3417558498970784675,-0.27667697541815000628,0.22514228587141763005,0.02721233731057156463,0.18652091634637063544,0.1678339096018355292,-0.0020593254485972638072,0.018596878589215496552,-0.016404364573077527545,-0.28535456215655380374,0.00011960470925958535063,-0.61338060139697236917,-0.13678295885816799116,-0.41250412134261571495,-0.022616450112869855571,0.091989016452468277962,-0.13806534806422474104,-0.038840289293854954322,-0.036126045266969296355,-0.048782274698508328037,-0.15244901794782833582,0.06844217668175442415,0.06209398846010051598,-0.1300637566376109111,0.22104104042883304659,-0.083378683349646154355,-0.16716971390657889285,0.2432602492353217738,-0.28704860256195069423,-0.062784208041843578285,0.33487918409394384911,-0.031465569794281139648,0.031837999882054088263,0.044742664283863010921,0.33687568074433404952,0.068243098673064384041,0.19661050411731617604,-0.01331150729253090248,-0.20924559338466872105,-0.18452691392564926631,0.10285026728996311818,0.15822928749693732087,0.22755442422526522828,-0.34627258524582898991,-0.31458603815383284763,0.24531683058851236345,0.017673546264293935742,0.16337026842380172886,0.1764786234250431407,-0.010635617881153502581,0.017401848143200442098,0.0044071548590307371013,-0.24174493881999503664,0.004411411330409467646,-0.6134906689977336347,-0.17306521559316742631,-0.42757464908685177685,-0.020876387292901182197,0.094859267115187911878,-0.18662873391541037749,-0.0062413392346707570468,-0.03287333980952956286,-0.052533882718132272893,-0.14897560946883245392,0.098445174595217177504,0.044455348617560855318,-0.13028035833089410267,0.21809606452185514858,-0.090676376868614849691,-0.16773255710454879064,0.23548913949800853729,-0.29160087650678589988,-0.092217391531448020259,0.34214109879534698733,-0.041509798031100685056,0.033768426626255912404,0.045757947068980099614,0.32815538289528856097,0.072875075302077804706,0.17740024279020841225,-0.029834225532254975144,-0.21804868267391566694,-0.18902334372351958791,0.10970996551004456865,0.14697084887030922862,0.1754978054922567976,-0.35085358895624313424,-0.30468736021109499301,0.22970758938846444486,0.0091498208116696476411,0.15707521567748417013,0.15380669798731977371,0.0013777937594168692195,0.011658014284960353454,-0.0034848853171928874731,-0.23868551953241651242,0.0062488148867367579106,-0.57730229705472790869,-0.17181238286315414499,-0.42949527541610338366,-0.0069382511331062060589,0.10905153873489360772,-0.17694867610308651074,-0.0087433213184513608462,-0.04135973030980322207,-0.056657972701343026212,-0.15175397117428054972,0.090651638823754668306,0.045168187379159688288,-0.13416483832458231396,0.22593597344562235674,-0.088299204877180265116,-0.15513837173204472752,0.24068922024842304142,-0.29326125143742681756,-0.08901299882821575582,0.35042251945249464073,-0.043683945526651682401,0.033230650985682376464,0.035684572729188068774,0.32976182834817679979,0.067892005006807837342,0.18244630757856056258,-0.037284019768674278583,-0.22542134576886060926,-0.18776219872847002557,0.11339779142605942164,0.14527638713468390974,0.17511875135116963809,-0.35419864039209497664,-0.2917418478285148109,0.22750800535885476461,0.00051595788681690402978,0.15298437221809343955,0.14058868194366480608,0.014008276004680709007,0.0068504200778279431688,-0.015058900558745022535,-0.23134793267964898211,0.0037440711022873516232,-0.56265745516561549433,-0.17639542784874898129,-0.43329411907497372702,-0.0045441287569732077833,0.10772366787552364875,-0.17634392963514511354,0.0039190016246828498006,-0.034351560699982346125,-0.057311085500030882478,-0.15907121611792340854,0.10134733966567481545,0.050516457025542624293,-0.12419825639734868861,0.20469731237164806581,-0.086269378781250224963,-0.150275212183128698,0.22953127819625790407,-0.3045230724452326343,-0.092388597828394161682,0.37050523347722258416,-0.041520208779703984825,0.011334274918438271701,0.046230586209470049541,0.33110239852495287893,0.072583558173363885158,0.1588814525283523682,-0.050919208853389900937,-0.23353410951164119136,-0.19233595117715621137,0.13871899144663832337,0.14348121634549951264,0.16076060427734709113,-0.36896667702348828755,-0.2637771319060539521,0.23900831413027645578,0.017742558692127402553,0.15475708022017531373,0.11169772209941661312,0.026629048004423887253,0.017443916528059367349,-0.0054795887678893819353,-0.2208135325201838195,-0.006833044385822542241,-0.55815848414962665469,-0.18605474218821616006,-0.44102195672688820904,-0.017594254239207178514,0.095170549665423459507,-0.17107248301386659972,0.028825107073817267389,-0.047227875933764748573,-0.054921963313027656606,-0.15547859520922083232,0.088720218530835434634,0.055088104906482450451,-0.14944359533730591783,0.21392927322025359627,-0.081063757518318360629,-0.089073437715522521541,0.25946675897031795666,-0.30555260842428288992,-0.10472138825078677882,0.39414201955055094828,-0.037981956809823747001,0.016010774339443180347,0.027131263663561278054,0.36079583064768139256,0.085035190491780834887,0.17681169276342914576,-0.035543655961104717034,-0.23016105976706247027,-0.19800157277007099377,0.16207974671088989926,0.1428520487199026745,0.17105518952460480042,-0.40773573775346738657,-0.21257154901818164916,0.25890760156777209433,0.0070559726551832121361,0.1904964891353905232,0.11398065743628416069,0.032369606982453807964,0.023225875405006871782,-0.030238967934280450156,-0.21574797327505679245,-0.0038198877233051277066,-0.55141409186362100314,-0.2031493071130122674,-0.43236523109436086898,-0.031838128136053321648,0.098769882502578232319,-0.19417256758778048131,0.026532971006382403967,-0.038674514813651431067,-0.044166882523261501159,-0.13545718271068837857,0.10063761915700969451,0.045937215093876958283,-0.14933384700377907994,0.20520405517717349442,-0.071849524956260082953,-0.059566980376569871047,0.27657936195729504458,-0.28962728068584836505,-0.11166994805137396563,0.40646189919089786846,-0.036455997355447279651,0.012036233480219149516,0.012659946003648078414,0.37090084207559870233,0.082400785769144418991,0.16875122635904230006,-0.028135713329267585114,-0.20593492916701977569,-0.20535873316717109804,0.17623319164097073219,0.16948200695726042819,0.170018595447977372,-0.4243113732940632099,-0.17316810338061924823,0.26008724987869302758,0.0040509229338161973147,0.2419285710533860545,0.11240233791926154683,0.014116309311758210021,0.023864237789707289095,-0.019269887527286644335,-0.21990797114302118587,-0.01314634584867757465,-0.57601057841195846265,-0.22608930982766037299,-0.41785439324321521637,-0.031110015072089540478,0.089211643435876522568,-0.19043708018512114921,0.044643176014756230652,-0.029313929939282019205,-0.036069231471829839297,-0.1134285499100346345,0.089723441030031478305,0.019695517703491999956,-0.13730445331857174529,0.17821624147800585458,-0.072485302507777335523,-0.048940333994003201723,0.26735581399168673045,-0.29879355126457207703,-0.13409175465246439551,0.39733078701154378454,-0.044375057294894895699,-0.0049022629365012950278,0.012757859715570845499,0.3743873261619663495,0.070837598194691070441,0.17682678127444567684,-0.020773401347588683896,-0.18296404248471492826,-0.2307541132019158836,0.20486934457284636246,0.20825656438871734122,0.22169563707711481548,-0.44838921925892322173,-0.14021419560429485007,0.27460567178070355299,0.001297084726678808704,0.30607617040393525487,0.13667956557604374335,0.047251831546753920998,0.017815564667536393229,0.021282454422982828579,-0.21608250579229529298,-0.031835551619044298588,-0.55726693366747714897,-0.24560875756471703402,-0.42002307749379608204,-0.028035738507943538944,0.079235526017666341181,-0.18836742228495928497,0.058465658483412626112,-0.046287419282621568295,-0.038122185203065837855,-0.065643908147129517716,0.093293835748006384567,0.0011401870183656665977,-0.12308427678729669252,0.15509538000419503812,-0.072857099472107209048,-0.031254401138917239922,0.26768606755887724979,-0.30585501103245860133,-0.13268281701083048385,0.42473722848747957892,-0.050696491643400225235,-0.0050119901423044989353,0.023727367906262151337,0.38357800973719641258,0.083327641749885827949,0.18827786940408755556,0.011135020680006635016,-0.18060371025508414888,-0.22951502077678970215,0.19219019456392300027,0.25743081193528499773,0.22101284513477795213,-0.45086399199974697138,-0.13665526743508785157,0.31200846135863169462,0.012350660942336106132,0.36164134112209717076,0.17077512129556302045,0.071558421852841336275,0.0012976458575480616896,0.0088028627825350504871,-0.20650540674720616052,-0.059373931380301156469,-0.53400206571683517254,-0.2879984231924844762,-0.4033012685263506758,-0.0051521882734060914233,0.085941674175236848487,-0.20162141048589804493,0.12559818114950405121,-0.036433132162176404267,-0.043494150409665990886,0.0046305716394362990418,0.1130067847396407088,-0.00099146981190878632692,-0.11840236237964704702,0.15776362962039072735,-0.070494337207928164935,-0.02953521131308671846,0.25048559015295257524,-0.2943971747731908839,-0.14230267885128905503,0.47075435326964337746,-0.052630486637078394141,0.0032039454748021235428,0.044428279457986073753,0.39247133561599423235,0.11772687175398041659,0.20766121547567067962,0.061003846741401988873,-0.18158982475061311024,-0.22295236194305753652,0.19544330177894708722,0.27172675085449760068,0.2327061396810279903,-0.4462825575006466039,-0.13940640888518870955,0.335127783403439794,-0.0010127353220724941759,0.3925604813182734798,0.21482861921432747088,0.094021122719789601563,-0.013223346908334087171,-0.0095272515481378324681,-0.18672476461735909581,-0.084520363608403287214,-0.49064231566175564581,-0.35519726219006886314,-0.37270309007427587789,0.017880167501773045619,0.071331479843181860856,-0.22192297844942987517,0.19043343947808655248,-0.02249279601095628342,-0.043823652907148825941,0.061794396104829868444,0.11711246374774833545,-0.0060988885113842919092,-0.112874392596116771,0.14425342502206420225,-0.053538207895212110154,-0.03958989220756434918,0.22894594559052861005,-0.26716378974789317668,-0.12997143052599602342,0.47213184489079024209,-0.04267363626083696404,-0.0094465011334568613904,0.013476171117257407239,0.36740110977003548332,0.094895587298925998532,0.1954834452712638504,0.074799206050370992127,-0.13492125953386216453,-0.21499334606722769747,0.1412881760992660829,0.32003238670376288333,0.27798977822740900123,-0.42736410074413622162,-0.13080489734413092151,0.31708287468662244013,0.046468404243499801531,0.4404246245837779572,0.24930258498326240968,0.077407757469575372289,0.011942905346712105394,0.0053139992577600153947,-0.19462167180768488728,-0.084594239873890988979,-0.45987895873766926336,-0.37440577950113712591,-0.35675219384007528234,0.022670031918901267787,0.096632458783977137617,-0.21668037756102032088,0.28464171351078054739,-0.014060074245605571133,-0.040639574001803180359,0.098474775738013012316,0.13339435315805117654,-0.011163568305934044173,-0.10188377794302266866,0.11623385323484197729,-0.047128341670507598038,0.016072454258203007493,0.2201801456602066609,-0.25627826761273181377,-0.080265439185299256031,0.48187685549279751784,-0.037504820439527276899,-0.01121168680947750261,0.035247091479418006521,0.34290462300874452461,0.11196737490963697137,0.20693743742680062447,0.10680049423409182507,-0.1015780160509422575,-0.19045034823587730921,0.14366932597526854698,0.3835346774669136094,0.25892881354983382503,-0.41690973607466169648,-0.1013551444716650346,0.34159302804689833932,0.061350231642073253802,0.52415747775911902817,0.29986358983178756921,0.058687346356899233735,0.011147408539914941891,-0.032561416284282267142,-0.20006652837490021546,-0.11344949669676894499,-0.40762829117948945479,-0.38520004339510371949,-0.29507248503152166963,0.027955316769453470577,0.10192204561276621555,-0.24626855265956251739,0.34055131908710600808,0.00086042149786533727533,-0.041973280611255846251,0.14085072112713528658,0.14274725869814880452,-0.037791888593039973943,-0.10072802060659621914,0.072405050640282783703,-0.042350658336591753828,0.097875916354759451288,0.24174521421550410061,-0.22015314184005987941,-0.071485619024881430494,0.47016281471650789303,-0.046479336352644992636,-0.0031952763031529076571,0.018349215691434269532,0.34812544285080837536,0.13914713160182845542,0.2083006922035831876,0.1451359052447107334,-0.030221507291733163553,-0.20221263789993573767,0.17771474975686113451,0.45403851580871218419,0.22398567010670650257,-0.44483156432910325728,-0.078257810872744554276,0.3646230789795214533,0.01551751269705419975,0.62111366097334763658,0.3613953157909363112,-0.011085325661667935759,0.017487869238305909364,-0.028268677601384715331,-0.15644050787766816679,-0.15279256728956858158,-0.36349534444807801714,-0.40543225476268784924,-0.21295494262633099525,0.039299834568035256488,0.071223324823621703139,-0.2530365033543818809,0.36561687011824212101,0.0018128097610537246762,-0.045228023217422134994,0.19136115767210273853,0.12710099462812324278,-0.057621753114528669049,-0.097682307363060355554,0.043106513477908732501,-0.03699619779867163033,0.1513308519291921006,0.24664898122096906574,-0.18418889560398718497,-0.033286314895099970712,0.47577692898652851339,-0.049282249864483672341,0.022561065328615660663,-0.017580059585176797954,0.37334955825326821,0.14817283408086248664,0.22107382207878550906,0.21286664073669758768,0.045190813436049810659,-0.20790735157209591644,0.19732991870312852067,0.49739847433697920165,0.26200428211854798199,-0.44832477810046983402,-0.029615161713946770716,0.36058243972124681687,-0.03630733022643019281,0.7050501150258764449,0.42297872750952508758,-0.039896952016068479296,0.021270652043752329152,-0.016852979745741441392,-0.15994268988687779243,-0.14866622118876465786,-0.34919375938007202187,-0.40140238898075236706,-0.16618133959643363595,0.021735944488559529736,0.051034639331098141657,-0.24035362429136050699,0.38212721557312073761,-1.2098544913614683394e-05,-0.04063766858513299246,0.21441024007702222387,0.11114688916595150125,-0.067236781000242468176,-0.093789454302406149999,0.015008957677237061423,-0.022745889806639246755,0.1333737692607507852,0.21520870172328415704,-0.12593490888520808557,-0.037023550114963083013,0.47954608823851851973,-0.050172628153909222537,0.029084031847994764458,-0.051507323553317885256,0.36456996926140816662,0.13535998242334953967,0.18774450537525791405,0.24145981399234708875,0.086058801005998636358,-0.17985248768715220158,0.18123385951914386394,0.52279232500742023326,0.25084728400354378008,-0.45419310540554003186,0.069790867869243905508,0.35911626735084573037,-0.013900431258495653253,0.76481585603539314899,0.42201589145635270972,-0.021300965755319402339,0.01450877562641136008,-0.040748991568639737759,-0.14268835021504996941,-0.19059848495529010948,-0.29594263659144798284,-0.44583056749855048961,-0.093463041924700299146,0.012988254876395819923,0.047571980240718722555,-0.195329486882971054,0.42813231516475508398,0.027425847804994605422,-0.028501474301385588961,0.24375181971524459423,0.11789574292447582704,-0.078362892732425387665,-0.081380369582240416615,0.0043148928945963152884,-0.019692753029243115215,0.16509749493376937868,0.22046762053246365953,-0.11824124598428603639,-0.046145323787354385059,0.5639318083742861365,-0.045860644331181650568,0.04735665150977448612,-0.051673841646078029488,0.36324439186831597448,0.17108419588417092538,0.18290208982492037193,0.27596813867449998536,0.090069581208161483832,-0.15757173461978793427,0.20444775435068257563,0.5746488370977589355,0.23073470929994530088,-0.43986731862635647383,0.0097731583306447534359,0.37604760419754240663,-0.052723464527841656935,0.80083990190893372674,0.45994457952545497736,-0.072236880868211311713,-0.00017976243803783211253,-0.038839754061565541499,-0.11966424554176088857,-0.18242801310232395484,-0.27224303875777600137,-0.53033107180316185758,-0.039908838500165015606,0.012984083845568480248,0.042185933181149527782,-0.22276324848715176041,0.54184922141608826696,0.034906245955932495295,-0.025656172742269743592,0.29450105238029872234,0.087546987355132471764,-0.072941028049029049685,-0.081280808447585117804,0.0075699865550601826147,-0.014580170979808616122,0.18607553090231615522,0.23223076922644969589,-0.12257162278299074676,-0.024812033448627705129,0.62548184458697675403,-0.042306175939280134257,0.057205547007326593145,-0.038497009832970809085,0.37272695179812465049,0.21732230950777298162,0.21697066772570938742,0.33129960772423905357,0.10584888898724859052,-0.16295837487282524569,0.24156789750486640234,0.61257522464614355684,0.25732618383140909435,-0.40746666526398450658,-0.027091861969882832101,0.37866190419009609913,-0.12151114136738565275,0.84644047106855635487,0.51812790402254260691,-0.090569944106901598135,-0.023611031872321719405,-0.046142285169206334605,-0.12939721588820352061,-0.18138105771544665856,-0.26266326250102822737,-0.60414583268575572372,-0.0086119534286203773543,0.02285565278388678595,8.7324615453580737602e-05,-0.23673729141757218764,0.59657376921757099275,0.053259198233911266007,-0.012150079500932440754,0.34272919007259872171,0.071040462529876266529,-0.08748210631748484789,-0.056063403137068486271,0.054827422961309851823,-0.032824169976022180006,0.20639340812684164872,0.25756179618219127159,-0.11379263920414819933,-0.040020279331630125019,0.67499446877124402722,-0.062488593711759354843,0.067861089070331379047,-0.010214267676292593939,0.34805750819948177988,0.25231866108463263387,0.26788373902164885898,0.38271474808362859754,0.077847396522090245297,-0.15540266106260380852,0.27148307413821076706,0.64972311290559914276,0.26256743663211107309,-0.4593114416833122271,-0.050656890556514885815,0.43560579477675182014,-0.13016652075421084045,0.90381999816345293119,0.56685300925780368608,-0.10194671242788919119,0.0076205741797656535025,-0.019022199433921010286,-0.13265872976516759896,-0.21312924236997179972,-0.25667063583263927118,-0.67328152408016506136,0.02710054631589552121,0.026992585090783009077,0.0077798261643922915487,-0.25913954184931453639,0.62597527595694146818,0.04597081780029915743,-0.028329778602686893352,0.33630361494499849684,0.0551305706971391557,-0.097666124808301363336,-0.048311141558605545654,0.077524100137439086455,-0.048988363735550564948,0.23652124866050150409,0.26674513216547002248,-0.089176618612883340464,-0.023085130852671859047,0.65824248281518960013,-0.073887228856309120073,0.091495331516932842941,-0.007561262451100694143,0.32860555020896536904,0.25419416242909304016,0.27276984050492386613,0.40845719278728159773,0.096399101601249995164,-0.1573888105038787899,0.2582937050079182062,0.70782575343288600678,0.25310924771035919756,-0.47555845387383305356,-0.071928149463456242385,0.4262949529365565593,-0.13732461518913419152,0.95626515968610681373,0.59517179508595541293,-0.1409978748311199459,0.0031784170431253450963,-0.0048661891089137225899,-0.093758638281348199994,-0.18289969691391289031,-0.24961566925599523725,-0.68263405551457911891,0.090168448370030102046,0.018326658691580254013,0.014916854862398978843,-0.26883258046531183227,0.63762099650654879834,0.028948519184158878065,-0.030850099576681652702,0.34367653599978886803,0.025221464699485815486,-0.051205793974993391027,-0.080370134681178886926,0.065720514945648900174,-0.035816887261330664083,0.22314101267309982557,0.24605845944716001061,-0.048884344216428433916,0.085474061785818997161,0.66570183973206020767,-0.05216990983986163205,0.11662950974253383229,0.049290307720999348984,0.20874806947895338527,0.30075011344392160728,0.31669466606085006077,0.50635021554979875447,0.098999735990458762047,-0.13507276696902903446,0.22463729159052753248,0.7781142220709731383,0.24470102548078995208,-0.44245367817598174609,-0.061558429135275267996,0.38929141841565739757,-0.2000688857005820942,0.99870720515307698228,0.6537085083930002094,-0.10605683036990805335,-0.020352241824842725454,0.086028702603691789563,-0.085485797486384754174,-0.18216864567638851868,-0.28155991349317166517,-0.69325584497824921382,0.12852208736154877022,0.038872985556270354957,-0.017677116672129601638,-0.27535626509292165931,0.64838452360202725178,0.073441733290269886614,-0.017243737371094570304,0.39537772360170075903,0.040689467367118092866,-0.02004630046291999354,-0.08086016860671081663,0.095323384341223033056,-0.044960566363712942128,0.21480313320566110646,0.24023933563657881574,-0.017842043522104236719,0.06449712895501198695,0.6720807882595004612,-0.052186542927810518344,0.13329953397454330499,0.10370273969426767324,0.14785012846736139691,0.30487289060524014328,0.33092136316582465572,0.49205715257040594235,0.092213169389046875657,-0.11920345638689691659,0.20367023952512325335,0.83898199002538753621,0.20585731322130709775,-0.44991477954744540924,-0.060403733117922346618,0.39605518052772004101,-0.18560606796862241796,1.04259097906645537,0.6967547821515942541,-0.13318603414980842436,-0.016698401199338120532,0.039929923286029130047,-0.038080457721029685458,-0.1708692393422584499,-0.21122978205210940494,-0.73136752572214291934,0.18389666866977344428,0.034935536958162455301,0.0094262594069857777446,-0.26502642876958915075,0.69124513874094439814,0.082827646623915368584,-0.015354530919677599615,0.4510354264907144306,0.055215837198699026234,0.017594968528519074752,-0.063975690382966812764,0.093716686947054372858,-0.053889320814307153928,0.26584722259872139993,0.25741436180578297632,-0.023329494155127177696,0.046729186213466507305,0.7504831711604500466,-0.042038616345569913835,0.14125658874542307286,0.12730077795950345276,0.15154296138813630468,0.28529647764679288979,0.26317417430483225349,0.48982508963381526934,0.097830112696248416881,-0.12448479534762529886,0.20999595029890791298,0.88793170196404824779,0.147349241863427044,-0.45779233350834463989,-0.041769775321942141655,0.38813806507603865192,-0.22779529777829626846,1.039288390946991214,0.69374244998730472123,-0.1994376649575067828,0.0057884194350391526482,0.016642659159987777118,0.029182340234142924856,-0.085861819143466619475,-0.12379382742328791378,-0.75346349655951172508,0.23717549756693820373,0.0018500017846073374232,0.017601804074736163847,-0.259913404794936298,0.79140200802487481457,0.07334147286264904031,0.0047449468528492000016,0.47162159184264046408,-0.0040892047224266236602,0.041111148507932057661,0.021394696434184425765,0.15372439783517785616,-0.04481647919397563351,0.27137241748487783699,0.25485364857845715925,-0.090260272266544608333,0.045716245415985970468,0.8986026682565196877,-0.019038949080831112093,0.12781325058049011756,0.14365502170556077033,0.18299964496307077888,0.30318921675890042611,0.2597548013763388286,0.51662304433332806308,0.13896579246867826751,-0.096267431421172888761,0.25287801010200883223,1.0279319930453136855,0.24418807012292154113,-0.4744606757778045969,0.012008934004566762521,0.43753543336346351067,-0.27108158095201695392,1.1657767082541634629,0.81708740160834048005,-0.26765029849007615503,0.0017564544032301217767,0.031673013465986638026,0.059630807951297534752,-0.020583280278810015679,-0.052523661794871910613,-0.86257891210970316642,0.25142835418720327345,-0.022379253824570576742,0.037331056720289475248,-0.2284361098669971113,0.9617396958849235844,0.091116932769314470941,0.044208570046046599678,0.51241644553474141599,-0.11777244791422732118,0.049131070056621727049,0.070189609606985711721,0.22623592324040051049,-0.035760412912298575328,0.2059021259110489499,0.25478279786552154862,-0.093253004696505575888,0.0447157407787938041,0.9389875261881387436,-0.0045053113374397164848,0.11107985847731079165,0.13372902378303769266,0.1827312227310367021,0.27950307170013249936,0.25463916809267050922,0.51750334793591401539,0.13626312955993163945,-0.070693278493561412246,0.23117264116799465801,1.0650846939573797023,0.31823547888162562192,-0.45661853170137467473,0.025219703961693859529,0.42674067886986527531,-0.22623048848831098234,1.1834769265670832539,0.89051895798813562877,-0.33595707752312342631,0.0059415488265719025585,0.036798699077473809305,0.06552124631460856663,0.017280257351101422497,-0.00063690131927407987733,-0.89841921504656463426,0.26995653232128091759,-0.049090628011741632708,0.058585965441731419068,-0.21383956275834192784,1.040654144741436804,0.10729800195113559091,0.070199218853982753297,0.48983181283649224191,-0.16627339327499407462,0.039573680010176269517,0.11383159215494845218,0.2759152123925186495,-0.051350417668010378547,0.18815005345689556071,0.25158254487953157774,-0.091393648931623633347,0.049191786889841840336,0.88575113367312274804,-0.013914286891611763256,0.1119513393509472543,0.12067228411210963179,0.16853266035579772542,0.23845737652254600514,0.28001601888785149219,0.54425018143826175976,0.13731640829535782244,-0.073800659594878248448,0.21906833315048832023,1.0995300117061725942,0.41379603658537128519,-0.50601356696691934811,0.056048571782913503281,0.43704134355038887216,-0.18430785928698362186,1.2106158038480450134,0.92944383456584089842,-0.36539776169621146495,0.0034585705214183939255,0.15633942806875958387,0.14662853909907558325,0.04932776523024776788,0.047431433537747751117,-0.89063596197480532357,0.29546622348949286296,-0.096351289964327985205,0.09023815980265177672,-0.21011489224762847083,1.0555538305449592151,0.078765482549832191439,0.075584401514666221811,0.4478075292538453156,-0.22250549040066316953] temp2 = np.array(LW2_1) LW2_1 = temp2.reshape((93, 43)) # ######## Output 1 y1_step1 = {'ymin': -1, 'gain': [0.043859649122807,0.044432513390484,0.0457417796837631,0.0473559947894652,0.0474735112919784,0.0477637822267266,0.0484050620716164,0.0486934176339923,0.0487290414271462,0.0487323390463977,0.0487376981156927,0.0488331083484923,0.0488783937341623,0.0491401805333158,0.0490966562039708,0.0491086072284748,0.0493631166499366,0.0492514416233219,0.0493859678261437,0.049537375183834,0.0497758306455687,0.0495474612103816,0.0493795037998211,0.0494335821606349,0.0492821957342268,0.0492530019353055,0.0492868366313963,0.0490319427830352,0.0491621820544462,0.048718608660081,0.0485476918011754,0.0486474650386642,0.0485584083505289,0.0485856772864948,0.0480788930326349,0.0481314948730762,0.0484266805339406,0.0489916808014502,0.0499906063564033,0.0513357135021671,0.0512780370973281,0.0512862135287764,0.0503694936649585,0.0503884862777959,0.050509996223982,0.0505552291154644,0.0505564947000966,0.0502390049950428,0.0500104848686487,0.0493624667912096,0.0513217768701024,0.0517775131696413,0.0526146330386633,0.0526527147107106,0.0527118235285031,0.0532140378881637,0.0540124428140577,0.0539100090669279,0.0535829030998376,0.0530738426668209,0.0535721234974637,0.0530006685023741,0.0530503978779841,0.0529300554005592,0.0517027567379992,0.0512355524651148,0.0505048930078384,0.0499839556000501,0.0489116367208205,0.0482448698775708,0.0477093628447898,0.0476495164834308,0.047321131374345,0.0486089841718837,0.0496044398535496,0.0516935789292232,0.0531010950173294,0.0537793979056641,0.0528644668100087,0.0520159373110468,0.0514365795277021,0.0505854035702524,0.0483347150164136,0.04827069401161,0.0491621495798401,0.0493487781414441,0.0485149185479138,0.0488425318640875,0.0492780521274358,0.0501991494507252,0.0568499896284246,0.0579752915415808,0.0586550527309614], 'xoffset': [-9.7,-8.36853581366338,-7.6311114713103,-7.3,-7.41575075961383,-7.47273090113216,-7.71799267276954,-7.9018978099516,-8.1,-8.32169352622345,-8.65296879459462,-8.83286033114985,-9.10845167142618,-9.20831649393743,-9.48536124533385,-9.69609898027269,-9.83603929546296,-10.2352740616718,-10.295373474522,-10.5,-10.5917680976192,-11.1640641142507,-11.5923804406991,-11.9238552940994,-12.3,-12.5864409060617,-12.8884821516731,-13.3013186054304,-13.7644248853015,-14.2678649020519,-14.8165594279917,-15.0676400584796,-15.368501244824,-15.8,-16.0982955065634,-16.301619242649,-16.4670837022787,-16.5959823957399,-16.2014919077065,-15.5065854786604,-15.9919750325206,-16.3901106930281,-16.8147251249279,-17.2916071059137,-17.6931446296129,-17.8606950060922,-18.2578138911386,-19.0683123920656,-19.5853801432019,-20.6923844247438,-19.807030993261,-19.9979096210209,-20.2602059190445,-20.6845395589527,-20.9996465771089,-21.0984099433285,-21.4002413456806,-21.7987210329207,-22.2,-23.2038737833372,-23.7,-24.5247949108117,-25.1,-25.4823591624888,-26.8837369044822,-28.0372473800327,-29.1,-30.3976307989663,-31.60252040691,-32.9930125996283,-34.2040047385683,-34.5445571586337,-35.3985757162141,-35.6659077597772,-36.2164499382529,-35.8985336882364,-36.366679477399,-37.1889622771206,-38.5862327186166,-41.058574812408,-43.5907204816083,-45.6910013200123,-47.7040684397082,-49.4848359228044,-51.4883926377285,-53.4685700291625,-55.7120213797104,-57.9461469192178,-59.2919471256105,-60.4416606341393,-58.0188863343265,-58.7974548090986,-59.83771958218],} # ###########===== SIMULATION ========########### if np.size(Inputdata) == 17: Q = 1 else: Q = len(Inputdata[0]) #####输入矩阵的列数 #####===========Input 1================ ##### Remove Constants Input Processing Function xp1 = mapminmax_apply(Inputdata, **x1_step2) ##### =============Layer 1============ if Q != 1: a1 = np.tile(np.array(b1), (Q, 1)) ##repmat(b1,1,Q) a1 = np.transpose(a1) else: a1 = b1 a1 = tansig_apply(a1 + np.dot(IW1_1, xp1)) ### xp1为归一化处理后 if Q != 1: n = np.tile(np.array(b2), (Q, 1)) n = np.transpose(n) else: n = b2 a2 = n + np.dot(LW2_1, a1) y1 = mapminmax_reverse(a2, **y1_step1) return y1
4b8d6169d7fb234c6643e2c07068d091c93fb197
006e45e8910f028d8337955022f18c40f0275da6
/fourtytwo.py
99ad6e1a3bd6c808f9ea17ae07366ce7117ce027
[]
no_license
Harryhar1412/assignement4
c5b93fd7fcc52393ed69be378e10884a74e41f94
4abd0e351f754866a5fdf8ba9dc5745a38363153
refs/heads/master
2022-11-07T04:13:05.197468
2020-06-28T13:29:09
2020-06-28T13:29:09
275,589,716
0
0
null
null
null
null
UTF-8
Python
false
false
207
py
# 42. Write a Python program to convert a list to a tuple. input_string = input("Enter a list elements separated by space ") userList = input_string.split() print (userList) tupp=tuple(userList) print (tupp)
c47ec3b06c58efce2ed9f6ca599d3017ad05f1e1
50f36fade526519d8e4eed33685e54a26b9f6b43
/lb4.py
f761a64e55e72450f82d516700913368b321fd18
[]
no_license
myusernameisalreadytakenn/MND
0bfaf9b8c33fd29484d8a228785f7db2f535a7ab
fd0393f10eda90a79cd6806408867b1b649edc87
refs/heads/main
2023-05-05T11:58:43.403192
2021-05-24T08:10:27
2021-05-24T08:10:27
340,164,535
0
1
null
null
null
null
UTF-8
Python
false
false
4,658
py
import random import numpy as np from numpy.linalg import solve from scipy.stats import f,t n = 8 x1min = -20 x1max = 30 x2min = 20 x2max = 60 x3min = -20 x3max = -5 y_max = 200 + (x1max + x2max + x3max) / 3 y_min = 200 + (x1min + x2min + x3min) / 3 xn = [[1, 1, 1, 1, 1, 1, 1, 1], [-1, -1, 1, 1, -1, -1, 1, 1], [-1, 1, -1, 1, -1, 1, -1, 1], [-1, 1, 1, -1, 1, -1, -1, 1]] x1x2_norm, x1x3_norm, x2x3_norm, x1x2x3_norm = [0] * 8, [0] * 8, [0] * 8, [0] * 8 for i in range(n): x1x2_norm[i] = xn[1][i] * xn[2][i] x1x3_norm[i] = xn[1][i] * xn[3][i] x2x3_norm[i] = xn[2][i] * xn[3][i] x1x2x3_norm[i] = xn[1][i] * xn[2][i] * xn[3][i] y1 = [random.randint(int(y_min), int(y_max)) for i in range(8)] y2 = [random.randint(int(y_min), int(y_max)) for i in range(8)] y3 = [random.randint(int(y_min), int(y_max)) for i in range(8)] y_matrix = [[y1[0], y2[0], y3[0]], [y1[1], y2[1], y3[1]], [y1[2], y2[2], y3[2]], [y1[3], y2[3], y3[3]], [y1[4], y2[4], y3[4]], [y1[5], y2[5], y3[5]], [y1[6], y2[6], y3[6]], [y1[7], y2[7], y3[7]]] print("Матриця планування y : \n") for i in range(n): print(y_matrix[i]) x0 = [1, 1, 1, 1, 1, 1, 1, 1] x1 = [10, 10, 50, 50, 10, 10, 50, 50] x2 = [20, 60, 20, 60, 20, 60, 20, 60] x3 = [20, 25, 25, 20, 25, 20, 20, 25] x1x2, x1x3, x2x3, x1x2x3 = [0] * 8, [0] * 8, [0] * 8, [0] * 8 for i in range(n): x1x2[i] = x1[i] * x2[i] x1x3[i] = x1[i] * x3[i] x2x3[i] = x2[i] * x3[i] x1x2x3[i] = x1[i] * x2[i] * x3[i] Y_average = [] for i in range(len(y_matrix)): Y_average.append(np.mean(y_matrix[i], axis=0)) list_for_b = [xn[0], xn[1], xn[2], xn[3], x1x2_norm, x1x3_norm, x2x3_norm, x1x2x3_norm] list_for_a = list(zip(x0, x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3)) print("Матриця планування X:") for i in range(n): print(list_for_a[i]) bi = [] for k in range(n): S = 0 for i in range(n): S += (list_for_b[k][i] * Y_average[i]) / n bi.append(round(S, 3)) ai = [round(i, 3) for i in solve(list_for_a, Y_average)] print("Рівняння регресії: \n" "y = {} + {}*x1 + {}*x2 + {}*x3 + {}*x1x2 + {}*x1x3 + {}*x2x3 + {}*x1x2x3".format(ai[0], ai[1], ai[2], ai[3],ai[4], ai[5], ai[6], ai[7])) print("Рівняння регресії для нормованих факторів: \n" "y = {} + {}*x1 + {}*x2 + {}*x3 + {}*x1x2 + {}*x1x3 +" " {}*x2x3 + {}*x1x2x3".format(bi[0], bi[1], bi[2], bi[3], bi[4], bi[5], bi[6], bi[7])) print("Перевірка за критерієм Кохрена") print("Середні значення відгуку за рядками:", "\n", +Y_average[0], Y_average[1], Y_average[2], Y_average[3], Y_average[4], Y_average[5], Y_average[6], Y_average[7]) dispersions = [] for i in range(len(y_matrix)): a = 0 for k in y_matrix[i]: a += (k - np.mean(y_matrix[i], axis=0)) ** 2 dispersions.append(a / len(y_matrix[i])) Gp = max(dispersions) / sum(dispersions) Gt = 0.5157 if Gp < Gt: print("Дисперсія однорідна") else: exit("Дисперсія неоднорідна") #print замiнив на exit print(" Перевірка значущості коефіцієнтів за критерієм Стьюдента") sb = sum(dispersions) / len(dispersions) sbs = (sb / (8 * 3)) ** 0.5 t_list = [abs(bi[i]) / sbs for i in range(0, 8)] d = 0 res = [0] * 8 coef_1 = [] coef_2 = [] m = 3 F3 = (m - 1) * n for i in range(n): if t_list[i] < t.ppf(q=0.975, df=F3): coef_2.append(bi[i]) res[i] = 0 else: coef_1.append(bi[i]) res[i] = bi[i] d += 1 print("Значущі коефіцієнти регресії:", coef_1) print("Незначущі коефіцієнти регресії:", coef_2) y_st = [] for i in range(n): y_st.append(res[0] + res[1] * xn[1][i] + res[2] * xn[2][i] + res[3] * xn[3][i] + res[4] * x1x2_norm[i]\ + res[5] * x1x3_norm[i] + res[6] * x2x3_norm[i] + res[7] * x1x2x3_norm[i]) print("Значення з отриманими коефіцієнтами:\n", y_st) print("\nПеревірка адекватності за критерієм Фішера\n") Sad = m * sum([(y_st[i] - Y_average[i]) ** 2 for i in range(8)]) / (n - d) Fp = Sad / sb F4 = n - d if Fp < f.ppf(q=0.95, dfn=F4, dfd=F3): print("Рівняння регресії адекватне при рівні значимості 0.05") else: print("Рівняння регресії неадекватне при рівні значимості 0.05")
b4631acdfaeba6632543932c6d6b336b5eb9fa7f
2485f7d6e12daa2c29926a7c87e2ab18f951a107
/pypilot/signalk.py
a49f9d16378428197f19f51b84213e2e9ee31e36
[]
no_license
mielnicz/pypilot
add65367b9b1d2630bad463aa82ce6463e177147
f0c9b2d2c8a1107a0f114ebe528af2beee7ad161
refs/heads/master
2023-07-13T15:58:08.306890
2020-03-16T06:24:02
2020-03-16T06:24:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
23,095
py
