blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
457741e02d727ee709a6616e161dfb501b4258f7
5229c7fc87e3fddd7aee34284eeebf08fc84f4df
/bgp_configuration/bgp.py
685b806c9aa8a8fdea9d2da8230e720031ab0fdc
[]
no_license
SahanaSatya/automation_inside_an_autonomous_system
51144e198a4eb65da6bb07f1fd330945b3509e55
1e9bd7dfbd706e03f789a68dae6c4295c67afc0f
refs/heads/master
2020-07-03T06:57:27.569945
2019-08-12T00:28:28
2019-08-12T00:28:28
201,829,420
0
0
null
null
null
null
UTF-8
Python
false
false
2,932
py
from netmiko import ConnectHandler import threading import os import time def get_commands(conf_file,ip_addr): config_set = [] if os.path.isfile(conf_file): found = 0 localasnum = "" nip = "" nremoteas = "" networklist = "" with open(conf_file,'r') as file1: for row in file1: if found == 4: li = row.split(':')[1].split('\n')[0] networklist = li.split(';') break if found == 3: nremoteas = row.split(':')[1].split('\n')[0] found = 4 if found == 2: nip = row.split(':')[1].split('\n')[0] found = 3 if found == 1: localasnum = row.split(':')[1].split('\n')[0] found = 2 if "For "+ip_addr in row: found = 1 config_set.append("router bgp "+localasnum) config_set.append("neighbor "+nip+" remote-as "+nremoteas) for li in networklist: n = li.split(',') config_set.append("network "+n[0]+" mask "+n[1]) return config_set else: return "No file exits for command" def config(*device): dev_con = ConnectHandler(**device[0]) dev_con.enable() cmd = get_commands("bgp.conf",device[0]['ip']) if cmd != "No file exits for command" : try: output = dev_con.send_config_set(cmd) if len(output.split('\n')) > 4+len(cmd): raise Exception(cmd) except Exception as e: print("For the device with IP:"+device[0]['ip']+", BGP deployment is not properly done") print("Reason: Error in the following commands") print(e.args) output = dev_con.send_command("sh run") file_save = "conf_"+device[0]['ip']+"_backup.txt" with open(file_save,'w') as fh: fh.write(output) print("Backed-up the running config for device with IP:"+device[0]['ip']+" locally in file: "+file_save) return time.sleep(2) output = dev_con.send_command("sh ip bgp neighbor") tab = output.split('\n')[0:3] li = tab[0].split(',') neighIP = li[0].split()[-1] remoteAS = li[1].split()[-1] state = tab[2].split(",")[0].split()[-1] print("For device with IP:"+device[0]['ip']) print("BGP Neighbor IP".ljust(20)+"BGP Neighbor AS".ljust(20)+"BGP Neighbor State".ljust(20)) print(str(neighIP.encode("utf-8")).ljust(20)+str(remoteAS.encode("utf-8")).ljust(20)+str(state.encode("utf-8")).ljust(20)) output = dev_con.send_command("sh run") file_save = "conf_"+device[0]['ip']+"_backup.txt" with open(file_save,'w') as fh: fh.write(output) print("Backed-up the running config for device with IP:"+device[0]['ip']+" locally in file: "+file_save) dev_con.disconnect() else: print("could not deploy as "+ str(cmd)) def config_devices(devices): t = [None] * len(devices) for i in range(len(devices)): t[i] = threading.Thread(target=config, args = (devices[i],)) t[i].start()
59db6733062d74c3c4eaa39d9a84f6e0b05261d5
dc7465b43e49267ba6b1c08ec4d15b1613bbd14a
/python/caffe/proto/caffe_pb2.py
06f3bfb49487ea8b2d1816542b32bc04c9c58452
[ "LicenseRef-scancode-generic-cla", "BSD-2-Clause" ]
permissive
peterWon/pva_textboxpp_merged_caffe
870d361262078480488663ad4fb988666d0807ff
9b7cfa28d5335b6b67d70761910d213e9d92f20c
refs/heads/master
2020-03-10T01:07:28.730457
2018-04-11T13:50:48
2018-04-11T13:50:48
129,101,137
0
0
null
null
null
null
UTF-8
Python
false
true
377,389
py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: caffe.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='caffe.proto', package='caffe', serialized_pb=_b('\n\x0b\x63\x61\x66\x66\x65.proto\x12\x05\x63\x61\x66\x66\x65\"\x1c\n\tBlobShape\x12\x0f\n\x03\x64im\x18\x01 \x03(\x03\x42\x02\x10\x01\"\xcc\x01\n\tBlobProto\x12\x1f\n\x05shape\x18\x07 \x01(\x0b\x32\x10.caffe.BlobShape\x12\x10\n\x04\x64\x61ta\x18\x05 \x03(\x02\x42\x02\x10\x01\x12\x10\n\x04\x64iff\x18\x06 \x03(\x02\x42\x02\x10\x01\x12\x17\n\x0b\x64ouble_data\x18\x08 \x03(\x01\x42\x02\x10\x01\x12\x17\n\x0b\x64ouble_diff\x18\t \x03(\x01\x42\x02\x10\x01\x12\x0e\n\x03num\x18\x01 \x01(\x05:\x01\x30\x12\x13\n\x08\x63hannels\x18\x02 \x01(\x05:\x01\x30\x12\x11\n\x06height\x18\x03 \x01(\x05:\x01\x30\x12\x10\n\x05width\x18\x04 \x01(\x05:\x01\x30\"2\n\x0f\x42lobProtoVector\x12\x1f\n\x05\x62lobs\x18\x01 \x03(\x0b\x32\x10.caffe.BlobProto\"\x81\x01\n\x05\x44\x61tum\x12\x10\n\x08\x63hannels\x18\x01 \x01(\x05\x12\x0e\n\x06height\x18\x02 \x01(\x05\x12\r\n\x05width\x18\x03 \x01(\x05\x12\x0c\n\x04\x64\x61ta\x18\x04 \x01(\x0c\x12\r\n\x05label\x18\x05 \x01(\x05\x12\x12\n\nfloat_data\x18\x06 \x03(\x02\x12\x16\n\x07\x65ncoded\x18\x07 \x01(\x08:\x05\x66\x61lse\"A\n\x0cLabelMapItem\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\r\n\x05label\x18\x02 \x01(\x05\x12\x14\n\x0c\x64isplay_name\x18\x03 \x01(\t\"-\n\x08LabelMap\x12!\n\x04item\x18\x01 \x03(\x0b\x32\x13.caffe.LabelMapItem\"o\n\x07Sampler\x12\x14\n\tmin_scale\x18\x01 \x01(\x02:\x01\x31\x12\x14\n\tmax_scale\x18\x02 \x01(\x02:\x01\x31\x12\x1b\n\x10min_aspect_ratio\x18\x03 \x01(\x02:\x01\x31\x12\x1b\n\x10max_aspect_ratio\x18\x04 \x01(\x02:\x01\x31\"\xc0\x01\n\x10SampleConstraint\x12\x1b\n\x13min_jaccard_overlap\x18\x01 \x01(\x02\x12\x1b\n\x13max_jaccard_overlap\x18\x02 \x01(\x02\x12\x1b\n\x13min_sample_coverage\x18\x03 \x01(\x02\x12\x1b\n\x13max_sample_coverage\x18\x04 \x01(\x02\x12\x1b\n\x13min_object_coverage\x18\x05 \x01(\x02\x12\x1b\n\x13max_object_coverage\x18\x06 \x01(\x02\"\xb2\x01\n\x0c\x42\x61tchSampler\x12 \n\x12use_original_image\x18\x01 \x01(\x08:\x04true\x12\x1f\n\x07sampler\x18\x02 \x01(\x0b\x32\x0e.caffe.Sampler\x12\x32\n\x11sample_constraint\x18\x03 \x01(\x0b\x32\x17.caffe.SampleConstraint\x12\x12\n\nmax_sample\x18\x04 \x01(\r\x12\x17\n\nmax_trials\x18\x05 \x01(\r:\x03\x31\x30\x30\"\x8a\x01\n\x0e\x45mitConstraint\x12\x39\n\temit_type\x18\x01 \x01(\x0e\x32\x1e.caffe.EmitConstraint.EmitType:\x06\x43\x45NTER\x12\x14\n\x0c\x65mit_overlap\x18\x02 \x01(\x02\"\'\n\x08\x45mitType\x12\n\n\x06\x43\x45NTER\x10\x00\x12\x0f\n\x0bMIN_OVERLAP\x10\x01\"\x87\x01\n\x0eNormalizedBBox\x12\x0c\n\x04xmin\x18\x01 \x01(\x02\x12\x0c\n\x04ymin\x18\x02 \x01(\x02\x12\x0c\n\x04xmax\x18\x03 \x01(\x02\x12\x0c\n\x04ymax\x18\x04 \x01(\x02\x12\r\n\x05label\x18\x05 \x01(\x05\x12\x11\n\tdifficult\x18\x06 \x01(\x08\x12\r\n\x05score\x18\x07 \x01(\x02\x12\x0c\n\x04size\x18\x08 \x01(\x02\"{\n\x0eNormalizedRBox\x12\n\n\x02x1\x18\x01 \x01(\x02\x12\n\n\x02y1\x18\x02 \x01(\x02\x12\n\n\x02x2\x18\x03 \x01(\x02\x12\n\n\x02y2\x18\x04 \x01(\x02\x12\t\n\x01h\x18\x05 \x01(\x02\x12\x11\n\tdifficult\x18\x06 \x01(\x08\x12\r\n\x05score\x18\x07 \x01(\x02\x12\x0c\n\x04size\x18\x08 \x01(\x02\"\xa3\x01\n\x11NormalizedPolygon\x12\n\n\x02x1\x18\x01 \x01(\x02\x12\n\n\x02y1\x18\x02 \x01(\x02\x12\n\n\x02x2\x18\x03 \x01(\x02\x12\n\n\x02y2\x18\x04 \x01(\x02\x12\n\n\x02x3\x18\x05 \x01(\x02\x12\n\n\x02y3\x18\x06 \x01(\x02\x12\n\n\x02x4\x18\x07 \x01(\x02\x12\n\n\x02y4\x18\x08 \x01(\x02\x12\x11\n\tdifficult\x18\t \x01(\x08\x12\r\n\x05score\x18\n \x01(\x02\x12\x0c\n\x04size\x18\x0b \x01(\x02\"\x99\x01\n\nAnnotation\x12\x16\n\x0binstance_id\x18\x01 \x01(\x05:\x01\x30\x12#\n\x04\x62\x62ox\x18\x02 \x01(\x0b\x32\x15.caffe.NormalizedBBox\x12#\n\x04rbox\x18\x03 \x01(\x0b\x32\x15.caffe.NormalizedRBox\x12)\n\x07polygon\x18\x04 \x01(\x0b\x32\x18.caffe.NormalizedPolygon\"M\n\x0f\x41nnotationGroup\x12\x13\n\x0bgroup_label\x18\x01 \x01(\x05\x12%\n\nannotation\x18\x02 \x03(\x0b\x32\x11.caffe.Annotation\"\xaf\x01\n\x0e\x41nnotatedDatum\x12\x1b\n\x05\x64\x61tum\x18\x01 \x01(\x0b\x32\x0c.caffe.Datum\x12\x32\n\x04type\x18\x02 \x01(\x0e\x32$.caffe.AnnotatedDatum.AnnotationType\x12\x30\n\x10\x61nnotation_group\x18\x03 \x03(\x0b\x32\x16.caffe.AnnotationGroup\"\x1a\n\x0e\x41nnotationType\x12\x08\n\x04\x42\x42OX\x10\x00\"\x8a\x02\n\x0f\x46illerParameter\x12\x16\n\x04type\x18\x01 \x01(\t:\x08\x63onstant\x12\x10\n\x05value\x18\x02 \x01(\x02:\x01\x30\x12\x0e\n\x03min\x18\x03 \x01(\x02:\x01\x30\x12\x0e\n\x03max\x18\x04 \x01(\x02:\x01\x31\x12\x0f\n\x04mean\x18\x05 \x01(\x02:\x01\x30\x12\x0e\n\x03std\x18\x06 \x01(\x02:\x01\x31\x12\x12\n\x06sparse\x18\x07 \x01(\x05:\x02-1\x12\x42\n\rvariance_norm\x18\x08 \x01(\x0e\x32#.caffe.FillerParameter.VarianceNorm:\x06\x46\x41N_IN\"4\n\x0cVarianceNorm\x12\n\n\x06\x46\x41N_IN\x10\x00\x12\x0b\n\x07\x46\x41N_OUT\x10\x01\x12\x0b\n\x07\x41VERAGE\x10\x02\"\x8e\x02\n\x0cNetParameter\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\r\n\x05input\x18\x03 \x03(\t\x12%\n\x0binput_shape\x18\x08 \x03(\x0b\x32\x10.caffe.BlobShape\x12\x11\n\tinput_dim\x18\x04 \x03(\x05\x12\x1d\n\x0e\x66orce_backward\x18\x05 \x01(\x08:\x05\x66\x61lse\x12\x1e\n\x05state\x18\x06 \x01(\x0b\x32\x0f.caffe.NetState\x12\x19\n\ndebug_info\x18\x07 \x01(\x08:\x05\x66\x61lse\x12$\n\x05layer\x18\x64 \x03(\x0b\x32\x15.caffe.LayerParameter\x12\'\n\x06layers\x18\x02 \x03(\x0b\x32\x17.caffe.V1LayerParameter\"\xfc\n\n\x0fSolverParameter\x12\x0b\n\x03net\x18\x18 \x01(\t\x12&\n\tnet_param\x18\x19 \x01(\x0b\x32\x13.caffe.NetParameter\x12\x11\n\ttrain_net\x18\x01 \x01(\t\x12\x10\n\x08test_net\x18\x02 \x03(\t\x12,\n\x0ftrain_net_param\x18\x15 \x01(\x0b\x32\x13.caffe.NetParameter\x12+\n\x0etest_net_param\x18\x16 \x03(\x0b\x32\x13.caffe.NetParameter\x12$\n\x0btrain_state\x18\x1a \x01(\x0b\x32\x0f.caffe.NetState\x12#\n\ntest_state\x18\x1b \x03(\x0b\x32\x0f.caffe.NetState\x12!\n\teval_type\x18) \x01(\t:\x0e\x63lassification\x12\x1c\n\nap_version\x18* \x01(\t:\x08Integral\x12\x11\n\ttest_iter\x18\x03 \x03(\x05\x12\x18\n\rtest_interval\x18\x04 \x01(\x05:\x01\x30\x12 \n\x11test_compute_loss\x18\x13 \x01(\x08:\x05\x66\x61lse\x12!\n\x13test_initialization\x18 \x01(\x08:\x04true\x12\x0f\n\x07\x62\x61se_lr\x18\x05 \x01(\x02\x12\x0f\n\x07\x64isplay\x18\x06 \x01(\x05\x12\x17\n\x0c\x61verage_loss\x18! \x01(\x05:\x01\x31\x12\x10\n\x08max_iter\x18\x07 \x01(\x05\x12\x14\n\titer_size\x18$ \x01(\x05:\x01\x31\x12\x11\n\tlr_policy\x18\x08 \x01(\t\x12\r\n\x05gamma\x18\t \x01(\x02\x12\r\n\x05power\x18\n \x01(\x02\x12\x10\n\x08momentum\x18\x0b \x01(\x02\x12\x14\n\x0cweight_decay\x18\x0c \x01(\x02\x12\x1f\n\x13regularization_type\x18\x1d \x01(\t:\x02L2\x12\x10\n\x08stepsize\x18\r \x01(\x05\x12\x11\n\tstepvalue\x18\" \x03(\x05\x12\x17\n\x0fplateau_winsize\x18+ \x03(\x05\x12\x1a\n\x0e\x63lip_gradients\x18# \x01(\x02:\x02-1\x12\x13\n\x08snapshot\x18\x0e \x01(\x05:\x01\x30\x12\x17\n\x0fsnapshot_prefix\x18\x0f \x01(\t\x12\x1c\n\rsnapshot_diff\x18\x10 \x01(\x08:\x05\x66\x61lse\x12K\n\x0fsnapshot_format\x18% \x01(\x0e\x32%.caffe.SolverParameter.SnapshotFormat:\x0b\x42INARYPROTO\x12;\n\x0bsolver_mode\x18\x11 \x01(\x0e\x32!.caffe.SolverParameter.SolverMode:\x03GPU\x12\x14\n\tdevice_id\x18\x12 \x01(\x05:\x01\x30\x12\x17\n\x0brandom_seed\x18\x14 \x01(\x03:\x02-1\x12\x11\n\x04type\x18( \x01(\t:\x03SGD\x12\x14\n\x05\x64\x65lta\x18\x1f \x01(\x02:\x05\x31\x65-08\x12\x18\n\tmomentum2\x18\' \x01(\x02:\x05\x30.999\x12\x17\n\trms_decay\x18& \x01(\x02:\x04\x30.99\x12\x19\n\ndebug_info\x18\x17 \x01(\x08:\x05\x66\x61lse\x12\"\n\x14snapshot_after_train\x18\x1c \x01(\x08:\x04true\x12;\n\x0bsolver_type\x18\x1e \x01(\x0e\x32!.caffe.SolverParameter.SolverType:\x03SGD\"+\n\x0eSnapshotFormat\x12\x08\n\x04HDF5\x10\x00\x12\x0f\n\x0b\x42INARYPROTO\x10\x01\"\x1e\n\nSolverMode\x12\x07\n\x03\x43PU\x10\x00\x12\x07\n\x03GPU\x10\x01\"U\n\nSolverType\x12\x07\n\x03SGD\x10\x00\x12\x0c\n\x08NESTEROV\x10\x01\x12\x0b\n\x07\x41\x44\x41GRAD\x10\x02\x12\x0b\n\x07RMSPROP\x10\x03\x12\x0c\n\x08\x41\x44\x41\x44\x45LTA\x10\x04\x12\x08\n\x04\x41\x44\x41M\x10\x05\"\xa5\x01\n\x0bSolverState\x12\x0c\n\x04iter\x18\x01 \x01(\x05\x12\x13\n\x0blearned_net\x18\x02 \x01(\t\x12!\n\x07history\x18\x03 \x03(\x0b\x32\x10.caffe.BlobProto\x12\x17\n\x0c\x63urrent_step\x18\x04 \x01(\x05:\x01\x30\x12\x1b\n\x0cminimum_loss\x18\x05 \x01(\x02:\x05\x31\x65+38\x12\x1a\n\x0fiter_last_event\x18\x06 \x01(\x05:\x01\x30\"N\n\x08NetState\x12!\n\x05phase\x18\x01 \x01(\x0e\x32\x0c.caffe.Phase:\x04TEST\x12\x10\n\x05level\x18\x02 \x01(\x05:\x01\x30\x12\r\n\x05stage\x18\x03 \x03(\t\"s\n\x0cNetStateRule\x12\x1b\n\x05phase\x18\x01 \x01(\x0e\x32\x0c.caffe.Phase\x12\x11\n\tmin_level\x18\x02 \x01(\x05\x12\x11\n\tmax_level\x18\x03 \x01(\x05\x12\r\n\x05stage\x18\x04 \x03(\t\x12\x11\n\tnot_stage\x18\x05 \x03(\t\"\xa3\x01\n\tParamSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x31\n\nshare_mode\x18\x02 \x01(\x0e\x32\x1d.caffe.ParamSpec.DimCheckMode\x12\x12\n\x07lr_mult\x18\x03 \x01(\x02:\x01\x31\x12\x15\n\ndecay_mult\x18\x04 \x01(\x02:\x01\x31\"*\n\x0c\x44imCheckMode\x12\n\n\x06STRICT\x10\x00\x12\x0e\n\nPERMISSIVE\x10\x01\"\x96\x1a\n\x0eLayerParameter\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x0c\n\x04type\x18\x02 \x01(\t\x12\x0e\n\x06\x62ottom\x18\x03 \x03(\t\x12\x0b\n\x03top\x18\x04 \x03(\t\x12\x1b\n\x05phase\x18\n \x01(\x0e\x32\x0c.caffe.Phase\x12\x13\n\x0bloss_weight\x18\x05 \x03(\x02\x12\x1f\n\x05param\x18\x06 \x03(\x0b\x32\x10.caffe.ParamSpec\x12\x1f\n\x05\x62lobs\x18\x07 \x03(\x0b\x32\x10.caffe.BlobProto\x12\x16\n\x0epropagate_down\x18\x0b \x03(\x08\x12$\n\x07include\x18\x08 \x03(\x0b\x32\x13.caffe.NetStateRule\x12$\n\x07\x65xclude\x18\t \x03(\x0b\x32\x13.caffe.NetStateRule\x12\x37\n\x0ftransform_param\x18\x64 \x01(\x0b\x32\x1e.caffe.TransformationParameter\x12(\n\nloss_param\x18\x65 \x01(\x0b\x32\x14.caffe.LossParameter\x12\x30\n\x0e\x61\x63\x63uracy_param\x18\x66 \x01(\x0b\x32\x18.caffe.AccuracyParameter\x12<\n\x14\x61nnotated_data_param\x18\xc8\x01 \x01(\x0b\x32\x1d.caffe.AnnotatedDataParameter\x12,\n\x0c\x61rgmax_param\x18g \x01(\x0b\x32\x16.caffe.ArgMaxParameter\x12\x34\n\x10\x62\x61tch_norm_param\x18\x8b\x01 \x01(\x0b\x32\x19.caffe.BatchNormParameter\x12)\n\nbias_param\x18\x8d\x01 \x01(\x0b\x32\x14.caffe.BiasParameter\x12,\n\x0c\x63oncat_param\x18h \x01(\x0b\x32\x16.caffe.ConcatParameter\x12?\n\x16\x63ontrastive_loss_param\x18i \x01(\x0b\x32\x1f.caffe.ContrastiveLossParameter\x12\x36\n\x11\x63onvolution_param\x18j \x01(\x0b\x32\x1b.caffe.ConvolutionParameter\x12)\n\ncrop_param\x18\x90\x01 \x01(\x0b\x32\x14.caffe.CropParameter\x12\x36\n\x11\x63tc_decoder_param\x18\x95\x01 \x01(\x0b\x32\x1a.caffe.CTCDecoderParameter\x12\x30\n\x0e\x63tc_loss_param\x18\x94\x01 \x01(\x0b\x32\x17.caffe.CTCLossParameter\x12(\n\ndata_param\x18k \x01(\x0b\x32\x14.caffe.DataParameter\x12\x44\n\x18\x64\x65tection_evaluate_param\x18\xcd\x01 \x01(\x0b\x32!.caffe.DetectionEvaluateParameter\x12@\n\x16\x64\x65tection_output_param\x18\xcc\x01 \x01(\x0b\x32\x1f.caffe.DetectionOutputParameter\x12.\n\rdropout_param\x18l \x01(\x0b\x32\x17.caffe.DropoutParameter\x12\x33\n\x10\x64ummy_data_param\x18m \x01(\x0b\x32\x19.caffe.DummyDataParameter\x12.\n\reltwise_param\x18n \x01(\x0b\x32\x17.caffe.EltwiseParameter\x12\'\n\telu_param\x18\x8c\x01 \x01(\x0b\x32\x13.caffe.ELUParameter\x12+\n\x0b\x65mbed_param\x18\x89\x01 \x01(\x0b\x32\x15.caffe.EmbedParameter\x12&\n\texp_param\x18o \x01(\x0b\x32\x13.caffe.ExpParameter\x12/\n\rflatten_param\x18\x87\x01 \x01(\x0b\x32\x17.caffe.FlattenParameter\x12\x31\n\x0fhdf5_data_param\x18p \x01(\x0b\x32\x18.caffe.HDF5DataParameter\x12\x35\n\x11hdf5_output_param\x18q \x01(\x0b\x32\x1a.caffe.HDF5OutputParameter\x12\x33\n\x10hinge_loss_param\x18r \x01(\x0b\x32\x19.caffe.HingeLossParameter\x12\x33\n\x10image_data_param\x18s \x01(\x0b\x32\x19.caffe.ImageDataParameter\x12\x39\n\x13infogain_loss_param\x18t \x01(\x0b\x32\x1c.caffe.InfogainLossParameter\x12\x39\n\x13inner_product_param\x18u \x01(\x0b\x32\x1c.caffe.InnerProductParameter\x12+\n\x0binput_param\x18\x8f\x01 \x01(\x0b\x32\x15.caffe.InputParameter\x12\'\n\tlog_param\x18\x86\x01 \x01(\x0b\x32\x13.caffe.LogParameter\x12&\n\tlrn_param\x18v \x01(\x0b\x32\x13.caffe.LRNParameter\x12\x35\n\x11memory_data_param\x18w \x01(\x0b\x32\x1a.caffe.MemoryDataParameter\x12:\n\x13multibox_loss_param\x18\xc9\x01 \x01(\x0b\x32\x1c.caffe.MultiBoxLossParameter\x12&\n\tmvn_param\x18x \x01(\x0b\x32\x13.caffe.MVNParameter\x12.\n\nnorm_param\x18\xce\x01 \x01(\x0b\x32\x19.caffe.NormalizeParameter\x12\x33\n\x0fparameter_param\x18\x91\x01 \x01(\x0b\x32\x19.caffe.ParameterParameter\x12/\n\rpermute_param\x18\xca\x01 \x01(\x0b\x32\x17.caffe.PermuteParameter\x12.\n\rpooling_param\x18y \x01(\x0b\x32\x17.caffe.PoolingParameter\x12*\n\x0bpower_param\x18z \x01(\x0b\x32\x15.caffe.PowerParameter\x12+\n\x0bprelu_param\x18\x83\x01 \x01(\x0b\x32\x15.caffe.PReLUParameter\x12\x32\n\x0fprior_box_param\x18\xcb\x01 \x01(\x0b\x32\x18.caffe.PriorBoxParameter\x12-\n\x0cpython_param\x18\x82\x01 \x01(\x0b\x32\x16.caffe.PythonParameter\x12\x33\n\x0frecurrent_param\x18\x92\x01 \x01(\x0b\x32\x19.caffe.RecurrentParameter\x12\x33\n\x0freduction_param\x18\x88\x01 \x01(\x0b\x32\x19.caffe.ReductionParameter\x12(\n\nrelu_param\x18{ \x01(\x0b\x32\x14.caffe.ReLUParameter\x12/\n\rreshape_param\x18\x85\x01 \x01(\x0b\x32\x17.caffe.ReshapeParameter\x12\x36\n\x11roi_pooling_param\x18\x96\x01 \x01(\x0b\x32\x1a.caffe.ROIPoolingParameter\x12/\n\rreverse_param\x18\x93\x01 \x01(\x0b\x32\x17.caffe.ReverseParameter\x12+\n\x0bscale_param\x18\x8e\x01 \x01(\x0b\x32\x15.caffe.ScaleParameter\x12.\n\rsigmoid_param\x18| \x01(\x0b\x32\x17.caffe.SigmoidParameter\x12.\n\rsoftmax_param\x18} \x01(\x0b\x32\x17.caffe.SoftmaxParameter\x12\'\n\tspp_param\x18\x84\x01 \x01(\x0b\x32\x13.caffe.SPPParameter\x12*\n\x0bslice_param\x18~ \x01(\x0b\x32\x15.caffe.SliceParameter\x12(\n\ntanh_param\x18\x7f \x01(\x0b\x32\x14.caffe.TanHParameter\x12\x33\n\x0fthreshold_param\x18\x80\x01 \x01(\x0b\x32\x19.caffe.ThresholdParameter\x12)\n\ntile_param\x18\x8a\x01 \x01(\x0b\x32\x14.caffe.TileParameter\x12\x34\n\x10video_data_param\x18\xcf\x01 \x01(\x0b\x32\x19.caffe.VideoDataParameter\x12\x36\n\x11window_data_param\x18\x81\x01 \x01(\x0b\x32\x1a.caffe.WindowDataParameter\x12=\n\x14smooth_l1_loss_param\x18\xd8\xc7\xf8\x03 \x01(\x0b\x32\x1c.caffe.SmoothL1LossParameter\x12\x33\n\x0eproposal_param\x18\xd9\xc7\xf8\x03 \x01(\x0b\x32\x18.caffe.ProposalParameter\"\xc8\x01\n\x11ProposalParameter\x12\x17\n\x0b\x66\x65\x61t_stride\x18\x01 \x01(\r:\x02\x31\x36\x12\x15\n\tbase_size\x18\x02 \x01(\r:\x02\x31\x36\x12\x14\n\x08min_size\x18\x03 \x01(\r:\x02\x31\x36\x12\r\n\x05ratio\x18\x04 \x03(\x02\x12\r\n\x05scale\x18\x05 \x03(\x02\x12\x1a\n\x0cpre_nms_topn\x18\x06 \x01(\r:\x04\x36\x30\x30\x30\x12\x1a\n\rpost_nms_topn\x18\x07 \x01(\r:\x03\x33\x30\x30\x12\x17\n\nnms_thresh\x18\x08 \x01(\x02:\x03\x30.7\")\n\x15SmoothL1LossParameter\x12\x10\n\x05sigma\x18\x01 \x01(\x02:\x01\x31\"\xca\x03\n\x17TransformationParameter\x12\x10\n\x05scale\x18\x01 \x01(\x02:\x01\x31\x12\x15\n\x06mirror\x18\x02 \x01(\x08:\x05\x66\x61lse\x12\x14\n\tcrop_size\x18\x03 \x01(\r:\x01\x30\x12\x11\n\x06\x63rop_h\x18\x0b \x01(\r:\x01\x30\x12\x11\n\x06\x63rop_w\x18\x0c \x01(\r:\x01\x30\x12\x11\n\tmean_file\x18\x04 \x01(\t\x12\x12\n\nmean_value\x18\x05 \x03(\x02\x12\x1a\n\x0b\x66orce_color\x18\x06 \x01(\x08:\x05\x66\x61lse\x12\x19\n\nforce_gray\x18\x07 \x01(\x08:\x05\x66\x61lse\x12,\n\x0cresize_param\x18\x08 \x01(\x0b\x32\x16.caffe.ResizeParameter\x12*\n\x0bnoise_param\x18\t \x01(\x0b\x32\x15.caffe.NoiseParameter\x12\x31\n\rdistort_param\x18\r \x01(\x0b\x32\x1a.caffe.DistortionParameter\x12/\n\x0c\x65xpand_param\x18\x0e \x01(\x0b\x32\x19.caffe.ExpansionParameter\x12.\n\x0f\x65mit_constraint\x18\n \x01(\x0b\x32\x15.caffe.EmitConstraint\"\x90\x04\n\x0fResizeParameter\x12\x0f\n\x04prob\x18\x01 \x01(\x02:\x01\x31\x12=\n\x0bresize_mode\x18\x02 \x01(\x0e\x32\".caffe.ResizeParameter.Resize_mode:\x04WARP\x12\x11\n\x06height\x18\x03 \x01(\r:\x01\x30\x12\x10\n\x05width\x18\x04 \x01(\r:\x01\x30\x12\x17\n\x0cheight_scale\x18\x08 \x01(\r:\x01\x30\x12\x16\n\x0bwidth_scale\x18\t \x01(\r:\x01\x30\x12;\n\x08pad_mode\x18\x05 \x01(\x0e\x32\x1f.caffe.ResizeParameter.Pad_mode:\x08\x43ONSTANT\x12\x11\n\tpad_value\x18\x06 \x03(\x02\x12\x37\n\x0binterp_mode\x18\x07 \x03(\x0e\x32\".caffe.ResizeParameter.Interp_mode\"G\n\x0bResize_mode\x12\x08\n\x04WARP\x10\x01\x12\x12\n\x0e\x46IT_SMALL_SIZE\x10\x02\x12\x1a\n\x16\x46IT_LARGE_SIZE_AND_PAD\x10\x03\":\n\x08Pad_mode\x12\x0c\n\x08\x43ONSTANT\x10\x01\x12\x0c\n\x08MIRRORED\x10\x02\x12\x12\n\x0eREPEAT_NEAREST\x10\x03\"I\n\x0bInterp_mode\x12\n\n\x06LINEAR\x10\x01\x12\x08\n\x04\x41REA\x10\x02\x12\x0b\n\x07NEAREST\x10\x03\x12\t\n\x05\x43UBIC\x10\x04\x12\x0c\n\x08LANCZOS4\x10\x05\"9\n\x13SaltPepperParameter\x12\x13\n\x08\x66raction\x18\x01 \x01(\x02:\x01\x30\x12\r\n\x05value\x18\x02 \x03(\x02\"\xee\x02\n\x0eNoiseParameter\x12\x0f\n\x04prob\x18\x01 \x01(\x02:\x01\x30\x12\x16\n\x07hist_eq\x18\x02 \x01(\x08:\x05\x66\x61lse\x12\x16\n\x07inverse\x18\x03 \x01(\x08:\x05\x66\x61lse\x12\x19\n\ndecolorize\x18\x04 \x01(\x08:\x05\x66\x61lse\x12\x19\n\ngauss_blur\x18\x05 \x01(\x08:\x05\x66\x61lse\x12\x10\n\x04jpeg\x18\x06 \x01(\x02:\x02-1\x12\x18\n\tposterize\x18\x07 \x01(\x08:\x05\x66\x61lse\x12\x14\n\x05\x65rode\x18\x08 \x01(\x08:\x05\x66\x61lse\x12\x19\n\nsaltpepper\x18\t \x01(\x08:\x05\x66\x61lse\x12\x34\n\x10saltpepper_param\x18\n \x01(\x0b\x32\x1a.caffe.SaltPepperParameter\x12\x14\n\x05\x63lahe\x18\x0b \x01(\x08:\x05\x66\x61lse\x12\x1d\n\x0e\x63onvert_to_hsv\x18\x0c \x01(\x08:\x05\x66\x61lse\x12\x1d\n\x0e\x63onvert_to_lab\x18\r \x01(\x08:\x05\x66\x61lse\"\xbd\x02\n\x13\x44istortionParameter\x12\x1a\n\x0f\x62rightness_prob\x18\x01 \x01(\x02:\x01\x30\x12\x1b\n\x10\x62rightness_delta\x18\x02 \x01(\x02:\x01\x30\x12\x18\n\rcontrast_prob\x18\x03 \x01(\x02:\x01\x30\x12\x19\n\x0e\x63ontrast_lower\x18\x04 \x01(\x02:\x01\x30\x12\x19\n\x0e\x63ontrast_upper\x18\x05 \x01(\x02:\x01\x30\x12\x13\n\x08hue_prob\x18\x06 \x01(\x02:\x01\x30\x12\x14\n\thue_delta\x18\x07 \x01(\x02:\x01\x30\x12\x1a\n\x0fsaturation_prob\x18\x08 \x01(\x02:\x01\x30\x12\x1b\n\x10saturation_lower\x18\t \x01(\x02:\x01\x30\x12\x1b\n\x10saturation_upper\x18\n \x01(\x02:\x01\x30\x12\x1c\n\x11random_order_prob\x18\x0b \x01(\x02:\x01\x30\"B\n\x12\x45xpansionParameter\x12\x0f\n\x04prob\x18\x01 \x01(\x02:\x01\x31\x12\x1b\n\x10max_expand_ratio\x18\x02 \x01(\x02:\x01\x31\"\xc2\x01\n\rLossParameter\x12\x14\n\x0cignore_label\x18\x01 \x01(\x05\x12\x44\n\rnormalization\x18\x03 \x01(\x0e\x32&.caffe.LossParameter.NormalizationMode:\x05VALID\x12\x11\n\tnormalize\x18\x02 \x01(\x08\"B\n\x11NormalizationMode\x12\x08\n\x04\x46ULL\x10\x00\x12\t\n\x05VALID\x10\x01\x12\x0e\n\nBATCH_SIZE\x10\x02\x12\x08\n\x04NONE\x10\x03\"L\n\x11\x41\x63\x63uracyParameter\x12\x10\n\x05top_k\x18\x01 \x01(\r:\x01\x31\x12\x0f\n\x04\x61xis\x18\x02 \x01(\x05:\x01\x31\x12\x14\n\x0cignore_label\x18\x03 \x01(\x05\"\x95\x01\n\x16\x41nnotatedDataParameter\x12*\n\rbatch_sampler\x18\x01 \x03(\x0b\x32\x13.caffe.BatchSampler\x12\x16\n\x0elabel_map_file\x18\x02 \x01(\t\x12\x37\n\tanno_type\x18\x03 \x01(\x0e\x32$.caffe.AnnotatedDatum.AnnotationType\"M\n\x0f\x41rgMaxParameter\x12\x1a\n\x0bout_max_val\x18\x01 \x01(\x08:\x05\x66\x61lse\x12\x10\n\x05top_k\x18\x02 \x01(\r:\x01\x31\x12\x0c\n\x04\x61xis\x18\x03 \x01(\x05\"9\n\x0f\x43oncatParameter\x12\x0f\n\x04\x61xis\x18\x02 \x01(\x05:\x01\x31\x12\x15\n\nconcat_dim\x18\x01 \x01(\r:\x01\x31\"j\n\x12\x42\x61tchNormParameter\x12\x18\n\x10use_global_stats\x18\x01 \x01(\x08\x12&\n\x17moving_average_fraction\x18\x02 \x01(\x02:\x05\x30.999\x12\x12\n\x03\x65ps\x18\x03 \x01(\x02:\x05\x31\x65-05\"]\n\rBiasParameter\x12\x0f\n\x04\x61xis\x18\x01 \x01(\x05:\x01\x31\x12\x13\n\x08num_axes\x18\x02 \x01(\x05:\x01\x31\x12&\n\x06\x66iller\x18\x03 \x01(\x0b\x32\x16.caffe.FillerParameter\"L\n\x18\x43ontrastiveLossParameter\x12\x11\n\x06margin\x18\x01 \x01(\x02:\x01\x31\x12\x1d\n\x0elegacy_version\x18\x02 \x01(\x08:\x05\x66\x61lse\"\xfc\x03\n\x14\x43onvolutionParameter\x12\x12\n\nnum_output\x18\x01 \x01(\r\x12\x17\n\tbias_term\x18\x02 \x01(\x08:\x04true\x12\x0b\n\x03pad\x18\x03 \x03(\r\x12\x13\n\x0bkernel_size\x18\x04 \x03(\r\x12\x0e\n\x06stride\x18\x06 \x03(\r\x12\x10\n\x08\x64ilation\x18\x12 \x03(\r\x12\x10\n\x05pad_h\x18\t \x01(\r:\x01\x30\x12\x10\n\x05pad_w\x18\n \x01(\r:\x01\x30\x12\x10\n\x08kernel_h\x18\x0b \x01(\r\x12\x10\n\x08kernel_w\x18\x0c \x01(\r\x12\x10\n\x08stride_h\x18\r \x01(\r\x12\x10\n\x08stride_w\x18\x0e \x01(\r\x12\x10\n\x05group\x18\x05 \x01(\r:\x01\x31\x12-\n\rweight_filler\x18\x07 \x01(\x0b\x32\x16.caffe.FillerParameter\x12+\n\x0b\x62ias_filler\x18\x08 \x01(\x0b\x32\x16.caffe.FillerParameter\x12;\n\x06\x65ngine\x18\x0f \x01(\x0e\x32\".caffe.ConvolutionParameter.Engine:\x07\x44\x45\x46\x41ULT\x12\x0f\n\x04\x61xis\x18\x10 \x01(\x05:\x01\x31\x12\x1e\n\x0f\x66orce_nd_im2col\x18\x11 \x01(\x08:\x05\x66\x61lse\"+\n\x06\x45ngine\x12\x0b\n\x07\x44\x45\x46\x41ULT\x10\x00\x12\t\n\x05\x43\x41\x46\x46\x45\x10\x01\x12\t\n\x05\x43UDNN\x10\x02\"0\n\rCropParameter\x12\x0f\n\x04\x61xis\x18\x01 \x01(\x05:\x01\x32\x12\x0e\n\x06offset\x18\x02 \x03(\r\"P\n\x13\x43TCDecoderParameter\x12\x17\n\x0b\x62lank_index\x18\x01 \x01(\x05:\x02-1\x12 \n\x12\x63tc_merge_repeated\x18\x02 \x01(\x08:\x04true\"\xb2\x01\n\x10\x43TCLossParameter\x12\x17\n\x0coutput_delay\x18\x01 \x01(\x05:\x01\x30\x12\x17\n\x0b\x62lank_index\x18\x02 \x01(\x05:\x02-1\x12+\n\x1cpreprocess_collapse_repeated\x18\x03 \x01(\x08:\x05\x66\x61lse\x12 \n\x12\x63tc_merge_repeated\x18\x04 \x01(\x08:\x04true\x12\x1d\n\x12loss_calculation_t\x18\x05 \x01(\x05:\x01\x30\"\xa4\x02\n\rDataParameter\x12\x0e\n\x06source\x18\x01 \x01(\t\x12\x12\n\nbatch_size\x18\x04 \x01(\r\x12\x14\n\trand_skip\x18\x07 \x01(\r:\x01\x30\x12\x31\n\x07\x62\x61\x63kend\x18\x08 \x01(\x0e\x32\x17.caffe.DataParameter.DB:\x07LEVELDB\x12\x10\n\x05scale\x18\x02 \x01(\x02:\x01\x31\x12\x11\n\tmean_file\x18\x03 \x01(\t\x12\x14\n\tcrop_size\x18\x05 \x01(\r:\x01\x30\x12\x15\n\x06mirror\x18\x06 \x01(\x08:\x05\x66\x61lse\x12\"\n\x13\x66orce_encoded_color\x18\t \x01(\x08:\x05\x66\x61lse\x12\x13\n\x08prefetch\x18\n \x01(\r:\x01\x34\"\x1b\n\x02\x44\x42\x12\x0b\n\x07LEVELDB\x10\x00\x12\x08\n\x04LMDB\x10\x01\"\xf7\x01\n\x1a\x44\x65tectionEvaluateParameter\x12\x13\n\x0bnum_classes\x18\x01 \x01(\r\x12\x1e\n\x13\x62\x61\x63kground_label_id\x18\x02 \x01(\r:\x01\x30\x12\x1e\n\x11overlap_threshold\x18\x03 \x01(\x02:\x03\x30.5\x12#\n\x15\x65valuate_difficult_gt\x18\x04 \x01(\x08:\x04true\x12\x16\n\x0ename_size_file\x18\x05 \x01(\t\x12,\n\x0cresize_param\x18\x06 \x01(\x0b\x32\x16.caffe.ResizeParameter\x12\x19\n\x0buse_polygon\x18\x07 \x01(\x08:\x04true\"[\n\x1eNonMaximumSuppressionParameter\x12\x1a\n\rnms_threshold\x18\x01 \x01(\x02:\x03\x30.3\x12\r\n\x05top_k\x18\x02 \x01(\x05\x12\x0e\n\x03\x65ta\x18\x03 \x01(\x02:\x01\x31\"\xd8\x01\n\x13SaveOutputParameter\x12\x18\n\x10output_directory\x18\x01 \x01(\t\x12\x1a\n\x12output_name_prefix\x18\x02 \x01(\t\x12\x15\n\routput_format\x18\x03 \x01(\t\x12\x16\n\x0elabel_map_file\x18\x04 \x01(\t\x12\x16\n\x0ename_size_file\x18\x05 \x01(\t\x12\x16\n\x0enum_test_image\x18\x06 \x01(\r\x12,\n\x0cresize_param\x18\x07 \x01(\x0b\x32\x16.caffe.ResizeParameter\"\xe2\x03\n\x18\x44\x65tectionOutputParameter\x12\x13\n\x0bnum_classes\x18\x01 \x01(\r\x12\x1c\n\x0eshare_location\x18\x02 \x01(\x08:\x04true\x12\x1e\n\x13\x62\x61\x63kground_label_id\x18\x03 \x01(\x05:\x01\x30\x12\x38\n\tnms_param\x18\x04 \x01(\x0b\x32%.caffe.NonMaximumSuppressionParameter\x12\x35\n\x11save_output_param\x18\x05 \x01(\x0b\x32\x1a.caffe.SaveOutputParameter\x12<\n\tcode_type\x18\x06 \x01(\x0e\x32!.caffe.PriorBoxParameter.CodeType:\x06\x43ORNER\x12)\n\x1avariance_encoded_in_target\x18\x08 \x01(\x08:\x05\x66\x61lse\x12\x16\n\nkeep_top_k\x18\x07 \x01(\x05:\x02-1\x12\x1c\n\x14\x63onfidence_threshold\x18\t \x01(\x02\x12\x18\n\tvisualize\x18\n \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x13visualize_threshold\x18\x0b \x01(\x02\x12\x11\n\tsave_file\x18\x0c \x01(\t\x12\x19\n\x0buse_polygon\x18\r \x01(\x08:\x04true\"I\n\x10\x44ropoutParameter\x12\x1a\n\rdropout_ratio\x18\x01 \x01(\x02:\x03\x30.5\x12\x19\n\x0bscale_train\x18\x02 \x01(\x08:\x04true\"\xa0\x01\n\x12\x44ummyDataParameter\x12+\n\x0b\x64\x61ta_filler\x18\x01 \x03(\x0b\x32\x16.caffe.FillerParameter\x12\x1f\n\x05shape\x18\x06 \x03(\x0b\x32\x10.caffe.BlobShape\x12\x0b\n\x03num\x18\x02 \x03(\r\x12\x10\n\x08\x63hannels\x18\x03 \x03(\r\x12\x0e\n\x06height\x18\x04 \x03(\r\x12\r\n\x05width\x18\x05 \x03(\r\"\xa5\x01\n\x10\x45ltwiseParameter\x12\x39\n\toperation\x18\x01 \x01(\x0e\x32!.caffe.EltwiseParameter.EltwiseOp:\x03SUM\x12\r\n\x05\x63oeff\x18\x02 \x03(\x02\x12\x1e\n\x10stable_prod_grad\x18\x03 \x01(\x08:\x04true\"\'\n\tEltwiseOp\x12\x08\n\x04PROD\x10\x00\x12\x07\n\x03SUM\x10\x01\x12\x07\n\x03MAX\x10\x02\" \n\x0c\x45LUParameter\x12\x10\n\x05\x61lpha\x18\x01 \x01(\x02:\x01\x31\"\xac\x01\n\x0e\x45mbedParameter\x12\x12\n\nnum_output\x18\x01 \x01(\r\x12\x11\n\tinput_dim\x18\x02 \x01(\r\x12\x17\n\tbias_term\x18\x03 \x01(\x08:\x04true\x12-\n\rweight_filler\x18\x04 \x01(\x0b\x32\x16.caffe.FillerParameter\x12+\n\x0b\x62ias_filler\x18\x05 \x01(\x0b\x32\x16.caffe.FillerParameter\"D\n\x0c\x45xpParameter\x12\x10\n\x04\x62\x61se\x18\x01 \x01(\x02:\x02-1\x12\x10\n\x05scale\x18\x02 \x01(\x02:\x01\x31\x12\x10\n\x05shift\x18\x03 \x01(\x02:\x01\x30\"9\n\x10\x46lattenParameter\x12\x0f\n\x04\x61xis\x18\x01 \x01(\x05:\x01\x31\x12\x14\n\x08\x65nd_axis\x18\x02 \x01(\x05:\x02-1\"O\n\x11HDF5DataParameter\x12\x0e\n\x06source\x18\x01 \x01(\t\x12\x12\n\nbatch_size\x18\x02 \x01(\r\x12\x16\n\x07shuffle\x18\x03 \x01(\x08:\x05\x66\x61lse\"(\n\x13HDF5OutputParameter\x12\x11\n\tfile_name\x18\x01 \x01(\t\"^\n\x12HingeLossParameter\x12\x30\n\x04norm\x18\x01 \x01(\x0e\x32\x1e.caffe.HingeLossParameter.Norm:\x02L1\"\x16\n\x04Norm\x12\x06\n\x02L1\x10\x01\x12\x06\n\x02L2\x10\x02\"\x97\x02\n\x12ImageDataParameter\x12\x0e\n\x06source\x18\x01 \x01(\t\x12\x15\n\nbatch_size\x18\x04 \x01(\r:\x01\x31\x12\x14\n\trand_skip\x18\x07 \x01(\r:\x01\x30\x12\x16\n\x07shuffle\x18\x08 \x01(\x08:\x05\x66\x61lse\x12\x15\n\nnew_height\x18\t \x01(\r:\x01\x30\x12\x14\n\tnew_width\x18\n \x01(\r:\x01\x30\x12\x16\n\x08is_color\x18\x0b \x01(\x08:\x04true\x12\x10\n\x05scale\x18\x02 \x01(\x02:\x01\x31\x12\x11\n\tmean_file\x18\x03 \x01(\t\x12\x14\n\tcrop_size\x18\x05 \x01(\r:\x01\x30\x12\x15\n\x06mirror\x18\x06 \x01(\x08:\x05\x66\x61lse\x12\x15\n\x0broot_folder\x18\x0c \x01(\t:\x00\"\'\n\x15InfogainLossParameter\x12\x0e\n\x06source\x18\x01 \x01(\t\"\xcb\x01\n\x15InnerProductParameter\x12\x12\n\nnum_output\x18\x01 \x01(\r\x12\x17\n\tbias_term\x18\x02 \x01(\x08:\x04true\x12-\n\rweight_filler\x18\x03 \x01(\x0b\x32\x16.caffe.FillerParameter\x12+\n\x0b\x62ias_filler\x18\x04 \x01(\x0b\x32\x16.caffe.FillerParameter\x12\x0f\n\x04\x61xis\x18\x05 \x01(\x05:\x01\x31\x12\x18\n\ttranspose\x18\x06 \x01(\x08:\x05\x66\x61lse\"1\n\x0eInputParameter\x12\x1f\n\x05shape\x18\x01 \x03(\x0b\x32\x10.caffe.BlobShape\"D\n\x0cLogParameter\x12\x10\n\x04\x62\x61se\x18\x01 \x01(\x02:\x02-1\x12\x10\n\x05scale\x18\x02 \x01(\x02:\x01\x31\x12\x10\n\x05shift\x18\x03 \x01(\x02:\x01\x30\"\xb8\x02\n\x0cLRNParameter\x12\x15\n\nlocal_size\x18\x01 \x01(\r:\x01\x35\x12\x10\n\x05\x61lpha\x18\x02 \x01(\x02:\x01\x31\x12\x12\n\x04\x62\x65ta\x18\x03 \x01(\x02:\x04\x30.75\x12\x44\n\x0bnorm_region\x18\x04 \x01(\x0e\x32\x1e.caffe.LRNParameter.NormRegion:\x0f\x41\x43ROSS_CHANNELS\x12\x0c\n\x01k\x18\x05 \x01(\x02:\x01\x31\x12\x33\n\x06\x65ngine\x18\x06 \x01(\x0e\x32\x1a.caffe.LRNParameter.Engine:\x07\x44\x45\x46\x41ULT\"5\n\nNormRegion\x12\x13\n\x0f\x41\x43ROSS_CHANNELS\x10\x00\x12\x12\n\x0eWITHIN_CHANNEL\x10\x01\"+\n\x06\x45ngine\x12\x0b\n\x07\x44\x45\x46\x41ULT\x10\x00\x12\t\n\x05\x43\x41\x46\x46\x45\x10\x01\x12\t\n\x05\x43UDNN\x10\x02\"Z\n\x13MemoryDataParameter\x12\x12\n\nbatch_size\x18\x01 \x01(\r\x12\x10\n\x08\x63hannels\x18\x02 \x01(\r\x12\x0e\n\x06height\x18\x03 \x01(\r\x12\r\n\x05width\x18\x04 \x01(\r\"\x83\t\n\x15MultiBoxLossParameter\x12J\n\rloc_loss_type\x18\x01 \x01(\x0e\x32(.caffe.MultiBoxLossParameter.LocLossType:\tSMOOTH_L1\x12J\n\x0e\x63onf_loss_type\x18\x02 \x01(\x0e\x32).caffe.MultiBoxLossParameter.ConfLossType:\x07SOFTMAX\x12\x15\n\nloc_weight\x18\x03 \x01(\x02:\x01\x31\x12\x13\n\x0bnum_classes\x18\x04 \x01(\r\x12\x1c\n\x0eshare_location\x18\x05 \x01(\x08:\x04true\x12J\n\nmatch_type\x18\x06 \x01(\x0e\x32&.caffe.MultiBoxLossParameter.MatchType:\x0ePER_PREDICTION\x12\x1e\n\x11overlap_threshold\x18\x07 \x01(\x02:\x03\x30.5\x12$\n\x16use_prior_for_matching\x18\x08 \x01(\x08:\x04true\x12\x1e\n\x13\x62\x61\x63kground_label_id\x18\t \x01(\r:\x01\x30\x12\x1e\n\x10use_difficult_gt\x18\n \x01(\x08:\x04true\x12\x15\n\rdo_neg_mining\x18\x0b \x01(\x08\x12\x18\n\rneg_pos_ratio\x18\x0c \x01(\x02:\x01\x33\x12\x18\n\x0bneg_overlap\x18\r \x01(\x02:\x03\x30.5\x12<\n\tcode_type\x18\x0e \x01(\x0e\x32!.caffe.PriorBoxParameter.CodeType:\x06\x43ORNER\x12(\n\x19\x65ncode_variance_in_target\x18\x10 \x01(\x08:\x05\x66\x61lse\x12%\n\x16map_object_to_agnostic\x18\x11 \x01(\x08:\x05\x66\x61lse\x12)\n\x1aignore_cross_boundary_bbox\x18\x12 \x01(\x08:\x05\x66\x61lse\x12\x18\n\tbp_inside\x18\x13 \x01(\x08:\x05\x66\x61lse\x12J\n\x0bmining_type\x18\x14 \x01(\x0e\x32\'.caffe.MultiBoxLossParameter.MiningType:\x0cMAX_NEGATIVE\x12\x38\n\tnms_param\x18\x15 \x01(\x0b\x32%.caffe.NonMaximumSuppressionParameter\x12\x17\n\x0bsample_size\x18\x16 \x01(\x05:\x02\x36\x34\x12 \n\x11use_prior_for_nms\x18\x17 \x01(\x08:\x05\x66\x61lse\x12\x19\n\x0buse_polygon\x18\x18 \x01(\x08:\x04true\"$\n\x0bLocLossType\x12\x06\n\x02L2\x10\x00\x12\r\n\tSMOOTH_L1\x10\x01\")\n\x0c\x43onfLossType\x12\x0b\n\x07SOFTMAX\x10\x00\x12\x0c\n\x08LOGISTIC\x10\x01\".\n\tMatchType\x12\r\n\tBIPARTITE\x10\x00\x12\x12\n\x0ePER_PREDICTION\x10\x01\":\n\nMiningType\x12\x08\n\x04NONE\x10\x00\x12\x10\n\x0cMAX_NEGATIVE\x10\x01\x12\x10\n\x0cHARD_EXAMPLE\x10\x02\"d\n\x0cMVNParameter\x12 \n\x12normalize_variance\x18\x01 \x01(\x08:\x04true\x12\x1e\n\x0f\x61\x63ross_channels\x18\x02 \x01(\x08:\x05\x66\x61lse\x12\x12\n\x03\x65ps\x18\x03 \x01(\x02:\x05\x31\x65-09\"\x92\x01\n\x12NormalizeParameter\x12\x1c\n\x0e\x61\x63ross_spatial\x18\x01 \x01(\x08:\x04true\x12,\n\x0cscale_filler\x18\x02 \x01(\x0b\x32\x16.caffe.FillerParameter\x12\x1c\n\x0e\x63hannel_shared\x18\x03 \x01(\x08:\x04true\x12\x12\n\x03\x65ps\x18\x04 \x01(\x02:\x05\x31\x65-10\"5\n\x12ParameterParameter\x12\x1f\n\x05shape\x18\x01 \x01(\x0b\x32\x10.caffe.BlobShape\"!\n\x10PermuteParameter\x12\r\n\x05order\x18\x01 \x03(\r\"\xa2\x03\n\x10PoolingParameter\x12\x35\n\x04pool\x18\x01 \x01(\x0e\x32\".caffe.PoolingParameter.PoolMethod:\x03MAX\x12\x0e\n\x03pad\x18\x04 \x01(\r:\x01\x30\x12\x10\n\x05pad_h\x18\t \x01(\r:\x01\x30\x12\x10\n\x05pad_w\x18\n \x01(\r:\x01\x30\x12\x13\n\x0bkernel_size\x18\x02 \x01(\r\x12\x10\n\x08kernel_h\x18\x05 \x01(\r\x12\x10\n\x08kernel_w\x18\x06 \x01(\r\x12\x11\n\x06stride\x18\x03 \x01(\r:\x01\x31\x12\x10\n\x08stride_h\x18\x07 \x01(\r\x12\x10\n\x08stride_w\x18\x08 \x01(\r\x12\x37\n\x06\x65ngine\x18\x0b \x01(\x0e\x32\x1e.caffe.PoolingParameter.Engine:\x07\x44\x45\x46\x41ULT\x12\x1d\n\x0eglobal_pooling\x18\x0c \x01(\x08:\x05\x66\x61lse\".\n\nPoolMethod\x12\x07\n\x03MAX\x10\x00\x12\x07\n\x03\x41VE\x10\x01\x12\x0e\n\nSTOCHASTIC\x10\x02\"+\n\x06\x45ngine\x12\x0b\n\x07\x44\x45\x46\x41ULT\x10\x00\x12\t\n\x05\x43\x41\x46\x46\x45\x10\x01\x12\t\n\x05\x43UDNN\x10\x02\"F\n\x0ePowerParameter\x12\x10\n\x05power\x18\x01 \x01(\x02:\x01\x31\x12\x10\n\x05scale\x18\x02 \x01(\x02:\x01\x31\x12\x10\n\x05shift\x18\x03 \x01(\x02:\x01\x30\"\xd8\x02\n\x11PriorBoxParameter\x12\x10\n\x08min_size\x18\x01 \x03(\x02\x12\x10\n\x08max_size\x18\x02 \x03(\x02\x12\x14\n\x0c\x61spect_ratio\x18\x03 \x03(\x02\x12\x12\n\x04\x66lip\x18\x04 \x01(\x08:\x04true\x12\x13\n\x04\x63lip\x18\x05 \x01(\x08:\x05\x66\x61lse\x12\x10\n\x08variance\x18\x06 \x03(\x02\x12\x10\n\x08img_size\x18\x07 \x01(\r\x12\r\n\x05img_h\x18\x08 \x01(\r\x12\r\n\x05img_w\x18\t \x01(\r\x12\x0c\n\x04step\x18\n \x01(\x02\x12\x0e\n\x06step_h\x18\x0b \x01(\x02\x12\x0e\n\x06step_w\x18\x0c \x01(\x02\x12\x13\n\x06offset\x18\r \x01(\x02:\x03\x30.5\x12!\n\x12\x64\x65nser_prior_boxes\x18\x0e \x01(\x08:\x05\x66\x61lse\"8\n\x08\x43odeType\x12\n\n\x06\x43ORNER\x10\x01\x12\x0f\n\x0b\x43\x45NTER_SIZE\x10\x02\x12\x0f\n\x0b\x43ORNER_SIZE\x10\x03\"g\n\x0fPythonParameter\x12\x0e\n\x06module\x18\x01 \x01(\t\x12\r\n\x05layer\x18\x02 \x01(\t\x12\x13\n\tparam_str\x18\x03 \x01(\t:\x00\x12 \n\x11share_in_parallel\x18\x04 \x01(\x08:\x05\x66\x61lse\"\xc0\x01\n\x12RecurrentParameter\x12\x15\n\nnum_output\x18\x01 \x01(\r:\x01\x30\x12-\n\rweight_filler\x18\x02 \x01(\x0b\x32\x16.caffe.FillerParameter\x12+\n\x0b\x62ias_filler\x18\x03 \x01(\x0b\x32\x16.caffe.FillerParameter\x12\x19\n\ndebug_info\x18\x04 \x01(\x08:\x05\x66\x61lse\x12\x1c\n\rexpose_hidden\x18\x05 \x01(\x08:\x05\x66\x61lse\"\xad\x01\n\x12ReductionParameter\x12=\n\toperation\x18\x01 \x01(\x0e\x32%.caffe.ReductionParameter.ReductionOp:\x03SUM\x12\x0f\n\x04\x61xis\x18\x02 \x01(\x05:\x01\x30\x12\x10\n\x05\x63oeff\x18\x03 \x01(\x02:\x01\x31\"5\n\x0bReductionOp\x12\x07\n\x03SUM\x10\x01\x12\x08\n\x04\x41SUM\x10\x02\x12\t\n\x05SUMSQ\x10\x03\x12\x08\n\x04MEAN\x10\x04\"\x8d\x01\n\rReLUParameter\x12\x19\n\x0enegative_slope\x18\x01 \x01(\x02:\x01\x30\x12\x34\n\x06\x65ngine\x18\x02 \x01(\x0e\x32\x1b.caffe.ReLUParameter.Engine:\x07\x44\x45\x46\x41ULT\"+\n\x06\x45ngine\x12\x0b\n\x07\x44\x45\x46\x41ULT\x10\x00\x12\t\n\x05\x43\x41\x46\x46\x45\x10\x01\x12\t\n\x05\x43UDNN\x10\x02\"Z\n\x10ReshapeParameter\x12\x1f\n\x05shape\x18\x01 \x01(\x0b\x32\x10.caffe.BlobShape\x12\x0f\n\x04\x61xis\x18\x02 \x01(\x05:\x01\x30\x12\x14\n\x08num_axes\x18\x03 \x01(\x05:\x02-1\"#\n\x10ReverseParameter\x12\x0f\n\x04\x61xis\x18\x01 \x01(\x05:\x01\x30\"Y\n\x13ROIPoolingParameter\x12\x13\n\x08pooled_h\x18\x01 \x01(\r:\x01\x30\x12\x13\n\x08pooled_w\x18\x02 \x01(\r:\x01\x30\x12\x18\n\rspatial_scale\x18\x03 \x01(\x02:\x01\x31\"\xa5\x01\n\x0eScaleParameter\x12\x0f\n\x04\x61xis\x18\x01 \x01(\x05:\x01\x31\x12\x13\n\x08num_axes\x18\x02 \x01(\x05:\x01\x31\x12&\n\x06\x66iller\x18\x03 \x01(\x0b\x32\x16.caffe.FillerParameter\x12\x18\n\tbias_term\x18\x04 \x01(\x08:\x05\x66\x61lse\x12+\n\x0b\x62ias_filler\x18\x05 \x01(\x0b\x32\x16.caffe.FillerParameter\"x\n\x10SigmoidParameter\x12\x37\n\x06\x65ngine\x18\x01 \x01(\x0e\x32\x1e.caffe.SigmoidParameter.Engine:\x07\x44\x45\x46\x41ULT\"+\n\x06\x45ngine\x12\x0b\n\x07\x44\x45\x46\x41ULT\x10\x00\x12\t\n\x05\x43\x41\x46\x46\x45\x10\x01\x12\t\n\x05\x43UDNN\x10\x02\"L\n\x0eSliceParameter\x12\x0f\n\x04\x61xis\x18\x03 \x01(\x05:\x01\x31\x12\x13\n\x0bslice_point\x18\x02 \x03(\r\x12\x14\n\tslice_dim\x18\x01 \x01(\r:\x01\x31\"\x89\x01\n\x10SoftmaxParameter\x12\x37\n\x06\x65ngine\x18\x01 \x01(\x0e\x32\x1e.caffe.SoftmaxParameter.Engine:\x07\x44\x45\x46\x41ULT\x12\x0f\n\x04\x61xis\x18\x02 \x01(\x05:\x01\x31\"+\n\x06\x45ngine\x12\x0b\n\x07\x44\x45\x46\x41ULT\x10\x00\x12\t\n\x05\x43\x41\x46\x46\x45\x10\x01\x12\t\n\x05\x43UDNN\x10\x02\"r\n\rTanHParameter\x12\x34\n\x06\x65ngine\x18\x01 \x01(\x0e\x32\x1b.caffe.TanHParameter.Engine:\x07\x44\x45\x46\x41ULT\"+\n\x06\x45ngine\x12\x0b\n\x07\x44\x45\x46\x41ULT\x10\x00\x12\t\n\x05\x43\x41\x46\x46\x45\x10\x01\x12\t\n\x05\x43UDNN\x10\x02\"/\n\rTileParameter\x12\x0f\n\x04\x61xis\x18\x01 \x01(\x05:\x01\x31\x12\r\n\x05tiles\x18\x02 \x01(\x05\"*\n\x12ThresholdParameter\x12\x14\n\tthreshold\x18\x01 \x01(\x02:\x01\x30\"\xbb\x01\n\x12VideoDataParameter\x12?\n\nvideo_type\x18\x01 \x01(\x0e\x32#.caffe.VideoDataParameter.VideoType:\x06WEBCAM\x12\x14\n\tdevice_id\x18\x02 \x01(\x05:\x01\x30\x12\x12\n\nvideo_file\x18\x03 \x01(\t\x12\x16\n\x0bskip_frames\x18\x04 \x01(\r:\x01\x30\"\"\n\tVideoType\x12\n\n\x06WEBCAM\x10\x00\x12\t\n\x05VIDEO\x10\x01\"\xc1\x02\n\x13WindowDataParameter\x12\x0e\n\x06source\x18\x01 \x01(\t\x12\x10\n\x05scale\x18\x02 \x01(\x02:\x01\x31\x12\x11\n\tmean_file\x18\x03 \x01(\t\x12\x12\n\nbatch_size\x18\x04 \x01(\r\x12\x14\n\tcrop_size\x18\x05 \x01(\r:\x01\x30\x12\x15\n\x06mirror\x18\x06 \x01(\x08:\x05\x66\x61lse\x12\x19\n\x0c\x66g_threshold\x18\x07 \x01(\x02:\x03\x30.5\x12\x19\n\x0c\x62g_threshold\x18\x08 \x01(\x02:\x03\x30.5\x12\x19\n\x0b\x66g_fraction\x18\t \x01(\x02:\x04\x30.25\x12\x16\n\x0b\x63ontext_pad\x18\n \x01(\r:\x01\x30\x12\x17\n\tcrop_mode\x18\x0b \x01(\t:\x04warp\x12\x1b\n\x0c\x63\x61\x63he_images\x18\x0c \x01(\x08:\x05\x66\x61lse\x12\x15\n\x0broot_folder\x18\r \x01(\t:\x00\"\xeb\x01\n\x0cSPPParameter\x12\x16\n\x0epyramid_height\x18\x01 \x01(\r\x12\x31\n\x04pool\x18\x02 \x01(\x0e\x32\x1e.caffe.SPPParameter.PoolMethod:\x03MAX\x12\x33\n\x06\x65ngine\x18\x06 \x01(\x0e\x32\x1a.caffe.SPPParameter.Engine:\x07\x44\x45\x46\x41ULT\".\n\nPoolMethod\x12\x07\n\x03MAX\x10\x00\x12\x07\n\x03\x41VE\x10\x01\x12\x0e\n\nSTOCHASTIC\x10\x02\"+\n\x06\x45ngine\x12\x0b\n\x07\x44\x45\x46\x41ULT\x10\x00\x12\t\n\x05\x43\x41\x46\x46\x45\x10\x01\x12\t\n\x05\x43UDNN\x10\x02\"\xe0\x13\n\x10V1LayerParameter\x12\x0e\n\x06\x62ottom\x18\x02 \x03(\t\x12\x0b\n\x03top\x18\x03 \x03(\t\x12\x0c\n\x04name\x18\x04 \x01(\t\x12$\n\x07include\x18 \x03(\x0b\x32\x13.caffe.NetStateRule\x12$\n\x07\x65xclude\x18! \x03(\x0b\x32\x13.caffe.NetStateRule\x12/\n\x04type\x18\x05 \x01(\x0e\x32!.caffe.V1LayerParameter.LayerType\x12\x1f\n\x05\x62lobs\x18\x06 \x03(\x0b\x32\x10.caffe.BlobProto\x12\x0e\n\x05param\x18\xe9\x07 \x03(\t\x12>\n\x0f\x62lob_share_mode\x18\xea\x07 \x03(\x0e\x32$.caffe.V1LayerParameter.DimCheckMode\x12\x10\n\x08\x62lobs_lr\x18\x07 \x03(\x02\x12\x14\n\x0cweight_decay\x18\x08 \x03(\x02\x12\x13\n\x0bloss_weight\x18# \x03(\x02\x12\x30\n\x0e\x61\x63\x63uracy_param\x18\x1b \x01(\x0b\x32\x18.caffe.AccuracyParameter\x12,\n\x0c\x61rgmax_param\x18\x17 \x01(\x0b\x32\x16.caffe.ArgMaxParameter\x12,\n\x0c\x63oncat_param\x18\t \x01(\x0b\x32\x16.caffe.ConcatParameter\x12?\n\x16\x63ontrastive_loss_param\x18( \x01(\x0b\x32\x1f.caffe.ContrastiveLossParameter\x12\x36\n\x11\x63onvolution_param\x18\n \x01(\x0b\x32\x1b.caffe.ConvolutionParameter\x12(\n\ndata_param\x18\x0b \x01(\x0b\x32\x14.caffe.DataParameter\x12.\n\rdropout_param\x18\x0c \x01(\x0b\x32\x17.caffe.DropoutParameter\x12\x33\n\x10\x64ummy_data_param\x18\x1a \x01(\x0b\x32\x19.caffe.DummyDataParameter\x12.\n\reltwise_param\x18\x18 \x01(\x0b\x32\x17.caffe.EltwiseParameter\x12&\n\texp_param\x18) \x01(\x0b\x32\x13.caffe.ExpParameter\x12\x31\n\x0fhdf5_data_param\x18\r \x01(\x0b\x32\x18.caffe.HDF5DataParameter\x12\x35\n\x11hdf5_output_param\x18\x0e \x01(\x0b\x32\x1a.caffe.HDF5OutputParameter\x12\x33\n\x10hinge_loss_param\x18\x1d \x01(\x0b\x32\x19.caffe.HingeLossParameter\x12\x33\n\x10image_data_param\x18\x0f \x01(\x0b\x32\x19.caffe.ImageDataParameter\x12\x39\n\x13infogain_loss_param\x18\x10 \x01(\x0b\x32\x1c.caffe.InfogainLossParameter\x12\x39\n\x13inner_product_param\x18\x11 \x01(\x0b\x32\x1c.caffe.InnerProductParameter\x12&\n\tlrn_param\x18\x12 \x01(\x0b\x32\x13.caffe.LRNParameter\x12\x35\n\x11memory_data_param\x18\x16 \x01(\x0b\x32\x1a.caffe.MemoryDataParameter\x12&\n\tmvn_param\x18\" \x01(\x0b\x32\x13.caffe.MVNParameter\x12.\n\rpooling_param\x18\x13 \x01(\x0b\x32\x17.caffe.PoolingParameter\x12*\n\x0bpower_param\x18\x15 \x01(\x0b\x32\x15.caffe.PowerParameter\x12(\n\nrelu_param\x18\x1e \x01(\x0b\x32\x14.caffe.ReLUParameter\x12.\n\rsigmoid_param\x18& \x01(\x0b\x32\x17.caffe.SigmoidParameter\x12.\n\rsoftmax_param\x18\' \x01(\x0b\x32\x17.caffe.SoftmaxParameter\x12*\n\x0bslice_param\x18\x1f \x01(\x0b\x32\x15.caffe.SliceParameter\x12(\n\ntanh_param\x18% \x01(\x0b\x32\x14.caffe.TanHParameter\x12\x32\n\x0fthreshold_param\x18\x19 \x01(\x0b\x32\x19.caffe.ThresholdParameter\x12\x35\n\x11window_data_param\x18\x14 \x01(\x0b\x32\x1a.caffe.WindowDataParameter\x12\x37\n\x0ftransform_param\x18$ \x01(\x0b\x32\x1e.caffe.TransformationParameter\x12(\n\nloss_param\x18* \x01(\x0b\x32\x14.caffe.LossParameter\x12&\n\x05layer\x18\x01 \x01(\x0b\x32\x17.caffe.V0LayerParameter\"\xd8\x04\n\tLayerType\x12\x08\n\x04NONE\x10\x00\x12\n\n\x06\x41\x42SVAL\x10#\x12\x0c\n\x08\x41\x43\x43URACY\x10\x01\x12\n\n\x06\x41RGMAX\x10\x1e\x12\x08\n\x04\x42NLL\x10\x02\x12\n\n\x06\x43ONCAT\x10\x03\x12\x14\n\x10\x43ONTRASTIVE_LOSS\x10%\x12\x0f\n\x0b\x43ONVOLUTION\x10\x04\x12\x08\n\x04\x44\x41TA\x10\x05\x12\x11\n\rDECONVOLUTION\x10\'\x12\x0b\n\x07\x44ROPOUT\x10\x06\x12\x0e\n\nDUMMY_DATA\x10 \x12\x12\n\x0e\x45UCLIDEAN_LOSS\x10\x07\x12\x0b\n\x07\x45LTWISE\x10\x19\x12\x07\n\x03\x45XP\x10&\x12\x0b\n\x07\x46LATTEN\x10\x08\x12\r\n\tHDF5_DATA\x10\t\x12\x0f\n\x0bHDF5_OUTPUT\x10\n\x12\x0e\n\nHINGE_LOSS\x10\x1c\x12\n\n\x06IM2COL\x10\x0b\x12\x0e\n\nIMAGE_DATA\x10\x0c\x12\x11\n\rINFOGAIN_LOSS\x10\r\x12\x11\n\rINNER_PRODUCT\x10\x0e\x12\x07\n\x03LRN\x10\x0f\x12\x0f\n\x0bMEMORY_DATA\x10\x1d\x12\x1d\n\x19MULTINOMIAL_LOGISTIC_LOSS\x10\x10\x12\x07\n\x03MVN\x10\"\x12\x0b\n\x07POOLING\x10\x11\x12\t\n\x05POWER\x10\x1a\x12\x08\n\x04RELU\x10\x12\x12\x0b\n\x07SIGMOID\x10\x13\x12\x1e\n\x1aSIGMOID_CROSS_ENTROPY_LOSS\x10\x1b\x12\x0b\n\x07SILENCE\x10$\x12\x0b\n\x07SOFTMAX\x10\x14\x12\x10\n\x0cSOFTMAX_LOSS\x10\x15\x12\t\n\x05SPLIT\x10\x16\x12\t\n\x05SLICE\x10!\x12\x08\n\x04TANH\x10\x17\x12\x0f\n\x0bWINDOW_DATA\x10\x18\x12\r\n\tTHRESHOLD\x10\x1f\"*\n\x0c\x44imCheckMode\x12\n\n\x06STRICT\x10\x00\x12\x0e\n\nPERMISSIVE\x10\x01\"\xfd\x07\n\x10V0LayerParameter\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x0c\n\x04type\x18\x02 \x01(\t\x12\x12\n\nnum_output\x18\x03 \x01(\r\x12\x16\n\x08\x62iasterm\x18\x04 \x01(\x08:\x04true\x12-\n\rweight_filler\x18\x05 \x01(\x0b\x32\x16.caffe.FillerParameter\x12+\n\x0b\x62ias_filler\x18\x06 \x01(\x0b\x32\x16.caffe.FillerParameter\x12\x0e\n\x03pad\x18\x07 \x01(\r:\x01\x30\x12\x12\n\nkernelsize\x18\x08 \x01(\r\x12\x10\n\x05group\x18\t \x01(\r:\x01\x31\x12\x11\n\x06stride\x18\n \x01(\r:\x01\x31\x12\x35\n\x04pool\x18\x0b \x01(\x0e\x32\".caffe.V0LayerParameter.PoolMethod:\x03MAX\x12\x1a\n\rdropout_ratio\x18\x0c \x01(\x02:\x03\x30.5\x12\x15\n\nlocal_size\x18\r \x01(\r:\x01\x35\x12\x10\n\x05\x61lpha\x18\x0e \x01(\x02:\x01\x31\x12\x12\n\x04\x62\x65ta\x18\x0f \x01(\x02:\x04\x30.75\x12\x0c\n\x01k\x18\x16 \x01(\x02:\x01\x31\x12\x0e\n\x06source\x18\x10 \x01(\t\x12\x10\n\x05scale\x18\x11 \x01(\x02:\x01\x31\x12\x10\n\x08meanfile\x18\x12 \x01(\t\x12\x11\n\tbatchsize\x18\x13 \x01(\r\x12\x13\n\x08\x63ropsize\x18\x14 \x01(\r:\x01\x30\x12\x15\n\x06mirror\x18\x15 \x01(\x08:\x05\x66\x61lse\x12\x1f\n\x05\x62lobs\x18\x32 \x03(\x0b\x32\x10.caffe.BlobProto\x12\x10\n\x08\x62lobs_lr\x18\x33 \x03(\x02\x12\x14\n\x0cweight_decay\x18\x34 \x03(\x02\x12\x14\n\trand_skip\x18\x35 \x01(\r:\x01\x30\x12\x1d\n\x10\x64\x65t_fg_threshold\x18\x36 \x01(\x02:\x03\x30.5\x12\x1d\n\x10\x64\x65t_bg_threshold\x18\x37 \x01(\x02:\x03\x30.5\x12\x1d\n\x0f\x64\x65t_fg_fraction\x18\x38 \x01(\x02:\x04\x30.25\x12\x1a\n\x0f\x64\x65t_context_pad\x18: \x01(\r:\x01\x30\x12\x1b\n\rdet_crop_mode\x18; \x01(\t:\x04warp\x12\x12\n\x07new_num\x18< \x01(\x05:\x01\x30\x12\x17\n\x0cnew_channels\x18= \x01(\x05:\x01\x30\x12\x15\n\nnew_height\x18> \x01(\x05:\x01\x30\x12\x14\n\tnew_width\x18? \x01(\x05:\x01\x30\x12\x1d\n\x0eshuffle_images\x18@ \x01(\x08:\x05\x66\x61lse\x12\x15\n\nconcat_dim\x18\x41 \x01(\r:\x01\x31\x12\x36\n\x11hdf5_output_param\x18\xe9\x07 \x01(\x0b\x32\x1a.caffe.HDF5OutputParameter\".\n\nPoolMethod\x12\x07\n\x03MAX\x10\x00\x12\x07\n\x03\x41VE\x10\x01\x12\x0e\n\nSTOCHASTIC\x10\x02\"W\n\x0ePReLUParameter\x12&\n\x06\x66iller\x18\x01 \x01(\x0b\x32\x16.caffe.FillerParameter\x12\x1d\n\x0e\x63hannel_shared\x18\x02 \x01(\x08:\x05\x66\x61lse*\x1c\n\x05Phase\x12\t\n\x05TRAIN\x10\x00\x12\x08\n\x04TEST\x10\x01') ) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _PHASE = _descriptor.EnumDescriptor( name='Phase', full_name='caffe.Phase', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='TRAIN', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='TEST', index=1, number=1, options=None, type=None), ], containing_type=None, options=None, serialized_start=23240, serialized_end=23268, ) _sym_db.RegisterEnumDescriptor(_PHASE) Phase = enum_type_wrapper.EnumTypeWrapper(_PHASE) TRAIN = 0 TEST = 1 _EMITCONSTRAINT_EMITTYPE = _descriptor.EnumDescriptor( name='EmitType', full_name='caffe.EmitConstraint.EmitType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='CENTER', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='MIN_OVERLAP', index=1, number=1, options=None, type=None), ], containing_type=None, options=None, serialized_start=1146, serialized_end=1185, ) _sym_db.RegisterEnumDescriptor(_EMITCONSTRAINT_EMITTYPE) _ANNOTATEDDATUM_ANNOTATIONTYPE = _descriptor.EnumDescriptor( name='AnnotationType', full_name='caffe.AnnotatedDatum.AnnotationType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='BBOX', index=0, number=0, options=None, type=None), ], containing_type=None, options=None, serialized_start=2001, serialized_end=2027, ) _sym_db.RegisterEnumDescriptor(_ANNOTATEDDATUM_ANNOTATIONTYPE) _FILLERPARAMETER_VARIANCENORM = _descriptor.EnumDescriptor( name='VarianceNorm', full_name='caffe.FillerParameter.VarianceNorm', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='FAN_IN', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='FAN_OUT', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='AVERAGE', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=2244, serialized_end=2296, ) _sym_db.RegisterEnumDescriptor(_FILLERPARAMETER_VARIANCENORM) _SOLVERPARAMETER_SNAPSHOTFORMAT = _descriptor.EnumDescriptor( name='SnapshotFormat', full_name='caffe.SolverParameter.SnapshotFormat', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='HDF5', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='BINARYPROTO', index=1, number=1, options=None, type=None), ], containing_type=None, options=None, serialized_start=3814, serialized_end=3857, ) _sym_db.RegisterEnumDescriptor(_SOLVERPARAMETER_SNAPSHOTFORMAT) _SOLVERPARAMETER_SOLVERMODE = _descriptor.EnumDescriptor( name='SolverMode', full_name='caffe.SolverParameter.SolverMode', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='CPU', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='GPU', index=1, number=1, options=None, type=None), ], containing_type=None, options=None, serialized_start=3859, serialized_end=3889, ) _sym_db.RegisterEnumDescriptor(_SOLVERPARAMETER_SOLVERMODE) _SOLVERPARAMETER_SOLVERTYPE = _descriptor.EnumDescriptor( name='SolverType', full_name='caffe.SolverParameter.SolverType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='SGD', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='NESTEROV', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='ADAGRAD', index=2, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='RMSPROP', index=3, number=3, options=None, type=None), _descriptor.EnumValueDescriptor( name='ADADELTA', index=4, number=4, options=None, type=None), _descriptor.EnumValueDescriptor( name='ADAM', index=5, number=5, options=None, type=None), ], containing_type=None, options=None, serialized_start=3891, serialized_end=3976, ) _sym_db.RegisterEnumDescriptor(_SOLVERPARAMETER_SOLVERTYPE) _PARAMSPEC_DIMCHECKMODE = _descriptor.EnumDescriptor( name='DimCheckMode', full_name='caffe.ParamSpec.DimCheckMode', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='STRICT', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='PERMISSIVE', index=1, number=1, options=None, type=None), ], containing_type=None, options=None, serialized_start=4465, serialized_end=4507, ) _sym_db.RegisterEnumDescriptor(_PARAMSPEC_DIMCHECKMODE) _RESIZEPARAMETER_RESIZE_MODE = _descriptor.EnumDescriptor( name='Resize_mode', full_name='caffe.ResizeParameter.Resize_mode', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='WARP', index=0, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='FIT_SMALL_SIZE', index=1, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='FIT_LARGE_SIZE_AND_PAD', index=2, number=3, options=None, type=None), ], containing_type=None, options=None, serialized_start=8892, serialized_end=8963, ) _sym_db.RegisterEnumDescriptor(_RESIZEPARAMETER_RESIZE_MODE) _RESIZEPARAMETER_PAD_MODE = _descriptor.EnumDescriptor( name='Pad_mode', full_name='caffe.ResizeParameter.Pad_mode', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='CONSTANT', index=0, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='MIRRORED', index=1, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='REPEAT_NEAREST', index=2, number=3, options=None, type=None), ], containing_type=None, options=None, serialized_start=8965, serialized_end=9023, ) _sym_db.RegisterEnumDescriptor(_RESIZEPARAMETER_PAD_MODE) _RESIZEPARAMETER_INTERP_MODE = _descriptor.EnumDescriptor( name='Interp_mode', full_name='caffe.ResizeParameter.Interp_mode', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='LINEAR', index=0, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='AREA', index=1, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='NEAREST', index=2, number=3, options=None, type=None), _descriptor.EnumValueDescriptor( name='CUBIC', index=3, number=4, options=None, type=None), _descriptor.EnumValueDescriptor( name='LANCZOS4', index=4, number=5, options=None, type=None), ], containing_type=None, options=None, serialized_start=9025, serialized_end=9098, ) _sym_db.RegisterEnumDescriptor(_RESIZEPARAMETER_INTERP_MODE) _LOSSPARAMETER_NORMALIZATIONMODE = _descriptor.EnumDescriptor( name='NormalizationMode', full_name='caffe.LossParameter.NormalizationMode', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='FULL', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='VALID', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='BATCH_SIZE', index=2, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='NONE', index=3, number=3, options=None, type=None), ], containing_type=None, options=None, serialized_start=10045, serialized_end=10111, ) _sym_db.RegisterEnumDescriptor(_LOSSPARAMETER_NORMALIZATIONMODE) _CONVOLUTIONPARAMETER_ENGINE = _descriptor.EnumDescriptor( name='Engine', full_name='caffe.ConvolutionParameter.Engine', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='DEFAULT', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='CAFFE', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='CUDNN', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=11228, serialized_end=11271, ) _sym_db.RegisterEnumDescriptor(_CONVOLUTIONPARAMETER_ENGINE) _DATAPARAMETER_DB = _descriptor.EnumDescriptor( name='DB', full_name='caffe.DataParameter.DB', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='LEVELDB', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='LMDB', index=1, number=1, options=None, type=None), ], containing_type=None, options=None, serialized_start=11852, serialized_end=11879, ) _sym_db.RegisterEnumDescriptor(_DATAPARAMETER_DB) _ELTWISEPARAMETER_ELTWISEOP = _descriptor.EnumDescriptor( name='EltwiseOp', full_name='caffe.EltwiseParameter.EltwiseOp', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='PROD', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='SUM', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='MAX', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=13293, serialized_end=13332, ) _sym_db.RegisterEnumDescriptor(_ELTWISEPARAMETER_ELTWISEOP) _HINGELOSSPARAMETER_NORM = _descriptor.EnumDescriptor( name='Norm', full_name='caffe.HingeLossParameter.Norm', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='L1', index=0, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='L2', index=1, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=13867, serialized_end=13889, ) _sym_db.RegisterEnumDescriptor(_HINGELOSSPARAMETER_NORM) _LRNPARAMETER_NORMREGION = _descriptor.EnumDescriptor( name='NormRegion', full_name='caffe.LRNParameter.NormRegion', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='ACROSS_CHANNELS', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='WITHIN_CHANNEL', index=1, number=1, options=None, type=None), ], containing_type=None, options=None, serialized_start=14756, serialized_end=14809, ) _sym_db.RegisterEnumDescriptor(_LRNPARAMETER_NORMREGION) _LRNPARAMETER_ENGINE = _descriptor.EnumDescriptor( name='Engine', full_name='caffe.LRNParameter.Engine', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='DEFAULT', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='CAFFE', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='CUDNN', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=11228, serialized_end=11271, ) _sym_db.RegisterEnumDescriptor(_LRNPARAMETER_ENGINE) _MULTIBOXLOSSPARAMETER_LOCLOSSTYPE = _descriptor.EnumDescriptor( name='LocLossType', full_name='caffe.MultiBoxLossParameter.LocLossType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='L2', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='SMOOTH_L1', index=1, number=1, options=None, type=None), ], containing_type=None, options=None, serialized_start=15917, serialized_end=15953, ) _sym_db.RegisterEnumDescriptor(_MULTIBOXLOSSPARAMETER_LOCLOSSTYPE) _MULTIBOXLOSSPARAMETER_CONFLOSSTYPE = _descriptor.EnumDescriptor( name='ConfLossType', full_name='caffe.MultiBoxLossParameter.ConfLossType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='SOFTMAX', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='LOGISTIC', index=1, number=1, options=None, type=None), ], containing_type=None, options=None, serialized_start=15955, serialized_end=15996, ) _sym_db.RegisterEnumDescriptor(_MULTIBOXLOSSPARAMETER_CONFLOSSTYPE) _MULTIBOXLOSSPARAMETER_MATCHTYPE = _descriptor.EnumDescriptor( name='MatchType', full_name='caffe.MultiBoxLossParameter.MatchType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='BIPARTITE', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='PER_PREDICTION', index=1, number=1, options=None, type=None), ], containing_type=None, options=None, serialized_start=15998, serialized_end=16044, ) _sym_db.RegisterEnumDescriptor(_MULTIBOXLOSSPARAMETER_MATCHTYPE) _MULTIBOXLOSSPARAMETER_MININGTYPE = _descriptor.EnumDescriptor( name='MiningType', full_name='caffe.MultiBoxLossParameter.MiningType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='NONE', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='MAX_NEGATIVE', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='HARD_EXAMPLE', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=16046, serialized_end=16104, ) _sym_db.RegisterEnumDescriptor(_MULTIBOXLOSSPARAMETER_MININGTYPE) _POOLINGPARAMETER_POOLMETHOD = _descriptor.EnumDescriptor( name='PoolMethod', full_name='caffe.PoolingParameter.PoolMethod', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='MAX', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='AVE', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='STOCHASTIC', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=16775, serialized_end=16821, ) _sym_db.RegisterEnumDescriptor(_POOLINGPARAMETER_POOLMETHOD) _POOLINGPARAMETER_ENGINE = _descriptor.EnumDescriptor( name='Engine', full_name='caffe.PoolingParameter.Engine', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='DEFAULT', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='CAFFE', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='CUDNN', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=11228, serialized_end=11271, ) _sym_db.RegisterEnumDescriptor(_POOLINGPARAMETER_ENGINE) _PRIORBOXPARAMETER_CODETYPE = _descriptor.EnumDescriptor( name='CodeType', full_name='caffe.PriorBoxParameter.CodeType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='CORNER', index=0, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='CENTER_SIZE', index=1, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='CORNER_SIZE', index=2, number=3, options=None, type=None), ], containing_type=None, options=None, serialized_start=17229, serialized_end=17285, ) _sym_db.RegisterEnumDescriptor(_PRIORBOXPARAMETER_CODETYPE) _REDUCTIONPARAMETER_REDUCTIONOP = _descriptor.EnumDescriptor( name='ReductionOp', full_name='caffe.ReductionParameter.ReductionOp', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='SUM', index=0, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='ASUM', index=1, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='SUMSQ', index=2, number=3, options=None, type=None), _descriptor.EnumValueDescriptor( name='MEAN', index=3, number=4, options=None, type=None), ], containing_type=None, options=None, serialized_start=17708, serialized_end=17761, ) _sym_db.RegisterEnumDescriptor(_REDUCTIONPARAMETER_REDUCTIONOP) _RELUPARAMETER_ENGINE = _descriptor.EnumDescriptor( name='Engine', full_name='caffe.ReLUParameter.Engine', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='DEFAULT', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='CAFFE', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='CUDNN', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=11228, serialized_end=11271, ) _sym_db.RegisterEnumDescriptor(_RELUPARAMETER_ENGINE) _SIGMOIDPARAMETER_ENGINE = _descriptor.EnumDescriptor( name='Engine', full_name='caffe.SigmoidParameter.Engine', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='DEFAULT', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='CAFFE', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='CUDNN', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=11228, serialized_end=11271, ) _sym_db.RegisterEnumDescriptor(_SIGMOIDPARAMETER_ENGINE) _SOFTMAXPARAMETER_ENGINE = _descriptor.EnumDescriptor( name='Engine', full_name='caffe.SoftmaxParameter.Engine', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='DEFAULT', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='CAFFE', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='CUDNN', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=11228, serialized_end=11271, ) _sym_db.RegisterEnumDescriptor(_SOFTMAXPARAMETER_ENGINE) _TANHPARAMETER_ENGINE = _descriptor.EnumDescriptor( name='Engine', full_name='caffe.TanHParameter.Engine', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='DEFAULT', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='CAFFE', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='CUDNN', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=11228, serialized_end=11271, ) _sym_db.RegisterEnumDescriptor(_TANHPARAMETER_ENGINE) _VIDEODATAPARAMETER_VIDEOTYPE = _descriptor.EnumDescriptor( name='VideoType', full_name='caffe.VideoDataParameter.VideoType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='WEBCAM', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='VIDEO', index=1, number=1, options=None, type=None), ], containing_type=None, options=None, serialized_start=18998, serialized_end=19032, ) _sym_db.RegisterEnumDescriptor(_VIDEODATAPARAMETER_VIDEOTYPE) _SPPPARAMETER_POOLMETHOD = _descriptor.EnumDescriptor( name='PoolMethod', full_name='caffe.SPPParameter.PoolMethod', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='MAX', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='AVE', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='STOCHASTIC', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=16775, serialized_end=16821, ) _sym_db.RegisterEnumDescriptor(_SPPPARAMETER_POOLMETHOD) _SPPPARAMETER_ENGINE = _descriptor.EnumDescriptor( name='Engine', full_name='caffe.SPPParameter.Engine', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='DEFAULT', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='CAFFE', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='CUDNN', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=11228, serialized_end=11271, ) _sym_db.RegisterEnumDescriptor(_SPPPARAMETER_ENGINE) _V1LAYERPARAMETER_LAYERTYPE = _descriptor.EnumDescriptor( name='LayerType', full_name='caffe.V1LayerParameter.LayerType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='NONE', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='ABSVAL', index=1, number=35, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACCURACY', index=2, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='ARGMAX', index=3, number=30, options=None, type=None), _descriptor.EnumValueDescriptor( name='BNLL', index=4, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='CONCAT', index=5, number=3, options=None, type=None), _descriptor.EnumValueDescriptor( name='CONTRASTIVE_LOSS', index=6, number=37, options=None, type=None), _descriptor.EnumValueDescriptor( name='CONVOLUTION', index=7, number=4, options=None, type=None), _descriptor.EnumValueDescriptor( name='DATA', index=8, number=5, options=None, type=None), _descriptor.EnumValueDescriptor( name='DECONVOLUTION', index=9, number=39, options=None, type=None), _descriptor.EnumValueDescriptor( name='DROPOUT', index=10, number=6, options=None, type=None), _descriptor.EnumValueDescriptor( name='DUMMY_DATA', index=11, number=32, options=None, type=None), _descriptor.EnumValueDescriptor( name='EUCLIDEAN_LOSS', index=12, number=7, options=None, type=None), _descriptor.EnumValueDescriptor( name='ELTWISE', index=13, number=25, options=None, type=None), _descriptor.EnumValueDescriptor( name='EXP', index=14, number=38, options=None, type=None), _descriptor.EnumValueDescriptor( name='FLATTEN', index=15, number=8, options=None, type=None), _descriptor.EnumValueDescriptor( name='HDF5_DATA', index=16, number=9, options=None, type=None), _descriptor.EnumValueDescriptor( name='HDF5_OUTPUT', index=17, number=10, options=None, type=None), _descriptor.EnumValueDescriptor( name='HINGE_LOSS', index=18, number=28, options=None, type=None), _descriptor.EnumValueDescriptor( name='IM2COL', index=19, number=11, options=None, type=None), _descriptor.EnumValueDescriptor( name='IMAGE_DATA', index=20, number=12, options=None, type=None), _descriptor.EnumValueDescriptor( name='INFOGAIN_LOSS', index=21, number=13, options=None, type=None), _descriptor.EnumValueDescriptor( name='INNER_PRODUCT', index=22, number=14, options=None, type=None), _descriptor.EnumValueDescriptor( name='LRN', index=23, number=15, options=None, type=None), _descriptor.EnumValueDescriptor( name='MEMORY_DATA', index=24, number=29, options=None, type=None), _descriptor.EnumValueDescriptor( name='MULTINOMIAL_LOGISTIC_LOSS', index=25, number=16, options=None, type=None), _descriptor.EnumValueDescriptor( name='MVN', index=26, number=34, options=None, type=None), _descriptor.EnumValueDescriptor( name='POOLING', index=27, number=17, options=None, type=None), _descriptor.EnumValueDescriptor( name='POWER', index=28, number=26, options=None, type=None), _descriptor.EnumValueDescriptor( name='RELU', index=29, number=18, options=None, type=None), _descriptor.EnumValueDescriptor( name='SIGMOID', index=30, number=19, options=None, type=None), _descriptor.EnumValueDescriptor( name='SIGMOID_CROSS_ENTROPY_LOSS', index=31, number=27, options=None, type=None), _descriptor.EnumValueDescriptor( name='SILENCE', index=32, number=36, options=None, type=None), _descriptor.EnumValueDescriptor( name='SOFTMAX', index=33, number=20, options=None, type=None), _descriptor.EnumValueDescriptor( name='SOFTMAX_LOSS', index=34, number=21, options=None, type=None), _descriptor.EnumValueDescriptor( name='SPLIT', index=35, number=22, options=None, type=None), _descriptor.EnumValueDescriptor( name='SLICE', index=36, number=33, options=None, type=None), _descriptor.EnumValueDescriptor( name='TANH', index=37, number=23, options=None, type=None), _descriptor.EnumValueDescriptor( name='WINDOW_DATA', index=38, number=24, options=None, type=None), _descriptor.EnumValueDescriptor( name='THRESHOLD', index=39, number=31, options=None, type=None), ], containing_type=None, options=None, serialized_start=21481, serialized_end=22081, ) _sym_db.RegisterEnumDescriptor(_V1LAYERPARAMETER_LAYERTYPE) _V1LAYERPARAMETER_DIMCHECKMODE = _descriptor.EnumDescriptor( name='DimCheckMode', full_name='caffe.V1LayerParameter.DimCheckMode', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='STRICT', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='PERMISSIVE', index=1, number=1, options=None, type=None), ], containing_type=None, options=None, serialized_start=4465, serialized_end=4507, ) _sym_db.RegisterEnumDescriptor(_V1LAYERPARAMETER_DIMCHECKMODE) _V0LAYERPARAMETER_POOLMETHOD = _descriptor.EnumDescriptor( name='PoolMethod', full_name='caffe.V0LayerParameter.PoolMethod', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='MAX', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='AVE', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='STOCHASTIC', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=16775, serialized_end=16821, ) _sym_db.RegisterEnumDescriptor(_V0LAYERPARAMETER_POOLMETHOD) _BLOBSHAPE = _descriptor.Descriptor( name='BlobShape', full_name='caffe.BlobShape', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='dim', full_name='caffe.BlobShape.dim', index=0, number=1, type=3, cpp_type=2, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\020\001'))), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=22, serialized_end=50, ) _BLOBPROTO = _descriptor.Descriptor( name='BlobProto', full_name='caffe.BlobProto', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='shape', full_name='caffe.BlobProto.shape', index=0, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='data', full_name='caffe.BlobProto.data', index=1, number=5, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\020\001'))), _descriptor.FieldDescriptor( name='diff', full_name='caffe.BlobProto.diff', index=2, number=6, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\020\001'))), _descriptor.FieldDescriptor( name='double_data', full_name='caffe.BlobProto.double_data', index=3, number=8, type=1, cpp_type=5, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\020\001'))), _descriptor.FieldDescriptor( name='double_diff', full_name='caffe.BlobProto.double_diff', index=4, number=9, type=1, cpp_type=5, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\020\001'))), _descriptor.FieldDescriptor( name='num', full_name='caffe.BlobProto.num', index=5, number=1, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='channels', full_name='caffe.BlobProto.channels', index=6, number=2, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='height', full_name='caffe.BlobProto.height', index=7, number=3, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='width', full_name='caffe.BlobProto.width', index=8, number=4, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=53, serialized_end=257, ) _BLOBPROTOVECTOR = _descriptor.Descriptor( name='BlobProtoVector', full_name='caffe.BlobProtoVector', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='blobs', full_name='caffe.BlobProtoVector.blobs', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=259, serialized_end=309, ) _DATUM = _descriptor.Descriptor( name='Datum', full_name='caffe.Datum', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='channels', full_name='caffe.Datum.channels', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='height', full_name='caffe.Datum.height', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='width', full_name='caffe.Datum.width', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='data', full_name='caffe.Datum.data', index=3, number=4, type=12, cpp_type=9, label=1, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='label', full_name='caffe.Datum.label', index=4, number=5, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='float_data', full_name='caffe.Datum.float_data', index=5, number=6, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='encoded', full_name='caffe.Datum.encoded', index=6, number=7, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=312, serialized_end=441, ) _LABELMAPITEM = _descriptor.Descriptor( name='LabelMapItem', full_name='caffe.LabelMapItem', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='caffe.LabelMapItem.