#!/usr/bin/env python # # Copyright (C) 2020 Sean D'Epagnier # # This Program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public # License as published by the Free Software Foundation; either # version 3 of the License, or (at your option) any later version. import time, socket, multiprocessing, os from nonblockingpipe import NonBlockingPipe import pyjson from client import pypilotClient from values import Property, RangeProperty from sensors import source_priority signalk_priority = source_priority['signalk'] radians = 3.141592653589793/180 meters_s = 0.5144456333854638 # provide bi-directional translation of these keys signalk_table = {'wind': {('environment.wind.speedApparent', meters_s): 'speed', ('environment.wind.angleApparent', radians): 'direction'}, 'gps': {('navigation.courseOverGroundTrue', radians): 'track', ('navigation.speedOverGround', meters_s): 'speed', ('navigation.position', 1): {'latitude': 'lat', 'longitude': 'lon'}}, 'rudder': {('steering.rudderAngle', radians): 'angle'}, 'apb': {('steering.autopilot.target.headingTrue', radians): 'track'}, 'imu': {('navigation.headingMagnetic', radians): 'heading_lowpass', ('navigation.attitude', radians): {'pitch': 'pitch', 'roll': 'roll', 'yaw': 'heading_lowpass'}}} token_path = os.getenv('HOME') + '/.pypilot/signalk-token' def debug(*args): #print(*args) pass class signalk(object): def __init__(self, sensors=False): self.sensors = sensors if not sensors: # only signalk process for testing self.client = pypilotClient() self.multiprocessing = False else: server = sensors.client.server self.multiprocessing = server.multiprocessing self.client = pypilotClient(server) self.initialized = False self.missingzeroconfwarned = False self.signalk_access_url = False self.last_access_request_time = 0 self.sensors_pipe, self.sensors_pipe_out = NonBlockingPipe('signalk pipe', self.multiprocessing) if self.multiprocessing: import multiprocessing self.process = multiprocessing.Process(target=self.process, daemon=True) self.process.start() else: self.process = False def setup(self): try: f = open(token_path) self.token = f.read() print('signalk' + _('read token'), self.token) f.close() except Exception as e: print('signalk ' + _('failed to read token'), token_path) self.token = False try: from zeroconf import ServiceBrowser, ServiceStateChange, Zeroconf except Exception as e: if not self.missingzeroconfwarned: print('signalk: ' + _('failed to') + ' import zeroconf, ' + _('autodetection not possible')) print(_('try') + ' pip3 install zeroconf' + _('or') + ' apt install python3-zeroconf') self.missingzeroconfwarned = True time.sleep(20) return self.last_values = {} self.last_sources = {} self.signalk_last_msg_time = {} # store certain values across parsing invocations to ensure # all of the keys are filled with the latest data self.last_values_keys = {} for sensor in signalk_table: for signalk_path_conversion, pypilot_path in signalk_table[sensor].items(): signalk_path, signalk_conversion = signalk_path_conversion if type(pypilot_path) == type({}): # single path translates to multiple pypilot self.last_values_keys[signalk_path] = {} self.period = self.client.register(RangeProperty('signalk.period', .5, .1, 2, persistent=True)) self.uid = self.client.register(Property('signalk.uid', 'pypilot', persistent=True)) self.signalk_host_port = False self.signalk_ws_url = False self.ws = False class Listener: def __init__(self, signalk): self.signalk = signalk self.name_type = False def remove_service(self, zeroconf, type, name): print('signalk zeroconf ' + _('service removed'), name, type) if self.name_type == (name, type): self.signalk.signalk_host_port = False self.signalk.disconnect_signalk() print('signalk ' + _('server lost')) def update_service(self, zeroconf, type, name): self.add_service(zeroconf, type, name) def add_service(self, zeroconf, type, name): print('signalk zeroconf ' + _('service add'), name, type) self.name_type = name, type info = zeroconf.get_service_info(type, name) if not info: return properties = {} for name, value in info.properties.items(): properties[name.decode()] = value.decode() if 'swname' in properties and properties['swname'] == 'signalk-server': try: host_port = socket.inet_ntoa(info.addresses[0]) + ':' + str(info.port) except Exception as e: host_port = socket.inet_ntoa(info.address) + ':' + str(info.port) self.signalk.signalk_host_port = host_port print('signalk ' + _('server found'), host_port) zeroconf = Zeroconf() listener = Listener(self) browser = ServiceBrowser(zeroconf, "_http._tcp.local.", listener) #zeroconf.close() self.initialized = True def probe_signalk(self): print('signalk ' + _('probe') + '...', self.signalk_host_port) try: import requests except Exception as e: print('signalk ' + _('could not') + ' import requests', e) print(_('try') + " 'sudo apt install python3-requests' " + _('or') + " 'pip3 install requests'") time.sleep(50) return try: r = requests.get('http://' + self.signalk_host_port + '/signalk') contents = pyjson.loads(r.content) self.signalk_ws_url = contents['endpoints']['v1']['signalk-ws'] + '?subscribe=none' except Exception as e: print(_('failed to retrieve/parse data from'), self.signalk_host_port, e) time.sleep(5) self.signalk_host_port = False return print('signalk ' + _('found'), self.signalk_ws_url) def request_access(self): import requests if self.signalk_access_url: dt = time.monotonic() - self.last_access_request_time if dt < 10: return self.last_access_request_time = time.monotonic() try: r = requests.get(self.signalk_access_url) contents = pyjson.loads(r.content) print('signalk ' + _('see if token is ready'), self.signalk_access_url, contents) if contents['state'] == 'COMPLETED': if 'accessRequest' in contents: access = contents['accessRequest'] if access['permission'] == 'APPROVED': self.token = access['token'] print('signalk ' + _('received token'), self.token) try: f = open(token_path, 'w') f.write(self.token) f.close() except Exception as e: print('signalk ' + _('failed to store token'), token_path) # if permission == DENIED should we try other servers?? self.signalk_access_url = False except Exception as e: print('signalk ' + _('error requesting access'), e) self.signalk_access_url = False return try: def random_number_string(n): if n == 0: return '' import random return str(int(random.random()*10)) + random_number_string(n-1) if self.uid.value == 'pypilot': self.uid.set('pypilot-' + random_number_string(11)) r = requests.post('http://' + self.signalk_host_port + '/signalk/v1/access/requests', data={"clientId":self.uid.value, "description": "pypilot"}) contents = pyjson.loads(r.content) print('signalk post', contents) if contents['statusCode'] == 202 or contents['statusCode'] == 400: self.signalk_access_url = 'http://' + self.signalk_host_port + contents['href'] print('signalk ' + _('request access url'), self.signalk_access_url) except Exception as e: print('signalk ' + _('error requesting access'), e) self.signalk_ws_url = False def connect_signalk(self): try: from websocket import create_connection, WebSocketBadStatusException except Exception as e: print('signalk ' + _('cannot create connection:'), e) print(_('try') + ' pip3 install websocket-client ' + _('or') + ' apt install python3-websocket') self.signalk_host_port = False return self.subscribed = {} for sensor in list(signalk_table): self.subscribed[sensor] = False self.subscriptions = [] # track signalk subscriptions self.signalk_values = {} self.keep_token = False try: self.ws = create_connection(self.signalk_ws_url, header={'Authorization': 'JWT ' + self.token}) self.ws.settimeout(0) # nonblocking except WebSocketBadStatusException: print('signalk ' + _('bad status, rejecting token')) self.token = False self.ws = False except ConnectionRefusedError: print('signalk ' + _('connection refused')) #self.signalk_host_port = False self.signalk_ws_url = False time.sleep(5) except Exception as e: print('signalk ' + _('failed to connect'), e) self.signalk_ws_url = False time.sleep(5) def process(self): time.sleep(6) # let other stuff load print('signalk process', os.getpid()) self.process = False while True: time.sleep(.1) self.poll(1) def poll(self, timeout=0): if self.process: msg = self.sensors_pipe_out.recv() while msg: sensor, data = msg self.sensors.write(sensor, data, 'signalk') msg = self.sensors_pipe_out.recv() return t0 = time.monotonic() if not self.initialized: self.setup() return self.client.poll(timeout) if not self.signalk_host_port: return # waiting for signalk to detect t1 = time.monotonic() if not self.signalk_ws_url: self.probe_signalk() return t2 = time.monotonic() if not self.token: self.request_access() return t3 = time.monotonic() if not self.ws: self.connect_signalk() if not self.ws: return print('signalk ' + _('connected to'), self.signalk_ws_url) # setup pypilot watches watches = ['imu.heading_lowpass', 'imu.roll', 'imu.pitch', 'timestamp'] for watch in watches: self.client.watch(watch, self.period.value) for sensor in signalk_table: self.client.watch(sensor+'.source') return # at this point we have a connection # read all messages from pypilot while True: msg = self.client.receive_single() if not msg: break debug('signalk pypilot msg', msg) name, value = msg if name == 'timestamp': self.send_signalk() self.last_values = {} if name.endswith('.source'): # update sources for sensor in signalk_table: source_name = sensor + '.source' if name == source_name: self.update_sensor_source(sensor, value) self.last_sources[name[:-7]] = value else: self.last_values[name] = value t4 = time.monotonic() while True: try: msg = self.ws.recv() except Exception as e: break if not msg: print('signalk server closed connection') if not self.keep_token: print('signalk invalidating token') self.token = False self.disconnect_signalk() return try: self.receive_signalk(msg) except Exception as e: debug('failed to parse signalk', e) return self.keep_token = True # do not throw away token if we got valid data t5 = time.monotonic() # convert received signalk values into sensor inputs if possible for sensor, sensor_table in signalk_table.items(): for source, values in self.signalk_values.items(): data = {} for signalk_path_conversion, pypilot_path in sensor_table.items(): signalk_path, signalk_conversion = signalk_path_conversion if signalk_path in values: try: value = values[signalk_path] if type(pypilot_path) == type({}): # single path translates to multiple pypilot for signalk_key, pypilot_key in pypilot_path.items(): data[pypilot_key] = value[signalk_key] / signalk_conversion else: data[pypilot_path] = value / signalk_conversion except Exception as e: print(_('Exception converting signalk->pypilot'), e, self.signalk_values) break elif signalk_conversion != 1: # don't require fields with conversion of 1 break # missing fields? skip input this iteration else: for signalk_path_conversion in sensor_table: signalk_path, signalk_conversion = signalk_path_conversion if signalk_path in values: del values[signalk_path] # all needed sensor data is found data['device'] = source + 'signalk' if self.sensors_pipe: self.sensors_pipe.send([sensor, data]) else: debug('signalk ' + _('received'), sensor, data) break #print('sigktimes', t1-t0, t2-t1, t3-t2, t4-t3, t5-t4) def send_signalk(self): # see if we can produce any signalk output from the data we have read updates = [] for sensor in signalk_table: if sensor != 'imu' and (not sensor in self.last_sources or\ source_priority[self.last_sources[sensor]]>=signalk_priority): #debug('signalk skip send from priority', sensor) continue for signalk_path_conversion, pypilot_path in signalk_table[sensor].items(): signalk_path, signalk_conversion = signalk_path_conversion if type(pypilot_path) == type({}): # single path translates to multiple pypilot keys = self.last_values_keys[signalk_path] # store keys we need for this signalk path in dictionary for signalk_key, pypilot_key in pypilot_path.items(): key = sensor+'.'+pypilot_key if key in self.last_values: keys[key] = self.last_values[key] # see if we have the keys needed v = {} for signalk_key, pypilot_key in pypilot_path.items(): key = sensor+'.'+pypilot_key if not key in keys: break v[signalk_key] = keys[key]*signalk_conversion else: updates.append({'path': signalk_path, 'value': v}) self.last_values_keys[signalk_path] = {} else: key = sensor+'.'+pypilot_path if key in self.last_values: v = self.last_values[key]*signalk_conversion updates.append({'path': signalk_path, 'value': v}) if updates: # send signalk updates msg = {'updates':[{'$source':'pypilot','values':updates}]} debug('signalk updates', msg) try: self.ws.send(pyjson.dumps(msg)+'\n') except Exception as e: print('signalk ' + _('failed to send updates'), e) self.disconnect_signalk() def disconnect_signalk(self): if self.ws: self.ws.close() self.ws = False self.client.clear_watches() # don't need to receive pypilot data def receive_signalk(self, msg): try: data = pyjson.loads(msg) except: if msg: print('signalk ' + _('failed to parse msg:'), msg) return if 'updates' in data: updates = data['updates'] for update in updates: source = 'unknown' if 'source' in update: source = update['source']['talker'] elif '$source' in update: source = update['$source'] if 'timestamp' in update: timestamp = update['timestamp'] if not source in self.signalk_values: self.signalk_values[source] = {} if 'values' in update: values = update['values'] elif 'meta' in update: values = update['meta'] else: debug('signalk message update contains no values or meta', update) continue for value in values: path = value['path'] if path in self.signalk_last_msg_time: if self.signalk_last_msg_time[path] == timestamp: debug('signalk skip duplicate timestamp', source, path, timestamp) continue self.signalk_values[source][path] = value['value'] else: debug('signalk skip initial message', source, path, timestamp) self.signalk_last_msg_time[path] = timestamp def update_sensor_source(self, sensor, source): priority = source_priority[source] watch = priority < signalk_priority # translate from pypilot -> signalk if watch: watch = self.period.value for signalk_path_conversion, pypilot_path in signalk_table[sensor].items(): if type(pypilot_path) == type({}): for signalk_key, pypilot_key in pypilot_path.items(): pypilot_path = sensor + '.' + pypilot_key if pypilot_path in self.last_values: del self.last_values[pypilot_path] self.client.watch(pypilot_path, watch) else: # remove any last values from this sensor pypilot_path = sensor + '.' + pypilot_path if pypilot_path in self.last_values: del self.last_values[pypilot_path] self.client.watch(pypilot_path, watch) subscribe = priority >= signalk_priority # prevent duplicating subscriptions if self.subscribed[sensor] == subscribe: return self.subscribed[sensor] = subscribe if not subscribe: #signalk can't unsubscribe by path!?!?! subscription = {'context': '*', 'unsubscribe': [{'path': '*'}]} debug('signalk unsubscribe', subscription) try: self.ws.send(pyjson.dumps(subscription)+'\n') except Exception as e: print('signalk failed to send', e) self.disconnect_signalk() return signalk_sensor = signalk_table[sensor] if subscribe: # translate from signalk -> pypilot subscriptions = [] for signalk_path_conversion in signalk_sensor: signalk_path, signalk_conversion = signalk_path_conversion if signalk_path in self.signalk_last_msg_time: del self.signalk_last_msg_time[signalk_path] subscriptions.append({'path': signalk_path, 'minPeriod': self.period.value*1000, 'format': 'delta', 'policy': 'instant'}) self.subscriptions += subscriptions else: # remove this subscription and resend all subscriptions debug('signalk remove subs', signalk_sensor, self.subscriptions) subscriptions = [] for subscription in self.subscriptions: for signalk_path_conversion in signalk_sensor: signalk_path, signalk_conversion = signalk_path_conversion if subscription['path'] == signalk_path: break else: subscriptions.append(subscription) self.subscriptions = subscriptions self.signalk_last_msg_time = {} subscription = {'context': 'vessels.self'} subscription['subscribe'] = subscriptions debug('signalk subscribe', subscription) try: self.ws.send(pyjson.dumps(subscription)+'\n') except Exception as e: print('signalk failed to send subscription', e) self.disconnect_signalk() def main(): sk = signalk() while True: sk.poll(1) if __name__ == '__main__': main()
fd07b9fdad8d5582f4438aab1c8fef51b1643eff
c9ff64bd016899a1a7df0cc514fb41fbeaf3869d
/dicionario_extra_1.py
51cf13bdf7b9c67e5de49e7d9d207343dae24d45
[]
no_license
Viccari073/extra_excercises
a7f4931b2eccaf0800d54360ddc28b83804166ae
826cd3a1bc174841a600ee20ac07d242a3978515
refs/heads/master
2022-12-16T18:15:50.681195
2020-08-25T01:03:49
2020-08-25T01:03:49
275,982,418
0
0
null
null
null
null
UTF-8
Python
false
false
629
py
""" Faça um programa que leia nome e média de um aluno, guardando também a situação em um dicionário. No final, mostre o conteúdo da estrutura na tela. """ cadastro = dict() cadastro['nome'] = str(input('Nome: ')) media = float(input(f'Media de {cadastro["nome"]}: ')) cadastro['media'] = media if media >= 7.0: cadastro['situacao'] = 'APROVADO' elif media < 7.0: cadastro['situacao'] = 'REPROVADO' print(f'Com a média de {cadastro["media"]}, o aluno {cadastro["nome"]} está {cadastro["situacao"]}!') """ EXEMPLO PROFESSOR for k, v in aluno.items(): print(f'{k} é igual a {v}') """
191c73858214f3e5e42fa3ed6e23dc6d14551952
9f04c2977434c5854e889b424e34593fa9f938d1
/stock_1.py
858bfe43a44cf134f81de45903084da658bce44f
[ "MIT" ]
permissive
B10856017/chatbot_telegram_dialogflow
f5ca40d1d5568864c9944ea919fa36707d356523
b33172951c5513b1b60e68a1b5893506a073c397
refs/heads/main
2023-05-04T19:57:51.495156
2021-05-26T04:00:17
2021-05-26T04:00:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
691
py
class Stock(object): def __init__(self, req): self.type = req.get("queryResult").get("parameters").get("serviceterm") self.chat_id = req.get("user").get("chat").get("id") def dayTrend(self, req, bot): self.chat_id = req.get("user").get("chat").get("id") #https://github.com/python-telegram-bot/python-telegram-bot/wiki/Code-snippets#working-with-files-and-media bot.sendPhoto(chat_id=self.chat_id, photo=open('images/fig1.png', 'rb'), caption='台積電 2330') speech = "台積電 2330" return { "textToSpeech": speech, "ssml": speech, "displayText": speech }
14d1850b73a3dd252891052bf7061504ebac69cc
78199e980b57060267f89c3cb83abe7d98317bf4
/Java/LeetCode/DFS&Backtracking/Tree/DiameterBinaryTree.py
2336263c446a09d5a04754ebe75786321f421049
[]
no_license
l0uvre/Simple-Codes
2a836ed3aec8fe32134a831fcdb804daa901f9f3
05fcc28da12013852358363207921bb6d8cacab8
refs/heads/master
2022-08-28T22:45:57.758605
2022-08-06T03:23:07
2022-08-06T03:23:07
116,573,952
0
0
null
null
null
null
UTF-8
Python
false
false
890
py
# Definition for a binary tree node. from typing import Optional ## LC 543 Tree, DFS, DP class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def diameterOfBinaryTree(self, root: Optional[TreeNode]) -> int: diameter = float('-inf') ''' Return the maximum level of breadth can be gained from a node ''' def gainFrom(node : TreeNode): -> int nonlocal diameter if node is None: return -1 else: leftGain = gainFrom(node.left) + 1 rightGain = gainFrom(node.right) + 1 diameter = max(diameter, leftGain + rightGain) return max(leftGain, rightGain) gainFrom(root) return int(diameter)
600726e9c8157d2680f567b3c5ae22beb6afcaf8
df5931ac3b2d4f4769f422d351bf6f35becb57ac
/apps/users/migrations/0002_banner_emailverifyrecord.py
3ce9db4eaa1b3dd379e8bea68363b1d712357a94
[]
no_license
chendongyi/MxOnline
420e730da52c78a29e9a0c90af641fcdb144a185
6c24e258c80a0aa63a21d96fcbcf291d4c2fefb9
refs/heads/master
2020-03-23T04:41:38.893804
2018-07-20T04:45:27
2018-07-20T04:45:27
141,099,618
0
0
null
null
null
null
UTF-8
Python
false
false
1,797
py
# Generated by Django 2.0.6 on 2018-06-05 08:18 import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0001_initial'), ] operations = [ migrations.CreateModel( name='Banner', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100, verbose_name='标题')), ('image', models.ImageField(upload_to='banner/%Y/%m', verbose_name='轮播图')), ('url', models.URLField(verbose_name='访问地址')), ('index', models.IntegerField(default=100, verbose_name='顺序')), ('add_time', models.DateTimeField(default=datetime.datetime.now, verbose_name='添加时间')), ], options={ 'verbose_name': '轮播图', 'verbose_name_plural': '轮播图', }, ), migrations.CreateModel( name='EmailVerifyRecord', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('code', models.CharField(max_length=20, verbose_name='验证码')), ('email', models.EmailField(max_length=50, verbose_name='邮箱')), ('send_type', models.CharField(choices=[('register', '注册'), ('forget', '找回密码')], max_length=10)), ('send_time', models.DateTimeField(default=datetime.datetime.now)), ], options={ 'verbose_name': '邮箱验证码', 'verbose_name_plural': '邮箱验证码', }, ), ]
e23bc12419592f4b9956c4150d64796a12d4900f
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03329/s950503139.py
06a2ed1899ce879a8061ac47bf453dca06be7b16
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
490
py
import sys read = sys.stdin.read readlines = sys.stdin.readlines def main(): n = int(input()) nums = [] n6 = 6 while n6 <= n: nums.append(n6) n6 = n6 * 6 n9 = 9 while n9 <= n: nums.append(n9) n9 = n9 * 9 nums.sort(reverse=True) dp = [i for i in range(2 * n + 1)] for num in nums: for j1 in range(n + 1): dp[j1+num] = min(dp[j1+num], dp[j1] + 1) print(dp[n]) if __name__ == '__main__': main()
6a2b5689eeaab249fbbcd16268bfeaf37add46d9
a5a2abaf5c7a681ebea71b4034d7b12dbd750455
/examens/migrations/0002_auto_20160210_0540.py
4a24c8b6dac1ce2a87efbeacc069d098d652c98a
[ "BSD-3-Clause" ]
permissive
matinfo/dezede
e8be34a5b92f8e793a96396f7ec4ec880e7817ff
829ba8c251a0301741460e6695438be52d04a2fc
refs/heads/master
2020-03-15T11:25:56.786137
2018-04-23T13:47:20
2018-04-23T13:47:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,213
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models LEVELS_DATA = ( (1, (6107, 10442, 10531)), (2, (2253, 12468, 12469)), (3, (10603, 8167, 10447)), (4, (8280, 15117)), (5, (3412, 14)), (6, (2256,)), ) LEVELS_HELPS = { 1: """ <p> L’exercice consiste à transcrire un ensemble de sources de manière diplomatique. Il comporte six étapes à la difficulté croissante. Chaque étape est validée lorsque le texte saisi correspond exactement au texte contenu dans la source. </p> <p> Pour ce type de transcription, il est important de respecter le texte de la source : graphie fautive, style (capitales, petites capitales, etc.), abréviations, ponctuation. Deux exceptions sont admises : </p> <ul> <li> l’accentuation doit être rétablie suivant l’usage moderne (y compris sur les majuscules) ; </li> <li> la justification ne doit pas être respectée : vous devez aligner le texte à gauche. </li> </ul> """, 2: """ <p> Mêmes règles que pour la première étape. On insiste cette fois-ci sur le respect des styles (capitales, petites capitales, italique, gras, exposant). </p> """, 3: """ <p> Dans une transcription diplomatique, l’usage est de respecter les graphies fautives. Dans ce cas, le mot erroné doit être suivi de la locution latine « sic » en italique et entre crochets carrés. Par exemple : « Beethowen [<em>sic</em>] ». </p> """, 4: """<p>Combinaison des règles précédentes.</p>""", 5: """ <p> Combinaison des règles précédentes sur une transcription plus longue. </p> <p> Certaines fautes apparentes pour un lecteur d’aujourd’hui sont en fait des usages d’orthographe de l’époque. Par exemple, on écrivait indifféremment « accents » ou « accens » pour le pluriel d’« accent ». </p> <p>Conservez l’orthographe des noms propres.</p> """, 6: """ <p> Utilisez les outils de tableau de l’éditeur de texte pour obtenir un tableau sans bordure. Ne pas inclure les points servant de guides dans le tableau. </p> """, } def add_levels(apps, schema_editor): Level = apps.get_model('examens.Level') LevelSource = apps.get_model('examens.LevelSource') Source = apps.get_model('libretto.Source') level_sources = [] for level_number, source_ids in LEVELS_DATA: level = Level.objects.create( number=level_number, help_message=LEVELS_HELPS[level_number]) for pk in source_ids: try: source = Source.objects.get(pk=pk) except Source.DoesNotExist: continue level_sources.append(LevelSource(level=level, source=source)) LevelSource.objects.bulk_create(level_sources) class Migration(migrations.Migration): dependencies = [ ('examens', '0001_initial'), ] operations = [ migrations.RunPython(add_levels), ]
6b31c5782ba2db81a6a2b0b105aa3a0552dcb4ad
0e4519d3a94157a419e56576875aec1da906f578
/Python_200Q/051_/Q059.py
110df8a421ca7cff330c0a2f0054d5279bd7f11d
[]
no_license
ivorymood/TIL
0de3b92861e345375e87d01654d1fddf940621cd
1f09e8b1f4df7c205c68eefd9ab02d17a85d140a
refs/heads/master
2021-02-23T17:30:50.406370
2020-10-02T06:43:25
2020-10-02T06:43:25
245,388,390
0
0
null
null
null
null
UTF-8
Python
false
false
251
py
import time count = 1 try: while True: print(count) count += 1 time.sleep(0.5) # Ctrl + C가 입력되면 발생되는 오류 except KeyboardInterrupt: print('사용자에 의해 프로그램이 중단되었습니다')
091ab45ff559b57ac0a45909cf64482b20180975
24131940f40e1c71f3a7c0fa3368d09053feb036
/loop.py
df565bf92ba800b40f0a3161a25380e40aab5804
[]
no_license
binshadpb/expertzlab_python
de9f5f417201ae034dcdaa0cf9cccd0543c733f9
b7d29a9f8d356bc9b060dffa3aa8418b454e546e
refs/heads/master
2023-01-20T13:38:32.766810
2020-11-29T14:40:11
2020-11-29T14:40:11
314,594,318
0
0
null
null
null
null
UTF-8
Python
false
false
955
py
#prim number program using whilw loop # number=int(input("enter the number")) # i=2 # a=1 # while i<number: # if number%i==0: # a=0 # i+=1 # # # if a==0: # print("Its not a prime number") # else: # print("its a prime number") #program numbers divisible by 5 or 7 below 100 using while lopp # n=100 # i=1 # a=1 # while i<n: # if ((i%5==0) or (i%7==0)): # a=0 # # print(i) # i+=1 #for lopp programs(for loop executed only in collection (indexing)) # l=[10,50,"hello",20,"world",100] # # for i in l: # print(i) # print("*****") #for loop program to count odd numbers and even numbers in a list # l=[1,2,3,4,5,6,7,8,9,10,11,12,13] # odd=0 # even=0 # for i in l: # # print(i) # if i%2==0: # even+=1 # else: # # odd+=1 # # print("odd numbers",odd) # print("even numbers",even) #range function implementation print(list(range(10))) for i in range(10,50,5): print(i)
e78b99366d88cbdb16defac1ca2282fdf9ecf490
82f7c00aa14c95032fb6e6ff1029823404246b83
/apps/statistics/rstats.py
a55468334938caefa6725db99cec04117e861e29
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
gillbates/NewsBlur
621feaa090cdc2fe9dcfcae4af7de3f40b69ba00
0eb2ccf4ebe59ff27d6ed822cc406a427cf3bf6a
refs/heads/master
2020-12-30T17:32:03.999893
2013-07-01T00:12:41
2013-07-01T00:12:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,566
py
import redis import datetime import re from collections import defaultdict from django.conf import settings class RStats: STATS_TYPE = { 'page_load': 'PLT', 'feed_fetch': 'FFH', } @classmethod def stats_type(cls, name): return cls.STATS_TYPE[name] @classmethod def add(cls, name, duration=None): r = redis.Redis(connection_pool=settings.REDIS_STATISTICS_POOL) pipe = r.pipeline() minute = round_time(round_to=60) key = "%s:%s" % (cls.stats_type(name), minute.strftime('%s')) pipe.incr("%s:s" % key) if duration: pipe.incrbyfloat("%s:a" % key, duration) pipe.expireat("%s:a" % key, (minute + datetime.timedelta(days=2)).strftime("%s")) pipe.expireat("%s:s" % key, (minute + datetime.timedelta(days=2)).strftime("%s")) pipe.execute() @classmethod def clean_path(cls, path): if not path: return if path.startswith('/reader/feed/'): path = '/reader/feed/' elif path.startswith('/social/stories'): path = '/social/stories/' elif path.startswith('/reader/river_stories'): path = '/reader/river_stories/' elif path.startswith('/social/river_stories'): path = '/social/river_stories/' elif path.startswith('/reader/page/'): path = '/reader/page/' elif path.startswith('/api/check_share_on_site'): path = '/api/check_share_on_site/' return path @classmethod def count(cls, name, hours=24): r = redis.Redis(connection_pool=settings.REDIS_STATISTICS_POOL) stats_type = cls.stats_type(name) now = datetime.datetime.now() pipe = r.pipeline() for minutes_ago in range(60*hours): dt_min_ago = now - datetime.timedelta(minutes=minutes_ago) minute = round_time(dt=dt_min_ago, round_to=60) key = "%s:%s" % (stats_type, minute.strftime('%s')) pipe.get("%s:s" % key) values = pipe.execute() total = sum(int(v) for v in values if v) return total @classmethod def sample(cls, sample=1000, pool=None): if not pool: pool = settings.REDIS_STORY_HASH_POOL r = redis.Redis(connection_pool=pool) keys = set() errors = set() prefixes = defaultdict(set) prefixes_ttls = defaultdict(lambda: defaultdict(int)) prefix_re = re.compile(r"(\w+):(.*)") p = r.pipeline() [p.randomkey() for _ in range(sample)] keys = set(p.execute()) p = r.pipeline() [p.ttl(key) for key in keys] ttls = p.execute() for k, key in enumerate(keys): match = prefix_re.match(key) if not match: errors.add(key) continue prefix, rest = match.groups() prefixes[prefix].add(rest) ttl = ttls[k] if ttl < 60*60: # 1 hour prefixes_ttls[prefix]['1h'] += 1 elif ttl < 60*60*12: prefixes_ttls[prefix]['12h'] += 1 elif ttl < 60*60*24: prefixes_ttls[prefix]['1d'] += 1 elif ttl < 60*60*168: prefixes_ttls[prefix]['1w'] += 1 elif ttl < 60*60*336: prefixes_ttls[prefix]['2w'] += 1 else: prefixes_ttls[prefix]['2w+'] += 1 keys_count = len(keys) print " ---> %s total keys" % keys_count for prefix, rest in prefixes.items(): total_expiring = sum([k for k in dict(prefixes_ttls[prefix]).values()]) print " ---> %4s: (%.4s%%) %s keys (%s expiring: %s)" % (prefix, 100. * (len(rest) / float(keys_count)), len(rest), total_expiring, dict(prefixes_ttls[prefix])) print " ---> %s errors: %s" % (len(errors), errors) def round_time(dt=None, round_to=60): """Round a datetime object to any time laps in seconds dt : datetime.datetime object, default now. round_to : Closest number of seconds to round to, default 1 minute. Author: Thierry Husson 2012 - Use it as you want but don't blame me. """ if dt == None : dt = datetime.datetime.now() seconds = (dt - dt.min).seconds rounding = (seconds+round_to/2) // round_to * round_to return dt + datetime.timedelta(0,rounding-seconds,-dt.microsecond)
eaaa3e518f566d4c9e4174b3e550e3ef6e0e9d55
85caf3d66dfbf8fb30c064ed629966fc18bb7a26
/alert_service_45.py
1c727a3f142188f155dedc0203b305e41ff7ff4e
[]
no_license
karandoshi98/CowinVaccineAlerts
e63f3e6946032bdbd02826b561df7e3c7a9348e0
074b3161eeb32f353f255fc98e979936980f45f4
refs/heads/main
2023-04-26T12:40:19.922137
2021-05-20T16:12:02
2021-05-20T16:12:02
368,974,452
0
0
null
null
null
null
UTF-8
Python
false
false
3,968
py
# Importing libraries import app import requests import json import time from datetime import datetime, date import smtplib date_str = str(date.today()) y = date_str[:4] m = date_str[5:7] d = str(int(date_str[8:10]) + 1) DATE = d+"-"+m+"-"+y MY_EMAIL = "[email protected]" MY_PASS = 'krds1998' # Palghar = str(394) # Mumbai = str(395) # Thane = str(392) #url_district = "https://cdn-api.co-vin.in/api/v2/appointment/sessions/public/findByDistrict?district_id="+Palghar+"&date="+DATE # with requests.session() as state_session: # headers = { # 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.76 Safari/537.36'} # response = state_session.get("https://cdn-api.co-vin.in/api/v2/admin/location/states", headers=headers) # print(response.json()) # with requests.session() as dist_session: # headers = { # 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.76 Safari/537.36'} # response = dist_session.get("https://cdn-api.co-vin.in/api/v2/admin/location/districts/21", headers=headers) # print(response.json()) # with requests.session() as appointment_dist_session: # headers = { # 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.76 Safari/537.36'} # response = appointment_dist_session.get(url_district, headers=headers) # response = response.json() while True: cur = open("user_details_45.json", "r") try: user_details = json.loads(cur.read()) except Exception as e: print(e) user_details = {} cur.close() print(user_details) for PINCODE in user_details: print(PINCODE) mail_to = [] mail_to = user_details[PINCODE] url_pincode = "https://cdn-api.co-vin.in/api/v2/appointment/sessions/public/findByPin?pincode=" + PINCODE + "&date=" + DATE with requests.session() as appointment_pin_session: headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.76 Safari/537.36'} response = appointment_pin_session.get(url_pincode, headers=headers) response = response.json() print(response) if response['sessions'] == []: print("No slots available at this moment") for center in response['sessions']: # print(center['fee_type']) # print(center['fee']) # print(center['min_age_limit']) # print(center['available_capacity']) # print(center['available_capacity_dose1']) # print(center['available_capacity_dose2']) # print(center['vaccine']) # print(center['slots']) if center['min_age_limit'] == 45 and center['available_capacity'] != 0: message_string = f"Subject: {date_str}'s Vaccine Alert'!! \nVaccine available at-\n{center['name']} for the age above {center['min_age_limit']} \n\nSlots available- {center['available_capacity']}\nSlots for 1st Dose - {center['available_capacity_dose1']}\nSlots for 2nd Dose - {center['available_capacity_dose2']} \n\nAddress: {center['address']}\nhttps://www.cowin.gov.in/home" with smtplib.SMTP("smtp.gmail.com") as connection: connection.starttls() connection.login(MY_EMAIL, MY_PASS) connection.sendmail( from_addr=MY_EMAIL, to_addrs=mail_to, msg=message_string ) print("Mail sent to "+str(mail_to)+" for pincode "+str(PINCODE)+" for age above 45") else: print("No slots available for above 45") time.sleep(60)
eb442f39adcfd2574853c91485fa1346cffc836e
d286282c96ed1740a4afa266b290d26a6017fa42
/src/MakeSample.py
299e4b74ec3b094f93cb60f044888c0c86543179
[]
no_license
n-narisawa/GraphSLAM
c438c8322aba835a61f2b3fa9592fbbe797ff4ea
9276f882d67e2e0b67e175687fc4fc0dfe6e7f25
refs/heads/master
2020-06-12T11:01:20.581522
2019-07-12T04:40:17
2019-07-12T04:40:17
194,278,227
1
0
null
null
null
null
UTF-8
Python
false
false
3,027
py
import numpy as np from numpy.linalg import norm from numpy.random import normal import matplotlib.pyplot as plt import os A = 30 B = 20 RANGE = 20 TIMEFRAME = 1000 NFEATURE = 100 epsilon = 1e-6 def ellipse(): theta = np.linspace(0, 2*np.pi, TIMEFRAME+1) x = A * np.cos(theta) y = B * np.sin(theta) tan = np.arctan2(B**2*x, -A**2*y) tan[0] = 0 return np.vstack((x, y, tan)) def line(): x = np.zeros(TIMEFRAME+1) y = np.linspace(0, 50, TIMEFRAME+1) tan = np.arctan2(B ** 2 * x, -A ** 2 * y) tan[0] = 0 return np.vstack((x, y, tan)) def landmark(): # lmx = np.random.randint(-A-10, A+10, NFEATURE) # lmy = np.random.randint(-B-10, B+10, NFEATURE) lmx = np.random.randint(A-10, A+10, NFEATURE)*np.cos(np.random.randint(0,2*np.pi,NFEATURE)) lmy = np.random.randint(B-10, B+10, NFEATURE)*np.cos(np.random.randint(0,2*np.pi,NFEATURE)) # lmx = np.random.randint(-10, 10, NFEATURE) # lmy = np.random.randint(-10, 50+10, NFEATURE) return np.vstack((lmx, lmy)) def main(): dirname = "../data/sample{}".format(len(os.listdir("../data/"))) os.mkdir(dirname) inputdata = os.path.join(dirname, "input.txt") truedata = os.path.join(dirname, "truedata.txt") xnpy = os.path.join(dirname, "xTrue.npy") lmnpy = os.path.join(dirname, "lmTrue.npy") fig = os.path.join(dirname, "truedata.png") x = ellipse() # x = line() dx = np.diff(x) dx[2,:] = (dx[2,:] + np.pi)%(2*np.pi) - np.pi lm = landmark() lmdict = dict() t1 = 0 t2 = 1 with open(inputdata, "w") as f_ob, open(truedata, "w") as f_tr: for t in range(TIMEFRAME): c = 0 edge_tr = rotation_matrix(-x[2,t]) @ dx[:2,t] edge_ob = edge_tr + normal(0, 0.3, 2) tan_ob = dx[2,t] + normal(0, np.deg2rad(1.0)) f_tr.write("EDGE_SE2 {} {} {} {} {} 0 0 0 0 0 0\n".format(t1, t2, edge_tr[0], edge_tr[1], dx[2,t])) f_ob.write("EDGE_SE2 {} {} {} {} {} 0 0 0 0 0 0\n".format(t1, t2, edge_ob[0], edge_ob[1], tan_ob)) for j in range(NFEATURE): if norm(x[:2,t+1] - lm[:,j]) < RANGE: if j not in lmdict.keys(): c += 1 lmdict[j] = t2 + c edge_tr = rotation_matrix(-x[2,t+1]) @ (lm[:,j] - x[:2,t+1]) edge_ob = edge_tr + normal(0, 0.3, 2) f_tr.write("EDGE_SE2_XY {} {} {} {} 0 0 0 0 0 0\n".format(t2, lmdict[j], edge_tr[0], edge_tr[1])) f_ob.write("EDGE_SE2_XY {} {} {} {} 0 0 0 0 0 0\n".format(t2, lmdict[j], edge_ob[0], edge_ob[1])) t1 = t2 t2 += 1 + c np.save(xnpy, x) np.save(lmnpy, lm) plt.plot(x[0,:], x[1,:]) plt.scatter(lm[0,:], lm[1,:]) plt.savefig(fig) plt.show() def rotation_matrix(theta): return np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) if __name__ == "__main__": main()
c357a3066761f697e7adc957d4e50bcf31ced98d
4fbfcff9c498c597766655cee4867b13b0bc2c16
/Python/MiniProjects/Others/CardShuffle.py
9d575c04aefcd78c19c2a850b783378aa8ade3e4
[]
no_license
seniroberts/Expressions
e0541636cc5b4f5666d26ca3cb3e38c8294986b9
dee95389555afef2caa71c16fcef33aaf0f8631a
refs/heads/master
2022-12-19T21:54:58.703454
2020-10-09T08:09:44
2020-10-09T08:09:44
294,386,108
0
0
null
null
null
null
UTF-8
Python
false
false
849
py
import random card_deck = ["a", "b", "c", "d", "e", "f"] def shuffleCards(card_deck): numberofCards = len(card_deck) for i in range(0, numberofCards - 1): randon_number = random.randint(0, numberofCards-1) temp = card_deck[i] card_deck[i] = card_deck[randon_number] card_deck[randon_number] = temp return card_deck # To return the shuffled list # use the below to return individual cards for i in range(0, numberofCards): print(card_deck[i]) # print(shuffleCards(card_deck)) nums = [10, 2, 13, 4, 51, 6, 17] def sortList(nums): for i in range(0, len(nums)): for j in range(i + 1, (len(nums))): if nums[i] > nums[j]: temp = nums[i] nums[i] = nums[j] nums[j] = temp return nums print(sortList(nums))
8cc839ce2eb3f1d63aae16b0a5a37c6d5b8669aa
f4434c85e3814b6347f8f8099c081ed4af5678a5
/sdk/identity/azure-identity/tests/test_authn_client.py
3dac71b924c722a3ccaee3a40a4d6d8bfffbdf1c
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
yunhaoling/azure-sdk-for-python
5da12a174a37672ac6ed8e3c1f863cb77010a506
c4eb0ca1aadb76ad892114230473034830116362
refs/heads/master
2022-06-11T01:17:39.636461
2020-12-08T17:42:08
2020-12-08T17:42:08
177,675,796
1
0
MIT
2020-03-31T20:35:17
2019-03-25T22:43:40
Python
UTF-8
Python
false
false
9,973
py
# ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------ """These tests use the synchronous AuthnClient as a driver to test functionality of the sans I/O AuthnClientBase shared with AsyncAuthnClient.""" import json import time try: from unittest.mock import Mock, patch except ImportError: # python < 3.3 from mock import Mock, patch # type: ignore from azure.core.credentials import AccessToken from azure.identity._authn_client import AuthnClient from azure.identity._constants import EnvironmentVariables, DEFAULT_REFRESH_OFFSET, DEFAULT_TOKEN_REFRESH_RETRY_DELAY import pytest from six.moves.urllib_parse import urlparse from helpers import mock_response def test_deserialization_expires_integers(): now = 6 expires_in = 59 - now expires_on = now + expires_in access_token = "***" expected_access_token = AccessToken(access_token, expires_on) scope = "scope" # response with expires_on only token_payload = {"access_token": access_token, "expires_on": expires_on, "token_type": "Bearer", "resource": scope} mock_send = Mock(return_value=mock_response(json_payload=token_payload)) token = AuthnClient(endpoint="http://foo", transport=Mock(send=mock_send)).request_token(scope) assert token == expected_access_token # response with expires_in as well token_payload = { "access_token": access_token, "expires_in": expires_in, "token_type": "Bearer", "ext_expires_in": expires_in, } with patch(AuthnClient.__module__ + ".time.time") as mock_time: mock_time.return_value = now mock_send = Mock(return_value=mock_response(json_payload=token_payload)) token = AuthnClient(endpoint="http://foo", transport=Mock(send=mock_send)).request_token(scope) assert token == expected_access_token def test_deserialization_app_service_msi(): now = 6 expires_in = 59 - now expires_on = now + expires_in access_token = "***" expected_access_token = AccessToken(access_token, expires_on) scope = "scope" # response with expires_on only and it's a datetime string (App Service MSI, Linux) token_payload = { "access_token": access_token, "expires_on": "01/01/1970 00:00:{} +00:00".format(now + expires_in), "token_type": "Bearer", "resource": scope, } mock_send = Mock(return_value=mock_response(json_payload=token_payload)) token = AuthnClient(endpoint="http://foo", transport=Mock(send=mock_send)).request_token(scope) assert token == expected_access_token def test_deserialization_expires_strings(): now = 6 expires_in = 59 - now expires_on = now + expires_in access_token = "***" expected_access_token = AccessToken(access_token, expires_on) scope = "scope" # response with string expires_in and expires_on (IMDS, Cloud Shell) token_payload = { "access_token": access_token, "expires_in": str(expires_in), "ext_expires_in": str(expires_in), "expires_on": str(expires_on), "token_type": "Bearer", "resource": scope, } mock_send = Mock(return_value=mock_response(json_payload=token_payload)) token = AuthnClient(endpoint="http://foo", transport=Mock(send=mock_send)).request_token(scope) assert token == expected_access_token def test_caching_when_only_expires_in_set(): """the cache should function when auth responses don't include an explicit expires_on""" access_token = "token" now = 42 expires_in = 1800 expires_on = now + expires_in expected_token = AccessToken(access_token, expires_on) mock_send = Mock( return_value=mock_response( json_payload={"access_token": access_token, "expires_in": expires_in, "token_type": "Bearer"} ) ) client = AuthnClient(endpoint="http://foo", transport=Mock(send=mock_send)) with patch("azure.identity._authn_client.time.time") as mock_time: mock_time.return_value = 42 token = client.request_token(["scope"]) assert token.token == expected_token.token assert token.expires_on == expected_token.expires_on cached_token = client.get_cached_token(["scope"]) assert cached_token == expected_token def test_expires_in_strings(): expected_token = "token" mock_send = Mock( return_value=mock_response( json_payload={ "access_token": expected_token, "expires_in": "42", "ext_expires_in": "42", "token_type": "Bearer", } ) ) now = int(time.time()) with patch("azure.identity._authn_client.time.time") as mock_time: mock_time.return_value = now token = AuthnClient(endpoint="http://foo", transport=Mock(send=mock_send)).request_token("scope") assert token.token == expected_token assert token.expires_on == now + 42 def test_cache_expiry(): access_token = "token" now = 42 expires_in = 1800 expires_on = now + expires_in expected_token = AccessToken(access_token, expires_on) token_payload = {"access_token": access_token, "expires_in": expires_in, "token_type": "Bearer"} mock_send = Mock(return_value=mock_response(json_payload=token_payload)) client = AuthnClient(endpoint="http://foo", transport=Mock(send=mock_send)) with patch("azure.identity._authn_client.time.time") as mock_time: # populate the cache with a valid token mock_time.return_value = now token = client.request_token("scope") assert token.token == expected_token.token assert token.expires_on == expected_token.expires_on cached_token = client.get_cached_token("scope") assert cached_token == expected_token # advance time past the cached token's expires_on mock_time.return_value = expires_on + 3600 cached_token = client.get_cached_token("scope") assert not cached_token # request a new token new_token = "new token" token_payload["access_token"] = new_token token = client.request_token("scope") assert token.token == new_token # it should be cached cached_token = client.get_cached_token("scope") assert cached_token.token == new_token def test_cache_scopes(): scope_a = "scope_a" scope_b = "scope_b" scope_ab = scope_a + " " + scope_b expected_tokens = { scope_a: {"access_token": scope_a, "expires_in": 1 << 31, "ext_expires_in": 1 << 31, "token_type": "Bearer"}, scope_b: {"access_token": scope_b, "expires_in": 1 << 31, "ext_expires_in": 1 << 31, "token_type": "Bearer"}, scope_ab: {"access_token": scope_ab, "expires_in": 1 << 31, "ext_expires_in": 1 << 31, "token_type": "Bearer"}, } def mock_send(request, **kwargs): token = expected_tokens[request.data["resource"]] return mock_response(json_payload=token) client = AuthnClient(endpoint="http://foo", transport=Mock(send=mock_send)) # if the cache has a token for a & b, it should hit for a, b, a & b token = client.request_token([scope_a, scope_b], form_data={"resource": scope_ab}) assert token.token == scope_ab for scope in (scope_a, scope_b): assert client.get_cached_token([scope]).token == scope_ab assert client.get_cached_token([scope_a, scope_b]).token == scope_ab # if the cache has only tokens for a and b alone, a & b should miss client = AuthnClient(endpoint="http://foo", transport=Mock(send=mock_send)) for scope in (scope_a, scope_b): token = client.request_token([scope], form_data={"resource": scope}) assert token.token == scope assert client.get_cached_token([scope]).token == scope assert not client.get_cached_token([scope_a, scope_b]) @pytest.mark.parametrize("authority", ("localhost", "https://localhost")) def test_request_url(authority): tenant_id = "expected-tenant" parsed_authority = urlparse(authority) expected_netloc = parsed_authority.netloc or authority # "localhost" parses to netloc "", path "localhost" def validate_url(url): actual = urlparse(url) assert actual.scheme == "https" assert actual.netloc == expected_netloc assert actual.path.startswith("/" + tenant_id) def mock_send(request, **kwargs): validate_url(request.url) return mock_response(json_payload={"token_type": "Bearer", "expires_in": 42, "access_token": "***"}) client = AuthnClient(tenant=tenant_id, transport=Mock(send=mock_send), authority=authority) client.request_token(("scope",)) request = client.get_refresh_token_grant_request({"secret": "***"}, "scope") validate_url(request.url) # authority can be configured via environment variable with patch.dict("os.environ", {EnvironmentVariables.AZURE_AUTHORITY_HOST: authority}, clear=True): client = AuthnClient(tenant=tenant_id, transport=Mock(send=mock_send)) client.request_token(("scope",)) request = client.get_refresh_token_grant_request({"secret": "***"}, "scope") validate_url(request.url) def test_should_refresh(): client = AuthnClient(endpoint="http://foo") now = int(time.time()) # do not need refresh token = AccessToken("token", now + DEFAULT_REFRESH_OFFSET + 1) should_refresh = client.should_refresh(token) assert not should_refresh # need refresh token = AccessToken("token", now + DEFAULT_REFRESH_OFFSET - 1) should_refresh = client.should_refresh(token) assert should_refresh # not exceed cool down time, do not refresh token = AccessToken("token", now + DEFAULT_REFRESH_OFFSET - 1) client._last_refresh_time = now - DEFAULT_TOKEN_REFRESH_RETRY_DELAY + 1 should_refresh = client.should_refresh(token) assert not should_refresh
65a4c58bbd2f6b1e6f6ce5534a14c31b02315230
28a72c59685f018611d3af9092fb36ee7d01b375
/maps/recommend.py
60b7c7e7527ad13dd380dcb28836bf0a1d587d5b
[]
no_license
mollygoss/cs61a
86cd612787807a0c4938fae894140abb1e93fbba
403530da63adfafa0d5cf8df77d5af5fb5ae72c4
refs/heads/master
2020-04-14T13:50:24.742596
2019-01-02T20:13:12
2019-01-02T20:13:12
163,880,105
0
0
null
null
null
null
UTF-8
Python
false
false
8,046
py
"""A Yelp-powered Restaurant Recommendation Program""" from abstractions import * from data import ALL_RESTAURANTS, CATEGORIES, USER_FILES, load_user_file from ucb import main, trace, interact from utils import distance, mean, zip, enumerate, sample from visualize import draw_map ################################## # Phase 2: Unsupervised Learning # ################################## def find_closest(location, centroids): """Return the centroid in centroids that is closest to location. If multiple centroids are equally close, return the first one. >>> find_closest([3.0, 4.0], [[0.0, 0.0], [2.0, 3.0], [4.0, 3.0], [5.0, 5.0]]) [2.0, 3.0] """ # BEGIN Question 3 """distances = [] for centroid in centroids: distances.append((centroid, distance(location, centroid)) return min(distances, key=lambda tup: tup[1])""" return min(centroids, key= lambda c: distance(location, c)) # END Question 3 def group_by_first(pairs): """Return a list of pairs that relates each unique key in the [key, value] pairs to a list of all values that appear paired with that key. Arguments: pairs -- a sequence of pairs >>> example = [ [1, 2], [3, 2], [2, 4], [1, 3], [3, 1], [1, 2] ] >>> group_by_first(example) [[2, 3, 2], [2, 1], [4]] """ keys = [] for key, _ in pairs: if key not in keys: keys.append(key) return [[y for x, y in pairs if x == key] for key in keys] def group_by_centroid(restaurants, centroids): """Return a list of clusters, where each cluster contains all restaurants nearest to a corresponding centroid in centroids. Each item in restaurants should appear once in the result, along with the other restaurants closest to the same centroid. """ # BEGIN Question 4 listoclusters = [[find_closest(restaurant_location(x), centroids),x] for x in restaurants] return group_by_first(listoclusters) # END Question 4 def find_centroid(cluster): """Return the centroid of the locations of the restaurants in cluster.""" # BEGIN Question 5 centroid = [mean([restaurant_location(x)[0] for x in cluster]), mean([restaurant_location(x)[1] for x in cluster])] return centroid # END Question 5 def k_means(restaurants, k, max_updates=100): """Use k-means to group restaurants by location into k clusters.""" assert len(restaurants) >= k, 'Not enough restaurants to cluster' old_centroids, n = [], 0 # Select initial centroids randomly by choosing k different restaurants centroids = [restaurant_location(r) for r in sample(restaurants, k)] while old_centroids != centroids and n < max_updates: old_centroids = centroids # BEGIN Question 6 cluster = group_by_centroid(restaurants, centroids) centroids = [find_centroid(x) for x in cluster] # END Question 6 n += 1 return centroids def find_predictor(user, restaurants, feature_fn): """Return a rating predictor (a function from restaurants to ratings), for a user by performing least-squares linear regression using feature_fn on the items in restaurants. Also, return the R^2 value of this model. Arguments: user -- A user restaurants -- A sequence of restaurants feature_fn -- A function that takes a restaurant and returns a number """ reviews_by_user = {review_restaurant_name(review): review_rating(review) for review in user_reviews(user).values()} xs = [feature_fn(r) for r in restaurants] ys = [reviews_by_user[restaurant_name(r)] for r in restaurants] # BEGIN Question 7 def s_xx(): return [(x-mean(xs))**2 for x in xs] def s_yy(): return [(y-mean(ys))**2 for y in ys] sxx = sum(s_xx()) syy = sum(s_yy()) newlist = zip([y-mean(ys) for y in ys], [x-mean(xs) for x in xs]) sxy = sum([x*y for y,x in newlist]) b = (sxy/sxx) a = (mean(ys) - b*mean(xs)) r_squared = ((sxy**2)/(sxx*syy)) # REPLACE THIS LINE WITH YOUR SOLUTION # END Question 7 def predictor(restaurant): return b * feature_fn(restaurant) + a return predictor, r_squared def best_predictor(user, restaurants, feature_fns): """Find the feature within feature_fns that gives the highest R^2 value for predicting ratings by the user; return a predictor using that feature. Arguments: user -- A user restaurants -- A list of restaurants feature_fns -- A sequence of functions that each takes a restaurant """ reviewed = user_reviewed_restaurants(user, restaurants) # BEGIN Question 8 highest = max(feature_fns, key=lambda f: find_predictor(user, reviewed, f)[1]) return find_predictor(user, reviewed, highest)[0] # END Question 8 def rate_all(user, restaurants, feature_fns): """Return the predicted ratings of restaurants by user using the best predictor based a function from feature_fns. Arguments: user -- A user restaurants -- A list of restaurants feature_fns -- A sequence of feature functions """ predictor = best_predictor(user, ALL_RESTAURANTS, feature_fns) reviewed = user_reviewed_restaurants(user, restaurants) # BEGIN Question 9 "*** REPLACE THIS LINE ***" # END Question 9 def search(query, restaurants): """Return each restaurant in restaurants that has query as a category. Arguments: query -- A string restaurants -- A sequence of restaurants """ # BEGIN Question 10 "*** REPLACE THIS LINE ***" # END Question 10 def feature_set(): """Return a sequence of feature functions.""" return [restaurant_mean_rating, restaurant_price, restaurant_num_ratings, lambda r: restaurant_location(r)[0], lambda r: restaurant_location(r)[1]] @main def main(*args): import argparse parser = argparse.ArgumentParser( description='Run Recommendations', formatter_class=argparse.RawTextHelpFormatter ) parser.add_argument('-u', '--user', type=str, choices=USER_FILES, default='test_user', metavar='USER', help='user file, e.g.\n' + '{{{}}}'.format(','.join(sample(USER_FILES, 3)))) parser.add_argument('-k', '--k', type=int, help='for k-means') parser.add_argument('-q', '--query', choices=CATEGORIES, metavar='QUERY', help='search for restaurants by category e.g.\n' '{{{}}}'.format(','.join(sample(CATEGORIES, 3)))) parser.add_argument('-p', '--predict', action='store_true', help='predict ratings for all restaurants') parser.add_argument('-r', '--restaurants', action='store_true', help='outputs a list of restaurant names') args = parser.parse_args() # Output a list of restaurant names if args.restaurants: print('Restaurant names:') for restaurant in sorted(ALL_RESTAURANTS, key=restaurant_name): print(repr(restaurant_name(restaurant))) exit(0) # Select restaurants using a category query if args.query: restaurants = search(args.query, ALL_RESTAURANTS) else: restaurants = ALL_RESTAURANTS # Load a user assert args.user, 'A --user is required to draw a map' user = load_user_file('{}.dat'.format(args.user)) # Collect ratings if args.predict: ratings = rate_all(user, restaurants, feature_set()) else: restaurants = user_reviewed_restaurants(user, restaurants) names = [restaurant_name(r) for r in restaurants] ratings = {name: user_rating(user, name) for name in names} # Draw the visualization if args.k: centroids = k_means(restaurants, min(args.k, len(restaurants))) else: centroids = [restaurant_location(r) for r in restaurants] draw_map(centroids, restaurants, ratings)
663c05a6f5937328bad2f0c0fd88804f8191ba0d
38ab2bf049b54c6774d7f11e0cfbb88b5d8d208d
/quadratic/views.py
4e4d40e5d8fe704677a47a3f0e80804d1af4343b
[]
no_license
Askarb/semester7
cae25da9e640e8c39af0ceacc5ce2c51d7962daf
7b55877f5e29ae2fe2fc129d70f84bffa09023c2
refs/heads/master
2021-01-16T22:38:13.702003
2017-01-24T10:42:34
2017-01-24T10:42:34
68,733,524
0
0
null
null
null
null
UTF-8
Python
false
false
939
py
from django.http import HttpResponse from django.template import loader from .forms import QuadraticForm from univer.settings import STATIC_URL from .core_quadratic import solve_quadratic def index(request): context = { 'form': QuadraticForm(), 'STATIC_URL': STATIC_URL, 'result': 0 } template = loader.get_template("quadratic.html") if request.method == "POST": form = QuadraticForm(request.POST) if form.is_valid(): a = form.cleaned_data['a'] b = form.cleaned_data['b'] c = form.cleaned_data['c'] context['a'] = a context['b'] = b context['c'] = c context['result'] = 1 context.update(solve_quadratic(a, b, c)) else: context['result'] = 2 context['comment'] = 'Enter only real or integer!!!' return HttpResponse(template.render(context, request))
0fe440efb0424338c51082177757617a39c437e7
8a081397dae063faa43d1e1dca58b67a44fb1a6c
/add_env_to_service_file.py
b6e686e9c53e39edab4ac444b84b79e9bf2e789b
[]
no_license
altuntasmuhammet/cloud-run-update-env-from-file
419cd84d638fea06e15823974b226ab4f7352806
ba92f0c04d877ee83f1d78261f5b19e01e02c676
refs/heads/main
2023-05-04T21:58:12.414528
2021-05-29T01:00:41
2021-05-29T01:00:41
371,849,628
3
0
null
null
null
null
UTF-8
Python
false
false
1,342
py
import argparse, sys # Service file can be obtained # gcloud run services describe <SERVICE_NAME> --format export > service.yml parser=argparse.ArgumentParser() parser.add_argument('--env-file', help='Environment variables file in YAML format', required=True) parser.add_argument('--service-file', help='Cloud Run service file in YAML format', required=True) parser.add_argument('--out', help='Environment variables added service file name', required=True) args=parser.parse_args() env_file = args.env_file service_file = args.service_file output_file = args.out import yaml # Read environment data with open(env_file, 'r') as f: env_data = yaml.load(f, Loader=yaml.FullLoader) with open(service_file, 'r') as f: service_data = yaml.load(f, Loader=yaml.FullLoader) env_list = [] for key, value in env_data.items(): env_list += [{ "name": key, 'value': value }] # Add env service_data['spec']['template']['spec']['containers'][0]['env'] = env_list # Change name for avoiding conflict when deploying service_data['spec']['template']['metadata']['name'] = service_data['spec']['template']['metadata']['name'] + '-with-env' with open(output_file, 'w') as file: yaml.dump(service_data, file) # After obtaining new service file run below command in terminal # gcloud beta run services replace <out>
93ab51ff87e6e569afdf7b76fa2451e10048db40
4166e6d1725791f2a729b2613c3ee535aea34768
/PSO/local_search.py
da77e5e7dc26b2cbb16c61f11f36a0ac268367c2
[ "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0" ]
permissive
DataAnalyticsResearchGroup/iRadical
bb8f06e01cff70916b6b3ec1c22cd4123343be55
3299217ef9cf035fb10d79e072e273425fc044da
refs/heads/master
2020-04-01T00:57:01.151829
2018-10-12T08:36:59
2018-10-12T08:36:59
152,677,499
0
0
null
null
null
null
UTF-8
Python
false
false
763
py
from fitness import fitness_con from utility import get_all_degrees, get_neighbors, decode_input, convert_to_binary def LocalSearch(x, candidate, args): x = decode_input(x, args) x = list(x) lenx= len(x) gmat = args['gmat'] best_fit_local = fitness_con(x, args) for i in range(lenx): local_neighbors = get_neighbors(x[i], gmat) for itm in local_neighbors: xx = x[:i]+ [itm] + x[i+1:] if len(set(xx)) < lenx: continue new_fit = fitness_con(xx, args) if new_fit < best_fit_local: best_fit_local = new_fit x = xx return x, best_fit_local
aa9e60059acab84935c4078cc238226f830dd1fa
a364542004257ee19fb90ffdec7d2cd0ede662eb
/slicexyz.py
06ceccfba74a558bbe4c674db99251b75c87ac2f
[]
no_license
eselinger/quick-scripts
db0dfb59bd63bc9916bba7e3292ed113f4f689d0
b0337c4717834a464eb3cf041764db86d5aff8c3
refs/heads/master
2020-12-28T17:31:11.431572
2016-12-06T06:46:01
2016-12-06T06:46:01
68,584,955
0
0
null
null
null
null
UTF-8
Python
false
false
1,186
py
#!/usr/bin/python import sys def main(): infile = sys.argv[1] atoms = int(sys.argv[2]) #number of atoms to be stretched. MAKE SURE THESE ARE AT BOTTOM OF .xyz FILE readin = open(infile,'r') readout = open('cut01_'+infile, 'w') numat = int(readin.readline()) readout.write(str(numat) + '\n') readout.write(readin.readline()) #read all coordinates into an array coordinates = readin.readlines() coordinates = [[element for element in line.split()] for line in coordinates[:]] readin.close() #using only MMCT unit coordinates mmct = coordinates[numat-atoms:numat] a = range(atoms) for i in xrange(atoms): a[i] = mmct[i][3] #find highest coordinate maxz = float(max(a)) print maxz b = range(4) newnumat = 0 for i in xrange(numat): #only keep atoms with z-coordinate lower than maxz (from mmct) if float(coordinates[i][3]) <= maxz: for j in xrange(4): b[j] = coordinates[i][j] for element in b: readout.write(str(element) + ' ') readout.write('\n') newnumat = newnumat+1 print newnumat readout.close() main()
dd724adaee147b231c761e78851a4b8b5eaabc35
fd0f25debda5eb51b8d404e78661752bf6eb1e5f
/python3.6.5/Django/2xkt/xxkt/manage.py
86334f2d371a27ef6b471235db2c4ad1705b54f4
[]
no_license
fblrainbow/Python
53f5be4de065dbde2809f69de41fa276107b176a
525604e756e1107183ae8fcc4d6dd611ea0f34ef
refs/heads/master
2021-01-20T14:03:11.263929
2019-01-06T15:19:33
2019-01-06T15:19:33
90,551,373
0
0
null
null
null
null
UTF-8
Python
false
false
551
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "xxkt.settings") try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
6e7b93ea109d344e4ca0462d6ed03ec20057b1d6
045665406e1c8fc74d7e3fd468497f8dc143d717
/main/migrations/0003_auto_20181211_2310.py
968c0beff0b819403f16c05cb0b991423de5ccc2
[]
no_license
ninjascare/Creative_Freedom
2f0a9df5cb6c379ca0d17db3e6a2f1dcdace99d8
74868a01e7ef9aa1506aceda6f2b6de0235019c9
refs/heads/master
2020-04-10T23:43:07.438354
2019-02-28T23:34:58
2019-02-28T23:34:58
161,362,224
1
1
null
2018-12-18T22:32:19
2018-12-11T16:27:14
JavaScript
UTF-8
Python
false
false
369
py
# Generated by Django 2.1.4 on 2018-12-11 23:10 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('main', '0002_auto_20181211_2304'), ] operations = [ migrations.RenameField( model_name='comment', old_name='created_At', new_name='created_at', ), ]
946262f86b97e05896d2f09c9f70dba55baa0988
668a4b6b4ce8155042ed55e05dd62ec78c99851b
/爬虫/py_useragent.py
099051eb1af591db5ab39dfc99d7376be82e143c
[]
no_license
lxjlovewcx/source_code
46b7255f0b05f32a219fc3a2f405811ae8986053
14310e136fb5f83fe1063ae0f9e60445ef5b300a
refs/heads/master
2021-10-20T17:09:22.595583
2019-03-01T05:24:53
2019-03-01T05:24:53
157,014,785
0
0
null
null
null
null
UTF-8
Python
false
false
1,059
py
''' Created on 2018年8月18日 @author: lixue ''' ''' useragent 用户代理 -useragent:用户代理,简称UA,属于heads的一部分,服务器通过UA来判断用户的身份。 -常见的UA值,使用的时候可以直接复制粘贴,也可以用浏览器访问的时候抓包 设置UA可以通过以下两种方式: 1:使用headers 2:使用add_header方法 ''' from urllib import request,error import json if __name__ == '__main__': try: url = "http://fanyi.baidu.com/sug" headers = {} headers['User-Agent'] = '1.0) Gecko/20100101' req = request.Request(url = url,headers=headers) res = request.urlopen(req) json_res = res.read().decode() json_res = json.loads(json_res) print(json_res) req = req.add_handler("User-Agent","1.0) Gecko/20100101") except error.HTTPError as h: print("HTTPError :{0}".format(h)) except error.URLError as e: print("URLError : {0}".format(e)) except Exception as E: print(E)
5762a635e14df7cc68f81066c7674a663954dd82
3f479528a34b2df9e9a001a3537761b259a613eb
/queue/__init__.py
b5ef5a5cec99448a8a93a9fa0b079254ad08d4aa
[]
no_license
gitu/soob
84e1cee0b7fbc085d6986bd6e66652508330e9f8
c9fc9d8f42151eac382287bae8cb4263ad41c525
refs/heads/master
2021-01-21T12:23:01.282583
2014-01-14T15:04:41
2014-01-14T15:04:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
55
py
from LedsCommandQueue import * from PrintQueue import *
c38cba0ee016be6d548d916f969186d04162763b
5d8338ceea6798aa61d96d19eea007d30083c1aa
/TrainingRBC.py
6d8ce9f6afc15a552968e9f7ed3da941f19f5354
[]
no_license
aot3qx/RBC_DeepNet
22f527c7a70f5fb84015a4efe24b215541732d1e
8a3f31e1ac23489848b04c962045b8599de04217
refs/heads/main
2023-07-22T19:31:51.277411
2021-08-27T16:03:20
2021-08-27T16:03:20
375,060,237
0
0
null
null
null
null
UTF-8
Python
false
false
11,412
py
import tensorflow as tf import re import numpy as np import os as os import pandas as pd import matplotlib.pyplot as plt import matplotlib.image as img from datetime import datetime import sys def train_test_split(image_array,label_array,number_images_per_class,k_fold,seed,first_run,number_of_classes): number_images_per_class=int(number_images_per_class) k_fold=float(k_fold) first_run=int(first_run) seed=int(seed) number_of_classes=int(number_of_classes) holdout_number_of_images = int(np.ceil(k_fold * number_images_per_class)) if first_run==1: seed_int=np.random.random_integers(0,10000000) seed_construct=np.random.seed(seed_int) test_images=[] test_labels=[] print("For test runs, your seed is: "+ str(seed_int)) for i in range(0, number_of_classes): indices = np.where(label_array == i) random_array=np.random.choice(a=len(indices[0]),size=int(holdout_number_of_images),replace=False) random_holdout_indices=[] for num in random_array: random_holdout_indices.append(indices[0][num]) for index in random_holdout_indices: test_images.append(np.array(image_array[index],dtype='float32')) test_labels.append(np.array(label_array[index])) image_array=np.delete(image_array,random_holdout_indices,axis=0) label_array=np.delete(label_array,random_holdout_indices,axis=0) return image_array,label_array,np.array(test_images),np.array(test_labels) else: seed_construct = np.random.seed(seed) test_images = [] test_labels = [] print("Using seed integer of: "+ str(seed)) for i in range(0, number_of_classes): indices = np.where(label_array == i) random_array=np.random.choice(a=len(indices[0]),size=int(holdout_number_of_images),replace=False) random_holdout_indices=[] for num in random_array: random_holdout_indices.append(indices[0][num]) for index in random_holdout_indices: test_images.append(np.array(image_array[index],dtype='float32')) test_labels.append(np.array(label_array[index])) image_array=np.delete(image_array,random_holdout_indices,axis=0) label_array=np.delete(label_array,random_holdout_indices,axis=0) return image_array,label_array,np.array(test_images),np.array(test_labels) def read_multiple(mypath,label_vec): #--Reading in images--# image_array=[] label_name_array=[] label_vec=label_vec.split(',') for image_path in os.listdir(mypath): if image_path.endswith(".jpg"): image_array.append(np.array(img.imread(fname=mypath+"\\"+image_path))) for individual in label_vec: image_label=re.search(individual,image_path) if image_label: label_name_array.append(image_label.group()) image_array_scaled=[] for image in image_array: image_scaled=image/255 image_array_scaled.append(image_scaled) label_array_duplicates_removed=dict.fromkeys(label_name_array) i=0 for key in label_array_duplicates_removed.keys(): label_array_duplicates_removed[key]=i i=i+1 i=0 for i in range(0,len(label_name_array)): label_name_array[i]=label_array_duplicates_removed[label_name_array[i]] image_array_scaled=np.array(image_array_scaled) label_array=np.array(label_name_array) print("Image array dimensions: "+ str(np.shape(image_array_scaled))) print("Label array dimensions: "+ str(np.shape(label_array))) print("These dimensions should match. If not, the parser did not find equivalent amount of images + labels") return image_array_scaled,label_array def reshape(image_array,shape): #--Reshaping images to 55*55, setting up DataSet tensor--# dataset_with_channel=image_array.reshape((-1,shape,shape,1)) number_of_images, height, width, channels=dataset_with_channel.shape #defining dimensions return number_of_images,height,width,channels,dataset_with_channel def convolutional_layer(X,filters,kernel_size): #--Defining random kernels for each convolutional layer--# conv=tf.layers.conv2d(X,filters=filters ,kernel_size=kernel_size,strides=[1,1],padding="SAME") return tf.nn.elu(conv) def avg_layer(X): avg_pool=tf.nn.max_pool(X,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME") return avg_pool test_override=input("Are you working solely with test images? 1 for yes, 0 for no: ") if test_override=="1": directory = input("Please enter a path: ") label_vec = input("Enter subject names as comma-delimited list: ") number_of_classes = input("Enter number of classes: ") first_run = input("Is this the first run (i.e. training run)?" "Enter 1 for yes, 0 for no. A seed will be generated that should be used for subsequent" "test runs. Remember this seed: ") else: directory = input("Please enter a path: ") label_vec = input("Enter subject names as comma-delimited list: ") number_of_classes = input("Enter number of classes: ") number_of_images_per_class=input("Enter number of images per class: ") k_fold = input("Enter ratio of holdout set to train set (if odd, will take ceil): ") first_run = input("Is this the first run (i.e. training run)?" "Enter 1 for yes, 0 for no/test run. A seed will be generated that should be used for subsequent" "test runs. Remember this seed: ") if test_override=="1": trained_model_name = input("Enter trained model name (.ckpt file): ") elif (first_run!="1") and (test_override!="1"): seed=input("Enter seed: ") trained_model_name=input("Enter trained model name (.ckpt file): ") else: seed=0 model_name=input("Enter model name to be saved to folder (will be saved as .ckpt file): ") if test_override=="1": image_array,label_array=read_multiple(mypath=directory,label_vec=label_vec) print("X_test shape is: " + str(image_array.shape)) print("Y_test shape is: "+ str(label_array.shape)) else: image_array, label_array = read_multiple(mypath=directory, label_vec=label_vec) X_train, y_train, X_test, y_test = train_test_split(image_array=image_array, label_array=label_array, number_images_per_class=number_of_images_per_class, k_fold=k_fold, seed=seed, first_run=first_run, number_of_classes=number_of_classes) print("X_train shape is: " + str(X_train.shape)) print("Y_train shape is: " + str(y_train.shape)) print("X_test shape is: " + str(X_test.shape)) print("Y_test shape is: " + str(y_test.shape)) if (X_train.shape[0] != y_train.shape[0]) or (X_test.shape[0] != y_test.shape[0]): print( "First dimension of X train does not match with y train, or first dimension of X test does not match y test." "Exiting...make sure that file names in folder are unique for each class to avoid duplicates.") sys.exit("Error. See above message.") if first_run=="1" and test_override!="1": number_of_images,height,width,channels,dataset_with_channel=reshape(X_train,shape=60) print("Dataset shape is: " + str(dataset_with_channel.shape)) elif first_run!="1" and test_override!="1": number_of_images, height, width, channels, dataset_with_channel = reshape(X_test, shape=60) print("Dataset shape is: " + str(dataset_with_channel.shape)) elif test_override=="1": number_of_images, height, width, channels, dataset_with_channel = reshape(image_array, shape=60) print("Dataset shape is: " + str(dataset_with_channel.shape)) else: print("Unclear input") sys.exit("Clean up input") n_outputs=number_of_classes print("Dataset shape:"+str(dataset_with_channel.shape)) # Defining placeholder nodes, convolutional/pooling nodes, etc. X=tf.compat.v1.placeholder(dtype='float32',shape=(None,height,width,channels)) y=tf.compat.v1.placeholder(dtype='int32',shape=(None)) with tf.name_scope("convolutional_nn"): conv_layer_1=convolutional_layer(X,filters=32,kernel_size=5) pool_layer_1=avg_layer(conv_layer_1) conv_layer_2=convolutional_layer(pool_layer_1,filters=64,kernel_size=3) pool_layer_2=avg_layer(conv_layer_2) conv_layer_3=convolutional_layer(pool_layer_2,filters=128,kernel_size=2) pool_layer_3=avg_layer(conv_layer_3) hidden_1_input=tf.layers.flatten(pool_layer_3) with tf.name_scope("fully_connected_layer"): hidden_1=tf.layers.dense(hidden_1_input,200,activation=tf.nn.elu,name="hidden1") hidden_2=tf.layers.dense(hidden_1,100,activation=tf.nn.elu,name="hidden2") logits=tf.layers.dense(hidden_2,units=n_outputs,name="logits") softmax=tf.nn.softmax(logits=logits) with tf.name_scope("loss"): cross_entropy=tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y,logits=logits) loss=tf.reduce_mean(cross_entropy,name="loss") learning_rate=.1 with tf.name_scope("training"): optimizer=tf.train.GradientDescentOptimizer(learning_rate=learning_rate) training_operation=optimizer.minimize(loss=loss) with tf.name_scope("evaluation"): number_correct=tf.nn.in_top_k(logits,y,1) accuracy=tf.reduce_mean(tf.cast(number_correct,tf.float32)) acc_summary=tf.summary.scalar('Accuracy',accuracy) softmax_summary=tf.summary.tensor_summary('Softmax',softmax) loss_summary=tf.summary.scalar('Loss',loss) now=datetime.utcnow().strftime("Year_%Y_Month_%m_Day_%d_Time_%H%M%S") root_logdir="tf_logs" logdirectory="{}/run-{}/".format(root_logdir,now) filewriter=tf.summary.FileWriter(logdir=logdirectory,graph=tf.get_default_graph()) print_logits=tf.print(logits) print_labels=tf.print(y) if first_run=="1": number_epochs=int(input("Enter epoch number: ")) init = tf.global_variables_initializer() saver=tf.train.Saver() with tf.Session() as sess: if first_run=="1": #train block init.run() accuracy_vec=[] epoch_vec=[] conv_layer_output=sess.run(conv_layer_1,feed_dict={X:dataset_with_channel}) pool_layer_output=sess.run(pool_layer_1,feed_dict={conv_layer_1:conv_layer_output}) for epoch in range(number_epochs): print(epoch) sess.run(training_operation,feed_dict={X:dataset_with_channel,y:y_train}) loss_train=loss.eval(feed_dict={X:dataset_with_channel,y:y_train}) loss_string=loss_summary.eval(feed_dict={X:dataset_with_channel,y:y_train}) filewriter.add_summary(loss_string,epoch) accuracy_vec.append(loss_train) epoch_vec.append(epoch) print(loss_train) saver.save(sess,"./"+model_name+".ckpt") else: saver.restore(sess,"./"+trained_model_name+".ckpt") softmax_eval = softmax.eval(feed_dict={X: dataset_with_channel}) print(softmax_eval) if first_run=="1": print(accuracy_vec)
615598e77a7b6267f4a4deecc9c45a50885c5ed7
be3a563eef50b64fa81fd5d7f25f3173e7e4d126
/base_web_apps/java/tests/basic_web_test.py
ac371168efa4dbaf0108fa8741c47600745c37ee
[]
no_license
KoalaTea/capstone-security-unit-tests
cc54b2b1fce109826635eda22c2e318231030117
249d17648b0909aa2337ef73ea13f6082880252d
refs/heads/master
2022-12-09T23:54:44.126132
2018-03-31T22:44:45
2018-03-31T22:44:45
126,236,282
0
0
null
2022-12-08T00:51:09
2018-03-21T20:24:58
Python
UTF-8
Python
false
false
340
py
import unittest import requests class BasicWebTest(unittest.TestCase): def setUp(self): self.client = requests self.url = "http://127.0.0.1:8080" def test_index(self): resp = self.client.get(self.url+'/index') self.assertEqual(resp.status_code, 200) if __name__ == '__main__': unittest.main()
9f0d153807bb442e2f36ecc5930db564c9560e68
d991df05cabd89bbebdff8882ebae599ab362172
/menu.py
79603ffda974e152b079209d04bab921c5e9bd27
[]
no_license
vikash232/Arth_task9.1_audio
0af13e3752aba2f9bad672ca24254d60777c7dae
3ec5e668ded5447cdf2b03f31d13ffe4523f985c
refs/heads/main
2023-01-23T08:21:17.195860
2020-11-20T15:54:40
2020-11-20T15:54:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,066
py
import os import getpass import speech_recognition as sr password = getpass.getpass("Password : ") if password != "menu": print("Wrong Password") exit() else: while True: print("\n") os.system("tput setaf 1") print("\t\t\t\t\t\t\tWELCOME TO MAIN MENU") print("\t\t\t\t\t\t\t--------------------") os.system("tput setaf 7") print(""" Press 1 : To run Linux Operations Press 2 : To run Docker Opearations Press 3 : To run AWS Opearations Press 4 : To run Hadoop Operations Press 5 : To exit """) r = sr.Recognizer() with sr.Microphone() as source: print("Start Speaking") audio = r.listen(source) print("Audio Recorded") ch = r.recognize_google(audio) if (("linux" in ch) or ("Linux" in ch) or ("linux-operation" in ch) and (("run" in ch) or ("execute" in ch))): os.system("python3 linux-operation.py") elif (("docker" in ch) or ("Docker" in ch) or ("docker-operation" in ch) and (("run" in ch) or ("execute" in ch))): os.system("python3 docker.py") elif (("aws" in ch) or ("AWS" in ch) or ("aws-operation" in ch) and (("run" in ch) or ("execute" in ch))): os.system("python3 aws-operation.py") elif (("hadoop" in ch) or ("Hadoop" in ch) or ("hadoop-operation" in ch) and (("run" in ch) or ("execute" in ch))): os.system("python3 hadoop.py") elif (("exit" in ch) or ("return" in ch) and (("main menu" in ch) or ("menu" in ch))): os.system("exit") break else: print("Invalid Option") input("Enter to run more main menu...") os.system("clear")
812eea57b1d0fb6ef70530615cc468dc5bbecced
5668d8e64a17f11f573f59bccca532c3a26b9780
/2-3 Months/non-tutorial projects/battleship.py
00d994b138d636ae28c248badd0e8efebe074345
[]
no_license
nzsnapshot/MyTimeLine
9b02141ead11ec660a37cb8752f0025f285443ab
5d22aa8d9eb043eea06fcb8f3f615a2f2453da56
refs/heads/master
2021-03-10T20:44:41.422805
2020-03-11T08:53:46
2020-03-11T08:53:46
246,484,336
0
0
null
null
null
null
UTF-8
Python
false
false
5,354
py
import random boat_lengths = [2,3,4,5] game_board = [0 for x in range(0,100)] for boat_len in boat_lengths: position_found = False vertical = random.randint(0,1) if vertical == 0: while not position_found: test_position = random.randint(0,99) position_found = True if len(game_board) <= test_position+boat_len: position_found = False else: for i in range(0,boat_len): if game_board[test_position+i] != 0: position_found = False if test_position%10+i >= 10: position_found = False for z in range(0,boat_len): game_board[test_position+z] = boat_len elif vertical == 1: while not position_found: test_position = random.randint(0,99) position_found = True if len(game_board) <= test_position+boat_len*10: position_found = False else: for i in range(0,boat_len): if game_board[test_position+i*10] != 0: position_found = False if test_position+i*10 >= 100: position_found = False for z in range(0,boat_len): game_board[test_position+z*10] = boat_len with open('battleship board.txt', 'w') as map_file: for y in range(0,10): for x in range(0,10): map_file.write(str(game_board[x+y*10])) map_file.write('\n') #------boat coordinates for testing------- #e.g. (vertical,horizontal) #Destroyer(2hits) = (1,1) and (1,2) #Cruiser(3hits) = (7,2),(7,3), and (7,4) #Battleship(4hits) = (0,6),(0,7),(0,8), and (0,9) #Carrier(5hits) = (2,6),(3,6)(4,6)(5,6), and (6,6) # ----------functions-------------------------------- def drawBoard(gB): # this function receives a list of lists # the list of lists must be a 10x10 structure # it then uses this to draw an index row and column # and the board itself... print('----------------------------------------------') print(' 0 1 2 3 4 5 6 7 8 9') for i in range(0, 10, 1): print(i, ' ', end='') for j in range(0, 10, 1): s = ' ' + str(gB[i][j]) print(s, end='') print() print('----------------------------------------------') return # -----------background setup (preparing data)------- # 1 import map data # open the board file for reading inFile = open('battleship board.txt', 'r') map = [] # a list of lists for templine in inFile: newtempline = templine.strip('\n') templist = list(newtempline) map.append(templist) # must convert these strings to ints for x in range(0, 10, 1): for y in range(0, 10, 1): map[x][y] = int(map[x][y]) gameboard = [] for i in range(0, 10, 1): gameboard.append(['_', '_', '_', '_', '_', '_', '_', '_', '_', '_']) drawBoard(gameboard) # ----------startup conditions for game-------------- notAllHit = True destroyer = 0 # 2 cruiser = 0 # 3 battleship = 0 # 4 carrier = 0 # 5 destroyerCheck = True cruiserCheck = True battleshipCheck = True carrierCheck = True # -------------the game------------------------------ while notAllHit: print('----------------------------------------------') row = int(input('Enter a vertical integer to fire at (0-9):')) column = int(input('Enter a horizontal integer to fire at(0-9):')) ############# Below is the try and except statements. ############# try and except allows you to handle errors and give a different outcome ############# This way the user does not get interrupted or the programme stops try: if gameboard[row][column] == 'X' or gameboard[row][column] == '.': print('You already fired at these coordinates, try again.') print('----------------------------------------------') else: if map[row][column] == 0: print('MISS') gameboard[row][column] = '.' drawBoard(gameboard) else: print('HIT') gameboard[row][column] = 'X' hitBoatType = map[row][column] #map[row][column] = 0 drawBoard(gameboard) if map[row][column] == 2: destroyer += 1 if destroyer == 2: if destroyerCheck == True: print('You sunk the Destroyer!') destroyerCheck = False if map[row][column] == 3: cruiser += 1 if cruiser == 3: if cruiserCheck == True: print('You sunk the Cruiser!') cruiserCheck = False if map[row][column] == 4: battleship += 1 if battleship == 4: if battleshipCheck == True: print('You sunk the Battleship!') battleshipCheck = False if map[row][column] == 5: carrier += 1 if carrier == 5: if carrierCheck == True: print('You sunk the Carrier!') carrierCheck = False except IndexError: error = print('Please enter a valid input between 0-9:') if destroyerCheck == False and cruiserCheck == False and battleshipCheck == False and carrierCheck == False: notAllHit = False print('All boats sunk.') print('You Win!')