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='label', full_name='caffe.LabelMapItem.label', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='display_name', full_name='caffe.LabelMapItem.display_name', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=443, serialized_end=508, ) _LABELMAP = _descriptor.Descriptor( name='LabelMap', full_name='caffe.LabelMap', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='item', full_name='caffe.LabelMap.item', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=510, serialized_end=555, ) _SAMPLER = _descriptor.Descriptor( name='Sampler', full_name='caffe.Sampler', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='min_scale', full_name='caffe.Sampler.min_scale', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='max_scale', full_name='caffe.Sampler.max_scale', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='min_aspect_ratio', full_name='caffe.Sampler.min_aspect_ratio', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='max_aspect_ratio', full_name='caffe.Sampler.max_aspect_ratio', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=557, serialized_end=668, ) _SAMPLECONSTRAINT = _descriptor.Descriptor( name='SampleConstraint', full_name='caffe.SampleConstraint', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='min_jaccard_overlap', full_name='caffe.SampleConstraint.min_jaccard_overlap', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='max_jaccard_overlap', full_name='caffe.SampleConstraint.max_jaccard_overlap', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='min_sample_coverage', full_name='caffe.SampleConstraint.min_sample_coverage', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='max_sample_coverage', full_name='caffe.SampleConstraint.max_sample_coverage', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='min_object_coverage', full_name='caffe.SampleConstraint.min_object_coverage', index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='max_object_coverage', full_name='caffe.SampleConstraint.max_object_coverage', index=5, number=6, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=671, serialized_end=863, ) _BATCHSAMPLER = _descriptor.Descriptor( name='BatchSampler', full_name='caffe.BatchSampler', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='use_original_image', full_name='caffe.BatchSampler.use_original_image', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='sampler', full_name='caffe.BatchSampler.sampler', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='sample_constraint', full_name='caffe.BatchSampler.sample_constraint', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='max_sample', full_name='caffe.BatchSampler.max_sample', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='max_trials', full_name='caffe.BatchSampler.max_trials', index=4, number=5, type=13, cpp_type=3, label=1, has_default_value=True, default_value=100, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=866, serialized_end=1044, ) _EMITCONSTRAINT = _descriptor.Descriptor( name='EmitConstraint', full_name='caffe.EmitConstraint', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='emit_type', full_name='caffe.EmitConstraint.emit_type', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='emit_overlap', full_name='caffe.EmitConstraint.emit_overlap', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _EMITCONSTRAINT_EMITTYPE, ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=1047, serialized_end=1185, ) _NORMALIZEDBBOX = _descriptor.Descriptor( name='NormalizedBBox', full_name='caffe.NormalizedBBox', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='xmin', full_name='caffe.NormalizedBBox.xmin', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='ymin', full_name='caffe.NormalizedBBox.ymin', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='xmax', full_name='caffe.NormalizedBBox.xmax', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='ymax', full_name='caffe.NormalizedBBox.ymax', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='label', full_name='caffe.NormalizedBBox.label', index=4, number=5, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='difficult', full_name='caffe.NormalizedBBox.difficult', index=5, number=6, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='score', full_name='caffe.NormalizedBBox.score', index=6, number=7, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='size', full_name='caffe.NormalizedBBox.size', index=7, number=8, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=1188, serialized_end=1323, ) _NORMALIZEDRBOX = _descriptor.Descriptor( name='NormalizedRBox', full_name='caffe.NormalizedRBox', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='x1', full_name='caffe.NormalizedRBox.x1', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='y1', full_name='caffe.NormalizedRBox.y1', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='x2', full_name='caffe.NormalizedRBox.x2', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='y2', full_name='caffe.NormalizedRBox.y2', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='h', full_name='caffe.NormalizedRBox.h', index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='difficult', full_name='caffe.NormalizedRBox.difficult', index=5, number=6, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='score', full_name='caffe.NormalizedRBox.score', index=6, number=7, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='size', full_name='caffe.NormalizedRBox.size', index=7, number=8, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=1325, serialized_end=1448, ) _NORMALIZEDPOLYGON = _descriptor.Descriptor( name='NormalizedPolygon', full_name='caffe.NormalizedPolygon', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='x1', full_name='caffe.NormalizedPolygon.x1', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='y1', full_name='caffe.NormalizedPolygon.y1', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='x2', full_name='caffe.NormalizedPolygon.x2', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='y2', full_name='caffe.NormalizedPolygon.y2', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='x3', full_name='caffe.NormalizedPolygon.x3', index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='y3', full_name='caffe.NormalizedPolygon.y3', index=5, number=6, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='x4', full_name='caffe.NormalizedPolygon.x4', index=6, number=7, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='y4', full_name='caffe.NormalizedPolygon.y4', index=7, number=8, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='difficult', full_name='caffe.NormalizedPolygon.difficult', index=8, number=9, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='score', full_name='caffe.NormalizedPolygon.score', index=9, number=10, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='size', full_name='caffe.NormalizedPolygon.size', index=10, number=11, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=1451, serialized_end=1614, ) _ANNOTATION = _descriptor.Descriptor( name='Annotation', full_name='caffe.Annotation', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='instance_id', full_name='caffe.Annotation.instance_id', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='bbox', full_name='caffe.Annotation.bbox', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='rbox', full_name='caffe.Annotation.rbox', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='polygon', full_name='caffe.Annotation.polygon', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=1617, serialized_end=1770, ) _ANNOTATIONGROUP = _descriptor.Descriptor( name='AnnotationGroup', full_name='caffe.AnnotationGroup', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='group_label', full_name='caffe.AnnotationGroup.group_label', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='annotation', full_name='caffe.AnnotationGroup.annotation', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=1772, serialized_end=1849, ) _ANNOTATEDDATUM = _descriptor.Descriptor( name='AnnotatedDatum', full_name='caffe.AnnotatedDatum', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='datum', full_name='caffe.AnnotatedDatum.datum', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='type', full_name='caffe.AnnotatedDatum.type', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='annotation_group', full_name='caffe.AnnotatedDatum.annotation_group', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _ANNOTATEDDATUM_ANNOTATIONTYPE, ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=1852, serialized_end=2027, ) _FILLERPARAMETER = _descriptor.Descriptor( name='FillerParameter', full_name='caffe.FillerParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='type', full_name='caffe.FillerParameter.type', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=True, default_value=_b("constant").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='value', full_name='caffe.FillerParameter.value', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='min', full_name='caffe.FillerParameter.min', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='max', full_name='caffe.FillerParameter.max', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='mean', full_name='caffe.FillerParameter.mean', index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='std', full_name='caffe.FillerParameter.std', index=5, number=6, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='sparse', full_name='caffe.FillerParameter.sparse', index=6, number=7, type=5, cpp_type=1, label=1, has_default_value=True, default_value=-1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='variance_norm', full_name='caffe.FillerParameter.variance_norm', index=7, number=8, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _FILLERPARAMETER_VARIANCENORM, ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=2030, serialized_end=2296, ) _NETPARAMETER = _descriptor.Descriptor( name='NetParameter', full_name='caffe.NetParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='caffe.NetParameter.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='input', full_name='caffe.NetParameter.input', index=1, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='input_shape', full_name='caffe.NetParameter.input_shape', index=2, number=8, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='input_dim', full_name='caffe.NetParameter.input_dim', index=3, number=4, type=5, cpp_type=1, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='force_backward', full_name='caffe.NetParameter.force_backward', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='state', full_name='caffe.NetParameter.state', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='debug_info', full_name='caffe.NetParameter.debug_info', index=6, number=7, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='layer', full_name='caffe.NetParameter.layer', index=7, number=100, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='layers', full_name='caffe.NetParameter.layers', index=8, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=2299, serialized_end=2569, ) _SOLVERPARAMETER = _descriptor.Descriptor( name='SolverParameter', full_name='caffe.SolverParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='net', full_name='caffe.SolverParameter.net', index=0, number=24, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='net_param', full_name='caffe.SolverParameter.net_param', index=1, number=25, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='train_net', full_name='caffe.SolverParameter.train_net', index=2, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='test_net', full_name='caffe.SolverParameter.test_net', index=3, number=2, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='train_net_param', full_name='caffe.SolverParameter.train_net_param', index=4, number=21, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='test_net_param', full_name='caffe.SolverParameter.test_net_param', index=5, number=22, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='train_state', full_name='caffe.SolverParameter.train_state', index=6, number=26, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='test_state', full_name='caffe.SolverParameter.test_state', index=7, number=27, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='eval_type', full_name='caffe.SolverParameter.eval_type', index=8, number=41, type=9, cpp_type=9, label=1, has_default_value=True, default_value=_b("classification").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='ap_version', full_name='caffe.SolverParameter.ap_version', index=9, number=42, type=9, cpp_type=9, label=1, has_default_value=True, default_value=_b("Integral").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='test_iter', full_name='caffe.SolverParameter.test_iter', index=10, number=3, type=5, cpp_type=1, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='test_interval', full_name='caffe.SolverParameter.test_interval', index=11, number=4, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='test_compute_loss', full_name='caffe.SolverParameter.test_compute_loss', index=12, number=19, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='test_initialization', full_name='caffe.SolverParameter.test_initialization', index=13, number=32, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='base_lr', full_name='caffe.SolverParameter.base_lr', index=14, number=5, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='display', full_name='caffe.SolverParameter.display', index=15, number=6, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='average_loss', full_name='caffe.SolverParameter.average_loss', index=16, number=33, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='max_iter', full_name='caffe.SolverParameter.max_iter', index=17, number=7, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='iter_size', full_name='caffe.SolverParameter.iter_size', index=18, number=36, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='lr_policy', full_name='caffe.SolverParameter.lr_policy', index=19, number=8, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='gamma', full_name='caffe.SolverParameter.gamma', index=20, number=9, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='power', full_name='caffe.SolverParameter.power', index=21, number=10, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='momentum', full_name='caffe.SolverParameter.momentum', index=22, number=11, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='weight_decay', full_name='caffe.SolverParameter.weight_decay', index=23, number=12, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='regularization_type', full_name='caffe.SolverParameter.regularization_type', index=24, number=29, type=9, cpp_type=9, label=1, has_default_value=True, default_value=_b("L2").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='stepsize', full_name='caffe.SolverParameter.stepsize', index=25, number=13, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='stepvalue', full_name='caffe.SolverParameter.stepvalue', index=26, number=34, type=5, cpp_type=1, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='plateau_winsize', full_name='caffe.SolverParameter.plateau_winsize', index=27, number=43, type=5, cpp_type=1, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='clip_gradients', full_name='caffe.SolverParameter.clip_gradients', index=28, number=35, type=2, cpp_type=6, label=1, has_default_value=True, default_value=-1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='snapshot', full_name='caffe.SolverParameter.snapshot', index=29, number=14, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='snapshot_prefix', full_name='caffe.SolverParameter.snapshot_prefix', index=30, number=15, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='snapshot_diff', full_name='caffe.SolverParameter.snapshot_diff', index=31, number=16, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='snapshot_format', full_name='caffe.SolverParameter.snapshot_format', index=32, number=37, type=14, cpp_type=8, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='solver_mode', full_name='caffe.SolverParameter.solver_mode', index=33, number=17, type=14, cpp_type=8, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='device_id', full_name='caffe.SolverParameter.device_id', index=34, number=18, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='random_seed', full_name='caffe.SolverParameter.random_seed', index=35, number=20, type=3, cpp_type=2, label=1, has_default_value=True, default_value=-1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='type', full_name='caffe.SolverParameter.type', index=36, number=40, type=9, cpp_type=9, label=1, has_default_value=True, default_value=_b("SGD").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='delta', full_name='caffe.SolverParameter.delta', index=37, number=31, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1e-08, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='momentum2', full_name='caffe.SolverParameter.momentum2', index=38, number=39, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0.999, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='rms_decay', full_name='caffe.SolverParameter.rms_decay', index=39, number=38, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0.99, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='debug_info', full_name='caffe.SolverParameter.debug_info', index=40, number=23, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='snapshot_after_train', full_name='caffe.SolverParameter.snapshot_after_train', index=41, number=28, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='solver_type', full_name='caffe.SolverParameter.solver_type', index=42, number=30, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _SOLVERPARAMETER_SNAPSHOTFORMAT, _SOLVERPARAMETER_SOLVERMODE, _SOLVERPARAMETER_SOLVERTYPE, ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=2572, serialized_end=3976, ) _SOLVERSTATE = _descriptor.Descriptor( name='SolverState', full_name='caffe.SolverState', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='iter', full_name='caffe.SolverState.iter', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='learned_net', full_name='caffe.SolverState.learned_net', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='history', full_name='caffe.SolverState.history', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='current_step', full_name='caffe.SolverState.current_step', index=3, number=4, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='minimum_loss', full_name='caffe.SolverState.minimum_loss', index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1e+38, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='iter_last_event', full_name='caffe.SolverState.iter_last_event', index=5, number=6, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=3979, serialized_end=4144, ) _NETSTATE = _descriptor.Descriptor( name='NetState', full_name='caffe.NetState', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='phase', full_name='caffe.NetState.phase', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='level', full_name='caffe.NetState.level', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='stage', full_name='caffe.NetState.stage', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=4146, serialized_end=4224, ) _NETSTATERULE = _descriptor.Descriptor( name='NetStateRule', full_name='caffe.NetStateRule', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='phase', full_name='caffe.NetStateRule.phase', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='min_level', full_name='caffe.NetStateRule.min_level', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='max_level', full_name='caffe.NetStateRule.max_level', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='stage', full_name='caffe.NetStateRule.stage', index=3, number=4, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='not_stage', full_name='caffe.NetStateRule.not_stage', index=4, number=5, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=4226, serialized_end=4341, ) _PARAMSPEC = _descriptor.Descriptor( name='ParamSpec', full_name='caffe.ParamSpec', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='caffe.ParamSpec.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='share_mode', full_name='caffe.ParamSpec.share_mode', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='lr_mult', full_name='caffe.ParamSpec.lr_mult', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='decay_mult', full_name='caffe.ParamSpec.decay_mult', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _PARAMSPEC_DIMCHECKMODE, ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=4344, serialized_end=4507, ) _LAYERPARAMETER = _descriptor.Descriptor( name='LayerParameter', full_name='caffe.LayerParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='caffe.LayerParameter.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='type', full_name='caffe.LayerParameter.type', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='bottom', full_name='caffe.LayerParameter.bottom', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='top', full_name='caffe.LayerParameter.top', index=3, number=4, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='phase', full_name='caffe.LayerParameter.phase', index=4, number=10, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='loss_weight', full_name='caffe.LayerParameter.loss_weight', index=5, number=5, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='param', full_name='caffe.LayerParameter.param', index=6, number=6, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='blobs', full_name='caffe.LayerParameter.blobs', index=7, number=7, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='propagate_down', full_name='caffe.LayerParameter.propagate_down', index=8, number=11, type=8, cpp_type=7, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='include', full_name='caffe.LayerParameter.include', index=9, number=8, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='exclude', full_name='caffe.LayerParameter.exclude', index=10, number=9, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='transform_param', full_name='caffe.LayerParameter.transform_param', index=11, number=100, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='loss_param', full_name='caffe.LayerParameter.loss_param', index=12, number=101, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='accuracy_param', full_name='caffe.LayerParameter.accuracy_param', index=13, number=102, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='annotated_data_param', full_name='caffe.LayerParameter.annotated_data_param', index=14, number=200, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='argmax_param', full_name='caffe.LayerParameter.argmax_param', index=15, number=103, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='batch_norm_param', full_name='caffe.LayerParameter.batch_norm_param', index=16, number=139, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='bias_param', full_name='caffe.LayerParameter.bias_param', index=17, number=141, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='concat_param', full_name='caffe.LayerParameter.concat_param', index=18, number=104, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='contrastive_loss_param', full_name='caffe.LayerParameter.contrastive_loss_param', index=19, number=105, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='convolution_param', full_name='caffe.LayerParameter.convolution_param', index=20, number=106, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='crop_param', full_name='caffe.LayerParameter.crop_param', index=21, number=144, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='ctc_decoder_param', full_name='caffe.LayerParameter.ctc_decoder_param', index=22, number=149, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='ctc_loss_param', full_name='caffe.LayerParameter.ctc_loss_param', index=23, number=148, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='data_param', full_name='caffe.LayerParameter.data_param', index=24, number=107, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='detection_evaluate_param', full_name='caffe.LayerParameter.detection_evaluate_param', index=25, number=205, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='detection_output_param', full_name='caffe.LayerParameter.detection_output_param', index=26, number=204, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='dropout_param', full_name='caffe.LayerParameter.dropout_param', index=27, number=108, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='dummy_data_param', full_name='caffe.LayerParameter.dummy_data_param', index=28, number=109, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='eltwise_param', full_name='caffe.LayerParameter.eltwise_param', index=29, number=110, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='elu_param', full_name='caffe.LayerParameter.elu_param', index=30, number=140, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='embed_param', full_name='caffe.LayerParameter.embed_param', index=31, number=137, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='exp_param', full_name='caffe.LayerParameter.exp_param', index=32, number=111, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='flatten_param', full_name='caffe.LayerParameter.flatten_param', index=33, number=135, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='hdf5_data_param', full_name='caffe.LayerParameter.hdf5_data_param', index=34, number=112, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='hdf5_output_param', full_name='caffe.LayerParameter.hdf5_output_param', index=35, number=113, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='hinge_loss_param', full_name='caffe.LayerParameter.hinge_loss_param', index=36, number=114, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='image_data_param', full_name='caffe.LayerParameter.image_data_param', index=37, number=115, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='infogain_loss_param', full_name='caffe.LayerParameter.infogain_loss_param', index=38, number=116, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='inner_product_param', full_name='caffe.LayerParameter.inner_product_param', index=39, number=117, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='input_param', full_name='caffe.LayerParameter.input_param', index=40, number=143, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='log_param', full_name='caffe.LayerParameter.log_param', index=41, number=134, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='lrn_param', full_name='caffe.LayerParameter.lrn_param', index=42, number=118, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='memory_data_param', full_name='caffe.LayerParameter.memory_data_param', index=43, number=119, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='multibox_loss_param', full_name='caffe.LayerParameter.multibox_loss_param', index=44, number=201, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='mvn_param', full_name='caffe.LayerParameter.mvn_param', index=45, number=120, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='norm_param', full_name='caffe.LayerParameter.norm_param', index=46, number=206, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='parameter_param', full_name='caffe.LayerParameter.parameter_param', index=47, number=145, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='permute_param', full_name='caffe.LayerParameter.permute_param', index=48, number=202, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='pooling_param', full_name='caffe.LayerParameter.pooling_param', index=49, number=121, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='power_param', full_name='caffe.LayerParameter.power_param', index=50, number=122, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='prelu_param', full_name='caffe.LayerParameter.prelu_param', index=51, number=131, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='prior_box_param', full_name='caffe.LayerParameter.prior_box_param', index=52, number=203, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='python_param', full_name='caffe.LayerParameter.python_param', index=53, number=130, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='recurrent_param', full_name='caffe.LayerParameter.recurrent_param', index=54, number=146, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='reduction_param', full_name='caffe.LayerParameter.reduction_param', index=55, number=136, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='relu_param', full_name='caffe.LayerParameter.relu_param', index=56, number=123, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='reshape_param', full_name='caffe.LayerParameter.reshape_param', index=57, number=133, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='roi_pooling_param', full_name='caffe.LayerParameter.roi_pooling_param', index=58, number=150, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='reverse_param', full_name='caffe.LayerParameter.reverse_param', index=59, number=147, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='scale_param', full_name='caffe.LayerParameter.scale_param', index=60, number=142, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='sigmoid_param', full_name='caffe.LayerParameter.sigmoid_param', index=61, number=124, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='softmax_param', full_name='caffe.LayerParameter.softmax_param', index=62, number=125, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='spp_param', full_name='caffe.LayerParameter.spp_param', index=63, number=132, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='slice_param', full_name='caffe.LayerParameter.slice_param', index=64, number=126, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tanh_param', full_name='caffe.LayerParameter.tanh_param', index=65, number=127, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='threshold_param', full_name='caffe.LayerParameter.threshold_param', index=66, number=128, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tile_param', full_name='caffe.LayerParameter.tile_param', index=67, number=138, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='video_data_param', full_name='caffe.LayerParameter.video_data_param', index=68, number=207, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='window_data_param', full_name='caffe.LayerParameter.window_data_param', index=69, number=129, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='smooth_l1_loss_param', full_name='caffe.LayerParameter.smooth_l1_loss_param', index=70, number=8266712, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='proposal_param', full_name='caffe.LayerParameter.proposal_param', index=71, number=8266713, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=4510, serialized_end=7860, ) _PROPOSALPARAMETER = _descriptor.Descriptor( name='ProposalParameter', full_name='caffe.ProposalParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='feat_stride', full_name='caffe.ProposalParameter.feat_stride', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=True, default_value=16, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='base_size', full_name='caffe.ProposalParameter.base_size', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=True, default_value=16, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='min_size', full_name='caffe.ProposalParameter.min_size', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=True, default_value=16, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='ratio', full_name='caffe.ProposalParameter.ratio', index=3, number=4, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='scale', full_name='caffe.ProposalParameter.scale', index=4, number=5, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='pre_nms_topn', full_name='caffe.ProposalParameter.pre_nms_topn', index=5, number=6, type=13, cpp_type=3, label=1, has_default_value=True, default_value=6000, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='post_nms_topn', full_name='caffe.ProposalParameter.post_nms_topn', index=6, number=7, type=13, cpp_type=3, label=1, has_default_value=True, default_value=300, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='nms_thresh', full_name='caffe.ProposalParameter.nms_thresh', index=7, number=8, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0.7, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=7863, serialized_end=8063, ) _SMOOTHL1LOSSPARAMETER = _descriptor.Descriptor( name='SmoothL1LossParameter', full_name='caffe.SmoothL1LossParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='sigma', full_name='caffe.SmoothL1LossParameter.sigma', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=8065, serialized_end=8106, ) _TRANSFORMATIONPARAMETER = _descriptor.Descriptor( name='TransformationParameter', full_name='caffe.TransformationParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='scale', full_name='caffe.TransformationParameter.scale', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='mirror', full_name='caffe.TransformationParameter.mirror', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='crop_size', full_name='caffe.TransformationParameter.crop_size', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='crop_h', full_name='caffe.TransformationParameter.crop_h', index=3, number=11, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='crop_w', full_name='caffe.TransformationParameter.crop_w', index=4, number=12, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='mean_file', full_name='caffe.TransformationParameter.mean_file', index=5, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='mean_value', full_name='caffe.TransformationParameter.mean_value', index=6, number=5, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='force_color', full_name='caffe.TransformationParameter.force_color', index=7, number=6, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='force_gray', full_name='caffe.TransformationParameter.force_gray', index=8, number=7, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='resize_param', full_name='caffe.TransformationParameter.resize_param', index=9, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='noise_param', full_name='caffe.TransformationParameter.noise_param', index=10, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='distort_param', full_name='caffe.TransformationParameter.distort_param', index=11, number=13, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='expand_param', full_name='caffe.TransformationParameter.expand_param', index=12, number=14, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='emit_constraint', full_name='caffe.TransformationParameter.emit_constraint', index=13, number=10, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=8109, serialized_end=8567, ) _RESIZEPARAMETER = _descriptor.Descriptor( name='ResizeParameter', full_name='caffe.ResizeParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='prob', full_name='caffe.ResizeParameter.prob', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='resize_mode', full_name='caffe.ResizeParameter.resize_mode', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='height', full_name='caffe.ResizeParameter.height', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='width', full_name='caffe.ResizeParameter.width', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='height_scale', full_name='caffe.ResizeParameter.height_scale', index=4, number=8, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='width_scale', full_name='caffe.ResizeParameter.width_scale', index=5, number=9, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='pad_mode', full_name='caffe.ResizeParameter.pad_mode', index=6, number=5, type=14, cpp_type=8, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='pad_value', full_name='caffe.ResizeParameter.pad_value', index=7, number=6, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='interp_mode', full_name='caffe.ResizeParameter.interp_mode', index=8, number=7, type=14, cpp_type=8, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _RESIZEPARAMETER_RESIZE_MODE, _RESIZEPARAMETER_PAD_MODE, _RESIZEPARAMETER_INTERP_MODE, ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=8570, serialized_end=9098, ) _SALTPEPPERPARAMETER = _descriptor.Descriptor( name='SaltPepperParameter', full_name='caffe.SaltPepperParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='fraction', full_name='caffe.SaltPepperParameter.fraction', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='value', full_name='caffe.SaltPepperParameter.value', index=1, number=2, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=9100, serialized_end=9157, ) _NOISEPARAMETER = _descriptor.Descriptor( name='NoiseParameter', full_name='caffe.NoiseParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='prob', full_name='caffe.NoiseParameter.prob', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='hist_eq', full_name='caffe.NoiseParameter.hist_eq', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='inverse', full_name='caffe.NoiseParameter.inverse', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='decolorize', full_name='caffe.NoiseParameter.decolorize', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='gauss_blur', full_name='caffe.NoiseParameter.gauss_blur', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='jpeg', full_name='caffe.NoiseParameter.jpeg', index=5, number=6, type=2, cpp_type=6, label=1, has_default_value=True, default_value=-1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='posterize', full_name='caffe.NoiseParameter.posterize', index=6, number=7, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='erode', full_name='caffe.NoiseParameter.erode', index=7, number=8, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='saltpepper', full_name='caffe.NoiseParameter.saltpepper', index=8, number=9, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='saltpepper_param', full_name='caffe.NoiseParameter.saltpepper_param', index=9, number=10, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='clahe', full_name='caffe.NoiseParameter.clahe', index=10, number=11, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='convert_to_hsv', full_name='caffe.NoiseParameter.convert_to_hsv', index=11, number=12, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='convert_to_lab', full_name='caffe.NoiseParameter.convert_to_lab', index=12, number=13, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=9160, serialized_end=9526, ) _DISTORTIONPARAMETER = _descriptor.Descriptor( name='DistortionParameter', full_name='caffe.DistortionParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='brightness_prob', full_name='caffe.DistortionParameter.brightness_prob', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='brightness_delta', full_name='caffe.DistortionParameter.brightness_delta', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='contrast_prob', full_name='caffe.DistortionParameter.contrast_prob', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='contrast_lower', full_name='caffe.DistortionParameter.contrast_lower', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='contrast_upper', full_name='caffe.DistortionParameter.contrast_upper', index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='hue_prob', full_name='caffe.DistortionParameter.hue_prob', index=5, number=6, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='hue_delta', full_name='caffe.DistortionParameter.hue_delta', index=6, number=7, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='saturation_prob', full_name='caffe.DistortionParameter.saturation_prob', index=7, number=8, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='saturation_lower', full_name='caffe.DistortionParameter.saturation_lower', index=8, number=9, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='saturation_upper', full_name='caffe.DistortionParameter.saturation_upper', index=9, number=10, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='random_order_prob', full_name='caffe.DistortionParameter.random_order_prob', index=10, number=11, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=9529, serialized_end=9846, ) _EXPANSIONPARAMETER = _descriptor.Descriptor( name='ExpansionParameter', full_name='caffe.ExpansionParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='prob', full_name='caffe.ExpansionParameter.prob', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='max_expand_ratio', full_name='caffe.ExpansionParameter.max_expand_ratio', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=9848, serialized_end=9914, ) _LOSSPARAMETER = _descriptor.Descriptor( name='LossParameter', full_name='caffe.LossParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='ignore_label', full_name='caffe.LossParameter.ignore_label', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='normalization', full_name='caffe.LossParameter.normalization', index=1, number=3, type=14, cpp_type=8, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='normalize', full_name='caffe.LossParameter.normalize', index=2, number=2, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _LOSSPARAMETER_NORMALIZATIONMODE, ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=9917, serialized_end=10111, ) _ACCURACYPARAMETER = _descriptor.Descriptor( name='AccuracyParameter', full_name='caffe.AccuracyParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='top_k', full_name='caffe.AccuracyParameter.top_k', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='axis', full_name='caffe.AccuracyParameter.axis', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='ignore_label', full_name='caffe.AccuracyParameter.ignore_label', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=10113, serialized_end=10189, ) _ANNOTATEDDATAPARAMETER = _descriptor.Descriptor( name='AnnotatedDataParameter', full_name='caffe.AnnotatedDataParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='batch_sampler', full_name='caffe.AnnotatedDataParameter.batch_sampler', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='label_map_file', full_name='caffe.AnnotatedDataParameter.label_map_file', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='anno_type', full_name='caffe.AnnotatedDataParameter.anno_type', index=2, number=3, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=10192, serialized_end=10341, ) _ARGMAXPARAMETER = _descriptor.Descriptor( name='ArgMaxParameter', full_name='caffe.ArgMaxParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='out_max_val', full_name='caffe.ArgMaxParameter.out_max_val', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='top_k', full_name='caffe.ArgMaxParameter.top_k', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='axis', full_name='caffe.ArgMaxParameter.axis', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=10343, serialized_end=10420, ) _CONCATPARAMETER = _descriptor.Descriptor( name='ConcatParameter', full_name='caffe.ConcatParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='axis', full_name='caffe.ConcatParameter.axis', index=0, number=2, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='concat_dim', full_name='caffe.ConcatParameter.concat_dim', index=1, number=1, type=13, cpp_type=3, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=10422, serialized_end=10479, ) _BATCHNORMPARAMETER = _descriptor.Descriptor( name='BatchNormParameter', full_name='caffe.BatchNormParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='use_global_stats', full_name='caffe.BatchNormParameter.use_global_stats', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='moving_average_fraction', full_name='caffe.BatchNormParameter.moving_average_fraction', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0.999, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='eps', full_name='caffe.BatchNormParameter.eps', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1e-05, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=10481, serialized_end=10587, ) _BIASPARAMETER = _descriptor.Descriptor( name='BiasParameter', full_name='caffe.BiasParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='axis', full_name='caffe.BiasParameter.axis', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='num_axes', full_name='caffe.BiasParameter.num_axes', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='filler', full_name='caffe.BiasParameter.filler', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=10589, serialized_end=10682, ) _CONTRASTIVELOSSPARAMETER = _descriptor.Descriptor( name='ContrastiveLossParameter', full_name='caffe.ContrastiveLossParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='margin', full_name='caffe.ContrastiveLossParameter.margin', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='legacy_version', full_name='caffe.ContrastiveLossParameter.legacy_version', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=10684, serialized_end=10760, ) _CONVOLUTIONPARAMETER = _descriptor.Descriptor( name='ConvolutionParameter', full_name='caffe.ConvolutionParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='num_output', full_name='caffe.ConvolutionParameter.num_output', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='bias_term', full_name='caffe.ConvolutionParameter.bias_term', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='pad', full_name='caffe.ConvolutionParameter.pad', index=2, number=3, type=13, cpp_type=3, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='kernel_size', full_name='caffe.ConvolutionParameter.kernel_size', index=3, number=4, type=13, cpp_type=3, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='stride', full_name='caffe.ConvolutionParameter.stride', index=4, number=6, type=13, cpp_type=3, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='dilation', full_name='caffe.ConvolutionParameter.dilation', index=5, number=18, type=13, cpp_type=3, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='pad_h', full_name='caffe.ConvolutionParameter.pad_h', index=6, number=9, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='pad_w', full_name='caffe.ConvolutionParameter.pad_w', index=7, number=10, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='kernel_h', full_name='caffe.ConvolutionParameter.kernel_h', index=8, number=11, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='kernel_w', full_name='caffe.ConvolutionParameter.kernel_w', index=9, number=12, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='stride_h', full_name='caffe.ConvolutionParameter.stride_h', index=10, number=13, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='stride_w', full_name='caffe.ConvolutionParameter.stride_w', index=11, number=14, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='group', full_name='caffe.ConvolutionParameter.group', index=12, number=5, type=13, cpp_type=3, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='weight_filler', full_name='caffe.ConvolutionParameter.weight_filler', index=13, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='bias_filler', full_name='caffe.ConvolutionParameter.bias_filler', index=14, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='engine', full_name='caffe.ConvolutionParameter.engine', index=15, number=15, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='axis', full_name='caffe.ConvolutionParameter.axis', index=16, number=16, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='force_nd_im2col', full_name='caffe.ConvolutionParameter.force_nd_im2col', index=17, number=17, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _CONVOLUTIONPARAMETER_ENGINE, ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=10763, serialized_end=11271, ) _CROPPARAMETER = _descriptor.Descriptor( name='CropParameter', full_name='caffe.CropParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='axis', full_name='caffe.CropParameter.axis', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=True, default_value=2, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='offset', full_name='caffe.CropParameter.offset', index=1, number=2, type=13, cpp_type=3, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=11273, serialized_end=11321, ) _CTCDECODERPARAMETER = _descriptor.Descriptor( name='CTCDecoderParameter', full_name='caffe.CTCDecoderParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='blank_index', full_name='caffe.CTCDecoderParameter.blank_index', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=True, default_value=-1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='ctc_merge_repeated', full_name='caffe.CTCDecoderParameter.ctc_merge_repeated', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=11323, serialized_end=11403, ) _CTCLOSSPARAMETER = _descriptor.Descriptor( name='CTCLossParameter', full_name='caffe.CTCLossParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='output_delay', full_name='caffe.CTCLossParameter.output_delay', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='blank_index', full_name='caffe.CTCLossParameter.blank_index', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=True, default_value=-1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='preprocess_collapse_repeated', full_name='caffe.CTCLossParameter.preprocess_collapse_repeated', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='ctc_merge_repeated', full_name='caffe.CTCLossParameter.ctc_merge_repeated', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='loss_calculation_t', full_name='caffe.CTCLossParameter.loss_calculation_t', index=4, number=5, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=11406, serialized_end=11584, ) _DATAPARAMETER = _descriptor.Descriptor( name='DataParameter', full_name='caffe.DataParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='source', full_name='caffe.DataParameter.source', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='batch_size', full_name='caffe.DataParameter.batch_size', index=1, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='rand_skip', full_name='caffe.DataParameter.rand_skip', index=2, number=7, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='backend', full_name='caffe.DataParameter.backend', index=3, number=8, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='scale', full_name='caffe.DataParameter.scale', index=4, number=2, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='mean_file', full_name='caffe.DataParameter.mean_file', index=5, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='crop_size', full_name='caffe.DataParameter.crop_size', index=6, number=5, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='mirror', full_name='caffe.DataParameter.mirror', index=7, number=6, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='force_encoded_color', full_name='caffe.DataParameter.force_encoded_color', index=8, number=9, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='prefetch', full_name='caffe.DataParameter.prefetch', index=9, number=10, type=13, cpp_type=3, label=1, has_default_value=True, default_value=4, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _DATAPARAMETER_DB, ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=11587, serialized_end=11879, ) _DETECTIONEVALUATEPARAMETER = _descriptor.Descriptor( name='DetectionEvaluateParameter', full_name='caffe.DetectionEvaluateParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='num_classes', full_name='caffe.DetectionEvaluateParameter.num_classes', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='background_label_id', full_name='caffe.DetectionEvaluateParameter.background_label_id', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='overlap_threshold', full_name='caffe.DetectionEvaluateParameter.overlap_threshold', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0.5, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='evaluate_difficult_gt', full_name='caffe.DetectionEvaluateParameter.evaluate_difficult_gt', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='name_size_file', full_name='caffe.DetectionEvaluateParameter.name_size_file', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='resize_param', full_name='caffe.DetectionEvaluateParameter.resize_param', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='use_polygon', full_name='caffe.DetectionEvaluateParameter.use_polygon', index=6, number=7, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=11882, serialized_end=12129, ) _NONMAXIMUMSUPPRESSIONPARAMETER = _descriptor.Descriptor( name='NonMaximumSuppressionParameter', full_name='caffe.NonMaximumSuppressionParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='nms_threshold', full_name='caffe.NonMaximumSuppressionParameter.nms_threshold', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0.3, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='top_k', full_name='caffe.NonMaximumSuppressionParameter.top_k', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='eta', full_name='caffe.NonMaximumSuppressionParameter.eta', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=12131, serialized_end=12222, ) _SAVEOUTPUTPARAMETER = _descriptor.Descriptor( name='SaveOutputParameter', full_name='caffe.SaveOutputParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='output_directory', full_name='caffe.SaveOutputParameter.output_directory', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='output_name_prefix', full_name='caffe.SaveOutputParameter.output_name_prefix', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='output_format', full_name='caffe.SaveOutputParameter.output_format', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='label_map_file', full_name='caffe.SaveOutputParameter.label_map_file', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='name_size_file', full_name='caffe.SaveOutputParameter.name_size_file', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='num_test_image', full_name='caffe.SaveOutputParameter.num_test_image', index=5, number=6, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='resize_param', full_name='caffe.SaveOutputParameter.resize_param', index=6, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=12225, serialized_end=12441, ) _DETECTIONOUTPUTPARAMETER = _descriptor.Descriptor( name='DetectionOutputParameter', full_name='caffe.DetectionOutputParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='num_classes', full_name='caffe.DetectionOutputParameter.num_classes', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='share_location', full_name='caffe.DetectionOutputParameter.share_location', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='background_label_id', full_name='caffe.DetectionOutputParameter.background_label_id', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='nms_param', full_name='caffe.DetectionOutputParameter.nms_param', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='save_output_param', full_name='caffe.DetectionOutputParameter.save_output_param', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='code_type', full_name='caffe.DetectionOutputParameter.code_type', index=5, number=6, type=14, cpp_type=8, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='variance_encoded_in_target', full_name='caffe.DetectionOutputParameter.variance_encoded_in_target', index=6, number=8, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='keep_top_k', full_name='caffe.DetectionOutputParameter.keep_top_k', index=7, number=7, type=5, cpp_type=1, label=1, has_default_value=True, default_value=-1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='confidence_threshold', full_name='caffe.DetectionOutputParameter.confidence_threshold', index=8, number=9, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='visualize', full_name='caffe.DetectionOutputParameter.visualize', index=9, number=10, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='visualize_threshold', full_name='caffe.DetectionOutputParameter.visualize_threshold', index=10, number=11, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='save_file', full_name='caffe.DetectionOutputParameter.save_file', index=11, number=12, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='use_polygon', full_name='caffe.DetectionOutputParameter.use_polygon', index=12, number=13, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=12444, serialized_end=12926, ) _DROPOUTPARAMETER = _descriptor.Descriptor( name='DropoutParameter', full_name='caffe.DropoutParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='dropout_ratio', full_name='caffe.DropoutParameter.dropout_ratio', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0.5, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='scale_train', full_name='caffe.DropoutParameter.scale_train', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=12928, serialized_end=13001, ) _DUMMYDATAPARAMETER = _descriptor.Descriptor( name='DummyDataParameter', full_name='caffe.DummyDataParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='data_filler', full_name='caffe.DummyDataParameter.data_filler', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='shape', full_name='caffe.DummyDataParameter.shape', index=1, number=6, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='num', full_name='caffe.DummyDataParameter.num', index=2, number=2, type=13, cpp_type=3, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='channels', full_name='caffe.DummyDataParameter.channels', index=3, number=3, type=13, cpp_type=3, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='height', full_name='caffe.DummyDataParameter.height', index=4, number=4, type=13, cpp_type=3, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='width', full_name='caffe.DummyDataParameter.width', index=5, number=5, type=13, cpp_type=3, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=13004, serialized_end=13164, ) _ELTWISEPARAMETER = _descriptor.Descriptor( name='EltwiseParameter', full_name='caffe.EltwiseParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='operation', full_name='caffe.EltwiseParameter.operation', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='coeff', full_name='caffe.EltwiseParameter.coeff', index=1, number=2, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='stable_prod_grad', full_name='caffe.EltwiseParameter.stable_prod_grad', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _ELTWISEPARAMETER_ELTWISEOP, ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=13167, serialized_end=13332, ) _ELUPARAMETER = _descriptor.Descriptor( name='ELUParameter', full_name='caffe.ELUParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='alpha', full_name='caffe.ELUParameter.alpha', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=13334, serialized_end=13366, ) _EMBEDPARAMETER = _descriptor.Descriptor( name='EmbedParameter', full_name='caffe.EmbedParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='num_output', full_name='caffe.EmbedParameter.num_output', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='input_dim', full_name='caffe.EmbedParameter.input_dim', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='bias_term', full_name='caffe.EmbedParameter.bias_term', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='weight_filler', full_name='caffe.EmbedParameter.weight_filler', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='bias_filler', full_name='caffe.EmbedParameter.bias_filler', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=13369, serialized_end=13541, ) _EXPPARAMETER = _descriptor.Descriptor( name='ExpParameter', full_name='caffe.ExpParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='base', full_name='caffe.ExpParameter.base', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=True, default_value=-1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='scale', full_name='caffe.ExpParameter.scale', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='shift', full_name='caffe.ExpParameter.shift', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=13543, serialized_end=13611, ) _FLATTENPARAMETER = _descriptor.Descriptor( name='FlattenParameter', full_name='caffe.FlattenParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='axis', full_name='caffe.FlattenParameter.axis', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='end_axis', full_name='caffe.FlattenParameter.end_axis', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=True, default_value=-1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=13613, serialized_end=13670, ) _HDF5DATAPARAMETER = _descriptor.Descriptor( name='HDF5DataParameter', full_name='caffe.HDF5DataParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='source', full_name='caffe.HDF5DataParameter.source', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='batch_size', full_name='caffe.HDF5DataParameter.batch_size', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='shuffle', full_name='caffe.HDF5DataParameter.shuffle', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=13672, serialized_end=13751, ) _HDF5OUTPUTPARAMETER = _descriptor.Descriptor( name='HDF5OutputParameter', full_name='caffe.HDF5OutputParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='file_name', full_name='caffe.HDF5OutputParameter.file_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=13753, serialized_end=13793, ) _HINGELOSSPARAMETER = _descriptor.Descriptor( name='HingeLossParameter', full_name='caffe.HingeLossParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='norm', full_name='caffe.HingeLossParameter.norm', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _HINGELOSSPARAMETER_NORM, ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=13795, serialized_end=13889, ) _IMAGEDATAPARAMETER = _descriptor.Descriptor( name='ImageDataParameter', full_name='caffe.ImageDataParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='source', full_name='caffe.ImageDataParameter.source', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='batch_size', full_name='caffe.ImageDataParameter.batch_size', index=1, number=4, type=13, cpp_type=3, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='rand_skip', full_name='caffe.ImageDataParameter.rand_skip', index=2, number=7, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='shuffle', full_name='caffe.ImageDataParameter.shuffle', index=3, number=8, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='new_height', full_name='caffe.ImageDataParameter.new_height', index=4, number=9, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='new_width', full_name='caffe.ImageDataParameter.new_width', index=5, number=10, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='is_color', full_name='caffe.ImageDataParameter.is_color', index=6, number=11, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='scale', full_name='caffe.ImageDataParameter.scale', index=7, number=2, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='mean_file', full_name='caffe.ImageDataParameter.mean_file', index=8, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='crop_size', full_name='caffe.ImageDataParameter.crop_size', index=9, number=5, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='mirror', full_name='caffe.ImageDataParameter.mirror', index=10, number=6, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='root_folder', full_name='caffe.ImageDataParameter.root_folder', index=11, number=12, type=9, cpp_type=9, label=1, has_default_value=True, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=13892, serialized_end=14171, ) _INFOGAINLOSSPARAMETER = _descriptor.Descriptor( name='InfogainLossParameter', full_name='caffe.InfogainLossParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='source', full_name='caffe.InfogainLossParameter.source', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=14173, serialized_end=14212, ) _INNERPRODUCTPARAMETER = _descriptor.Descriptor( name='InnerProductParameter', full_name='caffe.InnerProductParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='num_output', full_name='caffe.InnerProductParameter.num_output', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='bias_term', full_name='caffe.InnerProductParameter.bias_term', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='weight_filler', full_name='caffe.InnerProductParameter.weight_filler', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='bias_filler', full_name='caffe.InnerProductParameter.bias_filler', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='axis', full_name='caffe.InnerProductParameter.axis', index=4, number=5, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='transpose', full_name='caffe.InnerProductParameter.transpose', index=5, number=6, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=14215, serialized_end=14418, ) _INPUTPARAMETER = _descriptor.Descriptor( name='InputParameter', full_name='caffe.InputParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='shape', full_name='caffe.InputParameter.shape', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=14420, serialized_end=14469, ) _LOGPARAMETER = _descriptor.Descriptor( name='LogParameter', full_name='caffe.LogParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='base', full_name='caffe.LogParameter.base', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=True, default_value=-1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='scale', full_name='caffe.LogParameter.scale', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='shift', full_name='caffe.LogParameter.shift', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=14471, serialized_end=14539, ) _LRNPARAMETER = _descriptor.Descriptor( name='LRNParameter', full_name='caffe.LRNParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='local_size', full_name='caffe.LRNParameter.local_size', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=True, default_value=5, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='alpha', full_name='caffe.LRNParameter.alpha', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='beta', full_name='caffe.LRNParameter.beta', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0.75, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='norm_region', full_name='caffe.LRNParameter.norm_region', index=3, number=4, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='k', full_name='caffe.LRNParameter.k', index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='engine', full_name='caffe.LRNParameter.engine', index=5, number=6, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _LRNPARAMETER_NORMREGION, _LRNPARAMETER_ENGINE, ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=14542, serialized_end=14854, ) _MEMORYDATAPARAMETER = _descriptor.Descriptor( name='MemoryDataParameter', full_name='caffe.MemoryDataParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='batch_size', full_name='caffe.MemoryDataParameter.batch_size', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='channels', full_name='caffe.MemoryDataParameter.channels', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='height', full_name='caffe.MemoryDataParameter.height', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='width', full_name='caffe.MemoryDataParameter.width', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=14856, serialized_end=14946, ) _MULTIBOXLOSSPARAMETER = _descriptor.Descriptor( name='MultiBoxLossParameter', full_name='caffe.MultiBoxLossParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='loc_loss_type', full_name='caffe.MultiBoxLossParameter.loc_loss_type', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='conf_loss_type', full_name='caffe.MultiBoxLossParameter.conf_loss_type', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='loc_weight', full_name='caffe.MultiBoxLossParameter.loc_weight', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='num_classes', full_name='caffe.MultiBoxLossParameter.num_classes', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='share_location', full_name='caffe.MultiBoxLossParameter.share_location', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='match_type', full_name='caffe.MultiBoxLossParameter.match_type', index=5, number=6, type=14, cpp_type=8, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='overlap_threshold', full_name='caffe.MultiBoxLossParameter.overlap_threshold', index=6, number=7, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0.5, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='use_prior_for_matching', full_name='caffe.MultiBoxLossParameter.use_prior_for_matching', index=7, number=8, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='background_label_id', full_name='caffe.MultiBoxLossParameter.background_label_id', index=8, number=9, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='use_difficult_gt', full_name='caffe.MultiBoxLossParameter.use_difficult_gt', index=9, number=10, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='do_neg_mining', full_name='caffe.MultiBoxLossParameter.do_neg_mining', index=10, number=11, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='neg_pos_ratio', full_name='caffe.MultiBoxLossParameter.neg_pos_ratio', index=11, number=12, type=2, cpp_type=6, label=1, has_default_value=True, default_value=3, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='neg_overlap', full_name='caffe.MultiBoxLossParameter.neg_overlap', index=12, number=13, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0.5, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='code_type', full_name='caffe.MultiBoxLossParameter.code_type', index=13, number=14, type=14, cpp_type=8, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='encode_variance_in_target', full_name='caffe.MultiBoxLossParameter.encode_variance_in_target', index=14, number=16, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='map_object_to_agnostic', full_name='caffe.MultiBoxLossParameter.map_object_to_agnostic', index=15, number=17, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='ignore_cross_boundary_bbox', full_name='caffe.MultiBoxLossParameter.ignore_cross_boundary_bbox', index=16, number=18, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='bp_inside', full_name='caffe.MultiBoxLossParameter.bp_inside', index=17, number=19, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='mining_type', full_name='caffe.MultiBoxLossParameter.mining_type', index=18, number=20, type=14, cpp_type=8, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='nms_param', full_name='caffe.MultiBoxLossParameter.nms_param', index=19, number=21, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='sample_size', full_name='caffe.MultiBoxLossParameter.sample_size', index=20, number=22, type=5, cpp_type=1, label=1, has_default_value=True, default_value=64, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='use_prior_for_nms', full_name='caffe.MultiBoxLossParameter.use_prior_for_nms', index=21, number=23, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='use_polygon', full_name='caffe.MultiBoxLossParameter.use_polygon', index=22, number=24, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _MULTIBOXLOSSPARAMETER_LOCLOSSTYPE, _MULTIBOXLOSSPARAMETER_CONFLOSSTYPE, _MULTIBOXLOSSPARAMETER_MATCHTYPE, _MULTIBOXLOSSPARAMETER_MININGTYPE, ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=14949, serialized_end=16104, ) _MVNPARAMETER = _descriptor.Descriptor( name='MVNParameter', full_name='caffe.MVNParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='normalize_variance', full_name='caffe.MVNParameter.normalize_variance', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='across_channels', full_name='caffe.MVNParameter.across_channels', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='eps', full_name='caffe.MVNParameter.eps', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1e-09, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=16106, serialized_end=16206, ) _NORMALIZEPARAMETER = _descriptor.Descriptor( name='NormalizeParameter', full_name='caffe.NormalizeParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='across_spatial', full_name='caffe.NormalizeParameter.across_spatial', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='scale_filler', full_name='caffe.NormalizeParameter.scale_filler', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='channel_shared', full_name='caffe.NormalizeParameter.channel_shared', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='eps', full_name='caffe.NormalizeParameter.eps', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1e-10, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=16209, serialized_end=16355, ) _PARAMETERPARAMETER = _descriptor.Descriptor( name='ParameterParameter', full_name='caffe.ParameterParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='shape', full_name='caffe.ParameterParameter.shape', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=16357, serialized_end=16410, ) _PERMUTEPARAMETER = _descriptor.Descriptor( name='PermuteParameter', full_name='caffe.PermuteParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='order', full_name='caffe.PermuteParameter.order', index=0, number=1, type=13, cpp_type=3, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=16412, serialized_end=16445, ) _POOLINGPARAMETER = _descriptor.Descriptor( name='PoolingParameter', full_name='caffe.PoolingParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='pool', full_name='caffe.PoolingParameter.pool', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='pad', full_name='caffe.PoolingParameter.pad', index=1, number=4, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='pad_h', full_name='caffe.PoolingParameter.pad_h', index=2, number=9, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='pad_w', full_name='caffe.PoolingParameter.pad_w', index=3, number=10, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='kernel_size', full_name='caffe.PoolingParameter.kernel_size', index=4, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='kernel_h', full_name='caffe.PoolingParameter.kernel_h', index=5, number=5, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='kernel_w', full_name='caffe.PoolingParameter.kernel_w', index=6, number=6, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='stride', full_name='caffe.PoolingParameter.stride', index=7, number=3, type=13, cpp_type=3, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='stride_h', full_name='caffe.PoolingParameter.stride_h', index=8, number=7, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='stride_w', full_name='caffe.PoolingParameter.stride_w', index=9, number=8, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='engine', full_name='caffe.PoolingParameter.engine', index=10, number=11, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='global_pooling', full_name='caffe.PoolingParameter.global_pooling', index=11, number=12, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _POOLINGPARAMETER_POOLMETHOD, _POOLINGPARAMETER_ENGINE, ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=16448, serialized_end=16866, ) _POWERPARAMETER = _descriptor.Descriptor( name='PowerParameter', full_name='caffe.PowerParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='power', full_name='caffe.PowerParameter.power', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='scale', full_name='caffe.PowerParameter.scale', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='shift', full_name='caffe.PowerParameter.shift', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=16868, serialized_end=16938, ) _PRIORBOXPARAMETER = _descriptor.Descriptor( name='PriorBoxParameter', full_name='caffe.PriorBoxParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='min_size', full_name='caffe.PriorBoxParameter.min_size', index=0, number=1, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='max_size', full_name='caffe.PriorBoxParameter.max_size', index=1, number=2, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='aspect_ratio', full_name='caffe.PriorBoxParameter.aspect_ratio', index=2, number=3, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='flip', full_name='caffe.PriorBoxParameter.flip', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='clip', full_name='caffe.PriorBoxParameter.clip', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='variance', full_name='caffe.PriorBoxParameter.variance', index=5, number=6, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='img_size', full_name='caffe.PriorBoxParameter.img_size', index=6, number=7, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='img_h', full_name='caffe.PriorBoxParameter.img_h', index=7, number=8, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='img_w', full_name='caffe.PriorBoxParameter.img_w', index=8, number=9, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='step', full_name='caffe.PriorBoxParameter.step', index=9, number=10, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='step_h', full_name='caffe.PriorBoxParameter.step_h', index=10, number=11, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='step_w', full_name='caffe.PriorBoxParameter.step_w', index=11, number=12, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='offset', full_name='caffe.PriorBoxParameter.offset', index=12, number=13, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0.5, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='denser_prior_boxes', full_name='caffe.PriorBoxParameter.denser_prior_boxes', index=13, number=14, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _PRIORBOXPARAMETER_CODETYPE, ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=16941, serialized_end=17285, ) _PYTHONPARAMETER = _descriptor.Descriptor( name='PythonParameter', full_name='caffe.PythonParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='module', full_name='caffe.PythonParameter.module', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='layer', full_name='caffe.PythonParameter.layer', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='param_str', full_name='caffe.PythonParameter.param_str', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=True, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='share_in_parallel', full_name='caffe.PythonParameter.share_in_parallel', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=17287, serialized_end=17390, ) _RECURRENTPARAMETER = _descriptor.Descriptor( name='RecurrentParameter', full_name='caffe.RecurrentParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='num_output', full_name='caffe.RecurrentParameter.num_output', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='weight_filler', full_name='caffe.RecurrentParameter.weight_filler', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='bias_filler', full_name='caffe.RecurrentParameter.bias_filler', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='debug_info', full_name='caffe.RecurrentParameter.debug_info', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='expose_hidden', full_name='caffe.RecurrentParameter.expose_hidden', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=17393, serialized_end=17585, ) _REDUCTIONPARAMETER = _descriptor.Descriptor( name='ReductionParameter', full_name='caffe.ReductionParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='operation', full_name='caffe.ReductionParameter.operation', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='axis', full_name='caffe.ReductionParameter.axis', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='coeff', full_name='caffe.ReductionParameter.coeff', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _REDUCTIONPARAMETER_REDUCTIONOP, ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=17588, serialized_end=17761, ) _RELUPARAMETER = _descriptor.Descriptor( name='ReLUParameter', full_name='caffe.ReLUParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='negative_slope', full_name='caffe.ReLUParameter.negative_slope', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='engine', full_name='caffe.ReLUParameter.engine', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _RELUPARAMETER_ENGINE, ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=17764, serialized_end=17905, ) _RESHAPEPARAMETER = _descriptor.Descriptor( name='ReshapeParameter', full_name='caffe.ReshapeParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='shape', full_name='caffe.ReshapeParameter.shape', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='axis', full_name='caffe.ReshapeParameter.axis', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='num_axes', full_name='caffe.ReshapeParameter.num_axes', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=True, default_value=-1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=17907, serialized_end=17997, ) _REVERSEPARAMETER = _descriptor.Descriptor( name='ReverseParameter', full_name='caffe.ReverseParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='axis', full_name='caffe.ReverseParameter.axis', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=17999, serialized_end=18034, ) _ROIPOOLINGPARAMETER = _descriptor.Descriptor( name='ROIPoolingParameter', full_name='caffe.ROIPoolingParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='pooled_h', full_name='caffe.ROIPoolingParameter.pooled_h', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='pooled_w', full_name='caffe.ROIPoolingParameter.pooled_w', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='spatial_scale', full_name='caffe.ROIPoolingParameter.spatial_scale', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=18036, serialized_end=18125, ) _SCALEPARAMETER = _descriptor.Descriptor( name='ScaleParameter', full_name='caffe.ScaleParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='axis', full_name='caffe.ScaleParameter.axis', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='num_axes', full_name='caffe.ScaleParameter.num_axes', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='filler', full_name='caffe.ScaleParameter.filler', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='bias_term', full_name='caffe.ScaleParameter.bias_term', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='bias_filler', full_name='caffe.ScaleParameter.bias_filler', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=18128, serialized_end=18293, ) _SIGMOIDPARAMETER = _descriptor.Descriptor( name='SigmoidParameter', full_name='caffe.SigmoidParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='engine', full_name='caffe.SigmoidParameter.engine', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _SIGMOIDPARAMETER_ENGINE, ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=18295, serialized_end=18415, ) _SLICEPARAMETER = _descriptor.Descriptor( name='SliceParameter', full_name='caffe.SliceParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='axis', full_name='caffe.SliceParameter.axis', index=0, number=3, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='slice_point', full_name='caffe.SliceParameter.slice_point', index=1, number=2, type=13, cpp_type=3, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='slice_dim', full_name='caffe.SliceParameter.slice_dim', index=2, number=1, type=13, cpp_type=3, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=18417, serialized_end=18493, ) _SOFTMAXPARAMETER = _descriptor.Descriptor( name='SoftmaxParameter', full_name='caffe.SoftmaxParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='engine', full_name='caffe.SoftmaxParameter.engine', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='axis', full_name='caffe.SoftmaxParameter.axis', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _SOFTMAXPARAMETER_ENGINE, ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=18496, serialized_end=18633, ) _TANHPARAMETER = _descriptor.Descriptor( name='TanHParameter', full_name='caffe.TanHParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='engine', full_name='caffe.TanHParameter.engine', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _TANHPARAMETER_ENGINE, ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=18635, serialized_end=18749, ) _TILEPARAMETER = _descriptor.Descriptor( name='TileParameter', full_name='caffe.TileParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='axis', full_name='caffe.TileParameter.axis', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tiles', full_name='caffe.TileParameter.tiles', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=18751, serialized_end=18798, ) _THRESHOLDPARAMETER = _descriptor.Descriptor( name='ThresholdParameter', full_name='caffe.ThresholdParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='threshold', full_name='caffe.ThresholdParameter.threshold', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=18800, serialized_end=18842, ) _VIDEODATAPARAMETER = _descriptor.Descriptor( name='VideoDataParameter', full_name='caffe.VideoDataParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='video_type', full_name='caffe.VideoDataParameter.video_type', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='device_id', full_name='caffe.VideoDataParameter.device_id', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='video_file', full_name='caffe.VideoDataParameter.video_file', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='skip_frames', full_name='caffe.VideoDataParameter.skip_frames', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _VIDEODATAPARAMETER_VIDEOTYPE, ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=18845, serialized_end=19032, ) _WINDOWDATAPARAMETER = _descriptor.Descriptor( name='WindowDataParameter', full_name='caffe.WindowDataParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='source', full_name='caffe.WindowDataParameter.source', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='scale', full_name='caffe.WindowDataParameter.scale', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='mean_file', full_name='caffe.WindowDataParameter.mean_file', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='batch_size', full_name='caffe.WindowDataParameter.batch_size', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='crop_size', full_name='caffe.WindowDataParameter.crop_size', index=4, number=5, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='mirror', full_name='caffe.WindowDataParameter.mirror', index=5, number=6, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='fg_threshold', full_name='caffe.WindowDataParameter.fg_threshold', index=6, number=7, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0.5, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='bg_threshold', full_name='caffe.WindowDataParameter.bg_threshold', index=7, number=8, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0.5, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='fg_fraction', full_name='caffe.WindowDataParameter.fg_fraction', index=8, number=9, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0.25, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='context_pad', full_name='caffe.WindowDataParameter.context_pad', index=9, number=10, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='crop_mode', full_name='caffe.WindowDataParameter.crop_mode', index=10, number=11, type=9, cpp_type=9, label=1, has_default_value=True, default_value=_b("warp").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='cache_images', full_name='caffe.WindowDataParameter.cache_images', index=11, number=12, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='root_folder', full_name='caffe.WindowDataParameter.root_folder', index=12, number=13, type=9, cpp_type=9, label=1, has_default_value=True, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=19035, serialized_end=19356, ) _SPPPARAMETER = _descriptor.Descriptor( name='SPPParameter', full_name='caffe.SPPParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='pyramid_height', full_name='caffe.SPPParameter.pyramid_height', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='pool', full_name='caffe.SPPParameter.pool', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='engine', full_name='caffe.SPPParameter.engine', index=2, number=6, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _SPPPARAMETER_POOLMETHOD, _SPPPARAMETER_ENGINE, ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=19359, serialized_end=19594, ) _V1LAYERPARAMETER = _descriptor.Descriptor( name='V1LayerParameter', full_name='caffe.V1LayerParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='bottom', full_name='caffe.V1LayerParameter.bottom', index=0, number=2, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='top', full_name='caffe.V1LayerParameter.top', index=1, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='name', full_name='caffe.V1LayerParameter.name', index=2, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='include', full_name='caffe.V1LayerParameter.include', index=3, number=32, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='exclude', full_name='caffe.V1LayerParameter.exclude', index=4, number=33, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='type', full_name='caffe.V1LayerParameter.type', index=5, number=5, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='blobs', full_name='caffe.V1LayerParameter.blobs', index=6, number=6, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='param', full_name='caffe.V1LayerParameter.param', index=7, number=1001, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='blob_share_mode', full_name='caffe.V1LayerParameter.blob_share_mode', index=8, number=1002, type=14, cpp_type=8, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='blobs_lr', full_name='caffe.V1LayerParameter.blobs_lr', index=9, number=7, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='weight_decay', full_name='caffe.V1LayerParameter.weight_decay', index=10, number=8, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='loss_weight', full_name='caffe.V1LayerParameter.loss_weight', index=11, number=35, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='accuracy_param', full_name='caffe.V1LayerParameter.accuracy_param', index=12, number=27, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='argmax_param', full_name='caffe.V1LayerParameter.argmax_param', index=13, number=23, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='concat_param', full_name='caffe.V1LayerParameter.concat_param', index=14, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='contrastive_loss_param', full_name='caffe.V1LayerParameter.contrastive_loss_param', index=15, number=40, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='convolution_param', full_name='caffe.V1LayerParameter.convolution_param', index=16, number=10, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='data_param', full_name='caffe.V1LayerParameter.data_param', index=17, number=11, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='dropout_param', full_name='caffe.V1LayerParameter.dropout_param', index=18, number=12, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='dummy_data_param', full_name='caffe.V1LayerParameter.dummy_data_param', index=19, number=26, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='eltwise_param', full_name='caffe.V1LayerParameter.eltwise_param', index=20, number=24, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='exp_param', full_name='caffe.V1LayerParameter.exp_param', index=21, number=41, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='hdf5_data_param', full_name='caffe.V1LayerParameter.hdf5_data_param', index=22, number=13, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='hdf5_output_param', full_name='caffe.V1LayerParameter.hdf5_output_param', index=23, number=14, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='hinge_loss_param', full_name='caffe.V1LayerParameter.hinge_loss_param', index=24, number=29, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='image_data_param', full_name='caffe.V1LayerParameter.image_data_param', index=25, number=15, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='infogain_loss_param', full_name='caffe.V1LayerParameter.infogain_loss_param', index=26, number=16, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='inner_product_param', full_name='caffe.V1LayerParameter.inner_product_param', index=27, number=17, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='lrn_param', full_name='caffe.V1LayerParameter.lrn_param', index=28, number=18, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='memory_data_param', full_name='caffe.V1LayerParameter.memory_data_param', index=29, number=22, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='mvn_param', full_name='caffe.V1LayerParameter.mvn_param', index=30, number=34, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='pooling_param', full_name='caffe.V1LayerParameter.pooling_param', index=31, number=19, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='power_param', full_name='caffe.V1LayerParameter.power_param', index=32, number=21, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='relu_param', full_name='caffe.V1LayerParameter.relu_param', index=33, number=30, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='sigmoid_param', full_name='caffe.V1LayerParameter.sigmoid_param', index=34, number=38, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='softmax_param', full_name='caffe.V1LayerParameter.softmax_param', index=35, number=39, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='slice_param', full_name='caffe.V1LayerParameter.slice_param', index=36, number=31, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tanh_param', full_name='caffe.V1LayerParameter.tanh_param', index=37, number=37, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='threshold_param', full_name='caffe.V1LayerParameter.threshold_param', index=38, number=25, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='window_data_param', full_name='caffe.V1LayerParameter.window_data_param', index=39, number=20, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='transform_param', full_name='caffe.V1LayerParameter.transform_param', index=40, number=36, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='loss_param', full_name='caffe.V1LayerParameter.loss_param', index=41, number=42, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='layer', full_name='caffe.V1LayerParameter.layer', index=42, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _V1LAYERPARAMETER_LAYERTYPE, _V1LAYERPARAMETER_DIMCHECKMODE, ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=19597, serialized_end=22125, ) _V0LAYERPARAMETER = _descriptor.Descriptor( name='V0LayerParameter', full_name='caffe.V0LayerParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='caffe.V0LayerParameter.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='type', full_name='caffe.V0LayerParameter.type', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='num_output', full_name='caffe.V0LayerParameter.num_output', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='biasterm', full_name='caffe.V0LayerParameter.biasterm', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='weight_filler', full_name='caffe.V0LayerParameter.weight_filler', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='bias_filler', full_name='caffe.V0LayerParameter.bias_filler', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='pad', full_name='caffe.V0LayerParameter.pad', index=6, number=7, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='kernelsize', full_name='caffe.V0LayerParameter.kernelsize', index=7, number=8, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='group', full_name='caffe.V0LayerParameter.group', index=8, number=9, type=13, cpp_type=3, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='stride', full_name='caffe.V0LayerParameter.stride', index=9, number=10, type=13, cpp_type=3, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='pool', full_name='caffe.V0LayerParameter.pool', index=10, number=11, type=14, cpp_type=8, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='dropout_ratio', full_name='caffe.V0LayerParameter.dropout_ratio', index=11, number=12, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0.5, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='local_size', full_name='caffe.V0LayerParameter.local_size', index=12, number=13, type=13, cpp_type=3, label=1, has_default_value=True, default_value=5, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='alpha', full_name='caffe.V0LayerParameter.alpha', index=13, number=14, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='beta', full_name='caffe.V0LayerParameter.beta', index=14, number=15, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0.75, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='k', full_name='caffe.V0LayerParameter.k', index=15, number=22, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='source', full_name='caffe.V0LayerParameter.source', index=16, number=16, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='scale', full_name='caffe.V0LayerParameter.scale', index=17, number=17, type=2, cpp_type=6, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='meanfile', full_name='caffe.V0LayerParameter.meanfile', index=18, number=18, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='batchsize', full_name='caffe.V0LayerParameter.batchsize', index=19, number=19, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='cropsize', full_name='caffe.V0LayerParameter.cropsize', index=20, number=20, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='mirror', full_name='caffe.V0LayerParameter.mirror', index=21, number=21, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='blobs', full_name='caffe.V0LayerParameter.blobs', index=22, number=50, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='blobs_lr', full_name='caffe.V0LayerParameter.blobs_lr', index=23, number=51, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='weight_decay', full_name='caffe.V0LayerParameter.weight_decay', index=24, number=52, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='rand_skip', full_name='caffe.V0LayerParameter.rand_skip', index=25, number=53, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='det_fg_threshold', full_name='caffe.V0LayerParameter.det_fg_threshold', index=26, number=54, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0.5, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='det_bg_threshold', full_name='caffe.V0LayerParameter.det_bg_threshold', index=27, number=55, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0.5, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='det_fg_fraction', full_name='caffe.V0LayerParameter.det_fg_fraction', index=28, number=56, type=2, cpp_type=6, label=1, has_default_value=True, default_value=0.25, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='det_context_pad', full_name='caffe.V0LayerParameter.det_context_pad', index=29, number=58, type=13, cpp_type=3, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='det_crop_mode', full_name='caffe.V0LayerParameter.det_crop_mode', index=30, number=59, type=9, cpp_type=9, label=1, has_default_value=True, default_value=_b("warp").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='new_num', full_name='caffe.V0LayerParameter.new_num', index=31, number=60, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='new_channels', full_name='caffe.V0LayerParameter.new_channels', index=32, number=61, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='new_height', full_name='caffe.V0LayerParameter.new_height', index=33, number=62, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='new_width', full_name='caffe.V0LayerParameter.new_width', index=34, number=63, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='shuffle_images', full_name='caffe.V0LayerParameter.shuffle_images', index=35, number=64, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='concat_dim', full_name='caffe.V0LayerParameter.concat_dim', index=36, number=65, type=13, cpp_type=3, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='hdf5_output_param', full_name='caffe.V0LayerParameter.hdf5_output_param', index=37, number=1001, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _V0LAYERPARAMETER_POOLMETHOD, ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=22128, serialized_end=23149, ) _PRELUPARAMETER = _descriptor.Descriptor( name='PReLUParameter', full_name='caffe.PReLUParameter', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='filler', full_name='caffe.PReLUParameter.filler', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='channel_shared', full_name='caffe.PReLUParameter.channel_shared', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=23151, serialized_end=23238, ) _BLOBPROTO.fields_by_name['shape'].message_type = _BLOBSHAPE _BLOBPROTOVECTOR.fields_by_name['blobs'].message_type = _BLOBPROTO _LABELMAP.fields_by_name['item'].message_type = _LABELMAPITEM _BATCHSAMPLER.fields_by_name['sampler'].message_type = _SAMPLER _BATCHSAMPLER.fields_by_name['sample_constraint'].message_type = _SAMPLECONSTRAINT _EMITCONSTRAINT.fields_by_name['emit_type'].enum_type = _EMITCONSTRAINT_EMITTYPE _EMITCONSTRAINT_EMITTYPE.containing_type = _EMITCONSTRAINT _ANNOTATION.fields_by_name['bbox'].message_type = _NORMALIZEDBBOX _ANNOTATION.fields_by_name['rbox'].message_type = _NORMALIZEDRBOX _ANNOTATION.fields_by_name['polygon'].message_type = _NORMALIZEDPOLYGON _ANNOTATIONGROUP.fields_by_name['annotation'].message_type = _ANNOTATION _ANNOTATEDDATUM.fields_by_name['datum'].message_type = _DATUM _ANNOTATEDDATUM.fields_by_name['type'].enum_type = _ANNOTATEDDATUM_ANNOTATIONTYPE _ANNOTATEDDATUM.fields_by_name['annotation_group'].message_type = _ANNOTATIONGROUP _ANNOTATEDDATUM_ANNOTATIONTYPE.containing_type = _ANNOTATEDDATUM _FILLERPARAMETER.fields_by_name['variance_norm'].enum_type = _FILLERPARAMETER_VARIANCENORM _FILLERPARAMETER_VARIANCENORM.containing_type = _FILLERPARAMETER _NETPARAMETER.fields_by_name['input_shape'].message_type = _BLOBSHAPE _NETPARAMETER.fields_by_name['state'].message_type = _NETSTATE _NETPARAMETER.fields_by_name['layer'].message_type = _LAYERPARAMETER _NETPARAMETER.fields_by_name['layers'].message_type = _V1LAYERPARAMETER _SOLVERPARAMETER.fields_by_name['net_param'].message_type = _NETPARAMETER _SOLVERPARAMETER.fields_by_name['train_net_param'].message_type = _NETPARAMETER _SOLVERPARAMETER.fields_by_name['test_net_param'].message_type = _NETPARAMETER _SOLVERPARAMETER.fields_by_name['train_state'].message_type = _NETSTATE _SOLVERPARAMETER.fields_by_name['test_state'].message_type = _NETSTATE _SOLVERPARAMETER.fields_by_name['snapshot_format'].enum_type = _SOLVERPARAMETER_SNAPSHOTFORMAT _SOLVERPARAMETER.fields_by_name['solver_mode'].enum_type = _SOLVERPARAMETER_SOLVERMODE _SOLVERPARAMETER.fields_by_name['solver_type'].enum_type = _SOLVERPARAMETER_SOLVERTYPE _SOLVERPARAMETER_SNAPSHOTFORMAT.containing_type = _SOLVERPARAMETER _SOLVERPARAMETER_SOLVERMODE.containing_type = _SOLVERPARAMETER _SOLVERPARAMETER_SOLVERTYPE.containing_type = _SOLVERPARAMETER _SOLVERSTATE.fields_by_name['history'].message_type = _BLOBPROTO _NETSTATE.fields_by_name['phase'].enum_type = _PHASE _NETSTATERULE.fields_by_name['phase'].enum_type = _PHASE _PARAMSPEC.fields_by_name['share_mode'].enum_type = _PARAMSPEC_DIMCHECKMODE _PARAMSPEC_DIMCHECKMODE.containing_type = _PARAMSPEC _LAYERPARAMETER.fields_by_name['phase'].enum_type = _PHASE _LAYERPARAMETER.fields_by_name['param'].message_type = _PARAMSPEC _LAYERPARAMETER.fields_by_name['blobs'].message_type = _BLOBPROTO _LAYERPARAMETER.fields_by_name['include'].message_type = _NETSTATERULE _LAYERPARAMETER.fields_by_name['exclude'].message_type = _NETSTATERULE _LAYERPARAMETER.fields_by_name['transform_param'].message_type = _TRANSFORMATIONPARAMETER _LAYERPARAMETER.fields_by_name['loss_param'].message_type = _LOSSPARAMETER _LAYERPARAMETER.fields_by_name['accuracy_param'].message_type = _ACCURACYPARAMETER _LAYERPARAMETER.fields_by_name['annotated_data_param'].message_type = _ANNOTATEDDATAPARAMETER _LAYERPARAMETER.fields_by_name['argmax_param'].message_type = _ARGMAXPARAMETER _LAYERPARAMETER.fields_by_name['batch_norm_param'].message_type = _BATCHNORMPARAMETER _LAYERPARAMETER.fields_by_name['bias_param'].message_type = _BIASPARAMETER _LAYERPARAMETER.fields_by_name['concat_param'].message_type = _CONCATPARAMETER _LAYERPARAMETER.fields_by_name['contrastive_loss_param'].message_type = _CONTRASTIVELOSSPARAMETER _LAYERPARAMETER.fields_by_name['convolution_param'].message_type = _CONVOLUTIONPARAMETER _LAYERPARAMETER.fields_by_name['crop_param'].message_type = _CROPPARAMETER _LAYERPARAMETER.fields_by_name['ctc_decoder_param'].message_type = _CTCDECODERPARAMETER _LAYERPARAMETER.fields_by_name['ctc_loss_param'].message_type = _CTCLOSSPARAMETER _LAYERPARAMETER.fields_by_name['data_param'].message_type = _DATAPARAMETER _LAYERPARAMETER.fields_by_name['detection_evaluate_param'].message_type = _DETECTIONEVALUATEPARAMETER _LAYERPARAMETER.fields_by_name['detection_output_param'].message_type = _DETECTIONOUTPUTPARAMETER _LAYERPARAMETER.fields_by_name['dropout_param'].message_type = _DROPOUTPARAMETER _LAYERPARAMETER.fields_by_name['dummy_data_param'].message_type = _DUMMYDATAPARAMETER _LAYERPARAMETER.fields_by_name['eltwise_param'].message_type = _ELTWISEPARAMETER _LAYERPARAMETER.fields_by_name['elu_param'].message_type = _ELUPARAMETER _LAYERPARAMETER.fields_by_name['embed_param'].message_type = _EMBEDPARAMETER _LAYERPARAMETER.fields_by_name['exp_param'].message_type = _EXPPARAMETER _LAYERPARAMETER.fields_by_name['flatten_param'].message_type = _FLATTENPARAMETER _LAYERPARAMETER.fields_by_name['hdf5_data_param'].message_type = _HDF5DATAPARAMETER _LAYERPARAMETER.fields_by_name['hdf5_output_param'].message_type = _HDF5OUTPUTPARAMETER _LAYERPARAMETER.fields_by_name['hinge_loss_param'].message_type = _HINGELOSSPARAMETER _LAYERPARAMETER.fields_by_name['image_data_param'].message_type = _IMAGEDATAPARAMETER _LAYERPARAMETER.fields_by_name['infogain_loss_param'].message_type = _INFOGAINLOSSPARAMETER _LAYERPARAMETER.fields_by_name['inner_product_param'].message_type = _INNERPRODUCTPARAMETER _LAYERPARAMETER.fields_by_name['input_param'].message_type = _INPUTPARAMETER _LAYERPARAMETER.fields_by_name['log_param'].message_type = _LOGPARAMETER _LAYERPARAMETER.fields_by_name['lrn_param'].message_type = _LRNPARAMETER _LAYERPARAMETER.fields_by_name['memory_data_param'].message_type = _MEMORYDATAPARAMETER _LAYERPARAMETER.fields_by_name['multibox_loss_param'].message_type = _MULTIBOXLOSSPARAMETER _LAYERPARAMETER.fields_by_name['mvn_param'].message_type = _MVNPARAMETER _LAYERPARAMETER.fields_by_name['norm_param'].message_type = _NORMALIZEPARAMETER _LAYERPARAMETER.fields_by_name['parameter_param'].message_type = _PARAMETERPARAMETER _LAYERPARAMETER.fields_by_name['permute_param'].message_type = _PERMUTEPARAMETER _LAYERPARAMETER.fields_by_name['pooling_param'].message_type = _POOLINGPARAMETER _LAYERPARAMETER.fields_by_name['power_param'].message_type = _POWERPARAMETER _LAYERPARAMETER.fields_by_name['prelu_param'].message_type = _PRELUPARAMETER _LAYERPARAMETER.fields_by_name['prior_box_param'].message_type = _PRIORBOXPARAMETER _LAYERPARAMETER.fields_by_name['python_param'].message_type = _PYTHONPARAMETER _LAYERPARAMETER.fields_by_name['recurrent_param'].message_type = _RECURRENTPARAMETER _LAYERPARAMETER.fields_by_name['reduction_param'].message_type = _REDUCTIONPARAMETER _LAYERPARAMETER.fields_by_name['relu_param'].message_type = _RELUPARAMETER _LAYERPARAMETER.fields_by_name['reshape_param'].message_type = _RESHAPEPARAMETER _LAYERPARAMETER.fields_by_name['roi_pooling_param'].message_type = _ROIPOOLINGPARAMETER _LAYERPARAMETER.fields_by_name['reverse_param'].message_type = _REVERSEPARAMETER _LAYERPARAMETER.fields_by_name['scale_param'].message_type = _SCALEPARAMETER _LAYERPARAMETER.fields_by_name['sigmoid_param'].message_type = _SIGMOIDPARAMETER _LAYERPARAMETER.fields_by_name['softmax_param'].message_type = _SOFTMAXPARAMETER _LAYERPARAMETER.fields_by_name['spp_param'].message_type = _SPPPARAMETER _LAYERPARAMETER.fields_by_name['slice_param'].message_type = _SLICEPARAMETER _LAYERPARAMETER.fields_by_name['tanh_param'].message_type = _TANHPARAMETER _LAYERPARAMETER.fields_by_name['threshold_param'].message_type = _THRESHOLDPARAMETER _LAYERPARAMETER.fields_by_name['tile_param'].message_type = _TILEPARAMETER _LAYERPARAMETER.fields_by_name['video_data_param'].message_type = _VIDEODATAPARAMETER _LAYERPARAMETER.fields_by_name['window_data_param'].message_type = _WINDOWDATAPARAMETER _LAYERPARAMETER.fields_by_name['smooth_l1_loss_param'].message_type = _SMOOTHL1LOSSPARAMETER _LAYERPARAMETER.fields_by_name['proposal_param'].message_type = _PROPOSALPARAMETER _TRANSFORMATIONPARAMETER.fields_by_name['resize_param'].message_type = _RESIZEPARAMETER _TRANSFORMATIONPARAMETER.fields_by_name['noise_param'].message_type = _NOISEPARAMETER _TRANSFORMATIONPARAMETER.fields_by_name['distort_param'].message_type = _DISTORTIONPARAMETER _TRANSFORMATIONPARAMETER.fields_by_name['expand_param'].message_type = _EXPANSIONPARAMETER _TRANSFORMATIONPARAMETER.fields_by_name['emit_constraint'].message_type = _EMITCONSTRAINT _RESIZEPARAMETER.fields_by_name['resize_mode'].enum_type = _RESIZEPARAMETER_RESIZE_MODE _RESIZEPARAMETER.fields_by_name['pad_mode'].enum_type = _RESIZEPARAMETER_PAD_MODE _RESIZEPARAMETER.fields_by_name['interp_mode'].enum_type = _RESIZEPARAMETER_INTERP_MODE _RESIZEPARAMETER_RESIZE_MODE.containing_type = _RESIZEPARAMETER _RESIZEPARAMETER_PAD_MODE.containing_type = _RESIZEPARAMETER _RESIZEPARAMETER_INTERP_MODE.containing_type = _RESIZEPARAMETER _NOISEPARAMETER.fields_by_name['saltpepper_param'].message_type = _SALTPEPPERPARAMETER _LOSSPARAMETER.fields_by_name['normalization'].enum_type = _LOSSPARAMETER_NORMALIZATIONMODE _LOSSPARAMETER_NORMALIZATIONMODE.containing_type = _LOSSPARAMETER _ANNOTATEDDATAPARAMETER.fields_by_name['batch_sampler'].message_type = _BATCHSAMPLER _ANNOTATEDDATAPARAMETER.fields_by_name['anno_type'].enum_type = _ANNOTATEDDATUM_ANNOTATIONTYPE _BIASPARAMETER.fields_by_name['filler'].message_type = _FILLERPARAMETER _CONVOLUTIONPARAMETER.fields_by_name['weight_filler'].message_type = _FILLERPARAMETER _CONVOLUTIONPARAMETER.fields_by_name['bias_filler'].message_type = _FILLERPARAMETER _CONVOLUTIONPARAMETER.fields_by_name['engine'].enum_type = _CONVOLUTIONPARAMETER_ENGINE _CONVOLUTIONPARAMETER_ENGINE.containing_type = _CONVOLUTIONPARAMETER _DATAPARAMETER.fields_by_name['backend'].enum_type = _DATAPARAMETER_DB _DATAPARAMETER_DB.containing_type = _DATAPARAMETER _DETECTIONEVALUATEPARAMETER.fields_by_name['resize_param'].message_type = _RESIZEPARAMETER _SAVEOUTPUTPARAMETER.fields_by_name['resize_param'].message_type = _RESIZEPARAMETER _DETECTIONOUTPUTPARAMETER.fields_by_name['nms_param'].message_type = _NONMAXIMUMSUPPRESSIONPARAMETER _DETECTIONOUTPUTPARAMETER.fields_by_name['save_output_param'].message_type = _SAVEOUTPUTPARAMETER _DETECTIONOUTPUTPARAMETER.fields_by_name['code_type'].enum_type = _PRIORBOXPARAMETER_CODETYPE _DUMMYDATAPARAMETER.fields_by_name['data_filler'].message_type = _FILLERPARAMETER _DUMMYDATAPARAMETER.fields_by_name['shape'].message_type = _BLOBSHAPE _ELTWISEPARAMETER.fields_by_name['operation'].enum_type = _ELTWISEPARAMETER_ELTWISEOP _ELTWISEPARAMETER_ELTWISEOP.containing_type = _ELTWISEPARAMETER _EMBEDPARAMETER.fields_by_name['weight_filler'].message_type = _FILLERPARAMETER _EMBEDPARAMETER.fields_by_name['bias_filler'].message_type = _FILLERPARAMETER _HINGELOSSPARAMETER.fields_by_name['norm'].enum_type = _HINGELOSSPARAMETER_NORM _HINGELOSSPARAMETER_NORM.containing_type = _HINGELOSSPARAMETER _INNERPRODUCTPARAMETER.fields_by_name['weight_filler'].message_type = _FILLERPARAMETER _INNERPRODUCTPARAMETER.fields_by_name['bias_filler'].message_type = _FILLERPARAMETER _INPUTPARAMETER.fields_by_name['shape'].message_type = _BLOBSHAPE _LRNPARAMETER.fields_by_name['norm_region'].enum_type = _LRNPARAMETER_NORMREGION _LRNPARAMETER.fields_by_name['engine'].enum_type = _LRNPARAMETER_ENGINE _LRNPARAMETER_NORMREGION.containing_type = _LRNPARAMETER _LRNPARAMETER_ENGINE.containing_type = _LRNPARAMETER _MULTIBOXLOSSPARAMETER.fields_by_name['loc_loss_type'].enum_type = _MULTIBOXLOSSPARAMETER_LOCLOSSTYPE _MULTIBOXLOSSPARAMETER.fields_by_name['conf_loss_type'].enum_type = _MULTIBOXLOSSPARAMETER_CONFLOSSTYPE _MULTIBOXLOSSPARAMETER.fields_by_name['match_type'].enum_type = _MULTIBOXLOSSPARAMETER_MATCHTYPE _MULTIBOXLOSSPARAMETER.fields_by_name['code_type'].enum_type = _PRIORBOXPARAMETER_CODETYPE _MULTIBOXLOSSPARAMETER.fields_by_name['mining_type'].enum_type = _MULTIBOXLOSSPARAMETER_MININGTYPE _MULTIBOXLOSSPARAMETER.fields_by_name['nms_param'].message_type = _NONMAXIMUMSUPPRESSIONPARAMETER _MULTIBOXLOSSPARAMETER_LOCLOSSTYPE.containing_type = _MULTIBOXLOSSPARAMETER _MULTIBOXLOSSPARAMETER_CONFLOSSTYPE.containing_type = _MULTIBOXLOSSPARAMETER _MULTIBOXLOSSPARAMETER_MATCHTYPE.containing_type = _MULTIBOXLOSSPARAMETER _MULTIBOXLOSSPARAMETER_MININGTYPE.containing_type = _MULTIBOXLOSSPARAMETER _NORMALIZEPARAMETER.fields_by_name['scale_filler'].message_type = _FILLERPARAMETER _PARAMETERPARAMETER.fields_by_name['shape'].message_type = _BLOBSHAPE _POOLINGPARAMETER.fields_by_name['pool'].enum_type = _POOLINGPARAMETER_POOLMETHOD _POOLINGPARAMETER.fields_by_name['engine'].enum_type = _POOLINGPARAMETER_ENGINE _POOLINGPARAMETER_POOLMETHOD.containing_type = _POOLINGPARAMETER _POOLINGPARAMETER_ENGINE.containing_type = _POOLINGPARAMETER _PRIORBOXPARAMETER_CODETYPE.containing_type = _PRIORBOXPARAMETER _RECURRENTPARAMETER.fields_by_name['weight_filler'].message_type = _FILLERPARAMETER _RECURRENTPARAMETER.fields_by_name['bias_filler'].message_type = _FILLERPARAMETER _REDUCTIONPARAMETER.fields_by_name['operation'].enum_type = _REDUCTIONPARAMETER_REDUCTIONOP _REDUCTIONPARAMETER_REDUCTIONOP.containing_type = _REDUCTIONPARAMETER _RELUPARAMETER.fields_by_name['engine'].enum_type = _RELUPARAMETER_ENGINE _RELUPARAMETER_ENGINE.containing_type = _RELUPARAMETER _RESHAPEPARAMETER.fields_by_name['shape'].message_type = _BLOBSHAPE _SCALEPARAMETER.fields_by_name['filler'].message_type = _FILLERPARAMETER _SCALEPARAMETER.fields_by_name['bias_filler'].message_type = _FILLERPARAMETER _SIGMOIDPARAMETER.fields_by_name['engine'].enum_type = _SIGMOIDPARAMETER_ENGINE _SIGMOIDPARAMETER_ENGINE.containing_type = _SIGMOIDPARAMETER _SOFTMAXPARAMETER.fields_by_name['engine'].enum_type = _SOFTMAXPARAMETER_ENGINE _SOFTMAXPARAMETER_ENGINE.containing_type = _SOFTMAXPARAMETER _TANHPARAMETER.fields_by_name['engine'].enum_type = _TANHPARAMETER_ENGINE _TANHPARAMETER_ENGINE.containing_type = _TANHPARAMETER _VIDEODATAPARAMETER.fields_by_name['video_type'].enum_type = _VIDEODATAPARAMETER_VIDEOTYPE _VIDEODATAPARAMETER_VIDEOTYPE.containing_type = _VIDEODATAPARAMETER _SPPPARAMETER.fields_by_name['pool'].enum_type = _SPPPARAMETER_POOLMETHOD _SPPPARAMETER.fields_by_name['engine'].enum_type = _SPPPARAMETER_ENGINE _SPPPARAMETER_POOLMETHOD.containing_type = _SPPPARAMETER _SPPPARAMETER_ENGINE.containing_type = _SPPPARAMETER _V1LAYERPARAMETER.fields_by_name['include'].message_type = _NETSTATERULE _V1LAYERPARAMETER.fields_by_name['exclude'].message_type = _NETSTATERULE _V1LAYERPARAMETER.fields_by_name['type'].enum_type = _V1LAYERPARAMETER_LAYERTYPE _V1LAYERPARAMETER.fields_by_name['blobs'].message_type = _BLOBPROTO _V1LAYERPARAMETER.fields_by_name['blob_share_mode'].enum_type = _V1LAYERPARAMETER_DIMCHECKMODE _V1LAYERPARAMETER.fields_by_name['accuracy_param'].message_type = _ACCURACYPARAMETER _V1LAYERPARAMETER.fields_by_name['argmax_param'].message_type = _ARGMAXPARAMETER _V1LAYERPARAMETER.fields_by_name['concat_param'].message_type = _CONCATPARAMETER _V1LAYERPARAMETER.fields_by_name['contrastive_loss_param'].message_type = _CONTRASTIVELOSSPARAMETER _V1LAYERPARAMETER.fields_by_name['convolution_param'].message_type = _CONVOLUTIONPARAMETER _V1LAYERPARAMETER.fields_by_name['data_param'].message_type = _DATAPARAMETER _V1LAYERPARAMETER.fields_by_name['dropout_param'].message_type = _DROPOUTPARAMETER _V1LAYERPARAMETER.fields_by_name['dummy_data_param'].message_type = _DUMMYDATAPARAMETER _V1LAYERPARAMETER.fields_by_name['eltwise_param'].message_type = _ELTWISEPARAMETER _V1LAYERPARAMETER.fields_by_name['exp_param'].message_type = _EXPPARAMETER _V1LAYERPARAMETER.fields_by_name['hdf5_data_param'].message_type = _HDF5DATAPARAMETER _V1LAYERPARAMETER.fields_by_name['hdf5_output_param'].message_type = _HDF5OUTPUTPARAMETER _V1LAYERPARAMETER.fields_by_name['hinge_loss_param'].message_type = _HINGELOSSPARAMETER _V1LAYERPARAMETER.fields_by_name['image_data_param'].message_type = _IMAGEDATAPARAMETER _V1LAYERPARAMETER.fields_by_name['infogain_loss_param'].message_type = _INFOGAINLOSSPARAMETER _V1LAYERPARAMETER.fields_by_name['inner_product_param'].message_type = _INNERPRODUCTPARAMETER _V1LAYERPARAMETER.fields_by_name['lrn_param'].message_type = _LRNPARAMETER _V1LAYERPARAMETER.fields_by_name['memory_data_param'].message_type = _MEMORYDATAPARAMETER _V1LAYERPARAMETER.fields_by_name['mvn_param'].message_type = _MVNPARAMETER _V1LAYERPARAMETER.fields_by_name['pooling_param'].message_type = _POOLINGPARAMETER _V1LAYERPARAMETER.fields_by_name['power_param'].message_type = _POWERPARAMETER _V1LAYERPARAMETER.fields_by_name['relu_param'].message_type = _RELUPARAMETER _V1LAYERPARAMETER.fields_by_name['sigmoid_param'].message_type = _SIGMOIDPARAMETER _V1LAYERPARAMETER.fields_by_name['softmax_param'].message_type = _SOFTMAXPARAMETER _V1LAYERPARAMETER.fields_by_name['slice_param'].message_type = _SLICEPARAMETER _V1LAYERPARAMETER.fields_by_name['tanh_param'].message_type = _TANHPARAMETER _V1LAYERPARAMETER.fields_by_name['threshold_param'].message_type = _THRESHOLDPARAMETER _V1LAYERPARAMETER.fields_by_name['window_data_param'].message_type = _WINDOWDATAPARAMETER _V1LAYERPARAMETER.fields_by_name['transform_param'].message_type = _TRANSFORMATIONPARAMETER _V1LAYERPARAMETER.fields_by_name['loss_param'].message_type = _LOSSPARAMETER _V1LAYERPARAMETER.fields_by_name['layer'].message_type = _V0LAYERPARAMETER _V1LAYERPARAMETER_LAYERTYPE.containing_type = _V1LAYERPARAMETER _V1LAYERPARAMETER_DIMCHECKMODE.containing_type = _V1LAYERPARAMETER _V0LAYERPARAMETER.fields_by_name['weight_filler'].message_type = _FILLERPARAMETER _V0LAYERPARAMETER.fields_by_name['bias_filler'].message_type = _FILLERPARAMETER _V0LAYERPARAMETER.fields_by_name['pool'].enum_type = _V0LAYERPARAMETER_POOLMETHOD _V0LAYERPARAMETER.fields_by_name['blobs'].message_type = _BLOBPROTO _V0LAYERPARAMETER.fields_by_name['hdf5_output_param'].message_type = _HDF5OUTPUTPARAMETER _V0LAYERPARAMETER_POOLMETHOD.containing_type = _V0LAYERPARAMETER _PRELUPARAMETER.fields_by_name['filler'].message_type = _FILLERPARAMETER DESCRIPTOR.message_types_by_name['BlobShape'] = _BLOBSHAPE DESCRIPTOR.message_types_by_name['BlobProto'] = _BLOBPROTO DESCRIPTOR.message_types_by_name['BlobProtoVector'] = _BLOBPROTOVECTOR DESCRIPTOR.message_types_by_name['Datum'] = _DATUM DESCRIPTOR.message_types_by_name['LabelMapItem'] = _LABELMAPITEM DESCRIPTOR.message_types_by_name['LabelMap'] = _LABELMAP DESCRIPTOR.message_types_by_name['Sampler'] = _SAMPLER DESCRIPTOR.message_types_by_name['SampleConstraint'] = _SAMPLECONSTRAINT DESCRIPTOR.message_types_by_name['BatchSampler'] = _BATCHSAMPLER DESCRIPTOR.message_types_by_name['EmitConstraint'] = _EMITCONSTRAINT DESCRIPTOR.message_types_by_name['NormalizedBBox'] = _NORMALIZEDBBOX DESCRIPTOR.message_types_by_name['NormalizedRBox'] = _NORMALIZEDRBOX DESCRIPTOR.message_types_by_name['NormalizedPolygon'] = _NORMALIZEDPOLYGON DESCRIPTOR.message_types_by_name['Annotation'] = _ANNOTATION DESCRIPTOR.message_types_by_name['AnnotationGroup'] = _ANNOTATIONGROUP DESCRIPTOR.message_types_by_name['AnnotatedDatum'] = _ANNOTATEDDATUM DESCRIPTOR.message_types_by_name['FillerParameter'] = _FILLERPARAMETER DESCRIPTOR.message_types_by_name['NetParameter'] = _NETPARAMETER DESCRIPTOR.message_types_by_name['SolverParameter'] = _SOLVERPARAMETER DESCRIPTOR.message_types_by_name['SolverState'] = _SOLVERSTATE DESCRIPTOR.message_types_by_name['NetState'] = _NETSTATE DESCRIPTOR.message_types_by_name['NetStateRule'] = _NETSTATERULE DESCRIPTOR.message_types_by_name['ParamSpec'] = _PARAMSPEC DESCRIPTOR.message_types_by_name['LayerParameter'] = _LAYERPARAMETER DESCRIPTOR.message_types_by_name['ProposalParameter'] = _PROPOSALPARAMETER DESCRIPTOR.message_types_by_name['SmoothL1LossParameter'] = _SMOOTHL1LOSSPARAMETER DESCRIPTOR.message_types_by_name['TransformationParameter'] = _TRANSFORMATIONPARAMETER DESCRIPTOR.message_types_by_name['ResizeParameter'] = _RESIZEPARAMETER