d5da12321e8dcfa61681d4fe39243fb11987c243
f55315672696a099c1a25f484efe7c1d3c260d5f
/Co-integration/TradingStrategy.py
2fc6d6cd1ce3950a88c9577dfe14a05983051e7f
[]
no_license
anchalsri82/Python
cdb64e30b1bfb156be35d4a71ca8428b6feb3112
b9d35fe1d6a512de7daa80789f3720583ce8645d
refs/heads/master
2020-12-03T03:50:16.793792
2017-07-22T18:22:53
2017-07-22T18:22:53
95,779,465
0
0
null
null
null
null
UTF-8
Python
false
false
14,178
py
import pandas as pd # Import statsmodels equivalents to validate results from statsmodels.tsa.api import VAR from statsmodels.regression.linear_model import OLS from statsmodels.tsa.tsatools import (lagmat, add_trend) from statsmodels.tsa.stattools import adfuller import numpy as np import matplotlib.pyplot as plt import seaborn as sns import matplotlib.pylab as pylab # Verfify methods: instrument1 = pd.read_csv("D:/Projects/Python/trunk/Co-integration/MarketData/C.csv", index_col=0, parse_dates=True, dayfirst=True) instrument1['Returns'] = np.log(instrument1['Adj Close'].astype(np.float)/instrument1['Adj Close'].shift(1).astype(np.float)) instrument1=instrument1[1:] instrument2 = pd.read_csv("D:/Projects/Python/trunk/Co-integration/MarketData/BAC.csv", index_col=0, parse_dates=True, dayfirst=True) instrument2['Returns'] = np.log(instrument2['Adj Close'].astype(np.float)/instrument2['Adj Close'].shift(1).astype(np.float)) instrument2=instrument2[1:] returns1 = instrument1['Returns'].values returns2 = instrument2['Returns'].values Y1_t = instrument1['Adj Close'].values Y2_t = instrument2['Adj Close'].values dY1_t = pd.Series(Y1_t, name='Y1_t').diff().dropna() dY2_t = pd.Series(Y2_t, name='Y2_t').diff().dropna() ## ADF data = pd.concat([instrument1['Returns'], instrument2['Returns']], axis=1, keys=['Returns1', 'Returns2']) Yt = np.vstack((Y1_t, Y2_t)) Yr = np.vstack((returns1, returns2)) dY = np.vstack((dY1_t, dY2_t)) maxlags = int(round(12*(len(Yr)/100.)**(1/4.))) ## Optimal Legs maxlagOptimumVectorAR = GetOptimalLag(Yr, maxlags, modelType='VectorAR') #maxlagOptimumADFuller = GetOptimalLag(Y=Yr, maxlags=maxlags, modelType='ADFuller') #resultADFuller = GetADFuller(Y=Yr, maxlags= maxlagOptimumVectorAR['bestlagaic']) model = VAR(data) results = model.fit(0, method='ols', ic='aic', trend='c',verbose=True) results.summary() #resultADFullerYt = GetADFuller(Yt, 1) #resultADFullerYt['adfstat'] #maxlagOptimumADFullerdY = GetOptimalLag(dY, maxlags, modelType='ADFuller') #resultADFullerdY = GetADFuller(dY, maxlagOptimumADFullerdY['bestlagaic']) # ENGLE-GRANGER STEP 1 Y2_t_d = np.vstack((np.ones(len(Y2_t)), Y2_t)) resultGetOLS = GetOLS(Y=Y1_t, X=Y2_t_d) a_hat = resultGetOLS['beta_hat'][0,0] beta2_hat = resultGetOLS['beta_hat'][0,1] et_hat = Y1_t - np.dot(beta2_hat, Y2_t) - a_hat # ENGLE-GRANGER STEP 2 result_et_hat_adf = GetADFuller(Y=et_hat, maxlags=1, regression='nc') print("ADF stat : %f" % result_et_hat_adf['adfstat']) sm_result_et_hat_adf = adfuller(et_hat, maxlag=1, regression='nc', autolag=None, regresults=True) # ===== SPREAD PLOTS ===== from matplotlib import gridspec plt.figure(1, figsize=(15, 20)) # gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1]) gs = gridspec.GridSpec(3, 1, height_ratios=[1, 0.5, 0.5]) # === SPREAD TIME SERIES === plt.subplot(gs[0]) plt.title('Cointegrating spread $\hat{e}_t$ (Brent & Gasoil)') e_t_hat.plot() plt.axhline(e_t_hat.mean(), color='red', linestyle='--') # Add the mean plt.legend(['$\hat{e}_t$', 'mean={0:0.2g}'.format(e_t_hat.mean())], loc='lower right') plt.xlabel('') # === SPREAD HISTOGRAM === plt.subplot(gs[1]) from scipy import stats ax = sns.distplot(e_t_hat, bins=20, kde=False, fit=stats.norm); plt.title('Distribution of Cointegrating Spread for Brent and Gasoil') # Get the fitted parameters used by sns (mu, sigma) = stats.norm.fit(e_t_hat) print "mu={0}, sigma={1}".format(mu, sigma) # Legend and labels plt.legend(["normal dist. fit ($\mu \sim${0}, $\sigma=${1:.2f})".format(0, sigma), "$\hat{e}_t$" ]) plt.xlabel('Value') plt.ylabel('Frequency') plt.title('') # # Cross-check this is indeed the case - should be overlaid over black curve # x_dummy = np.linspace(stats.norm.ppf(0.01), stats.norm.ppf(0.99), 100) # ax.plot(x_dummy, stats.norm.pdf(x_dummy, mu, sigma)) # plt.legend(["normal dist. fit ($\mu=${0:.2g}, $\sigma=${1:.2f})".format(mu, sigma), # "cross-check"]) # === SPREAD PACF === from statsmodels.graphics.tsaplots import plot_pacf ax = plt.subplot(gs[2]) plot_pacf(e_t_hat, lags=50, alpha=0.01, ax=ax) plt.title('') plt.xlabel('Lags') plt.ylabel('PACF') # plt.text(x=40.5, y=0.85, s='PACF', size='xx-large') # ===== GOODNESS OF FIT OF SPREAD TO NORM ====== # Note: do not use scipy's kstest, # see http://stackoverflow.com/questions/7903977/implementing-a-kolmogorov-smirnov-test-in-python-scipy import statsmodels.api as sm # Lilliefors test http://en.wikipedia.org/wiki/Lilliefors_test print 'Lilliefors:', sm.stats.lillifors(e_t_hat) # Most Monte Carlo studies show that the Anderson-Darling test is more powerful # than the Kolmogorov-Smirnov test. It is available in scipy.stats with critical values, # and in statsmodels with approximate p-values: print 'Anderson-Darling:', sm.stats.normal_ad(e_t_hat) # ===== STEP 2: ADF TEST ON SPREAD ===== # Test spread for stationarity with ADF assuming maxlag=1, no constant and no trend my_res_adf = my_adfuller(e_t_hat, maxlag=3, regression='nc') # Validate result with statsmodels equivalent sm_res_adf = adfuller(e_t_hat, maxlag=3, regression='nc', autolag=None, regresults=True) print sm_res_adf print my_res_adf['adfstat'] print "%0.4f" % my_res_adf['adfstat'] # ===== STABILITY CHECK ===== print key, np.abs(my_res_adf['roots']) print "passes stability check: {0}".format(is_stable(my_res_adf['roots'])) from statsmodels.regression.linear_model import OLS Y = y.diff()[1:] # must remove first element from array which is nan X = pd.concat([x.diff()[1:], e_t_hat.shift(1)[1:]], axis=1) X_c = add_constant(X) sm_res_ecm = OLS(Y, X).fit() # fit without constant sm_res_ecm_c = OLS(Y, X_c).fit() # fit without constant sm_res_ecm_c.summary2() sm_res_ecm.summary2() # ====== FIT TO OU PROCESS ====== # My implementations from analysis import my_AR # AR(p) model # Import statsmodels equivalents to validate results from statsmodels.tsa.ar_model import AR # Run AR(1) model with constant term with e_t_hat as endogenous variable my_res_ar = my_AR(endog=e_t_hat, maxlag=1, trend='c') sm_res_ar = AR(np.array(e_t_hat)).fit(maxlag=3, trend='c', method='cmle') # Stability Check print 'is AR({0}) model stable: {1}'.format(sm_res_ar.k_ar, is_stable(sm_res_ar.roots)) print 'is AR({0}) model stable: {1}'.format(my_res_ar['maxlag'], is_stable(my_res_ar['roots'])) # Cross-checks print "\ AR({12}).fit.params={0} \n MY_AR({13}) params={1} \n\ AR({12}).fit.llf={2} \n MY_AR({13}) llf={3} \n\ AR({12}).fit.nobs={4} \n MY_AR({13}) nobs={5} \n\ AR({12}).fit.cov_params(scale=ols_scale)={6} \n MY_AR({13}) cov_params={7} \n\ AR({12}).fit.bse={8} \n MY_AR({13}) bse={9} \n\ AR({12}).fit.tvalues={10} \n MY_AR({13}) tvalue={11} \n\ AR({12}).fit.k_ar={12} \n MY_AR({13}) maxlag={13} \n\ ".format( sm_res_ar.params, my_res_ar['params'], sm_res_ar.llf, np.array(my_res_ar['llf']), sm_res_ar.nobs, my_res_ar['nobs'], sm_res_ar.cov_params(scale=my_res_ar['ols_scale']), my_res_ar['cov_params'], sm_res_ar.bse, my_res_ar['bse'], sm_res_ar.tvalues, my_res_ar['tvalue'], sm_res_ar.k_ar, my_res_ar['maxlag'] ) tau = 1. / 252. # ok for daily frequency data # AR(1) my_C = my_res_ar['params'][0] my_B = my_res_ar['params'][1] my_theta = - np.log(my_B) / tau my_mu_e = my_C / (1. - my_B) my_sigma_ou = np.sqrt((2 * my_theta / (1 - np.exp(-2 * my_theta * tau))) * my_res_ar['sigma']) my_sigma_e = my_sigma_ou / np.sqrt(2 * my_theta) my_halflife = np.log(2) / my_theta print ' AR({8}): my_C={0}, my_B={1}, tau={2}, my_theta={3}, my_mu_e={4}, my_sigma_ou={5}, my_sigma_e={6}, my_halflife={7:.4f}'.format(my_C, my_B, tau, my_theta, my_mu_e, my_sigma_ou, my_sigma_e, my_halflife, my_res_ar['maxlag']) # AR(3) sm_C = sm_res_ar.params[0] sm_B = sm_res_ar.params[1] sm_theta = - np.log(sm_B) / tau sm_mu_e = sm_C / (1. - sm_B) sm_sigma_ou = np.sqrt((2 * sm_theta / (1 - np.exp(-2 * sm_theta * tau))) * sm_res_ar.sigma2) sm_sigma_e = sm_sigma_ou / np.sqrt(2 * sm_theta) sm_halflife = np.log(2) / sm_theta print ' AR({8}): sm_C={0}, sm_B={1}, tau={2}, sm_theta={3}, sm_mu_e={4}, sm_sigma_ou={5}, sm_sigma_e={6}, sm_halflife={7:.4f}'.format( sm_C, sm_B, tau, sm_theta, sm_mu_e, sm_sigma_ou, sm_sigma_e, sm_halflife, sm_res_ar.k_ar) # Equivalent to AR(1) model above but expressed using differences from statsmodels.regression.linear_model import OLS Y_e = e_t_hat.diff()[1:] # de_t X_e = e_t_hat.shift(1)[1:] # e_t-1 X_e = add_constant(X_e) r = OLS(Y_e, X_e).fit() X_e = X_e.iloc[:, 1] # remove the constant now that we're done r.summary2() # PLOTTING e_t_hat.plot(label='$\hat{e}_t$', figsize=(15, 7)) # plt.plot(e_t_hat, label='$\hat{e}_t$') # Trading bounds plt.title('Trading bounds for Cointegrated Spread (Brent & Gasoil)') plt.axhline(0, color='grey', linestyle='-') # axis line plt.axhline(my_mu_e, color='green', linestyle=':', label='AR(1) OU $\mu_e \pm \sigma_{eq}$') plt.axhline(sm_mu_e, color='red', linestyle='--', label='AR(3) OU $\mu_e \pm \sigma_{eq}$') plt.axhline(my_sigma_e, color='green', linestyle=':') plt.axhline(-my_sigma_e, color='green', linestyle=':') plt.axhline(sm_sigma_e, color='red', linestyle='--') plt.axhline(-sm_sigma_e, color='red', linestyle='--') plt.legend(loc='lower right') # ======== BETA HEDGING ======== # === In-sample fit === from statsmodels.regression.linear_model import OLS Y_is = df_is['gasoil'].diff()[1:] # must remove first element from array which is nan X_is = df_is['brent'].diff()[1:] X_is_c = add_constant(X_is) # res_bh = OLS(Y_is, X_is).fit() # fit without constant res_bh_c = OLS(Y_is, X_is_c).fit() # fit without constant res_bh_c.summary2() # === In-sample testing === print (Y_is - res_bh_c.params[1]*X_is).mean() # long gasoil, short brent print (Y_is).mean() # long gasoil only # === Out-of-sample testing === Y_os = df_os['gasoil'].diff()[1:] X_os = df_os['brent'].diff()[1:] print (Y_os - res_bh_c.params[1]*X_os).mean() # long gasoil, short brent print (Y_os).mean() # long gasoil only normalised_e_t_hat = static_zscore(e_t_hat, mean=sm_mu_e, sigma=sm_sigma_e) normalised_e_t_hat.plot() plt.axhline(1.0, color='red', linestyle='--') plt.axhline(-1.0, color='green', linestyle='--') plt.legend(['z-score $\hat{e}_t$', '+1', '-1'], loc='lower right') plt.axhline(0, color='grey') # ==== GENERATE P&L DATAFRAME FOR A GIVEN SPREAD def get_pnl_df(spread, mean, sigma): """ Note the input spread must be zscore-normalised """ spread_norm = (spread - mean) / sigma # normalise as z-score df_pnl_is = pd.DataFrame(index=spread.index) df_pnl_is['e_t_hat'] = spread df_pnl_is['e_t_hat_norm'] = spread_norm # df_pnl_is['diff'] = df_pnl_is['e_t_hat'].diff() df_pnl_is['pos'] = np.nan # Go long the spread when it is below -1 as expectation is it will rise df_pnl_is.loc[df_pnl_is['e_t_hat_norm'] <= -1.0, 'pos'] = 1 # Go short the spread when it is above +1 as expectation is it will fall df_pnl_is.loc[df_pnl_is['e_t_hat_norm'] >= 1.0, 'pos'] = -1 # Exit positions when close to zero df_pnl_is.loc[(df_pnl_is['e_t_hat_norm'] < 0.1) & (df_pnl_is['e_t_hat_norm'] > -0.1), 'pos'] = 0 # # forward fill NaN's with previous value df_pnl_is['pos'] = df_pnl_is['pos'].fillna(method='pad') # Returns must be calculated in unnormalised spread df_pnl_is['chg'] = df_pnl_is['e_t_hat'].diff().shift(-1) # adopting Boris convention with shift(-1) (must shift after taking diff) # PnL df_pnl_is['pnl'] = df_pnl_is['pos'] * df_pnl_is['chg'] df_pnl_is['pnl_cum'] = df_pnl_is['pnl'].cumsum() return df_pnl_is df_pnl_is = get_pnl_df(e_t_hat, mean=sm_mu_e, sigma=sm_sigma_e) df_pnl_is.tail() df_pnl_is.loc[df_pnl_is['pnl'].isnull(), 'pnl'] %run my_pyfolio.py plot_drawdown_periods(df_pnl_is['pnl'], top=5) # ======== OUT-OF-SAMPLE TESTING ======== # Construct the out-of-sample spread e_t_hat_os = df_os['gasoil'] - c_hat - beta2_hat*df_os['brent'] # Normalise to OU bounds normalised_e_t_hat_os = static_zscore(e_t_hat_os, mean=sm_mu_e, sigma=sm_sigma_e) normalised_e_t_hat_os.plot() plt.axhline(1.0, color='red', linestyle='--') plt.axhline(-1.0, color='green', linestyle='--') plt.legend(['z-score $\hat{e}_t$', '+1', '-1'], loc='upper right') plt.axhline(0, color='grey') df_pnl_os = get_pnl_df(e_t_hat_os, mean=sm_mu_e, sigma=sm_sigma_e) df_pnl_os.tail() df_pnl_is[:-1]['pnl_cum'][-1] %run my_pyfolio.py df_pnl_is.index[-1] df_temp = df_pnl_is[:-1]['pnl_cum'] # remove nan on last row k = df_temp[-1] # last non-nan row of in-sample pnl df_temp.plot() plot_drawdown_periods(df_pnl_os['pnl'], k=k, top=5) plt.axvline(df_temp.index[-1], color='black', linestyle='--') plt.legend(['in-sample', 'out-of-sample', 'boundary'], loc='upper left') # Monte carlo np.random.seed(2000) d_t = 1 M = 500 mu = 12 sigma = 0.25 Y_t1 = np.zeros((M + 1)) Y_t2 = np.zeros((M + 1)) Y_t1[0] = -75.0 Y_t2[0] = 70.0 theta_1 = 0.004 theta_2 = 0.02 for i in range(1, M + 1): Y_t1[i] = Y_t1[i-1] + theta_1 * (mu - Y_t1[i-1]) * d_t + sigma * math.sqrt(d_t) * np.random.normal(0, 1) Y_t2[i] = Y_t2[i-1] + theta_2 * (mu - Y_t2[i-1]) * d_t + sigma * math.sqrt(d_t) * np.random.normal(0, 1) Y_t = np.vstack((Y_t1,Y_t2)) print(Y_t) Y_t1 = pd.Series(Y_t1, name='Y_t') _ = Y_t1.plot() _ = Y_t1.diff().plot() # _ = plt.ylabel('Series Value') _ = plt.xlabel('Time') _ = plt.legend(['Random walk with drift', 'Stationary Difference'], loc='upper left')
a030475f8a6a0ee5dc27f85bde609489b981399a
7e34099853f87cbfd0ee69d8894d10eaf8e1df94
/implementations/group6/src/send_email_is_added.py
70510b4dd1001292167313512f55410b2e98d056
[]
no_license
Matias-Bernal/dose2014
cc1b973de8ba592ba82b2c8c8efd7749bcd3a033
139376fb884523cf5e0ccd7e9fed152555641a35
refs/heads/master
2016-09-06T03:51:44.566674
2014-12-24T14:49:10
2014-12-24T14:49:10
32,119,587
0
0
null
null
null
null
UTF-8
Python
false
false
809
py
import email import smtplib import sys #receives the user email to which send the email if len(sys.argv) >= 4: #print 'Argument List:', str(sys.argv) user_logged = sys.argv[1] user_invited = sys.argv[2] project_name= sys.argv[3] msg = email.message_from_string('Dear user,\n\n You was joined to the project "%s" from "%s". \n\nFrom right now you have access to it.\n\nThis is an automatically generated email, please do not reply to it. ' %(project_name,user_logged)) msg['From'] = "[email protected]" msg['To'] = user_invited msg['Subject'] = "[No reply] - Added to projet" s = smtplib.SMTP("smtp.live.com",587) s.ehlo() s.starttls() s.ehlo() s.login('[email protected]', 'groupMilan2') s.sendmail("[email protected]", user_invited, msg.as_string()) s.quit()
[ "annamaria.nestorov@f6206239-57e0-e8d1-037d-e0d2c07dc7bc" ]
annamaria.nestorov@f6206239-57e0-e8d1-037d-e0d2c07dc7bc
097c70d581f0a7f277b93936c01ba8b93b14019d
b664bbc0f09ef88761c27aa212a7b0f649768a24
/ip138/cmdline.py
920a3f7ae3cbd7ae57e80b5f7878909635206858
[ "MIT" ]
permissive
niulinlnc/ip138
89811d173659106c48a38bd2a29b7c24dd1bef71
828962168a1f68517bd1e3258621f7a4dbfa2c7b
refs/heads/master
2020-09-28T03:06:05.387439
2019-06-12T06:09:11
2019-06-12T06:09:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,078
py
# coding: utf-8 from __future__ import print_function import sys from optparse import OptionParser try: from itertools import ifilter as filter except ImportError: pass from ip138.logger import logger from ip138 import __version__ try: if sys.version_info < (3, 0, 0): import codecs import locale sys.stdout = codecs.getwriter( locale.getpreferredencoding())(sys.stdout) sys.stderr = codecs.getwriter( locale.getpreferredencoding())(sys.stderr) except NameError: # python3 pass def banner(): logger.info(u'''ip138 IP 地理信息查询 ver %s''' % __version__) def cmd_parser(): parser = OptionParser() parser.add_option('--ip', type='string', dest='ip', action='store', help='ip address') try: sys.argv = list(map(lambda x: unicode( x.decode(sys.stdin.encoding)), sys.argv)) except (NameError, TypeError): pass except UnicodeDecodeError: exit(0) args, _ = parser.parse_args(sys.argv[1:]) return args
9c39907cb189fd01a905f1183f03c509c54c9867
c89e4099f801cb4e71b732f74ba2237883de0b16
/spider/concurrent/concur_threads_insts.py
0dbe75f7f91c002521ecda1898366e1fa47d83e3
[ "BSD-2-Clause" ]
permissive
JiyangZhang/PSpider
3abc14792875e306d4a0207f1cd872834c35335c
2151bbdd028acfa5794acab6c87988dc4bf485d3
refs/heads/master
2021-08-19T01:31:22.975247
2017-11-24T10:03:10
2017-11-24T10:38:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,792
py
# _*_ coding: utf-8 _*_ """ concur_threads_insts.py by xianhu """ import time import logging from .concur_abase import TPEnum, BaseThread # =============================================================================================================================== def work_fetch(self): """ procedure of fetching, auto running, and return False if you need stop thread """ # ----1---- priority, url, keys, deep, repeat = self._pool.get_a_task(TPEnum.URL_FETCH) # ----2---- fetch_result, content = self._worker.working(priority, url, keys, deep, repeat) # ----3---- if fetch_result == 1: self._pool.update_number_dict(TPEnum.URL_FETCH_SUCC, +1) self._pool.add_a_task(TPEnum.HTM_PARSE, (priority, url, keys, deep, content)) elif fetch_result == 0: self._pool.add_a_task(TPEnum.URL_FETCH, (priority+1, url, keys, deep, repeat+1)) else: self._pool.update_number_dict(TPEnum.URL_FETCH_FAIL, +1) # ----4---- self._pool.finish_a_task(TPEnum.URL_FETCH) # ----5---- while (self._pool.get_number_dict(TPEnum.HTM_NOT_PARSE) > 500) or (self._pool.get_number_dict(TPEnum.ITEM_NOT_SAVE) > 500): logging.debug("%s[%s] sleep 5 seconds because of too many 'HTM_NOT_PARSE' or 'ITEM_NOT_SAVE'...", self.__class__.__name__, self.getName()) time.sleep(5) return False if fetch_result == -2 else True FetchThread = type("FetchThread", (BaseThread,), dict(working=work_fetch)) # =============================================================================================================================== def work_parse(self): """ procedure of parsing, auto running, and only return True """ # ----1---- priority, url, keys, deep, content = self._pool.get_a_task(TPEnum.HTM_PARSE) # ----2---- parse_result, url_list, save_list = self._worker.working(priority, url, keys, deep, content) # ----3---- if parse_result > 0: self._pool.update_number_dict(TPEnum.HTM_PARSE_SUCC, +1) for _url, _keys, _priority in url_list: self._pool.add_a_task(TPEnum.URL_FETCH, (_priority, _url, _keys, deep+1, 0)) for item in save_list: self._pool.add_a_task(TPEnum.ITEM_SAVE, (url, keys, item)) else: self._pool.update_number_dict(TPEnum.HTM_PARSE_FAIL, +1) # ----4---- self._pool.finish_a_task(TPEnum.HTM_PARSE) return True ParseThread = type("ParseThread", (BaseThread,), dict(working=work_parse)) # =============================================================================================================================== def work_save(self): """ procedure of saving, auto running, and only return True """ # ----1---- url, keys, item = self._pool.get_a_task(TPEnum.ITEM_SAVE) # ----2---- save_result = self._worker.working(url, keys, item) # ----3---- if save_result: self._pool.update_number_dict(TPEnum.ITEM_SAVE_SUCC, +1) else: self._pool.update_number_dict(TPEnum.ITEM_SAVE_FAIL, +1) # ----4---- self._pool.finish_a_task(TPEnum.ITEM_SAVE) return True SaveThread = type("SaveThread", (BaseThread,), dict(working=work_save)) # =============================================================================================================================== def init_monitor_thread(self, name, pool, sleep_time=5): """ constructor of MonitorThread """ BaseThread.__init__(self, name, None, pool) self._sleep_time = sleep_time # sleeping time in every loop self._init_time = time.time() # initial time of this spider self._last_fetch_num = 0 # fetch number in last time self._last_parse_num = 0 # parse number in last time self._last_save_num = 0 # save number in last time return def work_monitor(self): """ monitor the pool, auto running, and return False if you need stop thread """ time.sleep(self._sleep_time) info = "%s status: running_tasks=%s;" % (self._pool.__class__.__name__, self._pool.get_number_dict(TPEnum.TASKS_RUNNING)) cur_not_fetch = self._pool.get_number_dict(TPEnum.URL_NOT_FETCH) cur_fetch_succ = self._pool.get_number_dict(TPEnum.URL_FETCH_SUCC) cur_fetch_fail = self._pool.get_number_dict(TPEnum.URL_FETCH_FAIL) cur_fetch_all = cur_fetch_succ + cur_fetch_fail info += " fetch:[NOT=%d, SUCC=%d, FAIL=%d, %d/(%ds)];" % (cur_not_fetch, cur_fetch_succ, cur_fetch_fail, cur_fetch_all-self._last_fetch_num, self._sleep_time) self._last_fetch_num = cur_fetch_all cur_not_parse = self._pool.get_number_dict(TPEnum.HTM_NOT_PARSE) cur_parse_succ = self._pool.get_number_dict(TPEnum.HTM_PARSE_SUCC) cur_parse_fail = self._pool.get_number_dict(TPEnum.HTM_PARSE_FAIL) cur_parse_all = cur_parse_succ + cur_parse_fail info += " parse:[NOT=%d, SUCC=%d, FAIL=%d, %d/(%ds)];" % (cur_not_parse, cur_parse_succ, cur_parse_fail, cur_parse_all-self._last_parse_num, self._sleep_time) self._last_parse_num = cur_parse_all cur_not_save = self._pool.get_number_dict(TPEnum.ITEM_NOT_SAVE) cur_save_succ = self._pool.get_number_dict(TPEnum.ITEM_SAVE_SUCC) cur_save_fail = self._pool.get_number_dict(TPEnum.ITEM_SAVE_FAIL) cur_save_all = cur_save_succ + cur_save_fail info += " save:[NOT=%d, SUCC=%d, FAIL=%d, %d/(%ds)];" % (cur_not_save, cur_save_succ, cur_save_fail, cur_save_all-self._last_save_num, self._sleep_time) self._last_save_num = cur_save_all info += " total_seconds=%d" % (time.time() - self._init_time) logging.warning(info) return False if self._pool.get_monitor_stop_flag() else True MonitorThread = type("MonitorThread", (BaseThread,), dict(__init__=init_monitor_thread, working=work_monitor))
e59f782592089a4da3e002b48c1a670053397139
9e926b19df2f4f10c3f070530700a39c7282aad9
/media.py
483fd3ba5bd17c1056f877cc920a7ebc9c3a2ea8
[ "MIT" ]
permissive
saitec/Movie-Trailers
8dd011ceab19d5d6f7970cb5e18f775dc3104b1d
dab0b519bbdaf41fce6eb4944081084d51bb9d04
refs/heads/master
2021-01-10T04:34:41.223419
2016-04-08T19:09:49
2016-04-08T19:09:49
55,802,362
0
0
null
2016-04-08T19:09:49
2016-04-08T18:53:12
Python
UTF-8
Python
false
false
533
py
__author__ = 'Sai' class Movie(): """Creates movie object that maps movie with various attributes. A factory for creating movie objects that is subsequently used by fresh_tomatoes.html to display movie, its attributes, and media. """ def __init__(self, title, storyline, poster_image, trailer_video): self.title = title self.storyline = storyline self.poster_image_url = poster_image self.trailer_youtube_url = trailer_video
8ab301dd273e72218c63933931cb30d0cf77700c
9d5dd1489fdd0a49ed1a273ba33a3712fd6984de
/gui.py
99a875ee51af63eada7836310ff9edc1e7848f77
[]
no_license
xgfelicia/Line-sticker-downloader
cdc7f8c3381dff0eb323f3450ee78104926f54b8
08d6dd733ae56cce08c201d0b08a204e0d737881
refs/heads/master
2021-01-14T09:53:26.550228
2016-12-05T19:15:16
2016-12-05T19:15:16
59,918,359
0
0
null
2016-12-05T17:43:50
2016-05-28T23:23:40
Python
UTF-8
Python
false
false
443
py
from tkinter import * root = Tk() root.configure(background = "#fff") root.geometry("500x500") title = Label(root, text = "Line Sticker Downloader", bg = "#fff", font = (None, 20)) inputText = Label(root, text = "Enter the sticker pack ID: ", font = (None, 12)) inputUser = Entry(root, bd = 2) title.pack(anchor = CENTER) inputText.pack(side = LEFT, anchor = 'n') inputUser.pack(side = RIGHT, anchor = 'n') root.mainloop()
04b4d7465d1daa21646925bc05298466c4b22db1
8853c0d2d714f698bbdadfe6c9ad3af67af74018
/Python/demo0009.py
9c1cf93254ef4072976fe0e146057c34b86f2953
[]
no_license
zywz2333/111
a89d95d699f0cfb1ed5dd565af73f3fab462c146
3b05d4f023588fbc8d24477b8cf00732a0a6a5b6
refs/heads/master
2020-07-14T18:59:42.446699
2019-08-30T11:57:44
2019-08-30T11:57:44
205,379,178
0
0
null
null
null
null
UTF-8
Python
false
false
134
py
f = open("./名字.txt", encoding='utf-8') for user in f: if user.startswith("吴") and user.endswith("彬"): print(user)
73d482f093d60af110dad51de738c055a98d4ee8
da39bac16d679acf630539eaf3fcb7d9bfd4266c
/pruebas_estudio/ahorcado.py
261e54e6620b46343bce3b59d925c85ae73ba361
[]
no_license
JhonveraDev/python_test
1c2a7cb938d433d8449186e3918421de620fb76b
b24305bb7f5241161ebebab5b5f2296f622e41e0
refs/heads/master
2022-12-19T17:25:29.745898
2020-10-05T20:32:06
2020-10-05T20:32:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,067
py
import random IMAGES = [''' +---+ | | | | | | =========''', ''' +---+ | | O | | | | =========''', ''' +---+ | | O | | | | | =========''', ''' +---+ | | O | /| | | | =========''', ''' +---+ | | O | /|\ | | | =========''', ''' +---+ | | O | /|\ | / | | =========''', ''' +---+ | | O | /|\ | / \ | | ========='''] WORDS= [ 'lavadora', 'gobierno', 'sofa', 'diputado', 'teclado' ] def random_word(): indice = random.randint(0, len(WORDS)-1) return WORDS[indice] def display_board(hidden_word,tries): print(IMAGES[tries]) print('') print(hidden_word) print('---*---') def run(): word=random_word() hidden_word=['-'] *len(word) tries=0 while True: display_board(hidden_word,tries) curret_letter = str(input("Escoge una Letra: ")) if __name__ == '__main__': print("Entrada de juego") run()
90b1b2935f90ce882628d4ff106a146a7efaf433
85e96c5af2a85a21d8c8ce7f48c458ecb9c1560d
/sigfeat/feature/common.py
2709789552bc21551c853a823441dd71e87e7f96
[ "BSD-3-Clause" ]
permissive
SiggiGue/sigfeat
0758cbe8bdefcb657f641239dad6256100ac59a3
86bb94200dcd4b33c21de1abc01814bf85f97b38
refs/heads/master
2021-01-10T15:39:37.379959
2019-08-21T15:28:53
2019-08-21T15:28:53
43,051,564
9
5
null
null
null
null
UTF-8
Python
false
false
2,658
py
import numpy as np from scipy.signal import get_window from scipy.stats import gmean from ..base import Feature from ..base import HiddenFeature from ..base import Parameter class Index(Feature): """Index of source.""" def process(self, data, result): return data[1] class WindowedSignal(HiddenFeature): """WindowedSignal Feature provides a windowed block from source. Parameters ---------- window : str Name of window to be used (supports all from scipy.signal.get_window). Default is 'hann'. size : int Size of the window. periodic : bool Periodic True (e.g. for ffts) or symmetric False. """ window = Parameter(default='hann') size = Parameter() periodic = Parameter(default=True) def on_start(self, source, *args, **kwargs): if not self.size: self.size = source.blocksize win = get_window( window=self.window, Nx=self.size, fftbins=self.periodic) self.channels = source.channels if self.channels > 1: win = np.tile(win, (self.channels, 1)).T self.w = win def process(self, data, result): if self.window == 'rect': return data[0] return self.w * data[0] def centroid(index, values, axis): return np.sum(index * values, axis=axis) / np.sum(values, axis=axis) def flatness(values, axis): return gmean(values, axis=axis) / np.mean(values, axis=axis) def flux(values1, values2, axis): def _abs_max_ratio(s): return s / np.max(s, axis=axis) d = _abs_max_ratio(values2) - _abs_max_ratio(values1) return 0.5 * np.sum(d + np.abs(d), axis=axis) def rolloff(absvalues, samplerate, kappa=0.85): cumspec = np.cumsum(absvalues) rolloffindex = np.argmax(cumspec > kappa*cumspec[-1]) frequency = rolloffindex * 0.5 * samplerate / len(absvalues) return frequency def crest_factor(signal): return np.max(np.abs(signal)) / np.sqrt(np.mean(signal*signal)) def zero_crossing_count(signal): return np.round(0.5 * np.sum(np.abs(np.diff(np.sign(signal))))) def moments(signal): mu = np.mean(signal) sigma = signal - mu framecount = len(signal) # moments: ss = sigma*sigma mu_variance = np.mean(ss) sss = ss * sigma mu_skewness = np.mean(sss) mu_kurtosis = np.mean(sss * sigma) # standardize the moments: mu_kurtosis = mu_kurtosis / (mu_variance * mu_variance) mu_skewness = mu_skewness / np.sqrt(mu_variance)**3 mu_variance = mu_variance * framecount / (framecount - 1) return mu, mu_variance, mu_skewness, mu_kurtosis
6a229e3a74854188654dfdce1ffadf178b5c94d4
4391b3ecfe3add85093cc72aca825a1f28236a28
/deprecated/scripts/test_baddata.py
d155266411ba13b51d2c84a236408b0c4403f06f
[]
no_license
UWKepler/uwpyKepler
dd1d831db1ad8db495134fdf58fba1becf0b38f9
c6a65f3082854ff0b1f228b46fb6e2080ead24b8
refs/heads/master
2021-01-01T16:51:08.348073
2012-12-04T00:34:14
2012-12-04T00:34:14
2,013,217
0
0
null
null
null
null
UTF-8
Python
false
false
986
py
import sys import uwpyKepler as kep import numpy as num import pylab import MySQLdb #KeplerID = sys.argv[1] KeplerID = 8478994 #KeplerID = 11295426 #KeplerID = 10341831 db = MySQLdb.connect(host='tddb.astro.washington.edu', user='tddb', passwd='tddb', db='Kepler') cursor = db.cursor() foo = 'select * from source where (KEPLERID = %s)' % (KeplerID) cursor.execute(foo) results = cursor.fetchall() # reading time, corrected flux and flux errors time = num.ma.array([x[2] for x in results]) f1 = num.ma.array([x[5] for x in results]) e1 = num.ma.array([x[6] for x in results]) f2 = num.ma.array([x[7] for x in results]) e2 = num.ma.array([x[8] for x in results]) btime = num.where(time <= 0) bcf = num.where(f2 <= 0) bcerr = num.where(e2 <= 0) good = num.where( (f2 > 0) & (e2 > 0)) print time[btime] print f2[bcf] print e2[bcerr] print btime print bcf print bcerr pylab.plot(time[good],f2[good]-num.median(f2),'b.') pylab.plot(time[bcf],f2[bcf],'r.') pylab.show()
6b888afa8081076650b26ddc72d066c50f07c958
98b19dae95ea913b90a2eb298b646bce375470a6
/gov/gov/settings.py
dcab7394e42926cdb055687d1ec70a870b2dab44
[]
no_license
ZHENGYUANING/ENCP
88eb6aef3db7e8c639c06b05dc3676565f546916
18a00f5ff3e978c9176d6068c95aebcb6685f32b
refs/heads/master
2020-03-26T03:12:25.509718
2018-08-12T06:54:11
2018-08-12T06:54:11
144,444,384
0
0
null
null
null
null
UTF-8
Python
false
false
3,250
py
# -*- coding: utf-8 -*- # Scrapy settings for gov project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://doc.scrapy.org/en/latest/topics/settings.html # https://doc.scrapy.org/en/latest/topics/downloader-middleware.html # https://doc.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'gov' SPIDER_MODULES = ['gov.spiders'] NEWSPIDER_MODULE = 'gov.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'gov (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = False # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.87 Safari/537.36' # Configure a delay for requests for the same website (default: 0) # See https://doc.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See https://doc.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'gov.middlewares.GovSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'gov.middlewares.GovDownloaderMiddleware': 543, #} # Enable or disable extensions # See https://doc.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://doc.scrapy.org/en/latest/topics/item-pipeline.html ITEM_PIPELINES = { 'gov.pipelines.GovPipeline': 300, # 'gov.pipelines.JsonPipeline':301, # 'gov.pipelines.CsvPipeline':302, } # Enable and configure the AutoThrottle extension (disabled by default) # See https://doc.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
055f9ee55777f37d7d21551a10ed5e0c2a1a9a9a
fd36c2d26d1a39ad084d4ab86cfca2b4cc59e4ca
/run_server.py
19d0ea76e5957e428be98164f3b126425323977d
[]
no_license
mitchelljustin/PoliticansWritePHComments
dffadcc4fd0c1bf860c37b72e326896c253e6819
367b942b5a7c62e01dcac149f8589f31b3b8c71a
refs/heads/master
2021-05-31T02:29:44.715090
2016-03-03T03:43:23
2016-03-03T03:43:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
141
py
from os import environ from app import app debug = (environ.get('DEBUG', 'true') == 'true') app.run(debug=debug, port=8001, host='0.0.0.0')
2692affb62ec83ac4b2975758a8639d73502b62b
05bdb29b7dbdbc3fd160ab1b06bff2cf8b62f81a
/installRadiant/xlib/xData.py
5ebe0ef69d424f2b685cd20b27748af8ceb7d951
[]
no_license
shawnyan888/wikee
6e9420a4bd828b9fc2aab55d7c6d6a0256196bb7
b2181cbba1b8600a044cfcfeb519de85755b14a3
refs/heads/master
2020-03-18T15:34:10.440524
2018-05-28T03:56:28
2018-05-28T03:56:28
134,915,388
0
0
null
null
null
null
UTF-8
Python
false
false
1,337
py
#!/usr/bin/python # -*- coding: utf-8 -*- import re import sys import collections __author__ = 'Shawn Yan' __date__ = '16:09 2018/5/25' ON_WIN = sys.platform.startswith("win") # Radiant Release Path rel_path_win = "//192.168.48.104/home/rel" rel_path_lin = "/home/rel" REL_PATH = rel_path_win if ON_WIN else rel_path_lin # Radiant Install Path lscc_path_win = "d:/radiant_auto" lscc_path_lin = "/lsh/sw/qa/qadata/radiant/lin" LSCC_PATH = lscc_path_win if ON_WIN else lscc_path_lin # install file package logo dictionary PACKAGE_LOGOS = collections.OrderedDict([ ("base", [re.compile("Radiant_x64")]), ("epic", [re.compile("Ctrl_Pack_EPIC")]), ("jedi", [re.compile("Ctrl_Pack_JEDI")]), ("power", [re.compile("PowerEstimator")]), ("program_security", [re.compile("Radiant_Programmer_Security")]), ("program", [re.compile("Radiant_Programmer")]), ("reveal", [re.compile("Radiant_Reveal")]), ("security", [re.compile("Radiant_Security")]), ]) DEFAULT_PACKS = ["base", "jedi", "epic"] EMAIL = "[email protected]" success_win = """[root] path = {0} [check] path00 = {0}/ispfpga/bin/nt64/map.exe path01 = {0}/bin/nt64/pnmain.exe """ success_lin = """[root] path = {0} [check] path00 = {0}/ispfpga/bin/lin/map path01 = {0}/bin/lin/pnmain """ SUCCESS_INI = success_win if ON_WIN else success_lin
9b9fa54cd5bf6db34b1d4797b25707c6e44eef12
05c19a66688fc35e1d5d57a3c5101c267366aecd
/class_example_one_public.py
e6d073a3a42563d2a5866b56aa90257ad65c5242
[]
no_license
andrewjwant/warning_public_repo
eafb0790e120bbf1759ac03b99ba018738b96ba9
f499a20c26a91300ba6971ae34aa79f2174dad64
refs/heads/master
2020-05-19T09:39:00.611103
2014-12-23T20:02:24
2014-12-23T20:02:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,636
py
from numpy import loadtxt, where from error_log_file import log_file %pwd "Insert pathname here" class FileObject(object): def __init__(self, name, content=None): self.name = name self.content = content def add_content(self): if self.content is None: array_to_import = raw_input("Insert {0} filepath here: ".format(self.name)) if array_to_import.endswith(".csv"): self.content = loadtxt(array_to_import, dtype="S32", delimiter="," ) else: log_file("{0} file not found".format(self.name)) else: log_file("{0} file already has content".format(self.name)) class SampleObject(object): def __init__(self, bc=None, d=None, sn=None, p_time_d_h_m=None, p_datetime=None ): self.bc = bc self.d = d self.sn = sn self.p_time_d_h_m = p_time_d_h_m self.p_datetime def add_d(self): pass def add_sn(self): pass def add_p_time_d_h_m(self): pass def add_p_datetime(self): pass file_list = [ ] file_dictionary = {} for item in file_list: file_dictionary[item] = FileObject(item) print file_dictionary.keys() file_dictionary["file"].add_content()
92b79cde823f26c042ca7d307980db5644353457
26997a040bc3b9dbc7a1a2ad427c50f474a1d2e5
/ProLite.py
0d95ce36b1486cd6cc6662df4d1d944387c09932
[]
no_license
flyingclimber/LegalTally
5af8fc2e283e445d5a0cfa91f57f86cc8247e8db
63aff26656c4a32bfbfc93d54dc4fada6bd4dbf9
refs/heads/master
2021-01-15T21:09:55.019532
2012-05-13T23:50:38
2012-05-13T23:50:38
4,037,224
1
0
null
null
null
null
UTF-8
Python
false
false
2,361
py
'''Class library for ProLite signs''' #Colors class ProLite: colors = dict({ 'DIM_RED':'<CA>', 'RED':'<CB>', 'BRIGHT_RED':'<CC>', 'ORANGE':'<CD>', 'BRIGHT_ORANGE' : '<CE>', 'LIGHT_YELLOW' : '<CF>', 'YELLOW' : '<CG>', 'BRIGHT_YELLOW' : '<CH>', 'LIME' : '<CI>', 'DIM_LIME' : '<CJ>', 'BRIGHT_LIME' : '<CK>', 'BRIGHT_GREEN' : '<CL>', 'GREEN' : '<CM>', 'DIM_GREEN' : '<CN>', 'YELLOW_GREEN_RED' : '<CO>', 'RAINBOW_DEFAULT' : '<CP>', 'RED_GREEN_3D' : '<CQ>', 'RED_YELLOW_3D' : '<CR>', 'GREEN_RED_3D' : '<CS>', 'GREEN_YELLOW_3D' : '<CT>', 'GREEN_ON_RED' : '<CU>', 'RED_ON_GREEN' : '<CV>', 'ORANGE_ON_GREEN_3D' : '<CW>', 'LIME_ON_RED_3D' : '<CX>', 'GREEN_ON_RED_3D' : '<CY>', 'RED_ON_GREEN_3D' : '<CZ>'}) #Character Size/Format - There are eight character sizes or formats formats = dict({ 'NORMAL_DEFAULT' : '<SA>', 'BOLD_WIDE' : '<SB>', 'ITALIC' : '<SC>', 'BOLD_ITALIC_WIDE' : '<SD>', 'FLASHING_NORMAL' : '<SE>', 'FLASHING_BOLD_WIDE' : '<SF>', 'FLASHING_ITALIC' : '<SG>', 'FLASHING_BOLD_ITALIC_WIDE' : '<SH>'}) #Functions - These are the available functions for displaying the text functions = dict({ 'RANDOM_COLOUR_AND_EFFECT' : '<FA>', 'OPEN_FROM_THE_CENTER' : '<FB>', 'HIDE_THE_TEXT' : '<FC>', 'APPEAR' : '<FD>', 'SCROLLING_COLOURS' : '<FE>', 'CLOSE_RIGHT_TO_LEFT' : '<FF>', 'CLOSE_LEFT_TO_RIGHT' : '<FG>', 'CLOSE_TOWARD_CENTER' : '<FH>', 'SCROLL_UP_FROM_THE_BOTTOM' : '<FI>', 'SCROLL_DOWN_FROM_THE_TOP' : '<FJ>', 'TWO_LAYERS_SLIDE_TOGETHER' : '<FK>', 'FALLING_DOTS_FORM_TEXT' : '<FL>', 'PAC_MAN_GRAPHIC' : '<FM>', 'CREATURES' : '<FN>', 'BEEP_THE_SIGN_BEEPS' : '<FO>', 'PAUSE_SHORT_DELAY' : '<FP>', 'SLEEP_BLANK_SCREEN' : '<FQ>', 'RANDOM_DOTS_FORM_TEXT' : '<FR>', 'ROLL_MESSAGE_LEFT_TO_RIGHT' : '<FS>', 'SHOW_TIME_AND_DATE_NO_FORMATTING_CHOICES' : '<FT>', 'TEXT_COLOUR_CHANGES_EACH_TIME' : '<FU>', 'THANK_YOU_IN_CURSIVE' : '<FV>', 'WELCOME_IN_CURSIVE' : '<FW>', 'SPEED_1' : '<FX>', 'SPEED_2' : '<FY>', 'SPEED_3' : '<FZ>'}) #PAGES PAGE_1 = '<PA>' #UNIT UNIT = '<ID01>'
91475bb7b2a80a9a0e351fb6cf1a0503131fe2c0
efea24c51375e6a5a79f7224a768b4677f35585e
/sistemaInventarioApi/migrations/0013_remove_usuario_cedula.py
e4d83b82c4aad54d492a8a078ce315a6f58414b5
[]
no_license
ORLINHNDZ/sistemaInventarioApi
da1bca1c8f2d716e2f9d759d514466196a36e4ad
9011ffbed1223d894fe0e15b66a555ff2ccf6cc9
refs/heads/main
2023-04-14T02:39:15.046578
2021-04-27T21:57:31
2021-04-27T21:57:31
315,148,057
1
0
null
null
null
null
UTF-8
Python
false
false
342
py
# Generated by Django 3.1.2 on 2020-12-10 23:22 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('sistemaInventarioApi', '0012_auto_20201207_1316'), ] operations = [ migrations.RemoveField( model_name='usuario', name='cedula', ), ]
d25711699363e9206514c4e7ad370e6cdfa6d6cc
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_049/ch10_2019_02_25_13_33_57_478412.py
82ad6cf6556fc264702c4e9a127a1e2a0506b9ad
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
52
py
def libras_para_kg(x): y=x*0.453592 return y
8929025ad037980637683b391c705635384815bd
114f9e0fc3671a653639f3946f97a2a343b42d1b
/latlong_assignment/settings.py
6205b4def9fa1ba2f79d0cf9cb3b03b8f5275b9c
[ "MIT" ]
permissive
sivasankar-dev/latlong-django
3db530419f30199790138e8bcf0ac55c1b119d0b
ca1093ced3955b89f8512f5a3b3ad5f39efec4ee
refs/heads/main
2023-04-13T18:31:15.690597
2021-04-27T18:40:20
2021-04-27T18:40:20
360,786,820
0
0
null
null
null
null
UTF-8
Python
false
false
3,573
py
""" Django settings for latlong_assignment project. Generated by 'django-admin startproject' using Django 2.2.17. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) TEMPLATE_DIR = os.path.join(BASE_DIR, 'templates') STATIC_DIR = os.path.join(BASE_DIR, "static") API_KEY = "SYHvyRGc8Jn73R692npkQknPgpWAimkJ" # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '1_2vyop42_19i#pzszxdj#_ckh0h16=&)#^487x$f7)$7+=b)w' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'geolocations_app', 'import_export' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'latlong_assignment.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [TEMPLATE_DIR], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'latlong_assignment.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [STATIC_DIR,] MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') FILE_UPLOAD_HANDLERS = ["django.core.files.uploadhandler.MemoryFileUploadHandler", "django.core.files.uploadhandler.TemporaryFileUploadHandler"]
d2d2f55bf58acf2c7b0638ee9c3f974eddcc7f15
1f41b828fb652795482cdeaac1a877e2f19c252a
/maya_tools_backup/chRig/python/chModules/jointBasePsd/ui/part1_driverInfo.py
f84898d94a6be94c7c1a4dcd28d3858e67aa209f
[]
no_license
jonntd/mayadev-1
e315efe582ea433dcf18d7f1e900920f5590b293
f76aeecb592df766d05a4e10fa2c2496f0310ca4
refs/heads/master
2021-05-02T07:16:17.941007
2018-02-05T03:55:12
2018-02-05T03:55:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,678
py
import maya.cmds as cmds import uifunctions as uifnc import globalInfo import math from functools import partial class MovedDriverList: def __init__(self, width, targetUI, minValue=0.1 ): self._width = width-25 self._minValue = minValue self._updateTargetUi = targetUI def driverScrollAddPopupCmd(self, *args ): try: cmds.deleteUI( self.popupUi, menu=1 ) except: pass self.popupUi = cmds.popupMenu( p=self._updateTargetUi ) def removeSelCmd( *args ): si = cmds.textScrollList( self._updateTargetUi, q=1, si=1 ) cmds.textScrollList( self._updateTargetUi, e=1, ri=si ) def removeAllCmd( *args ): cmds.textScrollList( self._updateTargetUi, e=1, ra=1 ) #cmds.deleteUI( self.popupUi, menu=1 ) cmds.menuItem( l='Remove All', c=removeAllCmd ) def addConnectDriver(self, str1, *args ): driverName = str1.split( ':' )[0] strList = cmds.textScrollList( self._updateTargetUi, q=1, ai=1 ) if not strList: strList = [] for strTarget in strList: targetDriverName = strTarget.split( ':' )[0] if driverName == targetDriverName: cmds.textScrollList( self._updateTargetUi, e=1, ri=strTarget ) cmds.textScrollList( self._updateTargetUi, e=1, a=str1 ) def add(self, driverName, angleValues=[] ): if not angleValues: angleValues = [0,0,0] defaultBgc = [ .1, .1, .1 ] onBgc = [ .9, .9, .2 ] enList = [0,0,0] bgcList = [None,None,None] for i in range( 3 ): if math.fabs( angleValues[i] ) >= self._minValue: bgcList[i] = onBgc enList[i] = 1 else: bgcList[i] = defaultBgc enList[i] = 0 widthList = uifnc.setWidthByPerList( [70,15,15,15] , self._width ) cmds.rowColumnLayout( nc=4, cw=[(1,widthList[0]),(2,widthList[1]),(3,widthList[2]),(4,widthList[3])] ) cmds.text( l= driverName+' : ', al='right' ) cmds.floatField( precision=2, v=angleValues[0], bgc= bgcList[0] ) cmds.popupMenu(); cmds.menuItem( l='Add Driver', c= partial( self.addConnectDriver, driverName+' | angle0 : %3.2f' %angleValues[0] ) ) cmds.floatField( precision=2, v=angleValues[1], bgc= bgcList[1] ) cmds.popupMenu(); cmds.menuItem( l='Add Driver', c= partial( self.addConnectDriver, driverName+' | angle1 : %3.2f' %angleValues[1] ) ) cmds.floatField( precision=2, v=angleValues[2], bgc= bgcList[2] ) cmds.popupMenu(); cmds.menuItem( l='Add Driver', c= partial( self.addConnectDriver, driverName+' | angle2 : %3.2f' %angleValues[2] ) ) self.driverScrollAddPopupCmd() cmds.setParent( '..' ) class Cmd: def __init__(self, width ): globalInfo.driverInfoInst = self def updateCmd( self, *args ): rootName = globalInfo.rootDriver minValue = 0.1 movedDriverCheck = cmds.checkBox( self._movedDriverCheck, q=1, v=1 ) children = cmds.listRelatives( rootName, c=1, ad=1, f=1 ) angleDriverList = [] for child in children: hists = cmds.listHistory( child ) for hist in hists: if cmds.nodeType( hist ) == 'angleDriver': if not hist in angleDriverList: angleDriverList.append( hist ) showDrivers = [] for driver in angleDriverList: if movedDriverCheck: angle1, angle2, angle3 = cmds.getAttr( driver+'.outDriver' )[0] if math.fabs( angle1 ) > minValue or math.fabs( angle2 ) > minValue or math.fabs( angle3 ) > minValue: showDrivers.append( driver ) else: showDrivers.append( driver ) childUis = cmds.scrollLayout( self._driverListLay, q=1, ca=1 ) if childUis: for childUi in childUis: cmds.deleteUI( childUi ) cmds.setParent( self._driverListLay ) for driver in showDrivers: values = cmds.getAttr( driver+'.outDriver' )[0] self._movedDriverInst.add( driver, values ) self._movedDrivers = showDrivers self.reWriteValueCmd() def reWriteValueCmd( self ): items = cmds.textScrollList( self._driverScrollList, q=1, ai=1 ) if not items: items = [] for item in items: driverName, other = item.split( ' | angle' ) angleIndex, angleValue = other.split( ' : ' ) angleValue = cmds.getAttr( driverName+'.outDriver%s' % angleIndex ) reItem = driverName+' | angle'+angleIndex+' : %3.2f' % angleValue cmds.textScrollList( self._driverScrollList, e=1, ri=item ) if angleValue > 0.1: cmds.textScrollList( self._driverScrollList, e=1, a=reItem ) class Add( Cmd ): def __init__(self, width ): self._emptyWidth = 10 self._width = width - self._emptyWidth*2 - 4 self._height = 140 sepList = [ 65, 50 ] self._mainWidthList = uifnc.setWidthByPerList( sepList, self._width ) sepList = [ 70, 30 ] self._optionWidthList = uifnc.setWidthByPerList( sepList, self._mainWidthList[0]-20 ) Cmd.__init__( self, self._mainWidthList[0] ) self._rowColumns = [] self.core() def core(self): column1 = cmds.rowColumnLayout( nc= 3, cw=[(1,self._emptyWidth), (2,self._width), (3,self._emptyWidth)]) uifnc.setSpace() cmds.text( l='Driver LIST' ) uifnc.setSpace() cmds.setParent( '..' ) uifnc.setSpace( 5 ) column2 = cmds.rowColumnLayout( nc=4, cw=[(1,self._emptyWidth), (2,self._mainWidthList[0]), (3,self._mainWidthList[1]), (4,self._emptyWidth) ] ) uifnc.setSpace() column3 = cmds.rowColumnLayout( nc=1, cw=[(1,self._mainWidthList[0])]) self._driverListLay = cmds.scrollLayout( h=self._height-30 ) cmds.setParent( '..' ) uifnc.setSpace( 5 ) column4 = cmds.rowColumnLayout( nc= 4, cw=[(1,self._emptyWidth), (2,self._optionWidthList[0]), (3,self._optionWidthList[1]), (4,self._emptyWidth)] ) uifnc.setSpace() self._movedDriverCheck = cmds.checkBox( l='Show Only Moved Drivers', cc= self.updateCmd ) cmds.button( l='Refresh', c= self.updateCmd ) uifnc.setSpace() cmds.setParent( '..' ) cmds.setParent( '..' ) self._driverScrollList = cmds.textScrollList( h= self._height ) self._movedDriverInst = MovedDriverList( self._mainWidthList[0], self._driverScrollList ) uifnc.setSpace() cmds.setParent( '..' ) self._rowColumns = [ column1, column2, column3, column4 ]
17bfe12b73f8151f90bbe524f3e7eec78405670d
e00d41c9f4045b6c6f36c0494f92cad2bec771e2
/hardware/disk/jfsutils/actions.py
04137c15c4fe42097f20e21c0e2fb42b734f7ec0
[]
no_license
pisilinux/main
c40093a5ec9275c771eb5fb47a323e308440efef
bfe45a2e84ea43608e77fb9ffad1bf9850048f02
refs/heads/master
2023-08-19T00:17:14.685830
2023-08-18T20:06:02
2023-08-18T20:06:02
37,426,721
94
295
null
2023-09-14T08:22:22
2015-06-14T19:38:36
Python
UTF-8
Python
false
false
810
py
#!/usr/bin/python # -*- coding: utf-8 -*- # # Licensed under the GNU General Public License, version 3. # See the file https://www.gnu.org/licenses/gpl-3.0.txt from pisi.actionsapi import autotools from pisi.actionsapi import pisitools from pisi.actionsapi import get def setup(): autotools.configure("--sbindir=/usr/sbin") def build(): autotools.make() def install(): autotools.rawInstall("DESTDIR=%s" % get.installDIR()) for bin in "mkfs", "fsck": pisitools.remove("/usr/sbin/%s.jfs" % bin) pisitools.dosym("jfs_%s" % bin, "/usr/sbin/%s.jfs" % bin) manfile = "/%s/man8/%s.jfs.8" % (get.manDIR(), bin) pisitools.remove(manfile) pisitools.dosym("jfs_%s.8" % bin, manfile) pisitools.dodoc("ChangeLog", "AUTHORS", "NEWS", "README*", "COPYING")
5134901473eeb9233f87e142e6334a82d18c9d2e
307653196b0a90f98d53aec2b1974ecd61dbad39
/zabbix/core/maintenance.py
ca8e570624db3cdedd29deedd3ce06a68498480f
[]
no_license
dhyaniarun1993/automation_scripts
b2138987da58b27f86953ca82245af738564a6d8
09521d1e264982a244c4e33ab969b6e754f659cb
refs/heads/master
2021-08-28T12:12:36.580484
2017-12-12T07:18:30
2017-12-12T07:18:30
112,226,652
0
0
null
null
null
null
UTF-8
Python
false
false
4,073
py
''' created by Arun Dhyani ''' import requests import json import sys URL = 'http://localhost/zabbix/api_jsonrpc.php' HEADERS = {'content-type': 'application/json'} def createTimePeriodObject(start_time, start_date=None, period=3600, timeperiod_type=0, day=None, dayofweek=None, every=None, month=None): ''' function to create time period object ''' obj = { "timeperiod_type": timeperiod_type, "start_time": start_time, "period": period } if start_date: obj['start_date'] = start_date if day: obj['day'] = day if dayofweek: obj['dayofweek'] = dayofweek if every: obj['every'] = every if month: obj['month'] = month return obj def appendcreateTimePeriodObjectList(start_time, start_date=None, period=3600, timeperiod_type=0, day=None, dayofweek=None, every=None, month=None, tpObjList=None): ''' function to create list of time period object or append time period object to provided list ''' if tpObjList: objList = tpObjList else: objList = [] obj = createTimePeriodObject(start_time, start_date=start_date, period=period, timeperiod_type=timeperiod_type, day=day, dayofweek=dayofweek, every=every, month=month) objList.append(obj) return objList def createMaintenance(name, timeperiodObjList, authToken, maintenanceType=0, active_since=None, active_till=None, groupids=None, hostids=None, url=URL, headers=HEADERS): ''' function to create maintenance ''' if groupids or hostids: payload = { "jsonrpc": "2.0", "method": "maintenance.create", "params": { "name": name, "maintenance_type": maintenanceType, "timeperiods": timeperiodObjList }, "auth": authToken, "id": 1 } if active_since: payload['params']['active_since'] = active_since if active_till: payload['params']['active_till'] = active_till if groupids: payload['params']['groupids'] = groupids if hostids: payload['params']['hostids'] = hostids print payload result = requests.post(url, data=json.dumps(payload), headers=headers).json() print result if result.has_key('error'): return False, result['error']['message'] else: return True, result['result'] else: message = 'Please provide groupids or hostids for maintenance' return False, message def updateMaintenanceUsingId(maintenanceId, authToken, timeperiodObjList=None, hostids=None, groupids=None, active_since=None, active_till=None, url=URL, headers=HEADERS): ''' function to update maintenance ''' payload = { "jsonrpc": "2.0", "method": "maintenance.update", "params": { "maintenanceid": maintenanceId, }, "auth": authToken, "id": 1 } if groupids: payload['params']['groupids'] = groupids if hostids: payload['params']['hostids'] = hostids if timeperiodObjList: payload['params']['timeperiods'] = timeperiodObjList if active_since: payload['params']['active_since'] = active_since if active_till: payload['params']['active_till'] = active_till print payload result = requests.post(url, data=json.dumps(payload), headers=headers).json() if result.has_key('error'): print result return False, result['error']['message'] else: return True, result['result'] def getMaintenanceUsingName(name, authToken, url=URL, headers=HEADERS): payload = { "jsonrpc": "2.0", "method": "maintenance.get", "params": { "filter": { "name": [ name ] } }, "auth": authToken, "id": 1 } result = requests.post(url, data=json.dumps(payload), headers=headers).json() if result.has_key('error'): return False, result['error']['message'] else: return True, result['result'] def deleteMaintenanceUsingId(maintenanceId, authToken, url=URL, headers=HEADERS): payload = { "jsonrpc": "2.0", "method": "maintenance.delete", "params": [ maintenanceId ], "auth": authToken, "id": 1 } result = requests.post(url, data=json.dumps(payload), headers=HEADERS).json() if result.has_key('error'): return False, result['error']['message'] else: return True, result['result']
77e9fa8f8cf6dd5234cee2db266d3fdaeb7f6bbf
7c5f1aeda72966c9080aa2b0bafa83c3360d7de0
/link_prediction/link_prediction_neo4j.py
1b99fd0cb60e00e9ef9871d278dbe91e64573dc6
[]
no_license
jpalaskas/GraphAnalysis
88c3d3386ccf3bffa8c0e9855f83b6726f40caa1
541a817da4c336012df41eef813444efb043602c
refs/heads/master
2022-12-03T10:10:36.938929
2020-08-22T08:34:32
2020-08-22T08:34:32
284,316,179
0
0
null
2020-08-01T18:25:36
2020-08-01T18:25:35
null
UTF-8
Python
false
false
5,368
py
from py2neo import Graph import json import pandas as pd from pandas import DataFrame import sys import matplotlib.pyplot as plt def best_users(graph): best_in = graph.run('MATCH (u:User)<-[r]-() RETURN u.id, count(r) as count').to_data_frame() best_out = graph.run('MATCH (u:User)-[r]->() RETURN u.id, count(r) as count').to_data_frame() best_out_degree = [user for user in best_out.nlargest(100, ['count'])['u.id']] best_in_degree = [user for user in best_in.nlargest(100, ['count'])['u.id']] worst_in_degree = [user for user in best_in.nsmallest(100, ['count'])['u.id']] worst_out_degree = [user for user in best_out.nsmallest(100, ['count'])['u.id']] print() return best_in, best_out def adamic_adar_alg(rel_type, graph): if rel_type != '': sc_per_type = graph.run( 'MATCH (p1:User) MATCH (p2:User) RETURN algo.linkprediction.adamicAdar(p1, p2, {relationshipQuery: "%s"}) AS score,p1.id,p2.id'% rel_type, rel_type=rel_type) return sc_per_type.to_data_frame() else: sc_per_user = graph.run( 'MATCH (p1:User) MATCH (p2:User) RETURN algo.linkprediction.adamicAdar(p1, p2) AS score').to_data_frame() return sc_per_user def common_neighbors(rel_type, graph): if rel_type != '': sc_common_per_type = graph.run('MATCH (p1:User) MATCH (p2:User) RETURN algo.linkprediction.commonNeighbors(p1, p2, {relationshipQuery: "%s"}) AS score LIMIT 10'% rel_type, rel_type=rel_type) return sc_common_per_type.to_data_frame() else: sc_common_per_user = graph.run( 'MATCH (p1:User) MATCH (p2:User) RETURN algo.linkprediction.commonNeighbors(p1, p2) AS score LIMIT 10').to_data_frame() return sc_common_per_user def linkprediction_preferectialAttachment(rel_type, graph): if rel_type != '': sc_preferential_per_type = graph.run( 'MATCH (p1:User) MATCH (p2:User) RETURN algo.linkprediction.preferentialAttachment(p1, p2, {relationshipQuery: "%s"}) AS score'% rel_type, rel_type=rel_type).to_data_frame() return sc_preferential_per_type.to_data_frame() else: sc_preferential_per_user = graph.run('MATCH (p1:User) MATCH (p2:User) RETURN algo.linkprediction.preferentialAttachment(p1, p2) AS score').to_data_frame() return sc_preferential_per_user def resourceAllocation(rel_type, graph): if rel_type != '': sc_resourceAllocation_per_type = graph.run(''' MATCH (p1:Person {name: 'Michael'}) MATCH (p2:Person {name: 'Karin'}) RETURN algo.linkprediction.resourceAllocation(p1, p2, {relationshipQuery: "s"}) AS score '''% rel_type, rel_type=rel_type).to_data_frame() return sc_resourceAllocation_per_type else: sc_resourceAllocation_per_user = graph.run(''' MATCH (p1:User) MATCH (p2:User) RETURN algo.linkprediction.resourceAllocation(p1, p2) AS score ''').to_data_frame() return sc_resourceAllocation_per_user def linkpred_sameCommunity(rel_type, graph): if rel_type != '': sc_sameCommunity_per_type = graph.run(''' MATCH (p1:User) MATCH (p2:User) RETURN algo.linkprediction.sameCommunity(p1, p2) AS score '''% rel_type, rel_type=rel_type).to_data_frame() return sc_sameCommunity_per_type else: sc_sameCommunity_per_user = graph.run(''' MATCH (p1:User) MATCH (p2:User) RETURN algo.linkprediction.sameCommunity(p1, p2) AS score''').to_data_frame() return sc_sameCommunity_per_user def total_neighbors(rel_type, graph): if rel_type != '': sc_totalNeighbors_per_type = graph.run(''' MATCH (p1:Person {name: 'Michael'}) MATCH (p2:Person {name: 'Karin'}) RETURN algo.linkprediction.totalNeighbors(p1, p2, {relationshipQuery: "%s"}) AS score'''% rel_type, rel_type=rel_type).to_data_frame() return sc_totalNeighbors_per_type else: sc_totalNeighboors_per_user = graph.run(''' MATCH (p1:User) MATCH (p2:User) RETURN algo.linkprediction.totalNeighbors(p1, p2) AS score ''').to_data_frame() return sc_totalNeighboors_per_user def main(): graph = Graph('127.0.0.1', password='leomamao971') best_users(graph) print("Read from database") common_neighbors('TRADES', graph) common_neighbors('ATTACKS', graph) common_neighbors('messages', graph) common_neighbors('', graph) adamic_adar_alg('TRADES', graph) adamic_adar_alg('ATTACKS', graph) adamic_adar_alg('messages', graph) adamic_adar_alg('', graph) linkprediction_preferectialAttachment('TRADES', graph) linkprediction_preferectialAttachment('ATTACKS', graph) linkprediction_preferectialAttachment('messages', graph) linkprediction_preferectialAttachment('', graph) resourceAllocation('TRADES', graph) resourceAllocation('ATTACKS', graph) resourceAllocation('messages', graph) resourceAllocation('', graph) linkpred_sameCommunity('TRADES', graph) linkpred_sameCommunity('ATTACKS', graph) linkpred_sameCommunity('messages', graph) linkpred_sameCommunity('', graph) total_neighbors('TRADES', graph) total_neighbors('ATTACKS', graph) total_neighbors('messages', graph) total_neighbors('', graph) if __name__ == '__main__': main()
3e043eafd697d0bda7dcd78559589164ec7a7da4
574b04d5942e33a580f93c0256670d8368d2c49e
/videoDetection/dataset_creation/dataset_generation/dataset_gen.py
4882be0c7f8f05685e7730f9a8029eaa807c9d88
[ "MIT" ]
permissive
Rubik90/TFM_AG
c9ac96f279a8583b9bbdd20c4917cf320a5a1057
5e836245d0704122f2a0d47413e93bf53d966ca0
refs/heads/main
2023-05-04T14:30:56.446322
2021-04-01T12:35:35
2021-04-01T12:35:35
336,585,569
1
1
null
null
null
null
UTF-8
Python
false
false
2,073
py
import os import sys import shutil import glob from PIL import Image if "--videos_path" in sys.argv: videos_path = sys.argv[sys.argv.index("--videos_path") + 1] else: print("ERROR: No value specified for the frames path") sys.exit() if "--annotations_path" in sys.argv: annotations_path = sys.argv[sys.argv.index("--annotations_path") + 1] else: print("ERROR: No value specified for the annotations path") sys.exit() if "--dataset_path" in sys.argv: dataset_path = sys.argv[sys.argv.index("--dataset_path") + 1] else: print("ERROR: No value specified for the destination path where the dataset will be created") sys.exit() videos = os.listdir(videos_path) videos.sort() annotations = os.listdir(annotations_path) annotations.sort() emotions = ['Neutral', 'Anger', 'Disgust', 'Fear', 'Happiness', 'Sadness', 'Surprise'] if(os.path.isdir(dataset_path)): shutil.rmtree(dataset_path) os.mkdir(dataset_path) for emotion in emotions: path = f'{dataset_path}/{emotion}' if(os.path.isdir(path)): shutil.rmtree(path) os.mkdir(path) print('Generating the dataset, please wait...\n') for video in videos: for annotation in annotations: video_id = video[:-8] annotation_id = annotation[:-4] if (video_id == annotation_id): print(f'Currently processing video \'{video_id}\'') # Get the annotations with open(annotations_path + annotation, 'r') as ann: lines = ann.readlines() # Get the frames frames = os.listdir(videos_path + video) frames.sort() for i in range(1, len(frames) - 1): annotation_value = int(lines[i]) print("", end=f"\rProgress: [{i + 1}/{len(frames) - 1}]") if (annotation_value >= 0 and annotation_value <= 6): # Skip untagged frames shutil.copy2(f'{videos_path}/{video}/{frames[i]}', f'{dataset_path}/{emotions[int(lines[i])]}') print("\n") print("")
4cd959feba76f04559dbece78f61eac0cd436715
1efe68b3c5178a8054e499120066671363cc300d
/17/17.py
5b32b1fa6405e4b59bd8546e01f1aba5d2a63d13
[ "MIT" ]
permissive
fxbk/AoC2020
0c9f688bd1b38fec840a0a834216c51897b93865
52dca0a0d8e4960821ee3b363313b6f806c5cfa0
refs/heads/main
2023-02-07T08:51:00.948648
2020-12-28T12:32:18
2020-12-28T12:32:18
318,993,552
0
0
null
null
null
null
UTF-8
Python
false
false
2,916
py
import copy import itertools from tqdm import tqdm file = open('input.txt', 'r') input = file.read() input = input.split('\n') active = [] for y, row in enumerate(input): for x, c in enumerate(row): if c == '#': active.append((x, y, 0)) def get_number_of_active_neighbors(active_list, x, y, z): number_of_active_neighbors = 0 neighbors = list(itertools.product([-1, 0, 1], [-1, 0, 1], [-1, 0, 1])) del neighbors[neighbors.index((0, 0, 0))] for neighbor in neighbors: x_idx = x + neighbor[0] y_idx = y + neighbor[1] z_idx = z + neighbor[2] if (x_idx, y_idx, z_idx) in active_list: number_of_active_neighbors += 1 return number_of_active_neighbors x_max = len(input[0]) y_max = len(input) z_max = 0 for cycle in range(1, 7): out = copy.deepcopy(active) for z in range(-cycle, cycle + 1): for y in range(-cycle, y_max + cycle + 1): for x in range(-cycle, x_max + cycle + 1): numb_neigbbors = get_number_of_active_neighbors(active, x, y, z) if (x, y, z) in active and numb_neigbbors not in [2, 3]: del out[out.index((x, y, z))] elif (x, y, z) not in active and numb_neigbbors == 3: out.append((x, y, z)) active = out print(f'Solution part 1: {len(out)}') # Part 2 active = [] for y, row in enumerate(input): for x, c in enumerate(row): if c == '#': active.append((x, y, 0, 0)) def get_number_of_active_neighbors_part2(active_list, x, y, z, w): number_of_active_neighbors = 0 neighbors = list(itertools.product([-1, 0, 1], [-1, 0, 1], [-1, 0, 1], [-1, 0, 1])) del neighbors[neighbors.index((0, 0, 0, 0))] for neighbor in neighbors: x_idx = x + neighbor[0] y_idx = y + neighbor[1] z_idx = z + neighbor[2] w_idx = w + neighbor[3] if (x_idx, y_idx, z_idx, w_idx) in active_list: number_of_active_neighbors += 1 return number_of_active_neighbors x_max = len(input[0]) y_max = len(input) # TODO Adjust range in order to cure the curse of dimensionality i.e. delete row, column if no point active there for cycle in tqdm(range(1, 7), 'Cycles: '): out = copy.deepcopy(active) for w in tqdm(range(-cycle, cycle + 1), 'W Dimension'): for z in range(-cycle, cycle + 1): for y in range(-cycle, y_max + cycle + 1): for x in range(-cycle, x_max + cycle + 1): numb_neigbbors = get_number_of_active_neighbors_part2(active, x, y, z, w) if (x, y, z, w) in active and numb_neigbbors not in [2, 3]: del out[out.index((x, y, z, w))] elif (x, y, z, w) not in active and numb_neigbbors == 3: out.append((x, y, z, w)) active = out print(f'Solution part 2: {len(out)}')
036b49dc3e04b13b6a60801e493266459786b344
5ddec5c9fc664340de68cce69037d553478226d5
/python/AirConOff.py
dede34f710b8548e9dcd6268796171fdf59e22d3
[ "Apache-2.0" ]
permissive
dobachi/PythonECHONETLiteExample
4f17086dc9df835bdb59123738f5a8a1165c3116
ea243d8f084772a83c76a1e3cabd2be9d20cc072
refs/heads/main
2023-08-24T09:22:24.510430
2021-10-02T15:59:30
2021-10-02T15:59:30
411,939,682
0
0
Apache-2.0
2021-09-30T05:58:50
2021-09-30T05:52:07
null
UTF-8
Python
false
false
2,861
py
#!/usr/bin/env python # https://yomon.hatenablog.com/entry/2020/09/sharp_aircon_echonet_lite を # 参考に試してみる例 import socket import sys def create_command(): # --------------------------------------------------- # 3.2.1 ECHONET Lite ヘッダ(EHD) # --------------------------------------------------- # 3.2.1.1 ECHONET Lite ヘッダ 1(EHD1) EHD1 = "10" # ECHONET Lite規格 # 3.2.1.2 ECHONET Lite ヘッダ 2(EHD2) EHD2 = "81" # 形式1(規定電文形式) # 3.2.2 Transaction ID(TID) TID = "0001" # IDなのでこの検証ではどの値でもOK # フレームのヘッダ-を構成 EHD = EHD1 + EHD2 + TID # --------------------------------------------------- # 3.2.1 ECHONET Lite データ(EDATA) # --------------------------------------------------- # 3.2.4 ECHONETオブジェクト # EOJ = ECHONET Lite オブジェクト # SEOJ = 送信元ECHONET Lite オブジェクト SEOJ_CLS_GROUP = "05" # 管理・操作関連クラスグループ SEOJ_CLS_CODE = "ff" # コントローラー SEOJ_CLS_INSTANCE = "01" # インスタンス番号 SEOJ = SEOJ_CLS_GROUP + SEOJ_CLS_CODE + SEOJ_CLS_INSTANCE # DEOJ = 送信先ECHONET Lite オブジェクト DEOJ_CLS_GROUP = "01" # 空調関連機器クラスグループ DEOJ_CLS_CODE = "30" # 家庭用エアコンクラス DEOJ_CLS_INSTANCE = "01" # All Instanses DEOJ = DEOJ_CLS_GROUP + DEOJ_CLS_CODE + DEOJ_CLS_INSTANCE # 3.2.5 ECHONET Lite サービス(ESV) ESV = "60" # プロパティ値書き込み要求 (Set) ############### # APPENDIX ECHONET機器オブジェクト詳細規定 # - 空調関連機器クラスグループ # - 家庭用エアコンクラス規定 # を確認 # 3.2.6 処理プロパティカウンタ OPC = "01" # 1件 # プロパティ(今回は電源の操作なので1件だけ) EPC1 = "80" # 動作状態 PDC1 = "01" # Setなので1Byte指定 EDT1 = "31" # Offつまり0x31を指定 PROP1 = EPC1 + PDC1 + EDT1 # フレームのデータ部分であるEDATAを構成 EDATA = SEOJ + DEOJ + ESV + OPC + PROP1 echonet_command = EHD + EDATA return echonet_command def send(host, echonet_command): echonet_port = 3610 #aircon_ip = "192.168.1.10" # 224.0.23.0のアドレスを使うとマルチキャストもできます # 要求送信用ソケットでコマンド送信 send_sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) send_sock.sendto(bytes.fromhex(echonet_command), (host, echonet_port)) send_sock.close() if __name__ == '__main__': args = sys.argv echonet_command = create_command() send(args[1], echonet_command);
4adb49be9ca1bb4ee2cc1405b6663fb0901635ad
20e122159c1e877b87c55e09bf7239da9e893f6d
/CSE230/programming assignments/pa6/pa6_solution/vector.py
d8be81d69efdd0ecf03078bb9013d4cad86bac27
[]
no_license
e3u3/UCSDCourse
87fe4621e34cab962be94542bd8167e63585638e
ce89a23526482453275077aa5aa1eecc8829139b
refs/heads/master
2020-06-08T11:04:27.317484
2019-06-21T17:03:30
2019-06-21T17:03:30
193,217,763
1
1
null
2019-06-22T09:48:51
2019-06-22T09:48:51
null
UTF-8
Python
false
false
3,092
py
from misc import Failure class Vector(object): def __init__(self, args): """ constructor Input: int means the length of the vector or a list of values to assign to the vetor Out: vector """ if (isinstance(args,int) or isinstance(args,long)): if (args < 0): raise ValueError("Vector length must greater than 0.") self.vec = [0.0] * args elif (isinstance(args, list)): self.vec = list(args) else: raise TypeError("The type is expecting is an Integer or a list but given with {}".format(type(args))) def __repr__(self): """ repr is the string represention of the class, it returns Vector(contents of the list)""" return "Vector(" + repr(self.vec) + ")" def __len__(self): """ compute the length of vector """ return len(self.vec) def __iter__(self): """ Returns an iterator for the vector """ for item in self.vec: yield(item) def __add__(self,second): """ This function override the function object.__add__() to implement binary operation of addition. """ return Vector(([x + y for x, y in zip(list(self), list(second))])) def __iadd__(self, second): self.vec = Vector(([x + y for x, y in zip(list(self), list(second))])) return self.vec def __radd__(self,second): return Vector(([x + y for x, y in zip(list(self), list(second))])) def dot(self, second): """ This function is the implemention of dot product of vector """ return sum([ x * y for x, y in zip(self, second)]) def __getitem__ (self, index): """ this function get corresponding elems """ return self.vec[index] def __setitem__ (self, x, y): temp = len(self.vec) self.vec[x] = y if ( temp != len(self.vec)): raise ValueError(" Can not change length of vector") def __eq__(self, second): if not isinstance(second, Vector): return False allequal = ([ x == y for x, y in zip(self, second)]) if False in allequal: return False else: return True def __ne__(self, other): return not self.__eq__(other) def __ge__(self, second): if self.__gt__(second): return True selfSorted = sorted(self, reverse = True) secondSorted= sorted(second, reverse = True) if selfSorted.__eq__(secondSorted): return True return False def __gt__(self, second): if not isinstance(second,Vector): return (self > other) selfSorted = sorted(self, reverse = True) secondSorted= sorted(second, reverse = True) for x, y in zip(selfSorted, secondSorted): if x > y: return True elif x < y: return False return False def __lt__(self, second): return not self.__ge__(second) def __le__(self, second): return not self.__gt__(second)
36ca3c04dd363c14bcc23be5a628b5e7e6829b54
d554b1aa8b70fddf81da8988b4aaa43788fede88
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/226/users/4131/codes/1593_1801.py
68aa91038cf015d360afa193c96d8336c1eea4bb
[]
no_license
JosephLevinthal/Research-projects
a3bc3ca3b09faad16f5cce5949a2279cf14742ba
60d5fd6eb864a5181f4321e7a992812f3c2139f9
refs/heads/master
2022-07-31T06:43:02.686109
2020-05-23T00:24:26
2020-05-23T00:24:26
266,199,309
1
0
null
null
null
null
UTF-8
Python
false
false
74
py
x1= input("nome") x2= int(input(" nrf ")) print(("Abra " + x1 + " ") * x2)
04ce0850226367c30af7a2f3c7517bed18065b12
07763d43e0074ee19d550b02419e71b576b6dbec
/tuples_samples.py
d4de359b78c77d6d7eea0bb419af05a1b02f80c9
[]
no_license
balasubramanianramesh/Python_Training
a93ee368ec364485bec36b095018a62628799381
96b4ef0c06993407d12b411ded2de3b5a770ecaa
refs/heads/master
2021-01-11T16:02:01.792651
2017-01-25T09:08:27
2017-01-25T09:08:27
79,989,295
0
0
null
null
null
null
UTF-8
Python
false
false
855
py
tup1 = ('physics', 'chemistry', 1997, 2000); tup2 = ( 0, 1, 2, 3, 4, 5, 6, 7 ); tup3 = "a", "b", "c", "d"; tup1 = (); ##Empty tuple tup1 = (50,); ## To write a tuple containing a single value you have to include a comma, even though there is only one value print "tup1[0]: ", tup1[0] print "tup2[1:5]: ", tup2[1:5] print "tup2[3:]: ", tup2[3:] # tup2[3::] print "tup2[::2]: ", tup2[::2] print "tup2[::-2]: ", tup2[::-2] print "tup2[::1]: ", tup2[::1] print "tup2[2]: ", tup2[2] print "tup2[-2]: ", tup2[-2] tup4 = tup1 + tup2 + tup3; print tup4 print len(tup4) print 10 in tup4 print 'a' in tup4 print "tup2 : ",tup2 print "tup4 : ",tup4 print tup2 in tup4 ## cann't able to check the tuples values print 'compare tup2 with tup4', cmp( tup2, tup4 ) print 'compare tup4 with tup2', cmp( tup4, tup2 ) #del tup4 ## del tup4[2] ## will not work #print tup4
532ef36c34decb44e73a5e1b81beb7a67c57cc0a
f3b233e5053e28fa95c549017bd75a30456eb50c
/ptp1b_input/L83/83-79_MD_NVT_rerun/set_1.py
e52dbdc3dbc2b5c4afd43f06c240d855b04ecbb2
[]
no_license
AnguseZhang/Input_TI
ddf2ed40ff1c0aa24eea3275b83d4d405b50b820
50ada0833890be9e261c967d00948f998313cb60
refs/heads/master
2021-05-25T15:02:38.858785
2020-02-18T16:57:04
2020-02-18T16:57:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
741
py