DESCRIPTOR.message_types_by_name['SaltPepperParameter'] = _SALTPEPPERPARAMETER DESCRIPTOR.message_types_by_name['NoiseParameter'] = _NOISEPARAMETER DESCRIPTOR.message_types_by_name['DistortionParameter'] = _DISTORTIONPARAMETER DESCRIPTOR.message_types_by_name['ExpansionParameter'] = _EXPANSIONPARAMETER DESCRIPTOR.message_types_by_name['LossParameter'] = _LOSSPARAMETER DESCRIPTOR.message_types_by_name['AccuracyParameter'] = _ACCURACYPARAMETER DESCRIPTOR.message_types_by_name['AnnotatedDataParameter'] = _ANNOTATEDDATAPARAMETER DESCRIPTOR.message_types_by_name['ArgMaxParameter'] = _ARGMAXPARAMETER DESCRIPTOR.message_types_by_name['ConcatParameter'] = _CONCATPARAMETER DESCRIPTOR.message_types_by_name['BatchNormParameter'] = _BATCHNORMPARAMETER DESCRIPTOR.message_types_by_name['BiasParameter'] = _BIASPARAMETER DESCRIPTOR.message_types_by_name['ContrastiveLossParameter'] = _CONTRASTIVELOSSPARAMETER DESCRIPTOR.message_types_by_name['ConvolutionParameter'] = _CONVOLUTIONPARAMETER DESCRIPTOR.message_types_by_name['CropParameter'] = _CROPPARAMETER DESCRIPTOR.message_types_by_name['CTCDecoderParameter'] = _CTCDECODERPARAMETER DESCRIPTOR.message_types_by_name['CTCLossParameter'] = _CTCLOSSPARAMETER DESCRIPTOR.message_types_by_name['DataParameter'] = _DATAPARAMETER DESCRIPTOR.message_types_by_name['DetectionEvaluateParameter'] = _DETECTIONEVALUATEPARAMETER DESCRIPTOR.message_types_by_name['NonMaximumSuppressionParameter'] = _NONMAXIMUMSUPPRESSIONPARAMETER DESCRIPTOR.message_types_by_name['SaveOutputParameter'] = _SAVEOUTPUTPARAMETER DESCRIPTOR.message_types_by_name['DetectionOutputParameter'] = _DETECTIONOUTPUTPARAMETER DESCRIPTOR.message_types_by_name['DropoutParameter'] = _DROPOUTPARAMETER DESCRIPTOR.message_types_by_name['DummyDataParameter'] = _DUMMYDATAPARAMETER DESCRIPTOR.message_types_by_name['EltwiseParameter'] = _ELTWISEPARAMETER DESCRIPTOR.message_types_by_name['ELUParameter'] = _ELUPARAMETER DESCRIPTOR.message_types_by_name['EmbedParameter'] = _EMBEDPARAMETER DESCRIPTOR.message_types_by_name['ExpParameter'] = _EXPPARAMETER DESCRIPTOR.message_types_by_name['FlattenParameter'] = _FLATTENPARAMETER DESCRIPTOR.message_types_by_name['HDF5DataParameter'] = _HDF5DATAPARAMETER DESCRIPTOR.message_types_by_name['HDF5OutputParameter'] = _HDF5OUTPUTPARAMETER DESCRIPTOR.message_types_by_name['HingeLossParameter'] = _HINGELOSSPARAMETER DESCRIPTOR.message_types_by_name['ImageDataParameter'] = _IMAGEDATAPARAMETER DESCRIPTOR.message_types_by_name['InfogainLossParameter'] = _INFOGAINLOSSPARAMETER DESCRIPTOR.message_types_by_name['InnerProductParameter'] = _INNERPRODUCTPARAMETER DESCRIPTOR.message_types_by_name['InputParameter'] = _INPUTPARAMETER DESCRIPTOR.message_types_by_name['LogParameter'] = _LOGPARAMETER DESCRIPTOR.message_types_by_name['LRNParameter'] = _LRNPARAMETER DESCRIPTOR.message_types_by_name['MemoryDataParameter'] = _MEMORYDATAPARAMETER DESCRIPTOR.message_types_by_name['MultiBoxLossParameter'] = _MULTIBOXLOSSPARAMETER DESCRIPTOR.message_types_by_name['MVNParameter'] = _MVNPARAMETER DESCRIPTOR.message_types_by_name['NormalizeParameter'] = _NORMALIZEPARAMETER DESCRIPTOR.message_types_by_name['ParameterParameter'] = _PARAMETERPARAMETER DESCRIPTOR.message_types_by_name['PermuteParameter'] = _PERMUTEPARAMETER DESCRIPTOR.message_types_by_name['PoolingParameter'] = _POOLINGPARAMETER DESCRIPTOR.message_types_by_name['PowerParameter'] = _POWERPARAMETER DESCRIPTOR.message_types_by_name['PriorBoxParameter'] = _PRIORBOXPARAMETER DESCRIPTOR.message_types_by_name['PythonParameter'] = _PYTHONPARAMETER DESCRIPTOR.message_types_by_name['RecurrentParameter'] = _RECURRENTPARAMETER DESCRIPTOR.message_types_by_name['ReductionParameter'] = _REDUCTIONPARAMETER DESCRIPTOR.message_types_by_name['ReLUParameter'] = _RELUPARAMETER DESCRIPTOR.message_types_by_name['ReshapeParameter'] = _RESHAPEPARAMETER DESCRIPTOR.message_types_by_name['ReverseParameter'] = _REVERSEPARAMETER DESCRIPTOR.message_types_by_name['ROIPoolingParameter'] = _ROIPOOLINGPARAMETER DESCRIPTOR.message_types_by_name['ScaleParameter'] = _SCALEPARAMETER DESCRIPTOR.message_types_by_name['SigmoidParameter'] = _SIGMOIDPARAMETER DESCRIPTOR.message_types_by_name['SliceParameter'] = _SLICEPARAMETER DESCRIPTOR.message_types_by_name['SoftmaxParameter'] = _SOFTMAXPARAMETER DESCRIPTOR.message_types_by_name['TanHParameter'] = _TANHPARAMETER DESCRIPTOR.message_types_by_name['TileParameter'] = _TILEPARAMETER DESCRIPTOR.message_types_by_name['ThresholdParameter'] = _THRESHOLDPARAMETER DESCRIPTOR.message_types_by_name['VideoDataParameter'] = _VIDEODATAPARAMETER DESCRIPTOR.message_types_by_name['WindowDataParameter'] = _WINDOWDATAPARAMETER DESCRIPTOR.message_types_by_name['SPPParameter'] = _SPPPARAMETER DESCRIPTOR.message_types_by_name['V1LayerParameter'] = _V1LAYERPARAMETER DESCRIPTOR.message_types_by_name['V0LayerParameter'] = _V0LAYERPARAMETER DESCRIPTOR.message_types_by_name['PReLUParameter'] = _PRELUPARAMETER DESCRIPTOR.enum_types_by_name['Phase'] = _PHASE BlobShape = _reflection.GeneratedProtocolMessageType('BlobShape', (_message.Message,), dict( DESCRIPTOR = _BLOBSHAPE, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.BlobShape) )) _sym_db.RegisterMessage(BlobShape) BlobProto = _reflection.GeneratedProtocolMessageType('BlobProto', (_message.Message,), dict( DESCRIPTOR = _BLOBPROTO, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.BlobProto) )) _sym_db.RegisterMessage(BlobProto) BlobProtoVector = _reflection.GeneratedProtocolMessageType('BlobProtoVector', (_message.Message,), dict( DESCRIPTOR = _BLOBPROTOVECTOR, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.BlobProtoVector) )) _sym_db.RegisterMessage(BlobProtoVector) Datum = _reflection.GeneratedProtocolMessageType('Datum', (_message.Message,), dict( DESCRIPTOR = _DATUM, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.Datum) )) _sym_db.RegisterMessage(Datum) LabelMapItem = _reflection.GeneratedProtocolMessageType('LabelMapItem', (_message.Message,), dict( DESCRIPTOR = _LABELMAPITEM, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.LabelMapItem) )) _sym_db.RegisterMessage(LabelMapItem) LabelMap = _reflection.GeneratedProtocolMessageType('LabelMap', (_message.Message,), dict( DESCRIPTOR = _LABELMAP, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.LabelMap) )) _sym_db.RegisterMessage(LabelMap) Sampler = _reflection.GeneratedProtocolMessageType('Sampler', (_message.Message,), dict( DESCRIPTOR = _SAMPLER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.Sampler) )) _sym_db.RegisterMessage(Sampler) SampleConstraint = _reflection.GeneratedProtocolMessageType('SampleConstraint', (_message.Message,), dict( DESCRIPTOR = _SAMPLECONSTRAINT, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.SampleConstraint) )) _sym_db.RegisterMessage(SampleConstraint) BatchSampler = _reflection.GeneratedProtocolMessageType('BatchSampler', (_message.Message,), dict( DESCRIPTOR = _BATCHSAMPLER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.BatchSampler) )) _sym_db.RegisterMessage(BatchSampler) EmitConstraint = _reflection.GeneratedProtocolMessageType('EmitConstraint', (_message.Message,), dict( DESCRIPTOR = _EMITCONSTRAINT, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.EmitConstraint) )) _sym_db.RegisterMessage(EmitConstraint) NormalizedBBox = _reflection.GeneratedProtocolMessageType('NormalizedBBox', (_message.Message,), dict( DESCRIPTOR = _NORMALIZEDBBOX, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.NormalizedBBox) )) _sym_db.RegisterMessage(NormalizedBBox) NormalizedRBox = _reflection.GeneratedProtocolMessageType('NormalizedRBox', (_message.Message,), dict( DESCRIPTOR = _NORMALIZEDRBOX, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.NormalizedRBox) )) _sym_db.RegisterMessage(NormalizedRBox) NormalizedPolygon = _reflection.GeneratedProtocolMessageType('NormalizedPolygon', (_message.Message,), dict( DESCRIPTOR = _NORMALIZEDPOLYGON, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.NormalizedPolygon) )) _sym_db.RegisterMessage(NormalizedPolygon) Annotation = _reflection.GeneratedProtocolMessageType('Annotation', (_message.Message,), dict( DESCRIPTOR = _ANNOTATION, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.Annotation) )) _sym_db.RegisterMessage(Annotation) AnnotationGroup = _reflection.GeneratedProtocolMessageType('AnnotationGroup', (_message.Message,), dict( DESCRIPTOR = _ANNOTATIONGROUP, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.AnnotationGroup) )) _sym_db.RegisterMessage(AnnotationGroup) AnnotatedDatum = _reflection.GeneratedProtocolMessageType('AnnotatedDatum', (_message.Message,), dict( DESCRIPTOR = _ANNOTATEDDATUM, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.AnnotatedDatum) )) _sym_db.RegisterMessage(AnnotatedDatum) FillerParameter = _reflection.GeneratedProtocolMessageType('FillerParameter', (_message.Message,), dict( DESCRIPTOR = _FILLERPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.FillerParameter) )) _sym_db.RegisterMessage(FillerParameter) NetParameter = _reflection.GeneratedProtocolMessageType('NetParameter', (_message.Message,), dict( DESCRIPTOR = _NETPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.NetParameter) )) _sym_db.RegisterMessage(NetParameter) SolverParameter = _reflection.GeneratedProtocolMessageType('SolverParameter', (_message.Message,), dict( DESCRIPTOR = _SOLVERPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.SolverParameter) )) _sym_db.RegisterMessage(SolverParameter) SolverState = _reflection.GeneratedProtocolMessageType('SolverState', (_message.Message,), dict( DESCRIPTOR = _SOLVERSTATE, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.SolverState) )) _sym_db.RegisterMessage(SolverState) NetState = _reflection.GeneratedProtocolMessageType('NetState', (_message.Message,), dict( DESCRIPTOR = _NETSTATE, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.NetState) )) _sym_db.RegisterMessage(NetState) NetStateRule = _reflection.GeneratedProtocolMessageType('NetStateRule', (_message.Message,), dict( DESCRIPTOR = _NETSTATERULE, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.NetStateRule) )) _sym_db.RegisterMessage(NetStateRule) ParamSpec = _reflection.GeneratedProtocolMessageType('ParamSpec', (_message.Message,), dict( DESCRIPTOR = _PARAMSPEC, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ParamSpec) )) _sym_db.RegisterMessage(ParamSpec) LayerParameter = _reflection.GeneratedProtocolMessageType('LayerParameter', (_message.Message,), dict( DESCRIPTOR = _LAYERPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.LayerParameter) )) _sym_db.RegisterMessage(LayerParameter) ProposalParameter = _reflection.GeneratedProtocolMessageType('ProposalParameter', (_message.Message,), dict( DESCRIPTOR = _PROPOSALPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ProposalParameter) )) _sym_db.RegisterMessage(ProposalParameter) SmoothL1LossParameter = _reflection.GeneratedProtocolMessageType('SmoothL1LossParameter', (_message.Message,), dict( DESCRIPTOR = _SMOOTHL1LOSSPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.SmoothL1LossParameter) )) _sym_db.RegisterMessage(SmoothL1LossParameter) TransformationParameter = _reflection.GeneratedProtocolMessageType('TransformationParameter', (_message.Message,), dict( DESCRIPTOR = _TRANSFORMATIONPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.TransformationParameter) )) _sym_db.RegisterMessage(TransformationParameter) ResizeParameter = _reflection.GeneratedProtocolMessageType('ResizeParameter', (_message.Message,), dict( DESCRIPTOR = _RESIZEPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ResizeParameter) )) _sym_db.RegisterMessage(ResizeParameter) SaltPepperParameter = _reflection.GeneratedProtocolMessageType('SaltPepperParameter', (_message.Message,), dict( DESCRIPTOR = _SALTPEPPERPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.SaltPepperParameter) )) _sym_db.RegisterMessage(SaltPepperParameter) NoiseParameter = _reflection.GeneratedProtocolMessageType('NoiseParameter', (_message.Message,), dict( DESCRIPTOR = _NOISEPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.NoiseParameter) )) _sym_db.RegisterMessage(NoiseParameter) DistortionParameter = _reflection.GeneratedProtocolMessageType('DistortionParameter', (_message.Message,), dict( DESCRIPTOR = _DISTORTIONPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.DistortionParameter) )) _sym_db.RegisterMessage(DistortionParameter) ExpansionParameter = _reflection.GeneratedProtocolMessageType('ExpansionParameter', (_message.Message,), dict( DESCRIPTOR = _EXPANSIONPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ExpansionParameter) )) _sym_db.RegisterMessage(ExpansionParameter) LossParameter = _reflection.GeneratedProtocolMessageType('LossParameter', (_message.Message,), dict( DESCRIPTOR = _LOSSPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.LossParameter) )) _sym_db.RegisterMessage(LossParameter) AccuracyParameter = _reflection.GeneratedProtocolMessageType('AccuracyParameter', (_message.Message,), dict( DESCRIPTOR = _ACCURACYPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.AccuracyParameter) )) _sym_db.RegisterMessage(AccuracyParameter) AnnotatedDataParameter = _reflection.GeneratedProtocolMessageType('AnnotatedDataParameter', (_message.Message,), dict( DESCRIPTOR = _ANNOTATEDDATAPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.AnnotatedDataParameter) )) _sym_db.RegisterMessage(AnnotatedDataParameter) ArgMaxParameter = _reflection.GeneratedProtocolMessageType('ArgMaxParameter', (_message.Message,), dict( DESCRIPTOR = _ARGMAXPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ArgMaxParameter) )) _sym_db.RegisterMessage(ArgMaxParameter) ConcatParameter = _reflection.GeneratedProtocolMessageType('ConcatParameter', (_message.Message,), dict( DESCRIPTOR = _CONCATPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ConcatParameter) )) _sym_db.RegisterMessage(ConcatParameter) BatchNormParameter = _reflection.GeneratedProtocolMessageType('BatchNormParameter', (_message.Message,), dict( DESCRIPTOR = _BATCHNORMPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.BatchNormParameter) )) _sym_db.RegisterMessage(BatchNormParameter) BiasParameter = _reflection.GeneratedProtocolMessageType('BiasParameter', (_message.Message,), dict( DESCRIPTOR = _BIASPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.BiasParameter) )) _sym_db.RegisterMessage(BiasParameter) ContrastiveLossParameter = _reflection.GeneratedProtocolMessageType('ContrastiveLossParameter', (_message.Message,), dict( DESCRIPTOR = _CONTRASTIVELOSSPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ContrastiveLossParameter) )) _sym_db.RegisterMessage(ContrastiveLossParameter) ConvolutionParameter = _reflection.GeneratedProtocolMessageType('ConvolutionParameter', (_message.Message,), dict( DESCRIPTOR = _CONVOLUTIONPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ConvolutionParameter) )) _sym_db.RegisterMessage(ConvolutionParameter) CropParameter = _reflection.GeneratedProtocolMessageType('CropParameter', (_message.Message,), dict( DESCRIPTOR = _CROPPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.CropParameter) )) _sym_db.RegisterMessage(CropParameter) CTCDecoderParameter = _reflection.GeneratedProtocolMessageType('CTCDecoderParameter', (_message.Message,), dict( DESCRIPTOR = _CTCDECODERPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.CTCDecoderParameter) )) _sym_db.RegisterMessage(CTCDecoderParameter) CTCLossParameter = _reflection.GeneratedProtocolMessageType('CTCLossParameter', (_message.Message,), dict( DESCRIPTOR = _CTCLOSSPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.CTCLossParameter) )) _sym_db.RegisterMessage(CTCLossParameter) DataParameter = _reflection.GeneratedProtocolMessageType('DataParameter', (_message.Message,), dict( DESCRIPTOR = _DATAPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.DataParameter) )) _sym_db.RegisterMessage(DataParameter) DetectionEvaluateParameter = _reflection.GeneratedProtocolMessageType('DetectionEvaluateParameter', (_message.Message,), dict( DESCRIPTOR = _DETECTIONEVALUATEPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.DetectionEvaluateParameter) )) _sym_db.RegisterMessage(DetectionEvaluateParameter) NonMaximumSuppressionParameter = _reflection.GeneratedProtocolMessageType('NonMaximumSuppressionParameter', (_message.Message,), dict( DESCRIPTOR = _NONMAXIMUMSUPPRESSIONPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.NonMaximumSuppressionParameter) )) _sym_db.RegisterMessage(NonMaximumSuppressionParameter) SaveOutputParameter = _reflection.GeneratedProtocolMessageType('SaveOutputParameter', (_message.Message,), dict( DESCRIPTOR = _SAVEOUTPUTPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.SaveOutputParameter) )) _sym_db.RegisterMessage(SaveOutputParameter) DetectionOutputParameter = _reflection.GeneratedProtocolMessageType('DetectionOutputParameter', (_message.Message,), dict( DESCRIPTOR = _DETECTIONOUTPUTPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.DetectionOutputParameter) )) _sym_db.RegisterMessage(DetectionOutputParameter) DropoutParameter = _reflection.GeneratedProtocolMessageType('DropoutParameter', (_message.Message,), dict( DESCRIPTOR = _DROPOUTPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.DropoutParameter) )) _sym_db.RegisterMessage(DropoutParameter) DummyDataParameter = _reflection.GeneratedProtocolMessageType('DummyDataParameter', (_message.Message,), dict( DESCRIPTOR = _DUMMYDATAPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.DummyDataParameter) )) _sym_db.RegisterMessage(DummyDataParameter) EltwiseParameter = _reflection.GeneratedProtocolMessageType('EltwiseParameter', (_message.Message,), dict( DESCRIPTOR = _ELTWISEPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.EltwiseParameter) )) _sym_db.RegisterMessage(EltwiseParameter) ELUParameter = _reflection.GeneratedProtocolMessageType('ELUParameter', (_message.Message,), dict( DESCRIPTOR = _ELUPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ELUParameter) )) _sym_db.RegisterMessage(ELUParameter) EmbedParameter = _reflection.GeneratedProtocolMessageType('EmbedParameter', (_message.Message,), dict( DESCRIPTOR = _EMBEDPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.EmbedParameter) )) _sym_db.RegisterMessage(EmbedParameter) ExpParameter = _reflection.GeneratedProtocolMessageType('ExpParameter', (_message.Message,), dict( DESCRIPTOR = _EXPPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ExpParameter) )) _sym_db.RegisterMessage(ExpParameter) FlattenParameter = _reflection.GeneratedProtocolMessageType('FlattenParameter', (_message.Message,), dict( DESCRIPTOR = _FLATTENPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.FlattenParameter) )) _sym_db.RegisterMessage(FlattenParameter) HDF5DataParameter = _reflection.GeneratedProtocolMessageType('HDF5DataParameter', (_message.Message,), dict( DESCRIPTOR = _HDF5DATAPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.HDF5DataParameter) )) _sym_db.RegisterMessage(HDF5DataParameter) HDF5OutputParameter = _reflection.GeneratedProtocolMessageType('HDF5OutputParameter', (_message.Message,), dict( DESCRIPTOR = _HDF5OUTPUTPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.HDF5OutputParameter) )) _sym_db.RegisterMessage(HDF5OutputParameter) HingeLossParameter = _reflection.GeneratedProtocolMessageType('HingeLossParameter', (_message.Message,), dict( DESCRIPTOR = _HINGELOSSPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.HingeLossParameter) )) _sym_db.RegisterMessage(HingeLossParameter) ImageDataParameter = _reflection.GeneratedProtocolMessageType('ImageDataParameter', (_message.Message,), dict( DESCRIPTOR = _IMAGEDATAPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ImageDataParameter) )) _sym_db.RegisterMessage(ImageDataParameter) InfogainLossParameter = _reflection.GeneratedProtocolMessageType('InfogainLossParameter', (_message.Message,), dict( DESCRIPTOR = _INFOGAINLOSSPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.InfogainLossParameter) )) _sym_db.RegisterMessage(InfogainLossParameter) InnerProductParameter = _reflection.GeneratedProtocolMessageType('InnerProductParameter', (_message.Message,), dict( DESCRIPTOR = _INNERPRODUCTPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.InnerProductParameter) )) _sym_db.RegisterMessage(InnerProductParameter) InputParameter = _reflection.GeneratedProtocolMessageType('InputParameter', (_message.Message,), dict( DESCRIPTOR = _INPUTPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.InputParameter) )) _sym_db.RegisterMessage(InputParameter) LogParameter = _reflection.GeneratedProtocolMessageType('LogParameter', (_message.Message,), dict( DESCRIPTOR = _LOGPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.LogParameter) )) _sym_db.RegisterMessage(LogParameter) LRNParameter = _reflection.GeneratedProtocolMessageType('LRNParameter', (_message.Message,), dict( DESCRIPTOR = _LRNPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.LRNParameter) )) _sym_db.RegisterMessage(LRNParameter) MemoryDataParameter = _reflection.GeneratedProtocolMessageType('MemoryDataParameter', (_message.Message,), dict( DESCRIPTOR = _MEMORYDATAPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.MemoryDataParameter) )) _sym_db.RegisterMessage(MemoryDataParameter) MultiBoxLossParameter = _reflection.GeneratedProtocolMessageType('MultiBoxLossParameter', (_message.Message,), dict( DESCRIPTOR = _MULTIBOXLOSSPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.MultiBoxLossParameter) )) _sym_db.RegisterMessage(MultiBoxLossParameter) MVNParameter = _reflection.GeneratedProtocolMessageType('MVNParameter', (_message.Message,), dict( DESCRIPTOR = _MVNPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.MVNParameter) )) _sym_db.RegisterMessage(MVNParameter) NormalizeParameter = _reflection.GeneratedProtocolMessageType('NormalizeParameter', (_message.Message,), dict( DESCRIPTOR = _NORMALIZEPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.NormalizeParameter) )) _sym_db.RegisterMessage(NormalizeParameter) ParameterParameter = _reflection.GeneratedProtocolMessageType('ParameterParameter', (_message.Message,), dict( DESCRIPTOR = _PARAMETERPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ParameterParameter) )) _sym_db.RegisterMessage(ParameterParameter) PermuteParameter = _reflection.GeneratedProtocolMessageType('PermuteParameter', (_message.Message,), dict( DESCRIPTOR = _PERMUTEPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.PermuteParameter) )) _sym_db.RegisterMessage(PermuteParameter) PoolingParameter = _reflection.GeneratedProtocolMessageType('PoolingParameter', (_message.Message,), dict( DESCRIPTOR = _POOLINGPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.PoolingParameter) )) _sym_db.RegisterMessage(PoolingParameter) PowerParameter = _reflection.GeneratedProtocolMessageType('PowerParameter', (_message.Message,), dict( DESCRIPTOR = _POWERPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.PowerParameter) )) _sym_db.RegisterMessage(PowerParameter) PriorBoxParameter = _reflection.GeneratedProtocolMessageType('PriorBoxParameter', (_message.Message,), dict( DESCRIPTOR = _PRIORBOXPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.PriorBoxParameter) )) _sym_db.RegisterMessage(PriorBoxParameter) PythonParameter = _reflection.GeneratedProtocolMessageType('PythonParameter', (_message.Message,), dict( DESCRIPTOR = _PYTHONPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.PythonParameter) )) _sym_db.RegisterMessage(PythonParameter) RecurrentParameter = _reflection.GeneratedProtocolMessageType('RecurrentParameter', (_message.Message,), dict( DESCRIPTOR = _RECURRENTPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.RecurrentParameter) )) _sym_db.RegisterMessage(RecurrentParameter) ReductionParameter = _reflection.GeneratedProtocolMessageType('ReductionParameter', (_message.Message,), dict( DESCRIPTOR = _REDUCTIONPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ReductionParameter) )) _sym_db.RegisterMessage(ReductionParameter) ReLUParameter = _reflection.GeneratedProtocolMessageType('ReLUParameter', (_message.Message,), dict( DESCRIPTOR = _RELUPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ReLUParameter) )) _sym_db.RegisterMessage(ReLUParameter) ReshapeParameter = _reflection.GeneratedProtocolMessageType('ReshapeParameter', (_message.Message,), dict( DESCRIPTOR = _RESHAPEPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ReshapeParameter) )) _sym_db.RegisterMessage(ReshapeParameter) ReverseParameter = _reflection.GeneratedProtocolMessageType('ReverseParameter', (_message.Message,), dict( DESCRIPTOR = _REVERSEPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ReverseParameter) )) _sym_db.RegisterMessage(ReverseParameter) ROIPoolingParameter = _reflection.GeneratedProtocolMessageType('ROIPoolingParameter', (_message.Message,), dict( DESCRIPTOR = _ROIPOOLINGPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ROIPoolingParameter) )) _sym_db.RegisterMessage(ROIPoolingParameter) ScaleParameter = _reflection.GeneratedProtocolMessageType('ScaleParameter', (_message.Message,), dict( DESCRIPTOR = _SCALEPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ScaleParameter) )) _sym_db.RegisterMessage(ScaleParameter) SigmoidParameter = _reflection.GeneratedProtocolMessageType('SigmoidParameter', (_message.Message,), dict( DESCRIPTOR = _SIGMOIDPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.SigmoidParameter) )) _sym_db.RegisterMessage(SigmoidParameter) SliceParameter = _reflection.GeneratedProtocolMessageType('SliceParameter', (_message.Message,), dict( DESCRIPTOR = _SLICEPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.SliceParameter) )) _sym_db.RegisterMessage(SliceParameter) SoftmaxParameter = _reflection.GeneratedProtocolMessageType('SoftmaxParameter', (_message.Message,), dict( DESCRIPTOR = _SOFTMAXPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.SoftmaxParameter) )) _sym_db.RegisterMessage(SoftmaxParameter) TanHParameter = _reflection.GeneratedProtocolMessageType('TanHParameter', (_message.Message,), dict( DESCRIPTOR = _TANHPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.TanHParameter) )) _sym_db.RegisterMessage(TanHParameter) TileParameter = _reflection.GeneratedProtocolMessageType('TileParameter', (_message.Message,), dict( DESCRIPTOR = _TILEPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.TileParameter) )) _sym_db.RegisterMessage(TileParameter) ThresholdParameter = _reflection.GeneratedProtocolMessageType('ThresholdParameter', (_message.Message,), dict( DESCRIPTOR = _THRESHOLDPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.ThresholdParameter) )) _sym_db.RegisterMessage(ThresholdParameter) VideoDataParameter = _reflection.GeneratedProtocolMessageType('VideoDataParameter', (_message.Message,), dict( DESCRIPTOR = _VIDEODATAPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.VideoDataParameter) )) _sym_db.RegisterMessage(VideoDataParameter) WindowDataParameter = _reflection.GeneratedProtocolMessageType('WindowDataParameter', (_message.Message,), dict( DESCRIPTOR = _WINDOWDATAPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.WindowDataParameter) )) _sym_db.RegisterMessage(WindowDataParameter) SPPParameter = _reflection.GeneratedProtocolMessageType('SPPParameter', (_message.Message,), dict( DESCRIPTOR = _SPPPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.SPPParameter) )) _sym_db.RegisterMessage(SPPParameter) V1LayerParameter = _reflection.GeneratedProtocolMessageType('V1LayerParameter', (_message.Message,), dict( DESCRIPTOR = _V1LAYERPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.V1LayerParameter) )) _sym_db.RegisterMessage(V1LayerParameter) V0LayerParameter = _reflection.GeneratedProtocolMessageType('V0LayerParameter', (_message.Message,), dict( DESCRIPTOR = _V0LAYERPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.V0LayerParameter) )) _sym_db.RegisterMessage(V0LayerParameter) PReLUParameter = _reflection.GeneratedProtocolMessageType('PReLUParameter', (_message.Message,), dict( DESCRIPTOR = _PRELUPARAMETER, __module__ = 'caffe_pb2' # @@protoc_insertion_point(class_scope:caffe.PReLUParameter) )) _sym_db.RegisterMessage(PReLUParameter) _BLOBSHAPE.fields_by_name['dim'].has_options = True _BLOBSHAPE.fields_by_name['dim']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\020\001')) _BLOBPROTO.fields_by_name['data'].has_options = True _BLOBPROTO.fields_by_name['data']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\020\001')) _BLOBPROTO.fields_by_name['diff'].has_options = True _BLOBPROTO.fields_by_name['diff']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\020\001')) _BLOBPROTO.fields_by_name['double_data'].has_options = True _BLOBPROTO.fields_by_name['double_data']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\020\001')) _BLOBPROTO.fields_by_name['double_diff'].has_options = True _BLOBPROTO.fields_by_name['double_diff']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\020\001')) # @@protoc_insertion_point(module_scope)
ef6c06660d86b62672a536b74a43851456d18b17
eba25f559725d80eaeb3f3c6d71e3f28880f2716
/Final Project/starter_code/part_b/partb.py
53a9d054774d7363641d169e765150950a86954e
[ "MIT" ]
permissive
Catherine1124k/CSC311_Fall2020
da72f6ce05e6589e1e0abd1b25e805187e197271
8ba16154982fe9975431d895e4c3bff537055312
refs/heads/master
2023-02-07T13:27:52.180786
2020-12-21T20:23:21
2020-12-21T20:23:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,135
py
from utils import * from part_a.item_response import * def load_question_meta(): # load question_meta.csv path = os.path.join("../data", "question_meta.csv") if not os.path.exists(path): raise Exception("The specified path {} does not exist.".format(path)) # Initialize the data. data = { "question_id": [], "subject_id": [] } # Iterate over the row to fill in the data. with open(path, "r") as csv_file: reader = csv.reader(csv_file) for row in reader: try: data["question_id"].append(int(row[0])) s = str(row[1])[1:-1] subjects = s.split(", ") subjects = [int(x) - 1 for x in subjects] data["subject_id"].append(subjects) except ValueError: # Pass first row. pass except IndexError: # is_correct might not be available. pass return data def meta_to_matrix(data): """ Transform the question_meta data into matrix representation """ q = data["question_id"] sub = data["subject_id"] result = np.zeros((1774, 387)) for i in range(len(q)): result[q[i], sub[i]] = 1 return result def neg_log_likelihood_b(data, subject, theta, beta, gamma): """ Compute the negative log-likelihood. :param data: A dictionary {user_id: list, question_id: list, is_correct: list} :param subject: Matrix :param theta: Vector :param beta: Vector :param gamma: Vector :return: float """ usr = np.array(data["user_id"]) q = np.array(data["question_id"]) c = np.array(data["is_correct"]) para = theta[usr] - beta[q] - subject[q].dot(gamma) log_like = np.log(sigmoid(para)) * c + np.log(1 - sigmoid(para)) * (1 - c) log_lklihood = np.sum(log_like) return -log_lklihood def update_b(data, subject, lr, theta, beta, gamma): """ Update theta and beta using gradient descent. You are using alternating gradient descent. Your update should look: for i in iterations ... theta <- new_theta beta <- new_beta You may optionally replace the function arguments to receive a matrix. :param data: A dictionary {user_id: list, question_id: list, is_correct: list} :param subject: Matrix :param lr: float :param theta: Vector :param beta: Vector :param gamma: Vector :return: tuple of vectors """ usr = np.array(data["user_id"]) q = np.array(data["question_id"]) c = np.array(data["is_correct"]) para = theta[usr] - beta[q] - subject[q].dot(gamma) values = c - sigmoid(para) sparse = csc_matrix((values, (usr, q)), shape=(len(theta), len(beta))).toarray() theta = theta + np.sum(sparse, axis=1) * lr para = theta[usr] - beta[q] - subject[q].dot(gamma) values = c - sigmoid(para) sparse = csc_matrix((values, (usr, q)), shape=(len(theta), len(beta))).toarray() for i in range(len(gamma)): grad = np.sum(sparse.dot(subject[:, i])) gamma[i] = gamma[i] - grad * lr * 0.012 para = theta[usr] - beta[q] - subject[q].dot(gamma) values = c - sigmoid(para) sparse = csc_matrix((values, (usr, q)), shape=(len(theta), len(beta))).toarray() beta = beta - np.sum(sparse, axis=0) * lr return theta, beta, gamma def irt_b(data, subject, val_data, lr, iterations): """ Train IRT model. You may optionally replace the function arguments to receive a matrix. :param data: A dictionary {user_id: list, question_id: list, is_correct: list} :param subject: Matrix :param val_data: A dictionary {user_id: list, question_id: list, is_correct: list} :param lr: float :param iterations: int :return: (theta, beta, gamma, val_acc_lst) """ theta = np.zeros(542) beta = np.zeros(1774) gamma = np.zeros(387) val_acc_lst = [] train_loglik = [] valid_loglik = [] for i in range(iterations): neg_lld = neg_log_likelihood_b(data, subject, theta, beta, gamma) val_neg_lld = neg_log_likelihood_b(val_data, subject, theta, beta, gamma) train_loglik.append(-neg_lld) valid_loglik.append(-val_neg_lld) score = evaluate_b(val_data, subject, theta, beta, gamma) val_acc_lst.append(score) print("NLLK: {} \t Score: {}".format(neg_lld, score)) theta, beta, gamma = update_b(data, subject, lr, theta, beta, gamma) return theta, beta, gamma, val_acc_lst, train_loglik, valid_loglik def evaluate_b(data, subject, theta, beta, gamma): """ Evaluate the model given data and return the accuracy. :param data: A dictionary {user_id: list, question_id: list, is_correct: list} :param subject: Matrix :param theta: Vector :param beta: Vector :param gamma: Vector :return: float """ pred = [] for i, q in enumerate(data["question_id"]): u = data["user_id"][i] x = (theta[u] - beta[q] - subject[q].dot(gamma)).sum() p_a = sigmoid(x) pred.append(p_a >= 0.5) return np.sum((data["is_correct"] == np.array(pred))) \ / len(data["is_correct"]) if __name__ == '__main__': subject_meta = load_question_meta() subject_matrix = meta_to_matrix(subject_meta) train_data = load_train_csv("../data") val_data = load_valid_csv("../data") test_data = load_public_test_csv("../data") print("Train baseline model") theta, beta, val_acc, train_ll, valid_ll \ = irt(train_data, val_data, 0.01, 70) print("Train modified model") theta_b, beta_b, gamma_b, val_acc_b, train_ll_b, valid_ll_b \ = irt_b(train_data, subject_matrix, val_data, 0.01, 70) validation_accuracy = evaluate(val_data, theta, beta) test_accuracy = evaluate(test_data, theta, beta) print("Baseline validation accuracy is: " + str(validation_accuracy)) print("Baseline test accuracy is: " + str(test_accuracy)) validation_accuracy = evaluate_b(val_data, subject_matrix, theta_b, beta_b, gamma_b) test_accuracy = evaluate_b(test_data, subject_matrix, theta_b, beta_b, gamma_b) print("Modified validation accuracy is: " + str(validation_accuracy)) print("Modified test accuracy is: " + str(test_accuracy)) plt.plot(train_ll, label="Baseline Training Log-likelihood") plt.plot(train_ll_b, label="Modified training Log-likelihood") plt.xlabel("Num of Iteration") plt.ylabel("Log-likelihood") plt.title("Log-likelihood Comparison") plt.legend() plt.show() plt.plot(valid_ll, label="Baseline Validation Log-likelihood") plt.plot(valid_ll_b, label="Modified validation Log-likelihood") plt.xlabel("Num of Iteration") plt.ylabel("Log-likelihood") plt.title("Log-likelihood Comparison") plt.legend() plt.show() plt.plot(val_acc, label="Baseline Validation Accuracy") plt.plot(val_acc_b, label="Modified Validation Accuracy") plt.xlabel("Num of Iteration") plt.ylabel("Validation Accuracy") plt.title("Accuracy Comparison") plt.legend() plt.show()
387d64c44a25a19d0b26c959227376443767d02a
1159b2200134468b2ea27c720a12b95b59be1bb0
/lib/parsers2/toml/toml.py
9af589d0d131d91ad806ce71c1b334aab3a98386
[]
no_license
YULIYA2001/Parser
a3ac8e418010159810416a5996d1ff9dd05b18e4
23d940bc7f46f99a24cfe7af92de4073854c9454
refs/heads/main
2023-06-11T18:23:47.850168
2021-06-24T08:06:45
2021-06-24T08:06:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,000
py
import re from .resources import * def dumps(obj): def dumps_complex(compl_obj, primary_key=''): if len(compl_obj) == 0: return '' ans = str() for key, item in compl_obj.items(): obj_type = type(item) if obj_type is dict: continue elif obj_type is list or obj_type is tuple: ans += key + ' = ' ans += '[' + dumps_simple(item) + ']\n' elif obj_type is str: ans += key + ' = ' ans += '\'' + item + '\'' + '\n' elif obj_type is bool: ans += key + ' = ' if item: ans += "true" + '\n' else: ans += "false" + '\n' elif item is None: ans += key + ' = ' ans += "null" + '\n' else: ans += key + ' = ' ans += str(item) + '\n' for key, item in compl_obj.items(): obj_type = type(item) if obj_type is dict: if primary_key != '': primary_key += '.' primary_key += key ans += '\n[' + primary_key + ']\n' ans += dumps_complex(item, primary_key) primary_key = primary_key[:primary_key.rfind('.')] return ans def dumps_simple(simp_obj): if len(simp_obj) == 0: return "" ans = str() for item in simp_obj: obj_type = type(item) if obj_type == str: ans += '\'' + item + '\'' + ', ' elif obj_type == dict: ans += dumps_complex(item) + ', ' elif obj_type == list or type(item) == tuple: ans += '[' + dumps_simple(item) + ']' + ', ' elif obj_type == bool: if item: ans += "true" + ', ' else: ans += "false" + ', ' elif item is None: ans += "null" + ', ' else: ans += str(item) + ', ' ans = ans[0:len(ans) - 2] return ans return dumps_complex(obj) def dump(obj, fp): s = dumps(obj) fp.write(s) def loads(temp_str): def find_last_index(str_obj, i, key): temp_counter = i brackets = 0 temp_key = str() while temp_counter < len(str_obj): while str_obj[temp_counter] != '[': temp_counter += 1 if not (temp_counter < len(str_obj)): return len(str_obj) if str_obj[temp_counter - 1] != '\n': temp_counter += 1 continue temp_position = temp_counter while str_obj[temp_counter] != ']': temp_counter += 1 temp_key = str_obj[temp_position + 1:temp_counter] if not temp_key.startswith(key): return temp_position - 1 else: temp_counter += 1 continue return len(str_obj) def loads_obj(str_obj, prev_key=''): obj = dict() brackets = 0 quotes = 0 is_key = True definition = "" key = "" i = 0 temp_i = 0 while i < len(str_obj): if str_obj[i] == ' ': i += 1 elif str_obj[i] == '=': i += 1 is_key = False elif str_obj[i] == '\'': i += 1 temp_i = i while str_obj[temp_i] != '\'': temp_i += 1 if temp_i >= len(str_obj): raise ValueError() obj[key] = str_obj[i:temp_i] i = temp_i + 2 is_key = True key = '' definition = '' elif str_obj[i] == '[': brackets = 1 i += 1 temp_i = i while brackets: if str_obj[temp_i] == '[': brackets += 1 elif str_obj[temp_i] == ']': brackets -= 1 temp_i += 1 if temp_i > len(str_obj): raise ValueError() obj[key] = loads_arr(str_obj[i:temp_i - 1]) i = temp_i + 1 is_key = True key = '' definition = '' elif str_obj[i] == '\n': if str_obj[i - 1] != '\n': if is_key: raise ValueError() if definition == 'true': obj[key] = True elif definition == 'false': obj[key] = False elif definition == 'null': obj[key] = None elif re.fullmatch(FLOAT_REGEX, definition): obj[key] = float(definition) elif re.fullmatch(INT_REGEX, definition): obj[key] = int(definition) else: raise ValueError() is_key = True key = '' definition = '' i += 1 else: i += 2 if i == len(str_obj): break if str_obj[i - 1] != '[': raise KeyError() while str_obj[i] != ']': if str_obj[i] == '[': raise KeyError() key += str_obj[i] i += 1 if i > len(str_obj): raise ValueError() i += 1 temp_i = find_last_index(str_obj, i, key) key = key[key.rfind('.') + 1:] obj[key] = loads_obj(str_obj[i + 1: temp_i], key) i = temp_i key = '' definition = '' is_key = True else: if is_key: key += str_obj[i] else: definition += str_obj[i] i += 1 return obj def loads_arr(str_obj): obj = list() brackets = 0 definition = "" i = 0 temp_i = 0 while i < len(str_obj): if str_obj[i] != ' ': if str_obj[i] == '[': brackets = 1 i += 1 temp_i = i while brackets: if str_obj[temp_i] == '[': brackets += 1 elif str_obj[temp_i] == ']': brackets -= 1 temp_i += 1 if temp_i > len(str_obj): raise ValueError() obj.append(loads_arr(str_obj[i:temp_i - 1])) i = temp_i + 1 definition = '' elif str_obj[i] == '\'': i += 1 temp_i = i while str_obj[temp_i] != '\'': temp_i += 1 if temp_i > len(str_obj): raise ValueError() obj.append(str(str_obj[i:temp_i])) i = temp_i + 1 elif str_obj[i] == ',': if re.fullmatch(FLOAT_REGEX, definition): obj.append(float(definition)) elif definition == 'true': obj.append(True) elif definition == 'false': obj.append(False) elif definition == 'null': obj.append(None) elif re.fullmatch(INT_REGEX, definition): obj.append(int(definition)) else: raise ValueError() definition = '' i += 1 else: definition += str_obj[i] i += 1 else: i += 1 if definition != '': if re.fullmatch(FLOAT_REGEX, definition): obj.append(float(definition)) elif definition == 'true': obj.append(True) elif definition == 'false': obj.append(False) elif definition == 'null': obj.append(None) elif re.fullmatch(INT_REGEX, definition): obj.append(int(definition)) else: raise ValueError() return obj return loads_obj(temp_str) def load(fp): return loads(fp.read())
10697df0fbb303ec76e0a8afc5734c074597401c
9c2f620c8827f1e1e5e74505dbbbde8563136ac9
/_tests/modules/test_rabbitmq.py
b57c84910d8345fdd9f7f5802356da1522676b5a
[ "BSD-2-Clause" ]
permissive
nasqueron/operations
af8c1f33edeec15d2fa798a464e54b405a149c12
f75aaf610ace599ef163821561078a5f474dcda1
refs/heads/main
2023-08-05T09:14:55.241997
2023-07-24T20:11:33
2023-07-24T20:31:17
27,307,453
18
1
null
2023-02-05T20:16:11
2014-11-29T16:16:08
SaltStack
UTF-8
Python
false
false
558
py
#!/usr/bin/env python3 from importlib.machinery import SourceFileLoader import unittest salt_test_case = SourceFileLoader("salt_test_case", "salt_test_case.py").load_module() rabbitmq = SourceFileLoader("rabbitmq", "../_modules/rabbitmq.py").load_module() class Testinstance(unittest.TestCase, salt_test_case.SaltTestCase): def test_compute_password_hash_with_salt(self): self.assertEqual( "kI3GCqW5JLMJa4iX1lo7X4D6XbYqlLgxIs30+P6tENUV2POR", rabbitmq._compute_password_hash_with_salt(0x908DC60A, "test12"), )
b906b0551f7988f9c076fd83d07000b804048027
eaa30db47aa017f5f951ba5ddc5be55a205d1aa5
/serviceAnalysis/migrations/0002_customerservicehistory_miles.py
2af8bd0fcaf655e8bc5fd095cc4878988633dc90
[]
no_license
cyobero/websites
8cc7d6754dc528d7b154daee7368f7c0da41c589
5112e3feca4d4650eb9b22b0fe883daf3f56d1e4
refs/heads/master
2021-09-02T12:18:04.177603
2018-01-02T14:39:24
2018-01-02T14:39:24
115,207,609
0
0
null
null
null
null
UTF-8
Python
false
false
472
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2017-12-23 03:46 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('serviceAnalysis', '0001_initial'), ] operations = [ migrations.AddField( model_name='customerservicehistory', name='miles', field=models.IntegerField(blank=True, null=True), ), ]
2d38dcb91332ff3a7c9d232d62866608fb719f06
ec0b8bfe19b03e9c3bb13d9cfa9bd328fb9ca3f1
/res/packages/scripts/scripts/client/bwobsolete_helpers/PyGUI/PyGUIBase.py
834a250a485148a54b8d4bd40344fe93be77ec21
[]
no_license
webiumsk/WOT-0.9.20.0
de3d7441c5d442f085c47a89fa58a83f1cd783f2
811cb4e1bca271372a1d837a268b6e0e915368bc
refs/heads/master
2021-01-20T22:11:45.505844
2017-08-29T20:11:38
2017-08-29T20:11:38
101,803,045
0
1
null
null
null
null
WINDOWS-1250
Python
false
false
5,952
py
# 2017.08.29 21:44:03 Střední Evropa (letní čas) # Embedded file name: scripts/client/bwobsolete_helpers/PyGUI/PyGUIBase.py import BigWorld, GUI import weakref from bwdebug import * from functools import partial from Listener import Listenable class PyGUIBase(object, Listenable): def __init__(self, component = None): Listenable.__init__(self) self.component = component self.eventHandler = None self._parent = None self.isActive = False return def active(self, state): if state == self.isActive: return if not self.component: return self.isActive = state if state: if not self._parent: GUI.addRoot(self.component) else: self._parent.addChild(self.component) self.component.mouseButtonFocus = True self.component.moveFocus = True self.component.crossFocus = True else: if not self._parent: GUI.delRoot(self.component) else: self._parent.delChild(self.component) self.component.mouseButtonFocus = False self.component.moveFocus = False self.component.crossFocus = False self.listeners.activated(state) def _setparent(self, parent): if self.isActive: if not self._parent: GUI.delRoot(self.component) else: self._parent.delChild(self.component) if parent: self._parent = weakref.proxy(parent) else: self._parent = parent if self.isActive: if not self._parent: GUI.addRoot(self.component) else: self._parent.addChild(self.component) def _getparent(self): return self._parent parent = property(_getparent, _setparent) def getWindow(self): import Window if isinstance(self, Window.Window): return self elif self.component.parent and self.component.parent.script: return self.component.parent.script.getWindow() else: return return def toggleActive(self): self.active(not self.isActive) def setEventHandler(self, eh): self.eventHandler = eh def doLayout(self, parent): for name, child in self.component.children: child.script.doLayout(self) def setToolTipInfo(self, toolTipInfo): self.toolTipInfo = toolTipInfo def removeToolTipInfo(self): if hasattr(self, toolTipInfo): del self.toolTipInfo def focus(self, state): pass def mouseButtonFocus(self, state): pass def handleInputLangChangeEvent(self): return False def handleKeyEvent(self, event): return False def handleMouseEvent(self, comp, event): return False def handleMouseButtonEvent(self, comp, event): window = self.getWindow() if window: window.listeners.windowClicked() return False def handleMouseClickEvent(self, component): return False def handleMouseEnterEvent(self, comp): if getattr(self, 'toolTipInfo', None): import ToolTip ToolTip.ToolTipManager.instance.setupToolTip(self.component, self.toolTipInfo) return False def handleMouseLeaveEvent(self, comp): return False def handleAxisEvent(self, event): return False def handleDragStartEvent(self, comp): return False def handleDragStopEvent(self, comp): return False def handleDragEnterEvent(self, comp, dragged): return False def handleDragLeaveEvent(self, comp, dragged): return False def handleDropEvent(self, comp, dropped): return False def handleIMEEvent(self, event): return False def onLoad(self, dataSection): if dataSection.has_key('toolTipInfo'): import ToolTip self.toolTipInfo = ToolTip.ToolTipInfo() self.toolTipInfo.onLoad(dataSection._toolTipInfo) def onSave(self, dataSection): if hasattr(self, 'toolTipInfo') and self.toolTipInfo is not None: toolTipInfoSection = dataSection.createSection('toolTipInfo') self.toolTipInfo.onSave(toolTipInfoSection) return def onBound(self): for name, child in self.component.children: if not child.script: child.script = PyGUIBase(child) raise isinstance(child.script, PyGUIBase) or AssertionError self._bindEvents(self.__class__) def _bindEvents(self, cls): for name, function in cls.__dict__.iteritems(): if hasattr(function, '_PyGUIEventHandler'): for componentName, eventName, args, kargs in function._PyGUIEventHandler: if not callable(function): raise AssertionError component = self.component for name in componentName.split('.'): component = getattr(component, name, None) if component is None: break component is None and ERROR_MSG("PyGUIEvent: '%s' has no component named '%s'." % (str(self), componentName)) continue function = getattr(self, function.__name__) setattr(component.script, eventName, partial(function, *args, **kargs)) for base in cls.__bases__: self._bindEvents(base) return # okay decompyling c:\Users\PC\wotmods\files\originals\res\packages\scripts\scripts\client\bwobsolete_helpers\PyGUI\PyGUIBase.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2017.08.29 21:44:03 Střední Evropa (letní čas)
4c6f30773778755b28abf02e091617900053df6f
29cc3c7008d6bd1ca6cd7e9b377ab569a31994cc
/PythonAulas/aula11.py
9a38db459f8305e273a431c297b32407b1a68f73
[]
no_license
leclm/CeV-Python
d84a5b4f17c05480c62debca0aaee511ec1c77f4
ac37b8700d82ba9a61108fb5908e7e79a07565d2
refs/heads/master
2021-05-20T08:13:11.406957
2020-04-08T13:57:31
2020-04-08T13:57:31
252,187,554
0
0
null
null
null
null
UTF-8
Python
false
false
1,071
py
print('\033[32mOlá mundo!') # vai ficar com a letra verde print('\033[36;41mOlá mundo!') # vai ficar com a letra ciano e o fundo vermelho até o fim da linha print('\033[1;34;43mOlá mundo!\033[m') # vai ficar sublinhado, com a letra azul e o fundo amarelo até o ! print('\033[4;30;46mOlá mundo!\033[m') # vai ficar em negrito, com a letra roxa e o fundo ciano até o ! print('\033[0;33;44mOlá Mundo!\033[m') # vai ficar com a letra amarela e o fundo azul print('\033[7;33;44mOlá Mundo!\033[m') # vai ficar com a letra azul e o fundo amarelo, inverteu por causa do 7 print('Os valores são \033[33m3\033[m e \033[35m5\033[m!!') nome = 'Letícia' print('Muito prazer em te conhecer {}{}{}!!'.format('\033[4;35m', nome, '\033[m')) name = 'Eduardo' cores = {'limpa': '\033[m', 'amareloesub': '\033[4;33m', 'azulenegrito': '\033[1;34m'} print('Muito prazer em te conhecer {}{}{}!'.format(cores['amareloesub'], name, cores['limpa'])) print('Muito prazer em te conhecer {}{}{}!'.format(cores['azulenegrito'], nome, cores['limpa']))
24e24c1bb50cbbd0c3f4af14a06c6dcf353f6fe4
425db5a849281d333e68c26a26678e7c8ce11b66
/LeetCodeSolutions/LeetCode_0252.py
ccf1daf59fe8c44bc1f9575209b20c8851cafb90
[ "MIT" ]
permissive
lih627/python-algorithm-templates
e8092b327a02506086414df41bbfb2af5d6b06dc
a61fd583e33a769b44ab758990625d3381793768
refs/heads/master
2021-07-23T17:10:43.814639
2021-01-21T17:14:55
2021-01-21T17:14:55
238,456,498
29
8
null
null
null
null
UTF-8
Python
false
false
361
py
from typing import List class Solution: def canAttendMeetings(self, intervals: List[List[int]]) -> bool: if not intervals: return True intervals.sort() end = -1 for interval in intervals: if interval[0] < end: return False end = max(end, interval[1]) return True
9c006a8120bb60c9b28d807c9abeaa3c113ba668
b7795d5154005cd12afaac9d099be43a21b2e143
/tests/ignite/engine/test_deterministic.py
9e567d1633052d799c86a0ae4fd75af867eb60c0
[ "BSD-3-Clause" ]
permissive
jonrbates/ignite
60361646ecbcf8659ced60460fe3ff2cb035ff74
15eeb8791a2e0c2f55265e1f6b91f91dc35286c5
refs/heads/master
2022-06-16T14:58:25.608252
2020-05-10T13:43:58
2020-05-10T13:43:58
262,943,590
0
0
BSD-3-Clause
2020-05-11T05:04:56
2020-05-11T05:04:56
null
UTF-8
Python
false
false
29,013
py
import os import random from unittest.mock import patch import numpy as np import pytest import torch import torch.nn as nn from ignite.engine import Events from ignite.engine.deterministic import ( DeterministicEngine, ReproducibleBatchSampler, keep_random_state, update_dataloader, ) from ignite.utils import manual_seed from tests.ignite.engine import BatchChecker, setup_sampler def test_update_dataloader(): def _test(sampler_type=None): num_epochs = 3 batch_size = 4 num_iters = 17 data = torch.randint(0, 1000, size=(num_iters * batch_size,)) num_workers = 4 sampler = setup_sampler(sampler_type, num_iters, batch_size) dataloader = torch.utils.data.DataLoader( data, batch_size=batch_size, num_workers=num_workers, pin_memory=False, sampler=sampler, drop_last=True, shuffle=sampler is None, ) torch.manual_seed(12) seen_batches = [] for i in range(num_epochs): t = [] if sampler_type == "distributed": sampler.set_epoch(i) for b in dataloader: t.append(b) seen_batches.append(t) sampler = setup_sampler(sampler_type, num_iters, batch_size) dataloader = torch.utils.data.DataLoader( data, batch_size=batch_size, num_workers=num_workers, pin_memory=False, sampler=sampler, drop_last=True, shuffle=sampler is None, ) batch_sampler = dataloader.batch_sampler new_dataloader = update_dataloader(dataloader, ReproducibleBatchSampler(batch_sampler)) torch.manual_seed(12) new_batches = [] for i in range(num_epochs): t = [] if sampler_type == "distributed": sampler.set_epoch(i) for b in new_dataloader: t.append(b) new_batches.append(t) for i in range(num_epochs): assert all([(b1 == b2).all() for b1, b2 in zip(seen_batches[i], new_batches[i])]) _test() _test("weighted") _test("distributed") def test_reproducible_batch_sampler_wrong_input(): with pytest.raises(TypeError, match=r"Argument batch_sampler should be torch.utils.data.sampler.BatchSampler"): ReproducibleBatchSampler("abc") def test_reproducible_batch_sampler(): import torch from torch.utils.data import DataLoader data = list(range(100)) dataloader = DataLoader(data, batch_size=12, num_workers=0, shuffle=True, drop_last=True) torch.manual_seed(12 + 0) dataloader_ = update_dataloader(dataloader, ReproducibleBatchSampler(dataloader.batch_sampler)) seen_batches = [] num_epochs = 3 for i in range(num_epochs): t = [] for b in dataloader_: t.append(b) seen_batches.append(t) torch.manual_seed(12 + i + 1) for i in range(num_epochs - 1): for j in range(i + 1, num_epochs): assert not all([(b1 == b2).all() for b1, b2 in zip(seen_batches[i], seen_batches[j])]) for resume_epoch in range(num_epochs): torch.manual_seed(12 + resume_epoch) dataloader_ = update_dataloader(dataloader, ReproducibleBatchSampler(dataloader.batch_sampler)) resumed_seen_batches = [] for b in dataloader_: resumed_seen_batches.append(b) assert all([(b1 == b2).all() for b1, b2 in zip(seen_batches[resume_epoch], resumed_seen_batches)]) def _test_keep_random_state(with_numpy): manual_seed(54) true_values = [] for _ in range(5): t = [ torch.tensor([random.random()]), torch.rand(2), ] if with_numpy: t.append(torch.from_numpy(np.random.rand(2))) true_values.append(t) @keep_random_state def user_handler(): manual_seed(22) _ = [ random.random(), torch.rand(2), ] if with_numpy: _ = np.random.rand(2) manual_seed(54) res_values = [] for _ in range(5): r = [ torch.tensor([random.random()]), torch.rand(2), ] if with_numpy: r.append(torch.from_numpy(np.random.rand(2))) res_values.append(r) user_handler() for a, b in zip(true_values, res_values): for i, j in zip(a, b): assert (i == j).all() def test_keep_random_state(): _test_keep_random_state(with_numpy=True) def test_keep_random_state_without_numpy(): with patch.dict("sys.modules", {"numpy": None}): _test_keep_random_state(with_numpy=False) def test_strict_resume_from_iter(): def _test(epoch_length=None): max_epochs = 5 num_iters = 21 torch.manual_seed(0) data = torch.randint(0, 1000, size=(num_iters,)) if epoch_length is None: epoch_length = num_iters for resume_iteration in range(2, min(num_iters * max_epochs, epoch_length * max_epochs), 4): print("\n----", resume_iteration, epoch_length) batch_checker = BatchChecker(data, init_counter=resume_iteration) def update_fn(_, batch): assert batch_checker.check(batch), "{} | {}: {} vs {}".format( resume_iteration, batch_checker.counter, batch_checker.true_batch, batch ) engine = DeterministicEngine(update_fn) @engine.on(Events.EPOCH_COMPLETED) def check_iteration(_): assert engine.state.iteration == batch_checker.counter resume_state_dict = dict( iteration=resume_iteration, max_epochs=max_epochs, epoch_length=epoch_length, rng_states=None ) engine.load_state_dict(resume_state_dict) engine.run(data) assert engine.state.epoch == max_epochs assert engine.state.iteration == epoch_length * max_epochs _test() _test(60) _test(15) def test_strict_resume_from_epoch(): def _test(epoch_length=None): max_epochs = 10 num_iters = 21 torch.manual_seed(0) data = torch.randint(0, 1000, size=(num_iters,)) if epoch_length is None: epoch_length = num_iters for resume_epoch in range(1, max_epochs): batch_checker = BatchChecker(data, init_counter=resume_epoch * epoch_length) def update_fn(_, batch): assert batch_checker.check(batch), "{} | {}: {} vs {}".format( resume_epoch, batch_checker.counter, batch_checker.true_batch, batch ) engine = DeterministicEngine(update_fn) resume_state_dict = dict( epoch=resume_epoch, max_epochs=max_epochs, epoch_length=epoch_length, rng_states=None ) engine.load_state_dict(resume_state_dict) engine.run(data) assert engine.state.epoch == max_epochs assert engine.state.iteration == epoch_length * max_epochs _test() _test(60) _test(15) def _test_resume_random_dataloader_from_epoch(device, _setup_sampler, sampler_type=None): def _test(epoch_length=None): max_epochs = 5 batch_size = 4 num_iters = 21 torch.manual_seed(0) data = torch.randint(0, 1000, size=(num_iters * batch_size,)) if epoch_length is None: epoch_length = num_iters for resume_epoch in range(1, max_epochs): for num_workers in [0, 4]: sampler = _setup_sampler(sampler_type, num_iters, batch_size) orig_dataloader = torch.utils.data.DataLoader( data, batch_size=batch_size, num_workers=num_workers, pin_memory="cuda" in device, sampler=sampler, drop_last=True, shuffle=sampler is None, ) seen_batchs = [] def update_fn(_, batch): batch_to_device = batch.to(device) seen_batchs.append(batch) engine = DeterministicEngine(update_fn) if sampler_type == "distributed": @engine.on(Events.EPOCH_STARTED) def _(engine): sampler.set_epoch(engine.state.epoch - 1) torch.manual_seed(87) engine.run( orig_dataloader, max_epochs=max_epochs, epoch_length=epoch_length, ) batch_checker = BatchChecker(seen_batchs, init_counter=resume_epoch * epoch_length) sampler = _setup_sampler(sampler_type, num_iters, batch_size) resume_dataloader = torch.utils.data.DataLoader( data, batch_size=batch_size, num_workers=num_workers, pin_memory="cuda" in device, sampler=sampler, drop_last=True, shuffle=sampler is None, ) def update_fn(_, batch): batch_to_device = batch.to(device) assert batch_checker.check(batch), "{} {} | {}: {} vs {}".format( num_workers, resume_epoch, batch_checker.counter, batch_checker.true_batch, batch ) engine = DeterministicEngine(update_fn) if sampler_type == "distributed": @engine.on(Events.EPOCH_STARTED) def _(engine): sampler.set_epoch(engine.state.epoch - 1) resume_state_dict = dict( epoch=resume_epoch, max_epochs=max_epochs, epoch_length=epoch_length, rng_states=None ) engine.load_state_dict(resume_state_dict) torch.manual_seed(87) engine.run(resume_dataloader) assert engine.state.epoch == max_epochs assert engine.state.iteration == epoch_length * max_epochs _test() if sampler_type != "distributed": _test(60) _test(15) def test_resume_random_dataloader_from_epoch(): _test_resume_random_dataloader_from_epoch("cpu", setup_sampler) _test_resume_random_dataloader_from_epoch("cpu", setup_sampler, sampler_type="weighted") _test_resume_random_dataloader_from_epoch("cpu", setup_sampler, sampler_type="distributed") class AugmentedData: def __init__(self, data, enabled=True): self.data = data self.enabled = enabled def __getitem__(self, i): dp = self.data[i] r = torch.randint_like(dp, -100, 100) if self.enabled else 0.0 return dp + r * 0.01 def __len__(self): return len(self.data) def _test_resume_random_dataloader_from_iter(device, _setup_sampler, sampler_type=None): def _test(epoch_length=None): max_epochs = 3 batch_size = 4 num_iters = 17 torch.manual_seed(0) data = torch.randint(0, 1000, size=(num_iters * batch_size,)) if epoch_length is None: epoch_length = num_iters for resume_iteration in range(2, min(num_iters * max_epochs, epoch_length * max_epochs), 7): for num_workers in [0, 4]: sampler = _setup_sampler(sampler_type, num_iters, batch_size) orig_dataloader = torch.utils.data.DataLoader( data, batch_size=batch_size, num_workers=num_workers, pin_memory="cuda" in device, sampler=sampler, drop_last=True, shuffle=sampler is None, ) seen_batchs = [] def update_fn(_, batch): batch_to_device = batch.to(device) seen_batchs.append(batch) engine = DeterministicEngine(update_fn) if sampler_type == "distributed": @engine.on(Events.EPOCH_STARTED) def _(engine): sampler.set_epoch(engine.state.epoch) torch.manual_seed(12) engine.run( orig_dataloader, max_epochs=max_epochs, epoch_length=epoch_length, ) batch_checker = BatchChecker(seen_batchs, init_counter=resume_iteration) sampler = _setup_sampler(sampler_type, num_iters, batch_size) resume_dataloader = torch.utils.data.DataLoader( data, batch_size=batch_size, num_workers=num_workers, pin_memory="cuda" in device, sampler=sampler, drop_last=True, shuffle=sampler is None, ) def update_fn(_, batch): batch_to_device = batch.to(device) assert batch_checker.check(batch), "{} {} | {}: {} vs {}".format( num_workers, resume_iteration, batch_checker.counter, batch_checker.true_batch, batch ) engine = DeterministicEngine(update_fn) if sampler_type == "distributed": @engine.on(Events.EPOCH_STARTED) def _(engine): sampler.set_epoch(engine.state.epoch) resume_state_dict = dict( iteration=resume_iteration, max_epochs=max_epochs, epoch_length=epoch_length, rng_states=None ) engine.load_state_dict(resume_state_dict) torch.manual_seed(12) engine.run(resume_dataloader) assert engine.state.epoch == max_epochs assert engine.state.iteration == epoch_length * max_epochs, "{}, {} | {} vs {}".format( num_workers, resume_iteration, engine.state.iteration, epoch_length * max_epochs ) _test() if sampler_type != "distributed": _test(40) _test(11) def test_resume_random_dataloader_from_iter(): _test_resume_random_dataloader_from_iter("cpu", setup_sampler) _test_resume_random_dataloader_from_iter("cpu", setup_sampler, sampler_type="weighted") _test_resume_random_dataloader_from_iter("cpu", setup_sampler, sampler_type="distributed") def _test_resume_random_data_iterator_from_epoch(device): def _test(epoch_length=None): max_epochs = 5 batch_size = 4 num_iters = 21 def infinite_data_iterator(): while True: for _ in range(num_iters): data = torch.randint(0, 1000, size=(batch_size,), device=device) yield data if epoch_length is None: epoch_length = num_iters for resume_epoch in range(1, max_epochs): seen_batchs = [] def update_fn(_, batch): # if there is a random op when using data batch etc, we can not resume correctly # torch.rand(1) seen_batchs.append(batch) engine = DeterministicEngine(update_fn) torch.manual_seed(121) engine.run( infinite_data_iterator(), max_epochs=max_epochs, epoch_length=epoch_length, ) batch_checker = BatchChecker(seen_batchs, init_counter=resume_epoch * epoch_length) def update_fn(_, batch): assert batch_checker.check(batch), "{} | {}: {} vs {}".format( resume_epoch, batch_checker.counter, batch_checker.true_batch, batch ) engine = DeterministicEngine(update_fn) resume_state_dict = dict( epoch=resume_epoch, max_epochs=max_epochs, epoch_length=epoch_length, rng_states=None ) engine.load_state_dict(resume_state_dict) torch.manual_seed(121) engine.run(infinite_data_iterator()) assert engine.state.epoch == max_epochs assert engine.state.iteration == epoch_length * max_epochs _test() _test(60) _test(15) def test_resume_random_data_iterator_from_epoch(): _test_resume_random_data_iterator_from_epoch("cpu") def _test_resume_random_data_iterator_from_iter(device): def _test(epoch_length=None): max_epochs = 3 batch_size = 4 num_iters = 17 def infinite_data_iterator(): while True: for _ in range(num_iters): data = torch.randint(0, 1000, size=(batch_size,), device=device) yield data if epoch_length is None: epoch_length = num_iters for resume_iteration in range(1, min(num_iters * max_epochs, epoch_length * max_epochs), 7): seen_batchs = [] def update_fn(_, batch): seen_batchs.append(batch) engine = DeterministicEngine(update_fn) torch.manual_seed(24) engine.run( infinite_data_iterator(), max_epochs=max_epochs, epoch_length=epoch_length, ) batch_checker = BatchChecker(seen_batchs, init_counter=resume_iteration) def update_fn(_, batch): assert batch_checker.check(batch), "{} | {}: {} vs {}".format( resume_iteration, batch_checker.counter, batch_checker.true_batch, batch ) engine = DeterministicEngine(update_fn) resume_state_dict = dict( iteration=resume_iteration, max_epochs=max_epochs, epoch_length=epoch_length, rng_states=None ) engine.load_state_dict(resume_state_dict) torch.manual_seed(24) engine.run(infinite_data_iterator()) assert engine.state.epoch == max_epochs assert engine.state.iteration == epoch_length * max_epochs, "{} | {} vs {}".format( resume_iteration, engine.state.iteration, epoch_length * max_epochs ) _test() _test(50) _test(11) def test_resume_random_data_iterator_from_iter(): _test_resume_random_data_iterator_from_iter("cpu") @pytest.mark.distributed @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_gpu(distributed_context_single_node_nccl): device = "cuda:{}".format(distributed_context_single_node_nccl["local_rank"]) _test_resume_random_data_iterator_from_iter(device) _test_resume_random_data_iterator_from_epoch(device) _test_resume_random_dataloader_from_iter(device, setup_sampler) _test_resume_random_dataloader_from_epoch(device, setup_sampler) @pytest.mark.distributed def test_distrib_cpu(distributed_context_single_node_gloo): device = "cpu" _test_resume_random_data_iterator_from_iter(device) _test_resume_random_data_iterator_from_epoch(device) _test_resume_random_dataloader_from_iter(device, setup_sampler) _test_resume_random_dataloader_from_epoch(device, setup_sampler) @pytest.mark.multinode_distributed @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_cpu(distributed_context_multi_node_gloo): device = "cpu" _test_resume_random_data_iterator_from_iter(device) _test_resume_random_data_iterator_from_epoch(device) _test_resume_random_dataloader_from_iter(device, setup_sampler) _test_resume_random_dataloader_from_epoch(device, setup_sampler) @pytest.mark.multinode_distributed @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gpu(distributed_context_multi_node_nccl): device = "cuda:{}".format(distributed_context_multi_node_nccl["local_rank"]) _test_resume_random_data_iterator_from_iter(device) _test_resume_random_data_iterator_from_epoch(device) _test_resume_random_dataloader_from_iter(device, setup_sampler) _test_resume_random_dataloader_from_epoch(device, setup_sampler) def test_concepts_snippet_resume(): import torch from torch.utils.data import DataLoader from ignite.engine import DeterministicEngine, Events from ignite.utils import manual_seed seen_batches = [] manual_seed(seed=15) def random_train_data_loader(size): data = torch.arange(0, size) return DataLoader(data, batch_size=4, shuffle=True) def print_train_data(engine, batch): i = engine.state.iteration e = engine.state.epoch print("train", e, i, batch.tolist()) seen_batches.append(batch) trainer = DeterministicEngine(print_train_data) print("Original Run") manual_seed(56) trainer.run(random_train_data_loader(40), max_epochs=2, epoch_length=5) original_batches = list(seen_batches) seen_batches = [] print("Resumed Run") trainer.load_state_dict({"epoch": 1, "epoch_length": 5, "max_epochs": 2, "rng_states": None}) manual_seed(56) trainer.run(random_train_data_loader(40)) resumed_batches = list(seen_batches) seen_batches = [] for b1, b2 in zip(original_batches[5:], resumed_batches): assert (b1 == b2).all() def test_concepts_snippet_warning(): def random_train_data_generator(): while True: yield torch.randint(0, 100, size=(1,)) def print_train_data(engine, batch): i = engine.state.iteration e = engine.state.epoch print("train", e, i, batch.tolist()) trainer = DeterministicEngine(print_train_data) @trainer.on(Events.ITERATION_COMPLETED(every=3)) def user_handler(_): # handler synchronizes the random state torch.manual_seed(12) a = torch.rand(1) trainer.run(random_train_data_generator(), max_epochs=3, epoch_length=5) def _test_gradients_on_resume( dirname, device, with_dropout=True, with_dataaugs=True, data_size=24, batch_size=4, save_iter=None, save_epoch=None ): debug = True from torch.utils.data import DataLoader from torch.optim import SGD def random_train_data_loader(size): d = AugmentedData(torch.rand(size, 3, 32, 32), enabled=with_dataaugs) return DataLoader(d, batch_size=batch_size, shuffle=True, num_workers=4) def _train(save_iter=None, save_epoch=None, sd=None): w_norms = [] grad_norms = [] data = [] chkpt = [] manual_seed(12) arch = [ nn.Conv2d(3, 10, 3), nn.ReLU(), nn.Conv2d(10, 10, 3), nn.ReLU(), nn.AdaptiveAvgPool2d(1), nn.Flatten(), nn.Linear(10, 5), nn.ReLU(), nn.Linear(5, 2), ] if with_dropout: arch.insert(2, nn.Dropout2d()) arch.insert(-2, nn.Dropout()) model = nn.Sequential(*arch).to(device) opt = SGD(model.parameters(), lr=0.001) def proc_fn(e, b): from ignite.engine.deterministic import _repr_rng_state, _get_rng_states s = _repr_rng_state(_get_rng_states()) model.train() opt.zero_grad() y = model(b.to(device)) y.sum().backward() opt.step() if debug: print( trainer.state.iteration, trainer.state.epoch, "proc_fn - b.shape", b.shape, torch.norm(y).item(), s ) trainer = DeterministicEngine(proc_fn) if save_iter is not None: ev = Events.ITERATION_COMPLETED(once=save_iter) elif save_epoch is not None: ev = Events.EPOCH_COMPLETED(once=save_epoch) save_iter = save_epoch * (data_size // batch_size) @trainer.on(ev) def save_chkpt(_): if debug: print(trainer.state.iteration, "save_chkpt") fp = os.path.join(dirname, "test.pt") from ignite.engine.deterministic import _repr_rng_state tsd = trainer.state_dict() if debug: print("->", _repr_rng_state(tsd["rng_states"])) torch.save([model.state_dict(), opt.state_dict(), tsd], fp) chkpt.append(fp) def log_event_filter(_, event): if (event // save_iter == 1) and 1 <= (event % save_iter) <= 5: return True return False @trainer.on(Events.ITERATION_COMPLETED(event_filter=log_event_filter)) def write_data_grads_weights(e): x = e.state.batch i = e.state.iteration data.append([i, x.mean().item(), x.std().item()]) total = [0.0, 0.0] out1 = [] out2 = [] for p in model.parameters(): n1 = torch.norm(p).item() n2 = torch.norm(p.grad).item() out1.append(n1) out2.append(n2) total[0] += n1 total[1] += n2 w_norms.append([i, total[0]] + out1) grad_norms.append([i, total[1]] + out2) if sd is not None: sd = torch.load(sd) model.load_state_dict(sd[0]) opt.load_state_dict(sd[1]) from ignite.engine.deterministic import _repr_rng_state if debug: print("-->", _repr_rng_state(sd[2]["rng_states"])) trainer.load_state_dict(sd[2]) manual_seed(32) trainer.run(random_train_data_loader(size=data_size), max_epochs=5) return {"sd": chkpt, "data": data, "grads": grad_norms, "weights": w_norms} out_original = _train(save_iter=save_iter, save_epoch=save_epoch) assert len(out_original["sd"]) > 0 out_resumed = _train(save_iter=save_iter, save_epoch=save_epoch, sd=out_original["sd"][0]) if debug: print("Original:") print(" data:", out_original["data"]) print("grads:", out_original["grads"]) print(" W:", out_original["weights"]) print("Resume:") print(" data:", out_resumed["data"]) print("grads:", out_resumed["grads"]) print(" W:", out_resumed["weights"]) # check data: for d1, d2 in zip(out_original["data"], out_resumed["data"]): assert d1 == d2 # check grads: for d1, d2 in zip(out_original["grads"], out_resumed["grads"]): assert d1 == d2 # check weights: for d1, d2 in zip(out_original["weights"], out_resumed["weights"]): assert d1 == d2 def test_gradients_on_resume_cpu(dirname): with pytest.raises(AssertionError): _test_gradients_on_resume(dirname, "cpu", with_dataaugs=True, save_iter=25) _test_gradients_on_resume(dirname, "cpu", with_dataaugs=False, save_iter=25) # resume from epoch _test_gradients_on_resume(dirname, "cpu", with_dataaugs=True, save_epoch=3) _test_gradients_on_resume(dirname, "cpu", with_dataaugs=False, save_epoch=3) @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") def test_gradients_on_resume_gpu(dirname): with pytest.raises(AssertionError): _test_gradients_on_resume(dirname, "cuda", with_dataaugs=True) _test_gradients_on_resume(dirname, "cuda", with_dataaugs=False) # resume from epoch _test_gradients_on_resume(dirname, "cuda", with_dataaugs=True, save_iter=30) _test_gradients_on_resume(dirname, "cuda", with_dataaugs=False, save_iter=30) def test_engine_with_dataloader_no_auto_batching(): # tests https://github.com/pytorch/ignite/issues/941 from torch.utils.data import DataLoader, BatchSampler, RandomSampler data = torch.rand(64, 4, 10) data_loader = torch.utils.data.DataLoader( data, batch_size=None, sampler=BatchSampler(RandomSampler(data), batch_size=8, drop_last=True) ) counter = [0] def foo(e, b): print("{}-{}: {}".format(e.state.epoch, e.state.iteration, b)) counter[0] += 1 engine = DeterministicEngine(foo) engine.run(data_loader, epoch_length=10, max_epochs=5) assert counter[0] == 50 def test_run_finite_iterator_no_epoch_length(): # FR: https://github.com/pytorch/ignite/issues/871 unknown_size = 11 def finite_unk_size_data_iter(): for i in range(unknown_size): yield i bc = BatchChecker(data=list(range(unknown_size))) engine = DeterministicEngine(lambda e, b: bc.check(b)) @engine.on(Events.DATALOADER_STOP_ITERATION) def restart_iter(): engine.state.dataloader = finite_unk_size_data_iter() data_iter = finite_unk_size_data_iter() engine.run(data_iter, max_epochs=5) assert engine.state.epoch == 5 assert engine.state.iteration == unknown_size * 5