import os dir = '/mnt/scratch/songlin3/run/ptp1b/L83/MD_NVT_rerun/ti_one-step/83_79/' filesdir = dir + 'files/' temp_prodin = filesdir + 'temp_prod_1.in' temp_pbs = filesdir + 'temp_1.pbs' lambd = [ 0.00922, 0.04794, 0.11505, 0.20634, 0.31608, 0.43738, 0.56262, 0.68392, 0.79366, 0.88495, 0.95206, 0.99078] for j in lambd: os.chdir("%6.5f" %(j)) workdir = dir + "%6.5f" %(j) + '/' #prodin prodin = workdir + "%6.5f_prod_1.in" %(j) os.system("cp %s %s" %(temp_prodin, prodin)) os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, prodin)) #PBS pbs = workdir + "%6.5f_1.pbs" %(j) os.system("cp %s %s" %(temp_pbs, pbs)) os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, pbs)) #submit pbs #os.system("qsub %s" %(pbs)) os.chdir(dir)
584d4619db06c8d1462cb07e7215ad04c548557e
31681488e69da3c7e00b0eda28e5cb720ef2299c
/liteiclink/serwb/packet.py
e8fc035b1b096ded56e1cea8560fc1819ccb2679
[ "BSD-2-Clause" ]
permissive
zsipos/liteiclink
4e9bdf6a819f490461cb33d0837247041203071d
864cd831f3475dffd1c92d6d4a1b86608680bcf2
refs/heads/master
2021-07-08T07:43:10.897604
2020-01-28T09:40:17
2020-01-28T09:40:17
245,119,569
0
0
NOASSERTION
2020-03-05T09:25:16
2020-03-05T09:25:15
null
UTF-8
Python
false
false
4,839
py
# This file is Copyright (c) 2017-2019 Florent Kermarrec <[email protected]> # License: BSD from math import ceil from migen import * from migen.genlib.misc import WaitTimer from litex.gen import * from litex.soc.interconnect import stream class HeaderField: def __init__(self, byte, offset, width): self.byte = byte self.offset = offset self.width = width class Header: def __init__(self, fields, length, swap_field_bytes=True): self.fields = fields self.length = length self.swap_field_bytes = swap_field_bytes def get_layout(self): layout = [] for k, v in sorted(self.fields.items()): layout.append((k, v.width)) return layout def get_field(self, obj, name, width): if "_lsb" in name: field = getattr(obj, name.replace("_lsb", ""))[:width] elif "_msb" in name: field = getattr(obj, name.replace("_msb", ""))[width:2*width] else: field = getattr(obj, name) if len(field) != width: raise ValueError("Width mismatch on " + name + " field") return field def encode(self, obj, signal): r = [] for k, v in sorted(self.fields.items()): start = v.byte*8 + v.offset end = start + v.width field = self.get_field(obj, k, v.width) if self.swap_field_bytes: field = reverse_bytes(field) r.append(signal[start:end].eq(field)) return r def decode(self, signal, obj): r = [] for k, v in sorted(self.fields.items()): start = v.byte*8 + v.offset end = start + v.width field = self.get_field(obj, k, v.width) if self.swap_field_bytes: r.append(field.eq(reverse_bytes(signal[start:end]))) else: r.append(field.eq(signal[start:end])) return r def phy_description(dw): layout = [("data", dw)] return stream.EndpointDescription(layout) def user_description(dw): layout = [ ("data", 32), ("length", 32) ] return stream.EndpointDescription(layout) class Packetizer(Module): def __init__(self): self.sink = sink = stream.Endpoint(user_description(32)) self.source = source = stream.Endpoint(phy_description(32)) # # # # Packet description # - preamble : 4 bytes # - length : 4 bytes # - payload fsm = FSM(reset_state="PREAMBLE") self.submodules += fsm fsm.act("PREAMBLE", If(sink.valid, source.valid.eq(1), source.data.eq(0x5aa55aa5), If(source.ready, NextState("LENGTH") ) ) ) fsm.act("LENGTH", source.valid.eq(1), source.data.eq(sink.length), If(source.ready, NextState("DATA") ) ) fsm.act("DATA", source.valid.eq(sink.valid), source.data.eq(sink.data), sink.ready.eq(source.ready), If(source.ready & sink.last, NextState("PREAMBLE") ) ) class Depacketizer(Module): def __init__(self, clk_freq, timeout=10): self.sink = sink = stream.Endpoint(phy_description(32)) self.source = source = stream.Endpoint(user_description(32)) # # # count = Signal(len(source.length)) length = Signal(len(source.length)) # Packet description # - preamble : 4 bytes # - length : 4 bytes # - payload fsm = FSM(reset_state="PREAMBLE") self.submodules += fsm timer = WaitTimer(clk_freq*timeout) self.submodules += timer fsm.act("PREAMBLE", sink.ready.eq(1), If(sink.valid & (sink.data == 0x5aa55aa5), NextState("LENGTH") ) ) fsm.act("LENGTH", sink.ready.eq(1), If(sink.valid, NextValue(count, 0), NextValue(length, sink.data), NextState("DATA") ), timer.wait.eq(1) ) fsm.act("DATA", source.valid.eq(sink.valid), source.last.eq(count == (length[2:] - 1)), source.length.eq(length), source.data.eq(sink.data), sink.ready.eq(source.ready), If(timer.done, NextState("PREAMBLE") ).Elif(source.valid & source.ready, NextValue(count, count + 1), If(source.last, NextState("PREAMBLE") ) ), timer.wait.eq(1) )
545bebbae87cb9883640029d8b20937e0fc6f49c
c924c06d2b658924a0e0fabe7fcbf27ad98cc149
/COLOSSEUM/backend/migrations/0004_game_server_response.py
83461480f224dbbcc5fd35062c584d8774e0ba69
[]
no_license
ColosseumGroup/ColosseumII
49b85c7d00aa16c62d700fc194db679fd34a978c
36fde3cc947bf68034aeb4b84aa10e561b5be52a
refs/heads/master
2018-12-05T17:59:26.728207
2018-08-13T02:18:39
2018-08-13T02:18:39
119,014,472
2
0
null
null
null
null
UTF-8
Python
false
false
387
py
# Generated by Django 2.1 on 2018-08-12 03:00 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('backend', '0003_game_max_player_num'), ] operations = [ migrations.AddField( model_name='game', name='server_response', field=models.TextField(default=''), ), ]
632910dc19509552a058895affb69cb8bfc155ce
8bb0dea2174658ad305ce37d38bc0375e4765977
/cards/management/commands/jsonimport.py
8c487cf8cbe691b9d37eb6764b1c5e634ccc3f33
[ "MIT" ]
permissive
axm1820/cards-against-django
e256622d6f12a608f68c617953f79c82a7ae2bfa
dabc508474b028e9de400b27736590613b8396d8
refs/heads/master
2020-12-03T10:30:10.394144
2014-08-15T01:24:08
2014-08-15T01:24:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,693
py
import sys from optparse import make_option # json support, TODO consider http://pypi.python.org/pypi/omnijson try: # Python 2.6+ import json except ImportError: # from http://code.google.com/p/simplejson import simplejson as json dump_json = json.dumps load_json = json.loads from django.core.management.base import BaseCommand, CommandError from cards.models import dict2db class Command(BaseCommand): args = 'json_filename' help = dict2db.__doc__ option_list = BaseCommand.option_list + ( make_option('--replace_existing', action='store_true', dest='replace_existing', default=False, help='Allow replacement (delete then add) of existing cardsets'), ) def handle(self, *args, **options): try: filename = args[0] if filename == '-': filename = None except IndexError: filename = None verbosity = int(options['verbosity']) replace_existing = options['replace_existing'] if verbosity >= 1: if filename: self.stdout.write('Using %r' % filename) else: self.stdout.write('Using STDIN') if filename: f = open(filename, 'rb') else: f = sys.stdin raw_str = f.read() if filename: f.close() d = load_json(raw_str) results = dict2db(d, verbosity, replace_existing) for cardset_name, b_count, w_count in results: if verbosity >= 1: print '%s total# %d question# %d answer# %d' % (cardset_name, b_count + w_count, b_count, w_count)
29fe4042cd2cbd2f2ca9d31a58cf53afd5ba5298
4368c51ce45504e2cc17ea8772eeb94c13e1c34a
/utils/meta_utils.py
2c8068279495081ff5d67c14a8d980c40f3f982b
[]
no_license
Shuai-Xie/metaASM
1eddc02846ee3fc05198883277357f9735dbaeb0
c6a7b8fe3ecbca2bdc874e3b0dad6dd8f8c1c4cd
refs/heads/master
2021-03-18T17:57:12.952618
2020-04-03T14:20:12
2020-04-03T14:20:12
247,087,294
0
0
null
null
null
null
UTF-8
Python
false
false
3,664
py
import torch import numpy as np import random from datasets import CIFAR from datasets.dataset_utils import get_cls_img_idxs_dict from datasets.transforms import transform_train from utils.asm_utils import detect_unlabel_imgs, get_select_fn """ sort each cls samples by criterion """ @torch.no_grad() def sort_cls_samples(model, label_dataset, num_classes, criterion='lc'): # 每类图片 idxs cls_img_idxs = get_cls_img_idxs_dict(label_dataset.targets, num_classes) y_pred_prob = detect_unlabel_imgs(model, label_dataset.data, num_classes, bs=100) # [N,10] prob vector sort_cls_idxs_dict = {} assert criterion in ['rs', 'lc', 'ms', 'en'], 'no such criterion' select_fn = get_select_fn(criterion) for cls_idx, img_idxs in cls_img_idxs.items(): img_idxs = np.array(img_idxs) cls_probs = y_pred_prob[img_idxs] # [n,10] # sorted idxs in list _, sort_cls_idxs = select_fn(cls_probs, n_samples=len(cls_probs)) # sort total # recover to total label idx sort_cls_idxs_dict[cls_idx] = img_idxs[sort_cls_idxs] return sort_cls_idxs_dict def check_sample_targets(cls_idxs_dict, targets): for cls, img_idxs in cls_idxs_dict.items(): print('class:', cls, [targets[i] for i in img_idxs]) """ build meta dataset by different sampling methods """ def build_meta_dataset(label_dataset, idx_to_meta): random.shuffle(idx_to_meta) # 原本 samples 按 cls 顺序排列 meta_dataset = CIFAR( data=np.take(label_dataset.data, idx_to_meta, axis=0), targets=np.take(label_dataset.targets, idx_to_meta, axis=0), transform=transform_train ) return meta_dataset # random sample def random_sample_meta_dataset(label_dataset, num_meta, num_classes): img_idxs = list(range(len(label_dataset.targets))) random.shuffle(img_idxs) idx_to_meta = img_idxs[:int(num_meta * num_classes)] return build_meta_dataset(label_dataset, idx_to_meta) def random_sample_equal_cls(label_dataset, cls_img_idxs_dict, num_meta): idx_to_meta = [] for cls, img_idxs in cls_img_idxs_dict.items(): idx_to_meta.extend(random.sample(img_idxs, num_meta)) return build_meta_dataset(label_dataset, idx_to_meta) # random sample in a systematic way, loyal to original data distribution # cover all hard-level samples def random_system_sample_meta_dataset(label_dataset, sort_cls_idxs_dict, num_meta, mid=None): # 等距抽样 idx_to_meta = [] for cls, img_idxs in sort_cls_idxs_dict.items(): # 能处理各类 样本数量不同, list 不等长 step = len(img_idxs) // num_meta mid = mid % step if mid else random.randint(0, step) # 指定每个系统内 要取的元素位置 idx_to_meta.extend([img_idxs[min(i * step + mid, len(img_idxs) - 1)] for i in range(num_meta)]) # 等间隔 return build_meta_dataset(label_dataset, idx_to_meta) # sample top hard samples on label_dataset # 不带随机后,选出的样本固定了... def sample_top_hard_meta_dataset(label_dataset, sort_cls_idxs_dict, num_meta): idx_to_meta = [] for cls, img_idxs in sort_cls_idxs_dict.items(): # 各类按难度降序排列 idx_to_meta.extend(img_idxs[:num_meta]) return build_meta_dataset(label_dataset, idx_to_meta) # sample top easy samples on label_dataset def sample_top_easy_meta_dataset(label_dataset, sort_cls_idxs_dict, num_meta): idx_to_meta = [] for cls, img_idxs in sort_cls_idxs_dict.items(): # 各类按难度降序排列 idx_to_meta.extend(img_idxs[-num_meta:]) return build_meta_dataset(label_dataset, idx_to_meta)
f3ad2d30d023ac96ee324cece587c787ec28b6ad
93652e0f73558ffa24059647324f79ba043ba241
/topi/tests/python/test_topi_clip.py
041565433bccd162ef55c48cb1e6cd6f106a8200
[ "Apache-2.0" ]
permissive
souptc/tvm
830b1444435b6bda267df305538a783eb687d473
a8574e7bb814997cb3920a72035071899635b753
refs/heads/master
2020-03-25T12:42:20.686770
2018-08-06T21:07:38
2018-08-06T21:07:38
143,789,191
1
0
Apache-2.0
2018-08-06T22:18:20
2018-08-06T22:18:19
null
UTF-8
Python
false
false
1,458
py
"""Test code for clip operator""" import numpy as np import tvm import topi from topi.util import get_const_tuple from tvm.contrib.pickle_memoize import memoize def verify_clip(N, a_min, a_max, dtype): A = tvm.placeholder((N, N), dtype=dtype, name='A') B = topi.clip(A, a_min, a_max) s = tvm.create_schedule([B.op]) # use memoize to pickle the test data for next time use @memoize("topi.tests.test_topi_clip") def get_ref_data(): a_np = np.random.uniform(a_min*2, a_max*2, size=(N, N)).astype(dtype) b_np = np.clip(a_np, a_min, a_max) return a_np, b_np a_np, b_np = get_ref_data() def check_device(device): ctx = tvm.context(device, 0) if not ctx.exist: print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) with tvm.target.create(device): s = topi.generic.schedule_injective(B) a = tvm.nd.array(a_np, ctx) b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=dtype), ctx) f = tvm.build(s, [A, B], device, name="clip") f(a, b) np.testing.assert_allclose(b.asnumpy(), b_np, rtol=1e-5) for device in ['llvm', 'opencl']: check_device(device) def test_clip(): verify_clip(1024, -127, 127, 'float32') verify_clip(1024, -127, 127, 'int16') verify_clip(1024, -127, 127, 'int8') if __name__ == "__main__": test_clip()
0eacc151f4687b9c510af5c578b7c2cc7da03f1f
f9626bbbffad4e4157fc279358e0edd1f997f1d8
/irl/maxent.py
945969f604bee43554f1c2fb036aeeac012e3c91
[]
no_license
markalence/MaxEntIRL
5b58a0272d06cd595c0ad5229be2164168067018
00e45c59de70ef9171496152e2cc1d13be5959f5
refs/heads/master
2023-01-10T20:32:42.767135
2020-11-17T22:07:09
2020-11-17T22:07:09
308,770,725
0
0
null
null
null
null
UTF-8
Python
false
false
9,470
py
""" Implements maximum entropy inverse reinforcement learning (Ziebart et al., 2008) Matthew Alger, 2015 [email protected] """ from itertools import product import numpy as np import numpy.random as rn from . import value_iteration import json def irl(feature_matrix, n_actions, discount, transition_probability, trajectories, epochs, learning_rate): """ Find the reward function for the given trajectories. feature_matrix: Matrix with the nth row representing the nth state. NumPy array with shape (N, D) where N is the number of states and D is the dimensionality of the state. n_actions: Number of actions A. int. discount: Discount factor of the MDP. float. transition_probability: NumPy array mapping (state_i, action, state_k) to the probability of transitioning from state_i to state_k under action. Shape (N, A, N). trajectories: 3D array of state/action pairs. States are ints, actions are ints. NumPy array with shape (T, L, 2) where T is the number of trajectories and L is the trajectory length. epochs: Number of gradient descent steps. int. learning_rate: Gradient descent learning rate. float. -> Reward vector with shape (N,). """ n_states, d_states = feature_matrix.shape # Initialise weights. alpha = rn.uniform(size=(d_states,)) # Calculate the feature expectations \tilde{phi}. feature_expectations = find_feature_expectations(feature_matrix, trajectories) # Gradient descent on alpha. for i in range(epochs): print(f'EPOCH {i}') r = feature_matrix.dot(alpha) expected_svf = find_expected_svf(n_states, r, n_actions, discount, transition_probability, trajectories) grad = feature_expectations - feature_matrix.T.dot(expected_svf) alpha += learning_rate * grad return feature_matrix.dot(alpha).reshape((n_states,)) def find_svf(n_states, trajectories): """ Find the state visitation frequency from trajectories. n_states: Number of states. int. trajectories: 3D array of state/action pairs. States are ints, actions are ints. NumPy array with shape (T, L, 2) where T is the number of trajectories and L is the trajectory length. -> State visitation frequencies vector with shape (N,). """ svf = np.zeros(n_states) for trajectory in trajectories: for state, _, _ in trajectory: svf[state] += 1 svf /= trajectories.shape[0] return svf def find_feature_expectations(feature_matrix, trajectories): """ Find the feature expectations for the given trajectories. This is the average path feature vector. feature_matrix: Matrix with the nth row representing the nth state. NumPy array with shape (N, D) where N is the number of states and D is the dimensionality of the state. trajectories: 3D array of state/action pairs. States are ints, actions are ints. NumPy array with shape (T, L, 2) where T is the number of trajectories and L is the trajectory length. -> Feature expectations vector with shape (D,). """ feature_expectations = np.zeros(feature_matrix.shape[1]) for trajectory in trajectories: for state, _, _ in trajectory: feature_expectations += feature_matrix[state] feature_expectations /= trajectories.shape[0] return feature_expectations def find_expected_svf(n_states, r, n_actions, discount, transition_probability, trajectories): """ Find the expected state visitation frequencies using algorithm 1 from Ziebart et al. 2008. n_states: Number of states N. int. alpha: Reward. NumPy array with shape (N,). n_actions: Number of actions A. int. discount: Discount factor of the MDP. float. transition_probability: NumPy array mapping (state_i, action, state_k) to the probability of transitioning from state_i to state_k under action. Shape (N, A, N). trajectories: 3D array of state/action pairs. States are ints, actions are ints. NumPy array with shape (T, L, 2) where T is the number of trajectories and L is the trajectory length. -> Expected state visitation frequencies vector with shape (N,). """ n_trajectories = trajectories.shape[0] trajectory_length = trajectories.shape[1] # policy = find_policy(n_states, r, n_actions, discount, # transition_probability) policy = value_iteration.find_policy(n_states, n_actions, transition_probability, r, discount) with open('policies.txt', 'w') as policies: policies.write(json.dumps(policy, default=lambda x: list(x), indent=4)) with open('rewards.txt', 'w') as rewards: rewards.write(json.dumps(r, default=lambda x: list(x), indent=4)) start_state_count = np.zeros(n_states) for trajectory in trajectories: start_state_count[trajectory[0, 0]] += 1 p_start_state = start_state_count / n_trajectories expected_svf = np.tile(p_start_state, (trajectory_length, 1)).T for t in range(1, trajectory_length): print(t) expected_svf[:, t] = 0 for i, j, k in product(range(n_states), range(n_actions), range(n_states)): expected_svf[k, t] += (expected_svf[i, t - 1] * policy[i, j] * # Stochastic policy transition_probability[i, j, k]) return expected_svf.sum(axis=1) def softmax(x1, x2): """ Soft-maximum calculation, from algorithm 9.2 in Ziebart's PhD thesis. x1: float. x2: float. -> softmax(x1, x2) """ max_x = max(x1, x2) min_x = min(x1, x2) return max_x + np.log(1 + np.exp(min_x - max_x)) def find_policy(n_states, r, n_actions, discount, transition_probability): """ Find a policy with linear value iteration. Based on the code accompanying the Levine et al. GPIRL paper and on Ziebart's PhD thesis (algorithm 9.1). n_states: Number of states N. int. r: Reward. NumPy array with shape (N,). n_actions: Number of actions A. int. discount: Discount factor of the MDP. float. transition_probability: NumPy array mapping (state_i, action, state_k) to the probability of transitioning from state_i to state_k under action. Shape (N, A, N). -> NumPy array of states and the probability of taking each action in that state, with shape (N, A). """ # V = value_iteration.value(n_states, transition_probability, r, discount) # NumPy's dot really dislikes using inf, so I'm making everything finite # using nan_to_num. V = np.nan_to_num(np.ones((n_states, 1)) * float("-inf")) diff = np.ones((n_states,)) while (diff > 1e-4).all(): # Iterate until convergence. new_V = r.copy() for j in range(n_actions): for i in range(n_states): new_V[i] = softmax(new_V[i], r[i] + discount * np.sum(transition_probability[i, j, k] * V[k] for k in range(n_states))) # # This seems to diverge, so we z-score it (engineering hack). new_V = (new_V - new_V.mean()) / new_V.std() diff = abs(V - new_V) V = new_V # We really want Q, not V, so grab that using equation 9.2 from the thesis. Q = np.zeros((n_states, n_actions)) for i in range(n_states): for j in range(n_actions): p = np.array([transition_probability[i, j, k] for k in range(n_states)]) Q[i, j] = p.dot(r + discount * V) # Softmax by row to interpret these values as probabilities. Q -= Q.max(axis=1).reshape((n_states, 1)) # For numerical stability. Q = np.exp(Q) / np.exp(Q).sum(axis=1).reshape((n_states, 1)) return Q def expected_value_difference(n_states, n_actions, transition_probability, reward, discount, p_start_state, optimal_value, true_reward): """ Calculate the expected value difference, which is a proxy to how good a recovered reward function is. n_states: Number of states. int. n_actions: Number of actions. int. transition_probability: NumPy array mapping (state_i, action, state_k) to the probability of transitioning from state_i to state_k under action. Shape (N, A, N). reward: Reward vector mapping state int to reward. Shape (N,). discount: Discount factor. float. p_start_state: Probability vector with the ith component as the probability that the ith state is the start state. Shape (N,). optimal_value: Value vector for the ground reward with optimal policy. The ith component is the value of the ith state. Shape (N,). true_reward: True reward vector. Shape (N,). -> Expected value difference. float. """ policy = value_iteration.find_policy(n_states, n_actions, transition_probability, reward, discount) value = value_iteration.value(policy.argmax(axis=1), n_states, transition_probability, true_reward, discount) evd = optimal_value.dot(p_start_state) - value.dot(p_start_state) return evd
eda754ab5842624ac525d528542a4e12b3812987
82dddaf5cde354bc6d96fdf0ef2516abf2960cb4
/zom/bonbon/migrations/0003_remove_res_link.py
caaf4f16351c0795ac0d78ece628613590113a9f
[ "MIT" ]
permissive
Neha-Prabhu/Zomato-clone
9f623d215c6e89528d129507f8cd27067c93d128
4d57f784c6de91780a171fe4e2853ccb20c8e8ca
refs/heads/master
2022-07-17T01:01:01.372469
2020-05-13T19:45:23
2020-05-13T19:45:23
263,724,693
0
1
null
null
null
null
UTF-8
Python
false
false
322
py
# Generated by Django 2.2.4 on 2019-10-12 18:57 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('bonbon', '0002_auto_20191012_2320'), ] operations = [ migrations.RemoveField( model_name='res', name='link', ), ]
8ad0f2dc3caaa8c82153abee8dbfd4ae141503a1
9321d3460ffbbb6cd7917b2bac77ce8321e04737
/contributions/Legacy/JPlus/Old/EDMFunctions with infiltration not working.py
0e4abdb725c1f2e288370fefe3c7374edd491e9d
[ "MIT" ]
permissive
muehleisen/CEAforArcGIS
b820d837cd5373b95851b4e5dda609d69f054b97
b6aeca5a9d70835381625a9162d5695714e1a02b
refs/heads/master
2021-01-11T21:24:18.482264
2017-01-06T05:28:48
2017-01-06T05:28:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
73,097
py
# -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> # <markdowncell> # ####MODULES # <codecell> from __future__ import division import arcpy from arcpy import sa import sys,os import pandas as pd import datetime import jdcal import numpy as np import math import sympy as sp import scipy import scipy.optimize sys.path.append("C:\console\sandbox") from pyGDsandbox.dataIO import df2dbf, dbf2df arcpy.env.overwriteOutput = True arcpy.CheckOutExtension("spatial") arcpy.CheckOutExtension("3D") # <markdowncell> # ##RADIATION MODEL # <markdowncell> # ###1. Calculation of hourly radiation in a day # <codecell> def CalcRadiation(day, CQ_name, DEMfinal, Observers, T_G_day, latitude, locationtemp1): # Local Variables Latitude = str(latitude) skySize = '3000' dayInterval = '1' hourInterval = '1' calcDirections = '32' zenithDivisions = '1500' azimuthDivisions = '160' diffuseProp = str(T_G_day.loc[day-1,'diff']) transmittivity = str(T_G_day.loc[day-1,'ttr']) heightoffset = '5' global_radiation = locationtemp1+'\\'+CQ_name+'\\'+'radiation'+'\\'+'Day_'+str(day)+'.shp' timeConfig = 'WithinDay '+str(day)+', 0, 24' #Run the extension of arcgis arcpy.gp.PointsSolarRadiation_sa(DEMfinal, Observers, global_radiation, heightoffset, Latitude, skySize, timeConfig, dayInterval, hourInterval, "INTERVAL", "1", "FROM_DEM", calcDirections, zenithDivisions, azimuthDivisions, "STANDARD_OVERCAST_SKY", diffuseProp, transmittivity, "#", "#", "#") return arcpy.GetMessages() # <markdowncell> # 1.1 Sub-function to calculate radiation non-sunshinehours # <codecell> def calc_radiationday(day, CQ_name, T_G_day, locationtemp1): radiation_sunnyhours = dbf2df(locationtemp1+'\\'+CQ_name+'\\'+'radiation'+'\\'+'Day_'+str(day)+'.dbf') #Obtain the number of points modeled to do the iterations radiation_sunnyhours['ID'] = 0 counter = radiation_sunnyhours.ID.count() value = counter+1 radiation_sunnyhours['ID'] = range(1, value) # Table with empty values with the same range as the points. Table = pd.DataFrame.copy(radiation_sunnyhours) Names = ['T0','T1','T2','T3','T4','T5','T6','T7','T8','T9','T10','T11','T12','T13','T14','T15','T16','T17','T18','T19','T20','T21','T22','T23'] for Name in Names: Table[Name]= 0 #Counter of Columns in the Initial Table Counter = radiation_sunnyhours.count(1) Value = Counter[0]-1 #Condition to take into account daysavingtime in Switzerland as the radiation data in ArcGIS is calculated for 2013. if 90 <= day <300: D = 1 else: D = 0 # Calculation of Sunrise time Sunrise_time = T_G_day.loc[day-1,'sunrise'] # Calculation of table for time in range(Value): Hour = int(Sunrise_time)+ int(time) Table['T'+str(Hour)] = radiation_sunnyhours['T'+str(time)] #rename the table for every T to get in 1 to 8760 hours. if day == 1: name = 1 else: name = int(day-1)*24+1 Table.rename(columns={'T0':'T'+str(name),'T1':'T'+str(name+1),'T2':'T'+str(name+2),'T3':'T'+str(name+3),'T4':'T'+str(name+4), 'T5':'T'+str(name+5),'T6':'T'+str(name+6),'T7':'T'+str(name+7),'T8':'T'+str(name+8),'T9':'T'+str(name+9), 'T10':'T'+str(name+10),'T11':'T'+str(name+11),'T12':'T'+str(name+12),'T13':'T'+str(name+13),'T14':'T'+str(name+14), 'T15':'T'+str(name+15),'T16':'T'+str(name+16),'T17':'T'+str(name+17),'T18':'T'+str(name+18),'T19':'T'+str(name+19), 'T20':'T'+str(name+20),'T21':'T'+str(name+21),'T22':'T'+str(name+22),'T23':'T'+str(name+23),'ID':'ID'},inplace=True) return Table.copy() # <markdowncell> # ###2. Burn buildings into DEM # <codecell> def Burn(Buildings,DEM,DEMfinal,locationtemp1, locationtemp2, database, DEM_extent = '676682, 218586, 684612, 229286'): #Create a raster with all the buildings Outraster = locationtemp1+'\\'+'AllRaster' arcpy.env.extent = DEM_extent #These coordinates are extracted from the environment settings/once the DEM raster is selected directly in ArcGIS, arcpy.FeatureToRaster_conversion(Buildings,'height',Outraster,'0.5') #creating raster of the footprints of the buildings #Clear non values and add all the Buildings to the DEM OutNullRas = sa.IsNull(Outraster) # identify noData Locations Output = sa.Con(OutNullRas == 1,0,Outraster) RadiationDEM = sa.Raster(DEM) + Output RadiationDEM.save(DEMfinal) return arcpy.GetMessages() # <markdowncell> # ###3. Calculate Boundaries - Factor Height and Factor Shade # <codecell> def CalcBoundaries (Simple_CQ,locationtemp1, locationtemp2, DataFactorsCentroids, DataFactorsBoundaries): #local variables NearTable = locationtemp1+'\\'+'NearTable.dbf' CQLines = locationtemp2+'\\'+'\CQLines' CQVertices = locationtemp2+'\\'+'CQVertices' CQSegments = locationtemp2+'\\'+'CQSegment' CQSegments_centroid = locationtemp2+'\\'+'CQSegmentCentro' centroidsTable_name = 'CentroidCQdata.dbf' centroidsTable = locationtemp1+'\\'+centroidsTable_name Overlaptable = locationtemp1+'\\'+'overlapingTable.csv' #Create points in the centroid of segment line and table with near features: # indentifying for each segment of line of building A the segment of line of building B in common. arcpy.FeatureToLine_management(Simple_CQ,CQLines) arcpy.FeatureVerticesToPoints_management(Simple_CQ,CQVertices,'ALL') arcpy.SplitLineAtPoint_management(CQLines,CQVertices,CQSegments,'2 METERS') arcpy.FeatureVerticesToPoints_management(CQSegments,CQSegments_centroid,'MID') arcpy.GenerateNearTable_analysis(CQSegments_centroid,CQSegments_centroid,NearTable,"1 Meters","NO_LOCATION","NO_ANGLE","CLOSEST","0") #Import the table with NearMatches NearMatches = dbf2df(NearTable) # Import the table with attributes of the centroids of the Segments arcpy.TableToTable_conversion(CQSegments_centroid, locationtemp1, centroidsTable_name) DataCentroids = dbf2df(centroidsTable, cols={'Name','height','ORIG_FID'}) # CreateJoin to Assign a Factor to every Centroid of the lines, FirstJoin = pd.merge(NearMatches,DataCentroids,left_on='IN_FID', right_on='ORIG_FID') SecondaryJoin = pd.merge(FirstJoin,DataCentroids,left_on='NEAR_FID', right_on='ORIG_FID') # delete matches within the same polygon Name (it can happen that lines are too close one to the other) # also delete matches with a distance of more than 20 cm making room for mistakes during the simplicfication of buildings but avoiding deleten boundaries rows = SecondaryJoin.IN_FID.count() for row in range(rows): if SecondaryJoin.loc[row,'Name_x'] == SecondaryJoin.loc[row,'Name_y'] or SecondaryJoin.loc[row,'NEAR_DIST'] > 0.2: SecondaryJoin = SecondaryJoin.drop(row) SecondaryJoin.reset_index(inplace=True) #FactorShade = 0 if the line exist in a building totally covered by another one, and Freeheight is equal to the height of the line # that is not obstructed by the other building rows = SecondaryJoin.IN_FID.count() SecondaryJoin['FactorShade']=0 SecondaryJoin['Freeheight']=0 for row in range(rows): if SecondaryJoin.loc[row,'height_x'] <= SecondaryJoin.loc[row,'height_y']: SecondaryJoin.loc[row,'FactorShade'] = 0 SecondaryJoin.loc[row,'Freeheight'] = 0 elif SecondaryJoin.loc[row,'height_x'] > SecondaryJoin.loc[row,'height_y'] and SecondaryJoin.loc[row,'height_x']-1 <= SecondaryJoin.loc[row,'height_y']: SecondaryJoin.loc[row,'FactorShade'] = 0 else: SecondaryJoin.loc[row,'FactorShade'] = 1 SecondaryJoin.loc[row,'Freeheight'] = abs(SecondaryJoin.loc[row,'height_y']- SecondaryJoin.loc[row,'height_x']) #Create and export Secondary Join with results, it will be Useful for the function CalcObservers SecondaryJoin.to_csv(DataFactorsBoundaries,index=False) #Update table Datacentroids with the Fields Freeheight and Factor Shade. for those buildings without #shading boundaries these factors are equal to 1 and the field 'height' respectively. DataCentroids['FactorShade'] = 1 DataCentroids['Freeheight'] = DataCentroids['height'] Results = DataCentroids.merge(SecondaryJoin, left_on='ORIG_FID', right_on='ORIG_FID_x', how='outer') Results.FactorShade_y.fillna(Results['FactorShade_x'],inplace=True) Results.Freeheight_y.fillna(Results['Freeheight_x'],inplace=True) Results.rename(columns={'FactorShade_y':'FactorShade','Freeheight_y':'Freeheight'},inplace=True) FinalDataCentroids = pd.DataFrame(Results,columns={'ORIG_FID','height','FactorShade','Freeheight'}) FinalDataCentroids.to_csv(DataFactorsCentroids,index=False) return arcpy.GetMessages() # <markdowncell> # ###4. Calculate observation points # <codecell> def CalcObservers(Simple_CQ,Observers, DataFactorsBoundaries, locationtemporal2): #local variables Buffer_CQ = locationtemporal2+'\\'+'BufferCQ' temporal_lines = locationtemporal2+'\\'+'lines' Points = locationtemporal2+'\\'+'Points' AggregatedBuffer = locationtemporal2+'\\'+'BufferAggregated' temporal_lines3 = locationtemporal2+'\\'+'lines3' Points3 = locationtemporal2+'\\'+'Points3' Points3Updated = locationtemporal2+'\\'+'Points3Updated' EraseObservers = locationtemporal2+'\\'+'eraseobservers' Observers0 = locationtemporal2+'\\'+'observers0' NonoverlappingBuildings = locationtemporal2+'\\'+'Non_overlap' templines = locationtemporal2+'\\'+'templines' templines2 = locationtemporal2+'\\'+'templines2' Buffer_CQ0 = locationtemporal2+'\\'+'Buffer_CQ0' Buffer_CQ = locationtemporal2+'\\'+'Buffer_CQ' Buffer_CQ1 = locationtemporal2+'\\'+'Buffer_CQ1' Simple_CQcopy = locationtemporal2+'\\'+'Simple_CQcopy' #First increase the boundaries in 2m of each surface in the community to #analyze- this will avoid that the observers overlap the buildings and Simplify #the community vertices to only create 1 point per surface arcpy.CopyFeatures_management(Simple_CQ,Simple_CQcopy) #Make Square-like buffers arcpy.PolygonToLine_management(Simple_CQcopy,templines,"IGNORE_NEIGHBORS") arcpy.SplitLine_management(templines,templines2) arcpy.Buffer_analysis(templines2,Buffer_CQ0,"0.75 Meters","FULL","FLAT","NONE","#") arcpy.Append_management(Simple_CQcopy,Buffer_CQ0,"NO_TEST") arcpy.Dissolve_management(Buffer_CQ0,Buffer_CQ1,"Name","#","SINGLE_PART","DISSOLVE_LINES") arcpy.SimplifyBuilding_cartography(Buffer_CQ1,Buffer_CQ,simplification_tolerance=8, minimum_area=None) #arcpy.Buffer_analysis(Simple_CQ,Buffer_CQ,buffer_distance_or_field=1, line_end_type='FLAT') # buffer with a flat finishing #arcpy.Generalize_edit(Buffer_CQ,"2 METERS") #Transform all polygons of the simplified areas to observation points arcpy.SplitLine_management(Buffer_CQ,temporal_lines) arcpy.FeatureVerticesToPoints_management(temporal_lines,Points,'MID') # Second the transformation of Lines to a mid point #Join all the polygons to get extra vertices, make lines and then get points. #these points should be added to the original observation points arcpy.AggregatePolygons_cartography(Buffer_CQ,AggregatedBuffer,"0.5 Meters","0 SquareMeters","0 SquareMeters","ORTHOGONAL") # agregate polygons arcpy.SplitLine_management(AggregatedBuffer,temporal_lines3) #make lines arcpy.FeatureVerticesToPoints_management(temporal_lines3,Points3,'MID')# create extra points # add information to Points3 about their buildings arcpy.SpatialJoin_analysis(Points3,Buffer_CQ,Points3Updated,"JOIN_ONE_TO_ONE","KEEP_ALL",match_option="CLOSEST",search_radius="5 METERS") arcpy.Erase_analysis(Points3Updated,Points,EraseObservers,"2 Meters")# erase overlaping points arcpy.Merge_management([Points,EraseObservers],Observers0)# erase overlaping points # Eliminate Observation points above roofs of the highest surfaces(a trick to make the #Import Overlaptable from function CalcBoundaries containing the data about buildings overlaping, eliminate duplicades, chose only those ones no overlaped and reindex DataNear = pd.read_csv(DataFactorsBoundaries) CleanDataNear = DataNear[DataNear['FactorShade'] == 1] CleanDataNear.drop_duplicates(cols='Name_x',inplace=True) CleanDataNear.reset_index(inplace=True) rows = CleanDataNear.Name_x.count() for row in range(rows): Field = "Name" # select field where the name exists to iterate Value = CleanDataNear.loc[row,'Name_x'] # set the value or name of the City quarter Where_clausule = ''''''+'"'+Field+'"'+"="+"\'"+str(Value)+"\'"+'''''' # strange writing to introduce in ArcGIS if row == 0: arcpy.MakeFeatureLayer_management(Simple_CQ, 'Simple_lyr') arcpy.SelectLayerByAttribute_management('Simple_lyr',"NEW_SELECTION",Where_clausule) else: arcpy.SelectLayerByAttribute_management('Simple_lyr',"ADD_TO_SELECTION",Where_clausule) arcpy.CopyFeatures_management('simple_lyr', NonoverlappingBuildings) arcpy.ErasePoint_edit(Observers0,NonoverlappingBuildings,"INSIDE") arcpy.CopyFeatures_management(Observers0,Observers)#copy features to reset the OBJECTID return arcpy.GetMessages() # <markdowncell> # ###5. Radiation results to surfaces # <codecell> def CalcRadiationSurfaces(Observers, Radiationyearfinal, DataFactorsCentroids, DataradiationLocation, locationtemp1, locationtemp2): # local variables CQSegments_centroid = locationtemp2+'\\'+'CQSegmentCentro' Outjoin = locationtemp2+'\\'+'Join' CQSegments = locationtemp2+'\\'+'CQSegment' OutTable = 'CentroidsIDobserv.dbf' # Create Join of features Observers and CQ_sementscentroids to # assign Names and IDS of observers (field TARGET_FID) to the centroids of the lines of the buildings, # then create a table to import as a Dataframe arcpy.SpatialJoin_analysis(CQSegments_centroid,Observers,Outjoin,"JOIN_ONE_TO_ONE","KEEP_ALL",match_option="CLOSEST",search_radius="10 METERS") arcpy.JoinField_management(Outjoin,'OBJECTID',CQSegments, 'OBJECTID') # add the lenghts of the Lines to the File arcpy.TableToTable_conversion(Outjoin, locationtemp1, OutTable) Centroids_ID_observers = dbf2df(locationtemp1+'\\'+OutTable, cols={'Name_12','height','ORIG_FID','Shape_Leng'}) Centroids_ID_observers.rename(columns={'Name_12':'Name'},inplace=True) #Create a Join of the Centroid_ID_observers and Datacentroids in the Second Chapter to get values of surfaces Shaded. Datacentroids = pd.read_csv(DataFactorsCentroids) DataCentroidsFull = pd.merge(Centroids_ID_observers,Datacentroids,left_index=True,right_index=True) #Read again the radiation table and merge values with the Centroid_ID_observers under the field ID in Radiationtable and 'ORIG_ID' in Centroids... Radiationtable = pd.read_csv(DataradiationLocation,index_col='Unnamed: 0') DataRadiation = pd.merge(DataCentroidsFull,Radiationtable, left_on='ORIG_FID_x',right_on='ID') DataRadiation.to_csv(Radiationyearfinal,index=False) return arcpy.GetMessages() # <markdowncell> # ##DETERMINISTIC ENERGY MODEL # <markdowncell> # ###1. Thermal properties and geometry of buildings # <codecell> def CalcProperties(CQ, CQproperties, RadiationFile,locationtemp1): #Local Variables OutTable = 'CQshape3.dbf' # Set of estimated constants Z = 3 # height of basement for every building in m Bf = 0.7 # It calculates the coefficient of reduction in transmittance for surfaces in contact with the ground according to values of SIA 380/1 # Set of constants according to EN 13790 his = 3.45 #heat transfer coefficient between air and the surfacein W/(m2K) hms = 9.1 # Heat transfer coeddicient between nodes m and s in W/m2K # Set of estimated constants #Import RadiationFile and Properties of the shapefiles rf = pd.read_csv(RadiationFile) arcpy.TableToTable_conversion(CQ, locationtemp1, OutTable) CQShape_properties = dbf2df(locationtemp1+'\\'+OutTable) #Areas above ground #get the area of each wall in the buildings rf['Awall'] = rf['Shape_Leng']*rf['Freeheight']*rf['FactorShade'] Awalls0 = pd.pivot_table(rf,rows='Name',values='Awall',aggfunc=np.sum); Awalls = pd.DataFrame(Awalls0) #get the area of walls in the whole buildings Areas = pd.merge(Awalls,CQproperties, left_index=True,right_on='Name') Areas['Aw'] = Areas['Awall']*Areas['fwindow']*Areas['PFloor'] # Finally get the Area of windows Areas['Aop_sup'] = Areas['Awall']*Areas['PFloor'] #....and Opaque areas PFloor represents a factor according to the amount of floors heated #Areas bellow ground AllProperties = pd.merge(Areas,CQShape_properties,on='Name')# Join both properties files (Shape and areas) AllProperties['Aop_bel'] = Z*AllProperties['Shape_Leng']+AllProperties['Shape_Area'] # Opague areas in m2 below ground including floor AllProperties['Atot'] = AllProperties['Aop_sup']+AllProperties['Aop_bel']+AllProperties['Shape_Area'] # Total area of the building envelope m2, it is considered the roof to be flat AllProperties['Af'] = AllProperties['Shape_Area']*AllProperties['Floors_y']*AllProperties['Hs_y']# conditioned area AllProperties['Aef'] = AllProperties['Shape_Area']*AllProperties['Floors_y']*AllProperties['Es']# conditioned area only those for electricity AllProperties['Am'] = AllProperties.Construction.apply(lambda x:AmFunction(x))*AllProperties['Af'] # Effective mass area in m2 #Steady-state Thermal transmittance coefficients and Internal heat Capacity AllProperties ['Htr_w'] = AllProperties['Aw']*AllProperties['Uwindow'] # Thermal transmission coefficient for windows and glazing. in W/K AllProperties ['HD'] = AllProperties['Aop_sup']*AllProperties['Uwall']+AllProperties['Shape_Area']*AllProperties['Uroof'] # Direct Thermal transmission coefficient to the external environment in W/K AllProperties ['Hg'] = Bf*AllProperties ['Aop_bel']*AllProperties['Ubasement'] # stady-state Thermal transmission coeffcient to the ground. in W/K AllProperties ['Htr_op'] = AllProperties ['Hg']+ AllProperties ['HD'] AllProperties ['Htr_ms'] = hms*AllProperties ['Am'] # Coupling conduntance 1 in W/K AllProperties ['Htr_em'] = 1/(1/AllProperties['Htr_op']-1/ AllProperties['Htr_ms']) # Coupling conduntance 2 in W/K AllProperties ['Htr_is'] = his*AllProperties ['Atot'] AllProperties['Cm'] = AllProperties.Construction.apply(lambda x:CmFunction(x))*AllProperties['Af'] # Internal heat capacity in J/K # Year Category of building AllProperties['YearCat'] = AllProperties.apply(lambda x: YearCategoryFunction(x['Year_y'], x['Renovated']), axis=1) AllProperties.rename(columns={'Hs_y':'Hs','Floors_y':'Floors','PFloor_y':'PFloor','Year_y':'Year','fwindow_y':'fwindow'},inplace=True) return AllProperties # <codecell> def CalcIncidentRadiation(AllProperties, Radiationyearfinal): #Import Radiation table and compute the Irradiation in W in every building's surface Radiation_Shading2 = pd.read_csv(Radiationyearfinal) Columns = 8761 Radiation_Shading2['AreaExposed'] = Radiation_Shading2['Shape_Leng']*Radiation_Shading2['FactorShade']*Radiation_Shading2['Freeheight'] for Column in range(1, Columns): #transform all the points of solar radiation into Wh Radiation_Shading2['T'+str(Column)] = Radiation_Shading2['T'+str(Column)]*Radiation_Shading2['AreaExposed'] #Do pivot table to sum up the irradiation in every surface to the building #and merge the result with the table allProperties PivotTable3 = pd.pivot_table(Radiation_Shading2,rows='Name',margins='Add all row') RadiationLoad = pd.DataFrame(PivotTable3) Solar = AllProperties.merge(RadiationLoad, left_on='Name',right_index=True) return Solar # total solar radiation in areas exposed to radiation in Watts # <markdowncell> # 1.1 Sub-functions of Thermal mass # <codecell> def CmFunction (x): if x == 'Medium': return 165000 elif x == 'Heavy': return 300000 elif x == 'Light': return 110000 else: return 165000 # <codecell> def AmFunction (x): if x == 'Medium': return 2.5 elif x == 'Heavy': return 3.2 elif x == 'Light': return 2.5 else: return 2.5 # <markdowncell> # 1.2. Sub- Function Hourly thermal transmission coefficients # <codecell> def calc_Htr(Hve, Htr_is, Htr_ms, Htr_w): Htr_1 = 1/(1/Hve+1/Htr_is) Htr_2 = Htr_1+Htr_w Htr_3 = 1/(1/Htr_2+1/Htr_ms) Coefficients = [Htr_1,Htr_2,Htr_3] return Coefficients # <markdowncell> # ###2. Calculation of thermal and Electrical loads - No processes # <codecell> def CalcThermalLoads(i, AllProperties, locationFinal, Solar, Profiles,Profiles_names, Temp, Seasonhours, Servers,Coolingroom): # Mode is a variable 0 without losses, 1 With losses of distribution enmission and control #Local Variables Name = AllProperties.loc[i,'Name'] # Set of constants according to EN 13790 g_gl = 0.9*0.75 # solar energy transmittance assuming a reduction factor of 0.9 and most of the windows to be double glazing (0.75) pa_ca = 1200 # Air constant J/m3K F_f = 0.3 # Frame area faction coefficient Bf = 0.7 # It calculates the coefficient of reduction in transmittance for surfaces in contact with the ground according to values of SIA 380/1 tw = 10 # the temperature of intake of water for hot water # Set of variables used offently nf = AllProperties.loc[i,'Floors'] nfpercent = AllProperties.loc[i,'PFloor'] height = AllProperties.loc[i,'height'] Lw = AllProperties.loc[i,'MBG_Width'] Ll = AllProperties.loc[i,'MBG_Length'] Awall = AllProperties.loc[i,'Awall'] footprint = AllProperties.loc[i,'Shape_Area'] Year = AllProperties.loc[i,'Year'] Yearcat = AllProperties.loc[i,'YearCat'] Af = AllProperties.loc[i,'Af'] Aef = AllProperties.loc[i,'Aef'] SystemH = AllProperties.loc[i,'Emission_heating'] SystemC = AllProperties.loc[i,'Emission_cooling'] tsh0 = AllProperties.loc[i,'tsh0'] trh0 = AllProperties.loc[i,'trh0'] tsc0 = AllProperties.loc[i,'tsc0'] trc0 = AllProperties.loc[i,'trc0'] te_min = Temp.te.min() te_max = Temp.te.max() # Determination of Profile of occupancy to use Occupancy0 = calc_Type(Profiles,Profiles_names, AllProperties, i, Servers,Coolingroom) #Create Labels in data frame to iterate Columns = ['IH_nd_ac','IC_nd_ac','g_gl','Htr_1','Htr_2','Htr_3','tm_t','tair_ac','top_ac','IHC_nd_ac', 'Asol', 'I_sol','te', 'Eal','Qhsf','Qcsf','Qhs','Qcs','Qwwf','Qww','tair','top','tsc','trc','tsh','trh','Qhs_em_ls','Qcs_em_ls', 'Qhs_d_ls','Qcs_d_ls','Qww_dh_ls','Qww_d_ls','tamb','Qcs_dis_em_ls','Qhs_dis_em_ls', 'Eaux_hs', 'Eaux_cs', 'Eaux_ww'] for Label in Columns: Occupancy0 [Label] = 0 if Af >0: #Assign temperature data to the table Occupancy0['te'] = Temp['te'] # Determination of Hourly Thermal transmission coefficient due to Ventilation in W/K # without infiltration - this value is calculated later on Occupancy0['Hve'] = pa_ca*(Occupancy0['Ve']* Af/3600) #Calculation of hot water use At 60 degrees and 45 degress for new buildings if AllProperties.loc[i,'Year'] >= 2020: twws = 45 else: twws = 60 Occupancy0['Qww'] = Occupancy0['Mww']*Af*4.184*(twws-tw)*0.277777777777778 # in wattshour. #Calculation of lossess distribution system for domestic hot water Occupancy = calc_Qww_dis_ls(nf, nfpercent, Lw, Ll, Year,Af,twws, Bf, AllProperties.loc[i,'Renovated'], Occupancy0, Seasonhours,footprint,1) #1 when internal loads ar calculated #addd losses of hotwater system into internal loads for the mass balance Occupancy['I_int'] = Occupancy['I_int']*Af+ Occupancy['Qww_dh_ls']*0.8# 80% is recoverable or enter to play in the energy balance #Determination of Heat Flows for internal loads in W Occupancy['I_ia'] = 0.5*Occupancy['I_int'] # Calculation Shading factor per hour due to operation of external shadings, 1 when I > 300 W/m2 Rf_sh = Calc_Rf_sh(AllProperties.loc[i,'Shading_Po'],AllProperties.loc[i,'Shading_Ty']) # Calculation of effecive solar area of surfaces in m2, opaque areas are not considered, reduction factor of overhangs is not included. Fov =0 Num_Hours = Occupancy.tamb.count() for hour in range(Num_Hours): Occupancy.loc[hour,'g_gl'] = calc_gl(Solar.loc[i,'T'+str(hour+1)]/AllProperties.loc[i,'Awall'], g_gl,Rf_sh) # Calculation of solar efective area per hour in m2 Occupancy.loc[hour,'Asol'] = Occupancy.loc[hour,'g_gl']*(1-F_f)*AllProperties.loc[i,'Aw'] # Calculation of Solar gains in each facade in W it is neglected the extraflow of radiation from the surface to the exterior Fr_k*Ir_k = 0 as well as gains in opaque surfaces Occupancy.loc[hour,'I_sol'] = Occupancy.loc[hour,'Asol']*(Solar.loc[i,'T'+str(hour+1)]/AllProperties.loc[i,'Awall'])#-Fr*AllProperties.loc[i,'Aw_N']*AllProperties.loc[i,'Uwindow']*delta_t_er*hr*Rse # Determination of Hourly thermal transmission coefficients for Determination of operation air temperatures in W/K Coefficients = calc_Htr(Occupancy.loc[hour,'Hve'], AllProperties.loc[i,'Htr_is'], AllProperties.loc[i,'Htr_ms'], AllProperties.loc[i,'Htr_w']) Occupancy.loc[hour,'Htr_1'] = Coefficients[0] Occupancy.loc[hour,'Htr_2'] = Coefficients[1] Occupancy.loc[hour,'Htr_3'] = Coefficients[2] # Determination of Heat Flows for internal heat sources Occupancy['I_m'] = (AllProperties.loc[i,'Am']/AllProperties.loc[i,'Atot'])*(Occupancy['I_ia']+Occupancy['I_sol']) Occupancy['I_st'] = (1-(AllProperties.loc[i,'Am']/AllProperties.loc[i,'Atot'])-(AllProperties.loc[i,'Htr_w']/(9.1*AllProperties.loc[i,'Atot'])))*(Occupancy['I_ia']+Occupancy['I_sol']) # Seed for calculation # factors of Losses due to emission of systems vector hot or cold water for heating and cooling tHC_corr = [0,0] tHC_corr = calc_Qem_ls(str(SystemH),str(SystemC)) tHset_corr = tHC_corr[0] tCset_corr = tHC_corr[1] Occupancy.loc[0,'tm_t'] = Occupancy.loc[0,'te'] for j in range(1,Num_Hours): #mode = 0 # first calculation without Losses to get real operation and air temperatures Losses = 0 tm_t0 = Occupancy.loc[j-1,'tm_t'] te_t = Occupancy.loc[j,'te'] tintH_set = Occupancy.loc[j,'tintH_set'] tintC_set = Occupancy.loc[j,'tintC_set'] Htr_em = AllProperties.loc[i,'Htr_em'] Htr_ms = AllProperties.loc[i,'Htr_ms'] Htr_is = AllProperties.loc[i,'Htr_is'] Htr_1 = Occupancy.loc[j,'Htr_1'] Htr_2 = Occupancy.loc[j,'Htr_2'] Htr_3 = Occupancy.loc[j,'Htr_3'] Hve = Occupancy.loc[j,'Hve'] Htr_w = AllProperties.loc[i,'Htr_w'] I_st = Occupancy.loc[j,'I_st'] I_ia = Occupancy.loc[j,'I_ia'] I_m = Occupancy.loc[j,'I_m'] Cm = AllProperties.loc[i,'Cm'] Results0 = calc_TL(str(SystemH),str(SystemC), te_min, te_max, tm_t0, te_t, tintH_set, tintC_set, Htr_em, Htr_ms, Htr_is, Htr_1, Htr_2, Htr_3, I_st, Hve, Htr_w, I_ia, I_m, Cm, Af, Losses, tHset_corr, tCset_corr) #Occupancy.loc[j,'tm_t'] = Results0[0] Occupancy.loc[j,'tair'] = Results0[1] # temperature of inside air #Occupancy.loc[j,'top'] = Results0[2] # temperature of operation #Occupancy.loc[j,'Qhs'] = Results0[3] # net heating load #Occupancy.loc[j,'Qcs'] = Results0[4] # net cooling load #NOW CONSIDERING INFILTRATION Temp0 = calc_infiltration(Temp,Occupancy,Awall, Yearcat,height,nfpercent) Occupancy['Hve'] = pa_ca*(Occupancy['Ve']* Af/3600+ Temp0['Ve_inf']) Num_Hours = Occupancy.tamb.count() for hour in range(Num_Hours): Coefficients = calc_Htr(Occupancy.loc[hour,'Hve'], AllProperties.loc[i,'Htr_is'], AllProperties.loc[i,'Htr_ms'], AllProperties.loc[i,'Htr_w']) Occupancy.loc[hour,'Htr_1'] = Coefficients[0] Occupancy.loc[hour,'Htr_2'] = Coefficients[1] Occupancy.loc[hour,'Htr_3'] = Coefficients[2] # Determination of Heat Flows for internal heat sources Occupancy['I_m'] = (AllProperties.loc[i,'Am']/AllProperties.loc[i,'Atot'])*(Occupancy['I_ia']+Occupancy['I_sol']) Occupancy['I_st'] = (1-(AllProperties.loc[i,'Am']/AllProperties.loc[i,'Atot'])-(AllProperties.loc[i,'Htr_w']/(9.1*AllProperties.loc[i,'Atot'])))*(Occupancy['I_ia']+Occupancy['I_sol']) for j in range(1,Num_Hours): # Determination of net thermal loads and temperatures including emission losses Losses = 0 #tm_t0 = Occupancy.loc[j-1,'tm_t'] #te_t = Occupancy.loc[j,'te'] #tintH_set = Occupancy.loc[j,'tintH_set'] #tintC_set = Occupancy.loc[j,'tintC_set'] #Htr_em = AllProperties.loc[i,'Htr_em'] #Htr_ms = AllProperties.loc[i,'Htr_ms'] #Htr_is = AllProperties.loc[i,'Htr_is'] Htr_1 = Occupancy.loc[j,'Htr_1'] Htr_2 = Occupancy.loc[j,'Htr_2'] Htr_3 = Occupancy.loc[j,'Htr_3'] Hve = Occupancy.loc[j,'Hve'] #Htr_w = AllProperties.loc[i,'Htr_w'] I_st = Occupancy.loc[j,'I_st'] I_ia = Occupancy.loc[j,'I_ia'] I_m = Occupancy.loc[j,'I_m'] #Cm = AllProperties.loc[i,'Cm'] Results0 = calc_TL(str(SystemH),str(SystemC), te_min, te_max, tm_t0, te_t, tintH_set, tintC_set, Htr_em, Htr_ms, Htr_is, Htr_1, Htr_2, Htr_3, I_st, Hve, Htr_w, I_ia, I_m, Cm, Af, Losses, tHset_corr, tCset_corr) Occupancy.loc[j,'tm_t'] = Results0[0] Occupancy.loc[j,'tair'] = Results0[1] # temperature of inside air Occupancy.loc[j,'top'] = Results0[2] # temperature of operation Occupancy.loc[j,'Qhs'] = Results0[3] # net heating load Occupancy.loc[j,'Qcs'] = Results0[4] # net cooling load Losses = 1 Results1 = calc_TL(str(SystemH),str(SystemC), te_min, te_max, tm_t0, te_t, tintH_set, tintC_set, Htr_em, Htr_ms, Htr_is, Htr_1, Htr_2, Htr_3, I_st, Hve, Htr_w, I_ia, I_m, Cm, Af, Losses, tHset_corr,tCset_corr) Occupancy.loc[j,'Qhs_em_ls'] = Results1[3]- Occupancy.loc[j,'Qhs'] # losses emission and control Occupancy.loc[j,'Qcs_em_ls'] = Results1[4]- Occupancy.loc[j,'Qcs'] #losses emission and control #Calculation of the emission factor of the distribution system Emissionfactor = calc_em_t(str(SystemH),str(SystemC)) nh = Emissionfactor[4] # sum of final energy up to the generation first time Occupancy['Qhsf'] = Occupancy['Qhs'] Occupancy['Qcsf'] = -Occupancy['Qcs'] Occupancy['Qwwf'] = Occupancy['Qww'] Occupancy.to_csv(r'C:\ArcGIS\Toerase0.csv') #Qc MUST BE POSITIVE #Calculation temperatures of the distribution system during time Results2 = calc_temperatures(str(SystemH),str(SystemC),Occupancy,Temp0,tsh0,trh0,tsc0,trc0,nh,nf,Af) Occupancy2 = Results2[0] #Calculation of lossess distribution system for space heating space cooling Occupancy3 = calc_Qdis_ls(str(SystemH),str(SystemC), nf,nfpercent,Lw,Ll,Year,Af,twws, Bf, AllProperties.loc[i,'Renovated'], Occupancy2, Seasonhours,footprint) #Calculation of lossess distribution system for domestic hot water Occupancy4 = calc_Qww_dis_ls(nf, nfpercent, Lw, Ll, Year,Af,twws, Bf, AllProperties.loc[i,'Renovated'], Occupancy3, Seasonhours,footprint,0)#0 when real loads are calculated Occupancy4.to_csv(r'C:\ArcGIS\Toerase.csv') Occupancy4['Qww_dis_ls'] = Occupancy4['Qww_d_ls']+ Occupancy4['Qww_dh_ls'] Occupancy4['Qcs_dis_em_ls'] = -(Occupancy4['Qcs_em_ls']+ Occupancy4['Qcs_d_ls']) Occupancy4['Qhs_dis_em_ls'] = Occupancy4['Qhs_em_ls']+ Occupancy4['Qhs_d_ls'] # sum of final energy up to the generation Occupancy4['Qhsf'] = Occupancy4['Qhs']+Occupancy4['Qhs_dis_em_ls']#it is already taking into account contributon of heating system. Occupancy4['Qcsf'] = -Occupancy4['Qcs']+Occupancy4['Qcs_dis_em_ls'] Occupancy4['Qwwf'] = Occupancy4['Qww'] + Occupancy4['Qww_dis_ls'] Occupancy4.to_csv(r'C:\ArcGIS\Toerase2.csv') #Calculation temperatures of the distribution system during time second time Results3 = calc_temperatures(str(SystemH),str(SystemC),Occupancy4,Temp0,tsh0,trh0,tsc0,trc0,nh,nf,Af) Occupancy5 = Results3[0] Qhs0 = Results3[1]/1000 Qcs0 = Results3[2]/1000 mwh0 = Results3[3]/4190 mwc0 = Results3[4]/4190 tsh0 = Results3[5] trh0 = Results3[6] tsc0 = Results3[7] trc0 = Results3[8] Occupancy5.to_csv(r'C:\ArcGIS\Toerase3.csv') for j in range(1,Num_Hours): if Seasonhours[0] < j < Seasonhours[1]: Occupancy4.loc[j,'Qhs'] = 0 Occupancy4.loc[j,'Qhsf'] = 0 Occupancy4.loc[j,'Qhs_em_ls'] = 0 Occupancy4.loc[j,'Qhs_d_ls'] = 0 Occupancy4.loc[j,'tsh'] = 0 Occupancy4.loc[j,'trh'] = 0 elif 0 <= j <= Seasonhours[0] or Seasonhours[1] <= j <= 8759: Occupancy4.loc[j,'Qcs'] = 0 Occupancy4.loc[j,'Qcsf'] = 0 Occupancy4.loc[j,'Qcs_em_ls'] = 0 Occupancy4.loc[j,'Qcs_d_ls'] = 0 Occupancy4.loc[j,'tsc'] = 0 Occupancy4.loc[j,'trc'] = 0 #calculation of energy for pumping of all the systems (no air-conditioning Occupancy6 = calc_Aux_hscs(nf,nfpercent,Lw,Ll,footprint,Year,Qhs0,tsh0,trh0,Occupancy5,Qcs0,tsc0,trc0, str(SystemH),str(SystemC),twws,tw) #Calculation of Electrical demand if SystemC == 'Air conditioning' or SystemC == 'Ceiling cooling': for j in range(Num_Hours): #mode = 0 if Seasonhours[0] < j < Seasonhours[1]: #cooling season air conditioning 15 may -15sept Occupancy6.loc[j,'Eal'] = (Occupancy6.loc[j,'Ealf_ve'] + Occupancy6.loc[j,'Ealf_nove'])*AllProperties.loc[i,'Aef'] else: Occupancy6.loc[j,'Eal'] = (Occupancy6.loc[j,'Ealf_nove'])*Aef if SystemH == 'Air conditioning': for j in range(Num_Hours): #mode = 0 if 0 <= j <= Seasonhours[0]: #heating season air conditioning 15 may -15sept Occupancy6.loc[j,'Eal'] = (Occupancy6.loc[j,'Ealf_ve'] + Occupancy6.loc[j,'Ealf_nove'])*AllProperties.loc[i,'Aef'] elif Seasonhours[1] <= j <= 8759: #cooling season air conditioning 15 may -15sept Occupancy6.loc[j,'Eal'] = (Occupancy6.loc[j,'Ealf_ve'] + Occupancy6.loc[j,'Ealf_nove'])*AllProperties.loc[i,'Aef'] else: Occupancy6.loc[j,'Eal'] = (Occupancy6.loc[j,'Ealf_nove'])*AllProperties.loc[i,'Aef'] else: Occupancy0['Eal'] = Occupancy0['Ealf_nove']*Aef Occupancy6 = Occupancy0 Qhs0 = 0 Qcs0 = 0 Occupancy6['Eaux'] = Occupancy6['Eaux_hs'] + Occupancy6['Eaux_cs'] + Occupancy6['Eaux_ww'] Occupancy6['Ealf'] = Occupancy6['Eal'] + Occupancy6['Eaux'] Occupancy6['NAME'] = AllProperties.loc[i,'Name'] # Calculate Occupancy Occupancy6['Occupancy'] = Occupancy6['People']*Af # Results Result_TL = pd.DataFrame(Occupancy6,columns = ['DATE','NAME','Qhs_dis_em_ls','Qcs_dis_em_ls','Qww_dis_ls','Qhs','Qcs','Qww','Qhsf','Qcsf','Qwwf','Ealf','Eaux', 'I_sol','I_int','tsh','trh','tsc','trc','tair','top','te','Occupancy']) Totals_TL = pd.DataFrame(Result_TL.sum()).T/1000000 #in MWh GT = {'Name':[AllProperties.loc[i,'Name']],'Qhs_dis_em_ls':Totals_TL.Qhs_dis_em_ls,'Qhsf':Totals_TL.Qhsf,'Qcs_dis_em_ls':Totals_TL.Qcs_dis_em_ls,'Qcsf':Totals_TL.Qcsf, 'Qhs':Totals_TL.Qhs,'Qcs':Totals_TL.Qcs,'Qww':Totals_TL.Qww,'Qww_dis_ls':Totals_TL.Qww_dis_ls,'Qwwf':Totals_TL.Qwwf, 'Ealf':Totals_TL.Ealf,'Eaux':Totals_TL.Eaux,'Occupancy':Totals_TL.Occupancy,'tsh0':tsh0,'trh0':trh0,'tsc0':tsc0,'trc0':trc0,'Qhs0':Qhs0,'Qcs0':Qcs0,'mwh0':mwh0,'mwc0':mwc0,'Af':Af} Grandtotal = pd.DataFrame(GT) # EXPORT RESULTS Result_TL.to_csv(locationFinal+'\\'+Name+'.csv',index=False) Grandtotal.to_csv(locationFinal+'\\'+Name+'T'+'.csv') return Grandtotal # <codecell> def calc_infiltration(Temp,Occupancy,Awall,Yearcat,height,nfpercent): if Yearcat <= 5: # all renovated buildings plus those from 2000 on are considered tight K1 = 0.1 K2 = 0.011 K3 = 0.034 elif 2 < Yearcat <= 4: # these categories are considered medium K1 = 0.1 K2 = 0.017 K3 = 0.049 else: # up to 1970 and not renovated are poorly K1 = 0.1 K2 = 0.023 K3 = 0.007 Temp['Wind_net'] = 0.21*Temp['Wind']*height**0.33 # city center conditions urban Temp['Ve_inf'] = 0#(K1 + K2*abs(Temp['te'] - Occupancy['tair'])+K3*Temp['Wind_net'])*Awall*nfpercent*3/3600 return Temp.copy() # <markdowncell> # Calc temperatures distribution system # <codecell> def calc_temperatures(SystemH,SystemC,DATA,Temp0,tsh0,trh0,tsc0,trc0,nh,Af,Floors): # FOR HEATING SYSTEMS FOLLOW THIS if SystemH == 'No': Qhsmax = 0 else: Qh0 = Qhsmax = DATA['Qhsf'].max() tair0 = DATA['tintH_set'].max() if SystemH == 'Air conditioning': HVAC = calc_HVAC(DATA,Temp0,tsh0,trh0,Qh0,tair0,nh) RESULT = HVAC[0] elif SystemH == 'Radiator': rad = calc_RAD(DATA,tsh0,trh0,Qh0,tair0,nh) RESULT = rad[0] mwh0 = rad[1]/4190 elif SystemH == 'Floor heating': fH = calc_TABSH(DATA,Qh0,tair0,Af,Floors) RESULT = fh[0] mwh0 = fh[1]/4190 tsh0 = rad[2] # this values are designed for the conditions of the building trh0 = rad[3] # this values are designed for the conditions of the building if SystemC == 'No': Qcsmax = 0 else: Qc0 = Qcsmax = DATA['Qcsf'].max() tair0 = DATA['tintC_set'].min() if SystemC == 'Ceiling cooling': # it is considered it has a ventilation system to regulate moisture. fc = calc_TABSC(DATA, Qc0,tair0,Af) RESULT = fc[0] mwc0 = fc[1]/4190 tsc0 = fc[2] trc0 = fc[3] return RESULT.copy(),Qhsmax,Qcsmax, mwh0, mwc0, tsh0, trh0, tsc0, trc0 # <markdowncell> # 2.1 Sub-function temperature radiator systems # <codecell> def calc_RAD(DATA,tsh0,trh0,Qh0,tair0,nh): tair0 = tair0 + 273 tsh0 = tsh0 + 273 trh0 = trh0 + 273 mCw0 = Qh0/(tsh0-trh0) LMRT = (tsh0-trh0)/scipy.log((tsh0-tair0)/(trh0-tair0)) k1 = 1/mCw0 def fh(x): Eq = mCw0*k2-Qh0*(k2/(scipy.log((x+k2-tair)/(x-tair))*LMRT))**(nh+1) return Eq rows = DATA.Qhsf.count() for row in range(rows): if DATA.loc[row,'Qhsf'] != 0 and (DATA.loc[row,'tair'] == (tair0-273) or DATA.loc[row,'tair'] == 16): # in case hotel or residential k2 = DATA.loc[row,'Qhsf']*k1 tair = DATA.loc[row,'tair']+ 273 result = scipy.optimize.newton(fh, trh0, maxiter=100,tol=0.01) - 273 DATA.loc[row,'trh'] = result.real DATA.loc[row,'tsh'] = DATA.loc[row,'trh'] + k2 return DATA.copy(), mCw0, tsh0, trh0 # <markdowncell> # 2.1 Sub-function temperature Floor activated slabs # <codecell> def calc_TABSH(DATA, Qh0,tair0,Floors,Af): tair0 = tair0 + 273 tmean_max = tair0 + 10 # according ot EN 1264, simplifying to +9 k inernal surfaces and 15 perimeter and batroom nh = 0.025 q0 = Qh0/Af S0 = 5 #drop of temperature of supplied water at nominal conditions U0 = q0/(tmean_max-tair0) deltaH0 = (Qh0/(U0*Af)) if S0/deltaH0 <= 0.5: #temperature drop of water should be in this range deltaV0 = deltaH0 + S0/2 else: deltaV0 = deltaH0 + S0/2+(S0**2/(12*deltaH0)) tsh0 = deltaV0 + tair0 trh0 = tsh0 - S0 tsh0 = tsh0 + 273 trh0 = trh0 + 273 mCw0 = q0*Af/(tsh0-trh0) LMRT = (tsh0-trh0)/scipy.log((tsh0-tair0)/(trh0-tair0)) qh0 = 8.92*(tmean_max-tair0)**1.1 kH0 = qh0*Af/(LMRT**(1+n)) k1 = 1/mCw0 def fh(x): Eq = mCw0*k2-kH0*(k2/(scipy.log((x+k2-tair)/(x-tair))))**(1+n) return Eq rows = DATA.Qhsf.count() DATA['surface']=0 for row in range(rows): if DATA.loc[row,'Qhsf'] != 0 (DATA.loc[row,'tair'] == (tair0-273) or DATA.loc[row,'tair'] == 16): Q = DATA.loc[row,'Qhsf'] q =Q/Af k2 = Q*k1 tair = DATA.loc[row,'tair'] + 273 result = scipy.optimize.newton(fh, trh0, maxiter=100,tol=0.01) - 273 DATA.loc[row,'trh'] = result.real DATA.loc[row,'tsh'] = DATA.loc[row,'trh'] + k2 DATA.loc[row,'surface'] = (q/U0)**(1/1.1)+ DATA.loc[row,'tair'] #FLOW CONSIDERING LOSSES Floor slab prototype # no significative losses are considered # !!!!!!!!!this text is just in case if in the future it will be used!!!!! #sins = 0.07 #Ru = sins/0.15+0.17+0.1 #R0 = 0.1+0.0093+0.045/1 # su = 0.045 it is the tickness of the slab # CONSTANT FLOW CONDITIONS #tu = 13 # temperature in the basement #if Floors ==1: # mCw0 = Af*q0/(S0)*(1+R0/Ru+(tair-tu)/(q0*Ru)) #else: # Af1 = Af/Floors # mCw0 = Af1*q0/(S0)*(1+R0/Ru+(tair-tu)/(Qh0*Ru/Af1))+((Af-Af1)*q0/(S0*4190)*(1+R0/Ru)) tsh0 = DATA.loc[row,'tsh'].max() trh0 = DATA.loc[row,'trh'].max() return DATA.copy(), mCw0, tsh0, trh0 # <markdowncell> # 2.1 Subfunction temperature and flow TABS Cooling # <codecell> def calc_TABSC(DATA, Qc0,tair0, Af): tair0 = tair0 + 273 qc0 = Qc0/(Af*0.5) # 50% of the area available for heat exchange = to size of panels tmean_min = dewP = 18 deltaC_N = 8 # estimated difference of temperature room and panel at nominal conditions Sc0 = 2.5 # rise of temperature of supplied water at nominal conditions delta_in_des = deltaC_N + Sc0/2 U0 = qc0/deltaC_N tsc0 = tair0 - 273 - delta_in_des if tsc0 <= dewP: tsc0 = dewP - 1 trc0 = tsc0 + Sc0 tsc0 = tsc0 + 273 trc0 = trc0 + 273 tmean_min = (tsc0+trc0)/2 # for design conditions difference room and cooling medium mCw0 = Qc0/(trc0-tsc0) LMRT = (trc0-tsc0)/scipy.log((tsc0-tair0)/(trc0-tair0)) kC0 = Qc0/(LMRT) k1 = 1/mCw0 def fc(x): Eq = mCw0*k2-kC0*(k2/(scipy.log((x-k2-tair)/(x-tair)))) return Eq rows = DATA.Qcsf.count() DATA['surfaceC']=0 for row in range(rows): if DATA.loc[row,'Qcsf'] != 0 and (DATA.loc[row,'tair'] == (tair0-273) or DATA.loc[row,'tair'] == 30):# in a hotel Q = DATA.loc[row,'Qcsf'] q = Q/(Af*0.5) k2 = Q*k1 tair = DATA.loc[row,'tair'] + 273 DATA.loc[row,'trc'] = scipy.optimize.newton(fc, trc0, maxiter=100,tol=0.01) - 273 DATA.loc[row,'tsc'] = DATA.loc[row,'trc'] - k2 DATA.loc[row,'surfaceC'] = DATA.loc[row,'tair'] - (q/U0) #FLOW CONSIDERING LOSSES Floor slab prototype # no significative losses are considered tsc0 = (tsc0-273) trc0 = (trc0-273) return DATA.copy(), mCw0, tsc0, trc0 # <markdowncell> # 2.1 Sub-function temperature Air conditioning # <codecell> def calc_HVAC(Temp,DATA,tsh0,trh0,Qh0,tair0,nh): #Claculate net ventilation required taking into account losses and efficiency of ventilation system #assumptions # ev = 1 #nrec_teta = 0.75 #Cctr = 0.8 #Cdu_lea = #Ci_lea = Cdu_lea*CAHU_lea #CRCA = # DATA['Ve_req'] = (DATA['Ve']+Temp0['Ve_inf'])*Cctr*Ci_lea*CRCA/ev return 0 # <markdowncell> # 2.1. Sub-Function Hourly thermal load # <codecell> def calc_TL(SystemH, SystemC, te_min, te_max, tm_t0, te_t, tintH_set, tintC_set, Htr_em, Htr_ms, Htr_is, Htr_1, Htr_2, Htr_3, I_st, Hve, Htr_w, I_ia, I_m, Cm, Af, Losses, tHset_corr,tCset_corr): # assumptions # the installed capacities are assumed to be gigantic, it is assumed that the building can # generate heat and cold at anytime IC = 500 IH = 500 if Losses == 1: #Losses due to emission and control of systems tintH_set = tintH_set + tHset_corr tintC_set = tintC_set + tCset_corr # Case 1 IHC_nd = 0 IHC_nd = 0 IC_nd_ac = 0 IH_nd_ac = 0 Im_tot = I_m + Htr_em * te_t + Htr_3*(I_st + Htr_w*te_t + Htr_1*(((I_ia + IHC_nd)/Hve)+ te_t))/Htr_2 tm_t = (tm_t0 *((Cm/3600)-0.5*(Htr_3+ Htr_em))+ Im_tot)/((Cm/3600)+0.5*(Htr_3+Htr_em)) tm = (tm_t+tm_t0)/2 if SystemH =='Floor heating' or SystemC =='Floor cooling':#by norm 29 max temperature of operation, t_TABS = 29 - (29-15)*(te_t-te_min)/(te_max-te_min) I_TABS = Af/0.08*(t_TABS-tm) Im_tot = Im_tot+I_TABS tm_t = (tm_t0 *((Cm/3600)-0.5*(Htr_3+ Htr_em))+ Im_tot)/((Cm/3600)+0.5*(Htr_3+Htr_em)) tm = (tm_t+tm_t0)/2 ts = (Htr_ms * tm + I_st + Htr_w*te_t + Htr_1*(te_t+(I_ia+IHC_nd)/Hve))/(Htr_ms+Htr_w+Htr_1) tair0 = (Htr_is*ts + Hve*te_t + I_ia + IHC_nd)/(Htr_is+Hve) top0 = 0.31*tair0+0.69*ts if (tintH_set <= tair0) and (tair0<=tintC_set): tair_ac = tair0 top_ac = top0 IHC_nd_ac = 0 IH_nd_ac = IHC_nd_ac IC_nd_ac = IHC_nd_ac else: if tair0 > tintC_set: tair_set = tintC_set else: tair_set = tintH_set # Case 2 IHC_nd = 10 * Af IHC_nd = IHC_nd_10 = 10*Af Im_tot = I_m + Htr_em * te_t + Htr_3*(I_st + Htr_w*te_t + Htr_1*(((I_ia + IHC_nd)/Hve)+ te_t))/Htr_2 tm_t = (tm_t0 *((Cm/3600)-0.5*(Htr_3+ Htr_em))+ Im_tot)/((Cm/3600)+0.5*(Htr_3+Htr_em)) tm = (tm_t+tm_t0)/2 if SystemH =='Floor heating' or SystemC =='Floor cooling':#by norm 29 max temperature of operation, t_TABS = 29 - (29-15)*(te_t-te_min)/(te_max-te_min) I_TABS = Af/0.08*(t_TABS-tm) Im_tot = Im_tot+I_TABS tm_t = (tm_t0 *((Cm/3600)-0.5*(Htr_3+ Htr_em))+ Im_tot)/((Cm/3600)+0.5*(Htr_3+Htr_em)) tm = (tm_t+tm_t0)/2 ts = (Htr_ms * tm + I_st + Htr_w*te_t + Htr_1*(te_t+(I_ia+IHC_nd)/Hve))/(Htr_ms+Htr_w+Htr_1) tair10 = (Htr_is*ts + Hve*te_t + I_ia + IHC_nd)/(Htr_is+Hve) top10 = 0.3*tair10+0.7*ts IHC_nd_un = IHC_nd_10*(tair_set - tair0)/(tair10-tair0) IC_max = -IC*Af IH_max = IH*Af if IC_max < IHC_nd_un < IH_max: tair_ac = tair_set top_ac = 0.31*tair_ac+0.69*ts IHC_nd_ac = IHC_nd_un else: if IHC_nd_un > 0: IHC_nd_ac = IH_max else: IHC_nd_ac = IC_max # Case 3 when the maximum power is exceeded Im_tot = I_m + Htr_em * te_t + Htr_3*(I_st + Htr_w*te_t + Htr_1*(((I_ia + IHC_nd_ac)/Hve)+ te_t))/Htr_2 tm_t = (tm_t0 *((Cm/3600)-0.5*(Htr_3+ Htr_em))+ Im_tot)/((Cm/3600)+0.5*(Htr_3+Htr_em)) tm = (tm_t+tm_t0)/2 if SystemH =='Floor heating' or SystemC =='Floor cooling':#by norm 29 max temperature of operation, t_TABS = 29 - (29-15)*(te_t-te_min)/(te_max-te_min) I_TABS = Af/0.08*(t_TABS-tm) Im_tot = Im_tot+I_TABS tm_t = (tm_t0 *((Cm/3600)-0.5*(Htr_3+ Htr_em))+ Im_tot)/((Cm/3600)+0.5*(Htr_3+Htr_em)) tm = (tm_t+tm_t0)/2 ts = (Htr_ms * tm + I_st + Htr_w*te_t + Htr_1*(te_t+(I_ia+IHC_nd_ac)/Hve))/(Htr_ms+Htr_w+Htr_1) tair_ac = (Htr_is*ts + Hve*te_t + I_ia + IHC_nd)/(Htr_is+Hve) top_ac = 0.31*tair_ac+0.69*ts # Results if IHC_nd_ac > 0: IH_nd_ac = IHC_nd_ac else: IC_nd_ac = IHC_nd_ac Results = [tm_t, tair_ac ,top_ac, IH_nd_ac, IC_nd_ac] return list(Results) # <markdowncell> # 2.1. Sub-Function Shading Factors of movebale parts # <codecell> #It calculates the rediction factor of shading due to type of shading def Calc_Rf_sh (ShadingPosition,ShadingType): #0 for not #1 for Louvres, 2 for Rollo, 3 for Venetian blinds, 4 for Courtain, 5 for Solar control glass d ={'Type':[0, 1, 2, 3, 4,5],'ValueIN':[1, 0.2,0.2,0.3,0.77,0.1],'ValueOUT':[1, 0.08,0.08,0.15,0.57,0.1]} ValuesRf_Table = pd.DataFrame(d) rows = ValuesRf_Table.Type.count() for row in range(rows): if ShadingType == ValuesRf_Table.loc[row,'Type'] and ShadingPosition == 1: #1 is exterior return ValuesRf_Table.loc[row,'ValueOUT'] elif ShadingType == ValuesRf_Table.loc[row,'Type'] and ShadingPosition == 0: #0 is intetiror return ValuesRf_Table.loc[row,'ValueIN'] # <codecell> def calc_gl(radiation, g_gl,Rf_sh): if radiation > 300: #in w/m2 return g_gl*Rf_sh else: return g_gl # <markdowncell> # 2.2. Sub-Function equivalent profile of Occupancy # <codecell> def calc_Type(Profiles, Profiles_names, AllProperties, i, Servers, Coolingroom): profiles_num = len(Profiles) if Servers == 0: Profiles[1] = Profiles[0] if Coolingroom == 0: Profiles[10] = Profiles[15] Profiles[0].Ve = AllProperties.loc[i,Profiles_names[0]] * Profiles[0].Ve Profiles[0].I_int = AllProperties.loc[i,Profiles_names[0]] * Profiles[0].I_int Profiles[0].tintH_set = AllProperties.loc[i,Profiles_names[0]] * Profiles[0].tintH_set Profiles[0].tintC_set = AllProperties.loc[i,Profiles_names[0]] * Profiles[0].tintC_set Profiles[0].Mww = AllProperties.loc[i,Profiles_names[0]] * Profiles[0].Mww Profiles[0].Mw = AllProperties.loc[i,Profiles_names[0]] * Profiles[0].Mw Profiles[0].Ealf_ve = AllProperties.loc[i,Profiles_names[0]] * Profiles[0].Ealf_ve Profiles[0].Ealf_nove = AllProperties.loc[i,Profiles_names[0]] * Profiles[0].Ealf_nove Profiles[0].People = AllProperties.loc[i,Profiles_names[0]] * Profiles[0].People for num in range(1,profiles_num): Profiles[0].Ve = Profiles[0].Ve + AllProperties.loc[i,Profiles_names[num]]*Profiles[num].Ve Profiles[0].I_int = Profiles[0].I_int + AllProperties.loc[i,Profiles_names[num]] * Profiles[num].I_int Profiles[0].tintH_set = Profiles[0].tintH_set + AllProperties.loc[i,Profiles_names[num]] * Profiles[num].tintH_set Profiles[0].tintC_set = Profiles[0].tintC_set + AllProperties.loc[i,Profiles_names[num]] * Profiles[num].tintC_set Profiles[0].Mww = Profiles[0].Mww + AllProperties.loc[i,Profiles_names[num]] * Profiles[num].Mww Profiles[0].Mw = Profiles[0].Mw + AllProperties.loc[i,Profiles_names[num]] * Profiles[num].Mw Profiles[0].Ealf_ve = Profiles[0].Ealf_ve + AllProperties.loc[i,Profiles_names[num]] * Profiles[num].Ealf_ve Profiles[0].Ealf_nove = Profiles[0].Ealf_nove + AllProperties.loc[i,Profiles_names[num]] * Profiles[num].Ealf_nove Profiles[0].People = Profiles[0].People + AllProperties.loc[i,Profiles_names[num]] * Profiles[num].People return Profiles[0].copy() # <markdowncell> # 2.3 Sub-Function calculation of thermal losses of emission systems differet to air conditioning # <codecell> def calc_Qem_ls(SystemH,SystemC): tHC_corr = [0,0] # values extracted from SIA 2044 - national standard replacing values suggested in EN 15243 if SystemH == 'Ceiling heating' or 'Radiator': tHC_corr[0] = 0.5 + 1.2 elif SystemH == 'Floor heating': tHC_corr[0] = 0 + 1.2 elif SystemH == 'Air conditioning': # no emission losses but emissions for ventilation tHC_corr[0] = 0.5 + 1 #regulation is not taking into account here else: tHC_corr[0] = 0.5 + 1.2 if SystemC == 'Ceiling cooling': tHC_corr[1] = 0 - 1.8 elif SystemC == 'Floor cooling': tHC_corr[1] = - 0.4 - 1.8 elif SystemC == 'Air conditioning': # no emission losses but emissions for ventilation tHC_corr[1] = 0 - 1 #regulation is not taking into account here else: tHC_corr[1] = 0 + - 1.2 return list(tHC_corr) # <markdowncell> # 2.1. Sub-Function losses heating system distribution # <codecell> def calc_Qdis_ls(SystemH,SystemC,nf,nfpercent, Lw,Ll,year,Af,twws, Bf, Renovated, Occupancy,Seasonhours,footprint): # Local variables D = 20 #in mm the diameter of the pipe to calculate losses tws = 32 # t at the spurs according to EN 1516 3-2 # Ifdentification of linera trasmissivity coefficeitn dependent on dimensions and year of construction of building W/(m.K) if year >= 1995 or Renovated == 'Yes': Y = [0.2,0.3,0.3] elif 1985 <= year < 1995 and Renovated == 'No': Y = [0.3,0.4,0.4] else: Y = [0.4,0.4,0.4] fforma = Calc_form(Lw,Ll,footprint) # Identification of equivalent lenghts hf = 3*(nf-1) # standard height of every floor -1 for the distribution system Lv = (2*Ll+0.0325*Ll*Lw+6)*fforma Lvww_c = (2*Ll+0.0125*Ll*Lw)*fforma Lvww_dis = (Ll+0.0625*Ll*Lw)*fforma Lsww_c = (0.075*Ll*Lw*nf*nfpercent*hf)*fforma Lsww_dis = (0.038*Ll*Lw*nf*nfpercent*hf)*fforma Lslww_dis = (0.05*Ll*Lw*nf*nfpercent)*fforma # Calculate tamb in basement according to EN hours = Occupancy.tamb.count() for hour in range(hours): if Seasonhours[0] < hour < Seasonhours[1]: # cooling season Occupancy.loc[hour,'tamb'] = Occupancy.loc[hour,'tintC_set'] - Bf*(Occupancy.loc[hour,'tintC_set']-Occupancy.loc[hour,'te']) elif 0 <= hour <= Seasonhours[0] or Seasonhours[1] <= hour <= 8759: Occupancy.loc[hour,'tamb'] = Occupancy.loc[hour,'tintH_set'] - Bf*(Occupancy.loc[hour,'tintH_set']-Occupancy.loc[hour,'te']) # Calculation of losses only nonrecoverable losses are considered for the calculation, # those of the distribution in the basement for space heating and cooling system # This part applies the method described by SIA 2044 if SystemH != 'No': if Occupancy['Qhs'].max()!