5ef8b237e55d37ff2e070de67953ad80ebf813f1
df07bfa1e4ff4330177b38e3d99c0bc2e77e25bb
/demo/pdf.py
67ca0d507c70d01b02b55e9bd8859dcdf2503b08
[]
no_license
alexviome/vetafi
df3ddfba8a251a0043ecf89445ab9c549b9d1eee
f599d6a9d94c988c38291dfd633f7f985d77f74b
refs/heads/master
2020-09-20T15:56:23.757630
2017-08-17T06:09:36
2017-08-17T06:09:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,103
py
import pprint import sys from pdfminer.pdfparser import PDFParser from pdfminer.pdfdocument import PDFDocument from pdfminer.pdftypes import resolve1 def load_form(filename): """Load pdf form contents into a nested list of name/value tuples""" with open(filename, 'rb') as file: parser = PDFParser(file) doc = PDFDocument(parser) for f in resolve1(doc.catalog['AcroForm'])['Fields']: for field_name in load_fields(resolve1(f)): yield field_name def load_fields(field): """Recursively load form fields""" form = field.get('Kids', None) if form: for f in form: for field_name in load_fields(resolve1(f)): yield field_name else: try: yield field.get('T').decode('utf-16') except: yield field.get('T') #yield field # Some field types, like signatures, need extra resolving #return (field.get('T').decode('utf-16'), resolve1(field.get('V'))) if __name__ == '__main__': pprint.pprint([f for f in load_form(sys.argv[1])])
e9d21ef02220e169f6df0bb222eb80eb3d958818
518b946eed96800708386bcc4972a77312953eea
/lib/models/comment_converter.py
d5c57e464666003756949fded9212df86eb0858e
[ "MIT" ]
permissive
aoisupersix/git2bit
e6acfc7c8926327bed83e88b8121506154610a3a
d7d333bc6b2b29f11652ec9e8ac1c5dda554a21f
refs/heads/master
2023-08-07T20:24:19.979680
2020-10-24T14:52:58
2020-10-24T14:52:58
218,724,072
0
0
MIT
2023-07-07T01:14:48
2019-10-31T08:58:54
Python
UTF-8
Python
false
false
763
py
from lib.models import GitbucketComment from lib.models import IdConverter def convert(gitbucketComment: GitbucketComment, idConverter: IdConverter) -> dict: """ GitbucketのCommentをBitbucketのインポータに対応した形式に変換します """ userId = idConverter.convertToBitbucketId(gitbucketComment.payload['user'].get('login')) return { 'content': gitbucketComment.payload.get('body'), 'created_on': gitbucketComment.payload.get('created_at'), 'id': gitbucketComment.payload.get('id'), 'issue': gitbucketComment.issueNo, 'updated_on': gitbucketComment.payload.get('updated_at'), 'user': { 'display_name': userId, 'account_id': userId, }, }
7b98acc53d76f81399ffb120b7e715a6c5608d0a
00c9701cfc7b1b0bff6a72319d02cd59dc1eca9c
/ros_ws/src/regulation_imugps/src/regulation_from_err_alpha_dist.py
146f95c8f23cd620b7aa61a5194cd0db3ac032a3
[]
no_license
EnstaBretagneClubRobo/GuerledanDamScanning
ae80340556898ec6a39395e11975e21272c16c31
4309412f0dc883db3e5e4415539f38b5baaa762d
refs/heads/master
2021-06-14T16:11:16.907465
2017-03-03T14:10:51
2017-03-03T14:10:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,085
py
#!/usr/bin/env python """ This regulateur is just a template and publish a forward command only """ import rospy from geometry_msgs.msg import Twist from std_msgs.msg import Float32 from math import atan, pi, tan def update_err_d(msg): global eD eD = msg.data def update_err_cap(msg): global ecap ecap = msg.data rospy.init_node('regulation_cap') cmd_pub = rospy.Publisher('cmd_vel', Twist, queue_size=1) imu_sub = rospy.Subscriber('err_d', Float32, update_err_d) gps_sub = rospy.Subscriber('err_cap', Float32, update_err_cap) # erreur en cap et en distance ecap, eD = 0, 0 K = -3 / pi # rad/s radius = 5 # largeur d'effet du suivi de ligne v = -5.0 # todo trouver pourquoi cmd = Twist() rate = rospy.Rate(20) # il faut avoir une bonne frequence while not rospy.is_shutdown(): # error = cap(/mur) - cap_desire err = ecap - atan(eD / radius) err = err / 2 # pour ramener de [-pi,pi] a [-pi/2,pi/2] cmd.angular.z = K * atan(tan((err))) print ecap, atan(eD) cmd.linear.x = v cmd_pub.publish(cmd) rate.sleep()
a9ec1c6208ab0e57d7b0ab0699b53c48862f92c5
951552085dc24d864b35c53300f81cdd9c02e738
/chandra_models/chandra_models/__init__.py
fc88c9d8dc4af3931b5bf1cadb5202eda33c3462
[]
no_license
matthewdahmer/chandra_models
06d65b467b8f43201d59bc7f2f6cefa70ec1f0a7
654eff027a0a57f3617c76f65e4bada2d357b7d4
refs/heads/master
2021-03-12T22:55:29.980321
2013-07-10T19:16:20
2013-07-10T19:16:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
63
py
from .get_model_spec import * from .version import __version__
b3a177cdd830bf2a2b57fc5cb16d754555abd759
9f7a9f268abfc168e408e36b513132402fdd353c
/micro_detect/out1.2.py
0f6038c2781d0daf80f281d60b7d92ce7d906c17
[]
no_license
863752027z/lab_server
fe602bf0a588989b0a7ae171454eba67fa6907ca
65eeaf94712afd96363d449376a291918156354f
refs/heads/master
2020-08-10T12:40:30.803168
2019-10-11T04:51:14
2019-10-11T04:51:14
214,344,734
0
0
null
null
null
null
UTF-8
Python
false
false
11,556
py
import cv2 import os import numpy as np import pandas as pd import datetime import matplotlib.pyplot as plt import torch import torchvision import torch.nn as nn import torch.utils.data as Data from torchvision import transforms, datasets from collections import OrderedDict os.environ["CUDA_VISIBLE_DEVICES"] = "6" device = torch.device('cuda:0') class Encoder(nn.Module): def __init__(self): super(Encoder, self).__init__() encoder_layer = OrderedDict([ ('Con1', nn.Conv2d(3, 32, 4, stride=2, padding=1)), ('BatchNorm1', nn.BatchNorm2d(32)), ('LeakyReLU1', nn.LeakyReLU(0.2, True)), ('Con2', nn.Conv2d(32, 64, 4, stride=2, padding=1)), ('BatchNorm2', nn.BatchNorm2d(64)), ('LeakyReLU2', nn.LeakyReLU(0.2, True)), ('Con3', nn.Conv2d(64, 128, 4, stride=2, padding=1)), ('BatchNorm3', nn.BatchNorm2d(128)), ('LeakyReLU3', nn.LeakyReLU(0.2, True)), ('Con4', nn.Conv2d(128, 256, 4, stride=2, padding=1)), ('BatchNorm4', nn.BatchNorm2d(256)), ('LeakyReLU4', nn.LeakyReLU(0.2, True)), ('Con5', nn.Conv2d(256, 256, 4, stride=2, padding=1)), ('BatchNorm5', nn.BatchNorm2d(256)), ('LeakyReLU5', nn.LeakyReLU(0.2, True)), ('Con6', nn.Conv2d(256, 256, 4, stride=2, padding=1)), ('BatchNorm6', nn.BatchNorm2d(256)), ('LeakyReLU6', nn.LeakyReLU(0.2, True)), ('Con7', nn.Conv2d(256, 256, 4, stride=2, padding=1)), ('BatchNorm7', nn.BatchNorm2d(256)), ('LeakyReLU7', nn.LeakyReLU(0.2, True)), ('Con8', nn.Conv2d(256, 256, 4, stride=2, padding=1)), ]) self.Encoder = nn.Sequential(encoder_layer) def forward(self, x): x = self.Encoder(x) return x class Decoder(nn.Module): def __init__(self): super(Decoder, self).__init__() decoder_layer = OrderedDict([ ('Upsample1', nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)), ('Con1', nn.Conv2d(512, 32, 3, stride=1, padding=1)), ('BatchNorm1', nn.BatchNorm2d(32)), ('ReLU1', nn.ReLU()), ('Upsample2', nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)), ('Con2', nn.Conv2d(32, 64, 3, stride=1, padding=1)), ('BatchNorm2', nn.BatchNorm2d(64)), ('ReLU2', nn.ReLU()), ('Upsample3', nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)), ('Con3', nn.Conv2d(64, 128, 3, stride=1, padding=1)), ('BatchNorm3', nn.BatchNorm2d(128)), ('ReLU3', nn.ReLU()), ('Upsample4', nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)), ('Con4', nn.Conv2d(128, 256, 3, stride=1, padding=1)), ('BatchNorm4', nn.BatchNorm2d(256)), ('ReLU4', nn.ReLU()), ('Upsample5', nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)), ('Con5', nn.Conv2d(256, 256, 3, stride=1, padding=1)), ('BatchNorm5', nn.BatchNorm2d(256)), ('ReLU5', nn.ReLU()), ('Upsample6', nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)), ('Con5', nn.Conv2d(256, 256, 3, stride=1, padding=1)), ('BatchNorm5', nn.BatchNorm2d(256)), ('ReLU6', nn.ReLU()), ('Upsample7', nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)), ('Con7', nn.Conv2d(256, 256, 3, stride=1, padding=1)), ('BatchNorm7', nn.BatchNorm2d(256)), ('ReLU7', nn.ReLU()), ('Upsample8', nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)), ('Con8', nn.Conv2d(256, 3, 3, stride=1, padding=1)), ('Tanh', nn.Tanh()) ]) self.Decoder = nn.Sequential(decoder_layer) def forward(self, x): x = self.Decoder(x) return x class LstmCell(nn.Module): def __init__(self): super(LstmCell, self).__init__() self.LstmCell = nn.LSTMCell(input_size=256, hidden_size=256) def forward(self, xt, h, c): x = [h, c] h, c = self.LstmCell(xt, x) return h, c def printGPU(): for i in range(torch.cuda.device_count()): print(i, torch.cuda.get_device_name(0)) def draw(loss_list): x = range(0, len(loss_list)) y = loss_list plt.subplot(2, 1, 1) plt.plot(x, y, 'r-') plt.xlabel('batch_num') plt.ylabel('loss') plt.show() def save_data_to_excel(data, path): print(datetime.datetime.now()) print('generating:', path) print(data.shape) data_df = pd.DataFrame(data) writer = pd.ExcelWriter(path) data_df.to_excel(writer, 'page_1', float_format='%.5f') # float_format 控制精度 writer.save() print('done') def read_data_from_excel(path): df = pd.read_excel(path, 'page_1') data = np.array(df) data = np.delete(data, 0, axis=1) return data def get_path(base_path): path_list = [] for root, dirs, files in os.walk(base_path): for i in range(len(dirs)): temp_path = base_path + '/' + dirs[i] path_list.append(temp_path) break return path_list def trainLoader(file_path, batch_size, shuffle, num_workers): data_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))]) data_set = datasets.ImageFolder(file_path, transform=data_transform) train_loader = Data.DataLoader(dataset=data_set, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers) return train_loader def testLoader(file_path, batch_size, shuffle, num_workers): data_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))]) data_set = datasets.ImageFolder(file_path, transform=data_transform) test_loader = Data.DataLoader(dataset=data_set, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers) return test_loader def train(loader_list, learning_rate, num_epochs, seq): cell_model = LstmCell().to(device) encoder_model = Encoder().to(device) decoder_model = Decoder().to(device) criterion = nn.MSELoss().to(device) optimizer = torch.optim.SGD([ {'params': encoder_model.parameters()}, {'params': cell_model.parameters()}, {'params': decoder_model.parameters()} ], lr=learning_rate, momentum=0.9) loss_list = [] for epoch in range(num_epochs): for i in range(len(loader_list)): train_loader = loader_list[i] for idx, (data, label) in enumerate(train_loader): if data.shape[0] < seq: break h = torch.zeros(seq-1, 256).to(device) c = torch.zeros(seq-1, 256).to(device) data = data.to(device) #4*3*256*256 # =========forward=========== encoder_output = encoder_model(data) encoder_output = encoder_output.view((encoder_output.shape[0], encoder_output.shape[1])) #4*256 temp_target = encoder_output[0].view(1, encoder_output.shape[1], 1, 1) #1*256*1*1 temp_source = encoder_output[1:].view(3, encoder_output.shape[1]) #3*256 h, c = cell_model(temp_source, h, c) cell_output = h[-1].view(1, 256, 1, 1) decoder_input = torch.cat((temp_target, cell_output), 1) #1*512*1*1 decoder_output = decoder_model(decoder_input) #1*3*256*256 target_img = data[0:1, :, :, :] #1*3*256*256 loss = criterion(decoder_output, target_img) # =========backward========= optimizer.zero_grad() loss.backward() optimizer.step() # ============log=========== print('epoch [{}/{}], batch [{}], loader [{}] loss:{:.4f}' .format(epoch + 1, num_epochs, idx, i, loss.item())) if epoch % 2 == 0: loss_list.append(loss.item()) return loss_list, encoder_model, cell_model def test(encoder_moudle, cell_moudle, loader, seq): with torch.no_grad(): for idx, (data, label) in enumerate(loader): data = data.to(device) if idx <= seq - 2: if idx == 0: Quad = data else: Quad = torch.cat((Quad, data), 0) if idx == seq - 1: Quad = torch.cat((Quad, data), 0) h = torch.zeros(seq - 1, 256).to(device) c = torch.zeros(seq - 1, 256).to(device) encoder_out = encoder_moudle(Quad) temp_target = encoder_out[0:1, :, :, :] temp_source = encoder_out[1:, :, :, :].view(seq - 1, 256) h, c = cell_moudle(temp_source, h, c) cell_out = h[-1].view(1, 256, 1, 1) feature = torch.cat((temp_target, cell_out), 1).to(device) if idx >= seq: h = torch.zeros(seq - 1, 256).to(device) c = torch.zeros(seq - 1, 256).to(device) Quad = Quad[1:, :, :, :] Quad = torch.cat((Quad, data), 0) encoder_out = encoder_moudle(Quad) temp_target = encoder_out[0:1, :, :, :] temp_source = encoder_out[1:, :, :, :].view(seq - 1, 256) h, c = cell_moudle(temp_source, h, c) cell_out = h[-1].view(1, 256, 1, 1) curr_feature = torch.cat((temp_target, cell_out), 1) feature = torch.cat((feature, curr_feature), 0) feature = feature.cpu().detach().view(feature.shape[0], feature.shape[1]).numpy() return feature def gen_train_feature(encoder_moudle, cell_moudle, path_list, save_path, seq): for i in range(len(path_list)): curr_path = save_path + '/' + path_list[i][29:] + '.xlsx' temp_loader = testLoader(path_list[i], batch_size=1, shuffle=False, num_workers=8) feature = test(encoder_moudle, cell_moudle, temp_loader, seq) print('generating ' + curr_path) save_data_to_excel(feature, curr_path) printGPU() base_path = '/home/zlw/dataset/SAMM/train' encoder_moudle_path = '/home/zlw/dataset/SAMM/moudle/encoder_moudle_40.pkl' cell_moudle_path = '/home/zlw/dataset/SAMM/moudle/cell_moudle_40.pkl' save_path = '/home/zlw/dataset/SAMM/train_feature' learning_rate = 1e-4 batch_size = 4 num_workers = 8 num_epochs = 40 path_list = get_path(base_path) loader_list = [] for i in range(len(path_list)): temp_loader = trainLoader(path_list[i], batch_size, False, num_workers) loader_list.append(temp_loader) loss_list, encoder_moudle, cell_moudle = train(loader_list, learning_rate, num_epochs, batch_size) torch.save(encoder_moudle, encoder_moudle_path) torch.save(cell_moudle, cell_moudle_path) print(str(datetime.datetime.now()) + ' moudle save successfully\n') draw(loss_list)
3ce5b745b7bb73991b75f239120a3a8be10b9ca4
47dd0f0fe0b5c49c39af5800196ebca6b31a3483
/algorithm/raw_problem/RemoveDuplicatesfromSortedArray.py
26769d76836c559dd7ade7099ef633afe95ddc57
[]
no_license
gift9527/leetcode
e33eac7e2ce88cc72fce8d9f0271074c86f750b6
70e7f24dff27e1e7ac4b53f57a91a46bc6b38b31
refs/heads/master
2022-03-26T06:47:58.332265
2019-12-31T08:07:04
2019-12-31T08:07:04
111,184,352
0
0
null
null
null
null
UTF-8
Python
false
false
396
py
class Solution(object): def removeDuplicatesfromSortedArray(self,nums): length = 1 tmp = nums[0] for i in nums: if i == tmp: continue else: tmp = i length += 1 return length if __name__ == "__main__": a = Solution() f = a.removeDuplicatesfromSortedArray([1,1,2]) print (f)
38c933659b02a22a20f6d083599f99fcb5084d21
a80e59f13ca24f9033944e509841d61c50ad3e48
/german_words.py
8cf50ccc1a73953f59afcd50cc3a92afc2d408a8
[ "Apache-2.0" ]
permissive
thomi137/Python-Samples
a23125c3235912b8e81285fb19a2ca428894df37
7c8cc5eae94a4737ef9116617389ca78a25434f3
refs/heads/master
2021-01-22T17:57:39.452837
2013-11-09T16:10:34
2013-11-09T16:10:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,032
py
#!/usr/bin/python # -* coding: utf-8 -*- ######################################################################################### # # Fun with german words... Oh yeah and Python classes, albeit a complete overkill # # Copyright 2013 by Thomas Prosser, [email protected] # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ######################################################################################### import urllib2 ''' Top 10000 words in the german language Nasty iso something encoding. Should be able to strip that in the future ''' URL_DE = 'http://wortschatz.uni-leipzig.de/Papers/top10000de.txt' class German_words: def __init__(self, max_num = 10000): if max_num > 10000: print 'Truncating, maximum wordcount is 10000' max_num = 10000 self.max_num = max_num self.page = urllib2.urlopen(URL_DE) self.word_list = [item.decode('latin-1').replace('\n','') for item in self.page][:max_num] def is_in_list(self, word): return word.decode('utf-8') in self.word_list ######################################################################################### # Test code follows here ######################################################################################### def get_test(max_num = 10000): gw = German_words(max_num) print gw.word_list def is_in_test(string, max_num = 10000): gw = German_words(max_num) print gw.is_in_list(string) if __name__ == '__main__': get_test(1) get_test(2) get_test(4) is_in_test('über') is_in_test('Elefant')
6f12aa49c1b58757880e07d40286744fc1c5e54e
13e012bd1fe359bb000309bc0fbc677d523e0ceb
/app.py
eadaa1d38507cf6e90e6b0371caaf643d786f4fd
[]
no_license
catboytao/sports
bca6245f5dcdb37025ef0220faffe58c35587c68
42e54c5ce19306cf81868c83d857bea987f405d3
refs/heads/master
2023-02-09T10:32:55.122199
2020-04-09T12:10:14
2020-04-09T12:10:14
248,934,195
0
0
null
2023-02-02T06:17:41
2020-03-21T08:18:44
Python
UTF-8
Python
false
false
2,760
py
import logging from flask import Flask, jsonify,abort,request,g,url_for from flask_httpauth import HTTPBasicAuth from passlib.apps import custom_app_context as pwd_context from datetime import datetime # 输出时间 from spider.crawler import Crawler from spider.load_data import Loader from factory import create_app from models.model import User,Sports from utils.core import db app = create_app(config_name="DEVELOPMENT") app.app_context().push() auth = HTTPBasicAuth() db.create_all() # celery -A app:celery_app worker -l info -P gevent logging.basicConfig( level=logging.INFO, filename="logs/log.txt", format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) @app.route('/') def hello_world(): return 'Hello World!' @auth.verify_password def verify_password(username_or_token, password): # first try to authenticate by token user = User.verify_auth_token(username_or_token,app) if not user: # try to authenticate with username/password user = User.query.filter_by(username=username_or_token).first() if not user or not user.verify_password(password): return False g.user = user return True @app.route('/api/add_user/',methods=['POST']) def new_user(): username = request.json.get('username') password = request.json.get('password') if username is None or password is None: abort(400) # missing arguments if User.query.filter_by(username=username).first() is not None: abort(400) # existing user user = User(username=username) user.hash_password(password) db.session.add(user) db.session.commit() return jsonify({'username': user.username}), 201, {'Location': url_for('get_user', id=user.id, _external=True)} @app.route('/api/users/<int:id>') def get_user(id): user = User.query.get(id) if not user: abort(400) return jsonify({'username': user.username}) @app.route('/api/token') @auth.login_required def get_auth_token(): token = g.user.generate_auth_token(app,600) return jsonify({'token': token.decode('ascii'), 'duration': 600}) @app.route('/api/resource') @auth.login_required def get_resource(): return jsonify({'data': 'Hello, %s!' % g.user.username}) @app.route('/api/getSports') @auth.login_required def get_sports(): resp = {'data':None,'msg':'Success','code':0} try: all_data = Sports.query.all() data = list(map(Sports.user_to_dict, all_data)) resp['data'] = data resp['count'] = len(data) except Exception as e: print(e) resp['msg'] = 'Fail' resp['code'] = -1 rts = jsonify(resp) return rts #api.add_resource(SportsResource,'/getSports') if __name__ == '__main__': app.run()
264248272a1c358a4acd5d74b1c03580e66eaedb
7807d8d9d109a3e272fffed91bf841201da39256
/trans_ITP1_8_A/tsuru_aji_ITP1_8_A_kotonoha.py
235487016630d8bb7d2384be3761ff1a3e9e983b
[]
no_license
y-akinobu/AOJ_to_Kotonoha
0e8df43393964fcdd5df06c75545091bd6c0c2e2
5a694a55a3d85e3fbc4a07b57edc4374556db9a1
refs/heads/main
2023-02-05T15:33:16.581177
2020-12-30T16:14:44
2020-12-30T16:14:44
325,524,216
0
1
null
null
null
null
UTF-8
Python
false
false
160
py
# strと入力された文字列の英大文字を英小文字、英小文字を英大文字に変換した文字列を出力する print(str.swapcase(input()))
e69f606bfb4db52a51edf5b7a7469866ce20c8ca
4f12d74448bd835bd222504e660672dbe0159e68
/2.py
c6f07a7419faa91e33f04eecdc354f5633247a27
[]
no_license
clara51/DataStructure
2d82c25d17a8402daca02d93d208269f8fa9577e
52d14fc64beaa6646443e2309e37d9a9d83fe6ba
refs/heads/master
2020-04-12T10:39:52.202546
2018-12-19T12:46:48
2018-12-19T12:46:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,632
py
''' 买卖股票的最佳时机 II 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。 设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。 注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。 示例 1: 输入: [7,1,5,3,6,4] 输出: 7 解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。 随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。 示例 2: 输入: [1,2,3,4,5] 输出: 4 解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。 注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。 因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。 示例 3: 输入: [7,6,4,3,1] 输出: 0 解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。 ''' prices = [7, 1, 5, 3, 6, 4] class Solution: def maxProfit(self, prices): """ :type prices: List[int] :rtype: int """ max_p = 0 for i in range(0, len(prices) - 1): if prices[i] < prices[i + 1]: max_p += prices[i + 1] - prices[i] print(max_p) return max_p a = Solution() a.maxProfit(prices)
319634b2638f825383e2e84f42c7b1f36523f596
367a0ad6b268c0dfe34841173a9da71c5517b798
/Gen-Key.py
a03cb66ff43d5e027acdfb2dfee8841cbd9d03c1
[]
no_license
BakedBinJuice/file-encryption
ed159f7378ce97a7edfae91f8573d58b0d568bcd
c3ce19fef25230b472a87f9dedf82045c149e3ad
refs/heads/master
2022-12-02T10:45:51.033322
2020-08-14T02:49:14
2020-08-14T02:49:14
287,428,197
0
0
null
null
null
null
UTF-8
Python
false
false
243
py
#!/usr/bin/env python3 from cryptography.fernet import Fernet def gen_key(): global key key = Fernet.generate_key() def write_key(key): file = open('key.key', 'wb') file.write(key) file.close gen_key() write_key(key)
b952733ad1f26d285dcea235356195d9224c9350
17e295e1fe88b66546cba50ae1d314aa14b6a2d4
/iRobot_control/venv/Scripts/miniterm.py
f82cba11ffee2277b46238bcdbdf1670943787e9
[]
no_license
JaheimMao/iRobot-Create-2
e2f99cfe50f7686bbfe1dc43bebcbfed2620bed6
873efcff47f18e7f3b39badba1a3a0aa4d910e46
refs/heads/main
2023-03-17T22:42:11.057683
2021-03-08T12:23:43
2021-03-08T12:23:43
344,784,885
0
0
null
null
null
null
UTF-8
Python
false
false
35,148
py
#!D:\lenovo\Documents\PycharmProjects\iRobot\venv\Scripts\python.exe # # Very simple serial terminal # # This file is part of pySerial. https://github.com/pyserial/pyserial # (C)2002-2015 Chris Liechti <[email protected]> # # SPDX-License-Identifier: BSD-3-Clause import codecs import os import sys import threading import serial from serial.tools.list_ports import comports from serial.tools import hexlify_codec # pylint: disable=wrong-import-order,wrong-import-position codecs.register(lambda c: hexlify_codec.getregentry() if c == 'hexlify' else None) try: raw_input except NameError: # pylint: disable=redefined-builtin,invalid-name raw_input = input # in python3 it's "raw" unichr = chr def key_description(character): """generate a readable description for a key""" ascii_code = ord(character) if ascii_code < 32: return 'Ctrl+{:c}'.format(ord('@') + ascii_code) else: return repr(character) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - class ConsoleBase(object): """OS abstraction for console (input/output codec, no echo)""" def __init__(self): if sys.version_info >= (3, 0): self.byte_output = sys.stdout.buffer else: self.byte_output = sys.stdout self.output = sys.stdout def setup(self): """Set console to read single characters, no echo""" def cleanup(self): """Restore default console settings""" def getkey(self): """Read a single key from the console""" return None def write_bytes(self, byte_string): """Write bytes (already encoded)""" self.byte_output.write(byte_string) self.byte_output.flush() def write(self, text): """Write string""" self.output.write(text) self.output.flush() def cancel(self): """Cancel getkey operation""" # - - - - - - - - - - - - - - - - - - - - - - - - # context manager: # switch terminal temporary to normal mode (e.g. to get user input) def __enter__(self): self.cleanup() return self def __exit__(self, *args, **kwargs): self.setup() if os.name == 'nt': # noqa import msvcrt import ctypes class Out(object): """file-like wrapper that uses os.write""" def __init__(self, fd): self.fd = fd def flush(self): pass def write(self, s): os.write(self.fd, s) class Console(ConsoleBase): def __init__(self): super(Console, self).__init__() self._saved_ocp = ctypes.windll.kernel32.GetConsoleOutputCP() self._saved_icp = ctypes.windll.kernel32.GetConsoleCP() ctypes.windll.kernel32.SetConsoleOutputCP(65001) ctypes.windll.kernel32.SetConsoleCP(65001) self.output = codecs.getwriter('UTF-8')(Out(sys.stdout.fileno()), 'replace') # the change of the code page is not propagated to Python, manually fix it sys.stderr = codecs.getwriter('UTF-8')(Out(sys.stderr.fileno()), 'replace') sys.stdout = self.output self.output.encoding = 'UTF-8' # needed for input def __del__(self): ctypes.windll.kernel32.SetConsoleOutputCP(self._saved_ocp) ctypes.windll.kernel32.SetConsoleCP(self._saved_icp) def getkey(self): while True: z = msvcrt.getwch() if z == unichr(13): return unichr(10) elif z in (unichr(0), unichr(0x0e)): # functions keys, ignore msvcrt.getwch() else: return z def cancel(self): # CancelIo, CancelSynchronousIo do not seem to work when using # getwch, so instead, send a key to the window with the console hwnd = ctypes.windll.kernel32.GetConsoleWindow() ctypes.windll.user32.PostMessageA(hwnd, 0x100, 0x0d, 0) elif os.name == 'posix': import atexit import termios import fcntl class Console(ConsoleBase): def __init__(self): super(Console, self).__init__() self.fd = sys.stdin.fileno() self.old = termios.tcgetattr(self.fd) atexit.register(self.cleanup) if sys.version_info < (3, 0): self.enc_stdin = codecs.getreader(sys.stdin.encoding)(sys.stdin) else: self.enc_stdin = sys.stdin def setup(self): new = termios.tcgetattr(self.fd) new[3] = new[3] & ~termios.ICANON & ~termios.ECHO & ~termios.ISIG new[6][termios.VMIN] = 1 new[6][termios.VTIME] = 0 termios.tcsetattr(self.fd, termios.TCSANOW, new) def getkey(self): c = self.enc_stdin.read(1) if c == unichr(0x7f): c = unichr(8) # map the BS key (which yields DEL) to backspace return c def cancel(self): fcntl.ioctl(self.fd, termios.TIOCSTI, b'\0') def cleanup(self): termios.tcsetattr(self.fd, termios.TCSAFLUSH, self.old) else: raise NotImplementedError( 'Sorry no implementation for your platform ({}) available.'.format(sys.platform)) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - class Transform(object): """do-nothing: forward all data unchanged""" def rx(self, text): """text received from serial port""" return text def tx(self, text): """text to be sent to serial port""" return text def echo(self, text): """text to be sent but displayed on console""" return text class CRLF(Transform): """ENTER sends CR+LF""" def tx(self, text): return text.replace('\n', '\r\n') class CR(Transform): """ENTER sends CR""" def rx(self, text): return text.replace('\r', '\n') def tx(self, text): return text.replace('\n', '\r') class LF(Transform): """ENTER sends LF""" class NoTerminal(Transform): """remove typical terminal control codes from input""" REPLACEMENT_MAP = dict((x, 0x2400 + x) for x in range(32) if unichr(x) not in '\r\n\b\t') REPLACEMENT_MAP.update( { 0x7F: 0x2421, # DEL 0x9B: 0x2425, # CSI }) def rx(self, text): return text.translate(self.REPLACEMENT_MAP) echo = rx class NoControls(NoTerminal): """Remove all control codes, incl. CR+LF""" REPLACEMENT_MAP = dict((x, 0x2400 + x) for x in range(32)) REPLACEMENT_MAP.update( { 0x20: 0x2423, # visual space 0x7F: 0x2421, # DEL 0x9B: 0x2425, # CSI }) class Printable(Transform): """Show decimal code for all non-ASCII characters and replace most control codes""" def rx(self, text): r = [] for c in text: if ' ' <= c < '\x7f' or c in '\r\n\b\t': r.append(c) elif c < ' ': r.append(unichr(0x2400 + ord(c))) else: r.extend(unichr(0x2080 + ord(d) - 48) for d in '{:d}'.format(ord(c))) r.append(' ') return ''.join(r) echo = rx class Colorize(Transform): """Apply different colors for received and echo""" def __init__(self): # XXX make it configurable, use colorama? self.input_color = '\x1b[37m' self.echo_color = '\x1b[31m' def rx(self, text): return self.input_color + text def echo(self, text): return self.echo_color + text class DebugIO(Transform): """Print what is sent and received""" def rx(self, text): sys.stderr.write(' [RX:{}] '.format(repr(text))) sys.stderr.flush() return text def tx(self, text): sys.stderr.write(' [TX:{}] '.format(repr(text))) sys.stderr.flush() return text # other ideas: # - add date/time for each newline # - insert newline after: a) timeout b) packet end character EOL_TRANSFORMATIONS = { 'crlf': CRLF, 'cr': CR, 'lf': LF, } TRANSFORMATIONS = { 'direct': Transform, # no transformation 'default': NoTerminal, 'nocontrol': NoControls, 'printable': Printable, 'colorize': Colorize, 'debug': DebugIO, } # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - def ask_for_port(): """\ Show a list of ports and ask the user for a choice. To make selection easier on systems with long device names, also allow the input of an index. """ sys.stderr.write('\n--- Available ports:\n') ports = [] for n, (port, desc, hwid) in enumerate(sorted(comports()), 1): sys.stderr.write('--- {:2}: {:20} {!r}\n'.format(n, port, desc)) ports.append(port) while True: port = raw_input('--- Enter port index or full name: ') try: index = int(port) - 1 if not 0 <= index < len(ports): sys.stderr.write('--- Invalid index!\n') continue except ValueError: pass else: port = ports[index] return port class Miniterm(object): """\ Terminal application. Copy data from serial port to console and vice versa. Handle special keys from the console to show menu etc. """ def __init__(self, serial_instance, echo=False, eol='crlf', filters=()): self.console = Console() self.serial = serial_instance self.echo = echo self.raw = False self.input_encoding = 'UTF-8' self.output_encoding = 'UTF-8' self.eol = eol self.filters = filters self.update_transformations() self.exit_character = 0x1d # GS/CTRL+] self.menu_character = 0x14 # Menu: CTRL+T self.alive = None self._reader_alive = None self.receiver_thread = None self.rx_decoder = None self.tx_decoder = None def _start_reader(self): """Start reader thread""" self._reader_alive = True # start serial->console thread self.receiver_thread = threading.Thread(target=self.reader, name='rx') self.receiver_thread.daemon = True self.receiver_thread.start() def _stop_reader(self): """Stop reader thread only, wait for clean exit of thread""" self._reader_alive = False if hasattr(self.serial, 'cancel_read'): self.serial.cancel_read() self.receiver_thread.join() def start(self): """start worker threads""" self.alive = True self._start_reader() # enter console->serial loop self.transmitter_thread = threading.Thread(target=self.writer, name='tx') self.transmitter_thread.daemon = True self.transmitter_thread.start() self.console.setup() def stop(self): """set flag to stop worker threads""" self.alive = False def join(self, transmit_only=False): """wait for worker threads to terminate""" self.transmitter_thread.join() if not transmit_only: if hasattr(self.serial, 'cancel_read'): self.serial.cancel_read() self.receiver_thread.join() def close(self): self.serial.close() def update_transformations(self): """take list of transformation classes and instantiate them for rx and tx""" transformations = [EOL_TRANSFORMATIONS[self.eol]] + [TRANSFORMATIONS[f] for f in self.filters] self.tx_transformations = [t() for t in transformations] self.rx_transformations = list(reversed(self.tx_transformations)) def set_rx_encoding(self, encoding, errors='replace'): """set encoding for received data""" self.input_encoding = encoding self.rx_decoder = codecs.getincrementaldecoder(encoding)(errors) def set_tx_encoding(self, encoding, errors='replace'): """set encoding for transmitted data""" self.output_encoding = encoding self.tx_encoder = codecs.getincrementalencoder(encoding)(errors) def dump_port_settings(self): """Write current settings to sys.stderr""" sys.stderr.write("\n--- Settings: {p.name} {p.baudrate},{p.bytesize},{p.parity},{p.stopbits}\n".format( p=self.serial)) sys.stderr.write('--- RTS: {:8} DTR: {:8} BREAK: {:8}\n'.format( ('active' if self.serial.rts else 'inactive'), ('active' if self.serial.dtr else 'inactive'), ('active' if self.serial.break_condition else 'inactive'))) try: sys.stderr.write('--- CTS: {:8} DSR: {:8} RI: {:8} CD: {:8}\n'.format( ('active' if self.serial.cts else 'inactive'), ('active' if self.serial.dsr else 'inactive'), ('active' if self.serial.ri else 'inactive'), ('active' if self.serial.cd else 'inactive'))) except serial.SerialException: # on RFC 2217 ports, it can happen if no modem state notification was # yet received. ignore this error. pass sys.stderr.write('--- software flow control: {}\n'.format('active' if self.serial.xonxoff else 'inactive')) sys.stderr.write('--- hardware flow control: {}\n'.format('active' if self.serial.rtscts else 'inactive')) sys.stderr.write('--- serial input encoding: {}\n'.format(self.input_encoding)) sys.stderr.write('--- serial output encoding: {}\n'.format(self.output_encoding)) sys.stderr.write('--- EOL: {}\n'.format(self.eol.upper())) sys.stderr.write('--- filters: {}\n'.format(' '.join(self.filters))) def reader(self): """loop and copy serial->console""" try: while self.alive and self._reader_alive: # read all that is there or wait for one byte data = self.serial.read(self.serial.in_waiting or 1) if data: if self.raw: self.console.write_bytes(data) else: text = self.rx_decoder.decode(data) for transformation in self.rx_transformations: text = transformation.rx(text) self.console.write(text) except serial.SerialException: self.alive = False self.console.cancel() raise # XXX handle instead of re-raise? def writer(self): """\ Loop and copy console->serial until self.exit_character character is found. When self.menu_character is found, interpret the next key locally. """ menu_active = False try: while self.alive: try: c = self.console.getkey() except KeyboardInterrupt: c = '\x03' if not self.alive: break if menu_active: self.handle_menu_key(c) menu_active = False elif c == self.menu_character: menu_active = True # next char will be for menu elif c == self.exit_character: self.stop() # exit app break else: #~ if self.raw: text = c for transformation in self.tx_transformations: text = transformation.tx(text) self.serial.write(self.tx_encoder.encode(text)) if self.echo: echo_text = c for transformation in self.tx_transformations: echo_text = transformation.echo(echo_text) self.console.write(echo_text) except: self.alive = False raise def handle_menu_key(self, c): """Implement a simple menu / settings""" if c == self.menu_character or c == self.exit_character: # Menu/exit character again -> send itself self.serial.write(self.tx_encoder.encode(c)) if self.echo: self.console.write(c) elif c == '\x15': # CTRL+U -> upload file self.upload_file() elif c in '\x08hH?': # CTRL+H, h, H, ? -> Show help sys.stderr.write(self.get_help_text()) elif c == '\x12': # CTRL+R -> Toggle RTS self.serial.rts = not self.serial.rts sys.stderr.write('--- RTS {} ---\n'.format('active' if self.serial.rts else 'inactive')) elif c == '\x04': # CTRL+D -> Toggle DTR self.serial.dtr = not self.serial.dtr sys.stderr.write('--- DTR {} ---\n'.format('active' if self.serial.dtr else 'inactive')) elif c == '\x02': # CTRL+B -> toggle BREAK condition self.serial.break_condition = not self.serial.break_condition sys.stderr.write('--- BREAK {} ---\n'.format('active' if self.serial.break_condition else 'inactive')) elif c == '\x05': # CTRL+E -> toggle local echo self.echo = not self.echo sys.stderr.write('--- local echo {} ---\n'.format('active' if self.echo else 'inactive')) elif c == '\x06': # CTRL+F -> edit filters self.change_filter() elif c == '\x0c': # CTRL+L -> EOL mode modes = list(EOL_TRANSFORMATIONS) # keys eol = modes.index(self.eol) + 1 if eol >= len(modes): eol = 0 self.eol = modes[eol] sys.stderr.write('--- EOL: {} ---\n'.format(self.eol.upper())) self.update_transformations() elif c == '\x01': # CTRL+A -> set encoding self.change_encoding() elif c == '\x09': # CTRL+I -> info self.dump_port_settings() #~ elif c == '\x01': # CTRL+A -> cycle escape mode #~ elif c == '\x0c': # CTRL+L -> cycle linefeed mode elif c in 'pP': # P -> change port self.change_port() elif c in 'sS': # S -> suspend / open port temporarily self.suspend_port() elif c in 'bB': # B -> change baudrate self.change_baudrate() elif c == '8': # 8 -> change to 8 bits self.serial.bytesize = serial.EIGHTBITS self.dump_port_settings() elif c == '7': # 7 -> change to 8 bits self.serial.bytesize = serial.SEVENBITS self.dump_port_settings() elif c in 'eE': # E -> change to even parity self.serial.parity = serial.PARITY_EVEN self.dump_port_settings() elif c in 'oO': # O -> change to odd parity self.serial.parity = serial.PARITY_ODD self.dump_port_settings() elif c in 'mM': # M -> change to mark parity self.serial.parity = serial.PARITY_MARK self.dump_port_settings() elif c in 'sS': # S -> change to space parity self.serial.parity = serial.PARITY_SPACE self.dump_port_settings() elif c in 'nN': # N -> change to no parity self.serial.parity = serial.PARITY_NONE self.dump_port_settings() elif c == '1': # 1 -> change to 1 stop bits self.serial.stopbits = serial.STOPBITS_ONE self.dump_port_settings() elif c == '2': # 2 -> change to 2 stop bits self.serial.stopbits = serial.STOPBITS_TWO self.dump_port_settings() elif c == '3': # 3 -> change to 1.5 stop bits self.serial.stopbits = serial.STOPBITS_ONE_POINT_FIVE self.dump_port_settings() elif c in 'xX': # X -> change software flow control self.serial.xonxoff = (c == 'X') self.dump_port_settings() elif c in 'rR': # R -> change hardware flow control self.serial.rtscts = (c == 'R') self.dump_port_settings() else: sys.stderr.write('--- unknown menu character {} --\n'.format(key_description(c))) def upload_file(self): """Ask user for filenname and send its contents""" sys.stderr.write('\n--- File to upload: ') sys.stderr.flush() with self.console: filename = sys.stdin.readline().rstrip('\r\n') if filename: try: with open(filename, 'rb') as f: sys.stderr.write('--- Sending file {} ---\n'.format(filename)) while True: block = f.read(1024) if not block: break self.serial.write(block) # Wait for output buffer to drain. self.serial.flush() sys.stderr.write('.') # Progress indicator. sys.stderr.write('\n--- File {} sent ---\n'.format(filename)) except IOError as e: sys.stderr.write('--- ERROR opening file {}: {} ---\n'.format(filename, e)) def change_filter(self): """change the i/o transformations""" sys.stderr.write('\n--- Available Filters:\n') sys.stderr.write('\n'.join( '--- {:<10} = {.__doc__}'.format(k, v) for k, v in sorted(TRANSFORMATIONS.items()))) sys.stderr.write('\n--- Enter new filter name(s) [{}]: '.format(' '.join(self.filters))) with self.console: new_filters = sys.stdin.readline().lower().split() if new_filters: for f in new_filters: if f not in TRANSFORMATIONS: sys.stderr.write('--- unknown filter: {}\n'.format(repr(f))) break else: self.filters = new_filters self.update_transformations() sys.stderr.write('--- filters: {}\n'.format(' '.join(self.filters))) def change_encoding(self): """change encoding on the serial port""" sys.stderr.write('\n--- Enter new encoding name [{}]: '.format(self.input_encoding)) with self.console: new_encoding = sys.stdin.readline().strip() if new_encoding: try: codecs.lookup(new_encoding) except LookupError: sys.stderr.write('--- invalid encoding name: {}\n'.format(new_encoding)) else: self.set_rx_encoding(new_encoding) self.set_tx_encoding(new_encoding) sys.stderr.write('--- serial input encoding: {}\n'.format(self.input_encoding)) sys.stderr.write('--- serial output encoding: {}\n'.format(self.output_encoding)) def change_baudrate(self): """change the baudrate""" sys.stderr.write('\n--- Baudrate: ') sys.stderr.flush() with self.console: backup = self.serial.baudrate try: self.serial.baudrate = int(sys.stdin.readline().strip()) except ValueError as e: sys.stderr.write('--- ERROR setting baudrate: {} ---\n'.format(e)) self.serial.baudrate = backup else: self.dump_port_settings() def change_port(self): """Have a conversation with the user to change the serial port""" with self.console: try: port = ask_for_port() except KeyboardInterrupt: port = None if port and port != self.serial.port: # reader thread needs to be shut down self._stop_reader() # save settings settings = self.serial.getSettingsDict() try: new_serial = serial.serial_for_url(port, do_not_open=True) # restore settings and open new_serial.applySettingsDict(settings) new_serial.rts = self.serial.rts new_serial.dtr = self.serial.dtr new_serial.open() new_serial.break_condition = self.serial.break_condition except Exception as e: sys.stderr.write('--- ERROR opening new port: {} ---\n'.format(e)) new_serial.close() else: self.serial.close() self.serial = new_serial sys.stderr.write('--- Port changed to: {} ---\n'.format(self.serial.port)) # and restart the reader thread self._start_reader() def suspend_port(self): """\ open port temporarily, allow reconnect, exit and port change to get out of the loop """ # reader thread needs to be shut down self._stop_reader() self.serial.close() sys.stderr.write('\n--- Port closed: {} ---\n'.format(self.serial.port)) do_change_port = False while not self.serial.is_open: sys.stderr.write('--- Quit: {exit} | p: port change | any other key to reconnect ---\n'.format( exit=key_description(self.exit_character))) k = self.console.getkey() if k == self.exit_character: self.stop() # exit app break elif k in 'pP': do_change_port = True break try: self.serial.open() except Exception as e: sys.stderr.write('--- ERROR opening port: {} ---\n'.format(e)) if do_change_port: self.change_port() else: # and restart the reader thread self._start_reader() sys.stderr.write('--- Port opened: {} ---\n'.format(self.serial.port)) def get_help_text(self): """return the help text""" # help text, starts with blank line! return """ --- pySerial ({version}) - miniterm - help --- --- {exit:8} Exit program --- {menu:8} Menu escape key, followed by: --- Menu keys: --- {menu:7} Send the menu character itself to remote --- {exit:7} Send the exit character itself to remote --- {info:7} Show info --- {upload:7} Upload file (prompt will be shown) --- {repr:7} encoding --- {filter:7} edit filters --- Toggles: --- {rts:7} RTS {dtr:7} DTR {brk:7} BREAK --- {echo:7} echo {eol:7} EOL --- --- Port settings ({menu} followed by the following): --- p change port --- 7 8 set data bits --- N E O S M change parity (None, Even, Odd, Space, Mark) --- 1 2 3 set stop bits (1, 2, 1.5) --- b change baud rate --- x X disable/enable software flow control --- r R disable/enable hardware flow control """.format(version=getattr(serial, 'VERSION', 'unknown version'), exit=key_description(self.exit_character), menu=key_description(self.menu_character), rts=key_description('\x12'), dtr=key_description('\x04'), brk=key_description('\x02'), echo=key_description('\x05'), info=key_description('\x09'), upload=key_description('\x15'), repr=key_description('\x01'), filter=key_description('\x06'), eol=key_description('\x0c')) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # default args can be used to override when calling main() from an other script # e.g to create a miniterm-my-device.py def main(default_port=None, default_baudrate=9600, default_rts=None, default_dtr=None): """Command line tool, entry point""" import argparse parser = argparse.ArgumentParser( description="Miniterm - A simple terminal program for the serial port.") parser.add_argument( "port", nargs='?', help="serial port name ('-' to show port list)", default=default_port) parser.add_argument( "baudrate", nargs='?', type=int, help="set baud rate, default: %(default)s", default=default_baudrate) group = parser.add_argument_group("port settings") group.add_argument( "--parity", choices=['N', 'E', 'O', 'S', 'M'], type=lambda c: c.upper(), help="set parity, one of {N E O S M}, default: N", default='N') group.add_argument( "--rtscts", action="store_true", help="enable RTS/CTS flow control (default off)", default=False) group.add_argument( "--xonxoff", action="store_true", help="enable software flow control (default off)", default=False) group.add_argument( "--rts", type=int, help="set initial RTS line state (possible values: 0, 1)", default=default_rts) group.add_argument( "--dtr", type=int, help="set initial DTR line state (possible values: 0, 1)", default=default_dtr) group.add_argument( "--ask", action="store_true", help="ask again for port when open fails", default=False) group = parser.add_argument_group("data handling") group.add_argument( "-e", "--echo", action="store_true", help="enable local echo (default off)", default=False) group.add_argument( "--encoding", dest="serial_port_encoding", metavar="CODEC", help="set the encoding for the serial port (e.g. hexlify, Latin1, UTF-8), default: %(default)s", default='UTF-8') group.add_argument( "-f", "--filter", action="append", metavar="NAME", help="add text transformation", default=[]) group.add_argument( "--eol", choices=['CR', 'LF', 'CRLF'], type=lambda c: c.upper(), help="end of line mode", default='CRLF') group.add_argument( "--raw", action="store_true", help="Do no apply any encodings/transformations", default=False) group = parser.add_argument_group("hotkeys") group.add_argument( "--exit-char", type=int, metavar='NUM', help="Unicode of special character that is used to exit the application, default: %(default)s", default=0x1d) # GS/CTRL+] group.add_argument( "--menu-char", type=int, metavar='NUM', help="Unicode code of special character that is used to control miniterm (menu), default: %(default)s", default=0x14) # Menu: CTRL+T group = parser.add_argument_group("diagnostics") group.add_argument( "-q", "--quiet", action="store_true", help="suppress non-error messages", default=False) group.add_argument( "--develop", action="store_true", help="show Python traceback on error", default=False) args = parser.parse_args() if args.menu_char == args.exit_char: parser.error('--exit-char can not be the same as --menu-char') if args.filter: if 'help' in args.filter: sys.stderr.write('Available filters:\n') sys.stderr.write('\n'.join( '{:<10} = {.__doc__}'.format(k, v) for k, v in sorted(TRANSFORMATIONS.items()))) sys.stderr.write('\n') sys.exit(1) filters = args.filter else: filters = ['default'] while True: # no port given on command line -> ask user now if args.port is None or args.port == '-': try: args.port = ask_for_port() except KeyboardInterrupt: sys.stderr.write('\n') parser.error('user aborted and port is not given') else: if not args.port: parser.error('port is not given') try: serial_instance = serial.serial_for_url( args.port, args.baudrate, parity=args.parity, rtscts=args.rtscts, xonxoff=args.xonxoff, do_not_open=True) if not hasattr(serial_instance, 'cancel_read'): # enable timeout for alive flag polling if cancel_read is not available serial_instance.timeout = 1 if args.dtr is not None: if not args.quiet: sys.stderr.write('--- forcing DTR {}\n'.format('active' if args.dtr else 'inactive')) serial_instance.dtr = args.dtr if args.rts is not None: if not args.quiet: sys.stderr.write('--- forcing RTS {}\n'.format('active' if args.rts else 'inactive')) serial_instance.rts = args.rts serial_instance.open() except serial.SerialException as e: sys.stderr.write('could not open port {}: {}\n'.format(repr(args.port), e)) if args.develop: raise if not args.ask: sys.exit(1) else: args.port = '-' else: break miniterm = Miniterm( serial_instance, echo=args.echo, eol=args.eol.lower(), filters=filters) miniterm.exit_character = unichr(args.exit_char) miniterm.menu_character = unichr(args.menu_char) miniterm.raw = args.raw miniterm.set_rx_encoding(args.serial_port_encoding) miniterm.set_tx_encoding(args.serial_port_encoding) if not args.quiet: sys.stderr.write('--- Miniterm on {p.name} {p.baudrate},{p.bytesize},{p.parity},{p.stopbits} ---\n'.format( p=miniterm.serial)) sys.stderr.write('--- Quit: {} | Menu: {} | Help: {} followed by {} ---\n'.format( key_description(miniterm.exit_character), key_description(miniterm.menu_character), key_description(miniterm.menu_character), key_description('\x08'))) miniterm.start() try: miniterm.join(True) except KeyboardInterrupt: pass if not args.quiet: sys.stderr.write("\n--- exit ---\n") miniterm.join() miniterm.close() # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if __name__ == '__main__': main()
c0925dc7a9640a76a8d62fa371ea8e94e76af828
535a174b976ec82d54c742cb1fc75687168144fb
/commands/__init__.py
f97228cca1a67516639aee507d235d64f7b778fc
[]
no_license
lalacat/crawler
11fa9bf56920dcc7348a5d912a9eac91c9453efd
9c1236a410fa339fe998418cbfdd4c0ba7eb7d27
refs/heads/master
2021-06-04T00:58:27.492919
2020-04-01T14:03:49
2020-04-01T14:03:49
130,938,082
0
0
null
null
null
null
UTF-8
Python
false
false
1,967
py
import argparse class BaseCommand(object): """ 简要对各个命令的用法进行说明的方法 """ def __init__(self,setting = None): self.setting = setting def short_desc(self): pass def long_desc(self): return "Test for Long desc" #给出程序版本的回调函数 def _print_vision(self,option,opt_str,value,parser): print("This vision is 0.0.0") def add_options(self,parser): """ 给出基本的参数表 """ group = parser.add_argument_group( "Global Options") group.add_argument("--logfile", metavar="FILE", help="log file. if omitted stderr will be used") group.add_argument("--nolog", action="store_true", help="disable logging completely") group.add_argument("--profile", metavar="FILE", default=None, help="write python cProfile stats to FILE") group.add_argument("--pidfile", metavar="FILE", help="write process ID to FILE") group.add_argument("--version", action="version", version="version 0.0",help="command vision") # 处理这类参数的时候,需要使用一个方法,将-s之后的键值对处理为dict格式'-s key=value' group.add_argument("-s", "--set", action="append", default=[], metavar="NAME=VALUE", help="set/override setting (may be repeated)") print("global options") def procss_option(self, arg): if arg.logfile is not None: self.setting.set("logfile", arg.logfile, "cmdline") print(self.setting.attributes["logfile"].priority) if arg.nolog: self.setting.set("nolog", True, "cmdline") if arg.pidfile is not None: self.setting.set("pidfile", arg.pidfile, "cmdline") if arg.profile is not None: self.setting.set("profile", arg.profile, "cmdline")
[ "scott.si@hotmailcom" ]
scott.si@hotmailcom
de5bfd5baf736fa68ca8e5884c4e9094199c87ff
abda61b9cde643ba2e076386701490531e909697
/Final_Algorithm/final_mod.py
1e677fb8b5e2398248df1311bd781cff6a150769
[]
no_license
anassaeed72/Topics
d1e6d05e809d9eba858343ee04efcc78f9c083f5
0b37751ca6cffe9dc2ce052eb9f3d1d9e7e64af5
refs/heads/master
2021-01-10T13:48:54.621750
2016-05-12T06:35:30
2016-05-12T06:35:30
53,721,813
0
0
null
null
null
null
UTF-8
Python
false
false
7,307
py
from proximity import ProximitySearch import random import os from history import* from scan import* import sys from relays import get_relays from geoip import geolite2 import stem.control import ipgetter from midpoint import midpointCalculator import shutil from UserURLHistory import getFetechableURLsFromPage from test2 import totalDistance with stem.control.Controller.from_port() as controller: pass # Get the ccomplete page including all src urls embedded in the page num_relays = 5 # ==================================================================================== # Get every content of a page and savee in a folder with name of # website (eg. yahoo, facebook). If folder already exists it'll be deleted # ==================================================================================== def get_page(url, controller, circuit, results, distance): hostname = url.split(".")[1] path = os.path.join(os.getcwd(), hostname) if (os.path.exists(path)): shutil.rmtree(path) os.mkdir(path) os.chdir(path) fd = open(hostname + ".html", "w") fd_read = open(hostname + ".html", "r") time_taken = scan(controller, circuit, url, fd) fetchable = getFetechableURLsFromPage(fd_read.read()) fetchable = list(set(fetchable)) urls = map(convert_src_to_url, fetchable) time = query_parallel(urls) + time_taken return time # convert from for "src="xyz"" to xyz def convert_src_to_url(str): return str[5:len(str)-1] # ==================================================================================== # This function tests n random circuits from the results of proximity search # and returns the best circuit as measured by taking average of getting the head # ==================================================================================== def get_best_circuit(url, controller, entry, middle, exit, n): best_path = None best_time = 1000000 count = 0 for x in range(0, n): if (count == 2): break entry_relay = entry[random.randint(0, len(entry) -1)] exit_relay = exit[random.randint(0, len(exit) -1)] middle_relay = middle[random.randint(0, len(middle) -1)] path = [entry_relay[0], middle_relay[0], exit_relay[0]] path_with_locations = [entry_relay, middle_relay, exit_relay] # print path try: circuit_id = controller.new_circuit(path, await_build = True) circuit = controller.get_circuit(circuit_id) print "Accessing Head" time = scan_head(controller, circuit, url) if (time == -1): return -1 continue if (time < best_time): best_path = path_with_locations count = count + 1 controller.close_circuit(circuit_id) except stem.CircuitExtensionFailed as error: # print "Circuit failed, trying next" continue return best_path def readinFile(): with open("ListOfDomains2.csv") as f: stocks = f.read().splitlines() return stocks def main(): # history = get_top_visited(get_history(), 10) # history = ["ask.com", "tumblr.com"] controller.authenticate() # experiment_smartor(history) history = ["yahoo.com"] time_1 = experiment_smartor(history) time_2 = experiment_tor(history) if (time_1 > time_2): temp = time_1 time_1 = time_2 time_2 = time_1 print "Smartor: " + str(time_1) print "Tor: " + str(time_2) # ===================================================================================== # Run the experiment using our algorithm. # ===================================================================================== def experiment_smartor(history): results_smartor = open("results_smartor.txt", "a") relays = get_relays(controller) entry = relays[0]; middle = relays[1]; exit = relays[2]; myIP = ipgetter.myip(); my_Address = geolite2.lookup(socket.gethostbyname(myIP)) for url in history: dest_Address = geolite2.lookup(socket.gethostbyname(url)) if (dest_Address == None): print("Couldn't get location of ", url) continue # Get list of fingerprints for exit nodes exit_nodes = get_relays_fingerprint(num_relays, exit, dest_Address.location) entry_nodes = get_relays_fingerprint(num_relays, entry, my_Address.location) middleLocation = midpointCalculator(dest_Address.location, my_Address.location) middle_nodes = get_relays_fingerprint(num_relays, middle, my_Address.location) url = 'https://www.' + url path_with_locations = get_best_circuit(url, controller, entry_nodes, middle_nodes, exit_nodes, 10) if path_with_locations == -1: continue locations = [my_Address.location] + [x[1] for x in path_with_locations] + [dest_Address.location] distance = totalDistance(locations) best_path = [x[0] for x in path_with_locations] print("best path ", best_path) circuit_id = controller.new_circuit(best_path, await_build = True) test = controller.get_circuit(circuit_id) print 'Accessing url: ' + url get_page(url, controller, test, results_smartor, distance) # ===================================================================================== # Run the experiment using tor # ===================================================================================== def experiment_tor(history): results_tor = open("results_tor.txt", "a") myIP = ipgetter.myip(); my_Address = geolite2.lookup(socket.gethostbyname(myIP)) for url in history: dest_Address = geolite2.lookup(socket.gethostbyname(url)) if (dest_Address == None): print("Couldn't get location of ", url) continue url = 'https://www.' + url test = controller.get_circuits() for circuit in test: if (len(circuit.path) > 2): path = circuit.path circ = circuit break print path # test = path res_list = [controller.get_network_status(x[0]).address for x in path] # Get ip addresses from fingerprints # print res_list locations_relay = [geolite2.lookup(x).location for x in res_list] # Do lookups # print locations_relay locations = [my_Address.location] + locations_relay + [dest_Address.location] distance = totalDistance(locations) time = get_page(url, controller, circ, results_tor, distance) if (time != -1): results_tor.write(str(distance) + "," + str(time) + "\n") # ===================================================================================== # Given a dictionary of relays and a location, get n closest # relays(fingerprints) in a list # ===================================================================================== def get_relays_fingerprint(n, relays, location): retval = [] proximityClass = ProximitySearch(relays) nRelaysLocation = proximityClass.get_points_nearby(location, n) for i in nRelaysLocation: retval.append((relays[i], i)) return retval if __name__ == "__main__": main()
35cefe7148d9cc9fafa089ca70fc3dfe6504e2be
4afb696bc7bee257a57e468d67f153767e3f67c2
/StockAnalysis.py
bc7ed441c076bc42d59d0cc8b2356f556cbe0929
[]
no_license
MuzzzammilMia/StockAnalysis
0c5ed15af77293a9fd5e51e255d12dd226be2c6d
e719258e2bfcb59a70afd2140ba03cae9509c6a3
refs/heads/master
2022-11-13T16:46:01.973754
2020-06-28T16:29:10
2020-06-28T16:29:10
265,611,223
0
0
null
null
null
null
UTF-8
Python
false
false
1,912
py
#!/usr/bin/env python # coding: utf-8 # In[28]: import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np print('Pandas version:',pd.__version__) print('Matplotlib version:',mpl.__version__) print('Numpy version:',np.__version__) # In[22]: #Converting the csv file to the DataFrame. CompanyCheck = pd.read_csv("ticker_list.csv") #Formatting the Name column to be standardised. CompanyCheck['Name'] = CompanyCheck['Name'].str.replace('.','') CompanyCheck['Name'] = CompanyCheck['Name'].str.replace(' ','') CompanyCheck['Name'] = CompanyCheck['Name'].str.lower() CompanyCheck.head() # In[23]: #Formatting the Input to be the same as DataFrame name column. ChosenCompany = input("Please enter a company name:") #CompanyName ChosenCompany = ChosenCompany.lower() ChosenCompany = ChosenCompany.replace('.','') ChosenCompany = ChosenCompany.replace(' ','') print(ChosenCompany) # In[24]: #filters for the company name, returns an arr with the corresponding ticker value. TickValue = CompanyCheck[CompanyCheck['Name']==ChosenCompany]["Ticker"].values print(TickValue) # In[33]: #Acceptable time params in order for the API to receive information Intervals = ["1min","5min","15min","30min","45min","1h","2h","4h","1day","1week","1month"] Time = input("Please enter a timeframe: ") NumCalls = input("Please choose the number of calls:") # In[37]: #API td = TDClient(apikey="password") #Removed the API key ts = td.time_series(symbol=TickValue[0],interval=time,outputsize=NumCalls, timezone="America/New_York",) #Returning a dataFrame with the time series data Stock1 = ts.as_pandas() # In[35]: # Plotting high/low values plt.figure() hl=Stock1.loc[:,"high":"low"] hl.plot(linewidth=1) #Formatting the graph plt.xlabel('Time') plt.grid(True) plt.ylabel('Cost measured in dollars ($)') plt.title('High/Low values : {}'.format(ChosenCompany))
43866c23e7957b764f0b579688d0275579b2fd44
ef2e2a40c9e03173ee936f6672a90a794db5b2a0
/app/search.py
5dbfba175888cd77005d66737abc91a5e3083ee9
[]
no_license
crazynayan/flask-tutorial
fc2fbc3bd7e7f30d48dd2abce5ea05ef3168fc6b
6e51323bf086cadd39a4860388e07b047b8c6fbe
refs/heads/master
2022-12-13T23:13:08.832155
2019-10-30T12:16:54
2019-10-30T12:16:54
182,255,340
0
0
null
2022-12-08T05:01:38
2019-04-19T11:36:10
Python
UTF-8
Python
false
false
969
py
from flask import current_app def add_to_index(index, model): if not current_app.elasticsearch: return payload = {} for field in model.__searchable__: payload[field] = getattr(model, field) current_app.elasticsearch.index(index=index, id=model.id, body=payload) def remove_from_index(index, model): if not current_app.elasticsearch: return current_app.elaseticsearch.delete(index=index, id=model.id) def query_index(index, query, page, per_page): if not current_app.elasticsearch: return query_body = { 'query': { 'multi_match': { 'query': query, 'fields': ['*'], }, }, 'from': (page - 1) * per_page, 'size': per_page, } search = current_app.elasticsearch.search(index=index, body=query_body) ids = [int(hit['_id']) for hit in search['hits']['hits']] return ids, search['hits']['total']['value']
3a2127cf485882ad716605f78202ae8536f46498
f453897fccafc2278f959010c6bad52c7802a2fe
/sidebarUpdate.py
ec7becd648760176a127d1c08e6db75bb5c76b28
[]
no_license
ColinHaley/Python
4977c325c13652251386e5a5e3f65d55a3f13a07
bbef9fc8c4e1d31fe5e1142cf7506fc4738295dd
refs/heads/master
2021-01-25T08:28:17.231365
2018-05-09T21:46:32
2018-05-09T21:46:32
42,951,804
1
0
null
null
null
null
UTF-8
Python
false
false
4,866
py
""" __author__ = 'Colin Haley, aka Kazra' __purpose__ = 'Update the /r/asov sidebar with online players from asov Vanilla' Steps: 1. Create upload variables: [string]CSS, [string]Sidebar 2. Get current players a. If 0: i. Clear Sidebar Playerheads ii. Set to "No Players Online." ii. Exit() b. If >= 1: i. For each player online: - If their img exists in /data && newer than GETDATE()-3: 1. Add Strings to CSS and Sidebar variables. - If not: 1. If older than GETDATE()-7, delete old playerhead icon. 2. wget or python equivalent to ~/srv/_config/data/ their player head icon 3. rename from 32.png to playername.png 4. Upload image - Update Users table with: 1. UPDATE Users set Timestamp = NOW() WHERE Username = 'playername' # Other Resources http://cravatar.us/head/__playername__/32.png Even unclaimed names return a 'Steve' head, no error handling needed? Dangerzone https://www.reddit.com/dev/api #POST_api_upload_sr_img #POST_api_delete_sr_img https://github.com/reddit/reddit/wiki/OAuth2 # Mandatory External Libraries Praw: https://gist.github.com/shrayasr/100005943 Mcstatus: https://github.com/Dinnerbone/mcstatus """ # Imports import praw import time import datetime from mcstatus import MinecraftServer import urllib #Static Variables __clientID__ = 'redditClientID' __secretkey__ = 'redditSecretKey' __subreddit__ = 'subredditName' __username__ = 'redditUsername' __password__ = 'redditPassword' __serveraddress__ = 'minecraftAddress' __serverport__ = #RCON Port for Minecraft __datadirectory__ = '/dir/to/location/to/store/playerheads' # Section to display playerheads within on the sidebar on reddit. __sidebarheader__ = '[](/STARTONLINEPLAYERS)' __sidebarfooter__ = '[](/ENDONLINEPLAYERS)' # Header for CSS to update playerheads online. __cssheader__ = '/* END ONLINE PLAYER HEADS DO NOT DELETE OR MOVE FROM HEADER POSITION */' def generate_css(playerName): # return a string formatted "a[href="/playername"]:after { content: url(%%playername%%) }" # change this to a .format(playername) at some later point. return 'a[href="/' + playerName + ']:after { content: url(%%'+ playerName + '%%) }' def generate_sidebar(playerName): # return a string formatted "[](/playername)" # change this to a .format(playerName) at some point. return '[](/' + playerName + ')' def clear_sidebar(): # Needs to iterate through players currently listed online and remove their image uploads. # Requires open connection to Reddit through use of global 'r' variable. sidebar = r.get_settings(__subreddit__)['Description'] clearString = sidebar[:sidebar.index(__sidebarheader__) + len(__sidebarheader__) + sidebar[sidebar.index(__sidebarfooter__):] r.update_settings(r.get_subreddit(__subreddit__), description = clearString) def get_css(): stylesheet = r.get_stylesheet(__subreddit__) return stylesheet def clear_css(): # Delete all CSS between two marker comments, using indexOf("str") # Requires open connection to reddit via 'r' global subCSS = get_css() r.set_stylesheet(__subreddit__, [__header__:]) def upload_css_to_reddit(stringCSS): # takes .join() list of generateCSS(playername) as a string for upload r.set_stylesheet(__subreddit__, stringCSS) def upload_sidebar_to_reddit(stringSidebar): # takes .join() list of generateSidebar(playername) as a string for upload def getCurrentPlayers(): server = MinecraftServer(__serveraddress__, __serverport__) try: query = server.query() return {'Count': query.players.online, 'Players':query.players.names} except: exit() def download_playerhead(playername): downloadPath = 'http://cravatar.eu/head/' + playername + '/32.png' savepath = __datadirectory__ + playername + '.png' urllib.urlretrieve(downloadPath, savePath) # grabs a player head from cravatar to the data folder. def upload_image_to_reddit(playername): __imagedir__ = __datadirectory__ + playername + '.png' r.upload_image(__subreddit__, __imagedir__, playername) def delete_image_from_reddit(playername): r.delete_image(__subreddit__, name=playername, header=False) def parse_players_from_sidebar() # Get the players online from the server via RCON # if unsure of the address use MinecraftServer.lookup() server = MinecraftServer(__serveraddress__, __serverport__) try: query = server.query() if query.players.online > 0: #do stuff else #set sidebar to 'No Players Online' clear_css() clear_sidebar() except: exit() #Define the Praw useragent settings = r.get_settings(__subreddit__)
ebbdd594ec1e0b143441c4a911fcf81481ed0acf
4ae1879c21a4193da3df6ae740674ee0655a8beb
/drawDeviation.py
a8b9efe078feb123768f809991f2275a25cac77e
[]
no_license
cynerelee/collision-avoidance
68bccce1a54009ce7b3bee1bf2adc571b6cde956
c269b7040b68b91eb5e7e1134feb8363da1091f0
refs/heads/master
2023-07-09T02:40:23.760176
2023-06-24T03:44:02
2023-06-24T03:44:02
281,842,101
0
0
null
null
null
null
UTF-8
Python
false
false
2,147
py
import matplotlib.pyplot as plt import matplotlib import numpy as np import xlrd #读取excel的库 x=np.arange(0, 2.01,0.01) #print(x) #print(x.shape) data1 = xlrd.open_workbook("deviation_k1.xlsx") table1 = data1.sheet_by_index(0) line=table1.col_values(0) base=np.array(line) base=base.T resArray=[] #先声明一个空list data = xlrd.open_workbook("deviation_k3.xlsx") #读取文件 table = data.sheet_by_index(0) #按索引获取工作表,0就是工作表1 for i in range(table.nrows): #table.nrows表示总行数 line=table.row_values(i) #读取每行数据,保存在line里面,line是list resArray.append(line) #将line加入到resArray中,resArray是二维list resArray=np.array(resArray) #将resArray从二维list变成数组 font1 = {'family' : 'Times New Roman', 'weight' : 'normal', 'size':15, } font2 = {'family' : 'Times New Roman', 'weight' : 'normal', 'size':10, } color=['#377eb8', '#ff7f00', '#4daf4a','#f781bf', '#a65628', '#984ea3','#999999', '#e41a1c'] alpha=0.6 figure, ax = plt.subplots() # 设置matplotlib正常显示中文和负号 matplotlib.rcParams['font.sans-serif']=['SimHei'] # 用黑体显示中文 matplotlib.rcParams['axes.unicode_minus']=False # 正常显示负号 # 显示横轴标签 plt.xlabel("Time(s)",font1) # 显示纵轴标签 plt.ylabel("Deviation(cm)",font1) plt.axis([0, 2, 0, 6]) plt.tick_params(labelsize=15) plt.xticks([0,0.2,0.4,0.6,0.8,1,1.2,1.4,1.6,1.8,2]) plt.yticks([0,1,2,3,4,5,6]) labels = ax.get_xticklabels() + ax.get_yticklabels() [label.set_fontname('Times New Roman') for label in labels] # 显示图标题 #plt.title("频数/频率分布直方图") #plt.legend(loc = 'upper right',prop=font2) plt.plot(x, base,alpha=0.6,label='Baseline',color=color[0],linewidth=2) plt.plot(x, resArray[:,1],alpha=0.6,label='K2=0.1',color=color[1],linewidth=2) plt.plot(x, resArray[:,2],alpha=0.6,label='K2=1',color=color[2],linewidth=2) plt.plot(x, resArray[:,3],alpha=0.6,label='K2=5',color=color[3],linewidth=2) plt.plot(x, resArray[:,4],alpha=0.6,label='K2=10',color=color[4],linewidth=2) plt.legend(loc = 0,prop=font2) plt.savefig('./Deviation_k3.png') plt.show()
[ "l" ]
l
b94636c5ce40cd95b97b2b35ed36b2306822ab9e
6ab977ddb640969e208abdfb8870f2e0736deafc
/advent2017/day17.py
b779114f0752af2f0cbed65df1af4c11ea3d7662
[]
no_license
nessalc/AdventOfCode
c78fa81dc360d9538a211eaddef6cee39a9dce49
f71ca4810d536b1a2025b20c34afb6f99155ba85
refs/heads/master
2022-12-18T19:08:07.679129
2022-12-16T22:44:05
2022-12-16T22:44:05
75,259,238
0
0
null
null
null
null
UTF-8
Python
false
false
510
py
#Advent of Code 2017 #Day 17: Spinlock from collections import deque def fill_buffer(steps,iterations): buffer=deque([0]) idx=0 for i in range(1,iterations+1): buffer.rotate(-steps) buffer.append(i) if i%1000000==0: print('.',end='') return buffer if __name__=='__main__': test17=3 input17=370 b=fill_buffer(input17,2017) print('Part 1: {}'.format(b[0])) b=fill_buffer(input17,50000000) print('Part 2: {}'.format(b[b.index(0)+1]))
cfc06a8572219937335727054137cb9dc4acbf0c
f3fd05416adb2932222d4e5b4fea42d57eb6f6d0
/.ipynb_checkpoints/interactive-checkpoint.py
4f1903e9761bb71761402bc894609edaa5ab3534
[]
no_license
anurag-ux/covid-19-analysis
4accaf356299d65512b039d2c4a3f37e0cd7f0ca
a8141923adb1c63e42f411050336f450e3f8c8d5
refs/heads/master
2022-04-23T21:32:49.251502
2020-04-27T09:32:06
2020-04-27T09:32:06
259,219,828
0
0
null
2020-04-27T06:19:19
2020-04-27T05:59:53
Jupyter Notebook
UTF-8
Python
false
false
1,311
py
import pandas as pd import numpy as np import matplotlib.pyplot as plt import plotly.graph_objects as go def setup(): global df global st_x global conf_y df=pd.read_csv('covid_19_india.csv') df['Date']=pd.to_datetime(df['Date'],format="%d/%m/%y") st_x=[] conf_y=[] for state in df['State/UnionTerritory'].unique(): st_x.append(df[df['State/UnionTerritory']==state]['Date']) conf_y.append(df[df['State/UnionTerritory']==state]['Confirmed']) def show_graph(state): fig1 = go.Figure() fig1.update_layout(title="Confirmed Cases",xaxis_title="Date",yaxis_title="Number of Cases",font=dict( family="Courier New, monospace",size=18,color="#096291" )) if(state!='all'): st=state.split() for s in st: i=np.where(df['State/UnionTerritory'].unique()==s)[0][0] fig1.add_trace(go.Scatter(x=st_x[i],y=conf_y[i],mode='lines+markers',name=df['State/UnionTerritory'].unique()[i])) else: for i in range(35): fig1.add_trace(go.Scatter(x=st_x[i],y=conf_y[i],mode='lines+markers',name=df['State/UnionTerritory'].unique()[i])) fig1.show() if __name__ == "__main__": state=input('Enter State name(s) or type all to view every state ') setup() show_graph(state)
e6c3c35d2126d046113a15b927b79a265d45938f
d0d9cfbdb391e7ff3bb7cb4ae3d34c80f46b35bf
/ghaaspy/postgres.py
05367ca39a51d8de024c5ef3d00f28529b1ef52e
[]
no_license
dvignoles/ghaaspy
ed977cd752d9d1c982d57be993d5ffe7e30c60bc
af97d99224e1be11d8228af1b2768a1e363c41a9
refs/heads/master
2023-06-15T12:26:44.371930
2021-06-29T16:05:48
2021-06-29T16:05:48
345,821,745
0
0
null
2021-06-29T16:05:49
2021-03-08T23:15:09
Python
UTF-8
Python
false
false
3,248
py
from pathlib import Path from psycopg2 import sql, connect class PostgresDB: def __init__(self, database=None, user='postgres', password='admin', host='localhost', port=5432, verify=True): self.database = database self.host = host self.port = int(port) self.user = user self.password = password if verify: try: self.conn = connect( dbname=self.database, user=self.user, host=self.host, port=self.port, password=self.password ) except Exception as err: print("psycopg2 connect() ERROR:", err) self.conn = None @classmethod def from_pgpass(cls, idsubstring, pgpass=Path.home().joinpath('.pgpass').resolve(), verify=True): """Use postgres password file as source of postgres connection. See https://www.postgresql.org/docs/current/libpq-pgpass.html. Entries are of form hostname:port:database:username:password Args: idsubstring (str): identifying substring ie database, hostname:port:database, hostname:port:databse:username pgpass (Path, optional): Path of .pgpass file. Defaults to Path.home().joinpath('.pgpass').resolve(). Raises: FileNotFoundError: if pgpass not valid Returns: PostgresDB: class instance """ if not pgpass.exists(): raise FileNotFoundError(".pgpass file not found at {}".format(pgpass)) with open(pgpass, 'r') as f: credentials = f.read().splitlines() matches = [] for c in credentials: if idsubstring in c: matches.append(c) assert(len(matches) == 1) host, port, db, user, password = matches[0].split(':') return cls(database=db, user=user, password=password, host=host, port=port, verify=verify) @classmethod def from_gdal_string(cls, gdal_pg, verify=True): """Get PostgresDB instance form gdal driver style string. Args: gdal_pg (str): postgres connection str https://gdal.org/drivers/vector/pg.html verify (bool, optional): Throw error if not valid connection. Defaults to True. Returns: PostgresDB : class instance """ db = {part.split('=')[0]:part.split('=')[1] for part in gdal_pg.split()} assert( ('dbname' in db) & ('host' in db) & ('port' in db) & ('user' in db) & ('password' in db) ) return cls(database=db['dbname'], user=db['user'], password=db['password'], host=db['host'], port=db['port'], verify=verify) def get_gdal_string(self): """Return gdal driver format postgres connection string https://gdal.org/drivers/vector/pg.html PG:"dbname='databasename' host='addr' port='5432' user='x' password='y'" Returns: [type]: [description] """ return "dbname={} host={} port={} user={} password={}".format(self.database, self.host, self.port, self.user, self.password)
cf01fa55f942fa2fcd66150ed980df7a693d2f4f
1923b16ad09b44272b330598d10ab444b5834773
/Basic_test/pa.py
820bc320af8641353d8d9499984d3786b0ec256b
[]
no_license
akhilakr06/pythonluminar
4b9503312cfd09ef8609c12e4052143ed00fb51c
72aa56eee078d7e5929dea0e74f7b9b01c6fef17
refs/heads/master
2023-08-17T11:02:13.228181
2021-09-20T05:49:17
2021-09-20T05:49:17
402,320,777
0
0
null
null
null
null
UTF-8
Python
false
false
538
py
# row=5 # for i in range(row+1): # for j in range(i): # print(i,end=" ") # print('') # for i in range(row+1): # for j in range(i): # print(i,end=" ") # print('') # a=int(input("initial value")) b=int(input("final value")) r=5 for i in range(a,b): if(i%2==0): for k in range(r,0,-1): for j in range(0,k): print(i,end=" ") print() else: for l in range(r): for m in range(0,l+1): print(i,end=" ") print()
41f76bde5c8c6d1b8115d6a7b484d3d798e330a9
9870351dff92683882eb6f4e8e27edf29f8e2560
/bookmarks/common/decorators.py
56a1de4d1522053090a5b6d329941e20a3ba543b
[]
no_license
peterniyon/paithoni
cf86878ad8dc12c6e20189ef036d6ede888381df
97fb26b8cf8d6f747ef4420f2e6a0fb9e52a4aab
refs/heads/master
2022-07-09T03:13:17.545373
2020-05-19T14:19:27
2020-05-19T14:19:27
265,268,723
0
0
null
null
null
null
UTF-8
Python
false
false
309
py
from django.http import HttpResponseBadRequest def ajax_required(f): def wrap(request, *args, **kwargs): if not request.is_ajax(): return HttpResponseBadRequest() return f(request, *args, **kwargs) wrap.__doc__=f.__doc__ wrap.__name__=f.__name__ return wrap
bb6a962fee8f976bdd835956ef211574d904f51f
6c1b604de2a212c148149d9011855c19d2dfd63d
/jaCloud.py
3c5a7f1b03abc4cef7c9b891dec1ad655780d16e
[]
no_license
ryoheimatsumo/slack_bot
48d38278ea4533bc942575b58ec04afcadee6190
337aa0151ac3062eded178210eb0e2e220c5c665
refs/heads/master
2022-07-16T14:48:20.855342
2020-05-13T12:08:11
2020-05-13T12:08:11
263,618,877
0
0
null
null
null
null
UTF-8
Python
false
false
1,817
py
from MeCab import Tagger import matplotlib.pyplot as plt from wordcloud import WordCloud t = Tagger() text = """ Wherever you are 作詞:Taka 作曲:ONE OK ROCK ONE OK ROCK - Wherever you are I'm telling you, oh yeah I softly whisper Tonight tonight You are my angel 愛してるよ 2人は一つに Tonight tonight I just say… Wherever you are, I always make you smile Wherever you are, I'm always by your side Whatever you say, 君を思う氣持ち I promise you「forever」right now I don't need a reason, oh yeah I just want you baby Alright alright Day after day この先長いことずっと uh yeah どうかこんな僕とずっと 死ぬまで Stay with me We carry on… Wherever you are, I always make you smile Wherever you are, I'm always by your side Whatever you say, 君を思う氣持ち I promise you「forever」right now Wherever you are, I never make you cry Wherever you are, I never say goodbye Whatever you say, 君を思う氣持ち I promise you「forever」right now 僕らが出逢った日は2人にとって 一番目の記念すべき日だね そして今日という日は2人にとって 二番目の記念すべき日だね 心から愛せる人 心から愛しい人 この僕の愛の真ん中には いつも心(きみ)がいるから Wherever you are, I always make you smile Wherever you are, I'm always by your side Whatever you say, 君を思う氣持ち I promise you「forever」right now Wherever you are, wherever you are Wherever you are """ splitted = " ".join([x.split("\t")[0] for x in t.parse(text).splitlines()[:-1]]) text2="この僕の愛の真ん中には" print(t.parse(text2)) wc = WordCloud(font_path="/Users/matsumotoryouhei/Downloads/Noto-unhinted/NotoSansCJKjp-Regular.otf", regexp="[\w']+") wc.generate(text) plt.imshow(wc) plt.show()
e6fc3f88aad6cd1b16f5989145c60723173c18f8
cedc585c5fba9b3f09d41ec959eb512edb978089
/IndependentAllels.py
ee163e7b497a6c2d3f0f770af3dcc82edb55e393
[]
no_license
chernovsergey/rosalind
4024f863fb3d642d81df2b82c072856842c26166
193a26c7a383895afb373e14c44000d0dfd6ba09
refs/heads/master
2021-01-01T17:28:05.386689
2015-02-27T18:49:47
2015-02-27T18:49:47
28,854,692
0
2
null
null
null
null
UTF-8
Python
false
false
434
py
from scipy.special._ufuncs import binom __author__ = 'sergey' def P(n, k): return binom(2 ** k, n) * 0.25 ** n * 0.75 ** (2 ** k - n) def Solve(n, k): return 1 - sum([P(n, k) for n in range(N)]) if __name__ == '__main__': data = 0 k = 0 N = 0 with open('IndependentAlleles.txt') as f: data = f.read().strip().split() k, N = map(int, data) print k, N print round(Solve(N, k), 3)
4a2d723ff34579a40e5a5ed814bf5a4a854501cd
2eb9c98a99f74ef0e03260609406d3cd644620e9
/test.py
a3bcb2d2b63366fda1812be23044888cbaa3a651
[]
no_license
DHdroid/HearMe
ec1326f23cc728fe167ce352cbed78b0d5d90f1a
9e579e59c09fd4e146c5e6c226a9668dab24e7b5
refs/heads/main
2023-03-19T18:50:55.717852
2021-03-09T07:08:05
2021-03-09T07:08:05
346,954,512
1
0
null
2021-03-12T05:45:19
2021-03-12T05:45:18
null
UTF-8
Python
false
false
3,067
py
Future<dynamic> speechToText(File file) async { final bytes = file.readAsBytesSync(); var uri = Uri.parse("https://westus.stt.speech.microsoft.com/speech/recognition/conversation/cognitiveservices/v1?language=en-US"); var request = new http.Request("POST", uri) ..headers['Ocp-Apim-Subscription-Key'] = "d10dd8eff0e145eead43c5a63b808d1e" ..headers['Content-Type'] = "audio/wav" ..bodyBytes = bytes; var response = await request.send(); print(request); print(response.statusCode); response.stream.transform(utf8.decoder).listen((value) { print(value); }); return text; } Future<dynamic> addProfile(File file) async { var uri = Uri.parse("https://westus.api.cognitive.microsoft.com/sts/v1.0/issuetoken/speaker/identification/v2.0/text-independent/profiles"); var request = new http.Request("POST", uri) ..headers['Ocp-Apim-Subscription-Key'] = "d10dd8eff0e145eead43c5a63b808d1e" ..headers['Content-Type'] = "application/json" ..bodyFields['locale'] = 'en-us'; var response = await request.send(); print(request); print(response.statusCode); response.stream.transform(utf8.decoder).listen((value) { print(value); }); return profileid; } Future<dynamic> enrollProfile(File file, profileid) async { final bytes = file.readAsBytesSync(); var uri = Uri.parse('https://westus.api.cognitive.microsoft.com/sts/v1.0/issuetoken/speaker/identification/v2.0/text-independent/profiles/{profileid}/enrollments'); var request = new http.Request("POST", uri) ..headers['Ocp-Apim-Subscription-Key'] = "d10dd8eff0e145eead43c5a63b808d1e" ..headers['Content-Type'] = "audio/wav" ..bodyBytes = bytes; var response = await request.send(); print(request); print(response.statusCode); response.stream.transform(utf8.decoder).listen((value) { print(value); }); } Future<dynamic> identifyProfile(File file) async { final bytes = file.readAsBytesSync(); var uri = Uri.parse('https://westus.api.cognitive.microsoft.com/sts/v1.0/issuetoken/speaker/identification/v2.0/text-independent/profiles/identifySingleSpeaker?profileIds={profileid}'); var request = new http.Request("POST", uri) ..headers['Ocp-Apim-Subscription-Key'] = "d10dd8eff0e145eead43c5a63b808d1e" ..headers['Content-Type'] = "audio/wav" ..bodyBytes = bytes; var response = await request.send(); print(request); print(response.statusCode); response.stream.transform(utf8.decoder).listen((value) { print(value); }); return profileid, score; } Future<dynamic> delete Profile() async { final bytes = file.readAsBytesSync(); var uri = Uri.parse('https://westus.api.cognitive.microsoft.com/sts/v1.0/issuetoken/speaker/identification/v2.0/text-independent/profiles/INSERT_PROFILE_ID_HERE'); var request = new http.Request("POST", uri) ..headers['Ocp-Apim-Subscription-Key'] = "d10dd8eff0e145eead43c5a63b808d1e" var response = await request.send(); print(request); print(response.statusCode); response.stream.transform(utf8.decoder).listen((value) { print(value); }); }
be10b6bc0c9150c1fba18f808a0eefbde924ab5c
734bccdcbaaef2ca12e6ff3526aa054d5dbcb9ef
/XSum-Topic-ConvS2S/fairseq/modules/__init__.py
cf36d19bfabc7885cc2179464045d778afa200aa
[ "MIT", "BSD-3-Clause" ]
permissive
artidoro/XSum
6215340c36013c4568e42f23132a6173e3c57912
29730d742914111175cebd0c769115e1b10f1b85
refs/heads/master
2020-09-24T01:10:34.930958
2019-12-03T21:32:40
2019-12-03T21:32:40
225,626,229
1
0
MIT
2019-12-03T13:26:30
2019-12-03T13:26:30
null
UTF-8
Python
false
false
650
py
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. from .beamable_mm import BeamableMM from .conv_tbc import ConvTBC from .grad_multiply import GradMultiply from .learned_positional_embedding import LearnedPositionalEmbedding from .linearized_convolution import LinearizedConvolution __all__ = [ 'BeamableMM', 'ConvTBC', 'GradMultiply', 'LearnedPositionalEmbedding', 'LinearizedConvolution', ]
f68f506b70b8c396f6fb4f61e09bdc790912ba44
c7a332a0e3b0e31e7369922e4e2dc052e21f2c0e
/backend/venv/bin/easy_install
f2bacc67a305de92b1b0b32c2e5d3dda6c2d474a
[ "LicenseRef-scancode-warranty-disclaimer" ]
no_license
JonathanLimZS/JPMorgan-Code-For-Good-2019-Team2
7cd014db755636588d6060ddf6e956d1b6f50a42
cfe179eca15ec8cb6b5f772a97ee719aedc04093
refs/heads/master
2020-09-05T12:34:00.066531
2019-10-29T18:57:42
2019-10-29T18:57:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
277
#!/Users/wayne/Documents/GitHub/team-2/backend/venv/bin/python # -*- coding: utf-8 -*- import re import sys from setuptools.command.easy_install import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
d0c7e8f9d398295ea760aa1b3cc7b658fb54a81b
36cd6cd6b6f4fb984e00774f54f5f65e3e12a943
/Siamese_Loader.py
b134a69bc2ecc2fd4cbf88fdd985efe9f80775ca
[]
no_license
deyachatterjee/KagglePersonalizedMedicineText
e72964d02a056771f6a16d71d9ad4db22bcdb0c7
a92ba6ba4dd4de94f14c60be5e962c07a79b20b2
refs/heads/master
2020-04-22T23:07:56.633710
2018-03-04T01:12:03
2018-03-04T01:12:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,598
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Sep 9 11:44:42 2017 @author: suresh """ import numpy as np import numpy.random as rng from sklearn.utils import shuffle class Siamese_Loader: """For loading batches and testing tasks to a siamese net""" def __init__(self,Xtrain,Xval,Ytrain,Yval,n_classes): self.data = {} self.categories = {} self.data["train"]=np.array(Xtrain) self.categories["train"]=Ytrain self.data["val"]=np.array(Xval) self.categories["val"]=Yval self.n_classes = n_classes self.ndim = len(Xtrain.columns) self.YtrainClassBins = np.bincount(Yval) def get_batch(self,n,s="train"): """Create batch of n pairs, half same class, half different class""" X=self.data[s] Y=self.categories[s] categories = rng.choice(self.n_classes,size=(n,),replace=True) pairs=[np.zeros((n, self.ndim)) for i in range(2)] targets=np.zeros((n,)) targets[n//2:] = 1 for i in range(n): category = categories[i] idx_1 = rng.randint(0,self.YtrainClassBins[category]) pairs[0][i,:] = X[Y==category][idx_1]#choose a random index from the subset containing just this category's data #idx_2 = rng.randint(0,self.n_examples) #pick images of same class for 1st half, different for 2nd category_2 = category if i >= n//2 else (category + rng.randint(1,self.n_classes)) % self.n_classes idx_2 = rng.randint(0,self.YtrainClassBins[category_2]) pairs[1][i,:] = X[Y==category_2][idx_2] return pairs, targets def make_oneshot_task(self,N,s="val"): """Create pairs of test image, support set for testing N way one-shot learning. """ X=self.data[s] Y=self.categories[s] #n_examples = len(Y) #categories = rng.choice(range(self.n_classes),size=(N,),replace=False) #start_idx, end_idx =self.categories[s][language] true_category = rng.randint(0,self.n_classes) ex1, ex2 = rng.choice(X[Y==true_category].shape[0],replace=False,size=(2,)) #test_image = np.asarray([X[true_category,ex1,:,:]]*N).reshape(N,self.w,self.h,1) #test_image = np.asarray(X[Y==true_category][ex1,:]*N).reshape(N,self.ndim)# create n copies of true category test_image = np.vstack([X[Y==true_category][ex1]]*N) indices = rng.randint(0,len(X[Y!=true_category]),size=(N,)) support_set = X[Y!=true_category][indices,:] support_set[0,:] = X[Y==true_category][ex2,:] #support_set = support_set.reshape(N,self.w,self.h,1) targets = np.zeros((N,)) targets[0] = 1 targets, test_image, support_set = shuffle(targets, test_image, support_set) pairs = [test_image,support_set] return pairs, targets def test_oneshot(self,model,N,k,s="val",verbose=0): """Test average N way oneshot learning accuracy of a siamese neural net over k one-shot tasks""" n_correct = 0 if verbose: print("Evaluating model on {} unique {} way one-shot learning tasks ...".format(k,N)) for i in range(k): inputs, targets = self.make_oneshot_task(N,s) probs = model.predict(inputs) if np.argmax(probs) == np.argmax(targets): n_correct+=1 percent_correct = (100.0*n_correct / k) if verbose: print("Got an average of {}% {} way one-shot learning accuracy".format(percent_correct,N)) return percent_correct
a3b305ed929f1b6f60c1ce7b611b5ddeaa5aba79
822f34c3d908fae26ea7f08a3d557f1e40e0a57c
/6/main.py
76804bb8389e8db88b386f0774c019bd00a43c90
[]
no_license
astory-vik/lab6
ee84e9ac5873c04e073c7c144914d8b0a0ca9feb
309edae3efa8a8a84a4d021a1962758aaebc026f
refs/heads/master
2023-01-22T16:20:36.747057
2020-11-20T13:58:00
2020-11-20T13:58:00
314,569,020
0
0
null
null
null
null
UTF-8
Python
false
false
789
py
import requests from bs4 import BeautifulSoup url = "https://news.liga.net/" def main(): html = GetHtml(url) soup = BeautifulSoup(html, "html.parser") link = [] news = [] link = soup.find_all("div", class_="news-nth-title") for i in link: news.append(i.find('a').text) for k in news: print("Количество слов в новосте " + str(len(set(k.split())))) numInt = [] numInt = soup.find_all("a") print("Количество ссылок " + str(len(numInt))) print("Количество изображений " + str(len(soup.find_all("img")))) def GetHtml(url): r = requests.get(url) if(r.status_code == 200): return r.text else: print("Fail") if __name__ == '__main__': main()
d9e0b891cffbffce226b0db23a07df61215be4a1
e9656d837dea040cd2bfdbba3b541fe94800315c
/pyautobuild_slidev/main.py
d0175c5b04e24404d11eef3530ce45ba0d3f0eb7
[ "MIT" ]
permissive
mcoops/container
7aba77c92d9a9719339548581a059590ec76359c
95174aecf0ed5ac051f319e87c86c7bf9714e8f0
refs/heads/main
2023-07-05T19:50:40.128232
2021-08-12T16:01:05
2021-08-12T16:01:05
390,958,429
0
0
MIT
2021-07-30T06:35:26
2021-07-30T06:35:25
null
UTF-8
Python
false
false
1,933
py
#!/usr/bin/env python3 import requests as curl import subprocess def getreleasegh(): owner = 'slidevjs/' repo = 'slidev/' search = 'tags' url = "https://api.github.com/repos/" + owner + repo + search with curl.get(url) as r: if r.status_code == 200: j = r.json() release = str(j[0]['name']) release = release.replace("v", "").replace(".", "").lstrip('0') return release def getactualimage(): owner = 'stig124/' repo = 'slidev/' search = 'tags' url = 'https://registry.hub.docker.com/v2/repositories/' + owner + repo + search with curl.get(url) as r: if r.status_code == 200: j = r.json() for i in range(10): image = str(j['results'][i]['name']) if image != 'latest' and '-buster' not in image: image = image.replace(".", "").lstrip('0') return image def checknpm(): base = 'https://api.npms.io/v2/search?q=' package = 'slidev' url = base + package with curl.get(url) as r: if r.status_code == 200: j = r.json() for i in range(5): if package in str(j['results'][i]['package']['scope']): npm = str(j['results'][i]['package']['version']) npm2 = npm.replace(".", "").lstrip('0') return npm2, npm def process(imv, ghv, npv, rv): if imv == ghv: print("Nothing to do") exit(0) elif imv < ghv: if ghv == npv: print("Build") cmd = "build_slidev " + rv try: subprocess.check_call(cmd, shell=True) except subprocess.CalledProcessError: print("Script failure") exit(4) else: print("Wating for NPM to catch up") exit(6) if __name__ == "__main__": imv = getactualimage() ghv = getreleasegh() npv, rv = checknpm() process(imv, ghv, npv, rv)
f24942104a030a0925c4947eaf99b2672eadd724
bf8c8f718e1025bd86e3e0a5716e63d8b9c532ed
/bot/cogs/personal.py
e27c0e9e9c540477cef7a53d1a3e0538537b78d7
[ "MIT" ]
permissive
iGaming2/rammus-discord-bot
816c569ba47c8c14a1d911dd7c23653f503e9051
04d5ff4141ccccfeccdbb91fd1a4d72496e43e13
refs/heads/master
2020-04-21T14:01:23.548765
2019-01-31T05:02:30
2019-01-31T05:02:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,078
py
import random import discord from discord.ext import commands import bot.checks from bot.resources import PACER_TEST class Personal: def __init__(self, bot): self.bot = bot self.append = " `:^)`" async def msg(self, ctx, message): await ctx.send(message + self.append) # ace @commands.command(hidden=True) @bot.checks.is_member(155625382748356608) async def ace(self, ctx): await self.msg(ctx, "nabei look what look") # akey @commands.command(hidden=True) @commands.bot_has_permissions(manage_nicknames=True) @bot.checks.is_member(474170410213048331) async def akey(self, ctx): if ctx.author.display_name != "ASIAN": await ctx.author.edit(nick="ASIAN") await self.msg(ctx, ":white_check_mark: Successfully changed this " "Asian's name") else: await self.msg(ctx, ":x: No need to change this Asian's name" + self.append) # archy @commands.command(hidden=True) @bot.checks.is_member(205107664533848065) async def archy(self, ctx): options = [ f"{ctx.author.mention} is a lesbian", PACER_TEST ] option = random.choice(options) await self.msg(ctx, option) # astaris @commands.command(hidden=True) @bot.checks.is_member(192974987513036800) async def astaris(self, ctx): options = [ "Astaris is big bolly today", "Astaris isn't a big bolly today" ] option = random.choice(options) await self.msg(ctx, option) # azey @commands.command(hidden=True) @bot.checks.is_member(239276819918880769) async def azey(self, ctx): options = [ "Yes I’m aze pls don’t touch", "Archy abuses me" ] option = random.choice(options) await self.msg(ctx, option) # beem @commands.command(hidden=True) @commands.bot_has_permissions(manage_nicknames=True) @bot.checks.is_member(336336895711772693) async def beem(self, ctx): if ctx.author.display_name != "Baam": await ctx.author.edit(nick="Baam") await self.msg(ctx, "Changed stupid Baam's name") else: await self.msg(ctx, "No need to change stupid Baam's name" + self.append) # cat @commands.command(hidden=True) @bot.checks.is_member(440802535301709827) async def cat(self, ctx): options = [ "meow", "wat", "noni", "send help" ] option = random.choice(options) await self.msg(ctx, option) # catsis @commands.command(hidden=True) @bot.checks.is_member(440802535301709827) async def catsis(self, ctx): options = [ "You got no jams", "Infires", "Jjang jjang man bbong bbong", "Kkaepjang", ] option = random.choice(options) await self.msg(ctx, option) # char @commands.command(hidden=True) @bot.checks.is_member(473457198207467522) async def char(self, ctx): await self.msg(ctx, "Char is a lolicon") # chun @commands.command(hidden=True) @bot.checks.is_member(202373732067442690) async def chun(self, ctx): await self.msg(ctx, "2D girls are better than 3D") # fcb @commands.command(hidden=True) @commands.bot_has_permissions(manage_nicknames=True) @bot.checks.is_member(283204260781490176) async def fcb(self, ctx): if ctx.author.display_name != ctx.author.name: try: await ctx.author.edit(nick=None) except discord.errors.Forbidden: pass await self.msg(ctx, "FCB is h0t") # hunter @commands.command(hidden=True) @bot.checks.is_member(285908956570976259) async def hunter(self, ctx): await self.msg(ctx, "hunter is gay lol") # jackie @commands.command(hidden=True) @bot.checks.is_member(293025979880833024) async def jackie(self, ctx): options = [ "Handsome as **FUCK!**", "Jackie is {:,} pounds today." ] rint = random.randint weight = round(rint(1, 100) * rint(1, 100) / (rint(1, 100) / rint(1, 100)), 2) option = random.choice(options).format(weight) await self.msg(ctx, option) # kroy @commands.command(hidden=True) @commands.bot_has_permissions(manage_nicknames=True) @bot.checks.is_member(346115225625296897) async def kroy(self, ctx): if ctx.author.display_name != ctx.author.name: try: await ctx.author.edit(nick=ctx.author.name) except discord.errors.Forbidden: pass await self.msg(ctx, "Changed Kroyburger's name") else: await self.msg(ctx, "No need to change Kroyburger's name") # menmis @commands.command(hidden=True) @bot.checks.is_member(286573603368206347) async def menmis(self, ctx): options = [ "Menmis is a good mod", "Menmis is getting demoted" ] option = random.choice(options) await self.msg(ctx, option + "") # orcles @commands.command(hidden=True) @commands.bot_has_permissions(manage_nicknames=True) @bot.checks.is_member(301638410815406081) async def orcles(self, ctx): if ctx.author.display_name != ctx.author.name: await ctx.author.edit(nick=None) await self.msg(ctx, "Changed obnoxious Orcles's stupid name" + self.append) else: await self.msg(ctx, "Can't ~~ stand ~~ change Orcles's name." + self.append) # Rage @commands.command(hidden=True) @bot.checks.is_member(447187805106339864) async def Rage(self, ctx): await self.msg(ctx, "Rage dies faster than light") # rory @commands.command(hidden=True) @commands.bot_has_permissions(manage_nicknames=True) @bot.checks.is_member(353180156883632128) async def rory(self, ctx): options = [ "rory", "dinorory rex" ] option = random.choice(options) if ctx.author.display_name != option: await ctx.author.edit(nick=option) await self.msg(ctx, f":white_check_mark: Successfully changed fat " f"rory's name to \"**{option}**\"") else: await self.msg(ctx, f":x: No need to change fat rory's name to " f"\"**{option}**\"") # sharky # sh4rky @commands.command(hidden=True) @bot.checks.is_member(254759884367724554) async def sh4rky(self, ctx): await self.msg(ctx, "Below gay") # traf @commands.command(hidden=True) @bot.checks.is_member(311514087639089162) async def traf(self, ctx): options = [ "**TRAF IS A MONKEY** :monkey_face::monkey::banana: ooh ooh ooh " "ah ah ah!!", "**TRAF IS THE OPEST**" ] option = random.choice(options) await self.msg(ctx, option + "") # xero @commands.command(hidden=True) @commands.bot_has_permissions(manage_nicknames=True) @bot.checks.is_member(257239037721444353) async def xero(self, ctx): if ctx.author.display_name != ctx.author.name: await ctx.author.edit(nick=None) await self.msg(ctx, "Changed noob Xero's name") else: await self.msg(ctx, "No need to change *this* loser's name" + self.append) # zogic @commands.command(hidden=True) @commands.bot_has_permissions(manage_nicknames=True) @bot.checks.is_member(397628415085379584) async def zogic(self, ctx): await ctx.author.edit(nick=None) await self.msg(ctx, "Don't call me zoggy") def setup(bot): bot.add_cog(Personal(bot))
3df3fbea6d84f8960b962c2bbd112a115aaafa12
8ceceaf6f029e4c20af35c686cb3cf908d73f6e5
/account/urls.py
5093bbc1aa70fca4eaf0113212cac8946cba98d7
[]
no_license
Tekkieware/CodeConfab
df2f01081e53f68c041124dfbcc9f13c1311f95b
43652396112addcbb33ce24f3413aca79c3be5ab
refs/heads/master
2022-04-14T03:19:24.011771
2022-03-08T08:38:03
2022-03-08T08:38:03
250,670,137
0
0
null
null
null
null
UTF-8
Python
false
false
2,313
py
from . import views from django.urls import path, include from django.conf.urls.static import static from django.conf import settings from django.contrib.auth.views import PasswordResetView, PasswordResetDoneView app_name = 'account' urlpatterns = [ path('registration/' , views.register.as_view(), name = 'register'), path('logout/', views.Logout.as_view(), name = 'logout'), path('login/' , views.login.as_view(), name = 'login'), path('password/change/',views.PasswordChange.as_view(), name = 'password_change'), path('password/change/done/',views.PasswordChangDone.as_view(), name = 'password_change_done'), path('reset-password', views.passwordreset.as_view(), name = 'reset_password'), path('password/reset/done', views.passwordresetdone.as_view(), name = 'password_reset_done'), path('password-reset/confirm/<uidb64>/<token>', views.confirmpasswordreset.as_view(), name = 'password_reset_confirm'), path('password-reset/complete', views.passwordresetcomplete.as_view(), name = 'password_reset_complete'), path('profile/',views.profileview, name = 'profile'), path('<str:user>/profile/public',views.Publicprofile, name = 'pub_profile'), path('profile/work/information/edit', views.UpdateWorkInfo, name = "work_edit"), path('profile/personal_information/edit', views.UpdatePersonalinfo, name = 'edit_pinfo'), path('profile/contact_information/edit', views.UpdateContatctinfo, name = 'edit_cinfo'), path('profile/acheivements/edit', views.UpdatAcheiveInfo, name = 'edit_ainfo'), path('profile/other_information/edit', views.UpdateOtherInfo, name = 'edit_oinfo'), path('profile/education_information/edit', views.UpdateEducationInfo, name = 'edu_edit'), path('profile/user/story/edit', views.UpdateAboutInfo, name = 'about_edit'), path('profile/user/edit/language/add', views.AddLanguages, name = 'lang_add'), path('profile/user/edit/language/remove', views.RemoveLanguages, name = 'lang_remove'), path('user/resources/add', views.ResourceAdd , name = 'add_resource'), path('user/resources/<int:resourceid>/delete', views.ResourceDelete , name = 'rem_resource'), path('user/profile/picture/add', views.UploadProfilepic , name = 'add_pic') ]+ static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
4a59a6d730c7d42759eeb4c97d075bd0b74a5420
3c000380cbb7e8deb6abf9c6f3e29e8e89784830
/venv/Lib/site-packages/cobra/modelimpl/vns/rsvdevdomainrefconttodomainref.py
6f6631bb9d8ebd61481610df7c86e13fd1a69120
[]
no_license
bkhoward/aciDOM
91b0406f00da7aac413a81c8db2129b4bfc5497b
f2674456ecb19cf7299ef0c5a0887560b8b315d0
refs/heads/master
2023-03-27T23:37:02.836904
2021-03-26T22:07:54
2021-03-26T22:07:54
351,855,399
0
0
null
null
null
null
UTF-8
Python
false
false
7,979
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2020 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class RsVDevDomainRefContToDomainRef(Mo): """ """ meta = NamedSourceRelationMeta("cobra.model.vns.RsVDevDomainRefContToDomainRef", "cobra.model.aaa.DomainRef") meta.targetNameProps["name"] = "tnAaaDomainRefName" meta.cardinality = SourceRelationMeta.N_TO_ONE meta.moClassName = "vnsRsVDevDomainRefContToDomainRef" meta.rnFormat = "rsVDevDomainRefContToDomainRef" meta.category = MoCategory.RELATIONSHIP_TO_LOCAL meta.label = "Relation from VDev DomainRef Container To AAA Domain Ref" meta.writeAccessMask = 0x6000000000000001 meta.readAccessMask = 0x6000000000000001 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = False meta.childClasses.add("cobra.model.fault.Inst") meta.childClasses.add("cobra.model.fault.Counts") meta.childClasses.add("cobra.model.health.Inst") meta.childNamesAndRnPrefix.append(("cobra.model.fault.Counts", "fltCnts")) meta.childNamesAndRnPrefix.append(("cobra.model.fault.Inst", "fault-")) meta.childNamesAndRnPrefix.append(("cobra.model.health.Inst", "health")) meta.parentClasses.add("cobra.model.vns.VDevDomainRefCont") meta.superClasses.add("cobra.model.reln.Inst") meta.superClasses.add("cobra.model.reln.To") meta.superClasses.add("cobra.model.pol.NToRef") meta.rnPrefixes = [ ('rsVDevDomainRefContToDomainRef', False), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "forceResolve", "forceResolve", 107, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = True prop.defaultValueStr = "yes" prop._addConstant("no", None, False) prop._addConstant("yes", None, True) meta.props.add("forceResolve", prop) prop = PropMeta("str", "lcOwn", "lcOwn", 9, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "local" prop._addConstant("implicit", "implicit", 4) prop._addConstant("local", "local", 0) prop._addConstant("policy", "policy", 1) prop._addConstant("replica", "replica", 2) prop._addConstant("resolveOnBehalf", "resolvedonbehalf", 3) meta.props.add("lcOwn", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "monPolDn", "monPolDn", 18098, PropCategory.REGULAR) prop.label = "Monitoring policy attached to this observable object" prop.isImplicit = True prop.isAdmin = True meta.props.add("monPolDn", prop) prop = PropMeta("str", "rType", "rType", 106, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 1 prop.defaultValueStr = "mo" prop._addConstant("local", "local", 3) prop._addConstant("mo", "mo", 1) prop._addConstant("service", "service", 2) meta.props.add("rType", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "state", "state", 103, PropCategory.REGULAR) prop.label = "State" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "unformed" prop._addConstant("cardinality-violation", "cardinality-violation", 5) prop._addConstant("formed", "formed", 1) prop._addConstant("invalid-target", "invalid-target", 4) prop._addConstant("missing-target", "missing-target", 2) prop._addConstant("unformed", "unformed", 0) meta.props.add("state", prop) prop = PropMeta("str", "stateQual", "stateQual", 104, PropCategory.REGULAR) prop.label = "State Qualifier" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "none" prop._addConstant("default-target", "default-target", 2) prop._addConstant("mismatch-target", "mismatch-target", 1) prop._addConstant("none", "none", 0) meta.props.add("stateQual", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) prop = PropMeta("str", "tCl", "tCl", 18094, PropCategory.REGULAR) prop.label = "Target-class" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 1562 prop.defaultValueStr = "aaaDomainRef" prop._addConstant("aaaDomainRef", None, 1562) prop._addConstant("unspecified", "unspecified", 0) meta.props.add("tCl", prop) prop = PropMeta("str", "tContextDn", "tContextDn", 4990, PropCategory.REGULAR) prop.label = "Target-context" prop.isImplicit = True prop.isAdmin = True meta.props.add("tContextDn", prop) prop = PropMeta("str", "tDn", "tDn", 100, PropCategory.REGULAR) prop.label = "Target-dn" prop.isImplicit = True prop.isAdmin = True meta.props.add("tDn", prop) prop = PropMeta("str", "tRn", "tRn", 4989, PropCategory.REGULAR) prop.label = "Target-rn" prop.isImplicit = True prop.isAdmin = True prop.range = [(0, 512)] meta.props.add("tRn", prop) prop = PropMeta("str", "tType", "tType", 4988, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "name" prop._addConstant("all", "all", 2) prop._addConstant("mo", "mo", 1) prop._addConstant("name", "name", 0) meta.props.add("tType", prop) prop = PropMeta("str", "tnAaaDomainRefName", "tnAaaDomainRefName", 18093, PropCategory.REGULAR) prop.label = "Name" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 64)] prop.regex = ['[a-zA-Z0-9_.:-]+'] meta.props.add("tnAaaDomainRefName", prop) def __init__(self, parentMoOrDn, markDirty=True, **creationProps): namingVals = [] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
2c827b70acdad62ca67fd30e1824c1fba685a3ec
492c1e1dabb84ec4efb874b3d9228d31a675a38f
/121.py
bd46672c3c29a00f05e67a8d9d5a65edbc8accd8
[]
no_license
ksnt/leet
65f3c36c8a524e1cc1a5d00bb7a840222ecc9dfe
6680ff978b88d3c44e538b4d5f0e6805ed85f9cf
refs/heads/master
2022-09-24T10:59:18.740314
2022-09-01T19:06:12
2022-09-01T19:06:12
136,970,152
0
0
null
null
null
null
UTF-8
Python
false
false
494
py
import sys class Solution: def maxProfit(self,prices): """ :type prices: List[int] :rtype: int """ if len(prices) == 0: return 0 min_price = sys.maxsize max_profit = 0 length = len(prices) for i in range(length): if prices[i] < min_price: min_price = prices[i] elif prices[i] - min_price > max_profit: max_profit = prices[i] - min_price return max_profit
a82c891c8c753024768d78e5716329e714114205
cf5b2850dc9794eb0fc11826da4fd3ea6c22e9b1
/xlsxwriter/test/comparison/test_chart_drop_lines01.py
6e303f1bb4c31e9ce82494adcc98a6d81795dacb
[ "BSD-2-Clause" ]
permissive
glasah/XlsxWriter
bcf74b43b9c114e45e1a3dd679b5ab49ee20a0ec
1e8aaeb03000dc2f294ccb89b33806ac40dabc13
refs/heads/main
2023-09-05T03:03:53.857387
2021-11-01T07:35:46
2021-11-01T07:35:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,470
py
############################################################################### # # Tests for XlsxWriter. # # SPDX-License-Identifier: BSD-2-Clause # Copyright (c), 2013-2021, John McNamara, [email protected] # from ..excel_comparison_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename('chart_drop_lines01.xlsx') def test_create_file(self): """Test the creation of an XlsxWriter file with drop down lines.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() chart = workbook.add_chart({'type': 'line'}) chart.axis_ids = [48034944, 48036864] data = [ [1, 2, 3, 4, 5], [2, 4, 6, 8, 10], [3, 6, 9, 12, 15], ] worksheet.write_column('A1', data[0]) worksheet.write_column('B1', data[1]) worksheet.write_column('C1', data[2]) chart.set_drop_lines() chart.add_series({ 'categories': '=Sheet1!$A$1:$A$5', 'values': '=Sheet1!$B$1:$B$5', }) chart.add_series({ 'categories': '=Sheet1!$A$1:$A$5', 'values': '=Sheet1!$C$1:$C$5', }) worksheet.insert_chart('E9', chart) workbook.close() self.assertExcelEqual()
a8ac8ed1fc1f33027e25548e0effc34a0d1d0e87
d530e02257918ce734ed964a0a101c6d9cebee41
/test_saved_model.py
0f546d655d83babc0ab379725cef7d3017244131
[]
no_license
KtRamsay/4I15_RL_Project
eb888571ec4e93b54ad6427b8c56158f1582a59b
5aa9e8c46a25f1c9f24dc0478c968930b5fddb9d
refs/heads/main
2023-04-12T21:44:57.204093
2021-04-26T15:23:22
2021-04-26T15:23:22
361,708,307
0
0
null
null
null
null
UTF-8
Python
false
false
11,588
py
from collections import namedtuple import numpy as np #from tensorboardX import SummaryWriter from tqdm import tqdm import matplotlib.pyplot as plt import time import copy import random from map_generation import resetMap from observation_functions import getObsSpaceRepresentation from plot_functions import plotLifespanBar, plotMap, plotObservationInput, plotSuccess, plotSuccessReward import torch import torch.nn as nn import torch.nn.functional as F #Define actor network class Actor(nn.Module): def __init__(self,obSize,hiddenSize, hiddenSize2, numActions): super(Actor,self).__init__() if useObservationSpace: self.conv1 = nn.Conv2d(1,5,5,1).double() self.conv2 = nn.Conv2d(5,18,3).double() self.conv3 = nn.Conv2d(18,3,3).double() self.flatten = nn.Flatten().double() #self.fc1 = nn.Linear(86,80).double() self.fc1 = nn.Linear(78,80).double() else: #self.fc1 = nn.Linear(11,80).double() self.fc1 = nn.Linear(3,80).double() self.fc2 = nn.Linear(80,80).double() self.fc3 = nn.Linear(80,numActions).double() self.tanh = nn.Tanh() def forward(self,spaceMatrix, additionalData): if useObservationSpace: spaceMatrix = spaceMatrix.view((spaceMatrix.shape[0], 1, spaceMatrix.shape[1], spaceMatrix.shape[1])) spaceMatrix = F.relu(self.conv1(spaceMatrix)) spaceMatrix = F.avg_pool2d(spaceMatrix,2,2) spaceMatrix = F.relu(self.conv2(spaceMatrix)) spaceMatrix = F.avg_pool2d(spaceMatrix,2,2) spaceMatrix = F.relu(self.conv3(spaceMatrix)) spaceMatrix = F.avg_pool2d(spaceMatrix,2,1) observation = self.flatten(spaceMatrix) state = torch.cat((observation, additionalData), 1) else : state = additionalData state = F.relu(self.fc1(state)) state = F.relu(self.fc2(state)) state = self.tanh(self.fc3(state)) return state #Define learning model settings HIDDEN_SIZE = 128 HIDDEN_SIZE2 = 100 BATCH_SIZE = 64 TARGET_UPDATE = 10 MAX_EPISODE_ITERS = 150 EPISODES = 500 SEE_EPIDODE = EPISODES + 1 #Set if to load a model setName = "ObservationSpaceTest" #saveNum = "1619187260" #saveNum = "1619186452" #saveNum = "1619203557" saveNum = "1619265915" savedActorPath = "Model_Saves/" + setName + "/Actor_" + saveNum #Define map settings totBlocks = 60 mapWidth = 15 mapHeight = 15 waypointDist = 10 observationDist = 2 #Must be divisible by 2 obsPixleDensity = 10 #Number of pixles per unit cell of map at highest resolution turnMemorySize = 6 allowedPositionError = 0.2 allowedBearingError = 15 #In degrees showSuccessfull = True stepReward = -1 spinReward = 0 collisionReward = -10 perfectWaypointPositionReward = 0 perfectWaypointBearingReward = 0 wayPointPositionReward = 10 plotEvery = 1 obsSize = (obsPixleDensity*observationDist*2)**2 + 2 allowedBearingError = allowedBearingError *np.pi/180 nActions = 2 maxSpeed = 0.1 maxTurnRate = np.pi/6 plotBestPath = False plotObsRange = False smoothInput = True circleMap = True allowClipping = False useObservationSpace = True requireBearing = False device = torch.device("cuda" if torch.cuda.is_available() else "cpu") #WIll only be faster with lager observation space or batch size print("Running program jobs on {}".format(device)) #Set up the display figure fig = plt.figure() axs = [] axs.append(plt.subplot2grid((3,5), (0, 0), colspan=3, rowspan=3)) axs.append(plt.subplot2grid((3,5), (0, 3), colspan=2, rowspan=2)) axs.append(plt.subplot2grid((3,5), (2, 3), colspan=2)) plt.ion() plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=0) #Construct networks #Actor actorNetwork = Actor(obsSize,HIDDEN_SIZE, HIDDEN_SIZE2, nActions).to(device) actorNetwork.load_state_dict(torch.load(savedActorPath)) actorNetwork.eval() #Run training episodeRewards = [] sucessfullEpisodes = 0 reachedOneWaypoint = 0 successfullMemories = [] for episode in tqdm(range(1, EPISODES + 1), ascii=True, unit='episodes'): #Reset environment episodeReward = 0.0 previousPositions = [] turnRateLog = [0, 0, 0, 0, 0, 0] waypointTarget = 0 isDone = False mapObstacles, robot, goal, bestPath, waypoints, mapMatrix = resetMap(mapWidth, mapHeight, totBlocks, waypointDist, obsPixleDensity, circleMap) episodeIteration = 0 episodeReachedWaypoint = False episodeMemory = [] episodeRewardHistory = [0] #Generate the first state spaceMatrix = getObsSpaceRepresentation(mapMatrix, robot, (mapWidth, mapHeight), smoothInput, obsPixleDensity, observationDist) state = torch.DoubleTensor(spaceMatrix).unsqueeze(0).to(device) #additionalData = np.concatenate((np.array([waypoints[waypointTarget].position[0] - robot.position[0], waypoints[waypointTarget].position[1] - robot.position[1], waypoints[waypointTarget].yaw, robot.yaw, robot.getYawToPoint(waypoints[waypointTarget].position)]), np.array(turnRateLog))) additionalData = np.array([np.round(np.absolute(np.linalg.norm(waypoints[waypointTarget].position - robot.position)), 2), np.round(waypoints[waypointTarget].yaw - robot.yaw, 2), np.round(robot.getYawToPoint(waypoints[waypointTarget].position), 2)]) additionalState = torch.DoubleTensor(additionalData).unsqueeze(0).to(device) while episodeIteration < MAX_EPISODE_ITERS: episodeIteration += 1 #Get the next action action = actorNetwork(state, additionalState) action = action.detach().cpu().numpy()[0] """ if random.random() < 0.1: #Do a random action u = random.uniform(0,1) w = random.uniform(-1,1) #update the action data for memory push action = np.array([u, w]) else: """ u = action[0] w = action[1] u = np.clip(u, 0., 1.) u = u*maxSpeed w = np.clip(w, -1., 1.) w = w*maxTurnRate turnRateLog.append(w) if len(turnRateLog) > turnMemorySize: turnRateLog = turnRateLog[1:turnMemorySize+1] #Compute the reward for the motion reward = robot.move(u, w, mapObstacles, mapWidth, mapHeight, stepReward, collisionReward, circleMap, allowClipping) #Check for waypoint reward reward = robot.getWaypointProximityReward(reward, waypoints[waypointTarget], wayPointPositionReward) #Check if the rolling average turn rate is too high (robot is spinning) if np.absolute(np.mean(turnRateLog)) > 0.9*maxTurnRate: #Robot is spinning reward += spinReward #Add some reward for pointing in the right direction reward -= np.absolute(robot.getYawToPoint(waypoints[waypointTarget].position))/(2*np.pi)*5 episodeMemory.append((mapObstacles, mapWidth, mapHeight, copy.copy(robot.position), copy.copy(robot.yaw), robot.radius, goal, copy.deepcopy(previousPositions), bestPath, plotBestPath, copy.deepcopy(waypoints), observationDist, plotObsRange, copy.copy(waypointTarget), copy.copy(episodeIteration), MAX_EPISODE_ITERS, copy.copy(episodeRewardHistory))) #Check if waypoint is reached if robot.hasReachedWaypointPosition(waypoints[waypointTarget], allowedPositionError): reward += perfectWaypointPositionReward reward += 10*(0.1**((np.absolute(robot.getYawToPoint(waypoints[waypointTarget].position))/(2*np.pi)))) if robot.hasReachedWaypointBearing(waypoints[waypointTarget], allowedBearingError) or not requireBearing: reward += perfectWaypointBearingReward waypoints[waypointTarget].reached = True waypointTarget += 1 episodeIteration = 0 if not episodeReachedWaypoint: reachedOneWaypoint += 1 episodeReachedWaypoint = True if waypointTarget == len(waypoints): #Final goal has been reached sucessfullEpisodes += 1 successfullMemories.append(episodeMemory) isDone = True waypointTarget -= 1 #Prevent fail on newAdditionalState creation if episode%SEE_EPIDODE == 0: print("\nWatched Success") #Get the new state with chosen action spaceMatrix = getObsSpaceRepresentation(mapMatrix, robot, (mapWidth, mapHeight), smoothInput, obsPixleDensity, observationDist) state = torch.DoubleTensor(spaceMatrix).unsqueeze(0).to(device) #newAdditionalData = np.concatenate((np.array([waypoints[waypointTarget].position[0] - robot.position[0], waypoints[waypointTarget].position[1] - robot.position[1], waypoints[waypointTarget].yaw, robot.yaw, robot.getYawToPoint(waypoints[waypointTarget].position)]), np.array(turnRateLog))) newAdditionalData = np.array([np.round(np.absolute(np.linalg.norm(waypoints[waypointTarget].position - robot.position)), 2), np.round(waypoints[waypointTarget].yaw - robot.yaw, 2), np.round(robot.getYawToPoint(waypoints[waypointTarget].position), 2)]) additionalState = torch.DoubleTensor(newAdditionalData).unsqueeze(0).to(device) #Update the episode information episodeReward += reward episodeRewardHistory.append(episodeReward) if episode%SEE_EPIDODE == 0: #The last run of the batch is being computed if episodeIteration%10 == 0: #Save every 10 iterations to plot previousPositions.append(np.copy(robot.position)) if episodeIteration%plotEvery == 0: #Plot enviromnent plotMap(axs[0], mapObstacles, mapWidth, mapHeight, robot, goal, previousPositions, bestPath, plotBestPath, waypoints, observationDist, plotObsRange, waypointTarget, circleMap) plotObservationInput(axs[1], spaceMatrix, obsPixleDensity, robot) plotLifespanBar(axs[2], mapWidth, episodeIteration, MAX_EPISODE_ITERS) plt.draw() plt.pause(0.0008) plt.show() if isDone: #Episode is complete episodeRewards.append(episodeReward) if episode%SEE_EPIDODE == 0: print("\nWatched reward: {}".format(episodeReward)) break if not isDone: episodeRewards.append(episodeReward) if episode%SEE_EPIDODE == 0: print("\nWatched reward: {}".format(episodeReward)) print("###########################") print("Model run complete") print("###########################") print("Episodes fully completed: {} of {}".format(sucessfullEpisodes, EPISODES)) print("Success rate: {}%".format(round(100*sucessfullEpisodes/EPISODES, 2))) print("At least 1 waypoint reached: {} of {}".format(reachedOneWaypoint, EPISODES)) print("Success rate: {}%".format(round(100*reachedOneWaypoint/EPISODES, 2))) if showSuccessfull: for successfullMemory in successfullMemories: for memoryFrame in successfullMemory: plotSuccess(axs[0], memoryFrame[0], memoryFrame[1], memoryFrame[2], memoryFrame[3], memoryFrame[4], memoryFrame[5], memoryFrame[6], memoryFrame[7], memoryFrame[8], memoryFrame[9], memoryFrame[10], memoryFrame[11], memoryFrame[12], memoryFrame[13], circleMap) plotSuccessReward(axs[1], memoryFrame[16]) plotLifespanBar(axs[2], memoryFrame[1], memoryFrame[14], memoryFrame[15]) plt.draw() plt.pause(0.1) plt.show()
38457dc838816aa418c8908fcbb7b3aa0e3c8dd8
19937697667261b0c180faddf7b75e767d9fc2cf
/app/tools/engineio/packet.py
a4f40e97e515c7d5e431fca73d9baf7ad5dc3460
[]
no_license
413180794/aliPay
197647cd3389e2b8236602b5bc3d36213b146d96
1c71e631a3730490f5794f1a69adaa0ff76f46fc
refs/heads/master
2020-06-18T07:50:25.238424
2019-07-19T13:02:11
2019-07-19T13:02:11
196,221,150
1
1
null
null
null
null
UTF-8
Python
false
false
3,514
py
import base64 import json as _json import six (OPEN, CLOSE, PING, PONG, MESSAGE, UPGRADE, NOOP) = (0, 1, 2, 3, 4, 5, 6) packet_names = ['OPEN', 'CLOSE', 'PING', 'PONG', 'MESSAGE', 'UPGRADE', 'NOOP'] binary_types = (six.binary_type, bytearray) class EngineIoPacket(object): """Engine.IO packet.""" json = _json def __init__(self, packet_type=NOOP, data=None, binary=None, encoded_packet=None): self.packet_type = packet_type self.data = data if binary is not None: self.binary = binary elif isinstance(data, six.text_type): self.binary = False elif isinstance(data, binary_types): self.binary = True else: self.binary = False if encoded_packet: self.decode(encoded_packet) def encode(self, b64=False, always_bytes=True): """Encode the packet for transmission.""" if self.binary and not b64: encoded_packet = six.int2byte(self.packet_type) else: encoded_packet = six.text_type(self.packet_type) if self.binary and b64: encoded_packet = 'b' + encoded_packet if self.binary: if b64: encoded_packet += base64.b64encode(self.data).decode('utf-8') else: encoded_packet += self.data elif isinstance(self.data, six.string_types): encoded_packet += self.data elif isinstance(self.data, dict) or isinstance(self.data, list): encoded_packet += self.json.dumps(self.data, separators=(',', ':')) elif self.data is not None: encoded_packet += str(self.data) if always_bytes and not isinstance(encoded_packet, binary_types): encoded_packet = encoded_packet.encode('utf-8') return encoded_packet def decode(self, encoded_packet): """Decode a transmitted package.""" b64 = False if not isinstance(encoded_packet, binary_types): encoded_packet = encoded_packet.encode('utf-8') elif not isinstance(encoded_packet, bytes): encoded_packet = bytes(encoded_packet) self.packet_type = six.byte2int(encoded_packet[0:1]) if self.packet_type == 98: # 'b' --> binary base64 encoded packet self.binary = True encoded_packet = encoded_packet[1:] self.packet_type = six.byte2int(encoded_packet[0:1]) self.packet_type -= 48 b64 = True elif self.packet_type >= 48: self.packet_type -= 48 self.binary = False else: self.binary = True self.data = None if len(encoded_packet) > 1: if self.binary: if b64: self.data = base64.b64decode(encoded_packet[1:]) else: self.data = encoded_packet[1:] else: try: self.data = self.json.loads( encoded_packet[1:].decode('utf-8')) if isinstance(self.data, int): # do not allow integer payloads, see # github.com/miguelgrinberg/python-engineio/issues/75 # for background on this decision raise ValueError except ValueError: self.data = encoded_packet[1:].decode('utf-8')