=0: Occupancy['Qhs_d_ls'] = ((Occupancy['tsh']+Occupancy['trh'])/2-Occupancy['tamb'])*(Occupancy['Qhs']/Occupancy['Qhs'].max())*(Lv*Y[0]) else: Occupancy['Qhs_d_ls'] = 0 if SystemC != 'No': if Occupancy['Qcs'].min()!=0: Occupancy['Qcs_d_ls'] = ((Occupancy['tsc']+Occupancy['trc'])/2-Occupancy['tamb'])*(Occupancy['Qcs']/Occupancy['Qcs'].min())*(Lv*Y[0]) else: Occupancy['Qcs_d_ls']=0 # Calculation of lossesof the distribution and cirulation loop of the hotwater system in the basement. Occupancy['Qww_d_ls'] = (twws-Occupancy['tamb'])*Y[0]*(Lvww_c+Lvww_dis)*(Occupancy['Mww']*Af)/(12*60) #velocity of flow of 12 l/min # Physical approach, losses Inside the conditioned space hours = Occupancy.tamb.count() for hour in range(hours): if Seasonhours[0] < hour < Seasonhours[1]: # cooling season Occupancy.loc[hour,'tamb'] = Occupancy['tintC_set'].min() else: Occupancy.loc[hour,'tamb'] = Occupancy['tintH_set'].max() Occupancy['Qww_dh_ls'] = ((twws-Occupancy['tamb'])*Y[1]*(Lsww_c+Lsww_dis)*((Occupancy['Mww']*Af)/1000)+ (tws-Occupancy['tamb'])*Y[1]*(Lslww_dis)*((Occupancy['Mww']*Af)/1000)) return Occupancy.copy() # <codecell> def calc_Qww_dis_ls(nf,nfpercent,Lw,Ll,year,Af,twws, Bf, Renovated, Occupancy,Seasonhours,footprint,calcintload): # Local variables D = 20 #in mm the diameter of the pipe to calculate losses tws = 32 # t at the spurs according to EN 1516 3-2 # Ifdentification of linera trasmissivity coefficeitn dependent on dimensions and year of construction of building W/(m.K) if year >= 1995 or Renovated == 'Yes': Y = [0.2,0.3,0.3] elif 1985 <= year < 1995 and Renovated == 'No': Y = [0.3,0.4,0.4] else: Y = [0.4,0.4,0.4] fforma = Calc_form(Lw,Ll,footprint) # Identification of equivalent lenghts hf = 3*(nf-1) # standard height of every floor Lsww_c = 0.075*Ll*Lw*nf*nfpercent*hf*fforma Lsww_dis = 0.038*Ll*Lw*nf*nfpercent*hf*fforma Lslww_dis = (0.05*Ll*Lw*nf*nfpercent)*fforma # Calculate tamb in basement according to EN if calcintload == 1: hours = Occupancy.tamb.count() for hour in range(hours): if Seasonhours[0] < hour < Seasonhours[1]: # cooling season Occupancy.loc[hour,'tamb'] = Occupancy['tintC_set'].min() else: Occupancy.loc[hour,'tamb'] = Occupancy['tintH_set'].max() else: Occupancy['tamb'] = Occupancy['tair'] Occupancy['Qww_dh_ls'] = ((twws-Occupancy['tamb'])*Y[1]*(Lsww_c+Lsww_dis)*((Occupancy['Mww']*Af)/1000)+ (tws-Occupancy['tamb'])*Y[1]*(Lslww_dis)*((Occupancy['Mww']*Af)/1000)) return Occupancy.copy() # <codecell> #a factor taking into account that Ll and lw are measured from an aproximated rectangular surface def Calc_form(Lw,Ll,footprint): factor = footprint/(Lw*Ll) return factor # <codecell> def calc_Aux_hscs(nf,nfpercent,Lw,Ll,footprint,Year,Qhs0,tsh0,trh0,data,Qcs0,tsc0,trc0,SystemH,SystemC,twws,tw): # accoridng to SIA 2044 # Identification of equivalent lenghts hf = 3 fforma = Calc_form(Lw,Ll,footprint) # constants deltaP_l = 0.1 fsr = 0.3 cp = 1000*4.186 #variable depending on new or old building. 2000 as time line if Year >= 2000: b =1 else: b =1.2 # for heating system #the power of the pump in Watts if SystemH != 'Air conditioning' or SystemH != 'No': fctr = 1.05 qV_des = Qhs0*1000/((tsh0-trh0)*cp) Imax = 2*(Ll+Lw/2+hf+(nf*nfpercent)+10)*fforma deltaP_des = Imax*deltaP_l*(1+fsr) Phy_des = 0.2278*deltaP_des*qV_des feff = (1.25*(200/Phy_des)**0.5)*fctr*b Ppu_dis = Phy_des*feff #the power of the pump in Watts hours = data.tamb.count() for hour in range(hours): if data.loc[hour,'Qhsf'] > 0: if data.loc[hour,'Qhsf']/Qhs0 > 0.67: Ppu_dis_hy_i = Phy_des feff = (1.25*(200/Ppu_dis_hy_i)**0.5)*fctr*b data.loc[hour,'Eaux_hs'] = Ppu_dis_hy_i*feff else: Ppu_dis_hy_i = 0.0367*Phy_des feff = (1.25*(200/Ppu_dis_hy_i)**0.5)*fctr*b data.loc[hour,'Eaux_hs'] = Ppu_dis_hy_i*feff else: data.loc[hour,'Eaux_hs']=0 # for Cooling system #the power of the pump in Watts if SystemH != 'Air conditioning' or SystemH != 'No': fctr = 1.10 qV_des = Qcs0/((trc0-tsc0)*cp) Imax = 2*(Ll+Lw/2+hf+(nf*nfpercent)+10)*fforma deltaP_des = Imax*deltaP_l*(1+fsr) Phy_des = 0.2778*deltaP_des*qV_des feff = (1.25*(200/Phy_des)**0.5)*fctr*b Ppu_dis = Phy_des*feff #the power of the pump in Watts hours = data.tamb.count() for hour in range(hours): if data.loc[hour,'Qcsf'] > 0: if data.loc[hour,'Qcsf']/(Qcs0*1000) > 0.67: Ppu_dis_hy_i = Phy_des feff = (1.25*(200/Ppu_dis_hy_i)**0.5)*fctr*b data.loc[hour,'Eaux_cs'] = Ppu_dis_hy_i*feff else: Ppu_dis_hy_i = 0.0367*Phy_des feff = (1.25*(200/Ppu_dis_hy_i)**0.5)*fctr*b data.loc[hour,'Eaux_cs'] = Ppu_dis_hy_i*feff else: data.loc[hour,'Eaux_cs']=0 # for domestichotwater #the power of the pump in Watts qV_des = data['Qwwf'].max()/((twws-tw)*cp) Imax = 2*(Ll+2.5+hf+(nf*nfpercent))*fforma deltaP_des = Imax*deltaP_l*(1+fsr) Phy_des = 0.2778*deltaP_des*qV_des feff = (1.25*(200/Phy_des)**0.5)*fctr*b Ppu_dis = Phy_des*feff #the power of the pump in Watts hours = data.tamb.count() for hour in range(hours): if data.loc[hour,'Qwwf']>0: if data.loc[hour,'Qwwf']/data['Qwwf'].max() > 0.67: Ppu_dis_hy_i = Phy_des feff = (1.25*(200/Ppu_dis_hy_i)**0.5)*b data.loc[hour,'Eaux_ww'] = Ppu_dis_hy_i*feff else: Ppu_dis_hy_i = 0.0367*Phy_des feff = (1.25*(200/Ppu_dis_hy_i)**0.5)*b data.loc[hour,'Eaux_ww'] = Ppu_dis_hy_i*feff return data.copy() # <markdowncell> # 2.1. Sub-Function calculation of nominal temperatures of system # <codecell> def calc_em_t(SystemH,SystemC): # References: 70 supply 50 return radiatior system #several authors # Floor cooling/ceiling cooling 18 -22 /thermofloor.co.uk # Floor heating /ceiling heating EN 1264-3 # Emission factors extracted from SIA 384/2,1984 #Default values nh =0.3 tsh0 = 70 trh0 = 50 tsc0 = 7 trc0 = 12 # Create tables with information of nominal temperatures h={'Type':['Ceiling heating', 'Radiator', 'Floor heating', 'Air conditioning'],'tsnominal':[35,70,35,60], 'trnominal':[25,50,25,50],'EmissionFactor':[0.22,0.33,0.24,0.3]} Heating = pd.DataFrame(h) c ={'Type':['Ceiling cooling','Floor cooling', 'Air conditioning'],'tsnominal':[15,15,7], 'trnominal':[20,20,12]} Cooling = pd.DataFrame(c) # Calculate the nominal temperatures and emission factors based on the type of system. # for heating systems rows = Heating.Type.count() for row in range(rows): if SystemH == Heating.loc[row,'Type']: tsh0 = Heating.loc[row,'tsnominal'] trh0 = Heating.loc[row,'trnominal'] nh = Heating.loc[row,'EmissionFactor'] #for cooling sytems rows = Cooling.Type.count() for row in range(rows): if SystemC == Cooling.loc[row,'Type']: tsc0 = Cooling.loc[row,'tsnominal'] trc0 = Cooling.loc[row,'trnominal'] return tsh0,trh0,tsc0,trc0,nh # <markdowncell> # ##STATISTICAL ENERGY MODEL # <codecell> def Querystatistics(CQ, CQ_name, Model, locationtemp1,locationFinal): #Create the table or database of the CQ to generate the values OutTable = 'Database.dbf' arcpy.TableToTable_conversion(CQ, locationtemp1, OutTable) Database0 = dbf2df(locationtemp1+'\\'+OutTable) #THE FIRST PART RELATED TO THE BUILDING PROPERTIES #Assing main use of the building To assign systems of heating or cooling in a building basis. Database = MainUse(Database0) # assign the year of each category and create a new code Database['YearCat'] = Database.apply(lambda x: YearCategoryFunction(x['Year'], x['Renovated']), axis=1) Database['CODE'] = Database.Type + Database.YearCat # Create join with the model Joineddata = pd.merge(Database, Model, left_on='CODE', right_on='Code') Joineddata.rename(columns={'Hs_x':'Hs'},inplace=True) # EXPORT PROPERTIES Joineddata.to_excel('c:\ArcGIS\EDMdata\Statistical'+'\\'+CQ_name+'\\'+'Properties.xls', sheet_name='Values',index=False,cols={'Name','tsh0','trh0','tsc0','trc0','Hs','Es','PFloor','Year','fwindow', 'Floors','Construction','Emission_heating','Emission_cooling', 'Uwall','Uroof','Ubasement','Uwindow'}) #EXPORT PROPERTIES RELATED TO PROCESEES AND EQUIPMENT Counter = Joineddata.INDUS.count() Joineddata['E4'] = Joineddata['SRFlag'] = Joineddata['CRFlag'] = Joineddata['ICEFlag'] = 0 for row in range(Counter): if Joineddata.loc[row,'INDUS'] >0: Joineddata.loc[row,'E4'] = 1 if Joineddata.loc[row,'SR'] >0: Joineddata.loc[row,'SRFlag'] = 1 if Joineddata.loc[row,'ICE'] >0: Joineddata.loc[row,'ICEFlag'] = 1 if Joineddata.loc[row,'CR'] >0: Joineddata.loc[row,'CRFlag'] = 1 Joineddata.to_excel('c:\ArcGIS\EDMdata\Statistical'+'\\'+CQ_name+'\\'+'Equipment.xls', sheet_name='Values',index=False,cols={'Name','CRFlag','SRFlag','ICEFlag', 'E4'}) #THE OTHER PART RELATED TO THE ENERGY VALUES' DatabaseUnpivoted = pd.melt(Database, id_vars=('Name','Shape_Area','YearCat','Hs','Floors')) DatabaseUnpivoted['CODE'] = DatabaseUnpivoted.variable + DatabaseUnpivoted.YearCat #Now both Database with the new codification is merged or joined to the values of the Statistical model DatabaseModelMerge = pd.merge(DatabaseUnpivoted, Model, left_on='CODE', right_on='Code') #Now the values are created. as all the intensity values are described in MJ/m2. ##they are transformed into MWh, Heated space is assumed as an overall 90% of the gross area according to the standard SIA, ##unless it is known (Siemens buildings and surroundings, Obtained during visual inspection a report of the area Grafenau) counter = DatabaseModelMerge.value.count() for r in range (counter): if DatabaseModelMerge.loc[r,'Hs_x']>0: DatabaseModelMerge.loc[r,'Hs_y'] = DatabaseModelMerge.loc[r,'Hs_x'] DatabaseModelMerge['Qhsf'] = DatabaseModelMerge.value * DatabaseModelMerge.Shape_Area * DatabaseModelMerge.Floors * DatabaseModelMerge.Hs_y* DatabaseModelMerge.qhsf_kWhm2/1000 DatabaseModelMerge['Qhpf'] = DatabaseModelMerge.value * DatabaseModelMerge.Shape_Area * DatabaseModelMerge.Floors * DatabaseModelMerge.Hs_y* DatabaseModelMerge.qhpf_kWhm2/1000 DatabaseModelMerge['Qwwf'] = DatabaseModelMerge.value * DatabaseModelMerge.Shape_Area * DatabaseModelMerge.Floors * DatabaseModelMerge.Hs_y* DatabaseModelMerge.qwwf_kWhm2/1000 DatabaseModelMerge['Qcsf'] = DatabaseModelMerge.value * DatabaseModelMerge.Shape_Area * DatabaseModelMerge.Floors * DatabaseModelMerge.Hs_y* DatabaseModelMerge.qcsf_kWhm2/1000 DatabaseModelMerge['Qcdataf'] = DatabaseModelMerge.value * DatabaseModelMerge.Shape_Area * DatabaseModelMerge.Floors * DatabaseModelMerge.Hs_y* DatabaseModelMerge.qcdataf_kWhm2/1000 DatabaseModelMerge['Qcicef'] = DatabaseModelMerge.value * DatabaseModelMerge.Shape_Area * DatabaseModelMerge.Floors * DatabaseModelMerge.Hs_y* DatabaseModelMerge.qcicef_kWhm2/1000 DatabaseModelMerge['Qcpf'] = DatabaseModelMerge.value * DatabaseModelMerge.Shape_Area * DatabaseModelMerge.Floors * DatabaseModelMerge.Hs_y* DatabaseModelMerge.qcpf_kWhm2/1000 DatabaseModelMerge['Ealf'] = DatabaseModelMerge.value * DatabaseModelMerge.Shape_Area * DatabaseModelMerge.Floors * DatabaseModelMerge.Hs_y* DatabaseModelMerge.Ealf_kWhm2/1000 DatabaseModelMerge['Edataf'] = DatabaseModelMerge.value * DatabaseModelMerge.Shape_Area * DatabaseModelMerge.Floors * DatabaseModelMerge.Hs_y* DatabaseModelMerge.Edataf_kWhm2/1000 DatabaseModelMerge['Epf'] = DatabaseModelMerge.value * DatabaseModelMerge.Shape_Area * DatabaseModelMerge.Floors * DatabaseModelMerge.Es* DatabaseModelMerge.Epf_kWhm2/1000 DatabaseModelMerge['Ecaf'] = 0 #compressed air is 0 for all except siemens where data is measured. # Pivoting the new table and summing rows all in MWh Qhsf = pd.pivot_table(DatabaseModelMerge, values='Qhsf', rows='Name', cols='CODE', aggfunc='sum', margins='add all rows') Qhpf = pd.pivot_table(DatabaseModelMerge, values='Qhpf', rows='Name', cols='CODE', aggfunc='sum', margins='add all rows') Qwwf = pd.pivot_table(DatabaseModelMerge, values='Qwwf', rows='Name', cols='CODE', aggfunc='sum', margins='add all rows') Qcsf = pd.pivot_table(DatabaseModelMerge, values='Qcsf', rows='Name', cols='CODE', aggfunc='sum', margins='add all rows') Qcdataf = pd.pivot_table(DatabaseModelMerge, values='Qcdataf', rows='Name', cols='CODE', aggfunc='sum', margins='add all rows') Qcicef = pd.pivot_table(DatabaseModelMerge, values='Qcicef', rows='Name', cols='CODE', aggfunc='sum', margins='add all rows') Qcpf = pd.pivot_table(DatabaseModelMerge, values='Qcpf', rows='Name', cols='CODE', aggfunc='sum', margins='add all rows') Ealf = pd.pivot_table(DatabaseModelMerge, values = 'Ealf', rows='Name', cols='CODE', aggfunc='sum', margins='add all rows') Edataf = pd.pivot_table(DatabaseModelMerge, values='Edataf', rows='Name', cols='CODE', aggfunc='sum', margins='add all rows') Epf = pd.pivot_table(DatabaseModelMerge, values='Epf', rows='Name', cols='CODE', aggfunc='sum', margins='add all rows') Ecaf = pd.pivot_table(DatabaseModelMerge, values='Ecaf', rows='Name', cols='CODE', aggfunc='sum', margins='add all rows') Total = pd.DataFrame({'Qhsf': Qhsf['All'],'Qhpf': Qhpf['All'],'Qwwf': Qwwf['All'],'Qcsf': Qcsf['All'],'Qcpf': Qcpf['All'], 'Ealf': Ealf['All'],'Epf': Epf['All'],'Edataf': Edataf['All'],'Qcdataf': Qcdataf['All'], 'Ecaf': Ecaf['All'],'Qcicef': Qcicef['All'] }) # reset index Total['Name'] = Total.index counter = Total.Qhsf.count() Total.index = range(counter) Total.to_csv(locationFinal+'\\'+CQ_name+'\\'+'Loads.csv', index=False) return Total # <markdowncell> # This function estimates the main type of ocupation in the building. as a result those values such as coefficients of trasnmittance, temperatures of operation and type of emission systems are selected in a mayority basis. # <codecell> def MainUse(Database0): uses = ['ADMIN','SR','INDUS','REST','RESTS','DEPO','COM','MDU','SDU','EDU','CR','HEALTH','SPORT', 'SWIM','PUBLIC','SUPER','ICE','HOT'] Database0['Type'] = 'MDU' n_buildings = Database0.ADMIN.count() n_uses = len(uses) for r in range (n_uses): for row in range(n_buildings): if Database0.loc[row, uses[r]]>=0.5: Database0.loc[row, 'Type']= uses[r] return Database0.copy() # <markdowncell> # Sub-function: assign As the values in the statistical model are codified according to a secuence of 1, 2, 3, 4 and 5, a function has to be define to codify in the same therms the Database, a new filed (YearCAt) is assigned to the Database # <codecell> def YearCategoryFunction(x,y): if x <= 1920: #Database['Qh'] = Database.ADMIN.value * Model. result = '1' elif x > 1920 and x <= 1970: result = '2' elif x > 1970 and x <= 1980: result = '3' elif x > 1980 and x <= 2000: result = '4' elif x > 2000 and x <= 2020: result = '5' elif x > 2020: result = '6' if x <= 1920 and y=='Yes': result = '7' elif 1920 < x <= 1970 and y=='Yes': result = '8' elif 1970 < x <= 1980 and y=='Yes': result = '9' elif 1980 < x <= 2000 and y=='Yes': result = '10' return result
fd2d35e5d2c521e1cecac452695ef706d4c2c8f4
d60a3e90a556f0a3401b4353608da2aac5f7540b
/patch_dispatch.py
913599474cc1e1498e97b006aab071d810d30fff
[]
no_license
egorzhdan/swift-windows-helper
4ab8c31bfefee6659f79421800f38aea7e6d0a85
dd9999ef02f180c8b11524c665f458d1ade2d158
refs/heads/master
2023-03-10T21:42:22.161709
2021-02-20T14:19:49
2021-02-20T14:19:49
309,090,363
1
0
null
null
null
null
UTF-8
Python
false
false
434
py
import sys import shutil sdk_path = sys.argv[1] # C:\Library\Developer\Platforms\Windows.platform\Developer\SDKs\Windows.sdk include_dir = sdk_path + "\\usr\\include" dir_names = [ "Block", "dispatch", "os", ] for dir_name in dir_names: current_dir = sdk_path + "\\usr\\lib\\swift\\" + dir_name print("Moving", current_dir, "to", include_dir) shutil.move(current_dir, include_dir) print() print("Done!")
56e24c6bedffbf4b9570c232138492920f42e23f
cab59201f865b223ecaf51de7a56e7876ec0b52f
/xpath.py
904e7f786ba6a29b88257f0aba7bb90b51a53bcc
[]
no_license
Dao-zhi/GoogleScholarGUI
e45128a18dfec823c6239f6338d053aeeef29420
4ef8efc265f3b56603f6bd72c596478a60e8fe76
refs/heads/master
2023-04-15T11:00:01.728444
2023-04-11T15:24:10
2023-04-11T15:24:10
296,362,335
50
10
null
null
null
null
UTF-8
Python
false
false
3,871
py
from lxml import etree text = ''' <div> <ul> <li class="item-0"><a href="https://ask.hellobi.com/link1.html">first item</a></li> <li class="item-1"><a href="https://ask.hellobi.com/link2.html">second item</a></li> <li class="item-inactive"><a href="https://ask.hellobi.com/link3.html">third item</a></li> <li class="item-1"><a href="https://ask.hellobi.com/link4.html">fourth item</a></li> <li class="item-0"><a href="https://ask.hellobi.com/link5.html">fifth item</a> <li class="li li-first"><a href="https://ask.hellobi.com/link.html">sixth item</a></li> <li class="li li-first" name="item"><a href="https://ask.hellobi.com/link.html">seventh item</a></li> </ul> </div> ''' html = etree.HTML(text) result = etree.tostring(html) print('-----解析节果-----') # print(result.decode('utf-8')) # 输出解析后的节果 # 从文件中解析html # html = etree.parse('./test.html', etree.HTMLParser()) # result = etree.tostring(html) # print(result.decode('utf-8')) # 输出解析后的节果 # 所有节点 print('-----所有节点-----') result = html.xpath('//*') print(result) # 所有li节点 print('-----所有li节点-----') result = html.xpath('//li') print(result) print(result[0]) # 子节点 print('-----子节点-----') result = html.xpath('//li/a') # li 节点的所有直接 a 子节点 print(result) result = html.xpath('//ul//a') # ul 节点下的所有子孙 a 节点 print(result) # 父节点 print('-----父节点-----') result = html.xpath('//a[@href="https://ask.hellobi.com/link4.html"]/../@class') print(result) result = html.xpath('//a[@href="https://ask.hellobi.com/link4.html"]/parent::*/@class') print(result) # 属性匹配 print('-----属性匹配-----') result = html.xpath('//li[@class="item-0"]') print(result) # 文本获取 print('-----文本获取-----') result = html.xpath('//li[@class="item-0"]/text()') print(result) result = html.xpath('//li[@class="item-0"]/a/text()') print(result) result = html.xpath('//li[@class="item-0"]//text()') print(result) # 属性获取 print('-----属性获取-----') result = html.xpath('//li/a/@href') print(result) # 属性多值匹配 print('-----属性多值匹配-----') result = html.xpath('//li[@class="li"]/a/text()') # 无法匹配 print(result) result = html.xpath('//li[contains(@class, "li")]/a/text()') print(result) # 多属性匹配 print('-----多属性匹配-----') result = html.xpath('//li[contains(@class, "li") and @name="item"]/a/text()') # class=li并且name=item print(result) # 按序选择 print('-----按序选择-----') result = html.xpath('//li[1]/a/text()') # 第一个 print(result) result = html.xpath('//li[last()]/a/text()') # 最后一个 print(result) result = html.xpath('//li[position()<3]/a/text()') # 前两个 print(result) result = html.xpath('//li[last()-2]/a/text()') # 倒数第三个 print(result) # 节点轴选择 print('-----节点轴选择-----') result = html.xpath('//li[1]/ancestor::*') # 所有祖先节点 print(result) result = html.xpath('//li[1]/ancestor::div') # 所有祖先节点中的div print(result) result = html.xpath('//li[1]/attribute::*') # 所有属性 print(result) result = html.xpath('//li[1]/child::a[@href="https://ask.hellobi.com/link1.html"]') # 子节点中href为...的节点 print(result) result = html.xpath('//li[1]/descendant::span') # 所有孙子节点中的span print(result) result = html.xpath('//li[1]/following::*[2]') # 当前节点之后的所有节点,这里我们虽然使用的是 * 匹配,但又加了索引选择,所以只获取了第二个后续节点。 print(result) result = html.xpath('//li[1]/following-sibling::*') # 当前节点之后的所有同级节点,这里我们使用的是 * 匹配,所以获取了所有后续同级节点 print(result)
5f537c70f9cd6b0a19616b71a25a215de60024f5
e070e662194c12e8441f62e92cad8528b81b12a5
/djd-prog2/noite/aula6/teste_retangulo_for.py
5451392e572992ca3a801263bbdc7e89df81f727
[]
no_license
antoniorcn/fatec-2019-1s
0297c4a3d8b5ac4ff8d1f97edc5859202827e721
9f5e2e12b894de08b43db3c83a9c4d08cd6de14e
refs/heads/master
2020-04-22T23:02:45.763837
2019-06-03T15:58:19
2019-06-03T15:58:19
170,727,501
5
10
null
null
null
null
UTF-8
Python
false
false
98
py
for linha in range(0, 4): for coluna in range(0, 5): print("*", end="") print("")
51841a19a264faf973ced18a9e1cf35247bbda79
46681c3220e9279aa111167b8c5cb1d5a01aa2ad
/Flappy_bird/Keyboard version/bird.py
42864d03d56d0b71d092fa85b1ccdd36e9f9c875
[]
no_license
J-Z-Z/Pygame-Samples
c74e59f170c975e530fad60ac4f024095393b82d
9e8ca3ec1c1c2eb9747aa4108168a0809863aa95
refs/heads/master
2022-07-07T02:00:53.583274
2020-05-12T15:38:50
2020-05-12T15:38:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,264
py
import pygame class Bird(): def __init__(self,g_settings,screen): '''初始化 并设置其初始位置''' self.screen = screen self.g_settings = g_settings #加载主体图像并获取其外接矩形 self.image = pygame.image.load('images/bird.png') self.rect = self.image.get_rect() self.screen_rect = screen.get_rect() #将主体放在屏幕的中央部中央的位置 self.rect.centerx = self.screen_rect.centerx self.rect.bottom = 0.5 * self.screen_rect.bottom self.center = float(self.rect.centerx) self.birdy = float(self.rect.y) #移动标识 用于持续移动 self.moving = False def update(self): '''自动更新主体位置''' if self.rect.y < (self.screen_rect.bottom - 30): self.birdy += 10 self.rect.centerx = self.center self.rect.y = self.birdy def move(self): '''根据标识符来改变主体的移动状态''' if self.moving and 0 < self.rect.y < (self.screen_rect.bottom): self.birdy -= 20 self.rect.y = self.birdy def blitme(self): '''指定位置绘制主体''' self.screen.blit(self.image,self.rect)
156246262492d16dbce1e7855ed7bfc5704e2fc2
20d7e33c26d6a26cfca5b7dd4c769e5a8e4fae5b
/app_info.py
210d25de849c52df1fb1412b5c5b79aca9f4d870
[ "MIT" ]
permissive
sokcheng/Kitsuchan-NG
02fc23cb2bc1c3e41226e3895cd32d0f23eec542
3a456ad06814181d13d4aabefc151756c55444f4
refs/heads/master
2021-01-21T17:38:14.271366
2017-05-21T15:16:45
2017-05-21T15:16:45
91,972,929
1
0
null
2017-05-21T16:51:46
2017-05-21T16:51:46
null
UTF-8
Python
false
false
634
py
#!/usr/bin/env python3 """Contains application information. Yes, it's slightly bad practice to put this in a Python file.""" NAME = "Kitsuchan-NG" URL = "https://github.com/n303p4/Kitsuchan-NG" DESCRIPTION = (f"This is a running instance of [{NAME}]({URL}), a modular Discord bot. Originally " "designed with anime images and basic utility in mind, it has become a fairly " f"flexible bot with decent extensibility. {NAME} surely isn't finished yet; please " "report any bugs you observe!") VERSION = (0, 6, 0, "ap", "Fennec") VERSION_STRING = "{0}.{1}.{2}{3} \"{4}\"".format(*VERSION)
b497b5eab779e045244040b84540a3b1de211872
d47a1652db00123911c7f7ef41c26b094eaa5bf4
/statsmodels/datasets/statecrime/data.py
66f2cdd37551eebf7472fbeaa8e995767e5f885b
[ "BSD-3-Clause" ]
permissive
harpone/statsmodels
7779642f9f224966df515b24e3a95801884092ac
07576e42b29bf8a46511b316381624461499f8f6
refs/heads/master
2020-12-26T00:45:38.269093
2014-02-25T02:57:35
2014-02-25T02:57:35
17,170,955
1
1
null
null
null
null
UTF-8
Python
false
false
2,985
py
#! /usr/bin/env python """Statewide Crime Data""" __docformat__ = 'restructuredtext' COPYRIGHT = """Public domain.""" TITLE = """Statewide Crime Data 2009""" SOURCE = """ All data is for 2009 and was obtained from the American Statistical Abstracts except as indicated below. """ DESCRSHORT = """State crime data 2009""" DESCRLONG = DESCRSHORT #suggested notes NOTE = """ Number of observations: 51 Number of variables: 8 Variable name definitions: state All 50 states plus DC. violent Rate of violent crimes / 100,000 population. Includes murder, forcible rape, robbery, and aggravated assault. Numbers for Illinois and Minnesota do not include forcible rapes. Footnote included with the American Statistical Abstract table reads: "The data collection methodology for the offense of forcible rape used by the Illinois and the Minnesota state Uniform Crime Reporting (UCR) Programs (with the exception of Rockford, Illinois, and Minneapolis and St. Paul, Minnesota) does not comply with national UCR guidelines. Consequently, their state figures for forcible rape and violent crime (of which forcible rape is a part) are not published in this table." murder Rate of murders / 100,000 population. hs_grad Precent of population having graduated from high school or higher. poverty % of individuals below the poverty line white Percent of population that is one race - white only. From 2009 American Community Survey single Calculated from 2009 1-year American Community Survey obtained obtained from Census. Variable is Male householder, no wife present, family household combined with Female household, no husband prsent, family household, divided by the total number of Family households. urban % of population in Urbanized Areas as of 2010 Census. Urbanized Areas are area of 50,000 or more people.""" import numpy as np from statsmodels.datasets import utils as du from os.path import dirname, abspath def load(): """ Load the statecrime data and return a Dataset class instance. Returns ------- Dataset instance: See DATASET_PROPOSAL.txt for more information. """ data = _get_data() ##### SET THE INDICES ##### #NOTE: None for exog_idx is the complement of endog_idx return du.process_recarray(data, endog_idx=2, exog_idx=[7, 4, 3, 5], dtype=float) def load_pandas(): data = _get_data() ##### SET THE INDICES ##### #NOTE: None for exog_idx is the complement of endog_idx return du.process_recarray_pandas(data, endog_idx=2, exog_idx=[7,4,3,5], dtype=float, index_idx=0) def _get_data(): filepath = dirname(abspath(__file__)) ##### EDIT THE FOLLOWING TO POINT TO DatasetName.csv ##### data = np.recfromtxt(open(filepath + '/statecrime.csv', 'rb'), delimiter=",", names=True, dtype=None) return data
1b44227170fdcac65c26a440e7d2e2b2a47ec25c
e8900be618c45fdd4ded96a7f4f73d98175b0d58
/lifesaver/load_list.py
c0897b11c8bd4a9ec30ca2deb3fcbbbdec7c5025
[ "MIT" ]
permissive
lun-4/lifesaver
badf56aa0dfd744c49fb50a2611cbf201bd8ba0e
e8c4b492490d678db80258f69fce6dc4769fd1d7
refs/heads/master
2022-11-23T08:29:25.297035
2020-06-14T04:00:30
2020-06-14T04:00:30
228,510,471
0
0
NOASSERTION
2019-12-17T01:51:50
2019-12-17T01:51:49
null
UTF-8
Python
false
false
2,422
py
# encoding: utf-8 import importlib import logging import typing from collections import UserList from pathlib import Path FORBIDDEN_EXTENSIONS = { ".pyc", ".log", ".ini", ".DS_Store", ".db", ".mypy_cache", ".tmp", } FORBIDDEN_NAMES = {"__pycache__"} def transform_path(path: typing.Union[Path, str]) -> str: return str(path).replace("/", ".").replace(".py", "") def filter_path(path: typing.Union[Path, str]) -> bool: """Return whether a path is appropriate for extension loading.""" string_path = str(path) if any(string_path.endswith(ext) for ext in FORBIDDEN_EXTENSIONS): return False if string_path in FORBIDDEN_NAMES: return False return True class LoadList(UserList): """A class that encompasses behavior related to discovering extensions and loading them.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.log = logging.getLogger(__name__) def build(self, exts_path: Path): if not exts_path.is_dir(): self.log.warning( "Cannot build load list: %s is not a directory.", exts_path ) return # Build a list of extensions to load. paths = [ transform_path(path) for path in exts_path.iterdir() if filter_path(path) ] def ext_filter(path: str) -> bool: try: module = importlib.import_module(path) return hasattr(module, "setup") except Exception: # Failed to import, extension might be bugged. # If this extension was previously included, retain it in the # load list because it might be fixed and reloaded later. # # Otherwise, discard. previously_included = path in self.data if not previously_included: self.log.exception("Excluding %s from the load list:", path) else: self.log.warning( ( "%s has failed to load, but it will be retained in " "the load list because it was previously included." ), path, ) return previously_included self.data = list(filter(ext_filter, paths))
213840862cac4a5e0577be766248cd201e560514
be6b4181de09a50ccbd7caea58dbdbcbf90602be
/numba/servicelib/threadlocal.py
2ad13112109b26cdbb93c40202dffb8edc1a6bf4
[ "BSD-2-Clause" ]
permissive
pombreda/numba
6490c73fcc0ec5d93afac298da2f1068c0b5ce73
25326b024881f45650d45bea54fb39a7dad65a7b
refs/heads/master
2021-01-15T10:37:08.119031
2014-11-06T22:32:48
2014-11-06T22:32:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
910
py
""" Implements: - Threadlocal stack """ from __future__ import print_function, absolute_import, division import threading class TLStack(object): def __init__(self): self.local = threading.local() @property def stack(self): try: # Retrieve thread local stack return self.local.stack except AttributeError: # Initialize stack for the thread self.local.stack = [] def push(self, item): self.stack.append(item) def pop(self): return self.stack.pop() @property def top(self): return self.stack[-1] @property def is_empty(self): return not self.stack def __bool__(self): return not self.is_empty def __nonzero__(self): return self.__bool__() def __len__(self): return len(self.stack) def clear(self): self.__init__()
f97b3364c92a623168bf5bf6a376bc641629e379
52a784d003dea763794b526d0e8b5763d0a01fd9
/app.py
56a4a65b9d0a3a5707e7909854b8fa6b3510ae61
[]
no_license
jdaltuvec/flask-pets
9d9306583fb2d8892325d4fcebe9858bfae0ff40
8d0216fed907501a4ff89387bef68109f0041ab5
refs/heads/master
2023-05-11T06:21:11.722624
2020-02-15T19:47:43
2020-02-15T19:47:43
240,777,885
0
0
null
2023-05-02T18:42:41
2020-02-15T19:45:03
Python
UTF-8
Python
false
false
3,429
py
from flask import Flask, jsonify, request from flask_sqlalchemy import SQLAlchemy import datetime app = Flask(__name__) app.config["SQLALCHEMY_DATABASE_URI"] = "sqlite:///pets.sqlite" db = SQLAlchemy(app) class DictMixIn: def to_dict(self): return { column.name: getattr(self, column.name) if not isinstance(getattr(self, column.name), datetime.datetime) else getattr(self, column.name).isoformat() for column in self.__table__.columns } class Pet(db.Model, DictMixIn): __tablename__ = "pet" id = db.Column(db.Integer(), primary_key=True) date = db.Column(db.Date()) age = db.Column(db.Integer()) name = db.Column(db.String()) type = db.Column(db.String()) color = db.Column(db.String()) @app.before_first_request def init_app(): db.create_all() db.session.add(Pet(date=datetime.datetime.utcnow() - datetime.timedelta(days=7), name="Sample Pet 1", age=12, type="fish", color="green")) db.session.add(Pet(date=datetime.datetime.utcnow() - datetime.timedelta(days=7), name="Sample Pet 2", age=13, type="dog", color="green")) db.session.add(Pet(date=datetime.datetime.utcnow() - datetime.timedelta(days=3), name="Sample Pet 3", age=14, type="cat", color="green")) db.session.add(Pet(date=datetime.datetime.utcnow(), name="felix", age=14, type="cat", color="green")) db.session.add(Pet(date=datetime.datetime.utcnow(), name="felix", age=14, type="dog", color="green")) db.session.commit() @app.route("/") def home(): return "Welcome to Pet Lister!" @app.route("/all_pets") def show_all(): pets = Pet.query.all() return jsonify([pet.to_dict() for pet in pets]) @app.route("/pet_page/<pet_id>") def pet_page(pet_id): try: pet = Pet.query.filter(Pet.id == int(pet_id)).first() return pet.to_dict() except Exception as e: return jsonify({"status": "failure", "error": str(e)}) return "Pet not found!", 404 @app.route("/add_pet", methods=["POST"]) def collect(): try: data = request.json db.session.add( Pet( date=datetime.datetime.utcnow(), name=data["name"], age=int(data["age"]), type=data["type"], color=data["color"], ) ) db.session.commit() return {"status": "sucess"} except Exception as e: return jsonify({"status": "failure", "error": str(e)}) @app.route("/search_type") def search_type(): request_type = request.args.get("type") request_name = request.args.get("name") request_start = request.args.get("start") request_end = request.args.get("end") try: base_cmd = Pet.query if request_type: base_cmd = base_cmd.filter(Pet.type == request_type) if request_name: base_cmd = base_cmd.filter(Pet.name == request_name) if request_start: base_cmd = base_cmd.filter(Pet.date >= datetime.datetime.strptime(request_start, "%Y-%m-%d")) if request_end: base_cmd = base_cmd.filter(Pet.date <= datetime.datetime.strptime(request_end, "%Y-%m-%d")) data = base_cmd.all() return jsonify([pet.to_dict() for pet in data]) except Exception as e: return jsonify({"status": "failure", "error": str(e)}) if __name__ == "__main__": app.run(debug=True)
f7ddf93e9bfb05edb2d6891fb7ebf3d1b70e760a
17d32eb5d4c4f89811f1420ef712eb9d6c758352
/config.py
c1d5ee6759fdf1f2a906d8e6338ad007a2f18ce5
[]
no_license
bolv88/Auction
f5b16077473bb63074c7684907f6dd56035f0e58
4a5a7f2cf02aa6d9728b152edbd6f500e2b89d46
refs/heads/master
2021-03-19T07:10:15.014586
2012-07-25T14:42:44
2012-07-25T14:42:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
53
py
userdb = {"user":"", "pw":"", "db":"", "host":""}
01b0ccd6b3a54eeed8c167ac4172f697c5a180f8
c7fb558508ed66254ad4553000327e244633a71b
/Python/python_stacks/django_test/surprise/surprise/settings.py
8c6137b331c35953423b8d51660aba1d89396262
[]
no_license
jrhodesy4/DojoAssignments
e64e33d5b96df65b54f7defe38959dbc69ce5285
57a5f82ee343ae1fd755564d7ec30998e301dc02
refs/heads/master
2021-01-22T23:29:35.068913
2017-04-24T23:21:50
2017-04-24T23:21:50
85,645,354
0
0
null
null
null
null
UTF-8
Python
false
false
3,125
py
""" Django settings for surprise project. Generated by 'django-admin startproject' using Django 1.10. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '!3#5t(m@^rmgfuqo#h7x8-_1p#f68m8wxsm(gks+oad8n0^()m' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'apps.surprise_app', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'surprise.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'surprise.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/'