[ "w123456256456" ]
w123456256456
5431d40c72d373dfc4b8862e7524c47fceb70a16
0c56f110c09743bbf951d681731df04f88bf99a3
/venv/bin/dicom2nifti
2801f7bfb5002ab39368ba8b3759565cbf6853f2
[]
no_license
wildwolf1994411/mri_project
dc50dfeffc02cc629421703648022674e568a9a1
2d2e2038cc52d5483308f70374133fea226f5269
refs/heads/master
2020-04-24T12:58:29.006155
2019-02-22T23:48:04
2019-02-22T23:48:04
171,972,252
0
0
null
null
null
null
UTF-8
Python
false
false
3,636
#!/home/shihong/Desktop/Qi_Chen/mri-project/venv/bin/python """ This script is the standalone/script version of dicom2nifti @author: abrys """ from __future__ import print_function import argparse import os import logging import dicom2nifti.convert_dir as convert_directory import dicom2nifti.settings as settings import sys # Setup the logger correctly import logging import sys logger = logging.getLogger(__name__) handler = logging.StreamHandler(sys.stdout) handler.setFormatter(logging.Formatter('%(asctime)s %(levelname)s %(message)s')) logger.addHandler(handler) logger.setLevel(logging.WARNING) def main(args): parser = argparse.ArgumentParser(description='dicom2nifti, convert dicom files into nifti format.') parser.add_argument('input_directory', type=str, help='directory containing dicom files, can be nested') parser.add_argument('output_directory', type=str, help='directory to store the nifti files') parser.add_argument('-G', '--allow-gantry-tilting', action='store_true', help='allow the conversion of gantry tilted data (this will be reflected in the affine matrix only)') parser.add_argument('-r', '--resample-gantry-tilting', action='store_true', help='resample gantry tilted data to an orthogonal image') parser.add_argument('-o', '--resample-order', type=int, help='order of the spline interpolation used during the resampling (0 -> 5) [0 = NN, 1 = LIN, ....]') parser.add_argument('-p', '--resample-padding', type=int, help='padding value to used during resampling to use as fill value') parser.add_argument('-M', '--allow-multiframe-implicit', action='store_true', help='allow the conversion of multiframe data with implicit vr transfer syntax (this is not guaranteed to work)') parser.add_argument('-C', '--no-compression', action='store_true', help='disable gzip compression and write .nii files instead of .nii.gz') parser.add_argument('-R', '--no-reorientation', action='store_true', help='disable image reorientation (default: images are reoriented to LAS orientation)') args = parser.parse_args(args) if not os.path.isdir(args.input_directory): logging.info('ERROR: \'input_directory\' should be a valid path') logging.info('----------------------------------------------------\n') parser.print_help() return 2 elif not os.path.isdir(args.output_directory): logging.info('ERROR: \'output_directory\' should be a valid path') logging.info('----------------------------------------------------\n') parser.print_help() return 2 else: if args.allow_gantry_tilting: settings.disable_validate_orthogonal() if args.allow_multiframe_implicit: settings.disable_validate_multiframe_implicit() if args.resample_gantry_tilting: settings.enable_resampling() if args.resample_order: settings.set_resample_spline_interpolation_order(args.resample_order) if args.resample_padding: settings.set_resample_padding(args.resample_padding) convert_directory.convert_directory(args.input_directory, args.output_directory, not args.no_compression, not args.no_reorientation) if __name__ == "__main__": sys.exit(main(sys.argv[1:]))
78449bf47c907409436262751fab4a0327e9bb74
ad5d38fce4785037c108186f17eb1c64380355ef
/sddsd/google-cloud-sdk.staging/lib/googlecloudsdk/api_lib/cloudbuild/cloudbuild_util.py
c5720e7008ffdafaf648390fa1b04db8874cdcd5
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
saranraju90/multik8s
75864b605a139ddb7947ed4de4ae8466bdd49acb
428576dedef7bb9cd6516e2c1ab2714581e1137c
refs/heads/master
2023-03-03T21:56:14.383571
2021-02-20T14:56:42
2021-02-20T14:56:42
339,665,231
0
0
null
null
null
null
UTF-8
Python
false
false
17,887
py
# -*- coding: utf-8 -*- # # Copyright 2016 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for the cloudbuild API.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import re from apitools.base.protorpclite import messages as proto_messages from apitools.base.py import encoding as apitools_encoding from googlecloudsdk.api_lib.util import apis from googlecloudsdk.calliope import base from googlecloudsdk.core import exceptions from googlecloudsdk.core import yaml from googlecloudsdk.core.resource import resource_property from googlecloudsdk.core.util import files import six _API_NAME = 'cloudbuild' _GA_API_VERSION = 'v1' _BETA_API_VERSION = 'v1beta1' RELEASE_TRACK_TO_API_VERSION = { base.ReleaseTrack.GA: _GA_API_VERSION, base.ReleaseTrack.BETA: _BETA_API_VERSION, base.ReleaseTrack.ALPHA: _BETA_API_VERSION, } REGIONAL_WORKERPOOL_NAME_MATCHER = r'projects/.*/locations/.*/workerPools/.*' REGIONAL_WORKERPOOL_NAME_SELECTOR = r'projects/.*/locations/.*/workerPools/(.*)' REGIONAL_WORKERPOOL_REGION_SELECTOR = r'projects/.*/locations/(.*)/workerPools/.*' # Default for optionally-regional requests when the user does not specify. DEFAULT_REGION = 'global' def GetMessagesModule(release_track=base.ReleaseTrack.GA): """Returns the messages module for Cloud Build. Args: release_track: The desired value of the enum googlecloudsdk.calliope.base.ReleaseTrack. Returns: Module containing the definitions of messages for Cloud Build. """ return apis.GetMessagesModule(_API_NAME, RELEASE_TRACK_TO_API_VERSION[release_track]) def GetClientClass(release_track=base.ReleaseTrack.GA): """Returns the client class for Cloud Build. Args: release_track: The desired value of the enum googlecloudsdk.calliope.base.ReleaseTrack. Returns: base_api.BaseApiClient, Client class for Cloud Build. """ return apis.GetClientClass(_API_NAME, RELEASE_TRACK_TO_API_VERSION[release_track]) def GetClientInstance(release_track=base.ReleaseTrack.GA, use_http=True): """Returns an instance of the Cloud Build client. Args: release_track: The desired value of the enum googlecloudsdk.calliope.base.ReleaseTrack. use_http: bool, True to create an http object for this client. Returns: base_api.BaseApiClient, An instance of the Cloud Build client. """ return apis.GetClientInstance( _API_NAME, RELEASE_TRACK_TO_API_VERSION[release_track], no_http=(not use_http)) def EncodeSubstitutions(substitutions, messages): if not substitutions: return None substitution_properties = [] # TODO(b/35470611): Use map encoder function instead when implemented for key, value in sorted(six.iteritems(substitutions)): # Sort for tests substitution_properties.append( messages.Build.SubstitutionsValue.AdditionalProperty( key=key, value=value)) return messages.Build.SubstitutionsValue( additionalProperties=substitution_properties) def EncodeTriggerSubstitutions(substitutions, messages): if not substitutions: return None substitution_properties = [] for key, value in sorted(six.iteritems(substitutions)): # Sort for tests substitution_properties.append( messages.BuildTrigger.SubstitutionsValue.AdditionalProperty( key=key, value=value)) return messages.BuildTrigger.SubstitutionsValue( additionalProperties=substitution_properties) class ParserError(exceptions.Error): """Error parsing YAML into a dictionary.""" def __init__(self, path, msg): msg = 'parsing {path}: {msg}'.format( path=path, msg=msg, ) super(ParserError, self).__init__(msg) class ParseProtoException(exceptions.Error): """Error interpreting a dictionary as a specific proto message.""" def __init__(self, path, proto_name, msg): msg = 'interpreting {path} as {proto_name}: {msg}'.format( path=path, proto_name=proto_name, msg=msg, ) super(ParseProtoException, self).__init__(msg) def SnakeToCamelString(snake): """Change a snake_case string into a camelCase string. Args: snake: str, the string to be transformed. Returns: str, the transformed string. """ parts = snake.split('_') if not parts: return snake # Handle snake with leading '_'s by collapsing them into the next part. # Legit field names will never look like this, but completeness of the # function is important. leading_blanks = 0 for p in parts: if not p: leading_blanks += 1 else: break if leading_blanks: parts = parts[leading_blanks:] if not parts: # If they were all blanks, then we over-counted by one because of split # behavior. return '_' * (leading_blanks - 1) parts[0] = '_' * leading_blanks + parts[0] return ''.join(parts[:1] + [s.capitalize() for s in parts[1:]]) def SnakeToCamel(msg, skip=None): """Recursively transform all keys and values from snake_case to camelCase. If a key is in skip, then its value is left alone. Args: msg: dict, list, or other. If 'other', the function returns immediately. skip: contains dict keys whose values should not have camel case applied. Returns: Same type as msg, except all strings that were snake_case are now CamelCase, except for the values of dict keys contained in skip. """ if skip is None: skip = [] if isinstance(msg, dict): return { SnakeToCamelString(key): (SnakeToCamel(val, skip) if key not in skip else val) for key, val in six.iteritems(msg) } elif isinstance(msg, list): return [SnakeToCamel(elem, skip) for elem in msg] else: return msg def MessageToFieldPaths(msg): """Produce field paths from a message object. The result is used to create a FieldMask proto message that contains all field paths presented in the object. https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/field_mask.proto Args: msg: A user defined message object that extends the messages.Message class. https://github.com/google/apitools/blob/master/apitools/base/protorpclite/messages.py Returns: The list of field paths. """ fields = [] for field in msg.all_fields(): v = msg.get_assigned_value(field.name) if field.repeated and not v: # Repeated field is initialized as an empty list. continue if v is not None: name = resource_property.ConvertToSnakeCase(field.name) if hasattr(v, 'all_fields'): # message has sub-messages, constructing subpaths. for f in MessageToFieldPaths(v): fields.append('{}.{}'.format(name, f)) else: fields.append(name) return fields def _UnpackCheckUnused(obj, msg_type): """Stuff a dict into a proto message, and fail if there are unused values. Args: obj: dict(), The structured data to be reflected into the message type. msg_type: type, The proto message type. Raises: ValueError: If there is an unused value in obj. Returns: Proto message, The message that was created from obj. """ msg = apitools_encoding.DictToMessage(obj, msg_type) def _CheckForUnusedFields(obj): """Check for any unused fields in nested messages or lists.""" if isinstance(obj, proto_messages.Message): unused_fields = obj.all_unrecognized_fields() if unused_fields: if len(unused_fields) > 1: # Because this message shows up in a dotted path, use braces. # eg .foo.bar.{x,y,z} unused_msg = '{%s}' % ','.join(sorted(unused_fields)) else: # For single items, omit the braces. # eg .foo.bar.x unused_msg = unused_fields[0] raise ValueError('.%s: unused' % unused_msg) for used_field in obj.all_fields(): try: field = getattr(obj, used_field.name) _CheckForUnusedFields(field) except ValueError as e: raise ValueError('.%s%s' % (used_field.name, e)) if isinstance(obj, list): for i, item in enumerate(obj): try: _CheckForUnusedFields(item) except ValueError as e: raise ValueError('[%d]%s' % (i, e)) _CheckForUnusedFields(msg) return msg def LoadMessageFromStream(stream, msg_type, msg_friendly_name, skip_camel_case=None, path=None): """Load a proto message from a stream of JSON or YAML text. Args: stream: file-like object containing the JSON or YAML data to be decoded. msg_type: The protobuf message type to create. msg_friendly_name: A readable name for the message type, for use in error messages. skip_camel_case: Contains proto field names or map keys whose values should not have camel case applied. path: str or None. Optional path to be used in error messages. Raises: ParserError: If there was a problem parsing the stream as a dict. ParseProtoException: If there was a problem interpreting the stream as the given message type. Returns: Proto message, The message that got decoded. """ if skip_camel_case is None: skip_camel_case = [] # Turn the data into a dict try: structured_data = yaml.load(stream, file_hint=path) except yaml.Error as e: raise ParserError(path, e.inner_error) if not isinstance(structured_data, dict): raise ParserError(path, 'Could not parse as a dictionary.') return _YamlToMessage(structured_data, msg_type, msg_friendly_name, skip_camel_case, path) def LoadMessagesFromStream(stream, msg_type, msg_friendly_name, skip_camel_case=None, path=None): """Load multiple proto message from a stream of JSON or YAML text. Args: stream: file-like object containing the JSON or YAML data to be decoded. msg_type: The protobuf message type to create. msg_friendly_name: A readable name for the message type, for use in error messages. skip_camel_case: Contains proto field names or map keys whose values should not have camel case applied. path: str or None. Optional path to be used in error messages. Raises: ParserError: If there was a problem parsing the stream. ParseProtoException: If there was a problem interpreting the stream as the given message type. Returns: Proto message list of the messages that got decoded. """ if skip_camel_case is None: skip_camel_case = [] # Turn the data into a dict try: structured_data = yaml.load_all(stream, file_hint=path) except yaml.Error as e: raise ParserError(path, e.inner_error) return [ _YamlToMessage(item, msg_type, msg_friendly_name, skip_camel_case, path) for item in structured_data ] def _YamlToMessage(structured_data, msg_type, msg_friendly_name, skip_camel_case=None, path=None): """Load a proto message from a file containing JSON or YAML text. Args: structured_data: Dict containing the decoded YAML data. msg_type: The protobuf message type to create. msg_friendly_name: A readable name for the message type, for use in error messages. skip_camel_case: Contains proto field names or map keys whose values should not have camel case applied. path: str or None. Optional path to be used in error messages. Raises: ParseProtoException: If there was a problem interpreting the file as the given message type. Returns: Proto message, The message that got decoded. """ # Transform snake_case into camelCase. structured_data = SnakeToCamel(structured_data, skip_camel_case) # Then, turn the dict into a proto message. try: msg = _UnpackCheckUnused(structured_data, msg_type) except Exception as e: # Catch all exceptions here because a valid YAML can sometimes not be a # valid message, so we need to catch all errors in the dict to message # conversion. raise ParseProtoException(path, msg_friendly_name, '%s' % e) return msg def LoadMessageFromPath(path, msg_type, msg_friendly_name, skip_camel_case=None): """Load a proto message from a file containing JSON or YAML text. Args: path: The path to a file containing the JSON or YAML data to be decoded. msg_type: The protobuf message type to create. msg_friendly_name: A readable name for the message type, for use in error messages. skip_camel_case: Contains proto field names or map keys whose values should not have camel case applied. Raises: files.MissingFileError: If the file does not exist. ParserError: If there was a problem parsing the file as a dict. ParseProtoException: If there was a problem interpreting the file as the given message type. Returns: Proto message, The message that got decoded. """ with files.FileReader(path) as f: # Returns user-friendly error messages return LoadMessageFromStream(f, msg_type, msg_friendly_name, skip_camel_case, path) def LoadMessagesFromPath(path, msg_type, msg_friendly_name, skip_camel_case=None): """Load a proto message from a file containing JSON or YAML text. Args: path: The path to a file containing the JSON or YAML data to be decoded. msg_type: The protobuf message type to create. msg_friendly_name: A readable name for the message type, for use in error messages. skip_camel_case: Contains proto field names or map keys whose values should not have camel case applied. Raises: files.MissingFileError: If the file does not exist. ParseProtoException: If there was a problem interpreting the file as the given message type. Returns: Proto message list of the messages that got decoded. """ with files.FileReader(path) as f: # Returns user-friendly error messages return LoadMessagesFromStream(f, msg_type, msg_friendly_name, skip_camel_case, path) def IsRegionalWorkerPool(resource_name): """Determine if the provided full resource name is a regional worker pool. Args: resource_name: str, The string to test. Returns: bool, True if the string is a regional worker pool's full resource name. """ return bool(re.match(REGIONAL_WORKERPOOL_NAME_MATCHER, resource_name)) def RegionalWorkerPoolShortName(resource_name): """Get the name part of a regional worker pool's full resource name. For example, "projects/abc/locations/def/workerPools/ghi" returns "ghi". Args: resource_name: A regional worker pool's full resource name. Raises: ValueError: If the full resource name was not well-formatted. Returns: The worker pool's short name. """ match = re.search(REGIONAL_WORKERPOOL_NAME_SELECTOR, resource_name) if match: return match.group(1) raise ValueError('The worker pool resource name must match "%s"' % (REGIONAL_WORKERPOOL_NAME_MATCHER,)) def RegionalWorkerPoolRegion(resource_name): """Get the region part of a regional worker pool's full resource name. For example, "projects/abc/locations/def/workerPools/ghi" returns "def". Args: resource_name: str, A regional worker pool's full resource name. Raises: ValueError: If the full resource name was not well-formatted. Returns: str, The worker pool's region string. """ match = re.search(REGIONAL_WORKERPOOL_REGION_SELECTOR, resource_name) if match: return match.group(1) raise ValueError('The worker pool resource name must match "%s"' % (REGIONAL_WORKERPOOL_NAME_MATCHER,)) def GitHubEnterpriseConfigFromArgs(args, update=False): """Construct the GitHubEnterpires resource from the command line args. Args: args: an argparse namespace. All the arguments that were provided to this command invocation. update: bool, if the args are for an update. Returns: A populated GitHubEnterpriseConfig message. """ messages = GetMessagesModule() ghe = messages.GitHubEnterpriseConfig() ghe.hostUrl = args.host_uri ghe.appId = args.app_id if args.webhook_key is not None: ghe.webhookKey = args.webhook_key if not update and args.peered_network is not None: ghe.peeredNetwork = args.peered_network if args.gcs_bucket is not None: gcs_location = messages.GCSLocation() gcs_location.bucket = args.gcs_bucket gcs_location.object = args.gcs_object if args.generation is not None: gcs_location.generation = args.generation ghe.appConfigJson = gcs_location else: secret_location = messages.GitHubEnterpriseSecrets() secret_location.privateKeyName = args.private_key_name secret_location.webhookSecretName = args.webhook_secret_name secret_location.oauthSecretName = args.oauth_secret_name secret_location.oauthClientIdName = args.oauth_client_id_name ghe.secrets = secret_location return ghe
33bd9813fab74f630b0d6986aa9f4747cd2d0f9b
18f2d1458103e1aacaaa14d9ff52654da0154dc8
/src/layers/cnn.py
a65eefba9fdcd3fd3a51a8020d43ef2cd3f172b7
[]
no_license
yamad07/IADA
4fbda5b2e7cdb5efd83f2bd2960bfb8dcfd0d455
7dbda1eb336f44e57567f4541e14b31304a4e381
refs/heads/master
2020-04-10T23:18:01.809883
2019-01-30T16:05:21
2019-01-30T16:05:21
161,347,800
5
0
null
null
null
null
UTF-8
Python
false
false
598
py
import torch.nn as nn def conv_layer(in_dim, out_dim, kernel_size): return nn.Sequential( nn.Conv2d(in_dim, out_dim, kernel_size=kernel_size, padding=int((kernel_size - 1)/2)), nn.ELU(inplace=True), nn.Conv2d(out_dim, out_dim, kernel_size=kernel_size, padding=int((kernel_size - 1)/2)), nn.ELU(inplace=True), nn.Conv2d(out_dim, out_dim, kernel_size=kernel_size, padding=int((kernel_size - 1)/2)), nn.ELU(inplace=True), nn.BatchNorm2d(out_dim), nn.AvgPool2d(kernel_size=2, stride=2), )
f01a7bc2ce9074bc9789a6850d69bb287d4328b0
48732e80f8bbb7707ccbe2f864d63e1b120502e1
/graduate/Lab-1/approx_errors_erk.py
fbbc5b2c09861355d89d3d558bc1e4b38a54c2e1
[]
no_license
ChristopherShort/computational-econ-labs
a0d9023cbc704d15ff7f9076a8b4fdb27f030136
c9dac8e9b9bbf36e7e969a1c8014b3e525104b0a
refs/heads/master
2021-01-25T01:21:13.565627
2013-10-14T12:50:45
2013-10-14T12:50:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,773
py
import numpy as np import matplotlib.pyplot as plt from pyeconomics.models import growth def cobb_douglas_output(t, k, params): """ Cobb-Douglas production function. Arguments: t: (array-like) Time. k: (array-like) Capital (per person/effective person). params: (dict) Dictionary of parameter values. Returns: y: (array-like) Output (per person/ effective person) """ # extract params alpha = params['alpha'] # Cobb-Douglas technology y = k**alpha return y def marginal_product_capital(t, k, params): """ Marginal product of capital with Cobb-Douglas production technology. Arguments: t: (array-like) Time. k: (array-like) Capital (per person/effective person). params: (dict) Dictionary of parameter values. Returns: y_k: (array-like) Derivative of output with respect to capital, k. """ # extract params alpha = params['alpha'] return alpha * k**(alpha - 1) def analytic_k_star(params): """The steady-state level of capital stock per effective worker, k_bar, in the Solow model is a function of the 5 exogenous parameters! """ # extract params s = params['s'] n = params['n'] g = params['g'] alpha = params['alpha'] delta = params['delta'] return (s / (n + g + delta))**(1 / (1 - alpha)) def solow_analytic_solution(k0, t, params): """ Computes the analytic solution for the Solow model with Cobb-Douglas production technology. Arguments: k0: (float) Initial value for capital (per person/effective person) t: (array-like) (T,) array of points at which the solution is desired. Returns: analytic_traj: (array-like) (T,2) array representing the analytic solution trajectory. """ # extract parameter values g = params['g'] n = params['n'] s = params['s'] alpha = params['alpha'] delta = params['delta'] # lambda governs the speed of convergence lmbda = (n + g + delta) * (1 - alpha) # analytic solution for Solow model at time t k_t = (((s / (n + g + delta)) * (1 - np.exp(-lmbda * t)) + k0**(1 - alpha) * np.exp(-lmbda * t))**(1 / (1 - alpha))) # combine into a (T, 2) array analytic_traj = np.hstack((t[:,np.newaxis], k_t[:,np.newaxis])) return analytic_traj # create a new model object params = {'s':0.1, 'n':0.02, 'g':0.02, 'delta':0.1, 'alpha':0.33} model = growth.SolowModel(cobb_douglas_output, marginal_product_capital, params) # create a dictionary of steady state expressions steady_state_funcs = {'k_star':analytic_k_star} # pass it as an argument to the set_steady_state_functions method model.steady_state.set_functions(steady_state_funcs) model.steady_state.set_values() # solve the model using various methods k0 = 6 h = 1.0 T = 200 forward_euler_traj = model.integrate(0, k0, T, h, 'forward_euler') erk2_traj = model.integrate(0, k0, T, h, 'erk2') erk3_traj = model.integrate(0, k0, T, h, 'erk3') erk4_traj = model.integrate(0, k0, T, h, 'erk4') grid = erk2_traj[:,0] analytic_trajectory = solow_analytic_solution(k0, grid, model.args) ##### Approximation errors for RK methods ##### fig = plt.figure(figsize=(8,6)) # plot the forward Euler approximation error benchmark_error = model.plot_approximation_error(forward_euler_traj, analytic_trajectory, log=True)[1] benchmark_error.set_label('Forward Euler') benchmark_error.set_marker('o') benchmark_error.set_linestyle('none') # plot the ERK2 approximation error traj_error = model.plot_approximation_error(erk2_traj, analytic_trajectory, log=True)[1] traj_error.set_label('ERK2') #traj_error.set_color('r') traj_error.set_marker('o') traj_error.set_linestyle('none') # plot the backward Euler approximation error traj_error2 = model.plot_approximation_error(erk3_traj, analytic_trajectory, log=True)[1] traj_error2.set_label('ERK3') #traj_error2.set_color('r') traj_error2.set_marker('o') traj_error2.set_linestyle('none') # plot the trapezoidal rule approximation error traj_error3 = model.plot_approximation_error(erk4_traj, analytic_trajectory, log=True)[1] traj_error3.set_label('ERK4') #traj_error3.set_color('r') traj_error3.set_marker('o') traj_error3.set_linestyle('none') # demarcate machine eps plt.axhline(np.finfo('float').eps, color='k', ls='--', label=r'Machine-$\epsilon$') # Change the title and add a legend plt.title('Approximation errors for explicit RK methods', fontsize=20, family='serif') plt.legend(loc='best', frameon=False, prop={'family':'serif'}) plt.savefig('graphics/solow-approximation-error-erk.png') plt.savefig('graphics/solow-approximation-error-erk.pdf') plt.show() ##### Compare convergence of RK4 with forward Euler ##### # solve the model using various methods k0 = 6 h = 1.0 T = 200 forward_euler_traj = model.integrate(0, k0, T, h, 'forward_euler') erk4_traj = model.integrate(0, k0, T, h, 'erk4') grid = erk4_traj[:,0] analytic_trajectory = solow_analytic_solution(k0, grid, model.args) h = 0.1 forward_euler_traj_2 = model.integrate(0, k0, T, h, 'forward_euler') erk4_traj_2 = model.integrate(0, k0, T, h, 'erk4') grid = erk4_traj_2[:,0] analytic_trajectory_2 = solow_analytic_solution(k0, grid, model.args) fig = plt.figure(figsize=(8,6)) # plot the forward Euler approximation error benchmark_error = model.plot_approximation_error(forward_euler_traj, analytic_trajectory, log=True)[1] benchmark_error.set_label('Forward Euler, h=1.0') benchmark_error.set_marker('o') benchmark_error.set_linestyle('none') benchmark_error2 = model.plot_approximation_error(forward_euler_traj_2, analytic_trajectory_2, log=True)[1] benchmark_error2.set_label('Forward Euler, h=0.1') benchmark_error2.set_color('b') benchmark_error2.set_marker('^') benchmark_error2.set_linestyle('none') # plot the ERK4 approximation error traj_error = model.plot_approximation_error(erk4_traj, analytic_trajectory, log=True)[1] traj_error.set_label('ERK4, h=1.0') traj_error.set_color('c') traj_error.set_marker('o') traj_error.set_linestyle('none') traj_error2 = model.plot_approximation_error(erk4_traj_2, analytic_trajectory_2, log=True)[1] traj_error2.set_label('ERK4, h=0.1') traj_error.set_color('c') traj_error2.set_marker('^') traj_error2.set_linestyle('none') # demarcate machine eps plt.axhline(np.finfo('float').eps, color='k', ls='--', label=r'Machine-$\epsilon$') # Change the title and add a legend plt.title(r'The difference between $\mathcal{O}(h)$ and $\mathcal{O}(h^4)$', fontsize=20, family='serif') plt.legend(loc='upper right', frameon=False, prop={'family':'serif'}) #bbox_to_anchor=(1.45, 1.0)) plt.savefig('graphics/solow-convergence-erk4.png')#, bbox_inches='tight') plt.savefig('graphics/solow-convergence-erk4.pdf')#, bbox_inches='tight') plt.show() ##### Compare Forward Euler, RK5, and dopri5 ##### # solve the model using various methods k0 = 6 h = 1.0 T = 200 forward_euler_traj = model.integrate(0, k0, T, h, 'forward_euler') erk5_traj = model.integrate(0, k0, T, h, 'erk5') dopri5_traj = model.integrate(0, k0, T, h, 'dopri5') grid = erk5_traj[:,0] analytic_trajectory = solow_analytic_solution(k0, grid, model.args) fig = plt.figure(figsize=(8,6)) # plot the forward Euler approximation error benchmark_error = model.plot_approximation_error(forward_euler_traj, analytic_trajectory, log=True)[1] benchmark_error.set_label('Forward Euler') benchmark_error.set_marker('o') benchmark_error.set_linestyle('none') # plot the ERK4 approximation error traj_error = model.plot_approximation_error(erk5_traj, analytic_trajectory, log=True)[1] traj_error.set_label('ERK5') traj_error.set_color('c') traj_error.set_marker('o') traj_error.set_linestyle('none') # plot the dopri5 approximation error traj_error2 = model.plot_approximation_error(dopri5_traj, analytic_trajectory, log=True)[1] traj_error2.set_label('dopri5') traj_error.set_color('m') traj_error2.set_marker('o') traj_error2.set_linestyle('none') # demarcate machine eps plt.axhline(np.finfo('float').eps, color='k', ls='--', label=r'Machine-$\epsilon$') # Change the title and add a legend plt.title(r'The benefits of adaptive step size', fontsize=20, family='serif') plt.legend(loc='best', frameon=False, prop={'family':'serif'}) plt.savefig('graphics/solow-erk5-dopri5.png', bbox_inches='tight') plt.savefig('graphics/solow-erk5-dopri5.pdf', bbox_inches='tight') plt.show()
da79b470a5b4630a6673a89f07ae0c4dfb16071e
f4bb7a7e3dc8c37f7df66f1e4b207160b8091d97
/TeesUni/circlearea.py
dec8dd45e2fee8bb9126672786ed6fd45535e5ac
[]
no_license
davidwilliamwillis/TeesSession1
58fb7ebb8ef9aa2e93a0cfa3b2a8d5bb3b834923
db265986674e167ee54034c3fd3227fc964d54d4
refs/heads/master
2020-06-01T18:58:39.094395
2019-06-23T14:44:56
2019-06-23T14:44:56
190,892,398
0
0
null
null
null
null
UTF-8
Python
false
false
251
py
import math radius = int (input("Please enter the radius:")) radiusSquared = radius**2 Area = math.pi * radiusSquared print("Your Circle Area is ", Area) circumference = math.pi * radius * 2 print ("Your circle's circumference is: ", circumference)
541ecd685d223e738f5743b51455b88c1cfda397
666592be9b8f88105bb8ad4ff7727124aed26aaa
/app/api_1_0/api_auth.py
b192ddcfc600e16c27f853e6a50a9894ecb03c94
[]
no_license
StevyZheng/rks
f952f24e780ef0e1575874e1ea25c64f4b37ae9f
b23d5b228042a0bed9975f163255bf6f5fb0a672
refs/heads/master
2020-04-29T12:02:39.180093
2019-04-15T16:34:36
2019-04-15T16:34:36
176,123,506
0
0
null
null
null
null
UTF-8
Python
false
false
2,856
py
#!/usr/bin/env python # _*_ coding:utf-8 _*_ # @Author : Stevy from flask_httpauth import HTTPBasicAuth from flask import jsonify, app from itsdangerous import SignatureExpired, BadSignature from itsdangerous import TimedJSONWebSignatureSerializer as Serializer from config import Config from app.models.user import User auth = HTTPBasicAuth() # 请求api接口数据的时候,-u 后面输入的账号密码不正确,返回该值 @auth.error_handler def unauthorized(): error_info = '{}'.format("Invalid credentials") print(error_info) response = jsonify({'error': error_info}) response.status_code = 403 return response # 只是一个辅助函数,当传入用户名密码的时候,查询数据库中是否有这条记录 # 并且密码也正确,则返回为True def verify_password_for_token(username, password): user = User.query.filter_by(username=username).first() if not user or not user.verify_password(password): return False return True # 验证 token 和 用户名密码 # 默认传的用户名密码的格式,例如用户名叫liuxin,密码是123456 在shell里加入 -u username:password # 先验证用户名,首先假想是token,解密,查询是否有这么个用户存在,如果有返回True # 如果用户名,那么上面解密这个名字,也肯定解密不出来,所以得出来的user是None # 那么接下来就通过用户名密码的方式验证 # 需要注意的是,传入token的方式与传账号密码的方式一样,别忘记后面加一个冒号: # url中加入@auth.login_required修饰符,会默认调用此函数 @auth.verify_password def verify_password(username_or_token, password): # first try to authenticate by token user = verify_auth_token(username_or_token) if user is None: # try to authenticate with username/password return verify_password_for_token(username=username_or_token, password=password) return True # 定义一个产生token的方法 def generate_auth_token(expiration=36000): # 注意这里的Serializer是这么导入的 # from itsdangerous import TimedJSONWebSignatureSerializer as Serializer s = Serializer(secret_key=Config.SECRET_KEY, expires_in=expiration) # print(s.dumps({'id': 1})) # 返回第一个用户,这里我就将数据库里的id=1的用户作为token的加密用户 return s.dumps({'id': 1}) # 解密token,因为上面加密的是 id=1 的用户,所以解密出来的用户也是 id=1 的用户 # 所以data的数值应该是 {'id': 1} def verify_auth_token(token): s = Serializer(Config.SECRET_KEY) try: data = s.loads(token) except SignatureExpired: return None # valid token, but expired except BadSignature: return None # invalid token user = User.query.get(data['id']) return user
209980e269323975daadb6f92996d0f260698963
e53b067f6a41f076588efda85a2dd1616b8a6858
/remoteroadrunner/plat.py
054e492806d00c752e57a89d5bb78ddaf8a203d5
[]
no_license
mbatc/EGB220-Robot
4dd9b52c3c80861ab0a0b7d9714beb80736f46ac
118d3bc4f2cb78279c2cec1d99d84e5168958f0f
refs/heads/master
2023-05-21T21:49:20.211478
2021-06-03T12:10:21
2021-06-03T12:10:21
344,645,882
0
1
null
2021-05-30T08:16:15
2021-03-05T00:18:18
C++
UTF-8
Python
false
false
2,050
py
from sdl2 import * import ctypes class Window: def __init__(self, width, height, name): if SDL_Init(SDL_INIT_EVERYTHING) < 0: print("Error: SDL could not initialize! SDL Error: " + SDL_GetError().decode("utf-8")) exit(1) SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1) SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, 24) SDL_GL_SetAttribute(SDL_GL_STENCIL_SIZE, 8) SDL_GL_SetAttribute(SDL_GL_ACCELERATED_VISUAL, 1) SDL_GL_SetAttribute(SDL_GL_MULTISAMPLEBUFFERS, 1) SDL_GL_SetAttribute(SDL_GL_MULTISAMPLESAMPLES, 16) SDL_GL_SetAttribute(SDL_GL_CONTEXT_FLAGS, SDL_GL_CONTEXT_FORWARD_COMPATIBLE_FLAG) SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 4) SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 1) SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE) SDL_SetHint(SDL_HINT_MAC_CTRL_CLICK_EMULATE_RIGHT_CLICK, b"1") SDL_SetHint(SDL_HINT_VIDEO_HIGHDPI_DISABLED, b"1") self.sdl_window = SDL_CreateWindow( name.encode('utf-8'), SDL_WINDOWPOS_CENTERED, SDL_WINDOWPOS_CENTERED, width, height, SDL_WINDOW_OPENGL|SDL_WINDOW_RESIZABLE ) self.gl_context = SDL_GL_CreateContext(self.sdl_window) if self.gl_context is None: print("Error: Cannot create OpenGL Context! SDL Error: " + SDL_GetError().decode("utf-8")) exit(1) SDL_GL_MakeCurrent(self.sdl_window, self.gl_context) if SDL_GL_SetSwapInterval(1) < 0: print("Warning: Unable to set VSync! SDL Error: " + SDL_GetError().decode("utf-8")) exit(1) def title(self): pass def width(self): w = c_int() SDL_GetWindowSize(self.sdl_window, ctypes.byref(w), None) return w.value def height(self): h = c_int() SDL_GetWindowSize(self.sdl_window, None, ctypes.byref(h)) return h.value def x(self): x = c_int() SDL_GetWindowPosition(self.sdl_window, ctypes.byref(x), None) return x.value def y(self): y = c_int() SDL_GetWindowPosition(self.sdl_window, None, ctypes.byref(y)) return y.value
454b3f6fcc8d3a395b5b82e4188f13105894c960
aae216eb4688b37fc8b96fc3900dfcb5d8a3ca16
/midterm-c.py
3a0583911d0a89006df1e7789cdfe85c804e54b4
[]
no_license
omerfarukkutlu/python-midterm
d7461d0bc6a76b65cc0f92b15353c72ac944bf87
75a7c7a531f9b7da13fd65477cfcc8c475554133
refs/heads/master
2020-05-18T14:15:51.375587
2019-05-01T21:27:50
2019-05-01T21:27:50
184,462,382
0
0
null
null
null
null
UTF-8
Python
false
false
6,596
py
# -*- coding: utf-8 -*- """ Created on Sat Apr 20 20:56:08 2019 @author: farukkutlu """ import numpy as np import matplotlib.pyplot as plt with open('airfoils/eh2012.dat', 'r') as file: header = file.readline() x, y = np.loadtxt(file, dtype=float, unpack=True) class Panel: def __init__(self, xa, ya, xb, yb): self.xa, self.ya = xa, ya # panel starting-point self.xb, self.yb = xb, yb # panel ending-point self.xc, self.yc = (xa + xb) / 2, (ya + yb) / 2 # panel center self.length = np.sqrt((xb - xa)**2 + (yb - ya)**2) # panel length # orientation of panel (angle between x-axis and panel's normal) if xb - xa <= 0.0: self.beta = np.arccos((yb - ya) / self.length) elif xb - xa > 0.0: self.beta = np.pi + np.arccos(-(yb - ya) / self.length) def define_panels(x, y, N): R = 0.5*(x.max() - x.min()) # radius of the circle x_c = (x.max() + x.min()) / 2.0 # x-coordinate of circle center theta = np.linspace(0.0, 2.0*np.pi, N+1) # array of angles x_circle = x_c + R*np.cos(theta) # x-coordinates of circle x_last = np.copy(x_circle) # x-coordinate of tr. edge y_last = np.empty_like(x_last) # y-coordinate of tr. edge # to close the trailing edge gap x, y = np.append(x, x[0]), np.append(y, y[0]) # calculating the y-points of the panels j = 0 for i in range(N): while j < len(x)-1: if (x[j] <= x_last[i] <= x[j+1]) or (x[j+1] <= x_last[i] <= x[j]): break else: j += 1 a = (y[j + 1] - y[j])/(x[j + 1] - x[j]) b = y[j + 1] - a*x[j + 1] y_last[i] = a*x_last[i] + b y_last[N] = y_last[0] # creating panels panels = np.empty(N, dtype=object) for i in range(N): panels[i] = Panel(x_last[i], y_last[i], x_last[i + 1], y_last[i + 1]) return panels def foil_normals(x, y): x_c = (x[1:] + x[:-1])/2 # center of x-points y_c = (y[1:] + y[:-1])/2 # center of y-points d_x = x[1:] - x[:-1] # distance in x of two points. d_y = y[1:] - y[:-1] # distance in y of two points. l = (d_x**2+d_y**2)**0.5 # distance between two points. (length) dx = d_y/l # unit vector in x. dy = -d_x/l # unit vector in y. return x_c, y_c, dx, dy def cusp(x,y): vx1, vy1, vx2, vy2 = x[0]-x[1], y[0]-y[1], x[-1]-x[-2], y[-1]-y[-2] l1 = (vx1**2+vy1**2)**0.5 l2 = (vx2**2+vy2**2)**0.5 theta = np.arccos((vx1*vx2+vy1*vy2)/(l1*l2)) if 2.5 <= np.rad2deg(theta) <= 5.0: cusp_ = 'almost cusped' elif 0.0 <= np.rad2deg(theta) <= 2.5: cusp_ = 'cusped' else: cusp_ = 'pointed' return cusp_, vx1, vy1, vx2, vy2, np.rad2deg(theta) def camberline(x,y): x, y = x.tolist(), y.tolist() if y[0] == y[-1]: if len(x)%2 != 0: mid = x.index(min(x)) x1, x2, y1, y2 = x[:mid+1], x[mid:], y[:mid+1], y[mid:] meanx, meany = x2 , [] else: mid = x.index(min(x)) x1, x2, y1, y2 = x[:mid], x[mid+1:], y[:mid], y[mid+1:] x1.reverse(), x1.pop() meanx, meany = [min(x)] + (np.array(np.array(x1)+np.array(x2))/2).tolist() + [x[-1]], [y[x.index(min(x))]] else: if len(x)%2 != 0: mid = x.index(min(x)) x1, x2, y1, y2 = x[:mid], x[mid+1:], y[:mid], y[mid+1:] meanx, meany = [min(x)] + x2 , [y[mid]] else: mid = x.index(min(x)) x1, x2, y1, y2 = x[:mid+1], x[mid+1:], y[:mid+1], y[mid+1:] meanx, meany = [min(x)] + x2 , [y[x.index(min(x))]] max_t, t, t_x, t_y = 0, 0, 0, 0 y1.reverse() for ty1, ty2 in zip(y1, y2): meany.append((ty1+ty2)/2) t = ty1 - ty2 if t > max_t: max_t = t t_x, t_y = [x[y.index(ty1)], x[y.index(ty1)]], [ty1, ty2] if y[0] == y[-1]: if len(x)%2 == 0: meany.append(y[-1]) return meanx, meany, t_x, t_y def plot(header, x, y): x_l = x.tolist() camberx, cambery, tx, ty = camberline(x, y) x,y = np.append(x, x[0]), np.append(y, y[0]) min_ = x_l.index(min(x_l)) chordx, chordy = [ min(x), max(x) ], [ y[min_], (y[0]+y[-2])*0.5 ] plt.figure(figsize=(15, 15)) plt.plot(chordx, chordy, color='deepskyblue', linestyle='-', label='Chord Line') # Chord Line plt.plot(camberx, cambery, 'k-.', label = 'Mean Camberline', linewidth=2) # Mean Camberline plt.plot(tx, ty, color='mediumseagreen', linestyle='-', linewidth=3, label='Max Thickness at '+str(round(tx[0],3))+'c') # Max thickness plt.title(header, loc='center', fontsize=16) # header plt.plot(x, y, color='k', linestyle='-', linewidth=4, alpha=1) # plot of airfoil plt.axes().set_aspect('equal') # aspect ratio plt.xlim(-0.05, 1.05) # x-limit plt.ylim(min(y) - 0.05, max(y) + 0.075) # y-limit plt.xlabel('x', fontsize=16) plt.ylabel('y', fontsize=16) plt.legend() def plot_panels(header, x, y): plot(header, x, y) cusp_, vx1, vy1, vx2, vy2, theta = cusp(x,y) panels = define_panels(x, y, N=20) # plot paneled geometry plt.plot(np.append([panel.xa for panel in panels], panels[0].xa), np.append([panel.ya for panel in panels], panels[0].ya), linestyle='-', linewidth=2, marker='o', markersize=6, color='red', label='Panel Lines', alpha=1) plt.quiver([panel.xc for panel in panels],[panel.yc for panel in panels], np.cos([panel.beta for panel in panels]), np.sin([panel.beta for panel in panels]), alpha=0.8, scale=20, width=0.004) plt.quiver(x[0], y[0], vx1, vy1, width = 0.003, color='crimson') plt.quiver(x[-2], y[-2], vx2, vy2, width = 0.003, color='crimson') t = plt.annotate(str(round(theta,2))+'\u00b0,'+' '+cusp_, xy=(1.01,-0.01), xycoords='data', xytext=(-100,-60), textcoords='offset points', arrowprops=dict(arrowstyle='fancy', fc='0.6', connectionstyle="angle3,angleA=0,angleB=-40")) t.set_bbox(dict(facecolor='crimson', alpha=.9, edgecolor='red')) plt.ylim(min(y) - 0.075, max(y) + 0.15) # y-limit plt.legend() plot_panels(header, x, y)
d9c526969dc748e9e84b094f1266d0535a2a6f15
20ef681ddfb4de241f77660698a1f05bbe928abd
/ansible/dynamic_vars/testing.py
19e28595e78ebac720ba83286b1ca495d1ffcf26
[]
no_license
burnyd/arista_automation_events
78e9591b92e83e27adc40facfe8d80b5fa14dffc
73c7b733500fc5b26b6bb4d8a056a2ab9830d38d
refs/heads/master
2021-07-12T18:19:27.524401
2021-04-02T18:28:13
2021-04-02T18:28:13
123,217,062
8
0
null
2021-04-02T18:28:14
2018-02-28T02:26:02
Python
UTF-8
Python
false
false
1,130
py
#!/usr/bin/python #Change the common structure so it breaks out leafs/spines as well as all devices. import json import requests import os import glob common_url = "http://flaskapi:5000/api/static/common.json" headers = {'Content-Type': 'application/json', 'Accept': 'application/json'} requests.packages.urllib3.disable_warnings() common_result = requests.get(common_url, headers=headers, verify=False) common = json.loads(common_result.content.decode('utf-8')) def get_leafdevices(): empty_list = [] for devices in common['leafs']: empty_list.append(devices) return empty_list def get_spinedevices(): empty_list = [] for devices in common['spines']: empty_list.append(devices) return empty_list def get_all_configs(): dir_list = os.listdir("../../flask/static") for name in dir_list: url_config = "http://flaskapi:5000/api/static/%s" % (name) url_result = requests.get(url_config, headers=headers, verify=False) url_json = json.loads(url_result.content.decode('utf-8')) return url_json testing = get_all_configs() print(testing['hostname'])
440d85991f4a5c63c993bfa5575e75c0fe80b2eb
f281d0d6431c1b45c6e5ebfff5856c374af4b130
/DAY001~099/DAY25-BOJ1068-트리/shinjam.py
7db78b4398a5df90c58f272225b3fb2e50d4feb0
[]
no_license
tachyon83/code-rhino
ec802dc91dce20980fac401b26165a487494adb4
b1af000f5798cd12ecdab36aeb9c7a36f91c1101
refs/heads/master
2022-08-13T09:10:16.369287
2022-07-30T11:27:34
2022-07-30T11:27:34
292,142,812
5
6
null
null
null
null
UTF-8
Python
false
false
612
py
from collections import defaultdict N = int(input()) input_nodes = map(int, input().split()) del_node = int(input()) nodes = defaultdict(list) stack = [] visited = [0] * N for idx, val in enumerate(input_nodes): if del_node in [idx, val]: continue if val == -1: stack.append(idx) continue nodes[idx].append(val) nodes[val].append(idx) ret = 0 while stack: node = stack.pop() visited[node] = 1 leaf = True for n in nodes[node]: if not visited[n]: stack.append(n) leaf = False if leaf: ret += 1 print(ret)
737d0d14cbf7617d263689780445a33d38fb5afa
8c466de1fb9de881718b6f59a71e02f54963ea96
/DJCelery/urls.py
5905e385ad9cfc4de49fb3867d7d810cf38778ea
[]
no_license
IsaacNewLee/DjCeelry
d17837b50cda8f4a2d96b1f36d953956b54fa7ad
06f5c6cdddeb4bbf130fe52bde5c32922cd66c5e
refs/heads/master
2022-02-18T20:31:47.997005
2019-09-13T14:18:47
2019-09-13T14:18:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
814
py
"""DJCelery URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from celeryapp.views import course urlpatterns = [ path('admin/', admin.site.urls), path('course/', course), ]
6911bfdb1062917403ac7d66e2e5833799fd3992
8f38dc6bcdf7a260b875bad6f68187a6ecde00b5
/tests/test_dialects/test_db/test_parser.py
2426e5ef2ed03b98f600a27dcdf0272c162c7816
[]
no_license
gavel-tool/python-gavel-db
b2d630f8e3732b1965ad5f66ab1becbf43764bb7
cc82381569f8e102abbc08e3c1729307da2b6e4a
refs/heads/master
2023-02-13T22:06:00.728622
2021-01-09T16:49:18
2021-01-09T16:49:18
309,721,938
0
0
null
null
null
null
UTF-8
Python
false
false
843
py
from unittest import TestCase import gavel_db.dialects.db.structures as fol_db from gavel.dialects.tptp.compiler import TPTPCompiler from gavel.dialects.tptp.parser import TPTPParser class TestProcessor(TPTPParser): compiler = TPTPCompiler() def parse(self, tree, *args, **kwargs): original = tree.getText() internal = self.visitor.visit(tree) if internal.logic != "thf": reconstructed = self.compiler.visit(internal) assert original.replace("(", "").replace(")", "") == reconstructed.replace( "(", "" ).replace(")", ""), (original, reconstructed) print(reconstructed) return internal axioms = ["GRP001-0.ax"] problems = ["ALG/ALG001-1.p", "NUN/NUN030^1.p"] class TestParser(TestCase): def test_imports(self): pass
7c1c9eef31590352927dadcd54597dbf6987e241
f9d9a49a4033f7f081ce6d44c39dbe581b3f1e6e
/WebCrawler/ShockingBox/ShockingBox/production_settings.py
54b29c28eb77f63eeaffa42425685d0fb6a89b88
[]
no_license
commonlife/SmartPiggyBank
455c14580cb5fca1115356335999151291d4bbf8
d62a55b080d3901f78cdea5015f2e33936facc4f
refs/heads/master
2021-01-12T04:52:25.220840
2017-01-02T05:28:41
2017-01-02T05:28:41
77,805,654
0
0
null
null
null
null
UTF-8
Python
false
false
3,316
py
""" Django settings for ShockingBox project. Generated by 'django-admin startproject' using Django 1.10.4. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '^k6*+7f%u%hh=g6w!_aeck##wjqzxbv(0mq$5e#q#e0*_w&yyj' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = False ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'Crawler11st', 'ApiGateway', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'ShockingBox.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(BASE_DIR, 'templates'), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'ShockingBox.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') STATICFILES_DIRS = [os.path.join(BASE_DIR, 'static')]
ba32974d230cd953717d1b398d47c36bbdaa86d9
55c7f7e2e7d366e81b8438865792664a7aa8eebb
/services/users/tests/test_drf_urls.py
857b32e65ba2f676541b49dc45a08a6863ce705a
[ "MIT" ]
permissive
elmakhandaker/Services
78de4655d7d2f8f33e16b9db800a76c0539f6d32
36790d1b58398408468fcad907ca5678be45316c
refs/heads/master
2022-12-24T06:14:20.895633
2020-10-08T15:37:44
2020-10-08T15:37:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
661
py
import pytest from django.urls import resolve, reverse from services.users.models import User pytestmark = pytest.mark.django_db def test_user_detail(user: User): assert ( reverse("api:user-detail", kwargs={"username": user.username}) == f"/api/users/{user.username}/" ) assert resolve(f"/api/users/{user.username}/").view_name == "api:user-detail" def test_user_list(): assert reverse("api:user-list") == "/api/users/" assert resolve("/api/users/").view_name == "api:user-list" def test_user_me(): assert reverse("api:user-me") == "/api/users/me/" assert resolve("/api/users/me/").view_name == "api:user-me"
dd8a4afbe6dd3252e432ddcf32a9f74e9ffe44f4
45394e169c45c71eb17948a91c6dd8d707676236
/Data analysis and selection/spanselector_zoom.py
a39693d2bcfce43e2a77e574b11c35eeddea9cc3
[]
no_license
jmajorNRELgit/Random-code_bits
235f4b6ebfdf8ed079db98c8601728180a0336e6
f656f558f9afd0f97d560c3df12df06e26c3985a
refs/heads/master
2020-04-03T12:17:03.386939
2019-03-27T13:59:49
2019-03-27T13:59:49
155,247,253
0
0
null
null
null
null
UTF-8
Python
false
false
3,293
py
# -*- coding: utf-8 -*- """ Created on Fri Mar 15 08:48:30 2019 @author: jmajor """ import matplotlib.pyplot as plt from matplotlib.widgets import SpanSelector import pandas as pd import numpy as np from scipy import signal #calibration file = 'C:/Users/jmajor/Desktop/Fast_charge_part_2/Condensed data.csv' calibration_slope = 7.89768885939907 calibration_intercept = -0.0005410827748427023 df = pd.read_csv(file) #data from calibration TEG1 = df['TEG1'] TEG2 = df['TEG2'] current = df['Current'] supply_voltage = df['Supply_voltage'] cell_voltage = df['Cell_voltage'] time = df['Time'] TEG_sum = [] for i in range(len(TEG1)): TEG_sum.append(TEG1[i] + TEG2[i]) TEG_fitted = [(i*calibration_slope+calibration_intercept) for i in TEG_sum] power = [] for i in range(len(supply_voltage)): power.append(supply_voltage[i] * current[i]) x = time TEG_fitted = [i*1000 for i in TEG_fitted] power = [i*1000 for i in power] fig, (ax1, ax2) = plt.subplots(2, figsize=(8, 6)) #ax1.set(facecolor='#FFFFCC') ax1.plot(x, TEG_fitted, label = 'Fitted TEG data') ax1.legend(loc='center left', bbox_to_anchor=(1.1, 0.5)) ax1.set_title('Press left mouse button and drag to test') ax1.plot(x, power, label = 'Supply Power') ax1.legend(loc='center left', bbox_to_anchor=(1.1, 0.5)) ax1.set_xlabel('Time (s)') ax1.set_ylabel('Power (mWatts)') ax2.plot(x, TEG_fitted, label = 'Fitted TEG data') ax2.legend(loc='center left', bbox_to_anchor=(1.1, 0.5)) ax2.set_title('Press left mouse button and drag to test') ax2.plot(x, power, label = 'Supply Power') ax2.legend(loc='center left', bbox_to_anchor=(1.1, 0.5)) ax2.set_xlabel('Time (s)') ax2.set_ylabel('Power (mWatts)') '''change TEG data to charge power data''' #TEG_fitted = power def onselect(xmin, xmax): indmin, indmax = np.searchsorted(x, (xmin, xmax)) indmax = min(len(x) - 1, indmax) ax2.clear() ax2.plot(x[indmin:indmax], TEG_fitted[indmin:indmax], label = 'Fitted TEG data') ax2.legend(loc='center left', bbox_to_anchor=(1.1, 0.5)) ax2.set_title('Press left mouse button and drag to test') ax2.plot(x[indmin:indmax], power[indmin:indmax], label = 'Supply Power') ax2.legend(loc='center left', bbox_to_anchor=(1.1, 0.5)) fig.canvas.draw() # Set useblit=True on most backends for enhanced performance. span = SpanSelector(ax1, onselect, 'horizontal', useblit=True, rectprops=dict(alpha=0.5, facecolor='red')) #data collected from the plot data_lists = [] def onselect2(xmin, xmax): global data_dictionaries x_data = None indmin, indmax = np.searchsorted(x, (xmin, xmax)) indmax = min(len(x) - 1, indmax) x_data = x[indmin:indmax] TEG_data_to_integrate = TEG_fitted[indmin:indmax] integration_time = time[indmin:indmax] data_lists.append((x_data, TEG_data_to_integrate, integration_time)) # Set useblit=True on most backends for enhanced performance. span2 = SpanSelector(ax2, onselect2, 'horizontal', useblit=True, rectprops=dict(alpha=0.5, facecolor='red')) plt.show(block = True) for i in range(len(data_lists)): plt.fill_between(data_lists[i][2],[0]*len(data_lists[i][0]), data_lists[i][1]) for i in range(len(data_lists)): print('{}'.format( np.abs(np.trapz(data_lists[i][1]))))
c27db6a1a5fe6540f5fe1c700d2b2ee27a972c38
21b39d50e4df56ea01453001845d1580729af1df
/jdcloud_sdk/services/waf/models/WafConf.py
27441dad49c7751c59eb9cce3518e52ea22c2365
[ "Apache-2.0" ]
permissive
Tanc009/jdcloud-sdk-python
ef46eac7731aa8a1839b1fc1efd93249b7a977f0
8b045c99bc5b73ca7348e950b6f01e03a27982f5
refs/heads/master
2021-08-09T14:49:16.177709
2021-06-25T02:38:41
2021-06-25T02:38:41
141,714,695
0
0
Apache-2.0
2018-07-20T13:21:17
2018-07-20T13:21:16
null
UTF-8
Python
false
false
1,201
py
# coding=utf8 # Copyright 2018 JDCLOUD.COM # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # NOTE: This class is auto generated by the jdcloud code generator program. class WafConf(object): def __init__(self, enable=None, wafMode=None, wafLevel=None, redirection=None): """ :param enable: (Optional) 是否使能 0表示否 :param wafMode: (Optional) 0表示防护,1表示预警 :param wafLevel: (Optional) 0表示宽松,1表示正常,2表示严格 :param redirection: (Optional) 自定义页面名称 """ self.enable = enable self.wafMode = wafMode self.wafLevel = wafLevel self.redirection = redirection
9fe0052ed77b41b803970201931a83a8834c5944
b71eb888bf324bfe19c58f060f8d04371ff26bed
/venv/Scripts/easy_install-3.7-script.py
7360180eeb5f2b49c3c8421e8bee51d3cf3723b9
[]
no_license
victorllcrc/Test-Django-NGINX-Gunicorn
0481d50dd4dbe58260e466541b258087d03fa89f
068b0a5200554e32a17a19fb5bed955437f43eb2
refs/heads/master
2020-05-01T13:17:22.555924
2019-06-11T17:07:47
2019-06-11T17:07:47
177,488,094
0
0
null
null
null
null
UTF-8
Python
false
false
468
py
#!C:\Users\VICTOR\Desktop\tutorial\Scripts\yout111\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==39.1.0','console_scripts','easy_install-3.7' __requires__ = 'setuptools==39.1.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==39.1.0', 'console_scripts', 'easy_install-3.7')() )
4b42a8e4857642f190b7bb3d89cf6b567ce773da
39306599d4302204da535a5be16c738220348e50
/tancrend/MateAndrea_tancrend.py
c14ad61f4f94bfe25648bd59aa54539ee6a2c463
[]
no_license
mt-andrea/py
c0ab7bf4e87b0f02d7c0bf30cbe2a38541828847
e96f9919d73d72873c3280cccc1a9c4cc13e6cbd
refs/heads/master
2023-06-12T08:46:31.355362
2021-06-23T07:06:50
2021-06-23T07:06:50
379,511,171
0
0
null
null
null
null
UTF-8
Python
false
false
1,917
py
rec=[] def f1(label): print(label) f=open("tancrend.txt","r") for sor in f: if sor[-1]=="\n": sor=sor[:-1].split(";") else: sor=sor.split(";") rec.append([sor[0],sor[1],sor[2]]) txt="A fájl beolvasása...kész!" print("\t"+txt) txt=rec[0][0] print("\t"+txt) txt=rec[-1][0] print("\t"+txt) def f2(label): print(label) c=0 for i in range(len(rec)): if rec[i][0]=="samba": c+=1 txt=rec[i][1]+", "+rec[i][2] print("\t"+txt) txt=str(c)+" pár mutatta be a sambát." print("\t"+txt) def f3(label): print(label) for i in range(len(rec)): if rec[i][1]=="Vilma": txt=rec[i][0] print("\t"+txt) def f4(label): print(label) txt="Kérek egy táncot (cha-cha, salsa, rumba, samba, jive, tango, bachata): " tanc=input(txt) par=[] for i in range(len(rec)): if rec[i][0]==tanc and rec[i][1]=="Vilma": par.append(rec[i][2]) txt="A "+tanc+" bemutatóján Vilma párja "+par[0]+" volt." elif par==[]: txt="Vilma nem táncolt "+tanc+"-t." print("\t"+txt) def f5(label): print(label) girls=[] boys=[] nevek=[] f=open("szereplok.txt","w") for i in range(len(rec)): nevek.append(rec[i][1]) girls=sorted(set(nevek)) txt="Lányok: " for _ in range(len(girls)): txt=txt+girls[_]+", " print("\t"+txt[:-2]) f.write(txt[:-2]+"\n") nevek=[] for i in range(len(rec)): nevek.append(rec[i][2]) boys=sorted(set(nevek)) txt="Fiúk: " for _ in range(len(boys)): txt=txt+boys[_]+", " print("\t"+txt[:-2]) f.write(txt[:-2]) txt="A szereplok.txt fájl kiírása...kész!" print("\t"+txt) f1("1. feladat") f2("2. feladat") f3("3. feladat") f4("4. feladat") f5("5. feladat")
5f54bda94951ffce22f6ec5b88699d5c5256cc36
291695dfdf7b5c203f9642c0ad99fad662fd3b69
/main.py
c21052305c870e8d5fc306a9c627e6219dfa6dc9
[]
no_license
ayush1420/bot-in-class
e7f66bee80365d4ba5e37d428083bd3374d35f7d
0cb54f9804e24aa85482345f7980ae9e7a4ba8e3
refs/heads/master
2023-08-18T12:16:21.849641
2021-10-01T05:56:54
2021-10-01T05:56:54
412,329,480
0
0
null
null
null
null
UTF-8
Python
false
false
2,471
py
from selenium import webdriver from selenium.webdriver.common.keys import Keys import datetime import time import os import keyboard class meet_bot: def __init__(self): #enter driver location here self.bot = webdriver.Chrome(r"C:\Users\Ayush\Desktop\New folder\chromedriver.exe") def login(self,email,pas): bot = self.bot bot.get("https://accounts.google.com/signin/v2/identifier?ltmpl=meet&continue=https%3A%2F%2Fmeet.google.com%3Fhs%3D193&&o_ref=https%3A%2F%2Fmeet.google.com%2F_meet%2Fwhoops%3Fsc%3D232%26alias%3Dmymeetingraheel&_ga=2.262670348.1240836039.1604695943-1869502693.1604695943&flowName=GlifWebSignIn&flowEntry=ServiceLogin") time.sleep(2) email_in = bot.find_element_by_xpath("/html/body/div[1]/div[1]/div[2]/div/div[2]/div/div/div[2]/div/div[1]/div/form/span/section/div/div/div[1]/div/div[1]/div/div[1]/input") email_in.send_keys(email) next_btn = bot.find_element_by_xpath("/html/body/div[1]/div[1]/div[2]/div/div[2]/div/div/div[2]/div/div[2]/div/div[1]/div/div/button/div[2]") next_btn.click() time.sleep(4) pas_in = bot.find_element_by_xpath("/html/body/div[1]/div[1]/div[2]/div/div[2]/div/div/div[2]/div/div[1]/div/form/span/section/div/div/div[1]/div[1]/div/div/div/div/div[1]/div/div[1]/input") pas_in.send_keys(pas) next1_btn = bot.find_element_by_xpath("/html/body/div[1]/div[1]/div[2]/div/div[2]/div/div/div[2]/div/div[2]/div/div[1]/div/div/button/div[2]") next1_btn.click() time.sleep(2) def join(self,meeting_link): bot = self.bot bot.get(meeting_link) time.sleep(1) diss_btn = bot.find_element_by_xpath("/html/body/div/div[3]/div/div[2]/div[3]/div/span/span") diss_btn.click() keyboard.send("tab", do_press=True, do_release=True) keyboard.send("tab", do_press=True, do_release=True) keyboard.send("tab", do_press=True, do_release=True) keyboard.send("enter", do_press=True, do_release=True) time.sleep(2) keyboard.send("tab", do_press=True, do_release=True) keyboard.send("tab", do_press=True, do_release=True) keyboard.send("tab", do_press=True, do_release=True) keyboard.send("enter", do_press=True, do_release=True) time.sleep(2) join_btn = bot.find_element_by_xpath("/html/body/div[1]/c-wiz/div/div/div[9]/div[3]/div/div/div[2]/div/div[1]/div[2]/div/div[2]/div/div[1]/div[1]/span/span") join_btn.click() link =r'https://meet.google.com/pxm-pxda-pkq' youremail='___' yourpassword='*****' obj = meet_bot() obj.login(youremail,yourpassword) obj.join(link)
493f7fc5468420d339d65ff3e7a6cc763c3735b9
26f867cab34a6d3cd127faa15606b3b90cce846f
/Shrooms Class/Shrooms_knn.py
17ace1b7703f15741e4a63da05f6ad6bbb5ccb6c
[]
no_license
TheFloatingString/Mushroom-Classifier
38e7be78c3a3ce5d4f09c085335ad90061f0a38c
457d01e05733a9d0948085d79093df823f06059e
refs/heads/master
2020-03-19T05:26:15.940502
2018-06-08T00:40:20
2018-06-08T00:40:20
135,930,693
0
0
null
2018-06-08T00:40:22
2018-06-03T18:41:01
HTML
UTF-8
Python
false
false
581
py
# import modules import numpy as np from sklearn.neighbors import KNeighborsClassifier #from sklearn.svm import SVC # read data train_data = np.loadtxt('M_Train_data.txt') train_labels = np.loadtxt('M_Train_labels.txt') test_data = np.loadtxt('M_Test_data.txt') test_labels = np.loadtxt('M_Test_labels.txt') # fit k-NN model model = KNeighborsClassifier(n_neighbors=1) # model = SVC() model.fit(train_data, train_labels) # print accuracy print("TRAINING DONE!") print(model.score(test_data, test_labels)) #Predict New Data #model.predict(array)
44bf8f5d04ab2ef20b3544249cd1b6392eb19290
1e9c9f2a9639db7cdb032aae69cb4d99aef1d3a5
/w3schools/python/reference/builtInFunctions.py
b9e411f63673bbb33d19faf1d68a200cdb99c7a9
[ "MIT" ]
permissive
sagarnikam123/learnNPractice
f0da3f8acf653e56c591353ab342765a6831698c
1b3b0cb2cff2f478006626a4c37a99102acbb628
refs/heads/master
2023-02-04T11:21:18.211654
2023-01-24T14:47:52
2023-01-24T14:47:52
61,184,927
2
1
MIT
2022-03-06T11:07:18
2016-06-15T06:57:19
Python
UTF-8
Python
false
false
3,948
py
# Built in Functions # abs()-Returns the absolute value of a number print(abs(-7.52)) print(abs(3+5j)) # all()-Returns True if all items in an iterable object are true mylist = [True, True, True] print(all(mylist)) # True print(all([1, 1, 1])) # True print(all([0, 1, 1])) # False print(all([])) # True print(all((0, True, False))) # False # any()-Returns True if any item in an iterable object is true """ascii()-Returns a readable version of an object. Replaces none-ascii characters with escape character""" # bin()-Returns the binary version of a number # bool()-Returns the boolean value of the specified object # bytearray()-Returns an array of bytes # bytes()-Returns a bytes object # callable()-Returns True if the specified object is callable, otherwise False # chr()-Returns a character from the specified Unicode code. # classmethod()-Converts a method into a class method # compile()-Returns the specified source as an object, ready to be executed # complex()-Returns a complex number """ delattr()-Deletes the specified attribute (property or method) from the specified object """ # dict()-Returns a dictionary (Array) # dir()-Returns a list of the specified object's properties and methods """ divmod()-Returns the quotient and the remainder when argument1 is divided by argument2 """ """ enumerate()-Takes a collection (e.g. a tuple) and returns it as an enumerate object """ # eval()-Evaluates and executes an expression # exec()-Executes the specified code (or object) # filter()-Use a filter function to exclude items in an iterable object # float()-Returns a floating point number # format()-Formats a specified value # frozenset()-Returns a frozenset object # getattr()-Returns the value of the specified attribute (property or method) # globals()-Returns the current global symbol table as a dictionary """hasattr()-Returns True if the specified object has the specified attribute (property/method)""" # hash()-Returns the hash value of a specified object # help()-Executes the built-in help system # hex()-Converts a number into a hexadecimal value # id()-Returns the id of an object # input()-Allowing user input # int()-Returns an integer number """isinstance()-Returns True if a specified object is an instance of a specified object""" """issubclass()-Returns True if a specified class is a subclass of a specified object""" # iter()-Returns an iterator object # len()-Returns the length of an object # list()-Returns a list # locals()-Returns an updated dictionary of the current local symbol table """map()-Returns the specified iterator with the specified function applied to each item""" # max()-Returns the largest item in an iterable # memoryview()-Returns a memory view object # min()-Returns the smallest item in an iterable # next()-Returns the next item in an iterable # object()-Returns a new object # oct()-Converts a number into an octal # open()-Opens a file and returns a file object # ord()-Convert an integer representing the Unicode of the specified character # pow()-Returns the value of x to the power of y # print()-Prints to the standard output device # property()-Gets, sets, deletes a property """range()-Returns a sequence of numbers, starting from 0 and increments by 1 (by default)""" # repr()-Returns a readable version of an object # reversed()-Returns a reversed iterator # round()-Rounds a numbers # set()-Returns a new set object # setattr()-Sets an attribute (property/method) of an object # slice()-Returns a slice object # sorted()-Returns a sorted list # staticmethod()-Converts a method into a static method # str()-Returns a string object # sum()-Sums the items of an iterator # super()-Returns an object that represents the parent class # tuple()-Returns a tuple # type()-Returns the type of an object # vars()-Returns the __dict__ property of an object # zip()-Returns an iterator, from two or more iterators
23784e10aecbb68bd613b6e2d347dc67a80b58bf
b87769ad82c2cb893bdef590efabaade163cbec7
/0004_product.py
67318dcb56e518b7b7d23dde3efc703c421073f6
[]
no_license
prashantavhad/canteen-automation-system
6f80a727f3f9c11037c3e065590d8806b1a63c60
88c6ed66b99beed0f32f76f6a5583902f92395c3
refs/heads/master
2022-11-06T23:14:13.170968
2020-07-01T12:55:02
2020-07-01T12:55:02
276,369,887
0
0
null
null
null
null
UTF-8
Python
false
false
757
py
# Generated by Django 3.0.3 on 2020-04-10 09:32 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('MyApp', '0003_auto_20200409_1821'), ] operations = [ migrations.CreateModel( name='Product', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('product_name', models.CharField(max_length=256)), ('product_image', models.ImageField(blank=True, upload_to='product_images')), ('product_cost', models.IntegerField()), ('product_available', models.BooleanField()), ], ), ]
46348f23567e5333fb55bf3a28a7c85d888f4703
b7b52e51c7be931d4d1176f3f1150de980ad21c1
/robot_tracker/__init__.py
021c08a6dfd433fad616aa6b87a5999ff677f2a4
[]
no_license
amezcua/Django-Robot-Tracker
d704eb982193d96386c62149f43d8df5cbc32aa6
6371af2ee9a3b6d91de7e71218d69c6ab21a7caa
refs/heads/master
2021-01-01T19:15:05.257564
2012-10-12T08:31:57
2012-10-12T08:31:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
355
py
# Robot-tracket app. # App que mira para cada solicitud si es de un robot. Inicialmente se parte de una lista vacia y se van almacenando los # useragents de todas las solicitudes que intentan acceder a robots.txt en el directorio raiz en una lista # para cada solicitud se mira la lista en un middleware que establece si la solicitud es de un robot o no.
ae18e15d31cb04495f56ec8136afcdb8cbf22861
6ecf8227cc63ea5c8f05fdd6a7d28b3167119367
/blueking_forum/wsgi.py
9b85fd8c45ff19aed7455d4ee3ba00e35d2a3b0a
[]
no_license
doraemonext/blueking_forum
5ad0f46780e785a5af4db6f171654e351f509aa1
f5737dcdeaef15c37b37a0988aa1be98f6283834
refs/heads/master
2020-12-28T21:29:19.982785
2015-11-04T04:15:20
2015-11-04T04:15:20
44,859,369
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
""" WSGI config for blueking_forum project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "blueking_forum.settings") application = get_wsgi_application()
d5ad6d7c22d647be13c4d019c1289512ae3c728a
ddb02b6a5e73709502971f1b98aba2143abdf61a
/OR157.LRU Cache.py
d13e4fca3fe7d406241fdb26c838bfc83e9945fd
[]
no_license
MingYanWoo/Leetcode
0463b7e4f4a931c177f528333e5b039bb5913fcf
4ba35ea2a3c3c57c490a65f26bc6723abdbe104b
refs/heads/master
2022-01-12T05:44:04.705616
2021-12-22T18:14:38
2021-12-22T18:14:38
125,158,961
1
0
null
null
null
null
UTF-8
Python
false
false
3,777
py
# OR157.LRU Cache # 题目描述 # 设计一个数据结构,实现LRU Cache的功能(Least Recently Used – 最近最少使用缓存)。它支持如下2个操作: get 和 put。 # int get(int key) – 如果key已存在,则返回key对应的值value(始终大于0);如果key不存在,则返回-1。 # void put(int key, int value) – 如果key不存在,将value插入;如果key已存在,则使用value替换原先已经存在的值。如果容量达到了限制,LRU Cache需要在插入新元素之前,将最近最少使用的元素删除。 # 请特别注意“使用”的定义:新插入或获取key视为被使用一次;而将已经存在的值替换更新,不算被使用。 # 限制:请在O(1)的时间复杂度内完成上述2个操作。 # 输入描述: # 第一行读入一个整数n,表示LRU Cache的容量限制。 从第二行开始一直到文件末尾,每1行代表1个操作。 # 如果每行的第1个字符是p,则该字符后面会跟随2个整数,表示put操作的key和value。 # 如果每行的第1个字符是g,则该字符后面会跟随1个整数,表示get操作的key。 # 输出描述: # 按照输入中get操作出现的顺序,按行输出get操作的返回结果。 # 示例1 # 输入 # 复制 # 2 # p 1 1 # p 2 2 # g 1 # p 2 102 # p 3 3 # g 1 # g 2 # g 3 # 输出 # 复制 # 1 # 1 # -1 # 3 # 说明 # 2 //Cache容量为2 # p 1 1 //put(1, 1) # p 2 2 //put(2, 2) # g 1 //get(1), 返回1 # p 2 102 //put(2, 102),更新已存在的key,不算被使用 # p 3 3 //put(3, 3),容量超过限制,将最近最少使用的key=2清除 # g 1 //get(1), 返回1 # g 2 //get(2), 返回-1 # g 3 //get(3), 返回3 class ListNode: def __init__(self, key, value): self.key = key self.value = value self.next = None self.pre = None class LRU_Cache: def __init__(self, cap): self.cap = cap self.head = ListNode(None, None) self.tail = ListNode(None, None) self.head.next = self.tail self.tail.pre = self.head self.hashMap = {} def put(self, key, value): if key in self.hashMap: self.hashMap[key].value = value # self.move_to_head(key) else: if self.cap == 0: return if len(self.hashMap) >= self.cap: # delete last tailPre = self.tail.pre tailPrePre = tailPre.pre tailPrePre.next = self.tail self.tail.pre = tailPrePre self.hashMap.pop(tailPre.key) newNode = ListNode(key, value) self.hashMap[key] = newNode self.insert_to_head(key) def get(self, key): if key in self.hashMap: self.move_to_head(key) return self.hashMap[key].value else: return -1 def move_to_head(self, key): node = self.hashMap[key] preNode = node.pre nextNode = node.next preNode.next = nextNode nextNode.pre = preNode self.insert_to_head(key) def insert_to_head(self, key): node = self.hashMap[key] headNext = self.head.next self.head.next = node node.pre = self.head node.next = headNext headNext.pre = node if __name__ == '__main__': n = int(input()) lru = LRU_Cache(n) while True: try: row = input().split(' ') op = row[0] #print(lru.hashMap) if op == 'p': lru.put(int(row[1]), int(row[2])) else: print(lru.get(int(row[1]))) except: break
d524057902de1c41b9ee766e42eaa71198651fb0
eaeb7f30a4cd72710c545409f7c5ed847794e1a7
/Dirbtinis intelektas/Uzduotys/mano/FCBC/batch.py
15ae5790d145cfa6e9239ab45f29ae730081f43b
[]
no_license
lbstore/MIF_Informatics_Semester7
63d6edfbe2a728ad5e67d639bbf02ce64d20940c
90ed517416b2a0a558daec35af94b01b3d8dd414
refs/heads/master
2022-01-18T10:25:43.032096
2022-01-05T16:47:48
2022-01-05T16:47:48
127,039,807
0
7
null
2022-01-05T16:47:48
2018-03-27T20:04:37
JavaScript
UTF-8
Python
false
false
180
py
import os if __name__ == "__main__": for i in range(1,11): n = str(i) m = "BC" os.system("java -jar FCBC.jar "+m +" testas"+n+".txt "+"res"+m+n+".txt")
2599f43c702b477847beae310b71941347de3dfc
d5492bcc77824e29669400622fd89b1349c90caf
/python网络数据采集/my_爬虫_进阶_之路/scrapy框架/my_spiders/电商项目/阿里1688_淘宝_天猫_京东_折800_卷皮_拼多多/my_flask_server/tools/时间戳_to_时间.py
bb9790a02ba469733ed07993cf5d5bc247faef0e
[]
no_license
XCodeAny/python
d88980682ba4db839911a5de8c073fa33a63da80
35991daf6c7eff4197662b9d07cb9fcdee6a0c02
refs/heads/master
2021-08-30T20:00:14.231120
2017-12-19T07:55:15
2017-12-19T07:55:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,009
py
# coding:utf-8 ''' @author = super_fazai @File : 时间戳_to_时间.py @Time : 2017/11/15 17:13 @connect : [email protected] ''' import time def timestamp_to_regulartime(timestamp): ''' 将时间戳转换成时间 ''' # 利用localtime()函数将时间戳转化成localtime的格式 # 利用strftime()函数重新格式化时间 # 转换成localtime time_local = time.localtime(int(timestamp)) # print(time_local) # 转换成新的时间格式(2016-05-05 20:28:54) dt = time.strftime("%Y-%m-%d %H:%M:%S", time_local) return dt timestamp = 1511625600 dt = timestamp_to_regulartime(timestamp) print(dt) def is_recent_time(timestamp): ''' 返回是否在指定的日期差内 :param timestamp: :return: ''' time_1 = int(timestamp) time_2 = time.time() # 当前的时间戳 time_1 = time.localtime(time_1) time_2 = time.localtime(time_2) if time_1.tm_year == time_2.tm_year: if time_1.tm_mon >= time_2.tm_mon: # 如果目标时间的月份时间 >= 当前月份(月份合法, 表示是当前月份或者是今年其他月份) if time_1.tm_mday >= time_2.tm_mday: if time_1.tm_hour >= 8 and time_1.tm_hour <= 16: print('合法时间') # diff_days = abs(time_1.tm_mday - time_2.tm_mday) return True else: print('该小时在8点到16点以外,此处不处理跳过') return False else: print('该日时间已过期, 此处跳过') return False else: # 月份过期 print('该月份时间已过期,此处跳过') return False else: print('非本年度的限时秒杀时间,此处跳过') return False # while True: # timestamp = input('请输入要判断的时间戳: ') # print(is_recent_time(timestamp))
23c12ad1df97afd41a3e333439b9970dafdda74b
ff9e1536f9ec1097cee573dcf1c4cf19b1bd6a6e
/donation/admin.py
e7ecef462ac9e74baf83b8032a25ccca193bf795
[]
no_license
bedant/Codefundo-Hackathon-2018
e4e22c9df0772d50aafc34773e2e3c8666ac5c6d
23527ed1967b3e577d9b6ee1578a0f70ce6112b4
refs/heads/master
2020-04-23T19:31:32.990141
2019-02-19T05:02:36
2019-02-19T05:02:36
171,407,299
1
0
null
null
null
null
UTF-8
Python
false
false
90
py
from django.contrib import admin from .models import Donator admin.site.register(Donator)
830a665eb52f1f43f7ad9fd6d9b4f83e8aad4eb7
188a0d6f2dca86d4b6d7665af6e05b5420365051
/week1/week1-ex6.py
1eed8311783d61f5175493810e3733bb2167290d
[]
no_license
JuliaGNH/PythonAutomation032018
11ec6989cf6bd18caed9dc18c60b199be56f25ce
e68c097684999b7990f701f7e3b2b9bb951606e6
refs/heads/master
2020-03-10T20:14:10.022940
2018-04-15T19:01:50
2018-04-15T19:01:50
129,565,990
0
0
null
null
null
null
UTF-8
Python
false
false
352
py
import yaml import json week1_dict = { 'ip_addr': '10.10.10.1', 'mac_addr': '0a:fc:b4:7k:2d:1c' } week1_list = [ 'exercise_6', 'list_example', week1_dict ] with open("week1_ex6.yml", "w") as f: f.write(yaml.dump(week1_list, default_flow_style=False)) with open("week1_ex6.json", "w") as k: json.dump(week1_list, k)
eee26574d21382a1d2154b82d943b7157c19278b
ac288e3a2f78d3992a4f28c0f1695470a6162ea8
/p_library/migrations/0003_auto_20200825_0707.py
348f65e5b56e21aac0f863cea7911cbd41cb7477
[]
no_license
PavelGvozdev/D6
0f992cf4ed9a692db2596ecaf6d0d5c11507e043
6a3c1b0ad55dbd4b2a6a18a34416ef3b1c9bdde1
refs/heads/master
2022-12-14T05:30:39.914651
2020-09-08T12:59:54
2020-09-08T12:59:54
293,764,980
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
# Generated by Django 2.2.6 on 2020-08-25 07:07 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('p_library', '0002_auto_20200825_0704'), ] operations = [ migrations.AlterField( model_name='book', name='price', field=models.DecimalField(decimal_places=2, max_digits=5), ), ]
4d80575643129294e7e323eb5fffde77bb3373ea
99ea511bf62e2b09225663ff687823da1de3dd48
/第4次作业 project3/codes/loss_visualization.py
98c76d9effdc0fdd7b63ac7d1d28ef36ba3680b0
[]
no_license
Schuture/DL-course
cf5af26a8df5dd8fbcb22de77ef75840506f3690
fabbe74640a3b2f327cca69d5a789ef321ad775e
refs/heads/master
2022-11-07T04:44:54.814972
2020-06-26T03:16:37
2020-06-26T03:16:37
260,418,153
2
0
null
null
null
null
UTF-8
Python
false
false
1,942
py
import matplotlib.pyplot as plt FILE_PATH = 'D:/学习/课程/大数据/深度学习和神经网络/作业/第4次作业 project3/project3/codes/' with open(FILE_PATH+'2020_06_22_14_11_00_88.09%'+'.txt') as f: line = f.readline() while True: if not line: break elif line.startswith('Training loss'): training_loss = f.readline() training_loss = [float(loss) for loss in training_loss[1:-2].split(',')] elif line.startswith('Training acc'): training_acc = f.readline() training_acc = [float(acc) for acc in training_acc[1:-2].split(',')] elif line.startswith('Validation loss'): validation_loss = f.readline() validation_loss = [float(loss) for loss in validation_loss[1:-2].split(',')] elif line.startswith('Validation acc'): validation_acc = f.readline() validation_acc = [float(acc) for acc in validation_acc[1:-2].split(',')] line = f.readline() # 一个epoch可能会保存多个训练acc/loss,不管保存了几个,我们都只取一个来可视化 #training_loss = training_loss[::9] #training_acc = training_acc[::9] n = len(training_loss) plt.figure(figsize=(16, 16)) plt.subplot(211) m1 = plt.plot(list(range(1, n+1)), training_loss) m2 = plt.plot(list(range(1, n+1)), validation_loss) plt.title('Loss vs time', fontsize=24) plt.xlabel('Epoch', fontsize=20) plt.ylabel('loss', fontsize=20) plt.tick_params(labelsize=13) plt.legend(["Training loss", "Validation loss"], loc='upper right', fontsize=20) plt.subplot(212) m3 = plt.plot(list(range(1, n+1)), training_acc) m4 = plt.plot(list(range(1, n+1)), validation_acc) plt.title('Accuracy vs time', fontsize=24) plt.xlabel('Epoch', fontsize=20) plt.ylabel('acc', fontsize=20) plt.tick_params(labelsize=13) plt.legend(["Training accuracy", "Validation accuracy"], loc='lower right', fontsize=20) plt.show()
e4af87b7e9aadfd959ec0d159db3a94fc89c7bfb
51ca1a8b4d1d46450a9265a38be3b750043fb771
/ejemplocrud/settings.py
2e2aa881170e11d53a4072fe6d850642dc222ce6
[]
no_license
inova-team/ejemplocrud
c5419d14bd67b355a0cb5b43bd62cf7cc648feb4
004cdb3dd54fd2176065850409dae5c6f96a3aef
refs/heads/master
2023-04-08T20:23:22.844452
2021-04-03T02:27:47
2021-04-03T02:27:47
354,164,358
0
0
null
null
null
null
UTF-8
Python
false
false
3,520
py
""" Django settings for ejemplocrud project. Generated by 'django-admin startproject' using Django 3.1.7. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ import os from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '@1vg1-3h_z9@rsd7*cd8+r*h0xhle*shpq(goh&u=!hoiw+6en' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'ejemplocrud.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [BASE_DIR / 'templates'] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'ejemplocrud.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': str(os.path.join(BASE_DIR, "db.sqlite3")) } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ # this defines the url for static files # eg: base-url.com/static/your-js-file.js STATIC_URL = '/static/' # this is directory name where collectstatic files command will put your app level static files STATIC_ROOT = 'staticfiles' # this is directory paths where you have to put your project level static files # you can put multiple folders here STATICFILES_DIRS = ( os.path.join(BASE_DIR, "static"), )
0d62d9c5d3258d0ca419c6fc1e58216b43f3ba26
110d4d8944760d53cddee7fea2ab25e51bd32c22
/video/management/commands/flickr.py
e84ad6fa9496b7d1d2aff62ce7e844aacd0a4f47
[]
no_license
lancha90/wetravel
1993d52603f1c74c272f1df15a4b38bccd731dba
bb077330067129d1842d646c5955692563ff6c29
refs/heads/master
2021-01-02T22:45:25.566673
2015-03-23T16:15:58
2015-03-23T16:15:58
23,551,256
0
0
null
null
null
null
UTF-8
Python
false
false
2,331
py
# python manage.py flickr -a start # heroku run python flickr.py migration -a start from django.utils.encoding import smart_str, smart_unicode from optparse import make_option from django.core.management.base import BaseCommand, CommandError import urllib2 import json from video.models import * KEY='55b11c4fca4f090083ecfc1811ddc32c' URL='https://api.flickr.com/services/rest/?method=flickr.groups.pools.getPhotos&api_key=%s&group_id=%s&format=json&nojsoncallback=1&page=%s' # Class MUST be named 'Command' class Command(BaseCommand): # Displayed from 'manage.py help mycommand' help = "That's Your help message" option_list = BaseCommand.option_list + ( make_option( "-a", "--action", dest = "action", help = "specify the option { start | update }", metavar = "FILE" ), ) def handle(self, *app_labels, **options): """ app_labels - app labels (eg. myapp in "manage.py reset myapp") options - configurable command line options """ def get_image(_group,_page): current_url=URL % (KEY,_group.group_id,_page) handler=urllib2.urlopen(current_url) data=json.loads(handler.read()) photos=data.get('photos') current_page=photos['pages'] for item in photos['photo']: if len(Photo.objects.filter(photo_id=item['id'])) > 0: _page=current_page else: photo=Photo(photo_id=item['id'],owner=item['owner'],secret=item['secret'],server=item['server'],farm=item['farm'],title=item['title'],ownername=item['ownername'],dateadded=item['dateadded'],group=_group) try: photo.save() except Exception as e: print 'URL: %s >>> %s (%s)' % (current_url,e.message, type(e)) if(current_page!=_page): get_image(_group,_page+1) if options['action'] == 'start': groups = Group.objects.all() for group in groups: print 'Loading group: %s' % (group.name) get_image(group,1) elif options['action'] == 'update': print 'update' else: print 'No command'
05bf10e915b53d57bb3f0174801892d61daffed8
f4434c85e3814b6347f8f8099c081ed4af5678a5
/sdk/search/azure-search-documents/azure/search/documents/_internal/_generated/aio/__init__.py
fa69578ea7f244621643bd7e1b4c113301d9ff0d
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
yunhaoling/azure-sdk-for-python
5da12a174a37672ac6ed8e3c1f863cb77010a506
c4eb0ca1aadb76ad892114230473034830116362
refs/heads/master
2022-06-11T01:17:39.636461
2020-12-08T17:42:08
2020-12-08T17:42:08
177,675,796
1
0
MIT
2020-03-31T20:35:17
2019-03-25T22:43:40
Python
UTF-8
Python
false
false
552
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from ._search_index_client import SearchIndexClient __all__ = ['SearchIndexClient']
3117132a22995f2dafdf31bca233b20cc3d8e947
20fb326e74c60f23886ec14a41d56452e6584181
/task12.py
8ac6d7eb5c49932d0f794e9c6572bed8fa464991
[]
no_license
Argen-Aman/chapter2task12
9554b16f32c0f448465a2e4c55e7628b674c2c06
38a7c1adf66a2c15dade1eef3d6cf74e662b4a1a
refs/heads/master
2022-06-03T13:03:00.978752
2020-05-01T19:20:39
2020-05-01T19:20:39
260,540,108
0
0
null
null
null
null
UTF-8
Python
false
false
552
py
Convert = input("To convert the temperature in Celcius to Fahrenheit, press 'f'. To convert the temperature in Fahrenheit to Celcius, press 'c'. In order ro quit - any other key: ") if Convert == 'f': def Convert_C_to_F (C): Fahrenheit=(C*9/5)+32 print(Fahrenheit) C=float(input("Enter a temperature in Celcius: ")) Convert_C_to_F (C) elif Convert == 'c': def Convert_F_to_C (F): Celcius=(F-32)*5/9 print(Celcius) F=float(input("Enter a temperature in Fahrenheit: ")) Convert_F_to_C (F)
f4031575da6f062f26daf888cb9649299d518f04
04d34f0267dabf84608f547266cc321e1cebb634
/DuckDuckGo/test.py
88f25123d75cdcebd27edd78abd744390e6aaf34
[]
no_license
Hoaas/Supybot-plugins
f909d8ca588087e4a9113d1ca0939fe7176c1124
e34548cd4bb5c4edef24be04727dec997e69b10d
refs/heads/master
2022-02-21T07:53:28.833639
2022-01-29T21:41:13
2022-01-29T21:41:13
4,174,832
4
2
null
2018-06-03T18:32:02
2012-04-29T14:21:04
Python
UTF-8
Python
false
false
1,739
py
### # Copyright (c) 2010, Terje Hoaas # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions, and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the author of this software nor the name of # contributors to this software may be used to endorse or promote products # derived from this software without specific prior written consent. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. ### from supybot.test import * class DuckDuckGoTestCase(PluginTestCase): plugins = ('DuckDuckGo',) # vim:set shiftwidth=4 tabstop=4 expandtab textwidth=79:
3b4e85f84c636c12a3726f0382d64893d0c648e6
0635cbe903fc77b6436f07580434262ba3825de1
/backtrader_ib_api/test/test_wrapper.py
e41f20b5344128436ed073a09a07a3ec965e6a94
[ "MIT" ]
permissive
webclinic017/backtrader-ib-api
853d945c5e61ecab7df28f9939454ca7200224b5
66997c2be388f63bfb3a3387642be5fa73d32095
refs/heads/main
2023-06-04T10:23:03.769342
2021-05-28T03:05:33
2021-05-28T03:05:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,556
py
from backtrader_ib_api.wrapper.wrapper import RequestWrapper def test_stock_details(wrapper: RequestWrapper): details = wrapper.request_stock_details("AAPL") print(details) def test_stock_historical_trades(wrapper: RequestWrapper): history = wrapper.request_stock_trades_history("AAPL") print(history) def test_option_lookup(wrapper: RequestWrapper): history = wrapper.request_stock_trades_history("AAPL") latest_price = history.close.iloc[-1] print(f"Latest price: {latest_price}") # contract ID can be requested via request_stock_details option_params = wrapper.request_option_params("AAPL", 265598) print(f"Found {len(option_params)} option param results") # try to auto-select SMART exchange preferred_contracts = option_params[option_params.exchange == "SMART"] option_contract = preferred_contracts.iloc[0] front_expiration = min(option_contract.expirations) print(f"Front Expiration: {front_expiration}") option_chain = wrapper.request_option_chain("AAPL", option_contract.exchange, front_expiration) front_strike = option_chain.strike[option_chain.strike > latest_price].iloc[0] print(f"Closest OTM Call Strike: {front_strike}") option_price_history = wrapper.request_option_trades_history("AAPL", front_expiration, front_strike, "C") print(option_price_history)
0b469fb413cbb6ceffb8894953d834ffb9317edf
72e57463384261722aa3ba909700eec5cc72c703
/c2rust-analyze/rename_nll_facts.py
33744000874629b448913b4b30529375aaa78180
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
immunant/c2rust
79c1c158252075bfd33870677a4a9d0c7fc168e1
f22c6923668f4fa1fe962a02c62ec6d0597dd794
refs/heads/master
2023-08-31T07:13:03.567937
2023-08-28T21:32:20
2023-08-28T21:32:20
130,285,553
3,467
221
NOASSERTION
2023-09-08T18:08:32
2018-04-20T00:05:50
Rust
UTF-8
Python
false
false
4,514
py
''' Usage: `python3 rename_nll_facts.py src ref dest` Renames atoms in `src/*.facts` to match the names used in `ref/*.facts`, then writes the renamed facts to `dest/`. ''' import ast from collections import defaultdict import os import sys src_dir, ref_dir, dest_dir = sys.argv[1:] # Map `src` loan/origin/path names to `ref` loan/origin/path names. We don't # break this down by type because the names for each type don't collide anyway. name_map = {} # Set of `ref` names that appear as values in `name_map`. ref_names_seen = set() def match_name(src_name, ref_name): if src_name in name_map: old_ref_name = name_map[src_name] if ref_name != old_ref_name: print('error: %r matches both %r and %r' % ( src_name, old_ref_name, ref_name)) return else: if ref_name in ref_names_seen: print('error: %r matches %r, but %r is already used' % ( src_name, ref_name, ref_name)) return name_map[src_name] = ref_name ref_names_seen.add(ref_name) def match_loan(src_name, ref_name): match_name(src_name, ref_name) def match_origin(src_name, ref_name): match_name(src_name, ref_name) def match_path(src_name, ref_name): match_name(src_name, ref_name) def load(name): with open(os.path.join(src_dir, name + '.facts')) as f: src_rows = [[ast.literal_eval(s) for s in line.strip().split('\t')] for line in f] with open(os.path.join(ref_dir, name + '.facts')) as f: ref_rows = [[ast.literal_eval(s) for s in line.strip().split('\t')] for line in f] return src_rows, ref_rows # Match up paths using `path_is_var` and `path_assigned_at_base`. def match_path_is_var(): src, ref = load('path_is_var') ref_dct = {var: path for path, var in ref} for path, var in src: if var not in ref_dct: continue match_path(path, ref_dct[var]) match_path_is_var() def match_path_assigned_at_base(): src, ref = load('path_assigned_at_base') ref_dct = {point: path for path, point in ref} for path, point in src: if point not in ref_dct: continue match_path(path, ref_dct[point]) match_path_assigned_at_base() # Match up origins and loans using `loan_issued_at` def match_loan_issued_at(): src, ref = load('loan_issued_at') ref_dct = {point: (origin, loan) for origin, loan, point in ref} for origin, loan, point in src: if point not in ref_dct: continue match_origin(origin, ref_dct[point][0]) match_origin(loan, ref_dct[point][1]) match_loan_issued_at() # Match up origins using `use_of_var_derefs_origin` def match_use_of_var_derefs_origin(): src, ref = load('use_of_var_derefs_origin') src_dct = defaultdict(list) for var, origin in src: src_dct[var].append(origin) ref_dct = defaultdict(list) for var, origin in ref: ref_dct[var].append(origin) for var in set(src_dct.keys()) & set(ref_dct.keys()): src_origins = src_dct[var] ref_origins = ref_dct[var] if len(src_origins) != len(ref_origins): print('error: var %r has %d origins in src but %d in ref' % ( var, len(src_origins), len(ref_origins))) continue for src_origin, ref_origin in zip(src_origins, ref_origins): match_origin(src_origin, ref_origin) match_use_of_var_derefs_origin() # Rewrite `src` using the collected name mappings. os.makedirs(dest_dir, exist_ok=True) for name in os.listdir(src_dir): if name.startswith('.') or not name.endswith('.facts'): continue with open(os.path.join(src_dir, name)) as src, \ open(os.path.join(dest_dir, name), 'w') as dest: for line in src: src_parts = [ast.literal_eval(s) for s in line.strip().split('\t')] dest_parts = [] for part in src_parts: if part.startswith('_') or part.startswith('Start') or part.startswith('Mid'): dest_parts.append(part) continue dest_part = name_map.get(part) if dest_part is None: print('error: no mapping for %r (used in %s: %r)' % ( part, name, src_parts)) dest_part = 'OLD:' + part dest_parts.append(dest_part) dest.write('\t'.join('"%s"' % part for part in dest_parts) + '\n')
15a1cfdd93d41a4625fcfc638ea6440557a275d2
45826bdfebbd1d7638ab607906ac480031d6118b
/lib/metrics/F1_running_score.py
38f3b58177a69c05b0d47ee4c5cd0b3de7c3e2b9
[ "MIT" ]
permissive
openseg-group/openseg.pytorch
b75cec5c95b6ff71707d8daf7806001bab89ecb3
aefc75517b09068d7131a69420bc5f66cb41f0ee
refs/heads/master
2023-09-06T10:19:57.749113
2022-08-07T09:10:20
2022-08-07T09:10:20
166,743,301
1,227
159
MIT
2021-07-14T06:10:44
2019-01-21T03:34:59
Python
UTF-8
Python
false
false
7,826
py
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## Created by: JingyiXie, RainbowSecret ## Microsoft Research ## [email protected] ## Copyright (c) 2019 ## ## Code adapted from: ## https://github.com/nv-tlabs/GSCNN/blob/master/utils/f_boundary.py ## ## This source code is licensed under the MIT-style license found in the ## LICENSE file in the root directory of this source tree ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ from __future__ import absolute_import from __future__ import division from __future__ import print_function import pdb import numpy as np import torch from multiprocessing.pool import Pool class F1RunningScore(object): def __init__(self, configer=None, num_classes=None, boundary_threshold=0.00088, num_proc=15): assert configer is not None or num_classes is not None self.configer = configer if configer is not None: self.n_classes = self.configer.get('data', 'num_classes') else: self.n_classes = num_classes self.ignore_index = -1 self.boundary_threshold = boundary_threshold self.pool = Pool(processes=num_proc) self.num_proc = num_proc self._Fpc = 0 self._Fc = 0 self.seg_map_cache = [] self.gt_map_cache = [] def _update_cache(self, seg_map, gt_map): """ Append inputs to `seg_map_cache` and `gt_map_cache`. Returns whether the length reached our pool size. """ self.seg_map_cache.extend(seg_map) self.gt_map_cache.extend(gt_map) return len(self.gt_map_cache) >= self.num_proc def _get_from_cache(self): n = self.num_proc seg_map, self.seg_map_cache = self.seg_map_cache[:n], self.seg_map_cache[n:] gt_map, self.gt_map_cache = self.gt_map_cache[:n], self.gt_map_cache[n:] return seg_map, gt_map def update(self, seg_map, gt_map): if self._update_cache(seg_map, gt_map): seg_map, gt_map = self._get_from_cache() self._update_scores(seg_map, gt_map) else: return def _update_scores(self, seg_map, gt_map): batch_size = len(seg_map) if batch_size == 0: return Fpc = np.zeros(self.n_classes) Fc = np.zeros(self.n_classes) for class_id in range(self.n_classes): args = [] for i in range(batch_size): if seg_map[i].shape[0] == self.n_classes: pred_i = seg_map[i][class_id] > 0.5 pred_is_boundary = True else: pred_i = seg_map[i] == class_id pred_is_boundary = False args.append([ (pred_i).astype(np.uint8), (gt_map[i] == class_id).astype(np.uint8), (gt_map[i] == -1), self.boundary_threshold, class_id, pred_is_boundary ]) results = self.pool.map(db_eval_boundary, args) results = np.array(results) Fs = results[:, 0] _valid = ~np.isnan(Fs) Fc[class_id] = np.sum(_valid) Fs[np.isnan(Fs)] = 0 Fpc[class_id] = sum(Fs) self._Fc = self._Fc + Fc self._Fpc = self._Fpc + Fpc def get_scores(self): if self.seg_map_cache is None: return 0, 0 self._update_scores(self.seg_map_cache, self.gt_map_cache) F_score = np.sum(self._Fpc / self._Fc) / self.n_classes F_score_classwise = self._Fpc / self._Fc return F_score, F_score_classwise def reset(self): self._Fpc = self._Fc = 0 def db_eval_boundary(args): """ Compute mean,recall and decay from per-frame evaluation. Calculates precision/recall for boundaries between foreground_mask and gt_mask using morphological operators to speed it up. Arguments: foreground_mask (ndarray): binary segmentation image. gt_mask (ndarray): binary annotated image. Returns: F (float): boundaries F-measure P (float): boundaries precision R (float): boundaries recall """ foreground_mask, gt_mask, ignore_mask, bound_th, class_id, pred_is_boundary = args assert np.atleast_3d(foreground_mask).shape[2] == 1 bound_pix = bound_th if bound_th >= 1 else \ np.ceil(bound_th*np.linalg.norm(foreground_mask.shape)) # print(bound_pix) # print(gt.shape) # print(np.unique(gt)) foreground_mask[ignore_mask] = 0 gt_mask[ignore_mask] = 0 # Get the pixel boundaries of both masks if pred_is_boundary: fg_boundary = foreground_mask else: fg_boundary = seg2bmap(foreground_mask) gt_boundary = seg2bmap(gt_mask) from skimage.morphology import disk from cv2 import dilate def binary_dilation(x, d): return dilate( x.astype(np.uint8), d).astype(np.bool) fg_dil = binary_dilation(fg_boundary, disk(bound_pix)) gt_dil = binary_dilation(gt_boundary, disk(bound_pix)) # Get the intersection gt_match = gt_boundary * fg_dil fg_match = fg_boundary * gt_dil # Area of the intersection n_fg = np.sum(fg_boundary) n_gt = np.sum(gt_boundary) # % Compute precision and recall if n_fg == 0 and n_gt > 0: precision = 1 recall = 0 elif n_fg > 0 and n_gt == 0: precision = 0 recall = 1 elif n_fg == 0 and n_gt == 0: precision = 1 recall = 1 else: precision = np.sum(fg_match) / float(n_fg) recall = np.sum(gt_match) / float(n_gt) # Compute F measure if precision + recall == 0: F = 0 else: F = 2 * precision * recall / (precision + recall) return F, precision def seg2bmap(seg, width=None, height=None): """ From a segmentation, compute a binary boundary map with 1 pixel wide boundaries. The boundary pixels are offset by 1/2 pixel towards the origin from the actual segment boundary. Arguments: seg : Segments labeled from 1..k. width : Width of desired bmap <= seg.shape[1] height : Height of desired bmap <= seg.shape[0] Returns: bmap (ndarray): Binary boundary map. David Martin <[email protected]> January 2003 """ seg = seg.astype(np.bool) seg[seg > 0] = 1 assert np.atleast_3d(seg).shape[2] == 1 width = seg.shape[1] if width is None else width height = seg.shape[0] if height is None else height h, w = seg.shape[:2] ar1 = float(width) / float(height) ar2 = float(w) / float(h) assert not (width > w | height > h | abs(ar1 - ar2) > 0.01),\ 'Can''t convert %dx%d seg to %dx%d bmap.' % (w, h, width, height) e = np.zeros_like(seg) s = np.zeros_like(seg) se = np.zeros_like(seg) e[:, :-1] = seg[:, 1:] s[:-1, :] = seg[1:, :] se[:-1, :-1] = seg[1:, 1:] b = seg ^ e | seg ^ s | seg ^ se b[-1, :] = seg[-1, :] ^ e[-1, :] b[:, -1] = seg[:, -1] ^ s[:, -1] b[-1, -1] = 0 if w == width and h == height: bmap = b else: bmap = np.zeros((height, width)) for x in range(w): for y in range(h): if b[y, x]: j = 1 + floor((y - 1) + height / h) i = 1 + floor((x - 1) + width / h) bmap[j, i] = 1 return bmap
9d8eef47748cb50afa81f15fa27c8d75bfaca146
08351ac650385e2ee0f4fc08ab8ef0978bc5bf3c
/Module2_HTTP/Request_response/Request.py
981163757b7ae56b101453c505885d2f3f2dcdcd
[]
no_license
tertiarycourses/PythonNetworkingTraining
d3c02488e91d318874558130a89fb112a2c95d55
9c5f223a4b83d21a791ac0d322306c3a78c4122f
refs/heads/master
2019-07-13T07:59:49.241235
2017-05-11T14:48:19
2017-05-11T14:48:19
83,748,786
0
0
null
null
null
null
UTF-8
Python
false
false
3,087
py
#Requests with urllib # from urllib.request import urlopen # from urllib.request import Request # response = urlopen('http://www.debian.org') # print(response) # print(response.readline()) # ##response object # print(response.url) # print(response.status) # print(response.headers['content-type']) #response = urlopen('http://www.debian.org') #print(response.read(50)) #response = urlopen('http://www.debian.org') #print(response.read()) ##print(response.read()) ##Status Code #print(response.status) #------------------------------------- #custom request #req = Request('http://www.debian.org') #req.add_header('Accept-Language', 'sv') #response = urlopen(req) #print(response.readlines()[:5]) #---------------------------------------- #Content Compression #with decompression cannot see data #from urllib.request import Request #from urllib.request import urlopen #req = Request('http://www.debian.org') #req.add_header('Accept-Encoding', 'gzip') #response = urlopen(req) #print(response.getheader('Content-Encoding')) #print(response.read()) #With Decompression can view data #from urllib.request import Request #from urllib.request import urlopen #import gzip #req = Request('http://www.debian.org') #req.add_header('Accept-Encoding', 'gzip') #response = urlopen(req) #content = gzip.decompress(response.read()) #result=content.splitlines()[:5] #print(result) #-------------------------------------- #Content Negotiation #from urllib.request import urlopen #import gzip #req = Request('http://www.debian.org') #req.add_header('Accept-Content-Type', 'text/plain') #response = urlopen(req) #content = response.read() #result=content.splitlines()[:5] #print(result) #------------------------------------------- #User Agent #from urllib.request import Request #from urllib.request import urlopen #req = Request('http://www.debian.org') #req.add_header('User-Agent', 'Mozilla/5.0 (X11; Linux x86_64;rv:24.0) Gecko/20140722 Firefox/24.0 Iceweasel/24.7.0') #response = urlopen(req) #print(response.readline()) #--------------------------------------------- #Cookie #from http.cookiejar import CookieJar #cookie_jar = CookieJar() #from urllib.request import build_opener, HTTPCookieProcessor #opener = build_opener(HTTPCookieProcessor(cookie_jar)) #opener.open('http://www.github.com') #print(len(cookie_jar)) #cookies = list(cookie_jar) #print(cookies) #---------------------------------------------\ #Redirect #from urllib.request import Request #from urllib.request import urlopen #req = Request('http://www.gmail.com') #response = urlopen(req) #print(response.url) #print(req.redirect_dict) #--------------------------------------- #HTTP Methods #GET import requests response = requests.get('http://www.debian.org') print(response.content) print(response.status_code) #POST # import requests # r = requests.post("http://bugs.python.org", data={'number': 12524, 'type': 'issue', 'action': 'show'}) # print(r.status_code, r.reason) # print(r.text)
e223b08659d04f02b9ff57fd9cc627a0bfbc4420
63ba933a294865f65409635f62e0f1d59f725f37
/src/arrays/bagOfTokensScore.py
86ce1032d9eb0987f1da6b22e658f67679b0f34d
[ "CC0-1.0" ]
permissive
way2arun/datastructures_algorithms
fc4302bdbb923ef8912a4acf75a286f2b695de2a
4ea4c1579c28308455be4dfa02bd45ebd88b2d0a
refs/heads/master
2021-12-07T04:34:35.732026
2021-09-30T12:11:32
2021-09-30T12:11:32
203,658,808
1
0
null
2020-08-08T15:55:09
2019-08-21T20:23:46
Python
UTF-8
Python
false
false
2,716
py
""" Bag of Tokens You have an initial power of P, an initial score of 0, and a bag of tokens where tokens[i] is the value of the ith token (0-indexed). Your goal is to maximize your total score by potentially playing each token in one of two ways: If your current power is at least tokens[i], you may play the ith token face up, losing tokens[i] power and gaining 1 score. If your current score is at least 1, you may play the ith token face down, gaining tokens[i] power and losing 1 score. Each token may be played at most once and in any order. You do not have to play all the tokens. Return the largest possible score you can achieve after playing any number of tokens. Example 1: Input: tokens = [100], P = 50 Output: 0 Explanation: Playing the only token in the bag is impossible because you either have too little power or too little score. Example 2: Input: tokens = [100,200], P = 150 Output: 1 Explanation: Play the 0th token (100) face up, your power becomes 50 and score becomes 1. There is no need to play the 1st token since you cannot play it face up to add to your score. Example 3: Input: tokens = [100,200,300,400], P = 200 Output: 2 Explanation: Play the tokens in this order to get a score of 2: 1. Play the 0th token (100) face up, your power becomes 100 and score becomes 1. 2. Play the 3rd token (400) face down, your power becomes 500 and score becomes 0. 3. Play the 1st token (200) face up, your power becomes 300 and score becomes 1. 4. Play the 2nd token (300) face up, your power becomes 0 and score becomes 2. Constraints: 0 <= tokens.length <= 1000 0 <= tokens[i], P < 104 """ from collections import deque from typing import List class Solution: def bagOfTokensScore(self, tokens: List[int], P: int) -> int: # Solution 1 - 64 ms """ q = deque(sorted(tokens)) res = 0 while q and P >= q[0]: P -= q.popleft() res += 1 if q and len(q) > 1 and P < q[0]: res -= 1 P += q.pop() return res """ # Solution 2 - 40 ms tokens.sort() if not tokens or P < tokens[0]: return 0 score = 0 left, right = 0, len(tokens) - 1 while left <= right: if P >= tokens[left]: P -= tokens[left] left += 1 score += 1 else: if right - left > 1: P += tokens[right] right -= 1 score -= 1 else: break return score # Main Call tokens = [100, 200] P = 150 solution = Solution() print(solution.bagOfTokensScore(tokens, P))
929c1957a029eacd49d34f3759ed03fa3205602b
391e0515bbbcfaaba5c2375c17fa8f11c46a0f73
/anb/config/urls.py
b40a9b6d2e9f95a7ad0be8e9e359495a54c5a912
[]
no_license
ggnight82/DRF-GraphQL
9ea26458833757ebdcd96f2e1dcdc48bf6fbc2a7
ee54921a82b6f926254a67c923c946f5062ddb44
refs/heads/master
2023-04-09T03:41:44.871431
2021-04-18T09:47:05
2021-04-18T09:47:05
350,238,210
0
0
null
null
null
null
UTF-8
Python
false
false
402
py
from django.contrib import admin from django.urls import path, include from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path("admin/", admin.site.urls), path("api/v1/rooms/",include("rooms.urls")), path("api/v1/users/",include("users.urls")), ] if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
a8b32038a3ade070c8f67b3eed0e66408c072e48
25d4c31d5ebe470118b14beb84f3cd1e53d99c15
/01_Tutorials/PyQt5_GUI_Tutorial/09_2_Tutorial_Progressbar_Button.py
195496bbd802cc5cf6756f04db46337e8a71d385
[]
no_license
daltdoerfer/Python_Templates-1
ea4b59489feb7b7617e81b7c94d4375dbf25def3
c2471cebeaf20bbfdfd3fd263d458e5a67ad8d1e
refs/heads/master
2023-05-10T15:07:10.109280
2021-06-08T06:45:53
2021-06-08T06:45:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,012
py
# Dieses Tutorial beinhaltet das einfügen von: # Progressbar mit ButtonS und (Multi-)Threading (Programm muss weiterlaufen und lagert andere Prozesse aus) # https://riptutorial.com/pyqt5/example/29500/basic-pyqt-progress-bar import sys import time from PyQt5 import * from PyQt5.QtWidgets import * from PyQt5.QtGui import * from PyQt5.QtCore import * TIME_LIMIT = 100 # Ausgelagertes TIME Limit, da mehrere Klassen darauf zugreifen class External(QThread): """ Runs a counter thread. """ countChanged = pyqtSignal(int) def run(self): count = 0 while count < TIME_LIMIT: count += 1 time.sleep(1) self.countChanged.emit(count) class Fenster(QDialog): # Wichtig für Status und Menübar von QMainWindow erben def __init__(self): super().__init__() self.initMe() def initMe(self): ################################# # Progressbar ################################# self.pb1 = QProgressBar(self) self.pb1.setGeometry(0, 0, 300, 25) self.pb1.move(50, 50) self.pb1.setMaximum(100) self.bt1 = QPushButton("Start", self) self.bt1.move(50, 75) self.bt1.clicked.connect(self.onButtonClick) ################################# # Allgmeine Fenster Config (Hauptfenster) ################################# self.setGeometry(50, 50, 1000, 500) self.setWindowTitle("My First GUI") self.setWindowIcon(QIcon("icon.png")) self.show() def onButtonClick(self): self.calc = External() self.calc.countChanged.connect(self.onCountChanged) self.calc.start() def onCountChanged(self, value): self.pb1.setValue(value) if __name__ == "__main__": app = QApplication(sys.argv) # Neue Default-Application anlegen w = Fenster() # Einfaches Fenster bauen -> Neue Instanz w sys.exit(app.exec_()) # Beendet Python Skript wenn Fenster geschlossen wird
d5061520a0c93bc4dc2f06ffebf65a6b28ccfdcc
5b6b1e410cceead0bab46109c482eaf9ddb3ffb1
/rbti_app/migrations/0003_auto_20200919_1632.py
27fef89e08d1d54cd9e9f51bd3db50b885c73d8e
[]
no_license
ikalkali/rbti-app
f5ea2d01d41dccde820ed630c529138ed9562766
c5773b8ae73fafd5da5d6ad2ffe8344f6ab36cf4
refs/heads/master
2023-07-18T22:28:32.155706
2021-09-23T02:23:51
2021-09-23T02:23:51
331,884,375
0
0
null
null
null
null
UTF-8
Python
false
false
676
py
# Generated by Django 3.1.1 on 2020-09-19 09:32 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('rbti_app', '0002_auto_20200919_1513'), ] operations = [ migrations.RemoveField( model_name='buku', name='kategori', ), migrations.AlterField( model_name='buku', name='id_buku', field=models.CharField(max_length=255, primary_key=True, serialize=False), ), migrations.AlterField( model_name='buku', name='tahun', field=models.CharField(max_length=255), ), ]
968aa7f632f718fc709de6f060dd463d3bf62c56
269e5a222eade2acd2f732ca6d8ec5753405dd5d
/assignment 7.py
afd668cf069cf299ada01f0dd7ca839e88b772b3
[]
no_license
naveen0845/Assignments
25894c23e03a8956ce83656c040af3ea13a9628e
f8184bda66139e0ccaac8758703890bcd7b66f36
refs/heads/master
2022-11-11T14:11:42.467483
2020-07-03T05:56:26
2020-07-03T05:56:26
273,655,478
0
3
null
null
null
null
UTF-8
Python
false
false
1,780
py
#adding n natural numbers sum=0 i=0 n=int(input("enter the number")) while(i<=n): sum=sum+i i=i+1 print(sum) #counting even and odd numlist=[] even_count=0 odd_count=0 n=int(input("enter no of elements")) for i in range(0,n): v=int(input("enter the values")) numlist.append(v) for j in range(n): if(numlist[j]%2==0): even_count=even_count+1 else: odd_count=odd_count+1 print("no of even",even_count) print("no of odd",odd_count) #print 0 to 6 except 3 and 6 for i in range(0,6): if(i%3!=0): print(i) #square of numbers for i in [1,2,3,4,5]: square=i*i print(square) #sum and average of n numbers i=0 sum=0 n=int(input("enter n ")) while(i<=n): sum=sum+i i=i+1 ave=sum/n print("sum of given number=",sum) print("average=",ave) #reversing a number number=int(input("enter the number")) reverse=0 while(number>0): x=number%10 reverse=(reverse*10)+x number=number//10 print("reverse of entered number is ",reverse) #print odd number in given range for i in range(10): if(i%2!=0): print(i) #print no of digits in number n=int(input("enter the digits")) count =0 while(n>0): n=n//10 count=count+1 print(count) #palindrome or not n=int(input("enter the number")) reverse=0 temp=n while(n>0): dig=n%10 reverse=(reverse*10)+dig n=n//10 if(temp==reverse): print("palindrome") else: print("not palindrome") #identity matrix n=int(input("enter n")) for i in range(0,n): for j in range(0,n): if i==j: print("1",sep=" ",end=" ") else: print("0",sep=" ",end=" ") print() print() #perfect number or not n=int(input("enter the number ")) sum=0 for i in range(1,n): if(n%i==0): sum+=i if(sum==n): print("entered number",n,"is perfect") else: print("entered number",n,"is not perfect")
98a753ab6a07f9b5d2e4c3f7490787d85a4f4119
975b2d421d3661e6770b601929d5f11d981d8985
/msgraph/generated/role_management/entitlement_management/role_eligibility_schedule_instances/item/directory_scope/directory_scope_request_builder.py
a136ee58b839e8a93ac974456db629b983364510
[ "MIT" ]
permissive
microsoftgraph/msgraph-sdk-python
a7c551b85daadeebf76ec4ae12668664ea639b42
27de7ccbe688d7614b2f6bde0fdbcda4bc5cc949
refs/heads/main
2023-09-03T21:45:27.989672
2023-08-31T06:22:18
2023-08-31T06:22:18
534,665,999
135
18
MIT
2023-09-14T11:04:11
2022-09-09T14:00:17
Python
UTF-8
Python
false
false
5,208
py
from __future__ import annotations from dataclasses import dataclass, field from kiota_abstractions.base_request_builder import BaseRequestBuilder from kiota_abstractions.get_path_parameters import get_path_parameters from kiota_abstractions.method import Method from kiota_abstractions.request_adapter import RequestAdapter from kiota_abstractions.request_information import RequestInformation from kiota_abstractions.request_option import RequestOption from kiota_abstractions.serialization import Parsable, ParsableFactory from typing import Any, Callable, Dict, List, Optional, TYPE_CHECKING, Union if TYPE_CHECKING: from ......models.directory_object import DirectoryObject from ......models.o_data_errors.o_data_error import ODataError class DirectoryScopeRequestBuilder(BaseRequestBuilder): """ Provides operations to manage the directoryScope property of the microsoft.graph.unifiedRoleScheduleInstanceBase entity. """ def __init__(self,request_adapter: RequestAdapter, path_parameters: Optional[Union[Dict[str, Any], str]] = None) -> None: """ Instantiates a new DirectoryScopeRequestBuilder and sets the default values. Args: path_parameters: The raw url or the Url template parameters for the request. request_adapter: The request adapter to use to execute the requests. """ super().__init__(request_adapter, "{+baseurl}/roleManagement/entitlementManagement/roleEligibilityScheduleInstances/{unifiedRoleEligibilityScheduleInstance%2Did}/directoryScope{?%24select,%24expand}", path_parameters) async def get(self,request_configuration: Optional[DirectoryScopeRequestBuilderGetRequestConfiguration] = None) -> Optional[DirectoryObject]: """ The directory object that is the scope of the assignment or role eligibility. Read-only. Args: request_configuration: Configuration for the request such as headers, query parameters, and middleware options. Returns: Optional[DirectoryObject] """ request_info = self.to_get_request_information( request_configuration ) from ......models.o_data_errors.o_data_error import ODataError error_mapping: Dict[str, ParsableFactory] = { "4XX": ODataError, "5XX": ODataError, } if not self.request_adapter: raise Exception("Http core is null") from ......models.directory_object import DirectoryObject return await self.request_adapter.send_async(request_info, DirectoryObject, error_mapping) def to_get_request_information(self,request_configuration: Optional[DirectoryScopeRequestBuilderGetRequestConfiguration] = None) -> RequestInformation: """ The directory object that is the scope of the assignment or role eligibility. Read-only. Args: request_configuration: Configuration for the request such as headers, query parameters, and middleware options. Returns: RequestInformation """ request_info = RequestInformation() request_info.url_template = self.url_template request_info.path_parameters = self.path_parameters request_info.http_method = Method.GET request_info.headers["Accept"] = ["application/json"] if request_configuration: request_info.add_request_headers(request_configuration.headers) request_info.set_query_string_parameters_from_raw_object(request_configuration.query_parameters) request_info.add_request_options(request_configuration.options) return request_info @dataclass class DirectoryScopeRequestBuilderGetQueryParameters(): """ The directory object that is the scope of the assignment or role eligibility. Read-only. """ def get_query_parameter(self,original_name: Optional[str] = None) -> str: """ Maps the query parameters names to their encoded names for the URI template parsing. Args: original_name: The original query parameter name in the class. Returns: str """ if not original_name: raise TypeError("original_name cannot be null.") if original_name == "expand": return "%24expand" if original_name == "select": return "%24select" return original_name # Expand related entities expand: Optional[List[str]] = None # Select properties to be returned select: Optional[List[str]] = None from kiota_abstractions.base_request_configuration import BaseRequestConfiguration @dataclass class DirectoryScopeRequestBuilderGetRequestConfiguration(BaseRequestConfiguration): from kiota_abstractions.base_request_configuration import BaseRequestConfiguration """ Configuration for the request such as headers, query parameters, and middleware options. """ # Request query parameters query_parameters: Optional[DirectoryScopeRequestBuilder.DirectoryScopeRequestBuilderGetQueryParameters] = None
4308427144a103deb0b3a10389cb9ac3ce571b5a
8187981f1c3e5bdef3e1fe2812093b6a04566b54
/utils/plotting.py
01d2034c073c2c2849d6d083d5c2a6d56ed8de28
[]
no_license
jerrychen109/CLIP-fewshot
f50dcf4bcecb94776a2ea202ce221ce658a05a3d
9eed396748631f24b993891036adbb739f225c7e
refs/heads/master
2023-05-16T23:44:04.125227
2021-06-03T01:27:17
2021-06-03T01:27:17
361,955,934
0
0
null
null
null
null
UTF-8
Python
false
false
898
py
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt def plot_run_accuracies(accuracies, xtick_interval=10): """ Plots the results of a fewshot classification experiment across different values of k and multiple trials per value of k. Input: - accuracies: a list (k, trial_accuracies) tuples where trial_accuracies is a list of accuracies across all trials for k. """ df = pd.DataFrame.from_records(np.array(accuracies), columns=['k', 'acc']) df = df.explode('acc') df['acc'] = df['acc'].astype(float) ax = sns.barplot(x='k', y='acc', data=df) ax.yaxis.set_major_locator(plt.MaxNLocator(20)) ax.set(ylim=(0, 1)) xticks = ax.xaxis.get_major_ticks() for i in range(len(xticks)): if i % xtick_interval != xtick_interval - 1: xticks[i].set_visible(False) plt.show()
ccf86f17aa2024ee4e9dcc06b7ad6c121a091fee
77f49d6fd287da24980f8e2bca9f7aa4a9fd26dc
/spas_functions.py
b8cff0d608072a346cb2d70dee7679844656fefb
[]
no_license
Raj067/SolorPropriatorshipAccountingSoftware
f7f894abaf4ebafde57ee8f2dee0615b10527e30
7982b7d9926b1cb450511a5541df10dbcb5dcb54
refs/heads/main
2023-07-18T17:15:55.506550
2021-09-14T13:22:43
2021-09-14T13:22:43
406,370,519
0
0
null
null
null
null
UTF-8
Python
false
false
14,876
py
import datetime import sqlite3 from PyQt5 import QtWidgets, uic from PyQt5.QtGui import QDoubleValidator from SqliteHelper import database, transactions def first_run(): try: database.create_table() except sqlite3.Error as err: print(err) def initial_adjustment(): """Set up balance for specific account when running for the first time""" ui = uic.loadUi('init_adjustment.ui') # populate combobox query = '''SELECT [accounts].[name], [accounts].[address], [accounts].[uid] FROM [accounts] ORDER BY [accounts].[name]''' data = database.select(query) for out in data: # out[0]=name, out[1]= address, out[2]= uid name, address, uid = out ui.comboBox.addItem(name + ',' + address, uid) def confirmed(): amount = ui.le_amount.text() name = ui.comboBox.currentText() uid = ui.comboBox.itemData(ui.comboBox.currentIndex()) param = (amount, uid) if not amount == '': if database.update_balance(param): msg = str(name) + " এর হালনাগাদ সম্পন্ন। ৳" + amount ui.label_msg.setText(msg) else: msg = "ফর্মটি যথাযথভাবে পূরন করুন।" ui.label_msg.setText(msg) if ui.rb_add_more.isChecked(): # reset amount field ui.le_amount.setText('') ui.show() ui.comboBox.setFocus() else: ui.close() ui.show() ui.accepted.connect(confirmed) def ledger_transactions(uid=''): ledger = uic.loadUi('ledger.ui') # load Journal UI """Ledger Widget table contents""" data = transactions(uid) for row_number, row_data in enumerate(data): ledger.tableWidget.insertRow(row_number) for column_number, column_data in enumerate(row_data): cell = QtWidgets.QTableWidgetItem(str(column_data)) ledger.tableWidget.setItem(row_number, column_number, cell) def fetch_accounts(table): """populate accounts window table""" print("Fetching accounts table items") table.setRowCount(0) query = '''SELECT [accounts].[name], [accounts].[address], [accounts].[mobile] FROM [accounts] ORDER BY [accounts].[name];''' try: data = database.select(query) # accounts_window.tableWidget.setColumnCount(2) for row_number, row_data in enumerate(data): table.insertRow(row_number) for column_number, info in enumerate(row_data): celldata = QtWidgets.QTableWidgetItem(str(info)) table.setItem( row_number, column_number, celldata) except sqlite3.Error as err: print('Error', err) table.setEditTriggers( QtWidgets.QTreeView.NoEditTriggers) def init_add_account(table): add_account_ui = uic.loadUi('ui/diagNewAccount.ui') add_account_ui.show() # todo get items from settings configuration add_account_ui.comboGroup.addItem("Payable/Receivable", "PR") def confirmed(): name = add_account_ui.ld_name.text() address = add_account_ui.ld_address.text() mobile = add_account_ui.ld_mobile.text() group = add_account_ui.comboGroup.currentData() if name != '' and address != '': # eliminates empty data data = (name, address, mobile, group) try: database.insert_account(data) msg = name + "- Added successfully." add_account_ui.label_msg.setText(msg) # after insert reset fields add_account_ui.ld_name.setText('') add_account_ui.ld_address.setText('') add_account_ui.ld_mobile.setText('') add_account_ui.ld_name.setFocus() fetch_accounts(table) except sqlite3.Error as err: add_account_ui.label_msg.setText(err) else: msg = 'Required fields are empty.' add_account_ui.show() add_account_ui.label_msg.setText(msg) add_account_ui.pb_confirm.clicked.connect(confirmed) add_account_ui.pb_cancel.clicked.connect(lambda: add_account_ui.close()) # get uid for specific Name supplied def get_uid_for(name=None): query = '''SELECT [accounts].[uid] FROM [accounts] WHERE [name] = ?''' data = database.select(query, name) # select uid only as int for x in data: for y in x: uid = y return uid # trx_type == "IN" --> Cash In Flow # else Cash Out Flow def init_cash_transaction(trx_tag=None): """"pops addTransaction Dialog for trx_type = IN/OUT based on trx_type argument provided completes transaction and balance insertion""" add_trx = uic.loadUi('ui/diagNewCashTrx.ui') add_trx.show() if trx_tag == "CASH_IN": add_trx.setWindowTitle("নগদ জমা") elif trx_tag == "CASH_OUT": add_trx.setWindowTitle("নগদ পরিশোধ") add_trx.lddate.setText(str(datetime.date.today())) # fetch names from db to populate dropdown list query = '''SELECT [accounts].[name], [accounts].[address], [accounts].[uid] FROM [accounts] WHERE [accounts].[group] = "PR" ORDER BY [accounts].[name];''' data = database.select(query) for out in data: name, address, uid = out add_trx.comboBox.addItem(name + ',' + address, uid) # declaring zero values before processing # todo check if cash_uid not found cash_uid = get_uid_for(["Cash"]) p_id = 0 # not for cash trx p_lott = 0 # not for cash trx quantity = 0 # not for cash trx cgs = 0 # not for cash trx def cash_transaction_confirmed(): if trx_tag == "CASH_IN": add_trx.setWindowTitle("নগদ জমা") dr_uid = cash_uid cr_uid = add_trx.comboBox.itemData( add_trx.comboBox.currentIndex()) else: add_trx.setWindowTitle("নগদ পরিশোধ") cr_uid = cash_uid dr_uid = add_trx.comboBox.itemData(add_trx.comboBox.currentIndex()) amount = add_trx.ldamount.text() trx_date = add_trx.lddate.text() description = add_trx.tddesc.toPlainText() if description == '': description = "N/A" if dr_uid != '' and cr_uid != '' and trx_date != '' and amount != '': # ^^^ eliminates empty data # insert transaction values = (trx_date, trx_tag, dr_uid, cr_uid, description, amount, p_id, p_lott, quantity, cgs) if database.insert_transaction(values): msg = "সংযোজিত হয়েছে।" add_trx.label_msg.setText(msg) else: print("ব্যর্থ।") else: msg = "ফর্মটি যথাযথভাবে পূরণ করুন" add_trx.label_msg.setText(msg) print('Input required Transaction in DATA') if add_trx.rb_add_more.isChecked(): # reset amount field add_trx.ldamount.setText('') add_trx.show() add_trx.comboBox.setFocus() else: add_trx.close() add_trx.pb_ok.clicked.connect(cash_transaction_confirmed) add_trx.pb_cancel.clicked.connect(lambda: add_trx.close()) def cash_flow_in_table(self): # set query to select all cash in transactions with meta name query = '''SELECT [transactions].[date], [accounts].[name], [transactions].[amount] FROM [transactions] INNER JOIN [accounts] ON [accounts].[uid] = [transactions].[dr_uid] WHERE [transactions].[trx_tag] = 'CASH_IN' ORDER BY [transactions].[date] DESC;''' param = '' self.setRowCount(0) out = database.select(query, param) for row_number, row_data in enumerate(out): self.insertRow(row_number) for column_number, column_data in enumerate(row_data): cell = QtWidgets.QTableWidgetItem(str(column_data)) self.setItem(row_number, column_number, cell) def cash_flow_out_table(self): # set query to select all cash out transactions with meta name query = '''SELECT [transactions].[date], [accounts].[name], [transactions].[amount] FROM [transactions] INNER JOIN [accounts] ON [accounts].[uid] = [transactions].[dr_uid] WHERE [transactions].[trx_tag] = 'CASH_OUT' ORDER BY [transactions].[date] DESC;''' param = '' self.setRowCount(0) out = database.select(query, param) for row_number, row_data in enumerate(out): self.insertRow(row_number) for column_number, column_data in enumerate(row_data): cell = QtWidgets.QTableWidgetItem(str(column_data)) self.setItem(row_number, column_number, cell) def init_inv_transaction(trx_tag): def update_cgs(): if not trx_tag == "BUY": product_id = ui.comboProducts.itemData(ui.comboProducts.currentIndex()) quantity = ui.ld_quantity.text() cgs = get_cgs(product_id, quantity) ui.ld_cgs.setText(str(cgs)) else: ui.ld_cgs.setText(str(0)) def count_rate(): # amount / quantity amount = ui.ld_amount.text() quantity = ui.ld_quantity.text() if amount and quantity: rate = float(amount) / float(quantity) ui.ld_rate.setText(str(rate)) def count_amount(): # quantity * rate = total # total / quantity = rate quantity = ui.ld_quantity.text() rate = ui.ld_rate.text() if quantity and rate: amount = float(quantity) * float(rate) ui.ld_amount.setText(str(amount)) def count_profit(): amount = ui.ld_amount.text() cgs = ui.ld_cgs.text() diff = float(amount) - float(cgs) if diff > 0: profit = float(diff) ui.ld_profit.setText(str(profit)) elif diff < 0: loss = diff ui.ld_profit.setText(str(loss)) else: balanced = diff ui.ld_profit.setText(str(balanced)) def inv_trx_confirmed(): trx_date = ui.ld_date.text() quantity = ui.ld_quantity.text() amount = ui.ld_amount.text() description = ui.ld_desc.text() p_id = ui.comboProducts.itemData(ui.comboProducts.currentIndex()) p_lott = 'NA' cgs = ui.ld_cgs.text() if trx_tag == "BUY": debit_uid = ui.comboProducts.itemData(ui.comboProducts.currentIndex()) credit_uid = ui.comboNames.itemData(ui.comboNames.currentIndex()) else: debit_uid = ui.comboNames.itemData(ui.comboNames.currentIndex()) credit_uid = ui.comboProducts.itemData(ui.comboProducts.currentIndex()) # eliminate empty values if debit_uid != '' and credit_uid != '' and amount != '' and quantity != '': param = trx_date, trx_tag, debit_uid, credit_uid, description, amount, p_id, p_lott, quantity, cgs print(str(param)) # store in database if database.insert_transaction(param): inserted = True msg = "Transaction added", quantity, "KG", amount, "Tk" ui.label_msg.setText(str(msg)) if ui.rb_add_more.isChecked() and inserted: # todo reset fields for another trx ui.ld_quantity.setText('') ui.ld_rate.setText('') ui.ld_amount.setText('') ui.ld_desc.setText('') print("triggered", inserted) else: inserted = False msg = "Could not insert into database." ui.label_msg.setText(str(msg)) else: msg = "Insert required values." ui.label_msg.setText(str(msg)) ui = uic.loadUi('ui/diagNewInvTrx.ui') # set float validators double_validator = QDoubleValidator(0.0, 9.9, 2) ui.ld_quantity.setValidator(double_validator) ui.ld_amount.setValidator(double_validator) ui.ld_rate.setValidator(double_validator) # set window title if trx_tag == "BUY": print("Buy") ui.setWindowTitle("Buy Form") elif trx_tag == "SALE": print("Sale") ui.setWindowTitle("Sale Form") # set to today's date ui.ld_date.setText(str(datetime.date.today())) # fetch accounts query = '''SELECT [accounts].[name], [accounts].[address], [accounts].[uid] FROM [accounts] WHERE [accounts].[group] = "PR" ORDER BY [accounts].[name];''' data = database.select(query) # fill comboNames with accounts for out in data: name, address, uid = out ui.comboNames.addItem(name + ',' + address, uid) # fill comboProducts query = '''SELECT [inventory].[product_id], [inventory].[product_name] FROM [inventory];''' data = database.select(query) for out in data: p_id, p_name = out ui.comboProducts.addItem(p_name, p_id) # show ui ui.show() # fill ld_cgs on comboProduct changeSignal ui.comboProducts.currentIndexChanged.connect(lambda: update_cgs()) # update cgs on load update_cgs() ui.ld_quantity.textChanged.connect(update_cgs) ui.pb_count.clicked.connect(count_amount) ui.ld_amount.textChanged.connect(count_rate) if not trx_tag == "BUY": ui.ld_amount.textChanged.connect(count_profit) ui.pb_ok.clicked.connect(inv_trx_confirmed) ui.pb_cancel.clicked.connect(lambda: ui.close()) def get_cgs(p_id, quantity): if quantity == '': quantity = 0 # get product quantity and amount query = '''SELECT [inventory].[product_quantity], [inventory].[cgs] FROM [inventory] WHERE [inventory].[product_id] = ?;''' param = str(p_id) print("P_ID = ", p_id) data = database.select(query, param) for x, y in enumerate(data): gross_quantity, gross_cgs = y # divide them and multiply by quantity and get cgs cgs = float(gross_cgs) / float(gross_quantity) * float(quantity) print("CGS: ", cgs) # return cgs return cgs def inventory_buy_table(): pass def inventory_sale_table(): pass
e89f211cd0002a9e34709ee2502e4c94d5a4389e
c813a613abc05bb845b67dbf912e0f1e165851fd
/m2.py
a1e038300cd043f84e44c30f07cd65d895d99ec7
[]
no_license
kdshop/pythonPodstawy2019
df3f4b5668ee480cd295e5e5b34d213c00987836
c183cfe728c25f262651c0bb0461df1999a3e654
refs/heads/master
2020-04-26T12:34:31.147828
2019-06-02T08:09:58
2019-06-02T08:09:58
173,554,206
0
0
null
null
null
null
UTF-8
Python
false
false
96
py
def czysabokamitrojkata(a, b, c): return True if a < b+c and b < a+c and c < a+b else False
657970fa3b03a8c1275c36d93fc9114f57307ff0
6b9ee3c44e0af8a58e6cb498f30f6345fdeb2ef6
/final/src/R-net/test.py
00f31e603a1edb4db27b3a4755c18195fbe68722
[ "MIT" ]
permissive
Cooper111/ML2017FALL
b5bd23eb0c4052dc6de02e75c62c7cf4f6ca836c
c6ab78435a907329d244dcf1dd41e4286516c777
refs/heads/master
2020-04-02T16:47:55.554482
2018-01-27T07:06:56
2018-01-27T07:06:56
154,629,101
1
0
null
2018-10-25T07:35:39
2018-10-25T07:35:36
Python
UTF-8
Python
false
false
6,040
py
import os import json import pickle import pandas as pd import torch from gensim.models.word2vec import Word2Vec from tester import Tester from utils.utils import prepare_data, get_args, read_embedding # TODO: read vocab into a cpu embedding layer def read_vocab(vocab_config): """ :param counter: counter of words in dataset :param vocab_config: word_embedding config: (root, word_type, dim) :return: itos, stoi, vectors """ # wv_dict, wv_vectors, wv_size = read_embedding(vocab_config["embedding_root"], # vocab_config["embedding_type"], # vocab_config["embedding_dim"]) wv = Word2Vec.load('data/zh.bin') wv_dict = dict() wv_vectors = [] wv_size = 300 for i, w in enumerate(wv.wv.vocab): wv_dict[w] = i wv_vectors.append(wv[w]) # embedding size = glove vector size # embed_size = wv_vectors.size(1) embed_size = 300 print("word embedding size: %d" % embed_size) itos = vocab_config['specials'][:] stoi = {} itos.extend(list(w for w, i in sorted(wv_dict.items(), key=lambda x: x[1]))) for idx, word in enumerate(itos): stoi[word] = idx vectors = torch.zeros([len(itos), embed_size]) for word, idx in stoi.items(): if word not in wv_dict or word in vocab_config['specials']: continue vectors[idx, :wv_size].copy_(torch.FloatTensor(wv_vectors[wv_dict[word]])) return itos, stoi, vectors def main(): args = get_args() prepare_data() word_vocab_config = { "<UNK>": 0, "<PAD>": 1, "<start>": 2, "<end>": 3, "insert_start": "<SOS>", "insert_end": "<EOS>", "tokenization": "nltk", "specials": ["<UNK>", "<PAD>", "<SOS>", "<EOS>"], "embedding_root": os.path.join(args.app_path, "data", "embedding", "word"), "embedding_type": "glove.840B", "embedding_dim": 300 } print("Reading Vocab", flush=True) char_vocab_config = word_vocab_config.copy() char_vocab_config["embedding_root"] = os.path.join(args.app_path, "data", "embedding", "char") char_vocab_config["embedding_type"] = "glove_char.840B" # TODO: build vocab out of dataset # build vocab itos, stoi, wv_vec = read_vocab(word_vocab_config) itoc, ctoi, cv_vec = read_vocab(char_vocab_config) char_embedding_config = {"embedding_weights": cv_vec, "padding_idx": word_vocab_config["<UNK>"], "update": args.update_char_embedding, "bidirectional": args.bidirectional, "cell_type": "gru", "output_dim": 300} word_embedding_config = {"embedding_weights": wv_vec, "padding_idx": word_vocab_config["<UNK>"], "update": args.update_word_embedding} sentence_encoding_config = {"hidden_size": args.hidden_size, "num_layers": args.num_layers, "bidirectional": True, "dropout": args.dropout, } pair_encoding_config = {"hidden_size": args.hidden_size, "num_layers": args.num_layers, "bidirectional": args.bidirectional, "dropout": args.dropout, "gated": True, "mode": "GRU", "rnn_cell": torch.nn.GRUCell, "attn_size": args.attention_size, "residual": args.residual} self_matching_config = {"hidden_size": args.hidden_size, "num_layers": args.num_layers, "bidirectional": args.bidirectional, "dropout": args.dropout, "gated": True, "mode": "GRU", "rnn_cell": torch.nn.GRUCell, "attn_size": args.attention_size, "residual": args.residual} pointer_config = {"hidden_size": args.hidden_size, "num_layers": args.num_layers, "dropout": args.dropout, "residual": args.residual, "rnn_cell": torch.nn.GRUCell} print("DEBUG Mode is ", "On" if args.debug else "Off", flush=True) dev_cache = "./data/cache/SQuAD_dev%s.pkl" % ("_debug" if args.debug else "") test_json = args.test_json test = read_dataset(test_json, itos, stoi, itoc, ctoi, dev_cache, args.debug, split="dev") test_dataloader = test.get_dataloader(args.batch_size_dev) tester = Tester(args, test_dataloader, char_embedding_config, word_embedding_config, sentence_encoding_config, pair_encoding_config, self_matching_config, pointer_config) result = tester.test() json.dump(result, open('prediction.json', 'w')) pd.DataFrame([[id, ' '.join([str(j) for j in range(ans[0], ans[1])])] for id, ans in result.items()], columns=['id', 'answer']).to_csv('prediction.csv', index=False) def read_dataset(json_file, itos, stoi, itoc, ctoi, cache_file, is_debug=False, split="train"): ''' if os.path.isfile(cache_file): print("Read built %s dataset from %s" % (split, cache_file), flush=True) dataset = pickle.load(open(cache_file, "rb")) print("Finished reading %s dataset from %s" % (split, cache_file), flush=True) else: print("building %s dataset" % split, flush=True) from utils.dataset import SQuAD dataset = SQuAD(json_file, itos, stoi, itoc, ctoi, debug_mode=is_debug, split=split) pickle.dump(dataset, open(cache_file, "wb")) ''' from utils.dataset import SQuAD dataset = SQuAD(json_file, itos, stoi, itoc, ctoi, debug_mode=is_debug, split=split) return dataset if __name__ == "__main__": main()
629527dd4f990bcc460edb29a2c0b6f2d87784ea
f6d7ed50c7747e4d064c5b2ed02429c3b0452957
/official/recommendation/neumf_model.py
45715478bf5fd63991775893478d42ff58eca460
[ "MIT" ]
permissive
deephdc/retinopathy_test
eabbba5399a1c62bbe72e66762cf3e43ec18f3ce
5e87be2a67bbbc0b82f6ca258324e80068ef9407
refs/heads/master
2021-07-16T20:35:05.415170
2020-05-30T23:06:41
2020-05-30T23:06:41
159,072,604
1
1
MIT
2020-05-25T08:00:39
2018-11-25T20:40:39
Python
UTF-8
Python
false
false
16,010
py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Defines NeuMF model for NCF framework. Some abbreviations used in the code base: NeuMF: Neural Matrix Factorization NCF: Neural Collaborative Filtering GMF: Generalized Matrix Factorization MLP: Multi-Layer Perceptron GMF applies a linear kernel to model the latent feature interactions, and MLP uses a nonlinear kernel to learn the interaction function from data. NeuMF model is a fused model of GMF and MLP to better model the complex user-item interactions, and unifies the strengths of linearity of MF and non-linearity of MLP for modeling the user-item latent structures. In NeuMF model, it allows GMF and MLP to learn separate embeddings, and combine the two models by concatenating their last hidden layer. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import typing from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf from official.datasets import movielens # pylint: disable=g-bad-import-order from official.recommendation import constants as rconst from official.recommendation import stat_utils def _sparse_to_dense_grads(grads_and_vars): """Convert sparse gradients to dense gradients. All sparse gradients, which are represented as instances of tf.IndexedSlices, are converted to dense Tensors. Dense gradients, which are represents as Tensors, are unchanged. The purpose of this conversion is that for small embeddings, which are used by this model, applying dense gradients with the AdamOptimizer is faster than applying sparse gradients. Args grads_and_vars: A list of (gradient, variable) tuples. Each gradient can be a Tensor or an IndexedSlices. Tensors are unchanged, and IndexedSlices are converted to dense Tensors. Returns: The same list of (gradient, variable) as `grads_and_vars`, except each IndexedSlices gradient is converted to a Tensor. """ # Calling convert_to_tensor changes IndexedSlices into Tensors, and leaves # Tensors unchanged. return [(tf.convert_to_tensor(g), v) for g, v in grads_and_vars] def neumf_model_fn(features, labels, mode, params): """Model Function for NeuMF estimator.""" if params.get("use_seed"): tf.set_random_seed(stat_utils.random_int32()) users = features[movielens.USER_COLUMN] items = tf.cast(features[movielens.ITEM_COLUMN], tf.int32) logits = construct_model(users=users, items=items, params=params) # Softmax with the first column of zeros is equivalent to sigmoid. softmax_logits = tf.concat([tf.zeros(logits.shape, dtype=logits.dtype), logits], axis=1) if mode == tf.estimator.ModeKeys.PREDICT: predictions = { movielens.ITEM_COLUMN: items, movielens.RATING_COLUMN: logits, } if params["use_tpu"]: return tf.contrib.tpu.TPUEstimatorSpec(mode=mode, predictions=predictions) return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions) elif mode == tf.estimator.ModeKeys.EVAL: duplicate_mask = tf.cast(features[rconst.DUPLICATE_MASK], tf.float32) return compute_eval_loss_and_metrics( logits, softmax_logits, duplicate_mask, params["num_neg"], params["match_mlperf"], params["use_tpu"]) elif mode == tf.estimator.ModeKeys.TRAIN: labels = tf.cast(labels, tf.int32) optimizer = tf.train.AdamOptimizer( learning_rate=params["learning_rate"], beta1=params["beta1"], beta2=params["beta2"], epsilon=params["epsilon"]) if params["use_tpu"]: optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer) loss = tf.losses.sparse_softmax_cross_entropy( labels=labels, logits=softmax_logits ) # This tensor is used by logging hooks. tf.identity(loss, name="cross_entropy") global_step = tf.train.get_global_step() tvars = tf.trainable_variables() gradients = optimizer.compute_gradients( loss, tvars, colocate_gradients_with_ops=True) gradients = _sparse_to_dense_grads(gradients) minimize_op = optimizer.apply_gradients( gradients, global_step=global_step, name="train") update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) train_op = tf.group(minimize_op, update_ops) if params["use_tpu"]: return tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=loss, train_op=train_op) return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op) else: raise NotImplementedError def construct_model(users, items, params): # type: (tf.Tensor, tf.Tensor, dict) -> tf.Tensor """Initialize NeuMF model. Args: users: Tensor of user ids. items: Tensor of item ids. params: Dict of hyperparameters. Raises: ValueError: if the first model layer is not even. """ num_users = params["num_users"] num_items = params["num_items"] model_layers = params["model_layers"] mf_regularization = params["mf_regularization"] mlp_reg_layers = params["mlp_reg_layers"] mf_dim = params["mf_dim"] if model_layers[0] % 2 != 0: raise ValueError("The first layer size should be multiple of 2!") # Input variables user_input = tf.keras.layers.Input(tensor=users) item_input = tf.keras.layers.Input(tensor=items) # Initializer for embedding layers embedding_initializer = "glorot_uniform" # Embedding layers of GMF and MLP mf_embedding_user = tf.keras.layers.Embedding( num_users, mf_dim, embeddings_initializer=embedding_initializer, embeddings_regularizer=tf.keras.regularizers.l2(mf_regularization), input_length=1) mf_embedding_item = tf.keras.layers.Embedding( num_items, mf_dim, embeddings_initializer=embedding_initializer, embeddings_regularizer=tf.keras.regularizers.l2(mf_regularization), input_length=1) mlp_embedding_user = tf.keras.layers.Embedding( num_users, model_layers[0]//2, embeddings_initializer=embedding_initializer, embeddings_regularizer=tf.keras.regularizers.l2(mlp_reg_layers[0]), input_length=1) mlp_embedding_item = tf.keras.layers.Embedding( num_items, model_layers[0]//2, embeddings_initializer=embedding_initializer, embeddings_regularizer=tf.keras.regularizers.l2(mlp_reg_layers[0]), input_length=1) # GMF part mf_user_latent = mf_embedding_user(user_input) mf_item_latent = mf_embedding_item(item_input) # Element-wise multiply mf_vector = tf.keras.layers.multiply([mf_user_latent, mf_item_latent]) # MLP part mlp_user_latent = mlp_embedding_user(user_input) mlp_item_latent = mlp_embedding_item(item_input) # Concatenation of two latent features mlp_vector = tf.keras.layers.concatenate([mlp_user_latent, mlp_item_latent]) num_layer = len(model_layers) # Number of layers in the MLP for layer in xrange(1, num_layer): model_layer = tf.keras.layers.Dense( model_layers[layer], kernel_regularizer=tf.keras.regularizers.l2(mlp_reg_layers[layer]), activation="relu") mlp_vector = model_layer(mlp_vector) # Concatenate GMF and MLP parts predict_vector = tf.keras.layers.concatenate([mf_vector, mlp_vector]) # Final prediction layer logits = tf.keras.layers.Dense( 1, activation=None, kernel_initializer="lecun_uniform", name=movielens.RATING_COLUMN)(predict_vector) # Print model topology. tf.keras.models.Model([user_input, item_input], logits).summary() sys.stdout.flush() return logits def compute_eval_loss_and_metrics(logits, # type: tf.Tensor softmax_logits, # type: tf.Tensor duplicate_mask, # type: tf.Tensor num_training_neg, # type: int match_mlperf=False, # type: bool use_tpu=False # type: bool ): # type: (...) -> tf.estimator.EstimatorSpec """Model evaluation with HR and NDCG metrics. The evaluation protocol is to rank the test interacted item (truth items) among the randomly chosen 999 items that are not interacted by the user. The performance of the ranked list is judged by Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG). For evaluation, the ranked list is truncated at 10 for both metrics. As such, the HR intuitively measures whether the test item is present on the top-10 list, and the NDCG accounts for the position of the hit by assigning higher scores to hits at top ranks. Both metrics are calculated for each test user, and the average scores are reported. If `match_mlperf` is True, then the HR and NDCG computations are done in a slightly unusual way to match the MLPerf reference implementation. Specifically, if the evaluation negatives contain duplicate items, it will be treated as if the item only appeared once. Effectively, for duplicate items in a row, the predicted score for all but one of the items will be set to -infinity For example, suppose we have that following inputs: logits_by_user: [[ 2, 3, 3], [ 5, 4, 4]] items_by_user: [[10, 20, 20], [30, 40, 40]] # Note: items_by_user is not explicitly present. Instead the relevant \ information is contained within `duplicate_mask` top_k: 2 Then with match_mlperf=True, the HR would be 2/2 = 1.0. With match_mlperf=False, the HR would be 1/2 = 0.5. This is because each user has predicted scores for only 2 unique items: 10 and 20 for the first user, and 30 and 40 for the second. Therefore, with match_mlperf=True, it's guaranteed the first item's score is in the top 2. With match_mlperf=False, this function would compute the first user's first item is not in the top 2, because item 20 has a higher score, and item 20 occurs twice. Args: logits: A tensor containing the predicted logits for each user. The shape of logits is (num_users_per_batch * (1 + NUM_EVAL_NEGATIVES),) Logits for a user are grouped, and the first element of the group is the true element. softmax_logits: The same tensor, but with zeros left-appended. duplicate_mask: A vector with the same shape as logits, with a value of 1 if the item corresponding to the logit at that position has already appeared for that user. num_training_neg: The number of negatives per positive during training. match_mlperf: Use the MLPerf reference convention for computing rank. use_tpu: Should the evaluation be performed on a TPU. Returns: An EstimatorSpec for evaluation. """ in_top_k, ndcg, metric_weights, logits_by_user = compute_top_k_and_ndcg( logits, duplicate_mask, match_mlperf) # Examples are provided by the eval Dataset in a structured format, so eval # labels can be reconstructed on the fly. eval_labels = tf.reshape(tf.one_hot( tf.zeros(shape=(logits_by_user.shape[0],), dtype=tf.int32), logits_by_user.shape[1], dtype=tf.int32), (-1,)) eval_labels_float = tf.cast(eval_labels, tf.float32) # During evaluation, the ratio of negatives to positives is much higher # than during training. (Typically 999 to 1 vs. 4 to 1) By adjusting the # weights for the negative examples we compute a loss which is consistent with # the training data. (And provides apples-to-apples comparison) negative_scale_factor = num_training_neg / rconst.NUM_EVAL_NEGATIVES example_weights = ( (eval_labels_float + (1 - eval_labels_float) * negative_scale_factor) * (1 + rconst.NUM_EVAL_NEGATIVES) / (1 + num_training_neg)) # Tile metric weights back to logit dimensions expanded_metric_weights = tf.reshape(tf.tile( metric_weights[:, tf.newaxis], (1, rconst.NUM_EVAL_NEGATIVES + 1)), (-1,)) # ignore padded examples example_weights *= tf.cast(expanded_metric_weights, tf.float32) cross_entropy = tf.losses.sparse_softmax_cross_entropy( logits=softmax_logits, labels=eval_labels, weights=example_weights) def metric_fn(top_k_tensor, ndcg_tensor, weight_tensor): return { rconst.HR_KEY: tf.metrics.mean(top_k_tensor, weights=weight_tensor), rconst.NDCG_KEY: tf.metrics.mean(ndcg_tensor, weights=weight_tensor), } if use_tpu: return tf.contrib.tpu.TPUEstimatorSpec( mode=tf.estimator.ModeKeys.EVAL, loss=cross_entropy, eval_metrics=(metric_fn, [in_top_k, ndcg, metric_weights])) return tf.estimator.EstimatorSpec( mode=tf.estimator.ModeKeys.EVAL, loss=cross_entropy, eval_metric_ops=metric_fn(in_top_k, ndcg, metric_weights) ) def compute_top_k_and_ndcg(logits, # type: tf.Tensor duplicate_mask, # type: tf.Tensor match_mlperf=False # type: bool ): """Compute inputs of metric calculation. Args: logits: A tensor containing the predicted logits for each user. The shape of logits is (num_users_per_batch * (1 + NUM_EVAL_NEGATIVES),) Logits for a user are grouped, and the first element of the group is the true element. duplicate_mask: A vector with the same shape as logits, with a value of 1 if the item corresponding to the logit at that position has already appeared for that user. match_mlperf: Use the MLPerf reference convention for computing rank. Returns: is_top_k, ndcg and weights, all of which has size (num_users_in_batch,), and logits_by_user which has size (num_users_in_batch, (rconst.NUM_EVAL_NEGATIVES + 1)). """ logits_by_user = tf.reshape(logits, (-1, rconst.NUM_EVAL_NEGATIVES + 1)) duplicate_mask_by_user = tf.reshape(duplicate_mask, (-1, rconst.NUM_EVAL_NEGATIVES + 1)) if match_mlperf: # Set duplicate logits to the min value for that dtype. The MLPerf # reference dedupes during evaluation. logits_by_user *= (1 - duplicate_mask_by_user) logits_by_user += duplicate_mask_by_user * logits_by_user.dtype.min # Determine the location of the first element in each row after the elements # are sorted. sort_indices = tf.contrib.framework.argsort( logits_by_user, axis=1, direction="DESCENDING") # Use matrix multiplication to extract the position of the true item from the # tensor of sorted indices. This approach is chosen because both GPUs and TPUs # perform matrix multiplications very quickly. This is similar to np.argwhere. # However this is a special case because the target will only appear in # sort_indices once. one_hot_position = tf.cast(tf.equal(sort_indices, 0), tf.int32) sparse_positions = tf.multiply( one_hot_position, tf.range(logits_by_user.shape[1])[tf.newaxis, :]) position_vector = tf.reduce_sum(sparse_positions, axis=1) in_top_k = tf.cast(tf.less(position_vector, rconst.TOP_K), tf.float32) ndcg = tf.log(2.) / tf.log(tf.cast(position_vector, tf.float32) + 2) ndcg *= in_top_k # If a row is a padded row, all but the first element will be a duplicate. metric_weights = tf.not_equal(tf.reduce_sum(duplicate_mask_by_user, axis=1), rconst.NUM_EVAL_NEGATIVES) return in_top_k, ndcg, metric_weights, logits_by_user
75b7140688bd7f5663275f7481f344ba0990f781
4e04f819e376c3fba7b6a57c228c289b2c3dde12
/compass/ocean/tests/global_ocean/mesh/so12to60/dynamic_adjustment/__init__.py
c183fae208713987c10bf3bf3c959e87c5ac2da9
[ "LicenseRef-scancode-warranty-disclaimer", "BSD-2-Clause" ]
permissive
Rihui-L/compass
65e88253f24240a4376a9f04c047c2756848a45a
4446f76222be26996fc44569a2047bdfb22e33ff
refs/heads/master
2023-06-19T12:45:30.190857
2021-07-20T19:48:43
2021-07-20T19:48:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,066
py
from compass.ocean.tests.global_ocean.dynamic_adjustment import \ DynamicAdjustment from compass.ocean.tests.global_ocean.forward import ForwardStep class SO12to60DynamicAdjustment(DynamicAdjustment): """ A test case performing dynamic adjustment (dissipating fast-moving waves) from an initial condition on the SO12to60 MPAS-Ocean mesh Attributes ---------- restart_filenames : list of str A list of restart files from each dynamic-adjustment step """ def __init__(self, test_group, mesh, init, time_integrator): """ Create the test case Parameters ---------- test_group : compass.ocean.tests.global_ocean.GlobalOcean The global ocean test group that this test case belongs to mesh : compass.ocean.tests.global_ocean.mesh.Mesh The test case that produces the mesh for this run init : compass.ocean.tests.global_ocean.init.Init The test case that produces the initial condition for this run time_integrator : {'split_explicit', 'RK4'} The time integrator to use for the forward run """ if time_integrator != 'split_explicit': raise ValueError('{} dynamic adjustment not defined for {}'.format( mesh.mesh_name, time_integrator)) restart_times = ['0001-01-03_00:00:00', '0001-01-07_00:00:00', '0001-01-11_00:00:00', '0001-01-21_00:00:00'] restart_filenames = [ 'restarts/rst.{}.nc'.format(restart_time.replace(':', '.')) for restart_time in restart_times] super().__init__(test_group=test_group, mesh=mesh, init=init, time_integrator=time_integrator, restart_filenames=restart_filenames) module = self.__module__ # first step step_name = 'damped_adjustment_1' step = ForwardStep(test_case=self, mesh=mesh, init=init, time_integrator=time_integrator, name=step_name, subdir=step_name) namelist_options = { 'config_run_duration': "'00-00-02_00:00:00'", 'config_dt': "'00:05:00'", 'config_btr_dt': "'00:00:20'", 'config_Rayleigh_friction': '.true.', 'config_Rayleigh_damping_coeff': '1.0e-4'} step.add_namelist_options(namelist_options) stream_replacements = { 'output_interval': '00-00-10_00:00:00', 'restart_interval': '00-00-02_00:00:00'} step.add_streams_file(module, 'streams.template', template_replacements=stream_replacements) step.add_output_file(filename='../{}'.format(restart_filenames[0])) self.add_step(step) # second step step_name = 'damped_adjustment_2' step = ForwardStep(test_case=self, mesh=mesh, init=init, time_integrator=time_integrator, name=step_name, subdir=step_name) namelist_options = { 'config_run_duration': "'00-00-04_00:00:00'", 'config_dt': "'00:07:30'", 'config_btr_dt': "'00:00:20'", 'config_Rayleigh_friction': '.true.', 'config_Rayleigh_damping_coeff': '4.0e-5', 'config_do_restart': '.true.', 'config_start_time': "'{}'".format(restart_times[0])} step.add_namelist_options(namelist_options) stream_replacements = { 'output_interval': '00-00-10_00:00:00', 'restart_interval': '00-00-02_00:00:00'} step.add_streams_file(module, 'streams.template', template_replacements=stream_replacements) step.add_input_file(filename='../{}'.format(restart_filenames[0])) step.add_output_file(filename='../{}'.format(restart_filenames[1])) self.add_step(step) # third step step_name = 'damped_adjustment_3' step = ForwardStep(test_case=self, mesh=mesh, init=init, time_integrator=time_integrator, name=step_name, subdir=step_name) namelist_options = { 'config_run_duration': "'00-00-04_00:00:00'", 'config_dt': "'00:10:00'", 'config_btr_dt': "'00:00:20'", 'config_Rayleigh_friction': '.true.', 'config_Rayleigh_damping_coeff': '1.0e-5', 'config_do_restart': '.true.', 'config_start_time': "'{}'".format(restart_times[1])} step.add_namelist_options(namelist_options) stream_replacements = { 'output_interval': '00-00-10_00:00:00', 'restart_interval': '00-00-02_00:00:00'} step.add_streams_file(module, 'streams.template', template_replacements=stream_replacements) step.add_input_file(filename='../{}'.format(restart_filenames[1])) step.add_output_file(filename='../{}'.format(restart_filenames[2])) self.add_step(step) # final step step_name = 'simulation' step = ForwardStep(test_case=self, mesh=mesh, init=init, time_integrator=time_integrator, name=step_name, subdir=step_name) namelist_options = { 'config_run_duration': "'00-00-10_00:00:00'", 'config_do_restart': '.true.', 'config_start_time': "'{}'".format(restart_times[2])} step.add_namelist_options(namelist_options) stream_replacements = { 'output_interval': '00-00-10_00:00:00', 'restart_interval': '00-00-10_00:00:00'} step.add_streams_file(module, 'streams.template', template_replacements=stream_replacements) step.add_input_file(filename='../{}'.format(restart_filenames[2])) step.add_output_file(filename='../{}'.format(restart_filenames[3])) self.add_step(step) self.restart_filenames = restart_filenames